Funkschau

Zur Lage des Rundfunkhandels und -Handwerks

Anläßlich der Eröffnung des ersten Fachschulungsheimes der Nachkriegszeit in den Westzonen in Dortmund kam der Vorsitzende des "Fachverbandes Rundfunk im Einzelhandelsverband für die britische Zone", Herr P. Stephanblome, in seiner Eröffnungsansprache auf wichtige Fragen des Rundfunkhandels und -handwerks zu sprechen, die für die Fachkreise aller Zonen von Bedeutung

sind.
In einer Zeit, in der die Masse der Bevölkerung in dauernder Sorge um das tägliche Brot lebt, ja, in der das Yolk buchstäblich hungert, scheint es vielleicht vermessen, das Interesse der Offentlichkeit auf den Rundfunk und damit auch auf Rundfunkeinzelhandel und Rundfunkhandwerk lenken zu wallen. Wir fun dies nicht nur aus eigenem Antrieb, sondern erfüllen damit gleichzeitig die Pflicht, Sprecher zu sein für Millionen von Rundfunkhörern, die täglich mit ihren Sorgen und Wünschen in unsere Geschäfte und Werkstätten kommen. Es ist nicht zu bezweifeln, daß sich Rundfunkeinzelhandel und Rundfunkhandwerk redlich bemüht haben, das in sie gesetzte Vertrauen zu rechtfertigen und auch heute alle Anstrengungen machen, um durch ihre Leistungen den Mangel an Ersatzteilen und Röhren auszugleichen.

Röhren auszugleichen.

Das beste Zeichen für die Opferbereitschaft und den Gemeinschaftssinn von Rundfunkeinzelhandel und Rundfunkhandwerk ist die Schoffung des Fachsdulungsheims des Dartmunder Rundfunkeinzelhandels, Was hier, in einer der am meisten zerstörten Städte unseres Vaterlandes, geleistet worden ist, soll ein leuchtendes Beispiel und ein Ansporn für unsere Berufskollegen nicht nur in dieser Zone, sondern in ganz Deutschland sein. Der Dorfmunder Rundfunkeinzelhandel hot schön einmal gezeigt, daß er gewillt und in der Lage ist, für unseren Berufsstand Vorbild zu sein. Schon einmal war es der Dorfmunder Rundfunkeinzelhandel, der am 15. Februar 1939 das erste Fachschulungsheim Deutschlands eröffnete.

Aufgaben des Fachschulungsheimes

Die Zukunft wird es lehren, welche Bedeutung die Schaffung dieses Schulungs-heimes nicht nur für unseren Berufsstand, sondern für den gesamten Rundfunk

Wenn wir im Frieden schon eine Berufsschulung und Berufsförderung in unserem Berufszweig für sehr wichtig hielten, dann ist sie heute eine zwingende Notwen-

Es gilt nicht nur die durch den Krieg und seine Folgeerscheinungen entstandenen Lücken in der Schulbildung unserer Jugend auszufüllen und das Wissen unserer Berufskollegen wieder aufzufrischen, die 6 Jahre und mehr durch den Krieg ihrem Beruf entfremdet waren,

Wir dürfen nie vergessen, daß wir ein armes Valk geworden sind, Wenn, wie wir alle wünschen, das ganze deutsche Volk in Zukunft am Rundfunk teilnehmen soll, dann müssen wir durch Steigerung unserer Leistungen und durch Verbesserung unserer Arbeitsmethoden erreichen, daß Anschaffung und Unterhaltung eines Rundfunkgerätes für jeden Deutschen erschwinglich ist,

Rundfunkgeräte-Export

Rundfunkgeräte sind früher von unserer Industrie in erheblichem Umfange exportiert worden. Die Exportmöglichkeiten für Rundfunkgeräte sind heute vielleicht pesser als je zuvor. Die Herstellung solcher Geräte erfordert nur geringe Rohstoffe, die zum größten Teil in Deutschland vorhanden sind. Wenn man die Rundfunkindustrie durch weitgehendste Unterstützung der öffentlichen Hand auf schnellstem Wege wieder exportfähig machen würde, wäre die Möglichkeit gegeben, für die zur Ausfuhr gelangenden Rundfunkgeräte in nicht unwesentlichem Umfange Rohrungsmittel einzuführen. Die Versorgung des Inlandmarktes kann unter gewissen Voraussetzungen ohne weiteres vom Rundfunkeinzelhandel und Rundfunkhandwerk vorgenommen werden. Voraussetzungen für alle diese Überlegungen

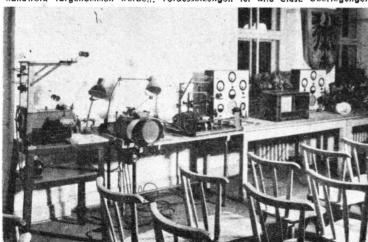


Bild t. Das Dortmunder Fachschulungsbeim verfügt über zahlreiche Meß- und Prüfeinrichtungen. Wickelmuschinen usw., wie sie der Rundfunkbandwerker in der täglichen Arbeit benötigt

bilden großzügige Planung und Förderung einer leistungsfähigen Rundfunkeinzelteilindustrie.

Wie wir schon lange Zeit wußten, wurde und wird in Frankreich ein erheblicher Teil der zur Versorgung des französischen Inlandmarktes dienenden Rundfunkgeräte von handwerklichen Betrieben hergestellt. Es ist nicht einzusehen, warum dieselbe Möglichkeit nicht in Deutschland bestehen sollte. Aber, wie schon gesagt, Voraussetzung hierfür ist die Ingangsetzung bzw. Steigerung der Produktion von Rundfunkeinzelteilen.

Das Röhrenproblem

Wir sind in der britischen Zone in der glücklichen Lage, eine durch den Krieg fast unbeschädigte, leistungsfähige Rundfunkröhrentabrik zu haben. Diese Fabrik hat auch eine Herstellungsgenehmigung und arbeitet seit etwa 12 Monaten. Trotzdem war es bis heute, von Ausnahmen abgesehen, nicht möglich, aus dieser Neuproduktion Rundfunkröhren irgendwelcher Typen für den Reparaturbedarf zu bekommen.

kommen.

Wir müssen im Interesse der Hörer verlangen, daß bei der Auflage einer bestimmten Rundfunkgeräteproduktion von vornherein ein entsprechender Anteil an Röhren und sonstigen Verschleißteilen zurückgestellt wird. In ollen heute aus der Neuproduktion kommenden Gerätetypen wird zumindest eine Röhrentype verwendet, die nicht aus der regionalen Herstellung kommt, sondern auch aus kommerziellen Beständen stammt, für den evtl. notwendig werdenden Ersatz dieser Röhren erklärt sich die Rundfunkindustrie wie auch die Röhrenfabrik für unzuständig. Es wird von beiden Stellen darauf verwiesen, daß die Militärregierung einige Zehntausend dieser Röhren blockiert habe.

Soli das etwa eine Entschuldigung dafür sein, wenn z. B. der Bergmann bei einem im Rahmen des Punktsystems erwarbenen Rundfunkgerät nach kurzer Zeit einen Röhrendefekt hat und er dann hierfür keinen Ersatz bekommt? Das ist nicht etwa nur eine theoretische Annahme. Diese Fälle sind bei den bisher zur Auslieferung gelangten Geräten in nicht unerheblichem Umfange vorgekommen.

petangen Geraren in nan unernebitatem Umtange vorgexommen. Die wenigen Glücklichen, die heute ein neues Rundfunkgerät erwerben können, nehmen mit Recht an, daß diese Geräte heute zu den gleichen Bedingungen geliefert werden wie vor dem Kriege. Das ist aber keineswegs der Fall. Nicht nur, daß die Industrie stillschweigend in der Garantiefrage bestimmte Einschränkungen macht, auch die von den Preisbildungsstellen festgesetzten Verbraucherpreise sind unter den augenblicklichen Umständen nur eine Fiktion.

Erhöhte Spesen

Der Rundfunkeinzelhandel erhält bisher die für den Verbraucher bestimmten Rundfunkgeräte mit einer Handelsspanne von 13 % unverpackt ab Werk. In einzelnen Fällen, in denen die Geräte von einem Industrie-Auslieferungslager abgegeben wurden, wurden dem Rundfunkeinzelhandel dann noch ein Zuschlag von 8 % für vorfracht in Rechnung gestellt. Es wird also dem Einzelhandel zugemutet, daß er für seine Arbeit nicht nur nichts verdient, sondern daß er allein schan für den Transport vom Werk oder Werkauslieferungslager in vielen Fällen bares Geld mitbringt. Wenn er aber seine Funktion als Treuhänder der Rundfunkhörer wirklich ausüben soll, wenn er durch die heutige Preisgestaltung nicht gezwungen werden soll, im Kampf um seine Existenz korrupt zu werden, dann muß ihm auch ein angemessener Nutzen zugestanden werden, denn jeder Arbeiter ist seines Lohnes wert.

Wir Rundfunkeinzelhändler und Rundfunkhandwerker hängen mit einer fanatischen Liebe an unserem Beruf, und wir tun oft unbemerkt von der Offentlichkeit alles, um durch Steigerung unserer Leistungen den Rundfunkhörern und damit unserem Volk zu dienen.

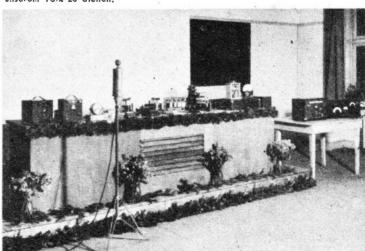


Bild 2. Verschiedene Demonstrationsmodelle ermöglichen anschauliche Fachvorträge, die im Dortmunder Fachschulungsbeim laufend veranstaltet werden

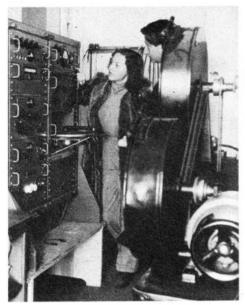


Bild 2. Neuzeitliche Tonfilmverstärkeranlage von Rohde & Schwarz

Bild 3, Dr. Rohde erklärt der Münchener Schauspielerin Hanna Ruecker die Vorzüge des neuen Kondensatormikrofones (rechts) im Vergleich zu einer bisherigen Konstruktion (links)

Bild 4. Die Membrane des neuen dynamischen Mikrofones hat ein Gewicht von nur 20 Milligramm


Bild I. Der Wert der Frequenzabweichung von Rundfunksendern läßt sich aus Oszillografenkurven erkennen

Frequenz- und Zeitüberwachung

Die wichtige Aufgabe der Frequenzüberwachung von Rundfunksendern der westdeutschen Zonen, die vor dem Krleg vom Weltrundfunkverein in Brüssel be-treut wurde, liegt zur Zeit in den Händen der Mün-chener Fa, Rohde & Schwarz.

Quarzuhr als Zeit- und Frequenznormal

Quarzyhr als Zeit- und Frequenznormal Der wichtigste Teil der Anlage Ist eine Quarzuhr, die dazu dient, ein genaues Normal der Zeit und der Frequenz zu bilden. Die Quarzuhren haben die höchsten, heute erreichbaren Genauigkeiten, die auf die Frequenzen bezogen 8 Dezimale beträgt und auf die Zeit eine Genauigkeit von etwa 1/100 Sekunde pro Tag ausmacht. Das wichtigste an der Quarzuhr ist ein elektrischer Schwingquarz mit einer Frequenz von 100 000 Schwingungen in der Sekunde, der in einem luftleeren Raum und in einem Thermostaten untergebracht ist und dadurch seine Frequenzen genau beibehält. Von dieser Frequenz werden durch elektrische Methoden Teilfrequenzen von 10 000, 1000 und 50 Hz erzeugt. Von den 1000 Hz laufen Synchronuhren, deren Genauigkeit deher der Quarzfrequenz gleich ist.

Von den sonstigen Syndhronuhren werden Zeitgeber gesteuert, die die Zeitzeichen über die verschiedenen Rundfunksender obgeben. Es werden die Zeitzeichen der Sender München, Stuttgart, Frankfurt, Bremen, Bayreuth, Berlin, von der Quarzuhr aus gesteuert, Insbesondere gibt AFN, lede Stunde 6 Punkte von dieser Quarzuhr. Die Genaufgkeit dieser Zeit ist absolut besser als 1/1000 Sekunden pro Tag.

Frequenzüberwachung

Ebenso werden mit der abgebildeten großen Anlage die Rundfunksender überwacht. Vom Weltrundfunksender ist für die Rundfunksender nur eine bestimmte Abweichung von ihrem richtigen. Wert zugelassen. Die Richtigkeit der Frequenz wird durch Vergleich der empfangenen Station mit der Quarzuhrfrequenz bestimmt. Die Genauigkeit der Überwachung erfolgt auf 7 Dezimalstellen. So hat z. B. der Sender AFN. München im allgemeinen keine größere Abweichung als 2 Hz auf 1 249 000. Die Fa. Rohde & Schwarz, die diese Anlage baut, stellt auch sonst noch eine Reihe interessanter Dinge her, wie sie für den Tonfilm und die allgemeine Rundfunktechnik benötigt werden. Besonders Interessant dürften neuartige Kondensatormikrofone sein, die in ganz kleiner, handlicher Form hergestellt werden, sowie dynamische Mikrofone, die den Vorteil haben, zum Betrieb keine besonderen Stromquellen zu benötigen. Die neuen dynamischen Mikrofone haben einen Frequenzumfang von 30–8000 Hz, so daß sie für fast alle Zwecke anwendbar sind.

(Bilder : Dena-Hoinkis)

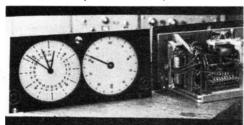


Bild 5. Auf dieser Synchronuhr ist mit Hilfe eines zweiten Ziffernblattes eine Ablesung von 1/1000 Sekunde je Teilstrich möglich (links). Der Präzisionsaufbau dieser Uhr geht aus der Rückansicht (rechts) hervor

Bild 8. Abstimmung eines Rundfunksenders an der umfangreichen Überwachungsapparatur

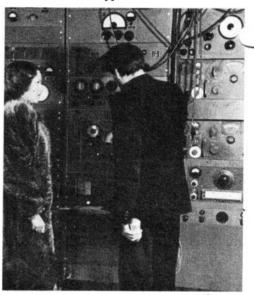


Bild 7. Dr. Rohde führt eben eine Frequenzmessung aus

Bild 6. Das neue dynamische Mikrofon von Rohde & Schwarz zeichnet sich durch breites Frequenzband und kleine Abmessungen aus

Der Spartransformator

lm folgenden bringen wir die vereinfachten Berechnungsgrundlagen des Spartransformators, die der Berechnungsart unserer FUNKSCHAU-Netztransformatorentabelle angapaßt sind. In die neueste Auflage der FUNKSCHAU-Netztransformatoren- und Netzdrosseltabella wird diese Berechnung aufgenommen werden

Im Gegensatz zum Isoliertransformator sind beim Spartransformator oder Autotransformator Primär- und Sekundärwicklung nicht galvanisch voneinander getrennt. Die Unterspannungswicklung 2 bildet nach dem Bild einen Teil der Oberspannungswicklung, die sich aus den Wicklungen 1 und 2 zusammensetzt. Hier werden die Teilwicklungen nicht Primär oder Sekundär bezeichnet, sondern allgemein mit Wicklung 1 und Wicklung 2, da Wicklung 2 je nachdem, ob heraufoder heruntertransformiert werden soll, die Primär- oder Sekundär bei Spartransformatoren zu übertragende wicklung bedeuten kann. Die bei Spartransformatoren zu übertragende Leistung ist meist unmittelbar bekannt. Sie entspricht der Sekundärleistung $N_{\rm S}$ bei Isoliertransformatoren oder kann wie dort aus dem Produkt von Sekundärspannung U_s und Sekundärstrom I_s errechnet werden. Für die Auswahl des Blechpaketes ist jedoch die Leistung $N_{\rm typ}$ maßgebend, die sich wie folgt errechnet. In den Wicklungen Wck. 1 und Wck. 2 werden folgende Leistungen übertragen.

the folgende Leistungen übertragen.

$$N_1 = (U_0 - U_{10}) \cdot I_0$$
 $N_2 = U_{11} \cdot (I_1 - I_0)$

ür ü = $\frac{U_{11}}{U_0}$ = $\frac{U_{11}}{U_{00}}$ = $\frac{U_{11}}{U_{00}}$ = $\frac{U_{11}}{U_{00}}$ = $\frac{U_{11}}{U_{00}}$ = $\frac{U_{11}}{U_{00}}$ = $\frac{U_{11}}{U_{00}}$ = $\frac{U_{12}}{U_{00}}$ = $\frac{U_{12$

Setzt man für
$$\ddot{u} = \frac{U_{11}}{U_{0}} = \frac{U_{1}}{Oberspannung}$$
 2)

und ohne Berücksichtigung der Verluste $N_s = U_\sigma \cdot I_\sigma = U_\alpha \cdot I_\tau$

$$N^{\rm s} = \Pi^{\rm o} \cdot \Gamma^{\rm o} = \Pi^{\rm a} \cdot \Gamma^{\rm a}$$

dann ergibt sich, daß die in den Wicklungen umgesetzten Leistungen $N_1 = N_2 = N_{\rm typ}'$ sind.

$$N_{typ'} = N_s \cdot (1 - 0)$$

us dem Wert der Sekundärleistung $N_{\rm s}$ ergibt sich die für die Berechnung des Primärstromes maßgebende, auf der Primärseite aufgenommene Leistung $N_{\rm p}$ (Voltampere) durch Multiplikation mit dem Faktor 1,2 (für alle Verluste zusammen werden 20% angenommen). $N_{\rm p}=1.2 \times N_{\rm s}$

Die eigentliche Typenleistung N_{typ} ist dann für die Bestimmung des Blechpaketes maßgebend, d.h. bei Verwendung eines Spartransformators ist ein kleineres Blechpaket der Leistung N_{typ} als bei Isoliertransformatoren der Leistung $N_{\rm p}$ erforderlich:

$$N_{\text{typ}} = N_{\text{p}} \cdot (1 - \ddot{u})$$
 6)

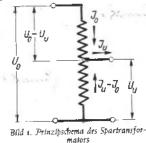
Tabelle 1 können die Übersetzungsverhältnisse ü, sowie 1-ü für die wichtigsten Spannungen entnommen werden.

