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INTRODUCTION 

Frequency modulation (FM), now a major 
method of transmitting intelligence, continues to 
gain ground over the older and more established 
amplitude modulation (AM). There is a growing 
interest in FM radio for entertainment; the trans¬ 
mittal of sound in television is via FM ; commercial 
and military communication systems favor FM; 
artificial satellites, our newest path of communica¬ 
tion, use FM; and, finally, the growing volume of 
digital intelligence transmission is largely via 
digital FM. 
What has been and is responsible for the popula¬ 

rity of FM? Its major advantage is the simple 
tradeoff it permits between noise immunity and 
bandwidth occupancy. This accounts for the 
popularity of the FM radio and the use of FM in 
satellite communication systems. Also favoring the 
widespread use of FM is the efficiency with which 
it can be generated at appropriate levels of power. 
Since the FM carrier is of constant amplitude, it 
may be passed through nonlinear stages for effi¬ 
cient power amplification. Military and space com¬ 
munications find this property especially useful. 
Finally, the widespread use of digital FM is due to 
its simplicity and superior performance. 
The development of FM has an interesting 

history. About half a century ago, engineers in 
their search for ways to reduce the bandwidth 
required for information transmittal proposed the 
method of FM. It was hypothesized that if the 
frequency of a carrier were varied by only small 
amounts, then the frequency spread of this carrier 
would be smaller than for AM. Furthermore, it was 
thought that a reduced signal bandwidth, per¬ 
mitting a narrower filter, would yield greater 
immunity to noise. Carson (see reference 1 on page 
415) disproved this hypothesis in 1922 and showed 
that, on the contrary, a frequency modulated signal 
occupies more spectrum than an AM signal. Car-

son’s findings discouraged much further effort in 
the utilization of FM for more than a decade. 

It was only in 1936 that Armstrong first showed 
that the advantages of FM lay exactly in the larger 
frequency spread. He stipulated and experimen¬ 
tally verified that the larger frequency spread of 
FM differentiates the signal from typical noise, 
thereby giving it greater noise immunity. Thus 
the modern era of FM began. 

Selected Papers on Frequency Modulation is divided 
into four sections: I. General FM Theory and 
Basic Experiments; II. FM Circuit Theory; III. 
FM Threshold Reduction; and IV. Digital FM. 
Most of the papers will be recognized as the classics 
in FM development. They are arranged chrono¬ 
logically in each section, with a few exceptions 
made for the sake of better continuity or peda¬ 
gogical reasons. Following the papers is an anno¬ 
tated Selected Bibliography for Further Reading. 
The book is intended as a reference work for the 
practitioner, as a guide for those interested in 
entering the field, and as a textbook in FM prin¬ 
ciples. 
The collection opens with the now famous paper 

of Armstrong in which he for the first time announ¬ 
ced to the world the successful utilization of FM. 
Here he relates the major property and advantage 
of FM, namely its greater immunity to noise 
interference, and describes a practical FM system 
still popular today. The second paper, the very 
readable classic by Crosby published soon after 
Armstrong’s, presents basic theory and experi¬ 
ments on noise immunity properties of FM. Cor-
rington (paper 3) discusses another very important 
consideration in FM, the required bandwidth for 
its faithful transmission. 
The noise immunity of FM does not hold, how¬ 

ever, under high noise-level conditions. Additive 
noise enters into the FM demodulation process in 
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a nonlinear manner, rendering the exact analysis 
of the demodulated signal-to-noise ratio a very 
difficult problem. The region where the demodu¬ 
lated signal-to-noise ratio begins to deviate and 
fall off more rapidly than predicted by linear 
analysis is referred to as the “FM Improvement 
Threshold,” or simply “threshold.” The region 
below the threshold is marked by a rapid deteriora¬ 
tion of the demodulated output, nullifying the 
noise immunity property of FM. The problem of 
finding the exact demodulated noise values at and 
below threshold is discussed by Rice and Stumpers 
(papers 4 and 5) using different analytical ap¬ 
proaches. In 1963 Rice published a very useful 
approximate approach to the problem (paper 7) 
based on the notion of click noise. Common- and 
adjacent-channel interference is discussed very 
lucidly by Corrington (paper 6). 

Section II (FM Circuit Theory) presents methods 
for dealing with the effect of circuitry on frequency 
modulated signals. This is an important and in¬ 
triguing problem, generally involving approxima¬ 
tions of one sort or another. The two classical 
methods for quasi-stationary signals are those of 
“Carson and Fry” and “van der Pol and Stum¬ 
pers” (papers 8, 9, and 10). The paper by Weiner 
and Leon (paper 11) gives a useful quasi-stationary 
solution with the correction term in closed form. A 
further useful approximate method is given in the 
recent paper of Bedrosian and Rice (paper 12). 

Since FM noise immunity is limited by the 
threshold effect, much research effort has recently 
been expended, especially in connection with space 
and military communication, to reduce the thresh¬ 
old. It has been found that through the use of FM 
and/or phase feedback, demodulators with thresh¬ 
olds at considerably lower received carrier-to-
noise ratios are possible. These are the so-called 

phase-locked and FM-feedback loops. Section III (FM 
Threshold Reduction) is devoted to this topic. 
Enloe’s paper (paper 13) features the “two thresh¬ 
old” theory which is widely used in the design of 
FM feedback demodulators. Develet (paper 14) 
presents an approximate nonlinear analysis of the 
phase-locked loop applicable when both the noise 
and the signal are of a Gaussian distribution. He 
also gives the limit of threshold performance for 
optimum demodulators. Viterbi (paper 15) gives an 
exact nonlinear analysis for the first-order phase-
locked loop in the presence of white Gaussian noise 
interference. 
The last section deals with digital FM. This area 

is already prominent and is gaining further impetus 
from the trend toward digitalization of informa¬ 
tion. The salient consideration here is the proba¬ 
bility of mistaking a “mark” for a “space,” or vice 
versa, for a given received signal and noise power 
level. The paper by Bennett and Saiz (paper 16) 
is a comprehensive treatment of system perfor¬ 
mance for cases where postdemodulation filtering 
can be ignored. The editor’s paper (paper 17) 
includes the effect of postdemodulation filtering 
through an approximate approach, and at the 
same time links the theories of analog and digital 
FM. Concluding the collection is the paper by 
Pelchat (paper 18) on the power spectrum of 
PCM/FM. 

I am grateful to Dr. T. T. N. Bucher for com¬ 
ments and suggestions, and to A. Newton and J. 
Frankie for many fruitful discussions. Roxana 
Klapper is always at my side. 

Jacob Klapper 

Newark College of Engineering 
Newark, New Jersey 
December, 1969 



1 

2 

3 

4 

5 

6 

7 

8 

9 

CONTENTS 

Introduction by Jacob Klapper Page V 

I. General FM Theory and Basic Experiments 

A Method of Reducing Disturbances in Radio Signaling by a System 
of Frequency Modulation by E. H. Armstrong 3 

Proc. IRE, Vol. 24, No. 5, May 1936, pp. 689-740 

Frequency Modulation Noise Characteristics by M. G. Crosby 55 
Proc. IRE, Vol. 25, No. 4, April 1937, pp. 472-514 

Variation of Bandwidth with Modulation Index in Frequency Modu¬ 
lation by M. S. Corrington 98 

Proc. IRE, Vol. 35, No. 10, Oct. 1947, pp. 1013-1020 

Statistical Properties of a Sine Wave Plus Random Noise by S. O. Rice 106 
BSTJ, Vol. 27, No. 3, Jan. 1948, pp. 109-157 

Theory of Frequency-Modulation Noise by F. L. H. M. Stumpers 155 
Proc. IRE, Vol. 36, No. 9, Sept. 1948, pp. 1081-1092 

Frequency Modulation Distortion Caused by Common- and Adjacent-
Channel Interference by M. S. Corrington 167 

RCA Rev., Vol. 7, No. 4, Dec. 1946, pp. 522-560 

Noise in FM Receivers by S. O. Rice 206 
Time Series Analysis, ed. M. Rosenblatt (Wiley 1963), pp. 395-422 (Ch. 25) 

II. FM Circuit Theory 

Variable Frequency Electric Circuit Theory with Application to 
the Theory of Frequency-Modulation by J. R. Carson and T. C. Fry 237 

BSTJ, Vol. 16, No. 4, Oct. 1937, pp. 513-540 

The Fundamental Principles of Frequency Modulation by B. van der 
Pol 265 

Journal IEE (London), Vol. 93, Pt. 3, No. 23, May 1946, pp. 153-158 



10 

11 

12 

13 

14 

15 

16 

17 

18 

CONTENTS Ul 

Distortion of Frequency-Modulated Signals in Electrical Networks 
by F. L. H. M. Stumpers 271 

Communications News (Phillips), Vol. 9, No. 3, April 1948, pp. 82-92 

The Quasi-Stationary Response of Linear Systems to Modulated Wave¬ 
forms by D. D. Weiner and B. J. Leon 282 

Proc. IEEE, Vol. 53, No. 6, June 1965, pp. 564-575 

Distortion and Crosstalk of Linearly Filtered, Angle-Modulated 
Signals by E. Bedrosian and S. O. Rice 294 

Proc. IEEE, Vol. 56, No. 1, Jan. 1968, pp. 2-13 

III. FM Threshold Reduction 

Decreasing the Threshold in FM by Frequency Feedback by L. H. Enloe 309 
Proc. IRE, Vol. 50, No. 1, Jan. 1962, pp. 18-30 

A Threshold Criterion for Phase-Lock Demodulation by J. A. 
Develet, Jr. 322 

Proc. IRE, Vol. 51, No. 2, Feb. 1963, pp. 349-356 

Phase-Locked Loop Dynamics in the Presence of Noise by Fokker-
Planck Techniques by A. J. Viterbi 330 

Proc. IEEE, Vol. 51, No. 12, Dec. 1963, pp. 1737-1753 

IV. Digital FM 

Binary Data Transmission by FM over a Real Channel by W. R. 
Bennett and J. Saiz 349 

BSTJ, Vol. 42, No. 5, Sept. 1963, pp. 2387-2426 

Demodulator Threshold Performance and Error Rates in Angle-
Modulated Digital Signals by J. Klapper 389 

RCA Rev., Vol. 27, No. 2, June 1966, pp. 226-244. 

The Autocorrelation Function and Power Spectrum of PCM/FM 
with Random Binary Modulating Waveforms by M. G. Pelchat 408 

IEEE Trans., Vol. SET-10, No. 1, March 1964, pp. 39-44 

Selected Bibliography for Further Reading 415 



General FM Theory and Basic Experiments 





PAPER NO. 1 
Reprinted from Proc. IRE, Vol. 24, No. 5, pp. 689-740, May 1936 

A METHOD OF REDUCING DISTURBANCES IN 
RADIO SIGNALING BY A SYSTEM OF 

FREQUENCY MODULATION* 

By 
Edwin H. Armstrong 

(Department of Electrical Engineering, Columbia University, New York City) 

Summary—.1 new method of reducing the effects of all kinds of disturbances 
is described. The transmitting and receiving arrangements of the system, which makes 
use of frequency modulation, are shown in detail. The theory of the process by 
which noise reduction is obtained is discussed and an account is given of the practical 
realization of it in transmissions during the past year from the National Broad¬ 
casting Company’s experimental station on the Empire State Building in New York 
City to Westhampton, Long Island, and Haddonfield, New Jersey. Finally, meth¬ 
ods of multiplexing and the results obtained in these tests are reported. 

PART I 

IT IS the purpose of this paper to describe some recent develop¬ ments in the art of transmitting and receiving intelligence by the 
modulation of the frequency of the transmitted wave. It is the 

further purpose of the paper to describe a new method of reducing 
interference in radio signaling and to show how these developments 
may be utilized to produce a very great reduction in the effects of the 
various disturbances to which radio signaling is subject. 

Historical 

The subject of frequency modulation is a very old one. While there 
are some vague suggestions of an earlier date, it appears to have had 
its origin shortly after the invention of the Poulsen arc, when the in¬ 
ability to key the arc in accordance with the practice of the spark 
transmitter forced a new method of modulation into existence. The ex¬ 
pedient of signaling (telegraphically) by altering the frequency of the 
transmitter and utilizing the selectivity of the receiver to separate 
the signaling wave from the idle wave led to the proposal to apply the 
principle to telephony. It was proposed to effect this at the transmitter 
by varying the wave length in accordance with the modulations of the 
voice, and the proposals ranged from the use of an electrostatic micro-

* Decimal classification : R400XR430. Original manuscript received by the 
Institute, January 15, 1936. Presented before New York meeting, November 6, 
1935. 
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690 Armstrong : Frequency Modulation— Noise Reduction 

phone associated with the oscillating circuit to the use of an inductance 
therein whose value could be controlled by some electromagnetic 
means. At the receiver it was proposed to cause the variations in fre¬ 
quency of the received wave to create amplitude variations by the use 
of mistuned receiving circuits so that as the incoming variable fre¬ 
quency current came closer into or receded farther from the resonant 
frequency of the receiver circuits, the amplitude of the currents therein 
would be correspondingly varied and so could be detected by the usual 
rectifying means. No practical success came from these proposals and 
amplitude modulation remained the accepted method of modulating 
the arc. The various arrangements which were tried will be found in the 
patent records of the times and subsequently in some of the leading 
textbooks.1 The textbooks testify unanimously to the superiority of 
amplitude modulation. 

Some time after the introduction of the vacuum tube oscillator 
attempts were again made to modulate the frequency and again the 
verdict of the art was rendered against the method. A new element 
however, had entered into the objective of the experiments. The quan¬ 
titative relation between the width of the band of frequencies required 
in amplitude modulation and the frequency of the modulating current 
being now well understood, it was proposed to narrow this band by the 
use of frequency modulation in which the deviation of the frequency 
was to be held below some low limit; for example, a fraction of the 
highest frequency of the modulating current. By this means an 
economy in the use of the frequency spectrum was to be obtained. The 
fallacy of this was exposed by Carson2 in 1922 in the first mathematical 
treatment of the problem, wherein it was shown that the width of the 
band required was at least double the value of the highest modulating 
frequency. The subject of frequency modulation seemed forever 
closed with Carson’s final judgment, rendered after a thorough con¬ 
sideration of the matter, that “Consequently this method of modula¬ 
tion inherently distorts without any compensating advantages what¬ 
soever.” 

Following Carson a number of years later the subject was again 
examined in a number of mathematical treatments by writers whose 
results concerning the width of the band which was required confirmed 
those arrived at by Carson, and whose conclusions, when any were ex¬ 
pressed, were uniformly adverse to frequency modulation. 

1 Zenneck, “Lehrbuch der drahtlosen Telegraphy,” (1912). 
Eccles, “Wireless Telegraphy and Telephony,” (1916). 
Goldsmith, “Radio Telephony, ” (1918). 

2 “Notes on the theory of modulation,” Proc. I.R.E., vol. 10, pp. 57-82; 
February, (1922). 

4 
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In 1929 Roder3 confirmed the results of Carson and commented 
adversely on the use of frequency modulation. 

In 1930 van der Pol4 treated the subject and reduced his results 
to an excellent form for use by the engineer. He drew no conclusions 
regarding the utility of the method. 

In 1931, in a mathematical treatment of amplitude, phase, and fre¬ 
quency modulation, taking into account the practical aspect of the in¬ 
crease of efficiency at the transmitter which is possible when the fre¬ 
quency is modulated, Roder5 concluded that the advantages gained 
over amplitude modulation at that point were lost in the receiver. 

In 1932 Andrew 11 compared the effectiveness of receivers for fre¬ 
quency modulated signals with amplitude modulated ones and arrived 
at the conclusion that with the tuned circuit method of translating the 
variations in frequency into amplitude variations, the frequency modu¬ 
lated signal produced less than one tenth the power of one which was 
amplitude modulated. 

While the consensus based on academic treatment of the problem 
is thus heavily against the use of frequency modulation it is to the field 
of practical application that one must go to realize the full extent of 
the difficulties peculiar to this type of signaling. 

Problems Involved 

The conditions which must be fulfilled to place a frequency modula¬ 
tion system upon a comparative basis with an amplitude modulated 
one are the following : 

1. It is essential that the frequency deviation shall be about a fixed 
point. That is, during modulation there shall be a symmetrical change 
in frequency with respect to this point and over periods of time there 
shall be no drift from it. 

2. The frequency deviation of the transmitted wave should be in¬ 
dependent of the frequency of the modulating current and directly 
proportional to the amplitude of that current. 

3. The receiving system must have such characteristics that it re¬ 
sponds only to changes in frequency and that for the maximum change 
of frequency at the transmitter (full modulation) the selective character¬ 
istic of the system responsive to frequency changes shall be such that sub¬ 
stantially complete modulation of the current therein will be produced. 

3 “Ueber Frequenzmodulation,” Telefunkcn-Zeitung no. 53, p. 48, (1929). 
* “Frequency modulation,” Proc. I.R.E., vol. 18, pp. 1194-1205; July, 

(1930). 
6 “Amplitude, phase, and frequency modulation,” Proc. I.R.E., vol. 19, pp. 

2145-2176; December, (1931). 
6 “The reception of frequency modulated radio signals,” Proc. I.R.E., 

vol. 20, pp. 835 840; May, (1932). 

5 
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4. The amplitude of the rectified or detected current should be 
directly proportional to the change in frequency of the transmitted 
wave and independent of the rate of change thereof. 

5. All the foregoing operations should be carried out by the use of 
aperiodic means. 

The Transmitting System 

An extensive experience with the various known methods of modu¬ 
lating the frequency convinced the writer as indeed it would anyone 
who has tried to work with this method of modulation at a high fre¬ 
quency that some new system must be evolved. During the course of 
this work there was evolved a method which, it is believed, is a com¬ 
plete solution of the transmitter problem. It consists in employing the 
modulating current to shift the phase of a current derived from a 
source of fixed phase and frequency by an amount which is directly 
proportional to the amplitude of the modulating current and inversely 
proportional to its frequency. The resulting phase shift is then put 
through a sufficient number of frequency multiplications to insure 100 
per cent modulation for the highest frequency of the modulating cur¬ 
rent. By keeping the initial phase shift below thirty degrees sub¬ 
stantial linearity can be obtained. 

The means employed to produce the phase shift consisted of a 
source of fixed frequency, a balanced modulator excited by this source, 
and arrangements for selecting the side frequencies from the modula¬ 
tor output and combining them in the proper phase with an unmodu¬ 
lated current derived from the initial source. The phase relations 
which must exist where the combination of the modulated and un¬ 
modulated currents takes place are that at the moment the upper and 
lower side frequencies produced by the balanced modulator are in 
phase with each other, the phase of the current of the master oscillator 
frequency with which they are combined shall differ therefrom by 
ninety degrees. 

The schematic and diagrammatic arrangements of the circuits may 
be visualized by reference to Figs. 1 and 2, and their operation under¬ 
stood from the following explanation. The master oscillator shown in 
these diagrams may be of the order of fifty to one hundred thousand or 
more cycles per second, depending upon the frequency of the modulat¬ 
ing current. An electromotive force derived from this oscillator is 
applied in like phase to the grid of an amplifier and both grids of a bal¬ 
anced modulator. The plate circuits of the modulator tubes are made 
nonreactive for the frequency applied to their grids by balancing out 
the reactance of the transformer primaries as shown. The plate cur-

6 
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rents are therefore in phase with the electromotive force applied to the 
grid. The succeeding amplifier is coupled to the output transformer by 
a coil whose natural period is high compared to the frequency of the 
master oscillator and the electromotive force applied to the grid of this 
amplifier when the modulator tubes are unbalanced by a modulating 
voltage applied to the screen grids is therefore shifted in phase ninety 

degrees (or 270 degrees) with respect to the phase of the electromotive 
force applied to the grids of the balanced modulators. Hence it follows 
that the phase of the currents existing in the plate circuit of the ampli¬ 
fier of the output of the balanced modulator (at the peak of the modu¬ 
lation voltage) is either ninety degrees or 270 degrees apart from the 
phase of the current existing in the plate circuit of the amplifier of the 

Fig- 2 

unmodulated master oscillator current. Therefore the voltages which 
they develop across the common resistance load will be ninety degrees 
apart. 

The resulting effect on the phase of the voltage developed across the 
resistance in the plate circuits of these two amplifiers when modulation 
is applied, compared to the phase of the voltage which would exist 
there in the absence of modulation will appear from Fig. 3. It will be 
observed from the vector diagrams that the phase of the voltage across 

7 
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the common resistance load is alternately advanced and retarded by 
the combination of the modulated and unmodulated components and 
that the maximum phase shift is given by an angle whose tangent is 
the sum of the peak values of the two side frequencies divided by the 
peak value of the unmodulated component. By keeping this angle 

Side Frequency 

t A
t5/de Frequency 

B 

Carrier 

Garner Garner Carrier 

Fig. 3 

sufficiently small (not greater than thirty degrees) it may be made 
substantially proportional to the amplitude of the two side frequencies 
and hence to the amplitude of the initial modulating current.7 It will 
be observed that if the angle through which the phase is shifted be the 
same for all frequencies of modulation then the rate of increase or de¬ 

Fig. 4 

crease of the angle will be proportional to the frequency of modulation 
and hence the deviation in frequency of the transmitted wave will be 
proportional to the frequency of the modulating current. In order to 
insure a frequency deviation which is independent of the modulation 

’ For the large angular displacements there will be an appreciable change in 
amplitude of the combined currents at double the frequency of the modulating 
current. This variation in amplitude is not of primary importance and is re¬ 
moved subsequently by a limiting process. 

8 
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frequency it is necessary that, for a constant impressed modulating 
electromotive force, the angle through which the phase is shifted 
be made inversely proportional to the frequency of the modulating 
current. This is accomplished by making the amplification of the in¬ 
put amplifier inversely proportional to frequency by means of the cor¬ 
rection network shown in Fig. 4. The network consists of a high re¬ 
sistance in series with a capacity whose impedence for the lowest fre¬ 
quency of modulation is relatively small with respect to the series re¬ 
sistance. The voltage developed across the capacity which excites the 
succeeding amplifier stage is therefore inversely proportional to fre¬ 
quency and hence it follows that the angle through which the current 
is advanced or retarded becomes directly proportional to the ampli¬ 
tude of the modulating current and inversely proportional to its fre¬ 
quency. The resulting phase shift must be multiplied a great many 
times before a frequency modulated current which can be usefully em¬ 
ployed is produced. This will be clear from an examination of the re¬ 
quirements of a circuit over which it is desired to transmit a frequency 
range from thirty to 10,000 cycles. Since the lowest frequency is limited 
to a phase shift of thirty degrees it follows that for 10,000 cycles the 
phase shift will be but 0.09 degree. The minimum phase shift for 100 
per cent modulation of the transmitted wave is roughly forty-five de¬ 
grees. A frequency multiplication of 500 times is required, therefore, to 
produce a wave which is fully modulated8 and capable of being effec¬ 
tively handled by the receiver in the presence of disturbing currents. 

Under ordinary conditions this multiplication of frequency can be 
realized without loss of linearity by a series of doublers and tripiers 
operated at saturation provided the correct linkage circuits between 
the tubes are employed. Where however the wide band frequency 
swing which will be described subsequently in this paper is employed 
unexpected difficulties arise. These also will be dealt with subsequently. 

From the foregoing description it will be seen that this method of 
obtaining frequency modulation consists in producing initially phase 
modulation in which the phase shift is inversely proportional to the 
frequency of modulation and converting the phase modulated current 
into a frequency modulated one by successive multiplications of the 
phase shift. The frequency stability, of course, is the stability attain¬ 
able by a crystal controlled oscillator and the symmetry of the devia¬ 
tion may be made substantially perfect by compensating such asym¬ 
metrical action in the system as may occur. With the method of phase 

8 One in which the side frequencies are sufficiently large with respect to the 
carrier to make it possible to produce at the receiver 100 per cent modulation 
in amplitude, without the use of expedients which affect unfavorably the signal-
to-noise ratio. 

9 
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shifting shown in Fig. 2 there is an asymmetry which is of importance 
when the frequency of modulation is high compared to the master 
oscillator frequency. It occurs in the plate transformer of the balanced 
modulator. The plate circuits of these tubes are substantially aperiodic 
and consequently the amplitudes of the upper and lower side fre¬ 
quencies are approximately equal and from this it follows that the 
electromotive forces induced in the secondary are directly propor¬ 
tional to the values of these frequencies. Where the master oscillator 
frequency is 50,000 cycles and a frequency of modulation of 10,000 
cycles is applied, the upper side frequency may be fifty per cent greater 
than the lower. This inequality may be compensated by a resistance-
capacity network introduced subsequent to the point at which the 
combination of carrier and side frequencies is effected but prior to any 
point at which loss of linearity of amplitude occurs. The level in the 
amplifiers ahead of the compensating network must be kept sufficiently 
low so that the operation of the system is linear. After the side fre¬ 
quencies are equalized amplitude linearity ceases to be of importance. 

The performance of transmitters operating on this principle has 
been in complete accord with expectations. While the arrangements 
may seem complex and require a large amount of apparatus the com¬ 
plexity is merely that of design, not of operation. The complete ar¬ 
rangement, up to the last few multiplifier stages may be carried out 
most effectively with receiving type tubes, these last multiplier stages 
consisting of power type pentodes for raising the level to that neces¬ 
sary to excite the usual power amplifiers. 

The Receiving System 

The most difficult operation in the receiving system is the transla¬ 
tion of the changes in the frequency of the received signal into a 
current which is a reproduction of the original modulating current. 
This is particularly true in the case of the transmission of high fidelity 
broadcasting. It is, of course, essential that the translation be made 
linearly to prevent the generation of harmonics but it must also be 
accomplished in such a manner that the signaling current is not placed 
at a disadvantage with respect to the various types of disturbances to 
which radio reception is subject. In the particular type of translation 
developed for this purpose which employs the method of causing the 
changes in frequency to effect changes in amplitude which are then 
rectified by linear detectors, it is essential that for the maximum devia¬ 
tion of the transmitted frequency there shall be a substantial amplitude 
modulation of the received wave. At first sight it might appear that 
100 per cent or complete modulation would be the ideal, but there are 

10 
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objections to approaching this limit too closely. It will, however, be 
clear that where the translation is such that only a few per cent 
amplitude modulation results from the maximum deviation of the fre¬ 
quency of the transmitted wave the receiver is hopelessly handicapped 
with respect to amplitude disturbances. This is true because even when 
the level of the voltage applied to the conversion system is kept con¬ 
stant by a current limiting device or automatic volume control there 
still remains those intervals wherein the incoming disturbances arrive 
in the proper phase to neutralize the signaling current in the detector, 
effecting thereby substantially complete modulation of the rectified 
current or the intervals wherein the disturbing currents themselves 
effect greater amplitude changes than the signal itself by cross modula¬ 
tion of its frequency. 

to I F Amplifier 

Fig. 5 

An arrangement in which linear conversion can be effected without 
handicapping the system with respect to amplitude disturbances is 
illustrated diagrammatically in Fig. 5. Two branch circuits each con¬ 
taining resistance, capacity, and inductance in series as shown are con¬ 
nected to the intermediate-frequency amplifier of a superheterodyne 
at some suitable frequency. One capacity and inductance combination 
is made nonrcactive for one extreme of the frequency band which the 
signal current traverses and the other capacity and inductance com¬ 
bination is made nonreactive for the other end of the band. The resist¬ 
ances are chosen sufficiently high to maintain the current constant over 
the frequency range of the band; in fact, sufficiently high to make each 
branch substantially aperiodic. The reactance characteristics taken 
across each capacity and inductance combination will be as illustrated 
in Fig. 6 by curves A and B. Since the resistances in series with the 
reactance combinations are sufficient to keep the current constant 
throughout the frequency band it follows that the voltages developed 
across each of the two combinations will be proportional to their re¬ 
actances as is illustrated in curves A' and B1. The two voltages are 

11 
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applied respectively to the two equal aperiodic amplifiers, each of 
which is connected to a linear rectifier. The rectifiers are in series with 
equal output transformers whose secondaries are so poled that changes 
in the rectifier currents resulting from a change in the frequency of the 
received signal produce additive electromotive forces in their second¬ 
aries. Since amplifiers and rectifiers are linear the output currents will 
follow the amplitude variations created by the action of the capacity-
inductance combinations. While the variation in reactance is not 
linear with respect to the change of frequency, particularly where the 
width of the band is a substantial percentage of the frequency at 
which the operation takes place, as a practical matter, by the proper 
choice of values together with shunts of high resistance or reactance 

Fig- 6 

these characteristics may be rendered sufficiently straight within the 
working range to meet the severest requirements of high fidelity broad¬ 
casting. The operation of the system is aperiodic and capable of effect¬ 
ing 100 per cent modulation if desired, this last depending on the 
separation of the two nonreactive points with respect to the frequency 
swing. Generally the setting of the nonreactive frequency points should 
be somewhat beyond the range through which the frequency is swung. 

There is shown in Fig. 7 an alternative arrangement of deriving 
the signal from the changes in frequency of the received wave which 
has certain advantages of symmetry over the method just described. 
In this arrangement a single capacity-inductance combination with the 
nonreactive point in the center of the frequency band is used and the 
rectifiers are polarized by a current of constant amplitude derived from 
the received current. In this way, by properly phasing the polarizing 
current, which is in effect a synchronous heterodyne, differential recti¬ 
fying action can be obtained. In Fig. 7 the amplified output of the 
receiver is applied across the single series circuit consisting of resistance 
R, capacity C, and inductance L. The reactance of C and L are equal 
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for the mid-frequency point of the band and the reactance curve is 
as illustrated in A of Fig. 8. At frequencies above the nonreactive 

point the combination acts as an inductance; at frequencies below the 
nonreactive point as a capacity and the phase of the voltage de¬ 
veloped across the combination with respect to the current through it 

differs, therefore, by 180 degrees above and below the nonreactive 
point. Since the current through the circuit is maintained constant over 
the working range by the resistance R and since the resistance of the 
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capacity C and inductance L may be made very low the electromotive 
force developed across C and L is of the form shown in curve B. This 
curve likewise represents the variation in voltage with variation in fre¬ 
quency which is applied to the grids of the amplifiers and eventually 
to the two rectifiers Di and D2. 

The heterodyning or polarizing voltage is obtained by taking the 
drop across the resistance Rh amplifying it, changing its phase through 
ninety degrees and applying the amplified voltage to the screen grids 
of the amplifiers in opposite phase. The characteristic of this amplify¬ 
ing and phase changing system must be flat over the working range. 
Inder these conditions the signaling and heterodyning voltages are 
exactly in phase in one rectifier and 180 degrees out of phase in the 
other, and hence for a variable signaling frequency the rectifying char¬ 
acteristics are as shown in curves C and D the detector outputs being 
cumulatively combined for frequency changes. Adjustment of the rela¬ 
tive amplitudes of the signaling and polarizing voltages in the rectifier 
controls the degree of amplitude modulation produced from 100 per cent 
down to any desired value. 

PART II 

With the foregoing description of the instrumentalities for trans¬ 
mitting and receiving frequency modulated waves it is now in order 
to consider the main object of the paper; the method of reducing dis¬ 
turbances and the practical results obtained by its use. 

Method of Reducing Disturbances 
The basis of the method consists in introducing into the transmitted 

wave a characteristic which cannot be reproduced in disturbances of 
natural origin and utilizing a receiving means which is substantially not 
responsive to the currents resulting from the ordinary types of dis¬ 
turbances and fully responsive only to the type of wave which has the 
special characteristic. 

The method to be described utilizes a new principle in radio signal¬ 
ing the application of which furnishes an interesting conflict with one 
which has been a guide in the art for many years; i.e., the belief that 
the narrower the band of transmission the better the signal-to-noise 
ratio. That principle is not of general application. In the present 
method an opposite rule applies. 

It appears that the origin of the belief that the energy of the dis¬ 
turbance created in a receiving system by random interference de¬ 
pended on the band width goes back almost to the beginning of radio. 
In the days of spark telegraphy it was observed that “loose cou¬ 
pling” of the conventional transmitter and receiver circuits produced 
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a “sharper wave” and that interference from lightning discharges, the 
principle “static” of those days of insensitive and nonamplifying re¬ 
ceivers was decreased. Further reduction in interference of this sort 
occurred when continuous-wave transmitters displaced the spark and 
when regeneration narrowed the band width of the receiving system. 
It was observed, however, that “excessive resonance” must not be 
employed either in telegraphic or more particularly in telephonic sig¬ 
naling or the keying and speech would become distorted. It was con¬ 
cluded in a qualitative way that there was a certain “selectivity” 
which gave the best results. 

In 1925 the matter was placed on a quantitative basis by Carson 9 

where in a mathematical treatment of the behavior of selective cir¬ 
cuits when subjected to irregular and random interference (with par¬ 
ticular reference to “static”), on the basis of certain assumptions, the 
proposition was established that “if the signaling system requires the 
transmission of the band of frequencies corresponding to the interval 
O2— wi and if the selective circuit is efficiently designed to this end, then 
the mean square interference current is proportional to the frequency 
band width (w2—wi)/2tt. 

Hazeltine 10 pointed out that when a detector was added to such a 
system and a carrier of greater level than the interference currents was 
present, that for aural reception only those components of the inter¬ 
fering current lying within audible range of the carrier frequency were 
of importance and that Carson’s theory should be supplemented by the 
use of a factor equal to the relative sensitivity of the ear at different 
frequencies. 

With the discovery of shot effect and thermal agitation noises and 
the study of their effect on the limit of amplification quantitative rela¬ 
tions akin to those enunciated by Carson with respect to static were 
found to exist. 

Johnson, 11 reporting the discovery of the electromotive force due 
to thermal agitation and considering the problem of reducing the noise 
in amplifiers caused thereby, points out that for this type of disturb¬ 
ance the theory indicates, as in the Carson theory, that the frequency 
range of the system should be made no greater than is essential for the 
proper transmission of the applied input voltage, that where a voltage 
of constant frequency and amplitude is used one may go to extremes in 

9 J. R. Carson, “Selective circuits and static interference,” Bell Sys. Tech. 
Jour., vol. 4, p. 265, (1925). 

19 L. A. Hazeltine, Discussion on “The shielded neutrodyne receiver,” 
Proc. I.R.E., vol. 14, pp. 408, 409; June, (1926). 

11 J. B. Johnson, “Thermal agitation of electricity in conductors, Phys. Rev., 
vol. 32, no. 1, July, (1926). 
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making the system selective and thereby proportionately reducing the 
noise, but that when the applied voltage varies in frequency or ampli¬ 
tude the system must have a frequency range which takes care of these 
variations and the presence of a certain amount of noise must be ac¬ 
cepted. 

Ballantine 12 in a classical paper discussing the random interference 
created in radio receivers by shot and thermal effects obtained a com¬ 
plete expression for the noise output. 13

Johnson and Llewellyn, 14 in a paper dealing generally with the 
limits to amplification, point out that in a properly designed amplifier 
the limit resides in thermal agitation in the input circuit to the ampli¬ 
fier, that the power of the disturbance in the output of the amplifier 
is proportional to its frequency range and that this, the only controlla¬ 
ble factor in the noise equation, should be no greater than is needed for 
the transmission of the signal. A similar conclusion is reached in the 
case of a detector connected to the output of a radio-frequency ampli¬ 
fier and supplied with a signal carrier. 

It is now of interest to consider what happens in a linear detector 
connected to the output of a wide band amplifier which amplifies 
uniformly the range from 300 to 500 kilocycles. Assume that the 
amplification be sufficiently great to raise the voltage due to thermal 
agitation and shot effect to a point sufficient to produce straight-line 
rectification and that no signal is being received. Under these condi¬ 
tions the frequencies from all parts of the spectrum between 300 and 
500 kilocycles beat together to contribute in the output of the detec¬ 
tor to the rough hissing tone with which the art is familiar. The spec¬ 
trum of frequencies in the rectified output runs from some very low 
value which is due to adjacent components throughout the range 
beating with one another to the high value of 200 kilocycles caused 
by the interferences of the extremes of the band. 

It is important to note that all parts of the 300- to 500-kilocycle 
spectrum contribute to the production in the detector output of those 
frequencies with which we are particularly interested—those lying 
within the audible range. 

12 Stuart Ballantine, “Fluctuation noise in radio receivers,” Proc. I.R.E., 
vol. 18, pp. 1377-1387; August, (1930). 

13 Ballantine expressed his result as follows: “In a radio receiver employing 
a square-law detector and with a carrier voltage impressed upon the detector, 
the audio-frequency noise, as measured by an instrument indicating the average 
value of the square of the voltage (or current), is proportional to the area under 
the curve representing the square of the over-all transimpedance (or of the 
transmission) from the radio-frequency branch in which the disturbance origi¬ 
nates to the measuring instrument as a function of frequency and proportional 
to the square of the carrier voltage.” 

14 J. B. Johnson and F. B. Llewellyn, “Limits to amplification,” Trans. 
A. I.E.E., vol. 53, no. 11, November, (1934). 
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Assume now that an unmodulated signal carrier is received of, for 
example, 400 kilocycles and that its amplitude is greater than that of 
the disturbing currents. Under these circumstances an entirely new set 
of conditions arise. The presence of the 400-kilocycle current stops the 
rectification of the beats which occur between the various components 
of the spectrum within the 300- to 500-kilocycle band and forces all 
rectification to take place in conjunction with the 400-kilocycle carrier. 
Hence in the output of the rectifier there is produced a series of fre¬ 
quencies running from some low value up to 100 kilocycles. 1 he lowest 
frequency is produced by those components of the spectrum which lie 
adjacent to the 400-kilocycle current, the highest by those frequen¬ 
cies16,16 which lie at the extremity of the band; i.e., 300 and 500 kilo¬ 
cycles, respectively. 

The characteristics of the rectifiers and the magnitude of some of 
the effects involved in the above-described action may be visualized by 
reference to the succeeding figures. The actual demodulation of the 
beats occurring between adjacent frequency components by the pres¬ 
ence of the 400-kilocycle current is shown by the characteristic of Fig. 
9, which illustrates what happens to the output voltage of a rectifier 
produced by beating together two equal currents of 350 and 351 kilo¬ 
cycles, respectively, when a 400-kilocycle current is introduced in the 
same rectifier and its amplitude progressively increased with respect 

15 It has been pointed out by Ballantine16 that it is improper to speak of the 
amplitude of a single component of definite frequency and that the proper unit 
is the noise per frequency interval. This is, of course, correct, but to facilitate 
the physical conception of what occurs in this system the liberty is taken of 
referring to the noise components as though they were of continuous sine wave 
form. The behavior of the system may be checked by actually introducing from 
a local generator such components. 

16 “Fluctuation noise in radio receivers,” Proc. I.R.E., vol. 18, pp. 1377-
1387; August, (1930). 
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to the amplitude of these two currents. The characteristic was obtained 
with the arrangement shown in Fig. 10, in which two oscillators of 350 
and 351 kilocycles produced currents of equal strength in a linear 
rectifier, this rectifier consisting of a diode in series with 10,000 ohms 
resistance. The output of the rectifier is put through a low-pass filter, 
a voltage divider, and an amplifier. The 400-kilocycle current is intro-

350 KC 

Fig. 10 

duced into the rectifier without disturbing the voltage relations of the 
other two oscillators and the effect on the rectified output voltage ob¬ 
served as the 400-kilocycle current is increased. The purpose of the 
low-pass filter is to prevent the indicating instrument from responding 
to the 49- or 50-kilocycle currents produced by the interaction of the 
350- and 351-kilocycle currents with the current of 400 kilocycles. The 

Ratio- Heterodyne" to Signal 

Fig. 11 

linearity characteristic of the rectifier is shown in Fig. 11 where the 
voltage produced by the beats between a current of constant amplitude 
and one whose amplitude is raised from equality with, to many times 
the value of, the first current is plotted against the ratio of the two. 
The linearity of the rectifier is such that after the ratio of the current 
becomes two to one no further increase in rectifier output voltage 
results. In fact with the levels used in these measurements when the 
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two currents are equal there is an efficiency of rectification of only 
about twenty per cent less than the maximum obtained. 

It is important to note here that the only frequencies in the spec¬ 
trum which contribute to the production of currents of audible fre¬ 
quency in the detector output circuit are those lying within audible 
range of the signal carrier. We may assume this range as roughly from 
390 to 410 kilocycles. The frequencies lying beyond these limits beat 
against the 400-kilocycle carrier and of course are rectified by the 
detector but the rectified currents which are produced are of fre¬ 
quencies which lie beyond the audible range and produce therefore no 
effect which is apparent to the ear. It follows that if the signal carrier 
is somewhat greater in amplitude than the disturbing currents the 
signal-to-noise ratio for a receiver whose band of admittance covers 
twice the audible range will be the same as for one whose band width 
is many times that value. (There are, of course, certain second order 
effects, but they are of such minor importance that the ear cannot de¬ 
tect them.) The amplitude of the disturbances in the detector output, 
will vary in accordance as the components of the disturbing currents 
come into or out of phase with the signal carrier, the rectified or de¬ 
tector output current increasing above and decreasing below the level 
of the rectified carrier current by an amount proportional to the 
amplitude of the components of the 300-500-kilocycle band. The rea¬ 
sons for the independence of the signal-to-noise ratio of the band width 
under the circumstances which have been described should now be 
apparent. In any event, it can be readily demonstrated experimentally. 

It is now in order to consider what happens when a current limit¬ 
ing device is introduced between the output of the amplifier and the 
detector input. (Assume signal level still above peak noise level.) 
Two effects will occur. One of the effects will be to suppress in the 
output circuit of the limiter all components of the disturbing currents 
which are in phase with, or opposite in phase to, the 400-kilocycle car¬ 
rier. The other effect will be to permit the passage of all components of 
the disturbing currents which are in quadrature with the 400-kilocycle 
current. 

Both the above effects are brought about by a curious process 
which takes place in the limiter. Each component within the band 
creates an image lying on the opposite side of the 400-kilocycle point 
whose frequency difference from the 400-kilocycle current is equal 
to the frequency difference between that current and the original com¬ 
ponent. The relative phase of the original current in question, the 
400-kilocycle current and the image current is that of phase modula¬ 
tion—that is, at the instant when the original component and its 
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image are in phase with each other, the 400-kilocycle current will be in 
quadrature with them both and at the instant that the 400-kilocycle 
current is in phase with one of these two frequencies, it will be out of 
phase with the other. 

The relation (obtained experimentally) between the amplitudes of 
the original current and the image is illustrated by the curve of Fig. 12, 

which shows the relation between the amplitude of a 390-kilocycle cur¬ 
rent introduced into a limiter along with the 400-kilocycle current and 
the resulting 410-kilocycle image in terms of percentage amplitude of 
the 400-kilocycle current. It will be obvious from the curve that in the 
region which is of interest—that is, where the sidefrequencies are smaller 
than the mid-frequency—that the effect is substantially linear. 

Oscillator 

Fig. 13 

With the above understanding of what takes place in the current 
limiter it is now in order to consider what happens when a selective 
system as illustrated in Fig. 13 is interposed between the limiter and 
the detector. (The band-pass filter is for the purpose of removing 
limiter harmonics.) A rough picture of what occurs may be had by 
considering a single component of the interference spectrum. Suppose 
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this component to be at 390 kilocycles and that by the action already 
explained it has created its image at 410 kilocycles. These two fre¬ 
quencies are equal in amplitude and so phased with respect to each 
other and with respect to the 400-kilocycle carrier that no amplitude 
change results. 

Assume now that the selective system has the characteristic MN 
which as shown in Fig. 14 is designed to give complete modulation 
for a ten-kilocycle deviation of frequency. Since at 390 kilocycles the 
reactance across the capacity-inductance combination is zero and at 
410 kilocycles double what it is at 400 kilocycles it follows that the 
390-kilocycle component becomes equal to zero but the ratio of the 
410-kilocycle component to the 400-kilocycle carrier is doubled; that 

Fig. 14 

is, it is twice as great as is the ratio in the circuits preceding the 
selective system. The change in amplitude, therefore, becomes pro¬ 
portional to OU. Therefore in combination with the 400-kilocycle 
carrier a variation in amplitude is produced which is substantially iden¬ 
tical with that which would be obtained were the current limiter re¬ 
moved and the selective system replaced by an aperiodic coupling of 
such value that the same detector level were preserved. 

Now consider what occurs when a selective system having the 
characteristic such as PQ and requiring a deviation of 100 kilocycles 
to produce full modulation is employed instead of one such as MN, 
where a ten-kilocycle deviation only is required. Assume the same con¬ 
ditions of interference as before. The 400-kilocycle voltage applied to 
the rectifier will be the same as before, but the relative amplitudes of 
the 390- and 410-kilocycle voltages will only be slightly changed. The 
410-kilocycle voltage will be increased from a value which is propor¬ 
tional to OS to one which is proportional to OT and the 390-kilocycle 
voltage will be reduced from a value proportional to OS to one pro¬ 
portional to OR. The difference in value of the two frequencies will be 
proportional to the difference between OS and OT or RT, and the 
change in amplitude produced by their interaction with the 400-
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kilocycle current will be likewise proportional to HT. The reduction in 
the amplitude of the disturbance as measured in the detector output 
by the use of a 200-kilocycle wide selective system as compared to the 
use of one only twenty kilocycles wide is therefore the ratio RT/OU. 
In this case it is ten per cent. The power ratio is the square of this or 
one per cent. 

The above reasoning holds equally well if a balanced rectifying 
system is used where the characteristics of the selective system are as 
shown in Fig. 15. The output of the system insofar as voltages result¬ 
ing from changes in frequency are concerned is the sum of outputs of 
the two sides of the balance. 

It is of course clear that disturbing currents lying farther from the 
400-kilocycle point than the ten-kilocycle limit will, by interaction with 
the 400-kilocycle current, produce larger values of rectified current 
than those lying within that band. But the rectified currents produced in 
the detector output by those components of frequency which lie at a greater 
than audible frequency distance from the 400-kilocycle current will be 
beyond the audible range and hence will produce no disturbance which 
is audible. (It is generally advisable to eliminate them from the audio 
amplifier by a low-pass filter to prevent some incidental rectification 
in the amplifier making their variations in amplitude audible.) 

It remains only to consider what happens when the frequency of 
the 400-kilocycle current is varied in accordance with modulation at 
the transmitter. It is clear from Fig. 14 that when the selective system 
has the characteristic MN that a deviation of 10,000 cycles will pro¬ 
duce complete modulation of the signal or a change in amplitude pro¬ 
portional to OU. Similarly, when the characteristic is according to 
the curve PQ it is clear that a 100,000-cycle deviation is required to 
produce complete modulation, which is likewise proportional to the same 
value OU. As the signal current is swung back and forth over the 
range of frequencies between 300 and 500 kilocycles the band of fre-
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quencies from which the audible interference is derived continually 
changes, the band progressively lying about ten kilocycles above and 
ten kilocycles below what we may call the instantaneous value of the 
frequency of the signal. The effect is illustrated by Fig. 16 and from 
this it will be seen that the amplitude of the disturbances in the output 
circuit of the rectifiers, which is proportional to the sum of RT and 
R'T' will be constant. This will be true where the ratio of the amplitude 
of the signal to the disturbing currents is sufficiently large—where 
this condition does not exist then there are certain other effects which 
modify the results, but these effects will only be of importance at the 
limits of the practical working range. 

Comparison of Noise Ratios of Amplitude and Frequency 
Modulation Systems 

From the foregoing description it will be clear that as between two 
frequency modulation systems of different band widths the signal-to-
noise power ratio in the rectified output will vary directly as the square 
of the band width (provided the noise voltage at the current limiter is 
less than the signaling voltage). Thus doubling the band width pro¬ 
duces an improvement of 4 to 1 and increasing it tenfold an improve¬ 
ment of 100 to 1. 

The comparison of relative noise ratios of amplitude and frequency 
modulation systems cannot be made on so simple a basis as there are 
a number of new factors which enter, particularly when the compari¬ 
son is viewed from the very practical aspect of how much greater 
power must be used with an amplitude modulated transmitter than 
with a frequency modulated one. If the academic comparison be made 
between a frequency modulated system having a deviation of ten kilo¬ 
cycles and an amplitude modulated one of similar band width and the 
same carrier level (also same fidelity), it will be found that the signal-to-
noise voltage ratio as measured by a root-mean-square meter will 
favor the frequency modulation system by about 1.7 to 1, and that 
the corresponding power ratio will be about 3 to 1. This improvement 
is due to the fact that in the frequency modulation receiver it is only 
those noise components which lie at the extremes of the band; viz., 
ten kilocycles away from the carrier which, by interaction with the 
carrier (when unmodulated) can produce the same amplitude of recti¬ 
fied current as will be produced by the corresponding noise component 
in the amplitude modulated receiver. 

Those components which lie closer to the carrier than ten kilocycles 
will produce a smaller rectified voltage, the value of this depending on 
their relative distance from the carrier. Hence the distribution of en-
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ergy in the rectified current will not be uniform with respect to fre¬ 
quency but will increase from zero at zero frequency up to a maximum 
at the limit of the width of the receiver, which is ten kilocycles in the 
present case. The root-mean-square value of the voltage under such a 
distribution is approximately 0.6 of the value produced with the uni¬ 
form distribution of the amplitude receiver. 

Similarly in comparing an amplitude modulation system arranged 
to receive ten-kilocycle modulations and having, of course, a band 
width of twenty kilocycles, with a 100-kilocycle deviation frequency 

Fig- 17 

modulation system (same carrier level and same fidelity) there will be 
an improvement in noise voltage ratio of 

deviation 
1.7 X- ;-

audio-frequency range 

100 
or 1.7 X- = 17.-

10 

The above comparisons have been made on the basis of equal car¬ 
rier. The practical basis of comparison between the two is that of 
half carrier for the amplitude modulation and full carrier for the fre¬ 
quency modulation system. This results in about the equivalent 
amount of power being drawn from the mains by the two systems. On 
this basis the voltage improvement becomes thirty-four and the signal-
to-noise power ratio 1156. Where the signal level is sufficiently large 
with respect to the noise it has been found possible to realize improve¬ 
ments of this order. 

The relative output signal-to-noise ratios of an amplitude modula¬ 
tion system fifteen kilocycles wide (7.5-kilocycle modulation frequency) 
and a frequency modulation system 150 kilocycles wide (75-kilocycle 
deviation) operating on forty-one megacycles have been compared on 
the basis of equal fidelity and half carrier for amplitude modulation. 
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The characteristic of the selective system for converting frequency 
changes to amplitude changes, which was used, is shown in Fig. 17. 
The variation of the output signal-to-noise ratio with respect to the 
corresponding radio-frequency voltage ratio is illustrated in Fig. 18. 
The curves show that where the radio-frequency peak voltage of the 
noise measured at the current limiter is less than ten per cent of the 

signal peak voltage then the energy of the disturbance in the rectified 
output will be reduced by a factor which is approximately 1100 to 1. 
When the peak radio-frequency noise voltage is twenty-five per cent 
of the signal peak voltage then the energy of the disturbance in the 
rectified output has been reduced to about 700 to 1, and when it is 
fifty per cent the reduction of the disturbance drops below 500 to 1. 
Finally when the noise and signal peak voltages become substantially 
equal the improvement drops to some very low value. While it is un¬ 
fortunate, of course, that the nature of the effect is such that the 
amount of noise reduction becomes less as the noise level rises with 
respect to the signal, nevertheless this failing is not nearly so important 
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as it would appear. In the field of high fidelity broadcasting a signal-to-
noise voltage ratio of at least 100 to 1 is required for satisfactory re¬ 
ception. It is just within those ranges of noise ratios which can be 
reduced to this low level that the system is most effective. 

The arrangements employed in obtaining these characteristics and 
the precautions which must be observed may perhaps be of interest. 
As it was obviously impracticable to vary the power of a transmitter 
over the ranges required or to eliminate the fading factor except over 
short periods of time an expedient was adopted. This expedient con¬ 
sisted in tuning the receiver to the carrier of a distant station, deter¬ 
mining levels and then substituting for the distant station a local signal 
generator, the distant station remaining shut down except as it was 

Fig. 19 

called upon to check specific points on the curve. Observations were 
taken only when the noise was due solely to thermal agitation and shot 
effect. 

Fig. 19 shows the arrangement of apparatus. The receiver was a 
two-intermediate-frequency superheterodyne with provision for using 
either a narrow band second intermediate amplifier with the amplitude 
modulation system or a wide band amplifier with the frequency modu¬ 
lation system. The band width of the amplitude modulation system 
was fifteen kilocycles or twice the modulation frequency range. The 
band width of the frequency modulation receiver was 150 kilocycles or 
twice the frequency deviation. Provision was made for shifting from 
one intermediate amplifier to the other without disturbing the re¬ 
mainder of the system. The forty-one-megacycle circuits and the first 
intermediate amplifier circuits were wide enough to pass the frequency 
swing of 150 kilocycles. Identical detection systems were used, the fre¬ 
quency modulation detector being preceded by a selective system for 

26 



Armstrong: Frequency Modulation—Noise Reduction 713 

translating changes in frequency into changes in amplitude. The output 
circuits of the detectors were arranged to be connected alternately to 
a 7500-cycle low-pass filter with a voltage divider across its output. An 
amplifier with a flat characteristic over the audible range and a 
root-mean-square meter connected through a high-pass, 500-cycle filter 
provided the visual indication. 

The standard signal was introduced into the input of the two 
branches of the second intermediate-frequency stage at 400 kilocycles. 
As long as the receiver is linear between the antenna and the point at 
which the standard signal is introduced it is immaterial whether the 
signal be of forty-one megacycles, six megacycles, or 400 kilocycles. 
This has been checked experimentally but 400 kilocycles was chosen on 
account of the greater accuracy of the signal generator on low frequen¬ 
cies. 

The relative noise levels to be compared varied over such ranges 
that lack of linearity had to be guarded against and readings were made 
by bringing the output meter to the same point on the scale each time 
by adjustment of the voltage divider, and obtaining the relative volt¬ 
ages directly from the divider. 

Two other precautions are essential. The absolute value of the 
noise voltage on the frequency modulation system becomes very low 
for high signal levels. If the voltages due to thermal agitation and 
shot effect are to be measured rather than those due to the power sup¬ 
ply system the output meter must be protected by a high-pass filter of 
high attentuation for the frequencies produced by the power system. 
The cutoff point should be kept as low as possible since because of the 
difference in the distribution of energy in the rectified outputs of fre¬ 
quency and amplitude modulation receivers already referred to there 
is a certain error introduced by this filter which is small if the band 
width excluded by the filter is small but which can become appreciable 
if too much of the low-frequency part of the modulation frequency 
range be suppressed. 

A second precaution is the use of a low-pass filter to cut off fre¬ 
quencies above the modulation range. Because of the wide band passed 
by the amplifiers of the frequency modulation part of the system there 
exists in the detector output rectified currents of frequencies up to 
seventy-five kilocycles. The amplitude of these higher frequencies is 
much greater than those lying within the audible range. The average 
detector output transformer will readily pass a substantial part of these 
superaudible frequencies which then register their effect upon the out¬ 
put meter although they in no way contribute to the audible dis¬ 
turbance. 
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The procedure which was followed in making the measurements 
we are considering consisted in tuning the receiver to the distant trans¬ 
mitter and adjusting the two detector levels to the same value for the 
respective carrier levels to be employed. This was done by cutting 
the carrier in half at the transmitter when the amplitude modulation 
detector level was being set and using full carrier for the adjustment 
of the frequency modulation detector. Each system was then modu¬ 
lated seventy-five per cent and output voltages checked against each 
other. If they were equal the modulation was removed and the relative 
noise voltages measured for the respective carrier levels. This gave the 
first point on the curve. The transmitter was then shut down and 
a local carrier introduced which gave the same level in the 400-kilocycle 
intermediate amplifier circuits as the half carrier distant signal. This 
level was directly ascertainable from the rectified detector current in 
the amplitude modulation system. From this point on the procedure 
was entirely within the control of the receiving station. The noise 
ratios could be compared at any signal level by adjusting the voltage 
introduced by the signal generator to any fraction of that of the distant 
signal, bringing the level in the amplitude modulation detector up to 
the same original value by adjustment of the amplification of the 
second intermediate amplifier (the frequency modulation detector stays 
at its point of reference because of the current limiter) and comparing 
the two output voltages. The level of the detector in the amplitude 
modulation receiver was of course set with the half carrier value of the 
signal generator and the output voltage measured at that level. The 
output voltage of the frequency modulation system was measured 
when twice that voltage was applied. 

It is important to keep in mind just what quantities have been meas¬ 
ured and what the curves show. The results are a comparison between 
the relative noise levels in the two systems (root-mean-square values) 
when they are unmodulated. In both an amplitude and in a frequency 
modulation receiver the noise during modulation may be greater than 
that obtained without modulation. In the frequency modulation re¬ 
ceiver two principal sources may contribute to this increase, one of 
which is of importance only where the band for which the receiver is 
designed is narrow, the other of which is common to all band widths. 
If the total band width of the receiver is twenty kilocycles and if the 
deviation is, for example, ten kilocycles, then as the carrier frequency 
swings off to one side of the band, it approaches close to the limit of 
the filtering system of the receiver. Since the sides of the filter are 
normally much steeper than the selective system employed to convert 
the changes in frequency into amplitude variations and since the fre-
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quency of the signaling current will have approached to within the 
range of good audibility of the side of the filter a considerable increase 
in both audibility and amplitude of the disturbance may occur, caused 
by the sides of the filter acting as the translating device. This effect is 
obviously not of importance where a wider frequency swing is em¬ 
ployed. 

The other source of noise which may occur when the signal fre¬ 
quency swings over the full range is found in systems of all band 
widths. It was first observed on an unmodulated signal when it was 
noted that swinging the intermediate frequency from the mid-point to 
one side or the other by adjustment of the frequency of the first hetero¬ 
dyne produced an increase in the amplitude and a change in the charac¬ 
ter of the noise. The effect was noted on a balanced detector system and 
at first it was attributed to the destruction of the amplitude balance 
as one detector current became greater than the other. Subsequently 
when it was noted that the increase in the noise was produced by the 
detector with the smaller current and that the effect was most pro¬ 
nounced when the signal level was relatively low, the explanation 
became apparent. As long as the signal frequency was set at the mid¬ 
point of the band its level in the detector was sufficiently large to 
prevent the production of audible beats between the noise components 
lying respectively at the two ends of the band where the reactance of 
the selective systems is a maximum. 

When however the signal frequency moves over to one side of the 
band the amplitude of the voltage applied to one of the detectors pro¬ 
gressively decreases, approaching zero as the frequency coincides with 
the zero reactance point of the selective system. The demodulating 
effect of the signaling current therefore disappears and the noise com¬ 
ponents throughout the band, particularly those at the other side of it, 
are therefore free to beat with each other. The noise produced is the 
characteristic one obtained when the high-frequency currents caused 
by thermal agitation and shot effect are rectified in a detector without 
presence of a carrier. The effect is not of any great importance on the 
ordinary working levels for simplex operation, although it may become 
so in multiplex operation. It indicates, however, that where the signal-
to-noise level is low, complete modulation of the received signal by the 
conversion system is not desirable and that an adjustment of the de¬ 
gree of modulation for various relative noise levels is advantageous. 

In the course of a long series of comparisons between the two 
systems a physiological effect of considerable importance was noted. It 
was observed that while a root-mean-square meter might show the 
same reading for two sources of noise, one derived from an amplitude 
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modulation, and the other from a frequency modulation receiver (both 
of the same fidelity) that the disturbance perceived by the ear was more 
annoying on the amplitude modulation system. The reason for this is 
the difference in the distribution of the noise voltage with respect to 
frequency in the rectified output currents of the two systems, the dis¬ 
tribution being substantially uniform in the amplitude system but 
proportional to frequency in the frequency modulation system. Hence 
in the latter there is a marked absence of those frequencies which lie 
in the range to which the ear is the most sensitive. With most observers 
this difference results in their appraising a disturbance produced in 
the speaker by an amplitude modulation system as the equivalent of 
one produced therein by a frequency modulation system of about 1.5 
times the root-mean-square voltage although of course the factor varies 
considerably with the frequency range under consideration and the 
characteristic of the individual’s aural system. 

On account of this difference in distribution of energy the correct 
method of procedure in making the comparison is that given in the 
article by Ballantine, 16 but lack of facilities for such determinations 
made necessary the use of a root-mean-square meter for the simul¬ 
taneous measurement of the entire noise frequency range. The increase 
in noise voltage per frequency interval with the frequency may be 
readily demonstrated by means of the ordinary harmonic analyzer of 
the type now so generally used for the measurement of distortion. 
Because of the extremely narrow frequency interval of these instru¬ 
ments it is not possible to obtain sufficient integration to produce stable 
meter readings and apparatus having a wider frequency interval than 
the crystal filter type of analyzer must be used. The observation of the 
action of one of these analyzers will furnish convincing proof that peak 
voltmeter methods must not be used in comparing the rectified output 
currents in frequency and amplitude modulation receivers. 

All the measurements which have been heretofore discussed were 
taken under conditions in which the disturbing currents had their 
origin in either thermal agitation or shot effect, as the irregularity of 
atmospheric disturbances or those due to automobile ignition systems 
were too irregular to permit reproducible results. The curves apply 
generally to other types of disturbances provided the disturbing voltage 
is not greater than that of the signal. When that occurs a different 
situation exists and will be considered in detail later. 

There are numerous second order effects produced, but as they 
are of no great importance consideration of them will not be under¬ 
taken in the present paper. 
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The New York-Westhampton and Haddonfield Tests 

The years of research required before field tests could even be 
considered were carried out in the Marcellus Hartley Research Labora¬ 
tory at Columbia University. Of necessity both ends of the circuit had 
to be under observation simultaneously and a locally generated signal 
was used. The source of signal ultimately employed consisted of a 
standard signal generator based upon the principle of modulation al¬ 
ready described and capable of giving 150,000 cycles swing on forty-
four megacycles. The generator was also arranged to give amplitude 
modulated signals. Suitable switching arrangements for changing 
rapidly from frequency to amplitude modulation at either full or half 
carrier were set up and a characteristic similar to that of Fig. 18 ulti¬ 
mately obtained. 

A complete receiving system was constructed and during the 
Winter of 1933-1934 a series of demonstrations were made to the 
executives and engineers of the Radio Corporation of America. That 
wholly justifiable suspicion with which all laboratory demonstrations 
of “static eliminators” should be properly regarded was relieved when 
C. . W. Horn of the National Broadcasting Company placed at the 
writer’s disposal a transmitter in that company’s experimental station 
located on top of the Empire State Building in New York City. The 
transmitter used for the sight channel of the television system de¬ 
livered about two kilowatts of power at forty-four megacycles to the 
antenna and it vzas the one selected for use. This offer of Mr. Horn’s 
greatly facilitated the practical application of the system as it elimi¬ 
nated the necessity of transmitter construction in a difficult field and 
furnished the highly skilled assistance of R. E. Shelby and T. J. 
Buzalski, the active staff of the station at that time. Numerous diffi¬ 
culties, real and imaginary, required much careful measurement to 
ascertain their presence or absence and the relative importance of 
those actually existing. The most troublesome was due to the position 
of the transmitter, which is located on the eighty-fifth floor of the build¬ 
ing and is connected by a concentric transmission line approximately 
275 feet long with a vertical dipole antenna about 1250 feet above 
ground. Investigation of the characteristics of this link between trans¬ 
mitter and antenna showed it to be so poorly matched to the antenna 
that the resulting standing waves attained very large amplitude. The 
problem of termination afforded peculiar difficulties because of the 
severe structural requirements of the antenna above the roof and of 
the transmission line below it. It was however completely solved by 
P. S. Carter of the R.C.A. Communications Company in a very 
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beautiful manner, the standing waves being practically eliminated 
and the antenna broadened beyond all requirements of the modulating 
system contemplated. With the transmitter circuits no difficulty was 
encountered at this time. The frequency of the system was ordinarily 
controlled by a master oscillator operating at 1733 kilocycles which 
was multiplied by a series of doublers and a tripler to forty-four mega¬ 
cycles. The multiplier and amplifier circuits were found to be suffi¬ 
ciently broad for the purposes of the initial tests. 

The crystal control oscillator, was replaced by the output of the 
modulation system shown in Fig. 20 in which an initial frequency of 
57.33 kilocycles was multiplied by a series of doublers up to the input 
frequency of the transmitter of 1733 kilocycles. It was found possible 
to operate this apparatus as it is shown installed in the shielded room 

Fig. 20 

of the television studio at the Empire State station as the shielding 
furnished ample protection against the effects of the high power stages 
of the transmitter located some seventy-five feet away. 

The receiving site selected was at the home of George E. Burghard 
at Westhampton Beach, Long Island, one of the original pioneers of 
amateur radio, where a modern amateur station with all facilities, in¬ 
cluding those for rigging directive antennas, were at hand. Westhamp¬ 
ton is about sixty-five miles from New York and 800 or 900 feet below 
line of sight. 

The installation is illustrated in Figs. 21 and 22 which show both 
frequency and amplitude modulation receivers and some of the meas¬ 
uring equipment for comparing them. The frequency modulation re¬ 
ceiver consisted of three stages of radio-frequency amplification (at 
forty-one megacycles) giving a gain in voltage of about 100. This fre¬ 
quency was heterodyned down to six megacycles where an amplifica¬ 
tion of about 2000 was available and this frequency was in turn hetero-
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dyned down to 400 kilocycles where an amplification of about 1000 
could be realized. Two current limiting systems in cascade each with a 
separate amplifier were used. At the time the photograph was taken 
the first two radio-frequency stages had been discarded. 

Fig. 21 

The initial tests in the early part of June surpassed all expectations. 
Reception was perfect on any of the antennas employed, a ten-foot wire 
furnishing sufficient pickup to eliminate all background noises. Suc-

Fig. 22 

cessive reductions of power at the transmitter culminated at a level 
subsequently determined as approximately twenty watts. This gave a 
signal comparable to that received from the regular New York broad¬ 
cast stations (except WEAF, a fifty-kilowatt station approximately 
forty miles away). 
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The margin of superiority of the frequency modulation system over 
amplitude modulation at forty-one megacycles was so great that it was 
at once obvious that comparisons of the two were principally of aca¬ 
demic interest. 

The real question of great engineering and economic importance 
was the comparison of the ultra-short-wave frequency modulation 
system with the existing broadcast service and the determination of 
the question of whether the service area of the existing stations could 
not be more effectively covered than at present. The remainder of the 
month was devoted to such a comparison. With the Empire State 
transmitter operating with approximately two kilowatts in the an¬ 
tenna, at all times and under all conditions the service was superior to 
that provided by the existing fifty-kilowatt stations, this including sta¬ 
tion WEAF. During thunderstorms, unless lightning was striking 
within a few miles of Westhampton, no disturbance at all would appear 
on the system, while all programs on the regular broadcast system 
would be in a hopeless condition. Background noise due to thermal agi¬ 
tation and tube hiss were likewise much less than on the regular broad¬ 
cast system. 

The work at Westhampton demonstrated that in comparing this 
method of transmission with existing methods two classes of services 
and two bases of comparisons must be used. It was found that the only 
type of disturbance of the slightest importance was that caused by the 
ignition systems of automobiles, where the peak voltage developed by 
the interference was greater than the carrier level. In point-to-point 
communication this difficulty can be readily guarded against by proper 
location of the receiving system, and then thermal agitation and shot 
effect are the principal sources of disturbance; lightning, unless in the 
immediate vicinity, rarely producing voltages in excess of the carrier 
level which would normally be employed to suppress the thermal and 
shot effects. Under these conditions the full effect of noise suppression 
is realized and comparisons can be made with precision by means of 
the method already described in this paper. An illustration of the 
practical accomplishment of this occurred at Arney’s Mount, the tele¬ 
vision relay point between New York and Camden of the Radio Cor¬ 
poration of America. This station is located about sixty miles from the 
Empire State Building and the top of the tower is only a few feet 
below line of sight. It is in an isolated spot and the noise level is al¬ 
most entirely that due to the thermal and shot effects. It was noted by 
C. M. Burrill of the RCA Manufacturing Company who made the 
observations at Arney’s Mount that with fifty watts in the antenna 
frequency modulated (produced by a pair of UX 852 tubes), a signal-
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to-noise ratio of the same value as the two-kilowatt amplitude modula¬ 
tion transmitter (eight-kilowatt peaks) was obtained. 

The power amplifier and the intermediate power amplifier of the 
frequency modulation transmitter is shown in Fig. 23. The signal with 
fifty watts output would undoubtedly have had a better noise ratio 
than the two-kilowatt amplitude modulation system had full deviation 
of seventy-five kilocycles been employed, but on the occasion it was 
not possible to use a deviation of greater than twenty-five kilocycles. 
It was also observed at the same time that when the plate voltage on 
the power amplifier was raised to give a power of the order of 200 
watts in the antenna a better signal-to-noise ratio was obtained than 

Fig. 23 

that which could be produced by the two-kilowatt amplitude modula¬ 
tion. A casual comparison of the power amplifier stages of the frequency 
modulation transmitter shown in Fig. 23 with the water-cooled power 
amplifier and modulation stages of the Empire State transmitter is 
more eloquent than any curves which may be shown herein. 

In the broadcast service no such choice of location is possible and a 
widely variable set of conditions must be met. Depending on the power 
at the transmitter, the elevation of the antenna, the contour of the 
intervening country, and the intensity of the interference there will be 
a certain distance at which peaks of ignition noise become greater than 
the carrier. The irregularity and difficulty of reproduction of these dis¬ 
turbances require a different method of comparison which will be here¬ 
inafter described. 

As the site at Westhampton, which was on a section of the beach 
remote from man-made static, was obviously too favorable a site, a 
new one was selected in Haddonfield, New Jersey, and about the end of 
June the receiving apparatus was moved there and erected at the home 
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of Harry Sadenwater. Haddonfield is located about eighty-five miles 
from New York in the vicinity of Camden, New Jersey, and is over 
1000 feet below line of sight of the top of the Empire State Building in 
New York. Although the field strength at Haddonfield was consider¬ 
ably below that at Westhampton Beach, good reception was obtained 
almost immediately, the sole source of noise heard being ignition noise 

Fig. 24 

from a few types of cars in the immediate vicinity of the antenna, or 
lightning striking within a few miles of the station. At this distance 
fading made its appearance for the first time, a rapid flutter varying 
in amplitude three- or four-to-one being frequently observable on the 
meters. The effect of it was not that of the selective fading so well 
known in present-day broadcasting. Very violent variations as indi¬ 
cated by the meters occurred without a trace of distortion being heard 
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in the speaker. During a period of over a year in which observa¬ 
tions have been made at Haddonfield, but two short periods of fading 
have been observed where the signal sank to a level sufficient to bring 
in objectionable noise, one of these occurring prior to an insulation 
failure at the transmitter. 

It is a curious fact that the distant fading, pronounced though it 
may be at times, is not so violent as that which may be encountered at 
a receiving station located within the city limits of New York. The 
effect, which appears to be caused by moving objects in the vicinity of 
the receiving antenna, causes fluctuations of great violence. In was ap-

Fig. 25 

parently first observed by L. F. Jones of the RCA Manufacturing 
Company within a distance of half a mile of the Empire State trans¬ 
mitter. It occurs continually at Columbia University located about 
four miles from the Empire State transmitter but no injurious effect 
on the quality of transmission has ever been noted. 

While at first, because of the lower field strength at Haddonfield 
and the greater prevalence of ignition disturbances, the superiority 
over the regular broadcast service was not so marked as at Westhamp¬ 
ton Beach, the subsequent improvements which were instituted at 
both transmitting and receiving ends of the circuit have more than 
offset the lower signal level. Some idea of their extent may be gained by 
comparison of the initial and final antenna structures. Fig. 24 shows 
the original antenna during course of erection, a sixty-five foot mast 
bearing in the direction of New York permitting the use of an eight¬ 
wave length sloping wire of very useful directive properties. Fig. 25 
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shows the final form on which the results are now much better than 
were originally obtained with the directional wire. 

During the past summer, which was marked by thunderstorms of 
great severity in the vicinity of Philadelphia, it was the exception when 
it was agreeable or even possible to listen to the nightly programs of 
the regular broadcast service from the fifty-kilowatt New York stations. 
In some of the heaviest storms when lightning was striking within the 
immediate vicinity of the antenna, so close in fact that the lead-in was 
sparking to a near-by water pipe, perfectly understandable speech 
could be received on the frequency modulation system, although the 
disturbance was sufficient to cause annoyance on a musical program; 
but these periods seldom lasted more than fifteen minutes when the 
circuit would again become quiet. On numerous occasions the Empire 
State signal was better than that of the fifty-kilowatt Philadelphia sta¬ 
tion WCAU located at a distance of twenty miles from Haddonfield. 
Likewise during periods of severe selective side-band fading in the 
broadcast band which occurs even from station WJZ at Bound Brook, 
New Jersey, some sixty miles away, no signs of this difficulty would 
appear on the ultra-high-frequency wave. 

Some of the changes which contributed to the improvement during 
the past year may be of interest. The introduction of the Thompson-
Rose tube permitted the radio-frequency amplification required at 
forty-one megacycles to be accomplished with one stage and with con¬ 
siderable improvement of signal-to-noise ratio. It had a further inter¬ 
esting result. The tubes previously used for amplifying at this fre¬ 
quency were those developed by the Radio Corporation for the ultra¬ 
short-wave interisland communication system in the Hawaiian Islands. 
On account of the relatively low amplification factor of these tubes the 
shot effect in the plate circuit of the first tube exceeded the disturbances 
due to thermal agitation in the input circuit of that tube by a consider¬ 
able amount. With the acorn type tube, however, the situation is re¬ 
versed, the thermal noise contributing about seventy-five per cent of 
the rectified output voltage. 

It should be noted here by those who may have occasion to make 
this measurement on a frequency modulation system that it cannot be 
made in the ordinary way by simply mis-tuning the input circuit to the 
first tube. To do so would remove the carrier from the current limiter 
and be followed by a roar of noise. The measurement must be made 
with a local signal of the proper strength introduced into one of the 
intermediate-frequency amplifiers. Under these conditions the antenna 
may be mis-tuned without interfering with the normal action of the-
limiter and the relative amounts of noise due to the two sources may 
readily be segregated. 
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Considerable trouble was caused during the early stages of the ex¬ 
periments by an order of the Federal Radio Commission requiring the 
changing of the frequency of the Empire State transmitter from forty-
four to forty-one megacycles; this necessitating the realignment of the 
large number of interstage transformers in the modulating equipment 
shown in Fig. 20 and also the retermination of the antenna. It, however, 
led to the application of the idea inherent in superheterodyne design. 

Fig. 26 

While the circuits of the old modulator were temporarily modified and 
work carried on, a new modulation system was designed standardizing 
on an initial frequency of 100 kilocycles which was then multiplied by a 
series of doublers up to 12,800 kilocycles. By means of a local oscillator 
this frequency was heterodyned down to 1708 kilocycles, the new value 
of input frequency to the transmitter required to produce forty-one 
megacycles in the antenna. Any future changes in wave length can be 
made by merely changing the frequency of this second oscillator. The 
frequencies chosen were such that a deviation of 100 kilocycles could 
be obtained without difficulty, because of the extra number of fre¬ 
quency multiplications introduced. Fig. 26 shows the two modulation 
systems during the process of reconstruction with arrangements for 
making the necessary step-by-step comparisons between them. 
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Much attention was paid during the year to the frequency char¬ 
acteristic of the transmitter, which was made substantially flat from 
thirty to 20,000 cycles. This required careful attention to the charac¬ 
teristics of the doubler and amplifier circuits of the transmitter, and 
to John Evans of the RCA Manufacturing Company and to T. J. 
Buzalski I am indebted for its accomplishment. Continuous improve¬ 
ment of the transmitter and antenna efficiency was effected throughout 
the year, but of this phase of the development R. M. Morris of the 
National Broadcasting Company, under whose direction the work was 
carried on, is better qualified to speak. As the final step, the lines con¬ 
necting the transmitter with the control board of the National Broad¬ 
casting Company at Radio City, from which the test programs were 
usually supplied, were equalized to about 13,000 cycles, and when this 
had been done the quality of reception at Haddonfield was far better 
than that obtainable from any of the regular broadcast stations. 

Interference and Fading 

Reference has heretofore been made to the difficulty of comparing 
the amounts of interference produced in amplitude and frequency 
modulation systems by the transient type of disturbance, particularly 
when, as in ignition noise, the peaks are greater in amplitude than the 
signal carrier. The best method of comparison seems to be that of 
observing how much greater signal level from the standard signal gen¬ 
erator must be introduced into the receiving system when it is arranged 
to receive amplitude modulation than is required for the same signal-
to-noise ratio on a frequency modulated system. The experimental 
procedure of making such comparison is to change the connection of 
the speaker rapidly from one receiver to the other, simultaneously 
changing the level of the local generator until the two disturbances as 
perceived by the ear are equal. At all times, of course, the amplifica¬ 
tion in the amplitude modulation receiver is correspondingly changed 
as the signal generator level is varied to apply the same voltage to the 
amplitude as to the frequency modulation detector so that the audio¬ 
frequency signal level which will be produced by the two systems is the 
same. The square of the ratio of the two voltages of the signal generator 
gives the factor by which the carrier power of the amplitude modulated 
transmitter must be increased to give equal performance. While the 
measurement is difficult to make, the following approximations may 
give some idea of the magnitudes involved. 

If the peak voltage of the ignition noise is twice the carrier level 
of the frequency modulation system, about 150 to 200 times the power 
must be used in the carrier of the amplitude modulation system to 
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reduce the disturbance level to the same value. AX hen the peak volt¬ 
age is five times as great, about 35 to 40 times the power in the am¬ 
plitude modulation carrier is sufficient to produce equality. 17 These 
observations have been checked aurally and by the oscilloscope. 1 he 
results of measurements where the disturbances are due solely to the 
thermal and shot effects have been compared to those obtained with 
the method previously described and are found to check with it. 1 he 
chief value of this method of measurement, however, lies in the ability 
to predict with certainty the signal level required to suppress all igni¬ 
tion noise. An experimental determination made at Haddonfield shows 
that a signal introduced from the local generator which produces at the 
current limiter ten times the voltage of the Empire State signal is suffi¬ 
cient to suppress the disturbance caused by the worst offender among 
the various cars tested. These cars were located as closely as possible to 
the doublet antenna shown in Fig. 25, the distance being about forty 
feet. The increase in field strength necessary to produce this result can 
be readily obtained by an increase in the transmitter power to twenty 
or twenty-five kilowatts and the use of a horizontally directional 
antenna array. An increase in the field strength of three or four to one 
by means of an array is within the bounds of engineering design so that 
the practical solution of the problem of this type of interference is 
certainly at hand up to distances of one hundred miles. 

So also is the solution of the problem at its source. It has been de¬ 
termined experimentally that the introduction of 10,000 ohms (a value 
of resistance which is not injurious to motor performance) into the 
spark plug and distributor leads of the car referred to eliminates the 
interference with the Empire State signal. 

Since active steps are now being taken by the manufacturers of 
motor cars to solve the more difficult general problem, the particular 
one of interference with sets located in the home will thus automatically 
disappear. The problem of eliminating the disturbance caused by an 
automobile ignition system in a receiving set whose antenna is a mini¬ 
mum of fifty feet away from the car is obviously a much simpler one 
than that of eliminating the interference in a receiver located in the car 
or in another car a few feet away. 

During the course of the experimental work in the laboratory a very 
striking phenomenon was observed in the interference characteristics 
between frequency modulation systems operating within the same wave 
band. The immunity of a frequency modulation system from interfer¬ 
ence created by another frequency modulated transmission is of the 

17 Linear detection was used in the amplitude modulation receiver but no 
limiting was employed. 
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same order of magnitude as the immunity with regard to tube noises. 
This property merits the most careful study in the setting up of a 
broadcast system at those wave lengths at which the question of inter-
station interference is a major factor. It is well known that when the 
carriers of two amplitude modulated transmitters are sufficiently close 
in frequency to produce an audible beat that the service range of each 
of them is limited to that distance at which the field strength of the 
distant station becomes approximately equal to one per cent of the 
field strength of the local station. As a consequence of this, the service 
area of each station is very greatly restricted ; in fact the service area 
of the two combined is but a small percentage of the area which is 
rendered useless for that frequency due to the presence thereon of the 
two interfering stations. With the wide band frequency modulation 
system, however, interference between two transmissions does not ap¬ 
pear until the field strength of the interfering station rises to a level 
in the vicinity of fifty per cent of the field strength of the local one. The 
reason for this lies in the fact, that while the interfering signal in beat¬ 
ing with the current of the local station under such conditions may be 
producing a fifty per cent change in the voltage applied to the current 
limiter, the system is substantially immune to such variations in am¬ 
plitude. The only way in which the interfering signal can make its 
presence manifest is by cross modulation of the frequency of the local 
signal. Since, under the conditions, this cross modulation produces less 
than a thirty-degree phase shift and since the characteristics of the wide 
band receiver are such that, at least within the range of good audibility, 
thousands of degrees of phase shift are necessary to produce full modu¬ 
lation, it is clear that a thirty-degree phase shift will not produce very 
much of a rectified output. For example, assuming two unmodulated 
carriers are being received, that their amplitudes have a ratio of two 
to one, and that their frequencies differ by 1000 cycles, then for a sys¬ 
tem having a wide band (of the order of 150,000 cycles) the modula¬ 
tion produced by the interaction of the two carriers would be of the 
order of one per cent of that produced by full modulation of the 
stronger carrier. This example, however, represents perhaps the worst 
possible condition as during modulation of either station, with the 
proper type of conversion system, the aural effect of the disturbance 
is greatly reduced. The whole problem of interference between unmod¬ 
ulated carriers may, however, be entirely avoided by separating them 
in frequency by an amount beyond the audible range. Hence it follows 
that with two wide band frequency modulated transmitters occupying 
the same frequency band that only the small area located midway be¬ 
tween the two wherein the field strength of one station is less than 
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twice the field strength of the other will be rendered useless for recep¬ 
tion of either station. This area may well be less than ten per cent of 
the total area. Even in this area reception may be effected as a receiving 
station located within it has only to erect directional aerials having a 
directivity of two to one to receive either station. The two-to-one ratio 
of field strength which has been referred to as the ratio at which inter¬ 
ference appears is not by any means the limit but rather one which can 
be realized under practically all conditions. Better ratios than this hax e 
been observed, but the matter is not of any great importance since by 
the use of the directional antennas referred to it becomes possible to 
cover the sum of the areas which may be effectively covered by each 
station operating alone, subject only to the limitations of the noise 
level. The problem of the interference due to overlapping has been 
completely wiped out. One precaution only should be observed the 
unmodulated carriers should be offset in frequency by an amount be¬ 
yond the audible limit. 

In the above analysis it has been assumed, of course, that the dis¬ 
tance between stations has beeh selected so that the “no-mans land 
between stations is not sufficiently distant from either one to be within 
the zone where any large amount of fading occurs. If the distance be¬ 
tween stations is such that the signal strength varies appreciably with 
time then the directivity of the receiving antennas must be greater 
than two to one. 

Difficulties and Precautions 

The principles which have been described herein were successfully 
applied only after a long period of laboratory investigation in which a 
series of parasitic effects that prevented the operation of the system 
were isolated and suppressed. The more important of these effects, 
which will be of interest to those who may undertake work in this field, 
will be referred to briefly. 

It was observed in the early work in the laboratory that it was at 
times impossible to secure a balance in the detector system, and that 
the amplitudes of the currents in the rectifiers varied in very erratic 
fashion as the frequency of the first heterodyne was changed. Under 
these conditions it was not possible to produce any appreciable noise 
suppression. The effect varied from day to day and the cause defied 
detection for a long period of time. Ultimately the presence of two 
side frequencies in the detector circuits was discovered, one of these 
frequencies lying above and the other below the unmodulated inter¬ 
mediate frequency by an amount equal to the initial crystal frequency 
of the transmitter. It was then discovered that the trouble had its 
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origin in the transmitting system and that a current having the funda¬ 
mental frequency of the crystal, (in the present case 57.33 kilocycles), 
passed through the first doubler circuits in such phase relation to the 
doubled frequency as to modulate the doubled frequency at a rate cor¬ 
responding to 57.33 kilocycles per second. This modulation of fre¬ 
quency then passed through all the transmitter doubler stages, increas¬ 
ing in extent with each frequency multiplication and appearing finally 
in the forty-four-megacycle output as a fifty-seven-kilocycle frequency 
modulation of considerable magnitude. In the first doubler tank circuit 
of the transmitter a very slight change in the adjustment of the tuning 
of the circuit produced a very great change in the magnitude of this 
effect. A few degrees shift in the tuning of the first doubler tank con¬ 
denser, so small that an almost unnoticeable change in the plate current 
of the doubler occurred, would increase the degree of the modulation 
to such extent as to make the first upper and lower side frequencies in 
the forty-four-megacycle current greater than the carrier or mid-fre¬ 
quency current (when no audio modulation was applied). Under such 
conditions the proper functioning of the receiving system was impossi¬ 
ble. 

The delay in uncovering this trouble lay in the fact that it was ob¬ 
scured by the direct effect of harmonics from the transmitter doubler 
stages which had to be set up in an adjoining room and by the numer¬ 
ous beats which can occur in a double intermediate-frequency super¬ 
heterodyne. To these effects were added an additional complication 
caused by the presence of harmonics in the circuits of the selective 
system resulting from the action of the limiter which the filtering ar¬ 
rangements did not entirely remove. The coincidence of one of these 
harmonics with the natural period of one of the inductances in the 
branch circuits likewise interfered with the effectiveness of the noise 
suppression. The causes of all these spurious effects were finally located 
and necessary steps taken to eliminate them. 

ith the removal of these troubles a new one of a different kind 
came to light, and for a time it appeared that there might be a very 
serious fundamental limitation in the phase shifting method of generat¬ 
ing frequency modulation currents. There was found to be in the output 
of the transmitter at forty-four megacycles a frequency modulation 
which produced a noise in the receiver similar to the usual tube hiss. 
The origin of it was traced to the input of the first doubler or the output 
of the crystal oscillator where a small deviation of the initial frequency 
was produced by disturbances originating in these circuits. While the 
frequency shift in this stage must have been very small, yet on account 
of the great, amount of frequency multiplication (of the order of 800 
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times) it became extremely annoying in the receiver; in fact for low 
levels of receiver noise that noise which originated in the transmitted 
wave was by far the worse. For a time it seemed as though the amount 
of frequency multiplication which could be used in the transmitter was 
limited by an inherent modulation of the frequency of the oscillator 
by disturbances arising in the tube itself. 1 he proper proportioning of 
the constants of the circuits, however, reduced this type of disturbance 
to a point where it was no longer of importance and frequency multi¬ 
plications as high as 10,000 have since been effectively used. On ac¬ 
count of the very large amount of frequencymultiplication, any troubles 
in these low-frequency circuits caused by noisy grid leaks, improper by¬ 
passing of power supply circuits, or reaction of one circuit upon another 
become very much more important than they would normally be. Diffi¬ 
culties of all these kinds were encountered, segregated, and eliminated. 

Another source of trouble was discovered in the correction system. 
Because of the range in frequency required, particularly in multiplex 
work where thirty to 30,000 cycles was frequently used, the output 
voltage of the correction system at the higher frequencies became very 
much less than the input voltage, hence any leakage or feed-forward 
effect due to coupling through the power supply circuits developed a 
voltage across the output much higher than that required by the in¬ 
verse frequency amplification factor as determined by the correction 
network. Hence, the frequency swing for the upper frequencies of modu¬ 
lation would frequently be several hundred per cent greater than it 
should be. Likewise, at the lower frequency end of the scale various 
reactions through the power supply were very troublesome. All these 
effects, however, were overcome and the correction system designed so 
that its accuracy was within a few per cent of the proper value. 

From the foregoing it might be assumed that the transmitting and 
receiving apparatus of this system are inherently subject to so many 
new troubles and complications that their operation becomes imprac¬ 
ticable for ordinary commercial applications. Such is not the case. I he 
difficulties are simply those of design, not of operation. Once the proper 
precautions are taken in the original design these difficulties never 
occur, except as occasioned by mechanical or electrical failure of mate¬ 
rial. During the period of over a year in which the Empire State trans¬ 
mitter was operated, only two failures chargeable to the modulating 
system occurred. Both were caused by broken connections. Even the 
design problems are not serious as methods are now available for detect¬ 
ing the presence of any one of the troubles which have been here enu¬ 
merated. 

These troubles were serious only when unsegregated and en masse 
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they masked the true effects and made one wonder whether even the 
laws of electrical phenomena had not been temporarily suspended. 

Multiplex Operation 

During the past year, two systems of multiplexing have been oper¬ 
ated successfully between New York and Haddenfield and it has been 

Fig. 27 

Fig. 28 

found possible to transmit simultaneously the red and blue network 
programs of the National Broadcasting Company, or to transmit simul¬ 
taneously on the two channels the same program. This last is much 
the simpler thing to accomplish as the cross-talk problem is not a seri¬ 
ous one. The importance of multiplexing in point-to-point communi¬ 
cation services has long been recognized. In broadcasting there are 
several applications which, while their practical application may be 
long deferred, are clearly within view. 
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Two general types of multiplexing were used. In one type a current 
of superaudible frequency is caused to modulate the frequency of the 
transmitted wave. The frequency at which the transmitted wave is 
caused to deviate is the frequency of this current and the extent of the 
deviation is varied in accordance with modulation of the amplitude of 
the superaudible frequency current. At the receiver detection is accom-

Fig. 29 

plished by separating the superaudible current and its component mod¬ 
ulations from the rectified audible frequency currents of the main chan¬ 
nel and reproducing the original modulating current from them by a 
second rectification. The general outline of the system is illustrated in 
Figs. 27 and 28. The setting of the levels of the main and auxiliary 
channels must be made in this system of modulation with due regard 

I II I Auxiliary 
_I Channel 

BP Detector Amplifier Speaker 
Filter 

Fig. 30 

to the fact that the deviation of the transmitted wave produced by the 
superaudible frequency current of the second channel is a variable one 
and changes between the limits of zero and double the unmodulated 
deviation. 

In the second method of multiplexing a superaudible current pro¬ 
duces a frequency modulation of the transmitted wave of constant devi¬ 
ation, the rate of the deviation being varied in accordance with the 
frequency of the superaudible current and modulation being produced 
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by varying the frequency of this auxiliary current and thereby the rate 
at which the superimposed modulation of frequency of the transmitted 
wave changes. The operations which must be carried out at the receiver 
are the following: After suitable amplification, limiting, and filtering, 
an initial conversion and rectification produces in the output of the 
detector the audible frequencies of the main channel and a super-
audible constant amplitude variable frequency current. This last is 
selected by means of a band-pass filter, passed through a second con-

Fig. 31 

version system to translate the changes in the frequency into varia¬ 
tions of amplitude, and then rectified to recreate the initial modulating 
current of the auxiliary channel. The general arrangment of the sys¬ 
tem is illustrated in Figs. 29 and 30. This latter method of multiplex¬ 
ing has obvious advantages in the reduction of cross modulation 
between the channels and in the fact that the deviation of the trans¬ 
mitted wave produced by the second channel is constant in extent, an 
advantage being gained thereby which is somewhat akin to that ob¬ 
tained by frequency, as compared to amplitude, modulation in simplex 
operation. The subject of the behavior of these systems with respect to 
interference of various sorts is quite involved and will be reserved for 
future treatment as it is beyond the scope of the present paper. 
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The final arrangement of the modulating equipment installed at 
the Empire State station is illustrated in Figs. 31 and 32. The main 
channel apparatus is shown on the five tables located on the right side 
of the room. The vertical rack in the left center contains three channels 
for transmitting facsimile by means of the amplitude modulation 
method of multiplexing already described. In Fig. 32, located on the 
four tables on the left of the room is shown the auxiliary channel of 
the frequency modulation type already described. The comparatively 

Fig. 32 

low frequency of this channel was obtained by the regular method of 
phase shifting and frequency multiplication, the frequency multiplica¬ 
tion being carried to a high order and the resultant frequency modu¬ 
lated current heterodyned down to twenty-five kilocycles (mid-fre¬ 
quency). A deviation up to ten kilocycles was obtainable at this 
frequency. 

The receiving apparatus located at Haddonfield is illustrated in 
Figs. 33 and 34. Fig. 33 shows the modified Westhampton receiver 
and Fig. 34 the multiplex channels of the receiver. The vertical rack to 
the right holds a three-channel receiver of the amplitude modulation 
type. The two panels in the foreground constitute the frequency modu¬ 
lation type of auxiliary channel. 
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Some of the practical results may be of interest. It was suggested 
by C. J. Young of the RCA Manufacturing Company that it might be 
possible to transmit simultaneously a facsimile service at the same time 
that a high quality broadcast program was being transmitted. With 
the assistance of Mr. Young and Maurice Artzt this was accomplished 

Fig. 33 

over a year ago between New York and Haddonfield, New Jersey, 
the two services operating without interference or appreciable loss 
of efficiency at the distance involved. Two additional channels, a 
synchronizing channel for the facsimile and a telegraph channel, were 
also operated. The character of the transmission is illustrated in Fig. 

Fig. 34 

35, which shows a section of the front page of the New York Times, 
This particular sheet was transmitted under considerable handicap at 
the transmitter as due to a failure of the antenna insulator on the forty-
one-megacycle antenna it had become necessary to make use of the 
sixty-megacycle antenna for the forty-one-megacycle transmission. It 
is an interesting comment on the stability of the circuits that all four 
were kept in operation at the transmitter by one man, Mr. Buzalski, 
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who was alone in the station on that day. The combined sound and 
facsimile transmission has been in successful operation for about a year, 
practically perfect copy being obtained throughout the period of the 

Fig. 37 

severe atmospheric disturbances of the past Summer. The subject of 
this work and its possibilities can best be handled by Mr. Young, who 
is most familiar with it. 
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Conclusion 

The conclusion is inescapable that it is technically possible to fur¬ 
nish a broadcast service over the primary areas of the stations of the 
present-day broadcast system which is very greatly superior to that 
now rendered by these stations. This superiority will increase as meth¬ 
ods of dealing with ignition noise, either at its source or at the receiver, 
are improved. 

Appendix 

Since the work which has been reported in this paper on forty-one 
megacycles was completed attention has been paid to higher frequen¬ 
cies. On the occasion of the delivery of the paper a demonstration of 
transmission on 110 megacycles from Yonkers to the Engineering 
Societies Building in New York City was given by C. R. Runyon, who 
described over the circuit the transmitting apparatus which was used. 
A brief description of this transmitter is reproduced here. 
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The power delivered to the antenna was approximately 100 watts 
at 110 megacycles and the deviation (one half total swing) used during 
the demonstration was under 100 kilocycles. Fig. 36 illustrates the 
modulating equipment for this transmitter and the low power fre¬ 
quency multiplication stages. Fig. 37 shows the higher power frequency 
multiplier and power amplifier stages of the transmitter. 

The rack shown in Fig. 36 consists of six panels. Panel number one 
at the top contains the correction system. Panel number two contains 
the master oscillator of 100 kilocycles and the modulator circuits. Panel 
number three contains a pair of doublers for multiplying the 100-kilo-
cycle frequency to 400 kilocycles and the necessary filtering means for 
avoiding the modulation of the currents in the succeeding doubler 
stages by the 100-kilocycle oscillator current. Panel number four con¬ 
tains the doubling apparatus for raising the frequency to 3200 kilocycle 
and panel number five the multipliers for raising it to 12,800 kilocycles. 
Panel number five also contains a heterodyning and conversion system 
for beating the 12,800 kilocycles down to 2292 kilocycles. Panel num¬ 
ber six contains a doubler for raising this to 4584 kilocycles and an 
amplifier for increasing the level sufficiently to drive the succeeding 
power stage. The output of this amplifier is fed through a transmission 
line to the metal box at the extreme right of Fig. 36 which contains a 
series of doublers and amplifiers for increasing the level and raising the 
frequency to 36,672 kilocycles. Adjacent to this box is a second box 
which contains a fifty-watt amplifier. This amplifier drives a tripler 
located in the third box and the tripler in turn drives the power ampli¬ 
fier located at the extreme left at 110 megacycles. The transmitter cir¬ 
cuits were designed for total frequency swing of 500 kilocycles and may 
be effectively so operated. Because of the limitation of the receiver 
available at that time the demonstration was carried out with a swing 
of 200 kilocycles. 
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FREQUENCY MODULATION NOISE CHARACTERISTICS* 

By 

Murray G. Crosby 
(RCA Communications, Inc., Riverhead, L. I., New York) 

Summary.— Theory and experimental data are given which show the improve¬ 
ments in signal-noise ratio effected by frequency modulation over amplitude modula¬ 
tion. It is shown that above a certain carrier-noise ratio in the frequency modulation 
receiver which is called the “improvement threshold," the frequency modulation signal¬ 
noise ratio is greater than the amplitude modulation signal-noise ratio by a factor 
equal to the product of a constant and the deviation ratio (the deviation ratio is equal 
to the ratio between the maximum frequency deviation and the audio modulation 
band width). The constant depends upon the type of noise, being slightly greater for 
impulse than for fluctuation noise. In frequency modulation systems with high 
deviation ratios, a higher carrier level is required to reach the improvement threshold 
than is required in systems with low deviation ratios; this carrier level is higher for 
impulse than for fluctuation noise. At carrier-noise ratios below the improvement 
threshold, the peak signal-noise ratio characteristics of the frequency modulation 
receiver are approximately the same as those of the amplitude modulation receiver, 
but the energy content of the frequency modulation noise is reduced. 

An effect which is called “frequency limiting" is pointed out in which the peak 
value of the noise is limited to a value not greater than the peak value of the signal. 
With impulse noise this phenomenon effects a noise suppression in a manner similar 
to that in the recent circuits for reducing impulse noise which is stronger than the 
carrier in amplitude modulation reception. 

When the power gain obtainable in certain types cf transmitters by the use of 
frequency modulation is taken into account, the frequency modulation improvement 
factors are increased and the improvement threshold is lowered with respect to the 
carrier-noise ratio existing in a reference amplitude modulation system. 

Introduction 

IN A previously published paper,1 the propagation characteristics of frequency modulation were considered. Prior to, and during 
these propagation tests, signal-noise ratio improvements effected 

by frequency modulation were observed. These observations were 
made at an early stage of the development work and were investigated 
by experimental and theoretical methods. 

It is the purpose of this paper to consider that phase of the fre¬ 
quency modulation development work by RCA Communications, 

* Decimal classification: R148XR270. Original manuscript received by the 
Institute, November 23, 1936. Presented as part of a paper on “Propagation and 
characteristics of frequency modulated waves,” before New York meeting, 
January 8, 1936. Revised and presented in full before Chicago Section, Septem¬ 
ber 11, 1936. 

1 Murray G. Crosby, “Frequency modulation propagation characteristics,” 
Proc. I.R.E., vol. 24, pp. 898-913; June, (1936). 
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Inc., in which the signal-noise characteristics of frequency modulation 
are studied. The theory and experimental work consider the known 
systems of frequency modulation including that independently devel¬ 
oped by E. H. Armstrong.2

Table of Symbols 

C = carrier peak voltage. 
C/N = theory: Ratio between peak voltage of carrier and instan¬ 

taneous peak voltage of the noise in the frequency modula¬ 
tion receiver. Experiment: Ratio between peak voltage of 
carrier and maximum instantaneous peak voltage of the 
noise. 

C/n = ratio between the peak voltage of the carrier and the peak 
voltage of the noise component. 

C„/Na = carrier-noise ratio in the amplitude modulation receiver. 
Fo=maximum audio frequency of modulation band. 
Fc = carrier frequency. 
Ed = peak frequency deviation due to applied modulation. 
Fdn = peak frequency deviation of the noise. 
Ei = intermediate-frequency channel width. 
Fm= modulation frequency. 
Fn = frequency of noise resultant or component. 

F F a = deviation ratio. 
K = slope filter conversion efficiency. 
M = modulation factor of the amplitude modulated carrier. 
Mt = modulation factor at the output of the sloping filter. 
Mf„ = modulation factor at the output of the sloping filter when 

noise modulates the carrier. 
N = instantaneous peak voltage of the noise. 
n = peak voltage of the noise component. 

Na — noise peak or root-mean-square voltage at amplitude modu¬ 
lation receiver output. 

Nf = noise peak or root-mean-square voltage at frequency modu¬ 
lation receiver output. 

p = 2irFm. 
Sa = signal peak or root-mean-square voltage at amplitude mod¬ 

ulation receiver output. 
Sf — signal peak or root-mean-square voltage at frequency mod¬ 

ulation receiver ouput. 
o> = 2ttFc. 

2 Edwin II. Armstrong, “A method of reducing disturbances in radio signal¬ 
ing by a system of frequency modulation,” Proc. I. R.E., vol. 24, pp. 689 740; 
May, (1936). 
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Wn = 2irFn. 
W„a= (&>—«„) = 2t(F c — F„) = 2lvF 
Z = C/n+n/C. 

</>(/) =phase variation of noise resultant as a function of time. 

Theory 

In the following analysis, frequency modulation is studied by com¬ 
paring it with the familiar system of amplitude modulation. In order 
to do this, the characteristics of frequency modulation reception are 
analyzed so as to make possible the calculation of the signal-noise ratio 
improvement effected by frequency modulation over amplitude modu¬ 
lation at various carrier-noise ratios.3 The amplitude modulation stand¬ 
ard of comparison consists of a double side-band system having the 
same audio modulation band as the frequency modulation system and 
producing the same carrier at the receiver. Differences in transmitter 
power gain due to frequency modulation are then considered separately. 
The frequency modulation reception process is analyzed by first con¬ 
sidering the components of the receiver and the manner in which they 
convert the frequency modulated signal and noise spectrum into an 
output signal-noise ratio. 

TÄe Frequency Modulation Receiver 

The customary circuit arrangement used for the reception of 
frequency modulation is shown in the block diagram of Fig. 1. The 
intermediate-frequency output of a superheterodyne receiver is fed 
through a limiter to a slope filter or conversion circuit which converts 

Fig. 1—Block diagram of a frequency modulation receiver. 

the frequency modulation into amplitude modulation. This amplitude 
modulation is then detected in the conventional amplitude modulation 
manner. The audio-frequency amplifier is designed to amplify only 
the modulation frequencies; hence it acts as a low-pass filter which 
rejects noise frequencies higher than the maximum modulation fre¬ 
quency. 

3 Throughout this paper, carrier-noise ratio will refer to the ratio measured 
at the output of the intermediate-frequency channel. Signal-noise ratio will refer 
to that measured at the output of the receiver and will depend upon the depth 
of modulation as well as upon the carrier strength. 
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The purpose of the limiter is to remove unwanted amplitude modu¬ 
lation so that only the frequency modulation component of the signal 
will be received. It may take the form of an overloaded amplifier tube 
whose output cannot rise above a certain level regardless of the input. 
Care must also be exercised to insure that the output of the overloaded 
amplifier does not fall off as the input is increased since this would 
introduce amplitude modulation of reverse phase, but of equally un¬ 
desirable character. 

The main requirement of the conversion circuit for converting the 
frequency modulation into amplitude modulation is that it slope lin¬ 
early from a low value of output at one side of the intermediate-fre¬ 
quency channel to a high value at the other side of the channel. To do 
this, an off-tuned resonant circuit or a portion of the characteristic of 

Fig. 2—Ideal sloping filter characteristics. 

one of the many forms of wave filters may be utilized. The ideal slope 
filter would be one which gave zero output at one side of the channel, 
an output of one voltage unit at carrier frequency, and an output of 
two units at the other side of the channel. Such a characteristic is 
given by the curve JOC of Fig. 2. From this curve it is easily seen that 
if the frequency is swung between the limits Fa and Fb about the mean 
frequency F c, the output of the filter will have an amplitude modula¬ 
tion factor of unity. The modulation factor for a frequency deviation, 
Fd, will be given by 

- Fc) (Fc - Fo) F, 

where F, = intermediate-frequency channel width. 
When the converting filter departs from the ideal characteristic in 

the manner of the filter of curve HGOE of Fig. 2, the modulation factor 
produced by a given frequency deviation is reduced by a factor equal 
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to the ratio between the distances AG and AJ or BE and BC. A con¬ 
venient term for this reduction factor of the filter is “conversion ef¬ 
ficiency” of the filter. Taking into account this conversion efficiency, 
the modulation factor for a frequency deviation F d becomes 

where K = AG/A J = BE/BC = conversion efficiency of the filter. 
A low conversion efficiency may be used as long as the degree of 

limiting is high enough to reduce the amplitude modulation well below 
the level of the converted frequency modulation. This is true since 
lowering the conversion efficiency reduces the output of the noise in 
the same proportion as the signal as long as no amplitude modulation 
is present. Hence the signal-noise ratio is unimpaired and the only ef¬ 
fect is a reduction of the audio gain by the factor K. If insufficient 
limiting is applied so that the output of the limiter contains appreci¬ 
able amplitude modulation, a filter with a high conversion efficiency is 
desirable so that the amplitude modulation noise will not become com¬ 
parable to the frequency modulation noise and thereby increase the 
resultant noise. 

A push-pull, or “back-to-back” receiver may be arranged by pro¬ 
viding two filters of opposite slope and separately detecting and com¬ 
bining the detected outputs in push-pull so as to combine the audio 
outputs in phase. Another slope filter having a characteristic as shown 
by the dot-dash line DOP in Fig. 2 would then be required. 

A further type of receiver in which amplitude modulation is also 
balanced out may be arranged by making one of the slope filter circuits 
of the above-mentioned back-to-back type of receiver a fiat-top circuit 
for the detection of amplitude modulation only. The sloping filter 
channel then detects both frequency and amplitude modulation; the 
flat-top channel detects only amplitude modulation. When these two 
detected outputs are combined in push-pull, the amplitude modulation 
is balanced out and the frequency modulation is received. This type 
of detection, as well as that in which opposite slope filters are used, has 
the limitation that the balance is partially destroyed as modulation is 
applied. However, if a limiter is used, the amplitude modulation is 
sufficiently reduced before the energy reaches the slope filters; conse¬ 
quently, for purposes of removing amplitude modulation, the balancing 
feature is not a necessity. 

Noise Spectrum Analysis 

The first step in the procedure to be followed here in determining 
the noise characteristics of the frequency modulation receiver will be 
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to determine mathematically the fidelity with which the noise is trans¬ 
mitted from the radio-frequency branch, in which it originates, to the 
measuring instrument as a function of frequency. To do this, the waves 
present at the receiver input will be assumed to be the frequency 
modulated carrier and the spectrum of noise voltages. This wave and 
spectrum will be combined into a single resultant whose amplitude and 
phase are functions of the constants of the component waves. The 
resultant will then be “mathematically” passed through the limiter to 
remove the amplitude modulation. From a determination of the in¬ 
stantaneous frequency of the resultant, the peak frequency deviation 
effected by the noise will be found. A single noise component of arbi¬ 
trary frequency will then be substituted for the resultant of the noise 
spectrum, and the modulation factor at the output of the converting 
filter will be obtained. This noise component will then be varied in 
frequency to determine the over-all transmission of the receiver in 
terms of the modulation factor at the sloping filter output. The area 
under the curve representing the square of this over-all transmission 
will then be determined. By comparing this area with the corresponding 
area for an amplitude modulation receiver under equivalent conditions, 
and taking into consideration the pass band of the intermediate- and 
audio-frequency channels, a comparison will be obtained between the 
average noise powers, or the average root-mean-square noise voltages 
from the two receivers.4

The peak voltage characteristics of the two receivers will be com¬ 
pared for fluctuation noise by a correlation of knowm crest factors with 
the root-mean-square characteristics. (Crest factor = ratio between 
the peak and root-mean-square voltages.) The peak voltage charac¬ 
teristics of impulse noise will be determined by a separate considera¬ 
tion of the effect of the frequency modulation over-all transmissions 
upon the peak voltage of this type of noise. 

After a comparison between the noise output voltages from the 
frequency and amplitude modulation receivers has been obtained, the 
respective signal output voltages will be taken into consideration so 
that the improvement in signal-noise ratio may be determined. 

In the process of determining the over-all transmission of the noise, 
the frequency modulated wave may be expressed by 

e, = C sin {ut + (Fd/Fm) cos pt } (3) 

4 Stuart Ballantine, “Fluctuation noise in radio receivers,” Proc. I.R.E., 
vol. 18, pp. 1377-1387; August, (1930). In this paper, Ballantine shows that the 
average value of the square of the noise voltage "... is proportional to the area 
under the curve representing the square of the over-all transimpedance (or of the 
transmission) from the radio-frequency branch in which the disturbance origi¬ 
nates to the measuring instrument as a function of frequency . . . . ” 
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where C = carrier peak voltage, w = 2ttFc, F c = carrier frequency, 
Fd = applied frequency deviation, p = 2irF„, and Fm = modulation 
frequency. The noise spectrum may be expressed by its resultant,6

e„ = N sin (ai„t + 4>(ty) (4) 

where N = instantaneous peak voltage of the noise (a function of time). 
</>(/) takes into account the fact that the noise resultant is phase modu¬ 
lated, as would be the case with the resultant of a spectrum of many 
noise voltages. w„ = 2irF„, Fn = frequency of the noise resultant. 

The signal voltage given by (3) and the noise voltage given by (4) 
may be combined by vector addition to give 

j/C2+N2+2CN cos 

sin 
F d 

wH- cos p¿+tan L
m 

sin 
Fd 

n)i-0(O+— cos pt 
Im 

- l-cos < (w—u^t— 0(Od cospt 
N t Fm

.(5) 

When the resultant wave given by (5) is passed through the limiter 
in the frequency modulation receiver, the amplitude modulation is 
removed. Hence the amplitude term is reduced to a constant and the 
only part of consequence is the phase angle of the wave. The rate of 
change of this phase angle, or its first derivative, is the instantaneous 
frequency of the wave. Taking the first derivative and dividing by 2ir 
to change from radians per second to cycles per second gives 

d ut-\- cos p/+tan 1
Fm C 

- Feos 
N 

dt 

Fa 
COS pt 

Fm
2tt 

=f=Fc-Fd sin pt-

N { ,Fd
- bCOS {Unat — W)^- COSpt 
C I Fn

1 d^t) 
na--- -- Fd Sin pt 

2ir dt 

C 1 
- Feos s 
N 1 

Í 1 - COS pt] 
I Fm J 

(6) 

» John R. Carson, “The reduction of atmospheric disturbances,” Proc. 
I.R.E., vol. 16, pp. 967-975; July, (1928). 
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in which wno = (w- w„) = 27r(Fc - Fn) = 2irFna . 
Equation (6) gives the instantaneous frequency of the resultant 

wave consisting of the signal wave and the noise resultant voltage. 
From this equation the signal and noise frequency deviations may be 
obtained. In order to determine the over-all transmission with respect 
to the various components in the noise spectrum, a single component 
of noise, with constant amplitude and variable frequency, will be 
substituted for the resultant noise voltage given by (4). This makes 
N equal to n, which is not a function of time, and </>(/) equal to zero. 
Making these changes in (6) gives 

f = Fc — Fd sin pt 
(Fna — Fd sin pt) 

C 
-- 1- cos 
n 

Fd 
^nat H- COS pt 

h m 

n 
- F cos Unat H- COS pt 

Fm 

- (7) 

+ 1 

The equations for the instantaneous frequency, given by (6) and 
(7), show the manner in which the noise combines with the incoming 
carrier to produce a frequency modulation of the carrier. From these 
equations the frequency deviations of the noise may be determined, 
and from the frequency deviations the modulation factor at the out¬ 
put of the sloping filter may be found. Hence the over-all transmission 
may be obtained in terms of the modulation factor at the output of the 
sloping filter for a given carrier-noise ratio. When the carrier-noise 
ratio is high, (6) and (7) simplify so that calculations are fairly easy. 
When the carrier-noise ratio is low, the equations become involved to 
a degree which discourages quantitative calculations. 

High Carrier-Noise Ratios 

When C/n is large compared to unity, and the applied modulation 
on the frequency modulated wave is reduced to zero (Fd = 0), (7) re¬ 
duces to 

n2 n 
f = Fc — — Fna — — Fna cos wnat. (8) 

From (8) the effective peak frequency deviation of a single noise 
component of the spectrum is 

But, since n/C is negligible compared to unity, 
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t^F no 

dn = ~c~ 
(10) 

When this value of frequency deviation is substituted in (1) to find 
the modulation factor6 of the energy at the output of the sloping filter, 
the following results: 

n 2Fna
Mtn = — X-

C Ft (ID 

Equation (11) shows that the modulation factor of the noise is in¬ 
versely proportional to the carrier-noise ratio and directly proportional 
to the ratio between the noise audio frequency and one half the inter¬ 
mediate-frequency channel width. When this equation is plotted with 
the noise audio frequency, Fna, as a variable and the modulation factor 
as the ordinate, the audio spectrum obtained for the detector output is 
like that of the triangular spectrum OBA in Fig. 3. Such a spectrum 
would be produced by varying Fn through the range between the upper 
and lower cutoff frequencies of the intermediate-frequency channel. 
The noise amplitude would be greatest at a noise audio frequency equal 
to one half the intermediate-frequency channel width. At this noise 
audio frequency, the ratio 2 Fna/Fi is equal to unity and the modula¬ 
tion factor becomes equal to n/C. If the detector output is passed 
through an audio system having a cutoff frequency Fa, the maximum 
frequency of the audio channel governs the maximum amplitude of 
the spectrum. The maximum amplitude of the detector output is there¬ 
fore reduced by the ratio Fi/2:Fa. This can be seen by a comparison 
of the spectrum OBA for the detector output and the spectrum ODII 
for the audio channel output. 

When the amplitude modulation reception process is analyzed with 
a carrier and noise spectrum present at the receiver input, the modula¬ 
tion factor of the energy fed to the detector is found to be equal to the 
reciprocal of the carrier-noise ratio for all of the noise frequencies in 
the spectrum. That is to say, the receiver transmission for amplitude 
modulation will be constant for all of the frequencies in the spectrum. 
Normally the upper cutoff frequency of the audio amplifier is equal to 
one half the intermediate-frequency channel width (Fa = F,-/2). Con¬ 
sequently the audio spectrum of the amplitude modulated noise fed to 

6 The ideal filter is used in this case since the use of a filter with a low con¬ 
version efficiency would merely require the addition of audio gain to put the 
frequency modulation receiver on an equivalent basis with the amplitude modu¬ 
lation receiver. The audio gain necessary would be equal to the reciprocal of the 
conversion efficiency of the sloping filter. 
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the detector will be the same as that at the receiver output and will 
be as portrayed by the rectangle OCEH. 

The spectra of Fig. 3 show the manner in which the frequency mod¬ 
ulation receiver produces a greater signal-noise ratio than the ampli¬ 
tude modulation receiver. The noise at the output of the detector of 
the frequency modulation receiver consists of frequencies which extend 
out to an audio frequency equal to one half the intermediate-frequency 
channel width, and the amplitudes of these components are propor¬ 
tional to their audio frequency. Hence in passing through the audio 
channel the noise is reduced not only in range of frequencies, but also 
in amplitude. On the other hand, the components of the signal wave 
are properly disposed to produce detected signal frequencies which 
fit into the audio channel. In the case of the amplitude modulation 
receiver, the amplitude of the components at the output of the audio 

Fig. 3—Amplitude and frequency modulation receiver noise spectra. OBA = 
frequency modulation detector output. ODH = frequency modulation re¬ 
ceiver output. OCEH = amplitude modulation receiver output. 

channel is the same as that at the output of the detector since the spec¬ 
trum is rectangular. Thus the frequency modulation signal-noise ratio 
is greater than the amplitude modulation signal-noise ratio by a factor 
which depends upon the relative magnitudes of the spectra OCEH 
and ODH. The magnitudes which are of concern are the root-mean¬ 
square and peak values of the voltage due to the spectra. 

