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Introduction and Summary.

The transmission of radio waves in inhomogeneous media is a
problem of considerable theoretical and practical interest. An im-
portant contribution to the subject was made in 1930 by P. S. Ep-
\STEIN [1]. ErstEIN’s work which was based on what might be called
an EpSTEIN layer was further developed in 1939 by K. RAWER [2]
with special reference to practical applications. At about the same
time the present author studied the transmission properties of the
parabolic layer in the penetration frequency region. The results
were subsequently published [3].

In the present memoir the transmission properties of the para-
bolic layer are studied throughout the long, medium, and short wave
ranges. Suitable expansions of the wave functions are developed
for this purpose and it is also possible to investigate the accuracy
of the phase integral method originally developed by T. L. ECKERSs-
LEY [4].

The transmission of radio waves round the earth surrounded by
a concentric parabolic layer is a problem of considerable interest in
this connexion. General formulae are obtained for the transmission
of horizontally and vertically polarized waves. These formulae are
applicable to any kind of layer provided its wave functions and their
circuit relation have been found. The original series solution has
been transformed into the physically simplest possible form. This
makes it possible to split up the solution in subsidiary waves. This
has already been done in the reflector free case by B. vax pER PoL
and H. BREMMER in 1937 [5]. Following G. N. WaTsox [6] the series
solution is transformed into a contour integral in the long wave
case. The residue series subsequently obtained is studied in detail
and numerical examples are shown. For medium and short waves
the subsidiary waves are transformed by the stationary phase method
to yield the amplitude and phase of the geometrical optical ray.
The bridging between the long wave and the medium wave cases
is also discussed.

It is also of considerable interest to study the attenuation coeffi-
cient in long wave transmission. In the case of horizontal polariza-




6 CHALMERS TEKN1SKA HOGSKOLAS HANDLINGAR NR 34

tion for example it is found that there normally is little difference

between the inhomogeneous and homogeneous layers in the true

long wave case. Reasonable D-layer data yield attenuation coeffi-

cients in good agreement with the empirical AUSTIN ones. As an

illustration of the actual nature of the propagation the magnitude

of the ratio between the actual field and the so called primary field

has been plotted as a function of the sender-receiver distance in a

typical long wave case. This demonstrates the crude approxima-

tion of the AusTIN formula. A further study of the individual terms

of the residue series then shows how radially standing waves arel
produced between reflector and ground as selected by the proper‘
values or poles of the residue series. It is found that low order waves

are guided mainly by the reflecting shell contrary to the high order

waves where ground and reflector have a symmetrical attenuation

influence.

Finally the transmission properties of the parabolic layer are
studied from an ionospheric point of view. The influence of the
electronic collisional frequency upon the transmission coefficients
and the so called virtual height is discussed theoretically and nu-
merically with special reference to practical conditions. Numerical
results are shown for layers of variable thickness. In conclusion as
a by-product the transmission properties of the extremely thin layer
have been deduced with special reference to the discussion of the
nature of the so called abnormal E-reflections.

*

This investigation has partly been the result of a Swedish Govern-
ment Grant for technical research. The author’s thanks are due,
and are cordially extended, to H. L. KNnupsEN, E. E., who assisted
with some of the numerical computations, and to TORSTEN JONSSON,
M. PH., who kindly assisted in correcting the proof.

Finally the author wishes to express his thanks to the Chalmers
Publications Committee which generously facilitated the publication
of this memoir.

0. E. H. R.

Laboratory of Electrical Communication and Electronics 1944.



General Considerations.

To begin with we introduce the following notations, viz.

e = magnitude of the charge of electron,
m = mass of electron,
“co = the velocity of light,
N = electron density in electrons cin—?,
w = angular wave frequency,
wy = angular gyro frequency of the electron in the terrestrial
- ( e Hm)
magnetic field, of strength H, , |wy = ,
g e (D)
» = electron collisional frequency,
6, — angle between the wave normal and H,, the propagation
angle,
E = electric field vector of the wave,
H = magnetic field vector of the wave,
P = the polarization vector and
D = the displacement vector.

As an introduction we make a short recapitulation of the equa-
tions of motion of the electron. We assume that all dependent
variables contain time only in the factor e 7“’. The equations of
motion of an electron with displacement components, &, %, £, along
the z, =, and y axes then become

weH,, .
—maté=—eE, +jomvé+j- . +sin Op - 7,
0
. weH, weH,, .
—mawin=—el +jomyn+j . ccosOp -0 —7 p -sin Op - £,0 (2)
0 0
. weH,
—mwtl=—elb, +jomvi—] c -cos Op - £.
0

Here we have chosen the z axis to be the direction of propagation
and z is given such a direction that H, has no component along it.
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Since P,= — Neé&, P,=—Ney, P,=— Ne(, the equations
of motion become '

B, LY .

_475=x02 1+7; Pz+77TPI’
E“t .’U S ¥

—an =2\ Vi) Po—jye P+ iy Py, (3)
E, . LY .

_4.7t=x0 1+j; Py—nyPz’

where v ¥

w? Wy - oy’ ¥

L= — = 2,2 — -sin @,, and = x,2— - cos Op.
L %o wcz’?’T o, P> 7L o, P

1
4merN\2 .
w, = p” is the so-called critical frequency at which the

[

refractive index of the friction-free ionized medium is reduced to
zero when wy = 0.
We assume that the electron density is a function of z only, i. e,

we have a plane ionosphere. Since div (5) = 0, this means that

(D,)=0,or D,=E,+ 472 P,=0, as constant fields are out

6z
of consideration. By (3) the expressions for £, and E, then become
Ez [ 4 71’2 ]
— 2 — 2 9 — | .
T (”“»)* (oIt
1—2z22|147 » (3 a)

E, v .
—E=x02 1+7; Py_nyPz‘

Now for a certain value, #, of the ratio P,/P,, the ratios E,/P,
and K, /P, become identical and consequently belong to the same
wave-solution. One immediately finds that two % values are poss-
ible, viz.

1 1
Uy =7 [6,— (6: + I)E]: Uy= 5[0, + (6124, + I)E], and w, U, = 1,
where
s vt 1 1 sin? @, W oy (4)

1+

“T oy, 2( v 2 " cos Op'&)c-z——wz—jwv'
1—zx,
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As w, is a function of z, the ratios % are not independent of
height. This means, as we shall see, that the two wave-solutions
corresponding to w,; and #, generally are not independent of each
other. Since E,/P,= E |P,, we have

EPIEY = %y, ED/ED = T,. (4 a)

Neglecting for a moment the collisidhal friction (»* generally < o?),
one finds from (4) that wave-solution 2 has right-hand polarization

Fig. 1. The Polarization of the Waves.

for w < w,, plane polarization for w = w, and left-hand polarization
for > o, as is well known. For wave-solution 1 the conditions
are reversed because u, u, = 1, 1. e. the polarization is left-hand,
when o < w, etc. In both cases the polarization is elliptical when
w+#= w,, except if Op =0, /2, n, 372 etc. Finally reference is
made to Fig. 1 which illustrates the orientation of the axes and the
polarization of the waves.

Since — 7/2 < @p < 7/2 for down-coming waves in the northern
hemisphere and 7/2 < @, < 37n/2 in the southern hemisphere, the
polarization is left-handed in the northern hemisphere when it is
right-handed in the southern hemisphere and vice versa.



10 CHALMERS TEKNISKA HOGSKOLAS HANDLINGAR NR 34

30 - :
| T L
| | 94|
ENEE YN Lo
& as a Funcfion of the Eleciron Density | 60
o5 (E(Z) for varous Vatues of 6 | 5
i 30
| Collisional Friction assumed Zero \._ 151
6-Angle between Earth's Field Vector | | o
i and Direction of Propagation |
2o B W=z \
| \
JIE Extra - Ordinary | | \\ \
i€ Component \‘
g i
15 || | 2 \
} \\L
. AW
i ) \
/'0 | Ir 1-‘ [ 1 i ;
[ I i UL )
Y I
4 | Ordinary Cornponent
O‘I \ V. 2 =
SN | RS B3pe
(5)./ \\‘ \ _&\ / ‘;50 ===
a5 | Extra- | 1»\\ ) \\E\\Q\Zk\
_ Ordinary 60° |/ NSNS ST
_ Component \ )& ?\\ \\Q\\ ™
L1 3ol NN
| | 25 N\ AE, N \\\
7, i ]

0 Or Q2 )3 4 05

Fig. 2.)

1) Computed by the author’s former colleague, J. DE BETTENCOURT, S. M., Harvard
University.
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Remembering that D—E+4n P, we obtain from (3a) and (4)

' 1
DO = EM . {1 — - o o =EV. ¢ (2)
. T _—
x§(1+y;0—)+— — T
l—xg(l—l—j;)
1
DO —F». {1 - ————— . =EP . &, (2),
2 L yad . 7L
xo(l—l—;l';u—)-l— +7=

v Uy
1—a5 |1 +7—
Zoy ( + 7 w)
where ¢ (z) denotes the »dielectric constant».
For the sake of completeness we have as figs 2 and 3 included
the familiar graphical representation of &, and &, as functions of
(w,Jw)? for the two characteristic cases wylo = 1/2 and 2.

Tet us now make use of MaxwEeLL’s equations. They can in
this case be written
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d d
—jw Dz = c(:;l; (Hy)’ —jw Dy = Co CE(H:C)’
(6 a)
. d : d
—7wH’=c°cE(E”)’ —jo H, = —-cOCE(Ex).
They yield
w? d?
—gDz = 5 (B2, and
(6 b)
w? d?
_ED” == (E).
But as D, = ¢ B + ¢, B, etc., (6 b) yields?)
. _d*a @¢n o du dEP
4z gV d_z(u) dEM w? ud—zz i EI/- + 2 Ez o
- - —= e — 2 VB® — __
dz? 1 — %2 dz + (02 £l l_az)Ez 11—t 5
. _d*w a0 B
erp & amp (o Ty o @ T e
dz2 _1_172‘ i 02‘82—1—77,2 g = — 1_7—7/2- .

To get rid of the first-order derivative we make the following
substitution, viz.

2 (@
+ i, dZ_; -dz 1
ED =,e V1% = (1 —m2) =z -I7,, and similarly { (7)
E® = (1 —aZ)‘%-Ilz.
The wave-equations therefore reduce to
du\® da dIl, da
21, (o (Z;) d| de de de
dz? (0—381+(1—ﬁ—)3) == g\ 22— .
du\*® dii dll, du ©
2, (v (E) d| dz dz  dz
W+(c—g%+(1—_a7)2)”2=—”fa; —w 21 —= -

1 Note: U = Uy,
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We get two coupled wave-equations. We first of all wish to find
out when the coupling terms disappear. To that end it is conve-
nient to express % in J,. From (4) we have

du dsd,
dz . dz
1—w” T2ty )
This expression and its derivative are equal to zero only when
7z 3
Op = 0, m and R In the first cases, longitudinal transmission,

both waves are circularly polarized. In the second cases, transverse
transmission, which corresponds to the condition at the magnetic
equator, the two components are plane polarized at right angles.
For the two cases, longitudinal and transverse transmission, the coup-
ling between the equations disappear and we have
a1, w? - ]
d? +(E£1H1=Os ’
and, { (8 a)

all, o?
+ s e, I, =0.
%o

dz? [0p=0,7n/2, 7, 3n/2]

When @, does not have any of the above values the coupling has
to be considered. The problem, however, is extremely complicated
on account of the fact that e (z) is not a simple function of z even
for linear electron density distributions. As a matter of fact (8 a) can
be solved exactly in a few cases only when ¢ has the values corre-
sponding to @, = 0, 7/2, m, 3 #/2. When this is the case the phase
integral equations connecting the true and virtual heights for one of
the waves can be solved as has already been shown [3]. These
cases, viz. transverse and longitudinal transmission, are therefore of
most immediate interest. They are of practical importance at or
near the magnetic equator and the magnetic poles.

When 6@, does not have the above characteristic values the wave-
equations (8) in the first approximation have to be solved by the
W.K.B.-method neglecting the coupling terms. The approximate
solutions when the coupling is considered are then obtained in the
usual way by the method of the variation of the constants. A treat-
ment of this case, which always must be approximate, is outside the
scope of the present communication. The reader is referred to an
interesting paper by FORSTERLING [7] on this subject.

S
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Let us now return to the cases of transverse and longitudinal
transmission. We obtain from (4) and (5) the familiar relations,
w2

%), for the transverse case, (10 a)

_w(w-l—yv

& =

and
2
wc

g,=1— —, for the longitudinal case. (10 b)

w (o — oy +jv) (@ > wg)

¢, refers to the ordinary wave and ¢, to the extra-ordinary one.
It is clear from (10 a) and (10 b) that we only need to study the
transmission of the extra-ordinary wave in the longitudinal case as
we then mere put wy = 0 in order to get the ordinary wave in the
transverse case.

On the Wave Functions of the Parabolic Layer.

For the parabolic layer we write

z 2
wf:owZ[l—(Ah)], (11)

where Ak, is the layer half-thickness and z is counted from the
apex of the layer, positive downwards. Eq. (8a) then becomes

azll . | &
qgve tVVe—7)a=0o, (12)
where
0 =a[e_7w—x2Ae+ﬂIJ, (13)
p i 2 L =iy
— = 4
e 4 Ak (4a)2 e e U, (14)
lw(w—wy)l w,?
xXe = Tc’nz = wcmzy (15)
@ 1 . v L
= 7 arctan |—— on)’ ) (16)

v =z
ol = o

v
) Note: When w < wg, we define 2 ¥ — + = — arctan { —— |,
(UH —_w
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2mc,

a4 =

7 Ahm[ 7
(18)

)
‘m

B
, with 2, =
(|w_wHI) A:I m Cm
We know already that the solutions of (12) are WEBER’s func-

tions of the parabolic cylinder, viz., in the notation of WHITTAKER,

.7 .= Xk
D (ue7T), D (ue ! 4'), and D (ueyT)
.1 S .1 (19)
To—% —lo—5 —le—
e 79t D (u e 4'), for example, represents the up-going, primary
1
Te——
wave when w > w,. The author has alredy shown [3] that in that
case the important circuit relation connecting the waves is

. 1) s
D(ue7?)= (79—'_1 er2+ e D(ue 7_4_)4—
jo—g CEE —jp— \
up-going wave reflected wave

F(79+%) — % —iT j3x
+—F5—¢ ° -D(ue 4). (20)
(2 7) 2 —jp—%'

refracted wave

This circuit relation only connects one up-going wave with its
reflected and refracted components. Actually, there is an infinite
number of waves (generally with decreasing amplitude) since the
waves always experience a slight reflection at the bottom and top

de
of the layer, if 72 has a discontinuity there. We must, therefore,

before we proceed discuss the influence of the reflection at the boun-
daries of the layer. To that end we refer to Fig. 4. This shows
plots of & (z) for » = 0. When o, <o <oy the layer is optically
denser than the surrounding medium for the extra-ordinary compo-
nent corresponding to ¢, (z) (see fig. 3). When w > wy the layer
is optically thinner. The last case is the important one as far as-
the present ionospheric exploration is concerned.
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Refracted wave III;

LK
ER) Vo0, Gtui<tug, | Zlv=auy
<w=<wj
l%

~

|
!
| e
|
|

-95 g5 “ 10 FZ 20 a5 €

Fig. 4. A schematic representation of the transmission of waves through the
inhomogeneous layer.

Our immediate task is to find a relation between the incident
wave, II,, the reflected wave, II;, and the refracted wave, II,;.

At the boundaries we require that the tangential components of
E and H be continuous.

Since by (6 a)

) , ] 0 H,
—7wa=—5z ,and —ejo B, = 52
) 6E, 1 O6H,
this further means that 52 = 8z etc. are continuous.

The wave functions II,, II;, II, and II; are parabolic cylinder
functions when ¢ (z) is parabolic.
Let us for the moment throw the up-going wave, which in the

case of w > wy is D (u e7—4.f), in the form
1
7'9—5
D (u e’Z‘) — Afgs Y (21)

ie6— 5
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which we assume will hold near the boundaries. The other compo-
nents accordingly become

.z . .3

D (u e~7"4') = Ae+w(z), and D (u e

_ 1 _ 1
—Je— —Jje—5

Since the first two of these wave functions are complex conjugates
when Im (p) = 0, we infer that

[Im {® (2)}] = 0.

The internal complex reflexion factor, R, according to the circuit

(20) therefore becomes

I’(jg-l—;) 7 o (7 )
BR= > " exp [—5:4—7'17—1—2@&)}].

(2)F
Making use of the multiplication rule for the I'-function we obtain
s I'(2je) ne = |
R=2* —&——exp. | = +j)y - +2P()—oln4 |. 22
Tig TP |2 T/ T22R —elnd (22)

The reflection factor,

Lir ?_Q)_' T [1_ 2 Im @ (z)}]. (22 a)
I'Go) ‘

2
In the non-dissipative case Im (o) = 0, Im {® (z)} = 0, and

R|, consequently becomes

|R|=2

~o
N e’ 1
==, v=0 (22 b)
2coshmzp 14e

&

This result is immediately obtained from the circuit relation when
vy = 0, since from it

, v =0, (22 c)

which is the same as (22 b). The internal refraction coefficient,
T, by the circuit relation becomes
o g

T = R exp. {—ng—j;}:Re_T. (23)
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Introducing the notation

o

T

ko= (24)

H

~|

where 1 is the wave-length in the surrounding medium, we write
the advancing wave on top of the layer,

E, =1, 7" = A, exp. [—j{wt + k(z + Ohy,) — D (Ah,)}],
and the other waves
E, =1I,e7 7" = A, exp. [—j{ot + @ (—2)—2D (Ah,)}],
Eys—H e 70t = A, exp. [—jlot— @ (— )}]
B, =H,e " = 4, exp. [—jlot — D (z) + 2D (Ahy)} ], (25)
E, =1I3e 7% = A5 exp. [—jlot+ @ (z)}]
B, =1Ise 7" = Ag exp. [—j{ot—Fk(z— Ak,) + @ (Ah,)}],
and
E, =I,e7%" = A4, exp. [—j{wt + &k (z— Ah,) + D (A h,)}].
Our boundary requirements at the top yield 4, = 4, + 45 and
1 [0 ( —z)1 1 (00 (2)]
4, = (4, — 4y) '];1 J =(A3—A2)z1 52
z2=— Ahlnm z= Abm
Further introducing
b |
“= (6@ @) ’
0z J
z = Ahm
we have
. (26)
A1=A3~1:_7‘ Agt,,
and
1—pu
Az—AaiT;t—Aaro,

where ¢, is the transmission factor and 7, the reflection factor in
direction out of the layer. We next obtain from the circuit relation
(20)

Iy=1,R+HyRe 7, and I, = R+ H,Re 7.
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This yields

1—r, R . .
Ay =45 exp. {V +j2P (A h,)]
and
[ 7o B2 -1
— _— 2T
A4_A51R—|—1_70Re Il

At the bottom of the layer the boundary conditions yield
A;+Ag=A;+ A,, and (4, —A)u=4,—4,, i e,

R R2 e 7
nt Ry g
A46=A7'_' .):=A7‘Re",
. AL Rre™ =7
Tkt 1—r R
and
— 720 (A hm) bt T
4, = A; e — -~ — =
1—R(ro—r)—r;ro B2 (1 —e27)
—720 (A hm)
= 4qe effs
where r, = — r, = reflection factor in direction into the layer,

t; = pt, = transmission factor into the layer,

R,;; = effective reflection factor of the layer in the surround-

ing medium,

and T, = effective refraction or transmission factor of the layer

in the surrounding medium.

It is immediately clear from (28) that these effective coefficients
contain a complexity of waves. After expansion and collection of

the first few terms only we obtain
Ry=r;+ t;t,[R+ Riry+ RPr2+ ...+
+ Rrroe 2T {14+ 3Rrg+ ...} + Rirge*T{1 4+ .. .} +...

and 3
Ty =t Re Tty[1+R2rg+ R23r5+ ... +

+Re T (14 4Rrg+ ... )+ RrE e T 141+

(28 a)

(28 b)
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/ Upper Boundary of the Layer
§
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4ah

m
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|
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|
|
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Incident Wave Reflected Waves

Fig. 5.

The paths corresponding to these waves are schematically shown
in fig. 5. In the case of the optically thin layer, i. e., Re (¢) <1,
which is the common case in the radio exploration of the ionosphere,
|ro| generally is very small and p real when » = 0. In most practi-
cal cases the layer also is many critical wavelengths thick and so
only the term t;t, R = R in R, is of importance, i. e., only the first
reflexion within the layer is considered. In the exceptional case,
w,, <o <og 018 purely imaginary when » = 0. The consequence
of this is that several waves in (28a) and (28 b) have to be con-
sidered, i. e. the layer can show the colour effect of thin or of thick
plates. This is characteristic for the demser layers. To this we
will have occasion to return later.

Relation (22 ¢) can be thrown into the more instructive form

1 1
7 A\ hm ( w )?(l—wz)] Tz

|R|=[1+6_ e v=0, 0 >0y (29)
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Ry

a0 The Reflection Coefficient for a friction

free Parabolic Layer as a Function of
° the Wave Frequency.
07 Rede=30 m 28h.= Layer half Thickness
c6

L, 2ha"0

a5
a4

cahurlim
a3
a2

ahu-10m
of
b 100

o L z 3 7 5 s 7 ;o

e |:
4
(=)
Fig. 6.
(Note: f = w/27)

In order to demonstrate the character of relation (29) we repro-
w?

2’
m

duce in fig. 6 a plot of |R |2 for wy, = 0, as a function of 22 =

which has already been shown in earlier communications [3].

* *

In this connexion it should not be out of place to discuss the case
of oblique incidence briefly. To that end we have to put w; = 0.
For the sake of simplicity we only discuss horizontal polarization,
viz. the electric vector perpendicular to the stratification of the layer.
We arbitrarily denote the axis of the electric vector the y-axis. More-
over, we consider only plane waves parallel to the direction

y so that @ = 0. MAXWELL’s equations become

_ws(z)E 6H, JH,
- cw Y b6z oz’
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‘wH 0E,
700 x=_6z)
) SE,

These equations obviously lead to the rigorous equation of wave
motion

o (1 s —
A |2) e, =0

0

)

with boundary requirements that E£, and 6—;’ be continuous.

Giving the separation constant such a value that the wave gets an
angle of incidence, ¢, we accordingly write

E,=II exp. {—j (ot —kz sin )}, (30)
and
eI o) 29 2\
—\1 2 - _
1 - (00) lcos @ N (1 (A hm) )}H = 0. (31)

The wave functions become D(u ejT), etc., as before, where

.1
jo—-35

we instead of @ (z) write @ (p, z). With the exception of 22 the
parameters remain unchanged. We find

< 2

w m

Whenever » = 0, the other parameters will not contain w, and there-
fore with respect to the wave functions

0 0
%=—tan<p-w%, (33)

when » = 0. This is an important relation.
Let us for the sake of simplicity only study one of the primary
waves. At the lower boundary we have the incident wave
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e 79" = 4 exp.[—j{ot + kzcosp —kzsing + @ (p, & by},

the reflected wave

Hye 79 = A,exp. [—j{wt —kzcosp —kzsing + @ (p, A L,)}],

and the refracted wave
H e 79" = Agexp. [—j{wt + @ (p,2) — k z sin @}].

The boundary requirements yield

1l—pcosg
T T Y Fucosg
and (35)
2 ucos @
[, = - .
¢ 1+ wcos g
As before |ri| generally is small.
The internally reflected, down-coming wave will be
H4e—7'wt =titoRe+7'l.-x,sin(p_Hle—jwt’ (36)

where x, is the distance between the points of entrance and with-
drawal. The reflection factor becomes

r=1ttyRetitusn® (36 a)
When v =0, Im (¢;) = 0 and Im (¢;) = 0. Thus when » =0
&, = Phase (r) =Phase (R) + kz,sin @ .
If the time of travel is v, the total phase change becomes
E—owr=1T,.

At the point of withdrawal the following relations must hold, viz.

6, N 6, 01
o 6<p_’)' (37)
By (33) this yields
1 d
T COS?'(;% { Phase (R)} . (38 a)
and Z; = €y T sin ¢. (38 b)

1) This relation has to be used with great care whenever |R| varies consider-
ably within the main spectrum of the transmitted signal.
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This proves the BrREIT-TuvE theorem [8] when » = 0 also for the
general case that the methods of the geometrical optics cannot be
applied*). It should be stressed, however, that relations (37) are the
general relations from which the point of withdrawal (%,) is deter-
mined even in the moderately dissipative case.

The methods we have used in this section are, of course, generally
applicable even to layers of different shape. When the wave func-
tions corresponding to (19) have been found the main problem is
to find the circuit relation. The R and 7 values determined from
such a relation can equally well be used in relations (28), (36), etc.

Returning to the parabolic layer, our next step will be to obtain
suitable expansions of the wave-functions from which @ (2) and
R can be obtained.

On the Expansions of the Parabolic Wave Functions.

The parameters o and «, (13), (14), are small or large depending
upon the wave frequency used and the dimensions of the layer. It
is obvious that the properties of the wave functions will depend to

w Ak

a great extent upon the magnitude of When A Zz 1 (low

ke
losses) and w > wy, the character of the solution will be notably
different if ir” 22 <1 or > 1.
T Ah,
2

‘m
tical interest. For the sake of completeness, however, we write
down WHITTAKER’s expression in KuMmER-functions [10].

One has with the notation In = log nat.

< 1. This case (thin layer) is not of immediate prac-

a)

_ 1 I]—27'Q 1wl
( se) 2 TRUTE i) 1.
4 =e—7(4—2 n2) .z 3354 —2tuwe s
=
[3—2j0 3 w2
1F11 4 :‘2‘772J Ph T
o o< ase (u) < — . (39)
r 4

'} Compare D. R. HARTREE: Optical and Equivalent Paths in a Stratified Me-
dium, [9].
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We check this relation by letting . tend to zero. Although

o z\? 2 mz\*
lo| =00, g2 »—|—] =— . Therefore

ch yl

“ TR

1—2jp 1  u? (2 nz 3—2j0 3 _u? P
1F1 4 > 5,72 -—>COS( P . ,anlel —4—; 5’75 - sin

3—2
r ( 4 7Q) 0 11. .
Since 1—2—7,7 - (— ; ) e 1 , the terms within the brackets
1 7.2 2
2 4e 2 )
tend to —3—799—, which shows that relation (39) yields the

proper up-going wave.

b) u is large and o is small, i. e. the layer is many critical wave-
lengths thick, 22 =~ 1, and » limited. This means that w (0 —— wg)
~ o,k which expresses that o lies in the penetration frequency
region.

By WHITTAKER’s integral representation [11},%)

. 1 . u? (0+) o B a
;= 1’(79+'2‘) T —wtel e a1
Dlue 4)=_,,,_:_ e ’e 2—yy P2,
2mn9
. 1
fe—v =

and the HANKEL formula,
(0 +)

(—t)~? e ' dt, we immediately obtain, after ex-

12
pansion of e 2 in powers of °, the asymptotic expansion of
WHITTAKER,

1) Note: In (— t) is defined purely real when ¢ is on the negative side of the real
axis.

(40)
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L u? Fd T 1 3

e8] (et

. 1 1 l—j—— =

Te—> (u)2 2u

1 3 5 7

(Q—H'g) (9+7’2) (94—7’;) (Q—H';) "

—_— ——= St ;—n<Phase(u)<"2,1).
2.4

This expansion is useful only when |g| < |2 u2|, which limites the
practical frequency range of the solution.
uZ

c) Both w and o are large, but o < 4 This corresponds, for

example, to the general cases of a thick layer and a wave frequency
lower than the penetration frequency but higher than the gyrofre-

quency, or a wave frequency higher than the penetration irequency.
s T
We make the following transformation, viz. t = ¢ ¢! 4. Relation

(40) then becomes

1 (0+)
F(ijr-') ro —i(2 + %) [ —iluet S
i 06 = — T In (—7
D(ue74)=—__4£ 270, 7(4+8)Je j\wrt+g +en (=7
1 2z
9 . o _-72'
10—+ o 74
where 1
a=0—1jy- (43)

In order to obtain a suitable expansion from this we have to use
the classical method of steepest descents [12]. We introduce the
notation

W=—7'{uf+%2+911n (—f)}- (44)

Now we try to select a contour of integration such that it passes

aw
through a point, where P 0, and further has the property that

Im (W) = const.

1) To obtain the form of the expansion for values of Phase u not comprised in
this sector it is practical to make use of the circuit relation (20).

|
J dz, (4
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-1

aw

The points, where FP 0, are saddle points or passes on the

Re (W)-surface. Our choice of the contour is finally determined from
the consideration that the curve must descend on both sides of the
pass. Generally if the curve ascended, Re (W) would tend to + o
and the integral would diverge.

The physical interpretation of the choice of contour is that on it
the interference effects have been evaded because Im (W) = const.

We obtain the stationary points from

dawW [ 911 0. which vield .
dr=—7lu+T+TJ— , which yields two points,
U u? L
TA=_:)+(4_01)2, (45 a)
and
U u? 2
TB=—2‘—(4—01)2 (45 b)

It is further convenient to introduce

O, =WE) —WEm=W,—W,
and (46)
Qo=Whap)—W(E)=Wz—W.

This transformation is of course a conformal representation except
at the stationary points. Since

azw J 911 _
iz — N Ty (47)

azw . . u?
e = 0 at the stationary points, except when o, = 7

then

uZ
When ¢, #+= = therefore, the stationary points are branch points
uZ
of the first order. In the special case, g, = which from the

beginning was excluded (wave frequency equal to magnetic gyro
frequency), a special treatment is needed. To this we will return
later on.
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Fig. 7. The contours Im (W) = const. through the stationary points.

 (Tm (W) _«
= Im (W)T=T§ > for

% =30 and ¢ = 25. Point 7z must be discarded as it does not
yield a proper contour.

Fig. 7 shows a plot of the contours Im (W)

Fig. 8 shows the contours close to the origin. The proper bran-
ches are marked by I, and I,. A few adjacent constant phase curves
have also been plotted in order to show the nature of the saddle-
region. A further discussion of the contour for complex u is outside
the scope of the present communication, even though it is an inte-
resting mathematical topic.

At the stationary point

1

A w u fu 2 1\
W=W(E)=W,=—; —itelr—a) talb{—ul—7 Ik (48)

The integral representation (40 a) then becomes
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Fig. 8. The Im (W) = const. contours near the origin. [Note: Wy, = W (zr4)]

1

yrbers) de i e e afnie 302

D (u e 4 o7 e -e 8
I & 5 —0.d+
e (d 'Ql) d 2, (49)
Proper contours
However,
0 0
—@(dt —&fdr —%(d
e (d.Q)dQl: e (d.Ql)d'Ql_ e (E{Z)d!)l:'}l'

=) ]
Proper contours Contour I, Contour 1.
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Next we discuss the expansions of ¢ or of in ascending

d 2,
powers of 2 for the two branches, from the stationary point. Since

£, and — vanish at the stationary point, the expansion of Q2

dz

in t begins with a term in (z —7,)2. By reversion we can write

o __l)(n+l)
n -
e N L 50e)
n=0
for branch I,, and
o Tl).(n+l) jzm+1)
N7 n =
r—n =3 % e : (50 b)
n=20

for branch I, since a half circuit round the stationary point in the
z-plane corresponds to a single circuit round the origin in the £,-plane.
dz
This expansion should be valid almost up to z3, whe.e To0l=

We have from (50a) and (50 b)

dz dz
d ), d £,

—

2

)I = D' a2 . (51)

n=20
But
O+,04) g4 (Tat)
! ( i, . 1 j SR
Ay, = ———— = .
9wy 1 1 2 w9 1
7. an+ 5 ] [WA— W]n+ 5
Since
1 1
n+ — n+ —
1 [d2 W 1 )
w—Ww = (t — 2"*'][—— —) 4.l ,
( A) (t T ) 12 ! (d‘[z ) + J
T=1y
(52) yields the familiar relation
1 d2n ('L' _7::1)2 n+1
Ay, = 2 n)!|:d1,2n "4 ; o (53)
(W, —W) 2
T=1,

1) The double circuit in the {2;-plane is necessary in order to dispose of the frac-
tional powers of £2,.
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This yields the following values of the first coefficients, viz.

1
ag=e T @TM—1) 2,
73_f l g 1
a,=¢€¢" 4 (2)2 (g—1) 21, 17(77+9)E’ - (54)
7.5_,— i _1_3 4 n3
a,=e€ +(2)2 (n—1) 27,4 ( +n+—n+40)
01
where 1 = —5.
T4
d'[ —7.._
Since 70 —0 and (W—W,)—>— o, when 1 —>e¢ "4 - o,
1

irrespective of the phase of u, we get by Warson’s lemma [13]
I 1
Ji~— Nag T (n—|— —2—) .
n=0

We therefore obtain the following asymptotic expansion of the
wave function, viz.

. 1 1 s (u [u = {
I'\je+ 5 —3 a0 7(; )2+91(1n1—u}—.
)N—l (n—1) e e
(2 )2
7% —3 —2
Jl+e “—1) 1o @+ 5t

jx —6 —4 7 89 1
+e (n—1) 14 3 f§+7’2+?77+40 -1—6—|—

To convince us that the expansion actually represents the up-going
wave, we let w, —0, 1. e. we reduce the electron density to zero.
Making use of relations (13) to (18) one finds that the parts of the
2mz

A

wave-phase containing tend to — as expected.

¥4
Ah,
uZ

d) Both u and ¢ are large but o, = e This case has to be treated

| x

L
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w W
4’ d
the stationary point becomes a branch point of the second order.

separately on account of the fact that for g, = = 0, and

We introduce

uZ
B = 4 O (56)
w 4
This yields 7, = — > + ()%, and the new stationary point
= u
becomes T, =1, — (B)* = — 5 = 7p We also introduce the no-
tations
7 : f 2. @ L
W=W—yﬂln{—z}=—7'lur—|—§—|—zln{—r}1, (57 a)
and
— ) . . 3u  wl ul
Wy=W,—jBln{—r1,4}=—j —?—l—zlnEI (57 b)
We further introduce §2; = WA— w. Accordingly
1
j —] = ofl &8 L B S
s F(79+2) et A ek Sl ol o
D\ue 4 = — —— e e . J,
1 2
To—~
- , jBln {—r7}
where J; = | e o Dy (£2;) d825,and Py (23) = (1,73~
{u + 4+ u_]
Proper contours ! 4 TJ
In order to secure a wider selection of proper contours we write
it
h(23 =6 9471) (58)
—3 __aatsin¥ -
Since |@, (2,)] - |7] 2 L exp. | (a 2% cos lI/)J ,when

z=Ah,,and7—> - e_yz, we only have to require that cos { <0
in order to be able to use WATSON’s lemma on a contour where
Im (£2,) = const. = 0.

1) This method is used for instance to avoid two stationary points on the contour
for one of the DEBYE expansions of the eylinder functions of large argument and order.
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w=30
B +225 -

- Braneh 1

Fig. 9. The Im (£2,) = 0 contours through the stationary point.
(Note: 74 means 74, {2 means — 0,)

33
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Fig. 9 shows a plot of the contour through the stationary point,
74, for u = 30, and ¢ = 0, (o = 225). Since u?is equal to the layer
thickness in radians (wy = 0), at the critical frequency, the above
case corresponds to a layer about 144 critical wave-lengths thick.

J 5 gets the form

—dt, (+it \it —d 0, [+ir it
Jy= e Dyle Qe dQ,4+ | e Dyl\e D,e d82,.

Branch 1 Branch 2
) d £, daz 2,
Since (£2,) =0, e = 0, 7o = 0, but
T=T4 -
T=T4 T=Ty
B Q, . o 5
FEl = 0, the same applies to the derivatives of . and we
0
T=T17y4
get by inversion
% 2
- 7
Qo= N'b, 2, (59)
n =
As further
¢ " 7'271
DOy— Dy= N'b, 2,3 (l—e 3 ) (60)
Branch 1 Branch2 n=1
in accordance with fig. 9, we finally get
= ,
7k )
iy —e 0 —; = nw O
J3=—2je7'je PNy o T3 sin— . Q3 - dQ,.
n=1 )
- 1
By WaTtsox’s lemma, therefore,
" P 3 W n n " n
Jo~— N b, 2j¢ 5 n = (‘") =— e, F(Tf) .
3 3 3
n=0 n=1

This time we have to make a triple circuit round the image of
the stationary point in the £2,-plane in order to determine b,.
We accordingly have

O +,0+,04) (tqa +) n

1 f@odm i< ej(ﬂln f=+ 3’)

.

n

}
A B2 - — d 1, 61
@)y 87 (W, —W)s (o1

=6nj

~——

wls



RYDBECK, ON THE PROPAGATION OF RADIO WAVES

or in analogy with (53)
1% ldn—l eyﬂln{_t} (

b, = ¢
3 (n—1)! ldz”_‘

n

W — W

This relation then yields

2
it 3 u\— 5
=—e’6(7”) [7/3)—(7/3) Gor+20 4

27
+ 560 ’

We therefore get the following asymptotic expansion, viz.

. 1 x
= F(79+7) 3u\w — % _3T
D\wye ¢4 ~——F- =~ ? 3 e e -
1

2
f.o—?
=% + (5 —8)

(62)

3u\> — L
1 2 3
(63)
11 3
401 2



36 CHALMERS TEEKNISKA HOGSKOLAS HANDLINGAR NR 34

The last two expansions, (55) and (64), of the function of the para-
bolic cylinder correspond to the DEBYE expansions of the functions
of the circular cylinder, Z,(z), for p and z large, when p <z or
Pz

It should be pointed out already here that expansion (64) is use-
ful only in a very narrow frequency range. In its limited usefulness
it is strikingly similar to the DEBYE expansion in the exceptional
case p =~ z. Since (64) has such a narrow frequency range we will
find it desirable to secure a bridging relation between (55) and (64).
To this problem we will return in a later section when the general
characteristics of the transmission of radio waves round the world
have been discussed. It is namely advantageous to obtain first the
general expression for the spherical reflection coefficient of the para-
bolic layer.

We have not endeavoured to make a theoretical investigation of
the expansions (55) and (64) when Im (u) = 0 and Im (g) =0, i. e.,
when » > 0. Such an investigation would chiefly concern the Im
(W) = const. paths and it must be considered outside the scope of
the present communication which mainly deals with problems where
the phase angles of » and ¢ are quite small.

The Transmission of Radio Waves round a Spherical
Earth surrounded by a Radially Inhomogeneous
Concentric Reflecting Shell.

So far we have only discussed the transmission of waves in the
inhomogeneous plane layer. From the point of view of ionospheric
investigation this is the important case. For long-distance radio
communication, however, the reflecting earth also has to be con-
sidered. The dominant wave functions of the appropriate solutions
are few for the longest radio waves in practice. For the shorter
waves, however, each solution is made up of a very large number of
important wave-functions which give the wave its ray-like charac-
ter. For numerical calculations the transition from diffractional
waves to ray waves presents difficulties. Unfortunately, the transi-
tion occurs in a widely used wave range.
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Transmission of Radio Waves
round the Earth

Reflecting Shell

Fig. 10.

The problem of the transmission of vertically polarized radio waves
between the earth and a concentric, homogeneous reflector of finite
conductivity was treated in 1919 by Warsox [6] in a classical paper.
The results were, however, not established in a form useful for imme-
diate numerical computation. In the light of our present knowledge
of the inhomogeneous character of the reflecting shells Watson’s
original treatment has to be extended. KEnRICK indicated in 1928
[14] that the general characteristic of Watsons result should not be
invalidated by the presence of an inhomogeneous reflecting shell.
In the present section we wish to incorporate, as completely as the
present available space permits, the reflecting properties of the
inhomogeneous layer into the wave solution. This solution is further
presented in a new and simplified form which permits a more
physical interpretation of the solution.
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Let us first consider the simplest case, viz. horisontal polarization.
In this case the waves are transmitted by a small horizontal loop
carrying an electric current. Such a loop is equivalent to a fictitious
magnetic dipole perpendicular to the plane of the loop.

The radiation field is symmetrical to the dipole-earth centre axis.
The electric field lines are circles around this axis and the magnetic
field lines are contained in the meridian planes. This problem has
already been treated by miss M. Gray [15] in the reflector free case.

We express the field of the current loop in terms of a radial
HEerTz1AN vector. We have in m. k. s, units

JSEk r r
4ﬂ‘z0~—‘U=A~—~U, (65)

H =Hr(7',0) =)

where 7 denotes the distance to the centre of the spherical earth of
radius a (see fig. 10), @ is the angular distance from the sender, z, is
the characteristic impedance of free space, 120 7 ohms, and J is the
electric current in the small loop of area S. The »primary field» is

v=u, =¢"%/jkR.

