

18° BIAS Convegno Mostra Internazionale dell'Automazione Strumentazione Edizione 1983 dedicata alla MICROELETTRONICA

E.I.O.M. Ente Italiano Organizzazione Mostre Segreteria della Mostra Viale Premuda, 2 - 20129 Milano (Italy) - Tel. (02) 796.096/421/635 - Telex CONSEL 334022

KITS ELETRONIC

Elettronica Sestrese S.r.l.

Via Chiaravagna 18 H - Tel. 675.201 16154 GENOVA - SESTRI

RS 1 LUCI PSICHEDELICHE 2 VIE AUTOALIMENTATE RS 3 MICROTRASMETTITORE FM	L, 20.000
RS 3 MICROTRASMETTITORE FM	L 9.500
RS 3 MICROTRASMETTITORE FM RS 5 ALIMENTATORE STABILIZZATO PER AMPLIFICATORI B.F. RS 6 LINEARE 1 W PER MICROTRASMETTITORE RS 8 FILTRO CROSS-OVER 3 VIE 50 W RS 9 VARIATORE DI LUCE RS 10 LUCI PSICHEDELICHE A 3 VIE AUTOALIMENTATE RS 11 RIDUTTORE DI TENSIONE STABILIZZATO 24	1 40 000
PER AMPLIFICATORI B.F.	L. 18.000
DE DELIVERNE I W PER MICHOTRASMETTTORE	1 16 000
PS 4 VARIATORE DILLICE	1 6,000
BS 10 LUCI PSICHEDELICHE A 3 VIE AUTOALIMENTATE	L 26.000
RS 11 RIDUTTORE DI TENSIONE STABILIZZATO 24 -	
RS 11 RIDUTTORE DI TENSIONE STABILIZZATO 24 — 12 V 2,5 A RS 14 ANTIFURTO PROFESSIONALE RS 15 AMPLIFICATORE B.F. 2 W RS 16 RICEVITORE A.M. DIDATTICO RS 18 SIRENA ELETTRONICA 30 W RS 19 MIXER B.F. 4 INGRESSI RS 20 RIDUTTORE DI TENSIONE UNIVERSALE 12 — 6 - 7,5 - 9 V RS 22 DISTORSORE PER CHITARRA RS 23 INDICATORE DI EFFICIENZA BATTERIE 12 V RS 26 AMPLIFICATORE B.F. 10 W RS 27 PREAMPLIFICATORE CON INGRESSO A BASSA IMPEDENZA RS 28 TEMPORIZZATORE CON ALIMENTAZIONE (1 - 65 sec.)	L. 9.000
RS 14 ANTIFURTO PROFESSIONALE	L 29,900
RS 15 AMPLIFICATORE B.F. 2 W	L. 7.500
RS 16 RICEVITORE A.M. DIDATTICO	L. 9.400
RS 18 SIRENA ELETTRONICA 30 W	L. 17.000
PS 20 RIDUTTORE DI TENSIONE LINIVERSALE 12 -	L. 17.000
6 - 7.5 - 9 V	1 5.500
RS 22 DISTORSORE PER CHITARRA	L. 9.200
RS 23 INDICATORE DI EFFICIENZA BATTERIE 12 V	L. 4.900
RS 26 AMPLIFICATORE B.F. 10 W	L. 9.500
RS 27 PREAMPLIFICATORE CON INGRESSO	
A BASSA IMPEDENZA	L. 5.800
RS 28 TEMPORIZZATORE CON ALIMENTAZIONE (1 - 65 sec.)	L. 24.500
RS 29 PREAMPLIFICATORE MICROFONICO	L. 7.400
PS 35 PROVA TRANSISTOR E DIODI	1 12 800
RS 36 AMPLIFICATORE B.F. 40 W	1 21 000
A BASSA IMPEDENZA RS 28 TEMPORIZZATORE CON ALIMENTAZIONE (1 - 65 sec.) RS 29 PREAMPLIFICATORE MICROFONICO RS 31 ALIMENTATORE STABILIZZATO 12 V - 2 A RS 35 PROVA TRANSISTOR E DIODI RS 36 AMPLIFICATORE B.F. 40 W RS 37 ALIMENTATORE STABILIZZATO VARIABILE 5 - 25 V; 2 A	L. 23.000
RS 38 INDICATORE LIVELLO DI USCITA A DIODI LED (16)	L. 20.500
RS 38 INDICATORE LIVELLO DI OSCITTA A DIODI LED (16) RS 39 AMPLIFICATORE STEREO 10 + 10 W RS 40 MICRORICEVITORE F.M. RS 43 CARICA BATTERIE AL NI-CD REGOLABILE RS 44 SIRENA PROGRAMMABILE - OSCILLOFONO RS 45 METRONOMO ELETTRONICO RS 46 LAMPEGGIATORE REGOLABILE 5 - 12 V RS 47 VARIATORE DI LUCE PER AUTO	L. 23.000
RS 40 MICRORICEVITORE F.M.	L. 9.000
RS 43 CARICA BATTERIE AL NI-CD REGOLABILE	L. 18.000
RS 44 SIRENA PHOGRAMMABILE - OSCILLOFONO	L. 8.000
DE 45 I AMPEGGIATORE DEGOLARILE 5 12 V	L. 5.000
PS 47 VARIATORE DI LLICE PER ALITO	1 11 000
RS 48 LUCI ROTANTI - SEQUENZIALI 10 VIE - 800 W CANALE	△ 39.000
RS 47 VARIATORE DI LUCE PER AUTO RS 48 LUCI ROTANTI - SEQUENZIALI 10 VIE - 800 W CANALE RS 49 SIRENA ITALIANA RS 50 ACCENSIONE AUTOMATICA LUCI DI POSIZIONE AUTO	L. 10,000
RS 50 ACCENSIONE AUTOMATICA LUCI DI POSIZIONE AUTO	L. 15.000
RS 51 PREAMPLIFICATORE HI-FI	L. 14.900
RS 52 PROVA QUARZI	L. 7.000
RS 53 LUCI PSICHEDELICHE CON MICROFONO 1 VIA 1500 W AUTOALIMENTATE	
	L. 17.000
RS 54 AUTO BLINKER (LAMPEGGIATORE DI EMERGENZA) RS 55 PREAMPL, STEREO EQUALIZZ, R.I.A.A.	L. 10.000
RS 56 TEMPORIZZATORE AUTOALIM. REG. (18 sec 60 min.)	
TO SE COMMUNICATIONS SI STEPONICO DI SUSSICIONI CON LI	
RS 58 STROBO INTERMITTENZA REGOLABILE	L. 11.500
RS 57 COMMUTATORE ELETTRONICO DI EMERGENZA 220 V RS 58 STROBO INTERMITTENZA REGOLABILE RS 59 SCACCIA ZANZARE ELETTRONICO RS 60 GADGET ELETTRONICO RS 61 VU-METER A DIODI LED (8) RS 62 LUCI PSICHEDELICHE PER AUTO RS 63 TEMPORIZZATORE REG. (1 - 100 SEC.) RS 64 ANTIFURTO PER AUTO RS 64W UNITA' AGGIUNTIVA PER RS 64	L. 9.500
RS 60 GADGET ELETTRONICO	L. 11.950
RS 61 VU-METER A DIODI LED (8)	L. 15.500
NS 62 LUCI PSICHEDELICHE PER AUTO	L. 23.500
DE 64 ANTIFURTO DEP AUTO	L. 14.500
RS 64W UNITA' AGGIUNTIVA PER RS 64	1 3 300
AGGIONTIVA FER NO 04	5.300

the second secon	L 26.000
BS 67 VARIATORE DI VELOCITA' PER TRAPANI	L. 13.000
PS 68 TRASMETTITORE F.M. 2 W	L. 18.500
PS 60 ALIMENTATORE STARILIZZATO	L. 10.200
(PER ALTA ERECLIENZA) 12 - 18 V	1 22 222
BS 70 GIARDINIERE EL ETTRONICO	L. 23,000
PS 71 GENERATORI DI SHONI	1 47 000
PS 72 BOOSTER PER AUTORADIO 20 W	1. 17.000
PS 73 BOOSTER PER AUTORADIO 20 1 20 W	17.000
PS 74 LUCI PSICHEDELICHE (CON MICPOEONIO) 2 VIE	L. 30.000
PS 75 CARICA BATTERIE ALITOMATICO	L 33.500
RS 69 ALIMENTATORE STABILIZZATO (PER ALTA FREQUENZA) 12 - 18 V RS 70 GIARDINIERE ELETTRONICO RS 71 GENERATORI DI SUONI RS 72 BOOSTER PER AUTORADIO 20 W RS 73 BOOSTER PER AUTORADIO 20 + 20 W RS 74 LUCI PSICHEDELICHE (CON MICROFONO) 3 VIE RS 75 CARICA BATTERIE AUTOMATICO RS 76 TEMPORIZZATORE PER TERGICRISTALLO RS 77 DADO ELETTRONICO	L. 18.000
RS 77 DADO ELETTRONICO	L. 14.000
RS 77 DADO ELETTRONICO RS 78 DECODER F.M. STEREO	L. 17.000
RS 78 DECODER F.M. STEREO RS 79 TOTOCALCIO ELETTRONICO	L. 13.500
RS 80 GENERATORE DI NOTE MUSICALI PROGRAMMABILE	L. 14.500
RS 81 FOTO TIMER Solid state	L. 24.500
DC 90 INTERRUTTORE CREDITION ARE	L. 22.000
DE DE PECOLATORE DI VEL COLTAL PER MOTOR	L. 19.000
A SPAZZOLE (Spazza postitulari patrane)	
A SPAZZOLE (senza perdita di potenza)	L. 13.000
RS 84 INTERFUNICO	L. 19.500
NS 85 AMPLIFICATORE TELEFONICO	L. 21.000
NS 86 ALIMENTATORE STABILIZZATO 12 V 1 A	L 8.500
HS 87 RELE FONICO	L. 21.500
RS 88 ROULETTE ELETTRONICA A 10 LED	L. 18,500
RS 81 FOTO TIMER SOIId state RS 82 INTERRUTTORE CREPUSCOLARE RS 83 REGOLATORE DI VELOCITA' PER MOTORI A SPAZZOLE (senza perdita di potenza) RS 84 INTERFONICO RS 85 AMPLIFICATORE TELEFONICO RS 86 ALIMENTATORE STABILIZZATO 12 V 1 A RS 87 RELÈ FONICO RS 88 ROULETTE ELETTRONICA A 10 LED RS 88 FADLE AUTOMATICO RS 90 TRUCCAVOCE ELETTRONICO RS 91 RIVELATORE DI PROSSIMITA' E CONTATTO	L. 13,000
RS 90 THUCCAVOCE ELETTRONICO	L. 17.000
RS 91 HIVELATORE DI PROSSIMITA' E CONTATTO	L. 23.000

IN VENDITA PRESSO I MIGLIORI RIVENDITORI

Le nostre scatole di montaggio anche se destinate al vasto pubblico hobbista possono essere impiegate per usi professionali grazie ad un accurato progetto ed alla scelta di materiali di prima qualità.

Ogni KIT è corredato di istruzioni per il montaggio ed il suo circuito stampato è costruito su «vetronite» serigrafata dal lato componenti

e con piste di rame completamente stagnate onde facilitare al massimo le saldature.

Tutte queste caratteristiche rendono il nostro prodotto estremamente affidabile.

Vi ringraziamo per la preferenza accordataci.

NOME COGNOME:

INDIRIZZO:

CAP.

Per ricevere il catalogo utilizzare il coupon a lato.

GENERATORE DI MOTIVI MOD. BRL 6

- 24 temi musicali selezionabili

- Inserzione passante tra microfono e

GENERATORE DI ECO

MOD. BRL 8

apparecchio utilizzatore

Regolazione dell'effetto e del livello

Alimentazione: 10 ÷ 15V

d'uscita

- Inserzione passante tra microfono e apparecchio utilizzatore
 - Regolazione del livello d'uscita e del volume sonoro
- Alimentazione: 10 ÷ 15V

GENERATORE DI VOCE ROBOT MOD. BRL 7

- Inserzione passante tra microfono e apparecchio utilizzatore
- Regolazione dell'effetto e del livello d'uscita
 - Alimentazione: 10 ÷ 15V

BREMI ELETTRONICA - 43100 PARMA ITALIA - VIA BENEDETTA 155/A TELEFONI: 0521/72209-771533-75680-771264 - TELEX 531304 BREMI

kits elettronici

LUNOTTO-ANTENNA UK 237 - UK 237/W

La possibilità di sostituire la tradizionale antenna sulle autovetture è diventata una necessità per quanto concerne la manomissione dell'installatore e una certa sicurezza contro coloro che, osservando un'antenna sulla vettura, ne deducono il contenuto. Questo apparecchio dotato di appositi filtri, consente di usufruire del dispositivo termico del lunotto retrovisore quale elemento d'antenna.

Facile da installare all'interno dell'autovettura e non richiede nessuna tensione di alimentazione

TRASMETTITORE PER APRICANCELLO UK 943

Questo apparecchio in unione al ricevitore UK forma un dispositivo indispensabile per ottenere un comando a distanza per l'apertura dei cancelli, saracinesche, porte ecc. a comando elettrico.
Il sistema di trasmissione cons egnale codificato, ha 4095 combinazioni diverse predisponibili a scelta dell'utente.

Alimentazione a batteria: 9 Vc.c. Frequenza di lavoro: 250 MHz Portata: 30 ± 50 m

RICEVITORE PER APRICANCELLO UK 948

Questo ricevitore in unione al trasmettitore UK 943 forma un dispositivo di comando a distanza applicabile a cancelli, porte, saracinesche, ecc.
Il sistema di ricezione con segnale codificato con 4095 combinazioni diverse rende sicuro il dispositivo di comando.

Alimetazione: 220 ÷ 240 Vc.a. Frequenza di lavoro: 250 MHz Carico max. commutabile: 10A a 220V

CIRCUITO ELETTRONICO PER CERCAMETALLI UK 780

Circuito elettronico progettato per consentire la localizzazione di oggetti e di masse metalliche nel sottosuolo.

Alimentazione: 6 Vc.c.
Profondità massima di
localizzazione di masse metalliche
aventi discrete dimensioni: ~ 60 cm.

ANTIFURTO UNIVERSALE UK 824 - UK 824/W

Antifurto per auto, adattabile all'occorrenza anche per casa. Possibilità di proteggere infiniti punti della vostra auto o casa, per mezzo di 3 ingressi di cui uno temporizzato con regolazione del tempo di entrata, uscita e durata dell'allarme. Sicuro, pratico da

installare, permette tutte le funzioni di apparecchi ben più costosi, ma con minor consumo di energia e una maggiore affidabilità.

Alimentazione: 12 Vc.c.
Tre ingressi: 1 temporizzato, 2 no
Tempo max di uscita: 45 s
Tempo max di entrata: 15 s
(elevabile a 30 s)
Tempo max di allarme: 3 min
Consumo a riposo: 4 mA
Consumo in allarme: 40 mA

AUTOMATISMO PER REGISTRAZIONE TELEFONICA UK 86 - UK 86/W

Questo dispositivo inserito tra un registratore e l'apparecchio telefonico, consente di effettuare automaticamente la registrazione di una conversazione telefonica. La messa in funzione del registratore avviene automaticamente ogni volta che si stacca la cornetta del ricevitore telefonico.

Alimentazione: 220/240 Vc.a. Corrente assorbita in c.c.: 40 mA

OROLOGIO ELETTRONICO DIGITALE UK 822

Un orologio digitale che non perde il "passo quando manca l'alimentazione della rete". È provvisto di sveglia, indicazione a 24 ore; attenuazione della luminosità dei display. Possibilità di inserire una batteria in tampone per il funzionamento in assenza di alimentazione dalla rete Alimentazione:

220 Vc.a. - 50 Hz + batteria tampone 9 Vc.c. Visualizzazione: ore, minuti (24 ore)

Regolazioni: ore, sveglia, luminosità

INTERFONICO PER MOTO (o per auto da Rally) UK 826 - UK 826/W

Questo sistema interfonico consente la libera conversazione tra il pilota e il passeggero. È costituito da un'unità trasmittente e da una ricevente ben distinte e separate tra loro. La prerogativa principale di tale sistema è quella di poter parlare ed ascoltare contemporaneamente senza l'ausilio di commutazioni.

Dotato di cavi avvolgibili per il collegamento ai caschi. Regolazione indipendente dei volumi. Possibilità di inserzione di una batteria del tipo ricaricabile per rendere l'apparecchiatura indipendente dall'alimentazione della moto o auto. Corredato di microfoni e altoparlanti per l'inserzione nei caschi.

Tensione di alimentazione: 12 Vc.c. Corrente (a riposo): 18 mA

moduli amplificatori

AMPLIFICATORI DI POTENZA PREAMPLIFICATORI DI POTENZA
FINO A 480 W
PREAMPLIFICATORI MONO E STEREO

MIXER MONO E STEREO FINO A 10 CANALI VU METER MONO-STEREO PREAMPLIFICATORI PER CHITARRA ALIMENTATORI TOROIDALI

Che tipo di amplificator

Questi amplificatori ibridi ad alta fedeltà, in virtù della tecnologia di costruzione, sono praticamente indistruttibili, se impiegati in modo corretto. La bassa distorsione, l'elevato rapporto segnale/disturbo, l'ampia larghezza di banda e la robustezza, li rendono ideali per un gran numero di applicazioni. Ai tradizionali moduli amplificatori della serie HY BIPOLAR si sono aggiunte due nuove serie: la MOSFET, per gli audiofili più esigenti e la HD HEAVY DUTY per impieghi particolarmente intensivi. Tutti i circuiti sono affogati in una speciale resina protettiva e provvisti di cinque connessioni: ingresso, uscita, alimentazione positiva, negativa e massa.

I modelli HY BIPOLAR, HD HEAVI DUTY E MOSFET, sono disponibili nelle versioni con dissipatore e senza.

BIP	OLAF	C	Con dissipatore					Senza dissipatore			
Mod.	Potenza d'uscita W rms	Distor. tipica a 1 kHz	Alimentaz.	Dimensioni (mm)	Peso g	Codice GBC	Mod.	Dimensioni (mm)	Peso g	Codice GBC	
HY30	15W/4-8Ω	0,015%	±18 ±20	76x68x40	240	SM/6305-00				1	
HY60	30W/4-8Ω	0,015%	±25 ±30	76x68x40	240	SM/6310-00	11000				
HY120	60W/4-8Ω	0,01%	±35 ±40	120x78x40	410	SM/6320-00	HY120P	120x26x40	215	SM/6320-08	
HY200	120W/4-8Ω	0,01%	±45 ±50	120x78x50	515	SM/6330-00	HY200P	120x26x40	215	SM/6330-08	
HY400	240W/4 Ω	0,01%	±45 ±50	120x78x100	1025	SM/6340-00	HY400P	120x26x70	375	SM/6340-08	

Protezione: carico di linea, corto circuito momentaneo (10 s) Tempo di risalita: 5 μs — Fattore di battimento: 15 V/μs

Rapporto segnale/disturbo: 100 dB

Risposta in frequenza (-3 dB): 15 Hz \div 50 kHz Sensibilità d'ingresso: 500 mV RMS Impedenza d'Ingresso: 100 k Ω Attenuazione (8 Ω /100 Hz): 400

HE	HEAVY DUTY			n dissipat	tore		Senza dissipatore			
HD120	60W/4-8Ω	0,01%	±35 ±40	120x78x50	515	SM/6380-00	HD120P	120x26x50	265	SM/6380-08
HD200	120W/4-8Ω	0,01%	±45 ±50	120x78x60	620	SM/6390-00	HD200P	120x26x50	265	SM/6390-08
HD400	240W/4 Ω	0,01%	±45 ±50	120x78x100	1025	SM/6400-00	HD400P	120x26x70	375	SM/6400-08

Protezione: carico di linea, corto circuito permanente ideale per impieghi particolarmente intensivi.

MOSFET		Co	n dissip		Senza dissipatore						
MOS120	60W/4-8Ω	0,005%	±45 ±50	120x78x40	420	SM/6350-00	MOS120P	120x26x40	215	SM/6350-08	
M0S200	120W/4-8Ω	0,005%	±55 ±60	120x78x80	850	SM/6360-00	MOS200P	.120x26x80	420	SM/6360-08	
M0S400	240W/4 Ω	0,005%	±55 ±60	120x78x100	1025	SM/6365-00	MOS400P	120x26x100	525	SM/6365-08	

Protezione: non necessita di particolari protezioni, sono sufficienti i fusibili

Tempo di risalita: 3 μs — Fattore di battimento: 20 V/μs

Rapporto segnale/disturbo: 100 dB

Risposta in frequenza: (-3 dB): 15 Hz \div 100 kHz Sensibilità d'ingresso: 500 mV RMS Impedenza d'ingresso: 100 k Ω Attenuazione (8 Ω / 100 Hz): 400

Mod.	Da usarsi con:	Codice GBC
SU 30	±15 V con HY6/66 sino a un max. di 100 mA oppure un HY67 I seguenti si possono accoppiare con HY6/66 ad ecotzione del HY67 che richiede esclusivamente il PSU30	SM/6304-05
SU 36	1 o 2 HY30	SM/6305-05
PSU 50 T	1 o 2 HY60	SM/6310-06
PSU 70 T	1 o 2 HY120 / HY120P / HD120 / HD120P	SM/6320-06
PSU 75 T	1 o 2 MOS120 / MOS120P	SM/6350-06
PSU 90 T	1 per HY200 / HY200P / HD200 / HD200P	SM/6330-06
PSU 180 T	2 per HY200 / HY200P / HD200 / HD200P o 1 per HY400 / 1 per HY400P / HD400 / HD400P	SM/6340-06
SU 185 T	1 o 2 MOS200 / MOS200P / 1 per MOS400 / 1 per MOS400P	SM/6360-06

Tutti i modelli ad eccezione del PSU 30 e PSU 36 incorporano un trasformatore toroidale

ektor38-39

anno 4 - nº 38/39

Luglio/Agosto 1982

Direzione e Redazione:

Via dei Lavoratori, 124 - 20092 Cinisello B. Tel.: 61.72.641 - 61.73.441

Editore JCE

Direttore responsabile: Ruben Castelfranchi

Redattore capo dell'ediz, internazionale:

Paul Holmes

Redazione italiana:

Daniele Fumagalli

Staff di redazione:

J. Barendrecht, G.H.K. Dam, P.E.L. Kersemakers, E. Krempelsauer, G. Nachbar, A. Nachtmann, K. Walraven.

Abbonamenti:

Patrizia Ghion

Contabilità:

Claudia Montú, Pínuccia Bonini Maria Grazia Sebastiani, Antonio Taormino

Amministrazione: Via V. Monti, 15 - 20123 Milano Aut. Trib. di Milano n. 183 del 19-5-1979 Spedizione in abbonamento postale gruppo III/70 Concessionaria esclusiva per la distribuzione in Italia Sodip - Via Zuretti, 25 - 20125 Milano Stampa: Grafiche Pirovano - S. Giuliano M. (MI) Prezzo della rivista. L. 2.500/5.000 (numero doppio) Numero arretrato L. 4.000

Numero arenato E. 4,000 Diritti di riproduzione Italia: JCE – Via dei Lavoratori, 124 - 20092 Cinisello B. Francia: Société des Publications Elektor sarl, Route Nationale, Le Seau 59270 Bailleul,

Inghilterra: Elektor Publishers Ltd. Canterbury, CT1 1PE Kent. Germania: Elektor Verlag Gmbh, 5133 Gangelt Olanda: Elektuur B.V., 6190 AB Beek

Spagna: Elektor C/Ginzo de Limia, 48 Madrid - 29

DIRITTI D'AUTORE

La protezione del diritto d'autore è estesa non solamente al contenuto redazionale di Elektor ma anche alle illustrazioni e ai circuiti stampati. Conformemente alla legge sui Brevetti n° 1127 del 29-6-39, i circuiti e gii schemi pubblicati su Elektor possono essere realizzati solo ed esclusivamente per scopi privati o scientifici e comunque non commerciali. L'utilizzazione degli schemi non

comporta alcuna responsabilità da parte della Società editrice. La Società editrice è in diritto di tradurre e/o fare tradurre un articolo e di utilizzario per le sue diverse edizioni e attività dietro compenso conforme alle tariffe in uso presso la

sue diverse edizioni e attività dietro compenso comornie alle tarine in uso pi Società editrice stessa. Alcuni circuiti, dispositivi, componenti, ecc. descritti in questa rivista possono beneficiare dei diritti propri ai brevetti; la Società editrice non accetta alcuna responsabilità per il fatto che ciò possa non essere menzionato.

ABBONAMENTI

Italia

Estero

Abbonamenti annuali

L. 24.000

I versamenti vanno indirizzati a: J.C.E. - Via dei Lavoratori, 124 - 20092 Cinisello B. mediante l'acclusione di assegno circolare, vaglia o utilizzando il conto corrente postale nº 315275

CORRISPONDENZA

DR = direttore responsabile A = CI = cambio indirizzo SR =	pubblicità, annunci abbonamenti segretaria di redazione servizio riviste arretrate
--	---

CAMBIO DI INDIRIZZO

l cambi d'indirizzo devono essere comunicati almeno con sei settimane di anticipo Menzionare insieme al nuovo anche il vecchio indirizzo agglungendo, se possibile, uno dei cedolini utilizzato per spedire la rivista. Spese per cambi d'indirizzo: L. 500

DOMANDE TECNICHE

Aggiungere alla richiesta L. 300 in francobolli l'indirizzo del richiedente; per richieste provenienti dall'estero, aggiungere, un coupon-risposta internazionale.

TARIFFE DI PUBBLICITA' (nazionali ed internazionali)

Vengono spedite dietro semplice richiesta indirizzata alla concessionaria esclusiva

Reina & C. - Via Washington 50 - 20149 Milano -Tel: 02-4988066/7/8/9/060 (5 linee r.a.) - TX 316213 per USA e Canada:

International Media Marketing 16704 Marquardt Avenue P.O. Box 1217 Cerritos, CA 90701 (213) 926-9552

Copyright Ditgeversmaatschappij Elektuur B. V. 1981

Cos'è il servizio EPS? Cosa vuol dire DT? Cosa si intende per il torto di Elektor?

Tipi di semiconduttori

Cos'è un TUP?

Cosa significa 3k9?

Le abbreviazioni TUP, TUN, DUG, DUS si trovano impiegate spesso nei circuiti di Elektor. Esse si riferiscono a tipi di transistori e diodi di impiego universale, che hanno dati tecnici corrispondenti tra loro e differiscono solo per il tipo di contenitore e per i collegamenti ai piedini. Le prestazioni limite inferiori dei componenti TUP-TUN, DUG-DUS sono raccolte nelle tabelle I e II.

Tabella I. Prestazioni minime per i TUP e TUN.

UCEO max	20 V
ic max	100 mA
hfe min	100
Ptot. max	100 mW
fT min	100 MHz

Esempi di elementi TUN: BC 107 (-8, -9), BC147 (-8, -9), BC 207 (-8, -9), BC237 (-8, -9), BC 317 (-8, -9), BC347 (-8, -9), BC 547 (-8, -9), BC171 (-2, -3), BC 182 (-3, -4), BC382 (-3, -4), BC 437 (-8, -9), BC414

Esempi di elementi TUP: BC177 (-8, -9), BC157 (-8, -9), BC204 (-5, -6), BC307 (-8, -9), BC320 (-1, -2), BC350 (-1, -2), BC557 (-8, -9), BC251 (-2, -3), BC212 (-3, -4), BC512 (-3, -4), BC261 (-2, -3), BC416

Tabella II. Prestazioni minime per i DUG ed i DUS

	75,000	
	DUG	DUS
UR max	20 V	25 V
IF max	35 mA	100 mA
In max	100 µA	1 HA
Ptot max	250 mW	250 mW
Cp max	10 pF	5 pF

Esempi di elementi DUG: OA85, OA91, OA95, AA116 Esempi di elementi DUS:

BA127, BA217, BA317, BAY61 **BA217** 1N914, 1N4148

Molti semiconduttori equivalenti tra loro hanno sigle diverse. Trovandosi in difficoltà a reperire in commercio un tipo speciale, viene fornito su Elektor, dove possibile, un tipo universale. Come esempio ci si può riferire al tipo di circuito integrato 741, il

quale può essere siglato: μΑ 741, LM 741, MC 741, MIC 741, RM 741, SN 72741 ecc.

Valori delle resistenze e dei condensatori

L'espressione dei valori capacitivi e resistivi avviene senza uso della virgola. Al posto di questa, vengono impiegate le abbreviazioni di uso internazionale:

(pico) = 1072 = 1079 (nano) = 100 (micro) (illim) 103 m (chito) 103 105 (mega) G $= 10^9$ (giga)

Alcuni esempi di designazione dei valori capacitivi e resistivi: $3k9 = 3.9 \text{ k}\Omega = 3900 \Omega$

 $0\Omega 33 = 0.33 \Omega$

4p7 = 4,7 pF

5n6 = 5,6 nF $4\mu 7 = 4.7 \, \mu F$

Dissipazione delle resistenze: 1/4 Watt (in mancanza di diversa prescrizione) La tensione di lavoro dei

condensatori a film plastico, deve essere di circa il 20% superiore alla tensione di alimentazione del circuito.

Dati in tensione continua

I valori di tensione continua forniti in un circuito, devono ritenersi indicativi, quindi il valore misurato se ne può scostare entro i limiti del ± 10% (lo strumento di misura dovrebbe avere una resistenza interna \geqslant di 20 k Ω/V).

Servizio EPS

Numerosi circuiti pubblicati sono corredati della basetta stampata. Elektor ve la fornisce già pronta, pubblicando ogni mese l'elenco di quelle disponibili sotto la sigla EPS (dall'inglese Elektor Print Service, servizio circuiti stampati Elektor). Il montaggio dei circuiti viene alquanto facilitato dalla serigrafia della disposizione dei componenti, dalla limitazione delle aree di saldatura e dalla riproduzione delle piste conduttrici riportata sul lato componenti.

Servizio tecnico lettori

- Domande tecniche (DT) possono essere evase sia per iscritto che oralmente durante le ore dedicate alla consulenza telefonica. La redazione rimane a disposizione ogni lunedi dalle ore 14,00 alle 16,30
- Il torto di Elektor fornisce tutte le notizie importanti che arrivano dopo l'uscita di un articolo, e che vengono riferite al lettore quanto prima è possibile

FOREL Elettronica - Via Italia, 50 - 60015 FALCONARA (AN) - Tel. 071/9171039 MICROPROCESSORI 4116-20NL L. 4.300 **UAA 170** L. 3.100 4042 L. 1.100 7.000 **UAA 180** 2708 850 1 3.100 4044 1 MM 74C926 2708 Cancellate 3.500 8080 A L. 9.500 L. 7.400 4046 1.000 Z80 CPU L. 11.000 2716 9.000 4049 500 C-MOS Z80 A CPU L. 15.000 2716-1 L. 12.000 500 4050 L. 17.000 360 950 L. 13.000 2532 4000 6502 4051 360 950 4001 4052 CHIP DI SUPPORTO QUARZI 4002 360 4066 500 4006 1.000 4069 360 2 MHz L. 5.000 6532 L. 21.400 360 4070 360 4007 L. 3.000 20 MHz 500 360 4071 8224 L. 5,500 4009 360 8228 L. 6.500 REGOLATORI DI TENSIONE 4010 500 4073 8251 L. 9.500 4011 360 4075 360 LM 317 T L. 1.800 4076 950 8255 9.500 4012 360 Z80 A CTC 9.000 LM 723 CH L. 1.500 500 4081 360 4013 1. 600 **Z80 PIQ** L. 9.000 4014 1.000 4093 MM5303 = LINEARI 4015 1.000 4099 1,200 AY-5-1013 L. 8.500 500 1.050 4016 40014 L. 2.300 1,900 745241 CA 3161 4017 800 40160=74C160 1.200 'CA 3162 L. 1.900 L. 6.700 950 40161=74C161 1.200 74LS241 4018 1.100 1,900 CA 3140 500 950 74LS244 L. 4019 40174=74C174 74LS373 2.500 LM 10 5.200 4020 900 40192=74C192 1,200 74LS374 2.500 LM 380 1.200 4021 40193=74C193 1.250 **ULN 2003** L. 1,650 LM 555 600 850 4510 950 4022 1 LM 556 1.050 1 100 360 4023 4511 L. MEMORIE LM 565 1 500 4024 750 4514 1.900 LM 3914 3.900 360 950 4025 4518 L. 2,300 TL 081 900 550 4520 950 4027 TL 082 L. 3.300 1.500 2102-2NL 750 1.150 4028 4522 2 900 2111 3.500 TL 084 4029 950 4528 1.050 **UA 741 CH** 2114 4.000 1.000 4030 500 74C32 400 **UA 741 CN** 600 1.550 2114 N-3 4.500 4035 1.000 74C48 XR 2206 7.500 1.900 2114-20NL 5.000 4040 L 950 74C85 Per quantitativi chiedere offerta 2708 Programmata per "Junior Computer" L. 8.000 2708 Programmata per "Luci da soffitto" L. 8.000

I GIOIELLI DI ELEKTOR

Spedizioni in contrassegno. I prezzi riportati sono netti, non comprensivi di I.V.A. Spese di spedizione a carico dell'acquirente,

Alla A.P.L. srl di Verona, puoi richiedere direttamente:

Ordine minimo L. 10.000.

1	JUNIOR COMPUTER (compreso manuale-basetta principale-basetta display-alimentatore)	L. 262.500
2	ELEKTERMINAL (comprese 2 pagine di memoria e tastiera)	257.500
	TV GAMES COMPUTER (con cassetta programmata e manuale)	293.000
4	LA SCHEDA PARLANTE	350.000
5	CHOROSYNT	137.000
6	VOCODER (comprendente 1 solo filtro)	158.950
7	ANALIZZATORE LOGICO (c.s.: base - entrata - memoria - cursori - pilotaggio - display - alimentazione)	288.500
8	MEMORIA PER OSCILLOSCOPIO	75.200
9	TV-SCOPIO (versione base)	104.500
10	GENERATORE DI FORME D'ONDA	40.000
11	GENERATORE DI FUNZIONI SEMPLICI (con pannello)	67.200
12	LUCI DA SOFFITTO	139.000
13	GENERATORE DI COLORE	44.070
14	POSTER CHE DANZA (compreso 1 poster)	56.400
15	DISCO LIGHTS (luci psichedeliche)	48.500
16	AMPLIFICATORE 30W TOP/AMP	52.000
17	AMPLIFICATORE 60W TOP/AMP	58.000
18	MINI MIXER	80.200
19	PIANOFORTE ELETTRONICO A 4 OTTAVE (con tastiera)	450.000
20	PIANOFORTE ELETTRONICO A 7 OTTAVE (con tastiera)	650.000
21	MINI ORGANO ELETTRONICO A 5 OTTAVE (con tastiera)	130.000
1 pri	mi 10 acquirenti del pianoforte elettronico avranno in omaggio il mobile in palissandro.	
Q.		

I primi 10 acquirenti del pianoforte elettronico avranno	
Modulo d'ordine per: "I GIOIELLI DI ELEKTOR" da invi	
DESIDERO RICEVERE IL GIOIELLO DI ELEKTOR:	
COGNOME	NOME
INDIRIZZO	
C.A.P DESTINAZIONE	
DATA	FIRMA
AND ADDRESS OF THE PROPERTY OF	Table 2011 Control of the Control of

speciale estate 82'

sommario sommar somm som

	uiti 82		54.	nuovo controllo per orologio	66
1.	tabella di punteggio	16	55.	luci lampeggianti di nuovo tipo	6/
2.	preamplificatore "hi-fi"	17	57	sirena "hi-fi"preamplificatore microfonico a	00
3.	amplificatore stereo da 6 W per autoradio	20	51.		co
4.	sezione di ingresso "chopper" per alimentatori	21	58	6444	69
5.	indicatore di picco per altoparlante	22		A CONTRACT OF THE STATE OF THE	70
6.	convertitore di polarità	23	60		71
7.	registratore di temperatura	24	61		72
8.	rivelatore di fine nastro		62	luci sequenziali ad EDDOM	73
9.	generatore di impulsi a CMOS	26	63		73
10.	protettore di fusibili	27	64	interfaccia TTL veloce	74
11.	la protezione delle RAM dinamiche	28			75
12	roulette russa - P. Dooley	28	66	indicatore ottico per il rivelatore di movimenti	76
13	risparmia-LED	29		codifica a 6 bit per tastiera - L. Witkam	77
14	caricabatterie intelligente	30			78
15	indicatore di tensione zero	31	60.	ricevitore "non ti scordar di me"	78
16	allarme antifurto per auto - R. Rastetter	32	70		79
17	cannone spaziale E. Vaughan	33	10.	interruttore automatico per saldatore -	0.0
1 8	generatore di numeri casuali	34	71		80
19	un efficace filtro antirombo ed antifruscio	36	71.	adattatore per corrente costante - R. Storn	81
20	indicatore digitale di sintonia	37	72.	semplice tastiera ASCII - da un'idea di D. Hul	82
21	objetor	38			82
	inseguitore di tensione ad alta impedenza di	30	74.	reset automatico	83
	ingresso	20	75.	indicatore di tensioni a LED	
23	misuratore di livello audio a LED	38	76.	riconoscitore di parole e trigger ritardato	85
24	i MOSFET di potenza nell'auto	39		sensore di umidità	86
25	semplice manifesto danzante	40	18,	oscillatore a cristalloper bassa tensione	
26	temporizzatore da 6 ore-K. Siol	40	70	di alimentazione	
27	un VOX per i sistemi PA	41		convertitore da 6 a 12 V	12.62
28	"resistenza" di potenza variabiale				90
		43			90
30	fianchi regolabili per le onde quadre	44			92
31	commutatore silenzioso per giradischi-K. Kiik	45	83.	selettore di canali a 16 ingressi	93
32	gong elettronico	46	84.	LED a tensione di rete	94
33	semplice ricevitore per onde corte	47 48	85.	oscillatore risonante in parallelo	
34	codifica digitale per tastiera - C. Voss	49	0.0		94
35	buffer d'ingresso per l'analizzatore logico	50	86.	strumento di controllo per il connettore	0.5
36	amplificatore universale di misura	51	07	della roulotte	
	oscillatore sinusoidale digitale			strumento digitale universale	
	amplificatore d'antenna senza trasformatore .			regolatore per motori di elevata potenza	98
	temporizzatore per apparecchi alimentati	00	69.	contatore ad anello che impiega dei	00
00.	a batteria	53	00	temporizzatori	
40	stabilizzatore di potenza		90.	diapason a quarzo	100
41	LED a corrente costante	54	91.	alimentatore per RAM dinamica	101
12	demodulatore Kansas City	55	92.	oscillatore locale e filtro per ricetrasmettitori	
43	iniettore e rivelatore di segnali	56	00	nella banda dei 2 metri	102
	lampadina tascabile a batterie solari	- m - m		pilotaggio per grafici a barre	
	biliardino americano - H. J. Walter	57		microcompressore	
	ricevitore ultrasonico a CMOS	59	95.	portapenne 3 in 1 - W. Gietmann	105
	oscillatore a durata d'impulso costante			convertitore A/D a 6 canali	
			97.	controllo di velocità per modelli navali	108
10	generatore di impulsi con rapporto	60	98.	filtro attivo ad eliminazione di banda	
40.		61	00	oppure per CW - H. Pietzko	109
50	impulso-pausa variabileinterruttore differenziale		100	controllo automatico per antenna d'autoradio	110
	potenziometro comandato a	62	100.	convertitore D/A per regolazione di motori	117
31.	distanza-R. Behrens	63	101.	strumento di controllo della continuità	112
50	alimentatore a tensione variabile da 2 a 60. V		102.	rivelatore di frequenza in fase	113
	temporizzatore per tempi lunghi	65	103.	pronosticatore di mancanza di corrente	
00.	temperature per tempi lungiii tittitititi	00		sezione dati	115

COMUNE DI CEREA ASSESSORATO MOSTRE-MERCATI

T.E.S. A.R.I. A.N.C.I.

PER LA FIERA D'ESTATE PROMUOVE A: "VILLA FRANCO"

Località Franco in Cerea II

"IO WEEK-END DELL'ELETTRONICA

nei giorni 2-3-4 Luglio 1982

Con Mostra Mercato:

- Radiantistica
 Kit elettronici e componentistica per hobbysti
- Informatica
- Strumenti musicali
- Modellismo radio-comandato

con il: "PRIMO PREMIO WEEK-END DELL'ELETTRONICA" con ricchi premi messi a disposizione dalle Ditte partecipanti.

Incontri e dibattiti di radiantistica OM-CB.

Telematica ed Informatica.

Occupazione del tempo libero in hobbystica elettronica.

Orario della Mostra: 9-19.00 nei giorni 3-4 Luglio; 15.00-19.00 nei giorni 2 Luglio.

Vasto parco per relax, gare e laghetto artificiale per pesca e prove natanti telecomandati Servizio ristoro e tavola calda.

Prenotazioni ed informazioni presso la Segreteria "WEEK-END DELL'ELETTRONICA"

Cerea - Sig. Sergio Rossignoli - Tel. 0442/82333.

Cerea - Villa Franco - Tel. 0442/80112.

Verona - A.P.L. srl - Tel. 045/582633 - Telex 480234 - Segreteria WEE.

la TEKNO ELECTRONIC SERVICE

"VILLA FRANCO"

Località Franco CEREA - Verona

- il Laboratorio assistenza hobbysti;
- il Centro Meeting per incontri e dibattiti di elettronica applicata alle varie discipline:
- il Club degli Hobbysti di elettronica;
- l'Esposizione permanente dei:

GIOIELLI DI ELEKTOR

Richiedi la tessera di Socio Fondatore del Club "Elektor-Kit"!!!

La puoi avere in uno dei seguenti modi:

- aquistando un kit alla A.P.L. s.r.l. Via Tombetta, 35/A 37135 VERONA;
- riempiendo il tagliando riportato in questa pagina
- mandando tuoi progetti alla A.P.L.-Tekno, che, se validi, ti daranno il diritto di divenire Socio del Club di Elektor. RICHIEDETE IL CATALOGO GENERALE A.P.L.-TEKNO (gratuito per i soci del Club "Elektor-Kit"). COMPRENDE TUTTI I PREZZI DEI COMPONENTI PER LA REALIZZAZIONE DEI KITS PUBBLICATI NELLA RIVISTA ELEKTOR.

Tagliando da inviare alla A.P.L.-TEKNO Via Tombetta, 35/A - 37135 VERONA

VOGLIATE INVIARMI LA TESSERA DEL CLUB "ELEKTOR-KIT" AL SEGUENTE INDIRIZZO:

COGNOME NOME

DATA FIRMA

ELEKTOR-KIT come dalla testata che vedete, è una realizzazione A.P.L.-TEKNO con i circuiti stampati originali (EPS) di Elektor.

Gli **ELEKTOR-KIT** sono blisterati in modo originale e da non confondersi con eventuali imitazioni che già si trovano sul mercato!

Gli **ELEKTOR-KIT** sono corredati oltre che dagli EPS originali di Elektor, da componenti preventivamente selezionati e rispondenti alle norme ANIE e CCIR internazionali adottate dai progettisti olandesi dei circuiti.

La "Scheda di informazione" è un ulteriore riprova di garanzia fatta dai tecnici TEKNO coadiuvati da ingegneri per l'assoluta sicurezza di funzionamento del kit.

Per chiedere i kit, gli EPS le "Schede di informazione", i consigli tecnici rivolgiti con fiducia ai distributori **ELEKTOR-KIT** che trovi elencati per Regioni e Provincie nella rubrica "CHI E DOVE".

L'ANGOLO DEL GUFO

Pronto! ... il gufo risponde a tutti i pulcini.

Ai 200 pulcini che volevano aprire l'uovo di ELEKTOR-KIT solo per telefono domandandoci chi e dove, diciamo:

"Rivolgetevi al vostro distributore indicato nella rubrica CHI E DOVE".

Allo stesso distributore potete rivolgervi per la taratura del pianoforte e il "sustein" ... per reperire il digitast del Junior Computer ... per acquistare i BC 557, BC 558 e la UNN 21002; insomma, al vostro distributore potete rivolgervi per i problemi tecnici, relativi ai montaggi di elektor.

se		BB S6	ei un rivenditore di materiale elettronico	
pu	oi	••••	 distribuire i circuiti stampati (EPS) di l i kit, le riviste e i libri 	Elektor,

Per maggiori informazioni spedire questo tagliando a:

Elektor - Via dei Lavoratori, 124 - 20092 Cinisello Balsamo

/ia	n°	Tel.:
Città		C.A.P
Data	Timbro e firma	

Siamo interessati a ricevere ulteriori informazioni sulla possibilità di diventare rivenditori di Elektor.

PUNTI DI VENDITA DEI CIRCUITI STAMPATI E DEI KIT RELATIVI AI PROGETTI PUBBLICATI DA ELEKTOR

DISTRIBUTORI

ABRUZZI E MOLISE

D'ALESSANDRO GIULIO Via Piave, 23 65012 CEPAGATTI (PE)

F.B.C. ITALY dI PIERMARTIRI & C. snc Via De Gasperi, 17/19 62024 MATELICA (MC) Tel. 0737/83187

CALABRIA

FRANCO ANGOTTI Via Nicola Serra, 56/60 87100 COSENZA Tel. 0984/34192

MDM ELETTRONICA Via Sbarre Inf. Tr.XI di V.le Moro 89100 REGGIO CALABRIA Tel. 0965/56043

SCARAMUZZINO ANTONIO Via Adda, 41 23089 LAMEZIA TERME (CZ) Tel. 0968/23089

CAMPANIA

C.E.F. di Febbraio Giuseppe Via Epomeo, 121 A/B 80100 NAPOLI Tel. 7284166

C.F. ELETTR. PROFESSIONALE C.so Vittorio Emanuele, 54 80122 NAPOLI Tel 081/683728

ELETTROTECNICA SUD s.r.l. Via Settimo Mobilio, 27 84100 SALERNO 089/239576-9

ELETTRONICA TELECOMUNICAZIONI Geom. Salvatore Scialla Via Naz. Appia, 123-125 Casagiove (CE) Tel. 0823/460762

ELETTRONICA TIRRENA C.so Mazzini, 224 84013 Cava del Tirreni (SA)

FILIPPONI CLAUDIO V.le dei Plni, 37 80131 NAPOLI Tel. 081/7418453

HOBBY ELETTRONICA Via L. Cacciatore, 56 84100 SALERNO Tel. 089/394901

EMILIA-ROMAGNA

B.M.P. s.n.c. di Benevelli & Prandi Via Porta Brennone, 9/B 42100 REGGIO EMILIA Tel. 0522/46353 C.T.E.N. Via Corbari, 3 47037 RIMINI (FO)

0523/74664

ELETTROMECCANICA M & M snc Via Gramsci, 27 29100 PIACENZA

E. Mezzetti snc Via A. Agnello, 18/20 48100 RAVENNA Tel. 0544/32267

G.E.A. di A. Menegatti P.zza T. Tasso, 6 44100 FERRARA Tel. 0532/39141

FRIULI VENEZIA GIULIA

B. & S. V.le XX Settembre, 37 34170 GORIZIA Tel. 0481/32193

ELEKTRONIA di Bonazza Via Fabio Severo, 138 34100 TRIESTE Tel. 040/574594

ELETTRONICA PECORARO Via S. Caboto, 9 33170 PORDENONE Tel. 0434/21975

P.V.A. ELETTRONICA Via A. Marangoni, 21 33100 UDINE Tel. 0432/297827

S.G.E. di Spinato Gianrenzo Via Marostica, 3 33170 PORDENONE Tel. 0434/369886

LAZIO

DERICA IMPORTEX sas Via Tuscolana, 285/B 00181 ROMA Tel. 06/7827376

E.C.M. Via Mastruccia, 50/52 03100 FROSINONE

ELETTRONICA ALBERTI Via Spontini, 23 00043 Clampino (ROMA) Tel. 06/6110310

ELETTRONICA DIGITALE s.n.c. Via Plave, 93/93B 05100 TERNI Tel. 0744/56635

PANTALEONI ALBO Via Renzo da Ceri, 126 00195 ROMA Tel. 06/272902

REEM Via di Villa Bonelli, 47 00149 **ROMA** Tel. 06/5264992

ROMANA SURPLUS P.zza Capri, 19/A 00141 ROMA Tel. 06/8103668 Allo scopo di dare la necessaria assistenza tecnica ai lettori con le migliori garanzie di funzionamento degli ELEKTOR-KIT, è stata creata la

TEKNO

un'organizzazione professionale, formata da ingegneri e tecnici specializzati, che montano, collaudano i circuiti e forniscono una chiara relazione tecnica "Scheda di Informazione", con i suggerimenti di montaggio, di controllo del circuito, con l'ausilio anche del test-point.

La TEKNO è poi disponibile a dare chiarimenti e suggerimenti che possano essere richiesti dai lettori telefonando allo 0442/80112 il sabato e il lunedi dalle 9 alle 12 e dalle 14 alle 17, oppure scrivendo al seguente indirizzo:

TEKNO - Villa Franco/Corte Franco - 37053 Cerea (VR) - SER-VIZIO ELEKTOR

La "Scheda di Informazione" viene allegata al kit di montaggio o inviata su richiesta dei lettori a completamento dei kit che ne fossero sprovvisti, ed è comunque sempre disponibile presso tutti i distributori elencati nella rubrica "CHI E DOVE".

LIGURIA

2002 ELETTROMARKET di R. Sacco Via Monti. 15 r SAVONA Tel. 25967

NUOVA ELETTRONICA LIGURE sri Via A. Odero, 22/24/26 16129 GENOVA Tel. 010/565572

LOMBARDIA

ASSEL ELETTRONICA INDUSTRIALE Via Cino da Pistoia, 16 20126 Milano Tel. 02/6433889

A.Z. Via Varesina, 205 20156 MILANO Tel. 02/3086931

Bazzoni Giampiero Via V. Emanuele, 106 22100 COMO Tel. 031/269224

C.A.M. srl Via B. Croce, 2 27029 VIGEVANO (PV) Tel. 0381/71452

C.S.E. F.III Lo Furno Via Maiocchi, 8 20129 MILANO Tel. 02/2715767

CSE Via L. Tolstoi, 14 20051 Limbiate (MI) Tel. 02/9965889

GRAY ELECTRONIC Via Nino Bixio, 32 22100 COMO Tel. 031/557424 SAVA snc Via P. Cambiasi, 14/3 20131 MILANO Tel. 02/2850294

MARCHE

FOREL ELETTRONICA Via Italia, 50 60015 Falconara (AN) Tel. 071/9171039

PIEMONTE

C.E.E.M.I. s.a.s. Via Carducci, 10 28100 NOVARA Tel. 0321/35781

CENTRO ELETTRONICO G. Odicino Via Garibaldi. 11 15067 Novi Ligure (AL) Tel. 0143/76341

PINTO C.so Prin. Eugenio. 15 Bis 10122 TORINO Tel. 011/541564

RACCA Corso Adda, 7 13100 VERCELLI Tel. 0161/2386

PUGLIA

EUROTECNICA srl Via Japigia, 29 74100 TARANTO Tel: 099/339875

"Zero dB" s.n.c. Via D'Auria, 94 71036 Lucera (FG) Tel. 0881/942172

SICILIA

CENTRO ELETTRONICO Via A. Specchi, 54 96100 SIRACUSA

Tel. 0931/41130

DIPREL Via Solemi, 32 91026 Mazara del Vallo Tel. 0923/941874

ELCAR di Cardillo Vincenzo Via P. Vasta, 114/116 95024 Acireale (CT)

ELETTRONICA GAMMA di Scandurra & Dibella Via Risorgimento, 5 95010 Macchia di Giarre (CT) Tel. 095/939136

I.M.E.T. TELECOMUNICAZIONI Via Milano/ 14 95128 CATANIA

MANGANO SALVATORE Via Fimia, 16 95128 CATANIA Tel. 095/441244

SARDEGNA

RIVA GIOVANNA Via Montebello, 13 07024 La Maddalena (SS Tel. 0789/73736

TOSCANA

COSTRUZIONI ELETTRONICHE LUCCHESI Via G. Puccini, 297 55100 S. Anna (LU) Tel. 0583/58857

C.P.E. ELETTRONICA s.a.s. Via S. Simone, 31 (Ardenza) 57100 LIVORNO Tel. 0586/505062

ELECTRONIC MARKET srl Via della Pace, 18/A 58100 GROSSETO Tel. 0564/411090

SUN TRONIC SERVICE s.r.l. Via Enrico Guido Bocci, 45/53 50141 FIRENZE Tel. 411.758

TRENTINO

EL-DOM di Zadra Elda Via Suffragio, 10 38100 TRENTO Tel. 0461/25370

VENETO

A.P.L. s.r.l. Via Tombetta, 35/A 37135 VERONA Tel: 045/582633

BECCARI ELETTRONICA Via Belluno, 45 32032 Feltre (BL) Tel. 0439/80518

C.E.A. di Ponti Mario Via Bonardi, 28 13014 COSSATO (VC) Tel. 015/99978

E.B. ELECTRONIC SYSTEMS di E. Brancaccio Via Roma, 128/B 35010 Vigodarzere (PD) Tel. 049/702018 ELECTRONIC MARKET Via S. Maria Maddalena, 11/A 31046 Oderzo (TV) Tel. 0438/24258

ERTES

Via Unità d'Italia, 154 37132 San Michele Extra (VR) Tel. 045/973466

MCE ELETTRONICA sri Via Dante, 9 31029 Vittorio Veneto (TV) Tel. 0438/53600

SVIZZERA

ROBBIANI e VALLI SA Via G. Rusca CH 6862 RANCATE (Svizzera Italiana) Tel. 091/686580

- I kit vengono forniti completi di circulto stampato, componenti elettronici, e una descrizione illustrata che facilità il montaggio del circulto e la sua messa in funzione, facendo riferimento anche al test-point per una rapida verifica del circulto.
- I kit possono essere ordinati per posta o acquistati direttamente presso i distributori, dei quali vi forniamo gli indirizzi in queste pagine della rivista (Attenzione, non presso la J.C.E.).
- Oltre al kit completi, in scatola di montaggio, sono disponibili anche i kit premontati e collaudati con o senza i relativi contenitori.

