SENIEUR-AUSGABE SFI

MIT FERNSEH-TECHNIK

FACHZEITSCHRIFT FUR FUNKTECHNIKER . ERSCHEINT AM 5. UND 20. JEDEN MONATS

SAJA-TONBANDCHASSIS FÜR JEDERMANN

Ein Schlager

der Großen Deutschen Rundfunk-, Fernseh- und Phono-Ausstellung Düsseldorf 1955

Preis DM 298 .-

SANDER & JANZEN, Berlin NW 87

naturgetreu und echofrei

Die große Nachfrage beweist die Zuverlässigkeit Frequenzbereich 80 - 12000 Hz Nierenförmige Richtcharakteristik Als Type D 11/B mit Sprache-Musik-Schalter

AKUSTISCHE- u. KINO-GERÄTE GmbH.

München 15, Sannenstraße 20 . Telefan 59 25 19

Potsdamer Strafte 130 - Tel.: 24 38 44

TELEFUNKEN Fernscher

TERZOLA II DM 1698,-

WER QUALITAT SUCHT FINDET ZU

TELEFUNKEN

MIT FERNSEH-TECHNIK

Inflation der Röhrentypen?

Von Zeit zu Zeit führen manche Röhrenverbraucher — vorzugsweise die Konstrukteure von elektronischen Geräten — Klage wegen der Vielzahl von Röhren, die die deutsche Röhrenindustrie fertigt und listenmäßig führt. Die Beanstandungen erstrecken sich daneben auf die angeblich mangelhafte Koordinierung der deutschen und der maßgebenden ausländischen Entwicklung (USA!), das Fehlen einer Röhren-Vorzugsliste, aufzustellen durch ein unabhängiges Gremium unter Anlehnung an bestehende ausländische Vorschläge (NATO-Liste, CV-Röhren) und auf die zahllosen Röhrentypen, die trotz nahezu identischen Systemaufbaues und daher identischer Leistung verschiedene Sockelschaltungen aufweisen. Letzteres trifft — mit Einschränkungen — vor allem auf die Normal- und Langlebensdauer-röhren vom gleichen Typ zu. Als Beispiel sei auf die Novalsockel der EF 80 und der E 80 F verwiesen. Ein weiteres Beispiel bieten die Misch/Oszillatorröhren für Fernsehempfänger. Nebeneinander und wahrscheinlich mit nur unwesentlichen Leistungsunterschieden werden PCF 80 und PCF 82 verwendet, zugleich steht die PCC 85 für die gleiche Stufe zur Debatte.

Wir wollen uns nicht in Einzelheiten verlieren. Die Länge der deutschen Röhrenlisten hat einige sozusagen historische Gründe, beginnend mit der Nachkriegszeit, als sich nach verschiedenen vergeblichen Anläusen herausstellte, daß die Stahlröhre international nicht mehr konkurrenzfähig war. Es gingen die Rimlock- und Pico-Röhren in die Fertigung, ehe sich die fabrikatorischen und marktpolitischen Vorzüge der Novalserie durchsetzten. Zusammen mit den in den ersten Nachkriegsjahren hergestellten Kriegs- und Vorkriegstypen rundete sich die Tabelle. Und wenn eine Röhrentype erst einmal gebaut ist, so muß sie für die Nachbestückung auf Jahre hinaus zur Verfügung stehen und behält ihren Platz in der Röhrenliste.

Weitere Gründe für die Unzahl von Röhrentypen, die aber vorwiegend den immer wichtiger werdenden kommerziellen/elektronischen Sektor betreffen, ergeben sich aus dem Hang vieler deutscher Gerätekonstrukteure zur Spezialtype für ihr Arbeitsvorhaben und aus der Entwicklungsfreudigkeit mancher Röhrenlabors. Zweifelsohne gibt es immer und überall etwas zu verbessern, und nicht von ungefähr macht in der Fachwelt die "Regelpentode mit Knoten im oberen Teil der Kennlinie" schmunzelnd die Runde.

Neue Aufgaben verlangen häufig auch neue Röhrenserien. Die Entwicklung von Allstrom-Fernsehempfängern verlangte flugs eine komplette neue Serie mit 300-mA-Heizer. Kaum ist dieser Fall ausgestanden, so reicht die Ablenkleistung der PL 81 für die neue 90-Grad-Bildröhre nicht mehr aus, und die PL 36 tritt an ihre Stelle. Hinter der Änderung zweier Zahlen aber verbirgt sich eine Umstellung der Fertigungstechnik: für diese neue Type mit maximal 10 Watt Anodenbelastung war die Novalröhre nicht mehr geeignet. In diesem Zusammenhang sei erwähnt, daß kürzlich in den USA eine umfangreiche 600-mA-Serie für Allstrom-Fernsehempfänger angekündigt wurde, bedingt durch die gegenüber Europa halbierte Netzspannung (117 Volt). Wenn sich die deutsche Industrie um Exportlieferungen von Fernsehgeräten für den von den USA weitgehend beherrschten südamerikanischen Markt bemüht, müssen vielleicht auch noch diese Röhren gebaut werden. . .

Hier liegt überhaupt eine Erklärung für die große Zahl von Röhrentypen in Deutschland. Unser Land ist offen. Jede Fabrik im Bereich der europäischen Zahlungsunion darf unbegrenzte Stückzahlen in die Bundesrepublik liefern. Die deutsche Röhrenindustrie muß also in ihrem eigenen Interesse auf der Hut sein und — unter anderem — typenmäßig gleichziehen. Wir sind außerdem durch die gegenüber der Vorkriegszeit vervielfachte Ausfuhr von Rundfunk- und Fernsehgeräten, Meßinstrumenten, Verstärkern und elektronischen Spezialanlagen mehr als früher gezwungen, den Wünschen der ausländischen Abnehmer nachzugeben. Aber auch deutsche Kunden, vor allem Behörden, äußern häufig sehr bestimmte Sonderwünsche.

Die Röhrenindustrie dürfte an der Vielzahl der Typen das geringste Interesse haben. Rationelle Fertigung, der Wunsch aller Produzenten, läßt sich nur mit großen Serien erreichen. Hier sind die Erfolge auf dem Sektor "Unterhaltungsröhren", wie in der Industrie die Röhren für Rundfunk- und Fernsehempfänger genannt werden, unbestreitbar. Die Bestückung für diese Gerätearten ist schon weitgehend rationalisiert — es beginnt im Eingang des Rundfunkempfängers mit der ECC 85 und endet mit der EL 84 vor dem Lautsprecher; dazwischen dominieren ECH 81, EF 89 und EABC 80. Hier wird sich in Zukunft auch kaum noch etwas ändern. Im Fernsehempfänger ist wegen der vielfältigen Aufgabe der Schaltung (200-MHz-Technik, Impuls-, Leistungs- und Hochspannungserzeugung) eine größere Typenzahl unvermeidlich, aber sie hält sich trotzdem in engen Grenzen. Man erkennt: der beklagte Typenwirrwarr — wenn wir es so nennen sollen — trifft den Fachhändler und Reparaturtechniker viel weniger als die Spezialisten in den Labors für kommerzielle und elektronische Geräte.

Es geht dem deutschen Praktiker besser als seinem Kollegen in den vielzitierten USA. Eine Untersuchung der General Electric Co. ergab, daß in 150 verschiedenen amerikanischen Fernsehempfängertypen aus den Jahren 1954 und 1955 nicht weniger als 119 verschiedene Röhrentypen anzutreffen waren . . . Karl Tetzner

Aus dem Inhalt:

Dos Neueste aus Kadia- und Fernsehtechnik:
Ein Fernsehsendelurm van 480 m Hähe 462
Tannenbaumantennen für Dezimeter- wellen
Der Muschellautsprecher
Aktuelle FUNKSCHAU 464
Fernseh-Trick-Mischpult
Lecherleitungen als Resonanzkreise im
Meter- und Dezimeterwellenbereich 467
Vallsuper ahne Mischhexade 469
Die klingarme Nf-Pentode EF 86 470
Silizium-Transistoren aus Frankreich 470
Stufen-Phasenschieber für oszillografische
Zwecke 471
Netzzusatzkassette für ein Taschenradio-
gerāt 472
Für den jungen Funktechniker:
20. Van der Erwärmung
Richtantennen aus Viererfeldern 476
Fernseh-Antennenverstärker auch für
UKW
Veraltete Hochantennen auf den
Dāchern 478
FUNKSCHAU-Bauanleitung:
Verstärker-Kleinzentrale V 553
Funktechnische Fachliteratur
Vorschläge für die Werkstattpraxis:
Verbesserter UKW-Empfang durch neue
UKW-Einheiten; Verbesserte drehbare
UKW-Antenne; Einfache Zweikanal-Nf- Schaltung
Briefe an die FUNKSCHAU-Redaktion . 486
Werks-Veröffentlichungen / Neuerungen 486
Köpfe für Magnet-Tonfilm; Elektrische Spritzpistale

Die INGENIEUR-AUSGABE enthält außerdem:

FUNKSCHAU - Schaltungssammlung

Band 1955, Seiten 49 bis 56, mit den Fernsehempfänger-Schaltungen Nr. 40 bis 44 (Nordmende bis Telefunken)

Unser Titelbild: Dieser Porzellanisolator trägt das Gewicht von 1400 Tonnen eines 480 m hohen Antennenmastes in den USA. Der gigantische Turm ist das hächste Bauwerk der Erde (vgl. Seite 462 dieses Heftes).

DAS NEUESTE aus Radio- und Fernsehtechnik

Ein Fernseh-Sendeturm von 480 m Höhe

Nördlich von Oklahoma City, der Hauptstadt des gleichnamigen Bundesstaates der USA im mittleren Westen, passiert die US-Highway 771) den neuen Gebäudekomplex der Fernsehstation KMTV (Kanal 9). Mit 50 kW Senderausgangsleistung und 316 kW eff. Strahlungsleistung gehört sie zu den stärksten Fernsehsendern der Welt. Die Reichweite wurde nunmehr durch Verlegung der Antenne mit g = 7 in der Horizontalen auf die Spitze eines 480 m hohen Stahlturmes erheblich vergrößert, so daß jetzt ein Kreis mit 200 km Durchmesser ausreichend versorgt wird. Die Antenne ist geteilt; das untere Stück von 30 m Länge ist dem Fernsehsender KMTV und das obere, 22 m lange, einem zweiten, noch nicht fertiggestellten Fernsehsender für kulturelle und Erziehungs-Sendungen zugeteilt.

Dieser gigantische Fernsehturm ist das höchste Bauwerk der Erde. Bis 1931 gebührte dieser Ruhm dem 1889 fertiggestellten Eiffelturm in Paris (300 m), vom genannten Jahr ab dem Empire State Building in New York, dessen Bauhöhe

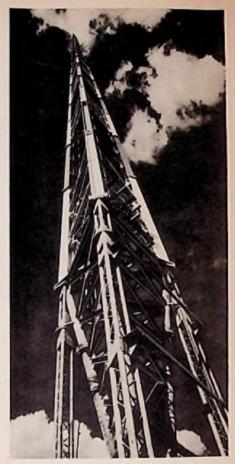
Montage des Turmunterteils

von 380 m vor vier Jahren durch das Aufsetzen einer Vielfachantenne (für fünf der sleben New Yorker Fernsehsender und für einige UKW-Stationen) mit 68 m Länge auf 448 m gebracht wurde.

Der neue, von der IDECO-Division der Dresser-Stacey Company, Columbus/Ohio, erbaute Turm hat einen dreieckigen Querschnitt mit 3 m Seitenlänge. Sein Rahmen besteht aus Stahlrohr, dessen Durchmesser sich nach oben von 26 auf 10 cm verjüngt, sowie aus den entsprechenden Querund Vertikalstreben aus Dreikantstahl. Der Mast alleine wiegt 650 t und wird von vier Paaren 5 cm dicker Pardunen aus verdrilltem Stahldraht abgespannt.

Ein einziger, aus ölgefüllten Porzellanrohren zusammengesetzter Isolator mit
einer maximalen Tragfähigkeit von 5600 t
nimmt das Gesamtgewicht des Turmes
von ungefähr 1400 t auf und ist demzufolge ausreichend überdimensioniert. Das
Gewicht setzt sich zusammen aus der Last
der eigentlichen Stahlkonstruktion — etwa
650 t schwer — der Pardunen, Antennen
und Antennenkabel. Der Isolator über-

1) Eine unseren Autobahnen vergleichbare Fernverkehrsstraße.


trägt diese Last auf das sechseckige Betonfundament (5,7 m Durchmesser, 2,25 in tief eingelassen). Die Verankerungsfundamente sind noch größer, etwa 7,8 m im Quadrat und 3,15 m stark.

Die Montage dieses einmaligen, aus der Ferne zauberhaft filigranzart wirkenden Bauwerkes konnte natürlich nicht mit Hilfe von Turmkränen erfolgen. Das verbot die Höhe. Die Konstruktionsfirma entwickelte eine sich selbst hebende Montagebühne, die innerhalb des Turmes nach oben wandert und als Stützpunkt für das Emporwinden der insgesamt 52 jeweils 9 Meter langen, yorfabrizierten Turmteile diente. Auf ihr befanden sich Winden, Elektromotoren und elektronisch gesteuerte Übersetzungsgetriebe, und die Turmteile konnten mit jeder Geschwindigkeit heraufgezogen und aufgesetzt werden. Das ganze war eine Art Münchhausen, der sich bekanntlich an seinem eigenen Zopf aus dem Sumpf gezogen haben soll ...

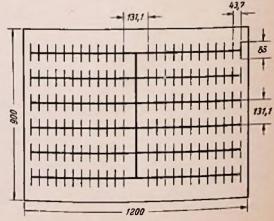
Nur dreizehn Spezialisten wurden für die Montage benötigt, und sie errichteten das Bauwerk im Verlauf von nur 9 Wochen! Zum Schluß erhielt der Turm seinen Fliegerschutzanstrich, je 10 Meter breite, abwechselnd gelbe und weiße Streifen. 9 Lampen zu je 1000 Watt und 18 Hindernisfeuer vervollständigen die Flugsicherungsmaßnahmen.

Ein Fahrstuhl bringt die überwachenden Ingenieure auf eine Höhe von 402 m, der Rest bis zur Spitze muß auf einer gut gesicherten Treppe erklommen werden. Besondere Aufmerksamkeit verlangte die Sicherheit gegen Winddruck, denn Oklahoma wird hier und da von einem Tornado heimgesucht. Daher hat man den Turm in seiner oberen Hälfte für 250 kg/qm Windlast und in seiner unteren für 195 kg/qm ausgelegt.

Aber dieser Turm von Oklahoma City wird nicht lange das höchste Bauwerk der Erde bleiben. Schon laufen die Vorarbeiten für einen Fernsehsendemast in Mont-

Der Welt höchstes Bauwerk: Fernsehturm der amerikanischen Station KWTV in Oklahoma-City

gomery, Alabama, mit 562 m Höhe — und Pressemeldungen zufolge will die Weltausstellung in Brüssel 1958 ihr Gelände mit einem 635 m hohen Betonturm krönen! K. T.