In spherical coordinates we further have

H,=k1 r II); H L ¢ In; H
= BRI+ e W) Hy = s D5 He = 05
and
wdoéU
ET=E0—O;E¢—z0——b—6— (66)

One further finds that U satisfies the rigorous wave-equation
also when ¢ is a function of 7, i. e., when the reflector is radially
inhomogeneous. This is a characteristic feature when the polariza-
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tion is horizontal as is already well known from the oblique incidence
case of the plane reflector (compare p- 20).
Thus

\72U+ka=0

where

k, =k, for r<a, ky=Fky=1Fk fora<r<e, k, = kg for ¢ <r<d,
and k, =k, =k for r > d. Here ¢ and d denote the radial distance
from the centre to the lower and upper boundaries of the reflecting
shell.

Since the time factor is e~/ @t we have

(1)2
kit =75 (&1 + §600,2) = k2 (e, + ] 60, 2)
0
( (67)
e w? l
3 =7§'€(7‘). J

As before ¢ denotes the dielectric »constant» (terrestrial magnetic
tield assumed zero) and o, is the conductivity in mhos per meter.
Separating the wave-equation we get

U =237, (kr) P, (cos 0), (68)
0

where f, (kr) = f (z)is a solution of

a2 +1
iz {21, @)} + [E, (r) — W_ )] Zf, () = 0. (69 )

When the layer thickness is small compared to r it is apparent
from (69) that there is little difference between the plane and sphe-
rical cases as far as the reflector is concerned.
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The general notation ¢, (r) = ¢ (r) 4 § 600, 2 has been introduced for
the sake of convenience. For & (r) = constant (i. e. for r < ¢, r > d)
the radial functions are the well-known three dimensional functions

£ (Ter) _ (it ); HO | (kr);fﬁlz) (kr) _ (l)%ﬂ(z) L (kr);

kr 2 kr ety kr 2 kr n o
and - (70)
Y, (kr) 7 % 1
- | — — | gD (2)
= ( - M) )= [HM% )+ HY (kr)].

In the range ¢ <r < d (the reflecting layer) we assume that the
radial functions corresponding to the incident, the reflected and the
refracted waves, viz.

&) (kr) &2 (kr) &) (kr)
; ; and ;
kr kr kr

(71)

are known. Since these solutions are not linearly independent we
must have

&) (k) = A, &D (kr) + B, &9 (kr). (72)

When the reflection at the boundary of the layer is neglected (this
is a permissible approximation for most wave-lengths) then the
internal spherical reflection factor of the layer becomes

A, 8P (kc) A, &P (kc)

T o _ %
By =e £0 (5 o)

i Re (d3)
& (k o) s

For the parabolic layer the radial functions (71) can be obtained
with sufficient approximations from the parabolic cylinder functions.
Since A kb, < ¢, (69) becomes

d{zf, (2)} n(n 4+ 1) n(n + 1))2 . A b, \2
dzf+[l*W—-{—ﬁF}MZ”’”(T)*

Ya

e—fw{ 5\
_sz 1_(Ahm)}]fn(z)=0:

Abyn(n+ 1)
p K

Ve

where p =c + Ak, ~candz,=z—Ah, Ax2ei2¥,

0a)
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The corrections »; and », generally can be neglected for the dimen-
sions obtaining in the radio case and it appears from a comparison
with (31) that the spherical and the plane reflection coefficients even
for a fairly thick layer are approximately identical to this degree of
approximation when n (n + 1) = k* p®. It further appears the well-
known fact that 1,2

[+ %)

nn—+1) _
i p? - 2 p?

sin? @, =2 (74)

1
Except for small angles n > 1 and therefore n + 5= kp sing,.

* *
*
If the HerrziaN-function were unaffected by the presence of the

earth of the reflecting shell, the value of U should be
QER

U=Up=2%"

the so-called »primary field». By the well known addition theorem
for the three-dimensional, spherical functions one has

ik R 1 {.3 ]
|
|

(75)

?'_k—‘—R = kzrb;/_'o (2n+ 1) Cn(l) (k'T) Tn (kb)Pn (COS 0)’ (TZb)

ek R 13
= — @ <b).
TER lﬁzrbno(Zn-l—l)C (kb)¥, (kr) P, (cos ©), (r< b)
If we' take account of the presence of the earth and of the re-
flecting shell we denote the disturbance in the primary function by
U,, U, etc. The appropriate forms are

(76)

1 oo
Ui=%3 ,lo @n+1)a, ¥, (k) P, (cos ),
1 oo
U, = b S (2 n+ 1){b, ¥, (kr)+ ¢, P (kr)} P, (cos 9),
n=0
1 o0
Uy =755 — @n+ 10 d, {6 (k) — 4, £, (k7)) P, (cos ), (17)
r n=0 near the lower boundary in the reflecting shell,
1\
Up= 55 = @n+1)d,- B,&® (kr) P, (cos 6),
79 n=0 near the upper boundary in the reflecting shell,
L ¥ 1) d, 2 (0kd) g kr) P o)1
U—k,b (2n+ ) Bu gy n (B7) Pu(cos 6))

') Note: For the sake of simplicity the upper boundary reflection is neglected.
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The boundary requirements that the tangential components of E

— d
and H be continuous, i. e. U and o (r U) be continuous, therefore

yield for the determination of the coefficients a, b, ¢, d the equations

Uy +U,=U,; (r=a),
)
é_r(rUpr_l_rUZ):‘g(rUl); (r=a),
(78)
Upr+U2=U3; (r =c),
) )
E(rUpr_l_rUz):‘g(rUii); ('I’=C).

Remembering the WRONSKIAN
¥, (2) LY (&) — P, (2) £, (2) = j,

we find the wave function U at the surface of the earth (U =

= U, + U,)
U= kzib En+1) ;—Z P, (cos ), (79)
where
— ay ’ &%) %@ ¢)
e, = ¥, (kb) 0 (ke) — W, (kc) () (kb) — L@ (ko) oy { ¥ (B 5) 5, (k) —
— ¥, (kc) M (kb)) (80 a)

and

9o =¥, (k@) 5,7 (ko) =W, (ke) 537 (ka) + B, {¥,” (k) &, (ka)—
— ¥, (ka) 5, (ke)} —

£, (K c) : .
T LD (ho* [P, (ka) D (ke) — W, (k) L, (ka) +
+ B, (¥, (k) £,V (ka) — W, (ka) L, P (ko)}], (80 b)
where
L@y
4 =L

>

(ke)

kg £ (k) &V (ke) " &M (ko)

G _% tE (k) ED (key T E® (ko)
e D (k)

=—-—jtan7y; (80 ¢)

and
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k, Wn’(kl a)
By = %V, (ha) (80 d)

£ 2 (5 @z ay
@ M) g, k) . :
When — fn(z)ﬁ = 5”(1\)(2) = fnT)(lc\c) » as generally is the case in

an important region of the n/Z — plane, it appears from (73 a) that
0, = d;. Since a factor of the type e/% indicates reflection in the
shell, it is advantageous to rearrange (80 a) and (80 b) somewhat

€
so that the various waves contained in — will he easily separated.

n
Making use of (79) we obtain after several transformations

76,18, (kb
e, £, (kb) LT g WY k0 Gy — A}
0 L (ka) — 8. LT (ha) T I D —
L+je y{zﬂm'(ﬁ) & (k) &,V (kc) R, + A}
k

where R, is a complex reflection factor to be specified shortly and

1
A= {G0 (k) L2 (K c) + L (k) £® (k ¢)} which generally is a

very small quantity and therefore often can be neglected (generally

)
of the order of magnitude P c)' The solution therefore finally

becomes
i S & (k b) P, (cos 6)
T 2 D s E W e b (82
‘ & ka) " & ¥, (ha)

the earth. 1In this cage G0 (kB)ED (k a) evidently becomes the
height-gain factor.
We further have
C;z)’ (ka) ky ¥, (k, a)

TR

(b o)
LWk kP e (83)

3

(81)
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z
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This complex reflection-refraction factor must contain all reflected
and refracted waves in the earth. One finds that (83) permits the
expansion
m-+1

M (.
Cn ( a)} ’ (83 1)

[+ ]
Bi=Ry+T,T;, Z,’ R, {C(i) (k_a)

m=0

where E,; and T',, are the spherical reflection and refraction coeffi-
cients in direction into the earth, and R,,, 7', are the corresponding
coefficients in direction out of the earth, viz.

€(2)’ (ka) k C(")’ (k a)

P (ka) Tk I (ko)
Bo =0 ) &, gﬁ”’ (ki a)’
“‘” (ka) & (P (k,a)
Tz1 =14 R21 s
(0 (k) kﬂwmﬂ) (83 b)
P T ka) T kD (kya)
T (ka) Tcﬁ?” (B, @)’
(O (ka) Tk D (kya)
and
T,,=1+ Ry,.

Generally — (& (ka) [ (2 (ka) = (1 (ka) [t (ka) (i.e., A == 0)
and B, =~ — R,,.

Since 7 /ka == sin ¢, < 1 and both n and ka are very large, it is
necessary to make use of the appropriate DEBYE-WATSON expansions
of the BEsseL-functions. In the region of the n [ z-plane of most

immediate interest in this connexion they are
S I
)~ll— = J exp- :Fyl l—__~962 l dx_TJ
n+—

2

-

(84)
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Remembering that £, () is a solution of (69) for ¢ (r) = 1, it is
at once apparent that (84) is nothing else but a W.K.B.-
approximation. It therefore breaks down in the bridging region
where n/z ~ 1 and where the NicnoLsoN-WaTsoN formulae will
have to be used. We will have occasion to return to this question
later.

As further for n very large and real

lrilo—3), o+ 303

{2n(n+%) sin@}g 2

{0 not to near 0 or )

1

waves travelling clockwise round the earth will be of the type

4 121

! ) 1

exp.| J (n—l— ?)GZF 11—~ ¢ dzx =exp. (j9).
1

x2

2

But this is nothing else than the abbreviated action function S
which is the solution of the Hamiuron-Jacos: differential equation

(3]
A7 (6 S)2
i V) = 1.
o2 \ 0T
This illustrates the physical character of the asymptotic solution
involving the DEBYE-expansions. The factor () (k, a) [ (& (k)
occuring in (83) thus denotes the phase retardation and attenuation

experienced by a wave of incidence characterized by » when traver-
sing the earth.

We proceed with the transformation of the solution and introduce
the notation.

1 + R, (86)
£ (kc) D (k)
LF Bt (0) 6@ (ko)

=3
I
&=

—. (85)
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We thus obtain from (80 c).
5(1)’

(87 a)

(87 b)

(88)

(kc) Cf})’ (k c)
jé, {-(1) (k o) Cﬁ}’ (k c)
T T (ke (Y (ko)
o t P g
Again remembering the WRONSKIAN and observing that
A=—74+ P (kc)? (kc), we further find
£ (kc) L (k c)
i — P3O 1
L — s (1) (2) 55‘1) e .C"_ (kc)
1+7A€ —_7Cn (]CC) Cn (]CC) 5(1)7( C) C;l)’ (kC)
& (ko) TP (ko)
Relation (81) therefore after transformation yields the important
result
@ (LB D (ke
14 R, C(l ( )C(Z( )
” G (k) P (ko)
n = (D (kc) D (ka)’
S LLE
n
where
g (ko) & (ko)
o & (kg T P o)
4 — E;l)) (k C) C;Z)) (k C) 0
§0 (ko) P TP (ko)

Introducing the spherical boundary reflection coefficients

EV (ke) kP (ko)

TED (ko) T Ry ED (k)

Bo= "o & (ko)

ED (kc) ks (D (ko)

and

ED (k) k(P (ko)

TP (k) " kg P (ko)

Boe= ko) &k P (ko)

EV (ko) ks (D (ko)

(90 a)

(90 b)
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we find that (89) permits the expansion

(1+ Ryg) (14 Ray)

ta = Ry5 + Ry 1—‘R3R'23 =Ry + B3T3 T3, (1 +R3R23+R§R§3 + ... (91)

It is thus apparent from relation (91) that the complex reflection
factor R, contains all waves due to internal reflection and lower
boundary reflection in the layer. Further putting 7 = oo in (28) we
infer that R, is the plane equivalent of the spherical coefficient E,.

If we have fwo reflecting shells, (4) (radii ¢, d) and (B) (radii
(0 (ke) &2 (kd)
& (kd) &P (ke)

e, f), and = A,;, we similarly obtain

BP A, (T

R, ~ R + 1 R® RBA (91 a)
Therefore for short waves (no boundary reflection)
Ry R{ 4 RP A,y (TP = R 4 BED. (91 D)
*® . *

It is sometimes convenient to separate the ground and sky waves
in (82), (88). To make the result more general, we raise the receiver
to a point a distance r — a above the ground. We therefore get

el R L& ) (1) L (G (ka)
U(r, 09) =ikR + & ro= (2n + 1) 87 (kb) £ (Rr) ?{E‘,}T(k?) B, —- 1{ P, (cos O) +

»The ground waves»

a0 1D (k) D (k) } W (o)
.\ _ o
A, Bnt DG E D ) {cif’ (ba) T e (bay ] Fo g ey

(L (kB) P (ka) }
| e @) ¥ 20 (kg [ P (005 9)
L o (a<r<o) (92)

LD (ka) £D (k)
V=B B (a) c@ (ko)

»The sk& waves»
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The ground waves have been treated thoroughly by vax pEr PoL
and BrREMMER in the case of vertical polarization [5]. We therefore
leave them aside. So much more so as this communication prima-
rily deals with the transmission of radio waves in the atmosphere.

Grouping the reflection factors in a physical order we can write
the sky waves as

I S 1cﬁ}’(kc)R (kb)) b 2O (k
1 0) = Gy — 2+ Ve Fagor g & RO E (ke

R

S 5
‘ [1 + ;—/ {l:RZI + Tzl T]Zd RIZ{C;Z)( ) C;l) (ka) 4 C;,,I) (k a)

=0 n=0

L2 (kr) L5 (k) &0 (ka)|7+
. [Cf) (ka) + C;l)(ka) {Rzl + Tzl T12 :_,0 ng {C(z) ( )} }] Pn (COS 0) +

(D (ka) }m : ] (0 (ko) |, LD (k a)}”] ,

1 oo C(I) ( )}q+ 1} C;I) (kc)
- 2
+ 9 12 b‘_/ (2 n + 1) C(I) (kb) C( ) (ka) {RZI + TZ] TlZ ;-OR {C(Z) (k ) Cﬁ,,l) (ka) R4
(D (ka) S { . {é‘” (k )}m LD (ko)
: Wk—c) [1 + = R21 + T21 T12:0R12 Csf)( a) | C;l) (ka) R4 :

&P (k “)}p &2 (kr)y P (7”‘){ = {CS) (k“)}q+ il
: W [ (ka) + D (ka) Ry+4+T,T,, :0 R, Wl—) th (cos ).

The first group of waves contains all those which experience their
first reflection in the shell. The waves in the second group experi-
ence their first reflection (and refraction) at the earth.

At the earth the wave is broken up in one direct reflected wave
(R,) and indirect reflected waves which are twice refracted (7',

&-;1) ( ka) g+1
T,,) and q times reflected on the inside (R{z {m—)} ) . The in-

direct reflected waves are, of course, unimportant in the radio

(92 a
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Fig. 11.

case. Finally as a demonstration of the separation of the various
waves fig. 11 depicts the first few waves of each group. This
should not be taken to mean that actual ray treatment is permissible.

2(c—a)
As will be shown —

2h
=5 7>>> 1 in order that the ray me-
thods may be used.

Next let us study the case of vertical polarization. The waves
are transmitted by a small vertical current element, a fictitious
electric dipole. The radiation field is symmetrical to the dipole —
earth centre axis as before. The magnetic field lines are circles
around this axis and the electric field lines are contained in the me-
ridian planes.

4
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If the strength of the current element is A K meter-amperes we
have the HErTzIAN vector (radial)

r

1 __JJ1 __ ﬁ_t 1 __ .
= =0K- -+ U =4,

1
b U, (93)

with a primary field U, =e/*E/jk R, in the homogeneous medium.
This time one finds that U does not satisfy the rigorous wave-
equation when the medium is radially in homogeneous. With

Ut = § f (kr) P, (cos )
0

we have instead of (69), (z = &r)

&
a 1de d n(n+41)
d_-z{zi(é}_?t'd—;d_z{zﬂz(z)}‘l‘[st7'_ 7 (2 =0 (94)
“sin? ®,
One further easily finds that
dg_l_ ldgt"d_l_ e
d 32 {Z fn (Z)} _8_ : dz _—é {Z fn (Z)} + 8tn : zfn (Z) =0, (94 a)
tn

d
is satisfied by o {z f, (&)}, where f, (z) is a solution of (69). Thus

d
z 5 (2) = const. 3 {Zf, ®}. This holds for n == 0, i. e., for vertical

incidence as expected.
Similarly to (71) we introduce three radial functions
ED (kr) &P (kr) &P (kr)

o m sl (95)

which build up f} (k7). In the circuit relation similar to (72) the
coefficients may be AL and B}, i. e., the internal spherical reflection
coefficient of the layer becomes

_jn_ aman

N } (96)

B &D (k)
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Utilizing the fact that when 1 < A &, (short wave case) as will la-
ter be shown on p. 97

EV o dr ~—_@ dr

1 d&p 1 d&y
. = = jkcos @, (97)

we obtain from (94) and (94 a) the approximate result

£
in

g\2 d
fn (kr) == const. (—) P {t. 1)}, (98)
when cos? ¢, > 0 and not too small. When (97) holds we have
A, ~ A, and therefore by virtue of (97) Rj =~ — R;. Therefore
when the layer is very many wave-lengths thick (approximately
diffraction-free transmission) the ionospheric reflection properties
for horizontal and vertical polarization are practically identical.
In spherical coordinates we further have

: 1 &1 1 6¢ 611 1 &I
B=k et 57 =5 or P = 57000 Be =0
and
. e k 46U
Hr= ﬁ=0’ q,——yz—oT'ge— (99)
At the boundaries U' and e 3r (r U') must be continuous. This
t
yields

1 n = o0

U= ab Z (n 4+ 1%) ¢ (kb) TP (kr){l—l— R!

(2 (ka) P (kr)
LD (ka) @ <kr)} '

<

n =

LD (ke) I (kb)

1

P v o) e ()

T 0 (ko) ¢ (ka) Tr 8 O (100)
1— R R, @ (kc)-é_s‘l) (k a) (b>r>a)
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where
Wk V(o
B (2) (k a) ky yj@ (ky a) - C_gzz_) (k('}) 4&@ 9 101
! c‘” (ka) & U, (a) D (ka) & (k) o OV
&0 (ka) k¥, (k)
and
B (ke) | L (ko)
T ko T ko)
R, = oy — 5y (102)
£ (ko) C (k o)
B (ko) P ED (ko)
with
k3 1+ R}
ml o o S
P A 5(2). (kc) 5(1)( ). (103)
e (ko) £ (ko)
Similarly to R,, R} permits the expansion
1 1 1 1ym &Y (ka) n
Bl =Ry + Ty T5, 2 (R12) {m} , (104)
m=0 n
where
¢ (ka)y kLT (ko)
o k) H T ha) 105
5T (k) kD (ha) e
(D (ka) kD (ka)
1 k ? 1
Ty = k—l (1 + Ry), ete. (106)

These are the spherical reflection and refraction coefficients for
vertical polarization.

The Transformation of the Series.

The series for U (r, ©) converges very slowly, since the main cont-
ribution comes from terms with n of order ka. It is therefore con-
venient to follow Watsox and transform the series into a continuous
integral over n. We obtain
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"3

1 n oV d 17 2
e — o 1 —_— —
(a, 0) = k2 abf cos (n 7) gn_lP"_7 {cos (» b+ 5 abof cos (n n)l ;
P 2

-Pn__;_{cos (n — 0)} dn (107)

The contour of integration ¢ in the complex n-plane lies wholly
in the first quadrant and encloses all poles lying there since there
are no poles in the fourth quadrant. The last integral is zero when
e 1

"y .
~—— 1s an even function of n«.
Ly

An approximation especially suitable when k,a has a great ima-
ginary part (i. e., the radio case) is
¥, (k a) L& (&, a)
¥, (kre) D (ko)
which means nothing else than that the indirect reflected waves are

very weak.
Finm ()

ay
Since (B )=e¢ @

n 1~
P n

2)

2

H/\

and by (13) Q_n__;_ = g+,,_,_;_,

we have by virtue of (40) under these circumstances
' e, e

1
where y = n — ER
In the radio case, therefore, we should be sufficiently justified in
neglecting the last integral of (107).

To evaluate the contour integral of (107) we need a knowledge

e))
of the poles of ~g— Apparently the only poles are those of

14

& (ka) kP (R, a)H. &Y (ko) &P (ka)
C‘(JT)(k_a) — 7 o y]‘(kl a) = Rl R4 C£2) @ C) é—l(ll) (ka) —= gy.

"y
?, P,

The poles of @, and R, are the same, viz. the poles corresponding
to the case without reflecting shell. These poles have been investi-
gated thoroughly by vax pDER Por and BrREMMER [16] for vertical
and by Miss M. GRAY for horizontal polarization [15]. When the shell
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is poorly reflecting, | R,| < 1, the poles of @, are only slightly
displaced from those of @,. When the reflecting power increases
the poles of @, are found on a curve entirely different from that
of @,. One similarity remains, however, viz. that the important
poles are found near n ~ ka as in the reflector-free case. This intro-
duces certain difficulties as will presently be shown. WATsoN in his
original contribution to the subject, for example, did not proceed

/|

-/

_2 =

Fig. 12. The division of the —g———-—plane for 2 real and positive.
so far as to make a closer examination of these important poles
possible. Without a sufficient knowledge of these poles the nu-
merical computation of the transmission problem becomes approxi-
mate and uncertain.

Before we proceed let us study briefly the types of expansions we
have to use in the first and fourth quadrants of the n/z-plane. Intro-
ducing the notation 1

3 1
S?; (7) = {1_%} . exp. [ U{ %}2 de — Z}] (108)
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we get the following asymptotic DEBYE-WATSON representation [17] of
the three-dimensional functions in theregions a), c), and d) of flg 12, viz.

|

Function | Region a) Region ¢) Region d)
- N - _ S S —
Tz
( 5 )2HL‘> @ e (S e—sPE s
2 ]
(—2—) HP (2) 82 ) sP@ | SPE — 80 @)
Y B ‘ . B -
: TE\E L W @ L L @
5] @ {S @+87 @) 5 87 @ 5 87 @)

TABLE 1
Region a), where the majority of the poles will be found, evidently
corresponds to the earlier mentioned (84).

z* =
It is to be noted that the root {—n—z —1¢2% is defined as lying in
the same quadrant as w Writing
2
; n? lz
yr=f 1— ] da=¢", (109)
n

this leads to the orientation of the conformal representation of the

y-plane as shown by the boundary lines and dashed lines in fig. 12.
Along the dashed lines, therefore, | S® (z)| = |8? (2)|, and one
of the three-dimensional functions has an oscillatory character.
H'V (z), for example, is oscillatory on the branch b) — (). Thisis
of importance also in the study of the shadow side of the caustic.

The DEBYE-WATSON expansions break up in the neighbourhood of

n
the branch-point = = 1. In the transition region b) we therefore
have to make use of the NicHOLsON-WATsON formulae [18] involving

1
cylinder functions of order Y 1), They are preferably transformed

in the following suitable form, viz.

1) For a comparative study of the bridging problem the reader is referred to the
Transactions of Chalmers University, 3, p. 30, 1942 and to p. 86 of this comumunication.



56 CHALMERS TEKNISKA HOGSKOLAS HANDLINGAR NR 34

1 1
w2 @ nz\2 Z ntl¢ (@ :|:(_5_ _g) (2)
C) e ~ () S5} w0 B0

2 Y 1
3
where
3
n [(kr)? z )
&= "3,z — 11 , and as before kr = z.
Since
d(L @ ¢73_ 1 (2
T{”s H(f)(e)}= ¢ 37 0% Hy (o), one has
ve El 3
2@
(2 . 1,8 HY (o)
D@ 1 3e  Fiax £ (3)3 oy
&l (@) o3 HP (o))
3
where the first term may safely be neglected.
Finally "
) @) .
SO () 8O, @) ~eT 7T (112)
*® *
*

Let us next investigate a few of the reflection coefficients. Making
use of (83b) and (110), (111) we get for example

k
(2) (2)> 1 ——a* o
& (ka) {2 (L a) k, 2 (% a)
v MV pl Y . _ 1 (113)
szl) (ka) 2 CS)’ (ka) 1+i Cf)l)’(ka) N21»
ke
where
= (2)
N {1_ knz 2}2 HD (o,) oy 3
a i 3 n |(ka 2
a}=__ B 5 g PEL A
¢ { n? }? HD (o) n
1 7
(k a)? 3

When n/k a lies in section a) of fig. 12 and lgal > 1, it is obvious
that the expression for R} reduces to the plane FRESNEL coeffi-
cient for vertical polarization, i. e.,
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1 1
{ - } i { g }E
RV T wed T T G e
By~ i 5 (113 a)
n2 }3 { n2 }E
_“{l_wkmz TR G ar
Region a);

not too close to b).
When n/ka lies in section c) of fig. 12, it is convenient to write

n? |2 :F.i
a} {1—(]01“)2} Fi T_1 (@) +e KNS (@)

T
ke 3 3
W= 1 6 5 — IPE R (114 a)
{”_q I3 @ +e Iz @)
(k a)? 3 3
3

where 5, = 0, ¢’ 2 ".
When the losses are moderate, and this is the only case to be
1

n: |2
discussed in this connexion, |k, a,l > n, and {1 — a)Z} ~1
1

For n = ka, n}, therefore becomes
1
k Ica—?fr 1 {T 2 }_1 7'%
=%\ 6 3 3] ¢
- —1 — - .
k(ka\s (1 { 2 }‘1 ~is
e TN\ e

For the homogeneous reflector (Warson-case) we get similarly to
(113) from (102) that

(";1 )n=k a=—

k
1____

o GG @ ko TR gk & (9
TR (ko) I (ko) kT ko) I (k)
I+ Ic3’3

where
1
{1 o }E H%(e) 3
* T ey O xo L ko) )
’3}:— SO A S, I =ﬁ{( ) _1} . (116)
& e 3 n?
g hom) A
YT e s

(115)
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When further n/kc lies in section a) of fig. 12 and I ch > 1, R},
reduces to the plane FrREsSNEL-coefficient.

When n/kc lies in section ¢) it is convenient to write similarly
to (92 a)

2 § Fir -
{ 5 C) 2} :Ff z I_‘l, (Qc) + e 3 [l (Qc)
T 3 3
— - - 1' 6 —.b—:’:.i—-__r 5 (117 a;)
1 ) B )
{ }2 I_ 2 (Qc) +e & IE (Qc)
3 3
where g, = o, 7?.
It is also convenient to write
Rl = &% . gk, (118 a)

When n real = n® < kc,0, =0, and
7
#lo = i3 = + 2 [Phase {HY) ()} — Phase {HE) (¢2)}]

For n° > k¢ the above expression is conveniently written

I (Iecl)+e 312(le°|) l
¢;g=-—+21>hase -
I ( 0N +e’31 (|ec|)l

L
3

Fig. 13 shows a plot of ¢3,, | 735 | and Phase {n3;} as functions of

n® — ke = An for A =5 km and ~ 0,125, which roughly

2
corresponds to @, = 2z - 0,768 10% sec™
the D-layer.

L and » = 10°% se¢c— ! for

. . & (ka)
It is also convenient to throw W R, in the form
£ (ka) . i (ph—2y,)
Ry = 7(<P e 21 (118 b)

C(l) (ka)
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Spherical Reflection Coefficient Ry as a Function of an’ for

h=60 km, A=5km, w=2T-Q766-10€sec” and v=10°sec™’

— | I o ; 7
70 -60 -~50 -40 -30 -e0 -0 o 1o 20 30 40 50
Fig. 13.

For = real and < ka we find by means of (88), (89) that

7
=t 2 2 P )
3
A
or @lf — — 5 when n = ka. |¢})| decreases monotonically to become

7
zero when g, > 1. For g, = 1, @)} == —- 20 (or — 4,5°).

The Poles of the Watson Case.

Quite generally the poles or proper values, n, = v, + 2 of the

solution, for vertical polarization for example, must satisfy the relation

¢2 (ka) O (ko)

Vg

In{R} R}- '—-}=j2sn. s=....,2,1,0,—1,—2,....)

D (ka) ¢D (ko)
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The physical interpretation of this important relation is simple.
The proper values select only those waves which do not cancel out
by mutual radial interference.

In the Warsox case the pole selecting relation can also be written

R R
In 1771 Moz T (—" ) gar (7 )J =17 2sam, (120)

where %1 is defined by relation (101).
Making use of relations (110) and (111) we have

H(l) (Qc) H(2) (0 )

&) (ko) & (ka) ,
ko) & e~ BO @) BV @) [’2{‘70—”0—‘%—%’}]' He
3 3

These expressions yield the formal Phase Integral Relations
ke

1
2
j{l—x—z} dr =sn 4+ 6,4, {kc=> Re(n)=>kal,

where
HY (o,) HP (o) (122)
) 3 3
— 0 =7y e H-‘zr"(_er‘)[_'_ € € 5 Inm g {Re (n) < ka)
3 3
and
Hg) (e) HY (g,) .
. 3 3 a
O =gy HY (o) HY (@) %12 In 3} 135 {ke > Re (n) = ka}.
3 3

1
When |d,,] =~ j 5 In N} Mass 1. €., when Re (n) < ka, the proper

values are selected by the radial phase integral of the geometrical
optics already demonstrated on p. 45.
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When 7 real and < ka, we denote 8,, by 6}, and obtain

— 8, = Phase {HY (¢7)} — Phase {HY (0))} 4 ) — ¢,
3 3

and when further n real and ka < n < kc we find

1
32 1_2_ (l 92 )

7
— &, = Phase {H® (o°)} + — —arctan — > — -— ..
14 1 (e)) + 3 20 ,UN+1, 1) %
) 3
» 11 n . - .
Since (02),, - 1a ’,::/.—, 1t is obvious that even for waves as long
km

as 5 km, &), is with a good degree of approximation given by

7
— &, = — 137t 0® — Phase {H(zi) (0}, (123 a)
3

Graphical Representation of the Solution
of the Phase Integral

!
i
|
i
|
|
1

T
. [ l ,
e —7
4 2

ri 5

~
S

a0 O s o)

Fig. 14. A plot of 6(1)4 as a function of n. {Im (n) = 0}-
[Note: (Qc)r=a means (90)

n==rkal

(123)
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when 7» real and ‘<ka. It is further apparent from (123) that

n
8%, =7 midway between ka and kc for waves which are not too

long, since I, (| g, 1) =1 5 (l g, ) when | g, | > 1.

wa

3 3
Fig. 14 shows a plot of 6%, as a function of n, when Im (n) = 0.
This plot was made with the aid of tables of BEssEL functions of

2
order + 3 presented at the end of this commmunication.

For poles with Re (n) sufficiently smaller than ka (i. e. the
majority of the poles) 89, = 0 and (122) yields
ke 1
n2| 2 1
f{l—;} dx=sn+j?1nn}n%3.

ka

where s necessarily is a positive integer (in accordance with the orien-
tation of fig. 12) and sufficiently large, so that |ga| > 1. Since under
these circumstances R} = 7} and Rj, = 53, {i. e., we are well inside
region a) and the first term in the asymptotic expansion of H ()

occurring in the NicHoLsonN-WATsoN formula leads to S{" (Eé}éwe
have proved that, when s is sufficiently large, the poles are actually
determined by the phase-integral which has been used so successfully
by ECKERSLEY in the treatment of radio transmission problems.

Written in the familiar manner the phase-integral relation there-
fore becomes

¢ nz?
Zlf l1——( dz—j In Rl —j In R}y = 2sm, (124)

22

when |g,|>1. Even for waves as long as 5 km the s-value corre-

sponding to the pole closest to ka, i. e. 2, makes sz considerably
7 .

larger than 12 and it is therefore almost possible to use this phase

integral relation up to ka. Unfortunately the most important poles

(i. e. the poles with the smallest imaginary part when losses are
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introduced) may lie between ka and kc where the application of this
classical phase integral relation (124) is no longer permissible.
For the higher order poles it is, however, an extremely useful
relation. Since
[ 4 n? };
k@

cC—a

is a very close approximation to the phase integral when < 1,

c
the phase-integral relation yields

k(c-|—a)[

1

STt

1 1 2
1— _(k AL {32 . " In?#! 77§3} —j W In 7} 7)%3] (125)

n, *2
which we call Relation 1.

When s is not too large and the losses are moderate a good ap-
proximation to (125) is

ST
1 . 1,1
Vk(c—l—a), 1 2 s 1 . 11 2 ) 2 (kh) In 7; 7g3 [ §
l————182n —Zln MAes(] —) —— — —1,. (125 a)

~ 9 2
2 l (k h) ) LT
1_—(k—k)2 sznz—zlnznlnz?,

Neglecting the losses for a moment we infer from (125) that the
maximum number of proper values corresponding to real no-loss
poles is

2h
Smax = T .

kh
7z —_—
as was already shown by Watson [6].

Long-wave transmission therefore has comparatively few important
poles which is an indication of the fact that no real rays are
formed. Finally (125) shows that there are infinitely many poles
along the positive imaginary axis. These are, of course, practically
unimportant.

Denoting the no-loss pole by n? we write

ng=ny + An,, (126)

1. e.,, An, is the change in n, due to the introduction of the losses.
For s not too large we therefore have
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a+c cot @ 1
Ans*‘v? 92 h : (_’E) In 77} "7;37 (126 a)
{ 2 n, }
where @, = arcsin \;——— (.
¢ k(c+a)
For 1 | 2|1, and —i g
or long-waves 5~ | & e ' 4,an = e ' 4
This yields for vertical polarization
2 _} k
a+o cos? ¢! ks cos @, |
Im (A n,) = Y ——cotg,-| In |— Tk +
cos2 @t + — V2 | cos q)sll
k3
2 _‘ k 3 1
cos? @, ¥, %, cos @ l
+ In A - , (126 b)
cos? @, — V2 'k_ cos ¢ I
3 2

n
where ¢! = arcsin ﬁ ; etc. This relation is identical with War-

son’s which, however, only considered the ground losses. It is shown
by the above relations that the ground and reflector losses are con-
tained symmetrically in A »,. It is apparent from (126 b) that there
is a number of poles with only slightly increasing imaginary part.
This is most easily seen for small losses when

i el [ 2
(126 a)

4h  sin g,

since ¢! = ¢, = @2 As sin ¢, =~ 1 for the lower order poles,
Im (Am,) is changing rather slowly and consequently for shorter
waves a considerable number of terms must be evaluated in the
residue series.

The remaining poles nY close to ka and between ka and k¢ are
easily obtained from relations (122), (123), and (123 a).

Since in the region ka — k¢

Im (An) =

ky

fh-g
ll —'—} dx =~ o,, (127)



RYDBECK, ON THE PROPAGATION OF RADIO WAVES 65

the no-loss poles between ka and kc are simply obtained graphi-
cally from

g —sx =0, ().

The construction of the poles is shown in fig. 14 for 2 = 60 km
and 1= 5 km.

The remaining important task is to find expressions for the core-
sponding A n,-values.

We must have

0
ng + An
ke

1
= 1,1 nt\2
9-2—1n1717723= 1—‘%—2 dx — 8,,.
a

0 n

Ny

Fortunately it is not necessary to make use of many terms in the
expansion of the above relation when the losses are small. Making

use of the WRONSKIAN and remembering the derivation rules for order

1

3 and 5 functions we get for the two cases:

1) n) <ka

{2 (ke — n‘;)}z 2 1
ke mos {{HY (D)}
2
HD (0 1
. + /5")( °>%( 3)3 T }/\
(1) (.0 cos | —- afj\Za T — 9 " 1 Ty
Hy (ea) 3 ] (365 (bays

1
S TY (128)
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where
B% = Phase {Hi) (02)} — Phase {Hle_) (e} '
3 3
and (128 a)
p% = Phase {H(i) (09)} — Phase {H(El) (00)}-
3 3

The correction terms ¢, and ¢, are very small for normal losses
when 7% < k¢ and ka respectively. For |o| = 0 one has = 0.
¢ gets its maximum for ¢ == 0,4 where ¢, = 0,15.

Since normal reflection losses may correspond to IA n,| = 5 for
a wave-length of 5 km the order of magnitude of the error omitting
¢ is about 5—6 %,. It can therefore often be neglected for practical
purposes.

2) nd > ka.
1
{2(kc—n2)}? 2 1
—on|U e (el
3
H(l) 0
3 e o) ok 3\ 1 1 [+
H(zl) (Qg) cos 3 + B; ) (ec) el 0_2_ 1 Ansl
B (3¢:)° (ke)?
86
-1,
+{2(ng—ka)}2 2 1
ko | oaf | {[HD (Jea )}

1
X jy Inm mgs. (129)
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where H(El)(l 0% ) is defined by

3
I, (@ +e 3 1, (1
HY (1 6§)) = ———— S
3 in_n_
S0 T3
I (@D +e 73 1,380 (129 a)
1 1
a1=—— — = )
[, 0D+ 73 1,30
3 3

and B
B, = Phase (a,).
¢, is much larger in this case when |g | > 1.
As
| 2 1 — 20,1

H

when | g, ] > 1, this increase in ¢, is not important.
As as primary and very useful approximation we therefore have

Relation 11
1
. _—211”}} N3
A 1 i —— S —— (128 b)
]2(700——%8)}'2— 2 1 {2(ka—ng)}5 2 1 0
A, _ ) <
" ke | 2 TEY@IP Fo | a (HP@FE =t
3 -3-
and Relation III
——iln 1,1
. g 17 M2s (120 b)
e 1 — . 1
2 (kc—nd)|z 2 1 {Q(nO__]m)}E 9 1
~( — % + 2 . 0>
{ ke | ad [HD P ka 1%l {JHP (15N} m = £a)
3

3
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In order to make Relations I and II useful even for slide-rule
computations we have in fig. 15 plotted

1 2 1

me {[HY ([P and — el {{H (leD)]}?
3 3

through the necessary range of |p|-values.

It is also convenient to be able to estimate quickly the magnitude
of the corrections introduced by ¢, and g. To that end we have
further in fig. 16 plotted ¢ as a function of g for the important
range of values.

It is further easily shown (compare fig. 15) that Relation 11 yields
the same results as Relation I in the form (125 a) when [g,| > 1.

Our present results have all been based on the NIOHOLSON-WATSON
formulae. For the higher order poles these formulae become iden-
tical with the DEBYE-WATSON representations, as has already been
mentioned. The highest order poles (which are the least important
ones) will, however, be situated near the imaginary axis in region c)
where formally a different DEBYE-WATSON representation holds.
Since S® (z) < S (2) in this region, the result is in reality correct.

The Numerical Evaluation of the Poles.

In the deduction of Relations I and II we have tacitly assumed
the losses to be so small that

{In 7] ngs} = {In 9y 75} -

0
g g

When this is not the case the corrections may be worked out by
successive approximations. To estimate the corrections we evaluate

d
e (In 7}} 7)%3)-

=
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We find
k
N by { k (ka\s }
d_ ( n 7 773) = A a k—- R (Qa) + 'E 3 t2 (Qa) -
(1 —k—a* 14 T ¢
1 1)
k
— L
kg k (kc\s 0
— #1 (g) s ( 3) My (Qc)}’ (130)
(=5 (e 5e)
where IH'(E)(Q)]Z S lH‘Z) ]
1 (o) = l_(:i)_;)l e © + l H( J (130 a)
2 &
g
and
IH‘”(D = HP (o) .—] HP (o) HY (o)
(o) = PUE TN W ) § PR | 3 . (130b)
wele IH“’ B © | |' T a0 BP0
3 3 3
5

-2

s
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(75 means 7))

ko Lk =iy L | k| —ig
-k_1~:k_1?e and L3~|7c3— e .
both g, and u, will tend to change Im (A n,). For the sake of con-
venience for numerical computations we have in fig. 17 shown gy
and u, as functions of p.

It is obvious that the corrections become considerable when the
losses are no longer small. Writing therefore our original Relations
IT and IIT as

Since for long-waves

— 5 {Inyi
An.«r:j T T (n =n’s)’ (131)
AII II1
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Comparison of the Position

of the more Important Poles

A=5km a-6360 km h=60 km
w,=2/T-Q768-10° sec” v=10° sec™

16 I l . : T —— -

N
]
I I
|
5
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|
S| —

|

Co
B R

Fig. 19.

(Vertical polarization)

we therefore get the parallell relation

1
— 5 {In ;73
Ang =7 - - —— (n =7lg), (132)
By 1
where

1]d
By = Apm + 7? [% {ln M 7}23}] . (132 a)
ny.

The numerical evaluation of the lower order poles is quite con-
veniently made if curves of Bj; ;; are first plotted throughout the
necessary range. Fig. 18 shows a plot of the poles for transmission
at a wave-length of 5 km between water and a D-layer with height
60 km and reflection characteristics as shown in fig. 13. In this
case the dominating losses are ionospheric which makes the compu-
tation fairly simple. The corresponding poles for transmission round
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a reflector-free, perfectly reflecting sphere are shown for comparison.
ka 1

n?) 2
They are all situated on the curve Phase f {1 — ——} de = —m.