Die für die betreffende Leistung verwendbaren Blechpakete können den Tabellen 5, 7 und 8 entnommen werden, die auch für Isolierwandler gelten, wenn die Primärleistung Np angewendet wird.

Der Primärstrom I_p ergibt sich dann aus dem Quotienten von Primärleistung N_p und Primärspannung U_p . $I_p = {}^{\bullet}N_p : U_p$

$$= N_{\rm p} : U_{\rm p}$$
 7)

Während bei den Transformatoren mit isolierter Sekundärwicklung die Sekundärströme unmittelbar bekannt sind, sind bei Spartransformatoren die Ströme in den Wicklungen maßgebend.


$$\begin{split} \mathbf{I}_1 &= \mathbf{I}_0 \\ \mathbf{I}_2 &= \mathbf{I}_0 - \mathbf{I}_0 \end{split} \tag{6}$$

Der Sekundärstrom I_s ergibt sich, wenn er nicht unmittelbar gegeben ist, aus übertragener bzw. Sekundärleistung N_s und Sekundärspan- N_s nung Ua. $I_s = \frac{\tau_s}{2}$

Wie diese Werte mit den Ober- und Unterspannungen bzw. -Strömen zusammenhängen, hängt davon ab, ob eine Herunter- oder Herauftransformierung stattfinden soll. Die Beziehungen sind in nachstehender Tabelle zusammengestellt.

Tabelle 2 Spannungen und Ströme im Spartransformator

	abwärts	aufwärts	
Uo Io Uu Iu	U _p I _p U _s I _s	$egin{array}{c} U_{\mathrm{s}} \ I_{\mathrm{s}} \ U_{\mathrm{p}} \ I_{\mathrm{p}} \end{array}$	v_o
U ₁ U ₂ I ₁ I ₂	$egin{array}{c} \mathbf{U_p - U_s} \ \mathbf{U_s} \ \mathbf{I_p} \ \mathbf{I_s - I_p} \end{array}.$	$\begin{matrix} \mathbf{U_s} - \mathbf{U_p} \\ \mathbf{U_p} \\ \mathbf{I_s} \\ \mathbf{I_p} - \mathbf{I_s} \end{matrix}$	1 Bil

12)

Die Windungszahl je Volt n ergibt sich wie beim Isoliertransformator am einfachsten nach der Faustformel

$$n = \frac{42}{\alpha}$$

wobei q der Eisenquerschnitt einschließlich Isolation ist. Bei ange-näherter Berücksichtigung der Verluste rechnet man primär mit der verminderten Windungszahl je Volt

verminderten Windungszahl je Volt und sekundär mit der vermehrten Windungszahl je Volt
$$n_s = 1,1$$
 n

Tabelle 1

Obersetzungsverhältnis $a = \frac{U_u}{v_s}$ und $1 - a^*$ für gebräuchliche Netzspannungen

		142	D0186120	2907010		U.		7			-				-
Primärspan	nung			3			Sekun	därspan	nung Us	: V	10	*4		· · ·	
Up:		110	120	127	130	140	150	180	200	22 0	240	250	300	350	380
120	ü*	1	0,92	0,87	0,85	0,79	0,73	0,61	0,55	0,50	0,46	0,44	0,37	0,31	0,29
110	1-ü*	0	0,18	0,13	0,15	0,21	0,27	0,39	0,45	0,50	0,54	0,56	0,63	0,69	0,71
100	ü*	0,92	1	0,95	0,92	0,86	0,80	0,67	0,60	0,55	0,50	0,48	0,40	0,34	0,32
120	1 - ü*	0,18	_ = *	0,05	0,08	0,14	0,20	0,33	0,40	0,45	0,50	0,52	0,60	0,66	0,6
127	ű*	0.87	0,95	1 (0,98	0,91	0,85	0,71	0,64	0,58	0,53	0,51	0,42	0,36	0,3
12/	1 ← 12*	0,13	0,15	- N	0,02	0,09	0,15	0,29	0,36	0,42	0,47	0,49	0,58	0,64	0,6
130	ü*	0,85	0,92	0,98	Î	0,93	0,87	0,72	0,65	0,59	0,54	0,52	0,43	0,37	0,3
130	1-ü*	0,75	0,18	0,02		0,07	0,13	0,28	0,35	0,41	0,46	0,48	0,57	0,63	0,6
140	ü*	0,79	0,86	0,91	0,93 -	-1	0,93	0,78	0,70	0,64	0,58	0,56	0,47	0.40	0,3
140	1-ü*	0,21	0,14	0,09	0,07		0,07	0,22	0,30	0,36	. 0,42	0,44	0,53	0,60	0,6
150	ü*	0,73	0,80	0,85	0,87	0,93	1	0,83	0,75	0,68	0,63	0,60	0,50	0,43	0,4
130	1-ü*	0,27	0,20	0,15	0,13	0,07		0,17	0,25	0,32	0,37	0,40	.0,50	0,57	0,6
180	ü*	0,61	0,67	0,71	0,72	0,78	0,83	1	0,90	0,82	0,75	0,72	0,60	0,51	0,4
100	1-ü	0,39	0,33	0,29	0,28	0,22	0,17	.4	0,10	0,18	0,25	0,28	0,40	0,49	0,5
200	ű"	0,55	0,60	0,64	0,65	0,70	0,75	0,90	1	0,91	0,83	0,80	0,67	0,57	0,5
200	1-ü*	0.45	0,40	0,36	0,35	0,30	0,25	0,10		0,09	0,17	0.20	0,33	0,43	0,4
220	ü*	0,50	0,55	0,58	0,59	0,64	0,68	0,82	- 0,91	1	0,92	0,88	0,73	0,63	0,5
220	1-ü*	0,50	0,45	0,42	0,41	0,36	0,32	0,18	0,09	19	0,08	0,12	0,27	0,37	0,4
240	ü	0,46	0,50	0,53	0,54	0,58	0,63	0,75	0,83	0,92	1	0,96	0,80	0,69	0,6
240	1-ü*.	0,54	0,50	0,47	0,46	0,42	0,37	0,25	0,17	0,08		0,04	0,20	0,31	0.3
250	ű*	0,44	0,48	0,51	0,52	0,56	0,60	0,72	0,80	0,88	0,96	1	0,83	0,71	0,6
230	1-ü*	0,56	0,52	0,49	0,48	0,44	0,40	0,28	0,20	.0,12	0,04		0,17	0,29	0,3
300	ű*	0,37	0,40	0,42	0,43	0,47	0,50	0,60	0,67	0,73	0,80	0,83	1 1	0,86	0,7
300	$1-\ddot{u}^*$	0,63	0,60	0,58	0,57	0,53	0,50	0,40	0,33	0,27	0,20	0,17		0,14	0,2
350	ü*	0,31	0,34	0,36	0,37	0,40	0,43	0,51	0,57	0,63	0,69	0,71	0,86		0,9
330	1-ü'	0,69	0,66	0,64	0,63	0,60	0,57	0,49	0,43	0,37	0,31	0,29	0,14	2.00	0.0
200	ű*	0,29	0,32	0,33	0,34	- 0,37	0,40	0,47	0,53	0,58	0,63	0,66	0,79	0,92	
380	$1-\ddot{u}$	0,71	0,68	0.67	0,56	0,63	0,60	0,53	0,47	0,42	0,37	0,34	0,21	0,08	

Γ	W ₁	abwärts	aufwärts
I	W ₁	$\mathbf{w}_{\mathrm{p}} - \mathbf{w}_{\mathrm{s}}$	$\mathbf{w}_{\mathrm{s}} - \mathbf{w}_{\mathrm{p}}$
	W2	$\mathbf{w}_{\mathbf{s}}$	$\mathbf{w}_{\mathbf{p}}$

Die Drahstärke d $_{Cu}$ kann für die Stromdichte von $\mathfrak{k}=2,55$ A/mm der Tabelle 6 entnommen werden.

Da der Spartransformator nur eine fortlaufende Wicklung enthält, kommt nur eine Lagerisolation von 1 X LP nach einem Spannungsabfall von je etwa 30 V in Betracht.

Die Kontrollrechnung ergibt, ob die errechneten Wicklungen im Fensterquerschnitt Platz haben. Den Fensterquerschnitt F findet man in den in der FUNKSCHAU, Heft 1/1946, veröffentlichten Tabellen der

DIN-Bleche zu dem aus den Tabellen 5, 7, 8 gewählten Kern. Aus Tabelle 6 ergibt sich nf als Windungszahl je cm². Teilt man die Windungszahl wn durch die dem gewählten Drahtdurchmesser dou entsprechende Zahl nf, so ergibt sich der Platzbedarf der betreffenden Wicklung

$$F_n = \frac{w_n}{n_F}$$

Die Summe aller Größen F_n muß kleiner sein als $^{2}/_{3}$ des Fensterquerschnittes F.

Zur Berechnung macht sich zweckmäßig eine Zusammenstellungstabelle, in die alle errechneten bzw. den Hilfstabellen entnommenen Daten eingetragen werden.

Beispiel I

Gewünschte Daten:

Gewunschte Daten:
Primär: 220 V
Sekundär: 110 V
Die Sekundärleistung ist mit $N_s=500$ VA gegeben. Nach Tabelle 1 oder Formel (2) findet man ein Übersetzungsverhältnis $\ddot{u}=0.5$ bzw. $1-\ddot{u}=0.5$. Die Primär- und Typenleistung sind $N_p=1.2\times500=600$ VA (Formel 5)

$$N_{\rm p} = 1.2 \times 500 = \frac{500 \text{ VA}}{1.2 \times 10^{-3}}$$
 (Former 5)

$$N_{\rm typ} = 600 \times 0.5 = 300 \, VA$$
 (Formel 6)

Das erforderliche Blechpaket E 130/45 wählt man aus Tabellen 5, 7, 8. Der Primärstrom beträgt

$$I_p = 600 : 220 = 2.7 A$$
 (Formel 7)

Der Sekundärstrom ergibt sich zu
$$I_g = 500:110 = 4,55 A$$
 (Formel 9)

Daraus ergeben sich nach Tabelle 2 die Spannungen und Ströme für eine Abwärtstransformierung $I_1 = 2.7 A$; $I_2 = 4.55 - 2.7 = 1.85 A$;

$$I_1 = 2.7 A$$
; $I_2 = 4.55 - 2.7 = 1.85 A$

$$U_0 = 220 \text{ V}; U_0 = 110 \text{ V}; U_1 = 110 \text{ V}; U_2 = 110 \text{ V}.$$

 $U_0 = 220 \text{ V}; U_0 = 110 \text{ V}; U_1 = 110 \text{ V}; U_2 = 110 \text{ V}.$ Da der Kernquerschnitt für das gewählte Blechpeket $q = 15,75 \text{ cm}^2$ beträgt, ergibt sich eine primäre Windungszahl je Volt

$$n_p = 0.9 \cdot \frac{42}{15.75} = 2.4 \, Wdg/V$$
 (Formel 10 u. 11)

und eine sekundäre Windungszahl je Volt

$$n_g = 1.1 \cdot \frac{42}{15.75} = 2.93 \, Wdg/V$$
 (Formel 10 u. 12)

Die Windungszahlen sind daher
Primär: 220 × 2.4 = 530 Wdg.
Sekundär: 110 × 2.93 = 320 Wdg. (Formel 13)
Die Windungszahlen der Wicklungen selbst ergeben sich aus Tabelle 3 zu

$$w_1 = 530 - 320 = 210 \text{ Wdg}.$$

 $w_1 = 530 - 320$ $w_2 = 320 \text{ Wdg}.$

Die Drahtstärken findet man in Tabelle 6.

Wicklung 1: d_{Cu} = 1,2 mm

Wicklung 2: d_{Cu} = 1,0 mm

Eine Lagenisolation 1 × LP erfolgt nach je 80 Windungen. Gegen den Kern wird mit 2 × LP isoliert.

Zur Kontrollrechnung findet man aus Tabelle 5 für Wicklung 1: n_F = 55 Wdg/cm²
Wicklung 2: n_F = 83 Wdg/cm²

Daher wird der jeweilige Platzbedarf $F_1 = 210:55 = 3.82 \text{ cm}^2$ $F_2 = 320:83 = 3.86 \text{ cm}^2$ (Formel 15)

Fges = 7,58 cm²

Diese Summe Fges liegt weit hinter 1/8 des aus Heft 1 für das Blech E 130 zu entnehmenden Fensterquerschnittes $F=21~{\rm cm^2}.$ In nachstehender Tabelic 4 sind alle Daten eingetragen.