CODICE	9	PREZZO KIT	PREZZO STAMPATO	CODICE		PREZZO KIT	PREZZO STAMPATO
ELEKTOR Nº 1 - GIU EPS 9453		COUR	0.072	ELEKTOR Nº 8 - GEI		40,000	F F00
EPS 9453 EPS 9465	GENERATORE DI FUNZIONI SEMPLICE PANNELLO PER GENERATORE DI FUNZIONI SEMPLICE ALIMENTATORE STABILIZZATO A CIRCUITO	63.000	10.600	EPS 9984 EPS 9965 EPS 9988	FUZZ-BOX VARIABILE TASTIERA ASCII POCKET BAGATELLE (gioco di destrezza)	16.200 114.500 20.000	21.500 6.000
EPS 78041 EPS 1234 EPS 9743	INTEGRATO TACHIMETRO PER LA BICICLETTA RIDUTTORE DINAMICO DEL RUMORE COMANDO AUTOMATICO PER IL CAMBIO DELLE	60.000 18.000 13.800	3.900	EPS 9985 EPS 9966 EPS 79519	CONTAMINUTI CHIOCCIANTE ELEKTERMINAL SINTONIA A TASTI	22.200 163.700 47.000	22.600
EPS 4523/9831 EPS 1473 EPS 1471 EPS 9765	DIAPOSITIVE LE FOTOGRAFIE DI KIRLIAN SIMULATORE DI PISCHIO A VAPORE SINTETIZZATORE DI VAPORIERA INIETTORE DI SEGNALI	16.900 61.000 14.700 12.700 8.700	10.000 5.000 4.500	ELEKTOR N° 9 - FEE EPS 9974 EPS 79038 EPS 79088-1-2-3 EPS 79514 EPS 78003	IBBAIO 1980 RIVELATORE DI PROSSIMITA' ESTENSIONE DELLE PAGINE NELL'ELEKTERMINAL IL "DIGIFARAD" GATE DIPPER LAMPEGGIATORE DI POTENZA	33.000 108.000 64.000 36.200 13.000	19.800 14.300 5.800
ELEKTOR Nº 2/3 - LUGLIO/AGOSTO 1979 EPS HB11+HB12 AUSTEREO: ALIMENTATORE + AMPLIFICATORE HI-FI DA 3 WATT AUSTEREO: PREAMPLIFICATORE		38.500 25.600	11.000	EPS 79077 EPS 78087 EPS 79082 EPS 79095	SEMPLICI EFFETTI SONORI CHASSIS DI MEDIA FREQUENZA DECODIFICATORE STEREO ELEKDOORBELL	21.000 27.000 33.000 45.000	6.000 7.300 7.700
EPS HD4 EPS 9525 EPS 77005 EPS 77059 EPS 77101 EPS 9398/9399 EPS HB14	RIFERIMENTO DI FREQUENZA UNIVERSALE INDICATORE DI PICCO A LED DISTORSIOMETRO ALIMENTATORE 0-10 V AMPLIFICATORE PER AUTORADIO 4W PREAMPLIFICATORE PRECO AUSTEREO: PREAMPLIFICATORE FONO	22,700 18,300 19,700 13,900 10,500 46,600 9,700	5.700 7.800 5.500 4.500 13.900	ELEKTOR Nº 10 - M. EPS 79019 EPS 9913-1-2 EPS 79040 EPS 9753 EPS 80021-1A-2A EPS 80016	ARZO 1980 GENERATORE SINUSOIDALE UNITA: DI RIVERBERO DIGITALE MODULATORE AD ANELLO BIGLIA ELETTRONICA SINITONIA DIGITALE DISTURBATORE ELETTRONICO	24,500 21,600 34,600 87,500 12,000	19.800 8.400 9.800 22.000
ELEKTOR N° 4 - SETTEMBRE 1979 EPS 9797 TIMER LOGARITMICO PER CAMERA OSCURA		39.000	7.700	ELEKTOR Nº 11 - A		12.000	5.200
EPS 9860 EPS 9817-1-2 EPS 9970 EPS 9952 EPS 9827 EPS 9927	PPM: VOLTMETRO DI PICCO AC SU SCALA LOGARITMICA VOLTMETRO LED CON UAA 180 OSCILLOGRAPHIC SALDATORE A TEMPERATURA CONTROLLATA CAMPI MAGNETICI IN MEDICINA MINI-FREQUENZIMETRO	15.100 29.200 35.300 34.600 15.000 61.000	6.500 9.300 7.300 6.500 5.000	EPS 79650 EPS 79039 EPS 79070 EPS 79071 EPS 80023 EPS 80023-a	CONVERTITORE PER ONDE CORTE MONOSELEKTOR & PANNELLO STENTOR ASSISTENTOR TOPAMP 30 W CON ALETTA TOPAMP 60 W CON ALETTA	25.200 76.400 42.900 16.000 56.200 62.700	25.30 11.30 8.00 6.90
ELEKTOR Nº 5 - OT EPS 9344-1-2	TOBRE 1979 MINI-TAMBURO	68.000		ELEKTOR Nº 12 - M EPS 79024	AGGIO 1980 RICARICATORE AFFIDABILE TOPPREAMP	33.750 96.700	
EPS 9344-3 EPS 9948 EPS 9491 EPS 79026	GENERATORE DI RITMI IC GENERATORE SINUSOIDALE A FREQUENZE FISSE SEGNALATORE PER PARCHIMETRI INTERRUTTORE A BATTIMANO	39.000 51.800 24.900 17.600	6.000 8.000 4.700	EPS 80031 EPS 80054 EPS 79093 EPS 80009	VOLETE UNA VOCE "STRANA" 2 (modulatore ad anello) TIMER/CONTROLLER PROGRAMMABILE ESWAR (effetti sonori con riverbero analogico)	28.900 67.300 46.400	6.000
ELEKTOR Nº 6 - NO EPS 79005	VEMBRE 1979 INDICATORE DIGITALE UNIVERSALE	34.600	7.300	ELEKTOR Nº 13 - G	IUGNO 1980	07 500	0.000
EPS 9751 EPS 9755-1-2	SIRENE TERMOMETRO	15.700 47.700	6.000	EPS 80018-1-2 EPS 80084 EPS 80086	ANTENNA "ATTIVA" PER AUTOMOBILE ACCENSIONE A TRANSISTOR TEMPORIZZATORE "INTELLIGENTE" PER	27.500 40.900	
EPS 9325 EPS 79075	IL "DIGIBELL" MICRO COMPUTER BASIC	24.300 111.800		EPS 80096	TERGICRISTALLO MISURATORE DEL CONSUMO DI CARBURANTE	48.000	
ELEKTOR Nº 7 - DIO EPS 9987-1-2 EPS 79006 EPS 79073	CEMBRE 1979 AMPLIFICATORE TELEFONICO GIOCO "PROVA-FORZA" COSTRUZIONE DEL COMPUTER PER TV GAMES	29.200 23.300		EPS 80097 EPS 80101 EPS 80102	(sensori a parte) FERMIAMO I LADRI! (antifurto) INDICATORE DELLA TENSIONE DELLA BATTERIA UN PROBE AD ASTINA (astina a parte) PROTEZIONE PER BATTERIA	77.800 15.000 15.500 12.800 12.900	5.30 5.30 5.30 5.30
EPS 79073-1-2	(main board) COSTRUZIONE DEL COMPUTER PER TV GAMES	245.700	50.000	EPS 80109		2.300	3.00
EPS 9906 EPS 9885 EPS 9967 EPS 80024	(power supply e keyboard) ALIMENTATORE PER MICRO COMPUTER BASIC SCHEDA CON 4 K DI RAM MODULATORE TV UHF/VHF BUS BOARD (COMPRESO FLATCABLE 64 POLI)	70.800 56.200 158.800 19.500 54.600	13.200 46.200 6.000	ELEKTOR N° 14/15 EPS 78065 EPS 79517 EPS 79505 EPS 79114 EPS 79509	- LUGLIO/AGOSTO 1980 RIDUTTORE DI LUCE SENSOR CARICA BATTERIE AUTOMATICO AMMUTOLITORE PER DISC-JOCKEY FREOUENZIMETRO PER SINTETIZZATORI SERVO AMPLIFICATORE	23.700 55.000 24.600 21.600	0 6.50 0 8.00

CHI E DOVE • CHI E D

CODICE	-	PREZZO KIT	PREZZO STAMPATO	CODICE		PREZZO KIT	PREZZO STAMPATO
LEKTOR Nº 16 - S PS 79513	VSWR METER CON STRUMENTO	23.400	2.000	ELEKTOR Nº 28 - SE EPS 81012	TTEMBRE 1981 LUCI DA SOFFITTO	150.200	25.000
PS 80027 PS 79033 PS 9945	GENERATORE DI COLORI QUIZMASTER CONSONANT (con pannello frontale)	47.600 27.700 80.000	4,600 4,000 23,800	EPS 81072 EPS 81082	MISURATORE DELLA PRESSIONE SONORA POTENZA BRUTA con raffreddatore	27.300 87.800	4,800 8,400
istema d'allarme	centralizzato:			EPS 81005 EPS 81073 EPS 81073-P	CAMPANELLO A SENSORE POSTER CHE DANZA (basetta) POSTER CHE DANZA (poster)	14.000 54.500	
PS 9950-1 PS 9950-2 PS 9950-3	STAZIONE MASTER (con altoparlante) STAZIONE SLAVE (con altoparlante) STAZIONE D'ALLARME	34.600 30.000 10.800	5.300 4.800 2.700	EPS 81068	MINI MIXER	86,700	
		10,000	2.100	II grande VU Meter EPS 81085-1 EPS 81085-2	VERSIONE BASE ESTENSIONE A 240 V	32.500 64.000	6,500
EKTOR Nº 17 - 0' S 80067 S 80045	DIGISPLAY TERMOMETRO DIGITALE	67.000	8,300				
S 79035 S 9954	MILLIVOLTMETRO CA E GENERATORE DI SEGNALI (con strumento)	28.000	9.400 3.800	ELEKTOR N° 29 - 07 EPS 80120 EPS 81101	TOBRE 1981 8K RAM * 16K DI EPROM TEMPORIZZATORE DI PROCESSO	248.000 51.900	
9904	PRECONSONANT	17.300	5.800	EPS 81027/1-2 EPS 81071	RILEVATORE DI FONEMI SORDI E SONORI	109.000	31.700
S 80068-1/2	IL VOCODER DI ELEKTOR - BUS BOARD	47 000	20.000	EPS 81105/1-2 EPS 81008 EPS 81110	VOLTMETRO DIGITALE 2.5 CIFRE TAP MULTICANALE RIVELATORE DI MOVIMENTO	66.000 46.000 44.300	11.000 13.600 6.600
6 80068-3 6 80068-4	(completo di connettori) IL VOCODER DI ELEKTOR - FILTRI IL VOCODER DI ELEKTOR - MODULO I/O	42.900 33.000 61.800	20.900 7.200 7.300	ELEKTOR N° 30 - NO			0.000
S 80068-5 S 80022 S 80060	IL VOCODER DI ELEKTOR - ALIMENT AMPLIFICATORE D'ANTENNA CHOROSYNT CON TASTIERA 2.5 OTTAVE	34.000 12.600 148.000	6,000 2,000 33,600	EPS 81112 EPS 80514	GENERATORE DI EFFETTI SONORI ("") ALIMENTATORE PRECISIONE	42.000 71.500	6.500 6.000
S 9956/9955	DOPPIO REGOLATORE DI DISSOLVENZA PER PROIETTORE	30.300	7.000	("") Generatore	e di effetti sonori: AVE SPAZIALE		
				SPARI E M EFFETTO E	ITRAGLIATRICE IOMBE	26,400 37,300 27,000	
EKTOR Nº 19 - D S 9423 S 9368	ANTENNA FM INTEGRATA per interni RELE' CAPACITIVO	19.700 14.300	4.700	EFFETTO A	O D'UCCELLI IEREO IN VOLO IUTO IN CORSA E AUTOSCONTRO	28.000 26.300 29.700	
S 9329 S 9369	SONDA LOGICA VERSATILE MINI-RICEVITORE AD ONDE MEDIE	14.300 13.800 9.600	4.800 4.800 2.500	EFFETTO V	APORIERA	27.300	
S 9192 S 80065	SOSTITUTO "LOGICO" DEL POTENZIOMETRO A CARBONE DUPLICATORE DI FREQUENZA	43.500 15.700	11.000 2.900	ELEKTOR Nº 31 - DIO EPS 81024	ALLARME PER FRIGORIFERO	15.900	
S 80019	TRENO A VAPORE	18.400	2.900	EPS 81013 EPS 81142 EPS 81117-1	ECONOMIZZATORE DI CARBURANTE SCRAMBLER SISTEMA A COMPANDER RIDUTTORE RUMORE	25.600 39.000 162.000	8,000 7,300
EKTOR Nº 20 - 6 S 81002	ENNAIO 1981 DISSOLVENZA PROGRAMMABILE PER DIAPOSITIVE	108.000	19.700	EPS 81117-2 EPS 9860	ALIMENTATORE PER COMPANDER MISURATORE DI PICCO DEL COMPANDER	30.200 15.700	6.600
80050	INTERFACCIA A CASSETTE PER MICROCOMPUTER BASIC	100.000	18.700 15.500	EPS 9817/1-2 EPS 9956/80512	FADER PER PROIETTORI DI DIAPOSITIVE (parte 2°)	29.200 43.000	9.300
5 9915 5 9914	ESTENSIONE INTERFACCIA CASSETTE GENERATORE DI NOTE UNIVERSALE MODULO PER OTTAVA	108.000	5.000 18.700 8.400		e pannello frontale		
5 9979 5 9981	ALIMENTAZIONE FILTRI PREAMPLIFICATORE	49.500	5.300 14.500	ELEKTOR N° 32 - GE EPS 81173 EPS 81135	BAROMETRO DIGITALE ROGER BLEEP	82.300 23.800	16.500 8.000
EKTOR Nº 21 - FI	FRRRAID 1981			EPS 81123 EPS 81069 EPS 81094/1	ACCOPPIATORE DI TRANSISTORI CONVERTITORE DI DECIBEL	20,000 38,700	8.000 11.800
S 9968-1 S 9968-2/3/4/5	TV-SCOPIO (amplificatore di ingresso) /F TV-SCOPIO, VERSIONE BASE	18,900 94,000	5.500 30.000	EPS 81094/2 EPS 81094/3	ANALIZZATORE LOGICO (circuito base) ANALIZZATORE LOGICO (circuito d'entrata) ANALIZZATORE LOGICO (circuito di memoria)	134.500 23.300 28.700	10.500
5 79053 5 9840 5 9499-2	TOTO-ORACOLO TEMPORIZZATORE PER SVILUPPO FOTO PORTA LUMINOSA A RAGGI INFRAROSSI	15.400 37.300	7.700 9.900	EPS 81094/4 EPS 81094/5 EPS 80089/3	ANALIZZATORE LOGICO (circuito cursori di pilotaggio) ANALIZZATORE LOGICO (circuito display)	51.500 24.900	14.900 6.600
9862-1/2	(alimentatore) PORTA LUMINOSA A RAGGI INFRAROSSI	23.800	10.600	EPS 81143 EPS 79017	ANALIZZATORE LOGICO (circuito alimentazione) ESTENSIONE DELLA MEMORIA DEL TV-GAME GENERATORE DI FORME D'ONDA	49.200 266.300 43.200	82.700
KTOR N° 22 - M	(trasmettitore/ricevitore)	18.900	9.600	* COMPRESO CAV	PIATTO A 16 CONDUTTORI.	10,509	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
S 81047 S 81051	TERMOMETRO DA BAGNO XILOFONO	21.600 22.200	3.000 3.450	ELEKTOR Nº 33 - FEE			- 42
5 81049 5 81043-1/2 5 81044	CARICABATTERIE NICO IL MISURATORE IL MULTIGIOCO	29.900 43.800 41.900	4.000 6.000	EPS 81171 EPS 81141 EPS 81155	CONTAGIRI (avanti-indietro) OSCILLOSCOPIO A MEMORIA CONTROLLO DISCO LIGHTS (Luci psichedeliche)	106.400 81.300 52.400	19.300
S 81042 S 81048	IL GENIO NEL BARATTOLO CORNAMUSA	16.700 20.100	5.200 3.000 3.800	EPS 81032 EPS 81156 EPS 81105	VOLTMETRO-FREQUENZIMETRO (circuito base)	12,500 67,000	7.000 20.900
KTOR N° 23 - AF	PRILE 1981				VOLTMETRO-FREQUENZIMETRO (display 4 cifre)	47.000	10.300
80085 80089-1 80089-2/3	AMPLIFICATORE PWM JUNIOR COMPUTER (basetta principale) JUNIOR COMPUTER (basetta display)	10.200 198.400	2.500 28.600	ELEKTOR N° 34 - MAR EPS 82011	820 1982 Strumento da Pannello a Cristalli Liquidi	64.200	8.800
8 80089-3 8 9911	PREAMPLIFICATORE PICK-UP	36.000 49.200 50.500	8.600 14.300 9.900	EPS 80133 EPS 82015	TRANSVERTER PER LA BANDA DEI 70 CM* DISPLAY UNIVERSALE A LED CON UAA 170	150.700 22.000	65.900
5 9873	MODULATORE DI COLORE	25.700	6.400	EPS 82005 EPS 82004	MISURATORE DELLA VELOCITA DI OTTURAZIONE (compreso trasformatore) TIMER PER CAMERA OSCURA AD AMPIA REGOLAZIONE*	95.600 47.000	
KTOR Nº 24 - M S 9874	AGGIO 1981 ELEKTORNADO	00 700		EPS 81594 EPS 82029	SCHEDA AD INSERZIONE PER PROGRAMMATORE DI EPROM (2716)* HIGH-BOOST (AMPLI TONI ALTI PER CHITARRA)	19.000 28.700	
S 80069 S 80077	SISTEMA INTERCOM PROVA TRANSISTORI	36.700 30.900 30.150	6.900 5.300 7.450	EPS 82009	AMPLIFICATORE TELEFONICO A INDUZIONE	21.800	
S 81124	INTELEKT				RESO SCATOLA SCHERMATA/CONNETTORI BNC//TUTTA		
EKTOR N° 25 - 6 S 9897-1	IUGNO 1981 EQUALIZZATORE SEZIONE DI EU TRO	18.900	2 500	* FPS 81504 = COMP	LETO DEI CONNETTORI E DEL MODULO D'INSERZIONE DE RESO TRASFORMATORE/MANOPOLE GRADUATE/PANNEI	I VARI P A	8 BIT.
S 9897-2 S 9932	EQUALIZZATORE, SEZIONE DI FILTRO EQUALIZZATORE, CONTROLLO TONI ANALIZZATORE AUDIO	22.200 37.600	3.500 3.500 8.400				
S 80502 S 80128	SCATOLA MUSICALE TRACCIACURVE PER TRANSISTORI	51.600 7.500	7.500 2.000	ELEKTOR N° 35 - APR EPS 81029	ILE 1982 CONTROLLO AUTOMATICO PER POMPA		
-Scopio version S 9969-1 S 9969-2	BASETTA MEMORIE	46.000	10.700 4.300	EPS 82020	DI RISCALDAMENTO* MINI ORGANO A 5 OTTAVE**	41.400 122.000	13.500 19.000 7.600
5 9969-2	CIRCUITO TRIGGER BASE TEMPI INGRESSO	15.000 15.400	4.300 4.300	EPS 9968/5 EPS 81128 EPS 81130	ALIMENTATORE PER MINIORGANO*** ALIMENTATORE UNIVERSALE GALLO SVEGLIA DA CAMPEGGIO****	19.600 47.500 37.800	11.600 6.900
KTOR N° 26/27	- LUGLIO/AGOSTO 1981			EPS 82040 EPS 81150	MODULO DI MISURA DEI CONDENSATORI GENERATORE RADIOFREQUENZA PER 2M-70 CM - 23 CM****	39.500 37.800	9.400
8 80071 8 80145	MONITOR DIGITALE DEL BATTITO CARDIACO MONITOR DIGITALE DEL BATTITO CARDIACO	78.000	14.300	EPS 81158 EPS 82006	SBRINATORE ECONOMICO PER FRIGORIFERO***** OSCILLATORE SINUSOIDALE PONTE DI WIEN	31.900 35.700	8,000 9,800
S 80505 S 80506	(display board) AMPLIFICATORE A V-FET RICEVITORE SUPER ATTIVO	92.400 20.600	3.900 7.000 6.500	* EPS 81029 = COMP DI ALLACCIAMENTO	PRESO TRASFORMATORE/CONTENÍTORE/CAVERIA/SECO		RME
S 80515-1/2 S 80516 S 80532	ILLUMINAZIONE PER VETRINA ALIMENTATORE A TENSIONE VARIABILE 0-50 V/0-2A PREAMPLIFICATORE STEREO DINAMICO	38.000 58.000	11.000 5.200	** EPS 82020 = CON *** EPS 9968/5 = CO	IPRESA TASTIERA DA 5 OTTAVE.		
S 80543	AMPLIFICATORE STEREO DINAMICO AMPLIFICATORE STAMP PROGRAMMATORE PER PROM	13.500 10.000	2.600 2.500	***** FPS 81150 = CC	MPRESE 5 CELLE SOLARI OMPRESO MOBILE E TRASFORMATORE. COMPLETO DI MOBILE E CAVERIA SECONDO NORME ANII		

OVE • CHI E DOVE •

			DEZZO PREZZO CODICE KIT STAMPATO			PREZZO KIT	PREZZO STAMPATO
ELEKTOR N° 36 - N EPS 82019 EPS 82041	MAGGIO 1982 IPROM MOLTIPLICATORE DI FREQUENZA PER FREQUENZIMETRI	36.800 27.700	7.900 9.800	** EPS 82070 (IT COMPLETO DI CONNETTORI, CAVO PER J. ci, CONTENI ZERO COMPRESO TRASFORMATORE COMPRESO CONTENITORE ED ALETTA DI RAFFREDDAM		TEXTOOL
EPS 82026 TPS 4769 EPS 82046	FREQUENZIMETRO A CRISTALLI LIQUIDI RICEVITORE COMPATTO STEREO AM/FM CARILLON ELETTRONICO (compreso trasformatore)	159.300 29.200 44.900 378.000 (soil	10.200 6.300 9.400		99 - LUGLIO/AGOSTO 1982	ENTO	
EPS 82034 SCHEDA PARLANTE 378 ELEKTOR N° 37 - GIUGNO 1982			olo in kit)	EPS 81570 EPS 81515 EPS 81523	PREAMPLIFICATORE HI-FI* INDICATORE DI PICCO PER ALTOPARLANTI	73.000 9,800 0PIO 37.500	6.60
EPS 82028 FREQUENZIMETRO A 150 MEGA FPS 82010 PROGRAMMATORE DI EPROM 2716/2732*		114.500 189.600	18,600 36,200	EPS 81577 EPS 81545	GENERATORE CASUALE DI NUMERI PER OSCILLOSCOPIO AMPLIFICATORE D'INGRESSO PER ANALIZZATORE LOGICO ALIMENTATORE VARIABILE DA 2/60V**	38.000 47.300	9.00
EPS 82039/1-2	SISTEMA INTERFONICO CON ASCOLTO SFNZA FILI A INDUZIONE 82039/1 = TRASMETTITORE 82039/2 = RICEVITORE	33.500	10.500	EPS 81525 EPS 81567 EPS 81538	SIRENA HI-FI SENSORE DI UMIDITA' CONVERTITORE DA 12 A 6 V BILANCIA PESA-LETTERE STRUMENTO DIGITALE UNIVERSALE DIAPASON AL GUARZO	19.500 47.000 22.500	8.40
EPS 82070 EPS 82043	CARICATORE UNIVERSALE DI BATTERIE NICO** AMPLIFICATORE 10 W PER I 70 CM:	30.300 53.500	8,600 13,000 20,400 20,400 16,300 7,500	EPS 81505 EPS 81575 EPS 81541		11,500 79,800 26,000	5.50
80076/1-2 82068	VERSIONE 12/14 V DI ALIMENTAZIONE*** VERSIONE 24/28 V DI ALIMENTAZIONE*** ANTENNA ATTIVA A FINESTRA INTERFACCIA PER LA SCHEDA PARLANTE	157,000 168,500 51,700 36,200		* COMPRESO TF	CONTROLLO DI VELOCITA' PER MODELLI NAVALI RASFORMATORE DI FITA DI RAFFREDDAMENTO E TRASFORMATORE	34.000	6.00
		S	OFTV	VARE			
SERVIZIO	ESS						
Dischi 45 girl co	n programma per microprocessore						
ESS 002 (DISCO 45 giri) SC/MP con me ESS 004 (DISCO 45 giri) NIBL-E ESS 005 (DISCO 45 giri) PER SC/MP: Lu		lodia di Natale ina, battaglia navale, giornale luminoso, bioritmo, programma d'analisi, disassembler				Ė.	7.000 7.000 11.000
Cassette con pro	gramma per microprocessore						
ESS 007 (CASSETTA) 15 PROGRAMMI PER TV-GAMES ESS 008 (CASSETTA) PER HIGH-COM NUOVA CASSETTA CON 15 PROGRAMMI PER TV-GAMES						L. L	20.000 9.000 26.000
SERVIZIO	PROM-EPROM PRE-PROGRAMMATE						
ELBUG IN VERSIONE ORIGINALE 3xMM 5204Q 501 ELBUG IP VERSIONE SC/MP 3xMM 5204Q 502 PROGRAMMA DI ROUTINE PER NIBL COMPUTER 503 JUNIOR-MONITOR 1x2708 504 LUCI DA SOFITTO 1x2708 505 PROGRAMMA PER INTELEKT 2x2716 506 MONITOR PER JUNIOR C. 1x2716 EPROM 507-N MONITOR DI STAMPA PER JUNIOR C. PME 1x2716 EPROM 508 PROGRAMMA D'INDIRIZZO BUS PER JUNIOR C. 1x28523 PROM 509 DINAMICA DI PROCESSO PER JUNIOR C. 1x2716 EPROM 509 PROGRAMMA D'INDIRIZZO BUS PER JUNIOR C. 1x2716 EPROM 510 PROGRAMMA D'INDIRIZZO BUS PER JUNIOR C. 1x2716 EPROM 511 PROGRAMMA D'INDIRIZZO BUS PER JUNIOR C. 1x2716 EPROM 511 PROGRAMMA D'INDIRIZZO BUS PER JUNIOR C. 1x2716 EPROM 511 PROGRAMMA D'ISASSEMBLER PER JUNIOR C. SU EPROM PROGRAMMA 2716/2732 PROGRAMMATO IN ESADECIMALE 1x2716 EPROM							35.000 35.000 15.000 15.000 50.000 25.000 25.000 25.000 25.000 25.000 25.000
			_ATTEN				_
- Tale c E = EP = EMC=	lce riportato nell'elenco dei kit, deve essocice dovrà essere preceduto da una d Kit (scatola di montaggio) Kit premontati Kit montato completo, nel suo contento de non sarà preceduto da queste sig	elle segu	ienti sigle	di riconosci		rrà acquista	are):
TAGLIAN	DO D'ORDINE EPS-ESS-KIT da in	viare a	: Elektor	-kit APL - V	/ia Tombetta, 35/a - 37135 Veror	— — — na.	_
	, 				Termini di consegna: EPS 15 gg. dalla data di ricevi ESS 30 gg. dalla data di ricevi KIT 15 gg dalla data di ricevin	mento dell'ordi	ine
lome Cognome Indirizzo Lap.	Citta	1111					
ndirizzo	Citta (indispensabile per le aziende)	Ш			Date		-
adirizzo		o + spese o	di spedizione		Data		

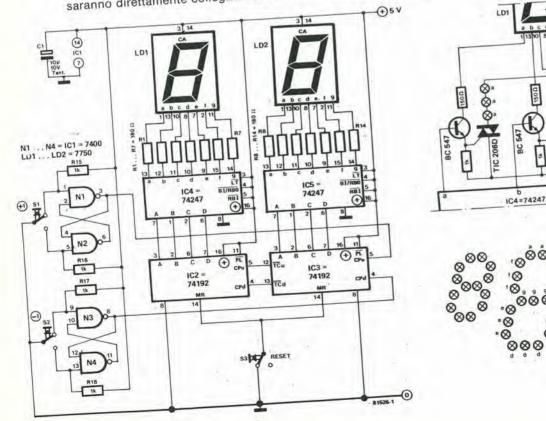
tabella di punteggio

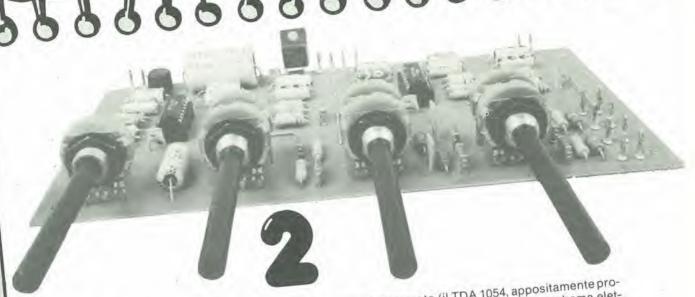
La tabella di punteggio presentata in questo articolo è destinata alle gare a "quiz", nelle quali i concorrenti possono guadagnare o perdere punti. Il conto
dei punteggi può talvolta diventare "confuso" nell'eccitazione del momento cruciale, per cui la semplicità di funzionamento è irrinunciabile. Con questo progetto si avrà l'accredito o la sottrazione di un
punto premendo uno dei due pulsanti: ogni pressione un punto. Se per caso il conduttore ha già
accreditato un punto e poi cambia parere, la correzione avverrà facilmente.

Lo schema del segnapunti si vede in figura 1. Il circuito integrato contatore che abbiamo scelto è il ben noto 74192, un contatore decimale. Esso dispone di due ingressi di clock, uno per il conteggio in avanti ed uno per il conteggio all'indietro. Gli impulsi di conteggio (o di clock) vengono creati da uno dei due flip flop composti dalle porte logiche N1-N2 oppure N3-N4 che sono fatti commutare dagli interruttori S1 oppure S2. I due contatori sono collegati in serie in modo da garantire un punteggio

L'informazione che il 74192 presenta alle sue uscite è in codice BCD (codice binario decimale) e quindi sarà necessaria una decodifica per adattarla ai display a 7 segmenti. Per questo motivo viene usato il decodificatore/pilota BCD-7 segmenti tipo 74247 (una versione aggiornata del 7447).

Questo integrato esegue tutte le funzioni necessarie nel tratto che va dai contatori ai display i quali saranno direttamente collegati alle due uscite tra-

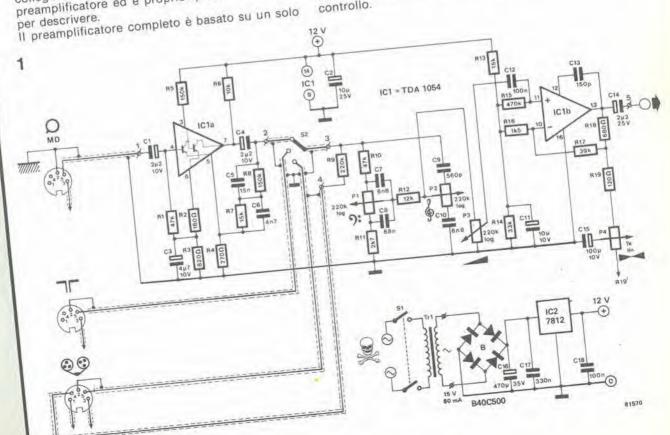

ticamente tutti i tipi di display a 7 segmenti con anodo in comune. L'interruttore S3 serve ad azzerare il punteggio: quando verrà premuto questo pulsante i due display segneranno la cifra zero. È evidente che i display a LED si riveleranno troppo piccoli quando il gioco si rivolgerà ad un uditorio piuttoto vasto, per cui a destra della figura 1 si vede il progetto di un display di maggiori dimensioni. Questo usa lampadine a 240 V e sarà sufficientemente luminoso da essere visibile ad una distanza di qualche centinaio di metri. Il display completo può essere ingrandito come si vuole spaziando convenientemente tra di loro le lampadine. Il cablaggio deve essere eseguito come mostrato nell'illustrazione. Ciascun segmento di ogni display richiede l'uso di un Triac e di un transistor pilota. Le lampadine sono da 15 oppure 25 Watt e possono essere colorate in modo vario per ottenere un risultato più "professionale". Il Triac deve avere una corrente di gate di 5 mA per l'attivazione.


Se si costruisce la versione a tensione di rete, bisognerà usare per IC4 ed IC5 i circuiti integrati tipo 74248. Il display a LED potrà rimanere e servirà per il conduttore del gioco nel caso che questi non abbia la possibilità di vedere il display più grande. In sostituzione di tutti gli integrati TTL si potranno usare dei componenti LS ma i due tipi non dovranno essere mescolati. La corrente di alimentazione degli integrati LS sarà di circa 350 mA mentre i TTL assorbiranno fino a 450 mA.

ATTENZIONE: i lettori che non desiderino rifare la loro esperienza con le proprietà fisiche della corrente alternata a 250 V quando questa viene a contatto con la propria persona, dovranno prendere delle accurate precauzioni quando costruiranno la versione a tensione di rete.

% ⊗ ⊗ ⊗ ⊗⊗⊗⊗,

8888



preamplificatore

Esistono sul mercato molti moduli amplificatori che contengono di solito la sezione finale di uscita completa e tutti i dispositivi di protezione che occorrono. Tutto quello che resterà da fare sarà di montare il modulo su un dissipatore termico e di collegarlo ad un adatto alimentatore. Occorrerà un preamplificatore ed è proprio questo che stiamo

circuito integrato (il TDA 1054, appositamente progettato per questa applicazione). Lo schema elettrico del canale sinistro del preamplificatore si vede in figura 1. La prima sezione dell'integrato contiene due transistori usati per costruire un preamplificatore munito di compensazione RIAA per pick-up a cartuccia magnetica. Questa sezione è di tipo normalissimo e non richiede altre spiegazioni. Essa è seguita dal commutatore di selezione degli ingressi (S2) che collega la presa del sintonizzatore o del registratore a nastro, oppure il preamplificatore a cartuccia magnetica, alla seconda metà di IC1. La sezione di controllo dei toni è del tipo passivo, per cui non si presenterà il problema di un eccesso di controllo.

68888888888 Segue il controllo di volume (P3) dopo del quale il

sensibilità di ingresso per un'uscita di 775 mV eff ad una frequenza

di 1 kHz cartuccia magnetica - 3 mV - 220 mV sintonizzatore - 220 mV ingresso nastro 50 kΩ impedenza d'ingresso 12 dB

variazione del comando di bilanciamento esaltazione/attenuazione

dei bassi esaltazione/attenuazione

risposta in frequenza

degli acuti distorsione armonica ± 13 dB (100 Hz)

± 13 dB (10 kHz) < 0.05% (f= kHz ad un livello di uscita di 775 mV) 20 Hz _ 24 kHz (± 3 dB, control-

li di tono nella posizione intermedia)

rapporto segnale/rumore (a 775 mV); > 65 dB 2

segnale viene amplificato dall'amplificatore operazionale contenuto nella seconda metà di IC1. Il guadagno di questo operazionale viene determinato dal rapporto delle resistenze R16/R17 e da quello delle resistenze R18/R19 + P4.

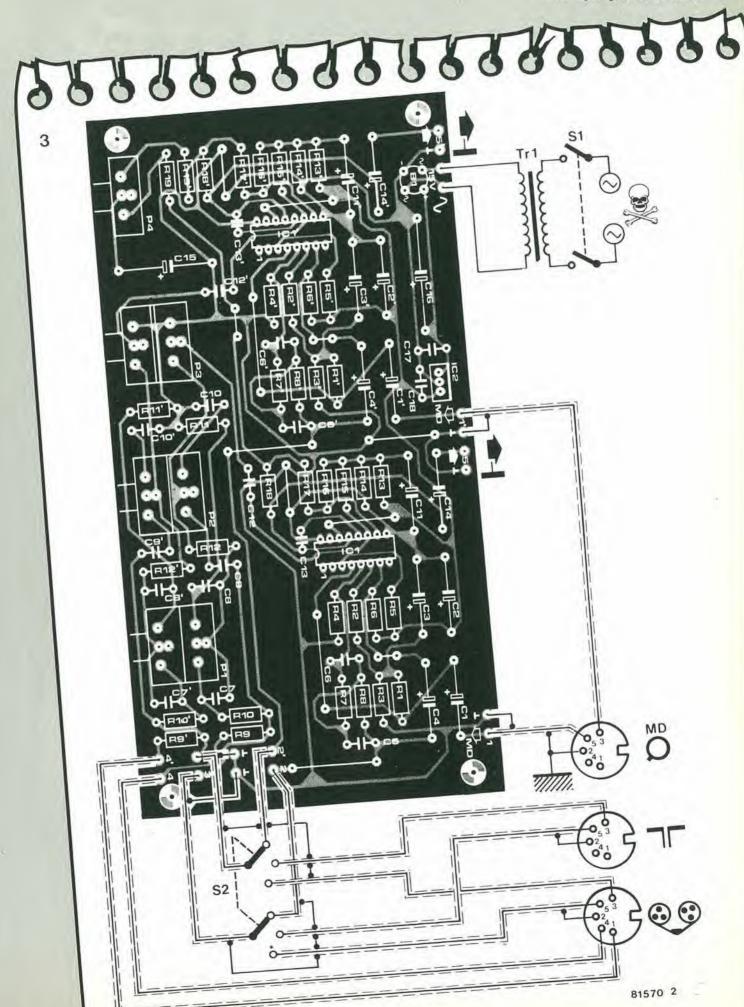
L'alimentazione a 12 V necessaria per il preamplificatore si ricava da un regolatore di tensione integrato (7812). Gli asterischi che appaiono sulla figura 2 che rappresenta la disposizione dei componenti sul circuito stampato, si riferiscono ai componenti del canale sinistro.

(Nota applicativa SGS-Ates).

Elenco dei componenti

Resistenze: R1,R1',R10,R10' = 47 k R2,R2' = 180 12 $R3,R3' = 820 \Omega$ $R4,R4' = 270 \Omega$ R5,R5',R8,R8' = 150 k R6,R6' = 10 kR7,R7',R13,R13' = 15 k R9, R9' = 220 k R11,R11' = 2k7 R12,R12' = 12 k R14,R14' = 33 k R15,R15' = 470 k R16,R16' = 1k5 R17,R17' = 39 k R18,R18' = 680 Ω $R19,R19' = 120 \Omega$ P1,P2,P3 = 220 k LOG potenziom, stereo

P4 = 1 k LIN potenziometro


Condensatoria

 $C1,C1',C4,C4' = 2\mu 2/10 \text{ V}$ $C2,C2' = 10 \,\mu/25 \,V$ $C3,C3' = 4\mu7/10 \text{ V}$ C5,C5' = 15 nC6,C6' = 4n7 C7,C7',C10,C10' = 6n8 C8,C8' = 68 n C9,C9' = 560 pC11,C11' = 10 µ/10 V C12,C12',C18 = 100 n C13,C13' = 150 p $C14,C14' = 2\mu 2/25 \text{ V}$ $C15 = 100 \,\mu/10 \,V$ $C16 = 470 \,\mu/35 \,V$ C17 = 330 n

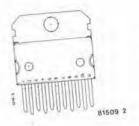
Semiconduttori:

B = B40C500 IC1,IC1' = TDA 1054 1C2 = 7812

Tr1 = trasformatore 15 V/50 mA S1 = interruttore di rete bipolare S2 = interruttore rotativo 2 vie 3 posizioni

3

amplificatore stereo da 6 W per autoradio


II TDA 2004 della SGS Ates contiene due amplificatori di potenza bilanciati in classe B. Questo integrato è stato progettato appositamente per gli amplificatori stereo da usare nell'automobile e per questo motivo tutti i tipi di sovraccarico: per esempio il cortocircuito all'uscita, oppure lo scollegamento degli altoparlanti, il surriscaldamento del mento degli altoparlanti, il surriscaldamento del chip, i picchi di tensione dell'alimentazione ed anche delle brevi inversioni della polarità della tensione di alimentazione saranno incapaci di distruggene

re il componente. Con i valori dei componenti riportati in figura e con una tensione di alimentazione di 14,4 V (una batteria d'auto a piena carica), l'amplificatore stereo può fornire una potenza di uscita di almeno 6 W (normalmente 6,5 W) su un'impedenza di carico RL di 4 Ω . L'impedenza di carico potrà anche essere di 2 Ω ed in questo caso la potenza di uscita sarà come ed in questo caso la potenza di US). Potenze di uscita di quest'ordine di grandezza sono soggette uscita di quest'ordine di grandezza sono soggette ad una distorsione del 10% circa, ma se si accettano potenze inferiori (4 W su un'impedenza di carico di 4 Ω , oppure 6 W su 2 Ω), la distorsione si aggirerà

sullo 0,3% soltanto.
Il guadagno di tensione del canale sinistro è determinato dal rapporto tra R2 ed R1 e quello del canale destro dal rapporto tra R6 ed R7. Con i valori di figura esso sarà di 50 dR

figura esso sarà di 50 dB.
Occorrerà perciò un segnale di circa 50 mW all'ingresso per ottenere la massima uscita. Se questa sensibilità di ingresso è troppo elevata si potrà disporre un potenziometro, stereo da 50 kΩ. L'impeporre un potenziometro,

2

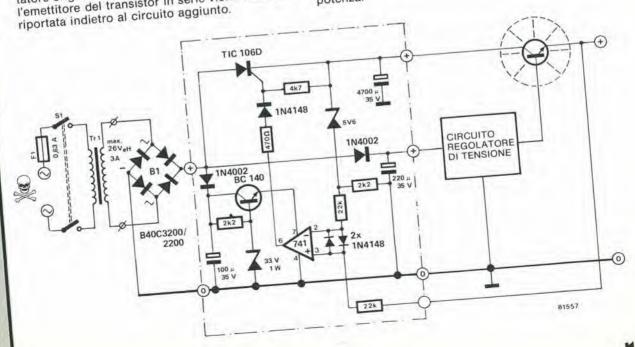
denza all'ingresso non invertente dell'amplificatore

è di 100 kΩ minimi.
Il circuito formato dalla resistenza R3 e dal condensatore C5 (ed anche R5/C8) serve ad evitare l'oscillazione dell'amplificatore alle frequenze d'ingresso più alte. La larghezza di banda del circuito è più che sufficiente per l'uso che se ne deve fare, cio é come amplificatore d'autoradio. La curva di risposta in frequenza dell'amplificatore si estende da 40 Hz a 16 kHz (punti a 3 dB).

L'integrato deve ovviamente essere ben raffreddato. Il progetto ben studiato rende però molto facile il montaggio del componente su un adeguato dissipatore termico. La resistenza termica di tale dissipatore deve essere di almeno 4°C/W.

sezione d'ingresso "chopper" per alimentatori

Gli alimentatori in grado di erogare elevate correnti d'uscita, e specialmente quelli con tensione regolabile, costituiscono un carico gravoso per il transistor regolatore in serie, per l'elevata potenza che è necessario dissipare. Quest'ultima potrà essere diminuita mediante un semplice circuito addizionale. Poiché la potenza sarà ridotta, diminuiranno anche le dimensioni del dissipatore da montare sul transistore serie, tanto che quasi sempre sarà sufficiente il pannello posteriore del mobiletto. Inoltre, sarà d'ora in poi possibile usare un solo transistor in luogo dei soliti due o tre in parallelo. A conti fatti, si scoprirà che il costo supplementare dovuto al circuito che ora presentiamo, sarà ampiamente compensato dal risparmio dovuto alle minori dimensioni del mobiletto e dei dissipatori e dal minor numero dei transistori di potenza, a parità di prestazioni. Il circuito addizionale è collegato tra il polo positivo del rettificatore a ponte ed il transistor di regolazione in serie. In effetti questo circuito ha due uscite: una di esse è direttamente collegata al collettore del transistor NPN in serie e la seconda è collegata al regolatore di tensione vero e proprio dell'alimentatore originale. La tensione d'uscita presente sull'emettitore del transistor in serie viene anch'essa

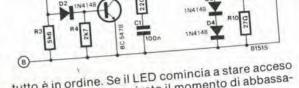

Il circuito funziona nel modo seguente: l'amplificatore operazionale 741 è collegato come comparatore. Esso confronta la tensione presente sull'emettitore del transistor di regolazione in serie (applicata all'ingresso non invertente) con la tensione che c'é sul collettore dello stesso transistor (applicata all'ingresso invertente). Lo zener 5V6 mantiene la tensione all'ingresso invertente dell'operazionale ad un valore che è inferiore di 5,6 rispetto a quella di collettore. Di conseguenza, l'uscita dell'amplificatore operazionale attiva il tiristor ogni volta che la tensione tra collettore ed emettitore del transistor in serie si abbassa al di sotto di 5,6 V. Il condensatore di livellamento da 4700 μF viene in questo caso sottoposto ad una breve ricarica.

Il circuito di regolazione dell'alimentatore collegato al nostro circuito viene alimentato separatamente tramite un diodo ed un piccolo condensatore di livellamento, in modo da essere sempre sotto corrente e da restare indipendente dall'alimentazione principale che sarà impulsiva. Il 741 riceve la sua alimentazione tramite un semplicissimo circuito stabilizzatore di tensione, grazie al quale l'integrato è protetto dall'effetto di tensioni di alimentazione

Il circuito addizionale, come appare in questa vertroppo elevate. sione, potrà essere usato, in linea di principio, con qualsiasi alimentatore in grado di erogare una tensione massima d'uscita di 25 V. Il valore del condensatore di livellamento deve essere di 2200 µF per ogni ampere d'uscita; il valore dato sullo schema (4700 μF) servirà dunque per alimentatori da 2 A. La corrente nominale del tiristore dovrà essere almeno tre volte più grande della corrente massima

Per alimentatori con tensione d'uscita fissa, è possibile un'ulteriore riduzione della tensione collettore-emettitore. Questa è determinata dalla tensione dello zener, ed il minimo valore pratico sarà di 3,3 V. Per restare in condizioni di sicurezza, è consigliabile inserire una resistenza supplementare da 470 Ω in serie alla base del transistor di

potenza.



indicatore di picco per altoparlante

Al giorno d'oggi, qualunque sistema di altoparlanti appena decente è, per fortuna, abbastanza resistenze ad un trattamento rude. Possono però insorgere dei problemi di ascolto quando il volume viene alzato ad un livello tale da introdurre una limitazione dei picchi. In questo caso potranno verificarsi una notevole distorsione ed una generazione di armoniche di frequenza elevata. Questo fenomeno disturba l'ascolto, ma questo non è il solo inconveniente, perché si potrà anche avere il danneggiamento dei tweeter. Si può ottenere una certa protezione impiegando un indicatore di picco o di clippaggio, ossia uno strumento extra, che di solito non è montato sugli amplificatori audio.

L'indicatore di picco che descriviamo ora può essere direttamente collegato all'uscita dell'amplificatore, oppure può essere montato entro la cassa acustica, dato che non è necessaria un'alimenta-

Il circuito reagirà anche ad impulsi di picco brevissimi, e perciò sarà molto adatto a determinare se l'amplificazione sta per andare in saturazione (in altre parole, non si tratta solo di un indicatore di sovraccarica), il livello di picco della potenza al quale ci si attende una risposta del circuito (in effetti si tratta di una tensione di picco), si può regolare tra 15 e 125 W su un altoparlante da 8 Ω (14...45 V). Il circuito farà accendere un LED appena l'amplificatore eroga la sua potenza massima, per cui l'ascoltatore sarà in grado di osservare quando le cose cominciano a non andare nel modo giusto. Se il LED si accende solo di tanto in tanto

tutto è in ordine. Se il LED comincia a stare acceso per lungo tempo, è arrivato il momento di abbassare un pò il volume.

Lo schema elettrico dell'indicatore si vede in figura 1. L'alimentazione viene derivata dal condensatore C1, che si carica tramite R1 e D1 alla tensione di uscita altoparlante dell'amplificatore. La rettificazione a mezz'onda è stata ritenuta sufficiente, perché sono usati dei "normali" transistori a 45 V. Senza segnale d'ingresso, tutti i transistori sono in apertura e perciò l'assorbimento di corrente da C2 è praticamente nullo. Se il segnale d'ingresso supera un certo livello (che dipende dalla regolazione di P1), la tensione al punto di giunzione tra R2 ed R3 raggiungerà un punto in cui T1 inizierà a passare in conduzione. Questo fatto provoca la conduzione di T2 che permette una rapida carica di C1. La resistenza R7 serve ad impedire il superamento della massima corrente ammessa per il collettore di T2. I due transistori T3 e T4 passeranno ora in conduzione ed il LED D5 si accenderà. La corrente che attravrsa il LED verrà mantenuta sui 20 mA da C2, in modo indipendente dal livello del segnale che arriva all'altoparlante. Quando poi la tensione d'ingresso scende al di sotto del livello predisposto, T1 e T2, passeranno all'interdizione. Il LED resterà però acceso per qualche istante ancora, mentre C1 si scarica attraverso R7 ed R8. La costruzione non dovrebbe presentare alcun pro-

blema, specialmente usando il circuito stampato di figura 2. Probabilmente sarà consigliabile impiegare un LED di grandi dimensioni per avere un'ottima

Componenti necessari:

Resistenze:

 $R1 = 100 \Omega$

R2 = 27 k

R3 = 5k6

R4 = 2k7

R5 = 8k2

R6 = 39 k $R7 = 220 \Omega$

R8 = 1 M

R9 = 3k3

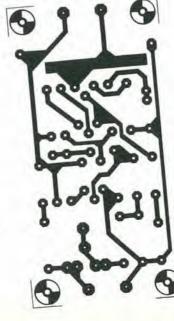
 $R10 = 27 \Omega$

P1 = 100 k potenziometro regolabile

Condensatori:

C1 = 100 n

 $C2 = 220 \, \mu F/50 \, V$


Semiconduttori:

D1 = 1N4004D2,D3,D4 = 1N4148

D5 = LED

T1,T3,T4 = BC 547B

T2 = BC 557B

888888888888 dersi. Durante questa operazione, si deve stare at-

"visibilità". La taratura viene eseguita nel seguente modo. Se la potenza di picco dell'amplificatore è nota, la tensione di picco potrà essere calcolata con la formula:

Vpicco = 2 x Ppicco x Raltop.

Collegare il circuito indicatore ad un alimentatore stabilizzato (il positivo andrà collegato al punto A) e regolare la tensione continua ad un livello corrispondente al valore calcolato. Si dovrà poi girare P1 all'indietro, fino a che il LED comincia ad accen-

tenti che il LED non rimanga acceso troppo a lungo, in quanto potrebbe essere superato il limite di

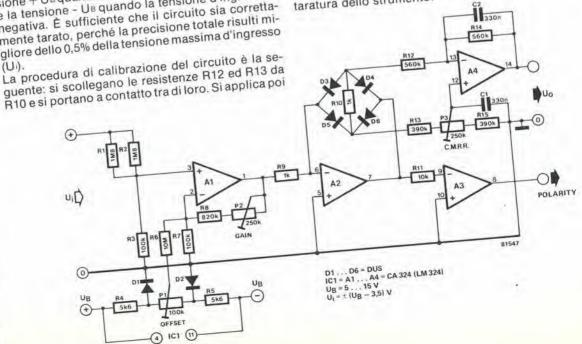
Una volta stabilito il livello di limitazione, il circuito dissipazione di T4 potrà essere collegato ad una delle uscite di altoparlante dell'amplificatore oppure, se si vuole, ad uno degli altoparlanti. C'é anche la possibilità di modificare il circuito in modo da fargli azionale un relè che a sua volta faccia suonare un campanello..... o magari faccia sparare un cannone!! ??

convertitore di polarità

I voltmetri analogici oppure quelli digitali (o magari tutti e due i tipi!) sono accessori molto importanti per il laboratorio elettronico, sia del dilettante che del professionista. Perciò, tanto più facile è la misura delle tensioni e tanto meglio vanno le cose. Nel caso della maggior parte degli strumenti analogici e di qualche tipo di strumento digitale, può talvolta risultare scomodo il dover scambiare di posto i puntali ogni volta che la tensione da misurare inverte la sua polarità rispetto a quella misurata in prece-

Una dimenticanza in questo senso potrebbe anche avere conseguenze a dir poco catastrofiche!!

Il circuito che ora presentiamo aiuta in modo considerevole in questi frangenti, perché la tensione d'uscita sarà sempre positiva, senza riguardo alla polarità della tensione d'ingresso. Il circuito possiede anche un'uscita di "polarità" che assumerà la tensione + Ua quando la tensione d'ingresso è positiva e la tensione - Us quando la tensione d'ingresso è negativa. È sufficiente che il circuito sia correttamente tarato, perché la precisione totale risulti migliore dello 0,5% della tensione massima d'ingresso


guente: si scollegano le resistenze R12 ed R13 da R10 e si portano a contatto tra di loro. Si applica poi

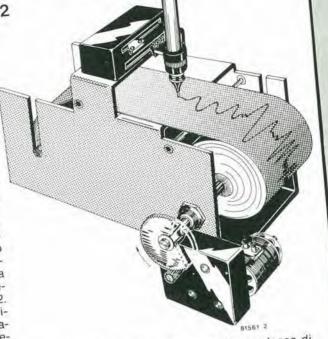
una tensione di +1 V tra la giunzione di R12 e di R13 e la massa (0 V). La tensione di uscita (A4) viene poi regolata ad un livello di minimo mediante il trimmer P3. Si tratta della regolazione del rapporto di reiezione in modo comune (CMRR). Si inverte poi la polarità della tensione di prova da 1 V, viene invertita portandola a -1 V. Si misurerà ora una certa tensione (parecchi millivolt) all'uscita, e si regolerà una volta P3 in modo da dimezzare pressapoco il

La suddetta procedura va ripetuta invertendo altervalore. nativamente la polarità della tensione di prova e regolando P3 fino a quando la tensione misurata all'uscita resta uguale nei due casi (a +1 V ed a -1 V). Si regolerà poi il CMRR al suo livello massimo (la bassa tensione d'uscita è dovuta all'offset di A4 e non può essere del tutto eliminata).

Il passo successivo consiste nel collegare le resistenze R12 ed R13, come si vede nello schema. Si mette poi in cortocircuito l'ingresso per ridurre al minimo l'offset totale del circuito regolando il trim-

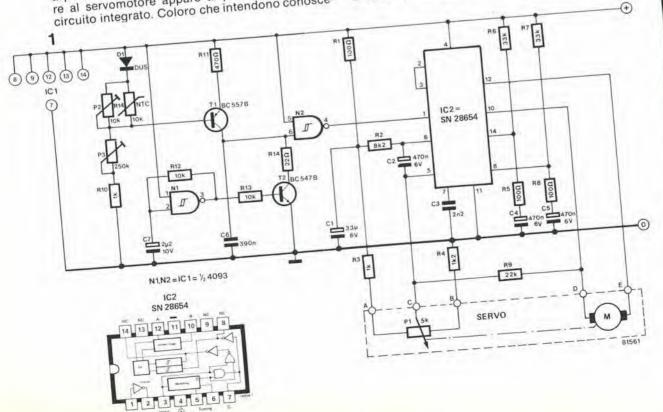
Una volta eseguite queste operazioni, si applica all'ingresso una tensione di valore noto, per esempio +1 V, e si regola mediante P2 il guadagno del circuito, in modo da rendere la tensione d'uscita uguale a quella d'ingresso. A questo punto il circuito sarà tarato in modo corretto e pronto per l'uso. Per ultima cosa, il circuito dovrà essere munito di un alimentatore stabilizzato. Questo perché ogni fluttuazione del livello della tensione di alimentazione significherà il dover rifare completamente la taratura dello strumento.

registratore di temperatura


Questo circuito, combinato con una certa dose di abilità meccanica ci renderà possibile la costruzione di un elemento di strumentazione relativamente poco costoso, che potrà essere usato per registrare una curva di temperatura. Per azionare il pennino si usa un normale servomotore per radiocomando. Come sensore serve una normale resistenza a coefficiente di temperatura negativo (NTC). Il circuito costruito intorno ad N1, N2, T1 e T2 forma un oscillatore i cui impulsi hanno una durata determinata dal valore istantaneo della resistenza NTC. Il segnale risultante è direttamente mandato ad IC2. Questo circuito integrato (un SN 28654) è appositamente progettato per servire da servoamplificatore, cosa che risulta chiara a sufficienza considerandone le caratteristiche tecniche:

Una corrente d'uscita di 400 mA senza bisogno

Inversione di direzione ottenta con una sola tensione di alimentazione.


Lo "spazio morto", ossia il grado di variazione che occorre all'ingresso prima che avvenga una variazione all'uscita, dipende dal valore di C3.

La dissipazione massima è di circa 800 mW. Il segnale modulato a durata d'impulso è applicato al piedino 1 di IC2. Il segnale di controllo da mandare al servomotore appare ai piedini 10 e 12 del circuito integrato. Coloro che intendono conosce-

re in questo particolare componente qualcosa di più di quanto possiamo permetterci di dire nel poco spazio a disposizione, possono richiedere al fabbricante od ai concessionari i relativi fogli dati.

Il comportamento non lineare della variazione della resistenza ci mette di fronte ad un piccolo problema quando volessimo impiegare delle NTC come elementi sensori di temperatura. C'é però una soluzione, cioè quella di usare solo una piccola porzione della caratteristica di temperatura. In questo caso abbiamo ottenuto lo scopo mediante i potenziometri di "sensibilità" P2 e P3 che determinano

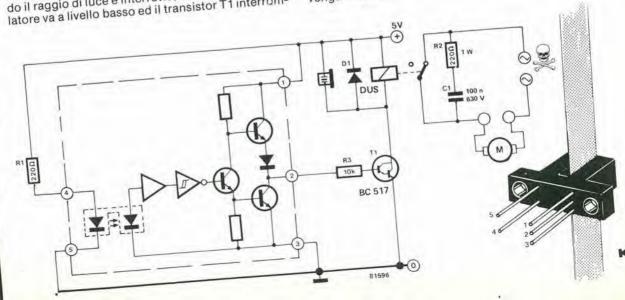
l'entità del movimento del servomotore per ogni grado di variazione della temperatura e, rispettivamente, il limite inferiore della scala. In questo modo si ottiene una ragionevole precisione senza volere costruire un vero e proprio strumento da laboratorio. In realtà, lo strumento è destinato solo a registrare una variazione della temperatura in un dato periodo di tempo, piuttosto che a misurare la temperatura effettiva.

peratura effettiva.
La parte meccanica può essere costruita molto facilmente. Il servomotore potrà essere montato su una mensoletta al di sopra del rotolo di carta. Il supporto per la penna di scrittura sarà fissato mediante viti oppure incollato al braccio del servomotore. Come supporto per la penna andrà benissimo un pezzo di un vecchio compasso. In questo modo sarà facile togliere la penna per la pulizia o la ricari-

ca dell'inchiostro. La carta potrà essere del tipo usato nelle piccole calcolatrici stampanti. Il rullo di cartà dovrà muoversi a velocità lenta e costante quando l'apparecchiatura è in funzionamento.

Il movimento della carta si potrà fare mediante un motore ed un riduttore a ruote dentate, del tipo normalmente usato dai modellisti navali: questi componenti saranno disponibili nei buoni negozi di modellistica. A parte questa soluzione, degli ottimi motoriduttori completi si potranno trovare presso i commercianti di surplus, con le più diverse tensioni di alimentazione.

Per evitare l'autoriscaldamento della NTC, bisogna regolare con cura P2 e P3, in modo da mantenere la tensione ai capi della NTC ad un valore inferiore a 0,5 V. Se la tensione supera questo valore si avrà una notevole perdita di precisione.



rivelatore di fine nastro

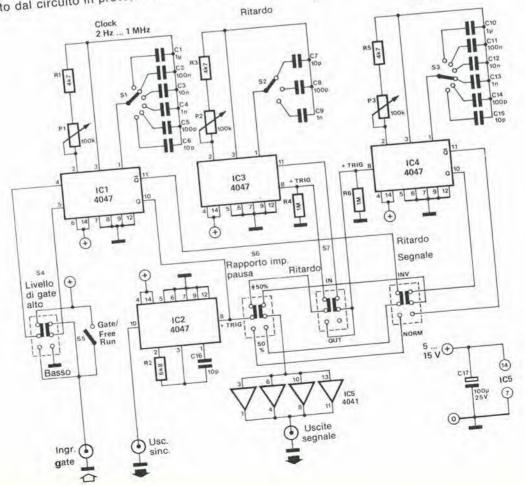
Questo progetto comprende un nuovo tipo di fotorivelatore destinato ad un gran numero di applicazioni come la rivelazione delle interruzioni nei nastri magnetici. Prima che il segnale di uscita dal rivelatore raggiunga il mondo esterno, esso passa attraverso i seguenti stadi interni: il fotodiodo è seguito da un amplificatore operazionale lineare che alimenta un trigger di Schmitt; a sua volta il trigger di Schmitt controlla uno stadio di uscita chiamato "totem-pole" (polo totem). La sensibilità alle variazioni della tensione di alimentazione è notevolmente ridotta grazie al trigger di Schmitt. L'uscita a totem-pole dà la possibilità all'utente di installare diversi fotorivelatori in parallelo. A grandi linee il circuito funziona nel modo seguente: quando il raggio di luce è interrotto, l'uscita del fotorivelatore va a livello basso ed il transistor T1 interrom-

pe l'alimentazione del relé. Il contatto normalmente chiuso del relé mantiene in rotazione il motore del registratore. Se però qualcosa non va nel modo giusto, il raggio di luce proveniente dal trasmettito-re (un diodo infrarosso al Ga-As) raggiunge il ricevitore e così l'uscita del componente va a livello alto. In questo modo si manda in conduzione il transistor T1 che eccita il relé interrompendo l'alimentazione al motore. In parallelo al relé è stato collegato un cicalino in c.c. per fornire una segnalazione acustica della presenza di rotture o tagli nel nastro sotto controllo.

Il circuito ha numerose applicazioni, sempre che l'oggetto da esaminare abbia delle dimensioni tali da poter passare agevolmente attraverso la fessura del rivelatore. Come detto in precedenza, una delle applicazioni più naturali è la rivelazione di rotture in un nastro magnetico o del suo passaggio totale. Il circuito è completamente compatibile con le logiche TTL per cui l'alimentazione potrà essere una semplice tensione a 5 V asimmetrica. Quando il circuito viene usato in unione con un registratore a nastro si dovrà tenere bene a mente che il fotorivelatore dovrà essere montato più vicino possibile prima delle testine magnetiche. Questo per essere sicuri che, in caso di rottura, non ci siano pezzi di nastro che eventualmente si possano avvolgere intorno alle testine ed ai rotismi prima che la rottura venga rivelata.

generatore di impulsi a CMOS

Nel progetto dei circuiti digitali, un generatore di impulsi potrà rivelarsi assai pratico. Per essere sfruttato al limite delle sue possibilità, dovrà essere flessibile al massimo. La frequenza di clock deve essere variabile entro i limiti più ampi raggiungibili essere variabile entro i limiti più ampi raggiungibili ed anche la durata dell'impulso dovrà essere variabile. Sarà utile un controllo automatico del livello di bile. Sarà utile un controllo automatico del livello di uscita. Nel circuito che proponiamo ci sono tutte queste caratteritiche ed altre ancora.


queste caratteritorie ed atto disconstitutoriale del circuiti integrati CMOS preL'uso generalizzato dei circuiti integrati CMOS presenta due vantaggi. In primo luogo è possibile alimentare il circuito a batterie; inoltre, le tensioni di
alimentazione potranno variare tra 5 e 15 V ed in
questo modo si avrà la possibilità di eseguire il
controllo automatico del segnale di uscita, di cui
controllo automatico del segnale di uscita, di cui
abbiamo parlato prima. Questo risulta chiaro considerando il fatto che, se il generatore di impulsi è
alimentato dal circuito in prova, le tensioni di ali-

mentazione saranno uguali ed i livelli logici di uscita saranno compatibili sia che il circuito in prova sia del tipo CMOS o TTL (sono compresi anche i buffer di uscita). Inoltre, il basso assorbimento di corrente del generatore caricherà molto poco il circuito da provare.

La descrizione del circuito comincia dal generatore di clock IC1. Questo circuito integrato è collegato come multivibratore astabile e la sua frequenza è regolabile tra 2 Hz ed 1 MHz (a seconda della tensione di alimentazione) mediante il potenziometro P1 ed il commutatore S1. Con S5 chiuso ed S4 nella posizione "alta", IC1 oscillerà in permanenza. Con S5 aperto si potrà usare un segnale esterno per pilotare IC1 tramite la presa "gate in". Il commutatore S4 potrà essere usato in questo per selezionare la polarità occorrente ai piedini 4 e 5 di IC1 in rapporto al generatore esterno.

I segnali di uscita del generatore di clok appaiono ai piedini 10 e 11 di IC1. L'uscita Q (piedino 10) viene mandata all'ingresso di trigger di IC2. Questo integrato viene usato come formatore di impulsi per fornire degli impulsi di sincronismo stretti per usi esterni al circuito. L'uscita Q di IC1 viene anche mandata, tramite S6 (rapporto impulso/pausa del 50%) ed S8 (segnale normale), allo stadio buffer di uscita IC5

uscita IC5.
Gli integrati IC3 ed IC4 sono anch'essi collegati come multivibratori monostabili. Con S6 nella posizione ≠50% ed S7 nella posizione di ritardo escluso (delay out) l'uscita Q di IC1 sarà mandata all'ingresso di trigger di IC4. Impulsi di ogni genere potranno ora essere ottenuti regolando P3 ed S3. In

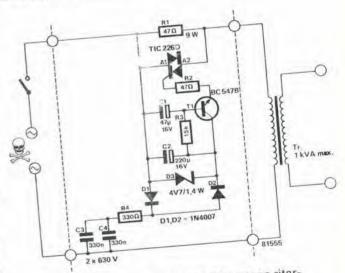
questo modo si avrà un segnale impulsivo con rapporto impulsi/pausa variabile ai piedini 10 ed 11 di IC4. A seconda della posizione del commutatore S8 passerà alla presa di uscita del segnale un'onda normale oppure invertita, tramite lo stadio buffer. Un'altra modifica al segnale potrà essere ottenuta mediante IC3 quando S7 sarà commutato nella posizione di ritardo inserito (delay in). IC3 sarà ora fatto partire dal segnale di clock che esce da IC1 (S6 sarà ancora nella posizione 50%).

Ora, regolando P2 ed S2, è possibile ritardare il segnale di uscita per un periodo variabile tra 1,5 µs e 250 ms con riferimento all'impulso di trigger "sync out" (uscita sincronismo). Ora si userà l'uscita di IC3 per far partire IC4. La durata dell'impulso potrà ancora essere modificata a volontà. Si deve notare che il circuito di ritardo non modifica il senale di uscita ma ne fa variare il rapporto di tempo in relazione all'uscita di commutazione negativa. Regolando il ritardo ad un adatto valore è possibile spostare il fianco d'inizio della configurazione dei segnali di uscita verso una posizione più centrale

dello schermo dell'oscilloscopio rendendo cosi possibile lo studio della forma d'onda completa. Quasi tutti i cablaggi riguardano i comandi situati sul pannello frontale. Tutti i condensatori di portata possono essere montati sui commutatori S1, S2 ed S3, se per questi commutatori si usano componenti a due piani. Montando le resistenze R1, R2 ed R3 tra i potenziometri ed i commutatori, resteranno da montare sulla basetta solo cinque altri componenti ed i 5 circuiti integrati. Ci sono però parecchie altre connessioni da fare tra la basetta ed il pannello frontale, per cui sarà bene fare molta attenzione. A questo scopo si dimosterà molto utile una piattina a

L'alimentazione del generatore potrà essere ricavata dal circuito in prova oppure da una batteria. Se si usa quest'ultimo sistema, i livelli di ingresso e di uscita potranno anche non essere del tutto compatibili.

(Nota applicativa ICAN 6230 della RCA)

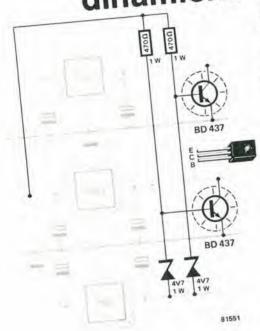

10 protettore di fusibili

Il protettore di fusibili che descriviamo in questo articolo è un circuito pratico con applicazioni

Negli ultimi anni sono molto aumentati i requisiti necessari agli impianti hi-fi di maggior potenza e questo aumento è giunto ad un punto tale che è divenuto necessario proteggere anche i fusibili di casa dalle bruciature troppo frequenti. La soluzione consiste in un circuito di "avviamento dolce" che mantiene entro valore accettabili le extra correnti

iniziali.
I normali fusibili domestici sono tarati per una corrente di 13 A e molti lettori si meraviglieranno quando affermiamo che il trasformatore del loro impianto audio è perfettamente in grado di assorbire allo spunto correnti di tale intensità.

Ed invece tutto questo è vero! Ci si deve render conto che questi grandi trasformatori possono talvolta trattare potenze che arrivano ad 1 kW. La corrente di "accensione" del trasformatore passa entro un'impedenza molto piccola, sia nell'avvolgimento primario che in quello secondario. Inoltre, il condensatore di livellamento sul lato della corrente continua potrà avere una capacità talmente grande da presentare un'impedenza prossima allo zero quando è ancora scarico. In questo caso perciò il fusibile che si trova inserito nel circuito del trasformatore che si trova di fronte ad un cortocircuito e non deve destar sorpresa se talvolta esso brucia. La protezione a fusibile verrà sollevata da questi problemi limitando l'extracorrente mediante la resistenza R1. Solo dopo circa 100 ms (due periodi della frequenza di rete) questa resistenza verrà cor-


tocircuitata dal Triac. La tensione di ingresso ritardata viene ottenuta pilotando il gate del Triac con il transistor T1. La tensione di rete viene abbassata mediante una reattanza capacitiva in serie (C3/C4) in modo da ottenere, dopo la rettificazione con i diodi D1 e D2, la stabilizzazione con D3 ed il livellamento con il condensatore C2, una tensione c.c. di 4,7 V ai capi del diodo Zener. Il transistor T1 è poi mandato in conduzione tramite il condensatore C1 e rimane in questa condizione. Esso pilota a sua volta il gate del Triac provocandone la conduzione e mettendo perciò in cortocircuito i terminali di R1. L'intera corrente primaria passerà d'ora in poi attraverso il Triac.

verso il Triac.
Il circuito può essere costruito con il Triac tipo TIC
226 D (come sullo schema). Si potranno pilotare
trasformatori con potenze che arrivano ad 1 kVA.
Trasformatori più grandi richiederanno natural-

mente Triac più potenti.
Il protettore di fusibili potrà essere usato per diverse applicazioni, come gli impianti hi-fi (dei quali si è già parlato), i motori degli apparecchi elettrodomestici (lavatrici, ecc.) e le lampade ad elevata potenza, specialmente i tipi all'ultravioletto ed all'infrarosso.

88888888888 Uno dei tipi di RAM più diffusi, la 4116, ha sfortuna-

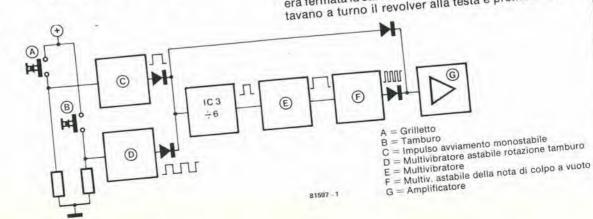
la protezione delle RAM dinamiche

tamente bisogno di tre tensioni di alimentazione. Su questo argomento non c'é nulla da fare, anche con i circuiti più sofisticati. Per quanto la maggior parte dei fogli dati sottintenda che queste tre tensioni di alimentazione possono essere applicate secondo una sequenza arbitaria, questo non è del tutto vero in ogni circostanza. Si potrebbe anzi dire, con una certa dose di cinismo, che la mancanza di un'indicazione della sequenza non implica di necessità che di questa non si debba tenere contol In pratica le cose non sono fortunatamente così gravi come si potrebbe pensare. Solo se si temono degli innalzamenti bruschi della tensione sulla linea di alimentazione, che possano superare anche per breve tempo i valori ammessi, è importante essere certi che della presenza della tensione negativa. La conseguenza è un notevole miglioramento della regolazione di tensione.

Un secondo aspetto, che probabilmente è di maggiore importanza, è la necessità di evitare in qualunque caso che la tensione di alimentazione negativa divenga positiva. Lo scopo si può ottenere molto semplicemente facendo in modo che la tensione positiva sia sempre presente prima di collegare la tensione negativa. Un diodo Schotty veloce disposto tra Vbb e massa può voler dire la salvezza di un

buon numero di RAM. Purtroppo deve essere un diodo di potenza e perciò non sarà né a buon prezzo né facile da trovare. Una soluzione molto efficace si vede nello schema che appare in figura. Fintanto che la tensione negativa è sufficientemente elevata, la tensione positiva sarà semplicemente cortocircuitata. Per questo ci vorrà naturalmente una notevole resistenza al cortocircuito da parte dell'alimentatore.