22

Fig. 19 finally shows the lower order poles near ka and kc. Poles
of order 0, 1, 2 have been computed by means of Relation IIL in
the form (132), poles of order 3, 4 have been computed by means
of Relation II, and poles 4, 5, 6, . . . finally by means of Relation I.
Relations II and I yield the same result for s = 4. The order of
magnitude of the correction due to u; and u, is a few per cent
for the lowest order poles.

It should be pointed out in this connexion that the character of
the curve on which the poles are situated becomes different round
ka if the ground losses dominate. This is immediately clear from an
inspection of fig. 13.

The Residue Series.

The next and final step when the poles have been determined
is to evaluate the residue series (107). Developing {cos n =}~ as

1 o0
. =
— 9 elnn b eanl(2n+1),

COS N 7T (133)
1=0

which is valid over the integration path, we get from (107) in the
familiar way

U6 = S0 S pim S pmmeren_ P, feos(n—6)), (134
’ Wab =~ ZF Dy (ng) Py (m,)
where
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One finds for vertical polarization for example that

12 (ke — =) B 2 1 2(ka—ns)% 2 1
s ‘"’=27“kc } F }

‘ ao HY () HD () | k| g, HD (o) HY (e)
3 B B 3
k , k
1 &y { k (ka\3 } 1 ky
—7 9 ?—l‘c‘*‘ i 11 (95) + T \F) el =iy - N
-—'Ea l—l—za l_ksﬂ 1+k3/
_1..
k {ke\s
"1 (20) T\ 3 reledf] (135)
It should be remarked here that it is generally sufficiently accu-
rate to put

Dy (n,) = Dy (nY)

for normal losses. An approximation of this kind naturally is not
permissible as regards the evaluation of A n,, When the losses are
moderate and the above approximation therefore can be used the
evaluation of (135) is at least comparatively simple.

For larger s-values, when Relation I can be used, one finds for
moderate losses that

‘ n, kh 1 kh | (khy? :
Pslnd =27 o | 2 %:27z(a—+c);{(;) _}' (13
{T} T k(@ +c)\? 2
()

This can also be obtained from (135) when ¢% > 1 and y«; and 4,
can be put equal to zero.

When € is not too close to 0 or =, and since n is of the order of
magnitude of ka for the important terms we make use of the asymp-
totic expansion of P, (cos @), (85). Remembering that the time
factor is e~7“‘ the sum of the waves travelling clock-wise round
the earth becomes
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1 3
. 71—
8 e 4 ® g M1 (8 +127) &
U(a, O) ~|—= ) ‘n2 e . .
( ) (sm 0) kab -~ 82;0 @1( )®3(ns)

In the radio case we neglect waves which have made complete
revolutions round the earth and therefore finally have,

37:
8x\2 4 €y 1 —
—jwt 2 Y j{ns 8 —wt)
¢ e )= (sm 0) 2ab 2 " B, (n,) g (ny) ’ (137)

which is a familiar form. M is taken sufficiently large to include
all important poles.
The attenuation is Im (A n,) - © and the tangential phase-velocity

ka
— . ¢,. The important terms therefore have a surface phase-
Re (n,)

velocity practically equal to c¢,.
For small losses we have for the higher order poles and vertical
polarization according to (126 a) an attenuation coefficient

|+

3_

Im (An) 1 {
a ]/? k sin g,

—‘ (138 a)

or for long waves

1{ 1 -; v % %
/)’I-V—h‘ ("271) + (2—(002) }w . (138 b)

This is similar to the well-known attenuation coefficient from the

AusTiN-CoHEN formula in its original form. This formula had
1

B~ 2,75-107%. f2 km™' for transmission over sea-water. For a
collision frequency of 0,25-10°% sec™?, f, must be about 0,85 Mc/s
for a layer height of 60 km in order to be in rough accord with
the AvusTiN-CoHEN value.

For horizontal polarization we similarly to (138 a) obtain

cos? ¢, { k k
V2 h sing, || &y

k3
i. e., a considerably smaller attenuation coefficient than in the case
of vertical polarization.

B, = } , (138 c)
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For the inhomogeneous layer, d,, in the phase relation gets a differ-
ent value with a correspondingly different A n,. We will return to
this question later after we have made use of the parabolic cylinder
functions to determine the actual value of the reflection coefficient.

For short waves the number of necessary terms of the residue
series becomes very large and the evalution of the series becomes
completely unpractical. Therefore it becomes necessary and practical
to treat separately each wave contained in (92 a). It is convenient
to make use of the stationary phase treatment of the wave functions.

The Treatment of the Separate Wave Groups.

We arbitrarily pick out a wave group which has experienced p + 1
reflections at the surface of the earth and p + 1 reflections including
the last one, in the reflecting shell. From (86) and the relation
following, this wave group becomes

13 G ko) o, G2 (ka) |7+
Up= s, On DI E6ED (ka {Rél e (ka) B 2@ (k c)} '
(P (k)
. Cslz)—'(fa') - P, (cos 0). (139)

As a consequence of the relation

M Ling B
(B (z) = =177 (B (),
———n—l n—l

2 2

(compare p. 53) the sum (139) transforms to the integral

+o+jx
(2) 1) (1. p+1
Ui= [ b= & wne® kn {2 (”: @) C;,_)%). ¢ Re wn} N
i & (ka) L7 (ke) 2
= > ndn ‘
- P, {cos (w — )}cosnn’ (139 a)
where
1 1 1 a1
1 P+ (» + 1) Im (3%)
h(n—73)= Sk b (n21) e )

and x is a small positive quantity.
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77
Tt is convenient to make use of KELvIN’s principle of the stationary
phase in order to evaluate (139 a) when the angle of incidence at the
. ’-Z .
2 2

earth is less than —, i. e. when n < ka. When this is the case, and when
. 1
> sin Y., hi\n—

— is varying so slowly through the station-
ary phase region that one is well justified to treat it as a constant
hich is a considerable simplification
Remembering that

o HY (0,) 7 2
;5 (ka) LY —iea—2e) 87k —i20at b L0
(0 ea) T HY (o) © S0 (ka) ¢ , (140)
3
with
. HY (0a)
. 3
28, = g 2 0, H(zz) (o) (140 a)
3
and further dropping the counter clock-wise waves and neglecting
waves with more than one revolution, we obtain
0 —) N 1 1
T hm—y) L[ akz\Z[{n\s | 1 | i (E4F
-~ - 2_1 n? ijz —6— —g. 103 H(ll)(ex)}ey (4 ) n, (14’1)
) (2nsin0)2 S 3 ‘
where
— 20 +y,—2 P+ 7 +2 @+ {p+Re @)} —r—2(+D ) Bat 8,— 0, (141 8)
5 3
and &=157 o+ Phase {gb?’ Hfll) (gb)} (141 b)
3
Introducing
kb-cosW,=ka-cos¥, = kc- cos¥ =kr-cos¥,=n, (142)
making use of a relation which is an alternative form of (109)
y, = n {tan ¥, — ¥}

(143)
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further of (33), and of (38 a) one finds since R} ~ — R, that the
stationary phase point n = n, (or the corresponding angles 7,

‘Pao, etc.), which is obtained from on = 0, for vertical or horizon-

tal polarization must satisfy the approximate relation

N 2(p+1) oL 2 +1){¥'+
- T . — 4 \p . P
7% HY (0,) HY (o) % HY (0,) HY (0,) ’
2 3 3 2 3 3
Ah U4
4+— . cot Tc}— a g 5 , (144)
c %o HY (¢) HY (o) |, — o,
2 3 3 0

x
where A 7, is the virtual ionospheric height (A h, = 71 tan ¥,, with

7
z, as defined on p. 23 and ¢, = 5 — ¥,). When g, > 1,1i.e., when

1

(31 )‘3‘

Y.> ,
2na

or for a wave-length of about 600 m when ¥, > 2° then

0 =¥, —2(p+1) ¥+ @+1) {2 ?If+x7} —¥,.  (145)

With (142), which is nothing else than the law of refraction, (145)
is readily interpreted as determining the geometrical properties of a
ray between the sender and the receiver. This is demonstrated by
fig. 20.

The smaller 1 is the smaller will be the lower limit of ¥, and the
approach to geometrical optics becomes better.

When (145) holds we have

iz 1
4 — —
- e th (no 2 ) ka cos ¥,

2 R L (sin‘lf sin ‘P_) el
(2 7 sin ©)2 bo To

©0—)
. | é0(an? 86 (AP
-jexrw{—* + —----}.d(An), (146)

dn 21 on? 31
AF

— 00
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p=2

where
An=n,—n,

=kb-sin¥, —2(p +Vka-sin¥?, +(p +1){2ke-sin¥ + Re 03} —kr-sin¥?,,

56 1 2(p +1) [
on = kb -sm¥, Tka-sinw, ZPTV\k snw,
h, o dh, 1
—'z:cz.mu;(l o7, d_)} Tl sin ¥, —
and
&’ 6 —1 1 3 h,
on2 = 0 [(kb) 3 sin® ¥, e (lca)(ps:l-3 Y)’ —2+) { (ke)® sin® ¥, "~ k¢ sin® ¥,
w dh, | cos2 ¥, cos? .‘[/% o d¥h,)\) . 1
.(1_-};;;1—60114_ 5 5 '@'deJ)ITWT,:]' (147 b)
dw

Regarding the path of integration we require Im (A F) =0 at
least in the neighbourhood of n,. Examples of such paths will be
shown in connexion with the discussion of the bridging approxima-
tion of the parabolic cylinder functions.

(147)
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Neglecting higher than third order terms in the phase expansion
we obtain the third order approximation

00
. ("lél)p_H e(P+ 1) Im(8}) [n ka cos ¥, 1-; E
Vo iy | 6sin¥, s ¥, sn 6 &
ne
66\° 30\
s ale)] LG
exp. J En_?é_za_z ‘Hﬂ(li)'l_:;_ 20 21-673". (148)
s )
When

(148) becomes

1
(By)"*" (B3 |)"** [ tang, |2

1 56|
2 lsin@-
0 @,

Ul ~ .S (148 a)

jk(rd)

which is the result of the second order approximation. Thus (148 a)
yields the amplitude and phase, i. e. the iconal 8, of the geometrical
optical ray. This amplitude is as a matter of fact also easily obtained
from elementary geometrical considerations. The ray formula breaks
06

down, however, in the neighbourhood of the caustic where o~ 0
and (148) has to be used.

On the other side of the caustic, where H] (I') is oscillatory, we

3

find
1
g Bl ( By [P 'l:m} e _{1 _ (r+%>}
v . L 06 ’
jk(rb)2r sin @
0@,

when I' <« — 1. (148 b)
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#

30
When 5o < 0, the receiver is generally reached by two rays.

When further I' < — 1, the phase difference between these two rays

7
becomes — 2 (I' — Z) By purely geometrical considerations one

finds that on this side of the caustic the geometrical phase difference
actually equals — 2 I.  This was shown already by vax DER PoL and
BrEMMER [5]. The geometrical treatment, however, does not yield

7T

2"

the constant phase difference

It is of considerable interest to investigate if actual focusing
of the ray is possible or not. From (147 a) we have approximately

60 _ 2(p+1) |

i o dhy)|
RV . 2 q o v
5 (ko st w, |* T (1 cos® ¥, _)J . (149)

h,dw

It is immediately clear that in the case of negligible dispersion
focusing is never possible.
For a parabolic layer. of half-thickness A %,,, we find

80 _2(p+1)Ah,| k ]

Su " (Pt @, \ah, " @O (149.8)

where

ay 1 4ay 1— 9y }

— == 2 _— == =
o =5 o ln(l—w) LI ey
with
w
a= , and Y =sin¥ .
"o, 7

Fig. 21 shows a plot of I (a, ¥) for various values of a. It is seen

h
that for N 2,5 (a typical day-time value for the Fylayer in
m
the equatorial regions) focusing never occurs when penetration

is impossible at any angle, i. e. when « < 1. Focusing becomes
6
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Fig. 21.

possible first when a considerable proportion of the high elevation
rays escape into space. The focusing angle further does not differ
much from the critical or penetration angle. The difference between
them becomes very small in the case of the E-layer, for which
h
A_hm =~ 20.
The silent zone will therefore be surrounded by a concentric caustic
circle. It should not be forgotten, however, that the generally rapid
increase of Im (J3) near penetration makes the focusing effect practi-

cally unimportant, . .
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So far we have not said anything about the wave-length limit of
the ray treatment. We have seen that the second order approxima-
tion yields the ray amplitude and ray phase of geometrical optics

30
as expected (when 3_n> 0).

The wave-length limit therefore is determined by the requirement
that I'> 1, say I'>n. Considering the practically important case
that a y <1, we have approximately from (147 b) and (149) that

2h 13,6 cos*¥,
Smx = =11 sn®, (Fg,>0) . (150)

Thus we have found an approximate expression for the minimum
number of poles or proper values required in order to justify the ray
treatment (compare p. 63). When therefore the long wave formulae
(the residue series) become unpractical to handle the ray method
automatically becomes permissible. It should be noted that this is
true even though the ray treatment is not permissible within the
inhomogeneous ionized shell itself. Its proporties (which depend
upon its inhomogeneous character) are contained in &,, which has
to be obtained from the circuit relation (72) which holds under all
circumstances.

The Field Strength from the Dipole Element.

Applying (99) to (148 a) one easily finds for vertical polarization
for example when the ray treatment is permissible that

T r
E, <A,k cost?, - (—5 Ul) ; By~ A, k*-sin¥, -cos¥, - (F Ul);

1
E,= (B?+ E})2 =~ A, k* cos ¥, - (% Ul);H,p:j;il k- cos ¥, - (% Ul), (151)
0
indicating that Pov~NTING’s vector is parallell to the ray direction in
fig. 20.

So far we have only studied one of the four different wave groups
which may reach the receiver after p 4 1 reflections in the shell.
Collecting the wave groups we get instead of (139) the complete ex-
pression
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Fig. 22.

1 % L (ka)[ L (ko)
U= g 2 B O R0 O ko) B [ B

=]

Ne==

(@ (ka)}p (9 (k) { (9 () c§?>(ka)H (O (k1) c;”(ka)}
w0 ko) @ wa) N ) 10 e |1 B gy 00 (g Fr (€05 6)

(152)

Of the last two bracketed expressions the first one introduces the
influence of the ground at the sending side and the other one
quite similarly introduces the influence of the ground at the receiv-
ing side. As a matter of fact (152) is symmetrical in r and b, as is
(139), proving the reciprocity, i. e. that receiver and sender may be
exchanged without affecting the result.

Again making use of the principle of the stationery phase we obtain
from (134) the four rays shown in fig. 22. Introducing the iconal
8, for the ray with p ground reflections, 8,= 8, + A §,, and S
=8, + A Ssfor the two rays with p 4 1 ground reflections, and finally
8, =8+ A8,+ A8, for the fourth ray, which experiences p + 2

ground reflections, and remembering that is to a close

4o,
approximation the same for the four rays, we obtain
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1
AE,| 30kAK r tan @, |2 15 JO S,
A e ST LTS e B Ik A Rl
0 j(rb)e sin @ —
0@, 1
. j A S;| cos ¥, ;
-AK- -1+ Rye sin ¥, (153)

()
R
where A K is the strength of the dipole element. It is of special in-
terest to note that the directive radiation characteristic of the ver-
tical dipole element above ground in (153) is 77, - cos ¥, or practi-
cally the same as in the plane case.
For a vertical wire of length 21 (with arbitrary current distribu-
tion) we consequently find, if S, is the iconal referred to the centre
of the antenna, that

1 +1
30k t e ¢
}'”—-—17 (B3P (| B3 {—g‘ﬁim } e ( &1 =55, - cos ¥y, dK, (153 2)
j (rb)2 sin @ — N
0@, =0
where

+1
J =50 cos W, dK = f; (Pp) Lnax: (153 b)

—]

is the effective vertical radiation characteristic of the antenna with

maximum current I .. .
3 1
Since bz | r2 =~ a, we finally obtain

1

Ll 30k tan @, |2, 0 3

2 1f ~ (lR;ll)” ( Ry|P*? _—# | 17(2”):-! f; P5) | Imax - - - . Volts/meter, (153 c)
sin O 5N

1
with 2, (rb)2, | f; (¥,,) | in meters and Ip,y in amperes. Similar for-
mulae are easily obtained for horizontal polarization.

In order to compare (153 c) with the result of the plane case we
write
30

k? ,
B, |~ S, (| BR3P ( R 7] | h () | Inas - €p» - - - - Volts/meter (153 d)

with S,/k in meters, and where ¢, is a focusing or convergence factor,
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o 1
. _ { S5 tan ¢, }2
T Brb 50
sin @
o

(154)

To

If ¢, =~ 1 the result is approximately the same as that of the plane
case.

dh,
Neglecting the dispersion (i. e., %-) we find from (147 a) that

1
{S o SIn (paof
%~ ka sin 0

+ . .
Since —— < 1, the above expression yields ¢, = 1 as expected
a

in the case of negligible dispersion.

Finally it should be emphasized again that when focusing becomes
appreciable, i. e. ¢, > 1, the formulae (153) which are second order
approximations break down and the more accurate third order
approximation (148) has to be used.

The Reflection Coefficient of the Parabolic Layer.

In order to consider the case of radio wave propagation round a
homogeneous earth surrounded by a concentric parabolic layer we
have to study the parabolic wave-functions more closely. If we
omit the in this connexion unimportant frequency range near pene-
tration we can make use of expansions (55) and (64) for the thick
layer.

Unfortunately expansion (64) has properties very similar to the
DEeByE-expansion for H® (z) in the exceptional case z =~ n > 1. This
seems to lie in the nature of the method of expansion used. It should
be remarked at this point that it was therefore necessary to use the
N1cHoLSON-WATSON-approximation (110) (HANKEL-approximation)
instead of the corresponding DEBYE-expansion (T'angent-approxima-
tion) in order to obtain the poles of the residue series in the
exceptional region 7 = ka.

We will accordingly find it convenient to investigate the possibi-
lities of finding a suitable bridging approximation between the more
exact (55) and (64). We once more turn to the method of the station-
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ary phase and the third order approximation leading to the Argy-
type integrals. The integral appearing in (42) can then be written

_ 1y BO (A B (A
Li=(T,) 2e Afexp-[7{515'2—!+-d?-—3-!~-}]'d(m), (155)

where
1
u? u{uz 2
— Q0 — _—0}
2 4 2 4
d_Q I e L S —— , (155 a)
d1? T;i
©o 2.2 (155 b)
=—2.— 55
g 75
1
_ u u? 2
—Tam g =T )
and

o w7, — 1
_WA=7[ 2 +Q{ln(—'lA)_?}]

1

The slow variation of (z)” 2 has been neglected in the bridging
region.

The next problem concerns the path of integration. A glance

at fig. 8 shows that we have to approach 7, along the axis of reals

from the positive side {Re (W) = 0 in this contour} and then
take the first Re (W,) = 0 contour to the left.

.7
—=
In the same manner the integral corresponding to D (ue 4)
becomes —jo—1
2
- =L W [ RO (AR BO(A P
I,~—(7,) ze Af exp. 7{~d~r‘5‘2_1+ﬁé 37 } -d (A7), (156)

C2

The contours whick have a familiar shape are shown slightly de-
formed in fig. 23. For these contours the result is well known and
we have
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AT-Plane

Fig. 23. Paths of integration for the third order bridging approximations.

d2 e
1, _ -+ = d? — ) 7T o
12 =—(f{) = 0 l%expli WA :l':? F_‘-G_ H_]_ (F)J (157)
32 3
d 3
where
d2 O\ 3
1 (dtz)
P (157 a)

3 d30\’2'
dt3l

Integration along path c¢; yields a wave of oscillatory amplitude.

d 0
When on < 0 [in (148)] the path of integration is switched from

¢, to c3, i. e., one is on the oscillatory side of the caustic.
In accordance with (42) our bridging approximations thus become
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89
) dze
. . 1 —
i I'itjo+y -1 de?
pluctd) LI 1 &
sio—? 2.33

de

7 — ) 13z w? o
"exp. o+ W+ i\I'— 21 w7 -Hy (I'). (158)

3

@)

Using the HaANKEL-expansion for A1 when I' > 1, we find that
3

(147) becomes

. T o 1
e r + 5 -1 _1 w =z
D(ue 4)~- (79—1- 2)(7’7‘—1) =Ty *-exp [ e+ W,— (Z“‘_S)]‘
7'9—% (27)2
xl - —3  —2 lo7?
5 @—1) ST, 1—2—‘—|— ) (158 a)
where 7 = _i
T4

This differs from (55) only in the second and following terms
In the bridging region however, n =

=~ 1,and 102 = n (n+9).
When I'<« 1,

. 1 1 2 .7 A
ho I'\™3s I3 3I'(y) i (I\3
HY N)=e * (2) . 13) {1— 53)e 3(—) }
! 1

This yields when |y| < 1

1
.,p__é_ 27532

oot

R

where = —
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This differs from (64) only in the third and following terms. The
bridging approximation therefore must be considered good.

* *
*

Let us first determine the internal reflection coefficient, R.
The circuit relation (20) immediately yields (v > wy)

HY(r
R E S B W AW s
exp. {?Q"f‘? 5t o) —2 A}e CHO (1)
3
When I’ > 1 and IPhase I’|<7r, we therefore have
F( 70+2) T O . 7T u? —
R=——— lexp.{7-|-7 ——?4-—2 —2WA}.(1593J)
(27)2

When the losses are small (sin ¥ =~ ¥) and 2? =~ 1 (penetration

1 —1
frequency region) we find n = 24 (‘[’ + 4—a) . Therefore when
the layer is thick, || > 1 and
nm+9) | 2

B —13 T 14+ 4a¥

When the losses are small (55) thus is not quite reliable in the
penetration frequency region. The same is especially true of (159 a).
As the study of the reflection coefficient in that particular region is
of interest only in connexion with ionospheric investigations we
preferably defer it to a later chapter. The transition from (159 a)
to the corresponding relation in the penetration frequency region
will there be shown.

When |o| > 1 we have
r{—ie+3)
Tt ) 2 jle—eg)
—— e ~e¢ : (160)
(2 n)2

This yields

‘o P
R=e7§+ { (161)
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with
1
u2 —2-' (—?11)2 T
25:10(4—9) —l—gln{- 0 } 5 (161 a)
and
_ . H(ll)(r)
27 = —j 2F—?n+jln __3 (161 b)
&2 ()
3

Except for very long waves (when the boundary reflection domi-
nates as will soon be shown) we therefore have

;2
R~=d"". (161 c)

-
Introducing y2 =22 A, and 7 =y e/" | we have

26— a e_j'F[z 7—(1—%? In {i—i—?}]_% (*) (162)

and

Further (if the oblique incidence case is included)

dé ” add
P =k-cosp = E s (164)
z2=Ah, 2z =Ahy,

which by (35) indicates that except for long waves there is no bound-
ary reflection.

From (162) we obtain
——(_;—sinﬁlf- (1492

14+ _237 cos ¥V
—Im(2¢) ) 417-117?/2

|R|:e —l 2y —;, -exp.{acos?[/-(l—yz)-
1—1+y200s
. 2y
- arctan s1n?l/-1’__'y2 }, (y<1) (165)

*) For oblique incidence y has to be replaced by y cos ¢.
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and
’J —f’Tsinw-(l + 3?)
i W =
’ + 1 + 5 COS ' 2 | -
|R| —2 — i exp.{acos‘l’-(y — 1) arctan s1n‘1’-y2_1 —
1 2
—ancos?l’-(yz—l)}- (y>1) (16
For v =0 (no losses), (165) yields |R| =1 and (166) yields
| B| = exp. {— a7 (y2 — 1)} = exp. (= 0). Contrary to the classical
theories there thus still is some reflection for frequencies consider-
ably above the penetration frequency (at which 2 = 1).
This is entirely consistent with (22) which yields
| Bl = exp. (o)
when o <« — 1.
1 v
When the losses are so low that ¥ ~ E—— and this is
r4 — @ H
practically always the case, then
v 14 y2
L4y) w—wg ° 2 2 ay
|R|:{i } 0 (165 :
and
. v - ltyz ) Penetration coefficient
y+ 1] ¢—en 2 ——ay—a=(y?—1)
IR]:{_—_—} .eY vy 8 " . (166 :
y—1 > <)
§ (@ —wg)?
According to (23) we have the internal refraction coefficient
v 14 2
1+?/_‘—"~_“'H‘a' 2 Sy —ax(l—y?)
|T|z{l y} ce¥ Tl , 2 (167 «
- y<ll, — 1
{y S (w— wg)? - }
v 1+ y2
y+ 1 e TR g,
7= {7 e on (1671
o fy>1, - < 1)

\ w)’ S
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It is of interest to study — Im (2 &) for small y-values. One finds
from (165) that when

y<l, 26=~T. (168)
According to (159) therefore when
(1)
H, (I 7‘%
y<l, Rz 35— -¢ (169)
Hi (I)
3
i e.,
2 2 Fid 4
—j—=nm ry) s 2 V= + ¥
R~e '3 -exp.{ (3)36 as y? e7(2 T3 )}, (169 a)
r()
when

(IrP<i.

On the Application of the Phase Integral.

Consider the solution of

2 =
ot @I =o,
where ¢ (z) is a slowly varying function with zero at z = z;, such
that ¢ >0 for 2> 2, and ¢ < 0 for z<z,.

The asymptotic solutions in the form of W.B.K.-approximations*)
are joined in the region of z = 2z, by expressions involving HANKEL

1
functions of order 3 One asymptotic form for z> 2, is

— ; At T
(B2e) ¢ cos {J ke2 dz— I} (170)

containing the standing wave produced by imaginary reflection at
1

the branch point of ¢2. The complex phase difference between the
up-going and down-coming waves is

*) They should be called Jeffreys’-approximations, since H. JEFFREYS seems
to have used them first (Proc. Lond. Math. Soc., ser. 3, 23, p. 428, 1924).
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1 7T —

flcs2 dz——2-=2@, (170 a)

41
where the contour ¢, must be chosen from z round the branch point

1

of e2 and back. This differs from the result of the ray treatment
which does not contain the constant phase factor due to the expo-
nential tail (in the region z > z;), and which further only has any real
significance for a path along the axis of reals. When the medium is

dissipative, therefore, the ray theory cannot be used [3].
We have for a parabolic layer

2 \2
= — ()2 o | ———
so that the vertical incidence phase difference becomes
T e n
—kAkaf(uF—l)i’ du— =2@, (170 b)

where

One immediately finds D — £ For the thick layer, therefore,
phase integration round the branch point of ngn generally is a

very good approximation (even for considerable losses).*)
We have so far not said anything about the fact that the symme-
trical layer actually has two branch points z;, and —z;.

We have the incident wave f; (z) = e (1)’ the reflected wave

" 1
f. () =e s exp. {f lcs?dz—%}, and the refracted wave f, () =

€y

= e_j5 exp.{f ke% d z}: f, (—2).

The corresponding connexion formula is**)
¢ fi+f, —= |
f— e —

. (171)
z2>2 2l —2

*) Except for very long waves when [I'] << 1 (169).
**) This is nothing else than the asymptotic form of the circuit relation of the wave-
equation.
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Fig. 24. Countours of integration for the phase integrals.

An examination of the so-called STOKES regions will show that if
there is a good path ¢, passing around the reflection (branch) points
z, and —z; from the lower to the upper layer boundary without
enclosing other possible zeros of ¢, the existence of this connection
formula can be established [19]. The derivation of such connection
formulae is the important question in the treatment of the trans-
mission of matter-waves through potential barriers.

One finds that in the non-dissipative case

1 — (Je;| 2 = — ’ exp. {f k s';' d z} ’ .

1
In the case of the parabolic layer l exp. {f kexd zH =-—2mxo.

Ca

Thus
(B =—"

— Zn,; '

14 e

This is identical with the exact relation (22 b).

(v =0)
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In the discussion of the transmission of radio waves round the
earth we found that the proper values n, (proper angles) were selected
according to the relation

& (ko) & (k)

& ko &P ()] .

j2ms = ln'lR1 R,

When n <ka and the DEpYE-(W.K.B.-) approximation can be
used, the relation selecting the proper angles therefore becomes

1
2ns=¢k8i dr—m (173)

corresponding to the familiar BoHR-SOMMERFELD phase integral

relation
1
(s+?)k=gﬁpdq. (174)

The exact relation (172), however, selects not only the elevation
of the wave front but also determines the intensity of the wave
which is expressed by the residue series. In that respect it corre-
sponds to the later wave mechanical improvements of (174).

The Boundary Reflection of the Parabolic Layer.
When the main portion of the energy is returned at the boundary

of the layer we speak of boundary reflection. It is of importance
for long waves when |I'| < 1.

We find
d F) (1 — ¥ cos 9%)2
— =keosqg, - |——— . (175)
(dz em AR - 1 4 y cos ¢,

Applying (89) we therefore find

e
H, (I)

A

iln D(ueij%)1 = F 9 -[1—— 1_-M : 8 e:Fj
U || \iFyese) T
:’:7P—E z=Ah, H_l_ (F)

3
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(2)

) H) Iy _ . =
1—y cos ¢,\* . §() i o
A cosqac,v:Fy_(z)_e -cos¢c=1—yﬁ_
14y cos ¢, H(l) ) A
1
3

The complex reflection coefficient for horizontal polarization thus
becomes

1 — A(Z) 7 2’;
B =— 1 + \@ 7% = T > (177)
where
i
_— -
= e _ (%," cos ¢, , (178)
7 I HY (o)
3
and
_  14+R;
p = — N (179)
1— R, A

Since g, > 1, except for the first pole, we put ¥ = 1 = 7* in
order to be able easily to study the qualities of the layer as a
boundary reflector.

Thus
1 — A(2)
By, = W . (@, << 90°). (177 a)
For [I'|> 1, \® =1 and R,; = 0. Appreciable boundary reflection

only occurs when |I'| < 1.

When y < 1, (169) and (179) yield

m
i = Hl ()
1 +e ® (%) N
1 ()
P —— —5—. (179 a)
.zH2 ([’)
'3 3
1+ e T
s (1)
:

(176)
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When |I'] < 1, therefore

,1
P —e 3,
and
L ad?\Lr(})
. + 7Yy cos .- 3 ’I,(z—)
~_ e 2 180
4 . EEL ;I’(-;-) (180)
1—jycos g \—5— IT(jz) (' <« 1)
3
iz

When w,, > (sharp layer), R, — ¢

This represents the true long wave case when the polarization is
horizontal and wy; = 0. We may arbitrarily make the distinction
that for long wave transmission |]’| < 1 and for medium and short
wave transmission |/’ > 1.

* %
%

It is of particular interest to study the boundary reflection for a
layer with linear increase in electron density, an especially simple
case.

The circuit relation connecting the waves (horizontal polariza-
tion) is [3]

1 ( =\ 3 z 1 =\ 3 z
(2) x|l —; X 5 0 X \-- 8L
22 H, {2(3)2} e 't =—32H, {2 (—5)2} e/ 5 +
3

3

up-going wave down-coming wave
1 3
39 1 e {2 —x 2‘}
&) 2|~ 181
+ o (—ar K, 25 (181)
3
surface-wave (exponential
tail in non-classical region)
where
3
Z\e 1 f ; 5
2 3] = k &, dz= —i——4— (181 a)
€y
and ¢, is the usual contour round the branch point. Therefore
d O . .
— |5—] = kcos 181
iz Pe ( )

z=20
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and

_ 7T 2 A2

(D+Z=-§cos3<pc-- PR (181 c)
Co 7, (@)

By (163)
2 o \? G
—_~ 3 . —_— 7"'7] =
I' = g Cos’ @ - a (")cm) e , (g = 0)

when |I'} < 1. This differs from o only in the value of the layer
constant. For the parabolic layer, however,

d O,
A M
z=Ah,

and therefore, as expected, the boundary reflecting power of the
parabolic layer is the same as that of the linear layer, provided the
boundary gradient is the same. We therefore conclude that all
layers with a linear term in the electron density distribution function
of the boundary region have similar properties as long wave reflectors.

A Short Note on the Reflection Coefficient of a Layer
with Quadratic Increase in Electron Density.

Since the quadratic case is as simple practically as the linear one it
is worth while to consider the corresponding reflecting property
briefly.*)

Counting z positive from the boundary we have

w2 =70 22, (z>0)1

(182)
©2=0 - (2<0)
The wave equation becomes (horizontal polarization)
a1 1 2 o
IR R LR e

*) Reference should here be made to the early but different treatment of this case
by HARTREE [20].
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where
1 k cos? ¢,
n—l—;: —-'].'=7'0, (1833.)
2d2
A L
x =2z @2k2d1, (183 b)
and
il _ap
d=——--¢ ' . 183
W A ¢ ( ¢)
The circuit relation becomes
1 1 .
——n=zj S (2a)2
e 2 D(—jz) = —e? D (§x)— D, (x). (184
(—7j2) e (j %) I+ 1) o (@) (184)
—n—1 ‘ —n—1
up-going wave down-conming wave expoucntial tail.
This immediately yields
D (j=) ] z
inz n . =e]n e 3} (185)
D (—j x)[
—n—1 . 0

Performing phase integration round the branch point in the usual

manner we obtain
_].
=k }( g, dz=1y7T. (186)

¢y

7T

2

20

For the quadratic layer the W.K.B.-approximation is correct for
all wave-lengths.

For the linear oscillator in wave mechanics, therefore, (185) imme-
diately yields the correct energy levels, viz.,

1
W, = (m -+ —)) hv,,
where v, is the classical frequency of free oscillation.

* *
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According to (39)

ro+ 32
[d F(—"f_) s \i —iv
—-{lnD(——jx)}]:j-Q . -(2 ) e 7. (187)
z2=10

dz —_n—1 F({o._%l_/?) % A

Making use of the STIRLING expansion for the I'-function we find
that for medium waves, when [r,| > 1,

d
[J—{lnD (——jx)}]——-jkcosq:c-
S P I (1] > 1).

There is therefore appreciable boundary reflection only when
|7,] < 1, which corresponds to the requirement | I'| < 1 for the linear
and parabolic layers.

Since

_ . To T T
p=—jtan\—o +

for the quadratic layer, and when further 7 = 1, we have

r ro+12 1
747 4 2 ANt T o
e ~ . ——2—

(T Ty
2

2
Cy O

. ToTT T
1—jten| 5+ ‘fl_(r)

When b — oo (sharp layer), B, — e
zontal polarization.

“ as expected for hori-

A Short Discussion of the Case v, < w < wy for the
Parabolic Layer.
We have
V= j:l—-i arctan ’ .
2 2 Wy — W

vl

(189)

(188)
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It is convenient to select the plus sign (the other sign will only
transform the progressive wave into a standing wave and vice versa),
thus

&1
T=—5—Tl (189&)

We find

1
jo=al(l +y)cos? +j(l—y)sin?,] =+, (190)

i. e, (7L)br0=(1 (1+y2)—%.
z 1 Y
Further V= Ak (ta)yze'2 . (1.91)
The circuit relation
D, (7) = - li){e%"”'D(j N4e T D V)} . (192)
(2n)2 —n—1 —n—1

yields waves progressing in both directions between the branch points,
1
2 = 0, 1. e., between

1
5
2= iAkm(1+y2e’ I")Z.
Partial reflection thus does not take place within the layer.
Therefore
(R} o,

wcm< o < Wy

and the internal transmission (refraction) coefficient

D (—iV)l

7 G (193)
D (+7V>[
—n—1 — AR

We have
2 i3 7% in iz
= —aype 12— 0" _ %P, 194
3 ay (1+7y1)2 1 ( )
where
—ii,
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Further

a
Re (&) = —| 2y — cos ¥, (1 + 3?) arctan {cos y,. T

2

2y
CY Gn
1+ I+ sin .Fll

2y
T4yt

3 /
sin ¥,

and

¢

._g, s Y/
1—!—1_'_y2s1nl1

—sin ¥, (1—y?) arctan [cos oo o= 20 }
1 ] 1 l_yg

Thus
) | 2y
Re®} , =5|2y— 0+ arctan]l_g;;

Y

lle

and

y =0
Making use of (158), remembering that
HY @ I)=—e 3 HY (),
3

and introducing

we obtain
@

_ @i+ S4izp) ; *__ -
T=e 2 e"p'[7{rl+r‘ 6”] HY ()’

|

H

103

(196)

(194 a)
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and
(Vi) = 1.

» =0

For very long waves therefore (|7, < 1)

N 1 7\
ivEln+ 5 + =
T:ell(n 2)+"J. (197 a)
When |I')| > 1,
. . 28 =
T~ 7lﬁ(+l)+ ’+2J’ (197b)
which can also be obtained by phase integration along c,.
Finally
1 d { }] ( i)
— s~ In\D(@GV =—4:1—|- — ] +
l:kdz _"(11) s = Ak 7[ (1+]?]1,
(2) 2)
2 (') o - ] H, (') -
3 Iy 11—y .3 g
+ o & 1+ 7 T e =
Y in/ | iy @)
1 L
1
= 7 A(z)» (198)
1
and
1 — AP
T e O (199)
: 1
Introducing
j 1
T _ e? ]T’
and

7" r
Tg=¢ ( , [Im (,) > Re (3,)]

the effective transmission and reflection coefficients by (28) approxi-
mately become
T sin 9
SO S
1 —rg T sin (1, + ny) '

1— 177 — sin gy l
1—7r27T? " sin m, +np)

*) Only vertical incidence considered when wy 7 0.

Ry~ —r, -
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In the particular case » = 0, Im () = 0, and the weak reflected
wave exhibits the »colours» of thick plates. Since |R,;| < |7,/
this is not true of the transmission coefficient.

It is interesting to compare the result of (200) to that of EPSTEIN
on p. 633 in his fundamental paper Reflection of Waves in an Inhomo-
geneous Absorbing Medium [1].

In the corresponding case EPSTEIN’S numerator in the expres-
sion for R, is

— sin (— z d),
where

1

1 2
P —_ {— 2 R p—
d {4+S 83} 9

The variation in dielectric constant is expressed by

B kz\—2
s=1—|——4—- cosh—2——; .

A
The thickness of the layer in P units therefore is proportional to

v

s. The boundary region may arbitrarily be placed at
48
z=AN0Nh, = T
For long waves and no absorbtion this yields

7t A h w \?
—nd:‘\’,—.—i-(—),

4 )
cm Wy

which substantially corresponds to the dominant term in ng, 1. e.,

1 erZAhm w \?
m

(

On the Poles when the Reflecting Shell is Radially
Inhomogeneous.
We have for horizontal polarization
¢ (ko) &P (ka)
D, =1—mn 4 (2) m >
&7 (ke) &7 (ka)
where 7, as before is expressed by (83) and 7, by (177).

(201)
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Since
H, (g,
§ke) 5 [{2 . H_il:l (202)
«(2) (k) H<lz> (Qc)exp- 12 (. — o, 3] 2
3

these expressions yield the Phase Integral Relations

ke n ; ]
f{l__z} dz = sm + b33, {Re (n) < ka)

x
ka

ke 1

n? |2
f{]_;} dx = sa+ 0y, {ka <Re(n)<kc}

n

where
( l
(5“=gc—ga+j';' In - *(:.32) 31 + 2 1111]11]4, {Re( )<ka}
- lH_l_ (Q)H}_ '
3 3

and

H1 (Qc 1 (Oa)

1
(?i) [’f‘ J 5 Iny - tka< Re(n)<ke}

|H~1_ (20) Hl (a)
3 3

614'—Qc+7 9 In

Relations (122) and (203) thus are practially identical for the high
order poles.
* *
k
Let us now for the sake of completeness show roughly that there
can be no poles for n®>kc (no-loss case). For the sake of conveni-
ence we further limit ourselves tc the parabolic case. We have
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M .3 1
Hy (1621 737 10D )
_ 3 . 3 .
=exp. 4 7|—m7—2 arctan — o) s (205)
‘”(lm —i3) I3 () + 11 (ie?)) | |
5 3 3
and therefore
1) (2) 1
Hy () H, (@ ( 5 I {0
.(32) (31) = exp. | j] 2 arctan — o ol
H @) H, @) l 21_ (I9a|)+11 ({2al)
3 3
32 11 (1)) ]
- = exp. (J F). (mn>kc) (206)
21 1 (Io? |>+1 1 (12D
3
%5
Since 0 < F < = when |g‘c’| > 0, (201) has no zeros for n” > ke.
* *®
k
For the higher order poles and horizontal polarization for example
we have the same Relation I as (125).
Relation II becomes in the parallell form for the parabolic layer
(compare p. 65)
1 'Hm (o7)! 1
4 2 \Q¢
A [[2(100»—7@2)12 2 1 [1 : 2 (’7+ﬁ)(°)1 (3)3A
g Y Rt TR { RN Rl ROV cos {7 T Pef (2c)® {7 (N
U ke ) =e {.Hl (si.’)v} Ul \3 ke
3 3
L H, (o) L
[2(ka—n2)12 2 1 [1 £ (n+ﬁ)(0) ('3)5A \
- : L= | eos V5 + Ba) (a)d ] Doy
U ke | ma {Hﬂ” (eﬁ>>‘ U6y @ \3 kaf —7
3 3
2 [Hy (0, Hy (20)|”
—_ Qa 2 a
5(3_@) l_— a*
) @
ke ]Hl(enHi @) | 5 Bl \
o 3 3 R it 0
+ i ) o1 \) k 1 l,“l (Qa) kl (ka) 2 (ga)j +
1 ky a*) 1+ ki o
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1 cos @,
P N Y o
,,H? RN Ay (@) { o ]
’ o AR
l <3i> ot N® B cos p, l *{%—01 -1,1-11 (0d) — (7) cos? @, - iy (07) |~
H, (ec);l 1 (Qc),J
3 3
1) (2) 2)
_Hy (@) _Hy (e i Hy (),
_[67?__317__ _e—]—'_—:{T_] il—-[l—e]%[—é—) ] ] o
( @ ; =
l Hz (92) Hz (Q?)J & le ( J
1
=7y {hl (M m)} , (207)
n = nd

where 7, is obtained from (83) and 7, from (177). The variation of 7
has been neglected in the range of Relations II and III. Relation 111
1s not written out. It is easily obtained from (209) when compared

with (134).
Further Notes on the Residue Series.

