Pastversandort München INGENIEUR - AUSG 4 Seiten

24 JAHRGANG

41

42

43

45

46

ZEITSCHRIFT FUR FUNKTECHNIKER

Erscheint am 5. und 20. eines jeden Monats

FRANZIS-VERLAG MUNCHEN-BERLIN

Verlag der G. Franz'schen Buchdruckerei G. Emil Mayer

Bei den Geräten der neuen Saison wird der Klangqualität und damit den Lautsprechern ganz besondere Aufmerksamkeit gewidmet. Hier ein Bild aus der Fertigung der Lorenz-Celophon-Lautsprecher. Genau gearbeitete Spannvorrichtungen sorgen für einwandfreie Zentrierung sowohl beim Verkleben der leichten Schwingspule mit der elliptisch gekrümmten Membran als auch beim Aufsetzen der Gewebezentriermembran und ihrer ringförmigen Halterung. (Aufnahme: C.Stumpf)

A STATE OF THE PARTY OF THE PAR
Aus dem Inhalt
UKW-Planung 439 25 Jahre deutscher Amateurfunk 439
Das Neueste: Lautstärkerege-
lung physiologisch oder psy-
chologisch? Verbessertes Ko- pieren von Bandaufnahmen;
Reusenleitung als Hf-Sende-
kabel; Neues elektronisches
Ortungsverfahren für Flug- zeuge 440/41/42
zeuge
fangsfrequenzen über
100 MHz 443 Ermittlung des Klirrfaktors von
Endröhren
Seehäfen
röhre
Eingebaute drehbare Ferrit- Stabantenne
Einfache Detektorempfänger 447
Umschaltbarer Röhrenent-
zerrer für Tonabnehmer 448 Fernsehtechnik ohne Ballast
11. Folge: Der Hf-Verstärker 449
Einführung in die Fernseh-
Praxis 34
Transformatoren 451
Baß- und Höhenanhebung 451
Klein. Empfänger-Prüfgenerator 451 Vorschläge für die Werkstatt-
praxis
Interess Signallampenfassun- gen - Überholmeldegeräte 454
Störfreiheit bei industriellen
Hf-Geräten 455
Die Graetz-Montagebänder laufen wieder Empfänger-
Nachlese
Unsere Beilagen:
Röhren - Dokumente
EF 41 (Blatt 1 und 2), EF 40 (Blatt 2), PL 82 (Blatt 2)
Die Ingenieur-Ausgabe
enthält außerdem:
ELEKTRONIK No. 6

Allgemeine Bemerkungen zur elektronischen Steuerung von Werkzeugmaschinen .

Elektronisch gesteuerte Relais.

Elektronische Bausteine III. Geber und Wandler

Leitungen in der Zentimeter-wellentechnik 3

Bezugspreis der Ingenieur - Ausgabe monatlich 2 DM (einschl. Postzeitungs-gebühr) zuzüglich 6 Pfg. Zustellgebühr

Berichte aus der Elektronik.

Ein wichtiges Jubiläum Walter Arlt's großer Radiokatalog

Walter Arit's großer Radiokatalog

Der Katalog mit dem Gutschein ist jetzt wieder im Yor
Reigsumfang erschienen. Seit 25 Jahren gibt es Arit-Kataloge.

Der Arit-Katalog von 1939 ist in der Funktadwelt als idealer.

Der Arit-Katalog von 1939 ist in der Funktadwelt als idealer.

Der Arit-Katalog von 1939 ist in der Funktadwelt als idealer.

Der Arit-Katalog von 1939 ist in der Funktadwelt als diesersteinen in Geschen in Geschen und in geschen der Verleient. Statt Katalog bezeichnet worden: wir glauben aber, deb der wir glubildiumsteier, die nur wenige arfreu), machen wir unseiner Jubildiumsteier, die nur wenige arfreu), machen wir unseiner Jubildiumsteier, die nur wenige arfreu), machen wir unseiner Jubildiumsteier, die nur den wenige arfreu), machen wir unseiner Jubildiumsteier, die nur den sechen kund diese uns von in der Katalog verlangen in Geschen und ihnen damit für ihre zereichnet. Wir welle unseren Kunden etwos Besonderes, nicht nur den üblichen Abdruck von Industrieklisten ten unseren Kunden etwos Besonderes, nicht nur den üblichen Abdruck von Industrieklisten Höhe von 20. - DM wird der bei der Katalog verlangen, ist nur eine Schutzgebüt. Bei trei in Höhe von 20. - DM wird der beillegende Gutschein mit 1. - DM in Zahlung genommen.

Bittel in Höhe von 20. - DM wird der beillegende Gutschein mit 1. - DM in Zahlung auch Heiler in Höhe von 20. - DM wird der beillegende Gutschein mit 1. - DM in Zahlung der Aufter Att.

Berotler sein.

Watter Arlt's Watter Arlt's große Schlagerliste mit ca. 1000 Röhrenungeboten und vielen Sonders.

Watter Arlt's große Schlagerliste mit ca. 1000 Röhrenungeboten und vielen Sonders.

angeboten an preiswettem Bastelmaterial und Einzelleilen, senden wit Ihnen gern kostenlas ungeboten an preiswettem Bastelmaterial und Einzelleilen, senden wit Ihnen gern kostenlas zu. Bitte schreiben Sie uns sofort, denn die Auflage ist nur beschränkt. der Schlagerliste sind im zu. Bitte schreiben Sie uns sofort, denn die Auflage ist nur beschränkt. Ger Schlagerliste sind im Katalog enthalten!

Arlt Radio Versand Walter Arlt

Handelsgerichtlich eingetragene Firma

Düsseldorf F. Friedrichstr. 61 a. Fernsprecher 2 3174. Ortspespräche 1 58 23. Postscheck: Essen 3 73 36 Berlin-Charlottenburg 1 F, Kaiser-Friedrich-Str. 18, Fernsgr. 34 66 05, Pastscheck: Berlin-West 164 20.

Oval-Chassis newester Fertigung mit gräßtem Frequenzumfang

3 Watt Chassis mit Alni-Magnet (8000 G) m. Tr. Korb: 100 x 160/Anp. 3.5 K, 7K, 10 K. Verkaufspr. DM 22.60 Geringer Platzbedarf bei bester Abstrahlung! 4 Watt-Chassis mit Alnico-Magnet (900 G)

Korb: 180 x 260 mm, Trafo 2.5 K, MM, 3.5 k, 7 k, 80...12000 Hz Unerr. Wiedergabe u. Lautstärke, Verkaufspr. DM 28.40. Händler u. Grossisten erh. hohe Rabatte!

HUTTER DREIPUNKT-RADIOVERTRIEB Willy Hütter, Nürnberg-O, Mathildenstr. 42

Diese Kondensatoren

können Sie monatelang

in Wasser lagern oder auch in kochendes Wasser legen:

Sie verlieren durch diese Zerreißprobe vielleicht an Aussehen, aber sie behalten ihre elektrischen Werte!

WIMA-Trophydur-Kondensatoren sind dauerhaft unter allen Klimaverhältnissen

> Sie sind ein fortschrittliches Bauelement für Rundfunkgeräte

WILHELM WESTERMANN

SPEZIALFABRIK FUR KONDENSATOREN

UNNA/WESTF.

In Sachen RADIO-FERNKURS . . .

Wir werden oft gefragt, ob wir beabsichtigen, einen Fernseh-Fernkurs herauszugeben. Hier ist unsere

Selbstverständlich werden wir in einiger Zeit unsere Fernkurs-Arbeit auf die Fernsehtechnik erweitern. Genau so, wie der Fernsehempfänger in der Wohnung des modernen Menschen neben den Radioempfänger tritt, genau so, wie jeder Rundfunkmeachniker eines Tages zum Fernsehmechaniker wird, die Radiowerkstatt sich zu einer Fernsehwerkstatt erweitert, genau so werden wir auf unseren Radio - Fernkurs einen Fernseh - Fernkurs folgen lassen. Heute aber ist es noch nicht so weit; die Interessenten an einem Fernseh - Fernkurs bitten wir, sich in Geduld zu fassen. Wir werden den Fernseh-Fernkurs rechtzeitig ankündigen und alle Teilnehmer unseres Radio-Fernkurs bitten, auch an dem neuen Fernseh-Fernkurs teilzunehmen.

Wohlüberlegt sind wir zunächst mit unserm RADIO-FERNKURS SYSTEM FRANZIS-SCHWAN an die Öffentlichkeit herangetreten, Zunächst einmal ist das Bedürfnis für einen Radio-Fernkurs sehr viel größer, denn auf dem Radiogebiet werden schon heute neue und tüchtige Rundfunkmechaniker, Techniker und Ingenieure gebraucht, während die Fernseh - Fachkräfte großer Zahl doch erst in der Zukunft benötigt werden. Zweitens aber stellt der Radio-Fernkurs die Grundlage für den Fernseh-Fernkurs dar. Nur wer den Radio-Fernkurs erfolgreich durcharbeitete, bringt das Wissen mit, das für eine Teilnahme am Fernseh-Fernkurs erforderlich ist. Der Fernseh-Fernkurs muß ein bestimmtes Wissens-Niveau voraussetzen, er kann nicht - wie unser Radio-Fernkurs - mit dem Fachrechner. beginnen und die Grundlagen der Elektrotechnik vermitteln, sondern er muß sofort in die wichtige, aber komplizierte Impulstechnik eintreten. Der Fernsehtechniker wird deshalb einmal aus den qualifiziertesten Rundfunktechnikern hervorgehen, und der Fernsehmechaniker wird die höhere Stufe des tüchtigen Rundfunkmechanikers dar-

Die Teilnahme an unserm RADIO-FERNKURS SYSTEM FRANZIS-SCHWAN kann deshalb jedem Interessenten an einem späteren Fernseh-Fernkurs nachdrücklich empfohlen werden. Gerade jetzt ist die richtige Zeit, mit dem Fernstudium zu beginnen. Die langen Abende im Winter bieten Zeit genug, um ein erfolgreiches Studium durchzuführen; viele Teilnehmer bewältigen in dieser günstigen Studienzeit statt eines Lehrbriefes im Monat deren anderthalb oder zwei.

Bedenken Sie, daß man in jungen Jahren gar nicht genug lernen kann - auch wenn Sie in einer guten Lehrstelle sind oder vielleicht als Geselle arbeiten, sollten Sie bemüht sein, Ihr Wissen zu erweitern und Ihre Kenntnisse zu vervollkommnen. Mit Hilfe unseres RADIO-FERNKUR-SES SYSTEM FRANZIS-SCHWAN fällt das nicht schwer, denn dieser Kurs ist so folgerichtig aufgebaut, infolge der ständigen Aufgaben-Korrektur durch den Kursleiter findet eine derart enge und fruchtbare Zusammenarbeit statt, daß der Erfolg für jeden gewährleistet ist, der ernsthaft an das Studium herangeht.

Nidit unwichtig ist die Tatsache, daß Abonnenten unserer Zeitschriften FUNKSCHAU und RADIO-MAGAZIN einen erheblichen Preis - Nachlaß auf die Kursgebühren erhalten; statt monatlich 3.80 DM zahlen sie nur 2,80 DM, sie bekommen den ganzen Fernkurs der 12 Monate dauert, also um 12 DM billiger.

Mehr lernen, mehr leisten, vorwärtskommen das ist das Motto des RADIO-FERNKURSES SYSTEM FRANZIS - SCHWAN

Bitte, fordern Sie unsere ausführlichen Prospekte und Anmeldepapiere! Verlangen Sie eine Probelieferung!

Fernkurs-Abteilung des FRANZIS-VERLAGES

MUNCHEN 22, ODEONSPLATZ 2

Eine Leserbefragung der FUNKSCHAU

"Aha", wird mancher Leser sagen, wenn er die Überschrift zu dieser Rundschreiben-Einlage liest, "Publikumsbefragung! Die wollen die Mode mitmachen. Um den amerikanischen Präsidenten kann es ja heute nicht mehr gehen. Da bin ich neugierig, was sie von mir wissen wollen!"

Nun, wir wollen keine Mode mitmachen, wenn die Publikumsbefragung nach unserer Ansicht auch eine fortschrittliche Methode ist. Wir wollen etwas mehr, nämlich eine Mitarbeit unserer Leser, um die FUNKSCHAU noch mehr den Wünschen und Bedürfnissen ihrer Abonnenten gemäß zu gestalten. kurz: um sie noch besser zu machen.

"Wie Ihr die FUNKSCHAU macht, darüber soll sich gefälligst Eure Redaktion den Kopf zerbrechen. Mir gefällt sie so, wie sie ist!"

Auch wenn Sie dieser Meinung sind, dann sollten Sie es uns sagen. Wir bekommen viele Briefe, die ihre Zufriedenheit mit unserer Arbeit zum Ausdruck bringen; umseitig sind einige besonders interessante abgedruckt. Es wird auch Ihnen gefallen, einmal zu lesen, wie andere Ihr Fachblatt einschätzen.

Lieber aber wäre es uns, wenn Sie uns mit Hilfe der eingedruckten Postkarte, die Sie bitte ausschneiden wollen, einmal mitteilen würden, welcher Art Beiträge Sie in der FUNKSCHAU mehr, welche Sie weniger wünschen. In der FUNKSCHAU soll jeder etwas finden, was ihn interessiert; das aber schließt nicht aus, daß die Mehrzahl der Beiträge auch den Wünschen der Mehrheit ihrer Leser entspricht. Jeden einzelnen Leser bitten wir hiermit, dieses Blatt auszutrennen (wir haben es durch die eingedruckte Linie so bequem gemacht; in die Seitenzählung ist das Blatt auch nicht einbezogen!). Wir bitten ihn ferner, die Postkarte abzuschneiden und mit spitzem Bleistift oder auch vorsichtig mit Tinte auszufüllen und abzusenden.

Damit leisten Sie uns einen großen Dienst. Und da jede Arbeit ihren Lohn wert ist, wollen wir diesen Dienst nicht umsonst haben. Jeder Einsender der Karte nimmt, ohne daß ihm daraus irgendwelche Kosten erwachsen, an einem Preisausschreiben teil, in dessen Rahmen wertvolle Buch- und Zeitschriftenpreise zur Verteilung kommen. Näheres über dieses Preisausschreiben lesen Sie auf der Rückseite.

Die Leser der FUNKSCHAU sind die praktisch tätigen Funktechniker und Rundfunkmechaniker in Handel und Handwerk, in der Industrie und bei den Behörden. Es sind die Techniker und Ingenieure, die mit Hilfe ihrer Zeitschrift die Verbindung zur Praxis behalten wollen, auch wenn sie vielleicht gezwungen sind, am grünen Tisch zu arbeiten, oder wenn ihre Tätigkeit heute - im Vertrieb, im Kundendienst, in der Verwaltung - mehr kaufmännisch als technisch ist. Es sind die vielen, vielen Lehrlinge, jungen Menschen und Schüler, deren privates und berufliches Interesse auf die Radio- und Fernsehtechnik und auf die Elektronik gerichtet ist. Es sind die Kurzwellen-Amateure, und es sind die Praktiker, die Konstruierenden und Bauenden in allen technischen Berufen, für die Radio und Fernsehen, Elektroakustik und Magnetton oft mehr Hobby als Beruf sind. Alle diese Leser sind schon immer in hohem Maße Mitarbeiter ihrer Zeitschrift gewesen. In jeder Nummer tauchen z.B. unter den Kurzbeiträgen neue Namen auf, es sind die Männer in den Labors und Werkstätten, die den anderen Fachkollegen ihre Erfahrungen und ihre Kniffe verraten. Viele Beiträge der FUNKSCHAU gehen auf Anregungen, Fragen. Vorschläge ihrer Leser zurück. Heute rufen wir alle Leser unserer Zeitschrift zur Mitarbeit auf - zu einer leichten Arbeit, auch wenn sie etwas Überlegung erfordert, einfach dazu, uns einmal mit ein paar Kreuzen ihre Wünsche und ihre Ansichten zu sagen uns Lob oder Kritik zu spenden.

Was wir wünschen, ist etwas sehr Einfaches: Die linke Hälfte der Karte nennt die neun wichtigsten Artikel-Gruppen, die wir laufend veröffentlichen. Überlegen Sie bitte, von welchen Arbeiten Sie mehr, von welchen Sie weniger wünschen, und verteilen Sie entsprechend Ihre Kreuze in die runden Felder.

Die Leser der Ingenieur - Ausgabe werden außerdem gebeten, uns ihre persönliche Wertung der vier Beilagen mitzuteilen, d. h. die Zahlen 1 bis 4 in der Reihenfolge in die vier Felder der unteren Kartenhälfte einzutragen, in der sie die einzelnen Beilagen am meisten schätzen. Wer zum Beispiel die Schaltungssammlung als die wertvollste Beilage ansieht, setzt hier eine 1 ein. Wenn er an zweiter Stelle die ELEKTRONIK schätzt, bekommt deren Kreis eine 2. Wenn er außerdem die Arbeitsblätten den Röhren-Dokumenten vorzieht, macht er bei den "Funktechnischen Arbeitsblättern" eine 3. bei den "Röhren-Dokumenten" eine 4.

Etwas Besonderes für die Leser der Ingenieur-Ausgabe

Wir wissen, daß für den Ausbau der Ingenieur - Ausgabe ein besonders großes Bedürfnis besteht; die Auflagen - Entwicklung sagt uns dies deutlich. Fast zwei Drittel aller Leser beziehen heute bereits die Ingenieur-Ausgabe. Es wird nicht mehr lange dauern, dann sind drei Viertel aller FUNKSCHAU-Leser solche dieser inhaltreicheren Ausgabe. Im nächsten Jahr wird die Ingenieur - Ausgabe eine neue, wesentliche Verbesserung erfahren, eine Bereicherung, die vor allem auch die jetzigen Leser der gewöhnlichen Ausgabe sehr interessieren dürfte. Sie betrifft diesmal die FUNKSCHAU-Schaltungs-sammlung.

In der Schaltungssammlung wurde bisher eine möglichst große Zahl der Schaltungen der neuen Empfänger veröffentlicht; der erste Band (1951/52) der mit dem zweiten Dezember-Heft abschließt, enthält insgesamt 292 Schaltungen. Die Schaltungen erschienen ohne Kommentare. Da die Radioindustrie jetzt wieder fast vollzählig Kundendienstschriften herausgibt, die allen Werkstätten und allen interessierten Reparaturtechnikern zur Verfügung stehen, ist die Veröffentlichung einer so großen Zahl von Schaltungen wie bisher für die Zukunft nicht mehr angebracht. Wir gehen deshalb einen anderen Weg: Wir bringen eine kleinere Auswahl von Schaltungen, bei der alle Fabrikate und alle Empfängergruppen, vor allem aber die "Bestseller" unter den Geräten. berücksichtigt werden, drucken diese Schaltungen größer und deutlicher als bisher und geben zu jeder Schaltung eine ausführliche Funktionsbeschreibung aus der Feder eines der besten Schaltungs - Kenner, Ing. Otto Limann.

V	on allen Lesern auszufüllen:	von	Zusätzlich den Lesern der
Ich wünsche		Ing	enieur - Ausgabe
mehr wenige	Allg. Artikel über Fortschritte der Radio- v. Fernsehtechnik	Die Beila	auszufüllen:
00	Bau-Aufsätze und Konstruk- tionsartikel	bewer	te ich in der Reihenfolge:
00	Werkstatt-Praxis	0	ELEKTRONIK
00	Empfängertechnik	\cup	
00	Verstärkertechnik	0	Funktechnische
00	Meßtechnik	\cup	Arbeitsblätter
00	Auslands- und Neuerungsberichte		
00	Kurzwellen - Amateurartikel	\cup	Schaltungssammlung
00	Lehrgänge und Berechnungsaufsätze		
0	Die FUNKSCHAU soll bleiben wie sie ist!	\bigcirc	Röhren-Dokumente

Zu dieser Neuerung und wesentlichen Verbesserung haben uns die folgenden Gedanken geleitet:

Die Empfängerschaltungen werden immer umfangreicher, komplizierter und undurchsichtiger. Der normale Reparaturtechniker ist kaum noch in der Lage, sich ohne besondere Anleitung in die Schaltung eines modernen Allwellen - Superhets mit UKW - Teil hineinzufinden. Für viele sehr gute und erfahrene Radiopraktiker enthalten die modernen Schaltungen manches Rätsel, das sie nicht lösen können, Hier wollen die Funktionsbeschreibungen der FUNKSCHAU-Schaltungssammlung helfen, die jeden Leser der Ingenieur-Ausgabe in Zukunft mit dem Aufbau und der Arbeitsweise der modernen Schaltungen vertraut machen werden. So werden wir Zug um Zug eine vollständige Schaltungslehre veröffentlichen, die für jeden Fachmann von größtem Wert ist, zumal in ihr die Schaltungen gerade der erfolgreichsten Empfänger beschrieben werden, die früher oder später erfahrungsgemäß den Charakter von Standardschaltungen annehmen.

Die erste Ausgabe des neuen, Anfang 1953 beginnenden Bandes der FUNKSCHAU - Schaltungssammlung wird voraussichtlich mit den Schaltungen von Magnettongeräten beginnen können, um dem Leser auf diese Weise eine Beilage von besonders hohem Wert zu bieten. Die zweite Ausgabe beginnt dann mit den Empfängern der Saison 1952/53. Alle Interessenten an der neuen Schaltungslehre werden gebeten, die Umstellung auf die Ingenieur-Ausgabe unverzüglich vorzunehmen, am besten mit Hilfe der anhängenden Postkarte. Der geringe Mehrpreis von nur 20 Pfennigen je Heft wird durch die wertvollen Beilagen weit aufgewogen

Das Preisausschreiben der FUNKSCHAU

gilt automatisch für alle Einsender der anhängenden Karte, die diese in allen Teilen sorgfältig ausfüllen. Es sind keinerlei Gebühren einzuzahlen oder andere Bedingungen zu erfüllen. Jeder Karten - Einsender ist Preisausschreiben-Teilnehmer!

Wichtig ist, daß in das rechteckige Feld auf der Anschriften - Seite die vermutliche Abonnentenzahl der Ingenieur - Ausgabe für den 1. Januar 1953 eingetragen wird. Um Ihnen dazu einen Anhaltspunkt zu geben, teilen wir nachstehend die bisherige Entwicklung der Abonnentenzahl der Ingenieur-Ausgabe mit:

Januar 1952 13 794 Januar 1951 4324 1951 9334 Juli 1952 17 409

Januar 1953?

Briefmarke 10 Pfg.-FRANZIS-VERLAG Odeonsplatz An den Abonnenten der gewöhnliche Ausgabe | Ingenieur-Ausgabe gegen 1.1.1953 auf an Bei Nichtzutreffen bitte streichen!) streichen!) Nichtzutreffendes bitte streichen! Die FUNKSCHAU beziehe ich durch die Post wünsche vom 1. Januar 1953 Ingenieur-Ausgabe. am Fa. (Nichtzutreffendes bitte der Heft (Zeit die Ingenieur-Ausgabe Zahl g. Mehrpreis je die beziehe zur schätze die Beruft durch 5 20

Die von der IVW kontrollierte Gesamt-Auflage der FUNKSCHAU betrug für das 3. Vierteljahr 1952 genau 31 463 Exemplare (Ingenieur - Ausgabe und gewöhnliche Ausgabe zusammengenommen).

Den 1. Preis erhält, wer der am 1. Januar 1953 wirklich vorhandenen Zahl der Abonnenten der Ingenieur-Ausgabe am nächsten kommt, den zweiten Preis, wer ihr am zweit-nächsten kommt usw. An Preisen werden wertvolle Bücher und Zeitschriften des Franzis - Verlages ausgegeben.

Die Preise:

- 1. Preis. Eine vollständige Ausgabe der "Funktechnischen Arbeitsblätter", Lieferung 1 bis 8, mit Ordner im Gesamtwert von 43 DM.
- 2. und 3. Preis. Je ein "Trafo Handbuch", gebunden, im Wert von je 19.80 DM.
- 1. und 5 Preis. Je ein Buch "Röhrenmeßtechnik" im Wert von 13.80 DM.
- 6. bis 8. Preis. Je ein vollständiger Jahrgang des RADIO-MAGAZIN 1952 im Werte von 12 DM.
- 9. und 10. Preis. Je ein Buch "Der Fernseh-Empfänger" zum Preise von 950 DM
- 11. bis 20. Preis. Je ein Buch "Röhrenvergleichstabellen" zum Werte von 8 DM.
- 21. bis 30. Preis. Je ein "Fach Adreßbuch der Radio- und Fernsehtechnik" zum Preise von 4.50 DM.
- 31. bis 50. Preis. Je ein Buch "Wie richte ich meine Radiowerkstatt ein?" zum Preise von 3.50 DM.
- 51. bis 100. Preis. Je ein Radio Praktiker Bändchen zum Preise von 1.20 DM.

Letzter Einsendetermin: 5. Dezember 1952 (Poststempel)

Spätere Einsendungen können nicht berücksichtigt werden.

Einige interessante Urteile über die FUNKSCHAU

Ich freue mich, Ihnen mitteilen zu dürfen, daß ich mir die FUNKSCHAU-Ingenieur-Ausgabe aus meinem Leben einfach nicht mehr wegdenken kann. Für einen Menschen, der bemühl ist, mit der Entwicklung der modernen Technik Schritt zu halten, ist sie im wahrsten Sinne des Wortes unentbehrlich Ja, ich kann sogar behaupten, daß ich einen großen Teil meines Wissens um die moderne Funktechnik ausschließlich Ihrer Fachzeitschrift, die eine einmalige Leistung ist, verdanke.

Spever/Rhein, 12, 7, 52 Thomas Sch. Hf-Praktikant

Gleichzeitig möchte ich die Gelegenheit benutzen. Ihnen über Form, Inhalt und Gestaltung der FUNKSCHAU, insbesondere der Ingenieur - Ausgabe, meine Hochachtung auszudrücken. Gerade durch die Neuerungen der letzten Zeit, wie Schaltungssammlung, Röhren-Dokumente, Funktechnische Arbeitsblätter und Elektronik, haben Sie Ihre und unsere Zeitschrift zur (hier folgen Superlative, von deren wörtlicher Wiedergabe wir absehen) ... Fachzeitung gemacht Und das alles für einen Spottpreis, den jeder vorwärtsstrebende Fachmann gern und gut anlegen wird.

Nürnberg, 25, 5, 52

Alfons K., Rundfunkmechaniker

Bei dieser Gelegenheit möchten wir nicht unterlassen. Ihnen unsere hohe Anerkennung zu zollen für Ihre überaus lehrreiche und immer aktuelle Ingenieur-Ausgabe.

Zürich 11-Oerlikon, 30. 4. 52

W. B. & Sohn, Apparatebau

Möchte !hnen einleitend meine Bewunderung für die vorbildliche Gestaltung Ihrer Zeitschrift zum Ausdruck bringen; gerade für uns Deutsche im Ausland stellen Ihre Zeitschriften einen unentbehrlichen Helfer dar

Milano, Via Aselli, 12, 6, 52 Ing. Fritz W., Rundfunktechniker

Nachdem ich einige Exemplare Ihrer FUNKSCHAU gelesen habe, bin ich so begeistert, daß ich gern die Zeitschrift fest bestellen möchte. Es soll natürlich die Ingenieur-Ausgabe sein. die sich durch ihre präzise und leicht faßliche Darstellung viele Freunde unter den Radio-Amateuren geschaffen hat.

Baugbro/Schweden, 12. 7. 52

Heinz D.

Besonders begriiße ich die neue Beilage ELEKTRONIK, die die FUNKSCHAU mit einer Technik bereichert, die sich besonders im letzten Krieg sprunghaft entwickelt hat. Jedes Heft sollte diese wertvolle Beilage haben.

Sao Paulo, 29. 7. 52

Eberhard B

SONDERANGEBOT für FUNKSCHAU-Leser!

SUDDEUTSCHE APPARATE-FABRIK G.M.B.H. NÜRNBERG

Das Radio-Baubuch

(Moderne Schaltungstechnik in Worten, Bildern und Daten)

von

Herbert G. Mende

Beratender Ingenieur VBI

stellt eine unentbehrliche Ergänzung zu den Veröffentlichungen des gleichen Verfassers in der RADIO-PRAKTIKER-BÜCHEREI dar.

Es enthält u.a. viele wertvolle Winke und Ratschläge für den Bau und weiteren Ausbau moderner Radiogeräte, für die zweckmäßige Auswahl und Berechnung von Schaltungen und für die richtige Dimensionierung von Spulensätzen. Wir haben eine Anzahl Exemplare der Restauflage für FUNKSCHAU-Leser reserviert zum Sonderpreis von

DM 9.90

(partofrei bei Voreinsendung des Betrages, sonst Nachnahme + Parto).

Zwischenverkauf vorbehalten!

Waterhölter & Co., Bielefeld
Postfach · Postscheckkonto Hannover 8106

Jetzt mehr als 1000 neue Skalen

(Original-Glas) für alle Markengeräte der Var- u. Nachkriegstertigung sofortlieferbar. Wir erweitern unser Herstellungsprogramm ständig! Fordern Sie bitte Preisliste IV/52 an

Bergmann Skalen Berlin-Steglitz

Uhlandstraße 8 Teleion 726273

Radiobespannstoffe

In div. Ausführungen ab Lager lieferbar

HERMANN BORGMANN Weberei

Wuppertal-E., Hachstr.71a/73

Gleichrichter-Elemente

und komplette Geräte lietert

H. Kunz K. G. Gleichrichterbau Berlin-Charlottenburg 4 Giesebrechtstraße 10

ein Qualitätsbegriff für Sicherheit und Leistung

ELEKTROLYT-KONDENSATOREN

PAPIER - KONDENSATOREN

ORAGER-GMBH LÖGECK

ELBAU-Lautsprecher

Hochleistungs-Erzeugnisse

Sämtliche Lautsprecher sind ausgerüstet mit Hochtonkalotten u. neuartigen Zentriermembranen Deutsches Patent angemeldet!

Breites Frequenzband Verblüffender Tonumfang

Spezialität: Tropensichere Lautsprecher

ELBAU Lautsprecher-Fabrik

BOGEN - DONAU

BEYER

Heilbrann a. N. - Bismarckstraße 107

Exponentialhorn-Lautsprecher mit Druckkammersystem

10 Watt und 25 Watt

Frequenzbereich 200 — 10 000 Hz Richtcharakteristik gerichtet Harn zweifach gefaltet, vertikal schwenkbar, wetterfest

Für Kommandoanlagen, Autoanlagen, Sportplätze, Polizei, Eisenbahn

Neuer Verkaufsschlager! Schallplatten-Kassette »MUTA«

ersetzt 2 Platten-Alben; für 25-cmund 30-cm-Platten

Zimmerschmuck!
Praktisch! Billig!

Auf Wunsch Prospekt

FRANZ WACHSMUTH

MUTA-FABRIKATE · HEIDELBERG

UKW-Planung und UKW-Ergebnisse

Während der Rundfunk-Versorgungsbereich bei Mittelwellensendern durch Linien gleicher Feldstärke umgrenzt werden kann, ist diese Darstellung bei UKW - Sendern wegen der andersartigen Ausbreitung, besonders im bergigen Gelände, nicht möglich. Bei der Planung werden zwar bestimmte Mindestempfangsbereiche errechnet, doch können einzelne Orte vollkommen im Schatten von Ausbreitungshindernissen liegen, so daß der betreffende Sender nicht empfangen werden kann. Zum Glück treten aber die bekannten Überreichweiten auf, so daß Ortschaften im Empfangsschatten einer Station trotzdem andere UKW-Sender hören können.

Ein wirklich genaues Bild der UKW-Empfangsmöglichkeiten kann daher nur durch Messungen an Ort und Stelle gewonnen werden. Vor kurzem veröffentlichte nun die technische Direktion des Südwestfunks unter dem Titel: "Wie empfange ich meine UKW - Sender?" zwei Broschüren über derartige Untersuchungen. In mehr als 1300 Orten im Bereich des Südwestlunks wurden UKW - Empfangsversuche durchgeführt und diese statistisch in Ta-bellen- und Kartenform ausgewertet. Die Broschüre mit der Tabelle für das Land Rhein-land-Pfalz umfaßt 55 Seiten, die für Südbaden und Südwürttemberg-Hohenzollern 45 Seiten. Durch diese Messungen wurden die Empfangsmöglichkeiten von etwa 75 % der Bevölkerung dieser Gebiele erfaßt. Mit dieser Statistik wurde eine erstaunliche organisatorische und arbeitsmäßige Leistung vollbracht, denn sie beruht auf zehntausenden von Einzelmessungen, und es ist anzunehmen, daß die Mcßgruppe monatelang unterwegs war, um diese Aufgabedurchzuführen. Die Emptangsbeobachtungen erstrecken sich nicht nur auf die eigenen Sender des SWF, sondern auch auf die in diesem Gebiet zu hörenden UKW-Sender der anderen Rundfunkgesellschaften.

Die neuartige Darstellungsweise der Karten, die hier infolge ihrer Farbigkeit nicht wiedergegeben werden können, entspricht den praktischen Erfordernissen weit besser, als alle anderen Verfahren, weil die Messungen wirklich an den einzelnen Empfangsorten innerhalb

des bebauten Gebietes durchgeführt wurden.
Die Feldstärkewerte und die Empfangsqualität der UKW-Sender wurden bei 3 m Antennenhöhe ermittelt und die Feldstärkewerte wie üblich auf 10 m Antennenhöhe umgerechnet. Zur Beurteilung der Empfangsqualität wurde ein Mittelklassensuper verwendet, und es wurde eine Unterteilung der Empfangsergebnisse in fünf Gruppen vorgenommen. In den Gruppen 1 bis 3 ist UKW-Empfang mit durchschnittlichen Geräten möglich. Bei der Emp-fangsqualität 4 sind bessere Geräte und besondere UKW-Antennen zu verwenden, bei 5 ist im allgemeinen nur an gewissen Punkten mit Spitzengeräten und Dachantennen Empfang möglich. Die Tabellen enthalten auch Hinweise auf Verzerrungen. In solchen Fällen ist eine Richtempfangsantenne erforderlich, die störende Reflexionen oder Überlagerungen ausblendet.

Die Veröffentlichung dient zwei Zwecken. Erstens erhalten die Rundfunkhändler wichtige Anhaltspunkte über Empfangsmöglichkeit, Qualität (Verzerrungen) und Aufwand an hochwertigen Empfängern oder besonderen UKW-Antennenanlagen (die Tabellen sollen durch Nachträge dauernd auf dem neuesten Stand gehalten werden). Auf der anderen Seite ersehen aus ihnen die Sendetechniker, ob und wo ihre Sendung wirklich "ankommt". Auf dieser exakten Grundlage kann dann die Planung weiterer Sender erfolgen.

Die Ergebnisse der Statistik zeigen jedenfalls, daß von ganz wenigen Ausnahmen abgesehen in fast allen Orten mindestens ein UKW-Sender zu hören ist, so daß also der ursprüngliche Plan, allen Hörern den Empfang eines UKW-Programms zu ermöglichen, in wenigen Jehren erfüllt worden ist. Der Titel der Broschüre "Wie empfange ich meine UKW-Sender?" deutet jedoch bereits darauf hin, daß heute meist nicht nur für einen Sender, sondern darüber hinaus an zahlreichen Orten Empfangsmöglichkeiten für mehrere UKW-Sender. der bestehen (bis zu zehn Stationen). Diese Feststellung soll nicht als Propaganda für UKW-Fernempfang aufgefaßt werden, der ja auch bei der Planung des Sendernetzes gar nicht vorgesehen war.

Interessant ist es, diese statistischen Karten mit den rein geographischen Verhältnissen zu vergleichen. Einige Beispiele nur: Auf einer Hochtläche des nördlichen Schwarzwaldes in Dobel werden mehr als neun UKW-Sender gehört. Knapp 20 km entfernt in Bad Liebenzell, das in einem steilen engen Tal liegt, ist dagegen keine einzige Station zu hören. Wie erwähnt, sind solche vollkommen toten Stellen sehr selten. Die Statistik gibt dann aber dem verzweifelten Händler die Gewißheit, daß hier wirklich nichts zu machen ist. Die Broschüren enthalten eine übersichtliche Skalendarstellung; sie gestattet bei diesen Versuchen, die einzelnen Senderkanäle auch bei solchen Empfängern aufzufinden, die nur eine von 0 bis 100 unterteilte Abstimmskala besitzen. Ein anderes Beispiel zeigt, daß Täler nicht unbedingt immer den Empfang verhindern. So ist fast im ganzen Moseltal von Trier bis Koblenz UKW-Empfang möglich, so daß man beinahe den Eindruck hat, als ob solche breiten Flußtäler als Wellenführungen wirken.

Die Mühe und Sorgfalt, die vom Südwestfunk auf diese Statistik verwendet wurde, hat aber noch ein anderes ideelles Ergebnis. Die gewonnene Übersicht beweist, daß der kühne Ent-schluß, nach den Ergebnissen der Kopenhagener Wellenkonferenz den UKW-Rundfunk einzuführen, richtig war. Aus dem Nichts wurde in wenigen Jahren ein dichtes zusätzliches Sendernetz geschaffen, das dem größten Teil der Bevölkerung Rundfunkprogramme von einer vorher unbekannten Wiedergabegüte zur Verfügung stellt. Die Empfänger-Industrie hat während dieser Zeit zielsicher ganz neue Gruppen von Empfangsgeräten entwickelt, die in Empfindlichkeit und Klang Spitzenleistungen darstellen und dabei kaum nennens-

wert teurer sind als frühere Geräte ohne UKW-Bereich.

Auf dem Gebiet der UKW-Rundfunktechnik konnte sich Deutschland somit einen wesentlichen Vorsprung gegenüber den anderen Ländern der alten Welt sichern. Dieser Vorsprung wird bestimmt auch weiteren technischen Gebieten, z. B. dem Fernsehen und der UKW Nachrichtentechnik zugute kommen.

Winterzeit ... lange Abende ... ideale Studienzeit!

Wenn Sie jetzt mit dem Radio-Fernkurs System Franzis-Schwan beginnen, bewältigen Sie mit Leichtigkeit zwei Lehrbriefe im Monat. Jetzt ist die ideale Zeit für das Fernstudium, Nutzen Sie sie und beherzigen Sie unser Motto: Mehr leinen, mehr leisten, vorwärtskommen!

Für FUNKSCAHU - Abonnenten beträchtliche Verbilligung der Kurs - Gebühren. Bitte, fordern Sie ausführliche Prospekte und Anmeldepapiere von der Fernkurs-Abteilung des Franzis-Verlages, München 22, Odeonsplatz 2. Außerdem: Die Außwendungen für das Fernstudium sind steuerfrei

25 Jahre deutscher Amateurlunk

Als Radio-Amateure 1922 die Eignung kurzer Wellen für den Über-seeverkehr entdeckten, lösten sie eine technische Revolution aus. Mit einfachen, selbstgebauten Einröh-ren-Sendern und -Empfängern über-brückten sie Entfernungen die der kommerzielle Langwellenfunk nur mit unvergleichlich viel größerem Aufwand meisterte. Diese Entdekkung verband bald die Kurzwellen-Amateure der ganzen Welt zu einer engen Freundschaft, da es möglich war, über Ländergrenzen und Kontinente hinweg unmittelbar von Mensch zu Mensch in Verbindung zu treten. Im Jahre 1924, auf einer der ersten internationalen Wellenkonferenzen, wurden den Amateuren in fast allen Ländern der Erde bestimmte Frequenzen zugewiesen und Sende-Lizenzen erteilt. Vor 25 Jahren gründeten dann Deutschlands Kurzwellen - Amateure den DASD (Deutscher Amateur - Sende- und (Deutscher Amateur-Senae-und Empfangsdienst). Sie vertraten dar-in ihre Wünsche auf entgegenkom-mende behördliche Regelung der Sende-Lizenzen und schufen gleichzeitig den Rahmen für einen intensiven Erfahrungsaustausch unter einander und mit den Amateuren in aller Welt.

Nichts kennzeichnet den internationalen Amateurgeist besser, als die Bemühungen ausländischer Sendeamateure, ihren deutschen Atherfreunden nach 1945 recht bald wieder die Betätigung im Äther zu ermöglichen. So war es möglich, 1949 die Beseitigung des Sendeverbotes durchzusetzen und eines der großzügigsten und modernsten Amateur-Funkgesetze zu schaffen. Heute kann jeder nach Ablegung einer Prüfung von der zuständigen Oberpostdirektion eine Sendegenehmigung erhalten. Die nach Kriegsende gegründeten Amateurverbände in den einzel-nen Ländern des Bundesgebietes schlossen sich auf der KW-Tagung 1950 in Bad Homburg zum Deutschen Amateur-Radio-Club (DARC) zusammen. Er zählt etwa 6500 Mitglieder, von denen 2500 eine Sendelizenz besitzen.

Der KW-Amateursport erzieht in bestem Sinne zu echter Kamerad-schaft und selbstloser Hilfe über Länder und Grenzen hinweg. Viele Beispiele für Hilfeleistungen in Katastrophenfällen, bei der Beschaffung dringend benötigter Medika-mente usw. zeugen hierfür. Neben diesem Geist der Hilfs-

bereitschaft erfordert der Kurzwellensport ein großes Maß an technischem Interesse und technischen Kenntnissen. Die Überbelegung der KW-Bänder verlangt beträchtliches Können, wenn sich der Amateur in dem allgemeinen Wellenchaos verständlich machen will. Starke kommerzielle Sender haben sich in die Amateur-Bänder gedrängt und gefährden den Verkehr. Da die Ama-teure zum wesentlichen Teil dazu beigetragen haben, die Brauchbarkeit der Kurzwellen für den Nach-richtenverkehr nutzbar zu machen wäre es eine schöne Geste, wenn man als Anerkennung die Amateur-Wellen von kommerziellen Diensten freihalten würde. Fritz Kühne

DAS NEUESTE aus Radio- und Fernsehtechnik

Lautstärkeregelung physiologisch oder psychologisch?

In diesem Aufsatz dreht es sich nicht um Fremdwörter, sondern um die Grundlagen des Zusammenhanges zwischen Lautstärkbregelung und Frequenzgangbeeinflussung.