Zusammenstellung der Daten für Belspiel 1

				5. E					
	Wicklung	Spannuns	Strom	Leistung	Wind w/v	ungen ges.	Draht	Windg- le cm ³	Platz
	Nr.	$U_n \cdot U_s$ $U_1 \cdot U_2$	$I_p \cdot I_s$ $I_t \cdot I_z$	N _p ·N _s	n_p , n_s	W_p, W, W_s	₫C¤	nje	Fn
ĺ	100	Volt	Amp.	VA	1/V -	-	mm	1/cm²	cm²
1	Sek. Prim.	110 220	4.55 2,7	500 600	2,93 2,4	320 530	=		
	Wck. 1 Wck. 2	=	2,7 1.85			210 320	1,2	55 83	3,82 3,86

 7.68 cm^2 Sekundärleistung: 500 VA Platzbedarf: 300 VA Fensterquerschnitt: 21 cm2 Typenleistung:

Biechpakete mit E/J-Schnitten nach DIN E 41 302 Tabelle 5

Blech paket	Max. Leistung	Blech-	Blech- höhe	Sleg- breite	Paket- stärke	Kern- querechaitt	Effektiver Kern- querechnitt	Volumen	Gewicht
	Nmax	x	У	ь	×	q	q_{Fe}	ν	G _{Fe}
	VA	cm	cm	cm	cm	cm ₃	cm²	cm ³	g
E 30/10 E 48/16 E 54/18 E 60/20 E 66/22 E 76/26 E 84/28 E 105/35 E 105/45 E 130/45 E 130/45 E 150/60 E 150/60 E 170/65 E 170/75	15 20 35 50 100 250 290 340 430 750 900	2,5 4,0 4,5 5,5 5,5 7,0 8,75 10,5 10,5 12,0 12,0 14,0	3,0 4,8 5,4 6,6 7,8 8,4 10,5 13,0 13,0 15,0 17,0 17,0	1,0 1,8 2,0 2,6 2,6 2,5 3,5 5,5 4,0 0,0 4,5 5	066B026B555550000555	1,0 2,56 3,24 4,0 4,84 6,76 7,84 12,75 15,75 16,0 20,0 24,0 29,25 33,75	0,97 2,48 3,14 3,88 4,55 7,60 11,90 15,30 15,55 19,4 23,3 28,40 32,7	6 24,6 33,3 45,5 54,4,5 144,5 252 324 322 412 486 611 745 1030	45,5 186 252 344 410 722 1090 1990 2460 2440 3110 3670 4610 5620 7800 9010

Abmessungen und Eigenschaften von Kupferdrähten Tabelle 6

		W			raiten ve		
Draht Ø	Drαht⊘ m. L.	Draht- Quer-	Gewicht	Wider- stand	Windgs	Höchst- strom	Höchst- sirom
d _{Cu}	dCuL	schnitt Cu	G _{Cu/m}	R _{Cu/m}	je cm ²	1 = 2,55 Imax	i = 1
	mm	mm8	g/m	Ω/m	1	A	A
	<u> </u>		-	50,250	em ²	- Samuel	-
0.007 0.007	255555 0078558 0078558 0078558 0078558 0078558 0078558 0078558 0078558 0078558 007857	0.0020 0.0020 0.0039 0.0054 0.0059 0.0013 0.0157 0.0217 0.0224 0.0346 0.0349 0.0453 0.0453 0.0562 0.0562 0.0563 0.0562 0.0563 0.01217 0.0227 0.0346 0.0346 0.0349 0.0349 0.0362 0.0362 0.0362 0.0363 0.0362 0.0363 0	0,027 0,037 0,048 0,060 0,074 0,085 0,105 0,120 0,143 0,164 0,186 0,210 0,235 0,260 0,289	9.1 6.31 4.64 3.55 2.74 1.84 1.55 1.32 1.14 0.99 0.617 0.557 0.460 0.388 0.357 0.306 0.246 0.232 0.218 0.2357 0.330 0.306 0.246 0.248 0.1527 0.1538 0.1537 0.1537 0.1537 0.1537 0.1537 0.1537 0.1537 0.1537 0.1538 0.1537 0	20000 15000 15000 2000 2000 2000 2250 225	0.005 0.007 0.010 0.013 0.013 0.020 0.029 0.039 0.039 0.051 0.058 0.072 0.080 0.080 0.116 0.125 0.135 0.145 0.157 0.168 0.180 0.245 0.182 0.228 0.224 0.320 0.323 0.225 0.224 0.323 0.245 0.259 0.274 0.289 0.304 0.336 0.353 0.405 0.455 0.467 0.562 0.562 0.562 0.563 0.6650 0.673 0.673 0.6650 0.673 0.6650 0.673 0.673 0.6650 0.673 0.6650 0.673 0.6650 0.673 0.6650 0.673 0.6650 0.673 0.6650 0.673 0.6650 0.673 0.6650 0.673 0.6650 0.673 0.6650 0.673 0.6650 0.673 0.6650 0.673 0.6650 0.673 0.6650 0.673 0.6650 0.673 0.6650 0.673 0.6650 0.673 0.6650 0.673 0.673 0.6650 0.673	0,002 0,003 0,004 0,005 0,006 0,008 0,007 0,013 0,014 0,017 0,020 0,025 0,028 0,031 0,034 0,038 0,045 0,045 0,045 0,057 0,080 0,057 0,080 0,075 0,080 0,100 0,107 0,113 0,125 0,132 0,132 0,132 0,132 0,135 0,145 0,183 0,196 0,107 0,113 0,125 0,132 0,132 0,132 0,132 0,132 0,1332 0,134 0,145 0,159 0,161 0,183 0,196 0,196 0,107 0,183 0,284

Tabelle 7

Blechpakete mit U/J-Schnitten nach DIN E 41 302

Blech- paket	Max. Leistung	Blech- breite	Blech- höhe	Steg- breite	Paket- stärke	Kern- querschuitt	Effektiver Kern- querschnitt	Volumen	Gewickt
	Nmax	х.	У	ь		đ	qfe	v	G _{Fe}
-	VA	C EE	cm	em	cm	cm ₃	cm ²	cm ³	g
U 30/10 U 39/13 U 48/16 U 60/20 U 72/24 U 87/29	12 30 75 170 300	5,0 6,5 8,0 10,0 ,2,0 14,5	3,0 3,9 4,8 6,0 7,2 8,7	1,0 1,3 1,6 2,0 2,4 2,9	1,0 1,3 1,6 2.0 2,4 2,9	1,0 1,7 2,6 4,0 5,8 8,4	0,97 1,65 2,52 3,88 5,63 8,15	11,8 34,0 78,0 190,0 390,0 840,0	89 257 590 1440 2950 6350

Beispiel 2

Gewünschte Daten: Primär: 220 V Sekundär: 250 V Die Sekundärleistung ist wieder mit 500 VA gegeben. Das Übersetzungsverhältnis findet man aus Tabelle 1 oder Formel (2) zu $\ddot{u}=0.88$ oder 1- ü=0,12.

Die Primär- und Typenleistung sind: $N_p = 1.2 \times 500 = 600 \text{ VA}$

$$N_{\rm p} = 1.2 \times 500 = 600 \, VA$$

$$N_{typ} = 600 \times 0.12 = 72 VA$$

Das erforderliche Blechpaket E 105/35 findet man in Tabelle 5. Die Ströme betragen:

> $I_0 = 600:220 = 2,7 A$ $I_{\rm s} = 500:250 = 2 A$

Tabelle 8

Blochpakete mit Mantelschnitten nach Din E 41 302

Bleck- paket	Max. Leistung	Blech- breite	Blech höhe	Steg- breite	Paket- stärke	Kern- querschnitt	Effektiver Kern- querschnitt	Volumen	Gewich
	Nmax	x	У	ь	7.	q	q _{Fe}	V	G _{Fe}
	VA	cm.	em	cm	cm	cm ²	cm ³	cm ²	g
M 20 5 M 30 7 M 30 10 M 42 15 M 55 20 M 65 27 M 74 32 M 85 32 M 102 35 M 102 52	5 15 30 50 70 120 180	2,0 3,0 4,2 5,5 6,5 7,4 8,5 10,2	2,0 3,0 4,2 5,5 6,5 7,4 8,5 10,2	0,5 0,7 0,7 1,7 2,0 2,3 2,9 3,4	0,5 0,5 1,5 2,7 2,7 3,25 3,55 5,25	0,25 0,49 0,74 1,80 3,40 5,40 7,36 9,43 12,1 17,9	0,24 0,475 0,475 1,74 3,30 5,25 7,15 9,15 11,7	1,4 4,4 6,6 17,4 42,5 79,5 125 180 280 415	10,7 33 50 132 321 600 945 1360 2120 3140

Daraus ergeben sich nach Tabelle 2 für eine Aufwärtstransformierung: $I_1 = 2 A$, $I_2 = 2,7 - 2 = 0,7 A$

 $U_0 = 250 \text{ V}, \ U_u = 220 \text{ V}, \ U_1 = 30 \text{ V}, \ U_2 = 220 \text{ V}.$

Bei dem Kernquerschnitt von 9 = 12,25 cm² werden die Windungs $n_p = 0.9 \cdot \frac{42}{12,25} = 3.08$ zahlen je Volt

42 $n_s=1.1\cdot \frac{32}{12,25}$

ınd die Windungszahlen

 $w_y = 220 \times 3,08 = 680 \text{ Wdg}.$

$$w_s = 250 \times 3.77 = 940 \text{ Wdg}.$$

Die Windungszahlen der Wicklungen findet man für eine Aufwärtstransformierung aus Tabelle 3: $w_1 = 940 - 680 = 260 \text{ Wdg.}$

 $w_z = 680 \text{ Wdg}$.

Die Drahtstärken aus Tabelle 6 ergeben sich zu

 $d_{Cu} = 1.0 \text{ mm } \varnothing \text{ für Wicklung 1}$

d_{Cu} = 0,6 mm Ø für Wicklung 2

Eine Lagenisolation findet nach je 120 Windungen mit $1 \times LP$ statt Gegen den Kern wird mit $2 \times LP$ isoliert.

Zur Kontrollrechnung findet man aus Tabelle 6

Tabelle 9

Zusammenstellung der Daten für Beispiel 2

Wicklung	Spannung	Strom	Leistung		lungen ges.	Draht	Windg. je cm²	Platz
Nr.	U_p , U_s U_1 , U_2	I_p, I_s I_1, I_s	N_{l^1} , N_{s}	\mathbf{n}_{p} , \mathbf{n}_{s}			nF	Fn
	Volt	Amp.	VΑ	1/V	-	mm	1/cm²	cm2
Sek. Prim.	220 250	2,0 2,7	500 600	4,9 4	940 680	Ξ	=	_
Wck. 1 Wck. 2	_	2,0 0,7	-		260 680	1,0 0.6	83 210	3,13 3,24

Sekundärleistung: 500 VA Typenleistung:

300 VA

Platzbedarf:

6.37 cm² Fensterquerschnitt: 9,19 cm² ng = 83 Wdg/cm² für Wicklung 1 nF = 210 Wdg/cm2 für Wicklung 2

und den entsprechenden Platzbedarf:

 $F_1 = 260$; 83 = 3,15 cm² $F_2 = 680: 210 = 3,24 \text{ cm}^2$ 6,57 cm2

Die Summe $F_{\rm ges}$ liegt etwa bei 3 des aus Heft 1 für Blech E 105 zu entnehmenden Fensterquerschnittes F = 9,19 cm². In links untenstehender Tabelle 9 sind alle Daten eingetragen. Dipl,-Ing. S. Simon

PRAKTISCHE FUNKTECHNIK

Hf-Spannungsteiler für Empfänger-Prüfsender

Auf Wunsch sahlreicher Leser veröffentlichen wir die im Beltrag "Allstrom-Emplänger-Früfsender" (FUNESCHAU 1946, Heft 6) aus räumlichen Gründen nicht abgedruckte konstruktive Darstellung des Hif-Spannungsteilers mit Blendscheibe.

Bild 1 zeigt den induktiven Hf-Spannungsteiler für Empfänger-Prüfsender. Diese neuartige Einrichtung besteht aus zwei Spulen L₁ und L₂, deren Kopplung durch die zwischen ihnen um 310⁰ drehbare Ab-

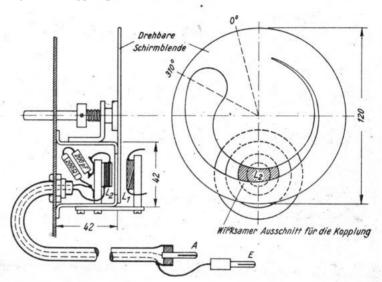


Bild I. Hf-Spannungsteiler für Empfänger-Prüfsender. Mit zunehmender Überdeckung des Becherbodenausschnittes sinkt die Ausgangspannung und beträgt beim Drehwinkel 0° nur mehr Bruchteile eines Mikrovolts

schirmblende verändert werden kann. Hf-Spannungen von i V werden dadurch auf Bruchteile von μV herabgeregelt. Der Verlauf der Ausgangsspannung in Abhängigkeit vom Drehwinkel der Blendscheibe ist je nach der Form des Ausschnittes frei wählbar, und hier so gestaltet, daß sich im Bereich von $100\ldots 1\,\mu V$ besonders feine Regelung ergibt. Liegt die Eigenresonanz der Spulen außerhalb ihres Arbeitsbereiches, dann ist die Spannungteilung nahezu frequenzunabhängig. Mit kapazitätsarmen Spulen und den hier angegebenen Windungszahlen ergibt sich im Frequenzbereich von 0,1... 20 MHz ein Frequenzgang von etwa ± 15%. Dieser läßt sich iedoch unschwer auf ± 3% einengen, wenn der Spule L₁ geeignete frequenzabhängige R-C-Dämpfungsglieder vorgeschaltet werden. L₁ ist eine Kreuzwickelspule mit rund 20 Windungen und sehr geringer Eigenkapazität, und L₂ eine Zylinderspule mit 4 bis 8 Windungen und 20 mm Ø. Im Abschirmbecher sind neben L₂ auch die Schaltglieder für eine künstliche Antenne untergebracht. Diese und der Abschirmmantel des Hf-Kabels sind vom Gerätegehäuse isoliert und erst am abzugleichenden Empfänger mit Antenne und Erde verbunden. Dadurch bleiben selbst die geringen Störsbannungen unwirksam, die sich im Abschirmmantel induzieren. dann ist die Spannungteilung nahezu frequenzunabhängig. Mit kapa-Störspannungen unwirksam, die sich im Abschirmmantel induzieren.

Josef Cassani

FUNKTECHNISCHES FACHSCHRIFTTUM

Wir bitten unsere Lezer, die hier besprochenen Werke nur bei dem jeweils in der Besprechung angegebenen Verlag zu bestellen und Geldbeträge ohne Aufforderung weder dem betreffenden Verlag noch uns einzusenden.

Taschenbuch für den Kurzwellen-Amateur

Von Schips-issier, Herausgegeben für die Radio-Clubs, Wolfram Körner-Verlag, Stuttgart, 100 Seiten, 1947, RM, 4.50.

Stuttgart, 100 Seiten. 1947, RM. 4.50.

Für den Kurzwellensport haben die Verfasser eine geschickt zusammengestellte Broschüre herausgegeben, die im ersten Teil Amateurabkürzungen, Q- und Z-Code und Landeskenner enthält, während im zweiten Teil "Betriebstechnik" zohlreiche im Amateurfunkbetrieb wichtige Tabellen für Empfangsbeurteilung, Logbuchführung usw. aufgeführt sind, Der dritte Teil behandelt technische Fragen und gibt u. a. wertvolle Schaltungs. und formalhinweise für die tägliche Arbeitspraxis. Die vorliegende Veröffentlichung, die nur über den WBRC. für Verbandsmitglieder bezogen werden kann, ist für alle KW-freunde von graßem Wert.