If we desire to raise the receiver above ground, i. e. r > a, we
obtain the general expression

1 [ (0 (ka) &) [ (0 (ke) &2 (kb))
L AD “(2) 0 o, 2 ST By N
27 C (k b) (]v ) 11 + R ‘.(1) (k a) 5(2) (k T)J ll + -R4 4-&2) (kc) C‘(Jl) (kb)J s

and (b>r>a)
1 ([ p B2k &k [ KD (ke) & (kn)

— . 1) ~(2) = & YTy S S Y

i N STEN I B gy @) | T B @ ke 1)

(r>b6>a)

Placing the sender on the ground one obtains
o L L ) 9 ) 1 By (1 4 Ry o
|, )] 25 7 Y EAR A
and o ( (209a)
l{_e"s 1 ,1 ) (L >(2) I 1 R R

(= ,C (ke) &) (ka) (1 + Ry) (1 + Ry).

Py (n)) 2




RYDBECK, ON THE PROPAGATION OF RADIO WAVES 109

Placing the sender close to the reflector we further obtain

(e, 1 ) ]
i@&ﬁ—;ﬁ”wwwwmu+Rau+mx

o] - (209 b)
[ \=_£_ (kc)"(2)(‘0)(1+R)(1+R)"—'-

@ wj 2 TR

= C

From these relations we find that the influence of the reflecting
properties of ground and shell (layer) is symmetrical when the sender
and receiver are placed on the opposite surfaces. When they are
placed on the same surface the local reflection coefficient dominates.
This holds of course only for a constant ©-value.

Returning to the practical case of (209 a) we infer that for high
angle (high order) waves and vertical polarization there is not much
difference in intensity at the two surfaces when the losses are small.

We have already seen that B, and R, appear symmetrically in the
pole relation. From this one may perhaps be inclined to believe that
the reflecting properties of ground and layer have a symmetrical
influence upon the attenuation. It is true that the influence is
symmetrical for higher order waves. For the lowest order waves,
however, the ground properties are only of secondary importance.

For the lowest order pole we have very approximately

2 1 1
— A ng [cos @, - o {’ H(l) 09 \2:| =% 5 In 2,. (210)
¢ J

It is worth noting that for this pole #, = 1. This is borne out
by figs. 13 and 14. It is a consequence of the fact that, according
2
to table I on p. 35, when ¢, = |Qa| - exp. 1—7—3— :r}. (n>ka),
and |o,| > 1,
8 (ka) L (k)
Y (ka) LD (ka)
The reflecting property of the ground therefore should not notably

affect the intensity of the lowest order waves. If we putk, = k,i.e.,
the reflecting sphere is removed, the result is substantially the same.
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——— BWK-
Phase- C/mnye'g

Fig. 25.

The physical meaning of this is clear if we study fig. 25 which
depicts how a ray from a point source forms its own virtual reflecting
shell. If the wave-length is extremely short a sharp shadow sphere
is formed. If a smaller sphere with arbitrary % is placed concentri-
cally in the shadow sphere it will disturb the picture only if the wave-
length is so long that the shadow edge is not sufficiently sharp.

If we make use of the addition theorem (76) we infer that the
radially standing wave produced by virtual reflection is

0 (kb) 52 (kr) + &) (k)

kb kr )

The phase change down and up becomes
E = Phase { (" (k) [P (kr)}.
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Since the important n-values are large we have, when &r > n, by
(84) that

The W.K.B.-phase change comes from the exponential tail in the
shadow sphere.
When kr < n we have by table 1 p. 55

L[ n | 1 * m2 2
(2) (1) ~ e _ . — .
gy (kr) + & (kr) < l(kr)z IJ exp.{ lj(xz l) d‘zJ
_‘yr!
2y L 3
Since |y, |~ — (n) ‘-(kAr)2,where/cAr:[n—lcr’,one

3
infers that the sharpness of the shadow edge increases very rapidly
with the wave frequencey.

n
The value of . corresponding to a certain 7e Vvalue for the lowest

order poles is

r =2
n o Be)s  —3
YT e |-

This is the radius of the virtual reflecting shell. For short waves
¢—mn/k < h, and the lowest order waves (which are guided practi-
cally exclusively by the outer shell) will not contribute appreciably
to the signal strength even for very long distances. In the long-
wave case, however, the low order waves will be important on
account of the slow decay of the exponential tail.,

Let us consider €,/ @y (n,) for the lowest order terms in the residue

series. Remem bering that

£ (ka) D (ko) jos,

Ry By - & (kay B (kee)

bl
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we find from (208) for vertical polarization after a few trans-

formations
e, g )Gk e, kD) oy, (Ra)
&)~ 7 g S s e B
oo [ Ry k) ﬁ
'Cys (k' )159)( )+ C(l)( ) Rs ’ (211)
where
v, (ka) & w, (ka)
v, k@) Tk y, (k@) N (RL)
B = - —= (212)
Tt (ka)  f w, (ko) D (BL)
& (ka) ™ ki, (k a)
For the lowest order wave [g,| > 1, and
k 1/’;/3 (kya) [ n? - ;
. 1= ke, ' vy, (kya) |k2a2 !
B, ~ ; = a
s AT N
"y, ) lee

It is especially interesting to note that b and r appear symmetric-
ally in (211) indicating the self-evident fact that it is equally profit-
able to raise the receiver as it is to raise the sender.

After a slight transformation one obtains

[y, (k7)w,, (ka)

J
(1) i 22t l — ( 4
Svg (]C 7)1;—(1)(Lr) + Cii)(ka) ysl Syg (/t 7) Ii{cii) (](a)}z D (Ris) T
LJED () @ ka)]
ey cr‘u;f(m} =L e
For the lowest order waves |g,| > 1, and
1 —
n? Iy !711_2i}lal 1
MV ¢ 1 !
/ 212 [ n? -2
SPARNE AT
L ky | 20?  |2a? |



RYDBECK, ON THE PROPAGATION OF RADIO WAVES 113

First when exp. (2 |y, — 2|y,) > 1, is it possible to neglect
the ground influence in (213). Since

! ' tng 1.2 k
Zol — 7l = i (a 7_)2_ -k (r—a),

very long low order waves will keep their surface characteristic a
considerable distance above ground. When r = ¢ we have

¥s

(0 (ko) 2 (ka)
)

This does not contradict what has just been said regarding the
ground influence, since R} == — 1 for the lowest order wave. Hence
we infer that the propagation of the lowest order wave is mainly
governed by the properties of the reflecting shell. The ground
properties are influential only in the ground neighbourhood.

The intensity of the lowest order wave generally decreases very
rapidly when r <=, as shown by (213 a). Only for very long waves,
for which the decrease is comparatively slow, are the lowest order
waves of importance (@ fairly large). The contribution from the
low order waves appears to be a characteristic feature of the long
distance propagation of very long radio waves.

For the higher order waves (high angle) we obtain

1
Ll U l—2n—F) [, jCr—22)
| D L . . \/ ‘a 1 1 i Iz
ng 2 ll 12 er e lR1+e “ .
Since
r—a
2;’7' 2yazc_a(2;’c‘27a):
we have
1[ n? 1——1 _j(7a+i) 1;—[ 1‘1)0—7 1_i> r.—a Jms
—21]——k2r2J e 4/ R 1R c—a. Rt 2 c—a.g,
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!Vs

Introducing
r—a[ 1 11 lec—r 0
aO:c—tJlﬂs—E Phase (R} )J +Ec_a'Phase(R1)>
and
lc—r lr—a
hom— g MBI+ o IRl
1 L
. { w1 =il pi] -

k2 7.2J

This demonstrates how radially standing waves (selected by means
of the phase integral relation) are set up between ground and shell.
In the non-dissipative case equidistant node surfaces are produced
in the propagation space. When R} = R} it appears from (196 a)
that the intensity is practically the same at the ground and at the
reflector.

So far we have not said anything about the field strength. Making
use of (99) we find that the original residue series (214) can be used
providing the following e, /@, (n,) expressions are used.

For E,:
evg 2A17‘ ns 2 1 C(l) (ﬂ ) (1) k [st (k b) ‘(»Uvs (k a) Rl
G, m) = b Nkr) @ ko) e FO gy T oy B
O L L
&0 (k) T LD (ka) "
fOI‘ Eo

evs 2A17' ng Rl c(l) ( ) «(1) [st (k b) %s (l‘ a) Rll
D, (m) b ke @ ko) e B0 T gy B

[wys’ (kr) v, (ka) |

Cf}l)’ (k 7') lC(])’( ) + c(l) (k‘ a) sz )

and for H¢ :

lcos2 ap+ sinh? ﬂoJ . (214 a)
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We introduce the notations A E,, A Ey, A Hy for the field strength
components corresponding to the individual waves of the residue

series. Thus
ANE, 7y .
AH¢=kr = BB
and } (216)
A E, n, Wy (k7 r)+ m g (k)
NEy  gkr oy, (kr)+mE) (KT’
where
Py, (
=0 (ka)
We can, of course, also write
C(2) ( a) C(2) ( r) 5(2) (k c) (2)
1 ! v 7 + R!.
R I S A T N R A UL B 0 ()
j kr Cf,ls”(kr) ( a) C(z)’( r) jkr (P (ko) . C‘z)’
D em B @ W ko) TG
In the Warson-case one easily obtains
1
AE, ) LY "Ijs(kla)fv__n_s‘_ki‘ [1_— n2 )2
NEy) ke k Ty, (a) ka &\ (kap)’
and
W (L 2 %
AE, T, ks G Um0 g kg n? |2
A E, 1_‘_—71“- kD (kgo) ke K U ey
i. e., the electric field of the wave at the surface is rotational and

(216 b) yields the familiar ellipses of the electric vector.
Let us further consider the general case a <7 < ¢ for the higher
order waves. With the notations of p. 114 we find

AE,
AR,

= jtang, - cot (ao + 7 Bo)- (216 c)

(k)
(k)
) (216 a)
(k)
(216 b)
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1
i

e
s‘l,--‘l

0/ 2345678
Amplitude Units Ampiitsde Unrfs
Fig. 26. The low and high order waves in the propagation of long vertically
polarized radio waves.

l
|
|
|
L

r=0 o

This can also be written

AE; . sinh? B, 4 cos? ay) = ) [ sin 2 g, ||
AE, ~ PP \ginh? gy + sintag) P |7 M \ginh 25,/ |

In the nodal surfaces where sina, or cosq, is zero, one of the axes is
vertical. When the losses are small the electric field is practically
a purely alternating one in these surfaces.

Denoting the axes of the vector ellipse by d, and d, one further
easily finds in the non-dissipative case that

d? 4 dy* = const. - sin® 2 ¢,,

1. e., the intensity of the individual wave is practically the same from
ground to reflector.

As a final illustration of[the radial nature of the high and low
order waves we have in fig. 26 plotted the variation of A E, with
height for the two cases. The reflecting shell is homogeneous and
the refleciion losses have been neglected for the sake of simplicity.
The layer height is 60 km and the wave-length is 5 km. The
order of the wave, denoted by s, is also shown in fig. 26.



RYDBECK, ON THE PROPAGATION OF RADIO WAVES 117

Making use of the notation a ® = D, we have

§ =00

8= 6 a —y 1 e, : i Aﬂ-s‘
T R P L !
sin r §=0 ®1 (n’s) q)3 (ns)

jkD— wt)
e

|

=

o

U(r,0) ~

b

—D
Accordingly in practical units (all lengths in meters)

1 s=00

120 ;xpD— O \2 v afb 1 (n\?

50,0y~ ok 5" () X B enont (1)
§=0

- ——evs_ .ef(%/:+
D, (n,) Dy ()

N\ ng

D) . Volts/meter (217)

AvusTin’s formula yields

. X 120 = 6 \z _3p Vol
| |=A =D \anol ¢ . Volts/meter
, . o — D .
AvusTiN’s attenuation coefficient e thus must be considered an
approximate average of the above sum.
In the case of increased attenuation only the first few terms in
the residue series have to be considered and in such a case
120 | U* I

|E, (r, 0)| = AK'TR_VU,‘WI'

Volts/meter (218)

The power radiated by the vertical current element and by the
horizontal loop in free space is

w2 (O K\? w2y [J S k\?
P\\'att': 3 -1, and P“‘att': 3 T .

A

Relation (218) can therefore also be written in the familiar form

. LU
| Eg (r, )ll 3. 10° lUpr.
o~ VP, -{ %. uVolts/meter (219)
. I l ka l U
\E, (r, 0)] o

We find for the high order waves when the ionospheric intrusion
can not be neglected
h+ AR,

n
Dy =274 -— . tan ¢, - (sin @, ZZ—Z) (219)
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Putting ¢, = ¢, = @,, we have for the high order waves when
k, — oo and the polarization is vertical
- e_”s - a . cos (yb - ya) + CO8 (yr T‘;’a) (220)
D, (n,) Dy (n,)  h+ AR, sin ¢, ’

and the contribution to E, (r, ®) from the high-order terms (s > M)
becomes

jiD

1 s5=00 1
120 ;D — O \2 2 @\2 a
AE™ _AK. kD “").(_ ) Z( )

sin @ T ka h+ Ak,
2 fx  Ans )
- —+="D
- 8IS g+ COS (73 — 7a) - €08 (7, — 74) - €’ (4 @ (221)
£ <

The Limiting Case of a Plane Boundary.

In this section we will show how the solution of the problem of
the plane boundary can be obtained as a limiting case of the sphe-

rical solution. To that end we let a — oo while keeping constant
the quantities a @ = D, c—a = h

e O —a =hy,, r—a=h,, etc.

Introducing the new variable 1, =k sin ¢ = 5 e have

Lim IO (kD) — ay b
- O = ¢ 5
S, W Fa)

1
= (2 — k?)2z. Further introducing the quantity o, =
1

(22 —k%)z, we find for vertical polarization

. — a. h’b —a 2hb —a, 2h
Lim e, E e 7 (l—l—réle M 4 le P
a—>00 T = o5 T - — )
2 a —ay, 2 h
v 2 Ll rle 270
(hra>kba)
where

2 2
1 kl(lz"—'k ay

7‘ = T a <
21 2 2
k% as + K oy
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is the plane FRESNEL coefficient for vertical polarization and 7} is
the plane coefficient for the reflector. In the WaTsox case

2 )
L . ki ay — K ag

1= 1 = e
& 2 k§a2+kza3’

1
where a; = (22 —k3)2 .

. ndn o
Since b Tk di,, and
Lim P, {cos (x — O)} Lim P, {cos (m — 6O)} ) .
@ ~ cosmam e  cosnm =20 (WD),
Im (n) >0 Im (n) <0

[5] we obtain from relation (107)

o . — ay by — g 2 hpg —ay 2h
A, (hdl e 1473 e L4rie 2777

I =— < Jo (D) - = —— 1=

k T, 0 = a2

1E 0 1—ryrie i
(r>b) (222)

If we consider the transmission of waves between two identical
reflectors, i. e., r5; = 75, and if we further place the sender mid-
way between them, we observe that

—ay 2h
DGy ¢ !

—ay 2Ry — ay - heg
1—ryrie %2 7 Nen 1—7ri-1-¢ 27 fea

We thus see that this case is identical with the case of a trans-
mitter on a perfect veflector a distance —- %, from the other re-
flector as expected for symmetrical reasons.

In the special case h,, — 0, 7}, = 1, and 7} = r};, we find
4, % 24, [ndi h (og b,)

e q @ A —a, 2R cosh (a
H='_lz R +—'kI< 1"'I‘JO(D/il)‘e “ m'rés‘— —jarﬂl’
7 7 5 Qg 1— 7‘;3 e 2 < ca

since according to SOMMERFELD

jkR hed
e J Adiy L — Oy hy

Jo (D) e . (b, >0).

R a,
0
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This result is found in a slightly different form by ECKERSLEY

—ay h
[4] who, however, appears to have lost a factor ¢ > ° in the
numerator.

In the case of perfect reflectors (rj; = 1 = r};) we finally obtain

the elementary result

P=% jLR,

7 S
ik — R
] 3 P

where L R, denotes the iconal of a ray of order p.

A Short Discussion of the Case of the Poor Reflector.

When the reflecting power of the shell decreases and |R1|<< 1
it does not appear to be an easy matter to obtain the corresponding
value of the low order poles from the previous relation

£ (ka) (0 (k)
L= R R0y () e o) =

It is obvious that the zeros of (@, - @,) are also the zeros of
1 k) (ko)

B Ee T (223)

which is a more suitable expression when | R} | is small. Introduc-
ing a new reflection factor

¥ (ka
B B
R! ¥, ka) ™ N (R} 294
TPt T DY e
T—Vs—l (ka) "
it is easily shown that
g)) k Yy
Esﬁ_ﬁ _ +) l_ei(ns+1)f Vs(]ﬂr Ry (ka)—
(2) n cos v, 7 T_,,s_1 (ka) 1 C—yg—1 (2)

& (ka)

D (Rj)
&) (ka)

(22
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This iminediately yields

e T

o ¥_,—1(ka) t? (ka)

- o =— s B (226
—(ns + Ly B O) 1 ka1 (220

1—e - - R

v_, _(ka)

Vs

which inserted in (223) leads to the following pole-relation, viz.

&) (k c) ngx
¥ (f 1+ ;(J;) k Ry e
e’—‘("s+l):7' _ﬁ( {l) R! 5”3_(_0) ] o ej-’?r
TN L
R R

It is to be noted, that s here is not the same s as appeared in the
previous pole relations. When R = 0, we are left with the relation

noi P
PH s Aol (228)

This relation which has been found by vAN DER PoL and BREMMER
[21] yields the poles of the reflector-free case. These poles are all

1
situated in region c) where ¥, (ka) = Bl Sg) (k a) (except for the

lowest order pole where the HANKEL formula has to be used). When
this approximation holds one immediately finds R} equal to the
plane FrRESNEL coefficient for vertical polarization. One further
obtains the familiar phase integral relation

S 1 1 ORI R B A 229
Ve = 1 ? lx=m|s <]+ o Ik (229)
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Removal of the spherical earth is formally effected by putting
k; = k. When this is the case we have

&, (ka)

= m, (k=F). (230)

and therefore

Cl(lt) (k c) 72s8n
i Ezm =e . k=k) (231)

For poles not too close to k¢ we therefore have
ke 1
f " |? d . J In R} 232
Ve = .1—?2 r=amx .s—l—4 +2n A o (232)
ng

Since the first phase integral relation (229) only holds in region
c) of fig. 12, s may in this case be restricted to the values s = 0,—1,
1—2,—3,.... The second phase integral relation (232), however,
only holds in region @) and in this case s may therefore be restricted
to the values s =0, 1, 2, 3,....

It is of particular interest to note that formally identical phase
integral relations hold for the proper values of the waves guided
by the inside of the spherical surface and for the waves diffracted
over the outside of the spherical surface.

Returning to the complete pole relation (227) we note that the
correction in R} due to the poor reflector approximately is

ko)

ATE
AT

t e M

. Tng 7w
since |e < 1.
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When the earth is considered a perfect reflector and R; = 0, one
has the familiar relation for the lowest order pole

1 - T
ny = ka + 0,808 - (ka)? el

Therefore for waves not much longer than 1000 m and when A
at least 60 km

3
ka 2 [R\2 —ie
Ve -~ —3— .22 . ; . e ,
where
.1- .3.
(ka)® 37
— . — .0,808
e~ "kh 4 0,

Thus for 2 = 1000 m

Cl(z? (k C) — 2 Im (y,)

This means that even a numerically very small R} will tend to

displace the zero order pole considerably. For 2 = 100 m, — Im (v,)
1

is (10)% times greater and this effect is even more pronounced as

expected.

In the case of a strongly absorbing sphere [5]

4
no=ka+1,856-e73,

and the influence of the reflector is still greater. Tt has thus been
shown that even a very poor reflector will tend to change the proper
values considerably. This effect is especially considerable for the
shorter waves.
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On the Attenuation Coefficient in Long Wave

We have

Transmission.

already discussed the attenuation coefficient of the high

order waves in the special case of a homogeneous reflector (WaTsox-

case). We

are now in a position to extend our study of the attenua-

tion coefficient also to the case of the inhomogeneous reflector
when the polarization is horizontal.

Returning to (210) and remembering that for very low losses
(1) |
| H2 (o)
. 7_1__ ‘ '3' ) T
ng=l+jBe 6 |~ -2cos y—ﬂc , (233)
Ay (eo)
| 3
with
1 11 ! 1 11 L
I\ 3 a\s  \3 ya:
B = 2 -F o\ —Ycosg.|g . 2\ (233 a)
3 3
we obtain the attenuation coefficient
B 7T 0,0 (1) 1 7
~ . . 0 0)]. — _—B8l=
“cosp,-2a 2 IH; (QC)HHz (@) | cos 6 Z 2cos g, a

Further

neglecting the ground losses we get for the higher order

waves, in accordance with Relation 1, for low losses

cos” ¢,
77 2hsin @,

. (234)

1 p 1 2 L 1 1
3 2 3,3 3
( a 3 cos’ ¢, w3 {7: A hml 3

3

3
—3) Y ;(5)~ V§kisin (pc' o,

(@a)s > 1. (235)

In accordance with (138 ¢) we therefore find

: LT (1)
g@Zin}lgxllog01lcoE — (i) & (7! A hm) & ) 3

(ﬂl) homogeneous

~

2

Y 37‘c,, ]/51’(*
3

3

-—), (0), > 1. (236)

i. e., there is not much difference between the two long wave cases.

el yar(y)
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An inspection of (188) further shows that (236) holds for the qua-
dratic layer too.
In accordance with (70 a), cos ¢, actually is

-

2 4
n; Ny

j2r
cos¢c_={1——(kc)2—(kc)4-sze (

(239)

So far we have neglected the last term in (239). For s = 1 we have
0, ~ 1 or 2, i. e, 1—n?/(kc)?->1/192, when 7 = 5 km. Since
A hy,fc =~ 1073 if A h,, = 6 kin, we have been well justified, howe-
ver, in neglecting the last term. This holds even for a half-
thickness of as much as 60 km.

*

For low losses in accordance with (234) we have very approxima-
tely

Nk T fous

3 1 3 3 y3

ﬂl — Y ‘a/ ) _a_ . ( m) ) f - (240)
fem®

m

It is especially interesting to note that the frequency dependence
differs but slightly from the later AtsTiy formula for long distance
day-time transmission which has

B~ 0,73.10"¢. 06 }xy—1 (241)
for transmission over sea water. This coefficient is assumed to be

independent of y,, the height of the sun.
For the E-layer as well as the D-layer we may put

1
g

(70> 0).

for = (e, Jmax - (50 70)
The density at the level of maximum ion production of the absorb-
ing gas roughly is
00 = (00)max * SIN ;. (70> 0).
Putting as an approximation v proportional to g,, we have

Y Z Pmax sin Yo
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1. e.,
1 2 1
1 (Ah\3f373 1
/31 ~~ ;—( 6 c:’/) 23\ . (Sln ;10)6 . (70 > 0) (242)
(f"m)l?lax

According to this approximation f, is practically independent of Yo
when 7> 0, in complete aggreement with the AusTIN formula and
later field-strength data.

It next remains to be seen if acceptable values of (fe, Jmax

and »p,. yield the proper attenuation or not. If we assume
that 72 =5 km and (8)),,. = 0,3 - 1072, we find (fe,, Jmax = 300 kefs
when » .. = 5 - 10’ (a reasonable value for the D-layer) and
Ah, =6 kin. This value of (fe, )Jmex 18 not at all improbable.
Avustin’s formula (241) yields 8= 0,5- 1072 for the same wave-
length.

Making use of (188) we find for the high angle terms in the case
of a quadratic layer when the losses are small,

1
B ot L (Z) 1 $5 in 2 (243)
= : 9 . - w* y* 8sln — .,
[ 2 h sin ®s T (_Z_) (6(2) 3)% 8

since & is proportional to w,,, we have the approximation

A
8

B = (ﬁs)max' (sin y4)°, (0 > 0) (244)

which corresponds to (236).

Sa far we have only attempted a discussion of the day-time trans-
mission (y,>0). At the present stage it is not possible to say much
about the transition from day to night conditions. During the night
transatlantic field strength data yield a much smaller f-value. This
is perhaps an indication of reflection in the E-region where » only is
of the order of 3-10°. For very long waves the sun-set transition
takes place quite smoothly whereas for shorter long waves (15000 m)
this transition is marked by a very pronounced field strength mini-
mum as shown in fig. 27 reproducerad from ESPENSCHIED, ANDER-
soN, and BAILEY [22].

.
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Fig. 27. Diurnal field strength data for transatlantic long wave transmission.
[ Entire path in daylight. I Entire path in darkness.

When the entire path is in daylight typical field strength
constancy is observed. The field strength minimum is observed
only in the sunset zone and not in the sunrise zone. This pheno-
menon so far does not seem to have been satisfactorily explained.
One remarkable feature of this field strength minimum should be
mentioned, however. It appears to be more pronounced at the equi-
noxes than at other seasons. It is interesting to compare this
circumstance with the fact that the ozon density of the D-region
has its maxima and minima at these seasons.

It is evident that the field cannot be dependably predicted by a
formula as simple as the AusTiN one. The comparison between the
attenuation coefficient of this formula and f; therefore should not be
taken too seriously. ESPENSCHIED, ANDERSON and BArLey for
example suggest f =~ 4-107% . % where f in ke/s. This coefficient
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is supposed to represent the experimental data better than does the
AvusTIN coefficient. .
Experimental data on the lower ionosphere unfortunately are
extremely rare on account of the fact that the conventional echo-
method of BreIT and TtvEe cannot be used. BEsT, RaTcLIFFE and
WILKES [23] measuring the phase change of ground and sky waves
in long wave transmission estimate a day-time reflection level of 74
km for i = 18,8 km. Further research in this direction is desirable.

Finally we have computed l U/ Uml for O ranging from 15° to 150°
for transmission over sea water and a homogeneous layer with
w,=2a - 0,768 - 10 » = 10°, 7 =5 km and kA = 60 km. The
result is shown in fig. 28.

For real long distance (€ > 110°) only the first three terms in
the residue series have to be considered. This means that the
ground influence is quite small as we have already seen. Even
if a comparison cannot be made it should be mentioned that
FasspeNDER, EIsNEr and KurLBauvm [24] making field strength
measurements in over land long wave transmission find but little
difference between their attenuation coefficient and the AusTIN value
for /= 3750 m.

For @ < 60° the high angle waves also have to be considered and
for © = 15° it is necessary to consider twenty terms in the residue
series. The high angle waves produce quite complicated interference
phenomena. For @ < 15° so many terms have to be considered in
the residue series that the numerical complutation becomes quite
cumbersome. Fig. 29 finally demonstrates the evaluation of the
residue series for & = 45°.

It is interesting to note that even for distances as long as 45° the
third order term is the largest one numerically. For the case in
question this term has n, practically equal to ka as shown by fig.
14. For still longer distances the first and second order waves will
become relatively more important.

In the case of the inhomogeneous layer the high angle waves may
be less important than in the present case. Equally complicated
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Fig. 29. Demonstrating the evaluation of the residue series.

interference phenomena are to be expected when 6 is relatively small,
however.

It is finally of some interest to note the striking similarity be-
tween the [ U/ Up,|-curve in the neighbourhood of @ = 15° and the
common medium and short wave fading curves.

The Reflection Coefficient of the Parabolic Layer in
the Penetration Frequency Region.

So far we have not discussed the value of the reflection coefficient
in the penetration frequency region. This frequency range is of
considerable interest in connexion with investigations of the upper
ionosphere.

The actual investigation of the reflection coefficient is somewhat
complicated by the fact that the magnitude of the quantity 7
appearing in (55) becomes very large in this region when the losses
are small. One finds (when a > 1)
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C)

&

1
(17 Dmax :;J’ if (IQl)min>?’
and (245)

(lnl)max: 8a > if (IQl)min<

| =

When the losses are small (as is the case in the upper ionosphere)
expansion (55) therefore does not yield correct results in the penetra-
tion frequency region. This is also the region where the main
deviation from the geometrical optics occurs.

Let us study the value of |7 | in the penetration frequency region
for the F,- and E-layers. From reflection coefficient measure-
ments the corresponding v-values are roughly known, viz., 2. 10°
and 3-105. One finds (Jg|)p, = 0,4 for the F,-layer of half-
thickness 120 km (such a value is not at all unusual) and a penetration
wave-length of 30 m, a typical day-time value. This yields
(|9 )pax = 0,32 - m - 105. For the E-layer with a half-thickness of
12 km and a penetration wave-length of 90 m one further finds
(|0 Dmin == 12, 1. €., {7 |)max =~ 200. Expansion (55) is much less
accurate for the F,-layer than for the E-layer. For the D-layer on
the other hand expansion (55) always appears to be a sufficiently
accurate approximation (except of course for very long waves when
the bridging approximation has to be used).

Of the quantities » and ¢ appearing in the wave functions » is
practically constant in the penetration frequency region whereas g
generally is varying within very wide limits.

We had

o =af{(l—y?)cosy—j(1+ y?siny}.

Therefore | o | is practically independent of the wave frequency in
the penetration frequency region (y = 1) when

1— <2 tan p. (246)

v
For the F,- and E-layers, where tan y == _— (0 )’ we thus
(0w —wg

obtain the »band-width»

1

2 ——
Ao (wcm 3

14

)
= 2tany =

Py )
U)cm wcm — Wy
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1. e.,

2
w, em

2NANw v — — ——> . 247
’ (wcm_wH/2) (wcm—wl‘l) ’ ( )

For the F,layer a typical day-time »band-width» becomes about
159 c/s, whereas a typical day-time value for the E-layer is approxi-
mately 16 ke/s.

This means that it is possible to measure the maximum electron
density of the F-region extremely accurately. Even for the E-layer
this measurement is quite accurate, since a band-width smaller than
the frequency width of the reflected pulse cannot be measured.

For the D-region, however, y = —Z—, and it is obvious that the criti-
cal frequency conception has lost its meaning. In the lower ionos-
phere where the reflection is mainly »metallicy it is impossible to
measure the maximum electron density (even if the reflection coeffi-
cient were numerically sufficient). The following table of | R | for
a layer with typical D constants serves to illustrate the situation.

A by =6 km, 2, = 0,75 km, v = 107 sec™ .

TABLE II.

H ] B |
wlw, ; 0,125 0,250 ! 0,500 ‘
“m_| _ ,

'| — - |
| | R| 1,3-107" ’ 35-107* ! 1,810 1
— l —

|

Fortunately expansion (41) is well suited for application in the
penetration frequency region when the losses are small. It is especi-
ally useful when

| o?

152 < 1, i. e., when

a

(2 Aw | 8 . 2
——— L |——sin?2y | - (wg = 0) (248)

°m
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For Fy- and E-layers with day-time characteristics as before we
have
(2Af), < 250 kefs,
F,
and

(2L ]‘)E < 460 kcfs.

This means that the two expansions (41) and (55) overla)p as will
soon be shown in more detail.

In accordance with (41) one finds in the vertical incidence case

when y = 1, that
—d-I lnD(uej%) 2
dz‘l ~

. 1 2’ ’
je—1

°m

proving again that there is no boundary reflection.

Denoting all terms containing ¢ within the main brackets of (41)
by —j @, we immediately obtain the reflection coefficient

1
F(?'Q-l-;)

= 7o (u? L | 1+ .
74

D* i i D .
where ( )v _o s the conjugate of ( )v — 0
After a simple transformation of the I'-function we obtain

i [ ] ) 7o u? 7
R~ — 2% exp. 1lnl’(279)—1n1’(79)—|—?+j 5 —2e In 2u+‘—2 .
1+ O+
m (249 a)

a) |o| small, i. e., small losses and -

sufficiently small. The

magnitude of the reflection coefficient is conveniently written

2
|E| =%exp. {nzgm_z Im (%’—Q In Zu)},

f
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where
. 2
—7700HJ ,72mp+1'l

and y, is EULER’s constant.
We further have

u?

7T
_Ore_2_1m(_

2

7
7 ¢ In 2u) =alcosy - (1—4?) -E—sinzp{(1+y2)ln 160 — 2} —

— (1—y®) w cos y]. (250)

For small losses sin ¢ =~y and therefore

€] v
|R|::;-ﬁ_exp. [—Q(cu—wH)(l_i_y ) {In (16 a) —1}+ 1—y2)].

Remembering that
[+2]

1 1
— = l l o
401‘62 2

COS Tt Oy 2 m=
peor e ° {1+(2m+1)2}

and further in accordance with (22 b) that the no-loss coefficient
(R, _ o= IRd, i

M
a5 (1—97)
[Ro| = - N
7 12
2cosa— (1 —y?) J
we finally obtain
. v o]
—w—:_—w—-a-{ln(IGa)—l—yo—-l} dya
|B] == |Ro| € " ZZ 14 .
w—wg
m=0
v a _1 )
1+ : o
w—wg 2m 41 w—owg 2m41
—— D 3 e . (251)
4 a l
2m+1+ (I—y?p

m—+1
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When ol 0K 1 (o;n] € 1) the penetration value thus be-
W — Wg
comes
v [l’(l n 4va ) 3
_ ~ 0, " {In (16 a) — 1} | o—og)) ]
Bl = 7= e - § (251 a)
V2 I 2va I
LI’ R |
T =1

For a thick layer even a relatively low collisional frequency reduces
|E| considerably. Thus for an F,layer with the same day-time
characteristic as before a value of » as low as 200 reduces [R| with
about 36 9.

b) lo| > 1. This covers the case of f in the overlapping regions
of (41), (45) and further the case of f arbitrary when the losses are
considerable.

Making use of the conjugate relation of (160) we obtain from (249)

s 1+_ T 3
R:i—exp.j[ae ﬂ{2?7—(1—?2)1n (1_;)} +?]-8XP-{—7'(1 (1—?7)2'?}-

Since in the useful range of (41) by (248) |a (1 — %)?| < 2, the
result obtained is substantially the same as (161), i. e.,

i2é

R~c¢

When » so low that sin v ==y, we have approximately

O == Cm-ZAw, (Ao =w, —o) ’
0
and t (253)
A by, ’
Qim ~ — 2 Co L I

For layers with A A, - » = constant, parameters

2

o ves ey ¥ Toy o0 v v
*cm1> cmzy E) 12 72> ’
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and frequency deviations A f,, Af,, ...., we find in accordance
with (247) that
(&) B |2
Ao » D 1 ~cm1/ “Cmg
= = (A h’") . (254)
(R ¥y 2 ¢,
}‘c 7LX]‘2=—'A]‘1
mg V1

For a layer with changing A, but with Ak, and » constant the
relative variation in | R | with A f always is the same.

A few typical examples of the variation of the reflection coefficient
in the penetration frequency region are shown in figs 30—33.

Figs 30 and 31 show typical F,layer values. Since it is possible
to determine w, very accurately from ionospheric sweep frequency

records we infer that » must be of the order of 103. Generally it
does not seem to be much in excess of this value. This is in sub-
stantial agreement with the results of FARMER and RATCLIFFE.
They find » = 1,6 - 10® for the F,-layer.

Fig. 32 depicts typical F)-layer values. Since it is possible to
determine o, practically as accurately for the F,-layer as for the
F ,-layer, we further infer that for the F\-layer » probably is less than
about 10%. It should be mentioned that at an estimated F,-height
of 265 km, EcKERSLEY finds » = 3,6 - 103,

Fig. 33 finally is plotted with special reference to the normal
E-layer. The critical frequency generally cannot be measured very
accurately for the E-layer. This holds for virtual height measure-
ments as well as for reflection intensity measurements. Therefore
1t seems probable that » is 105 or more for the E-layer. This agrees
fairly well with the value calculated for this atmospheric level.

The Virtual Height of the Parabolic Layer.

If the wave reflected from the ionosphere experiences an increase in
phase 4 (w), one finds the time of travel of a wave-train with inten-

dA

sity maximum at w = w, to be approximately 7 == (E) at verti-

W = W,
cal incidence (38 a). This relation is extremely accurate under most

conditions. When the relative change of | R | is considerable within
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the main part of the frequency spectrum of the wave-train it
has to be used very carefully, however. In this connexion the reader
is referred to the fundamental papers by SoMMERFELD and BRILLOUIN
concerning similar problems [25].

Except when [I'| < 1 (which is of no interest in this connexion),
when further f lies in the penetration frequency region, and the
losses are small, we have at vertical incidence
a (d&)

25 {Re(§)] =2 Reld o) (255)

[

T =

e., the virtual height is

Nh,=~ ¢y -Re (d_é'] . (255 a)
\d o
Relation (161 a) then yields
' 2y cosy|
Ahv=%-i-/§—% (r)—o)H—o)A + 1 i nl 71+y2 ‘
2 o, 2, 4o, 0} l 2 L 2 y cos y
| 14 3

[cosw A0l A[B(0—og)+ oA~ — 0, 2o —wg—o A~ 2)} —siny - {wcmz — o A} .

A2 —2 | — arctan {sinw 29 ] siny {02 A [3 (0 — oy) + 0 A™ 2] +
w — oy l 1_y2J &5 H

P
—|—wcm2((u—wH—0)A_ )f—cosy) (o, 2-|—w2A)-A_2-—-w]:”, (256)
w — oy

where 0,2 = o (v — wy,).

56) is conveniently transformed and reduced to

When sin y =y, (2

Ak, o
Ah,~—— - — |In

D
2 27

1
w, (0)—4wH) + o, - g og

_|_

‘ ’ l1+y
!{(1—y)2 + (w—wy)z}

1 3
7 [n 1—12 o—oy 1 wfm (o)ﬁ—?o)ﬂ)—wf (w——z*wﬂ)
+ ————— — arctan y——— J-— = >

4 (w—og)| 2 v
(9574 (Ucm
—_— 3 I~ Id
50f |- (siny == y) (257)

o=
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From this relation it is immediately found that

lim (Ah)=Ah,. (258)

w —> ©

When y = 1, A h, becomes very large when » is low. For » =0
it becomes infinite. But this is in the region where we know that
(252) cannot be correct.

In this region (249 a) yields

Co [ . . 3 (13 T : 2] 0g ; 2oyd u
A5 Imf(2iy 2je)—iv e + 5 —im 4wy o jle—2Fr 4

where y (z) is the logarithmic derivative of I'(z).
When sin =~ w this finally yields
Ahk, o

2 4(2 02— oy - ™)
\W _ ‘h - A m i )
ARz [{m 160 + 70— X Gy e —

Cm m=1
2 1 g 1
|02 — gi - ™ 1 W\ — o] — o, 5oy ¥ I»Z
- (S o N 4+ — =
(m - gim)2 + Qrej (O 4 ((')_(")H) l 2
1
0m— 5 g
- o,
1 3
&3 2 - 2 2
. 40, m Cpp = M } o (n) + 3 (uH) w; (w— 5 (;)H)
S = — — = <0 — 7 S
m=1 (m — 2 (}im)2 + (2 Cre)2 (m - Q'im)2 + Cre W,
N
2 wy
o,
oy (0 + (ofm) o
_ a5 | (259)
w;
Wy
T2

The close similarity between (259) and (257) is apparent.
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At the classical penetration frequency y = 1 and w, = 0,5 1. €.,
.
Oy [ o wy\"| 2
(w)y 1= 3 + ‘]\wcm + (7) } = o, . (260)
At this frequency g,, = 0 and therefore
1
I TPUL-L N N | NP 2 R
by ~ 9 ' o, ' n (1 (l) — 2y (_ Qim) + L4 (_ Qim) ' o,
n ’ 2Op T “m ] y=1)  (261)
— . y —
" 4 (o, wg) w2 2w,
The no-loss virtual height accordingly becomes
1
A km wcfn I wc; — 3 Wy Wy
AbR G i (18 @)t ) - =S — } y=1;»=0)  (262)
m m m

This generally is very large though not infinite as one might expect
from (257).