(Nach Unterlagen der Dresser-Stacey Company und der VDI-Nachrichten, Düsseldorf, Nr. 10/1955.)

"Tannenbaumantennen" für Dezimeterwellen

Für den Übersee-Kurzwellenrundfunk haben sich "Tannenbaumantennen" in Form von Dipolwänden bewährt. Ihr horizontaler Öffnungswinkel ist groß und daher zum Bestreichen größerer Gebiete geeigneter als die durchweg sehr schmale Horizontalöffnung der Rhombus-Antenne. Letztere ist für den Punkt-zu-Punkt-Verkehr der kommerziellen Nachrichtenverbindungen günstig, weil der Aufwand, bezogen auf die erreichte Bündelung, unübertroffen gering ist. Das gilt für den Kurzwellenbereich.

Im Bereich der Dezimeterwellen haben sich Horn- und Linsenstrahler sowie Parabolspiegel als die besten Konstruktionen erwiesen; daneben gibt es raumsparende Spiralantennen und die "Zigarrenantennen" (vergleiche FUNKSCHAU 1955, Heft 12, Leitartikel). H. Schneider vom Institut für Fernmeldetechnische Geräte und Anlagen der TH Darmstadt beschreibt nun in der

Bild I. Maßskizze der beschriebenen Tannenbaumantenne. Auf einer Fläche von nur etwa einem Quadratmeter sitzen 144 Strahler-Elemente "Fernmeldetechnischen Zeitschrift" die Konstruktion einer "Tannenbaumantennefür den Bereich um 1 GHz (= 1000 MHz = 30 cm Wellenlänge) unter Verwendung der Microstrip-Technik (vgl. ausführlichen Bericht von R. Hübner in FUNKSCHAU 1955, Heft 12, Seite 243). Dle Antenne besteht, wie Bild I zeigt, aus sechs Dipolstreifen auf einer Plexiglasscheibe von 1200 × 900 mm für eine Betriebswellen-

länge von 13,6 cm. Insgesamt werden 144 Dipole benutzt, deren Abstand untereinander $\lambda_D/2$ beträgt. Die Zeilen sind $2/3\lambda_D$ voneinander entfernt und die Dipole rd. λ_D lang!). Die Führung der Speiseleitungen geht aus Bild 1 hervor; sie haben aus Rücksicht auf die Meßanordnungen im Labor 70 Ω Wellenwiderstand, eine Anpassung war sonst eine Anpassung war

Labor 70 Ω Wellenwiderstand, eine Anpassung war sonst nicht nötig, denn die Dipole weisen Fußpunktwiderstände um 1000Ω auf.

Als Material diente Kupferfolie von 0,1 mm Stärke, aus dem jeweils die Speiseleitung mit anhängender Dipolhälfte ausgeschnitten und entsprechend Bild 2 beiderseits einer 5 mm starken Plexiglasplatte mit Hilfe einer Trolitullösung aufgeklebt wurde. Das Ganze bildet die "Anten-nenplatte"; hinter ihr lie-gen weitere Plexiglasplat. ten bis zur Stärke von $\lambda_D/4$ und schließlich eine Folie von der Größe der Platten als Reflektor. Zum Schluß wurde beiderseits dieses Stapels noch je eine dünne Plexiglasscheibe als Witterungsschutz aufge-klebt; Plexigum sorgt am Rande für luftdichten Verschluß. In der Mitte sitzt zwischen den Speiseleitungen und dem Reflektor ein Symmetrierglied; die Zuleitung läuft koaxial durch die Mitte der Reflektorplatte.

In der erwähnten Arbeit wird ausgeführt, daß eine exakte Berechnung des Feldes der neuartigen Antenne nicht möglich ist, denn die einzelnen Dipole sind in ein Medium eingebettet, in dem die Phasengeschwindigkeit geringer als im freien Raum ist. Die im Innern des Mediums und in der Luft auftretenden elektromagnetischen Felder müßten an der Grenzschicht

Herizontal-Diagramm

— errachnate Werte

— Meßwerta

Wertikal-Diagramm

— errechnate Werte

— Wertikal-Diagramm

— errechnate Werte

— Wertikal-Diagramm

— errechnate Werte

Meßwerte

Vertikal-Diagramm

— errechnate Werte

Meßwerte

Bild 4. Richtcharakteristik für Horizontale und Vertikale

durch entsprechende Randbedingungen zusammengesetzt werden — dies erschwert sich aber noch durch die endliche Abmessung des Dielektrikums und seiner Verluste. Trotzdem decken sich die annähernd berechneten mit den gemessenen Werten hinreichend, wie Bild 4 (Vertikal- und Horizontaldiagramm beweist. Die Berechnungen wurden für die Parameter $\theta=90^{\circ}$ sowie $\psi=0^{\circ}$ durchgeführt. Die wechselnde Höhe der Nebenmaxima im Hori-

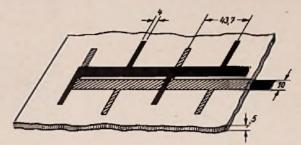


Bild 2. Skizze der aus Metallfolie ausgeschittenen und auf die Plexiglasplatte geklebten Dipolhälften mit Speiseleitung

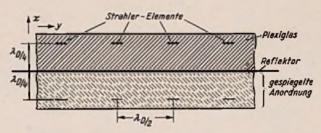


Bild 3. Schnitt der Antenne (schematisch) mit Spiegelung durch den Reflektor aus Folie. Die Strahlerelemente stehen senkrecht zur Zeichenebene

zontaldiagramm entsteht durch Fehlen von je zwei Dipolen in der Mitte jeder Zeile. Aus beiden Diagrammen können Halbwertsbreiten für die horizontale Bünde-

DAS NEUESTE

lung von 6° und für die vertikale von 9° abgelesen werden; die Rückstrahlung ist um mindestens 30 dB gegenüber der Hauptstrahlrichtung geschwächt. Dieser Wert dürfte noch zu verbessern sein. Er hängt zum Teil von der Ausführung der Plattenränder ab.

Eine Berechnung des Antennengewinns wurde unterlassen, weil hier nur der Antennenwirkungsgrad (gesamt) interessiert, bei dem die dielektrischen Verluste eine erhebliche Rolle spielen. Die Antennenwand ist sehr schmalbandig und daher in dieser Form für den praktischen Einsatz in der Nachrichtentechnik nur bedingt brauchbar. Im vorliegenden Falle sollte aber nur ein sehr schmalbandiges Signal übertragen werden. Übrigens dürfte es mit der Microstrip-Technik durchaus möglich seln, breitbandige Richtantennen zu bauen.

Beim praktischen Einsatz der Antenne für eine Spezialanlage im Wattenmeer vor Norderney erwies sich das benutzte Plexiglas, dessen elektrische Eigenschaften für diesen Zweck nicht optimal sind, ideal in seiner Widerstandsfähigkeit gegenüber Witterungseinflüssen und Seewasser. (Bezüglich der Eigenschaften von Plexiglas bei hohen Frequenzen verweisen wir auf die Beiträge "Plexiglas als Isolationsmaterial" in der FUNKSCHAU 1955, H. 3, Seite 56 und Heft 16, Seite 366. Besonders im zweiten Beitrag wird betont, daß dieses Material zwar isolationsmäßig nicht die Werte von Trolitul erreicht, daß es aber sehr unempfindlich gegen Feuchtigkeit ist.) K. T.

("Tannenbaumantenne für Dezimeterwellen aus Metallfolie" von H. Schneider, FTZ 1955. Heft 6, Seite 312...315)

Der Muschellautsprecher

Das in Bild 1 gezeigte Gebilde ist nicht der keramischen Werkstatt eines abstrakten Künstlers entsprungen, sondern stellt die letzle Ausführungsform des Elipson-Lautsprechers der S. A. Elipson, Paris XVIe, dar. Ihr Erfinder, M. Léon, greift auf die Möglichkeiten zurück, die Schallwellen analog den Lichtwellen zu bündeln, zu brechen und abzulenken, und zwar unter Anwendung des Hohlspiegelprinzips, wie es in der Optik viel benutzt

prinzips, wie es in der Optik viel benutzt wird. Allerdings müssen wegen der vergleichsweise langen Wellen der hörbaren Töne erhebliche Einschränkungen gemacht werden; anderenfalls würden die Dimensionen des "Hohlspiegels" untragbar anwachsen. Unterhalb einer bestimmten Grenzfrequenz ist eine Bündelung oder gerichtete Refiexion des Schalles nicht mehr möglich.

In Bild 2, einem Schnitt durch das Lautsprechergehäuse, ist die Membrane des Lautsprechers bei F angebracht: die geometrische Achse zeigt auf den Punkt B der Muschel, während die Linie B—F' die spiegelbildliche Abstrahllinie andeutet. Die Wirkungsweise der Muschel hängt nun weitgehend von den Abmessungen und gleichzeitig von der jeweiligen Tonfrequenz ab; die mittleren und hohen Frequenzen werden besser gerichtet als die Tiefen, für die hinter der Lautsprechermembrane ein Resonanz-Hohlraum mit vorderer Öffnung angebracht ist.

Die theoretischen Überlegungen, die vorstehend nur knapp angedeutet werden, stimmen befriedigend mit den Meßergebnissen überein. Bei den Tiefen ergibt sich dank der Verteilung der Resonanzstellen (Lautsprecher bei rd. 80 Hz, Resonantor bei rd. 40 Hz) eine Linearisierung des Frequenzganges. Eine Messung der horizontalen und vertikalen Schallverteilung bei 3000 Hz zeigte eine nahezu rota-

tionssymmetrische "Keule" jeweils ± 30° um die Mittelachse der Abstrahlung, die durch entsprechendes Anbringen der Muschel leicht zu bestimmen ist. Schließlich ist der Schalldruck eines Lautsprechers in der Muschel, verglichen mit einem gleichen System auf einer Schallwand von 1 qm Fläche und bei übereinstimmender Nf-Leistung im Mittel um 3...4 dB höher. Eine vorliegende Frequenzkurve läßt einen erheblichen Höhenabfall oberhalb von 7 kHz erkennen — möglicherweise

Bild 1. Der »Elipson«-Lautsprecher in neuer Aussührung

⁾ $\lambda_D = 8.74$ cm oder "Wellenlänge im Dielektrikum".

DAS NEUESTE

Der Muschellautsprecher (Fortsetzung)

bedingt durch das große System mit 21 cm

Durchmesser.

Bild 3 läßt schematisch die Richtwirkung Bild 3 läßt schematisch die Kichtwirkung der Muschel erkennen, die für spezielle Beschallungsaufgaben anscheinend gut brauchbar ist. Die Gesamthöhe des Mo-dells 45 S 21, bestückt mit einem 6-Watt-Lautsprecher von 21 cm Durchmesser, beträgt 870 mm, der größte Durchmesser 362 mm.)

trag von J. Bernhardt "Le Diffuseur Elipson", revue du SON, No. 10, Janvier 1954, Seite 27.) (Nach Firmenunterlagen und einem Bei-

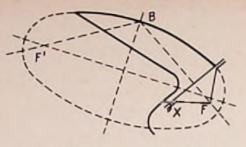


Bild 2. Schema der Abstrahlung. F ist der Lautsprecher; der Hauptabstrahlwinkel liegt zwischen der Linie durch B und der Linie F

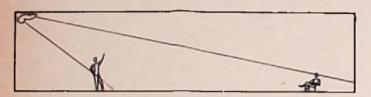


Bild 3. Wie man den Muschellautsprecher verwenden kann

208 733 (+ 16 555)

Fernsebsender Kreuzberg/Rhön

Bekanntlich wollen der Baverische und der Bekanntlich wollen der Bayerische und der Hessische Rundfunk auf dem Kreuzberg/Rhon gemeinsam einen Fernsehsender zur Versorgung des westlichen Oberhessens, Unterfrankens und Nordbayerns errichten. Die Anlage soll, wie wir erfahren, eine Bildsender-Strahlungsleistung von 100 kW aufweisen. Im Stockholmer UKW-Plan wurde 1952 der beteits damals geplant gewesenen Station Kanal 3 (Band I) zugeteilt, jedoch ausnahmsweise vertikale Antennenpolarisation vorgeschrieben. schrieben.

Rheinlunk in der Umstellung

Die 600 km lange Rheinstrecke zwischen Kehl und der niederländischen Grenze ist für den öffentlichen Funksprechverkehr durch Feststationen der Bundespost im Grenzwellenbereich (80...120 m) erschlossen. Zur Zeit nehmen 64 Schiffe an diesem Dienst teil; sie führen monatlich im Durchschnitt 3000 Gespräche. Allmählich wird auf UKW-Betrieb umgestellt; schon vor zwei Jahren hat die Bundespost den UKW-Hafenfunk Duisburg und vor einem Jahr den UKW-Hafenfunk Mannheim eröffnet. 23 Rheinschiffe verfügen bereits über UKW-Geräte. Die 600 km lange Rheinstrecke zwischen bereits über UKW-Geräte.

Elnes Tages doch Kleine Lizenzen?

Einer Außerung von Staatssekretar Bleek (Bundesinnenministerium) in einer Diskus-sion auf der letzten Rundfunktagung in Loc-cum war zu entnehmen, daß es die Rund-funkgesetzgebung durchaus zulasse, eines Tages bestimmten privaten Interessenten die Genehmigung für den Betrieb von Rundfunksendern nach dem Muster der "Kleinen Lizenzen" des Arbeitskreises für Rundfunkfragen zu erteilen.

Radioteleskop in der Elfel

Zwei Kilometer nordwestlich von Münstereifel begann Mitte August der Bau des ersten Radioteleskops der Bundesrepublik. Auftraggeber ist das Land Nordrhein-Westfalen; die wissenschaftliche Leitung hat Prof. Becker von der Universitätssternwarte Bonn übernommen. Auf einem Turm von 35 m Höhe wird ein 25-m-Parabolsplegel Schwenkbar angebracht, so daß jeder Sektor des Weltalls nach "Radiosternen" abgetastet werden kann. Obwohl der große Spiegel 20 Tonnen wiegt, arbeitet die Justierung so genau, daß er auch bei einem seitlichen Winddruck von 50 Tonnen insgesamt nicht mehr als 5 mm vom eingestellten Winkel abweicht!

Rundlunk- und Fernschteilnehmer am 1. Oktober 1955

A) Rundfunkteilnehmer Bundesrepublik 12 317 299 (+ 22 095) 766 725 (+ 2 047) Westberlin

zusammen

zusammen 13 084 024 (+ 24 142) B) Fernsehteilnehmer 199 742 (+ 15 699) 8 991 (+ 856) Bundesrepublik Westberlin

Der 200 000. Fernsehteilnehmer wurde am 13. September registriert. Die vorstehend er-rechnete Zunahme von 16 555 Genehmigungen ist die größte seit Beginn des Fernsehens in Deutschland.