Root-Mean-Square Noise Considerations 

The average noise power or average root-mean-square voltage ratio 
between the rectangular amplitude modulation spectrum OCEH and 
the trangular frequency modulation spectrum ODH, of Fig. 3, may be 
found by a comparison of the squared-ordinate areas of the two spec¬ 
tra. Thus, 

Wa area. OCEH (ordinates)2

Wy area ODH (ordinates)2
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(12) 

where TVa/U r is the ratio between the amplitude modulation average 
noise power and the frequency modulation average noise power at the 
receiver outputs. The root-mcan-square noise voltage ratio will be 

Na t /n7 _ Ft 
- (r-m-s fluctuation) = 4/ - = x 3-
N, V IF, 2Fa

(13) 

Equation (13) gives the root-mean-square noise voltage ratio for 
equal carriers applied to the two receivers. The modulation factor of 
the frequency modulated signal due to the applied frequency devia¬ 
tion, Fd, is, from (3), equal to 2Fd/Ft. The modulation factor of the 
amplitude modulated signal may be designated by M and has a maxi¬ 
mum value of 1.0. Thus the ratio between the two signals will be given 
by 

Sa , FiM Ft 
■— (peak or r-m-s values) = -- - =- (for M = 1.0). (14) 
S/ 2Fd 2F d 

Dividing (13) by (14), to find the ratio between the signal-noise ratios 
at the outputs of the two receivers, gives 

Sf/Nj Fd
- (r-m-s values) — V3 — • 
Sa/Na Fa 

(15) 

It is apparent that the ratio between the frequency deviation and 
the audio channel, Fd/F„, is an important factor in determining the 
signal-noise ratio gain effected by frequency modulation. A convenient 
term for this ratio is the “deviation ratio” and it will be designated as 
such hereinafter. 

Equation (15) gives the factor by which the amplitude modulation 
root-mean-square signal-noise ratio is multiplied in order to find the 
equivalent frequency modulation signal-noise ratio. Since this factor is 
used so frequently hereinafter, it will be designated by the word “im¬ 
provement.” The improvement given by (15) has been developed 
under the assumption of zero applied frequency deviation (no modula¬ 
tion) and a carrier which is strong compared to the noise. However, as 
will be show’n later, as long as the carrier is strong compared to the 
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noise, this equation also holds true for the case where modulation is 
present. 

Peak Noise Considerations 

In the ultimate application of signal-noise ratios, peak voltages are 
of prime importance since it is the peak of the noise voltage which 
seems to produce the annoyance. This is especially true in the case 
of impulse noise such as ignition where the crest factor of the noise 
may be very high. Thus the energy content of a short duration impulse 
might be very small in comparison with the energy content of the 
signal, but the peak voltage of the impulse might exceed the signal peak 
voltage and become very annoying. The degree of this annoyance 
would of course depend upon the type of service and will not be gone 
into here. In view of this importance of peak noise considerations, the 
final judgment in the comparison between the systems of frequency 
and amplitude modulation treated here will be based upon peak signal¬ 
noise ratios. 

When the peak voltage or current ratio of the frequency and ampli¬ 
tude modulation spectra is to be determined, the characteristics of the 
different types of noise must be taken into consideration. There seem 
to be two general types of noise which require consideration. The first 
of these is fluctuation noise, such as thermal agitation and shot effect, 
which is characterized by a random relation between the various fre¬ 
quencies in the spectrum. The second is impulse noise, such as ignition 
or any other type of noise having a spectrum produced by a sudden 
rise of voltage, which is characterized by an orderly phase and ampli¬ 
tude relation between the individual frequencies in the spectrum. 

Experimental data taken by the author have shown that the fluctua¬ 
tion noise crest factor is constant, independent of band width, when the 
carrier is strong compared to the noise. Thus the peak voltage of fluc¬ 
tuation noise varies with band width in the same manner that root-
mean-square voltage does, namely, as the square-root of the band 
width ratio. Consequently, for the strong-carrier condition, the peak 
voltage characteristics of fluctuation noise may be determined by ap¬ 
plying the experimentally determined crest factor to the root-mean¬ 
square characteristics. Hence, in the case of fluctuation noise, (15) ap¬ 
plies for peak noise improvement as well as for average root-mean¬ 
square noise improvement. 

Impulse Noise Characteristics 

A simple way of visualizing the manner in which impulse noise 
produces its peak radio-frequency voltage is to consider the case of a 
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(16) 

recurrent impulse. It is well known that a recurrent impulse, such as 
square-wave-form dots, may be expressed by a Fourier series which 
consists of a fundamental and an infinite array of harmonics. The 
amplitudes of these harmonics are inversely proportional to their fre¬ 
quencies. The components of the single impulse will be similar to those 
of the recurrent impulse since the single impulse may be considered as 
a recurrent impulse with a very low rate of recurrence. The part of this 
impulse spectrum that is received on a radio receiver is a small band 
of the very high order harmonics. Since the frequency difference be¬ 
tween the highest and lowest frequencies of this band is small compared 
to the mid-frequency of the band, all of the frequencies received are of 
practically equal amplitude. These harmonics are so related to each 
other by virtue of their relation to a common fundamental that they 
are all in phase at the instant the impulse starts or stops. Hence, for 
the interval at the start or stop of the impulse, all of the voltages in 
the band add up arithmetically and the peak voltage of the combina¬ 
tion is directly proportional to the number of individual voltages. 
Since the individual voltages of the spectrum are equally spaced 
throughout the band, the number of voltages included in a given band 
is proportional to the band width. Consequently, the peak voltage of 
the resultant of the components in the spectrum is directly propor¬ 
tional to the band width. Thus impulse noise varies, not as the square 
root of the band width, as fluctuation noise does, but directly as the 
band width.’ Since the voltages in the spectrum add arithmetically, 
their peak amplitude is proportional to their average ordinate as well 
as proportional to the band width. This makes the peak voltage of 
impulse noise, not proportional to the square root of the ratio between 
the squared-ordinates areas, as is the case with root-mean-square noise, 
but proportional to the ratio between the areas of the two spectra. 
Hence, (referring to Fig. 3) 

F 

F, 

Na area OC EH 
- (peak values, impulse) =-
N, > r ' area ODH 

_ {n/C) X Fg 

1 2Fa n 

¿ Pi c 

7 The fact that the peak voltage of impulse noise varies directly with the 
band width was first pointed out to the author by V. D. Landon of the RCA 
Manufacturing Company. The results of his work were later presented by him as 
a paper entitled “A study of noise characteristics,” before the Eleventh Annual 
Convention, Cleveland, Ohio, May 13, 1936; published in the Proc. I.R.E., vol. 
24, pp. 1514-1521; November, (1936). 
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Dividing (16) by (14) to obtain the ratio between the frequency and 
amplitude modulation output signal-noise ratios gives 

Sf/Nf

Sa/Na
(peak values, impulse) = 2 — • 

Fa 
(17) 

Equation (17) shows that the frequency modulation peak voltage 
improvement with respect to impulse noise is equal to twice the devia¬ 
tion ratio or about 1.16 times more improvement than is produced on 
fluctuation noise. The peak power gain would be equal to the square 
of the peak voltage gain or four times the square of the deviation ratio. 

Low Carrier-Noise Ratios 

When the expression for the instantaneous frequency of the wave 
modulated by the noise component and signal, given by (7), is resolved 
into its components by the use of the binomial theorem, the following 
is the result: 

(Fn0 — Fd sin pt) r n / 2n\ ( No 
f = Fc — Fd sin pt - - 1- ) <-
7 z Lc \ zc)\z 

— Ki cos (a>„oi — Fd sin pt) + K2 cos 2(wnat — Fd sin pt) 

+ K3 cos 3(œnot I d sin p¿) ’ ' ' 1 J (18) 

C n 
in which Z =- 1- and 

n C 

/ 3 10 35 126 462 1716 \ 
Ko — hi = ( 1 H- 1- 1- 1- 1- 1- F • ■ ■ ) 

\ Z2 Z* Z6 Z8 Z1» Z12 / 

/ 1 4 15 56 210 792 3003 \ 
Kt = ( ________________ . . . ) 

\Z Z3 Z6 Z7 Z9 Z11 Z13 / 

/ 1 5 21 84 330 1287 5005 \ 

A'’ ■ U+7+7+7+t; +7v +7'“ + "J-

(19) 

(20) 

(21) 

Additional terms of the series of (19), (20), and (21), as well as higher 
order series, may be found with the aid of a table of binomial coeffi¬ 
cients. 

Equation (18) shows that, as the carrier-noise ratio approaches 
unity, the effective signal-noise ratio at the receiver output is no 
longer directly proportional to the carrier-noise ratio. The effective 
frequency deviation produced by the noise has harmonics introduced 
and a constant frequency shift added. The effect of the harmonics and 
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constant shift is to make the wave form of a single noise component 
very peaked and of the nature of an impulse. Because of the selectivity 
of the audio channel, none of the harmonics are present for the noise 
frequencies in the upper half of the audio spectrum. As the frequency 
of the noise voltage is lowered, more and more harmonics are passed 
by the audio channel and as a consequence, the peak frequency devia¬ 
tion due to the noise is increased. This can be more easily understood 
from the following calculation of the wave form produced by the in¬ 
stantaneous frequency deviation of the single noise component. 

Fig. 4—Calculated wave forms showing the distortion produced on the instan¬ 
taneous frequency deviation of the wave composed of the combination of 
the carrier and a single noise component. C/n = ratio between the peak volt¬ 
age of the carrier and the peak voltage of the noise component. 

The curves of Fig. 4 have been calculated from (7) and show how 
the instantaneous frequency deviation varies with time or the phase 
angle of the wave. A wave with the instantaneous frequency given by 
these curves would produce voltages in the output of the detector of 
the frequency modulation receiver which are proportional to the fre¬ 
quency deviations. It can be seen from these curves that, as the carrier¬ 
noise ratio approaches unity, the wave form becomes more and more 
peaked. The harmonics which enter in to make up this peaked wave 
form are given by (18) and are completely present for all noise fre¬ 
quencies only in the absence of audio selectivity. 

In the presence of audio selectivity, the condition portrayed by 
(18) is approached as the audio frequency of the noise approaches zero. 
Thus the wave form of the noise is sinusoidal at a noise frequency high 
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enough to have its harmonics eliminated by the audio selectivity, but 
becomes more peaked as the frequency is made lower so that more 
harmonics are included. This effect tends to increase the peak voltage 
of the low-frequency noise voltages which have a large number of 
harmonics present. Thus, as the carrier-noise ratio approaches unity, 
the triangular audio spectrum is distorted by an increase in the ampli¬ 
tude of the lower noise frequencies. 

The above gives a qualitative and partially quantitative description 
of the noise spectrum which results at the lower carrier-noise ratios. 
Further development would undoubtedly make possible the exact cal¬ 
culation of the peak and root-mean-square signal-noise ratio at the 
receiver output when the carrier-noise ratio at the receiver input is 
close to unity, but, because of the laborious nature of the calculations 
involved in evaluating the terms of (18), and pressure of other work, 
the author is relying upon experimental determinations for these data. 

Noise Crest Factor Characteristics 

The crest factor characteristics of the noise can be studied to an 
approximate extent by a study of (G). This equation portrays the 
resultant peak frequency deviation of the wave at the output of the 
limiter. From it, the crest factor characteristics of the output of the 
detector may be determined since in the frequency modulation receiver 
frequency deviations are linearly converted into detector output volt¬ 
ages. However, the crest factor characteristics of the receiver output 
are different from those at the detector output due to the effect of the 
selectivity of the audio channel. This is especially true in the case of 
the frequency modulation receiver with a deviation ratio greater than 
unity, that is, where the audio channel is less than one half the inter-
mediate-frequency channel. Consequently, in order to obtain the final 
results, the effect of the application of the audio selectivity must be 
applied to the results determined from a study of (6). 

From the curves of Fig. 4, can be seen that the peak frequency 
deviation of the wave given by (7) occurs at a phase angle equal to 180 
degrees. From the similarity of (6) and (7), it can be seen that the 
peak frequency deviation of (6) would also occur at a phase angle of 
180 degrees. At this phase angle the noise peak frequency deviation 
from (G) is 

/¿„(peak) = 

1 d^t) 
Fna - Fa sin pt 

‘¿it dt 

(C/N} - 1 ~ 
(N/C) - 1 +
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i . ; - Fd sin pt 
2ir dt 

(C/N) - 1 
(22) 

Equation (22) shows that the peak frequency deviation of the 
noise, for any value of carrier-noise ratio, C/N, is proportional 
to the noise instantaneous audio frequency given by the quantity 

Fna - — — — — Fd sin pt\ , and to the quantity 1/ {{C/N) — 1) } • 
2tt dt / 

C/N is the resultant instantaneous peak carrier-noise ratio which is pres¬ 
ent in the output of the frequency modulation intermediate-frequency 
channel. It is apparent that when this carrier-noise ratio is high, the 
peak frequency deviation of the noise is proportional to N/C. W hen 
the carrier-noise ratio is equal to unity, the peak frequency deviation 
becomes infinite and it is evident that the frequency modulation im¬ 
provement, which is based on a high carrier-noise ratio, would be lost 
at this point. The term “improvement threshold” will be employed 
hereinafter to designate this point below which the frequency modula¬ 
tion improvement is lost and above which the improvement is realized. 
Theoretically this term would refer to the condition where the instan¬ 
taneous peak voltage of the noise is equal to the peak voltage of the 
carrier. However, in the practical case, where only maximum peak 
values of the noise are measured, the improvement threshold will refer 
to the condition of equality of the maximum instantaneous peak volt¬ 
age of the noise and the peak voltage of the carrier. 

As the experimental characteristics will show, this increase in peak 
frequency deviation of the noise is manifested in an increase in crest 
factor of the noise. The crest factor cannot rise to infinity, however, 
due to the limitations imposed by the upper and lower cutoff fre¬ 
quencies of the intermediate-frequency channel. This selectivity limits 
the peak frequency deviation of the resultant of the noise and applied 
modulation to a value not greater than one half the intermediate-fre¬ 
quency channel width. Hence, in the absence of applied frequency 
modulation, the peak voltage of the noise at the detector output may 
rise to a value equal to the peak voltage due to the applied frequency 
modulation with maximum frequency deviation. In the presence of the 
applied frequency modulation, the total peak frequency deviation is 
limited so that the noise peaks depress the signal, that is, they punch 
holes in the signal, but do not rise above it. Thus a phenomenon which 
might be termed “frequency limiting” takes place. This frequency 
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limiting limits frequency deviations in the same manner that amplitude 
limiting limits amplitude deviations. The resulting effect is the same 
as though an amplitude limiter were placed at the detector output to 
limit the output so that the peak voltage of the noise or signal, or their 
resultant, cannot rise above a voltage corresponding to that produced 
by the signal alone at full modulation. 

Since the frequency limiting limits the noise so that its maximum 
amplitude cannot rise above the maximum amplitude of the applied 
modulation, a noise suppression effect is present which is similar to 
that effected by the recent noise suppression circuits 8 9 used for reduc¬ 
ing impulse noise which is stronger than the amplitude modulated 
carrier being received. The result of such limiting is a considerable re¬ 
duction of the annoyance produced by an intermittent noise, such as 
ignition, where the duration of the impulses is short and the rate of 
recurrence is low. ith such noise, the depression of the signal for the 
duration of the impulse reduces the presence of the signal for only a 
small percentage of the time; the resultant effect is a considerable im¬ 
provement over the condition where the peaks of the noise are stronger 
than the signal. On the other hand, for steady noise such as fluctua¬ 
tion noise, as the carrier-noise ratio is made less than unity, the signal 
is depressed more and more of the time so that it is gradually smothered 
in the noise. 

hen the effect of the audio selectivity is considered in conjunction 
with the frequency limiting, it is found that the noise suppression 
effect is somewhat improved for the case of a deviation ratio greater 
than unity. The reason for this is as follows: The frequency limiting 
holds the peak voltage of the noise at the output of the detector so that 
it cannot rise above the maximum value of the signal. However, in 
passing through the audio channel, the noise is still further reduced 
by elimination of higher frequency components whereas the signal 
passes through without reduction. Consequently the over-all limiting 
effect is such that the noise is limited to a value which is less than the 
maximum value of the signal. The amount that it is less depends upon 
the difference between the noise spectra existing at the output of the 
detector and the output of the audio selectivity. 

Experimental determinations, which will be shown later, point 
out that as unity carrier-noise ratio is approached, the frequency 

. ’Leland E. Thompson, “A detector circuit for reducing noise interference 
in C.W. reception,” QST, vol. 19, p. 38; April, (1935). A similar circuit for teleph¬ 
ony reception is described by the same author in QST, vol. 20, pp. 44-45; 
February, (1936). 

9 James J. Lamb, “A noise-silencing I.F. circuit for superhet receivers,” 
QST, vol. 20, pp. 11-14; February, (1936). 
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modulation audio noise spectrum changes from its triangular shape to 
a somewhat rectangular shape. Hence the noise spectrum at the out¬ 
put of the detector when frequency limiting is taking place would be 
approximately as given by OCBA of Fig. 3. AN hen the audio selectivity 
is applied, the spectrum would be reduced to OCEII and the band 
width of the noise would be reduced by a ratio equal to the deviation 
ratio. This would reduce the peak voltage of fluctuation noise by a 
ratio equal to the square root of the deviation ratio and that of im¬ 
pulse noise by a ratio equal to the deviation ratio. Thus, the resultant 
effect of the frequency limiting is that the fluctuation noise output is 
limited to a value equal to the maximum peak voltage of the signal 
divided by the square root of the deviation ratio. The corresponding 
value of impulse noise is limited to a value equal to the maximum 
peak voltage of the signal divided by the deviation ratio. Consequently, 
with fluctuation noise, when the noise and signal are measured in the 
absence of each other, the signal-noise ratio cannot go below a value 
equal to the square root of the deviation ratio; the corresponding 
signal-noise ratio impulse noise cannot go below a value equal to the 
deviation ratio. However, these minimum signal-noise ratios are only 
those which exist when the noise is measured in the absence of the 
applied frequency modulation. When the applied modulation and the 
noise are simultaneously present, the noise causes the signal to be 
depressed. When this depressed signal, with its depression caused by 
noise composed of a wide band of frequencies, is passed through the 
audio selectivity, the degree of depression is reduced. The amount of 
the reduction will be different for the two kinds of noise. The de¬ 
termination of the actual magnitude of this reduction of the signal 
depression, as effected by the audio selectivity, will be left for experi¬ 
mental evaluation. 

In comparing frequency modulation systems with different devia¬ 
tion ratios at the low carrier-noise ratios, the wider intermediate-fre¬ 
quency channel necessary for the high deviation ratio receiver gives 
that receiver a disadvantage with respect to the low deviation ratio 
receiver. Since this wider channel accepts more noise than the nar¬ 
rower intermediate-frequency channel of the low deviation ratio re¬ 
ceiver, when equal carriers are fed to both such receivers equality of 
carrier and noise occurs at a higher carrier level in the high deviation 
ratio receiver. As a result, a higher carrier voltage is required to reach 
the improvement threshold in the case of the high deviation ratio 
system. Thus at certain low carrier levels, the carrier-noise ratio could 
be above the improvement threshold in the low deviation ratio system, 
but below in the high deviation ratio system; at this carrier level the 
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low deviation ratio system would be capable of producing a better 
output signal-noise ratio than the high deviation ratio system. 

The difference between the improvement thresholds of receivers 
with different deviation ratios may be investigated by a determination 
of the carrier-noise ratio which exists in the reference amplitude modu¬ 
lation receiver when the improvement threshold exists in the frequency 
modulation receiver. This carrier-noise ratio may be found by a con¬ 
sideration of the relative band widths of the intermediate-frequency 
channels of the receivers. Thus, when the deviation ratio is unity, and 
the intermediate-frequency channel of the frequency modulation re¬ 
ceiver is of the same width as that of the amplitude modulation re¬ 
ceiver, 10 the two receivers would have the same carrier-noise ratio in 
the intermediate-frequency channels. When the deviation ratio is 
greater than unity, and the intermediate -frequency channel of the fre¬ 
quency modulation receiver is broader than that of the amplitude 
modulation receiver, the carrier-noise ratio in the frequency modula¬ 
tion receiver is less than that in the amplitude modulation receiver. 
For the case of fluctuation noise, w'here the peak values vary as the 
square root of the ratio between the two band widths concerned, the 
carrier-noise ratio in the frequency modulation intermediate-frequency 
channel would be less than that in the amplitude modulation inter¬ 
mediate-frequency channel by a ratio equal to the square root of the 
deviation ratio. Thus, when equal carrier voltage is fed to both re¬ 
ceivers, 

Ca/Na = (6'/2V)x Fd/Fa (fluctuation noise, peak or r-m-s values) (23) 

in which Ca/Na = carrier-noise ratio in the amplitude modulation in¬ 
termediate-frequency channel and C/N = corresponding ratio in the 
frequency modulation intermediate-frequency channel. 

In the case of impulse noise, where the peak values of the noise 

. 10 In order to assume that the frequency modulation receiver with a devia¬ 
tion ratio of unity has the same intermediate-frequency channel width as the 
corresponding amplitude modulation receiver, the assumption would also have 
to be made that the peak frequency deviation due to the applied frequency 
modulation is equal to one half the intermediate-frequency channel width. In 
the ideal receiver with a square-topped selectivity characteristic, this amount of 
frequency deviation would produce considerable out-of-channel interference and 
would introduce distortion in the form of a reduction of the amplitudes of the 
higher modulation of frequencies during the intervals of high peak frequency 
deviation. However, under actual conditions, where the corners of the selectivity 
characteristic are rounded, it has been found that the frequency deviation may 
be made practically equal to one half the normal selectivity used in amplitude 
modulation practice without serious distortion. Receivers with high deviation 
ratios are less susceptible to this distortion due to the natural distribution of the 
side bands for the high values of Fd/Fm which are encountered with such re¬ 
ceivers. 
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vary directly with the band-width ratio, the carrier-noise ratios in the 
two receivers are related by 

C Fd 
Ca/Na =- (impulse noise, peak values) . (24) 

N Fa

From (23), it can be seen that, with fluctuation noise, a carrier¬ 
noise ratio equal to the square root of the deviation ratio would exist 
in the amplitude modulation intermediate-frequency channel when the 
carrier-noise ratio is at the improvement threshold (C/N=l) in the 
frequency modulation intermediate-frequency channel. Likewise, from 
(24), with impulse noise, the frequency modulation improvement 
threshold occurs at a peak carrier-noise ratio in the amplitude modula¬ 
tion intermediate-frequency channel which is equal to the deviation 
ratio. 

Effect of Application of the Modulation 

For the condition of a carrier which is strong compared to the noise, 
the equation for the instantaneous frequency of the w’ave modulated 
by the noise and signal, given by (7), may be reduced to the following: 

n2 . x
f = Fc — Fd sin pt — — (Fna — Fd sin pt) 

g 

n 
Fd sin pt) cos 

Fd ) 
o>nat H- cos pt > . 

h m J 
(25) 

By neglecting the inconsequential term proportional to n2/C2, applying 
the sine and cosine addition formulas, the Bessel function expansions, 
and the Bessel function recurrence formulas, (25) may be resolved into 

f=Fc-(n/C) COS Wnat 

^-){(Fna+Fm) sin (wnat+pt) + (Fna — F m) sin (unat — pt)\ 
m / 

— J2 (- { (Fno + 2Fm) COS (a}nat-\-2pt) + (/' na 2Fm) COS (&>naf 2pt) } 
\Fm / 

{Faa+3Fm) sin (w„ai+3p/) + (F„o-3Fm) sin (u„at-3pt)} 

+Ji • • • (26) 

This resolution shows that the application of frequency modulation 
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to the carrier divides the over-all transmission of the receiver into 
components due to the carrier and each side frequency. The amplitudes 
of these components are proportional to the frequency difference be¬ 
tween the noise voltage and the side frequency producing the com¬ 
ponent. The frequency of the audio noise voltage in each one of these 
component spectra is equal to the difference between the side frequency 
and the noise radio frequency. Thus the application of the modulation 
changes the noise from a single triangular spectrum due to the carrier, 
into a summation of triangular spectra due to the carrier and side 
frequencies. In the absence of selectivity, the total root-mean-square 
noise would be unchanged by the application of the modulation since 
the root-mean-square summation of the frequency modulation carrier 
and side frequencies is constant; hence the root-mean-square summa¬ 
tion of noise spectra whose amplitudes are proportional to the strength 
of the carrier and side frequencies would be constant. However, since 
selectivity is present, the noise is reduced somewhat. This can be seen 
by considering the noise spectrum associated with one of the higher 
side frequencies. The noise spectrum associated with this side fre¬ 
quency, which acts as a “carrier” for its noise spectrum, is curtailed 
at the high-frequency end by the upper cutoff of the intermediate¬ 
frequency channel. The region of noise below the side frequency is 
correspondingly increased in range, but yields high-frequency noise 
voltages which are eliminated by the audio-frequency selectivity. 
Consequently when modulation is applied, the noise is slightly reduced. 
The amount of this reduction may be calculated by a root-mean-square 
summation of the individual noise spectra due to the carrier and side 
frequencies. Lor the case of a deviation ratio of unity, an actual sum¬ 
mation of the various spectra for full applied modulation has shown 
the root-mean-square reduction to be between two and three decibels 
depending upon the audio frequency of the noise. The same sort of 
summations also shows that the reduction becomes less as the devia¬ 
tion ratio is increased. 

The weak-carrier root-mean-square noise characteristics in the 
presence of applied frequency modulation do not lend themselves to 
such straightforward calculation as the corresponding strong-carrier 
characteristics and will not be gone into here. The same can be said 
for the peak-noise characteristics in the presence of applied frequency 
modulation. 

Transmitter Frequency Modulation Power Gain 

1 he above considerations, which are based upon the equivalent 
conditions of equal carrier amplitude at the input of the amplitude 
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and frequency modulation receivers, do not take into account the 
power gain effected by the use of frequency modulation at the trans¬ 
mitter. Since the power in a frequency modulated wave is constant, the 
radio-frequency amplifier tubes in the transmitter may be operated 
in the class C condition instead of the class B condition as is required 
for a low level modulated amplitude modulation system. In changing 
from the class B to the class C condition, the output voltage of the 
amplifier may be doubled. Consequently a four-to-one power gain 
may be realized by the use of frequency modulation when the ampli¬ 
tude modulation transmitter uses low-level modulation. On the other 
hand, when the amplitude modulation transmitter uses high level 
modulation—that is, when the final amplifier stage is modulated, the 
power gain is not so great. However, for the purpose of showing the 
effect of a transmitter power gain, the amplitude modulation trans¬ 
mitter will be assumed to be modulated at low levels. 

As this paper is in the final stages of preparation, systems of ampli¬ 
fying amplitude modulation have been announced wherein plate effi¬ 
ciencies of linear amplifiers have been increased practically to equal the 
class C efficiencies. 11 '2 Since these systems are not in general use as 
yet, it will suffice to say that such improvements in amplitude modula¬ 
tion transmission will tend to remove the frequency modulation trans¬ 
mitter gain in accordance with these improvements. Hence the over¬ 
all frequency modulation gain will more nearly approach that due to 
the receiver13 alone. 

With a four-to-one power gain at the transmitter, a frequency 
modulation system would deliver twice the carrier voltage to its re¬ 
ceiver that an amplitude modulation system would with the same 
transmitter output stage. Hence (15) and (17), and (23) and (24) 
become, respectively, 

(peak values, fluctuation noise) = 2\/3Fa/Fo (27) 
Sa/Na H

* (peak values, impulse noise) = ±Fd/Fa (28) 
SJNa H

u W H. Doherty, “A new high efficiency power amplifier for modulated 
waves,” presented before Eleventh Annual Convention Cleveland Ohio, May 
13 (1936); published in Proc. I.R.E., vol. 24, pp. 1163-1182; September, (1936). 

12 J N A. Hawkins, “A new, high-efficiency linear amplifier, Radio, no. 
209, pp. 8-14, 74-76; May, (1936). 

13 The receiver and transmitter gain are mentioned rather loosely when they 
are separated in this way. However, it will be understood that the receiver gain 
could not be realized without providing a transmitter to match the requirements 
of the receiver. 
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Ca/N = (C/ZN^Fd/Fa (fluctuation noise, r-m-s or peak values) (29) 

Ca/N = (C/ZNjFd/Fa (impulse noise, peak values). (30) 

These equations show that this increase in carrier fed to the frequency 
modulation receiver not only increases the frequency modulation im¬ 
provement, but also lowers the carrier-noise ratio received on the 
amplitude modulation receiver when the improvement threshold exists 
in the frequency modulation receiver. 

Fig- 5—Theoretical signal-noise ratio characteristics of frequency and amplitude 
modulation without the transmitter gain taken into account Curve d = am¬ 
plitude modulation receiver. The curves marked with I and F show the 
characteristics of the frequency modulation receivers for impulse and 
fluctuation noise, respectively. Fd/Fa = deviation ratio. 

Theoretical Conclusions 

1 he curves of Fig. 5 and G summarize the theoretical conclusions 
by means of an example in which receivers with deviation ratios of 
four and one are compared with each other and with an amplitude 
modulation receiver at various carrier-noise ratios. Fig. 5 shows the 
receiver gain only, whereas Fig. 6 takes into consideration a trans¬ 
mitter power gain of four to one. The curves are plotted with peak 
carrier-noise ratio in the amplitude modulation selectivity channel as 
a standard of comparison. Thus the curve for the amplitude modula¬ 
tion receiver is a straight line with a slope of forty-five degrees. The 
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curves for the frequency modulation receivers show output signal-noise 
ratios which are greater or less than those obtained from the ampli¬ 
tude modulation receiver depending upon the carrier-noise ratio. 

For Fig. 5, (15) and (17) were used to obtain the strong-carrier 
frequency modulation improvement factors. Hence the frequency 
modulation output signal-noise ratios were obtained by multiplying 
the amplitude modulation signal-noise ratios by the frequency modula¬ 
tion improvement factors. The carrier-noise ratios which exist in the 
amplitude modulation receiver when the improvement threshold exists 

Fig. 6—Theoretical signal-noise ratio characteristics of frequency and amplitude 
modulation receivers with the transmitter gain taken into account. 

in the frequency modulation receiver were determined by substituting 
a value of unity carrier-noise ratio in (23) and (24). The improvement 
thresholds are designated in both Figs. 5 and 6 by the points u and z 
for fluctuation and impulse noise, respectively. Since the theory does 
not permit actual calculation of signal-noise ratios in the region be¬ 
tween high ratios and the improvement threshold, that part of the 
curves has been sketched in with a dashed line. 

The part of the impulse-noise curve, for the deviation ratio of four 
represented by the line x-y shows the characteristic which would be 
obtained if the noise and signal were measured in the absence of each 
other. Because of frequency limiting, the noise is limited to equality 
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with the signal at the output of the detector and is then reduced in 
peak voltage by the audio selectivity. The amount of this reduction 
for impulse noise would be a ratio equal to the deviation ratio or, in 
this case, twelve decibels. In the case of fluctuation noise, the reduction 
of the noise, which is present in the absence of modulation, would be 
equal to the square root of the deviation ratio, or six decibels, and the 
corresponding curve is shown by the line v-w. However, these lines do 
not portray the actual signal-noise ratio characteristics since the noise 
depresses the signal when the carrier-noise ratios go below the improve¬ 
ment threshold. In the case of fluctuation noise this signal depression 
causes the signal to become smothered in the noise as the carrier-noise 
ratio is lowered below the improvement threshold. On the other hand, 
with impulse noise such as ignition, where the pulses are short and 
relatively infrequent, carrier-noise ratios below the improvement 
threshold will present an output signal which is depressed by the noise 
impulses, but which is quite usable due to the small percentage of time 
that the impulse exists. 

The curves of Fig. 6, which take into account the frequency modu¬ 
lation transmitter gain, utilize (27) and (28) to obtain the frequency 
modulation improvements at the high carrier-noise ratios. These 
curves assume a carrier at the frequency modulation receiver inputs 
which is twice the strength of that present at the amplitude modulation 
receiver input. The frequency modulation improvements are therefore 
increased by six decibels and the improvement thresholds occur at 
signal-noise ratios in the amplitude receiver which are six decibels be¬ 
low the corresponding ratios for the case where the transmitter gain 
is not taken into account. 

Further conclusions of the theory are as follows: For the high car¬ 
rier-noise ratios, the application of modulation does not increase the 
root-mean-square value of the noise above its unmodulated value. Also, 
in the case of the low deviation ratio receivers, the root-mean-square 
value of the noise will be slightly reduced as the modulation is applied. 

Experiment 

In the experimental work it was desired to obtain a set of data 
from which curves could be plotted showing the frequency modulation 
characteristics in the same manner as the theoretical curves of Fig. 5. 
To do this it was necessary to have an amplitude modulation reference 
system and frequency modulation receivers with deviation ratios of 
unity and greater than unity. Equal carrier voltages and noise spec¬ 
tra could then be fed to these receivers and the output signal-noise 
ratios measured while the carrier-noise ratio was varied. Since it was 
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not convenient to measure the carrier-noise ratio at intermediate fre¬ 
quency, the output signal-noise ratios of the amplitude modulation 
receiver were measured instead and were plotted as abscissas in place 
of the carrier-noise ratios. This gives an abscissa scale which is practi¬ 
cally the same as that which would be obtained by plotting carrier-
noise ratios. The validity of this last statement was checked by meas¬ 
uring the linearity with which the output signal-noise ratio of the 
amplitude modulation receiver varied from high to low values as the 
carrier-noise ratio was varied by attenuating the carrier in known 
amounts in the presence of a constant noise. At the very low root¬ 
mean-square ratios the inclusion of the beats between the individual 
noise frequencies in the spectrum increases the apparent value of the 

Fig. 7—Block diagram of experimental setup. 

root-mean-square resultant of the noise voltages about two or three 
decibels. Thus, except for this small error at the low root-mean-square 
carrier-noise ratios, the amplitude modulation signal-noise ratio can 
be assumed equal to the carrier-noise ratio. 

The block diagram of Fig. 7 shows the arrangement of apparatus 
used in obtaining the experimental data. The frequency modulated 
oscillator employed a circuit which was similar to that used in the pre¬ 
viously mentioned propagation tests.1 The modulated amplifier con¬ 
sisted of a signal generator which was capable of being amplitude 
modulated, but whose master oscillator energy was supplied from the 
frequency modulated oscillator. Thus a signal generator was available 
which was capable of being either frequency or amplitude modulated. 
A two-stage radio-frequency amplifier, tuned to the carrier frequency, 
but with no signal at its input, was used as the source of fluctuation 
noise. For the impulse noise measurements, the radio-frequency output 
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of a square-wave multivibrator was fed to the input of this radio¬ 
frequency amplifier. 

In order to make available frequency modulation receivers with 
different deviation ratios, a method was devised which made possible 
the use of a single intermediate-frequency channel and detection sys¬ 
tem for all receivers. The method consisted in the insertion of a low-
pass filter in the audio output of the receiver so as to reduce the width 
of the audio channel and thereby increase the deviation ratio of the 
receiver. This procedure is not that which might be normally followed 
since to increase the deviation ratio, the audio channel would normally 
be left constant and the intermediate-frequency channel increased. 

Fig. 8—Band-pass characteristic of receiver intermediate-frequency 
amplifier, and characteristic of sloping filter. 

However, since it is only the ratio between the intermediate- and audio¬ 
frequency channels which governs the frequency modulation improve¬ 
ment, such an expedient is permissible for the purpose of the experi¬ 
ments. 

The band-pass filter of the receiver intermediate-frequency ampli¬ 
fier was adapted from broadcast components and gave an output which 
was about one decibel down at 6500 cycles off from mid-band fre¬ 
quency. (See Fig. 8.) Hence maximum frequency deviation was limited 
to 6500 cycles. The audio channel of the receiver cut off at 6500 cycles 
and the low-pass filter cut off at 1600 cycles. Thus the following four 
different types of receivers were available: Number one, a frequency 
modulation receiver with a deviation ratio of unity which would re¬ 
ceive a 6500-cycle modulation band. Number two, an amplitude modu-
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lation receiver which would receive a 6500-cycle modulation band. 
Number three, a frequency modulation receiver with a deviation ratio 
of about four (6500-^1600) which would receive a 1600-cycle modula¬ 
tion band. Number four, an amplitude modulation receiver which would 
receive a 1600-cycle modulation band. 

With these four receivers, a comparison between number two and 
number one would produce a comparison between amplitude modula¬ 
tion reception and frequency modulation reception with a deviation 
ratio of unity. A comparison between receivers number four and num¬ 
ber three would produce a comparison between amplitude modulation 
reception and frequency modulation reception with a deviation ratio of 
four. Thus both frequency modulation receivers had as a standard of 
comparison an amplitude modulation receiver with an audio channel 
equal to that of the frequency modulation receiver. 

The limiter of the frequency modulation receiver consisted of four 
stages of intermediate-frequency amplification arranged alternately to 
amplify and limit. The sloping filter detectors utilized the same circuit 
as used in the propagation tests1 except that only one sloping filter was 
used in conjunction with a flat-top circuit as described in the theoreti¬ 
cal section of this paper. Thus a balanced detector type of receiver was 
available which would also receive amplitude modulation by switching 
off the frequency modulation detector and receiving the detected out¬ 
put of the flat-top circuit. The characteristic of the sloping filter is 
shown in Fig. 8. 

The output of the detectors was fed to a switching system which 
connected either to a low-pass filter and attenuator or directly to the 
attenuator. The output of the attenuator passed to an audio-frequency 
amplifier having an upper cut-off frequency of 6500 cycles. The indi¬ 
cating instruments were connected to the amplifier output terminals. 
For the root-mean-square fluctuation noise measurements, a copper-
oxide-rectifier type meter was used. 14 A cathode-ray oscilloscope was 
used for all peak voltage measurements. 

In the procedure used to obtain the data, the carrier-noise ratio was 
varied over a wide range of values and the receiver output signal-noise 
ratios were measured at each value of carrier-noise ratio. To do this, 
the output of the noise source was held constant while the carrier was 

11 In the preliminary measurements, a thermocouple meter was connected in 
parallel with the copper-oxide-rectifier meter in order to be sure that no particular 
condition of the fluctuation noise wave form would cause the rectifier meter to 
deviate from its property of reading root-mean-square values on this type of 
noise. It was found that the rectifier type of instrument could be relied upon to 
indicate correctly so that the remainder of the measurements of root-mean¬ 
square fluctuation noise were made using the more convenient rectifier type of 
instrument. 
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varied by means of the signal generator attenuator. The output peak 
signal-noise ratios were obtained by first measuring the peak voltage 
of the tone output with the noise source shut off and then measuring 
the peak voltage of the noise with the tone shut off. The maximum 
peak voltage of the noise was read for its peak voltage. The root-mean¬ 
square signal-noise ratios were measured by reading the root-mean¬ 
square voltage of the tone in the presence of the noise and then reading 
the voltage of the noise alone. The signal was then separated from the 
noise by equating the measured signal-plus-noise voltage to VS2+N2, 
substituting the measured noise voltage for N, and solving for the sig¬ 
nal, S. In these measurements, a 1000-cycle tone was used to modulate 

Fig. 9—Measured peak signal-noise ratio characteristics for fluctuation noisfe. 
Curve A = amplitude modulation receiver. Curve B = frequency modulation 
receiver with deviation ratio equal to unity. Curve C= frequency modula¬ 
tion receiver with deviation ratio equal to four. 

at fifty per cent the amplitude modulator or to produce one-half fre¬ 
quency deviation (3250 cycles) on the frequency modulator. The out¬ 
put signal-noise ratios were corrected to a 100 per cent, or full modula¬ 
tion, basis by multiplying them by two. The radio frequency used was 
ten megacycles. 

Fluctuation Noise Characteristics 

The curves of Fig. 9 show the fluctuation noise characteristics, in 
which peak signal-noise ratios were measured. These curves check the 
theoretical curves of Fig. 5 as nearly as such measurements can be ex¬ 
pected to check. With the deviation ratio of four (low-pass filter in), the 

84 



502 Crosby: Frequency Modulation Noise Characteristics 

theoretical strong-carrier improvement should be 4X1.73 = 6.9 or 16.8 
decibels; the measured improvement from Fig. 9 is about 14 decibels. 
With the deviation ratio of unity (low-pass filter out), the measured 
improvement was about 3.5 decibels as compared to the 4.76-decibel 
theoretical figure. The full frequency modulation improvement is seen 
to be obtained down to carrier-noise ratios about t wo or three decibels 
above the improvement threshold (equality of peak carrier and noise). 
The fact that the frequency modulation improvement threshold occurs 
at a higher carrier-noise ratio in the case of the receiver with a devia¬ 
tion ratio of four than in the case of the receiver with a deviation ratio 
of unity, also checks the theoretical predictions. In this case of fluctua¬ 
tion noise, the improvement threshold for the receiver with the devia¬ 
tion ratio of four should occur at a carrier-noise ratio in the amplitude 
modulation intermediate-frequency channel which was twice the corre¬ 
sponding ratio for the receiver with a deviation ratio of unity. The 
curves show these two points to be about seven decibels apart or within 
one decibel of the theoretical figure of six decibels. 

The data for the curves of Fig. 9 were obtained by measuring the 
peak value of the noise alone and signal alone and taking the ratio of 
these two values as the signal-noise ratio. Hence the signal depressing 
effect, occurring for carrier-noise ratios below the improvement thresh¬ 
old, does not show up on the curves. In order to obtain an approxi¬ 
mate idea as to the order of magnitude of this effect, observations were 
made in which the carrier-noise ratio was lowered below the improve¬ 
ment threshold while the tone modulation output (100 per cent modu¬ 
lation in the case of the amplitude modulation observation and full 
frequency deviation in the case of the frequency modulation observa¬ 
tion) was being monitored by ear and oscilloscope observation. It was 
found that the fluctuating nature of the instantaneous peak voltage 
of the fluctuation noise had considerable bearing upon the effects ob¬ 
served. Due to the fact that the instantaneous value of the peak volt¬ 
age is sometimes far below the maximum instantaneous value, fre¬ 
quency modulation improvement is obtained to reduce still further the 
peak voltage of these intervals of noise having instantaneous peak volt¬ 
ages lower than the maximum value. This effect seems to produce a 
signal at the output of the frequency modulation receiver which sounds 
“cleaner,” but which has the same maximum peak voltage character¬ 
istics as the corresponding amplitude modulation receiver. Thus, as far 
as maximum peak voltage of the noise is concerned, the frequency 
modulation receiver produces about the same output as the amplitude 
modulation receiver for carrier-noise ratios below the improvement 
threshold. The reduction of the peak voltage of the noise during the 
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intervals of lower instantaneous peak value reduces the energy content 
of the noise in the output; hence some idea of the magnitude of this 
effect can be obtained from the root-mean-square characteristics of the 
noise. 

The curves of Fig. 10 are similar to those of Fig. 9 except that the 
root-mean-square signal-noise ratios are plotted as ordinates. Since the 
crest factor of the signal is three decibels and that of fluctuation noise 
is about thirteen decibels (as later curves will show), the root-mean¬ 
square signal-noise ratios are ten decibels higher than the correspond¬ 
ing peak ratios. It can be seen that the root-mean-square characteris-

Fig. 10—Measured root-mean-square signal-noise ratio characteristics for fluc¬ 
tuation noise. Curve A = amplitude modulation receiver. Curve B= fre¬ 
quency modulation receiver with deviation ratio equal to unity. Curve 
C =frequency modulation receiver with deviation ratio equal to four. 

tics differ from the peak characteristics in the range of carrier-noise 
ratios below the improvement threshold; above the improvement 
threshold, the characteristics are similar. 

Since the root-mean-square and peak signal-noise ratios display 
different characteristics below the improvement threshold, it is quite 
evident that the crest factor of the noise changes as the carrier-noise 
ratio is lowered below this point. The crest factor can be obtained from 
the curves of Fig. 9 and 10 as follows: By adding three decibels to the 
ordinates of Fig. 10 they will be converted to peak signal to root-mean¬ 
square noise ratios. Hence by subtracting from these ratios the corre-
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spending ordinates of Fig. 9, the crest factor of the noise is obtained. 
The results of such a procedure are shown in Fig. 11. 

In the case of the frequency modulation receiver with a deviation 
ratio of four, Fig. 11 shows that the crest factor increases by about 14.5 
decibels at the improvement threshold. Hence the frequency modula¬ 
tion improvement, which is about fourteen decibels by measurement 
and sixteen by calculation, is counteracted by an increase in crest fac¬ 
tor. This same situation exists in the case of the receiver with a devia¬ 
tion ratio of unity. Here the increase in crest factor is about four deci¬ 
bels; the measured frequency modulation improvement is about 3.5 
decibels and the calculated value 4.76 decibels. 

Fig. 11—Crest factor characteristics of frequency and amplitude modulation 
receivers. Curve A = amplitude modulation receiver with 6500-cycle audio 
channel. Curve B=frequency modulation receiver with deviation ratio 
equal to unity. Curve C = frequency modulation receiver with deviation 
ratio equal to four. 

Curve A of Fig. 11 shows the crest factor characteristics of the 
amplitude modulation receiver. It is seen that this crest factor is about 
equal to that for frequency modulation above the improvement thresh¬ 
old. The average value of the crest factor for both amplitude and fre¬ 
quency modulation in this region is thirteen decibels or about 4.5 to 
one. This value checks previous measurements of crest factor where a 
slide-back vacuum tube voltmeter was used in place of an oscilloscope 
to measure the peak voltage and a thermocouple was used to measure 
the root-mean-square values. 
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The point where the crest factor of the noise increases, which occurs 
at the frequency modulation improvement threshold, has a rather dis¬ 
tinctive sound to the ear. When fluctuation noise is being observed, 
as this point is approached the quality of the hiss takes on a more 
intermittent character, somewhat like that of ignition. This point has 
been termed by the author the “sputter point,” and since it coincides 
with the improvement threshold it is a good indicator for locating the 
improvement threshold. It is caused by the fact that the fluctuation 
noise voltage has a highly variable instantaneous peak voltage so that 
there are certain intervals during which the instantaneous peak voltage 
of the noise is higher than it is during other intervals. Consequently, 
as the maximum peak value of the noise approaches the peak value 
of the signal, the higher instantaneous peaks will have their crest fac¬ 
tor increased to a greater degree than the lower instantaneous peaks. 
Fig. 12 shows oscillograms taken on the fluctuation noise output of the 

F A 
Fig. 12—Wave form of the fluctuation noise output at unity carrier-noise ratio 

in the frequency modulation receiver. F = frequency modulation receiver. 
A = amplitude modulation receiver. 

frequency and amplitude modulation receivers with the 1600-cycle low-
pass filter in the audio circuit and with the signal-noise ratio adjusted 
to the sputter point. These oscillograms also tend to show how the 
frequency modulation signal would sound “cleaner” than the amplitude 
modulation signal when the carrier-noise ratio is below the improve¬ 
ment threshold. 

Data were also taken to show the fluctuation noise characteristics 
as frequency modulation is applied. These data were taken by inserting 
low-pass or high-pass filters in the audio system and then applying a 
modulation frequency to the frequency modulated oscillator which 
would fall outside the pass band of the filters. The low-pass filter cut 
off at 1600 cycles so that modulating frequencies higher than 1600 
cycles were applied. The output of the filter contained only noise in 
the range from zero to 1600 cycles and the change of noise versus fre¬ 
quency deviation of the applied modulation could be measured. The 
high-pass filter also cut off at 1600 cycles so that measurements of the 
noise in the range from 1600 to 6500 cycles were made while applying 
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modulation frequencies below 1600 cycles. In the case of the high-pass 
filter, the harmonics of the modulating frequencies appeared at the 
filter output in addition to the noise. Consequently, a separate meas¬ 
urement of the harmonics in the absence of the noise was made so that 
the noise could be separated from the harmonics by the quadrature 
relations. The results with the low-pass filter are shown in Fig. 13. The 
results with the high-pass filter are shown in Fig. 14. 

The curves of Fig. 13 are representative of a system with a devia¬ 
tion ratio of four. They point out the fact that when the peak carrier¬ 
noise ratio in the frequency modulation intermediate-frequency channel 

Fig. 13—Variation of frequency modulation receiver output noise as frequency 
modulation is applied. 1600-cycle low-pass filter in audio output. Modula¬ 
tion frequency: for curve X=6000 cycles, F = 3000 cycles, and Z =2000 
cycles. C/Ar = peak carrier-noise ratio in the output of intermediate-fre¬ 
quency channel. 

is greater than unity, the root-mean-square noise is substantially un¬ 
changed due to the application of modulation. The one curve for a 
carrier-noise ratio less than unity shows a gradual increase of the 
noise, which would effect a decrease of the signal-noise ratio as the 
modulation is applied; this increase in the noise is displayed to a 
greater extent on the lower modulation frequency of 2000 cycles than 
on the higher modulation frequencies of 3000 and 6000 cycles. 

Fig. 14 is approximately representative of a receiver with a devia¬ 
tion ratio of unity. This is because the range of noise frequencies from 
zero to 1600 cycles, which were eliminated by the high-pass filter, were 
a small part of the total range extending out to 6500 cycles. At the 
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highest carrier-noise ratio, the noise is decreased as the modulation is 
applied. This is in accordance with the deductions of the theory in the 
section Effect of Application of Modulation. As the carrier-noise ratio 
is lowered this tendency is eliminated. 

Data similar to that for Fig. 13, with the low-pass filter in the audio 
circuit, were taken measuring the output peak voltage of the noise. 
The characteristics obtained were identical to those obtained with 
root-mean-square measurements. 

Since the harmonics of the tone present in the output of the high-
pass filter could not readily be separated from the noise for the peak 

Fig. 14—Variation of frequency modulation receiver output noise as frequency 
modulation is applied. 1600-cycle high-pass filter in audio output. Modula¬ 
tion frequency = 1000 cycles. 

voltage measurements, the high-pass filter data were taken by root-
mean-square measurements only. 

Measurements were also made to determine how much the audio 
selectivity reduced the degree of signal depression present at the out¬ 
put of the detector of the frequency modulation receiver. The carrier¬ 
noise ratio was set so that the maximum peak voltage of the fluctuation 
noise was equal to the peak voltage of the carrier. At this carrier-noise 
ratio the maximum noise peaks depressed the signal down to zero at 
the output of the detector. At the output of the 1600-cycle low-pass 
filter, the maximum noise peaks depressed the signal five decibels. 
Thus, without the audio selectivity, the signal was depressed by an 
amount equal to its total amplitude; with the audio selectivity, the 
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signal was depressed to five decibels below full amplitude or down to an 
amplitude of 56 per cent. Hence the reduction of the depth of the sig¬ 
nal depression was from a 100 per cent depression to a depression of 
(100 —56) =44 per cent or a reduction of about seven decibels. The 
theoretical reduction of the fluctuation noise in the absence of the 
modulation would be equal to the square root of the ratio of band 
widths or six decibels. Thus the reduction of the signal depression is, 
for all practical purposes, the same as the reduction in the peak voltage 
of the noise alone. 

Impulse Noise Measurements 

The first measurements on impulse noise were made using an auto¬ 
mobile ignition system driven by an electric motor. However the 
output from this generator proved to be unsteady and did not allow a 
reasonable measurement accuracy. Consequently a square-wave multi¬ 
vibrator was set up. This type of impulse noise generator proved to 
be even more stable than the fluctuation noise source and allowed ac¬ 
curate data to be obtained. On the other hand, the output of the re¬ 
ceiver being fed by this noise generator was not as steady as would be 
expected. In the absence of the carrier the output was steady, but as 
the carrier was introduced the output peak voltage started to fluctuate. 
Apparently the phase relation between the components of the noise 
spectrum and the carrier varies in such a manner as to form a resultant 
wave which varies between amplitude modulation and phase or fre¬ 
quency modulation. Hence the output of a receiver which is adjusted 
to receive either type of modulation alone will fluctuate depending 
upon the probability considerations of the phase of combination of the 
carrier and noise voltages. 

The preliminary impulse noise measurements were made on an 
amplitude modulation receiver by comparing the peak voltage ratio 
between the two available band widths of 6500 and 1600 cycles. The 
6500-cycle channel was fed to one set of oscilloscope plates and the 
1600-cycle channel to the other. Thus, when the peak voltages at the 
outputs of the two channels were equal the oscilloscope diagram took 
a symmetrical shape somewhat like a plus sign. The two channel levels 
were equalized by means of a tone. Hence, when the noise voltage was 
substituted for the tone, the amount of attenuation that had to be 
inserted in the wider band to produce a symmetrical diagram on the 
oscilloscope was taken as the ratio of the peak voltages of the two band 
widths. In this manner a series of readings was taken which definitely 
proved that the peak voltage ratio of the two band widths was propor¬ 
tional to the band width ratio. These readings were taken on both the 
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ignition system noise generator and the multivibrator generator. As a 
check, readings on fluctuation noise were also taken which showed that 
the peak voltage of fluctuation noise varies as the square root of the 
band width. 

The final measurements on impulse noise were made using the same 
procedure followed for the fluctuation noise measurements of Fig. 9. 
Only peak voltage measurements were made on this type of noise. The 
curves are shown in Fig. 15. It can be seen that the peak voltage char¬ 
acteristics of impulse noise are similar to those of fluctuation noise 
except for the location of the improvement threshold. For the receiver 

Fig. 15—Measured peak signal-noise ratio characteristics of impulse noise. 
Curve A = amplitude modulation receiver. Curve B = frequency modula¬ 
tion receiver with deviation ratio of unity. Curve C = frequency modulation 
receiver with deviation ratio of four. 

with a deviation ratio of four, the improvement threshold occurs at a 
carrier-noise ratio slightly above sixteen decibels as compared with 
slightly above eight decibels for fluctuation noise. The difference be¬ 
tween the improvement thresholds for the two frequency modulation 
receivers is about fourteen decibels; the corresponding theoretical fig¬ 
ure, which is equal to the ratio of the two deviation ratios, is twelve 
decibels. The theoretical difference between the strong-carrier fre¬ 
quency modulation improvements for impulse and fluctuation noises, 
as indicated by the difference between the factors two and the square 
root of three respectively, is too small to be measurable with such varia¬ 
ble quantities as these noise voltages. 
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Since the signal-noise ratios for the curves of Fig. 15 were obtained 
by measuring the noise and signal in the absence of each other, the 
signal-depressing effect of the noise does not show up. However, in the 
case of impulse noise, these curves are more representative of the actual 
situation existing, because the noise depresses the signal for only a 
small percentage of the time. In the listening and oscilloscope observa¬ 
tions conducted with carrier-noise ratios below the improvement 
threshold, it was observed that at unity carrier-noise ratio the noise 
peaks depressed the amplitude of the signal to zero at the output of 
the detector. When the low-pass filter was inserted in the audio circuit, 
the impulse noise peaks depressed the signal about 2.5 decibels or re¬ 
duced the amplitude from 100 per cent to 75 per cent. The effective sig¬ 
nal-noise ratio is then increased from unity to 100/(100 —75) =4 or 12 

C/n=20 C/n=2 C/n= 1.26 C/n=l 
Fig. 16—Over-all transmission oscillograms of the frequency and amplitude 

modulation receivers. 1600-cycle low-pass filter in audio output. Top row = 
amplitude modulation, bottom row = frequency modulation. C/n = ratio be¬ 
tween the carrier and the variable-frequency heterodyning voltages. 

decibels. This is equal to the theoretical reduction in peak voltage of 
impulse noise which would be effected by this four-to-one band width 
ratio. It is then evident that the reduction of the depth of the signal 
depression caused by the impulse noise is of the same magnitude as the 
reduction of the peak voltage of the noise alone. 

Over-all Transmissions 

The oscillograms of Fig. 16 show the over-all transmissions of the 
amplitude and frequency modulation receivers at various carrier-noise 
ratios. These oscillograms were taken by tuning the receiver to a car¬ 
rier, and then, to simulate the noise, manually tuning a heterodyning 
signal across the intermediate-frequency channel. The audio beat out¬ 
put of the receiver was applied through the low-pass filter to the verti-
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cal plates of the oscilloscope. A bias proportional to the frequency 
change of the heterodyning voltage was applied to the other set of 
oscilloscope plates. Consequently the spectra obtained are those which 
would be produced by the combination of a single noise component of 
variable frequency and the carrier. At the higher carrier-noise ratios, 
the spectrum is rectangular for amplitude modulation and triangular 
for frequency modulation. The dip in the middle of the amplitude 
modulation spectrum is where the audio output is near zero beat. As 
the carrier-noise ratio is decreased, the frequency modulation spectrum 
deviates from its triangular shape and the wave form of the receiver 
output has increased harmonic content at the lower audio frequencies 
where the audio selectivity does not eliminate the harmonics. 

The amplitude modulation spectra of Fig. 16 also show the pres¬ 
ence of added harmonic distortion on the lower modulation frequencies 
and lower carrier-noise ratios. However, the effect is so small that it is 
of little consequence. 

The spectra of Fig. 16 allow a better understanding of the situation 
which is theoretically portrayed by (7) of the theory. 

Experimental Conclusions 

It can be concluded that the experimental data in general confirm 
the theory and point out the following additional information: 

The improvement threshold starts at a carrier-noise ratio about 
three or four decibels above equality of peak carrier and noise in the 
frequency modulation intermediate-frequency channel. Hence the full 
frequency modulation improvement may be obtained down to a peak 
carrier-noise ratio in the frequency modulation receiver of three or four 
decibels. 

The root-mean-square fluctuation noise characteristics differ from 
the peak fluctuation noise characteristics for carrier-noise ratios below 
the improvement threshold. The improvement threshold starts at 
about the same peak carrier-noise ratio, but the improvement does not 
fall off as sharply as it does for peak signal-noise ratios. Thus, for car¬ 
rier-noise ratios below the improvement threshold the energy content 
of the frequency modulation noise is reduced, but the peak character¬ 
istics are approximately the same as those of the amplitude modulation 
receiver. The characteristics are not exactly the same due to the fre¬ 
quency limiting which allows the noise peaks to depress the signal, but 
does not allow them to rise above the signal. 

The crest factor of the fluctuation noise at the outputs of the fre¬ 
quency and amplitude modulation receivers is about thirteen decibels 
or 4.5 to one for the strong-carrier condition. The crest factor of ampli-
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tude modulation fluctuation noise remains fairly constant regardless 
of the carrier-noise ratio. At equality of peak carrier and peak noise in 
the frequency modulation intermediate-frequency channel, the crest 
factor of the noise in the output of the frequency modulation receiver 
rises to a value which counteracts the peak signal-noise ratio improve¬ 
ment over amplitude modulation; the improvement threshold mani¬ 
fests itself in this manner. 

At the improvement threshold, the application of the audio selec¬ 
tivity reduces the signal depression due to a noise peak by the same 
ratio that it reduces the noise in the absence of the signal. Thus the 
depth of a noise depression in the signal is reduced by a ratio equal to 
the square root of the deviation ratio in the case of fluctuation noise, 
and equal to the deviation ratio in the case of impulse noise. 

General Conclusions 

The theory and experimental data point out the following conclu¬ 
sions : 

A frequency modulation system offers a signal-noise ratio improve¬ 
ment over an equivalent amplitude modulation system when the 
carrier-noise ratio is high enough. For fluctuation noise this improve¬ 
ment is equal to the square root of three times the deviation ratio for 
both peak and root-mean-square values. For impulse noise the corre¬ 
sponding peak signal-noise ratio improvement is equal to twice the 
deviation ratio. When the carrier-noise ratio is about three or four 
decibels above equality of peak carrier and peak noise in the frequency 
modulation intermediate-frequency channel, the peak improvement 
for either type of noise starts to decrease and becomes zero at a carrier¬ 
noise ratio about equal to unity. Below this “improvement threshold,” 
the peak characteristics of the frequency modulation receiver are ap¬ 
proximately the same as those of the equivalent amplitude modulation 
receiver. The root-mean-square characteristics of the frequency modu¬ 
lation noise show a reduction of the energy content of the noise for 
carrier-noise ratios below the improvement threshold; this is evidenced 
by the fact that the improvement threshold is not as sharp for root¬ 
mean-square values as for peak values. 

At the lower carrier-noise ratios, frequency modulation systems 
with lower deviation ratios have an advantage over systems with 
higher deviation ratios. Since the high deviation ratio system has a 
wider intermediate-frequency channel, more noise is accepted by that 
channel so that the improvement threshold occurs at a higher carrier 
level in the high deviation ratio system than in the low. Hence the 
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low deviation ratio systems retain their frequency modulation improve¬ 
ment down to lower carrier levels. 

The peak voltage of fluctuation noise varies with band width in the 
same manner as the root-mean-square voltage, namely, as the square 
root of the band width. The peak voltage of impulse noise varies di¬ 
rectly as the band width. In frequency modulation systems with a 
deviation ratio greater than unity, this difference in the variation with 
band width makes the improvement threshold occur at a higher carrier 
level with impulse noise than with fluctuation noise. Hence frequency 
modulation systems with higher deviation ratios are more susceptible 
to impulse noise interference. 

Because of a phenomenon called “frequency limiting” the peak fre¬ 
quency deviations of the noise or the noise-plus-signal are limited so 
that the peak value cannot rise above the maximum peak value of the 
signal at the output of the detector. The application of audio selectivity 
reduces this maximum value of the noise so that fluctuation noise can¬ 
not rise to a value higher than the maximum value of the signal divided 
by the square root of the deviation ratio; the corresponding value of 
impulse noise cannot rise to a value higher than the maximum peak 
voltage of the signal divided by the deviation ratio. Inherent with this 
limiting effect is a signal-depressing effect which causes the fluctuation 
noise gradually to smother the signal as the carrier-noise ratio is lowered 
below the improvement threshold. However in the case of impulse 
noise, the signal depression is not as troublesome, and a noise-suppres¬ 
sion effect is created which is similar to that effected in the recent cir¬ 
cuits for suppressing impulse noise which is stronger than the carrier 
in an amplitude modulation system. When the deviation ratio is 
greater than unity, this frequency limiting is more effective than 
the corresponding amplitude modulation noise-suppression circuits; 
this is caused by the audio selectivity reducing the maximum peak 
value of the noise so that it is less than the peak value of the signal. 

For carrier-noise ratios greater than unity, the application of fre¬ 
quency modulation to the carrier does not increase the noise above its 
value in the absence of applied frequency modulation. 

At the transmitter, a four-to-one power gain is obtained by the use 
of class C radio-frequency amplification for frequency modulation in¬ 
stead of the customary class B amplification as is used for low level 
amplitude modulation. Therefore, for the same transmitter power in¬ 
put, a frequency modulation system will produce at its receiver a car¬ 
rier which is twice as strong as that produced at the receiver of an 
amplitude modulation system. This results in two effects: first, the 
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frequency modulation improvement is doubled for carrier-noise ratios 
above the improvement threshold; second, when the improvement 
threshold occurs in the frequency modulation receiver, the carrier¬ 
noise ratio existing in the amplitude modulation receiver is one half 
of what it would have been without the transmitter power gain. 
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Variation of Bandwidth with Modulation Index 
in Frequency Modulation* 

MIRLAN S. CORRINGTONf 

Summary—Equations are derived for the carrier and side¬ 
frequency amplitudes which are obtained when a carrier wave is 
frequency-modulated by a complex audio signal. The bandwidth 
occupied by such a frequency-modulated wave is defined as the 
distance between the two frequencies beyond which none of the 
side frequencies is greater than 1 per cent of the carrier amplitude 
obtained when the modulation is removed. 

Curves are given to show the amount this bandwidth exceeds 
the extremes of deviation for a range of modulation indexes frem 
0.1 to 10,000, for sinusoidal, square, rectangular, and triangular 
modulation. For more precise definitions of bandwidth, curves are 
also given for side-frequency amplitude limits of 0.1 per cent and 
0.01 per cent of the carrier-wave amplitude. For complex modulât on 
the total bandwidth can be estimated by computing the bandwidth 
that would be required by each audio-frequency component, if it 
were on separately, and adding the results. 

Introduction 

IF A CARRIER wave is frequency-modulated with a sinusoidal audio voltage, an infinite number of 
side frequencies is produced. The carrier amplitude 

is reduced when the modulating voltage is applied, and 
may even become zero. If the deviation is increased, 
additional side frequencies are produced in both side¬ 
bands, and the distribution of the intensities of the 
previous ones is changed. For a single audio tone, the 
distance between side frequencies is always equal to the 
audio frequency. When two or more modulating tones 
are used simultaneously, side frequencies are produced 
which are separated from the carrier by all possible com¬ 
bination frequencies which can be obtained from sums 
and differences of harmonics of the modulating fre-
quencies.1'2 Thus, if there are two audio tones of fre¬ 
quencies jui and hi, the side frequencies are separated 
from the carrier by ±rpi±spj where r and s are posi¬ 
tive integers or zero. 

Although, theoretically, an infinite number of side 
frequencies is produced, in practice the ones separated 
from the carrier by a frequency greater than the devia¬ 
tion decrease rapidly toward zero, so the bandwidth al¬ 
ways exceeds the total frequency excursion, but never¬ 
theless is limited. For large modulation indexes and a 
sinusoidal modulating voltage, the bandwidth ap¬ 
proaches, and is only slightly greater than, the total fre¬ 
quency excursion. 

* Decimal classification : R1 481 2. Original manuscript received by 
the Institute, May 27, 1946; revised manuscript received, February 
5, 1947. 

t RCA Victor Division. Radio Corporation of America, Camden, 
N. J. 

1 Murray G. Crosby, “Carrier and side-frequency relations with 
multitone frequency or phase modulation,” RCA Rev., vol. 3, pp. 
103-106; July, 1938. 

* M. Kulp, “Spektra und Kl'rrfaktoren frequenz- und ampli-
tuden-modulierter Schwingungen,” Part 1. Elek. Nach.-Tech., vol. 
19, pp. 72-84; May, 1942. 

To show how the bandwidth changes with modula¬ 
tion index, exact mathematical expressions for the 
spectrum will now be obtained. 

The Spectrum of a Carrier Wave which is 
Frequency-Modulated with a 

Sinusoidal Signal 
When a carrier wave is frequency-modulated with a 

single audio tone, the equation for the voltage is 

/ D . X 
e = E sin I wt -|- sin lirnt 1 (1) 

, \ M / where 
E = amplitude of the wave 
w = angular frequency of the carrier, radians 

per second 
D = deviation, cycles per second 
p = audio frequency, cycles per second 
t = time in seconds 

D/y. = modulation index. 
This expression can be expanded in a spectrum con¬ 

sisting of a carrier and side frequencies, in accord with 
the result’ 

00 

e = E X, Jn(P/p) sin {ait + 2irnyt) (2) 
n=—oo 

where Jn{D/n) is a Bessel function of the first kind of 
order n and argument Din-

Graphs of the Bessel Functions 

To plot the spectrum of a frequency-modulated wave 
for a given modulation index D/h, use a table of Bessel 

Fig. 1—Graph of /„(10). 

functions4'6 to obtain the amplitudes of the carrier and 
the side frequencies in the upper sideband. The odd¬ 
order side frequencies in the lower sideband will have 

’A. Bloch, “Modulation theory,” Jour. I.E.E., (London), Part 
III, vol. 91, pp. 31-42; March, 1944. 

4 E Jahnkcand F. Emde, “Tablesof functions with formulae and 
curves,” Dover Publications, New York, N. Y.. 1943, p. 171. 

4 August Hund, “Frequency Modulation,” McGraw-Hill Book 
Co., New York, N. Y„ 1942; Table VI, p. 352. 
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signs opposite to those in the upper sideband, and the 
even-order side frequencies will have the same sign. 
Fig. 1 is a graph of Jn(10). If the ordinates are drawn 
for each integer, as shown by the dotted lines, the side 
frequencies in the upper sideband will be proportional 
to these ordinates and the carrier will be proportional to 
the ordinate at » =0. 

If the modulation index is increased to 1000, the 
part of the curve for n nearly equal to the modulation 
index is similar, but is reduced in amplitude.6 Fig. 2 
shows the variation of the side frequencies near the 

Fig. 2—Graph of J„(1000). 

upper edge of the band. The curve oscillates with 
gradually increasing amplitude and slowly increasing 
period all the way from the origin to the last maximum, 
which is also the absolute maximum, and then decreases 
rapidly toward zero. The maximum energy occurs at a 
point in the band just inside the frequencies which cor¬ 
respond to the ends of the swings. When the deviation 
increases and the modulating frequency remains con¬ 
stant, the total energy of the spectrum is spread over a 
greater bandwidth, and the average amplitude of the 
side frequencies must decrease uniformly to maintain 
constant total energy in the modulated carrier wave. 
The absolute maximum value of the Bessel function, 

for positive values of m, is shown by Fig. 3. For a given 

Fig. 3—Absolute maximum value of Bessel function J„(m). 

modulation index, this maximum occurs for a value of 
the order n slightly less than the modulation index m. 
For example, for a modulation index of 1000 the 

6 Murían S. Corrington, “Tables of Bessel functions /„(1000),” 
Jour. Math. Phys. (M.I.T.), vol. 24, pp. 144-147; November, 1945. 

maximum occurs at w = 991.91 and equals 0.06756. If 
the modulation index is 10, the maximum occurs at 
n = 8.23 and equals 0.3210. The curve of Fig. 3 shows 
this maximum value for a range of modulation indexes 
from 10 to 10,000. It was computed from the formulas 
of Meissel’ which state that the Bessel function J„(k) 
reaches its absolute maximum 

0.6748 8509 6430 0.0727 6309 8182 

0.0199 5975 0328 

for the value 

0.0606 4998 7910 
n = k - 0.8086 1651 7466^ -

Vk 

0.0316 7351 0263 

— k 

A family of curves for modulation indexes from one 
to twenty is shown by Fig. 4. The vertical scale repre¬ 
sents the amplitude of the given side frequency for each 
modulation index. The curve of Fig. 1 can be obtained 
by cutting a section through the surface for a modula¬ 
tion index of 10. Contour line A is for the constant value 
of the Bessel function J„(Z7/p) =0.01. Similarly, the 
contour B corresponds to =0.001, and contour 
C is drawn for Jn(D/n) =0.0001. 
Curve D is shown for the order of the Bessel function 

equal to the argument. If the bandwidth of a fre¬ 
quency-modulated carrier wave were just equal to twice 
the deviation, the side frequencies would not extend 
beyond curve D. It is evident that for a given modula¬ 
tion index the bandwidth extends beyond curve D 
(say to curve A), but that the intensities of the side 
frequencies beyond curve D are decreasing rapidly. 
Curve E is drawn along the top of the first crest and 

gives the absolute maximum value of the envelope of 
the side frequencies for each modulation index. This 
curve is also given by Fig. 3. The curves F, G, H, I, J, 
and K show where the surface goes through zero, i.e., 
the zeros of the Bessel functions. 

Definition of Bandwidth 

Theoretically, there is an infinite number of side fre¬ 
quencies in the spectrum of a frequency-modulated car¬ 
rier wave, but the amplitudes decrease very rapidly be¬ 
yond the last maximum. Point A on Fig. 1 corresponds to 
the value Jn(10) =0.01 and will be defined as the edge 
of the band. Point B is shown for /„(IO) =0.001, and 
point C for Jn(10) =0.0001. These latter two points can 
be used for a more precise definition of bandwidth, but 
point A is to be taken as the usual limit for practical 
purposes. 

’ E. Meissel, “Beitrag zur Theorie der Bessel’schen Functionen,” 
Astronom. Nach., vol. 128, cols. 435-438; 1891. 
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The curves of Fig. 5 show the variation of the band¬ 
width as the modulation index is changed.8

Example-. Let the deviation be ±50 kilocycles and the 
audio frequency be 5 kilocycles. Find the bandwidth. 
The modulation index is 50/5 = 10. From curve A 
of Fig. 5, the increase in bandwidth is approxi¬ 
mately 0.42 or 42 per cent, so the bandwidth is ap¬ 
proximately 2(50)(l +0.42) = 142 kilocycles. 

’ A rather simple method for computing the argument for 
=0.01, 0.001, 0.0001 is to use the approximate formula 

/„tv sech a) =- — exp {><(tanh o+j tanh’ a— a) j Km (— tanh’ 
tv3 X 3 / 

given in G. N. Watson, “A treatise on the theory of Bessel functions,” 
The Macmillan Company, New York, N. Y., Second Edition, 1944, 
p. 250, where Km(x) is a modified Bessel function of the second kind 
of order | and argument x. A series of values of a was chosen and 
the corresponding Bessel functions computed. These values were 
plotted on semilog paper and the arguments corresponding to the 
ordinates 0.01, 0.001, and 0.0001 were read off. The curves of Fig. 5 
were obtained directly from these readings. 

Bandwidth Required for Complex Modulation 

If several modulating tones are present simultane¬ 
ously, the carrier wave can be expressed as 

e = E sin A D‘ 
at + — sin (2rr(u«< + ««) 

.-i ft. 
(5) 

where E is the amplitude of the wave, w is the carrier 
angular frequency, D, is the deviation corresponding to 
the audio frequency ju„ t is the time, and e, is the phase 
angle corresponding to This modulated carrier 
wave can be represented by a spectrum3'9“11

e = E X 
A:,—oo 

S 

«-1 
(6) 

where 

m, = D,/ut and 5, = 2irp,/ + e,. 

In the case of two-tone modulation this becomes' 

E sin {al + sin 2rrpiZ + Diluí sin 2ir^t } 

oo oo 
= E 22 22 J uHJn(Dt/uz} sin (w + 2t»«mi 

m——oo n——oo 

+ 2*nfit)l. (7) 

This result shows that the spectrum is now much 
more complicated than for a single modulating tone, 

’ E. C. Cherry and R. S. Rivlin, “Non-linear distortion, with 
particular reference to the theory of frequency modulated waves, 
Part I,” Phil. Mag., vol. 32, pp. 265-281 ; October, 1941. 

10 A. S. Gladwin, “Energy distribution in the spectrum of a fre¬ 
quency modulated wave, Part I,” Phil. Mag., vol. 35, pp. 787-802; 
December, 1944. 

11 K. R. Sturley, “Frequency modulation,” Jour. LE E. (London), 
vol. 92, Part III, pp. 197-218, September, 1945. 
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and that side frequencies will be produced at spacings 
from the carrier given by all the possible combinations 
±ntMi±WM2- 1 he amplitude of each side frequency will 
be proportional to the product of the two Bessel func¬ 
tions. Just as the maximum deviation occurs when Di 
and D¡ are in phase, the maximum bandwidth is given 
approximately by the sum of the two bandwidths that 
would be obtained with the two modulating tones used 
one at a time. 
The graph of Fig. 6 shows the spectrum obtained 

when two tones are present simultaneously, in accord 
with (7). The side frequencies are no longer symmetrical 

Fig. 6—Spectrum for complex modulation. 

about the carrier and, when they are separated from the 
carrier by a frequency greater than £>i+Z?2, decrease 
rapidly toward zero. The upper sideband contains 57.9 
per cent of the power, the lower sideband 42.0 per cent, 
and the carrier 0.1 per cent. 

General Method for Computing Side- Frequency Ampli¬ 
tudes 

If the modulating signal is given, the variations of the 
phase angle will be proportional to the integral of the 
signal. This integration can be done directly, or by 
numerical integration, and the constant of integration 
should be chosen so the average value of the phase angle, 
over a complete cycle, is zero. If the phase angle is 5(f) 
the frequency-modulated carrier wave can be expressed 
as 

e = E sin {oil + S(f) } 

= E sin a;/ cos S(f) + E cos ut sin S(f). (8) 

Expand in the Fourier series 

cos S(f) = 22 {a>> sin nd + b„ cos nö| (9) 
n—0 

oo 

sin S(t) = 22 ¡c» sin ”9 + dn cos w#} (10) 
n—0 

where 0 = 2?rg/ and n is the repetition rate of the signal 
in cycles per second. This expansion can be done by di¬ 
rect integration of the integrals for the Fourier coeffici¬ 

ents or by one of the numerical methods for harmonic 
analysis. 12'13
Then 

00 

e = E sin œ/ 22 {an sin nO + bn cos nO} 
n—0 

oo 

+ E cos oil 22 { sin nd + dn cos nd } 
n—0 

oo 

~ {K3» + ̂n) cos (w — 2?rng)/ 
n—0 

— i(3n — dn) COS (“ + lim^t 
+ %(b„ — cj sin (u — 2irnn)t 

+ i(í» + Cn) sin (w + 2r»g)/} (11) 

which gives the side-frequency amplitudes directly. 
The results of numerical computation can be checked 

by taking the sum of the squares of the carrier and each 
of the side-frequency amplitudes; they should add up 
to E2. 

The Spectrum of a Carrier Wave which is 
Frequency-Modulated with a 

Rectangular Signal 
When the signal is a rectangular or square wave, as in 

frequency-modulated telegraphy, or in television video 
and synchronizing signals, the carrier wave can be 
analyzed into a spectrum in a similar manner. If the 

F!g. 8—Variation of phase angle. 

modulating signal is as shown by Fig. 7, the phase angle 
5(f) will be 2tr times the integral of this curve, as shown 
by Fig. 8, where m=Dly.. The equation for the fre¬ 
quency-modulated wave becomes 

e = E sin {wf + S(l) } 

= E sin oil cos S(/) + E cos oil sin S(l). (12) 

Since cos S(/) is symmetrical about the origin, it can 
be expanded in a cosine series. Similarly, sin S(t) is 

'* C. Runge and H. König, “Vorlesungen Über Numerisches 
Rechnen." Julius Springer, Berlin, 1924, pp. 211-231. 

11 R. P. G. Denman, “35 and 72 ordinate schedules for general 
harmonic analysis,” Electronics, vol. 15, pp. 44-47, September. 1942. 
In addition to the corrections listed in vol. 16, pp. 214-215, April, 
1943, change the correction in column one, p. 215, from “Column 
for Bn and Bu, line for a = 20°, for Ai, read Aj,” to read “ . . . for 
A«, read —A».’ 
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skew symmetric about the origin and can be expanded in 
a sine series. From Fig. 8, 

cos S(f) = cos m9 

mx(ir — 9) 
= cos -

1 - X 

0 ^0 Ztx 

TX á 9 T 

00 
= 22 ¿n C0S Ivnut 

n—0 

where 

b„ = — I cos m9 cos n9d9 
7T J 0 

2 f T mx , x
4- I cos - (ir — 0) cos n9d0 (14) 

ÎT 1 — X 

bo =- sin irmx. (15) 
irmx 

Similarly, 

sin S(f) = sin mO 0 á 0 á irx 

mx(ir — 0) 
= sin - -— irx 9 S or 

1 - X 
co 

= 22 cn sin 2irnut (16) 
n—0 

where 

2 rT\ 
c„ = — I sin m9 sin n9d9 

ir J o 
2 r ’ mx 

4- I sin - (ir — 0) sin n9d9. (17) 
1T 1 — X 

When these results are substituted into (11), the 
spectrum is given by 

" mE 
e = 2 . - sin *x(m — n) 

n—T, ir{m — n)(mx — nx 4- n) 

•sin (o> + 2tmju)/ (18) 

where 
£ = amplitude of the wave 
tn — modulation index = D/^ 
D = maximum frequency deviation, cycles per 

second 
H = repetition rate, cycles per second 
x = fraction of the time the frequency is at the 

extreme deviation D 
to = angular frequency of the carrier, radians per 

second 
I =time in seconds. 

When n=0, the carrier amplitude is given by 

E 
Carrier =- sin mix sin at. 

irmx 
(19) 

The side frequencies adjacent to the carrier are given 
by n = ± 1 and are separated from the carrier by an 

amount equal to the audio frequency. They are given by: 

First upper side frequency 

mE 
= —- VCr- FT? sin *x(m~ 1) sin (w4-2ttm)/. (20) 
T(m— l)(mx— x4-l) 

First lower side frequency 

mE 
=——rr;— ;— tv s!n *x(m+0sin (<»- 2^)/. (21) 
*(m+ 1) (mx-f- x— 1) 

The other side frequencies can be determined by as¬ 
signing appropriate values to n in (18). 
The indeterminate cases must be evaluated sepa¬ 

rately: 

Case I m = n, i(.bnf-cn) = x (22) 

mx 1 
Case II - =— n, ^(bn-Vc^=- sin irx(tn— n) 

1 —X ir{m — n) 

+(-)"(!-*) (23) 
Case III m—— n, i(b„— c„) = x (24) 

mx 1 
Case IV - = n, i(bn—cn)=- sin irx(m-f-n) 

1 —x ’ ir(m+n) 

+ (-)«(l-x). (25) 

The case of square-wave modulation is obtained by 
setting x = |. This gives the result 

e= 22 - sin(m — n) — sin (w-|-27rnM)/ 
__» ir(m2 —n2) 2 

2£ 7T 
=- sin m — sin ut 

irm 2 

2mE mir , . . 
cos -y {sin (w— 2irfi)t— sin (w4-2xm)/J 

mir i X > 
sin - {sin (w —4iTAi)i4-sin (o>4-47rM)/J 

cos -y {sin (u> —6ttm)í —sin (tu-f-ór/x)/) 

(26) 

r(m2-l2) 
2m E 

^-2^ 

2mE 

ir(m2-32) 

This result, for x = J, agrees with that previously ob¬ 
tained by van der Pol.'4
The limits for the amplitudes of the side frequencies 

can be determined from the coefficients of (18). Thus, 
if tn = D/n = 5, and if x = i, the limit of the amplitudes 
becomes 

m 
Amplitude limit -- -

ir(m — nfmx — nx 4- n) 

20 

t(5 — n)(5 + 3») 
(27) 

14 Balth. van der Po!., “Frequency modulation,” Proc. I.R.E., 
vol. 18, pp. 1194-1205; July, 1930. 
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This curve is shown by Fig. 9. Actually, most of the 
side-frequency amplitudes will be less than this be¬ 
cause of the first sinusoidal term of (18). As shown by 

Fig. 9—Limits for side-frequency amplitudes. 

Fig. 10, the amplitudes oscillate within the limits of 
the curve of Fig. 9. It may be easily seen that most of the 

Fig. 10—Spectrum for rectangular modulation. 

energy of the spectrum is concentrated about the fre¬ 
quencies that correspond to the two limits of the devia¬ 
tion. 

Bandwidth Required for Rectangular Modulation 

Equation 18 shows that there is an infinite number of 

Fig. 1 1—-Variation of bandwidth with modulation index. 

decrease uniformly beyond the limits of the deviations. 
If the edges of the band are defined as the points cor¬ 
responding to a limiting amplitude of 0.01E, the band¬ 
width can be computed directly from (18). For the 
case of square-wave modulation, x = 0.5, and the in¬ 
crease in bandwidth with decreasing modulation index 
will be as shown by Fig. 11. If a more strict definition 
of bandwidth is required, curve B shows the width for 
the limiting amplitude 0.001E. Curve A is an accurate 
enough limit for most practical cases. 

Fig. 12—Variation of bandwidth with modulation index. 

If the maximum deviation is for one-fourth the time, 
x = 0.25, the curves of Fig. 12 show the corresponding 
limits of the bandwidth. Other sets of curves, for other 
values of x, can be computed from (18). 

It will be noted that the band does not end as 
abruptly with rectangular modulation as it did with 
sinusoidal modulation. The curves of Figs. 11 and 12 
are much farther apart than the corresponding curves 
of Fig. 5. 

The Spectrum of a Carrier Wave which is Fre¬ 
quency-Modulated with a Triangular Signal 

When a uniformly spaced series of parallel bars, each 
one unit wide, is scanned at a uniform rate with a 

Fig. 13—Scanning of picture element. 

lated wave with rectangular modulation. As shown by 
Figs. 9 and 10, the amplitudes of these side frequencies 

rectangular aperture of unit width, as shown by Fig. 13, 
the resulting signal is proportional to the area of the bar 
covered by the aperture. The signal will have a tri-
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angular wave form, as shown by Fig. 14. During the 
time the aperture is between the bars, the output will 
be constant. As the aperture starts to cover a bar, the 

Fig. 14—Modulating signal. 

output increases linearly until the aperture covers the 
entire bar. As the aperture moves on, the signal de¬ 
creases linearly until it reaches the previous constant 
value, and remains constant until the next bar is 
reached. If this wave form is used to modulate the fre¬ 
quency of a carrier wave, the variation of the phase 

Fig. 15—Variation of phase angle. 

angle will be 2ir times the integral of this curve of Fig. 
14, as shown by Fig. 15. The equation for this fre¬ 
quency-modulated wave becomes 

e = E sin {ut + S(/) } 

= E sin ut cos S(f) + E cos wt sin S(t) (28) 
D (irx(2 — x)9 — 02) 

5(0 = — <- -- — > 0Í 9g« (29) 
M ( ttx(2 — x) ) 

D (x(tt — 9)) 
= —5- z irx S 0 S t. (30) 

fi I 2 — x ) 

When S(t) is expanded in a Fourier series15 and (11) 
is used, the 

15 The integrals can be evaluated by the following process: 
(*** crx

cos («9» + ßOjdO = cos {a(9 + ß/2aV - ß»/4a}dB 
^0 o 

ß* c™ . » 
= cos — I cos |a(0 + 

4a J o 
«ï r T* 

+ sin— I sin [a(9 + 3/2a)*|d9. 
4a J o 

Let 

\/a(0 + ß/2a) = ± Vf and \a</0 = ± - • 
2\/v 

Then 

f cos {a(0 + ß/la^de = i/^- f cosvd^ 
o V 2a J vi \12icv 

where 

ß* 7* Si = sgn ß — ; »2 = sgn 7 — • 
4a 4a 

The same transformation can be used on the second integral. 

amplitude of the nth side frequency 

1 

2ra 

ß* 
cos — 

4a 
sgn y C 

.4a. 

iß2) 
- sgn ß c<—y 

(,4a J 

+ 1 

\Z2rra 
. ß2 sin — 

4a 
sgn y S V ) 

,4a/ 

1 
- sin (iryx + e) 

try (31) 

and the 
amplitude of carrier 

H- sin (tryx + e) (32) 
e 

where 

m mx 
—;- 7 7 =- F n 
ttx(2 — x) 2 — x 

ß = n — m 
— irmx 

2 — x 

sgn ß means the algebraic sign of ß, and the C and 5 
functions are the Fresnel integrals 

1 f ' cos t dt If' 
= “7^ —¡T = T J-^dt (33) V o V 2 J 0 

1 f 1 sin I dt 1 r 1

5W (M)

These integrals are tabulated over a considerable 
range. ie'17
The vertical lines of Fig. 16 show the spectrum for 

triangular modulation with a modulation index of 10. 
The dotted line is the Bessel function /„(IO); it gives 
the amplitudes of the side frequencies for the corre¬ 
sponding sine-wave signal. During triangular modula-

*• See Table V, pp. 744-745, of footnote reference 8. Tables of 
CM and SM, » = 0.02(0.02)1.00; ID, and » = 0.5(0.5)50.0; 6D. For 
list of errors, see J. W. Wrench, Jr., “Mathematical tables—Errata,” 
Mathematical Tables and other Aids to Computation, vol. 1, pp. 
366-367; January, 1945. 

■’J. R. Airey, Sec'y., “Fresnel's Integrals, 5(») and CM,” 
British Association for the Advancement of Science, Report of the 
Ninetv-fourth Meeting, 1926, pp. 273-275. Tables of CM and S(»), 
»=0.0(0.1)20.0; 60. 
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tion, x = l, the frequency varies linearly from one ex¬ 
treme of the frequency excursion to the other, while for 

will cause energy to be distributed on both sides of this 
frequency. Fig. 18 shows the spectrum for a modula-

Fig. 16—Spectrum for triangular modulation. 

sinusoidal modulation the frequency is near the ex¬ 
tremes of frequency a greater portion of the time. As 
might be expected, more of the energy in the spectrum 
is near the ends of the swing for sine-wave modulation 
than for triangular modulation. 

Bandwidth Required for Triangular Modulation 

If the bandwidth is defined as the extremes of fre¬ 
quency beyond which none of the side-frequency ampli¬ 
tudes are greater than 1 per cent of the carrier ampli¬ 
tude that would be obtained if the modulation were 
removed, the variation of bandwidth with modulation 
index can be computed from the equations for the side¬ 
frequency amplitudes. Curve A of Fig. 17 shows how 
the bandwidth increases as the repetition rate is in¬ 
creased. For a more precise definition of bandwidth, 
either curve B or curve C can be used. 

Fig. 17—Variation of bandwidth with modulation index. 

If X is reduced to 0.1, the signal becomes a series of 
triangular pulses with blank spaces between. Most of 
the sideband energy will occur near the frequency which 
the carrier wave has between pulses, but the pulses 

tion index of 10. The amplitudes decrease much more 
slowly than in the case of triangular or sinusoidal modu¬ 
lation. 

Conclusions 

When a carrier wave is modulated in frequency, an 
infinite number of side frequencies is produced. As the 
modulation index is changed, the amplitudes of the 
side frequencies change and the carrier is likewise re¬ 
duced and may even become zero. Although the band¬ 
width is theoretically infinite, in practice the side fre¬ 
quencies gradually decrease in amplitude for frequencies 
beyond the extremes of the total frequency excursions. 
The bandwidth can be defined as the extremes of 
frequency beyond which none of the side-frequency 
amplitudes are greater than 1 per cent of the carrier 
voltage obtained when the modulation is removed. 
The bandwidth so defined always exceeds the total 

frequency excursion, but is nevertheless limited. For 
large modulation indexes, i.e., the deviation much 
greater than the repetition rate, the bandwidth ap¬ 
proaches the actual variation in frequency and is only 
slightly greater. For small modulation indexes, the 
bandwidth may be several times the actual frequency 
excursion. Curves are given to show the bandwidth for 
modulation indexes from 0.1 to 10,000 for sinusoidal, 
square, rectangular, and triangular modulation. For a 
more precise definition of bandwidth, curves are also 
given for amplitude limits of 0.001E and 0.0001E. 
When several modulating tones are on simul¬ 

taneously, the side frequencies are produced at fre¬ 
quencies separated from the carrier by all combination 
frequencies that can be obtained by taking sums and 
differences of all the harmonics of the tone frequencies. 
The same curves can be used to determine the band¬ 
width when several audio tones are used simultaneously, 
since the bandwidth will be equal approximately to the 
sum of the bandwidths for each tone separately. 
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Statistical Properties of a Sine Wave Plus Random Noise 

By S. O. RICE 

Introduction 

TN SOME technical problems we are concerned with a current which 
-*■ consists of a sinusoidal component plus a random noise component. A 
number of statistical properties of such a current are given here. The present 
paper may be regarded as an extension of Section 3.10 of an earlier paper, 1 

“Mathematical Analysis of Random Noise”, where some of the simpler 
properties of a sine wave plus random noise are discussed. 
The current in which we are interested may be written as 

I = Qcos qt + IN
(3.4) 

= líeos {qt + 0) 

where Q and q are constants, t is time, and IN is a random (in the sense of 
Section 2.8 of Reference A) noise current. When the second expression in¬ 
volving the envelope R and the phase angle 0 is used, the power spectrum of 
In is assumed to be confined to a relatively narrow band in the neighborhood 
of the sine wave frequency /, = q/{2r). This makes R and 0 relatively 
slowly (usually) varying functions of time. 

In Section 1, the probability density and cumulative distribution of I are 
discussed. In Section 2, the upward “crossings” of I (i.e., the expected 
number of times, per second, I increases through a given value IJ, are 
examined. 
The probability density and the cumulative distribution of R are given in 

Section 3.10 of Reference A. The crossings of R are examined in Section 4 
of the present paper. 
The statistical properties of 0', the time derivative of the phase angle 0, 

are of interest because the instantaneous frequency of I may be defined to 
be/, + 0'/ (2tt). The probability density of 0' is investigated in Section 5 
and the crossings of 0' in Section 6. 0' is a function of time which behaves 
somewhat like a noise current and may accordingly be considered to consist 
of an infinite number of sinusoidal components. The problem of determin¬ 
ing the “power spectrum” IE(/) of 0', i.e., the distribution of the mean 
square value of the components as a function of frequency, is attacked in 

'BS.T.J. 23 (1944), 282-332 and 24 (1945), 46-156. This paper will be called 
“Reference A”. 
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Sections 7 and 8. The correlation function of 0' is expressed in terms of 
exponential integrals in Section 7, the power spectrum of IN being assumed 
symmetrical and centered on f q. In Section 8, values of IV (/) are obtained 
for the special case in which the power spectrum of In is centered on/Q and is 
of the normal-law type. 

It is believed that some of the material presented here may find a use in 
the study of the effect of noise in frequency modulation systems. For 
example, the curves in Section 8 yield information regarding the noise power 
spectrum in the output of a primitive type of system. Also, the procedure 
employed to obtain the expression (5.7) for 0' may be used to show that if 

Çcos[(ï4/œ0) cos uot + çf] + In = Reos (qt + 0) 

the sinusoidal component of if)¡it is2

— A (1 — e-') sin o!0/ 

where p is the ratio Q2/(2 T2,). This illustrates the “crowding effect” of the 
noise. The statistical analysis associated with R and 0 of equations (3.4) 
(when the sine wave is absent) is similar to that used in the examination of 
the current returned to the sending end of a transmission line by reflections 
from many small irregularities distributed along the line. This suggests 
another application of the results. 

Acknowledgment 

I am indebted to a number of my associates for helpful discussions on the 
questions studied here. In particular, I wish to thank Mr. H. E. Curtis for 
his suggestions regarding this subject. As in Reference A, all of the compu¬ 
tations for the curves and tables have been performed by Miss M. Darville. 
This work has been quite heavy and I gratefully acknowledge her contribu¬ 
tion to this paper. 

1. Probability Distribution of a Sine Wave Plus Random Noise 

A current consisting of a sine wave plus random noise may be represented 
as 

I = Qcos ql + In (1-1) 

where Q and q are constants, t is the time, and In is a random noise current. 
The frequency, in cycles per second, of the sine wave is/, = q/ (2tt). In all 

2 The first person to obtain this result was, I believe, W. R. Young who gave itin an 
unpublished memorandum written early in 1945. He took the output of a frequency 
modulation limiter and discriminator to be proportional to either the signal frequency or 
to the instantaneous frequency (assumed to be distributed uniformly over the input band) 
of In according to whether Q is greater or less than the envelope of In • His memorandum 
also contains results which agree well with several obtained in this paper. 

2 
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our work we denote the power spectrum of IN by w(J) and its correlation 
function by ̂(r). The mean square value of IN is denoted by 
The study of the probability distribution of I is essentially a study of the 

integral3

1 C' FZ — Q cos 8~ 

,l2 > 

where 

- V2+"" <'« 

and p(I) is the probability density of I, i.e. p(T)dI is the probability that a 
value of current selected at random will lie in the interval 1,1 + di. An¬ 
other expression for p(T) is given by equation (3.10-6) of Reference A, 
namely 

PW = A f dz (1.4) 
Ztt J— » 

where J n(Qz) denotes the Bessel function of order zero. 
The substitutions 

’"A’ (L5)
enable us to write (1.2) as 

PM = y/^pW = - I v>(y — a cos e) de, (1.6) 

where /^(y) denotes the probability density of y. This is the expression 
actually studied. Curves showing />i(y) and the cumulative distribution 
function 

I p^^dlt = I PiMdy! 

(1.7) 

= - I <p-i(y — a cos 0) do, 
7T Jo 

where 

= f vixjdxi = % + $ erf (1.8) J— 00 

3 W. R. Bennett, “Response of a Linear Rectifier to Signal and Noise,” Jour. Acous 
Soc. Amer. Vol. 15 (1944), 164-172, and B.S.T.J. Vol. 23 (1944), 97-113. 
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are shown in Figs. 1 and 2. The curves for o — 10 and a — 10 were com¬ 
puted by Simpson’s rule from (1.6) and (1.7), and the curves for a — 1 
were computed from the series (1.10) given below. Since both ,^>(x) and 

Fig. 1—Probability density of sine wave plus noise. 

I = Qcos qt_+ In, a = y - I/VT* = rms IK
piM dl/Jt» = probability total current lies between I and I + di 
y( 1 -J- al/T)~'n = //(rms I). Curves are symmetrical about y = 0. 

^_,(x) are tabulated4 functions the integrals in (1.6) and (1.7) are well 
suited to numerical evaluation. 

‘ is given directly and v-iW may be readily obtained from W.P.A., “Tables of 
Probability Functions,” Vol. II, New York (1942). The functions viy) are tabulated 
in Table V of “Probability and its Engineering Uses” by T. C. Fry (D. Van Nostrand Co., 
1928). 
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The form assumed by ̂ i(y) as the parameter a becomes large is examined 
in the latter portion (from equation (1.12) onwards) of the section. 

Series which converge for all values of a but which are especially suited 
for calculation when a < 1 may be obtained by inserting the Taylor’s series 
(in powers of x) for <p(y + x) and y>_t(y + x), x = -a cos 0, in (1.6) and 
(1.7) and integrating termwise. When we introduce the notation4

m 

we obtain 

n-o mm. \¿/ 

[ P^y^dyi = /2n ~”(y) •'-» »-i mm \¿/ 

(1-10) 

The second equation of (1.10) may be shown to be valid by breaking the 
interval (— 00 , y) into (— <x , 0) and (0, y). In the first part, 

[ P^yà dyi = ¥>-i(0) 
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since both sides have the value 1/2. In the second, term by term integra¬ 
tion is valid since the series integrated are uniformly convergent as may be 
seen from the inequality 

/ i\>/2 / ? \1/4

¡/"’(y)|< (^) ( — ) H + OK') + 0(A ‘)l, (1.11) 
.\2ir/ \irw/ 

in which we suppose that y remains finite as n —» oo . This may be obtained 
by using the known behavior of Hermite polynomials of large order.5
When Q » rms I„ so that a is very large the distribution approaches that 

of a sine wave, namely 

0, I y I > a 
PM ~ ■ 

k -yY112/*, |yl<* (U2)

fv , 1,1 • y PiMdyi ~ - arc sin <, | y | < a 
• J— oo Z 7T ö 

In order to study the manner in which the limiting expressions (1.12) are 
approached it is convenient to make the change of variable 

X = y — a cos 6, de = [a2 — (y — x)2] 1/2 dx 

z = X — y + a 

in (1.6). We obtain 
« p v+a 

PM = - / *>U) [a2 - (y - ̂ V'2 dx IT J y—a 
1 

= - <p(z + y — a)[z(2a - z)Vm dz. 
7T Jo 

(1.13) 

An asymptotic (as a becomes large) expression for />j(y) suitable for the 
middle portion of the distribution where a - | y | » 1 may be obtained from 
the first integral in (1 .13). Since the principal contributions to the value of 
the integral come from the region around x = 0 we are led to expand the 
radical in powers of x and integrate termwise. Legendre polynomials enter 
naturally since they are sometimes defined as the coefficients in such an 
expansion. Replacing the limits of integration y + a and y — a by + » 
and — » , respectively and integrating termwise gives 

PM ~ 
, 2 2\—1/2 
(a - y ) 

7T 

00 

i + E(-) 
n — 1 

1.3.5. (2n - 1) 
(a2 — y2)" 

Mt112 ) 

i 
, 2 2, —1/2 r (a - y ) 3/ + 1 3(35/2 + 30/ + 3) 

+ 2(a2 - y2) + 8(a2 - y2)2

(1.14) 

6 A suitable asymptotic formula is given in Orthogonal Polynomials, by G. Szegö, 
Am. Math. Soc. Colloquium, Pub., Vol. 23, (1939), p. 195. 
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where / = y2/(a2 — y2) and Pin( ) denotes the Legendre polynomial of 
order 2n. We have written this as an asymptotic expansion because it 
obviously is one when y, and hence t, is zero in which case 

/^(O) 
1.3.5- •• (2m - 1) 

2.4. -.-2« 

pAy) 

n+1/2 

When y is near a or is greater than a, a suitable asymptotic expansion may 
be obtained from the second integral in (1.13) by expanding (2a — z)-1« 
in powers of z/ (2a) and integrating termwise. The upper limit of integra¬ 
tion, 2a, may be replaced by w since <p(z + y — a) may be assumed to be 
negligibly small when z exceeds 2a. We thus obtain 

1 00 / 1 \n+V2 

y — a)z" 1/2 dz 

ir m! 

where we have used the notation 

(1-15) 
zn-m dz

Wo = 1, W» = a (a + 1) • • ■ (a + n — 1). 

The integrals occurring in (1.15) are related io the parabolic cylinder 
function6 Dm(x). Their properties may be obtained from the known 
properties of these functions or may be obtained by working directly with 
the integrals. 
Suppose now that a is very large so that only the leading term in the series 

(1.15) for/>i(y) need be retained. 
Then 

Pity) ~ a-1/2 F{y — a) 

where 

F(s) = ^2~w

(1.16) 

(1-17) 

By writing out <p(z + s), expanding exp (—zs) in a power series, and inte¬ 
grating termwise we see that 

F(Z) 
7F ¿-o t ; (1.18) 

= (2ir) 2<p(s/x/2)Ä’1(z2/4) 

where K denotes a modified Bessel function.7 The relation (1.18) may also 

6 Whittaker and Watson, “Modern Analysis,” 4th ed. (1927), 347-351. 
’ A table of A¡(.r) is given by H. Carsten and N. McKcrrow, Phil. Mag. S7, Vol. 35 

(1944). 812-818. 
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be obtained from pair 923.1 of “Fourier Integrals for Practical Applica¬ 
tions,” by G. A. Campbell and R. M. Foster.’ 
A curve showing F(y — a) plotted as a function of y — a is given in Fig. 3. 

It was obtained from the relation 

F(s) = 21/Sr-’'2X(- 5/5/2) 

where 

xW = Í Jo 

Fig 3—Probability density of sine wave plus noise. 
When rms In < < Q and I is near Q, ̂(y) ~ a-'^Fty - a), y - a = (I - Q)/(rms In)-

See Fig. 1 for notation. 

This function has been tabulated by Hartree and Johnston.’ 
The probability that I exceeds Q, or that y exceeds a, is, integrating the 

second of expressions (1.13), 

I dy= ïi ^z^a-z) I. dX-

An asymptotic expansion may be obtained by expanding (2a z) 1/2 as in 
the derivation of (1.15) but we shall be content with the leading term. 

'Bell Telephone System Monograph B-584. _ _ 
• Manchester Lit. and Phil. Soc. Memoirs, v. 83, 183-188, Aug., 1939. 
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Using 

jf z 1/2 dz <f>(x) dz = <p(x) dx j z 1/2 dz = 21M r I/2 r(t) 

we obtain 

í PÁy) dy ~ 2-l,*x~-m \\i)a~w = 0.185- • -a~m (1.19) Ja 

For use in computations we list the following values 

r(i) = 3.62561, r(i) = 1.22542, r(f) = 0.90640 

2. Expected Number of Crossings of I per Second 

In this section, we shall study two questions. First, what is the proba¬ 
bility P(Ii, h)dt of I increasing through the value Ii (i.e. of I passing 
through the value A with positive slope) during the infinitesimal interval 
/b h + dl? Second, what is the expected number N(Ji) of times per second 
I increases through the value h. When A is zero, 2N(0) is the expected 
number of zeros per second, and when F is large N(Ji) is approximately 
equal to the expected number of maxima lying above the value h in an 
interval one second long. 
We start on the first question by considering the random function 

z = F(ab as, • • • aN; t) 

where the a’s are random variables. The probability that the random curve 
obtained by plotting z as a function of t increases through the value z = Zi 
in the interval h, ti + dl is 10

di [ vP^i , ti b) di¡ (2.1) Jo 

where p(£, 1¡; ti) denotes the probability density of the random variables 

í = F(ab a¡, • • • , aN; ti) 

~dF~ 

In our case z becomes the current I defined by equation (1.1). The 
method used to obtain equation (3.3-9) of Reference A may also be used to 
show that the quantity p{Ii, v, ti) (which now appears in (2.1)) is given by 

xNo 
p{d\> V, ti) = —7" v(y — a cos qti)<p(x + b sin qti) (2.2) Wo 

10 This result is a straightforward generalization of expression (3.3-5) in Section 3.3 of 
Reference A where references to related results by M. Kac are given. A formula equiva¬ 
lent to (2.1) has also been given by Mr. H. Bondi in an unpublished paper written in 1944. 
He applies his formula to the problem studied in Section 4. 
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where ̂ ( ) denotes the normal law function defined by equation (1.3) and 

dj, No = y -

Q _ V _ Qq = 2^ 
a ~ X ~V-^’ y/-^ No 

(2.3) 

Equation (3.3-11) of Reference A shows that No is the expected number of 
zeros per second which In would have if it were to flow alone. 

Let P(Ji, t^dt be the probability that I will increase through the value 11 
during the interval h, + dt. Then (2.1) and (2.2) give 

Jo 

irNo^Cy — a cos qt^ / x<p(x + b sin qt^ dx. 
Jo 

(2.4) 

The integral in (2.4) is of the form 

J* xtp(x + v) dx = <p(v) — V <p(x) dx 

= 2 Jo 

= — V + «pW + tv-iW 

_ _v , z9 \-i/s F /LI- _A 
2 + ^‘\ 2’2’ 2/ 

(2.5) 

where t replaces b sin qti and xFi denotes a confluent hypergeometric func¬ 
tion. 
The distribution of the crossings at various portions of the cycle (of the 

sine wave) may be obtained by giving special values to qti in (2.4). 
The expected number of times I increases through the value It in one 

second is 

1 IT^(A) = Limit - / PU^tJdh 
T-x 1 J» 

= No / ^(y -
Jo 

fbsiní 

a cos 0) <p(b sin Ö) + b sin 6 / ^{x) 
Jo 

dx dd 

(2.6) 

where we have used (2.4) and the second equation of (2.5). The integrand 
in (2.6) is composed of tabulated functions and is of a form suited to nu¬ 
merical integration. Expanding <p(y — a cos 0) in (2.6) as in the derivation 
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of (1.10), replacing the quantity within the brackets by the series shown in 
the last equation of (2.5) ,and integrating termwise leads to 

00 (2n) / \ / \2n / . 2\ 

= 2V,(r/2) ,/‘ (?) ^(-^n + 1; (2.7) 
n-o n ! n ! \z/ \ 2 / 

The series (2.7) converges for all values of a, y, and b. This follows from the 
inequality (1.11) which may be applied to ̂ "Xy), and from the fact that 
the iFi is less than exp (62/2) as may be seen by comparing corresponding 
terms in their expansions. 
The expected number of zeros, per second, of I is 2iV(0) where we have set 

Zi, and hence y, equal to zero. In this case the integral in (2.6) may be 
simplified somewhat and we obtain 

2N(0) = No
Za \a 

(2.8) 

where Io(ß) is the Bessel function of order zero and imaginary argument and 
2 I >2 2 .2 _ a + b _ a — b 
4 ’ P 4~ 

Ie(k, x) = f e '‘loÇku'idu. 
Jo 

The integral Ie(k, x) is tabulated in Appendix I. 
I have been unable to obtain a simple derivation of (2.8). It was orig¬ 

inally obtained from the following integral 

Nd i) = y I de <p(y — a cos O') x<pd + b sin 0) dx (2.9) 

which may be derived from the second equation of (2.4) and the first of 
(2.6). Setting and y equal to zero and writing out the ̂ >’s gives 

2^(0) = Í de [ dx 
2 t J-t Jo 

x exp [- j(x2 + 2ÒX sin e + a cos2 e + b2 sin2 0)]. 

Equation (2.8) was obtained by applying the method of Appendix III to 
this expression. 

3. Definitions and Simple Properties of R and 0 

The remaining portion of this paper is concerned with the envelope R and 
the corresponding phase angle 6. These quantities are in troduced and some 
of their simpler properties discussed in this section. 
Suppose that the frequency band associated with is relatively narrow 
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and contains the sine wave frequency fQ. The noise current may be re¬ 
solved into two components, one “in phase” and the other “in quadrature” 
with Q cos qt. Using the representation (2.8-6) of reference A and proceed¬ 
ing as in Section 3.7 of that paper: 

M 

In = ^c„ COS (o>n/ — VÙ (3.1) 
n—1 

M 

= X  Cn COS [(a>„ — q)t — + qt] 
n —1 

= Ic cos qt — I, sin qt (3.2) 

where 
M 

Ic - S cos [(o>„ — q)t — #„] 
n— 1 

M (33) 

I. = 22 Cn sin [(a>n — q)t — ç?„] 
n—1 

= 2r/n, /„ = nA/, ¿ = 2w(/„)A/ 

w(f) denotes the power spectrum of In and the ̂ „’s are random variables 
distributed uniformly over the interval (0, 2r). 
The total current I may be written as 

I = Q cos qt + In 

= (O + IA cos qt — I, sin qt 
(3.4) 

= R cos 6 cos qt — R sin 0 sin qt 

= R cos (qt + 0) 

where we have introduced the envelope function R and the phase angle 6 
by means of 

R cos 6 = Q + Ie
(3.5) 

R sin 6 = I, 

Since I c and I, are functions of t whose variations are relatively slow in 
comparison with those of cos qt, the same is true of R and (usually) 0. 
A graphical illustration of equations (3.4) and (3.5) which is often used is 

shown in Fig. 4. 
In accordance with the usual convention used in alternating current 

theory, the vector OQ is supposed to be rotating about the origin 0 with 
angular velocity q. If In happened to have the frequency q/Tx, its vector 
representation QT would be fixed relative to OQ. In general, however, the 
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length and inclination of QT will change due to the random fluctuations of 
In. Thus the point T will wander around on the plane of the figure. If 
rms IN is much less than Q, T will be close to the point Q most of the time. 
In this case 

R = KQ + l^ + Z’]1'2 ~ Q + I, 

° = ton Q+lc ~ ë (3.6) 
de ~ d i, = i\ 
dl dtQ Q 

and a number of statistical properties of R and 9 may be obtained from the 
corresponding properties of noise alone when we note that I c, I„ and l,' 
behave like noise currents whose power spectra are concentrated in the 
lower portion of the frequency spectrum. 

Fig. 4—Graphical representation of Z = Qcos qt + In . 

By squaring both sides of equations (3.1) and (3.3) and then averaging 
with respect to t and the <pn’s we may show that Ic, I „ and IN all have the 
same rms value, namely ̂ J/2 . 

It may be seen from (3.3) that the power spectra of I c and I, are both 
given by 

w(fq+f) + w(fq-f) (3.7) 

where it is assumed that 0 < / Likewise the power spectrum of the 
time derivative Zs of I, is 

4^(7, +/) + w(A-/)] (3.8) 

This follows from the representation of I s obtained by differentiating the 
expression (3.3) for I„ with respect to t, the procedure being the same as in 
the derivation of equation (7.2) in Section 7. The power spectra shown in 
Table 1 were computed from equations (3.7) and (3.8). 
The correlation function for I c, and hence also for I„ is, from equations 

(A2-1) and (A2-3) of Appendix II, 

+ r) = g = [ w(f) cos 2^(/ - fq)r df 
Jo 
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where the bar denotes an average with respect to t and g is a function of r. 
From (A2-3) the correlation function for l,' is — g" where the double prime 
on g denotes the second derivative with respect to t. 

Attention is sometimes fixed upon the variation in distance between suc¬ 
cessive zeros of I. The time between two successive zeros of I at, say, ta and /i 
is the time taken for qt + 0, as appearing in R cos (qt + 0), to increase by tr. 
This assumes that the envelope R does not vanish in the interval. For the 
moment we write 0 as 0(t) in order to indicate its dependence on the time t. 
Then t0 and /i must satisfy the relation 

qh + 0(h) — qh — 0(h) - * (3.9) 

Since 0(f) is a relatively slowly varying function we write 

0(h) - 0(h) = (h - hW(h) + (h - WWW + • • • 

Table 1 
Power Spectra or IN , le, I, , and I,’ 

In I e and h r; 

w(J) = wo = ̂ o/3 for/, — 3/2 < / 
<f, + ß/2 

w(f) = 0 elsewhere 
/, = mid-band frequency 

2wo for 0 < / < 3/2 

0 elsewhere 

St'Rwo forO </< 3/2 

0 elsewhere 

w(f) = Wo = ̂ o/3 for/, - ß <f <f, 
w(f) = 0 elsewhere 
/, = top frequency 

wo for 0 < / < 3 
0 elsewhere 

4ir’/2Wo for 0 < / < 3 
0 elsewhere 

-co -a V „VS aVu e

where the primes denote differentiation with respect to I. When this is 
placed in (3.9) and terms of order (h — to)2 neglected, we obtain 

= y- + T" ® 2(h — to) 2tt 2jt 
(3.10) 

which relates the interval between successive zeros to O’ . 
The expression on the right hand side of (3.10) may be defined as the in¬ 

stantaneous frequency: 

r , 1 d0 
Instantaneous freouency — j q I _ , 2tt at (3.11) 

This definition is suggested when cos 2rft is compared with cos (qt + 0) 
and also by (3.10) when we note that the period of the instantaneous fre-

14 
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quency is approximately equal to twice the distance between two successive 
zeros which is 2(/t — t0). 
The probability density of R is 11

y exp F - ̂ --1 h(RQ/M (3-12) 
WO L ~r0 

where Io (RQ/ypo) denotes the Bessel function of order zero with imaginary 
argument. In Section 3.10 of Reference A, it is shown that the average 
value of R" is* 

= (2^o)" /2rQ+ 1) 1; -p), (3.13) 

where p = Q1/(2^0), of which special cases are 

R = <C"W0/2) 1/2 [(1 + p)Zo(p/2) + pl M2}] f x

F-V+H.. <3M)

Curves showing the distribution of R are also given there. 

4. Expected Number of Crossings of R per Second 

Here we shall obtain expressions for the expected number NK of times, 
per second, the envelope passes through the value R with positive slope. 
When R is large, NK is approximately equal to the expected number of 
maxima of the envelope per second exceeding R and when R is small Nr is 
approximately equal to the expected number of minima less than R. p'or 
the special case in which the noise band is symmetrical and is centered on 
the sine wave frequency Nr is given by the relatively simple expression 
(4.8). 
The probability that the envelope passes through the value R during the 

interval t,t-}-dt with positive slope is, from (2.1), 

dt [ R'p(R, R', I) dR' (4.1) Jo 

where p(R, R' , i) denotes the probability density of R and its time derivative 
R' , t being regarded as a parameter. 
An expression for p^R, R' , I) may be obtained from the probability density 

of Ic, I„ Ic, Ia. From our representation of a noise current and the central 
limit theorem it may be shown (as is done for similar cases in Part III of 
Reference A) that the probability distribution of these four variables is 

11 In equation (60-A) of an unpublished appendix to his paper appearing in the B.S.T.J . 
Vol. 12 (1933), 35-75, Ray S. Hoyt gives an integral, obtained by integrating (3.12) with 
respect to R, for the cumulative distribution of R. 

*The correlation function for the envelope of a signal plus noise, together with associated 
probability densities of the envelope and phase, is given by D. Middleton in a paper 
appearing soon in the Quart. JI. of Appl. Math. 
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normal in four dimensions. If the variables be taken in the order given 
above the moment matrix is, from equations (A2-2) of Appendix II, 

.V = 
¿0 0 0 bi 

bo —bi 0 

0 — b i bi 0 

bi 0 0 bi 

(4.2) 

where the b’s are defined by the integrals in equations (A2-1). The inverse 
matrix is 

1 
B 

bi 

0 

0 

¿>2 

0 bl 

-bi 0 

0 

bi 

-bi 

0 
B — bo bi — bi 

bo 0 

0 bo. 