For a thick layer » does not have to increase very much before
— 0;m > 1. When this is the case it is convenient to use the asymp-

totic form
2 L4 (— €im) —y (— Qim) ~In(—4 Qim) ’ (263)
i. e.,
1
AT Ah, O ! 4 (» _“’H)l @, — 3 %H v 2wy =n
ST g Ty, o v J o, + 4 (o — wg) W, "2
“n
— . — 1. — 0. . 264
2%] G =1 0> 1) (264)

We immediately see that this result is the same as that of (257).
When therefore — ¢;,, > 1 in the penetration frequency region, (257)
can be used throughout, i. e., the phase integral method is correct.

Denoting the distance between the branch points by I, we further
1
find that when this method can be used I > Ak, (2a) 2.
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Introducing the notation virtual penetration for T]Z’ we find
m

that the reduction in virtual penetration due to the introduction
of » is

1
2Ah\ _ of Vo — 5 Ox
o|l——)=—|s 29 (—20,)—w(—p N 2 7
(A h’m) wcm [170 + Y ( gzm) Y ( sz)] wcm
Y 2wy @
—— —1. 265
4 (wc - wH) W, 2] ( O)

For wy = 0 we therefore obtain the convenient expression
2 A h,
\ax ~ Yt 2y (—20,) —y (—g,). (265 a)
m

When wg = 0 al layers with A by - v = constant experience the
same reduction in virtual penetration and this reduction Is indepen-

A number of virtual height plots based on relations (257) and (259)
are shown in figs. 34 to 4],
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Fig. 34 shows the discrepancy between the classical and exact
virtual heights for a thick F,-layer when » = 0. The transition
from reflection to penetration is extremely sharp. Fig. 35 shows
the same thing for a considerably thinner layer.

For thin layers as shown in figs 36 and 37 the deviation from
geometrical optics cannot be neglected.

Fig. 38 depicts the intrusion reducing influence of the collisional
friction for the F,-layer. On account of the fact that » (as mentioned
before) probably is not much larger than 2 - 108 it is possible to obtain
experimentally practically the entire classical virtual height curve.
This is extremely important, since the calculation of the true electron
density distribution of the upper ionosphere is based on the classical
height curve.

For a layer ten times thinner the height reducing influence of the
collisional friction is about ten times smaller as shown in fig. 39.

Fig. 40 depicts the virtual height for a thick E-layer. Since » is
3 - 105 or more the characteristic increase in virtual height near pen-
etration generally is suppressed. It is not possible to determine the
true electron density distribution with reasonable accuracy. For a
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Fig. 43. Experimentally determined virtual and true heights.

thin layer the collisional friction can assume considerable values
before any appreciable reduction in virtual height is observed as
shown in fig. 41.

Finally the reduction in virtual intrusion is shown in fig. 42 for the
special case wy = 0. The corresponding no loss height has also
been plotted for three characteristic ¢ values.

A typical night-time virtual height curve for the F-layer obtained
by the author at Harvard University is shown in fig. 43. This curve,
which depicts the case wy = 0, was transformed from the original
virtual height data of the extra-ordinary component by a method
already described [3].

The electron density distribution was found to be practically para-
bolic from the true height curve. In accordance with fig. 43,
Ah, =70 km and 1, ==47,2 m. The no-loss virtual height

at y = 1 therefore becomes Ak, = -2—m 11,75. The recording

was made with a very sensitive equipment and the highest redu-

m

ced virtual height recorded was -9,20. We thus find from
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Oc

Fig. 44. Fixed frequency recording from Chalmers Ionospheric Observatory.

Fig. 45. Fixed frequency recording from Chalmers Ionospheric Observatory.

'World Radio Histol
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fig. 42 that -p,,, must have been less than 1,7, i. e., » must have
been less than about 15000.

This method thus gives an idea of the upper limit of ». Sweep
frequency records technically cannot be made sufficiently sensitive
to register the delayed echo tail at the penetration frequency which
generally is overtaken too rapidly.

A much better way to measure the night-time delay of the dispersed
echo tail is to run an abnormally sensitive fixed frequency recording
equipment when the signals just begin to penetrate at that frequency.
A sweep frequency recording is made at the same time. From this
recording A h,, is calculated. One then finds that the upper limit of
» certainly is appreciably lower than 15000.

Typical examples of this are shown as figs 44 and 45.

Fig. 44 shows a quiet evening recording. The dispersed pulse tail
of the ordinary component at penetration was delayed to a virtual
height of about 1100 km. Fig. 44 represents normal quiet conditions
at the equinox sunrise. In this particular case the ordinary pulse
tail was delayed to a maximum virtual height of about 1350 km.
In both cases the virtual height is counted from the lower boundary
of the layer. These tremendous virtual heights indicate a » value
probably less than 3000 at the level in question.

The Reflection of Radio Waves from an Extremely
Thin Layer.

In connexion with studies of abnormal E-layer reflections it is of
particular interest to investigate the reflection of radio waves from
very thin layers. It is therefore not out of the place to study briefly
the reflection of waves from a very thin parabolic layer.

a) w > wg
T Ah

m
y:

‘m

2
For the extremely thin layer we have ( ) < 1. When this

w2

4
mation for relation (39) certainly is sufficiently accurate, viz.,

is the case and

1
< lie, X 2 the following approxi:
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( 71) ei%1n2 1 u2 1 . I 9u2
Dlueta] = = a1+ espud T+ 2o, (266)
1 1 (83— 240 2 | 6
fo—+5 I \—

where

One further finds

. @ .0
d D(ue’T)l elz 2 = o u?
du [j,— 1 J=—“_.1.”§—29'9)'” e
2 2 4 I'|l——
4
.7

oue 'z u? 2 52

_21/”_3 1+? o= “Be’ 4 (267)
This yields (26)
1 =, ¢
k al\? e7(_+—2—)
p=— =y |5 ——,  (268)
jd—z[lnD(ue74)l
fe—5
with
u2 1 . 2
. 1+ —up2e e’Z{1+—}
i P
our wpe "4 u? 2
Tt o Mtrele—,
I

We further have

1
ﬂ:?, when o] < 1,
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and

— 0 \2
B~ —y;2 , when |o] > 1.

1
When y2<<?, &= 1, and

Putting for example a = 0.08, we thus find

¥ K
,tzo‘,s-y-e7(4 i 2), (268 a)

when y < 1.
Making use of (266) and the circuit relation we find the internal
reflection coefficient

1 3—2799

o - nQ . T %
F(79+2) 9+9(—4—an2)r(—4 )
_ . e “ o - - .

R— —

L 3+ 2
(2 2)2 F(—4 Q)
L =1+ o u?6
1— 22 g*ue ! K /
14 o u?f2
L 5 14 ouf6’
__92 ! —
1 2 wue 4 T+ o2
¢
where
3+ 270
=, 4
T (i
4

Fortunately this expression for R can be simplified considerably.
Making use of the duplication formula for the I'-functions it is
possible to show that
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"o
7
tanh gm l
’ 1 3240 exp. j | o In 2 — arctan - p—
1 79+? T ta‘n? ?_Qim
T e T L T
(2 7)2 r (T) 2 {sm2 ?(? — gim) + sinh? —~ }2
We thus finally obtain
T Ore
2 T T Oim
e - exp. 7(; + > arctan 770)
R=—— _2—7[ 1———27{@;5 (269)
2 1sin o\ g — Cim + sinh 2 |
1
When y? < o (233) reduces to
T T 04 T Cim
1 T 0 T o, 7('+"~+_)
R:——l—-(1+—.” —"")-e 4 2 2/ ¢, (269a)
2 2
22
and we further obtain
4 T Ope T Oim
1 7T T 7(—“_+_—"“—‘_)
T~ —— (1— cre "") SR 2 ). . (210
L 2 2
22
1/2
If y increases so that »2 > o but still | XL we find
. ﬂ -« :T .
T+ 1\ 5+ lm| 1+4j2ay Tt I\ g+ Tlim +4ay)  27¢ 071
A1—~j2aJ~_~e =e . (271)

=—ce

As expected relations (269) and (161) overlap. It is further to be
noted that the influence of the collisional friction is practically neglig-
ible for the extremely thin layer in accordance with previous results

(fig. 41, p. 147).
* £
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Fig. 46. Sweep frequency recording from Huancayo (Carnegie Institution), July
1 st, 12, 1939,

We have already seen that in the case of a = 0,08, one has

u=0,6-y-exp. !— J Since 0< < , it is apparent that

ro==0,and § == 0 through a considerable frequency range. When

- m
(271) we further have |R| = exp. (wo,) < 1. This means that
boundary and internal reflections for the thin layer slowly disappear
through about the same wide frequency range.
We find from (268 a) that ¢, is small only when y is small. This
means that incident waves penetrate the thin layer practically
throughout the entire frequency range.

1
¥ > o however, u = 1=k [(d&/dz) Ao i. e., 7o = 0. From

1
The reflected wave, which disappears first when ¢? > o is prac-

tically independent of wy as long as w > oy. This is a characteristic
feature of the thin layer.

Fig. 46 shows a sweep frequency recording from the Huancayo
Magnetic Observatory. The record has kindly been placed at the
author’s disposal by Dr. J. A. FLEmIxG. It is especially interesting
because it shows abnormal E (#,) and abnormal D reflections. D
signals from a cloudy but thick region should be too much absorbed
(compare table II on p. 132). It is not unlikely that the ab-
normal D-layer is thin, perhaps also patchy. A very thin abnormal
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E-layer (perhaps thin reflecting strata of locally greater electron
density embedded in the E-region) is not unlikely as it would trans-
mit and reflect signals as shown in fig. 46. If we assume that f, of

a thin abnormal E-layer is about 3 Mc/s at the time of the Huancayo
recording, then from fig. 46 very roughly

13\2 1
3 a

Since at least « <1, « == 0,5 perhaps is a reasonable guess. This
makes the layer (stratum) thickness about 30 meters.

In fig. 47 is shown a fixed frequency recording from Chalmers
Tonospheric  Observatory of abnormal E-signals shortly before
sunrise. The recording receiver was equipped with a polari-
zation preselector. The difference in intensity between the ordinary
and extraordinary components is considerable. It was further
found that low level absorption very probably was not responsible
for this intensity difference. In this particular case one therefore
has to assume that the reflector was an electronic cloud of moderate
thickness.

A further discussion of this interesting problem is outside the
scope of the present communication. For extended knowledge of the
abnormal E-layer phenomena the reader is referred to the ionospheric
literature. Here may especially be mentioned T'he Critical-Frequency
Method of Measuring Upper-Atmospheric Ionization by APPLETON,
NaismitH and IxgraM [26].

b) o, <o <wog.

This case is of limited practical interest. It will therefore be dis-
cussed very briefly. Mdking use of the notations of p. 102 and of
relation (266) one immediately infers that the circuit relation yields
waves progressing in both directions between the branch points.
In this respect the thin and thick layers behave olike.

Thus {R}wcm Co<oy= 0, and i)n(y_ 117) represents the up-going
wave. One finds
n+4 1 1 1
T T L e T
D(giN=——r w1l jEp i,
—n—1 F(1+—)
2
2
when (n+1/2)7 < 1.
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This yields

(n—l—;)Vz 1 _ [ (n—l—%)VZ]
1— 9 4—?22/311[1— 6 **J
T=——F— 1 — L, (27
TS A T
i. e.,
d= 2 7'&
1 22 2 2
po LHIEL@R 2 (273 )
3 _ 1 .7
1—j22 B(a)ze 2
and
UTm>0<1

4

1 1\ 72!
When ¢ > o but (n + —2-)— still appreciably less than 1,

we obtain

14 j2 - , 1 n
Tzi%ﬂ:eﬂay =e’{”("+?)+25+?},(273b)
1—9j2ay

L. e., (197) and (273) overlap.

We further finally find.

1 A
(a)? e '3
=yl5)  — R (274
H=Y\5 5e, )
where
(n-l-% & 1| p? 1
1 1— 9 ——722/31711—? n—l—;
I R 1y ( pe T Y
i (t3)v (er3)v 1—1(”+i— 21}
1— 2 — — 6 2 n+5
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Tor a = 0,08, (274) yields 4 = 0,6 y - exp. I——y%}. When

1
> P ~ 1 and the boundary reflection disappears. It is further
apparent from (273 a) and (273 b) that within the frequency range

M
of appreciable boundary reflection the phase of T is less than > If

we consult (200) we find that this means that the reflected hght of
the extremely thin layer exhibits no colour effects.
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Tables of Cylinder Functions of Order
1 2
£3 and £33

Bessel functions J (z), J (z), I (z), and I (z) have been tabulated
1 2

+3 £5 *g & 2
by DinNik, Archiv der Math. w. Phys., XVIII, 1911, pp. 337—338
to four places of decimals from z = 0 to x = 8,0 with interval
0,2. This interval is not sufficiently small for our purpose, i. e., the
computation of the low order poles etc. We have therefore prepared
a preliminary complementary table of cylinder functions with 0,02
interval from 2 =0 and z = 1. This is the region where con-

siderable accuracy is required. The functions tabulated are

.37

J (@), Y (2), HY, I (), I (2), Yl(x e_7_2—), Yz(x e_f%),

1
2 2 . a1 12 = 2
b 3 T 3 3
- 3= .37;
H\x e 7727, and HD\x e ). J (x), ¥ (), HD (2) are tabu-
3 3 3 3 3

lated with 0,02 interval in WaTsoN’s Theory of Bessel Functions, p.714.
It was further found practical to compute the HANkEL and second
kind functions for the range of x values used by Dinx1x.

Making use of the familiar relations (*)

%
>

HP (z) = H ()

3z R

H(lz)(xe_7 2) =—H(11)(xe_7 2 ) ,
3 3

.3z AT

H(z)(xe_77) = H‘”(xe—7T) ,
2 2
3 3

and
(2) i (2)
Fiva
HY () = e HY (2),

one easily obtains the second kind HANKEL function and HANKEL

1

functions of order — 3 and — 3 from the following tables.

*) * denotes the conjugate quantity.
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TABLE III
. (oY) 4
z | J,@) J @ Y, @ | ’Hz () Phase H' (x)
' 3 ) 3 3 3
. |
0,00 0,0000 o | o o0 —90° 0’
' 0,02 0,0514 | 8,0398 —9,3133 9,3134 —89° 41’
0,04 | 0,0816 5,0603 —5,8901 5,8901 —89° 12/
0,06 0,1069 3,8550 —4,5141 | 4,5154 —88° 39’
| 0,08 0,1204 | 3,1763 —3,7423 3,7446 —88° 1’
0,10 | 0,1501 | 2,7298 —-3,2388 3,2423 -—87° 21/
0,12 | 0,1694 2,4094 —2,8800 2,8849 —86° 38~
0,14 | 0,1876 | 2,1656 —2,6089 2,8156 ‘ —85° 53’
0,16 | 0,2049 1,9721 —2,3055 2,4042 —85° 7/
0,18 | 0,2214 1,8137 —2,2222 2,2332 —84° 19/
0,20 | 0,2372 1,6808 —2,0779 2,0914 | —83° 29’
0,22 | 0,2525 | 1,5673 —1,9554 | 1,9717 [ —82° 40’
0,24 0,2672 1,4684 —1,8499 1,8691 —81° 47’
| 0,20 | 0,2814 1,3814 —1,7575 1,7799 -—80° 54’
0,28 0,2952 1,3037 —1,6753 1,7017 —80° 1’
0,30 0,3085 1,2338 —1,6027 1,6322 ‘ —79° 6’
0,32 | 0,3215 1,1701 —1,5368 1,5701 —78° 11"
0,34 0,3341 1,1121 —1,4770 1,5144 [ —77° 15’
0,36 | 0,3463 1,0585 —1,4222 1,4637 —176° 19’
0,38 | 0,3582 1,0088 —1,3717 1,4177 —75° 22/
0,40 | 0,3698 0,9625 —1,3248 1,3755 —74° 24/
0,42 0,3811 0,9191 —1,2814 | 1,3368 —73° 26’
0,44 ' 0,3921 | 0,8782 —1,2405 1,3011 —172° 27/
0,46 0,4028 0,8397 —1,2022 | 1,2679 —171° 29/
0,48 0,4131 0,8031 —1,1660 1,2370 —70° 29’
| |
| 0,50 0,4233 | 0,7684 —1,1317 1,2083 | —69° 297
0,52 0,4332 0,7352 —1,0990 1,1813 —68° 297
| 0,54 | 0,44238 | 0,7035 —1,0680 | 1,1561 | —67° 297
0,56 0,4521 0,6730, —1,0382 1,1324 —66° 287
0,58 0,4612 0,6437 —1,0097 ! 1,1100 —65° 27/
0,60 | 0,4701 0,6156 —0,9822 1,0889 —64° 257
0,62 0,1787 0,5884 —0,9557 1,0690 | —63° 24’
' 0,64 0,4870 0,5620 —0,9302 1,0501 —62° 227
0,66 0,4951 0,5366| —0,9054 1,0320 | —61° 20’
0,68 0,5030 0,5119 —0,8815 1,0149 —60° 177
0,70 0,5106 0,4879] —0,8582 0,9986 —59° 157
0,72 | 0,5180 |  0,4645 —0,8355 | 0,9830 | —58° 127
0,74 0,5252 0,4418 —0,8134 0,9682 —37° 9’
0,76 | 0,5322 |  0,4198 —0,7918 0,9540 —56° 6
0,78 | 0,5389 0,3980| —0,7707 0,9404 —55° 2/
0,80 0,5453 0,3769 —0,7501 0,9274 ‘ —53° 597
0,82 0,5516 0,3563 —0,7299 0,9149 —352° 55’
| 0,84 0,5576 0,3361| —0,7100 0,9028 —31° 517
. 0,86 0,5635 0,3163 —0,6906 0,8913 —50° 477
' 0,88 | 0,5690 0,2970 —0,6714 0,8801 —49° 43’
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2 2
3 B}
0,5744 0,2780
0,5796 0,2594
0,5845 0,2411
0,5892 0,2232;
0,5937 0,20561
0,5980 0,1883
0,6290 +0,0309
0,6392 —0,1033
0,6295 —0,2163
0,5975 —0,3003
0,5570 —0,3823
0,4978 —0,4355
0,4266 —0,1689
0,3459 —0,48231
0,2589 —0,1789
0,1684 —0,4576
+0,077¢6 —0,4209
—0,0105 —0,3708|
—0,0932 —0,3098
—0,1679 —0,2405
—0,2325 —0,1657
—0,2851 —0,0832
—0,3246 —0,0110
—0,3497 +0,0631
—0,3602 0,1329
—0,3571 0,1925
—0,3400 0,2434/
—0,3105 0,2834
—0,2703 0,3105
—0,2209 0,3249
—0,1646 0,3262|
—0,1038 0,3149
—0,0409 0,2916
+0,0216 0,2579
0,0814 0,2150
0,1364 0,1651
0,1844 0,1101
0,2241 +0,0524|
0,2539 —0,0058
0,2729 —0,0623
0,2808 —0,1149

Table III (contd.)

—0,6526
—0,6341
—0,6159
—0,5979
—0,5302

—0,5627
—0,3936
—0,2498
—0,1137
+0,0122

0,1199
0,2154
0,2951
0,3531
00,4035

0,1312
0,1412
0,4342
0,4115
0,3746

0,3256
0,2663
0,2001
0,1290 i
40,0546 [

—0,0161
—0,0847
—0,1430
—0,2025
—0,2476

—0,2816
—0,3037
—0,3132
—0,3102
—0,2953

—0,26904
—0,2342
—0,1899
—0,1399
—0,0856

—0,0294

0,4105

0,1000
0,3902
0,3812
0,3727
0,3643

Lol
W W W Co
Lo e T
-l e O =)
w -1 O G-

(1)
Phase H, ()

—48°
—47°
—46°

_450 b

—44°

—43°
—32°
—21°
—10°
+ 1°

12°
23°
34°
45°

xR0

By

68°
80°
91°
102°
114°

125°
136°

148° 2

159°
171°

182°
194°
205°
216°
228°

239°
251°
262°
273°
285°

296°
308°
319°
331°
342°

354°

16’
22/
21’
14/
10"

o
24/
41
59
19’

40’

1
23’
45

32
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TABLE 1V

;3 EV g wf R o _,-E!

x I () |I (@Y \xe 2| |H \ze = ‘ Phase H, \ze "2/

2 2 2 2 = {

B -3 |3 I3 3 i

H }

S ) ) |

0,00 0,0000 oo o0 o 90° 0’ |
0,02 0,0514¢ | 8,0446 9,3187 9,3189 90° 19’

0,04 | 0,0816 5,0724 5,8971 5,8978 90° 48’ ‘
0,06 0,1070 3,8767 4,5382 | 4,5396 91° 21’
0,08 0,1297 3,2069| 3,7779 | 3,7802 91° 58’
0,10 0,1506 2,7710! 3,2866 3,2001 92° 37/
0,12 0,1701 2,4620 2,0411 2,9460 93° 19/
0,14 0,1887 2,2301 2,6840 [ 2,6907 94° 1’
0,16 0,2065 2,0493 2,4855 2,4940 94° 45’
0,18 0,2236 1,9039 2,3275 2,3383 | 95° 297
0,20 | 0,2401 1,7848 2,1995 2,2126 96° 14/
0,22 | 0,2562 1,6853 2,0039 2,1096 96° 59
0,24 0,2718 1,6010 2,0057 2,0240 97° 43’
0,26 | 0,2872 1,5289 1,9312 1,9525 98° 28’
0,23 0,3022 1,4665 1,8678 1,8922 90° 127
0,30 0,3170 1,4123 1,8138 1,8412 99° 557
0,32 | 0,3316 1,3648| 1,7674 1,7082 100° 38’
0,34 0,3459 1,3230 1,7274 1,7616 101° 20’
0,36 0,3601 1,2861 1,6930 1,7309 101° 58’
0,38 0,3741 1,2534 1,6633 1,7049 102° 41’
0,40 0,3830 ( 1,2244| 1,6379 | 1,6837 103° 20
0,42 0,4018 1,1987 1,6161 1,6654 103° 59’
0,44 0,4155 ] 1,1758 1,5976 1,6508 104° 35’
0,16 0,4292 1,1554/ 1,5819 1,6501 105° 117
0,48 | 0,4428 1,1372 1,5688 1,6301 105° 467
50 | 0,4563 I 1,1212] 1,5580 1,6235 106° 19’
52 0,4698 1,1069] 1,5494 1,6190 106° 52/
54 0,4833 ‘ 1,0044| 1,5427 1,6167 107° 24’
56 0,4967 1,0825| 1,5368 1,6151 107° 55
58 0,5102 I 1,0738 1,5345 1,6171 108° 23’

|

0,60 | 05237 | 1,055 1,327 | 1,6197 108° 52/
0,62 0,5372 1,0585! 1,5325 1,6239 109° 19’

0,64 0,5507 1,0526 1,5334 1,6293 109° 45 l

0,66 ! 0,5643 1,0477 1,5356 1,6360 110° 11/ [
0,68 ‘ 0,5780 1,0437 1,5388 1,6437 110° 35
0,70 0,5915 1,0406 1,5432 1,6527 110° 58’
0,72 0,6052 1,0386 1,5487 1,6628 111° 21’
0,74 0,6190 ‘ 1,0873 1,5552 1,6739 111° 42’
0,76 0,6329 | 1,0368 1,5626 1,6860 112° 3/
0,78 0,6468 1,0370| 1,5709 1,6989 112° 23’
0,80 0,6609 1,0379 1,5801 1,7127 112° 427

0,82 0,6751 1,0395 1,5901 1,7274 113° o !
0,84 0,6892 1,0417 1,6008 1,7430 113° 18’
0,86 0,7036 1,04486/ 1,6123 1,7592 113° 35°
0,88 0,7180 | 1,0480] 1,6247 1,7763 113° 517
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0,90
0,02
0,904

>
(=1

‘ ’ _73ﬂ (1) —j ==
I () |I _(2)Y _ \ze " 2)/|H_ \xze
2 2 2 2
3 l 3 | 3 3
| |
0,7326 ‘ 1,0520| 1,6377 1,7942
0,7473 1,05686 1,6515 1,8127
0,7621 1,0617 1,6660 1,8320
0,7771 1,0874 1,6811 1,8522
0,7922 1,0735 1,6970 1,8729
0,8075 1,0801 1,7135 1,8942
0,9701 1,1720 1,9134 2,14538
1,1547 1,3067 2,1755 2,4632
1,3678 1,4836 2,5028 2,8522
1,6166 1,7055 2,9027 3,3223
)
1,9089 1,9778| 3,3859 3,8869
2,2547 2,3081 3,0647 4,6613
2,6650 2,7065 4,6638 5,3718
3,1528 |  3,1856 5,4987 6,3386
3,7002 ' 3,7343 6,4484 7,4346
4,4289 4,4495 7,6949 8,8794
5,2592 5,2755 9,1280 10,536
6,2530 6,2655 10,845 12,519
7,4423 | 7,4535 12,903 14,898
8,8698 8,8841| 15,379 17,757
10,580 10,587 l 18,3338 21,167
12,634 12,637 l 21,886 25,268
15,107 \ 15,112 26,172 [ 30,214
18,060 18,064 31,285 l 36,120
21,621 21,621 ' 37,449 43,242
25,90 l 25,90 44,86 l 51,80
31,05 31,05 53,78 62,10
37,25 37,25 ' 64,52 74,50
44,72 44,72 | 77,46 l 89,44
53,71 | 83,71 l 93,03 107,42
64,54 64,54 111,79 [ 129,08
77,60 77,60 134,41 155,20
93,34 93,34 l 161,67 186,68
112,33 112,33 194,56 224,66
135,24 135,24 234,24 270,48
162,89 162,89 282,13 ! 325,78
196,25 196,25 339,91 392,50
236,55 l 236,55 409,72 473,10
285,20 | 285,20 493,98 570,40
343,99 343,99 595,81 687,98
\
415,01 | 415,01 718,82 | 830,02

Table IV (contd.)

114°

114° 2

114°
114°
115°

115°
116°
117°
118°
119°

119°
119°
119°
119°
119°

119°
119°
119°
119°
119°

119°
120°
120°
120°
120°

120°
120°
120°
120°
120°

120°
120°
120°
120°

120°

120°
120°
120°
120°
120°

120°

6
21/
357
49’

2/

147

53’
58’

25’



0,00
0,02
0,04
0,06
0,08

0,10
0,12
0,14
0,16
0,18

0,20
0,22
0,24
0,26
0,28

0,30
0,32
0,34
0,36
0,38

0,40
0,42
0,44
0,46
0,48

0,50
0,52
0,54
0,56
0,58

0,60
0,62
0,64
0,68
0,68

0,70
0,72
0,74
0,76
0,78

0,80
0,82
0,84
0,88
0,88
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0,0000
0,2413
0,3041
0,3482
0,3834

0,4133
0,4396
0,4632
0,4849
0,5049

0,5237
0,5415
0,5583
0,5745
0,5901

0,6051
0,6197
0,6339
0,6478
0,6614

0,6747
0,6879
0,7008
0,7137
0,7264

0,7390
0,7515
0,7640
0,7764
0,7888

0,8013
0.8137
0,8261
0,8386
0,8511

0,8636
0,8763
0,8890
0,9017
0,9146

0,9276
0,9407
0,9539
0,9672

0,9807

TABLE V

_1 1 1
‘ 3 3 3 l
, oo | oo oo 0° 0 {
[ 3,828 4,0979 | 4,1050 — 3° 99
[ 2,7222, 3,3189 3,3328 — 5° 14/ f
{ 2,3800 2,0491 l 2,9696 — 6° 44/
l 2,1645| 2,7208 | 2,7477 — 8° 1 l
1
2,0121] 2,5620 l 2,5951 — 9° 10’
1,8966 2,4438 | 2,4830 —10° 12’ ‘
1,8051 2,3518 , 2,3969 —11° ¢’
1,7304 2,2780 2,3288 i —12° 7’ [
| 1,6880 2,2175 l 2,2743 —12° 50’ |
1
| 1,6150 2,1871 l 2,2295 —13° 35’ !
1,5693 2,1247 2,192¢6 —14° 18’ |
{ 1,5297 2,0887 [ 2,1620 —14° 58’
1,4949 2,0579 2,1366 —15° 37/ !
1,4643 2,0315 ‘ 2,1154 —16° 11’
|
1,4371 2,0089 2,0935 —16° 47’
1,4129 1,0893 2,0836 —17° 18’
1,3914 1,9726 ’ 2,0720 —17° 49’
| 13721 1,9584 2,0627 —18° 18’ (
| 1,3550| 1,946 4 2,0556 | —18° 46’ |
l 1,3395] 1,9362 ’ 2,0504 —19° 13’ |
| 1,3257 1,9279 2,0470 —19° 38
1,3134 1,9212 l 2,0451 ‘ —20° 2’
1,3026 1,9160 2,0446 —20° 26’ l
’ 1,2928 1,9122 2,0455 —20° 47’
1
1,2843l 1,9096 ’ 2,0478 —21° ¢’ .‘
[ 12768 1,9082 2,0508 . —21° 29 f
l 1,2703| 19079 | 2,0552 —21° 49’
1,2647 1,9086 2,0605 | —22° g’
| 1,2600, 1,9104 : 2,0663 —22° 26’ ’
| 1,2561] Losi | 2,0741 —22° 44’
| 1,2530} 1,9166 2,0822 —23° 0’ [
[ la2s07 l,9211 | 2,0912 —23° 16’ '
1,2490 1,9264 2,1010 —23° 31/
l 1,2480’ 1,9324 ’ 2,1115 —23° 46’ |
[ 12476 1,9303 | 2,1229 —24° 0 |
' 1,2479 1,9468 2,1350 —24° 14/ l
1,2487 1,9551 l 2,1477 | —24° 277 ‘
| 1,2501 1,9642 2,1613 —24° 40’ |
1,2521] 1,9739 [ 2,1755 —24° 52/ ‘
l 1,25486 1,9842 ] 2,1903 —25° 3 l
] 1,2576 1,9953 2,2059 —25° 14’
1,2612 2,0070 | 2,2221 —25° 257
| 1,2652 2,0193 2,2390 —25° 36’
1,2697 2,0323 | 2,2565 ! —25° 46’
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Table V (contd.)

B _ 1
3 3 ’ 3 3 \ 3
!
{ -1 " T o B - {
‘ 0,90 0,9943 1,2747| 2,0459 2,2747 —25° 557 |
0,92 1,0080 1,2801 2,0601 2,2935 —26° 4’ |
0,94 1,0219 1,2860 2,07 49 ' 2,3129 —26° 13’
0,96 1,0360 | 1,2923 2,0004 2,3330 —26° 227
0,98 1,0502 1,2991 2,1064 | 2,3537 —26° 297
|
| 1,0 1,0646 1,3063 2,1231 2,3751 —26° 38’
1,2 1,2199 1,4018 2,3230 2,6234 —27° 48’
1,4 1,4002 1,5386 2,5850 2,9404 —28° 26’
| 1,6 1,6116 1,7131 2,9143 3,3304 —28° 56’
| 1,8 1,8617 1,9442 3,3188 I, 3,8064 —29° 17°
2,0 2,1588 2,2231 3,8134 i 4,3825 —29° 31’
2,2 2,5224 2,5726 4,4269 5,0058 —29° 40’
2,4 2,9340 2,9733 5,1272 5,9070 —29° 47
2,6 3,4370 | 3,4681 5,9890 6,9044 —29° 517
2,8 4,0379 4,00624 7,0221 8,1001 —29° 54’
3,0 4,7773 4.7967 8,2969 9,574 —29° 56’
3,2 5,6147 5,6303| 9,7430 11,245 —29° 577
3,4 6,6426 6,6547 11,5198 13,298 —29° 58’
3,6 7,8727 7,8831 13,6479 15,758 —29° 58’
3,8 9,3473 9,3546 16,1984 18,706 —29° 597
| 4,0 11,114 11,120 19,257 22,240 —29° 59’
4,2 13,234 13,238 22,927 26,479 —29° 59’
4,4 15,775 15,779 27,328 31,560 | —29° 59/
4,6 18,827 18,831 32,614 37,661 —30° O
4,8 22,493 22,494 | 38,960 44,99 —30° 0
5,0 26,90 26,90 46,59 53,80 —30° 0’ ‘.
5,2 32,19 32,19 55,75 64,38 —30° 0
5,4 38,56 38,56 66,79 77,12 | —30° 0
‘ 5,6 46,22 46,22 80,06 92,44 —30° 0
5,8 55,45 55,45 96,04 110,90 —30° 0’
‘\ 6,0 | 65,55 65,55 113,54 131,10 —30° 0
1 6,2 79,93 79,93 138,44 159,86 —30° 0
6,4 96,05 96,05 166,36 192,10 —30° 0’
6,6 115,47 115,47 200,00 230,94 | —30° 0’ y
6,8 138,90 138,90 240,58 277,80 —30° 0 [
7,0 167,15 167,15 | 289,51 334,30 —30° 0
7,2 201,24 201,24 348,56 402,48 —30° 0
7,4 | 242,37 242,37 419,80 484,74 —30° 0
7,6 292,02 292,02 505,79 584,04 —30° 0
7,8 351,97 351,97 609,63 703,94 —30° 0

| 8,0 | 424,40 424,40 | 735,09 848,80 —30° 0
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Postscript.

Attention is called to the following errata in the former paper [3]
in these transactions:

r

-
1. Page 17, in formula (31) read f instead of f .

Tq Sin y, 0
02 uZ
2. Page 67, in formula (94) read v <1 instead of ?<< L.

0
formally introduced instead of It is formally introduced.

2
vy
3. Page 72, line 11 from the bottom, read When (;) < 1itis
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Summary.

The problem of determining the variation with height of the
density of the free electrons of the upper ionosphere has attracted
a great deal of interest during the past two years. The same is
true of the problem of determining the variation of the electronic
collisional frequency with height, a problem of a very similar na-
ture. This communication is a theoretical survey of the fundamen-
tals which are of main interest in connexion with these problems.

The measurement of the travel-times of electromagnetic wave-
packets forms the basis of almost all ionospheric measurements.
As an introduction, therefore, the propagation and dispersion of the
wave-packet is treated by means of well known optical methods.
Several examples are shown of the actual dispersion of down-coming
wave-trains. Under most conditions the dispersion is not serious
and the determination of the time of travel is fairly accurate.

In a following section a closer approximation to the actual wave
solution than that afforded by the geometrical optics is studied
by means of B. W. K.-approximations. A practical example of
standing waves between the ionosphere and ground is shown. As
the difference between the classical phase and the B. W. K.-phase
is independent of the wave frequency, the time of travel becomes
the same in both cases. When the time of travel is known as a
function of the wave frequency it is generally possible to determine
the distribution of the free electrons over most of the lower part
of the ionized layers. The various mathematical methods to be
used for this purpose are studied fairly thoroughly. It is shown
that quite accurate solutions can be obtained at places where the
magnetic inclination is either great or small.

The next problem to be discussed is the calculation of the varia-
tion of the collisional frequency with height. It is interesting to
find that it can be determined from sweep frequency reflection
coefficient measurements, if the electron density distribution is de-
termined at the same time. So far the method has not been applied
in practice. Even though the necessary measuring equipment is
fairly complicated the prospects of getting valuable results are good.
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A number of ionospheric records have been examined and the
corresponding electron density distribution studied. It is shown that
it generally is parabolic over a quite wide density range. Examples
are shown where the parabolic representation is a very good approxi-
mation for practically the whole layer. The characteristic frequen-
cies have been obtained for each distribution and it is shown that
it generally is not a permissible approximation to use a fixed cha-
racteristic frequency to critical frequency ratio in the routine scaling
of ionosphere records. The total number of electrons has been
integrated for several cases and it is shown that this number may
decrease even though the maximum electron density increases as
is often the case in the afternoon in the equatorial regions. This
strongly supports the various hypotheses of the expansion of the
upper atmosphere.

Finally the exact wave functions for a parabolic layer are studied
briefly. It is shown that the travel time and the dispersion are
finite at the critical frequency and that the reflection coefficient
differs appreciably from the classical one only when the layer thick-
ness becomes less than about four wave lengths. Asymptotic ex-
pansions of the wave functions will appear in a later communication.



A general survey of the situation.

The problem of determining the electron distribution of the upper
atmosphere has been studied with a great deal of interest in recent
vears by a number of investigators engaged in ionospheric research
[1]. The F-region of the ionosphere, especially its upper part
the F,layer, has attracted the main interest. Several factors
make the investigation of the electron distribution of the F,-layer
fairly easy and profitable. Its main ionization is spread over a great
height interval and its collisional frequency is low. Furthermore
the maximum ionization of the F,-layer generally exceeds that of
the lower layers very much.

The determination of the true electron distribution of the F,-
layer appears to be one of the most important problems of the phy-
sics of the upper atmosphere. The experimental data on the electron
density variation of the lower layers (the K- and the F,-layers) is In
accord with the hypothesis of ion production in a static atmosphere
by solar ultra-violet light and recombination of the two-body colli-
sion type. This, however, is not true of the F,-layer which shows
a character different in several respects.

The reader not familiar with the essential features of the ionosphere
may find a reference to the general literature useful [2]. It should
suffice here to state the main result of the experimental data so far
collected in various parts of the world. The E- and F,-maximum
ionizations are in fair accord with the following expressions, viz.

N, = 1.45. 10" . (sin )" electrons cm ™ for the E-layer (1)
and

N —=255.10°. (siny)> » » » » Filayer (2)

mazx

according to Hulbert. » denotes the height of the sun. The true
heights of the maximum ionization varies with » . Heights of 100
and 180 km respectively may be mentioned as typical noon values
for the two layers.

Partly communicated at the joint meeting of the International Scientific Radio
Tnion American Section and the Institute of Radio Engineers at the National Aca-
demy of Sciences, Washington, D. C. April 26, 1940.
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As shown by (1) and (2) the ultra-violet light theory of the static
atimosphere yields a single maximum in the daily variation of N.
In the F,-layer, however, a double maximum is observed in tropical
latitudes. The decrease in ionization is different from day to day.
If the average decrease were attributed to recombination only not
affected by other factors, which is a questionable assumption, the
corresponding value of the recombination coefficient would differ
very much from the present theoretical value. However, the photo-
electric action of the solar ultra-violet radiation seems to be adequate
to produce an ionization at F,-levels of the observed order of magni-
tude [3]. To explain the F,-variations, therefore, an additional
hypothesis is necessary. One of the most probable ones is the assump-
tion of a day-time expansion of the F,-atmosphere due to heating
and dissociation of the molecules. The F,-ionization would cen-
ter about a 275-km level in the absence of the expansion and it
would increase to a maximum in the early afternoon. The ex-
pansion, however, spreads the ionization to say 375 km or higher
and therefore reduces the ionization density. The expansion is very
slight during days when y never approaches 45° and N reaches its
maximum shortly after noon. When 5 approaches 90° at noon
increases very rapidly in the morning. Soon, however, in spite of
the fact that the total number of electrons continues to increase,
the expansion is so rapid as really to make N decrease. N will there-
fore pass through one maximum in the morning and another maxi-
mum in the afternoon. '

Owing to the expansion of the F,-atmosphere it appears likely
that winds will blow away in all directions in levels about 275 km
directly beneath the sun. In the morning hemisphere a stream of
»F y-air» should move against the rotation of the earth and gradually
become turbulent whereas one expects a stream moving with the
rotation of the earth in the afternoon hemisphere. It is believed by
many that such an eastward wind would displace the afternoon
maximum in N one hour or more towards evening.

The two hypotheses, ionization by solar ultra-violet light and
expansion of the F,-atmosphere, appear to be able to account for
the main features of the F,-ionization. Very probably too the F,-
atmosphere contracts slowly as the night progresses. This may
account for the irregular recrudescence of the F,-ionization fre-
quently observed in the small hours of the morning.

The Fy-layer generally is quite disturbed during magnetic storms,
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though not necessarily so. On some occasions the electron density
of the F,-layer is so reduced during magnetic disturbances that it
tends to fall below the value of the maximum electron density of
the F,-layer. At the same time the virtual heights of reflection
become abnormally great. They become much greater than should
be expected by the retardation in the F;-layer and therefore
indicate an extensive expansion and diffusion of the F,-region.

A thorough and accurate study of the electron density and colli-
sional frequency distributions of the Fj-layer therefore is very desi-
rable as it would give us more reliable information concerning the
upper atmosphere and the magnetic storms. As practically all
transatlantic short wave radio communication is conveyed by means
of the F,-layer a deeper study of its properties, especially during
magnetic storms, is of technical importance.

After this survey of the general situation it should be proper to
study briefly the application of well known optical methods to the
description of the propagation of the radio wave-packet. This should
be a fitting introduction to the following problems since the practi-
cal way of exploring the upper atmosphere is by means of recording
the times of travel and the intensity of radio signals reflected from
the various ionized regions."

The Propagation of the Wave-Train.