Bildröhrenkolben aus Aachen

Die zur Philips-Gruppe gehörige Glas-fabrik Weißwasser GmbH. Aachen-Rothe Erde, baute für die Herstellung von 43- und 53-cm-Bildröhrenkolben nach dem Preßver-53-cm-Bildröhrenkolben nach dem Prefiver-fahren eine neue Glashütte mit über 6000 qm Fläche und 35 m Höhe. Die Produktion be-ginnt im November; man hat eine vorläufige Produktion von 700 000 Kolben pro Jahr ein-

Neue Telefunken-Fabrik

Das Hamburger Magnetophonwerk von Te-lefunken ist längst zu klein geworden, so daß in Wedel bei Hamburg eine Fabrik er-worben wurde, in der auf 6000 qm Fläche die Studio-Magnetophone von Telefunken und AEG geiertigt werden. Die Heim-Magneto-phone. vor allem das neue KL 65, werden in Berlin gefertigt.

Peter-Paul Fries 25 Jahre bei Loewe-Opta

Als Prokurist P. P. Fries nach inter-essanter Tätigkelt bei der Röntgenröhren-fabrik C. H. F. Müller, Dr. Nickel ("Ultra-Röhren") und Molybdenum, Amsterdam, am 15. 11. 1930 zu D. S. Loewe nach Berlin kam, hatte dieses Unternehmen soeben der Offentlichkeit. "das erste auf dem Schirm einer Braun'schen Röhre unter Anwendung von zwei Kippschwingungen hergestellte Bild mit Halbtönen" gezeigt. In Berlin bereitete der heutige Jubilar die Fertigung von Katodenstrahlröhren. Bildaufnahme- und anderer Spezialröhren vor. Im Krieg leitete er Verlagerungsbetriebe und kümmerte sich 1945 bis 1948 um die in der Octobe und im Octoberten 1948 um die in der Ostzone und im Ostsektor von Berlin verbliebenen Werke der Loewe-Gruppe. Später ging er noch Kronach und war am Aufbau dieses modernen Rundfunk-und Fernsehgerätewerkes maßgeblich beteiligt. Anfang 1954 erhielt P. P. Fries Prokura als wohlverdiente Anerkennung seiner großen Verdienste.

Hans Schenk 50 Jahre alt

Man merkt es der Arbeit des stets quicklebendigen und immer freundlichen Hans
Schenk an, daß er von der Pike auf im
Verlags- und Anzeigenwesen zu Hause ist.
Geboren am 5. 11. 1905 in Berlin verbrachte
er seine Lehrzeit in Druckerei, Verlag und
Redaktion, war Anzeigenleiter bei einem
industriellen Berliner Fachorgan, und weltere vier Jahre, zum Teil im Ausland, bei
einer Annoncen-Expedition. 1931 trat er in
die Werbeabteilung von Tele funken in
Berlin ein und wurde nach Kriegseinsatz und
Gefangenschaft 1947 Werbeleiter von Telefunken. Seine Werbung sprüht von Ideen.
Der Telefunken-Sprecher, Unser Tip, TeleBlitz und die Figur der Pilffika sind seine
ureigensten Schöpfungen. Die von ihm gestalteten Ausstellungsstände erregen stets
Aufsehen. In kollegialer Zusammenarbeit mit
den Werbeleitern der übrigen Rundfunkfirmen hat er neben seinen vielfältigen Aufgaben noch die Leitung des Ausstellungs- und
Werbeausschusses unserer Fachabtellung im
ZVEI übernommen. — Wir wünschen ihm
recht herzlich weitere erfolgreiche Tätigkeit
und hoffen auf gleichbleibende gute Zusammenarbeit. menarheit.

FUNKSCHAU Zeitscheift für Funktechniker

Herausgegeben vom

FRANZIS-VERLAG MÜNCHEN

Verlag der G. Franz'schen Buchdruckeret G. Emil Mayer Verlagsleitung Erich Schwandt

Redaktion: Otto Limann, Karl Tetzner und Fritz Kühne Anzeigenleiter u. stellvertretender Verlagsleiter: Paul Walde

Erscheint zweimal monatlich, und zwar am 5. und 20. eines jeden Monats. Zu beziehen durch den Buch- und Zeitschriftenhandei, unmittelbar vom Verlag und durch die Post.

Monats-Bezugspreis für die gewöhnliche Ausgabe DM 2.— (einschl. Postzeitungsgebühr) zuzüglich 6 Pfg. Zusteilgebühr: für die Ingenieur - Ausgabe DM 2.40 (einschl. Postzeitungsgebühr) zuzügl. 6 Pfg. Zusteilgebühr. Preis des Einzelheftes der gewöhnlichen Ausgabe 1.— DM, der Ing.-Ausgabe 1.20 DM.

Redaktion, Vertrieb u. Anzeigenverwaltung: Franzis-Verlag, München 2, Luisenstraße 17. — Fernruf: 5 16 25/26/27. — Postscheckkonto Fernruf: München 57 58.

Hamburger Redaktion: Hamburg - Bramfeld, Erbsenkamp 22a — Fernruf 63 79 64.

Berliner Geschäftsstelle: Berlin - Friedenau. Grazer Damm 155. — Fernruf 71 67 68 — Post-scheckkonto: Berlin-West Nr. 622 66.

Verantwortlich für den Textteil: Ing. Otto Limann; für den Anzeigenteil: Paul Walde. München. — Anzeigenpreise n. Preisi. Nr. 7.

Verantwortlich für die Österreich-Ausgabe: Ing. Ludwig Ratheiser, Wien.

Auslandsvertretungen: Belgien: De Internatio-Ausiandsvertretungen: Belgien: De Internationale Pers, Berchem - Antwerpen, Cogeis-Osy-Lel 40. — Niederlande: De Mulderkring, Bussum, Nijverheldswerf 19-21. — Österreich: Verlag Ing. Walter Erb, Wien VI, Mariahilfer Straße 71. — Saar: Ludwig Schubert, Buchhandlung, Neunkirchen (Saar), Stummstr. 15. — Schweiz: Verlag H. Thall & Cie., Hitzkirch (Luzern). (Luzern).

Alleiniges Nachdrucksrecht, auch a weise, für Österreich wurde Herrn In Ludwig Rathelser, Wien, übertragen. auch auszugs-

Druck: G. Franz'sche Buchdruckerei G. Emil Mayer, (13 b) München 2, Luisenstr. 17. Fernsprecher: 5 16 25. Die FUNKSCHAU ist der IVW angeschlossen_

Radio- und Fernseh-Fernkurse

System FRANZIS-SCHWAN

für den FUNKSCHAU-Leser herausgegeben

Prospekte und Muster-Lehrbrief durch die Fernkurs-Abt. des Franzis-Verlages, München 2, Luisenstr. 17

Studien-Beginn jederzeit - ohne Berutsbehinderung. Für FUNKSCHAU-Leser ermäßigte Kursgebühren. Rund 3 DM monatlich und wöchentlich einige

Stunden fleißige Arbeit bringen

Sie im Beruf voran-

mehrerer Trickgeneratoren erhalten. In einem Impulsgenerator werden Hilfsimpulse gemäß Bild 3a erzeugt. Die Trick-

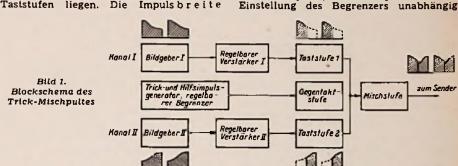
generatoren liefern sägezahn- oder dreieckförmige Spannungen von Bild- oder Zeilenfrequenz bzw. von Vielfachen dieser Frequenzen. Durch Umschalten von

Hand können einzelne dieser Spannungen mit den vom Impulsgenerator gelieferten Hilfsimpulsen additiv überlagert werden, wie Bild 3b als Beispiel einer Überlagerung vom Hilfsimpuls mit einer Sägezahn-

spannung zeigt. Aus diesem Gemisch kann, wie in Bild 3c dargestellt, durch einen wahlweise einstellbaren Begrenzer ein

schmaler Amplitudenbereich herausgeschnitten werden. Es ergeben sich dann Rechteckimpulse, deren Frequenz von der

Fernseh-Trick-Mischpult

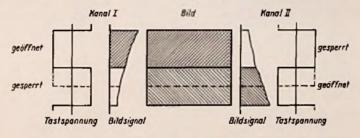

Von Herbert Lennartz

Eigentlich wird es recht wenig benutzt, das große Trick-Mischpult des NWDR; die Regisseure lassen lieber eine Szene unmittelbar in die folgende hinüberblenden und erzielen damit oft sehr packende Wirkungen. Aber interessant ist es doch, was die Techniker mit ihrer "Impulskocherei" alles zuwege bringen können.

Bei der Ausnahme von Fernsehdarbietungen werden im allgemeinen mehrere Kameras benutzt, und der Regisseur sucht während des Ablaus der Handlung die jeweils geeignete Einstellung einer der Kameras aus. Auch kann es erforderlich sein, Filmstreisen oder Diapositive bei einer laufenden Sendung einzublenden. Für den Übergang von einem Bild zum anderen ergeben sich dabei sehr reizvolle Möglichkeiten, weil sich diese Überblendungen rein elektrisch durchführen lassen, zumal wenn aus einer Vielzahl von Überblendungseinrichtungen oder Tricks das jeweils Passende ausgesucht werden kann. Ein Trickmischpult solcher Art wurde von der Fernseh GmbH. Darmstadt, in Zusammenarbeit mit dem NWDR entwikkelt und wird beim NWDR Hamburg verwendet. Wirkungsweise und Ausführung dieser Apparatur sollen im folgenden kurz beschrieben werden.

Bild I zeigt das Blockschema des Mischpultes. Die beiden zu überblendenden Bilder der Bildgeber I und II gelangen über einen in jedem Kanal liegenden regelbaren Verstärker und über je eine Taststufe auf eine Mischstufe, an deren Ausgang der Sender angeschlossen ist. Bei Amplituden überblendung sind die Taststufen außer Betrieb, es gelangen also die Signale beider Bilder auf die Mischstufe. Durch Änderung der Verstärkung der regelbaren Verstärker kann der

bis schließlich alle Zeilen das neue Bild darstellen. Elektrisch wird dies durch Rechteckimpulse von Bildfrequenz bewirkt, die 180° phasenverschoben an den Taststufen liegen. Die Impuls breite


ändert sich entsprechend der Schnittwanderungsgeschwindigkeit. Wie Bild 2 zeigt, wird bei der Übertragung eines Teils des Bildes I durch den Rechteckimpuls der Kanal I geöffnet und der Kanal II geschlossen. Bei entgegengesetzter Polarität des Impulses ist Kanal II geöffnet und Bild II wird übertragen, während Kanal I gesperrt ist.

Um senkrechte Schnitte zu erzeugen geht man von der Zeilenfrequenz aus, d. h. es wird bei jeder Zeile des Bildes ein ist, deren Dauer (Breite) jedoch durch die jeweilige Vorspannung des Begrenzers automatisch oder von Hand eingestellt werden kann. Die Rechteckimpulse werden einem Gegentaktverstärker zugeleitet, der Impulsfolgen entgegengesetzter Polarität erzeugt, die den Taststufen in den beiden Kanälen zugeführt werden. Dadurch wird erreicht, daß jeweils nur die Signale eines einzigen Bildgebers an die Mischstufe gelangen.

Der Überblendvorgang kommt nun dadurch zustande, daß gemäß Bild 3c (oben) nur aus dem Gebiet der höchsten Signalamplitude ein schmaler Bereich herausge-schnitten wird. Durch Änderung der Vor-spannung des Begrenzers wird dieser Amplitudenbereich in Richtung auf den unteren Extremwert des Signals verschoben (Bild 3c Mitte und unten). Es entstehen also zunächst nur ganz schmale positive Impulse, die bei Änderung der Vorspannung des Begrenzers immer breiter werden, bis der Rechteckimpuls schließlich nur während der Zeilenlücken durch schmale negative Impulse unterbrochen ist. Hat der Sägezahn z. B. ebenso wie der Hilfsimpuls Zeilenfrequenz (15 625 Hz), so wird am Anfang der Überblendung der Kanal I nur bei einem ganz kleinen Stück der Zeile geöffnet, während der größere Teil der Zeile vom Kanal II kommt. Mit zunehmender Verbreiterung der Rechteckimpulse wird auch der Anteil des Kanals I an der Zeile immer größer, bis am Ende nur noch das vom Kanal I übertragene Bild die Bildfläche bedeckt. Es entsteht also eine senkrechte Trennungslinie zwischen den beiden Bildern, die entsprechend der Geschwindigkeit, mit der die Vorspannung des Begrenzers g wird, über die Bildfläche wandert. geregelt

In folgendem werden noch einige Schaltungseinzelheiten der Anlage besprochen.

Bild 2. Erzeugung eines waagerechten Schnitts durch Tastimpulse, die die Kandie so öffnen, daß von Bild I die obere und von Bild II die untere Hälfte übertragen wird

Übergang von einem zum anderen Bild mit wechselndem Kontrast bewerkstelligt werden oder es können beide Bilder, übereinander geschrieben, gleichzeitig ausgestrahlt werden, eine Möglichkeit, von der die Regisseure immer mehr Gebrauch machen, um die Handlung zu beleben. Doch zurück zum eigentlichen Überblend-Vorgang.

Bei den sogenannten rollenden Schnitten soll das neue Bild gewissermaßen über das alte geschoben werden. Es entsteht eine scharfe Trennungslinie zwischen den beiden Bildern, die sich vertikal, horizontal oder diagonal über das Bild bewegt. Auch Kombinationen, z. B. fächerförmige Streifen, Dreiecksausschnitte usw. sollen möglich sein. Zur Erzeugung solcher Schnitte dienen Trickgeneratoren, die Spannungen bestimmter Kurvenform (z. B. Sägezahn- oder Dreieckspannungen) erzeugen, eine Impulsmischstufe, ein Zusatzimpulsgenerator, ein regelbarer Begrenzer, eine Gegentaktstufe und die in den beiden Kanälen liegenden Taststufen. Um das Zustandekommen der rollenden

Um das Zustandekommen der rollenden Schnitte zu erklären, muß man den zeitlichen Ablauf des Bildaufbaues betrachten. Der Schnitt soll z. B. waagerecht verlaufen und von oben nach unten wandern. Dann müssen bei jedem Teilbild eine Anzahl Zeilen vom neuen und der Rest vom alten Bild stammen. Entsprechend der Geschwindigkeit mit der der Schnitt wandern soll, vermehrt sich von Bild zu Bild die vom neuen Bild übertragene Zeilenzahl.