Werner W. Diefenbach

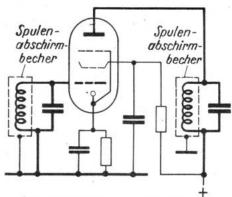


Bild 62 Zwei gleich abgestimmte Schwingkreise, durch eine Robre getrennt

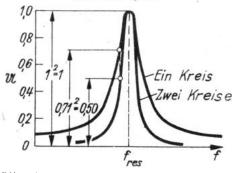


Bild 63. Resonanzkurven eines Einzelkreises und von zwei hintereinandergeschalteten Kreisen nach Bild 62

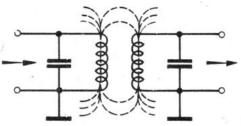


Bild 64. Gekoppelte Kreise Induktive Kopplung durch die Gesamtspulen

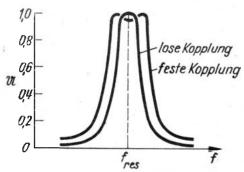


Bild 65. Resunanzkurpen von zwei gekoppelten Kreisen bei loser und fester Kopplung

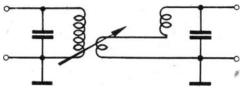
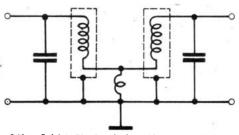



Bild 66. Induktive Kopplung durch einen Teil der Spule

Blid 61. Induktive Kopplung durch eine kleine gemeinsame Spute

Funktechnik ohne Ballast

Schwingungskreise

Um schmale Resonanzkurven mit steilen Flanken und damit größere Trennschärfe bei Empfängern zu erzielen, schaltet man mehrere gleiche Schwingkreise hinterelnander,

Zwei Kreise durch eine Röhre getrennt

Zwei Kreise durch eine Rohre getrennt
Werden nach Bild 62 zwei gleiche Kreise durch eine
Röhre getrennt, so besteht bei guter Abschirmung
keine gegenseitige Beeinflussung, für die Resonanzfrequenz herrscht am ersten Kreis die größte Spannung, für die Nachbarfrequenzen ist die Spannung
geringer. Liegt ein Stärsender noben der Resonanzfrequenz, so wird er z. 8. nur 1/10 der Spannung des
gewünschten 15enders hervorrufen. Am zweiten Kreis
wird dann die Störspannung nochmals um 1/10 des
geswünschten 15enders hervorrufen. Am zweiten Kreis
wird dann die Störspannung nochmals um 1/10 des
jesenders dem gewünschten Sender
geschwächt. Man erhält somit die gemeinsame Resonanzkurve mehrerer Kreise, indem man nach Bild 63
die Spannungswerte der Einzelkurven miteinander multipliziert, wobei der Höchstwert der Kurven gleich 1
gesetzt wird.
Die Bandbreite b der gemeinsamen Kurve ist geringer
als die der Einzelkurven. Die Trennschärfe wird also
besser, Allerdings treten bei sehr guten Kreisen Nachteile beim Empfang des gewünschten Senders ein.
Durch zu geringe Bandbreite werden nämlich bereits
die hohen Modulationstöne unterdrückt; und der Empfang klingt dumpf.

fang klingt dumpf,

Zwei gekoppelte Kreise

Zwei gekoppelte Kreise

Um größere Bandbreite bei stellen Flanken, also gute
Wiedergabe und gute Trennschärfe gegen Nachbarsender zu erzielen, kappelt man nach Bild 64 die Spulen der Kreise direkt miteinander. Die Form der gemeinsamen Kurve hängt dann nach Bild 65 von der
loseren und festeren Kopplung ab. Bei "loser" Kopplung, d. h. bei weitem Abstand, beeinflussen sich die
Kreise gegenseitig nur wenig, und es entsteht eine
schmale Gesamtkurve, öhnlich wie bei zwei durch eine
Röhre getrennten Kreisen. Nähert man die Sputen, so
werden sie fester gekoppelt. Die Kreise beeinflussen
sich dann gegenseitig, die Resonanzkurve wind breiter und erhält am Scheitel zwei Höcker mit einer kietnen Einsottelung. Durch die Kopplung kann die Form
der Kurve beliebig eingestellt werden. Die Anordnung
filtert das Frequenzband des gewünschten Senders
aus allen übrigen heraus und wird daher als Bandfilter bezeichnet.

Einteilung der Bandfilter

Man unterscheidets

A. fest eingestellte Filter für eine einzige Frequenz; dazu gehören die Zwischenfrequenzfilter in Über-lagerungsempfängern;

B. abstimmbare Filter für größeren Frequenzbereich. Derartige Filter sind die Eingangsbandfilter von Empfängern.

Empfängern,
Außer der induktiven Spulenkopplung können die
Kreise auch kapazitiv gekoppelt werden, Bei allen
Filtern kann weiterhin die Bandbreite regelbar gemacht werden, Beim Empfang stark gestörter Sender
arbeitet man mit sahmalem Band und bei kräftigen
Sendern mit großer Bandbreite, weil dann die Wie
dergabe besser ist. — In der folgenden Aufzählung
werden für Zwischenfrequenzfilter meist die Kopplungsart 7 und seitener 3 angewendet,

lungsart 7 und seltener 3 angewendet.

1. In du ktive Kopplung der beiden Gesamtspulen (Bild 64). Die beiden Spulen sitzen In bestimmtem Abstand in einem gemeinsamen Abstantintopf und ergeben dadurch eine feste Bandbreite. Dies ist die am meisten verwendete Kopplungsart für feste Zf-Bandfilter. — Die Zuleitungen zu den Spulenscheiteln sind dabei in weitem Abstand voneinander zu verlegen, sonst tritt eine zusätzliche kapazitivä Kopplung nach Ziffer 5 (Bild 70) ein. Sie ist oft größer als die Spulenkopplung, so daß Vergrößerung des Spulenabstandes keinen Einfluß auf die Bandbreite mehr hat. mehr hat.

mehr hat,

2. Induktive Kopplung durch einen Teil der Spule (Bild 66), Die Hauptspulen haben weiten Abstand, die Kopplung erfolgt durch die Teilspule. Sie wird zur Bandbreitenregelung beweglich gemacht; bei Annäherung an die Spule des anderen Krelses wird die Kopplung fester und die Bandbreite größer. Das Verfahren wird z. B. beim Siemens-Spulenfahrstuhl für regelbare Zf-Filter bewutzt.

nutzt,
3. Induktive Kopplung durch eine kleine gemeins am e Spule (Bild 67). Die Koppelspule am Fußpunkt liegt gemeinsam in beiden Kreisen und bewirkt dadurch die Spannungsübertragung. Je mehr Windungen diese Spule hat, desto fester ist die Kopplung. Darauf beruht die Bandbreitenregelung im Gerät 243 W von Mende, indem mit einem Stufenschalter verschiedene Windungszahlen eingeschaltet werden. In einigen österreichischen Geräten (z. B. Zerdik 55 W, Hornyphon W 236 A) wird die gleiche Kopplungsart beim abstimmbaren Eingangsfilter angewendet. Sie ergibt annähernd gleiche Bandbreite innerhalb des Abstimmbereiches.
4. Induktive Kopplung über einen dritten Kreis (Bild 68). Dreikreisiges Bandfilter.) Diese Anardnung ermöglicht eine sehr gute Bandbreitenregelung für Zf-Filter. Die Spule

Zur Bandbreitenregelung wird nur die mittlere Spule verdreht.

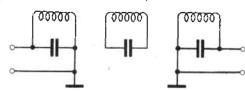


Bild 68 Induktive Kopplung über einen dritten Kreis (Dreikreis Bandfilter)

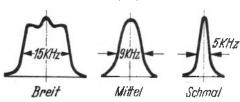
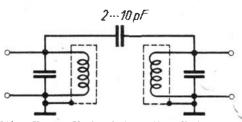



Bild 69. Resonanzkurt in eines Dreikreis-Bandfilters bei verschiedenen Kopplungsgraden

Bill 70 Kapazlitve Kopplung durch einen kleinen Kondensator am Scheitel der Kreise

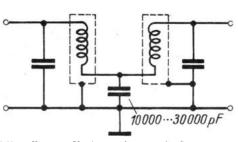
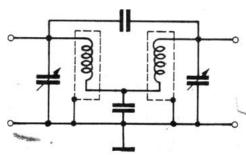



Bild 71 Kapazitive Kopphang durch einen großen Kondensator am Fußbunkt der Kreise

Biid 72. Gemischte kapazitive Kopplung

des mittleren Kreises ist drehbar angeordnet. Steht die Spulenachse senkrecht zu den beiden übrigen, so ist die Kopplung sehr lose und die Bandbreite schmal. Dreht man sie in die ondere Stellung, so daß sie auf die beiden äußeren Spulen voll koppelt, so ergibt sich ein Höchstwert der übertragenen Spannung und eine Resonanzkurve mit flachem dreihäckerigem Scheltel nach Bild 69. Dreikreis-Bandfilter sind vor allem von den Firmen Körting und Saba angewendet worden. Belspiele hierfür zeigen auch die FUNKSCHAU-Schaltungskarten D 2, D 4, E 2, E 4.

5, Kapazitive Kopplung durch einen kieinen Kondensator am Scheitel der Kreise (Bild 70), Diese und die folgende Kopplungsart werden für sich allein selten verwendet. Mit ihnen läßt sich jedoch die gemischte Kopplung nach Ziffer 7 erläutern, Ein Kondensator stellt einen hohen Widerstand für niedrige Frequenzen dar, Bei ihnen wird daher in Bild 70 wenig Spannung übertragen. Die Kopplung ist also lose bei niedrigen und wird fester bei hohen Frequenzen.

tester bei nonen frequenzen.

6. Kapazitive Kopplung durch einen großen Kandensatoram Fußpunkt der Kreise (BIId 71). Diese Kopplungsatt wirkt umgekehrt wie 5. Bei niederen Frequenzen wird durch den höheren kapazitiven Widerstand des Kopplungskondensators ein größerer Spannungsabfall daran erzeugt und in den zweiten Kreis übertragen. Die Kopplung ist fest bei niederen Frequenzen. (Schluß Seite 85).

Fernfrequenzmessungen

Frequenzabweichung und Feldstärke der in München hörbaren Rundfunksender im Mittelwellenbereich

Das zunehmende Interesse der ganzen Welt an Rundfunksendungen und drahtlosen Nachrichtenübermittlungen führte während der letzten Jahre zu einer Überbesetzung des zur Verfügung stehenden Frequenzbereichs. Man braucht keinen Spitzensuper, um festzustellen, daß der Fernempfang sehr vieler Stationen gestört ist. Es gibt kaum noch Rundfunksenderfrequenzen, die nicht von mehreren Sendern zugleich benützt werden.

werden, Bedenkt man, daß diese Verhältnisse — wie noch gezeigt wird — wesentlich verbessert werden körnten, wenn die Sollfrequenzen genau eingehalten würden, so ist die Untersuchung der Störungsursachen hinreichend begründet und auch die Forderung von Millionen von Hörern berechtigt, den Besitz eines guten Empfängers zu einem lohnenden zu machen. Jedenfalls muß man die Mängel nicht als unabänderliche Totsache hinnehmen,

Totsache hinnehmen,
Es gibt verschiedene Sendertabellen, aus denen die
Sollfrequenzen der Sender hervorgehen. Keine jedoch
läßt die eingehaitene Genauigkeit der Senderfrequenzen erkennen, Trotzdem werden sie häufig als
Normalfrequenzen für Einzwecke empfohlen. Der
Verfasser hat sich daher die Aufgabe gestellt, die
Abweichung von den Sollfrequenzen zu ermitteln und
die Verteilung der Rundfunksender in dem zur Verfügung stehenden Frequenzbereich zu untersuchen, sowie festzustellen, ob die zu bemerkenden Siörungen
durch eine günstigere Verteilung zu vermeiden sind,
Für diese Untersuchungen stellte die Firma Rohde &
chwarz, München, die erforderlichen Meßgeräte zur
Verfügung.

Wellenverteilung

Weisenverteilung
Wünschenswert wäre für Rundfunksender ein Frequenzabstand von 15...20 kHz, um die Möglichkeit zu geben, Töne von tiefsten bis zu den höchsten Tonfrequenzen zu übertragen. Um nun die große Zahl
der vorhandenen Sender auf dem begrenzten Wellenbereich unterzubringen, wurde durch die Internationale Wellenkonferenz der Frequenzobstand für
Mittelwellen auf 9 kHz ± 50 Hz festgelegt, und zwar
aus folgendem Grund:
Bekanntlich entstehen durch Mischung zweier Frequen-

Mittelwellen auf 9 kHz ± 50 Hz festgelegt, und zwar aus folaendem Grund:
Bekanntlich entstehen durch Mischung zweier Frequenzen verschiedene neue Frequenzen. Wichtig ist hier nur die hörbare Differenzfrequenz. Sie soll durch die Festlegung nicht weniger als 9 kHz betragen. Die Störung durch einen Ton von 9000 Hz, ist unbedenklich, weil erstens die Ohrempfindlichkeit für sa hohe Frequenzen bereits merklich nachläßt und zweitens die Bandbreite der meisten Empfänger nicht mehr ausreicht, um Tontrequenzen dieser Größe noch gut zu versiärken und die Empfänger höherer Qualität regelbare Bandbreite, sowie die sogenannte 9-kHz-Sperre verwenden, um diese Töne auszuschalten. Allein auch der geringe Abstand genügt noch nicht, so daß Mehrfachbesetzungen einer Trägerfrequenz notwendig geworden sind.
Gegen die Doppelbesetzung einer Frequenz ist nichts einzuwenden, solange die röumliche Entfernung zwischen den Sendern groß genug ist und die Sollfrequenzen mit möglichst guter Genauigkeit eingehalten werden.

ten werden. Die trotzdem entstehenden Pfeifstörungen und Schwe-ungen Jossen mit Recht die Vermutung zu, daß die

aufgestellten Richtlinien, also Frequenzabstand und die genügende räumliche Enfernung zwischen Sendern gleicher Frequenz, nicht immer eingehalten werden.

Entstehung der Störungen

Die nachstehende graphische Übersicht, die mit Hilfe einer Präzisions-Fernfrequenz-Meßanlage ausgearbei-tet wurde, bestätigt die vorhandenen Mängel, deren Ursachen sich in folgende Gruppen einteilen lassen, die natörlich mehr oder weniger ineinander über-

Utsachen sich in totgenae Groppen, Genader übergehen.
Wird von zwei Sendern der vorgesehene Abstand von 9 kHz unterschriften, so entsteht ein Interferenzton, der um so unangenehmer ist, je mehr er sich einem Wert von 1...2 kHz nähert, weil hier das menschliche Ohr und die Empfänger am empfindlichsten sind. Ein Schwebungston kann auch dann entstehen, wenn die Feldstärken beider Sender nicht mehr ausreichen, um deren Programm zu hören. Der Störton wird ja

die Feldstörken beider Sender nicht mehr ausreichen, um deren Programm zu hören. Der Störlon wird ja von den Trägerwellen hervorgerufen, deren Amplitude bei dem Üblichen Modulationsgrad rund fünfmal größer ist als die der Seitenbänder. Ist einer der beiden Sender stärker, so hört man neben seinem Programm auch noch den Inferenzion. Eine Störung dieser Art ist immerhin noch erträglich. Genügt jedoch die Feldstärke bei der Sender, um an eine mempfangsort gehört zu werden, so entstehen eine ganze Reihe von Mischtönen zwischen beiden Sendungen einerseits und dem Differenzton zwischen den Trägerfrequenzen andererseits.

Bei Doppelbesetzung (Gemeinschoftswelle)

zwischen den Trägerfrequenzen undererseits. Bei Doppelbeselzung (Gemeinschaftswelle) einer Frequenz läßt die Festlegung durch die Wellenkonferenz eine Differenz von 100 Hz zu. Ist die räumliche Entfernung zwischen den Sendern zu klein oder ihre Feldstärke zu groß, so führt dies zu einem, dem Takte der Schwebungsfrequenz entsprechenden, Anund Abschwellen der Niederfrequenzamplitude, die ein Gemisch aus beiden Programmen darstellt. Die Seitenbänder erreichen rd. 1/4 der Amplitude der Trägerfrequenz.

gerfrequenz Bei einem Feldstärkeverhältnis von 1:6 zwischen den Bei einem Feldstarkeverhaltnis von 1:6 zwischen den beiden Sendern wird man also das Programm nur eines Senders hören, während die Amplitude vom Träger des schwächeren Senders größenordnungs-mößig dem Seitenband des stärkeren Senders ent-spricht, was zu einem Schwellen des Programms des hörbaren Senders im Takte der Schwebungsfrequenz

Der an sich immer vorhandene Interferenzton, der vor-aussetzungsgemäß unter 100 Hz liegt, stört weniger, weil solche Frequenzen vom Niederfrequenzteil üb-licher Empfänger nur noch schwach verstärkt werden und die Ohrempfindlichkeit für diese sehr tiefen Töne noch geringer ist als für sehr hohe Töne.

Beispiele von Störungen

Wir wallen nun aus den beim Emptang reichlich fast-stellbaren Pfiffen und Brummtönen einige typische stellbaren Pfiff Fälle erklären.