Üblicherweise spricht man hierbei von physiologischer Lautstärkeregelung. Ilso von einer Lautstärkeregelung, deren Frequenzabhängigkeit mit den Eigenheiten unseres Gehörs in Einklang gebracht ist. Eine psychologische Lautstärkeregelung wäre auf unserer Vorstellungswelt aufgebaut und hätte mit dem lautstärkeabhängigen Frequenzgang unseres Gehörs nichts zu tun.

Die physiologische Regelung

Es ist eine altbekannte Tatsache, daß es keinen für alle Lautstärken gleich günstigen Frequenzgang der Wiedergabe gibt. Seit die Rundfunkgeräte mit Lautsprechern ausgerüstet werden, begann man sich für die Beziehung zwischen Lautstärke und dazu passendem Wiedergabefrequenzgang zu interessieren und führte so die physiologische Lautstärkeregelung ein. Bei ihr ist die Schaltung so gewählt, daß die Lautstärke der tiefen Töne weniger herabgesetzt wird als die der mittleren und hohen Töne.

Die in solcher Weise frequenzabhängige I autstärkeregelung hat man aus dem Verlauf der Hörkurven hergeleitet. Sie sind in Bild I dargestellt. Wie wir aus diesem

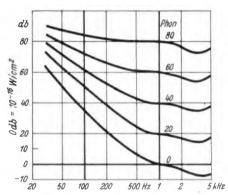


Bild I. Ohrempfindlichkeit für verschiedene Lautstärken in Abhängigkeit von der Frequenz

Bild erkennen, ist die "Ohrempfindlichkeit" für geringe Lautstärke im Bereich der tiefen Töne vergleichsweise geringerals im Bereich der mittleren Töne. So kam man auf die Idee, die Lautstärkeregelung frequenzabhängig zu gestalten, und zwarderart, daß die Frequenzgangänderung des Hörempfindens damit ausgeglichen wird.

Der UKW-Emplang ließ Zweifel aufkommen

Während man bei uns bis etwa 1950 für die Wiedergabe üblicherweise mit einer oberen Grenzfrequenz etwa zwischen 4 und 7 kHz zu rechnen hatte, geht der Wiedergabe-Frequenzbereich bei UKW- und moderner Schallplatten-Wiedergabe weit über 10 kHz hinaus. Damit war die Möglichkeit gegeben, den Zusammenhang zwischen Lautstärke und günstigstem Frequenzgang in größerem Ausmaß für einen weiter hinaufreichenden Frequenzbereich zu studieren. Dabei ergaben sich zwei interessante Tatsachen:

- 1. Für Musikwiedergabe genügt die Frcquenzgangänderung nicht, die man mit der physiologischen Lautstärkeregelung erzielt. Sie genügt vor allem dort nicht, wo man mit einer sehr geringen Lautstärke arbeiten möchte.
- 2. Hand in Hand mit einem Anheben in den Tiefen müßte für Musikwiedergabe ein Absenken in den Höhen gehen, wenn der

für den Hörer günstigste Höreindruck erzielt werden soll.

Eine große Zahl von Kontrollversuchen bestätigte das. Insbesondere wurde so auch die Tatsache bewiesen, daß bei Musikwiedergabe mit verminderter Lautstärke außereinem Anheben in den Tiefen ein Absenken in den Höhen wesentlich ist.

Die psychologische Regelung für Musik

Die Erklärung für die hier angegebene Abhängigkeit des günstigsten Frequenzganges der Lautstärke ist, wie vom Verfasser gemeinsam mit Dr. S a w a d e¹) erläutert, in dem — meist unbewußten — Vergleich zwischen Originalschall und Wiedergabe zu suchen. Originaldarbietungen von Musik haben z. B. im Konzertsaal ihre bestimmte Lautstärke, deren Empfindung in unseren Erfahrungen verankert ist. Hört man eine gegebene Originaldarbietung von Musik leise, so ist das — abgesehen von Pianostellen oder von besonderen Musikstücken, die vom Komponisten für geringe Lautstärke gedacht sind — durch größere Entfernung oder durch Schallhindernisse zwischen dem Hörer und dem Ort, an dem die Musik entsteht, bedingt.

Sowohl über größere Entfernung wie durch die meisten Schallhindernisse werden die hohen Töne stärker als die mittleren Töne und diese wieder stärker als die tiefen Töne geschwächt. Infolgedessen kommen Musikdarbietungen aus größerer Entfernung oder über Schallhindernisse mit einem Frequenzgang zur Geltung, der von den tiefen Frequenzen nach den hohen Frequenzen hin abfällt²).

Wäre der Verlauf der Hörkurven (Bild 1) von größerem Einfluß auf den Frequenzgang als die Dämpfung der Höhen auf dem Weg von der Schallquelle zu uns, so würden wir von einer über größere Entfernung gehörten Originalmusik die tiefen Töne am schwächsten und die hochsten Töne am stärksten empfinden. In Wirklichkeit ist es umgekehrt.

Berücksichtigt man die beim Hören von Originaldarbietungen — meist unbewußt — gesammelten Erfahrungen, so kommt man dazu, beim Herunterregeln der Wiedergabelautstärke nicht nur die Tiefen weniger zu schwächen als die Mitte und die Höhen. sondern zusätzlich die Höhen im Vergleich zur Mitte noch weiter abzudrosseln. Das entspricht Frequenzgängen, wie

- ') Telefunkenzeitung. März 1951: F. Bergtold und S. Sawade: Bemerkungen zur "physiologischen Lautstärkeregelung" bei Rundfunk-
- ⁵) Überzeugendstes Beispiel: Von einer sehr weit entfernten Militärkapelle hört man hauptsächlich die große Trommel, aber nur sehr schwach Flöten und Trompeten (Anmerkung der Redaktion).

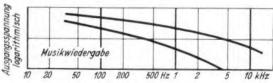


Bild 2. Die Erfahrung zeigt, daß beim Hören weit entfernter, also leiser Musik die Höhen wesentlich stärker gedämpft werden

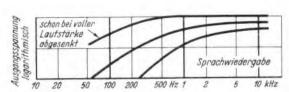


Bild 3. Beim leisen Sprechen (Flüstern) treten dagegen die Konsonanten, also die hohen Frequenzen stärker hervor

sie in Bild 2 für drei Wiedergabelautstärken schematisch dargestellt sind

Wenn aber das Beeinflussen des Frequenzganges beim Regeln der Lautstärke auf dem Erfahrungsschatz des Menschen beim Hören musikalischer Darbietungen basiert, so nimmt dieses Beeinflussen nicht auf die Physiologie, sondern auf die Psychologie, also auf den Seeleninhalt Rücksicht. Daher die entsprechende Bezeichnung einer solchen Regelung.

Wie steht es hier mit der Sprache?

Im vorigen Abschnitt wurde stets auf die Musik Bezug genommen. Die Sprachwiedergabe war dort nicht erwähnt. Für Sprachwiedergabe würde eine Regelung, wie sie im letzten Abschnitt und durch Bild 2 dargestellt ist, ungünstig sein.

Bild 2 dargestellt ist, ungünstig sein.
Ganz allgemein weiß man, daß ein Betonen der Tiefen bei Sprachwiedergabe störend ist. Deshalb sind ja die Empfänger vielfach mit Musik-Sprache-Schaltern und neuerdings sogar auch mit stetiger Tiefenregelung ausgestattet.

Daß man das Anheben der Tiefen bei Vermindern der Lautstärke als physiologische Regelung bezeichnet, ist für Sprache nicht ganz angebracht, da diese Regelweise die Sprachverständlichkeit zusätzlich herabsetzt. Mit einer solchen Regelung klingt die leise Sprachwiedergabe dumpf. Ihre Silbenverständlichkeit ist ungenügend, weil die hohen Frequenzen der ausschlaggebenden Konsonanten fehlen.

Auch hier psychologische Regelung!

Unsere Einstellung zum Hören der Sprache ist grundverschieden von der zur Aufnahme von Musik, Musik, die uns z. B. aus größerer Entfernung leise zu Gehör kommt, kann als akustischer Hintergrund recht erwünscht sein. So erinnern wir uns sicher gern an irgendeinen Sommerabend, an dem von fern her ertönende Musik unsere Stimmung hob.

Sprache, die wir deshalb leise hören, weil die Entfernung zwischen dem Sprecher und uns zu groß ist oder weil Schall-hindernisse dazwischen liegen, interessiert uns hingegen meist nicht. Wir empfinden sie in der Regel als störend, einesteils, weil wir sie doch nicht völlig verstehen können und andernteils, weil sie gar nicht an uns gerichtet ist.

Wenn uns leise Sprache unmittelbar etwas angeht, handelt es sich dabei üblicherweise um Flüstern: Es wird uns dann aus der Nähe etwas zugeflüstert. Beim Flüstern tehlen die tiefen Töne. Geflüstert wird im wesentlichen mit Konsonanten. Die Vokale spielen hier eine weit geringere Rolle als bei der normalen Sprache.

Wenn wir also leise Sprachwiedergabe hören, die uns etwas übermitteln soll, so stellen wir uns unbewußt auf das Flüstern ein. Im Sinn unseres diesbezüglichen Erfahrungsschatzes und unserer demgemäßen seelischen Einstellung kommen wir also hier zu einem Anheben der Höhen gegenüber der Mitte und einem starken Absenken der Tiefen. Das Regeln der Lautstärke geschieht demnach für die Sprache im psy-

chologischen Sinn so, wie Bild 3 das grundsätzlich zeigt. Regelt man die Sprache auf solche Weise, so erhält man eine hohe Verständlichkeit auch noch bei sehr geringer Lautstärke.

Musik und Sprache kombiniert?

Leider läuft die psychologische Lautstärkeregelung hinsichtlich des Frequenzganges für Musik und Sprache entgegengesetzt. Es ist also nicht möglich, ein Gemisch aus Sprache und Musik bei ganz leiser Wiedergabe richtig zu Gehör zu bringen — es sei denn, es würde schon sendeseitig einiges im Sinn dieser Psychologie getan. Dagegen kann man natürlich einwenden, daß der Sender ja für alle Rundfunkhörer senden muß, von denen die einen eine leise und die anderen eine laute Wiedergabe wünschen. Immerhin — in den

DAS NEUESTE

späten Abendstunden wird im allgemeinen von rücksichtsvollen Hörern auf leise Wiedergabe gestellt. Vielleicht ließe sich also unter diesem Gesichtspunkt senderseitig doch etwas machen.

Ähnliche Beobachtungen in der Optik

Wie durch UKW und die neuen Schallplatten der Wiedergabe-Frequenzbereich nach oben erweitert wurde, so haben die Leuchtröhren die Möglichkeit gegeben, für das künstliche Licht ein breiteres Spektrum zu bekommen, als wir es von den Glühlampen her gewohnt waren.

Wir erinnern uns, daß oben erwähnt wurde, eine leise Musikwiedergabe über UKW klinge spitz. Ähnlich ist es, wenn wir mit "Tageslicht"-Leuchtröhren einen Raum mit nur mäßiger Helligkeit beleuchten. Dabei empfinden wir die Beleuchtung als fanl und kalt. Ein ebenso helles Glühlampenlicht wirkt dagegen warm und gemütlich. Wenn wir aber mit den Leuchtröhren eine Helligkeit zustandebringen, die sich mehr der des Tageslichtes nähert, haben wir nicht mehr die Empfindung eines kalten Lichtes. Bei großer Helligkeit ist es uns durchaus nicht unangenehm., daß die Leuchtröhren statt gelb-rötlich getöntem Licht ein weißes Licht ergeben — im Gegenteil!

Das dürfte mit der Psychologie in ähnlicher Weise zusammenhängen wie die Beziehung zwischen Lautstärke und Wiedergabe-Frequenzgang. Bei großer Helligkeit vergleichen wir — unbewußt — das Leuchtröhrenlicht mit Tageslicht, während wir bei geringer Helligkeit im allgemeinen auf künstliches Licht eingestellt sind.

Wären Helligkeitsregler üblich, die den Lautstärkereglern entsprechen, so müßte auch bei ihnen — der Psychologie wegen — im Zusammennang mit dem Herunterregeln der Helligkeit eine Frequenzgangänderung vorgenommen werden und zwar so, daß das Licht — ähnlich z. B. wie bei einem Sonnenuntergang — beim Vermindern der Helligkeit mehr und mehr ins Rötliche übergeht. Dr. Fritz Bergtold

Verbessertes Kopieren von Bandaufnahmen

Bei der Schallplattenherstellung werden heute für die Originalaufnahmen Magnetbänder verwendet, von denen dann die Plattenmatrizen bespielt werden. Die An-fertigung von Bandkopien auf ähnlichem Wege stellt offensichtlich eine Erweiterung dieser Technik dar. Der Bedarf an Band-kopien ist in letzter Zeit durch die Anfor-derungen des Rundfunks, der Unterrichtsinstitute und der öffentlichen Dienste stark angewachsen. Daher versuchte man, durch ein Mutterband mehrere gekuppelte Magnetbandgeräte gleichzeitig zu bespielen, jedoch ohne zufriedenstellenden Erfolg. Außerdem erwies sich das Auswechseln der Bänder als zu zeitraubend und der Ausstoß an fertigen Kopien als zu klein, weil man oft nur mit den normalen Bandgeschwindigkeiten arbeiten kann. Besser ist schon das "Druck"verfahren, bei dem Original und Kopie mit hoher Geschwindigkeit und in engem Kontakt miteinander durch ein Magnetfeld gezogen werden, wo Faksimiles von brauchbarer Qualität entstehen1).

Eine völlig andersartige Lösung des Problems fanden Dr. F. R. Smith und L. S. Toogood, die eine "Multitape"-Maschine entwickelten. Bei ihr werden alle vorhandenen Bänder — Originale wie Kopien — durch eine gemeinsame Spindel bewegt, die von einem kräftigen Synchronmotor angetrieben wird. Auf diese Weise lassen sich Kopien herstellen, die mit einer Genauigkeit von 1 cm auf

148 m die gleiche Länge wie das Original aufweisen. Dadurch wird erreicht, daß die Kopien bei normaler Bandgeschwindigkeit die gleiche Laufzeit haben wie das Original, was besonders für Rundfunksendungen wichtig ist. Auf der "Multitape"-Maschine können in einer Stunde vierzig Halbstun-den-Bänder in einer Qualität kopiert werden, die vom Original praktisch nicht zu unterscheiden ist. Außer den rein mechanischen Schwierigkeiten war auch eine Reihe elektrischer Probleme zu lösen. So mußten Hf-Vormagnetisierungsströme für zwölf Bahnen und eine dementsprechend leistungsfähigeWechselspannungsquelle bereitgestellt werden. Um zur Erhöhung der Produktionszahlen die Bänder mit hoher Geschwindigkeit laufen lassen zu können waren besondere Ausgleichsmaßnahmen erforderlich. Aus dem gleichen Grunde mußte die Vormagnetisierungsfrequenz so hoch gewählt werden, daß sie bei normaler Bandgeschwindigkeit nicht in den Hörbereich fällt (weil sie ja zu einem gewissen Grade dem Modulationsinhalt des Bandes

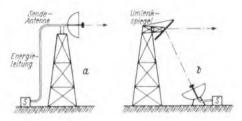
überlagert wird). Wegen dieser sehr hohen Frequenz mußten wiederum die Magnetköpfe mit besonders fein lamellierten Kernen versehen werden. Diese begünstigen jedoch den Verschleiß der Köpfe, wenn sie nicht aus sorgfältig ausgewählten Werkstoffen bestehen und der Bandzug gering gehalten wird. Außerdem wurde eine besondere Magnetkopfkonstruktion entwikkelt, bei der die Empfindlichkeit der Bandkopien gegen gelegentliche falsche Ausrichtung des Hörkopfscheitels verringertist.

Die ganze Einrichtung wurde eingehend auf Originaltreue, auf Freiheit von harmonischen Verzerrungen und auf den Gehalt der Kopien an Flattererscheinungen und Tonschwankungen untersucht. Bei richtiger Justierung der Kopierbahnen können Kopien von solcher Regelmäßigkeit hergestellt werden. daß man eine beliebige Kopie an passender Stelle an das Originalband ansetzen kann, ohne daß die Übergangsstelle gehörmäßig feststellbar wäre. (Nach D. W. Aldous, Wireless World, August 1952, 320.)

Reusenleitung als Hf-Sendekabel

Bei verschiedenen Sendern des Südwestfunk haben sich reusenförmige Freileitungen als Hf-Energiekabel zwischen Sendegebäude und Antennenhaus ausgezeichnet bewährt.

Die Kabelseele besteht aus hart verlöteten Kupferrohren von 20 mm Durchmesser, die durch ein innen geführtes Stahlseit getragen werden. Der Mantel wird aus zwölf Kupferdrähten von 3 mm Durchmesser gebildet, die auf einem Kreis von 500 mm / gleichmäßig verteilt sind. Um den Durchhang bei Temperaturschwankungen klein zu halten, wird nicht die übliche Freileitungsbauweise angewendet sondern Seele und Mantel werden für sich am Antennenhaus mit isolierten Zugseilen abgefangen und über Rollen mit Gewichten auf der ganzen Länge (beim Rheinlandsender 500 m!) straffgespannt. Die Belastung beträgt je 500 kg für die Seele und für den Mantel. Durch Witterungseinflüsse entstehen dabei Längenunterschiede bis zu 5 cm je 100 m.


Die Leitung ist alle zwölf Meter durch Abstandsisolatoren unterstützt. Jeder Draht ist dabei für sich in Keramikteilen geführt (Bild). Die Manteldrähte werden nur an den Enden der Leitung durch einen Kurzschlußring verbunden. Der Wellenwiderstand der Leitung beträgt im Mittel 205 \(\Omega; \) die Dämpfung ist geringer als bei einem vergleichbaren Hf-Kabel. Trotz der verhältnismäßig weiten Abstände der Reusendrähte beträgt der Durchgriff der Feldstärke nur 1 \(^{9}\)/0.

Reusen-Energieleitung bei einem Sender des Südwestfunks

Die Anschaffungs- und Verlegungskosten derartiger Reusenleitungen sind geringer als für ein entsprechendes Erdkabel mit Bewehrung. Ein weiterer Vorteil ist, daß die Leitung ständig zugänglich ist und ihr Zustand gut überwacht werden kann. (Nach: "Eine Reusen - Energieleitung" von A. Schweisthal, Techn. Hausmitteilung. d. NWDR, 1952, Nr. 3/4, S. 45)

Richtantennen mit Umlenkspiegeln

Bei Richtfunkanlagen sind lange Energieleitungen vom Sender S bis zu den auf 20 bis 60 m hohen Türmen aufgestellten Strahlern erforderlich (Skizze a). Einfacher und ohne lange Zuleitungen lassen sich Antennensysteme aufbauen, bei denen

Die Sendeantenne befindet sich oben auf dem Turm und ist durch eine lange Energieleitung mit dem Sender verbunden (a); die Sendeantenne strahlt gegen einen Umlenkspiegel (b)

die Richtstrahler, z.B. Parabol- oder Linsenantennen, am Fuß der Türme aufgestellt sind und an der Spitze der Türme angebrachte ebene Metallspiegel anstrahlen (Skizze b), Die Spiegel lenken das Wellenbündel in die gewünschte Richtung um. Die gleiche Anordnung kann für Empfangszwecke verwendet werden. Berechnungen ergeben, daß kein Verlust durch die Strahlumlenkung auftritt, wenn die Spiegelfläche eine bestimmte Größe erhält. (Hans-Georg Unger, "Frequenz" 1952. Nr. 9, Seite 272).

Neues elektronisches Ortungsverfahren für Flugzeuge

Ein amerikanisches Werk hat ein Fluginstrument entwickelt, das dem Piloten auch ohne Bodensicht jederzeit und sofort Aufschluß über seine jeweilige geographische Position gibt und dadurch zur Erhöhung der Flugsicherheit beiträgt. Das Gerät hat einen 25 cm großen Leuchtschirm wie bei Fernsehempfängern und wird auf dem Armaturenbrett der Maschine montiert. Auf dem Schirm ist eine Karte des überflogenen Gebietes abgebildet, über die ein flugzeugförmiger Schatten dahingleitet, der die relative Position zur Erde sowie die Flugrichtung anzeigt. Auf diese Weise ist eine bis auf etwa 0.6 km genaue Positionsbestimmung möglich, die richtungsmäßige Abweichung beträgt max. 1 Grad.

^{&#}x27;) Grundsätzliches über Kopierverfahren findet man in Band 9 der "Radio-Praktiker-Bücherei": Wolfgang Junghans, "Magnetbandspieler-Praxis".

DAS NEUESTE

Neues elektronisches Ortungsverführen (Forts.)

Bei den üblichen Flugleitverfahren ermittelt der Pilot seine Position und Flugrichtung auf Grund von Radiosignalen, die er von den Funkleitstellen erhält. Diese Signale liefern zwei Koordinaten, die er mit der Hand auf einer Karte aufträgt, der Schnittpunkt sagt ihm sodann, wo er sich befindet. Diese Methode ist jedoch bei den hohen Geschwindigkeiten moderner Flugzeuge zu langsam, da der Pilot daraus meist nur erfährt, wo er war. Bei dem von der Arma Corp., New York, gebauten neuen Elektronengerät wird eine "Rund-karte" von einem 35 - mm - Film auf den Bildschirm projiziert, mit der Funkleitstelle des Flugabschnittes als Mittelpunkt. Das Schattenflugzeug auf dem Leucht-schirm zeigt dem Piloten, wo er ist, seine Position relativ zur Sendestation und die Fluglinie bezogen auf Norden. Sobald das Flugzeug im Begriffe ist, aus

dem projizierten Kartensektor auszufliegen, stellt der Pilot den neuen Gebietssektor durch eine Knopfdrehung am Kartenwähler ein. Will er einen beliebigen Punkt anfliegen, so hat er einfach die Maschine so zu steuern, daß der Flugzeugschattenanzeiger in die gewünschte Richlung weist.

Radio-Astronomic: 750 000 Jahre alte Wellen

In den Physikalischen Laboratorien der Universität Manchester wurden Wellen gemessen, die vor etwa 750 000 Jahren (nach Erdbegriffen) ausgestrahlt wurden. Die gemessene Empfangsstärke war von der Größenordnung eines "Mikromikro-mikromikrowatts". Hierzu wurden auf dem Deutschen Physikertag in Berlin aufsehenerregende Erklärungen abgegeben. Danach sei mit Hilfe der Radio - Astronomie jetzt einwandfrei festgestellt, daß die Milch-straße die Struktur eines Spiralnebels hat. Es sei sogar gelungen, einige "Radiosterne" (d. h. Sterne, deren Dasein man bisher nur aus den eintreffenden Radiosignalen schloß) nachträglich sichtbar identi-fizieren zu können, so im Schwan, in der Cassiopeia, im Stier. Bei einer Analyse im Schwan wurde beobachtet, daß sich hier zwei Milchstraßennebel in Kollision befinden. Auf die Frage des deutschen Nobel-preisträgers, Prof. Werner Heisenberg, ob sich das Phänomen dieser Kollision mit der allgemeinen Flucht der extragalaktischen Nebel von der Milchstraße weg vertrüge, konnte von den Vortragenden keine Antwort gegeben werden. Über das Zustandekommen der Radiosignale im Weltenraum konnten ebenfalls noch keine Erklärungen gegeben werden: die Signale seien jedoch einwandfrei da.

Kleinsttednik auf allen Gebieten

"Kleinere Einzelteil-Abmessungen!" lautet die ständige Forderung der Geräte-Hersteller, und auf allen Ge-

bieten sind hierbei wirkliche Fortschritte erzielt worden. So stellt eine amerikanische Firma Rollkondensatoren in Metallpapier-Ausführung her, um zu kleinsten Abmessungen zu gelangen. Ein MP-Kondensator mit einer Kapa-

zität von 2000 pF besitzt z. B. eine Länge von 8 mm bei einem Durchmesser von nur 3,2 mm (Bild). Der Kondensator kann mit einer Arbeitsspannung von 200 V betrieben werden.

Fernseh-Koordinierungs-Ausschuß gegründet

Mit der Gründung des Fernseh-Koordinierungs - Ausschusses (FKA), die am 22. September in Berlin erfolgte, kann das Stadium der Vorentwicklung auf dem Fernsehgebiet als abgeschlossen gelten. Die dem Ausschuß angehörigen Mitgliedsgruppen, wie beispielsweise Post. Industrie. Fernsehfachverbände weise Post. Industrie. Fernsehfachverbände und Sendeanstalten, vertreten ihre Interessen

in Zukuntt gemeinsam und stimmen ihre Planung aufeinander ab. So kommt ihre Zusammenarbeit nicht nur den Beteiligten selbst sammenarbeit nicht nur den Beteiligten selbst, sondern schließlich auch der Allgemeinheit zugute, wenn es etwa gelingt, eine Stabilität der Gerätepreise herbeizuführen, die Typenzahl der Bildröhren einzuschränken oder zur Etzielung größerer Serien einen preiswerten Einheitsempfänger zu schaffen. Zur Erreichung dieser Ziele hat der FKA folgenden Beschluß gefalt: Beschluß gefaßt:

In der Erkenntnis, daß die dem deutschen Feinsehen gesetzten Ziele nur in harmoni-scher Zusammenarbeit zwischen den beteiligscher Zusammenarbeit zwischen den beteiliglen Gruppen zu erreichen sind, beschließen
die Unterzeichneten, den organisatorischen
Aufbau und die Planung des Fernsehens koordiniert durchzuführen, und bestellen zu
diesem Zweck hierdurch einen Fernseh - Koordinierungs-Ausschuß (FKA).
Für den FKA gelten folgende Richtlinien:

 Zweck des FKA ist, den organisatorischen Aufbau und die Planung des Fernsehens ko-ordiniert durchzuführen und nach Möglichkeit gemeinsame Beschlüsse zu fassen.

2. Der FKA soll aus den Vertretern der Sendeanstalten, der Bundespost, der Fachunterabteilung Fernsehen im ZVEI und je einem Vertreter des Deutschen Radio- und Fernsehfachverbandes, Frankfurt/M., des Verbandes der Rundfunk- und Fernseh-Fachverbandes Berlin (FFV) bestehen.

3. Der FKA gibt sich eine Geschäftsordnung welche auch die Erweiterung des Mitglieder kreises regelt.

Der FKA tritt alle drei Monate oder bei 4. Der FAA tilt and die Monate oder bevorliegender Dringlichkeit zu einem früheren Zeitpunkt zusammen, und die Einladung erfolgt mit einer Tagesordnung. Über die Sitzungen werden Protokolle angefertigt, die jedem Sitzungsteilnehmer zu übermitteln sind.

5. Sofern eine Mitgliedsgruppe einen Be-schluß als für sich nicht durchführbar be-lrachtet, gibt die betreffende Gruppe dies dem FKA unverzüglich bekannt.

Schulungskurse des DARC

Der Ortsverband Stuttgart des Deutschen Amateur-Radio-Clubs hält ständig Schulungs-kurse für Morsen und Empfangs- und Sende-technik ab; ferner ist zu Beginn des komkuise für Morsen und Emprangs- und Seinschenhik ab: ferner ist zu Beginn des kommenden Jahres eine Einführung in die Fernsehtechnik geplant. Interessenten sind zu allen Kursen willkommen. Zusammenkünfte: ieden ersten und dritten Freitag im Monat im "Haus der Jugend", Stuttgart, Gerockstraße 7 E. K. straße 7

Langwellensender in Westdeutschland

In Hamburg soll am Weihnachtsabend ein Langwellensender mit einer Grußsendung au alle Deutschen im Ausland seinen Betrieb aufnehmen. Er wird auf der Welle 1430 m (151 kHz) täglich von 14 30 Uhr bis Mitternacht albeiten. Diese Welle konnte durch Entgegenskommen der dänischen Rundfunkgesellschaft für die angegebene Tageszeit zur Verfügung gestellt werden.

Hersteller von Bauelementen taaten in Düsseldorf

Auf der zahlreich besuchten Mitgliederver-Auf der zahlreich besuchten Mitgliederversammlung der Fachabteilung "Schwachstromtechnische Bauelemente" im Zentralverband der Elektrotechnischen Industrie e. V.. wurden Dr. Eugen Sasse als erster und Direktor Dipl.-Ing. Hellmuth Riepka als zweiter Vorsitzender einstimmig wiedergewählt. Auf der Tagung wurden technische und wirtschaftliche Fragen erörtert. Die Bauelemente-Industrie beschäftigt zur Zeit etwa 11 000 Arbeitskräfte beitskräfte

Fernsehen in Jugoslawien

In Belgrad wurde der erste jugoslawische Feinsehsender "Nicola Tesla" errichtet. Er arbeitet nach der europäischen Feinsehnorm mit 625 Zeilen

Berliner Rundiunk-Fertigung

Telefunken läßt zwei seiner neuesten Ge-äte, den "Dacapo" und den Autosuper räte, den "Dacapo" und den Autosuper "I D 53 U", in seinem Berliner Werk bauen

UKW-Rundiunk auch in der Schweiz

In der Schweiz ist die Errichtung von zwei UKW - FM - Rundfunksendern vorgesehen in Eigänzung zum hochfrequenten Drahtfunk sollen sie zur Empfangsverbesserung in den Cabirregerenden diene Gebirgsgegenden dienen

Fono-Industrie auf der Frankfurter Frühjahrsmesse

Auf der internationalen Frankfurter Früh-jahrsmesse vom 22. bis 26. Februar 1953 be-steht für die export-interessierte Fono-Indu-strie die Möglichkeit, im Rahmen der Musik-instrumenten - Industrie ihre Erzeugnisse in großen Kongreßhalle repräsentativ aus-

Wilhelm Wiegand 25 Jahre bei Braun-Radio

Der Aufstieg eines Unternehmens hängt nicht allein von der Güte seiner Erzeugnisse ab sondern auch von den Mänkte für diese Erzeugnisse zu erschließen. Ein solcher Mannist Wilhelm Wiegand. Als er vor 25 Jahren am 20. November 1927 bei Braun-Radio eintrat, beschäftigte die Firma 60 Leute mit der Herstellung von Rundfunk-Ersatzteilen, Tonabnehmern und Plattenspielern. Wiegand übernahm zunächst die Leitung der Exportabtellung. Tatkräftig machte er sich an die Arbeit und schuf ein Netz von Vertretungen, das die Braun-Erzeugnisse in aller Welt verbreitete. Eigene Häuser konnten in Brüssel, Paris und London erstellt werden. 1939 war die Zahl der Albeitskräfte auf 1000 angewachsen. Durch seine Leistungen und sein Schaffen gewann Wilhelm Wiegand das ganze Vertrauen des Firmeninhabers, und so wurde er am 1. Januar 1935 zum Einzel-Prokuristen mit allen Vollmachten ernannt.

Vollmachten ernannt.

Der Krieg stellte die Leitung vor zahlreiche neue Probleme und Schwierigkeiten. Hier bewährten sich ganz besonders die schnelle Entschlußkraft und die Geschicklichkeit von Direktor Wilhelm Wiegand. Ungeachtet der Direktor Wilhelm Wiegand. Ungeachtet der schweren Zerstörungen ging er nach dem Kriege sofort an die Arbeit. Neben den seit jeher bewährten Tonabnehmern, Fonochassis, Laufwerken und Rundfunk-Einzeltellen wurde die Empfängerfertigung wieder aufgebaut, und zum Saisonausgleich wurden weltere Fabrikationen, wie elektrische Rasierapparate und Mix-Geräte, hinzugenommen. — Im November 1951 starb der Gründer des Hauses Seine Söhne Artur und Erwin Braun konnten sich ebenso vertrauensvoll wie ihr Vater auf ihren erfahrenen und weltgewandten Direktilnen erfahrenen und weltgewandten Direk-tur Wilhelm Wiegand stützen. Unter seiner Leitung wird die Firma Braun auch weiterhin Arbeitsplätze für viele Menschen bereithalten und durch ihre Erzeugnisse zur Freude und Annehmlichkeit des Lebens beitragen.

Motorräder stören Funkverkehr

Vom Funktechnischen Zentralamt in Darmvom Funktechnischen Zentralamt in Darmstadt wurden Untersuchungen angestellt, um den Grad der Funkstörungen bei Motorrädern festzustellen. Nach den nunmehr vorliegenden Ergebnissen verursachen leider alle nichten Fabrunge entstörten Fahrzeuge Störungen im Funk-verkehr. Bundespost und Polizei fordern des-halb von der Industrie die Motorräder funktechnisch abzuschirmen, um Störungen beim Empfang von Bild- und Tonfunk zu vermeiden.

FUNKSCHAU Zeitscheilt lüc Funktechnikee

Herausgegeben vom

FRANZIS-VERLAG MÜNCHEN

Verlag der G. Franzischen Buchdruckerei G Emil Mayer Erscheint zweimal monatlich, und zwar am 5. und 20. eines jeden Monats. Zu beziehen durch den Buch- und Zeitschriftenhandel. unmittelbar vom Verlag und durch die Post. Monats-Bezugspreis für die gewöhnliche Ausgabe DM 1.60 (einschl. Postzeitungsgebühr) zuzüglich 6 Pfg. Zustellgebühr; für die Ingenieur - Ausgabe DM 2.— (einschl. Postzeitungsgebühr) zuzügl. 6 Pfg. Zustellgebühr Preis des Einzelheftes der gewöhnlichen Ausgabe 80 Pfennig, der Ing.-Ausgabe DM 1.— Redaktion, Vertrieb u. Anzeigenverwaltung: Franzis - Verlag, München 22, Odeonsplatz 2 - Fernruf: 2 41 81. — Postscheckkonto Mün chen 57 58.

Berliner Geschäftsstelle: Berlin - Friedenau Grazer Damm 155. — Fernruf 71 67 68 - scheckkonto: Berlin-West Nr. 622 66.

Berliner Redaktion: O. P. Herrnkind, Berlin-Zehlendorf, Albertinenstr 29 Fernruf: 84 71 46 Verantwortlich für den Texttell: Ing. Otto Limann: für den Anzeigenteil: Paul Walde München. — Anzeigenpreise n. Preisl. Nr. 7 München. — Anzeigenpreise n. Preisi. Nr. 7
Auslandsvertretungen: Belgien: De Internationale Pers. Berchem-Antwerpen, Kortemarkstraat 18. — Niederlande: De Mulderkring, Bussum, Nijverheidswerf 19-21. — Saar: Ludwig Schubert. Buchhandlung, Neunkirchen (Saar), Stummstraße 15. — Schweiz: Verlag H. Thali & Cie., Hitzkirch (Luzern).
Alleiniges Nachdrucksrecht, auch auszugsweise, für Österreich wurde Herrn Ingenieur Ludwig Ratheiser, Wien, übertragen.

Druck: G Franz'sche Buchdruckerei G. Emil Mayer, (13 b) München 2. Luisenstr. 17. Fernsprecher, 5 16 25 Die FUNKSCHAU ist der IVW angeschlossen

Eingangsstufen für Empfangsfrequenzen über 100 MHz

UKW-Empfänger sind um so empfindlicher, je größer das Verhältnis $\mathbf{r}_e:\mathbf{r}_a$ der in der ersten Hf-Stufe verwendeten Röhre ist (\mathbf{r}_e — von der Frequenz abhängiger Eingangswiderstand; \mathbf{r}_a = äquivalenterRauschwiderstand). Bis 100 MHz lassen sich mit Spezialpentoden (EF 80, 6 AK 5) hohe Empfängerempfindlichkeiten erzielen. Für darüber liegende Empfangsfrequenzen ist Trioden oder als Trioden geschalteten Pentoden der Vorzug zu geben, da sie sich durch günstigere Rauscheigenschaften bzw. durch ein größeres $\mathbf{r}_e:\mathbf{r}_a$ -Verhältnis auszeichnen. Besonders in Amateurkreisen (2-m-Band) erfreuen sich Trioden in Eingangsschaltungen zunehmender Beliebtheit (1).

Die bekannteste und erfolgreichste Schaltung dieser Art ist der Cascode-Verstärker. auch Wallmann-Converter genannt (Bild 1). Die erste Stufe enthält eine als Triode arbeitende 6 AK 5. Ihr folgen eine Triode in Gitterbasis-Schaltung und die Mischstufe, die ebenfalls mit einer rauscharmen Triode bestückt ist. Die Gitter und Anode verbindende Neutralisationsspule LN verhindert die Selbsterregung der ersten Triodenstufe. Diese Schaltweise eignet sich mit entsprechend dimensionierten Spulenwerten für Frequenzen bis ca. 300 MHz. Ab 180 MHz (Fernsehband 176...216 MHz) ist in den meisten Fällen eine Neutralisierung nicht mehr erforderlich, da infolge stark absinkender Außenwiderstände eine Selbsterregung (Huth-Kühn-Schwingung) kaum noch stattfinden kann.

Neben dieser viel verwendeten Schaltung setzen sich auch Gegentaktanordnungen mit neutralisierten Doppeltrioden (ECC 81, 6 J 6) durch. Der Gegentaktbetrieb gestattet eine günstigere Ankopplung an symmetrische Antennenanlagen. Die Empfindlichkeit erfährt durch Gegentaktbetrieb bei gegebener Bandbreite keine Erhöhung. läßt jedoch höhere Antennenimpedanzen (250... 300 Ω), höhere Kreiswiderstände und höhere Empfangsfrequenzen zu (bis 400 MHz, mit Lechersystemen bis 600 MHz).

Eine neuartige Eingangsschaltung

Die in Bild 2 gezeigte Schaltung wurde vom Verfasser für das 2-m-Band entwickelt; sie eignet sich mit abgeänderten Spulendaten auch für das Fernsehband von 176... 216 MHz. In der Empfindlichkeit steht sie der Wallmann-Schaltung nicht nach. Besondere Vorteile bietet der Aufbau des Gitterkreises, der für die Ankopplung symmetrischer Antennenkabel ausgelegt ist. Im Gegensatz zur induktiven Ankopplung ergibt die hier durchgeführte Verbindung über Kondensatoren eindeutigere Übersetzungsverhältnisse. Die richtige Anpassung (Leistungsanpassung) spielt ja bei UKW-Abstimmkreisen eine ausschlaggebende Rolle. Über den Neutralisationskondensator CN (Lufttrimmer 3...30 pF)

wird ein Teil der Anodenwechselspannung an das gegenphasige Ende der Gitterkreisspule zurückgeführt. Zf-Sperrkreise sind nicht erforderlich. Das RC-Glied am Gitter der ersten Röhre schützt sie vor Über-lastung bei hohen Senderfeldstärken (Ama-teur - Sende - Empfangs - Betrieb). Bei normalen Empfangsverhältnissen (UKW-Rundfunk und Fernsehen) begrenzt es eine unbeabsichtigte Selbsterregung. Der Abstimmkondensator des Eingangskreises hat Luftoder keramisches Dielektrikum. Er dient zur Feineinstellung auf Bandmitte (beim 2-m-Amateurband), gegebenenfalls bei breiten Bändern (Fernsehband) der Festabstimmung auf einen bestimmten Kanal. Für den Vorabgleich bedient man sich am besten geeigneter Meßmittel (Abstimmkreisprüfer, Dip-Meter). In den Eingangsstufen verwendet man vorzugsweise die neuen Scheiben- bzw. Plättchenkondensatoren Scheiben-(Dralowid, Rosenthal).

Die Einregelung der Neutralisation ist bei angeschalteter Antenne vorzunehmen. Die richtige Einstellung ist erreicht, wenn die Triodenstufe kurz vor dem Schwingungseinsatz arbeitet. Es liegt in der Natur der Arbeitsweise, daß die Schwingungen bei nicht angeschalteter Antenne wieder einsetzen. Der ersten Stufe folgt eine rauscharme Pentodenstufe, die gegenüber der Gitterbasisschaltung einen höheren Eingangswiderstand besitzt. Demzufolge ist der Verstärkungsgrad der ersten Stufe etwas höher und der Rauscheinfluß der nachfolgenden Stufe geringer. Die Mischung erfolgt wie beim Wallmann-Converter additiv über eine UKW-Triode. Um die ohne Katodenwiderstand arbeitende Röhre bei unbeabsichtigtem Ausfall der Oszillatoramplitude vor Überlastung zu schützen, befindet sich im Anodenweg ein höherer Vorwiderstand.

Helmut Schweitzer

Literaturhinweis:

(1) The radio amateur's handbook 1951, Seiten 372...414.

Spulenwerte (für 145 MHz)

	Wij	ndungs	zahl	Win- dungs-	Win- dungs-
Spule	insges.	a-b	а-с	mm	länge mm
L 1	5	112	312	7	16
L 2	4	$1^{1_{\ell_{2}}}$	-	8	8
L 3	31/2		-	7	11

Ermittlung des Klirrfaktors von Endröhren

In größeren Werkstätten und in Laboratorien wird bisweilen die Aufgabe gestellt, eine Endröhre unter anderen Bedingungen und Daten zu betreiben, als sie in der Röhrentabelle für den Normalfall angegeben sind. Nachstehend wird gezeigt, wie man in solchen Fällen den zu erwartenden Klirrfaktor aus dem Kennlinienfeld vorausbestimmen kann.

Der Klirrfaktor einer Röhre gibt an, wie groß eine durch Verzerrung entstandene Oberschwingung im Vergleich zur Grundschwingung ist. Legt man an das Gitter einer Röhre eine reine Sinus-Schwingung mit der Frequenz f_1 und der Amplitude A_1 , so wird sie im Anodenkreis neben der verstärkten Grundschwingung f_1 mit der Amplitude A_1 , auch Oberschwingungen $2 f_1$ mit A_2 , $3 f_1$ mit A_3 , $4 f_1$ mit A_4 usw. liefern. Es ist dann:

der Klirrfaktor der zweiten Harmonischen

$$K_2 = \frac{A_2}{A_1} \cdot 100 \%,$$

der Klirrfaktor der dritten Harmonischen

$$K_3 = \frac{A_3}{A_1} \cdot 100 \%$$

und somit der Gesamtklirrfaktor

$$K = \sqrt{K_2^2 + K_3^2 + ...} = \frac{\sqrt{A_2^2 + A_3^2 + ...}}{A_1} \cdot 100 \%$$

Für die Bestimmung des Klirrfaktore

gibt es viele und z.T. recht komplizierte Methoden, Es seien hier die einfachsten behandelt.