Il circuito dovrà essere costruito due volte, per le

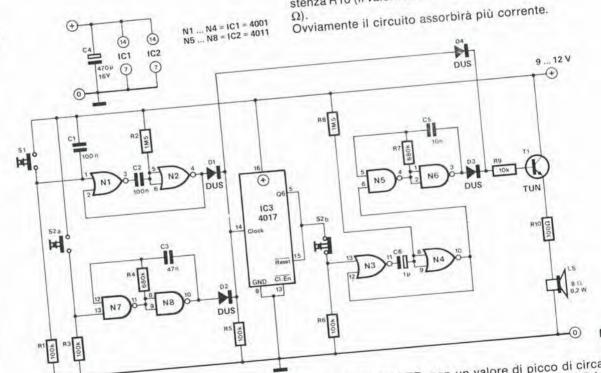

II BD 437 è un transistor che commuta con velocità tensioni di 5 e 12 V. sufficiente allo scopo e che possiede una bassa tensione di soglia. Gli integrati 7805 e 7812 passano entrambi circa un ampere, e perciò dovranno essere provvisti di un piccolo dissipatore termico.

P. Dooley

1

roulette russa

Per i lettori dotati di spirito di avventura e di un certo umorismo, presentiamo qui un interessante 'giochetto". L'idea trae origine da una forma di duello che si dice sia stata un tempo molto diffusa ma ne dubitiamo. Dorse la cosiddetta "roulette russa" era diffusa solo nei "romanzi". Una sola cartuccia veniva caricata nel tamburo di un revolver a sei colpi, mentre le altre cinque camere restavano vuote. Si faceva poi rotare velocemente il tamburo in modo che alla fine non era possibile sapere dove si era fermata la cartuccia. I due "contendenti" si puntavano a turno il revolver alla testa e premevano il


grilletto. A uno dei due capitava il colpo fatale, e pace all'anima sua. Il gioco che noi proponiamo si svolge in ruolo analogo, con la tranquillante variazione, che il perdente si becca un "pernacchio"

invece di una palla in testa. Il circuito funziona così: un multivibratore monostabile con durata d'impulso di 0,1 secondi è composto dalle porte logiche N1 ed N2, con i relativi componenti. Esso serve a togliere i rimbalzi al pulsante che forma il "grilletto" (S1) e fornisce pure gli impulsi di clock al contatore dei "colpi" (IC3). Questi impulsi vengono anche mandati all'amplificatore audio (T1), tramite i diodi D1 e D4. Il contatore viene perciò fatto avanzare di uno ogni volta che si tira il grilletto (pressione sul pulsante S1), e si sente anche un "clic" che indica un colpo a vuoto. Premendo il pulsante di "rotazione del tamburo" (S2, che è un pulsante con contatti separati di apertura e di chiusura) all'inizio di ogni gioco (duello), un treno d'impulsi parte dal multivibratore astabile formato da N7 ed N8 per arrivare al contatore (divisore

2

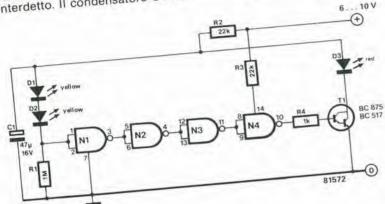
arrivano anche all'amplificatore T1 che produce un rumore che ricorda la rotazione del tamburo. Quando viene abbandonato il pulsante, il contatore (e perciò anche la camera di scoppio contenente la cartuccia) sarà in una posizione ignota. Quando ogni giocatore/trice si punta l'arma alla tempia e tira un colpo a turno, il contatore viene incrementato fino a che l'uscita Q6 va a livello alto. Questo farà partire il multivibratore monostabile N3/N4, che a sua volta permetterà la partenza dell'oscillatore audio N5/N6. Il segnale che esce da questo secondo astabile è mandato all'amplificatore audio tramite il diodo D3. Il suono a 100 Hz significa MORTE..... e dura per circa un secondo. L'altra metà del pulsante di rotazione del tamburo (S2b) evita che si senta il suono di partita persa quando il tamburo viene fatto ruotare.

La tensione di alimentazione per questo circuito potrà variare tra 9 e 12 V, e perciò l'ideale sarebbe una batteria da 9 V. È anche possibile montare questo circuito in una pistola giocattolo per ottenere un effetto più "realistico". Se è necessario un maggior volume, si potrà ridurre il valore della resistenza R10 (il valore non potrà essere inferiore a 27

13 risparmia - LED

Questo circuito permetterà di ridurre l'energia consumata dai LED ad una frazione del suo valore normale. Si ottiene questo scopo facendo lampeggiare il LED ad intervalli di 0,625 secondi. In questo modo viene ridotta a circa 200 µA la corrente media

assorbita dal LED, con un valore di picco di circa 100 mA. Questi valori sono sufficienti perché la luce del LED sia normalmente visibile.


Grazie principalmente all'integrazione sempre più densa, i circuiti elettronici tendono a consumare sempre meno energia, ma questo purtroppo non avviene per i LED, che sono usati in una gran quantità di funzioni di indicazione. La maggior parte dei LED consuma una corrente minima di circa 20 mA che in certi casi si rivela molte volte maggiore di quella consumata da tutto il resto del circuito. Si tratta di una situazione particolarmente grave quando abbiamo a che fare con apparecchi alimentati a batterie.

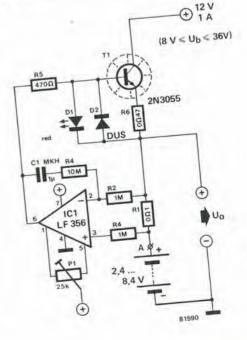
Il circuito funziona nel seguente modo: il condensatore C1 viene caricato tramite la resistenza R2.

Non appena il potenziale ai capi del condensatore sarà sufficiente a superare la tensione di polarizzazione dei LED (gialli) D1 e D2, l'ingresso di N1 andrà a livello alto, trasmettendo un breve e ripido impulso alla base del transistor Darlington che passerà rapidamente in conduzione ed il condensatore C1 si scaricherà nel LED D3. La corrente che passa C1 si scaricherà nel LED D3. La corrente che passa attraverso il LED raggiunge un massimo di 100 mA durante il breve periodo di scarica. Quando C1 è completamente scarico, l'ingresso di N1 passa a livello basso. Ciò vuol dire che anche l'uscita di N4 va a livello basso e che il transistor Darlington viene interdetto. Il condensatore C1 ricomincerà a cari-

carsi e l'intero ciclo si ripetera.

Volendo, si potranno collegare in serie un certo numero di diodi "normali" al posto dei due LED gialli D1 e D2. Poiché il 4011 ha un valore di soglia molto critico, potrà essere necessario trovare il giumolto critico, potrà essere necessario trovare il giumontando parecchi diodi diversi. L'integrato è alimentato tramite la resistenza R3, che garantisce un minimo valore della corrente assorbita. Le dimensioni fisiche del gruppo complete sono totalmente piccole che non ci sono assolutamente problemi per la sua inserzione all'interno di apparecchiature già esistenti.

N1 ... N4 = IC1 = 4011


M

14

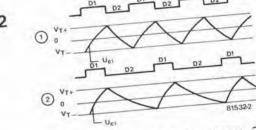
batterie al Nichel-Cadmio con riserva di alimentazione

In molti casi, nelle apparecchiature non portatili alimentate da batterie al nichel cadmio, è necessario smontare le batterie per effettuare un "rabbocco" della carica. Questo può essere anche piuttosto seccante, specie se non si dispone di una batteria di ricambio da sostituire a quella tolta. Inoltre non è affatto insolito trovare le batterie come alimentazione di riserva in apparecchi alimentati dalla rete: in questo caso le batterie al Ni-Cd sono usate molto di rado solo quando manca la tensione di rete. C'é però un certo numero di applicazioni (come negli orologi, nei sistemi di allarme, eccetera) in cui si possono usare, per alimentare l'apparecchio, le batterie al Ni-Cd in aggiunta ad un piccolo alimentatore di rete che ne effettua la ricarica "in tampone". In questo caso l'alimentazione non dipende dalla presenza della tensione di rete, in quanto la batteria Ni-Cd permette il funzionamento continuato.

Quest'ultimo accorgimento è utile quando il valore e la durata del carico non sono prevedibili con precisione (come nel caso degli impianti d'allarme, perché nessuno può sapere quando ci sarà un tentativo di furto, tranne forse il ladro!). Nel progetto di tativo di furto, tranne forse il ladro!). Nel progetto di un simile sistema si deve però tener conto di alcuni un simile sistema si deve però tener conto di alcuni parametri: se il carico a cui è sottoposta la batteria è intermittente e piuttosto pesante, la corrente prevista per la carica potrebbe anche non essere sufficiente per caricare a fondo la batteria. Se però si usa una corrente troppo elevata, la batteria potrà

subire dei danni in caso di carico scarso di lunga durata. Di questi aspetti si tien conto nel progetto che presentiamo. Il circuito impiega una resistenza per "misurare" la quantità di corrente prelevata dalla batteria al Ni-Cd ed assicura la sua ricarica con

un'identica quantità di corrente. Il valore della resistenza di misura R1 non è affatto critico ed essa potrà essere fatta con un semplice pezzettino di filo resistivo. Il potenziale ai capi di R1 viene mandato ad un integrato basato su IC1. Questo componente "ricorda" la quantità di corrente prelevata e la corregge rendendo la sua uscita più positiva in modo che la batteria possa essere caricata tramite il transistor T1. Se cessa il prelievo di corrente dalla batteria, T1 continua a condurre fino a quando la "memoria" (IC1) non decida che tutta la carica prelevata dalla batteria è stata reintrodot-


Il transistor T1 è collegato come generatore di corrente costante; la massima corrente disponibile è di 0,5 diviso 0,47 Ω , in altre parole circa 1 A. Una resistenza di maggior valore darà una corrente in-

Per mettere il circuito in grado di funzionare, si dovrà regolare P1 in modo che la corrente passante in assenza di carico attraverso R1 sia pari ad un ventesimo della capacità della batteria. Questa corrente si potrà misurare inserendo un (milli) amperometro in serie ad R1 nel punto A. Questa regolazione è importantissima e deve essere eseguita con molta attenzione: la soluzione ideale sarebbe usare un potenziometro multigiri. Poiché IC1 funziona da memoria, il circuito è leggermente "pigro". È perciò necessario attendere un poco dopo la regolazione di P1 fino a quando la lettura si è stabilizzata. La tensione di uscita di questo caricabatterie è pari

ad 1,2 V moltiplicati per il numero degli elementi. Il sistema non funzionerà con meno di 2 elementi o con tensioni di carica inferiori ad 8 V. Inoltre, la tensione di alimentazione dovrà essere leggermente superiore a quella complessiva degli elementi al Ni-Cd. La massima tensione possibile è di 36 V. Entro questi limiti si potrà scegliere una tensione di alimentazione di qualsiasi valore.

indicatore di tensione zero

Questo indicatore impiega due LED per mostrare se la tensione di ingresso si trova entro un certo piccolo intervallo, che è simmetrico rispetto allo zero. Se la tensione ha un valore compreso in questo intervallo, i LED lampeggiano. Se essa è al di fuori dell'intervallo, uno dei due LED resterà acceso in continuità. Nei limiti del funzionamento ci sarà anche un'indicazione del fatto che la tensione si trova ai limiti dell'intervallo oppure prossima al centro (ossia vicino allo zero). Al centro dell'intervallo i LED lampeggiano con regolarità, mentre vicino ai margini la cadenza diventa irregolare. Il funzionamento del circuito è piuttosto semplice,

anche se non risulta evidente dallo schemr 39 ni prova ad immaginare il circuito privo di alcuni dei suoi componenti (R3, R4, R5, D1 e D2), si avrà un normale oscillatore ad amplificatore operazionale. Includendo il partitore di tensione R7-R5 si farà in modo che la tensione rimandata a C1 non sia più uguale a quella di alimentazione (questa tensione è anche limitata da D1 e D2). Se ora R5 non è collegata a massa ma ad una tensione c.c. (la tensione di ingresso), il livello della tensione continua di reazione cambierà. Quando questo livello sarà alto a sufficienza da far cadere la tensione ai capi di C1 fuori dall'annello da isteresi del trigger di Schmitt, il circuito cesserà di oscillare ed uno dei LED si ac-

Se la tensione di ingresso è di 0 V esatti, il livello di tensione continua ai capi di C1 sarà zero ed i LED lampeggeranno con regolarità. Se però l'ingresso non è esattamente 0 V (per esempio leggermente positivo), uno dei LED (D2) resterà acceso per un

tempo più lungo dell'altro. La sensibilità del circuito è di circa 50 mV, ossia i LED passano dal lampeggiamento all'accensione continua a più o meno 50 mV. Questa situazione si può cambiare in ogni momento variando il valore di R7. Una resistenza maggiore aumenta la sensibilità (valore massimo di R7: circa 3M3). Bisogna ricordarsi che, riducendo il valore di R7, si deve aumentare quello di C1.

L'impedenza di generatore della tensione da collegare a questo circuito non dovrà essere superiore ai 10 k altrimenti bisognerà inserire un amplificatore di adattamento.

2M2 (+) 8 ... 15 V 741 ... 15 V 2 x LED 81532-1

R. Rastetter

89888888888 Parliamo ora di un'altra funzione del circuito. Una

R. Rastetter

allarme antifurto per auto

I lettori che hanno l'abitudine di parcheggiare l'automobile di notte vicino ai lampioni possono credere che il veicolo sia più al sicuro per il fatto di

trovarsi in una zona ben illuminata.

Bisogna però ricordare che i ladri d'auto, per fare il loro lavoro, devono vederci bene! Ci sarà perciò bisogno di altre precauzioni per evitare la sparizione della vettura. I sistemi di allarme adatti a questo scopo devono essere:

a. affidabili; b. facili da azionare; c. sicuri.

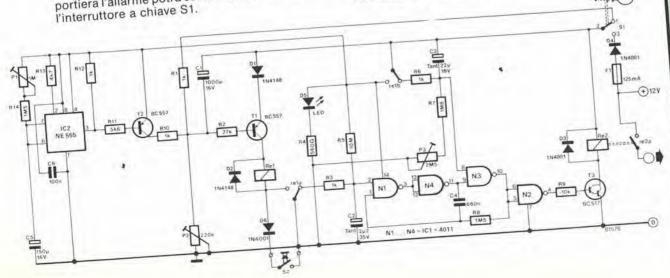
In definitiva, se i vicini saranno stati già svegliati molte volte da falsi allarmi, difficilmente saranno disposti a mantenere buone relazioni con il proprietario e saranno meno inclini ad avvertire voi o la polizia nel caso di un vero tentativo di furto.

Il circuito d'allarme qui descritto presenta un certo numero di buone qualità. L'assorbimento è molto basso, dispone di un preallarme e di un allarme ritardati, può dare allarmi ripetitivi e continui e si rimetterà automaticamente in preallarme dopo l'attivazione. Tutta questa complessità significa che anche lo schema dovrà essere piuttosto complesso. Dalla descrizione di quest'ultimo risulterà chiaro il suo funzionamento.

Quando il circuito di allarme viene acceso mediante l'interruttore a chiave (nascosto) S1, il condensatore C1 incomincia a caricarsi tramite il potenziometro trimmer P2. Questo tempo di carica fornirà il ritardo che permetterà al guidatore ed ai passeggeri di scendere dall'auto e di chiudere le portiere. Quando la tensione base/emettitore di T1 (in serie a D1) sarà sufficiente a far passare in conduzione il transistor, l'allarme sarà attivato rimanendo nello stato di "preallarme". Se ora si apre una portiera, l'interruttore delle luci di cortesia S2 fa funzionare Re1. Se, in stato di preallarme, viene aperta una portiera l'allarme potrà essere escluso solo girando

volta armato l'allarme tramite S1, se un aspirante ladro apre la portierà, il relé Re1 si eccita e resta autoagganciato tramite il contatto Re1a che è disposto in parallelo all'interruttore della portiera S2. Se occorre, si potrà far rimanere accesa la luce di cortesia sostituendo il diodo D6 con un ponticello di filo. Un altro fatto da notare è che non ha importanza la rapidità con cui l'aspirante ladro apre e chiude la portiera, perché l'allarme resterà attivato grazie all'eccitazione del relé.

L'altro contatto del relé (re1b) stabilisce il circuito di carica per i condensatori C2 e C3. Contemporaneamente il LED D5 dà un'indicazione dell'attivazione dell'allarme. Il tempo di carica del condensatore C2, tramite la resistenza R5, darà il ritardo di allarme, in altre parole il ladro resterà ancora per un pò all'oscuro del fatto che la vettura è provvista di allarme. Questo ritardo è piuttosto lungo, circa 10 s, tale da permettere al proprietario di entrare e


Solo quando C2 sarà completamente carico, la tensione al piedino 2 di N1 assumerà il livello logico "1". Questo livello verrà fatto passare attraverso le porte N4, N3 ed N2 per giungere al transistor pilota del relé, T3. Il relé Re2 verrà eccitato e l'allarme suonerà senza interruzione.

Il condensatore C3 comincerà a caricarsi nello stesso istante di C2, ma il suo tempo di carica sarà molto più lungo e regolabile mediante il potenziometro semifisso P3 fino a circa 30 s. Dopo questo periodo, il pedino 8 di N3 andrà a livello basso, seguito dall'uscita di N2 ed il rele Re2 si disattiverà

Il timer 555 (IC2) è collegato come multivibratore monostabile con lo scopo di garantire la ripetitività del circuito di allarme. Questo integrato è attivato dal contatto re1b del relé ed è avviato con il piedino

2 tramite la resistenza R13.

Trascorso il tempo di ritardo del monostabile (che si può regolare mediante il potenziometro P1), il transistor T2 è mandato in conduzione dall'uscita del piedino 3 del 555. Subito dopo il condensatore C1 si scarica sulla resistenza R10 ed il transistor T1 si interdice quando la tensione ai capi di C1 si è ridotta a circa 1 V. Questo provoca lo sgancio del relé R1 e la scarica rapida dei condensatori C2 e C3 sulle resistenze R3 ed R6 rispettivamente. Contemporaneamente il temporizzatore 555 viene staccato dall'alimentazione. L'allarme è ora tornato al primitivo stato di preallarme.

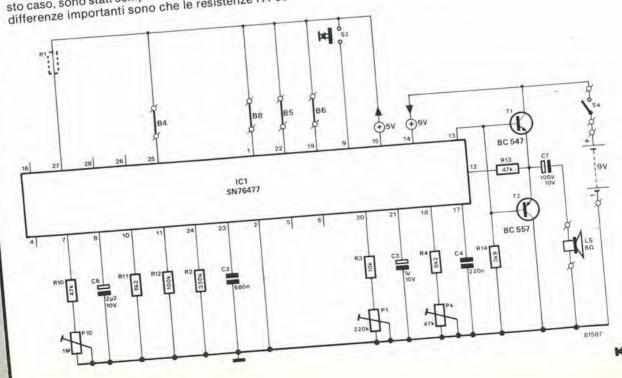
di fornire tale corrente. Sarebbe preferibile monta-

II 4011 (IC1), che contiene le porte logiche N1....N4, serve anche ad un altro scopo oltre a quelli elencati. Esso funziona anche da generatore di onde quadre con una frequenza di 0,8 Hz. In questo modo si otterrà un segnale d'allarme intermittente per la tromba e/o i fari del veicolo, azionato da Re2.

Attenzione: il relé delle trombe generalmente usato nelle automobili ha un'impedenza molto bassa e perciò necessita di una corrente piuttosto elevata. Naturalmente il transistor T3 deve essere in grado re per l'allarme una tromba separata perché molti ladri d'auto son già al corrente della possibilità che la normale tromba possa essere impiegata per l'allarme e provvedono a scollegarla prima di aprire la

È evidente la necessità di nascondere nel modo portiera. migliore possibile il sistema di allarme e l'interruttore di attivazione. Nella condizione di preallarme il consumo del circuito è di soli 4 μA.

E. Vaughan


cannone spaziale

Con questo circuito si produce un suono che può variare da qualcosa che somiglia al crepitio di una mitragliatrice fino ad un rumore che potrebbe trovare posto in un film tipo "Guerre stellari". Il circuito è derivato dal generatore di effetti sonori pubblicato nel numero del novembre '81 di Elektor. Lo schema che appare qui sotto è lo stresso, con qualche piccola modifica. La numerazione dei componenti apparirà perciò un pò strana, in quanto certi elementi sono stati soppressi ed altri aggiunti. Tutto questo presenta il vantaggio che il circuito potrà essere montato sulla basetta stampata già esistente

I componenti e/o i collegamenti cablati che appaiono sulla disposizione dei componenti del circuito originale e che non debbono essere ripetuti in questo caso, sono stati semplicemente omessi. Le sole differenze importanti sono che le resistenze R4 ed

R10 del circuito originale sono ora rispettivamente sostituite dal collegamento in serie di R4/P4 e di R10/P10. I potenziometri non dovranno essere necessariamente del tipo semifisso, come si vede nello schema elettrico, ma sarà possibile anche usare dei normali potenziometri. In questo caso la resistenza R1 viene sostituita da un ponticello in filo. Dopo aver premuto il pulsante S2, il circuito parte ed il monostabile comincia a funzionare. La durata del monostabile e perciò quella dello "sparo", potrà essere regolata mediante il potenziometro P10. Viene anche usata la funzione di smorzamento del circuito integrato (76477). Quando il circuito è avviato, parte un oscillatore a bassa frequenza che, a sua volta, controlla un oscillatore con una frequenza molto più elevata. Questo segnale ad alta frequenza viene quindi mandato all'uscita a bassa frequenza per la temporizzazione del primo oscillatore. Il potenziometro P1 serve a regolare la frequenza del primo oscillatore, cioé di quello a bassa frequenza. Quest'ultimo serve a stabilire la cadenza di tiro della mitragliatrice o del cannone spaziale. La frequenza del secondo oscillatore dipende dalla posizione del potenziometro P4, con il quale si potrà regolare la frequenza di ogni "raffica"

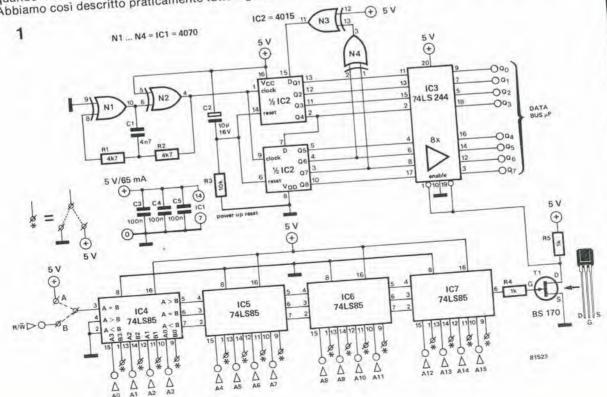
Manovrando questi due comandi si potrà ottenere un'intera serie di effetti speciali.

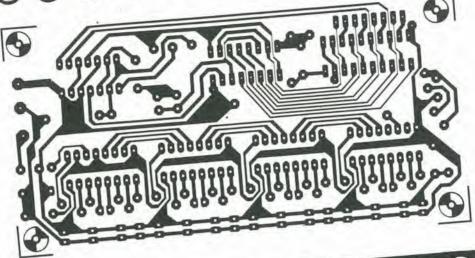
ladgly.

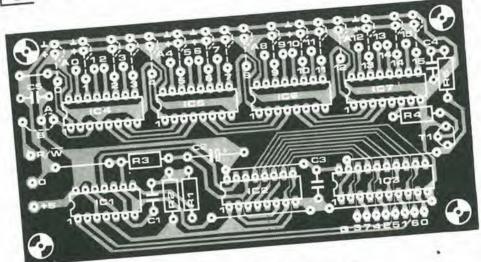
18

generatore di numeri casuali

Un generatore di questo tipo è spesso necessario quando si sviluppano o si eseguono programmi di giochi su sistemi controllati da un microprocessore. È naturalmente possibile la generazione di un numero pseudo-casuale con l'aiuto di una breve subroutine, ma dopo aver ripetuto alcune volte il gioco, appare evidente che i numeri non sono veramente casuali. Perciò è molto meglio disporre di un generatore di numero casuali esterno al sistema, che disponga di un proprio oscillatore e che possa essere chiamato in ogni momento dal microprocessore. Se la sequenza generata ha inoltre un ciclo ragionevolmente lungo, è evidente che la casualità del numero è pressoché perfetta.


Il circuito qui descritto impiega un registro a scorrimento da 8 bit (IC2). Le uscite Q6 e Q7 sono riportate all'ingresso del registro a scorrimento tramite le porte ad OR esclusivo N3 ed N4, in modo che la lunghezza del ciclo generato sia di 127 bit. Gli impulsi di clock per il registro a scorrimento sono forniti da un multivibratore astabile formato da N1, N2, R1, R2 e C1. Con i valori dei componenti riportati sullo schema, la frequenza di oscillazione sarà di circa 20 kHz. Il condensatore C3 e la resistenza R2 servono ad azzerare il registro a scorrimento quando viene data la corrente di alimentazione. Abbiamo così descritto praticamente tutto il gene-


ratore di numeri casuali. A seconda della particolare applicazione, questa sezione potrà essere costruita separata, e si potranno usare una o più uscite del registro a scorrimento per ottenere i numeri a


caso.

Quando si debba collegare il generatore ad un sistema a microprocessore, tramite un ingresso in parallelo oppure un buffer indirizzabile, occorrerà naturalmente un numero formato da 8 bit. Ed a questo punto viene alla ribalta il resto del circuito. Le uscite del registro a scorrimento (IC2) sono collegate agli ingressi del buffer a tre stati (IC3). Le uscite del buffer sono, a loro volta, collegate direttamente al bus dei dati del microelaboratore. Si deve controllare che le uscite siano nello stato di impedenza elevata fintanto che il processore non richieda l'erogazione di un numero casuale.

Per accertarsi di questo fatto, è stato inserito un decodificatore degli indirizzi formato da 4 comparatori a 4 bit (IC4...IC7). I quattro comparatori con-

frontano l'indirizzo a 16 bit fornito dal microprocessore con l'indirizzo del generatore di numeri casuali. Quando i due indirizzi sono identici, il transistor VMOS T1 passa in conduzione attivando il buffer IC3 e permettendo il passaggio del numero casuale

2

Si è data la preferenza ad un transistor VMOS a sul bus dei dati. motivo del suo tempo di chiusura, che deve essere

L'indirizzo necessario al generatore di numeri casuali potrà essere predisposto sul circuito stampato (vedi figura 2) saldando dei corti ponticelli di filo tra gli ingressi B e la pista di alimentazione positiva o la massa. Una connessione tra B e massa significa un livello logico "0" su quella particolare linea di indirizzo ed una connessione tra B e l'alimentazione positiva vale un livello logico "1". Se non è disponibile un impulso di riferimento di lettura/scrittura (R/W), si dovrà collegare il piedino 3 di IC4 alla pista di alimentazione positiva. L'uso di un impulso di riferimento positivo per <u>la lettura richiede un</u> collegamento tra l'ingresso R/W ed il piedino 3 di IC4, mentre un impulso negativo richiederà l'inserzione di un invertitore in serie al segnale di riferi-

Il circuito completo richiede una tensione di alimentazione di 5 V ed assorbe soltanto 35 mA. Ciò significa che, nella maggioranza dei casi, il genera-

Elenco dei componenti

Resistenze:

R1.R2 = 4k7 R3 = 10 k

R4.R5 = 1 k

Condensatori:

C1 = 4n7

 $C2 = 10 \mu/16 \text{ V}$

C3,C4,C5 = 100 n

Semiconduttori:

T1 = BS 170

IC1 = 4070

1C2 = 4015

IC3 = 74LS244

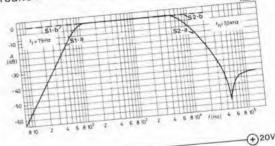
IC4,IC5,IC6,IC7 = 74LS85

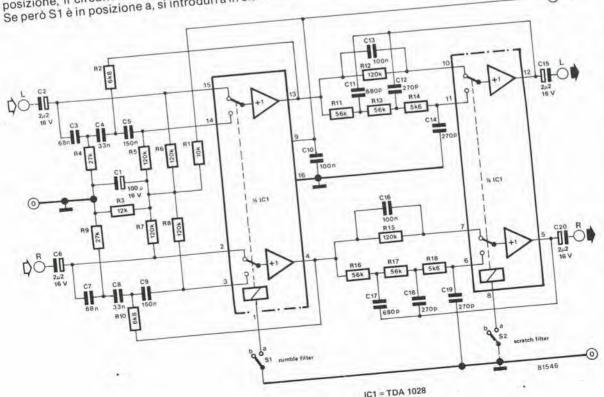
tore di numero casuali potrà essere alimentato dal microprocessore già esistente.

Per quanto il circuito stampato abbia spazio sufficiente per quattro decodificatori degli indirizzi, se ne possono usare di meno quando sia considerata sufficiente una decodifica incompleta. Quando si tralascia uno di questi circuiti integrati, si dovranno eseguire dei ponticelli tra i piedini 4 e 5, 3 e 6 ed i piedini 2 e 7.

89888988888 canale un filtro del terzo ordine a basso assorbi-

un efficace filtro antirombo ed antifruscio


Molti amplificatori audio autocostruiti comprendono dei filtri antirombo ed antifruscio ma piuttosto spesso l'azione di questi filtri è talmente debole da renderne trascurabile l'effetto, oppure essi influenzano una sezione molto larga dello spettro audio. IITDA 1028 è particolarmente adatto alla costruzione di un filtro antirombo ed antifruscio stereofonico, con un'attenzione in funzione della frequenza di 18 dB per ottava. L'integrato contiene quattro deviatori elettronici ed il contatto centrale di ogni deviatore è collegato all'ingresso non invertente di un amplificatore operazionale a guadagno unitario. Ciascuno di questi commutatori elettronici sceglie perciò uno dei due ingressi dell'amplificatore operazionale e, dato che sono controllati a coppie, occorre solo un commutatore esterno per inserire un filtro in ciascun canale stereo.


La prima sezione dello schema mostra il filtro antirombo. Quando il commutatore S1 è in posizione b, entrambi gli ingressi dei canali sono collegati, tramite i condensatori C2 e C6, agli ingressi dei primi due operazionali. Con il commutatore S1 in questa posizione, il circuito funzionerà in modo normale. Se però S1 è in posizione a, si introdurrà in ciascun

mento. Questi filtri sono formati dai condensatori C3, C4 e C5 e dalle resistenze R2, R4 ed R5 per il canale sinistro, e da C7, C8, C9 ed R8, R9 R10 per il canale destro. La frequenza di funzionamento di questi filtri è 79 Hz e l'attenuazione in funzione della variazione di frequenza arriva a 18 dB per ottava. La seconda parte dello schema illustra il filtro antifruscio. Come appare sul disegno (con il commutatore S2 in posizione b il filtro antifruscio è escluso),i segnali di uscita dai primi due amplificatori operazionali sono passati direttamente senza alterazioni, agli ingressi degli ultimi due operazionali. Chiudendo S2 si attiverà per ciascun canale un filtro passabasso con frequenza di 7 kHz ed attenuazione di 18 dB per ottava. I componenti del filtro per il canale sinistro sono C11, C12, C14, R11, R13 ed R14 e quelli per il canale destro sono C17, C18, C19, R16, R17 ed R18.

I quattro ingressi dei primi due amplificatori operazionali richiedono una certa quota di polarizzazione. Questa viene ottenuta tramite il partitore di tensione R1/R3 e le resistenze di polarizzazione R5...R8. Poiché esiste un certo accoppiamento galvanico tra due sezioni del filtro, gli altri ingressi non richiedono tensione di polarizzazione.

Il grafico mostra la caratteristica in frequenza del circuito nelle varie posizioni dei commutatori S1 ed

888888888888 gate ad impedenze di carico di 4k7 o superiori. La

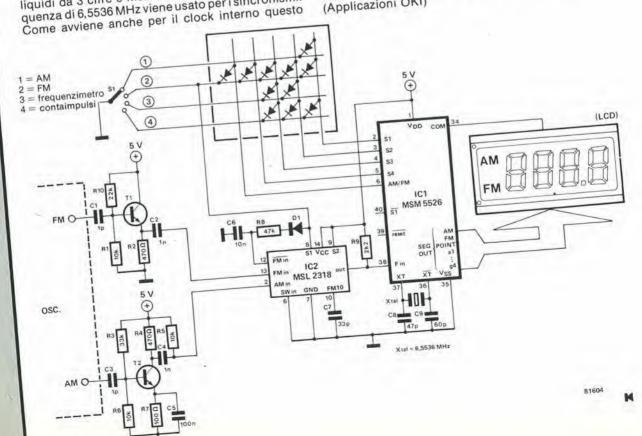
S2. Le caratteristiche tecniche del circuito sono molto buone. Con una tensione di alimentazioe di 20V ed una tensione di ingresso di 5 V, la distorsione armonica ad 1 kHz è inferiore allo 0,07% (0,02% ad 1 V eff). Si deve mettere in evidenza che il circuito va collegato ad un generatore di bassa impedenza, mentre le uscite dei filtri potranno essere colletensione di alimentazione potrà avere un valore qualsiasi compreso tra 12 e 20 V, ma alle tensioni di alimentazione più basse dovranno corrispondere le minime tensioni del segnale di ingresso.

(Nota applicativa Valvo)

indicatore digitale di sintonia

La fabbrica giapponese OKI, per quanto meno nota di tante altre, è tuttavia classificata tra i maggiori fornitori di componenti del Giappone. Uno dei più importanti contributi al progresso dati da questa ditta è la messa a punto della parte elettronica dei diffusissimi indicatori digitali di sintonia per i sintonizzatori Hi-Fi. Tali circuiti sono ora integrati su di

Parliamo ora di una delle più tipiche applicazioni dell'integrato MSM 5526, un CMOS monolitico a 40 piedini, che pilota direttamente un display a cristalli liquidi da 3 cifre e mezza. Un quarzo con una frequenza di 6,5536 MHz viene usato per i sincronismi.

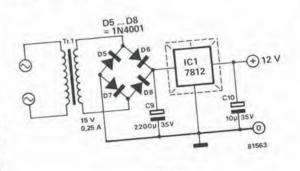

oscillatore produce un preciso segnale di uscita a 50 Hz ed un segnale a due fasi per il pilotaggio degli

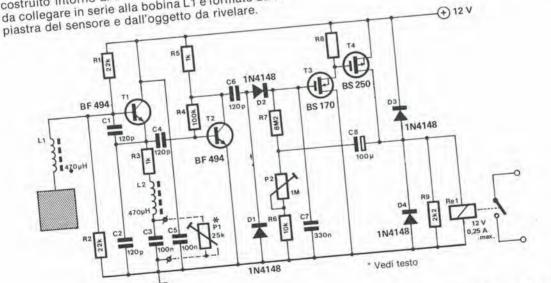
E' disponibile un certo numero di funzioni diverse LCD. per il display. Oltre a visualizzare la frequenza AM od FM captata da un sintonizzatore, l'integrato può essere usato come un normale frequenzimetro, oppure come contatore di impulsi. La massima indicazione del display è "2999". Volendo usare questo integrato come indicatore di sintonia, si possono predisporre fino a 16 frequenze FM e fino a 6 fre-

Lo schema elettrico mostra che ci vogliono pochissimi componenti esterni in aggiunta all'MSM 5526, Le funzioni si possono scegliere mediante S1. La matrice a diodi regola in modo esatto la differenza di frequenza necessaria (valore della media frequenza dell'apparecchio radio). I segnali occorrenti per misurare le frequenze AM ed FM del ricevitore si prelevano mediante bobine captatrici accoppiate agli oscillatori locali degli stadi d'ingresso FM ed AM. Questi segnali vengono applicati, tramite uno stadio a transistor, all'amplificatore-prescaler MSL 2318 e da questo passano all'ingresso (piedino 38) del circuito integrato contatore.

Per quanto il prezzo di questo componente stia lentamente calando verso livelli più ragionevoli, tuttavia non è ancora molto a buon mercato.

(Applicazioni OKI)

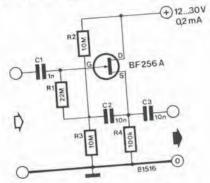



21 objektor

Lo scopo di questo circuito è di rivelare la presenza di un oggetto conduttore ad una certa distanza. Il funzionamento del circuito è del tutto indipendente dalle condizioni dell'oggetto (morto, vivo, fermo od in movimento) fintanto che esso resta entro la portata dello strumento. La sensibilità del circuito potrà essere variata a distanza regolando il potenziometro P1. Questo per evitare di consumare le suole delle scarpe andando continuamente avanti e indietro durante la messa a punto iniziale (per tentativi) prima di trovare la migliore regolazione per una

Una applicazione piuttosto innocente di questo circuito è di usarlo come sensore invisibile al posto del campanello di ingresso, perché esso potrà essere collocato all'interno dell'appartamento. La parte più importante del circuito è l'oscillatore Clap costruito intorno al transistor T1. Il condensatore da collegare in serie alla bobina L1 è formato dalla

A causa delle perdite di questo condensatore, l'uscita dell'oscillatore sarà piuttosto bassa e perciò è stato aggiunto uno stadio amplificatore T2. Il trigger di Schmitt ed il monostabile sono formati dai ger di Schmitt ed il monostabile sono formati dai transistori T3 e T4. Si è data la preferenza ai FET VMOS per motivi di semplicità e per il fatto che saranno necessari meno componenti rispetto ai saranno necessari meno componenti rispetto ai dispositivi bipolari. Sarà maggiore il fattore di affidispositivi bipolari. Un'altra applicazione è la sarà un pò più elevato. Un'altra applicazione è la misura del livello di liquidi in ambiente molto disturbato. Poiché il sensore non richiede un contato fisico, il liquido potrà anche essere di tipo aggressivo (per esempio acido solforico fumante).



22

inseguitore di tensione ad alta impedenza di ingresso

È ormai noto che i transistori ad effetto di campo (FET) hanno un'altissima impedenza d'ingresso, in pratica dell'ordine dei gigaohm. Come si vede sullo schema, un solo FET è più che sufficiente per costruire un amplificatore buffer con impedenza d'instruire un amplificatore buffer con impedenza d'instruire d'inseguitore di source) con guadagno d'impedenza (inseguitore di source) con guadagno unitario, e può essere adibito ad una varietà di impieghì, per esempio come preamplificatore per microfoni ad alta impedenza (a condensatore), come puntale per oscilloscopio, eccetera.

Un modo per ottenere l'impedenza d'ingresso occorrente è di collegare una resistenza da 1 G Ω tra il gate del FET e la massa. Sfortunatamente, resistenze di valore così elevato non sono affatto facili da trovare, ed inoltre costano parecchio, per cui si

impone di trovare una soluzione meno dispendio-

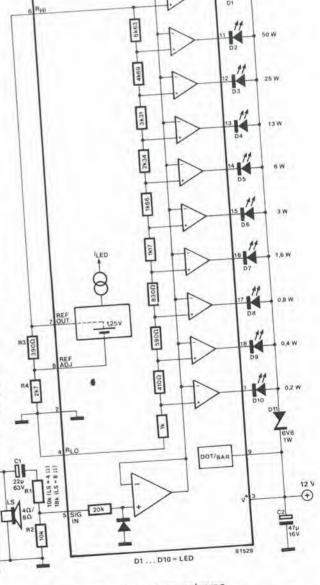
Questo particolare circuito risolve elegamentemente il problema utilizzando il condensatore C2 come sistema "autoelevatore". In teoria, l'impedenza d'ingresso del circuito dovrebbe essere dell'ordine dei 2,2 G Ω , ma in pratica non potrà mai superare il gigaohm a causa delle correnti di dispersio-

La risposta in frequenza dell'inseguitore di tensione va dai 30 Hz ai 750 Hz (punti a 3 dB). Per un corretto funzionamento, l'impedenza di carico all'uscita deve essere di almeno 100 kΩ.

IC1 = LM 3915

misuratore di livello audio a LED

Molti amplificatori moderni hanno un indicatore d'uscita che appare sotto forma di una fila di LED che si accendono progressivamente, piuttosto che come uno strumento elettromeccanico a indice. In questo tipo di display, il numero dei LED accesi corrisponde all'intensità del segnale di uscita dell'amplificatore. Uno "strumento a barra" di questo tipo potrà essere montato su qualsiasi amplificatore con l'aiuto del circuito che ora descriveremo.


L'elemento principale di questo circuito è l'integrato LM 3819 della National Semicondutors, che genera una scala logaritmica ed è perciò in grado di visualizzare anche bassi livelli di potenza. Il circuito integrato contiene una tensione di riferimento regolabile ed un preciso divisore di tensione a dieci gradini. Il buffer d'ingresso pilota 10 comparatori seperati che fanno riferimento al divisore di precisione. Le potenza corrispondente ai vari punti di commutazione (il livello al quale un determinato LED si accenderà), sono indicate sullo schema

Il segnale d'ingresso del circuito è prelevato diret-

tamente dall'uscita dell'amplificatore di potenza, ossia in parallelo all'altoparlante. Il segnale è mandato al piedino 5 dell'integrato tramite il condensatore C1 ed il circuito partitore formato da R1 ed R2, Si potrà fare a meno del condensatore se l'uscita dell'amplificatore è già dotata di un condensatore di disaccoppiamento per l'altoparlante. Il collegamento al piedino 9 del circuito integrato determina il funzio-

٠

namento dell'indicatore, che potrà essere a barra continua oppure a punto mobile. Il tipo di indicazione preferibile, a detta di molti, è quella a barra intera, che avviene con il collega-

mento mostrato in questo schema. L'assorbimento di corrente del circuito integrato è limitato da D11, ed è di circa 150 mA, con tutti i LED accesi. Si potranno usare LED di qualunque tipo, ma quelli a forma di barretta daranno allo strumento un aspetto più professionale.

3. Le prestazioni devono mantenersi accettabili

i MOSFET di potenza nell'auto

Grazie ai recenti progressi nella tecnologia dei semiconduttori di potenza, è diventato relativamente semplice costruire apparecchi in grande potenza da usare nell'automobile. Due esempi di applicazione dei MOSFET di potenza sono un amplificatore supplementare da 50 watt ed un convertitore da 12 V a 24 V, che si vedono rispettivamente in figura 1 ed in figura 2.

Un amplificatore di potenza per l'impiego in automobile deve soddisfare almeno alle seguenti condi-

La potenza d'uscita deve essere maggiore di 10 zioni: W, in modo da produrre un livello audio sufficiente a sopraffare i vari rumori di fondo ambientali (motore, vento, eccetera).

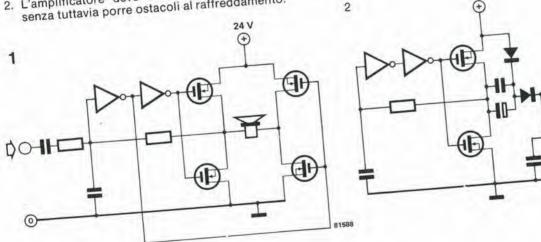
2. L'amplificatore deve essere molto compatto senza tuttavia porre ostacoli al raffreddamento.

anche con forti variazioni della tensione di ali-

Il circuito di figura 1 soddisfa bene a queste condizioni. Si tratta di una versione a ponte dell'amplificatore autooscillante PWM, con una potenza d'uscita dell'ordine dei 50 W. Se un amplificatore di potenza così elevata deve essere alimentato da una batteria a 12 V, si potrà fare una scelta tra le seguen-

1. L'amplificatore funziona a 12 V unito ad un carico di bassa impedenza.

2. L'amplificatore funziona a 12 V ed un trasformatore elevatore è collegato tra l'uscita ed il carico.


Si usa un convertitore di tensione per aumentare la tensione di alimentazione in modo che l'amplificatore possa erogare la potenza prescritta. Il convertitore potrà essere munito o me-

L'avvento dei MOSFET di potenza rende particolarmente fattibile la terza alternativa. La semplicità del progetto è ben evidente dallo schema di figura 2. In pratica, l'intero convertitore non è altro che un multivibratore astabile di potenza a CMOS. Dopo la rettificazione ed il livellamento, la tensione di uscita viene sommata a quella della batteria.

Naturalmente, lo schema mostra solo il principio base di funzionamento dei due progetti. In realtà sia l'amplificatore da 50 W che il convertitore da 12 V a 24 V saranno trattati con maggiori dettagli in un successivo numero di Elektor.

12 V

24 V

semplice manifesto danzante

Lo schema originale del "manifesto danzante" è stato pubblicato nel numero del settembre '81 di Elektor ed era destinato ad aumentare gli effetti luminosi nelle discoteche e simili ambienti. Poiché quel circuito era piuttosto costoso e molti lettori preferiscono vedere il particolare effetto visuale prima di spendere i loro soldi per un tale progetto, abbiamo pensato ad una versione più semplice. La maggior parte di questo circuito di controllo può essere costruita impiegando componenti prelevati dalla cosiddetta "cassetta dei rottami".

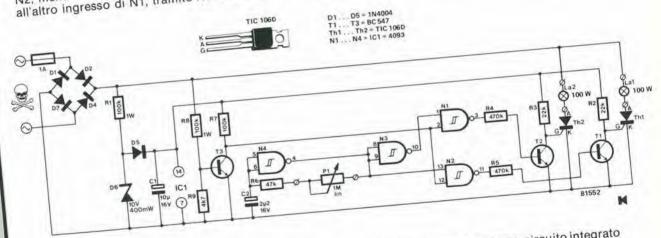
Si usano due tiristori ed un solo circuito integrato CMOS per cui il circuito può essere alimentato direttamente dalla rete. Per evitare che dalla rete vengono trasmesse al circuito delle interferenze,

andrà a livello basso solo per un breve periodo

questo viene attivato esclusivamente al passaggio per lo zero della tensione di rete. L'alimentazione del circuito è derivata dalla tensione di rete tramite la resistenza serie R1 ed il diodo Zener D6. Il raddrizzatore a ponte D1...D4 è stato montato perché, invece dei soliti Triac, si usano dei tiristori, Il circuito è comunque costruito in modo che le lampade si accendono per l'intero periodo della tensione di

Il cuore del circuito è formato dall'oscillatore basato su N4. La frequenza di questo oscillatore può essere regolata mediante il potenziometro P1. II "rivelatore di passaggio per lo zero" è formato dal

transistor T3 e dalle resistenze R7...R9.


Ad ogni passaggio per lo zero della tensione di rete apparirà al collettore di T3 un impulso positivo della durata di circa 300 μs. Questo impulso viene mandato alle porte logiche N1 ed N2. Il segnale d'uscita dell'oscillatore arriva all'altro ingresso di N2; mentre lo stesso segnale invertito è applicato all'altro ingresso di N1, tramite N3. L'uscita di N1

quando la tensione di rete avrà un valore prossimo a 0 V ed il piedino 1 di N1 sarà a livello alto. Il transistor T2 cesserà di condurre ed il tiristor Th2 sarà attivato tramite la resistenza R3 per la durata di un semiperiodo della frequenza di rete. La stessa cosa succederà naturalmente con il tiristor Th1, quando il piedino 13 di N2 sarà a livello alto.

Le due lampade La1 ed La2 lampeggeranno alternativamente, in sequenza col segnale dell'oscillatore. La potenza delle lampade (del tipo "flood" una rossa ed una verde) non dovrà essere superiore a 100 W. II manifesto danzante potrà essere ordinato presso il servizio EPS. Il circuito può anche essere usato per controllare le normali luci lampeggianti

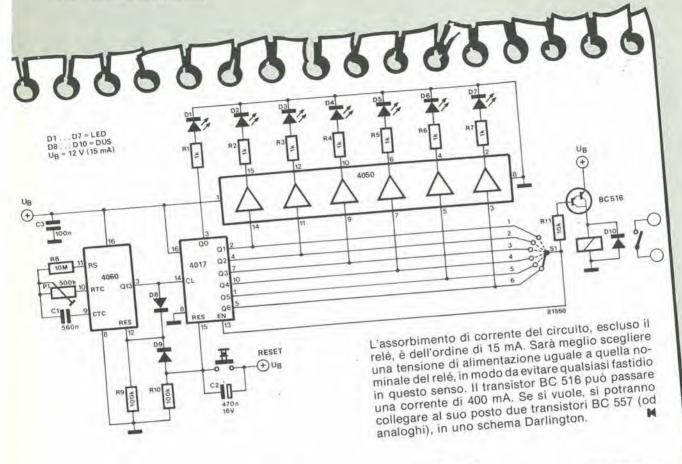
"di alta potenza", senza il manifesto.

Nota: il circuito nella sua totalità è collegato direttamente alla tensione di rete, quindi fare attenzione!! Il potenziometro P1 deve avere un alberino in plastica ed il circuito completo dovrà essere montato in un astuccio di plastica.

K. Siol

temporizzatore da 6 ore

Questo sistema di controllo è stato in origine progettato per spegnere automaticamente gli impianti stereo durante la notte, in modo che gli appassionati di musica che si appisolano in poltrona non debbano più preoccuparsi dell'ammontare della prossima bolletta dell'elettricità. Poiché il sistema di commutazione controlla un relé, il circuito potrà essere usato anche per molti altri scopi.

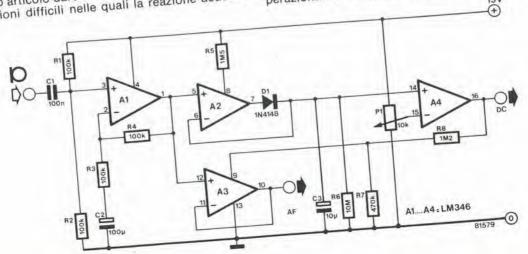

Il cuore del temporizzatore è un componente CMOS tipo 4060, che contiene un oscillatore ed un divisore a 14 stadi. La frequenza dell'oscillatore può essere modificata mediante il potenziometro P1 in modo che l'uscita da Q13 sia di circa un impulsi ogni ora. La durata di questo impulso di clock sarà molto breve (circa 100 ns), perché esso

servirà anche ad azzerare l'intero circuito integrato 4060, tramite il diodo D8.

L'impulso di clock che appare una volta ogni ora viene passato al secondo divisore (un divisore per dieci), che è il circuito integrato 4017. In ogni momento, una delle uscite di questo contatore sarà a livello alto (livello logico "1"). Subito dopo il reset del 4017, andrà a livello alto l'uscita Q0. Dopo un'ora l'uscita Q0 tornerà a livello basso e sarà Q1 a passare al livello alto, eccetera. Il commutatore S1 dà all'operatore la possibilità di scegliere un tempo che va da una a sei ore. Appena l'uscita prescelta andrà a livello alto, il transistor cesserà di condurre ed il relé sarà diseccitato (staccando perciò la radio, il giradischi, eccetera). Poiché anche l'ingresso di abilitazione del 4017 sarà collegato al cursore di S1, ogni impulso successivo di clock sarà privo di effetto sul contatore. Il sistema resterà perciò nello stato disattivo fino alla successiva pressione del

Sono stati inseriti nel circuito il buffer integrato CMOS tipo 4050 ed i sette LED per dare un'indicazione del numero di ore già trascorse. Questi componenti possono naturalmente essere omessi quando non ci sia bisogno di un indicatore del tempo già trascorso. La tensione di alimentazione del circuito non è critica e può avere un valore

qualsiasi tra 5 e 15 V.



per sistemi PA

Un fastidioso difetto dei sistemi PA è la tendenza a fischiare o "ululare" a causa dei fenomeni di reazione acustica. Ci sono alcuni sistemi per evitare questi problemi, ed il più ovvio sembra essere la ridisposizione degli altoparlanti rispetto al microfono. Questo non è però sempre possibile, ed è scopo di questo articolo dare una risposta valida per quelle situazioni difficili nelle quali la reazione acustica

È noto a tutti che un abbassamento della frequenza tra il microfono e l'amplificatore PA di circa 5 Hz, ridurrà la reazione i molte situazioni dove tutti gli altri metodi hanno fallito; ma un variatore di frequenza è un oggetto piuttosto costo e talvolta la sua efficacia non si rivela pari al prezzo. Poiché la reazione acustica richiede del tempo per manifestarsi, una semplice soluzione del problema dovrebbe essere quella di tenere il microfono staccato per il maggior tempo possibile, in pratica per tutto il tempo in cui nessuno parla. In altre parole occorrerebbe un interruttore azionato dalla voce, ossia un

Il progetto è basato su un circuito integrato della National, I'LM 346. Questo contiene quattro amplificatori operazionali programmabili, che possono essere usati in un gran numero di impieghi. In breve, il circuito funziona come segue: il segnale vocale proveniente dal microfono è amplificato dall'operazionale A1 e poi mandato a due altri operazio-

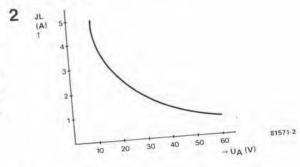
22222222222 Perciò, quando si smette di parlare nel microfono,

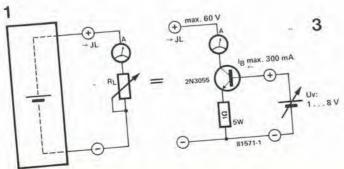
nali, A2 ed A3. L'ultimo di questi è semplicemente un buffer a guadagno unitario che trasferisce il segnale all'amplificatore PA. L'operazionale A2, con il diodo D1, funziona da rettificatore che converte il segnale amplificato del microfono in un livello di tensione continua positiva. Tutte le tensioni ondulatorie residue sono livellate dal condensatore C3. Se la tensione ai capi di questo condensatore supera il livello prediposto all'ingresso invertente di A4 (con il potenziometro P1), l'uscita del comparatore (A4) andrà a livello alto. Questo segnale di uscita potrà essere impiegato per controllare un relé od un analogo dispositivo. Questo livello c.c. viene mandato anche al piedino di controllo (9) dell'amplificatore operazionale A3, tramite la resistenza R8. Questo operazionale funzionerà solo quando il piedino 9 rimarrà a livello alto.

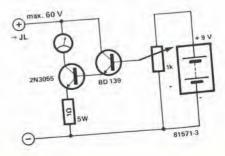
A3 non funzionerà più e l'amplificatore principale

di potenza resterà inattivo. Una resistenza di elevato valore (R6) è stata posta in parallelo a C3 per garantire una scarica molto lenta di questo condensatore. È molto importante una scarica molto lenta di questo condensatore. È molto importante che questo accada perché il percorso del segnale verso l'amplificatore deve rimanere aperto anche quando l'oratore sì concede delle brevi pause. Come detto in precedenza, l'uscita di A4 può essere impiegata per controllare un certo numero di dispositivi tramite un relé od altro. Ci saranno perciò parecchie applicazioni diverse per questo circuito specialmente nelle discoteche o

"resistenza" di potenza variabile


Una tra le maggiori difficoltà incontrate nel collaudo degli alimentatori è la disponibilità (o meglio la non disponibilità) di un adatto carico. Di solito il problema viene risolto con un "grappolo" di resistenze che, anche se non è particolarmente elegante, dà la possibilità di eseguire la prova.


Le resistenze di una potenza di 10 W o più sono però piuttosto costose e certi valori sono difficili da trovare. Per buona misura, questo carico non sarà variabile. Questo semplice circuito potrà risolvere molti problemi in modo efficace ed economico. Un transistor 2N3055 con guadagno variabile controllato da un alimentatore, indipendente, formerà una resistena di carico infinitamente variabile, Il circuito che qui descriviamo potrà dissipare una potenza che arriva a 50 W, se si usa un adatto dissipatore termico. La possibilità di sostenere una corrente di carico fissa quando la tensione di uscita dell'alimentatore varia, è un altro vantaggio di questo sistema.


Si deve tenere bene a mente la dissipazione massima del transistor usato. Come si vede in figura 2, una corrente di 2,5 A a 20 V corrisponde a soli 50 W. ma una corrente di 2,5 A a 50 V corrisponde a 125

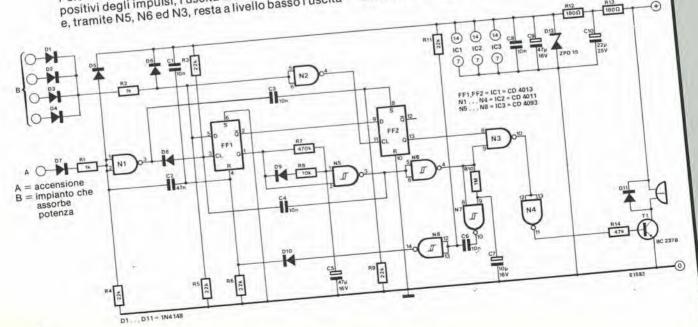
W, potenza un tantino elevata per il 2N3055. La tensione di base per questo transistor potrà essere ottenuta mediante un partitore di tensione collegato ai capi di un alimentatore esterno. Se non si disone di un tale alimentatore, si potrà usare il circuito di figura 3. In questo caso si usa come transistor pilota un BD139 per mantenere più basso possibile l'assorbimento di corrente dalla batteria. La potenza può crescere molto velocemente con l'aumento della tensione e per questo motivo è necessario predisporre un'indicazione dei livelli di corrente e di tensione nel circuito. Usando la curva di figura 2 facile da vedere quando si sta per superare la massima potenza ammessa.

Il circuito può funzionare anche come limitatore di corrente. Questa caratteristica risulterà molto pratica per la carica delle batterie a corrente costante. La batteria deve essere inserita nel circuito tra l'amperometro ed il collettore del 2N3055. Si deve ricordare di non alzare la tensione fino al punto di danneggiare le piastre della batteria.

di N4. Ciò significa che il transistor T1 è interdetto

W. Gscheidle

promemoria per auto


Nella maggior parte dei veicoli a motore, la chiavetta d'accensione non spegne i fari. Ciò significa che è possibile lasciare la macchina in posteggio con l fari accesi. In molti casi questo vale anche per altre apparecchiature ausiliarie, come le autoradio, eccetera, che sono direttamente collegate alla batteria. Per l'automobilistica smemorato questo sarà di notevole disturbo quando tenterà di avviare il motore dopo la sosta. Questo circuito è destinato ad avvisare il guidatore che nella vettura c'è ancora qualcosa di acceso che sta consumando una quantità inaccettabile di potenza elettrica. Il problema può essere risolto con un pizzico di ragionamento logico. Dopo tutto, cosa c'é di più naturale che applicare un pò di tecnologia digitale?

A prima vista, il circuito sembra molto più complicato di quanto sia in realtà. Ci vogliono solo tre circuiti integrati. I conduttori di alimentazione interrotti degli apparecchi da controllare devono essere collegati ai diodi D1...D4 (volendo se ne possono mettere anche di più). Il lato verso la bobina dell'interruttore di accensione sarà collegato al diodo D7 ed i due fili della batteria rispettivamente

Vediamo per prima cosa ciò che succede quando si ai punti"+12 V" e "0" chiude e si apre l'interruttore di accensione, senza che ci siano degli apparecchi accesi. In effetti sembra che non succeda nulla! Se l'interruttore di accensione viene chiuso, FF1 è resettato tramite il condensatore C2, l'uscita di N1 va a livello basso portando allo stesso livello l'ingreso di clock di FF1. Poiché questo flip flop reagisce solo ai margini positivi degli impulsi, l'uscita Q resta a livello basso e, tramite N5, N6 ed N3, resta a livello basso l'uscita

ed il cicalino non suona.

Quando il commutatore di accensione è aperto, l'uscita di N1 va a livello alto ed FF1 verrà settato tramite il condensatore C3. L'uscita Q di questo flip flop andrà quindi a livello alto abilitando N3. Per quanto però FF1 riceva un impulso di clock tramite R3, l'informazione all'ingresso dei dati (D) è a livello basso in quanto nella vettura non ci sono apparecchi accesi, per cui le uscite di FF1 mantengono il loro stato precedente. Il risultato finale è che l'uscita di N4 resta a livello basso e T1 resta interdetto. Vediamo ora cosa succede nel caso che uno o più circuiti ausiliari siano accesi. Quando l'interruttore di accensione viene chiuso, il risultato finale sarà lo stesso di quello descritto in precedenza. Quando però l'interruttore di accensione viene aperto, comincia a succedere qualcosa! Il flip flop FF1 riceve, come prima, un impulso di clock tramite R3. Stavolta, poiché l'ingresso dei dati è a livello alto, anche l'uscita Q andrà a livello alto. Il condensatore C5 si caricherà tramite la resistenza R7 e, non appena raggiunto un livello sufficiente di carica, (tempo di carica = R7 x C5), l'uscita di N5 andrà a livello basso. Questo segnale viene differenziato da C4/R3 per fornire ad FF1 un altro impulso di clock. Durante il periodo di carica di C5, il guidatore ha ancora la possibilità di spegnere gli apparecchi accesi evitando così l'intervento del cicalino. In questo caso, l'uscita Q di FF1 andrà nuovamente a livello basso con il secondo impulso di clock e C5 si scaricherà su R8 ed R9. L'uscita di N5 andrà a livello basso ripristinando la situazione originale. Se però il guidatore dimentica di spegnere qualcosa, l'uscita di N6 andrà a livello alto quando C5 sarà carico. A sua volta questa manderà a livello alto l'altro ingresso di N3 (N3 è stata abilitata quando l'accensione è stata tolta, come descritto in precedenza) e così andrà a livello basso l'uscita di N3; l'uscita di N4 andrà a livello alto ed il transistor T1 andrà in conduzione azionando il cicalino. Contemporaneamente, il condensatore C7 si caricherà, tramite la resistenza R10, in un tempo di circa 10 secondi. Dopo questo tempo, l'uscita di N7 andrà a livello basso. Questo impulso darà differenziato da C6/R11 in modo da fornire ad FF1 un impulso di

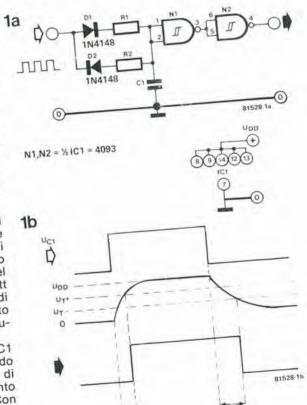
reset tramite N8 e D10. Dopo il reset, l'uscita Q di FF1 andrà a livello basso e cesserà il segnale di

avviso. È possibile interrompere il segnale di allarme riè possibile interruttore di accensione. In questo
modo ci sarà la possibilità di lasciare acceso un
certo circuito (come per esempio le luci posteriori)
senza che l'allarme abbia ad intervenire. Si ottiene
lo scopo spegnendo prima l'accensione e lasciando inserito l'apparecchio che deve restare acceso.
Questo apparecchio viene poi spento e di nuovo
acceso prima che suoni l'allarme. In questo modo
l'uscita di N2 andrà a livello alto quando l'apparecchio viene spento, mandando così un impulso di
clock ad FF2. Poiché in questo modo l'uscita Q di
FF1 è bassa, l'ingresso D di FF2 è anch'esso a livello
basso e perciò l'uscita Q di FF2 andrà a livello basso

disabilitando N3 ed interrompendo il transistor 11. Se si riaccende l'apparecchiatura in oggetto, l'ingresso di clock di FF2 diverrà basso ma le uscite rimarranno nella medesima condizione di prima. Per quanto FF1 e le porte N5...N8 percorrono tutto il loro ciclo di funzionamento, l'allarme non funzionare

Si deve ammettere la possibilità che esistano sistemi di allarme più semplici. Però questo circuito contiene alcune idee interessanti ed è semplice da usare. Nonostante tutto il dispositivo ha un difetuccio: se per esempio si lasciano inavvertitamente accesi due apparecchi e solo uno di questi viene spento quando suola l'allarme, il congegno non si accorgerà dell'altro rimasto acceso. Bisogna perciò esaminare con molta attenzione il cruscotto quando suona l'allarme!