Auf der Frequenz 526,573 kHz arbeitet der Sender Laibach, Die Rundfunk-Sollfrequenzen sind alle Viel-fache von 1 kHz, Der Sender hat also, gegenüber seinem Sollwert von 527 kHz, eine Abweichung von —427 Hz.

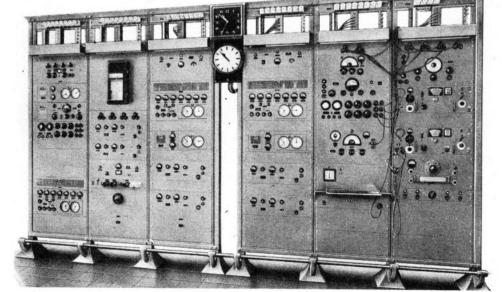


Bild 1. Große ROHDE, & SOHBARZ. Normalfrequenzanlage zur Präzisions Frequenzmessung von Hf Sendern und als Quarz Normal ubr zur Steuerung von Zeitzeichen. Die linke Hälfte der Anlage erzeugt Normalfrequenzen mit einer Genauigkeit von zwio ⁸. Die rechten Felder der Anlage entbalten die Geräte zur Fernfrequenzmessung

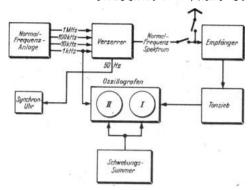


Bild 2. Prinzipschaltung der Mejlanlage

Der Frequenznachbar ist der Sender Pilsen mit der Frequenz 527,795 kHz, also einer Abweichung von + 795 Hz (Sollwert ebenfalls 527 kHz). Der Absland ist also statt weniger als 100 Hz, 527,795 — 526,573 kHz = 1,222 kHz. Man hört einen lauten Pfeifton von 1222 Hz sowie ein Durcheinander aus den Sendungen mit allen Mischlönen.
Das Programm des Innsbrucker Senders (519 kHz + Abweichung 1 Hz) wird von zwei Pfeiftönen von 7,572 und 8,794 kHz begleitet, die durch Überlagerung mit den Sendern Laibach und Pilsen entstehen.
Die Sender Mailand und Berlin haben die gemeinsame Sollfrequenz 610 kHz und stören sich mit einem Pfeifton von 408 Hz.
Der Sender Maskau 950 kHz wird von einem 55,5 Hz tiefer liegenden Sender gestört.

Der Sender Moskau 950 kHz wird von einem 55,5 Hz tiefer liegenden Sender gestört. Auf der Frequenz 1158 kHz stören sich die Sender Brünn und Toulouse durch eine Schwebung von 230 Hz. Bei der Frequenz 1429 kHz liegen sechs Sender, deren gemischte Darbletung schwer zu analysieren ist. Diese Reihe ließe sich noch fortsetzen, denn es gibt auch Sollfrequenzen, die sogar durch acht und mehr Sender belegt sind. Aus dieser Liste gehen solche Stellen nicht hervor, da wir uns auf.die im München mit normalen Empfangsgeräten hörbaren Stationen beschränken und die Darstellung sonst zu unübersichtlich würde. sichtlich würde.

Das Prinzip der Messung

Das Prinzip der Messung
Grundgedanke ist der Vergleich der unbekannten mit einer möglichst genau bekannten Frequenz. Je geringer beide voneinander abweichen, um so besser ist der Vergleich möglich.
Führt man die zu untersuchende und eine Normaltrequenz einem Hf-Gleichrichter zu, so erhält man unter anderem auch die zur Bestimmung der unbekannten Frequenz erforderliche Differenzfrequenz. Auf diese Weise kann man die Präzision der Normaltrequenzen ausnützen, ohne an die Differenzmessung sehr hohe Anforderungen zu stellen, da der Fehler ia nur noch mit Bruchteilen in das Gesamtergebnis eingeht. Um im vorliegenden Falle rasch zu Meßergebnissen zu kommen, wurde das unten beschriebene Verfahren mit einem Schwebungssummer angewendet und dabei vorausgesetzt, daß die Summerfrequenz während der Messung konstant bleibt. Diese Einschränkung legt die Fehlergrenzen der Messung

frequenz während der Messung konstant bleibt. Diese Einschränkung legt die Fehlergrenzen der Messung auf ± 2 × 10⁻³ fest, in diesen Grenzen ist die Ablesegenauigkeit eingeschlossen. Für noch genauere Messungen wurde ein Verfahren entwickelt, bei dem die gräßte Differenz zwischen bekannter und unbekannter Frequenz höchstens 500 Hz beträgt. Zur Bestimmung der Differenzfrequenz benutzt man normalfrequenzgesteuerte Geräte, so daß eine Fehlergrenze von ± 2 × 10⁻³ erreicht wird. Dies ist zur Zeit die gräßte erzielbare Genauigkeit und bedeutet, daß z. B. eine Frequenz von 100 000 000 Hz noch in der letzten Stelle mit Sicherheit angegeben werden kann.

Meßanlage

Die benützte Anlage besteht aus folgenden Teilen:

1. Eine Normalfrequenzanlage, die zunächst 100 kHz mit den angegebenen Fehlergrenzen erzeugt. Durch Frequenzteilung gewinnt man 50 Hz zum Betrieb von Synchronuhren, ferner 1 kHz und 10 kHz, und durch Frequenzyervielfachung auch 1 MHz.

2. Verzerrer zur Erzeugung eines Normalfrequenzspektrums. Unter Frequenzspektrum versteht man die Summe aller Oberwellen der Normalfrequenz, Man erhält ein solches durch Mischung und Verzerrung der vier Frequenzen, die von der Normalfrequenzanlage getiefert werden. Am Ausgang des Verzerrers stehen nich wahlweise

getieterr werden. Am Ausgang des Verzerrers srenen also wahlweise 100, 101, 102, 103, 104 usw. kHz oder 100, 110, 120, 130, 140 usw. kHz oder 100, 200, 300, 400 usw. kHz gleichzeitig und mit onnähend gleicher Amplitude zur Verfügung.

3. Ein Superhet-Empfänger mit Hilfsüberlagerer zum Enspfang tonloser Telegrafie, für den zu untersuchenden Frequenzbereich, Seine Bandbreite ist regelbar und seine Empfindlichkeit beträgt etwa 1 µV.

Ein Tonsieb, das ist ein rückgekoppelter Verstärker für Tonfrequenzen von 40 Hz aufwärts.

5. Ein Yongenerator (Schwebungssummer), dessen ein-gestellte Frequenz mit einem zweiten Drehkondensator um einen kleinen Betrag verstimmt werden kann. Die Eichung dieser Verstimmung ist mit bestmöglicher Ge-nauigkeit ausgeführt.

6. Zwei Katodenstrahl-Oszillografen mit Verstärkern.

Sender	Sollfr. Khe	Abw. Hz	Felds 0.1 l	lårke in r	m V/m.	0	Sender	Sollfr. Khs	Abw. Hz	0.1		dike in n l		00
*		-			1				 		•	T		T
nnshruck	519	+ 1,1					Koblenz	1031	+ 24					
dibach	527	- 427 - 795	*************************************	•			Rennes 1	1040	+ 46				1	Ì
Vilna	536	— 59 → 0,35					North-Irland Regional	1050	4- 4			<u> </u>	ł	
ndopest	546	_ 305					Bari I)	1-4-1	+ 2					1
erom üns ter	556	+ 12	1 000	_			San Sebastian	1059	3008	• •				
resden	565	_1750					Clermont	1068	<u></u> 58					
alermo f		740					Bordeaux-Lafayette .	1077	⊢ 84				į	
tuttgari	574	- 15					Falua	1086	E,0			+		
Vest. Regional	583	— 6,5					BFN	1095	- 10 - 3000		_	i		
Yien	592	69					Calania , ,	1104	18		_			
remen ,	601	+ 0,2			i		Prag	1113	94				100	
erlin .)	610	— 370 -⊢ 38					London	1122	+ 0,1			-		
rüssel	620	26,5		_			Hörby	1131	0,2		1,00%			
issabon	629	- 66					Triesi	1140	+ 2,2	7		<u> </u>		
ratg l	638	- 16,5					London	1149	- 0,3					
T	6.49						Brûnn .)		48.5			1		
imoges!	648	0,8,		1100	.=.		Toulouse	1158	÷ 185	~~	¥	Τ	-	
BC (Norden)	658	+ 0,6					Monte Cenerl	1167	238	• •	-			
orth Regional	668	- - 0,5					Kopenhagen	1176	± 10			_		1
oltens	677	- 1,9					Nizza	1185	10			+-		-
lelgrad	686	+ 350					Frankfurt	1195	+ 3			-		
aris	695	_ 2,2					AFN Bayreuth	1204	_ 13			-		
ndorra	704	265					Lille	1213	+ 0.8					
om, . ,	713	_ 22,3					Rom ,	1222	40,5		_ 3			
	722	_ 0,2					Kaitowitz 1		+ 60	_ *				
erlin (früher Leipzigli)							Schwerin	1231	+4082	• •	•			
fante Carlo	731	.+ 0,3			n 18		ATMAN For District	1010]	
München-Nürnberg	740	+ 7	N.				AFN München-Stuttgart	1249	→ 2		1981 5500			7
dansellles	749	+ 4,8			93)		Turin	1258	— 308 _.	• •	• •	•		
Varsahau	758	+ 72			2-		Scizburg ,	1267	+ 264		• •	-	.,	
cottleh Regional	767	- 0,2					Frederikstad }	1276	- 23,5 + 85	mmn.	••			
aria II	776	+ 2			7.		London	1285	+ 1,5					
eipzig I	785	+ 1.8					Linz.,,,,,,,	1294	- 344	• •	• •	+		
arcelona	795	944					Bologna . , , ,	1903	÷ 565			1		
Velsh Regional	804	.i. 0,5		•	! [Neapel	1312	_ 3,9			-		
				1850			Antibes-juan les Plas .	1321	- 4			Ļ		
Mailand I . ,	814	43.5		-			NWDR.	1330	1,8					
ukarest.,	823 827,4	- 50		-			Radio Lorrain	1339	4- 1,5	199		<u>L.</u>	2.7	
uimper ,	832	20,8			i			1	36,3					
erlin	841	1 0,5					Saarbrücken , } Mährlsch-Ostrau }	1340	370		-	_	170	
ofia	850	+ 1.8	• • • • •	-	i		Ital, Gleichweile	1357	2,5				<u> </u>	
traßburg }	859	3510		10	2		Bondeaux, , , , ,	1366	100	• •	•			
osen	868	- 700 - 8,5	-				Basel-Bern	1375	- 10		-	111 813		
ondon Regional	877	- 0,1		-	**		BBC } : : :	1384	+ 0,45 + 488			-		
raz-Klageniuri	886	+ 8					Lyon	1393	48					
yon I'	895	+ 1,5					Paris III ,	1402	+ 8			33		
amburg-NWDR	904	- 5,8					AFN Frankfurt	1411	+ 246					
(Gleichw.)	913	- 6,9					AFN Beriln . , , , ,	1420	·					-
1	922	2000	4				AFN Bremen	1429	+ 400				+	
ährlach-Ostrau		- 14,5					Mailand	1438	+ 53					
desel , . , , .	932	- 380	• • • •	-			Kolmar)	1447	- 200	-	•	00		
öteborg,	941	- 138	• • • •				San Sebastian / , Franz. Gleichwelle	1455	÷1048 ÷ 133					>1
oskau	950	+ 20		₹6			Pecs	1465	720		10		19	
алсу I	959	- 25,4		-			Kaiserslautern!		+ 75		* + 2 -			
remoble	968	: - 59 2	•				London (Clevedon) . ,	1474	0,3		80			
ondon , . , , ,	977	- 0,2		_	17.		Courtrai	1483	H- 447	-				
ologna	986	40			-		Belg. Gleichwelle	1492	+- 69					
ilversum I	995	1,8					AFN Bromerhaien	1500	± 285	-0-				1
reßburg	1004	59,5				AC#7/2	No. No. No. 1	,	1105				100	
idland Regional	1013	+ 0.3					Hadio Nat. Espagne . Villanueva	1515 1522	- 1125 + 165	-			-	
				_				i		-		=		-
rakau , , ,	1022	0,8			ı i		Kariskrona	1530	+ 6	_		1	1	1

Wirkungsweise der Meßanlage

Der zu messende Sender wird am Empfänger ein-gestellt und abgehört. Außer der Antenne schaltet man nun an seinen Eingang das Normalfrequenz-spektrum mit 10 kHz Linienabstand und erhält da-durch am Empfängerausgang neben dem Programm des zu messenden Senders zwei Interferenztöne zwi-

durch am Emptangerausgang neben aem rragramm des zu messenden Senders zwei Interferenztöne zwischen der Iragerfrequenz des Senders und der dieser zunächstliegenden tieferen und höheren Normalfrequenz-Spektrollinie.

Schwebungen zwischen dem Sender und weiter entfernt liegenden Spektrollinien liegen außerhalb des Hörbereichs bzw. werden durch die begrenzte Bandbreite des Empfängers ausgeschaltet. Die Eichung des Empfängers ist genau genug, um die Lage der zu messenden Frequenz auf etwa + D.5 kHz bestimmen zu können, und seine Selektivität wählt automatisch die richtige Spektralfrequenz aus, so daß die Messung absolut eindeutig ist, Mit Hilfe des Tonsiebes wird der tiefere Schwebungston verstärkt, aus dem übrigen Tonfrequenzgemisch des Senderprogramms ausgesiebt und einem Plottenpaar des ersten Oszillografen zugeführt. Die Frequenz dieses Schwebungstones schätzt man zunächst in grober Annaherung und stellt den Schwebungssommer auf Jenes ganzzahlige Vielfache von 1000 Hz, das dem Schwebungston am ausgesieht und einem Plattenpaar des ersten Oszillagrafen zugeführt, Die Frequenz dieses Schwebungstones schätzt man zunächst in grober Annäherung und stellt den Schwebungssummer auf janes ganzzahlige Vielfache van 1000 Hz, das dem Schwebungsston am nächsten liegt. Da von der richtigen Einstellung des Schwebungssummers die Meßgenauigkeit weitgehend abhängt, kontrolliert man ihn mit Hilfe der L-kHz-Normalfrequenz, indem man beide Frequenzen auf je ein Plattenpaar des zweiten Oszillografen führt und mittels einer Feineinstellung die Schwebungssummers frequenz so nachstimmt, daß eine stehende Lissajausche Figur auf dem Leuchtschirm erscheint, Diese Frequenz ist nunmehr als Normalfrequenz anzusehen und liegt an je einem Plattenpaar beider Oszillagrafenröhren, Mit Hilfe der Verstimmungseinrichtung des Schwebungssummers verändert man nun dessen Frequenz so, daß auf dem er st en Oszillator eine stehende Ellipse erscheint, Die Größe der nun einerstellten Summerfrequenz entspricht der Differenz wischen der Frequenz des Senders und der nächsten Normalfrequenzspektrallinie. Liegt die Senderfrequenz über der Vergleichsfrequenz, so addiert man zu fetzterer, liegt sie unter der Normalfrequenz, so subtrahiert man von letzlerer die Schwebungssummerfreauenz unter Berücksichtigung der Verstimmung und erhält somit die Frequenz des Senders mit einer Genauigkeit von ± 2 × 10⁻¹. Liegt die Senderfrequenz weniger als 40 Hz neben einer Spektrallinie, so ist es nicht mehr möglich, den interferanzton mit dem Tonsieb auszusieben, In diesem Falle lassen sich zwei Möglichkeiten anwendens Entweder kann man bei genügender Bandbreite des Empfängers in gleicher Weise wie bisher den Interferenzton zwischen Senderfrequenz und der nächsthöheren oder Lifeferen Spektrallinie messen, oder es wird mittels des eingebauten Hilfsübertagerers und der Senderfrequenz im Empfänger ein Interferenzton

erzeugt. Diesen Ton beliebiger Höhe verstärkt man über das Tonsieb und führt ihn auf ein Plattenpaar des Oszillografen, auf dessen zweites Plattenpaar dieselbe Frequenz vom Schwebungssummer gegeben wird, so daß auf dem Leuchtschirm eine stehende Ellipse entsteht. Schaltet man nun die Antenne ab und führt dem Eingang die nahe an der Senderfrequenz liegende Spektrallimie zu, so wird bei unveränderter Hilfsoszillotorfrequenz ein neuer Schwebungston hörbar, der vom vorher willkürlich eingestellten abweicht. Verstimmt man nun den Schwebungssummer, bis wiederum eine stehende Ellipse

samenungston nordar, der vom vorner Wilkurlan eingestellten abweicht, Verstimmt man nun den-Schwebungssummer, bis wiederum eine stehende Ellipse am Oszillografen erscheint, so hat man in der abgelesenen Verstimmung die genaue Abweichung zwischen Senderfrequenz und Spektrallinie.
Durch ein Beispiel soll der Vorgang näher erläutert werden: Es wird die Frequenz des Senders AFN-München/Stuttgart gemessen, dessen Sollfrequenz 1249 kHz beträgt. Man benutzt die Normalfrequenz 1250 kHz aus dem Normalfrequenzspektrum mit 10 kHz Linienabstand, so daß ein Interferenzton von rund 1000 Hz entsteht. Diese 1000 Hz werden über das Tonsieb verstärkt und aus dem niederfrequenten Tongemisch des Senderprogramms ausgesiebt und dem ersten Oszillografen zugeführt, Nunmehr stellt man den Schwebungssummer auf 1000 Hz ein, wobei die Verstimmungsskola auf Null steht, und kontrolliert den Schwebungssummer durch Vergleich mit 1000 Hz Normalfrequenz auf dem zweifen Oszillografen.

den Schwebungssummer durch Vergleich mit 1000 Hz Normalfrequenz auf dem zweifen Oszillografen. Um nun auf dem ersten Oszillografen eine stehende Figur zu erhalten, also die Summerfrequenz auf die Differenzfrequenz einzustellen, verstimmt man den Schwebungssummer und findet eine Ellipse bei einer Verstimmung um —2 Hz. Das bedeutet, daß die Schwebungsfrequenz zwischen dem Sender AFN-München/Stuttgart und der Normalfrequenz-Spektrallinie von 1250 kHz 998 Hz beträgt.