Meßiechnisches Verlahren

Eine verhälnismäßig rasche und einfache Methode ist die Messung mit einer Klirriaktormeßbrücke [1]. Bild 1 stellt die Prinzipschaltung dar. An das Gitter der zu messenden Röhre wird eine reine Sinus-Spannung gelegt. Ein Teil der verstärkten Spannung wird an Ra abgegriffen und einer Wien-Brücke WB zugeführt. Durch Abstimmen des Impedanzzweiges Z auf die Grundwelle bleibt dann für die Anzeige des im Nullzweig liegenden Röhrenvoltmeters nur noch die Summe aller Oberwellen (Effektivwert) übrig. Nach Umschalten des Röhrenvoltmeters auf den Spannungsteiler P würde dann der Effektivwert der Gesamtschwingung (Oberwellen plus Grundwelle) erhalten werden. Man braucht jetzt nur P so einzuregeln, daß der Ausschlag des Röhrenvoltmeters genau gleich dem zuerst erhaltenen ist, und kann an einer geeichten Skala von P den Klirrfaktor ablesen.

Rechnerische Verlahren

Es bestehen auch rechnerische Verfahren zur Bestimmung des Klirrfaktors aus den Kennlinien im I_a . U_a –Diagramm [2]. Dia notwendige Rechenarbeit zur Ermittlung des Klirrfaktors ist sehr eintönig, weshalb

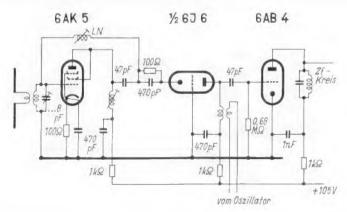


Bild 1. Der bekannte Cascode-Verstärker, der sich durch große Eingangsempfindlichkeit auszeichnet

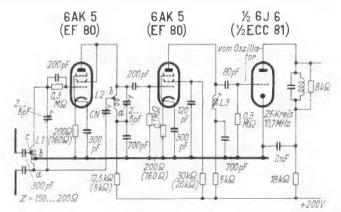


Bild 2. Eine neuere Triodeneingangschaltung für Empfangsfrequenzen über 100 MHz. Die in Klammern gesetzten Widerstandswerte gelten für die Röhren EF 80 und ECC 81

Triode

mit

finden sich auch in der Philips' Technischen Bibliothek [4].

Trioden

Man zeichne auf Transparentpapier, wie in Bild 2 angedeutet, ein gleichschenkliges A'B. - BD wird dabei gleich einer Ein-Dreieck A'DC und fälle darauf die Höhe heit gewählt, z. B. 2 cm (es kann natürlich auch der Maßstab 5 gewählt werden. wo-bei BD = 5 cm gezeichnet wird). BD wird dann verlängert, und auf dieser Verlängerung werden folgende Werte für K aufgetragen:

K 0/0	0	3	10	20		
Abstand	1,0	1,127	1,5	2,33	mal	BD

Die Messung mit dieser einmalig für alle Trioden anzufertigenden Schablone ist jetzt sehr einfach. Die Schablone wird so auf das Kennlinienfeld gelegt, daß A'B durch den Arbeitspunkt und A'C durch P 2 geht und die Hypothenuse parallel zur Widerstandsgeraden bleibt. Dabei wird irgend eine K-Linie, z. B. A' — 10 % durch P1 gehen. Das bedeutet dann einen Klirrfaktor von 10 %. Zwischenwerte müssen interpoliert werden.

Bild 3 zeigt das Kennlinienfeld einer Pentode (EL 12) mit eingezeichneter Wider-

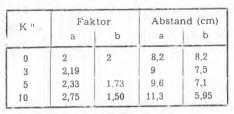
Pentoden und Tetroden

standsgeraden (Ra - 3400 Q). Als Arbeitspunkt sei P1 mit der entsprechenden Git-tervorspannung von —7 Volt gewählt. Bei einer Aussteuerung mit 14 Volt Gitterwechselspannung ergeben sich die Scheitelpunkte P2 auf Ug 0 und P3 auf Ug

40

strichliert eingezeichnetem Dreieck zur Ermittlung von

K, nach grafischer Methode


160

— 14 Volt. Eine rasch arbeitende Eine rasch arbeitende grafische Methode zur Ermittlung von K_3 ist folgende: Man zeichnet wieder ein gleichschenkliges Dreieck ADC, wobei BD = BC, und AB die Höhe darstellt. Die Strecke BD entspricht wieder dem Einheitswert (Bild 4) Für die Hilfslinien mit den Klirrfaktoren 3, 5 und 10 % ergeben sich die in der Ta-belle aufgeführten Abstände vom Punkt () auf einer nach rechts verlängerten Hypothenuse des Dreiecks. Sie werden durch Multiplizieren der Zahlenfaktoren mit der Einheit BD = 4.1 cm erhalten.

K₃ (Maßstab im Vergleich zu Bild 3 = 1:2 d.h. die Strecke B-D ist in Bild 3 = 4,1 cm, in Bild 4 =

2.05 cm lang, d. h. die Schablone ist doppelt so

groß anzufertigen wie in Bild 4 gezeichnet. Dann stimmen auch die Abstandsmaße in der Tabelle)

280

310

320

K

360 Ua (Voi

Diese Werte werden nach Bild 4 von D aus nach rechts aufgetragen, so daß man demnach erhält: K=3.9/0 in 9 cm und 7,5 cm Abstand von D usw., wobei dem Punkt C der Klirrfaktor Null entspricht (in Bild 4 sind es jeweils die halben Entternungen).

Diese Schablone wird so auf das Kennlinienfeld aufgelegt, daß AD durch P4 und AB durch P5 geht und DC parallel zu P2P3 verläuft. Die Schablone ist nun unter Beibehaltung des Abstandes a (DC)

unter Beibenaltung des Abstandes a (DCP2P3) so lange parallel zu verschieben. bis AD durch P2 geht. Der genaue Wert der Verzerrung (K3 kann jetzt sofort an jener K-Linie abgelesen werden, die durch P3 geht. Dabei wurde das Schablonendreieck strichpunktiert und die eingezeichneten K-Linien und die von A nach A' parallel verschohene Schablone verschenen verschen verschenen verschenen verschenen verschenen verschenen verschenen verschenen verschen verschenen verschenen verschenen verschenen verschen verschenen verschenen verschenen verschen verschen verschenen verschen verschenen verschenen verschenen verschen verschenen verschen verschen verschenen verschen verschen verschen verschen verschen verschen verschen versche A' parallel verschobene Schablone gestri-chelt gezeichnet. Notfalls muß interpoliert werden

Im vorliegenden Fall geht etwa K = 7 durch P3, womit sich ein Klirrfaktor von 7 º/o durch die dritte Harmonische ergibt. Dipl.-Ing. Roland Hübber

Schrifttum

- [1] Klirrfaktormeßgeräte, FUNKSCHAU 1951, Heft 20, S. 397.
- [2] "Kennlinienfelder, Leistung und Verzer-rung von Verstärkerröhren, insbesondere Endröhren" von W. Kleen, Die Telefunken-röhre, Heft 2, Sept. 1934.
 - [3] "Wireless Engineer" IV/1934
- "Anwendung der Elektronenröhren" 5. Band. 1951. S. 246

Ja(mA)		
EL 12, Ug2 =	11111	//i \
200	Ug=0V	ii \
160		11 ;
J2 1	-3,51	11 \
J4 100		11 \
	P1 -7V	1
1=Ja	P5/ 1 1-10,5V	li i
J5 20	B 103 1 101	! ! /
J3		11 1
100 A	200 300 400 Ua (Volt) 500 C	! ! !
	Bild 3. K=10% K=3%	
	Ja Ua — Kennlinienseld einer Pentode mit strichliert K=0%	1
	eingezeichnetem Dreieck zur Ermittlung von K ₃ nach gra- fischer Methode	K=3%
	Links: Bild 4. Hilfsschablone au parentem Papier zur Ermittli	

Die Probleme des Röhrenmessens

gehen nicht nur den Röhrentechniker an. Sie sind für alle Radiofachleute gleich wichtig, ob es sich nun um Empfänger-Spezialisten, Elektroakustiker, techniker, Kundendienstmänner oder Amateure handelt. Für diese Fragen gibt es ein Spezialwerk:

Röhrenmeßtechnik

Brauchbarkeits- und Fehlerbestimmung von Radioröhren. Von Helmut Schweitzer. 192 Seiten mit 118 Bildern, kart 12 DM. Halbleinen 13.80 DM.

Über 120 Kapitel befassen sich mit allen Messungen statischer und dynamischer Art, die an Röhren auszuführen sind. Ein Kompendium der Röhrenmeßtechnik von größter Ausführlichkeit.

FRANZIS-VERLAG, MÜNCHEN 22

Radaranlagen für deutsche Seehäfen

Rundsichtgeräte (Radaranlagen) werden in zunehmendem Umfang zur Verkehrssicherung in der Seefahrt ausgenutzt. Ähnlich den Blindlandeeinrichtungen eines Flughafens macht damit die Funktechnik auch den Schiffsverkehr an den Küsten und in den Häfen unabhängig von Wetter und Sicht. Fast 2500 Schiffe aller Nationen sind bereits mit eigenen Radaranlagen ausgerüstet und können damit sogar im dichten Nebel ihre Fahrt fortsetzen und rechtzeitig Hindernisse erkennen. Es kann aber nicht jedes Fahrzeug eine solche Meßfunkanlage erhalten. Gerade im

Bild 1. Radarbild des Hasens von Southampton mit der eben einlausenden "Queen Mary" (siehe Pseil), dabei die Schlepper und Lotsenboote

Hafenbetrieb brauchen zahllose kleinere. Lotsenboote, Schlepper, Fährschiffe, Zollund Polizeifahrzeuge u. a. m. unbedingte Fahrsicherheit auch bei unsichtigem Wetter. Hier ist die zentrale Überwachung durch Meßfunk-Anlagen zweckmäßig. Je nach Größe und Lage des zu überwachen-den Hafens werden eine oder mehrere Anlagen an Knotenpunkten mit guter Übersicht und starkem Verkehr aufgebaut. Die ständig kreisende Antenne sendet einen ganz schmal gebündelten impulsmodulier-ten Richtstrahl aus. Er wird überall dort, wo er auf festen Widerstand trifft, zurückgeworfen und von der Empfangsantenne wieder aufgenommen. Je nach der Entfernung des reflektierenden Gegenstandes treffen die Impulse früher oder später ein. Sie werden verstärkt und dem Bildschirm einer Braunschen Röhre zugeführt, wo sich — ähnlich wie im Fernsehempfänger ein Abbild der Umgebung in hellen Konturen abzeichnet. Der Kenner des Hafens liest danach genau die Gebäude, Werften und Kais, die Einfahrten der Hafenbecken, die Seezeichen und Bojen in der Fahrrinne vom Schirm seines Schaugerätes ab (Bild 1).

Aber auch jeder bewegte Gegenstand verursacht einen Leuchtfleck, der nach Größe und Form dem Fachmann genau anzeigt, was er vor sich hat. So ist die Bewegung jedes Schiffes im Hafengebiet selbst im dichten Nebel zu verfolgen, und Standort, Fahrtweg und Geschwindigkeit sind dauernd zu beobachten. Die Ortung ist dabei auf Meter genau.

Dies gibt der Leitstelle die Möglichkeit, auch dann den Hafenverkehr weiterzuführen, wenn sonst wegen fehlender Sicht alles stilliegen müßte. Da jedes Fahrzeug genau zu beobachten ist, können von der Hafenleitstelle aus durch Sprechfunk Mitteilungen an die Schiffe gegeben werden. Zusammenstöße lassen sich dadurch vermeiden und — bei aller gebotenen Vorsicht der weiterhin selbständigen Schiffsführung — kann der notwendige Verkehr aufrechterhalten werden. Fähren können weiterfahren, Lotsenboote und Schlepper an einlaufende Dampfer angewiesen, Kohlen- und Fischdampfer ohne Verzug zum Entladen geführt werden, um nur einige Beispiele zu nennen.

Genau so wichtig ist eine solche Überwachung auch für einlaufende Fremdschiffe mit eigenem Bordgerät, denn von einem festen Platz aus ist die Ortung bewegter Fahrzeuge wesentlich genauer.

Mehrere USA - Häfen und in Europa Le Havre, Ymuiden, Southampton und Dover sind bereits mit derartigen Anlagen ausgestattet. Nachdem in Deutschland die bisherigen Verbote für die Arbeiten an Funkmeß-Anlagen etwas gelockert wurden, hat Telefunken seine ausländischen Verbindungen eingesetzt, um diese modernen Hilfsmittel für die deutsche Schiffahrt zu erstellen.

Die britische Decca-Gesellschaft, mit der bereits zu Beginn dieses Jahres die Senderkette für das deutsche Decca-Hyperbelnetz errichtet wurde, hat nunmehr auch an Telefunken die Baulizenz für Schiffs- und Hafen-Radar-Anlagen vergeben. Ende September wurde im Hamburger Hafen eine Decca-Radar-Anlage für Großhäfen vorgeführt. Die Antenne (Bild 2) ist fünf Me-

Bild 3. Sichtgerät der Decca-Meßfunk-Anlage. Auf dem Schirm der Braunschen Röhre erscheint das Abbild des Hafens und der darin befindlichen Fahrzeuge (Fotos Telefunken)

ter breit und dreht sich 24 mal in der Minute um ihre Achse. Der ausgesandte rotierende Strahl besitzt eine Bündelung von 6,57 °. Der obere flache Hohlkörper dient als Empfangsantenne. Für die außergewöhnlich hohen Frequenzen von 10 000 MHz (\(\lambda\) = 3 cm) werden Hohlrohrleitungen als Antennenkabel verwendet, deren Wellenwiderstand durch trichterförmige Transformationsstücke an den Strahler angepaßt wird. Die Zuleitungen führen auf kürzestem Wege zu dem unmittelbar darunter angebauten Verstärker.

Das Sichtgerät (Bild 3) kann in beliebiger Entfernung von der Antenne aufgestellt werden. Auf dem Schirm der Oszillografenröhre entstehen dann Hafenbilder wie in Bild 1. Der Bildschirm ist nachleuchtend so daß trotz der verhältnismäßig langsamen Drehung des Richtstrahlers ein gleichmäßiges klares Bild entsteht.

Die Verbindung zu den Fahrzeugen, die

Die Verbindung zu den Fahrzeugen, die von der Leitstelle aus geführt werden, gehi über einen leicht einzurichtenden UKW-Sprechfunkverkehr (vgl. FUNKSCHAU 1952, Heft 20, S. 399). Lotsen führen eine tragbare Sprechfunkanlage, z B. Telefunken-Teleport-Geräte, bei sich, falls die von ihnen geführten Schiffe keine Sprechfunkanlage mit der betreffenden Wellenlänge und Modulationsart an Bord haben. Als erste werden die Häfen von Hamburg und Bremen mit solchen Radaranlagen ausgerüstet werden.

Bild 2. Die Drehantenne der Decca-Meßfunk-Anlage. Besonders kurze Zuleitungen zum unmittelbar darunter gebauten Verstärker vermeiden Störungen und Verluste

FIRATO Dorado des Amateurs

Zum dritten Male fand vom 11. bis 16. Oktober in Amsterdam die FIRATO, eine von der Vereinigung von Fabrikanten, Importeuren und Großhändlern in Holland veranstaltete Radioausstellung, statt. Diese Ausstellung, 1950 zum erstenmal gezeigt unterscheidet sich insofern von dem bei uns üblichen Begriff einer Radioausstellung, als in erster Linie Bau-und Zubehörteile aus dem weiten Feld der Elektronik, speziell der Radiotechnik, aber nur vereinzelt komplette Apparate gezeigt werden. Die Ausstellung ist mit Ausnahme der Abendstunden von 19.30 bis 22.30 Uhr, zu denen allgemeiner Kartenverkauf stattfindet, nur für Industrie und Handel geöffnet. Die steigenden Besucherzahlen zeigen aber, daß sich die Ausstellung nicht ausschließlich an Fachkreise, sondern auch an das fachlich interessierte Publikum wendet. Es wurden 1950 rund 8000, 1951 rund 10 000 und in diesem Jahr über 13 000 Besucher registriert.

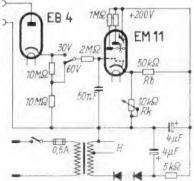
Vom Standpunkt des Radiopraktikers und des Funkamateurs aus gesehen ist die Firato eine ideale Veranstaltung, Auf über 40 Ausstellungsständen wurden alle nur denkbaren Bauteile von der gewinde-schneidenden Schraube bis zur Fernsehbildröhre, vom Mikrofon zum Modulationsverstärker-Bausatz oder vom für alle Amateurbänder umschaltbaren Steuersender bis zum kompletten Amateursender mit eingebautem Modulator angeboten. Holland ist speziell für Bauteile — obgleich eine der größten Radioindustrien der Welt besitzt — ein ausgesprochenes Importland. Der größte Teil der Aussteller bestand aus Importeuren, die an den Großhandel oder über einen angeschlossenen Großhandel an den Fachhandel liefern. Das Angebot war international, wenn auch dem Augenschein nach vielleicht England als Ursprungsland dominierte. Dem wieder stärker auftretenden Angebot deutscher Waren wurde bemerkenswertes Interesse entgegengebracht, zumal dann, wenn es sich um ausgesprochene Präzisionsarbeiten handelte. Sehr gefragt waren u. a. deutsche Plattenspielerchassis, Chassis von Drahtund Magnettongeräten. Radiogeräte mit cingebautem UKW-FM-Teil wurden sehr beachtet, da der Empfang grenznaher UKW-FM-Sender in großen Teilen des Landes möglich ist und gegenüber den in manchen Landesteilen abends schwierig zu empfangenden eigenen Mittelwellensendungen die Vorteile des UKW-FM-Empfanges keiner besonderen Erklärung bedürfen. In diesem Zusammenhang wurden

auch die deutschen Hersteller von Antennenmaterial beachtet,

Die Industrie interessierte sich besonders für deutsche Spezialbauteile wie z. B. keramische Schalter oder Schwingquarze. Sehnische Schalter oder Schwingquarze. Sehnische Schalter oder Schwingquarze. Sehnische Weiter der Fluggesellschaft KLM ausgestellten elektronischen Geräte, deren Aufbau hervorragende Präzisionsarbeit erkennen ließ. Eine große Auswahl von Meßgeräten für den allgemeinen Servicedienst war zu sehen, es wurden aber auch elektronische Meßgeräte für andere Zwecke, z. B. für Diekenmessungen vergeführt.

Dickenmessungen, vorgeführt.
Sehr gut gelöst war das auf derartigen Ausstellungen stets vorhandene Problem, den allgemeinen Geräuschpegel auf einer erträglichen Grenze zu halten. Die Aussteller hielten sich in bemerkenswerter Disziplin daran, stets nur so laut vorzuführen, daß der Nachbarstand kaum gestört wurde. Für Vorführungen von Lautsprecheranlagen, Verstärker- und Plattenspielereinheiten war ein geschlossener, besonderer Raum eingerichtet worden, der nach einem fest vereinbarten Zeitplan den interessierten Firmen zur Verfügung stand und speziell bei der Vorführung neuer Plattenspieler mit teilweise noch nicht im Handel erschienenen Langspielplatten er-

staunlicher Qualität einen großen Besucherkreis anzog.


Das Fernsehen ist gegenüber der vorjährigen Ausstellung stark zurückge-treten. Es war kein Fernsehempfänger ausgestellt, und auch die Bau- sowie Servicegeräte hielten sich durchaus in Grenzen. Allgemein — nicht nur von Handelswird als Begründung eine ausgedehnte Fernsehmüdigkeit angeführt. Diese hat ihren Grund darin, daß - obwohl zu einem uns billig erscheinenden Preis von fl 800.— bereits ein Fernsehempfänger zu haben ist - das wöchentlich an zwei Abenden für je 90 Minuten ausgestrahlte Programm abgelehnt wird. Eine Vorführung an einem Abend der Ausstellung war dazu angetan, diesen Eindruck zu bestärken. Abgesehen davon, daß das verwendete Projektionsgerät denkbar schlecht aufgestellt war und durch vorbeifahrende Kraftfahrzeuge fast pausenlos gestört wurde, bestand das Programm im wesentlichen aus Wochenschauen älteren Datums und anderen Kurzfilmen. Das Beispiel dürfte erkennen lassen, daß eine Einführung des Fernsehens in einem für Industrie, Handel und Sendegesellschaften rentablen Umfang in der Tat ein tägliches, gutes und vor allem aktuelles Programm zur Voraussetzung haben muß. 1 BB Voraussetzung haben muß.

Röhrenvoltmeter mit Abstimmröhre

Die folgende kleine Schaltung stellt ein sehr brauchbares und leicht zu bauendes Röhrenvoltmeter dar. Der besondere Vorteil liegt darin, daß kein Zeigerinstrument benötigt wird, so daß die Einzelteile wirklich für jeden Praktiker erschwinglich sind. — Die technischen Daten des Gerätes sind die folgenden: Netzanschluß 220 V Wechselstrom; zwei Bereiche 0...30 V≥ und 0...60 V⊇; Röhrenbestückung: EM 11, EB 4 und Trockengleichrichter; Grenzfrequenz: 30 MHz.

Erteilt man der EM 11 eine negative Gittervorspannung von etwa — 5,5 V. dann ist der Schattenwinkel des empfindlichen Teiles gerade 0°. Diese Tatsache wurde der Entwicklung der Röhrenvoltmeterschaltung zugrunde gelegt.

Die zu messende Spannung erzeugt an er Diodenkatode des **Schaltbilde**s eine erzeugt an positive Spannung, die dem Steuergitter der Abstimmanzeigeröhre zugeführt wird und dort eine Änderung des Schattenwinkels verursacht. Mit dem Katodenwiderstand Rk wird nun die Vorspannung wieder so eingestellt, daß der Schattenwinkel des empfindlichen Anzeigeteils gerade 0 beträgt. Für jeden Meßspannungswert am Gitter ergibt sich dabei eine ganz be-stimmte Einstellung des Reglers Rk; er kann also mit einer Skala versehen und direkt in Spannungen geeicht werden. Die Skala ist bei einem linearen Potentiometer Rk ebenfalls linear. Für Wechselspan-nungsmessungen kann die gleiche Skala verwendet werden, sie gibt dann Scheitelwerte an. Das direkte Ablesen des Effek-tivwertes erfordert eine zweite Skalentei-lung, die entsprechend versetzt ist. Für Messungen im UKW-Gebiet ist es zweckmäßig, den Diodeneingang durch einen Kondensator von 1 pF zu trennen und einen besonderen Skalenbogen für extrem hohe Frequenzen anzufertigen.

Einfaches Diodenvoltmeter mit einer Abstimmrohre als Spannungsanzeiger

Netzspannungsschwankungen bis ± 20% haben nur eine kleine Abweichung vom Sollwert zur Folge. Das Röhrenvoltmeter ist auch gegen Überlastung absolut unempfindlich. Der kleinste erreichbare Meßwert liegt bei etwa 1 V. Das Gerät eignet sich bei entsprechenden Schaltungsänderungen auch für Isolationsmessungen, Widerstandsmessungen und zur Aussteuerungskontrolle. Eine einfachere Schaltung ist kaum denkbar. Die kleine Mühe, daß man zum Messen die Spannung am Potentiometer einstellen muß, wird bei dem einfachen und billigen Aufbau gern in Kauf genommen.

Zur Eichung werden die Eingangsklemmen kurzgeschlossen und Rk wird so eingestellt, daß gerade noch ein haarfeiner Schattenstrich an den empfindlicheren Sektoren der Abstimmröhre zu sehen ist. Diese Stellung von Rk gibt den Nullpunkt der Skala. Nun werden der Reihe nach bekannte Spannungen an die Eingangsklemmen gelegt und es wird jeweils wieder mit Rk dieser feine Strich eingeregelt. Diese Zwischenstellungen des Potentiometers ergeben dann die Eichung.

Herbert Schöler

Eingebaute drehbare Ferrit-Stabantenne

Die drehbare Ferrit-Stabantenne ist im Begriff, zu einem wesentlichen Bestandteil moderner Heimempfänger zu werden. Infolge der Möglichkeit, Störsender damit abzuschwächen, besitzt sie beträchtliche Vorteile gegenüber den üblichen Netz- und Behelfsantennen. Sie stellt auch ein dankbares Objekt für den Selbstbau und den

nachträglichen Einbau in vorhandene Empfänger dar¹).

Unsere Skizze zeigt eine solche Anordnung, wie sie von einer französischen Firma (Société Omega) hergestellt wird. Der Drehknopf an der Frontseite trägt im Innern zwei Anschlagnasen, um das Überdrehen der Antenne und damit das Abreißen der Zuführungslitzen zu verhindern. Ein einfacher Seilzug führt über zwei kleine Umlenkrollen zu der senkrechten Achse der Ferrit-Stabantenne. Diese ist im Innern des Empfängergehäuses angeordnet und kann auf diese Weise bequem von außen bedient werden.

1) Siehe a. FUNKSCHAU 1952, Nr. 20, S. 412.

Funktechnische Fachliteratur

UKW-Sender- und Emplänger-Baubuch für Amaleure

Von Ing. H. F. Steinhauser. 128 Seiten mit 73 Bildern. Band 45/46 der "Radio-Praktiker - Bücherei". Preis: 2.40 DM. Franzis-Verlag, München.

Wer das "Sender-Baubuch für Kurzwellen-Amateure" kennt und schätzt, wird auch mit Interesse zu diesem neuen Steinhauser-Band greifen und nicht enttäuscht werden. Eine Amateur - Sende- und Empfangsanlage für das 144-MHz-Band unterscheidet sich in Vielem von den bisherigen Stationen. Der Verfasser besitzt auch auf diesem für den deutschen Amateur verhältnismäßig neuen Gebiet ausgezeichnete, Jahrzehnte zurückreichende Erfahrungen. Er vermittelt sie in Form sorgtältig an Hand von Modellen durchgearbeiteter Bauanweisungen.

Das Buch enthält einleitend die Meßverfahren für die Festlegung des 144...146-MHz-Bandes. An Sendestationen werden beschrieben: eine tragbare 2-m-Station, ein 3-stufiger UKW - Sender für 6,3 Watt Nutzleistung und ein UKW - Sender größerer Leistung. Daran schließen sich ausführliche Betrachtungen und Bauanweisungen für UKW - Sendeantennen. An Empfängerschaltungen werden drei verschiedene Converter, darunter einer mit Quarzsteuerung, gebracht, ferner ein vollständiger Superhet, der mit einem Gegentakt-Lecher - Abstimmsystem ausgerüstet werden kann, und ein weiterer UHf-Verstärker mit Mischkopf für das 420-...450-MHz-Band.

Bereits dieser kurze Auszug zeigt die Fülle des gebotenen Stoffes. 24 maßstäbliche Konstruktionszeichnungen und viele anschauliche Fotos der Modelle geben wirklich hieb- und stichfeste Unterlagen für den Nachbau. Nicht nur der Amateur, sondern jeder Funkpraktiker wird viele Anregungen aus diesem Buch erhalten

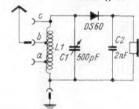
Praktisches Handbuch der Television

Von Ing. G. Raymond. 285 Seiten mit 215 Bildern und 1 Tabelle, Verlag: Radio-Service, Basel 2.

Dieses Buch geht zurück auf ein Handbuch der französischen Firma Pathé Marconi. In deutscher Übersetzung dient es als Leitfaden für die vom Verband Schweizerischer Radio-lachgeschäfte durchgeführten Fernseh-Schulungskurse für Kunderdiensttechniker. Dieser Zweck wird durch sehr viele Teilschaltbilder, erläuternde Skizzen für die Spannungsvorgänge in den Kippgeräten sowie durch zusammenfassende Abschnitte und Füfungsunterlagen am Schluß eines jeden Kapitels gut erreicht.

Elektronenstrahl-Sichtgeräte in Technik und Medizin

Von Dr. - Ing. Paul E. Klein. Band II. 356 Seiten mit 497 Bildern. Preis: Ganzleinen 35 DM. Weidmannsche Verlagsbuchhandlung, Berlin-Charlottenburg 9.


Zu einem Zeitpunkt, in dem die elektronische Meßtechnik einen großen Aufschwung nimmt, erscheint der lange erwartete zweite Band der Buchreihe "Elektronenstrahlen und ihre Verwendung". Der Verfasser hat hier mit großer Umsicht alle bisher in der Literatur bekannt gewordenen Anwendungsmöglichkeiten von Elektronenstrahl-Sichtgeräten systematisch mit zahlreichen Schaltungen und Bildern zusammengestellt. So ergaben sich die Hauptgruppen: Anwendung in der Akustik. Chemie. Elektrotechnik. Mechanik. Maschinenbau, Medizin, Physiologie, Optik und in verschiedenen anderen physikalischen Gebieten. Wissenschaftler. Techniker und Ärzte aller Gebiete finden viele Anregungen, dieses moderne Hilfsmittel zur Erleichterung ihrei Arbeit zweckmäßig anzuwenden.

Einfache Detektorempfänger für Mittelwelle und UKW

Der Detektorempfänger hat in den letzten Jahren wesentlich an Bedeutung verloren. Viele Rundfunkhörer lehnen ihn ab, da er in der Regel Kopfhörerempfang voraussetzt. Trotzdem gibt es Fälle, in denen man wieder zum Detektor greift, z. B. bei Stromausfall oder zu Versuchszwecken. Die zur Verfügung stehenden Empfangsspannungen sind gering. Für Lautsprecherwiedergabe wird daher ein zusätzlicher Nf-Verstärker notwendig. Wenn man jedoch Röhren anwendet, ist es vorteilhafter, eine Audionstufe mit nachfolgendem Endverstärker zu benutzen, da sich so wesentlich höhere Empfindlichkeit und Empfangsleistung ergeben.

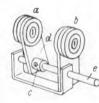

Die früher üblichen Detektorempfänger hatten den Nachteil, daß der Detektor oft neu eingestellt werden mußte. Diesen Mangel vermeiden Germanium-Kristalldioden. Die Schaltung eines

Bild 1.
Detektorempfänger für
MittelwellenEmpfang mit
GermaniumDiode
DS 60 (SAF)

MW - Detektorempfängers unter Verwendung der DS 60 zeigt Bild 1. Dieses erprobte Gerät ist vor allem für Fernempfang entwickelt worden und ermöglicht im Labor des Verfassers an einer 40 m langen Hochantenne den Tagesempfang von fünf MW-Sendern im Kopfhörer. Um maximale Empfangsspannungen zu erhalten, wird auf eine besondere Antennenspule verzichtet. Die Schwingkreisspule L1 (66 Wdg. 10 × 0,07 Hf-Litze auf Vogt-Kern 21/18) besitzt zwei An-

Bild 4. Spulenkoppler für Detektorempfänger. Die Hf-Eisenkernspulen sind auf Pertinaxleisten befestigt. Der Abstand der schwenkbaren Spule a von der feststehenden bkann nach Lösen der Muffe c geändert werden, wenn man den Spulenhalter d auf der Achse e entsprechend verschiebt

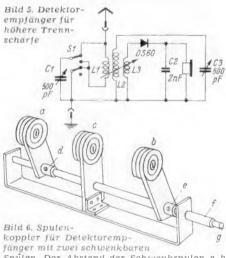
zapfungen a und b bei 22 und 44 Windungen, so daß für den Anschluß der Antenne drei verschiedene Buchsen (a, b, c) zur Verfügung stehen. Als Abstimmkondensator dient eine kleine Pertinaxausführung (500 pF). Um einen guten Gleichrichterwirkungsgrad zu erzielen, ist der Kopfhörer durch einen 2-nF-Kondensator überbrückt.

Ein Beispiel für den praktischen Aufbau des Detektorempfängers nach Schaltung Bild 1 geht aus Bild 2 hervor. Auf einer 70 × 70 mm großen Pertinaxplatte mit acht Nietlötösen sind sämtliche Einzelteile befestigt. Die Kristall-Diode DS 60 wird an den beiden Nietlötösen neben dem Drehkondensator festgelötet. Beim Löten der Kristall - Diodenanschlüsse soll ein heißer, gut verzinnter Kolben verwendet werden, damit durch schnelles Löten übermäßiges Erhitzen der Endkappen vermieden wird. Auf der Vorderseite der Montageplatte ist der Abstimmknopf für den Drehkondensator (Pfeilshopf mit Gradskala) angeordnet. Das kleine Gerät kann in ein Kästchen mit den Abmessungen 90 × 70 × 40 mm eingebaut werden, an dessen Seitenwänden die Buchsen für die Antennenanschlüsse und Erde sowie für den Kopfhörer Platz finden.

Verwendet man eine gute Hochantenne und Erde, so gelingt mit dem Gerät in der Regel Fernempfang. Infolge der festen Antennenkopplung wird der Schwingkreis durch den Verlusswiderstand der Antenne sehr gedämpft, so daß u. U. die Trennschärfe nicht ausreicht. Höhere Trennschärfe besitzt die Schaltung nach Bild 3, die induktive Antennenkopplung verwendet, allerdings geringere Empfindlichkeit aufweist. Macht man die Kopplung nach Bild 4 veränderlich, so kann man jeweils das günstigste Verhältnis zwischen Trennschärfe und Empfindlichkeit einstellen. — Die Kristall-Diode liegt an einer Anzapfung von L 2 (günstiger Anzapfungspunkt etwa ½ der Windungszahl), kann aber auch direkt an das obere Ende dieser Spule angeschaltet werden.

Spule angeschaltet werden.

Größere Trennschärfe erzielt der in Bild 5 dargestellte MW-LW-Detektorempfänger. Diese Schaltung verwendet eine besondere Ankopplungsspule L3 für den Kristall-Diodenkreis, deren Kopplung zum Abstimmkreis L2, C3 mit einer Spulenanordnung nach Bild 6 ebenso veränderlich gemacht werden kann, wie die Kopplung zwischen der Antennenspule L1 und der Schwingkreisspule L2. Der Antennen - Abstimmkondensator C1 kann je nach der Eigenkapazität der Antenne in Reihe oder parallel zur Antennenspule L1 gelegt werden.


Bild 3.

Detektorempfänger mit induktiver

Antennenkopplung für Mittelwelle

Die Schaltung eines erprobten UKW-Detektorempfängers zeigt Bild 7. Die von einem Faltdipol aufgenommene Antennenspannung gelangt über die Antennenkopplungsspule L 1 zum Schwingkreis L 2. C 1. Die Antennenspule hat 3 Wdg. (Durchmesser 15 mm, Länge 7 mm, Drahtdurchmesser 0,5 mm), die Schwingkreisspule 7 Wdg. (Wicklungsdurchmesser 1,2 mm), Kondensator C 1 ist ein keramischer Luftrimmer mit einer Maximalkapazität von 12 pF, der einmalig fest eingestellt wird. Als Gleichrichter dient die Germanium-Kristalldiode BN 6 (Büll). Die Hochfrequenzdrossel HDr verhindert eine hochfrequente Dämpfung des Schwingkreises. Der parallel zum Kopfhörer angeordnete Kondensator soll nicht wesentlich größer als 100 pF sein.

Beim Aufbau des UKW - Detektorempfängers muß man auf eine hochfrequenztechnisch einwandfreie Verdrahtung achten. Wie Bild 9 erkennen läßt, sind L 2 und C 1 dicht nebeneinander angeordnet. L 2 kann direkt an den Lötfahnen von C 1

Spülen. Der Abstand der Schwenkspulen a, b von der feststehenden Spule c läßt sich nach Lösen der Muffen d, e beliebig einstellen. Die Bedienung erfolgt mit Hilfe der Doppelachse f, g

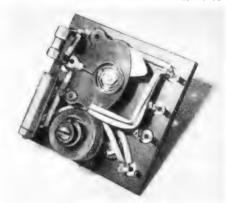
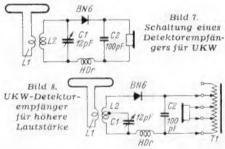



Bild 2. Au/bau des Detektorempfangers nach Schaltung Bild 1. Links neben dem Drehkondensator sieht man die Germanium - Diode DS 60

festgelötet werden. Die Hf-Drossel HDr ist auf einen parallel geschalteten Widerstand (1 k Ω , 0,5 W) gewickelt und besteht aus 44 Wdg. (Wicklungsdurchmesser 5 mm, Länge 19 mm, Drahtdurchmesser 0,35 mm CuL). Die Diode BN 6 muß mit großer Sorgfalt befestigt werden. An ihr darf nicht gelötet oder geschraubt werden, da sie sonst zerstört wird; vielmehr sind die zur Diode gehörenden Steckfassungen in die Verdrahtung einzulöten. Die Diode wird dann mit ihren Zapfen auf die Anschlüsse aufgesteckt. Bevor man mit Empfangsversuchen beginnt, muß man sich darüber klar sein, daß UKW-Fernempfang mit dem Detektor nicht möglich ist. UKW-Ortssenderempfang gelingt nur dann, wenn am Empfangsort ausreichend hohe Empfangsfeldstärken zur Verfügung stehen (z. B. 100 mV/m).

Etwas bessere Lautstärken liefert die in Bild 8 gezeigte Schaltung eines UKW-Detektorempfängers. Der Abstimmkondensator C1 ist hier an eine Anzapfung der Spule L 2 gelegt, um das L/C-Verhältnis günstiger zu halten. Der Anzapfungspunkt ist nicht kritisch (etwa ²/s der Windungszahl). Eine weitere Erhöhung der Empfangsleistung ergibt sich durch den mit mehreren Anzapfungen ausgestatteten Ausgangsübertrager T 1, dessen Anfertigung allerdings wegen des dünnen Drahtes (15 000 + 5000 + 5000 wdg. 0,03 CuL) ungemein schwierig ist (Radio-Praktiker-Bücherei 27, Bild 16). Befindet sich in der Nähe des Empfangsortes ein MW-Sender, empfiehlt es sich, die Antenne nicht zu fest zu koppeln, um ein Durchschlagen dieses meist mit größerer Feldstärke einfallenden Senders zu vermeiden.

Bild 9. Aufbaubeispiel für den UKW-Detektorempfänger nach Bild 7

Umschaltbarer Röhrenentzerrer für den Tonabnehmer TO 54

Seit einiger Zeit ist der mit den auswech-selbaren Tonköpfen P 3000 bestückte Leichtgewicht-Tonabnehmer TO 54 einzeln im Handel erhältlich (vgl. Heft 9, Seite 157). Man hat jetzt die Möglichkeit, ältere Plattenspieler durch Einbau dieses Tonabnehmers und eines Röhrenentzerrers auf den neuesten Stand zu bringen.

Die Schaltung

des Entzerrers ist verhältnismäßig einfach (Bild 2). Das aus drei Widerständen und drei Kondensatoren gebildete Eingangs-Korrekturglied dämpft die bei 14 000 Hz liegende Tonabnehmerresonanz und verursacht eine leichte Tiefen-Voranhebung. Die Höhenregelung erfolgt zwischen erstem und zweitem Triodensystem. In der linken Schalterstellung sind zwei Tonblenden eingeschaltet, nämlich der Querkondensator mit $2\,\mathrm{nF}$ und ein weiterer mit $500\,\mathrm{pF}$. Die Wirksamkeit des letzteren wird durch einen Längswiderstand von $0.3\,\mathrm{M}\Omega$ erhöht.

Der am Gitter des zweiten Systems liegende Querentzerrer (0,1 M Ω + 5 nF) verursacht eine Baßanhebung. Die vom Vorsystem kommende Tonspannung wird hier system kommende Tonspainung wird nier frequenzabhängig gedämpft. Für die mitt-leren und hohen Töne bildet der 5-nF-Kon-densator einen niedrigen, für die Tiefen einen hohen Widerstand. Demzufolge ent-steht für die Bässe ein hoher Spannungs-abfall im Gitterkreis. In der linken Stellung des Tiefenschalters kann der erwähnte Kondensator kurzgeschlossen und dadurch die Tiefenwiedergabe gedämpft werden.

Ein zweites Anhebungsglied, das aus 10 kΩ und 25 nF besteht, ist am Verstärkeraus-gang vorgesehen. Es bewirkt eine gleichmäßige Dämpfung der mittleren und hohen Töne, wodurch eine scheinbare Tiefenanhebung entsteht. Der Parallelwiderstand von 2 $M\Omega$, der die Schalterkontakte überbrückt, verhindert das plötzliche Aufladen des 25-nF-Kondensators und damit Schaltgeräusche.

Absenkung und Anhebung werden in den einzelnen Gliedern absichtlich nur "sparsam" durchgeführt, denn das Zusammenwirken der verschiedenen Korrekturen macht es möglich, mit einfachen RC-Gliedern ziemlich steile Abspielkurven zu er-zielen (vgl. FUNKSCHAU 1952, Heft 9, Seite 157, Bild 11). Als Höhenschalter eig-nen sich außer zweipoligen Umschaltern 2×3 auch solche Ausführungen, wie sie in Bild 2 links unten getrennt herausgezeichnet sind. Da der bewegliche Kontakt mit Null in Verbindung steht, können auch ganz einfache und billige Typen mit nicht isolierter Achse zum Einbau gelangen. Zur Stromversorgung wurde ein kleiner handlicher Spezialtransformator (Engel, Wiesbaden) gewählt. Der Netzteil sitzt auf einem eigenen Chassis, weil sich zwei kleine Baugruppen leichter unter dem Laufwerk-boden unterbringen lassen als eine grözu empfehlen, wenn ein weite rer Regler am Verstärkereingang vorhan-den ist. Bei empfindlichen Hauptverstärkern ist dann möglich, die vom Entzerrer gelie-ferte Tonspannung so zu be-

messen, daß der Gesamt-Regelbereich des Eingangsreglers ausgenutzt werden kann.