(4.3) 

which may be readily verified by matrix multiplication, and the determinant 
I M I is B2. The normal distribution may be written down at once when 
use is made of the formulas given in Section 2.9 of Reference A. The sub¬ 
stitutions 

Ic = Reos 0 — Q, lc' = R'eos 0 — Rsin 0 6' 

I, = Rsin 0, l,' = R'sin 0 + Reos 0 O' 
(4.4) 

dl cdl ,dícdl,' = R^RdR'dedO1

enable us to write 

bt(I2 + I2.) + boil? + /?) 

-2bi{Icl,' - I,I.) = b^R2 - 2QRCOS 0 + Q2) 

+bo{R'2 + W 2) 

— 2biR20' + 2òiÇ(R'sin 0 + RO' cos 0). 

Consequently the probability density of R, R', 0, O' is 

p(R, R', 0, 0') = exp / [¿2(2?^ - 2QRcos 0 + Q2) 
^irl5 I ¿15 

. (4.5) 
+ b^' + ̂ 0'2} - 2biR20' + 25iQ(R'sin 0 + R0'cos 0)0 

In this expression R ranges from 0 to 00, 0 from — ir to tt, and R' and 0' 
from — » to 4- «. The probability density for R and R' is obtained by 
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integrating (4.5) with respect to 6 and O' over their respective ranges. The 
integration with respect to O' may be performed at once giving 

p(R, R', t) = R(2^i’ dP 

VBbo 

exP 1 — WR2 — 2ÂÇcos 6 + Q2) + (bvR' + ¿iQsin 0)2] I lob$ 

(4.6) 

From (4.1) and (4.6) it follows that the expected number NR of times per 
second the envelope passes through R with positive slope is 

VbFo J~' Jo 

exp / - [B(R2 - 2ÄQcos 0 + Q2) + (baR' + ¿iQsin 0)2] 
loO$ 

(4.7) 

When the power spectrum w(/) of the noise current IN is symmetrical about 
the sine wave frequency/,, bi is zero and B is equal to bob2. In this case the 
integrations in (4.7) may be performed. We obtain 

2̂Y 2 X density of 
2tt/ envelope at the value R 

(4.8) 

where the second line is obtained from expression (3.12). As will be seen 
from its definition (A2-1), b0 is equal to the mean square value /0 of IN 
(and also of I c and I 

Introducing the notation 

» = Rb0'12 = R/rms IN 

a = Abõ' 12 = Q/rms In, 
(4.9) 

which is the same as that of equations (3.10-15) of Reference A except that 
there P denotes the amplitude of the sine wave and plays the same role as 
Q does here, enables us to write (4.8) as 

r k ni/2
»2 r r \ -(»’+a’)/2 

= r-r vlo{av)e 
_1ttOq_ 

' b^ 
^2irb0_ p^- (4.10) 

The function /(») is plotted as a function of v for various values of a in Fig. 
6, Section 3.10, of Reference A. 

It is interesting to note that 

(^Ao)1'2/^ = Expected number of zeros per second of I e (or of I,) (4.11) 
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This relation, which is true even if the noise band is not symmetrical about 
/„ follows from equation (3.3-11) of Reference A. 
When Q » rms IN and is not at the center of the noise band it is easier 

to obtain the asymptotic form of NK from the approximation (3.6), 

R~Q+IC, 

instead of the double integral (4.7). When Q> > rms IN and R is in the 
neighborhood of Q (as it is most of the time in this case), Nr is approximately 
equal to the expected number of times I c increases through the value id = 
R — Q in one second. Thus, regarding I c as a random noise current we 
have from expression (3.3-14) of Reference A 

Nk ~ e 'cil-l'n°y X [1/2 the expected number of zeros per second of 7C] 
and when we use equation (4.11) we obtain 

N„ ~ JL = 1 Wb^e-^2 (4.12) 

Table 2 
w(f) = wo = bt/ß over a Band or Width ß 

bl Nr 

1. Band extends from/, — ß/2 to 
A + ß/2 

^bo/3 (t/6)1'«^« = O.7240X®) 

2. Same as 1 and in addition Q = 0 << 

3. Same as 1 and in addition 
Q >> rms IN

<< 
0 — (v—a) J/2 

~2^3 

4. Band extends from A to f, + ß 
and Q > > rms IN

4r,0V>o/ 3 fl — (v—a)*/2 

Table 2 lists the forms assumed by (4.10) and (4.12) when the power spec¬ 
trum w(/) of the noise current IK is constant over a frequency band of width 0. 
The quantity b0 in the expressions for i2 represents the mean square value 
of IN. 

In the general case where the band of noise is not centered on f, and 
where R is not large enough to make (4.12) valid we are obliged to return to 
the double integral (4.7). Some simplification is possible, but not as much 
as could be desired. Introducing the notation 

a = RQ/b0, y = b^Bb^2 

X = (boR' + ZqQsin e^Bb^-112
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enables us to write (4.7) as 

NR = 

i’^r (x - ysin^e““"’ 1’'2^ 
J- T J y sin 9 

(4.13) 

Part of the integrand may be integrated with respect to x and the remaining 
portion integrated by parts with respect to 6. The double integral in the 
second line of (4.13) then becomes 

cos 9-{y sin 9)^12 jg । ¿[7aV coei ] 

= /”(!+ 7V*cosÖ)e“ cos (̂'sin ”’ /2 ^ 
(4.14) 

= cos 0 + a/-^'7™”^'7”'2 d9 

The series is obtained by expanding exp [— (7 sin 0)2/2] in the second 
equation in powers of sin 9 and integrating termwise. 

5. Probability Density of — 
dt 

As was pointed out in Section 3 the time derivative 9' of the phase angle 
9 associated with the envelope is closely related to the instantaneous fre¬ 
quency. The probability density p{9') of 9' may be expressed in terms of 
modified Bessel functions as shown by equation (5.4). Curves for p(9'} are 
given when the sine wave frequency jq lies at the middle of a symmetrical 
band of noise. Although the expressions for p{9') are rather complicated, 
those for the averages 0' and ¡ 9' | given by equations (5.7) and (5.16) are 
relatively simple. 
The probability density />(0') may be obtained by integrating the expres¬ 

sion (4.5) for p(R, R', 9, 9') with respect to R, R' , 9. The integration with 
respect to R', the limits being — » and + co , gives the probability density 
for R, 9, 9': 

/>(Æ, 0, 0') = — ( ) exp [ — aR' + 2bR cos 9 + c sin2 9 
4er2 \0o B J (5.1) 
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where 

B = bobz — bi 

a = (bt- 2b id' + boe'WB) 

P = Q2/(26o) 

b = - bifT)/(2B) 

c = Q262/(2B60) = b20/B 

7 = b^/a 

(5.2) 

and bi, bi, bi are given in Appendix II. 
Integrating with respect to R gives the probability density for 0, O' . 

Expanding exp (2bR cos 0) in powers of R and integrating termwise, 

1 / 2 \1/2 
MA = eIotta yab^B / 

sin^6 -b^bQpl B 

b cos 0 
a' 11

(5.3) 

When we integrate 0 from — ?r to r to obtain piß') the terms for which n 
is odd disappear and we have to deal with the series, writing 7 for b"-/a, 

22 +— (ï cos2 0)m = (27 cos2 0+1) exp (7 cos2 0) 
m=0 m\ 

Thus, the probability density of O’ is 
1 / ? /• r

p(0') = / (27cos20 + 1) d0 
1O7T(7 \C10q1j / J-T 

From (5.2) 

(5.4) 

b2 - 2bi0' 7 — c = p .- —-
bi - 2bi0' + 6O0'2

c + 7 _ b2bop _ _p b2 — 2bi0' + 25o0'2 

“T“ B ~ 2 bi - 2¿>i0' + M'2

(5.5) 

It will be noted that for large values of | 0' | the probability density of 0' 
varies as | 0' I-3 . Although this makes the mean square value of 0' infinite, 
the average values 0' and | 0' | of 0' and | 0' | still exist. In order to obtain 
0' it is convenient to return to (4.5) and write 

O' = f dO^dR^ dR' I dO' 0'p(R,R',0,0') (5.6) 
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The integration with respect to 9' may be performed by setting Rd' equal to 
X and using 

xe^'^dx = (ß/a)(r/af ea'la
J— 00 

The integral in R' reduces to a similar integral except that the factor x in 
the integrand is absent. Performing these two integrations and using the 
definition of B leads to 

fp = Í de Í dR (R - Q cos 9) 
Z7T Oq J-t Jq 

exp - (R2 - 2QR cos 9 + Q2) 

We may integrate at once with respect to R. When this is done cos 9 dis¬ 
appears and the integration with respect to 9 becomes easy. Thus 

9' = {bi/b0) exp [—Q2/(20o)] = {b./b^ (5.7) 

When the noise power spectrum is equal to w0 in the band extending from 
f o — 0/2 to fo + ß/2 and is zero outside the band, b¡ = 2ir(f0 — f^bo. 
Hence, from (3.11), 
ave. instantaneous frequency = fQ + 9'/ (2rr) 

= h + (A - A)G - e"') (5’8)

In the remainder of this section we assume the power spectrum of the 
noise current to be symmetrical about the sine wave frequency/,. In this 
case b) and c are zero, B is equal to bob2 and (5.4) becomes 

PW = i(6o/*2)l/2(l + z2)-’«^’« 

l(y + DA(y/2) + yI^y/2)] (5.9) 

= WW 1/2(1 + 1; y) 

where iFi denotes a confluent hypergeometric function12 and 

z2 = b^/bt, y = (tX-o = p/(l + z2) (5.10) 

When the noise power spectrum is constant in the band extending from 
/, — ß/2 to/, + ß/2 (see Table 2, Section 4) 

(VM 1/2 = 3-"20ir, z = ß^O'/^ßT) (5.11) 

“ The relation used above follows from equation (66) (with misprint corrected) of W. R. 
Bennett’s paper cited in connection with equation (1.2). 
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Fig. 5—Probability density of time derivative of phase angle. 
pW) d9' = probability that the value of dB/dt at an instant selected at random lies be¬ 

tween 9' and 9' + d9'. The power spectrum of In is constant in band of width 
(3 centered on /, and is zero outside this band. 

Fig. 6—Cumulative distribution of time derivative of phase angle. 
Notation explained in Fig. 5. 
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The probability density p(O') of O' and its cumulative distribution, ob¬ 
tained by numberical integration, are shown in Figs. 5 and 6. 
The probability that O' exceeds a given 0\ is equal to the probability that 

z exceeds Zi,where.zi denotes (bo/bi) il2Oi, and both probabilities are equal to 

1 ; p(l + z2) 1 dz (5.12) 

The probability that O' > o{ becomes e“*/(4zj) as 0Í —♦ ® . 
When Q » rms In the leading term in the asymptotic expansion of the 

iFi in (5.9) gives 

- 7^’”/(2'’,) << = VQ2 (5.13) av 2tt 
when it is assumed that z2 « 1. This expression holds only for the central 
portion of the curve for p(0'\ Far out on the curve, piß'} still varies as 
0'~3. Equation (5.13) may be obtained directly by using the approximation 
(3.6) that O' is nearly equal to I,/Q and noticing that b2 is the mean square 
value of I,. 

If the sine wave is absent, p is zero and 

pW = i(öo/W1«(l + z2)-»« (5.14) 
which is consistent with the results given between equations (3.4-10) and 
(3.4-11) of Reference A. In this case (5.12) becomes 

¿ ¿ (1 + ¿)-,/2 (5.15) 

Although the standard deviation of O' is infinite an idea of the spread of 
the distribution may be obtained from the average value of | O' |. Setting 
bi equal to zero in (4.5) in order to obtain the case in which the noise band is 
symmetrical about the sine-wave frequency leads to 

I O' I = —¿-r f dR Í dO { dR' f dO' O' R1
1 Wbob2 Jo J-T Jo 

exp H-(^2 - 2QÆ cos 0 + Q2)/bo - (R'2 + R20'2>)/b2] 

The integrals in R', O' cause no difficulty and the integral in 0 is proportional 
to the Bessel function Io(QR/bo'). When the resulting integral in R is 
evaluated 13 we obtain 

I O' I = (b2/boY l2e-p,2Io(p/2) (5.16) 

where p = Q2/ ̂ bo). 

13 See, for example, G. N. Watson, “Theory of Bessel Functions,” Cambridge (1944), 
p. 394, equation (5). 
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When p is zero equation (5.16) agrees with a result given in Section 3.4 of 
reference A, namely, for an ideal band pass filter 

ave I r — n I _ fb ~ 
n a/3(/ò + fa) 

where r is the interval between two successive zeros and ti is its average 
value, t is equal to ti — to of our equation (3.10) from which it follows that 

(r - rO/n = - tf/q (5.17) 

de 
6. Expected Number of Crossings of e and — per Second 

dt 

After a brief study of the expected number of times per second the phase 
angle 0 increases through 0 and through % (where it is assumed that — t < 
e < it) expressions are obtained for the expected number Nf of times per 
second the time derivative of 0 increases through the value 0'. 
The point T shown in Fig. 4 of Section 3 wanders around, as time goes by, 

in the plane of the figure. How many times may we expect it to cross some 
preassigned section of the line OQ in one second? To answer this problem 
we note that, from expression (2.1), the probability that 0 increases through 
zero during the interval I, t + dt with the envelope lying between R and 
R + dR is 

dt dR [ e'p(R,0, O') d0' (6.1) 
Jo 

where the probability density in the integrand is obtained by setting 0 equal 
to zero in equation (5.1). The expected number of such crossings per second 
is 

(2r)-*/2 (boBr^R^Re^^1̂  
(6.2) 

dO' 0’ exp [-boRfe^/^B) + b¡R(R - Q)0'/B] 
Jo 

which may be evaluated in terms of error functions or the function v-i(x) 
defined by equation (1.8). For the special case in which the power spec¬ 
trum of the noise current In is symmetrical about the sine wave frequency, 
bi is zero and (6.2) yields 

dR (6.3) 

From equation (6.1) onwards we have tacitly assumed that the range of 0 
is given by — t < Ö < t because setting 0 equal to any multiple of 2ir in our 
equations leads to the same result as setting 0 equal to zero. This is due to 
0 occurring only in cos 0 and sin 0. When 0 increases through the value r, 
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as it does when the point T crosses, in the downward direction, the extension 
of the line OQ lying to the left of the point 0 in Fig. 4, we imagine the value 
of 0 to change discontinuously to the value — t. 
The expected number of times per second 0 increases through ir may be 

obtained from (6.2) and, in the symmetrical case, from (6.3) by changing the 
sign of Q since this produces the same effect as changing 6 from 0 to r in 
/>(/?, 9, 0'). 
The expected number of crossings per second when R lies between two 

assigned values may be obtained by integrating the above equations. For 
example, the number of times per second 0 increases through zero with R 
between Q and R\ is, from (6.3) for the symmetrical case, 

(4ir)-W*o) ,/2 erf [(2ôo)-1/2 | A, - 0 | ] (6.4) 

where we have used the absolute value sign to indicate that R\ may be either 
less than or greater than Q and 

erf X = 2?r' 2 f e dt (6.5) 
Jo 

Expressions for ò0 and are given by equations (A2-1) of Appendix II. 
The mean square value of IN is b0, and when the power spectrum of IN is 
constant over a band of width ß, bi = ir^ôo/3. 

In much the same way it may be shown that the expected number of times 
per second 6 increases through ir with R between 0 and R^ is 

(4r)-*(W*o)1« {erf [(Ib^'^Rt + Ç)] - erf [W1««?] I (6.6) 

A check on these equations may be obtained by noting that the expected 
number of zeros per second of I „ given by equation (4.11), is equal to twice 
the number of times 0 increases through zero plus twice the number of times 
0 increases through ir. Setting Ri equal to zero in (6.4), to infinity in both 
(6.4) and (6.6), and adding the three quantities obtained gives half of (4.11), 
as it should. 
Now we shall consider the crossings of 6'. The equations in the first part 

of the analysis are quite similar to those encountered in Section 3.8 of 
Reference A where the maxima of R, for noise alone, are discussed. We 
start by introducing the variables Xi, Xt,- - xe where 

xi = Ic = Reos 0 — Q, xt = I, = Rsin 0 (6.7) 

and the remaining x’s are defined in terms of the derivatives of I c and I, and 
are given by the equations just below (3.8-4) of Reference A. 
Here we shall consider the noise band to be symmetrical about the sine 
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wave frequency fQ so that bi and b3 are zero. Then from equations (3.8-3) 
and (3.8-4) of Reference A the probability density of Xi, X2, • • • Xe is 

oZiTTH exP ( — tTS + *«) + 2è2(xix3 + x̂  O7T th U \ LU 
(6.8) 

+ (O/62) (x2 + Xs) + boÇxj' + x»)]y 

where D = bob< — bl and the bn’s are given by equations (A2-1). Replac¬ 
ing the x’s by their expressions in terms of R and 0, similar to those just 
above equation (3.8-5) of Reference A, shows that the probability density 
for R, R', R", Q, O', 0" is 

D3 / 1 

P(R, R', R", 0, O’, 0") = - exp ( [i4(Á2 - 2RQ cos 0 + Q2) 
oTTOïU \ ¿U 

+ (D/bi)(R'2 + R2̂ 1) + 2bi(RR” - RW) (6.9) 

+ b0(R"2 - 2RR"0'2 + 4R'20'2 + ARR'0'0" + RW + R20”2) 

— 2biQ(R" cos 0 — RO’2 cos 0 — 2R'O' sin 0 — RO" sin 

It must be remembered that (6.9) applies only to the symmetrical case in 
which bi and b3 are zero. 

Integrating R' and R" in (6.9) from — co to 00 gives the probability 
density of R, 0, O', 0". The integration with respect to R" is simplified by 
changing to the variable R" — RO'2. The result is 

p(R, 0, O’, 0") = R3(2ir)~'¡(bobiD)-ll2(l + w)“1« 

exp 1 
2b0 _ 

R2 - 2RQCOS O + Q2 + b. R2 O'2/bi J())

(Qbi sin 0 + bo RO")2 

“(ï ~+u)D . 

where w = Ab3boO'2/D. The expected number of times per second the time 
derivative of 0 increases through the value O' is 

N,- = f dO dR dO"O"p{R, 0, O', 0") 

= it 2(b2b/b0)' 2 y <10 f rdr jf xdx (6.11) 

exp [—yr2 + 2racos 0 — a2 — b(x -f- asin fl)2] 
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where we have set 

r = R(2boYm X = rboe"/b2

a = C(20o) -1/2 = pm 7 = 1 + b^/b2 = 1 + z2 (6.12) 

á = b* 
(1 + u)D 

r being regarded as a constant when the variable of integration is changed 
from 6" to x. 
The double integral in 6 and x occurring in (6.11) is of the same form as 

(A3-1) of Appendix III and hence may be transformed into (A3-3). Here 
a = r a, c = — ba2, c + b2 = 0. The diameter of the path of integration C 
may be chosen so large that the order of integration may be interchanged 
and the integration with respect to r performed. The result is again an 
integral of the form (A3-3) in which a2 = 0. When this is reduced to (A3-6) 
it becomes 

N,. = e^^Y'b^M-'’2 [e-‘"V0(5p/2) 
(6.13) 

+ (1 + 7^)(1 + 7V2) V'7/« ¡7^(2 + 7Ô) *, p/y +bp/2] ] 

where we have used Ie( — k, x) = Ie(k, x) which follows from the definition 
(Al-1) given in Appendix I. 
When there is no sine wave present, p is zero and (6.13) becomes 

This gives a partial check on some of the above analysis since (6.14) may be 
obtained immediately by setting a equal to zero in (6.11). Another check 
may be obtained by letting p —> x and using Ie(k, oc) = (1 — k2Ym-
(6.13) becomes 

N,- ~ WW'2̂ ’’ (6.15) 

which agrees with the result obtained from 6' ~ I,/Q. 
For the case in which the power spectrum iv(j) of the noise is equal to the 

constant value w0 over the frequency band extending from fQ — ß/2 to 
fo + ß/2, 

bo = ßwo, b2 = 7r2/3+’o/3 = Tt2lí¿bo/3, bt = ̂ ^Wq/S = tr^bo/S (6.16) 
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These lead to 

z = (VW1'2«' = SW/foS) D/b\ = bih/Û - 1 = 9/5 - 1 = 4/5 

u =4 b^/D = 5z2 « = (6.17) 

7 = 1 + Z2

and the coefficient in (6.13) may be simplified by means of 

± (6.18) 
2iry W/ 1 + z2 \ 15 / 

From (6.14) we see that (6.18) is equal to Nt- when noise alone is present 
(and is of constant strength in the band of width /3). The curves of N^/ß 
versus z shown in Fig. 7 were obtained by setting (6.17) and (6.18) in (6.13). 
Nf/ß approaches e^/i3 a/3) as z —> ». 
When the wandering point T of Fig. 4 passes close to the point 0, 9 

changes rapidly by approximately -tr and produces a pulse in 9'. In dis¬ 
cussions of frequency modulation 9' is sometimes regarded as a noise voltage 
which is applied to a low pass filter. Although the closer T comes to 0 
the higher the pulse, the area under the pulse will be of the order of tt and 
the response of the low pass filter may be calculated approximately. 
That the pulses in 9' arise in the manner assumed above may be checked 

as follows. We choose a point relatively far out on the curve for p = 5 in 
Fig. 7, say z = -\/39'/(ßir) = 1.6 or 9' = 2.9/3. The number of pulses per 
second having peaks higher than 2.9/3 is roughly N>> = .009/3, and half of 
these have peaks greater than 9' = 3.8/3 which is obtained from Fig. 7 for 
2V,, = .0045/3. From Fig. 6 we see that 9' exceeds 2.9/3 about .0018 of the 
time. Thus the average width at the height 2.9/3 of the class of pulses 
whose peaks exceed this value is .00 18/ (.009/3) = 2/ß seconds. This figure 
is to be checked by the width obtained from the assumption that the typical 
pulse arises when T moves along a straight line with speed v and passes 
within a distance b of O. We take tan 9 = vt/b = at so that 
Q' = a/(l -|- a2/2). From this expression for 9' it follows that a pulse of 
peak height 3.8/3 (the median height) has a width of .3//3 seconds at 9' = 
2.9/3. This agreement seems to be fairly good in view of the roughness of 
our work. A similar comparison may be made for p = 0 by using the 
limiting forms of (5.15) and (6.18). Here it is possible to compute the 
average width instead of estimating it from the median peak value. Exact 
agreement is obtained, both methods leading to an average width of t/ (40') 
seconds at height 9'. 
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0.40 

Fig. 7—Crossings of time derivative of phase angle. 
Nf = expected number of times per second dñ/dl increases through the valued, p, B, 

and the power spectrum of In are the same as in Fig. 5. 
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_ „ de 7. Corrélation r unction for — 
dt 

In this section we shall compute the correlation function S2(r) of 
We are primarily interested in2(r) because it is, according to a fundamental 
result due to Wiener, the Fourier transform14 of the power spectrum IF(J) 
of e'ffy. 
We shall first consider the case in which the sine wave power is very large 

compared with the noise power so that, from (3.6), 0 is approximately 
I,/Q and 0' approximately I./Q. Then using (A2-3) and (A2-1) 

Q(r) = e'W(t + t) = + t) 
f” (7.1) 

= -R"Q 2 = 2 / »(/)(/ “A)2 COS 2ir(/ -/,)rd/ Jo 

When w(/) is effectively zero outside a relatively narrow band in the neigh¬ 
borhood of /„ as it is in the cases with which we shall deal, (7.1) leads to the 
relation (divide the interval (0, ») into (0,/,) and (/„ =c), introduce new 
variables of integration /i = fq~ f,fi = f — A in the respective intervals, 
replace the upper limit /, of the first integral by », combine the integrals, 
and compare with (2.1-6) of Reference A) 
Power spectrum of d'(t) = IF(/) 

= + /) + w(A - /)] (7-2) 

This form is closely related to results customarily used in frequency modula¬ 
tion studies. It should be remembered that in (7.2) it is assumed that 
0 < f <£j t and rms IN « Q-

Additional terms in the approximation for S2(t) may be obtained by 
expanding 

’ - q^T. 

in descending powers of Q, multiplying two such series (one for time / and 
the other for time / + r) together, and averaging over t. If I ci, and 
Id, Id denote the values of I c, I s at times t and / + t respectively, the 
average values of the products of the Z’s may be obtained by expanding the 
characteristic function (obtainable from equation (7.5) given below by 
setting z5 = Ze = z? = zg = 0) of the four random variables Icï , I ,x, Id, Id-
This method is explained in Section 4.10 of Reference A. When w(f) is 
symmetrical about/, it is found that 

14 The form which we shall use is given by equation (2.1-5) of Reference A. 
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2 2 3

0102 = + Q* + + ‘ ’ 
_ j2 _ 

Q(r) = = - — 0^ (7.3) 
ar¿

qh ? q 
= - w  + g'2) - J (g2r + 2^) + • •. 

From the exact expression for Í2(r) obtained below it is seen that the last 
equation in (7.3) is really asymptotic in character and the series does not 
converge. We infer that this is also true for the first equation of (7.3). 
We shall now obtain the exact expression for the correlation function 2(r) 

of 9'(t) when fq is at the center of a symmetrical band of noise. At first sight 
it would appear that the easiest procedure is to calculate the correlation 
function for 0(/) and then obtain fi(r) by differentiating twice. However, 
difficulties present themselves in getting 0 outside the range — tt, tt since 0 
enters the expressions only as the argument of trigonometrical functions. 
Because I could not see any way to overcome this difficulty I was forced to 
deal with 0' directly. Unfortunately this increases the complexity since 
now the distribution of the time derivatives of I c and I s also must be con¬ 
sidered. 
We have 

^ = ! + (^.y 
e, = (Q + - I.Ic = (Q + ZjZÍ - U'c

sec2 0(Q + Iey (Q + A)2 + Z2

and the value of 0'(/)0'(/ + r) is the eight-fold integral 
/• 4-00 * 4-00 

ß(r) = / dlci • • • I dltip^Icx, • • • , I ,i) 
J— 00 J— oo 

. , , , (7.4) 
(Q + — Isllel y (Q + Ici)Isi —

(Q + Zel)2 + ZÎ1 (Q + la)* + ZÎ, 

where P<J ci, • • • , I si) is an eight-dimensional normal probability density. 
As before, the subscripts 1 and 2 refer to times I and / + r, respectively. 
The most direct way of evaluating the integral (7.4) is to insert the expres¬ 
sion for p{I c\, • • • , I si) and then proceed with the integration. Indeed, 
this method was used the first time the integral (7.4) was evaluated. Later 
it was found that the algebra could be simplified by representing p(I eb • • • , 
I si) as the Fourier transform of its characteristic function. The second 
procedure will be followed here. 
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The characteristic function for I ,i, 1,2, Ai, Z,2, Id, Id, Id, 1,2 is, from 
(A2-2) and (A2-3) of Appendix II and Section 2.9 of Reference A, 

ave. exp i[zil,i + Z21 ,2 + Z31 ,1 + zj ,2 + zJd + zJd 4- Z7Z,i 4- zzl,^ 

= exp (— I) [¿>o(zî + Zj + Z3 + zi) + ¿2(25 + z« + z? + Za) 

+20!(ziZ7 + zaza — Z3Z5 — z4z6) (7.5) 

4-2g(ziZa + Z3Z4) + 2g,(ziZe — Z2Z5 + Z3Z8 — Z4Z7) 

— 2g"(ztZc + Z7Z8) + 2ä(ziZ4 — Za Za) 

+ 2ä'(ziZ8 + Z2Z7 — Z3Z« — Z4Z5) — 2A"(zaZ8 — zsz?)]. 

Since we have included h, h', h" this holds when/, is not necessarily at 
the center of the noise band. However, henceforth we return to our assump¬ 
tion that /, is placed at the center of a symmetrical noise band and take 
bi, h, h', h" to be zero. 
The probability density of Ici , • • • 1, 2 which is to be placed in (7.4) is 

the eight-fold integral 

p{Id, • • • Id) = (2ir) 8 I dzi • • • y dz» 

exp [— izilci — ... — X [ch.f.] 

where “ch.f.” denotes the characteristic function obtained by setting ¿>1, 
h, h', h" equal to zero on the right hand side of (7.5) 
The integral (7.4) for 2(r) may be written as 

n(r) = JI - J2 - J3 + J. (7.7) 

where Ji is the 16-fold integral 

Ji / did--- / ¿A^ir)“’ / dzi--- / dzi 
J— QO J— 00 00 *— 00 

exp [ — izild— ••• — izil,2] (7.8) 

(Q + I,i)(Q + 1,2)1,il.2 y [ch f 1 
Ke + A1)2 + njKe + a»)2 + nj 

and J2, J3, Ji are obtained from Ji by replacing the product (Q 4- Id) 
(Q 4- Ic2)l,'ll>2 by (Q 4" 1,1)1.11,21,2, I,lId{Q 4" 1,2)!,2, I.llelldld 
respectively. 
The integration with respect to I,i and 1,1 in (7.8) may be performed at 

once. We replace Q 4- I,i and 1,1 by x and y, respectively, and use 

f+°° dx f+" dy — — (7.9) 
J-K y x1 + y* z2 4- e2
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The integration with respect to I and Ia2 may be performed in a similar 
manner. In this way we obtain a 12-fold integral. 
The integrations with respect to the /"s may be performed by using 

<”7(z) dz = /(0) 

1 r+" f+’° 

± Idl dz = 
Z 7T J— oo v— oo 

(7.10) 

The result is the four-fold integral 

(7.11) L dZl ‘" L 
exP [— (¿o/2)(zi + z2 + zj + z4) — g(ziz2 + zjz<) 4* iQ(zi + z2)]. 

In the same way J2, J3, J4 may be reduced to the integrals obtained from 
(7.11) by replacing z^g" - g'2zsz4) by -g'MzJ, -fifà and z3z4(g" -
— g'2ZiZ2), respectively. When the J’s are combined in accordance with 
(7.7) we obtain an integral which may be obtained from (7.11) by replacing 
ziz2(g" — g'2z3z4) by 

g"(ziZ2 + ZsZ4) 4- g'2̂  - z2z3)2 (7.12) 

The terms zî + z¡ and z2 + z4 in the denominator may be represented as 
infinite integrals. Interchanging the order of integration and expressing 
(7.12) in terms of partial derivatives of an exponential function leads to the 
six-fold integral 

f“ f” F a2 “I r+x /•+“ 
a(r)=(4^ du dV -g" d-+g,2L I dZl .-.f dz. 

J0 ->0 L Og dor Ja—0 J-OO J-00 

exP [— (^o + u)(z2 + z3)/2 — (bo + ®)(z2 + z4)/2 (7.13) 

-g(ziZo + ZsZ4) - a(ziz4 - z^s) 4- iQ(zi 4- za)] 

where the subscript a = 0 indicates that a is to be set equal to zero after 
the differentiations are performed. 
When the four-fold integral in the z’s is evaluated (7.13) becomes 

Q(r) = [ du Í dv — g" — 4- g^ ~ 
Jo Jo L dg da\ 

¿ exp {-QXlbo - 2g 4- « 4- f)/(2D)] (7.14) 

= f du f dVl(g'2 - gg")(2 - 2F 4- Q7g) - g^/g]^/^ 
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where 

D = (b0 + w)(6o + f) — g2 — «2, F ~ ÇfWh — 2g + w + t)/(20o) 

and Da denotes the value of D obtained by setting a = 0. When differen¬ 
tiating with respect to a it is helpful to note that 

-rW-Yw — da1 ’ \»a) J M 

e ' ‘ dr ds 
(7.16) 

It is seen that 

(7.17) 

Since the integrands are functions of r + s alone we are led to apply the 
transformation 

and that only /'(D) = dj/dD need be obtained since dD/da vanishes when 
a = 0. 

In order to reduce the double integral to a single integral we make the 
change of variables 

71 = 2g(7-2

k ’ J J \ Q2[Q2 - Wr + 5)| 
>2 " '2 

_ g - gg 
2g2 * 2g2 yt

where yi and y2 are the dimensionless quantities 

12 - gg")(2 - 2r - 2s + Q2/g) - g^/g 

r Q (ba + u g)/(2Da) 2[(fto + + v) _ *2]

5 = O2(óo + V - g)/(2D0), F=r+s (7’15)

d(r, s)/d(u, v) = —rs/Do, 4srD0 = Q2[(?" — 2g(r + 5)] 

The limits of integration for r and 5 are obtained by noting that the points 
(0, 0), (00, 0), (oo, 00), (0, co) in the (w, v) plane go into (Q2/(26o + 2g), 
Q2/(260 + 2g)), (Q2/(2b0), 0), (0, 0) (0, Q2/(260)), respectively, in the (r, s) 
plane. It may be verified that the region of integration in the (r, s) plane 
is the interior of the quadrilateral obtained by joining the above points by 
straight lines. Equation (7.14) may now be written as 

(2-2,-2, + ̂ ) 

W - 2i<' + ’)! 
ge~r~* dr ds 
- 2g(r + i) 

f f f(r 4- s) drds=l^ uf(u) du + I 
A 
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where A is the area enclosed by the quadrilateral whose vertices are at the 
points (r, s) given by (0, 0), (0, a), (3, ß), (a, 0) and it is assumed that ß and 
a are positive, u is a new variable and is not the one introduced in (7.13). 

Setting a = C>2/(26o) and ß = Q2/(2b0 + 2g), using (7.18), and introduc¬ 
ing the notation 

P = Q7(2*o), k = g/bo 

i = Q7(2g) = p/k, X = = -J 
bo + g 1 + k 

permits us to write 

[ [ _r_, , . [p u , , fx p(X - u) , lie dr ds = I uc du + / —- e du 
J J Jo Jp X — p A 

= i - + ÆÏ 
X — p X — p 

and (7.17) yields 

y2 = I ?1 - 1 + 2 e_p _ 1+* 
k 1 — k 1 — k 

(7.19) 

(7.20) 

(7.21) 

where we have expressed X in terms of p and k. 
The double integral defining y2 may be treated in the same way as (7.20) : 

e r ’ dr ds _ tp ue “ du fx p(X — w)e~“ du 
£ — r — s Jo £ - u Jp (X - p)(£ - u) 

Writing u = £ — (£ — u) and X — u = X — £ + (£ — u) in the two numera¬ 
tors leads to 

yt 
[p eu du 
'o £ — W 

fx e “ du 
A +  Í ê duX — p Jp 

(7.22) 

where we have used p(X — £)/(X — p) = — £ to simplify the coefficient of 
the third integral. When the second and fourth integrals are evaluated, 
their contribution to y2 is found to be equal to the terms independent of jq 
on the right of (7.21). Hence, comparison of equations (7.21) and (7.22) 
shows that 

r e~u du _ e~u du 
'o £ — u Jp — u 

(7.23) 
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The integrals in (7.23) may be evaluated in terms of the exponential inte¬ 
gral Ei(x) defined by, for x real, 

Ei(x) = Í e‘ dl/t = C + i log. x2 + ¿ J-B »-i n\n 
~ / E n!/x"+l 

n—0 
where C = .577 • • • is Euler’s constant and Cauchy’s principal va'ue of the 
integral is to be taken when x > 0. We set I = £ — u and obtain 

y, = e^'k[Ei[p/k] - 2Ei[p(l - k)/k] + 

where we have again expressed £ and X in terms of p and k. 
A power series for yi which converges when —1/3 < k < 1 may be ob¬ 

tained by expanding the denominators of the integrands in (7.23) in powers 
of u/% and integrating termwise: 
yi = £“*[1 — 2e ” + e x] 

+ 1 !C2[1 - 2(1 + p/\ !)«“’ + (1+ X/l l)^] (7.24) 
+ 2 !£-’[! - 2(1 + p/1! + P2/2!)e"p + (1 + X/l ! + ̂ /2^] 

+ • • • 
The following special values may be obtained from the equation given 

above. When p = 0 
y i = -log, (1 - ¿2) 

y i = 0 
(7.25) 

This result may also be obtained by evaluating the integral obtained when 
we set Q = 0, zt = n cos z3 = rx sin 0b z2 = cos 02, z4 = r2 sin 02 
in (7.11) and (7.12). 
Near k = 1, 

Near k = 0, 

y2 = e~f[Ei(p) -C - log. p(l - ¿2)] 

yt = pyi - 1+ (1 + p)« ’ 

yi = ¿(1 - e^Ÿ/p, y2 = yi 
except when p = 0 in which case y4 is approximately k2. 
When p is large 

k , 1!¿2 , 2!¿3 . 3!¿ 
yi ~ - d- y d- f d- r 
PP2 P3 P4

y¡ 
1!¿ , 2!¿2 . 
— d- r d- • • • 
P P 

(7.26) 

(7.27) 

(7.28) 

except near k = 1 where both yi and y2 have logarithmic infinities. The 
asymptotic expansion (7.3) for which was obtained by the first method 
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of this section, may be checked by inserting (7.28) in the expression (7.16) 
for 12(t) in terms of yi and y2. 

Values of yi and y2 tabulated as functions of k for various values of p are 
given in Table 3. Negative values of k have not been considered since they 

Table 3 
Values of yi and y2 Used in Computation of Correlation Function of dO/dl 

«« = + r) = - yt) - gÄ"yi]/(2g«) 

« “ «W = w(/) cos 2x(/ —/s)rd/, k = ««/¿(O) 
Jo 

k 

Values of yi Values of yj 

P p 

0 .5 1 

2

5 .5 1 2 5 

0 
.1 
.2 
.3 

.4 

.5 

.6 

.7 

.8 

.84 

.88 

.90 

.92 

.94 

.96 

.97 

.98 

.99 

.995 

.997 

0 
.01005 
.04082 
.09431 

.1744 

.2877 

.4463 

.6733 

1.0216 
1.2228 
1.4890 
1.6607 

1.8734 
2.1507 
2.5459 
2.8285 

3.2289 
3.9170 
4.6072 
5.1175 

0 
.03526 
.08043 
.1379 

.2110 

.3056 

.4278 

.5953 

.8416 

.9798 
1.1590 
1.2742 

1.4144 
1.5948 
1.8486 
2.0251 

2.2762 
2.7080 
3.1341 
3.4445 

0 
.04224 
.09003 
.1452 

.2102 

.2886 

.3860 

.5129 

.6914 

.7888 

.9127 

.9898 

1.0834 
1.2024 
1.3668 
1.4815 

1.6405 
1.9066 
2.1721 
2.3622 

0 
.03854 
.07979 
.1246 

.1740 

.2296 

.2942 

.3721 

.4729 

.5242 

.5866 

.6241 

.6686 

.7217 

.7939 

.8414 

.9073 
1.0127 
1.1125 
1.1866 

0 
.02000 
.04105 
.06292 

.08586 

.1101 

.1358 

.1636 

.1941 

.2075 

.2219 

.2296 

.2378 

.2466 

.2566 

.2623 

.2690 

.2778 

.2846 

.2889 

0 
.03171 
.06550 
.1022 

.1432 

.1914 

.2481 

.3220 

.4275 

.4866 

.5641 

.6138 

.6753 

.7550 

.8711 

.9474 

1.0704 
1.2773 
1.4838 
1.6367 

0 
.04147 
.08654 
.1363 

.1926 

.2579 

.3368 

.4379 

.5803 

.6593 

.7619 

.8260 

.9058 
1.0093 
1.1558 
1.2605 

1.4081 
1.6610 
1.9175 
2.1048 

0 
.03936 
.08275 
.1315 

.1870 

.2515 

.3289 

.4269 

.5602 

.6318 

.7226 

.7752 

.8486 

.9333 
1.0546 
1.1366 

1.2548 
1.4505 
1.6416 
1.7859 

0 
.02051 
.04283 
.06702 

.09384 

.1238 

.1576 

.1975 

.2461 

.2693 

.2964 

.3114 

.3294 

.3498 

.3752 

.3849 

.4119 

.4429 

.4705 

.4893 

are not required for the case in which IN has a normal law power spectrum, 
the case discussed in the next section. 

8. Power Spectrum of When In has Normal Law Power Spectrum dt 

The problem of computing the power spectrum W(f) of ô'(0 appears to 
be a difficult one.* In order to obtain an answer without an excessive amount 
of work we have had to do two things which are rather restrictive. First, 
we confine our attention to the case in which the power spectrum w(f) of 

•Since the above was written the general f. m. problem has been studied by D. Middle¬ 
ton. He generalizes our (7.11) and (7.12), introduces polar coordinates, expands the 
integrand in powers of g, and integrates termwise. W(f) then follows somewhat as in 
a.m. theory. 
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In is of the normal law type (our method could be applied to other types 
but g' and g" would be more complicated functions of r and Table 3 would 
have to be extended to negative values of k, if they should occur). Second, 
we resort to numerical integration to obtain a portion of JF(/). Because 
of the second item our results are either tabulated or are given as curves, 
shown in Figs. 8 and 9, except when Q = 0 (noise only) in which case the 
power spectrum of 0' is given by the series (8.7). 
The power spectrum of In is assumed to be 

w(^ = (8.1) 
o V 2tt 

The mean square value of In is equal to that of a noise current whose power 
spectrum has the constant value of /o/ (<fV 2ir) over a band of width ft — fa 
= a\/2tt = a2.5O7. The value of w(/) is one quarter of its mid-band value 
at the points/ — ft — ±<r\/2 log. 4 = ±<rl.665 (the 6 db points) and the 
distance between these points is 3.330<r. Integration of (8.1) shows that the 
mean square value of In is /o in accordance with our customary notation. 
The mid-band value of w(f) is ^o/ (<rV2?r). 
Assuming f„ » a and evaluating the integrals (A2-1) of Appendix II 

defining b0 and g gives 

bo = ̂ o, g = toe — Y0e

g'/g = — wm' = — 2tvU, g"/g = — (2ira)2(l - u) (gj) 

g g = -(2t<7)2, k = g/bo = e~u*2 
g2

where we have set 

U = 2îraT, w' = 2îra (8.3) 

and the primes on g and u denote differentiation with respect to r. The cor¬ 
relation function is accordingly, from (7.16). 

il(r) = 2ir2a2(yi — u-yf) (8.4) 

If be regarded as a noise current its power spectrum is 

IF(/) = 4 Í Q(t) cos 2it/t dr (8.5) 
Jo 

When noise alone is present, p is zero and (7.25) yields 

8(t) = -2^ log. (1 - ¿2) = — 2r2a2 log. (1 - e-“’) (8.6) 

38 

143 



In this case the power spectrum is, from (8.3), (8.5), and (8.6), 

^(Z) = — 4™ / cos(m//o) log (1 — e““2) du 
JO 

(8.7) 
= 2<7t3/2 £ „-»V'’7«"’*, 

n— 1 

the series being obtained by expanding the logarithm and integrating term-
wise. When this equation was used for computation it was found conven¬ 
ient to apply the Euler summation formula to sum the terms in the series 
beyond the (N - l)st. Writing b for f2/^, the series in (8.7) becomes 

1—3/2e—6/1 _|_ 2—3/2g—6/2 _ J )-3/2g-bl (N— 1) 

+ Çr/b)m erf [(b/W)1'2] + 1 1 
12W 

+ 1 (- 105 + 12? A _ 
/20A'1\ 8 + 4 N 2 ÏV2 ’ Ã2/ ' 

(8.8) 

When b is zero the sum15 of the series is 2.61237 • • • . The values for p = 0 
in Table 4 were computed by takipg .V = 12 in (8.8). As b —> x the domi¬ 
nant term in (8.8) is seen to be the one containing erf (choose .V so that 
b = Ar,/2). Hence as/ —» x 

H n(J) ~ 47T2a2//. (8.9) 

When both noise and the sine wave are present it is convenient to split the 
power spectrum into three parts. The first part, IFi(/), is proportional to 
Wwi/L the power spectrum with noise alone. The second part W2(/) is 
proportional to the form W(/) assumes when rms IN « Q and the third 
part Ws(/) is of the nature of a correction term. This procedure is suggested 
when we subtract the leading terms in the expressions (7.26) and (7.27) 
(corresponding to k — 1 and k = 0, respectively) from yt. Likewise we 
subtract the leading term in y2, (7.27), at k = 0 but do not bother to do so 
at the end k = 1 because u2y2 approaches zero there. We therefore write 

yi - w2y2 = [yi + «-'log (1 - ¿2) - ¿(1 - e^Y/p - u2y2

+ M2*(l - eOVp] -r- log (1 - ¿2) + (1 - m2)¿(1 - ,-')*/, 
, (8.10) 

= Z(m) - e"' log (1 - ¿2) - (1 - e-*)2
OoP 

“Theory and Application of Infinite Series,” Knopp, (1928), page 561. 
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where Z(u) denotes the function enclosed by the brackets in the first equa¬ 
tion and the expressions for g" / g and k in (8.2) have been used in the replace¬ 
ment of (1 — u2)k. 

Table 4 
Values of lFJ(/)/(41r2<r) 

Of p " 0 0.5 1.0 2.0 5.0 

0 
1 
2 

3 
4 
6 

8 
10 
12 

0 
0 
0 

0 
0 
0 

0 
0 
0 

-.03517 
— .03003 
-.01717 

-.002436 
.008757 
.01478 

.01018 

.005768 

.004027 

- .03891 
-.03196 
- .01486 

.004014 

.01730 

.02157 

.01366 

.007378 

.004463 

-.02444 
- .01830 
-.003304 

.01252 

.02244 

.02167 

.01237 

.006201 

.003552 

-.001948 
-.001814 

.004052 

.008225 

.01027 

.007665 

.003505 

.001437 

.0006439 

Values of W (j) / 

0 
1 
2 

3 
4 
6 

8 
10 
12 

.7369 

.7098 

.6439 

.5542 

.4623 

.3195 

.2390 

.1908 

.1595 

.4118 

.4294 

.4516 

.4225 

.3496 

.2178 

.1553 

.1215 

.1003 

.2322 

.2672 

.3231 

.3225 

.2654 

.1508 

.1019 

.07768 

.06306 

.07529 

.1134 

.1784 

.1947 

.1580 

.07554 

.04506 

.03206 

.02511 

.003017 

.02342 

.05828 

.06852 

.01590 

.01540 

.005325 

.002726 

.001719 

Inserting (8.10) in the expression (8.4) for fi(r) and taking the Fourier 
transform (8.5) leads to 

g" cos 2t/t dr = 
'o 

w(f) = w ¿f) + W2(/) + ir3(/) 

w^f) = 

_ 2(1 - C 
I’oP 

e-pŸ = ~ 
p 

W^f) = 4ira Í Z(u) cos (w//a) du 
Jo 

(8.11) 
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In these equations IPw(f) is obtained from (8.7), and IF2(/) by two-fold 
integration by parts to reduce g" to g then evaluating the integral obtained 

Fig. 8—Power spectrum of d6/dt. 
Power spectrum of IK is assumed to be 

^^Y' exp ( -(/ - /,)«/(2a’)I. 
In this expression /is a frequency near/, . The / in W(J) and in the abscissa is a much 
lower frequency. IV (f) = power spectrum of 9' = dO/dt, »' being regarded as a random 
noise current. Dimensions of W(j)df same as (dd/dt)* or (radians)Vsec.2. 

by substituting the expression (8.2) for g. That JK(/) approaches JK2(/) 
as p « follows when expression (8.11) for IF2(/) is compared with the 
limiting form (8.13) given below. 
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Instead of dealing with W(J) it is more convenient to deal with (4rr2<r) 1 

which is the sum of the three components 

(4A)-'ir,(/> 

(47T2a) ‘^»(Z) = - Í ^(u) cos («//a) du 7T JQ 

(8.12) 

Fig. 9—Approach of W(/) to limiting form. 

As p - », W(J) - 4^ (pVS)-' (JM* exp [ - /’/(2<7«)]. 

The integral involving Z(u) has been computed by Simpson’s rule, yi and 
y2 being obtained from Table 3, with the results shown in the first section 
of Table 4. The value of IF2(/) may be computed directly, and Wi(/) may 
be obtained from IFyO'). The values of these two functions together with 
those of IFS (/) enable us to compute the values of (47t2<t)_W (/) given in 
Table 4 and plotted in Fig. 8. 

Since, as is shown by (8.9), WN(J) varies as 1// for large values of f, the 
areas under the curves of Fig. 8 become infinite. This agrees with the fact 
that the mean square value of 8' is infinite. 
The values of (47r2<r)-in(O) for p equal to 0, .5, 1, 2, and 5 are .7369, 4118, 

2322, .07529, and .003017 respectively. When these values are plotted on 
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semi-log paper they tend to lie on a straight line whose slope suggests that 
IF(0) decreases as cp when p becomes large. 
The limiting form assumed by W(J) as p —» oc is given by equation (7.2). 

When the normal law expression (8.1) assumed in this section for the power 
spectrum of IN is put in (7.2) we find that 

JF(/) -> 
4^ ijV 

py/lir \a) 
(8.13) 

Fig. 9 shows that for p = 5 the limiting form (8.13) agrees quite well with 
the exact form computed above. 
Both (7.2) and (8.13) show that, for small values of f, the power spectrum 

of 6' varies as when p > > 1. This is in accord with Crosby’s* result 
that the voltage spectrum of the random noise in the output of a frequency 
modulation receiver is triangular when the carrier to noise ratio is large. 
When this ratio becomes small he finds that the spectrum becomes rec¬ 
tangular. Fig. 8 shows this effect in that the areas under the curves between 
the ordinates at / = 0 and f = Xa (where X is some number, generally less 
than unity, depending on the ratio of the widths of the i.f. and audio bands) 
become rectangles, approximately, as p decreases. 

APPENDIX I 

The Integral Ie (k, x) 

The integral 16

Ie(k,x) = [ e~uI0(ku) du, (Al-1) 
Jo 

where 10(ku) denotes the Bessel function of imaginary argument and order 
zero, occurs in Sections 2 and 6. The following special cases are of interest. 

7e(0, x) = 1 — e~x

/e(l, x) = xe-^Zt/x) + Z^x)] (Al-2) 

•> -

The second of these relations is due to Bennett. 17

* M. G. Crosby, “Frequency Modulation Noise Characteristics,” Proc. I. R. E. Vol. 25 
(1937), 472-514. See also J. R. Carson and T. C. Fry, “Variable Electric Circuit Theory 
with Application to the Theory of Frequency Modulation,” B.S.T.J. Vol. 16 (1937). 
513-540. 

“The notation was chosen to agree with that used by Bateman and Archibald (Guide 
to Tables of Bessel Functions appearing in “Math. Tables and Aids to Comp.”, Vol. 1 
(1944) pp. 205-308) to discuss integrals used by Schwarz (page 248). 

17 It is given in equation (62) of the reference cited in connection with our equation 
(1.2) in Section 1. 
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The values in the table given below were computed by Simpson’s rule for 
numerical integration. The work was checked at several points by using 

Ie(k, x) = (V2) -7-7 A „ 
n-o nlnl 

where 
r 2 „2» n % g 

A„ = 1 - + X + - • • • + 

When X is so large that Ie(k, x) is nearly equal to Ie(k, x ) we have 

7e(*. x) ~ (1 - A2)’1'2 - [2*(1 - «]-1/2(2/V%) dt 

where h = V*(l — k). However, this was not found to be especially useful 
in checking the values given in the table. 

Table of Ie(k, x) = e “/»(iw) du 

* 
k 

0 .2 .4 .6 .8 .9 1.0 

0 
.2 
.4 
.6 
.8 

1.0 
.2 
.4 
.6 
.8 

2.0 
.2 
.4 
.6 
.8 

3.0 
.2 
.4 
.6 
.8 

4.0 
.2 
.4 
.6 
.8 

5.0 
5.4 

0 
.1813 
.3297 
.4512 
.5507 

.6321 

.6988 

.7534 

.7981 

.8347 

.8647 

.8892 

.9093 

.9257 

.9392 

.9502 

.9592 

.9666 

.9727 

.9776 

.9817 

.9830 

.9877 

.9899 

.9918 

.9933 

.9955 

0 
.1813 
.3298 
.4517 
.5516 

.6337 

.7012 

.7567 

.8025 

.8401 

.8712 

.8968 

.9179 

.9354 

.9499 

.9618 

.9718 

.9800 

.9868 

.9925 

.9971 
1.0010 
1.0043 
1 0070 
1.0092 

1.0111 
1.0140 

0 
.1814 
.3303 
.4530 
.5545 

.6386 

.7086 

.7669 

.8157 

.8566 

.8910 

.9201 

.9446 

.9655 

.9831 

.9982 
1.0110 
1.0220 
1.0314 
1.0394 

1.0463 
1.0522 
1.0574 
1.0619 
1.0657 

1.0690 
1.0743 

0 
.1815 
.3311 
.4554 
.5593 

.6468 

.7209 

.7841 

.8383 

.8850 

.9255 

.9607 

.9916 
1.0186 
1.0424 

1.0635 
1.0822 
1.0988 
1.1136 
1.1268 

1.1386 
1.1492 
1.1587 
1.1672 
1.1749 

1.1818 
1.1937 

0 
.1816 
.3322 
.4586 
.5661 

.6584 

.7386 

.8089 

.8712 

.9267 

.9766 
1.0217 
1.0627 
1.1001 
1.1345 

1.1661 
1.1953 
1.2223 
1.2475 
1.2708 

1.2926 
1.3130 
1.3320 
1.3499 
1.3666 

1.3823 
1.4110 

0 
.1818 
.3337 
.4629 
.5749 

.6736 

.7620 

.8422 

.9157 

.9839 

1.0476 
1.1075 
1.1642 
1.2183 
1.2699 

1.3195 
1.3672 
1.4132 
1.4578 
1.5010 

1.5430 
1.5839 
1.6237 
1.6625 
1.7005 

1.7376 
1.8095 
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Table—Continued 

X 
k 

0 .2 .4 .6 .8 .9 1.0 

5.8 
6.2 
6.6 
7.0 
7.4 
7.8 
8.2 
8.6 
9.0 
10.0 
11.0 
12.0 
13.0 
14.0 
15.0 

OO 

.9970 

.9980 

.9986 

.9991 

.9994 

.9996 

.9997 

.9998 

.9999 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

1.0160 
1.0174 
1.0183 
1.0190 
1.0195 
1.0198 
1.0201 
1.0202 
1.0203 
1.0205 
1.0206 
1.0206 
1.0206 
1.0206 
1.0206 
1.0206 

1.0783 
1.0814 
1.0837 
1.0854 
1.0867 
1.0876 
1.0885 
1.0891 
1.0896 
1.0902 
1.0907 
1.0909 
1.0910 
1.0910 
1.0911 
1.0911 

1.2034 
1.2114 
1.2180 
1.2234 
1.2278 
1.2375 
1.2346 
1.2371 
1.2393 
1.2431 
1.2456 
1.2471 
1.2482 
1.2488 
1.2492 
1.2500 

1.4364 
1.4590 
1.4792 
1.4972 
1.5134 
1.5279 
1.5409 
1.5526 
1.5631 
1.5852 
1.6024 
1.6158 
1.6263 
1.6346 
1.6412 
1.6667 

1.9207 
1.9668 
2.0066 
2.0411 
2.0711 
2.0973 
2.2942 

1.8786 
1.9452 
2.0097 
2.0722 
2.1328 
2.1917 
2.2491 
2.3050 
2.3597 
2.4910 
2.6157 
2.7347 
2.8487 
2.9584 
3.0641 

OO 

X 
k 

.86 .90 .96 1.0 

15.0 
16.0 
17.0 
18.0 
19.0 
20.0 

OO 

1.8773 
1.8899 
1.9006 
1.9095 
1.9171 
1.9235 
1.9597 

2.0973 
2.1201 
2.1403 
2.1579 
2.1737 
2.1870 
2.2942 

2.5810 
2.6371 
2.6894 
2.7381 
2.7837 
2.8263 
3.5714 

3.0641 
3.1663 
3.2653 
3.3614 
3.4548 
3.5457 

OO 

APPENDIX II 

Second Moments Associated with Ic and I, 

The in-phase and quadrature components of the noise current IN

IM = X Cn cos [(œn - q)t - ç>„] n—1 
u (3.3) 

AW = X sin [(o>„ - q)t — <pn] n— 1 

are closely related to the envelope R and phase angle 0 of the total current, 
this relationship being being shown by the equations (3.4) and (3.5). 
and I,(t) and their time derivatives may be regarded as random variables. 
In much of our work we have to deal with the probability distribution of 
these random variables. By virtue of the representation (3.3) and the 
central limit theorem 18 this distribution is normal in the several variables. 
The coefficients in the quadratic form occurring in the exponent are deter-

18 Section 2.10 of Reference A. 
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mined by the second moments of the variables.” Here we state these 
moments. Some of the moments have already been given in Sections 3.7 
and 3.8 of Reference A. For the sake of completeness we shall also give 
them here. The new results given below are derived in much the same way 
as those given in Reference A. 
Let 

bn = (2t)" F w(f)(f - fj" df 
•’c 

w(/) df = 
(A2-1) 

w(/) cos 2tt(/ — f^T df 

w{f} sin 2r(/ — /,)t df 
Jo 

and let g', g", h’, h" denote the first and second derivatives of g and h with 
respect to r. For example, 

g' = -2» f w^f^f - f,) sin 2r(/ - /,)t df 
Jo 

Incidentally, in many of our cases w(j) is assumed to be symmetrical about 
f„. This introduces considerable simplification because bi, bi, bt, • • • > 
h, h' , h", reduce to zero. 
The following table gives values of b„’s and g for two cases of frequent 

Ideal band pass filter Normal law filter 
centered- on fQ centered on /„ fq» a 

Wz for fa < f < fb tAo_ 
and zero elsewhere ax/27r 

w0(jb — fa) ko 

^oifo - faŸ/3 AirV/o 

ir*W0(fb — faY/S 48t4<tVo 

(irT)-'w0 sin tt(/6 — fa)r ^0« ,(I"’ 

If we write 7O 7', 7« for 7e(Z), I'M, where the primes denote differ-

19 Section 2.9 of Reference A. 

occurrence 

w(f) 

bo 

bi 

b. 
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entiation with respect to t, and do the same for 1,(1) and its derivatives we 
have, from Section 3.8 of Reference A, 

ÏÏ = ÏÏ = ¿o, ÏT. = 0 

ZZ = -ZZ = ÃZ = zZ = 0 

ù = ù = -zZ = -Hl = k, zZ = zZ=zZ=o 

zZ = -zZ = i», zZ = zZ = o 

zy = Z? = ¿4, Z^zT = 0 (A2-2) 

When we deal with moments in which the arguments of the two variables 
are separated by an interval t as in (see the last of equations (3.7-11) of 
Reference A) 

ZeWZ.G 4- r) = h, 

it is convenient to denote the argument t by the subscript 1 and the argu¬ 
ment I + t by 2. Then our example becomes 

ZelZ.s = h 

We shall need the following moments of this type. 

Z.Jrf — Z.i/,2 = g, I clZ ,2 = — Ieda = h 

Iedc2 = Z,1Z„ = — led el = —Ieda = g' ..r, 
__ _ _ (.Az-o) 

lede = I cd»1 = —led >2 = Icd «1 = A' 

Ieda = Ieda = — g" , Ieda = ledei = — h" 
It should be remembered that in these equations the primes on the Z’s 

denote differentiation with respect to I while thé primes on g and h denote 
differentiation with respect to r. 

APPENDIX III 

Evaluation of a Multiple Integral 

Several multiple integrals encountered during the preparation of this 
paper were initially evaluated by the following procedure. The integral 
was first converted into a multiple series by expanding a portion of the inte¬ 
grand and integrating termwise. It was found possible to sum these series 
when one of the factorials in the denominator was represented as a contour 
integral. This reduced the multiple integral to a contour integral and some¬ 
times the latter could be evaluated. 
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We shall illustrate this procedure by examining the integral 

— x + la cos 6 + 2bx sin 0 + c sin2 0 (A3-1) 

Expanding that part of the exponential which contains the trigonometrical 
terms and integrating termwise gives 

+ m + I) 
»!/!(/ + m + n)!r(m + J) 

where we have used 

2!T(« +|)m! = Vt(2«)1 

J" dO I dx X exp 

00 00 00 

/= ZEX 
m—0 n—0 /"0 

We next make the substitution 
1 1 r e‘ dt 

(I + m + «)! “ 2« Jc //+"+’•+* 
(A3-2) 

where the path of integration C is a circle chosen large enough to ensure the 
convergence of the series obtained when the order of summation and integra¬ 
tion is changed. The summations may now be performed: 

i = 1 f die,+aVt ̂ b^r^iy - cr^~w 
21 J C m—0 

dt rw {t - c) il2 , 
t - c - b2 e

(A3-3) 

C encloses the pole at c + b2 and the branch point at c as well as the origin. 
When a2 is zero the integral may be reduced still further. Let c be com¬ 

plex and b such that the point c + b2 does not lie on the line joining 0 to c. 
Deform C until it consists of an isolated loop about c + b2 and a loop about 
0 and c, the latter consisting of small circles about 0 and c joined by two 
straight portions running along the line joining 0 to c. The contributions 
of the small circles about 0 and c vanish in the limit. Along the portion 
starting at 0 and running to c, arg (Z — c) = — it + arg c, and along the por¬ 
tion starting at c and running to 0, arg (Z — c) = % + arg c. On both 
portions arg t = arg c. Bearing this in mind and setting Z = c sin2 0 on the 
two portions gives 

^r/2 2 n cBins0 

Z_o = *b(c + + 2c - - do (A3-4) Jo b2 + c cos2 0 

The integral may be expressed in terms of the function 

ïe(k, x) = Í e “ lo(ku) du 
Jo 
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by noting that 

Jo a + p cos V Jo La + ß cos v Jo 

= ir(a2 — ß2)~1/2 — ir f e lo(ßi) dl 
Jo 

= r(a2 — /í2)-1'2 — (ir/a)Ie(ß/a, a) 

Thus 

Ia-o = tc 17 Io(c/2) + {■Kb1/a)e‘ c/ei^-,a) 
\2a / 

where 

a = b2 + c/1 
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(A3-6) 

(A3-7) 
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Theory of Frequency-Modulation Noise* 
F. L. H. M. STUMPERSf 

Summary—The energy spectrum of frequency-modulation noise 
is computed for different ratios of signal to noise. Numerical values 
are given for some simple filter amplitude characteristics. The theory 
is based on the Fourier concept of noise and treated in three steps: 
no signal, signal without modulation, and modulated signal. The re¬ 
sult is given in the form of a series, and it is shown that this develop¬ 
ment is convergent. The suppression of the modulation by noise is 
also discussed. 

I. Introduction 

SINCE THE PAPER by Armstrong1 drew atten¬ 
tion to the possibilities of frequency modulation 
with regard to the reduction of noise, a considera¬ 

ble amount of work has been published in this field. So 
far as is known, however, the theoretical treatment of 
noise and signal has been confined to the case in which 
the noise energy is small compared to the signal energy. 
In this paper we will try to give a rigorous treatment 
valid for all signal-to-noise energy ratios. The theory is 
developed by methods which Franz2'3 and Rice4 applied 
to similar problems and which are based on the Fourier 
spectrum of the noise. An interesting idea of Mann6 has 
been used for the counting of the number of zeros. 

Usually the instantaneous frequency of a frequency-
modulated signal is defined as the derivative of the 
phase with respect to the time. (For this definition, see 
van der Pol.6) In this section an alternative definition is 
given, which is more suitable for our further computa¬ 
tions. It will be shown that, for a normal frequency-
modulated signal, it gives the same result as the usual 
definition. Using this starting point, we further deduce 
a mathematical expression for the energy spectrum, and 
give a first example of its application. We shall confine 
ourselves to signals consisting of high-frequency com¬ 
ponents in such a way that all important components lie 
within a relatively narrow band coo+Aw where Aw<Kwo. 

For a sinusoidal signal cos uot, the angular frequency 
is equal to the number of zeros in a time interval of it 

* Decimal classification: R148.2. Original manuscript received by 
the Institute, August 8, 1947 ; revised manuscript received, March 11, 
1948. 

f Natuurkundig Laboratorium der N. V. Philips Gloeilampen-
fabrieken, Eindhoven, the Netherlands. 

1 E. H. Armstrong, “A method of reducing disturbances in radio-
signalling by a method of frequency-modulation,” Proc. I.R.E., 
vol. 24, pp. 689-740; May, 1936. 

2 K. Franz, “Beiträge zur Berechnung des Verhältnisses von Sig¬ 
nalspannung zu Rauschspannung am Ausgang von Empfängern,” 
Elek. Nach. Tech., vol. 17, pp. 215-230; 1940. Also, vol. 19, pp. 285-
287; 1942. 

3 K. Franz and T. Vellat, “Der Einfluss von Trägern auf das Rau¬ 
schen hinter Amplitudenbegrenzern und linearen Gleichrichtern,” 
Elek. Nach. Tech., vol. 20, pp. 183-189; 1943. 

• S. O. Rice, “Mathematical analysis of random noise,” Bell Sys. 
Tech. Jour., vol. 33, pp. 282-332; July, 1944. Also vol. 34, pp. 46-
156; January, 1945. 

6 P. A. Mann, “Der Zeitablauf von Rauschspannungen,” Elek. 
Nach. Tech., vol. 20, pp. 232-237; 1943. 

» Balth. van der Pol, “The fundamental principles of frequency¬ 
modulation,” Jour. I.E.E., part III, vol. 93, pp. 153-158; 1946. 

seconds. Now we choose a time interval t, large com¬ 
pared to tt/wq but small compared to tt/2Aù>: 

wot » TT, 2Eut <K tc. (1) 

The instantaneous frequency is defined at the time I as the 
ratio of the number of zeros between t—r/2 and 1-\-t/2 
to t/tt, or as the mean density of the zeros averaged over 
the time interval t/tt. 
As an example, let us take the signal 

cos + /(/) }. 

If this function has consecutive zeros at i = and l=lt, 
then 

wo(/i — li) + /Gi) —  /(fz) =

If we assume that fit) changes slowly compared to 
cos Wof, then we can replace /(ii) —/(fe) by (¿i— ti) fifi), 
and thus obtain: 

fl —  <2 = %/ {wo + f'(tl) } . 

T being defined in such a way that /'(I) is practically con¬ 
stant during a time interval r, the number of zeros 
within the time t is t{wo+/'W }/ir. The definition of the 
instantaneous frequency above thus gives the result : 

w>(f) = wo + (2) 

This, as we have stated, is the same result as is ob¬ 
tained on the basis of the usual definition. 
The counting of the number of zeros of a function 

v(Z) within an interval t is best done with the help of 
5-functions such as are used in the operational calculus. 
The 3-function is defined by: 

3(x) =0, X 0, 
3(x) = », x = 0, 

/• 4-00 

I 5(x)dx = 1. 
•/ —oo 

It is plausible to consider the integral 
p *o4-r/2 

5 I (fydt. 
J t0—r/2 

If v(fi has a simple zero in a certain interval, the abso¬ 
lute value of the integral over that interval is 1. In the 
subsequent interval, which also is assumed to contain 
only one simple zero, the sign of the result will be dif¬ 
ferent. The reason is that, when we introduce v(f) as a 
new variable in the integral, this variable of integration 
runs from a negative to a positive value in one interval, 
and in the opposite direction in the next. 

Therefore we modify our procedure so as to count 
only those zeros passed through with a positive slope. 
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1082 PROCEEDINGS OF THE I.R.E. September 

The instantaneous frequency is then 

2t r io+r/2
w,(/0) = — I i(v)v'U(v')dl (3) 

T J lo-?/2 

in which 
U(x) =0, X < 0, 
U(x) = i, X = 0, 
U(x) = 1, X > 0. 

The result is a function of r, but as long as r is subjected 
to the inequalities (1), the variation with t will be unim¬ 
portant. 
The use of 8 functions in the integrals can be avoided 

when we use the Stieltjes integral. In this way (3) is 
written : 

2ir r «o+r/S 
»¿(to) = — U^dUfp). (3a) 

T J <d-r/2 

In a frequency-modulation receiver, a device is used 
which, when a signal is applied to it, gives an output 
voltage proportional to the instantaneous frequency of 
that signal. This device is the frequency detector, or dis¬ 
criminator. In general, the instantaneous frequency will 
not be constant. We can make a registration of it during 
a certain time. A Fourier analysis of that registration 
will give a spectrum of components at different frequen¬ 
cies. It is in this spectrum of the detected signal that we 
are now interested. 
When we choose a time interval of 2t seconds for the 

Fourier analysis we have the formulas: 

/„ = (2^)-* f uWe-^dt. (4) 
J 0 

Let us consider a zero io of v(t), where the function has a 
positive slope whereas to is not too near to 0 or 2ir. Its 
contribution to the integral (4) is then 

✓» to+^/2 
T-i I e~ im ‘dl = 2(mr)~1 sin (?»r/2)e“ im '°. 
J <0-r/2 

In this result, 2(mr)-1 sin (mr/2) approximates 1 for 
small values of r. We have chosen t«tt/2Aw. Therefore, 
for all frequencies smaller than Aw we may replace 
2(mr)“1 sin (mr/2) by 1. Accordingly, for these frequen¬ 
cies we may use 

fm = C ¡(v)v'U(i/)e- im ‘dt. (5) 
J 0 

Using the Laplace transform, we get 
p +ao- ic 

ê(r) = (2t)"1 I e^’du, c > 0 (6a) 
V — »—ic 
p »- ic 

euw = - (2t)-1 I e^'u^du, c > 0. (6b) 

The path of integration can also be taken from — » to 
X along the real axis with a small indentation below the 
origin. 

+«o 

dM2W2-2ei“1’+i“2V ' 
-00 

This formula gives the spectral composition of the in¬ 
stantaneous frequency. If the frequency detector gives 
a potential difference of 1 volt over a resistance of 1 ohm 
for a frequency deviation of 1 radian per second, the 
same formula applies to the output of the frequency de¬ 
tector. We shall calculate the distribution of the energy, 
dissipated in that resistance, over the spectrum. The 
result is the energy spectrum of the output. In practical 
cases there will be a proportionality factor, which is 
omitted in our calculations. The energy corresponding 
to a certain frequency m is given by 2fmfm* if or 
by/o/o* for the de term. fm* is the complex conjugate of 
fm. Hence, 

2fmfm* = tr^dhj' e^dh 

duiduiduodui. (7) 

As a first example, we shall apply this formula to a 
frequency-modulated signal cos (wji + m« sin pt). 
{mo=^/p)- In this case, 

giun>(ii)+>u2»'(<i) = exp {iui cos (wot + mo sin ph) 

— iUïÇœo 4- Aw cos ph) sin (w0Zi + m0 sin ph)}. 

We develop this form into a series: 

00 2—

y — {(¿Ml - «2a)e i,”“+i 
k-o 

+ (iui + M2o)e-^"0'l-i",• •”»">}* 

in which W21 — U2(wo+Aw cos pti). 
Since, in (7), we have to integrate the last result with 
e-’"'!, where m«wo we are only interested in those terms 
in the binomial development that have no i woh in the 
exponent. Thus the series reduces to 

» 2-211
E — («12 +«2?)‘. 
jt^O kiki 

This is the well-known development of the Bessel func¬ 
tion of order zero. A relation between Bessel functions 
gives 

Jo {th2 + «22(wo + Aw cos 
00 

= L (-^’"-^(«^..{^(wo + C0S Ml-
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Now we perform the integration with respect to Ui and 
u2: 

u2̂ J 2m \u2(ua + Aw cos ptf) ¡dwj 

= (w0 + Aw cos ptf) {(2m — 1) 1 (2m + I)- 1!. 

(The last integral reduces to an easier type by one par¬ 
tial integration.) For w = 0 the singularity at the origin 
is avoided by the small indentation. The result of the in¬ 
tegration with respect to u¡ and u2 is, therefore, 

(uq + Aw cos pif) ( — 4 + 4( — 1 + ÿ) + 4(J — 5) + • • • J 

= — 2ir(wo + Aw cos ptf). 

In the same way, the integrations with respect to w3 and 
Uf yield 

— 2ir(wu + Aw cos pl-), 

and, in total, 

(wo + Aw cos pt2)dtidt2. 

Only for m = Q and m=p do we get a result different 
from zero. The de energy is 

fofo* — Wo2. 

For the frequency p, the energy is 

These results are in complete agreement with the cus¬ 
tomary definition of instantaneous frequency. We have 
chosen this simple problem because the way in which it 
is solved will again be used in the more complicated 
problems further on. Its aim is also to give the reader 
confidence in the following computations, where the re¬ 
sult is less obvious. 

II. Frequency-Modulation Noise Without 
Signal 

In this section we will first recall some properties of a 
noise spectrum, and then apply (7) to a noise band. As is 
usual in noise problems, an averaging procedure will be 
necessary. 
By means of a filter we select a certain band of fre¬ 

quencies from a normal noise source, and apply these 
components as an input signal to an ideal frequency de¬ 
tector. As a first example, we shall take a filter with a 
rectangular amplitude-versus-frequency characteristic. 
This filter is not realizable but, as the phase characteris¬ 
tic is not important for these computations, it can be 
approximated. Later on we shall consider a filter with a 
gaussian amplitude-versus-frequency characteristic. 

If we register the noise from a normal noise source 
during a time interval (— T, T), we can make a Fourier 
analysis : 

v(l) = y, a„ cos nirl/T — bn sin mrlfT. (8) 

When such a Fourier ana'ysis is made a great many 
times consecutively, each time over an interval of the 
same length, the Fourier components will show a gaus¬ 
sian probability distribution: 

W(a„)dan = (irO-^er^^da, (9a) 
W(b„)dbn = (irQ-We-^db,,. (9b) 

The value of a„ in one particular Fourier analysis is in¬ 
dependent of the value of the other coefficients. This 
subject is treated extensively by Franz and Rice. 
The number of noise lines in a band of 2Aw radians 

will be ï^uT/ir. As it makes the formulas simpler, we 
shall choose T = 2tt. If we made another choice, the for¬ 
mulas (4) to (7) which are also based on a time interval 
2tt, would need an appropriate modification. The choice 
of 2tt is, however, quite arbitrary, and, whenever we find 
it advisable to increase the number of lines in a part of 
the spectrum, we shall do so. 
The average energy per component is 

= (2tC)-1 J J (aS + b^ b-2>lcda ndb„ 

= C/2. 

The effective voltage corresponding to a noise band ex¬ 
tending from wo—Aw to wo+Aw is 

»„0 = (AwC)1'2. 

As the number of lines in the band increases proportion¬ 
ally to the length of the considered time interval, the 
average amplitude has to be reduced so as to keep the 
average power constant. 
When we introduce the v(t) of (8) in (7), the result will 

be a function of the 4Aw variables an and b„. As is usual 
in noise computations, the average of the result of (7) 
over all a's and b’s is used to obtain the effective energy 
spectrum after detection. Thus, 

II (^Ni * * * b^f)fmfm(oN\ * * 
Ai = wo — Aw; N2 = wo + Aw. 

The integration does not lead to great difficulties (see 
Appendix I). After introduction of a new variable s = n 
—wo, we obtain 

fofo* = Wo2 + Aw2/3. (13a) 

The de corresponding to the central frequency is usu¬ 
ally suppressed by balanced detection. For the fre¬ 
quency m we obtain the energy in the form of an inte¬ 
gral: 
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2/Jm* 

= W’'1 Z klN~ 2k f ri'"{(Ze i,’)“’I(Zj1«”’) 
_ (Ze^’^-^Z«0’)2}^ (N = 2̂- (13b) 

The summation over 5 has to be taken over all integers 
satisfying 

— Su s Aw. 

To get the energy in a part of the spectrum, the results 
for all frequencies m in this part are totaled. Now we are 
free to increase the number of lines by enlargement of 
the intervals 2T, which we have so far chosen 2T—2ir. 
In this way a continuous energy distribution £o(w) will 
be approximated, and the sum 

IV-'E 
can be replaced by the integral 

/• 1/2 

I eiuvdu. 
J -Mi 

Instead of s/N we have introduced the continuous vari¬ 
able u. In the same way, 

Aw p 1/2 
s2e'*v = N2 I u2e'uvdu. 

_Aw J -1/2 

Equation (13b) can now be written: 

EM = ¿ 4 (14) 

where fo(u) is given by the relation 

I Ziu^e^du 
J -00 

= I f «‘“»¿«I2*-1/ f u-e iu"du\ 
I J-Mi ‘ (J -Mi ' 

r pin 1 24—2 ( p 1/2 ) 2
— < I eiu ’du> < I ««■“’’> . (15) 

IJ _i/2 ; (J -mí / 

The values of ^(m) can be derived directly from this 
integral, but a shorter computation will be treated in the 
next section. There we shall also see that, for k large, 

h2M  « (12)-*(5* - 3)-i/^i/2(15)‘/2e-““*/«*-’>. (16)

The series in (14) is convergent, since for large k the gen¬ 
eral term behaves as k~ 312. We have calculated the values 
for Eo{u) as shown in Table I. 

Let a filter with a symmetrical, but otherwise arbi¬ 
trary, amplitude characteristic be used, the calculations 
being slightly modified. If now the characteristic is 
given by J(fa}e*M , the input signal will be: 

v(t) = Z fW í cos (nl + — bn sin (nl + I (8a) 

/(w) be normalized in such a way that its maximum 

TABLE I 

Noise energy and noise voltage as a function of the frequency 
(w = w/2Aw). Energy per unit bandwidth. No carrier wave 

present. Rectangular filter amplitude characteristic. 

2u = œ/âw £o(a) v.(u) -{£.(«)}>/» 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

1.2241 Aw2
1.1274 
1.0381 
0.9557 
0.8799 
0.8101 
0.7462 
0.6881 
0.6354 
0.5877 
0.5445 

1.1064 Aw 
1.0634 
1.0189 
0.9776 
0.9380 
0.9001 
0.8638 
0.8295 
0.7971 
0.7666 
0.7379 

value is 1, and the bandwidth 2Aw of the filter be defined 
by 

2Su. 

Then (13a) does not change. 
As before, we introduce a new variable m=w/2Aw. 

The function F(u) is so defined that £(u) =/2(w— wo) ; 
then 7» 4 00 

I F(u)du = 1. (18) 

Instead of (14), we obtain (see Appendix I) 

£o(w) = Z 
*-l 

4(fe)-'(Aa>)2 H^u) 

in which is now given by 

When £(w) is given, all further functions can be found 
successively by direct integration. Here, too, the opera¬ 
tional calculus may furnish a shorter method of calcula¬ 
tion, as is shown in the next section. 
As an example, take a gaussian amplitude characteris¬ 

tic. The normalized squared amplitude characteristic is 
given by £(u) = Then, as is shown in the next sec¬ 
tion, 

TABLE II 

Noise energy and noise voltage (per unit bandwidth) as a function 
of the frequency (u = w/2Aw). No carrier wave. Gaussian 

amplitude characteristic. 

2u £.(») VM = {£»(«)} l/ ’ 

0 
0.2 
0.4 
0.6 
0.8 
1 

1.17594 Aw2
1.15719 
1.10377 
1.02373 
0.92702 
0.82527 

1.08441 Aw 
1.07573 
1.05061 
1.01180 
0.96282 
0.90844 
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Hifu) = 2-’'2¿-1'V 1e-’“’'2‘. (18) 

Table II shows the result. For filters with a nonsym-
metrical amplitude characteristic, the computation 
leads to longer formulas, as shown in Appendix I. For 
this case we have not computed a numerical example. 

III. Some Distribution Functions 

In our computations of the energy spectra some func¬ 
tions occur regularly, and we shall treat them together 
in this section. At first let us consider the problem of 
finding the product distribution when the two functions 
fi and fi are given. 

iei“vdw 

This can be done directly by considering the product as 
a double integral and by the introduction of x = u+w as 
a new variable in this integral. The Laplace transforms, 
when known, are of much help. Let fP,fp) be the image 
of /i(w): 

fM = fM, 

which shorthand notation stands for: 

fp.fp) = P ffu)e~ pudu. 

Then, upon introducing p = —iv in (19), we get at once 

fp.3 — P 1fp.lfp.2-

Thus, for the rectangular distribution, the product func¬ 
tions are found by 

I p 1/2 ) ‘ c +« 
< I = I ffuje^du (20a) 

fM = 1, - I g « g i 

= 0, —«><«< — I, | < M < 00 . 

ffu) = ep/2 — e~ pl2 = 2 sinh p/2 
ffu) =. p^fe1“12 — e~ pl2)k = /> l- *(2 sinh p/2) k. 

Therefore, 

AW= E 
(w+I:/2-r) 

(*-!)! 
U(u+k/2-r). (20b) 

For the definition of U, see (3). 
A function is computed from its Laplace transform by 

means of the inversion integral (Bromwich); for in¬ 
stance, 

A(“) = (2t»)-1 I 
•Z c—too 

p-'/pM^dp. 

For large k the integrand of this integral (here to be 
taken along the imaginary axis) has its maximum for 

p = 0, and can be approximated by its development for 
small p. 

pi- kçepi2 _ e pity ~ pgp'wt' 

The result is an approximation of ffu) for large k : 

ffu) « (21) 

We arrive at another type of distribution function by 
differentiation of (20a) : 

< I eiuvdu\ < I «eiu’dw> = I cfu)e iuvdu 
( J -1/2 ) I J -1/2 J J -oo 

c*(u) = uffu)/k. 

A third type, of which we have already met examples, 
is 

Z p 1/2 X l-l z p 1/2 X p +» 
< I < I u2e'“’du> = I afu)eiu’du 
I J -1/2 ‘ I J -1/2 J V -oo 

afu) = u2, — I á u g I 
afu) =0, — » < w < — 1, J < « < ». 

a fu) = 4-1/>-2 (/>2 — ip + 8)e p/2
- i^p-fp2 + ip + 8)e-p'2

afu) = é“1̂-1-*}^2 — 4p + 8)e p/2

- (p2 + ip + 8)e-p'2}(ep'2 - e-p/*)*-1. 

This gives, for instance, 

<»2(u) = i«’ + i«2 + 1« + A, - 1 á « á 0 
= - i«3 + I«2 - 1« + A, o g U g i 
= 0, — oo < u < — 1, !<«<». 

Approximation of the inversion integral leads to the re¬ 
sult: 

afu) = a„.fp) «^ e«*+« p’/i20 

afu) « (12)-‘(3O) l/2(5Æ + 4)-1/2T-1'2«-’»“*''it+«, 
k large. (22) 

Another function worth consideration is 
/ /• 1/2 X 2 « +«> 

< I ue^dur = I b2(u)e iuvdu 

Z P 1/2 X 1-2 Z p 1/2 X 2 

< I e‘“’du> < I ueiu’du> 
( J -1/2 J -M2 J 

/» Too 

= I bf^e'^dtk k 2. 
d -oo 

bfu) = 0. 

The Laplace transform gives in this case: 

bfu) = 4-1/>-‘-*{(2 - p)ep'i
- (2 + p^-”'1}2̂ 2 - e-»'2)‘-2. 

Again the originals are easily found ; for instance, 
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bi(u) = i»3 - ï“ - A. - 1 = u è 0 

= - iu> + J« - A. 0 g « á 1 
= 0, — X < u < — 1, 1 < u < X. 

For large k we get the approximation: 

6*(«) » - (72)-1(30)’'2(Tr)-ví(5¿ - 4)-’/» 
{1 - 60m2/(5* - 4)}e-’°“,'<“-o. (23) 

The function hk(u) which we have used in the second 
section is defined by Zu(M) =a*(«) — b^u). Therefore, 

hk(u) •= />-*-*{«» - (p2 + 2) + e-”} (e"'2 - e-»/2)<‘-2’. 

For h^^u), the result is 

hM = i(u + I)3, - 1 0 

= J(1 - «)’. 0^1 
= 0, — X <_ u < — 1, 1 < w < ». 

For large k, 

= hM « ̂ pe^r1̂  

hk(u) « (12)-1(3O)*'2(5Ä - ó)-1'^-1'2«-30“’” 51-1». (24) 

The approximate formulas are already fairly good for 
low values of for instance, 

ht(u) = 0.0667 (exact) 0.0688 (approx.) 
ht(u) = 0.0512 (exact) 0.0526 (approx.) 

By differentiating the equation (20a) twice, we arrive 
at a relation between the functions: 

khk(u) = — k2bk(u) + u2fk(u). 

The functions y*(u) in particular have been treated fre¬ 
quently since De Moivre.7 All these functions have a 
place in the theory of averages. One may compare 
Maurer’s8 paper, where some asymptotic formulas are 
derived in a more precise way. So far the rectangular 
distribution has been our starting point, but the com¬ 
putation can be made for another type as well. The 
gaussian frequency distribution is attractive because it 
gives simple results. Moreover, we have already pointed 
out that a gaussian amplitude-versus-frequency char¬ 
acteristic may be better approximated by real condi¬ 
tions than a rectangular one. 

Corresponding to the original distribution Fi(m) 
= e~’u\ we get, in the same way as before, 

Fk(u) = ¿-1'2«-“’'*. (21a) 

Analogous to ak(u), we get 

/!*(«) = + k(k - 1)/t I (22a) 
k = 1, 2, 3, ■ • • , 

’ A. De Moivre, “Mensura sortis,” 1711; “Miscellanea analytica,” 
1730. 

8 L. Maurer, “Ueber die Mittelwerthe der Funktionen einer reel¬ 
len Variabelen,” Math. Ann., vol. 47, pp. 263-280; 1896. 

and, instead of bk(u), we get 

Bk(u) = ̂ -6'2e-’“!'‘(2M2 - k/r) (23a) 
k = 2, 3, ■ • • , B¿u) = 0. 

Here, 

a+« x k - 1 / z» +oo 
Fk(u)eiu,dit > < I uVi(u)e’“’du 

In the same way, hk(u) is replaced by 

I 
IIk(u) = — (24a) 

2ir 

k = 2, 3, H¿u) = A i(m). 

All these functions have simple Laplace transforms, and 
are therefore easily found by this method. 

IV. Frequency-Modulation Noise in the Presence 
of a Nonmodulated Carrier Wave 

When an unmodulated carrier-wave is present, to¬ 
gether with a rectangular noise spectrum symmetrically 
around it, the input signal is given by: 

uo+Aw 
»(i) = cos uot + y, (a„ cos nt — bn sin nt) (25) 

WQ—Aw 

This function is substituted in (7) and the average is 
taken in the same way as in (12). Some comments on the 
integration are given in Appendix II. 
The de energy is now 

77? = U02 + i(AW)2«-*^c (29) 

\/NC is the quotient of signal energy and noise energy 
at the input of the frequency detector (A = 2Aw). After 
introduction of the continuous variable m in the same 
way as in Section 2, the energy spectrum is given by: 

oc 
E^u)/^)2 = y r^e-^NC + 1, 1, l/NC)htr(u) 

e~2INC

r ) {k-r)\k-2r)\{NCy-2' 

/i’H+1, —2r+l, l/NC){khk(u) + (k-2rybk(u)}. (30) 

In this expression kFi is the confluent hypergeometric 
function, and hk(.u) and bk(.u) are the functions defined in 
Section 3. For the calculation we begin with the term 
for k = 1 and add the terms for the higher values of k 
until they are sufficiently small. The convergence of the 
development is shown in Appendix II. The first term in 
the development of E^u) is 

4(Au>)2AC(l - e-^^yh^u) 

= 4(Aw)2A’C(l - e- llNC)2u2, 0 « g Í 

» l/2(l-l) / 

+E E ( 
fc-l r—0 \ 
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As we are interested in the energy spectrum, only non¬ 
negative values of u are important. For small values of 
NC the first term gives a good approximation of the en¬ 
ergy. Then the effective noise voltage is 2SœuÇNCf 12 . 
This gives the well-known triangular noise spectrum 
which is already given by the simplified analysis. 
The second term in the development of Ei(w) is 

+ A2C2{1 - (1 + l/NQe-'i^] 2

■ { ht(u) + 2&2(«) j ]. 

The third term is 

4Aw2[2.V’C3{l - (1 + 1/AC+ l/iN^e-'1™} 2

•{h3(u) + 3i,(«)J + (¿NCY'e-^^h^u) + ò3(m)}]. 

For small values of NC the terms containing NkCk 

form an asymptotic expansion (asymptotic for NC—>0). 
We were led to this development when trying to get a 
more precise estimate from the same starting point as 
the simplified analysis.9 However, for the calculation of 
the output noise for larger ratios of input noise energy 
to signal energy, one has to take into account the full 

Fig. 1—Spectrum of effective noise voltage after detection. Parameter 
is input noise-to-signal energy ratio (NC). Rectangular ampli-
tude-versus-frequency characteristic of the filter. Remark the 
triangular spectrum for NC=0.0l and 0.1. The rms voltage of 
the noise in a small band of B cps is (B/2Au) lrt times the value 
given by the curve. 

• F. L. H. M. Stumpers, “Eenige onderzoekingen over trillingen 
et frequentiemodulatie,” (in Dutch), diss. Delft, pp. 38-46; 1946. 

terms of the development (30). For very large values 
of NC it is seen that the terms of the development (14) 
are predominant, thus affirming the result of Section 2. 
With the help of (30) we have calculated the energy 

spectrum by adding up the terms up to k = 10, or 2r = 10, 
and making a graphical estimate for the remainder. In 
the following table the effective noise voltage ¡£i(m) }1/2 
is given for » = 0, 0.1, 0.2, 0.3, 0.4, and 0.5 (correspond¬ 
ing to frequencies 0, 0.2Aw, 0.4Aw, 0.6Aw, 0.8Aw, and 
Aw). It is seen that for NC=§.\ the deviation from the 
triangular spectrum is still very small. For this value of 
NC, the output noise still grows linearly with the input 

TABLE III 

Effective noise voltage as a function of frequency and input noise-to-
signal energy ratio. Rectangular amplitude characteristic. 

Input 
noise-to-
signal 

ratio NC 

{£,(«) jO’/Aw 

M=0 «=0.1 « = 0.2 «=0.3 «=0.4 «=0.5 

0.01 
0.1 
0.2 
0.5 
1 
2 
5 
10 

0 
0 

0.04032 
0.2763 
0.5275 
0.7071 
0.8836 
1.0260 

0.0200 
0.06485 
0.1014 
0.2988 
0.5191 
0.6664 
0.8143 
0.9512 

0.0400 
0.1294 
0.1900 
0.3679 
0.5500 
0.6500 
0.7593 
0.8868 

0.0600 
0.1935 
0.2802 
0.4564 
0.5933 
0.6582 
0.7207 
0.8336 

0.0800 
0.2574 
0.3702 
0.5658 
0.6739 
0.6882 
0.6991 
0.7920 

0.1000 
0.3208 
0.4594 
0.6750 
0.7616 
0.7377 
0.6930 
0.7630 

Fig. 2—Output noise energy as a function of input noise-to-signal 
energy ratio. If bandwidth is 10 times af bandwidth. Rectangular 
amplitude characteristic. Owing to the slow convergence of the 
series, the values for NC = 5 and 10 are less accurate. 

noise. (Strict linearity would give 0.3162 instead of 
0.3208). There is already a marked deviation from the 
triangular spectrum for NC=0.2. All results are shown 
graphically in Fig. 1. 
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For radio reception only the audible noise is impor¬ 
tant. The ratio of the audio-frequency bandwidth to the 
intermediate-frequency bandwidth can vary between 
0.1 and 1. The noise energy is computed by integration 
of the noise energy E\(u) between appropriate bound¬ 
aries. For a ratio of 0.1 one has to take into account the 
noise between 0 and 0.1 Aco (or 0^w^0.05). Figs. 2 and 
3 show the energy of the output noise as a function of 
the ratio of input noise to signal. Typical is the strong 
increase of the noise above 7VC = 0.1 in the curves for 
Ao>/w„ = 5, or 10, as compared to the curve for Aa>/wo = 1. 
This effect was found experimentally by Guy and Mor¬ 
ris. 10 The influence of pre-emphasis can be calculated by 
multiplying the energy distribution after detection by 
(1 +2?2C2a>2)-1 . This we have done for an audio-fre-

TABLE IV 

Effective noise voltage (per unit frequency) as a function of 
frequency and input noise-to-signal ratio. Gaussian 

amplitude characteristic. 

{^Ca)} 1'»/^ 

«=0 u=0.1 a =0.2 a =0.3 a =0.4 a =0.5 

0.01 
0.1 
0.2 
0.5 
1 
2 
5 

10 

0 
0.004684 
0.06681 
0.3486 
0.5932 
0.7999 
0.9579 
1.0183 

0.01969 
0.06369 
0.1129 
0.3706 
0.6054 
0.8050 
0.9577 
1.0160 

0.03756 
0.1214 
0.1865 
0.4223 
0.6363 
0.8176 
0.9563 
1.0090 

0.05209 
0.1686 
0.2513 
0.4809 
0.6724 
0.8311 
0.9513 
0.9963 

0.06222 
0.2009 
0.2983 
0.5278 
0.7008 
0.8380 
0.9399 
0.9772 

0.06752 
0.2200 
0.3253 
0.5554 
0.7137 
0.8334 
0.9203 
0.9578 

Fig. 3—Output noise energy as a function of input noise-to-signal 
energy ratio. If bandwidth is 5, 2, or 1 times af bandwidth. 
Rectangular filter characteristic. 

10 R. F. Guy and R. M. Morris, “N.B.C. frequency modulation 
field test,” RCA Rev., vol. 5, pp. 190-225; October, 1940. 

quency bandwidth of 15,000 cps and an RC time of 
75. IO-6 seconds. The result is shown in Figs. 4 and 5. 

Fig. 4—Output noise energy as a function of input noise-to-signal 
ratio, when pre emphasis is applied with an RC time constant 
of 75.10-6 seconds. Analogous to Fig. 2. 

Fig. 5—Output noise energy as a function of input noise-to-signal 
energy ratio. Pre emphasis applied. RC time constant, 75.1O-6 
seconds. Analogous to Fig. 3. 
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So far, the filter amplitude characteristic has been ideal¬ 
ized to a rectangular form. As in Section 2, we shall con¬ 
sider now a gaussian amplitude characteristic, which 

Fig. 6—Spectrum of effective noise voltage (per unit frequency band¬ 
width) after detection. Parameter is input noise-to-signal ratio 
(NC). Gaussian amplitude-versus-frequency characteristic of the 
filter. See also Fig. 1. 

Fig. 7—Output noise energy of a receiver with an ideal frequency 
detector as a function of input-noise-to-signal energy ratio (NC). 
Gaussian amplitude characteristic of the filter. If bandwidth 
(energetically defined) 10 times af bandwidth. 

provides a better approximation of actual conditions. 
All calculations are similar to those already given, and 
we have only to replace the functions hk(u) by Hk(u), 
a/fu) by Ak(u), b^u) by Bk(u), etc., in the final result. 
Compare (21a) to (24a). The effective noise voltage is 
given as a function of the frequency and the input noise-
to-signal ratio in Table IV. 
The results are shown in Fig. 6. Comparison with 

Fig. 1 makes it clear that the general behavior does not 
change, although there are minor deviations. In Figs. 7 
and 8 the energy of the noise is drawn as a function of 
the i put noise-to-signal ratio in the same way as in 
Figs. 2 and 3, but now for a gaussian amplitude char¬ 
acteristic. 

Fig. 8—Analogous to Fig. 7, but if bandwidth 5, 2, or 1 
times the af bandwidth. 

V. Noise in the Presence of a Frequency-
Modulated Signal. Suppression of the 

Modulation by Noise 

When a frequency-modulated signal is amplified in a 
receiver, there may be some distortion of the modula¬ 
tion due to insufficient bandwidth or to a nonlinear 
phase characteristic. In the following calculations we 
shall leave this effect out of account and assume that 
the signal passes the filter undistorted. 
With a rectangular amplitude characteristic of the 

filter, the input-signal is given by 

v(f) = cos (woi + mi sin pl) 

+ 22 (°" cos nt ~ b« s*n (31) 
wq — Aw 

mi = Sui/p. 
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It is necessary to substitute this function v(f) in (7) and 
to take the average, as in (12). Some remarks on the 
integration are given in Appendix III. Use is made of 
the following abbreviations: 

1 (k ~ r\ r11™ 
{k - r)\k - 2r)\ r J (NCy~ 2r

Jm\{k — 2r)m¡] = Jm

iF^- r + 1, k - 2r + 1, 1/NC) = X 

r, k - 2r + 1, 1/AC) = Y 

u — mp/2Su = um. 

The noise energy is then given by 

£2(u)/4Aœ2 = X r 1e2/NC iFi( — r + 1, 1, l/NC)hir{u) 

» 1/2(41) +=o 

+ E E E [«-Wm2 {kh^uj 
k— 1 r—0 m—» 

+ (k - 2rybk(Um)} 

+ 2ak-'X[kX - 2(k - r)Y}mp(2àuy2Jm2umJk(u^ 

+ a(k - 2r)-2 { kX-2{k-r)Y\ 2m2p2l2^y2Jm2fk(um) ] 
00 

+ E ̂ NCy^^iF^-r + 1, 2, 1/AC) 
r-0 

(Aw1)2(2Aw) 2{/2r(w-i) + /2r(«+i)}. (33) 

Jm is the Bessel function of order m and argument 
{k — 2r')ml. The functions h^u), bk(u), f^u) are dis¬ 
cussed in Section III. We have not yet used /o(w) = S(w) 
(this is the same S-function as used in Section I). 

In calculating the spectrum from (33), one has to 
start with the terms of the lowest order. Here the last 
term of (33) gives the only term of order zero. It gives 
a result different from zero only if u = p/2Au; that is, 
only for the frequency p. The energy for that frequency 
is 

^NC)-2e-2iNC 2, l/A7C)(Aœi)2

= |(Aail)2(l - e~" Ncy. 

Fig- ?—Suppression of the modulation by noise. Ordinate: amplitude 
of the modulation. Abscissa: noise-to-signal energy ratio. 

Whereas, in general, £2(m) gives the energy per unit 
bandwidth, here the energy is concentrated in a single 
line (this is the meaning of the S-function). It is the 
energy of the modulation. If no noise is present, the 
amplitude of the modulation is Awi. In the presence of 
noise this amplitude is modified to Aoh(l -e^NC) where 
l/NC is the ratio of signal energy to noise energy (if). 
(See Fig. 9). Thus (33) takes into account the suppression 
of the modulation by noise. 
The first-order term in (33) gives: 

4(Aw)WC(l - e->'AC)W2 + 4(Aa>i)2(2VC)~Ie-*'w . 

For small values of NC, this is a fair approximation for 
the output noise. Then the sweep of the modulation has 
no effect on the noise energy. We see from this term, 
however, that, when the noise energy is not small com¬ 
pared to the signal energy, the sweep of the modulation 
affects the noise after detection. This effect was found 
experimentally by Guy and Morris,10 and is fully de¬ 
scribed by (33). When, instead of the result for a rec¬ 
tangular filter, one wishes to know the result for another 
symmetrical filter, one has only to substitute the ap¬ 
propriate functions for ä^m), bk(u),fk(u). For a gaussian 
amplitude characteristic, these functions have been dis¬ 
cussed in Section III. As the amount of work involved in 
numerical calculations of the noise by means of (33) is 
considerable, a numerical example is omitted. 

All of the above calculations refer to the noise ener¬ 
gies inherent in the system of frequency modulation. 
They will give an increasingly better approximation of 
the practical results as the frequency detector more 
nearly approaches the ideal. 

Appendix I11

Starting from (12), we integrate first with respect to 
a„. This integral has the form 

p +« 

(irC)~ I/2 I exp { —an2/C+ia„(ui cos nh — nw2 sin nh 
kJ —qo 

+ Ms cos nl2 — nuk sin w/2) j dan 

exp { — (C/4)(«i cos nh — nth sin nti 

+ ws cos nl2 — nuk sin n/2)2}. 

In the same way, the integration over bn gives 

exp [ —C/4(wi sin nh + ww2 cos nti 

+ «3 sin nlt + nut cos m/2)2}. 

Multiplying all probability integrals, we get 

exP [— (C/4) X {«i* + nW + m32 + n2ut2

+ 2(uiu3 + tFuiUt) cos m + 2n(«i«4 — w2w5) sin nv} ] (16) 

u In the Appendixes a more specified outline of the calculations 
is given, but for space considerations much ordinary algebra has been 
left to the reader. 
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where the summation has to be taken over all n satisfy¬ 
ing 

a>o — Aw = n = wo 4“ Aw 

and 

v = h — t2. 

Let us introduce new variables ß2 = UiOio, ßt — UtUo, 
ŝn—uio, and make a series development of that part 
of the exponential form which contains cos (ow+sv) 
and sin (owH®) : 

oo Aw 

E, (- C/4)*(l/ Ä!) [ y {2a, cos (wo® + Sli) 
k—f) »—Aw 

+ 2y, sin (w0® 4- sv) } ] *. 

Here 

a, = U\U3 4“ 0204(1 4“ S/oif)2*, 

V, = («104 — 02Ws)(l 4" S/U1Ò). 

This form can also be written: 
oo Aw 

E(-Q4)*(l/*'.)[ E {(a,— 
1-0 

4- (a, 4- iy.)e- ‘“o’- ""J ]*. 

As in Section I, we are only interested in such values of 
m in (7) and (12) which are small compared to wo. 
Therefore, as in the example treated in Section I, we 
use the binomial formula and retain only those terms 
which contain no wo®. The result is 

E (C/4y^k\k\) 1 {E (a. - W’} ‘ 
•{E(a.+ t7,)e-“’}\ (17a) 

Now we develop the integrand with respect to s/uo and 
stop at (s/wo)2. The result can be integrated straight¬ 
forwardly. The following types of integrals occur 
(y = NC/4, N=2áu): 

_|_ uyyut'-duxdut = 0, if k 0 

= - 2ir, if k = 0 

k~lui1u2~iduidut 

= - (k- l)hry-‘, k £ 1 

e-T(ulS+ua2)(M1t _p uy)k~xdu\dut 

= (k- 1)^7"*, k ã 1 

e-T(“i’+«22>(W12 _p ujy-'l^ui^duidut 

= — 3/2(£ — l)!iry k, k § 1. 

This leads directly to (13a) and (13b). The introduction 
of (8a) (symmetrical amplitude characteristic) modifies 
(16) into 

exp [— C/4 E Pin) {Mr 4- nut2 4- «a2 4" tTuß 
+ 2(uiUt+niu1ut) cos nv + 2n(wiW4 — u2u3) sin nv] ]. (16a) 

The phase characteristic does not influence the calcula¬ 
tions. On account of the symmetry in the characteristic, 
we only have to introduce an extra factor Pis) in both 
sums of (17a). After changing to the new variable u, 
this leads directly to (15a). In case the amplitude char¬ 
acteristic is not symmetrical, the change in (17a) is 
greater. Instead of (17a), we now get: 

E (C/4)2‘(é!¿!)-*{E/2W(“. - W’}* 
• { E/2̂ )^« 4- »T.)«-“’}*. 

After introduction of the new variable u, the analogue of 
form (15a) is, then, 

HtiMe^’du uTi—uje^du 

e^du 

J" uFiiPfe^du § uFi—ufe^du 

In this expression all integrals are from — » to ». 

Appendix II 
Equation (25) is substituted in (7) and the average is 

taken as in (12). The integration over a„ and bn goes 
exactly in the same way as in Appendix I. As in (16), 
the result is a function of tt—ti = v. When we introduce 
new variables ti and v, instead of and h, the integra¬ 
tion over ti gives the result: 

l/(4ir’) J dve~i’"’Jo{ui2 4- W22wo2 4" «s2 4- m<2wo* 
4- 2(ttii<3 4- w2»4Wo2) cos nv 
4- 2(mi«4 — u2m3)wo sin nv} 1/2 . (26) 

The Bessel function can also be written 

E (-I)’A(ki2 4- 4- M42wo2)‘ /2e‘’("•+♦, (27) 
— 90 

where </> is defined by 

U1U3 + U2U4W02

cos 0 = w + 

and 
(M2U3 — Uiuffao 

Sin 0 = (M12 + 4- utW 2 ’ 

Introduce new variables as in Appendix I, and expand 
into a series that part of the exponent which contains 
cos (wo®4-i®) and sin (wo®4-s®)- This gives the same re-
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suit as in (17). Binomial development of the terms of 
this sum results in the double sum: 

È í7.)e-j‘ ' 
k-l r—0 

• ! 22 («• 4- iy^e-^}' ^^- 2r) "«’. (28) 

Now we have to integrate the product of (27) and (28) 
and 

exp { _(C/4) £ («i2 + 02»2 + «J2 + 04a2) i 

in which 

ßia = 02(1 + S/Wo); ßta = /9«(1 + S/Uo). 

As m is small compared to w0, we have to choose 
q+k — 2r = 0. q = 2r — k. Again we expand into a series 
with respect to s/u0, and stop at (s/w0)2. We introduce 
the continuous variable u and we use the functions in¬ 
troduced in Section III. The result is 
00 k 
22 22 !2“2A(“) — 8(é — r)rò*(«)} {(£ — r) !r!} —’-y *. 
k-l r—0 

• JJ dxdyjk_2r(x)Jt-2r(y)xk 1 yk~'e~ 

Here y = NC/4. These integrals are of the type called 
by Watson12 “Weber’s first exponential integral.” Their 
computation leads to equation (30). 
To show the convergence of the development, we re¬ 

turn to a single sum. The part of the formula con¬ 
taining bk(u) is modified into 

00 

E - 801(m)(*!)-1(27)‘(2t) 1
2 

pit p 00 p 00 

• 1 dip! dx 1 ¿yjo{(x2 + y2 — 2xy cos 0) 1/2 } 
J 0 J 0 J 0 

• (cos 0)*-2e-T<*‘+»’)x*-iy*-i. 

This series is even convergent when Jo is replaced by 1 
when the rest of the integrand is positive, and by — 1 
when the rest is negative. For k large, the general term 
of the series behaves as bk, or is smaller, and converges 
to zero at least with k~ 312. The part of the formula con¬ 
taining /*(w) is still faster convergent. 

12 G. N. Watson, “A Treatise on the Theory of Besselfunctions,” 
second edition, p. 393; Cambridge, 1944. 

Appendix III 
After the introduction of (31) in (7), the averaging 

has to be done as in (12). The first steps in the com¬ 
putation are the averaging over all a„, b„, and the re¬ 
moval of all terms containing cos wot Further, we in¬ 
troduce new variables as in Appendix II. If, now, 

G(ß2, 04, = Ml2 + ß2" + «3* + ßt2
+ 2(»!2 + ß22)"2W  + 042)1/2 cos 0, 

the result of these first steps can be written in the form : 

2/„/m* = (8^)-W J dhf dve-^ 

ff JJ exp “ (C/4C)22 (02», ßt°’ W 

•Jo[ÍG(|82», 04b, 0b) } ll2 ]ß2-2ßc2duldß2du3dßi. (32) 

In this formula we have used the following abbrevia¬ 
tions: 

02a = ßoil 4" S/ Wo)i 
/ Sui \ 

02b = 02 ( 1 + — cos ptt ); 
\ w0 / 

ßia = 01(1 + V^o); 
/ Am ¡ \ 

04b = 04 I 1 4- COS p(ti — ï) 1; 
\ Wo / 

0 a = Wot> 4- 5Ü — 0„; 
0b = wo® — «i sin p(t — v) + sin pt — <pb-, 

mi = Awi//> 

c \ UlU3 + 0204cos 0(02, 04) = ——- - ; 
(«I2 4- 022)I/2(m32 4- 042)1'2

. «104 — «302 sin 0(02, ßt) = —- - ; 
(«I2 4- 022)l̂2(«32 4- 042),/2

0a = 0(02a, 04n) ! 0b = 0(02b, 04b). 

As before, we take the terms in the exponent containing 
WoV and expand into a series. We also use the series of 
(27) for Jo, and take the terms together in such a way 
that WoV disappears from the result (q = 2r — k). 

This time we are interested in terms up to (s/wo)2, 
(iAwi/wo2), and (Awi2/wo2). 
The integrals are of the same type as in Appendix II. 

The result of the integration is given in (33). 
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FREQUENCY MODULATION DISTORTION 
CAUSED BY COMMON- AND ADJACENT-

CHANNEL INTERFERENCE* 

By 

Murlan S. Corrington 
Home Instruments Department. RCA Victor Division. 

Camden, N. J. 

Summary—During frequency-modulated radio broadcasting the signal is liable 
to be badly distorted whenever multipath transmission occurs or when any other inter¬ 
fering signal is present on the same or an adjacent channel. During hot weather, or 
before a storm, long-distance reception has been observed from frequency modulation 
broadcast stations on the 1,2-50 megacycle band. When such a distant station was in the 
same channel as a desired station, it sometimes happened that for short intervals the 
undesired station became stronger than the desired one. When this happened there was 
a small amount of noise and the programs suddenly changed. This interchange often 
lasted for several seconds but sometimes was limited to a word or two or a few notes 
of music. 

Formulas are given for computing the amplitudes of the harmonics and cross-
modulation frequencies produced by the interference. These enable the calculation of 
the effect of a de-emphasis network following the discriminator, of a low-pass audio 
filter, and of nonlinear phase shift in the amplifiers. 

Introduction 

F
OR several years it has been evident that frequency-modulated 
radio broadcasting offers certain advantages in noise reduction 
when compared with the usual amplitude-modulation systems. 

Many papers describe and discuss frequency modulation systems and 
their noise-suppressing properties. 1-8 Extensive field tests showed9 that 

* Decimal Classification: R148.2 X R430. 
1 Edwin H. Armstrong, “A Method of Reducing Disturbances in Radio Sig¬ 

naling by a System of Frequency Modulation,” Proc. I.R.E., Vol. 24, No. 5, 
pp. 689-740; May, 1936. 

2 Murray G. Crosby, “Frequency Modulation Noise Characteristics,” Proc. 
I.R.E., Vol. 25, No. 4, pp. 472-514; April, 1937. 

3 H. Roder, “Noise in Frequency Modulation,” Electronics, Vol. 10, No. 5, 
pp. 22-25, 60, 62, 64; May, 1937. 

4 E. H. Plump, "Störverminderung durch Frequenzmodulation,” Hochfre-
quenzlechnik und Elektroakustik, Vol. 52, pp. 73-80; September, 1938. 

5 Stanford Goldman, “F-M Noise and Interference,” Electronics, Vol. 14, 
No. 8, pp. 37-42; August, 1941. 

6 Harold A. Wheeler, “Common-Channel Interference Between Two Fre¬ 
quency-Modulated Signals,” Proc. I.R.E., Vol. 30, No. 1, pp. 34-50; January, 
1942. 
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when frequency modulation was used there was less interference produced 
by two stations operating at the same frequency than for the correspond¬ 
ing case of amplitude modulation, and that less power was required to 
cover a given area. It was also found that when the ratio of the carrier 
voltage to the noise voltage is high, the signal-to-noise ratio improvement 
due to frequency modulation is considerable. As the interfering noise 
voltage is increased with respect to the desired carrier-wave voltage, 
the improved noise suppression is obtained as long as the desired signal 
is several times as strong as the noise. 

When a definite carrier-to-noise voltage ratio is reached (a ratio of 2 or 3 
for wide-band frequency modulation) the amount of distortion in the 
audio output increases rapidly. When the noise voltage exceeds the signal 
voltage during all parts of the audio cycle, the noise eliminates the desired 
signal. This means that when frequency modulation is used the signal is 
either good or bad; there is only a small range for the ratio of carrier 
voltage to noise voltage that gives a noisy, but tolerable, signal. 

Multipath transmission occurs when two or more interfering signals 
come from the same transmitter, but one is delayed with respect to the 
others because of a longer transmission path. Considerable distortion has 
been observed when multipath transmission occurs in frequency-modu¬ 
lated broadcasting and fairly complete discussions of this problem are 
available. 10-'3 If the second wave comes from a different station than 
the desired wave, the result is common- or adjacent-channel interference 
according to whether the two carrier frequencies are nearly the same or 
are separated by the width of one channel. 

There is not much information available on the amount of interference 
to be expected in the new frequency modulation band. The effects to be 
described were observed on the old 42-50 megacycle band and on the 
30-42 megacycle police bands. The frequency of occurrence and the 
magnitude of these effects will not be known for the new 88-108 mega¬ 
cycle band until a reasonable number of transmitters with normal power 
and antenna gains are in operation. If such interference does occur, the 
analysis given here will be applicable. 

’ Herbert J. Reich, “Interference Suppression in A-M and F-M,” Communi¬ 
cations, Vol. 22, No. 8, pp. 7, 16, 19, 20; August, 1942. 

8 Robert N. Johnson, “Interference in F-M Receivers,” Electronics, Vol. 18, 
No. 9, pp. 129-131; September, 1945. 

’ I. R. Weir, “Field Tests of Frequency- and Amplitude-Modulation With 
Ultra-High-Frequency Waves,” Gen. Elec. Rev., Vol. 42, Nos. 5 and 6, pp. 188-
191, May, 1939; pp. 270-273, June, 1939. 

10 Murray G. Crosby, “Observations of Frequency-Modulation Propagation 
on 26 Megacycles,” Proc. I.R.E., Vol. 29, No. 7, pp. 398-403; July, 1941. 

11 A. D. Mayo and Charles W. Sumner, “F.M. Distortion in Mountainous 
Terrain,” Q.S.T., Vol. 28, No. 3, pp. 34-36; March, 1944. 

12 Murían S. Corrington, “Frequency-Modulation Distortion Caused by 
Multipath Transmission,” Proc. I.R.E., Vol. 33, No. 12, pp. 878-891; Dec., 1945. 

18 S. T. Meyers, “Nonlinearity in frequency-modulation radio systems due 
to multipath propagation,” Proc. I.R.E., Vol. 34, No. 5, pp. 256-265; May, 1946. 
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Sometimes during hot weather, or before a storm, long-distance trans¬ 
mission has been observed from frequency modulation broadcast stations. 
During the summer of 1944, station WSM-FM in Nashville, Tenn, was 
heard often in Camden, New Jersey. During July it was very strong 
and free of noise for nine evenings in succession and it was heard several 
other evenings. Occasionally, long-distance reception from stations in all 
directions was observed. On July 7, 1944 nearly all the mid-western 
stations and several from other directions could be received in Camden, 
for about 2J4 hours with a standard commercial receiver and indoors 
antenna. The following list of stations received was compiled that even-

Call Station Megacycles 

WWZR Zenith Radio Corp., Chicago 45.1 
WGNB WGN, Inc., Chicago 45.9 
WBBM-FM Columbia Broadcasting System, Chicago 46.7 
WDLM Moody Bible Institute, Chicago 47.5 
WSBF South Bend Tribune, South Bend, Ind. 47.1 
WMLL Evansville on the Air, Evansville, Indiana 44.5 
WEN A Evening News Assn., Detroit 44.5 
WMFM The Journal Company, Milwaukee, Wisconsin 45.4 
WSM-FM National Life & Accident Ins. Co., 

Nashville, Tenn. 44.7 
WMIT Gordon Gray. Winston-Salem, N. C. 44.1 
WMTW Yankee Network, Mt. Washington, N.H. 43.9 
W2XMN Edwin H. Armstrong, New York 43.1 
WHNF Marcus Loew Booking Agency, New York 46.3 
WBAM Bamberger Broadcasting Service, New York 47.1 
WABC-FM Columbia Broadcasting System, New York 46.7 
WABF Metropolitan Television, Inc., New York 47.5 
WIP-FM Pennsylvania Broadcasting Co., Philadelphia 44.9 

Some interesting common-channel phenomena were observed. Stations 
WENA, Detroit, and WMLL, Evansville, were of nearly equal strength. 
First one, and then the other was received; they changed about every 
fifteen seconds. There would be a slight amount of noise and the programs 
would suddenly be interchanged. This continued for about one-half hour. 
Sometimes the carrier-wave voltage levels dropped below the level at 
which the limiter in the receiver operated and both programs could be 
heard simultaneously. 