Stück von Bild I und ein Stück von Bild II übertragen. Durch Anwendung von Impulsen, deren Frequenz ein vielfaches der Zeilenfrequenz beträgt, erhält man Streifen, da dann die Zeile mehrfach unterteilt ist, d. h. es wechseln innerhalb einer Zeile Teilstücke von Bild I und Bild II mehrmals hintereinander ab. Ebenso ist es möglich, durch Impulse von mehrfacher Bildfrequenz waagerechte Streifen zu erzeugen. Schließlich kann auch eine Kombination von Zeilen- und Bildfrequenz oder deren Vielfachen als Tastfrequenz dienen. Es ergeben sich dann diagonale und ähnliche Schnitte.

Die Tastspannungen werden durch Mischen der Spannung eines Hilfsimpulsgenerators mit der Spannung eines oder

Bild 3. Entstehung der Tastimpulse durch Überlagerung der Impulse des Trickgenerators mit dem Hilfsimpuls: a = Zusatzimpulse, b = Mischung der Zusatzimpulse mit der Trickgeneratorspannung, c = Ausschneiden eines Amplitudenbe-

eines Amplitudenbereichs im regelbaren Begrenzer

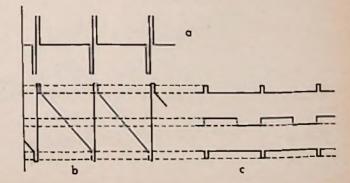


Bild 4a. Verdrängung von oben nach unten

Bild 5 zeigt das Prinzipschaltbild des Hilfsimpulserzeugers. Der Röhre V1 wird ein Rechteckimpuls zugeführt, dessen Beginn gegenüber dem Beginn des Zeilenaustastsignals um 1% der Zeilenlänge zögert ist. Der Rechteckimpuls wird durch die vor dem Gitter von V 1 liegende Widerstands - Kondensator - Kombination differenziert. Die positive Zacke des Impulses erzeugt in dem im Anodenkreis von liegenden Schwingkreis Schwingungshalb-wellen, die etwa 7% der Zeilenlänge breit sind. Die angeschlossene Diode unterdrückt die folgende und etwaige weitere Schwingungen. Die Schwingungshalbwellen gelangen an das Gitter der Röhre V 2, in deren Anodenkreis infolge der Übersteuerung durch die hohen Amplituden der Halbwellen Rechteckimpulse entstehen. Die Rechteckimpulse werden der Röhre V3 zugeführt, an deren Anode eine Laufzeitkette LK angeschlossen ist. An dem kurzgeschlossenen Ende dieser Laufzeitkette werden die Impulse reflektiert und gelangen mit entgegengesetzter Polarität zur Anode zurück. Die Dauer des Hin-und Rücklaufs ist nur wenig größer als die Dauer des Impulses. An der Anode können also Impulse abgenommen werden, die aus zwei aufeinanderfolgenden Teil-

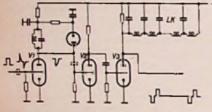


Bild 5 Prinzipschaltung des Hilfsimpulserzeugers

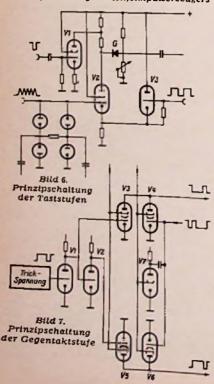


Bild 4b. 6-fach-Jalousia

impulsen entgegensetzter Polarität be-stehen. Diese Hilfsimpulse werden einer Mischröhre zur Überlagerung mit den Sägezahn- oder Dreieckspannungen der Trickgeneratoren zugeführt.

Nachdem aus dem Impulsgemisch im regelbaren Begrenzer ein Amplitudenbereich herausgeschnitten worden ist, gelangen die so erzeugten Rechteckspannungen variabler Breite auf die Gegentaktstufe, deren Prinzipschaltbild Bild 7 zeigt. Die Rechteckimpulse werden zunächst ver-stärkt und auf die Phasenumkehrröhre V 2 gegeben. In den Anodenkreisen der Gegentaktröhren V3 und V5 entstehen so absolut phasenstarr gekoppelte, aber gegensond phasige Rechteckspannungen, die als Sperr- bzw. Öffnungsspannung für die in den beiden Kanälen liegenden Taststufen dienen. — Zur Umschaltung von Trick- überblendung auf normale Überblendung ist eine Anordnung mit den Röhren V4. V6 und V7 vorgesehen. Der Röhre V7 wird das dargestellte Austastsignal zugeführt. Die Anode der Röhre V4 ist mit der Anode der Röhre V3 und die Anode der Röhre V6 mit der Anode der Röhre V5 zusammengeschaltet. Nun können die Röhren V3 und V5 einerseits und die Röhren V4 und V6 andererseits durch Anlegen entsprechender Spannungen wech-Anlegen entsprechender Spannungen wechselseitig gesperrt werden. Dadurch wird erreicht, daß einmal im Anodenkreis der Gegentaktstufen die Tastspannung zur Tricküberblendung über die Röhren V 1 und V 2 (V 4 und V 6 gesperrt) zum anderen das aus der Röhre V 7 zugeführte Austastgemisch (V 3 und V 5 gesperrt) erscheint scheint.

Bild 6 zeigt die Schaltung der in den beiden Kanälen liegenden Taststufen. Die Bildsignale werden dem Gitter der Röhre V 2 zugeführt. Mit diesem Gitter sind vier Dioden in einer sogenannten Clamping-

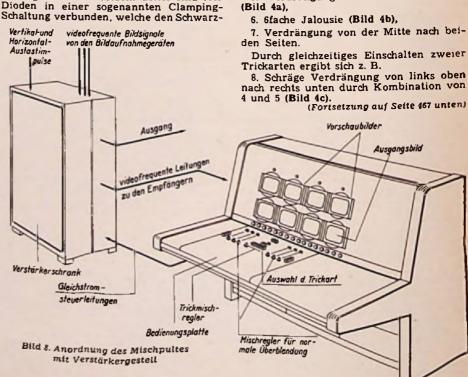


Bild ic. Schräge Verdrangung

wert der Videosignale festhält. Die Sperrimpulse der Gegentaktschaltung werden dem Gitter der Röhre V 3 zugeführt. Diese ist über einen gemeinsamen Katoden-widerstand mit der Röhre V 2 gekoppelt, so daß letztere durch die Tastimpulse ge-sperrt wird. Die Röhre V 1 wird mit weiteren Austastimpulsen gespeist, welche in den Anodenkreis der Röhre V2 einge-tastet werden. Dadurch wird erreicht, daß nach dem Abschneiden des so im Anodenkreis der Röhre V 2 entstandenen gemischten Signals durch den Gleichrichter G In jedem Falle die Synchronisierlücken ein definiertes Potential haben. Für eine einwandfreie Überblendung muß nicht nur der Schwarzwert des Fernseh-Videosignals durch eine entsprechende Schaltanordnung festgehalten werden, sondern auch der Schwarzwert der von der Gegentaktstufe gelieferten Impulse und der an V1 anliegenden Impulse ist festzuhalten

Es sind insgesamt sechs Trickgenera-toren vorgesehen, und zwar sind zunächst je zwei für Sägezahn- und Dreieckspan-nung von Bild- und Zeilenfrequenz und ein Generator mit sechsfacher Zeilenfrequenz eingebaut, während ein weiterer Generator noch eingesetzt werden kann. Mit dem Mischpult können u. a. folgende Überblendarten ausgeführt werden:

1. Schnelle Überblendung,

2. Langsame Überblendung, wobei das eine Bild während des Erscheinens des anderen Bildes verschwindet,

3. Langsame Überblendung, wobei das eine Bild bereits verschwunden ist, wenn das andere zu erscheinen beginnt.

Mit Hilfe der Trickgeneratoren:

4. Verdrängung des einen Bildes durch das andere Bild von links nach rechts,

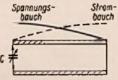
Verdrängung von oben nach unten (Bild 4a).

Lecherleitungen als Resonanzkreise im Meter- und Dezimeterwellenbereich

Die Bedeutung der Dezitechnik nimmt zu, deshalb bringen wir hier die Bemessungsregeln für neuerdings serienmäßig lieferbare 1/4-Parallelresonanz-Leitungen

Im UKW-Bereich von 100 bis 300 MHz ist es vorteilhaft und im Dezimeterbereich sogar unbedingt notwendig, zu Resonanzkreisen mit stetig verteilten Induktivitäten und Kapazitäten überzugehen, um brauchbare Resonanzwiderstände und hohe Güten der Schwingkreiselemente zu erhalten. Als Resonanzkreise dieser Art sind im Meterwellengebiet sowie im Dezimeterbereich Topf-, Rohr- und Lecher-(Paralleldraht-) Kreise gebräuchlich.

Topfkreise werden vorwiegend im Meterwellengebiet angewandt und sind infolge ihrer meist großen kapazitiven Beschwerung im Verhältnis zu ihrer Wellenlänge geometrisch klein. Sie erlauben meist nur eine geringe Frequenzvariation durch Kapazitätsänderung.


Wesentlich größere Frequenzvariationen sind bei den Rohr- und Lecherkreisen gegeben, die allerdings bei Ausnutzung größtmöglichsten Resonanzwiderstandes, also geringer zusätzlicher kapazitiver Belastung, größere Abmessungen aufweisen, wobei die geometrische Leitungslänge beider Arten von Kreisen bei gleicher kapazitiver Belastung und gleichem Wellenwiderstand ebenfalls gleich ist. Auch bei Rohr- und Lecherkreisen sind die verteilten Induktivitäten und Kapazitäten, die Im sogenannten Wellenwiderstand der Leitung enthalten sind, für die Resonanzgleichung maßebend.

Für alle folgenden Betrachtungen und Rechnungen werden die Leiter- und Isoliermaterialien als verlustfrei angenommen, da bei dem am besten geeigneten Material (Leiter = Silber, Isolation = Keramik) die Verluste für geringe Leitungslängen praktisch so klein sind, daß sie vernachlässigt werden können.

Gröfte des Wellenwiderstandes

Die Wellenwiderstände, die bei Verlustfreiheit eine reelle Größe annehmen, be-

Bild 2. Strom- und Spannungsverteilung auf Parallelresonanz-Doppelleitungen

tragen für Luftdielektrikum ($\epsilon=1$) und wenn kein ferromagnetisches Material angewandt wird ($\mu=1$):

a) Konzentrische Rohrleitung

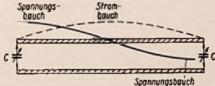
$$Z = 60 \ln \frac{D}{d} (\Omega)$$

D = Innendurchmesser des äußeren Rohres in cm

d = Außendurchmesser des inneren Rohres in cm

b) Lecher- (Paralleldraht-) Leitung

$$Z = 120 \ln \frac{A}{r} (\Omega)$$


A = Abstand der Leiterseelen in cmr = Radius der Leiter in cm

Zur Bestimmung des Wellenwiderstandes von konzentrischen und parallelen Doppelleitungen bei verschiedenen Leiterdurchmessern und Leiterabständen können Kurventafeln zu Hilfe genommen werden; z. B. Funktechnische Arbeitsblätter Sk 81/82.

Eingangswiderstand

Als weitere Bestimmungsgröße der Resonanzbedingung von Leitungskreisen muß der Eingangswiderstand der Leitung bekannt sein bzw. bestimmt werden. Dieser Eingangswiderstand einer verlustfreien, kurzgeschlossenen bzw. offenen konzentrischen Rohr- oder Lecherleitung, ist ein reiner Blindwiderstand. Seine Größe beträgt für die am Ausgang kurzgeschlossene Doppelleitung:

$$\mathfrak{R}_{\rm E} = z \, \operatorname{tg} \frac{2\pi l}{\lambda}$$

(Fortsetzung von Seite 466)

Mit dieser Aufzählung sind die möglichen Trickarten keineswegs erschöpft. Durch Kombinationen ergeben sich noch zahlreiche weitere Möglichkeiten

zahlreiche weitere Möglichkeiten.
Alle Trickarten lassen sich von Hand betätigen. Der Vorgang kann an beliebiger
Stelle angehalten werden, so daß z. B.
Teile zweier Fernsehbilder gleichzeitig zu
sehen sind. Die Überblendung kann aber
auch automatisch mit wählbarer Ge-

auch automatisch mit wählbarer Geschwindigkeit erfolgen.

Bild 8 zeigt den Aufbau der Anlage. In dem Pultgestell sind acht Empfänger mit Bildröhren von 20 cm Ø untergebracht, von denen sechs als Vorschau-Kontrollbilder für einzelne Bildgeber dienen, während eine das gesendete Bild zeigt. Der achte Empfänger dient als Reserve. Die Bedienungsplatte befindet sich ebenfalls am Pult, während sämtliche Verstärker, Impulsgeneratoren usw. mit Ausnahme der Kontrollempfänger in einem Verstärkerschrank untergebracht sind.

Die Bedienungsplatte enthält die Mischregler sowie die Schalt- und Wählerknöpfe mit den zugehörigen Relais. Auf jeder Seite sind drei Mischregler angeordnet, von denen je zwei einem Bildaufnahmegerät fest zugeordnet sind, während
die restlichen beiden durch Drucktasten
auf je vier Aufnahmegeräte umgeschaltet
werden können. Es können also insgesamt zwölf Bildaufnahmegeräte angeschlossen werden. Mit den beiden letzten
Reglern kann eine Überblendung von
Hand in der üblichen Weise durchgeführt
werden, wobei einer der drei oberen
Knöpfe in der Mitte der Platte betätigt
wird. Mit dem zweiten dieser Knöpfe
wird auf Tricküberblendung umgeschaltet,
wobei die Überblendung von Hand mit
dem in der Mitte liegenden Mischregler
erfolgt. Nach Drücken des dritten Knopfes erfolgt die Tricküberblendung bei Verschiebung des mittleren Mischreglers automatisch. Mit den beiden mittleren Knöpfen kann die Überblendrichtung umgekehrt werden, wenn die Verdrängung z. B.
nicht der Schieberichtung des Mischreglers entspricht. Die unter den Umkehrknöpfen liegende Knopfreihe dient zur
Auswahl der beschriebenen Trickarten.

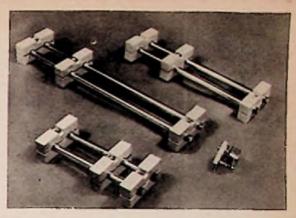


Bild 1. Lecherleitungen verschiedener Länge mit Kurzschluß-Schleber oder Kleinstsplitstator-Resonanztrimmer. Durch Verwendung keramischer Stäbe mit hochglanzpolierter Feinsilberauflage wird eine hohe Frequenzkonstanz erzielt.