As a further introduction to the following sections we make our-
selves a little bit more familiar with the essential facts governing
the transmission of arbitrary wave-trains in a dispersive medium.
We restrict ourselves to the ordinary form of the wave equation,
where I7 is a function from which the characteristic quantities of
the wave may be derived by suitable operations,

PRI+ kg 2 =0. (3)
2

The notations are the general ones, viz. ky, = - and n = the re-
0
fractive index. Here n in general is a function of the coordinates. If
the change in n is sufficiently slow we may seek an approximate
solution of the classical form

I = €%, (4)
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where S represents the phase of the wave. Inserting this in (3) one

gets that
2 T {082 — s s
_(5x — 7] VS = ko“-n‘ (5)

T, Y, 2

If
y 7 [0S)\? 1
Vi< 2 (E)’i' e.i-grad(n)-}.-cos‘ﬁ<<27£, (5 a)

where ¥ is the angle between the direction of the ray and grad (n),
then Eq. (5) reduces to

08\? .
2 (3,.;) = ko’ m?, (6)

which in geometrical optics is called »equation of the iconaly. By
(5 a) a reduction to the iconal equation is possible only when the
relative change of the refractive index within a wavelength is very
small, as is well known. Such a reduction generally is possible over
most wave paths in the ionosphere. It is obvious, however, that
the apex-region of a ray, especially at vertical incidence, may form
an exception. Another exceptional example is the level of maximum
electron density for a ray in the penetration frequency region.
An integral of the equation of the iconal will have the form

S =8 (.’.U, Y, 2 C1s 02) + c3 . (7)
If we write (7) in differential form it becomes
oS p oS : N ;
gx-rx+5y-ly+¥-z=0, (8)

showing that the rays are everywhere normal to the wave surfaces.
The equation of the ray is

dz dy dz

gEE

If the medium is absorbing n becomes complex and we conse-
quently get two characteristic wave surfaces. One is the surface
of equal phase and the other one is the surface of equal amplitude.

8 =8, + 38, .
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It is of interest to investigate briefly how much the direction of
the ray actually departs from the normal to the surfaces §; = const..
To fix our definitions we say that the ray is the curve in which the
energy travels. If we have electromagnetic waves the direction
of energy flow is given by the direction of Poynting’s vector. Let
us consider a two-dimensional case as outlined by Epstein [4] in
which the index of refraction is independent of the coordinate z. If
the electric vector is parallell to z (E, = K, = 0) we get from Max-
well's equations that

08, 08,
feky - Hy = exp. (— 8,) - W -cos (S; — oy t) — *51/— -sin (S;—wgl) | ,

58, ' 58, 9)

j k- H, =—exp.(—8,) - oz o8 (S;— myt) — 5 5o (Si—ogt)| .
The Poynting vector has the components
o [ _EH,E
= 1a|— B H, EH, 0
and its direction therefore is given by the ratio
Pylp = —Halp, . (10)

In the case of a non-dissipative medium this ratio is independent
of time. We can therefore compute the curves of energy flow. In ab-
sorbing media, however, grad (S,) = 0 and Poyntings vector oscillates.
In this case it is not possible to compute the curves of energy flow
from the vector direction. When the absorbtion is considerable
there is not much left of the conception of a ray. Although it is
not too important in this connexion to make a detailed study of
the ray equation in the dissipative case a short survey of the essen-
tials certainly has some educational value. Let us therefore study
the propagation of a wave-packet produced by letting an interrupted
radiation pass through a suitable aperture. If we observe the inter-
rupted ray-pencil at sufficient distance from the slit (Fraunhofer
diffraction) we remember from theoretical optics that it can be
represented the following way, viz.

+77a:"77b-+°°
ﬂ(x,y,z,t)=AJfJ exp. (j [2x (-2 + 0, -y + 1, 2) —
— g — Ny — X

— opt]) - () - diy, - dy, - dy, . (11)
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7 = (M My, 7,) is the vector wave number. 7, and 7, are small if
the ray is directed along the z-axis. We now wish to study the be-
haviour of this wave-packet impinging upon an arbitrary discon-
tinuity surface, which for example may be the boundary of an ion-
ized medium. It is practical to change to new coordinates Zy, Y,
and z, where z, and y, are in the plane of the discontinuity surface.
Defining the new axis by their direction cosines with respect to the
old system, viz.

&y = [cos a,, cos a,, cos a,], §; = [cos f,, cos B, cos B,], 2, =

= [cos y,, cos p,, cos 7,] (12)
we have
o &
=4 jj [exp. (§ [27 (%, (1, - cos a, + 7,-cosa, + n,-cosa,) +
;x—n?;f—: Q2

before

+ Y1 (n, - cos B, + 7, - cos B, + 0, - cos B,) +
i 2 (nx + COS 2l Ny - COS Yy aty 7, - cOos 72))_
—wot]) - (n)-dn,-dn, - dn,. (13)

According to the well known rules for the reflection of plane waves
the coefficients of z, and y, remain unchanged when the wave enters
the second medium. If #, is the wave number of the second medium
corresponding to # in the first medium we must have that

II=4 j.ffexl)- (j,275 (x1‘01 + Y10+ 21‘Vn?_912;922)_
— gt |) -9 () - diy, - dn, - dn, (14)

in the second medium if we neglect the change in amplitude of the
refracted ray for the time being. Because 7, and n, < 7, in the
important range of wave numbers, we can write that ¢ () = @ (m,)
and

?

_ s - : 77
Vi ?— el —el==n,— ;}z [, (cos a, - cosa, 4 cos B, - cos B,) +
2

=+ 7, (cos a, - cos a, + cos B, - cos B,)]

where 7, = 7,2 — 2. sin? 5.
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Introducing

] (B
T,=2n [(xl—zl-cos o z—) cos a, + (yl—zl-cos B, " )cosﬁz]

2 12

and
N,

7
T,=2n [(xl—zl- cos a, + 77—2) cos a, + (yl—zl'cos ﬁz-n—) cosﬁ_,,]

2 2

and remembering that ’72/,71"“ n / 7, = n/ ny where » and =, are

the respective refractive indices, (14) reduces to

+ %
sin (7', -%,) sin (T,-
II~44. T “'7)'__(_.27 m)fexp.(j[?rz.n{xl-cosaz+
Tl TZ
— 00

+ yy-cosff, + 2 l/(%) — sin® 72}—-% t]) g () - d . (15)

In order to find the direction of the ray we have to search for the
direction that makes

sin (7', - %,)
T,

sin (7', -7,) l
T,

as large as possible. In this direction the real part of 7, and T,
will vanish.

Therefore
z 1
LN 'y-l—=zl.Re — = =— (16)
cosa, cosp, ]/(nl)‘ )
— ) —sin?y,
n
that is the direction of the ray is given by the set
dx dy dz (16 )
Re = 5 = &
68/695 68/6y 68/62

in a homogeneous medium as was originally shown by Epstein.
In general orthogonal coordinates, with the absorbtion constant for
U, = const.l), the direction is given by

1) The surfaces U, = const. are constant intensity surfaces.
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hy dul’ byt duz’ 1132 - dug
[5S/ 68/(5 6S/(5u3 ]

(16b)

du, U g

As ¢ (1) is the shape of the packet in the non-dispersive medium we
put » = 1. We introduce the absorbtion by writing

m®=a+4jp . (17)
After a little bit of juggling we get the following direction cosines
of the refracted ray, viz.
cosa, cos ,3

[cosa, cos B,%, cos y}] = [ =—c
Ve Ve (18)
V(a - Sln yz + :Bd

Vl/?' Gl /z)(—2a—s1n V2) + .32 l/len 57 VG—SIII—}’z) ¥ ﬂé]
2

where
2 o3

(a—sin?y,) +ﬂ2

&=

« — sin® yz

It is especially convenient to change from cos y” to tang .. Ttis
easily established that

a — sin? —]—Va—sm + 2
tg 7; = sin 7:V b A yz 'B' ) (18 EL)

2 (a —sin®y)% + 262

From this expression we see that the ray never becomes horizontal
when the medium is dissipative.l) At the classical reflection level

— win?
a = sin®yp,
and

tang y’ = siny, - m : (19)

Practically always f <1, i. e. the absorbtion is negligible in a
wavelength, and y) therefore approximately 90°. Below the classi-
cal reflection level the correction is even smaller, so we are fairly well

1) This is not unexpected as the lower rays of the pencil travel greater distances to
reach the same height and consequently become more absorbed than the higher ones.
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justified in computing the ray-path neglecting the absorbtion. (One
always has to be careful, of course, when speaking of the ray path
near the reflection level. It happens that inequality (5 a) does not
hold and then the ray treatment is no longer correct). It is apparent
from the direction expressions so far deduced that it is a great compli-
cation to consider the absorbtion in computing the ray paths. To
illustrate this further we calculate the signal velocity along the path
of maximum intensity.

We assume that ¢ () has a maximum for 7 = 7, which is the
carrier wave number of the sender. We further suppose that it approa-
ches zero monotonically as 77—1)0| increases. To have a definite
limit we state that @ () is practically zero outside the wave number
range %’ to7”. The wave function (15) therefore gets thc following
form, if f, = carrier frequency and 5 = 7, + £, viz.

sin (Tl . 770) sin (TZ : 771))

nm~4A.
=0 T,
) z,-cosa, + Y, - cosfi, 4 z V;z?_—sing 7,
cexp.|j 2= f, - - —tl).
Co
+ o 04
~fexp.j 2:1.@[951'-005%—}— yl-cosﬂz—l—zl(Vﬁ?—sinz;fz+
—

f-1o
d 2
42, -7 2% ¢ 2dfanz—sinzyz—l—f-Wanz—sinﬂxz +
o f=to
+o. o [0+ 2)- 4 2. (20)

At the center of the wave-packet Re (0,) = 0. Following the
ray direction z; = r - cos a?, etc., Re (0,) gets the following form, viz.

Re (e) = (r[v,— 1) - o, (21)

where v, is the group velocity and is equal to
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&

- I R
o > : ffda B dp
Sin“z—l—lfa—sin2 24 2-|——— — = — 30 .

/ ( 7+ b 2\ df * a—sin?y, + V(a—sin®y )2 + g2 df

(21 a)

For negligible absorbtion it reduces to the well known
Co- M
Yy = f d (n2 (21 b)
Wty df

The introduction of absorbtion complicates matters very much
as was stated before. In the F-layer of the ionosphere the electronic
collisional frequency is so low that we are practically always justi-
fied in neglecting the absorption for most angular frequencies w,
of the ray used for the exploration of the layer. The corrections
in our expressions so far deduced therefore generally will be so small
that they are insignificant compared to the error involved in the
experimmental methods used for the exploration of the ionosphere.

The length of the wave-packet is determined by the fact that the
principal phase factor 27020, should not range through more than
about 27 from end to end of the packet if the various components
are not to cancel each other mutually through interference. Calling
the length of the packet A s and the corresponding time of travel
A7 this means that

c “AS
(' —n")-Ns- Q=M—A=Afnﬁr~l. (22)

Y Y

of which the last expression is familiar as the wave-mechanical un-
certainty relation. This expression shows us that it is impossible to
make the experimental error as small as possible. If we for example
wish to register the time of travel of the signal it is desirable to make
At as small as possible. The smaller A7 is compared to the actual
time of travel the more accurate will be the determination of that
time. If A 7is made very small, however, the frequency width of the
packet or pulse becomes so large that it is comparable to f, and it
becomes difficult to produce the packet. In practical applications
At is made as small as the limitations of the sender and the re-
cording receiver will permit.
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Finally let us study briefly the dispersion the wave-packet will
suffer in a friction free lonosphere. Then '
2
I /fz, (23)
where f, is the so called critical frequency of the medium. If the
dispersion is to be negligible the magnitude of the phase correction
2.7 Q2% ¢y 0

should not increase to more than about 2 7 from center to end of the
packet. For negligible dispersion, therefore,

8 cos? yz‘fcg/foz fo®
(A costy, /fc

r<<y, - 2 . (24)

As a typical example we take vertical incidence with a carrier
frequency of 4 me/s and a frequency width of 10 kefs. Ifa) f, = 0.7 f,,
the dispersion is negligible as long as

7 << 70000 km

and b) if f, = 0.95 fo» the same is true if

r < 3000 km.

The dispersion, therefore, always is negligible except very close
to the apex of the ray where f, = f, . cos ?7.- The actual path-
length in the principally dispersing region generally is so small, when
the electronic gradient is of average magnitude, that the total dis-
persion is unimportant. During magnetic storms, however, when
the F, electronic gradient may be abnormally low dispersion is
frequently noticeable. The calculation of the total dispersion from
experimental travel-time data is shown in the following section.

The propagation of the wave-packet will, under certain circum-
stances, be reduced to a mechanical problem when the medium is
non-dissipative. This analogy is, of course, quite accidental and
presents nothing new. It was known already to Hamilton that there
generally is a close analogy between geometrical optics and mechanics.
In modern times a treatment similar to Hamilton’s was introduced
by Brunn about 1872 and has been extensively used ever since,
The mechanical interpretation offers many advantages to the practi-
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cal engineer even though it is an approximation in practical applica-
tions. A short recapitulation of the essential transformation there-
fore must have its educational value. To fix our ideas we introduce
the mass m of the electro-magnetic photon

m-e> =h-f, . (25)

If we further write n,2=1-— A¢g, where A e is the reduction of
the dielectric constant, ¢, and 8; = S - A/2 7, the iconal equation
gets the following form

o) =m@E—) (26)

Ty z

where B = h - f,/2 is the initial energy and V = Ac-h - fo/2 is the
potential energy of the representative particles. Egq. (26) can also
be written
2
—=2mE—7V). (26 a)

"

Another expression for the signal velocity equivalent to (21Db) is

v, = (CT"h)/to . (27)

It is, as has been shown on page 10, normal to the constant phase
surface in the non-dissipative case. Making use of (26 a) the mo-
mentum of the representative particles turns out to be

08, 2 d . )
e e Frd il (28)
0
directed along the normal to the constant phase surface. When
either ¥ = 0 or the product ¥ - V is independent of frequency, the
momentum is equal to the gradient of S, and (26) is the Hamilton-
Jacobi differential equation for the abbreviated action function Sy,
of a masspoint of energy E and mass m moving in a force field with
potential energy V. The only time when E . V is independent of
frequency is when n? is of the form given by (23). V then becomes

h-f, f.
2 ",

P=m-vg=

V = (29)
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As 2 = e? N/am,, where ¢ and m, are charge and mass of the
electron, we may visualize the wave-packet as a masspoint m experi-
encing a force

h . e?

F=_ 2_7~n;0 '-fo - grad Y . (30)

In the case of a symmetrical, spherical ionized region as shown on
Fig. 1 the propagation is a case of central motion.

Force on Wave Packer =—/<-‘%{Y - ¥
= m-c,
o |Pl”
" a
. [owéouﬂdzrq
&% '\ A

In this case the Hamilton—Jacobj equation has the following
solution
r - 2

Sl=cl-0-|—f 2m (E—V(r))_:—;.dr. (31)

Y

The angular momentum Pg is constant as is always the case at
central motion. This determines the integration constant c,.

68 -
P6= g(—:)-l=('1=V2mE-7‘0-sin}'o. (31a)

(ES)
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As v, = ¢, - n, the appropriate form of Snellius law means nothing
else than that Pg or the surface velocity is constant. At the apex
of the ray P, is zero. This determines the electron density needed
to return the ray.

05 _ 1, v—5. (2 i
P’=W=1 mlE—V—E. — sin J . (31b)
At the apex
. 2 — ry? ,
V=E . cos® y, +T . E . sin? y,, (32)

which is the initial radial kinetic energy plus the work performed
on the wave-packet by the centrifugal force. This relation is the
same as

(M)apes = To/r - Sin y,, (32a)

which is immediately obtained from Snellius’ law. Finally reference
should be made to de Groot [5] who wrote one of the first notes
on the mechanical interpretation of the propagation of electromag-
netic waves with special reference to radio waves. Communications
of similar kind have also been given by Eckersley [6].

It should be stressed again that the mechanical analogy should
not be pushed too far. The wave equation is not equivalent to the
motion of one particle but to the motion of many, a so called statis-
tical ensemble. It is, as we have seen, only in the non-dissipative
case that the iconal equation gives correctly the direction of the ray
and even when it so does the mechanical interpretation is only cor-
rect when & . V is independent of frequency.

The Dispersion of the Down=-Coming Radio Echoes.

In the exploration of the ionosphere short wave-trains are trans-
mitted from the sending station. Their eventual return is then re-
gistered by some kind of recording device which records the time
of travel as a function of the carrier frequency of the sending sta-
tion. The frequency range generally is so wide that the rays always
penetrate at the highest frequencies. When the time of travel is
known as a function of frequency it is possible to calculate the
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actual electron density distribution fairly accurately. The accuracy
of these calculations depends upon the accuracy with which the
time of travel of the wave-train can be determined. A computa-
tion of the actual dispersion of the down-coming wave-trains there-
fore is of interest.

To begin with let us study the dispersion of a simple wave-train
of rectangular envelope. At the time t — 0 the key is pressed at
the sending station and a wave-train is sent out. At time 7z the
key is opened and we get a train 7 seconds long.

Thus
TONER’

]]o(t)=37 g 0<t<T, (33)

1, =0 t<Oandt>7.
Next we form the image of I7, i. e.

" — jot l—e—jgr

foy= [T == (34)
— o0

where 2 = ® — .

Now, every component experiences & change in phase S (z, ¥, %, w)
which we write as

1 1
S () =8 (m) + Q.8 () + 5!—92. S (o) + ;;—‘.Q““ -8 (W) + - -

The resultant wave-train at the receiving station therefore is of
the form

v

I (t) = 21—: exp. (7 [ t — S (0)] ) .

1 oo A S

§'65.T9_67'(T—r)!2 o -5
. sl — " = qrrr . . C,
70 exp. |7 [ 5 S’ (w,) 5 S (wy) ] d e,

where t = T + t, and f,, = & (wp) 1is the time of arrival of
the undispersed wave-train. The solution of this can be obtained
fairly simply if only one of the terms of the phase correction A S
is considered. The results were given by Carson in a note on the
building up of sinusoidal currents in long periodically loaded lines [7].
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The time of travel times the velocity of light in vacuum gene-
rally is called the virtual path-length, L.

L,=c¢y-t,. (36)

If we only consider the first term of the phase correction the solu-
tion of (35) becomes

_exp. (j [wo t — 8 (0) — 7[4]) T
e = V2 [C(VB) C(VB)

T

where S(u) and C(u) are the Tresnel integrals!) to argument u.
B is given by the relation

e 7 (dL,
- To" do oy &)

Now, let us take a typical example from vertical incidence F-layer
ssounding». L, then means twice the so called virtual height 4,.

A very normal value of i. e. the tangent of the virtual height

h’l)
d_f7
versus frequency curve of the recorder?), is 30 km/incfs. Fig. 2
shows a plot of the envelope of the received wave-train when the
original envelope is 0.5 - 10~ seconds long.

The upper part of Fig. 2 shows the received envelope after one
reflection. Tail A consists of the lowest frequency components of

the wave train and B the highest as—; is positive. 4 normal re-

af
ceiver does not have transmission characteristics to reproduce
much of the tails and ripples of 4 and B. If the tuning of the
receiver circuits is too sharp one has to be careful to adjust the
tuning to the point of maximum response. Otherwise the time of
travel might be slightly too great or too small.

The lower part of Fig. 2 shows the appearance of the envelope
after four reflections. The dispersion is worse but it still holds that
a tuning for maximum intensity gives the correct time of travel.
The dispersion, therefore, is not serious as was indicated on page 15.

1) Jahnke & Emde: Tables of Functions, p. 35.

2) By many writers called P’ — [ recording which in terms of our symbols might
be called an S8’ —f recording.
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Fig. 2.

Generally the wave-train is modulated. As almost all envelopes
lie somewhere between the rectangular and the sinusoidal shape an
investigation of the dispersion of the latter type should complete
our study.

The original train thus is of the form

1 ej(wo-'_%)t——ej (wo—%)t

25 (38)

jogt . [7
I, =e . sin t—t =

for 0 <t<t and
II,¢)=0 for t<0andt>r.

The resultant pulse at the receiver is produced by interference
between the two wave-trains of angular frequency o, + 7m/r and



22 CHALMERS TEKNISKA HOGSKOLAS HANDLINGAR XNR 3

wo — 7/t respectively. The greater — the greater will be the

df
difference in time of arrival between the two trains and the broader
will be the recorded pulse. Adding the two solutions for the re-
spective wave-trains it is not difficult to show that the resulting
wave-train is expressed by

1, (t)=ﬁexp:(j[wot—S(o)o)—c—lo(%)wo.(g)z])
ol
B T B v
Lo _VB) (P VB
"‘7{3(1/3 r) S\VB T)}]
sl [T VE T—r VB
e [°(V§+T)—°(V§+7)+

S )

If we use the same train-length as before, i. e. 50 1S, and the
slope of the virtual height curve is 30 km/me/s, the time difference
between the two components is as little as 4 uS. For a slope of
480 km/me/s, which may be found on the rising part of the curve
near the F,-critical frequencies, the time difference is 64 wS and
this is 14 S more than the original train-length. It might be of
interest to examine the shape of the received envelope under this
condition of appreciable dispersion.

The upper part of Fig. 3 shows a plot of the received pulse. The
pulse is broadened approximately four times, i. e. from 50 to 200
uS. The lower part of Fig. 3 shows the dispersion of a rectan-
gular wave-train under the same conditions. It has a more pro-
nounced energy peak but it is broader at the same time with tails
of appreciable energy peaks. Typical peaks are shown at 4 and B.
They appear about the time of arrival of energy pulses of frequency
wy — 3 7/t and w, + 3/t respectively. These ssideband» compo-
nents are prominent in the rectangular pulse of width 7. At such
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a high dispersion the pulses more and more look like their original
Fourier image. For the rectangular pulse its magnitude is
‘ 2 sin &\l
27

|f ()] e (40)

T

with »sideband» peaks at 2 ~ -+ . 2n+1). m=1.2,..)

bt

1) Note: a = — and w, = w,.

T
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Finally it should be mentioned that the lower part of Fig. 3 also
represents the wave-train of Fig. 2 after sixteen reflections. The
comparison is interesting. It gives a good picture of the dissolution
of a wave-train.

Finally we study briefly the case when the second term of the
phase correction A § dominates. In this case the curvature of the
virtual height curve is a measure of the dispersion. The received
wave-train becomes

+ o

= ?1] exp. (y [0)0 t—S8 (mo)J) J_.al exp- (7 [.Q Tr— GQZ L, (")o)]) —

0

93

— exp. (] [Q (T — 1) — L/ (wo)]) } d (41)

6 - ¢
in the rectangular case. The solution can easily be expressed by
means of Airy’s rainbow integral, A (u), where

oo
2

A (u) = J cos (? (u - w—w3)) cdw . (42)
0

It first appeared in a study of the rainbow by Airy in 1838 [8].
It is easily verified that

Uy
11 (t) = exp. (y [(1)0 t— 8 (wo)})f A (u)du, (43)
. "
where
r T U T—= d B Lz'” ((')0) -
e D mye B

4 (u) was first tabulated by Airy for values of u ranging from
— 5.6 to + 5.6. Later it was found that 4 (u) could be expressed
by Bessel functions of order + 1/,.)

ED-G 5 Y Sl BT
+ J_, ( 2 [%]SI)J. . (44)

1) See Theory of Bessel Functions by Watson, pp. 188 and 712, where Bessel
functions of order !/, are tabulated.
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Figs. 2 and 3. The received envelope is not symmetrical any longer
due to the fact that hoth the low and high frequency components
of the wave-train are more delayed than the components around
the carrier frequency. Therefore the beginning of the pulse is a
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Fig. 5 shows the appearance of the ionosphere record to which
the pulse shapes on Figs. 2, 3, and 4 refer. As a conclusion we can
say that under most practical conditions the dispersion is not serious.
Comparing the arguments of the Fresnel and the Airy integrals one
finally easily finds that the Fresnel integral is the proper form of

the solution when
1 dh)\' 1 d2hR\'"
o do] 2 \a 3

and the Airy integral when

Ldh\h (1 @By
¢ do < ¢ dWE]

The Phase Relations and the Virtual Path-Length.

As long as inequality (5 a) holds the phase-integral is obtainable
from the iconal equation. In the regions where this is not the case
a different treatment has to be used. An exact solution of the wave
equation can be obtained only for certain kinds of electron density
distributions. To begin with we will have to seek a solution that
is the closest possible approximation as we do not know anything
about the distribution.

Let us study the two-dimensional case of the plane homogeneous
ionosphere. The electron density is a function of z only and the
wave normal is parallell to the z— z plane. If we split the phase
in its two components we can write

II = exp. (7’ (Sa (=) + S, (x))) = exp. (7' (Sa (z) + kg - sin ypq - x)), (45)

where y, is the angle of incidence and z is the distance from the
z—y plane through the apex of the ray. Eq. (3) thereby gets the
following form, where the arbitrary constant, 8, has to be put
equal to unity, viz.

(dsa)i’ & d2s,

dz + 7 a2 - ko? (n° —sin® y) = k- ¢° . (46)

d
This is a {first-order Riccati equation in ﬁ If we put ¢
equal to zero (46) reduces to the iconal equation. Using therefore
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a8,
the methods of Brillouin, Wentzel and Kramers [9] Tz is  ex-

panded in a power series in 6. Using only the first two terms of
an expansion of the form

o

a8
a= 6”'0 2
P p n (2)

n=0

ds
and inserting the value of — for 6 =1 in (45), the wave func-

dz
tion is obtained in the form of a B. W. K.-approximation, viz.

H=a- (k- g~ exp. (j[ko (sin g, - @ + fq- dz)]) +
0

+ b (k- @) - exp. (9[700 - (sin y, - x —fq- dz)]) . (47)

Multiplied by the time factor (47) yields progressive waves in the
classical region travelling up and down respectively. One has to
put b equal to zero in the non-classical region (z > k,, where A, is the
true classical height of reflection) because the probability of pene-
tration must decrease very rapidly with depth. The solutions
in the two regions have to be joined at the classical reflection level
at h,. This is difficult, however, on account of the fact that the
B. K. W.-approximations generally »blow up» near %4, This gap
therefore must be bridged.

In the case of the ionosphere it is practically always a permis-
sible approximation to write

N=(N ) h

=y, +13;) e—m (48)

ht
for the electron density in the bridging region. Remembering that

4z Ne? 1
a=1— m, : 02 + 12 (49)
and

47 N v

_ (50)

=T,
N My Wy 1



28 CHALMERS TEKNISKA HOGSKOLAS HANDLINGAR NR 3

where » is the collisional frequency, the wave equation is easily trans-
formed to

d? & u 3
du2+?£=0. (01)
Here £ =exp.(5-8,) and
w=(38)k [h—z + 4] (51a)
is the new variable with
0= ky? 2 L dy 1—3 ’ 51b
= Ky~ - CO8” Yy - N dz ) —7 0, ( )
h’t
and
+ 7 v/w, 1 dNy |1 3
P15, [\W az/, | - (51¢)
1
d? m

It was already noted by Stokes that the operator Tu + 3 anni-

2\%s
hilates Airy’s integral to argument u(;) . The solution in the

classical region suitable to our special case is

7 w 12
II=4. (u)‘/z{ exp. (7 [ko -z -sin yo—?:l) -HJ (2 [?] ) +
7 w T
+ exp. | j | ko - 2 -sin yo+—6-] -HO 2 |5 ) > (52)

which in fact for x = 0 is equal to the Airy integral according
to (44). The Hankel function of the second kind yields the up-
going wave and the first kind function the down-coming wave.

In the non-classical region at the top of the rays the solution is
the surface wave')

31/2 % 3/y 5 . R N
II=4. o (— u)l/Q'K‘/s (2 [_ ?:I ) e? ky -z sin /0’ (53)

which for 2z = 0 is another expression of Airy’s integral when the
real part of the argument is negative.

1) The symbol K is that of Basset, see Theory of Bessel Functions, p. 78, and
p. 714 where K, is tabulated.
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For large values of the argument in the classical region we can
use the Hankel asymptotic series for both Hankel functions. To
begin with we note that

¢ —— |

A
e R
2 ? =v( 0 q-dz + o ?

, q . (54)
- dn (o)’ —1 4
ijo-q-d:'%?-cosyo- ’1 *dN* *T‘
3 _— - =
(N dz)k 0
t

Putting the arbitrary phase, p, of the time factor equal to the
classical phase difference between the bottom and the reflection level
our solution in the classical bridging region therefore gets the form

—d(w t—
. 7 (o, t/)'”N

A - (81.0)"s T _ o
~ T lh e exp.(y [fko-q-dz—l— ko-sinyy .z — A + i —mot])-|—
U

up-going wavye

h, h,
- exp. (9[ ko-q-dz—|—fko-q-(lz—|—ko-sinyo-x-|—A—lz —mot])

0

down-coming wave

if

5 [ 3-’2> L ia by —2 1 dN '2> ”
3 > » 1. €. cos py - P (h, — 2) b, >>1. (56)

o N dz

If this is the case at the boundary of the bridging region we do
not have to bother about connecting our solution to the B. K. W -
approximations because it reduces to the same as is evident when
comparing Eqgs. (47) and (55).

If we for example assume that the relative change in N is 10 %
per km, and such a value is not abnormally high in the lower por-
tion of the layer, and if further %y = 86.5 m, then

(lu! )
2 Y ~ CO8 7o+ 5.4 .
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500 m above and below the reflection level. As N in most cases is
very well represented by (48) through an interval of this length we
are justified in considering (52) the proper solution in the whole
classical region. 500 m above the reflection level the disturbance
is reduced to about one three hundredth of its maximum value and
therefore can be neglected for heights above this level. Practically,
therefore, no disturbance penetrates more deeply than this into the
layer for the values given.

,6-:;’#2”-0.,,{,, frSarmos

00 | TAUE HEIGHT SCALE

CLASSICAL LEVEL
OF  REFLECTION

REFLECTION OF ELECTRO MAGNETIC
WAVES IN THE IONOSPHERL.

Fig. 6.

Fig. 6 shows a plot of the standing wave between the arbitrary
bottom and the reflection level at vertical incidence for the non-
dissipative case, i. e. » = 0. If we have another classical region
higher up, as marked by the dashed boundary line, transmission
through the layer is possible if the distance between the boundaries
is less than about 500 m. To many physicists this transmission
through the non-classical region is also known as the »tunnel effect ».
It will be treated exactly for a parabolic layer in the last section
of this communication.

The complex phase difference between the down-coming and the
up-going waves at the bottom is

h
T

/
AS=2fko-q-dz+ko-sinyo.Zx—_)+2A. (57)
]

Using the mechanical notations of Eqs. (26) and (28) for the non-
dissipative case the conditions for standing waves between two
ionized regions as obtained from (57)
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OP, -dr="~h(n+ %) (57 a)

is formally identical with the Bohr-Sommerfeld phase integral as
expected.

The total phase difference between the down-coming and the up-
going waves is

. _—"1— PR - E—
A S, _HJL ]/“ sf“—ﬁ’+;]/(a—sin'zyo)2+ﬂ2~dz+

)
+ 22 k- siny,— — - Re(2A) (58)

and the virtual path-length?)

a—sm Y 1 T _;
L, _—fd”o( 1/ q—l-’jz-]/(cc—smz“/o)z-I-/')i‘)dz-l-

+2w-sinr,:o—Re(2A)a

. (59)

In the F-layer the following approximation therefore often is
sufficient, viz.

k
L ! cos® yo - dz }
L,~ — 4 2z .sin;, (59 a)
Va — sin® y,
further
2x

= forv=0

sin s,

as immediately follows from the mechanical interpretation. This
result was given by Breit and Tuve already in 1926 [10].
The total attenuation is

1 1 dz
Sz—~f” e
o x—sm /o s w 9
]/ ; (a —— sin® y)* + f* (60)

l) The last term is unimportant even when the collisional frequency is fairly high.
For our example on p. 29 it becomes about 14 - cos 9, - (v/w,)*/2 km, which is negligible
even for v as high as 108,
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Using the approximate refraction relations one gets the classical
attenuation expression

wy - B
AS,~ | - —= . dr = - dr,
: IQ‘CO‘VQ f?’ ’

Path Path

where y is the so called attenuation coefficient.

As a conclusion we may say that even the more exact treatment
of the wave equation justifies the use of the classical attenuation
and path-length formulae. It should be remarked at this point,
however, that this may not necessarily be true in the region of maxi-
mum electron density near the critical penetration frequencies of
the ionized layer. In this region a somewhat different treatment has
to be used as is shown in the last section. In the following sec-
tions we will proceed to determine the actual electron and collisional
frequency distribution using the phase and attenuation relations
just shown.

The Calculation of the True Height of Reflection
and the True Electron Density Distribution.

Let us to begin with assume that the square of the collisional
frequency is negligible compared to the square of the important
wave frequencies of the exploring spectrum. This must be a per-
missible approximation at least for the F,-layer under most condi-
tions. Thereby a is reduced to » for the friction free medium. To
accentuate the historical background of the problem we use the
mechanical interpretation. This we are free to do because E - V
is independent of frequency.

The vertical incidence virtual height then gets the form

h, (V = E)
o dz
h, () = h (0) + V—l_—_T//_E (61)
By

where A (0)is the distance from ground to the lower boundary of
the ionized layer.
A by (B) = h, (B) —k (0) (61 a)

is the increase in virtual height for a given primary energy, E.
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The problem of finding the height of return of a particle sent
vertically upwards into a gravitational field of unknown character
is exactly the same. Once the heights of return are known as a
function of the initial energy, the potential energy is known as a
function of height and thereby the gravitational force. It is quite
well known that mechanical problems of this kind lead to Abel’s
integral equation [11]. Abel’s equation was developed for the pur-
pose of finding that form of friction free path for which the time
of fall is a given function of height; a problem similar to ours.

A very similar problem occurs in seismology [12] when the depth
of penetration of a seismic wave has to be determined. To this
problem we will have occasion to return briefly a little later.

Quite recently, too, Abel’s equation has found another entirely
different application, viz. to determine the pitch-function of a va-
riable-u vacuum tube grid so that the tube gets a predetermined
control-grid characteristic [13].

It is of historical interest to study Abel’s problem briefly in this
connexion. Assume that the height of fall is %, the vertical axis
z and the horizontal z. Under friction free fall we have

B dl
VZJ h—z)

where g is the acceleration of the gravitational force and dI* = da® + dz2.

As the velocity of arrival is V2 gh we get the following expression
for the virtual path-length, viz.
‘ z=h vk

/ dl
e mgz ’ VI—V/F
z—.O th V=0

When this is solved the true path-length, L, = { dl becomes known
as a function of A. Thereby the shape of the path is known. It is
evident that Abel’s original problem is formally identical with ours.

Appleton and de Groot were the first to apply Abel’s integral
equation to problems of the propagation of electromagnetic waves
[14]. It has been frequently used by the present author in con-
nection with the study of ionosphere records [15]. Lately Pekeris
has made use of Appleton’s solution in a study of the electron
density distribution [1].

3 (ES)
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Before we extend our study to the more general cases of the wave
propagation let us examine the mathematical side of the vertical
" incidence problem a little bit more carefully. Thig will give us a
wider basis when trying to solve the more general problems.

We will find it convenient to introduce the following notation,
viz.

7N h’v (wo> wa) = h’v (w0> wa) —h (0), (62)

for the increase in virtual height for a wave-train of angular fre-
quency w, travelling from the bottom of the ionosphere to an elec-
tron density corresponding to an angular critical frequency o,.
If we regard the true height, 4,, as a function of the electron density,
as we very well can do, then (61) can instead be written

2

o%
Wy (0f) - d (o)
Ak (0, 0g) — Db, (w,, »,) = oy f —(—w02 — wcz)'/* > (63)
o2
dhyp . .
where ¥ (0,2) = (@2 and o, is the lower limit of integration,
4

usually somewhat higher than the critical frequency of the nearest
layer below.
Multiplying the identity

2
Wy

Dby (032) — A by (0,2) = j Wp(02) d(02)
T2

@

with a suitable form of the B-function (Eulerian Integral of the
First Kind), viz.
2

w,
R d (0?)
(/2> / 2) - ((U2 o (002)1/2 ((002 . 0)2)1/1’
then
© w42

1 T Wp(w?)-d(o?)
A h’T ((002) Ay (waz) = —; {d ((002) f —((02 Y 2)10/2 (w0~2 — wé)ll’ .
[

2 2
(')a w,
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If we assume that A’; is continuous for values of w, ranging from
w, to w, we can apply Dirichlet’s formula') to the inversion of the
integral equation. Under this condition then it can be inverted to

(1)02 0)2

) ) 1 ) r(w?) - d(w?)
A by (0g?) — A kg (0,2) = g d (w*) (@ — 0 )7 (0f — w?)'h

2 2
W, w,

But by Eq. (63) this yields

We
. 2 [ [Ah(0,0)— A b (0,0,)] do
A by (wp7) = A kg (w,°) + . ’ — (0 — wvg)r/z Qe = (64)
o,

which is the required solution.
It very often happens that the retardation caused by the electrons
below A, (w,?) and in the lower layers is so small compared to the
retardation for the rest of the path that it is a good approximation
to replace A k, (0, ©,) by A h,(w,, w,). Eq. (64) then gets the
simple form
(Uo
Ah,-do
r (W) = hy (w,2 -|— =
()o

_,,)) ao

where A %, is the increase in virtual height when the frequency of
the wave is increased from o, to . .This is the quantity actually
registered on the ionosphere records. It may also happen that w,
is s0 low and the character of the A -curve is such in that region that
1t is a permissible approximation to extend the curve by its tangent
down to zero frequency. Under such a condition A &, may be re-
garded as known down to the lowest frequencies and (65) can be
written

[y ~Z/2

by (©,2) = R (0) + —J A h,(0,sin &) dé = fh (wosin &) -d& . (66)

1) Whittaker & Watson: A Course of Modern Analysis, p. 77.
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which is the Schlomilch integral equation. This is a very useful
form of the solution. It neglects the influence of the low-density
electrons at the bottom of the layer and therefore does not give
the correct distribution of the electrons there. These electrons are
sshadowed» by the lower layers and therefore their distribution
can never be obtained exactly. Usually, however, one is interested in
obtaining the general character of the main portion of the layer and
for these purposes (66) is very useful provided it is carefully applied.
Applications of this will be shown.

* *

Of theoretical interest is the oblique incidence case for a symmetri-
cal, spherical ionosphere as being the most general one. Ifrom Egq.
(31 b) the following expression for the virtual path-length is obtained,
viz.

7o + R 7o+ hyp
- ) dr 1_
L,=2 ’co-dt=2 PACEERY 7 - (67)

r ry w, 7
It is suitable to rewrite it in the following form
o+ hy
T d(rfr)? -
L=y |2 (67 a)
’ (cos® yo— 2°)'"t

7o

r\2 o \2
where x> =1— (7) [1 — (—c) ] In order to adopt our pre-

0 @y
vious method of solution we have to restrict ourselves to a range of
integration where (r/r)? is a single valued function of x%. Calling
the lower limit of integration for r,, we therefore get that

7, = ro[n(r,) . (68)

r, thus is the radial distance to the apex of the path of a ray sent
horizontally from the transmitter as shown by Fig. 7. We also
have to assume that the electron density increases at least at such
a rate that the refractive index will decrease more rapidly than »,/r.
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Fig. 7.

Otherwise no rays will return to the earth. In the limiting case
that n decreases as 7o(r the ray path will be an exponential spiral.

It is useful to introduce a notation similar to the one in the previous
example, viz. L, (cos y,, €os y,) for the virtual path of a ray leaving
the earth at a normal angle y, to an electron density level where
a ray of initial normal angle 7, is returned. L, (cos y,, cos y,) there-
fore is the complete virtual path of the ray. The integral equation
thus gets the following form

cos® Yo
L, (c0s 75, €08 70) — L, (c0s 75, 0) _ [/ (£) - d () | (g9)
T (cos® yo — 27)'l2

o

where (r[ry)* = f, (*). Comparing this to Eq. (63) we see that the
solution is

7 \? r,\2 2 ]cosy,-sin & o o
— =— |————1L, (cos y,-sin§, cos y, - sin &) —
7o 7o & 7o

0

— L, (cos yy - sin§, 0)] -d . (70)

In this case the curvature of the layer »shields» the low density
electrons even if we do not have any layers below.
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For reasons just discussed in connexion with the plane vertical case
it generally should be a good approximation to replace L, (cos y,, 0)
by L (0) which is the path-length between the earth and the lower
boundary of the layer. If we neglect the retardation caused by the
lower layers this is equal to 2 (§ — P) on Fig. 7. For practical pur-
poses we therefore get the following solution

25(0) + A hy (wy, cos 7,)
27,

A hy (@5, 08 7,) (1 +

7 2 !
b

7
2 /2ALv(cos Yo-8in &) . cos y,-siné . d & (71)

where A L, is the virtual path in the ionized layer. Therefore the
electron distribution is determined for all penetrations up to an
initial normal angle of y, when the time of travel or the virtual
path is known for all angles of arrival from y, to 90°. In the case of
the plane ionosphere (r, — =) it is easily seen that (71) reduces to

27

2
A by (0, c0s pp) = — | Ah,(cos y,-sin&)-d&. (7la)
4 T
U

For the special case of cos y, = 1, i. e. vertical incidence, we get

7fy
Ay () = -;f Ah,(sing)-dé.

]

This shows us that the true penetration at vertical incidence at a
given angular frequency w, is the average of the virtual penetrations
for all angles of incidence. This gives a physical significance to the
Schlémilch integral.