Entzerrer-Ausgangsregler und Netzschalter für den Stromversorgungsteil sind gekuppelt. Das Laufwerk erhält einen getrennt zu bedienenden Schalter. Es ist sehr zweckmäßig, diesen als zweipoligen Umschalter auszuführen, dessen zweiter Kontakt bei abgestelltem Laufwerk den Entzerer-Ausgang kurzschließt. Dadurch können keinerlei Störgeräusche beim Plattenwechsel (Berühren des Saphirstiftes) mit übertragen werden.

Der Aufbau

muß trotz der einfachen Schaltung gut überlegt werden, damit ein völlig brummfreier Betrieb gewährleistet wird Aus diesem Grund enthält das Schaltbild eine Reihe von Verdrahtungs-Stützpunktnummern, die im Chassisplan (Bild 3) gleichfalls angegeben sind. Beim Zusammenbau muß man sich lediglich an die Bilder 1 bis 3 halten und erreicht dadurch genau die gleiche Einzelteilanordnung wie beim sorgfältig erprobten Mustergerät.
Die Grundplatte (Bild 3) besteht aus 2 bis

3 mm starkem Hartpapier, damit sie gleich-zeitig als "Chassis" und als Lötösenplatte verwendet werden kann. Durch die Wahl von Isoliermaterial werden unkontrollierbare Erdschleifen vermieden. Die Verbindung mit dem Laufwerk-Chassis erfolgt nur an einer Stelle, nämlich am Punkt 13. Der Entzerrer wird mit 10 mm langen Distanzrollen unter dem Laufwerkboden befestigt, und zwar so, daß die Achsen der Schalter und des Reglers von der Plattentellerseite aus zugänglich sind. Am besten überzieht man die Achsen mit pas-sendem Isolierschlauch, damit sie in den Bohrungen des Laufwerkbodens keine zusätzliche Masseverbindung bewirken. Ihre Nullung erfolgt durch besondere unter die Achsbefestigungen geklemmte Drähte am Punkt 13.

Die Doppel-Elektrolytkondensatoren werden isoliert eingesetzt. Wie Bild 1 erkennen läßt, wurde hierzu ein Hartpapierstreifen verwendet, der etwas (Bild 4) übersteht und

Der Entzerrer erhält eine Abschirmhaube aus Blech, die mit dem Laufwerkboden verbunden wird und keine metallische Berührung mit Anschlußpunkten der Schaltung haben darf. Es sei ausdrücklich darauf hingewiesen, daß der beschriebene Röhrenentzerrer für den hochohmigen magnetischen Saphir-Tonabnehmer TO 54 bestimmt ist und nicht in Verbindung mit anderen Typen verwendet werden kann.

Fritz Kühne

Liste der Einzelteile

Widerstände

0,25 Watt: 2 Stück je 2 k Ω , 10 k Ω , 50 k Ω , 3 Stück je 0,1 M Ω , 0,2 M Ω , 2 Stück je 0,3 M Ω 2 Stück je 2 M Ω 0,5 Watt: 3 Stück je 20 k Ω

Potentiometer (Preh)

Kleinformausführung Preostat 0,1 M Ω log. mit Schalter

Rollkondensatoren

250 Volt: 100 pF, 500 pF, 1 nF, 2 nF, 2 Stück je 5 nF, 25 nF, 50 nF, 0,1 μF

Elektrolytkondensatoren (Neuberger)

6/8 Volt: 2 Stück je 25 μF 350/385 Volt: 2 Stück je 2 \times 8 μF Nr 25 516

Sonstige Einzelteile

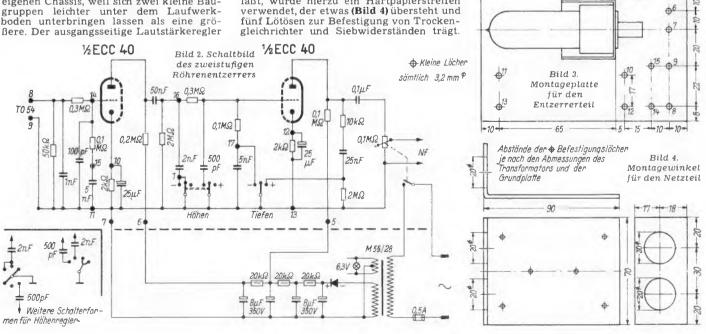
Netztransformator M55/28 (Engel), Trocken-gleichrichter SAF 9013/32, Umschalter 1×3, Umschalter 2×3, Sicherungshalter mit Si-cherung, verschiedene Kleinteile, Tonab-nehmer TO 54 (Perpetuum-Ebner)

Höher

-10-

Φ16

P


Lautstärke

10%

05

Röhre

ECC 40 (Valvo) mit Fassung

itren-Dokumen

Regelpentode

Blatt 1

Innern des Kolbens mit einem Metalikäfig umgeben, Gleifende Schirmgitterspannung, das Schirmgitter kann auch gemeinsam mit dem Schirmgitter der Regelpentode für Hf- und Zf-Verstärkung, Rimlockröhre. Das System Ist Im ECH 42 (UCH 42) gespeist werden.

Heizung: Indirekt geheizte Oxydkatode, Parallelspeisung mit Wechseloder Gleichstrom bei der EF 41, Serienspeisung bei der UF 41.

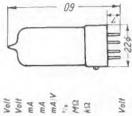
	Volt	mA
UF 41	12,6	100
EF 41	6,3	200
	Uf	If
	Heizspannung	Heizstrom

_	
D	
×	
_	
0	
-	
0	
27	
U	-
>	2
	0
ā	50
7	-
-	6
D	-
7	5
ň	0
_	2
	Q3
=	4
_	B
	E
0	
0	2
	0
erre	03
-	E
75	8
P.	.0
۶	0
n	0
0	65
1)	Pe
=	-
=	7
1)	E
0	2
ч.	0

4
4
325 325
1 :
5.
8 120
7,2
2,1
22 2,3
5,55
1 0
7

Volt

100 b) mit gemeinsamem Schirmgitter-Spannungsteiler mit der ECH 42/UCH 42 $U_b=U_o$ 170 Siehe auch die Kennlinienfelder 1...6, 8, 9, 11 und 12 $U_b = U_a$

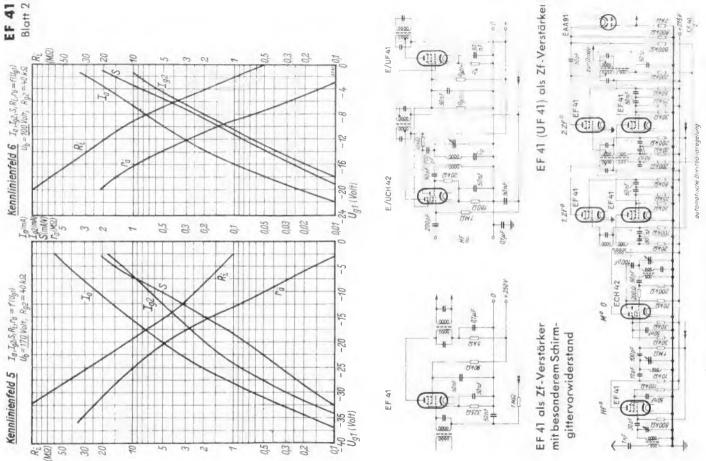

Voll

+		22	-	12		12	ko.	
- 1		27		12		27	KS	
	80	10		35		235	C	
elbereich	1	. 100		100	**	: 100		1
	12	-22	1	-20		-12		JA!
	98	135	87	147		69		
	5		9				_	0
Ig2 1,5	1,5		1,7	2	1		MA	
	2	0,02	2,2	0,022		0,019	_	
	1,4	>10	1	>10		>10	_	Sockel
	7,5		6,1		5,5		_	

	250 Volt	-	Volt	150 Volt			Waff	mA		150 Volt	603
7	_	2					0,3	10	63		00
EF 41	300		125		300					100	
Grenzwerfe:	Ua max	Og max	Uas max: Ia = 6 mA	In = 7,2 mA	V	Ig < 4 mA		Ik max	Raimax	Utik max	

$U_0 = 250V$ $I_0 = 6 \text{ mA}$	$U_{Q2} = 100V$ $I_{Q2} = 1,7mA$	02A V; 0,1A)
(2,5V	637 (72,6

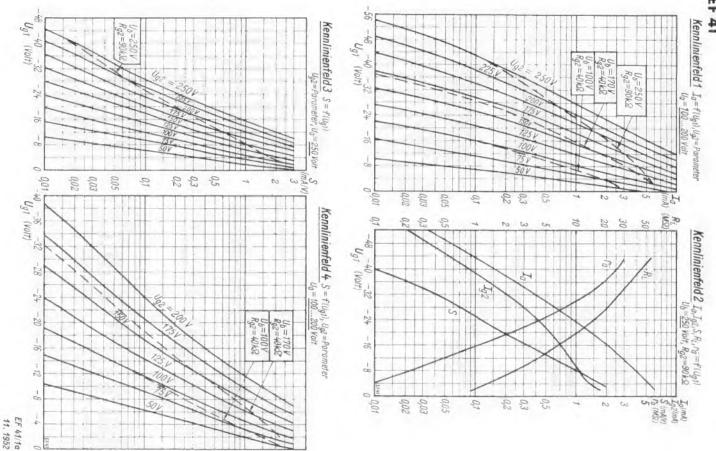
Meßschaltung		Kolbenabmessungen	
	Volt	S CI	Volt


0/0

MS

	gesehen	
	unten	
	VON	
	Sockel	
NA/V	W2 CA	

ä	4444
itate	5,3 0,002 0,1 0,1
200	VVV
nnere Röhrenkapazitäten:	bei der EF 41: bei der UF 41:
nnere	1/16 ₃ 0/16 ₃ 0/14



Hf-, Misch- und Zf-Teil eines 15-Röhren-Luxusempfängers

50 92 20 30 Kennlinienfeld 9 10 w w Cr Kennlinienfeld 11 Ug1 (Volt) Kennlinienfeld \overline{Z} $I_{01}I_{02}S_rR_{ij}r_0=f(u_{g1})$ Genericomer Schringster-Spannungsteiler mit der ECH42 =Ub=250 VoH, Rg2/+=22KS, Rg2/-=27KS 0 -20 8 Ub=U0= 170 VOH, 3 Ub = U0 = 250 Noir, Separater Schirmgriter 8 Ug. Stor eff = f(S); besonderer Schirmgitter - Vorwiderstand fur die UF41 10 100 Rg2 = 40 KS Rg2=90 KR 00,01 SimAlVima Falkso Yor widerstand 0,7 0,02 0,03 0,05 0,2 0,3 0,5 Cu 0 w 4 Ch N (LLA/V) OR 2000 Kennlinienfeld 8 Ugastor 300 300 100 500 (mV) 100 (MW) 10 30 20 30 Kennlinienfeld 10 Gemeinsamer Schirmgetter 50 Kennlinienfeld 12 Ub-Vo- 100 Volt, WE,0 = 500 Ug. Storest = f(S); Ub=U0=250 Volt, Rg2/+=22kB, Rg2/-=27kD 01 Kreuzmodulation = Cus Ig2=f(Ug2); Ua=100...250 Volt Cn 100 10 0 Brui Brummodulation = 20 20 30 30 50 50 150 100 Spannangsteller mit der ECH 42 200 200 200 Ug2 (Vott) Rg2 = 40 K2 500 \$ (\(\mu A/V\) 2000 3,

EF 41/2a 11. 1952

甲

Ingenieur-Beilage zur Funkschau

November 1952

Allgemeine Bemerkungen zur elektronischen Steuerung von Werkzeugmaschinen

Es gibt nur sehr wenige Gegenstände des täglichen Bedarfs und fast keine technischen Erzeugnisse, bei deren Herstellung nicht die eine oder andere Maschine beteiligt wäre. Besonders die Werkzeugmaschine spielt in der Industrie eine wichtige Rolle, denn von ihrer Leistungsfähigkeit hängt es ab, welche Zeit für die Herstellung eines Teils benötigt wird, oder wieviel Teile je Zeiteinheit produziert werden können und was sie kosten. Dabei muß man grundsätzlich zwischen spanabhebender (Sägen, Bohren, Drehen, Fräsen usw.) und spanloser Formung (Schneiden, Pressen, Biegen usw.) unterscheiden. Ferner kommt es nicht nur darauf an, die Fertigungszeiten für die herzustellenden Teile möglichst kurz zu halten, sondern auch darauf, daß die sog. Nebenzeiten für das Einrichten der Maschine, für Materialzufuhr und sonstige unvermeidbare Pausen möglichst kurz werden. Das führt zwangsläufig zu weitgehender Automatisierung, für die die Elektronik zu einem der wichtigsten Hilfsmittel geworden ist.

Schon seit Jahrzehnten verwendet man elektrische Steuergeräte für die Steuerung mechanischer Bewegungen und elektrischer Antriebe. Heute erweitert man sie mit elektronischen Mitteln, um die Leistungsmöglichkeiten der Maschinen besser auszunutzen, ihren Arbeitsbereich zu erweitern und ihren Betrieb zu rationalisieren. Derartige Maßnahmen beginnen beim Antrieb der Maschine und führen schließlich dazu, daß fast alle mechanischen Vorgänge bei und zwischen den Bearbeitungsgängen auf elektrischem Wege überwacht, geregelt oder sonst gesteuert werden können, wofür die Maschine eine umfangreiche elektrische Ausrüstung erhält.

Besondere Probleme werfen die Antriebe spanabhebender Werkzeugmaschinen auf. Wenn beispielsweise auf einer Drehbank ein Teil herzustellen ist, das verschieden abgestufte Durchmesser und ein Gewinde aufweist, so ist das nur dann wirklich wirtschaftlich durchführbar, wenn man mit abnehmendem Durchmesser die Drehzahl der Spindel erhöht, um immer die gleiche höchstzulässige Schnittgeschwindigkeit, die in erster Linie von der Zähigkeit des Werkstoffes und dem gewählten Spanquerschnitt bestimmt wird, ausnutzen zu können. Es müssen also regelbare Antriebe behenutzt werden, die möglichst auch eine schnelle Bremsung der umlaufenden Spindel, einen unverzögerten Übergang auf andere Drehzahlen, eine lastunabhängige Beibehaltung eingestellter Drehzahlen und eine rasche Umkehr der Drehrichtung gestatten.

Bei großen Maschinen benutzt man hierzu die aus der Starkstromtechnik her bekannten Leonard-Aggregate und erweitert ihren Regelbereich durch elektronische Hilfsmittel. Bei mittleren und kleinen Maschinen werden vielfach Thyratronsteuerungen vorgesehen. Außerdem ergeben sich hier sehr elegante Lösungen durch geschickte Verwendung elektromagnetischer Lamellenkupplungen an verschiedenen Stellen der Getriebe. Dieses System wurde in Deutschland von Siemens-Schuckert zu hoher Vollkommenheit ausgebaut, wie wir später noch sehen werden.

Neben dem Problem der Drehzahlreglung sind aber für eine wirtschaftliche Fertigung noch andere Faktoren bedeutsam. Denken wir z. B. daran, daß ein Dreher während des Zerspanungsvorganges auf einer halbautomatischen Maschine (Leitspindelbank, Revolver-Halbautomat usw.) praktisch nichts zu tun hat, während er zwischen den Bearbeitungsvorgängen allerlei Schaltungen vorzunehmen hat, die natürlich eine gewisse Zeit erfordern. Um eine solche Maschine besser ausnutzen zu können, benutzt man elektrische und elektronische Hilfsmittel, die im einfachsten Falle eine Vorwahl der anschließend benötigten Arbeitsbedingungen und bei höheren Ansprüchen eine Programmsteuerung ermöglichen. Bei der Vorwahl kann der Dreher während des Zerspanungsvorganges bereits die für den nächsten Arbeitsgang notwendige Drehzahl oder andere Maschinenfunktionen einstellen, so daß er beim Übergang auf den nächsten Arbeitsgang nur noch einen Knopf zu drücken braucht.

Sind viele Teile ständig gleicher Beschaffenheit herzustellen — ein Fall, der in der modernen Massenfertigung die Regel ist —, so kann ein großer Teil aller Nebenzeiten durch eine Programmsteuerung aus-

geschaltet werden. Durch Verwendung von Fernmelderelais lassen sich auf kleinstem Raum nahezu universell verwendbare Anordnungen schaffen, die einer Programmsteuerung etwa folgendes Gesicht verleihen: ein Klinkenschaltfeld erhält für jede Arbeitsgruppe der Maschine (z. B. Support, Revolver) waagerechte Klinkenreihen, die senkrecht nach Drehzahlen und -richtung usw. aufgeteilt sind. Nockenschalter und Endstellungskontakte schalten mit fortschreitendem Arbeitsablauf jeweils die nächstliegende Klinkenreihe ein (und die vorhergehende aus), deren durch Stöpsel vorbereitete Einzelklinke den gewünschten Arbeitsgang einleitet. Um Bedienungsschwierigkeiten und -fehler auszuschließen, werden die Stöpsel durch eine Lochkarte gesteckt, die von der Abteilung Arbeitsvorbereitung der betr. Firma für jedes Werkstück selbst gelocht werden kann und die wir dem Prinzip nach von Röhrenprüfgeräten her kennen. Eine Maschine, die mit einer solchen Programmsteuerung (Siemens-Schuckert) ausgerüstet ist, stellt schon einen weitgehend selbständigen Automaten dar, besonders, wenn auch die Materialzufuhr, die Überwachung der Maßhaltigkeit und der Ausstoß der fertigen Teile in das Steuerprogramm einbezogen sind. Zu den bekanntesten Automaten unter den Werkzeugmaschinen gehören z. B. die Kopierfräsmaschinen, die durch Abtasten einer Schablone oder eines Musterstückes automatisch völlig gleiche Teile herstellen. Sie sind heute weitgehend elektronisch gesteuert und erfüllen daher hohe Genauigkeitsanforderungen bei relativ kurzen Arbeitszeiten.

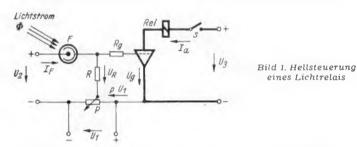
Auf die technischen Einzelheiten solcher Steuerungen kommen wir zurück, sobald wir die wichtigsten Bausteine der Elektronik kennengelerne haben. Für heute merken wir uns folgende grundsätzliche Möglichkeiten:

Steuerung von Werkzeugmaschinenantrieben

Vergrößerung des Leonardsätze Regelung durch Speisung und Regelbereiches (Regel-Maschi-Regelung von elektrisch schaltvon Leonard-Gleichstrombare Getriebe nensätze) sätzen durch motoren durch mit Magnetmagnetische Ver-Thyratronkupplungen schaltungen stärker oder Thyratronsteuerung

Abschließend noch ein Wort zur Betriebssicherheit:

Wie bei allen neuen Erfindungen traten auch bei den ersten elektronischen Steuerungen zunächst Kinderkrankheiten auf, die mehr oder weniger berechtigte Vorurteile gegen die Verwendung von Elektronenröhren aufkommen ließen. Berechtigt, wenn auch nicht schwerwicgend, sind die Hinweise auf die beschränkte Lebensdauer üblicher Hochvakuumröhren. Diese spielt insofern keine gravierende Rolle, als ja in jedem gutgeleiteten Betrich ohnehin jährliche oder öftere Generaldurchsichten der Maschinen üblich sind, bei deren Gelegenheit ein genereller Röhrenwechsel vorgeschrieben werden kann. Im übrigen haben Thyratrons und andere Röhren in vielen elektronischen Geräten Zehntausende von Betriebsstunden ohne Beanstandung geleistet. Ein reines Vorurteil dagegen stellt die Behauptung dar, die Röhren seien den Erschütterungen im Betrieb bei Maschinensteuerungen nicht gewachsen. Millionen Röhren, die in Fahrzeugen und im Luftverkehr weit stärkeren Beanspruchungen ausgesetzt sind (und nicht zuletzt die bisherige elektronische Praxis) beweisen das Gegenteil. Trotzdem vermeidet man - schon wegen der Heizfrage - Elektronenröhren, wo es immer möglich ist. Tatsächlich geht auch die neuere Entwicklung der Maschinensteuerungen teilweise dahin, Röhrenverstärker durch magnetische Verstärker zu ersetzen, die gleiche Leistungsverstärkungen bei praktisch unbegrenzter Lebensdauer ermöglichen.


Erwähnt sei in diesem Zusammenhang, daß deutsche Elektrotechniker unter Elektronik die "Anwendung von (z. B. magnetischen) Verstärkern in der Starkstromtechnik" verstehen. Wie wir aber schon im Einführungsaufsatz (vgl. Nr. 1/1952 der ELEKTRONIK, Seite 1) ausführten, ist der Geltungsbereich des Wortes Elektronik durchaus noch offen.

Herhert G. Mende

Elektronisch gesteuerte Relais

Von Dr.-Ing. A. Grün

Bei der Besprechung der allgemeinen Eigenschaften von Elektronenund Ionenröhren (ELEKTRONIK 1952, Nr. 1) wurde erwähnt, daß Ionenröhren bei Verwendung einer Anodengleichspannung lediglich als trägheitslose Relais oder Schalter benutzt werden können, die sich über die Gittersteuerung zwar ein-, nicht aber wieder ausschalten lassen. Diese Aufgabe der Einschaltung eines Stromkreises bei Auftreten einer bestimmten Steuerspannung liegt aber manchmal vor. So läßt sich mit einer Schaltung nach Bild 1 eine Warnanlage oder auch ein anderer Schaltvorgang entweder durch den Röhrenstrom selbst oder über ein Relais auslösen, wenn der auf die Fotozelle F fallende Lichtstrom Deinen bestimmten Wert über- oder unterschreitet. Das Gitter des verwendeten Thyratrons ist über das Potentiometer P zunächst negativ mit dem Bruchteil p der Batteriespannung U1 vorgespannt, so daß die Röhre also auch bei eingeschaltetem Schalter S gelöscht ist. Wird die Fotozelle bei Belichtung leitend, so wird bei einer bestimmten Beleuchtungsstärke die am Widerstand R entstehende Spannung gerade so groß sein, daß die Differenz zwischen ihr und der

an P eingestellten gleich der Zündspannung ist, worauf die Röhre zündet. Durch Offnen und Schließen des Schalters S kann die Schaltung wieder in den Ruhestand versetzt werden, wenn vorher die Spannung an R klein geworden ist, das einfallende Licht also genügend geschwächt wurde. Mit dem Potentiometer P läßt sich der Grenzwert für den Lichteinfall verschieben, bei dem die Zündung einsetzen soll.

Wir wollen einmal überschlagen, wie die Schaltung bemessen sein muß, um einen bestimmten Effekt zu erzielen. Als Kenndaten sind bei Fotozellen im allgemeinen angegeben: der Fotostrom I_F in μA bei einem bestimmten Lichtstrom $\Phi,$ gemessen in Lumen (Lm). Für eine Hochvakuumzelle zeigt Bild 2 (nach Dr. R. Kretzmann) die Abhängigkeit dieser Zellenempfindlichkeit von der Betriebsspannung. Wie man sieht, ist die Empfindlichkeit in diesem Fall oberhalb etwa 80 V konstant gleich 20 $\mu A/Lm$. Wählt man daher U_2 in Bild 1 bei einer Zelle dieser Art zu 100 V oder mehr, so braucht man nur noch den Lichtstrom Φ zu kennen, um den Fotostrom I_F und damit die Spannung am Vorwiderstand R auszurechnen.

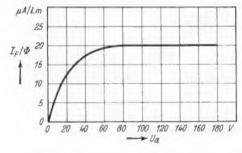


Bild 2. Fotozellenstrom einer Hochvakuumzelle in Abhängigkeit von der Spannung (nach Dr. R. Kretzmann)

Nach den Definitionen der Lichttechnik ergibt sich der Lichtstrom Φ in Lm als Produkt aus der bestrahlten Fläche F in m^2 , auf der die Beleuchtungsstärke E in Lux gemessen wurde. Zur Feststellung der Beleuchtungsstärke kann man am einfachsten einen in Lux geeichten Belichtungsmesser, wie er auch für fotografische Zwecke benutzt wird, verwenden. Kennt man noch die wirksame Fläche der Fotozelle F, so ist der Lichtstrom

$$\Phi = E \cdot F$$
.

Es sei z. B. die Beleuchtungsstärke an der Stelle der Fotozelle mit E=100~Lx gemessen worden und ihre Fläche sei $F=5~cm^2=5\cdot10^{-4}~m^2$, dann ist der Lichtstrom, der auf diese Fläche fällt:

$$\Phi = 100 \cdot 5 \cdot 10^{-4} = 5 \cdot 10^{-2} \, \text{Lm}.$$

Bei 20 µA/Lm ist daher der diesem Lichtstrom entsprechende Strom in der Fotozelle:

$$1_{\rm F} = 5 \cdot 10^{-2} \cdot 20 = 1 \, \mu A.$$

Will man bei der angenommenen Beleuchtung am Widerstand R eine Spannung von $U_{\rm R}=5$ V haben, um das Thyratron bei einer Gittervorspannung p $^{\circ}$ U₁ von etwa 7 bis 8 V zu zünden, so muß der Widerstand offenbar sein:

$$R = \frac{U_R}{I_F} = \frac{5}{1 \cdot 10^{-6}} = 5 \cdot 10^6 \Omega = 5 \text{ M}\Omega.$$

Wie man sieht, kommt man leicht zu hohen Widerstandswerten, die bekanntlich häufig Isolationsschwierigkeiten zur Folge haben. An dieser Überschlagsrechnung erkennt man aber auch die Notwendigkeit der hohen Widerstände, wenn man einen kleinen Ansprechbereich der Anordnung verlangt. Mit der zugehörigen Zündkennlinie kann man dann leicht die Größe der Lichtänderung, auf die eine solche Schaltung anspricht, abschätzen.

Dieses Beispiel läßt sich nach vielen Richtungen variieren. So kann man statt der Fotozelle ein Thermoelement für die Anzeige von Temperaturen, eine Tachometermaschine für die Anzeige von Drehzahlen, oder auch direkt zur Verfügung stehende Spannungen, beispielsweise von elektrolytischen Bädern oder von Batterien, die überwacht werden sollen, verwenden. Besonders geeignet für solche Relaisschaltungen ist das in Elektronik 1952, Nr. 1, abgebildete Klein-Thyratron Pl. 21. Einige Ausführungsformen von üblichen Relais sind in dem Aufsatz "Elektronische Bausteine II" in Elektronik 1952, Nr. 3, beschrieben. Diese und ähnliche Relais werden auch mit Starkstromkontakten

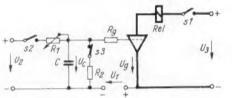


Bild 3. Schaltung eines elektronisch gesteuerten Zeitrelais

gebaut, die bis zu 3 A bei 220 V Wechselspannung schalten. Es sind dies durchaus betriebssichere Bauelemente, die sich bereits millionenfach bewährt haben. Voraussetzung für ein zufriedenstellendes Arbeiten ist allerdings die richtige Dimensionierung und die solchen feinmechanischen Bauteilen gemäße Behandlung. Mit der in Bild 1 gezeichneten Steuerschaltung lassen sich aber ebensogut auch Thyratrons größerer Leistung steuern, so daß man mit ihrem Strom direkt oder wieder über Schützenschaltungen praktisch beliebige Wirkungen auslösen kann.

Ein weiteres Anwendungsgebiet haben die Ionenröhren bei Zeitschaltern gefunden, in denen die Zündung nach einer einstellbaren Zeit erfolgen soll. Ist der Schalter s 2 in Bild 3 geöffnet und der Kondensator C über den Widerstand R2 bei geschlossenem Kontakt s 3 entladen, so ist das Gitter der Ionenröhre wieder durch die Gleichspannung U1 negativ vorgespannt. Damit ist also die Röhre gesperrt, auch wenn der Schalter s 1 geschlossen ist und die Spannung U3 an der Anode liegt. Wird jetzt der Kontakt s 2 geschlossen und gleichzeitig s 3 geöffnet, was z. B. auch mit einer Relaisschaltung wie in Bild 1 geschehen kann, so wird der Kondensator C über den veränderbaren Widerstand R1 mehr oder weniger schnell aufgeladen und die Zündung setzt erst ein, wenn Uc annähernd gleich U1 geworden ist. Trägt man die Gitterspannung Ug = - U1 + Uc in Abhängigkeit von der Zeit auf, so erhält man den in Bild 4 gezeichneten Verlauf. Dabei ist der Verlauf der Kondensatorspannung bei Aufladung über den Widerstand R1 eine Exponentialfunktion, also

$$U_c = U_1 \cdot (1 - e^{-\frac{1}{R_1 C}}).$$

Hierin bezeichnet man das Produkt R₁ · C auch als Zeitkonstante T. Man erhält sie graphisch durch die in Bild 4 ausgeführte Konstruktion, bei der die Tangenten an die Spannungskurve für die Zeit Null und bei sehr großer Zeit miteinander zum Schnitt gebracht werden. Ist die Spannung am Kondensator, die nach genügend langer Zeit praktisch gleich der angelegten Spannung U₂ ist, um mindestens 50 % größer als U₁, so kann man mit genügender Näherung die Tangente durch den Zeitnullpunkt zur Bestimmung der Zündzeit benutzen. Offenbar ist nach Bild 4:

$$\frac{tz'}{T} = \frac{U_1}{U_2}$$

so daß sich für die Zündzeit näherungsweise ergibt:

$$tz \approx tz' = T \cdot \frac{U_1}{U_2}$$

Ist die Zündzeit mit 0,1 Sekunde vorgegeben und hat man, wie vor geschlagen, U_2 um 50 % größer gemacht als U_1 , ist also $U_2 \ge 1.5 \cdot U_1$, so muß die Zeitkonstante

$$T = tz \cdot \frac{U_2}{U_1} = 0.1 \cdot 1.5 = 0.15 \text{ sec}$$

werden. Wählt man als Kapazität $C=10\,\mu F$, so wird der erforderliche Widerstand

$$R_1 = \frac{T}{C} = \frac{0.15}{10 \cdot 10^{-6}} = 15 \, k\Omega$$

Umgekehrt läßt sich daher mit einem zwischen 5 und 50 kΩ einstellbaren Widerstand für R1 und einem Kondensator von 10 µF die Zündzeit tz in der angegebenen Schaltung nach Bild 3 von 33 bis

Die Wahl der Größe von U1 und U2 richtet sich nach der Genauigkeit, mit der die eingestellte Zeit reproduzierbar sein soll. Ist U2 nur wenig größer als U1, so muß die Zündung im flach verlaufenden Endteil der Kennlinie einsetzen, wie in Bild 4b. Wegen der in ELEKTRONIK 1952, Nr. 4, erwähnten Streuung der Zündkennlinien kann dann aber die Zündung zu stark verschiedenen Zeiten erfolgen, die Schaltung wird also ungenau arbeiten. Das war der Grund für die Annahme einer um mindestens 50 % größeren Spannung von U2. Die Steilheit der Spannungsänderung ist dann im Zündmoment etwa gleich wenn man die in Bild 4a gezeichnete Tangente als Näherung benutzt. Bei der oben errechneten Zeitkonstanten von 0,15 sec erreicht man mit Spannungen von etwa 50 V für U2 eine Geschwindigkeit der Spannungsänderung im Zündmoment von $\frac{50}{0,15} = 300 \text{ V/sec.}$ Rechnet man mit einer äußersten Schwankung der Zündkennlinie um 3 V, so kann danach die Zündzeit äußerstenfalls um eine hundertstel Sekunde schwanken. Bezieht man diese Zeitänderung von $\frac{1}{100}$ sec = 10 msec auf die eingestellte Zündzeit von 0,1 sec = 100 msec, so beträgt der mögliche Fehler immerhin schon 10 %. Da die Zündspannungsänderungen im allgemeinen aber nur langsam erfolgen, sind die wirklich

erreichbaren Genauigkeiten wesentlich größer, so daß man bei den

Un=-U1+UC a Bild 4. Gitterspannungs-1/2 3)

verlauf der Schaltung nach Bild 3

geschilderten Verhältnissen mit einer Reproduzierbarkeit der Zeiten von etwa 1 bis 2 % rechnen kann.

An diesen beiden Schaltungen sollte das Grundsätzliche der Fotozellensteuerungen und der elektronischen Zeitschalter gezeigt werden. Ausgeführte Geräte dieser Art sehen im allgemeinen nur dadurch komplizierter aus, daß die erforderlichen Gleichspannungen durch Gleichrichteranordnungen erzeugt, gesiebt und u. U. auch stabilisiert werden. Diese Bauteile sind aber aus der Rundfunktechnik bekannt, konnten daher hier der Übersichtlichkeit halber entfallen. Im übrigen ist es naheliegend, die in Bild 1 besprochene Hellsteuerung einer Fotozellenschaltung in eine Dunkelsteuerung abzuwandeln, in der das Relais also bei Unterschreitung einer bestimmten Beleuchtungsstärke anspricht. Ebenso kann man die Schaltung nach Bild 3 dadurch ändern, daß man die Spannungen U1 und U2 umkehrt und außerdem noch s2 mit s3 und R1 mit R2 vertauscht.

Da die mit den Kontakten s2 und s3 zu betätigenden Steuerleistungen verschwindend klein sind, lassen sich solche Relaisschaltungen in einfacher Weise und bei kleinem Aufwand miteinander kombinieren. Es würde in diesem Rahmen zu weit führen, Anwendungsfälle aufzuzählen. Vielen wird aus der Praxis eine Reihe von Problemen bekannt sein, die sich mit solchen und ähnlichen Schaltungen bzw. ihren Kombinationen verhältnismäßig leicht und elegant lösen lassen.

Elektronische Bausteine III

Geber und Wandler

Von HERBERT G. MENDE

Der Ausgangspunkt aller elektronischen Schaltungen ist eine physikalische Größe, die gemessen, angezeigt, überwacht oder zur Steuerung eines Vorganges elektrischer oder mechanischer Natur ausgenutzt werden soll. Den Baustein, der diese Größe wahrnehmen soll, nennen wir ohne Rücksicht auf seine physikalische Funktion Geber oder Fühler. Wenn wir betonen wollen, daß er nicht rein elektrisch arbeitet, sondern erst eine andere physikalische Größe in eine elektrische umwandelt, sprechen wir von einem Wandler.

Während rein elektrische Geber verhältnismäßig selten sind, ist die Gruppe der Wandler sehr umfangreich und vielgestaltig. Wir können sie etwa wie folgt unterteilen:

> elektro-mechanische elektro-hydraulische elektro-pneumatische elektro-chemische elektro-magnetische elektro-akustische elektro-optische elektro-thermische

Wandler für vorwiegend aperiodische Größen.

Wandler, von denen vorwiegend schwingungsförmige Größen umgewandelt werden.

Bei den Gebern oder Fühlern der Elektronik ist der Ausgang stets elektrisch, so daß wir korrekter von mechanisch- oder mechano-elektrischen usw. Wandlern sprechen. Die oben angeführte Schreibweise ist dagegen richtig für die Empfängerseite, die wir im nächsten Aufsatz behandeln werden. Wir werden sehen, daß einige Wandlerarten umkehrbar sind, d. h. für beide Betriebsrichtungen konstruiert wer-

Der einfachste machanisch-elektrische Wandler ist der gewöhnliche Aus- oder Umschalter, bei dem die mechanische Bewegung des Schalthebels oder Kontaktschleifers in die Auslösung oder Beendigung eines elektrischen Vorganges umgewandelt wird. Im Prinzip ist es dabei gleichgültig, ob die mechanische Schaltbewegung von Hand oder maschinell, z. B. durch den Begrenzungsschalter einer Werkzeugmaschine, vorgenommen wird. Elektrisch gesehen, ist der Schalter ein Wandler, dessen Widerstandswert sprunghaft von unendlich auf null oder umgekehrt geändert werden kann.

Die außerordentliche Vielfalt der möglichen Ausführungsformen von mechanisch-elektrischen und anderen Wandlern kann die Tabelle nur an Hand einiger wichtiger Beispiele andeuten. Wir ersehen aus ihr, daß z. B. auch ein veränderlicher Kondensator ein mechanischelektrischer Wandler ist; wenn seine Kapazität durch mechanische Einwirkung auf einen seiner Beläge geändert wird, oder wenn er als (mechanisch bedienter) Drehkondensator ausgebildet ist. Andererseits erkennen wir, daß ein zweckentsprechend konstruierter veränderlicher Kondensator, der mechanische Schwingungen (z. B. Schallwellen) in elektrische Schwingungen umsetzen soll, wegen dieser andersartigen

Bedingungen zu den elektro-akustischen Wandlern gerechnet wird. Ahnliches gilt für piezoelektrische Kristalle, die für Druckmessungen (mechanisch-elektrisch) andere Bedingungen zu erfüllen haben als z. B. bei der Schallaufnahme (akustisch-elektrisch) und dort wieder andere als in Oszillatoren, wo die Temperaturabhängigkeit ihrer Eigenfrequenz zur Steuerung irgendeines sensiblen Vorganges benutzt wird (thermisch-elektrisch).

Schon an diesen wenigen Beispielen erkennen wir, daß eine Besprechung der theoretisch möglichen Geber- und Wandlerformen ins Uferlose führt. Wir müssen uns also hier auf das Grundsätzliche beschränken und wie bisher die praktisch verwendeten Geberkonstruktionen in Zusammenhang mit ihren Anwendungen behandeln.

Wie ebenfalls aus der Tabelle ersichtlich ist, kann man die Geber ihrer Konstruktion nach in

vorwiegend ohmsche vorwiegend nichtohmsche kapazitive induktive und piczoelektrische Geber

einteilen. Auch diese Aufzählung umfaßt nur die wichtigsten Systeme, genügt aber für unsere einleitenden Betrachtungen.

Wir haben in der Tabelle ein Hilfsmittel, das uns bei elektronischen Entwicklungsaufgaben mit einem Blick übersehen läßt, welche Geberkonstruktionen für das benötigte Wandlerprinzip grundsätzlich möglich sind. Hinsichtlich der praktischen Ausführungen wissen wir als Hochfrequenzpraktiker mit der Wirkungsweise und den handelsüblichen Ausführungen der meisten Geber schon genügend Bescheid, um im Einzelfall die günstigste Geberart bestimmen zu können.

Etwas ferner liegen uns einige Geberarten, wie Dehnungsmeßstreifen, Druckdosen usw., die deshalb hier kurz besprochen werden sollen.

Unter Dehnungsmeßstreifen versteht man streifenförmige Grafitoder Drahtwiderstände von einigen hundert Ohm, die auf die zu prüfenden oder überwachenden Objekte aufgeklebt werden. Sie haben die Eigenschaft, ihren Widerstandswert schon bei relativ kleinen Längenänderungen meßbar zu verändern. Die Widerstandsänderung wird nach bekannten Methoden verstärkt und kann dann angezeigt, registriert und zur Steuerung elektrischer oder mechanischer Vorgänge ausgenutzt werden. Über diese (in letzter Zeit besonders von Philips weiterentwickelte) Methode unterrichtet u. a. das Buch "Dehnungsmeßstreifen-Meßtechnik" (Philips Technische Bibliothek).

Druckdosen sind, wie der Name sagt, dosenförmige Gebilde, die Druckschwankungen in elektrische Schwankungen umsetzen. Je nach

der im Einzelfalle vorliegenden Aufgabe und abhängig von der Grö-Benordnung der anfallenden Drücke sind sie nicht nur unterschiedlich konstruiert, sondern benutzen auch verschiedene Wandlerprinzipien. Die Funktion der piezoelektrischen und elektrostatischen (Kondensator-) Druckdosen ist uns ohne weiteres erklärlich. Bezüglich der elektromagnetischen oder induktiven Meßdosen müssen wir wissen, daß man nicht nur die Induktivitätsänderung durch Beeinflussung des Luftspaltes zur mechanisch-elektrischen Wandlung ausnutzen kann; vielmehr gibt es einen als Magnetostriktion bekannten Effekt, der darin besteht, daß sich gewisse ferromagnetische Werkstoffe in einem elektrischen Feld ausdehnen oder zusammenziehen, und einen magnetoclastischen Effekt, der dadurch gekennzeichnet ist, daß die Magnetisierbarkeit bestimmter Materialien von ihrem elastischen Spannungszustand abhängig ist. Diese Effekte, die wir hier der Einfachheit halber den elektro-magnetischen Wandlern zurechnen, sind umkehrbar. Dehnt oder drückt man also derartige ferromagnetische Stoffe (Eisen-Nickel bzw. Permalloy), so entsteht in einer umgebenden Spule eine meßbare Feld- oder Induktivitätsänderung, die zur Druckmessung oder -überwachung ausgewertet werden kann.

Ein anderer, vielleicht weniger bekannter Geber ist der Ringrohrgeber. Wie sein Name andeutet, besteht er aus einem senkrecht drehbar gelagertem Ring aus Glasrohr, der zur Hälfte mit Quecksilber gefüllt ist und einen Widerstandsdraht enthält. Je nach der Stellung des Ringrohres wird also der als Regelwiderstand oder als Potentiometer geschaltete Widerstandsdraht mehr oder weniger kurz geschlossen, so daß sein Widerstandswert der Lage des Ringrohres proportional ist.

Stablhärtung durch Hf-Impulse

Bei einem neuartigen Induktions-Härteverfahren für feinmechanische Teile wird aus dem Ladekondensator des Netzgerätes ein Anodenstromstoß von nur 1/1000 . . . 1/10 Sekunden Dauer auf einen UKW-Generator gegeben. Während dieses kurzen Stoßes schwingt der Generator und erzeugt in dem in der Ankopplungsspule liegenden Werkstück Wärme durch Induktion. Wegen der kurzen Zeitdauer erhitzt sich hierbei nur die äußere Haut in einer Eindringtiefe von 10 . . . 100 μ. Infolge des schnellen Abklingens der Heizwirkung dient das unter der Haut liegende Grundgefüge des Werkstückes mit seiner noch kalten Masse als Abschreckmittel, so daß die Oberflächenhärtung unmittelbar eintritt.

Das Verfahren ist vor allem für kleinste Präzisionsmassenteile, z.B. in der Uhrenindustrie, gedacht, die hohe Oberflächenhärte bei weichem Kern aufweisen sollen. (Feinwerktechnik 1952, Heft 5, S. 145.)