Der Resonanzinil

Eine kurzgeschlossene bzw. offene verlustfreie Doppelleitung kann nun nach Bild 2 durch kapazitive Belastung am offenen Eingang bzw. Ende, d. h. durch Anordnung einer Zusatzkapazität im Spannungsbauch, auf Resonanz abgestimmt werden. Die Leitung muß sich dabei induktiv verhalten, also kürzer als 1/4 bzw. 1/2 sein. Resonanz wird, analog zu den Resonanzbedingungen auf niederen Frequenzen, bei Gleichheit von Induktanz und Kapazitanz der Kreiselemente erreicht. Sie sind bei Leitungskreisen ohne zusätzliche kapazitive Belastung allein durch die Leitungslänge gegeben. Dabei ergibt sich bei kurzgeschlossener Leitung von einem Viertel der Wellenlänge und deren ungradzahligen Vielfachen (3/4, 5/4 1/4). Parallelresonanz. Soll auch bei 1/2-Leitungslänge und deren gradzahligen Vielfachen Parallelresonanz erreicht werden, so muß die Leitung an beiden Enden offen sein. Diese Anordnung wird aber wegen der größeren Strahlungsverluste selten angewandt.

Liinge der Resonanzieltung

Ist bei Leitungskreisen ohne zusätzlichen Blindwiderstand die Resonanz durch die Bedingung

$$l_{cm} = (2 n - 1) + \lambda/4$$
bzw. $l_{cm} = n + \lambda/2$ gegeben,

so ändert sich die Beziehung bei Belastung mit einer Kapazität am offenen Eingang, wenn der Leitungskreis am Ausgang kurzgeschlossen ist, zu:

$$1 = \frac{c}{\omega} \arctan tg \frac{1}{\omega C Z}$$

Dabei bedeuten ω die Kreisfrequenz $2\pi f$ und c die Fortpflanzungsgeschwindigkeit der elektromagnetischen Wellen ($c=2.998\cdot 10^{10}$ cm/s). Die weiteren Werte sind in Hz, F und Ω einzusetzen, wenn die Länge in cm erhalten werden soll.

Um die gebräuchlichen Bezeichnungen einzuführen, läßt sich schreiben:

$$\begin{split} 1 &= \frac{29\,980}{2\,\pi\,f_{(\mathrm{MHz})}} \text{ arc tg } \frac{10^6}{2\,\pi\,f_{(\mathrm{MHz})}\,\,C_{(\mathrm{pF})}\,\,Z_{(\Omega)}} \\ \text{oder} \\ 1 &= \frac{4772}{f_{(\mathrm{MHz})}} \text{ arc tg } \frac{159\,236}{f_{(\mathrm{MHz})}\,\,C_{(\mathrm{pF})}\,\,Z_{(\Omega)}} \end{split}$$

arc (arcus) = Winkel im Bogenmaß; also Gradmaß x 0,0175.

Der Resonanzfall mit zusätzlichem kapazitiven Blindwiderstand ist in der Praxis durch das Zusammenwirken von Röhre und Leitungskreis in Oszillator-. Misch- oder Gleichrichterschaltungen wohl am häufigsten gegeben, wobei die Röhre bzw. der Richtleiter im Spannungsmaximum angekoppelt ist. Dabei kann die zugeschaltete kapazitive Last durch die Röhrenkapazitäten allein oder durch Summierung mit einer zusätzlichen variablen Kapazität. zur Resonanzabstimmung eines in seiner Länge unveränderlichen Leitungskreises, gegeben

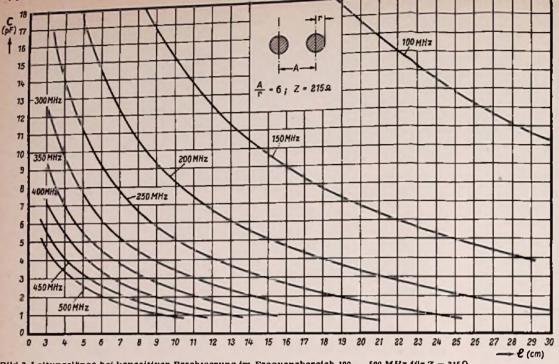


Bild 3. Leitungslänge bei kapazitiver Beschwerung im Frequenzbereich 100 . . . 500 MHz für $Z=215\,\Omega$

sein. Die im Spannungsbauch einer Leitung angeordnete Zusatzkapazität wirkt dabei verkürzend auf die zur Resonanz notwendige Leitungslänge, und zwar steigend mit größerer Kapazität. Wird die Zusatzkapazität dagegen im Strombauch angeordnet, wirkt sie leitungsverlängernd. Es ist dabei gleichgültig, ob Spannungs- bzw. Strombäuche am Anfang, in der Mitte oder am Ende der Leitung liegen.

Da die Zuleitungen der Schaltelemente mit in den Kreis eingehen, ist dieses bei der erforderlichen Leitungslänge zu berücksichtigen. Meist tritt an der Verbindungstelle Röhre-Kreis ein Wellenwiderstandssprung auf, der eigentlich mit berücksichtigt werden müßte. Für die Praxis ergeben sich jedoch mit der angegebenen Resonanzgleichung Längenbestimmungen sehr guter Genauigkeit.

Verluste beeinflussen den Resonanzwiderstand

Der Resonanzwiderstand einer kurzgeschlossenen \(\)/4-Leitung ergibt sich infolge der sich hier längs der Leitung auswirkenden Dämpfungen (Skineffekt, Strahlung) praktisch als reiner Wirkwiderstand. Bei der rechnerischen Erfassung des Resonanzwiderstandes müssen die Längsverluste der Leitung sowie, bei Abstimmung mit einem Kurzschluß-Schieber, auch die Dämpfungen berücksichtigt werden, die durch Übergangswiderstände auftreten. Der ohmsche Widerstand des Schiebers, der an den Leitungsanfang transformiert wird, geht ebenfalls mit in die Rechnung ein, ebenso wie die elektrischen Verluste der zur Halterung der Leitungsstücke verwendeten Isolierstützen.

Vorwiegend beeinflussen jedoch die Längsverluste den Resonanzwiderstand. Infolge des Stromverdrängungseffektes bei hohen Frequenzen ist die Eindringtiefe des hochfrequenten Stromes je nach Leitfähigkeit des verwendeten Leitermaterials verschieden. Am besten schneiden dabei Silber und Kupfer nach Gold und Aluminium ab. Vorausgesetzt ist dabei eine glattpolierte Oberfläche, da sonst zusätzliche Dämpfungen durch längere Stromwege entstehen. Eine rechnerische Bestimmung des Resonanzwiderstandes eines Leitungskreises ergibt daher nur angenähert genaue Resultate, da sich vor allem die Dämpfungsverluste durch Strahiung und bei belasteten Kreisen durch Kopplungen niemals exakt erfassen lassen.

Eine genaue Bestimmung ist daher nur durch Messung möglich. Hierbei ist noch zu sagen, daß bei abnehmender Wellenlänge der Resonarzwiderstand wächst. Dies ist auf die verringerten Längsverluste Infolge Abnahme der geometrischen Leitungslänge zurückzuführen.

Wellenwiderstand und Kreisgüte bedingen einen Kompromiß

Bei der Festlegung des günstigsten Wellenwiderstandes einer Doppelleitung sind folgende Angaben wichtig:

Für die unbelastete, verlustfreie Leitung ergibt sich bei Parallelresonanz ein maximaler Resonanzwiderstand, konstanter Außendurchmesser bzw. Leiterabstand vorausgesetzt.

a) für die konzentrische Leitung, wenn

$$\frac{D}{d}$$
 = 9,2 oder Z = 133 Ω

b) für die Lecher- (Paralleldraht-) Leitung,

wenn
$$\frac{A}{r} = 8.8$$
 oder $Z = 260 \Omega$

beträgt. Bei kapazitiver Belastung fällt das Maximum mit steigender Kapazität zu kleineren Wellenwiderständen.

Die Güte des Kreises, die die erzielbare Resonanzschärfe bedingt, erbringt das Maximum

a) für die konzentrische Leitung, wenn

$$\frac{D}{d} = 3.6 \text{ oder } Z = 77 \Omega$$

b) für die Lecher- (Paralleldraht-) Leitung,

wenn
$$\frac{A}{r} = 4.6$$
 oder $Z = 176 \Omega$

beträgt. Maximaler Resonanzwiderstand und maximale Güte der Resonanzleitungen bedingen also unterschiedliche Wellenwiderstände. Für eine mittlere kapazitive Belastung bei verschiedenen Frequenzen hat sich ein Wellenwiderstand von 215 Ω für die Leckerleitung als günstig erwiesen.

sich ein Wellenwiderstand von 215 Ω für die Lecherleitung als günstig erwiesen.

Unter Zugrundelegung dieses Wellenwiderstandes hat die Firma Hans G r o ß-mann. Hannover-Linden. Paralleldraht-(Lecher-) Leitungen von 100 / 150 / 200 und 250 mm Länge mit keramischem Trägermaterial entwickelt, die für die verschiedensten Schaltungen im Frequenzbereich von 100 ... 500 MHz verwendet werden können (Bild I). Die Leltungen bestehen aus zwei versilberten und hochglanzpolierten keramischen Stäben mit 6 oder 8 mm Stabdurchmesser. Die Oberflächen sind auf

± 0,1 mm geschliffen, zweimal im Ofen versilbert und an den Enden 4 mm breit lötfähig verkupfert. Die Leitungen werden am Anfang und am Ende in keramischen Lagerböcken unverrückbar gehalten. Sollen die Leitungen als

kurzgeschlossener Parallelresonanzkreis arbeiten, dann erfolgt die Grobabstimmung über einen versilberten keramischen Kurzschluß-Schieber.

Für die Feinabstimmung stehen keramisch gehalterte Splitstator - Trimmer mit Luft - Dielektrikum zur Verfügung. Ihre Platten bestehen

aus versilbertem

Messing. Die Metallbeläge auf den Doppelleitungen sind bei 800° auf den keramischen Grundbelag aufgebrannt und ergeben eine feste Verbindung Silber-Keramik, wobei sich das Metall der geringen Wärmedehnung des Trägermaterials anpaßt.

Für den zu Grunde gelegten Wellenwiderstand von $215\,\Omega$ vereinfacht sich die Gleichung für die Resonanzlänge zu

$$1 = \frac{4772}{f_{(MHz)}} \text{ arc tg } \frac{740,632}{f_{(MHz)} C_{(pF)}}$$

Aus der Kurventafel Bild 3 sind die Leitungslängen von kurzgeschlossenen 1/4-Lecherleitungskreisen für Parallelresonanz bei unterschiedlicher kapazitiver Beschwerung zu ersehen. Bei Anordnung in Gegentaktschaltungen ist dabei zu berücksichtigen, daß sich der einzusetzende Kapazitätswert infolge des Gegentaktprinzlps angenähert halbiert. Die Vortelle symmetrisch gespeister Gegentaktschaltungen mit Lecherkreisen im Meter- und Dezimeterbereich, haben zu deren häufiger Anwendung, vor allem in variablen Oszillatorkreisen zur Schwingungserzeugung geführt. Zur Vermeidung größerer Strahlungsverluste empfiehlt es sich dabei, das Leitungssystem gut abzuschirmen. Um die Wirbelstromverluste gering zu halten, wird mindestens doppelter Leiterabstand A von der Schirmwandung benötigt. Die Abschirmung soll möglichst aus versilbertem Kupferbzw. Messingblech bestehen.

Haben Sie Ihre FUNKSCHAU 1954 schon binden lassen?

Sie erhalten dadurch ein wertvolles Fachbuch und Nachschlagewerk im Großformal— es ist unmöglich, daß Ihnen ein wichtiges Heft fehlt, wenn Sie es dringend benötigen; im Jahresband ist es sofort zur Hand!

Einbanddeden für die FUNKSCHAU 1954

sind noch lieferbar

Preis 3 DM zuzüglich Versandkosten Bitte bestellen Sie bald, der kleine Vorrat reicht nur noch kurze Zeit

FRANZIS-VERLAG · München 2, Luisenstraße 17 · Postscheckkonto München 5758

Vollsuper ohne Mischhexode

Der UKW-Bereich ist am wichtigsten, er benötigt keine Mischhexode. Daher geht man auch für AM-Emplang auf die additive Mischung zurück.

Die AM-Bereiche unserer Superhetempfänger zeigen fast durchweg noch die seit rund zwanzig Jahren übliche Schaltung: Mischhexode — Triodenoszillator — Zf-Verstärkerpentode — Demodulator — Nf-Tail

Nach verschiedenen Umwegen in der UKW-Schaltungstechnik hat sich allgemein eingeführt, für den FM-Empfang vor den AM-Empfänger mit der genannten Bestückung eine oder zwei UKW-Trioden zu setzen und das Hexodensystem der AM-Mischröhre als erste Zf-Verstärkerstufe für 10.7 MHz arbeiten zu lassen

für 10,7 MHz arbeiten zu lassen.

Da der UKW-Bereich immer mehr zum Hauptempfangsbereich wird, liegt der Gedanke nahe, beim Schaltungsentwurf von den Erfordernissen dieses Bereiches auszugehen und zu versuchen, die AM-Röhrenbestückung dem einzuordnen. Der Verzicht auf die teure Mischhexode und damit auch auf die Lizenzgebühren für das Hexodenpatent ermöglichen gleichzeitig einen niedrigen Preis für solche Empfänger. Einige Schaltungen mit Pentodenmischung lernten wir bereits bei Reisesupern kennen (FUNKSCHAU 1955, Heft 15, Seite 321), ferner bei Heimempfängern eine Ausführung mit einem UKW-Triodensystem als AM-Mischröhre (FUNKSCHAU 1955, H. 20, Seite 449).

Heute soll nun ein weiteres interessantes Gerät, der UKW-Super Comedia 4 R/216 von Graetz behandelt werden, bei dem eine Zf-Pentode als AM-Mischröhre dient.

Eine Triode-Hexode vom Typ ECH ist zwar als AM-Mischröhre bzw. Zf-Röhre für 460 kHz sehr günstig, sie weist aber für die FM-Zwischenfrequenz von 10,7 MHz keine so guten Eigenschaften auf. Durch die relativ große Gitteranodenkapazität des Hexodensystems ergibt sich für 10,7 MHz eine schlechte Zf-Verstärkung. Auch ist für die notwendigerweise niederohmigen 10,7-MHz-Kreise die Steilheit des Heptodensystems zu gering. Dagegen hat sich die Pentode EF 89 durch ihre Steilheit und ihre geringe Gitteranodenkapazität als Zf-Verstärkerröhre gut bewährt. Es lag daher nahe, sie für die additive AM-Mischung heranzuziehen.

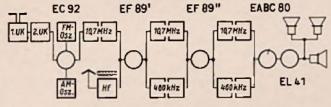
Bild 1 zeigt die Blockschaltung des Gerätes. Als UKW-Eingangs- und -Mischröhre dient eine Triode EC 92. Darauf folgen zwei Zf-Verstärkerröhren EF 89 mit sechs UKW-Zf-Kreisen und der Nf-Teil mit EABC 80 und EL 41. Für den AM-Empfang bleiben sämtliche Röhren wirksam. Die Triode EC 92 wirkt als AM-Oszillatorröhre, die Pentode EF 89 als additive Mischröhre.