30


fianchi regolabili per le onde quadre

La possibilità di anticipare o di ritardare i fianchi di salita o di discesa di un'onda quadra troverà molte applicazioni nella tecnica digitale. Lo schema di applicazioni nella tecnica digitale. Lo schema di bastano pochi componenti. Il circuito approfitta del bastano pochi componenti. Il circuito approfitta del fatto che l'uscita di una porta a trigger di Schmitt non cambierà il suo stato fino a quando il livello di tensione all'ingresso non raggiungerà un certo punto critico noto sotto il nome di soglia di commutazione.

Durante la salita di un impulso, il condensatore C1 è caricato tramite D1 ed R1. In questo modo aumenta il tempo necessario perché il livello di tensione all'ingresso della porta raggiunga il punto corrispondente alla soglia di commutazione. Con un livello logico "1" all'ingresso del circuito, il potenziale ai capi di C1 continuerà ad aumentare fino a che esso raggiungerà praticamente il livello della tensione di alimentazione. Se l'ingresso torna a "0", C1 si scaricherà tramite D2 ed R2, ritardando nuo vamente il momento in cui si raggiungerà il livello di soglia del trigger. Si può capire meglio come vanno le cose osservando la figura 1b, che mostra le forme d'onda presenti in diversi punti del circuito.

Si deve rammentare che i punti di soglia di un trigger di Schmitt dipendono moltissimo dalla tensione di alimentazione. Le cifre che seguono sono valide per il 4093 della RCA:

Si potrà ora calcolare il ritardo del fronte di salita dell'impulso mediante la seguente formula:

$$\Delta t^{+} = -R1 \times C1 \times In \left(1 - \frac{U\tau^{+}}{U_{DD} - 0.7}\right)$$

Il ritardo del fronte di discesa sarà:

If ritardo del Hollo

$$\Delta \bar{t} = -R2 \times C1 \times In \left(\frac{U\bar{t}}{UDD} - 0.7 \right)$$

Perciò la scelta dei valori per R1, R2 e C1 ci darà un valore qualsiasi del ritardo ai fronti di salita e discesa dell'impulso ad onda quadra. Il ritardo massimo per ciascun fronte non deve però superare l'80% della durata dell'impulso.

Niente è perfetto a questo mondo e gli IC1 di fabbricanti diversi avranno tolleranze nella soglia di commutazione più o meno elevate. Ciò vuole dire che i ritardi effettivi potranno anche risultare molto diversi da quelli calcolati.

83888888888 isolato per rendere il circuito sicuro ed esente da

K. Kirk

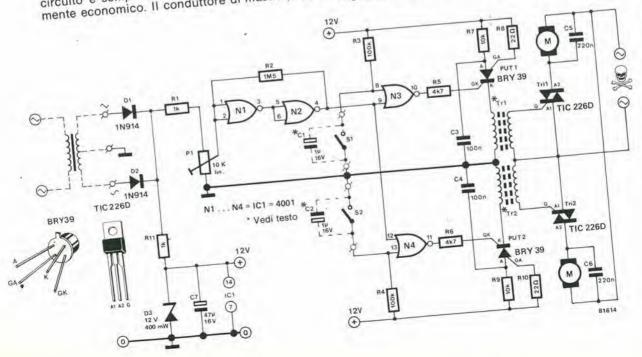
commutatore silenzioso per giradischi

Il circuito è principalmente destinato ad eliminare il click o comunque il rumore che si verifica in molti impianti da discoteca quanto i piatti vengono collegati o scollegati. Questo effetto indesiderato è prodotto dalla extratensione generata dall'avvolgimento del motore, che è percorso da un "picco" molto elevato. Questo picco di tensione può arrivare fino agli altoparlanti provocando un rumore ca-

Il livello del thump dipende dal punto del periodo ratteristico (thump). della tensione di rete in cui avviene l'attacco od il

Se il piatto potesse essere acceso quando il ciclo distacco del piatto. della tensione di rete passa per lo zero e mantenuto collegato per il restante semiperiodo, si produrrebbe un'extra tensione molto piccola perché in quel momento la corrente nell'avvolgimento sarebbe trascurabile. Anche alla disinserzione non si produrrebbe un thump se l'apparecchio restasse acceso fino a che la corrente passante non diminuisse

ad un valore molto prossimo allo zero.


Questo progetto impiega un rivelatore di passaggio per lo zero che manda in conduzione un Triac due volte in ogni periodo della tensione di rete (in corrispondenza ai semiperiodi positivo e negativo). Il circuito è semplicissimo da costruire e relativamente economico. Il conduttore di massa (0 V) è

ronzio e perché esso possa essere controllato a distanza, direttamente dal pannello del mixer. Il circuito è progettato in modo da poter essere

inserito in qualsiasi banco di regia per discoteca e perciò potrà ricavare l'alimentazione (solo pochi milliampere) dal trasformatore del sistema. La tensione di uscita del trasformatore deve essere simmetrica rispetto alla massa e può avere qualsiasi valore tra \pm 12 V e \pm 24 V. Se non è disponibile questa tensione si potrà usare un piccolo trasfor-

Due segnali a 50 Hz in opposizione di fase sono derivati dall'uscita del trasformatore e poi raddrizzati dai diodi D1 e D2 in modo da produrre una serie di impulsi negativi (100 Hz) ai capi della resistenza R1. Questi impulsi vengono poi messi in forma dal trigger di Schmitt, costituito dalle porte logiche N1 ed N2, con il risultato di produrre una serie di brevi picchi di tensione. Questi picchi sono sincronizzati con il punto di passaggio per lo zero dell'onda di rete e la loro durata può essere variata mediante il trimmer P1. Questa particolarità può essere molto utile con i Triac che richiedono una corrente di mantenimento superiore al normale.

Le resistenze R3 ed R4 mantengono a livello alto gli ingressi delle porte N3 ed N4 fino al momento in cui i commutatori dei piatti (S1 od S2) vengono chiusi. Gli impulsi negativi provenienti dal trigger di Schmitt passeranno poi attraverso la corrispondente porta NOR e verranno invertiti. Gli impulsi positivi risultanti serviranno a far scattare il corrispondente transistor unigiunzione programmabile (PUT) che provocherà la scarica del condensatore C3 (oppure C4) attraverso il trasformatore di impulsi Tr1 (oppure Tr2) per mandare in conduzione il Triac Tri1 (Tri2). Le resistenze R8 ed R10 servono ad assicurare una commutazione netta del PUT alla fine di ciascun impulso. I condensatori C1 e C2 si potranno rivelare necessari nel caso che l'alimentatore usato abbia un'ondulazione residua elevata oppure per ridurre i disturbi nel caso che i commutatori dei piatti siano disposti nelle vicinanze di un ingresso ad alta impedenza (come per esempio il

88888888888 mero maggiore di spire al secondario per funziona-

Questo apparecchio può essere molto piccolo, infilabile in qualsiasi angolino della consolle (purché lontano dall'amplificatore di potenza). Si è verificato che i trasformatori di impulsi producono un campo magnetico relativamente elevato che potrebbe essere rilevato dai fili del pick-up se il circuito venisse montato proprio sotto i piatti giradischi. Questo effetto potrà essere ridotto al minimo per tentativi oppure schermando il circuito. Ad ogni modo si

dovranno sempre usare i cavetti schermati. I trasformatori di impulsi potranno essere costruiti avvolgendo una quindicina di spire di filo nº 32 SWG sia per il primario che per il secondario, su un nucleo ad anello di ferrite (FX3008). Il rapporto delle spire e la polarità non sono critici. Alcuni Triac poco "sensibili" possono richiedere un nu-

re. Anche questo problema va risolto per tentativi. Una volta che il circuito è finito e provato, i trasformatori dovranno essere rivestiti con una buona dose di vernice per ridurre il "ronzio"

La sola messa a punto necessaria è di girare il trimmer P1 (a partire dalla massa) finché il sistema funzionerà correttamente e non si udrà alcun rumore negli altoparlanti. Se occorre il sistema potrà anche essere ampliato, ma i trasformatori di impulsi non dovranno essere montati troppo vicini tra loro perché il loro funzionamento potrebbe influenzare i canali adiacenti. Il circuito potrà anche essere usato per controllare altri apparecchi, comprese

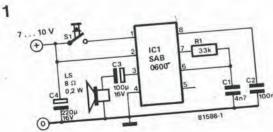
Le possibilità sono praticamente infinite (ed a buon le luci, ecc. mercato!)

gong elettronico

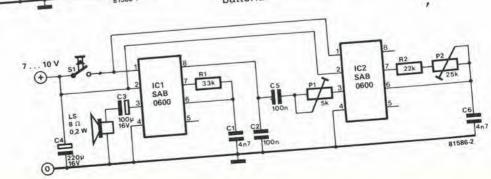
Il circuito integrato bipolare SAB 0600 della Siemens è un altro componente per effetti sonori. Esso però è differente dagli altri in quanto è progettato in modo da produrre un suono armonico e questa è un'alternativa interessante ai soliti "beep" "fischi" e "tonfi". Se e quando l'SAB 0600 diventerà disponibile in Italia, sarà possibile costruire un completo gong elettronico in miniatura con pochissimi componenti esterni. Il componente assorbe una corrente minima ed in pratica sarà sufficiente una piccola batteria per alimentarlo: ciò significa che l'apparecchio potrà essere montato praticamente ovunque. Il semplicissimo schema si vede in figura 1.

Il circuito integrato è formato da un oscillatore principale la cui frequenza è determinata dai valori

dei componenti R1/C1. Questa frequenza è divisa internamente in altre tre frequenze che hanno una relazione armonica fissa l'una con l'altra. Una delle tre frequenze viene ancora divisa in modo da formare una base dei tempi per l'inviluppo di attacco e


Un segnale complesso che potrà essere meglio definito come tensione di "suoneria" viene derivato da convertitori digitali-analogici a 4 bit collegati all'uscita di ognuno dei divisori di frequenza inter-

L'integrato contiene anche un amplificatore audio di uscita capace di pilotare un altoparlante da 8 Ω con una potenza massima di 160 mW. La forma d'onda di uscita rassomiglia ad un'onda quadra ed in questo caso le armoniche superiori sono attenuate con l'aggiunta del condensatore C2. La qualità sonora migliorerà montando l'altoparlante in un alloggiamento tubolare.


Un effetto ancora più interessante si potrà ottenere combinando due circuiti gong con frequenze di base leggermente diverse. È anche possibile far pilotare ai due circuiti il medesimo altoparlante. Questa soluzione è illustrata in figura 2.

Il segnale di uscita dal secondo gong (IC2) è prelevato dal piedino 3 tramite il potenziometro P1 ed il condensatore C5 ed è mandato al piedino 8 di IC1. Si potrà usare il potenziometro semifisso P1 per aggiustare il livello di uscita, mentre P2 regolera la frequenza del secondo gong.

Si deve avvertire che dei fili molto lunghi dai pulsanti al circuito potranno causare azionamenti non voluti. Ciò può essere evitato ponendo in serie una resistenza al pulsante S1 e collegando un piccolo condensatore tra il piedino 1 ed il filo comune dell'alimentazione. Il basso consumo di corrente a riposo (1 μ A) garantirà una notevole durata della batteria.

2

88888888888 tensione di soglia: in questo modo viene abbassata

semplice ricevitore per onde corte

Gli effetti più noti provocati dai ricevitori accordati in reazione, sono l'irradiazione e l'accoppiamento indesiderato tra l'antenna ed il circuito LC eccitato dalla reazione. Anche senza considerare l'aumento della complessità, la sintonizzazione dell'ingresso (di antenna) provoca un notevole aumento dell'efficienza degli accoppiamenti indesiderati, che sono dovuti all'effetto Miller nello stadio di radiofrequenza. Ciò significa invariabilmente che il progetto TRF (sintonizzato in radio frequenza) reattivo, è riservato agli abilissimi, specie per le onde corte. Se l'effetto di desintonizzazione provocato dall'accoppiamento indesiderato potesse essere ridotto, tanto per dire, ad un centinaio di Hertz, il ricevitore potrebbe anche essere usato in regime oscillatorio, con la possibilità per chi lo usa di ricevere con rivelazione a prodotto, per esempio le emissioni CW, RTTY ed SSB. A questo punto deve essere ben chiaro che queste prerogative sono molto migliorate se si aggiunge un frequenzimetro

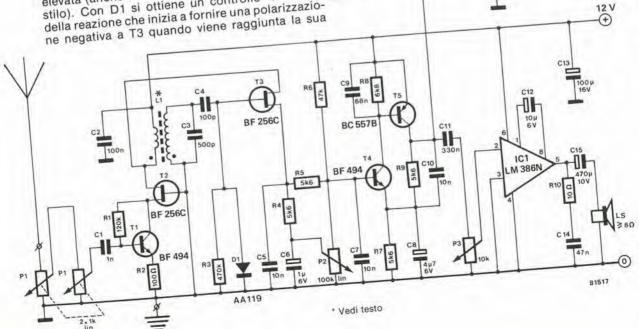
Per ottenere una variazione minima della frequendigitale. za, lo stadio RF del circuito è formato da un transistor bipolare e da un FET collegati in cascode. Basta uno sguardo per capire che l'ingresso è aperiodico. Lo svantaggio del sovraccarico all'ingresso è più che compensato dalla sensibilità molto elevata (anche usando come antenna un semplice stilo). Con D1 si ottiene un controllo "morbido" della reazione che inizia a fornire una polarizzazio-

la transconduttanza del transistor "contrastando" l'effetto di reazione. Il rivelatore è in grado di far fronte a segnali d'ingresso relativamente infinita. Questo significa pure che la distorsione è bassa, anche in presenza di una portante AM fortemente modulata. Nel prototipo si sono ottenute le seguenti caratteristiche:

Sensibilità singola

(Modulaz. AM 30%, S/R = 10 dB): 1 μ V

Sensibilità a segnale unico (SSB, S/R = 10 dB): $0.3 \mu V$


Banda di frequenza coperta con un condensatore di sintonia

da 500 pF: 4,4 ... 17 MHz

La definizione "sensibilità a segnale unico" richiede alcune spiegazioni. Si tratta di una cifra che si ottiene misurando la sensibilità con l'aiuto di un generatore di segnali, in assenza di altri segnali. A causa del sovraccarico all'ingresso (allo stadio RF a larga banda) ed alla rivelazione ad inviluppo che avviene per i forti segnali del canale adiacente, non si otterrà mai la sensibilità totale, tranne forse in nazioni come l'Australia, dove lo spettro non è ancora invaso dagli OTHR e dalle stazioni di disturbo

Nel funzionamento con rivelatore a prodotto, la soppressione della modulazione d'ampiezza sarà dell'ordine di 40 e 60 dB, a seconda della sintonia. La cifra più bassa si riferisce alla massima frequenza di sintonia. Si possono ottenere dei miglioramenti diminuendo il rapporto L/C.

L'avvolgimento primario di L1 è di 6 spire di filo di rame smaltato Ø 0,25, avvolte su di un nucleo ad anello Amidon tipo T94-6. L'avvolgimento secondario è di 25 spire di filo di rame smaltato Ø 0,68 ... 0,8 mm, disposte sull'intera lunghezza del nucleo. L'avvolgimento primario deve essere disposto all'estremo "freddo", interlacciato alle spire del secondario.

288988888888 collegamento tra una linea verticale ed una oriz-

C. Voss

codifica digitale per tastiera

Questo circuito sembra a prima vista piuttosto complicato. Si tratta di un normale codificatore che svolge le seguenti funzioni: ad ognuno dei tasti (il numero massimo è 64) è abbinato un numero binario. Questo numero binario è disponibile nel formato a 6 bit in parallelo sulle uscite Q di IC1 ed IC2. Il livello logico dell'uscita Q8 indica se uno dei tasti è stato premuto o meno. Le uscite Q1 ... Q6 e Q8 possono essere collegate ad un sistema a microprocessore oppure ad un convertitore digitale/analogico per il controllo di un sintentizzatore musicale. Poiché le uscite Q1 ... Q6 mantengono il loro stato dopo ce si è abbandonato il tasto, non vi sarà bisogno di un circuito di campionamento e tenuta

Un altro vantaggio del circuito è che non occorreranno più le resistenze che determinano la frequenza e che normalmente sono presenti nelle tastiere analogiche. La tastiera digitale richiede inoltre solo un contatto per ogni tasto. Il circuito funziona come segue: ogni tasto si trova in una certa posizione di una matrice 8 x 8. Questa matrice viene determinata dall'incrocio delle 8 linee di uscita da IC3 e delle 8 linee di ingresso in IC4. Ognuno dei 64 punti di incrocio è collegato al contatto di un tasto ed

zontale. Un generatore di impulsi formato da N10, con N9 come amplificatore, controlla IC3 ed IC4 ad una frequenza di 250 kHz tramite un contatore ad 8 bit formato da IC5 ed IC6. Le cose vanno in modo che ciascun punto della matrice, e quindi un particolare tasto, viene abilitato riga per riga e colonna per colonna. Quando siano stati abilitati in sequenza tutti gli ingressi (0 ... 7) di IC4, l'uscita di IC3 fa un passo in avanti. Se viene chiuso il contatto di un tasto, l'uscita Q di IC4 va a livello basso. Il risultato è che la posizione del contatore in quel momento e quindi il "codice" del tasto premuto viene scaricato

in IC1 ed IC2 tramite N3. Contemporaneamente, l'uscita Q di IC4 va a livello alto e viene passata all'ingresso D8 di IC2: in questo modo si avrà la segnalazione dell'azionamento di un tasto. Per garantire che, quando si premano due o più tasti contemporaneamente, venga trasmesso all'uscita il codice di un solo tasto, i contatori IC5 ed IC6 vengono azzerati tramite N4 ad ogni pressione di un tasto. Ciò significa che verrà decodificato solo il codice del tasto di minor valore. Le porte logiche N6 ... N8 garantiscono che gli impulsi di latch e di reset non siano contemporanei e che

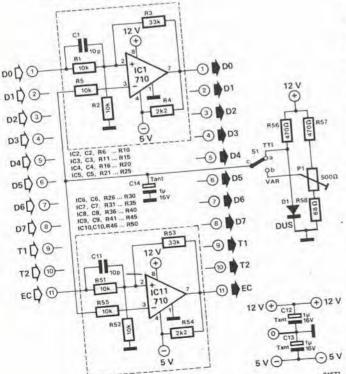
abbiano la giusta polarità. Il circuito di pilotaggio della tastiera (IC3) ha delle uscite a collettore aperto per cui le uscite stesse non verranno cortocircuitate tra loro in caso di pressione contemporanea di più di un tasto. A seconda della particolare applicazione del circuito, ci sono a disposizione delle uscite complementari Q1

... Q6 e Q8 di IC1 ed IC2, che non sono segnate sullo schema elettrico.

all'azionamento di questo tasto viene stabilito un 64 x 103 74145 1C1 D2 16 (+) 5V

102 7475₀ N1 ... N4 = IC7 = 7402 N5 ... N8 = IC8 = 7400 N9,N10 = IC9 = 7413 N1 N11 = IC10 = 7430 (+) 5V IC5 (14) 109 (14) 14 IC10 IC8 IC7 7 (7) 0

buffer d'ingresso per l'analizzatore logico

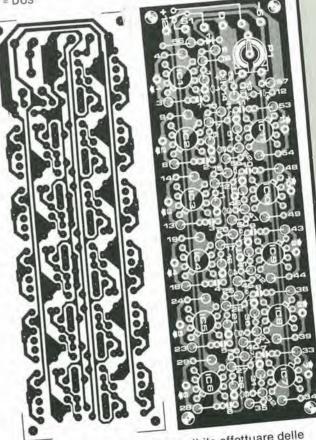

I buffer d'ingresso qui descritti aggiungono all'analizzatore logico (Elektor nº 30-31-32) i seguenti

la maggior impedenza di ingresso rende possibile l'"analisi" dei circuiti CMOS

i cavi d'ingresso possono essere allungati permettendo un più facile impiego dell'analizzato-

Ogni buffer consiste di un comparatore molto veloce (710) collegato come trigger di Schmitt. L'isteresi di questo circuito è determinata dai valori delle due resistenze di ingresso (2 x 10 k Ω) e dal valore

della resistenza di reazione (33 $k\Omega$). Con questi valori l'isteresì è di circa 1 V. In caso di necessità si potrà cambiare questo valore. Aumentando la resistenza di reazione si riduce il valore dell'isteresi. Le tensioni di commutazione dipendono anche dalla posizione del commutatore \$1. Nella posizione A e le tensioni di commutazione sono di circa 1 V ("0" logico) e 2 V ("1" logico), corrispondenti ai livelli TTL e CMOS con alimentazione a 5 V. Con il commutatore in posizione b, i valori sono determinati dalla regolazione del pontenziometro


R1,R2,R5,R6,R7,R10,R11,R12,R15,R16,R17,R20,R21, R22,R25,R26,R27,R30,R31,R32,R35,R36,R37,R40, R41,R42,R45,R46,R47,R50,R51,R52,R55 = 10 k R3,R8,R13,R18,R23,R28,R33,R38,R43,R48,R53 = 33 k R4,R9,R14,R24,R29,R34,R39,R44,R49,R54 = 2k2 $R56, R57 = 470 \Omega$ $R58 = 68 \Omega$

 $P1 = 500 \Omega$ trimmer

Condensatori:

C1 ... C11 = 10 pF C12,C13,C14 = 1 μ F/16 V tantalio

IC1 . . . IC11 = μ A 7101, LM 710 (involucro metallico ad 8 piedini) D1 = DUS

P1. In questo modo sarà possibile effettuare delle misure su circuiti CMOS alimentati a tensioni supe-

Il circuito stampato e la disposizione dei componenti per i buffer si vedono in figura 2. Per ridurre il più possibile le dimensioni della basetta (e questo è necessario per montarla vicino alla sezione di ingresso dell'analizzatore logico), le resistenze sono montate in posizione verticale.

Per collegare i buffer agli ingressi dell'analizzatore logico si potrà usare una piattina multipolare. Si potrà usare una analoga piattina anche per collegare i buffer al circuito in prova. Questi cavi non devono comunque superare la lunghezza di 40 cm e questo vuol dire che la lunghezza totale, buffer compresi, sarà di circa 80 cm.

Ed infine alcune osservazioni riguardanti l'alimen-

888888888888 grati regolatori di tensione. In altre parole si do-

L'assorbimento di corrente è notevole: dall'alimentazione a +12 V sono assorbiti circa 150 mA e da quella a -5 V circa 80 mA. Se per alimentare i buffer si usa lo stesso alimentatore dell'analizzatore logico, si dovrà aumentare la potenza dei circuiti intevranno usare invece del 78L12 e 7905, i tipi 7812 e

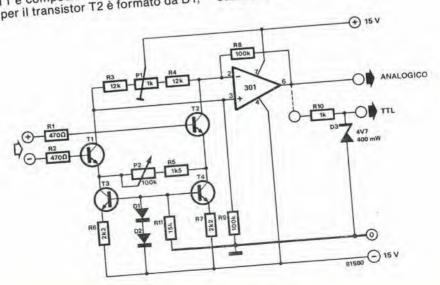
Si noti che la piedinatu. dei nuovi regolatori non corrisponde a quella dei vecchi.

amplificatore universale di misura

Il tester analogo è, almeno finora, uno strumento di cui sono dotati quasi tutti gli appassionati di elet-

Anche i tester digitali stanno attualmente aumentando la loro diffusione. Capita però spesso di accorgersi che le possibilità degli strumenti di misura a disposizione non sono affatto tali da corrispondere ai desideri. Talvolta la sensibilità di ingresso non è sufficiente (in altre parole non si possono misurare le basse tensioni), in altri casi l'impedenza di ingresso dello strumento è troppo bassa. Il secondo inconveniente è quello peggiore, perché è la causa maggiore delle misure inesatte. In generale, l'interpretazione di risultati inesatti porterà a con-

Il semplice circuito qui descritto, che impiega solo pochi componenti, non presenta nessuno di questi svantaggi. Il circiuto è formato da un amplificatore differenziale a componenti separati, basato sui transistori T1 e T2. In serie agli emettitori di questi due transistori sono collegati due generatori di corrente costante separati. Il generatore di corrente del transistor T1 è composto da D1, D2, T3 ed R6 mentre quello per il transistor T2 è formato da D1,


Le correnti di emettitore costanti rendono l'amplifi-D2, T4 ed R7. catore di misura indipendente dalle variazioni della tensione di alimentazione.

L'amplificatore differenziale (T1 e T2) è seguito da un amplificatore differenziale integrato (l'LM301 della National Semiconductor). Questo amplificatore operazionale è collegato in modo da avere un guadagno unitario. Alla sua uscita si trova perciò un segnale di misura analogico che potrà senz'altro essere usato come tale. Due altri componenti, R10 e D3, convertono il segnale analogico di uscita in

un segnale TTL-compatibile. Ora che abbiamo descritto il circuito di base, che uso potremo farne? Abbiamo già ricordato due possibilità: l'uso come preamplificatore per un normale multimetro analogico ed anche l'uso come preamplificatore per un multimetro digitale. Questo circuito potrà anche essere usato come preamplificatore ad audio-frequenza per frequenzimetri od apparecchi analoghi. In questo caso si potra usare il potenziometro P2 per la regolazione del livello di trigger. Per finire, è anche possibile usare questo circuito come preamplificatore per un oscilloscopio di tipo economico

Senza tener conto dell'effettiva applicazione del circuito, la taratura sarà la stessa in tutti i casi. Si tratta della regolazione di "spostamento zero", che avviene mediante il potenziometro semifisso P1. Questo potenziometro deve essere regolato in modo che, con gli ingressi in cortocircuito, ossia con le estremità di sinistra di R1 ed R2 collegate tra loro, l'uscita dall'amplificatore sia esattamente di 0 V. Nelle applicazioni normali, il potenziometro P2 regola la sensibilità di ingresso. Con questo potenziometro è possibile un'ampia regolazione del guadagno del circuito: da 2 a 130. Potrebbe essere

quindi pratico dotare questo potenziometro di una scala tarata.

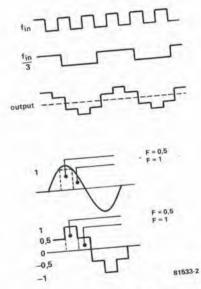
37

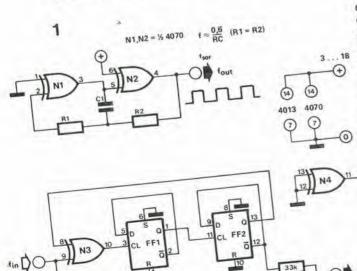
oscillatore sinusoidale digitale

Sulle pagine della rivista Elektor sono apparsi nel corso degli anni moltissimi e diversi oscillatori si-

Però il circuito qui descritto richiede meno componenti del solito e perciò produce un segnale sinusoidale di qualità non eccelsa, tuttavia in grado di eseguire ottimamente il suo compito.

Il circuito è formato da due sezioni, ognuna delle quali potrebbe avere da sola molte applicazioni: un oscilatore costruito su una coppia di porte OR esclusive ed un circuito divisore per 3 composto da


due normai flip flop.
L'oscillatore è composto da una porta non invertente (N1) e da una porta invertente (N2). Se si fossero impiegate solo le porte non invertenti si possono fare con due invertenti collegate in serie. In questo caso si usano solo due porte per costruire un affidabile oscillatore a tre porte ben noto ai


lettori di Elektor
Il circuito funziona così: riteniamo che, inizialmenIl circuito funziona così: riteniamo che, inizialmente l'ingresso di N1 (piedino 2) sia a livello basso. Ciò
significa che anche l'uscita di N1 sarà a livello basso e che l'uscita di N2 sarà a livello alto. Il condensatore C1 si caricherà tramite la resistenza R2. Dosatore C1 si caricherà tramite la resistenza R2. Dopo un breve periodo di tempo, l'ingresso di N1
po un breve periodo di tempo, l'ingresso di N1
andrà a livello alto tramite R1 e l'intero procedimento verrà invertito. I lettori che siano intressati a
questo tipo di oscillatore potranno consulare la

nota applicativa N° AN-118 della National Semiconductor, che è inserita nel manuale CMOS della suddetta ditta. La sezione del divisore per tre è formata da due flip flop, ognuno dei quali divide per due: ci si potrebbe attendere perciò che i due complessivamente dividono per quattro. È stata però inserita un'altra porta OR esclusiva (N3), tra l'uscita di FF2 e l'ingresso di FF1. Questa porta inverte il di FF2 e l'ingresso di rese l'uscita di FF2 camsegnale di clock ogni volta che l'uscita di FF2 cambia di polarità. Se non ci fosse N3, lo stato dell'uscibia di polarità. Se non ci fosse N3, lo stato dell'uscibia del flip flop non cambierebbe fino al termine del ta del flip flop non cambierebbe fino al termine del relativo periodo di clock. L'aggiunta di N3 provoca l'inversione del segnale di clock ed il suo fronte positivo commuta il flip flop dopo ciascun semiperiodo, perciò in questo caso il fattore di di divisione è tre e non quattro.

è tre e non quattro. Il segnale sinusoidale è generato tramite una coppia di resistenze (R3 ed R4). Quando l'ingresso alle due resistenze è a livello basso ("0" logico) non ci due resistenze d'uscita. Quando all'ingresso sarà una tensione d'uscita. Quando all'ingresso

2

FF1,2 = 4013 N3,N4 = ½ 4070

100k

81533-1

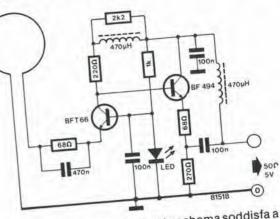
delle due resistenze ci sarà un livello alto ("1' logico), anche la tensione d'uscita sarà a livello alto. Quando l'ingresso ad una delle resistenze sarà a livello basso e l'altro sarà a livello alto, la tensione d'uscita sarà 1/4 oppure 3/4 della tensione di alimentazione (livello alto).

Tutto questo si può dimostrare per via matematica, ma esiste un metodo più semplice per giustificare questo comportamento, che consiste nell'esaminare graficamente un periodo dell'onda sinusoidale, re graficamente un piccolo rettangolo al centro Si può disegnare un piccolo rettangolo al centro dell'onda sinusoidale e questo rettangolo rappresenta un livello logico "1". Ai lati del primo rettangolo se ne possono disegnare altri due uguali. L'agolo se ne possono disegnare altri due uguali. L'agree compresa nell'onda sinusoidale appartenente agli ultimi due rettangoli sarà la metà di quella del primo. La tecnica di simulazione digitale genera un segnale che presenta la stessa disposizione delle superfici.

superfici.
Costruendo il circuito bisogna ricordare che gli
ingressi del CMOS non si devono mai lasciare scollegati. In altre parole, i piedini 12 e 13 della porta OR
escluso (N4) devono essere collegati a massa (0 V).

amplificatore d'antenna senza

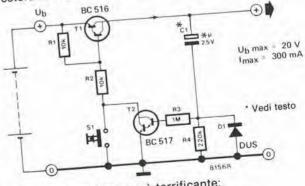
trasformatore


L'antenna Ω pubblicata nel numero di Giugno 1982 di Elektor ha soddisfatto ad una richiesta molto pressante. Però il suo principale difetto, consiste nella difficoltà di trovare i nuclei ed i trasformatori a larga banda, ha spronato i nostri progettisti a trovare una versione che potesse fare a meno di questi particolari componenti. L'amplificatore "alternativo" per l'antenna Ω descritto nella precedente edizione estiva della nostra rivista era principalmente destinato alla radiogoniometria nella banda 100

Il lato negativo, del quale al momento non si era parlato, consiste in una cifra di rumore piuttosto elevata. È possibile variare uno dei parametri di progetto allo scopo di ottenere un compromesso migliore possibile tra l'estensione dinamica e la cifra di rumore.

temporizzatore per apparecchi alimentati a batteria

Sorge spesso la necessità di spegnere gli apparecchi alimentati a batteria dopo un certo periodo di funzionamento. Per quanto i circuiti di temporizzazione siano tantissimi, non è proprio tanto semplice spegnere l'alimentatore dopo un certo numero di ore di esercizio. Questo circuito lo fa con la sola spesa di un assorbimento di pochi nanoampére. Un'occhiata allo schema elettrico ci mostrerà che i componenti necessari sono pochi. L'interruttore S1 è il pulsante di accensione; premendolo si manda una corrente di base al transistor Darlington T1 che passerà in conduzione per dare corrente all'apparecchio servito. Il transistor T2 passerà anch'esso in conduzione e servirà da autoaggancio per S1 in modo da mantenere la corrente di base a T1. Il condensatore C1 comincerà ora a caricarsi trami-



Il circuito che vediamo in questo schema soddisfa a tali requisiti. Per quanto lo schema a base comune in cui è disposto il BFT66 abbia una cifra di rumore leggermente superiore del circuito ad emettitore comune, si tratta comunque di valori molto bassi. Il guadagno dell'amplificatore è determinato dal rapporto tra l'impedenza di collettore e quella di emettitore. A causa della natura complessa dell'impedenza di emettitore, che dipende anche dalle dimensioni del telaio, si dovrebbe constatare che il circuito si comporta almeno altrettanto bene di quello originale.

Il circuito presenta però ancora un intoppo. Mancando il trasformatore aumenta la tendenza dell'amplificatore ad oscillare, soprattutto a causa degli anelli di massa. Basterà però fare la debita attenzione alla costruzione ed alla disposizione dei componenti perché questo cessi di essere un problema.

Quando la tensione ai capi di R4 scenderà a circa 1,2 V, T2 passerà all'interdizione, mandando all'interdizione anche T1 e l'alimentazione sarà interrottà. La sola corrente che passerà da questo momento in poi sarà la corrente di perdita dei due transistori che ammonterà al massimo a pochi nanoam-

Di conseguenza la batteria sarà esclusa a tutti gli effetti. Il periodo di tempo nel quale l'alimentazione resterà collegata si potrà calcolare con la seguente

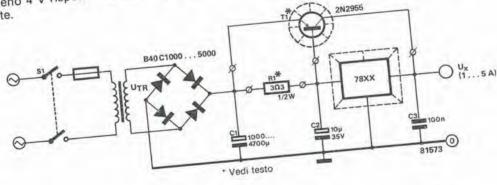
formula di aspetto un pò terrificante:

formula di aspetto un po terrificanto
$$t = -22 \cdot 10^4 \cdot \text{C1} \cdot \text{1n} \frac{1 \cdot 2}{\text{UB}} \text{ s (C1 in Farad)}$$

Per coloro che avessero dei dubbi il metodo "per tentativi" richiederà più tempo ma funzionerà altrettanto bene. Se necessario si potranno sostituire i due Darlington con transistori discreti.

Quando occorra una corrente limitata ad 1 A (o

stabilizzatore di potenza

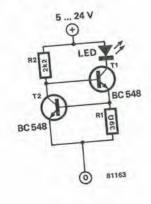

Questo alimentatore è composto da un regolatore di tensione integrato a tre piedini combinato con un transistor amplificatore. Questa soluzione dipende dal fatto che i regolatori di tensione della serie 78xx possono erogare una corrente di 1 A soltanto. In questo progetto, quando la corrente di uscita supera i 200 mA circa, il transistor buffer si assume il compito finora riservato al circuito integrato di regolazione, permettendo di trattare correnti fino a 5

Il circuito integrato 78xx è disponibile per una serie di tensioni diverse. Scegliendo in questa serie il regolatore adatto, si potranno costruire circuiti per qualsiasi tensione. Naturalmente la tensione di uscita del trasformatore dovrà essere superiore di almeno 4 V rispetto alla tensione regolata occor-

rente.

meno) si potranno eliminare il transistor T1 e la resistenza R1. Volendo, si potrà mantenere R1 per proteggere il circuito integrato di regolazione. Questa resistenza funzionerà in questo caso come "zavorra". La sua potenza dovrà però essere

aumentata da 0,5 W a 5 W. Il regolatore 78xx è protetto internamente contro il surriscaldamento ma in pratica la prestazione di questo circuito di protezione non è sempre soddisfacente. Per ottenere un progetto stabile bisogna adottare in questo caso due accorgimenti: la corrente che passa attraverso l'integrato regolatore non dovrà mai superare i 300 mA, tranne quando ci sia un cortocircuito all'uscita. Il transistor buffer può passare una corrente più che sufficiente. Se il dissipatore termico è adeguato, il regolatore di tensione ed il transitor buffer saranno in grado di sopportare brevi cortocircuiti con una corrente alquanto superiore a quella massima di uscita di 5 A. L'ammontare effettivo della corrente di cortocircuito verrà però limitato perché il regolatore di tensione limiterà la corrente di base del transistor T1. Il condensatore C1 livellerà qualsiasi ondulazione residua ma il suo valore dovrà essere modificato per adattarsi alla massima corrente erogata. Per una corrente limitata ad 1 A sarà sufficiente un valore di 1000 μF ma per una corrente di 5 A questo valore dovrà aumentare a 4700 μF.



LED a corrente costante

Attualmente è normale l'uso dei LED come indicatori di pannello ogni volta che sia possibile. Però, prendendo in considerazione tutti gli apparecchi elettronici, i LED presentano delle limitazioni ed i loro parametri funzionali possono talvolta creare delle difficoltà. Se per esempio la tensione di alimentazione è molto variabile, anche la luminosità dei LED subirà queste variazioni. Se la tensione di alimentazione diventa eccessiva potrà darsi che il LED defunga irrimediabilmente facendo credere

che l'apparecchio è spento in permanenza! Questo ingegnoso circuito risolve con molta efficacia tutti

questi problemi. La massima corrente che può passare attraverso ad un LED è normalmente di circa 50 mA, ma la luminosità non aumenterà in modo apprezzabile al di sopra dei 20 mA. Questa cifra costituisce il livello di

massima economia della corrente ed è scopo di questo circuito mantenerla a tale valore indipendentemente dalle fluttuazioni della tensione di alimentazione.

I due transistor, T1 e T2, formano un generatore di corrente costante che manterrà il livello di corrente entro i 15 ... 27 mA con variazioni della tensione tra

Il funzionamento è relativamente semplice. Un aumento della tensione di alimentazione provocherà un aumento della tensione di collettore di T1.

Anche la corrente di base di T2 aumenterà. La conseguente caduta del potenziale di collettore di T2 ridurrà la corrente di base di T1 contrastando l'aumento della corrente attraverso il LED. Il circuito sarà perciò stabilizzato.

La seguente tabella dà un'indicazione delle correnti nel LED alle diverse tensioni di alimentazione:

5 V — 15 mA	15 V — 22 mA
9 V — 18 mA	18 V — 24 mA
12 V — 20 mA	24 V — 27 mA

demodulatore Kansas City

Il modulatore FSK (modulazione digitale di frequenza) più diffusamente usato al giorno d'oggi negli elaboratori è il "Kansas City Standard" con il quale le informazioni digitali sono trasmesse in sequenza mediante impulsi dell'onda portante aventi ampiezza costante e due frequenze diverse (1200 Hz e 2400 Hz). Un livello logico basso genera una frequenza di 1200 Hz mentre un livello alto ne genera una di 2400 Hz.

Naturalmente, per ogni modulatore deve esistere un adatto demodulatore.

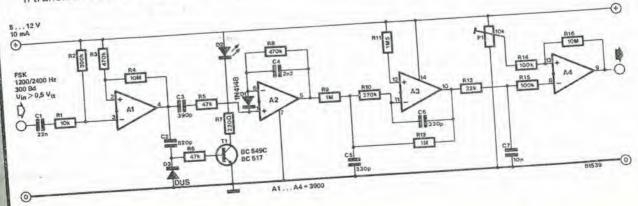
Come si può vedere dallo schema, il demodulatore Kansas City qui descritto è relativamente semplice. L'amplificatore operazionale A1 funziona da trigger di Schmitt e converte semplicemente il segnale di uscita dal registratore a nastro in un segnale ad onda quadra perfettamente simmetrico. L'amplificatore operazionale A2 ha una configurazione di "pompa di alimentazione" e converte la frequenza di ingresso in livelli logici alti o bassi. L'uscita di A2 viene mandata ad un filtro passabasso basato sull'amplificatore operazionale A3 ed il segnale decodificato e filtrato viene inviato ad un secondo trigger di Schmitt (A4) che "ripulisce" il segnale digitale di uscita.

II transistor T1 ed il LED D2 indicano se il segnale di

ingresso (FSK) ha un'ampiezza sufficiente a pilotara il sistema.

L'LM3900 contiene quattro amplificatori operazionali di tipo piuttosto insolito, in quanto reagiscono a differenze nelle correnti di ingresso piuttosto che nelle tensioni (questo tipo di amplificatore viene chiamato "amplificatore Norton").

Ciò significa che all'uscita del primo trigger di Schmitt (A1) si avrà uno "0" in condizioni di assenza di segnale, perché la corrente che passa attraverso l'ingresso invertente (tramite R2) sarà maggiore di quella che passa attraverso l'ingresso non invertente (tramite R3)


invertente (tramite R3).

La "pompa di alimentazione" funziona nel modo seguente: quando non c'é segnale di ingresso, il condensatore C4 si scarica su R8 cosicché l'uscita di A2 sarà praticamente a livello zero. Se a questo punto arriva da A1 un impulso positivo, un breve impulso di corrente entrerà nell'ingresso non invertente di A2 tramite il condensatore C3. Ciò significa che una corrente identica dovrà passare nell'ingresso invertente per mantenere il circuito in equilibrio. Ciò può avvenire soltanto tramite C4 che subisce perciò una piccola carica. Il risultato è che la tensione di uscita di A2 aumenterà ogni volta che si presenterà all'ingresso un fronte di segnale positivo.

In seguito il condensatore C4 si scaricherà sulla resistenza R8 e la tensione di uscita ridiscenderà. Tanto maggiore sarà il numero di impulsi all'ingresso, tanto maggiore sarà la tensione all'uscita.

Il circuito dell'amplificatore A3 è un normale passabasso; la frequenza di taglio di questo filtro dipende dalla velocità baud del segnale di ingresso. A 300 baud, la frequenza massima in questo punto sarà di 150 Hz e perciò la frequenza di taglio dovrà essere leggermente superiore.

Il segnale di uscita del filtro passabasso ha dei margini poco pronunciati e l'ampiezza è insuffi-

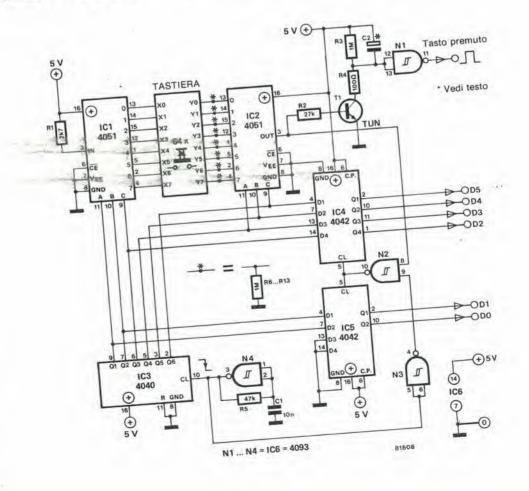
288888888888 Quando si preme un tasto, l'uscita di IC2 resta a

L. Witkam

codifica a sei bit per tastiera

Questa codifica per tastiera è interamente composta da circuiti integrati CMOS facilmente reperibili. La base di questo circuito consiste di due multiple-

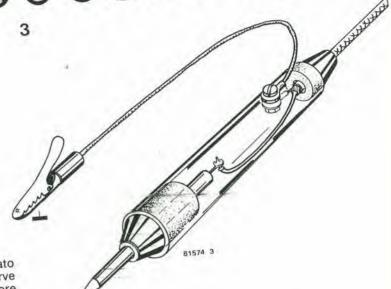
xer/demultiplexer (IC1 ed IC2). Il primo 4051 (IC1) funziona da multiplexer, ed il suo ingresso è collegato alla tensione di alimentazione positiva tramite la resistenza R1. IC2 è il demultiplexer. Tra le otto uscite di IC1 e gli otto ingressi di IC2, c'è una tastiera a 64 tasti collegati a forma di matrice. C'é un tasto collegato tra ogni punto X ed ogni punto Y. In altre parole, i tasti si troveranno tra X0 ed Y0, tra X0 ed Y1, e così via fino


Gli ingressi di controllo di IC1 e di IC2 (A, B e C) sono collegati ad un contatore binario IC3. Questo contatore è azionato dall'oscillatore basato su N4, e perciò avviene un conteggio continuativo da 0 a 63. Cioé l'intera matrice sarà esplorata in continuità.

livello logico zero fino a che il contatore non raggiunga l'indirizzo che corrisponde a quel particolare tasto. In quell'istante, il livello d'ingresso alto proveniente da IC1 viene passato all'uscita di IC2 ed i sei latch (IC4 ed IC5) ricevono un impulso di clock tramite le porte logiche N2 ed N3. Sulle linee di uscita D0 ... D5 apparirà quindi l'indirizzo del tasto premuto. Contemporaneamente, il transistor T1 viene mandato in conduzione, provocando il passaggio al livello alto dell'uscita di N1, che manda un impulso di riferimento (strobe) alla tastiera. Quando il tasto viene abbandonato, l'uscita di N1 resterà alta per tutto il tempo necessario alla scarica del condensatore C2 sulla resistenza R3.

La frequenza dell'oscillatore potrà essere fatta variare tra 1 kHz ed 1 MHz cambiando il valore del condensatore C1. Il valore di C2 dovrà però essere

determinato per via sperimentale.

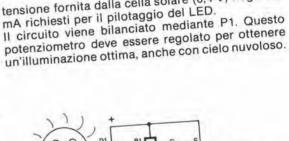

Il tempo di scarica deve essere leggermente maggiore della durata di un gruppo di 64 impulsi di clock. Questo per impedire all'uscita di N1 di andare "su e giù come uno yo-yo" quando si tiene premuto un tasto per un tempo maggiore di un ciclo di scansione. L'uscita "tasto premuto" funziona in modo affidabile se il dato della tastiera viene accettato immediatamente dopo il fronte iniziale dell'impulso, ma prima del fronte di discesa. Si raccomanda perciò si inserire dopo l'uscita di N1 un multivibratore monostabile, accorciando in tal modo la durata dell'impulso di strobe.

D3 . . . D6 = 1N4148 IC4 = CA 3140E IC4 22k 81574 2

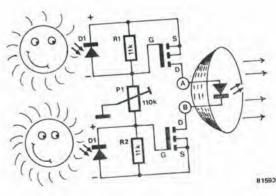
Il segnale proveniente dal puntale viene amplificato da IC2 e mandato a P1, tramite C8 ed S2a; P1 serve a regolare il livello di ingresso al preamplificatore IC1. Alcuni lettori potranno preferire un'indicazione visiva ed allo scopo si potrà usare uno strumento a bobina mobile montato come in figura 2.

Causa l'alta impedenza di ingresso del preamplificatore è necessario usare un puntale ed un cavo di collegamento schermati. Trascurando questa precauzione, l'uscita sarà estremamente disturbata.

In figura 3 si vede un semplice puntale per questo strumento. Per l'uscita del segnale si potranno usare dei normali fili.



torcia elettrica ad energia solare


Le lampadine tascabili sono morto comode, ma hanno un grave difetto: al momento in cui si rendono necessarie, il più delle volte la batteria è esaurita. E' perciò una cosa logica usare una forma di energia sempre presente: il sole.

Questo circuito monta un LED di potenza Siemens che può assorbire una corrente c.c. massima di 800 mA: grazie al suo elevato rendimento, questo componente può fornire tanta luce quanto una lampadina ad incandescenza da 5 W. Come si vede in figura 1b, si potrà usare anche una normale lampadinetta per torcia elettrica, ma tuttavia in alcuni casi si possono avere delle oscillazioni dovute all'induttanza del filamento. Questo inconveniente può essere evitato con la semplice aggiunta di un conden-

satore da 100 pF (Cx) II Led è pilotato da due MOSFET S.I.P. La pendenza estremamente elevata di questi componenti (circa 2000 mA/V tende possibile la conversione della

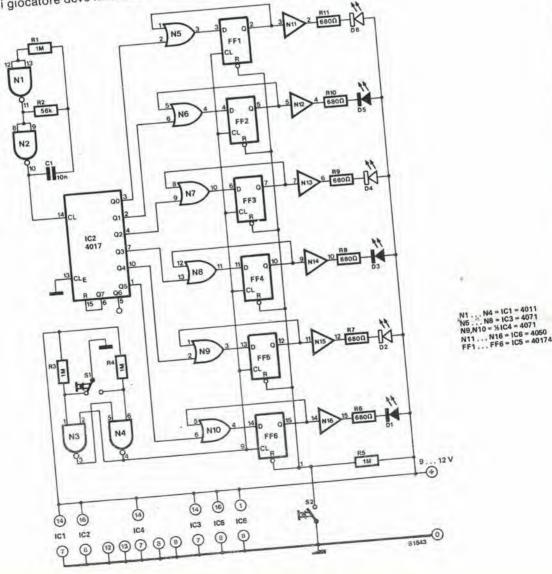
tensione fornita dalla cella solare (0,4 V) negli 800

D1 = LD 241, LD 242 T1 = ZUB 10 T2 = BUZ 10

2,5 V/800 mW

· Vedi testo

H.J. Walter


biliardino americano

La diffusione del pool americano continua ad aumentare: questo gioco elettronico imita molto bene quanto avviene su un normale biliardo. Le palle del biliardo sono rappresentate da sei LED. Il circuito si basa su un generatore casuale. Quando si preme il pulsante di reset, tutti i LED si accendono e quando si preme il pulsante di "battuta" ha luogo una serie di eventi casuali in modo che uno dei LED potrà spegnersi oppure la situazione potrà rimanere invariata. Se uno dei LED si spegne vuol dire che una delle palle è andata in buca.

Il gioco può essere fatto in due modi. Nel primo caso ogni giocatore deve mandare in buca tutte le

palle, ossia spegnere tutti i LED: la persona che ottiene questo scopo con il minimo numero di colpi è il vincitore. Nella seconda variante del gioco, il numero dei giocatori è limitato a due. Uno dei giocatori comincia: se la prima palla che colpisce è di colore rosso egli sarà obbligato a mandare in buca tutte le altre palle di colore rosso. Il secondo giocatore dovrà poi fare lo stesso con le palle verdi. Fintato che il primo giocatore continua a colpire il suo colore, la "stessa" resta sua; solo quando manca di colpire una palla o ne colpisce una del colore del suo avversario, deve cedere la battuta. Appena mandate in buca tre palle del suo colore il giocatore ha vinto. È evidente l'impossibilità del gioco di finire in un colpo solo: questo è un buon sistema di spareggio quando si giochi secondo la prima variante descritta.

Diamo ora un'occhiata allo schema. All'inizio, tutti i sei flip flop, FF1 ... FF6, sono azzerati mediante il pulsante S2 in modo da far accendere tutti i LED. II multivibratore formato da N1 ed N2 genera una frequenza di clock di circa 800 Hz, che viene mandata al contatore Johnson IC2, le cui uscite assumeranno in sequenza il livello "1". Le porte logiche N5 ... N10 sono cablate come "latch" e collegano le

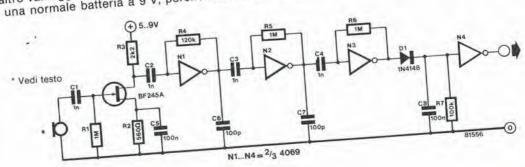
uscite del contatore agli ingressi D dei flip flop. Azionando il pulsante S1 di "battuta" si manderà un impulso a tutti i flip flop. Le uscite del contatore che sono a livello alto azioneranno, tramite i latch, il set di quei flip flop che non sono in tale posizione, ed il relativo LED si spegnerà. Il segnale di reazione che perviene dall'uscita Q del flip flop alla porta logica collegata all'ingresso D forma il latch e fa in modo che un flip flop "settato" resti in tale posizione anche quando arrivano degli altri impulsi di clock. Poiché il Q6 del contatore non è collegato a nessun punto del circuito, è anche possibile che il primo colpo risulti a "vuoto". Volendo, si può evitare questa eventualità collegando a Q6 invece che a Q7 l'ingresso di reset del contatore.

Il miglior modo di disporre i LED è in forma di triangolo isoscele. I LED rossi (con il simbolo chiaro) sono posizionati ai vertici del triangolo; i LED verdi (che sullo schema appaiono con il simbolo completamente nero) possono essere montati al centro dei lati del triangolo, tra due LED rossi.

II CMOS 4050 può essere sostituito dal 4049 che ha la medesima piedinatura e che contiene sei driver

Si invertirà così lo stato dei LED in modo che, dopo invertitori. ogni reset, tutti i LED saranno spenti ed il LED

"mandato in buca" si accenderà. Alle due varianti del gioco sin qui descritte se ne possono aggiungere delle altre. Una delle palle potrà essere consiederata come la palla nera delle "boccette", ossia l'ultima che dovrà essere mandata in buca. Un'altra versione consiste nel decidere il colore della prima palla da "colpire". Senza dubbio si potranno anche trovare altre varianti, una volta diventati pratici delle prerogative del circuito. Quando si deve giocare a lungo è meglio alimentare il circuito della rete oppure mediante una batteria al Ni-Cd. Quando tutti i LED sono accesi il circuito assorbe 90 mA. Quando si gioca saltuariamente, basterà un'alimentazione con due batterie a secco da 4,5 V.



Il telecomando di apparecchi di ogni tipo sta diventando sempre più di moda sia dentro che fuori casa. Il trasmettitore può essere un generatore luminoso oppure sonoro, mentre il ricevitore è di solito montato dentro l'apparecchiatura che si vuole comandare. Spesso il ricevitore potrà reagire soltanto a segnali codificati e sarà perciò piuttosto complicato. Non è questa la sede per discutere quale sia il sistema di telecomando migliore per un determinato scopo, tra i raggi infrarossi e gli ultrasuoni. Questo articolo si propone invece di descrivere un semplicissimo ed economico ricevitore ad ultrasuoni che potrà essere destinato a molteplici impieghi. Un altro vantaggio è che esso funzionerà a lungo con una normale batteria a 9 V, perché l'assorbi-

mento di corrente è molto basso. Questo può essere utile quando bisogna isolare l'apparecchiatura telecomandata dalla rei

Per questo circuito si raccomanda di adottare i trasduttori tipo SE 04B-25 T/R (25 kHz) oppure SE 04B-40 T/R (40 kHz) della Toko. Impiegando trasduttori di altri tipo ci potrebbe essere la necessità di modificare lo stadio di ingresso al transistor FET T1. Nel nostro schema questo transitor viene impiegato come preamplificatore per il ricevitore. I tre invertitori che si trovano a valle (N1 ... N3) sono collegati come amplificatori lineari e garantiscono un certo filtraggio al segnale ultrasonico. Il penultimo passaggio consiste nella rettificazione del segnale da parte del diodo D1 e nel suo livellamento a cui provvede il condensatore C8. L'ultimo passaggio avviene in un invertitore/buffer (N4) all'uscita del quale si trova il definitivo segnale di comando. A seconda della particolare applicazione, questa uscita potrà esere usata tale e quale, oppure invertita (nel 4069 ci sono due altri invertitori non usati) per comandare degli interruttori CMOS. L'uscita potrà anche essere usata per comandare, tramite un transistor, dei relé o solenoidi che provvederanno a loro volta ad accendere o spegnere un apparecchio oppure aprire o chiudere una serratura,

Un trasmettitore adatto si potrà anche trovare presso i rivenditori di "surplus": poiché questi trasmettitori costano veramente molto poco non ci sarà quasi mai convenienza a costruirseli in casa.

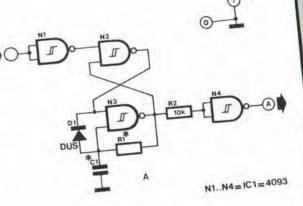
47

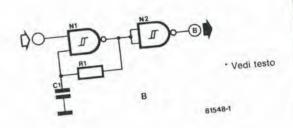
oscillatore oscillatore do a durata d'impulso costante

Gli oscillatori che commutano in apertura ed in chiusura possono talvolta dare origine a dei problemi connessi al fatto che il primo impulso o l'ultimo od entrambi possono avere una durata variabile tra la massima ed una praticamente nulla.

la massima ed una praticamente fidita.

Nella maggior parte dei casi causeranno dei problemi gli impulsi molto stretti, ossia i "picchi". Tutto deriva dal fatto che il tempo di interruzione dell'oscillatore non è mai sincronizzato con l'uscita del


medesimo.


La figura 1B mostra il normale oscillatore a porte
logiche spesso inserito nei circuiti digitali. La scelta
cade su questo tipo principalmente per ragioni di

semplicità ed economia.

Questo circuito soffre però delle limitazioni elencate in precedenza, come si può vedere dalla forma d'onda rappresentata in figura 2 B. è evidente la variazione della durata degli impulsi. L'ultimo impulso del secondo gruppo potrebbe essere troppo breve per essere "visto" da molte porte logiche mentre altri componenti del sistema potrebbero tenerne conto. Il risultato potrebbe essere una luntenzia di "folse tracce".

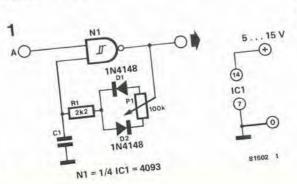
ga serie di "false tracce".
Un'ottima soluzione a questo problema si vede nel circuito di figura 1 A nel quale il semplice oscillatore a porte logiche è accoppiato ad un flip flop RS. Il diodo D1 evita che il condensatore C1 si carichi

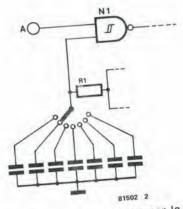
quando l'oscillatore è interrotto. In questo modo si avrà la sicurezza che il primo impulso di uscita abbia la stessa durata dei successivi. Questo è illustrato nella figura 2 A. La spesa di due porte logiche supplementari sarà compensata dai benefici apportati da questo oscillatore a durata d'impulso costante.

sirena con un solo integrato

È molto gradito alla maggior parte dei lettori costruire dei circuiti che producono un qualche tipo di rumore. Un probabile motivo si può ravvisare nel fatto che il buon funzionamento del circuito potrà essere verificato ad orecchio senza bisogno di strumenti: in altre parole, il circuito farà "qualcosa" nel senso fisico della parola.

Questa sirena è molto semplice e facile da costruire, dato che impiega un solo circuito integrato, l'LM389 della National Semiconductors. Questo integrato contiene un amplificatore audio di potenza analogo all'LM386, insieme a tre transistori NPN indipendenti.




I due transistori T1 e T2 sono la pase di ul materiale pratore astabile con frequenza variabile tra 1 e 7 Hz. Per regolare questa frequenza servirà il trimmer P1. L'amplificatore è montato come oscillatore ad onda quadra e la sua uscita pilota l'altoparlante con una frequenza variabile tra 250 e 1500 Hz. L'amplificatore viene attivato e disattivato dal multivibratore, tramite il transistor T3. Il risultato è un suono che rassomiglia ad una sirena pulsante. La frequenza della nota udibile si regola con il trimmer P2.

generatore di impulsi con rapporto impulso-pausa variabile

Un unico integrato CMOS tipo 4093 è adattissimo per costruire un semplice generatore di impulsi. Questo integrato contiene quattro trigger di Schmitt. Con la sola aggiunta di una resistenza, due diodi, un condensatore ed un potenziometro, si due diodi, un condensatore ed un potenziometro, si potrà usare una delle quattro porte logiche per produrre un oscillatore con frequenza fissa e rapporto impulso-pausa variabile. La durata dell'importo impulso-pausa variabile. La durata dell'importo impulso-pausa variabile costante di tempo RC pulso viene determinata dalla costante di tempo RC del circuito formato dal condensatore C1 e dalle resistenze R1+P1. Quando il cursore del potenziometro si trova nella posizione centrale, otterremo all'uscita un segnale ad onda quadra perfettamente simmetrico. Variando però la regolazione di P1, il condensatore C1 impiegherà per caricarsi un tem-

po diverso da quello occorrente per la scarica. Il risultato sarà che la porta logica N1 verrà attivata un pò in anticipo od un pò in ritardo dal fronte positivo o da quello negativo del segnale, a seconda della direzione verso cui è stato ruotato P1. In definitiva sì otterrà una variazione della durata della direzione.

Per quanto riguarda R1 essa agisce da protezione nel caso che P1 sia girato a fondo in senso orario

(resistenza minima).

Ciò significa che il rapporto impulso-pausa non potrà variare al 100%: dopo tutto, però, una variazione dal 2 al 98% sarà perfettamente accettabile! La frequenza dell'oscillatore dipende dal valore del condensatore C1 perché la somma delle costanti di tempo RC è la medesima per entrambi i semiperio di. Se occorrono parecchie frequenze diverse, si potrà sostituire C1 con un commutatore che inseripotrà sostituire C1 con un commutatore che inseripotrà sostituire condensatori di capacità diversa sca nel circuito condensatori di capacità diversa (vedi figura 2). In questo modo si potrà variare, a gradini, la durata dell'impulso.

Usando l'ingresso di controllo (A) si potrà incorporare il circuito in un sistema logico. Se la tensione d'ingresso è a livello logico "0", l'uscita sarà a livello d'ingresso sarà "1", l'oscillatore "1". Se il livello all'ingresso sarà "1", l'oscillatore

comincerà a funzionare. Se non occorre l'ingresso di controllo, lo si potrà eliminare, collegandolo alla giunzione tra R1 e C1 oppure al positivo dell'alimentazione (livello logico "1").

Per quanto il fronte dell'impulso sia già molto ripido, lo si potrà ancora migliorare collegando all'uscita una delle altre porte presenti nel circuito integrato, che funzionerà da invertitore.

lare l'altro in modo da ottenere le stesse caratteri-

interruttore differenziale

Non ci sono più dubbi sul sempre crescente interesse suscitato da circuiti di questo tipo, interesse dovuto al continuo aumento del prezzo dell'elettricità o dell'energia in generale. L'interruttore differenziale è capace di misurare la differenza di temperatura tra due punti e, a seconda di questa diffe-

renza, di attivare o disattivare un relé.