Stations WSBF, South Bend, and WBAM, New York, were also in a 
common channel. WSBF was stronger and was clear most of the time; 
WBAM would come in with sudden bursts of a word or two or a bit of 
music as station WSBF faded rapidly. These bursts occurred at intervals 
of about ten seconds. 
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Some of the state police frequency-modulation systems have reported 
serious skip interference on numerous occasions. In Missouri, on the 
talk-back frequency of 39.78 megacycles, the interfering signals are usually 
those of the New Jersey State Police and the North Carolina Highway 
Patrol Cars, although cars of the Ohio State Patrol and those of Rhode 
Island occasionally cause interference. The signal strengths of the un¬ 
desired stations are greatest during May, June, and July and range 
from weak to strong. The strong signals are of sufficient intensity to 
swamp out the local cars and may be received for an hour or two or for 
the whole day, from about two hours after sunrise to an hour or so after 
sunset. 

The Florida State Patrol have reported considerable interference on 
frequency modulation from stat ions in California, New Jersey, Connecticut, 
and Massachusetts, and they have made car-to-car contacts with Pitts¬ 
field, Massachusetts. The Michigan State Police reported that signals 
from the Alabama State Patrol stations were received by their patrol cars 
with signal levels at the input to the receiver as high as 300 microvolts, 
and these stations in Alabama have taken control of their receivers 
throughout Michigan for hours at a time. 

The Indiana State Police have had their cars blocked out by stations 
in Virginia and Oklahoma for all cars more than three miles from the trans¬ 
mitter. During the hunt for escaped German war prisoners near Carlisle, 
Indiana, on June 10th, the interference was so bad they had considerable 
difficulty maintaining contact with their cars. On June 22nd, during a 
man-hunt and road blockade following a bank holdup at San Pierce, 
Indiana, cars were completely blocked out at various times by cars in 
Virginia and Massachusetts. Further disruption of service was caused 
many afternoons by the second harmonic of short-wave broadcast stations 
in Massachusetts and New York. 

Recent observations by the Federal Communications Commission 
show that such bursts or sudden increases in strength of signals received 
beyond the line of sight occur regularly. 14-15 The long-distance transmis¬ 
sion that occurs during such bursts can be interpreted as reflections from 
media of height comparable to the E layer, but lying at each side of the 
great-circle plane. It is assumed that when meteors pass through the 
upper atmosphere, the air is ionized and this causes the bursts. 

If a local station is on the same channel as a distant one which is being 
received in bursts, interference may be expected to occur for intervals as 

14 “Measurement of V-H-F Bursts,” Electronics, Vol. 18, No. 1, p. 105; 
January, 1945. 

15 K. A. Norton and E. W. Allen, Jr., “Very-High-Frequency and Ultra-
High-Frequency Signal Ranges as Limited by Noise and Co-Channel Interfer¬ 
ence,” Proc. I .R.E., Vol. 33, No. 1, p. 58; January, 1945, 
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long as several seconds. This might even cause the program to change 
suddenly from one station to the other during these short intervals. 

Analysis of Fundamental Case 

The most elementary case of frequency modulation interference is that 
produced when two unmodulated radio-frequency carriers, having nearly 
the same frequency, are added together. This gives the usual heterodyne 
envelope as the two voltages beat together. In addition there is a varia¬ 
tion in the phase of the resultant which is equivalent to frequency modu¬ 
lation. If the difference in frequency of the two carriers is now varied 
sinusoidally by changing the frequency of one, keeping the two amplitudes 
constant, the result is common-channel interference or adjacent-channel 
interference, depending upon the way the one frequency is varied. It is 
thus evident that, if the most elementary case is properly analyzed, the 
frequency modulation interference is merely a generalization of the 
results. 

Heterodyne Envelope 

As shown in Appendix I, if two radio-frequency carriers e, sin hit and 
e. sin (<o 4- are added, the heterodyne envelope is given by 

Envelope = Cia/i + x2 + 2x cos 2?r^ (1) 
where 

Ci = amplitude of first carrier 
t2 = amplitude of second carrier 
X = C-/C1 
<0 = angular frequency of first carrier, radians per second 
;a = difference in frequency, cycles per second 

This is the voltage that will be obtained if the resultant signal is sent 
through a linear rectifier and filtered. Figure 1 shows the variation of the 
envelope over one beat-note cycle as the ratio of the amplitudes of the 
two signals, x, is changed. For small values of x the envelope is approxi¬ 
mately, 

Envelope = Ci(l + x cos 2tt^) x«l (2) 

As the ratio x is increased gradually, the higher harmonics increase in 
amplitude; so the peaks become broader and the hole in the carrier be¬ 
comes deeper and narrower. In the limit, as x—>1, the envelope becomes 
a series of rectified cosine waves, or: 

Envelope = 2e> | cos 7r[it | x = 1 (3) 

Average Value of Envelope. If the resultant heterodyne voltage is sent 
through a linear rectifier, the direct-current voltage across the rectifier 
output increases gradually as x is increased. Figure 2 shows that this 
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voltage increases 27.3 per cent when x changes from zero to one. As shown 
in Appendix I, this voltage is given by: 

Average voltage = 2(1 + r)e, 
7T 

2 y/X ) 
(4) 

where E 
2 yr ) 
i + 

is a complete elliptic integral of the second kind with 

, , 2y/X modulus -- . 
1 + X 

Root-Mean-Square Value of Envelope. If a square-law rectifier instead of a 
linear rectifier is used, the root-mean-square value of the rectified envelope 
can be read with an average-reading direct-current voltmeter. The root-
mean-square voltage will increase more rapidly with x than the average 

Fig. 1—The heterodyne envelope. Fig. 2—Harmonic content of the 
heterodyne envelope. 

voltage, as shown by Figure 2. The voltage is given by: 

Root-mean-square voltage = e x/1 + z2 (5) 

and it increases 41.4 per cent when x increases from zero to one. 

F ourier-Series Analysis of Envelope. If the heterodyne envelope is rectified 
with a linear rectifier, and the radio frequency is filtered out, the resultant 
audio signal (shown by Figure 1) can be expanded in a Fourier series. 
The coefficients of this series are given in Appendix I and the zero-fre¬ 
quency component is the same as the average value which is shown by 
Figure 2. The fundamental component increases almost linearly with 
increasing x to a maximum value of % of the corresponding direct current 
voltage. The second harmonic increases slowly until it equals 20 per cent 
of the fundamental when x = 1, and the third harmonic has a maximum 
value of 8.6 per cent of the fundamental. 

172 



528 RCA REVIEW 

Phase-Angle Variations 

The two signals e1 sin Mt and e2 sin (w + 2tt[a)/ are in phase when t = 0. 
Since the frequency of the second signal is higher than the frequency of the 
first signal, this means that a vector representing e 2 will rotate with respect 
to one representing e,. If et is a vector rotating at w radians per second, 
then e2 will rotate at w + 2ttu. radians per second. 

Figure 3 shows the variation of the phase angle ç which the resultant, 
R, of Ci and e- makes at any given instant with the vector ei. When 
/ = 0, the two vectors are in phase and ç = 0. At a later time 2irp./ = 
90 degrees, so e: and e, are at right angles and tan ç = e>/e1 = x. When 
2tt(a/ =180 degrees, ; is again zero. This process gives the variations in 
ç shown by Figure 4. The maximum value of ç is equal to sin-1 x, as shown 

Fig. 3—Variations of the phase angle. 

Fig. 6—Variations of <p. Fig. 5—Maximum value of <p. 

by Figure 5. As x approaches one, the angle <p varies more and more 
rapidly near 2^ = 180 degrees. When e, = e> or x - 1, ? increases 
linearly from zero to 90 degrees as e, turns through 180 degrees. 

As shown by Figure 6, ç is then an inscribed angle, and since an 
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inscribed angle is measured by one-half its intercepted arc, f increases 
linearly when e2 turns uniformly. As e. approaches cancellation of e>, R 
is an infinitesimal vector and ç—> + 90 degrees. As e2 swings past can¬ 
cellation, the direction of R suddenly reverses so ç = — 90 degrees; i. e., 
there is an instantaneous change of ç equal to 180 degrees. Beyond that 
point ç increases linearly toward 0 degrees, as shown by Figure 4. 

Instantaneous Frequency 

The output from a linear discriminator is proportional to the instan¬ 
taneous frequency, where the instantaneous frequency is defined by: 16

(6) / = ^ 37 (argument of sine function). 
2tt at 

For a balanced linear discriminator, tuned to frequency w, the output 
is proportional to the deviation in frequency from the center frequency w. 
As shown in Appendix I, the output is given by 

Output œ- —- I—— 
cos 2ir\xt + 1 X 
cos 2-rvj.t ■ x 

(7) 

Obviously this output is proportional to the slope of the curves of 
Figure 4, since it represents the first derivative with respect to time. 

The curves of Figure 7 show the wave form in the audio output from 
>• J. R. Carson, “Notes on the Theory of Modulation," Proc. I .R.E., Vol. 

10, No. 2, p. 57; February, 1922. 
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a frequency modulation receiver, with perfect limiting and linear phase 
shift in the tuned circuits. As x approaches one, the output becomes more 
and more like an impulse, until at x = 1, the output has the constant value 
one-half except when 2tt(x/ = it; here the output becomes infinite. The area 
between the line one-half unit above the time axis and the curve for the 
instantaneous frequency over one cycle is constant for all values of x and 
equals -iqi. This means that as x—>l the output is constant except at 
2tt[xí = 7T and at that point is an impulse equal to Trp. times a unit-impulse 
function. 
When x becomes greater than one, the polarity of the impulse changes, 

but the shape is the same, as shown by Figure 8. 

Average Value of Instantaneous Frequency. If the discriminator is tuned 
to the frequency w, the average audio output is zero when x < 1. As 
shown in Appendix I, the average output is proportional to p. when x >1. 
The curves of Figure 8 show this shift in average value when e, becomes 
stronger than Ci and takes control. 

Root-Mean-Square Value of Instantaneous Frequency. If the audio output 
from the discriminator is measured with an root-mean-square meter, the 
readings will vary as shown by Figure 9. The output increases uniformly 
from zero when x = 0 until it rapidly approaches infinity when x = 1. 
When x > 1 the output decreases uniformly to one as x becomes large. 
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As shown in Appendix I: 

„ xu. 
Koot-mean-square output œ - —' 

a/2(1 - X2) 

/ 2x2 - 1 
V 2(x2 - 1) 

when x<l (8) 

when x>l. (9) 
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Peak-to-Peak Value of Instantaneous Frequency. The output when 
2tt;j/ = it minus the output at 2iryd = 0 gives the peak-to-peak value of 
the instantaneous frequency. This is given by: 

2xu. 
Output (tt) - Output (0) - (10) 

The curves of Figure 10 show how the peak-to-peak output varies as x 
increases. When x =1, the peak-to-peak output becomes infinite, and 
it decreases uniformly beyond this point. 

Harmonic Analysis of Instantaneous Frequency. If the harmonic content 
of the audio output is calculated by means of a Fourier-series analysis, 
the result can be expressed as: 

OC 
Output oc - J. ï (- x)n cos n(2îrp.f). 

n = 1 
(11) 

This means that the nth harmonic amplitude is proportional to p.x". 
Figure 11 shows the increase of the harmonic amplitudes with increasing 
x for the first five harmonics. For small values of x, the higher harmonics 
are much smaller than the fundamental; but as x approaches one, the 
higher harmonics increase rapidly, until at x = 1 all harmonics are equal. 

Effect of Limited Band Width. If the audio output from the discriminator 
is sent through a low-pass filter, having approximately linear phase-shift, 
the resultant wave form will depend upon how many harmonics are passed 
by the filter. In Figure 12, the case of x = 0.9 is shown for various low-
pass filters. The case n = 1 means that only one harmonic, the funda¬ 
mental, is passed by the filter. If two harmonics are passed, n = 2, the 
center begins to dip more because both harmonics are in phase at that 
point. The cases for n = 3 and n - 5 are also shown. The effect, there-
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fore, of limited band width is to reduce the output at 2tt;j7 = tt and to 
cause the resulting wave to oscillate about the curve that would be ob¬ 
tained with unlimited band width. For the case when n = 5, the peak 
output is reduced from 9.0 to 3. 69, or the output becomes 41 per cent of that 
for unlimited band width. The curves of Figure 13 show the effect of limited 
band width. Ihe variable on the axis of abscissas shows the number of 
harmonics passed by the low-pass filter, and the other axis shows the 
percent of peak amplitude compared to that for unlimited band width. 
Thus, if x = 0.9 and 10 harmonics are passed by the filter, the peak output 
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will be approximately 65 per cent of what it would be if all harmonics were 
passed. If r = 0.5, it is evident that five or six harmonics will give nearly 
undistorted output. 

As shown by Appendix I, this ratio of the peak output to the corre¬ 
sponding peak for unlimited band width is equal to 1 - z" where n is the 
number of harmonics passed. 

Common- and Adjacent-Channel Interference 

The simplest case of frequency modulation interference (that of two 

Fig. 14—Variation of distortion as interfering signal becomes stronger. 

unmodulated carriers of slightly different frequency) has already been 
discussed. If now the amplitudes of the two waves are kept constant, but 
the frequency of one carrier is changed, the problem becomes one of 
common- or adjacent-channel interference depending upon what range of 
frequencies the swings of the modulated carrier cover. If the deviations 
of the one wave are about a mean frequency which coincides with the 
frequency of the second carrier, the result is common-channel interference. 
If the mean frequencies are separated by the width of one channel, the 
result will be adjacent-channel interference. 
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Common-Channel Interference, Interfering Signal Unmodulated. If a 
frequency-modulated signal and an unmodulated carrier produce the 
beat-note interference, the output from a frequency-modulation receiver 
with limiter will be as shown by Figure 14. This shows the wave form for 
the various ratios of the interfering signal voltage x. When x = 0 (i.e. , no 
interference) the output is an undistorted cosine wave, as shown by the 
dotted line. As the interference increases, the peaks and dips increase in 
size, until finally, in the limit, they become very narrow pulses superim¬ 
posed on a cosine wave of one-half the amplitude obtained with no inter¬ 
ference. 

As x becomes greater than one, the interfering signal takes control and 

Fig. 15—Variation of distortion as interfering signal becomes stronger. 

the modulation of the desired signal is suppressed. Figure 15 shows how 
the peaks and dips in output decrease when x increases from one to in¬ 
finity. The envelope of the carrier amplitude corresponding to Figures 
14 and 15 is shown by Figure 16. There is one cancellation or hole in the 
carrier amplitude corresponding to each peak or dip in the output, since 
the rapid phase change which occurs at cancellation produces the large 
frequency deviation. If the limiter is not able to maintain a constant 
voltage input to the discriminator, the amplitude variations of the carrier 
will cause a reduction in the peaks in the output. 

Envelope of Beat-note Pattern. As shown in Appendix II, the beat-note 
produced in the output of a receiver with a perfect limiter during common¬ 
channel interference is a series of peaks and dips which are limited by the 
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two 
D D 

curves — — cos 2ttu./ and - cos 2ir;j./. 

Fig. 17—Common-channel interference. 
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This will be true for all modulation indexes D/g.. The effect of increas¬ 
ing the modulation index is to produce more peaks and dips in output with 
no change in the limits. Figure 17 shows these two limits as dotted lines, 
for X = 0.5, and modulation indexes of 5 and 10. The output that would 
be obtained with no interference is also shown as a cosine wave of unit 
amplitude. Figure 18 shows how the number of peaks increases when the 
modulation index increases to 30. The limiting curves are the same as 
before. The two signals have the common center frequency at 27r¡xf = 90 

Fig. 18—Common-channel interference. 

degrees and 270 degrees so they do not beat together there. As the mod¬ 
ulated signal deviates toward the end of the swing, the frequency differ¬ 
ence is large, and the peaks come more and more rapidly. 

Effect of Detuning Interfering Signal. If the interfering signal is detuned 
by an amount equal to one-half the deviation of the desired signal, the 
effect is to move the frequency at which zero beat occurs to that point. 
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Figure 19 shows how the beat-note then becomes unsymmetrical . At one 
end of the swing the two signals have nearly the same frequency and the 
beats come slowly. At the other end of the swing there is a considerable 
frequency difference and the beats are very much more rapid. The peaks 
and dips are limited by the two curves: 

1) . . a x Envelope - —— cos 2irxf + -- - (12) 1 + x 2tt X + 1 

j D a X and -- cos 27rui + — - - (Id) 1 - x 2tt X - 1 

Fig. 19—Common-channel interference, interfering signal detuned. 

Fourier-Series Analysis of Distorted. Output. If the desired frequency-
modulated signal is: 

Ci = E’i sin (<o< + --sin 2irp2) (14) 

and the interference is an unmodulated r-f carrier of angular frequency 
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G> 4- a, and phase angle 0, or: 

e; = E. sin ¡ (g> + a)t + 6} (15) 

then, as shown in Appendix II, the envelope of the resultant carrier is 
given by: 

Envelope = E. s/ 1 + x2 + 2z cos ß (16) 

where: ß - — sin 27rpf — at — 0 
P-

and the audio output is given by: 
X X n o . D COS 2ir\d - a/2v Output = D cos 2iru( - -- -

COSd+l/z 
- Ã- Il ( 11 ) cos ß + X 

When this is expanded in a Fourier series to determine the harmonic 
and cross-modulation distortion, the audio output is given by: 

< Jutput = D cos 27rpf 

0° oo , , . 

+ S S (— x)n < -— ~ f J r(nD/¿) cos (rz — nat — nO) (18) 
n = l r=-x In 27T ) 

where e = 27rpl, and x<l. 

This shows that the effect of the interfering signal is to produce cross 
modulation between the desired signal modulated with audio frequency 
p and the interfering unmodulated carrier of angular frequency <•> + a. 
The amplitude of each cross-modulation frequency can be computed with 
the help of a table of Bessel functions of the first kind. 

When a = 0, (i.e., common-channel interference) the output becomes: 

Output = D cos 27rp.< 
OO 

+ 2p. S (2r — 1) C(2r - 1, D/p.; x, 0) cos ¡(2r - 1) (2?rp.O } 
r = 1 

+ 2p. S (2r) S(2r, D/^, x, 0) sin j (2r) (27rpí)¡ (19) 
r = 1 

where the C- and S-functions are defined as follows: 
OO 
V1 (—%) * C(m, n; x, 0) = L - Jm(sn) cos sb 
1=1 s (20) 

oo 
S(m, it; x, 0) = -—— Jm(sn) sin sO (21) 

»-i s 

x- gl 
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To find the amplitudes of the various harmonics produced during 
common-channel interference, compute the value of the desired C— or S — 
function from equations 20 and 21, and multiply by the proper factor, 
which is shown by the above equation 19 for the audio output. A special 
table of Bessel functions has been prepared for this purpose. 17

The effect of a de-emphasis network following the discriminator, and 
of a low-pass audio filter, can be determined by computing the amplitude 
of each harmonic that falls within the working range, correcting each one 
for amplitude and phase changes in the audio amplifier and filters, and 
then recombining them by superposition. 

If the signal-noise ratio is defined as the desired audio output with 
no interfering carrier present, divided by the peak noise (i.e., the maxi¬ 
mum departure from the desired audio output when no interference is 
present), then, as shown by Figures 17 and 18, the signal-noise ratio is 
independent of the modulation index, but depends only on the ratio of the 
two voltages, x. This assumes a perfect limiter, adequate band width in 
the amplifiers and discriminator, and linear-phase-shift circuits. 

If a de-emphasis network and a low-pass audio filter are used, many of 
the harmonics will be attentuated or removed, and the nonlinear phase 
shift will prevent the remaining harmonics from coming into phase all at 
the same time. The peaks of noise are therefore reduced considerably. 
When the modulation index, D x, is large, the noise beat-note peaks come 
very rapidly. This means that the harmonics will be of high order and 
they will be reduced or removed by the audio selectivity. This accounts 
for the observed noise reduction with wide-band frequency modulation 
and shows that it is very important to use a de-emphasis network and low-
pass filter. 

Common-Channel Interference, Both Signals Modulated. The preceding 
cases have described the interference produced by an unmodulated carrier 
on the same channel as the desired signal, and the effect of detuning the 
interfering carrier. This section is a discussion of the case when both the 
desired and undesired signals are modulated sinusoidally, and of the 
resultant distortion, which is even more complicated. 

In order to illustrate this form of interference, assume the following 
conditions: 

I), p, - 10, D2/w¡ = 5, Di = 4L>2, pi = 2p», x = E2/Ei 
For example, D\ = 60 kc, pi = 6 kc, D2 — 15 kc, p2 — 3 kc, x — 0.5 and 
0.9 could be one set of numerical values. 

|; Murían S Corrington and William Miehle, "Tables of Bessel Functions 
J„(.r) for Large Arguments,” Jour. Math. Phys., Vol. 24, No. I, pp. 30-50: 
Feb.. 1945. 
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The beat-note envelope produced in this case is shown by Figure 20. 
The characteristic peaks and holes in the resultant carrier amplitude are 
present, but some of them are modified in shape because the two audio 
frequencies are present simultaneously. 

Near 40 degrees and again near 130 degrees the two voltages start to 
go out-of-phase, but the two vectors then begin to reverse themselves 
and only a small decrease in amplitude occurs. 

If this signal is sent through a receiver with a perfect limiter and linear 
discriminator, the resultant audio output will be as shown by Figure 21. 
Two cycles of the desired signal are shown as a dotted curve. This corre¬ 
sponds to one cycle of the undesired signal. As x increases toward one, the 
beat-note interference increases in amplitude until in the limit as x—>1, 
the pulses become very narrow and long. If x becomes greater than one, 

Fig. 20—Heterodyne envelope. 

the polarity of the pulses is reversed (as shown by Figure 22) and this 
undesired signal gains control. When x becomes very large, only the 
undesired signal is received, as shown by the dotted cosine wave of unit 
amplitude. 

The equations for the envelope and the beat-note interference are 
derived in Appendix III. If D, and D are the two deviations and p., and 
■i: are the corresponding audio frequencies, the envelope of the carrier is: 

Envelope = E, VI + x2 + 2x cos (P^p-i sin 2^,/ - sin 27rpJ| 

(22) 
and the audio output from a receiver with limiter and balanced discrimi¬ 
nator is: 
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Fig. 22—Beat-note interference, x > 1. 
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The audio output is composed of a beat note pattern which is limited 
by the two envelopes: 

_ D i „ D iX Envelope = -- cos 2ttu. ,/ + -- cos 2irpJ 
H 1 + X 1 + X 

(25) 

and I) o , o , - cos 2iru. if 4- - cos ¿TraJ 
— X ' r — 1 

This effect is shown by Figure 23 for the set of values given. In case 
of imperfect limiting, limited band width, or nonlinear phase shift in the 
amplifiers, these peaks will not be so long and narrow; the two envelopes 
shown represent the limits of the distortion. 

The effect of low-pass filters or other audio selectivity can be de¬ 
termined from a study of the harmonic content of the distortion. As 
shown in Appendix III, the audio output can be expressed as a Fourier 
series which gives the cross modulation terms produced and their ampli¬ 
tudes. 

Thus: Output œ D, cos 2™.,? 
OO 00 

— S S (ry.i — sp.2) C(r, Di/p.i; s, Dj /p.2:r, 0) cos (ra — sd) (27) 
r = —oo s = — oo 

where a = 2ir^.if, ß = 2^^ and the generalized C-function is defined as: 

C(k, I; m, nt x, 0) = S J t(s0 Jm(sn) cos sO. (28) 
«-1 8 
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The amplitude of any desired combination tone can be determined by 
choosing the appropriate values of r and s and by computing the desired 
C-function. Since the C-function cannot exceed unity for a given com¬ 
bination tone, it is evident that if or the distortion will be re¬ 
duced with increasing modulation index. 

Conclusions 

Frequency-modulated radio broadcasting offers the advantage of im¬ 
proved noise reduction when compared with the usual amplitude-modula¬ 
tion systems. There is less interference between stations operating on 
the same frequency than for the corresponding case of amplitude mod¬ 
ulation, and less power is required to cover a given area. 

A difficulty arose occasionally in the 42-50 megacycle frequency 
modulation band because long-distance transmission could be observed 
from frequency modulation broadcast stations during hot weather or 
before a storm. It sometimes happened that such an interfering station 
became stronger than a desired station in the same channel for short 
intervals. When this happened there was a small amount of noise and 
the programs suddenly were interchanged. This change often lasted for 
several seconds but sometimes was limited to a word or two or a few notes 
of music. If the proposed new frequency modulation stations are all 
completed, this interference may occur again. When the interfering sta¬ 
tion has nearly the same carrier frequency as the desired station this effect 
is called common-channel interference. If the two carrier frequencies are 
separated by the width of one channel the result is called adjacent-channel 
interference. 

The simplest case of frequency modulation interference occurs when 
two modulated carriers, having nearly the same frequency, beat together 
to produce a resultant signal. As the two voltages alternately reinforce 
and cancel each other, the result is a heterodyne envelope consisting of 
a series of broad peaks and sharp dips. Each time the two interfering 
voltages cancel each other to produce a hole in the envelope, there is a 
rapid phase shift of the resultant voltage. Since the audio output from a 
frequency-modulation receiver is proportional to the rate of change of 
the phase of this resultant, the rapid phase shift produces a distorted audio 
output, which becomes more and more like an impulse as the interfering 
carrier voltage becomes nearly equal to the desired carrier voltage. 

When the two amplitudes of the interfering voltages are kept constant 
but the frequency of one is changed, the result is common- or adjacent-
channel interference depending upon what range of frequencies the swings 
of the modulated carrier cover. The beat-note produced by this inter¬ 
ference consists of a series of sharp peaks and dips of noise and is super-
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imposed on the desired audio output. When the modulation index is 
increased, these peaks occur more and more rapidly, and the harmonics 
produced are redistributed to higher and higher orders. If the receiver 
has sufficient band width, a perfect limiter, and a wide-band audio sys¬ 
tem, the signal-noise ratio does not depend on the modulation index, but 
is determined solely by the ratio of the desired signal voltage to the 
undesired signal voltage. 

Formulas are given for computing the amplitudes of the harmonics 
and cross-modulation frequencies produced by the interference. The 
effect of a de-emphasis network following the discriminator, of a low-pass 
audio filter, and of nonlinear phase-shift can be determined by computing 
the amplitude of each harmonic that falls within the working range. 
Each such harmonic is then corrected for amplitude and phase changes in 
the audio amplifier and filters, and they are then recombined by super¬ 
position to obtain the filtered audio output. 

When the modulation index is large, the beat-notes of the noise come 
very rapidly, and since this means that the harmonics are then of high 
order, most of the distortion will be removed by the audio selectivity. 
This accounts for the observed noise reduction with wide-band frequency 
modulation and shows that it is very important that a de-emphasis net¬ 
work and low-pass filter be used to obtain maximum performance. In 
order to obtain the maximum signal-noise ratio, it is necessary to use 
some means for removing the variations in the amplitude of the resultant 
signal so that the discriminator responds to the variations in the instan¬ 
taneous frequency, but is not affected by amplitude variations. 

* * * 

APPENDIX I. 

Analysis of Fundamental Case 

Let the two interfering signals be e i sin wi and e2 sin (w + 2iqj.)i 
The resultant voltage is then: 

e, sin wi + e2 sin (w + 27rp.)f 

= ei\/l + X2 + 2z cos 2îr[d sin (uf + ç) (29) 

, , , . X sin 27TU.Í where e2/e t = x and tan ç = -- — . 
1 + X cos 2tt[i/ 
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The instantaneous frequency becomes: 

_1 J 
2?r (It 

6> 1 (I 
2ir + 2t dt 

tan-’ x sin 2?rpd 
1 + z cos 2ird 

<>> x cos 2írtxZ + x2
2t J' 1 + z2 + 2z cos 2r).t 

<■> ¡A 
2tt cos 2 irai + 1/x 

cos 2tt{jlí + X 
(30) 

This is valid for all values of x. 
For a balanced linear discriminator, the audio output is proportional 

to: 

Output « - ——-- —-cos 2iqd + 1/z 
cos 2rj.t + x (31) 

When x«l, this is, approximately, 

Output « ;ix cos 2ttpi/ 

The instantaneous frequency can be written: 

1 o , , 1 - cos 2irp.i H— 
, w x x2
= 2^ + , 12 T~ 14— - + - cos 2tt^ 

x2 x 

(32) 

(33) 

This means that as x goes from less than one to greater than one (i.e., 
if x is changed to 1 /x) there is an apparent change in frequency equal to p. 
and a reversal in polarity of the modulation. This means that e2 becomes 
stronger than e i and takes control . 

Average Voltage of Rectified Envelope 

The average voltage of the carrier envelope is: 

Average voltage 
f * _ 
I e + x2 + 2x cos 0 dO 

Jo 

2(1 + z) Ci 

2(1 + x)e (34) 

4z 
1 — —- — sin2 « da 

(1 + xY 
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where E 2y/X ) 
1 + X) 

is a complete elliptic integral of the second kind with 

modulus J* . 
1 + X 

Root-Mean-Square Voltage of Rectified Envelope 

The Root-Mean-Square voltage of the rectified carrier envelope is: 

Root-Mean-Square voltage = e, + X2 + 2x cos 0) dO 

= e. -I- X2) 6 + 2x sin 0 

(35) 

Fourier-Series Analysis of Envelope 

The envelope of the carrier is given by: 

Envelope = e t a/1 + x2 + 2x cos 2%^ where r ¿1. (36) 

Consider the expression: 

Vl+i+ 2x cos d = (1 + xe‘e)l(l + xe-*^ 

, 1 
Í+-XC <3 _ 

2(4) 
X2«2̂  _|_ 1(1) (3) 

2(4) (6) x3e3<s — 

X 11 + 5 xe-*9— 1(D . HD (3) 
2(4) + 2(4) (6) 

^»3^— 3^ß _ 

by the usual binomial series expansion. 18

1(1) (3) (5 ) 
2(4) (6) (8) 

KD (3) (5) 
2(4) (6) (8) x*e-^ 

(37) 

Multiply these factors together, term by term, then: 

Vl + x2 + 2x cos 0 = a„ + a, cos ß + a: cos 2/3 +. .. (38) 
where: 

7*2 y 4 

a° = + ï” 64 256 + Ï6384 

(. X2 X4 5x6 35x8 J 
“ ■' P 8 - 64 ~ 1024 - 16384 ' ’ ’ I (4° 

18 Edwin P. Adams, SMITHSONIAN MATHEMATICAL FORMULAE 
AND TABLES OF ELLIPTIC FUNCTIONS, Smithsonian Institution, Wash¬ 
ington, D. C., 1939, p. 117. 
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x2 ( x2 5x4 7x6 105X' 
" T r 4~ “ 128 “ 5Ï2 “ 16384 “ 

x3 ( _ 5x2 _ Tx4 _ 21x* 165x ' 
8 C 16 128 1024 ~ 16384 “ 

5x4 ( 7x2 21x4 33x® 429x‘ 
64 T 20 320 1280 “ 32768 

1(3) ... (2n — 1) J x" - 1 1_ r2

y 1 (3) ... (2k — 3) (2n + 1) (2n + 3) ... (2n + 2k - 3) 
-2 kl 22k (n + 1) (n + 2) ... (n + k) 

This expression for an was previously obtained by Vigoureux 19 and 
Moullin 20

In the limit as x —» 1: 

Envelope = \/2 Ci V1 + cos 2irp.f = 2«i |cos 

4c > ( , 2 _ 2 
= — j 1 +- cos 0 — — cos 2 0 7T 4 3 10 

2 2 + — cos 3 0 — — cos 4 0 — 
35 63 

where 6 = 2trpiL 

4e, 
7T 

00 

1 - 2 S 
n * 1 

(-1)" cos nd ) 
(2n)2 - 1 ) 

Calculation of Average Value of Instantaneous Frequency 

Consider the integral: 

I X2 + X cos e 
- a e 0 1 + X2 + 2x cos ’ 

Make the transformation: cos 1 - F 2dt 
1 + t2’ de “1 + t2

(45) 

(46) 

19 F. M. Colebrook, “A Note on the Frequency Analysis of the Heterodyne 
Envelope. Its Relation to Problems of Interference.” Wireless Engineer & Ex¬ 
perimental Wireless, Vol. 9, p. 200, April, 1932. 

29 E. B. Moullin, “The Detection by a Straight Line Rectifier of Modulated 
and Heterodyne Signals,” Wireless Engineer & Experimental Wireless, Vol. 9, 
pp. 378-383; July, 1932. 
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Then. 

0 (1 + r)2 + (1 - xVt2 1 + t2

dt (x2 -
o (1 + x)2 + (1 -

(x! - Dp. 0 when x<l 2(1 - x2) 
= p when X > 1. (47) 

de (48) 

Then: 

dt 2x2

dt - 2x(l + x)2
old + x)2 + (1 - X)2«2!2TT 

dt (3x - 1) (1 + X) 
2tt (49) 

Consider the integral: 

1 dt dt 1 

o{a2 + &d2p 2a- La2 + b2t2_ o 

dt 1 t (50) a2 + bU2 2a3b 

(51) 

The average value of the instantaneous frequency therefore equals 
zero when x<l and is proportional to p when x>l. 

ol(l+x)2+ (1- x)2«2) 

Calculation of the Root-Mean-Square Value of Instantaneous Frequency 

Consider the integral: 

- tt, when X > 1. 4a 3o 

Make the transformation: cos e = 

tan-1 — 
a 

1 - t2
—— de = 1 + Í2

dt 
1 + Í2

- r-rrwhen x<l 
o 4a3o 

X2 + X cos e 
1 + X2 + 2x cos e 

2a2 Jo a2 4- ò2í2

2 dt 
1 + t2' 

(1 + x) — (1 — x)t2 dt 

1 / dl
2x Jo ï + t2

(1 + x) - (1 - x}t2 I 
(1 + x)2+ (1 - x)2/2) 
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Therefore I becomes: 

— 2x(l + x)2 ( tt / 

TT (4(1 + x)3 (1 — X) > 

(3X — 1) (1 + X) Í TT / 1 (tt) 

2tt <2(1 • .,-i (1 - x)Ç + 2r<2Í 

—x 3x - 1 1 x2 . 
' 2(1^0 + «í^) + Í -2,!^ " < >• 

1 - 2x2
= 2fT^ WhmX>1-

The root-mean-square voltage is proportional to: 

p V7/ = - —- when x < 1 
V2(l - x’) 

(52) 

(53) 

(54 

when x>l. (55) 

Calculation of the Area of One Cycle of the Instantaneous Frequency 

The area bounded by one cycle of the variation of the instantaneous 
frequency and a line one-half unit above the time axis, as shown by 
Figure 7, will now be computed. From equation 2 the instantaneous 
frequency is given by: 

, <■> 1 a , x sm f = -— F  - tan“1 ,- -—-
J 2ir 2tt dt 1 + x cos ¿tt'i.I 

(56) 

x sin 2 Tip/ 
tan -1  - -—-1 + X COS ¿TT^t 

x sin 0 
1 + x cos 0 

d<) 

x sin U 
tan - , 1 + x cos 0 

(57) 

for all values of x. 

Fourier-Series Analysis of Instantaneous Frequency 

The audio output is proportional to: 
X cos 2irp< + x-

1 + x- + 2x cos 2irpf 
1 d x sin 2ir;x( 

, tan '1 ; — - x— . 
2tt dt 1 + x cos 2?ru( 

(58) 
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Let 2ttj./ = ß and tan a = -- -
1 4- X cos 0 

Then k sin a = z sin d (59) 

k cos a = 1 + x cos ß (60) 

where: k = VT + z2 + 2x cos ß (61) 

Fig. 24—Determination of k. 

Multiply equation 59 by i and add equation 60. 

Then: 1 + x cos ß + ix sin ß = k (cos a + i sin a) (62) 

or: 1 + x e'^ = k e**. Take logarithms of both sides. Then: 

log (1 + z ?*) - log k + ia. 

Since: 2 , , 
log (1 + z) = x - ~ - Ç + ... - 1 <x< 1 

— o 4 

log (1 + x c*) = ze‘s - ~ e™ + ~e™ - ... 

so: Z2log k + ia = z(cos ß + i sin ß) — — (cos 2ß + i sin 2ß) 

+ y (cos 3ß + i sin 3ß) - ... (63) 

Equate imaginary terms: 

. X2 . X3
a = x sm ß - — sin 2ß + — sin 3ß - ... (64) 

Differentiate: 

1 da 
2rr dt = cos ~ x2 cos + -r3 cos - • • • ) (65) 
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The audio output is therefore proportional to: 
□c 

Output «- p - (- z)M cos M0 - Kr ál (66) 
n = 1 

When 0 = 0, » 
Output« - p 1 ( -z)" = -^-7 (67) 

n-l Z + 1 

When 0 = ir, Out put « - p £ z" = ■ (68 ) 
n = 1 1

Effect of Limited Band Width 

To show the effect of a limited band width, consider the geometrical 
progression: 

n 

s = - p - z" 
n — 1 

By ordinary long division: 

■P"~ = 1 + P + P2+--+P 
P - 1 

so, 
xn - 1 

S = - p z- z-z - 1 

The ratio of the partial sum to the output at 0 = r equals 1 - r". 

(69) 

(70) 

APPENDIX II. 

Common- and Adjacent-Channel Interference 

In order to show the effect of common- and adjacent-channel inter¬ 
ference, let the desired frequency-modulated signal be: 

Ci = Ei sin (lût + — sin 2îrp0 (72) 

and let the interference be an unmodulated radio-frequency carrier at 
angular frequency o + a, and phase angle 0, or 

e, = E. sin ((« + a)f + 0! (73)
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Then: 

Ci + Ci = E¡\/ 1 + x’ + 2z cos /3 sin kd + - sin 2ttj.Z - (74) 
' ¡A ’ 

where x •= E,/Ei, ß = — sin 2ir.it - at — 6 
(A 

and tan X sin ß 
' 1 + X cos ß 

The instantaneous frequency becomes: 

<o 
2tt 

rA Id D cos 2ttu.Z - - — tan 
2tt at 

X sin ß 
1+ X cos ß 

^ — + D cos 2?r[xt — X cos ß -F r’ ( „ , a ) 
- ;- . ß1 cos hrat — — r F XJ + 2x cos ß t 2ir ) 

= — + D cos 2tt[jlZ -— 7T 
D cos 2irp.Z — a/2T 
cos ß -F 1/x 1

cos ß + x (75) 

Envelope of Beatnote Pattern 

The beatnote producedin the output of a receiver with a perfect limiter 
is given by: 

. D cos ¿mit — a/2n Output - D cos 2ir±t - -- F-
cos ß + 1/x 
- ã i- + 1 (76) cos ß + X ' 

where: ß - — sin 2irp.f — at — 0. The two envelopes of the maxima and 
(A 

minima of the beat-note pattern are obtained by setting ß = 2nir or 
(2n + l)ir where n is an integer. This gives the two envelopes: 

t, , D _ , a X Envelope - ;- cos 2ir.it + -- - (77) 1 + X 2ir X + 1 ' 

and: 
Z) _ a X — cos 2^+-— (78) 

Fourier-Series Analysis of Instantaneous Frequency 

In accordance with the analysis of Appendix I, equation 65: 
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(79) 

e = 2tt[xí 

the instantaneous frequency is: 

D e — at — cos e -
IX n 

(80) 

Let: y = O/;x, then 

«in Y sin «—in al— H" C 

I JJ ^int sin c । 

(81) 

Using the identities: 

(82) e' 

,<(« - J k(nf) e' 

]) C«c— u«i-n6) ginY »in « 

f= — + D COS S + 
2tt 

1 s 
4 n-l 

to — + D cos e 2ir 

,t(nai+«»> g-<»Y sin» 

£) g-«»-nsl-n») g—i»Ysiu » 

I £) g««+na<+n»> g- i»Y sin » 

and J k(~ x) = .1 k(x) where J kM is a Bessel function of the first kind of 
order k and argument x, the instantaneous frequency becomes: 

<'> ~ — + D cos s dir 

» / £) 

S (— x)B cos n]— sin 

When: ß = — sin 2^1 - at — 9 and 

, g> _ 
/ = T- + Ö COS £ 

¿7T 

T ï (- x)"\d C1
4 n = 1 < 

a g-i(n»i+n0> g<»Y sin » _ “ g 

ir ?r 

d , X sin ß V , . „ dß — tan-1 - - — = - L (- x)" cos nß 3-dt 1 + X cos ß n-l dt 
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+ D e‘(« + "«' + "•) £ J_4ny)e“' 
i = — 00 

+ D e-“’ + "“' + "«) £ 
1— —QD 

+ De"«* S J_*(ny)ett ' 
k — —QO 

_ + 2 Jt( ) e«. 
V 4= -œ

-—««»«' +B” £ j_ k{n^ea' 
TT k^ —» 

-— F D cos e ¿7T 

+4-Î(-x)"Îd S J*(ny) e‘ l(» + l) '- B“- n, l 
4 n —1 ( k=— °o 

oo 

+ D S J-k^ny} e‘(» + »• + '•»< + ’••) 
k = —oo 

+ D S J\(nY) e* l(b- n* - na< - Be|
k = —oo 

+ D S J-k(nr) ci^-V.+n., +n»} 
k= —•oo 

S J^ny) e‘ ’“-"°“- B, l 7T i--« 

- — s J_*(ny) e‘1*E+B“, + B*^ 
7T k “ —oo ) 

Make the substitutions: 

k + 1 = r in term 1 

k + 1 = — r in term 2 

k — 1 = r in term 3 

Then: 

, lò 
f = + D cos e 

k — 1 = — r in term 4 

k = r in term 5 

k = — r in term 6 

(83) 
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+ 7 2 (- x)" ¡D ï ^-,(»7)4-7, + : 
4 n — 1 ( T =• —oo •“ —' 

+ O r¿ [j,-i(nY) + J,+l (nY)]e-‘ 

-- ï Jr(n-f) I Í (84)

7T r = — » L -I ) 

Apply the relation: 

2r 
Jr_i(nY) + Jr+1 (nY) = — J,(nY) (85) 

Then: 

f -— F D cos e 
¿7T 

«o i 00 r 
+ M (- x)n S — Jr(nY) cos (rs - nat — nO) n = l t nY

<Y °° 
— 7r(nY) cos (re - nat - nl))[ (86) 

¿7T fan—00 ) 

=■ ~ + D cos 2^1 
2tt 

V1 V (xr a ) ( nD \ 
+ L L (-j)"i - Jrl - ) cos (2Trr[it - nat - nfl) (87) 

n-1 r--oo ( n ¿1T ) \ ¡I / 

where: x<l. 

This shows that the effect of the interfering signal is to produce cross 
modulation between the desired audio signal of frequency ¡x and the differ¬ 
ence angular frequency a. The amplitude of each frequency can be com¬ 
puted from this equation. When a = 0, i.e., common-channel interfer¬ 
ence, this reduces to: 

f = + D COB 2 7T(XÍ 
2?r 

S (- x)n Jr jcos 2irr(x< cos nfl + sin 27rr¡x/ sin nfl 

= ~ + D cos 2?r(xf 
m7T 
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+ 2p. S (2r - 1) C(2r - l,-;x, 0) cos { (2r - 1) (2%^)} r » 1 

CO TA 
+ 2(i ï (2r) S(2r, —; x, 0) sin {(2r) (2?r^) } (88) 

r-l P 

where the C- and S- functions are defined as follows: 

C{m, n; x, 6) = 2j - Jn(ms) cos sO (89) 1 = 1 s 

S(m, n; x, 0) = S -—— J „{ms) sin s6 (90) 
«-1 s 

z1 1. 

APPENDIX III. 

Common-Channel Interference, Both Signals Modulated 

When two frequency-modulated signals with a common carrier fre¬ 
quency produce interference, the effect is similar to that which occurs 
when one wave is not modulated. The exact relations can be obtained in 
the following way: 

Let: 

and: 

Ci = E i sin (vt 4- — sin 2rp d) 
p* 1 

e, = E, sin (g>í + — sin 2irpi t) 
p.ï 

(91) 

(92) 

be the two interfering waves. Then: 

e i + ei = \/ Ei’ + Ei’ + 2EiEi cos sin (g>í + — sin 2irpit — ç) (93) 
P1

, x x sin 6 where: tan □ =  - -— 
1 + x cos 

and: tp = — sin 2irpif - — sin 2ir[iit 
¡X1 [Ai 
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The instantaneous frequency becomes: 

, <<> „ „ , Di cos 27rp.it — D, cos 2tt(j.2Í 
f = — + D, cos 2rrp ¡I - , , i ,-

2tt cos y 4- 1/x i j (94) 
cos (Hz 

Envelope of Beat-note Pattern 

The beat-note produced in the output of a receiver with a perfect 
limiter and balanced discriminator is given by: 

„ Di cos 27rp.it - Di cos 27TPL2Í 
Out put D1 cos 2rrp it — - -:——T--

+ i (95)

cos 4-

The two envelopes of the maxima and minima of the beat-note pattern 
are obtained by setting = 2nir or = (2n 4- l)ir, where n is an integer. 
This gives the result ï 

Envelope = — cos 2rrp ,t 4— cos 2irp.it 
1 + x X 4- 1 

(96) 

and: Di „ , Dix — cos 2irp. it 4- 7 cos 2iru.it 1 — X X - 1 (97) 

Fourier-Series Analysis of Instantaneous Frequency 

The distortion present in the instantaneous frequency is given by 

d , X sin 0 — tan 1 -- ; dt 1 4- X cos 9 
, d-p' x)n cos n^ ~ 

Consider the expression: 

(98) 

cos «9 — = 2ir cos n^ (D i cos 27rp. it — Di cos 27rp;t) (99) 

Make the substitutions: 

2irp.it 

ß = 27rptt 

e Di 

4 

D, 
4 

Then the first term becomes: 

D i cos a cos ’ y sin a — S sin ß\ 

£—<8 sin ß i <Y sin a ^<8 sin ß 

D, n — 

6 = n^ 
p.i 
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ao ao 

+ e" u  2 J r(y) e*'* 2 J_, (ó) ?” 
r — — w  x* —ao 

•O ao 

4- ?’ S j_,(y)?'’ S j,(5) ?” 
r- —ao x — —ao 

+ eu “ ï J_,( T ) ? r* £ J,(ô) ?” ¡ 
r “ —ao * “ —ao ' 

= y j p,(7)?<r+1)a + Jr^) ?<—*>«] s S" J ,(5) 

+ S f J-Jy) ?(r+1,a + J-Jy)?1'-”“'] Ë (100) T — — oo L J X — —ao ) 

Make the following substitutions: 

r + 1 = k in the first expression in the first bracket 
r — 1 = k in the second expression in the first bracket 
r + 1 = — k in the first expression in the second bracket 
r — 1 = — k in the second expression in the second bracket 

and apply the identity: 
ok 

i(Y) + (101) 

This gives: 
D i cos a cos I y sin a - ó sin ß | 

ij i 00 r i 00

= ”/ “ A-!(y) + ̂ +>(Y) k'*“ -4 ( jt- -00 L J X- -» 

ac oc 

+ ï pt-^Y) + ̂ +,(Y)] e" a * ï J,(ó)?”r 
-ao L J s- -ao ) 

J) , ( ® L « 

= — 1 - Jt (y) ?“ S J, (Ó) e-“» — ' k ” — ao y X“—oo 

+ ï ~J»(Y)<’-a " ï J, (0)^^ 
it - —00 Y X =» -ao ) 

ao ao 

= Z), S S - Jr (y) J, (ô) cos (ra - 8ß) (102) 
r «■ — ao X * —oo Y 

By the same process: 

D; cos ß cos j y sin a — Ô sin ßj 
ao 

= Di S S - JT (y) J, (ô) cos (ra - «ß) (103) 
—00 X" —00 O 

204 



560 RCA REVIEW 

These two results give the expression: 

dù V ( rD, sDz I . . , . ... , cosnir = Sir ï L ]- — 1 J, (y) Js (5) cos (ra - 80) ■ at T -X , = -X ( y y ) 

= — S S (Tl. - S|1,) J, (y) J, (ô) cos (ra - s/S) (104) 
n r = -ao s- —® 

The audio output from a balanced discriminator thus becomes: 

Output <x Di cos 2irpit 

OO OO J J J) 
= D. cos 2irp,t + S S (r^- s^C^r, -~tx,Q) f ~ —00 g n —00 ¡X I (X2 

cos (ra - sß) (105) 

where the generalized C-function is defined as follows: 

C(k, I; m, n: x, 6) = S '~ J ) J*(s /) Jm(sn) cos s6, (106) 

a - 2irp.it and ß = 2irpat. 
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CHAPTER 25 

Noise in FM Receivers 

S. 0. Rice, Bell Tdcphone Laboratories, 
Murray Hill, New Jersey 

ABSTRACT 

This chapter is concerned with the noise in the output of an FM receiver 
when the input contains both signal and Gaussian noise. For large values of 
p, defined as the carrier-to-noise power ratio at the input, the output noise is 
small. As p is reduced, individual snaps or clicks are heard in the output. 
As p is reduced still further, these clicks merge into a crackling or sputtering 
noise. Here expressions are given for the expected number of clicks per second. 
These results are used to obtain approximate expressions for the output signal-
to-noise ratio which hold in the breaking region. 

1. INTRODUCTION 

This chapter is concerned with the noise in the output of an idealized FM 
receiver when the input has the form 

Q COS [2irfct + <£(0] + zw (i) = R(fi COS [2irfct + + <?(/)]. (1) 

The amplitude Q and the carrier frequency^ are given constants, and ZAr(Z) is 
a narrow-band Gaussian noise current whose power spectrum is w(f). Through¬ 
out the chapter w(/) is taken to be symmetrical about fc. 
The current 7^(0 represents the noise accepted by the receiver. Its power 

spectrum is different from 0 only over the radio-frequency band required to 
transmit the FM signal. In actual receivers this is also the intermediate fre¬ 
quency band. We refer to the band specified by w(/) as the “input band.” 
The signal is 0'(t), the time derivative of the phase angle It is meas¬ 

ured in radians per second. The output of the frequency detector or dis¬ 
criminator is assumed to be the derivative </>'(!) + The output of the 
receiver is obtained by applying + 0'(t) to a low-pass filter which passes 
the signal </>'(/) but removes the high-frequency components of the noise 9'Çt). 
We assume that this output filter is ideal and cuts off at frequency fa Ça for 
“audio”). 
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396 SIGNAL DETECTION 

The average carrier power is Q2/2, the average input noise power is 7^(0 
and their ratio is 

Q2 

2I2nW 
(2) 

When p —» oo and certain simplifying assumptions are made, the ratio So/N0 

of the average signal power to the average noise power at the receiver output 
(subscript o for “output”) is customarily taken to be 

So - 7 OS 
No P \2fa) ’ 

a result due essentially to Crosby [1]. Here the top frequency in the signal is 
supposed to be equal to the cutoff frequency fa of the low-pass output filter, 
and 0 is the input bandwidth in cycles per second. 

It is found in practice that as the input noise is increased, so that p decreases 
from », the FM receiver “breaks.” At first, individual clicks are heard in 
the output. As p decreases still further, the clicks rapidly merge into a 
“crackling” or “sputtering” sound. Near the (not precisely defined) breaking 
point (3) begins to fail by predicting values of So/No larger than the actual 
ones. 
The purpose of the present chapter is to discuss the behavior of the receiver 

in the region around the breaking point. Particular attention is paid to the 
relation between the breaking point and the expected number of clicks per 
second in the output.* 

Earlier papers by Stumpers [2], Middleton [3], and the writer [4] give expres¬ 
sion for the power spectrum W(/) of 0'(f) from which the output noise power 
No may be computed. However, the complexity of the expressions make it 
difficult to carry out the computations with the desired accuracy in the regions 
of greatest interest. 

Here it is shown that around the breaking point So/No is given approximately 
by (26) for a rectangular w(f) or by (27) for a Gaussian w(J). Both approxima¬ 
tions are extensions of (3). Although (26) and (27) are approximations, they 
are based on an exact result, namely, that when the carrier is unmodulated 
(no signal present) the expected number of clicks per second is 

r(l — erf s/p), U) 

where r is the radius of gyration, in cycles per second, of w(/) about its axis of 
symmetry at fc. Values of r are given in Table 2.1 for rectangular and 
Gaussian w(f). Expression (4) follows from results given in Section 6 of [4], 

Modulating the carrier increases the number of clicks per second and also 

* A similar approach has been developed independently by N. M. Blachman. This was 
brought out at the Brussels Information Theory Symposium (September 1962) during the 
discussion of a paper by G. Battail which dealt with FM reception. Mr. Blachman was led 
to the basic idea while studying the zero crossings of Gaussian noise. 
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affects »S„/A 0. However, it does not change the position of the breaking point 
much, l igure 3 shows that the breaking point occurs at values of 10 log p 
around 10 or 11 db and is slightly higher when the signal is present. 

It appears that both So/No and the number of clicks per second should be 
considered in judging the effect of Gaussian noise on FM receivers. 

2. REVIEW OF RESULTS, SOME KNOWN AND SOME NEW 

The first portion of this review is concerned with the case in which the signal 
is absent. This case has received most attention in the past because of its 
simplicity. The second portion deals with the case in which the signal is 
present. The arguments given in this section are intended merely to make the 
results seem plausible. 1 he detailed analysis is reserved for later sections. 

Unmodulated Carrier 

M hen there is no signal, the carrier is unmodulated and (1) becomes 

Q cos uct + IN = It cos (uct + Ö) , uc = 2?r/c
(5) 

— (Q + Ic) cos uct — Is sin uct, 

where Ic and I„ are the in-phase and quadrature components of In with respect 
to the carrier frequency fc: 

In = Ic cos wct — Is sin uct. (6) 

Both Ic and Is have the power spectrum 2w{fc + /). This follows from the 
assumption that the power spectrum w(J) of I nW is symmetrical about fc. 
The arguments (t) of the various functions in (5) and (6) have been omitted— 
as they are in subsequent sections when it is convenient to do so. 
Expression (3) for So/N„. It is helpful to review the reasoning that leads 

to expression (3) for the output signal-to-noise ratio So/No. Figure 1 shows 
the phase relations between the various currents in (5). The point P wanders 
around the point Q as the amplitudes and phases of Zc(t) and I„W change in a 
random manner. When the carrier-to-noise power ratio p is large, Ic and I, 
are much smaller than Q most of the time and, to within a multiple of 2r, 

Figure 1. A graphical interpretation of Equation (5). 

208 



398 SIGNAL DETECTION 

6 ~ Is/Q- Differentiation gives 

Since the power spectrum of I,' is (2t/)2 times the power spectrum 2w(fc + f) 
of /„ it follows that 

(2t/)22w(/c +/) ;
(8) 

where 1F(/) is the power spectrum of d’. In fact, the right-hand side of (8) is 
the first term in an asymptotic expansion for IT(/) which holds for p-> w. 

Since d' is measured in radians per second, 1F(/) df has the dimensions of 
(radians per second)2. The average noise power in the receiver output is 

IF(/) df (radians/sec)2 (9) No

where fa is the cutoff frequency of the output filter. 
Consider a rectangular input band of width ß cps centered at/c: 

fc - 2-J/3 < f < fc + 2-M w0, 
0, 

(10) w(f) = elsewhere 

2ßw01'n = ßwo, 

From (8) and (9) with/« < ß/2 and p large, 

8t2wq/3 4t2/o3
(H) -Vo 3Q2 3Pd 

If fa < fa, the sinusoidal signal </>' = A sin œ.i, ois = 2t/8, passes through the 
ideal receiver unchanged when no noise is present. Hence the average output 
signal power is So = A2/2 (radians/sec)-. In forming the So/No ratio (3), A 
is taken to be 2tt(0/2) so that the carrier swings back and forth across the 
entire input band and 

So = K^d2). (12) 

Dividing (12) by (11) gives (3) for So/No. 
Expected Number of Clicks per Second. Our approximation forN0/N 0 

in the breaking region makes use of a special case of Equation 6.6 of [4] : When 
0(t) is given by (5), the expected number of times per second 0(t) increases 
through an odd multiple of t is 

N+ = (1 - erf Vp), 
(13) 

— erf Vp = —2= I e 11 dt~ e fpir) w
2 f“ 
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Here 
O2 

r = VrY^/b^, P = 
2bo 

b„ = ÏÏ = 7J = ï2 = // w(j) df = // 2w(fc + J) df (14) 

b2 = (2r)2 J“ (J - fc)2w(f) df. 

The parameter r may be regarded as either the “radius of gyration” of w(f) 
about its axis of symmetry at / = fc or as the “representative frequency” of 
/s(t) [or Zc(0]- The second interpretation follows from the fact that 2r is the 
expected number of zeros of Zs(i)/sec. Two special eases of interest are shown 
in Table 1. 

Table 1 
Values of r 

w(f) 

Rectangle of width ß cps centered 
on fc, w(f) = wo for 
fc - 2~lß <f<fc + 2-^ 
and w(/) = 0 elsewhere 

wuß 

Normal law filter 

w(f) = —-}=exp 
a n/2tt 2a2

Equivalent rectangular bandwidth 
is a V2ir cps. 

Because of the symmetry of w(f) about fc, the expected number, N_, of times 
per second 9(f) decreases through an odd multiple of ir is equal to N+. For 
conciseness we refer to N+ and N_, respectively, as the number of upward and 
downward clicks per second. These names are suggested by the following 
considerations. 
When p» 1, the wandering point P in Figure 1 spends most of its time 

near Q. However, it occasionally sweeps around the origin and 9 increases or 
decreases by 2r. Figure 2 shows in a rough way how these excursions produce 
impulses in 9'. The impulses have different heights depending on how close P 
comes to the origin 0, but all have areas nearly equal to ±2r radians. 
When the impulses shown in Figure 2b are applied to the low-pass output filter, 
corresponding but wider impulses are excited in the output and are heard as 
clicks. Clicks are produced only when 9 changes by +2ir. When point P 
in Figure 1 leaves the region Q, cuts across the segment OQ close to 0, and then 
returns to Q, 9 changes rapidly by nearly ±ir during the sweep past 0. How¬ 
ever, the resulting pulse in 9' has little low-frequency content since the integral 
of 9' taken over such an excursion is nearly zero. Hence the output of the 

210 



100 SIGNAL DETECTION 

Figure 2. Sketch showing impulses in e'(0 produced by changes of ±2r in 0(0. The 
time scale has been expanded in the vicinity of the impulses in order to show differences in 
shape. 

low-pass filter is much smaller than that for an excursion in which 0 changes 
by ±2ir. 
When a television signal is transmitted by FM, the upward clicks appear 

as white spots on the screen and the downward clocks as black spots, or vice 
versa, depending on the polarity of the connections. 

It should be observed that N± represent number of clicks per second whereas 
No stands for the average noise power in the output. 
Approximation for 17(0) When p» 1. The asymptotic expression (8) 

for the power spectrum I7(/) of 6' gives the value 0 for 17(0). It was pointed 
out by Crosby [1] and shown in detail by Stumpers [2], Middleton [3], and the 
writer [4] that although 17(0) is small when p » 1, it is not zero. The value 
of 17(0) is of interest because of its importance in determining the behavior 
of 17(/) for small f. This in turn determines the values of p for which So/No 

begins to deviate appreciably from (3). _ 
It has been conjectured [4] that W(0) decreases as e p as p -> «. In Section 
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3 it is shown for unmodulated carrier that we have the approximation 

IF(0) ~ 87T2r(l — erf vÇ) 

~ 8T2r(pr)->4e_p (15) 

as p becomes large. The method of derivation indicates that the approxima¬ 
tion is actually asymptotic in the sense that the ratio of JF(O) to the right-hand 
side of (15) approaches unity as p—♦ co. 

1 he approximation (15) is in line with a physical picture of the discriminator 
output 3 suggested to the writer by H. E. Curtis. He regards 3' as the sum of 
two components. One is a small Gaussian noise current and the other is a 
succession of randomly occurring impulses or clicks. This is illustrated in 
l igure 2b (the impulse durations are exaggerated). The power spectrum 
of the Gaussian noise component is given by the asymptotic expression (8) 
for II (/) and is zero at f = 0. Since impulses of the sort shown in Figure 2b 
have spectra that are nearly constant (and not zero) for small frequencies, the 
power spectrum of the second component does not vanish at / = 0. It is 
this component that produces the nonzero value of IF(O). 

In order to make (15) seem plausible, we approximate the random sequence 
of positive and negative pulses that comprise the second component of 0'(f) by 

» „ 

J 2tt«(í - M + V ( —2ir) 5(1 - h). (16) 
t= - « i= _ » 

Here 5(x) is the unit impulse function, and tk, ti represent, respectively, the 
instants at which positive and negative pulses occur. When p is large, the 
pulses tend to occur at random and each sum in (16) can be regarded as a shot-
effect current. Such a current, say I = 2tF(i — tk), has the d-c component 

Ido = V dt, (17) 

where » is the expected number of arrivals per second. It is also known that 
the power spectrum of I - Zdo is 2r|s(/)|2, where 

»(/) = (18) 

When these results are applied to the first sum in (16), we have F(t) = 2t5(Z), 
” ~ ̂ +> Ide = 2iriV+, s(/) = 2tt and the power spectrum 8tt2N+. Similarly, 
the second sum has the d-c component — 2tW_ and the power spectrum 8tt2W_. 
Since the sums represent independent currents, the expression (16) has the 
d-c value 

2,r(W+ - 2V_) (19) 
and the power spectrum 

8ir2(W+ + W_). (20) 

Because the delta functions in (16) only approximate the pulses, we expect 
the actual power spectrum to agree with (20) only for frequencies small com-
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pared to the reciprocal of the pulse duration, I or the higher frequencies, the 
actual power spectrum is less than (20). 
The expression (15) for JF(O) follows from (20), since in the present case 

and both are given by (13). It should be noted that II (0) has the 
dimensions of (radians per sccond)2/cycles per second, which works out to be 
4t2 cps or l/(timc) as required by IV(0) ~ 1&k2N+. 

Approximation for W(/) When p^ 1. Picturing 6 (/) as the sum of a 
Gaussian noise component with power spectrum (8) plus a sequence of random 
pulses leads to the conjecture that W(/) is the sum of the two corresponding 
power spectra: 

W(/) ~ 8ir2r(l — erf p) + 2w(fc + f)Q '• (21) 

This is supposed to hold when p is large and the carrier is unmodulated. 
For the rectangular and normal law input spectra of lable 1, (21) takes the 

respective forms 

^ œ2(1 _ erf Vp) + (fY^; (23) 
4?r"<r Xa/ p V 2tt 

(22) holds only for 0 O ß/2 ; ^(/) is approximately 0 for/ > ß/2. 
An idea of how much the conjecture (21) is in error may be obtained from 

Table 2, which shows the approximate values computed from (23) and the 

Table 2 
Comparison of Exact and Approximate Values of W(f)/4ir2a 

p = 1 p = 2 p = 5 

f/a Exact Approx. Exact Approx. Exact Approx. 

0 0.2322 0.315 0.07529 0.0911 0.003017 0.00314 
ir/6 0.2672 0.410 0.1134 0.139 0.02342 0.0222 
2^/6 0.3231 0.567 0.1784 0.217 0.05828 0.0537 

corresponding exact values taken from Table 4 of [4]. It is seen that the 
agreement is best in the important region in which p is large and / is small. 
Better agreement for p = 5 may be obtained by noting that expression (8) 
is only the first of the terms of an asymptotic series for W(/) that correspond 
to the terms in the expansion of tan“1 I^Q + in descending powers of Q ; 
(8) corresponds to the leading term ISQ \ When the second term of the 
series for JF(/) /4ir2a is evaluated (by calculating the power spectrum of IJCQ 
or by using Equation 7.3 of [4]) and added to (23), the approximate values 
0 0222 0.0537 given in Table 2 increase to 0.0237, 0.0584. Although these 
values’ were computed on a slide rule, they agree quite well with the exact 

values. 
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So/No in the Breaking Region. The expression (3) for So/No holds when 
p is large. The value of the average output noise power No used in (3) is 
obtained by integrating the second term in the expression (22) for W(/). A 
better approximation to So/No is obtained by including the first term as well. 
Thus integrating (22) and (23) from f = 0 to f = fa < ß/2 gives 

v ^ßfa , /- 4t2/’ 

"• “ (¡2?- ° ’ erf + ‘ ’ 

^«8^(1 -erfVp) + — ^(1 -¿ + ' • J (25) 
opa (¿ir) \ Wa / 

for the rectangular and normal law input spectra of Table 1. 
Taking the output signal power to be So = tt2/32/2 in the rectangular case, 

as in (12), and So = ir2B2/2, B = a(2?r)w in the normal law case leads to the 
respective ratios 

& w 3(2far3
TT ~ - ✓=- /=- 7- (26) 
No p V3 (1 - erf Vp'iWfa)2 + 1 

So _ ^pB3(2fa)~3_ 7

No ~ p(18/ir)M(l - erf Vp^B/f^2 + (1 - O.Sa"2/2 + •••)’ 

It will be recalled that B = a(2ir)w is the “equivalent” rectangular bandwidth 
of the normal law input filter. 
As p—* oo, the denominator of (26) tends to unity and So/No tends to the 

customary value (3). Curve A of Figure 3 is a plot of (26) when the deviation 
ratio ß/2ja is equal to 5. It shows that So/No deviates appreciably from a 
linear function of p when p becomes less than 10. The plot is not continued 
below p = 2 because Table 2 indicates that the approximation (24) for No 

does not hold for smaller values. Furthermore, the decrease in the output 
signal amplitude due to the presence of the noise begins to be appreciable for 
smaller values of p (this is discussed briefly in the Appendix). 
Curve A also shows the expected number of clicks per second computed 

from N+ + N_ = r(l — erf Vp) for ß = 150 kc so that r = ß/(12)H « 
43,300 cps. The click rate is about 1/sec near p = 10, where the break in the 
So/No curve occurs. This rate is proportional to the input bandwidth ß so 
that if ß/2 were 750 kc instead of 75 kc the numbers given in Figure 3 would 
have to be multiplied by 10. 

Signal Present 

The foregoing discussion was concerned with the unmodulated carrier case. 
When the signal is present (5) is replaced by the general expression (1), 

Q cos (o)ci + 0) + Iff = R cos (œcf + 0 + 0), (28) 

where 0' is the signal and 0' is the noise in the discriminator output. As in 
the case of no signal, it is assumed that a click is produced every time 0 changes 
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Figure 3. Dependence of output signal-to-noise ratio on input carrier-to-noise ratio. 

by + 2tt. The notation N+, N_ is used again to denote the expected number 
of times per second 9 increases or decreases through an odd multiple of r. 
Expected Number of Clicks per Second. The presence of the signal 

changes the simple error function expression (13) for N+ and N_ into the more 
complicated integrals derived in Sections 4 and 5. When </>' fluctuates sym¬ 
metrically about zero, N+ is equal to N_ and both tend to increase as rms <>' 
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increases. In the general case 

N+ - N_ = (2t)- * lim 
T->» T (29) 

where the limit is supposed to exist. 
Expressions for ,V_|_ when the signal is the sine wave q' — A sin arc given 

in Section 5. I or p large we have the approximation (83), 

i 
2tT 7T (47Tp) W

e aplu(ap), 

a = M/2^ 
2r2

rms(</>727r) 
r 

(30) 

where Zo(ap) is a Bessel function of imaginary argument. This holds when 
InÇí) has any symmetrical power spectrum wif) and r is defined by (14). 
It reduces to the asymptotic form of (13) when A = 0. The parameter a is 
somewhat like p = Q2/2bo with the maximum frequency deviation A/2t 
playing the role of Q and the representative frequency r of the noise envelope 
playing the role of rms IjfÇÍ). The value of N+ does not depend on the signal 
frequency ws. Also N+ = N_. 
from (30) it is seen that modulating the carrier tends to increase the number 

of clicks per second in the ratio 

N+ for A 0 A ^pX^ 
N+ for A = 0 ~ 2^ V/ + e (31 ) 

_J he casc when the signal </>' is a Gaussian noise with average 0 and variance 
</> is examined in Section 5. It turns out that the approximation correspond¬ 
ing to (30) is 

AT AT — (1 + N+ = N_~ re p I — !- - ) 
\ 4irp ) 

V2
a = W <32) 

where p » 1. 
Several curves showing how N+/ß varies with p are plotted in Figure 4 for 

the case of the sine-wave signal <7 = A sin The input spectrum is the 
usual rectangular w(f) of width ß cps. The dashed lines are computed from 
the approximation (30) with r = 0/(12)w and the solid lines by numerical 
integration of the exact integrals given in Section 5. A = 0 corresponds to no 
signal and A/2tt = ß/2 to a maximum frequency deviation which makes the 
carrier swing back and forth across the entire input band. This is the same as 
the signal used in the So/No ratios (3) and (26). The exact curves show that 
for maximum frequency swing the ratio on the left side of (31) increases from 
about 1.5 at p = 0 to 4.4 at p = 4. 
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Figure 4. The expected number of upward clicks per second with and without sine 
wave modulation. 

Approximation for W(/). The heuristic argument leading to (19) and (20) 
indicates that when a signal is present 6'(t) has the d-c component 

0' = 2tt(^+ - NJ) = J” lim (33) 
T-»00 1 

217 



NOISE IN FM RECEIVERS •107 

where we have used (29). Furthermore, the power spectrum IF(/) of 0'(O — 
6' at f = 0 is given by 

W(0) « 8tt2(W+ + N_) (34) 

when p 1. This is proved in Section 6 for several different kinds of signals. 
The conjecture (21) generalizes to 

»nn « 8^2(y+ + y_) + (2^y-Q-2 wvm. (35) 

Here WyCf) is the power spectrum of 

2/(0 = /s(0 cos - 7c(t) sin 0(<), (36) 

in which 7S(I) and 7C(Z) are to be regarded as independent Gaussian noise cur¬ 
rents with power spectra 2w(fe + /). In Figure 5, y is shown as the component 
of the noise current In which is perpendicular to the signal vector Qe'*. 
Consequently, when p » 1, 

- £ (37)

is the analogue of (7) and (2Tf)2Q~2 IFV(/) is the analogue of (8). 
It would be desirable to test the accuracy of (35) by constructing a table 

similar to Table 2. However, no exact values of IF(/) seem to be available 
for the cases of interest. 

For the sine-wave signal 0' = A sin &st it is shown in Section 7 that 
00 

IJ\(/) =2 2 ^fe+f+ nfA J^A^), (38) 
n = —» « 

where Jn(z) is a Bessel function of order n. An equivalent result has been 
given by N. M. Blachman [5], When w(j) is the usual rectangle of height w0 

and width ß cps, the range of n in (38) is given by — 0/2 < / + nf3 < 0/2, 
ua = 2tt/s. For example, if ß/2f„ = 5 and 0 < f < fs, n runs from —5 to 4 
and (38) becomes 

wv/) = [J20 + J2 + 2(J2 + J 2 + Jj + J2)]2w0, (39) 

where the argument of the Bessel functions is the frequency deviation ratio 
A/2irfs. Since S./2 = 1, when the summation extends from n — — to 
+ 00 , I^ÿ(/), as given by (39), is at most equal to 2wo, the value for no signal. 
So/No Computed from IK(/) of (35). Consider the case of a rectangular 

w{f) and a sine-wave signal </>' = tt0 sin 2itfat which swings back and forth 
across the entire input band at the maximum audio frequency/s = /a. Assume 
that ß/2fa is an integer so that, as in example (39), JKjX/) is constant over 
the band 0 to fa and is given by 

W\(/) = 2cw0 (40) 

in the range 0 < f < fa. The constant c is 1. 
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Setting 2V+ for V+ + ,V_ and 2cw () for !!'„(/) in the approximation (35) for 
IF(/) and then integrating from 0 to f„ gives 

Vo ~ 16tt2V+/„ + 47r23-1Q-22cwo/a (41) 

for the average output noise power. 
The average signal power S„ in the output is taken to be (ir3)2/2 as in (26). 

Strictly speaking, this should be multiplied by (1 - e-")2, since the noise 
reduces the output signal power by this factor, as mentioned in the appendix. 
However, this refinement is omitted because the factor is nearly unity in the 
region of largo p where the approximation (41) for Vo is supposed to hold. 

Dividing Su by (41) and using p = Q2/2ßw0 leads to 

« _ Ä!_ , (42)

Vo 12p(V+/3)(3//a)2 + C 1 ' 

where p is large. From (30) with r = 3/(12) A/2jr = 3/2, and a = |, 

Values of V+/3 for p < 4 may be read off the upper solid curve in Figure 4. 
In (42) the signal and the noise are supposed to be present at the same time. 

On the other hand, the Vo in expression (26) for S„/No is computed on the 
assumption that the signal is absent (i.e., the carrier is unmodulated). Both 
expressions are plotted in Figure 3 for a deviation ratio of ß/2fa = 5 (Curve A 
for unmodulated carrier, Curve B for modulated carrier). The expected 
number of clicks per second, 2V+, listed in Figure 3, are computed for 3/2 = 
75 kc and, for Curve B, a signal amplitude of A = ?r3. 
As mentioned in the preceding paragraph, Curve B in Figure 3 was computed 

by setting 3/2/« = 5 in (42). The value of c for this deviation ratio is the sum 
of the terms within the brackets on the right side of (39). Setting the argu¬ 
ment of the Bessel functions equal to 5 and performing the addition gives 

c = 0.89, 

which is less than unity, as expected. 
l igure 3 shows that as P decreases from infinity Curve B starts to deviate 

appreciably from linearity at about 10 log p = 11 db. The corresponding 
point on Cuve A is at about 10 db. The number of clicks per second for a given 
value of p in this region ranges from roughly 10 to 0.1 and is about six times 
greater for Curve B than for Curve A. Experimentally, it is found that 
occasional clicks are heard in the output at a carrier-to-noise ratio of 13 db. 
This appears to be a little higher than the theory indicates. The discrepancy, 
if any, may be due to our idealization of the receiver or, possibly, the actual 
input noise may not be strictly Gaussian. 

3. ASYMPTOTIC EXPRESSION FOR R (0)—NO SIGNAL 

This section is concerned with the asymptotic behavior of IF(0), the value 
of the power spectrum JF(/) of 0'(t) at / =0. Only the unmodulated carrier 
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case, that is, when d(t) is given by 

Q cos wct + IN = R cos (uct + 0), (44) 

is considered in this section. 1t is shown that as p = Q7(2Z&) becomes large 

JE(O) ~ l(hr".V+ = 8?r2r(l — erf p). (45) 

1 his result was mentioned earlier in connection with (15) of Section 2. The 
representative frequency r is defined by (14). 
When a signal is present, the results are more complicated. Therefore, their 

discussion is delayed until Section 6. 
1' or large values of p a plot of 0(0 would resemble Figure 2a and would show 

jumps of ± 2ir at irregular intervals. Let n+, n_ denote the respective number 
of upward and downward jumps of 0(0 during a long interval (0, 7’). Then 

T 

W(0) = lim 
T—»» 

where the value of the integral is 

(46) 

°(T ) - 0(0) = (n+ - n_)2ir + F(7’) - F(0), (47) 

in which F(0), F(T) are 0(1). F(0) and F(7’) are the small initial and final 
deviations from levels of the sort shown in Figure 2a. Here ( ) denotes the 
ensemble average taken over the ensemble of noise currents 
Equation (46) follows from the expression 

= lim -( 
J \ 

for the power spectrum of the random function x(0. This holds when z(0 
has no periodic component at the particular frequency f being considered (or 
no d-c component if f = 0). The random function 0'(0 obtained from (44) 
has no d-c component because the power spectrum of IN is symmetrical about 
the carrier frequency fc. Hence it is legitimate to set/ = 0 in (48) to get (46). 

'1'he expected values of n+ and n_ are both equal to TN+ = TN_ where 
from equation 6.6 of [4], 

N + = N- = f G - erf Vp). (49) 

x(t) dl (48) I e 

0 

We now take p to be so large and the successive jumps so far apart that they 
occur “individually and collectively at random.” In other words, we assume 
that upward jumps are from a Poisson process with an average rate of AT. /sec. 
1 he same assumption holds for the downward jumps, and the two Poisson 
processes are independent. This assumption implies a sufficiently rapid 
decrease in the correlation function Í2(r) of 0'(0 as r-> «, a condition that is 
apparently satisfied in most practical cases. 
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Since the variance of the Poisson distribution is equal to its mean, 

<(n+ - TN+)2) = TN+, (50) 

and a similar expression holds for the downward jumps. We rewrite (47) as 

0(7’) - 0(0) = (n+ - 7W+)2,r - (n_ - 7W_)2t + F(T) - F(0) (51) 

square both sides, take the ensemble average, and substitute in (46). Since 
the upward and downward jumps occur independently, the average value of 
(n+ — TN+)(n_ — TN—) is zero. When it is further assumed that F(T), F(0) 
have zero means and are independent of n+, n_, and each other, (46) becomes 

W(0) ~ lim y r<(n+ - 7W+)2) + ((»_ - TN-)2) + ’ 
T-> « / L \ / \ -hr / _ 

(52) 
When (50) is used, this reduces to 

IF(0) ~8t2(2V+ + N_), (53) 

which is equivalent to (45), since N+ = N- for the present case of no signal. 

4. VALUES OF N+ AND V_ WHEN CARRIER IS MODULATED 

As described earlier, the wave entering the receiver is 

Q cos (wct + <t>) 4- In = R cos (uct + </> + 0), (54) 

where 0' is the signal and 0' the noise at the discriminator output. Equation 
(54) is the real part of 

(Qé* + Ic + = Ke’û +i6 (55) 

where Ic and Is are the components of In with respect to the carrier frequency 
fc, as shown in (6). By dividing both sides of (55) by exp (iwct + i<f>) and 
setting x + iy equal to (Ic + il,)e~‘*, we have 

Q + x + iy = Rel> , 

x = Ic cos </> + /, sin </>, (56) 

y = I, cos </> — Ic sin <t>. 

Figure 5 shows the various phase relations. Two resolutions of the noise 
vector are given. The first is the usual one in which the components are Ic,Is, 
and in the second the components x, y are parallel and perpendicular, respec¬ 
tively, to the signal vector Qe*. Since we are interested primarily in the 
behavior of 0, it is convenient to redraw the second resolution as in Figure 5b. 

It is seen that 0 increases through an odd multiple of it whenever y decreases 
through y = 0 and, at the same time, x < —Q. In order to calculate the 
expected number N+ of times this happens in one second, we make use of the 
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following result. Let z and y be functions of time given by 

X = F(a lt • ■ • , 
(57) 

y = G(ai, ■ • • , aN ; t), 

where the parameters a¡, ■ ■ ■ , are random variables. The joint prob¬ 
ability that (1) y will decrease through y = yi in the interval ti, ti + dti and 
(2) x will be less than x¡ at t = ti is 

dh d* ¡L HpU» d̂ (58 ) 
where p(£, 77, f ; L) is the joint probability density of the random variables 

£ = F(a b • • • , ay ; ij) 

y = G(a^, , On ; L) 

— G(ai, • • ■ , ay ; i) 
ol 

(59) 

Furthermore, the expected number of such crossings per second is the limit, as 
T —» », of 1/T times the integral of (58) taken from h = 0 to ¿i = T, provided 
the limit exists. The expression (58) is much the same as those used in the 
study of the zeros of random functions. 

Figure 5. Phase relations between the signal and noise components. 
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In our application are the random parameters in the represen¬ 
tation of Ie, and I', G are given by the expressions (56) for x, y. Since Ic 
and /„ arc Gaussian, so are r/, We have 

¿ = /c cos 0 + Is sin </> 

V ~ I s cos <t> — Ic sin 0 

J- = I,' cos 0 - sin 0 -

(60) 

with the understanding that primes denote differentiation with respect to t 
and that all quantities on the right are evaluated at t — 

It may be shown that the required second moments (see, for example, 
equation A2-2 of [4]) are given by 

JI = Il = ho, = I? = b2, 

TJs = TJl= -TJl = 77I = 7x = 7^ = o, 
where ho, b2 are defined by (14) and the symmetry of w(/) about fc has been 
used. Hence 

C = V" = bo, (" = b> + ho</>'', 

iy = ̂  = 0, ff = -bo<t>', (62) 

fUO = (2t)-?V^m cxp 
e + f _ (r + ttr 
2h0 2h, 

Setting ÿi = 0, aq = — Q = — (2ph0)b in (58), introducing the parameter 

(“instantaneous” signal frequency in cps at t = t\) 
[representative frequency of /c(f)] 

making the change of variable ? = — fa(ho)M, f = —fa(h2)w, and then dropping 
the subscript a from ̂ a, fa gives 

r (// /* 80 /* 80
H+(ii) dh = / di (/Cf exp 

(2t) J(2p)« Jo 
£ _ (r + utf 
2 2 

(64) 

for the chance that a 0(f) picked at random from our universe of 0(f) ’s will 
increase through an odd multiple of tt between f; and í¡ + dl\. In line with 
(60), u is supposed to be evaluated at ¿i. 
The double integral in (64) may be reduced to the sum of two single integrals 

by first writing the exponential function as exp z. The partial derivatives of 
exp z with respect to £ and f give two simultaneous equations which may be 
solved for f exp z: 

de’ 
u- (1 + u 2
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This leads to 

//+(h) 
lr + «(2p)hf-

2 

= 2 ^{(1 + u2)w[l — erf (p + pu2)w] — ue P[1 — erf (u V^p)]}. 

When dealing with the last expression, it is sometimes convenient to use 

(66) 
Several remarks may now be made. 

1. When Q—» 0, p tends to zero but the “reference” provided by the signal 
still remains; (65) becomes 

= 2-^(1 + w2)« - w]. 

2. The chance that d(t) will decrease through an odd multiple of r between 
ti and ti + dti is H_(ti) dti where H_(ti) is obtained by changing the sign of 
u in This follows from the symmetry of w(j) about fc. From (65) 

= H+(h) + (25r)- 1̂ . (67) 

3. The expected number of times per second 6(1) increases or decreases 
through odd multiples of ir is given by 

N± 1 fT lim - / H±(h) dh, 
7— « 1 Jo 

(68) 

where the limit is assumed to exist. From (67) 

V V e~P r N+ — = — lim - — -
+ 2ir T 

(09) 

4. If the signal is such that p(w) du is the fraction of time <//2rr spends 
between u and u + du, the time average (68) can be replaced by 

N± = H ±(ti) p(u) du, (70) 

where H ±(h) depends on ti only through u. 
5. When 0' = 2irf0 = constant, the value of u isf0/r. The quantity H+(ti) 

does not depend on h and 

N+ = H+(ti) = 2"M(r2 + /?)*( 1 - erf (p + p/20r~Tl 
-/oe-'[l - erf (/or"1 Vp)]) (71) 

N- = H_(h) = N+ + foe-“. 
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It is seen that when /o is positive N_ is greater than A’+. Setting f0 = 0 
gives the special case of unmodulated carrier : 

N+ = N_ = 2-1r(l - erf Vp). (72) 

The result (71) may also be obtained from expression 6.2 of [4]. 

5. VALUES OF A+ FOR TWO TYPES OF SIGNALS 

In this section the formulas of Section 4 are applied to determine N+ for 
the special cases of (1) the sine-wave signal </>' = A sin ust and (2) a Gaussian 
noise signal. In both cases symmetry gives N+ = N_. 

Sine-wave Signal 

When <f>' = A sin ust, it is convenient to write 

<t> A sin ust 
u = -— = —-- = a sm x, 

2irr 2irr 

A 
a = ——> X = 

2irr 

i r2r /x\ 
X+ = - If+ (-]dx = Li+L 2 

2ir Jo \us/ 

(73) 

where the separation into L\ and L2 is suggested by the two parts of (65): 

r CT/2
Li = - I (1 + a2 sin2 x)w[l — erf (p + pa2 sin2 x)wJ dx 

* Jo 

TOLO- / /“ 
L2 = — •- / sin r[ 1 — erf (a V p sin x)] dx. 

4tt Jo 

(74) 

The integral for L2 may be evaluated by using sinxdx = d( — cos x) to 
integrate by parts. It is found that 

¿2 = 7—^ { 2^-"[Zo(2) + Z1C«)] (4rp)’ 
(75) 

where a = a2/2 and In(z) denotes the Bessel function of imaginary argument 

f2’ 
I cos nyetcmy dy, n integer. 
0 

(76) 

The integral for Li is more difficult to handle analytically, but it is well suited 
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for numerical integration. It may also be expressed as 

£ V (ïhn-i / 'i Y" c c2
2 4 n!n! \2 + 2a) L + ̂ 3 + 1^3-5 + ' ’ ’ n = 1 

_ c2n 2 U 
+ 1 3 • ■ • (4« - 3)JJ’ 

"here c = 2p(l + a), ¿(fc) is the complete elliptic integral of the second kind 
with modulus k, and (y)2n— i = t ‘ 7 ’ ï ’ ' ' (2n — f). When p is large, L\ 
is given asymptotically by 

re~" Í / 1 3 \ zé~z 1 
IV ~2p + ̂ ) e <78) 

Both (77) and (78) are based on 

'e-^I^ap) 

4tt . P 
(79) 

which is obtained by (1) replacing the integrand in (74) by the corresponding 
first integral in (65) (with u = a sin x), (2) interchanging the order of integra¬ 
tion, evaluating the integrals in x by setting y = 2x and using (76), (3) setting 
z = a^“/2, and (4) eliminating 1 i(z) by an integration by parts based upon 
Ii(z) dz = dlo(z). 

Io obtain the series (7/) for Li replace Io(z) in (79) by its power series and 
integrate term by term. The first term in the expansion of /u(z), namely 
unity, gives 

(80) 

where 7 1 + a and c — 2apy — 2p(l + a). The remaining terms in the 
expansion of I0(z) give rise to integrals of the form 

( dz = (i)2n_i 7-2„+(H) J P dv

a» I Jc/2 

+ ̂ c)^-^2 1 4- 1- -- 1- • • • 4- --
L 13 1-3-5 1 -3 • • -(4n - 3)J/ (81) 

The result (81) is obtained by setting /(c) = c2”“^) and m = 2n - 2 in 

fe Vf(v) dv = - [f(v) + f'(v) + • • • 4- + dv (82)
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When (80) and (81 ) art1 used in (79), the coefficient of 

is a series proportional to 

V7 F(-i, 1; 1 ; 7“2) = - (7 + 1)W) 7T 

E(k) = (1 — fc2 sin2 0)K de 

k = [2/(1 + y F = [2a/(l + 2a)]’4. 

The series (77) for Li is obtained by combining these results. 
The asymptotic expression (78) for Lt may be obtained by setting z = av in 

(79). The resulting integral is proportional to 

I" dv, f(v) = [e~z I o(z')z~*!]i=av-

When this is integrated by parts by using (82), an asymptotic series good for 
large p is obtained. Taking only the first two terms, f(y) +/'(«), leads to 
(78). 
When p is large, the largest term in L\ is the first term in (79), and the asymp¬ 

totic behavior of the Bessel functions in (75) shows that 2~xtr~1 Ae~p. 
Addition then gives 

4 * re~p
N+ ~ e~ap I0(ap), (83) 

2tt tt (4irp ) 

which is given in Section 2 as (30). 
It should be mentioned that in computing the upper exact curve of Figure 4 

Ai was evaluated by using Simpson’s rule on (74). For the accuracy required, 
this was more convenient than summing the series (77). 

Gaussian Signal 

Let </>'(i) be a Gaussian noise signal. Since the ensemble of values </>'(/ 1) is 
Gaussian, u = </>'(ti)/2?rr is distributed normally about zero and its variance is 

where </>'2 denotes the mean square value of the signal. Both </>' and 2irr are 
measured in radians per second and a is dimensionless. 1 he parameter a 
defined by (84) has the same significance as the a = a~/2 = (A~/2)/(2irry 
used in the preceding section because the mean square value of <// = A sin u„t 
is A 2/2. 
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Equations (70) and (65) give 

N+ = f H+(ti)(2ira)~iie~u,l2a du 

= Í e~ut'2aW + - erf (p + pu2̂ ] \OTTQ ) J — ao 

+ ue~p erf (u p) ¡ du 

" + 2av2̂ dv, (85) 
\/p 

where the last expression was obtained by several partial integrations. It may 
be verified by differentiating the last two lines with respect to y/ p and then 
integrating by parts to remove erf (u y/p) from the integrand. 
When p is large, an integration by parts shows that 

(86) 

6. ASYMPTOTIC EXPRESSION FOR IRO)—SIGNAL PRESENT 

In Section 3 it was shown that when the carrier is unmodulated W(0) is 
given asymptotically by (45) as p —> oo . When a signal is present, the work 
is complicated by the fact that 0'(/) may have a d-c component. Furthermore, 
the ensemble average (n+) of the number of upward jumps in the long interval 
(0, T) may not be exactly TN+ but may oscillate around TN+ as T increases. 

In this section 9(i) is defined by the equation 

Q cos (a>ct + </>) + Tv = It cos (uicl + </> + S), 

but we still have 

dt = (n+ - n_)2T + F(T) - F(0), (87) 

where n+, n_ are the numbers of upward and downward jumps in (0, T) and 
F(T) and F(0) are 0(1) just as in (47). 

First we consider the case in which the signal </>'(!) is a Gaussian noise. 
Then we go on to the case in which </>'(/) is some specified function of time, for 
example </>' = A sin wst. 

Gaussian Signal 

In this case the difficulties mentioned in the introductory paragraph do not 
occur. Considerations of symmetry show that d' (t) has no d-c component, 
hence W(0) is given by (46). However, now the ensemble average on the 
right extends over the ensemble of the Gaussian signals 0'(i) as well as the 
ensemble of the Gaussian noise currents I n(1)- Considerations of stationarity 
and symmetry show that the expected values of n+ and n_ are both equal to 
TN+ where N+ is given by (85). The argument given in Section 3 still holds 
and it follows that 

II’(O) ~ lör2̂  (88) 
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asp-> «. To repeat, N+ in (88) is given exactly by the integral (85) and 
approximately by the expression (8G). 

Signal Given as a Definite Function of Time 

When 0'(t) is a given function of time, the d-c component of 0'(i) is 

e' = i r , lim — I 0 (t) dt 
1 Jo 

= (N+ - N_)2* lim 
[0(0) - 0(7>~' - - - J 

T 
(89) 

where (87) has been divided by T and the limit N ± of n±/7’ is supposed to exist. 
The last expression in (89) may be obtained from (69). It may also be 
obtained by integrating the known result 

<0'(G)> = — 0'(< i)e-p , (90) 

in which the left-hand side is the value of 0'(t) at time ii averaged over the 
noise ensemble; this equation is discussed briefly in the appendix. 
We now show that when rather general conditions are satisfied (as they are 

for 0' = A sin wst and for 0' = constant) 

IF(0) ~ 8ir2(N+ + NJ) (91) 

as p —> oo . Here IF(/) is the power spectrum of 0'(t) — 0' and N^, N_ are the 
expected number of upward and downward clicks per second. 
The proof of (91) is along the lines developed in Section 3 for the no-signal 

case. In place of (46) we have 

11(0) lim 
r— ~ 

2 /r r - t (92) 

where, from (87) and (89), the value of the integral is 

(n+ -n_- TN+ + TNJ)2ir + F(T) - F(0). (93) 

From Section 4 it follows that when a particular 0(1) is selected at ran¬ 
dom from the universe of 0(t)’s the chance that it will jump upward (more 
precisely, pass upward through an odd multiple of tt) during the short inter¬ 
val (6, ti + dti) is H+(ti) dh + o(dti). We now assume that for large p 
the probability of a jump in (ij, G + dti) becomes independent of jumps that 
have occurred. For example, it is assumed that the chance of upward jumps 
in (G, G + dti) and (t2, <2 + dt2) is simply the product //+(ti) dtiH+(t2) dt2. 
It is known that such a process behaves much like a Poisson process in that 
the chance of exactly k upward jumps in (0, T), that is, n+ = k, is 

where 
(a*A!) exp (-a+), 

a+ = (n+) = [Q //+(ii) dli. 
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Furthermore, the variance of n+ is equal to its mean value just as in the Poisson 
process: 

((n+ - a+)2) = (n+). (94) 

The symbol a+ is used to denote the ensemble average (n+) in order to 
simplify the appearance of some of the later expressions. 

Writing (93) as 

[(n+ - a+) - (n_ - a_) + (a+ - a_ - TN+ + 7W_)]2ir + F(T) - F(0) 
(95) 

carries it into the analogue to the right-hand side of (51). As we go from 
one member of the ensemble to another, a±, N± remain fixed while n±, F(T), 
F(0) behave like random variables. Squaring (95), averaging over the noise 
ensemble, and making the same assumptions regarding F^T) and F(0) as in 
Section 3 takes (92) into 

W(0) ~ lim ((n+ - a+)2) + <(n_ - a_) 2) 

+ (a+ - - 7W+ + ™_) + 

The terms in F(T) and F(0) vanish in the limit. From (94) and the assump¬ 
tion that N ± is the limit of (n^/T, 

17(0) ~ 81T2(A+ + NJ) + 8ir2 lim 
T— 

- (y+ - NJ) Vt (96) 

The value of the limit in (96) may be determined for any particular 0'(i) 
with the help of expression (89) and 

T 

(a+ — aJ)2ir [</>(0) — 0(T)]e 
(97) 

which follows from (67) and the definition of a±. 

Examples, (a) 0'(¿) = constant = 2ir/0. Integration gives —2vf0T for 
0(0) — 0(T) and it follows from (89) and (97) that the limit term in (96) 
is zero. Hence (96) becomes (91) for 17(0). In the present example the 
expressions (71) for N+ and N_ lead to 

17(0) ~ 8^[ (r2 + /B)w[ 1 - erf (p + p^r“2)«] + foe~' erf (pfr-2)*} . (98) 

This reduces to the central result (45) of Section 3 when/0 = 0. 

(6) 0' = A sin ust. Integration gives — A(1 — cos wsT)/us for 0(0) — <t>ÇT). 
From symmetry, or the last equation in (89), it is seen that N+ = N— Fur¬ 
thermore, the limit of the right-hand side of (97) is zero. Expression (96) 
again reduces to expression (91) for 17(0). Equations for the appropriate 
value of N+ are given in Section 5. 
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7. THE POWER SPECTRUM OF y(t) 

The conjectured approximation (35) for the power spectrum IF(/) of 6' 
when a signal 0' is present contains the power spectrum 1FK(/) of 

y = I, cos <t> — Ic sin 0, (99) 

where y is the component of the noise I n which is perpendicular to the signal 
vector Qe’*. Here we mention several expressions for H\(J)- Although the 
results probably are not new, they are given for the sake of completeness. 
The average value of y(G) y(ti + r), taken over the ensemble of noise 

currents, is 
<dhy2) = {I si) cos 0i cos 02 4- ci) sin 0i sin 02

= (/siT,2>(cos 0i cos 02 + sin 0i sin 02) (100) 

where the subscripts 1 and 2 refer to the instants l\ and G + r and use has 
been made of the independence of 1 c and I,. Averaging (100) with respect 
to the time h gives the autocorrelation function of y. Since (Z,i/S2) is the 
autocorrelation function of I, and the time average of cos 0i cos 02 is the 
autocorrelation function of cos 0, taking the Fourier cosine transform of (100) 
and using the convolution theorem gives 

IK^/) = jo w(fc + x)[wc# (|/ - x|) + we¿J + x) + ww (|/ - x|) 
+ w,«(/ + x)] dx. (101) 

Here w^f), w^f) are the power spectra of cos 0(t) and sin 0(0 , an( l 2w(/c + /) 
is the power spectrum of I c and Is. 

For the signal 0' = A sin uA we take 0 = — Aw^1 cos &A- Then cos 0 and 
sin 0 are given by the real and imaginary parts of 

00 

exp ( —Z Aw^1 cos w,Z) = Jq(Aw71)+2 ( —t)" /„(Aw, ’) cos w,ni, 
n = 1 

and the sum of the power spectra of cos 0 and sin 0 is 

co 

+ w„(f) = 2Jq (Awr1) «(/) + 2 V (Awr1) 6(f - nf,), (102) 
n = 1 

where 3(/) denotes the unit impulse function. In (102) f is supposed to be 
> 0 and the integral of 6(f) from / = 0 to » is|. Substituting (102) in (101) 
gives n 

HV/) = 2 2 Jn (103) 
n ** — * 

This result is stated as (38) in Section 2. 
When the signal 0' is a Gaussian noise with power spectrum w^(f) [w^(f) df 
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is measured in (radians per second)2], it may be shown that 

^»(/) = 4 f0 Z?/s(t) cos 2tt/t exp [-F(r)] dr, (104) 
where 

Ä/.W = y/ 2w(/e + /) cos 2ir/r df 

^(r) = // w^f) • (1 - cos 2^t)(2t/)-2 df. 

APPENDIX. PROOF OF EQUATION (90) 

Equation (90), namely, 
WW = -^(G)^, (105) 

holds when the first moment of w(j) about fc is zero. Here w(f) is the power 
spectrum of IN(t) and fc is the carrier frequency. In particular, it holds when 
w(f) is symmetrical about fc, as is assumed throughout this chapter. Results 
equivalent to (105) for the special cases in which <// is a constant and a sine 
wave are given in Reference 4 and in Stumper’s paper [2], A more general 
result, which contains (90) as a special case, is given by Middleton[3]. 

Equation (105) is of interest because it shows that the discriminator output 
</>' + 9' contains the component (1 — e~ , that is, the presence of the noise 
reduces the output signal by the factor 1 — e-”. 
The result (105) may be established by writing the relation between the 

phase angles [see (55)] 
Qe* + Ic + U, = Æe*+" 

Then logarithmic differentiation gives 

R' , 
— + t(</> + 9 ) 
n 

+ 7' + i I 'x 
Qe'* + 7C + il „ 

1 he ensemble average of the left-hand side at time l¡ is obtained by averaging 
the right-hand side over all values of Ic, I„ I'c, 7'. As indicated in (01), 
these four Gaussian variables are independent when w(/) is symmetrical about 
fc- Averaging over 7’, 7’ removes 7' + il\ from the numerator, leaving 

(R'R-1 + »(*' + ey> WQ C „ P „ exp [Ï0 - (2bo)-1(72 + 72)] 
2^0J-/ eJ-, ’ Qe*+Ic + iI, 

The integral converges at the zero of the denominator. It may be evaluated 
by setting J c = r cos a — Q cos </>, 7, = r sin a — Q sin 0, ß = a — <j>, and 
using 

dß cos ß exp [- (2ho) ^r2 - 2rQ cos ß + Q2)] = 1 — 

The resulting expression for + 9') is (1 - and (105) follows 
immediately. 
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Variable Frequency Electric Circuit Theory with Application 
to the Theory of Frequency-Modulation 

By JOHN R. CARSON AND THORNTON C. FRY 

In this paper the fundamental formulas of variable frequency 
electric circuit theory are first developed. These are then applied 
to a study of the transmission, reception and detection of frequency 
modulated waves. A comparison with amplitude modulation is 
made and quantitative formulas are developed for comparing the 
noise-to-signal power ratio in the two modes of modulation. 

FREQUENCY modulation was a much talked of subject twenty or more years ago. Most of the interest in it then centered 
around the idea that it might afford a means of compressing a signal 
into a narrower frequency band than is required for amplitude modu¬ 
lation. When it was shown that not only could this hope not be 
realized,* but that much wider bands might be required for frequency 
modulation, interest in the subject naturally waned. It was revived 
again when engineers began to explore the possibilities of radio trans¬ 
mission at very short wave lengths where there is little restriction on 
the width of the frequency band that may be utilized. 

During the past eight years a number of papers have been published 
on frequency modulation, as reference to the attached bibliography 
will show. That by Professor E. H. Armstrong f deals with this 
subject in comprehensive fashion. In his paper the problem of 
discrimination against extraneous noise is discussed, and it is pointed 
out that important advantages result from a combination of wide 
frequency bands together with severe amplitude limitation of the 
received signal waves. His treatment is, however, essentially non-
mathematical in character, and it is therefore believed that a mathe¬ 
matical study of this phase of the problem will not be unwelcome. 
This the present paper aims to supply by developing the basic mathe¬ 
matics of frequency modulation and applying it to the question of 
noise discrimination with or without amplitude limitation. 
The outstanding conclusions reached in the present paper, as 

regards discrimination against noise by frequency modulation, may 
be briefly summarized as follows: 

* See Bibliography, No. 1. 
f See Bibliography, No. 12. 
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(1) To secure any advantage by frequency modulation as distin¬ 
guished from amplitude modulation, the frequency band width must 
be much greater in the former than in the latter system. 

(2) Frequency modulation in combination with severe amplitude 
limitation for the received wave results in substantial reduction of the 
noise-to-signal power ratio. Formulas are developed which make 
possible a quantitative estimate of the noise-to-signal power ratio in 
frequency modulation, with and without amplitude limitation, as 
compared with amplitude modulation. 

It is a pleasure to express our thanks to several colleagues who have 
been helpful in various ways: to Dr. Ralph Bown who in a brief but 
very incisive memorandum, which was not intended to be a mathe¬ 
matical study, disclosed all the essential ideas of the quasi-stationary 
method of attack; to Mr. J. G. Chaffee,* who has been conducting 
experimental work on frequency modulation in these Laboratories for 
some years past, by means of which quantitative checks on the 
accuracy of some of the principal results have been possible; and to 
various associates, especially Mr. W. R. Bennett and Mrs. S. P. 
Mead, for detailed criticism of certain portions of the work. 

I 

In the well-known steady-state theory of alternating currents, the 
e.m.f. and the currents in all the branches of a network in which 
the e.m.f. is impressed involve the time t only through the common 
factor e'"‘ where i = -V — 1 and o> is the constant frequency. To this 
fact is attributable the remarkable simplicity of alternating current 
theory and calculation, and also the fact that the network is completely 
specified by its complex admittance F(fw). Thus, if the e.m.f. is 
Ee™“, the steady-state current is 

I.. = EY^e^1. (1) 

In the present paper we shall deal with the case where the frequency 
is variable, and write the impressed e.m.f. as 

E exp ( if ü^dt ) . (2) 

Stifi will be termed the instantaneous frequency. This agrees with 
the usual definition of frequency when Í2 is a constant; it is the rate of 
change of the phase angle at time /; and in addition the interval T 
between adjacent zeros of sin fQ(t)dt or cos fa^dt is approximately 
Trift)' in cases of practical importance. 

* See Bibliography, No. 11. 
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Instead of dealing with an arbitrary instantaneous frequency 2(/) 
we shall suppose that 

= œ + mW, (3) 

where œ is a constant and mW is the variable part of the instantaneous 
frequency. In practical applications mW will be written as Xs(l) where 
X is a real parameter and the mean square value s2 of s(t) is taken as 
equal to 1/2. Other restrictions on mW will be imposed in the course 
of the theory to be developed in this paper. Fortunately these 
restrictions do not interfere with the application of the theory to 
important problems. 
The steady-state current as given by (1) varies with time in precisely 

the same way as the impressed e.m.f. When the frequency is variable 
this is no longer true. On the other hand, formula (1) suggests a 
“quasi-stationary” or “quasi-steady-state current” component, IQ,a, 
defined by the formula 

Iw = EY(iQ) - exp J" üdtj, (4) 

which corresponds exactly to (1) with the distinction that the ad¬ 
mittance is now an explicit function of time. We are thus led to 
examine the significance of Iqss as defined above and the conditions 
under which it is a valid approximate representation of the actual 
response of the network to a variable frequency electromotive force, 
as given by (2). 
We start with the fundamental formula of electric circuit theory. 1 

Let an e.m.f. F(t) be impressed at time I = 0, on a network of indiciai 
admittance A W ; then the current ZW in the network is given by 

zw= 
Jo 

r) 'A'^dr. (5) 

Here .4'W = d¡dt-A{t) and it is supposed that ?l(0) = 0. (This 
restriction does not limit our subsequent conclusions and is introduced 
merely to simplify the formulas. Furthermore .4(0) is actually zero 
in all physically realizable networks.) 

Omitting the superfluous amplitude constant E we have 

F{t) = exp 

= exp (6) 

1 See J. R. Carson, “Electric Circuit Theory and Operational Calculus,” p. 16. 
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F(t — t) = exp 

= exp i(l — t)u: + i 

= exp pQ(/)]-exp i^r — i (7) 

Substituting this expression in (5) for F(t — r) and writing 

exp — T^dTl = M(t, t), 

we have for the current in the network 

(8) 

We now split the integral into two parts, thus: 

(9) 

The second integral on the right represents an initial transient which 
dies away for sufficiently large values of time, t, while the infinite 
integral represents the total current, I, for sufficiently large values of t. 
We have therefore 

where 

I = èf odr. p r^-^A'^dr + It 
Jo 

= Y(iv, Orf™ + IT, 

Ytiu, t) = I M(t, T)e '“"A' (T)dT. 
Jo 

(10) 

(11) 

The transient current,2 It, is then given by 

It = e'^Mt I M(t, r)e ^A'^dr. (12) 

The foregoing formulas correspond precisely with the formulas for 
a constant frequency impressed e.m.f. ; these are 

I., = e“' e-^A'^dr, (10a) 
Jo 

’Hereafter the transient term It of (10) will be consistently neglected and the 
symbol I will refer only to the quasi-stationary current. 
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Y(iu) = f e-i“M'(T)dr, (Ha) 
Jo 

IT = e'“' e-^A'^dr, (12a) 

to which the more general formulas reduce when /z = 0 and conse¬ 
quently M = 1. 
We have now to evaluate Y(ia, Í) as given by (11). We shall 

assume tentatively, at the outset, that /z = Xs(Z) has the following 
properties : 

Xs(i) <K co for all values of t, 
- 1 < 1, 

- 1 < sdl < 1. 
Jo 

With these restrictions the instantaneous frequency lies within the 
limits w ± X. 

Let us now replace M(t, r) by the formal series expansion 

which converges in the vicinity of all values of t for which 5 has a 
complete set of derivatives. Then, if we write 

r)l = (-i)»C„(0 (13a) 
OTn J r-0 

and substitute (13) in (11), we get 

y(iw, /)= + £ (- i)"Cn i ^e-^A'^dr. (14) 
Jo 1 J° 

From (Ila) it follows at once that 

so that 
00 1 dn

Y(iu, ï) = YÇiu) + E Cnti) Y(iu). 

~n ein fin 

lQ n\ n\dwn
(15) 

(16) 
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The coefficients C„ are easily evaluated from (8) and (13a); they are 3

Ci = z<(0. 

G = M2 ~ i^n, (17) 

Now consider the quasi-stationary admittance F(i2). Writing 
ß = « + iM and expanding as a power series, we have (assuming 
that the series is convergent) 

00 un
YW = Yfa) + YÇi^. (18) 

From (16), (17) and (18) we have at once 

00 1 Jn 
Y{i^, t) = Y^) + L DM Y^) , (19) 

2 W • CLüò 
where 

Ul' 

<2 °> 

Dm+ i = Cm+ i — nm+1. 

Consequently, the total current, after initial transients have died 
away, is given by 

I — I qst + A(¿) 

Y^ -
i dp-d^Y 
2! dt doJ 

3! 
d3Y , 
du 3 + ••]• (21) 

We have thus succeeded in expressing the response of the network in 
terms of the quasi-stationary current 

d qsa Yiity'txp 

3 From these recursion formulas Cn can be derived in the compact form 

( -d \n~l
= V ~ ldt) M symbolically. 

(22) 
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and a correction series A, which depends on the derivatives of the 
steady-state admittance Y(i&) with respect to frequency and the 
derivatives of the variable frequency /x(/) with respect to time. 

If the parameter X is sufficiently large and the derivatives of 5 are 
small enough so that Cn may be replaced by the two leading terms, 
we get 

Then by (16) and (18) 
1. LL LLn~“ (ln

= y^-^Y^ 

= F(^) -^^YW) 

= I W +y I'(2) (^)- (16a) 

The preceding formulas are so fundamental to variable frequency 
theory and the theory of frequency modulation that an alternative 
derivation seems worth while. We take the applied e.m.f. as 

E exp ( iuct + id + i § ndl ), (23) 

the phase angle 0 being included for the sake of generality. 
Now in any finite epoch 0 — t — T, it is always possible to write 

exp / i i pdt ) = i (24) 
\ .7 0 ‘ «7 —ao 

thus expressing the function on the left as a Fourier integral. For 
present purposes it is quite unnecessary to evaluate the Fourier 
function F(iu). 

Substitution of (24) in (23) gives for the current 

I = Eexp (iuct + id} • Ç F{iu)Y(iue-Y (25) 
•7 —ao 

We suppose as before that, in the interval 0 — t — T, and its de¬ 
rivatives are continuous. We can then expand the admittance func-
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tion Y in the form 

YÇiœc + iw) = Y^ + p Yw (iwe) + M2 Y™^ + • • • 

= Y(i^ + ¿ i n\ 

= Y^ + ̂ ^Y^. (26) J /*• . (i UJ c 

Substitution of (26) in (25) gives 

00 I J» 

I = E exp (iwct + ie) E~i 3— 
o n\awc œn F(ju)e'utdu. (27) 

But by the identity (24) and repeated differentiations with respect 
to t, we have 

Substitution of (28) in (27) gives 

I Cl \ r °» 1 An I 
I = Eexp (i Qdt + id • Y(iwc) + X-,Cn-p-YÇi^ , (29) 

\ .E /I i «! 

which agrees with (16). 
Formula (25), as it stands, includes the initial transients at time 

/ = 0 as well as any which occur at discontinuities in n(t). Differ¬ 
entiation with respect to / under the integral sign, however, in effect 
eliminates these transients and (29) leaves only the quasi-stationary 
current (plus the correction series given in (19)). 
The series appearing in formula (29) may not be convergent; in any 

case its computation is laborious. Furthermore, in its application to 
the theory of frequency modulation, terms beyond the first two 
represent distortion. For these reasons it is often preferable to 
proceed as follows: 

Returning to formula (25), we write 

(Cd Cl (1 n \ 

1 + ï!d<^ + + Rn^c’ (30) 
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thus defining the remainder R„. Then (29) becomes 

I = E exp 1 -L C1 ¿ i ... i Ça d" 
1 ! dmc n ! duicn

Y(iuc) 

4- E exp (iud + i9) I Rn(bic, bi)F(iai)e iu,du. (31) 

In practice it is usually desirable to take n = 1. 
Now the infinite integral 

D(t) = I Rn(b>c, u>)F{iw)eiutdu (32) 

must be kept small if the finite series in (31) is to be an accurate repre¬ 
sentation of the current I. While it is not in general computable, we 
see that, in order to keep it small, R„(wc, w) must be small over the 
essential range of frequencies of F(ibi). In cases of practical im¬ 
portance we shall find (see Appendix 1) this range is from w = — X 
to a = + X. 

If the transducer introduces a large phase shift, the linear part of 
which is predominant in the neighborhood of = uc, it is preferable 
to express the received current I in terms of a “retarded” time. To 
do this, return to (25) and write 

(33) Y(üoc + iu) = I YÇibic + ibi) |e •*, 
</> = b>cT + b¡T 4“ ^(w) 4” 9C, 

0(0) = 0'(O) = 0, 
so that 

I = E exp (iwct' 4- i9') P I Y(ibic 4- ib>)¡e F(ib))e ,ut'du, (34) 

where t' = t — r is the “retarded” time and 9' = 9 — 9C. Formula 
(34) is identical with (25) but is expressed in the “retarded” time. 
Now we can expand the function 

I YÇiwc 4- iw)| 
in powers of w; thus 

d \ 00
I Y(ib>c)\ dbJc / 2 

where 
1 f 
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and by substitution in (34) we get 

I — E exp T + Í0' 

X ( 1 
\ / |F(iWc)| + Ç^^') (35) 

which corresponds precisely with (29) except that it is expressed in 
terms of the retarded time t'. If the transducer introduces a large 
phase delay, (35) may be much more rapidly convergent than (29) 
and should be employed in preference thereto. 

Corresponding to (30) we may write 

Y(iwc + iw)« f 1 + u ] I F(Íü>c)| + R. \ dwc / 

which defines the remainder. Then 

I = E exp + Xs(t’) 1 I 
(LWC

where 
+ E exp 

R(wc, w) • F(jw)e "“’dw. 

(36) 

(37) 

Formulas (36) and (37) correspond precisely with (31) and (32) and 
the same remarks apply. 

II 

The foregoing will now be applied to the Theory of Frequency 
Modulation. A pure frequency modulated wave may be defined as a 
high frequency wave of constant amplitude, the “instantaneous” 
frequency of which is varied in accordance with a low frequency signal 
wave. Thus 

W = exp i ( wct + X / s(t)dt j (38) 

is a pure frequency modulated wave. Here wc is the constant carrier 
frequency and s(ï) is the low frequency signal which it is desired to 
transmit. X is a real parameter which will be termed the modulation 
index. The “instantaneous” frequency is then defined as 

«C + Xs(/). 

It is convenient to suppose that s(Z) varies between ± 1 ; in this case 
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the instantaneous frequency varies between the limits 

We i X. 

In all cases it will be postulated that X <£ wc. 
With the method of producing the frequency modulated wave (38) 

we are not here concerned beyond stating that it may be gotten by 
varying the capacity or inductance of a high frequency oscillating 
circuit by and in accordance with the signal sÇt). 

Corresponding to (38), the pure amplitude modulated wave (carrier 
suppressed) is of the form 

s^-e^A. (39) 

If the maximum essential frequency in the signal s(t) is w„, the wave 
(39) occupies the frequency band lying between wc — wa and wc + wa, 
so that the band width is 2wa. In the pure frequency modulated wave 
the “instantaneous” frequency band width is 2X. In practical 
applications X » wa. We shall now examine in more detail the concept 
of “instantaneous” frequency and the conditions under which it has 
physical significance. 
The instantaneous frequency is, as stated, wc + \s(t) ; a steady-state 

analysis is of interest and importance. To this end we suppose 
s(Z) = cos ut so that w is the frequency of the signal. Then the wave 
(38) may be written 

and, from known expansions, 

W= ¿ J^X/^e^^1, (40) 
n=—oo 

where J„ is the Bessel function of the first kind. Thus the frequency 
modulated wave is made up of sinusoidal components of frequencies 

wc ± nw, w = 0, 1, 2, • • •, «> . 

If X/w>> 1 (the case in which we shall be interested in practice) the 
terms in the series (40) beyond n = X/w are negligible; this follows 
from known properties of the Bessel functions. In this case the 
frequencies lie in the range 

we ± ww = wc ± X, 
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which agrees with the result arrived at from the idea of instantaneous 
frequency. On the other hand, suppose we make X so small that 
X/w « 1. Then (40) becomes to a first order 

I _ _ J 
2 \ O> 

gi(wc-w)f 

so that the frequencies wc, wc + a, we — u are present in the pure 
frequency modulated wave. 

It is possible to generalize the foregoing and build up a formal 
steady-state theory by supposing that 

— 22 Am COS T 0m). (41) 

On this assumption, it can be shown that the frequency modulated 
wave (38) is expressible as 

PK — exp Çiwct) IT JL T„(um) exp [in(umt + 0m)], (42) 
m n=—oo 

Cm 

The corresponding current is then 

exp (iœct) II 22 Jn(vm)Y(iuc + 7tam) exp [in(umt + 0m)]. (43) 
m n=—» 

Formulas (42) and (43) are purely formal and far too complicated 
for profitable interpretation. Consequently this line of analysis will 
not be carried farther.4

If we compare the pure frequency modulated wave, as given by (38), 
with the pure amplitude modulated wave, as given by (39), it will be 
observed that, in the latter, the low frequency signal s(t), which is 
ultimately wanted in the receiver, is explicit and methods for its 
detection and recovery are direct and simple. In the pure frequency 
modulated wave, on the other hand, the low frequency signal is 
implicit; indeed it may be thought of as concealed in minute phase or 
frequency variations in the high frequency carrier wave. 