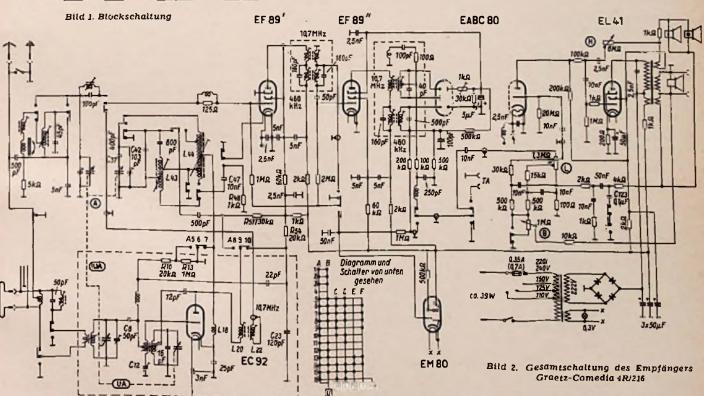
UKW-Schaltkontakte müssen vermleden werden

Wie aus der Gesamtschaltung Bild 2 zu ersehen ist, werden Schaltkontakte in UKW-Kreisen vermieden. Es hätte nahe gelegen, Gitter und Anode der selbstschwingenden UKW-Mischtriode EC 92 von den UKW-Kreisen abzuschalten und anden AM-Oszillatorspulensatz zu legen. Dies ist jedoch nachteilig, weil der Bereichschalter aus konstruktiven Gründen (Drucktastensatz) räumlich von der Mischtriode getrennt ist. Die Leitungskapazität für UKW und die

für UKW und die Gefahr der Störstrahlung würden dadurch beträchtlich vergrößert werden. Die zusätzliche Leitungskapazität wird ferner in den

Eingangskreis transformiert und macht ihn nieder-

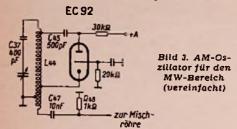



Graetz-Comedia 4R/216

Wechselstrom: 110, 127, 150, 220/240 V Itőhrenbestűckung: EC 92, EF 89. EF 89. EABC 80, EL 41, EM 80, Selen 6 AM-Kreise, davon 2 abstimmbar 9 FM-Abstimmkreise, davon abstimmbar Wellenbereiche: UKW, MW, LW Zwischenfrequenz: 460 kHz, 10,7 MHz Tonregelung: getrennt und stetig regel-bare Baß- und Höhenregler mit optischer Anzeige, Drucktaste für "Sprache" Lautsprecher: perm.-dyn. Hauptlautsprecher 18×26 cm, 2 el.-stat. Raumklang-Lautsprecher 9 cm Ø Eingebaute, drehbare Ferritantenne 6 Drucktasten Leistungsaufnahme ca. 38 W Gehäuse: 56 × 36 × 26 cm Preis: 285 DM

ohmig, so daß die Antennenaufschaukelung schlechter wird.

In Bild 2 dagegen enthält der UKW-Oszillatorkreis keine Schalterkontakte. In Stellung UKW sind die Kontakte A 6 und A 7 sowie A 9 und A 10 verbunden. Dadurch wird die Katode der Röhre über die UKW-Katodendrossel L 18 an Masse bzw. an die negative Anodenspannung gelegt. Das erdseitige Ende der ersten Zf-Spule L 20 wird über den Widerstand R 54 an die positive Anodenspannung geführt. Die Kondensatoren 22 pF und C 23 bewirken hierbei die übliche Zf-Entdämpfung. Durch die Verbindung A 6 — A 7 wird gleichzeitig A 5 — A 6 aufgetrennt und der 1-MΩ-Widerstand R 13 freigegeben, so daß als Gitterwiderstand für die Röhre EC 92 die in Reihe liegenden Widerstände R 10 und

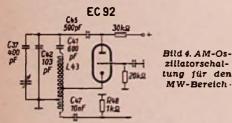


Taste UK gedrückt

R 13 (20 k Ω + 1 M Ω) wirken. Es handelt sich also um eine normale selbstschwingende Triodenmischung.

Dreipunktoszillator für AM

In Stellung AM dagegen sind die Kontakte A5-A6 sowie A8-A9 miteinander verbunden. Dadurch wird zunächst der Widerstand R13 kurzgeschlossen, so daß der Gitterableitwiderstand nur noch 20 kΩ beträgt, wie dies beim AM-Oszillator erforderlich ist, um Überschwingen zu vermeiden. Da die UKW-Spulen für AM



praktisch einen Kurzschluß darstellen, ist das Gitter der Röhre EC 92 über den Kondensator C 8 und den Symmetriertrimmer C 12 geerdet. Die Katode dagegen liegt über die UKW-Katodendrossel L 18 an einer Anzapfung der AM-Oszillatorspule. Die Anode der EC 92 ist über die AM-Handfilterspule mit einer zweiten Anzapfung der AM-Oszillatorspule verbunden. Bild 3 und 4 stellt vereinfacht (unter Weglassung der UKW - Bauelemente) diese Schaltung für MW und LW dar.

Im MW-Bereich ist die Anode der Röhre an eine Spulenanzapfung gelegt. Für LW liegt in Reihe mit der LW-Spule der Verkürzungskondensator C 41 (600 pF). In beiden Fällen wird die Oszillatorspannung mit Hilfe einer zusätzlichen Kopplungswicklung ausgekoppelt und über den Kondensator C 47 (10 nF) auf den unverblockten Katodenwiderstand R 48 der ersten Röhre EF 89 gegeben. Dadurch erfolgt die additive Mischung, ohne daß jedoch die Oszillatorspannung direkt auf den Eingangskreis mit der Ferritantenne gelangt. Beim AM-Empfang wird auch die erste Röhre EF 89 über die Kontakte B 7 — B 8 an die Regelleitung angeschlossen.

NI-Tell

Auch bei einfachen Geräten kann heute auf zweiseitige Klangregelung nicht verzichtet werden. Der Empfänger Comedia R/216 enthält aber außer getrennten Baßund Höhenreglern noch eine Sprach/Musik-Taste (M/S). Wird sie halb heruntergedrückt, dann werden, unabhängig von der Stellung der Klangregler, die tiefen Töne abgesenkt, so daß die Sprache deutlicher klingt.

Der Lautstärkeregler L besitzt zwei Anzapfungen, von denen über Widerstände je ein 10-nF-Kondensator zum Fußpunkt des Lautstärkereglers führt, um bei geringen Lautstärken die Höhen abzusenken. Von der Schwingspulenwicklung des dynamischen Lautsprechers führt ferner eine höhen- und tiefenanhebende Gegenkopplung zum Fußpunkt des Lautstärkereglers.

Zur Höhenregelung führt ein weiterer Gegenkopplungskanal vom Ausgangsübertrager zum Gitter der Endröhre. Durch Ausschalten des 6-MΩ-Reglers H werden die Höhen zusätzlich gegengekoppelt, also

abgesenkt.
Für die Tiesenregelung ist ein dritter Gegenkopplungskanal vom Ausgangsübertrager zu den beiden 10-nF-Kondensatoren für die physiologische Lautstärkeregelung vorgesehen. Dieser Kanal ist über 10 k Ω und den unteren Teil des 1-M Ω -Reglers frequenzunabhängig. Die am Regler Beingestellte Teilspannung enthält jedoch je nach der Stellung des Lautstärkereglers einen mehr oder weniger großen Anteil an tiefen Tönen, die nun die Tiefenregelung bewirken.

Beim Drücken der Sprachtaste wird der Baßregler kurzgeschlossen und von Erde abgetrennt. Die Klangfarbe wird heller, und man kann den Regler durchdrehen, ohne daß diese für Sprache geeignete Klangfarbe sich ändert. Vielleicht wäre es in solchen Fällen sogar zweckmäßig, mit der Sprachtaste auch die Raumklanglautsprecher abzuschalten, um wieder bewußt auf die beim natürlichen Sprechen vorhandene punktförmige Schallquelle zurückzugehen.

Zum Komfort dieses Gerätes gehört auch die von Graetz entwickelte beson-

dere 4 R-Raumklanganordnung. Interessant ist dabei, daß die in der FUNK-SCHAU 1955, Heft 4, Seite 66, beschriebene Anordnung wieder verlassen wurde. Bei dem dort geschilderten Vorläufertyp Comedia 4 R war die Schallspalte für die mehrseitige Höhenabstrahlung in den Sockel des Gehäuses verlegt worden. Beim jetzigen Modell Comedia 4 R/216 befindet sich jedoch die mit einem Ziergitter verkleidete Schallspalte wieder an der Oberseite des Gehäuses (Bild 1). Wahrscheinlich war hier der Wunsch ausschlaggebend, dem Käufer eine Reihe äußerlich gleicher Geräte anzubieten, bei denen die Raumklanganordnung sichtbar in Erscheinung tritt. In bezug auf allseitige Höhenabstrahlung dürften beide Ausführungen, die frühere mit einem dynamischen Lautsprecher im Sockel und die neue mit zwei statischen Hochtönern in der Decke, die gleichen günstigen Eigenschaften besitzen.

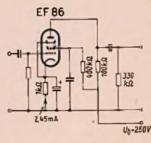
Die klingarme Nf-Pentode EF86

Beim Bau von Nf-Verstärkern war man bisher für die Eingangsstufe auf ältere Röhrentypen, wie die EF 12 oder EF 40, angewiesen, wenn man eine sehr klingund brummarme Nf-Pentode benötigte. Dies ergab eine uneinheitliche Bestückung, da man in den folgenden Stufen meist mit Röhren der 80er-Serie arbeitet. Auch in Rundfunkempfängern mit hochgezüchtetem Nf-Teil benötigt man oft eine spezielle Nf-Pentode, die mit Rücksicht auf den Export zu einer einheitlichen neuzeitlichen Röhrenserie gehören soll.

Die Röhrenfabriken haben deshalb die im Ausland schon seit einiger Zeit bekannte kling- und brummarme Nf-Pentode EF 86 in das deutsche Röhrenprogramm aufgenommen. Sie gleicht in ihren elektrischen Werten den bekannten Nf-Pentoden EF 12 und EF 804. So werden fol-

gende Meßwerte angegeben:

Heizspannung	U,	6,3	v
Heizstrom	I,	0,2	Α
Anodenspannung	ບຸ	250	v
Bremsgitterspannung	U_3	0	v
Schirmgitterspannung	U,2	140	V
Gittervorspannung	$U_{\sigma 1}$	—2	Α
Anodenstrom	I,	3	mA
Schirmgitterstrom	1,2	0,6	mA
Innenwiderstand	R;	2,5	$M\Omega$
Verstärkungsfaktor	u_{g2g1}	38	


Die Röhre EF 86 ist sehr kling- und brummarm und daher besonders für Eingangsstufen geeignet. Die große Klingfestigkeit wird durch einen kurzen starren Aufbau des Systems erzielt. Das Elektrodensystem ist so steif, daß die Röhre weitgehend gegen mechanische Erschütterungen über die Sockelung, als auch gegen akustische Beeinflussung sicher ist. Gegen Heizfadenbrummen ist die neue Röhre ebenfalls sehr unempfindlich, so daß sie auch in hochwertigen Verstärkern nicht mit Gleichstrom geheizt zu werden braucht. Das bei tiefen Frequenzen störende Funkelrauschen konnte auf den gleichen günstigen Wert wie bei der Röhre EF 804 herabgesetzt werden.

Der Brummstörbegel ist kleiner als 5 μ V für einen Wechselstromwiderstand $R_{g1} \sim \overline{\geq} 500 \text{ k}\Omega$ und einen Katodenkondensator $C_k \overline{\geq} 100 \ \mu\text{F}$ bei 50 Hz. Die äquivalente Rauschspannung, bezogen auf Gitter 1, beträgt ca. 2 μ V für den Frequenzbereich 25...10 000 Hz bei einer Betriebsspannung von 250 V und einem Anoden-

widerstand von 100 k Ω .

Die Röhre darf mit einer Empfindlichkeit von 0.5 mV für eine Ausgangsleistung von 50 mW an der Endstufe betrieben werden, ohne daß Mikrofonie auftritt, selbst wenn die EF 86 dabei für Frequenzen über 500 Hz Erschütterungen bis zur 0.015fachen Erdbeschleunigung erfährt. Für Frequenzen unter 500 Hz sind Beschleunigungen bis zu 0,06 g zulässig.

Das Bild zeigt die Bemessung einer Verstärkerschaltung mit der Röhre EF 86 für 250 V Betriebspannung. Man erzielt damit eine 116fache Verstärkung oder eine Aus-

Nf-Verstärker-Schaltung mit der Röhre EF 15

gangsspannung von 50 Veff bei 5 % Klirrfaktor. Ausführliche Einzelheiten, auch über den Betrieb als Triode, bringen wir demnächst in den Röhren - Dokumenten der FUNKSCHAU.

(Die hier angegebenen Daten wurden von Telefunken mitgeteilt.)

Silizium-Transistoren aus Frankreich

Von wenigen Ausnahmen abgesehen wurde bisher ausschließlich Germanium für den Bau von Transistoren verwendet.

Nun werden in Frankreich Transistoren hergestellt, die als Halbleiter Silizium aufweisen. Die Firma Detectron in Bordeaux, über deren Germanium-Transistoren wir bereits berichteten!), bietet sieben Typen Silizium-Transistoren an, von denen sechs zum pnp- und einer zum npn-Typ gehören. Die höchste Temperatur, bei der diese Transistoren verwendet werden können, liegt bei + 70 Grad C. Eine Wachsfüllung ist nicht vorhanden. Das Gewicht beträgt nur 0,5 g. Die Preise für diese Silizium-Transistoren liegen zwischen 6 und 19 DM.

Die technischen Daten finden sich in der folgenden Tabelle.

Sämtliche Strom- und Spannungswerte sind Maximalwerte. Ing. Wolfgang Büll

Тур	< Kollektor- Spannung	¥ Kollektorstrom	B Emitterstrom	Strom-Ver- stärkungsfaktor	Rauschfaktor	Eingangs- impedanz	D AUMERIAN	
2 N 39 D 2 N 40 D 2 N 42 D 2 N 43 D 2 N 63 D 2 N 64 D 2 N 65 D	-42 -42 +32 -35 -35 -35 -35	-5,5 -5,5 +5,5 -8 -8 -8 -8	+5 +5 -5 +8 +8 +8	40 30 15 40 22 40 90	26 26 26 24 28 25 22	500 500 500 500 350 700 1000	10 30 30 30 30 30	

') FUNKSCHAU 1954, Heft 16, Seite 351.

Stufen-Phasenschieber für oszillografische Zwecke

Für Untersuchungen an 50-kHz-Schwingungen wurde schnell ein Phasenschieber benötigt, mit dem die Phase der zu untersuchenden Schwingung möglichst feinstufig bis zu 360° verschoben werden konnte.