Questo relé potrà a sua volta comandare, per esempio, la pompa di circolazione dell'impianto di riscaldamento centrale. Si potrà usare questo circuito anche per il servizio di pannelli o di collettori solari, od in molte altre applicazioni. Quando si voglia azionare la pompa del riscaldamento centrale, occorrerà piazzare uno dei sensori sul tubo di ritorno dell'acqua, mentre l'altro sensore verrà montato sul tubo di mandata dell'acqua calda, molto vicino alla caldaia. Non appena la caldaia entra in attività, si crea una differenza di temperatura e viene inserita

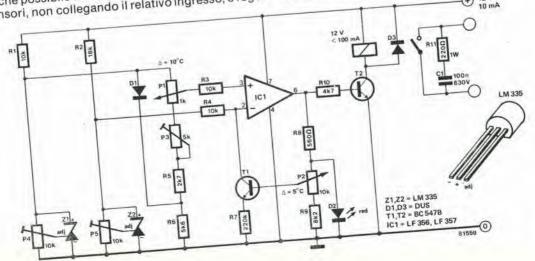
Una prerogativa molto interessante di questo circuito è che è possibile la regolazione indipendente della temperatura differenziale e dell'isteresi, senza che ci sia una reciproca influenza. Le regolazioni sono inoltre praticamente lineari, e perciò ci si può fidare delle posizioni dei potenziometri per una regolazione stabile. C'é anche un LED che indicherà

se il relé è attivato o meno. Come sensori di temperatura si usano due LM 335 della National Semiconductor. Questi circuiti integrati possono essere considerati degli zener, la cui tensione cresce di 10 mV per ogni grado centigrado. Alla normale temperatura ambiente, la tensione degli zener userà: $(273 + 20) \times 10 \text{ mV} = 2,93 \text{ V}.$

I trasduttori di temperatura comprendono dei collegamenti di taratura, con i quali è possibile regolare al valore suddetto la tensione d'uscita alla temperatura di 20°C. Con lo stesso sistema si potranno correggere eventuali differenze tra i due sensori. È anche possibile trascurare la regolazione di uno dei sensori, non collegando il relativo ingresso, e rego-

stiche presentate dal primo. In questo modo verrebbe notevolmente semplificata la costruzione e la

Il principio di funzionamento è il seguente: le tensioni che provengono dai due sensori sono direttamente confrontate da IC2. Se la temperatura, e di conseguenza la tensione, di Z1 diventa maggiore di quella di Z2, l'uscita di IC2 andrà a livello alto accendendo il LED D2 ed attivando il relé tramite il transistor T2. Se il potenziometro P1 non è stato girato al suo massimo valore, occorrerà una maggiore tensione d'ingresso per azionare il comparatore, e perciò il rele verrà attivato ad una maggiore differenza tra le temperature. Sul diodo D1 si verifica una caduta di tensione di 0,6 V. Di questa tensione se ne trovano circa 100 mV ai capi di P1 (l'effettiva caduta di tensione su P1 potrà essere variata mediante P3). Il valore di 100 mV corrisponde a circa 10°C, perciò il campo di regolazione di P1 sarà appunto di 10°C. Per attivare il relé, il sensore Z1 dovrà perciò essere più caldo di Z2 di 10°C, con P1 nella posizione di minimo.


Una volta che il relé abbia avviato la pompa, la temperatura del sensore vicino alla caldaia diminuirà perché l'acqua ha cominciato a circolare. Questo potrebbe avere come conseguenza il distacco pressoché immediato del circuito. Questa situazione è evidentemente indesiderabile e per questo motivo esiste il potenziometro P2 che regola l'isteresi fino ad un fattore massimo di 5°C. Con P2 regolato alla posizione centrale, il circuito presenterà un'isteresi di 2,5°C. Ciò vuol dire che se il potenziometro P1 è stato regolato, per esempio, a 5°C, il relé si attiverà quando la differenza di temperatura raggiungerà i 5°C, ma non si disattiverà fintanto che questa differenza non sia scesa a

 $5^{\circ}C - 2,5^{\circ}C = 2,5^{\circ}C.$

II LED D2 dovrà essere di colore rosso, con una tensione di funzionamento di circa 1,3 V. La tensione di alimentazione del circuito non è critica, e potrà subire variazioni di alcuni volt. Nello schema è prevista un'alimentazione di 12 V, perché i relé che funzionano a questa tensione sono piuttosto comuni. Il transistor T2 dovrà dissipare una corrente massima di 100 mA, e perciò l'assorbimento del relé non dovrà superare questo valore.

L'effettiva temperatura a cui il circuito funziona potrà essere calcolata misurando la tensione ai capi di Z1 e di Z2, quando non si abbia a disposizione

un termometro.

R. Behrens

potenziometro comandato a distanza

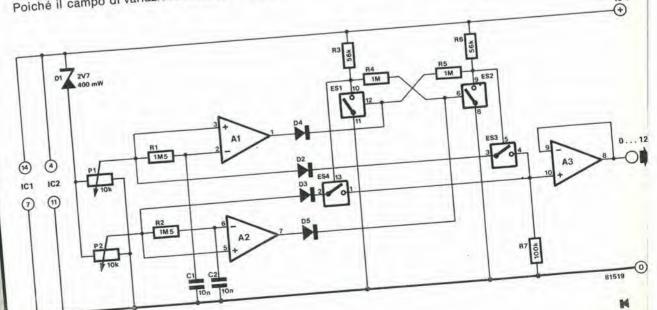
Questo tipo di controllo rende possibile regolare, per esempio, l'intensità di una sorgente luminosa, il volume di un amplificatore, eccetera, da un certo numero di posizioni distanti dall'apparecchio. L'apparecchio che descriviamo compie questa funzione mediante due potenziometri che agiscono entrambi da interruttori e regolatori accoppiati a ge-

neratori di corrente continua. A cosa possono servire questi dispositivi? Per esempio, quando suona il telefono, e uno di questi controlli è situato vicino all'apparecchio, si potrà abbassare senza muoversi il volume dell'impianto stereo: basta che quest'ultimo sia fornito di circuiti integrati comandati in c.c., come il TCA 730 oppure il TCA 740. Come già ricordato in precedenza, il circuito potrà essere anche collegato, tramite optoaccoppiatori, ad una sorgente luminosa, agendo così da regolatore di luce. Senza dubbio, i lettori dotati di spirito inventivo, troveranno altri impieghi

Quando si cambia la posizione dei potenziometri, si per questo circuito. chiuderà automaticamente un interruttore elettronico, permettendo che la tensione continua presente sul cursore del potenziometro passi diretta-

Come funziona questo circuito? Il "lato caldo" dei mente all'uscita. due potenziometri (P1 e P2) viene mantenuto alla tensione di circa 12 V mediante il diodo zener D1. Poiché il campo di variazione della tensione d'in-

gresso ammissibile per gli amplificatori operazionali A1 ed A2 va da 0 V a 13,5 V, ci sarà un margine di protezione sufficiente contro i sovraccarichi all'in-


Quando viene variata la posizione di uno dei potenziometri, la differenza di potenziale tra l'ingresso invertente e quello non invertente del corrispondente amplificatore operazionale, provocata dal circuito integrato R1/C1, oppure R2/C2, diverrà sufficientemente grande da mandare a livello alto l'uscita del rispettivo operazionale. Questi segnali d'uscita servono da tensioni di controllo per gli interruttori elettronici ES1 ... ES4 (ES1 ed ES2, con le resistenze R3 ... R6 formano un flip flop). Una delle due tensioni continue controllate da P1 o da P2, verrà anch'essa lasciata passare verso l'uscita tramite il buffer A3.

I valori della resistenza R1 ed R2 sono stati scelti volutamente piuttosto elevati per far sì che, con i due potenziometri regolati al minimo, l'uscita degli amplificatori operazionali sia al valore basso. I diodi D2 e D3 servono ad impedire al flip flop di tornare al suo stato originario mentre si effettua la transi-

A questo punto dovremo però parlare di uno degli aspetti meno brillanti di questo circuito. Quando è necessario regolare uno dei potenziometri che in precedenza non è stato regolato, ad un livello di uscita in c.c. di basso valore, bisognerà prima alzarlo rapidamente e poi riabbassarlo. A prima vista ciò potrebbe sembrare un tantino preoccupante, ma non ci vorrà molto ad abituarsi a questa operazio-

Se i fili di collegamento all'apparecchio servito sono piuttosto lunghi, sarà necessario collegare un condensatore da 10 $\mu/16$ V tra i terminali "caldi" dei potenziometri e la massa.

ES1 . . . ES4 = IC1 = 4066 A1 . . . A3 = ½ IC2 = LM324, CA324 D2 . . . D5 = 1N4148

alimentatore a tensione variabile da 2 a 60 V

Resistenze:

R1 = 22 k

R2 = 6k8 R3 = 2k2

 $R4,R5 = 2\Omega 2/2 W$

R6 = 1k5 R7 = 5k6

R8 = 1 Ω/4 W P1 = 10 k lin

P2 = 22 k lin P3 = 1 k trimmer $C2 = 10 \mu/6 \text{ V tantalum}$

C3 = 10 n

C4 = 100 n/100 V

Semiconduttori:

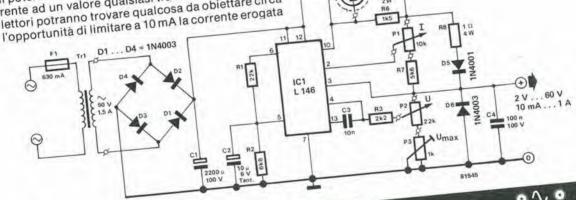
D1 . . , D4,D6 = 1N4003

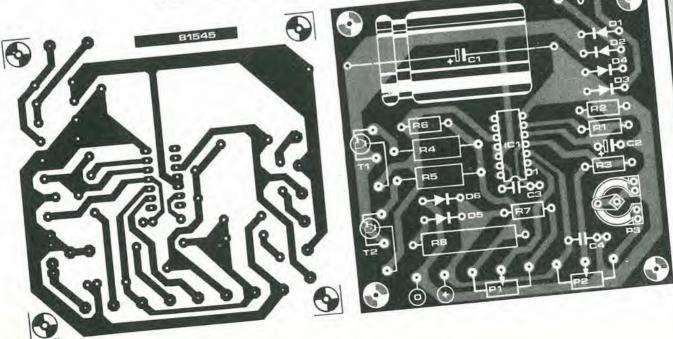
D5 = 1N4001

T1,T2 = MJ 3001, TIP 142

IC1 = L146

Tr1 = 50 V/1 A trasformatore


F1 = 630 mA fusibile


Il circuito integrato tipo L146 della SGS-Ates è una versione migliorata, con piedinatura compatibile, del ben noto regolatore di tensione 723. La principale differenza tra questo nuovo circuito integrato ed il tipo più anziano, è certamente un vantaggio. La massima tensione continua che si può applicare al 723 è di 40 V, mentre quella sopportabile dal

nuovo circuito L146 è di 80 V. Con l'aiuto di uno o due transistori esterni, è possibile costruire un alimentatore a tensione variabile

Nel circuito presentato in questa nota, viene usato tra 2 V e 60 V. il potenziometro P1 per regolare il limitatore di corrente ad un valore qualsiasi tra 10 mA ed 1 A. Molti lettori potranno trovare qualcosa da obiettare circa

da un alimentatore. Ci si lasci mettere l'accento sul fatto che si tratta di un valore limite della corrente. Il potenziometro P2 comanda il livello effettivo della tensione d'uscita entro i limiti prima definiti. Il potenziometro semifisso P3 serve a prestabilire la tensione massima d'uscita di 60 V quando P2 è ruotato

nella sua posizione più alta (fine corsa alla massima

tensione).
I due transistori di potenza in serie (collegati tra loro in parallelo) possono essere sostituiti dai tipi equivalenti TIP 142, da montare al posto dei Dare

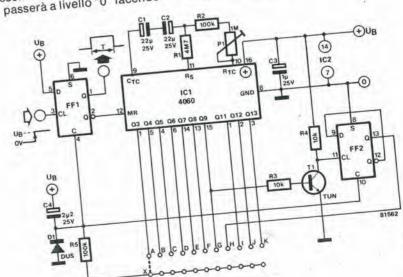
lington MJ 3001 della Motorola.

Dopo che questi transistori possono raggiungere anche temperature molto elevate, occorrerà provvederli di un efficace dissipatore termico. Occorre ricordare che si dovranno montare le rondelle in mica tra questi transistori ed il dissipatore termico, perché l'emettitore è collegato all'involucro.

Degli odori sgradevoli accompagnati da emissioni di fumo che offuscheranno la visuale, potranno essere la conseguenza dell'impiego di resistenze di potenza inferiore a quella consigliata nella lista dei potenza inferiore a quella consigliata nella lista dei componenti. Questa constatazione vale anche per il condensatore di livellamento C1 e per i diodi del raddrizzatore a ponte D1 ... D4, poiché la tensione raddrizzatore a ponte D1 ... D4, poiché la tensione ai capi di C1 potrà raggiungere il valore di circa 78 V. Grazie alla limitazione interna della corrente nel circuito integrato L146, l'alimentatore è a prova di cortocircuito.

53

temporizzatore per tempi lunghi


Questo multivibratore monostabile può essere considerato un'alternativa a lungo intervallo dei temporizzatori che impiegano il ben noto 555. Questo circuito permette di ottenere periodi di interruzione che variano da 20 secondi a circa 60 ore. Il progetto è piuttosto semplice. Consiste in una parte destinata all'avviamento/azzeramento, in un oscillatore lento ed in una serie di flip flop. La maggior parte di questo materiale può essere trovato, gia pronto per l'uso, nel circuito integrato IC1. Per l'oscillatore interno di IC1 occorreranno solo due condensatori (C1, C2), due resistenze (R1, R2) ed il potenziometro P1. I segnali di uscita del contatore che si trova nel circuito integrato si possono prelevare alle uscite Q. È piuttosto curioso che non esista una Q10, ma se ne può predisporre una "artificiale" con l'aggiunta di T1 e FF2. Il temporizzatore viene avviato dal fronte di ingresso (positivo) dell'impulso di clock presente al piedino 3 di FF1. L'uscita Q (piedino 2) passerà a livello "0" facendo

partire l'oscillatore contenuto in IC1. Le uscite Q di IC1 passeranno quindi successivamente a livello "alto" in sincronismo con la frequenza dell'oscillatore la quale ultima è regolabile tra 2,5 e 25 secondi ruotando P1. A seconda di quale dei punti A, B, C...K sia collegato al punto X, verrà mandato ul livello logico "1" all'ingresso di cancellazione di Ivello logico "1" all'ingresso di cancellazione di FF1 (piedino 4) dopo un periodo di tempo più o FF1 (piedino 4) dopo un periodo di flip flop meno lungo, tramite R5. In questo modo il flip flop viene azzerato, l'uscita Q assume il livello "1" e l'oscillatore si arresta.

Il "temporizzatore" ripartirà solo dopo che verrà fatto pervenire al piedino 3 di FF1 un nuovo impulso di avviamento. Grazie alle sue possibilità molto numerose, esiste una formidabile scelta di periodi che si possono ottenere con questo circuito. Collegando tra loro i punti A ed X, si potrà regolare con P1 un de tempo che varia da 20 secondi a 3,5 minuti. Collegando B con X il campo di variazione sarà da 40 gando B con X il campo di variazione sarà da 40 secondi a 7 minuti, e così via. Il periodo può essere calcolato esattamente con l'aiuto della semplice formula:

$$T = (M - 0.5) \times 25 \cdot 10^{-6} \times (R2 + P1)$$

nella quale T è il tempo ed M il fattore di divisione prescelto. Questo fattore è pari a 2³ per il collegamento A-X, 2⁴ per B-X, 2⁵ per C-X, eccetera. Per il collegamento K-X, il fattore di divisione è 2¹³ e, sostituendo questo valore nella formula, si otterrà il rispettabile periodo di 60 ore circa.

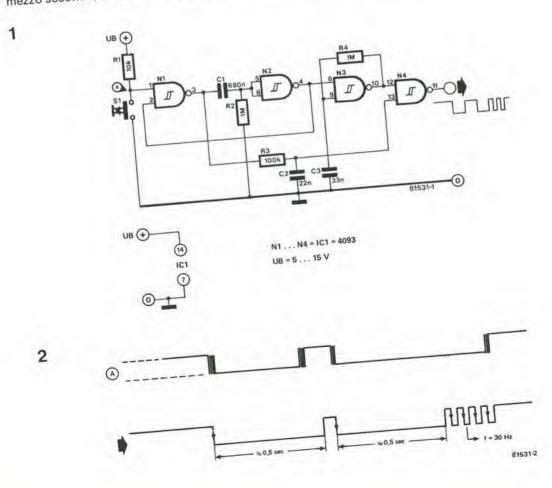
FF1,FF2 = 1C2 = 4013 UB = 5 . . . 15 V

88888888888 clock. Se però la pressione dura più a lungo, appa-

nuovo controllo per orologio

In certe applicazioni è spesso necessario generare una serie di impulsi di clock usando interruttori e simili: per esempio quando bisogna regolare l'ora

di un orologio digitale. Molto spesso l'orologio digitale ha due tasti funzio-


Premendone uno si genererà una frequenza di parecchi Hz/che permetterà la regolazione rapida ed

Viceversa, premendo il secondo pulsante, si genererà un solo impulso di clock che permetterà la regolazione precisa. Perché dunque impiegare due pulsanti che hanno pressapoco la stessa funzione? In effetti non c'é nessun bisogno di avere due pulsanti. Il circuito qui descritto raggiunge lo scopo con un solo pulsante. Tutto dipende dal tempo di pressione. Se il pulsante viene premuto per meno di mezzo secondo, verrà generato un solo impulso di

rirà all'uscita del circuito una frequenza di clock pari a 30 Hz.

Il circuito funziona nel modo seguente: quando l'interruttore S1 è aperto, il generatore di clock basato su N1 oscillerà ad una frequenza di 30 Hz. Però poiché l'uscita di N1 è a livello logico "0", e ciò vuol dire anche per il piedino 13 di N4, l'uscita del circuito resterà costantemente alta (livello logico "1"). Se ora si preme il pulsante S1, verrà fatto partire il multivibratore monostabile formato dalle porte logiche N1 ed N2: in questo modo l'uscita di N2 andrà a livello basso per mezzo secondo impedendo così il funzionamento dell'oscillatore N3. Alla fine l'uscita di N1 passerà a livello alto ed altrettanto i due ingressi di N4. Ciò significa che l'uscita del circuito (N4) sarà bassa (il primo impulso di clock). Se viene mantenuta la pressione su S1 anche dopo che è passato il ritardo del monostabile, l'uscita di N1 restera alta, l'uscita di N2 passerà a livello "1" e quindi N3 ora (oscillerà nuovamente mandando all'uscita il treno di impulsi così prodotto. Se però S1 verrà rilasciato prima che sia passato mezzo secondo, il piedino 13 di N4 sarà a livello "0" nel momento in cui N3 ricomincia ad oscillare.

Di conseguenza l'uscita tornerà a livello alto. Le forme d'onda presenti nel circuito si vedono in figura 2. Le linee verticali del segnale A (ingrossate) rappresentano i rimbalzi del contatto del pulsante S1. Questi rimbalzi vengono soppressi dal circuito RC formato da R3 e C2.

2888888888888 suale". Si deve rammentare che, se si devono usare

luci lampeggianti di nuovo tipo

Nello schema si vedono cinque LED, ma il loro numero può essere aumentato fino ad un massimo di dieci, collegando la linea di reset (che in figura si vede collegata al piedino di uscita 5) alla successiva uscita oppure, se si vogliono usare dieci LED,

lasciandola del tutto scollegata. Si dovrà naturalmente aggiungere, per ciascun LED in più, il corrispondente stadio d'uscita formato da un transistor e da una resistenza. Ed ora

vediamo a cosa serve questo circuito.

Nella configurazione più semplice, tutti i LED si accendono in successione. La velocità alla quale si susseguono le accensioni, può essere variata regolando il potenziometro P1. Si possono provare altre sequenze adottando alcuni "trucchetti" molto astuti. La configurazione base potrà essere molto utile, per esempio, quando si voglia costruire un modello di segnale per ostruzione stradale, in cui si usano, come è noto, delle lampade gialle che si accendono in sequenza. L'illustrazione che appare in A mostra come si possano far accendere e far restare accesi i LED in sequenza, semplicemente inserendo un diodo tra ciascun stadio d'uscita. Il catodo del diodo è collegato alla base di T1 e l'anodo è collegato all'emettitore di T2. Un secondo diodo sarà collegato tra la base di T2 e l'emettitore di T3, e così via. Questa semplice combinazione è sufficiente a produrre l'effetto desiderato.

Si potrà ottenere l'accensione dei diodi in sequenza "avanti ed indietro" collegando le basi dei transistori alle uscite di IC2 nel modo seguente: il catodo del primo diodo è collegato alla base di T1 ed il suo anodo è collegato al piedino 3 del 4017. Due diodi sono collegati alla base di T2, uno dei quali arriva al piedino 2 e l'altro al piedino 6. In modo analogo si collega T3 ai piedini 4 e 5, T4 è collegato ai piedini 7 ed 1, ed infine T5 è collegato al piedino 10.

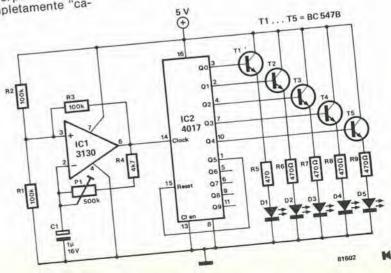
Scambiando il numero dei piedini, si potrà ottenere una sequenza di accensioni completamente "ca-

più uscite di quelle rappresentate sullo schema, si dovrà spostare il collegamento di reset alla successiva uscita libera.

Si potranno anche ottenere effetti combinati: sequenza di accensione "strane e meravigliose" si potranno avere inserendo dei diodi tra le uscite di IC2 e le basi dei transistori e tra la base di uno di

questi e l'emettitore del successivo. Evidentemente questo circuito sarà costruito anche da modellisti che dispongono di un'esperienza elettronica un pò scarsa, per cui sarà opportuna una breve spiegazione del funzionamento del cir-


L'amplificatore operazionale IC1 genera degli impulsi ad onda quadra caricando e scaricando in cuito. sequenza il condensatore C1. Aumentando la resistenza inserita dal potenziometro P1, il tempo di carica e di scarica di C1 aumenterà e perciò diminuirà la frequenza dell'oscillatore, ed infine i LED resteranno accesi per un tempo maggiore.


Gli impulsi ad onda quadra vengono mandati ad un contatore-divisore per dieci, IC2. Le uscite di questo contatore assumono una dopo l'altra il livello

logico alto ad ogni impulso di clock. L'uscita che prima era alta, va ora a livello basso, ed il LED, ad essa collegato tramite la resistenza ed il transistor, si spegne, mentre si accende il successivo. Infine, dopo che la quinta uscita è passata al livello alto, il contatore viene azzerato, causando l'inizio di una nuova sequenza (con l'accesione del

Le resistenze R5 ... R9 limitano la corrente che passa nei LED. La maggior parte dei LED non resiste a correnti superiori a circa 50 mA, perciò si raccomanda di ridurre al minimo la corrente disponibile e di scegliere il valore delle resistenze in serie in modo da mantenere la corrente di funzionamento ad un valore inferiore ai 30 mA. Con un'alimentazione da 5 V e resistenze in serie da 470 Ω , la corrente che passa attraverso ogni LED è di circa 8 mA. Scegliendo una resistenza di valore più basso, si aumenterà l'intensità luminosa dei LED.

La tensione di alimentazione del circuito potrà avere un valore qualsiasi tra 5 e 15 V. Se la tensione di alimentazione supera gli 8 V, si potrà usare come oscillatore il ben noto circuito integrato 741. Questo componente non funziona però troppo bene alle basse tensioni di alimentazione, con le quali si raccomanda l'uso del 3130 oppure del 3140.

88888888888 T6 e T7 che sono sincronizzati alla coppia N1-N2,

sirena

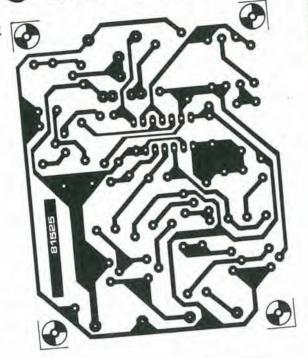
Se un circuito è intitolato "sirena", si parla di solito di una "tromba" a due o più note che suona in continuità, che potrà essere usata per un qualche tipo di allarme. La sirena che descriviamo ora non è però molto adatta a questo impiego, ma senza dubbi i nostri lettori, tutti molto ingegnosi, troveranno il modo di usare questo circuito! La sirena "hi-fi" imita in modo molto verosimile, un'auto della polizia che passa a sirene spiegate.

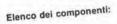
Cosa succede quando la sirena della polizia si avvicina? Dapprima il suono si ode molto debolmente; poi aumenta gradualmente fino al momento in cui passa davanti all'osservatore, quando raggiunge l'intensità massima. Dopo, il suono inizia subito a diminuire, mentre allo stesso tempo il tono si ab-

bassa per "effetto Doppler".

Osservando lo schema, possiamo vedere come si ottiene elettronicamente questo effetto. Gli oscillatori basati sulle porte logiche N1 ed N2 sono alla base della sirena bitonale vera e propria. All'inizio, la tensione di base del transistor T4, e di conseguenza la tensione di emettitore di T5, è all'incirca uguale alla tensione di alimentazione. Perciò attraverso l'altoparlante non passa corrente. Quando si preme il pulsante di avviamento S1, il flip flop formato da N3 ed N4 cambia stato ed il potenziale ai capi del condensatore C4 diminuisce lentamente. Di conseguenza diminuirà anche la tensione di emettitore di T5, e comincerà a passare corrente nell'altoparlante.

In realtà, questa corrente è attaccata e staccata da


producendo l'effetto desiderato.


La corrente, e quindi il rumore, continua ad aumentare gradualmente a causa della diminuzione della tensione ai capi di C4. Ad un certo istante, quest'ultima tensione raggiunge il valore di soglia negativo di N4, resettando il flip flop e mandando a livello alto l'uscita di N4. Proprio in questo istante la tensione all'emettitore di T5 sarà minima ed il livello del rumore sarà massimo. Poiché ora l'uscita di N4 è a livello basso, la frequenza dell'oscillatore basato su N2 si abbassa un poco, simulando così l'effetto Doppler. Il condensatore C4 si ricaricherà lentamente fino a raggiungere il livello della tensione di alimentazione, abbassando lentamente il volume

Il circuito basato su T2 e T3 garantisce che il livello del suono aumenti molto lentamente all'inizio, ma che poi questo aumento divenga molto più veloce. In questo modo l'effetto sarà molto più realistico. L'effetto risultante potrà essere messo a punto mediante il potenziometro P1: questa regolazione dovrà essere fatta "ad orecchio". Per raggiungere lo scopo, si gira dapprima il potenziometro a fondo in verso orario, in modo che al cursore sia presente l'intera tensione di alimentazione. Si preme il pulsante di avviamento e si ascolta il suono prodotto. Si gira poi il potenziometro leggermente all'indietro, e si preme nuovamente il pulsante. Il procedimento deve essere ripetuto fino ad ottenere una sirena più realistica possibile.

In figura 2 si vede il circuito stampato della sirena "hi-fi". L'assorbimento di corrente del circuito dipende in pratica dal valore della resistenza R14. Questo valore può essere ridotto ad un minimo di $27~\Omega$, se si desidera una sirena ad alto volume. In questo caso aumenterà notevolmente la corrente assorbita. Se R14 ha un valore di 100 Ω , la corrente totale assorbita al massimo livello sonoro sarà di circa 60 mA (UB = 15 V), mentre a riposo l'assorbimento sarà soltanto di qualche mA.

9 ... 15 V 1 DUS 9 ... 15 V BC 160 (+ I N2 15 V 9 (14) IC1 7 100k I N4 R10 N1 ... N4 = IC1 = 4093 220k BC 160 BC 557B DUS TUP

Resistenze:

R2,R3,R6,R13,R16,R17 = 10 k R1 = 1 M R4 = 4k7

 $R5 = 330 \, k$

R7,R8,R9,R11 = 56 k

R10 = 220 kR12,R15 = 100 k $R13 = 100 \Omega$ P1 = 1 M trimmer

Condensatori:

 $C1 = 1 \mu / 16 V$ C2 = 68 n MKM C3 = 220 n MKM $C4 = 100 \,\mu/16 \,V$ C5 = 10 µ/16 V

 $C6 = 100 \,\mu/25 \,V$

Semiconduttori: D1 ... D4 = DUS T1,T2 = TUN

T3 = BC 557B T4,T6 = TUP

T5,T7 = BC 160 IC1 = 4093

Varie:

S1 = pulsante

LS = altoparlante 8 Ω/500 mW

P. De Bra

preamplificatore microfonico basso rumore

Gli appassionati dell'alta fedeltà si trovano spesso di fronte al problema di non potere avvicinarsi a sufficienza al soggetto che vogliono registrare. In tal caso l'unica soluzione è di adottare un preamplificatore molto sensibile a basso rumore, in combinazione con un microfono dinamico di buona qualità. I preamplificatori presenti nei soliti registratori non sono di solito abbastanza sensibili per questo scopo e generano troppo rumore perché la registrazione possa risultare di buona qualità. Sarà molto meglio costruire un preamplificatore separato a basso rumore, da inserire tra il microfono ed il

Il microfono di dotazione andrà senz'altro bene se registratore.

si vorrà registrare il ruggito del leone. Nessun preamplificatore singolo potrà garantire un'amplificazione lineare di suoni tipo il canto dell'usignolo a 100 metri di sitanza, a causa della limitata sensibilità d'ingresso. Il circuito che presentiamo ora serve invece a registrare l'usignolo, ma non si dovrà assolutamente usare quando si voglia registrare un cantante pop che sembri in procinto di ingoiare il mi-

Qualsiasi transistor genera rumore, ma per comcrofono. batterlo nel modo più efficace possibile, si dovranno scegliere tipi a basso rumore prodotti da buoni fabbricanti. Inoltre si deve inserire il transistor in un circuito che faccia il miglior uso possibile delle sue caratteristiche rispetto al rumore. Si deve subito avvisare che questo circuito contiene cinque stadi in parallelo. Il rumore generato da ciascun stadio può essere sommato agli altri vettorialmente, ossia facendo la radice quadrata della somma dei quadrati di ciascuna componente. Poiché il rumore è leggermente sfasato nei diversi stadi, la cifra risultante sarà un poco inferiore a quella di ciascuno

Questa diminuzione si può rendere matematicamente con \sqrt{n} , (ed ora n = 5), ossia è poco meno di 2,3 volte. In termini di decibel, si potrà dire che la riduzione del rumore è di 7 dB nei confronti dello

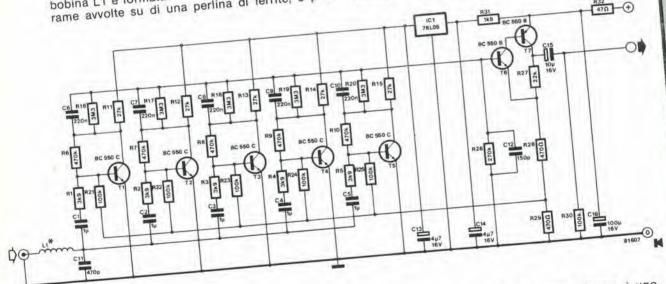
Un altro modo di ridurre consiste nel limitare la

essere eliminata quando non si temono interferen-

corrente che passa nei transistori ad un valore minimo possibile. Ed è proprio ciò che facciamo in questo caso, come si può notare dall'assorbimento (stereo) di soli 1,5 mA: ancora meno di 2 mA assorbiti dal regolatore di tensione IC1, montato allo scopo di diminuire la tensione di alimentazione al valore di 5 V necessario per gli stadi di amplificazione. Un minore consumo di potenza garantisce un più elevato rapporto segnale/rumore a spese di una considerevole distorsione armonica.

Delle retroazioni locali (R6 ... R10) e generali (R21 ... R25) garantiscono la rimozione di queste distorsioni. Il circuito dà eccellenti risultati nonostante la distorsione dell'1%, inevitabile durante la registra-

Quali saranno i risultati che ci i possono attendere da questo circuito? La sensibilità d'ingresso, per un'uscita di 60 mV, è di circa 0,13 mV, sufficiente alla maggior parte degli impieghi. Il guadagno del circuito è di circa 475. Una distorsione percepibile si avrà quando il segnale d'ingresso raggiungerà o supererà il valore di circa 8 mV, e perciò si potranno elaborare anche segnali piuttosto forti. La risposta in frequenza del preamplificatore, tra i punti a 3 dB, è di 20 Hz ... 45 kHz: il limite superiore è definito dal valore del condensatore C12. L'effetto provocato da L1/C11 è trascurabile, in quanto questi due componenti servono soltanto ad evitare le interferenze da parte di stazioni radiofoniche locali. La bobina L1 è formata da un paio di spire di filo di rame avvolte su di una perlina di ferrite, e può


Il progetto garantisce un miglioramento del rapporto segnale/rumore di circa 12 dB, nei confronti dei circuiti tradizionali: sarà così possibile registrare il canto di quel tale usignolo che si trova a cento metri di distanza.

Con l'aiuto di questo preamplificatore, l'appassionato potrà eseguire registrazioni musicali o registrazioni di suoni in esterno, di qualità eccezionale. Naturalmente, anche il microfono ed il registratore daranno il loro contributo alla qualità del risultato

finale.

Poiché il guadagno del preamplificatore dipende dal valore della resistenza R27, scegliendo per questo componente valori diversi, si potrà cambiare il guadagno stesso. Parlando però in senso ristretto, la tensione di collettore del transistor T7 dovrà essere mantenuta ad un livello di 7,5 V. In pratica si dovrà variare anche il valore di R26. Un valore inferiore di R27 vorrà dire un aumento del valore di R26. Per un guadagno pari a 200, R27 dovrà avere un valore di 10 k Ω , mentre quello di R26 dovrà essere

Montando una resistenza in serie ad L1, si potrà aumentare l'impedenza d'ingresso, ma si potrà ottenere lo stesso effetto cambiando il valore di R1 ... R5. È ovvio che tutte le resistenze dovranno essere del tipo a strato metallico a basso rumore, per non rendere inutili tutti gli sforzi fatti per eliminare il rumore dei transistori.

millivoltmetro a scala ampliata

Un multimetro, come dice il nome stesso, è uno strumento di misura per molteplici impieghi, ma anche questa definizione ha dei limiti. Per esempio, la scala di misura delle tensioni alternate nella banda audio, è inadeguata. Anche la sensibilità, la resistenza interna e la risposta in frequenza dell'economico strumento a bobina mobile lasciano di solito parecchio a desiderare. Il millivoltmetro a grande scala qui descritto riempie la falla in modo molto semplice ed elegante. Lo strumento potrà essere usato per misurare correnti alternate di frequenza compresa tra 100 Hz e 500 kHz. Impiegando amplificatori operazionali con ingresso a MOSFET, l'impedenza d'ingresso a tutte le portate di misura sarà di 10 M Ω .

Alla minima tensione di misura, di 15 mV, la sensibilità è tale da provocare l'escursione a fondo scala

dell'indice di uno strumento da 100 μA. L'amplificatore operazionale serve sia da amplificatore di misura che da raddrizzatore attivo. Il livello di amplificazione è determinato dalle resistenze lo di amplificazione è determinato dalle resistenze commutabili R1 ... R6. Con lo strumento predispocommutabili R1 ... R6. Con lo strumento predisposto per una determinata portata, il valore della resistenza potrà essere determinato molto semplicestenza potrà essere determinato molto semplicestenza nente dividendo la tensione d'ingresso necessaria alla deviazione completa dell'indice, per 100 μA. Se per esempio, ci si propone di ottenere una portata di 200 mV invece di 150 mV, si dovrà dare alla resistenza R4 il valore di 2 k.

Esiste una compensazione della tensione di soglia dei diodi, ottenuta con il raddrizzatore a ponte D1 ... D4 situato nel circuito di reazione dell'amplificatore, e per questo motivo la scala in mV è lineare. Lo strumento può essere azzerato con P1, mantenendo l'ingresso in cortocircuito, mentre la portata nendo l'ingresso in cortocircuito, mentre la portata

Lo strumento puo essere azzerato donte in mando l'ingresso in cortocircuito, mentre la portata di misura è determinata da P2. A quest'ultimo occorre una tensione di calibrazione che potrà essere ottenuta con un piccolo trasformatore di rete che abbia una tensione secondaria di poco meno di 5 V. Una tensione di questo livello potrà essere misurata con discreta precisione mediante il tester. Si dovrà poi collegare la tensione di calibrazione al millivoltmetro a scala ampliata, regolato alla porta di 5 V. Si mette poi a punto l'indicazione dello strumento da 100 μA, mediante P2, fino ad ottenere un'indicazione che corrisponda, appunto, alla ten-

C2 C6 P1 100k
15 V
15 V
15 W
15 MV
16 MV
17 MV
18 MV

sione di calibrazione. Le altre portate di misura si regolano simultaneamente, con precisione corrispondente alle tolleranze di R1 ... R6. Se il circuito viene usato per completare un multi-

metro già esistente, lo strumento a bobina mobile di quest'ultimo dovrà essere del tipo a 100 μA fondo scala. La migliore tensione d'alimentazione è in questo caso quella di 9 V circa, che si può ottenere da una piccola batteria del tipo per radioline. Dato che la potenza assorbita è molto bassa, la batteria potrà durare molto a lungo.

59

bottiglia lampeggiante

Il motivo per cui pubblichiamo questo articolo non è, una volta tanto, il circuito, ma la forma dell'ogget-

In questo caso l'implicazione elettronica consiste nell'integrato lampeggiatore per LED LM 3909 della National Semiconductor (un circuito integrato "d'annata") e nei relativi componenti: il tutto non presenta alcunché di eccezionale. Però in modo in cui viene usato è un gradevole cambiamento rispetcui viene usato e un gradevole cambiamento de un gradevole c

to alle presentazioni usuali.
L'alimentazione proviene da una bottiglia che contiene acqua acidulata con alcune gocce di percloruro di ferro (quello usato per incidere i circuiti stampati). Nella bottiglia si inseriscono una bacchetta di carbone ed una striscia di zinco, che potenta di carbone in sù ed in giù. Quando questa tranno usare mosse in sù ed in giù. Quando questa armatura verrà immersa nell'"acido" il circuito ver-

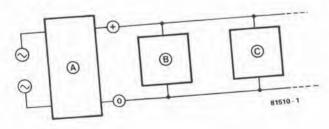
Il LED è montato su un supporto ricavato da una parte della spina di un connettore, e gli altri componenti si montano come mostrato in figura. Un altoparlante aumenta l'effetto del montaggio. L'idea non è del tutto nuova, ma potrà favorire un avvicinamento del tutto insolito all'elettronica per molti

A = basetta carbone
B = acqua + percloruro ferrico
C = basetta di zinco
D = acceso
E = spento
F = bottiglia di vetro

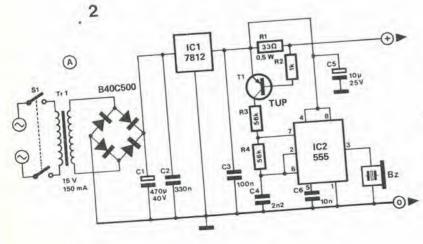
22828282888888 massa, accade l'inverso. In questo caso, la resisten-

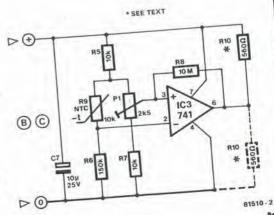
di temperatura

Il progetto permette il controllo contemporaneo di quattro temperature. I singoli sensori sono collegati al centralino di controllo mediante una coppia di fili. Se uno dei sensori registra una temperatura troppo alta o troppo bassa, suonerà un allarme. La posizione della resistenza R10 determina se l'allarme suonerà quando la temperatura salirà al di sopra del livello predisposto, oppure scenderà al di


sotto di questo livello. Quando R10 è inserita tra l'alimentazione positiva e l'uscita di IC3, l'allarme avrà attivato quando la temperatura sarà superiore a quella predisposta mediante P1. In questa situazione, l'uscita di IC3 diminuisce di tensione ed il rivelatore inizia ad assorbire una corrente di circa 20 mA. Ciò significa che la tensione ai capi di R1 diverrà maggiore di 0,6 V, mandando in conduzione T1, che a sua volta farà suonare l'allarme. Ciò avviene perché l'aumento della temperatura, la resistenza dell'elemento NTC (R9) diminuisce: in tal modo l'ingresso invertente di IC3 avrà una tensione maggiore rispetto all'ingresso non invertente. In questa situazione l'uscita dell'amplificatore operazionale andrà a livello basso. Se la resistenza R10 è disposta tra l'uscita di IC3 e la

za di R9 aumenta al diminuire della temperatura, e perciò porta la tensione all'ingresso invertente di IC3 ad un livello più negativo di quella dell'ingresso non invertente. Di conseguenza, l'uscita dell'operazionale assumerà il livello alto, provocando il passaggio di una corrente di circa 20 mA attraverso la resistenza R10. Anche in questo caso il transistor T1 del centralino andrà in conduzione avviando l'oscillatore di allarme IC2.

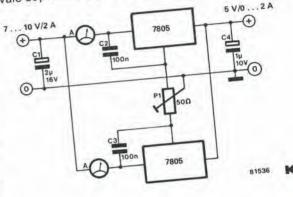

L'oscillatore genera una nota di circa 4 kHz che viene inviata al cicalino piezoelettrico (Bz). È stata scelta una frequenza relativamente alta per adattarsi alla frequenza di risonanza dell'elemento piezoelettrico, in modo da ottenere un volume sonoro ottimale rispetto alla curva di sensibilità uditiva. Come ricordato in precedenza, il massimo numero di sensori che si possono usare è quattro. Inserendone di più, la corrente di riposo supererà la "corrente d'allarme" ed il circuito non funzionerà più in modo corretto. A sua volta, la corrente d'allarme non può essere aumentata, perché in questo verrebbe a superare la corrente ammessa per l'uscita dell'amplificatore operazionale, con risultati molto deleteri per quest'ultimo!


Se è necessaria un'altra forma di allarme, si potranno omettere IC2 ed i relativi componenti: in questo caso si potrà usare il transistor per comandare un relé od un altro analogo dispositivo. La sensibilità del circuito, in altre parole la temperatura di intervento, si può regolare con il potenziometro semifisso P1. Potrebbe essere anche utile impiegare un trimmer multigiri per avere una regolazione più

Tra le applicazioni di questo circuito troviamo un precisa. semplice allarme antiincendio, il controllo delle temperature di due acquari (ognuno dei quali richiede un rivelatore di temperatura massima ed uno di minima) e la regolazione di temperatura in un impianto di riscaldamento centrale.

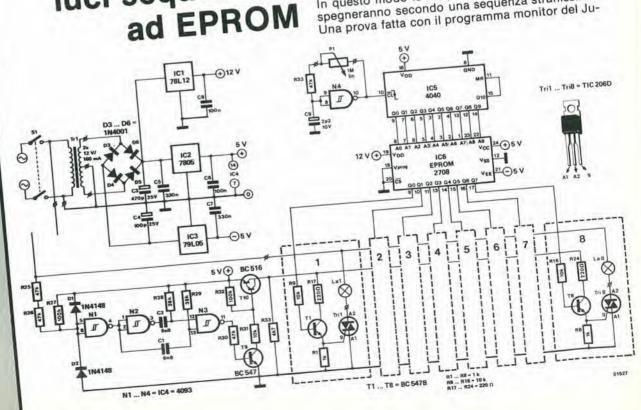
A = BLOCCO DI COMANDO B = RIVELATORE 1 C = RIVELATORE 2

61


regolatori di tensione in parallelo

La ben nota serie di regolatori di tensione 78xx è progettata per erogare correnti che arrivano fino ad 1 A. In molti casi questo regolatore potrebbe però essere troppo debole per funzionare in piena sicurezza: una soluzione molto elegante potrebbe essere quella di collegare due regolatori in parallelo. Questa semplice idea è però afflitta da un grosso inconveniente (naturale!!). Il problema è che uno dei regolatori potrebbero assumersi tutto il carico, mettendo graziosamente fuori gioco l'altro. Ma non tutto è perduto, come dimostra il circuito che presentiamo. Disponendo di due amperometri

essi potranno essere collegati come in rigura. Se non si possiedono i due strumenti, si potranno usare due corti spezzoni di filo di resistenza, misurando la caduta di tensione ai loro capi con un voltme-


Le uscite di ciascun regolatore potranno ora essere bilanciate mediante il potenziometro P1, garantendo l'erogazione della stessa corrente da parte di

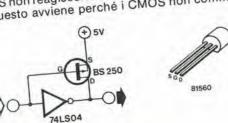
ciascun integrato. I condensatori di disaccoppiamento devono essere montati più vicino possibile ai regolatori, e questo vale soprattuto per C2 e C3.

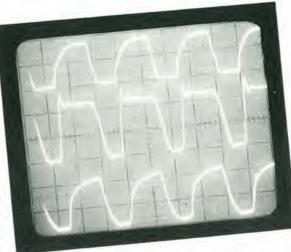
62 luci sequenziali

Il circuito qui descritto è un sequenziatore di luci ad otto canali. L'informazione per ciascun canale (acceso o spento) è contenuta in una EPROM tipo 2708 (il loro prezzo seguita a diminuire!). Ci saranno perciò a disposizione ben 1024 passi prima che il "programma" cominci a ripetersi. È possibile programmare da soli la EPROM, se si può usufruire di un adatto programmatore. Altrimenti si potrà usare una EPROM già programmata per un eleboratore. In questo modo le lampade si accenderanno e si spegneranno secondo una sequenza stranissima. Una prova fatta con il programma monitor del Ju-

nior Computer ha funzionato in modo egregio.
Le lampade vengono accese o spente al punto di
passaggio per lo zero dell'onda della tensione di
rete, allo scopo di evitare interferenze alle radioaurete, allo scopo di evitare interferenze alle radioaudizioni od alla telvisione. La potenza delle lampade
potrà arrivare fino a 200 W, ma se si impiegano degli
adeguati dissipatori termici per i Triac, tale potenza
potrà essere aumentata fino ad 800 W massimi.

potra essere aumentata inicia di controlla de la come si può osservare sullo schema elettrico, il dispositivo è controllato dal generatore di clock formato da N4. La frequenza dell'oscillatore si può regolare mediante il potenziometro P1. L'uscita del generatore di clock pilota un contatore binario (IC5) che conta in binario da zero a 1023. Le uscite di IC5 pervengono agli ingressi di indirizzamento della EPROM IC6. Viene perciò eseguita in sequenza la lettura di ogni locazione di memoria. Un


livello logico "1" su una delle uscite dei dati dalla EPROM farà accendere la corrispondente lampada tramite il relativo transistor pilota ed il triac. Quando l'uscita sarà a livello "0", la lampada sarà spenta. I transistori T1 ... T8 sono alimentati per soli 300 µs. It ransistori T1 ... T8 sono alimentati per soli 300 µs. Si ottiene lo scopo mediante i circuiti di N1 ... N3, di T9 e di T10. Se perciò la base del transistor è a livello alto in un certo momento, il corrispondente triac sarà in conduzione e tale rimarrà per il resto del semiperiodo. Le tensioni di alimentazione al resto del circuito sono garantire dai regolatori integrati IC1... IC3.


ATTENZIONE! In tutto il circuito è presente la tensione di rete, per cui bisogna usare la MASSIMA

CAUTELA!

interfaccia TTL veloce

Sorprende abbastanza la frequenza dei casi in cui sì richiedono agli integrati TTL compiti difficili (se non impossibili). È piacevole constatare, quanta sia la confidenza di cui gli sperimentatori gratificano la famiglia logica TTL. Tuttavia, non c'é ragione di esigere da questi componenti compiti talmente gravosi da compromettere la sopravvivenza. Molto spesso le uscite di questi circuiti integrati sono sovraccaricate oppure vengono impropriamente usate per pilotare direttamente gli integrati CMOS. In quest'ultimo caso, la tensione di uscita garantita allo stato attivo dei TTL (2,4 V) è inferiore alla tensione minima richiesta agli ingressi dei CMOS per garantire la commutazione (3,5 V). Inoltre, l'impedenza d'ingresso dei CMOS è eminentemente capacitiva, e da ciò deriva il fatto che la velocità di commutazione del segnale d'uscita TTL diminuirà alle alte frequenze. La traccia in alto nella fotografia mostra l'effeto che si ha quando un'uscita TTL è caricata in modo capacitivo (in questo caso 220 pF). I fronti di discesa del segnale sono ancora abbastanza accettabili, perché le uscite TTL possono "assorbire" più corrente di quanta ne possano "erogare". La corrente d'uscita si ridurrà però proporzionalmente all'aumento della tensione, provocando una diminuzione del livello dei fronti di salita. Come ci si può ben attendere, gli integrati CMOS non reagiscono bene a questo tipo di segnale. Questo avviene perché i CMOS non commute-

ranno fintanto che il livello d'ingresso non abbia raggiunto all'incirca la metà della tensione di alimentazione, a meno che il fabbricante non abbia preso adeguate precauzioni per impedire che ciò avvenga. Il risultato sarà che avremo un ritardo di circa 40 ns prima della commutazione ed il fronte di salita del segnale d'ingresso, già scarsamente efficiente, non migliorerà molto all'uscita.

Nel caso del segnale che si vede in basso sulla foto, si nota che è stato fatto un certo sforzo per migliorare il fronte di salita montando una resistenza di pull-up tra l'uscita TTL e la tensione positiva di pull-up tra l'uscita TTL e la tensione positiva di alimentazione. Questa resistenza (220 Ω) migliorea rà di certo il fronte positivo del segnale, ma lo farà a spese del fronte negativo. Perciò la soluzione idease è di inserire un VFET che sia in funzione solo durante il fronte positivo del segnale. Il segnale al centro della foto mostra che adesso l'ampiezza corrisponde al valore totale della tensione di alimentazione, e che il fronte positivo raggiunge il valore di picco molto velocemente, nonostante il carico capacitivo.

Nota: l'oscilloscopio della fotografia era regolato come segue:

Deflessione verticale: Deflessione orizzontale: 2 V/div. 100 ns/div. (in altre parole,la frequenza del segnale sullo schermo è di 4 MHz!!)

controlli di livello stereo

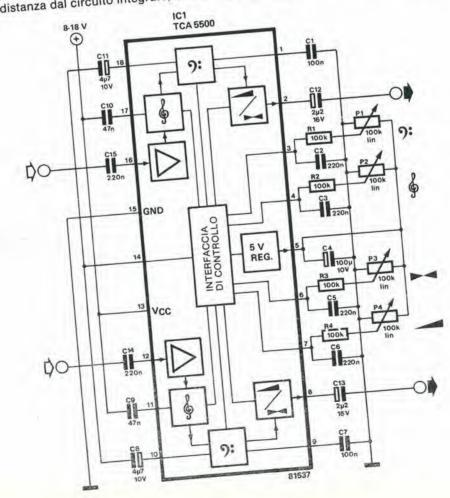
In un normale preamplificatore, si usano dei potenziometri per il volume, per il bilanciamento dei canali e per il controllo dei toni. Poiché questi potenziometri trattano tensioni di segnale, i fili di collegamento sono inclini a captare dei disturbi. Usando un circuito integrato Motorola tipo TCA 5500, si potrà facilmente costruire un amplificatore di controllo stereo in miniatura che sia privo dei sunnominati difetti e che garantisca perciò una qualità di riproduzione ragionevole. Le caratteristiche tecniche del circuito appaiono nella tabella.

Risulta evidente dallo schema che, all'esterno del circuito integrato saranno necessari solo dei componenti passivi per completare il sistema di controllo. IC1 contiene degli attenuatori elettronici, ognuno dei quali potrà essere comandato da potenziometri collegati ad un alimentatore stabilizzato. Attraverso questi potenziometri passa solo della corrente continua, per cui possono essere situati ad una certa distanza dal circuito integrato, senza

Tensione di alimentazione (stabilizzata): Corrente assorbita: Tensione d'ingresso: Tensione d'uscita: Impedenza d'ingresso: Impedenza d'uscita: Controllo di tono (a 100 Hz ed a 10 kHz): Controllo di bilanciamento: Controllo di volume: Separazione tra i canali: Distorsione (ad 1 kHz e 100 mV di rensione d'uscita)
Rapporto segnale/rumore normale 70 dB
(da 50 Hz a 15 kHz, amplificazione 12 dB, controllo dei toni piatto)

da 8 a 18 V massimo 30 mA normale 25 mV eff mass. 100 mV eff 100 kΩ

± 14 dB da -40 a +3 dB da -68 a +12 dB min. 48 dB

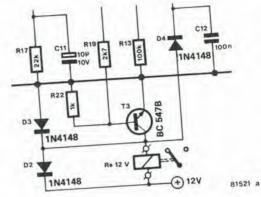

normale 0,1%

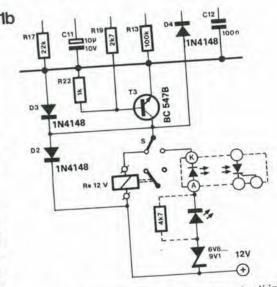
necessità di fili schermati per il collegamento. P1 e P2 controllano rispettivamente i bassi e gli

acuti. P3 è il controllo di bilanciamento, ed in posizione mediana garantisce un'amplificatore uguale nei due canali. P4 controlla il volume ed in posizione mediana avremo il guadagno di 18 dB. Per avere prestazioni ottime, il livello d'ingresso si

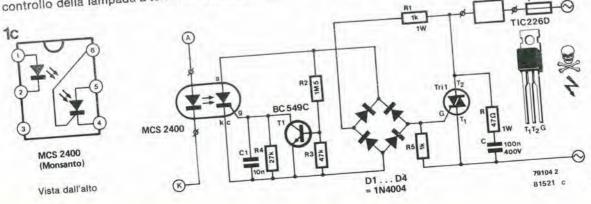
dovrà aggirare sui 25 mV eff. Se il livello è superiore, esso potrà venir ridotto disponendo agli ingressi un potenziometro stereo da 100 kΩ. Una tensione inferiore potrà essere aumentata introducendo un'altro stadio di amplificazione.

I condensatori di accoppiamento agli ingressi ed alle uscite possono essere omessi se essi si trovano già nell'amplificatore finale o nel preamplificatore.


indicatore ottico per il rivelatore di movimenti


Questo circuito è un ampliamento del rivelatore di movimento descritto nell'edizione dell'ottobre '81 di Elektor. Al circuito originale viene aggiunta una lampadina lampeggiante alimentata dalla rete, pur mantenendo il resto del circuito ben isolato dall'al-

In figura 1 si vede una parte del circuito originale, ta tensione. cioé quello di controllo del relé. Se il rivelatore "sente" qualche movimento, il transistor T3 viene mandato in conduzione tramite il partitore di tensione R19/R22. Questo transistor eccita a sua volta il relė il quale, per esempio, potrà far accendere una lampadina. Con l'aggiunta di pochi componenti che si vedono in figura 1b la lampadina potrà essere pilotata da un triac, e potrà anche funzionare lampeggiando. Il circuito per il lampeggiamento consiste in un solo componente: il LED lampeggiante (tipo Siemens LD599). In serie al lampeggiatore sono stati montati un diodo zener ed il LED di un fotoaccoppiatore. Quando il transistor T3 passa in conduzione, il LED inizia a lampeggiare. Durante il tempo di accensione, passa attraverso il LED una corrente di circa 20 mA. Quando il LED è spento, questa corrente scende praticamente a zero. In questo modo il LED del fotoaccoppiatore si accenderà e si spegnerà per simpatia.


Il diodo zener serve a mantenere ad un valore di sicurezza la tensione ai capi dei LED. Lo zener dovrà essere in grado di dissipare una potenza di 400 mW. Qualora si impiegasse uno zener da 1 W, potrebbe rivelarsi necessario inserire ai capi del LED lampeggiante una resistenza da 4k7. Cambiando il valore della tensione di zener, potrebbe variare la cadenza del lampeggiamento.

Il commutatore S è stato montato per permettere la scelta tra il relé originale e la nuova lampada lampeggiante a tensione di rete. L'otpoaccoppiatore fa parte del rivelatore di passaggio per lo zero che si vede in figura 1c, che forma l'effettivo elemento di controllo della lampada a tensione di rete. Questa

sezione del circuito ha già avuto precedenti impieghi, nei quali si è dimostrata molto affidabile. Il tiristor serve solo a passare la corrente di gate per il triac tramite la resistenza R1, quando il transistor T1 si interrompe. Tale corrente viene derivata dalla rete elettrica. I valori delle resistenze del partitore di tensione (R2 ed R3) garantiscono che il transitor venga interdetto per un periodo brevissimo soltanto in prossimità del passaggio per lo zero dell'onda della tensione di rete. Questo vuol dire che il triac potrà essere acceso soltanto entro un breve intervallo e solo se il LED dell'optoaccoppiatore è acceso. Se si vuole, si potrà pilotare con questo circuito anche qualsiasi altra apparecchiatura alimentata dalla rete.

5888888888 alimentazione. Nel caso ideale questa dovrà essere

ciente all'elaborazione nei circuiti logici. Per questo motivo il segnale vien fatto passare attraverso un secondo trigger di Schmitt (A4). In questo modo si garantiranno degli impulsi di uscita sufficientemente veloci da pilotare i circuiti integrati CMOS. Se la fase del segnale di uscita non è giusta, si devono invertire i collegamenti ad R14 ed R15.

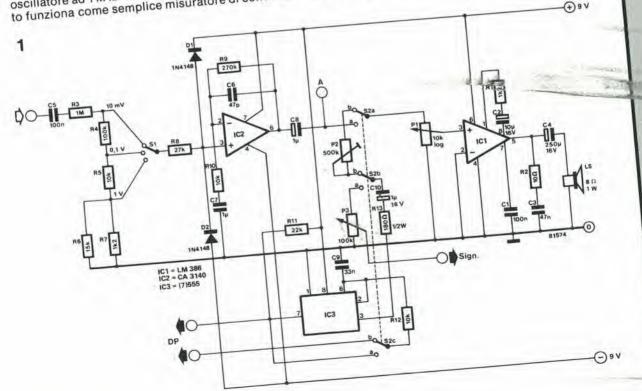
L'assorbimento di corrente del circuito è di pochi mA soltanto e dipende in parte dalla tensione di

la medesima dei circuiti logici a valle. La sola regolazione che occorre al demodulatore è quella del trimmer P1 che dovrà essere regolato in

modo che la durata degli impulsi di livello logico "0" ed "1" sia la medesima quando il segnale di ingresso sia formato da 8 cicli a 2400 Hz e da 4 cicli a 1200

Hz.

iniettore e rivelatore


di segnali

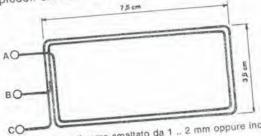
L'iniettore di segnale è certamente uno degli strumenti più pratici ed economici nel laboratorio del dilettante. Il progetto che presentiamo combina all'iniettore un signal tracer e produce un segnale audio permettendo di tenere tutti e due gli occhi sul

lavoro che si sta facendo. Il circuito è semplicissimo e consiste di tre parti principali: un generatore di segnali (IC3); un preamplificatore (IC2) ed un amplificatore finale (IC1). Il generatore di segnali IC3 è un 555 collegato come oscillatore ad 1 kHz. Con S2 in posizione b, il circuito funziona come semplice misuratore di continui-

tà. Poiché i punti di prova DP sono in serie con il circuito RC dell'oscillatore, il circuito oscillerà soltanto quando c'é continuità tra questi due punti. Due puntali collegati ai terminali DP potranno essere perciò usati per vedere se esiste continuità elettrica tra due punti del circuito in esame. L'uscita dell'oscillatore viene mandata all'amplificatore finale tramite P2 e si udrà una nota nell'altoparlante quando tra i due puntali ci sarà un cortocircuito. Se il circuito tra i due puntali sarà aperto non si udrà

Con il commutatore S2 in posizione a, IC3 oscillerà continuamente. Il livello di uscita sarà controllato da P3 e mandato direttamente al puntale B che lo inietterà nel circuito in prova. Il condensatore C10 e la resistenza R13 servono ad evitare che il circuito in prova possa caricare l'oscillatore. Il puntale A viene usato per rilevare il segnale attraverso gli stadi del circuito da controllare. Una resistenza (od un potenziometro) attenuerà il segnale mentre un transistor di solito lo amplificherà. Per rilevare le variazioni di ampiezza, è importante non sovraccaricare l'altoparlante. Allo scopo si è previsto all'ingresso del preamplificatore un semplice attenuatore a commutatore che erogherà tre diversi livelli di ingresso. Per evitare di caricare il circuito in prova, C5 ed R3 assicurano un'alta impedenza di ingresso.

trasmettitore 'non ti scordar di me"

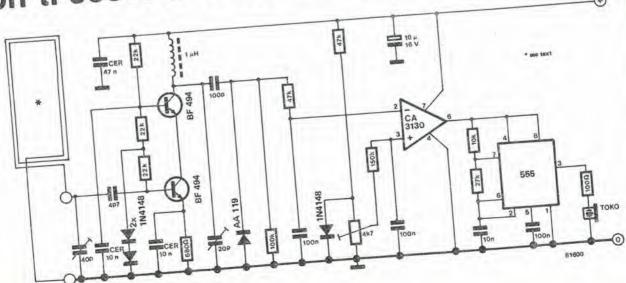

Se siete afflitti da distrazione e avete la tendenza ad appoggiare ovunque oggetti di valore, per poi dimenticarvene allegramente, ora potrete rilassarvi, grazie all'oggettino veramente pratico che vi presentiamo. Il piccolo ricevitore che apparirà nel prossimo articolo può essere agevolmente tenuto in tasca. L'oggetto, o gli oggetti, (come valigie, borse, portafogli, eccetera), conterranno un tra-

1,5 ... 9 V

smettitore altrettanto minuscolo. Non appena la distanza tra voi e le vostre "proprietà" avrà superato un certo limite, suonerà un allarme. Questo vi informerà che l'oggetto in questione è caduto, è andato perduto o dimenticato, oppure vi è stato addirittura rubato. Il trasmettitore non è altro che un oscillatore a bassa potenza accoppiato ad una piccola antenna a telaio. Per non permettere alla resistenza di irradiazione di assumere un livello troppo basso, la frequenza di funzionamento non deve essere troppo in basso nello spettro delle radiofrequenze. Per ottenere un ragionevole compromesso, la frequenza è stata scelta di 42 MHz, ossia in una banda che sta tra le onde corte e la televisione VHF.

Per quanto il circuito abbia la possibilità di funzionare ad una tensione minima di 1 V, si raccomanda di alimentarlo con 1,5 ... 9 V. Senza dubbio la migliore soluzione sarà di alimentarlo con uno o due

piccoli elementi al Ni-Cd.


2 Spire di filo di rame smaltato da 1 .. 2 mm oppure incise su basetta ramata,

ricevitore "non ti scordar di me"

Il ricevitore "non ti scordar di me" è un apparecchio TRF (con sintonia in radiofrequenza) e difficilmente potrebbe essere più semplice.

Esso consiste in un cascode che amplifica la radiofrequenza, in un rivelatore a diodo, in un trigger di Schmitt ed in un multivibratore astabile. Il suono è prodotto da un cicalino piezoelettrico (per esempio un tipo della Toko). Se il ricevitore si trova entro la portata del trasmettitore, l'uscita del diodo rivelatore sarà a livello alto. Clò significa che l'uscita del trigger di Schmitt sarà a livello basso ed il multivibratore astabile restera inattivo. Non appena il rice-

curare il migliore allineamento. Ciò è necessario

vitore perde il segnale d'ingresso, non ci sarà più tensione all'uscita del diodo rivelatore, il trigger di Schmitt invertirà la sua polarità d'uscita e l'oscillatore d'allarme verrà attivato.