If we differentiate (38) with respect to time t, we get 

dWIdt = + Xs(l)J exp ( iwct + i\ Í sdi (44) 
4 See Appendix 1. 
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The first term, 

a>c exp (45) 

is still a pure frequency modulated wave. The second term, 

Xs(Z) - exp (46) 

is a “hybrid” modulated wave, since it is modulated with respect to 
both amplitude and frequency. The important point to observe is 
that, by differentiation, we have “rendered explicit” the wanted low 
frequency signal. We infer from this that the detection of a pure 
frequency modulated wave involves in effect its differentiation. The 
process of rendering explicit the low frequency signal has been termed 
“frequency detection.” Actually it converts the pure frequency 
modulated wave into a hybrid modulated wave. 
Every frequency distorting transducer inherently introduces fre¬ 

quency detection or “hybridization” of the pure frequency-modulated 
wave, as may be seen from formula (16). The transmitted current is 
conveniently written in the form 

/ Cl \ { 1 11 
I = Y(i&c) exp I i I Hdt ) J 1 -|- Xs 4- —- Ci 

\ ' I «i 2!^2-

where 
+S!¿c'+"b <47)

<«> 
(Note that has the dimensions of frequency. It may be and usually 
is complex.) 

Every term in (47) except the first, is a hybrid modulated wave. 
In passing it is interesting to compare the distortion, as given by 

(47), undergone by the pure frequency-modulated wave, with that suf¬ 
fered by the pure amplitude-modulated wave (39), in passing through 
the same transducer. The transmitted current corresponding to the 
amplitude-modulated wave (39) is 

r tr,- \ , Í z,\ , 1 dS , 1 d2S I - Y Me'^ I s(Z) + jt + 2 d¡2

+ Ti7^»S + •" I’ 3 !(î<o3)3 dP 
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This equation corresponds to (47) for the pure frequency-modulated 
wave. 

Ill 

In this section we consider the recovery of the wanted low frequency 
signal s(f) from the frequency-modulated wave. This involves two 
distinct processes: (1) rendering explicit the low frequency signal 
“implicit” in the high frequency wave; that is, "frequency detection” 
or “hybridization” of the high frequency wave; and (2) detection 
proper. 

It is convenient and involves no loss of essential generality to 
suppose that the transducer proper is equalized in the neighborhood of 
the carrier frequency œc; that is, 

Y^), • • • (50) 
duc doij 

are negligible. 
Frequency detection is then effected by a terminal network. We 

therefore take as the over-all transfer admittance 

y(iw)-Y(iw). (51) 

y(iw) represents the terminal receiving network; it is under control and 
can be designed for the most efficient performance of its function. As 
we shall see, it should approximate as closely as possible a pure reactance. 
Taking the over-all transfer admittance as (51), we have from (47), 

I = y(iwc) y(toc) - exp (if ) 
Jo ' 

X [ 1 4- Xs + y¡—j Ci + Yj—J C3 + • • • I, (52) 

where now 
1 dn 

l/Wn»=_7¿^-^y(íWe). (53) 
y(joic) do>c

Inspection of (52) shows that the terms beyond the second simply 
represent distortion. The terminal network or frequency detector 
should be so designed as to make the series 

rapidly convergent from the start.5 In fact the ideal frequency de¬ 
tector is a network whose admittance y(jw) can be represented with 
8 See note at end of this section (p. 528) for specific example. 
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sufficient accuracy in the neighborhood of w = wc by the expression 

= y(toc) ( 1 d-
\ “i 

(53a) 

This approximation should be valid over the frequency range from 
co = — X to u = uc + X. 
Supposing that this condition is satisfied, the wave, after passing 

over the transducer and through the terminal frequency detector, is 
(omitting the constant y Y) 

(54) 

If y is a pure reactance, au is a pure real; due to unavoidable dissi¬ 
pation it will actually be complex. To take this into account we 
replace a>i in (54) by oie-'“ where now «i is real; (54) then becomes 

1 + — cos a • s(t) + i — sin a • s(t) ! exp (if 
“i “i J \ Jo

The amplitude A of this wave is then 

Í / X \2 / X \2 -i 1/2 
A = ! ( 1 + — cos a ■ s(Z) ) + ( — sin a • $(/) ) 1 • (56) 

I \ / \ / J 

Now let X/a)i be less than unity and let the wave (55) be impressed on 
a straight-line rectifier. Then the rectified or detected output is 

1 d- cos a-slt) 
wi 

X sin a -s(t) 
<oi + X cos a-s(f) 

2 I 1/2 

(57) 

or, to a first order, 

X IX2
1 d- cosa-s(Z) d- =—;sin2 a-52(/). 

o/i i o)d (58) 

The second term is the recovered signal and the third term is the first 
order non-linear distortion. 

Inspection of the foregoing formulas shows at once that, for detection 
by straight rectification, the following conditions should be satisfied: 

(1) X/wi must be less than unity. 
(2) The terminal network should be as nearly as possible a pure 

reactance to make the phase angle a as nearly zero as possible. 
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(3) To minimize both linear and non-linear distortion it is necessary 
that the sequence 

Oil \ O)2 / \ “3 / 

be rapidly convergent from the start. 

The first term of (58) is simply direct current and has no significance 
as regards the recovered signal. When we come to consider the 
problem of noise in the next section, we shall find that its elimination is 
important. This can be effected by a scheme which may be termed 
balanced rectification. Briefly described the scheme consists in termi¬ 
nating the transducer in two frequency detectors yi and y2 in parallel; 
these are so adjusted that yi(rwc) = — y2(ioc) and dyildoc = dyt/doc. 
a>i is therefore of opposite sign in the two frequency detectors. The 
rectified outputs of the two parallel circuits are then differentially 
combined in a common low frequency circuit. Corresponding to (58), 
the resultant detected output is 

2 — cosa-s(Z). (59) 
<01 

This arrangement therefore eliminates first order non-linear distortion, 
as well as the constant term. 

Rectification is the simplest and most direct mode of detection of 
frequency-modulated waves. However, in connection with the problem 
of noise reduction other methods of detection will be considered. 

Note 
As a specific example of the foregoing let the terminal frequency 

detector, specified by the admittance y (io), be an oscillation circuit 
consisting simply of an inductance L in series with a capacitance C. 
Then 

l- X • [C o/oR 

where or2 = \¡LC. 
Then, if mJor is nearly equal to unity, that is, if 

or = (1 + 3)<Jt, 
I «I «1, 

we have approximately, 
1 n! 

On" (or — Uc)n

i <CjL 
2 Or — Oc
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Formula (42) thus becomes 

I = ylfuj • F(toc) - exp 1 i I 
* Jo 

1 -J_ _ I- _ _ 
(¿»R — œc)2

+ -,- —-- F • • • Q¿r — We) 3

In order that the distortion shall be small it is necessary that 

X « |o>ä — 0>e| . 

If the two networks yi and y i are oscillation circuits so adjusted that 

CJL, = CJLi. 
ORt = (1 + 5)“c = i/^ÍLíCi, 
oír, = (1 — 5)o>e = l/^LiCi, 

then the combined rectified output of the two parallel circuits is 
proportional to 

Xs i C, . Cs . 
5-0>e (S-OlJ3 (Ôtoe)5

Thus the constant term and the first order distortion are eliminated 
in the low frequency circuit. 

IV 

The most important advantage known at present of frequency-
modulation, as compared with amplitude-modulation, lies in the possi¬ 
bility of substantial reduction in the low frequency noise-to-signal 
power ratio in the receiver. Such reduction requires a correspondingly 
large increase in the width of the high frequency transmission band. 
For this reason frequency-modulation appears to be inherently 
restricted to short wave transmission. 

In the discussion of the theory of noise which follows, it is expressly 
assumed that the high frequency noise is small compared with the high 
frequency signal wave. Also ideal terminal networks, filters and 
detectors are postulated. 

In view of the assumption of a low noise power level, the calculation 
of the low frequency noise power in the receiver proper can be made to 
depend on the calculation of the noise due to the typical high fre¬ 
quency noise element 

A n exp (iuct + iu„t + i9n). (60) 
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Corresponding to the noise element (60), the output of the ideal 
frequency detector is 

(
pi \ í Xç 

i i üdt I • < 1 d- + 
Jo / I 

Since the expression 

(61) 

exp 

occurs so frequently in the analysis which is to follow, it is convenient 
to adopt the notation 

ßn — Xs(/), 

(61a) 

With this notation and on the assumption that A„ « 1 and a>i real, 
the amplitude of the wave (61) is 

1 + ——F ( 1 4— n A n cos £lndt j. (62) 

In this formula the argument of the cosine function should be 
strictly 

Í Qndi + 0n. 
Jo 

The phase angle d„ is random however and does not affect the final 
formulas; it may therefore be omitted at the outset. Consequently, 
if the wave (61) is passed through a straight line rectifier, the rectified 
or low frequency current is proportional to 

\s{t) + (»i + w„)X„ cos y Qndt^ . (63) 

The first term is the recovered signal and the second term the low 
frequency noise or interference corresponding to the high frequency 
element (60). 
Now the wave (63) , before reaching the receiver proper, is transmitted 

through a low-pass filter, which cuts off all frequencies above wa‘, wa is 
the highest essential frequency in the signal s{t). Consequently, in 
order to find the noise actually reaching the receiver proper, it is 

254 



VARIABLE FREQUENCY ELECTRIC CIRCUIT THEORY 531 

necessary in one way or another to make a frequency analysis of the 
wave (63). This is done in Appendix 2, attached hereto, where 
however, instead of dealing with the special formula (63), a more 
general expression 

Xs(i) + (a>i + + /xs)/l n cos Í* Ylndt, (64) 
Jo 

is used for the low frequency current. This will be found to include, 
as special cases, several other important types of rectification, as well 
as amplitude limitation, which we shall wish to discuss later.6 Then, 
subject to the limitation that the noise energy is uniformly distributed 
over the spectrum, it is shown in Appendix 2 that 

Ps = XV, (65) 

Pn = (I^J + «i2 + (1 + p)2XV)wJV\ (66) 

" = m/X, (67) 
N2 = mean high frequency power level. 

These formulas are quite important because they make the calcula¬ 
tion of low frequency noise-to-signal power ratio very simple for all the 
modes of frequency detection and demodulation which we shall discuss. 
Applying them to formula (63) we find for straight line rectification 

Pn = (j“o2 + «i2 + X2s2)uaN2, (68) 
Ps = XV. 

It is known that in practice an2 » XV and XV » wo2. Consequently 
in the factor (ja;o2 + an2 + XV) the largest term is wi2. Therefore 
it is important, if possible, to eliminate this term. This can be 
effected by the scheme briefly discussed at the close of section III; 
parallel rectification and differential recombination. For this scheme 
the low frequency current is found to be proportional to 

(
C‘ \ 
I Qndt I. (69) 
Jo 1

Consequently, for parallel rectification and differential recombination, 

Pn = (W + XV)waA2. (70) 
6 The formula is also general enough to include detection by a product modulator, 

which however is not discussed in the text as no advantage over linear rectification 
was found. 
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Here, in the factor (Jwa2 + X2s2), the term X2s2 is predominant. The 
elimination of the term wi2 has resulted in a substantial reduction in 
the noise power. 

Returning to the general formula (66) for Pn, it is clear, that, if in 
addition to eliminating the term «i2, the parameter v = ju/X can be 
made equal to — 1, the noise power will be reduced to its lowest 
limits: 

Pn = i<voW2. 

This highly desirable result can be effected by amplitude limitation, 
the theory of which will now be discussed. 

V 

When amplitude limitation is employed in frequency-modulation, 
the incoming high frequency signal is drastically reduced in amplitude. 
If no interference is present this merely results in an equal reduction 
in the low frequency recovered signal which is per se undesirable. 
When, however, noise or interference is present, amplitude limitation 
prevents the interference from affecting the amplitude of the resultant 
high frequency wave; its effect then can appear only as variations in 
the phase or instantaneous frequency of the high frequency wave. To 
this fact is to be ascribed the potential superiority of frequency-
modulation as regards the reduction of noise power. This superiority 
is only possible with wide band high frequency transmission ; that is, 
the index of frequency-modulation X must be large compared with the 
low frequency band width œo. Insofar as the present paper is con¬ 
cerned, the potential superiority of frequency-modulation with ampli¬ 
tude limitation is demonstrated only for the case where the high fre¬ 
quency noise is small compared with the high frequency signal wave. 

If, to the frequency-modulated wave exp ( i § Qdt there is 

added the typical noise element An exp (iuc + iunt + On), the re¬ 
sultant wave may be written as 

• 1 + A B exp exp 
0 0 

(71) 

Postulating that A „ « 1 and therefore neglecting terms in A n2, 
the real part of (71) is 

1 + A « cos ( P ündt\\- cos ( Í Udi + A n sin 
\ Jo 7 ' 'Jo 

(72) 
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If this wave is subjected to amplitude limitation, the amplitude 
variation is suppressed, leaving a pure frequency-modulated wave, 
proportional to the real part of 

exp (73) 

(but drastically reduced in amplitude). 
After frequency detection the wave (73) is, within a constant, 

Consequently, since 

I St„dt = wnt + On — I sdt, (75) 
Jo Jo 

the amplitude of the wave (74) is 

1 + 1 Xs + (œ„ — Xs)^4 „ cos J Qndt ) J. (76) 

This is the amplitude of the low frequency wave after rectification; it is 
obviously proportional to 

Xs + (wn — Xs)d „ cos ( Qndt^ , (77) 

which is a special case of (64) and may be used in calculating the 
relative signal and noise power with amplitude limitation. Hence we 
have, by aid of (65) and (66), 

Ps = XV, 
Pn = (78) 

(These are, of course, relative values and take no account of the 
absolute reduction in power due to amplitude limitation.) 
Comparing (78) with (68) it is seen that, for detection by straight line 

rectification, the ratio of the noise power with to that without amplitude 
limitation is 

- - =— ; (79) 
1 + 3a)12M 2 + 3XV/a>02
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or taking s- = 1/2, 

1 + + 3X2/2wa2 ’ (8°) 

Since in practice wi wo and X » “a, amplitude limitation results in a 
very substantial reduction in low frequency noise power in the receiver 
proper. Reference to formula (70) shows that, as compared with 
parallel rectification and recombination, amplitude limitation reduces 
the noise power by the factor 

1 + 3X2/2wo2 ' 

It should be observed that without amplitude limitation little reduc¬ 
tion in the noise-to-signal power ratio results from increasing the 
modulation index X (and consequently the high frequency transmission 
bandwidth). On the other hand, with amplitude limitation, the ratio 
p of noise-to-signal power is 

P = PnIPs (82) 

The ratio p is then (within limits) inversely proportional to the 
square of the modulation index X, so that a large value of X is indicated. 
It should be noted that, within limits (X « o>c), the power transmitted 
from the sending station is independent of the modulation index X. 

It might be inferred from formula (82) that the noise power ratio p 
can be reduced indefinitely by indefinitely increasing the modulation 
index X. Actually there are practical limits to the size of X. First, if X 
is made sufficiently large, the variable frequency oscillator generating 
the frequency-modulated wave may become unstable or function 
imperfectly. Secondly, the frequency spread of the frequency modu¬ 
lated wave is 2X (from wc — X to uc + X) and, if this is made too large, 
interference with other stations will result. Finally, the stationary 
distortion of the recovered low frequency signal s(f) increases rapidly 
with the size of X. 
To summarize the results of the foregoing analysis the potential 

advantages of frequency-modulation depend on two facts. (1) By 
increasing the modulation index X it is possible to increase the recovered 
low frequency signal power at the receiving station without increasing 
the high frequency power transmitted from the sending station. 
(2) It is possible to employ amplitude limitation (inherently impossible 
with amplitude-modulation) whereby the effect of interference or noise 
is reduced to a phase or “instantaneous frequency” variation of the 
high frequency wave. 
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Appendix 1 

Formula (40) et sequa establish the fact that the actual frequency of 
the wave (29) varies between the limits 

û>î ± X 

provided s(t) is a pure sinusoid X sin ut and X»w. This agrees with the 
concept of instantaneous frequency. 
When s(t) is a complex function—say a Fourier series—the frequency 

range of W can be determined qualitatively under certain restrictions, as 
follows: 
We write 

TP = exp ( iwct + fX sdt^ (lo) 

Ftiwíe^dw. (2a) 

(3a) iut 
0 

(4a) 

or 

The Fourier formulation is supposed to be valid in the epoch 0 — t — T 
and T can be made as great as desired. Then 

«i = Xs(l). 

Consequently the important part of the spectrum F(iu) corresponds 
to those values of w in the range 

X$min “ W “ XSmax* 

I sdt — ait j = 0, 
o ' 

becomes very large compared with 2tt. On this assumption, it follows 
from the Principle of Stationary Phase, that, for a fixed value of u, the 
important contributions to the integral (3a) occur for those values of 
the integration variable I for which 

We now suppose that, in the epoch 0 — t — T, 

F(Íu) = TT I 
Jo 

Therefore the frequency spread of W lies in the range from + Xsmin
to We + XSmax or W( ± X if Smax — Smin — 
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Appendix 2 

We take the frequency modulated wave as 

(1ft) 

where is the carrier frequency and 5 = s(/) is the low frequency 
signal. X is a real parameter, which fixes the amplitude of the frequency 
spread. 

Correspondingly, we take the typical noise element as 

An COS ((a>c 4- Wn)/ -f- dn). (2b) 

For reasons stated in the text, we take the more general formula for 
the low frequency current as proportional to 

Xi + (o>o + + ̂s)A „ cos ( wnt + 0n — X I sdt (3ft) 

where aio, X, are real parameters. The term Xi is the recovered signal 
and the second term is the low frequency noise corresponding to the 
high frequency noise element (2ft). 

\\ e suppose that the noise is uniformly distributed over the frequency 
spectrum, at least in the neighborhood of œ = wc, so that, corresponding 
to the noise element 

An cos + 0„), (46) 

the noise is representable as the Fourier integral 

(5ft) 

and the corresponding noise power for the frequency interval aq < wn < o>2
is, by the Fourier integral energy theorem, 

= — (aq — a>i)A2. (6ft) 

The Fourier integral energy theorem states that, if in the epoch 
0 — t — T, the function /(/) is representable as the Fourier integral 

1 Cx
/W = - I F(o>)-cos (wt + 0(w))dw, (7ft) 

T Jn 
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then 

(86) 

COS 
0 

+ sin 

(106) cos 
0 

(116) sin 
Fo 

We note also that 

p.S • ('OS 
o 0 

(126) — Fa cos (cu/ + d^dm, 

jus -sin 
0 o 

(136) sin (w/ + Oe)d(i). 

carrying 
through straightforward operations, we find that the noise is given by 

œ — wn)/ + Op) du 
o 

(w+<*>o) 

X 

+ jus)-cos (w„/ + 9n)doin

'0 

u d 

M d . 
xdt sl

’See “Transient Oscillations in Electric Wave Filters,” Carson and Zobel, 
B. S. T. J., July, 1923. 

' vo ' J 
Now this noise in the low frequency circuit is passed through a low 

pass filter, which cuts off all frequencies above a¡o. <oa is the maximum 
essential frequency in the signal $(/). 

It is therefore necessary to express (96) as a frequency function 
before calculating the noise power. To this end we write the Fourier 
integrals 

Fc cos {oit + O^doi, 
o 

Fa sin {ut + 9a)doi. 
o 

Fmdoi 
o 

Jo vo 

Replacing (40 by (56) to take care of the distributed noise, the 
noise term of (36) becomes 

" Jo " 

Substituting (100, (110, (126) and (136) in (96) and 

oin + jus) • sin (unt + 9n)doi„. (96) 

COQ H" 01 n “ — 01 ) COS ((<0 “f“ Oln)t T* 9m)doin, 

(146) 
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where 
FP2 = F2 + F.2 + 2FCF. cos (0C - 0,), 

Fm2 = Fc2 + F.2 — 2FCF, cos (ßc — d,). 

(156) 

(166) 

The limits of integration of are determined by the fact that, 
co — &n in the first integral of (146) and w + in the second, must 
lie between ± co„; all other frequencies are eliminated by the low 
pass filter. 
From formula (14¿>) and the Fourier integral energy theorem, the 

noise power Py is given by 

Integrating with respect to wn, we have 

(176) 

Fn = J ¿"I [(«» + (1 + ̂ w)2 + 3“a2JFp2

+ [(«o - (1 + »)«>)2 + W]Fm2), (186) 
where v = ju/X. 

Replacing Fp2 and Fm2 in (186) by their values as given by (156) 
and (166), we get 

oi N2 Cx
P»=^T W + d + ̂  + W)(^2 + F.2)^ 

1 Jo 

+ 4^' r (1 + v)^FcF. cos (0C - 0,)dw. (196) 

To evaluate (196) we make use of the formulas, derived below 

(F 2 + F.2)da = 1. 
o 

1 
TFT 

(206) 

+ F2)dv = X2s2 = Ps, (216) 

mF cP cos (0C — d^dw —» 0 as T —> (226) 

Substitution of (206), (216), (226) in (196) gives for large values of T 

Pn = (W + ù>o2 + (1 + v^XV^N2. (236) 

Here, for convenience, we have replaced N2¡ir2 of (196) by N2, so that 
N2 of (236) may be defined and regarded as the high frequency noise 
power level. 
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It remains to establish formulas (206), (216) and (226). From the 
defining formulas (106) and (116) and the Fourier integral energy 
theorem, we have 

(246) 

Adding we get (206). 
Now differentiate (106) and (116) with respect to t and apply the 

Fourier integral energy theorem; we get 

sm 

(256) 
cos 

and, by addition, we get (216). 
To prove (226) we note that 

(1 + ns) cos 
0 

cos 
o u 

•'o 

o 

(266) 
1/2 

cos (ut + 4>)dw. 

2 

<JF 2

li d . 
+ xa sm

+ 2 wF'F, cos (0C — 0S) 
A 

COS {bit + 0r) + ç blF, COS {bit + 0,) dbl 
A 

Consequently, by the Fourier integral energy theorem, 

and 

F2 + bPF* + 2 ̂ biFcF, cos (0C - 0.) 
A 

dbi (276) 

0 

I u)FcFa cos (6C — 0,)dw. 
o 

fJLS • cos-
0 

(286) 
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By simple transformations (28¿>) becomes 

o 

dl 
o 

o 

(296) 

— O^du = di. (306) 
o o 

6. 

7. 

8. 

9. 

11. 

12. 

13. 

14. 

15. 

since by hypothesis s = 0. 
We note for reference that 

Í'T d . 

I 
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THE FUNDAMENTAL PRINCIPLES OF FREQUENCY MODULATION 

By Prof. Balth. van der POL, D.Sc.* 

(Lecture delivered before the Radio Section, 25th April, 1945. 

In his preliminary remarks Prof, van der Pol expressed the pleasure 
with which he accepted the invitation to lecture before the Radio 
Section, for this was his first visit to Great Britain since the liberation 
of the southern part of the Netherlands. He also expressed his great 
joy in meeting again, after such a long time of separation, his many 
English friends in the scientific and technical fields. Above all he 
expressed his sense of relief at being again in a country where one 
might freely say what one thought and utter what one felt, which was 
for so long denied to the Dutch. 

(1) INTRODUCTION 
It is not an uncommon experience that, while discussing 

problems of frequency modulation, even with radio engineers of 
several years of theoretical and practical training, one is struck 
by the fact that in the reasoning errors are made, which can often 
be traced to some technical rules that in themselves are perfectly 
right and serve a useful purpose as long as they are applied to 
amplitude modulation, but’ which do not apply to frequency 
modulation. For example, the well-known methods of ele¬ 
mentary alternating-current engineering in which cos mt is re¬ 
placed by e^1, and the resultant complex circuit theory, can no 
longer by applied when the frequency itself is made a function 
of the time. Even the concept of “instantaneous frequency,” 
which—it may at once be admitted—is of a somewhat arbitrary 
but nevertheless highly useful nature, is often misunderstood and 
even misrepresented. The same is true of the response of a 
linear passive network to a frequency-modulated e.m.f., where 
the question arises whether the parameters of the e.m.f. and the 
network are such that the network can “follow” the instantaneous 
frequency, or, in other words, whether the response is of a 
“quasi-stationary” or “adiabatic” nature. 
The only way at present available to solve these and similar 

problems is to go back to the very first and fundamental prin¬ 
ciples. This implies a theoretical treatment beginning with the 
differential equations of the problem concerned. Unfortunately 
these equations can seldom be solved in terms of well-known 
functions, such as real or complex exponentials, to which the 
radio engineer is so much accustomed, and I think it is precisely 
to this fact that the main difficulties can be traced. 

It therefore seems worth while in this Lecture to consider two 
simple but nevertheless very fundamental problems concerning 
frequency modulation. Notwithstanding the simplicity of these 
problems, their solutions—as will appear—require some care. 

(2) TWO FUNDAMENTAL PROBLEMS 
(a) The first problem is the following: Given an ordinary cir¬ 

cuit with L, C, r and condenser leak R, but of which all these four 
elements are each arbitrary functions of the time, so that L = L(t), 
C = C(t), r = r(t), R= R(t), it is required to find the possible 
current and voltape in the circuit. 

(b) The second problem is the following: Let there be applied 
to a linear, passive, constant network an e.m.f. which is frequency-
modulated with an arbitrary function of the time. It is required 
to find the expression for the current in this network. 

* Natuurkundig Laboratorium der N. V. Philips' Gloeilampenfabrieken, Eindhoven, 
Holland. 

) 

Before solving these problems we shall first have to consider 
the definitions of amplitude, phase and frequency, of which quite 
a collection is to be found in the literature. 

(3) DEFLNITIONS OF AMPLITUDE, PHASE AND 
FREQUENCY 

The subject of harmonic oscillations has often been treated in 
mathematical, physical and technical texts. In order, therefore, 
to find the various definitions of amplitude, phase and frequency 
as given by different authors, I consulted some 50 books ranging 
from elementary technical expositions to such volumes as 
Thomson and Tait, “Natural Philosophy”; Rayleigh, “Sound”; 
Whittaker-Watson, “Modern Analysis”; several articles (by 
different authors) in the “Encyklopaedie der Mathematischen 
Wissenschaften,” e.g. Study, “Algebra,” I, 4; Stückel, “Dyna¬ 
mik,” IV, 6; Lamb, “Akoustik,” IV, 26; Wangerin, “Optik,” 
V, 21. This search brought to light the most varied definitions 
of some of these three fundamental concepts. Most authors 
agree to call A the amplitude in the expression 

A sin (cot + 0) . (1) 

but whereas some (Hort, Barkhausen, Orlich, Stäckel) call ip in 
(1) the phase, others (Kalähne, Lamb, Weber-Gans, Helmholtz) 
call 0 the phase constant (Phasenconstante). Again others (Elias, 
Berliner-Scheel) call it the phase angle, whereas still other authors 
(Zenneck, Fleming) reserve the same nomenclature for i/r in the 
expression 

A sin (mt — t/A . (2) 

The term phase is reserved by Felix Klein (“Elementarmathe¬ 
matik vom höheren Standpunkt,” 1, p. 203) for quite a different 
quantity, namely the constant t0 in the expression 

A cos [o>(i — r0)] 

whereas one also encounters the term phase for the constant t0 
in the expressions 

A sin [w(Z + /0)] and cos

Thomson and Tait in 
A cos (mt — <p) 

call the constant ¡/< the epoch, whereas Lamb calls it the phase 
constant in the expression 

A cos (mt + 

I found another quite different definition in Max Planck 
(“Mechanik”), where the author, referring to x = sin mt, says: 
“The angle which varies with time and which follows ‘sin’ is 
called the phase.” . . 

Finally, a similar, but still somewhat extended, definition to 
which I shall refer later in extenso, is to be found in Weber-
Gans (“Repertorium der Physik”) and Wangerin (op. cit.). It 
runs as follows: in the expression 

A sin (mt + </>) 
the angle (mt + </>) is called the phase. Similarly A B. Wood 
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(“Sound”) and Born (“Optik”) call the same quantity the phase 
in the expression 

A cos (ait 4- </j) 

Thus a great variety of definitions of phase is to be found in the 
literature. 
Most of the above definitions of phase are given in connection 

with physical or technical problems. But it is well known that 
a harmonic oscillation may be represented by a vector in an 
Argand diagram, and that exactly the same diagram is used in 
pure mathematics for the representation of a complex variable. 
Moreover, in the Argand diagram the addition of two oscillations 
of the same frequency is effected vectorially in exactly the same 
way as the addition of two complex quantities in the complex 
plane. Thus the same question of nomenclature arises in pure 
mathematics, where a complex variable z is represented by 

Z = X + iy =pe,'t’ p>0 r̂eal ... (3) 

It is therefore of interest to note the fact that the following 
names for the quantity in (3) are to be found in different 
standard books on pure mathematics: 

argument angle (Winkel) 
Abweichung direction angle (Richtungswinkel) 
anomaly phase 
azimuth slope 
arcus amplitude 

Referring especially to the last item in the list, I wish to stress 
the fact that what pure mathematicians occasionally call the 
amplitude is similar to the quantity which physicists and engineers 
call the phase. 

In this matter of a somewhat confused nomenclature I would 
therefore strongly recommend the following definition of phase: 

In the expression for a harmonic motion 

y = A cos (cot + i/>) . (4) 

the whole argument of the cosine function, namely (ait + </>). is the 
phase. This definition has, among others, the advantage of 
enabling one to speak of a phase difference of two oscillations 
of different frequencies. This phase difference is then simply a 
linear function of the time, just as one phase by itself is already 
such a function of the time. 
Now what is the frequency! Most commonly in harmonic 

motion, ai is called the angular frequency. But, considering 
amplitude modulation, we make A a function of the time, so 
that in (4) we have 

A = a0[ 1 + mg(t)] (amplitude modulation) . . (5) 

where g(t) is the modulating audio signal, and still call this 
A[— A(t)] the instantaneous amplitude. We have thus left the 
domain of a simple harmonic function, but continue to speak of 
the amplitude. 

Similarly we may modulate the phase in (4) and thus get, for 
example, 

0 = «Ao[ 1 + mgW] (phase modulation) . . (6) 

In order to obtain an expression for frequency modulation, it 
would, however, be erroneous simply to write in (4) 

co = <u0[l + mg(t)] . (7) 

for this would lead to a physical absurdity. Thus it is necessary 
first to rewrite (4) as 

y = A cos ( codt + ) .... (4«) 
\Jo / 

which is exactly the same expression as (4) but written in a 
different way, thus enabling one to extend this expression for a 

simple harmonic motion to the case of frequency modulation. 
For when in (4a) we substitute (7) we obtain 

y — A cos 

= A cos 

{coo[l + mg(r)]}<// + <f> 
> 

aiot + mai0 g(t)dt + 
Jo 

(8a) 

(Sb) 

which is no doubt the proper expression for the frequency-
modulated oscillation the engineer is aiming at. 
These considerations bring us at once to the question of what 

we shall call the instantaneous frequency. When, as referred to 
already, we represent an ordinary harmonic motion by a vector 
in an Argand diagram, this vector is supposed to rotate with a 
constant angular velocity and then our simple harmonic oscilla¬ 
tion is represented by its projection on, for example, the hori¬ 
zontal axis. This angular velocity then coincides with the 
angular frequency of the oscillation. The instantaneous angle 
the vector makes with the horizontal axis we have agreed to call 
the phase. Thus, for a simple harmonic motion the time dif¬ 
ferential of the phase is the angular frequency, and in the ex¬ 
pression 

A cos (cot + <f>) 
the phase is (ait + ̂) and the angular frequency is d/dt (phase) 
= dldt(cot + <f>) = co. 
We can now extend our definition 

d 
angular frequency = — (phase) dt . (9) 

to a frequency-modulated oscillation such as is represented by 
(8a), where the vector now rotates with a variable angular 
velocity. Nothing prevents us also in this case from associating 
the concept of instantaneous frequency with that of instantaneous 
velocity, which is just the definition (9). For thus we find 

cu0[l + mg(t)]dt + = co0[l + mg(z)] 

which is exactly the expression (7) for the instantaneous frequency. 
It will further be clear that we can write (8a) also as 

(10) 

where means “the real part of.” 
As to nomenclature, in all three cases (amplitude, phase and 

frequency modulation) we call the constant m the modulation 
depth. If, in particular, our audio modulation is a sinusoidal 
function of the time so that 

g(t) = cos pt 

the frequency-modulated oscillation (10) becomes 
y _ /í^>e>[f‘«o(l + ">cosprM/ + 0] 

In this case the maximum instantaneous angular frequency de¬ 
viation A<u0 is mai0 so that in f.m. we can very well speak of a 
modulation depth m, meaning the ratio of the maximum fre¬ 
quency deviation, mco0 = Aa>0, from the central frequency a>0. 
This modulation depth m should not be confused with the 
modulation index m', which is defined as 

m = m— =-
p p 

and therefore equals the ratio of the maximum frequency 
deviation Ato0 to the (constant) frequency p. 
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In present practice we have 

Aa>0 i m =- - I 
“o 

and m =- 3> I 
P 

so that the modulation depth is usually very small, whereas the 
modulation index is usually very large. 
To simplify our language we will further call a> simply frequency 

instead of angular frequency, as in theoretical work the concept 
of w(= 2ttp) is of a much more fundamental nature than v. 
This question in two dimensions is somewhat analogous to the 
Heaviside-Lorentz suggestion of dropping the 4tt in three-
dimensional electromagnetic theory (rationalized units). 

(4) FIRST PROBLEM (as stated in Section 2) 
With these preliminary definitions we are ready to tackle our 

first problem. For the current in an ordinary oscillatory circuit 
with constant L, C, r and R (condenser leak) we have the 
well-known differential equation for any potential difference v in 
the circuit 

d2v fr 1 \dv 1 /. , r\ „ 
'di2 + {~L + CR^di + ZCV + r)V ~ (H) 

If, however, we want to study the current and p.d. in a circuit, 
where L, C, r and R are variable with the time, it would be quite 
erroneous simply to substitute in (11) L = L(t), C = CQ), 
r = r(t), R = R(t). Here, again, we have to go back to first 
principles. Thus (see Figure below), considering on the one 

hand the potential difference v across the inductance-resistance 
branch, and on the other hand the total current in the leaking 
condenser, we have the two differential equations 

V = -y (Li) + ri dt 

i^^Cv)+ Vk

(12) 

We can, of course, eliminate i, for example, and thus arrive at 
the single differential equatiop for v 

■ (,3)

which, for time-independent L, C, r and R, reduces to (1 1). 
In the general case (variable elements) we have in (13) four 

functions of the time Lit), C(t), Hf) and Rif), and the question 
arises of how to reduce the number of these functions occurring 
in the final equations. To this end we return to (12) and notice 
that the common choice of variables, namely v and i in the 
usual circuit theory is simply governed by the fact that we have 
voltmeters and ammeters, whereas the physics of our problem 
induces us (with Maxwell and Heaviside) to consider as much 
more fundamental variables: 

(a) the total electric flux in the condenser, which corresponds 
to its charge q, and 

(b) the total magnetic flux in the coil, which we will denote 
by </■• 

They are related to the common variables v and i by 

• (14) 

. (15) > 

q = <l>' + 
. (16) 

Introducing further the derived variables and qt defined by 

= e . (17) 
9 = e 

which, in the case of constant elements, determine together the 
damping of the free oscillations, we can write (12) as 

-2S^d, qi J 

Q = Cv j 
Introducing the two time functions a,(r) and a2(0 defined by 

¿ * -i 
” Z + 2a2<?

2a1W = -L

2“2(/) = CR 

we obtain, instead of (16), 

— ce j ri I ... (18) 

— </>!= Le^ 2̂ -^' q\ J 
Finally, putting 

2 J («! — a2)dt = A(f) 

and Ce~A = y } 
Le^A = A J 

we obtain our equations for the unknown q{ and in the 
canonical form 

q.1 ^‘"1 . (20) 
~ 9i — ̂ i 

where now only the two known time functions ylt) and A(r) are 
left in the coefficients. 

Several practical consequences may now be derived from (20), 
for elimination of one of the variables in (20) leads to 

ft + - ° 

< + X91 + = ° . 
or, going back to the original parameters L, C, r and R, 

"• +[ï 1 2(í ’à)]* " cl"- "°. 
(22) 

Incidentally, it is worth noticing that the coefficients of and 
q' clearly show that the dimension of C is the same as that of 
«-i and that of L' the same as r, so that, for example, the 
change of an inductance in henrys per second is expressible in 
ohms. Further, if it happens that = a2, i.e. that the time 
functions L, C, r and R are such that 

r = 1 
L CR 

(which, for constant elements, would correspond to the dis-
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torsionless cable of Heaviside), then A = 0, y = C, A = L, and 
(22) assumes the simple form 

ft + gft + ¿ft = 0 ] 
L' 1 f • • • (23) 

«' + V* + cL«' = 0 ! J 
where apparent damping terms occur with coefficients C'lC and 
L'/L. But it further follows from (23) that even when the 
product \/CL also is independent of the time we are not led back 
to equations with constant coefficients, and therefore we cannot 
expect a pure harmonic oscillation to occur. 

Again, it is a simple matter to assign time functions to C and 
L such that (23) becomes the differential equation of, say, a 
Bessel function, Legendre polynomial, Mathieu function, etc. 
In fact, the moment we enter the field of variable coefficients a 
great variety of mathematical possibilities and functions appear. 
It is, however, not our intention to exhaust this field completely. 

Finally, it may be remarked that when C and L are constant 
but only a, and a2 are taken to vary with the time (which 
amounts to r and R only being variable) and when moreover 
“1 = a2> th®0 (22) reduces to 

so that both 0( and q{ become simple harmonic functions, and 
our original variables 0 and q, with the aid of (20), can be 
written in the form 

0 = B\'Le~ 2̂ Ji sin (a>ot + 0)1 
- , r • • <25> ? = By/Ce 2 J**" cos (<uot + 0) j 

where B and 0 are constants of integration and œg = \/LC. 
Hence in this case we rigorously obtain pure amplitude modu¬ 

lation, without any trace of frequency modulation. 
All the above seems sufficient indication that we should treat 

problems with variable parameters with much care, the common 
circuit theory not being of any value in this case. 

I conclude this Section with the remark that it would perhaps 
be worth while to extend the common circuit theory where all 
the elements are taken to be independent of the time to a more 
general theory with variable elements. 
Most likely, going back to the equations of Lagrange would 

here provide the necessary means. At any rate it would be 
advisable not to consider the usual variables v and i, but the 
more fundamental ones, namely the electric and magnetic fluxes 
q and 0, as was done above. 

(5) FIRST PROBLEM (contd.) 
Returning to the general problem as expressed by (20), let us 

now consider still another special case. When all losses can be 
ignored (r = 0, R ->oo) we have a( = a2 = A = 0, 0 = 0p 
q = qv so that (23) becomes 

0" + ̂ 0' + ¿0 = 0 
(26) 

If in the first of these equations C is considered constant and 
L variable, and if in the second equation L is considered constant 
and C variable, we obtain: 

q + tfõLq^Q j 
which are of the form 

q" + Q.2(t)q = 0 

where Q2(r) = _ . 

(27) 

(28) 

(29) 

(28) represents the simplest special case of our problem, and 
the question arises how to solve (28). In this general form no 
solution is known, but when Q2(t) does not vary too fast or too 
much with time an approximate solution is 

q = q0 cos Wf)dt + 0 (30) 

According to our definition of instantaneous frequency (Section 
3) this is given by 

jiWt + 0 = Q(r) 

so that we arrive at the result that, in the circumstances specified, 
the Í2(r) occurring in (28) actually represents the instantaneous 
frequency. 

In the domain of quantum mechanics the approximate solu¬ 
tion (30) of (28) is known as the Wenzel -Kramers-Brillouin 
solution, the so-called “W.K.B.” form. I would point out, 
however, that this approximate solution had already been given 
by H. Jeffreys in 1923.* 
The solution (30), with special reference to frequency modula¬ 

tion, was also derived by me in 1929.f 

(6) SECOND PROBLEM: THE RESPONSE OF AN ARBITRARY, 
LINEAR, CONSTANT NETWORK TO A FREQUENCY-
MODULATED E.M.F. 

Consider an arbitrary, linear, constant network with admit¬ 
tance Y(Ja>). When we apply an e.m.f. v(f) of an arbitrary time 
function to this network the resulting current i(f) is given 
symbolically by 

'W= rtí) !W . (3,)
If, further, v(f is oscillatory but modulated in amplitude, phase 
or frequency, it may be represented by 

v(t) = e>u,f(t) 
so that the current becomes 

'(0 = .... (32 

Now there is a well-known rule (used extensively by Heaviside) 
for moving in such an operational expression the factor eJul in 
front of the operator YfUdt). This rule enables us to write (32) 
as 

i(t) = e^'Y^j^ + í^f(t) . . . . (33) 

If next we develop the operator Y in a Maclaurin series as 
follows 

• Jeffreys, H., Proceedings of the London Mathematical Society, 1923, 23 p. 428. 
+ Van der Pol, B., Tijdschrift Nederlandsch Radio Genootwhan, 1929, 4,’p 57 and 

Proceedings of the institute of Radio Engineers, 1930, 18, p. 1194. ’ 
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we obtain at once from (33) 
» -

/(,) = eJ“'> LYWfJwyfMÇi) . . . (34) 
¿jnl o 

[where = -¡^-Yljay) and f^(t) = J/W], which 
L «(ycu)n . ai
expression was also derived, although in a more complicated 
way, by Carson and Fry;* on it they base their complete investi¬ 
gation of the problem at hand. 
However, we shall here follow a different course, and to that 

end we first notice the complete symmetry of (34). For if in 
(34) we make the following changes 

Y-^f 
f->Y 

Ja> -> l 
t -+ju) 

the right-hand side of (34) is left completely unaltered. We can 
therefore conclude that we are free to write instead of (33) 

Now it will be clear that according to our definition in Section 2 
the instantaneous frequency Q(r) of the e.m.f. is given by 

Q(t) = -r(coZ + s) = co + s' al 
so that (37) may also be written 

ri S' di . 
i(0 = eyJ e 2«'«^”rOQ) • • • (38) 

If we may neglect the operator 
f d* 

e 2 do# 

and replace it by unity, (38) is reduced to the extremely simple 
form 

i(t) = . (39) 

which is completely analogous to the well-known expression for 
a constant-frequency e.m.f. : 

i(f) = eJ^YUai) 

■ ■ ■ °5-

and it is on this expression that we will base our present investi¬ 
gation. 

Before proceeding, I wish to point out at the outset that in 
the above derivation, just as in the paper by Carson and Fry, the 
functions Y(jaj) and/(z) are assumed to possess derivatives of any 
order. Further the series (34) in general does not converge, but 
as was pointed out by Dr. Stumpers (Philips Laboratory', Eind¬ 
hoven) in a research not yet published, it is of an asymptotic 
nature. This latter fact need not prevent us from using it [or 
(35)] for numerical purposes; in fact the same is done in 
practically the whole domain of astronomy. 
So far f(t) has not yet been specified. It may be so chosen 

that either amplitude or frequency modulation emerges. For if 
we take 

f(t) = /|W = 1 + 
where again g(t) is an audio signal, our e.m.f. becomes 

v(/) = [1 + nigW]^' 

which represents amplitude modulation. 
Again, taking 

/(f)=/2(/) = ̂ “Pw ' 

our signal becomes frequency modulated as is shown by (8). It 
can also be made to represent phase modulation. 

Hence, limiting ourselves to frequency modulation (/- /2) and 
writing for short , 

= 40 

(35) becomes d

.... (36) 

and now, developing the exponent s^z + in a Maclaurin 

series, we can write (36) as 
r s' d s" ( d \s 1 

¡¡t\ = c4“'+,+ B4M+2IW‘V + ’"JWí») 
' ' f js" d1 , , d \ 
_ 2f d^+ "e ditò)Y(ja>) 

= g^'+^g'TT dh+ ’ /[Xw + s')] • • (37) 
♦ Bell System Technical Journal, 1937, 16, p. 513. 

Of) = ê ‘f{ t + 
Thus (39) represents what may be called a quasi-stationary 
solution, meaning that the circuit is completely capable of 
following through stationary states the variable frequency of the 
applied e.m.f. 

This quasi-stationary solution obviously represents a limiting 
case, and in fact the circuit may be too sluggish or too “stiff” to 
follow the relatively rapid changes of frequency of the applied 
e.m.f. Exactly similar circumstances may arise with amplitude 
modulation, where, due to the “stiffness” of the circuit, sidebands 
may be cut off. This cutting off of sidebands in amplitude 
modulation can also be demonstrated in our present analysis if 
/(z) is chosen to be/,(Z) so as to represent amplitude modulation. 
It will have been noticed that, so far, our present attack of the 
problem completely eliminates any considerations of the spectral 
distribution of the applied e.m.f., but concentrates entirely on 
time functions rather than on frequency functions and side¬ 
bands. Further, the quasi-stationary solution is completely 
analogous to the case where with amplitude modulation the 
amplitude of the e.m.f. varies so slowly (or the damping of the 
circuit is so great) that the circuit can follow the variable ampli¬ 
tude through stationary states, which, in other words, can also 
be expressed by the fact that no sidebands are being cut off. 

Returning to (39) and limiting ourselves provisionally there¬ 
fore to the quasi-stationary solution, let us consider what 
became of our signal. To this end we write 

Y(jco) = 
where p(co) and ^(co) are the modulus and phase respectively of 
the admittance as functions of the frequency co. (39) thus 
becomes 

i(z) ~ 
and the instantaneous frequency of the current (representing 
what became of the signal) can, according to our definition in 
Section 2, be written as 

co + A<og(Z)]| • (40) 

J" Çldt + <£(£2)^ = fllf) + ̂ (^) 

= co + Aco [g(Z) + gW^^i1

so that in the quasi-stationary approximation the total current 
signal (including its distortion) is completely determined by ̂(12), 
i.e. by the phase characteristic of the admittance only, and is 
therefore—at last explicitly—independent of the amplitude 
characteristic p(Q) of the admittance. 
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Thus the signal, which in the applied e.m.f. was g(t) becomes 
in the current 

+ Acog(z)] 

= g(f) + g'W[0'(w) + + . . .] 

The term g'(t)</>’(aj) can, if desired, be interpreted as a re¬ 
tardation, so that the current signal becomes approximately 

+ ̂ '(<u)] + Aa>g(i)g'(r)<£"(a>) 

where the first term represents the retardation and the second 
the distortion already present in the quasi-stationary approxi¬ 
mation. This distortion is seen to be small when ^"(tu)^-O, 
i.e. when one is working at an inflection point (or on a straight 
part) of the phase characteristic of the admittance. 
As an illustration of (40) we consider a signal of the form 

co + Aw cos pt, where p is an audio frequency, applied to an 
ordinary r, C, L circuit in resonance. Equation (40) then shows 
that the current signal becomes 

ap sin pt / r \ 
COS/) a2 + (Aw)2 cos2pt‘ \ ~ 2U 

where the last term represents both the retardation and the dis¬ 
tortion. Obviously in general the retardation of a distorted 
signal cannot be sharply defined. 

which expresses a necessary limitation of the product of the 
audio frequency p and the maximum frequency deviation Aw 
relative to the damping constant r/ZL of the circuit. 
We obtain another illustration of (42) or (43) when an e.m.f., 

the frequency of which varies linearly with the time, is applied 
to a network of admittance Y(jco). The e.m.f. may then be 
expressed by 

so that the instantaneous frequency becomes 

= dÁ.^'2) =

and the speed with which this frequency is varied 

^(t) = wg 

With this e.m.f. the quasi-stationary solution is valid when 

iwg|r'W)| < |rOQ)| 

which therefore puts a limit to wg, i.e. to the rapidity with which 
the frequency may be varied. 

Considering next (6), the influence upon the signal when a 
quasi-stationary solution does not suffice, we have to calculate 
the instantaneous frequency associated with 

(7) SECOND PROBLEM (contd.) 
Finally, we investigate (a) in what circumstances the quasi-

stationary solution is a good approximation, and (6) what is the 
influence upon the signal when a higher approximation than the 
quasi-stationary solution must be taken into account. 

Considering (a), we return to (38) and remark that the first 
effect upon the current of the operator 

V" ¿2 
e~J2 dãi 

can be written as 

■ ■ <«> 
(where Í2 = w + s'(t) and therefore s"~ = 
' dor dtJ 
so that the quasi-stationary solution is a sufficient approximation 
so long as 

l5 0 rOÜ,H |íüQ)l ■ ■ ■ • »» 
which may also be written approximately 

△co 
-Yg'^Y’V^^YÇj^ . . . (43)

Applying this general result again to an ordinary r C L circuit 
in resonance and taking g(r) = cos pt, we obtain as the condition 
tor the validity of a quasi-stationary solution 

pAw 

We are not concerned with Pl but a little calculation shows that 

so that the instantaneous frequency in the current becomes 

+ + . («) 

Here, in the first term £l(t) represents the original signal. 
The second term represents the distortion discussed above, 

which is already present in the quasi-stationary approximation, 
whereas the third term gives the distortion which must also be 
considered when the quasi-stationary solution does not suffice. 

In most practical applications (44) may still further be reduced 
to 

+ . H5 , 
Equation (45) shows that, whereas the quasi-stationary solution 
is determined by the phase characteristic of the admittance only, 
the last term also depends upon the amplitude characteristic of 
the admittance. 

In conclusion, it may be remarked that, although the above 
investigation relates to the resulting current i(t) for a given im¬ 
pressed e.m.f. leading therefore to a consideration of the admit¬ 
tance F(/w), a similar analysis can be used when, instead of the 
current, the potential difference across any circuit is required. 
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DISTORTION OF FREQUENCY-MODULATED SIGNALS IN 
ELECTRICAL NETWORKS 

F. L. H. M. STUMPERS. 621.396.619.13:621.392 

Receiver filters introduce distortion in a frequencymodulated signal. This distortion 
can be calculated by Fourier analysis of the signal or by the "quasi-stationary” 
method. Carson and Fry derived the latter method from their series, the 
asymptotical character of which is shown here. The mathematical derivation is 
reviewed critically. The quasi-stationary solution is the first term of another also 
asymptotical series, and a method is given for judging the error. The production 
of harmonics and intermodulation by single tuned and coupled circuits, as well 
as the effect of detuning are considered. 

Introduction 

1) The problem of calculating the current 
produced in an electrical network by a voltage 
of which the frequency is modulated attracted 
attention [1] at a very early stage and has since 
been many times discussed. My thesis [2 ] (chapters 
4 and 5) contained a critical review of the mathe¬ 
matical problems involved and also discussed 
a number of applications. In the following a 
brief survey of these investigations is given. 

For these calculations both the F o u r i e r 
and the asymptotic methods come into consider¬ 
ation. Which of the two methods deserves prefer¬ 
ence depends amongst other factors upon the 
magnitude of the modulation index. In the first 
mentioned method, the original signal is analysed 
into its Fourier components w hich are then 
handled in accordance with the theory of alter¬ 
nating currents. An objection to the use of the 
F o u r i e r method is that it does not show 
clearly the relation between the distortion and 
the characteristic values of the network; this 
is much more clearly brought out by the asymp¬ 
totic method developed by Carson and Fry[3] 
which yields the result in the form of a power 
series of especially elegant type. When applied 
to frequency modulation, however, a different 
form of asymptotic expansion, which we are 
about to demonstrate, may be preferred. 
W i 1 d e [4] has applied to frequency-modula¬ 

tion the methods of Fel d t kel 1 e r [5] and 
Gensel [6] for approximating transient pheno¬ 
mena by means of a “cable harp”, but in the case 
of sinusoidal modulation this method is somewhat 
cumbersome. 

Fourier method 

2) Modulation with a sinusoidal signal produces 
the following Fourier spectrum 

+ = p' ' "N). m==A(l) ¡p (1) 
-30 

Let the differential equation of the network be 

/ d d' \ 

= (‘- ■ <2> 

in which the current is given by 

/ (t) = p'^1 + si " N't 

Abbreviating the equation (2), we write 

/Q.E(t) (3) 

Ignoring initial phenomena, the steady state 
alternating current is obtained 

E (t) Nn ./„ (m) . * e-”' • (4) 
-x f (<<"o+ ,nP) 

We shall confine the investigation to passive 
networks, so that all terms in the series remain 
finite. The latter converges in accordance with 
d’A 1 e m b e r t’s test, since for n large (tn) 
behaves in the same way as 

M 

w hilst the behaviour of g f for n large is given 
by the terms of the highest degree in both 
numerator and denominator. We now substitute 
Z for g/f and divide the former into real and 

imaginary parts, viz. 

Z = Z (i,„0) = Xo + Í Yo A (""o) + ' y 
z„ = X„ + i Y„ = Z (io0 4- inp) 

Then the phase angle becomes 

7 = w„t 4-
2’ J„ (rn) . (X„ sin npt ■ > „ < <>s 

are tan ¿ (X,, co* npt — U, sin npt) 

(■') 
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A detector tuned to the frequency w0 will then 
produce a voltage proportional to da>/dt _ <o 
When 

^nm= XnXm + Y„Ym and B„„ = X„Ym —XmYn, 
the audio-frequency voltage is 

dn 
¿¿ — “>0 = 

mp JnJm { A„m cos (n — m) pt + 

JnJm { Anm COS (n — m) pt + 
+ Bnm sin (n — m) pt } 
+ Bnm sin (n — mj pt } (6) 

It is usual to determine the harmonics graphically. 
The method gives not only the instantaneous 
frequency, but also the instantaneous amplitude, 
as the square of the latter is identical with the 
denominator of expression (6). 

The asymptotic method 

3) Employing the differential equation (3) and 
assuming that E (t) = Eo (t) eiw«‘, the former 
expression can be converted to the following 
form 

/(^o + • Eo (l) = g («X+¿) ■ e”” 5Ín ^ (7) 

The accuracy of this may be checked by means 
of formal development. The next step is to discover 
whether the following function is a particular 
solution of (7) 

Formally, this function meets the case and, as 
all the terms are periodic, it corresponds to the 
steady state. In place of g/f we write Z, the 
impedance of the network, and the formal solution 
then takes the form 

Eo (t) = I Z ; iw0^ + Z (ico0)^ + 

+ + ••••! (8a ) 2 ! at‘ ) 

It was roughly in this form (with evaluation 
of the individual differentiations) that the series 
was first derived by Carson and Fry (l.c. 
p. 521), after whom the series will therefore be 
named in what follows. In the next section we 
shall review the derivation chosen by these 
authors. 
Whereas the expansion of g (ico0 -f- d/dt) in 

expression (7) automatically terminates, this is, 
generally speaking not the case with the expansion 
of Z (ia>0 4- d/dt). The fact that it leads to the 

correct result when breaking off, is immediately 
evident, and the question arises as to the con¬ 
vergence of the Carson and Fry series when 
it produces an infinite number of terms; in order 
to see what happens we calculate the remainder 
after deducting the first (k -|- 1) terms of the 
series from the exact expression obtained by the 
Fourier method. This remainder is 

Jn (m) . Z (i(Da + inp) e,n t̂ — 

(z z t Z^dk
( dt^ 2! dt* "" k\ dt*\ 

Since the result converges uniformly the 
Fourier series may in this case be differen¬ 
tiated term by term; moreover, since it converges 
absolutely, it is permissible to change the sequence 
of the terms and thus place together the terms 
having the same factor e"‘P‘. Our remainder then 
becomes 

J„ (m) . ^Z (i(D0 + inp) — Z (ia>0) — 

- inp Z’ (ico^ .... - Z <*> (im0) 

This takes the form of a Fourier series, 
in which the amplitude of the component einPl 
is the product of Jn (m) and the remainder of 
the expansion of Z (ia>0 + inp) in the neigh¬ 
bourhood of iai0, after (k + 1) terms. Now, if 
k be increased, leaving n constant, this amplitude 
will decrease to zero only when ia>0 + inp lies 
within the circle of convergence of this expansion. 
In the other case the amplitude will in the long 
run increase. Since sinusoidal modulation leads 
to an infinite frequency spectrum, components 
will certainly occur for which ia>0 -f- inp is outside 
the circle of convergence of Z around iro0, at 
any rate when the radius of this circle is finite. 
If the radius is infinite (corresponding to resistance 
plus inductance) the series terminates. Apart 
from this instance the series of Carson and 
Fry may certainly not be written without 
remainder; it is possible however to see from the 
remainder-for instance by splitting the impedance 
function into partial fractions that the series 
is asymptotic in the sence of Poincaré, 
when p -> 0. It is the asymptotic series for phase 
modulation, as will be shown in section 6. 

Calculation according to Carson and Fry 

4) Let us now view in a more critical light the 
derivation put forward by Carson and Fry 
and subsequently followed with very minor 
modifications by other authors [7]. 
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It is first necessary to introduce the concept 
of the indiciai impedance A (t), this being the 
function of time represented by the voltage on 
the network when a unit-function current is 
passed through it at a time t = 0. The unit¬ 
function current U (t) is 0 when t < 0 and 1 when 
t < 0 . U (0) = J. From the superposition prin¬ 
ciple it then follows that when an arbitrary 
current F (t) is applied at a time t = 0, prior 
to which there was no current in the network, 
the voltage is represented by 

l 
E (t) = ̂ A (t — t) dF (t) (9) 

o 
Integration by parts then gives 

E (t) = A (0) F (t) — A (t) F (0) — 

_ ydA F(r)dT 

o 

In order to avoid singularities we shall confine 
the discussion to networks whose self-oscillations 
are damped and which at high frequency have 
a capacitive character. In this case A (0) is 0, 

and the voltage is expressed by 
i 

E (t) = y A' (t) F (t — t) dr (10) 

o 
When F (t) is a periodic function of t, this 

integral can be split into two parts 

00 

E (t) = y F (t — t) A' (r) dr — 

O 
00 

— fP(t — T) A'tfdx (11) 

t 
The second integral represents a transient 

phenomenon which decays when t is large; the 
first expresses the steady state. 

In their first derivation Carson and Fry 
proceed as follows: Let the given signal be 

t 
F (t) = 

Suppose that 

F (t — t) = F (t) M (t, t) e- iu" 

(It follows that M (t, 0) = 1) 
Incorporating this in equation (11) we obtain: 

oo 
E (i) = F (t) I M (t, t) A' (r) e '“" dr 

o 
Carson and Fry then proceed to the ex¬ 
pansion 

M (t, t) = M (L 0) + r + 
( dr )t=o 

t2 d^M (t, r) I 
2! dr2 )t=o 

which is used in the integral and integrated term 

by term 
. oo 

E (l) = F (t) / e-'“T A' (r) dr + 

+ ZnCnf£ A'(r) dr (12) 

Cn (t) is determined by 

C" (t) = M (t, r)l 
(dr" )t=o 

If we now introduce in equation (11) F (t) = e'“' 

for the current, it will be seen that 

oo 
Z (iw) = / e-'"T A' (r) dr 

Similarly 
oo 

dJ^l = — Í Te-^ A' (r) dr 
did J J 

o 

it being permissible to differentiate under the 
integral symbol, since A' (r) consists of a sum 
of damped oscillations. Substituting these results 
in expression (12) and taking into account that 

Cn = (- 1)„ 
dt” 

we obtain the desired expansion. The weak point 
is the integration term by term, which is not 
really permissible because the power series for 
the sine and cosine, although converging in the 
whole plane, do not do so uniformly at oo. 
The other derivation, also chosen by Vella t[7 ] 

proceeds from the Fourier integral for the 

modulation 

t 00 

exp (i pdr) = J F (ico) . e "“‘dœ 

o -00 

(With sinusoidal modulation this is a Fourier 
series). 
The voltage is 

oo 
E= y F (ico) Z (iœ0+iu) e dm 

-00 

We then develop 
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+ «o») = Z (ii»0) + 

This is introduced into the integral and integrated 
term bx term: with a slight modification we arrive 
again at the series of Carson and F r y, 
Since the expansion of Z (im0 4- if0) with trivial 
exceptions does not hold good in the range from 
— X to X. integration of the individual terms 
is again impermissible. The series max again 
not be written without a remainder. 

Derivation of the asymptotic expansion 

5) e shall now consider a signal, modulated 
both in amplitude and frequency. It will be 
assumed, further, that each modulation contains 
the same audiofrequency fundamental of p radians 
per second, the signal being thus represented bv 

t 

a (pt) . exp (iio0t + i [ h (pT) dr) 

o 

The instantaneous amplitude of this input signal 
is then a (pt), and employing the earlier abbre¬ 
viations, the differential equation for the voltage is 

E = « (s) ° exp { i / * (Pt) dr } 

Now assuming that there are no continuous 
oscillations among the general integrals, intro¬ 
ducing E = Ege'^f1 and substituting u for pt, 
the differential equation for Eo (u) will be 

The expression in the second term may be worked 
out by executing the s differentiations (See section 

2). The result is 
u 

+ p-^ Eo (u) = G (p, u) exp U fh(x)dx^ 

(12) 

In this G (p, u) is a polynomial in p; the second 
term is a periodic function of u. The solution of 
the differential equation now consists of the sum 
of a periodic function and r general integrals 
each multiplied by a suitable constant. 

It is now possible to make use of a theorem of 
Perron [8] concerning the dependence on a 
parameter of the integrals in a differential equation 

of the n th order; from this it follows that there 
is an integral of the form 

(13) 

asymptotic for p 0 
The asymptotic expression 

□C 

f(p) ̂ g (p) ^„p" for p 0 
t> 

states that when 

nt 

f(p) = g (p) ^"P" + (p)- m = °- 1- 2. etc 
0 

lim pmR,n (p) = 0 
p-wo 

This then furnishes exactlv the periodic solution 
of the original differential equation. Bv formal 
substitution of expression (13) in the differential 
equation and equating the terms of the same 
degree in p in the left and right hand side of 
the equation, the functions tcr (u) can now be 
found. Thus 

u 

7 / .7 . WZ 
aZ + pl a Z + ~ 

(14) 

in which 

a = a (u) ; h = h (u) ; Z = Z (i«>„) ; Z' = 
duom

and so on. 
(Om = <o0 + h (u) 

Taking the particular case of a signal modulated 
in amplitude only, we have 

Eo (“) = a(u) Z (iiog) + pa' (u) Z (ím^ + 
a" (u) Z" (ita^ 

and for a signal modulated only in frequency: 

(16) 

The instantaneous frequency and amplitude 
can be derived from these series without trouble; 
to this end the impedance is divided into modulus 
and phase Z (ico) = M (10) e'^M. The series for 
the instantaneous frequency in (16) then com¬ 
mences with 
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Mm = Mo + h (pt) + ptp'h' + p2

M"M' — M"'M 
M2

where 
dh (pt) , dtp , dM (Mm) . 

h = — z ; y = ; M = — ' 5 etcdpt d(i)m d(t)m 
(16a) 

For the instantaneous amplitude we have in 

the same case 

Am = M (Mm) + P ̂ M’y' + j (166) 

In the series (16, 16a and 166) we shall call the 
terms in p of zero degree the “static terms” and 
those of the first degree the “quasi-stationary” 
terms; together they constitute the “quasi-
stationary approximation”. 

In contrast with expansion (16), that of Car-
son and Fry does not directly yield a series 
in powers of p for frequency-modulated signals. 
(It gives such a series in case of phase-modula¬ 
tion). V e 1 1 a t took for his calculation five 
terms from the series of Carson and Fry 
and discarded from the latter those terms in the 
derivatives of e'm sin P* in which p appears ex¬ 
plicitly. In this way he obtains an approximation 
of the quasi-stationary term of series (16a). For 
frequency-modulation the series (16) may be 
preferred, the more so as the “quasi-stationary 
approximation” is usually sufficient. 

Estimation of the error in the use of the asymptotic 

series 

When e'«(T) is expanded in terms of p and the 
integration carried out term by term, the result 
is the asymptotic series. In the integrand, the 
term e_“"T decreases rapidly; the most significant 
contribution to the integral is therefore to be 
expected when anr is small, e.g. less than 4. 

Consider, for instance, the integral 

00 

I e-o"T cos (ßn + M0) T cos m { sin (x—pr) — sin x| dr 

(17) 
This is closely approximated by 

oo 
I e“"T cos (ß„ + m0) T cos (Amt cos x) dr 
n 

as long as it holds good for t0 = 4/an that 

sin pr0 5^ pr0 and — $- « 1 

thus, for instance, when 
p < 0.05 an and pAo> < 0.03 an2

If more terms in p are taken «Ú’M will certainly 
be more closely approximated for the same value 
of r, but one obtains for the difference between 
the integral (17) and the approximation, integrals 
of the following form 

oo 
J" Rn (r) T«e a"T dr 

o 

The centre of gravity of the integrand moves 
more and more to the right, so that the range 
in which the approximation is accurate becomes 

smaller and smaller. 

6) In this section the asymptotic series will 
be evolved in a different manner, so that the 
error may be easily estimated. 
The following equation is taken as a basis 

oo 

e (t) = t) a ’ (t) dx
o 

in which A (t) still retains the form 

E” (An + iB„) 

the terms either occur in complex pairs of are 

real. 
In the case of frequency-modulation 

F (t) = Re e'^ + m sin pt) 
oo 

E(t)=Reeî +msinx} E (A„ + iBn)fe-a'T+is{T} dr 

0 
g (t) = — (ßn + Mo) T + m sin (x — pr) — 

— m sin x ; x = pt 

Application of the theory to a tuned circuit 

7) To a tuned circuit a current is applied of 
which the frequency is modulated, whilst the 

amplitude remains constant. 

(Lc ^+ RC a+ ,)E“ 
+ m sin pt) 

L 

See fig. 1. 

Suppose that LC = m0~2 and R/L = 2a. We 
shall also introduce E = Eo e1“«* and take it 
that a and Am (= mp) are both small with respect 
tO Mo. 

In this case the differential equation may be 
given in the following simplified form 

a ° + dt (18) 

Asymptotic development then gives the appro 
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ximation for the square of the instantaneous 
amplitude 

^2 _ _ 1_ _ 2padco2 sin 2pt 
a2 4- Aco2 cos2 pt (a2 4- JtJ2 cos2 pt)3

Fig. 1. Single tuned circuit. 

The instantaneous frequency is 

com = <o0 4 -dto cos pt 4-
. paAco sin pt p2d to cos pt 
u2 4~ Aco2 cos2 pt (a2 4- Aco2 cos2 pt)3

• Í — a4 — 6a2Aco2 sin2 pt 4- Jot4 cos2 pt 

(1 4- sin2 pt) j (20) 

If we require an expansion in harmonics 

<om = co0+Aco cos pt+p E Cin + i sin (2«4-l) P* + 
4- p2 2? Di„ + i cos (2n 4- 1) pt (21) 

Fourier integration yields 

C2„+ i = (— l)«2c-<,"+, >{(14-c2)» — ; 
; c = Aco/a (22) 

and 

D2„t1 = (_ 1)» 2 (2n4-l)2 a-1 (14-c2)"* 

{(14- Ci)*_l}«» + 1 (23) 

When the frequency deviation is small the 
third harmonic in the quasi-stationary term is 
proportional to Aco3, the fifth to Aco5 and so on. 

C _ 6 ^(— 1)" + 1 (2n 4- 2)! pto\Zn + 3

3 0 (n4-3)!n! \2a) 

C5 = 10 etc 
5 „ (n 4- 5)!n! \2a ) 

Fig. 2. Instantaneous amplitude: I 
Static approximation. II Quasi-station* 
ary approximation. Ill Exact value, 
calculated by the Fourier method. 
XX Second order approximation from 
the asymptotic series. 

Fig. 3. Instantaneous frequency: 
I Exact value (Fourier method) 

II Difference between exact value and 
first approximation (enlarged 50 

times) (V Ã* = 0.0793) 
III [Difference between exact value and 

second approximation (enlarged 50 
times) (V d* = 0.0341) 
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Fig. 4. Second harmonic produced by detuning a single 
circuit. Upper curve oi, — w0 = ®1 «>8. Lower curve. 
u _ Wo = 0.05 <u8. (Calculated from the quasi-stationary 
approximation). 

Whereas the Fourier method gives the 

result only point by point and involves a great 
deal of graphical work, the harmonics are now 
obtained immediately in compact form. By 
setting down an upper limit for the error in the 
manner employed in the preceding section a 
reasonable degree of accuracy may be anticipated 
for p < 0.1 a and pAM < 0.1 a2. In this instance 
the second order approximation would show a 
further improvement. We take as an example the 
case where p = 0.1 a ; Am — a. The results of 
the Fourier method and the asymptotic ap¬ 
proximation to the second order were calculated, 
for both the instantaneous amplitude and the in¬ 
stantaneous frequency. In fig. 2 the exact value 
of the instantaneous amplitude and its approxi¬ 
mations are given, and in fig. 3 the exact value 
of the instantaneous frequency and also the 
difference between this function and its first and 
second order approximations enlarged 50 times. 

Further a number of harmonics of the in¬ 
stantaneous frequency were calculated by the 
Fourier method and compared with those 
derived from the quasi-stationary approximation: 

So far we have assumed that the filter was 
tuned to the central frequency of the frequency-
modulated signal. A small amount of detuning 
has no large effect on the odd harmonics but 
introduces the even harmonics. If the circuit 
is tuned to the frequency cot and the central 
frequency of the signal is <o0, we put 

b = (<ot — M0)/a 
The instantaneous frequency is derived in the 
same way as before and for the quasi-stationary 

term the result is 
pa Am sin pt 

a2 + (ba — A M cos pt)2

The harmonics are calculated by Fourier 
integration. If A„ is the amplitude of the n th 

harmonic 
An2 = — P2^" — V)2 

w here 

z = - (b — u + i — tv) ; 
1 c 

z2 = - (b — u — i + iv) ; c = Aœ/a ; 

u = + ; { (b2 - 1 - c«)* + w} 
Z ¿ I 

„ = [LtAuL2 + 1 / (i + c2 — b2y + 4b2}4 
2 2 

4p .. ,2
Por n = 2 we get in this way A2 — u (I v) 

and for n = 3 As = -y (1 — 3u2) (1 v)3

We can plot the percentage harmonic for a general 
single turned circuit by expressing the audio¬ 
frequency p and the frequency sweep Am in the 
filter constant a (or as in our figures in mÒ = 2a). 
In fig. 4 the lower curve is drawn for b = 0.1 
and the upper one for b = 0.2. The percentage 
second harmonic is A2/Am. The ordinate gives 
A2mÒ/pAm as a function of Am¡mÓ. Thus when 
MÒ and p are given one has only to multiply the 
ordinate of the curve in fig. 2 by pfob to get 
the percentage second harmonic for any given 
value of Am/mó. The odd harmonics are given 

pl a 1 Aut/a 
i 

p A ut/ a2

Fourier Quasi-stationary 

% 3rd harm % 5th harm % 3rd harm % 5th harm 

0.1 
0.33 
0.28 
0.28 
0.28 
0.28 

1 
1 
1.08 
1.79 
2.51 
3.59 

0.1 
0.33 
0.30 
0.50 
0.70 
1.01 

1.42 
4.00 
4.7 
8.7 
9.8 
10.1 

0.24 
0.64 
0.87 
3.9 
6.3 
6.55 

1.38 
4.74 
5.53 
8.08 
8.91 
8.74 

0.24 
0.81 
1.06 
2.78 
3.53 
4.59 
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in the same way in figs. 6 and 7. They apply when 
the filter is tuned to the central frequency but 
are not much dependent on exact tuning. 

Application to the theory of coupled circuits 

8) In fig- 5, M is the coefficient of mutual 
inductance. M2 = k2LlL2. It is assumed that 
both circuits are tuned to the frequency co0 and that 

Fig. 5. Coupled circuits. 

ri — r2 — t°o^2^2- Now when the values 
of dp 02 and k are small in relation to unity and 
d<o and p small with respect to o>0, the differential 
equation to be solved is 

wo2 (k2 4- djd2) Eo 4 2io0 (dj -f- d2) Eo' + 4E0' 

= ie,msin ^ (24) 

The instantaneous frequency is (quasi-stationary) 

<Om = wo + dtp COS pt + 
2paAto sin pt (/?2 -4 dto2 cos2 pt) 

* /i4 + (4a2 — ̂ß2) Ato2 cos2 pt -4 Ato4 cos4 pt 

(25) 
where 
4ß2 = (k2 + 0t02) <o02 and 4a = to0 (<\ + d2) 

From this the harmonics can be extracted by 
Fourier integration. When 

dj = d2 = <5, k/0 = a, and 2 A to/toó = x, 
we find for the quasi-stationary approximation 
of the third harmonic 

A - 4 I M 1- 3°2) 
A»~ ~ 3 + 
— ~ { (x2 + 4 — 4a2) A — 8aB} 

and, similarly, for the fifth harmonic 

_ 4p L 20 — 60a2 16—160a2+80a4A = - E 5 + - - + - T-
0 X X2 X4

( 12(1— a2) , 16(1 — 6a2 + a4)) . , 
( X2 X4 ) 

(24a 64a (1 — a2)) 
+ + - — ?— i B

whilst in both cases 

2A2 = x2 + 1 — a2 + { (x2 + 1 — a2)2 + 4a2 }i 
2B2 = — x2 — 1 + a2 -J- { (x2 + 1 — a2)2 + 4a2}i 

By means of these expressions curves have been 
plotted for different values of a k/0, from which 
the distortion as a function of the frequency 
swing can be read. This swing, and the audio¬ 
frequency must then be expressed in terms of 
the bandwidth toó, which is characteristic of 
the filter. For low values of x one should use 
the series expansion, which in the case of A3 

commences with 

px3 (1 — 3a2) 3 px3 (1 — 10a2 + 5a4) 
“2 (1 + a2)3 ‘ 8~ (1 a2)5

and for with 

Fig. 6. Third harmonics pro¬ 
duced by band-filter and 
single tuned circuit in general 
constants. 
(Calculated from the quasi-
stationary approximation). 
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Fig. 7. Fifth harmonics pro¬ 
duced by bandfilters and 
single tuned circuit, in general 
constants. 
(Calculated from the quasi-
stationary approximation). 

px^ (1—10a2+5a4) 5 px* (1— 21a2 + 35a4— la*) 

8 (f+a2)5” 32 (I—«2)7

The following are a few comparative values of 

of p and zlw they give an indication of the result 
to be expected, but one should check the result 

bv the exact Fourier method. 

Fourier method Quasi-stationary 

k,8 doj u»S p U) 0 
% 3rd harm % 5th harm % 3rd harm % 5th harm 

1 
1 

2 
1 
1 

0.5 
0.4 
1 
1 
1 
0.5 

0.1 
0.2 
0.1 
0.1 
0.2 
0.5 

1.31 
2.20 
1.65 
3.86 
2.53 
4.91 

0.53 
0.45 
2.10 
1.13 
3.06 
0.39 

1.37 
2.30 
1.73 
3.99 
3.46 
6.88 

0.39 
0.32 
1.79 
0.24 
3.59 
1.93 

exact results and quasi-stationary approximations: 
The absolute values of A3 and Aò are graphed 

in figs. 6 and 7. When these pass through zero 
the phase is rotated 180°, which opens up the 
possibility of employing different filters in sub¬ 
sequent stages to obtain compensation. One 
could combine a filter of k/0 = 0.8 with one 
of k/ò = 2 aiming at a more attractive amplitude 
characteristic and reduced distortion. If p = 0.1 
aid and Aa> = 0.5 a>0 the quasi-stationary ap¬ 
proximation yie’ds 1.249% third and 0.473% 
fifth harmonic. The exact theory gives respectively 
1.106% and 0.451%. For p = 0.1 rod and Aa>=wò 
the quasi-stationary prediction is 0.060% third and 
0.948% fifth harmonic, whereas the exact theory 
yields 0.658% and 1.264%. For lower values of 
p/<i>0 the correspondence is still better. The 
method is also applicable to filters of different Ò. 
The graphs of fig. 6 and 7 give no exact 

values, but the quasi-stationary approximation. 
Their use for calculations is justified up to 
p/o>d < 0.2 and pAa>/(o2d2 < 0.1. For larger values 

Intermodulation 

9) When a transmitter is modulated with 
different audiofrequency tones, sum- and differ¬ 
ence-frequencies are produced by the receiver 
filters. Take the case of a single tuned circuit. 

Let the instantaneous frequency of the trans¬ 

mitted signal be 

<i>0 + Aa>i cos pt + Am2 cos qt 
After the circuit the quasi-stationary term is 
then 

d Aa>, cos pt + Aoj2 cos qt 
— arc tan - =- =-
dt a 

Using the expression 

arc tan a 

oo 
re-" 
I — sin au du (24) 

we insert 
a = 2x cos pt + 2y cos qt, where 2xa = A a>1 and 

2ya = A a>2 
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Then 

00 

arc tan a J" sin (2ux cos pt -|- 2yu cos qt) du 
o 

By means of the well-known expansion in B e s-
s e 1 functions, the coefficient of cos (2k + 1) 
pt + 2m qt in the expansion of the arc tan 
appears as 

00 

2 (— 1) k+my J2*+1 (2ux) J2„ (2uy) du (25) 
o 

In many cases these integrals can be further 
simplified by the methods indicated by Wat¬ 
son [9]; for instance, whenever k = m, and also 
when the arguments of the Bessel functions 
are equal. In the latter case the frequency 
deviations are equal and x = y. Then the integral 
is reducable to complete elliptic integrals of the 
first and second kind, K and E, so that 

„ — (1 + 16x2H , „ 
C*P= 36^- L { (H - 2*2) E - 5K ) -

~ 2x + 6 x3

The argument of K and E is k = - --
(1 + 16x2)i 

(if K and E are tabulated as functions of a, where 
sin a = k, tan a is equal to 4x). C3p is the coeffi¬ 
cient of cos 3pt in the expansion of the arc tan. 
It must be remembered that the arc tan has to 
be differentiated in order to produce the fre¬ 
quency. In this way the amplitude corresponding 
to the frequency 3p after demodulation A3p is 
given by 

— 3p C^p 

For the frequency 2p q we get analogously 

C --(HWu 1 4x2) F ' F 1 4- 1 c2?±i — - Jj,—1- {(— !+4x ) E K} + — 

and 

¿2p±q = (2P ± ?) C2p±q

For small frequency deviations, the expansion 
of arc tan a can also be quite well employed; 
this gives us 

C2/>±i = 

=  2 %, yn (_ n»+"+i (2m+ 2n + 2) ! x2»+2yaw +i 
o o ' ' (n+2) !n!(m+l) !m! 

and 

00 00 
C2p± 3, = 2 Z” (— l)m+"+ 2 

o o 

(2m + 2n + 4) ! y2̂  
(n + 2) ! n ! (m + 3) ! m ! 

Fig. 8 gives the curves of A2p+ q and A3p for 
equal frequency deviations of the fundamental 
tones. If the quasi-stationary approximation is 
to answer the purpose, it is necessary that p/a. 

Fig. 8. ¡Intermodulation on applying a frequency-modu¬ 
lated signal, to a single tuned circuit. Two audio tones 
of equal swing in the original modulation. 
(Quasi-stationary approximation). 

q/a, pAcu/a2 and qAtu/a2 shall not be too great 
for example p/a and q/a < 0.4 and 

pA^ + qAco2 < 0.8 a2

Intermodulation in the case of coupled circuits 
may be computed along similar lines. 

Conclusion 

10) Apart from the examples we have given 
here, many other applications are possible. The 
application to the frequency detector circuit was 
discussed in my thesis. Other examples and an 
alternative derivation of the asymptotic series 
were given by van der Pol [10]. 

For many practical purposes the condition that 
p the audio-frequency is small with respect to 
(OÒ, is satisfied, and the use of the quasi-stationary 
approximation yields good results. In fact it may 
be the only way, as in this case the Fourier 
spectrum has so many components, that this 
form of computation is excluded. 
To Prof. Balth. van der Pol and Prof. 
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H. Bremekamp the writer wishes to express 
his sincere thanks for many helpful suggestions. 
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The Quasi-Stationary Response of Linear Systems 
to Modulated Waveforms 

D. D. WEINER, MEMBER, IEEE, AND B. J. LEON, MEMBER, IEEE 

Abstract—A major consideration in communications is the trans¬ 
mission of modulated waveforms through linear systems. The en¬ 
gineer usually wants the modulation to be preserved, for it is the 
modulation that carries the transmitted information. This paper pre¬ 
sents a straightforward method for relating distortion of the modula¬ 
tion to readily computed characteristics of the linear system and the 
input signal. Through a simple integration by parts, the response is 
broken up into 1) a quasi-stationary term that preserves the charac¬ 
teristics of the modulation, and 2) a correction term that represents 
the distortion. Examples of the application of the results to both AM 
and FM signals through linear time-invariant systems and FM waves 
through first order time-variant systems are presented. A fairly ex¬ 
tensive bibliography of the basic problem is also presented . 

I. Introduction 

A MAJOR CONSIDERATION in the design of 
communication equipment is the transmission of 
modulated waveforms through linear systems. 

The engineer usually wants the modulation at the out¬ 
put to be the same as the modulation at the input, for it 
is the modulation that carries the transmitted informa¬ 
tion. Thus, he would like a straightforward way of es¬ 
tablishing a relation between readily computed charac¬ 
teristics of the system he is to design and distortion of 
the waveforms to be transmitted through that system. 
Conventional analysis techniques can be applied to 
specific systems with specific signals but in these anal¬ 
yses the important design considerations often lose their 
identity. For example, in the analysis of FM signal 
processing, one may be able to compute the various fre¬ 
quency components of the input in terms of Bessel 
Function coefficients, operate on each of these with the 
appropriate transfer function, and then express the out¬ 
put as an infinite sum of frequency components. What 
is the modulation of the output i.e., what will a fre¬ 
quency discriminator detect? These are the type of 
questions dealt with in this paper. 
Our purpose is to develop an approach in which the 

instantaneous amplitude and instantaneous frequency 
of the input signal retain their identity. The response is 
expressed as the sum of a quasi-stationary term plus a 
correction term. The quasi-stationary term is defined as 
the input signal multiplied by the appropriately modi¬ 
fied version of the conventional sinusoidal steady-state 
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system function. This is illustrated in Table I.1 For the 
time-invariant system with AM input, the carrier fre¬ 
quency is a constant equal to wc. Hence, the quasi-sta¬ 
tionary response is defined as the input multiplied by 

evaluated at wc. In the time-invariant FM case, 
the instantaneous frequency of the signal o>(Z) varies 
with time. The quasi-stationary response is obtained by 
multiplying the input by with a? replaced by 
The resulting ) is referred to as the quasi-sta¬ 
tionary transfer function. Finally, in the case of a time¬ 
variant system excited by an FM signal, both the param-
ters of the system and the instantaneous frequency of 
the input vary with time. Here, the quasi-stationary re¬ 
sponse results through multiplying the input by H(ju) 
in which the system parameters, e.g., R, L, C, p., as well 
as the frequency variable co, are replaced by R(t), L(t), 
C(t), and <o(f), respectively. Again, the resulting 

/] is referred to as the quasi-stationary transfer 
function. 

Unfortunately, the quasi-stationary term does not 
comprise the total response. In addition, there is a cor¬ 
rection term which in many applications represents the 
distortion. It arises because the system response is un¬ 
able to build up and decay as fast as the quasi-stationary 
term would dictate. When the time-varying parameters 
vary “slowly enough,” the correction term is negligible. 
Then it is possible to reason on a quasi-stationary basis 
provided it is known what is meant by “slowly enough.” 
For faster modulations the correction term is appre¬ 
ciable and insight into the system behavior is obtained 
by interpreting the total response as an interference 
phenomenon between the cpiasi-stationary and correc¬ 
tion terms. 

In both the AM and FM cases, as documented in the 
following, there has been considerable engineering litera¬ 
ture devoted to even the simplest of problems in this 
area (for example, the burst of carrier in the AM case 
and the step change in frequency in the FM case). The 
primary result of this paper is a demonstration that 
both these problems, plus more complicated AM and 
FM problems for all completely stable (no J axis poles) 
time-invariant lumped systems and for, at least, first-
order time-variant systems, can readily be put into the 
desired form with the exact correction term as a closed-
form integral. This result is obtained by the simple 

1 In this paper it is to be understood that wherever signals are ex¬ 
pressed as complex time functions, the real part is implied. For ex¬ 
ample, A(t)e‘u‘‘ implies 2?4A(Z)e'"»'] = A(Z) cos »,4. 
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TABLE 1 

Definition of Quasi-Stationary Response 

565 

■ 
Input Signal Transfer Function Quasi-Stationary Response 

Time-invariant system with AM input A(t)e'“cl «(to.) 

Time-invariant system with FM input exp |ÿ J" w(£ «[>>(1)] «[>(1)1 £e' J" «(£)d/j 

Time-variant system with FM input expfjj^m] llljuW; <1 f ü>(£)dí] 

mathematical formalism of integration by parts 
nothing more. Several examples are discussed to demon¬ 
strate application of the results. 

11. Quasi-Stationary Response of Linear Time-
Invariant Systems Excited by AM Signals 

It is well known that if the frequency spectrum of a 
signal is restricted to a region within which the system 
gain is essentially constant and the system phase is es¬ 
sentially linear, then the output signal will be a delayed 
but undistorted replica of the input [1]. These condi¬ 
tions are frequently not satisfied in practice because of 
noise considerations, component bandwidth limitations, 
etc. The problem then becomes one of determining the 
distortion in the output signal. I his can be accom¬ 
plished using conventional frequency and/or time do¬ 
main methods [2]-[21]. In spite of the wealth of litera¬ 
ture referred to, the state of the art in analyzing linear 
time-invariant systems excited by amplitude modulated 
signals leaves much to be desired from the designer s 
point of view. The exact analyses are extremely tedious 
while the approximate ones are limited in their applica¬ 
tions. None of the methods really give much insight into 
the dynamic behavior of the system. Furthermore, the 
instantaneous amplitude, the quantity ol interest, 
usually becomes lost in the complexity of the mathe¬ 
matics. The analysis which follows is an attempt to 
correct some of these deficiencies. 

A. Derivation of Response as Quasi-Stationary 1 erm Plus 
Correction Term 

Consider the stable system function 

amsm + • • ■ + ais + 

(j + Sl)($ + S2) • ■ • (s + in) 

m < n, ii # Sj (1) 

in which the degree of the numerator polynomial is no 
more than the degree of the denominator polynomial 
and, in which, all poles are simple. Expanding in partial 
fractions gives 

n fC 

V-1 S + Sy 

The impulse response is simply 

A(0 = £ Kue->‘ + K¿(f) (3) 
V-1 

where S(t) is the unit impulse occurring at t =0. Denote 
the system input by uQ) and the system output by vQ). 
Let uQ) be given by 

Hence, the input signal is a constant amplitude sinusoid 
for /<0 and an amplitude modulated wave with con¬ 
tinuous envelope A(/) for t>0. (A discontinuity is al¬ 
lowed in the envelope at / = 0.) The frequency of the 
carrier is a constant equal to w.. Using the convolution 
integral, the response of the system for t >0 is 

= f ¿ Kye-P‘~T} A(f>-)e’^Tdr 
J -» B-l 

+ f ¿ KyC—^A^e^^dr + KaA^e*“1. (5) 
J 0 

Evaluating the integrals from — » to 0 and performing 
an integration by parts on the integrals trom 0 to / yields 

v(t) = * A(0_)]e-«-
1 Sy I JWc 

— ¿ C ——— A^Tfer^-^e^dr (6) 
y— 1 J 0+ Sy + j(¿C 

where 0+ is used to denote the value of t immediately 
after / = 0. Equation (6) is the desired result. 1 he first 
term represents the quasi-stationary response. 1 he sec¬ 
ond term, involving A(0_) and A(0+), gives that part of 
the correction term due to a step change in the envelope 
occurring at t = 0. When 4(0+) =4(0_), this term is 
zero. The third term, involving the integrations from 
0+ to t reflects the inability of the system response to 
follow the amplitude variations of the input for t>0. 
Note that the integrands contain the first derivative of 
the envelope. When the envelope varies slowly enough, 
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the last term is negligible. Hence, our notation will be 

»(/) = v,Q) + tc(/) (7) 
where the quasi-stationary term in this case is 

».(0 = A Q)H(juc)e^‘ (8) 

and the correction term is 
n fa 

^Q) = - E - [-1 (0+) - 4(0_)]e-.< 
»-1 Sy T JU, 

— É f --7— (9) 
y-l Tl, Sy + juc

For many engineering purposes an estimate, in the 
form of an upper bound on the departure of the system 
performance from quasi-stationary behavior, is ade¬ 
quate. Since the absolute value of a sum is less than or 
equal to the sum of the absolute values, 

I ’’.0) I < È ~ t-KO+) - .l(O_)]e-M 
J/“ 1 Sy I J^C 

fl /* t I 
+ E I - -—A'(r)e~’i>(‘~T>eJ“tTdTl . (10) 

y-l J 0+ Sy + juc

If A'Q) is sufficiently simple, convenient bounds can 
be obtained by straight forward substitution into (10) 
and evaluation of the resulting integrals. For those ap¬ 
plications in which this is too laborious or unfeasible, 
(10) can be simplified to 

I I < bq) 
A Ry 

= E — . -4(0+) - zl(0_) e—' 
V— I I 

« I K II I 1 
+ E-^ !-4'(r) 1(1-^) (11) 

1/™1 Sy I J^c , I max &y 

where ay equals the real part of s„. As time increases, 
BQ), the upper bound in (11), asymptotes to where 

BK = AQr) ¿1^-. (12)
i max y— 1 ay I Sy + Jalj 

The bound given by (12) is particularly convenient for 
the case in which AQ) is a sample function from a 
stochastic process, the process being characterized by 
A'Q) max . In general, the choice between (10), (11), or 

(12) will depend upon the particular application. These 
equations should not be interpreted as giving the tight¬ 
est possible bounds. They are presented mainly because 
of their simplicity. By using ingenuity and the detailed 
properties of AQ), considerably tighter bounds can be 
achieved. A tradeoff exists between simplicity of the 
bounds and improved accuracy. 
The analysis is readily extended to systems having 

multiple-order poles. If there is a pole of order p at fre¬ 
quency s„ then the partial fraction (2) has a set of terms 
of the form K{j/(s-fSi)' with j taking on integer values 
from 1 to p. The time response (3) then has terms 
(K<i/ (j —\)\)t,~'e~‘i‘. Each of these terms requires j in¬ 
tegrations by parts to get the desired form. The quasi-

stationary term is defined from the system function as 
before. The correction term becomes 

" K 
^Q) = - E -— H(0+) - zl(o_)]e—' 

y— 1 Sy “I- JWC
PI JC fq-V 

-[.4(0+) - .4«) )]. 
,_2 »-i (q ~ y) I (s. +juc)“ 

f' Kyi I 
— E I - :— -4 

y-l J Sy + juc

■ e-.,<,l-Tleiu,rTdT, 

Bounds on this correction term can be obtained by the 
same procedures as in the simple pole case. 

B. Application of Results 

The instantaneous envelope of the system response 
equals i v(t) | and is constrained to lie between the 
bounds I vq(t) ■ ± | vc(t) |. By comparing [ vcQ) | with 
I v,Q) I, it is possible to determine to what extent the 
system is behaving in a quasi-stationary manner. When 
the correction term is not negligible, the expressions for 
\vgQ) I and B(t) [the upper bound on |pe(/)| ]. are often 
significantly simpler than the corresponding expression 
for I vQ) I . In such a situation much useful information 
can easily be obtained by plotting | vg(t) | ±BQ) as il¬ 
lustrated in the following examples. 
The first case considered is the response of a high-Q, 

single-tuned circuit (with half-bandwidth a as measured 
between the 0.707 points and resonant frequency ur) to 
a burst of carrier frequency uc with trapezoidal leading 
edge. The excitation is shown in Fig. 1. Application of 
(6) yields 

Í 1 1 , 
- [(1 - t) 2 - 2(1 - r)e~Tcosxr 

I r0 1 + X2

— 2xre~r sin xr + e-2 ' + x2r2]1/2 0 < r < r0

1 1 
1- (1 + x2)r02

I »(r) I = j to 1 + X2 (14) 

— 2Toe (r°_” cos x(to — t) 

+ 2Tae~' cos xr — 2xToe (ro_T) sin x(t0 — t) 

— 2xTae~r sin xr + e-2 ’ + e2(,o-r> 

( - 2c<'«-2'>cosxto]''2 t>t„ 

where r=at, r^ato, and x = (ue—ur)/a. Using (10) an 
upper bound on the magnitude of the correction term is 
found to be 
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The bounds on the envelope of the exact response are 
given by | v„(t) | These are plotted in Fig. 2, 
along with the envelope responses for two different 
values of ue. When uc=w„ the lower bound exactly 
equals the envelope response, while for o>c = «r + 2a, the 
bounds hug the first overshoot and first undershoot very 
nicely. Note the relative simplicity of (15) as compared 
with (14). 
A second example involves the response of high-Q 

single and double-tuned circuits to a sudden burst of 
carrier for which A(0_)=0 and A(t) = l. Equations (6) 
and (11) were used [40 ] in obtaining the curves of Fig. 3 
(a), (b), and (c), while a corresponding upper bound for 

Fig. 1. Burst of carrier with trapezoidal leading edge. 

(13) was used in Fig. 3 (d). In each instance, the bounds 
yield reasonable estimates to the exact response. The 
tightness of these bounds is appreciated all the more if 
the complexity of the exact expression for v(t) is com¬ 
pared to the relative simplicity of the expressions for 
the bounds. 

Fig. 2. Envelope response and bounds for single-tuned circuit ex¬ 
cited by a burst of carrier with trapezoidal leading edge. The poles 
are located at r = —a ±ju„ 

(d) 
(c) 

Fig. 3. Envel^= a^K ^ 

and ~a±^ 
(d ) Synchronously tuned double-tuned circuit with second-order poles located at s - -a ±ja„ 
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III. Quasi-stationary Response of Linear Time-
Invariant Systems Excited by FM Signals 

The first published results on the quasi-stationary 
response of linear time-invariant systems with EM in¬ 
puts are due to Carson and Fry [22]. They presented 
the correction term as an infinite series expansion with¬ 
out investigating the convergence properties of their 
expansion. Van der Pol [23] and Stumpers [24], in a 
more straightforward manner, also expanded the re¬ 
sponse into a quasi-stationary term plus an infinite 
series for the correction term. Stumpers pointed out the 
asymptotic behavior of his series as well as that of Car-
son and Fry. No clear-cut bounds on the errors involved 
in truncating the series and using only a few of the lead¬ 
ing terms were presented. Baghdady [25] unified the 
approaches of Carson and Fry, Van der Pol, and Stum¬ 
pers and attempted to provide bounds on the error due 
to truncation of the series. Rowe [26] showed Bagh-
dady's analysis to be defective and supported his claim 
with several counterexamples. Hess [27], feeling that it 
was impossible to obtain an exact expression in the de¬ 
sired form, derived a result which supposedly approxi¬ 
mates the output closely and keeps a tight bound on the 
error term between the approximate and actual re¬ 
sponse. Hupert [28] obtained a closed form result by 
approximating the instantaneous frequency of the ex¬ 
citation as a limit function of a series of small steps and 
then using the principle of superposition. His results 
are incorrect due to the omission of the factor 

exp 

from the integrand in his (14). Since Hupert’s derivation 
is not presented in sufficient detail, it is speculated that 
the error was caused by improper normalization. 

A. Derivation of Response as Quasi-Stationary Term 
Plus Correction Term 
The derivation proceeds in a manner very similar to 

that in Section II-A. Let the FM input be given by 

fe^"' t < 0 

u(t) = 1 
p«> = e’fj “ <«we / > 0. (16) I 

Thus, the instantaneous frequency of the input signal is 
constant for t <0, jumps from o, to wo at t = 0, and varies 
in some arbitrary but specified manner for />0. For a 
system with n distinct poles and the ¿th pole of order p, 
the integration by parts technique (see Weiner and 
Leon [29] and |40 ] for more detail) gives 

r(/) = HLMO]«'’«'’ 

»-1 L(í» + jo,) {S y + JOIO). 

j f 
- 0 

(?-?)! 
1 

-6. - jw,)“ (17) 

The first term in (17) is the desired quasi-stationary 
term. The second and third terms result from the fre¬ 
quency step at / = 0. The fourth and fifth terms arise 
from the inability of the system to follow the input in a 
quasi-stationary manner. The single summations are 
due to the simple poles while the double summations 
are due to the multiple-order pole. Note that only the 
first derivative of (¿(r) appears. This is significant since 
previous analyses involving infinite series expansions of 
the correction term |22]-[25] had indicated that higher 
derivatives were also involved. 

In most FM applications the modulation can be 
classified as abrupt (as with FSK) or continuous (as with 
commercial FM broadcast.) For the continuous case, 
ü), = ü>o, and the second and third terms drop out of (17). 
Now the correction term (designated by the subscript 
cc for continuous correction) is bounded by 

I u(r) [max 

Equation (18) is especially convenient for the case in 
which w(t) is a sample function from a stochastic process 
characterized by |w'(f)| m„. 

If the quasi-stationary and correction terms are 
thought of as rotating phasors, the response can be in¬ 
terpreted as the interference between these two phasors. 
This interference phenomenon provides an effective 
pictorial explanation for the behavior of linear systems. 
For the AM case [40], it offers a straightforward inter¬ 
pretation of such measures as the percentage envelope 
overshoot and undershoot, their time of occurrence, 
conditions under which the instantaneous frequency of 
the response equals that of the input, and the severity 
of frequency modulations in the response. For the FM 
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case, the phasor interpretation even more dramatically 
explains many unusual features of the instantaneous 
frequency of the response, as is shown in Section 111-B. 
Finally, the interference mechanism explains the re¬ 
sponse of linear first-order time-variant circuits as dis¬ 
cussed in Section IV7. 

As is obvious from Fig. 5, exact expressions describ¬ 
ing the waveforms would be extremely complicated. 
Nevertheless, the behavior observed in the oscillograms 
can be explained in a very simple and straightforward 
manner. Dividing (17) by the quasi-stationary term, 
the normalized response is 

B. Response of High-Q Single-Tuned Circuit to a Fre¬ 
quency Step 
Many investigators have studied the response of a 

single-tuned circuit to a sinusoidal input that is fre¬ 
quency modulated by a step. Salinger [30], after ideal¬ 
izing the filter characteristics, used contour integration 
in the complex plane to evaluate the response. Hatton 
[31] solved the differential equation directly while 
Clavier [32], McCoy [33], and Gumowski [34] used 
transform techniques. These approaches all involved 
unwieldy mathematical expressions that shed little 
light on what is actually going on. Weiner and Bagh-
dady [35] conducted both an experimental and theoret¬ 
ical study of the FM transient problem which resulted 
in an extensive library of FM transient oscillograms. 
Their theoretical work yielded the first simple explana¬ 
tion of the FM transient response as an interference 
phenomenon [36], [37]. 

Consider the input to the circuit of Fig. 4 to be 

The instantaneous frequency is w, for / <0, and jumps 
to wo for t>0. The problem is to determine the instan¬ 
taneous frequency of the output voltage e0(/). 

Oscillograms of the instantaneous frequency of the 
response of a single-tuned circuit to a series of frequency 
steps are shown in Fig. 5 [35]- [37], The normalized 
variables x, and x0 give the initial and final frequency 
deviations of the input from the resonant frequency of 
the filter in terms of the number of half-bandwidths of 
the filter. For example, x, = 0 and x0=l indicate a 
frequency step from the resonant frequency of the 
filter to a frequency one half-bandwidth above reso¬ 
nance. Figure 5(f) demonstrates that during transitions 
in which an overshoot becomes an undershoot, the in¬ 
stantaneous amplitude of the response drops to zero. 
In Figs. 5(1) and (m), the leading edge of the square 
wave corresponds to a frequency deviation away from 
resonance (x, = 0); the trailing edge corresponds to a 
deviation towards resonance (xo = O). When xo = O, the 
response never overhoots, regardless of the values of x,. 
Figure 5(n) shows a response in which the overshoots 
have no inflection point in the leading and trailing 
edges. Figure 5(o) indicates that when x,= —X», the 
leading and trailing edges of the response are sym¬ 
metrical. 

eo(0 
eox(O =- = 1 + A (20) 

Z^jw^e^ 

where 

A, = I .4,1 e’*’ 
and 

Given a phasor interpretation to the normalized re¬ 
sponse, the resultant phasor c0.v(/) is the sum of a con¬ 
stant unit phasor plus a phasor of magnitude ¡Aje-“1 

rotating clockwise at a frequency of (wo—wr) radians/s. 
The magnitude of the resultant phasor is the enve¬ 
lope of e^ff, while the time derivative of the phase 
angle gives the instantaneous frequency of eow(/). The 
envelope and instantaneous frequency of eo(f) are ob¬ 
tained by multiplying the envelope of Co.v(f) by | Zlj&f) | 
and adding w0 radians/s to the instantaneous frequency 
of eov(f). 
The phasor model easily explains all the phenomena 

observed in the oscillograms of Fig. 5. Consider, for ex¬ 
ample, the situation shown in Fig. 6. As the rotating 
phasor decays exponentially, the resultant phasor 
e^if) wobbles back and forth with a period that is ap¬ 
proximately equal to 27r/wu—wr. At points A, C, E, and 
G, eonÇt') is at rest, and the instantaneous frequency of 
e^t) equals w0. Local maxima occur at B and Fand local 
minima at D and H. Undershoots in the response are ex¬ 
plained by Fig. 7. Here, the rotating phasor is suffi¬ 
ciently large at / = 0, and the frequency (w0—wr) is suf¬ 
ficiently high to enable the tip of the e»v(i) phasor to en¬ 
circle the origin twice. Since the instantaneous fre¬ 
quency overhoots in the direction of the frequency of 
the stronger signal [38], the instantaneous frequency 
of eox(O undershoots at points to the left of 0, and over¬ 
shoots at points to the right of 0. Note that undershoots 
must always precede overshoots; also, successive under¬ 
shoots have increasing magnitudes whereas successive 
overshoots have decreasing magnitudes. When the tip 
of the eoN^t) phasor passes through the origin, the re¬ 
sultant is zero, and the instantaneous frequency of the 
response is transitional between an overshoot and an 
undershoot. 
When wo = wr, (w0-wr) =0 and the rotating phasor is 

stationary. Therefore, the response to a frequency step 
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Fig. 4. Single-tuned circuit. 

'M tt x 0; «O : Il W» 

big. 5. Oscillograms of the instantaneous frequency of the response 
of a single-tuned circuit (with half-bandwidth a as measured be¬ 
tween the 0.707 points and resonant frequency œr) to a series of 
frequency steps. 

(œ — <*>r) (<*>0 — Wr) 
- and x- = -

that terminates at wr consists of a smooth exponential 
rise caused by the decay of | AF| e-"'. For certain values 
of (w0—a)r) an inflection point occurs because the re¬ 
sponse is alternately influenced by the decay and rota¬ 
tion of the rotating phasor. If ^u — œr) is small, only the 
decay predominates, and if (w0 —o>r) is very large, only 
the rotation predominates. In these two cases no inflec¬ 
tion point occurs. 

Quantitative information concerning the FM tran¬ 
sients can also be obtained from the phasor model. For 
example, when x, = 0and x0>0, L4,| = x«and the initial 
phase angle of the rotating phasor is tt/2 radians. Since 
the rotating phasor rotates at (w0 — wr) radians/sec., the 

Unit 

Time 

Fig. 6. Behavior of the resultant phasor eox(t) that results in the 
occurrence of instantaneous-frequency and instantaneous-ampli¬ 
tude transients in the single-tuned circuit response. 

Instantaneous Frequency 

Fig. 7. Behavior of twW that results in the occurrence of both 
undershoots and overshoots in the instantaneous frequency of 

normalized times of peak undershoots and overshoots 
are given by 

(«o — Wr) 
« = 1, 2, 3 • • • . (22) 

The value of the instantaneous frequency at these in¬ 
stances is obtained as follows: at t„ the resultant and 
rotating phasors are colinear but pointing in opposite 
directions. The tangential velocity of the rotating 
phasor tip is xoc-“'”^ —wr) and equals that of the re¬ 
sultant phasor which is (1 -xoe-“'")wv(í„). w¡v(/») is the 
instantaneous frequency of the resultant phasor. Solv¬ 
ing for w^/,,) yields 

Xo(wo — wr) 
UN(ln) = -

e"'" — x0
(23) 

Since the instantaneous frequency of eo(O equals that of 
c»n(/) plus Wo, the fractional overshoot a„, or the frac-
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Fig. 9. Plot of theoretical fractional overshoots and undershoots for 
*,, = 0 and x»>0. 

tional undershoot bn, at the nth peak is given by 

[o>.v(/n) + wo] — wo xo 
a„ - - - - I24 ) 

wo — w, e’* — x0

(wy(ln) + Wo] — w, _ Xo 
b„ - - - r 1 

Wo —  Wr e’* — x0

where r„ = atn. Equations (22), (24) and (25), are plotted 
in Figs. 8 and 9, respectively. The transition between 
an overshoot and undershoot occurs when l=xoe-T”. 
Hence, the curve cr = x0 is also plotted in Fig. 8. The in¬ 
tersections of this curve with the ri, r2, and 73 curves 
indicate that the first three overshoots should become 
undershoots when Xo reaches the values 3.63, 6.12, and 
8.12, respectively. 

C. Conditions for Quasi-Stationary Response of Several 
Filters of Interest 
There are many applications in which it is desirable 

to have a system respond in a quasi-stationary manner 
to an FM input. Assume that the instantaneous phase 
angle of the input is 

6(f) = Uet + Aw f fWC (26) 
V 0 

The instantaneous frequency of the input is 

w(f) = wc + -^ff)-

Assume |/(0| <1 so that the maximum frequency de¬ 
viation is Aw. Assuming the filters to be high Q, (18) 
yields 

1^(0 I < B = Awl/'Wl^L 
(a„)3

+ Aw|/'(r)|m„¿¿yl^- • (28) 
0-2 „-1 (Oli) 

The results for several filters whose gain characteris¬ 
tics have been normalized are summarized in Table II. 
In each case, the bound is proportional to the frequency 
deviation and the maximum rate of change of the in¬ 
stantaneous frequency of the input, while being in¬ 
versely proportional to the square of the filter band¬ 
width. Clearly, by making the bandwidth large enough 
for a given input or by choosing a suitable input for a 
given filter, the correction term can be made as small 
as desired. 
When the conditions for quasi-stationary behavior 

are violated, it is of interest to investigate the nature of 
the response. Figure 10 shows oscillograms of the re¬ 
sponse of a single-tuned circuit to a sinusoidally modu¬ 
lated FM wave. These oscillograms have many simi¬ 
larities with those of Fig. 5. Figure 10(a) shows the 
filter behaving in a quasi-stationary manner. With an 
increase in the modulating frequency and the size of the 
deviation, distortion becomes evident [see Fig. 10(b)]. 
Violating quasi-stationary conditions even further, the 
response starts to ring and the first overshoot grows in 
magnitude. Eventually, the first overshoot becomes an 
undershoot and at the instant of transition the instan¬ 
taneous amplitude of the response dips to zero [see 
Figs. 10(c)— (f) ]. Other distorted waveforms are shown 
in Figs. 10(g)-(j). 
The violent distortion in the frequency response may 

at first appear to be somewhat surprising in view of the 
smooth nature of the modulation. However, if the re¬ 
sponse is interpreted as the result of an interference 
phenomenon, the severe distortion is easily explained. 
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TABLE II 

Bound on Correction Term for Several Filter Types 

Filter Pole-Pattern Bandwidth (BW) . Bound on Correction Term* 

First-Order Butterworth 

Second-Order Butterworth 

—
J-

n
—
 

I
I
I
 

u
 

1 
! 

1
! 

1 
1 

1 
! 

1
1

X
-
-

1« 
, 

*
 

*
-

1« 

1 
1 
_
 

ja. 

2a 
4/2 

(BWP 

j(ur + ar) 
ja, 
j(a, — a) 2\/2 a 

16/2 

TbwF 

Third-Order Butterworth 
— 

1 
1 
1 
1 
1 1
1 1 

— a — a -
2 

] \, + ̂T a) 

ja. 
2a 

41/2 

W 

«-Identical Cascaded 

Single-Tuned Circuits 

-
i 
1 
I 

—j_ —a 

JWr 

- nth-order pole 2av/2î'^T 
2nd + n)(2''" - l)/2 

(BW)’ 

* Note: D = lSa\f'(t) |max-

IV. Quasi-Stationary Response of Linear First-
Order Time-Variant Systems Excited by FM 

Signals 

For the most general first-order linear differential 
equation 

dr (l) 
~ + g(0»W = «(/)• (29) dt 

The standard solution usual given (see, for example. 
Ince [39 ]) is 

where C is a constant. The difficulty with the aforemen¬ 
tioned solution is that it fails to describe the system be¬ 
havior in terms of familiar sinusoidal steady-state cir¬ 
cuit concepts As a result, even for first-order, time¬ 
variant systems, it is not known under what conditions 

such useful quantities as impedance, bandwidth, etc., 
are meaningful. The results presented in this section 
clarify the situation. 

Response of a Time- Variant Parallel RC Circuit to an 
FM Wave 
The circuit to be analyzed is shown in Fig. 11. The 

quasi-stationary impedance /[ is defined as the 
conventional steady-state impedance in which the 
parameters R, C, and are replaced by R(t), 0(0, and 
(¿(t), respectively.2 Hence, 

1 

, , C(t) 
(31) 

«(0 +ju(j) 

where 

aV) = 1/[Ä(/)C(/)]. 

2 /] should not be confused with Zadeh’s system function 
[41 |. 1'he latter is defined as 7/[jw; /J = y(O/^ w/ where y(/) is the sys¬ 
tem response to the input e'ut . 
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■O B-O.l 

For /<0, Rft) and Cft) are constants R„ and G, respec¬ 
tively. At Z = 0, the resistance and capacitance begin to 
vary. The circuit elements are always assumed to be 
positive. The FM input ift) is the same as u(t) in (16). 
The problem is to determine the output voltages eo(O 
as a quasi-stationary term plus a correction term. Using 
the principle of superposition, the output voltage equals 

(32) 

where lift, t) is the system response at time t due to a 
unit impulse applied at time r. For (>0, it is readily 
shown that 

where a»=\/RnC«. Subsitution of (16) and (33) into 
(32) and integrating by parts results in 

4- [Z(J«(; 0) — Z(Ju0\ 0)] 
C(f) 

— |C(t)Z[Xt); r] ¡ 
(IT 

(34) 

Fie. 10. Oscillograms of the instantaneous frequency oí the re¬ 
sponse of a single-tuned circuit to a series of frequency steps. 

(b) 

Fie 11 (a) Time-variant parallel RC circuit, (b) Plots of Rft) 
and at) VS. time. 

Just as with the time-invariant AM and FM cases, the 
response consists of a quasi-stationary term plus a cor¬ 
rection term. The first part of the correction term in¬ 
volving w, and results from a frequency step in the 
input at t =0. The latter part of the correction term re¬ 
flects the inability of the system to respond to the varia¬ 
tions of R(t), C(t), and w(f). 
As was the situation in sections 11 and 111, a trade ofl 

exists between the tightness and the simplicity of the 
bound on | v«(/) | - If the minimum value of aft) is de¬ 
noted by a,„i„ and the maximum value of d dr ! Cfr) 
Z[Jw(t); r]¡ by a simple bound on |vr(/)| is 
given by 

. ]. (35) 
C (0 ^min 

For large values of time the bound asymptotes to 

I re(0 I < ß 
1 Dma

Cft) «min 
(36) 
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Using the previous analysis, it is possible to determine 
under what conditions the conventional sinusoidal 
steady-state concepts have meaning in the response of a 
time-variant parallel RC circuit. 
When the instantaneous frequency of the input is con¬ 

stant for all time, (34) becomes 

eo(O = Z{ju\ Qe*" 

1 C d r
C (i) •/ o dr 

e*" exp - J ' a(f)df j dr. (37) 

The correction term in (37) shows that it is possible to 
vary R(t) and C(/) simultaneously so that ve(t) is iden¬ 
tically zero. Since (C(r)Z(ja; r) ] equals l/a(r)+jai, 
vc(l) = 0 when a isa constant, (i.e., when the resistance 
varies inversely proportional to the capacitance). 
Under these conditions the denominator of Z(ju; /) is 
constant. However, the numerator varies inversely pro¬ 
portional to C(t). Therefore, it is possible to vary the 
magnitude of the impedance without changing the pole¬ 
zero pattern by appropriately changing R and C as con-
tinous functions of time. This is the only known case in 
time-variant circuits in which the correction term is zero 
and the quasi-stationary term gives the total response. 

In a similar manner the response of other first-order, 
time-variant circuits can be expressed as the sum of a 
quasi-stationary term plus a correction term. In many 
situations a phasor interpretation can be extremely ef¬ 
fective in explaining the response. The resultant phasor 
is the sum of a quasi-stationary phasor plus a correction 
phasor. In general, the correction phasor will rotate 
with respect to the quasi-stationary phasor. Thus, the 
wobbling of the resultant phasor readily explains the 
frequency fluctuations in the output of a time-variant 
circuit to a constant frequency sinusoid. Other phe¬ 
nomena such as nulls and the instantaneous envelope of 
the output are also readily explained by the phasor 
model. 

V. Conclusion 

This paper has been concerned with the response of 
linear systems to modulated waveforms. It has been 
shown that an exact closed form solution for time-in¬ 
variant and first-order, time-variant systems can be ob¬ 
tained as the sum of a quasi-stationary term plus a cor¬ 
rection term. Two situations arise depending upon 
whether or not the magnitude of the correction term is 
negligible with respect to that of the quasi-stationary 
term. 
When the maximum rate of change of the modulation 

is slow compared to the speed with which the system can 
respond, the quasi-stationary term predominates and 
the system can be analyzed on a “dynamic” basis by 
appropriately modifying the conventional sinusoidal 
steady-state system function. This approach does not 

require a spectral analysis of the modulated input. The 
extent to which a system is behaving in a quasi-sta¬ 
tionary manner can be estimated by evaluating rela¬ 
tively simple expressions for the bounds on the correc¬ 
tion term. 
When the maximum rate of change of the modulation 

is comparable to or faster than the speed with which the 
system response can build up and decay, the correction 
term becomes appreciable. Insight into the system be¬ 
havior is obtained by representing the quasi-stationary 
and correction terms as phasors and interpreting the 
total response as an interference phenomenon between 
these phasors. The phasor model provides an intuitive 
explanation for such quantities as percentage envelope 
overshoot and undershoot; the time at which such over¬ 
shoots and undershoots occur; the conditions under 
which the instantaneous frequency of the response 
equals the instantaneous frequency of the input; and 
the severity and detailed properties of any frequency 
modulations which may occur in the instantaneous fre¬ 
quency of the response. 
Of major importance is the realization that the funda¬ 

mental nature of the response is the same for both AM 
and !■ M excitations to either time-invariant or first-
order, time-variant systems. This is due to the interac¬ 
tion of the quasi-stationary and correction terms. The 
quasi-stationary term is the logical extension from the 
conventional system theory of the particular (or steady¬ 
state) solution while the correction term is the logical 
extension of the homogeneous (or transient) solution. 
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Distortion and Crosstalk of Linearly Filtered, 
Angle-Modulated Signals 
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Abstract—An important problem in the theory and practice of receiving 
angiomoduiated signals is the design of the filtering elements which must be 
employed. It has long been known that filtering introduces distortion and 
crosstalk into the signal. However, the computation of these effects is 
difficult. The methods customarily used employ approximations of one kind 
or another, and the equations used do not apply to all cases of practical in¬ 
terest. Here formulas are presented which enlarge somewhat the domain of 
cases amenable to calculation. 

In this analysts, an angle-modulated signal having an arbitrary phase 
function is applied to a general linear filter, and the phase of the output is 
expanded in a series having the linearly filtered input as the leading term. 
The expansion is then specialized to the case of a narrowband signal applied 
to a narrow, symmetrical, bandpass Alter. 