Tabelle elektronischer Geber und Wandler

Benötigtes Wandlerprinzip	Geber						
	vorwiegend ohmsche	vorwiegend nichtohmsche	kapazitive	induktive oder elektromagnetische	piezoelektrische		
rein elektrisch	Stramquelle, Meßbrük- ken, Kampensator, Meß- geräte mit Kantaktzei- ger	Röhren, Thermokreuze, elektr. Impulsgeber	Kondensatoren m. span- nungsabhängigen oder verlustreichen Dielektri- ka, Kondensatoren in Phasenschiebern	Transformatoren, Zer- hacker, Goniometer, In- duktivitäten in Phasen- schiebern	Filterquarze, Koppel- quarze		
mechonisch-elektrisch hydraulisch-elektrisch pneumatisch-elektrisch	Schalter aller Art, me- chanischer Impulsgeber, Ringrahrgeber, Poten- tiometer, Dehnungs- meßstreifen, Kontakt- manometer, Kohledruck- geber, bolometrische Feintaster, thermoelek- trische Druckdosen	elektrolytische u. Halb- leiter-Druckdosen, Röh- renmikrometer	kapazitive Druckdosen, Flüssigkeitsstands- und Durchflußmesser, Dreh- kondensator, kapazitive Mikrometer und Men- genmesser	induktive Druckdosen u. Mikrometer, Dynamos, Motoren mit Bürstenver- stellung, Drehfeldge- ber, Wirbelstramgeber, Drehtransformator, Variameter, Spulen mit losen Kernen	piezoelektrische Druck dosen, Varioquarze, Kristallbieger		
a kustisch-elektrisch	Kohlemikrofon	lonenstrommikrafon	Kondensatormikrofon	magnetische Tanabneh- mer, Bändchen- u. Tauch- spulensysteme	Kristallmikrofone und -Tonabnehmer		
magnetisch-elektrisch	Wismut-Spirale		Schwingkondensator	Permeabilitäts-und Wir- belstram-Blechdicken- messer, Risseprüfer			
optisch-elektrisch, radio-(Strahlen-) elektrisch	Fatawiderstand	Fotoelemente, Stroh- lungspyrometer, Zähl- rohre, Röntgen- u. a. Dickenmesser, Glimm- röhren					
thermisch-elektrisch	Kontakt- und Wider- standsthermometer, Bi- metallkontakte, Bolo- meter	Heißleiter, Halbleiter	Temperaturabhängige Kapazitäten	Oszillataren mit tempe- raturabhängigen Spu- len	Temperaturabhängig- keīt van Quarzoszila- toren		
chemisch-elektrisch	Feuchtemesser, Gas- meßgeräte	Gasanalysatoren, Batte- rien, pH-Wertmesser	Kapazitätssanden für Elektrolyte usw.	Spulensonden für Elek- trolyte usw.			

Leitungen in der Zentimeterwellen-Technik

Von Dr. HANS SEVERIN

In den beiden vorausgegangenen Aufsätzen wurden die Vorgänge auf Doppelleitungen behandelt, und zwar fortschreitende Wellen (1) und stehende Wellen (2). Entsprechend dieser Unterteilung kann man auch die praktischen Anwendungen von Doppelleitungen in der Höchstfrequenztechnik in zwei verschiedene Gruppen einordnen, nämlich erstens in eine soldte zur Übertragung von Hf-Energie über weite Strecken und zweitens in eine soldte zur Darstellung von Schaltelementen.

3. Praktische Anwendungen

- 1. Möglichst günstige Übertragung von Hf-Energie über weite Strecken. Bei dieser Anwendung der Doppelleitung als reine Energieleitung ist man bestrebt, stehende Wellen tunlichst zu vermeiden und mit Hilfe rein fortschreitender Wellen ein Optimum der Senderenergie zu übertragen. Die für die Verluste charakteristische Größe ist in diesem Fall die Dämpfungskonstante β, deren Zusammenhang mit den Kenngrößen der Doppelleitung in Teil 1 angegeben wurde.
- 2. Kurze Leitungsstücke als Schaltelemente unter Ausnutzung ihrer besonderen Eigenschaften, die durch Strom- und Spannungsverteilung in den stehenden Wellen längs der Leitung bedingt sind. Dieses Anwendungsgebiet, bei dem die Dämpfungsverluste praktisch immer vernachlässigbar sind, soll im folgenden an einigen charakteristischen Beispielen näher erläutert werden:
- a) Leitungsstücke als Blindwiderstände. In Teil 2 war gezeigt worden, daß ein kurzes, an seinem Ende kurzgeschlossenes Leitungsstück wie eine Induktivität, ein kurzes offenes Leitungsstück wie eine Kapazität wirkt. Allgemein zeigte sich, daß man in der Lage ist mit Doppelleitungsstücken alle Blindwiderstände zwischen 0 und $\pm \infty$ herzustellen. In der Praxis verwendet man z. B. kurze Lechersysteme mit verschiebbarem Kurzschluß als regelbare Induktivität zum Abstimmen der Kapazität zwischen den Elektroden der Senderöhre (Bild 1). Dabei kommt es wegen der großen Elektrodenkapazitäten

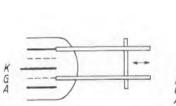


Bild I. Kurzes Lechersystem mit verschiebbarem Kurzschluß als regelbare Induktivität

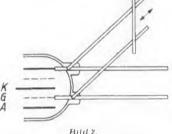


Bild 2.

Anwendung einer "Stichleitung"

oft vor, daß man, um Resonanz zu erzielen, den Kurzschluß eigentlich noch innerhalb der Röhre anordnen müßte. Da sich aber alle Leitungseigenschaften periodisch mit einer halben Wellenlänge wiederholen, kann man den Kurzschluß eine halbe Wellenlänge weiter auf dem außen angeschlossenen Doppelleitungssystem anbringen.

Ein anderes Beispiel ist die sog. Stichleitung. Sie wird dann angewendet, wenn durch irgendwelche Störungen, z. B. bei den Glasdurchführungen der Senderöhren oder bei Querschnittsänderungen der Leitungen, unerwünschte Reflexionen auftreten. Die dafür verantwortliche Kapazität kann man durch Parallelschaltung einer Induktivität an dieser Stelle aufheben (Bild 2). Weiter dienen Stichleitungen zur Verbesserung der Anpassung. Ist der Abschlußwiderstand der Doppelleitung aus irgendwelchen Gründen nicht rein reell gleich dem Wellenwiderstand, sondern besitzt er noch eine induktive oder kapazitive Blindkomponente, so bilden sich auf der Leitung stehende Wellen aus und die Energieübertragung erreicht nicht ihren optimalen Wert. Durch Anbringen einer Stichleitung von gleichem Wellenwiderstand und einer um 180 verschobenen Phase an geeigneter Stelle läßt sich erreichen, daß die Doppelleitung in Richtung zum Sender hin wieder genau angepast ist. Für den Fall, daß auch der Realteil des Abschlußwiderstandes nicht exakt gleich dem Wellenwiderstand ist, gestattet diese Anordnung gleichzeitig eine beschränkte Transformation des Abschlußwiderstandes.

Als letztes sehr instruktives Beispiel für eine spezielle Stichleitung sei die $\lambda/4$ -lange, an ihrem Ende kurzgeschlossene Leitung genannt. Da ihr Eingangswiderstand unendlich groß ist, kann sie an jeder Stelle der Energieleitung angebracht werden, ohne für diese eine Störung darzustellen. Man verwendet solche Leitungsstücke als metallische Stützen für Lechersysteme (Bild 3); der Nachteil gegenüber anderen Aufstellungen ist der, daß die Leitung nur bei einer Wellenlänge zu betreiben ist.

b) Leitungsstücke als Impedanztransformatoren. Da sich alle Leitungseigenschaften periodisch mit der halben Wellenlänge wiederholen, stellt jede Leitung von der Länge 2/2 oder einem ganzzahligen

Vielfachen von λ/2 einen Transformator 1:1 dar. Dieser Transformator wird z. B. bei Dipolzeilen verwendet, wo die einzelnen, in λ/2-Abstand voneinander angeordneten Strahler durch λ/2-lange Leitungsstücke parallel geschaltet werden. Da aber der λ/2-Transformator eine Phasendrehung von 180° bewirkt, muß durch Wendelung der beiden Leiter die Gleichphasigkeit der Einzeldipole wieder hergestellt werden (Bild 4). Besonders einfache Transformationsverhältnisse ergeben sich ferner für Leitungsstücke, die λ/4 oder ein ungeradzahliges Vielfaches davon lang sind. Derartige Leitungsstücke vom Wellenwiderstand Z transformieren den Abschluf

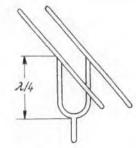


Bild 3. Haltering eines Lechersystemes durch "metallische Isolatoren"

widerstand Z transformieren den Abschlußwiderstand \Re_1 in den Eingangswiderstand \Re_2 : $\Re_1 \cdot \Re_2 = Z^2, \ \Re_2 = \frac{Z^2}{\Re_1}$

Beispiele: 1. Eine Doppelleitung mit 70 Ω Wellenwiderstand und eine solche mit 140 Ω sollen reflexionsfrei aneinandergeschaltet werden. Der Wellenwiderstand der $\lambda/4$ -Transformationsleitung ist $Z = \sqrt{70 \cdot 140} = 99 \; (\Omega).$

- 2. Ein $\lambda/2$ -Dipol (Strahlungswiderstand $\approx 73~\Omega$) soll an eine Speiseleitung vom Wellenwiderstand 300 Ω angepaßt werden. Dazu ist als Transformator eine $\lambda/4$ -Leitung mit einem Wellenwiderstand von $Z = 1/300^{\frac{1}{2}} \cdot 73 \approx 150~\Omega$) erforderlich.
- c) Leitungsstücke als Schwingkreise. Im Bereich der Dezimeterwellen lassen sich Resonanzkreise nicht mehr aus konzentrierten Elementen (Kondensator, Spule) aufbauen, da diese jetzt in die Größenordnung der Wellenlänge kommen. Man verwendet vielmehr Gebilde mit verteilter Kapazität und Induktivität und vermeidet Verluste durch Strahlung, indem man vorzugsweise Stücke konzentrischer Leitungen benutzt. Der Eingangswiderstand einer am Ende kurzgeschlossenen Doppelleitung beliebiger Bauart ist nach 2 (ELEKTRONIK Nr. 5, Oktober 1952) ein reiner Blindwiderstand

$$\mathfrak{R}_E^K = i Z tg \frac{2\pi L}{\lambda}$$

Für $l = (2n-1) \cdot \lambda/4$ wird R K unendlich, für n · λ/2 gleich Null. Gleichzeitig springt in beiden Fällen die Phase um 180 ° (siehe 2). Eine am Ende kurzgeschlossene Leitung, deren Länge ein ungeradzahliges Vielfaches von $\lambda/4$ ist, wirkt also als Parallelresonanzkreis, eine solche, die ein ganzzahliges Vielfaches von $\lambda/2$ lang ist, als Serienresonanzkreis. Eine beiderseits kurzgeschlossene Leitung von der Länge n·λ/2 hat ebenfalls Resonanzeigenschaften: An der Stelle eines Spannungsbauches denke man sich die Leitung in zwei einseitig kurzgeschlossene Teile geschnitten und diese parallel geschaltet. Schließlich kann man Resonatoren auch aus beiderseits offenen Leitungsstücken der Länge n·λ/2 erstellen, jedoch sind diese Formen wegen der Strahlungsverluste an den offenen Enden ohne große praktische Bedeutung.

Bild 4. Dipolzeile für $\lambda = 10~cm$

Bild 5. Koaxiale Meßleitung von Dipl.-Ing. Georg Spinner, Elektro-Phys. Geräte

Die charakteristischen Größen für einen Schwingungskreis sind neben seiner Eigenfrequenz der Resonanzwiderstand und die Güte. Um sie angeben zu können, müssen die Energieverluste wenigstens näherungsweise berücksichtigt werden. Die Güte Q ist bekanntlich definiert als das Verhältnis

 $Q = \frac{Gesamte\ Energie\ im\ Resonator}{Verlustleistung\ in\ 2\ \pi\ Hf\mbox{-}Perioden}.$

Daraus ergibt sich z. B. für einen Parallelschwingkreis

$$Q = \frac{\omega L}{R}$$

eine Beziehung, die auch für eine am Ende kurzgeschlossene Doppelleitung der Länge (2n-1) \cdot $\lambda/4$ noch gültig ist. Auf die Rechnung soll

im einzelnen nicht eingegangen werden; ein Zahlenbeispiel möge eine Vorstellung über die Größenordnung vermitteln: Für ein einseitig kurzgeschlossenes, $\lambda/4$ -langes Stück einer konzentrischen Leitung Kupfer—Luft betragen bei $\lambda=20\,\mathrm{cm}$ der Resonanzwiderstand etwa 25 M Ω und die Güte $Q\approx7000$. Es sei daran erinnert, daß die mit einem Schwingungskreis im Bereich der Rundfunkwellen optimal erreichbare Güte bei etwa 300 liegt.

d) Die Meßleitung. Strom- und Spannungsverteilung längs einer Leitung hängen lediglich von dem am Leitungsende liegenden Abschlußwiderstand ab. Unterscheidet er sich vom Wellenwiderstand der Leitung nach Betrag oder Phase, so bilden sich längs der Leitung stehende Wellen aus. Kennt man den Wellenwiderstand der Leitung, so kann man aus dem Verhältnis von Spannungsminimum zu Spannungsmaximum und der Lage dieser Extremwerte den Abschlußscheinwiderstand nach Real- und Imaginärteil eindeutig angeben. Der nach den Leitungsgleichungen etwas umständliche Zusammenhang zwischen den gemessenen Größen und den gesuchten Widerstandswerten wird zweckmäßig graphisch durch besondere Kreisdiagramme hergestellt, auf deren Herleitung und Anwendung hier nicht näher eingegangen werden kann.

In den meisten Fällen wird die Meßleitung (Bild 5) als konzentrische Rohrleitung ausgeführt, deren Außenmantel einen schmalen Längsschlitz erhält; durch diesen wird mit Hilfe einer meßbar zu verschiebenden Sonde in möglichst loser kapazitiver Kopplung die Spannungsverteilung abgetastet, über Detektor oder Diode gleichgerichtet und angezeigt. Die Meßleitung ist im Gebiet der Dezimeterund Zentimeterwellen das universelle Meßgerät. Man kann sie neben den verschiedensten Widerstandsmessungen (Wellenwiderstand von Leitungen, Kabeldämpfungen, Einfluß von Stoßstellen, Empfängeroder Sendereingangswiderstand, Antennenwiderstände usw.) auch zur Messung von Materialkonstanten, der Frequenz, von Strom, Spannung und Leistung verwenden.

Berichte aus der Elektronik

Richtung Elektronik — junger Mann!

Der nachfolgende Aufruf, heute von einem der bekanntesten radiotechnischen Publizisten der USA veröffentlicht, kann — ja wird morgen oder übermorgen für Deutschland die gleiche Bedeutung haben. Schon heute sollte man diese Ausführungen sehr ernst nehmen.

Ungefähr vor hundert Jahren hat einer der größten Publizisten aller Zeiten: Horace Greeley, in einem Brief an W. H. Verity den Rat geschrieben: "Go West, young man!" ("Gehe nach dem Westen, junger Mann!"). Diese vier Worte wurden in unserem Lande zur Parole und beschleunigten sehr rasch die sich anbahnende Auswanderung junger Leute nach dem Westen, die dort ihr Glück machen wollten.

Der Rat war ausgezeichnet, denn Horace Greeley wußte, was er tat. Der Westen erwies sich als ein Land unschätzbarer Möglichkeiten, das Hunderttausenden von jungen Leuten, die ihn beherzigten, Reichtümer sicherte.

Heute, in einer Zeit nie gekannter technischer Evolution, haben wir es nicht mehr nötig, von einem Lande in das andere auszuwandern. Rings um uns bestehen phantastische, nie erträumte Möglichkeiten, die es einem jungen Menschen ermöglichen, zu Hause zu bleiben und dennoch einer einträglichen Zukunft entgegenzusehen. Er braucht sich nur in die bedeutendste Entwicklung unseres Jahrhunderts einzugliedern: in die Elektronik. Unlängst sagten wir voraus, daß die "Verkäufe der gesamten radio-elektronischen Industrie in den USA im Jahre 1960 nicht weniger als 10 Milliarden Dollar ausmachen würden". Wenn es im gleichen Tempo weitergeht, darf angenommen werden, daß diese Zahl überschritten werden wird. Der Grund hierfür liegt darin, daß die radio-elektronische Industrie heute schon nahe an die Bedeutung der Stahl- und Flugzeugindustrie herankommt und vielleicht in Bälde beide übertreffen wird.

Die neue Riesenindustrie hat sich in einem derart atemraubenden Tempo ausgedehnt, daß jede Woche in allen Verzweigungen neue Rekorde aufgestellt werden. So rasch erfolgte das Wachstum, daß sich heute ein empfindlicher Mangel an Radio- und Elektronik-Fachleuten bemerkbar macht, der dazu führt, daß sich die verschiedenen Unternehmen nach Kräften die Leute abspenstig machen, um offene Stellen auszufüllen — offene Stellen, die in manchen Fällen auf Jahre hinaus nicht ausgefüllt werden können, weil ganz einfach die geschulten Leute fehlen. Dieser Prozeß wird noch lange Zeit andauern.

Zum Beweis dafür, welche Anstrengungen die Industrie unternimmt, um sich die erforderlichen Fachleute zu beschaffen, beziehen wir uns auf ein außerordentlich erstaunliches Ereignis, das sich im März 1952 zutrug. Während der ersten Märzwoche führte die Vereinigung der Radio-Ingenieure ("Institute of Radio Engineers") ihre jährliche Versammlung in New York durch. In einer einzigen Ausgabe der "New York Times" erschien über ein Dutzend großformatige Inserate, in welchen radio-elektronisch geschulte Fachleute gesucht wurden. Einige dieser Annoncen haben nahezu tausend Dollar pro Aufnahme gekostet! Auf einige Zeit hinaus wird sich diese Situation eher noch verschärfen, bevor eine Entspannung eintreten wird.

Worin besteht die Lösung? Wohl wird es möglich sein, eine bescheidene Anzahl Leute aus den bestehenden Kaders in der Industrie zu höheren Aufgaben heranzubilden, aber nur sehr wenige bringen die erforderlichen Voraussetzungen hierfür mit. Selbst Radio- und Television-Techniker aus dem Reparaturdienst werden herangezogen und zu "Ingenieuren" befördert, mit dem Erfolg, daß das Servicewesen notleidend wird. Das ist selbstverständlich kein Ausweg auf die Dauer.

Was wir tun müssen, ist, Eltern und höhere und technische Schulen darauf aufmerksam zu machen, daß gutbezahlte Stellen für Elektronik-Ingenieure offenstehen. Aber ein Elektronik-Ingenieur kann nicht über Nacht ausgebildet werden. Er bildet sich in einem langwierigen Entwicklungs- und Schulungsprozeß. Das fängt schon im Alter von sechs und weniger Jahren an, da in ihm bereits das Interesse an Radio-Elektronik geweckt und in ihn der Keim des künftigen Ingenieurs gelegt wird: durch entsprechende technische Literatur von zunehmenden Schwierigkeitsgraden. Eltern und Erzieher können auf diese Weise für die Wirtschaft unseres Landes eine gute Hilfe leisten und gleichzeitig einem jungen Menschen eine gesicherte Zukunft schaffen.

Höhere Schulen und technische Institute vermitteln einen sehr wirksamen Beitrag, wenn sie mithelfen, die junge Generation in die Schwierigkeiten der Radio-Elektronik einzuführen. Das stellt nicht derartige Anforderungen, wie es den Anschein hat, denn erfahrungsgemäß gibt es immer einen sehr beträchtlichen Prozentsatz junger Leute, die technisch begabt und radiogeneigt sind. Wenn wir ihnen Werkzeuge und radiotechnisches Material in die Hände spielen, so wird dies der gewünschten Entwicklung sehr förderlich sein.

Es hält schwerer, in einem Knaben den "Radio-Funken" zu wecken, wenn er bereits das Pubertätsalter erreicht hat. Je früher er sich mit der Materie vertraut machen kann, um so eher wird er sich in eine der größten Entwicklungen, die die Welt je gesehen hat, eingliedern. Es gibt heute wohl wenige Dinge für ein juggendliches Gehirn, das die gleiche Faszination ausüben, wie die heutige radio-elektronische Entwicklung. Interessiert sich ein junger Mensch frühzeitig dafür, und ist dieses Interesse wachgehalten, so braucht er nicht von anderen gestoßen zu werden. Er wird aus eigenem Antrieb seine Tätigkeit aus-

Bild 1.

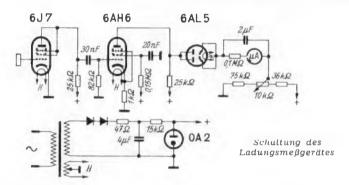
tronische

meßgerät

(Elektro-

Spezial GmbH)

üben und seine Entwicklung fördern. Es ist auch nicht kostspielig, ihn auf technische Pfade zu bringen. Es kommt nicht teurer, ihm radioelektronisches Bastlermaterial zuzuhalten, als sonstige Spielzeuge. Dafür wird es sich reichlich bezahlt machen.


Wenn Sie, geschätzter Leser, einen jungen Menschen kennen, der eines wertvollen Anstoßes bedarf, dann ist jetzt der Augenblick gekommen. Wenn hunderttausend unserer Leser in Frage kommende Eltern auf den Sinn dieser Ausführungen aufmerksam machen, so wird der Mangel an radio-elektronischen Fachleuten bis in fünfzehn Jahren kein Problem mehr bilden. Dafür wird aber den jungen Leuten - und damit dem Lande - ein wertvoller Dienst erwiesen. Hugo Gernsback

Risse-Anzeiger für Drähte und Drahtwendeln

Ein neues Verfahren französischen Ursprungs gestattet es, Drähte und Drahtwendeln zwischen 0,8 und 32 mm Durchmesser auf Risse zu prüfen. Da das Drahtmaterial beliebig sein kann und auch isolierte Drähte geprüft werden können, eignet sich das Verfahren für viele Zwecke, besonders aber in der Röhrenfabrikation. Der zu prüfende Draht wird durch eine Zylinderspule gezogen, deren Hochfrequenzfeld in ihm Wirbelströme verursacht. Die Ausbildung der Wirbelströme wird durch Risse gestört. Diese Störungen lassen sich wegen ihrer Rückwirkung auf die elektrischen Eigenschaften der Spule messen und an einem Katodenstrahloszillografen laufend überwachen. (ELECTRONICS, April 1952, 226.)

Messung statischer Ladungen bei Stoffen

JOHN M. CARROLL beschreibt ein Meßgerät zur Messung elektrostatischer Ladungen auf Stoffen bzw. zur quantitativen Prüfung von leitfähigkeitserhöhenden Appreturen auf ihre Wirksamkeit. Für die Messung werden statische Aufladungen künstlich dadurch erzeugt, daß man ein Muster des zu untersuchenden Stoffes auf eine rotie-

rende Trommel spannt und ein Stück gereinigten, unbehandelten Stoffes dagegen reiben läßt. Die durch ein Stück Messing vergrößerte Gitterkappe der 6 J 7 (s. Schaltbild) wird dabei in unmittelbare Nähe der rotierenden geladenen Stoffteile gebracht und die periodisch influenzierten Elektrizitätsmengen werden nach Verstärkung an einem Diodenvoltmeter angezeigt. Dieses Meßprinzip läßt sich auch auf die gleichzeitige Erfassung mehrerer Proben und (bei geeigneter Kippfrequenz) auf oszillografische Anzeige erweitern. Mit etwas größerem Aufwand für die Meßanordnung kann man auch Feuchtigkeitsmessungen vornehmen. Das Gerät wird bereits von der AMERICAN INSTRUMENT COMPANY OF SILVER SPRING, MARYLAND, hergestellt. (ELECTRONICS, Mai 1952, 206 ff.)

Neues elektronisches Oberflächenprüfgerät

Unter den elektronischen Geräten, die auf der Achema X in Frankfurt ausgestellt waren, fand das Philips-Rauhigkeitsmeßgerät PR 9150 der ELEKTRO SPEZIAL GMBH starke Beachtung.

Bekanntlich spielt bei vielen Herstellungsprozessen in der metallwie in der nichtmetallverarbeitenden Industrie die Oberflächengüte (Grad der zulässigen Rauhigkeit) eine große wirtschaftliche Rolle. Mit dem neuen Gerät, dessen Ansicht Bild I zeigt, können die Oberflächen von Metallen, Keramiken, Kunststoffen, aller Papier- und Holzarten, sowie galvanische und Lack-Oberflächen betriebsmäßig geprüft werden. Dazu wird die Rauhigkeit des Prüflings mit der eines mitgelieferten oder eines vom Benutzer gestellten Normals verglichen, indem ein Taster von Hand zuerst (zurz Eichung) über das Normal und dann über die zu prüfende Oberfläche geführt wird. Der Taster hat einen stark verrundeten Stahlstift, der beim Abtasten einer durch die Uncbenheiten gegebenen mittleren Linie folgt, während eine feine Saphirspitze, die an einem Piezo-Kristallelement angebracht ist, den Unebenheiten unmittelbar folgt und dadurch eine Spannung erzeugt, die der Verlagerung der Saphirspitze in bezug auf das Tastergehäuse (und den daran befestigten Stahlstift) proportional ist. Diese Spannung, deren Mittelwert bereits ein Maß für die Rauhigkeit darstellt, wird über einen zur Einstellung von vier Rauhigkeitsklassen veränderlichen

Spannungsteiler einem Verstärker zugeführt. Nach zweistufiger Verstärkung (Bild 2) wird der Meßwert gleichgerichtet und an einem Strommesser mit 0,2 mA Vollausschlag angezeigt. Für Vollausschlag ist eine Eingangswechselspannung von nur 0,5 mV ausreichend, die entsteht, wenn der Taster über die zu prüfende Oberfläche geführt

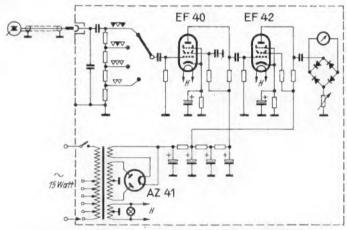
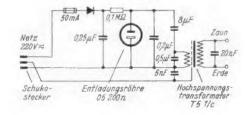


Bild 2. Das Prinzipschaltbild des Rauhigkeitsmeßgerätes


wird. Eine Abtastgeschwindigkeit über 2 cm see ist dabei ohne Einfluß auf die Größe der vom Taster abgegebenen Spannung. Außerdem ist auch die Anzeige praktisch frequenzunabhängig, weil unerwünscht niedrige Frequenzen (Handbewegungen) im Gerät ausgefiltert werden. Die vier Stufen des Spannungsteilers entsprechen bei halbem Skalen-ausschlag den Rauhigkeitswerten 2, 8, 32 und 125 ru ("ru" ist eine von PHILIPS zur Normung vorgeschlagene Einheit der Rauhigkeit. 1 ru entspricht einer mittleren Abweichung um 25,4 · 10 - 0 mm von der gedachten Mittellinie der Unebenheiten).

Glimmlampen-kippschaltungen für Elektro-Weidezäune

Elektro-Weidezäune bestehen aus einem einzigen dünnen Draht, der an wenigen. in großem Abstand aufgestellten schwachen Pfählen isoliert befestigt ist. Bei Berührung erteilt er infolge einer auf ihn geschalteten Impuls-Wechselspannung unangenehme, aber ungefährliche elektrische Schläge. Die Spannungswerte wurden genau erforscht und in den VDE-Vorschriften 0131 und 0667 festgelegt, damit Schäden an Mensch und Tier verhindert werden.

Der große Vorteil dieser Zäune besteht darin, daß sie mit geringem Aufwand das Vieh sicher auf den Weideslächen halten und daß sie sich leicht auf andere Flächen umsetzen lassen. Technisch bestehen sie aus einem Impulsspannungserzeuger, der vielfach mit Unterbrecherkontakten arbeitet. Neuerdings geht man aber auch zu rein elektronisch arbeitenden Geräten über, die den Vorzug geringster Abnutzung und Wartung haben. Die im Bild dargestellte Schaltung der Firma

Schaltung eines elektronisch arbeitenden Weidezaun-Gerätes

Kube KG., Hergensweiler bei Lindau/B., erzeugt Glimmlampenkippschwingungen, wie sie dem Funktechniker aus einfachen Tonsummerschaltungen und Kippgeräten bekannt sind. Der 0,25- μ F-Ladekondensator des Allstrom-Netzteiles ladet über 0,1 M Ω den Kippkondensator von 0,2 μ F auf, bis er durch Zündung der Glimmlampe kurzgeschlossen und entladen wird. Die daran entstehende Sägezahnspannung wird durch den Hochspannungstransformator zu kurzzeitigen hohen Impulsspitzen umgeformt, die die gewünschte Wirkung haben. Die Frequenz ist infolge der großen Zeitkonstante

$$T = 10^5 \Omega \cdot 0.2 \cdot 10^6 \Gamma = 0.02 sec$$

sehr klein. Auch der Energieinhalt ist gering wegen des hohen inneren Widerstandes von 0,1 M Ω . Die Impulse ergeben also nur einen Berührungsschreck, aber keine Schädigungen.

Lichtelektrische Einstell- und Prüfverfahren für Zähler

Es gibt im wesentlichen zwei Verfahren zur Einstellung und Prüfung von Zählern: Beim direkten wird die Leistung mit einem Wattmeter und die Zeit mit einer Uhr gemessen und daraus die elektrische Arbeit für eine bestimmte Anzahl von Umdrehungen der Zählerscheibe ermittelt. Beim indirekten Verfahren wird dagegen der Prüfzähler mit einem Normalzähler verglichen und der Unterschied beider möglichst klein gemacht. Es leuchtet ein, daß man im zweiten Fall einen Zähler sehr viel rascher beurteilen kann als im ersten, da man ja nur die Geschwindigkeit der beiden Scheiben miteinander zu vergleichen braucht.

W. Blum beschrieb auf der VDE-Tagung 1952 den Weg, der schließlich zur Ausbildung des ω-Verfahrens geführt hat, bei dem die Winkelgeschwindigkeit ω des Prüflings mit der eines Normalzählers verglichen werden kann. Die beiden zu vergleichenden Zählerscheiben besitzen auf ihren Rändern je 400 Markierungen oder Einkerbungen, die von Lichtstrahlen abgetastet werden und in Fotozellen elektrische Impulse auslösen. Die des Normalzählers werden nach Verstärkung dazu benutzt, um den Lichtsleck des nachgeschalteten Oszillografen mit der Abtastfrequenz auf einer Kreisbahn zu bewegen. Man erreicht dies dadurch, daß man die gleiche Frequenz mit einer Phasenverschiebung von 90° auf die waagerechten und senkrechten Ablenkplatten gibt.

Die Abtastimpulse des Prüflings benutzt man nun andererseits zur Hell-Dunkel-Steuerung des Strahls, indem man sie, entsprechend verstärkt, an den Wehneltzylinder führt. Die Schaltung ist so ausgeführt, daß vom Prüfling nur ein Punkt hellgesteuert wird, der stillsteht, wenn die Winkelgeschwindigkeit beider Scheiben gleich ist. Er wandert auf dem Kreis rechts oder links herum, wenn die eine schneller oder langsamer als die andere läuft. Die Genauigkeit dieses Verfahrens ist sehr groß. Obwohl für einen speziellen Anwendungsfall ausgebildet, ist das Verfahren in dieser oder einer ähnlichen Form natürlich nicht auf die Zählerprüfung beschränkt.

Fortschritte bei der Stromrichtersteuerung und -regelung von Antrieben

J. FÖRSTER berichtete auf der VDE-Tagung 1952 über Umkehrantriebe in der sog. Eingefäßschaltung. Die Tendenz der letzten Jahre geht dahin, die großen Gleichrichtereinheiten, die früher mit Vakuumpumpe ausgerüstet waren, durch Parallelschaltung kleinerer pumpenloser Gefäße zu ersetzen; auf diese Weise lassen sich selbst Ströme bis zu 10 000 A beherrschen, was bei Spannungen von 850 V Leistungen von 8,5 MW ergibt. Die Steuerung selbst so großer Leistungen erfolgt entweder elektronisch, z. B. über Thyratrons, oder aber über magnetische Verstärker.

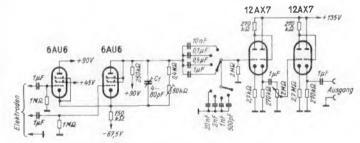
Gleichrichtergespeiste Gleichstrom-Nebenschlußmotoren sind dem Wesen des Gleichrichters entsprechend zunächst nur für eine Drehrichtung geeignet. Will man die Motoren über Gleichrichter auch in der anderen Drehrichtung betreiben, so muß man entweder einen zweiten Gleichrichtersatz verwenden oder aber Anker oder Feld des Motors umpolen. Von diesen Möglichkeiten verdient die Ankerumschaltung den Vorzug, wenn es auf schnelle Umschaltung ankommt, wobei sie nur einen Gleichrichtersatz benötigt; mit Reglern und Begrenzerschaltungen läßt sie sich bis zu den größten Leistungen betriebssicher ausführen.

Es wurden Oszillogramme von Umsteuervorgängen gezeigt, bei denen ein Gleichstrom-Nebenschlußmotor mit 7000 A in der Spitze in 2,5 sec reversiert wird. Bei einer Spannung von 800 V entspricht dies einer elektrischen Leistung von 5,6 MW. Das entwickelte Drehmoment ist entsprechend der Nenndrehzahl von 50 U/min, die durch Feldschwächung auf 100/min erhöht werden kann, etwa 100 mt. Diese großen Laststöße müssen in voller Größe vom Netz aufgenommen werden, ohne daß es dabei zu unerwünschten Spannungs- und Frequenzschwankungen kommen darf; dies ist u. a. durch ungleichmäßige Aussteuerung der einzelnen Phasen möglich.

Dr. Gr.

Regelung kontinuierlicher Walzenstraßen

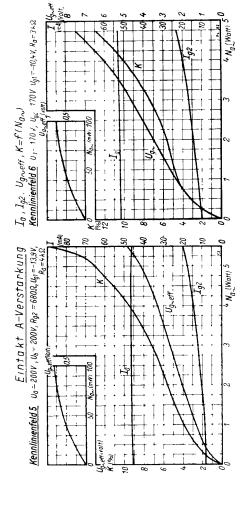
Das Problem der Antriebe von Walzenstraßen, die hauptsächlich mit Gleichstrom-Nebenschlußmotoren arbeiten, liegt in der beim Walzvorgang sprungartig ansteigenden Belastung, wobei es leicht zu einer pendelnden Drehzahl und zu Schlingenbildung kommt. Um die letztere klein zu halten, könnte man die Schwungmassen der Antriebe vergrößern. Bis zu einem aperiodischen Verlauf sind jedoch ganz erhebliche Schwungmassen notwendig, die wieder andere Nachteile mit sich bringen. Man geht heute lieber den Weg, Drehzahländerungen schnell auszuregeln, wobei man je nach der erforderlichen Regelgeschwindigkeit elektronische, magnetische oder elektromechanische Regler verwendet. Wie G. Lemcke auf der VDE-Tagung 1952 ausführte, erreicht man so in Grenzfällen einen erwünschten kleinen statischen Drehzahlabfall von etwa 0,2 % bei Vollast, wobei vorübergehende Abweichungen von 0,5 bis 0,7 % bei Vollaststößen in 0,1 bis 0,2 see ausgeregelt werden. Solche hohen Regelgeschwindigkeiten bei Leistungen von 6000 kW lassen sich praktisch nur über Gleichrichter in Verbindung mit elektronischen Steuerungen und Regelungen erreichen. Dabei ist darauf zu achten, daß auch die kleinsten Zeitglieder in den Regelkreisen vermieden werden, weshalb z. B. schon der Ausbildung eines möglichst oberwellenfreien Tachometergenerators besondere Sorgfalt geschenkt werden muß.


Dezimal-Zählröhre für hohe Zählgeschwindigkeiten

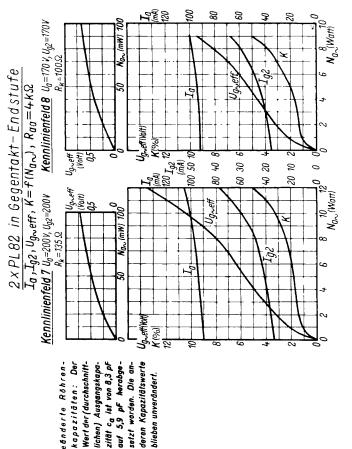
Jonker, Overbeek und Beurs berichten über die theoretischen Grundlagen und den praktischen Aufbau einer von Philips neu entwickelten Katodenstrahlröhre für Zählzwecke. Diese Röhre ist bei 3,5 cm Durchmesser nur etwa 8 cm hoch und weist ein etwa 10×30 mm großes seitliches Anzeigefenster auf. Der bandförmige Elektronenstrahl wird durch die auf die Ablenkelektrode treffenden Zählimpulse von einer zur nächsten Ablenkstellung bewegt, in der ein Teil von ihm den entsprechend bezifferten Teil des fluoreszierenden Fensters in der Röhrenwand aufleuchten läßt. Der gesamte Bündelstrom ist über mehrere Elektroden besonderer Form verteilt. Dadurch wird erreicht, daß der Strahl über eine Gegenkopplung von einer solchen Elektrode zu einer Ablenkelektrode in jeder der zehn vorgegebenen Ablenkstellungen fixiert werden kann. Mit Kaskadenschaltungen dieser Röhren, die sich außer durch ihre kleinen Abmessungen auch durch niedrige Betriebsspannung (300 V) auszeichnen, lassen sich bequem die verschiedensten Zähl- und Rechenanordnungen aufbauen.

In der einfachsten Schaltung hat die neue Zählröhre ein Auflösungsvermögen von 15 µsec, das durch Zuschaltung einer Doppeltriode auf 6 µsec gebracht werden kann. Mit Hilfe einer Triode-Hexode und eines Sekundäremissions-Vervielfachers lassen sich sogar Auflösungszeiten unter 0,2 µsec erreichen. Mit Rücksicht auf die Rücklaufzeit des Strahles ist das Auflösungsvermögen bei Impulsen, die in ständig gleichen Abständen aufeinanderfolgen, geringer. (Phillips Research Reports 7/April 1952, 81...111.)

Vorverstärker für medizinische Zwecke

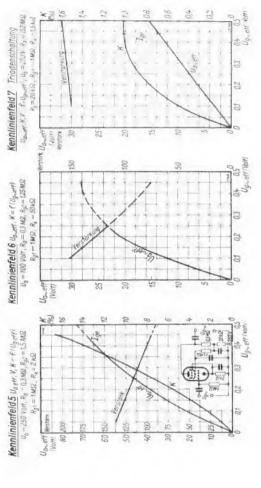

Murphy und Pavela beschreiben einen Verstärker, der zur magnetischen Registrierung elektrischer Muskelspannungen (Elektromyographie) geeignet ist (Bild). Der Verstärkereingang weist eine Differentialschaltung auf, um von den beiden gitterseitigen Muskel-Elektroden die eine als Bezugselektrode verwenden zu können. Eine dritte Elektrode, die an einer inaktiven Stelle des Untersuchungsobjekts angelegt wird, stellt die Masseverbindung her. Mit Rücksicht auf kleines

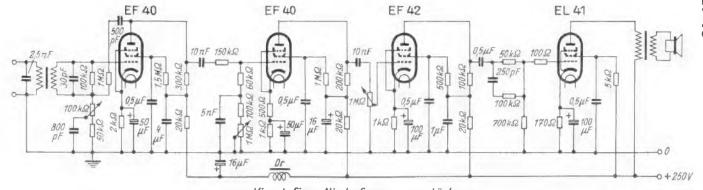
Verstärker jur elektrische Muskelspannungen


Eigenrauschen, hohe Verstärkung und großes Differentialverhältnis wurden zur Bestückung der Eingangsstufe ausgesuchte Exemplare der Röhre 6 AU 6 gewählt. Das Differentialverhältnis wird definiert als das Verhältnis der Phasenspannung zur Nutzspannung für gleiche Ausgangsspannungen. Es läßt sich durch Abgleich von C 1 und R 1 noch verbessern. Die nachfolgende zweistufige Verstärkung besteht aus je einem Triodenverstärker mit direkt gekoppeltem Katoden verstärker, um niederohmigen Ausgang und zufriedenstellenden Frequenzgang bei hohen Frequenzen zu erhalten. Der Frequenzgang ist zwischen 0,5 Hz und 10 kHz innerhalb 3 db linear. Bei einer 16 000fachen Gesamtverstärkung beträgt der Störpegel angenähert 3 μV eff. Zur Begrenzung der Bandbreite sind Filter vorgesehen.

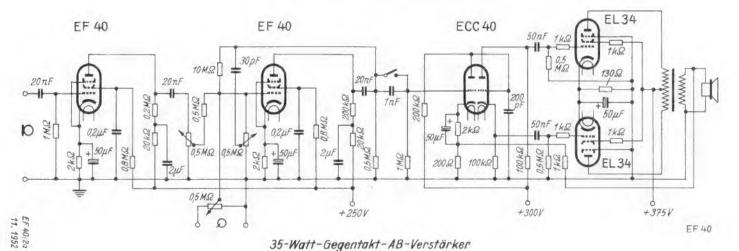
(ELECTRONICS, Juli 1952, 152.)

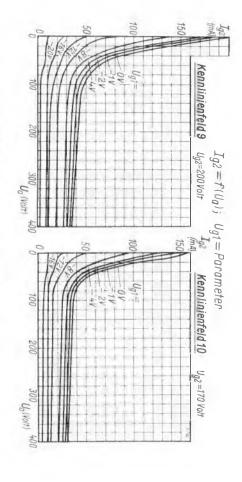
Sprechleistung ca. 4 Watt. Bei Gegentaktschaltung mit 2 imes PL 82 kann man eine Sprechleistung von 9 Watt (bei $u_a=1$ 70 V) bzw. 12 Watt (bei $u_b=2$ 00 V) erzielen.