1250 kHz 998 Hz beträgt.

Somit arbeitet der Sender auf einer Frequenz von 1250—0,998 kHz, also auf 1249,002 kHz. Seine Sendefrequenz weicht demnach nur um +2 Hz von seiner Sollfrequenz ab. (Die Frequenz des Senders AFN-Mündhen/Stuttgart wird von der Überwachungsstelle der Firma Rohde & Schwarz laufend überprüft.)

Tabelle

Die graphische Obersicht zeigt, nach Sollfrequenzen geordnet, Durchschniftswerte der Frequenz und Feldstärke aus zehn Tagen. Die Meßgenaufgkeit beträgt für die Frequenzen $\pm 2 \times 10^{-1}$, für die Feldstörken) %. Die Länge Feldstärke an. Länge der Pfeile gibt, in log. Maßstab,

Gleichwellensender werden durch a) b)... kennflich gemacht. Zur besseren Übersicht sind Abweichungen .. kennflich

daraestellt.

Die Übersicht erhebt keinen Anspruch auf Vollständigkeit, sondern soll insbesondere die Abweichungen der in München hörbaren Sender zeigen.

Verbesserungsmöglichkeiten des Fernempfangs

des Fernempfangs

Es würde grundsätzlich keine Schwierigkelt bedeuten, alle Sender durch Normalfrequenzen zentral zu steuern. Die Sollfrequenzen sind alle Vielfache von 1 kHz, so daß mit Hilfe der vier Grundfrequenzen, die die Normalfrequenzanlage erzeugt, jede Sollfrequenz hergestellt werden kann. Dabei ist noch zu erwägen, ob man den Frequenzabstand zwischen zwei Sendern nicht auf 10 kHz erhöhen soll, was nicht nur zur weiteren Verminderung der Störungen beitrüge, sondern auch der Qualität der übertragenen Darbietungen zugute käme.

Der notwendige Aufwand wäre im Vergleich mit dem Wert eines Senders gering und würde sich auf Mischgeräte und Siebglieder bei ledem Sender beschränken. Über die bereits vorhandenen Kabel oder mittels eines Senders kleiner Leistung müßte die Grundnormalfrequenz zugeführt werden. Die Quarzsteuerstufen der Sender würden sich erübrigen, und Fre-

stufen der Sender würden sich erübrigen, und Frequenzwechsel ließen sich ohne Schwierigkeit mit der Gewähr für beste Genauigkeit durchführen. (Siehe auch "Fortschrifte der Hf-Technik II", Akademische Verl. Ges. Becker v. Erler, Leipzig; Frequenzmessung, von L. Rohde.} Normalfrequenz und

Empfängerseitig wären Interferenzpfelftöne kaum noch möglich, was allein schon eine wesentliche Besserung bedeuten würde. Bei Sendern mit gleicher Frequenz wäre das oben erklärte Schwellen unmöglich und eine weitere Zahl von Programmen dem Hörer zugänglich. Könnte man sich darüber hinaus entschließen, solche Sender als Gleichwellensender, also mit demselben Programm zu betreiben,

sender, also mit demselben Programm zu betreiben, so wären alle weiter oben beschriebenen Störungen koum noch möglich.
Bei Sendern gleicher Sollfrequenz, aber verschiedener Nationalität, dürfte die Entstörung zwar schwieriger, aber auch nicht unüberwindlich sein.
Die Zohl der ausgestrahlten Darbietungen würde sich zwar durch solche Maßnahmen verkleinem, frotzdem könnten mehr Sendungen gehört werden, weil Störunnen wegfallen. Schon von anderer Seite wurde der Vorschlag gemacht: die Verteilung der zu einer Gleichwelle gehörigen Sender über größere Gebiete vorzunehmen, womit sich dann auch mit einfachen Empfangern der "Ortsempfong" auf mehrere Programme erweitern ließe. Allerdings bieten die hierbei auftrelenden Verwirrungsgebiete noch Schwierigkeiten, Ferner wäre es möglich, die Trägerfrequenzen der Rundfunksender als Normalfrequenzen in Laboratorien, für Eichzwecke, Zeitnessungen oder zur Steuerien, für Eirhzwecke, Zeitmessungen oder zur Steue-rung von Schrittuhren, Synchronisierung von Fern-schreibern usw. zu verwenden. Joachim Neumann

FUNKSCHAU-Kurzberichte

Rundfunk auf der Mailänder Messe (Sonderbericht unseres Auslandsberichterstetters aus Meiland)

Anläßlich der von Mitte bis Ende Juni dieses Jahres in Mailand veranstalteten XXV. Mailänder Mustermesse ("Fiera di Milano") fanden verschiedene Veranstaltungen zum 50. Jahrestag der ersten erfolg-eichen Radioversuche Guglielmo Marconis, sowie ernsehvorführungen und eine große Ausstellung der italienischen, teilweise auch der internationalen Radioindustrie und der Grenzgebiete der Funktechnik

statt. Im "Palast der Nationen" wurde eine Sonderausstellung zu Ehren Marconis geboten, die in geschmackvoller Darstellung die historische Entwicklung des Radios seit den Anföngen Marconis zeigte. Hier begegnete sich gewissermaßen Altes und Neues, denn die Radio Corporation of America (RCA.) hatte es sich nicht nehmen lassen, zur Mailänder Fiera eine Abordnung von Fernseh-Ingenieuren und Technikern mit einer kompletten Fernsehanlage neuester Bauart zu entsenden, um in Instruktiven Vorführungen das Fernsehen breiten Massen varzuführen. Am 17. Juni fand die erste Fernsehsendung aus Teatro alla Scala statt, Drei Aufnahmekameras vom Typ "Image-Orthicon" – für die keine besonders starke Bühnenbeleuchtung erforderlich ist, da sie schon beim Entflammen eines Streichholzes ein genügend helles Bild zu ergeben vermögen — waren in drei geeigneten Logen eingebaut worden. Der Fernsehregisseur konnte also für die Sendung zwischen drei Bildern abwechslungsweise wählen. Die Bilder wurden dann moduliert und über einen Ultrakurzwellensender auf der Scala ausgestrahlt, von einer Relaisstation aufgefangen und erneut drahtlos weitergeleitet, um erst dann zur Sendeantenne des eigentlichen Fernsehsenders auf dem Auditorium der Messe zu gelangen, wo die Sendungen mit modernsten Empfängern der einer Bildgröße von etwa 45×55 cm tadellos empfangen werden konnten. Am 21. Juni wurde dann ein Fußballmatch und am 26. Juni die Marconi-Feier durch Fernsehen übertragen, Nach Zeitungsmeldungen soften sich die Kosten für diese Fernsehveranstalfungen der RCA, pro Tag auf etwa 20 000 sFr. belaufen haben. Die Sendungen sollen viele Nachfragen — allerdings vorläufig noch unerfüllbare Wünsche — noch Fernsehempfängern gehabt haben. Wünsche — Nach Abschluß der Mailänder Messe wurde die Anlage abgebaut und wieder nach dem amerikanischen Kontinent zurückäebracht, wa die Demonstrationstournée in verschiedenen Staaten fortgesetzt werden

Radio-Pavillon" fand die kommerzielle Geräteund Einzelteil-Ausstellung statt. Siebzehn italienische und ausländische Firmen zeigten hier einen Querdurch die letzte Entwicklung des Radios und der Efektronentechnik. Der Gesamteindruck war äußerst günstig und man war überrascht, bereits heute eine große Auswahl an Geräten und Einzelteilen aller Art vorzufinden.

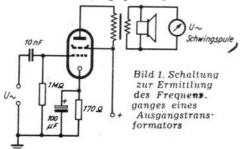
Als äußeres Merkmal waren vor allem die Formen der italienischen Nachkriegsapparate auffallend. Kühne Farbgebung und bizarre Formen der Gehäuse aaben der Geräteschau ein merkwürdig buntes Bild. In technischer Hinsicht sind keine besonders wichtigen Fortschritte gezeigt warden, nur einige unwesentliche Einzelheiten unterscheiden die neuen italienischen Gerâte von den Erzeugnissen beispielsweise des schweizerischen Marktes. Fast alle Geräte besitzen Kurzwellenbereiche (die kleineren unter Weglassung der langen Wellen), die bei großen Apparaten melstens in zwei oder mehrere Bereiche unterteilt sind, Durch Verwendung neuer Schaltungen und bes serer Einzelteile konnte die Empfindlichkeit erheblich gesteigert werden. Meistens handelte es sich um 6-Kreisempfänger mit 4 bis 6 Röhren, Ferner wurden einige Großsuperhets mit 7 Kreisen und bis zu 9 Röhren gezeigt. Auf lebhaftes Interesse stießen die neueamerikanischen kommerziellen Empfänger, nach den letzten Errungenschaften und Erkenntnissen der Kriegsfahre konstruiert worden sind. Sie besitzen durchgehenden Wellenbereich von 550 kHz bis 110 mHz (d. h., von ca. 550 m bis 2,7 m), 12 bis 15 Röhren und sind sowohl für AM-, als auch für FM-Empfang eingerichtet. Die Empfindlichkeit kann dank der zwei vorhandenen Hochfrequenz-Vorstufen weitgehend geregelt werden und der Stördämpfer konnte noch etwas verbessert werden.

Auffallend war auch das Vorhandensein einer großen Auswahl von FM-Empfängern jeder Größe: Besonders die RCA und die italienische Radiofirma Maaneti-Marelli zeigte verschiedene FM- und FM/AM-Kombinations-Empfänger. Aufschlußreich war es auch, einmal einen FM-Sender in Betrieb zu sehen, bzw. zu hören, um die Vorteile dieser neuen Sendeart in der Praxis beurteilen zu können.

Das Fernsehen war nicht nur durch die von der RCA. veranstalteten Sendungen an der "Fiera di Milano" vertreten. Im "Radio-Pavillon" zeigten RCA, und Magneti-Marelli verschiedene Geräte. Zwei Kameras für Studio- und Außenaufnahmen, sowie kleinere und größere Fernsehempfänger, einer sogar für Großprojektion, wurden besonders beachtet,

Interessant war auch die Schau der vielen Einzelteile. Radioröhren werden heute in Italien selbst hergestellt und vermögen - wie man uns versicherte - den Inlandbedarf vollständig zu decken, Einer regen Nachfrage konnte sich die neuerrichtete Ultrakurzwellen-Telefonverbindung Mailand-Rom freuen, über die man an der Messe on Hand von Darstellungen aufschlußreiche Details erfahren konnte. Nicht weniger Interesse erregten die Verbindungen mit einem in den Straßen New York verkehrenden Kraftwagen, Weltere Aussfellungsgegenstände dienten der Erforschung Ionosphäre, der Kurzwellentherapie, der Elektronenheizung und der Fernmeldetechnik. So zeigter die Marconi-Gesellschaft einen 20-kW-Mittelwellensender und kleine Sender für Polizei und Seefunk, Gerade on diesen Beispielen konnte man deutlich erkennen, welch newaltige Fortschriffe der Rundfunk seit den ersten Versuchen Marconis gemacht hat,

Besonders mag es noch inferessieren, daß auf der Mailänder Messe verschiedene als "Magnetofon" bezeichnete Geräte zu sehen waren. E_S handelt sich durchwegs um gewöhnliche Stahldraht- oder Stahlbandgeräte, oder aber um vereinfachte — und entsprechend auch qualitativ schlechtere — Nachahmungen für den Hausgebrauch bestimmt. Die amerikanische Brush Development Co. zeigte ihren "Sound-Mirror", der an jedes beliebige Radiogerät angeschlossen werden kann. Als Tonträger findet ein 6 mm breiter Filmstreifen Verwendung auf den die Eisenoxyd-Partikeichen aufgespritzt sind. Der "Sound-Mirror" besitzt einen Frequenzbereich bis 5000 Hz.


Neuwickeln von Schwingspulen

Nach den Erfahrungen einer jeden Rundfunk-reparaturwerkstatt lassen sich meistens Windungszahlen und Drahtstärken der Schwingspule defekter Lautsprecher ermitteln. Ab und zu kommt es jedoch vor, daß die Schwingspule so beschädigt ist, daß man nicht mehr die ursprünglich auf der Spule gewesenen Windungszahlen ermitteln kann. Die Windungszahlen ermitteln kann. Die Windungszahlen ermitteln kann. dungszahlen und Drahtstärken der Schwing-spule sind jedoch maßgebend dafür, welchen Scheinwiderstand der Lautsprecher nach Ein-Scheinwigerstand der Lautsprecher nach Einbau der Membrane besitzt. Dieser Scheinwiderstand des Lautsprechers wird durch den Ausgangstransformator übersetzt und muß mit dem angegebenen Außenwiderstand der verwendeten Röhre übereinstimmen. Eine starke Abweichung ergibt entweder eine Über- oder Unterspannung. In beiden Fällen wird die maximale Leistung geringer und das-vom Lautsprecher abgestrahlte Frequenzspektrum verschiebt sich entweder im ersten Falle nach den tieferen Frequenzen und im zweiten nach den höheren Frequenzen.

Nachteile bei Fehlanpassung

Zu welchen starken Abweichungen Fehlanpassungen des Lautsprechers an eine be-stimmte Endröhre führen können, ist aus nachfolgenden Bildern zu ersehen.

Bild I stellt die Prinzipschaltung dar, mit der die nachfolgenden Kurven aufgenommen wurden. Die Eingangsspannung am Gitter der

betrug konstant 3 Volt, während die Frequenz zwischen Null und 12 000 Hz varierte. Bild 2 stellt den Frequenzgang eines gut angepaßten Lautsprechers an die Röhre AL 4 dar (Anpassungswiderstand 7000 Ω). Durch große Überanpassung (Anpassungswiderstand 18 000 Ohm) entsteht ein Frequenzgang nach Bild 3 an der Schwingspule des Lautsprechers trotz konstanter Eingangs-spannung am Gitter der Röhre AL4. Der andere Fall, eine starke Unteranpassung (Anpassungswiderstand 2000 Ω), ergibt einen Frequenzgang, der in Bild 4 dargestellt ist.