Da das hierbei verwendete Prinzip grundsätzlich auch für ähnliche Fälle geeignet ist, werden hier Beschreibung und einfache Berechnungsunterlagen gegeben, so daß solche Phasenschieber auch für andere Frequenzen und Anpassungen entworfen werden können. Einrichtungen dieser Art können z. B. dazu dienen, um bei einer weit auseinander gezogenen Zeilenablenkspannung eines Fernsehempfängers den Zeilenimpuls in die Mitte des Oszillografenschirmes zu bringen.

Wirkungsweise

Um Aufbau und Bedienung zu vereinfachen, wurde eine Spulenkette nach Bild i

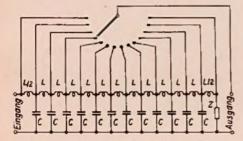


Bild 1. Mehrgliedriger Kettenleiter als Tiefpaß und Phasenschieber

gewählt, da hierbei keine Röhren, Übertrager und zusätzliche Stromquellen notwendig sind und je eine Eingangs- und Ausgangsklemme direkt geerdet werden kann.

Eine solche Spulenkette hat die Eigenschaft, unterhalb einer bestimmten Frequenz fo den angelegten Spannungen eine Phasendrehung zu erteilen, wobei die Amplitude gleichbleibt. Oberhalb der Grenzfrequenz fo dagegen wird nicht die Phase gedreht, sondern die Amplitude wird herabgesetzt (Tiefpaß für Wechselspannungen). Bild 2 zeigt den Verlauf des Phasenmaßes und die Dämpfung für höhere Frequenzen.

Der Wellenwiderstand der Kette wurde mit 5 kΩ festgelegt, weil sich dieser Wert an gebräuchliche Leistungsverstärker günstig anpassen läßt. Mit diesem Wert Z ist die Kette am Ende abgeschlossen. Die Eingangsspannung ist an das andere Ende zu legen. Die gedrehte Spannung wird mit einem Rastenschalter an den einzelnen Spulengliedern abgegriffen. Die Abnahme muß hochohmig ersolgen, um die Werte des Kettenleiters nicht zu beeinflussen. Als Grenzwert wurden 100 k\(\) festgelegt, und zwar auch für Wechselstromwiderstände. Bei kapazitiver Belastung entspricht dies für 50 kHz einem Wert von 30 pF. Die geringe Belastung ist durch eine nach-geschaltete Röhre mit hohem Eingangswiderstand leicht zu erreichen.

Bemessung der Kettenglieder

Gegebene Werte:

$$Z = 5 k\Omega = 5000 \Omega$$

$$\phi \max = 360 \text{ }^{\text{0}}$$

$$f = 50 \text{ kHz}$$

Bestimmungsgleichungen:

$$\mathbf{Z} = \sqrt{\frac{\mathbf{L}}{\mathbf{C}}} \tag{1}$$

$$f_0 = \frac{1}{\pi \sqrt{L \cdot C}} = Grenz frequenz$$
 (2)

$$\beta = i \left(\frac{f}{f_0} \right) = \text{Phasendrehung / Stufe} \quad (3)$$

$$\sin \frac{\beta}{2} = \frac{f}{f_0} \tag{4}$$

Bei Verwendung eines vorhandenen 14teiligen Rastenschalters ergaben sich 13 Stufen zu

$$\beta = \frac{360}{13} = 28^{\circ} / Stufe$$

$$\sin\frac{\beta}{2} = \sin 14^\circ = 0.24$$

$$\frac{f}{f_0} = 0.24$$

$$f_0 = \frac{50}{0.24} = 208 \text{ kHz}$$

Aus (1) und (2) ergibt sich:

$$\sqrt{C} = \frac{\sqrt{L}}{Z};$$
(4)

eingesetzt in (2)

$$f_0 = \frac{Z}{\pi L} \tag{5}$$

$$L = \frac{Z}{\pi \cdot \tilde{t}_0} \tag{6}$$

Aus Gleichung (1) folgt:

$$C = \frac{L}{2^{\circ}}$$
 (7)

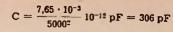
Für die gegebenen Werte wird:

$$L = \frac{5000}{\pi \cdot 208 \cdot 10^{-3}} \cdot 10^{3} \text{ mH} = 7.56 \text{ mH}$$

$$f_0 = \frac{1}{\pi \sqrt{1 - C}} = \text{Grenzfrequenz} \quad (2)$$

$$\sin\frac{\beta}{2} = \frac{f}{f_0} \tag{4}$$

$$\beta = \frac{360}{13} = 28^{\circ} / \text{Stufe}$$


$$\sin\frac{\beta}{2}=\sin 14^\circ=0.24$$

$$\frac{f}{f_0} = 0.24$$

$$f_0 = \frac{50}{0.24} = 208 \text{ kHz}$$

$$I_0 = \frac{1}{\pi L}$$
 (5)

$$L = \frac{5000}{\pi \cdot 208 \cdot 10^{-3}} \cdot 10^{3} \text{ mH} = 7.56 \text{ mH}$$

Verwendet wurden zufällig vorhandene Haspelkernspulen aus Sirufer (kein Ferrit) von Siemens & Halske. Aus den Daten dieser Kerne ergaben sich für Draht 0,1 Cu LS für

$$L = 7.65 \text{ mH}$$
 $n = 440 \text{ Wdg}$.

$$\frac{L}{2} = 3.82 \text{ mH}$$
 n = 300 Wdg.

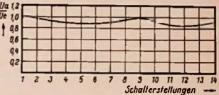


Bild 3. Verlauf der Spannungen an den einzelnen Abgriffen des Kettenleiters. Die geringen Schwankungen rühren von den Toleranzen der Einzelteile her. Sie lassen sich durch genaues Abgleichen beseitigen

Als Kapazitäten wurden Condensa-Röhrchenkondensatoren 300 pF ± 10 % verwendet. Auf genauen Abgleich von L und C wurde verzichtet.

Gemessene Werte

Die Spulen und Kondensatoren wurden. durch Abschirmwände getrennt, in ein Metallgehäuse eingebaut. Der fertiggestellte Phasenschieber wurde dann elektrisch geprüft. Bild 3 zeigt die Ausgangsspannung in den verschiedenen Stufen für die Eingangsspannung 1. Die Ausgangsspannung schwankt periodisch um etwa - 15 % vom Sollwert, also etwa ± 7% um einen Mittelwert. Dies ist auf geringe Fehlanpassung zwischen Abschlußwiderstand und Spulen und Kapazitätswerten zurückzuführen. Bemerkenswert ist, daß auch nach 13 Kettengliedern entsprechend Bild 1 bei der Frequenz von 50 kHz kein Spannungsverlust auftritt.

Die Wirksamkeit der Phasenregelung zeigen Bild 4 und 5. Für Bild 4 wurde die Eingangsspannung des Phasenschiebers

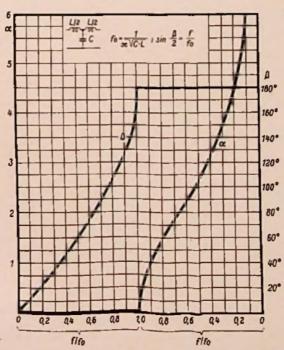


Bild 2. Dampjung a und Phasenmaß β eines Tiefpasses in Abhängigkeit von der Frequenz. Wichtig ist hierbei, daß wie in Bild 1 der Ausgang mit dem Wellenwider-

stand
$$Z = \sqrt{\frac{L}{C}}$$
 abgeschlossen wird

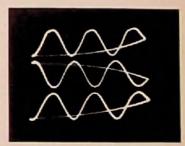


Bild 4. Phasenlage für 50 kHz am Eingang, in der Mitte und am Ende des Kettenleiters. In der Mitte ist die Phase um etwa 180° gedreht

Bild 5. Lissajous-Figuren zwischen Eingangsspannung und Spannung an den verschledenen Abgriffen. Die Unregelmäßigkeiten rühren wieder von den groben Toleranzen der Einzelteile her (vgl. Bild 3)

Bild 6. Verzerrung der Kurvenform durch zu hohe Spannung an den Eisenkernspulen (oben), darunter die unverzerrte Spannung

waagerecht und die Ausgangsspannung senkrecht dazu auf die Meßplatten eines Oszillografen gegeben. Beim Durchdrehen des Rastenschalters ergaben sich die bekannten Lissajous-Figuren. Die fast quadratische Form der Summenfigur zeigt, daß der gesamte Bereich zwischen 0° und 360° überstrichen wird. Gleichzeitig ist zu erkennen, wie gering der Einfluß der Spannungsschwankungen aus Bild 3 ist; sie ergeben nur geringe Erhöhungen an der oberen und unteren Grundlinie.

Bild 4 zeigt drei Kurven für Anfangs-, Mittel- und Endstellung des Stufenschalters bei linearer Zeitablenkung. Die Verschiebung von 180° in Mittelstellung ist ersichtlich. In Endstellung wird die gleiche Phasenlage erreicht, die Drehung beträgt also 360°. Der Phasenschieber erfüllte damit die gestellten Forderungen.

Störungen durch Übersteuerung

Beim Ausnehmen der Kurven von Bild 5 wurden bisweilen starke Verzerrungen beobachtet. Untersuchungen ergaben, daß sie in den Sirufer-Kernen beim Anlegen höherer Spannungen entstanden. Bild 6 zeigt im oberen Teil die verzerrten Spannungen am Phasenschieber bei einer sinusförmigen Eingangsspannung von 70 Volt. Der Spulenstrom betrug hierbei:

$$i = \frac{70}{5 \cdot 10^{-3}} = 14 \text{ mA}$$

Vergleichende Messungen ergaben, daß bei diesen Werten die Eisenkerne übersteuert wurden. Beim Herabsetzen der Eingangsspannung auf 60 V ergab sich die einwandfreie Kurve Bild 6 unten. Zur Sicherheit wurde deshalb die höchstzulässige Eingangsspannung auf 50 V, also die Belastung auf 0,5 W festgesetzt. Diese Tatsache sollte man bei der Bemessung von Schwingkreisen beachten! In Oszillatorschaltungen können z. B. leicht Schwingkreisspannungen von 70 V auftreten und einen zu hohen Oberwellenanteil im Eisenkern verursachen.

Ing. O. Limann

Elektrolyt - Kondensator mit 500 μF für 6/8 V. Über die Heizdrossel und die Anschlußdruckknöpfe wird der Heizstrom den Röhren zugeführt. Dabei ist darauf zu achten, daß sich im Empfangsgerät immer eine Heizbatterie befindet, denn sie dient gleichzeitig zur Siebung und Stabilisation. Auch eine fast verbrauchte Monozelle erfüllt noch diesen Zweck.

Der mechanische Aufbau des Zusatzgerätes ist einfach. Als Umhüllung dient wieder ein elfenbeinfarbenes Kunststoffgehäuse, ähnlich wie das des Empfangsgerätes, jedoch etwas flacher gehalten. Das Chassis besteht aus Hartpapier von 2 mm Stärke. Es wird nach Bild 2 ausgeschnitten und gebohrt. Dabei ist zu beachten, daß alle Bohrungen mit der Bezeichnung M 3 nur mit 2,4 mm Durchmesser gebohrt werden. Anschließend wird dann das Gewinde M 3 eingeschnitten. Diese Gewindelöcher dienen zur Befestigung des Chassis auf der Innenseite des Gehäuse-Vorderteils.

Damit die Bohrungen im Gehäuse mit denen im Chassis gut übereinstimmen, wird das Hartpapierchassis als Bohrschablone benützt. Auf der Außenseite des Gehäuse-Vorderteils werden die Bohrun-

Bild 1. Zusatzkassette mit Netzteil für einen Batterle-Empfänger

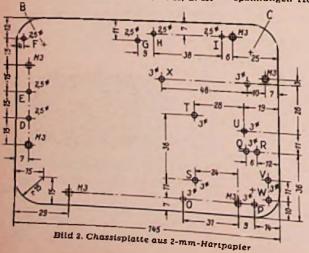
In der Netzzusatzkassette ist ferner noch Platz für eine zusätzliche größere Anodenbatterie vorhanden (normale Mikrodyn-Batterie mit 75 V), die die Betriebskosten des Geräls auch bei Batteriebetrieb wesentlich senkt. Diese Batterie ergibt etwa

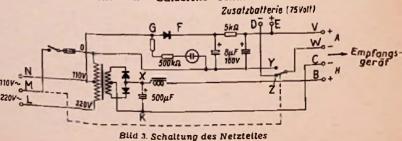
250 bis 280 Betriebsstunden.

Die Schaltung des Netzteils (Bild 3) ist sehr einfach. Als Transformator wird ein Spartransformator für primär 110 V und 220 V verwendet. Die Anodenspannung wird von der 110-V-Wicklung abgenommen. Dies ist zulässig, da ein berührungssicherer Anodenanschluß vorhanden ist. Zur Gleichrichtung dient ein Selen-Einweggleichrichter. Darauf folgt das übliche Siebglied. In der Minusleitung liegt der Umschalter für den Betrieb mit der Zusatz-Anodenbatterie oder mit dem Lichtnetz. Dieser Schalter besteht aus einem einfachen Umschaltfedersatz. Er ist so angeordnet, daß er bei Anschluß des Netzkabels an die Zusatzkassette sich entsprechend umschaltet. Die am Kabel befindliche dreipolige Kupplung dient auch gleichzeitig zum Umstecken auf die Netzspannungen 110 V oder 220 V Wechselstrom

Die Heizspannung wird der 2 × 5-V-Wicklung des Netztransformators entnommen und mit einem Gegentakt-Selengleichrichter gleichgerichtet. Diese Gleichrichtung hat gegenüber dem Einweg-Gleichrichter den Vorteil größerer Brummfreiheit. Als Ladekondensator dient ein

gen angesenkt, da zur Befestigung Schrauben mit Senkkopf oder Linsenkopf verwendet werden müssen. Die 3-mm-Bohrungen auf der Chassisplatte werden ebenfalls angesenkt und zwar auf der Seite, an der das Chassis auf dem Gehäuse aufliegt. Die Bohrungen auf der Rückseite des Empfangsgeräts werden nach Bild 12 gebohrt. Die 15 mm großen Durchbrüche werden mit der Laubsäge ausgesägt.


Dann werden die drei Plättchen aus 1 mm starkem Hartpapier nach Bild 8 auf die Innenseite des Empfängergehäuses mit je zwei Stück 2,5 mm starken Hohlnieten angenietet. Das noch freie 3-mm-Loch dient zur Befestigung des Innenteils eines Druckknopfes, wie er bei Mikrodyn-Anodenbatterien verwendet wird, mit einem 3-mm-Hohlniet. Vor dem Nieten jedoch muß zuerst das Befestigungsloch auf dem Gehäuse der Zusatzkassette angezeichnet werden, indem die Rückseite des Empfängers als Schablone benützt wird. Gleichzeitig wird dabei auch der Durchbruch für die Anodenstromzuführung angezeichnet. An den drei angezeichneten Stellen werden 3-mm-Löcher gebohrt, indem wieder das aufgeschraubte Hartpapierchassis als Schablone benutzt wird. Nach dem Ab-


Netzzusatzkassette für ein Taschenradiogerät

Stromverbrauch etwa 3 Watt, für 110 V und 220 V Wechselstrom, Anschlußmöglichkeit einer größeren Anodenbatterie (Mikrodyn 75 V), wahlweise Verwendung von Trockenbatterien oder DEAC-Zellen.