A spectral analysis is performed by assuming a Gaussian input phase and 
examining terms through fifth order in the output phase expansion. This leads 
to the main results of the paper, namely expressions for the leading terms in 
the output spectrum. It is argued that these terms represent the principal con¬ 
tribution in the case where the distortion is small. 

To demonstrate their application to a practical problem, the formulas 
are used to calculate the distortion and crosstalk produced when an FM signal, 
having a flat baseband spectrum, is passed through a single-pole filter. This 
example is of some current interest because such a filter has been employed 
in the forward path of a feedback FM receiver used for satellite communica¬ 
tion. A number of cases are considered, and the results of the computations are 
plotted. 

I. Introduction 

ONE OF THE most intriguing problems relating to 
the theory of angle (i.e., frequency or phase) modu¬ 
lation is that of obtaining a useful relationship be¬ 

tween the properties of the input and output modulation 
when an angle-modulated signal is passed through a linear 
network. From the earliest work by Roder111 and by Carson 
and Fry 121 in 1937 to the present, interest has persisted as 
others have extended results and added new approaches. 
Many of these are cited by Baghdady, Panter, Downing, 
and Rowe. 13,-161

Aside from the exact, but laborious, computational 
methods, the output phase angle (or its derivative) is gen¬ 
erally obtained as a series in which the leading term is the 
principal one. For example, the leading term may be the in¬ 
put phase angle, with suitable delay. Again, it may be an 
approximation to the output phase angle obtained by 
quasi-stationary analysis. 
The basic series derived here for the output differs from 

earlier ones in that the leading term is simply the linearly 

Manuscript received April 27, 1967; revised November 6. 1967. The 
part of this research performed by E. Bcdrosian is an extension of work 
reported earlier in RAND Memo. RM-4888-NASA, sponsored by the 
National Aeronautics and Space Administration under Contract NASr-
21(02). 

E. Bedrosian is with The RAND Corporation, Santa Monica, Calif. 
S. O. Rice is with Bell Telephone Laboratories, Inc., Murray Hill, N.J. 

filtered input phase angle. The subsequent terms constitute 
the higher-order contributions to the output. The series con¬ 
verges when the input phase angle or its time derivative is 
not too large. 

In Section II a general expansion is derived for the output 
when a carrier with arbitrary angle modulation is applied to 
a general linear filter. The expansion is then specialized in 
Section III to the case of a narrowband signal applied to a 
narrow, symmetrical, bandpass filter. Section IV presents 
the leading terms in the spectrum of the output phase 
when the angle modulation is Gaussian and the filter is 
symmetrical about the carrier frequency. Elements of this 
spectrum are identified as the linear-signal, cross-power, 
and intermodulation components of the output phase. In 
Section V, their values are computed numerically for the 
specific example of a signal frequency-modulated by a flat 
spectrum of Gaussian noise and passed through a single¬ 
pole filter. This example is of interest in the design of FM 
systems with frequency feedback. 171,181

II. Input-Output Phase Relationship 
Considera modulated signal s(t) of unit amplitude formed 

by phase-modulating a harmonic carrier of frequency f, by 
a real signal 0(f). In complex form. s(t) becomes 

s(f) = +

Let s(i) be applied to a linear filter having a steady-state 
transfer function G(/) and an impulse response g(t). These 
are then a Fourier pair 

gW = Gift'd f, G(f) = g(t)e i2nf,dt (2) 
J - ao J - oo 

where g(t) is real and, for a physically realizable filter, 
vanishes when t<0. G(f) is complex in general with an even 
real part and an odd imaginary part ; therefore. 

G(/) = G*( —/) (3) 

where * denotes the complex conjugate. 
The filter output is given by 

MO = g(i)s(t - T)dr 
o 

(4) glríe-^-^e^-^dT 
o 

where the bracketed factor indicates a simultaneous ampli¬ 
tude and phase modulation brought about by the filtering. 
This factor may be interpreted as the output obtained when 
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an input exp [i</>(t)] is applied to a filter with impulse re¬ 
sponse 

g(t)e '2’t/°' 

and transfer function 

(5) 

= G^+f). (6) 

It is convenient to introduce normalized transfer and 
impulse response functions defined by 

r(/) = (7) 
J> G(f„) 

and 

A sufficient condition for the series in (11) to converge 
(absolutely) is that 

F(Q = (15) 

be regular, and have no zeros in or on the circle |i| = 1 • The 
output phase rate 0(t) is given by the derivative of (11), 
provided the resulting series converges uniformly. 
The foregoing expansion is quite general in that it places 

no restriction, except for convergence of the series, on either 
the modulated signal or the filter to which it is applied. Its 
basic form is particularly desirable in that the leading term. 
Re <¡>(t), is simply the linearly filtered input. The remaining 
terms then constitute the various orders of distortion. 

respectively. Then 

GU) 
(8) 

(9) 

The output phase is given by the argument of the modula¬ 
tion factor in (4). Upon using the definition of y(t) given by 
(8), it is found that 

output phase = Im log G(fo)y(T)e^‘-^dT 
0 

yfr)^" "dr + Im log G(f„) Im log 
o 

= 0«) - ß. (10) 

where 0(t) is the time-dependent component of the output 
phase and ßo is the carrier phase shift. 1 It is shown in Appen¬ 
dix I that the output phase can be expanded as 

» i 
()(t) = Rc4>(t) + £ — Im (i"/,)- (H) 

■ = 2 ”■ 

Here 

<P(t) = y(T)<^(t - t)Jt 
'o 

(12) 

and the coefficients f„ to n = 1 are given by 

ft = F2 h = F^- 3F2
ft = Ft ft^Ft- 10F3F2
fb = Fb - 15F4F2 - 10F3 + 3OF2
/7 = F7 - 21F5F2 - 35F4F3 + 210F3F2 (13) 

where 

y(r)[<t>(t - T) - «PíDl-dT. (14) 

1 Let ot„ and denote, respectively, the attenuation and phase shift 
of the filter at the carrier frequency Then G(J„)=exp (-<xo-ißo), and 
0„= - Im log G(/J. 

III. Application to Bandpass Filter 
It has been pointed out by a number of writers that the 

study of FM distortion produced by a narrowband filter is 
simplified by consideration of an equivalent low-pass filter. 
In the approach used here, this simplification is associated 
with the neglect of the rapidly varying components in the 
impulse response y(r) defined by (8). The details are given 
in the following discussion. The essential idea is that when 
the input is written in complex form, its frequency com¬ 
ponents are negligibly small over the image passband 
around f= —f„. 
The transfer function G(/) for a filter passing a narrow 

band of frequencies around j„ has passbands around both 
+fo- Since 

= G(fo + f)/G(f,), 

V(f) has passbands at/=0 and — 2/„. Choose some con¬ 
venient function, r„(/), which approximates V(f) in the 
passband around f = 0 and is negligibly small outside this 
band. The function TJ f) will be called the normalized, low-
pass equivalent transfer function.2

Let yo(t) be the Fourier transform of F„(/). The desired 
simplification consists of replacing y(t) by y„(t) in the in¬ 
tegrals of Section II. To examine the error introduced, note 
that the integral in the fundamental relation given by (10) 
is a convolution integral and may be written as 

= P eWnjMfjdf (16) 
JO J - ao 

where y(t), T(/), and exp [i</>(0], tl(f) are Fourier pairs. If 
the Fourier integral giving Q(/) does not converge, a suit¬ 
able convergence factor or truncation is tacitly assumed. 
Upon using F(/)= Fa(/)+[F(/)- r„(/)], (16) becomes 

/* ao /* 00 

= ya(t)e^{'~"dr + v(t) 
Jo Jo 

where r(t) is the contribution of T(/)- F„(/) to the integral 

2 In any particular case, the method of choosing r„(/) usually de¬ 
pends upon how G(f) is specified. G(f) may be given as a rational function 
of f, as a partial-fraction expansion, as curves of attenuation and phase 
shift, or in still other ways. 
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on the right-hand side of (16). The absolute value of v(t) 
satisfies the inequality 

IWl < i |H/) - To(/)| |Q(/)|d/. 
J - 00 

In cases of practical interest the spectrum Q(f) of exp [Z0(z )] 
is significant only in the region where T(/)— F J/) is small, 
i.e„ where TJ/) is a good approximation to T(/). Thus, the 
product |F(/)- r„(/)| |iî(/)| is usually small (the delta func¬ 
tions appearing in Q( / ) when </>(r) is periodic may be avoided 
by using Fourier series instead of integrals) for all values of 
/ and, if O//") decreases with sufficient rapidity as |/|-»oo, 
v(t) itself will be small. Therefore, the relative error intro¬ 
duced when y(t) is replaced by ya(z) in the second integral in 
(10) is small except at the infrequent instants when the inte¬ 
gral itself is small. Indeed, when the convergence condition 
associated with (15) is satisfied, the integral is bounded 
away from zero. This follows from the fact that the expres¬ 
sion 

F(i) = e~‘^ i 
Jo 

cannot then be zero, as explained in connection with (47). 
For most physical narrowband filters symmetrical about 

/r is approximately equal to and the 
phase shift ß„ appearing in the last equation of (10) is nearly 
zero. It will be assumed that the approximation Fa(/) to 
H/) is chosen so that Fu(-/)= Then ya(t) is real, 
and so are the quantities <P(i), F„, and f„ computed by using 
ZiW in the integrals of Section II. Only odd-order terms are 
nonzero in (1 1), and the expansion becomes 

the first terms of which are 

= <D( f) _ 1 f3 + 1 (f5 _ !0F3F2) + (18) 

semble of representative signals than by the explicit be¬ 
havior of a specific signal. Typical of the situations in which 
an angle-modulated signal can suffer significant distortion 
due to bandpass filtering is one in which the phase or in¬ 
stantaneous frequency of the carrier is made to vary in 
accordance with the amplitude of a multichannel, fre¬ 
quency-division-multiplexed speech or data baseband sig¬ 
nal. For many purposes, such a composite signal is ade¬ 
quately approximated by a random time function having a 
Gaussian distribution of values. 
Under these conditions, an expression for the spectral 

density of the output signal in terms of the filter transfer 
function and the spectral density of the imput signal, i.e., a 
second-moment analysis, can provide useful engineering 
information. This technique will be applied to the input¬ 
output relationship for a symmetric filter given by (17). 
The convergence of the series ( 17) is studied in Appendix I. 
One set of sufficient conditions includes the requirement that 
|0(O| be less than n/2 for all values of z. Although this re¬ 
quirement is violated by any Gaussian </>(/), the looseness of 
the condition and the plausibility of the computed results 
suggest that the series is valid for phase functions well in 
excess of this bound. 

Let </>(z) denote a sample function of a stationary, dif¬ 
ferentiable, zero-mean, Gaussian process having an auto¬ 
correlation function R^t) and a spectral density %(/), 
where R and W are a Fourier pair: 

P 00 P ® 

R(t)= W(f) = dtR^-^'. (19) 
J ® % — ao 

The autocorrelation function is defined by 

«¿(T) = + t)] (20) 

where the expectation operator E denotes an ensemble 
average. The output spectral density is determined formally 
from (17) by using (20), with 0 for </>, to form the auto¬ 
correlation function and then applying (19). That is, 

where O(</>7) denotes terms of order seven and higher in 
</>(r). A necessary and sufficient condition for (17) to be valid 
is that F(C)/F(-0 have no zeros or singularities in or on 
the unit circle, where F(Ç) is given by ( 15). The derivation of 
this condition and some of its consequences are given in 
Appendix I. 

In all of the following work, except Appendix I, which 
deals with general filters, the functions T(/), y(t) will denote 
CJ/X 7o(0. respectively, the subscript a being omitted for 
simplicity. To repeat, the only filters which will be con¬ 
sidered are those which are narrowband and symmetrical 
about the carrier frequency. Henceforth (in the simplified 
notation), T(-/)= T*(/), y(t) will be real, and (17) and (18) 
will apply. 

IV. Spectral Analysis 
In communication system analysis, the effect of opera¬ 

tions encountered in signal processing is frequently better 
described in terms of the statistical properties of an en-

= &E[O(t)O(t + t)] (21) 

where denotes the Fourier transform operator and where 
the operations are applied term by term to the pairings 
which result from using the expansion for 0. If it is desired 
to express the results in terms of the input and output phase 
rates, the relationships 

W^f) = (2nf)2W^f}, = W^f^nf)2 (22) 

may be used. Note that if the angles are measured in radians 
and frequency in hertz then the units of W^f) are rad2/Hz 
and those of W£f) are (rad/s)2/Hz. 
To identify the various components of the output spec¬ 

trum, it is necessary to examine the diverse pairings which 
result when the expansion for 0(t) given by (1 7) is substituted 
in (21). To facilitate this process, let the terms in (17) be 
denoted by <t>, /3, /5, etc., and use the notation 

<D X / = .rE[<D(t)f(t + t)]. 
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When these operations are performed, as shown in Appendix 
II, it is seen that terms of three distinct types emerge. These 
are presented in schematic form as 

0 x 0 => %(/)|F(/)| 2 

= 

,7 =■%(/) idp^tp^f - p) + ••• 
Ji x Ji) LJ J 

= W) 

f x f=> dp - p - a) + • • • 

= W). 

The first type is unique and results from the <t> x term. 
It is a linear function of the input spectrum H^(/), since 
is simply the linearly filtered input. For this reason, it will 
be denoted by Wjlf) and referred to as the “linear-signal” 
component of the output spectrum. The term “signal” 
is deliberately avoided because an unambiguous specifica¬ 
tion of the signal content in the output spectrum appears 
difficult when the interference consists of a distortion of the 
input signa] rather than the familiar independent random 
noise. 
The <!> x f terms and parts of the f x f, terms yield con¬ 

tributions of the second type which have the form of the 
input spectrum multiplied by convolutions of the input 
spectrum with itself. The presence of the %(/) multiplier 
indicates that this component of the output spectrum comes 
primarily from a cross correlation between the linear and 
nonlinear terms in the output phase expansion. It will 
therefore be denoted by W„c(f) and referred to as the “cross¬ 
power” component of the output spectrum. It has signifi¬ 
cance mainly as a measure of the correlation between the 
distorted and undistorted elements of the output. 
The third type of contribution to the output spectrum 

arises from the balance of the f x / terms. The result is a 
spectrum of intermodulation products constituting true 
nonlinear distortion ; this type of term will be called the 
“intermodulation” component of the ouput spectrum and 
will be denoted by 
The leading terms of these types are, from Appendix II, 

= %(/)|H/)|2

= 2W¿f) I dpW^p)^ r(p)T(/)T(- p - f) 
J — OU 

- |Hp)|2 |n.n|2} 

Wj(f) = ' R dp i daW^W^W^ - p — a) 
J — 00 J — 00 

X |2r(p)r(er)T(/ - p - o) - - p - o)V(p + a) 
- v(Pw(f - p)- rm/ - a) + r(/)|2. (23) 

The cross-power component given is the result of only the 
$ x /3 operation ; the higher-order contributions from the 
<t> x /5 and /3 x f} terms are assumed to be negligible in 
comparison. The principal intermodulation component 
comes from the remainder of the /3 x /3 term. 

Limiting forms of the cross-power and intermodulation 
spectral densities for narrowband signals can be obtained 
by assuming that the highest effective frequency in </>(t) 
tends to zero and that T(/) can be expanded as 

T(/) = 1 + a(if) + b(if)2 + c(if)3 + d(if)* + ■ • ■ 

where, from T( — /) = T*(/), the coefficients a, b,c,d, - are 
real. Then W^f) becomes negligibly small except near 
/=0 and it may be shown from (23) that and W»!/) 
approach the values 

Wf(f) = 2(6d - 6uc - b2 + 4a2b - a^W^f)/2

C00

dpW^p2
J - co 

r x f x 
W¿{f) = - 3ab + a3)2 dp daW^pjW^a) 

J - ce J - ao 

P - <r)p2a2(f- p - a)2. 

In general, the linear-signal and cross-power components 
cover the same spectral range as the input spectrum, but the 
intermodulation spectrum contains newly created fre¬ 
quency components and therefore covers a greater fre¬ 
quency range. Naturally, only that portion of the inter¬ 
modulation spectrum which coincides with the signal band¬ 
width need be considered when computing the output dis¬ 
tortion. 
An additional consideration develops when the input 

signal consists of two or more channels in frequency-divi¬ 
sion multiplex. The total intermodulation appearing in a 
given channel is given by H^(f) integrated over the ap¬ 
propriate frequency interval, as before. However, it now be¬ 
comes meaningful to inquire as to the source of the inter¬ 
modulation products appearing in the channel. Those 
arising from the interactions of frequency components 
within the channel, both between themselves and with fre¬ 
quency components in other channels, can be termed “self¬ 
distortion” since they are related to the presence of the sig¬ 
nal in the channel of interest. Those arising from interac¬ 
tions between frequency components in the other channels 
can be termed “crosstalk” or “interchannel interference” 
as is occasionally experienced on idle telephone channels. 
The crosstalk can be determined by computing the inter¬ 

modulation using a slotted input spectrum, i.e., one in 
which ^(Z) is made zero in the channel of interest while in 
the remaining channels it retains the original values corre¬ 
sponding to active talkers. The resulting intermodulation 
is then pure crosstalk since the self-distortion is made to 
vanish by slotting the input. The self-distortion is then given 
by the difference between the intermodulation spectra for 
the slotted and unslotted cases. If the channel under con¬ 
sideration is narrow in comparison with the signal band¬ 
width, then the effect on the intermodulation spectrum of 
slotting the input is small, so that, for all practical purposes, 
the crosstalk is well approximated by the unslotted inter¬ 
modulation spectrum. The self-distortion is then negligible 
in comparison with the crosstalk. 
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V. Numerical Example FM with Uniform Baseband 
Through a Single-Pole Filter 

As mentioned in Section I, an important application of 
the foregoing analysis is to the case of the single-pole filter. 3 
The normalized equivalent low-pass transfer function of 
this filter is given by 

n? 1241
where fc is the 3-dB cutoff frequency (which corresponds 
to the 3-dB half-bandwidth of the original bandpass filter). 
Substituting (24) into (23) yields, after some tedious but 
straightforward algebra. 

phase becomes 

D2
W<t,(f)=<2(B - A)f2' A < |/| < B 

/ elsewhere. 
(27) 

It is convenient, for simplicity, to set the lowest baseband 
frequency A equal to zero despite the fact that the rms phase 
(i.e., the square root of the integral of %(/) over all f) is 
then infinite. The expansion for the output phase is meaning¬ 
less in that case, but the corresponding expansion for the 
output phase rate apparently remains valid. However, the 
only justification given here is that if the spectral density of 
the output phase rate is computed from (22) and (25) by 

»m - ̂ 4 
Wc( f] = f00_ dt>p2W^p) 

\+f J-ji + p2)[i + (p +.n2][i -h^ 
J C » Ç oo 

= 6(1 +/)] x daŴ f ~P ~ -P- ̂ P2«2

x 4 + 4/2 + 4fip + a)(f - p)lf - a) + (p + o)2(f - p)2[f — a) 2
[1 + [f- p - <r)2]( 1 + a2)(l + p2)[l + (p + <r)2][j + (/- p)2][F+ (f- a)2] 

where the boldface quantities are normalized to fr
An input signal of particular interest is one which is 

frequency-modulated by a Gaussian signal having a uni¬ 
form spectral density in (A, B) Hz, where A « B, since such 
a baseband closely approximates a frequency-division-
multiplexed, multichannel communication signal. The 
spectral density of the input phase rate can then be written 

[ (2nD)2̂  
W^f) = h(B - A)' 

[°, 
/I < l/l < B 

f elsewhere 
(26) 

where D is the rms deviation of instantaneous frequency in 
hertz and where, from (22), the spectral density of the input 

using (27) for B^(/), and if the limiting values are taken as A 
approaches zero, then the results have meaning and are 
identical to those obtained by simply setting A equal to 
zero. Consequently, the spectra of the input phase rate and 
phase will be taken as 

= 

%(/) = 

2n2D2
B 
D2 

2Bf2

(28) 

and zero elsewhere. 
Substituting %(/) from (28) into (25) and using (22) to 

obtain the spectra for the output phase rate then yields 

W/U) = 2n2
D2/fc BH+72)’ l/| — B 

Wflf) _ 8n2/ P dp 
D'/f2 B2(l + /)J0 (1 + p2)[l +(p + /)2][1 + (p - /T] 

^'(/) _ n2f2 

D6//5 12«\1 + /\ 
da 

l/l S B 

4 + + 4/P + a)(f p}[f - ff) J- (p + a)2(f — p)2(f - a)2
[1 + (f- p - <r)2](l + <72)(1 -F p2)[l + (p + ff)2][r+y^ ppjfi + (29) 

3 It should be noted that the apparent validity of using a Gaussian 
process for the phase in the spectral analysis of Section IV is consider¬ 
ably enhanced for this particular filter. As noted after (51) in Appendix I. 
a bound |</>(r)| «oji on the phase rate rather than on the phase itself 
will suffice to insure convergence of the series in (17). 

where it is understood that the terms vanislj, in those fre¬ 
quency intervals in which they are not defined and where 
boldface indicates normalization to/. The region of inte¬ 
gration for the intermodulation term is shown in Fig. 1. 
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Fig. 1. Region of integration for intermodulation computation. 

Since these spectral densities are even functions of fre¬ 
quency, they will be plotted subsequently only for positive 
frequencies. 
The spectral density of the linear-signal component of the 

output phase rate given by the first equation of (29) is 
plotted in Figs. 2 and 3 as a function of the relative baseband 
frequency f/B, for a number of baseband-to-filter half-
bandwidth ratios B/jc. As might be expected, the output 
spectral density is fairly uniform when the filter is wide, i.e., 
when B/f. is small. As the filter is narrowed, the output 
takes the shape of the filter power response and. indeed, the 
spectral density is down 3 dB at the highest baseband fre¬ 
quency for a filter for which B/fc= 1. 
The spectral density of the cross-power component of the 

output phase rate given by the second equation (29) can 
be integrated by expanding the integrand in partial fractions. 
The result is 

fW) 8n2
+ l)(f + 4) 

Fig. 2. Output linear-signal spectral density. 

3/ |~(B + /)2 -F 1 
8(f + i) 8L(B-n2 +1 

+ [tan 1 (B + /) + tan 1 (B - /)] L 
4(/ + 1 ) J 

|/| < B. (30) 

which is plotted in Figs. 4 and 5. The cross-power increases 
with baseband frequency in general, changing as the square 
of the frequency for wide filters. A drop-off at the higher 
frequencies, resembling the skirt of the filter power response, 
occurs as the filter is narrowed, i.e., as fc is decreased, there¬ 
by increasing B/fc. 

In principle, at least one of the integrations for the inter¬ 
modulation can be performed by the same procedure of 
expanding by partial fractions. However, the algebra re¬ 
quired appears too formidable to warrant the effort. Even 
if it were done, it is highly likely that the second integration 
would not be possible analytically. Therefore, numerical 
results were obtained by machine computation on the 
RAND IBM 7044, using the technique of iterated integra¬ 
tion to evaluate the double integral.4 The results are plotted 
in Fig. 6, and in decibels in Fig. 7. 

Like the cross power, the intermodulation tends to zero 
at the lower end of the baseband and, in general, increases 
with frequency within the baseband. Also, the effect of the 
filter power response is again evident for narrow filters. In 
the manner typical of a third-order spectral density, the 
intermodulation spectrum extends to three times the highest 
baseband frequency and falls smoothly to zero. The linear-
signal and cross-power spectra both vanish abruptly beyond 
the highest baseband frequencies since they both contain 
the input signal spectrum as a multiplicative factor. 

4 Romberg integration was used. The Romberg approximation se¬ 
quence was halted when a relative difference of 10 between successive 
approximations was attained. 
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Fig. 4. Output cross-power spectral density. 

Fig. 5. Output cross-power spectral density, dB. 

Useful approximations to these spectra can be obtained 
by assuming the highest baseband frequency B to be suffi¬ 
ciently small in comparison with the filter 3-dB half-band-
width fc that variations of the denominator terms in (25) 
over the regions of integration can be neglected. Simple 
integration then yields 

n2fi 

Dh/f.5 "'\n2f2
H < \f\ < IB. (31) 

These spectra exceed the correct values slightly but do not 
differ significantly for values of B/fc up to about 0.2. They 
are shown in Figs. 4-7 as dashed lines for B//c = 0.1 and 0.2. 
The approximation for and W¿(f) can also be ob-

Fig. 7. Output intermodulation spectral density, dB. 

tained by starting with the limiting forms of W¿\f) and 
given in Section IV. 

The ratio of the linear-signal spectral density to the inter¬ 
modulation spectral density is computed from (29) and 
plotted in Fig. 8. For a multichannel modulating signal, this 
quantity approximates the signal-to-crosstalk ratio, SCR, 
in a narrow channel as a function of its location within the 
baseband (see discussion at the end of Section IV). As is the 
case with thermal noise, the interference is greatest in the 
highest channel. The approximations of (31) can be used to 
obtain a simple formulation of this ratio valid for small 
B/fc. Thus, 

Wfrf) _ 6B2

W^'f) fD^lB2 -J2)' |/| < K (32) 

which is shown by dashed lines in Fig. 8 for the two lower 
values of B/fc. 
’Finally, the ratio of the total linear signal to the total in¬ 

termodulation within the baseband, i.e„ the ratio of the in¬ 
tegrals, from — B to B, of the first and third equations of (29), 
is plotted in Fig. 9. When the modulating signal consists of a 
single channel, this quantity gives the output signal-to-
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Fig. 8. Ratio of output linear signal to intermodulation spectral densities, 
dB. Approximates the signal-to-crosstalk ratio in a narrow channel as 
a function of its location within the baseband. 

Fig. 9. Output signal-to-distortion ratio in total baseband, dB. 

distortion ratio, SDR. It also serves as a measure of the 
validity of using only the leading terms in the spectral analy¬ 
sis given by (29). If the SDR ratio is large, then it can be 
assumed that the higher-order contributions to the distor¬ 
tion can be safely neglected. As before, an approximation 
valid for small B/f{ can be made by integrating (31) and 
forming the ratio 

15 
SDR 2B>D 

(33) 

which is shown in Fig. 9 as a dashed line. 
To illustrate the use of these curves, consider the case for 

which the filter half-bandwidth fc equals 2 MHz, the rms 
frequency deviation D equals 1.4 MHz, and the highest 
baseband frequency B equals 1 MHz, i.e., D/f = 0.1=> — 1.5 
dB and B/fc = 0.5. Then, from Fig. 9, the SDR is 16.7 + 6 
= 22.7 dB, which is large enough to ensure the accuracy of 

the approximation, while, from Fig. 8, the signal-to-cross-
talk ratio at the upper end of the baseband (the worst 
channel) is 12.6+6= 18.6 dB. This is, of course, a somewhat 
extreme example of a badly distorted channel but serves 
nevertheless to indicate the range of applicability of the 
results. 
As a more practical example, consider an FM signal 

modulated by a uniform baseband extending to 2.4 MHz 
and having an rms deviation of 20 MHz in the RF channel. 
Assume a frequency-feedback receiver having a feedback 
factor of 20 dB, uniform across the baseband, and a single¬ 
pole IF filter with a 3-dB half-bandwidth of 4 MHz. The 
rms frequency deviation in the IF channel is then 2 MHz, 
and the system parameters become B = 2.4 MHz, D = 2 
MHz, and fc=4 MHz, yielding the ratios B/fc = 0.C> and 
D/fc = Q.5=> - 3 dB. Since the distortion in a linear feedback 
network is reduced by the feedback factor, it follows from 
Fig. 9 that the signal-to-distortion ratio SDR=15.8+12 
+ 20=47.8 dB. The SCR at the upper end of the baseband 
is 11.6+ 12 + 20 = 43.6 dB from Fig. 8. 

It is seen, in this case, that neither the distortion, if the 
modulation consists of a single wideband signal such as a 
TV video output, nor the crosstalk in the worst channel, if 
the modulation consists of a multichannel telephone base, 
is negligible in terms of the criteria for high-fidelity trans¬ 
mission. Further improvements can be obtained by increas¬ 
ing the feedback, which poses severe practical problems in 
such wideband circuitry, or by widening the IF filter, 
which vitiates the threshold-reducing advantage of the 
feedback process. 

Appendix I 
Expansion of Output Phase 

The time-dependent component of the output phase is 
given by (10) as 

0(t) = Im log 
*00 

o 
(34) 

The expression on the right may be expanded in a number 
of different ways. Here the linear portion of 0(t) will be 
extracted first and then the remaining nonlinear portion 
expanded as a functional power series. This procedure yields 
the higher-order terms in a form suited to the spectral 
analysis of Appendix II. 
To obtain the linear portion of 0(t), take as a guide the 

case of small </>(t) and let 

<, t) = log 7(T)e»«-'>jT. 
0 

(35) 

Since Ç and </>(t) occur only in the product — the part 
of z(C, t) which is linear in </>(t) is also the part linear in Ç The 
linear portion of z«, t) is the linear term in its Maclaurin 
series in powers of £ : 

C 
1! 

= C Í y(tW>U - t)dr 
Jo 

(36) 

= ;<ho 
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where (9) has been used to show that the denominator in the 
derivative of the logarithm becomes unity at C=0. Since 
0(t)=lmz(i, f), the linear portion of 0(f) equals the linear 
portion of Im z(i, t). From (36) this is Im [/0(f)] = Re [0(f)], 
Thus, the linear portion of 0(f) is Re 0(f) where 

= y(r)0(r - t)dt. 
o 

(37) 

Adding and subtracting <<I>(r) in the exponent carries (34) 
into an expression for 0(f) as the sum of its linear and non¬ 
linear parts : 

0(t) = Re 0(f) + Im log (38 ) 
0 

It is interesting to note that f„ is related to F„, F„ , 
0, 1 in the same way that the nth semi-invariant1911101 of a 
distribution is related to its moments „ ■ ■ • ,0, 1 about 
the mean. However, f„ and F„ may be complex here. 

A. Convergence : General Case 
A necessary and sufficient condition for /(/) to be given by 

fW = É (47) 
n=2 " ■ 

where the series converges absolutely, is that f(Q be regular 
in and on the circle |Ç|= I.1“1 In terms of F(Ç) this condition 
requires that F(£) be regular and have no zeros in or on the 
unit circle. This condition is then sufficient for 

To expand the nonlinear component of 0(t), i.e., the sec¬ 
ond term on the right in (38), consider 

= log F(0 (39) 

where 

= f y(T)e c,*,'-t, ~®<'’WT (40) 
Jo 

and expand /(Q in a Maclaurin series in £ . Then 

oo rn 

M = (41) 
n = 0 " • 

where/, is the nth derivative of/(0 evaluated at < = 0. The 
coefficients f„ are obtained by first differentiating (39) to 
obtain 

F(0 F(a di, di (42) 

then differentiating (n— I) more times. Setting f = 0 in the 
result yields 

in - 1\ 
E I ; = F„, n > 1 (43) 
J=o \ 7 / 

where 

y(r)[0(i - t) - ̂ (/»J’Jr. 
0 

(44) 

In particular, from (9) and (37), F0=l and F,=0. Then, 
from F0=l and (39), /0 is zero5 and from F0=l, F(=0, 
and (42), /, =0. Thus, (43) goes into the recurrence relation 

from which the higher-order coefficients may be computed. 
The coefficients are found to be 

fz = F2, f3 = F3, f4 = F4- IF2, ■ ■ • (46) 

as stated in (13). The desired expansion of (38) is then given 
by evaluating (41) at i = i, thereby yielding (1 1). 

Im f(i) = ¿ 1 Im (48) 
. = 2 

to hold, and hence for 

0(f) = Re 0(f) + ¿ 1 Im (("/,) (49) 
n=2 n -

to be a valid expansion for (38). 
Note that the condition is only sufficient for the conver¬ 

gence of (49). It is not a necessary condition because the 
divergence of a complex series does not imply divergence of 
its imaginary part. However, if the imaginary part of the 
series converges (and the real part diverges), it may not 
converge to Im f(i). Consequently the sufficient condition 
cannot be strengthened to include zeros in or on the unit 
circle just because the imaginary part of the series con¬ 
verges. 
When </(r) = 0 for 0<t<oo, (40) for F(0 and (37) for 

0(f) show that F(0= 1 for all f. This suggests that F(i) will 
not vanish in or on the unit circle if |</>(t)| remains small 
enough. More precisely, it can be shown that 0(f) is given 
by (49) if </>(r) and y(r) are continuous and if there exists a 
number A such that 

|0(f - t) - 0(f)| < A, 

2A 2e (50) 

B. Convergence : Bandpass Case 
Slightly more relaxed conditions result from the expan¬ 

sion of the output phase for the bandpass case of Section III. 
A necessary and sufficient condition for (17) to be valid can 
be obtained by first writing it as 

0(f) = 0(f) + 1 [/(() - /(-/)] (51) 

and observing that the power series for f(Q- /(-£) 
= log [F(0/F(-0] will converge absolutely at £=i if 
f(C)— is regular in and on the unit circle. Therefore, 
for the expansion for 0(f) to hold, it is necessary and sufficient 
for F(£)/F( — Ç) to have no zeros or singularities in or on the 
unit circle. 

5 This/0 is not to be confused with carrier frequency fo. 
Simple, but rather loose, sufficient conditions for the va¬ 

lidity of the expansion in (1 7) for all values of t can be given. 
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They are : 1 ) that the integral of y(t) from r = 0 to oo converge ; 
2) that, for all real values of r, 0(t) and y(r) be continuous ; 3) 
that y(t)>0; and 4) that |</>(r)| < n/2. Under these conditions, 
the integral defining F(f) is regular for all finite values of £, 
its nth derivative is given by (44) for F„, and its real part 
remains positive inside and on the unit circle. Consequently, 
F(O/F( —0 has no zeros or singularities inside or on |£|= 1 
and the validity of (17) follows. 
However, the series may converge even when </>(/) is not 

small. If the derivative is bounded, the inequality 
|</>(t —r) —</>(t)|<|t| max |</>'(0| rnay be used to show that, 
for the filter y(t) = a>cexp( — coct), a sufficient condition for the 
series to converge is max |</>'(t)|<wf/3-
The series given by ( 17) was used to compute values of 0(t) 

for the single-pole filter of the preceding paragraph. Com¬ 
putations for the case 4>(t)= A sin a>ct show that the condi¬ 
tions max |</>(r)| <zt/2 and max are unduly re¬ 
strictive. Even though these conditions require A < nil and 
A < 1/3, respectively, the computations show that the series 
for 0(0) converges when 4 = 3. However, when A = 5, the 
function F(0 has zeros at f=0.572 + ( 0.587 inside the unit 
circle, and the series diverges. 

Appendix II 
Spectral Analysis for Gaussian <^(r) 

As suggested in Section IV, let the output phase of ( 18) be 
written 

0(t) = <D + /3 + /5 + • ■ (52) 

where <D. f3, and /5 denote the linear-signal, and the third-
and fifth-order nonlinear components of the output, re¬ 
spectively. From (21), the output spectral density !%(/) is 
given by the Fourier transform of E[0(t + r)O(t)], 

r °° 
W„(f) = dxe~ ”'£[0(t + t)O(t)], w = 2rt/. (53) 

J - 00 

Throughout this Appendix, co will denote Inf. 
From (52) it follows that W^f) may be written as the sum 

of contributions of terms of the form <t> x <t>, <1> x f3, f3 x f3, 
etc. 
The linear-signal component !%''(/) of ^(f) is obtained 

immediately from the <t> x <I> term by noting that 4>(t) is the 
response when 4>(t) is applied to a filter having the impulse 
response y(t) and the steady-state transfer function F(/): 

W) = %(/)|H/)|2. (54) 

This is the first equation of (23). 
The $ x Jf®* f5, and f} x f3 terms, which are the only 

higher-order ones considered here, are more difficult to 
compute. Expressions for the expected values of powers and 
products of terms similar to [<I>(t) —</>(t —u)] are needed. 
One method of obtaining these expected values is to start 
with the relation, for Gaussian variables, 

E(X\X2 ■ ’ ’ x2N _ 1X2v) 

= £ E(XiXj)E(xkxt) • • ■ E(xmx„) (55) 
all pairs 

where (i, j), (k, I). - ■ •, (m, n} are N pairs of integers selected 
from 1, 2, • • •, IN and the summation extends over all possi¬ 
ble pairings. The expectations on the right may be expressed 
in terms of the autocorrelation function R^t). A second 
method, the one used here, is based on the following result. 
Let L be a linear operator (operating on functions of f) such 
that 

L(ae^) = aAito^' (56) 

and let be a Gaussian process with spectral density 
Wfjf The process L[</>(t)] is then also Gaussian. Repre¬ 
senting </>(t) by the series 

N 
£ (a„ cos Mnt + b„ sin wnt) (57) 
i 

where con=2Kf„, f„=nNf, A/->0, /V-»oo, and a„ and b„ are 
independent Gaussian random variables with mean zero 
and variance 

E(a^) = E(b^) = 2%(/)A/ (58) 

and considering the characteristic function of L[</>(t)] lead 
to 

E exp {¿L[«/>(f)]} 

= exp * %(/M(wW(-«)rf/ (59) 

This result will be used to obtain expressions for the re¬ 
quired expected values. 

Equation (53) for W/ff) contains two <t> x /3 terms. From 
(18), the first one is the Fourier transform of 

i/uy(u)[<I>(f) - <l>(t - u)] 3 
o 

F(t) = E<<I>U + t) (60) 

and the second one can be written as the Fourier transform 
of F( —r). Since F(r) is real, the contribution of the two 
<J> x f} terms to is 

= ^""'[Fít) + F( —r)] 

dte-^FiT). 

The expected value of 

^<D(t -I- r)[<F(r) - 0(r - m)]3

(61) 

(62) 

is the coefficient of (dgXza^)3 in the expansion of E exp (iM) 
where 

M = + r) + x2[<D(t) - <t>(t - w)] 

dsy(s)<t>(t + t — s) 
o 

I dsy(s)0(t - s) - <j>(t - u) 
o 

(63) 
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The quantity M is the result of a linear operation on </>(/) 
and may be taken as the £[</>(t)] appearing in (59). The 
corresponding /l(w) is obtained by replacing the functions 
</>(r) in (63) by exp (iwv), where v denotes t + r— s, t— s, and 
t— u, in turn, and by noting that the Fourier transform of 
y(s) is T(/). It then follows from (56) and (63) that 

A(w)e^' = He^') = 
+ x^'fn/) - e“"]. 

Therefore 

= x.H/k"' + x2H/f) (64) 

where 

H.(/) = H/) - (65) 

Consequently 

Ee‘M = exp [ax? + bx2 + cx,x2] (66) 

in which a, b, and c are integrals obtainable from (59). 
The coefficient of XjX2 in the power series expansion of 

the right-hand side of (66) is be where 

¿=-‘| dfW¿f)Hu(f)H„(-f} 
— 00 

C= - Il <f%(.n[r(/)H1/-/)e‘“' + F(-/)HJ/^^ 
- 00 

r ® 

J — o6 

The step from the second equation to the third makes use 
of the fact that %(/) is an even function of f. 

Equation (60) for F(t) may now be written as 

r oo 

F(t) = duy(u)bc 
Jo 
1 f ® ç » 

= - duy(u) dpW^H^H^-p) 
ZJo J-oo 

r °0 
d<7%(<7)r(<T)Hu(-<T)e'2'’'. (67) 

J — 00 

Equation (65) for Hu(f) shows that 

Hu(p)Hu(-p) = |r(p)|2 + 1 - r(p>,2,v“ - r(-p)e- i2’v“. 

When this is multiplied by y(u)H„( — a) and the integration 
with respect to u is performed [with the help of the Fourier 
relation between T(/) and y(i)], the contribution of |F(p)| 2 

+1 vanishes, leaving 

duy(u)Hu(p)Hu( - p)Hu( - a) 
0 

= r(p)T(-p - a) + r(-p)F(p - a) - 2T(p)F( - p)F( - a). 

The triple integral (67) for F(t) reduces to a double integral 
in p and a. Changing the sign of the variable of integration 

p in the portion containing F(-p)F(p-a) shows that its 
contribution to F(r) is equal to that of the portion contain¬ 
ing r(p)F(-p-<T). 

Therefore 

F(r) = 
00 

- 00 

■ [F(p)F(<t)F( - p - a) - 2|r(p)r(<r)|2]. 

Substitution of the expression for F(r) in the integral (61) 
for W^f/) and use of the Fourier integral theorem removes 
the integrations with respect to r and a, replaces a by f, and 
gives the final expression 

W) = 2%(/) T dpW¿p) 
J - 00 

• {Re r(p)T(/)F(-p - /) - iTGOl^nnl2}. (68) 

This is the second equation of (23). 
The terms of next higher order arise from ‘bx/, and 

fi x fy The 4> x /5 terms are of the same nature as the x f3 
terms, and their contribution to ^(f) may be shown to con¬ 
tain %(/) as a multiplicative factor. They will be neglected 
since they furnish higher-order contributions to the cross 
power Wgc(f) given by (68). 
From (18) the f3 x f3 contribution to Wg(f) is the Fourier 

transform of 

f* oo Too 

F(r) = duy(u) dry(r)£{[<I>(i + r) - </>(t + t - r)] 3 

Jo Jo 

[<D(t)-0(t-r)]3/36}. (69) 

The expectation appearing in the integrand is equal to the 
coefficient of (ixj)3(ix2)3 in the expansion of £ exp (iN), 
where 

N = Xj[d>(t + t) - 0(t + T - u)] + X2[d>(i) - 0(t - c)] 

dsy(s)</)(t + t - s) - <)>{t + t - u) 

dsy(s)<p(t - s) - <}>(t - v) 

This expression for N is similar to (63) for M and, as before, 
replacing the functions </>(t + r - s), ■ by the correspond¬ 
ing exponentials exp [iw(t + r-s)], ■ • • shows that the /l(w) 
corresponding to N is 

4(w) = xtHu(f)e^ + x2H„(/) (71 ) 

where the H’s are given by (65). Then 

Ee‘N = exp [ax? + bx2 + cx^] (72) 

where a, b, and c are integrals obtainable from (59) and (71). 
The coefficient of x?x2 in the expansion of the exponential 

in (72) is abc + c3/6, and its negative is the value of the expec¬ 
tation in (69) for F(t). Taking the Fourier transform of 
F(t) shows that the f3 x f3 contribution to Wg(f) is 
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P 00 f 00 P ao 

— dte~ m' duy(u) dvy(v)(abc + c3/6). (73) 
J - ao Jo Jo 

The integrals a and b are independent of r, and 

dfW^f)Hu(f)Hv(-f)e^ (74) 
— 00 

contains r only through the factor exp (iwt) in the integrand. 
From the Fourier integral theorem it follows that the con¬ 
tribution of the a, b, c term to W^f) contains the factor 
H^(/). It is thus a higher-order contribution to the cross 
power than is B^c(/), given by (68), and will be neglected. 
The c3 term in (73) gives the leading term in the power 

spectral density of the intermodulation 

= 

I r® rx p œ 
- i/re'“"' Juy(u) dvy(v)c3. (75) 
bj-x Jo Jo 

Replacing the variable of integration f in (74) for c by p, a, 
and V, in turn, leads to a triple integral for c3, and to a sixfold 
integral for In the latter, the integral with respect 
to u contains the product H u(p)H Jo)H u(v). Introducing the 
definition (65) of Hu(f) and multiplying out gives eight 
terms. Two of these cancel after integration with respect to 
u, leaving 

duy(u)H„(p)Hu(a)Hu(v)= -2F(p)F(<7)F(v)+ T(v)T(p + a) 
o 

+ r(p)F(a + v) + F(<7)F(v + p)— r(p + a + v)=S(p, a, v). (76) 

The value of the corresponding integral with respect to v 
is the complex conjugate S( — p, —a, — v) of S(p, a, v). 

Integration with respect to u and v reduces the integral for 
Wj( f) to the fourfold integral 

= 

X %(p)W^(ff)B^(v)|S(p, a, v)|2. 

Integration with respect to t yields the delta function 
á(/ — p — o—v), thereby permitting a simple integration on 

v. Finally, therefore, 

= ! Í dp r daW¿p)W¿a)W¿f — p — a) 
J - 00 J — 00 

X |2F(p)F(<7)F(/ - p - a) - F(/ - p - <r)T(p + a) 
- F(p)T(/ - p) - r(o)r(f -o)+ nnl2 (77) 

which is the third equation of (23). 
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Decreasing the Threshold in FM by 
Frequency Feedback* 

L. H. ENLOE t, MEMBER, IRE 

Summary—The “frequency feedback demodulator" or “fre¬ 
quency compression demodulator” can be used to extend the 
threshold of signal-to-noise improvement in large index frequency¬ 
modulation systems. Previous papers have advanced the argument 
that the threshold occurs in the usual manner when noise peaks 
exceed the carrier envelope at the input to the frequency detector of 
a feedback demodulator. However, correlation between calculated 
values and carefully measured experimental values has been poor. 
The calculated values have been incorrect by orders of magnitude in 
many typical cases. In this paper it is shown that the threshold can 
also occur because of the feedback action of the demodulator. When 
this is taken into account, the threshold can be calculated accurately. 
It is shown that the threshold cannot be improved by the often sug¬ 
gested scheme of inserting a carrier of the proper phase at the input 
to the frequency detector. The phase-locked loop, a related device, 
is shown to have a threshold which is equal to or poorer than the 
threshold of the feedback demodulator for large modulation indices. 
It is shown that the stability of the feedback loop (and consequently 
the threshold) of the feedback demodulator is a function of modula¬ 
tion, but that by following the procedure given, the effect can be 
almost entirely eliminated. The results of this paper allow one to 
design feedback demodulators for the first time which will extend the 
threshold in a predictable manner. 

Introduction 

ripHIERE is widespread interest at the present time 
in modulation techniques which trade bandwidth 
of the transmitted signal for improved baseband 

signal-to-noise and signal-to-interference ratios. These 
techniques are of special interest in the field of space 
communications where distances are so large that even 
the use of masers and large low-noise antennas results in 
a signal-to-noise ratio, assuming single-sideband modu¬ 
lation, too small for commercial telephone service by a 
factor of about a hundred. In addition, the most efficient 
operation requires the use of a single-frequency channel 
by many satellites and ground stations simultaneously. 
This mode of operation demands a modulation tech¬ 
nique which can increase the baseband signal-to-
mutual-interference ratio considerably over that of 
single-sideband modulation. Large index frequency 
modulation satisfies both of these requirements and 
could be used but for the fact that it has a relatively 
poor threshold. The threshold is defined as the minimum 
carrier-to-noise ratio yielding an EM improvement which 
is not significantly deteriorated from the value predicted by 
the usual small noise signal-to-noise formulas. This paper 
discusses special demodulators using frequency feed¬ 
back to extend the threshold and bring frequency 
modulation into an attractive position. 
The frequency feedback demodulator originated 

* Received by the IRE, August 11. 1961; revised manuscript re-
ceived, October 31, 1961. 

t Bell Telephone ILaboratories, Inc., Hohndel, N J-

with Chaffee [1 | in the early thirties. His paper and a 
companion paper by Carson [2] contain interesting re¬ 
sults concerning the distortion and small noise signal-to-
noise characteristics of the demodulator. In the past 
few years various papers have been published [3], [4] 
to show that a form of this demodulator (a limiter was 
added) could be used to decrease the threshold of 
signal-to-noise improvement in large index EM. More 
recently, demodulators of this type were used in the 
Project Echo experiment for the same purpose [5]. In 
these demodulators the frequency deviation of the large 
index wave is compressed by using feedback, so that it 
may be passed through a narrow-band -pass IF filter 
before demodulation. Previous papers [3 ], [4] have ad¬ 
vanced the theory that the system threshold occurs in 
the usual manner at the frequency detector of the feed¬ 
back demodulator when noise peaks exceed the carrier, 
and is equal to that of a conventional FM demodulator 
having the same narrow-band-pass IF filter. This implies 
that, if the system were above threshold with no feed¬ 
back applied, an unlimited signal-to-noise ratio could 
theoretically be obtained by increasing the frequency 
deviation of the carrier and the amount of feedback 
simultaneously. In practice it has been found that this 
behavior cannot be obtained, and it has also been found 
that the threshold can be different from the predicted 
value by orders of magnitude. The tendency has been 
to attribute these inconsistencies to the difficulties in¬ 
volved in obtaining a stable feedback system for large 
amounts of feedback. It will be shown in this paper that 
the more fundamental reason is that the threshold de¬ 
teriorates as a function of the feedback action of the 
system. A mathematical analysis of the feedback de¬ 
modulator when it is operating below threshold is a 
difficult and unsolved problem. The determination of 
where the threshold occurs, however, is a considerably 
less difficult problem, and it is this problem which is 
considered. In the past it has been suggested [4] that 
the threshold of the feedback demodulator could be 
eliminated by properly inserting a carrier in front of the 
frequency detector. In this paper it is shown that in a 
properly designed system the threshold would not be 
improved by carrier insertion. It is also shown that 
the feedback stability and the threshold of the feedback 
demodulator are both functions of modulation, but that 
by following the suggested procedure the effect can be 
almost entirely eliminated. The results of this paper 
allow one, for the first time, to design feedback demodu¬ 
lators which will extend the threshold in a predictable 
manner. 
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1. The Concept of Frequency Feedback 

The block diagram of the feedback demodulator is 
shown in Fig. 1. In order to understand its operation, 
imagine for the moment that the voltage controlled 
oscillator (VCO) is removed from the circuit and the 
feedback loop left open. Assume that a wide index FM 
wave is applied to the input of the mixer, and a second 
FM wave, from the same source but whose index is a 
fraction smaller, is applied to the VCO terminal of the 
mixer. The output of the mixer would consist of the dif¬ 
ference frequency, since the sum frequency components 
are removed by the bandpass filter. The frequency de¬ 
viation of the mixer output would be small, although 
the frequency deviation of both input waves is large, 
since the difference between their instantaneous devia¬ 
tions is small. Hence, the indexes of modulation would 
subtract and the resulting wave would have a smaller 
index of modulation. The reduced index wave may be 
passed through a filter, whose bandwidth need be only 
a fraction of that required for either large index wave, 
and frequency detected. It is now apparent that the 
second FM wave could be obtained by feeding the out¬ 
put of the frequency detector back to the VCO. 

E i cos [w,t + (Mt)] 

E2cos <z>2t+^(t) + e 

VOLTAGE 
J CONTROLLED 
1 OSCILLATOR ' 

Kv 

LOW-PASS 
FILTER 
H(jw) 

Fig. 1—Block diagram for a frequency feedback demodulator. Kt 
and K„ are the gain constants of the frequency detector and the 
VCO respectively. They relate radian frequency to voltage. 
A(ju) and H(ja) are the transfer functions of the band-pass IF 
filter and low-pass baseband filter in the feedback path respec¬ 
tively. Although the output is indicated as being immediately 
behind the frequency detector, it might equally well be con¬ 
sidered to be any other point in the loop. 

II. Small Index Response and Signal-to-Noise 
Ratio Above the Threshold 

The “moving finger” or quasi-stationary behavior of 
the feedback demodulator is more or less obvious, and so 
our attention will be concentrated on the less obvious 
small index behavior. It is the small index response 
which may be used to determine the system stability, 
the effective or closed-loop noise bandwidth, the base¬ 
band signal-to-noise ratio and the threshold. The base¬ 
band analog of the demodulator, shown in Fig. 2, is 
valid as long as the modulation index of the wave enter¬ 

ing the band-pass IF filter is small compared to unity. 1 

Under this condition the IF filter may be represented 
by its low-pass equivalent.2 The VCO and frequency 
detector may be replaced by an ideal integrator and an 
ideal differentiator respectively. The mixer is a fre¬ 
quency subtractor. The open-loop transfer function 
KvKtA must, of course, satisfy the usual 
Nyquist and other stability criteria.2 This eliminates 
any possibility of using a so-called “rectangular” IF 
filter. Let us define the closed-loop transfer function as 
the function which relates the phase of the wave gen¬ 
erated by the VCO to the phase of the wave at the 
signal input to the mixer, i.e., in Fig. 2. 
From linear feedback theory it follows that the closed-loop 
bandwidth is unavoidably larger than the open-loop band¬ 
width. In later sections we shall see that this fact plays 
an important role in the determination of the threshold. 

Fig. 2 Baseband analog of the feedback demodulator when the 
wave entering the IF band-pass filter has a modulation index 
much smaller than unity, i.e., when | «1. A/.(Joi) is the low-
pass equivalent of the band-pass IF filter 

and efja) are the Fourier transforms of </•,(/), </>,(<), and 
ei(Z), respectively (shown in Fig. 1). 

It will now be shown that the signal-to-noise ratio of 
a feedback demodulator is the same as that of a conven¬ 
tional FM demodulator receiving the same signal and 
noise density if the carrier-to-noise power ratio is suf¬ 
ficiently large. Assume for the moment that there is no 
feedback, i.e., that K, = 0. Let the unmodulated carrier 
and noise at the input to the frequency detector be 
given by [ó] 

e(i) = cos a>0/ + Ic(f) cos wot - Z,0) sin wot 

= + I¿1) 

= + /f(/)]2 +77œ 

r. . w  i c ;wo< + i tan“*- , 
L i + MOJ 

1 It should be noted that the modulation indexes of the waves at 
the VCO output and mixer signal input may be large. These waves 
have many sidebands for each baseband frequency component, but 
they are correlated in such a manner that when they are multiplied 
together in the mixer a cancellation process takes place which results 
in a carrier and a single pair of quadrature sidebands per baseband 
component. 

2 This will be discussed further in Section V and in Appendix C. 
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where R,( ) stands for the real part of ( ). IM and 
IM are random Gaussian variables in phase quadra¬ 
ture with each other, normalized by the carrier envelope. 
I'he last equation places in evidence the envelope and 
phase of the composite wave.3 The constant frequency 
term can be subtracted out by a balanced frequency 
detector or eliminated by filtering,, and so will be 
dropped. If the envelope of the noise is much smaller 
than the carrier envelope except for a negligible portion 
of time, i.e., if 

I IM + j'M\ « 1, 

then the phase and envelope of the composite wave are 
given by 

MO = /.(/) 

and 

EM â 1 + IM 

These expressions show that the composite wave at the 
input to the frequency detector is small index phase-
modulated by the term IM, which is derived from the 
component of noise which is in phase quadrature with 
the carrier. The wave is also small index envelope-
modulated by the term IM, which is derived from the 
component of noise which is in phase with the carrier. 
When feedback is applied, the VCO generates a wave 
which reduces the angle-modulation index of the wave 
in the IF, i.e., the quadrature component of noise IM-
Thus it is seen that, as long as the carrier-to-noise ratio 
is sufficiently large, the demodulator does not respond 
to the in-phase noise (envelope of the composite wave), 
but that it demodulates the quadrature noise in exactly 
the same fashion as it would demodulate signal modula¬ 
tion. Signal and quadrature noise are reduced in the 
same proportion by feedback, with the result that the 
baseband signal-to-noise ratio is independent of feed¬ 
back. For large carrier-to-noise ratios the baseband sig¬ 
nal-to-noise ratio of a feedback demodulator is then the 
same as that of a conventional EM demodulator [8], 

III. Qualitative Discussion oe the Threshold 
and Experimental Results 

The conventional FM receiver accepts a band of 
noise at the input to its frequency detector equal to the 
bandwidth required by the large index transmitted 
wave. When noise peaks exceed the carrier for any 
significant portion of time, a threshold occurs. This 
threshold limits, for a given carrier power and noise 
density, the baseband signal-to-noise improvement ob¬ 
tainable by increasing the deviation of the transmitted 
wave. It was shown in Section II that the frequency 
feedback demodulator reduced the quadrature noise 

8 The phase and envelope of any general wave are uniquely de¬ 
fined by its pre-envelope [71. 

/,(/) reaching the frequency detector by the use of feed¬ 
back. While the in-phase noise IM was not reduced by 
feedback, it was also not detected by the ideal frequency 
detector and consequently was not fed around the loop. 
Feedback then decreases the envelope of the noise at the 
input to the frequency detector. Based upon this ob¬ 
servation, it has been wrongly suggested [3], [4 1 that 
the threshold is determined by the envelope of the noise 
at the frequency detector and hence should not be de¬ 
graded by feedback. If this were true, the baseband 
signal-to-noise ratio could (in theory) be increased in¬ 
definitely by increasing the deviation of the transmitted 
wave and the amount of feedback simultaneously, as 
long as the system were above threshold with no feed¬ 
back applied. Unfortunately, we shall see later that the 
threshold is degraded by the feedback action of the 
demodulator because of effects which are not at all 
obvious from the above oversimplified argument. 

Let us study briefly the reasons why the feedback 
demodulator is able to extend the threshold. The con¬ 
ventional large index FM receiver fails to use a very 
important piece of a priori information, that even 
though the carrier frequency will have large frequency 
deviations, its rate of change will be at the baseband 
rate. Both the feedback FM demodulator and the 
phase-locked loop use this a priori information to extend 
the threshold. They are essentially “tracking filters” 
which can track only the slowly varying frequency of 
large index waves, and they consequently respond to 
only a narrow band of noise centered about the in¬ 
stantaneous carrier frequency. We would expect in¬ 
tuitively that the threshold of an ideal tracking filter 
would be equal to that of any other frequency detector 
receiving the same carrier and narrow band of noise. 
The bandwidth of noise to which the feedback demodu¬ 
lator and phase-locked loop respond is precisely the 
band of noise which the VCO tracks. The noise band¬ 
width of both systems is that of the closed-loop response 
function defined in Section II. While the thresholds of 
the phase-locked loop and feedback demodulator occur 
because of the same basic mechanism, the details by 
which they occur are, of course, different. Let us con¬ 
centrate now on the feedback demodulator. Assume for 
the moment that the feedback loop is open and that the 
demodulator input consists of an unmodulated carrier 
wave and a band of Gaussian noise. The noise can be 
separated into components which are in phase and in 
phase quadrature with the carrier, as discussed in Sec¬ 
tion II. If the carrier-to-noise ratio at the input to the 
frequency detector is large, then the composite wave at 
that point is small index phase-modulated by the 
quadrature noise and small index envelope-modulated 
by the in-phase noise. For the purpose of this paper the 
threshold will be said to occur when the phase of the 
composite wave at the input to the frequency detector 
contains a significant amount of noise in addition to 
that derived from the quadrature noise, i.e., in addition 
to the noise predicted by the FM improvement formula. 
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Now close the feedback loop. The baseband noise 
angle modulates the VCO. If the root-mean-square 
phase deviation of the VCO wave is small, the spectrum 
consists primarily of a carrier “spike” and the first-order 
spectral sideband zone. These first-order sidebands are 
in phase quadrature with the VCO carrier spike. The 
mixer forms the product of the VCO wave with the 
demodulator input carrier and noise. The product of 
the VCO carrier spike and incoming carrier yields a new 
carrier in the IF. The product of the VCO carrier spike 
and incoming quadrature and in-phase noise terms 
yields new quadrature and in-phase noise terms in the 
IF. The quadrature noise becomes angle noise and 
the in-phase noise becomes envelope noise. The product 
of the quadrature term (first-order sidebands) of the 
VCO with the incoming carrier yields a second quadra¬ 
ture term in the IF which tends to cancel the first quad¬ 
rature term. It is because of this cancellation that noise 
in the baseband is reduced by feedback. It is also this 
cancellation that allows the VCO wave to have a fre¬ 
quency deviation which may be wider than the IF 
filter bandwidth. If the products mentioned so far are 
the only ones of any significance, the system behaves in 
a linear fashion. Two products remain, however. The 
product of the quadrature term of the VCO wave with 
the incoming quadrature and in-phase noise terms 
yields additional angle and envelope noise. The threshold 
occurs when this additional angle noise becomes significant. 
This happens when the root-mean-square phase de¬ 
viation of the VCO wave caused by noise is no longer 
small compared to unity. The exact relations are dis¬ 
cussed quantitatively in Section IV. Experimentally it 
is found that, soon after the additional noise becomes 
noticeable, noise impulses appear in the baseband. 
Their onset serves as a convenient measure of the 
threshold in practical systems. They appear suddenly 
and increase rapidly in number as the carrier-to-noise 
ratio decreases. They first appear when the root-mean¬ 
square phase deviation of the VCO wave (caused by 
noise) is </>„„, = 1/3. 11 radian, i.e., approximately one-
third of a radian. They are apparently the result of 
higher-order nonlinearities which occur in this region. 
The threshold should be expressed in terms of the 

input carrier-to-noise ratio in the closed-loop noise 
bandwidth in order for its full implication to be ap¬ 
preciated. This is easily done by using the small index 
baseband analog shown in Fig. 2. The mean-square 
phase of the wave generated by the VCO, firm,2, can be 
obtained by integrating the product of the input phase 
spectral power density and the square of the absolute 
value of the closed-loop response function. Above 
threshold the input phase spectral power density 
caused by noise is equal to the spectral power density of 
the normalized quadrature noise. Thus 

> , f+”| KrKfAdjw'fHijw) I2
firm, — a, I - df, 

J -oo 11 + K,KfAi.(ju>)H(iw) 

where a2 is the spectral power density of the normalized 
quadrature noise Eft), which is also equal to the total 
input normalized white noise density. The closed-loop 
noise bandwidth4 is 

K,KfAL(ja>)H(jU) 2 
- 7 df, 
1 + K,KfAifjw)H(ju)\ 

and the carrier-to-noise ratio in front of the mixer in a 
bandwidth equal to the closed-loop noise bandwidth is 
p = \/2B,a,2. Consequently, the input carrier-to-noise 
ratio in a bandwidth equal to the closed-loop noise band¬ 
width is given, in terms of the mean-square phase of the 
VCO wave, by 

1 

20„„.2

K,Kf g2 

1 + KrKf. 

As determined by experiment, the threshold occurs at 

Pt — 
i r KrKf i2 r^-iT 
- —- — = 4.8 - , 
2(1/3.11)2 Ll + K,K,f L F J 

(1) 

where F= l+Æ,Æ/ = amount of feedback or frequency 
compression. For large feedback pr — ER or 6.8 db. 

Let us dwell upon the full implications of (1), for they 
are probably the most important results in this paper. 
This equation tells us where the feedback threshold occurs 
in the demodulator as a function of the feedback factor 
and the input carrier-to-noise ratio in a bandwidth 
equal to the closed-loop noise bandwidth of the system. 
Recall that the development of this equation assumed 
that the system was above threshold on an open-loop 
basis. Therefore (1) must be used only after assurance 
that this condition is satisfied. For instance, the result 
pT = 0 when F= 1 means only that a system without 
feedback does not have a threshold produced by feed¬ 
back. In order for a feedback demodulator to be above thres¬ 
hold, it must be above both the open-loop and the feedback 
thresholds independently. Observe that the closed-loop 
noise bandwidth is not uniquely related to the IF filter 
bandwidth, baseband bandwidth or the bandwidth re¬ 
quired by the large index wave in front of the mixer. 
However, once the open-loop transfer function 
KrKf A ifjuflKjui) is specified, the closed-loop noise 
bandwidth is determined uniquely. It will always be 
larger than the open-loop bandwidth, and for large 
feedback it will be much larger. Consequently, if the 
system were designed by placing all the selectivity in 
the IF filter, then the carrier-to-noise ratio in the IF 
band in front of the frequency detector would be much 
larger than that in a bandwidth equal to the closed-loop 
noise bandwidth (by the ratio of the bandwidths). As 
a result, the system threshold would be caused entirely 
by the feedback threshold. 

4 Notice that power is assumed to reside in both positive and 
negative frequencies, and that the closed-loop bandwidth is two 
sided. 
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Since the closed-loop noise bandwidth does not de¬ 
pend on whether the filtering is done at IF or baseband 
or a combination of both, it is immediately clear how 
to improve the performance of the demodulator. First, 
note that full feedback should be maintained over all 
baseband frequencies to be transmitted so that the fre¬ 
quency deviation in the IF filter is fully compressed. 
With this restriction, the closed-loop noise bandwidth 
should be as small as possible for a given amount of 
feedback, in order to minimize the feedback threshold. 
The filtering should be proportioned so that the IF 
filter is as wide as possible without allowing the open¬ 
loop threshold to predominate. This allows the largest 
possible frequency deviation in the IF and therefore 
yields the largest possible baseband signa! -to-noise 
ratio for a fixed system threshold carrier-to-noise ratio. 
I'he remaining filtering required to realize the desired 
closed-loop response function is done at baseband in 
the feedback path. 
The concepts discussed in this Section have been 

thoroughly tested experimentally. Demodulators were 
deliberately designed to have the feedback threshold 
predominate. A typical set of data is shown in Table 1. 
The threshold was defined as the point where the noise 
impulses first appear (actually, in order to obtain a con¬ 
sistent measuring point, the value where the impulses 
were occurring at an average rate of one per second was 
used). The closed-loop noise bandwidths were varied by 
using different IF filter shapes and/or by placing dif¬ 
ferent filters in the baseband feedback path. The IF 
filter 3-db bandwidths were 6 to 7 kc in all cases. The 
mean value is ^„„» = 1/3.11. All values fall within a 
spread of pulse or minus 7 per cent of the mean value, 
which is within the estimated accuracy of the measure¬ 
ments. Although this data is for a 3-kc baseband sys¬ 
tem, C. L. Ruthroff (to be published) has obtained 
similar results for a 1-Mc baseband system. 

TABLE I 
The Root-Mean-Square Phase of the \ CO Wave at the 

Threshold of Two Feedback Demodulators for 
Different Amounts of Feedback and Differ¬ 

ent Closed-Loop Noise Bandwidths 

F=\+KrKf (Closed-Loop 
(Feedback) Noise RuíhiH 

DB Bandwidth) Kadians 
KC 

Receiver No. 1 

Receiver No. 2 

20 172 1/2.89 
20 147 1/2.92 
20 39 1/3.20 
14 68 1/3.20 

20 45 1/3.27 
30 135 1/3.20 

A typical set of experimental curves in Figs. 3 and 4 
illustrate that the IF bandwidth of a feedback de¬ 
modulator designed using the old theory can indeed be 
greatly increased without increasing the over-all system 
threshold. The closed-loop frequency response functions 

Fig. 3—Measured closed-loop system response. Curve A: 6-kc single¬ 
pole IF tiller, 15-kc single-pole baseband filter. Curve B: 30-kc 
single-pole IF filter, 3-kc single-pole baseband filter. 

Fig. 4—Plot of the relative baseband noise power in a 3-kc band¬ 
width vs the input carrier-to-noise power ratio in an arbitrary 
but fixed bandwidth for the two cases in Fig. 3. I'he input noise 
was white for all practical purposes. 

for the two different filter arrangements are shown in 
Fig. 3. In case A the IF filter was a single pole with a 
6-kc, 3-db bandwidth, and the baseband filter in the 
feedback path was a single pole with a 15-kc 3-db band¬ 
width. In case B the 3-db IF bandwidth was increased to 
approximately 30 kc, and the 3-db baseband bandwidth 
was decreased to approximately 3 kc. Curves of the out¬ 
put baseband noise in a 3-kc bandwidth vs the input 
carrier-to-noise ratio in an arbitrary but fixed band¬ 
width are shown in Fig. 4. It can be seen that the system 
threshold was the same in both cases. The important 
point is that while the thresholds were equal, the wide¬ 
band IF system could receive an FM signal with an 
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index approximately 5 times larger than that of the 
narrow IF system, yielding an increase in signal-to-
noise ratio of 25? 

IV. Analysis of the Threshold 
(Carrier Unmodulated) 

A mathematical analysis of the feedback demodulator 
when it is operating below threshold is a difficult and 
unsolved problem. The determination of where the 
threshold occurs, however, is a considerably less dif¬ 
ficult problem, and it is this problem which will now be 
considered. We have seen that when the feedback 
demodulator is above threshold, the baseband noise is 
derived entirely from the quadrature component of the 
input noise. This condition must be satisfied in order 
for the FM improvement formulas to be valid. The 
threshold will be assumed to occur when a significant 
amount of additional noise appears in the baseband. A 
series approach will be used to determine where this 
additional noise becomes significant. In order to assure 
the validity of the result, we will then have to check the 
envelope in front of the frequency detector to make sure 
that the probability of zero crossings is negligibly small. 

Let the carrier and noise at the input to the mixer be 
given by 

Ci = cos oil + NM cos utt — .V.(i) sin wd, 

eM = E(-D" 
<¡rm “ A>2m
- 1- 52 (— i)m-
(2m)! rí (2m)! 

“° .V,02"'+1 ) 
+ E (— i)m- ? cos (u0/ — 0) 

(2m +1) J 

00 °° N 
r (-i)-^-- E (-I)”—-— 
íli ; (2m+l)! „ti (2m+l)! 

” NW"} 
+ e (_ i)m — ? s'n
m-o (2m) !) 

The envelope and phase of a wave in the form Alt) cos 
wot — Bit) s>n Mot are given respectively by 

EM = + BM 

and 

Bit) 

-,an 715 

Neglecting all third-order and higher terms, we have 

'PiW = NM - <5(f) - NMM) 

where NM and NM are Gaussian random variables in 
time quadrature with each other, normalized with re¬ 
spect to the carrier magnitude. Let the wave generated 
by the VCO be given by 

ej = 2 cos [w2Í + <t>li) + 0]. 

The problem is to find the conditions which must be 
satisfied so that the phase of the wave entering the fre¬ 
quency detector will be essentially 

%(0 = ÑM - MD, 

where ÑM and <tM represent the output of the base¬ 
band equivalent of the narrow-band IF filter to NM 
and </>(/) respectively. If only the difference frequency 
terms are retained, the mixer output is 

eM = «162 = [cos </>(/) + NM cos 0(f) 

+ NM sin <tM ] cos Iwd — 0) 

- [-sin <tM — NM sin^lt) 

+ NM cos <?>(/)] sin (œo! — 0), 

where a>0 = Wi— wi. When this wave is passed through 
the IF filter and sin </>(/) and cos </>(/) are expressed in 
series form, then 

6 The system parameters should not be taken as optimum in any 
sense. This design served only to verify theory and nothing more. 

- NMN.lt) + NMMD 

and 

EM = 1 + ÑM + NMMD - WM + à-Vao 

+ w'(D + Wil) - ÑMMD- (2) 

Pay particular attention to the difference between terms 
which were multiplied and then filtered, such as 
Ar,(/)0(/)> and terms which were filtered and then multi¬ 
plied, such as ÑMMD- The relative importance of 
these second-order terms will now be discussed. Assume 
that there is no feedback and that the resulting open¬ 
loop system is above threshold. </>(/) is then zero, and 
only the first and fourth terms remain in the expression 
for the phase ̂ M- The first term represents the “above 
threshold noise” or quadrature noise. The fourth term 
is negligible because the system is assumed above 
threshold. Now assume that feedback is applied, and 
that the closed-loop system is also above threshold. If 
there is a significant amount of feedback, ¡¡M) ap¬ 
proaches ÑM- The first two terms represent the 
“above-threshold” noise of the feedback demodulator. 
The fifth term, which is introduced by feedback, is al¬ 
most equal to and tends to cancel the fourth term, 
which is present with or without feedback. They may 
both be neglected. The third term, which is also intro¬ 
duced by feedback, is considerably larger than the 
other second-order terms. It represents phase noise 
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which adds to the above-threshold noise, i.e., the first 
two terms. The threshold is assumed to occur when this 
additional noise becomes significant. The third term is a 
distortion term since it is a function of the “signal” 
</>(/). In the analysis of feedback systems having distor¬ 
tion, it is often possible to represent the complete system 
as a linear one in which the distortion components are 
introduced by generators [9]. This approach is valid as 
long as the fed-back distortion components are small; 
i.e., all significant distortion must be caused by the 
signal. An important aspect of such an analysis is that 
one can tell to a fair degree of approximation where the 
results of the linearized model cease to be accurate. 
This general approach proves to be a useful one in the 
present problem. Let 0,(0 be the VCO phase contrib¬ 
uted by the quadrature noise N,(t), and let be the 
phase contributed by the distortion component. Then 
if 0,(0 »0X0, the significant distortion would be caused 
by </>,(0. and the linearized baseband model shown in 
Fig. 5 is valid. The quadrature noise and distortion are 
introduced into the system in parallel and are treated 
identically by feedback. Consequently 04(Z) »</>a(Z) if 
the spectral density of the distortion input 0,(0 A0(0 is 
much smaller than the spectral density of the quadra¬ 
ture term In Appendix A it is shown that for large 
feedback the ratio of the spectral density of 0,(0ATc(0 
to the density of N,(t) is equal to the mean-square value 
of 0,(0, i.e., 0rm.2- Thus, the linear model in Fig. 5 is 
valid as long as 0rlI„2«l. In this region of operation the 
phase term in (2) becomes approximately 

*i(0 = {^.(0 - 0.(0 1 - - 0X0}, 

where the second bracketed term is much smaller than 
the first. This second bracketed term represents the ex¬ 
cess noise which is not derived from the quadrature 
input noise. One would expect intuitively that 
0rm.2 = 1/10 would be close to the upper limit of validity 
for the model of Fig. 5, for much beyond that the non¬ 
linear action on the feedback distortion would produce 
sufficient additional distortion to result in a cumulative 
situation. This result agrees quite well with the meas¬ 
ured threshold value of <>„„,= 1/3.11. 

Fig. 5—Block diagram for representing the effect of excess phase 
noise or “noise distortion.” 

In order for the results in the above paragraph to be 
correct, it is necessary that the number of zero crossings 
of the envelope be negligibly small for 0nn32< 1/10. Cal¬ 
culation of the actual probability of zero crossings is 
prohibitively difficult. In lieu of this calculation it will 
be shown that the root-mean-square fluctuation of the 
envelope is negligibly small compared to its mean 
value. The first term in the envelope expression of (2) 
is the normalized carrier envelope. The second, fifth, 
and sixth terms represent the envelope noise when the 
loop is open. Since the system is above threshold on an 
open-loop basis these terms are sufficiently small. The 
last three terms tend to cancel each other and can be 
neglected if ${t) = N,(t). Demonstration that the third 
and fourth terms are small compared to the normalized 
carrier envelope, i.e., unity, requires the specification of 
a particular closed-loop transfer function. We shall se¬ 
lect the two-pole low-pass function, having a damping 
ratio less than unity, because of its practical im¬ 
portance. It is felt that the results are typical of most 
other transfer functions of interest. From (2) it can be 
seen that the third and fourth terms are formed by 
multiplying two variables together and then passing the 
result through the low-pass equivalent of the IF filter. 
In Appendix B it is shown that the total power lying 
within a rectangular band of frequencies equal to twice 
the noise bandwidth of the closed-loop response is 
P= ll/40r„„4. Since the power passed by the IF filter 
is smaller still,6 the envelope noise of the composite wave 
at the input to the frequency detector is small compared 
to unity for 0m,»2 <1/10. 

In summary, the mean-square phase deviation of the 
VCO wave 0rn,„2 caused by noise must be small com¬ 
pared to unity in order for the noise appearing in the 
baseband to be primarily derived from the quadrature 
input noise, i.e., predictable from the FM improvement 
formula. This, then, is also the condition which must be 
satisfied for a system to be above the feedback threshold. 

V. Modulation 

In Section IV the carrier was assumed to be un¬ 
modulated. Here it is shown that the system stability, 
and hence the closed-loop bandwidth and feedback 
threshold, are all functions of modulation. It is then 
shown that the dependence may be virtually eliminated 
by proper design. 
Assume that the carrier frequency is varying slowly so 

that it may be represented quasi-statically. Noise can 
then be separated into components in phase and in 
quadrature with the carrier. The quadrature component 
is the angle noise, and it is the response of the system 
to this noise that is of interest. The nature of this re-

• Notice that, for a fixed closed-loop noise bandwidth, increasing 
the resonant peak of the closed-loop response function allows more 
envelope noise to pass through the IF filter. 
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sponse may be determined from the small index re¬ 
sponse of the system. It is desired to find a transfer 
function which will relate the signal component of the 
instantaneous phase at the output of a mistuned high-Q 
band-pass filter to the phase of the small index modu¬ 
lated carrier applied to its input. The mistuning, of 
course, represents the deviation of the quasi-statically 
varying carrier frequency caused by signal modulation. 
Distortion will not be considered since it does not affect 
stability. In Appendix C7 it is shown that the baseband 
analog of the mistuned high-Q band-pass filter is 

where 

Y^ju) = Fi^-f-^)]^’, 

Fl[j(w + aid)] = R(u -f-

0^ = difference between the carrier frequency 
and the filter center frequency, 

FlÍjw) =conventional low-pass equivalent of the 
band-pass circuit. 

In Figs. 6 and 7 are shown magnitude and phase 
plots for a single-pole and Bode-type filter [10], The 
conventional low-pass equivalent is given by the w¿ = 0 
curve. Modulation manifests itself as a variation in uj, 
and so its effect on the phase margin of the system is 
very apparent. A slow roll-off filter such as the single¬ 
pole filter is obviously required in the IF. The single-pole 
filter introduces only a slight excess phase shift for 
carrier frequency deviations, i.e., variations in a>d, 
within the 3-db bandwidth. Consequently, only slight 
variations occur in the closed-loop bandwidth and 
therefore in the feedback threshold. 

This instability can have real nuisance value because 
of the likelihood that it will be overlooked in routine 
tests on experimental systems. The reason for this is 
that the system is unstable only on the the peaks of the 
modulation. Further, the oscillations are generally at a 
frequency which is high compared to the baseband 
bandwidth and consequently do not appear after the 
baseband filter which usually follows FM demodulators 
to remove noise lying outside of the baseband band¬ 
width. The effect which is noticed is a degradation of 
the threshold as a function of modulation. The carrier 
frequency in the IF breaks into oscillation at the modu¬ 
lation peaks. The IF filter behaves like a slope circuit 
and produces envelope modulation on the carrier, mak¬ 
ing it much easier for noise peaks to exceed the carrier 
envelope in front of the frequency detector and produce 
the threshold. 

’ The equation det eloped can also be obtained from a much more 
general analysis of distortion presented in an unpublished memo¬ 
randum in 1954 by S. Doba. 

Fig. 6—Amplitude and phase of the transfer function relating the 
signal component of the instantaneous phase at the output of a 
Bode-type high-Q band-pass filter to the phase of the small index 
modulated carrier applied to its input. The carrier is mistuned 
by wj. 

Fig. 7—-Amplitude and phase of the transfer function relating the 
signal component of the instantaneous phase at the output of a 
single-pole high-Q band-pass filter to the phase of the small index 
modulated carrier applied to its input. The carrier is mistuned 
by Ud. 
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The optimum IF filter has not yet been determined; 
however, it is felt that a single-pole filter will be close. 
Additional filtering is done at baseband in order to ac¬ 
complish the following objectives: 

1) Full feedback should be maintained over all base¬ 
band frequencies to be transmitted, so that the 
frequency deviation in the IF is fully compressed. 

2) The closed-loop noise bandwidth should be as 
small as possible for a given amount of feedback 
in order to keep the feedback threshold at a 
minimum. 

3) I he IF filter should be as wide as possible without 
allowing the open-loop threshold to predominate. 
This allows maximum frequency deviation in the 
IF and thus maximum baseband signal-to-noise 
ratio. 

VI. Sam pi.e Design 

The material presented above will now be illustrated 
by means of an example. This example is not offered 
as THE way to design a system; it is meant only to 
consolidate thinking. In particular, we shall use the 
experimental feedback threshold value given in Table 
I. In practice the “operating threshold” would depend 
upon the intended use, i.e., television, data, multiplex 
telephony, etc. 
Assume the following data: 

/ô= 3 Me = baseband bandwidth, 
Nf = + 60 Me = peak frequency deviation. 

The design will use a Bode-type 110] open-loop charac¬ 
teristic with a phase margin of 50°. It can be seen from 
Fig. 8 that this phase margin yields a closed-loop noise 
bandwidth very close to the minimum value for values 
of feedback less than 30 db. The characteristic will be 
realized in two parts: A single-pole filter in the IF and 
the rest at baseband. Now we must determine the re¬ 
quired amount of feedback. Fig. 8 illustrates graphically 
that we must use as little as possible in order to keep 
the closed-Ioop bandwidth minimized. However, we 
must use enough to compress the deviation of the IF 
wave sufficiently for it to pass through the single¬ 
pole IF filter. The IF filter must be narrow enough to 
prevent the open-loop threshold from being dominant. 
Thus, we must know the feedback threshold, which can 
not be calculated until the amount of feedback is de¬ 
termined. We see that we have gone in a full circle. The 
result is that we consider only the baseband band¬ 
width as being known, estimate a value of feedback, 
and then solve for the frequency deviation. If we do not 
obtain the required deviation, we make another es¬ 
timate and try again. 

Let us choose 20 db of feedback for our first estimate, 
i.e., F=i0. The closed-loop bandwidth is, from Fig. 8, 
B, =- 11.6 fb = 34.8 Me. From (1), the carrier-to-noise 

Fig. 8—The closed-loop noise bandwidth of systems having a Bode-
type open-loop characteristic for different amounts of feedback 
and phase margin. 

ratio at the input to the mixer in this bandwidth at the 
feedback threshold is 

Pt — 4.8 
' 9-| 2 

.10. 
3.92 or 5.94 db. 

The single-pole filter in the IF must have a noise band¬ 
width small enough so that the open-loop threshold 
does not predominate. The threshold of a frequency 
detector depends upon the ratio of the input noise band¬ 
width to baseband bandwidth. See Fig. 9. 11 Therefore we 
are forced to guess and check our guess. 

Guess at a value of 6 for the ratio of the IF' filter 
noise bandwidth to baseband bandwidth. From Fig. 9 
it is seen that for B/fb = (> the signal-to-noise ratio is 
proportional to the carrier-to-noise ratio for all carrier-
to-noise ratios greater than 8.5 db. 8.5 db will be used 
as the open-loop threshold. Now for the check. The 
noise density which yields a carrier-to-noise ratio of 
5.94 db in a 34.8-Mc bandwidth (closed-loop noise 

8 These curves were derived for an ideal frequency detector with 
a carrier and a narrow band of Gaussian noise at its input. Since in 
the feedback demodulator the quadrature noise has been reduced by 
feedback, the curves do not apply exactly. However, experience has 
shown that they may be used to estimate the frequency detector 
threshold for systems typified by those in 'fable I. 
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Fig. 9—Threshold curves. (Presented by F. J. Skinner in an unpub¬ 
lished memorandum in 1954; derived from the results of Rice [6]. 
The threshold phenomenon generates a more or less flat power 
spectrum which is superimposed on the parabolic power spectrum 
(triangular voltage spectrum) at baseband. Thus, the threshold 
effects are noticed sooner in the lower frequencies, i.e., for large 
B/fb ratios. For similar curves see Stumpers [11|. 

bandwidth) also yields a carrier-to-noise ratio of 8.5 db 
in a 19.35-Mc bandwidth (IF noise bandwidth). Using 
19.35 Me for the IF bandwidth means that B/fa is 
slightly greater than 6 but not enough to matter. The 
3-db bandwidth of a single-pole filter with a noise band¬ 
width of 19.35 Me is B = 19.35/1.57 = 12.3 Me. The 
compressed wave could have an index9 of 2 in this filter 
and not have sufficient distortion to be detectable on 
an oscilloscope (this distortion is reduced by feedback) 
[1]. The peak frequency deviation in front of the mixer 
would be 

A/ = 10 X 2 X 3 = 60 Me. 

From Fig. 9 a conventional demodulator receiving the 
same transmitted wave would have a threshold greater 
than 12 db in the required 120-Mc rf bandwidth. Thus, 

• In practice one could not realize a closed-loop noise bandwidth 
as small as this example suggests. We have selected a rather idealized 
open-loop characteristic and have completely neglected excess linear 
phase shift caused by parasitics. It is for closed-loop noise band¬ 
widths much greater than the baseband bandwidth where the ability 
to widen the IF bandwidth pays dividends. 

the feedback demodulator has a threshold which is better 
by at least 

120 
12 - 5.94 + 101og 10- = 11.5 db. 

34.8 

VII. Carrier Insertion and the 
Phase-Locked Loop 

In amplitude modulation systems a locally generated 
sine wave, whose phase and frequency are the same as 
the carrier, may be inserted to extend the threshold 
indefinitely, at least theoretically [12]. It has been 
proposed [4] that such a scheme be incorporated with 
the feedback demodulator, if the large index trans¬ 
mitted wave were phase modulated instead of frequency 
modulated, feedback could be used to reduce the devia¬ 
tion in the IF until only the first-order sidebands were 
important. A locally generated sine wave of the proper 
phase and frequency could then be inserted to eliminate 
the threshold of the phase detector. It will be shown 
in the next few paragraphs that the thresholds of the 
phase-locked-loop and the feedback demodulator with 
carrier insertion are equal to or poorer than that of a 
feedback demodulator without carrier insertion. The 
reason for this stems from the fact that in the first two 
cases the instantaneous phase deviation of the wave 
behind the mixer (multiplier) must be small compared 
to unity in order to prevent severe distortion. For large 
transmitter modulation indexes this requires more feed¬ 
back than would be required by a straightforward feed¬ 
back demodulator, and consequently results in a larger 
closed-loop noise bandwidth. The larger closed-loop 
noise bandwidth yields a poorer feedback threshold. 
First let us consider the carrier insertion scheme. Let 
the carrier be inserted directly after the mixer. The 
combined output is then 

e3(0 = {Ci + cos 0(Z) + Nc(t) cos 0(() 

+ N,(t) sin 0(Z) } cos (wot — 0) 

— ] — sin 0(() — Nc(t) sin 0(Z) 

+ A\(0 cos 0(Z) } sin (wot — 0), (3) 

where Co cos (wot — 0) is the inserted carrier, normalized 
by the incoming carrier magnitude. 
The envelope and phase may be found exactly as in 

the development of (2). They are 

1 _ _ _ 
EÁD = 1 +—— {^«(0 + -V,(z)0u) - WTO] 

1 T Í2 

+ ■ . ! 2-V, (l) + 2.V.. (0 + 20 (t) 
(1 + C2) _ 

- N.(l)$(l)}, 

*>(» = —— ( Ã.(0 - 0(0 - TeWW] 
1 T ̂2 

U I" 12/ 
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The terms proportional to 1/(1 + C2)2 tend to cancel 
just as did the corresponding terms in (2). 

There are two points to notice: 

1) The inserted carrier reduces the percentage en¬ 
velope modulation by the factor 1+C2, decreasing sys¬ 
tem susceptibility to envelope noise. 

2) The above-threshold phase noise N.(f) — and 
the “threshold-producing” phase noise Nc(t)<t>(t) are re¬ 
duced by the same factor 1-FC2, as modulation would 
be if it were present. This reduction produces the same 
effect on the baseband as a decrease in the gain constant 
of the phase detector. Hence, the effect is simply to re¬ 
duce the amount of feedback. The feedback threshold 
of this demodulator is not affected by carrier insertion. 
Now consider the phase-locked loop. In the phase-

locked loop the 1F frequency w» is zero and 0 = tt 2. The 
output of the mixer (multiplier) is a baseband signal 
proportional to the quadrature component of (3). There¬ 
fore, there is no need for a separate phase detector or 
carrier insertion. Notice that the quadrature term is 
Q(f) = N,(J) —<¡>(0 — NC(J)<I>(I). Again the threshold pro¬ 
ducing noise is present and undiminished, yielding the 
feedback threshold. 

In summary, both the phase-locked loop and the feed¬ 
back demodulator with carrier insertion require the in¬ 
stantaneous phase deviation of the wave behind the 
mixer (multiplier) to be small compared to unity. For 
large transmitted modulation indexes this requires more 
feedback on the highest baseband frequency than would 
be required by a straightforward feedback demodulator, 
and consequently a larger closed-loop noise bandwidth 
is obtained. The larger closed-loop noise bandwidth 
yields a poorer feedback threshold. 

VIII. Conclusions 

The over-all threshold of the frequency feedback 
demodulator was determined. The results show that 
two thresholds can occur. The first occurs in the usual 
manner at the frequency detector; the second occurs 
when the root-mean-square phase of the VCO wave 
(caused by noise) is no longer small compared to unity. 
Experimentally it was found that the second threshold 
occurs when 1/3.1 1 ±7 per cent radians. This 
was related quantitatively to the carrier-to-noise ratio 
in the closed-loop noise bandwidth. It was pointed out 
that for maximum baseband signal-to-noise ratio the 
feedback threshold and open-loop threshold should oc¬ 
cur in the same neighborhood. It was also shown that 
sharp cutoff filters in the IF can cause a serious loss in 
threshold under modulated conditions, and for this 
reason slow roll-off filters such as the single-pole filter 
should be used. Realizing these facts can improve the 
baseband signal-to-noise ratio by one or two orders of 
magnitude, for a given carrier power and noise density, 
over that which would be obtained in systems designed 
be previous theories [3], [4]. It was shown that the 

phase-locked loop and the feedback demodulator with 
carrier insertion have a poorer threshold than the 
standard feedback demodulator for large index modula¬ 
tion. 
The author would like to point out several problems 

that need further study. The “operational” threshold, 
which determines the limit of usefulness of a demodula¬ 
tor, varies according to the service for which it is used, 
i.e., multiplex telephony, television, etc. This threshold 
needs to be determined subjectively for each of these 
services. It has been pointed out in this paper that 
feedback demodulators should be designed to have the 
feedback and open-loop thresholds occur in the same 
neighborhood. Experimental results for the various serv¬ 
ices are also needed here in order to be more specific. 
Intermodulation distortion produced by the IF filter 
should be studied to determine the maximum allowable 
frequency deviation. Last but not least, it would be 
useful if a general analysis of the behavior of the feed¬ 
back demodulator below threshold were available. How¬ 
ever, the fact that the threshold of an ideal frequency 
detector, in the absence of feedback, is not understood 
to a satisfactory degree gives some insight into the dif¬ 
ficulties. 

Appendix A 

It is desired to show that the ratio of the spectral 
power density of the term </>.(/)Nr(t) to the density of 
N,(t) is equal to the mean-square value of </>,(/) for 
large feedback. Nc(t) and N,(t) are the in-phase and 
quadrature components of the input noise, normalized 
by the carrier magnitude. </>,(/) is the component of the 
phase of the VCO wave derived from the quadrature 
component of the input noise. 
The spectral density of the term </>«(/)NM is found 

by determining the covariance and then taking the 
Fourier transform. The covariance is 

RM = /¿[«.(/d.VA/d^i/^ALf/j)], 

where E( ) is the statistical average or expectation of 
( ). Now 0„(f) is derived from N.^t) by linear filtering; 
it follows that and N, (/) are independent processes 
as long as the RE and IF filters are symmetrical [13]. 
Thus 

RM = R'MRvM, 

where R^ and R\c are the covariances of </>» and Nc, re¬ 
spectively. The spectral density can now be found by 
convolving the individual densities. 

SM = [ SnM -
d — X 

We are interested in the power density only within 
the bandwidth of the closed-loop response function. If 
the feedback is equal to or greater than 15 db or so, the 
bandwidth of the RF band of noise is equal to or greater 
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than twice the 3-db bandwidth of the closed-loop re¬ 
sponse function. Under these conditions 

Sx^-f) =SNc(f) 

for f and/i within the desired range. Thus 

~^= I S^df^^, 

since 

SnÁ/) = 

Appendix B 

It is desired to determine an upper bound to the total 
power passed by an ideal rectangular filter, whose band¬ 
width is equal to twice the closed-loop noise bandwidth, 
when the input is the first two second-order terms in 
the envelope expression of (2), i.e., 

E^t) = - WU). 

A two-pole low-pass transfer function will be chosen 
as representative of the closed-loop transfer function. 
Let the impulse and transfer functions be, respectively, 

bln . _ . 
h(t) = —-= — e^’t'sin ¡ un\/l — f2/¡ 

and 

w„2
H (jœ) = —-- -- ;- , 

œ„2 — w2 + 2joio>,¿ 

where f < 1. 
The covariance can be expanded in the following 

form [14]: 

Re^t) = Rx^W + Rnn(t)RM + R.^R^r) 

- Rx^O) R^W - Rx^RM - R^(r) 

R^r) + ]^2(0) + ̂ R^t), 

where Rx<M^E[N,(ti')<t>(ti')], etc. Now the individual 
terms must be calculated. The term R^r) may be 
found in Middleton [15]: 

R^cM = cos {o!„vT - f2r] + 

where a,1 is the spectral density of The term for 
Rxx(r) is 

Rxx(r) = 

where ô(r) is the “delta” function. The term Ä0A,(r) is 
simply the product of the impulse function h(r) and 
a,2. 

0, r < 0. 

The spectral density corresponding to the inverse 
Fourier transform of ReM contains a de term, a term 
of uniform density and a number of terms whose energy 
is concentrated within a bandwidth twice that of the 
function H(jo¡). The total power which would be passed 
by a rectangular filter whose bandwidth is equal to 
twice the closed-loop noise bandwidth (Be=a>„/4f) is 
smaller than 

4 

11 
“ " 0nns^ • 

4 

P is calculated from ÄB1 (r) by letting r = 0 in all terms 
except the one containing Rnx(t) and adding them. The 
term Rxx(r) yields a uniform spectral density. Only the 
power within a bandwidth equal to twice the closed-
loop noise bandwidth was included. 

Appendix C 

Mistuned Angle-Modulated Carrier 
It is desired to find a transfer function which will 

relate the signal component of the instantaneous phase 
at the output of a mistuned high-Q band-pass filter to 
the phase of the small index modulated carrier applied 
to its input. Distortion will not be considered since it is 
only the signal transfer function which is important to 
stability. Let the small index signal be 

eM = cos [ojo/ + </>(/)] = R. (e'"0' X 

= K,([l -HW] 

The result is a “baseband” signal which has been trans¬ 
lated in frequency by wo. If Y i.fjoi) is the transfer func¬ 
tion of the conventional low-pass equivalent of the 
filter, then PL[;(w+wd) ] is the transfer function seen by 
the baseband signal because of the carrier being mis¬ 
tuned by old. The output signal will, in general, be both 
envelope and phase modulated. Only the signal com¬ 
ponent of the phase modulation is desired. Write 

Fi[y(w + o>d)] = R(o> + a>u)e'i(“+"'')

= ̂ ^Y^joi), 

where 

Y^joi) = R(o> + «JefOHwdl-jK-d). 

YI(joi) is not the transfer function of a physically 
realizable network, and consequently its impulse func¬ 
tion is complex, i.e., 

h(r) = Äi(t) + jhi(r), 

where hi(r)~ and h^r) are real. The filter output may be 
found by convolution: 

eolt) = i‘‘M  f [/q(r) + JÄ2(r)][l + — r)dr 
J —00 

f + [Ai(r)+;*2(T)][^(/-T)]¿T. 
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The signal component of phase is 

'I'(Z) = Im In Cü(Z) 

1 r 
= O^J) + ——- I lh(r)<i>(J — r)dr 

R\WdJ J —oo 
assuming 

i.e., if the distortion is not too severe. 0(w<<) is a constant 
and can be ignored. The desired transfer function has 
an impulse function of h\(r) / Riva). hjr) is the real 
part of h(r), and consequently its transfer function 
consists of the even real part and odd imaginary part 
of the minimum phase function Yz(Jœ). The desired 
transfer function is then 

= — - I 
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A Threshold Criterion for Phase-Lock Demodulation* 
JEAN A. DEVELET, JR.f, member, ire 

Summary—An analytical threshold criterio * has been developed 
for the general phase-lock receiver utilizing Booton’s quasi-lineariza¬ 
tion technique. This criterion is established for arbitrary information 
and noise spectral densities. The information is assumed phase- or 
frequency-encoded on the received signal. Explicit results are cen¬ 
tered around the case of additive white Gaussian noise. 

The principal nonlinearity is assumed to be the phase detector 
which is represented as a product device. 

Threshold curves are derived for three types of signals: 
1) Bandlimited phase-encoded white Gaussian signals, optimal 

receiver; 
2) Bandlimited phase-encoded white Gaussian signals, second-

order receiver; 
3) Frequency-encoded white signals, optimal receiver. 
The phase-encoded white Gaussian signal threshold is then com¬ 

pared with Shannon’s results. It was found that the optimal receiver 
threshold occurs 10 login (e) or 4.34 db above Shannon’s limit. 

The second-order receiver was found to threshold 2 to 3 db 
above the optimal receiver in the region of normally encountered 
output signal-to-noise power ratios. 

* Received June 25, 1962; revised manuscript received, Septem¬ 
ber 26, 1962. 

t Aerospace Corporation, El Segundo, Calif. Formerly with 
Space Technology Laboratories, Inc., a Subsidiary of Thompson 
Ramo Wooldridge, Inc., Redondo Beach, Calif. 

Frequency-encoded white signals represent the character of 
residual noise in a communication link oscillator system. Residual 
frequency noise is induced by the ever present thermal noise in os¬ 
cillator circuits. This particular thermal-induced noise cannot be 
removed entirely. For this fundamental noise process maximum re¬ 
ceiver sensitivities are derived. 

An interesting result of quasi-linearization is that, for the signals 
considered, previous solutions of the Wiener-Hopf equation may be 
applied with only slight modifications. 

I. Introduction 

PREVIOUS ANALYSES of phase-lock receiver 
performance have been based on linearized models 
of the actual transfer function. 1-4 Since the phe-

1 W. J. Gruen, “Theory of AFC synchronization,” Proc. IRE, 
vol. 53, pp. 1043-1048; August, 1953. 

2 B. D. Martin, “A Coherent Minimum-Power Lunar Probe 
Telemetry System,” Jet Propulsion Lab., California Inst. Tech., 
Pasadena, Calif., External Publication No. 610, pp. 1-72; August, 
1959. 

3 C. E. Gilchriest, “Application of the phase-locked loop to telem¬ 
etry as a discriminator or tracking filter,” IRE Trans, on Telem¬ 
etry and Remote Control, vol. TRC-4, pp. 20-35; June, 1958. 

4 R. Jaffe and E. Rechtin, “Design and performance of phase¬ 
lock circuits capable of near-optimum performance over a wide 
range of input signal and noise levels,” IRE Trans, on Information 
Theory, vol. IT-1, pp. 66-76; March, 1955. 
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nomenon of loop threshold is caused by the effects of 
nonlinearities, it is understandable that the linear mod¬ 
els referenced cannot yield a threshold criterion. 

This paper describes the application of the quasi¬ 
linearization technique of Booton6 to the determination 
of an analytic threshold criterion. The analysis will be 
restricted to the case of Gaussian signals corrupted by 
additive white Gaussian noise. Extension to other situa¬ 
tions is possible but not treated in this paper. 

II. Analysis 

Consider the phase-lock receiver of Fig. 1. 
The low-frequency output of the product demodu¬ 

lator can be shown to be 

vM = — Esin e(0 - X(f) sin [m(/) -I- e(/)] 

+ T(/) cos [m(/) + e(/)] (1) 

PRODUCT LOOP 

DEMODULATOR FILTER 

VOLTAGE CONTROLLED 

OSCILLATOR 

Vt = E sin [wZ + m(Z)| + x(t) sin wt + y(l) cos wt 
Fo = 2 cos [w(/)+ >»(I) + e(I)j 

Fig. 1—General phase-lock receiver. 

where 
E=\/lSif, received signal amplitude, volts; 

e(/) = instantaneous loop error, radians; 
mil) = instantaneous signal modulation, a Gaus¬ 

sian random variable, radians; 
X(t), F(/) = uncorrelated white Gaussian noise vari¬ 

ables of average power «F./BIE,/, watts. 

For the normal phase-lock receiver situation the pre¬ 
detection bandwidth, BW,/, may be assumed much 
larger than the phase-lock loop bandwidth. In this situa¬ 
tion Y(l) and X(t) have a correlation time6 much shorter 
than m(t) or e(t). Under these conditions, it can be 
shown that the noise portion of (1) can be represented 
by a Gaussian variable N(t) which has the same correla¬ 
tion function as Y(t) or X(t). Thus (1) becomes 

»,(/) = — E sin e(/) + N(t). (2) 

Eq. (2) may now be utilized to obtain an analytical 
representation of the general receiver of Fig. 1. Fig. 2 
portrays this representation. 
The representation of Fig. 2 can be seen to be a simple 

servomechanism with the exception of the nonlinear ele¬ 
ment E sin [ ]. Booton6 has provided an approximation 
technique which can be used to replace the nonlinear 
element by an equivalent gain, Ka. This technique es¬ 
sentially determines the average gain of the nonlinear 
device under the expected operating conditions. KA may¬ 
be found utilizing an averaging procedure which is a 
slight variation of Booton’s equation (58).’ This varia¬ 
tion was obtained by an integration by parts and is in a 

s R. C. Booton, Jr., “Nonlinear Control Systems with Statistical 
Inputs,” Mass. Inst. Tech., Cambridge, Mass., Rept. No. 61, pp. 
1-35; March 1, 1952. 

6 The time in seconds it takes the correlation function to drop to 
a small value compared to the value at zero seconds. 

’ Ibid., p. 21. 

Fig. 2—Analytical receiver representation. 

more convenient form: 

where 

Ka = equivalent element gain, 
g'(x) =E cos X, 
p^x) = probability density of e(f) which must be 

Gaussian to conform to Booton’s criteria. 

Letting «(/)’ = a2, substituting into (3), and integrat¬ 
ing yields 

Ka = E exp (—<r*/2). (4) 

The quasi-linear receiver representation obtained by 
linearizing the E sin [ ] transfer function is now shown 
in Fig. 3. 

Denoting the signal and noise one-sided power-
spectral densities of m(s) and N(s) as rad2/cps 
and 4>,,(œ) watts/cps respectively, it is a simple matter 
to show 

where 

Modulation Error 

<t>0 
1 - - (01) df 

Noise Error 

exp (<r2)4>„(<u) <i>o 2
-M df 
<t>i 

E exp (- J F(s)/s 
_ N % '_ 

<t>, 1 + Eexp (-a2/2)F(i)/j 

(5) 
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N(S) 

Fig. 3—Quasi-linear phase-lock receiver. 

Eq. (5) is a key relationship. As a consequence of the 
exp (a2), it implicitly contains a threshold criterion for 
the receiver model of Fig. 3. It will be shown more ex¬ 
plicitly in what follows how this criterion is obtained. 

Eq. (5) can be solved for the received signal power 
S,/ as follows: 

It is desired now to choose a function such that 
for a specified <r, and 4>„(a;), Si/ is minimized. This 
function will yield maximum receiver sensitivity. In 
order to find this optimum function let 

</><> 
— (w) = A (7) 

i 

Substitution of (7) in (6) yields 

exp (<z2) 

2 
■ (8) 

Clearly for minimum Si/, 0(u) should be chosen equal 
to zero. Thus, 

(9) 

A (w) may be found by standard variational methods. 
That is, add to A(a))| opt the function er/M- Eq. (9) is 
then differentiated with respect to e and the derivative 
and e set equal to zero. Since is arbitrary, an equa¬ 
tion for A (w) I Opt for all is obtained. The result of this 
mathematical manipulation is 

AM I Opt = 
T„,(o>) 

‘f’mCw) + 
'M«) exp (o-2) 

2S ’Anin 

(10) 

Eq. (10) is an interesting result. It is the identical 
result one obtains if the minimization of a2 in (5) is 

carried out. Since minimization of Si/ and a- is achieved 
by the same transfer function, the general results of 
Wiener are applicable with the exception of the fact 
that the noise power-spectral density is replaced by 

<I>„(a>) exp (a2) 

2 Si/ . 

Further consideration of Wiener-Hopf solutions will 
use results of previous workers in the field. In particular 
only the case of white Gaussian noise will be treated. 
I hat is <F„(w) = 24>,y where 4>,/ is the one-sided predetec¬ 
tion power-spectral density of the receiver. 

General Solution for While Gaussian Noise 

\ ovits and Jackson in their important paper 1955 s 

found a particularly useful form of the optimum realiz¬ 
able transfer function for the situation of white noise. 

Their results for linear filters are repeated below 
utilizing the terminology previously developed,’ as 
follows: 

I , z 2
1- (w) -- —- ■ (11) 

opt + 4>m(w) 

The corresponding minimum following error is 

(12) 

In order to treat the performance of the quasi-linear 
receiver model one need just replace 4>„ in (1 1) and (12) 
by &i/ exp (a2)/Si/. The following fundamental rela¬ 
tions are thereby obtained : 

, «0 . .I2 *./ exp (<72) 
1- (u) -- , 

<t>i I opt *./ exp (a2) + S,/^mM 
exp (a2) C » / 5,74>m(aj) \ 
- I log. I 1 + )df. 
Si/ Jo \ 4>,y exp (<r2)/ 

(13) 

(14) 

Eq. (14) is one of the principal results of this paper. 
Given a receiver output quality constraint and a re¬ 
ceiver noise density 4>,/, (14) will not yield a bounded 
solution for a2 if the received signal power S,/ is too 
small. The value of Si/ below which the solution for a2 

ceases to exist is the threshold for phase-lock demodula¬ 
tion obtained from the quasi-linear model. 

III. Applications 

The previous results will now be applied to three 
situations which are important in communication en¬ 
gineering. In all cases the background noise will be as¬ 
sumed white and Gaussian. The signal modulations and 
transfer functions to be considered are the following: 

• M. C. Yovits and J. L. Jackson, “Linear filter optimization 
with game theory considerations,” 1955 IRE National Convention 
Record, pt. 4, pp. 193-199. 

9 Ibid., pp. 195-196. 
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1) Reception of a bandlimited phase-encoded white 
Gaussian signal spectrum with the optimal trans¬ 
fer function, 

2) Reception of a bandlimited phase-encoded white 
Gaussian signal spectrum with a second-order 
transfer function, 

3) Reception of a frequency-encoded white signal 
spectrum with the optimal transfer function. 10

The first case is important to illustrate optimal com¬ 
munication of information by use of a phase-lock re¬ 
ceiver. 
The second situation is of practical interest since a 

second-order loop is easily realized and is amenable to 
measurements verifying the theory which has been de¬ 
veloped. 
The last situation is important in that oscillators in a 

communication link are not perfectly stable and must be 
“tracked” in phase in order to continue receiving the 
signal. The results here point to fundamental sensi¬ 
tivity limitations of phase-lock receivers given the 
oscillator system is perturbed by a random walk phase 
process. 

Bandlimited Phase-Encoded White Gaussian Signal, 
Optimal Receiver 

Let the signal power-spectral density in (14) be given 
by 

4>m(œ) = 4>, 

'LM = 0 

Integration of (14) yields 

exp (<r2) T 
— - fn log. 1 + -- — . 
Sa L exp (<r2)J 

(16) 

Since exp (<r2)/5,/ is the one-sided phase noise 
power-spectral density in the receiver output, 11 and 

is the mean-square signal power in the receiver 
output, one may rewrite (16) in a more meaningful form 
exhibiting signal-to-noise power ratios input and output. 
Thus, 

\N/i 2<r" L \N/o. 

where 

the input signal-to-noise power ratio referred to twice 
the information bandwidth. 

fm 

- exp 
Si/ 

s\ a,,;- _ 

AV, exp (<r2) 

10 This situation corresponds to a random walk in signal phase. 
11 Inspection of the transfer function VdO/NW) in Fig. 3 reveals 

the fact exp (<d) is a factor in the output noise also. 

the output signal-to-noise power ratio referred to the 
information bandwidth. am = modulation index, radians. 

Eq. (17) has a minimum value for (S/N)¡ at a= 1.0 
for a fixed system output quality (S/N)o. Substitution 
of <r=1.0 radian in (17) yields the threshold result de¬ 
picted in Fig. 4. 

Fig. 4—Quasi-linear receiver performance for the situation of band¬ 
limited white Gaussian phase-encoded signals with the optimal 
transfer function. 

The curves above threshold represent system output 
quality vs signal-to-noise power ratio input asymp¬ 
totically converging on the conventional high (S/N)i 
relation. These are constructed with the modulation 
index a„, = y/Qmfm as a parameter. Since 

and a is a function of {S/N){ governed by (17), a simul¬ 
taneous solution of this relation and (17) yields a and 
hence (S/Njo vs (S/N)i. It is interesting to note the 
curvature as one approaches threshold. Note also for 
am<1.0 the quasi-linear model yields no threshold. 
The threshold criterion depicted by Fig. 4 is signifi¬ 

cantly below a standard FM or PM discriminator as 
would be expected since more optimal demodulation is 
employed. It is, however, higher than that predicted by 
use of Shannon’s results. This is as it should be, for 
above threshold information may be conveyed by the 
phase-lock communication system and the rate of com¬ 
munication should be bounded by a communication 
theoretical result such as Shannon’s. More discussion 
of this appears in Section IV. 
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Bandlimited Phase-Encoded White Gaussian Signal, 
Second-Order Receiver 

The previous section treated the case of the optimal 
receiver which requires an infinite number of elements 
to realize. The second-order receiver though not opti¬ 
mum is easy to realize in hardware. 
As with the optimal receiver, let the signal power-

spectral density be given by (15), as follows 

4>„(w) = <!>,„ 

= 0 

0 <f<fm, 

f~ <f. 

Return to the fundamental equation (5) is necessary 
since we are not dealing with an optimal receiver for the 
signal given by (15). 
The transfer function 0>o/</>;(") has been derived by 

Gruen for the second-order receiver. 1 Gruen’s results are 
restated below for convenience. 

T /2f 1\ 1 
1 + Í — - I 5 

00 L Wn K r -
— 6) =- ;- (18) 
0, Un* + 2fwnS + S~ 

where 

o>„ = loop natural frequency, rad/sec, 
f = loop damping ratio, 
K = loop gain, sec. -1 . 

Eq. (18) may be obtained from (5) by substituting 
for F(s) the transfer function of a lag-lead filter. 

1 + T1S 
F(s) = K„- (19) 

1 + r2s 

where 

X0 = a de gain, 
Ti ; 72 = time constants of the lag-lead filter, seconds. 

Various methods of realizing F(s) have been discussed 
thoroughly by Martin.2 In addition to the above s' b-
stitution for F(s), the following parameters are defined 
after Gruen :12

K ’ 

where 

oi„ = loop natural frequency, rad/sec, 
f = loop damping factor. 

Since (20) shows that the loop natural frequency, and 
damping vary with a the loop error, all analysis to fol-

12 Gruen, op. cit., p. 1045. 

low will be carried out in terms of the zero a (high 
(S/Njt) values of these quantities, w„0 and respec¬ 
tively. The receiver design will center around optimiza¬ 
tion of o>„o to achieve maximum sensitivity. 

Eqs. (15) and (18) may now be substituted in (5) and 
the two integrals evaluated. The following simplifying 
assumptions will be made to yield meaningful results 
without resort to computer integration of the modula¬ 
tion error in (5) : 

2r i 
— » — , 

K 

2tr/m
-J-« 1. 
Cin 

The first assumption is usually the case in practical 
receivers. The second assumption restricts the validity 
of our calculations to the more interesting region of 
high signal-to-noise ratios in the receiver output. With 
the above substitutions and assumptions, it can be 
shown that (5) becomes, for the second-order receiver 

5u„o4

2 _ (27r)4<I>m/m6exp (<r2) 

exp (a2) 1 + 4f0’ exp 

85 i/f o 
(21) 

Assuming a fixed damping f0, $,/. *K. and f„„ (21) may 
be solved for 5,y and minimized with respect to w„0. 
Thus, maximum receiver sensitivity is achieved. Per¬ 
forming this manipulation one obtains as the minimum 
receiver input signal to noise-power ratio defined as in 
the optimal receiver, 

where the relation for signal-to-noise output power 
ratio is given by the same relation as in the optimal re¬ 
ceiver, i.e., 

exp (a2) 
(23) 

As in (17), (22) has a minimum value at a particular 
value of a which depends on system output quality 
(S/V)o and receiver damping ratio f0. Only one particu¬ 
lar value of fo = l/-\/2 will be chosen in what follows. 13

13 Since the previous section has shown the second-order receiver 
is not optimal for the type of signal treated here, the author does not 
feel justified in using other than a commonly encountered value for Jo. 
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Fig. 5—Quasi-linear receiver performance for the situation of band¬ 
limited white Gaussian phase-encoded signals with a second-order 
transfer function. 

For fo = W2 the value of a which yields minimum 
(S/N)i and hence minimum receiver threshold is 1.01 
radians. Substitution of a = 1.01 radians into (22) yields 
the following threshold relation: 

(24) 

Fig. 5 graphs (24). Note that only values for (S/N) o 

>20 db are considered. This is consistent with the ap¬ 
proximate evaluation of the modulation error portion 
of (5). 
As with the optimal receiver, the curves above thresh¬ 

old represent system output quality vs signal-to-noise 
power ratio input asymptotically converging on the 
conventional high (S/N), relation. These are con¬ 
structed with the modulation index am as a parameter. 
Loop error, a, may be eliminated for purposes of the 
graphs in Fig. 5 by simultaneous solution of (22) and 
(23). 
Shannon’s lower limit and the optimal phase-lock re¬ 

ceiver sensitivity are shown for comparison in Fig. 5. 
It is interesting to note that for output signal-to-noise 
ratios of practical interest («20 to 40 db) that the 
second-order receiver is only 2 to 3 db poorer than the 
optimal receiver or 6 to 7 db poorer than Shannon’s 
limit. 

In general it is not easy to describe the effect of oscil¬ 
lator noise on coherent systems because the shape of 
the oscillator system phase power-spectral density is 
not known. In one specific instance, however, the effect 
is amenable to calculation, that is, when the resulting 
random process imposed on the received signal phase is 
caused by thermal noise. In this special instance Edson1* 
has shown that the frequency modulation [ m (/) Fig. 2] 
has a white power-spectral density. Develet 16 then ob¬ 
tained by simple integration and Fourier transforma¬ 
tion the one-sided phase power-spectral density, T,„, 
given by 

2 rad2

T^¿ CpS 
(25) 

where 

Tc = coherence time of the oscillator system; the time 
in seconds it takes the phase drift to build up to 
one (1) radian rms, 

w = radian frequency, rad/sec. 

This power-spectral density can be identified with 
m(t) a random walk process. 
One seeks now the fundamental receiver sensitivity 

in the presence of additive white Gaussian noise given 
that the received signal has a phase power-spectral 
density governed by (25). Substitution of (25) in (14) 
yields 

o a" = 
exp (<r2) 2Sif 

a>2Tc4>,7 exp (a2). 
df- (26) 

Integration gives the simple result 

'Ey rexp (a2)" 
S u- -

2re L a* J 
(27) 

Eq. (27) may be differentiated with respect to a to 
find the minimum value of Sy. Thus, 

where 

27 |min 
A 

rc \ 8 / 

Omin — x^2 radian. 

(28) 

Considering that the receiver noise density is given by 
Boltzmann’s constant times the equivalent receiver 
temperature, (28) may be restated as 

(29) 

Frequency-Encoded White Signals, Optimal Receiver 

In a coherent communication system, oscillator 
(clock) stability is of great importance especially when 
accurate Doppler measurements or low information 
rates are to be conveyed through the link. 

14 W. A. Edson, “Noise in oscillators,” Proc. IRE, vol. 48, pp. 
1454-1466; August, 1960. 

16 J. A. Develet, Jr., “Fundamental Sensitivity Limitations for 
Second Order Phase-Lock Receivers," presented at URSI Spring 
Meeting, Washington, D.C., May 4, 1961, STL Tech. Note 8616-
0002-NU-000; June 1, 1961. 
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Fig. 6—Receiver sensitivity vs equivalent receiver temperature. 

where 

K = 1.38X10-“, Joules/°K, 
r«, = equivalent receiver temperature, °K. 