Berechnung des Scheinwiderstandes der Schwingspule

Die Berechnung des Scheinwiderstandes der Schwingspule eines Lautsprechers wird am besten nach einer langjährig angewandten Faustformel vorgenommen. In allen Fällen hat sich diese Berechnung als genau genug

Da meistens die Originaldrahtstärke, mit der die Schwingspule gewickelt war, nicht mehr vorhanden ist, muß außer Änderung der Drahtstärke auch eine Änderung der Win-dungszahl vorgenommen werden. Es leuchtet ein, daß, wenn z. B. der Gleichströmwiderstand einer Schwingspule nach dem Neuwickeln 6Ω beträgt, der Scheinwiderstand der Spule niemals geringer sein kann. Wohl aber kann der Scheinwiderstand geringer als $6\,\Omega$ sein, wenn der Gleichstromwiderstand kleiner wird.

Meßtechnisch läßt sich der Widerstand der Schwingspule wie folgt ausmessen:



Bild 2. Frequenzgang eines gut angepapten Ausgangstransformators

a) Bestimmung des Gleichstromwiderstandes durch Spannungsstrommessung (Bild 5),

Bestimmung des Wechselstromwiderstandes durch Spannungsstrommessung.

Es ist jedoch dabei zu beachten, daß die Spannung in beiden Fällen direkt an der Schwingnung in beiden Fällen direkt an der Schwingspule unter Belastung zu messen ist (Bild 6). Wir ersehen hieraus, daß der Gleichstromwiderstand für den Scheinwiderstand einer Schwingspule eine große Rolle spielt. Es hat sich nach vielen Versuehen gezeigt, daß das Verhältnis von Gleichstromwiderstand und Scheinwiderstand immer annähernd gleich Scheinwiderstand immer annähernd gleich

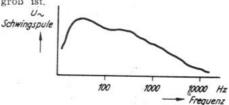
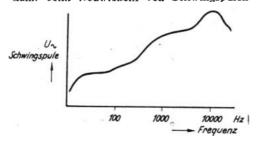
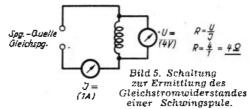
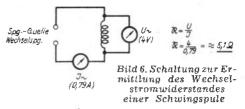


Bild 3. Frequenzgang eines stark überangepaßten Ausgangstransformators

Der Verhältnisfaktor ist 1,27. Das heißt, der Der Verhaltnisiaktor ist 1, 27. Das heißt, der Scheinwiderstand der Schwingspule ist nach Einbau in den Lautsprecher 1,27 mal größer wie der Ohm'sche Gleichstromwiderstand. Dieses gilt jedoch nur für eine Frequenz von 800 Hz. Bei jeden Angaben über Lautsprecheranpassung, Ausgangsleistung usw. wird bekanntlich immer die Frequenz von 800 Hz zugrunde gelegt.

Somit ist es nun möglich, die auf die Schwing-spule zubringende Drahtmenge schon im vor-aus auszurechnen und der Länge nach zu bestimmen. Somit kann man schon ermitteln, ob die Drahtmenge überhaupt unterzubringen ist, oder ob zur besseren Ausnützung des Wirkungsgrades eventuell noch eine größere Drahtstärke verwendet werden kann. Man kann beim Neuwickeln von Schwingspulen


Bild 4. Frequenzgang eines stark unterangepaßten Ausgangstransformators

auf zwei Arten vorgehen: Entweder wird ohne vorherige Rechnung eine neue Schwing-spulc gewickelt und dann nach Bestimmung des Scheinwiderstandes ein neuer Ausgangs-übertrager angefertigt, oder aber wird der alte Ausgangsübertrager benutzt und die Schwingspule muß dann von vornherein den richtigen Scheinwiderstand besitzen. Für jede dieser beiden Möglichkeiten sollen im folgenden Beispiele gezeigt werden.

Beisptel
 Eine defekte Lautsprecherspule wird in Unkenntnis der Originalwindungsdaten und Originaldrabtstärke mit einem anderen Draht bewickelt. Nach vollzogenem Wickeln, Lackieren und Einbauen der Schwingspule wird folgender Gleichstromwiderstand herusgemessen. R-Gleichstrom = 47 Ω. Nach der Farnel, die zu Anfang beschrieben wurde, beträgt der Verhältnisfaktor zwischen Gleich- und Scheinwiderstand 1,27. Danach muß man den Gleichstromwiderstand mit dem Faktor 1,27 multiplizieren.
 4,7 × 1,27 = ungefähr 6 Ω für 800 Hz.
 Der Lautsprecher soll an einer Röhre Al. 4 verwendet

Der Lautsprecher soll an einer Röhre AL 4 verwendet werden, die einen Anpassungswiderstand von 7000 Ω

haben soll. Demnach ergibt sich das Übersetzungs-verhältnis des Anpassungswiderstandes aus

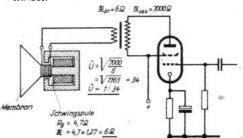
7000 \, \Omega \, Anpassungswiderstand des Lautsprechers

6 \(\text{Annassungswiderstand} \) der Schwingspule.

Das Übersetzungsverhältnis des Annassungswiderstandes beträgt somit = 1165.

Da beim Ausgangsübertrager das Übersetzungsverhältnis des Anpassungswiderstandes quadratisch dem Übersetzungsverhältnis der Windungszahlen ist muß jetzt, um das Windungszahlverhältnis zu errechnen, die Wurzel aus dem Anpassungsverhältnis gezogen werden.

Werden.


Vilós = ungefähr 34.

Samit muß für die neue Lautsprecherschwingspule ein neuer Ausgangstransformator mit einem Übersetzungsverhältnis von 1:34 angefertigt werden. Auf die Berechnung der Windungszahlen des Ausgangstransformators sowie seiner Drahtstärken soll hier nicht näher eiggegangen werden.

2. Beispiel

Will man den alten Ausgangstransformator belassen und nur eine neue Schwingspule wickeln, was wahrscheinlich meistens der Fall sein wird, geht man folgendermaßen vor (Bild B).
Wir messen das Übersetzungsverhältnis das Ausgangstransformators.
Das Übersetzungsverhöltnis wird ins Quadrat er hoben und wir erhalten so.
das Übersetzungsverhöltnis des Anpassungswiderstandes.

standes.

Bild?. Schematische Darstellung zum Rechnungsgang nach Beispiel 1. Reihenfolge des Rechnungsganges von links nach rechts

Recnnungsganges von links nach rechts
 Annossungswiderstand des Lautsprechers durch Anpassungswiderstand der Schwingspuls.
 Anpassungswiderstand der Schwingspuls.
 Anpassungswiderstand der Schwingspule durch den Foktor 1,27 teilen ergibt Gleichstromwiderstand der Schwingspule.
 Für Zahlen sieht das Beispiel folgendermaßen aus: Gegeben: Anpassungswiderstand des Lautsprechers 7000 Ω für Röhre AL 4. Übersetzungsverhöltnis des Ausgangstransformators 1,40.
 Dos Übersetzungsverhöltnis des Ausgangstransformators 1,40.
 Erheben der Verhöltniszahl 40 ins Quadrat ergibt 3,40 × 40 = 1600
 Anpassungswiderstand des Lautsprechers durch Anpassungswiderstand

Anpassungswiderstand des Lautsprechers durch An-passungswiderstandverhältnis des Transformators teilen = 7000 \(\Omega\) Lautsprecherwiderstand = 48

2 Scheinwiderstand des Transformators

Scheinwiderstand der Schwingspule.

4.8 Ω

1.27 = 3.8 Ω Gleichstromwiderstand.

Mit diesen 5 kleinen Rechnungen ist der Widerstand der Schwingspule bestimmt worden. Die Windungszahlen ergeben sich dann Drahtautomatisch aus der verwendeten H. Hesse stärke, die unterzubringen ist.

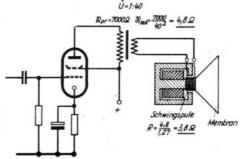


Bild 8. Schematische Darstellung zum Rechnungsgang nach Beispiel 2. Reihenfolge des Rechnungsganges von links nach rechts

PRÜFGERÄT zur schnellen Fehlersuche

Wohl in jeder Instandsetzungswerkstatt haben sich zur rationelleran Arbeitsweise diese und jene Prüfmelhoden herausgebildet, die bei der Vielfalt der Empfängertypen doch immer in gleicher Weise Anwendung finden. Schlüsselt man die sich am meisten wiederholenden Fehler nach ihrer Hänligkist auf, so ergeben sich von zeibst die zu ihrer Ermittung notwendigen Prüfvorgänge. Um aun zeitraubsade Vorbereitungen für solchs Fehlersuche zu ersparen und gewisse Beheltsmaßnahmen — die sich dann bekanntermaßen doch als unsicher und umständlich erweisen — grundsätzlich auszuschalten, ist die Anwendung eines vielseitigen, aber dennoch einfachen Prüfgeräts in jeder Hinsicht von Vorteil.
Es liegt in der Art des Betriebes, ob man ein solches Gerät als transportables Kästchen oder als Prüftaiel am Arbeitsplatz vorwenden will. Die Abmessungen ergeben sich aus Größe und Anordnung der Bautoile.

Schaltung und Aufbau

Die Frontplatte trägt im wesentlichen folgende Teile: Wattmeter mit Sicherungselement, Leitungsprüfer (Ohmmeter), Prüfschalter, Empfänger-Anschlußbuchsen und Prüfleitungsanschluß. Die Prüfleitung selbst besteht aus zwei weichen, einadrigen Schnüren, die mittels Bananenstecker angeschlossen sind. Als Prüfspitzen haben sich an einem Ende angeschliffene Fahrradspeichen bewährt, die mit Isolierschlauch überzogen werden, so daß nur wenige Millimeter der eigentlichen Tastspitze freibleiben. Mit ihrer Hille läßt sich jede beliebige Stelle, auch in eng verdrahte-ten Geräten, abtasten. Die Stabglimmlampe ist derart hinter der Frontplatte angebracht, daß ihre gesamte Leuchtsäule durch einen entsprechenden Schlitz sichtbar ist.

Stellungen des Prüfschalters werden ihrer Bedeutung entsprechend gekennzeichnet. Folgende Früfungen und Messungen sind möglich.

llung 1 (Glimmröhre, mit Gleichstrom betrieben): _ststetlungen von Kurzschtuß bis zum hachohmigen Wider-stand (1 −2 MΩ); Fetnschluß bis Kurzschtuß von Kondensatoren, Lagen- und Windungsschluß zwischen getrennten Wicklun-

gen von Spulen usw. Indirekrechungen. Stellung 2 (filminsöhre, mit Werksetstrom betrieben): Messung der Größenwerte und -wertveränderungen von Kondensaturen innerhalb einer bestimmten Größenordnung,

Stellung 3 (Blockkondensator 10 µF): Ersatz für Konglungs- und kleinere Ableitkondensatoren. Stellung 4 (Blockkondensator 0,1 #F):

Ersatz für Anoden- und Schirmgittersichtlocks Cherbrückungskundensator nave.

Stellung 5 (Blockkundensator von 6-8 pF/500 V):

Cherbrückung ausgefallener Lade- und Siebkondensaturen unter Beobachtung des Wattmeters (Veränderung der Leistungsauf-

Stellung 6, 7 a. 8 (Widerstände von 1 k Ω , fl.1 und 1 M Ω):

Ersatz für Widerställe verschiedener Größen. Stellung 9 (Leitungsprilfer, Ohmmeter):

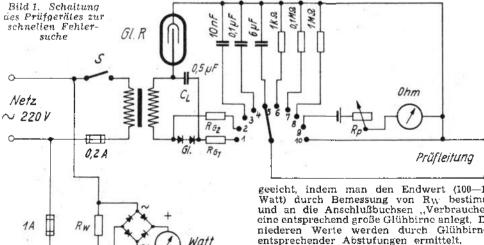
Feststellung von Kurzschlüssen, Durchgang, Unterbrechungen und niederokmigen Widerständen

Stellung 10 (Kurzschluß):

Verbraucher

Pherbrückung von Leitungen, Unterbrechungen und Teilen.

Mittels des Wattmeters hat man eine laufende Kontrolle über das zu untersuchende Gerät: Zu hoher Verbrauch des Prüflings infolge Kurzschlusses im Gerät; Feststellung, ob der Transformator (bei Wechselstromempfängern) der nachgeschaltete Teile den Schluß ver-achen (Ziehen der Gleichrichterröhre); zu


seringe Leistungsaufnahme durch ausgefallenen Ladekondensator oder Röhrenausfall; unregelmäßige Wattanzeige infolge zeitweiliger Schlüsse oder bestimmter Wackelkoniakte; übermäßiges Ansteigen des Verbrauches nach Warmwerden des Gerätes (Röhrenschäden, usw.).

Zur Speisung der Stabglimmröhre (Typ RR 145/S oder ähnlich) wird ein Netztransformator kleinster Abmessungen benutzt, um erdschlußfrei messen zu können. In den Beständen kommerzieller Teile gibt es eine ganze Reihe, die sich für diesen Zweck eignen, z. B. Kleinübertrager 1:1 mit geeignetem indukti-ven Widerstand. Mit dem Schalter S wird er im Bedarfsfalle in Betrieb genommen und ist mit 0,2 A gesichert. In Stellung 1 liegt ein Trockengleichrichter, Belastbarkeit 10 mA oder höher, und der Widerstand RG1 vor der Glimmröhre. Die Größe dieses Widerstandes hängt von verschiedenen Umständen ab und ist zu ermitteln. Der Ladekondensator C_I, braucht den Wert von 0,5 #F nicht zu überschreiten. Der Widerstand R_(I) muß so be-messen sein, daß bei Kurzschluß der Prüf-spitzen in Stellung I die Leuchtsäule gerade ihre maximale Länge erreicht. Eine Eichung von Widerstandswerten erhält man mit Hilfe eines längs des Leuchtsäulen-Ausschnittes angebrachten Papierstreifens, auf dem die Werte bekannter Widerstände markiert werden, die man in die Prüfleitung legt.

In Schalterstellung 2 (Wechselstrom) verfährt man zur Eichung von C-Werten sinngemäß, nachdem $R_{\rm C2}$ so groß bemessen wird, daß man auch hier wieder die volle Leuchtsäule

Wailmeter und Leistungsprüfer

Das Wattmeter ist leicht selbst herzustellen. Jedes beliebige Weicheisen- oder Drehspulinstrument ist hierfür verwendbar. An dem Widerstand R_W fäilt infolge des angeschalte-ten Verbrauchers eine kleine Spannung ab, die die Größe des Instrumentenausschlages bestimmt. Die Empfindlichkeit des verwende-ten Instrumentes ergibt die ohmsche Größe von Rw. Sie läßt sich rechnerisch und durch Versuche ermitteln, wobei man sich am besten eines Drahtwiderstandes mit veränderbarer Scheile bedient, die einmalig eingestellt wird. Die an Rw abfallende Spannung geht zwar dem angeschlossenen Gerät verloren -sie wird um so größer, je höher der Leistungs-bedarf ist -, bleibt aber dennoch vernachlässigbar, da sie sich in relativ kleinen Größenordnungen bewegt. Das Wattmeter wird

geeicht, indem man den Endwert (100-120 Watt) durch Bemessung von R_W bestimmt und an die Anschlußbuchsen "Verbraucher" eine entsprechend große Glühbirne anlegt. Die niederen Werte werden durch Glühbirnen entsprechender Abstufungen ermittelt.