La procedura di allineamento del trasmettitore e del ricevitore è la seguente:

- 1. Collegare un voltmetro c.c tra l'ingresso invertente (-) del trigger di Schmitt e la massa.
- 2. Sintonizzare il trasmettitore per una lettura massima sullo strumento. All'inizio la distanza tra il trasmettitore ed il ricevitore dovrà essere piutto-
- 3. I compensatori del ricevitore possono ora essere regolati in modo da ottenere la massima lettura sullo strumento. Per ottenere il giusto allineamento, è importante che a questo stadio la distanza tra il trasmettitore ed il ricevitore non sia troppo piccola, per evitare accoppiamenti inde-
- 4. Si deve ripetere la procedura descritta per assi-

perché l'uscita del trasmettitore dipende dalla frequenza (a causa dell'antenna a telaio), mentre la frequenza d'oscillazione deve essere (qua-

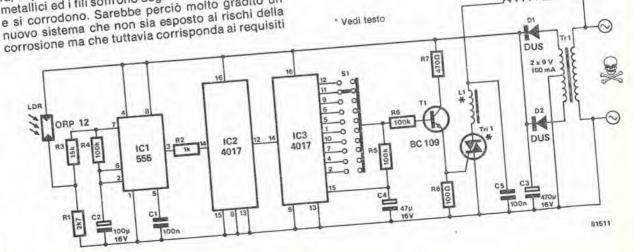
 La distanza alla quale l'allarme viene attivato, si può regolare mediante un potenziometro trim-

L'antenna è identica a quella del trasmettitore, ma senza la presa centrale. Si deve tener presente, che quando si usano antenne a telaio, ci sarà una certa direzionalità nella propagazione. Tale effetto può anche essere provocato da grossi oggetti conduttori posti in vicinanza all'apparecchio, che agisco-

Ancora un'osservazione finale: si deve tenere preno da riflettori. sente che la scarsa selettività del ricevitore e l'assenza di un sistema di codifica limitano il numero di tali apparecchi che possono funzionare su una ristretta superficie.

B. Darnton

Questo circuito, unito ad un "nebulizzatore" mantiene le pianticelle e i semi appena interrati in un ambiente umido fino a che le prime abbiano messo le radici ed i secondi abbiano germogliato. L'apparecchiatura consiste in generale di uno spruzzatore al quale l'acqua arriva tramite una valvola a solenoide, a sua volta comandata da un relé. A questo punto entra in gioco l'elettronica. Il relé viene attivato da una "foglia elettrica": quando gli elettrodi esterni di questo dispositivo sono umidi, il relé è diseccitato e la valvola dell'acqua si chiude. Non appena gli elettrodi saranno di nuovo asciutti, la valvola verrà riaperta.


Nella situazione che si verifica in una serra, è proprio la foglia elettrica che provoca i maggiori problemi negli impianti tradizionali. Gli elettrodi si ricoprono di carbonati quando il velo d'acqua evapora, e questo tende ad isolarli. Inoltre tutti i contatti metallici ed i fili soffrono degli effetti dell'elettrolisi e si corrodono. Sarebbe perciò molto gradito un nuovo sistema che non sia esposto ai rischi della

di traspirazione delle piante.

Uno studio della vita delle piante rivelerà che la perdita d'acqua avviene principalmente attraverso i pori delle foglie, che si aprono e si chiudono in rapporto alla luce solare che cade sulla foglia. Per quanto anche la temperatura, l'umidità e le dimensioni della pianta influenzino il fenomeno, il fattore di controllo dominante è la luce solare.

Il circuito qui descritto impiega un oscillatore a bassa frequenza controllato dalla luce (IC1) che genera un treno d'impulsi proporzionale alla luce ambiente. Il treno d'impulsi viene poi diviso per 10 per dare un ritardo comulativo prima di essere mandato ad un divisore variabile (1 ... 9) IC3. La posizione 1 è la più adatta per le pianticelle appena trapiantate, mentre le posizioni successive garantiranno regimi sempre più secchi, in rapporto al grado di maturazione delle piante. Il commutatore di regime (S1), limita anche l'eccessiva influenza di altri fattori, come la temperatura. L'uscita dal commutatore di regime viene mandata ad un circuito composto da resistenza e condensatore (R5 ed R4), che genera un impulso di reset ritardato per IC3. Questo segnale viene anche mandato al transistor T1 che a sua volta aziona il triac Tr1. Poiché la potenza assorbita dall'elettrovalvola non supera i

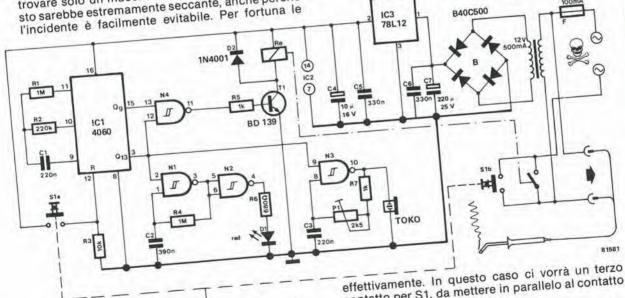
10 W, il triac non ha bisogno di dissipatore termico.

M.A. Prins

888888888888 corrente necessaria.

I valori dei componenti che appaiono sullo schema sono stati calcolati per un umidificatore che dia uno spruzzo di dieci secondi per ogni ciclo (variabile). Se il circuito deve essere usato per controllare installazioni a "gocciolamento", si dovrà scegliere un regime più alto e si dovranno aumentare i valori di R5 e di C4 allo scopo di dare ai tubi il tempo di riempirsi d'acqua, eccetera. Gli effettivi valori dipendono dalla pressione dell'acqua e dalla capacità del sistema: occorre però sempre ricordare che una pianta di pomodoro assorbe circa un litro d'acqua, mentre una pianta di cactus potrà sopravvivere con poche gocce quotidiane. La bobina della valvola a solenoide è rappresentata sullo schema da L1, mentre L2 è una comune impedenza di soppressione della radiofrequenza. Il valore di L2 non è critico, ma la bobina deve lasciar passare tutta la

Poiché il circuito è direttamente collegato alla rete, è essenziale che l'alberino del commutatore di regime, l'interruttore generale e la valvola a solenoide siano correttamente messi a terra. Il circuito stampato dovrà essere montato entro un contenitore impermeabile in plastica, con le fotoresistenze fissate al coperchio mediante resina epossidica. I fili di collegamento devono uscire dalla base dell'apparecchio attraverso un connettore impermeabile. Il circuito si presta all'innaffiamento sperimentale delle piante d'appartamento, e si dimostra particolarmente utile nella stagione estiva, durante le vacanze, e presenta, rispetto ai sistemi ad elettrodi imbevuti, il vantaggio di poter scegliere regimi più secchi e perciò più adatti alle piante.


interruttore automatico per saldatore

Tutti sappiamo quanto sia facile dimenticare acceso un saldatore. Quando poi si esce di casa con un sacco di cose in mente, è anche possibile tornare e trovare solo un mucchio di macerie fumanti. Questo sarebbe estremamente seccante, anche perché

conseguenze non sono di solito tanto drammatiche, ma il minimo che possiate aspettarvi è una salatissima bolletta dell'elettricità. Questo circuito darà un taglio a tutti i problemi e ripagherà in breve lo sforzo sostenuto per costruirlo.

Il circuito funziona cosi: IC1 è un oscillatore provvisto di divisore per 213, che genera un intervallo di tempo di circa un quarto d'ora. Una volta trascorso questo tempo, si vedrà lampeggiare un LED e si odrà suonare un cicalino. Se non si premerà S1, entro 50 secondi il circuito si interromperà togliendo l'alimentazione al saldatore. Se invece si preme S1, IC1 parte nuovamente per un altro periodo di 15

Per quanto il circuito protitipo si sia comportato egregiamente, c'é la possibilità che dei "picchi" della tensione di rete possano causare l'attivazione spontanea del relé. In questo caso il relé dovrà avere un contatto supplementare, che lo stacchi

78LXX N1 . . . N4 = IC2 = 4093 Vedi testo contatto per S1, da mettere in parallelo al contatto di sicurezza del relé.

La commutazione si può ottenere impiegando due pulsanti separati da premere simultaneamente. Se si dispone di un relé con tensione di funzionamento diversa da 12 V, il circuito dovrà essere alimentato alla tensione del relé stesso, cambiando l'alimentatore ed il regolatore di tensione. In ogni caso, la tensione di alimentazione dovrà essere compresa entro i limiti di 3 e 18 V.

10 mA

100 μA ... 1 mA 1 mA

R. Storn

adattatore per corrente costante

Si verifica molto spesso il caso che gli appassionati di elettronica abbiano bisogno di un generatore a

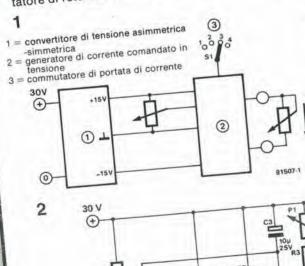
Una volta che se ne ravvisi la necessità, per esemcorrente costante. pio allo scopo di effettuare delle prove, questo apparecchio non sarà di solito disponibile. Non è però necessario costruire un generatore di corrente costante completo per ogni applicazione. È sufficiente disporre di un adattatore che si possa collegare ad un alimentatore già esistente ogni volta che ci

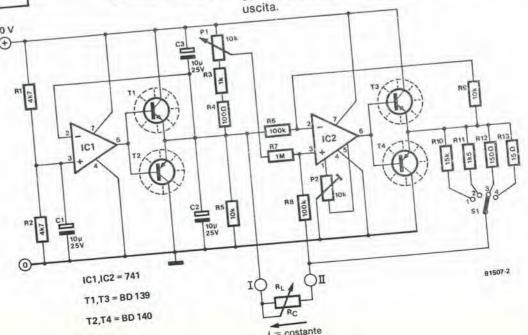
sia bisogno di una corrente costante. Il circuito che proproniamo ha un'altra applicazione molto utile: il convertitore di alimentazione da asimmetrica a simmetrica potrà essere usato per alimentare un amplificatore od un analogo appa-

Molti costruttori dilettanti posseggono un alimentatore di rete con tensione variabile che arriva a 30

1 mA ... 10 mA 10 mA ... 100 mA

V ed una corrente d'uscita di circa 200 mA (o più). Un tale alimentatore potrà benissimo essere usato per questo adattatore a corrente costante.


Il convertitore asimmetrico-simmetrico, composto da IC1 e dai transistori T1 e T2 garantisce una tensione d'uscita effettiva di \pm 15 V ai capi dei due condensatori C2 e C3. Questo alimentatore simmetrico potrà essere usato solo, basta che la corrente assorbita all'uscita non superi i 50 mA.


Esaminiamo ora con maggiori particolari l'adattatore a corrente costante vero e proprio. Il convertitore asimmetrico-simmetrico sarà necessario per alimentare l'amplificatore operazionale IC2. Questo amplificatore serve da generatore di corrente costante ed è comandato dal partitore di tensione formato dal potenziometro P1 e dalla resistenze R3 ed R4. Il potenziometro P1 potrà essere regolato per erogare una tensione d'uscita tra 1,5 e 15 V. Attraverso la resistenza di carico RL passerà una corrente costante che dipenderà dalla regolazione della tensione che sarà stata fatta con P1, nella portata scelta con il commutatore S1. Il circuito è fatto in modo che, indipendentemente dall'effettiva portata di tensione, la corrente attraverso Rudipenda soltanto dalla regolazione di P1. I transistor T3 e T4 formano semplicemente uno stadio amplificato-

La corrente di uscita dell'adattatore potrà essere calcolata mediante la seguente formula:

0,1 x UP1 R10 od R11 od R12 od R13

Il potenziometro P1 dovrebbe essere munito di una scala graduata da 1 a 10, in modo da facilitare il controllo della corrente desiderata. A seconda della posizione del commutatore di portata S1, si potrà dedurre il valore della corrente aiutandosi con i fattori di moltiplicazione stampati nella tabella. Si dovrà regolare il potenziometro P2 solo all'inizio, in modo da ottenere una corrente di uscita di 10 μA con S1 in posizione "1" e P1 regolato per la minima

semplice tastiera ASCII

5...12V (+) KB O KB1 10 52 KB 2 10 53 7 bits KR3 (8 bits data) 10 55 KB5 10 56 00 KB6 10 57 1058 (parity)

Molti appassionati che vorrebbero possedere un terminale video per il loro (Junior) computer, sono atterriti all'idea di costruirne uno, per il prezzo relativamente alto delle tastiere ASCII. Per questo motivo, vi presentiamo un progetto che rappresenta una delle alternative più a buon mercato alla solita tastiera. Con l'aiuto di questo circuito si potranno ottenere con la massima facilità i dati di uscita ad 8

bit e le campionature dei tasti.

L'informazione ad 8 bit che interessa viene composta con i commutatori S1 ... S8 in modo da dare la corretta configurazione ad un dato codice ASCII. Per ottenere, per esempio, la lettera "A" su di una tastiera esadecimale, si preme per primo il pulsante "4", seguito dal pulsante "1", in altre parole si batte il codice esadecimale "41". In questo modo si forma il codice ASCII 01000001. Per ottenere questo codice sulla tastiera ASCII semplificata, si dovranno mettere in posizione "1" i commutatori S1 ed S7, mentre i restanti (S2.. S6 ed S8) si dovranno trovare in posizione "0". Si preme poi il pulsante S9. L'impulso di campionatura così generato costituisce il "comando" dato al computer, di inserire in memoria l'informazione (dato).

Il circuito composto dalle porte logiche N1 ed N2 e dalle resistenze R1 ed R2 è un multivibratore bista-

Il segnale che esce dal flip flop serve ad avviare il multivibratore monostabile formato dalle porte N3 ed N4. Ogni volta che si preme il pulsante S9, l'uscita di N1 va a livello basso, e questo segnale provoca la partenza del monostabile che genera un impulso di campionamento negativo.

strobe (interrupt) 81501

N1 ... N4 = 4011

innaffiatore elettro-idraulico

È noto che i coltivatori di piante in possesso di una vasta collezione si trovano di fronte ad un duro lavoro se vogliono che i risultati siano soddisfacenti. L'innaffiatura delle piante è solo uno tra i compiti da svolgere, e può risultare molto dispendioso in fatto di tempo, se il numero delle piante è grande. Lo stesso non vale nel caso delle piante "domestiche", che spesso ci si dimentica di bagnare e soffrono di conseguenza la sete. L'innaffiatura delle

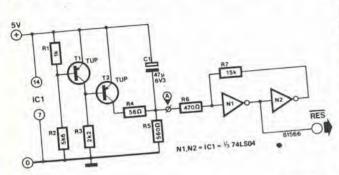
piante può ricevere un aiuto dall'elettronica, ed il semplice circuito qui illustrato produrrà una segnalazione acustica quando le piante vogliono l'acqua. I due elettrodi (A e C nella figura) sono infilati nel vaso della pianta ed insieme formano l'"interruttore idraulico". Quando l'acqua raggiunge le estremità di questi elettrodi, il segnale d'uscita dell'oscillatore da 1 kHz (N1) verrà mandato al punto "C" dello schema. Il segnale alternato viene raddrizzato dai diodi D1 e D2, e trattiene al livello basso il piedino 13 di N4. Poiché su questa porta è basato un altro oscillatore, un livello basso a quell'ingresso ne impedirà il funzionamento. Quando il livello dell'acqua si abbassa al di sotto dell'estremità del puntale C, il piedino 13 verrà mandato al livello logico alto da R9. L'oscillatore N4 produrrà ora un segnale per il cicalino che rammenterà il bisogno d'acqua da parte della pianta. La nota del cicalino può essere variata regolando il trimmer da 500 k.

Nel vaso della pianta si collocherà anche un terzo elettrodo B, che però terminerà ad un livello più alto di A oppure C; in realtà esso dovrà raggiungere il 222222222222 9 V/0,5 mA N1 . . . N4 = IC1 = 4093 OSCILLATORE = 1 kHz A DUS 菌 10k TOKO

punto di massimo livello dell'acqua. Questo dovrebbe dare al lettore un'idea circa il suo scopo. Mentre la pianta viene bagnata, si dovrà premere il pulsante S1. Quando il livello dell'acqua raggiunge l'estremità dell'elettrodo B, si accenderà il LED D5 che darà una precisa indicazione del fatto che ormai la pianta dispone di acqua sufficiente. Per economizzare sul consumo di corrente, il LED resterà acceso solo per una decina di secondi dopo il rilascio di S1. Se occorre, si potrà allungare questo tempo aumentando il valore di C8.

Gli elettrodi possono essere ricavati da spezzoni di filo di rame oppure incisi sul rame di una piastrina per circuiti stampati. Poiché la corrente che li attraversa sarà alternata, ne verrà ridotta la corrosione garantendone una durata piuttosto prolungata. La tensione di alimentazione non è critica e può avere un valore qualsiasi tra 5 e 15 V. Se però essa è molto inferiore ai 9 V consigliati, la sezione dell'elettrodo C dovrà essere piuttosto grande, allo scopo di permettere la caduta di tensione ai capi di D1

reset automatico


Questo circuito è stato progettato per generare un impulso di reset ogni volta che venga collegata la tensione di alimentazione, ed inoltre ogni volta che si verifichino consistenti "picchi" di interferenza

sulle linee di alimentazione. Molti circuiti digitali (ed in particolare i sistemi a microprocessore) devono essere resettati per un certo periodo dopo l'accensione iniziale. In questa eventualità, verrà generato un impulso di reset attivo al livello basso, che resterà a "0" per 30 ms dopo l'accensione dell'alimentatore. Al termine di questo tempo l'alimentazione risulterà totalmente accesa.

Il "reset automatico" funziona come segue: la sezione del circuito che sta attorno ai transistori T1 e T2 garantisce che la tensione ai capi del condensatore C1 resti a 0 V fino a che la tensione di alimentazione non raggiunga il livello di 4,5 V. Appena raggiunto questo valore della tensione di alimentazione, i transistori cesseranno di condurre ed il condensatore C1 si caricherà a poco a poco tramite la resistenza R5. Il risultato sarà che la tensione al punto A diminuirà lentamente da circa 4,5 V a 0 V, causando la commutazione del trigger di Schmitt formato da N1 ed N2, e così l'uscita RES andrà a

In altre parole, l'uscita RES si troverà chiaramente al livello basso per circa 30 ms dopo l'accensione, e finché il livello della tensione di alimentazione abbia raggiunto il suo giusto valore (4,75 V per i TTL). Una caratteristica supplementare di questo circuito consiste nella generazione di un impulso di reset ogni volta che la tensione cade per un motivo qualsiasi al di sotto dei 4,5 V. In certe applicazioni di elaboratori, questo fatto potrebbe essere di vitale importanza, in quanto un picco di interferenza, sebbe corto, è in grado di cancellare una vasta area di memoria! Per questo motivo, un impulso di reset

generato dal disturbo si rivelerà molto utile, poiché l'operatore sarà in grado di sapere che occorre far partire il programma sempre dal "quadratino uno". La fotografia mostra la caratteristica forma di un picco di interferenza e quella dell'impulso da esso

Si deve infine notare che il trigger di Schmitt non generato. dovrà necessariamente essere composto da due invertitori e da due resistenze. Qualsiasi tipo di trigger di Schmitt si comporterà infatti egregiamente in questa applicazione: si potrà per esempio impiegare il 74LS132.

indicatore di tensioni

Per il corretto funzionamento degli elaboratori e dei circuiti TTL è assolutamente necessaria un'alimentazione stabile. Non si potrà certamente tollerare una fluttuazione del 10%, perciò è prudente tenere sempre sotto controllo questa tensione.

A causa della loro mancanza di risoluzione e di precisione, è sconsigliabile far uso di strumenti ad indice per controllare il valore della tensione di

IC1=LM3914

alimentazione. A parte questo, un indice palpitante non è certo la scelta migliore per uno strumento di sorveglianza. Il controllo di tensione a LED risolve

tutti questi problemi. Il monitor è architettato in modo da coprire solo l'intervallo tra 4,5 e 5,5 V. Il componente impiegato, del tipo LM 3914, è molto simile a quello usato nel misuratore di livello audio che appare in altra parte di questa rivista (LM 3915). Quest'ultimo ha una scala logaritmica, mentre la scala dell'LM 3914 è lineare. Quest'ultimo dispositivo contiene una serie di 10 resistenze identiche da 1 k Ω ciascuna.

I due livelli di riferimento, RLO ed RHI, del circuito particolare di tensione P1, P2 ed R4 ... R6, sono fissati a 4,51/3 = 1,5 V ed a 5,41/3 = 1,8 V rispettivamente. Il "3" che appare nel calcolo è dovuto al fatto che anche la tensione d'ingresso viene divisa per tre dalle resistenze R1 ... R3. La tabella mostra quali saranno le tensioni di accensione di ciascun LED, una volta che il circuito sia perfettamente a punto. Per avere un'indicazione chiaramente visibile sarà meglio usare dei LED rossi per D1 e D10 e dei LED verdi per le altre posizioni. Si potrebbe anche rivelare molto utile usare un colore differente (arancio) per D5 e D6, che indicano il livello nominale della

L'alimentazione del circuito potrà essere tratta dal-

Tabella	Vcc (V) 4.51 4.60 4.61 4.70 4.71 4.80 4.81 4.90 4.91 5.00 5.01 5.10 5.11 5.20 5.21 5.30 5.31 5.40 5.41 5.50	D1 D2 D3 D4 D5 D6 D7 D8 D9

la tensione sotto controllo, poiché la corrente assorbita si limita a soli 20 mA. Il diodo D11 serve a proteggere il circuito contro l'inversione della pola-

Per tarare il circuito lo si deve collegare ad un alimentatore stabilizzato a tensione regolabile. La tensione d'ingresso viene regolata fino ad ottenere una lettura di 5,41 V su di un voltmetro digitale. Si potrà ora regolare il potenziometro P1 in modo da provocare l'accensione simultanea di D9 e D10. Si regola poi la tensione d'ingresso al livello di 4,61 V e si gira P2 fino ad ottenere l'accensione simultanea di D1 e di D2. Dato che le resistenze interne hanno un leggero effetto sul circuito, sarà opportuno ripetere la taratura per ottenere la massima precisione. Per garantire un funzionamento soddisfacente del controllo di tensione a LED, tutte le resistenze dovranno avere una tolleranza del 5%.

2888888888888 Elektor. Si tratta di due comparatori binari e quattro

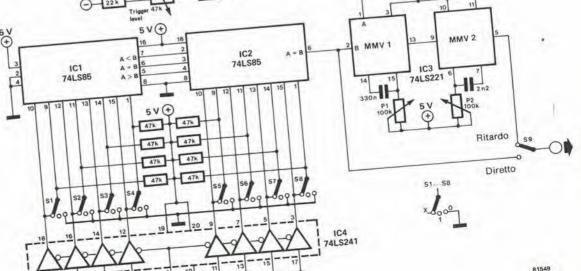
riconoscitore di parole e trigger ritardato

Molti oscilloscopi non sono particolarmente adatti a visualizzare segnali digitali. Sarà piuttosto facile proiettare un semplice segnale che si ripeta con regolarità, ma dei segnali con una frequenza di ripetizione molto bassa, di 50 Hz o meno, saranno molto difficili da esaminare. Questo circuito corregge il problema in due modi. Purché abbia un ingresso di trigger, anche un oscilloscopio di tipo economico potrà essere provvisto di prerogative di cui dispongono solo i tipi più cari, provvisti di una doppia base dei tempi. Questo circuito suppletivo è pratico sia in caso di segnali digitali che analogici. La seconda parte del circuito è un sistema di riconoscimento delle parole (digitali) da 8 bit: se occorre la parola si potrà anche allungare. Il dispositivo serve a determinare il punto di trigger dell'oscilloscopio ricavandolo da otto diversi segnali digitali

Il riconoscitore di parole forma un complesso indipendente in questo schema, e potrà anche essere usato come ampliamento delle possibilità di trigger nell'analizzatore logico descritto poco tempo fa su

A2

bit (IC1 ed IC2). In altre parole, è possibile confrontare due parole da 8 bit: se queste sono identiche, l'uscita A=B (piedino 6) di IC2, assume il livello


Gli ingressi al riconoscitore di parole sono provvisti di buffer grazie ad IC4 (un 74LS241). Ogni buffer necessita di una corrente d'ingresso di soli 100 μA, per cui si potranno collegare ad esso tutti i circuiti digitali con alimentazione a 5 V, compresi i CMOS. È anche possibile estendere il riconoscitore di parole, collegando uno o più comparatori supplementari in serie ai piedini 2, 3 e 4 di IC1. Naturalmente, si dovrà anche aumentare il numero dei

Il circuito di ritardo della base dei tempi consiste di due multivibratori monostabili (MMV1 ed MMV2). Il ritardo effettivo si potrà regolare all'incirca entro lo stesso campo di un normale oscilloscopio ed in tal modo formerà una vera seconda base dei tempi. Se occorre, si potranno sostituire P1 e P2 con dei commutatori rotativi a parecchie posizioni, muniti di una chiara suddivisione della scala. In questo modo si avrà un'indicazione più chiara della situazione della base dei tempi.

Se usato unitamente al riconoscitore di parole, sarà possibile visualizzare con questo circuito qualsiasi porzione di un segnale digitale. Ne risulta in pratica un analizzatore logico ad uno o due canali (a seconda del tipo di oscilloscopio a disposizione). L'ingresso di trigger analogico è particolarmente utile se lo si usa con oscilloscopi provvisti soltanto della possibilità di trigger automatico. L'aggiunta del ritardo della base dei tempi dà la possibilità di visualizzare porzioni di un segnale analogico che richieda un esame più dettagliato del solito.

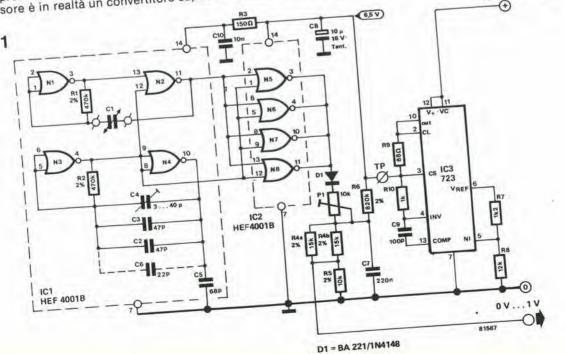
Faremo un paio di esempi citando il vertice di un segnale sinusoidale oppure il fronte di un'onda quadra: si potranno così esaminare gli "sfarfallamenti" o le ondulazioni sovrapposte al segnale ed

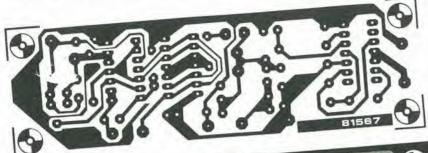
ancora altri diversi fenomeni. Avviamento Diretto DUS 2k7 105 LF 356 ⊕5 V DUS 5 V (-) 22k 10 5 V (+) MMV 2 MMV 1 IC2

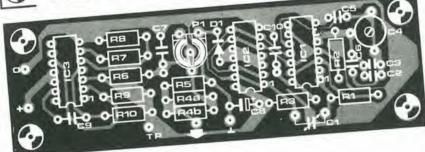
A6

sensore di umidità

Incoraggiati dall'enorme successo ottenuto dal sensore di umidità pubblicato nel numero di Novembre '81 di Elektor, i nostri progettisti si sono decisi a mettere a punto un circuito leggermente modificato. In questo modo ci sarà anche la possibilità di cambiare leggermente l'alimentazione, in modo da evitare d'ora in poi l'influenza delle variazioni di temperatura sul risultato. Questo risultato si può ottenere impiegando il ben noto regolatore di tensione integrato 723, che è una felice combinazione di ottime prestazioni e di basso prezzo. Inoltre, la sua insensibilità alle variazioni di temperatura è eccellente. Per ottenere una tensione d'uscita di 6,5 V, il 723 deve essere provvisto di una tensione d'ingresso che non scenda mai al di sotto dei 9 V. Il circuito vero e proprio è analogo a quello pubblicato nel numero di Novembre '81, dove sono descritti anche il funzionamento e la messa a punto. Tanto per rinfrescare la memoria, faremo ora un breve sommario delle notizie date nel precedente articolo. Il sensore di umidità Valvo deve essere in realtà considerato come un condensatore, formato da uno strato di separazione dielettrica ricoperto su entrambe le facce con uno strato conduttivo d'oro sublimato sotto vuoto. Lo strato d'oro è talmente sottile che le molecole d'acqua possono penetrare nello stato dielettrico variandone le caratteristiche e perciò la capacità del complesso. Se l'umidità atmosferica aumenta, la capacità aumenta in modo pressoché proporzionale. Il circuito a valle del sensore è in realtà un convertitore capacità/tensione.


Nel primo circuito integrato troviamo due multivibratori astabili: uno è composto da N1, da N2 e dal sensore di umidità C1. L'altro multivibratore astabile è formato da N3, N4 e C2 ... C6, ed è usato per la calibrazione del circuito. Se la taratura è corretta, la frequenza dei due oscillatori sarà la medesima. Poiché l'uscita di N3 è collegata all'ingresso di N2, i due oscillatori entreranno in funzione contemporaneamente. Se si verifica un aumento dell'umidità, la capacità di C1 aumenterà e di conseguenza diminuirà la frequenza di N1-N2. Ciò vuol dire che l'uscita di N2 resterà a livello "alto" più a lungo di quella di N4. La differenza di tempo viene rivelata da IC2, che la converte in una tensione d'uscita. Per ottenere una lettura affidabile, si deve tarare l'intero circuito nel modo seguente:


Controllare la tensione di alimentazione (6,5 V). La si può variare cambiando il rapporto R9/R10. Sostituire il sensore con un condensatore da


118 pF, e regolare nuovamente C4 per ottenere la tensione d'uscita di valore minimo.

Collegare al posto del sensore un condensatore da 159 pF. Regolare P1 in modo da ottenere la deviazione a fondo scala dello strumento (1 V). Dopo il rimontaggio del sensore (attenzione alla capacità aggiunta da eventuali cavi di collegamento troppo lunghi!) si regola C4 fino ad ottenere la corretta indicazione di un livello di valore

Nel caso che il lettore non sia in possesso di condensatori con quei valori piuttosto insoliti, il circuito potrà anche essere tarato a due livelli di umidità molto diversi (uno molto alto ed uno molto basso). Per la bassa umidità si dovrà regolare C4, per l'umidità maggiore servirà P1. Poiché le due manovre esercitano una reciproca influenza, si dovrà ripetere un certo numero di volte l'intero procedimento. Per generare valori noti di umidità occorre un igrometro di precisione (da prendere a prestito11). Nel numero di Novembre '81 di Elektor si è parlato di un metodo di taratura igrometrica che si basa sull'uso di vari sali. Il segnale d'uscita potrà essere letto in modo diversi. Si potrà usare il voltmetro digitale Ub = > 9 V 2 mA

R1,R2 = 470 k 2% $R3 = 150 \Omega$ R4a,R4b = 15 k 2% R5 = 10 k 2% R6 = 820 k 2% R7 = 1k2B8 = 12 k $R9 = 68 \Omega$ R10 = 1 k P1 = 10 k trimmer

Condensatori:

C1 = Sensore di umidità(Doram) C2,C3 = 47 p p100C4 = 3 . . . 40 p trimmer C5 = 68 pC6 = 22 p p 100C7 = 220 n $C8 = 10 \,\mu/16 \,V$ tantalio C9 = 100 pC10 = 10 n

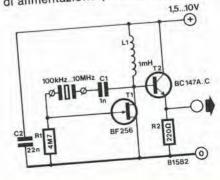
Semiconduttori:

IC1,IC2 = HEF 4001B 1C3 = 723D1 = BA 221 (1N4148)

che compare in questo numero oppure, naturalmente, un altro tipo qualsiasi di voltmetro digitale, purché la sua impedenza d'ingresso non sia inferiore ad 1 M Ω . Se occorre, si potrà montare uno strumento analogico a bobina mobile (50 μA, 1 k), che dovrà essere munito di una resistenza in serie da 19,6 k, collegandolo poi tra la congiunzione di P1 con R4 e la massa. Una resistenza con questo valore un poco insolito si potrà trovare nella serie E-48, e dovrà avere una tolleranza del 2%.

Collegando uno strumento di misura di resistenza

interna tanto bassa, si dovrà fare attenzione a non collegarne più di uno alle uscite. Volendo si potrà anche usare uno strumento digitale con resistenza interna inferiore ad 1 M, ma si dovrà modificare il valore originale di R7 in modo da ottenere la resistenza in parallelo (strumento + R7) di 19,6 k. È possibile completare il sensore di umidità con l'indicatore grafico a barre, descritto altrove in questo fascicolo: sarà in tal modo possibile una rappresentazione visuale del valore misurato dell'umidità.


oscillatore a cristallo... ...per bassa tensione di alimentazione

È molto facile costruire un oscillatore a cristallo impiegando un transistor ad effetto di campo. Questo particolare circuito funziona con una tensione di alimentazione relativamente bassa, da 1,5 V in su, ed è stato provato nel laboratorio di Elektor facendo uso di quarzi normalissimi con frequenze tra 100 kHz e 10 MHz.

Il quarzo è collegato tra il drain ed il gate del transi-

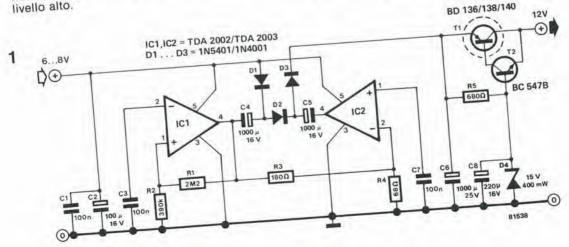
stor ad effetto di campo T1 e funziona in risonanza parallelo. L'inserzione della bobina L1 migliora la banda di frequenza che è possibile generare. Inoltre serve come induttanza addizionale in parallelo per quei cristalli che non siano particolarmente adatti per questa applicazione, e che siano difficili da indurre in oscillazione. Il condensatore C1 in serie adatta al circuito la capacità del cristallo. La reazione occorrente ed il necessario sfasamento di 180° sono prodotti dalle capacità interne di ingresso ed uscita del FET. Il segnale d'uscita è amplificato dal transistor T2.

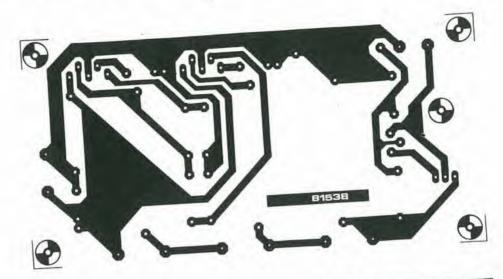
Questo circuito è stato provato in laboratorio con la seguente serie di cristalli: 100 kHz, 1 MHz, 4 MHz, 6 MHz, 8 MHz, e 10 MHz. Si può usare questo circuito per moltissime applicazioni, grazie alla bassa tensione di alimentazione (minimo 1,5 V).

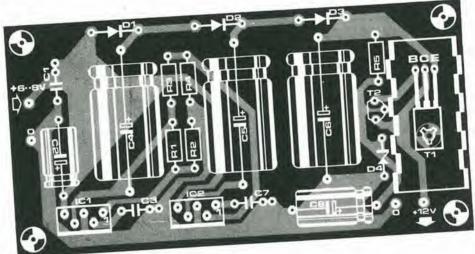
convertitore da 6 a 12 V

Esistono al mondo innumerevoli "maggiolini" Volkswagen e vecchie automobili Ford che hanno la batteria dell'impianto elettrico da 6 V. In tali vetture (ed anche sulle motociclette), sorgono sempre dei problemi quando si tenda di installare una moderna autoradio che deve essere alimentata con 10,7 V al minimo. Una soluzione consiste nel montare un convertitore da 6 a 12 V del tipo descritto in questo articolo. Il semplice convertitore potrà erogare una corrente di circa 700 mA e la sua costruzione è

relativamente economica. Queste due caratteristiche, semplicità e buon prezzo, derivano dal concetto del circuito, che contiene due amplificatori audio di potenza integrati e non ha bisogno di trasformatore. Il primo amplificatore, IC1, funziona da multivibratore astabile di potenza. La frequenza di oscillazione dipende dalla capacità del condensatore C3 ed è all'incirca di 4 kHz in assenza di carico, arrivando ad un massimo di 6 kHz quando si collega il carico. Il segnale d'uscita del secondo amplificatore (IC2) è identico a quello del primo, ma sfasato rispetto a questo di 180°.


Se la tensione d'uscita di IC1 è bassa, il condensatore C1 si carica tramite il diodo D1 fino a raggiungere quasi il valore di alimentazione (la piccola differenza è dovuta alla caduta di tensione dirtta dal diodo D1). Quando l'uscita del multivibratore astabile IC1 diventa positiva, la sua tensione di uscita si somma a quella presente ai capi di C4, per cui il diodo D1 blocca ed il condensatore C5 si carica tramite il diodo D2 fino ad un livello che è pressapoco doppio dell'originale tensione di alimentazione. A causa della fase opposta di IC2, la sua uscita provvederà a mantenere a livello basso l'elettrodo negativo di C5. Alla successiva inversione di polarità del multivibratore astabile, l'uscita di IC1 andrà nuovamente a livello basso e l'uscita di IC2 andrà a livello alto.


In questo modo si caricherà C4 e sarà la tensione ai capi di C5 ad essere raddoppiata. A questo punto, il condensatore C5 trasmette il suo potenziale al condensatore d'uscita C6, tramite il diodo D3.


In teoria, il circuito dovrebbe triplicare la tensione d'ingresso, ma in pratica C6 raggiungerà una tensione inferiore, che dipenderà dal carico. Le misure effettuate hanno dimostrato che una batteria al piombo da 6 V, con una tensione nominale di 7,2 V, produce una tensione d'uscita di 18 V a vuoto, ma con un carico di 750 mA, questa tensione scende a 12 V. Ad una corrente "media" di 400 mA; la tensione d'uscita è di circa 14 V. Questi valori saranno senza dubbio sufficienti ad alimentare una normale autoradio mono. Misure effettuate con ricevitori similari di marche diverse, hanno dimostrato che nessuno di essi consuma più di 500 mA e con il volurne ad un valore medio, tale assorbimento sarà di rado superiore ai 300 mA.

Per evitare un inaccettabile aumento della potenza assorbita quando si colleghi un carico a bassa impedenza, il convertitore è munito di uno stadio limitatore supplementare formato da un diodo zener da 15 V e da un circuito Darlington complementare (transistori T1 e T2). Questo accorgimento limiterà la tensione massima ad un valore di circa 14,2 V. Contemporaneamente, il condensatore C8 collegato ai due transistori, provvede a ridurre l'ondulazione residua a meno di 50 mV nelle condizioni di massimo carico. Durante le prove pratiche, non si è avvertita alcuna influenza sulla qualità della radioricezione da parte della frequenza di oscillazione

In figura 2 si vede il circuito stampato del convertitore. Grazie alle piccole dimensioni, la costruzione di questo circuito non presenta problemi. I due amplificatori integrati ed il transistor T1 potranno essere mantenuti freddi a sufficienza se saranno montati (muniti di rondelle di mica) su un normale dissipatore termico disposto sul lato lungo della basetta. Il dissipatore dovrà avere la stessa larghezza del circuito stampato e dovrà essere montato perpendicolare all'orlo, per garantire un'ottima dispersione del calore. I due amplificatori integrati contengono dei circuiti di protezione contro il cortocircuito ed il sovraccarico termico, per cui non si dovranno temere conseguenze catastrofiche in caso di sovraccarico o surriscaldamento del circuito. Come amplificatori si potranno impiegare dei TDA 2002 oppure dei TDA 2003. A quest'ultimo si do-

Elenco dei componenti:

Resistenze:

R1 = 2M2

R2 = 390 k

 $R3 = 180 \Omega$

 $R4 = 68 \Omega$

 $R5 = 680 \Omega$

Condensatori:

C1,C3,C7 = 100 n

 $C2 = 100 \,\mu/16 \,V$

 $C4,C5 = 1000 \mu/16 V$ $C6 = 1000 \,\mu/25 \,V$

 $C8 = 220 \,\mu/16 \,V$

Semiconduttori:

T1 = BD 136/138/140

T2 = BC 547B

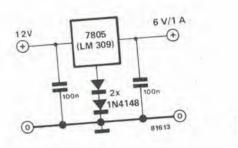
D1,D2,D3 = 1N5401/1N4001

D4 = 15 V/400 mW diodo zener

IC1,IC2 = TDA 2002/TDA 2003

vrebbe dare la preferenza a causa di alcune sue migliori caratteristiche. Lo stesso vale per i diodi; sono più adatti i diodi da 3 A (1N 5401), perché la loro caduta diretta è inferiore. Impiegando dei diodi tipo 1N 4001, ci si dovrà attendere una tensione

d'uscita più bassa di 0,5 ... 1 V. Aumentando la capacità di C4, C5 e C6 a 200 μF, la corrente massima di uscita aumenterà di circa 100 mA. Per ottenere correnti di uscita ancora maggiori, si potranno collegare in parallelo due convertitori. In questo caso, lo stadio limitatore (R5, C8, D4, T1 e T2) non dovrà essere montato sul secondo circuito, e si dovrà fare un collegamento tra gli elettrodi positivi dei due condensatori C6. Il transistor T1 potrà essere scelto tra i tipi seguenti: BD 236, BD 238, BD 204, BD 288, oppure BD 438. La corrente massima che si potra avere collegando due convertitori in parallelo è pressoché doppia: 1,3 A. In questo caso si potranno installare agevolmente impianti stereo o radioregistratori a cassette, anche su vetture con batteria a 6 V.


convertitore da 12 a 6 V

Dopo aver detto come si possa installare una moderna autoradio a 12 V su un veicolo provvisto di impianto elettrico a 6 V, con l'aiuto dei convertitore descritto al numero 79, sarebbe ora una buona idea prendere in considerazione l'altra faccia della medaglia: la necessità di ottenere tensioni inferiori da un sistema a 12 V. L'applicazione più comune di questo tipo di convertitore si ha quando si voglia usare in auto un registratore a cassette portatile. Molti di questi apparecchi richiedono una tensione di alimentazione tra 5 ed 8 V.

La soluzione più semplice e più ovvia è quella di usare un regolatore di tensione integrato. A parte i tipi a 6 V, come il 7806, è anche possibile usare una

versione a 5 V (7805 oppure LM 309), aumentandone la tensione d'uscita inserendo due diodi nel filo comune, come si vede sullo schema elettrico. A seconda del tipo di diodi usati, la tensione d'uscita starà tra 6 e 6,5 V. La corrente massima ricavabile dai tipi suddetti è di 1 A. È importante assicurare al regolatore un adeguato raffreddamento, provvendendolo di un sufficiente dissipatore termico.

I registratori a cassette che comprendono anche la radio, necessitano spesso di una tensione di alimentazione leggermente superiore, cioé di 7,5 V. In questo caso, si potrà usare il 7808 oppure il 7805 con quattro diodi in serie al conduttore comune.

multiplatore a 16 canali a sensori

Tra i vari "gadget" che sembrano piacere di più agli appassionati di elettronica, c'é una categoria che sembra emergere tra tutte: i comandi con sensori a sfioramento. Se ne potranno trovare su apparecchi estremamente semplici come pure su quelli più complessi. Nulla sembra superare in raffinatezza

questi tipi di azionamenti. La particolare applicazione che descriviamo in questa nota, serve a controllare la tensione di sintonia in un ricevitore FM. Ci si avvale di un multiplex di 16 canali analogici eseguito mediante un codice binario. A seconda del codice binario a quattro bit presente all'ingresso, verrà effettuata la selezione di un canale su sedici.

Il circuito è suddiviso in due sezioni: l'ingresso binario sensibile al tocco ed il multiplatore analogico a 16 canali. Occore notare che quest'ultima senzione potrà essere usata insieme a due altri circuiti di pilotaggio che appaiono in questo stesso numero della nostra rivista: più precisamente con il selettore di canali doppio ed il selettore di canali a 16

Si deve notare che il funzionamento di questa parti-

colare sezione verrà descritto una sola volta, cioé

Negli articoli successivi si farà riferimento a questo e si indicheranno solo i punti ai quali dovranno essere collegati (A, B, C e D). A seconda del segnale digitale che sarà presente a questi quattro ingressi, verrà trasmesso all'uscita (piedino 1) del multiplatore IC2, uno dei 16 segnali analogici d'ingresso. L'integrato IC2 è un multiplexer/demultiplexer CMOS tipo 4067.

Si potranno applicare a ciascuno di questo sedici ingressi dei segnali analogici con tensioni tra 0 V e 12 V. In questo caso particolare, le tensioni sono ricavate da potenziometri multigiri (P1 ... P16). Il

Elenco dei componenti:

Resistenze;

R1 . . . R8 = 10 M

R9 . . . R12 = 820

R13 = 100 k

R14 = 120 k

P1 . . . P16 = 100 k trimmer multigiri

Condensatori:

C1 . . . C4 = 10 p

C5 = 56 n

C6 . . . C22 = 100 n

Semiconduttori:

D1 . . . D4 = LED

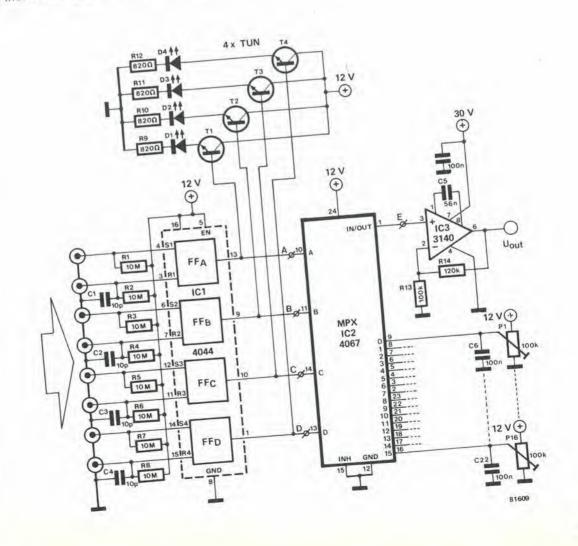
T1 . . . T4 = TUN

1C1 = 4044

1C2 = 4067

1C3 = 3140

segnale d'uscita di IC2 è disponibile sul punto E, e potrà essere usato come segnale di controllo per ogni sorta di applicazioni. Si deve però osservare che la tensione su ognuno dei sedici ingressi non dovrà mai superare quella di alimentazione. Se il circuito dovrà pilotare un sintonizzatore a varicap, cioè in un caso tra i più frequenti, potrà benissimo darsi che i 12 V siano insufficienti, per il fatto che molti di questi sintonizzatori, sia per radio che per TV, richiedono una tensione di pilotaggio più elevata. Il problema si può risolvere molto semplicemente amplificando l'uscita di IC2 mediante IC3. Il segnale verrà aumentato di livello fino a raggiungere un massimo di 24 V. In teoria, si potrà arrivare a


30 V aumentando a 150 k il valore di R14. Il lato più interessante di questo circuito è che la selezione dei canali è fatta direttamente in codice binario dall'utilizzatore. Si ottiene lo scopo mediante quattro flip flop contenuti in un solo circuito integrato (IC1). Le resistenze di pull-up R1 ... R8 mantengono a livello alto le uscite di ciascun flip flop fintanto che nessuno dei contatti a sfioramento è attivato. I condensatorì C1 ... C4 servono a garantire il reset al momento del collegamento dell'alimentazione. I livelli logici delle uscite dei flip flop sono indicati dai LED D1 ... D4, sempre in codice

L'affidabilità dei flip flop è garantita dall'impiego di tipi R-S, per cui essi non risentiranno dei brevi picchi d'interferenza. In questo modo si facilita l'azionamento del circuito. Per scegliere un particolare canale, se ne deve conoscere il numero, e si deve anche sapere come si converte questo numero in codice binario mediante lo sfioramento dei sensori.

Se, per esempio, vogliamo scegliere il canale 5, occorrerà inserire il codice binario 0101 (va naturalmente detto che i sensori devono essere mantenuti puliti). Per ottenere il suddetto codice, si dovranno azionare i seguenti sensori: reset A, set B, reset C e set D, dove la parola "set" si riferisce al livello logico alto e "reset" al livello basso. Per questo motivo sarà vantaggioso montare i quattro pul-

santi "set" sopra i quattro di "reset". Questo metodo di "programmazione" potrebbe sembrare un tantino bizzarro, ma è molto facile farci l'abitudine. Esso possiede anche i seguenti due vantaggi: potrete imparare il codice binario e lo schema è molto economico per la presenza di soli otto sensori e quattro flip flop. Ciò che tutto questo vuol dire lo si potrà scoprire dall'esame dell'articolo

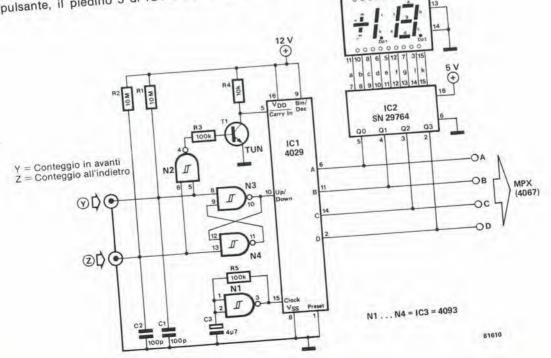
che riguarda il controllo a 16 ingressi.

838888888888 tramite N2 ed il transistor T1. Questo è necessario

selettore di canali a doppio ingresso

Il circuito descritto in questo articolo presenta una soluzione diversa del multiplatore a 16 canali descritto nell'articolo precedente. Non sarà difficile immaginare che il comando binario non sarà al vertice delle aspirazioni di molti nostri lettori, principalmente a causa dell'azionamento piuttosto insolito. Con l'aggiunta di pochi componenti, sarà possibile raggiungere il medesimo scopo con soli due pulsanti. In questo modo l'azionamento dell'apparecchio sarà molto facilitato. Il solo comando in questo caso sarà di toccare un sensore per contare in avanti, ed un altro per contare all'indietro per scegliere tra i diversi canali. Inoltre, invece di avere, come nel caso precedente, un display a quattro LED, ci sarà una vera e propria indicazione numerica del canale scelto, eseguita mediante un display a nove segmenti. Il display da una cifra e mezza necessita di una speciale decodifica (l'SN 29764). Esaminiamo ora il circuito più attentamente. L'oscillatore di clock formato da N1 e dai relativi componenti manda una serie d'impulsi al contatore binario IC1. A seconda del livello logico al piedino 10 di questo componente, esso funzionerà da contatore o da decontatore. Questo livello logico proviene dai sensori tramite il flip flop R-S composto da N3 ed N4. Ogni volta che è attivato uno o l'altro pulsante, il piedino 5 di IC1 è mantenuto basso

per attivare il contatore. Di conseguenza non succede nulla fino a quando non venga toccato uno dei


Le quattro linee d'uscita generano il codice binario per il multiplatore binario 4067, già ricordato all'inizio di questo articolo. Questa informazione binaria viene decodificata da IC2 per essere trasformata in segnali di controllo per il display ad una cifra e mezzo. Si tratta di una decodifica di tipo speciale, il cui progetto originale era destinato ai ricevitori televisivi dove doveva indicare il numero del canale

Esso può controllare nove segmenti. Anche il display è di tipo particolare, il MAN 6650 della Monsanto. Se però questo componente è difficile da trovare, potrà essere sostituito da una coppia di visualizzatori più normali con relative decodifiche. Si deve però tener presente che la combinazione di

decodifica e display indicata sullo schema mostrerà i numeri da 1 a 16, anziché da 0 a 15, come

Infine abbiamo bisogno di sapere come usare il circuito. Per scegliere un particolare canale, si dovrà azionare uno o l'altro dei due sensori. In questo modo si darà l'assenso all'ingresso di clock di IC1, che poi riceverà i relativi impulsi da N1 ad una cadenza di due al secondo. Il codice binario d'uscita verrà perciò incrementato o diminuito di uno allo stesso ritmo, a seconda di quale sia il pulsante toccato. Finché si tocca il sensore, il conteggio prosegue ed il numero dei diversi canali verrà indicato in sequenza sul display per un tempo sufficiente ad essere chiaramente visto (circa 450 ms). Non appena si lascia il sensore, lo stato del contatore viene "congelato" e l'ingresso di conteggio viene disattivato. L'articolo che seguirà parlerà di qualcosa di analogo, ma che impiega un sistema ancora diverso. Si tratterà cioé di un circuito per controllare lo stesso multiplatore, ma questa volta con tutti e sedici gli ingressi!

MAN 6650

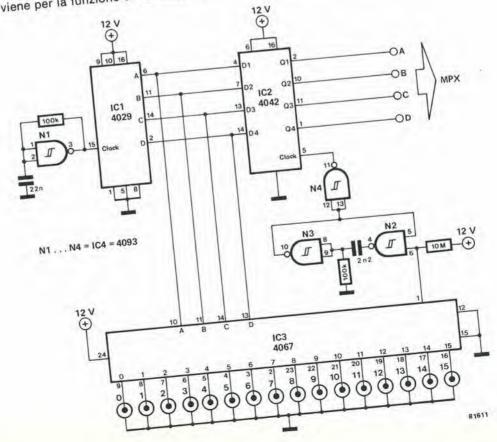
selettore di canali a 16 ingressi

Si tratta del terzo modo di comandare il multiplatore a sedici canali descritto su questa rivista. Il primo sistema consisteva in un controllo binario, mentre il secondo faceva uso di due soli sensori. Ora finalmente, eccoci alla versione più complicata.

mente, eccuci alla versione più son demultiplatoSi tratta di un pilotaggio d'ingresso a demultiplatore con sedici sensori. In altre parole, un sensore per
ciascun canale. Con questo, l'operatore avrà a disciascun canale. Con questo, l'operatore avrà a disposizione il sistema più facile possibile per sceglieposizione il sistema più facile possibile per scegliere i canali. È ovvio che questo sistema funziona
secondo la numerazione decimale, che è quella
secondo la numerazione decimale, che è quella
meglio conosciuta noi, poveri umanoidi. Per quanto leggermente più complicato dei precedenti, questa versione richiede un numero minore di componenti. Perciò in questo caso il confort è anche re-

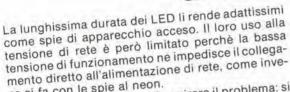
Vediamo ora i principi base del multiplatore (multipleter). Ci sono in tutto 16 segnali d'ingresso analogici, ognuno dei quali potrà essere inviato all'uscita, previa amplificazione, per controllare un sintonizzatore a varicap o qualcosa di analogo. Nel circuito di selezione qui descritto, lo stesso circuto integrato viene per la funzione di demultiplatore.

Questo componente viene controllato da un contatore binario (IC1 = 4029) che a sua volta riceve gli impulsi di clock da un multivibratore astabile formato da N1 e relativi componenti. La frequenza di mato da N1 e relativi componenti. La frequenza di oscillazione è di circa 500 Hz. Il codice binario all'uscita del contatore è incrementato di uno ad ogni impulso di clock. Ciò vuol dire che gli ingressi del demultiplatore saranno trasferiti all'uscita di IC3 (piedino 1) uno alla volta consecutivamente. Le uscite A, B, C, D del contatore binario IC1 sono uscite A, B, C, D del contatore binario IC1 sono anche mandate agli ingressi di IC2, che è una meanche mandate agli ingressi di IC2, che con moria di sosta (latch) a quattro ingressi. Quest'ultimo componente riceve il segnale di clock dal multivipratore monostabile formato dalle porte logiche

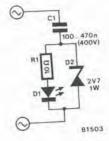

N2 ed N3.

Quando venga azionato uno dei sedici sensori, il corrispondente ingresso del demultiplatore sarà collegato al filo comune dell'alimentazione. Ad un certo istante, che dipende dal conteggio di IC1, il certo istante, che dipende dal conteggio di IC1, il segnale proveniente da questo ingresso verrà trassegnale proveniente da questo ingresso verrà trasferito al piedino comune d'uscita, che assumerà anch'esso il livello logico zero. Questo impulso fa anch'esso il livello logico zero. Questo impulso fa partire il multivibratore monostabile, che a sua volta segnacia il latch che trasferisce all'uscita i segnali presenti al suo ingresso.

binari presenti al suo ingresso. Il codice binario corrispondente al canale scelto verrà perciò trasmesso all'uscita proprio in questo


Quando si abbandona il sensore, il relativo codice viene trattenuto nel latch fino quando non venga toccato un altro sensore. Ciò significa, naturalmente, che il circuito potrà comandare il multiplatore a

In questo articolo non si parla del display, ma non c'é motivo che impedisca di usare quello descritto nell'articolo precedente.


84

LED a tensione di rete

ce si fa con le spie al neon.
Per fortuna, c'è un modo di aggirare il problema: si
può usare la resistenza alla c.a. di un condensatore
per limitare la corrente. Non c'è perdita di potenza
nel condensatore, poichè la tensione e la corrente

sono sfasate tra loro di 90°. Il diodo zener D2, che agisce in questo caso come un normale diodo polarizzato in diretta, evita che ai capi del LED appaiano livelli di tensione eccessivi

durante il semiperiodo negativo della tensione di rete. Se il circuito viene acceso durante la semionda positiva, D2 eviterà che la tensione ai capi del LED D1 ed ai capi di R1 salga ad un valore superiore a 2,7 V. Se in questo caso si impiegasse un normale diodo, come nel circuito precedente, il LED se ne andrebbe alla grande scatola di rottami del paradiso dei semiconduttori (in altre parole defungereballe

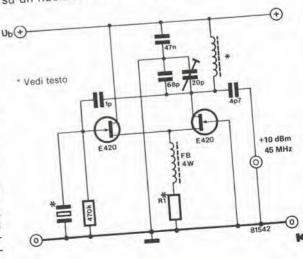
Il valore di C1 determina la corrente che passa attraverso il LED. Con C1 = 100 n, la corrente sarà di circa 4 mA, mentre sarà di circa 20 mA scegliendo per il condensatore un valore di 470 n.

85

oscillatore risonante in parallelo a basso rumore

Potrebbe anche essere ignoto ai più che gli oscillatori in overtone possono funzionare con risonanza in parallelo altrettanto bene che in risonanza serie. Il principale vantaggio della risonanza in parallelo è la maggior stabilità. A parte questo, non ci sarà più la maggior stabilità. A parte questo, non ci sarà più bisogno di compensare la capacità parassita del bisogno di compensare la capacità parassita del posto questo modo di risonanza consistono nelposto questo modo di risonanza consistono nell'impedenza in parallelo. Al di sotto di un certo valore, il guadagno d'anello diverrà insufficiente a sostenere l'oscillazione. Nei moderni ricevitori e/o convertitori, è imperativo che l'oscillatore (a quarzo) possegga un forte rumore di banda laterale, perciò si è dedicata molta attenzione anche a questo aspetto della questione.

Nel circuito che appare in figura, l'elemento attivo è un FET doppio a basso rumore (praticamente qualsiasi FET doppio del tipo VHF della Siliconix, andrà benissimo). Il vantaggio di usare i FET è che essi non caricano l'impedenza del cristallo. Le variazioni di ampiezza sono eliminate usando una configu-

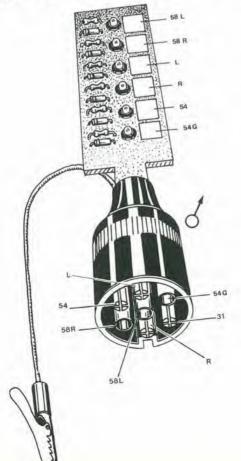

razione a coppia "long tailed" (letteralmemte: a co-

da lunga).
Per ottenere i migliori risultati,il progettista/tecnico
deve osservare le seguenti direttive:

La tensione d'uscita del circuito oscillante non deve risultare inferiore alla tensione di ginocchio del FFT.

2. Il valore del condensatore di accoppiamento al cristallo dovrà essere più piccolo possibile, allo scopo di evitare oscillazioni spurie.

3 Il condensatore di accoppiamento d'uscita deve essere regolato per ottenere il massimo segnale. La possibilità di ottenere una cifra di rumore ottimale dipenderà dalla corrente che passa attraverso i FET. Il valore della corrente di minimo rumore si potrà ricavare dai fogli dati riguardanti il componente usato: di norma si tratterà di un valore tra 5 en 15 mA. Per ottenere la giusta corrente si dovrà regolare il valore della resistenza R1. L1 è formata da 6 spire di filo di rame smaltato da 1 mm avvolte su un nucleo Amidon tipo T50-12.



288888888888 dovrebbero. Sarà sufficiente inserire la spina nella

strumento di controllo per il connettore della roulotte

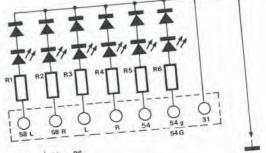
Una delle cose più importanti da fare quando si collega una roulotte ad un'automobile, è di controllare che tutte le luci funzionino bene. Si spera che tutto vada bene, ma talvolta c'è, naturalmente, qualche guaio. La domanda che sorge spontanea in questi casi è: "il guasto è nell'impianto elettrico dell'auto oppure in quello della roulotte ?". Questo circuito di prova servirà a controllare l'impianto elettrico dell'automobile, fino a comprendere il connettore di collegamento alla roulotte. Diventa così abbastanza semplice stabilire esattamente dove sia il guasto e ripararlo con la minima perdita di

Questo strumento darà una chiara indicazione del fatto che tutti i piedini funzionino o meno come

presa della vettura e vedere quali lampade si accendono. Il circuito è talmente semplice che non occorrono spiegazioni. Non saranno però superflue alcune parole sullo schema. Nelle auto con il polo positivo della batteria a massa, essia collegato al telaio, tutti i diodi ed i LED dovranno essere girati, ossia collegati con polarità opposta. I LED e gli altri componenti potranno essere montati in fila sulla spina di prova, come si vede in figura.