%k

The time of travel or the virtual height, which is the quantity ge-
nerally measured, has always been the essential thing in our previous
calculations. As the virtual path has to be known as a function of
the angle of arrival it is more practical to use the fact that the angle
of arrival is known as a function of the distance (angular) from the
the sender. This makes the travel time determination unnecessary.
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It is easy to deduce from Eq. (31) that the central angle of the
ray path (see Fig. 7) is
7o + hyp
" a (ln (r/r ))
o . (72)

= 2 sin y, — 3
(cos® yo — 2°)'"

7o
Using the same range of integration as before we introduce
In (r/ry) = {5 (%°) and by this (72) yields
cos® v,

Pzt o[ e @) . (120)
(cos? 7o — 2°)

i

2 sln 7y,
i

For the same reasons as before we can put @ (cos y,, 0) = € (0).
This is the central angle covered by the path between the earth and
the bottom of the ionized layer. Applying the same method as before
we get the following solution, viz.

A by (w,, €08 7o)

7o + h (0)

Lo
1 A O (cos y, - sin &) - cos yo - sin § - df
~exp.| — — — — 0 a0k —1 . (73)
(1 — cos® y, - sin® £) "2}
)

Therefore, if we know the angle of arrival (of the first reflection)
as a function of the angular distance from the sender the electron
density distribution is determined with the same exception as before
of the lowest electron densities at the bottom of the layer.

This corresponds closely to the problem of determining the paths
of seismic rays. When the virtual surface velocity, i. e. the angle of
arrival, is known as a function of the angular distance from the
source of the disturbance then the true depths of penetration will
be known providing the interior of the earth is symmetrical and
homogeneous. The practical aspects of this problem are discussed in
the literature given by the reference [12].
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Although the application of the spherical solution does not seem to
be of any practical value at present its study is worth while from a
theoretical point of view. It makes the treatment complete.

When the effect of the terrestrial magnetic field is taken into
account conditions become more complicated. First of all only
vertical incidence paths have to be selected as the angle between the
direction of propagation and the magnetic field otherwise will change
appreciably over the path. Strictly speaking the vertical incidence
integral (65) can be used only at the magnetic equator where the
direction of propagation is perpendicular to the magnetic field. The
virtual height data to be used are those of the ordinary ray, of course.
Most ionospheric observatories, however, are located far from the
magnetic equator and therefore cannot use Eq. (65) for the ordinary
ray if accuracy is desired. Very often the propagation angle?) is as low
as 20° to 15°. Under such conditions a solution for the extra-ordi-
nary ray must be found. It can be obtained reasonably simply as
has already been shown by the present author (16).

In the longitudinal case, where Or0p = 0, it is well known that

w2

2 [
=1— : 7
" 1 Wy (wy — ) (75)
- e ) H 3
for the extraordinary ray. Here g = s the gyro frequency
o " Co

of the electrons in the terrestrial magnetic field of strength H. The
phase integral therefore becomes

by

5 , h(0) - N w,? hE 7
(wy) = 2 T‘I‘ g 1—'0)0-(60’0—_7;)' dz—z . (76)

%(0)

This leads to the following expression for the virtual height, viz.

!) The propagation angle is the angle between the direction of the terrestrial
magnetic field and the wave normal.
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b, (wp) = h (0) +

02 = 0y (wg— o)

’ dz 1 w,* Wy
+ s wc_é__ N R g (0o — ) wq — wy|
. _(1)0(

Wy — )
(r)c2 =0 g H)

This is much more complicated than the previous integral equa-
tions. However, we can solve it in a somewhat different way.
We introduce an reffective» frequency w,, defined by

@, = |Wg (Wg— “’H))l/2 . (77)

Multiplying the phase integral by

d o,

" s
do, 0,

and remembering that
d w, d

—_—= — O 0
do, o,—wg/2 do,

we get
Oy S (o) + /2 - (g
2 wy— w [d 2w, v (@) +_c_ -
= 0 H o 0
0?=o?
h (0) 1 dz
A Co (1— wczlwrz) £
0Z=0
But as we must have that
Wy
2 h(0) - w, 2
S ((')o) -+ -’5/2 =4 — VAN ]7’1: ((U) g d(z),
Co @
Wy

we finally get
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ON
Wy 1 )
A by, (0g) — Yo, — . [A h, (wg) — o ’ Ak, (0)-d w] =
o
wl=o0?
dz
= f (1 — cuc2/wr2)l ’ §02)
Wt =0
or
0l =on?2
i dz
AH, (0g) = A b, () — A H (0) = J (1— ;)62/0)—'2); o (78a)
wc2 =0
where
Wy -
A H () = B — [A h. (09) — A b, ("’o)]
and
Wo
SE— 1
b, (wg) = o [ Ah (@) -do . (78 b)
o

A H () thus is the correction we must apply to A h, before we
can translate it into the effective frequency, w,, for application of
the solution in the form of the Schlémilch integral.

At Cambridge, Mass., for example

Dy

=~ (.68, 0.26 and 0.13
2 wy— wy
for a wave frequency of 2, 4 and 7 mec/s respectively. This should
give an idea of the magnitude of the correction.
Comparing Eq. (78a) to Eq. (66) we immediately see that the
solution is

275

~

2 2 My g N .9 —’TH;' o
AhT(wo)=; AH, ?4— Wy (Wy — g) - sin E—l—T -d 5.

. T

0 ' (79)
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For the sake of simplicity we have considered the values of A &,
known down to w, = w, as they of course never are. Our method
does not give us any information about the very lowest density
electrons at the bottom of the layer as before. It is in the nature
of things that they must be shadowed by the lower layers.

The value of the present solution lies in the fact that it can be
applied with surprisingly small errors even up to propagation angles
as large as 25°. A computation of the error will be shown on
page 64.

The Calculation of the Variation of the Collisional
Frequency with Height.

From the close similarity between the virtual height integral (59 a)
and the attenuation integral (60) one naturally expects that the
collision frequency distribution will be determined by similar me-
thods as the electron density distribution, as soon as the latter is
known. This was noticed by Pekeris [1]. Quite generally, when
the integral equation of the electron distribution has been solved,
the collisional frequency distribution can be obtained when the
attenuation is known for the frequency range or, at a fixed frequency,
for all angles of incidence throughout the range.

In accordance with Eq. (60) the attenuation at vertical incidence is

by hy
1 wy - B+ dz 1 | wy-f-dz
B85 = COJ /a—ll/z 5 ® Vo«
5 Vs+3Ve+s 5

Let us study the ease of longitudinal transmission for the extra-
ordinary ray. Then

w2

~ ¢

a ]| == ¢ -,
g (g — W)

(80 a)

and

w 1P b
o (800)

p =

(]
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This makes

o, ) ? w2 Wy cd(w?
AS.((U)——IJ-C P (02) - Ky (©f) d(©2)

(02g — wH)2 (wr2 — (ucz)'/2

We consider » (w,?) a function of the electron density (w,*) which

we can do whenever Ay (»,2) is a single valued function. Comparing
the integral equation to our earlier ones we easily see that the solu-

tion is
& o co 1

7 k' ((l) )

r

& A8, ("’ ) o 2 dw,
o d (&)72) . (wH ( - 'w '2—)1/2)2 . (wrz_— 0)“2)1/2 . (81)

_H 2 ~H
g Tion + 74

Therefore, when the absorbtion A §, is known throughout the
frequency range the variation of the collisional frequency with height
is also known by Eq. (81).

Next let us study briefly the case of oblique incidence at a fixed
frequency (w; necessarily = 0). From Eq. (60).

wo? cos? y,
/ad

1 v (0,2 0 B2 d(w?
A 8, (y? cos® ) = c()(o (c:os .T_ o /(L)
0" % 0 70 )
0

In the same way as before we get the solution

2 cos® 7,) 2 ¢, 1
v (0,2 cos® pp) = — - - .
(o PO 0y cos? 9 - by (oF cOSE )

d 7y

b —— . i £ 2, a2 L ]
d (cos? yo)[f cos 7, - 8in & - A 8 (cos” , - sin” £) d«SJ. (82)
U

Therefore, when the attenuation is known for all angles of incidence
from =/, to y, the variation of the collisional frequency is known
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for all levels of reflection up to the level where a ray of incidence
o 1is reflected.

Even for simple electron distributions the calculation is not not-
ably easy. Let us take an example.

If the attenuation is of the following form, viz.

T 7'0'}& o k.(,)o
NS, = L;-—Co—--wo-cos vol 1y’ g oS Vo) —

h - oy
— Ly’ H COS Yof | (83)

where L, (u) bears the same relation to Struve’s function II, (u) as
I, (u) bears to J, (u)), then by means of Theisinger’s integral?)

k- (7%
— Y
9 o ve-h e H "
v (@2 cos? yy) - by (07 cos® ) = 2. — - (84)
2 g + COS ¥y
If the electron distribution is such that for A, <hg,
47e® N R he\?
me e T\ k)’
h
then kg (0,%) = T and (84) yields
- 4 c
hy
T=1,-€ H (83)

for all penetrations %; <hgp. Under this condition the absorbtion
can also be written

T - Ty by by
A S, = cos y, - 2'a chp - | Ly " — Ly H (86)

indicating the fact that for the same intrusion, the oblique ray suf-
fers less attenuation than the vertical one.

It is clear from the following that an experimental determination
of the attenuation, especially as a function of frequency for the
application of Eq. (82), should be very valuable. If we possessed
sufficient knowledge regarding the distribution of » in the F-layer,

1) G. N. Watson: Theory of Bessel Functions, p. 329.
2) G. N. Watson: L. ¢, p. 338.
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we should no doubt be helped a great deal towards a better under-
standing of its physics. This should be of value also to the cosmic
ray research. It is to be hoped that radio exploration will some day
give us the desired information about the attenuation function.
At present there are some experimental difficulties to be overcome.
However, they are not serious and the problem is a question of
experimental facilities and time rather than anything else.

Finally it should be mentioned that a few experimental determi-
nations of the collisional frequency have already been carried out
under the simple assumption that it is constant through the impor-
tant part of the layer. It is easily established that the attenuation
relation can be written in the following approximate form when
this is the case, viz.

8 y b A S,
(L8 =5 = (28h,— .

2¢, O kq

By measuring corresponding time-changes of A S, and A %,, and

\
1

ko
that in the Fj-layer, at an estimated height of 265 km, v = 3.6 - 103.
Farmer and Ratcliffe, working along similar lines, have found the
value » =1.6-10% for the F,-layer. This should at least give an
idea of the order of magnitude of the collisional frequency.

neglecting changes of the optical path,

, Eckersley has found

Typical Electron Density Distributions.

The ionospheric records from the magnetic equator are fairly
simple to analyze because the Schlomilch equation (66) can be used
for the ordinary component. A number of typical smooth records
from quiet days at Huancayo (12°8S, 75° W) have kindly been
placed at the author’s disposal by the director of the Department of
Terrestrial Magnetism of the Carnegie Institution, Dr J. A. FLEMING.
Several typical ones will be shown in what follows.

As is evident from the Schlémilch equation one simply has to
plot the virtual heights as functions of ey - sin & and then take the
respective mean values (by a good planimeter) which are the true
heights.

Fig. 8 shows the virtual height curve for the ordinary ray at
Huancayo, Jan. 2nd 1515 local time, 1939. The virtual height curve
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was extended by its tangent at its lowest point. There is no di-
stinet difference between the F,- and F,-layers and the true height
is fairly large.

Fig. 9 shows the electron density distribution as obtained from
the true height curve. The reliable limits of the curve are marked
by m. The upper portion of the distribution, i. e. the distribution
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Fig. 10.

mainly of F,-character, is essentially parabolic as shown by the
dashed parabola drawn for comparison.

Now for a Chapman layer the ionization N in the vicinity of the
level of maximum ionization varies as

2

N=0N,. (1 — ({H—),) . (86)

’
m

H thus should be equal to about »1). For the electron

distribution just shown it becomes about 76 km. This determina-
tion of H is, of course, very approximate subject as it is to the
individual selection of the comparison parabola,?). However, it
should serve as an indication of the magnitude of H.

Three hours later the same day, as shown on Fig. 10, the vir-
tual and true height curves were slightly different, the change in
the virtual height curve being more noticeable of course.

Fig. 11 shows the corresponding electron density distribution.
The upper part, as before, is represented reasonably well by a para-
bola. It yields H equal to about 56 km, a fairly low value.

') H is the local scale height of the gas from which the layer is formed.

%) It should also be added that it always is very difficult to record the virtual
heights near the critical frequency. The true electron density distribution near the
maximum level therefore can not be determined accurately.
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Fig. 12 indicates a not inconsiderable expansion of the F-layer.
It is noticeable that the true heights still are great.
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Fig. 13, showing the corresponding electron density distribution,
indicates this even more clearly. The parabolic approximation is
fairly good over an appreciable frequency range and it yields H
about 105 km.
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Fig. 14 shows a virtual height record three hours later the same

day. The general characteristic is the same. The true height still
is fairly great.
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Fig. 15 shows the corresponding electron density distribution.
It remains essentially parabolic over an important frequency range
and the dashed parabola yields H about 76 km.

Fig. 16 shows a noon recording obtained on July Ist at 1215.
The expansion is considerable. In order to show how much the
final result is affected by the direction of the tangent extending
the virtual height curve to zero frequency, plots were made for two
drastically different cases.

1) The lowest portion of the virtual height curve was extended
by a suitable tangent to a zero frequency height of about 150 km,
a fairly probable direction.

2) Another tangent was drawn to the curve extending it down
to zero height at zero frequency, this being the most unprobable
direction.

It is clearly shown, as is also demonstrated by the nature of the
integral equation, that the true height curve is not affected very
much in the higher frequency region near the penetration frequency.

The probable electron density distribution, corresponding to the
more probable case 1), is of the same character essentially as the
distributions just shown. H becomes approximately 130 km.
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Fig. 18 shows a smooth »mid-winter» afternoon recording from
Huancayo. It is very similar in appearance to the quiet Cambridge
recordings shown later.

The corresponding electron density distribution is practically
parabolic over the entire frequency range. The dashed parabola
yields H approximately 86 km. The deviation from the parabola
is of the same order of magnitude, generally, as the experimental
error although greater.
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Fig. 20 indicates a very great expansion, the maximum true height
being more than 500 km. Consequently the corresponding H value
is great as indicated by Fig. 21. The approximate value is 165 km.
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This seems very great compared to values normally obtained at
northern observatories. The uncertainty regarding the construc-
tion of the tangent extension was especially troublesome in this
case. The low density distribution therefore is very uncertain.

The expansion was much smaller in the early evening the same
day as indicated by Fig. 22. The distribution function, shown by



56 CHALMERS TEKNISKA HOGSKOLAS HANDLINGAR NR 3

Fig. 23, did not change much. The corresponding value of H is 98
km, approximately, a fairly great value so late in an undisturbed
day.

Next, let us for comparison study a few records from Cambridge,
Mass. (42° N, 71° W), obtained by the author at Harvard University.
As the propagation angle is about 16° at Cambridge we have to
use Eq. (79) as the proper solution. The solution, strictly speaking,
applies only to the extraordinary ray when the angle of propagation
i1s zero and the path is assumed to be vertical. However, the error
we make by applying Eq. (79) to the Cambridge recordings is very
small, in fact smaller than the experimental error. A plot of the
errors will be shown at the end of this section for two typical pro-
pagation angles, viz. 15° and 25°.

The first thing to do is to construct the corrected virtual height in
accordance with Eq. (78 a).

Fig. 24 shows a quiet afternoon recording from Cambridge ob-
tained on April 20th, 1939, at 1700. The corrected height curve
clearly indicates the importance of the correction. The corrected
virtual height is then plotted against the reffective» frequency, f
as shown by Fig. 25.

From this the true height curve is obtained in the usual manner
by plotting the virtual heights against w, - sin £ and integrating the
mean value. The result is shown by the dashed curve. The maxi-
mum increase in true height is slightly more than 140 km while the
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corresponding increase in virtual height is about 475 km. Fig. 26
shows the electron density distribution drawn from the true height
curve.

The essential portion of the distribution (the F,layer) is fairly
closely represented by a parabola. This yields H about 60 km.

Fig. 27 is another Cambridge example taken a few days later one
hour past mid-night (local time). The corrected height curve is
constructed as before and the true height is plotted against the
reffective» frequency as shown by Fig. 28.

Fig. 29 finally shows the resulting electron density distribution.
It is essentially parabolic throughout the frequency range. To
represent such a layer by a parabola should be a very good approxi-
mation. The approximate value of H is 58 km.
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Fig. 30 shows the virtual height curve in the early morning a day
later. The height correction is about the same as before. The virtual
and true heights plotted against the reffective frequency » are shown
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by Fig. 31. The maximum increase in true height is very small,
approximately 70 km. At the same time the increase in virtual
height is about 310 km.

The electron density distribution is shown on Fig. 32. As before
it is essentially parabolic throughout the frequency range. H is
small, or only about 37 km.

Finally another typical Cambridge distribution is shown on Fig.
33. This one too is a typical parabolic distribution with an H value
of about 58 km.
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As a conclusion a few words should be said about the interpreta-
tion of the Cambridge recordings. Naturally it often happens that
the lower part of the virtual height curves is registered by the ordi-
nary ray and not by the extra-ordinary ray which may be much
absorbed at frequencies in the neighbourhood of the gyro-frequency.
As the sweep-frequency equipment used by the author had no pola-
risation indication (such an indication should, although it makes
the apparatus more complex, be of value even for the attenuation
measurement discussed on page 46), a low frequency virtual height
curve might have been recorded even if the extra-ordinary ray
were absent. As the difference in retardation between the compo-
nents is very small, even though the difference in attenuation may
be great, one is allowed to make use of the virtual height curve down
to the very vicinity of the gyro-frequency. The tangent to the
virtual height curve is thereby, so to speak, drawn by the ordinary
ray itself.

* o *

The total number of electrons in the F,-layer is of special interest
as is obvious from our earlier discussions. A study only of the varia-
tion of the maximum electron density may be misleading on account
of the expansion. We have therefore computed the total number
of electrons, N, in a column of 1 cm? cross section for the Huancayo
recordings. The variation in ., has also been tabulated for
comparison.

We have also tabulated the ratio between the so called charac-
teristic frequency, f,, and the critical frequency, f, . This indi-

cates the shape of the layer. The characteristic frequency of the
distribution is the frequency at which the virtual height equals the
true height of the maximum electron density. The assumption that
the electron density distribution is parabolic is especially convenient
as was pointed out by Booker and Seaton [1]. For a parabolic layer

such that
v v Ah,—z 2
V= LNopar ll— A h’m

the classical virtual height is given by the familiar relation

m fO f"m + f()
Ahv=—2 Eln (f—cm_fo) . (87)
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Booker and Seaton selected three characteristic frequencies, viz.
0.648 f, , 0.834 f, , and 0.925 [, at which the virtual height is

equal to

m

3
,h(0)+ Ak, and h(0) + — - Ak,

A
b (0)+ = >

respectively. Rawer, in Germany [17], working with the so called
Epstein distribution mentions 0.707 f, as a characteristic frequency,

corresponding to 0.834 f, in the parabolic case, but points out
P g em p P

that the magnitude of this characteristic frequency is liable to change
quite a lot with the layer shape.

Huancayo (1939)

Local Change in Change in fx

Da; N N, H 7
Y Time ‘ N, S T

1 ) 1 S _
|
Jan. 2nd 1515 | 2.50 - 10%| 0 pet. 2.06 - 10%| 0 pet. | 76 km | 0.58

Jan. 2nd 1818 |1.97-10w —22 5 |2.08-105 1 » 51 » | 0.60 |
April 4th l 1318 |2.19-10¢%) 0 » |1.45-.10° 0 » | 105 » | 0.78
April 4th 1712 | 1.96- 10 —11 » | 1.79-105| 23 » 76 » | 0.81 |
July lst 1218 ‘ —_ — ! —_— | —_ — l — — | 125 » l 0.81 |
July 2ad | 1T | —— | —— | —— | —— l 86 » | 0.80 |
| Oct. 1st 1515 | 3.68.10% 0 pet. 1.33-10°| O pet. | 165 » | 0.75
{ Oct. 1st I '

1813 12.30-10‘3{ —38 » .1'71'106 12 v 99

0.79

It is interesting to see from the table that the variation in N,
and H show a similar character. It is further clearly demonstrated
how different the variations in N, and N, are. This indicates
the importance of the expansion, the nature of which we do not
know much about at present. A very typical example is furnished
by the October recordings. In spite of the fact that the total number
of electrons actually decreased about 38 pct. in the late afternoon
the maximum electron density increased 12 pct. The decrease in H
was of the same order of magnitude as the decrease in N, viz.
about 40 pct.

It should be evident from these results that it is necessary to
compute the true electron density distribution from hour to hour
if misleading conclusions regarding the essential processes in the
F,layer are to be avoided. The construction of a suitable inte-
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grating machine should facilitate this very much. When the pre-
sent serious times so will permit we hope to present an account of
the hourly and daily variation of the total number of electrons of
the F,-layer in Sweden.

The ratio between the characteristic frequency and the critical
frequency is far from constant as shown by the table. The use of
a fixed characteristic frequency ratio in the routine scaling of iono-
sphere records as suggested by Booker and Seaton (f, = 0.834 . )

therefore easily leads to erronous conclusions, convenient as the
method otherwise may be. The method of using the integral equa-
tions is not as cumbersome as it may appear. Once one is used to
the procedure it works quite fast.

The Cambridge & ratios are tabulated below together with the

for

corresponding H-values for the sake of completeness. It should be

Cambridge (1939))

Date Time H i,
| 2
m
April 20th 1700 56 km 0.75
April 21st | 1700 58 » 0.83
April 23rd 0lee | 58 » 0.84
April 24th 0600 37 » 0.82

added that the quantity H may be entirely fictitious as in the
earlier case. It serves merely as an indication of the thickness. of
the layer or of the expansion of the Fy-air. We do not yet possess
sufficient knowledge about the formation of the F,-layer to state
anything definite about H or the temperature of the F,-air. It
is possible that, at least in the daytime in summer, the temperature
attains high values, perhaps exceeding 1200° K. The probability
of such high temperatures in the upper atmosphere was originally
suggested by Maris and Hulburt [18]. The temperature gradient in
the F-atmosphere therefore may be considerable since the tempera-

1) On account of the limited frequency range of the recording equipment used
by the author at Cambridge no complete noon-time sweeps could be taken at the

vear in cuestion.
2) Referred to the effective frequency.
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ture at 120 km probably is less than 300° K. Vegard [2], on the
other side, considers that the higher layers of the atmosphere ex-
tend far upwards on account of electrical forces, and that they
are not at a high temperature. This would, of course, also lead to
an abnormal increase in H. Although the temperature expansion
seems very probable it is not unlikely that the great H-values of
the F,-layer indicate not only such an expansion but also the ex-
pansion suggested by Vergard. One therefore has to be very careful
not to draw too rapid conclusions regarding the temperature from
the H-values. Further research is needed regarding this matter.

* *

In order to study the general usefulness of Eq. (79) we have plotted
the phase integral as a function of frequency for a parabolic layer.
The propagation angle is zero and the gyro-frequency is put equal to
1/6 - f,, an arbitrary typical value. Making use of the complete
expression for the refractive index of the extraordinary ray,!) viz.

2z (1 —zx)
=1 —
2(1—z)—y?sin2 @ — Vy'sin® @ + 442 cos® O (1 —x)?
(')r‘z D - a
where z = oY== and © = the angle of propagation, the cor-
o Yo

rection in the phase integral for & = 15° and 25° has been plotted
on the same chart as a function of frequency as shown on Fig. 34.
The correction is somewhat smaller than was originally expected.
JARN
Sl
from these data. A plot of the error is shown on Fig. 35 where the
original virtual height curve for @ = 0 has also been drawn.

The correction curves are fairly accurate except near the pene-
tration frequency. The error for a propagation angle of 15° is in-
significant compared to the experimental errors in determining A 4.
At a propagation angle of 25° the errors are much greater, of course,
but still generally not as large as the experimental error. Eq. (79)
therefore must be useful even at observatories where the magnetic
dip is as low as 65°.

It is easy to construct the error ¢ = in the virtual height

1) For a deduction of this expression see for example H. R. Mimno: The Physics
of the Ionosphere, Rev. Mod. Phys., Vol. 9, Jan. 1937.

(89)
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The Exact Wave Functions for a Parabolic Layer.

As we have seen, the undisturbed F,layer very often is essen-
tially parabolic, at least at sufficient distances from the equator.
However, the electron density distributions in the equatorial regions
too appear to be notably parabolic at the level of maximum electron
density. The main results of the following calculation can there-
fore be applied to equatorial cases as well.

Let us assume a parabolic electron density distribution of half-
thickness, A &, i. e.

2 2 = Y
(]

where 2z is counted from the level of maximum electron density.
Let us further, for the sake of simplicity, study the case of ver-
tical incidence upon a non-dissipative layer.
It is convenient to introduce the following notations, viz.

T -V
T ey g 2T R T
fcm fo § (90)
o 4::-Aﬁlz_z_ j%_ ]I
= ;‘cm A e =u-e

Thereby the wave equation can be written

d* 11 ) & - ’
it lie—g | A=0. (91)
Ah, /lcm always is large, 2 to 5 - 10% is a typical day-time value.
0 is large except near the penetration frequency. Eq. (91) is sa-
tisfied by Weber’s parabolic cylinder functions. One of them is?)

I]=_D(u-ej%). (92)
10—"1,

1) The symbol used is that of Whittaker. See Whittaker & Watson: A Course of
Modern Analysis, p. 347.
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From Whittaker’s integral representation one easily gets the
following asymptotic expansion, Viz.

Phase angle — @

J

K

D (u . e
jo—"

Fe

u? - — =P
—j(f—e-mut ) &4 o+ 72 (e + 7%
e (1_ o2 +...]. (93

~

As u always is large the only restriction is that ¢ must be suffi-
ciently small. A safe limit is marked by

N 2 u? 2¢, \” )
S lor |afol=f,—hl< (m) © (fe)"t - (99)

For f, = 107 ¢/s and A h,, = 100 km, | A fo | becomes less than
about 1.4 - 10° ¢/s. The present expansion, therefore, can only be
used in the neighbourhood of the penetration frequency, f, , of the
layer. As this is the frequency range where we know that our
earlier methods are likely to be too approximate we do not have
to develop another expansion in this connexion, although a com-
plete study of the solution should make it necessary.

Multiplying by the time factor we see that

. . T
— 0, - t =T
e I -D(u-ey"‘)

70—,

vields an up-going wave.
Another solution is

Phase angle + @
T — 93/ 7
(e—7%) (0 7'2)_....), (95)

u? = T
—{-j(-;—-———g-lnu-{—g) e 4 (

L g 2 u?

o~ e . peey
Vu

which multiplied by the same time-factor yields a down-coming
wave.
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Next we have to find a suitable »circuit relation» of the differen-
tial equation connecting the incident, the reflected and the refracted
wave. Fortunately enough, there exists a fairly simple one, viz.

D (ue7T)=I’(]QLE)e’__TO+7%D (ue—7%)

. . +
je—1, Ven —jo—1s
incident wave reflected wave
) ro —j L 7 3 7
I' (jo+ y) 2 ¢ Diu-e ¢
V2a —jo—"1,

refracted wave

Mathematically speaking, the above expression gives the analy-
tical continuation of the function of the refracted ray, represented
by an asymptotic series for instance, beyond the region for which
this special representation is valid. The law of reflection gives us,
therefore, a physical visualization of the rather abstract concept of
analytical continuation. This was mentioned already by Epstein
[19] in a fundamental paper on the reflection of waves in an
inhomogeneous medium.

We are primarily interested in the phase difference between the
up-going and down-coming rays at the bottom of the layer (z =
= Ah,). This is

2

AS=%—9-lnu2+phase[F(7‘e+1/2)]+ 2@+ 7f2;

2@,\,92/“2‘ (97)

But by Gauss’ multiplication theorem it becomes

: F(N@)] ot

u
A8 —g-In(4u? + phase [ Tie |+t 2

2

The virtual height therefore becomes

e sy = | 4 28
A L~=7dwo(A )= @ w)+ 5+
do
+Re(2¥’(2a‘g)—1aﬂ(7‘g))]--—~,
d fo
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where ¥ (a) is the logarithmic derivative of I" (a). This finally yields

-fcm ‘m
2 o LT 1, 98
0(u2+RenA=17 n(n+79)(n+279))] o

where y is Euler’s constant = 0.5772.

At the penetration frequency the exact virtual height becomes

Ak, Ak,
Ah,= 2 » 4+ In 16-n-} . (98 a)

‘m

This is not infinite. The classical virtual height expression for a
parabolic layer

Al Zlhm fO 1 (f“m + fo)
e 2 fcm - fcm _fo

yields infinite virtual height at the penetration frequency. The
exact virtual height is very great. For a half-thickness of 100 km
and a critical wave-length of 107 m it becomes about 630 km. It
should be noted that this is the increase in virtual height and the
total virtual height therefore, as registered on the ionosphere re-
cords, should become 900 or 1000 km depending upon the value of % (0).
As the absorbtion is too strong for these signals to be recorded,
except perhaps when the transmitter is very powerful, it generally
is impossible to note the correct critical height even on the very best
records. As an example let us return to Fig. 26. The maximum
virtual height is about 680 km. Eq. (98 a) yields a height of 950
km for the corresponding parabolic layer as shown on Fig. 29.
Similarly for the recording shown on Fig. 27 the maximum virtual
height is about 550 km whereas the exact virtual height turns
out to be 670 km. The absorbtion at the penetration frequency
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1s so strong for the recordings in question that it is never possible
to register the discrepancy between classical and exact virtual heights
near the penetration frequency. :

That the dispersion becomes finite at the penetration frequency
i1s obvious from Eq. (98). When the wave frequency equals the
penetration frequency, however, only the lower side-bands of the
Fourier representation of the wave-train are reflected with noticeable
intensity. Fig. 36 shows a plot of the classical and exact virtual
heights in the neighbourhood of the penetration frequency,
fe, = 107 cfs, for a layer of 120 km half-thickness. It should be noti-
ced that the deviation from geometrical optics is of importance only
In a very narrow frequency region for such a thick layer. We are
therefore very well justified to use our integral equations for the
determination of the true electron density distribution. It should
further be added that it is easily proved from Eq. (98) that

(A h’v) exact -
(A ]7’1,) classical

lim
(M_m)

A,

2ok ' | ;
(R N R N i
« Classical and Exact Virtual Height for
L a Parabolic Layer of Half-Thickness 4bm
abm=120km || |

o 4_+ T 4=30m

- — 1 — ~ —

95— — l - S— —- [

Increase in Virtual Height

1 |
Exact Virtval Height —
- 1 — ‘l J’ B

<'
| |

8 7 6 5 < 3 2 / 0 4 2 407

Fig. 36.
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This shows mathematically the transition to diffractionless optics
when the geometrical dimensions become infinitely large.

Finally it should be noted that results closely similar to Eq. (98)
were obtained already in 1939 by Rawer in an excellent paper trea-
ting the general wave propagation in dissipative Epstein layers
120]. The interested reader is referred to his paper for a comple-
mentary study.

As the medium is non-dissipative one immediately obtains from
the circuit relation that the reflection coefficient, R, is determined
by the relation

2 : 2
2Ahm‘fcm—f—0‘
R? T ) 2ffm

‘m

(99)

This holds throughout the frequency range. Fig. 37 shows se-
veral plots of the reflection coefficient for layers of different thick-
ness. The critical frequency is 107 cfs, i. e. 4, =30 m. The de-

viation from geometrical optics is practically noticeable tirst for a

R 1
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half-thickness of about three to four wave-lengths. As the thickness
becomes even smaller (maximum electron density constant) appre-
ciable reflection appears at frequencies well above the critical fre-
quency. It is obvious that the critical frequency conception may
be misleading for a very thin layer.

The night-time abnormal E-layer reflections often appear to come
from such thin layers and reflection is obtained over a surprisingly

wide frequency range.

* *
*

When the layer is parabolic only in its upper part, as shown on
Fig. 13, it is convenient to use the parabolic wave functions in the
upper part and the BKW-approximations in the lower part. They
have to be joined at the proper level, about 275 km on Fig. 13
for example, which is a fairly simple matter.

An extended study of the parabolic solutions for other values of
frequency, i. e. frequencies not necessarily close to the critical fre-
quency of the layer, necessitates the expansion of the parabolic
wave functions in asymptotic series which can be used when not
only u but also ¢ is large. Interesting as such a study may be, it
is outside the scope of the present communication. An account of
these expansions will be given in a later communication to which
those especially interested are referred.

In conclusion a few words should be said about the collisional
friction. It is formally introduced in the wave functions if fe,, 18

= 1 v
replaced by for, = fcm - exp. (— ja), where a = 5 arc tan (—-) When

Wy

2

v

(w—) <1, as is generally the case in the F,-layer, the introduction
0

of » is hardly noticeable as far as A k, is concerned. The mathema-

tical results, which therefore are of mainly theoretical interest, will

appear in a forthcoming paper.

The author wishes to express his thanks to Alice and Knut Wal-
lenberg’s Foundation, Stockholm, for their generous support of the
investigation. The author’s thanks are also due, and are cordially
extended, to TorsTEN Jonsson, M. Ph., who carefully assisted in
correcting the proof.
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Introduction and summary

The propagation of waves through inhomogeneous or stratified media was studied
already by Ravreicu in 1912 [1] and by ForsterLiNG [2] and Gaxs [3] 1913/1915. FORSTER-
LING later, in 1931, returned to the same theme with application to the new problem,
the propagation of short radio waves in an inhomogeneous atmosphere [4]. Slightly
earlier EpsTEIN published a fundamental paper concerning the same problem with exact
results for certain types of dielectric constant variation profiles [5].

In the following years with the rapid advance of quantum mechanics and of the
experimental investigation of the propagation of radio waves in the inhomogeneous
upper atmosphere a great number -of papers appeared concerning special kinds of wave
propagation or wave functions. The problems were attacked by various methods and
this, no doubt, frequently was due to the faect that very different physical quantities
were desired.

In the subsequently developed theory of recaction rates [6] problems very similar to
those of the radio case have been studied by the introduction of EckarT-EpsTEIN type
potential energy profiles.

In a comparatively recent communication ScHELKUNOFF considered the problem of wave
propagation in a slightly inhomogeneous medium [7]. It seems that there is a definite
need for a further development of the various theories both for propagation in slightly
inhomogeneous media as well as in strongly inhomogeneous media and also for a deeper
discussion of the connection between the different theoretical methods. When, for
example, does the elementary foxm of phase integration originally developed by [EckErs-
LEY yield a sufficiently accurate result?

In the present communication first and higher order approximations for the reflection
coeffcient are developed for slightly inhomogenous media. The results of these approxi-
mations, applied to cases which can be solved exactly, demonstrates the usefulness and
range of the former,

The methods of Zwaax, KeMBLE [8] and others of connecting the layer or barrier
boundaries with a so called good path is discussed as an introduction to the connection
of wave functions of Laxcer type developed from the branch points of the refractive
index, n. The general agreement between the two methods when the branch points are
sufficiently apart is shown and it is further demonstrated that the complete method of
phase integration must consider all waves “running” up and down between the branch
points. The result is physically clear.
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In a following section it is proved that the reflection intensity as calculated by the
good path method is corrcet even when the branch points come very close (fransition
from reflection to penetration or vice versa) if only the minimum in »? is parabolic. In
practically all applications this is the case. A complete expression for the wave phase
is shown.

In the final section of this communication the application of the cirenit relation of
the wave equation is demonstrated in two topical applications, viz. the propagation of
ALFVEN'S magneto hydro dynamic waves in the Sun [9] and the duct propagation of
Inicro waves in the lower tropospliere.

It is shown that from tlie circuit relation the actual value of the reflection coefficient
can be obtained for any level even though the wave funections, forming the circuit relation,
themselves can not be considered as purely progressive waves well inside the inllomo-
geneous medium. As RavieiGi once remarked: In the full sense of the phrase there is not
such a thing as a progressive wave (in an inhomogeneous medium). By means of the
methods demonstrated in this communication, however, it is possible to follow the con-
tinuous deformation and reflection of the progressive wave if only the circuit relation
is known.

0. E. H R

Research Laboratory of Llectronics

May 7948.



Fundamental theory

Let us start with the one-dimensional monochromatic wave equation

2
%{T]#-A‘O?fﬂf[:(), (1

where 7 is a wave potential, ko ="2all, and 2, the vacuum wave length. The refractive
index 7 is supposed to be a function n(x) of the coordinate z.

The first-order approximation to a solution of (1) is the so called WeNTZEL-KRAMER-
BRILLOUIN-J EFFREYS approximation *

(2) x
1) —'h ’q:jll.'o/u(x)ds ald 5]
I =n"eti) }, 2)

. 3 . 3 (1 . .
Making use of the time-factor e—/' we note that I]; )represents a wave traveling in
the positive z-direction.

The general solution of (1) thus takes the form

MT=aD(2) [19(x)+aD(x) 1T, (z), (3)

where the coefficients a™(z) and «(z) change very slowly except in regions of con-
siderable reflection. .

The tirst order approximations (2) do not themselves give us any information about
the partial reflection in the medium. However, they contain the “impedance” transforming
factor #™ so that for sufficiently short waves

1 ([Hi” )
Jk, dx ~odl )
(U
i. e. the energy flow
ar®
{72— (I; . il)"' ~ 1=constaut. )
<70

AL 1} one can ignore the reflections

1 d|:
Thus if n(x) is a slowly varying function {l’_'l = (Ilf |

* As a matter of fact used long ago by RavLeGi and Gans.
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and in the first approximation consider the medium as continuously “matched” and thus
acting as a transformer.

Let us now return to Kquation (3). We will necessarily have to complement it by

ar a7 (z) o dIT% (z)
d——a (x)T—i—a-(x)—

z dx ©)
Lgs. (3) and (6) arc evidently the equations we should have to employ if we were fitting
a fized linear combination to II at the point 2 and wished the combination to cling to I7
as closely as possible in the neighbourhood of z. We assume that the coefficients a®(z)
and a®(z) thus defined reduce to 4™ and 4™ at one end of the path (the mmdence

side) and to B® and B® at the other.

Introducing
W (2, b=k, [ n(s)ds—n/4, (7)
b
we find from (3) and (6)
da(l) o (lam —joun
dz _ dz ¢ (8)

We further find from (3) and (6) that®

8 7 S\
a® (x)=ﬂ{17171 -’ {9)
As further
o y )
Ui) + (k" — @) I, =0, (10)
where
3 (n\? 12"
Q=1(77) 3 (1)
we finally have
da® g @,
— . (1) (2) 2" |
dx ~ 2k, n' (e +a®em ), iz}
and
da® _—j @
— (1) @32 W 1 () 115}
de 2k, n {a +a®, (13)
which also proves (8).
It is convenient to introduce
@ @ L foaaa @) L
bug:au) IO _ 4T, (14)
where
@ ()
=t 14a
Hiz) 2kyn(x) (142)
N arr daar
Note: H'-—'—J— 7" = F
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Egs (12) and (13) thus yield

@
db(l):Hbg’)) e:tj'zO

dx ’ (19)

and O=W4I'—n/4. (16)

Eqs (15) describe the partial or infinitesimal reflection in the medium and prove that
a change in 7, even if small and slow, always produces a fractional reflection.
When 7 real, one further easily finds from (15) that

| pm |2_| b2 |2=const., (17)

proving that the net energy transfer through the medium is constant. If we select the
fundamental case of waves incident from one direction only, for example in positive
direction, we evidently have B®=0, and

|00 p—| b =| BOF, (18)
i. e. the magnitude of the reflection coefficient becomes
| R|=V1—|BW}/ 4O (19)

This demonstrates how the reflection coefficient gradually falls to zero as we leave the
inhomogeneous region in positive direction.
Introducing d=co,
z=Heti20 and z*= He—i29, (20)

we obtain from (15) after successive integrations

U@ (2)=BW - (I, () + I (%) + L5 (&) + -}, (21)
where
I (@)= [2dz, L yi(0)= [ 2L (z)dz, (21 a)
and ~ ”
2:1( )=f2'* I‘.’.n—l(x)dx (21 b)
Similarly
b (2) =B(1).{1-|-I;(x)—|-I:(x)—|—...}, (22)

i, e. the reflection coefficient becomes *

L@HLEFLE) F
RO = o+ L@t ¢

(23)

This formula, however, is useful only when the variations in 7 are relatively small
as will be shown in the following section.