Bei groben Kurzschlüssen löst sich die leicht zugängliche Sicherung Si aus. Werden polari-sierte Welcheisen- oder Drehspulinstrumente verwendet, so ist ein Mcßgleichrichter vor das Meßsystem zu legen. Einen solchen erhält man leicht in betriebssicherer Form, wenn



Bild 2. Außenansicht des Prüfgerätes

man vier Scheiben eines Trockengleichrichters (Selen oder Cu-Oxydul) in Graetzschaltung zusammenbaut.

Der Leitungsprüfer ist ein billiges Drehspulinstrument, das mit einer Trockenzelle ge-speist wird. Der Endausschlag ist mit Hilfe von Rp einzustellen. Bei Kurzschluß der beiden Prüfspitzen (Schalterstellung 9) wird der Endwert mit Null bezeichnet. Nimmt man nun entsprechend abgestufte Widerstände benun entsprechend abgesturte widerstande be-kannter Größenwerte zwischen die Prüfspit-zen, so lassen sich die übrigen Eichwerte rasch feststellen und die Skala wird mit den Ohmwerten bezeichnet. Diese kleine Arbeit lohnt immer, da beispielsweise ohmsche Unterschiede von art- und größengleichen Spu-len usw. infolge Schlusses oder Unterbrechung sich sehr rasch erkennen lassen. Auch die Ermittlung kleiner, unbekannter oder uner-wünschter Widerstände (z. B. Übergangswiderstand am Wellenschalter) ist augenblicklich möglich.

Rp wird bei Nachlassen der Zellenspannung zur Neueinregelung des Nullpunktes benutzt, wodurch die Eichung immer wieder stimmt. Steht statt des Prüfschalters (10facher Drehumschalter) nur ein Schalter geringerer Stu-fenzahl zur Verfügung, so läßt man weniger wichtig erscheinende Prüfstellungen aus. würde zu sehr ins einzelne führen, alle

praktischen Anwendungsmöglichkeiten zur Fehlersuche aufzuführen. Wer aber damit arbeitet, ist immer wieder überrascht, welche Möglichkeiten mit dieser Prüfeinrichtung offenstehen. Werner Pinternagel

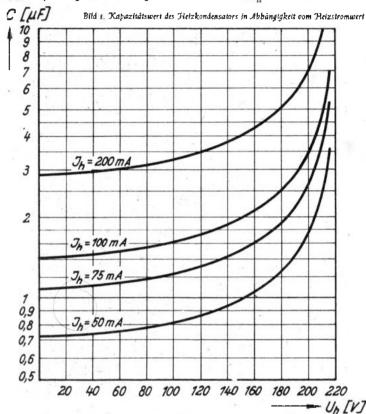
FACHPRESSESCHAU

"Les très hautes Fréquences" von J. Noel (Zeitschriff "La Télévision Française" Nr. 17 und 18, 1946)

Der obengenannte Aufsatz bringt in ausführlicher, übersichtlicher und leichtverständ-licher Form die charakteristischen Eigen-schaften der Schwingungskreise, wie sie die UKW-Technik verwendet. Der Aufsatz be-handelt im besonderen das koaxiale Kabel und die Zweidrahtleitung, die am Ende offen oder kurzgeschlossen oder mit einem ohm-schen oder komplexen Widerstand abgeschlossen sind. An Hand von 28 Abbildungen und 3 Tabellen sind alle möglichen Fälle des Leitungsabschlusses und ihre Auswirkung auf die Wellenform, die entlang der Leitung sieht, sehr anschaulich behandelt. **Hubert Gibas**

Schluß von Seite 80

7 G e m is c h t ka pazitive K o p p l u n g (Bild 72). Die entgegengesetzte Wirkung der beiden Kopplungsarten 5 und 6 wird in der gemischten Kopplung bei Einganasfiltern von hochwertigen Empfängern vereinigt. Die Abstimmung erfolgt hierbei durch einen Mehrfachdrehkandensator. Die hohen Frequenzen an einem Ende des Bereiches werden über den Kondensotor am Scheltel, die niedrigen über den am Fußpunkt besser übertragen. Dadurch ergibt sich eine annähernd gleiche Bondbreite über den Bereich hinweg. Die Spulen sind gegenseitig abzuschirmen. Der kleine Kondensator am Scheltel der beiden Kreise wird vielfach nur durch zwel benachbarte ader verdrillte Drahtsfücke gebildet. Im Langwellenberaich muß der Kondensator om Fußpunkt verkleinert werden, damit die Kopplung entsprechend den niedrigeren Frequenzen nach tester wird. Richtwerte sind:


Für Mittelwelle 30 000 pF

Ing. O. Limann

FUNKTECHNISCHES FACHRECHNEN

Die Berechnung des Heizkondensators

Der heutige Material- und Bauelementemangel zwingt den Funkpraktiker oft zu außergewöhnlichsten Maßnahmen, Z. B., ist es nötig, ein aus dem Wechselstromnetz zu speisendes Hilfsgeröt (Röhrengenerator, Schwebungssummer usw.) mit Serienheizung auszustatten, Steht in so einem Folle nicht der entsprechende Widerstand zur Verfügung und soll der Stromwerbrauch des Gerötes möglichst gering gehalten werden, so kann der Kondensator an Stelle des Heizwiderstandes verwendet werden, Für die Dimensionlerung des Heizkondensators C muß der Heizstrom 1_h und die Gesamtspannung der in Serie geschalteten Heizfäden Uh bekannt sein. Die Netz-

spannung U wird mit 220 V \sim für die Berechnung testgelegt. Jh fließt als Blindstram durch den Kondensator. Ue ist die an C auftretende Spannung, sie eraibt sich aus

$$\begin{array}{l} U_{c} = \sqrt{U^{c} - U_{h}^{z}} = J_{h} \cdot \frac{1}{m \cdot c} \\ \omega = 2 \pi f = 314 \; \text{für 50 Hz Netzfrequenz} \end{array}$$

 $\frac{1}{m\cdot c} = \text{Impedanzwiderstand von C}$ Daraus ergibt sich die Größe des Heizkondensators in Mikrofarad.

$$C = \frac{J_h \cdot 10^n}{314 \cdot U_c}$$

Nebenstehende Kurven geben die bei Serienheizung üblichen Heizströme der C-, U-, V- und RV I2 P 2000-Röhren, und von U_h ausgehend die Größe des Heizkondensators an. Soll z. ß. ein Gerät mit 3 Stück RV I2 P 2000 über einen Kondensator an 220 Vo. gelegt werden, so ist $U_h=3\cdot 12.6=37.8$ Volt, $J_h=75$ mA. Der Leistungsverbrauch in einem Heizwiderstand würde ca. 13.7 Watt gegenüber nur 2.84 Watt Heizleistung betragen. Die Verlustleistung des Heizkondensators ergibt sich aus

N_c = J_h • U_c • tg δ list somit weitgehend vom Verlusfaktor des verwendeten Kondensators abhängig und beträgt ca. 0,1 . . . 0,2 Watt. Aus der Kurve für J_h = 75 mA ergibt sich bei U_h = 40 Volt ein Kondensator mit 1,1 MF. Die Überheizung liegt noch innerhalb der zulässigen Toleranz von ± 10 %. In den meisten Fällen wird der erforderliche Kapazitätswert nicht zur Verfügung stehen. Ein in den Heizkreis gelegter, entsprechend bemessener ohmscher Widerstand wird zweckmäßig zum Ausgleich des zu groß gewählten Kondensotors dienen.

Neue Ideen - Neue Formen

Neuer Spulensatz für Einkreis-Empfänger

Von der Firma Otto Tiede wird ein neuer Spulensatz MLW 1003 (Mittel- und Langwellen) für Einkreisempfänger hergestellt, der infolge Verwendung hochwertiger Hf-Eisenkerne hohe Spulengüte erreicht. Im Gegensatz zu bisher üblichen Spulensätzen sind die Abmessungen recht klein gehalten, so daß sich der Spulensatz vor allem in Kleingeräten vorteilhaft verwenden läßt, wo raumsparende Einzelteile besätzen vorteilhaft verwenden läßt. nötigt werden. Die Mittel- und Langwellenspulen befinden sich auf

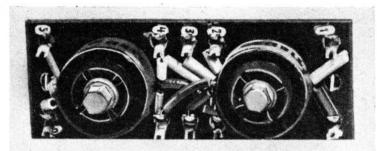


Bild 1: Der neue Einkreiser-Spulensatz MLW 1003 eignet sich infolge geringer Abmessungen insbesondere für alle Art Kleinformgeräte, Er kann auch als Vorkreis im Hf-Verstärker verwendet werden. (Aufnahme: FUNKSCHAU)

einer $80\times30\,\mathrm{mm}$ großen Pertinaxplatte, die gleichzeitig Lötösenanschlüsse für die Spulenenden und praktische Befestigungswinkel zum Einbau trägt.

Infolge der weitgehenden Abgleichmöglichkeit läßt sich der Spulensatz MLW nicht nur für Audionschaltungen, sondern auch im Zwei-kreiser als Vorkreis verwenden, wobei die Rückkopplungswicklung unbenutzt bleibt.

Leistungssteigerung beim VE

Eine Verbesserung der Lautstärke bei allen Volksempfängern, die mit der Endröhre RES 161 bestückt sind, die nicht mehr voll leistungsfähig sind, läßt sich auf folgende Weise erzielen: Man verbindet das Schirmgitter der RES 164 über einen Widerstand mit dem Chassis. Der technische Wert des Widerstandes richtet sich nach dem Zustand der betreffenden Röhre und liegt im allgemeinen zwischen 30 bis 100 k Ω . treffenden Röhre und liegt im allgemeinen zwischen 30 bis 100 k Ω . Der Wert 30 k Ω soll nicht unterschritten werden, da sonst der Schirmgitterwiderstand von 100 k Ω . der sich im Gerät befindet, leicht üb lastet werden könnte. Die Ursache für die Leistungssteigerung durchdie geschilderte Maßnahme liegt darin, daß durch das Nachlassen der Emission der Röhre ein geringerer Schirmgittestrom fließt, also die Spannung auf einen ungünstigen Wert steigt. Durch den Widerstand zwischen Schirmgitter und Chassis und den Schirmgitterwiderstand entsteht somit eine Potentiometerschaltung, bei der die Schirmgitterspannung nur in vernachlässigbarem Umfang von dem Schirmgitterstrom abhängig ist strom abhängig ist.

Neben der Lautstärkeerhöhung hat die Anordnung den Vorzug, daß ein Teil der Verzerrungen, die durch die abgespielte RES 164 entstehen, ausfallen. Sollten noch nennenswerte Verzerrungen zurückbleiben, so erhöhe man den Widerstand, an dem die negative Gittervorspannung abfällt, auf 1 k Ω . Eberhard Skibbe

Der FUNKSCHAU-Verlag teilt mit:

1. Der FUNESCHAU-Verlag hat in Berlin eine Geschäftsstelle errichtet mit der Anschrift: FUNESCHAU-Verlag Oscar Angerer. Stuttgart-S., Geschäftsstelle Berlin, Berlin Südende. Langestraße 5. — Bestellungen, Anfragen und Zahlungen aus Groß-Berlin sind ab 1. 7. 1947 dorthin zu richten. Postscheckkonto wird noch bekannlyggeben. Anfragen aus der russisch besetzten Zone werden auch ven der Geschäftsstelle Berlin beantwortet.

2. Die Geschäftsstelle München 22. Zweidrückenstraße 8, beliefert mit allen Verlagserzeugnissen das Land Bayern. Bestellungen, Anfragen und Zahlungen aus Bayern sind dorthin zu richten, Postscheckkonto München 38 168. Die Geschäftsstelle München ist außerdem für die Anzeigen in der FUNESCHAU zuständig. Wir bitten deshalb alle FUNESCHAU-Inserenten, ihre Anzeigen nur an die Geschäftsstelle München einzusenden.

3. Die Länder Nord-Wörttemberg, Nord-Baden und Hessen der amerikanisch besetzten Zone sowie die britische und französische Besatzungszone werden vom Verlagsort Stuttnert bellefert. Bestellungen, Anfragen und Zahlungen aus diesen Gebieten sind an den FUNESCHAU-Verlag Oscar Angerer. Stuttgart-S., Mörikestr. 15, zu richten. Postscheckkonto Stuttaart 5-4. Anfragen au die Schriftleitung sind numittelber an den Haunschriftleiter Werner W. Dii bach. (13b) Kempten-Schelldorf, Kotterner Straße 12, zu richten.

Wegen der gegenwärtigen Papierknappheit können unsere Verlagserzeugnisse zu unserem Bedauern ner in kleinen Auflagen erscheinen. so daß wir vorerst nur die Bestellungen von Fachleuten beliefern können, die die FUNESCHAU-Literalur zur Ansühung ihres Berufes henötinen. Deshalb sind bei jeder Bestellung genaue Berufsangaben erforderlich. Die Tabellen, Broschüren und Bücher werden nur uegen Nachnahme oder nach erfolgter Aufforderung genen Voreinsendung des Betrages ausgeliefert, Von unaufgeforderten Überweisungen bitten wir abzusehen.

Deutsche Amateur-Radio-Clubs

Die nachstehenden deutschen Amateur-Radio-Clubs erstreben unter Ausschluß aller politischen und gewerblichen Ziele sowie nesellschaftlichen Unterschiede den Zusammenschluß aller Radio- und Kurzwellen-Amateure zur Förderung der gemeinsamen Interessen: 1, Württembergisch-Badischer Radio-Club, Stuttgart-S. Neue Weinsteige 5; 2, Hessischer Radio-Club, Frankfurf/M.-Eschersheim, Neumannstr. 63: 3. Bayrischer Amateur-Radio-Club, München 9, Steingadener Str. 28- 4. Deutscher Amateur-Radio-Club/Britische Zone, Geschäftsstelle Kiel-Ellerbek, Klosterstroße 113: 5. Berliner Amateur-Radio-Liga, Berlin-Rudow, Fuchsienweg 51. Radio- und Kurzwellen-Amateure, in deren Zone noch keine Radio-Clubs bestehen, werden einstweilen vom Württembergisch-Badischen Radio-Club betreut, Fordern Sie bitte von dem für Ihr Land entsprechend obenstehenden Radio-Clubs bestehen in allen größeren Städten.

Mitarbeiter dieses Heftes:

Herbert Hesse, geb. 11. 10. 21, Berlin; Franz Mahner, geb. 2. 12. 13, Prag. Joachim Neumann, geb. 12. 12. 23, Starcard: Eberhard Skibbe, aeb. 5. 12. 20, Allenstein: Hubert Gibas, geb. 15. 10. 1909. Theresienfeld; Josef Cassani, geb. 28. 7. 1912, Sterzina: Otto Limann, geb. 19. 2. 1910, Berlin; Dipl.-(ng. Herbert Simon, geb. 6. 4. 1912, Offenbach a. M.; Werner Pinternagel, geb. 25. 2. 1913, Jena.

Cheiredakteur: Werner W. Diefenbach, (13b) Bempten-Scheildorf (Allgau), Kotterner-Str. 12, Fernsprecher 20.25; für den Anzeigenteil: Oscar Angerer, (14a) Stuttgart S., Mörikestraße 15 / Verlages: FUNRSCHAU-Verlag Oscar Angerer, (14a) Stuttgart S., Mörikestr. 15, Fernspr. 763.29; Geschäftsstellen des Verlages: (13b) München 22, Zweibrückenstr. 8 und (1) Berlin-Südende, Lanvestr. 5 Druck: G. Franz'sche Buchdruckerei G. Emil Mayer, München 2, Luisenstraße 17, Fernsprecher 36.01.33 / Veröftentlicht unter der Zulassungsnummer US-W-1094 der Machrichtenkontrolle der Militärreglerung / Erscheint monatlich / Auflage 20.000 / Zur Zeit auf direkt vom Verlag zu beziehen. Vierteljahresbezugspreis RM. 2.40 zuzüglich Versandspesen / Einzelpreis 80 Rpf. Lieferungsmöglichkeit vorbebalten / Auzeigenpreis nach Freisliste 2 / Nachdruck sämtlicher Aufsätze und Bilder — auch auszugsweise — nur mit ausdrücklicher Genehmigung des Verlages gestattet.