Molti lettori potranno preferire un altro montaggio: i LED saranno in questo caso collegati alla spina mediante un gruppo di fili sufficientemente lungo da arrivare dalla coda della macchina al posto di guida. Si potranno così collaudare direttamente le luci dello "stop", e tutta la restante fanaleria. I veri appassionati potranno montare i LED fissi sulla plancia degli strumenti (i fili si collegheranno alla parte posteriore della presa). Un'altra soluzione sarebbe di montare le luci sul vetro anteriore della roulotte, in modo da poterle vedere sullo specchiet-

Sarà bene ricordare che, se nessuno dei LED si to retrovisivo. accende, ci sarà con tutta probabilità un difetto del collegamento al telaio, che dovrà essere eliminato prima di proseguire con i controlli. Si può verificare esistenza di un simile guasto collegando al telaio la pinza a coccodrillo del filo che esce dal nostro


La tabella allegata fornisce i collegamenti "a norme internazionali" ed anche il codice dei colori per i cablaggi. I lettori talmente fortunati da possedere una roulotte costruita dalla fine del 1980 in poi, scopriranno probabilmente che il filo blu 54G si riferisce al faro antinebbia posteriore e che l'alimentazione a questo accessorio supplementare avviene mediante un piedino in più nella spina principale: anche questa è una "norma internazionale". Per sfortuna, ci saranno anche dei casi in cui le cose saranno diverse, ma la maggioranza delle roulotte devono avere un cablaggio del tipo prescritto (!) Si prega di non chiedere cosa significhino i numeri dei fili, perchè neanche noi lo sappiamo. Possiamo solo ritenere che essi siano tratti dallo schema di "automobile media" al quale i governi hanno fatto riferimento sino dal 1948 circa.

fanalino lato sinistro, fanalino posteriore ed 58L marrone illuminazione targa fanalino lato destro e posteriore

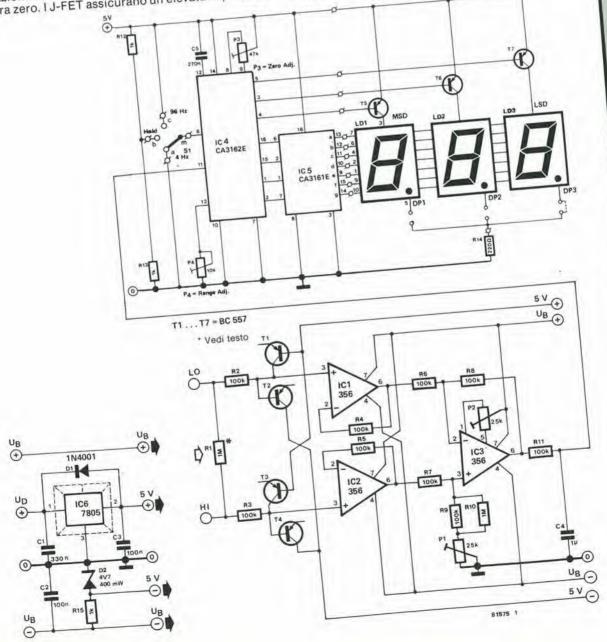
frecce sinistre

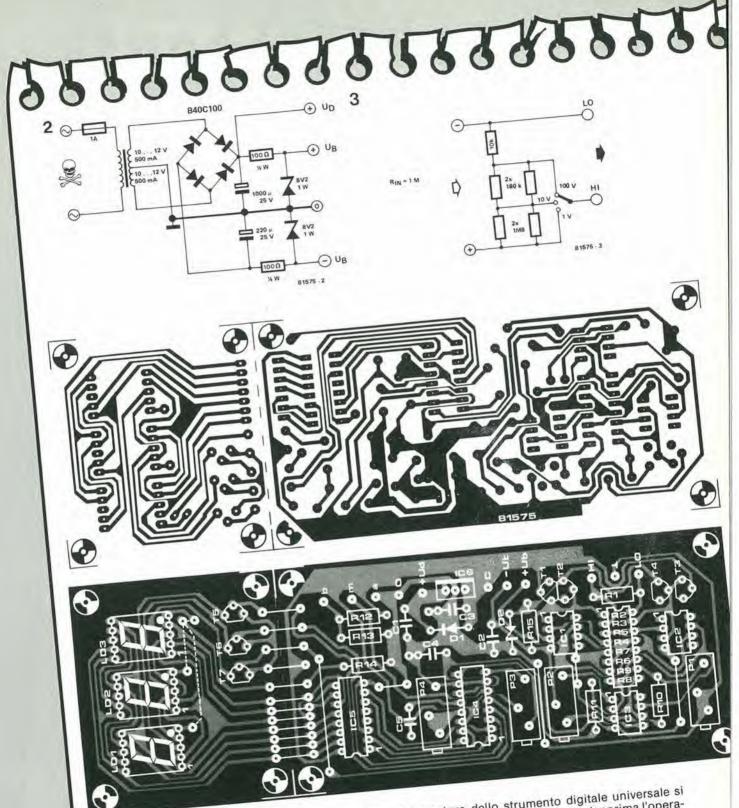
58R nero L giallo R verde 31 bianco 54 rosso 54G blu

trecce destre presa ausiliaria o luci antinebbia posteriori. luci freni

R1. 180 Ω 390 17 820 O

81601


strumento digitale universale


Questo strumento digitale costituisce un grande passo in avanti rispetto al progetto precedente (Elektor Febbraio 1982), e questo grazie all' adozione di uno stadio d'ingresso formato da amplificatori operazionali a J-FET. Questi garantiscono l'eliminazione di alcuni difetti, come l'instabilità della lettura zero. I J-FET assicurano un'elevata impedenza

d'ingresso e, al posto dei tradizionali diodi di protezione, il circuito contiene dei transistori collegati come diodi. I transistori impiegati hanno una corrente di perdita molto inferiore (1 nA) rispetto a quella dei diodi (20 nA).

Il motivo della scelta di uno stadio d'ingresso così sofisticato risiede in due fattori: la variazione possibile della tensione d'ingresso in modo comune del CA 3162 si estende soltanto da -0,2 V a +0,2 V, mentre l'amplificatore operazionale 356 ha una gamma di tensioni in modo comune di -4...... +4 V. Un secondo motivo sta nel fatto che la corrente di polarizzazione d'ingresso è stata notevolmente ridotta: quella del CA 3162 è di 80 nA, mentre il 356 assorbe appena 30 pA. Il valore della corrente assorbita all'ingresso da questo circuito viene principalmente determinato dai transistori di protezione T1....T4, che hanno una corrente di dispersione di

Il segnale d'ingresso arriva ad IC4 tramite la resi-

stenza R11. Questo integrato controlla il pilota per display a sette segmenti (IC5), ed è responsabile della visualizzazione dell'informazione al suo arrivo. Il commutatore a tre posizioni S1, che si vede sullo schema a sinistra di IC4, varia la cadenza di campionamento dei dati in arrivo. Nella posizione (a) si preleva un campione ogni quarto di secondo, mentre nella posizione (b) il display è "congelato". Per visualizzare un segnale soggetto a rapide variazioni, il commutatore dovrà essere posto nella posizione (c): In questo caso si avrà un campionamento ogni 0,01 secondi e la risposta dello strumento sarà molto pronta.

La taratura dello strumento digitale universale si esegue in questo modo: si toglie dapprima l'operazionale IC3, e si collega a massa il lato sinistro (come appare sullo schema) di R11. Si regola poi il optenziometro semifisso P3 fino ad ottenere una lettura 000 sul display. Si inserisce ora nuovamente l'operazionale IC3 e si toglie il collegamento a masl'operazionale IC3 e si toglie il collegamento a massa di R11. Si collegano ora a massa i due ingressi, sa di R11. Si collegano ora a massa i due ingressi, ("Hi" e "Lo") e si regola il trimmer P2 in modo da ottenere ancora una lettura 000 sul display. Successivamente si devono collegare gli ingressi Hi e Lo ad una tensione di circa 3 V, e si deve regolare ancora P1 per portare nuovamente la lettura a 000

Elenco dei componenti:

Resistenze:

R1.R10 = 1 M

R2... R9 = 100 k (vedi testo)

R11 = 10 k

R12,R13,R15 = 1 k

 $R14 = 220 \Omega$

P1,P2 = 25 k

P3 = 47 k

P4 = 10 k

Condensatori:

C1,C3,C4 = 330 n

C2 = 100 n

C5 = 270 n

Semiconduttori:

T1 ... T7 = BC 557

D1 = 1N4001

D2 = 4V7, 400 mW diodo zener

IC1 . . . IC3 = 356

IC4 = CA 3162E

IC5 = CA 3161E

IC6 = 7805

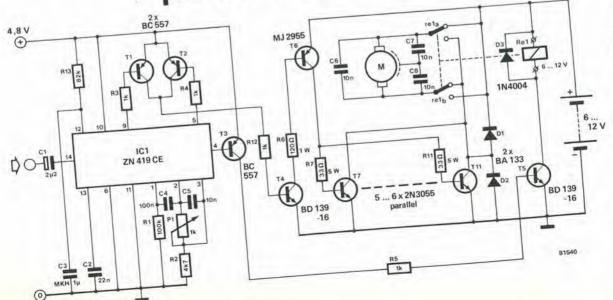
LD1 . . . LD3 = rosso FND557

verde FND537 giallo FND547

o: TIL 701

(reiezione in modo comune). Si collega infine una tensione nota (per esempio 800 mV) all'ingresso, e si regola poi il trimmer P4 in modo che sul display appaia la giusta cifra (800). Durante quest'ultima operazione si deve collegare a massa l'ingresso Lo. L'alimentatore del circuito è talmente semplice da non richiedere quasi spiegazioni. Il diodo zener serve a fornire ai transistori T2 e T4 una tensione di polarizzazione leggermente negativa. Lo schema dell'alimentatore si vede in figura 2.

Un'importante caratteristica di questo progetto è che lo strumento può essere usato con gli ingressi fluttuanti o fissi. Nel modo ad ingressi fluttuanti, il telaio dello strumento potrà essere collegato al telaio dell'apparecchio da controllare. La tensione in modo comune deve, in ogni caso avere un valore


compreso tra -4,0 e +4,0 V.

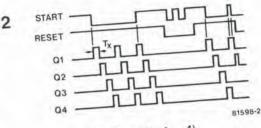
Quando si fa funzionare lo strumento in modo fisso, si dovrà collegare a massa l'ingresso Lo. L'impedenza d'ingresso dello strumento, con la resistenza R1 al suo posto, è di 1M Ω. Volendo, si potrà montare un partitore d'ingresso del tipo rappresentato in figura 3: in questo caso si dovrà omettere R1. Le resistenze R2.....R9 sono contenute in un involucro DIL 16 piedini, del tipo di quelli dei circuiti integrati. Se si incontrano particolari difficoltà a trovare in giro questo componente, si potranno usare delle resistenze separate da 100 k,1/8 W, con tolleranza dell'1%.

regolatore per motori di elevata potenza

Questo regolatore di velocità per motori di elevata potenza impiega il componente Ferranti ZN 419CN che è in grado di controllare motori per modelli con assorbimento di corrente fino a 25 A. Nell'integrato c'è un regolatore a durata d'impulso che pilota il motore tramite un amplificatore di uscita esterno. La lunghezza dell'impulso di pilotaggio, che arriva dal decodificatore multiplo ricevente montato nel modello, viene confrontata con un impulso di riferimento proveniente dal circuito integrato. Il segnale differenziale così generato comanda il motore, tramite le uscite (piedini 5 e 9) e lo stadio di potenza. Quando la cloche ("joystick") è al centro (posizione di zero), P1 mantiene il segnale di riferimento in una posizione tale da arrestare il motore. Il verso di

rotazione del motore dipende dal segnale presente al piedino 4 che, se positivo, provoca l'interdizione dei transistori T3 e T5, cosicchè il motore gira in avanti. Quando il piedino 4 è a livello basso, i due transistori condurranno ed il verso di rotazione si invertirà per l'intervento del relè. Si deve fare attenzione, nell'eseguire i collegamenti al motore, ad assicurare la corretta polarità, altrimenti il motore potrebbe girare nella direzione sbagliata. Il movimento di gioco del joystick intorno alla sua posizione centrale viene determinato elettronicamente dal condensatore C2. Usando per i componenti i valori

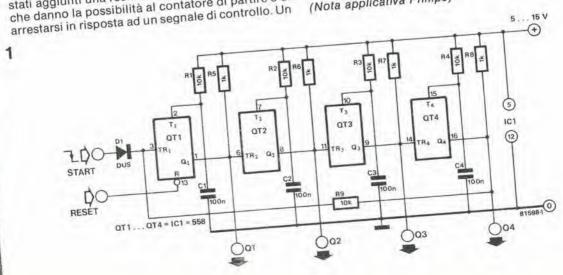
mostrati sullo schema, il gioco ammonta a circa il


A seconda della potenza del motore, lo stadio finale potrà essere formato da un massimo di 5 o 6 transistori di potenza in parallelo (da T7 a T11). Le resistenze di base (R7....R11) a causa delle correnti relativamente alte, dovranno essere in grado di dissipare almeno 5 W. Ai bassi regimi di rotazione, la potenza dissipata dai transistori è relativamente alta, per cui si dovrà provvedere ad un adeguato raffreddamento. I condensatori C6....C8 dovranno essere preferibilmente di tipo ceramico.

contatore ad anello che impiega dei temporizzatori

Il temporizzatore quadruplo 558 cela al suo interno quattro temporizzatori indipendenti: essi sono in grado di generare impulsi la cui durata può variare da alcuni microsecondi a parecchie ore. I temporizzatori possono essere collegati in serie senza che ci sia bisogno di condensatori di accoppiamento. Collegando l'uscita dell'ultimo timer all'ingresso del primo, ecco ottenuto un semplicissimo conta-

Il vantaggio del contatore ad anello costruito con temporizzatori consiste nel fatto che non sarà necessario un oscillatore di clock. Allo schema sono stati aggiunti una resistenza (R9) ed un diodo (D1) che danno la possibilità al contatore di partire o di

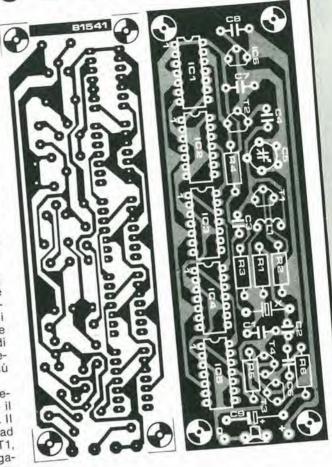

(X = 1...4)

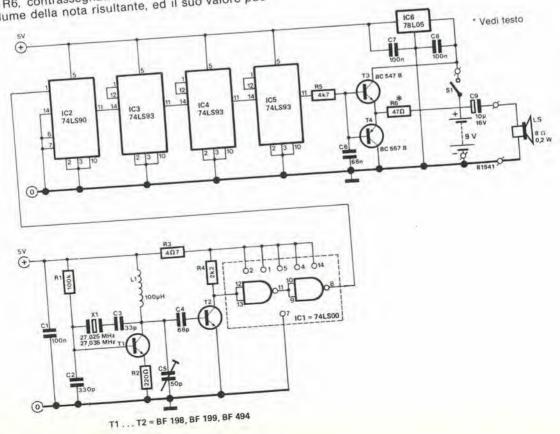
livello logico "1" (= alla tensione di alimentazione) all'ingresso del segnale di controllo, arresterà il contatore in azione, mentre un livello "0" lo farà

Al primo avviamento, l'uscita del primo contatore assumerà il livello logico "1" (vedi diagramma degli impulsi). Dopo un certo periodo di tempo determinato da R1 e C1, il livello all'uscita Q1 ritorna "0" ed in questo modo viene avviato il secondo contatore, facendo apparire all'uscita Q2 un livello "1",e così via. Il livello logico "1" "salta" in tal modo da un'uscita alla successiva. Un livello "0" all'ingresso comune di reset rimetterà a "0" tutte le uscite.

I periodi RC dei temporizzatori non devono di necessità essere identici : periodi diversi daranno segnali di uscita con diverse durate di impulso. Il valore delle resistenze (R1...R4) che determinano i periodi, dovrà essere compreso tra 2k e 100k. Per ottenere periodi di maggior durata, si potranno aumentare i valori di C1...C4.

(Nota applicativa Philips)




diapason a quarzo

I musicisti che non posseggano un "orecchio musicale" perfetto dovranno senza dubbio usare ogni tanto un diapason per accordare gli strumenti, oppure un generatore elettronico alla frequenza di 440 Hz. Gli oscillatori di bassa frequenza a 440 Hz non sono proprio l'ideale per servire da "diapason elettronico", a motivo della loro innata instabilità. Perciò l'oscillatore controllato a quarzo che ora descriviamo offrirà certamente la migliore soluzione.

Quarzi con frequenza di 27,025 MHz del tipo di quelli usati per i radiocomandi, sono facilmente disponibili e costano abbastanza poco. Questi cristalli oscillano su una frequenza fondamentale di 9,0083 MHz, che dovrà essere prima divisa per 5 e poi per 2¹², per dare una nota con frequenza di 439,86 MHz. Un quarzo del canale 7 della CB (frequenza 27,035 MHz) darà risultati leggermente più

precisi (440,02 Hz).
La divisione per 2¹² (= 4096) si potrà ottenere collegando in serie 12 flip flop (IC3...IC5), mentre il segnale dell'oscillatore viene diviso per 5 in IC2. Il transistor T2 e le porte logiche di IC1 servono ad amplificare il segnale emesso dall'oscillatore T1, mentre i transistori T3 e T4 permettono il collegamento diretto di un altoparlante da 8Ω. La resistenza R6, contrassegnata da un asterisco, regola il volume della nota risultante, ed il suo valore può

Elenco dei componenti

Semiconduttori T1,T2 = BF 198, BF 199, BF 494 Resistenze: R1 = 100 kT3 = BC 547B $R2 = 220 \Omega$ T4 = BC 557B $F3 = 4.7 \Omega$ IC1 = 74LS00 R4 = 2k2IC2 = 74LS90 R5 = 4k7IC3 . . . IC5 = 74LS93 $R6 = 47 \Omega^*$ IC6 = 78L05

Condensatori.

 $L1 = 100 \, \mu H$ C1,C7,C8 = 100 n

X1 = 27.025 MHz quarzo con zoccolo C2 = 330 pS1 = interruttore LS = 8/0.2 W altoparlante C3 = 33 p

C4 = 68 pC5 = 50 p trimmer

 $C6 = 68 \, \text{n}$ $C9 = 10 \,\mu/16 \,V$

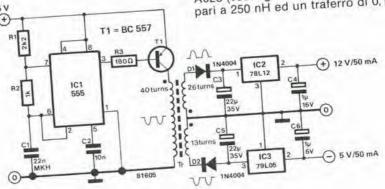
· Vedi testo

essere ridotto ad un minimo di 22 Ω. Il volume può essere elevato anche aumentando la tensione di batteria, oppure montando l'altoparlante in una

Se il circuito sarà destinato a far parte, come modulo supplementare, del sintetizzatore di formanti di Elektor, lo si potrà alimentare prelevando la tensione dalla linea di alimentazione a +15 V. L'assorbimento di corrente è tra i 40 ed i 50 mA.

I lettori che siano in possesso di un frequenzimetro digitale sufficientemente preciso potranno provare a tarare la frequenza dell'oscillatore sui 9,0112 MHz con l'aiuto del compensatore C5. Questo però potrebbe anche non essere possibile, perchè il cristallo è leggermente "stonato". Sarà molto probabile avere una frequenza di 9,008332 MHz. Nonostante tutto, anche senza regolazione, il circuito emetterà una tipica nota con frequenza di 440 Hz, con una deviazione massima di +0,05 Hz. Questa precisione è considerevolmente maggiore della maggior parte dei sistemi meccanici.

alimentatore per RAM dinamica


E' un desiderio molto diffuso quello di ampliare l'area di memoria di un sistema a microprocessore ricorrendo alle economiche RAM dinamiche. Considerando questa possibilità, il primo punto che salta all'occhio è che questi componenti di memoria richiedono tensioni di alimentazione diverse da quelle di altri tipi. Parlando in generale, le RAM dinamiche necessitano di tensioni di alimentazione a+5, +12e-5V. Sfortunatamente non si troveranno molto spesso in un sistema a microprocessore tutte queste tensioni. La maggior parte dei sistemi a · microprocesore funziona con una sola tensione di alimentazione di 5 V. Come faremo a trovare con facilità le tensioni mancanti ?

La soluzione più ovvia è quella di sostituire il trasformatore di alimentazione esistente con un altro provvisto di tre avvolgimenti secondari, e poi aggiungere i necessari raddrizzatori, regolatori e tutto il resto. Questa soluzione potrebbe però dimostrarsi piuttosto dispendiosa. Il circuito di figura 1 suggerisce un'alternativa più economica.

Viene usato il cosiddetto principio del chopper. Il cuore del progetto consiste nel ben noto timer integrato 555. Esso viene usato in questo caso come multivibratore astabile, con una frequenza d'uscita (al piedino 3) di circa 15,5 kHz. Se occorre, si potrà variare questa frequenza, ed il nuovo valore si potrà calcolare con la seguente formula:

$$f = 1,44/[(R1 + 2 R2) C1]$$

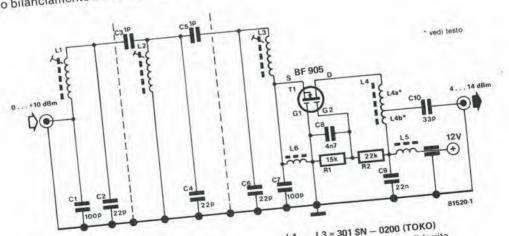
Il segnale ad onda quadra che esce dal piedino 3 del timer 555 pilota il transistor T1, che a sua volta controlla la corrente che passa attraverso il primario del trasformatore. Si potranno ora ottenere differenti tensioni d'uscita dagli avvolgimenti secondari del trasformatore. Questi segnali rassomiglieranno ancora ad un'onda quadra, e perciò avremo bisogno di raddrizzarli, stabilizzarli e livellarli nel consueto modo. Lo scopo viene ottenuto mediante D1, C3, C4 ed IC2 per la tensione a +12 V, e mediante D2, C5, C6 ed IC3 per la tensione a -5 V. I condensatori C4 e C6 dovranno essere del tipo al tantalio. Il trasformatore può essere costruito usando un nucleo ad olla Siemens tipo B 65561 - A250-A028 (vedi figura 2), Questo tipo ha un valore di AL pari a 250 nH ed un traferro di 0,17 mm.

durre"spurie" di un miscelatore lineare tipo MO-

per oscillatore locale e filtro per ricetrasmettitore nella banda dei 2 metri

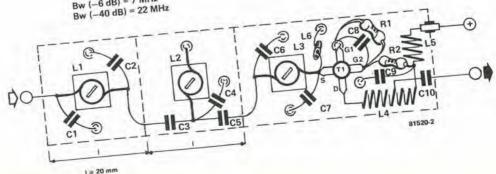
Uno dei più utili miglioramenti che si possono apportare ad un ricetrasmettitore sui 2 metri già esistente, è di sostituire il miscelatore MOSFET a doppio gate con un circuito integrato modulatore a doppio bilanciamento costruito "su misura". In questo modo si otterra un miglioramento della cifra di rumore ed una maggiore estensione dinamica. Si dimentica però spesso che l'oscillatore locale dovrà, in questo caso, soddisfare a requisiti più severi per quanto riguarda la purezza spettrale (a causa del funzionamento in commutazione, il modulatore a doppio bilanciamento è molto più soggetto a pro-

SFET). Si dovrà contemporaneamente aumentare il livello d'uscita dell'oscillatore locale.


Nello schema della figura, le bobine L1....L3 (ed i relativi condensatori), comprendono un filtro passabanda simmetrico. Poichè le impedenze d'ingresso ed uscita sono entrambe di circa 50 Ω , non ci dovrebbero essere problemi di adattamento. L'amplificatore che segue il filtro è un MOSFET con il doppio gate a massa. La sua transconduttanza inversa è molto bassa ed il guadagno è di circa 7 dB. Si tratta di un amplificatore a larga banda con livello di saturazione di circa 20 dBm, un valore adeguato per la maggior parte dei modulatori a doppio bilanciamento oggi esistenti.

Se il circuito è costruito in modo corretto, sarà possibile ottenere le seguenti caratteristiche tecniche: Frequenza centrale = 134,7 MHz (in linea con le prescrizioni riguardanti la regione 1).

Larghezza di banda a — 1 dB = 5 MHz Larghezza di banda a — 6 dB = 7 MHz Larghezza di banda a —40 dB =22 MHz


La costruzione è abbastanza semplice, basta fare una certa attenzione. Per la schermatura del contenitore (che deve essere a prova di RF), si possono usare degli spezzoni di piastra ramata del tipo per circuiti stampati. Per quanto questo filtro non sia del tipo elicoidale si dovrà evitare l' uso di materiali stagnati, perchè potrebbero aumentare le perdite del filtro. L'approssimativo schizzo che appare in figura sotto allo schema elettrico sarà una buona guida per la costruzione.

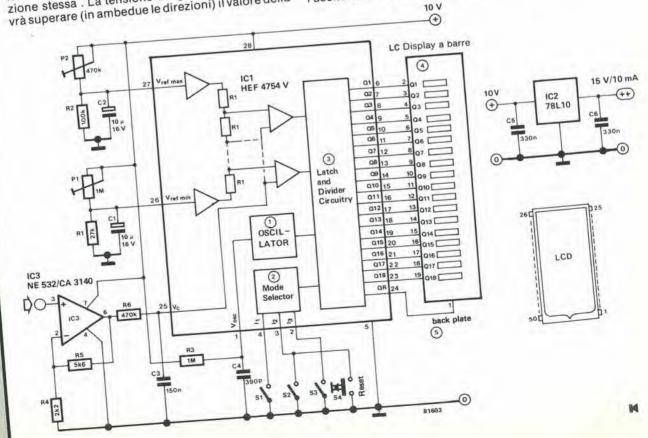
1

FC = 134,3 MHz Bw (-1 dB) = 5 MHzBw (-6 dB) = 7 MHz L1...L3 = 301 SN - 0200 (TOKO) L5 . . . L6 = 4 Spire su perla di ferrite

2

pilotaggio per grafici a barre

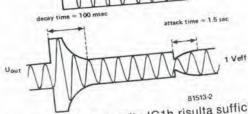
La Philips ha recentemente presentato un nuovo circuito integrato progettato apposta per comandircuito integrato progettato apposta per comandircuito integrato a cristalli liquidi. La presentazione avviene in forma di grafico a barre, in altre parole come una serie di striscie. La particolarità di questo circuito integrato è che può svolgere un certo nucircuito integrato è che può svolgere un certo nucircuito integrato è che può svolgere un certo numero di funzioni diverse. Ogni singola striscia, tra un numero che va da 9 a 18, può essere pilotata un numero che va da 9 a 18, può essere pilotata un individualmente. Essa puo servire anche a dare un'indicazione tipo "scala di termometro". In questo caso è inoltre possibile indicare la lettura massima. Quest'ultima può essere azzerata a mano oppure automaticamente dopo un intervalo di due


secondi (vedi (adella).

I due partitori di tensione R1/P1 ed R2/P2 generano due tensioni di riferimento il cui livello massimo può essere regolato mediante il potenziometro può essere regolato mediante il potenziometro trimmer P2, mentre il livello minimo viene predispotro con P1. Resta inteso che P1 deve essere regolato entro il campo di tensioni che va da zero a metà della tensione di alimentazione, mentre P2 va regolato tra il 50 ed il 100 % della tensione di alimentazione stessa. La tensione d'ingresso, che non dovrà superare (in ambedue le direzioni) il valore della

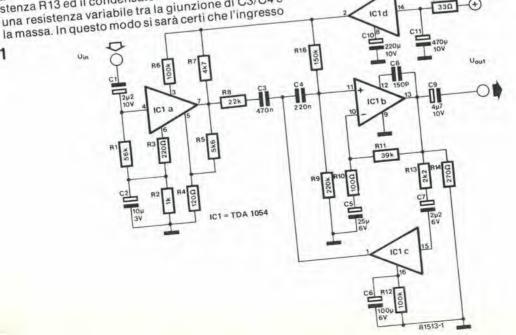
tensione di alimentazione, viene confrontata internamente con le tensioni di riferimento, ed il valore viene riportato su una scala lineare. Poichè le tensioni di riferimento sono direttamente ricavate dall'alimentazione, quest'ultima deve essere relativamente stabile, mentre il suo valore può essere qual-

L'amplificatore operazionale buffer d'ingresso non sarà sempre necessario. Per esempio lo si potrà omettere quando si effettuino misure di temperatura; in sua vece si monterà una resistenza da 10 k tra il piedino 25 dell'integrato e massa, ed ancora una resistenza NTC da 10 k (ossia una resistenza a coefficiente di temperatura negativo) tra il medesimo piedino ed il conduttore di alimentazione positima.


Per poter usare l'indicatore a barre con il sensore di umidità (descritto altrove su questa rivista), l'ingresso dell'operazionale dovrà essere collegato all'uscita 0.....1 V del circuito del sensore.

microcompressore

I compressori della dinamica possono essere inseriti in qualsiasi apparecchio che richieda un livello costante di uscita audio. Il primo esempio che viene a mente è il controllo automatico di livello nei registratori a cassette. Si può anche impiegare il compressore nelle apparecchiature per radiodilettanti, nelle discoteche, nei sistemi interfonici e di sorvegliaza dei bambini, per garantire la massima intelligibilità e per evitare danni agli amplificatori ed agli altoparlanti. Se usati unitamente ad un microfono, i compressori danno risultati sorprendentemente buoni, ed i passaggi a basso e ad alto volume sono

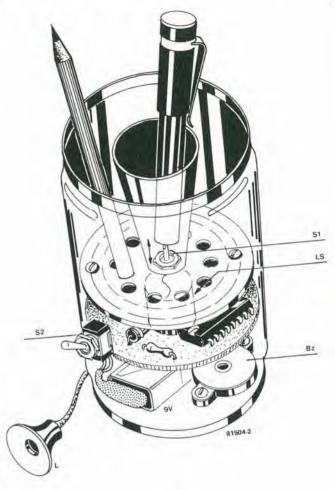

Il circuito si basa sull'amplificatore operazionale di ugualmente intelligibili. impiego multiplo TDA 1054 della SGS-Ates. Questo integrato contiene quattro elementi separati, ciascuno dei quali esegue una sua particolare funzione. IC1a è un preamplificatore che serve a rinforzare il segnale d'ingresso fino ad un valore di circa $50 \times (1 + R5/R4)$. L'amplificatore operazionale IC1b viene anch'esso usato come preamplificatore ma stavolta il guadagno è di 400 x (1 + R11/R10). La funzione di IC1d è di rimuovere qualsiasi residuo di ondulazione dalla tensione di alimentazione, mentre IC1c ha il compito del controllo automatico di volume vero e proprio. Un buon compressore dovrebbe comprimere l'intero segnale in modo lineare, in altre parole, non dovrebbe semplicemente "tosare" i picchi del segnale. Si può ottenere questo scopo rendendo l'ammontare della riduzione dipendente dalla massima ampiezza del segnale d'ingresso. Per fare questo, bisogna controllare quale sia l'ampiezza del segnale d'uscita verificando quando essa salga a valori superiori ad un certo livello: a questo punto verrà introdotta l'attenuazione. L'attenuatore, IC1c, viene pilotato tramite la resistenza R13 ed il condensatore C7, e funziona come una resistenza variabile tra la giunzione di C3/C4 e

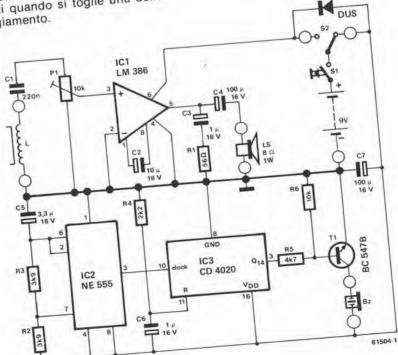
dell'amplificatore d'uscita IC1b risulta sufficientemente attenuato quando il livello di uscita superi 1 Veff. II condensatore C7 provvede al tempo di ritardo necessario al sistema per accertare che il controllo segua con sufficiente prontezza l'inviluppo delle onde del segnale, ma che non sia tanto veloce da seguire le onde stesse. Questo condensatore determina quindi i tempi di intervento del circuito. Il tempo di distacco dipende dai valori del condensatore C6 e della resistenza R12. Questo ritardo deve durare molto di più per mantenere il livello sonoro ad un valore di ragionevole ampiezza. In figura 2 appare un'illustrazione grafica del modo in cui questo circuito funziona. I tempi che appaiono sul diagramma valgono per i valori dei componenti riportati sulla figura 1. I tempi di intervento e di disimpegno potranno essere modificati a seconda dei gusti personali, cambiando rispettivamente il valore di C7 e di C6.

L'ingresso del microcompressore è sensibile a segnali di basso livello, come per esempio quelli provenienti da microfoni. L'impedenza d'ingresso è di circa 50 k Ω . I segnali d'ingresso di maggior livello si potranno direttamente collegare alla resistenza R8, nel quale caso si potrà omettere tutto il circuito che

La tensione di alimentazione potrà essere aumenla precede. tata a 12 V, ma questo significherà un aumento della tensione di esercizio del condensatore eletorganicate un aumento della tensione di esercizio del condensatore elettrolitico. 9 V, 25 mA

W. Gietmann


portapenne 3 in 1


Esistono attualmente in commercio molti modelli di portapenne, portamatite, portafermagli, eccetera. Questi oggetti hanno tutte le forme e tutti i colori, ma la maggioranza tende a stancare dopo qualche tempo. Il circuito qui descritto vuole porre rimedio a tale situazione, con l'offerta di due altre funzioni nello stesso oggetto: un contaminuti telefonico ed un amplificatore, sempre per il telefono. In figura 1 si vede lo schema elettrico dell'apparecchio. L'amplificatore telefonico impiega un microfono a ventosa che si può trovare ovunque, ed un amplificatore audio integrato (LM 386). L'uscita di questo circuito integrato potrà essere mandata direttamente ad un altoparlante da 8 Ω (1W).

La sezione contaminuti consiste in un timer 555 collegato come multivibratore astabile ad una frequenza di 37 Hz. IC3 divide poi questa frequenza per 16384, in modo da fornire un impulso ogni sette minuti e mezzo. Questo impulso manda in conduzione il transistor T1 che a sua volta aziona il cicalino piezoelettrico. Questo segnale è destinato a ricordarvi la salata bolletta telefonica del mese scor-

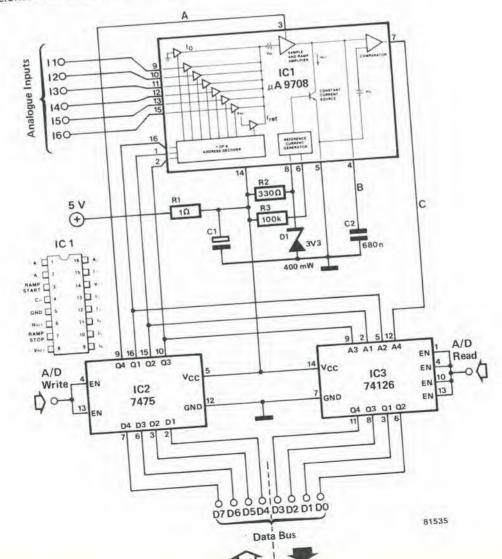
Il commutatore S2, unitamente al diodo D1, permette all' utente di scegliere se avere l'amplificatore telefonico che funziona contemporaneamente o

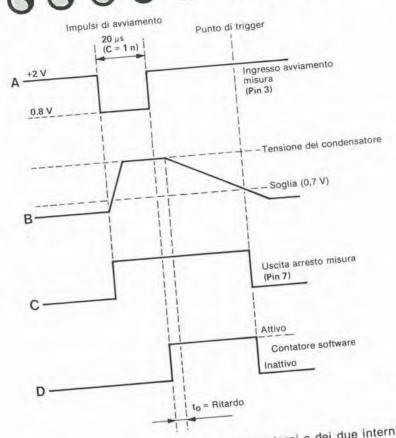
In figura 1 si vede un suggerimento per il montaggio meccanico del portapenne/portamatite. Il commutatore S1 potrà essere un microswitch che fa partire il contaminuti quando si toglie una delle matite dal suo alloggiamento.

8888888888 convertire il livello della tensione d'ingresso in una

S. Traub

convertitore A/D a sei canali


Gli strumenti elettronici di misura, nella loro forma più semplice, forniscono di solito un'indicazione analogica.Per dirla con altre parole, un'indicazione, per esempio, di temperatura o di pressione sarà espressa da un livello di tensione continua. Prima di poter sottoporre questa informazione ad un'ulteriore elaborazione, occorrera tradurla in un linguaggio che sia comprensibile al computer. Questo scopo si ottiene mediante un convertitore analogico/digitale (A/D) il quale, come suggerisce il nome, converte il livello analogico del segnale in un


Esistono numerosi tipi di convertitori A/D. Il princicodice binario. pio di funzionamento di quello descritto ora è di

certa durata d'impulso (modulazione a durata d'impulso). Durante il periodo dell'impulso viene avviata una routine di conteggio nel programma del computer. Di conseguenza il risultato binario alla fine dell'operazione sarà corrispondente al livello di tensione da misurare.

Gli ingressi per i dati analogici in IC1 sono rappresentati dai simboli 11....16. Si può scegliere ognuno di questi ingressi mediante i livelli logici presentati agli ingressi di selezione (piedini 1, 2 e 16). Questa informazione viene prelevata dal bus dei dati del microprocessore tramite il latch quadruplo del tipo

La figura 2 mostra che cosa accade ai livelli di tensione nei diversi punti del procedimento di misura. L'impulso di trigger negativo al piedino 3 di IC1, che inizia la misura, (vedi figura 2A), provoca la carica del condensatore C2 che raggiungerà una tensione pari a quella d'ingresso maggiorata di 0,7 V (un valore costante). Una volta terminato l'impulso di avviamento, C1 comincia a scaricarsi tramite un "drenaggio" di corrente tarato. In questo istante deve essere avviato il programma di conteggio. Quando la tensione ai capi del condensatore raggiunge il valore di soglia di 0,7 V, il livello logico al

piedino 7 passerà a "0". Il software del conteggio deve essere, naturalmente, fermato in questo istan-

La figura 2 mostra che il tempo che intercorre tra la fine dell'impulso di trigger e l'inizio della curva di scarica del condensatore non potrà essere immediatamente valutato. In questo periodo è contenuto un intervallo costante to. Solo il tempo di scarica di C2 fornisce una misura fedele del livello della tensione d'ingresso. Poiche l'intervallo to sarà presente al piedino 7 anche se la tensione d'ingresso è di 0 V, il computer dovra prima controllare l'ingresso analogico Io. Questo ingresso è collegato internamente a 0 V. Da questo, il computer sarà in grado di calcolare la durata dell'intervallo to. In altre parole, il computer deve dapprima calcolare il valore binario che corrisponde a questo periodo e più tardi sottrarlo dal risultato dell'effettiva misura. Per poter usare appieno la capacità di memoria e l'ampiezza del bus dei dati, il computer deve contenere l'informazione riguardante la massima tensione che è possibile misurare. Ciò vuol dire che si devono stabilire dei limiti per la tensione da misurare. Per questo motivo, un ingresso interno analogico I ret è collegato ad una tensione di riferimento che corrisponde alla massima tensione d'ingresso permessa. Il computer deve anche esaminare questo ingresso e dividere il valore binario del tempo di scarica ottenuto da questo, per il massimo numero raggiungibile dal contatore del software. Il risultato di questa divisione è un intervallo di tempo che corrisponde al numero 1. E' perciò impossibile che il valore del contatore possa "traboccare" oltre il

limite superiore.
Gli ingressi dei dati (D0....D7) provenienti dal computer sono suddivisi in due sezioni. Gli ingressi puter sono suddivisi in due sezioni. Gli ingressi puter sono sufficienti per la scelta dei sei canali

analogici esterni e dei due interni tramite il latch tipo D IC2. L'ingresso D7 controlla l'inizio del procedimento di misura tramite il piedino 3 di IC1; questo segnale passa anche attraverso IC2. Le restanti connessioni al bus dei dati sono, in effetti le suscite del buffer a tre stati IC3. Quest'ultimo circuito integrato adempie al seguente compito: durante l'impulso di attivazione proveniente dal decodificatore degli indirizzi (A/D read = "1" logico), il segnatore degli indirizzi (A/D read = "1" logico), il segnatore degli dati. L'indirizzo analogico, in binario, che è stato scelto in precedenza, appare sulle linee D0....D2 e serve a scopi di controllo.

IC1 ed IC2 sono abilitati tramite due diversi collegamenti alla decodifica degli indirizzi. Questi possono essere collocati in due indirizzi separati oppure, se usati insieme alla linea read/write, possono essere collocati al medesimo indirizzo. Ovviamente, il tipo di programma necessario dipenderà dal tipo di sistema a microprocessore a disposizione. La tensione di riferimento per il convertitore dovrebbe essere maggiore di 2 V, mentre deve essere inferiore di 2V almeno, rispetto alla tensione di alimentazione. Se quest'ultima tensione dovesse essere di 5 V o superiore, per D1 si dovrà impiegare un diodo zener 3V3.

Il convertitore analogico-digitale può essere adoperato in unione ad un computer per la misura di fenomeni diversi, basta che la tensione d' ingresso non salga ad un valore superiore a quello della tensione di riferimento. Se però questo avviene, il sistema potrà essere tarato mediante un partitore di tensione. Se al segnale d'ingresso è sovrapposto un livello di tensione continua, per compensarla si potrà collegare un amplificatore operazionale connesso come "sommatore".

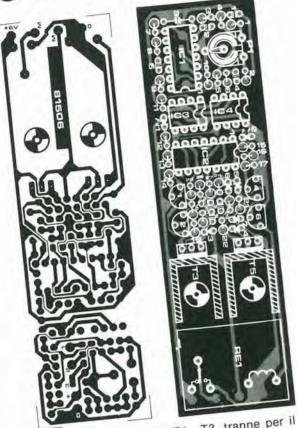
8888888888 vocomando sono facilmente reperibili sul mercato.

W. Gscheidle

controllo di velocità per modelli navali

Chi costituisce modelli navali desidera sempre che il suo prodotto sia il più fedele possibile all'originale. Tra queste esigenze c'è naturalmente un sistema di controllare in modo continuamente variabile la velocità della barca, sia in marcia avanti che all'indietro. Di regola, però, questo tende a restare un pio desiderio in quanto la maggior parte dei modelli base non dispone di questa prerogativa. Se l'appassionato di modellistica desidera che la sua nave marci in avanti ed all'indietro ad una velocità inferiore alla massima, e desidera avere un certo grado di controllo della velocità mediante un "joy-stick" dovrà affrontare una spesa piuttosto notevole. E questo talvolta non coincide con le possibilità ed i desideri dell'hobbysta. Il costo di un controllo di velocità elettronico sarà chiaramente inferiore in caso di autocostruzione. Questa non presenta diffi-


Il circuito è basato sull' integrato SN 28654 della Texas Instruments. L'ingresso del circuito è direttamente collegato all' uscita del decoder di un ricevitore per telecomando di tipo commerciale, ed il servopilota IC1 si prende a carico l'elaborazione dei giusti impulsi. La durata dell'impulso generato dal monostabile interno viene confrontato con quella dell'impulso d'ingresso. In questo modo si crea una differenza di durata variabile , che poi comanda lo stadio d'uscita tramite un trigger di


I segnali di controllo di velocità all'uscita A (piedino 10) ed all'uscita B (piedino 12) saranno ora proporzionali alla posizione della levetta del telecomando. Essi comandano anche l'inversione di marcia,

(avanti od indietro).

Quando viene attivata l'uscita A, il segnale viaggia, tramite un accoppiatore ottico, verso lo stadio finale, che contiene i transistori T4 e T5. Il transistor di potenza T5 commuterà in conduzione per un periodo di tempo dipendente dalla durata dell'impulso e determinerà quindi la velocità del motore. Il flip flop N2/N3 viene fatto scattare dal collettore di T4 per garantire che il transistor T6 (tramite N4) rimanga interdetto. Il relè non sarà eccitato ed il verso di rotazione del motore sarà mantenuto: la nave pro-

Lo stadio finale, nel quale sono compresi T1, T2 e T3 funziona allo stesso modo che abbiamo descritto prima, quando venga attivata l'uscita B. Anche in questo caso la velocità del motore è controllata dalla durata dell'impulso, tramite il relativo optoac-

coppiatore ed i transistori T1....T3, tranne per il fatto che il motore non gira più in avanti ma in direzione inversa. Ciò si ottiene mediante l'impulso al collettore di T2, che inverte lo stato del flip flop in modo che il transistor T6 provochi l'eccitazione del relè. Quest'ultimo inverte il verso di rotazione del motore. Per le correnti superiori a 0,5 A, i transistori d'uscita dovranno essere sostituiti da Darlington di

La sola regolazione che occorre si fa mediante il trimmer P1, nel seguente modo: con la levetta di comando nella posizione centrale (folle) si regolerà Resistenze: R1,R9 = 1 k R2 = 1k2R3 = 8k2 R4, R6, R8 = 100 R5, R7 = 33 kE10,R23,R24,R27 = 22 k R11,R20,R22 = 470 R12,R15 = 560R13,R16,R18 = 4k7 R14,R17 = 2k2 R19,R21 = 680

P1 = 4k7 trimmer

R25 = 1 MR26 = 10 k

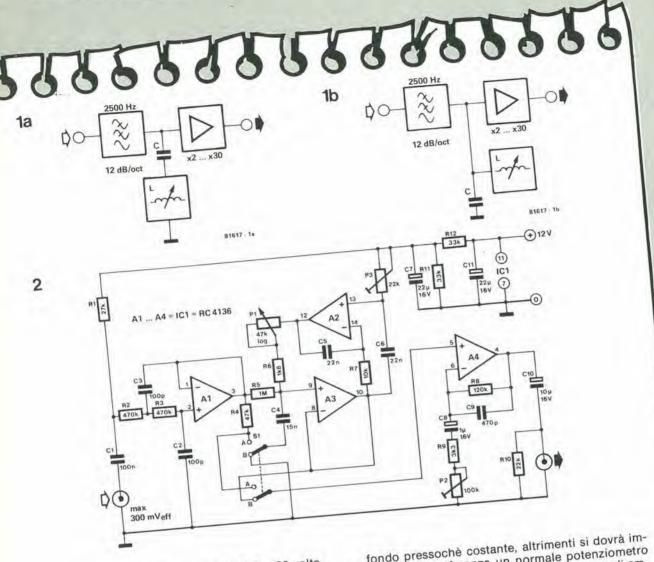
Condensatori: $C1 = 22 \mu/6V3$ tantalio C2 = 470 n/10 V tantalio C3 = 10 n $C4,C5 = 2\mu 2/10 \text{ V tantalio}$ $C6 = 10 \mu/10 \text{ V}$ tantalio $C7,C8 = 1 \mu/10 \text{ V}$ tantalio

Semiconduttori: IC1 = SN 28654 1C2 = 40931c3,1C4 = TIL 111 T1,T4 = BC 557 T2 = BC 547 T3 = BD 436 T5 = BD 435 T6 = BC 516 D1,D2 = LED D3,D4,D7 = 1N4004 D5,D6 = 1N4148

> Varie Re1 = relé 6 V

il trimmer P1 fino a quando il motore si arresterà. Infine, si può variare il tempo di risposta cambiando il valore di C3. La corrente di collettore di T3 e di T5 non dovrà superare il valore di 2 A.

H. Pietzko


filtro attivo ad eliminazione di banda oppure per CW

In generale, la maggioranza dei ricevitori ad onde corte di basso prezzo hanno una scarsa selettività. solito la ricezione è accompagnata da un certo

numero di segnali interferenti, oppure si sente più di una trasmissione contemporaneamente, specialmente con le trasmissioni CW (onde persistenti), che hanno una banda molto stretta. Questa aggiunta extra per il proprio apparecchio di tipo economico, potrebbe perciò dimostrarsi molto utile, specialmente se non si può acquistare un apparecchio migliore (e più caro), magari per mancanza di

Il filtro qui descritto è l'equivalente attivo di un circuito oscillante LC e può essere azionato in modo parallelo (azione di "passa-alto") oppure in serie (azione ad "eliminazione di banda"I), come si può osservare in figura 1. Il filtro è collegato all'uscita audio del ricevitore oppure, se c'è, all'uscita del registratore. L'uscita del filtro è sufficiente a pilotare direttamente una cuffia, basta che la sua impedenza sia uguale o maggiore a 600 Ω .

L'induttore simulato consiste nel circuito che circonda gli amplificatori operazionali A2 ed A3 (vedi figura 2). A1 forma un filtro a 12 dB per ottava per il segnale d'ingresso, mentre A4 agisce da amplifica-

tore con guadagno regolabile di 2....30 volte. Il circuito accordato potrà essere commutato tra parallelo e serie mediante S1. Il filtro può essere sintonizzato entro un campo di 300....400 Hz mediante il potenziometro P1. Con il commutatore S1 in posizione B, si dovrà ruotare il potenziometro trimmer P3 in una posizione appena precedente l'inizio dell'oscillazione da parte del circuito. L'allineamento dovrà essere preciso, e perciò sarà preferibile usare per P3 un trimmer multigiri. Il guadagno del circuito può essere regolato mediante il potenziometro P2. Questo potrà anche essere un trimmer, se ci si attende un livello del rumore di

fondo pressochè costante, altrimenti si dovrà impiegare di preferenza un normale potenziometro (del tipo usato per il controllo di volume negli am-

Quando si impiega effettivamente il circuito, occorplificatori). rerà tenere a mente i seguenti punti:

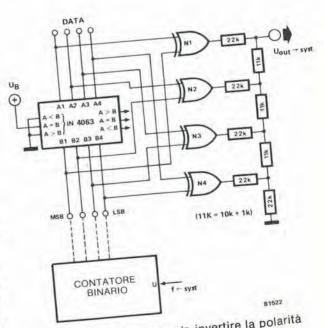
1) Gli effetti della deriva di frequenza saranno note-

2) Poichè il circuito AGC risponde ad una banda molto più larga di quella del filtro, il segnale ricostituito potrebbe mostrare un effetto di "pompaggio" molto fastidioso.

controllo automatico per antenna di autoradio

Il circuito intitolato "antenna automatica per auto" che è apparso nell'edizione dei circuiti per l'estate del 1979 (circuito Nº 33), è stato accolto molto favorevolmente dal pubblico. Molti lettori non sono stati però del tutto soddisfatti di quel circuito perchè esso aveva, in alcuni casi, la tendenza a presentare un piccolo problema: i due relè impiegati per alzare od abbassare l'antenna facevano un certo numero di rimbalzi ai contatti. Sarebbe stato molto meglio che questo tipo di automatismo avesse avuto un intervallo di tempo ben delimitato per le operazioni di "salita" e di "discesa" dello stilo.

Attualmente si può ottenere molto facilmente questo scopo con i moderni "monostabili" integrati. Nel circuito integrato CD 4098 che usiamo in questo schema, sono contenuti due di questi multivibratori monostabili. Uno di questi serve ad "alzare" l'antenna, ed è fatto partire da un impulso positivo


al piedino 12. Per l'altro monostabile ci vuole un impulso di avviamento negativo al piedino 5, che farà abbassare l'antenna. Gli impulsi di comando provenienti dall'autoradio sono dapprima liberati dai rimbalzi tramite i componenti R1, R2, D1 e C1, in modo da convertirli in un impulso di trigger "pulito" con un livello logico alto attivo di 4,7 V. La durata dell'impulso per il primo monostabile è determinata dai valori di P1, R3 e C2, e quella del secondo da P2, R5 e C3. Le uscite dei monostabili comandano i relè

di "salita" e "discesa" Re1 ed Re2, tramite i transistori T1....T4. I collegamenti \overline{Q} e di reset sono interbloccati, in modo che quando funziona uno, l'altro sia disattivato, così che il motore non sia contemporaneamente pilotato nei due versi di rotazione. I relè sono direttamente collegati alla tensione della batteria , mentre l'alimentazione dei monostabili è stabilizzata dallo zener D2. La durata degli impulsi dei monostabili è perciò indipendente a sufficienza dalla tensione di batteria.

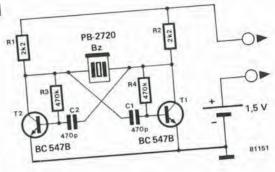
100 convertitore D/A per la regolazione di motori

In molti casi è sufficiente che il controllo dei motori avvenga con un sistema "tutto o niente". Se però si desidera un controllo più "lineare", questo circuito si dimostrerà molto utile. Gli ingressi del comparatore di grandezza a quattro bit (4063) sono collegati in OR-esclusivo e sono mandati ad una serie di partitori resistivi per generare una tensione d'uscita proporzionale alla differenza tra i valori d'ingresso ai comparatori (con una precisione di quattro bit). Questi valori possono essere ricavati, per esempio,

da un contatore binario. Le uscite dei comparatori $(A>B,\,A=B,\,A< B)$ possono essere usate per accendere e spegnere

(indirettamente) il motore e/o invertire la polarità dell'alimentazione, quando si debba pilotare un motore in c.c.. Un circuito di questo tipo può essere adottato quando il controllo a varicap non si dimostra adeguato, come nei casi di sintonizzazione dell'antenna a distanza, o per i VCO privi di disturbi di fase.

strumento di controllo della continuità


Può accadere che, dopo l'incisione di un circuito stampato ci sia una rottura od un cortocircuito nelle piste di rame. La probabilità che avvenga un tale inconveniente aumenta quando sia le tracce che gli intervalli tra esse siano molto stretti. Il metodo usato dai dilettanti per costruirsi i loro circuiti stampati non permette sempre un'ottima cura dei particolari della configurazione delle piste conduttrici. Perciò è necessario controllarle con molta attenzione. Il controllo si può anche fare con un normale tester (collegato come ohmmetro), ma in questo modo c'è lo svantaggio di dover sempre tenere un occhio sul quadrante dello strumento. Un segnale acustico potrebbe facilitare e sveltire di molto il controllo, lasciando tutti e due gli occhi liberi di controllare le piste "sospette" con i due puntali del tester. Questo provacircuiti emette un suono quando c'è un colle-

E ALE

gamento e tace quando il circuito è aperto. Lo schema elettrico (figura 1) mostra che il tester è molto semplice, e consiste soltanto di un multivibratore astabile a due transistori. Quando si collegano i due punti di misura, i due transistori conducono alternativamente provocando l'apparizione di un'onda quadra dalla frequenza di alcuni kHz ai terminali del cicalino. La nota prodotta dal cicalino

ed assorbe non più di 1 mA. Grazie al basso assorbimento, anche la più piccola piletta da 1,5 V durerà molto a lungo.

Il provacircuiti può essere montato sul circuito stampato che si vede in figura 2. In esso è previsto anche lo spazio per il cicalino. Il circuito completo e la batteria dovranno essere inseriti in un tubo di plastica in modo da poter tenere comodamente in mano il tester.

Elenco dei componenti:

Resistenze: R1,R2 = 2k2R3.R4 = 470 k

Condensatori: C1,C2 = 470 p

Semiconduttori: T1,T2 = BC 547B

2

BZ = buzzer PB-2720 (Toko) 2 puntali pila di 1,5 V

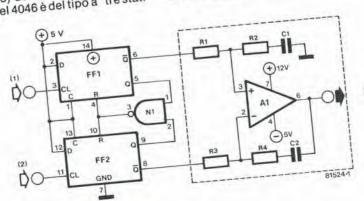
indica che il circuito è chiuso. Il circuito è alimentato da una tensione di soli 1,5 V,

Dopo aver eseguito l'incisione di un circuito stam-

pato, sarà consigliabile controllare se ci sono interruzioni, prima di montare su di esso i componenti, altrimenti il provacircuiti potrebbe dare indicazioni ingannevoli. Si potrà controllare una pista piazzando i puntali alle due estremità della pista stessa. Il suono del cicalino dimostrerà che la pista è intatta. L'isolamento si potrà verificare collegando i puntali a due piste adiacenti. Se il cicalino suona, c'è un cortocircuito che deve essere rimosso.

Il provacircuiti può anche essere molto utile per controllare la continuità dei cablaggi.

02 rivelatore di frequenza e di fase () [LITTIN] (2) 555555


Quando il campo di variazione di fase entro cui deve operare il VCO di un "anello ad aggancio di fase" (PLL) supera il valore di un'ottava, non sarà più sufficiente un moltiplicatore per l'impiego come rivelatore di fase. Il circuito deve essere anche sensibile alla frequenza, per evitare che si verifichi anche l' "aggancio" con un'armonica della frequenza fondamentale. Nella maggioranze dei casi, il circuito integrato PLL CMOS 4046 fa un lavoro eccellente. Questo circuito ha però una frequenza massima di funzionamento di 500 kHz, e questo potreb-

Il circuito di questo articolo possiede le capacità suddette e si comporta in modo analogo al comparatore di fase (piedino 13) del PLL 4046. Con la sola differenza che l'uscita del 4046 è del tipo a "tre stati"

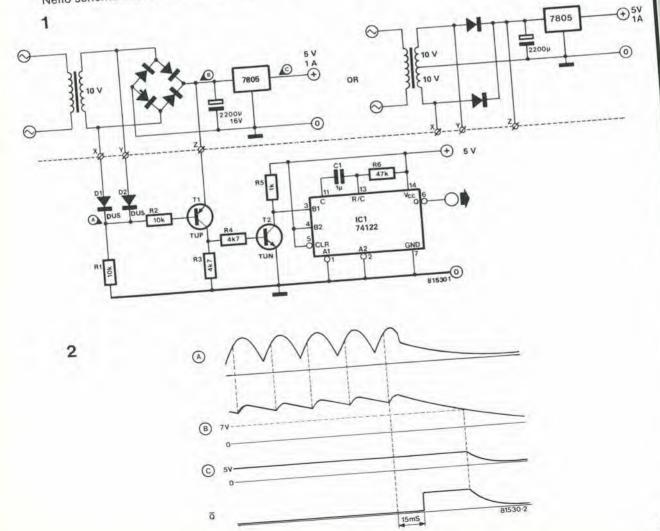
e che questo piccolo circuito funziona a frequenze maggiori di quelle del 4046.

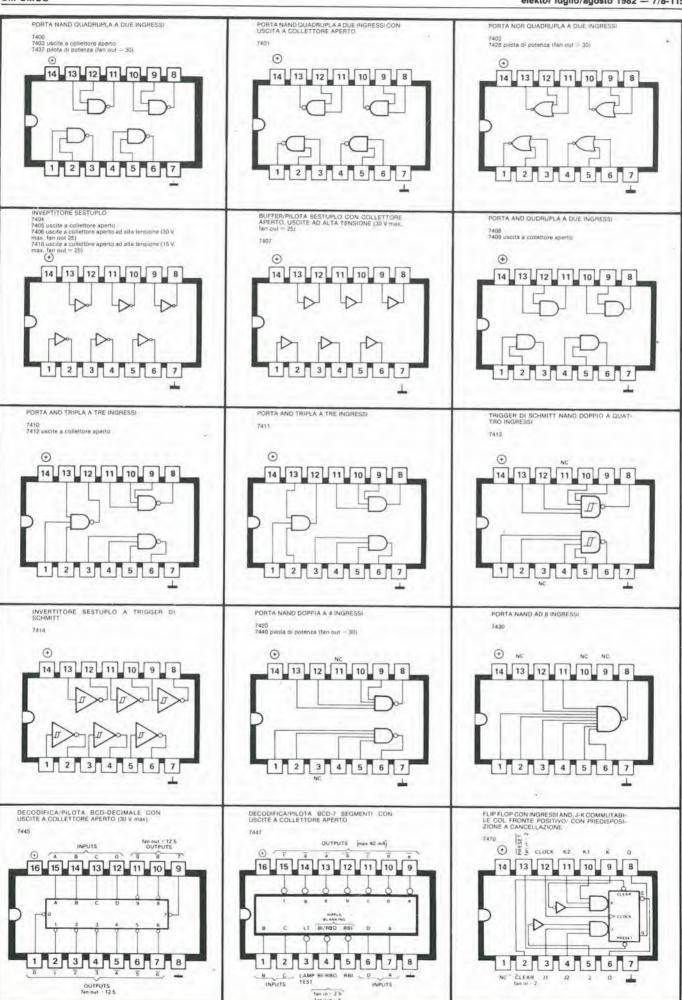
Quando i segnali d'ingresso (1) e (2) hanno la stessa frequenza e la stessa relazione di fase, i due flip flop sono resettati contemporaneamente. Se lo sfasamento tra i due segnali d'ingresso dovesse variare, cambierà anche il momento del reset. In questo caso, la tensione media all'uscita Q di uno dei flip flop sarà maggiore di quella all'altra uscita. Questo fenomeno è chiaramente illustrato nel diagramma

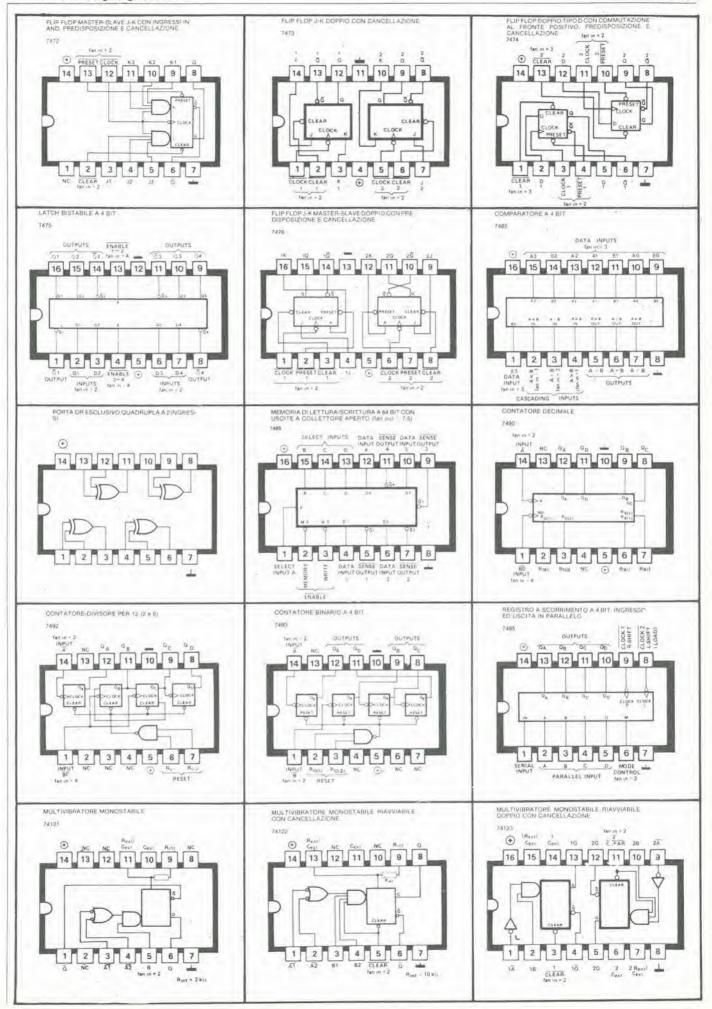
Il livello c.c. all'uscita dell'amplificatore differenziale A1 viene usato per controllare il VCO. Il valore effettivo dei componenti R1....R4, C1 e C2 dipende dalla frequenza di funzionamento.