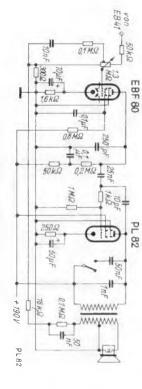

Geanderte

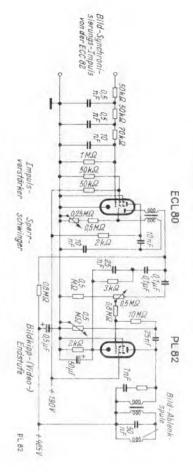


Forth


Rg2 (MS)


> Rg (KS)

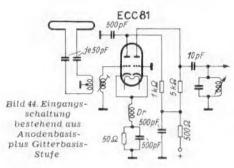



Vierstufiger Niederfrequenzverstärker

Tonkanal eines Fernsehempfängers mit der PL 82

Vertikalablenkung mit der PL 82 als Bild-Endröhre

Der Ausgangstransformator 7:1 liefert einen Sägezahnstrom von 300... 400 mA von Spitze zu Spitze an die Bild-Ablenkspule.


Fernsehtechnik ohne Ballast

Eine Aufsatzreihe zur Einführung in die Fernsehtechnik, 11. Folge

Wir setzen heute die Betrachtung der Eingangsstusen von Fernsehempfängern fort und bringen Beispiele für die verschiedenen Schaltungsausführungen. Daran schließt sich eine Betrachtung über die grundsätzlichen Eigenschaften der Mischstuse.

Bild 44: Anodenbasis-Stufe + Gitterbasis-Stufe

Schaltet man hinter eine Anodenbasis-Stufe eine Gitterbasis-Stufe, so besteht die richtige Anpassung zwischen dem niedrigen Ausgangswiderstand der ersten und dem niedrigen Eingangswiderstand der zweiten Stufe. Die Antenne führt zu dem

auf Bandmitte abgeglichenen Gitterkreis des linken Trioden-Systems. Die Anode dieses Systems ist über 500 pF geerdet. In der Katodenleitung befinden sich eine Drossel Dr und das zur Erzeugung der Gittervorspannung dienende RC-Glied. Die Drossel stellt zugleich den Eingangskreis des rechten als Gitterbasis-Stufe geschalteten Röhrensystems dar. Der 5-kΩ-Widerstand in der Anodenleitung und der über 10 pF parallelliegende Schwingkreis bilden den Ausgangswiderstand. Die Induktivität dieses Kreises wird durch einen Kupferkern auf den jeweiligen Fernsehkanal abgestimmt. Die Gesamtverstärkung der Anordnung ist ebenso groß wie bel einer Pentode mit der Steilheit eines Einzelsystems. Dabei besteht infolge der Phasengleichheit zwischen Eingangs- und Ausgangsspannung keinerlei Schwingneigung und es ist nur der niedrige Rauschwiderstand einer Triode wirksam

Bild 45: Katodenbasis-Stufe + Gitterbasis-Stufe (Cascoden-Verstärker)

Man kann vor eine Gitterbasis - Stufe auch eine Katodenbasis-Stufe schalten; allerdings liegt dann der niedrige Eingangswiderstand der Gitterbasis-Stufe parallel zum Anodenkreis der vorhergehenden Stufe. Dadurch wird die Verstärkung ebenfalls bis auf den Wert 1 herabgesetzt¹).

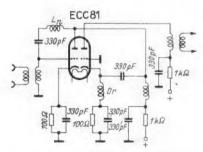


Bild 45. "Cascoden"-Schaltung (Katodenbasis- plus Gitterbasis-Stufe)

1) "Fernsehempfänger - Röhren", Elektro-Spezial GmbH, Hamburg.

³ "Die Schaltungstechnik der Vor- u. Mischstufe von Fernsehempfängern mit der Doppeltriode ECC 81", FUNKSCHAU 1952, Heft 1, Seite 6.

a) "Eingangsschaltungen deutscher Fernsehempfänger", FUNKSCHAU 1952, Heft 6, S. 101.

Eine derartige Anordnung wird auch als Cascoden-Verstärker bezeichnet. Eine einfache (nicht kritische) Neutralisation mittels der Spule $L_{\rm B}$ verringert das Rauschen $L_{\rm h}$ soll mit der Gitteranodenkapazität Resonanz für die Empfangsfrequenz ergeben. Die Gesamtanordnung mit der Röhre ECC 81 besitzt etwa fünffache Verstärkung für 200 MHz 2 , 3).

Bild 46. Gegentakt-Hf-Verstärker

Die symmetrische Gegentaktschaltung hat bei ultrakurzen Wellen zwei wichtige Vorteile: Die Eingangswiderstände beider Röhren liegen in Reihe, die Dämpfung des Kreises wird nur halb so groß. Sind die

Bild 46.
Prinzip des
Gegentakt-Hf.
Verstärkers.
Eingangswiderstände
und Kapazitäten liegen in
Reihe und belasten den
Kreis weniger.
Cn = Neutralisationskondensatoren

Kapazitäten zwischen den Gittern und Katoden ebenso groß wie bei einer Eintaktschaltung, dann ist auch die Gesamtkapazität des Kreises nur halb so groß. Die Selbstinduktion kann also verdoppelt werden, es ergibt sich ein günstigeres LC-Verhältnis als bei einer Eintaktschaltung. Um das Rauschen klein zu halten, verwendet man auch hier Trioden, muß dann aber die Schwingneigung durch Neutralisieren unterbinden. Bei der Gegentaktschaltung geschieht dies einfach durch kleine Kapazitäten von den Anoden zu den Gittern der Gegenröhren. Die Neutralisation ist für ein breites Band wirksam, die Kapazitätswerte sind unkritisch, so daß Festkondensatoren eingebaut werden können.

Bild 47. Katodenbasis-Gegentaktverstärker

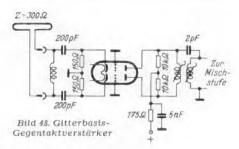

Die Röhre ECC 81 wurde vorwiegend als symmetrische Gegentaktverstärkerröhre entwickelt. Das Beispiel zeigt die Eingangsschaltung eines Fernsehempfängers. Um hohe Kreisgüten zu erzielen, wird die Eingangsspule nur mit den Schaltkapazitäten fest auf Bandmitte abgeglichen. Geringe Unsymmetrien der Spulenanzapfung für die Gittervorspannung werden durch den unverblockten $15-k\Omega$ -Widerstand unwirksam gemacht. Die Neutralisierung erfolgt durch die beiden 1,5-pF-Kondensatoren. Der Anodenkreis ist ebenfalls fest auf Bandmitte abgeglichen.

Bild 47. Gegentakt-Eingangsschaltung

Bild 48. Gitterbasis-Gegentaktverstärker

Auch beim Gegentaktbetrieb läßt sich die Schwingneigung durch Gitterbasisschaltung (an Stelle der Neutralisierung) beseitigen. Wegen des niedrigen Eingangswiderstandes der Gitterbasisschaltung (vgl. Bild 43) hat es keinen Zweck, einen hochwertigen Eingangskreis vorzusehen, denn er würde doch stark gedämpft werden. Man verbindet daher die Katoden über zwei Widerstände von je 150 Ω . Sie stellen damit die richtige Anpassung für einen Faltdipol und ein UKW-Bandkabel dar. Die von der Antenne

aufgenommene Energie wird also reflexionsfrei bis zum Röhreneingang geleitet. Die geerdeten Gitter wirken als Abschirmung. Der Anodenkreis wird durch einen Kanalwähler¹) stufenweise auf die einzelnen Kanäle abgestimmt. Die folgende unsymmetrische Mischstufe wird kapazitiv und induktiv angekoppelt.

Mischstufe

Bild 49. Gemeinsamer Oszillator für Bild und Ton

Zu leicht wird bei der Schaltungsbetrachtung eines Fernsehempfängers übersehen, daß eigentlich zwei Sender, nämlich der Bild- und der Tonsender, gleichzeitig empfangen werden. Es müssen also auch zwei Zwischenfrequenzen im Empfänger erzeugt werden. Man verwendet aber dazu nur eine Oszillatorfrequenz. Dadurch werden Schaltmittel erspart und es ergibt sich der große Vorteil, daß nur eine gemeinsame Abstimmung bedient zu werden braucht. Bei den schwer vermeidbaren kleinen Frequenzwanderungen der Oszillatoren wäre es sehr lästig, zwei getrennte Feineinstellungen für Bild und Ton bedienen zu müssen.

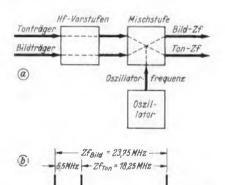


Bild 49. a = Prinzip der Frequenzmischung im Fernsehempfänger b = Lage der Frequenzen auf der Frequenzskala

Oszillator

Ein Zahlenbeispiel zeigt, wie die beiden Zwischenfrequenzen zustandekommen. Die Oszillatorfrequenz O liegt oberhalb der Empfangsfrequenzen E_{Ton} für den Ton und E_{Bild} für das Bild. Daraus ergeben sich als Zwischenfrequenzen die Differenzen

Rild

Für den Fernsehkanal 95) und eine Oszillatorfrequenz O = 227 MHz ergeben sich also:

$$227 - 208,75 = 18,25 = Zf_{\mathrm{Ton}}$$

 $227 - 203,25 = 23,75 = Zf_{\mathrm{Bild}}.$

Bemerkenswert ist, daß die höhere Empfangsfrequenz die tiefere Zwischenfrequenz ergibt und umgekehrt. Selbstverständlich sind nicht nur diese beiden im Abstand von 5,5 MHz liegenden Frequenzen, sondern das gesamte zugehörige Modulationsband zu übertragen. Vorkreise und Zf-Verstärker müssen daher die entsprechende Durchlaßbreite besitzen. Ing. O. Limann (Fortsetzung folgt)

5) FUNKSCHAU 1952, Heft 15, S. 277

¹⁾ FUNKSCHAU 1952, Heft 18, S. 363

Einführung in die Fernseh-Praxis

34. Folge: Die magnetische Zeilenablenkung (Fortsetz.)

In industriellen Fernseh-Empfängern bestehen zahlreiche Abwandlungen für die Zeilenablenkschaltung und die Hochspannungsgewinnung aus dem Zeilenrücklauf. Einige wichtige Beispiele werden hier besprochen.

Die Schaltung nach Bild 145 enthält viele Feinheiten, die im Rahmen dieser stellung nicht erwähnt werden können. Die Ablenkschaltungen der verschiedenen Fernsehfirmen weichen in mancher Hinsicht voneinander ab. Das gilt beispielsweise für die Regelung des Zeilenablenkstroms, also für die Einstellung der Bild-breite. In Bild 145 wird diese Regelung mit Hilfe einer veränderlichen Selbstinduktion vorgenommen, die in Reihe mit den Ablenkspulen geschaltet ist. Man erreicht dadurch bei richtiger Bemessung eine Regelung der Bildbreite ohne nennens-werte Veränderung der Bildröhren-Hochspannung. In anderen Schaltungen erfolgt die Bildbreitenregelung durch eine Parallelinduktivität zum Transformator oder zur Ablenkspule. Auch kapazitive Regel-anordnungen sind möglich. Manche Schaltungen ändern die Zeilenamplitude durch Gleichstromregler im Anoden-, Schirmgitter- und Katodenkreis der Ablenkröhre. Jede Schaltung hat gewisse Vorteile und Nachteile.

Schaltungen ohne Zeilentransformator

Bei der magnetischen Zeilenablenkung kann man auch auf den Zeilentransformator gänzlich verzichten und die Zeilenspulen direkt in den Anodenkreis der Ablenkröhre legen¹), wie es z. B. früher üblich war und in einer Schaltung der Firma Lorenz gemacht wird. Man vermeidet dadurch Verluste im Ablenktransformator. Für den Selbstbau kommen derartige Anordnungen jedoch nicht in Betracht.

Transformator-Kippschaltungen

Die von einigen Firmen entwickelten "Transformator-Kippschaltungen" zeichnen sich durch geringen Aufwand an Schaltmitteln und guten Wirkungsgrüd aus. Bei diesen Schaltungen nimmt man die Erzeugung der Kippspannung und die magnetische Ablenkung mit einer einzigen Röhre vor. Es handelt sich dabei um einen entarteten Sperrschwinger; der zugehörige Transformator bewirkt die Rückkopplung und liefert den Ablenkstrom. Die Herstellung der hierfür benötigten Einzelteile stößt auf ziemliche Schwierigkeiten. Es werden Ablenkjoche

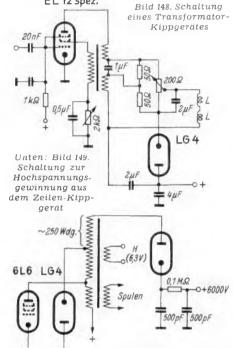
Hochspannungs-Zusatzwicklung +230V DY 80 Soarwicklung 40 KB PL 81 Rechts: Bild 147. Anordnung eines modernen Zeilentransformators Ferrit-Kern Luftspalt gebraucht, deren Ansertigung einen erneb-Bi!d 146. Horizontal-

In Bild 146 ist die Schaltung eines Zeilengenerators der Firma Telefunken wiedergegeben. Sie entspricht im wesentlichen der vorher besprochenen Anordnung. Als Ladekondensator ist eine Kapazitäi von 50 nF vorgesehen. Die Regelung der Bildbreite erfolgt mit einer Parallelinduktivität zwischen den Anschlüssen 13 und 14 des Zeilentransformators. Als Diode findet die PY 81 Verwendung, die für hohe Spannung zwischen Faden und Katode gebaut ist und daher ohne besondere Maßnahmen in den Heizkreis geschaltet werden kann. Die Hochspannung für die Bildröhre wird wie in Bild 145 erzeugt, zur Gleichrichtung dient die DY 80. Eine Hilfswicklung 11—12 gestattet die Austastung des Zeilenrücklaufs; ihr kann auch eine Spannung für den Phasenvergleich in den schon erwähnten Synchionisieranordnungen für die Horizontal-

Ablenkschaltung nach Telefunken

ablenkung entnommen werden.
In Bild 147 ist der Aufbau eines modernen Zeilentransformators dargestellt. Der Ferrit-Kern erhält an einem Schenkel einen kleinen Luftspalt, um die Auswirkung der Vormagnetisierung durch einen Teil des Anodengleichstroms zu verringern. Auf dem anderen Schenkel sitzl die Sparwicklung, die wegen der auftretenden großen Spitzenspannungen hochspannungssicher ausgeführt werden muß. Auf der Sparwicklung ist die Hochspannungs-Zusatzwicklung mit besonders guter Isolation angeordnet

lichen mechanischen Aufwand bedingt. Deshalb sei auf einige Literaturstellen verwiesen, denen der interessierte Leser alles Nähere entnehmen kann. Wir bringen lediglich in Bild 148 eine mit Dimensionierungsangaben versehene Transformatorschaltung3). Die dort vorgesehene Diode wird zur Spannungsrückgewinnung mit herangezogen, die Synchronisierung erfolgt am Steuergitter der Ablenkröhre.


Hochspannungsgewinnung aus dem Rücklauf

Schon früher wurde darauf hingewiesen, daß man die während des Rücklaufs am Zeilentransformator auftretende große Spannungsspitze zur Erzeugung der Hochspannung für den Betrieb der Bildröhre heranziehen kann.

Man unterscheidet zwei Möglichkeiten: Entweder entnimmt man dem Zeilentransformator — eventuell unter Zuschaltung einer Hilfswicklung — die Hochspannung unmittelbar und richtet sie gleich, oder aber man sieht ein besonderes kleines Kippgerät vor, das lediglich zur Erzeugung der Rücklaufspitze dient und das mit dem Zeilengenerator synchronisiert wird. Die erste Möglichkeit nach Bild 149 ist die einfachste und gebräuchlichste. Der Ablenkteil wurde lediglich angedeutet

- 1) Siehe FUNKSCHAU 1951, Nr. 23, S. 449.
- *) Bähring und Mulert, "Transformator-Kippgeräte", Fernseh-GmbH.-Hausmitteilungen. Band I Nr. 3, S. 82; Rudert, Fernseh-GmbH.-Hausmitteilungen, Band I, Nr. 2, Dezember 1938
- i) Dillenburger, "Einführung in die neue deutsche Fernsehtechnik", 1950, Berlin, Schiele und Schön, S. 113. Bild 80

und entspricht im wesentlichen der Schaltung nach Bild 132. Die Primärwicklung ist verlängert, um die Rücklaufspitze noch weiter zu erhöhen. Die Gleichrichtung des Spannungsstoßes erfolgt mit einer Hochspannungs - Gleichrichterröhre, die eine möglichst kleine Anoden-Katodenkapazität besitzen muß, damit die Rücklaufdauer

und zugleich die Impulsspannung nicht unnötig verkleinert werden. Hinter der Gleichlichterröhre ist eine Siebkette vorgesehen, die wegen der hohen Frequenz und des geringen Betriebsstromes aus kleinen Kapazitäten (500 pF) und einem Querwiderstand bestehen kann; dies bedeutet eine erhebliche Kostenersparnis.

Geeignete Röhren sind die DY 80 bzw. EY 51. Sie lassen sich unmittelbar aus einer auf dem Kipptransformator angebrachten Wicklung heizen. Es hat keinen Zweck, die Windungszahl der Zusatzwicklung über ein bestimmtes Maß hinaus zu erhöhen. Die Kapazität der Gleichrichter-röhre und der Wicklung transformiert sich nämlich auf die Primärseite, und zwar um so mehr, je mehr Windungen die Hilfswicklung hat. Dadurch verringert sich jedoch die Flankensteilheit und damit schließlich die Hochspannung, so daß man keineswegs unbeschränkt transformieren kann. Hochspannung und Ablenkung müssen in einem richtigen Verhältnis zueinanderstehen. Bei den Industrie-empfängern, die fest eingestellt sind und die nicht mehr geändert werden, ist das natürlich der Fall. Bei Versuchsgeräten dagegen werden oft Änderungen vorgenommen. z. B. im Anodenkreis der Ablenk-röhre, an den Zeilenspulen usw. Dadurch werden die optimalen Betriebsbedingungen gestört, vor allem dann, wenn sich andere Kapazitäten des Ablenktransformators ergeben.

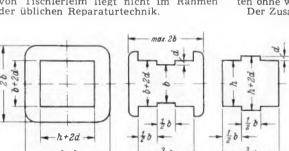
Bei der zweiten Möglichkeit zur Gewinnung der Hochspannung mit Hilfe eines besonderen Impulsgerätes gelten alle schon angegebenen Bemessungsgrundsätze Eine Synchronisierung ist erforderlich, damit die Rücklaufspitzen des Impulsgerätes während des Hinlaufes den Fernsehempfang nicht stören können.

H. Richter (Fortsetzung folgt)

"Geradezu klassisch einfach und verständlich" ist das Handbuch der Fernseh-Praxis des Franzis-Verlages:

des Franzis-Verlages: Der Fernsch-Empfänger

Von Dr. Rudolf Göldammer 144 Seiten mit 217 Bildern und 5 Tabellen kart. 9.50 DM. in Halbleinen 11 DM Sie brauchen es zur Vertiefung der fernsehtechnischen Artikelreihen in der FUNKSCHAU


FRANZIS - VERLAG, München 22. Odeonsplatz 2

Einfacher Spulenkörper für Transformatoren

In der FUNKSCHAU 1952, Heft 12, S. 232, wird die Selbstherstellung von Spulenkör-pern für Transformatoren auf die hierfür allgemein übliche Weise beschrieben. Die in dieser Arbeit enthaltenen Anregungen werden dem Praktiker sicherlich sehr wertvoll sein. Da die Herstellung solcher Spu-lenkörper verhältnismäßig selten in Frage kommt, soll nachstehend die Selbstherstellung eines Spulenkörpers geschildert werden, der zwar etwas mehr Arbeit verursacht, der andererseits aber nicht geleimt zu werden braucht, denn die Verwendung von Tischlerleim liegt nicht im Rahmen der üblichen Reparaturtechnik.

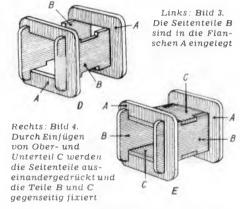
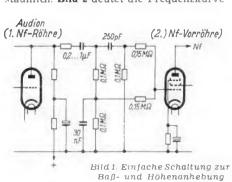

nar 2h . 120 -h+2d 30 20 В C

Bild 1. Teile des Spulenkörpers, b= Breite des Mittelschenkels des Eisenkerns, h = Schichthöhe des Eisenkerns, d = Materialstärke des Spulenkörpers (die Maßangaben beziehen sich auf E | I-Schnitte nach DIN E 41 302)

Der Spulenkörper besteht aus sechs einzelnen Teilen, die nur ineinandergesteckt zu werden brauchen. Die dargestellten Ein-zelteile A. B und C (Bild 1) werden in je zwei Stücken aus geeignetem kräftigem Material, beispielsweise Pertinax, ausge-schnitten. Man wähle das Material nicht zu schwach, im allgemeinen wird eine Stärke von 1 bis 2 mm das Richtige sein. Hinweise für die zu wählenden Abmessungen in Abhängigkeit von dem jeweils vorliegenden Transformatorkern sind in der Unterschrift von Bild 1 enthalten und dürften ohne weiteres verständlich sein. Der Zusammenbau eines solchen Spulen-körpers erfolgt in der Weise,

daß man nach Bild 2 zunächst die Teile B in die Endflan-schen A einführt und mit dem Finger auseinanderspreizt daß ein Gebilde ähnlich Bild 3 entsteht. Schließlich werden die Teile C unter Ausnutzung der federnden Eigenschaft des Isoliermaterials so eingesetzt, wie in **Bild** 4 gezeigt. Hier-durch entsteht ein stabiler, allen normalen Anforderungen entsprechender Spulenkörper.

Bemerkt sei allerdings, daß ein derarti-ger Körper sich weniger für den M-Schnitt eignet, da sich die zungenartigen Mittelbleche hierbei schlecht einschachteln lassen. Im allgemeinen wird man aber auch stets in der Lage sein, einen passenden U/Ioder E/I-Schnitt zu finden. Selbstverständlich eignet sich dieser Spulenkörper ebensogut auch für Hochfrequenz-Massekerne von U- oder E-Form. Klipphahn


Bild 2. Aufriß, Grundτiβ und Seitenriβ des fertig zusammenge-

Baß- und Höhenanhebung für hochwertige Wiedergabe

setzten Spulenkörpers

Mit der in Bild 1 dargestellten verblüffend einfachen Schaltung, läßt sich eine sehr wirksame Baß- und Höhenanhebung durchführen

Der Grundgedanke zu dieser Schaltung war die Schaffung eines Zweitempfängers und zwar eines Einkreisers - mit möglichst hochqualifizierter Wiedergabe unter Verwendung vorhandener Teile bei äußer-Bedienungsvereinfachung. sächlich erzielte Wiedergabegüte ist erstaunlich. Bild 2 deutet die Frequenzkurve

schematisch an. Die Nf-Vorröhre ist zum Ausgleich der Verluste des Entzerrers unbedingt erforderlich. Die Wirkungsweise der Schaltung ist leicht zu übersehen. Die Höhen gelangen über den 250-pF-Kondensator zur Nf-Vorröhre; die Bässe werden an einem frequenzabhängigen Spannungsteiler abgegriffen. Entkopplungswiderstände von je 0,15 M Ω verhindern gegenseitige Beeinflussung der beiden Wege¹).

Die Verdrahtung erfordert einige Überlegung, um Einstreuungen sicher zu verein "Drahtverhau" führt zum meiden:

1) Regelbare Schaltungen dieser Art finden sich auf Seite 52 bis 55 in Band 8 der RPB Franzis-Verlag, München 22

Brummen. Ebenfalls ist sorgfältige Entkopplung in der Stromversorgung bei solchen Verstärkern stets angebracht. Die Siebkette des Gleichrichters wurde zweistufig mittels Siebdrossel und Widerstand ausgeführt; die Endröhren-Anodenspan-nung wird am ersten Siebkondensator entnommen. Ferner wurden die Anoden-spannungen der beiden Vorröhren nochmals reichlich gesiebt.

Die Schaltelemente der Anordnung sind auf einer Pertinaxplatte montiert, die in einen Abschirmzylinder oberhalb des Chassis eingesteckt wird. Die erzielte Brummfreiheit führt in Sendepausen zu der Annahme, das Gerät sei außer Betrieb. Die Lautstärkeregelung erfolgt beim Empfänger hochfrequent; bei einem Verstärker ist ein Summenregler erforderlich. Bei abendlichem Fernempfang mit dem Gerät ist bisweilen zur Dämpfung eines hohen Singtones (9 - kHz - Überlagerungspfeifen) eine einfache Tonblende angebracht.

A. Linde

Kleiner Empfänger-Prüfgenerator

Um im Außendienst einen leichten Prüfsender zur Verfügung zu haben, der zum Überprüfen und zum Vorabgleichen verstimmter Empfänger dienen kann, wurde dieser kleine Generator, der sich verhält-nismäßig einfach herstellen läßt, entwikkelt. Als Röhre verwendet man am besten eine Allstrom-Hf-Pentode, um auf niedrigen Stromverbrauch zu kommen (z. B. UF 5, UF 6, UF 21, UF 41, UF 42, UF 80 usw.). Der Heizkreis ist entsprechend zu bemessen. Wie man aus der Schaltung ersieht, wird innerhalb einer Röhre Hoch-

nd Tonfrequenz erzeugt. Gitter und Schirmgitter werden in einer

wurde

ein

normalen Rückkopplungsschaltung verwendet. Am Fußpunkt des Gitterableitwiderstandes befindet sich der Nf-Trans-formator, dessen Rückkopplungswicklung in der Anodenleitung liegt. Es wurde ein Nf-Transformator 1:2 verwendet, für den die angegebenen Parallelkondensatoren so bemessen waren, daß sie einen Ton von ca. 400 Hz ergaben. Die Hochfrequenz wird durch einen Entbrummer von 100 Ω in der Katode ausgekoppelt. Als künstliche Antennne dienen 400 Ω und 400 pF. Da vorwiegend der MW-Bereich und die Zwischenfrequenz nachgestimmt werden.

normaler Hf-Eisenkern

11-500 pF 50 nJ = 0,1µF 1620 kHz bis 520 kHz verwendet. Natürlich kann man nach Be-

darf noch einen KW-und LW-Bereich vorsehen. Um im Zt-Bereich eine Bandspreizung zu erhalten, wurde ein mittels S 1 zuschaltbarer 500-pF-Kondensator eingebaut, so daß der Zf-Be-reich von 560 kHz bis 400 kHz reicht. Eine unmodulierte Prüfung läßt sich durchführen, indem man die Primärspule des Nf-Übertragers durch den Schalter S2 kurz-schließt. Für Tonfrequenz ist ein besonderer Ausgang vorgesehen.

Einfache Schaltungen für Versuche mit Elektronenstrahl-Oszillografen

Der in FUNKSCHAU 1952, Heft 20, S. 406 in der Spalte P_{Schärfe} der Tabelle angegebene Wert für R bezieht sich entsprechend der Unterschrift von Bild 1 auf einen in der Schaltung nicht besonders dargestellten Festwiderstand zwischen Erde und dem Potentiometer PSchärfe Er ist also nicht identisch mit dem Widerstand R zwischen den beiden Po-tentiometern, dessen Wert in der dritten Spalte der Tabelle besonders angegeben ist

Voeschläge für die WERKSTATTPRAXIS

Einfaches Hilfsmittel zur Trennschärfesteigerung

Es ist bekannt, daß eine richtig bemessene und angewendete Ran menantenne ein hervorragendes Hilfsmittel zur Erhöhung der Gesamtselektion ist. Durch geschickte Kombination einer Hoch- oder Zimmerantenne mit einer aperiodischen Rahmenantenne lassen sich die großen Abmessungen und die Notwendigkeit, den Rahmen bei jeder Station neu abzustimmen, weitgehend vermeiden. Bedingung ist, daß ein genügend leistungsfähiger Empfänger, und zwar mindestens ein Mittelklassensuper, zur Verfügung steht. In diesem Empfänger wird nach Bild 1 der Antennenkreis vollständig von Masse getrennt und an einen zweipoligen Kippumschalter geführt. Der Schalter wird an der Rückwand des Gerätes an leicht erreichbarer Stelle angeordnet. Bei Allstromempfängern sind zwei genügend spannungsfeste Kondensatoien von je etwa 10 nF in die Zuleitungen zu schalten. Die Empfängererdung verbleibt an der Erdbuchse. Von der nun freien Antennenund der Erdbuchse werden zwei Leitungen zum Antennenumschalter gelegt. An die anderen beiden Anschlüsse dieses Schalters kommen die Zuleitungen des Rahmens

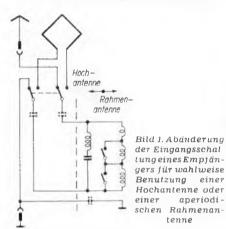
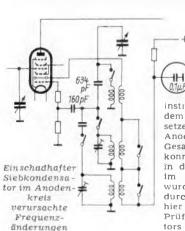


Bild 2. Die Rahmenwicklung wird an der Rückwand eines 18 × 24 cm großen Fotorahmens angebracht


Die Rahmenantenne ist auf der Rückseite eines Fotoständers für das Format 18 × 24 cm montiert. Soll dieser nicht selbst angelertigt werden, so ist jeder käufliche verwendbar, sofern der Sockel nicht aus Metall besteht. Auf die Kartonrückwand des Fotoständers werden im Abstand von etwa 1 cm von den Ecken kleine Holzwürfel aufgeleimt und dann um diese 60 bis 70 Windungen dünnen Kupferlackdrahtes gewickelt (Bild 2). An geeigneter Stelle werden die Enden und die Zuleitungsschnur abgefangen und miteinander verlötet. Die Wicklung wird durch einige Tropfen Klebstoff oder mittels Tesaband gegen Verrutschen gesichert. Die Zuleitung soll nicht länger als einen Meter sein; man verwendet am besten eine Kopfhörer- oder Klingellitze. Die Rahmenantenne kann dann an geeigneter Stelle auf oder neben dem Empfänger untergebracht wei den.

Antennen und Erde werden wie bisher in die entsprechenden Buchsen des Empfängers gesteckt, der Antennenumschalter auf "Hochantenne" gelegt. Wird die empfangene Station durch Überlagerung gestört, dann wird auf "Rahmenantenne" umgeschaltet und die Störung durch Drehen des Rahmens um maximal 45 ° nach links oder rechts auf geringste Lautstärke eingestellt. Auch bei Gewitter- und sonstigen Funkstörungen bringt eine Rahmenantenne infolge ihrer Richtwirkung eine merkliche Besserung.

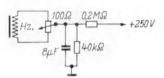
Frequenzverwerlung

Ein Batterie-Super, mit einer Oktode als Mischröhre, kam mit einem zeitweise kurz auftretenden Aussetzfehler zur Reparatur. Der Empfang blieb dabei nicht ganz aus, sondern ging nur erheblich in der Lautstärke zurück, jedoch war jeweils eine Neuabstimmung erforderlich.

Diese Frequenzverwerfung ließ auf einen Fehler im Oszillatorteil schließen. Ein Auswechseln der Mischröhre brachte keinen Erfolg.

Da der Fehler auf allen Bereichen auftrat, konnten der Serienkondensator 634 pF oder der Ankopplungskondensator 160 pF als Ursache in Frage kommen (Schaltbild), jedoch brachte auch deren Auswechseln keine Anderung. Erst ein fest an die Oszillatoranode angeschlossenes Meß-

instrument gab einen Hinweis. Bei dem kurzzeitig auftretenden Aussetzen ging die Spannung an der Anode ganz erheblich zurück. Da die Gesamtspannung aber erhalten blieb, konnte der Fehler eigentlich nur noch in der Anodenzuleitung liegen. Die im Anodenkreis liegenden Spulen wurden auf Schlußmöglichkeiten durchgemessen, jedoch konnte auch hier nichts festgestellt werden. Eine Prüfung des 0.1 µF-Siebkondensators mit der Glimmlampe ergab


einwandfreies Arbeiten. Beim Berühren ließ sich aber eine leichte Erwärmung feststellen, was rein äußerlich durch die an den Seiten herausgequollene Vergußmasse zu erkennen war. Dieser Kondensator wurde daraufhin erneuert und das Gerät drei Tage in Betrieb gehalten, ohne daß sich der Aussetzfehler wieder bemerkbar machte.

Die Ursache dieser Frequenzverwerfung ist wohl darin zu suchen, daß durch die sprunghafte Anodenspannungsminderung sich die Raumladung zwischen den Elektroden und damit auch die Kapazität stark ändert, was sich in einer Verstimmung bemerkbar macht.

Helmut Steinert

Kompensation von Brummspannungen in hochwertigen Verstärkern

In mehistufigen Verstärkern ist es oft aus wirtschaftlichen Gründen nicht möglich, die Vorstufen mit Gleichstrom zu heizen. Bekanntlich kann bei hoher Verstärkung und größerer Aussteuerung das Gitter 1 kurzzeitig positiv werden. Vom Heizfaden, der ja vom Wechselstrom durchflossen wird, kommt dann zum Gitter 1, das nun als Anode wirkt, ein Elektronenfluß zustande. der ein Wechselstrombrummen verursacht. Dem ist leicht abzuhelfen, und zwar durch die dargestellte Schaltung. Der Heizfaden wird dabei so positiv gegenüber der Masseleitung, daß der beschriebene Effekt nicht mehr auftreten kann. Zu

Bestimmte Brummstörungen in empfindlichen Verstärkern werden verhindert, indem der Heizkreis eine positive Vorspannung erhält

beachten ist nur, daß die zulässige Spannung zwischen Faden und Katode nicht überschritten wird. Mit der beschriebenen Schaltung kann bei mehrstufigen Verstärkern und einwandfreiem Aufbau die Brummspannung extrem klein gehalten werden. Fritz Kollmuss

Vom Telefunken-Röhrenlaboratorium ging uns hierzu folgende Stellungnahme zu:

Der gemachte Vorschlag ist zweifellos gut, siehe auch das Buch Rothe-Kleen, Bücherei der Hochfrequenztechnik, Band 3, Seite 372 und 373, in dem unter der Bezeichnung "Isolationsbrumm" ebenfalls auf diese Tatsache hingewiesen worden ist, und in dem auch die dafür notwendigen Kurven gebracht werden. Es ist auch bisweilen schon in der Industrie von einer solchen Maßnahme Gebrauch gemacht worden. Allerdings muß man bemerken, daß nicht jede Brummstörung, dadurch zunichte gemacht werden kann, weil z.B. die Brummstörung, die als magnetischer Brumm bezeichnet wird und die durch den im Heizfaden fließenden Strom erzeugt wird, nach dem genannten Verfahren nicht auszukompensieren ist.

Eriahrungen mit Autosupern

Wer sich mit der Reparatur von Autosupern befaßt, wird als häufigste Fehlerursache — bei einigen Fabrikaten — Berührungsschlüsse von Einzelteilen feststellen können. Wie unangenehm sich derartige Störungen während der Fahrt auswirken, darüber können die Autoradio-Besitzer Auskunft geben. Der Mechaniker, der wegen dieser Mängel das Aus- und Einbauen vielleicht einige Male vorzunehmen hat, ist wirklich nicht zu beneiden.

Die großen mechanischen Beanspruchungen eines Autosupers werden zum Teil noch sehr unterschätzt. Die Einzelteile sollen so kurz wie möglich an Stützpunkte angelötet werden. Rohrkondensatoren soll man mit Schellen befestigen. Die Einzelteile untereinander sollen so verlegt werden, daß eine Berührung nicht möglich ist. Bei Raummangel sind die Einzelteile mit Isolierschlauch zu überziehen. Verschiedene Autosuper sind äußerst zweckmäßig aufgebaut. Ein Schluß durch Erschütterungen ist bei ihnen einfach unmöglich. Derartige Geräte können dem Besitzer nur Freude bereiten. Doch leider sind nicht alle so schön aufgebaut. So manchen Autosuper, den man zur Reparatur bekommt, möchte man am liebsten gar nicht annehmen, da man von vornherein weiß, daß es immer wieder Reklamationen gibt.

Jeder Autosuper, der die Fabrik verläßt, gehört vorher auf den Schütteltisch. Der Hub des Schüttlers soll so eingestellt weiden, daß er den stärksten Erschütterungen, denen ein Autosuper während der Fahrt ausgesetzt ist, gleichkommt. Es nützt dem Händler wenig, wenn die Fabrik ein halbes Jahr die Garantie übernimmt, denn derartige Fehler bekommt er ja nicht vergütet, da keine Einzelteile ausfallen. Dem Händler entstehen daher erhebliche Belastungen durch den Kundendienst.

Fehler, die des öfteren vorkommen und sich leicht vermeiden ließen, sind lose Hf-Abgleichkerne. Es genügt nicht, die Kerne mit Wachs zu sichern, sondern es ist, wenn möglich, ein dünner Gummifaden mit beizulegen. Das Wachs läuft nicht immer in die Gewindegänge hinein und das Lockerwerden der Kerne ist daher keine Seltenheit.

Beim Wagenwaschen kommt es mitunter vor, daß Wasser in die Entüüftungslöcher des Gehäuses eindringt und das Gerät mit einem Föhn wieder ausgetrocknet werden muß. Der Schaden ließe sich vermeiden, indem man Drahtgaze im Inneren des Gehäuses anbringt Dadurch ist ein Eindringen des Wassers nicht möglich. Auch Abgleichlöcher im Gehäuse wären sehr wünschenswert, vor allem für den Vorkreis und den Oszillator, da die dazu nötigen Abgleichkappen in den Radiowerkstätten nicht vorhanden sind. Die Verstimmung durch das Gehäuse ist nicht immer ohne welteres zu korrigieren. An den Abgleichlöchern kann ein kleines Abdeckblech angebracht werden. Auch an eine leichtere Zugänglichkeit der Skalenlampen soll bei der Konstruktion gedacht werden. Bei getrenntem Aufbau sollen die Verbindungsleitungen mit unverwechselbaren Steckern ausgerüstet werden

Das FRANZIS-FACHBUCH gehört dazu

wenn Sie für Ihre Mitarbeiter und Freunde und für sich selbst die Weihnachtsgeschenke wählen

Treffen Sie Ihre Wahl frühzeitig - wir machen es Ihnen leicht

Kartoniert 9.50, Halbleinen 11 DM

ING. OTTO LIMANN

Funktednik ohne Ballast

Einführung in die Schaltungstechnik der Rundfunkund UKW-Empfänger. 196 Seiten, 368 Bilder, 7 Tafeln. 2. Auflage. 1952. Kart. 9.50 DM, Halbleinen 11 DM

DIPL.-ING. WILH. HASSEL UND ING. ERWIN BLEICHER

Trafo-Handbuch

Handbuch der Netz- u. Tonfrequenz-Transformatoren und Drosseln in Berechnung, Entwurf und Fertigung. 288 Seiten, 158 Bilder, 24 Tafeln. 1951. Kart. 18.80 DM, Halbleinen 19.80 DM

ING. GERHARD HENNIG

Dauermagnettechnik

132 Seiten, 121 Bilder, 16 Tabellen. 1952. Kart, 12,60 DM, Halbleinen 13.80 DM

HELMUT SCHWEITZER

Röhrenmeßtechnik

192 Scit., 118 Bild., 1950. Kart. 12 DM, Halbl. 13.80 DM

ING. HEINZ RICHTER

Hilfsbuch für Katodenstrahl-Oszillografie

200 Seiten, 176 Bilder, 79 Oszillogramme, 12 Tab. 1950. Kart. 12 DM, Halbleinen 13.80 DM

HANS-JOACHIM SCHULTZE

Funktednische Nomogramme

75 Tafeln in Mappe, 1950. Kart. 9 DM

URTE

Funktechnik ohne Ballast:

Durch das vielgestaltige Labyrinth der Schaltpläne moderner Rundjunkgeräte und der zugehörigen Baubeschreibungen bietet sich dieses bereits in 2, Auflage erscheinende handliche Buch des bekannten Funkfachschriftstellers als zuverlässiger Wegweiser auf Elektro-Technik, Februar 1952

Trafo-Handbuch:

Den Ingenieur und Praktiker wird das Buch als Berechnungsgrund-lage und ständiger Ratgeber ein wertvolles Handbuch sein. Dem Studierenden wird es in seiner klaren, eindringlichen und leicht-verständlichen Form das erfolgreiche Einarbeiten in die Materie wesentlich erleichtern. Fernmeldetechnische Zeitschrift, Juni 1952

Dauermagnettechnik:

Dauermagnettechnik:

Ein Buch, das die Technik der Dauermagnete ausreichend, aber doch kurz darstellt, wie es der Praktiker braucht: es ist das erste Verdienst des Verfassers, ein solches Buch herausgebracht zu haben. Das zweite aber ist, daß trotz aller Kürze alles verständlich, klar und übersichtlich dargelegt ist, so daß nicht mehr Anforderungen an die Denkarbeit des Lesers gestellt werden, als uubedingt nötig. Der Verfasser steht nicht nur in, sondern auch über der Sache.

Der Elektromeister, August 1952

Preise stark herabgesetzt

FRITZ ALF

Tragbare Universalempfänger* für Batterie- und Netzbetrieb

86 Seit., 55 Bild., 84 Sockelschaltung., 10 Nomogramme. 1948. Kart. 1 DM

W. W. DIEFENBACH

Standardschaltungen der Rundfunktechnik*

196 Seiten, 103 Schaltungen. Kart. 3 DM

ING. ERNST HANNAUSCH

Wie richte ich meine Radiowerkstatt ein?