Fig. 6 plots phase-lock receiver sensitivity as a func¬ 
tion of with tc as a parameter. It represents a funda¬ 
mental sensitivity limitation for phase-lock reception 
given by the quasi-linear receiver model, for reception 
of signals disturbed by a random walk phase process. 

IV. Comparison with Shannon’s Results 

Let us now derive Shannon's limit as depicted in Fig. 
4. Consider the communication channel of Fig. 7. It is 
clear that the error-free information rate in bits/sec of 
the video portion of the link cannot be greater than the 
maximum error-free information rate which can be 
passed through the RF channel. This fact allows one to 
use Shannon’s theorem to bound the output signal to 
noise-power ratio (S/N)„ for a given input signal to 
noise-power ratio (S/N)^ The phase-lock demodulator 
cannot enhance the information transfer process. 
The RF signal modulation considered in the deriva¬ 

tion of Fig. 4 was bandlimited, phase-encoded, white, 
and Gaussian. Since it is difficult to specify RF band¬ 
width occupancy for such a phase modulation at inter¬ 
mediate modulation indices (<rm«1.0), only an extreme 
case will be considered which yields an absolute lower 
bound on RF signal-to-noise power ratio for a given 
output signal-to-noise power ratio. It will be assumed 
that the RF channel has infinite bandwidth. Shannon 
has shown that this condition corresponds to the case 
of maximum information How per watt of RF channel 
signal power in the presence of white noise. 

For this case, the use of Shannon’s result 16 gives the 
upper bound on information flow in the RF channel as 

Si' Gnax =- -> bits/sec. (30) 
4>,/log„2 

16 C. FL Shannon, “Communication in the presence of noise,” 
Proc. IRE, vol. 37, pp. 10-21; January, 1949. 

b ig. 7—Communication channel. 

Since the signals are bandlimited and the noise is 
white and additive in the quasi-linear receiver model 
output, the information rate passing out of the demodu¬ 
lator cannot exceed 

Co = fm
log, j 1 + (5AV)p } 

log, 2 
bits sec. (31) 

In addition, Cmax >Co because the phase-lock demod¬ 
ulator cannot enhance the RF channel’s ability to trans¬ 
fer information, but can only equal or degrade this abil¬ 
ity. Therefore 

1 , 
- ã — log 
20,/A 2 

(32) 

Eq. (32) represents a lower bound on required signal-
to-noise power input and is graphed in Fig. 4. A signifi¬ 
cant point is the consistency of Booton’s quasi-linear 
approximate model and Shannon’s result. Note the 
constant difference factor, 10 logi„(e), for all values of 
(S/N)o. A difference factor is to be expected, for in real¬ 
time phase-lock demodulation no a priori knowledge of 
the signals to be transmitted is available as in Shannon 
demodulation. 

V. Conclusions 

For the first time a simple approximate theory for 
phase-lock threshold has been developed. 
The quasi-linearization technique of Booton was the 

principal analytic tool in developing this threshold cri¬ 
terion. 

It was shown that all previous Wiener-Hopf solutions 
in the linear filter domain apply in this situation with 
one minor adjustment. The noise power-spectral den¬ 
sity is replaced by <F,/exp (<r2)/5, wherever it appears in 
previous results. It must be kept in mind that only one 
particular servomechanism (the phase-lock loop) and 
nonlinearity (the product demodulator) was treated in 
this analysis. 

Certain interesting examples were shown to illustrate 
the usefulness of the procedure. In particular for the 
special case of communication with white Gaussian 
phase-encoded signals in the presence of additive white 
Gaussian noise the optimal phase-lock receiver thresh¬ 
old performance was found to be 4.34 db poorer than 
Shannon's limit. This degradation in performance is 
explained by the fact that no a priori knowledge of the 
signals to be transmitted is available in real-time 
phase-lock demodulation. This contrasts to the Shan¬ 
non demodulator in which knowledge of the set of 

328 



356 PROCEEDINGS OE THE IEEE February 

transmitted signals is available to the receiver. Appar¬ 
ently a priori knowledge is worth 4.34 db in signal 
power. 

Limited measurements which have been conducted 
on a wideband second-order loop at Space Technology 
Laboratories, Inc., Redondo Beach, California, indicate 
very close agreement with predictions based on the 
quasi-linear theory for loop rms phase error, a, out to 
the predicted threshold.” 

It is important to note that the threshold analysis in 
this paper was based on a mean-square signal, noise, 
and loop error criterion. Threshold is defined as the 

17 R. C. Booton, Jr., “Demodulation of wideband frequency 
modulation utilizing phase-lock techniques,” Proc. Nat’I Telemetering 
Conf., Washington, D. C., May 23-25, 1962, vol. 2, Fig. 11, p. 14. 

input signal-to-noise power ratio at which, for a given 
quality constraint, the loop error becomes unbounded. 
If, however, short-term statistics of the receiver output 
are important to the observer, an entirely new criterion 
may require development. In any event, it is considered 
this paper presents the lower bound on sensitivity, be¬ 
cause with any new criterion a bounded mean-square 
loop error will certainly be a prerequisite. 
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Phase-Locked Loop Dynamics in the Presence of 
Noise by Fokker-Planck Techniques* 

ANDREW J. VITERBI t, senior member, ieee 

Summary—Statistical parameters of the phase-error behavior of 
a phase-locked loop tracking a constant frequency signal in the 
presence of additive, stationary, Gaussian noise are obtained by 
treating the problem as a continuous random walk with a sinusoidal 
restoring force. The Fokker-Planck or diffusion equation is obtained 
for a general loop and for the case of frequency-modulated received 
signals. An exact expression for the steady-state phase-error dis¬ 
tribution is available only for the first-order loop, but approximate 
and asymptotic expressions are derived for the second-order loop. 
Results are obtained also for the expected time to loss of lock and 
for the frequency of skipping cycles. Some of the results are extended 
to tracking loops with nonsinusoidal error functions. Validity thresh¬ 
olds of widely accepted approximate models of the phase-locked 
loop are obtained by comparison with the exact results available for 
the first-order loop. 

Phase-Locked Loop Dynamics 

THE PHASE-LOCKED LOOP is a communica¬ 
tion receiver which operates as a coherent de¬ 
tector by continuously correcting its local oscil¬ 

lator frequency according to a measurement of the 
phase error. A block diagram of the device is shown in 
Fig. 1 with the pertinent input and output signals in¬ 

dicated. The output of the voltage-controlled oscillator 
(VCO) is a sinusoid whose frequency is controlled by 
the input voltage, e(f); that is, 

d02(l) 
02(t) =- = K2e(l), 

dl 
(1) 

so that when e(t) =0, the oscillator frequency is coq. The 
received signal is a sinusoid of power A2 watts and of 
arbitrary frequency and phase which may be either 
fixed or time-varying because of frequency or phase 

* Received April 17, 1963; revised manuscript received August 2, 
1963. This paper presents the results of one phase of research carried 
out at the Jet Propulsion Laboratory, California Institute of Tech¬ 
nology, under Contract No. NAS 7-100, sponsored by the National 
Aeronautics and Space Administration. 

t University of California, Los Angeles, Calif., and consultant, 
Jet Propulsion Laboratory, Pasadena, Calif. 

modulation at the transmitter. Thus, it may be repre¬ 
sented by the expression 

x/2 A sin [o>of + 9i(/)]. (2) 

If the signal isa pure sinusoid with constant frequency o> 
and an initial phase 0, then 

0i(f) = (co — Wo)f + 0- (3) 

Although we shall limit ourselves to this case in several 
of the following sections, we shall continue at present 
with the general formulation in which 0i(f) is an arbi¬ 
trary and possibly random process. 
The received noise is assumed to be a stationary white 

Gaussian process of one-sided spectral density No w/cps. 
We shall assume that the phase-locked loop is preceded 
by a band-pass filter with center frequency oio, a band¬ 
width ß, which is very wide compared to the frequency 
region of interest, and a transfer function which is flat 
over this region. The only restriction on ß is that it be 
less than or equal to 2oio. If we let ß — 2ai0, the band¬ 
pass filter becomes a low-pass filter with this band¬ 
width. The noise process w(f) over an arbitrary period 
of duration 7' can be expanded in a Fourier series whose 
coefficients are Gaussian variables which become inde¬ 
pendent in the limit as T approaches infinity [1]. By 
collecting the sine and cosine terms of the series, we can 
represent the noise process of infinite duration by the 
expression 

n(f) = x/2 nßl) sin o>of + V2 »2(f) cos œof, (4) 

where nj(f) and n2(t) are independent stationary wide¬ 
band Gaussian processes with flat spectra over the 
frequency range from zero to ß/2. If we choose ß to be 
2o)0 and restrict our interest to frequencies below <j 0 
rad/sec, «i(f) and «2(f) may be regarded essentially as 
independent white Gaussian processes of one-sided 
spectral density No w/cps. 
Thus the product of input and reference signals is 

2 j A sin [wof + 01(f)] + »1(f) sin oiof + «2(f) cos a>of} 

• j K3 cos [wof + 02(f) ] ] 

= JG] .4 sin [01(f) — 02(f)] — tii(f) sin 02(f) + »2(f) cos02(f) 

+ .4 sin [2wof + 0i(f) + 02(f)] + «i(f) sin [2a>of + 02(f)] 

+ «2(f) cos [2œo/ + 02(f)]} ■ 

The double-frequency terms may be neglected since 
neither the filter nor the VCO will respond to these for 
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reasonable large o>0. Then from Fig. 1 we see that 

e(f) = KlK3F(s){ A sin [0,(0 - 02(O] - n^t) sin 02(f) 

+ m2(0 cos 02(O} (5) 

where F(s) is a rational function which represents in 
operational notation the effect of the linear filter in the 
loop. If we let 

0(f) = 0,(0 - 02(0 (6) 
and 

K = (1) 

we obtain from (1) and (6) 

0(0 = 0i(O - A'2«(0, 
and from (5) and (7) we have 

0(/) = 0i(O — â'F(s)[J sin 0(/) - »1(0 sin 02(O 

+ n2(0 cos02(O]. (8) 

0(/) defined by (6) is the instantaneous phase error or 
the phase difference between the received signal and 
the reference signal at the output of the phase-locked 
loop. If we let 

n'(l) = — n,(0 sin 02(/) + n2(0 cos02(O, (9) 

(8) reduces to 

0(f) = 0i(O — XF(0[A sin 0(Z) + n'(0]- (10) 

This differential equation in operational form represents 
the dynamic operation of the phase-locked loop. It 
may also be written as the operational equation 

K F( ó 
0(0 = 01(0 - sin 0(0 + »'(0], (11) 

5 

which is represented by the block diagram or model of 
Fig. 2. It should be noted that (11) and the model of 

Fig. 2—Model of the phase-locked loop. 

Fig. 2 are exact in all respects except for the fact that 
the terms centered about the double frequency, 2w0, 
have been assumed to be eliminated completely by the 
combination of the filter and the VCO. 

Before we can proceed we must determine the statis¬ 
tics of the noise process n’(t) defined by (9), which is 
the random driving function in the model. We can show 
that this is a white Gaussian process whenever the 
original noise process is Gaussian and white. We have 

taken »(/) to be essentially white at least for frequencies 
less than twice the VCO quiescent frequency, uo, and 
have shown that consequently »,(/) and n3(J) are es¬ 
sentially white for frequencies up to o>0. We have from 
above 

»'=—», sin 02 + n2 cos 02, (9) 

and let us define similarly 

n" = », cos 02 + w2 sin fl2. (9a) 

The process 02(Z) depends on 0,(0 and the noise, as is 
clear upon inspection of Fig. 2. Thus 02(f) may be non-
stationary as in the case, for example, when 0,(f) is 
given by (3). Although 02(O is a function of the input 
noise, it can depend only on its past [i.e., n^t—b) where 
5>0], and since the noise is an essentially white 
process,1 n(t) is independent of n(t — S). Therefore, 
02=02(O is independent of »(/) and consequently also 
of nt(l) and n2(0, and we have as the joint probability 
density function of the three independent random 
variables: w2, and 02, 

/>(»,, n2, 02) =- exp ( — ni2/2a2) exp ( —w22/2a2)/>(02), 
2ra2

where a2 = N^o/Itt and />(02) is an arbitrary nonsta-
tionary distribution. From this we can obtain the 
joint-probability density function of n’, n" , and 02 by 
performing the linear transformation of (9) and (9a). 
The result is 

I / »1, »2, 02 
/>(»', n", 62) = />(”,, tt2, 02) IJ I —-— 

1 \ n , n , 62 

=- exp ( — n'2/2a2) exp ( —n"2/2a2)/>(02), 
2ira2

since the absolute value of the Jacobian is unity. Hence 
we conclude that n'(t) is a stationary process with 
exactly the same statistics as n,(i) and n2(Z). It is 
Gaussian and essentially white at least over the fre¬ 
quency region up to m rad/sec, and its one-sided spec¬ 
tral density is Nn w/cps. 
The model of Fig. 2 first appeared without proof in a 

paper by Develet [2]. In the absence of noise, the 
model has been known for some time and analyzed by 
several authors beginning with Gruen [3 |. Solutions of 
(11) in the absence of noise have been obtained for a 
number of filter-transfer functions and also for the case 
of received sinusoids with linearly time-varying fre-

1 Actually, since n(/) is “white” only for radian frequencies below 
2wo, „(7 — 0) is essentially independent of nW only for b>kir/in,,, 
where k- is a sufficiently large constant. On the other hand, since 
the combination of filter and VCO has a low-pass transfer function 
which is extremely narrow compared to 2w0, (0 is essentially in¬ 
dependent of the input, for 6<¿t/wo, so that the net result is 
the same. 
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quency [4], The general case in which additive noise is 
present has been treated by a variety of approximations. 
The first approach, by Jaffe and Rechtin [5], essen¬ 
tially replaced the sinusoidal nonlinearity of the model 
of Fig. 2 by a linear amplifier of gain A, which is the 
gain for arbitrarily small <j>. Margolis |6 ] first analyzed 
the nonlinear operation in the presence of noise by per¬ 
turbation methods obtaining a series solution of the 
differential equation of operation. By using the first 
few terms of the series he determined approximate 
moments of the phase error. Develet [2], who first 
proposed the operational model, applied Booton’s 
quasi-linearization technique [7] to replace the sinus¬ 
oidal nonlinearity by a linear amplifier whose gain 
is the expected gain of the device. Most recently, Van 
Trees [8] obtained a Volterra series representation of 
the closed-loop response by a perturbation method 
similar to the method employed by Margolis [ó], but 
with the advantage of the simplified model he obtained 
more extensive results. 

Unlike these analyses, Fokker-Planck or continuous 
random-walk techniques yield exact expressions for the 
statistics of the random process, 0(Z). Unfortunately, 
expressions in closed form are available only for the 
first-order loop (i.e., when the filter is omitted). For 
the general case a partial differential equation in p and 
linear combinations of its time derivatives is derived, 
but a solution cannot be obtained in general. These 
techniques were first applied to this problem by 
Tikhonov [9], [lO], who determined the steady-state 
probability distribution of <p for the first-order loop and 
an approximate expression for the distribution when 
the loop contains a one-stage RC filter. 

All the analyses of this device have been concerned 
with the steady-state behavior. In this paper we shall 
obtain for the first-order loop not only its steady-state 
probability distribution and variance, but also the mean 
time to loss of lock, which is a transient phenomenon 
equivalent to a random-walk problem with absorbing 
boundaries. Also, we shall derive the Fokker- Planck 
equation for the general loop filter which produces zero 
mean error. We shall specialize this equation to the 
second-order loop and determine the form of the solu¬ 
tion for the steady-state probability distribution of its 
phase error. In later sections we shall treat the effect of 
random modulation and tracking loops with other than 
sinusoidal error function. Finally we shall compare 
some of the results of the exact analysis with previous 
approximate results to determine the degree of validity 
of the approximate models. 

First of all, in the next section a simple mechanical 
analog of the phase-locked loop is presented which 
provides a qualitative description of the operation of the 
device and an understanding of the nature of the 
statistical parameters required for its quantitative 
description. 

The First-Order Loop and its 
Mechnical Analog 

If the filter is omitted in Fig. 1, then F(s) = 1 in (10). 
Furthermore, if we take the received signal to be a 
sinusoid of constant frequency and phase so that 6t(t) 
is given by (3), we obtain the first-order differential 
equation 

0(z) = (w — wo) — 7C[.4 sin 0(Z) + „'(/)]. (12) 

Hence the term “first-order loop.” Since n'(t) is a white 
Gaussian process, the instantaneous change in <p repre¬ 
sented by its derivative depends only on the present 
value of <t> and the present value of the noise. Hence, 
0(Z) is a continuous Markov process, and we may use 
random-walk techniques to determine its probability 
distribution. 
A mechanical analog is conducive to understanding 

the mechanism of this “random walk.” Consider the 
pendulum of Fig. 3 which consists of a weightless ball 

Fig. 3—Mechanical analog of the first-order loop. 

attached by an infinitesimally thin weightless rod to a 
fixed point, and let the apparatus lie horizontally on a 
table top which is being randomly agitated. The pen¬ 
dulum is free to turn a full revolution about the point. 
Let the rod be initially at an angle 0 with respect to the 
vertical axis and let an external force (such as a constant 
wind) be exerted on the ball in the vertical direction. 
Let the surface of the table be rough so that it produces 
a frictional force opposing motion of magnitude /0. In 
addition, let the ball be equipped with an internal en¬ 
gine which exerts a constant force F along the axis of 
motion. The random agitation of the table produces a 
force on the ball which may be represented by two com¬ 
ponents which are stationary white Gaussian processes 
of zero means: »i(f) in the vertical direction, and n2(t) 
in the horizontal direction. Then by equating forces 
along the instantaneous axis of motion we obtain 

f<j> + G sin cp = F — n/Z) sin 0 — n2(Z) cos 0. (13) 

If we divide both sides of this equation by/ and let 
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n, sin 0 + «2 cos 0 = n', 

F ¡f = w — Wo, 

G//= AK, 

1// = K, 

we find that (13) is the same as (12). Also, the process 
n'(t) defined here can be shown to be white and Gaus¬ 
sian by the same argument that was used in connection 
with the n'(t) defined by (9) in the previous section. 
Thus the massless pendulum is the mechanical analog 
of a first-order loop with constant received frequency. 

In the absence of the random forces it is clear that 
the pendulum approaches the equilibrium position 

</>o sin-1 (F/G) — sin-1 (w — uf)/(AK), (14) 

at which point the velocity is zero. Because this is a 
first-order system, there can be no overshoot. If F>G 
or (w —wo)>-4Æ, there can be no equilibrium position, 
and the pendulum continues to revolve indefinitely, 
which corresponds to a loop that cannot achieve lock. 
When the random or noise forces are applied as well as 
the constant ones, the motion becomes a random walk, 
but when the noise variance is small, there is a strong 
tendency for the angle 0 to approach and remain about 
this equilibrium position. 
The complete statistical description of the random 

walk of the angle 0 is given by its probability density as 
a function of time, p(<t>, l). Io understand qualitatively 
the behavior of this function, let us assume for the 
moment that the constant force F = 0 and that initially 
(at f = 0) the pendulum is at rest in the vertical position. 
Thus,2 0(0, 0) =ô(0). With the passage of time, the 
effect of the random forces will be felt in the movement 
of the pendulum from the equilibrium position. The 
qualitative behavior of the probability density func¬ 
tion is sketched in Fig. 4. Of course, the condition 

p 00 
I 0(0, /)d0 = 1 
A 

must always be met. After a sufficient amount of time, 
the random forces will push the pendulum around by 
more than half a revolution so that it will tend to return 
to the equilibrium position after a full cycle of rotation 
in either direction. This corresponds to the reference 
signal of the phase-locked loop advancing or retreating 
one cycle relative to the received signal. The average 
time for this occurrence depends on the signal-to-noise 
ratio. Thusafter a sufficiently long period, the probability 
density will appear as a multimodal function, each mode 
being centered about equilibrium positions spaced 2tt 
radians apart, the central mode being the largest with 
each successive maximum progressively smaller. After 
an even longer period equal to several times the aver-

2 In certain standard treatments of the continuous random walk 
problem the probability density function is denoted 0(0. / «o. 0) 
which signifies that we are dealing with the function at time / given 
that </, = </>„ at 1 = 0. We avoid this cumbersome notation by specify¬ 
ing the initial condition on I). 

P^. 'j> 

-6» -4» -2» 0 2r 4r 6» * 

Fig 4—Qualitative behavior ol the probability density function for 
the first-order loop (w = wo)-

age time between revolutions, the central mode of the 
probability density will have diminished, the modes to 
either side will have become almost as large, and moic 
modes of significant magnitude will have appeared. 1 he 
central mode will remain the largest since the pendulum 
may have revolved in either direction with equal 
probability. Finally, in the steady state an arbitrary 
number of revolutions will have occurred. 

In the case for which F is not zero, or equivalently 
then clearly the pendulum will have a greater 

tendency to swing around in the sense corresponding to 
the direction of the force. Hence, the density function 
p(0, t) will not be symmetrical. In either case, we are 
led to realize that the significant parameter, at least in 
the steady state, is the angle (or phase error) 0 modulo 
2tt, since the number of revolutions of the pendulum 
which have occurred does not affect the present state 
of the system. In fact, although 0(0, /) yields a com¬ 
plete description of the statistical behavior, it would 
appear that a combination of the steady-state distribu¬ 
tion of 0 modulo 2tt, and the frequency or average time 
between revolutions would yield a simpler and nearly 
complete representation. In the next two sections 
these parameters will be obtained quantitatively. 

The Steady-State Phase-Error Probability 
Density for the First-Order Loop 

A continuous random walk which is a Markov precess 
is described by the statistical parameters of the incre¬ 
mental change of position as a function cf the present 
position. Thus from (12) we ncte that in the infini¬ 
tesimal increment cf time Si, the phase will change by 
an amount3

p l+AI 

AÓ = I <j>(l)dl = (w - uB)SI - (AK sin 0)âí 

p l+â< 

— K I n'(u)du. 

’ This assumes that «(/) is a continuous process, which is justified 
by physical considerations. 
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Thus, since n'(t) is a white Gaussian process with zero 
mean and 

n'(u)n'(v) = (A7o/2)«(m - v), 

it follows that for a given position 0, A0 is a Gaussian 
variable with mean 

A0 = [(w — w0) — AK sin 0]â/ (15) 

and variance 

as* — (A0)2 — (A0)2

= Á'2(^o/2)â/. (16) 

With the knowledge of the statistical parameters of 
the increment A0, we may proceed to obtain t). It 
was shown by Uhlenbeck and Ornstein [11 ] and Wang 
and I hlenbeck [12] that for a continuous Markov 
process described by a first-order differential equation 
with a white Gaussian input, the instantaneous prob¬ 
ability density p(<f>, t) must satisfy the partial dif¬ 
ferential equation 

i Id2

Z) ] + T ^P^. ') . (17) w 00 2 00-

with the appropriate initial condition, where 

A(<t>) = lim — A0 
Ar—o A/ 

B(0) = lim — (A0)2, 
Ar—o At 

provided 

lim ( — ) (Ã0)7 =0 for n > 2. 
¿1—0 \ At / 

If we take the initial value of 0 to be 0O, we have 

0(0, 0) = ¿(0 - 0O). (19) 

As was pointed out in the previous section, we are 
really interested in 0(0, /), where 0 is taken modulo 
2tt. Therefore, we are tempted to solve (18) in the re¬ 
gion—7r<0<7r with appropriate boundary conditions. 
To do this properly we must first realize that since the 
coefficients of the Fokker-Planck equation in this case 
are periodic in 0, if p(<(>, t) is a solution, then so is 
0(0T2tt n, t) where n is any integer. Let us define the 
function 

00 
^(0, t) = P^ + 2tm, /). 

n——ao 

Since each term of the series is a solution of (18), then 
P(<t>, t) must also satisfy the Fokker-Planck equation 

ÖP(0,O d . 
~ — — l(-4 K sin 0 + a>o — w)P(0, /)] 
ol d<p 

KANo d^^t) 
+ — - -— , (20) 

4 d02

with the initial condition 
oo 

^(0,0) = 52 5(0 — 0o — 2rn). 
n—oo 

Also, P(<t>, t) must be periodic in 0 since for any in¬ 
teger m 

00 
P(<t> + 2*m, <) = 52 0Í0 + 2(m + n), /] 

n-—00 
oo 

= E 0(0 + 2¿r, /) = P(<t>,t). 
4—oo 

Therefore, we may solve (20) over the interval of just 
one period (— 7t<0<7t) with the initial condition 

Eq. (17) is known as the Fokker-Planck equation or 
the diffusion equation because it is a generalization of 
the equation for heat diffusion. From (15) and (1*6) we 
obtain for the first-order loop 

A(0) = (u-ut}~ AK sin 0, 

B(0) = K2Na/2, 

and it may be readily verified (using the property that 
the product of a set of Gaussian variables is the sum of 
products of pairs taken over all pairs of the variables) 
that 

/ 1 \ _ 
hm I — 1ÇA^" = 0 for n > 2. 
Ar-o \ At / 

Thus the Fokker-Planck equation holds for this case, 
and inserting the coefficients into (17) we obtain 

dP r/ ' 1 A2-Vo a20 —• = — I(^^sm0 + a>o - œ)0 H- — . (18)
5/ <70 rj 4 302 

P(0, 0) = ¿(0 - 0O), -ir < 0 < T, (21) 

the boundary condition 

+*(*, l) = P( — t, t) for all t, (22) 

and the normalizing condition 

[ P(<p, t) = d<b= \ for all I. (23) 

Although in principle the linear partial differential 
(20) with the conditions (21), (22), and (23) can be 
solved for P(0, /), the procedure is somewhat compli¬ 
cated by the nonlinear behavior of the variable coef¬ 
ficients, and a closed-form solution cannot be obtained. 
On the other hand, the result of greatest interest is the 
steady-state distribution 

P(0) = lim P(0, t). (24) 
t—♦ 00 

By definition, the steady-state distribution is stationary. 
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Therefore, 

dpM r dp^l) n
- = hm - = 0. 

dt i—*> dt 
(25) 

Thus, in the steady state, the partial differentia! (20) re¬ 
duces to an ordinary differential equation in P(<^). 
Letting 

a = (4¿)/(™ (26) 

and 

ß = [4(w — uo)]/(K2No), (27) 

we obtain 

d T dPM I 
0 = — (a sin <t> — ß)PM H- -— 

d<b L d(b 
(28) 

If we integrate once with respect to </>, we obtain a first-
order linear differential equation which is readily 
solved as4

P(0) = C exp (a cos 0 + ß<P) 

exp — (a cos X + ßx)dx 

(29) 

To evaluate the constants, we must utilize the limiting 
form of the conditions (22) and (23); i.e., 

PM = PMM (30) 

and 

(31) 

Then using (30), we obtain 

exp ( — 2ßr) — 1 
D = - -— 

J* exp — (a cos x + ßx)dx 

(32) 

since 

1 1 
C = - = - • 

CT / u 2tI„M 
I exp (a cos <t>)d<t> 

The parameter a plays a very important role. From (26) 
we have 

„ - IPI - , (34) 
(KNa) [AT0(^Æ/4)] 

But J2 is the received signal power, while AK/4 is an 
important parameter defined for the linearized model of 
the loop. If we replace the sinusoidal nonlinearity in 
the model of Fig. 2 by its gain A about </> = 0, we obtain 
the linearized model. Then the variance of </> is obtained 
by using Parseval’s theorem as: 

1 C' N„ K1/^ 

°* [i + (a2k2/mi du
= = 1 (35) 

A2 a 

The variance of 0 is the same as the noise power at the 
output of an ideal low-pass filter of bandwidth 4K/4 
when the input is white noise of one-sided spectral 
density No. Hence, for the first-order filter, the loop 
bandwidth is defined as 

Bl = AK/4, (36) 

so that (34) becomes 

a = (A^/U^BÙ, (37) 

which is the SNR in the bandwidth of the loop. 
Eq. (33) is plotted in Fig. 5 (p. 1744) for several values 

of a. It resembles a Gaussian distribution when the 
SNR, a, is large and becomes flat as a approaches zero. 
The asymptotic behavior of (33) for large a is of interest. 
Since for large a 

IoM ~ (exP a)/(2ira)' /2 , 

[exp (a cos </>)] [exp [a(cos</> — 1)] 

[2ir/o(a)] (2r/a) 1/2

and by means of (31), the constant C can be evaluated. 
In the special case /3 = 0 (which requires oj = w0; i.e., 
when the frequency of the received signal is determined 
beforehand and the VCO quiescent frequency is tuned 
to this frequency so that the problem consists only of 
acquiring and tracking phase), we note from (32) and 
(27) that Z> = 0 so that 

PM = 
exp (a cos 0) 

2iH o(a) 
(33) 

* The results of (29), (32), and (33) were first obtained by VI. 
Tikhonov |9|. Actually, these are a special case of an expression for 
a random-walk problem with arbitrary nonlinear restoring forces 
derived in A. A. Andronov, L. S. Pontryagin, and A. A. Witt liq. 

Expanding cos </> in a Taylor series, we obtain 

PM 

exp 
— a<j>2 { 2<t>* t 2</>6

2 V 4! + 6! 

— tr < 0 < tr. (38) 

When a is large, PM decays rapidly, so that the func¬ 
tion is very small for all but very small values of d>. 
Thus the higher-order terms of the series representation 
of cos </> have very little effect for moderate values of 
PM- Hence, the graph of PM will appear to be nearly 
Gaussian for large a and, in this case, the results of the 
linear model are quite accurate. 
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The cumulative steady-state probability distribution 

Prob ( I <t> I < 0 P(<k)d<t> 0 < 0! < Jr 

is also of interest since it indicates the percentage of 
time during which the absolute value of the loop phase 
error 0 is less than a given magnitude 0,. This may be 
calculated when w=w0 in the following manner. Ex¬ 
panding P(0) of (33) in a Fourier series, we have 

exp (a cos 0) 
PW = — ~ 

2rr/o(a) 

1 

2?r/o(a) 

oo 

/o(a) + 2 22 A>(a) cos n<t> 
»"I 

Then 

Prob ( I <> I < 0i) = 2 

for 

2 /„(a) sin «01 

ir «-i nLM 

0 < 0i < r and w — üio. (39) 

This series converges so rapidly that (39) could be cal¬ 
culated for several values oi a without the use of a 
large-scale digital computer. The results are shown in 
Fig. 6. 1 he variance of 0 can be similarly obtained: 

a cos 0)00/2jr/o(a) <r«2

I his series converges even more rapidly than that of 
(39). It is plotted in Fig. 7 as a function of l/a. Note 
that as the SNR, a, approaches zero, the variance ap¬ 
proaches tt2/3, which is the variance of a random vari¬ 
able that is uniformly distributed from —tt to +tt. Also 
shown in Fig. 7 is the variance of the phase error as 
determined from the linear model (35). It is evident 
that the linear model for the first-order loop with 
w=Wo and no signal modulation produces results of 
reasonable accuracy (within 20 per cent) for l/a <1/4 
or when the loop SNR, a>4. 

For the general case (w^wo), (29), (31), and (3.2) 
yield the entire distribution. However, analog or digital 
computation is required to evaluate the pertinent in¬ 
tegrals. The case for which (ß/a) = (w—w0)/(.l A') = sin 
(tt/4) is shown in Fig. 8. The constants as well as the 
distribution were obtained by means of the analog 
computer. 

Mean I ime to Loss of Lock and Frequency 
of Skipping Cycles 

Since we have obtained only solutions for steady¬ 
state probabilities, a valuable statistic is the expected 
time required for the absolute value of the phase error to 
exceed some value 0, when it is initially zero. When this 
occurs the loop will be said to have lost lock. Of par¬ 
ticular interest is the case for which 0z = 27t, which 
represents a loss or gain of a complete cycle, or for the 
mechanical analog, a complete revolution of the 
pendulum. 

In the framework of the mechanical analog of the 
first-order loop, we may represent the out-of-lock 
boundaries by two knife edges at angles +0; and — 0, 
relative to the vertical (Fig. 9). The pendulum is 
initially at an angle 0O relative to the vertical when the 
random external forces are applied. The first time 
that the angle reaches + 0( the knife edges cut the rod 
and the process terminates. 

I his so-called first-passage time problem for Markov 
processes has been treated extensively in the litera¬ 
ture [13] [15]. It is possible to determine not only the 
first moment but all moments and even the distribution 
of the first-passage time for a Markov process described 
by a first-order differential equation with a white 
Gaussian driving function. However, computational 
difficulties render the form of the solution rather com¬ 
plex in all but the simplest cases. We shall employ a 
somewhat different method than previously used to 
obtain a simple expression for the expected time to the 
first occurrence of loss of lock. Closely related to the 
mean time to loss of lock is the frequency of skipping 
cycles, for the mechanical analog, this is the inverse 
of the expected time for the pendulum to swing a com¬ 
plete revolution in either direction. For the phase-
locked loop, this represents the frequency of occurrence 
ol the event that the loop VCO gains or drops a cycle 
relative to the received signal. In either case this corre¬ 
sponds to letting 0i = 2tr in the determination of ex¬ 
pected time. This is a very important parameter for 
tracking applications in which the phase-locked loop 
is used to measure the received Doppler frequency 
which is then integrated to determine relative range. 
An error of a full cycle will cause a significant error in 
the result. 
We treat only the case of the first-order loop for 

which the VCO quiescent frequency is tuned to the 
received frequency (oit>=ai) so that the equilibrium 
position is at 0 = 0. This is also a good approximation to 
the steady-state behavior of the second-order loop with 
any value of oi—oio, but with very small integrator 
gain a, as will be discussed in a later section. For the 
first-order loop, when the same approach can be 
used, measuring phase error from the equilibrium posi¬ 
tion rather than from zero, but the results are in the 
form of integrals which require numerical calculation. 

Let us assume that the loop is initially in lock so that 
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Fig. 5—First-order loop steady-state probability 
densities for w = wo. 

Fig. 6—Steady-state cumulative probability distributions of 
first-order loop for w = <ao. 

Fig. 7—Variance of phase-error for first-order 
loop where u = wo. 

Fig. 8—First-order loop steady-state probability densities 
for (w— wo)/AK=sin (t/4). 

Fig. 9—Mechanical analog of first-passage lime 
problem for first-order loop. 
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0o = O. As long as the loop phase error (or the pendulum 
angle) remains within the limits | 0| <0(, the probabil¬ 
ity density of 0, which we denote here by g(0, /), is de¬ 
scribed in the same manner as before by the Fokker-
Planck equation 

dq d N0K2
— = — (.4 A' sin 0o) H-
dt d<t> 4 

d2q 

302
(41) 

with the initial condition 

when 

?(0, 0) = ¿(0) for I 0 I < 0,, 

CD — CÜQ. 

We have denoted the probability density function of 
the phase error by ç(0, /) to distinguish it from the 
corresponding function 0(0, /) for the previous case 
without boundaries. As soon as 10| reaches 0¡ for the 
first time, the pendulum is removed from action so that 

ç(0, /) = 0 for all I 01 > 0(. (42) 

Thus, in addition to the initial condition we have the 
boundary condition 

?(0i, 0 = ?( —0z, t) = 0 for all I. (43) 

Solution of (41) over the interval —0(<0<0( with 
the boundary conditions of (43) would yield the prob¬ 
ability density ç(0, t). Its integral over the interval 

W  = I ?(0, t)d<l> (44) 

gives the probability that 0 has not yet reached 0( at 
time t. Note that as a consequence of (42) the limits on 
the integral of (44) could just as well be infinite. In fact, 

I ?(</>, l)d<b = 0(/) < 1, 

and this points out the fundamental difference between 
ç(0, t) and />(0, t) of the previous section for which 

1 for all /. 

In other words, ç(0, t) is not strictly a probability den¬ 
sity function. In order to render it such we would have 
to normalize it by the probability that |0| has never 
exceeded 0( by the time t[i.e., /(I) ]. 

0(/) must be a monotonically nonincreasing function 
of t, and from its definition it follows that the probabil¬ 
ity density function of the time required for 0 to reach 
0z for the first time is - [50(/)/a/]. Thus the expected 
time to reach the out-of-lock position 0, is 

Ô0(Z) 
- t- dt = 

dt 
~ [^(O]o + I P^dt. 

0 
(45) 

If the nonincreasing function 0(/) approaches zero 
faster than 0(1//), the first term on the right side of (45) 
is zero. This must be the case, for otherwise the integral 
of the second term would not exist. Then using (44) 
we obtain the expression for the expected time 

/» • p <PI I q(<b, t)d<t>dt. 
0 J -il 

(46) 

Now if we integrate both sides of (41) with respect to t 
over the infinite interval, we obtain 

?(0, 00 ) — ?(0, 0) 

a . , N„K2 VQW 
= — [4 A sin 0Ç(0)] +- (47) 

Ó0 4 d</>2

where 

QW = I q(d>, t)dt. 
0 

Clearly qiyp, oo) =0, and since 0 is assumed initially at 
zero, q(<f>, 0) = 5(0) . Therefore, we have 

a . , N0K2 d2QW 
— = —- [.4 A sin 0(7(0)] -I- — , (48) 

d<t> 4 ö</>2

with the boundary conditions 

/» 00 
ç(0í, l)dl = 0 

0 

/» oo q(-<bh t)dt = 0, (49) 
o 

which follow from (43). The solution of (48) may then 
be integrated with respect to 0 over the interval 
[—0i,0(] to obtain T, the expected time of (46). Taking 
the indefinite integral of both sides of (48), we obtain 

AoA2 dQ(¿) 
C — = A A sin 0Q(0) -|- - , (50) 

4 50 

where «(0) is the unit step function and C is a constant 
to be evaluated from the boundary conditions. The 
solution to the first-order differential equation is 

= D exp (a cos 0) 

C * exp ( — a cos x) , 
+ exp (a cos 0) I - [C - m(x)]<Zx, (51) 

7 

where 

.4 2

AoMA/4) 

and 

NoK2 AK ABl
y = - = - = - . 

4 a a 

338 



1746 PROCEEDINGS OF THE IEEE December 

Application of the boundary conditions of (49) yields 
the values of the constants as D = 0 and C=l/2. Ihus, 

QW = 
exp (a cos </>) 

exp ( — acosx)[| — u(x)]dx. (52) 

Integrating with respect to </> over the interval [— <bi, 
], we obtain the expression for the mean time to lose 

lock : 

r o¡ 1 r oi 
T = I = — I d<¡> 

J oi yJ -o. 

exp a(cos </> — cos x)[| — u(x)]dx 

exp a(cos $ — cos x)dxd<t>. (53) 

The domain of integration is the right isosceles triangle 
shown in Fig. 10. We can obtain a series representation 
of this double integral by expanding the integrands in 
Fourier series: 

00 

exp(acos</>) = I «(a) + 2 22 Zm(a) cos m<t> 
m— 1 

00 

exp ( — a cos x) = Z»(a) + 2 22 (— l)"Z„(a) cos nx - (54) 
n—1 

Then 

’Z02(a) + 4Z0(a) 22 (- l)nZ„(a) cos »</> 
n-2.4.« • • • 

oo oc 

4- 4EE —(l)"Z„(a)Z„(a) cos m<t> cos nx 
m—1n— 1 

d<t>dx 

- F 4Zo(a) I , —- Sin 2„4>¡ 
2” 

+ 4 ¿ 22 (-l)"Zm(a)Z„(a) 
m«=l n— 1 

cos m<t> cos nxdxd<b (55) 

where 

cos m<f> cos nxdxd<t> 

r 1 1 
cos (n — 

= 
4 cos 

nm (n — m)n 

_ nm n(n — m) . 

1 

cos m<t>i \ 
- I when n = m. ««2 / tn / 

when n = m 

(56) 

This expression may be computed without the aid of a 
large-scale digital computer because the sequence 

Fig. 10—Domain of integral T. 

I „(a), and consequently the above series, converges 
quite rapidly. 

However, the most important result which we seek 
can be* obtained in closed form. This is the frequency of 
skipping cycles, or, in other words, the inverse of the 
expected time between skipping cycles, which is 
T(d>i — 2tt). It is clear from (55) and (56) that when 
01 = 2^, 

2ir2
T(hr} = - I^a) = 

y 

where we have used 

N0K2 AK 

so that 

frequency of skipping cycles = (2Bi)/?r2aZo2(<x). (58) 

This parameter normalized by Bl is shown as a function 
of a in Fig. 11. 

For large SNR, a, 

I<M ~ (e“)/(2tra) 1/2 , 

so that for large a, 

frequency of slipping cycles ~ [(4BL)/7r]e-2“. (59) 

Another parameter which is equally significant is the 
frequency of dropping or advancing half cycles (</>; = ir). 
In the mechanical analog this corresponds to the pen¬ 
dulum arriving at the unstable equilibrium position 
and returning to the stable equilibrium position, either 
by the same route or by going around the full revolution. 
It is nearly intuitive that for a Markov process the 
frequency of this event is exactly double the frequency 
of skipping cycles. However, to show this rigorously, 
we note that the expected time for the pendulum to go 
from the equilibrium position 0 = 0 to </> = tt and to re¬ 
turn is T(*) + T'(ir), where T(ir) is the expected time 
to go from 0 to ±tt, and is the expected time to go 
from 7T to either 0 or hr. T(ir) is given by (55) with 
0¡ = 7r, while we can show that 

7r2aZo2(a) 

~2B~ 

4Bl 

a 
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Fig. 11—Frequency of skipping cycles normalized by loop 
bandwidth for first-order loop where w = w0. 

1 r *z r * 
T'(*) = — I I exp a(cos 0 — cos x)dxd<t>. 

7 *7 o 3 0

The integrand is the same as that for T(ir), but the 
domain of integration is its complement with respect to 
the square of side tr (Fig. 12). Therefore, 

+ T'M = — I I exp a(cos 0 — cos x)dxd<j> 
7 3 o 3 o 

and 
= (tr2/7)/o2(a) = [T(2t)/2], (60) 

frequency of slipping half cycles = (TB^/paZo2̂ )]. (61) 

The Fokker-Planck Equation for 
Higher-Order Loops 

Consider the phase-locked loop whose filter has the 
rational transfer function 

F(s) = G(s)/H(s), 

where G(s~) and H(s) are polynomials such that C7(0) = 1, 
F/(0)=0 and 

deg G(s) < deg II (s) = n — 1. 

Then 

n— I 

G(s) = 22 a*í4 ; a« 0 

n — 1 

= E b„-t 0. (62) 
A— 1 

This will be referred to as an nth-order loop. In this 

Fig. 12—Domains of integration for T(t) and I" (jr). 

case, (11) which describes the operation of the loop 
becomes 

sll(s)<t> = — KG(s)(A sin 0 + n'), (63) 

since 

dk
sk(w — wo) = — (w — wo) = 0 for k > 1. 

dt 

The reason for the pole at the origin of F(s) is now 
clear. It eliminates the constant (w—w0) which causes 
the steady-state phase error in the first-order loop. Now 
let us define the random variable e by the relation5

0 = G(s)e. (64) 

Inserting this in (63), we obtain 

sH(s)e = — Æ(4 sin 0 + n'), (65) 

which is an nth-order differential equation. Now let us 
define the n random variables xu, xb ■ • • , x„_i as 

dkt 
xk = - (k = 0, 1, ■ ■ • , n - 1.) 

dtk
(66) 

Inserting these for the derivatives of t in (65) and using 
(62), we obtain 

n-2 

ôn_ií„_i + 22 = — P(A sin 0 + n'). 
t-i 

Also, we have 

d dk~'t 
X* 

dt dtkk
Xk-l, 

so that we may express the derivatives x* in terms of the 
variables xk by the n differential equations 

V? bk K(Asm4>+n') 
i — 2^i ^+1 - - -

¿■■I bn+i bn— i 

%n— 2 %n— 1 

x0 = Xi (67) 

6 This substitution which leads to the representation of </> as 
sum of the components of a Markov vector (67) was suggested by 
J. N. Franklin. 
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It follows also from (62), (64), and (66) that 

0 = 22 â k- (68) 
i-0 

The random vector (x», • • ■ , x„_i) is a Markov vector 
since an incremental change depends only on the pres¬ 
ent state of the vector. 
Wang and Uhlenbeck [12] have shown that for a 

vector Markov process, x=(xo, Xi, • • • , xn-i), the 
Fokker-Planck equation is 

— = - E [^)>W] 
dt k-o oxk

1 n— 1 n— 1 ^2 

+ — 52 52 • [b*i(x)/>(x)1, 
2 t-o i—o dXkdxi 

where 

1 
zlt(x) = lim — (Ax*), 

ai~o A/ 

and 

Bki(x) = lim — (xk)(xi) (69) 
a,-o A 

with the initial condition 

n—1 

P(x, 0) = 11 b(xk — Xk.o). 
k-0 

In our case, 

AkW = xk+i for k = 0, 1, • • • , n — 2 

/in—l(x) = 
bk KA . 

- > . —— xt+i - -— Sln 
Jt— 1 bn-l 0n-l 

\ K2 C C _ 
B»-i,.-i(x) = lim — — - I I n'Mn'^dudt 

A<-H> A/ ( J I 

_ K2̂  

b„-t2

Bkj(x) = 0 for all k # n - 1 and I # n - 1. 

Thus, the Fokker-Planck equation for the nth-order 
loop is 

dp(x,l) bp(x, t) 1 b 
—- • = “ 2- **+• ——- r T~ “-dt k^o dXk bn_\ dxn—\ 

X (s bkXk+l + KA sin <f> ) P(x, I) 
K*N0 d2p(x, t) 

4&„-i2 dXn-12
(70) 

where 

Solution of this general case does not appear possible. 
However, in the next section some results are obtained 
for the second-order loop. 

Steady-State Probability Distribution 
for the Second-Order Loop 

The loop filter of greatest interest6 is 

F(s) = 1 + (a/s) = (s + a)/(s), 

which requires a single integrator with gain a. In terms 
of the parameters of (62), n = 2, a0 = a, al=l, b\ = \. 
Substituting these parameters in (67) and (70), we ob¬ 
tain the differential equations for the random variables 

Xi = — A'[(-4 sin <t> + n'], (71a) 

Xo = xb (71b) 

and the Fokker- Planck equation 

dt 

dp b . K2No d2p 
- X, - 1- [(/I K sin «)/>] + —— — ’ (72) 

dx0 dxi 4 dxi2

where 

</> = ax„ + Xi. (73) 

If we restrict our attention to the steady-state prob¬ 
ability distribution 

p(xQ, Xi) = lim p(x0, xb t). 

Since 

lim — (xo, xb /) = 0, 
t—• « dl 

we obtain 

dp d , K2.\ o 
Xi - = AK -  [(sin <t>)p] 4- -— 

dxo dxi 4 

d2p 

dxi2

With the substitution 

z = axo, (74) 

we obtain an equation in />(</>, z) (note that the Jacobian 
of the transformation isa), 

. J bp dp\ 
a(d> — z) I- F -— I 

\ d<t> bz) 

d K2No b2p 
AK — (sin <t>p) 4- ;■ (75) 

d<t> 4 d<t>2

Even this partial differential equation cannot be solved 
directly. However, since we are interested only in the 
density function of 0, 

P(<t>) = I i)dz. 

we may integrate both sides of (75) with respect to z 

n— 1 
</> = 52 â-

k-0 

6 Tikhonov |9|, considered the RC low-pass filter whose transfer 
function is l/(s+6). Its value is limited, however, since it does not 
reduce the mean phase-error to zero, as the perfect integrator does. 
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over the infinite line and obtain an ordinary differential 
equation in 0(0) 

a 
£(00) 
dp 

d . K2̂  d2p 
— AK —■ (sin pp) -J- - • (76) 

dtp 4 dp2

But 
cc p 00 J zp(p, z)dz = p(p) J zp(z\ p)dz = 0(0)£(z| 0), 

so that (76) becomes 

„ d ir . , . , , K2N0 dp} 
0 — — < [AK sin P — ap 4* a£(z | 0)]0 4- — > . (77) 

dp ( 4 dp) 

Unfortunately, it is not possible to determine exactly 
E(z\p), which is a function of 0, without knowing 
P(z, 0), which would require solution of (75). However, 
its general form can be obtained as follows: from (73) 
and (74) we have z = p — xb so that 

£[«(/) I 0(z)] = £[«(/) - X1 (Z) I 0(/)] 

= 0(7) - £[X1(7) I 0(/)]. (78) 

Integrating (71a) using (74), we have 

x>(®) - Xl (7) = 
00 

sin p(£)d£ 

(79) 

The expectation of the second term on the right side of 
(79) is zero, since n'(t) =0 for all t. Also, 

£[*i(“) ! 0(7)] = £[*i( «)] = 0, 

since it is clear that the mean of the process is zero. 
Therefore, 

/• oo 

I 0(/)] = I £[sin 0(0 I 0(/)]</i. (80) 

Combining (77), (78), and (80), and letting £ = t+r, 
we obtain 

d l 4A 
0 = -J -

dp I KN0
sin 0 — a £[sin0(Z 4- r) I 0(Z)]<7r ] 0(0) 

4-
dÿ 

(81) 

At this point we are dealing with the random phase 
process 0. We may once again deal with 0 modulo 2tt, 
or equivalently define the function 

00 

PM = 22 0(0 + 2rw) 
n— oo 

as we did for the first-order loop. Since the coefficients 
of (81) are periodic in 0, if 0(0) is a solution then so is 

p(p + 2irn) for all integers n, and hence so is P(p). Thus 
we may replace p(tp) in (81) by P(0). The magnitude of 
the expectation is always less than one, and becomes 
negligible for values of r several times the inverse 
bandwidth of the spectrum of p(t). This bandwidth is 
proportional to A K, as we found for the first-order loop. 
Therefore, the order of magnitude of the integral is 
inversely proportional to AK, and if a«AK, the second 
term in the coefficient of P(0) is much smaller than the 
first. Neglecting this second term reduces (81) to the 
steady-state Fokker- Planck equation for the first-order 
loop (28) with o>=a>o, whose solution is (33). Thus when 
the second integrator gain a«AÂ', 

eXP C0S1 W — -
2jr/o(a) 

— X < 0 < 7T. (82) 

On the other hand, for any value of a, when the SNR 
is large enough, 0(7) will be small for all time, so that 
sin 0(/)~0(Z) and both p(t) and sin 0(Z) will be nearly 
Gaussian processes. In this case, the expectation can 
be approximated by 

’ « P « 
£[sin 0(7 4- r) I 0(Z)]dr ~ I £[0(Z 4- r) | 0(Z)]</r 

o J o 

0 

't sin 0, (83) 

where p^(r) is the normalized autocorrelation function 
of the stationary process 0(Z). The integral can be ob¬ 
tained by using Parseval’s theorem: 

»00 I Z» OC 

^(r)0Z = —- I R^dr = 
0 2a2J 

5.(0) 

2a2

where R.(r) is the unnormalized autocorrelation func¬ 
tion, a2 the variance of 0, and 5.(w) the spectral den¬ 
sity. Since we have approximated sin 0 by 0, we may 
use the linearized version of Fig. 2 with the loop filter 
F(s) = 1 4- (a/s) inserted. Then 

S^M = 
N<¡K2 s 4- a 

2 j2 4- 4 As 4- aA K 

so that 5.(0) = (N„)/(2A2). 

1 R “ 

^ = — I $iMdw 
LIT J -

No , 
- (AK 4- a) 
4A 2

and 

) 

PtMdr \/(AK 4- a). 

Inserting this integral in (83) and substituting in (81) 
with 0(0) replaced by P(p), we obtain 
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whose solution with the boundary conditions of (30) 
and (31) is 

PW 
exp (a' cos 0) 

2irl o(a') 
for large a' (84) 

where the effective SX R, a', is given by 

a' = (32)/[‘Vo(3K + u)/(4)]. 

If we let R L = (3 K +«) 4, this is the same expression as 
that for the first-order loop with «=«0. As would be 
expected, this expression for loop bandwidth for the 
second-order loop is that obtained from the linear model 
of the loop. 

tern. However, we may proceed to express m(t) in terms 
of an auxiliary white process, which will allow us to 
treat the problem in terms of a two-dimensional 
Markov process whose components are </>(/) and m(t). 
A stationary Gaussian process whose spectrum is 

given by (87) has the same statistics as the output of a 
first-order linear system (such as an RG low-pass 
filter) excited by white Gaussian noise. That is, we may 
represent m(t) in terms of the white Gaussian process 
t](1) of zero mean and of one-sided spectral density Mo, 
by the operational equation 

1 
mO) = — — iW, 

s + ß 

Random Modulation or equivalently by the differential equation 

Thus far we have considered only sinusoidal signals 
of constant frequency and phase. However, the exact 
method may be applied to signals with random fre¬ 
quency or phase modulation, provided the modulating 
process is stationary and Gaussian. We shall now derive 
the Fokker- Planck equation for a first-order loop and a 
specific random modulation, which will demonstrate the 
procedure in general. 
The differential equation of operation for a first-order 

loop with arbitrary modulation is given by (10) as 

0(/) = ®i(f) — A [.l sin </>(/) + «'(/)]• (1 () ) 

We shall assume that the VCO quiescent frequency is 
equal to the carrier frequency (o)=o) ll), and that the 
carrier signal is frequency modulated by the stationary 
Gaussian process m(t) with a modulation index 

rad/sec 
Kf-

volt 

Then 

= Krmd), (85) 

and (10) becomes 

</>(/) = — AK sin </>(/) — Kn'O) + KFmO)- (86) 

Xote that the modulation is an additional term in the 
driving function of the differential equation. Specif¬ 
ically we shall consider a Gaussian modulating signal 
whose spectrum7 is 

SM = 
Mo/2 

o>2 + ß2
(87) 

With this driving function </>(/) as given by (86) is no 
longer a Markov process, since the present value of 
m (j) is correlated with the past and consequently </>(/) 
is no longer independent of the past states of the sys-

’ A Gaussian process with this spectrum is necessarily a Markov 
process which may be generated by driving a first-order linear sys¬ 
tem with white Gaussian noise; cf., Wang and Lhlenbeck |12|. 

m(f} = — ßmO} + n(0- (88) 

We may now’ treat the two first-order differential equa¬ 
tions (86) and (88) as the defining equations for the 
two-dimensional Markov process [</>(/), m(l)] with 
white Gaussian driving functions n'(t) and ?;(/). I hus 
we may determine the Fokker-Planck equation for the 
two-dimensional probability density function in </> and 
m, p{<p, m, t), by evaluating the normalized moment 
coefficients of (69) and inserting these in the Fokker-
Planck equation in the same way as was done for 
higher-order loops. The result is 

dp ar ^No dp~ 
— = — (AK sin <p — Krm)p 4- ■ 
dt dtp L 4 dtp J 

d T K2Mo 
d- ßmp -I- -— 

dm L 4 

a/> ‘ 
dm . 

(89) 

The method used to derive (89) is easily generalized 
to the case of an nth-order loop with a received signal 
frequency modulated by a random Gaussian process 
with a rational spectrum, whose denominator poly¬ 
nominal is of degree 2k, and whose numerator poly¬ 
nominal is of lower degree. I he result in the general case 
is a Fokker-Planck equation for an n 4- ¿-dimension 
vector Markov process. The difficulty lies only in the 
solution of the partial differential equation. Even (89) 
which represents the simplest case (n = k = \) appears 
formidable. For the steady-state or stationary case in 
which the time derivative is set equal to zero, we have a 
problem of the same magnitude as for the second-order 
loop without modulation, for which we could obtain 
only approximate results. 

Other Error Functions 

While the majority of closed-loop tracking systems 
employ sinusoidal carriers and reference oscillators, oc¬ 
casionally for low frequencies and specific applications, 
square wave carriers are employed. In such cases the 
VCO is replaced by a multivibrator which, when the 
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loop is locked, generates a square wave which is dis¬ 
placed by exactly a quarter period relative to the re¬ 
ceived signal. If the received signal power is A2, the 
amplitude of the square wave must be A. Let the ref¬ 
erence square wave be of amplitude K3 and let all the 
other components and parameters of the loop be the 
same as for the sinusoidal case (Fig. 1). Then by taking 
the Fourier series expansion of the square waves and 
reproducing the analysis for sinusoidal loops, we find 
that the equation of operation becomes 

¿0 = - KFÇs)[AhW + n'W], (90) 

where n'(t) has the same statistics as for sinusoidal loops 
and h(<t>) is the triangular wave, one period of which is 
shown in Fig. 13. Thus the model of Fig. 2 describes this 
case when the sinusoidal nonlinearity is replaced by 
the function http). 

Fig. 13—Triangular error function. 

Another system which has received much attention 
in a variety of applications including radar ranging is a 
tracking device often referred to as the delay-lock 
loop [16 ]— [18 ]. In one version of this device [18] the 
received signal alternates between +/1 volts and —A 
volts according to a binary code with a switching in¬ 
terval corresponding to the half period of the square 
wave in the above-mentioned case. The code is gen¬ 
erated by a maximum-length linear shift register at the 
transmitter. The VCO in the receiver tracking loop 
consists of an identical shift register whose switching 
period is controlled by the loop filter output. The ref¬ 
erence signal is derived by delaying the VCO-coder out¬ 
put by exactly two switching intervals and subtracting 
it from the undelayed coder output. The result of multi¬ 
plying this by the received signal is an error function 
identical to Fig. 13 over the interval — 7t<0<7t and 
zero elsewhere [18], However, the noise density is 
doubled by this procedure [so that the one-sided spec¬ 
tral density of n'(t) is 2N0 in this case] and some self¬ 
noise is introduced into the system by the randomness 
of the code. However, the self-noise is negligible if the 
ratio TVo/zl 2 is very large compared to the switching 
period [18 ]. We shall take this to be the case in the anal¬ 
ysis which follows. 
The various results obtained for sinusoidal loops can 

be generalized to arbitrary error functions ¿(0) which 
are odd functions of 0, of which the cases just mentioned 
are particular examples. We shall consider only the re¬ 

sults for the first-order loop. The steady-state prob¬ 
ability density for a nonlinearity which is a periodic 
odd function of <j> can be obtained by the same method 
as was used for the sinusoidal case [cf. (33)], and is 

P(<t>) = C exp [ — ag(0)] — 0 < tt, 

where 

g(0) = J* h{x)dx, (91) 

and 

1 
C =- -- , 

J* exp [ —ag(0)]¿0 

provided the timing periods of the received signal and 
the reference oscillator are initially synchronized. 
The mean time to loss of lock has particular signif¬ 

icance for the case of the coded signals of the delay¬ 
lock loop just discussed. For, assuming that the loop 
is initially in lock, if the phase error ever exceeds +tr, 
there will be no deterministic restoring force tending to 
restore lock. We can show by an obvious generalization 
of the previous results that for an arbitrary odd error 
function (which need not be periodic), the mean time 
to loss of lock when the loop is initially in lock (</>0 = 0) 
is given by the expression [cf. (53) ] 

T{<t>) =— I I exp (-a)[g(<p) - g(x)]dxd<p, (92) 
T o J * 

where 

A2 4Bl
7 =- > BL= AK/4, 

N qBl a 

and 

«w = y ĥ dx-

For the delay-lock tracking loop, we find by integrat¬ 
ing the error function of Fig. 13 over a half period, that 

We are most interested in the case <bi = ir. However, the 
case 0/ = tt/2 is also worth consideration since it repre¬ 
sents the mean time required for the loop to pass beyond 
the central linear region when initially 0 = 0. The tri¬ 
angular domain of integration may be divided into 
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three regions (Fig. 14) according to the regions of 
definition of g(<£) (93). Then referring to (93) and 
Eig. 14, we obtain from (92), 

TM = A + B + C, (94) 

where 

By making the proper changes of variables we can 
show that 

which isa tabulated integral, and 

(96) 

as can be shown by expanding the integrand in Taylor 
series. From (94), (95), and (96) we obtain the mean 
times 7'(tt) and T(ir/2) multiplied by Bl whose in¬ 
verses are shown in Fig. 15. Similar results can be ob¬ 
tained for any odd error function by evaluating (92) 
for the proper g(0). 

Concussions and Comparisons 

This paper has dealt with the exact analysis of the 
nonlinear device described by the model of Fig. 2 or 
the nonlinear differential equation (10). 1 he principal 
results, which can be generalized to any odd error 
function, have been: 

1) The stationary (steady-state) probability density 
function, distribution, and variance for the first-
order loop. 

2) The expected time to loss of lock and frequency 
of skipping cycles for the first-order loop (this is 
particularly useful for constant-velocity Doppler 
tracking applications). 

3) Approximate expressions for the stationary prob¬ 
ability density of the second-order loop. 

4) The partial differential (Fokker-Planck) equation 
for the probability density for higher-order loops, 

* 

Fig. 14.—Domains of integrals of (94). 

Fig. 15—Inverse-mean times to loss of lock and to first-passage from 
linear region (normalized by loop bandwidth). 

including the case in which the signal is frequency 
modulated by a stationary Gaussian process. 

The limitations of the method become evident when 
we attempt to solve the partial differential equation 
for the higher-order cases. Although the equations are 
linear in the probability densities, since the coefficients 
are nonlinear functions of the dependent variables, no 
exact solution seems possible. Thus for the higher-order 
cases and particularly for modulated signals, we must 
rely on the approximate models mentioned in the first 
section of this paper which lend themselves to more 
direct methods. However, our exact results for the 
first-order loop are quite useful in determining the 
validity threshold of a particular model, which we 
shall define loosely as the value of SNR below which the 
model no longer yields useful results. 
The most obvious parameter to consider for this com¬ 

parison is the variance of the first-order loop. We have 
already seen (Fig. 7) that for the linear model (wherein 
sin 0 is replaced by 0), the variance as determined from 
the model underestimates the actual variance by more 
than 20 per cent when the SNR a is less than 4 (or 6 
db), so that a=A may be taken as the validity thresh-
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Fig. 16—Comparison of variance for first-order loop with 
results of approximate models. 

old of the linear model. The variance for the exact 
model and the linear model are reproduced in Fig. 16 
together with the variance obtained by using the models 
of Van Trees [8 ] and Develet [2 ]. Van Trees has shown 
that for the first-order loop the variance of the phase 
error can be written as a power series in 1/a. By cal¬ 
culating the first five terms of the Volterra functional 
expansion, Van Trees [8] found that the first three 
terms of the power series are 

1 13 
a2 = 1/a + — (1/a)2 + — (1 a) 3 ■ • • 

2 24 
(Van Trees). 

This is shown in Fig. 16. Using the quasi-linearization 
technique Develet |2| replaced the sinusoidal non¬ 
linearity by its average gain under the assumption that 
the input distribution is approximately Gaussian. Since 
the gain of a sinusoidal nonlinearity for an input value 
x is A cos X, the average gain when the input is Gaussian 
of zero mean and variance a- is 

4 cos x exp .1 exp (-
X 2 

Replacing the nonlinear element of Fig. 2 by this gain, 
we obtain by the usual linear analysis the variance of 
the phase error for the first-order loop: 

a2 = (1/a) exp (<r2/2) (Develet). 

The solution of this transcendental equation yields the 
value of the variance shown in Fig. 16. The maximum 
of a2 exp ( —a2/2) is 2/e so that there can be no solution 
for a<e/2, which means that the validity threshold of 
this model can be no lower than this value. 
From Fig. 16 we note that the error in the Develet 

model is less than 10 per cent for 1/a <0.65 or a> 1.54, 

while the Van Trees approximation involving the first 
five Volterra kernels yields results of this accuracy for 
1/a <0.80 or a>1.25. Of course, with sufficient effort 
one can compute arbitrarily many terms of the Volterra 
series and consequently obtain arbitrarily many terms 
of the power series expansion of a2 thus extending the 
validity threshold of the model as far as may be de¬ 
sired. However, for higher-order loops, Van Trees’ 
method becomes exceedingly complex and tedious, 
while Develet’s method remains simple for all loop 
filters and even for modulated signals. In fact, using 
this method he has obtained fairly general results on 
the threshold of the phase-locked loop as a frequency 
modulation discriminator [2 ]. 
While we have certainly not exhausted the realm of 

application of closed-loop tracking devices, the results 
of this paper may serve as a guide for the analysis of a 
large class of such systems. 
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Formulas are derived for probability of error in the detection of binary 
FM signals received from a channel characterized by arbitrary amplitude-
and phase-vs-frequency distortion as well as additive Gaussian noise. The 
results depend on the signal sequence and can be presented in terms of aver¬ 
ages over all signal sequences or as bounds for the most and least vulnerable 
ones. Illustrative examples evaluated include Sunde’s method of suppressing 
intersymbol interference in band-limited FM. The effects of various repre¬ 
sentative channel filters are also analyzed. A solution is given for the problem 
of optimizing the receiving bandpass filter to minimize error probability at 
constant transmitted signal power. It is found that a performance from 3 to 
4 db poorer than that theoretically attainable from binary PM is realizable 
over a variety of filtering situations. 

I. INTRODUCTION 

This paper undertakes to refine and extend the state of knowledge 
concerning performance of FM systems for binary data transmission 
over real-life channels. The particular aim is application to facilities such 
as exist in the telephone plant. Efficient use of the available channels 
constrains the bandwidth allowed for a given signaling speed. The 
luxury of a bandwidth sufficient to permit frequency transitions without 
amplitude variations and without dependence of present waveform on 
past signal history would in general imply an unjustifiably low informa¬ 
tion rate for the frequency range occupied. We therefore concentrate 
our attention on the band-limited channel with its inherent distortion 
of the FM data wave. 
We assume a linear time-invariant transmission medium specified by 

its amplitude- and phase-vs-frequency functions and the statistics of 
its additive noise sources. The limiting noise environment in the tele¬ 
phone plant is typically nongaussian and not well defined even in a 
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statistical sense. Nevertheless, with the usual apology, we shall perform 
our analysis in terms of additive Gaussian noise. Justification of the 
relevancy is based on the following considerations : 

(a) Laboratory tests on data transmission systems are made at present 
by adding Gaussian noise and counting errors. Good performance in 
terms of low error rate as a function of signal-to-noise ratio under such 
test conditions is found to be indicative of good performance on actual 
channels. 

(b) Identification and removal of nongaussian disturbances is a 
feasible and continuing process which should eventually lead to a more 
nearly Gaussian description of the residue. 
Our measure of performance is expressed in terms of error probability 

vs the ratio of average transmitted signal power to average Gaussian 
noise power. In most of the work we assume white Gaussian noise is 
added at the receiver input. A convenient reference is then the average 
noise power in a band of frequencies having width equal to the trans¬ 
mitted information rate in bits per second. 

II. STATEMENT OF PROBLEM 

A block diagram of the transmission system under study is shown in 
Fig. 1. The data source emits a sequence of binary symbols which for 
full information rate are independent of each other and have equal 
probability. The analysis can be generalized without analytical incon¬ 
venience to assign a probability wii to one of the two binary symbols 
and 1 — mi to the other. In conventional binary notation the symbols 
are 1 and 0. It is convenient to express binary frequency modulation of 

TRANSMITTER 

Fig. 1 — Binary FM transmission system. 
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an oscillator in terms of positive and negative frequency deviations. 
The combination of data source and low-pass filter is accordingly defined 
by the shaped baseband data wave train 

s(Z) = X b„g(t - nT) n^—x (1) 

where 

bn — 1 ■ (2) 

The values of a„ represent the data sequence in binary notation. The 
probability is mi that the typical an is unity, and 1 — mi that it is zero. 
The value of b„ is +1 if an is unity, and —1 if a„ is zero. The function 
g(t) represents a standard pulse emitted by the low-pass filter for a 
signal element centered at Z = 0. 

Ideally, the oscillator frequency follows the baseband signal wave 
s(Z). This would imply an output voltage from the FM oscillator 
specified by 

j sM dX I (Z) — A cos wcZ 4- + ju (3) 

Here, A is the carrier amplitude, is the frequency of the oscillator with 
no modulating signal applied, Zo is an arbitrary reference time, 60 is the 
phase at Z = Zo, and g is a conversion factor relating frequency dis¬ 
placement to baseband signal voltage. The instantaneous frequency of 
the wave (3) is defined as the derivative of the argument of the cosine 
function. It can be written in the form œc + o?, , where w, , the deviation 
from midband, is ideally expressed by 

a;,- = fisW- (4) 

In the practical case, the transmitting bandpass filter restricts the 
frequency-modulated wave to the range of frequencies passed by the 
channel. The purpose of this filter is to prevent both waste of trans¬ 
mitted power in components which will not reach the receiver and 
contamination of the line at frequencies assigned to other channels. 
The result is a transformation of the voltage wave (3) to a band¬ 
limited form, which must depart in more or less degree from the ideal 
conditions of constant amplitude and linear relationship between 
frequency and baseband signal. The line also inserts variations in 
amplitude- and phase-vs-frequency which cause further departures 
from the ideal. For our purposes it is sufficient to combine the line 
characteristics with those of the transmitting filter into a single com-
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posite network function determining the wave presented to the receiving 
bandpass filter. 
The receiving bandpass filter is necessary to exclude out-of-band noise 

and interference from the detector input. It also shapes the signal 
waveform and can include compensation for linear in-band distortion 
suffered in transmission. Two contradictory attributes are sought in the 
filter — a narrow band to reject noise and a wide band to supply a good 
signal wave to the detector. An opportunity for an optimum design 
thus exists and will be explored in this paper. 
The frequency detector is assumed to differentiate the phase with 

respect to time. The post-detection filter can do further noise rejection 
and shaping in the baseband range, but its only function in our present 
analysis is to separate the wave representing the frequency variation 
from the higher-frequency detection products. The slicer delivers 
positive voltage when the detected frequency is above midband and 
negative voltage when the detected frequency is below midband. The 
slicer output is sampled at appropriate instants to recover the binary 
data sequence. 
The noise-free input to the detector will be written in the form 

VrO) = P(t) cos (bid + 0) — Qd) sin {bid + 0). (5) 

Pd) and Q(t) represent in-phase and quadrature signal modulation 
components respectively, which are associated with a carrier wave at 
the midband frequency bic with specified phase 0. Such a resolution can 
always be made, even though the details in actual examples may be 
burdensome. The added noise wave at the detector input is assumed to 
be Gaussian with zero mean and can likewise be written as 

v(t) = x(t) cos + 0) — yd) sin (bict + 0). (6) 

If rd) represents Gaussian noise band-limited to ±2œc, x(t) and y(t) 
are also Gaussian and are band-limited to ±a-c. If the spectral density 
of r(t) is w„(u), the spectral densities of x(t) and y(t) are given by1

wx(bi) = wu(bi) = w„(bic + w) + wv(bic — w), I ui I < wc (7) 

In general, xd) and y(t) are dependent, with cross-spectral density 

»«(«) = j[w„(bic — bl) — W„(blc + «>)] (8) 

and cross-correlation function expressed in terms of Rv(r), the auto¬ 
correlation function of t’d), by 

= — 2Rv(t) sin bist. (9) 

4 
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The cross correlation vanishes at r = 0, and hence the joint distribution 
of x(t), y(t) at any specified t is that of two independent Gaussian 
variables. 
We shall also require the joint distribution of x and y with their time 

derivatives x and y. The latter are Gaussian with spectral densities 

(10) 

(11) 

sin tu du du = 
(13) 

= 

wzi(u)e"“ du 

(14) 

— W„(uc — co)] COS TU du. 

The cross-spectral densities are 

Wxi(co) = Wu¿(u) = juwx(u) 

Wx¿(u) = ju^u) = CofwXcOc + u) — W„(uc — co)] = — Wxv . 

The cross correlations are 

The cross correlation of x and x as well as of y and y vanish at r = 0, 
and hence at any instant x is independent of x, and y is independent of 
y. The cross correlations of x and y, and of x and y, do not vanish in 
general, but do vanish in the special case in which 

Wv(c0£ + Co) = Wv(uc — CO). (15) 

This is the case of a noise spectrum which is symmetrical with respect 
to the midband and represents a reasonable objective in system design. 
Since the simplification in computational details is quite considerable 
when the condition of symmetry is imposed, and since the departures 
caused by lack of symmetry are not of primary interest, we shall assume 
henceforth that (15) is satisfied. The four variables x, x, y, and y are 
then independent and have the joint Gaussian probability density 
function 

• -x 1 p(x, y, x, y) = — exp 
4tt <7o 

2 , 2 x + y 
2<r02

(1<>) 
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ci2 = I Wi(u) dw = 2 / + w) du. (18) 
J— 00 J— 00 

The noise-free detector input wave (5) can be written in the equivalent 
form 

Vr(Z) = Rit) cos [wci + 0(i)l (19) 
where 

R\t) = P2(Z) + Q\t) (20) 

tan</>(i) = Q{t)/P(t). (21) 

The frequency detector and post-detection filter combine to deliver a 
wave proportional to the instantaneous frequency deviation from mid¬ 
band. Taking the constant of proportionality as unity, we write for the 
output wave 

d „ .. «O MOO"« - QWfW 
.roton m - 7WTW- ■ (æ)

With the functional dependence on t understood, we write this equation 
in the form 

*'(0 = 0 = (PQ - QP}/R\ (23) 

When the noise is added, the detected frequency is changed to 

= ¿ = (24) 
* ’ * (P + x)2 + (Q + y)* • 

Assuming that the system does not make errors in the absence of 
noise, we can express the probability of error in a given sample of 
instantaneous frequency taken at the time t = nT as the probability 
that is negative if ^'(nT) is positive or the probability that 
j'(nT) is positive if <¡>\nT) is negative. Since the system has memory, 
the values of P, Q, P, and Q at any sampling instant depend on the 
entire signal sequence. Our procedure is first to show how the error 
probability can be evaluated at any sampling instant for any sequence. 
We then calculate error rates for specific sequences and establish bounds 
for most and least vulnerable sequences. 

Since the denominators of (23) and (24) are inherently positive, the 
decisions are made entirely on the basis of the signs of the numerators. 
Therefore, we do not require the distribution function of the instan¬ 
taneous frequency itself. In fact if we let 

x + P = Zi , x + P - ¿i 
(25) 

y + Q = yi, ÿ + Q = ÿi 
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we require only one value of the distribution function of the variable z 
defined by 

Z = 212/1 - 2/1*1 • (26) 

The error probability is fully determined in any specific case either by 
the probability that z is negative or by the probability that z is positive. 
That is, if F^z) is the distribution function of z, we only require the value 
of F(0). 
We shall derive a general expression for F(0) in terms of a single def¬ 

inite integral. From this integral we shall then obtain definite integrals 
representing bounds for the error probability when arbitrary binary data 
sequences are transmitted. No restrictions on range of signal-to-noise 
ratios are made. The results will be applied to special cases of practical 
interest. One is Sunde’s binary FM system which avoids intersymbol in¬ 
terference in a finite band in the absence of noise. When noise is added 
in this system, the detected samples become dependent on past signal 
history. It has been found possible to give a complete treatment of the 
Sunde method, including optimization of the receiving filter for minimum 
probability of error with fixed average transmitted signal power. The 
other cases analyzed in detail are based on design parameters actually in 
use on FM data transmission terminals. 

HI. GENERAL SOLUTION 

Our first observation is that when aq and yi are fixed, the variable z 
of (26) is defined by a linear operation on the two independent Gaussian 
variables ¿1 and 2/1 . Hence the conditional probability density function 
p(z I ii ,2/1) of z when ii and 3/1 are given is Gaussian with readily 
determined parameters. We accordingly write 

. , , i r (* - z°)2”i ¿97'1 p(z I Xx , 2/1) = — /= exp - — • (27 ) 
(TV 2tt L j 

The mean z0 is the sum of the means of xpji and —yiii , that is, 

z0 = ii av 2/1 - 2/1 av ii = aqQ - yiP- (28) 

The variance a2 is the sum of the variances of xpji and y^i -, hence 

a2 = (II2 + y^2. (29) 

The complete probability density function p^z) for z is obtained by 
averaging the conditional probability density function over aq and . 
This is done by multiplying (27) by the joint probability density 
function of ii and yx and then integrating over all ii and i/i • Calling the 
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latter function g(zi , y^, we can express its value by substituting the 
values of x and y from (25) in (16) and integrating out the x and y 
terms. The result is 

9(^1 > 91) 
I 

2tT<7o2
exp (zi - P)* + - Q)21 

2<7o2
(30) 

Then 
pK pOC 

p(z) = / / p(z I Xi, yúqÇxi, y^ dxi dyt. J—x (31) 

The probability of error when the noise-free sample of frequency 
deviation is positive is 

P^ = f p(z) dz = [ p(—z) dz. (32) J-OC J 0 

Likewise, when the noise-free sample is negative, we obtain a probability 
of error 

P- = Í p{z} dz. (33) 

1 he problem is thus reduced to the evaluation of the triple integral 
obtained by combining (27), (30), and (31) with either (32) or (33). 
It is shown in Appendix A that the result of these operations can be 
expressed in the following form 

(34) 

ihe value of P_ is obtained by subtracting the right-hand member of 
( 34 ) from unity. We note that is positive for P+ and negative for P— . 
The symbol R is used for dR/dt where R is given by (20). In a pure 
FM wave, R = 0, but this condition cannot be maintained in a finite 
bandwidth. 

Differentiating partially with respect to R and rearranging, we obtain 

= JL -^) + 7?y 
dR Traoai _ 2ao2 2ai2

(35) 
sinh g77^ 1 ~x) dx. 

<7? 
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We note that dPJdR vanishes when R = 0 and at no other value of R. 
The latter follows from the fact that the integrand of (35) cannot 
change sign in the interval of integration. XX e also find that 3 P^/dR 
is positive when R = 0. We conclude that P+ is minimum with respect 
to R when and only when R = 0. A lower bound on the probability of 
error for any fixed R and ¿ is therefore obtained by setting R = 0, 
giving 

Also, since P+ must be monotonic increasing with | R |, the largest 
probability of error for any fixed R and occurs when R has its largest 
possible absolute value. These deductions are of aid in selecting the data 
sequences which have most and least probabilities of error. 

It is shown in Appendix A that Pi can be written in the equivalent 
form 

f"2[ exp 
o 

de. (37)
R1̂ /^ 

- \ 
(To 0 1 1 _ 2 n— — 1 ) cos 0 

It is also shown that when < (<ri/oo), the limiting form for large 
signal-to-noise ratio — i.e., R large compared with ao — is given by 

Pi (38) 

When 0 > (<7i/<zo), the limiting form becomes 

(39) 

When * = <7i/<7o , we have the exact result 

(40) 

(41) 

The general equation for error probability (34) can conveniently be 
expressed in terms of the following three parameters 

* _ /T 
p 2^ 

357 



Equation (34) then becomes 

P+ = erfc p + ̂ Ç7= y erfc [ap(l — x2)1 — bx] dx. (44) 

Evaluation of this equation in terms of the three parameters p, a, and b 
gives the error probability for any of the FM systems considered. 

IV. ERROR PROBABILITY VS SIGNAL-TO-NOISE RATIO 

In analog systems the performance is often expressed in terms of 
signal-to-noise ratio in the receiver output. In the case of audio and 
video signals, where subjective judgments determine the requirements, 
the signal-to-noise ratio furnishes a good criterion. In the case of data 
signals, however, performance is judged in terms of errors made, and 
the errors cannot be predicted from the signal-to-noise ratio alone. The 
error rate depends in general on the distribution of the noise values. 
I urthermore, in good systems the errors are rare and hence are associated 
with infrequent noise conditions. The central part of the noise distribu¬ 
tion is of less importance than the tails. 
We illustrate the difference between a straight signal-to-noise ratio 

analysis and a direct error probability calculation in FM by a simple 
example. Consider the case of a long sequence of mark signals leading to 
a constant signal frequency uc + . The signal wave can then be 
written in the form 

F(i) = A cos (a)c + ud)t 
(45) 

= A cos a>dt cos — A sin wt sin uct. 

Comparing with (5) and noting that we are omitting the arbitrary 
phase angle 6, which is of trivial interest, we make the identifications 

P(t) = A cos uai = A sin udt. (46) 

Then, by differentiation 

P'W = — ̂dA sin wdt Q'(t) = udA cos udt. (47) 

If a sample is taken at f = 0 

P = A P = 0 Q = 0 Q = a>dA. (48) 
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Then from (24) the error ÿ — ud in the detected frequency deviation 
because of additive Gaussian noise is 

V = X¡/ — Ud 
(A + x)~^dA + y) - yx 

(A + xY + y2
(49) 

In a signal-to-noise ratio calculation for the case in which the signal 
amplitude is usually much larger than the noise on the line, (49) would 
be written in the form 

üm(1 + x/A) + ÿ/A + (xÿ - yx)/A~ 
(1 + x/A? + (y/A)* 

(50) 

If we then assume that A is large compared with x, y, x, and y, we retain 
only first-order terms in small quantities and construct the following 
approximate result, valid most of the time 

V <xm( 1 + x/A) + y/A — Wd(l + 2x/A) 

= (ÿ - <Jdx)/A. 
(51) 

The approximate spectral density of the frequency deviation error is 
then 

W,(u) ~ [w¿ + üld~Wx(ai')]/A2

= 2(of + ud)wv(uc + w)/A2. 
(52) 

The approximate mean-square value of error can now be found by 
integrating the spectral density function w,(w) over all frequencies. 
However, we cannot obtain the probability of error from this value 
because we do not know the distribution function. A nonlinear operation 
has been performed on a Gaussian process, and the result must be non-
gaussian. In this case Rice2 has shown that the central part of the 
frequency error distribution is approximately Gaussian. His argument 
does not apply to the tail. When the signal exceeds the noise most of 
the time, it is only the tails of the distribution which are important in 
determining the probability that an error is made in distinguishing 
between mark and space frequencies. 

Since there is no intersymbol interference in our example the exact 
expression for probability of error is given by (37) with R = A and 
¿ = aid • It can be seen from the limiting forms for large signal-to-noise 
ratio, (38) through (40), that the Gaussian approximation from (52) 
cannot approach the correct result. The result obtained from (52) must 
contain both the original and differentiated noise spectra in the argument 
of the exponential part of the approximation at large signal-to-noise 
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ratios. In (38) and (39) the exponential depends on either a0 or ai but 
not both. 
As another example of the difference between inferences from signal-to-

noise ratio and error probability, it is interesting to consider the case 
of differentially detected binary phase modulation. In this system the 
polarity of the present carrier wave is compared with the polarity one 
bit ago. The binary message is read as 1 for a phase reversal and 0 for 
no phase change. By intuitive reasoning one could easily conclude that 
there would be a 3-db penalty relative to synchronous detection with a 
noise-free period. Certainly, in the differential case noise is added to both 
waves under comparison, and the bit interval is usually long enough to 
make the two noise samples substantially independent of each other. 
Signal-to-noise ratio analysis supports the intuitive argument when the 
average noise power is small relative to the average signal power. A 
direct calculation of error probability, however, exposes the fallacy and 
reminds us sharply that the noise is not small compared with the signal 
when errors occur. If we focus attention on the large noise peaks which 
cause error, we can see that the simultaneous combination of dis¬ 
turbances on both waves does not imply the same probability of disaster 
as would follow from concentration of all the noise on one wave. 
The differential binary I’M problem can in fact be solved as a simple 

special case of the analysis we have developed for FM. The input wave 
to the detector can be written as 

Fr(0 = [P(i) + x(i)] cos uct — y(t) sin uet. (53) 

The detector operates by multiplying Vr(t) and Fr(i — T), selecting 
the low-frequency components of the product, and sampling the output 
at intervals 7’ apart. If we assume ucT is a multiple of 2m and identify 
quantities evaluated at t — T by the subscript d, the binary decisions 
are based on the sign of the wave 

1 a(í) — (P + x)(Pd + %d) + yyd • (54) 

When the correct binary decision is 0, the signs of P and Pd are the 
same, and an error occurs if the sampled value Fa is negative. When the 
correct binary decision is 1, the signs of P and Pd are opposite, and an 
error occurs if the sampled value of Va is positive. The two cases are 
symmetric and an analysis of either suffices. For the case of the symbol 
0, P = Pd , while for the case of 1, P = —Pd . 

In calculating the signal-to-noise ratio for the case of a symbol 0, 
we would write 

Fa = P ( P + X + Xd + xxd + yyd 
P (55) 
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Then if P is large compared with x, Xd , y, and yd , we approach a con¬ 
dition in which the decisions are based on the sign of P + x + Xd . If 
X and Xd are independent, the sum x + Xd represents samples from random 
noise with twice as much average power as the samples of either x or xd 
alone. This tempting argument leads to the 3-db rule. 

In a direct calculation of error probability, we recognize that the 
influence of xxd and yyd cannot be ignored at the tails of the noise 
distribution where the errors occur. In particular, if x and xd are both 
very negative, tending to cause an error in a symbol 0, the value of xxd 
is large and positive, tending to prevent the threatened damage. 
To find the error probability, we compare (54) with (26), and note 

that we have a special case of the previous solution if we make the 
following identification 

z = Va Xi = P + x ÿi Pd + Xd 
(56) 

yi = y ¿i = -ya ■ 

The remainder of the solution proceeds as before if x, y, xd , and yd are 
independent Gaussian variables. The independence is guaranteed if the 
second-order correlation functions vanish at lag time T. One difference 
between this case and the earlier one is that the variables x, y, xd , and yd 
all have the same variance. This specialization can be made in the earlier 
work by setting — a\ = a. By comparing with (25), we further note 
that we can now set Q = P = 0, Q = Pd = P. Hence we also have 
R = P and R = 0. Corresponding to we insert the value which I a/R 
assumes in the absence of noise, namely <j> = P /P = 1. In terms of 
(41), (42), and (43) we then have 

P2 = £ a2 = 1 b2 = 0. (57) 
2a2

Hence the answer is given by (40), namely 

P+ = p_ = (58) 

In the ideal case, a bandwidth fa is sufficient to send signals by binary 
PM at a rate fa bits per second without intersymbol interference. This 
allows for upper and lower sidebands with widths fa/2. If the spectral 
density of the noise is vo watts/cps, it follows that a = vofa . Then M, 
the ratio of average signal power to the average noise power in a band 
of width equal to the bit rate, is equal to the ratio of P2 ¡2 to iVo and 
hence M = p2. The formula for error probability is thus found to agree 
with the one given by Lawton.3 Average signal power 0.9 db greater 
than the coherent case is required for an error probability of 10 . The 
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difference in performance between the differential and purely coherent 
cases approaches zero at very high signal-to-noise ratios. 

V. sunde’s band-limited fm system -without intersymbol inter¬ 
ference 

E. D. Sunde4 has described a binary FM system in which the inter¬ 
symbol interference in the absence of noise can be made to vanish at 
the sampling instants, even when the bandwidth is limited to an extent 
comparable with that used in AM transmission. The method is remark¬ 
able in that a type of result similar to that given by Nyquist5 for AM 
systems is obtained for all sequences in spite of the nonlinear FM detec¬ 
tion process which invalidates the principle of superposition. The per¬ 
formance falls a little short of the corresponding AM case, in that some 
dependence on the message appears when noise is added. 

Fig. 2 shows a diagram of Sunde’s method. The binary message is sent 
by switching between two oscillators. The difference between the oscil¬ 
lator frequencies must be locked to the bit rate, and the oscillators must 
be so phased that the frequency transitions are accomplished with con¬ 
tinuous phase. The combination of sending filter, line, and receiving 
filter modify the switched output to produce a spectrum at the input to 
the frequency detector with even symmetry about the midband and 
with Nyquist’s vestigial symmetry about the marking and spacing fre-

SPACING 
OSCILLATOR 

Fig. 2 — Sunde’s band-limited binary FM system. 
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quencies. The latter must be high enough relative to the bit rate to 
prevent appreciable lower sideband foldover. 
The output of the switch is represented by 

EÇt) = 5 [1 — s«)l cos
(59) 

+ [1 + s(i)] cos [(a)c + Ud)t + 0m]. 

Ill (59) A represents the amplitude of the output and must be the same 
for each oscillator. The switching function s(i) represents the baseband 
data wave of (1). When s«) = —1, the first term has amplitude A 
and the second term vanishes. When s(/) = +1, the first term vanishes 
and the second has amplitude A. The center of the band is the frequency 
Uc and the total frequency shift is 2wd . For minimum bandwidth the 
angular signaling frequency a'o = 2ir/T must be equal to lua • One of the 
two phase angles 6, and dm can be arbitrary, but the two angles must 
differ by 180 degrees. Under these restrictions, the value of E(t) can be 
written as 

E(t) = A sin udl sin (wj + 6.) - As(i) cos ual cos (wct + 0,). (60) 

Sunde requires that the input wave to the frequency detector can be 
written in the form 

Vr(0 = A sin sin (uct 4- 0r) - Asi«) cos {uct 4- 0« (61) 

where Si(i) represents the data sequence with g(t) replaced by 
The latter must be a pulse which gives no intersymbol interference when 
the data rate is 1/7’. That is, 

81«) = ¿ (-y^gdt - nT) (62) n=—oo 

and </i(i) assumes the value unity at Í = 0 and has nulls at all instants 
differing from t = 0 by multiples of 7’. In mathematical notation 

gi[(m — n)7’] = 5m„ (63) 

and 
Si(m7’) = ( — Y'bm. (64) 

The requirement as actually stated by Sunde differs from (61) in 
that his analysis is based on a switching function which assumes the 
values 1 and 0 at the sampling instant rather than 1 and -1. The two 
expressions for the requirement can be shown to be equivalent. Equation 
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(61) has the advantage that the function Si(i) has the average value 
zero for a random data sequence with equal probability of the two 
binary symbols. This fact enables an easy separation of the spectral 
density of Fr(i) into line spectra contributed by the first term of (61) 
and a continuous spectral density function for the second part. 

Incidentally, it is clear from (61) that all the signal information is 
contained in the second term, and that the first term can be regarded 
as a pair of pilot tones at the marking and spacing frequencies ± ud . 
The sole function of these pilot tones is to enable an FM detector to 
recover the message. The information carrying part of Fr(i) can equally 
well be regarded as double-sideband suppressed-carrier binary AM or 
binary phase modulation, with the carrier frequency placed at uc . The 
ideal way of detecting such signals is by multiplication with a coherent 
carrier wave, which must be transmitted as part of the data wave in 
some way. Detection of Vr(t) as FM has a practical advantage in that 
there is no carrier recovery problem; the wave is ready for the frequency 
detector with no further processing. The penalty for transmitting pure 
sine waves is a waste of signal power. As will be shown quantitatively 
later, such waste results in an unfavorable comparison with more 
nearly ideal systems. 

To show that the stipulated conditions are sufficient to suppress 
intersymbol interference in the detected frequency of Vr(<), we identify 

and Q(t) of (5) with the applicable terms of (61) as follows 

PW — —Asi(t) (65) 

Q(t) = — .4 sin udt. (66) 

We then calculate 

P\t) = -As/fD (67) 

Q'U) = — w^A cos udt. (68) 

If we take frequency samples at t = mT we find that since udT = tt 

P^mT) = (-) m+lbm

P'(mT) = -As^mT) 
(69) 

Q(mT) = 0 

Q’(mT) = (-T^A. 

Hence in (23), evaluated at I = mT 

<i> = Q/P = ud/bm = bmud . (70) 
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Fig. 3 — Nyquist’s condition of vestigial symmetry. 

The value of the instantaneous frequency deviation at the mth sampling 
point is, therefore, equal to Md if s(mT) = 1 and equal to — &d if 
s(mT) = —1. Freedom from intersymbol interference is thus obtained 
if (64) is satisfied. 
As shown by Nyquist, a sufficient condition for obtaining (64) is 

that the standard pulse gi(t) is the impulse response of a network with 
transmittance Gi(w) of the form shown in Fig. 3, described mathe¬ 
matically by 

6q( ±Wd — X) + Gi( + X) = 2Gi(a>d) = 7 0 < X < aid • (<1) 

We say that a function satisfying (71) has vestigial symmetry about 
frequency because it has the type of symmetry called for in a vestigial 
sideband filter with the carrier at ud . We can think of the response at a 
frequency exceeding by an amount X as exactly compensating the 
deficiency in the response at the frequency less than by the same 
amount X. The ideal low-pass filter is a limiting special case occurring 
when the transmittance vanishes for | o> | > w • The amplitude can be 
associated with linear phase shift, which changes only the origin of time. 
Unnecessary complication is avoided by carrying through the calcula¬ 
tions with zero phase shift. 
The conditions imposed on the filters and line to transform (60) to 

(61) can be expressed in terms of the Fourier transforms of g(t) cos udt 
and gM, which we represent respectively by C(w) and (n(w). Both 
C(w) and G^w) are purely real and are given by 

C(u) = / g(t) cos wt cos ut dt 

= [G(o, — om) + G(o) T ow)]/2 

(72) 
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1.5 

Fig« 4 Spectrum at input to detector in Sunde’s FM system. 

Gi(o>) = y gt(i) cos wt dl. (73) 

The result, obtained by multiplying cos (uct + 0,) by g(t) cos udt or 
gM, is to place upper and lower sidebands on the frequencies ±wc, as 
shown in Fig. 4, with spectra equal to C(œ — ü>c)/2 and ̂ (œ — w„)/2 
respectively on uc. The required transmittance function for the com¬ 
bination of sending filter, line, and receiving filter is then 

ym = . (74)
C (w — wc) 

this function transforms the second term of (60) to the second term of 
(61). It is also necessary for the first term of (60) to remain unchanged. 
1 he fiist term can be written as the difference of sine waves of fre¬ 
quencies i>jc — aid and oic + aid • These components will be unchanged by 
the operation F(ai) if 

C(±wd) = G^iaid) or Y(uc ± a>d) = 1. (75) 

It can readily be seen that the condition (71 ) required on G'i(oi) translates 
to the same condition for G^u) where u = u — wc. 

The relations can be made clearer by working out an example. Suppose 
the switching is rectangular and there is no lost time between contacts. 
The function g(t) is then defined by 

1, -T/2 <t< T/2 
gW = (76) 

0, |i| > T/2. V )

Let the received signal I r(/) have a full raised cosine spectrum centered 
at , with vestigial symmetry about wc + a>d and uc - ud. We then 
write 
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t(1 + cos^-V2 |«|^2Wd ( . 

G‘W- 0 | U | > 2a>d • 

We calculate 

„ r'2 , , „ 2b>d cos (biT/2) , . = 2 / cos vat cos ut dt = - —- -- (78) 
J<) a><T — bl1

( 2 2 \ / « i I TV^d — U H 1 + COS -- J 
y(o>) = - -- u = b>c — u. (79) 

2 7TM 4o>d cos —— 
2u¿d 

This function satisfies the required condition that Y(wc ± bid) = 1. 
In practice it is difficult to control two oscillators with the necessary 

precision to meet Sunde’s requirements. One method of realizing the 
system approximately is to begin with two high-frequency crystal-
controlled oscillators of frequencies n(bic — bid) and n(bic + bid), where 
n is a large integer. The phases of the two oscillators are not under 
control and are assumed to be 0i and 02 , respectively. Frequency step¬ 
down circuits are introduced after each oscillator to give outputs of 
frequency bie — bid and bic + bid with respective phases 6i/n and 02/n. 
By multiplying these two outputs and selecting the low-frequency 
component as shown in Fig. 5, we obtain a wave of frequency 2bid and 
phase (02 — 00/n. This wave can be used to control the timing of the 
binary input symbols. For the switched marking and spacing frequency 
sources we use the stepped-down component of frequency bic — bid 
directly and the component of frequency bic + bid with reversed 
polarity. The required frequency and phase relations are then satisfied 

Fig. 5 — Practical realization of Sunde’s system. 
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except for a slow drift in the time scale caused by the lack of perfect 
stability in the original oscillators. 
To calculate the probability of error when Gaussian noise is added to 

Sunde’s FM signal, we identify the values of P(mT), P'^mT), Q^mT), 
and Q'(mT) of ((59) with P, P, Q, and Q respectively. The general ex¬ 
pression for the probability of error, (34), is expressed in terms of R 
and ß. We calculate 

ß = (P2 + Q2)1 = A (80) 

^'(0 = + Q2(Z)]> 

= [P(i)P'(0 + Q(t)Q'(t)]/R(t) 

R = R'(mT) = (PP + QQ)/R = ( - )” +1A6ms1'( mT) 

From (62) 

si(mT) = 22 ( — - n)T], n— oo 

From (73) we verify 

i r2“d 
ÿi(rT) = - Gi(u) cos (urT) du 

TT Jo 

= - I Gi(ud — u) cos [rTXwd — cv)] du TT Jo 

+ - I Gi(ud + u) cos [rT(ud + cd)] du 7T do 

2 f“d
= - Gi(ud) cos ttt / cos ruT du = 5r0 • TT Jo 

This checks our previous requirements expressed by (63) and (64). By 
differentiating (73) and substituting / = rT, we find 

1 f2“d
gi (rT) = — I uGi(u) sin urT du. (85) 

7T Jq 

The value of this integral in general is not zero except when r = 0. It 
appears, therefore, that at any sampling instant t — mT the value of R 
depends on all the values of bn in the sequence except bm . 

For further progress we take a specific example, namely the full 
raised cosine spectrum for Gi(cd). We set 

(81) 

(82) 

(83) 

(84) 
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GM = + cos g) / 2 I a> I 2om . (86) 

Then 
/»¿uj / 7TCt> i 

o/frî1) =—^ U 1 + cos — ) sin urT dm 
2tt Jq \ ¿WdJ 

fo 
r(l — 4r2) 

r * 0. 

(87) 

From (85), we noted that g/(0) = 0. The value of R can now be found 
from (82), thus 

R = (-) m+1 MA 
_ (MK_ 
(m — n)[l — 4(m — n)2] 

n(4n2 - 1) 

(88) 

We observe from our previous study of the integral defining the 
probability of error that for fixed R the most vulnerable sequence is 
the one which has the largest absolute value of R. The least vulnerable 
sequence is the one for which R = 0, and this can be obtained by setting 
hm+n = bm-n for all n. The maximum absolute value of R occurs when 
bm+n and òm_„ have opposite signs and the signs are reversed when n 
changes by unity. The resulting value of | R | is 

= 2/od (log, 4 — 1) = 0.7726 JoA. 

£ n(4n2 - 1) 
(89) 

The upper and lower bounds for the error probability are found by 
substituting Äm and 0 respectively for R in (34). By (80) the value of 
R is constant and equal to A. From (70), 0 — bmmd . It is important to 
note that while the intersymbol interference is suppressed in the absence 
of noise the error probability with noise present does depend on the 
signal sequence. This occurs because frequency detection is a nonlinear 
process, and the effect of noise cannot be found by merely adding a 
noise wave to the detected frequency output. 
The actual spectral density of the noise facing the frequency detector 

is under the control of the system designer, since the selectivity of the 
receiving bandpass filter is not determined by the requirements thus 
far discussed. We have stated what the received signal spectrum at the 
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detector input should be, but this is a resultant of signal shaping at the 
transmitter, the transmitting filter selectivity, and the transmittance 
of the line, as well as receiving filter selectivity. The latter can be 
varied within reasonable limits if the others are adjusted in a comple¬ 
mentary fashion to obtain the desired output response. In evaluating 
the merit of different receiving filter designs it is reasonable to compare 
them with the same average signal power on the line. We shall also 
assume that the line has been equalized for unity gain and linear phase 
over the band so that it can be considered as a transparent link in the 
system. 

1 he average signal power on the line can be computed in terms of 
(a) the transmittance function Tr(<«>) of the receiving filter, (b) the 
required function Gi(w) representing the spectrum of the modified 
switching function at the detector input, and (c ) the statistics of 
the data sequence. Details of the calculation are given in Appendix B. 
An interesting consequence of the assumptions that the FM wave has 
continuous phase and that the frequency shift is equal to the signaling 
rate is the appearance of discrete components on the line at the marking 
and spacing frequencies even when the data sequence is random. This 
means there are transmitted sine waves which consume power but carry 
no information. An optimization procedure aimed at conserving power 
would very nearly suppress these components at the transmitter by 
balance or by sharp antiresonances and restore them to their proper 
relative amplitudes by complementary narrow-band resonance peaks in 
the response of the receiving bandpass filter. The bandwidth used to 
augment these frequencies at the receiver could in theory be made so 
small that no appreciable effect on the accepted noise would result. The 
system would then only have to deliver the average power associated 
with the continuous part of the FM spectrum. 

Actually, even a partial suppression of the steady-state components 
on the line would destroy much of the advantage of signaling by FM. 
The system would become more sensitive to gain changes and over¬ 
load distortion. Accurate tracking of the suppression and recovery cir¬ 
cuits for the marking and spacing frequencies would be difficult at best 
and would be practically impossible over a channel with carrier fre¬ 
quency offset. The narrow-band recovery circuits would contribute to 
a sluggish start-up time. In fact, about the only remaining resemblance 
to I'M would be the use of an FM detector. If low-level tones can ac¬ 
tually be recovered successfully from a received wave, it would be better 
to use them for synchronous I’M detection, which is a linear method 
capable of attaining ideal performance in the presence of additive Gauss-
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ian noise. It appears that Sunde’s system should carry the power in the 
steady-state components in order to deserve the name of FM. 

Standard variational procedures can he applied to find the shape of 
receiving filter selectivity which minimizes probability of error when 
the average signal power and the spectral density of added Gaussian 
noise on the line are specified. The solution of the optimization problem 
is given in Appendix B, and means are shown for completing the com¬ 
putation of the corresponding probabilities of error for the most and 
least vulnerable data sequences. In the case of white Gaussian noise on 
the line, the optimum receiving filter has very nearly the same cosine 
characteristic found by Sunde for optimum binary AM transmission. 
The bounds for error probability are plotted in Fig. 6 for both FM 
proper with no suppression of steady-state tones and the abnormal FM 
with marking and spacing frequencies suppressed. Also shown is the 
ideal curve representing what can be proved to give the best possible 
binary performance. The ideal curve can theoretically be obtained for 
example by coherent detection of binary phase modulation. Differen¬ 
tially detected phase modulation requires about 1 db more signal power 
than ideal at an error probability of IO-4 . 

It is seen from Fig. 6 that when the suppression bands are inserted 
in Sunde’s binary FM system, the theoretical performance is only about 
a half db poorer than ideal, but, as previously pointed out, this does 
not represent a true FM system. The more legitimate FM has error 
bounds from 3 to 3.5 db poorer than ideal. However, a penalty of this 
order of magnitude could be a fair trade in many cases for the advan¬ 
tages of a much simplified receiver relatively immune to many channel 
faults. 

VI. APPLICATION TO DATA TERMINALS FOR USE ON TELEPHONE CHAN¬ 

NELS 

We now apply our formulas to calculate error probabilities in binary 
FM transmission with terminals more closely resembling those actually 
in use on telephone channels. In the design of real-life terminals, the 
emphasis is placed on ruggedness and simplicity. The bit rate is not 
locked to the frequency deviation. The filters do not meet elaborate 
optimization requirements. The significant conclusion from our evalua¬ 
tion of error probabilities for the practical systems is that the degrada¬ 
tion of performance compared with the ideal is actually very slight. 
The probability of error as given in (44) is generally applicable to 

FM systems. There are three parameters, p, a, and b, given in (41) to 
(43). The first parameter p is a signal-to-noise ratio. It depends on the 
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SIGNAL- TO-NOISE RATIO IN DECIBELS 

Fig. 6 — Error probabilities for Sunde’s binary FM system with additive 
Gaussian noise. Bounds are for most and least vulnerable sequences. Noise refer¬ 
ence is mean noise power in bandwidth equal to bit rate. 

ratio of instantaneous envelope of the received signal to the rms noise 
voltage at the detector input. For any given front-end filter, this pa¬ 
rameter can be expressed in terms of average signal-to-noise ratio at 
the input of the receiver. The parameter a depends on the ratio of in¬ 
stantaneous frec[uency displacement at the sampling time to the Gabor 
noise bandwidth, ai/ao , of the receiver. The third parameter b depends 
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on the derivative of the instantaneous envelope at the sampling time. 
For a given channel these parameters can he computed for any par¬ 
ticular signaling sequence. The true probability of error could conceiva¬ 
bly be obtained by averaging over all possible sequences, but this would 
be a formidable task. Instead we will give bounds on the probability of 
error for the most and least vulnerable sequences over a finite repre¬ 
sentative set of signaling intervals. 
We first consider the system in Fig. 7, which has amplitude-vs-fre-

quency " raised cosine” type roll-off but no phase distortion. Equal filter¬ 
ing takes place at the transmitter and receiver. The modulator applies a 
pure FM wave of constant envelope to the transmitting filter. In other 
words, the modulator and the demodulator are ideal. The data source 
is composed of rectangular pulses. 1 he frequency deviation in cps is 
equal to half the bit rate. These rates and deviations are characteristic 
of practical systems. 
With the aid of a digital computer, S. Habib has calculated the pa¬ 

rameters given in (41) to (43) for 210 sequences. From these calculations 
we have computed an upper and a lower bound on the probability of 
error. These results are shown in Fig. 8. The probability of error for all 
other sequences will fall between the two curves labeled 'best and 
“worst.” Superimposed on the same graph is the ideal curve, which 
can only be achieved with ideal phase systems and coherent detection. 
The FM detection is, of course, incoherent. 
Our next example applies the theory to a real bandpass filter used in 

an operational data set. Fig. 9 shows the system considered. The curve 

|f I < 100 

Fig. 7 _ ideal FM modulator and demodulator with transmitted and received 
signals equally shaped by “raised cosine” type roll-off amplitude characteristics 
and no phase distortion. 
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Fig. 8 —• Probability of error for system depicted in Fig. 7. Noise reference is 
mean power in bandwidth equal to bit rate. 

of loss vs frequency for the filter used is given in Fig. 10. The curve 
departs from the condition of symmetry about midband, and also the 
separation between the signal and carrier bands is not sufficient to make 
overlapping effects negligible. The marking and spacing frequencies were 
assumed to be 1200 and 2200 cps, respectively, and the signaling rate 
1200 bits per second. As shown in Fig. 11, the calculated results are 
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S2H(S) = 
n (s-st)(s-sL*) 

N(t)=WHITE GAUSSIAN NOISE 

S, = (-1.0505 + j 2.541) 277 X10 3

S2 = (-2.541 + j 1.0505) 277- X IO 3

S3 = (- 0.707 ± j 0.707) 277 X IO3

R = y = BIT RATE = 1200 BITS/SEC 

△ f = FREQUENCY DEVIATION = 500 CPS 

Fig. 9 _ Ideal modulator and demodulator with received signal shaped by filter 
characteristics used in FM data set and shown in Fig. 10. 

about 1 db better than the experimental results obtained with a random 
word generator, random noise generator, and error counter. The experi¬ 
mental system included an axis-crossing detector and post-detection 
low-pass filter, which do not correspond precisely with the theoretical 
model. In view of the differences cited, the agreement between calculated 
and experimental curves is good. The penalty suffered by the actual 
back-to-back channel compared with the best theoretical FM perform¬ 
ance is between 2 and 3 db. Somewhat more optimistic estimates have 
been given in other published studies.7,8 The effects of amplitude and 
delay-versus-frequency variation in the channel are calculable by use 
of the computer programs we have established. 

It was shown in the previous sections that a lower bound on the prob¬ 
ability of error occurs when the parameter b is set equal to zero. I or 

Fig. 10 — Receiver bandpass filter loss vs frequency characteristic. 
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this reason we include Fig. 12, showing a set of universal curves relating 
the corresponding minimum probability of error to p and a. 

APPENDIX A 

Evaluation of Integral for Error Probability 

We evaluate the integral 

Z
oo -00 -00 
dz p^~z I dx dy (90) 
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Fig. 12 — General curves of minimum probability of error vs p for different 
values of a in the range of interest. 

where 

p(-2 I X,v) 
1 exD r_ (g + qx - w 
+ y^]i P L 2a^^ + y^ J 

î(x,y) 
1 

= — ; exp 
27rao2

{x - py + (y - q)2~ 
2ao2

(92) 
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The integration with respect to z can be performed at once in terms of 
the error function by substituting a new variable u defined by 

(z + Qx- Py)2 = 2<r1*(xi + y^u2. (93) 

The result is: 

p _ i i r r Qx - Py 
+ 2 4tt<702 J— J-x er <7i[2(z2 + y2)]‘ 

(94 ) 
r (x- P)2 + (y- Q)21 , , •exp -- ‘ dx dy. 

¿(TO 

We now transform to polar coordinates, setting 

X = r cos 0 y = r sin 9 dx dy — r dr d9 (95) 

We also let 

P cos 6 + Q sin 0 = R cos (0 — a) = R cos 

Q cos 0 — P sin 9 = D cos (0 + 0) = D cos (^ + 7) 

where 

R2 = P2 + Q2 = 2a02p2

D2 = P2 + Q2

= 9 — a 

The result of the transformation is 

tan a = Q/P 

tan ß = P/Q 

7 = a + ß. 

(96) 

1 - 2P+ = 

( D cos(^ + 7) C“ erf - / d^ / exp 
V2 ai Jo 

r2 — 2rR cos 
~2^~ 

(97) 

The integration with respect to r can be performed by subtracting 
and adding the term R cos to r. This enables separation of the inte¬ 
grand into a perfect differential and a term which can be expressed as 
an error function. We thereby obtain 

1 - 2P+ erf 
D cos(iA + 7) 

<71 

7? cos i/A 
s/2 <70 

R2ir y- exp 
2 <70 

R • 5 A , , — sm I cos I 1 — erf 
JOjT / \ 

(98) 

We note that both cos and cos (^ + 7) change sign when is 
increased by tt and that sin2 (^ + ?r) = sin2 Furthermore, the inte-
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gration in (98) is over one full period in and for every value of in 
the left half of the period there is a corresponding value in the right 
half at + tt. Since the error function, erf z, is an odd function of z, a 
change in the sign of cos ÿ or cos (<A + 7) changes the sign of the corre¬ 
sponding error function in the integrand. If we multiply the first term 
under the integral sign by the terms within the bracket following, we 
see that there is only one product which does not change sign at points 
7T apart. The integral of the other products must vanish. The integral 
of the one which does not change sign is twice the integral over a half 
period of Hence 

ß f’ /2 / ß2 \ 
1 - 2P+ = / exp Í — — sin2 ) 

aoV 2ir J-r/2 \ 2ao / 

„O cos(^ + 7) ,, 
•C0^ erf V2 at 

From (96) and (23) 

D cos y = D(cos a cos ß — sin a sin ß) 

(PQ _QP\ = PQ - QP 
\RD RD) R 

R4, 

D sin 7 = Z)(sin a cos ß + cos a sin ß 

f 2 2 + f 
\RD RD) 

QQ + PP 
R 

1 d / d2\ dR a 

(100) 

(101) 

Therefore 

D cos (i4 + 7) = D cos 7 cos — D sin 7 sin 
(102) 

= R4> cos — ß sin 

Now substituting x = sin in (99) we rearrange to obtain 

P+ = 1 - -^= f e~p'z' erf R^1 ~ — dx. (103) 
2 2v ir J-i V2 at 

Equation (34) of the main text is obtained from (103) by substituting 
the complementary function erfc z = 1 — erf z. 
The lower bound Pi on the probability of error for any fixed R and 4, 

was shown in the text to be obtained by setting R = 0. When this 
substitution is made in (103) and the definition of the error function 
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in terms of an integral is inserted, we obtain 

1 
2 

rap<.l-z^h 
e~“ z dx / e~‘ dz. 

Jo 
(104) 

The parameters a and p are defined by (41) and (42). If we substitute 
px = y the expression becomes 

i o f” ra<*>2— 
^=5-- e^dydz. (105) 

Z TT Jq Jq 

The region of integration in the double integral consists of the first 
quadrant of the ellipse 

z/M2 + y'rf = 1. (106) 

After transforming to polar coordinates by setting y = r cos 0 and 
z = r sin 0, we can perform the integration with respect to r. The result 
is 

a2p2
sin2 6 + a cos2 0 (107) 

This is equivalent to (37) of the main text. 
The integral has a simple value when a = 1, which is equivalent to 

0 = a\/ . For this case the integrand is seen to become a constant 
and (40) results. This coincides with a result given for a special case by 
Montgomery.9 By a change in the meaning of the parameters it also 
gives the error probability for differential binary phase detection as 
discussed in Section IV. In the general case, the limiting form of Pi 
for large signal-to-noise ratio can be calculated by the method of steep¬ 
est descents. Saddle points occur at 0 = 0 and 0 = ir/2. When a > 1, 
the saddle point at 0 = 0 determines the asymptotic form of the in¬ 
tegral for large p and (38) is obtained. When a < 1, the saddle point 
at 0 = tt/2 is dominant and we obtain (39). 

APPENDIX B 

Optimization of Receiving Filter for Sunde’s FM System 

Our problem is to find the receiving filter characteristic which mini¬ 
mizes the probability of error in Sunde’s FM system when the average 
transmitted signal power and the spectral density of the noise on the 
line are specified. In terms of Fig. 13 the transmittance function for the 
filter is Fr(w) and the output of the filter is Vr(i) as defined by (61), 
(62), (71), and (73), namely 
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Vr(/) = .4 sin udt sin (uct + 6,) — -4si(í) cos {uct + 6r) (108) 

Si(0 = ¿ (-)"^3i(< — nTï (1°9) n ”—oo 

Gi(± w</ — X) + Gi(± c>i,i + X) = 2Gi(a)d) = T 0 < X < om (110) 

Gi(oi) = [ gM cos oil dt. (Ill) J —CO 

The input to the filter is the sum of the signal wave V(0 plus the 
Gaussian noise wave ao(O- The wave V(0 is defined as that function 
of time which when operated on by Kr(w) produces Vr(0- The noise 
wave v(t) at the input to the frequency detector has a spectral density 
equal to | Yr(u) |2 times that of i>o(O-
We shall simplify our treatment by assuming a random sequence of 

data in which the two binary symbols are selected with equal proba¬ 
bility. The probability is then equal to 0.5 that any particular b„ has 
the value +1 and also 0.5 that the value is —1. We regard Vr(Z) as a 
member of an ensemble of random functions with a distribution in the 
infinite number of independent random parameters b„ . The randomness 
appears entirely in the function Si(/). We can calculate the ensemble 
average of ) at fixed / by adding the individual averages of the terms 
in the infinite series defining Si(<). When we do this we find that the 
only random variable in each term is b„ , which assumes the values ±1 
with equal likelihood and therefore has the average value zero. Hence 
the ensemble average of Si(f), which we shall designate by (sj(/)), is 
zero for any fixed value of t. It follows that Si(t) can contain no periodic 
components, for the presence of any such components would give a non¬ 
zero average at some values of t. Therefore, the spectral density function 
of the second term in Tr(f) must be a continuous function of frequency. 
To calculate the average square of Si(f) over the ensemble, we note 

that si(f) is the sum of an infinite number of independent random 
variables of form 

z„ = ( - - nT). (112) 

The average value of each z„ is zero and the variance, or mean square 
minus the square of the mean, is equal to the square of g^t — nT). 

IJNE 1 V(t)+V0(t) RECEIVING 
_ __ , BANDPASS FILTER 

~* Yr(") 

Fig. 13 — Function of receiving filter in Sunde's system. 

Vr(t) + v(t) 

TO 
FREQUENCY 
DETECTOR 
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Since the variance of the sum of independent variables is equal to the 
sum of the variances of the individual variables, we can write 

(siW) = ¿ gi\t - nT). (113) 
n—oo 

The average in (113) is an ensemble average at fixed t. We can show 
that this average is periodic in t with period T by noting that 

00 
(S12(í + T)) = E gx\t + T - nT) 

n=— oo 

V r\ (114) = 2^ 0i G - mT) 

= <«l*(0>. 
Therefore the average over t can be computed by averaging over a 
single period from t = 0 to I = T. Hence the average over time which 
we shall designate by av is 

av «?(/) = L i (S12(/)) dt = ~ X [ 0i2(/ - nT) dl 1 J 0 1 n— oo J 0 
i » f- (n-l)T . (US) 

= T 12 ffi2M = T dx. 