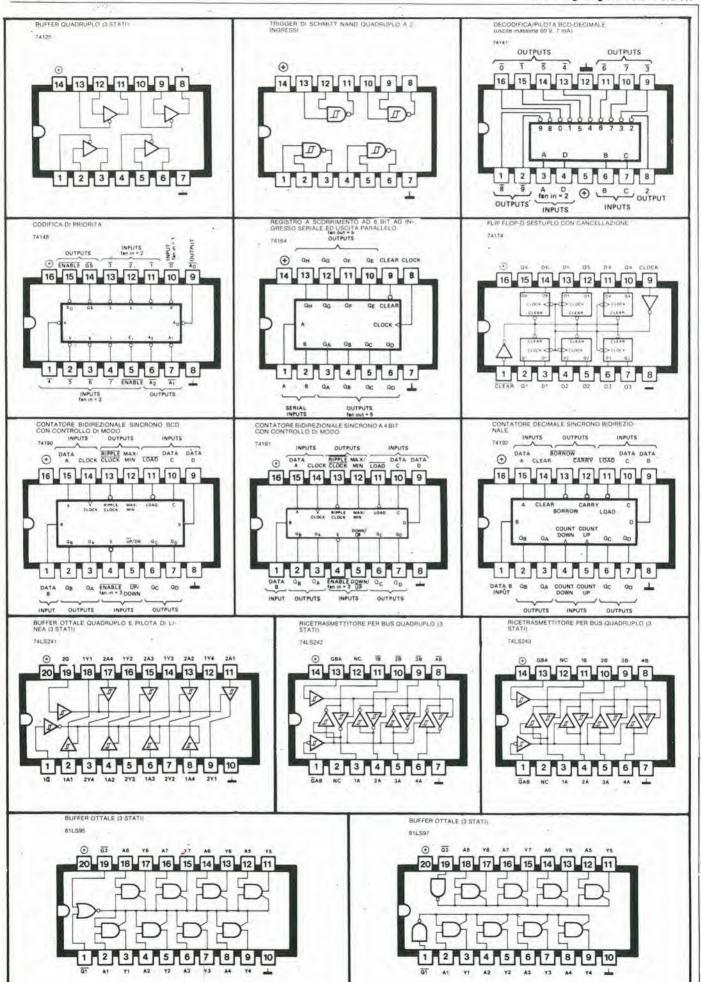
FF1,FF2 = 74(LS)74 N1 = ½ 74(LS)00 A1 = LF 356

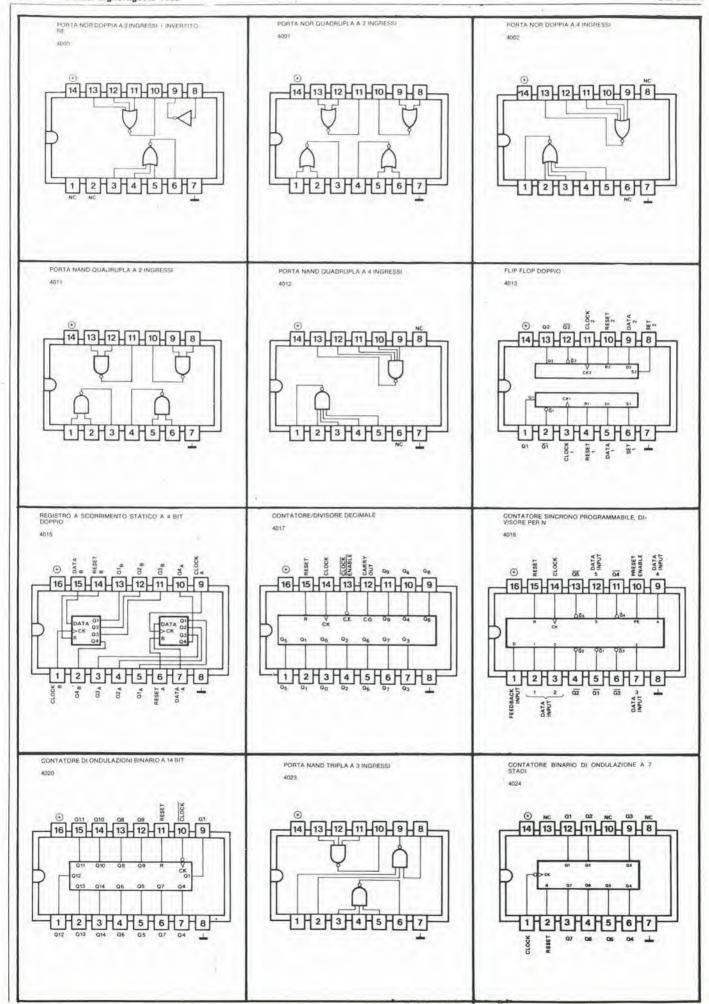
103

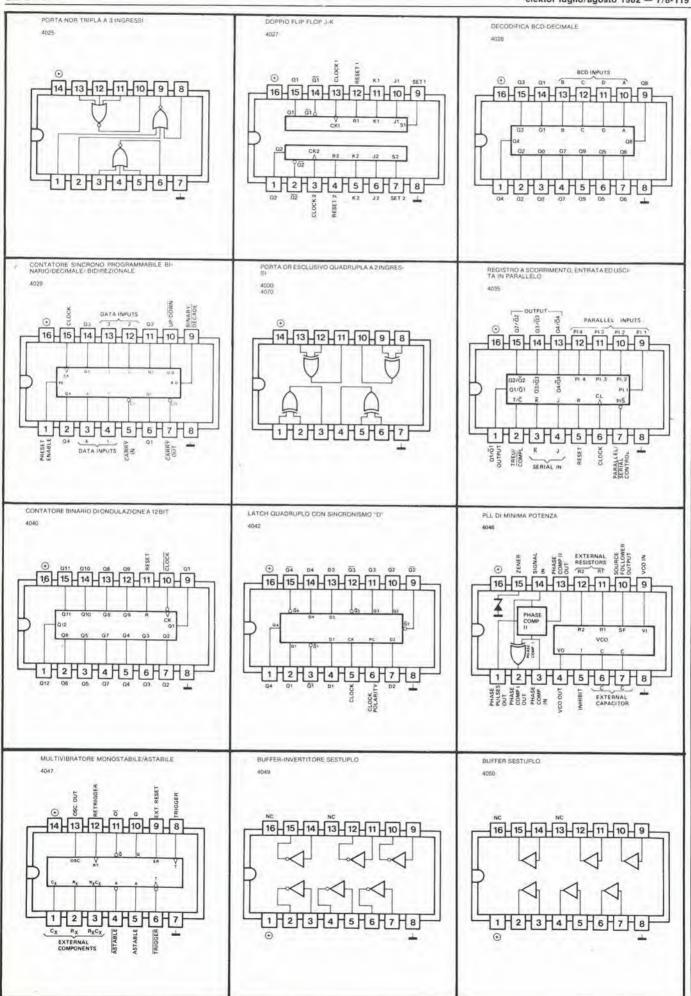

pronosticatore di mancanza di corrente

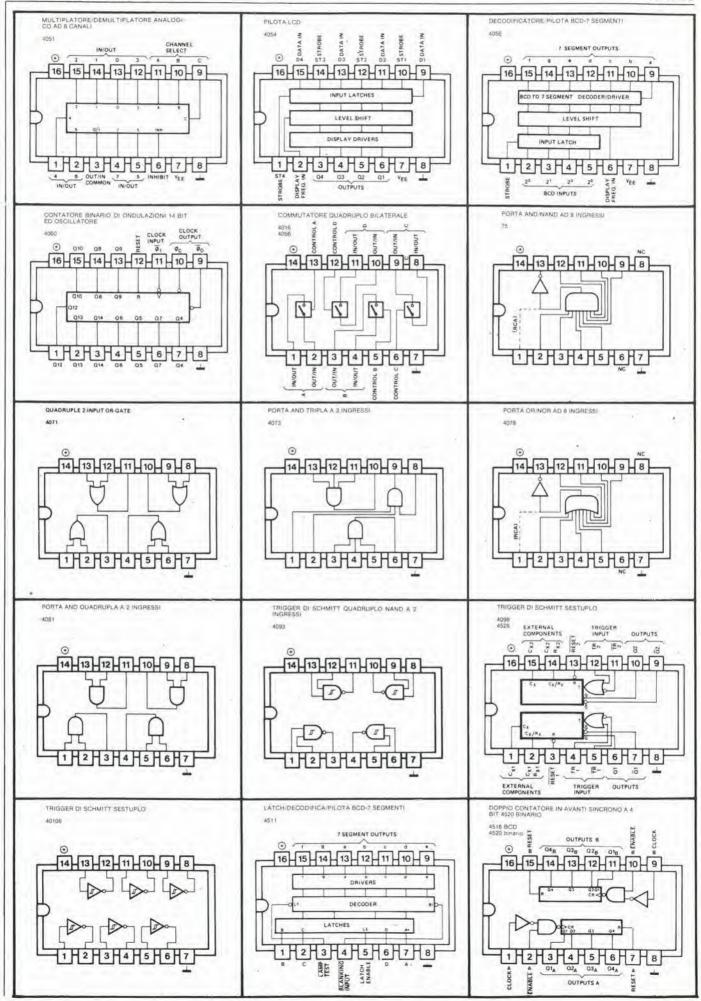

Questo circuito potrebbe rivelarsi estremamente utile, tra l'altro, per i sistemi a microprocessore. Se dovesse mancare la corrente di rete, il circuito garantirà la permanenza di un livello logico alto alla sua uscita poco prima della scomparsa totale della tensione di rete. Questo tempo, per quanto breve, potrà essere sufficiente per prendere delle misure di emergenza, per esempio trasferire i dati contenuti in alcuni registri interni in una RAM a basso assorbimento di corrente di riposo alimentata a

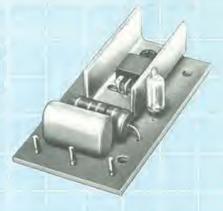

patteria. Nello schema elettrico che appare al di sopra della


linea tratteggiata, ci sono due esempi di alimentatori a 5 V, con i quali potrà essere usato questo circuito. Si vedono anche i più importanti collegamenti, e questa è la ragione delle due serie di punti marcati X Y e Z.


Il circuito funziona nel modo seguente: la tensione di alimentazione, livellata in modo approssimativo, appare al punto B, mentre la tensione raddrizzata dai diodi D1 e D2 e non livellata appare al punto A. Come risulta evidente dalla figura 2, la tensione al punto A cade ad un valore inferiore a quella del punto B ogni 20 ms (ad ogni semiperiodo della tensione di rete). In questo momento, il transistor T1, e quindi anche il transistor T2, passano in conduzione ed il multivibratore monostabile viene fatto ripartire. Poichè la durata dell'impulso del monostabile è di circa 15 ms, l'uscita Q resterà sempre a livello basso finchè è presente la tensione di rete. Non appena però questa viene a mancare, la tensione al punto A diverrà immediatamente inferiore di quella al punto B, per effetto del condensatore di livellamento. Il multivibratore monostabile non verrà più fatto ripartire e l'uscita Q andrà a livello alto dopo un massimo di 15 ms. Questo impulso di uscita potrà essere adoperato per richiamare una routine di interruzione del tipo citato in preceden-







kits elettronici

Kuraluskit

STEREO SPEAKER PROTECTOR KS 380

Interviene con estrema rapidità in seguito a sovraccarico, disconnettendo le casse acustiche senza permetterne la bruciatura dei transistori finali o le bobine degli altoparlanti.

Alimentazione: 20 ÷ 30 Vc.c. Ritardo d'intervento: regolabile da 3 a 10 sec.

IL "TRUCCAVOCE" KS 285

Progettato principalmente per gruppi musicali, cantanti e per coloro che amano gli effetti speciali vocali e musicali. Il "TRUCCAVOCE" permette, infatti, di deformare il timbro vocale

di deformare il timbro vocale conservandone tuttavia la sua comprensibilità.

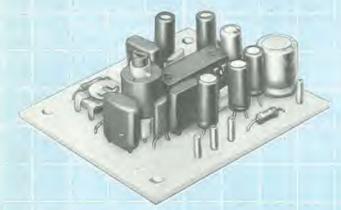
Alimentazione: 18 Vc.c. Sensibilità d'ingresso: 2,5 mV efficaci Consumo (a riposo): 5 mA

INVERTITORE PER LUCI PSICHEDELICHE KS 239

Alimentazione: 220 Vc.a. Potenza passante: 500 W in servizio continuo 800 W in servizio discontinuo

OROLOGIO DIGITALE PER AUTO KS 410

Alimentazione: 12 ± 24 Vc.c.
Minima tensione di funzionamento: 9 Vc.c.
Base dei tempi:
quarzata 2,097152 MHz
Consumo a display spento: 50 ± 75 mW
Consumo a display acceso: 1,25 ± 1,4 W



MINI RICEVITORE FM

Un semplicissimo ricevitore radio dalle prestazioni brillanti. Sintonia a diodo varicap.

Alimentazione: 9Vc.c. Frequenza: 88÷108 MHz Sensibilità (a 6 dB S/N): 1 μV Tensione di uscita segnale: 240 mV

SOPPRESSORE DINAMICO DEL RUMORE KS 385

Semplice ma di elevate prestazioni, questo apparecchio non può mancare in un sistema audio di riproduzione. Un solo circuito integrato esegue tutte le funzioni senza necessità di codifica del segnale audio. Elabora segnali provenienti da nastri vecchi o moderni (Dolby B), da dischi, radio, videocassette. Dotato di un filtro a

19 kHz per la soppressione del fruscio tipico nelle trasmissioni stereo.

Alimentazione: 4,5 ÷ 18 Vc.c.
Corrente assorbita: circa 17 mA
Guadagno di tensione: 1 V/V
Larghezza di banda max: 30 kHz
Riduzione effettiva del rumore
(CCIR/ARM): -10 dB
Distorsione (300 mV input: 0,05%
Diafonia: 79 dB
Regolazione filtro: 19 kHz
Impedenza d'ingresso: 20 kΩ
Tensione d'ingresso tipica: 300 mV

VU-METER LOGARITMICO A LED KS 143

Indicatore di potenza di uscita con display luminoso a LED e risposta logaritmica. Applicabile ad amplificatori di

qualsiasi potenza

Alimentazione: 5÷12 Vc.c. Consumo: 28 mA Sensibilità: regolabile in continuità per potenze fino a 100 W

FCE ELETTRONICA di Nicoletti Gianfranco Via Nazzario Sauro, 1 - 60035 JESI (AN) - Tel. (0731) 58703

CONDIZIONI DI VENDITA: Prezzi I.V.A. (15%) esclusa - Ordine minimo L. 10.000 - Pagamento in contrassegno - Spese postali a carico del destinatario

											_						
TRANSISTOR	1 - 100 pz 100pz	CD 4021BCN	L. 880 L. 825	LM 301	1	495	L. 4	445			100	pz	8A 400V	1.	1,100		
BC 170B	L. 80 L. 65	CD 4022BCN	L. 880 L. 825	LM 307	L	720		650	M 51513L	1 - 100 pz L. 3.460	100	pz	12A 400V	1	1.750		1.000
BC 171B	L. 80 L. 65	CD 4023BCN	L. 380 L. 355	LM 311	L.	800		755	M 51515L	L. 6.760					1.750	her.	1.590
BC 172C	L. 80 L. 65	CD 4024BCN	L. 795 L. 720	LM 324	1.	785		730	LA 4420	L. 2.950		-	SCR			0	
BC 173G	L. 85 L. 70	CD 4025BCN	L. 380 L. 355	LM 339	L.	785		730	LA 4422	L. 3.900			0,8A 200V	k.	580	L.	500
BC 182B	L. 85 L. 70	CD 4027BCN	L. 570 L. 520	LM 348	L.	1,385		290	LA 4430	L. 3.980			5A 400V	L	790	L.	590
BC 212A	L. 85 L. 70	CD 4028BCN	L. 795 L. 720	LM 349	L.	1.550		440	TA 7202	L. 6.000		-	8A 400V	he	1.050	L.	930
BC 213B	L. 85 L. 70	CD 4029BCN	L. 985 L. 885	LM 377	L	1.850		720	TA 7204	L. 3.250			12A 400V	L,	1.150	L.	990
BC 214	L. 85 L. 70	CD 4040BCN	L. 1.045 L. 940	LM 379	L.	5.160		-	TA 7205	L. 3.250		-0	REGOLATORI DI TENSION	E			
BC 237B	L. 85 L. 70	CD 4043BCN	L. 885 L. 795	LM 380	L	1,280	L. 1.1	180	TA 7207	L. 3.900			Serie 78	L	1.050	L.	905
BC 238B	L. 85 L. 70	CD 4044BCN	L. 885 L. 795	LM 381	L.	1.850	L. 1.7	720	TA 7214	L. 5.900			Serie 79	L.	1,200	L.	1.050
BC 239B BC 251B	L. 85 L. 70	CD 4046BCN	L. 1.070 L. 960	LM 382	1.	1.505	L. 1.4	400	TA 7222	L. 4.550			POTENZIOMETRI ROT. AL				
BC 307A	L. 80 L. 65 L. 85 L. 70	CD 4047BCN	L. 1.050 L. 940	LM 387	L.	820	L. 7	750	₽PG 555	L. 1,900			Lineari tutta la serie	L.	485	L	450
BC 308B	L. 85 L. 70 L. 85 L. 70	CD 4049CN CD 4060BCN	L. 510 L. 455	LM 391	L.	1.370	L. 1.2	225	MPC 566	L. 1,900		-	Logaritmici tutta la serie	L	485	L	450
BC 317B	L. 85 L. 70	CD 4066BCN	L. 1.080 L. 965 L. 540 L. 490	LM 733	L.	1.140	L. 1.0	080	MPC 575	L. 2.100		-			100	-	400
BC 327	L. 125 L. 105	CD 4069CN	L. 540 L. 490 L. 390 L. 340	LM 1800	L.	2.700	L. 2.5		MPC 1020	L. 7.300		-	DIODI LED				5.66
BC 328	L. 125 L. 105	CD 4070BCN	L. 380 L. 355	LM 1820	L.	1.750	L. 1.5		µPC 1024	L. 3.300		-	Rossi 5 mm. Siemens	-	150	L.	120
BC 337	L. 125 L. 105	CD 40718CN	L. 380 L. 355	LM 3900	L	925	L. 8	850	µPC 1025	L. 2.950		-	Verdi 5 mm. Gialli 5 mm.	L	190	L.	170
BC 338	L. 125 L. 105	CD 4073BCN	L. 380 L. 355	LM 3914	L.	3,930		-	₽PC 1156	L. 2.750		-	Bianchi 5 mm.	L.	245 150	L.	120
BC 414	L. 110 L. 95	CD 4075BCN	L. 380 L. 355	LM 3915	L	3.930	100	-	MPC 1181	L. 3.500		-	Rossi rett. 7,25 x 7,7 x 2,5	L	260	1	230
BC 549	L. 95 L. 80	CD 4076BCN	L. 1.000 L. 905	MM 74C00	L.			435	MPC 1182	L. 3.500		-	Verdi rett. 7,25 x 7,7 x 2,5	1	335	L.	300
BC 550B	L. 95 L. 60	CD 4081BCN	L. 380 L. 355	MM 74C14	L	895		840	MPC 1185	L. 7.080		-	Gialli rett. 7,25 x 7,7 x 2,5	L	360	L	340
BC 559B	L. 95 L. 80	CD 4082BCN	L. 380 L. 355	MM 74C32	L			377	MPC 2002	L. 2.950		-				No.	340
BD 135	L. 395 L. 345	CD 4089BCN	L. 1,440 L. 1,290	MM 74C73 MM 74C74	L.	790 790		750 750	ZENER				PORTALED METAL. 3 mm	· L	150		
BD 136	L. 395 L. 345	CD 4093BCN	L. 625 L. 560	MM 74C90	E.	1.320		240	500 mW	L. 120	L.	99	PORTALED METAL, 5 mm	- he	200		-
BD 137	L. 400 L. 350	CD 4099BCN	L. 1,320 L. 1,180	MM 74C154	L	3,840		600	1.3W	L. 200			DISPLAY				
BD 138	L. 400 L. 350	CD 4507BCN	L. 510 L. 460	MM 74C221	L.	1.840		675	5 W (plast.)	L. 580	L.	520	FND 500	L	1.500	L. 1	1.300
BD 139	L. 400 L. 350	GD 4510BCN	L. 1 065 L. 965	MM 74C914				500	DIAM!	(C) 17.85		0.07	FND 800	L	3.180		-
BD 140	L. 450 L. 395	CD 4511BCN	L, 1.180 L. 1.065	MM 74C926		7.450	4.0	300	DIODI	3 3			OROLOGIO AUTO MA 100	3 L.	18.500		-
BD 240	L. 480 L. 405	CD 4512BCN	L. 1.065 L. 965	SN 7400	L.	400			IN 4004 (1A 400V)	L 84		75	ELETTROLITICI VERTICA	11			
BD 241B	L. 480 L. 405	CD 4514BCN	L. 2.140 L. 1.925	SN 7402	L	400		_	IN 4007 (1A 1200V)	L. 87		78		16V	35V		63V
BD 242B BD 370	L. 595 L. 535	CD 4515BCN	L. 2.050 L. 1.850	SN 7404	L.	400			BY 127 (1,6A 1200V) BY 252 (3A 400V)	L. 270		225	1µF	144	-	L.	65
BD 370	L. 265 L. 230	CD 4516BCN	L. 1.000 L. 905	SN 7408	L	400		-		L. 270		225	2.2µF	-1	-	L.	65
2N 1711	L. 265 L. 230	CD 4518BCN	L. 1.000 L. 905	SN 7410	L.	400		_	BY 255 (3A 1300V) BY 298 (2A 400V)	L. 345		290	4.7µF	-	70	L	65
2N 2905	L. 390 L. 360	CD 4520BCN	L. 1,000 L. 905	SN 7448	L	1.075		-	12F60 (12A 600V Met.)	L 345		290	104F	- L.	75	L.	95
2N 3055	L. 520 L. 490 L. B50 L. 790	CD 4522BCN	L. 1.195 L. 1.095	SN 7475	L	600		_		L. 2.250		2.050		0 L.	85	L.	125
2N 3771	L. B50 L. 790 L. 3.400 L. 3.150	CD 4526BCN CD 4527BCN	L. 1.225 L. 1.100	SN 7485	L.	850		-	12FR60 (12A 600V Met.) 21PT20 (20A 200V)	L. 1.790		1,850	47µF L. 8		116	L.	155
	L. 3.400 L. 3.150	GD 4528BGN	L. 1.225 L. 1.100 L. 1.075 L. 960	SN 7490	L.	700		-			L.	1.000	100#F L. 9		135	L.	255
C-MOS	41 244 4 511	GD 4529BCN	L. 1.075 L. 960 L. 1.380 L. 1.240	SN 74150	L.	1.600		-	PONTI RADDRIZZATOR				220µF L. 12		190	L.	335
CD 4000CN CD 4001BCN	L. 380 L. 355	CD 4541BCN	L. 1.380 L. 1.240	SN 76477	L	4.700		-	W02 (1A 200V)	L. 365	L	320	470µF L. 17		330	L.	475
CD 4002BCN	L. 380 L. 355	CD 4543BCN	L. 1.380 L. 1.240						W04 (1A 400V)	L. 400	L.	350	1000µF L. 24 2200µF L. 45		510	L.	800
CD 4006BCN	L. 380 L. 355 L. 1.050 L. 900			GIAPPONES	1				KBL02 (4A 200V) KBL04 (4A 400V)	L. 790	L	700			800	L. :	1.535
CD 4007CN	L. 1.050 L. 900 L. 380 L. 355	MM 2102AN-		HA 1137	L.	5.465		-	B80C3700/2200	L. 790 L. 960	L.	700	ELETTROLITICI ORIZZON				
CD 4008BCN	L. 1.000 L. 890	MM 2114N-3 MM 2708Q	L. 4.950 L. 4.455	HA 1156	L.	3.675		_	B80C5000/3300	L. 1,250		-		6V	35V		63V
CD 4009CN	L. 510 L. 455	MM 2716	L. 7.000 -	HA 1196	L.	3,554		-	KBPC10-005 (10A 50V)	L. 2.195		- 3	1µF	-	-	L.	105
CD 4010CN	L. 510 L. 455	MIN ELIB	L.10.875 —	HA 1322	L,	4.161		_	KBPC25-06 (25A 600V)	L. 2.970			2,2µF	-	357	L.	105
CD 4011BCN	L. 380 L. 355	INTEGRATI		HA 1342	L	4.699		-	1000 00 (2011 0000)	L. 2.010			4,7µF	- h.	100	L.	105
CD 4012BCN	L. 380 L. 355	INTEGRATI		HA 1361	L	5.262		-	RESISTENZE				10µF	- Lo	105	L.	130
GD 4013BCN	L. 510 L. 455	9368 TDA2004	L. 2.030 L. 1.850	HA 1366	L.	3.618		-	1/4W 5%	L. 15			22µF L. 10		140	1.	170
CD 4016BCN	L. 510 L. 455	UAA170	L. 4.140 L. 3.730 L. 3.195 L. 2.890	HA 1371	L.	8.545		-	1/2W 5%	L. 19			47µF L. 13		155	Li	200
CD 4017BCN	L. 900 L. 825	UAA180 -	L. 3.195 L. 2.890	HA 1374	L	4.566			5W 10%	L. 170			100µF L. 15		185	100	270
CD 4018BCN	L. 950 L. 850	CA 3028	L. 1.970 L. 1.775	HA 11211 HA 11223	1	5.780		-		- 110			220µF L. 18 470µF L. 24		225 400	L	375 545
CD 4019BCN	L. 510 L. 455	CA 3161	L. 1.940 -	HA 11226	L	12.375			TRIAC	V 455			470µF L. 24 1000µF L. 29		510	L	825
GD 4020BCN	L. 970 L. 900	CA 3162	L. 6.800 -	HA 11251				_	3A 400V	L. 800	1		2200µF L. 49		855		1.650
			0.000	11231	L	2.950			6A 400V	L. 1.050	L	930		- L.			2.295
													4700µF	- 1	1.620		2.985
													197757				
Stiamo	preparando i	Catalogh	Conorale DD	ENOTAT	EV	THE	Invio	nda	1 2 000 in F-		111	0	nsultateci per altr	27.3			
Juanto	bi charando i	Catalogu	delierate, Ph	LNUIAI	EV	1111	iiiviai	iiuo	L. 2.000 In Fr	ancopo	111	- Co	nsuitateci per altr	0 11	rater	lale	3
non des	scritto in quest	a pagina											The state of the s				

 \Box Pagherò al postino il prezzo indicato nella vostra offerta speciale + L. 1.500 per contributo fiss. spese di spedizione N.B. È possibile effettuare versamenti anche sul ccp n° 315275 intestato a JCE via dei Lavoratori, 124 20092 Cinisello B. In questo caso specificare nell'apposito spazio sul modulo di ccp la causale del versamento e non inviare questo tagliando. di L Tagliando ordine **Ilbri** da inviare a: JCE - Via dei Lavoratori, 124 - 20092 Cinisello Balsamo (Mi) (Per ordini superiori alle L. 30.000 inviare il 50% dell'importo, Codice Quantità Firma □ Allego assegno n° (in questo caso la spedizione è gratuita) per □ Abbonato Codice Fiscale (indispensabile Città Inviatemi i seguenti libri; Quantità □ Non abbonato Cognome Codice Data

Monte Cognone	Pillon						
Indirizzo							
	5				0		
Cap.		Città					
Codice Fisc	ale (Indisp	Codice Fiscale (indispensabile per le aziende)	ziende)				
Desidero so	ttoscrivere	Desidero sottoscrivere un abbonamento annuo a:	s annuo a:				
dS []	L 23,500	□ SP + MC	L 51,500	+ 35 +	005/9	DEX + CN + MC	1 73500
	L 23000	33	L 45,000	Sp+ SE		+ SE + EK +	L 89,000
	24.000	+	45.500	SP+EX+		+ 85 + 68 +	L 94,000
S S S S S S S S S S S S S S S S S S S	70000	+ 2	7 2000	+ EK +		T	25.000
SP+SE	L 44.500	+ 4	L 51,000	SE+ EX + CA	1 58 000	H CM +	00200
SP+EX	L 46,000	CN+ MC	L 52500	SE+ EX +	1 72000	+ K + EK +	440,000
a partire dal mese d	mese di	-	2000	OC. MIC	13,000	Ou Luc	L. 112.000
SP = Sperimentare; CN = II Cinescopio	nentare: Si escopio	E = Selezione di	Tecnica RT	SP = Sperimentare; $SE = Selezione$ di Tecnica RTV; $EK = Elektor$; $MC = Millecanali;$ $CN = II Ginescopio$	AC = Miller	sanalf;	
□ Nuovo abbonato	bonato		□ Rinnovo	0	Codice Abbonato	onato	
D Pagheró	al postino	il prezzo indicato	1+L. 1.500	Pagheró al postino II prezzo indicato + L. 1.500 per contributo fisso spese di spedizione	so spese d	i spedizione	
D Allego as	Allego assegno nº-			di L	***************************************		
D Pagheró	al ricevime	ento della vostra	fattura (form	Pagherò al ricevimento della vostra fattura (formula riservata alle sole aziende)	sole azieno	(e)	
N.B. È possibile effettuare versamenti anche sul ccp nº 315275 intestato a:	ibile effettu	N.B. É possibile effettuare versamenti anche sul ccp n° 315275 intestato a:	nche sul co	p n° 315275 intest	ato a:		

La guida sicura nel labirinto tecnologico.

TechnoClub è l'organizzazione di vendita per corrispondenza del libro tecnico (principalmente elettronica e informatica) nonché del software applicativo.

TechnoClub è anche il tuo consulente, la guida sicura per orientarsi nel labirinto dell'editoria tecnica, lo strumento ed il servizio essenziale per il numero crescente di persone che hanno compreso l'importanza della tecnologia nel mondo odierno.

Libri di base e didattici per imparare a capire; applicativi per realizzare e coltivare il proprio hobby; pratici per risolvere i problemi dell'attività quotidiana; di elevata specializzazione per migliorare il proprio background professionale o culturale. E altri ancora per soddisfare ogni esigenza.

TechnoClub offre solo il meglio della produzione tecnica editoriale. Per questo ha scelto di collaborare con qualificati editori italiani e soprattutto si avvale di un'équipe di professionisti che esamina, seleziona e propone le opere più significative e compiete.

TechnoClub ha instaurato rapporti di collaborazione con i più prestigiosi editori e software-house stranieri, per offrire tempestivamente, già da quest'anno, le opere più innovative in lingua originale e il software più interessante, appena disponibili. Tutti possono aderire al TechnoClub, assicurandosi un servizio garantito, professionale, veloce, unico nel suo genere. Esamina le modalità per diventare Socio e considera i numerosi vantaggi che ne derivano.

Techno Club

i migliori libri tecnici e il software a casa vostra.

Cod. IFD01

Cod. IFD02

Cod. IFD03

Cod. IGD01

Cod. IGD02

Cod. IHD01

Cod. IHD02

Cod. IHD08

Cod. IHD09

Cod. IHD10

Cod. IFH04

Cod. IFH08

Cod. IFH11

Cod. IFH12

Cod. IFK03

Cod. IHK02

Cod. IHK03

Cod. IHJ02

Cod. IHK04

Cod. IHG03

Cod. IHF09

Cod. IFI05

Cod. IFI08

Cod. 11103

Cod. 11104

Cod. IHC01

Cod. IHC02

Cod. IHC03

Associati subito. Hai almeno 8 buone ragioni per farlo.

Nessun impegno di acquisto.

I Soci non sono vincolati all'acquisto di un numero minimo di libri durante il periodo di adesione al **TechnoClub**. Di conseguenza, scelta libera e nessuna imposizione, acquistando quello che si vuole, quando si vuole.

Garanzia.

I libri proposti dal **TechnoClub** costituiscono sempre la versione originale e più aggiornata delle edizioni in com-

Il **TechnoClub** garantisce quindi il contenuto e la veste tipografica origina-

Convenienza certa.

Il prezzo delle opere offerte ai Soci del **TechnoClub** è inferiore del 10% circa rispetto al prezzo di copertina dell'edizione in commercio. Il risparmio è perciò assicurato.

 Consulenza professionale per una scelta sicura.

La selezione delle opere proposte dal **TechnoClub** è effettuata da un gruppo di esperti dei singoli settori.

Viene in tal modo offerto ai Soci un orientamento sicuro e garantita la massima affidabilità nella scelta.

5. Informazione costante.

A tutti i soci del **TechnoClub** viene inviata gratuitamente, ogni tre mesi, la rivista "**TechnoClub Review**", che presenta l'assortimento, suddiviso per argomento e settore specifico di interesse, dei libri selezionati. Ogni libro viene illustrato con note esplicative che ne chiariscono il contenuto.

Il Socio viene in tal modo facilitato nella scelta, secondo le sue specifiche esigenze.

5. Aggiornamento continuo.
"TechnoClub Review" garantisce inol-

tre l'aggiornamento costante sulle novità editoriali.

Considerando l'evoluzione continua dei settori trattati, i Soci dispongono così di uno strumento efficace per tenersi tempestivamente aggiornati.

7. Un ulteriore e interessante vantaggio. I Soci ricevono anche la tessera Techno-Club, un documento strettamente personale che dà diritto a sconti speciali sugli acquisti effettuati presso i negozi convenzionati, indicati sulla rivista "TechnoClub Review".

8. Praticità e comodità d'acquisto.

Aderire al **TechnoClub** significa poter scegliere con tranquillità a casa propria consultando semplicemente la rivista "**TechnoClub Review**".

Garanzia di libri sempre disponibili, nessuna perdita di tempo in lunghe ricerche... e i libri arrivano puntualmente a domicilio.

Cod. IHD03

Cod. IHD04

Cod. IHD05

Cod. IHD06

Cod. IHD07

Cod. IHH02

Cod. IBH01

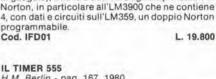
Cod. IFK01

Cod. IFK02

Cod. IGI03

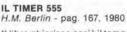
Cod. IBI08

Cod. IBI05



Cod. IFI01

Cod. IFI04



GLI AMPLIFICATORI DI NORTON QUADRUPLI

Con oltre 100 circuiti fondamentali e applicativi (amplificatori, oscillatori, filtri, VCA, VCO, ecc.) e più di 160 circuiti pratici (dagli strumenti di misura

ai gadgets), il libro è dedicato agli amplificatori di

LM3900 & LM359 - Con esperimenti G. Marano - pag. 441, 1981

Il libro chiarisce cos'è il temporizzatore 555, come utilizzarlo da solo o con altri dispositivi allo stato solido, ne illustra le caratteristiche ed applicazioni e fornisce oltre 100 circuiti pratici già collaudati. È completato da 17 semplici esperimenti. L. 7.700 Cod. IFD02

Cod. ICM02

Cod. ICMO1

Cod. IFE01

Cod. IFE02

Cod. IFE03

I TIRISTORI - 110 PROGETTI PRATICI R.M. Marston - pag. 143, 1981

Il manuale spiega il funzionamento dello s.c.r. e del triac e prosegue con 110 progetti che utilizzano i detti dispositivi: dal semplice allarme elettronico al sofisticato sistema di controllo automatico per impianti di riscaldamento elettrico, con componenti di facile reperibilità e basso costo. Cod. IFD03 L. 7.200

Come diventare socio...

Per diventare Socio è sufficiente scegliere tra queste due semplici possibilità:

A) Versare l'importo di L. 8.000 quale quota di adesione

B) Effettuare un primo acquisto di libri, per un importo minimo di L. 30 000. In questo caso non si versa la quota di adesione.

Per acquisti inferiori a L 30.000 va aggiunta la quota di adesione di L 8.000.

In ambedue i casi, il Socio ha diritto a ricevere gratuitamente la rivista "TechnoClub Review" per ben due anni e la tessera personale con validità per lo stesso periodo.

Il Socio che nel corso dei due anni di adesione effettuerà acquisti di libri per un importo di almeno L. 60.000 avrà diritto al rinnovo automatico e gratuito dell'iscrizione al **TechnoClub** per un altro anno, conservando quindi tutti i vantaggi esclusivi

Associati subito.

CEDOLA DI	ADESIONE da	compilare e spedire in busta chiusa a
TechnoClub	- Via Rosellini,	12 - 20124 Milano

Si, aderisco al TechnoClub scegliendo la seguente formula: A) Sola adesione con versamento di L. 8.000 B) Adesione con acquisto dei seguenti libri per un importo totale di L	Sono interessato principalmente a Libri di □ Elettrotecnica □ Elettronica e dispositivi elettronici □ Elettronica pratica ed hobbystica □ Misure elettroniche
Cod	□ Radioriparazioni - TV Service □ Equivalenze dei semiconduttori □ Personal computer e calcolatrici
CodCodCod	□Linguaggi e metodi di programmazione
□ Contanti o francobolli allegati	□Informatica
☐ Assegno allegato nº	□ Informatica e organizzazione aziendale □ Comunicazioni: elementi e sistemi
Banca	□ Microprocessori □ Saggistica elettronica e intormatica
☐ Ho spedito l'importo a mezzo vaglia postale	☐ Energie alternative
□ Ho versato l'importo sul ccp nº 19445204 intestato a TechnoClub - Milano	☐ Sistemi di regolazione e controllo ☐ Altri (specificare)
☐ Pagherò in contrassegno al postino al ricevimento dei volumi	**********************
(valido solo per la formula B)	Sono interessato anche a libri in lingua originale
Nome	□ Inglese □ Francese □ Tedesco
Cognome	Sono interessato a Software per □ Apple
Via	□ Atari
Città Cap	□ Commodore □ Sinclair
	□Tandy Radio Shack
Cod. Fiscale (per le aziende)	□ Altri (specificare)

Data Firma

1	Sono interessato principalmente a Libri di
ı	□ Elettronica e dispositivi elettronici
ı	□ Elettronica pratica ed hobbystica
ı	☐ Misure elettroniche
ı	□ Radioriparazioni - TV Service
ı	□ Equivalenze dei semiconduttori
ı	□ Personal computer e calcolatrici
ı	□ Linguaggi e metodi di programmazione
ı	□ Informatica
ı	□ Informatica e organizzazione aziendale
۱	□ Comunicazioni: elementi e sistemi
1	□ Microprocessori
۱	□ Saggistica elettronica e informatica
1	□ Energie alternative
1	□ Sistemi di regolazione e controllo
1	□ Altri (specificare)
1	artiti (openione)
1	
	Sono interessato anche a libri in lingua originale
	□ Inglese □ Francese □ Tedesco
ı	Sono interessato a Software per
ı	□Apple
П	□Atari
ı	□ Commodore
	Sinclair
ı	□ Tandy Radio Shack

...e puoi già scegliere tra questi

300 CIRCUITI

Elektur - pag. 262, 1980

Una raccolta di schemi e idee per il tecnico di laboratorio e l'hobbysta di elettronica. Circuiti per applicazioni domestiche, audio, di misura, giochi elettronici, radio, modellismo, auto e hobby L. 11.000

DIGIT 1 - Introduzione alla Tecnica Digitale H. Ritz - pag. 61, 1980

Il libro mira a insegnare i concetti fondamentali di elettronica con spiegazioni semplici. Esperimenti pratici utilizzanti una piastra sperimentale a circuito stampato consentono un'introduzione graduale all'elettronica digitale.

Cod. IGD02

L. 6.300

DIGIT 2

Elektor - pag. 103, 1981

Prosieguo naturale di Digit 1, il libro presenta oltre 500 circuiti: dal frequenzimetro al generatore di onde sinusoidali - tringolari - rettangolari; dall'impianto semaforico alla pistola luminosa Cod IGD03

IL LIBRO DEGLI OROLOGI ELETTRONICI H. Pelka - pag. 171, 1977

Orologi, sveglie, cronometri elettronici: il volume è dedicato a chi vuole comprendere il funzionamento di questi apparecchi come pure a chi cerca le nozioni pratiche necessarie per la realizzazio-

Cod. IHD01

ELETTRONICA PER IL FERROMODELLISMO H. Jungmann - pag. 103, 1979

Il volume tratta il principio di funzionamento del telecomando, la costruzione di un alimentatore di rete e di un generatore di segnale, il ricevitore nella locomotiva, i circuiti ausiliari e come pilotare seperatamente velocità e luci di più locomotive contemporaneamente.

Cod. IHD02

ELETTRONICA PER L'AEROMODELLISMO H. Bruss - pag. 217, 1980

Partendo da concetti fondamentali, vengono spiegati possibilità e limiti di volo e propulsione elettrica. Viene approfondito il discorso dell'alimentazione e descritti i vari tipi di batterie: al nickel cadmio, allo zinco, al litio, ecc. e viene indicata la costruzione di un moderno sistema di radiocomando ad alta affidabilità.

Cod. IHD03

L.4.850

ELETTRONICA PER L'AUTOMODELLISMO D. Christoffer - pag. 94, 1981

iene descritto un impianto che si basa sul principio dello slot racing e che però non necessita di

rotaie. I modellini ricevono la corrente da un trasformatore, si possono accelerare e frenare e sono dotati di una funzione di guida molto importante: lo sterzo.

Cod. IHD04

1 3 950

ELETTRONICA PER FILM E FOTO

M. Horst - pag. 196, 1978

Una descrizione teorica e pratica, che pone in primo piano la costruzione in proprio di apparecchiature e di dispositivi elettronici per pellicole a passo ridotto e fotografie. Particolarmente adatto ai dilettanti, con 93 ill.e 5

tabelle.

Cod. IHD05

L. 4.500

L'ORGANO ELETTRONICO

R. Boehm - pag. 150, 1978

Consigli necessari per acquistare un organo; tutte le indicazioni per progettarne uno; le informazioni per realizzarlo. Contiene inoltre una descrizione dell'organo a canne e dei suoi registri. Cod. IHD06

IL LIBRO DEI CIRCUITI HI-FI

Kuehne/Horst - pag. 157, 1977

Il volume, che contiene tra l'altro le norme DIN che stabiliscono i requisiti minimi di un impianto Hi-Fi, fornisce all'appassionato di Hi-Fi e al tecnico indicazioni sia per l'acquisto di un impianto completo che per realizzarlo da sé (un capitolo tratta infatti la realizzazione di circuiti di amplificazioni con una scatola di montaggio).

Cod. IDH07

IL LIBRO DEI MISCELATORI

S. Wirsum - pag. 185, 1978

Questo manuale di costruzione, fornito di schemi circuitali, parte dalla descrizione delle singole fonti di segnali e indica le tecniche di realizzazio-ne di diversi modelli di mixer con speciali caratteristiche e l'effetto eco e vibrato.

Cod. IHD08

L. 6.100

IL LIBRO DELLE CASSE ACUSTICHE

H.H. Klinger - pag. 99, 1979

Una raccolta sperimentata di piani di costruzione per contenitori chiusi, specialmente adatti per la riproduzione dei bassi. Casse acustiche per diversi tipi di musica. 90 illustrazioni, indicazioni costruttive, le misure, i consigli per la realizzazione Cod. IHD09 L. 4.300

ELETTRONICA NELLA MUSICA POP

H. Goddijn - pag. 230, 1980

Il volume, rivolto sia ai musicisti interessati all'elettronica che ai tecnici interessati a realizzare circuiti per effetti musicali, permette la costruzio-ne di efficaci complementi di strumentazione con 173 illustrazioni e diversi schemi di circuiti. L. 4.850

Cod. IHD10

PROGRAMMAZIONE DEL 6502

R. Zaks - pag. 375, 1981

Ideato come testo autonomo e progettato sotto forma di corso per imparare la programmazione in linguaggio Assembler del microprocessore 6502: dai concetti di base alle tecniche di programmazione più avanzate, con risoluzione obbligatoria di vari esercizi.

Cod. IFH04

L. 19,800

APPLICAZIONI DEL 6502

R. Zaks - pag. 214, 1981

Tecniche e programmi per applicazioni tipiche del 6502. I programmi sono, con poche varianti, applicabili direttamente su qualunque microcomputer su scheda basato sul 6502, quali il KYM, il SYM e l'AIM 65 e altri e consentono al-lettore alcune realizzazioni pratiche.

Cod. IFH08

L. 12,000

INTRODUZIONE AI MICROCOMPUTER VOL. 0 - IL LIBRO DEL PRINCIPIANTE

A. Osborne - pag. 240, 1980

Una visione complessiva su calcolatori ed elaboratori, con concetti generali e terminologia di base per capire la tecnologia usata. Vengono illustrate le singole parti del sistema, con le possibilità di espansione e componenti accessori. Cod. IFH11

L. L. 12.500

INTRODUZIONE AI MICROCOMPUTER VOL. 1 - IL LIBRO DEI CONCETTI FONDAMENTALI

A. Osborne - pag. 321, 1980

Il libro presenta la struttura logica fondamentale su cui sono basati i sistemi a microcomputer. Usando i concetti comuni a ogni sistema a microprocessore, viene illustrata l'architettura, la programmazione, le possibilità e l'operatività di un microcomputer, con un set finale ipotetico di istruzioni per la simulazione delle possibili situazioni reali in cui si verrà a trovare con i vari microprocessori

Cod. IFH12

L. 14,400

COS'È UN MICROPROCESSORE

H. Pelka - pag. 132, 1978

Analogie del microprocessore con un computer tradizionale, le sue utilizzazioni, le possibili configurazioni, i criteri di scelta, le tecnologie; come programmare le ROM e le EPROM, quali sono i linguaggi di programmazione, cos'è la microprogrammazione, quali sono i set d'istruzioni. Cod. IHH02 L. 4.300

CIRCUITI DIGITALI INTEGRATI E MICROPROCESSORI

V. Falzone - pag. 295, 1982

Il testo è diviso in quattro parti, dedicate alla teoria di base: algebra di Boole, sistemi di numerazione, codici binari; ai circuiti combinatori ad una o più uscite, e alle relativa realizzazioni con integrati SSI e MSI; ai circuiti sequenziali asincroni, sincroni ed impulsivi ed alle loro realizzazioni integrate; al circuiti LSI e al sistemi a microprocessori.

Cod. IBH01

L. 11.700

CP/M CON MP/M

R. Zaks - pag. 309, 1982

II libro si prefigge di rendere agevole l'uso del CP/M (nelle versioni CP/M 1.4 - CP/M 2.2 - siste-ma operativo multiutente MP/M); il sistema operativo progettato per semplificare l'utilizzo di un mi-crocomputer, disponibile su quasi tutti gli elaboratori basati su microprocessore 8080 e Z80 e su certi sistemi utilizzanti il 6502.

Cod. IFK01

L. 19.800

PROGRAMMARE IN ASSEMBLER A. Pinaud - pag. 153, 1982

Il libro, destinato in particolare a chi già ha una buona conoscenza di un linguaggio evoluto molto semplice come il BASIC, fornisce i rudimenti che consentono di programmare in Assembler, con numerosi esempi pratici. Come Assembler esi-stente è stato scelto quello dello Z80.

Cod. IFK02

L. 9.000

INTRODUZIONE AL BASIC

P. Le Beux - pag. 314, 1981

Un corso rivolto ai principianti, che illustra tutti gli aspetti del BASIC su differenti sistemi. Con numerosi esempi, il lettore può verificare con immediatezza il reale apprendimento raggiunto. Cod. IFK05 L. 16.500 IMPARIAMO IL PASCAL

F. Waldner - pag. 162, 1981

Un libro di divulgazione, incentrato sull'autoapprendimento del linguaggio Pascal, con consigli, problemi.

Un testo da "usare" e non da "leggere", secondo l'intento dichiarato dall'autore.

Cod. IFK03

L. 9.000

PASCAL

P.M. Chirlian - pag. 200, 1981

Questo libro, inteso come manuale di autoistruzione o libro di testo in un corso, per chi non ha esperienza di calcolatori o programmazione, presenta il linguaggio Pascal che permette la "programmazione strutturata". Ogni capitolo si conclude con una serie di esercizi

Cod. IHK02

1

L. 7.650

MICROSOFT BASIC

K. Knecht - pag. 150, 1981

Un manuale di introduzione al Microsoft BASIC. sorto dall'esigenza di standardizzazione del BA-SIC per l'implementazione su una varietà di personal computer. Viene dato rilievo alle diverse caratteristiche e viene dato particolare risalto alla versione implementata sul TRS-80.

Cod. IHK03

L 5.850

TE NE INTENDI DI COMPUTER?

K. Billings/D. Moursund - pag. 140, 1982

Il libro non insegna come usare il computer e non fornisce dettagli per la soluzione di problemi col suo ausilio. Scopo del libro è di aumentare il livello di comprensione dei computer: sapere cosa possono e non possono fare, qual'è il loro ruolo nella società e quali problemi creano. L. 7.650

Cod. IHJ02

MUSICA CON IL CALCOLATORE

R.C. Zaripov - pag. 169, 1979

Una monografia dedicata al problema della composizione di musica con l'aiuto di calcoli matematico-probabilistici, con rassegna degli studi svolti nel mondo sull'aiuto dei computer per la composizione e l'analisi della musica, oltre alle regole trovate dall'autore per realizzare un modello che simula l'attività di un compositore.

Cod. IHK04

L. 6.750

ENERGIA SOLARE - MANUALE DI PROGETTAZIONE

B. Anderson - pag. 398, 1980

Un libro utile ai progettisti che intendono intraprendere l'esperienza di una radicale trasforma-zione del processo progettuale per una diversa architettura, capace di regolare il clima interno con il minimo consumo di energia tradizionale. Cod. IHG03 L. 16.200

CIRCUITI PER GLI AMATORI CB

R. Zierl - pag. 79, 1981

IL libro presenta dei circuiti e ne descrive la costruzione, introducendo il lettore nel retroterra tecnico della CB, in modo da permettergli di dedicarsi al proprio hobby con maggior competenza. Cod. IHF09 L. 3.200

CORSO DI PROGETTAZIONE DEI CIRCUITI A SEMICONDUTTORE
P. Lambrechts - pag. 100, 1981

Esamina i problemi di fondo che sorgono nel progetto dei circuiti. Considera le tecniche circuitali tipiche dei circuiti integrati, l'indipendenza delle funzioni circuitali dalla variazione delle caratteristiche, l'uso di componenti attivi in sostituzione di induttanza, capacità e resistenze.

Cod. IGI03 L. 7.500 **ELETTRONICA LINEARE E DIGITALE - VOL. 1**

Gasparini/Mirri - pag. 514

Oltre alla trattazione sintetica dell'elettronica lineare e digitale, l'opera intende far conoscer i dispo-sitivi a semiconduttore e gli integrati attualmente disponibili, facendo riferimento ai dati forniti dai costruttori. Vengono inoltre illustrate le caratteristiche sia dei diodi a semiconduttore che dei transistori (bipolari e ad effetto di campo). L. 12.600

Cod. IBI08

ELETTRONICA LINEARE E DIGITALE - VOL. 2

Mirri - pag. 546 Cod. IBI09

L. 14.400

DISPOSITIVI E CIRCUITI ELETTRONICI - VOL. 1

M. Gasparini, Mirri - pag. 815, 1982

Con numerosi esercizi completamente risolti che fanno riferimento a dispositivi elettronici reali. volumi si rivolgono non solo ai tecnici elettronici ed agli allievi degli ITI, ma anche ai tecnici professionisti quale opera di consultazione, offrendo un programma di elettronica che va dai tubi a vuoto ai transistori bipolari ed ai recenti transistori ad effetto di campo.

Cod. IBI05

L. 14.400

DISPOSITIVI E CIRCUITI ELETTRONICI-VOL. 2 Gasparini, Mirri - pag. 1056, 1982

Cod. IBI06

L. 16.200

DISPOSITIVI E CIRCUITI ELETTRONICI ELEMENTI FONDAMENTALI

Gasparini, Mirri - pag. 440

Si tratta di una "edizione ridotta" del corso suddetto in due volumi, che pur trattando gli argo-menti più significativi ed essenziali alle applicazioni, evita sia i problemi più complessi, sia le trattazioni matematiche più elaborate.

Cod. IBI07

L. 10.800

ELETTRONICA INTEGRATA DIGITALE

E. Taub/D. Schilling - pag. 713, 1981

400 problemi, dai più semplici ai più sofisticati. Vengono trattati i dispositivi di commutazione e gli amplificatori operazionali; la logica RTL e quella CMOS vengono analizzate in tutti i loro aspetti.

Cod. IFI01

L. 31,000

GUIDA AI CMOS - FONDAMENTI, CIRCUITI ED ESPERIMENTI

H.M. Berlin - pag. 219, 1980

I fondamenti dei CMOS - Il loro interfacciamento con altre famiglie logiche, LED e display a 7 segmenti, le porte di trasmissione e multiplexer, demultiplexer analogici, i multivibratori monostabili e astabili, i contatori, un tabella per convertire i circuiti da TTL a CMOS. Con 22 esperimenti. Cod. IFI04

CORSO DI ELETTRONICA FONDAMENTALE CON ESPERIMENTI

Larsen, Titus, Titus & Rony - pag. 439, 1980

Configurato come corso per l'autodidatta, tratta l'elettronica dalla teoria atomica ai transistori. Ogni argomento viene svolto secondo i suoi principi base e ne vengono descritte le applicazioni pratiche e i circuiti reali.

Cod. IFI05

L. 13.500

COMPRENDERE L'ELETTRONICA A STATO

Learning Center Texas - pag. 222, 1979

Articolato come corso autodidattico, in 12 lezioni, con quesiti e glossari, spiega la teoria e l'uso di diodi, transistori, tyristori, dispositivi elettronici e circuiti integrati bipolari, MOS e lineari, utilizzando semplici nozioni di aritmetica. L 12.600

Cod. IFI08

ALGEBRA DI BOOLE E CIRCUITI DI COMMUTAZIONE

E. Mendelson - pag. 213, 1974

IL libro tratta due argomenti distinti ma connessi: la sintesi e la semplificazione dei circuiti logici e di commutazione e la teoria delle algebre di Boole. Ogni capitolo è seguito da problemi risolti, in ordine di difficoltà, e dai problemi supplementari, che permettono un riepilogo della materia presentata nel capitolo.

Cod. 11103

TEORIA ED APPLICAZIONI DEI CIRCUITI ELETTRONICI

E. C. Lowenberg - pag. 274, 1974

Da una rassegna dei circuiti elettronici di base e dei sistemi di controllo mediante bipoli si passa a circuiti più complessi contenenti tubi a vuoto. Vengono analizzati semplici circuiti amplificatori e guindi i transistor con una trattazione dei più generali sistemi di controllo elettronico a quadripolo; sono studiati gli amplificatori lineari compresi i problemi della risposta in frequenza. Cod. III04

32 PROGRAMMI CON IL PET

T. Rugg e P. Feldman - pag. 240, 1981

Trentadue programmi ducumentati, da seguire su ogni tipo di PET. Ogni programma si compone di: scopo - come usarlo - esecuzione di prova (con fotografie schermo durante l'esecuzione) lista del programma, semplici variazioni - routine princi-pali - variabili principali - progetti suggeriti. L. 8.500

Cod. IHC01

32 PROGRAMMI CON l'APPLE

T. Rugg e P. Feldman - pag. 248, 1981

Come sopra, per ogni tipo di Apple Cod. IHC02

L. 8.500

32 PROGRAMMI CON IL TRS-80

T. Rugg e P. Feldman - pag. 248, 1981

Come sopra, per il TRS-80

Cod. IHC03

L. 8.500

101 ESPERIMENTI CON L'OSCILLOSCOPIO A.C.J. Beerens e A.W.N. Kerkhofs - pag. 119, 1981

Il volume, particolarmente consigliato per studenti, autodidatti e tecnici, illustra 101 esperienze eseguibili con l'oscilloscopio per la misura di grandezze elettriche e non elettriche.

Cod. ICM02

L. 9.200

CORSO RAPIDO SUGLI OSCILLSCOPI H. Carter e G. W. Schanz - pag. 174, 1981

Il volume fornisce una spiegazione semplice del funzionamento del tubo a raggi catodici, dei fon-damenti, della costruzione e dell'impiego degli oscilloscopi, prescindendo da trattazioni matematiche per riuscire comprensibile anche a coloro che hanno una preparazione approssimata sui circuiti elettronici. Cod. ICM01 L. 17,500

GUIDA MONDIALE DEI TRANSISTORI AD EFFETTO DI CAMPO JFET E MOS pag. 79, 1981

L. 9.000

GUIDA MONDIALE DEI TRANSISTORI

pag. 287, 1981 Cod. IFE02

L. 18,000

GUIDA MONDIALE DEGLI AMPLIFICATORI **OPERAZIONALI INTEGRATI**

pag. 195, 1978

Queste tre guide presentano l'esatto equivalente. le caratteristiche elettriche e meccaniche, i terminali, i campi di applicazione, i produttori e distributori di oltre 20.000 transistori, 5000 circuiti integrati lineari e 2.700 FET europei, americani, giapponesi

Cod. IFE03

GENERNOTIZIE

OFFERTA NOVITÀ SETTEMBRE 1982 MISTER 10.000

LA GENERAL È LIETA DI PRESENTARVI "MISTER DIECIMILA", UN PERSONAGGIO NUOVO, SIMPATICO, SINCERO E UMA-NO. MANTIENE QUANTO PROMETTE E OGNI MESE VI SBALORDIRÀ CON LE SUE OFFERTE. CONFRONTATE I PREZZI

CATALOGO DEI COMPONENTI ELETTRONICI ORDINE MINIMO LIRE 100.000. Per i prodotti contrassegnati con * l'IVA si intende al 18%

I PRODOTTI POSSONO VARIARE NELL'ESTETICA MA NON NELLE CARATTERISTICHE.

la nuova linea di oscilloscopi da 2 a 8 tracce

LEADER ELECTRONICS

La nuova linea di oscilloscopi Leader Electronics comprende numerosi modelli da 2 e 4 canali d'ingresso, visualizzazione fino a 8 tracce, base dei tempi singola o doppia, con o senza linea di ritardo, alimentazione dalla rete o mediante batterie ricaricabili. Tra i più significativi ricordiamo i modelli a 10, 35 e 50 MHz.

Il modello LBO-514 ha banda passante DC-10 MHz, prezzo decisamente molto contenuto e prestazioni interessanti: 2 canali □ sensibilità 1mV/cm □ schermo 8x10 cm □ base dei tempi variabile da 100 ns/cm a 0,2 sec/cm □ è leggero e compatto e particolarmente adatto per il service.

Lire 650.000* completo di 2 sonde - consegna pronta

Il modello LBO-520A, con la sua banda passante DC-35 MHz ed il suo basso prezzo, rappresenta la soluzione ideale per tutti coloro che operano in questa gamma intermedia di frequenza. Ha 2 canali d'ingresso □ sensibilità 5mV/div □ linea di ritardo di 120 ns all'ingresso dei due canali 🗆 base

dei tempi variabile da 20 ns/cm a 0,5 sec/cm 🗆 sincronismo TV automatico 🗆 single sweep I funzionamento x-y

Lire 1.300.000* completo di 2 sonde - consegna pronta

Le caratteristiche più significative del nuovo modello LBO-517 sono: banda passante DC-50 MHz □ 4 canali d'ingresso con possibilità di visualizzare sul display, in alternate sweep, 8 tracce simultaneamente □ elevata sensibilità 5 mV/cm su tutta la gamma e 1 mV/cm fino a 10 MHz doppia base dei tempi trace separation trigger hold-off □ trigger-view □ nuovo schermo dome-mesh ad alta linearità con 20KV EHT.

completo di 2 sonde - consegna pronta

1			
		una gamma completa di strumenti elettror	
	elett	ronucleonica	s.p.a.
1		MILANO - Piazza De Angeli, 7 - tel. (0: ROMA - Via C. Magni, 71 - tel. (0:	

el	ettronucleonica S.p.A.
D	esidero
0	maggiori informazioni su gli Oscillosco Leader Electronics modello
	avere una dimostrazione degli Oscillosco Leader Electronics modello
No	ome e Cognome
Di	tta o Ente
In	dirizzo

Azienda leader nel campo della strumentazione elettronica ricerca

RIVENDITORI

a cui affidare la vendita non esclusiva di un package di strumenti elettronici di misura di uso generale, quali:

- * Multimetri digitali 3 1/2 portatili e da banco KEITHLEY
- * Oscilloscopi, Generatori di segnali e Frequenzimetri digitali LEADER ELECTRONICS
- * Strumentazione per Laboratori di riparazione Radio-TV e per Radioamatori LEADER ELECTRONICS.

La ricerca è estesa a tutto il territorio nazionale.

Si offre:

- sconto interessante sui prezzi di listino
- massiccio supporto pubblicitario e pubblicazione dell'elenco dei Rivenditori sulle più importanti riviste del settore
- assistenza tecnica a nostro carico

- Si richiede: massima serietà e continuità nell'azione di vendita adeguato spazio espositivo in negozi o magazzini
 - di vendita
 - tenuta a stock di alcune unità per dimostrazione e pronta consegna
 - sufficiente conoscenza tecnica.

I Rivenditori interessati ed in possesso dei requisiti richiesti sono pregati di scrivere o telefonare alla

ELETTRONUCLEONICA - Direzione Commerciale Piazza De Angeli, 7 - 20146 Milano - Tel. 02 - 49.82.451 int. 17

RICETRASMETTITORE VHF PER USO MARINO Mod. 7800

SELETTORE der canali a tasuera (1867) enter system)
CONTROLLI: volume, squelch, dimmer SELETTORI: canale 16, potenza 1 - 25 W sistema U.S.A. e internazionale VISUALIZZATORI: numero di canale, int.

trasmissione a LED CONNETTORI: microfono, antenna, altoparlante esterno MICROFONO: tipo dinamico oppure

cometta (opzionale) SISTEMA OPERATIVO: simplex o

IMPEDENZA: 50 Ω TOLLERANZA DI FREQUENZA: ± 0,001% (- 20 ÷ + 50 °C) DEVLAZIONE: ± 5 kHz SEZIONE RICEVENTE Supereterodina a doppia conversione SENSIBILITÀ: 0,5 µ V - 20 dB TOLLERANZA DI FREQUENZA: 0,001% POTENZA AUDIO: 3 W
CONTROLLI AUTOMATICI: ALC, APC
ALIMENTAZIONE: 13,8 Vcc DIMENSIONI: 250 x 220 x 70

DISTRIBUITI IN ITALIA DALLA GBC

MULTIMETRO DIGITALE mod.HC 601

Display a 3,1/2 digit LCD PORTATE

Tensioni c.c.: 200 mV ÷ 1.000 V Tensioni c.a.: 200 mV ÷ 750 V Correnti c.c.: 200 µA ÷ 2 A Correnti c.a.: 200 µA ÷ 2 A Resistenze: $0.1\Omega \div 20 M\Omega$ Alimentazione: 9 Vc.c.

TS/2119-00

DISTRIBUITO IN ITALIA DALLA GBC

reesinen:

RICETRASMETTITORE **PORTATILE** Mod. AX 52

3 canalí 2 W - 1 quarzato (27,125) Controllo volume, squelch, cambio canali Microfono electret Indicatore stato batterie a LED Prese per antenna esterna, alimentazione esterna, carica batterie, auricolare Completo di borsa

SEZIONE RICEVENTE Supereterodina a doppia conversione Sensibilità: a 10 dB SN+N 0,5 µV Potenza output: 0,8 W

SEZIONE TRASMITTENTE Potenza: 2 W AM Alimentazione: 12 Vc.c. Dimensioni: 77 x 238 x 52

ZR/4203-00

DISTRIBUITO IN ITALIA DALLA GBC .

Oscilloscopi Gould la qualità che diventa tradizione

Il nuovo oscilloscopio OS300 è la più recente conferma dell'impegno e della tradizione GOULD: costruire oscilloscopi di alta qualità ed elevata affidabilità a prezzi contenuti. Derivato dal modello OS255, best seller degli oscilloscopi da 15

MHz, il nuovo OS300 offre prestazioni ancora più spinte: D banda passante DC-20 MHz

elevata sensibilità 2 mV/cm su entrambi i canali - schermo 8x10 cm con nuovo fosforo ad alta luminosità U sincronismo TV automatico somma e differenza dei canali 🗆 base dei tempi variabile da 50 ns/cm a 0,2 sec/cm x-y

leggero (5,8 Kg) e compatto (140x305x460 mm).

Lire 850.000* completo di 2 sonde - consegna pronta

Il modello 0\$3500 offre una banda passante DC-60 MHz e sensibilità 2 mV/cm su tutta la gamma ha tre canali

d'ingresso con trigger-view trace separation i doppia base dei tempi ☐ trigger hold-off ☐ multimetro opzionale DM3010

categoria: banda passante DC-100 MHz 3 canali d'ingresso con trigger-view □ trace separation □ sensibilità 2 mV/cm 0 16 KV EHT 0 MHz doppia base dei tempi □ trigger hold-off □

Il modello OS3600 offre prestazioni eccezionali che lo

> pongono ai livelli

> > più

elevati

della sua

multimetro opzionale DM 3010 per misure accurate di ampiezza, intervalli di tempo e frequenza.

Tutti i modelli hanno consegna pronta e sono garantiti 2 anni

una gamma completa di strumenti elettronici di misura

MILANO - Piazza De Angeli, 7 - tel. (02) 49.82.451 ROMA - Via C. Magni, 71 - tel. (06) 51.39.455

"Gennaio 82	Pag	alla consegna,	IVA esclusa.	1 Lgs =	Lire 2250	±2
	69	and the state of the state of	ALC: A SHEET SHEET	-0-		-

1	elettronucleonica S.p.A.
1	Desidero
	maggiori informazioni su gli Oscilloscop Gould modello
)	avere una dimostrazione degli Oscilloscop Gould modello
	Nome e Cognome
-	Ditta o Ente
	Indirizzo

LA PRIMA RIVISTA EUROPEA DI SOFTWARE PER PERSONAL COMPUTER

FERSCHAL SOFTWARE

ANNO 1 N. 1 LUGLIO/AGOSTO L. 3,500

UNA PUBBLICAZIONE DEL GRUPPO EDITORIALE JACKSON

CONVERSIONI GRAFICHE TRA TRS-80, APPLE E PET/CBM RICORSIVITA' IN BASIC

VENTIQUATTRO MODI PER SCRIVERE UN CICLO MASTER MIND E INTELLIGENZA ARTIFICIALE

PROGRAMMI PER PET/CBM, APPLE, TRS-80, ATARI, ZX80