52 Seiten, 17 Bilder, zahlreiche Tabellen, 1950, Kart, 3,50 DM

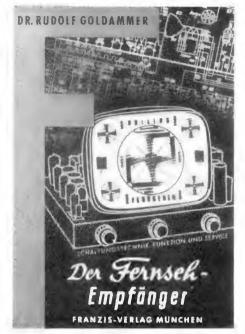
FRITZ KUNZE

Amerikanische Röhren* 64 Seit., 23 Tab., 70 Bild., 422 Sockelschalt. 5. Aufl. 1948. Kart. 3.80 DM

ING. OTTO LIMANN

So gleicht der Praktiker ab

48 Seiten, 36 Bilder, viele Tabellen. 1950. Kart. 3 DM



Kart. 18.80, Halbleinen 19.80 DM

Kart. 12.60, Halbleinen 13.80 DM

FRANZIS-VERLAG - MÜNCHEN 22

DR. GOLDAMMER · Der Fernseh-Empfänger

Schaltungstechnik, Funktion und Service

144 Seiten mit 217 Bildern und 5 Tabellen Kart. 9.50 DM, Halbleinen 11 DM

Ein Urleil für viele ähnliche:

Ein Orieit jur Viele Amilioe:
"Ein Darstellung, die ihren Wert nicht auf den ersten
Blick erweist, sondern erst dann, wenn man sich eingehend
damit befaßt. Seit Mitte September läuft in Aachen ein
Kursus über Fernseh-Reparaturtechnik, bei dem auf meine
Empfehlung hin 30 Exemplare abgesetzt werden konnten.
Je mehr führende Herren der Industrie bei diesem Kursus vortragen, um so mehre rekennt man den Umfang und die Genauigkeit der Darstellungen. Das gilt ganz besonders für die zahlreichen Schaltungsvarianten der gegenwärti-gen deutschen Fernsehempfänger. Ich bin daher überzeugt, daß der Goldammer je länger um so mehr Anerkennung und Erfolg haben wird.

Fachliteratur kann als Werbungskosten od Betriebsausgaben vom steuerpflichtigen Einkommen abgesetzt werden!

dern, Tabellen und Schaltungen.

Ein Trimmer im Antennenkreis wäre sehr erwünscht, da bei älteren Wagen nicht immer die vorgeschriebene Antenne mit dem dazugehörigen Kabel verwendet werden kann. Auch eine Normung der Zerhacker wäre anzustreben, die Lagerhaltung des Händlers wäre viel einfacher.

Interessante Signallampenfassungen im Ausland

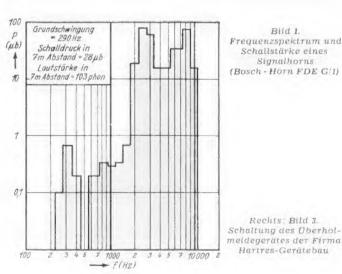
Signallampenfassungen für Verstärkeranlagen, kommerzielle Geräte. Meßeinrichtungen usw. sind verhältnismäßig teuer (teurer z. B. als Röhrenfassungen). Es liegt daher nahe, in ihnen mehrere Funktionen zu vereinigen, wodurch gleichzeitig auch Platz auf der Frontplatte gespart wird.

Die engliche Firma A. F. Bulgin & Co., Ltd. (Bye-Pass Road Barking) bringt deshalb eine Mehrfarben - Signallampenfassung heraus. Sie enthält in einem Gehäuse mit einer gemeinsamen farblosen Frontlinse drei Niedervolt - Signallämpehen mit je einem farbigen Kunststoff-Filter (Normalausführung rot-grün-blau; zehn Farbkombinationen sind möglich). Je ein Lampenanschluß ist getrennt herausgeführt, die Gegenpole besitzen eine gemeinsame Anschlußöse. Auf diese Weise ist es möglich, durch Schaltkontakte die Farben beliebig aufleuchten zu lassen und damit die einzelnen Betriebsarten des Gerätes mit nui einer Lampenfassung zu kennzeichnen.

Vorwiegend als Sicherung gebaut ist eine Signallampenfassung der Schweizer Firma Schurter AG. in Luzern. Diese Fassung enthält gleichzeitig eine Feinsicherung und ein Glimmlämpchen, das aufleuchtet, wenn die Sicherung durchgeschmolzen ist. Die Schmelzsicherungen werden für Stromstärken bis herab zu 0,2 mA (Vakuumtype für vierfache Überlast während zehn Sekunden und 1,5fache Überlast während einer Stunde) angeboten.

Diese Verbindung von Sicherung und Signallampe ist eine elegante Lösung für den in der FUNKSCHAU 1952, Heft 15, S. 291 gemachten Vorschlag, den Ausfall solcher Sicherungen durch Signallämpchen zu melden, bei deren Durchschmelzen sich nur eine Minderleistung des Gerätes aber kein vollständiges Versagen ergibt.

Unseren Geräte-Konstrukteuren wäre es sicher erwünscht, wenn die beiden beschriebenen Arten von Signallampenfassungen auch von deutschen Einzelteilfirmen gebaut würden


Überholmeldegeräte

Die zunehmende Verkehrsdichte auf den Straßen, insbesondere der stark anwachsende Lastwagenverkehr bedingen besondere Maßnahmen zur reibungslosen Abwicklung des Verkehrs und zur Vermeidung von Unfällen. Eines der größten Probleme ist das Überholen von Lastzügen mit Anhängern oder von Omnibussen durch schnellere Personenwagen. Hierbei treten häufig Unglücksfälle auf, da der Lastwagenfahrer wegen des Fahrgeräusches oder wegen der Entfernung zu seinem Zugende das Signal des überholenden Fahrzeuges nicht bemerkt.

Diesem Übelstand soll durch Einführung sogenannter Überholmelde an Lastzügen mit mehr als 9 Tonnen oder mehr als 14 m Länge abgeholfen werden. Es besteht bereits eine amtliche Verordnung, die iedoch noch nicht in Kraft tritt, bevor die technischen Vorschriften und die Abnahmebedingungen geklärt sind. Von der Physikalisch-Technischen Bundesanstalt Braunschweig wurden zunächst einmal Richtlinien herausgegeben, nach denen solche Geräte ausgeführt sein müssen.

Die Lösung der gestellten Aufgabe, nämlich das Signal des überholenden Fahrzeuges dem Fahrer des Lastwagens oder Omnibusses bereits aus einer Entfernung von 3c bis 50 m hinter dem Fahrzeug anzuzeigen, geschieht zweckmäßig mit elektronischen Mitteln. Dies soll an Hand eines praktisch ausgeführten Versuchsgerätes System Hartmeyer und Ressel im folgenden kurz beschrieben werden.

Grundsätzlich gibt es mehrere Möglichkeiten, das gesteckte Ziel zu erreichen. Einmal kann man mittels spezieller Lichtquellen (z. B. Infrarot) oder durch kurzzeitige dem Auge unsichtbar bleibende Lichtblitze vom überholenden Fahrzeug aus eine am Lastwagen angebrachte Fotozelle beeinflußen, die ein entsprechendes Signal auslöst. Dieses optische Verfahren ist abgesehen von der Empfindlichkeit einer Fotozelle gegen mechanische Beanspruchungen ungeeignet, weil

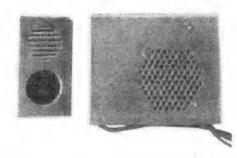
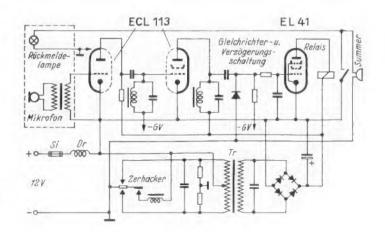


Bild 2.
Mikrojon und
Rückmeldelumpe
(kleines Kästchen)
und Verstärkereinheit des HartresÜberholmeldegerätes
(Versuchsaustührung)

es am überholenden Fahrzeug einen besonderen "Sender" nämlich die spezielle Lichtquelle erfordert. Aus diesem Grunde sind alle Verfahren, die am überholenden Fahrzeug zusätzliche Einrichtungen erfordern, von vornherein auszuscheiden.

Die zweite Gruppe der Überholmelder arbeitet elektroakustisch, d. h. das von dem ohnehin vorhandenen und beim Überholen betätigten Signalhorn ausgestrahlte Signal wird von einem Mikrofon am Ende des Lastzuges aufgenommen und dessen Fahrer nach Verstärkung direkt oder indirekt hörbar bzw. sichtbar gemacht.


Der Ton eines Signalhorns besteht aus einem Frequenzgemisch. Die Intensität und die Frequenzen einer typischen Ausführung zeigt Bild 1. Die Grundschwingung wird dabei mit 290 Hz angegeben. Der größte Schalldruck entsteht jedoch zwischen ca. 2 und 9 kHz mit zwei Maxima bei 2,5 und 8 kHz. Bei anderen Horntypen und Fabrikaten werden sich diese Werte natürlich ändern. Die Messungen der Physikalisch-Technischen Bundesanstalt (PTB) haben jedoch ergeben, daß fast alle Hörner Maxima zwischen 1.8 und 3 kHz besitzen: nur eine Type, die aber vornehmlich als Zusatzhorn verwendet wird, liegt unter 1 kHz. Um Störgeräusche von anderen Schallquellen möglichst auszuschließen, soll daher der Verstärker im Frequenzbereich auf 1.8 bis 3 kHz begrenzt werden.

Zur Aufnahme des Signals dient ein Mikrofon. Dies ist der empfindlichste Teil der ganzen Anordnung. Hier treten die größten mechanischen Beanspruchungen auf, insbesondere durch Spritzwasser, Schlamm, Steinschlag usw. Der Temperaturbereich muß ohnehin von 140° bis — 20° C gehen. Die Erschütterungen sind gerade beim Mikrofon am größten. Kondensatormikrofone. Kristallmikrofone und auch Kohletypen dürften den gestellten Anforderungen nicht gewachsen sein

Bei dem hier beschriebenen Gerät kommt eine Spezialausführung eines elektrodynamischen Mikrofons zur Anwendung. Ein zwischen Spulen beweglicher Anker (Freischwingerprinzip) ist dabei mit einer sehr straff gespannten Membran mechanisch verbunden. Die Anordnung ist durch die Membran selbst wasserdicht abgeschlossen. Das Hauptaugenmerk wurde auf mechanische Festigkeit und auf richtige Lage der Eigenresonanz (etwa 2,3 kHz) gelegt. Amplitudenlinearität ist von untergeordneter Bedeutung. Eine hohe Empfindlichkeit wird angestrebt, um den nachfolgenden Verstärker möglichst einfach zu halten. Das Mikrofon wird bei der Versuchsausführung in einem Kästchen zusammen mit einer Funktionsrückmeldelampe untergebracht (Bild 2).

Vom Mikrofon gelangt das Signal auf den im Führerhaus untergebrachten Verstärker, dessen Schaltung Bild 3 zeigt. Der Verstärker ist dreistufig und mit den Röhren ECL 113 und EL 41 bestückt. Aus den bereits angeg-benen Gründen wird ein Resonanzverstärker für etwa 2 bis 2,5 kHz angewandt. Um eine Gleichstromvorbelastung dei Induktivität des Resonanzkreises der ersten Stufe zu vermeiden, wurde dieser in den Gitterkreis des Tetrodensystems der ECL gelegt und die Anodenspannung des Triodensystems dieser Röhre über einen Widerstand zugeführt. Diese Maßnahme ist beim zweiten Resonanzkreis nicht erforderlich, da dieser mit der Gleichrichteranordnung und Verzögerungsschaltung belastet ist. Die Endstufe besitzt eine feste Gittervorspannung. Im Anodenkreis liegt ein Relais, das einen Summer betätigt. Das ankommende Signal wird also vom Mikrofon aufgenommen, verstärkt und gleichgerichtet und löst einen Summerton aus.

Parallel zum Summer kann das Signal durch eine Kontrollampe dem Fahrer auch sichtbar gemacht werden. Die Meldung ist also indirekt. Das hat verschiedene Vorteile. Bei direkter Übertragung gelangen auch alle anderen Geräusche zum Fahrer. Je nach Entfernung

ist das Signal verschieden laut. Die Unterscheidung zwischen den einzelnen Geräuschen lenkt den Fahrer vom eigentlichen Überholsignal ab.

Durch die indirekte Methode wird erreicht, daß nur Geräusche bzw. Signale von einer bestimmten Schallstärke ab gemeldet werden. Diese sind dann immer gleich laut. Um sehr kurzzeitige Signale auszuschalten, sollen nach den Richtlinien der PTB Signale nur angezeigt werden, wenn sie länger als 0,1 Sekunden anhalten. Es ist tünstig, diesen Wert noch zu vergrößern. Dies wird durch ein Verzögerungsglied vor der Endstufe erreicht. Die Verzögerung kommt (ladurch zustande, daß zur Aufladung des Kondensators im Gitterkreis der EL 41 eine gewisse Zeit benötigt wird, bis die Gittervorspannung überwunden ist. Da in einer solchen Schaltung die Verzögerungszeit jedoch abhängig von der Amplitude des Signals ist, werden zweckmäßig anzugsverzögerte Relais verwendet.

Für den Überholer ist es wichtig zu wissen, ob sein Signal angekemmen, d. h. vom Lastwagenfahrer gehört worden ist. Aus diesem Grunde ist eine Rückmeldelampe vorgesehen, die vom gleichen Relais, das den Summer betätigt, eingeschaltet wird. Die Lampe ist mit dem Mikrofon zusammengebaut. Die Rückmeldung geschieht also automatisch.

Die Stromversorgung erfolgt aus der Starterbatterie mittels Zerhacker, Transformator und Trockengleichrichter, wie dies auch bei Autoempfängern üblich ist. Der Verbrauch beträgt normal etwa 16 Watt. Nur wenn ein Signal ankommt, ist der Verbrauch etwas höher, weil ohne Signal die Endstufe gesperrt ist.

höher, weil ohne Signal die Endstufe gesperrt ist.

Mit dem beschriebenen Gerät wurde auf freier Strecke eine Empfindlichkeit von durchschnittlich 50 m erzielt. Eine Erhöhung ist an sich noch möglich. Die Empfindlichkeit ist abgesehen von der Art des Signalhorns auch noch abhängig von Witterungseinflüssen (Wind, Regen). In Städten und auf Straßen mit settlichen Böschungen wird die Empfindlichkeit wegen der Schallreflektionen wesentlich größer.

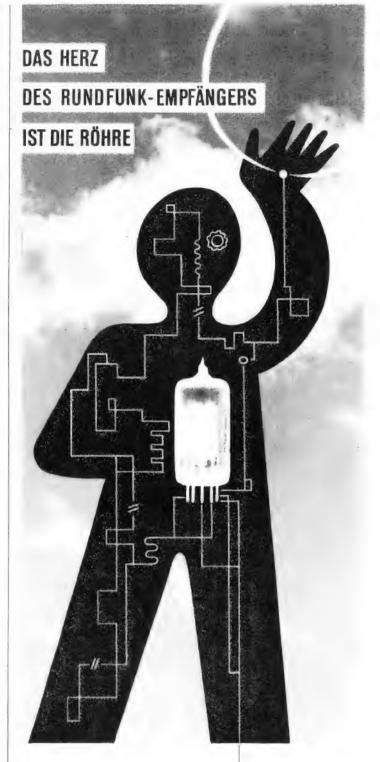
Herbert Lennartz

Störfreiheit bei industriellen Hf-Geräten

Am 1. März ist das neue deutsche Hf-Gesetz in Kraft getreten, das die für störende elektrische Geräte geltenden Vorschriften enthält. Für die industriellen Geräte gelten danach erheblich geringere Toleranzen als bisher (z. B. für den zugelassenen Frequenzkanal 40,68 MHz ± 0,05 %). Außerdem, und das ist das wichtigste, wird praktisch Oberwellenfreiheit gefordert. An sich sind beide Probleme durchaus zu lösen. Bedenken wir aber, was allein die Einengung dei Toleranzen an Mehraufwand erfordert (Quarzsteuerung und Verdopplerstufen), so stellt die zwelte Forderung Ansprüche, die ein Gerät unter Umständen unzulässig verteuern.

Bei Geräten kleinerer Leistung (etwa 50 bis 100 Watt) mögen die Verhältnisse nicht so kritisch sein. Hier mag es wohl gelingen, mit verhältnismäßig einfachen Mitteln eine einwandfreie Hf-Abschirmung zu erreichen (FUNKSCHAU 1952, Heft 5, Seite 84). Bei großen industriellen Geräten liegt bereits der Preis so hoch, daß die Mehrkosten, die durch die neuen Anforderungen gestellt werden, nicht zu sehr ins Gewicht fallen. Anders ist die Lage bei Geräten mittlerer Leistung von 400 bis 1000 Watt, wie sie z. B. die Hf-Diathermiegeräte besitzen Bislang waren diese Geräte mit einer oder zwei Röhren bestückt und als Hartley- oder Colpitts-Oszillator geschaltet. Die besseren Geräte besaßen außerdem einen zusätzlichen Netzgleichrichter. Heute ist die Verwendung eines Quarzes, und, wenn man die biologisch günstigste Welle von 40.68 MHz wählt, von zwei Verdopplerstufen notwendig Dadurch werden die Geräte bereits derart verteuert, daß die Forderung der Oberwellenfreiheit eine unzulässig hohe Belastung darstellt. Es gilt nun zu untersuchen, wie diese Bedingung am billigsten zu erfüllen ist

Die Oberwellen können auf drei Wegen nach außen gelangen: durch das Netz, durch den Außenkreis und durch die Abschirmung. Über die Netzentstörung bestehen wohl kaum noch Unklarheiten. Es sei nui noch erwähnt, daß alle Kondensator-Drosselglieder in den Netzleitungen sowie in den Anoden- und Heizleitungen wenn irgend möglich in einem eigenen Abschirmgehäuse untergebracht werden müssen, andernfalls besteht die Gefahr, daß sie zum Teil Störfrequenzen von außen aufnehmen und die Siebwirkung ungenügend wird.


Die Ausstrahlung von Oberwellen in den Außenkreis wird zwecknäßig durch ein Faraday'sches Gitter verhindert. Bei Geräten für medizinische Zwecke dient das Gitter gleichzeitig als statische Abschirmung, so daß ein ausreichender Hochspannungsschutz gesichert ist.

Die Praxis hat gezeigt, daß sich die Störspannung am Eingang wie am Ausgang genügend klein halten läßt. So bliebe also nur noch die Abstrahlung durch die Abschirmung. Grundsätzlich läßt sich eine wirksame Abschirmung erreichen, wenn man zwei bis drei Gehäuse incinanderschachtelt, die Fugen gut abdichtet und alles an einem kalten Punkt erdet. Die Schwierigkeit liegt lediglich in der Lüftung solcher Geräte und — in den Herstellungskosten. Ein Gerät mittlerer Leistung wird durch solche Maßnahmen erheblich verteuert

Wollen wir die Ausstrahlung der Oberwellen wirksam unterdrücken. müssen wir uns vor Augen führen, auf welche Weise sie so hohe Werte annehmen, daß sie nach außen als Störfrequenzen in Erscheinung tre ten. Im allgemeinen fällt die Hf-Spannung etwa im Quadrat mit dei Ordnungszahl der Harmonischen, sofern keine Resonanzen vorhanden sind. Diese können sich durch Leitungsinduktivitäten und -kapazitäten ausbilden. Kürzeste und möglichst gerade Leitungsführung ist dahereistes Gebot. Aber selbst, wenn hier alles beachtet wird, treten off noch unerwünschte Oberwellen in großer Stärke auf. Die Tabelle gibt

z B. einen Überblick der Oberwellen $\frac{\lambda}{2}$. $\frac{\lambda}{4}$ usw. für die Grundfrequenz 40,68 MHz entsprechend einer Wellenlänge λ von etwa 7,36 m.

$$\frac{\lambda}{2} = 3.68 \text{ m}$$
 $\frac{\lambda}{8} = 0.92 \text{ m}$ $\frac{\lambda}{32} = 0.23 \text{ m}$ $\frac{\lambda}{4} = 1.84 \text{ m}$ $\frac{\lambda}{16} = 0.46 \text{ m}$ $\frac{\lambda}{64} = 0.115 \text{ m}$

Wählen Sie Rundfunk-Empfänger, die mit Lorenz-Röhren bestückt sind: sie sind dann sicher gesund und leben lange

C. LORENZ AKTIENGESELLSCHAFT STUTTGART

Wenn nun irgendeine Leltung, eine Verstrebung, eine Kantenlangs oder der Abstand zweier Bohrungen eine dieser Längen aufweist, dann kann die an sich schwache Oberwelle sich an diesem Resonanzmedium ganz erheblich aufschaukeln und, den Resonanzträger als Antenne benutzend, mit erheblicher Energie ausstrahlen. Sorgen wir dafür, daß bei der Konstruktion der Geräte diese Abmessungen vermieden werden, dann kann eine Oberwelle keine unzulässig hohen Werte annenmen und es fehlt jegliche Antenne, die das Ausstrahlen ermöglicht.

Für die Lüftung werden zweckmäßig große, mit Gaze verkleidet. Öffnungen ausgespart. Bei allen Bohrungen sind stets die kritischen Abstände zu vermeiden und zur Sicherheit sind die Löcher unsymmetrisch anzuordnen. Eine Konstruktion nach diesen Gesichtspunkten mag wohl ein wenig umständlich erscheinen, jedoch ist mit einer Ersparnis von Fertigungskosten zu rechnen. Wenn wir so vorgehen, wird es möglich sein, mit eine m gut geerdeten Gehäuse den geforderten Ansprüchen zu genügen.

Die Graetz-Montagebänder laufen wieder

Am 9. Mai d. J. brannten die 140 m lange Montagehalle sowie die Liüffelder und Laboratorien von Graetz-Radio in Altena/Westf. ab. Nach fünf Monaten lud die Firma die Fach- und Tagespresse sowie Vertreter der Behörden zur Besichtigung des wiederaufgebauten Werkes ein. Man mußte annehmen, daß dies ein feierlicher Festakt, etwa eine Art Richtfest sein würde, bei dem dei neue Bau eingeweiht werten sollte.

Aber es war ganz anders. Man kam in eine bereits im vollen Betrieb befindliche Radiofabrik. Es wimmelte von geschäftigem Leben. Die Montagebänder liefen, aus den Prüfkabinen tönte das bekannte aufund abschwellende Geräusch des Abgleichens und auf der Gleitbann von der Packerei zum Versand schoben sich dicht hintereinander Wellpappkartons mit fertigen Empfängern, um sofort verladen und abfansportiert zu werden. Nur am Ende des Gebäudes waren noch Handwerker dabei, auch den letzten Raum in den gleichen freundlichen Farben zu streichen, die in Verbindung mit einer schattenfreien Beleuchtung dem ganzen Neubau das Gepräge geben. 2100 Menschen anbeiten hier wieder, davon 40 % Flüchtlinge und 13 % Kriegsverletzte.

Seit 1861 von Albert Graetz, dem Großvater der heutigen Besitzer, die Firma gegründet wurde, ist diese stetige und zähe Aufwartsentwicklung zu verfolgen. Zunächst wurden Leuchten für flüssige Brennstoffe geschaffen, ein Gebiet, das heute noch in den Petromax-Starklichtlaternen in aller Welt den Ruf der Firma gründet. Vergessen wir nicht, daß heute noch 72 % der Erde ohne elektrischen Strom sind.

Unter der Leitung der beiden Söhne, Adolf und Max Graetz, betrug die Belegschaft um die Jahrhundertwende bereits über 1000 Mitarbeiter. Das Arbeitsgebiet erstreckte sich auf alle Zweige der künstlichen Beleuchtung und der Elektro-Wärmegeräte. Außerdem wurden Ver-

gaser für Verbrennungsmotoren erzeugt. Es entstanden Fabriken in London, Paris, Wien sowie in Bridgeport (USA) neben dem Stammhaus im heutigen Berliner Ostsektor. Nach dem ersten Weltkrieg wurden die ausländischen Werke entergnet.

1923 wurde die Fertigung von Rundfunkgeräten aufgenommen. Nach dem zweiten Weltkrieg gingen praktisch auch sämtliche deutschen Werke verloren. 1947 begannen die Enkel, Erich und Fritz Graetz, mit Hilfe altbewährter Berliner Fachkräfte in Altena eine neue Fabrik aufzubauen, und bald waren die Auslandsverbindungen wiederhergestellt, und Graetz-Lampen und -Radioapparate nahmen wieder ihren Weg zu den Kunden.

Eine solche zähe, diei Generationen währende Aufbauarbeit konnte auch durch den Brand im Mai nicht lahmgelegt werden. Ja, das soziale Bestreben, das stets ein Hauptzug der Inhaber war, brachte es zuwege, die Belegschaft während dieser schweren Aufbauarbeiten vollzählig weiterzubeschäftigen und jetzt sogar noch zu erhöhen.

Das gesamte Fertigungsprogramm läuft nun wieder. Es werden zur Zeit fünf Rundfunkempfängertypen zwischen 288 DM und 498 DM für das Inland heigestellt, dazu Exportempfänger für tropische und nicht-tropische Gebiete. Die eigene Lautsprecherfertigung liefert etwa 1009 Lautsprecher täglich und kann bis auf 1400 Stück gesteigert werden.

Der noch im Bau befindliche Fernsehsender Langenberg strahlte zu dieset Feierstunde ein besonderes Fernsehprogramm aus, das trotz der Lage des Werkes in einem engen Tal von den Graetz-Fernseh-Einpfängern störungsfrei empfangen werden konnte.

So kann zum Abschluß des Neubaues der Wunsch und die Hoffnung ausgesprochen werden, daß dieses modernste Radiowerk Westdeutschlands nunmehr unbeeinträchtigt durch Rückschläge wieder Licht und Unterhaltung in hunderttausende von Haushaltungen bringen möge

Empfänger-Nachlese

Verschiedene Firmen ergänzten ihr Neuheitenprogramm durch weitere Gerätetypen. Die Tabelle zeigt die wichtigsten Daten in Kurzfassung. Darüber hinaus haben die Empfänger folgende Eigenschaften:

AEG: Der Super "52 WU" stellt preislich und leistungsmäßig die Mitte zwischen den beiden vorher erschienenen Geräten Typ 42 und 62 dar. Die hohe Empfindlichkeit im UKW-Bereich wird durch eine Hf-Vorstufe und zweifache Zf-Verstärkung erzielt. Dabei wird das Hexodensystem der ECH 81 als UKW-Vorstufe verwendet; der Eingangskreis ist auf Bandmitte abgeglichen und der Anodenkreis durchstimmbar. Die Triode der ECH 81 dient als selbstschwingende additive Mischröhre. Im KW-Bereich ist Bandspreizung durch eine Kurzwellenlupe vorgesehen. Die Gegenkopplung führt über zwei Stufen von der Sekundärseite des Ausgangsübertragers zum Fußpunkt des Lautstärkereglers

Die Funkausstellung fiel aus, das Fernsehen beginnt zu Weihnachten. Jeder Fach-Kaufmann und Techniker braucht das

FACHADRESSBUCH für die RADIO- und FERNSEHTECHNIK

Neuausgabe des FUNKSCHAU-Bezugsquellennachweises

Bearbeitet in den Redaktionen des FUNKSCHAU und des RADIO-MAGAZIN

356 Seiten Umfang

Preis 4.50 DM

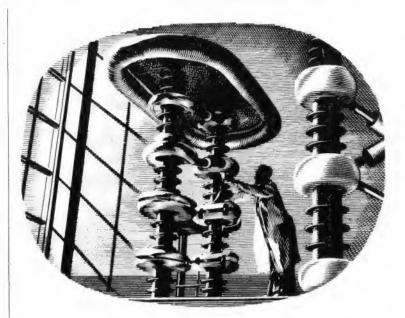
Versandspesen 40 Pfennig

Der bekannte und beliebte FUNKSCHAU-Bezugsquellennachweis hat sich im Laufe der Bearbeitung der neuen Auflage zu einem umfangreichen Fach-Adressbuch von über 350 Druckseiten Umfang entwickelt. Es stellt das einzige, umfangreiche und zuverlässige Nachschlagewerk für alle Herstellerfirmen der Radio- und Fernsehindustrie und ihre Zulieferanten dar, gleich wichtig für Einkäufer und Verkäufer, für Industrie und Handel, aber auch — infolge seines ungewöhnlich niedrigen Preises — für jeden irgendwie am Radiofach Interessierten. Sechs Abteilungen, der besseren Übersicht wegen mit Daumenregister versehen, bieten folgenden Inhalt:

Wenn Sie das Fach-Adreßbuch nicht bereits verwenden, empfehlen wir sofortige Bestellung!

FRANZIS-VERLAG · MÜNCHEN 22 · ODEONSPLATZ 2

Deutsche Philips-Gesellschaft. Die Daten des Gerätes "Saturn 53" wurden bereits in der FUNKSCHAU-Empfängertabelle in Heft 17 veröffentlicht. Das Gerät selbst war erstmaltg auf der Berliner Industrie-Ausstellung zu sehen. 9 Röhren, 8/9 Kreise, Ratiodetektor, 3stufige Schwundregelung, elektrische Kurzwellenlupe, unabhängige Baß- und Höhenregelung sowie Bereichsdrucktasten sind die Hauptkennzeichen. Der Preis wurde endgültig mit 385 DM festgelegt.


Krefft. Der äußerst günstige Preis des Krefft-"Tenor 53" ergibt sich durch die sehr sparsame Röhrenbestückung. Die Zahl der Röhren ist hierbet nicht größer als bei einem AM - Super früherer Jahrgänge Trotzdem besitzt das Gerät eine UKW-Ratiodetektorschaltung, die mit zwei Germaniumdioden arbeitet. Ausreichende Empfindlichkeit wird dadurch erzielt, daß das Magische Auge bei AM zur Nf-Verstärkut. Abenutzt wird. Beim UKW-Empfang wird außerdem zusätzlich das freiwerdende Triodensystem der ECH 81 als weiteres Nf-Verstärkerröhrensystem verwendet. Die negative Gittervorspannung für die Triode wird zusammen mit der Niederfrequenz aus dem Ratiodetektor entnommen.

Saba. Der Spitzensuper "Freiburg W II" arbeitet mit Bandfilter-Eingang und besitzt als besondere Neuheit leuchtende Drucktasten. Der Klangbildwähler in neuartiger Anordnung zeigt nicht nur die Einstellung der Höhen und Bässe, sondern auch der Mittellagen an. Die 10-Watt-Gegentakt-Endstufe arbeitet auf zwei Großlautsprecher mit 265 mm Ø, sowie auf ein zusätzliches Hochtonsystem. Getrennte Anschlüsse für Kristall-Tonabnehmer, magnetische Tonabnehmer und Tonbandgeräte sowie ein hochgradig entzerrter Vorverstärker für diese drei Eingänge erlauben die hochwertige Wiedergabe neuzeitlicher Schallplatten- und Tonbandaufzeichnungen. Durch zwei getrennte Schwungradantriebe für AM und FM ist die Tasteneinstellung von zwei Sendern ohne Abstimmung möglich. Diese Einzelheiten sowie die bekannt erstklassige Ausstattung machen den Empfänger wirklich 20 einem Spitzengerät. Um das Programm abzurunden, erscheint ferner der Klaviertastensuper "Wildbad". Er gehört nach Ausstattung und Preis der Mittelklasse an. Hohe Trennschärfe und Empfindlichkeit werden durch Zf-Mikrofilter auf Ferritbasis erreicht. Der UKW-Teil arbeitet mit Vorstufe, Ratiodetektor und zusätzlichem Pentodenbegrenzer. Der sorgfältig durchgebildete Nf-Teil gibt in Verbindung mit einem hochwertigen Lautsprecher ein ausgezeichnetes Klangbild. Das Gerät wird in W- und GW-Ausführung zum gleichen Preis geliefert

Telefunken. Die bereits bekannte Type "Dacapo" im Holzgehäuse wird nun auch im Preßgehäuse für 238 DM geliefert. — In der Preisgruppe von 310 bis 350 DM erschien das Gerät "Allegro" mit Drucktastenschaltung für vier Wellenbereiche. Die Typenreihe wurde durch den Spitzensuper "Fortissimo" mit 8-Watt-Gegentakt-Endstufe und zusätzlichen Hochtonlautsprecher nach oben abgeschlossen. Infolge getrennter Abstimmung für AM und FM können die Bereichstasten gleichzeitig als Stationstasten für je einen AM- und FM-Sender dienen. Klangfarbe und Bandbreite sind stetig regelbar, außerdem ist ein Baßschalter als Sprache-Musik-Schalter vorhanden. Der Telefunken-Plattenspieler!) kommt nunmehr auch in einem handlichen Preßstoffkoffer auf den Markt.

') Neuer Plattenspieler mit Riemenantrieb, FUNKSCHAU 1952. Heft 17, S. 354.

Gerätetyp	Kreise AM/FM	Bereiche	Tasten	Laut- sprecher mm Ø	Preis DM		
	Röhren- zahl	Röhrenbestückung					
	6/9	U, K, M, L	6	175	328.—		
AEG-Super 52 WU	7			EF 41, EAF	BC 80,		
	6/7	U, M, L	5	180	258.—		
Krefft-Tenor 53	6	EC 92, ECH 81, EAF 42, EL 41, EM 35, Selen					
	€/9	U, K, M, L	6	200	328		
Saba-Wildbad W	8	EF 80, EC 92, ECH 81, EF 41, EABC 80, EL 41, EM 85, Selen					
	11/12	U, K. M, L	8	265/265 Hochton	598		
Saba-Freiburg W II	11	EF 80, EC 92, ECH 81, EF 41, EAF 42, EABC 80, EM 71, EF 40, 2 × EL 41, Seien					
	6/9	リ, K, M, L	6	175	328.—		
letunken-Allegro	7	ECH 81, EF 85, EF 41, EABC 80, EL 41, EM 11, Selen					
Teleiunken-	8 9	U, K. M, L	6	250 Hochton	475.—		
Fortissimo	10	EF 85, EC 9 EC 92, 2		1, EF 41, E. 1, EM 11, S			

1932

ein bedeutungsvolles Jahr in der Weltgeschichte, in dem die Spaltung des Atoms gelang. Auch für PHILIPS war dieses Jahr ereignisreich, denn es wurde der millionste Export-Rundfunkempfänger ausgeliefert.

1952

bringt PHILIPS wieder wie in den Vorjahren unter dem Motto »Klingende Sterne« eine Serie von Rundfunkempfängern, die sich durch den guten PHILIPS Ton und ihr schönes Äußere auszeichnen. Der PHILIPS »Sirius 53« ist ein Rundfunkempfänger aus dieser Serie, der Ihnen mit seinen vielen Vorzügen zufriedene Kunden schafft.

PHHHPS Pirits 50

- Allstrom-Superhet mit zwei Wellenbereichen: UKW und Mittelwelle · HF-Varstufe auf beiden Wellenbereichen Ratiodetektor · Magisches Auge
- → Großsuperleistung durch Beschränkung auf zwei Wellenbereiche
- * 7 VALVO Röhren und Trocken-Gleichrichter · 6 (Rundfunk-) / 9 (UKW-) Kreise
- * UKW-Leistung eines Großsupers Bestmöglicher Fernempfang auf der Mittelwelle auch bei den bestehenden schwierigen Empfangsbedingungen

DEUTSCHE PHILIPS GMBH HAMBURG

Neue Radio-Fachkataloge

Alljährlich um die Vorweihnachtszeit geben Großhändler und Versandgeschäfte ihre neuen Radiokataloge zum Teil in recht erheblichen Autlagen heraus. Diese Kataloge stellen nicht nur eine trockene Aufzählung der lieferbaren Geräte und Einzelteile dar, sondern haben vielfach lehrbuchartigen Charakter. Der Vergleich der verschiedenen Eizeugnisse, das Studium der Eigenarten und Abbildungen der Geräte schulen und fördern das berufliche Wissen und halten das Interesse an der Funktechnik wach. Bemerkenswert ist auch, daß alle diese Kataloge der Fachliteratur einen wesentlichen Platz einräumen.

Das RIM Bastel-Jahrbuch 1953 steht seit jeher unter dem Zeichen des Qualitätsgedankens. Die darin aufgeführten Schaltungen und Geräte sind gründlich durchentwickelt mit dem Ziel, dem Bastler nur solche Bausätze zur Verfügung zu stellen, auf die er sich in jeder Hinsicht verlassen kann. Vom Einkreiser bis zum Achtröhren-UKW-Super wird eine Reihe von leistungsfähigen Empfängern beschrieben. Das Verstärker-Programm umfaßt erprobte Mikrofon-, Misch- und Endverstärker. Bandtongeräte und Zubehör bieten dem Tontechniker eine gloße Auswahl. Ein reichhaltiges Verzeichnis von Röhren, Einzelteilen, Werkzeugen, Antennen und Fonozubehör ergänzt den 144 Seiten stalker Band zu einem wertvollen Nachschlagewerk. (Zu beziehen durch Radio-RIM GmbH, München. Bayerstraße 25. Der Katalogpiels von 2 DM wird bei Käufen im Werte von über 70 DM rückvergütet.)

Walter Arlt Radio-Katalog 1953. Diese Ausgabe bedeutet ein, kleines Jubiläum, denn dies ist das 25. Jahr der Arlt-Kataloge. Während die Vorkriegskataloge von Arlt hauptsächlich auf die Bastlerkundschaft abgestimmt waren, wurde diesmal, ohne den Amateur zu vernachlässigen, auch der vielseitige Bedarf der Forschungs- und Industrielaboratorien berücksichtigt. Neben einem äußerst reichhaltigen Angebot an Einzelteilen, Kleinmaterial, Lautsprechern, Mikrofonen. Fonoteilen und Werkzeugen sind daher Meßgeräte und Zubehör der verschiedensten Firmen und in vielen Ausführungen in diesem Katalog enthalten. Auch eine Liste vollständiger Meßeinrichtungen, wie Elektronenstrahl-Oszillografen, Röhrenprüfgeräte, Meßbrücken, Prüfsender usw. erlaubt einen schnellen Überblick über die Eigenschaften und Preise der verschiedenen Fabrikate. Fachliteraturverzeichnis, Magnettongeräte, Empfänger und Verstärkeranlagen in den verschiedensten Ausführungen bilden den Schluß des Kataloges. (Zu beziehen durch Arlt Radio-Versand, Düsseldorf, Friedrichstraße 61a oder Berlin-Charlottenburg, Kaiser-Friedrich-Straße 18. Die Schutzgebühr von 1 DM wird bei einem Kauf in Höhe von 20 DM angerechnet.)

Der Katalog der Firma Gebrüder Baderle, Hamburg, enthält viele Sonderangebote an Spulensätzen. Dreh- und Festkondensatoren, Lautsprechern, Netztransformatoren. Schaltern und sonstigen Einzelteilen. Für den Verstärker- und Meßgerätebau werden fertige Metallgehäuse in silbergrauer Lackierung angeboten. Besonders interessant sind hierbei die verschiedenen Spezialgehäuse für FUNKSCHAU-Bauanleitungen. Bauteile für Magnettongeräte, das vollständige Inhaltsverzeichnis der Radio-Praktiker-Bücherei sowie andere Fachliteratur und ein großes Angebot von europäischen und amerikanischen Röhren beschließen die Broschüre. (Zu beziehen gegen 56 Pfg. Schutzgebühr vom Radiohaus Gebrüder Baderle. Hamburg 1, Spitalerstraße 7.)

Das Radio-, Phono-, Elektro - Ersatzteil - ABC 1952/53 ist eine Preis liste der Firma Weide & Co. Hamburg, die sich vorwiegend an den Rundfunkhandel wendet. Sie ist daher im Text knapp gehalten, zeichnet sich jedoch durch übersichtliche Anordnung der Bildbeilagen, Bestellnummern, Bruttopreise und Rabattsätze aus. Die Liste gibt gleichzeitig einen Überblick über das gesamte Grundig-Empfänger-, Tonband- und Meßgeräte-Programm und über die Ersatzteile für alle Geräte ab Frühjahr 1950. Ein übersichtliches alphabetisches Register und ein ausführliches Inhaltsverzeichnes gestatten die schnelle Auffindung der gewünschten Waren und Einzelteile. (Herausgeber Weide & Co. GmbH, Hamburg 1, Burchardstraße 22.)

Werks-Veröffentlichungen

AEG-Preisliste 1952 (Auszug aus den Sonderpieislisten). Ein übersichtliches, mit Daumenregister ausgestattetes Buch von 460 Seiten Umfang gibt einen Gesamt- überblick über das Fertigungsprogramm. Zahlreiche textliche Eiläutei ungen weisen auf die Besonderheiten und den Zweck dei Geräte hin. Sie geben dem Kunden manchen wertvollen Fingerzeig und vermeiden die nüchterne Aufzählung, wie man sie häufig in Katalogen findet (A E G, Abt. PLV, Berlin-Grunewald).

Antennenprogramm für Rundfunk-, UKW- und Fernsehantennen, eine Druckschrift der Blaupunkt Elektronik, enthält die allgemeinen Grundlagen neuzeitlicher Fernseh- und Rundfunkantennen, ferner die Beschreibung verschiedener Anlagen für einen bis zu 50 Teilnehmern. Daneben sind noch eine austührliche Antennen-Bauanleitung und eine bebilderte Liste der einzelnen Bauteile erschienen. (Blaupunkt Elektronik GmbH, Berlin-Wilmersdorf)

Geschäftliche Mitteilungen

Die BASF hat für die Schaufensterwerbung ein ansprechendes Aufstellplakat für ihre Magnetophon – Bänder herausgebracht. Ein darauf befindliches Band kann teilweise abgewickelt und dekorativ zu den entsprechenden Ausstellungsstücken geführt werden. Es wirbt daher nicht nur für die Bänder, sondern allgemein für die Idee der Magnetbandgeräte. — Abgabe nur an Fachhändler durch die Werbestelle der Badischen Anilin-& Soda-Fabrik, Ludwigshafen am Rhein.

Internationaler Mikrofilmdienst. Aus wissenschaftlichen Veröffentlichungen und Patentschriften in Bibliotheken der ganzen Welt werden Literaturstellen gegen Erstattung der Selbstkosten und gegen eine Gebühr von 3 DM je Titel besorgt. Die Lieferung erfolgt entweder als Fotokopie in Originalgröße oder als Mikrofilm, wenn der Besteller ein Lesegerät hierfür besitzt. Aufträge sind zu richten an: Mikrokopie 4.