* Note: Time factor e—jwt,
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Propagation in a medium with small variations in refractive index

As an introduction let us study the nature of Q briefly. With

n=V T+/ (@), (24)
we have
_ 1 /"= B )\ .
MR SEY ERNT: {1+.f(x>f £
However, as
' 1 ) 1 f |2
7_§|1 O IJ o)
but
%:d—)-ﬁ?)/), if n=1+4 f(x)/2; (26)

we infer that neglect of the last term in (25) practically is the same as assuming that
1+7(z)/2 is a good approximation for (24).
Let us next consider two typical cases, viz.

a) Slx)=6, tanh o/z,, (27)
and
b) J«(m)zég I -

1 cosh? zfx,

as depicted in fig. 1. Cases a) and b) can also be written

1+f(x)

Y 2 3 axx

-4 -3 -2 -

(27 a)
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and
) G 28
S (z)=4, Tte 2 (28 a)
where
n=2x/x,. (29)
Both are special cases of the general EpsteiN-EckarT function (or potential-function) [5, 6]
. ¥ c
N = =5 . o
JE(n) A+1—|—e—') NET=r e, (30)
for which the wave equation can be solved in terms of hypergeometric functions.
Returning now to case a) we assume that 6, <1, i c.
Hig) s — g f" (@), and © o by (2 )~/
0
The first order approximation for R, i.e. R™, in accordance with (23) becomes
z
=ikt
RO(@) = — - / oot £ () d. (31)
‘0

If we assume that we are well on the negative z-side of the main reflection region
(—x > x,), the upper limit z can safely be replaced by oo, Therefore, after partial

integration,
e i2 (kox—7t{4) kg 8
R(l)(x)z _6‘_ P2l / Lo(?t= — e P2hox—a4) . ﬁ M (32) &
2 (142 2 sinh nk,zx,
( —x > xo)

The reflected wave thus appears to come from the level x =0 with a BKW-type phase
shift of 2.=/4. The amplitude of the first order reflection coefficient

| R |=d1. T (32 a)

2 “sinh 7k, x,
for very long waves becomes | R®| |51/2[, i.e. the discontinuity result as one should
expect.

The exact value of the reflection coefficient can be obtained from the circuit relation,
involving hypergeometric functions, of the differential equation. One finds [5]

|R|= sinh {nk x (l/1+5 —Vl— ) _} (33)
sinh {nk, :ro(l/]+6 +1/1—6,)/2)
1+6,—V1—
and thus for very long waves the discontinuity result |[?{= a L4 ~

1/1+6 +|/1_.a 2

& S S
. Note:f At I(z+1) I'(u 7).

= Rew=>=>Rez>—1).
Jagoyra™ rewrn '
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When 6, <1, and 6, <2/a"z,, (33) thus is identical with (32a). This demonstrates the
usefulness of the first order approximation of (23) for small steps, d;.
Next, let us study case b) briefly. Integrating partially twice we find

8, kyw, . [i-ikndi & kx ko .

R = — 2. 070, —jakox [ 70 Y2 To%o, 070, p—i2k {

(@) 2 72 ¢ 0./ (1412 2 "2 sinh akyz, | " &)
(—z>x)
i. e.
0, | Ky Tk, x

R® =l_2. 070, _ 00 3.

| I 2 2 simh Ak z, (34 2)

For very long waves we thus have |R®M| = 6,k.z./4. For very low frequencies |[R®| thus
is proportional to the wave frequency (9., as 6,, have throughout been assumed indepen-
dent of frequency) and not constant as in case a). This is due to the fact that the wave
groups reflected at the rear of the hump (z>>0) will be practically out of phase with
the groups reflected at the front.

The same is true in the case of real discontinuities. If for example n=1, for z <z,
and z>2,+s; n= 1149, for z, <<z <<z,+s, and 6<€1 we find

|R|=|.§5 sin (&, )|, (35)

showing the characteristic colour effects except for long waves, when |Rl 20 0kos/2. The
low frequency dependence therefore is the same as in case b).
Finally, let us for comparison consider the result of the exact theory for case b).
One finds
cos zd |
R = ‘—l_T_I__:‘, (36)
| 2] V cos? md + sinh? nk,x,

where

S —

1 3 2
d=5 V 14k, z,)20,. (36 a)

When ¢, < 2%/(2n2,)* therefore (36) reduces to (34a), proving again the usefulness of
the first order approximation when the ¢ is small.

In ALFVEN's theory of the development of solar magneto-hydrodynamic waves [9]
these waves propagate from the photosphere towards the chromosphere in a medium with
decreasing refractive index approximately of the type

weV TE T, (37)

where z, may be regarded as a scale-height of the medium. It is of particular interest

to investigate how much of the wave will reach the chromosphere and at what level the
main reflection will take place. As U is very large we can use our first-order approxi-

* Jt is interesting to note from (36) that the colour effects disappear when the minimum in
refractive index is sufficiently low, i.e. when — 8, > (k)
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mation only when x>, i.e. for the weak, remaining reflection when n~ 1. In a
following section we will study the reflection in a much wider z-range.
As

U
H(z) S — s el
() = TR (38)
when z >z, we have
A [o—izke 5 ] . 1 Ue—lx
RO = ————— [ e~ =2kt dp = ; . .
8k0x02/e TP Wy (89)

The reflecting power, which at this level is very small, thus falls exponentially with
distance. Relation (39) will be compared with the result of the exact theory in a following
section.

Propagation in a medium with large variations in refractive index

So far we have only considered small changes in #® which has been assumed > 0.
If, however n becomes very small, or zero for real values of z, the propagation problem
has to be attacked by different methods.

Let us assume that »° has two zeros, z, and 2z, at z=—2, and +x. respectively.
This corresponds to the problem of the transmission of matter waves through a potential
barrier or normal incidence transmission of electro-magnetic waves through an ionized
layer at frequencies below the critical frequency.

Instead of considering n(x)} as a function of z only we now consider it as a function
n(z) of z=z+jy. We assume that it is possible to select in the z-plane a good path,
P, connecting the regions — 2z >2, and x>, such that H is small over the entire
path. This means that the variation in I' can be neglected and consequently

o
O Hat =iV =i (40)
dx

As before we use the time factor ! so that a wave incident from the negative z
side is represented by a®(x)I™(r)* We further choose such a path, P, that eTi2W is
dominant over e 2V (b >ux,). We have in fig. 2 sketched such a path for a parabolic
barrier or layer as a typical example. Several curves Re(n®) = const. = ¢, and Im(n*)=
=const.=d have also been drawn in the picture, based on the general form

z

fo=—nf1—(Z)’, mt > 1) (41)

0

where z, is the semi-thickness of the barrier (layer). In order to make n(2) one valued
over the entire plane cuts have been made round its branch points z; and z,.

* Note: n real and negative on the negative side of the axis of reals when —z > z,.
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— plane

I3

Fig. 2. The parabolic barrier in the z/x -plane (m*=1.25).

As e¥i2W is dominant over e i2W

da® .
T 0, 1. e. a®=const.= AM=BD I
and da® . (42)
rra A Hetiew —a)
x

Now if we follow P from right (positive z-side) to left a® according to (42) changes from
0 to A®, because there is no wave assumed to approach the barrier from the right and
we remain on the +j.0 side of the cuts so that » is real and negative for > z,. With
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I"ig. 8. The parabolic layer in the zlz,-plane (m?®=0.84).

the time-factor chosen /7®*)(z) thus always represents a wave penetrating into the barrier
from the left or right.

The important change in e takes place in the STokEs’ region where e*2W is dominant.
We have approximately

?

T
a® ~ AW [eiem == [ iz, (43)
oQ
o

where we again recognize the first order approximation. If, however, path P is good
enough this is a very good approximation. Thus
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Ry fe-‘l"j(‘ZW—-n/?)del_ (44)
7
Although formally simple this relation is not very useful.

However, as n is one valued over the z-plane

29

|H(1)(xb |—|H(1)( |V” x" —ko nldz, (45)

where —z,>x, and z,>2,, and as both [7 <1)-funct-1.ons represent waves leaving the
barrier (layer), viz. the z,one the reflected wave and z,-one the transmitted wave,
we must have

T2
| A® |5 =] ADJ? | A(1)|ze—2k1{ Infds (46)
i. e A 1
| B|= 4@ / i (47)
‘ 1+4e¢ —2kof|1z|dt

This is the familiar expression for the reflection coefficient of the potential barrier.
Except when the branch points, levels of geometrical reflection, are very close (fraction
of wave-length), the reflection, according to (47) is practically total.

The transmission coefficient is

AW

Lojlnlda: 1
| T|= A®

Xy _—.—Tm.. (47 a)
‘/1+e+2kof|n|dx

In the general cases of wave propagation we are also interested in the problem of
transmission through a minimum in %, even though » never becomes zero for real values
of z. This corresponds to m* <1 (but positive) in (41) for the parabolic case as shown
in fig. 3 where the c¢- and d-curves are drawn for m®=0.84. As before the good path, P,
must approach the cuts from the +j-0 side. If we deform the cut round 2, to enclose 0,
we immediately infer that this time

Y2

n(zg) xa o
10 )| = | 119 ) | 2] e Finren, ()

or
AW 1

(’)\ VA 1/1—_—_
1+e °‘of|n|dj

because 7z is negative along the negative real axis on the =+j-0 side of the cut.
Results (47) and (49) can of course be combined in one formula

_ 1 \
|B|=e——o, (50)

v ke 2ndz 9
L] e S e

|R|—\ (49)
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which holds quite accurately as long as path P is good enough. The quality of the
path has to be examined in dubious cases.

Even if one @ priori is doubtful as to the application of (50) in the case 2o =2, it
nevertheless yields the physically proper result |Rl=1/ /2. In the following section
we will return to this question and show that (50) is substantially correct cven if the
branch points are very close together.

Relation (50), however, only yields the amplitude of the reflection coefficient not
the phase. In order to estimate the phase one can, of course, as a first order approxi-
mation make usec of expressions involving BesskL functions of order *1/,. Wave approxi-
mations of this kind were used already in 1915 by Gaxs in a fundamental paper, Fort-
pflanzung des Lichts durch ein inhomogenes Medium [3). They have been used in much
later applications by several writers including the present author [10,11] and they have
been discussed in mathematical detail by LaxcER in several papers [12, 13, 14].

If »* has a zero of the first order at z=2z2,, we introduce the following approximate
wave function

@) A @ )
W)= (2) 1w 1)

‘s

where

Wy=k, [n(e) dz. (52)

2

One easily finds that (51) is a solution of

2
T8 ko 2= Q,)p=0, 53
where
5 W,/ \? -
=07 (3—I—V_Z) - (54)

The last term in (54) normally is very small except at or near the first order zero of
n at z, where it is & 5/8(z—z2,) and thus serves to make Q, equal to zero or very
small.
(2)
At the other branch point this is by no means the case and the 1/)(}:( W,) — funetion
(2)
can not be used. The proper form of course is wf;’(W ;) where W, denotes

W=k, [ n(e)dz= 1V, +E, [ n(2)dz. (55)

21

(2) (2)

The connection of the wfll)( W,}— and wfl”( W,)— functions requires special considera-
3 3

tion on acecount of the Stoxes phenomenon.

a) Considerable reflection (m*>>1 in the parabolic case)
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For the sake of simplicity we assume that the transmission is loss-less so that z,
and 2, are situated on the axis of reals. If thus 2, =u2,, and 2.=2z, we have

y_ || Wl 5>z,
W e,z <
and (56)
W — | W, | VT2 T
& | W, | e, z < =,

With the same time factor, eJ!, as before v ;(W.) represents a wave approaching the
barrier (layer) from the right, and ., (W,) a reflected wave. As further

w (| W €™ =e Byl (| 7, )
1

2 . . . . .
1p.(/f:(W1) represents the wave penctrating the barrier, i. e. the connection relations become

DN W By - A gl (| W, | =B oD (| W, [e”’~ &7
2
_'/, | Wol"lhl {’Pm (1, »|"Hl)=Bw(_q)z/;( R
where
ky | : l
| Wol=3) /n(x)dxl. (57 a)

The above relations are good approximations only when the branch points x, and
(2
a, are so distant from each other {(counted in wavelengths) that both w(”(W._,) and
(2)
(“(W) are good approximations to the solutions of (1) at the connection level
W, = |W,|ei,

As
(2)

(1)( nf )

il £
/2y
when 2z <<z, and [W,|> 1, we have the connection formula from right to left (r>ur, —

—r<< T)

]¢|‘|zl+J p—|”2|] (H8)

()l) e=Fl(|Iz_‘l I)__.,e:!:‘l‘l; |,’ 'n{el iy + 71(:—| ”"l} (59)

From right to left of z, we similarly have { for % (W,)}
|’IZ |—'Iz {(3! LY} +} .1) e I} s 2 | n |-"/1 eJ LWy ==y (6())

Relations (57) therefore vield

D= and I? 2
1+52’ A Qg

PR RS

(61)
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where
b=ge2I M. (62)
Thus
1—6% . ..
R~ 1+623~J(“2—ﬂl4) (63)
and the transmission coefficient
9P e i 2662 ed (11| + 10y, (64)

It is well illustrated by fig. 4 that (63) yields substantially the same |Rl-value as (30)
(IRl=1/ V'1+46% even when |[W,| is fairly small.

It is quite interesting to note that the result of (63) and (64) really can be inter-
preted in “geometrical” terms with the reflection virtually concentrated to the two
branch points. If the virtual wave impedance at z=u=,+|4x| is represented by 2, the
corresponding impedance at £ =z, —|4z| should be — jz,.

Denoting the intervals >z, z, <<z <, and x <<z, by 1, 2 and 3 respectively
we are led to introduce the following reflection and transmission coefficients, viz.

LH) e o
RlZ:_lTj=e g Ry, =e= 772,
The= __:)j_l/ge_j“"‘ ete -
127 1_‘7'— goceeereaaans . (69)
T, = : ;== /_ + jl4
21 1—; V2e ,
R21= ei-’ll‘l

R,, denotes the branch point reflection coefficient for a wave approaching the branch
point in interval 1, R., the corresponding coefficient for a wave approaching the same
pranch point in medium 2, ete. If the virtual amplitude and phase change of the wave
when progressing from branch point to branch point is represented by the coefficient
& we can collect the following waves returning from the layer, viz.
2

eIV Ry Tyg ERyy £ Ty {1+ (Ryy Ryy €77 +( Jt =l U i_l__i-z'

In this particular case the transmission of waves through the layer apparently roughly
corresponds to transmission through three successive high pass ladder networks of
which the central one has a cut off frequency above the wave frequency.

The reflection coefficient thus becomes

(66)

1— &2
1+ &
i.e. £=24. The wave thus experiences no phase change when progressing from branch
point to branch point but an attenuation
d=—In &=2| W,|+In 2. (67)
b) Considerable transmission (m*<<1 in the parabolic case)
9

R=e2 (0 W[—8)
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e —_— e ——

/ 2 3 v

Fig. 4. |R|= (1 —&)/(1 + &), R | = 1/V'1 ¥ 48* as functions of 2w .

This time we have z,=jy,, 2.=—jy. (compare fig. 3). We assume y,=y. (0)

and have along the axis of reals

. . i+0 side of ¢ ‘he 0
IV, = st I'Vo+| koj G | +7-0 side of cut when x>
- G

\—j:0 > <0
| W,

Phase (V,) ___[27t-—al‘ctan (| Wol/| We)=2r—¢ z >0
3 -0 side of cut when >0

W,=ei2 W, W, J-|-.7‘ ic v >
) 1 70 » »  x<0
O to l/I” l’Vm _—_0 x > O

Phase (W)= [0 Farctan (| Wol/[ Wl )=0¢

e x <0

(68}

(69)
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If we this time for a change select the conjuga‘te time factor e*i“! we find that
W)=y (| W, |e i) e=ini (z>0)  (70)
represents a wave approaching the la.yer from the right (z<<0) whereas
(]V | W, |)eir)elri2 (x> 0)
represents a reflected wave. On the other hand
v ()= —jy) (| W, | eir) e (x < 0) (71)

represents a wave transmitted through the layer.
Our connection equations therefore become

HIEA PP ALATICE A SAPEC I,
' 72
2 W o) 4y, (| IV, o) = — Byl (], ,e_,-m)[ "
Y oy, ol€ Y oy 0 DY 0 |
As
.1) i 1
| W, | e ~ + ( 2] 1+; e—"I"ul el
_— l (73)
- 2= a4
w'l ILV |cjl ( /9) { -|J e | Hol }ej ' et
we obtain from (71)
28 , 1—¢° -
.’1——m, and 1)—-1 —l—(S"’ (‘4-)
Therefore, with the time faetor etJjot
o~ - JEIW] - . (73)
and
g 1= . -
1 \1+620—./(|l|_1‘]+|"_rl) (‘6)

It appears that even in this case the expressions for R and 7 can be interpreted in
geometrical terms. Denoting the intervals y >y, —y, <y <y, and y<<—y, by 1, 2
and 3 respectively we sce that (74) can be interpreted as a series of reflections between
the branch points according to the formula

R=e=i21 01 [ Ry & (14(Ryy By £+ Pk
Ry & (1H(Byg Tty 88) 4 P+ (1)
If the branch points are sufficiently remote. i.e. * <1, which means that 4"l < 4,

it appears that it is sufficient to consider only the first terms in the expansions of R

)
and T. When therefore (()"nglf "< 4, R and T can be obtained by elementary phase
integration, in the case of R round the nearest branch point and back to the incidence
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boundary, in the case of 7' from boundary to boundary. The older methods of phase
integration, used by EckersLEY and others, which as a matter of fact do not explain the
reflection phase shift —x/2, thus only are first order approximations of the complete
method of phase integration which consider all waves running between the branch
points.

A few words should be said about the wave propagation in dissipative media. Al-
though the ray concept and a law such as SNELL’s hardly are applicable, as discussed
in detail by the present author in a previous communication (10, 11], the approximate
method of phase integration nevertheless generally can be used with an accuracy better
than in the non dissipative case. This is due to the characteristic circumstance that the
introduction of losses prevent the branch points from coming very close to each other
in the critical case when conditions shift from reflection (mainly) to penetration. This
is well illustrated by a typical example, the parabolic ionized layer, for which

2
2y (i)
w
Cm xo

P21 Zo/
Ll w? 14+ /0w’ (time factor e—2«1)

(78)

where » is the collisional frequency of the free electrons, w, the maximum angular
critical frequency, i.e. the vertical incidence “penetration” angular frequency, and z,
as before the layer half thickness. Also according to (41)

m2=wfm/w2(1+jv/w)=x2/(1+jv/w). (78 a)

As the no — loss branch point is z,==z, )/ 1—1/4%, we have for moderate losses
(P <ow?) and y>1

Zzgxz—jv'?wle/l—l/xz. (79)

The shortest distance between the branch points (y 1) approximately becomes
|2, — 2, |nin 222, V v/o. (80)

For the E-layer of the ionosphere with » &~ 2.10° and a wave frequency of 3 Mefs we
find |z, — 2y|min~ 0.22,. As I, at least of the order 10 km the minimum distance at the
frequency chosen is about 20 wave lengths. The phase integral therefore can be used
as a first order approximation practically through the entire frequency range in this
particular case.

4 few examples

1) Let us consider case (27), viz. n=}/1-+9, tanh z/z,. The proper branch points
are easily verified to be
2=, (+ jn/2—arctan ¢,). (81)

One further after elementary transformations finds

Re {2k, [V T+5, tanh (2/ay) da } =k, 2,1/ T—0,

—
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and thus as a first order approximation of the phase integral method
| R| e~ o= hnV/T=0, (82)

This is identical with the exact result (33) when the wave length is so short that
akoTo0,/2 > 1.

2) In the friction free parabolic case with the branch points 2, =+iV 1/ —1(z <1
2

we easily find

and thus as a first order approximation of the phase integral method

T

I Rlcve 2 kofo(llz—z). (83)

Formula (50) accordingly yields

e—Thoxo (Ufx —2)

| B|*= (84)

1-Le—hz(lx—2
which is exact as previously shown by the author [11]. The close agreement between
(83) and (84) is evident. In the communication just referred to the parabolic case has
been considered in detail for various degrees of friction and it has been proved that
cenerally the phase integral method yields a sufficiently accurate approximation.

3) In ALFVEN’s case (37) we have n= }/1+Ue* with the proper branch points

z,=z,(In U+yn). (89)
2

The first order approximation of the phase integral method becomes for a wave coming
from the right (x> 2,)

3
—2|Rej [ n(zdz|
z

|B|eve =g~ oo, (86)
It will later be shown that this is identical with the exact result when the wave length
is short.

Transmission properties when the waves begin to penetrate the
reflecting barrier

So far we have not thoroughly discussed the transmission properties when the branch
points are very close to each other, i.e. when, roughly speaking, the layer transmits
and reflects equally well.
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It is only natural and practical to assume that the branch points are now located
in a region where 2% is parabolic. For a so called Cuaryax layer in the ionosphere, for
example, we have

e 1—|55
0ol oo 21 .
o L TP (=)

it [¢*<<(2H)*, where / is the local scale height of the gas from which the layer is
formed. When therefore the wave frequency lies in the vicinity of the penetration fre-
quency (we, [27=f, ) the hranch points of » are very close and located in a parabolic
region.

In the case of (28) we have a similar example with r, roughly corresponding to 24.
It should also be noted in this conneetion that for the Fi-layer of the upper ionosphere
we,* frequently has a parabolie variation practically through the entire layer.

We now introduce the parabolic wave equation

Py , o
TR 1= (1%} p=0 (87)
where
v=x/Z,, (BT a)
We e Ja
— m — 88
= Vs (8%)
(7)=% arctan (v/w), (89)
and
o=)'1+ (vjw). (90)

The case of wave transmission through a non dissipative parabolic barrier has heen
studicd by Vess [15] and in the general dissipative case under widely ditferent con-
ditions by the present author [10.11, 16] who has shown that the following parabolic
cylinder functions®

D(uei ). D(ue=i7i), and I){uesdvi) 91)

v

Jo—=f —Je ="' —Jo—1z

represent the incident, the reflected and the penetrating wave respectively if the time
factor is el We have

T a2
u=v} dae "7,

o=ae— " (1—1/4%,
where (92)

ax, 1 kxy .
a3 B ) G =)

# The notation of WintTaKER is used.
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The circuit relation connecting these three waves is [10]

D (uef”’4) (79 + /2) [e"é’l’ +Jl4 ) (ue jn[4)+ e— el — jal4 D(ug]3"/4)l (93)
jo—p Vox | —je—1h —Jo—"p

from which it immediately appears that in the case of zero losses
(p=0) when D (ue—/7*)=conjug. D(ucjv"l‘l)

—Jje—" do —
1 i 1

2 _ =
’Rl - 1+e"27’9 1+gﬂkoﬁ'0(1ll—l)

(94)

in complete agreement with (30).
In order to “‘connect” equation (87) with the actual wave equation we introduce

v v
W=k, xo/n(v) dv = w/ )/ P—F — g2 n (v4 )/ 7= Y)}, (95)
‘.I‘z ()
where
pr=1—1/y%. (95 a)
We further assume that
W=*k,[n(z)dz. (96)
Ks)

Denoting the solutions (91) of (87) by y™M(v), v®(w) and w™(v) respectively we
easily find that
[@1] (3)

h” ®
'(v)= V ny () (97)
where
u=x )V F—Fn(z) (97 )
satisfies the wave equation
—Q{2)
Cyy o S Lo 3N
da,z T ?PO {AU 7 +:2-Iu——'1(;) J —0 (98)

In the parabolic range, where we assume that x. and w, are located, we thus have
2., =Z./2, and v > z/x,. Within this range therefore =1 and Q=0. If the zeros of
n® as assumed are located within the parabolic range Q(z) is very small outside this
range, where v is no longer equal to z/z,. When therefore the zeros of n* lie within the
parabolic range y,(v) is a very good approximation to the proper wave function.

The reflection coefficient thus becomes

R=_l~7'9+'/l) wof2 -+ jal4 w_(v_) (99)

V o= PO (r)

For a thick layer fo| is very large except in the penetration-reflection range where
| %] = 1. Therefore when [o| > 1, (99) should yield the same result as the phase integral
method. It is easy to show that this is the case.
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With
vy=+§ (100)
we have by (95)
7 () — _12_1 x+1 3
Wo(x)—koxo{l P ln%—_l +k0:{n(x)dx. (101)

Let us first consider the case of a non-dissipative medium, i.e. ¢ =0. Naturally we
assume that the layer (or barrier) is many penetration wave lengths thick. This means
that a>1. We can then use asymptotic expansions for D(ue’™#) already developed

Je='f
by the author [11]. Two different expansions have to be used, viz. one type when
lo*/2u?| <1 (wave frequency lies in the penetration region) and another one when this
is not the case (|o/ very large).

However, it is possible, by several transformations, to obtain a bridging formula
which can be used practically without restrictions in the no loss case. One finds

1 .
BR=—_—_ _ (ilWi@—a2+4, (102)
)/ 1+e2me (¢=0)
where
§=Phase (I'(2je)/I'(jo)} 40 {1—In(4]c|)}. (102 a)

|

|

100 ¢

Fig. 5. Phase {I(2jo)/I'(jo)} as a function of e.
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It is interesting to note that (102), as far as |R| is concerned, yields identically the
same result as (50) of the “good path” method. Relation (102) only holds when the
branch points are inside the parabolic range. When they are outside this range, how-
ever, the complete method of phase integration can be used. As has been shown the
results of this method are identical with (50) to a high degree of accuracy. We have
therefore proved that the result of the “good path” method

P
Visiomioe

5]

z2

9

is an extremely yood approximation for all layers or barriers for which the zeros of
n* approach each other in a parabolic region. This covers the main cases of practical
interest. It should be stressed in this connection that we have throughout assumed the
layer to be many wave lengths thick, i. e. x, > 2,. In the case of atmospheric radio wave
propagation this is practically always the case. In the rare cases of very long waves
(2~20000 m) the wave equation has to be examined separately for each kind of n*-
variation. If this variation can be represented (approximately) by the general Epsrrix-
Eckart function the wave equation is easily solved.

It appears from (102) that in the penetration-reflection range layers with the same
Z, have the same reflection properties in the no loss case. This is important. This means
that layers with the same curvature at the »°-minimum level change their transmission
properties from reflection to penetration and vice versa in the same fashion because
o is proportional to }'L where L is the radius of curvature of the n*-curve at the
minimum level.

Next let us discuss the phase angle of R. This is equal to the phase of the complete
phase integral method, 2{W,(x) —=/4} when & is very small. One immediately finds
from the StmkLixG expansions of Phase {I"(2jo)/I'(jo)} and from fig. 5 that £ 220 when
e/ >, i e. when

2 1
>ko“"’o‘

2, —2,

2z,

The shorter the wave length the closer will it be possible for the branch points to come
without correction in the geometrical phase 2{W,(z) — =/4}, as expected.

In the field of radio wave propagation the time of travel ¢=d/dw{ Phase (R)|} is
frequently measured. One defines the virtual height of the reflector as 2,= ¢ #/2. 1f the
§-term in (102) is not considered this height becomes infinite at the penetration frequency.
When the &-term is considered, however, one obtains a finite but considerable height
as already demronstrated by the author [10].

When the losses are considered we obtain in stead of (102) the useful formula

I'(jo+1/2)ere2tjea—ma  jolirya)—ajs}
—_— = — — . e
V 97

where this time, as @ = 0. both Wy(x) and ¢ are complex according to (88) and (101).

R— (103)
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As exp. [j2{W,(z) —=/4}] is the first order approximation of the complete method
of phase integration and
I'(jo+'/2)
V 2n
when lo| > 1 and as further according to (92) ¢ never becomes small when the losses are
considerable we find that for a thick layer with at least moderate losses

gmel2+je(l —1ne) ~, | (le|>1)

Rt o). (103 2

When the losses are moderate we find from (92) that the minimum |o|-value becomes

kyx, v
| @ |min 2 020'5- (wgwcm) (104)
When therefore the loss angle of the medium
2
1>—<¥zc_’" (0 2w, )

0™ kyx, L,

the first order approximation (103a) of the complete phuse integral method is a good
approximation even through the penetration frequency range.

Let us consider two examples from the ionosphere. For an E-layer with 2., = 100m
and 2, =20 km we find that (103a) can be used even through the penetration frequency
range if »>3.10% For a low E-layer where » at least 3-10° (103a) thus can he used
with considerable accuracy. For a F,-layer with 2., =30 m and 2,=100%m, on the
other hand, we find that »>6.10° if (103a) could be used. As 6-10° just is about the
order of » for the F,-layer we infer that for this layer the exact result (102) has to be
used for detailed reflection property studies in the penetration frequency range. Com-
pare On the propagation of radio waves [11] p. 143 et seq.

Finally the general formula for the transmission coefficient 7 should be written
down. From (93) we have for the path v; - —,

I'(jo+1 y® (—p
7=TUCE V) g "’—a() o) (103)
V 2n p (v;)
or
T=F(.]7'/Q/_;;1/2) o2 Tie(l—1Ine) ej{ Wolz;) + Wol(— -To)} —7e (106)
T
As
£ e
o7 oo+ Wal=z0)} —me _ eﬂ'“if n(2) dz (107)

i

is equal to the first order approximation of the complete phase integral method we find
again that when [o!>1 this method is a good approximation.
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Application of the circuit relation of the wave equation

When the exact solution of the wave equations is known the remaining problem
simply is to find the circuit relation, for example (93) in the parabolic case, which
connects the incident, the reflected, and the penetrating waves. It is then possible to
investigate in detail how the reflection coefficient varies in the medium.

a) The ALFVEN case

This case has already been studied approximately by two different methods, p. 20.
The corresponding wave equation

d*IT Ue— Tix
— k1 ) IT=0, 108
s, ( . ) (108)

is satisfied by the following wave functions, viz. H®M(2k,x, | l_',), H® 2k x ) "U_vl)» and
J2ko g J2ko 2o

J(2k,x, )/ U,) representing the incident wave (travcling in positive z-direction, i. e.

J2ko 1o

towards the chromosphere), the reflected wave and the transmitted wave respectively

(time factor /). Naturally the eircuit relation connecting these wave functions is

HO k2 V U+ HD Rk 2,V T)=2J2k,2, ) T,). (109)
J2kg 3o J2ko 7o F2ho g .
In order to allow also such short waves that 2A,r, 21 we make use of the proper
Desye-expansions of the HaxkeL functions which can be written in the following suitable
form, viz.

) o QC 5 (77 5 T 1 » Tk rg
HE”(?koxo VU)o ¢TI Chan{VIF Uit (VIR TN+ VT | -] —%: (110)
J2ko %o ' Vokyzym V14 U,
@2k, VU, > 1)
It is readily seen that these expansions are of B-K-W-J-type (2). When therelore
2kor )/ U, >>1 the reflection coefficient becomes

® T
= H(f’:ﬂL:‘) ~ e— PRV IF T+ m (VTIF T + V T} — ap2] - =p (111)
o /U g
]1)’5 (ﬁ l L 1) ((3"2’°<ﬁ l/ L’)
where
B=2k,x,. (111 a)

When U, > 1 this result is the same as the first order approximation of the phase
integral method (86). With the phase included (86) namely becomes

R v o312 (VIFTi= b 42V T} — (86 a)
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Let us next consider the transmitted wave penetrating into the “thin” medium where
U,<€1. As

1 _ sinhzf _ j phase {I’('ﬂ+1)} ¢
) F(jﬂ+1)—V A (112
an
Phase{I'(j8+1)} ~ x/4+B(ln f—1) (113)
(6> 1)
when 8> 1, we obtain
(114)
. _ BV UL\
Ty et Ll VYl ooy immm | (P57) "
RV O~ | =

(B> 1, eto> BV T)

The transmission coefficient (counted from z=0 to z>2z,) thus becomes

T— )HJ{{’; gllj(lj ]/m.e—jko[x+2r011/1+b+]n {;;),(VI-F_Uil)}—I}‘ (115)
(B> 1, en> 1/ T).

Thus *=1 as expected.

One naturally raises the question where does the main reflection take place? In order
to investigate this matter we have to resort to relation (9) because we do not know
what the HANKEL and BesseL functions really represent in the transition range where
BV U, is neither large nor small. Due to the partial reflection in the medium these
functions gradually change character.

In accordance with (9) we therefore introduce

a (68} (x) Hl(l) (x) H(2)/ /H(‘Z) HI/H

- Rz = — 116
a®(z) 1 (=) i oo -m/m e

. @)
where IT=2J;3(f 1/ U,) and H{” are the B-K-W.J-approximations (2).

It is easily shown from (116) that in our specific case we obtain the general result
!
——ln jk ntjky--k, VU, - M
Riz)=——— ; (117)

- é% gk netgky — VT, M

where #'=dn/dz, n=)/14+1U,, and
M=J BV T)/JI BV U,). (118)

JB+1 JB

1) el BV T
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Applying the DeByE-expansions to the evaluation of M we find

1—HJ BV T)/HR BV T,)
1+ H2 BV T)/ HY (B Tr)

Moo —j , (119)

Ria)~ HO BV TYHDBVT,

(62220 & ﬂl/ﬁ)
as expected
2) e 1T
We now have n ~ 1—|—é U,, and, as is easily shown,
— k, BU
/T (P O y
B UM > B {1+(0,..)}. (120)
Relation (117) therefore yields
. Uein
R e —
46°(1—j1/B) (el20> 81/ T (121)

This result is identical with the first order approximation R® of (39) deduced for the
conjugate time factor. This demonstrates the usefulness of approximations of this type
(31) for weak reflectors when ne2 1.

The variation of |[R, with x is sketched in fig. 6. As R(z) is defined as the ratio be-
tween the down-coming (reflected) and up-going waves the main reflection thus takes
place in the region where |R' decreases rapidly as z is increased. Roughly speaking the
main reflection takes place in the neighbourhood of the level where Ue™vo=1/82 i.e
where n*=1-+1/p"

Returning to the Desve-forms of the wave functions (110) we notice that the deno-

4
minator term }/ 13U, may be regarded as an impedance transforming factor (see also
page 5). It might therefore he of interest to study briefly the “reduced” field strength
b ; i
[T}V 1+ U,=|Ia(z)|, where I=J;;(8) U)).
When e#20 £ 8]/ " we find
md | Hrea (2) | ]/1 - sm ® /ooﬂﬁﬂn“
md I

sin g /cosh? fz/2’

and when ¢*/20> /31/.(7

1 coth Br/2,

| Hyea (2) | © 1—1/cos 2 B/2
[ Mea (0)] )| ] 1—sin® g, /cos h?fm/2
where
(p=ﬂVﬁ—T’l —aft, and ¢, =8V 1T —n/t.
These results are sketched in fig. 7 which demonstrates liow the “standing wave”
portion disappear as one proceeds into the “thin” medium where 7 ~ 1.
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/R(xl/
R(o)
]-———Ma’n Zone of Reflexion — — .|
fo |
| |
|
| |
1 I |
[ | |
| |
as ! :
I
| |
I l
I :
! i
— ., — —

/ 2 3 P2 5 6 7 8 —t"'ﬁ/xo
Fig. 6. Sketch of |R(z)| as a function of z.

b) Duct propagation of micro waves

Not only the upper atmosphere (the ionosphere) but also the lower troposphere, ac-
cording to radar experiments, can act as a wave guide under certain circumstancses.
Such duct propagation has been studied during the war by several authors using phase
integral methods and mode theories [17,18].

The radio wave transmission theory developed by the present author 1943—1944 [11],
which in a closed formula contains the degree of excitation of each mode, is especially
suited for an exact study of this kind of propagation. To this (uestion we will probably
return in a later communication in this series. For the present we are only interested
in a study of the circuit relation connecting the radial waves of the spherical propa-
gation case.

The essential features of the inhomogenity of the lower troposphere under meteoro-
logically very stable conditions can be described by the following height function for
the dielectric constant, viz.

S 8_80{1—2’ L)(}_)g}. (122)

In this expression 7o=a-+~ is the radial level (counted from the centre of the earth)
below which rising rays can be bent down towards the earth. According to geometrical
optics the penctration elevation angle of the ray (counted at the earth) becomes

h/u

V 142 (hja) + 2hja S (123)

Pp=¢
it e(@)=1.

At this limiting angle the ray leaving the transmitter approaches r, asymptotically.
The approximate cut off wave length, 2., is easily calculated when one remembers
that the vertical distance between consecutive constant phase surfaces /4 apart should

never be more than about 4, i.e.
Moo 4R a. (124)



OLOF E. Il. RYDBECK, ON THE PROPAGATION OF WAVES IN AN INIIOMOGENEOUS MEDIUM 31

ﬂre o (x)
Tt

Lo

LOS5.

10O

S —

i
x
/ 2 3 4 5 6 7 X5

~

Fig. 7. “Reduced” wave field strength as a function of distance z.

Thus for a duct width of about 300 m we find A~ 6 ¢m proving that only micro waves
are short enough for this kind of propagation. The corresponding cut off or limiting
wave length for the transmission of very long radio waves between I- or E-layer (of
the ionosphere) and ground was discussed by the author in connection with the develop-
ment of the radio wave transmission theory already mentioned [11].

Inserting the dielectric profile (122) in the wave equation we immediately find that
the wave functions deseribing the propagation are of the type

(2)
Il;="DP, (cos O) ED (k,r).* (125)

(2)

where 0 is counted from the transmitter and &®(k,r) are the radial wave functions
satisfying

1 d (dE s | vy HIFL) . o0

7—2(3({{—’)—‘-]00 80{1--2-7———7.2_(§—0 (1_())
In the above equation I(I-+1) denotes

4+1)=n(n+1)—2(k,r)=n(n+1)—2p,2. (126 a)

The circuit relation connecting 77®M(r) and II®(r) formally is almost as simple as (109)
of ALFVEX’s case. However, in order not to complicate the situation in this connection

* This actually describes waves running in both clock wise and counter clock wise dircetion as
DPp (cos @) is an angular standing wave function.
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we select the simplest circuit relation which we know connects the waves from the gut-

side, viz.
e
@ 2_'_'7[92 €o —jn[%+j{ez+eo}_] a £® <
@4 1 v € & )=1T+j2_)’ (127)
r §+.7{92_90}) %
where
Q2=V2QO2—n(n—|—1)—1/4. (127 a)
Introducing
b=k, (128)
we have
¢ Va7 o In @k r) + 7f4) + 7ealy _ . _ 199
5(3)——_]/2/«: =~ e+ (e t00); 1452045 29k, 7} (129)
-
where ,F, denotes a KumMer function.
Let us introduce
n(n+1)=p,? sin? ¢,, (180)

where {, to a very high degree of approximation represents the angle between the wave
direction and 7, When g,° — g,* << g,. i. e. when

cos &, < 1/p, (131)

we can use the following asymptotic expansions for &» and &®, viz.

@ P=Fj{k1r—po In (2ky ) — f2 | £ 7o 2 , 2 9
ED (kg 7) o 5o [1_ﬁ{1 $j9“’@—9°}+...]. (132)
0 /

2k,
As go>1, cos{, therefore must be very well when (132) is used. This means that
(132) can only be used with reasonable accuracy when the ray elevation is close to the
limiting angle ¢,. However, it is in this ray direction that the sudden change from
reflection to penetration takes place when g, is increased and it is therefore completely
sufficient for our present purpose to limit ourselves to the limited direction range for
which (132) can be used. When ¢, — p,* no longer <€ g, the saddle point method has to
be used to obtain the proper expansion of &é™. However, it is outside the scope of the
present communication to discuss this question further. In conclusion it should be men-
tioned that exactly the same problem is encountered in the discussion of the trans-
mission of waves through a barrier or layer with parabolic maximum in potential function
(or parabolic minimum in dielectric constant). Outside the penetration frequency region
special saddle point expansions of the wave equation have to be used as shown by the
present author [11]. Relation (112) actually is a bridging expression connecting the
results of the saddle point series and the penetration range expansion corresponding
to (132).
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[t appears from (132) that when /& is very very large 5((12)), as expected, reduce to
ordinary spherieal waves with the minor correction of a slowly changing phase factor.
At the top of the duct, however, where the wave penetrates or breaks through, r=r,,
and
v .
5{/.‘1 recp, In (24, 0)} =0, (133)

("=)'o)
i. e. with the time factor e SO(Ly) represents a wave approaching the duct boundary
re from the outside or from the inside. This ix a very interesting property. The reverse
ix true of E® (k).

In this respeet 5‘;)’ clozely resemble the wave functions (93), (97) of the parabolic
barrier. When therefore g, 1, and this is alwayvs the case, eircuit relation (127) can
he used to study transmission properties up and down through the dunet boundary.

By (127) and (132) the reflection coefficient therefore becomes

p LU0, ~0u) |~ ae—i2 {kir—metin dam ) (134)
{240yt 0,)}

Using the mnltiplication rule of the I'funetions we casily verify from (134) that very

aceurately '

1
r1e .
| 2= [ e o (135)
As
sin {,=cos p/cos @, (136)
wlere ¢ is the elevation of the wave normal at ground level, we have
) cos? @ cos? ) Cos @— CO8 o
Doy — o) -k, OBy gy, ORP—COS, (137

cos? g, oS ¢,

As further Ayry is a very very large quantity we see that according to (133) there is
an almost sudden (very sharp) transition from reflection to penetration when the
elevation inereases above the limit direction ¢y

It is easily shown that phase integration between the branch points yields

%2

l e ko j nelz |2 — (,‘_’-1 (02 — 29) ,

%

i.e. the results of (135) and (50) are identical. This is not surprising because we have
already shown that (50) halds good for a thick layer with parabolic minimum in e,
such as in the present case with profile (122).
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