By application of Parseval’s theorem 

av s^t) = -L Í G^Mdœ. (116) 
JiTT 1 J —oo 

From (116) we deduce that the spectral density of Si(/) is given by 

Z X GA«) OldCAal) . . 
■ -w - ~w- ■ <"' )

The spectral density of Vr(t) can now be easily calculated. The first 
term can be expressed as the sum of sine waves of amplitude A/2 and 
frequencies and uc — aja • The first term therefore contributes 
line spectra with mean square A2/8 at the marking and spacing fre¬ 
quencies. The average square of the second term can be written 

42
av [A «/(t) cos2 (uct + 0r)] = — av 8i(t). (118) 

The spectral components comprising sAj) cos (uct + 9^ are those of 
Si(i) shifted from their original positions to appear as sidebands around 
the frequencies . Hence wr(a>), the spectral density of Vr(t) with 
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all power assigned to positive frequencies, is given by 

Wr(íü) 
A2 A2

= — ô(w — + Old) + -5- 5(w 
o o 

01c — Old) 

O3dA2G2(ol — 03 c) 
4tt2

(119) 
01 0. 

It is convenient to let 01 — oic = u and write for the transmittance 
of the filter 

U(u) = Yr(oi - 01 c) • (120) 

We shall also designate the spectral density of V(t) as w(u). Since 
the linear operator U(u) can be applied individually to the components 
which make up (119) we must have 

w(u\ _ -^(w + o3d) . A2i(u — oíd) . o3dA2G2M , . 
{ " 8| Í7(-^) I2 + 81 CZ^) I2 + V| I7(u) I2 • U21)

The average power on the line is proportional to Wo , the average 
square of V(t), which is given by 

42 A2
Wo = / w(u) du = — .- + - ■ 

J-^d 8 | v ( — om) I2 8 I U(old) I2
■ 2 r2od \ (122) oidA f Gi (u) 

4ir2 I U(u) I2

We make the reasonable assumption that | U(u) | is an even function 
of u. Combined with the further assumption that the spectral density 
of the noise on the line is symmetrical about oic, this furnishes a con¬ 
venient assurance of a symmetrical spectral density for the noise in the 
output of the receiving filter. Since G^(u) is also an even function of u, 
we can write (122) in the equivalent form 

Wo A2 oidA2 p G^u) 
AX(oid) 27T2 Jo X(u) (123) 

where 

X(u) = I U(u) I2. (124) 

The function X(u) is to be chosen to minimize the probability of 
error under the constraint that Wo is held constant. In calculating the 
optimum function, the signal power represented by the steady-state 
components can be ignored, since this power could be reduced to an 
arbitrarily small value by the use of narrow-band suppression tech-
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niques. The constraint on the signal power is therefore that the integral 
in (123) is to be held constant. 

Let N(u) represent the spectral density of the Gaussian noise wave 
vt(t) on the line. Then the spectral density of v(t), the noise in the output 
of the receiving filter, is X(u)AT(u). In terms of the spectral density 
wv(œ) previously defined for v(i) with values symmetrically distributed 
between positive and negative frequencies, we have 

X(u)N(u) = 2w„(u + ac). (125) 

The values of do and di necessary to complete the calculation of the 
probability of error by (34) can now be found by substituting (125) in 
(17) and (18) giving the results 

ag = 2 / XMN(n) du (126) 
Jo 

ai =2 uXMN(u) du. (127) 
Jo 

If we substitute (126) and ( 127) into the general expression for error 
probability, (34), and attempt to formulate a variational problem, the 
expressions become unmanageable. Instead, we concentrate attention on 
the lower bound for error probability obtained by setting R = 0, (36), 
in which it is evident that to make the error probability as small as 
possible both a0 and ai should be made as small as possible. As shown by 
(126) and (127), a0 and di are not independent. The effect of the de¬ 
pendence can be taken into account by performing the minimization 
problem in two steps. First we minimize do with both and 11% held 
constant. After this solution is obtained, we find by trial the value of 
di which yields the lowest minimum probability of error. 

Omitting inconsequential multiplying factors, we set the variational 
problem as 

5 / X(u)N(u) du + X I u2X(u)N(u') du 
_ Jo Jo 

(128) 

where X and g are Lagrange multipliers and the function under variation 
is X(u). The solution is 

M I Gi(u) 
(1 + Xu2)» N^u) ' 

(129) 
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It is straightforward to verify that this stationary value of X(u) actually 
gives a minimum value of ao and hence minimum probability of error 
for fixed values of and ll'o . 

Substituting our partially optimized solution in (123), (126), and 
(127), we obtain 

2 
<70 

<71 

\gM\n'W du 
(1 + Xw2)» 

¿\GM\N'W du 
(1 + Xu2)1

(130) 

(131) 

if.- if, = P'lG.UHArWi + xu^du (132) 

A22V*(o>d)(l + Xu/)’ (133) 
* " 4m I G,M I 

1 _ 2ao’ _ 2udhli (134) 
p2 .42 tt2(1Fo — IF,) 

1 = = 2/2/3_ (135) 
a2p2 A2̂  7r2wd(IFo — IF,) 

where 

I GM I N\u) (136) 
(1 + Xu2)* 

|G>(u) I y‘(w)(l + Xu du (137) 

and 

f2“' (138) 
3 J,, (1 + Xu2)* 

These equations furnish a straightforward procedure for calculating 
the optimum filter characteristic. Each assumed value of X determines 
a pair of values p and ap from which the corresponding upper and lower 
bounds for the error probability can be evaluated by computer tech¬ 
niques. By successive trials the best value of X can be approximated to 
any desired degree and substituted in (129) to obtain the best filter 
selectivity function. In actual examples tried, this procedure could be 
shortened because the error probability turned out to be very much 
more sensitive to the value of p than to the value of ap. If this were 
known beforehand, we would place no constraint on at in the minimiza-
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tion of ao • This is equivalent to setting X = 0, leading to the simpler 
formulas 

2^ 
(139) 

(140) 
du. 

0 

£ 

P2

9 

^(IFo — W,) J« 

¿(IKo - IF,) Uo 

By applying Schwarz’ inequality to the products of integrals in (134) 
and (135), we verify that the case of X = 0 gives the maximum value of 
p, but that the maximum value of ap occurs when X = x. It seems 
therefore that an intermediate nonzero value of X would be best, but 
in the cases computed the improvement obtainable in this way turned 
out to be negligibly small. 
As an example, consider the raised cosine signal spectrum in which 

Gi(u) is given by (77). We also assume a white noise spectrum in which 
N(u) is equal to a constant .Vo . It is convenient to introduce as a signal-
to-noise ratio the quantity M defined by 

•Vocoo 2NoUd 
This is the ratio of average transmitted signal power to the average 
noise power in a band of frequencies of width equal to the bit rate. 
Computer results show that the case of X = 0 is practically indis¬ 
tinguishable from the optimum X. Hence we set X = 0 and calculate 
for the optimum filter 

UM = X'M = f-^Yeos^- |«i <2Wi . (142) 

1'his is the same cosine filter characteristic found by Sunde to be optimum 
for binary AM with synchronous detection. From (132) and (133) we 
find that with X = 0 

IF0 - W. = = W.. (143) 

Hence 

IF, = IF0/2 and JF0 — IF, = JF0/2. (144) 

From (139), (140), and (141) we then calculate 
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IF0 = M 
2 

(145) 

2 2 a p 
IGoidNoÇir2 — 6) 

3/M 
8(ir2 - 6) 

= 0.9563/. 
(146) 

If the steady-state components were suppressed, we would set IF, = 0 
and would then obtain p2 = M, ap = 1.9133/. This would correspond 
to a 3-db shift in the direction of lower signal-to-noise ratio when the 
error probability curves are plotted against 10 log™ M. 
The curves of Fig. 6, showing the upper and lower bounds for error 

probability when Sunde’s FM system is optimized, were calculated by 
S. Habib on the digital computer. The case of a nonoptimum receiving 
filter is illustrated by the corresponding curves for a rectangular band 
defined by 

X(u) = Äo I u I < 2uid . (147) 

For this case we compute from (126) and (127) 
/•2ud 

<ro" = 2 / X<X o du = 4a>dAo.\o (148) 
Jo 

2 o ir . itóoIV# ¿Idol ai = 2 uXoNodu = - 5- • (149) 
Jo 3 

From (123) 

We then calculate 

p2 = 2M/5 ap = 3A//10. (151) 

If the steady-state components are suppressed, the average transmitted 
power could be reduced to (f - 1)/(|) = 5 of the previously deter¬ 
mined value, which is a saving of 2.2 db. 
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DEMODULATOR THRESHOLD PERFORMANCE 
AND ERROR RATES IN ANGLE-MODULATED 

DIGITAL SIGNALS* 

By 

J. Klapper 

KCA Gimmunications Systems Division 
New York, N. Y. 

Summary—.4 theory is developed that provides a link between the 
threshold mechanism in analog FM signals and error rates in digital FM 
reception. A main result is a formula that predicts error rates for binary 
FM signals with limiter-discriminator reception and integrate-dump deci¬ 
sion. Unlike the work of earlier investigators, this formula is also appli¬ 
cable to large deviation indices, is relatively simple, and facilitates the 
inclusion of center-frequency shifts. Several important illustrations are 
included. 

Introduction 

a VAILABLE formulas for predicting error rates in digital FM 
Z-X reception do not include the effect of post-detection process-

-L .A. ¡ng of the digital signals. 1 3 The difficulty is due to the non-
gaussian distribution of the post-detection noise. However, some form 
of post-detection low-pass filtering is essential for all except small 
deviation indices that, in turn, are associated with appropriately 
narrow-band predetection filtering. System constraints, such as those 
due to Doppler shifts and frequency instabilities, often dictate the use 
of predetection bandwidths that are substantially wider than the bit 
rate. A main result in this paper is a formula that permits the pre¬ 
diction of the probability of error in such systems. In addition, this 
formula is simple to use and permits the ready inclusion of center¬ 
frequency shifts, such as those due to the Doppler effect. 

Additive gaussian (not necessarily white) noise is assumed to be 
the sole source of interference. The derivation is based on the work 

* The work reported herein was sponsored by the AF Avionics Labora¬ 
tory, Wright Patterson AFB, Ohio, under Contract AF 33 (615) 2426. 
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of Rice4 and on experimental evidence that the noise at the output of 
a limiter-discriminator for additive gaussian-noise contamination of 
the input is comprised mainly of small, nearly gaussian, noise with 
superimposed, randomly occurring threshold impulses. These impulses 
are all approximately of unity area in the output-versus-time plane if 
the ordinate is calibrated in terms of frequency deviation. For the 
limiter-discriminator, however, they are not necessarily of identical 
shape. Rice has postulated that an impulse is generated each time the 
vector resulting from the addition of instantaneous noise to the instan¬ 
taneous signal encircles the origin. The speed of encirclement is a 
function of the instantaneous signal and noise conditions, and generally 
differs from case to case. Thus the shapes of the impulses are not 
expected to be identical. The encirclement produces a 2ir jump in the 
phase-versus-time plane, and differentiation with respect to time yields 
a spike of unity area in the frequency-versus-time plane. Since these 
spikes are all of essentially the same area and are relatively sharp, 
they are referred to herein as impulses. According to present theory 
these impulses are the cause of the well-known FM threshold phe¬ 
nomenon for analog signals.4 When the rate at which these impulses 
occur is small, their effect on the output signal-to-noise power ratio 
is negligible. The analog FM threshold is caused by a certain rate of 
these impulses, and thus they are referred to herein as threshold 
impulses (TI). 

In angular feedback demodulators, the TI rate is considerably 
reduced by the compressive and filtering actions of the demodulator. 
However, a different phenomenon occurs, “loss-of-lock”, that also 
results in 2?r phase jumps and impulsive post-detection noise. This 
noise is referred to as loss-of-lock impulses (LLI). In a well-designed 
angular feedback demodulator, the combined effect of TI and LLI is 
less than that of TI in a limiter-discriminator (LD). Thus, the noise 
picture analysis for the phase-locked loop and FM feedback types of 
low-threshold demodulators is similar, although a new mechanism of 
impulse creation appears. The LLI of the phase-locked demodulator 
(PLD) are more uniform in that they depend mainly on the relock 
mechanism, and can be made sharper than those of the discriminator 
by circuit design. The extension of Rice’s noise analysis to the PLD 
was proposed by Schilling et al,5 who used it in the prediction of error 

sis, ̂ n^ S“ Ín FM Receivers ” Chapter 25, Time Series Analy-

the ^ase’UekÄ FSK Using 
Convention, Boulder Colorado Tono iork. , EE Annual Communications 
MRI-1254-65, Polytechnic institue oÄ ReP°rt N°’ PIB
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rates. Their results differ from those in this paper in that their work 
accounts only for the effect of a single loss-of-lock impulse and is thus 
applicable only over a certain range of deviation indices. Also, their 
system uses a simple low-pass filter instead of the integrate-dump 
circuit used here and thus requires a different analytical approach. 
In the system described here, the probability of error is shown to be 
mainly a function of the input-carrier-to-noise ratio and the deviation 

GAUSSIAN 
NOISE 

Fig. 1—Communication system. 

index, where the deviation index is defined as the ratio of the peak-
to-peak deviation to the bit rate; 

2A/ 
D =- cylces per bit, (1) 

BIt

where A/ is the peak deviation in cps and Bn is the bit rate in bits/sec. 

The System 

Figure 1 is a block diagram of the system under consideration. 
At the transmitter end, a binary stream of essentially rectangular 
transitions frequency modulates a carrier. The only admitted con-
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tamination by the channel is additive gaussian noise. The receiver 
input signal is filtered to reject as much noise as possible consistent 
with the bandwidth requirements of the signal. The filter output is 
fed to a limiter-discriminator for demodulation. The integrate-dump 
circuit integrates the output of the limiter-discriminator for the 
duration of the bit. At the end of each bit, the decision sampler 
decides whether a mark or a space was received, depending upon the 
polarity of the integrator output at that instant. The contents of the 
integrator are then dumped to prepare for the next bit period. Perfect 
timing in the integrate-dump and decision-sampler circuits is assumed. 
In practice, the timing would be extracted from the received signal. 
For sufficiently low error rates, the timing so extracted will usually 
not materially affect the probability of error. The optimum shape and 
width of the predetection filter is not treated here, and the carrier-to-
noise ratio in the discussion that follows refers to the value measured 
at the output of this filter. Although the actual carrier level of interest 
is that at the filter input, the carrier level at the output was taken in 
order to facilitate the discussion. In any particular situation it will 
be necessary to calculate the signal power loss, if any, in the predetec¬ 
tion filter. The basic difference between this system and that of earlier 
investigators is the presence of the integrate-dump circuit. 1 3 Earlier 
investigators utilized the formulas for the exact distribution of the 
noise at the output of a limiter-discriminator derived by Rice.6 Since 
this noise is nongaussian, difficulty arose in obtaining its distribution 
after filtering. The lack of low-pass filtering is permissible only for 
small deviation indices, since the predetection filter can then be made 
sufficiently narrow to do the prime filtering. For large deviation 
indices or large predetection bandwidths, the error rates without base¬ 
band filtering become prohibitive. 

1 he integrate—dump circuit results in improved system perform¬ 
ance7 and, in addition, makes possible the “equivalent area” analytical 
approach, which facilitates the inclusion of the effect of a plurality 
of threshold impulses. 

Error Rates Due to Gaussian Noise 

Consider the post-detection noise with the threshold impulses re¬ 
moved. According to Rice,4 this noise has a nearly gaussian distribu¬ 
tion, an assumption that works well for analog signal S/N ratio 
calculations. With digital signals, the tails of the distribution (or the 

SyM. Tech. °f “ Sine-Wave Plus Noi^>” Bell 
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infrequent events) are of primary interest, and therefore the assump¬ 
tion that this noise is gaussian needs further evaluation. It will be 
shown that if this noise can be assumed to be gaussian, then it is neg¬ 
ligible as a cause of errors except for very small deviation indices, 
provided that appropriate filtering follows the discriminator. 

The integrate-dump circuit is a sin x/x type of filter for gaussian 
noise. The formula for the probability of error for rectangular binary 
video signals immersed in additive gaussian noise is given by8

1 A/2 
Pe = — erfc - , ( 2 ) 

2 \/2 tr 

where A is the peak-to-peak amplitude of the video pulse, a- is the 
power of the gaussian noise, and 

00 

2 /* 
erfc (x) =- I e-^du. (3) 

x/tt J X 

Utilizing the FM improvement factor and writing in terms of the 
carrier-to-noise ratio at the limiter-discriminator input, p, one obtains5

1 
P, — erfc 

where A/ is the peak deviation of the input signal from the center 
frequency, P, is the video bandwidth, and B, is the input predetection 
bandwidth. 

Since rectangular filters are assumed in Equation (4) and since 
the integrate-dump circuit is a sin x/x type of filter, the results ob¬ 
tained are not exactly applicable. Assuming that the relation between 
the input predetection and the video bandwidths is given by (’arson’s 
rule, 

Bi 
- =(1+O)B„, (5) 
2 

the error rate can be written 

8 M. Schwartz, Information Transmission, Modulation, and Noise, Mc¬ 
Graw-Hill, New York, 1959. 
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1 / E 
Pe~ — erfc 4 / 3D*- , 

2 V No
(6) 

where E is the input energy per bit, No is the input noise power 
density, and D is defined by Equation (1). If the video bandwidth is 
taken as one-half the bit rate, which is consistent with the Nyquist 
signalling rate,9 then 

E 1 

No BJ ’ 
(7) 

where T is the bit duration in seconds. 
A practical value of E/Nn is 12 db. The error probability is plotted 

in Figure 2 as a function of the deviation index, D, for this value of 
E/No. Two points are marked on the curve; one is the minimum error 
rate obtained by Meyerhoff and Mazer1 for any deviation index, and 
the other is the minimum error rate available in a coherent phase¬ 
shift-keyed (PSK) system. It is evident that the contribution of this 
gaussian noise is negligible except for very small deviation indices. 

The Rate of Opposing and Aiding Threshold Impulses 

This section shows that threshold impulses appear mainly in the 
direction opposing the frequency deviation of the signal from the 
center. When the carrier is at the center frequency of a symmetrical 
noise-power density, then, as expected, the probability of threshold 
impulses of either polarity is the same. 

Let N+ be the number of aiding threshold impulses per second and 
similarly, let N_ be the rate of opposing threshold impulses. Rice’s 
formulas* may be put in the form 

9 H. Nyquist, “Certain Topics in Telegraph Transmission Theory,” 
Trans. AIEE, Vol. 47, p. 617, April 1928. 

’See Equation (71) in Reference (4). 
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where r is the radius of gyration of the power spectrum of the noise. 
Two basic assumptions were made in the derivation of Equations (8) 
and (9). First, the noise power density is assumed to have arithmetic 

Fig. 2—Error probability for small noise. 

symmetry about its center frequency. This assumption was also made 
by Meyerhoff and Mazer1 and by Shaft.2 Second, the signal is assumed 
to be a sine wave existing for all time. The frequency-shift-keyed 
signal is a wave in which the frequency is being switched. For this 
analysis, however, it is assumed (as it was by Shaft2) that the signal 
may be represented as being in steady state. 
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For large values of its argument, the complementary error function 
can be closely approximated by4

e~ 
erfc(æ) es -

x

(10) 

It is interesting to note that, when Equation (10) is inserted into 
Equation (8), becomes identically zero. How readily can the 
aiding threshold impulses be ignored in practice? The region over 
which the approximation can be made is given, from Equations (8) 
and (9), by 

(11) 

(12) 

The approximation is dependent on two parameters, Af/r and \/p. 
The first quantity is usually less than unity; the value of the second 
quantity is mainly dependent upon the quality of service and the devia¬ 
tion ratio. One cannot say, in general, that Equation (10) holds; thus 
a test on the basis of Relationship (11) is required. Figure 3 presents 
plots of comparative values of N + and N_ for practical values of the 
parameters Sf/r and p. One concludes from the curves that for the 
usual operating values of the normalized deviation, \f/r, the aiding 
threshold impulses may be neglected. In what follows we shall there¬ 
fore assume the rate of threshold impulses to be given by 

and 

N+ =0 ( 13) 

N = Afe-f = N. (14) 

This fact, which has been shown experimentally, results in important 
simplifications in the prediction of error rates. For example, in the 
usual case where the mark and space frequencies are spaced sym-
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metrically about the center, one can ignore the effect of the “aiding” 
threshold impulses. Also, for an extreme shift in the signal frequen¬ 
cies (due to the Doppler effect, oscillator instabilities, etc.), there 
will be very few errors in the symbol that is closest to the center 
frequency. 

Fig. 3—Comparative rates of threshold impulses. 

The Error-Rate Formula 

The assumed decision method is basic to our discussion. The output 
of the demodulator is integrated over a bit period. At the end of the 
integration period the output of the integrator is sampled and a binary 
decision is made on the basis of the polarity of the output. After the 
sampling, the integrator content is rapidly dumped and a new inte¬ 
gration period begins. The binary decision is thus based on the 
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polarity of the area under the demodulator output wave, comprising 
both signal and noise, over a bit period. It is crucial to note here that 
the time integral of frequency is phase, and, therefore, the decision 
method stated above can be restated in terms of phase as follows— 
the binary decision is based on the polarity of the difference between 
the final and initial phases of the resultant; the resultant is the sum 
of the signal and noise waves at the demodulator input. 

The noise superimposed on the carrier causes the resultant’s phase 
to deviate from that of the noise-free carrier. If the phase difference 
between the beginning and the end of the bit period introduced by the 
noise cancels the phase difference introduced by the modulation, then 
an error in decision takes place. Note that in this decision the phase 
modulations within the bit do not matter; only the phase difference 
between the beginning and the end of the bit counts. We can begin 
to appreciate the relative significance of the impulsive and nonimpul-
sive components of the post-detection noise on the error rates. The 
nonimpulsive noise has undulations in both directions, and the proba¬ 
bility of a large value at the sampling instant is small. The impulsive 
noise, however, introduces a phase step, mainly in the direction to 
oppose the modulation, and generally no return of this step takes 
place. 

There is yet another important limitation on the nonimpulsive noise. 
It was stated previously, from Rice’s theory,4 that a threshold impulse 
occurs nearly every time the additional angle due to the noise exceeds 
±r - In this manner, the nonimpulsive noise can contribute phase 
undulations no greater than 2tt. We will now compare this effect to 
the angle introduced by the modulation. The angle due to the modu¬ 
lation at the sampling instant, 6S, is given by 

T 

— J (f — f^dt 
o 

where / — f„ is the instantaneous frequency deviation and T is the bit 
duration. For a frequency step /-/„ = △/, and from the definition 
of the deviation index, Equation (1), 

= 2nSfT = irD. 

Thus, for deviation indices greater than two, an error must be accom-
pamed by the occurrence of a threshold or loss-of-lock impulse Inter¬ 
symbol interference is neglected in this development. The major cause 
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of errors seems to be the impulses, whether they are of the threshold 
(phase jumps in the received wave) or loss-of-lock type (phase jumps 
in the voltage-controlled-oscillator wave). The nonimpulsive noise 
appears to be of importance for very small deviation indices or as a 
correction term at the higher deviation indices. Only the impulsive 
noise will be considered in the development of the error-rate formula 
that follows. 

In the plane of frequency deviation versus time, the uncorrupted 
signal area is7 AfT. For the same scaling, the threshold impulse area 
is —1. Thus an error occurs in a particular bit if 

i^AfT, (15) 

where i is the number of opposing threshold impulses in the bit. It is 
assumed that the threshold impulses are so narrow in the time scale 
that only an integral number of these appear in a bit. In other words, 
the area of a threshold impulse is never shared by adjoining bits but 
is fully contained in a single bit. Since T is the reciprocal of the bit 
rate, Equation (15) can be written in terms of the deviation index 
(Equation (1)) as 

D 
- . (16) 
2 

It is assumed that the threshold impulses have a Poisson distribution. 
Such a distribution was assumed by Rice4 and was later verified experi¬ 
mentally. 10 The probability of exactly k threshold impulses in a time 
interval T is given by11

(NT^e-™ 
PW =- , (17) 

k\ 

where 2V is the number of threshold impulses per second given by 
Equation (14). Since the events are mutually exclusive, the prob¬ 
ability of k or more threshold impulses in T seconds is given by the 
sum 

10 I. Ringdahl and D. L. Schilling, “Cn the Distribution of the Spikes 
Seen at the Output of an FM Discriminator Below Threshold,” Proc. 
IEEE, Vol. 52, p. 1756, Dec. 1964. 

11 E. Parzen, Modem Probability Theory and Its Applications, John 
Wiley and Sons, New York, 1960. 
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» (NTYe V7 ' (NT)<e~ XT
Pd^k) = £ - i - E - ns) 

i=k i\ <o a 

For our application, Equation (17) yields a sufficiently close value 
for the probability of k or more threshold impulses in time T. It can 

Fig- 4—F• or NT versus deviation index. 

be readily shown that 

P(k+1) NT 

PW k + 1 
(19) 

Typical values of NT are given in Figure 4. NT is small for small 
deviation indices where k is not large, and may be near unity for large 
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deviation indices where k is large. In either case, the ratio NT/ (k + 1) 
is small compared to unity. Since, in addition, the Poisson distribution 
monotonically decreases in the region of our interest, the assertion that 
Equation (17) is sufficiently close in value to Equation (18) is justi¬ 
fied. Thus 

(NT^e-^ 
P(i — k) =- = P(.k). 

k'. 
(20) 

In the same manner we shall ignore the “or greater” sign and write 
Equation (16) as 

k - D/2 (next higher integer). (21) 

It takes at least one opposing threshold impulse to cause an error for 
deviation indices of less than two. Two or more opposing threshold 
impulses are required to cause an error if the deviation index is be¬ 
tween two and four, three or more are required between four and six, 
and so on. This sudden jump in the required number of threshold 
impulses at deviation indices that are multiples of two yields some 
interesting changes in slope in the curves of error rates versus devia¬ 
tion index. 

Thus, the probability of error, Pr, is given from Equations (20), 
(1) and (14) by the relatively simple expressions 

where 

D 
I~NT —— e-f impulses per bit. 

2 

(22) 

(23) 

As written in Equations (22) and (23), the probability of error is 
only a function of the deviation index and the carrier-to-noise ratio 
(CNR) at the limiter input. The average number of threshold impulses 
per bit is directly proportional to the deviation index and decreases 
exponentially with increasing CNR. 

It is of interest to amend the error-rate formulas so that center 
frequency shifts of the signal can be readily incorporated. It is as¬ 
sumed that the d-c value associated with the center frequency shift is 
cancelled out at the output of the discriminator. Since the area of the 
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signal bit has not changed, Equation (21) still gives the number of 
threshold impulses that cause an error. Also, since the Poisson dis¬ 
tribution still holds, Equation (22) is correct. The only equation that 
will differ is Equation (23), since the threshold impulse rate for the 
mark and space symbols will be different. Let d be the shift in the 
signal center frequency in cycles per second and let 

d 
8 =- . (24) 

A/ 

Equation (23) can now be generalized to our case using Equations (1) 
and (14) : 

D 
I = — (l±8)e-p. (25) 

2 

Equation (25) would indicate that there are no threshold impulses 
when the signal frequency is at the center. This is clearly incorrect 
and is due to the failure of Relationship (11). The errors increase for 
the symbol whose effective deviation from the center has increased, 
and vice versa. 

Illustrations 

The foregoing formulas will now be used in some important exam¬ 
ples that will illustrate properties of the binary EM receiver, some of 
which weie unknown heretofore. The data for the plots were obtained 
on a digital computer. 

Error Rates for Constant Carrier-to-Noise Ratio 

Suppose we are constrained to keep the predetection bandwidth at 
a certain value. Practical reasons for this may be the required accom¬ 
modation of a Doppler shift, oscillator frequency uncertainty, or the 
lack of sufficiently narrow-band filters. With the noise-power density, 
2V0, a constant, the noise-power level at the input cannot be reduced, 
and for a certain carrier power the maximum CNR is fixed. Suppose 
further that we are free to choose the deviation index in order to 
achieve a specified probability of error. Since there is a limit to the 
value of the frequency deviation before excessive signal power losses 
are suffered in the predetection filter, the maximum information rate 
is also limited. In any case, the appropriate plots of error rates (P, ) 
versus deviation index are given in Figure 4 for CNR of 3, 6, and 
9 db using Equations (22) and (23). 
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The general trend of the curves is, as expected, towards increased 
reliability of transmission with an increasing deviation index or, 
equivalently, with a decreased information rate. The surprising part, 
however, is the zigzag behavior of the plot, which indicates that a 
number of relative minima are available to the designer. This be¬ 
havior is due to the consideration of only an integral number of 
threshold impulses per bit and the neglect of the nonimpulsive com¬ 
ponent of the noise. For example, at 0 = 2 we jump from the prob¬ 
ability of one threshold impulse per bit to the probability of two, 
resulting in a large jump in error rates. 

The curves marked NT represent the average number of threshold 
impulses per bit. For deviation indices of less than two, the probability 
of a threshold impulse per bit, the average number of threshold im¬ 
pulses per bit, and the probability of an error are numerically nearly 
the same. NT is actually increasing linearly with the deviation index, 
as predicted by Equation (23). 

Error Rales for a Constant Energy Ratio 

We shall again predict the probability of an error as a function of 
the deviation index. However, the parameter will be E/N„, i.e., the 
ratio of the energy per bit to the noise power in a 1-cps bandwidth. 
This parameter is used extensively in the literature in judging the 
quality of a digital communication system. 

To use Equations (22) and (23), we must convert from p to E/No 

using Equation (7). Also, B,T must be replaced by known parameters. 
An optimum relation for digital FM is not known, so we shall use 
Carson’s rule (see Equation (5)). Then, from Equations (5) and (7), 

E 1 
P =- . (26) 

A'o 1 + 0 

The probability of error obtained using Equations (22), (23) and 
(23) is plotted in Figure 5 for E/N„ of 9 and 15 db. The general 
behavior is similar to that in Figure 4, except that here the probability 
of error increases with D, verifying the generally known fact that, if 
the system has no constraints preventing such operation, the deviation 
index should be kept small. There are, however, systems where a small 
predetection bandwidth is not possible (e.g., due to Doppler shifts), 
and for such cases these curves indicate the error rates obtained and 
penalty suffered. It is observed from Equation (7) that p and E/Nu 

are the same for B,T = 1. 
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It would appear in Figure 5 that the error rates decrease limitlessly 
as the deviation index is decreased. However, as discussed earlier, the 
nonimpulsive noise begins to predominate at small deviation indices. 
If the small noise were truly gaussian, its effect would be described 
by Equation (4) (also see Figure 2). Since it deviates from the 

Fig. 5 Probability of error versus deviation index. 

gaussian distribution, the exact value of D at which it becomes im¬ 
portant is not known. At deviation indices of 0.7 it is still sufficient 
to consider only the threshold impulses, since the results are the same 
as those obtained by other analytical methods and experimentally.2

Center Frequency Shift 

To illustrate the variation in error rates as the signal center fre¬ 
quency is shifted away from the center frequency of the noise-power 
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density, we utilize Equations (25) and (22) and obtain the curves 
given in Figure 6. The CNR is kept at 6 db and the curves are plotted 
for two deviation indices: 0.75 and 3. Three curves are given for each 
deviation index: 

Fig. 6—Probability of error versus center-frequency shift. 

Pc(space), which is the probability of error for the symbol being 
moved further away from the center frequency of the filter; 

Pe(mark), which is the probability of error for the symbol being 
brought closer to the center frequency of the filter; and 

(total), which is the probability of error per bit transmitted. 
In general, 
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1 
Pc( total) = — 

2 
Pc(space) + P,,(mark) (27) 

The shift in the d-c level at the discriminator output due to this 
center frequency shift is cancelled out, as explained in the derivation 
of Equation (25). An important conclusion from Figure 6 is that, if 
the signal frequency is shifted, the symbol that is further removed 
from the filter center frequency carries the brunt of errors, and careful 
centering is required for equal error rates. The total error rate, how¬ 
ever, does not change appreciably. These conclusions were also found 
experimentally. 

Conclusion 

In addition to giving further insight into the error-generation 
process, the theory presented here results in an error-rate formula 
with the following advantages: it predicts error rates for large devia¬ 
tion indices; it gives the effect of video processing by an integrate-
dump circuit; it is relatively simple to use; and it permits easy 
inclusion of center-frequency shifts. Further, the essential features 
of the theory also apply to the recently developed low-threshold de¬ 
modulators. The only additional information required is the prediction 
or measurement of the rate of the TI and LLI of these demodulators. 
The theory can also be extended to multilevel FM reception. The 
system designer will note the various tradeoffs involved, especially 
when doppler shifts or other constraints do not permit a narrow-band 
predetection filter and small deviation indices. When narrow-band 
operation is possible, the theory verifies the conclusions of earlier 
researchers that small deviation indices are desirable. 

Experimentally, it was found that the error rates of a limiter¬ 
discriminator receiver are in reasonable agreement with the theory, 
but the zigzag behavior is not pronounced. Experimental data avail¬ 
able on the phase-locked demodulators do show these predicted rapid 
changes in slope, and the lack of the zigzag pattern for the limiter¬ 
discriminator is believed to be due to the consideration of only integral 
numbers of threshold impulses and the neglect of the non-impulsive 
noise. In view of the greater sharpness of these impulses in the 
phase-locked demodulators, the shape of the error-rate curve versus 
deviation index is closer to that predicted. 

Figure 6 is of interest in showing the behavior of the system when 
the signal and noise center frequencies do not coincide. While the 
probability of error on the total-number-of-bits basis does not change 
considerably with a center-frequency shift, one of the two symbols 
bears the brunt of the errors. 
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It is assumed in Figure 2 that the small noise is gaussian. Since 
the distribution is not exactly gaussian, the effect of the nonimpulsive 
noise will be felt at different deviation indices than those shown in 
Figure 2. It appears, however, from a comparison of our results with 
those of earlier investigators and from available experimental data, 
that the nonimpulsive noise can still be ignored at D 0.7. 

It is worthwhile to list the assumptions made in the development: 

(1) If post-detection filtering (e.g., integrate-dump circuit) is 
used, the threshold impulses are the main source of digital 
FM errors. This assumption was justified analytically for 
the case where the nonimpulsive noise can be assumed to be 
gaussian. 

(2) The signal is of rectangular shape. 
(3) The signal dwells sufficiently long at each frequency so that 

an analysis based on a cw signal applies. 
(4) The input noise is gaussian. 
(5) The noise-power density is of arithmetic symmetry. 
(6) The parameters of the system are such that the aiding 

threshold impulses can be ignored. 
(7) Only an integral number of threshold impulses appear in a 

bit. 
(8) The probability of k or more threshold impulses per bit is 

the same as the probability of k impulses per bit. 
(9) All threshold impulses are of unity area. 

(10) The threshold impulses follow a Poisson distribution in time. 
(11) Intersymbol interference can be ignored. 

Some of these assumptions are not essential, and were made for 
the sake of analytical simplicity. 

The error rates predicted herein do not give any bound on optimum 
demodulation, but they are indicative of what can be obtained with 
the system described. For example, it may be possible to obtain lower 
error rates even with a limiter-discriminator if nonrectangular bits 
or different filtering is used. 
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Summary This paper presents the derivation of exact expres¬ 
sions for the autocorrelation function and power spectrum of 
PCM/FM or FSK when the frequency modulating waveform is a 
random sequence of binary pulses of length T. The problem treated 
is that of true frequency modulation of an oscillator, a process 
which, except for a few special cases, generates waveforms and 
spectra different from those produced by sequentially switching 
between the outputs of two continuously running oscillators. The 
final expression for the power spectrum is simple and written in 
closed form. 
The power spectrum of PCM/FM is dependent on the bit rate 

fu, usually defined as the reciprocal of T, and the deviation ratio D, 
defined as the difference between the two possible values of the 
instantaneous frequency divided by the bit rate. For small values 
of DÇD^.S) the spectrum of PCM/FM has a shape resembling a 
high-Q resonance curve with a 3-db bandwidth given by fuD2. 
As D increases, fIt being fixed, the resonance curve becomes a 
poorer approximation, and with D in the vicinity of 0.7 the spectral 
density is nearly flat across a frequency band equal to the bit rate 
and drops abruptly on either side of this frequency band. It is 
interesting to note that a value of D near 0.7 has been found to 
yield minimum probability of error for given received power and 
receiver noise temperature. As D increases from 0.7 to 1.0, pro¬ 
nounced peaks in the spectrum develop about each of the two 
possible values of the instantaneous frequency. With D equal to 
1, 2, 3, . . . half of the total power is concentrated in two spectral 
lines, one at each possible value of the instantaneous frequency. 
The power spectrum of PCM FM is quite different from the 

power spectrum of the waveform generated by alternately switching 
between two continuously running oscillators. It has been shown 
in the literature that in this last case the power spectrum of the 
waveform contributed by one oscillator consists of a discrete line 
at the oscillator frequency and a continuous spectrum of the form 
sin2 irfT \-rrfTy- centered on this line. The power spectrum of the 
complete waveform is obtained as the sum1 of the individual power 
spectra. The tails of the power spectrum of PCM FM behave as 
f', whereas the tails of the power spectrum of the output of the 
switched oscillators behave as f2, f being the frequency measured 
from the center of the spectrum. This is an important consideration 
with regard to adjacent channel interference. 
The Inter-Range Instrumentation Group (IRIG) Standards re¬ 

commend the use of premodulation filtering to reduce adjacent 
channel interference. The computation of the exact effect of a 
premodulation filter on the spectrum of PCM FM is a very difficult 
problem. From experimental results obtained for D = 0.8, it appears 
that a premodulation filter, as recommended by IRIG, does not 
materially affect the shape of the spectrum in the frequency band 
containing the bulk of the total power. Also, the effects of a pre¬ 
modulation filter on the tails of the power spectrum can be esti¬ 
mated by the very simple and effective procedure of Watt, Zurick 
and Coon. 

Manuscript received September 20, 1963. 
The author is with Radiation Incorporated, Melbourne, Fla. 
1 This simple addition is not generally valid for D equal to an 

integer including zero since this situation corresponds to cross¬ 
spectra different from zero. 

Introduction 

THIS PAPER presents the derivation of an expres¬ 
sion for the power spectrum of PCM/FM, or FSK, 
when the frequency modulating waveform is a 

random binary sequence. The general approach taken is 
conventional and consists in computing the autocorrela¬ 
tion function from which the power spectrum is obtained 
by application of the Weiner-Khintchine theorem. 
Some of the gross characteristics of the power spectrum 

of PCM/FM are as follows. If the deviation ratio D is 
much smaller than unity, the bulk of the power is con¬ 
tained in a bandwidth small compared to the bit rate 
and centered on the average frequency. Also, if I) is equal 
to an integer, the power spectrum contains two discrete 
spectral lines. In those cases the PCM/FM waveform can 
be generated by switching between two equal amplitude-
and continuously-running oscillators phased such that 
the instantaneous phase of the resulting waveform is 
continuous at the switching instant. Finally, the tails of 
the spectrum, for any value of D, decreases as j *, f being 
the frequency measured from the average frequency.2
Comparison of theoretical and experimental results3 

for D = 0.8 indicates that the presence of a premodulation 
filter, as recommended for the purpose of interference 
suppression, does not materially affect the spectrum in 
the high-power density region (a bandwidth equal to the 
bit rate and centered on the average frequency). In 
frequency regions of low spectral density, the effect of a 
premodulation filter on the power spectrum can be estima¬ 
ted by a simple procedure discussed by Watt, Zurick and 
Coon' for the case of square-wave frequency modulation. 

Computation of Autocorrelation Function 

A common expression for the output voltage of a 

2 This result js normally true when the frequency-modulating 
waveform contains abrupt steps. There are exceptions, however, 
such as when the steps are constrained to occur at the peaks of the 
FM wave, in which case the tails of the power spectrum behave 
as f~‘. 
3 With PCM/FM a value of D around 0.7 has been shown to 

yield minimum probability of error for a given received power.4
4 E. L. Smith, “Attainable error probabilities in demodulation 

of random binary PCM/FM waveforms,” IRE Trans, on Space 
Electronics and Telemetry, vol. SET-8, pp. 290-297: December, 
1962. 
6 A. D. Watt, y. J. Zurick and R. M. Coon, “Reduction of 

adjacent-channel interference components from frequency shift-
keyed carriers,” IRE Trans, on Communications Systems, vol. 
CS-6, pp. 39-47; December, 1958. 
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frequency-modulated oscillator is written as 

e(0 = V2 cos uct + A“ ^(0 dt' + 0 j, (1) 

where 
uc is the carrier angular frequency 
V(t) is the frequency modulating waveform 
Au is the constant which fixes the degree of modu¬ 

lation 
I is time measured from some reference time ta 
0 is a phase angle. 

In the problem under discussion V(I) is a binary wave¬ 
form which can assume only two values, +1 and — 1, 
both with probability 0.5. Transitions in V\t) are instan¬ 
taneous and arc separated in time by an amount qT, q 
being an integer greater or equal to one, and T denotes 
the bit length or the reciprocal of the bit rate /B. A sequence 
V(i) can be generated by tossing a true coin every T 
seconds and writing +1 for heads and —1 for tails. 

If ^(i) is defined as 

W) = Au f VC') dl' + 0 (2) 

(1) can be rewritten as 

c(/) = V 2 cos [wj + (3) 

It has been shown that k(r), the autocorrelation function 
of c(i), can be written as 

/.(t) = Ä’{c(f)'c(i + t)) (4) 

= Heal part )], (5) 

provided that 4M + r) — 4M) is stationary.6 In the present 
case ̂ (r) — ̂ (0) is evenly distributed about zero and (5) 
simplifies to 

/•■(r) = cos (o.T-Ä’{ei"H”’* (0,, |- (6) 
For the purpose of evaluating k(r), it is convenient 

to define a new random process </>(/) as 

4>(t + ¿) = ipO), (") 
with — 5 denoting the value of t in the interval — T < t < 0 
at which a bit transition is possible. 8 is a random variable 
with uniform probability density p(8), such that 

= k 0 < 6 < T, 
(8) 

p(á) = 0, ó < 0, 8> T. 
Fig. 1 shows the possible values for <f>(r) — </>(0) as a 
function of t. In terms of <A(í) and ó, k(r), given by (6), 
can be written as 

k(r) = cos^r-iV’*'’*”’*“”1) (9) 

= cos UctR(t). 

6 In (4) and (5) and in what follows KIA ] denotes the statistical 
average of the random variable X. Eq. (5) is exact only if 0 is 
independent of ^(t) and uniformly distributed between 0 and 2r. 
It is approximately correct, regardless of the statistics of 0. if e(t) 
is narrowband. See D. Middleton, “The distribution of energy in 
randomly modulated waves,” Phil. Mag., Ser. 7, vol. XLII, p. 689; 
July, 1951. 
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The evaluation of R(r), which is defined in (9), will 
be carried out in two steps: R(r) will be computed for 
0 < r < T, and then for nT < r < (n + 1)7’, n = 1, 2, 
3, • • • . For the purpose of computing R(r) for 0 < r < T, 
define set A as consisting of the set of all <j>(t + 5) for 
which á satisfies 0 < ô < T — r, and let set B consist of 
the set of all 4M + 5) for which ó satisfies T — r < 8 < T. 
Accordingly, P(A), the probability of set A and P(B), 
the probability of set B. are given by 

P(A) = 

P(B) = J-

Consideration of Fig. 1 shows that over set A </>(r + ¿) — 
</>(ô) is given by 

</>.<(r + 8) — 4>a(8) = k,Aur, k, = ±1, 

and R.M, the contribution of set A to R(r), is 

Ra(t) = PfA)-^4'4"] 

T — T 
RaM = —™- cos Aut . 

Over set B </>(r + 5) — </>(á) can be written as 

4>h(t + 5) — </>b(¿) = k¡Au(T — ó) + k¿Au(r LS- T) , 
k, = ± 1, k2 ± 1, 

and Rb(t), the contribution of set B to R^t), is 

RM = (12) 
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Averaging (12) over kt and k2 gives 

RM P(B) 
4 

■Ele**1 I ->àwr I Jâ»(r + 2Í-2D i -i&w(r + 2i-2T) 
r e -f- e -f- e (13) 

In (13) 3 is uniformly distributed in the interval T — r < 
3 < T and has a probability density 1/r over this interval. 
Accordingly, (13) can be written as 

i Aw (r-2i-2T) e 

(14) 
n / \ T T sin Awr RM = - cos Acor + 

R.M = 

1 ds

R(r), for 0 < t < T can now be obtained by adding (11) 
and (14) 

R(r) = 2T - t 
2T COS Amt + sin Amt 

Amt 
0 < t <T. (15) 

Now consider R(t) for t in the interval nT < t < 
(n + 1)T, n = 1, 2, 3, • • • and let set C consist of all 
4>(r + 3) for which 0 < (r — nT) + 3 < T, and, similarly, 
let set D consist of all </>(r + 3) for which T < (r — nT) 
+ 3 < 2T. 

If t, is defined as 

t. = t - nT, (16) 

we have 

T — T P^C) = 
(17) 

PW = 

Over set C, <t>(r + 3) — </>(3) can be written as 

^c(r + 3) — ÿ>c(3) 

= ̂ AmIT — 3) + pAmT + k2AM(T, 4- 3), (18) 

kt = ±1 , k2 = ± 1, 

where p denotes the number of 4-1 ’s minus the number 
of — 1’s in the bit pattern </>(r) — </>(0) over the interval 
T < t < nT. Thus, p can assume the (n — 1) values: 
(n — 1), (n — 3) • • • , — (n — 1). Rc(t), the contribution 
of set C to R (t) is 

Noting that over set C, 3 is uniformly distributed between 
0 < 3 < T — t„ it is easily verified that the first average 
in (20) is 

= I cos + rJ

: 2 2{T - T lAw SI " ‘ ' T’)' 21

The second average in (20) involves p which has a 
Bernoulli distribution, and it follows that 

= cos (.-n Aw7 , (22)

This result can be obtained directly from the character¬ 
istic function for the Bernoulli distribution or by applica¬ 
tion of the binomial expansion theorem. Substituting 
(17), (21) and (22) into (20) gives 

— t,) cos Am)T 4- t,) 4—?—sin Am(T — r,)f, 
Am J 

cos«" 11 AmT 
~~2T~ 

nT < t < (n+ 1)T. (23) 

Over set D, <^(r 4* 3) — </>(3) can be written as 

0o(r + 3) — <£(3) 

= k^Mtr - 3) + pAmT + k2Au(r. + 3 - T), (24) 

and RM), the contribution of set 1) to R(t), is 

RM (25) 

In (24) p is defined as in (18), but now p takes on the 
values n, n — 2, • • • — n. The average value of (25) is 
obtained by retracing the steps followed to obtain the 
average value of (19). Rd(t) is found to be 

RM cos" AmT 
2T t. cos Amt. + sin Amt, ?, 

Am J 

nT < t < (n + 1)T. (26) 

Adding (23) and (24) gives R(t) which can be written as 

nf \   n z \ i n z x COS AmT \ Í sin Am! \ 1M = RM + RM = «- ) I cos AmT 4 -— I “ I \ / / 

• cos Amt, T - T. 1 —y- sin AwT’sin Amt, p 

nT < t <(n + 1)T. (27) 

Eqs. (27) and (15) describe R(t) for r > 0. R(t) is auto¬ 
matically known for r < 0, because R (r) must be an even 
function of r. 

RM = P(C)-E[e'â“l‘,<r"a>+ ‘’ r+‘,(r,+”1] (19) 

and because the random variable p is independent of 
kit k2 and 3, (19) can be written as 

RM = P(C)Œ[M lk'(T-‘>+k'(r‘+l, ']-EM’T (20) 

Computation of Power Spectrum 

In the last section an expression for the autocorrelation 
function was computed and the result written in the 
form 

k(r) = cos mct R{t). 
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Substituting (33) into (32) gives Fourier 

cos az dz 
cos acr-R(j) e 

sin az (28) 
= IW.) + H-UMM 

«(-/«)] In (28) the star denotes convolution, |[ô(A) + 

E« 1 
(34) can be written in closed form as dr = 

1 — cos 9) cos aT GrO) = 1 — 2 cos 0 cos aT + cos2 0| 

cos az dz — sin aT 

cos Aaz • cos wz dz f(z) coswz- cos 
0 

sin Aaz cos az dz — sin 0 •COS Aar GM = 2 
P 7 „ . sin 0' I cos 0 4- — 

9 sin 0 cos <t> — <t> sin 0 cos cos ar dr. = T e2 -

— sin 0| 

(02 + 02) sin <t> sin 9 — 2<j>9 cos 9 sin , (36) 
GM = (0 - 0) (0 + 0) and 

2 sin •sin az dz 
(31) 

(0 + <t>y 
(37) sin Auz-sin az dz Now consider — sin 9 

COS ar dr, 9 sin 9 sin <t> M <t> cos 9 cos 4> 
= T 92 - <t>¿

which upon substitution of z for r — nT becomes (02 + 02) sin 0 sin 0 — 200 cos 9 cos 
— sin 0| <02 -«7 RM + nT) cos w(z + nT) dz GM = 2 

22 cos anT 
n- 1 

cos az dz = 2 

sin az dz. (cos 9 — cos0) (39) 

Note that RM 
cos (33) RM + nT) = 2 

with 

/(*) = 

Writing 9 for AaT, and 0 for aT, the above integral can be 
written as 

The desired power spectrum S(j) is given by the 
transform of k(r) 

In view of the form in which R(r) was obtained, (29) is 
rewritten as 

is the power spectrum corresponding to cos aer, and G(j) 
is the power spectrum corresponding to R(r), i.e., 

The two integrals in (35) are elementary and are readily 
evaluated. The result is where RM) is the expression for ß(r) applicable for 

nT < r < (n + 1)7’ as given by (15) and (27). It turns 
out to be convenient to evaluate GM) separately and 
22" GM) as a group. Consider GM) which is given by 

( f(z) sin az dz = 
0 

-•/w, 

(32) 

+ nT) given by (27) can be written as 

(38) 

Substituting (38) and (36) into (35) and adding the 
result to (31) gives GM- Fortunately, many terms cancel 
one another out leaving the following simple equation 

„ , sin 0 cos 0 4- — u 

dz. (34) 

<t>2)2 (1 — 2 cos 0 cos 0 4- cos2 0)’ 
|cos 0¡ < 1. 

cos ar dr. (29) 

RM) cos ar dr, (30) 

The complete power spectrum can be obtained by 
substituting (39) into (28). The final result is simpler, 
however, if we change the frequency variable to X = 

’ H. B. Dwight, “Tables of Integrals and Other Mathematical 
Data,” The Macmillan Co., New York, N. Y., p. 85; 1957. 

sin

„ . sin 0 , . . cos 9 4- 7— cos Aaz - sin 9-o 

2 22 sin anT- I Jo 

(29 + 0) 
9 

, . , , , 2 sin:T_ sin (0 — 0) , sin (0 4- 0) , 
2 L (0-0) 

_9__ 
92 - 02

GM) = 22 cos nT • cos" '9- J 
n-1 Jo 
— 22 sin na>T'COs"~‘ 9-

n —1 

With the help of the identities7
A . 1 — a cos aT 2 . a cos nal =  - z- i— ã> V 1 — 2a cos al 4- a 

sin az dz . (35) 

„ a sin aT 
sin nal = -- z- m _i_ „ 1 — 2a cos al 4~ a 
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2(/ — fe)/fa- Thus, X = 1 corresponds to a frequency 
half the bit rate higher than the carrier frequency. It is 
also convenient to express 0 in terms of the deviation 
ratio, D, which is usually defined as D = 2Af/fB = 0/r. 
In terms of X and D the desired power spectrum is 
written as 

a>if\ = — 

w  1b L^d2 - X2). 

_ (cos rD — COS irX)2 . 
■(1 - 2 cos tD- costX + cos2tD)’ COS *D \ < L <40) 

If |cos = 1, (40) does not apply. In this case, how¬ 
ever, sin 0 = 0 and R(r) as given by (27) can be simplified 
to the following form 

nique; also, experimental work referenced by him indi¬ 
cates that a value of D near 0.7 yields minimum proba¬ 
bility of error for demodulation with conventional fre¬ 
quency discriminators. 

In studying the behavior of the power spectrum, it is 
helpful to note that the power spectrum, as expressed by 
(40), consists of the product of an envelope term 

and a term 

4 
r2fB

D 
D2 - X2 (42) 

_ (cos irD — cos tX)2_ 
1—2 cos tD cos rX + cos2 ttD' (43) 

R{r) = I COS Aur + f(r), 
p _ T 

Kt) = 2T C0S + 

= 0, r > T. 
The power spectrum corresponding to | cos Aor is clearly 
that of two sine waves, one at frequency (oe — Aw), the 
other at frequency (we -f- Aw). Each sine wave has a power 
of 0.25 watt. In addition to the discrete spectrum, there 
is a continuous spectrum with a total power of 0.5 watt 
which is obtained by taking the Fourier transform of /(r). 
It is easily verified that the continuous portion of this 
spectrum can be written as 

2^2
T - 1272 (1 — COS 0 cos<f>). 

(0 — <t> ) 

In terms of X and D, defined as in (40), the total power 
spectrum can be written as 

S'If) = }Í(X + D) + ¡í(X - D) 

0 < 7, 

2AwT Sln ̂ T' T T

+ 2 _ D_ 
1b Lt(O2 - A2) • ( 1 — cos tt D cos tX) , 

|costtD| = 1, D # 0. (41) 

Discussion of Results 

The principal results of this paper are given by (15), 
(27), (40), and (41). Eqs. (15) and (27) give the envelope 
of the autocorrelation function of a PCM/FM wave for 
random binary modulation, and (40) and (41) give the 
corresponding power spectrum. 

Fig. 2 shows plots obtained from (40) and (41) for 
deviation ratios of 0.5, 0.7, 0.8, and 1.0. Only one half 
°f S'(f) is shown since S'(fl is symmetrical about jc. It is 
interesting to note that the power spectrum corresponding 
to D = 0.7 gives almost constant spectral density over 
a bandwidth equal to the bit rate, and that the spectral 
density dies down abruptly outside this frequency band. 
It is shown by Smith4 that D = 0.715 yields minimum 
probability of error with optimum demodulation tech-

8 “Telemetry System Study,” vol. 2, Aeronutronic Sys., Inc., 
Newport Beach, Calif.; and “Experimental Evaluation Program,” 
U. S. Army Signal Research and Dev. Labs., Ft. Monmouth, 
N. J., Contract No. DA-36-039, SC-73182, December, 1959. 

which is periodic in X. Fig. 3 shows a geometrical interpre¬ 
tation of (43) which clearly displays the behavior of (43) 
with variations in X or D. 

For small values of D the power spectrum is crowded in 
the region of small X. If D « 1, (36) can be rewritten as 

S'(j) 
1 + 

4 
1btD2 2x y 

jrD2) 

D«l, X < 0.5. (44) 

Thus, for very small values of D the carrier is smeared 
into a spectrum having the shape of a high-Q resonance 
curve centered on the carrier frequency and having a 3-db 
bandwidth of lirfBD2. 

Fig. 4 shows the theoretical power spectrum for D = 0.8 
and the measured power spectrum for D = 0.8 and a 
6-pole Butterworth premodulation filter having a 3-db 
bandwidth equal to the bit rate. The experimental result 
is Fig. II-3-15.8 It is seen that the primary effect of the 
premodulation filter is to attenuate the tails of the power 
spectrum and to smooth the fine structural details in the 
spectrum. 

Fig. 5 shows the same experimental result as Fig. 4 in 
addition to an approximate computed result which 
accounts for premodulation filtering by the method of 
Watt, Zurick and Coon.3 Clearly, the theoretical result 
is sufficiently accurate to yield useful information with 
regard to adjacent channel interference problems. The 
procedure for obtaining the theoretical result of Fig. 5 may 
be described as follows. The power spectrum of PCM/FM 
before filtering is written as SIX'), and the frequency 
response of the premodulation filter, translated about the 
carrier (or average) frequency is written as F(X). Sf(X), 
the power spectrum with premodulation filtering, is then 
written as 

syx) = S(X), 0 < X < D 

S,(X) = SWFIX - D), D < X 

Sf(-X) = syxy all values of X. 

In the case of Fig. 5, S(X) is available from Fig. 4 or (40), 
and F(X) for a 6-pole Butterworth filter with a cutoff 
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Fig. 2—Power spectrum of PCM/FM with deviation ratio as a 
parameter. 

ÕÃ ■ COS - D (DRAWN FOR COS - 0 = *0.6 

2 2 
TC • (COS - 0 - COS 7 1 r 

2 2 
ÃB" - I - 2 COS T D COS tX + COS *r0 

2 

EQUATION 43 = - J 

ÃT 

Fig. 3—Geometrical interpretation of (43). 

frequency equal to the bit rate is 

The procedure just described has also been used suc¬ 
cessfully to predict adjacent channel interference levels 
for a 3-pole Butterworth filter having a cutoff frequency 
equal to half the bit rate and for a 5-pole Bessel filter with 
cutoff frequency equal to the bit rate. This simple tech¬ 
nique appears to yield useful results in cases of practical 
interest. It should be remembered, however, that there 
are cases in which it fails completely, e.g., the ideal sharp 
cutoff premodulation filter. 

Fig. 4—Spectrum of PCM/FM. 

Fig. 5—Power spectrum of PCM/FM with premodulation filtering. 
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What Is Science?, 
Norman Campbell 

This excellent introduction explains scientific method, role of mathematics, 
types of scientific laws. Contents: 2 aspects of science, science & nature, laws of 
science, discovery of laws, explanation of laws, measurement & numerical laws, 
applications of science. 192pp. 5^ x 8. 60043-2 Paperbound $1.25 

Fads and Fallacies in the Name of Science, 
Martin Gardner 

Examines various cults, quack systems, frauds, delusions which at various times 
have masqueraded as science. Accounts of hollow-earth fanatics like Symmes; 
Velikovsky and. wandering planets; Hoerbiger; Bellamy and the theory of 
multiple moons; Charles Fort; dowsing, pseudoscientific methods for finding 
water, ores, oil. Sections on naturopathy, iridiagnosis, zone therapy, food fads, 
etc. Analytical accounts of Wilhelm Reich and orgone sex energy; L. Ron 
Hubbard and Dianetics; A. Korzybski and General Semantics; many others. 
Brought up to date to include Bridey Murphy, others. Not just a collection of 
anecdotes, but a fair, reasoned appraisal of eccentric theory. Formerly titled 
In the Name of Science. Preface. Index, x -|- 384pp. 53^ x 8. 

20394-8 Paperbound $2.00 

Physics, the Pioneer Science, 
L. W. Taylor 

First thorough text to place all important physical phenomena in cultural-
historical framework; remains best work of its kind. Exposition of physical 
laws, theories developed chronologically, with great historical, illustrative 
experiments diagrammed, described, worked out mathematically. Excellent 
physics text for self-study as well as class work. Vol. 1: Heat, Sound: motion, 
acceleration, gravitation, conservation of energy, heat engines, rotation, heat, 
mechanical energy, etc. 211 illus. 407pp. 5 Vs x 8. Vol. 2: Light, Electricity: 
images, lenses, prisms, magnetism. Ohm’s law, dynamos, telegraph, quantum 
theory, decline of mechanical view of nature, etc. Bibliography. 13 table 
appendix. Index. 551 illus. 2 color plates. 508pp. 5.% x 8. 

60565-5, 60566-3 Two volume set, paperbound $¡5.50 

The Evolution of Scientific Thought from Newton to Einstein, 
A. d’Abro 

Einstein's special and general theories of relativity, with their historical implica¬ 
tions, are analyzed in non technical terms. Excellent accounts of the contri¬ 
butions of Newton, Riemann, Weyl, Planck, Eddington, Maxwell, Lorentz and 
others are treated in terms of space and time, equations of electromagnetics, 
finiteness of the universe, methodology- of science. 21 diagrams. 482pp. 53% x 8. 

20002-7 Paperbound $2.50 
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('.Hance, Luck and Statistics: The Science of Chance, 
Horace C. Levinson 

Theory of probability and science of statistics in simple, non technical language. 
Part I deals with theory of probability, covering odd superstitions in regard to 
"luck," the meaning of betting odds, the law of mathematical expectation, 
gambling, and applications in poker, roulette, lotteries, dice, bridge, and other 
games of chance. Part If discusses the misuse of statistics, the concept of statis¬ 
tical probabilities, normal and skew frequency distributions, and statistics ap¬ 
plied to various fields—birth rates, stock speculation, insurance rates, advertis¬ 
ing. etc. "Presented in an easy humorous style which I consider the best kind of 
expository writing," Prof. A. C. Cohen, Industry Quality Control. Enlarged 
revised edition. Formerly titled The Science of Chance. Preface and two new 
appendices by the author, xiv -|- 365pp. 5% x 8. 21007-3 Paperbound $2.00 

Basic Electronics, 
prepared by the U.S. Navy Training Publications Center 

A thorough and comprehensive manual on the fundamentals of electronics. 
Written clearly, it is equally useful for self-study or course work for those with 
a knowledge of the principles of basic electricity. Partial contents: Operating 
Principles of the Electron Tube; Introduction to Transistors; Power Supplies 
for Electronic Equipment; Tuned Circuits; Electron-Tube Amplifiers; Audio 
Power Amplifiers; Oscillators; Transmitters; Transmission Lines; Antennas and 
Propagation; Introduction to Computers; and related topics. Appendix. Index. 
Hundreds of illustrations and diagrams, vi -p 471pp. 6J4 x 914. 

61076-4 Paperbound S2.95 

Basic Theory and Application of Transistors, 
prepared by the U.S. Department of the Army 

An introductory manual prepared for an army training program. One of the 
finest available surveys of theory and application of transistor design and 
operation. Minimal knowledge of physics and theory of electron tubes required. 
Suitable for textbook use, course supplement, or home study. Chapters: Intro¬ 
duction; fundamental theory of transistors; transistor amplifier fundamentals; 
parameters, equivalent circuits, and characteristic curves; bias stabilization; 
transistor analysis and comparison using characteristic curves and charts; audio 
amplifiers; tuned amplifiers; wide band amplifiers; oscillators; pulse and switch¬ 
ing circuits; modulation, mixing, and demodulation; and additional semi¬ 
conductor devices. Unabridged, corrected edition. 240 schematic drawings, 
photographs, wiring diagrams, etc. 2 Appendices. Glossary. Index. 263pp. 
614x914. 60380-6 Paperbound $1.75 

Guide to the Literature of Mathematics and Physics, 
N. G. Parke III 

Over 5000 entries included under approximately 120 major subject headings of 
selected most important books, monographs, periodicals, articles in English, 
plus important works in German, French, Italian, Spanish, Russian (many 
recently available works). Covers every branch of physics, math, related engi¬ 
neering. Includes author, title, edition, publisher, place, date, number of 
volumes, number of pages. A qo-page introduction on the basic problems of 
research and study provides useful information on the organization and use of 
libraries, the psychology of learning, etc. This reference work will save you 
hours of time. 2nd revised edition. Indices of authors, subjects, 464pp. 5*4 x 8. 

60447-0 Paperbound $2.75 
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The Rise of the New Physics (formerly The Decline of Mechanism), 
A. d’Abro 

I his authoritative and comprehensive 2-volume exposition is unique in scien¬ 
tific publishing. Written for intelligent readers not familiar with higher 
mathematics, it is the only thorough explanation in non-technical language of 
modern mathematical-physical theory. Combining both history and exposition, 
it ranges from classical Newtonian concepts up through the electronic theories 
of Dirac and Heisenberg, the statistical mechanics of Fermi, and Einstein's 
relativity theories. "A must for anyone doing serious study in the physical 
sciences,” J. of Franklin Inst. illustrations. 991pp. 2 volumes. 

20003-5, 20004-3 Two volume set, paperbound $5.50 

I he Strange Story of the Quantum, an Account for the General 
Reader of the Growth of Ideas Underlying Our Present Atomic 
Knowledge, B Hoffmann 

Presents lucidly and expertly, with barest amount of mathematics, the problems 
and theories which led to modern quantum physics. Dr. Hoffmann begins with 
the closing years of the 19th century, when certain trifling discrepancies were 
noticed, and with illuminating analogies and examples takes you through the 
brilliant concepts of Planck, Einstein, Pauli, de Broglie, Bohr, Schroedinger, 
Heisenberg, Dirac, Sommerfeld, Feynman, etc. This edition includes a new, long 
postscript carrying the story through 1958. "Of the books attempting an account 
of the history and contents of our modern atomic physics which have come to 
my attention, this is the best," H. Margenau, Yale University, in American 
Journal of Physics. 32 tables and line illustrations. Index. 275pp. 5^ x 8. 

20518-5 Paperbound S2.00 

Great Ideas and Theories of Modern Cosmology, 
Jagjit Singh 

The theories of Jeans, Eddington. Milne. Kant. Bondi, Gold, Newton, Einstein. 
Gamow, Hoyle, Dirac, Kuiper, Hubble, Weizsäcker and many others on such 
cosmological questions as the origin of the universe, space anti time, planet 
formation, "continuous creation,” the birth, life, and death of the stars, the 
origin of the galaxies, etc. By the author of the popular Great Ideas of Modern 
Mathematics. A gifted popularizer of science, he makes the most difficult 
abstractions crystal-clear even to the most non-matheinatical reader. Index, 
xii J- 276pp. 534 x 8i/£. 20925-3 Paperbound $2.50 

Great Ideas of Modern Mathematics: Their Nature and Use, 
Jagjit Singh 

Reader with only high school math will understand main mathematical ideas 
of modern physics, astronomy, genetics, psychology, evolution, etc., better than 
many who use them as tools, but comprehend little of their basic structure. 
Author uses his wide knowledge of non-mathematical fields in brilliant exposi¬ 
tion of differential equations, matrices, group theory, logic, statistics, problems 
of mathematical foundations, imaginary numbers, vectors, etc. Original publica¬ 
tions, appendices, indexes. 65 illustr. 322pp. 5% x 8. 20587-8 Paperbound $2.25 

The Mathematics of Great Amateurs, Julian L. Coolidge 
Great discoveries made by poets, theologians, philosophers, artists and other 
non mathematicians: Omar Khayyam. Leonardo da Vinci. Albrecht Durer, 
John Napier, Pascal, Diderot, Bolzano, etc. Surprising accounts of what can 
result from a non-professional preoccupation with the oldest of sciences. 56 
figures, viii 4- 211pp. 5% x 814. 61009-8 Paperbound $2.00 
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College Algebra, H. B. Fine 
Standard college text that gives a systematic and deductive structure to algebra; 
comprehensive, connected, with emphasis on theory. Discusses the commutative, 
associative, and distributive laws of number in unusual detail, and goes on 
with undetermined coefficients, quadratic equations, progressions, logarithms, 
permutations, probability, power series, and much more. Still most valuable 
elementary-intermediate text on the science and structure of algebra. Index. 
1560 problems, all with answers, x ~p 631pp. 5% x 8. 6021 1-7 Paperbound $2.75 

Higher Mathematics for Students of Chemistry and Physics, 

J. W. Mellor 
Not abstract, but practical, building its problems out of familiar laboratory 
material, this covers differential calculus, coordinate, analytical geometry, 
functions, integral calculus, inñnite series, numerical equations, differential 
equations, Fourier’s theorem, probability, theory of errors, calculus of varia¬ 
tions, determinants. "If the reader is not familiar with this book, it will repay 
him to examine it," Chem. & Engineering News. 800 problems. 189 figures. 
Bibliography, xxi -p 641pp. 53^ x 8. 60193-5 Paperbound $3.50 

Trigonometry Refresher for Technical Men, 
A. A. Klaf 

A modern question and answer text on plane and spherical trigonometry. Part I 
covers plane trigonometry: angles, quadrants, trigonometrical functions, graph¬ 
ical representation, interpolation, equations, logarithms, solution of triangles, 
slide rules, etc. Part II discusses applications to navigation, surveying, elasticity, 
architecture, ami engineering. Small angles, periodic functions, vectors, polar 
coordinates, De Moivre's theorem, fully covered. Part III is devoted to spherical 
trigonometry and the solution of spherical triangles, with applications to 
terrestrial and astronomical problems. Special time-savers for numerical calcula¬ 
tion. 913 questions answered for you! 1738 problems; answers to odd numbers. 
494 figures. 14 pages of functions, formulae. Index, x -p 629pp. 5^6 x 8-

20371-9 Paperbound $3.00 

Calculus Refresher for Technical Men, 
A. A. Klaf 

Not an ordinary textbook but a unique refresher for engineers, technicians, 
and students. An examination of the most important aspects of differential and 
integral calculus by means of 756 key questions. Part I covers simple differential 
calculus: constants, variables, functions, increments, derivatives, logarithms, 
curvature, etc. Part II treats fundamental concepts of integration: inspection, 
substitution, transformation, reduction, areas and volumes, mean value, succes¬ 
sive and partial integration, double and triple integration. Stresses practical 
aspects! A 50 page section gives applications to civil and nautical engineering, 
electricity, stress and strain, elasticity, industrial engineering, and similar fields. 
756 questions answered. 556 problems; solutions to odd numbers. 36 pages of 
constants, formulae. Index, v -p 431pp. 5% x 8. 20370-0 Paperbound $2.25 

Introduction to the Theory of Groups of Finite Order, 
R. Carmichael 

Examines fundamental theorems and their application. Beginning with sets, 
systems, permutations, etc., it progresses in easy stages through important types 
of groups: Abelian, prime power, permutation, etc. Except 1 chapter where 
matrices are desirable, no higher math needed. 783 exercises, problems. Index, 
xvi -p 447pp. 5% x 8. 60300-8 Paperbound $3.00 
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FIVE VOLUME “THEORY OF FUNCTIONS" SET BY KONRAD KNOPP 

This five-volume set, prepared by Konrad Knopp, provides a complete and 
readily followed account of theory of functions. Proofs are given concisely, yet 
without sacrifice of completeness or rigor. These volumes are used as texts by 
such universities as M.I.T., University of Chicago, N. Y. City College, and many 
others. "Excellent introduction . . . remarkably readable, concise, clear, rigor¬ 
ous," Journal of the American Statistical Association. 

Elements of the Theory of Functions, 
Konrad Knopp 

I his book provides the student with background for further volumes in this 
set, or texts on a similar level. Partial contents: foundations, system of complex 
numbers and the Gaussian plane of numbers, Riemann sphere of numbers, 
mapping by linear functions, normal forms, the logarithm, the cyclometric 
functions and binomial series. “Not only for the young student, but also for the 
student who knows all about W'hat is in it," Mathematical Journal. Bibliography. 
Index. 140pp. 5% X 8. 60154-4 Paperbound Ç1.50 

Theory of Functions, Part I, 
Konrad Knopp 

With volume II, this book provides coverage of basic concepts and theorems. 
Partial contents: numbers and points, functions of a complex variable, integral 
of a continuous function, Cauchy’s integral theorem, Cauchy's integral for¬ 
mulae, series with variable terms, expansion of analytic functions in power 
series, analytic continuation and complete definition of analytic functions, 
entire transcendental functions, Laurent expansion, types of singularities. 
Bibliography. Index, vii 4. 146pp. 5.% x 8. 60156-0 Paperbound $1.50 

Theory of Functions, Part II, 
Konrad Knopp 

Application and further development of general theory, special topics. Single 
valued functions. Entire, Weierstrass, Meromorphic functions. Riemann sur¬ 
faces. Algebraic functions. Analytical configuration, Riemann surface. Bibliog¬ 
raphy. Index, x 4- 150pp. 5% x 8. 60157-9 Paperbound $1.50 

Problem Book in the Theory of Functions, Volume 1. 
Konrad Knopp 

Problems in elementary theory, for use with Knopp's Theory of Functions, or 
any other text, arranged according to increasing difficulty. Fundamental con¬ 
cepts, sequences of numbers and infinite series, complex variable, integral 
theorems, development in series, conformal mapping. 182 problems. Answers, 
viii -|- 126pp. 5^ x 8. 60158-7 Paperbound $1.50 

Problem Book in the Theory of Functions, Volume 2, 
Konrad Knopp 

Advanced theory of functions, to be used either with Knopp's Theory of 
Functions, or any other comparable text. Singularities, entire & meromorphic 
functions, periodic, analytic, continuation, multiple-valued functions, Riemann 
surfaces, conformal mapping. Includes a section of additional elementary prob¬ 
lems. I he difficult task of selecting from the immense material of the modern 
theory of functions the problems just within the reach of the beginner is here 
masterfully accomplished," Am. Math. Soc. Answers. 138pp. 5s^ x 8. 

60159-5 Paperbound $1.50 
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Numerical Solutions of Differential Equations, 
H. Levy & E. A. Baggott 

Comprehensive collection of methods for solving ordinary differential equations 
of first and higher order. All must pass 2 requirements: easy to grasp and 
practical, more rapid than school methods. Partial contents: graphical integra¬ 
tion of differential equations, graphical methods for detailed solution. Numer¬ 
ical solution. Simultaneous equations and equations of 2nd and higher orders. 
"Should be in the hands of all in research in applied mathematics, teaching," 
Nature. 21 figures, viii 4- 238pp. 5.% x 8. 60168-4 Paperbound $1.85 

Elementary Statistics, with Applications in Medicine and the 
Biological Sciences, F. E. Croxton 

A sound introduction to statistics for anyone in the physical sciences, assum¬ 
ing no prior acquaintance and requiring only a modest knowledge of math. 
All basic formulas carefully explained and illustrated; all necessary reference 
tables included. From basic terms and concepts, the study proceeds to frequency 
distribution, linear, non-linear, and multiple correlation, skewness, kurtosis, 
etc. A large section deals with reliability and significance of statistical methods. 
Containing concrete examples from medicine and biology, this book will prove 
unusually helpful to workers in those fields who increasingly must evaluate, 
check, and interpret statistics. Formerly titled "Elementary Statistics with Ap¬ 
plications in Medicine.” 101 charts. 57 tables. 14 appendices. Index, vi -|-
376pp. 58% x 8. 60506-X Paperbound $2.25 

Introduction to Symbolic Logic, 
S. Langer 

No special knowledge of math required — probably the clearest book ever 
written on symbolic logic, suitable for the layman, general scientist, and philos¬ 
opher. You start with simple symbols and advance to a knowledge of the 
Boole-Schroeder and Russell-Whitehead systems. Forms, logical structure, classes, 
the calculus of propositions, logic of the syllogism, etc. are all covered. “One 
of the clearest and simplest introductions," Mathematics Gazette. Second en¬ 
larged, revised edition. 368pp. 5.% x 8. 60164-1 Paperbound $2.25 

A Short Account of the History of Mathematics, 
W. W. R. Ball 

Most readable non technical history of mathematics treats lives, discoveries of 
every important figure from Egyptian, Phoenician, mathematicians to late 19th 
century. Discusses schools of Ionia, Pythagoras, Athens, Cyzicus, Alexandria, 
Byzantium, systems of numeration; primitive arithmetic; Middle Ages, Renais¬ 
sance, including Arabs, Bacon, Regiomontanus, Tartaglia, Cardan, Stevinus, 
Galileo, Kepler; modern mathematics of Descartes, Pascal, Wallis, Huygens, 
Newton, Leibnitz, d’Alembert, Euler, Lambert, Laplace, Legendre, Gauss, 
Hermite, Weierstrass, scores more. Index. 25 figures. 546pp. 53^ x 8. 

20630-0 Paperbound $2.75 

Introduction to Nonlinear Differential and Integral Equations, 
Harold T. Davis 

Aspects of the problem of nonlinear equations, transformations that lead to 
equations solvable by classical means, results in special cases, and useful 
generalizations. Thorough, but easily followed by mathematically sophisticated 
reader who knows little about non-linear equations. 137 problems for student 
to solve. XV -P 566pp. 53% x 81/$. 60971-5 Paperbound $2.75 
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An Introduction to the Geometry of N Dimensions, 
D. H. Y. Sommerville 

An introduction presupposing no prior knowledge of the field, the only book 
in English devoted exclusively to higher dimensional geometry. Discusses 
fundamental ideas of incidence, parallelism, perpendicularity, angles between 
linear space; enumerative geometry; analytical geometry from projective and 
metric points of view; polytopes; elementary ideas in analysis situs; content of 
hyper-spacial figures. Bibliography. Index. 60 diagrams. 196pp. 5^ x 8. 

60494-2 Paperbound $1.50 

Elementary Concepts of Topology, P. Alexandroff 
First English translation of the famous brief introduction to topology for the 
beginner or for the mathematician not undertaking extensive study. This un¬ 
usually useful intuitive approach deals primarily with the concepts of complex, 
cycle, and homology, and is wholly consistent with current investigations. 
Ranges from basic concepts of set-theoretic topology to the concept of Betti 
groups. "Glowing example of harmony between intuition and thought,” David 
Hilbert. I ranslated by A. E. Farley. Introduction by D. Hilbert. Index. 25 
figures. 73pp. 5s/8 x 8. 60747-X Paperbound S1.25 

Elements of Non-Euclidean Geometry, 
D. M. Y. Sommerville 

Unique in proceeding step-by-step, in the manner of traditional geometry. 
Enables the student with only a good knowledge of high school algebra and 
geometry to grasp elementary hyperbolic, elliptic, analytic non-Euclidean geom¬ 
etries; space curvature and its philosophical implications; theory of radical 
axes; homothetic centres and systems of circles; parataxy and parallelism; 
absolute measure; Gauss' proof of the defect area theorem; geodesic representa¬ 
tion; much more, all with exceptional clarity. 126 problems at chapter endings 
provide progressive practice and familiarity. 133 figures. Index, xvi -|~ 274pp. 
554 x 8. 60460-8 Paperbound $2.00 

Introduction to the Theory of Numbers, L. E. Dickson 
1 horough, comprehensive approach with adequate coverage of classical litera¬ 
ture. an introductory volume beginners can follow. Chapters on divisibility, 
congruences, quadratic residues & reciprocity. Diophantine equations, etc. Full 
treatment of binary quadratic forms without usual restriction to integral coef¬ 
ficients. Covers infinitude of primes, least residues. Fermat’s theorem. Euler’s 
phi function. Legendres symbol. Gauss’s lemma, automorphs, reduced forms, 
recent theorems of I hue & Siegel, many more. Much material not readily 
available elsewhere. 239 problems. Index. I figure, viii _|_ 183pp. 554 x 8. 

60342-3 Paperbound $1.75 

Mathematical Tables and Formulas, 
compiled by Robert D. Carmichael and Edwin R. Smith 

Valuable collection for students, etc. Contains all tables necessary in college 
algebra and trigonometry, such as five-place common logarithms, logarithmic 
sines and tangents of small angles, logarithmic trigonometric functions, natural 
trigonometric functions, four-place antilogarithms, tables for changing from 
sexagesimal to circular and from circular to sexagesimal measure of angles, etc. 
Also many tables and formulas not ordinarily accessible, including powers, 
toots, and reciprocals, exponential and hyperbolic functions, ten-place loga¬ 
rithms of prime numbers, and formulas and theorems from analytical and 
elementary geometry and from calculus. Explanatory introduction, viii | 
269pp. 554 x 81^. 601 11-0 Paperbound Si.50 
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A Sock« i Book in Mathematics, 
D. E. Smith 

(■real discoveries in math, from Renaissance to end oi 19th centniv, in English 
translation. Read announcements by Dedekind, Gauss. Delamain. Pascal. 
Fermat, Newton. Abel. Lobachevsky. Bolyai. Riemann. De Moivre. Legendre. 
Laplace, others of discoveries about imaginary numbers, number congruence, 
slide rule, equations, symbolism, cubic algebraic equations. non-Euclidean 
forms of geometry, calculus, function theory, quaternions, etc. Succinct selec¬ 
tions from 125 different treatises, articles, most unavailable elsewhere in English. 
Each article preceded by biographical introduction. Vol. I: fields of Number. 
Algebra. Index. 32 illus. 338pp. 5^ x 8. Vol. II: Fields of Geometry. Probability, 
Calculus, Functions, Quaternions. 83 illus. 432pp. 5% x 8. 

60552-3, 60553-1 I wo volume set. paperbound $5<>° 

Foundations of Physics. 
H. B. Lindsay & H. Margenan 

Excellent bridge between semi-popular works & technical treatises. A discussion 
of methods of physical description, construction of theory; valuable for physic ist 
with elementary calculus who is interested in ideas that give meaning Io data, 
tools of modern physics. Contents include symbolism: mathematical equations; 
space & time foundations of mechanics; probability; physics & continua; election 
theory; special 8: general relativity ; quantum mechanics; causality. " I borough 
ami vet not overdetailed. Unreservedly recommended.“ Nature (London). 
Unabridged, corrected edition. List of recommended readings. 35 illustrations. 
xi + 537pp. 5% x 8. 60377-6 Paperbound $3.50 

Fundamental Formulas of Physics, 
ed. by D. H. Menzel 

High useful, full, inexpensive reference and study text, ranging from simple 
to highly sophisticated operations. Mathematics integrated into text—each 
chapter stands as short textbook of field represented. Vol. 1: Statistics. Physical 
Constants Special I heory of Relativity. Hydrodynamics, Aerodynamics. 
Boundary Value Problems in Math. Physics, Viscosity. Electromagnetic I heory. 
etc. Vol. 2: Sound, Acoustics, Geometrical Optics. Electron Optics. High I neigy 
Phenomena, Magnetism, Biophysics, much more. Index. Total of 800pp. 5% x 8. 

60595-7,60596-5 I wo volume set. paperboiind S4.75 

Theoretical Physics, 
A. S. Konipaneyets . 

One of the very few thorough studies of the subject in this price range. I rovides 
advanced students with a comprehensive theoretical background. Especially 
strong on recent experimentation and developments in quantum theory. 
Contents: Mechanics (Generalized Coordinates, Lagrange's Equation. Collision 
of Particles etc.). Electrodynamics (Vector Analysis, Maxwell s equations. 
Transmission of Signals. I heory of Relativity, etc.). Quantum Mechanics (the 
Inadequacy of Classical Mechanics, the Wave Equation, Motion in a ( entra 
Field Quantum Theory of Radiation, Quantum Theories of Dispersion and 
Scattering, etc.), and Statistical Physics (Equilibrium Distribution of Molecules 
in an Ideal Gas. Boltzmann Statistics, Bose and Fermi Distribution. 1 hermo 
dynamic Quantities, etc.). Revised to 1961. I ranslated by George Yankovsky, 
authorized by Konipaneyets. 137 exercises. 56 figures. 529pp. 5^ x 8i/£. 

60972-3 Paperbound $3.50 
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Mathematical Physics, D. H. Menzel 
Thorough one-volume treatment of the mathematical techniques vital for 
classical mechanics, electromagnetic theory, quantum theory, and relativity. 
Written by the Harvard Professor of Astrophysics for junior, senior, and grad¬ 
uate courses, it gives clear explanations of all those aspects of function theory, 
vectors, matrices, dyadics, tensors, partial differential equations, etc., necessary 
for the understanding of the various physical theories. Electron theory, rel¬ 
ativity, and other topics seldom presented appear here in considerable detail. 
Scores of definition, conversion factors, dimensional constants, etc. "More 
detailed than normal for an advanced text . . . excellent set of sections on 
Dyadics, Matrices, and Tensors," Journal of the Franklin Institute. Index. 193 
problems, with answers, x 4. 412pp. 5s/8 x 8. 60056-4 Paperbound $2.50 

The Theory of Sound, Lord Rayleigh 
Most vibrating systems likely to be encountered in practice can be tackled 
successfully by the methods set forth by the great Nobel laureate, Lord 
Rayleigh. Complete coverage of experimental, mathematical aspects of sound 
theory. Partial contents: Harmonic motions, vibrating systems in general, lateral 
vibrations of bars, curved plates or shells, applications of Laplace’s functions to 
acoustical problems, fluid friction, plane vortex-sheet, vibrations of solid bodies, 
etc. I his is the first inexpensive edition of this great reference and study work. 
Bibliography, Historical introduction by R. B. Lindsay. Total of 1040pp. 97 
figures. 534 x 8. 60292-3, 60293-1 Two volume set, paperbound $6.00 

Hydrodynamics, Horace Lamb 
Internationally famous complete coverage of standard reference work on 
dynamics of liquids & gases. Fundamental theorems, equations, methods, solu¬ 
tions, background, for classical hydrodynamics. Chapters include Equations of 
Motion, Integration of Equations in Special Gases. Irrotational Motion, Motion 
of Liquid in 2 Dimensions, Motion of Solids through Liquid-Dynamical Theory, 
Vortex Motion, I idal Waves, Surface Waves, Waves of Expansion, Viscosity, 
Rotating Masses of Liquids. Excellently planned, arranged; clear, lucid presenta¬ 
tion. 6th enlarged, revised edition. Index. Over 900 footnotes, mostly bibliogra¬ 
phical. 119 figures. XV 4. 738pp. 614 x 914. 60256-7 Paperbound $4.00 

Dynamical 7 heory of Gases, James Jeans 
Divided into mathematical and physical chapters for the convenience of those 
not expert in mathematics, this volume discusses the mathematical theory of 
gas in a steady state, thermodynamics, Boltzmann and Maxwell, kinetic theory, 
quantum theory, exponentials, etc. 4th enlarged edition, with new material on 
quantum theory, quantum dynamics, etc. Indexes. 28 figures. 444pp. 614 x 914. 

60136-6 Paperbound $2.75 

Thermodynamics, Enrico Fermi 
Unabridged reproduction of 1937 edition. Elementary in treatment; remarkable 
for clarity, organization. Requires no knowledge of advanced math beyond 
calculus, only familiarity with fundamentals of thermometry, calorimetry. 
Partial Contents: Thermodynamic systems; First & Second laws of thermo¬ 
dynamics; Entropy; Thermodynamic potentials: phase rule, reversible electric 
cell; Gaseous reactions: van’t Hoff reaction box, principle of LeChatelier; 
I hermodynamics of dilute solutions: osmotic & vapor pressures, boiling & 
freezing points; Entropy constant. Index. 25 problems. 24 illustrations, x 4. 
160pp. 5% x 60361 -X Paperbound $2.00 
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Celestial Objects for Common Telescopes, 
Rev. T. W. Webb 

Classic handbook for the use and pleasure of the amateur astronomer. Of 
inestimable aid in locating and identifying thousands of celestial objects. Vol I. 
The Solar System: discussions of the principle and operation of the telescope, 
procedures of observations and telescope-photography, spectroscopy, etc., precise 
location information of sun, moon, planets, meteors. Vol. II. The Stars: 
alphabetical listing of constellations, information on double stars, clusters, stars 
with unusual spectra, variables, and nebulae, etc. Nearly 4,000 objects noted. 
Edited and extensively revised by Margaret W. Mayall, director of the American 
Assn, of Variable Star Observers. New Index by Mrs. Mayall giving the location 
of all objects mentioned in the text for Epoch 2000. New Precession Table 
added. New appendices on the planetary satellites, constellation names and 
abbreviations, and solar system data. lotal of 46 illustrations. lotal of xxxix 
-p 606pp. 534 X 8. 20917-2. 20918-0 Two volume set, paperbound $5.00 

Planetary Theory, 
E. IE. Brown and C. A. Shook 

Provides a clear presentation of basic methods for calculating planetary orbits 
for today’s astronomer. Begins with a careful exposition of specialized mathe¬ 
matical topics essential for handling perturbation theory and then goes on to 
indicate how most of the previous methods reduce ultimately to two general 
calculation methods: obtaining expressions either for the coordinates of plane¬ 
tary positions or for the elements which determine the perturbed paths. An 
example of each is given and worked in detail. Corrected edition. Preface. 
Appendix. Index, xii + 302pp. 5s/8 x 8>/2. 61133-7 Paperbound $2.25 

Star Names and Their Meanings, 
Richard Hinckley Allen 

An unusual book documenting the various attributions of names to the 
individual stars over the centuries. Here is a treasure-house of information on 
a topic not normally delved into even by professional astronomers; provides a 
fascinating background to the stars in folk-lore, literary references, ancient 
writings, star catalogs and maps over the centuries. Constellation-by-constella-
tion analysis covers hundreds of stars and other asterisms, including the 
Pleiades, Hyades, Andromedan Nebula, etc. Introduction. Indices. List of 
authors and authorities, xx 4. 563pp. 534 x 814. 21079-0 Paperbound $3.00 

A Short History of Astronomy, A. Berry 
Popular standard work for over 50 years, this thorough and accurate volume 
covers the science from primitive times to the end of the 19th century. After 
the Greeks and the Middle Ages, individual chapters analyze Copernicus, Brahe, 
Galileo, Kepler, and Newton, and the mixed reception of their discoveries. 
Post-Newtonian achievements are then discussed in unusual detail: Halley, 
Bradley, Lagrange, Laplace, Herschel, Bessel, etc. 2 Indexes. 104 illustrations, 
9 portraits, xxxi 4. 440pp. 58^ x 8. 20210-0 Paperbound $2.75 

Some Theory of Sampling, W. E. Deming 
The purpose of this book is to make sampling techniques understandable to 
and useable by social scientists, industrial managers, and natural scientists 
who are finding statistics increasingly part of their work. Over 200 exercises, 
plus dozens of actual applications. 61 tables. 90 figs, xix 4- 602pp. 534 x 8i/2 . 

61755-6 Paperbound S3.50 
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Principles of Stratigraphy, 
A. W. Grabau 

Classic of 20th century geology, unmatched in scope and comprehensiveness. 
Nearly 600 pages cover the structure and origins of every kind of sedimentary, 
hydrogenic, oceanic, pyroclastic, atmoclastic, hydroclastic, marine hydroclastic, 
and bioclastic rock; metamorphism; erosion; etc. Includes also the constitution 
of the atmosphere; morphology of oceans, rivers, glaciers; volcanic activities; 
faults and earthquakes; and fundamental principles of paleontology (nearly 200 
pages). New introduction by Prof. M. Kay, Columbia U. 1277 bibliographical 
entries. 264 diagrams. Tables, maps, etc. Two volume set. Total of xxxii -|-
1185pp. 5% X 8. 60686-4,60687-2 Two volume set, paperbound «6.25 

Snow Crystals, IT. A. Bentley and IT. J. Humphreys 
Over 200 pages of Bentley’s famous microphotographs of snow flakes—the pro¬ 
duct of painstaking, methodical work at his Jericho, Vermont studio. The 
pictures, which also include plates of frost, glaze and dew on vegetation, spider 
webs, windowpanes; sleet; graupel or soft hail, were chosen both for their 
scientific interest and their aesthetic qualities. The wonder of nature’s diversity 
is exhibited in the intricate, beautiful patterns of the snow flakes. Introductory 
text by W. J. Humphreys. Selected bibliography. 2,453 illustrations. 224pp. 
8 x 'o'/i- 20287-9 Paperbound $3.25 

The Birth ano Development of the Geological Sciences, 
F. D. Adams 

Most thorough history of the earth sciences ever written. Geological thought 
from earliest times to the end of the 19th century, covering over 300 early 
thinkers & systems; fossils & their explanation, vulcanists vs. neptunists, figured 
stones & paleontology, generation of stones, dozens of similar topics, gi illustra¬ 
tions, including medieval, renaissance woodcuts, etc. Index. 632 footnotes, 
mostly bibliographical. 511pp. 5^ x 8. 20005-1 Paperbound $2.75 

Organic Chemistry, F. C. Whitmore 
The entire subject of organic chemistry for the practicing chemist and the 
advanced student. Storehouse of facts, theories, processes found elsewhere only 
in specialized journals. Covers aliphatic compounds (500 pages on the prop¬ 
erties and synthetic preparation of hydrocarbons, haiides, proteins, ketones, 
etc.), alicyclic compounds, aromatic compounds, heterocyclic compounds, or¬ 
ganophosphorus and organometallic compounds. Methods of synthetic prepara¬ 
tion analyzed critically throughout. Includes much of biochemical interest. 
’The scope of this volume is astonishing,” Industrial and Engineering 
Chemistry. 12,000-reference index. 2387-item bibliography. Total of x ¡ 
1005pp. 5% x 8. 60700-3, 60701-1 Two volume set. paperbound $4.50 

The Phase Rule and Its Application, 
Alexander Findlay 

Covering chemical phenomena of 1,2, 3, 4. and multiple component systems, 
this standard work on the subject" (Nature, London), has been completely 
revised and brought up to date by A. N. Campbell and N. O. Smith. Brand 
new material has been added on such matters as binary, tertiary liquid 
equilibria, solid solutions in ternary systems, quinary systems of salts and 
water. Completely revised to triangular coordinates in ternary systems, clarified 
graphic representation, solid models, etc. 9th revised edition. Author, subject 
indexes. 236 figures. 505 footnotes, mostly bibliographic, xii _|_ 494pp. 534 x 8. 

60091-2 Paperbound $2.75 
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The Principles of Electrochemistry, 
D. A. Mac Innes 

Basic equations for almost every subfield of electrochemistry from first prin¬ 
ciples, referring at all times to the soundest and most recent theories and 
results; unusually useful as text or as reference. Covers coulometers and 
Faraday’s Law, electrolytic conductance, the Debye- Hueckcl method for the 
theoretical calculation of activity coefficients, concentration cells, standard 
electrode potentials, thermodynamic ionization constants, pH. potentiometric 
titrations, irreversible phenomena. Planck’s equation, and much more. 2 indices. 
Appendix. 585-itcm bibliography. 137 figures. 94 tables, ii 478pp. 5"^ x 8%. 

60052-1 Paperbound S3.00 

Mathematics of Modern Engineering, 
E. G. Keller and R. E. Doherty 

Written for the Advanced Course in Engineering of the General Electric 
Corporation, deals with the engineering use of determinants, tensors, the 
Heaviside operational calculus, dyadics, the calculus of variations, etc. Presents 
underlying principles fully, but emphasis is on the perennial engineering 
attack of set-up and solve. Indexes. Over 185 figures and tables. Hundreds of 
exercises, problems, and worked -out examples. References. Total of xxxiii _|_ 
623pp. 5% x 60734-8,60735-6 Two volume set, paperbound S3.70 

Aerodynamic Theory: A General Review of Progress, 
William F. Durand, editor-in-chief 

A monumental joint effort by the world’s leading authorities prepared under 
a grant of the Guggenheim Fund for the Promotion of Aeronautics. Never 
equalled for breadth, depth, reliability. Contains discussions of special mathe¬ 
matical topics not usually taught in the engineering or technical courses. Also: 
an extended two-part treatise on Fluid Mechanics, discussions of aerodynamics 
of perfect fluids, analyses of experiments with wind tunnels, applied airfoil 
theory, the nonlifting system of the airplane, the air propeller, hydrodynamics 
of boats and floats, the aerodynamics of cooling, etc. Contributing experts 
include Munk. Giacomelli. Prandtl. Toussaint. Von Karman. Klemperer, among 
others. Unabridged republication. 6 volumes. Total of 1.012 figures. 12 plates, 
2,186pp. Bibliographies. Notes. Indices. 5% x 8 Vá- 61709-2, 
61710-6. 6171 1 4, 61712-2, 61713-0, 61715-9 Six volume set, paperbound $13.50 

Fundamentals of Hydro- and Aeromechanics, 
L. Prandtl and O. G. Tietjens 

The well-known standard work based upon Prandtl’s lectures at Goettingen. 
Wherever possible hydrodynamics theory is referred to practical considerations 
in hydraulics, with the view of unifying theory and experience. Presentation 
is extremely clear and though primarily physical, mathematical proofs arc 
rigorous and use vector analysis to a considerable extent. An Engineering 
Society Monograph. 1934. 186 figures. Index, xvi 270pp. 5% x 8. 

60374-1 Paperbound S2.25 

Applied Hydro- and Aeromechanics, 
L. Prandtl and O. G. Tietjens 

Presents for the most part methods which will be valuable to engineers. Covers 
flow in pipes, boundary layers, airfoil theory, entry conditions, turbulent flow 
in pipes, and the boundary layer, determining drag from measurements of 
pressure and velocity, etc. Unabridged, unaltered. An Engineering Society 
Monograph. 1934. Index. 226 figures. 28 photographic plates illustrating flow 
patterns, xvi _|_ 31 ipp. 5% x 8. 60375-X Paperbound $2.50 
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Principles of Art History, 
FL Wölfflin 

Analyzing such terms as "baroque," “classic." "neoclassic," “primitive," 
“picturesque," and 164 different works by artists like Botticelli, van Cleve. 
Diner, Hobbema. Holbein. Hals. Rembrandt. Titian, Brueghel. Vermeer, and 
many others, the author establishes the classifications of art history and style 
on a firm, concrete basis. This classic of art criticism shows what realh 
occurred between the 14th-century primitives and the sophistication of the 
18th century in terms of basic attitudes and philosophies. “A remarkable 
lesson in the art of seeing." Sat. Rev. of Literature. Translated from the 7th 
German edition. 150 illustrations. 254pp. 6% x gi/. 20276-3 Paperbound $2.25 

Primitive Art, 
Franz Boas 

I his authoritative and exhaustive work by a great American anthropologist 
covers the entire gamut of primitive art. Pottery, leatherwork, metal work, 
stone work. wood, basketry, are treated in detail. Theories of primitive art. 
historical depth in art history, technical virtuosity, unconscious levels of pat 
terning. symbolism, styles, literature, music, dance, etc. A must book for the 
interested layman, the anthropologist, artist, handicrafter (hundreds of tin 
usual motifs), and the historian. Over goo illustrations (50 ceramic vessels. 
12 totem poles, etc.). 376pp. 5% x 8. 20025-6 Paperbound $2.50 

The Gentlemax and Cabinet Maker's Director. 
Thomas Chippendale 

A reprint of the 1762 catalogue of furniture designs that went on to influence 
generations of English and Colonial and Early Republic American furniture 
makers. The 200 plates, most of them full page sized, show Chippendale's 
designs for French (Louis XV), Gothic, anti Chinese-manner chairs, sofas, 
canopy and dome beds, cornices, chamber organs, cabinets, shaving tables, 
commodes, picture frames, frets, candle stands, chimney pieces, decorations, etc. 
I he drawings are all elegant and highly detailed; many include construction 
diagrams and elevations. A supplement of 24 photographs shows surviving 
pieces of original and Chippendale style pieces of furniture. Brief biography 
of Chippendale by X. I. Bienenstock, editor of Furniture World. Reproduced 
from the 1762 edition. 200 plates, plus ig photographic plates, vi .p 2|gpp. 
9% x ‘Z'X- 21601-2 Paperbound $3.50 

American Antique Furniture: A Book for Amateurs. 
Edgar G. Miller, Jr. 

Standard introduction and practical guide to identification of valuable 
American antique furniture. 2115 illustrations, mostly photographs taken by 
the author in 148 private homes, arc arranged in chronological order in exten¬ 
sive chapters on chairs, sofas, chests, desks, bedsteads, mirrors, tables, clocks, 
and other articles. Focus is on furniture accessible to the collector, including 
simpler pieces and a larger than usual coverage of Empire style. Introductory 
chapters identify structural elements, characteristics of various styles, how to 
avoid fakes, etc. “We are frequently asked to name some book on American 
furniture that will meet the requirements of the novice collector, the begin¬ 
ning dealer, and ... the general public. . . . We believe Mr. Miller's two 
volumes more completely satisfy this specification than any other work." 
Antiques. Appendix. Index. Total of vi _p 1106pp. 7% x 10:14. 

21599-7,21600-4 I wo volume set. paperbound S7.50 
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The Principles of Psychology, 
William James 

The full long-course, unabridged, of one of the great classics of Western 
literature and science. Wonderfully lucid descriptions of human mental 
activity, the stream of thought, consciousness, time perception, memory, imag¬ 
ination, emotions, reason, abnormal phenomena, and similar topics. Original 
contributions are integrated with the work of such men as Berkeley, Binet, 
Mills, Darwin, Hume, Kant, Royce, Schopenhauer, Spinoza, Locke, Descartes, 
Galton, Wundt, Lotze, Herbart, Fechner, and scores of others. All contrasting 
interpretations of mental phenomena are examined in detail—introspective 
analysis, philosophical interpretation, and experimental research. "A classic.” 
Journal of Consulting Psychology. "The main lines are as valid as ever,” 
Psychoanalytical Quarterly. "Standard reading ... a classic of interpretation, 
Psychiatric Quarterly. 94 illustrations. 1408pp. 5»% X 8. 

20381-6,20382-4 1 wo volume set, paperbound $6.00 

Visual Illusions: Their Causes, Characteristics and Applications, 

M. Luchiesh 
"Seeing is deceiving.” asserts the author of this introduction to virtually every 
type of optical illusion known. The text both describes and explains the 
principles involved in color illusions, figure ground, distance illusions, etc. 
100 photographs, drawings and diagrams prove how easy it is to fool the sense: 
circles that aren’t round, parallel lines that seem to bend, stationary figures that 
seem to move as you stare at them — illustration after illustration strains our 
credulity at what we see. Fascinating book from many points of view, from 
applications for artists, in camouflage, etc. to the psychology of vision. New 
introduction by William Ittleson, Dept, of Psychology. Queens College. Index. 
Bibliography, xxi 4. 252pp. 5% x 8i/2. 21530-X Paperbound $1.50 

Fads and Fallacies in the Name of Science, 
Martin Gardner 

This is the standard account of various cults, quack systems, and delusions 
which have masqueraded as science: hollow earth fanatics. Reich and orgone 
sex energy, dianetics, Atlantis, multiple moons, Forteanism, flying saucers, 
medical fallacies like iridiagnosis, zone therapy, etc. A new chapter has been 
added on Bridey Murphy, psionics, and other recent manifestations in this 
field. This is a fair, reasoned appraisal of eccentric theory which provides 
excellent inoculation against cleverly masked nonsense. "Should be read by 
everyone, scientist and non scientist alike," R. T. Birge, Prof. Emeritus of 
Physics, Univ, of California; Former President, American Physical Society. 
Index, x 4. 365pp. 5s/r x 8. 20394-8 Paperbound $2.00 

Illusions and Delusions of the Supernatural and the Occult, 

D. H. Rawclifje 
Holds up to rational examination hundreds of persistent delusions including 
crystal gazing, automatic writing, table turning, mediumistic trances, mental 
healing, stigmata, lycanthropy, live burial, the Indian Rope Trick, spiritualism, 
dowsing, telepathy, clairvoyance, ghosts, ESP, etc. The author explains and 
exposes the mental and physical deceptions involved, making this not only 
an exposé of supernatural phenomena, but a valuable exposition of char¬ 
acteristic types of abnormal psychology. Originally titled I he Psychology of 
the Occult.” 14 illustrations. Index. 551pp. 53/8 x 8. 20503-7 Paperbound $3.50 
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The Music of the Spheres: The Material Universe — From Atom 
to Quasar, Simply Explained, Guy Murchie 

Vast compendium of fact, modern concept and theory, observed and calculated 
data, historical background guides intelligent layman through the material 
universe. Brilliant exposition of earth's construction, explanations for moon s 
craters, atmospheric components of Venus and Mars (with data from recent 
fly-by’s), sun spots, sequences of star birth and death, neighboring galaxies, 
contributions of Galileo, Tycho Brahe, Kepler, etc.; and (Vol. 2) construction 
of the atom (describing newly discovered sigma and xi subatomic particles), 
theories of sound, color and light, space ami time, including relativity theory, 
quantum theory, wave theory, probability theory, work of Newton. Maxwell. 
Faraday, Einstein, de Broglie, etc. "Best presentation yet offered to the in 
telligent general reader.” Saturday Review. Revised (1967). Index. 319 illus¬ 
trations by the author. Total of xx 4. 644pp. x 8(4. 

21809-0,21810-4 I wo volume set, paperbound $5.00 

Four Lectures on Relativity and Space, Charles Proteus Steinmetz 
Lecture series, given by great mathematician and electrical engineer, generally 
considered one of the best popular-level expositions of special and general 
relativity theories and related questions. Steinmetz translates complex mathe¬ 
matical reasoning into language accessible to laymen through analogy, example 
and comparison. Among topics covered are relativity of motion, location, time; 
of mass; acceleration; 4-dimensional time-space; geometry of the gravitational 
field; curvature and bending of space; non-Euclidean geometry. Index. 40 
illustrations, x-|_ 142pp. 5% x 8(4. 61771-8 Paperbound $1.35 

Horv to Know the Wild Flowers, Mrs. William Starr Dana 
Classic nature book that has introduced thousands to wonders of .American 
wild flowers. Color-season principle of organization is easy to use. even by 
those with no botanical training, and the genial, refreshing discussions of 
history, folklore, uses of over 1,000 native and escape flowers, foliage plants 
are informative as well as fun to read. Over 170 full-page plates, collected from 
several editions, may be colored in to make permanent records of finds. Revised 
to conform with 1950 edition of Gray's Manual of Botany, xlii 4- 138pp. 
53/¿ x 8(4. 20332-8 Paperbound $2.50 

Manual of the Trees of North America, Charles Sprague Sargent 
Still unsurpassed as most comprehensive, reliable study of North American 
tree characteristics, precise locations ami distribution. By dean of American 
dendrologists. Every tree native to U.S., Canada. Alaska; 185 genera. 717 species, 
described in detail—leaves, flowers, fruit, winterbuds, bark, wood, growth 
habits, etc. plus discussion of varieties and local variants, immaturity variations. 
Over 100 keys, including unusual it-page analytical key to genera, aid in 
identification. 783 clear illustrations of flowers, fruit, leaves. An unmatched 
permanent reference work for all nature lovers. Second enlarged (1926) edition. 
Synopsis of families. Analytical key to genera. Glossary of technical terms. 
Index. 783 illustrations. 1 map. Total of 982pp. 5% x 8. 

20277-1 ,20278-X 1 wo volume set. paperbound S6.O0 
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It’s Fun to Make Things From Scrap Materials, 
Evelyn Glantz Hershoff 

What use are empty spools, tin cans, bottle tops? What can be made from 
rubber bands, clothes pins, paper clips, and buttons? This book provides 
simply worded instructions and large diagrams showing you how to make 
cookie cutters, toy trucks, paper turkeys, Halloween masks, telephone sets, 
aprons, linoleum block- and spatter prints — in all 399 projects! Many arc easy 
enough for young children to figure out for themselves; some challenging 
enough to entertain adults; all arc remarkably ingenious ways to make things 
from materials that cost pennies or less! Formerly “Scrap Fun for Everyone.” 
Index. 214 illustrations. 373pp. 5% x 8i/£. 21251-3 Paperbound Si.75 

Symbolic Logic and The Game of Logic, Lewis Carroll 
“Symbolic Logic” is not concerned with modern symbolic logic, but is instead 
a collection of over 380 problems posed with charm and imagination, using 
the syllogism and a fascinating diagrammatic method of drawing conclusions. 
In “ I he Game of Logic” Carroll’s whimsical imagination devises a logical game 
played with 2 diagrams and counters (included) to manipulate hundreds of 
tricky syllogisms. Ihe final section, "Hit or Miss” is a lagniappe of 101 addi¬ 
tional puzzles in the delightful Carroll manner. Until this reprint edition, 
both of these books were rarities costing up to $15 each. Symbolic Logic: 
Index, xxxi -p 199pp. The Game of Logic: 96pp. 2 vols, bound as one. 5.% x 8. 

20492-8 Paperbound $2.50 

Mathematical Puzzles of Sam Loyd, Part i 
selected and edited by Af. Gardner 

Choice puzzles by the greatest American puzzle creator and innovator. Selected 
from his famous collection, “Cyclopedia of Puzzles,” they retain the unique 
style and historical flavor of the originals. There are posers based on arithmetic, 
algebra, probability, game theory, route tracing, topology, counter and sliding 
block, operations research, geometrical dissection. Includes the famous "14-15” 
puzzle which was a national craze, and his "Horse of a Different Color” which 
sold millions of copies. 117 of his most ingenious puzzles in all. 120 line 
drawings and diagrams. Solutions. Selected references, xx -p 167pp. 5% x

20498-7 Paperbound $1.35 

Siring Figures and How to Make Them, Caroline Furness Jayne 
107 siring figures plus variations selected from the best primitive and modern 
examples developed by Navajo, Apache, pygmies of Africa. Eskimo, in Europe. 
Australia, China, etc. I he most readily understandable, easy-to-follow book in 
English on perennially popular recreation. Crystal-clear exposition; step-by-
step diagrams. Everyone from kindergarten children to adults looking for 
unusual diversion will be endlcssh amused. Index. Bibliography. Introduction 
by A. C. Haddon. 17 full-page plates, 960 illustrations, xxiii ~p 401pp. 5% X 8i/2. 

20152 X Paperbound Sa.25 

Paper Folding for Bh.ism ks, II. I). Murray and F. J. Rigney 
A delightful introduction to the varied and entertaining Japanese art of 
origami (paper folding), with a full, crystal-clear text that anticipates every 
difficulty; over 275 clearly labeled diagrams of all important stages in creation. 
You get results at each stage, since complex figures are logically developed 
from simpler ones. 13 different pieces are explained: sailboats, frogs, roosters, 
etc. 6 photographic plates. 279 diagrams. 95pp. 57Ü x 8%. 

20713-7 Paperbound §1.00 
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A Course in Mathematical Analysis, 
Edouard Goursat 

I rans. by E. R. Hedrick. O. Dunkel, H. G. Bergmann. Classic study of funda 
mental material thoroughly treated. Extremely lucid exposition of wide range 
of subject matter for student with one year of calculus. Vol. i: Derivatives and 
differentials,- definite integrals, expansions in series, applications to geometry. 
52 figures, 556pp. 60554-X Paperbound $3.00. Vol. 2, Part I: Functions of a 
complex variable, conformal representations, doubly periodic functions, nat 
ural boundaries, etc. 38 figures, 269pp. 60555-8 Paperbound $2.25. Vol. 2, 
Part II: Differential equations, Cauchy-Lipschitz method, nonlinear differential 
equations, simultaneous equations, etc. 308pp. 60556-6 Paperbound $2.50. 
Vol. 3, Part I: Variation of solutions, partial differential equations of the 
second order. 15 figures, 339pp. 61176-0 Paperbound $3.00. Vol. 3, Part II: 
Integral equations, calculus of variations. 13 figures, 389pp. 61Ï 77-9 Paperbound 
$3 00 60554-X, 60555-8, 60556-6 61176-0, 61177-9 Six volume set. 

Planets, Stars and Galaxies, paperbound $.3.75 
A. E. Fanning 

Descriptive astronomy for beginners: the solar system; neighboring galaxies; 
seasons, quasars; fly-by results from Mars, Venus, Moon; radio astronomy; etc. 
all simply explained. Revised up to 1966 by author and Prof. D. H. Menzel, 
former Director, Harvard College Observatory. 29 photos. 16 figures. 189pp. 
534 X 814 21680-2 Paperbound $1.50 

Great Ideas in Information Theory, Language: and Cybernetics, 
Jagjit Singh 

Winner of Unesco’s Kalinga Prize covers language, metalanguages, analog and 
digital computers, neural systems, work of McCulloch, Pitts, von Neumann, 
I tiring, other important topics. No advanced mathematics needed, yet a full 
discussion without compromise or distortion. 118 figures, ix _|_ 338pp. 5^ x 81^. 

21694-2 Paperbound $2.25 
Geometric Exercises in Paper Folding, 
T. Sundara Row 

Regular polygons, circles and other curves can be folded or pricked on paper, 
then used to demonstrate geometric propositions, work out proofs, set up well-
known problems. 89 illustrations, photographs of actually folded sheets, xii 4. 
■48pp. 534 x 814. 21594-6 Paperbound $1.00 

Visual Illusions, Their Causes, Characteristics and Applications, 
M. Luckiesh 

I he visual process, the structure of the eye. geometric, perspective illusions, 
influence of angles, illusions of depth and distance, color illusions, lighting 
effects, illusions in nature, special uses in painting, decoration, architecture, 
magic, camouflage. New introduction by W. H. Ittleson covers modern develop¬ 
ments in this area. 100 illustrations, xxi _p 252pp. 5% x 8. 

21530-X Paperbound $1.50 
Atoms and Molecules Simply Explained, 
H. C. Saunders and R. E. D. Clark 

Introduction to chemical phenomena and their applications: cohesion, particles, 
crystals, tailoring big molecules, chemist as architect, with applications in 
radioactivity, color photography, synthetics, biochemistry, polymers, and many 
other important areas. Non technical. 95 figures, x _|_ 299pp. 5^ x 8<4. 

21282-3 Paperbound $1.50 



CATALOGUE OF DOTER BOOKS 

Applied Optics and Optical Design, 
A. E. Conrady 

With publication of vol. 2, standard work for designers in optics is now 
complete for first time. Only work of its kind in English; only detailed work 
for practical designer and self-taught. Requires, for bulk of work, no math 
above trig. Step-by-step exposition, from fundamental concepts of geometrical 
physical optics, to systematic study, design, of almost all types of optica 
systems. Vol. 1: all ordinary ray-tracing methods; primary aberrations; neces¬ 
sary higher aberration for design of telescopes, low-power microscopes, photo¬ 
graphic equipment. Vol. 2: (Completed from author s notes by R. Kingslake, 
Dir Optical Design. Eastman Kodak.) Special attention to high-power micro¬ 
scope. anastigmatic photographic objectives. “An indispensable work,’ J., Opti¬ 
cal Soc. of Amer. Index. Bibliography. 193 diagrams. 852pp. 6i/8 x 91% . 

6061 1 -2, 60612-0 Two volume set. paperbound S8.00 

Mechanics of the Gyroscope, the Dynamics of Rotation, 
R. F. Deimel, Professor of Mechanical Engineering at Stevens Institute of 
Technology 

Elementary general treatment of dynamics of rotation, with special application 
of gyroscopic phenomena. No know ledge of vectors needed. Velocity of a moving 
curve, acceleration to a point, general equations of motion, gyroscopic horizon, 
free gyro, motion of discs, the damped gyro, 103 similar topics. Exercises. 
75 figures. 208pp. 5s/g x 8. 60066-1 Paperbound $1.75 

Strength of Materials, 
J. P. Den Hartog 

Full, clear treatment of elementary material (tension, torsion, bending, com¬ 
pound stresses, deflection of beams, etc.), plus much advanced material on 
engineering methods of great practical value: full treatment of the Mohr circle, 
lucid elementary discussions of the theory of the center of shear and the 
"Myosotis" method of calculating beam deflections, reinforced concrete, plastic 
deformations, photoelasticity, etc. In all sections, both general principles and 
concrete applications are given. Index. .86 figures (160 others in problem 
section) problems, all with answers. List of formulas, vin 4- 323PP- 5’/s * 8-

' 3 1 60755-0 Paperbound $2.50 

Hydraulic Transients, 
G. R. Rich . 

The best text in hydraulics ever printed in English ... by former Chief Design 
Engineer for T.V.A. Provides a transition from the basic differential equations 
of hydraulic transient theory to the arithmetic integration computation re¬ 
quired by practicing engineers. Sections cover Water Hammer. Turbine Speed 
Regulation. Stability of Governing. Water-Hammer Pressures in Pump Dis¬ 
charge Lines. The Differential and Restricted Orifice Surge Tanks, 1 he 
Normalized Surge Tank Charts of Caíame and Gaden, Navigation Locks, 
Surges in Power Canals-Tidal Harmonics, etc. Revised and enlarged. Author s 
prefaces. Index, xiv + 409pp. 5»% x 81/2- 60116-> Paperbound $2.50 

Prices subject to change without notice. 
Available at your book dealer or write for free catalogue to Dept. Adsci, 
Dover Publications, Inc., 180 Varick St., N.Y., N.Y. 10014. Dover publishes more 
than 150 books each year on science, elementary and advanced mathematics, 
biology, music, art, literary history, social sciences and other areas. 