Eigenwiderstand bei Gleichspannungsmessungen : 33.333 Ω/V - Stromverbrauch - 30 μA

Eigenwiderstand bei Wechselspannungsmessungen: 10.000 Ω/V Stromverbrauch 100 μA

Meßbereiche:

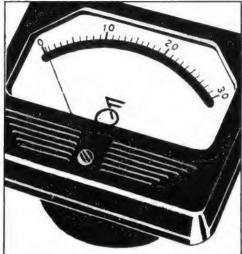
Gleichstrom 1,2 6 12 60 300 1200 Volt Wechselstrom: 6 12 60 300 1200 Volt

Gleichstrommessungen:

30 µA, 300 µA und 3 mA Spannungsabfall 1,2 Valt

Die Gleichstrommeßbereiche können gleichzeitig für Widerstandsmessungen benutzt werden.

MeBbereiche: 10 - 2000 Ω Anzeigenbereiche: 0 - 20 k Ω 0 - 200 k Ω 0 - 200 k Ω 0 - 200 M Ω 0 - 2 M Ω


Als Spannungsquelle für die Widerstandsmessungen dient eine Stab-

Die Genauigkeit beträgt

batterie in einem ansteckbaren Batteriebehälter.

bei Gleichstrom $\pm 1.5\,^{\circ}/_{0}\,v$. Endw. bei Wechselstrom 50 Hz $\pm 2\,^{\circ}/_{0}\,v$. Endw. bei Wechselstrom bis 300 V / 10 kHz $+ 3\,^{\circ}/_{0}\,v$. Endw. bei Wechselstrom bis 60 V / 100 kHz $\pm 3\,^{\circ}/_{0}\,v$. Endw.

GOSSEN · ERLANGEN

Einbauinstrumente

Vielfachinstrumente 10 000 Ω/V ... 45 Bereiche

Strom-Spannung = und ~, Output, Widerstand, Dämpiung (Neper) - Isolation usw. Zur Zeit besonders preisgünstig Reparatur sämtlicher Meßinstrumente

Dipl.-Ing. O. FOR ST, München 22, Zweibrückenstr. 8

SELEN - GLEICHRICHTER

für Rundfunkzwecke: (Elko-Form)

für 250 V 20 mA zu 1.45 brutto für 250 V 30 mA zu 1.90 brutto für 250 V 40 mA zu 2.40 brutto für 250 V 60 mA zu 2.80 brutta sowie andere Typen liefert:

H. KUNZ, Gleichrichterbau Berlin-Charlottenburg 4, Giesebrechtstr. 10

Für Ihre Mitarbeiter als Weihnachtsgeschenk!

Die neueste

Fachliteratur über Fernsehtechnik

Fachbücher der Radio- und Hochfrequenziechnik

Ausführliche Prospekte kostenlos

BUCHVERSAND EXLIBRIS

Unser großer, reich illustrierter

RADIO-FINZELTELLE-KATALOG

mit allen Sonderangeboten ist erschienen.

Ein wertvoller Einkaufsheller für jeden Radio- und KW-Amateur

Bestellung geg. Einsend. von -.50 in Briefm. erbeten!

RADIOHAUS Gebr. BADERLE

HAMBURG 1, Spitalerstr. 7, Fernsprecher 327913

UKW-Kabel

prima Qualität, wetterfest, 2x0,5 Cu-Ader, iabrikirisch, DM 26.50 per ⁰/₀ m gegen Nachnahme, Muster gratis,

Wilhelm Voss, Antennen- und Gerätebau OLPE i/W., Postfach 218

Fabr. elektr. beh. Spez.-Apparate - BEIINBURGERSTR GROSSHANDEL U HANDEL VERL.SONDERANGEBOT - 🕏

Über 25 Jahre Radio-Menzel

Hannover - Limmerstraße 3-5 - Graßhandel

Für DM 26.50 können auch Sie UKW hören

mit dem Philips UKW II Einbau-Gerät. 2 Röhren mit 1/2 jähriger Garantie (EF41 u. EF42). Antrieb von der Hauptabstimmung mit Seiltrieb.

Leichte Montage durch beigegebenes Zubehör. Frequenzbereich: 87-101 MHZ. Empfindlichkeit: 50 Mikro-Volt.

Leistungsbedarf: 6,3 V, 0,53 A. 220 bis 265 V.

Entspricht den Bestimmungen der Post über die Störstrahlung.

Sichern Sie sich diese Gelegenheit durch sofortige Bestellung, (Zwischenverkauf vorbehalten.) Prompter Nachnahmeversand.

Seit Jahrzehnten

Mikrophone Verstärker Auto- und Kofferanlagen

Düsseldorf Kirchfeldstraße 149

SONDERANGEBOT!

Perm. dyn Lautsprecher, hervorragend geeignet für Übertragungen in Lautsprechergruppen

6 Watt, NT/4 - 250 Ø, Nawi | 4 Watt, NT/3 - 200

Membrane DM 16.— DM 10.50 6 W NT/4 - 200 DM 13.50 3 W NT/2 180 DM 7.50

Alle Systeme ohne Ausg - Trafo

Lautsor - Rep. aller Fabrikate u. Größen fachm u. preiswert

Lautspr.-Werkstätten, B. NIENABER, Hamm/Westl., Wilhelmstr. 19

Fernseh - FM - Meßsender und Oszilloskop 12 cm Bilddurchm.

der Jackson EJC, Dayton/USA vereinfachen die Prüfung von UKW- und Fernseh-Empfängern

(Van namhaft, deutschen Herstellern u. Rundfunk-Meist, be-reits beschaft u. nachbest.) Deutsche Bedienungs-Anweisung Auskunft durch Dipl.-Ing RALF VOGLER, Hamburg-Rissen.

Radio=Arlt

Wir suchen gegen Sofortkas

Stabilisatoren aller Art

z. B. StV 280/40, 280/80

Zusendung mit Preisangabe bitte nur an unsere neue Anschrift

Radia-Arlt, Inh. Ernst Arlt, Bin-Charlottenburg 4, Dahlmannstr. 2

OTENTIOMETER WILHELM RUF KG ELEKTROTECHNISCHE SPEZIALFABRIK HOHENBRUNN bei München

Tonbandgerät

(Metz, neuwertig) mit Tonband, Ver-

stärker, Netzgerät abzugeben Nachnahmeversand

Zuschriften erbeten unter Nr. H 4332

Ich kaufe laufend Geräte:

BC 191 - 221 - 312 - 314 342 - 348 - 611 - 683 A 684 A - SCR 536 - 522 AN/APR - 4, TU-5-B, EZ6, Handy - Walkie -Talkie

E. HENINGER Waltenhofen / Allaäu

Funkschau - Bauanleitungen und nach eigenen Entwürten Bitte fordern Sie Preisliste l

Alleinhersteller 1. FUNKSCHAU-Baugnleitungen PAUL LEISTNER, Hamburg-Altona, Clausstraße 4-6

Wir zahlen z. Z. für

StV 280/80 Z . DM 20.-829 (B). DM 20... DM 16.-832 (A) 866 (A) . DM 8. 100 TH . . DM 25 -250 TH . . . DM 45.-307 A DM 8.-6]4 DM 8.-6 AC7. DM 3.50 6 AG 7 . . DM 3.50 LLC 6 DM 3.50 1 A 7 . . DM 3.50 1 N 5 DM 3.50 1 H 5 DM 3-50 305.... DM 3.50 5 R 4 DM 3.50

Auch andere Typen gesucht. Angeb. unter Nr.W 4329

R.-C.-Meßbrücke, ja 4 Baraicha 1 Ω-10 MΩ, 10 pF-30 μF Natzonschluß, DM 48.-Oscillaskap, Lorenz mit Röhren DM 128.-, Superdiassis 1600 kHz, teilw. geschaltet DM 9.80, DKE ähnl. Holzgehäuse a.R. DM 12,50. Hf.-Litze p.m. DM -,10. Elektr. Schleif- u. Poliermaschine gebr. DM 49,-Chassis verkupfert 20 x 13 x 8 cm DM - .70. Skolenantrieb DM - .60. Slemens Hf.-Haspelkern DM - .60, Dralowid Hf.-Würfelkern DM - .60 · A-Trofo 2 W DM 1.80 · VE dyn Netztrafo DM 6.60 · Lufldrehka erstkl. DM 1.80. Rückk ppler 350 ad. 500 pF DM - .95. Rollblacks Markenware 1500 V Stück DM - .13, vorrātig 100, 150, 200, 300, 350, 1000, 2000 pF, Buchsenleisten 2 pol. DM -.10, 3 pol. DM -.13, Versilberter UKW-Draht Ø 2 mm, 10 m DM 5.70 · Fadenlätzinn, Kallaphanium per kg DM 8.50. Handbahrmaschine DM 3.50, Schieblehre DM 1.80.

Hans A. W. Nissen, Hamburg 1, Mönckebergstr. 17 · Versand p. Nachnahme, Erfüllungsort Hamburg

C/EM 2 - VL 1 - VF 7

und alle europ, u. amerik. Röhren, sowie Elkos, Kondensatoren, Koch- und Heizgeräte, Glühlampen, Lämpchen, UKW-Einbausuper, Geräte, Gleich-richter, Lautsprecher usw. liefert äußerst preiswert an Wiederverkäufer

RA-EL VERSAND HEINZE, COBURG Schließf. 507

GROSSHANDLUNG

Verlangen Sie unsere Schlagerliste (kostenios)

Sonderangebot!

Aus stillgelegter Fabrikation übernommen und äußerst billig abzugeben:

- a) ca. 20 Stück Rundfunkgeräte, 6 Kreise, 6 Röhren für GW mit UKW-Pendler
- b) Radioteile inklusive Chassis mit und ohne Trafo
- c) 1 Farvimeter Röhrenprüfgerät Nr. 455
- d) Ein größerer Posten 24-Volt-Motoren
- e) Werkstatteinrichtung: Drehbänke, Bohrmaschinen, Werkzeuge verschiedener Art, 1 Schweißgerät und 1 Heräus Trockenofen

En-bloc-Käufe werd, bevorzugt, Aufstellungen zu a) mit e) bitten wir anzuford.

KREISSPARKASSE BAD NEUSTADT/SAALE

GRAETZ SUPER 164 W

mit drehbarer Ferrit-Stabantenne 6/9 Kreise, 8 Röhren, (EF 80, EC 92, ECH 81, EAF 42, EB 41, EL 41, EM 34, AZ 11) 6 Tasten, 4 Bereiche, FM Vorstufe, 3 gespreizte KW-Bereiche, Magisches Auge, Ratiodetektor, Patentsparschaltung, eingebaute UKW-Antenne.

GRAETZ KG - ALTENA (WESTF.)

"Symphonie"

in poliertem Holzgehäuse 37 x 25 x 13 cm mit Metallrahmen und feiner Bespannung, 3 Watt-Chassis mit Trafo 7 kΩ

Verkaufs-Preis 37.50

"Souvenir"

braun. elegant. Proßgeh. 26 x 23 x 12 cm mit 2 Watt-Chassis und Trafo

Verkaufs-Preis 24.75 Händler u. Grossisten do, in elfenbein

verlangen Angebotel Verkaufs-Preis 26.25

2 brillante Lautsprecher | 2 UKW-Einbausuper

"Kadett & W"

der preisw. Einbausuper mit 8 Kr., 3 steilen Röhren-Add.-Diskrim. Mischung-Sym. (kein Flankengleichrichter!) Verkaufs-Preis 69.50

"Kanitan 9W"

Vorst. - 9 Kreissuper - 6 Stufen -Ratiodet. - Add. Triodenmischung modern. Röhren, höchste Störunterdrückung. klein

Verkaufs-Preis

DREIPUNKT-Gerätebau Willy Hütter NURNBERG-O, MATHILDENSTRASSE 42

FERNUNTERRICHT mit Praktik

Sie lernen Radiotechnik und Reparieren durch eigene Versuche und kammen nebenbei zu einem neuen Super!

Verlangen Sie ausführliche kostenlose Prospekte über unsere altbewährten Fernkurse für Anfänger und Fortgeschrittene mit Aufgabenkorrektur und Abschlußbestätigung, ferner Sonderlehrbriefe über technisches Rechnen, UKW-FM, Wellenplanänderung. Fernseh-Fernkurs demnächst, Anmeldun-

Unterrichtsunternehmen für Radiotechnik und verwandte Gebiete

Staatlich lizenziert Inh. Inq. Heinz Richter, Güntering, Post Hechendorf/Pilsensee/Obb.

U. METALLWARENFABRIK UPPERTAL-UNTERBARMEN

Hf-Meßgerätebau

Strebsamer, lediger Rundfunkmechaniker mit besten theoretischen Kenntnissen für Entwicklungslabor

sofort gesucht, eventl: Jungingenieur.

Wohnung wird beschafft, Ausführliche Angebote mit Zeugnisabschriften erbeten unter Nummer 4314 K

Werbeleiter - Pressestellenleiter

steller in ungekündigter Stellung, erfahrungs- und ideenreich

sucht bei Industrie oder Zeitschrift

auf dem Radio- oder verwandten Gebiet passenden Wirkungskreis. Zuschriften erbeten unter Nummer G 4336

Rundfunkmechanikermeister

27 Jahre, ledig, perfekt in Hf- und Nf-Technik (ehem. Funkmeßtechniker der Luftwaffe). Erfahrung in Magnetophon- und Ela-Technik. Fernsehkenntnisse (Fachschule). Führerschein Kl. III, sucht Wirkungskreis in Industrie oder Handel. Zuschriften erbeten unter Nummer 4335 R

verantwortungsbewußten Mitarbeiter?

Verantwartung sbewußten Mitarbeiter 23 Jahre, verh., selbständiges Arbeiten gewähnt, mit Nf, Hf, UKW und Tonband sowie Planung vertraut. Eigene Veräffentlichungen u. Entwicklungen. Sicher in Verhandlung u. Werbung, als Abteilungsleiter im Rdfk.-Handel ungekündigt tätig, gewandt in Organisation und Menschenführung, gute Umgangsformen, Führerscheine. Bevorzugt wird Dauerstellung mit Entwicklungsmäglichkeit in Industrie (auch Entwicklung) u. Großhandel. Zuschr. unter Nr. N 4338

Radio-Spezialgeschäft

mit Reparaturwerkstatt in Industriestadt Hes-

sens krankheitshalber sofort zu verpachten.

DM 10000 - 15000 zur Übernahme des Waren-

lagers erforderl. Inventor nach Vereinbarung.

Zuschriften unter Nr. H 4334

Wer sucht

Radio-Fett bieter ELKOS und ROHREN

		4	MF	350/385 V	Pertinax	pro	Stück	DM	70
		25	MF	350/385 V	Alubecher	pro	Stück	DM	1.10
					Alubecher				
					Alubecher				
					Alubecher				
2	×	16	MF	450/550 V	Alubecher	pro	Stück	DM	2.75

fabrikfrische Ware - Westerzeugnisse

1 Johr Garantie

ROHREN:

AF3 p. Stück DM 4.90	ECH11p. Stück DM 7.25
AF7 p. Stück DM 4.75	EF 11 p. Stück DM 4.75
AL 4 p. Stück DM 6.25	EF 12 p. Stück DM 4.75
CBC1 p. Stück DM 5.25	EF 13 p. Srück DM 4.75
CC 2 p. Stück DM 3.—	EF 14 p. Stück DM 5.75
CF 3 p. Stück DM 3.50	EH 2 p. Stück DM 4.50
CF 7 p. Stück DM 3.75	EL 11 p. Stück DM 5.75
CK 1 p. Stück DM 7 50	NF2 p. Stück DM 2.50
CY 1 p. Stück DM 2.75	VY 2 p. Stück DM 2.25

RADIO-FETT

Spezial-Röhren- und Elko-Versand

REPLIN-CHARLOTTENBURG 5 Wundtstr.15 u. Kaiserdamm 6, Tel.: S.-Nr. 345320

Fordern Sie unsere graße 28 seitige Röhrenliste kostenlos an!

Wir suchen und zahlen Hächstpreise für Stabis 70/6, 150/15, 150/20, 280/40, 280/80, 280/80 Z, Röhren LB 1, LB 8, 813

für gut eingeführte Meßgeräte-Firma

Sonderangebot!

Perm dyn Lautsprecher 2 Watt

Perm.dyn. Lautsprecher, 2Watt 180 mm ⊘, mit Alu - Korb, ohn Übertrag , per Stck. DM 3.95 Universol-Übertrager, für olle Anpassung. p. Stck. DM 4.95 jeweils ab Werk unverpackt.

Versand per Nachnahme, bei Nichtgefallen Rücknahme.

RADIO ZIMMER K.G.

SENDEN/JLLER

Gelegenheitskäufe!

Spulensätze, Chassis, Kondensatoren. Gleichrichter usw. sowie Ersatzteile aller Art. Größte Auswahl auf allen Gebieten!

RADIO-SCHECK

Nürnberg, Harsdörffer Platz 14

Größerer Restposten

preisgünstig abzugeben

Anirogen

Suche

Teilhaber

der Flektro-Technik

Angebote unt. \$ 4337

neue Tefi-Kassetten

erbeten unter Nr. W 4331

Einheirat

in modernes Radiolachgeschäft geboten. Kriegerswitwe, 37, jugendlich, gut aussehend, mit 10 jährig Tochter, sucht tüchtigen, gebildeten, charaktervollen Herrn mit techn. oder kaufm. Beruf. Vermögen erwünscht, nicht Bedingung. Nur wirklich seriöser Herr mit Geist u. Herz melde sich mit Bild unt. Nr. V4333

RADIO SUHR Hameln, Osterstr. 36

Aus der neuen Schlagerliste 52/53 (kostenlos anlordern). UKW-HF-Vorstule, Fabr. Teletunken kompl mit Röhre EF85, einbaufertig mit Schaltbild **DM 18.80** mit Röbre EFBS, eindautering mit Schaffelia DM 18-80
UKW-Fensterdipol kompl. DM 8-10
Ferrit-Stabanienne (Mittelwelle) DM 3-95
Netztrafo 2x280 V/100 mA; 4 V/1 A; 6,3 V/2,5 A DM 10-85
Spannungsprüfer (Füllhalterform) DM 1-95

UKW-Bauteile von Görler und Dreipunkt prompt lieferbar. Listen kostenlos, Nachnahmevers, m. Rückgaberecht,

Wir zahlen z.Z. für

StV 280/80 Z . a DM 19.-829 à DM 18.-SIV 280/80 . . a DM 15. SIV 280/40 Z . a DM 11.50

RV 258 a DM 8.-SIV 150/20 . . a DM 6 .-6L6 a DM 4.50

307 A a DM 4 --SIV 150/15, 1A7, 1 LC 6, 3 A 5. 3 Q 5, 6 A 8, 6 A G ?

6 DM 3.50 StV 70/6, 1 H 5, 1 N 5, 3 A 5, 5 Z 4 (M), 6 B 8, 6 L 7 (M), 6 SK 7, 6 SL 7, 6 SN 7, 10 1

o DM 3.-6 F 6 (M), 6 J 7 (M), 6 SA 7, 6 SC 7 (M), 6 SQ 7, 6 SR 7, 12 SJ 7 (M), 10, 957 à DM 2-50

MARCSINYI, BREMEN

Schließfach 1173

STELLENGESUCHE UND -ANGEBOTE

Rundfunkmech., 27 J. Z. Frankreich), frz Fachschuldipl., Franz. perf, in Wort u. Schrift, gute prakt. Kenntn., sucht f. Anf. 1953 Stelle in Industrie od. Handel. Zuschr. erb. an Wolfgang Schaff, 2, rue Brulè, Chaumont CHte

Bastler m. überdurch-schn. Intelligenz, wel-cher Rundf.-Techniker werden will, von Ing.-Betrieb m. Lehrbefugnis in nordd. Kreisstadt gesucht. Zuschrift. beten unter Nr. 4322 P

Rundfunkmechaniker. Absolvent der Fachsch. f. Rundfunkmechanik Kailsruhe, Meisterprüfung, sämtl. Führer-scheine, sucht Dauer-stellung. Angebote er-beten unter Nr. 4321 L

Rundf. - Mech. - Meister sucht Stellung in Süd-deutschl. od. Schweiz. Erfahrg. in der ges. Rep.-Technik sowie in der mech. Fertigung. Gute Kenntnisse im Kunststoff - Spritzver-fahren einschl. Formen-Führersch Angebote u. H.G. 44 erb.

Jung. Rundfunkmech., Jung. Rundfunkmech., ledig, sucht p. sof. neu. Wirkungskreis, selbst. u. gewiss. Arbeit., perf. in Reparatur, Verstär-kerbau, Tonbd.-Aufn., kerbau, Tonbd.-Aufn. Verkauferf.,Führersch. Kl. 3, Patent angem. Zuschrift u. Nr. 4305 R

Rdfk.-Ing., 38 J., über 20j. Erfahrg., Spezialist in UKW u. Fernsehen. Kino- und Verstärker-technik, Führerschein, sucht p. sof. entsprech. Anstellung. Ang. erb. unt. Nr. 4328 H

VERKAUFE

Duoton- mech. Teile u. Verst., Listenpr. DM 240 für DM 200 abzug. unt. Nr. 4318 F

Komm. Sender - Empf. 12 V, 8-m-Bd, DM 150 o. Rö. Ang. u. Nr. 4320 K Satz kpl. Magnetton-Köpfe u. kompl. Verst. z. verk. Ang. u. 4304 W

Satz kompl. Magnet-ton-Köpfe u. komplett Verstärker zu verkau-fen. Ang. u. Nr. 4304 W

Räumungsverkauf! Meine Liste macht a. Sie zu mein. Kund. Radio-Puschmann, Postlager Bremen 8, Nr. 063

Funksch. (Ing.-Ausg.) 49 b. Okt. 52 kpl. 86 Hefte weg. Umstellg. abzug. Preisang. u. Nr. 4317 E

Verk. BC 348 - 110/125 V mit Lautsprech. (LS 3) DM 300, BC 639 — 100 b. 156 MHz/AM o, Netzteil DM 250.-, Zuschr. unt Nr. 4319 B

Für Funkpraktiker u. Amateure: Verk. billig Radioteile all. Art für M-K-UKW-Dzm. u. Rö. Tägl. 18—20 h u. Sams-tag 9—17 h. Lechner, München 42, Veit-Stoß-

Studio-Magnetton prw. abzug. 76,2; 38,1; 19 cm, bei 76,2 cm 30-16 000 Hz. ungebr. m. Garant. sof. zu verkauf. K. Frenz, Techn. Labor, (20a) Bevensen/Uelzen

Toin. E. b geg. Geb. z. verkf. H. Dabelstein, (24b) Brunsbüttelkoog, Scholerstraße 14

Kleine HB-Kanazitäts-Meßlir. "Kapavi" mit Summer, neuw. DM 60. Ang. unt. Nr. 4325 S

40-W-Tonfilm-Breitbd.-Verst, AEG f. DM 280.-zu verk. Funkhs, Ing. Hans Kamp, Krefeld, Ostwall 125

HRO-Spulenkästen, a. für KST geeign. Rest-post. DM 30 je St., bei geschlossen. Abnahme DM 25 je Stck. Zuschr. unt. Nr. 4326 H

Hdbch der Funktechn Hood. Ger Funktech.
1.—3. Band DM 70.—,
Schneidgerät Karo DM
60.—, Telefk.-Schneiddose Ela AZ 008/1 DM
40.—, Ausg.-Trafo pass.
z. Dose (Görl.) DM 17.—, z. Dose (Gori.) DM 17.-, schw. gedr. Plattentell. DM 10.-, Mavom. WG m. Widerst. neuw. DM 50.-. Neue Rö. u. sonst. 50,-. Neue Rö. u. sonst. Bastelmat. bill. Liste anf. Zuschr. unt. 4327 S

SUCHE

Oszillographen, Labor-Meßger., kauft laufd. Charlbg. - Motoren u. Geräteb., Berlin W 35, Potsdamer Straße 98

Radioröhr. Restpostenankf. Atzertradio Ber-lin SW 11, Europahaus

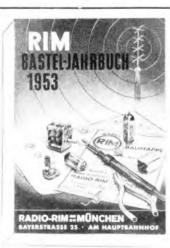
Magnetof.-Laufwerk u. groß. Lautspr. z. kauf. ges. Zuschr. unt. 4316 F

Gut erhalt, Magnetofon, kein Bastelger., m. Rücklf., prw. z. kf. ges. Ang. an: Meyer, Hil-desheim, Orleansstr. 64

Perm. Ringspaltmagn.-System NT 7 für 25-W-Lautspr. ges. Ang. unt. Nr. 4315 P

Suche 100 Europa-Röbrenfassung. 4- o. 5pol., Preßstoff, n. gute Qual. Zuschr. erb. u. 4323 KF

Suche Wehrm. - Funk-geräte aller Art. Ang. erb. unt. Nr. 4324 S


Röhrenvoltmeter u. a. Laborgeräte, Neumann-Mikrof., z. kf. gesucht. STUDIOLA, Frankfurt/ Main, W 13

VERSCHIEDENES

Spanisch, techn. Übers. u. Korresp. u. Nr. 4279 U

Eilangebot erbeten über:

Meßsender Rohde & Schwarz Type SMFK Meßsender Rohde & Schwarz Type SMAF und Röhren-Voltmeter Rohde & Schwarz Type UTKT, eventuell auch in gebrauchtem Zustand, Zuschriften erbeten unt. Nr. F 4330

So urteilen Radiobastler über das neue RIM-Basteljahrbuch

Pfister jr., Zürich, 16.10.52: Ihr Jahrbuch ist mir eine wichtige Dokumentalion. Bei meinem nächsten Münchner Besuch werde ich nicht nur, wie bisher, am Abend Ihr. Schaufenster besichtigen, sondern tagsüber meine Einkäufe bei Ihnen besorgen dem ich dieses Buch zeigte, war sehr zufrieden damit und besonders die Scholtungen sagten ihm zu..... Maul, Ing., Deggendarf, 20.10.52: Es ist in jeder Hinsicht eine Fundgrube..... Geist, Architekt BDA, Pforzheim, 20, 10. 52: Ist sehr reichholtig und interessant...".

Preis des Buches (144 S.) einschl. Parta bei Varauszah-lung (Pastscheck-Kanto München 137 S3) DM 2.— RADIO-RIM

Versandabteilung - München 15 - Bayerstraße 25/a

Auszug aus unserer Lagerliste Röhr, mit 6 Mon. Garantie, mit x bezeichnete 14 Tage Übern.-Garantie! 7.45 | 50 L 6 5.45 | 117 L 7 5.45 | 117 P 7 4.95 | 117 Z 6 6.25 5.25 6 L 6 6 V 6 6.25 EBL 1 9.45 ECH 3 1 S 5 1 T 4 3 S 4 3 V 4 8.75 084 1.50 5.50 5.25 12 A 6 12 AU 6 12 BE 6 9.45 7.95 ECH 11 ECH 42 1.95 5.10 9 25 094 5.45 ACH 1 5.75 AC 50 7.95 AF 7 5.95 AZ 11 11.— 6.25 4.95 EF 11 EF 13 EF 80 174d 6.75 5.25 6.95 Q 4 Y 3 5.95 3.95 4.75 8.75 904 1064 4.45 1.95 1.95 EL 11 2.10 EL 41 3.45 KDD 1 3.25 KF 3 6 A 6 3.50 12 SA 7 7 45 REG 5x 4 50 6 AF 7 6 AQ 5 6 AT 6 6 BA 6 6 BE 6 3.95 AZ 41 6.25 CF 3 5.50 CF 7 12 SG 7 12 SK 7 RL 12 P 10x 4.25 RL 12 P 35x 2.95 6.95 4.95 6.75 12 SQ 7 12 SR 7 25 L 6 4 20 3.75 P 700x UAF 42 UBC 41 P 800x P 2000x 4.95 2.75 DAC 25 EAF 42 EBC 41 5.45 7.25 6.95 4,45 6.75 UCH 42 UL 41 UY 41 6 E 8 6 F 6 7.75 7.45 8.25 7.95 7.95 25 Z 6 6.45 LR 2x 13.— 35 L 6 35 W 4 6.25 3.50 4.45 EBF 2 7.25 3 20 LG 6x 2.50 6 K 8 35 Z 5 5.25 EBF 11 RG 12 D 60x 1.95 Permanent-dynamische Lautsprecher-Chassis Orig. Pertrix 3 Watt 170 mm ϕ mit Magnet NT 2 u. Trafo ... DM 9.50 Orig. Isophon 4 Watt 180 mm ϕ mit Alni-Magnet u. Trafo ... DM 15.95 Crig. Isophon 4 Watt 180 mm ϕ mit Alnico-Magnet neuest. Mod. 13.50 Lautsprechermagnet NT 2, Kern- ϕ 19 mm, System- ϕ 43 mm, Höhe 39 mm Lautsprecherkorb 200 mm Ø mit Nawi-Membrane Orig. Telef. DM 1.95 Philips-Universalmeßbrücke Philoscop, fabrikneu Meßbereich 10 pF...10 μ F, 0,1 Ω ...10 $M\Omega$, Nullanzeige durch Mag. komplett mit Röhren AB 2, AF 7 und EM 4 (EM 11) D DM 94.50 RLC - Meßbrücke 221, Größe $33\times20\times20$ cm für Labor und Werkstatt L-Messungen 0,1 H...1000 H, 10 μ H...100 mH, C-Messungen 10 pF...1000 μ F, R-Messungen 0,1 Ω ...10 M Ω in 8 Bereichen, Röhren 2 \times EF 12 nur 179.50 Gitarrenverstärker, gekapselt mit niederohm. Ausgang für Wechselstiom 110/125/150/220/240 Volt, mit Röhren EF 9, EL 3 und AZ 1, Lautstärkeregler, Kontroll-Lampe, Ausgangsleistung 4 Watt DM 79.50 Gitarrenmikrofon, passend für obigen Verstärker DM 14.75 UKW-Einbauvorsatz Philips I für jedes Gerät geeignet komplett mit Röhre ECH 43 UKW-Einbauvorsatz Philips II, leicht einzubauen, komplett mit Röhren EF 42/EF 41 . Thorens-Sonatine CD 61, erstklass. Schweizer 10-Plattenwechsler einfach, klein u. unverwüstlich, 25- und 30-cm-Platten gemischt spielend, mit Kristalltonabnehmer f. Wechselstrom Chassis Chassis 101.50 -Kreis-Super-Bausatz, kompl. mit modernem Holzgehäuse und E- oder U-Röhren Original AEG-Handdynamo, die Dauertaschenlampe DM 6.60 Keram. Kondensatoren, Sortiment 100 Stück 10...800 pF DM 5 .--Verlangen Sie bitte ausführliche Preisliste! Preise ab Lager und Verpackung, zahlbar rein netto durch Nachnahme.

TEKA · Technische Handelsgesellschaft m. b. H. · WEIDEN F10

Sonder-Preisliste »G« ist da! 🏱

Die mit Spannung erwartete neue Sonderpreisliste mit 32 Seiten eröffnet die Saison!

Noch größere Auswahl bei gleich guter Qualität!

Ein kleiner Auszug -Röhren:

A 409	DM 0.95	LG 1 DM 0.75		
A 411	DM 0.90	RE 084 DM 1.45		
CF3	DM 2.90	RE 084 k DM 1.85		
CL1	DM 5.40	RES 094 DM 0.90		
EBF 2	DM 4.95	REN 904 DM 3.80		
ECH 3	DM 7.80	RD 12 Tf DM 8.80		
EF8	DM 5.85	RL 12 T 15 DM 2.75		
EF 9	DM 3.90	RS 242 Spez. DM 4.90		
EH 2	DM 3.45	RV 2 P 800 DM 0.95		
EL 2	DM 5.95	RL2 4T1 . DM 3.85		
EL3N	DM 6.50	UY 4 DM 1.45		
EZ 4	DM 1.95	W 4110 DM 3.60		
H410D	DM 0.90	4630 DM 3.50		
KC 1	DM 1.40	4654 (= EL 50) DM 7.80		
KL1	DM 2.70	12 SC 7 DM 2.80		
LD 2	DM 4.80	RL 2.4 P 700 DM 1.50		
LORENZ Lautsprach, o. Trafo, volldyn.				

3 W., Erreg. 110/220 V, 35 mA, Korbdurch-messer 130mm, Schwingsp. 5Ω, DM 3.90 PERTRIX Lautsprecher o. Trafo, 3 W perm. dyn. mit NT 2 Magnet, Korbdurchmesser 175 mm, Schwingsp. 4Q, DM 7.90

PERTRIX Lautsprecher 3 Watt perm. dyn. mit NT 2 Magnet, Trafo 10/20 KΩ, Korbdurchmesser 175 mm, nur DM 9.85

ATE

to an a 田

mme.

chil

SCI

1 Jahr Garantie für ieden

> PERTRIX **ELKO**

PERTRIX	8 MF 450/500 V Roll, 30×58 mm	DM	0.95
PERTRIX		DM	0.85
PERTRIX	8 MF 450/500 V Alu, 35×65 mm	DM	1.10
PERTRIX	B MF 500/550 V Alu, 35×65 mm		1.20
PERTRIX	8 - 8 MF 350/385 V Alu, 35×65 mm	DM	1.20
PERTRIX			0.85
PERTRIX	16 MF 300/330 V Alu, 35×65 mm	DM	0.85
PERTRIX	16 MF 350/385 V Alu, 30×58 mm	DM	1.20
PERTRIX	16 MF 350/385 V AIu, 35 × 65 mm	DM	0.95
PERTRIX	16 MF 450/500 V Alu, 35×100 mm	DM	1.60
		DM	1.70
PERTRIX	16 + 32 MF 450 500 V Alu, 35 × 105 mm	DM	2.55
PERTRIX	25 MF 300 330 V Aiu, 35×65 mm	DM	1.00
PERTRIX	25 MF 350 385 V Alu, 35 × 65 mm	DM	1.10
PERTRIX	32 MF 350/385 V Alu, 35 x 65 mm	DM	1.20
PERTRIX	40 MF 350 385 V Alu. 35 × 65 mm	DM	1.30
		DM	2.30
		DM	1.40

Alle PERTRIX Alubecher mit Schraubbefestigung

Urteilen Sie!

Siccatrop-Kondensatoren:

100 pF 500 V DM 0.25	5000 pF 125 V DM 0.20
150 pF 500 v DM 0.25	5000 pf 250 V DM 0.25
200 pF 500 V DM 0.3 5	5000 pF 500 V DM 0.30
500 pF 700 V DM 0.40	5000 pF 700 V DM 0.45
1000 pF 250 V DM D.1 5	6000 pF 250 V DM 0.25
1000 pF 500 V DM 0.25	7500 pF 250 V DM 0.25
1000 pF 700 V DM 0.35	15000 pF 125 V DM 0.25
2500 pF 250 V DM 0. 15	25000 pF 125 V DM 0.25
2500 pF 500 V DM O. 25	0,25 MF125 V DM 0.45
2500 pF 700 V DM 0.45	0,1 MF125 V DM O. 4 5
3000 -F 500 V DM 0.25	0.1 MF250 V DM 0.60

Keramik-Hochspannung

40 50	pF pF	3	KV KV	50/0	0.45 0.40 0.45 0.45	80 pF 100 pF 300 pr 1100 pF 2	3 K V 3 K V	10°/ ₀	0.45 0.45	
ou	рг	4	N.A.	20 10	0.43	1100 pt z	, 414.4	10 10	0.75	

FEHO DKE Freischwinger, Korbdurchmesser 175 mm DM 2.95

LORENZ ,, Nürnberg", Lautsprecher mit NT 3 Magnet, Korbdurchm. 200 mm, Trafo 7KΩ für die Endröhren ABL1, AL4, EL3, EL41 usw., DM 19.50

TELEFUNKEN-Lautsprecher o. Trafo, 6 W mit Nawimembrane, volldyn. Korbdurchm. 250 mm, Schwingspule 4Ω, Erreg. 3800 Ω, 60 mA, DM 17.50

Lautsprecher-übertrager:

Netztransformatoren:

Potentiometer:

1 KΩ ½, W, pos. log. Ø 30 mm, Achslänge 10 mm
5 KΩ ½, W, lin. Ø 39 mm, Achslänge 13 mm
DM 0.75
10 KΩ ½, W, lin. Ø 40 mm, Achslänge 7 mm
DM 0.65
10 KΩ ½, W, log. m. 2pol. Drehschalter, Ø 40 mm, Achslänge 30 mm
Achslänge 30 mm
DM 2.90
20 KΩ ½, W, log. m. 2pol. Drehschalter, Ø 39 mm, Achslänge 12 mm
DM 2.90
50 KΩ ½, W, lin. Ø 40 mm, Achslänge 8 mm
DM 0.65
100 KΩ ½, W, lin. Ø 30 mm, Achslänge 24 mm
DM 0.65
100 KΩ ½, W, lin. Ø 30 mm, Achslänge 24 mm
DM 0.90
100 KΩ ½, W, log. M 30 mm, Achslänge 39 mm
DM 0.90
100 KΩ ½, W, log. Ø 30 mm, Achslänge 39 mm
DM 0.90
1 MΩ ¼, W, log. Ø 30 mm, Achslänge 13 mm, mit
2pol. Drehschalter
1 MΩ ¼, W, log. Ø 40 mm, Achslg. 35 mm, m. 2pol. Zugschalter
1 MΩ ¼, W, log. Ø 40 mm, Achslänge 50 mm, mit Anzapfung
für gehörrichtige Lautstärkeregelung und 2pol. Drehschalter
1.3 MΩ ¼, W, log. Ø 44 mm, Achslänge 47 mm, mit Anzapfung
für gehörrichtige Lautstärkeregelung und 2pol. Zugschalter
DM 1.50
ichter:

Verschiedenes:

Potentiometer:

5chalter:

Kippschalt. Ipol. aus (VE Wellensch.)	DM 0.25
Kippschalt, Ipol. a. (VE Netzschalt.)	DM 0.35
Kippschalter Ipol. aus 2 A	DM 0.75
Kippschalter ipol. um + ipol. aus	DM 0.85
Kippschalt. 2pol. a. massive Ausfg.	DM 1.10
PREH Stufenschalter 3×6	DM 3.90
Umsch. 2pol. fl. Ausf. m. versitb. Kant.	DM 0.35
Umschalter 2polig für Meßzwecke	DM 0.45
Wechselschalter Ipolia, 40 V, 30 A	DM 0.50
Drehschalt. 2pol. um, Einfochbefest.	DM 1.60
THE RESIDENCE OF THE PARTY OF T	ALC: NO PERSON NAMED IN COLUMN TO PERSON NAM

Niedervoltelko:

SAF 10 MF 6 8 V Roll, 15×55 mm	DM 0.25
16 MF Alubecher 120/150 V tropen-	40,700
fest mit Laschenbefestigung	DM 0.95
40 MF Alubecher 4 V. tropenfest	
	DM 0.60
mit Laschenbefestigung	DM 0.35
NSF 100 MF 12/15 V Alu. 20 x 55 mm	
SIEMENS 100 MF 20/25V R., 25 × 55mm	DM 0.55
SIEMENS 500 MF 6.8V, Alubecher	
mit Schraubbefestigung	DM 1.55
NSF 250 MF 6/8 V Roll, 26×60 mm	
NSF 500 MF 50 60 V. Alubecher mit	
Schränklaschen	DM 2.80
Alubecher 700 MF 68V. tropenf.,	J 2100
Laschenbefestigung	DM 1 90
Lustrienberesingung	DM 1.90

Grotelli tellitor i	
AEG Selen Einweg, 45 V, 30 mA	DM 0.60
AEG Selen Einweg, 220 V, 30 mA	DM 1.90
AEG Selen Einweg, 240 V, 120 mA	DM 4.90
AEG Selen Einweg, 240 V, 60 mA	DM 2.90
SAF Selen Graetz, 28 V. 150 mA	DM 1.75
AEG Selen Graetz, 75 V. 0.5 Amp	DM 3.65
SIEMENS Cu-Oxyd., 24V, 1,5A, Graetz	
SIEMENS Maikäfer Einw. Gleichricht.	DM 0.95
SIEMENS Kleinladegerät für 220 V	
Wechselstr. Sek. 2/4/6V, max. 0,5 A nur	DM 9.80

Instrumente:	
DrehspEinbInstr. Ø 65mm, 1,5m NEUBERGER Drehsp. Flansch Ø 62mr	
O.6 mA	
NEUBERGER Drehsp. Flansch Ø 62mr 30 O. 39 mA	DM 9.90
NEUBERGER Drehsp. Flansch 2 62mm 50 O. 50 mA	. DM 9.90
GOSSEN Drehspul Flansch Ø 45 mr O. 6 Amp.	. DM 6.65
SIEMENS Drehspul Flansch Ø 100mr	. DM12.50
Weicheisen-Instr. Flansch Ø 65 mr 180 Volt	

Verschiedenes:	
Bananenstecker, porzellan m. Messingkontakt	DM 0.04
mit 2 Muttern	DM 0.09
Apparateklemme, schwarzer Isolierkopf, ≥ 17 mm	DM 0.18 DM 0.34
Umdrehungen pro Minute	DM 1.90
WICKMANN Aufbau-SicherElement WICKMANN Einbau-SicherElement	DM 0.28 DM 0.75
Fotozell.130-250 V: ca. 60-200 mmA Stabbatterie 1,5 V ca. 3 Ah, \$\times\$ 43 mm,	DM 4.80
Länge 165 mm	DM 0.65
perlen, Bund 4,20 m	DM 0.90 DM 1.25
Kab. 4pol m. Baumw. Umspinn., pr. m Netzkob. 2x0,75 mm, umspann., 1.1,5m KORTING NF-Übertrager 1:5	DM 0.45 DM 1.90
LUMOPHON-Drossel, 250 Ω, 30 mA Doppeldrehko, 2 x 500 pF, calitiso-	
Ungebahrt. Alu-Chassis, 24 x 12 5 cm	

Prompter Versand so lange Vorrat! Ab DM 20 - porto- und verpakungsfrei! Auch kleinste Bestellungen von nur 1 Stück werden sorgfältig ausgeführt!

Fordern Sie noch heute die kostenlose Zusendung der neuen Sonderpreisliste "G"