Der Taschensuper Mira-Mimikry!) ist ein Empfänger mit so geringen Abmessungen, daß er bei jeder Gelegenheit mitgeführt werden kann. Da der Betrieb mit Batterien verhältnismäßig teuer kommt, wurde ein Netzzusatzgerät hierfür geschaffen. Dabei wurde Wert darauf gelegt, das Netzteil nicht anstelle der Batterien einzusetzen. sondern mit Druckknöpfen auf der Rückseite des Empfangsgeräts zu befestigen. Diese Druckknöpfe dienen gleichzeitig als Heizstromzuführung. Zur Anodenstromzuführung wird eine zweipolige berührungssichere Buchse verwendet, die gleichzeitig einen Federkontakt im Taschenradiogerät öffnet, um die beiden darin befindlichen Pervox-Batterien abzuschalten.

1) Bauanleitung für Taschensuper "Mira-Mimikry" in FUNKSCHAU 1954, H. 11, S. 221

Goldy

ein AM-FM-UKW-Vorstufen-Super mit 5 Drucktasten und Klangbild-Register; 6/11 Krelse, Ferritstab-Antenne, eingebauter Dipol, großer perm. dyn. Lautsprecher, magisches Auge, poliertes Nußbaum-Gehäuse in den zierlichen Ausmaßen $44\times28\times20$ cm, zum "goldrichtigen" Preis von

DM 249. -

Der Kleinste unter den Großen, der Größte unter den Kleinen

SCHAUB-LORENZ-Geräte verkaufen sich leicht und schnell

wenn Sie sich diese praktischen Hinweise zunutze machen.

Je genauer der Besucher Ihres Geschäftes weiß, wofür er sich interessiert, umso leichter ister zufrieden zustellen. Das wichtigste Werbemittel, das den Kunden zum Betreten Ihres Geschäftes veranlaßt und ihm gleich bestimmte Fragen in den Mund legt, ist Ihr Schaufenster. Für das Schaufenster aber gilt die Regel:

Man muß etwas zu zeigen haben!

Das neue SCHAUB-LORENZ-Programm enthält Typen, die Ihr Schaufenster interessant machen und Kunden in den Laden ziehen.

GOLDY: der interessante Preis

Dieser Drucktasten-UKW-Vorstufen-Super mit Klangbild-Register füllt als — der Kleinste unter den Größen und der Größte unter den Kleinen — eine Lücke aus. Mit DM 249.— liegt er im Preis "goldrichtig". Wenn GOLDY durch das Interessante SCHAUB-LORENZ-Preisschild unter den übrigen Empfängern hervorgehoben wird, zieht er Kunden ins Geschäft, die möglichst viel für ihr Geld haben wollen.

BALI: die interessante Form

Auf der Düsseldorfer Ausstellung war die SCHAUB-LORENZ-Truhe BALI eine Sensation. Sie wird es auch In Ihrem Schaufenster sein. Nützen Sie diese Chance!

GOLDSUPER: die Interessante Leistung

Der Kunde, der durch GOLDY und BALI auf den Namen SCHAUB-LORENZ aufmerksam gemacht wurde, ist auch zugänglich für die besonderen Vorzüge der anderen SCHAUB-LORENZ-Geräte aus der Goldstadt-Serie, insbesondere für den Spitzensuper W 46.

Wer nicht SCHAUB-LORENZ führt, ist nicht komplett sortiert

SCHAUB APPARATEBAU Pforzheim Abteilung der C. Lorenz Aktiengeseilschaft

Bild 4. Das Innere des Gerates

nehmen der Chassisplatte sind die 3-mm-Löcher im Vorderteil der Zusatzkassette mit der Feile oder Laubsäge auf 15 mm zu erweitern. Auf die Vorderseite der Chassisplatte werden, ebenfalls mit 3-mm-Hohlnieten, die Außenteile der Drucknöpfe genietet. In die Bohrungen D. E. G. werden 2,5 mm starke Messing-Hohlnieten genietet, die später als Lötstützpunkte bei der Verdrahtung dienen. Die Bohrungen H und J dienen zur Befestigung der Heizdrossel mit einer 2,5 mm starken Aluminiumblech-Schelle.

Aus 1 mm starkem Aluminiumblech wird der Winkel nach Bild 5 hergestellt. Er dient auf der einen Seite zur Befestigung des Ladekondensators für die Heizspannung und auf der anderen Seite zur Befestigt wird der Winkel in der Bohrung K mit einer Senkkopfschraube M 3 × 10. Wird anstatt eines 500-µF-Elektrolyt-Kondensators im Becher ein solcher mit freitragenden Anschlüssen verwendet, so dient die Lötöse bei Schraube K als Lötstützpunkt für den Minusanschluß. Für den Plusanschluß wird eine zusätzliche Hohlniete in Bohrung X benutzt.

Die nach Bild 6 aus 4-mm-Rundmessing

Die nach Bild 6 aus 4-mm-Rundmessing hergestellten drei Steckerstifte werden auf dem aus 2-mm-Hartpapier hergestellten Teil Bild 9 in den Bohrungen L, M, N mit Muttern unter Zwischenlage je einer Lötöse befestigt. Das Ganze wird in den Bohrungen P und O auf dem Chassis mit Senkkopfschrauben M 3 × 20 angebracht (Bild 7).

Der Umschaltfedersatz (Bild 10) wird in Q und R mit Senkkopfschrauben M3 × 30 angeschraubt, der Heizgleichrichter mit einem Blechwinkel in der Bohrung U. Die zweipolige 13-mm-Kupplung für die Anodenstromzuführung wird in V und W mit 2-mm-Schrauben befestigt und zwar so, daß sie durch den Durchbruch aus der Gehäuse-Vorderseite herausragt. Zu beachten ist, daß beim Andrücken des Zusatzgeräts an das Empfangsgerät durch diese Kupplung die Schaltfeder am Empfangsgerät betätigt wird.

Auf den Netzschalter kann verzichtet werden, sofern die Zuleitung der Zusatzkassette sofort nach dem Ausschalten des Empfangsgeräts aus der Steckdose gezogen wird. Soll jedoch ein Schalter eingebaut werden,

so ist hierfür in der Ecke C des Gehäuses noch Platz vorhanden. Zur Befestigung wird ein Loch mit 12 mm Durchmesser in die Oberseite des Gehäuses gebohrt und zwar so, daß die Anschlüsse des Kippschalters nach außen zeigen.

Der Selengleichrichter für die Anodenspannung, eine besonders kleine Ausführung, wird mit dem Pluspol in G und mit dem Minuspol in F festgelötet und mit etwas Uhu auf dem Chassis festgeklebt. Über diesem Gleichrichter finden noch die beiden $8-\mu F$ -Elektrolyt-Kondensatoren sowie der $5-k\Omega$ -Siebwiderstand Platz.

Die Verdrahtung erfolgt nach Bild 3. Dort sind auch die jeweiligen Lötstützpunkte angegeben. Eine Mikro-Glimmlampe zur Betriebsanzeige findet leicht noch zwischen der Heizdrossel und den Elektrolyt-Kondensatoren für die Anodenspannung Platz. Sie kann durch eine 5-mm-Bohrung auf der Oberseite des Gehäuse-Vorderteils beobachtet werden.

Für den Anschluß an die Netzzuleitung wird eine dreipolige Flachkupplung benutzt, wie sie für Lautsprecherleitungen üblich ist. Vorher wird die eine äußere Buchse entfernt. Durch Umdrehen der Kupplung erfolgt die Netzspannungs-Umschaltung. Auf der Kupplung muß die jeweilige Stellung markiert werden.

Heiz- und Anoden-Akkumulatoren

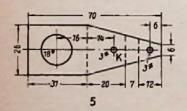
Durch die Schaffung der DEAC-Zellen ist es auch möglich, das Gerät aus Akkumulatoren zu betreiben. Die Anschaffungskosten sind wohl höher als die von Trockenbatterien, dafür können die DEAC-Zellen aber auch wieder aufgeladen werden. Als Heizzelle eignet sich die Ausführung D 1,7, die anstatt der Monozelle im Empfangsgerät untergebracht werden kann. Zum Aufladen wird die Zusatzkassette verwendet. Allerdings ist dann eine kleine Schaltungsänderung im Empfangsgerät notwendig, und zwar sind die Anschlüsse am Schleppschalter nach Bild 11 zu ändern. Stellung 0 ist wie bisher "Aus". In Stellung 1 dagegen wird jetzt der DEAC-Akkumulator geladen, sofern die Zusatzkassette aufgedrückt und eingeschaltet ist. Bei Stellung 2 wird der Empfänger in Sparschaltung eingeschaltet (eine Fadenhälfte der Endröhre in Betrieb), Stellung 3 ist das Gerät auf volle Leistung eingeschaltet?).

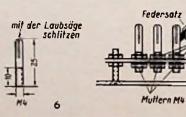
Zur Anodenstromversorgung eignen sich die Zellen 120 DK. Auch diese können mit der Zusatzkassette geladen werden. Einer Verwendung der DEAC - Zellen als Anoden - Akkumulator in Reiseempfängern dürfte aber derzeitig noch der verhältnismäßig hohe Preis im Weg stehen.

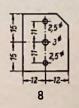
Konrad Sauerbeck
 Diese Schaltung kann auch zur Auffrischung von Mono - Zellen benützt werden.

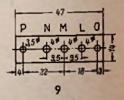
Vollen Wert als Nachschlagewerk erhält die

FUNKSCHAU-Schaltungssammlung

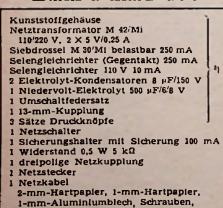

erst dann, wenn sie in der praktischen


Sammelmappe


untergebracht wird. Kräftiger Schutzdekkel mit Leinenrücken und Goldprägung sowie Ordnermechanik, Preis 4.80 DM.


Bitte bestellen Sie gleich, jetzt können wir Ihren Auftrag noch in Ruhe erledigen. Sie haben dann die Mappe bereits zur Verfügung, wenn die letzte diesjährige Folge der Schaltungssammlung im Welhnachtsheft erscheint.

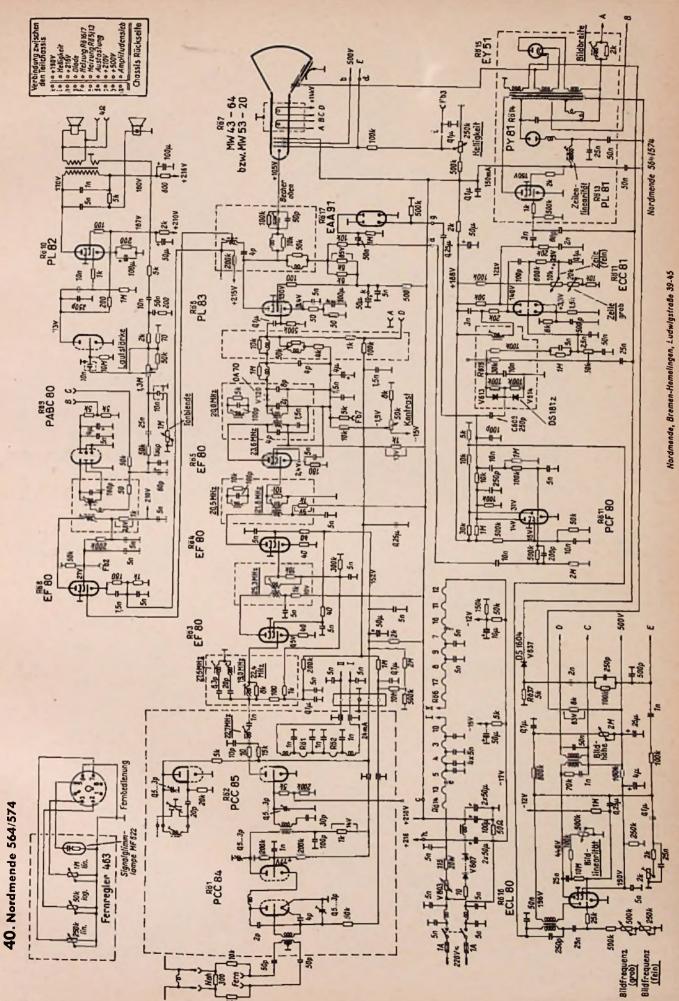
FRANZIS-VERLAG . München



Im Modell verwendete Einzeltelle

) Konrad Sauerbeck, Nürnberg, Hohleder-

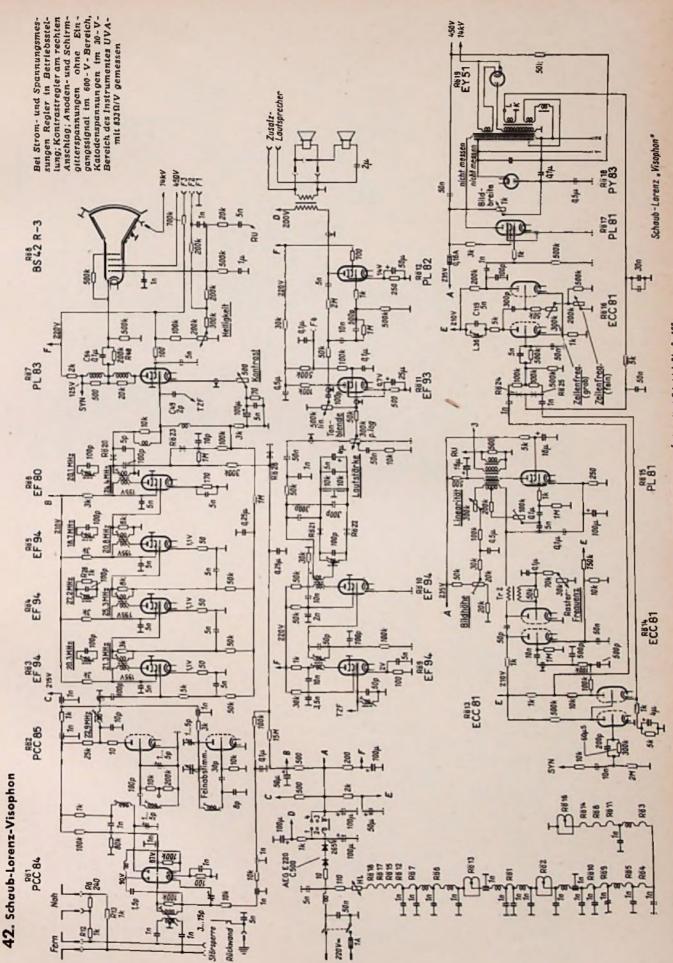
Lötösen, Nieten.

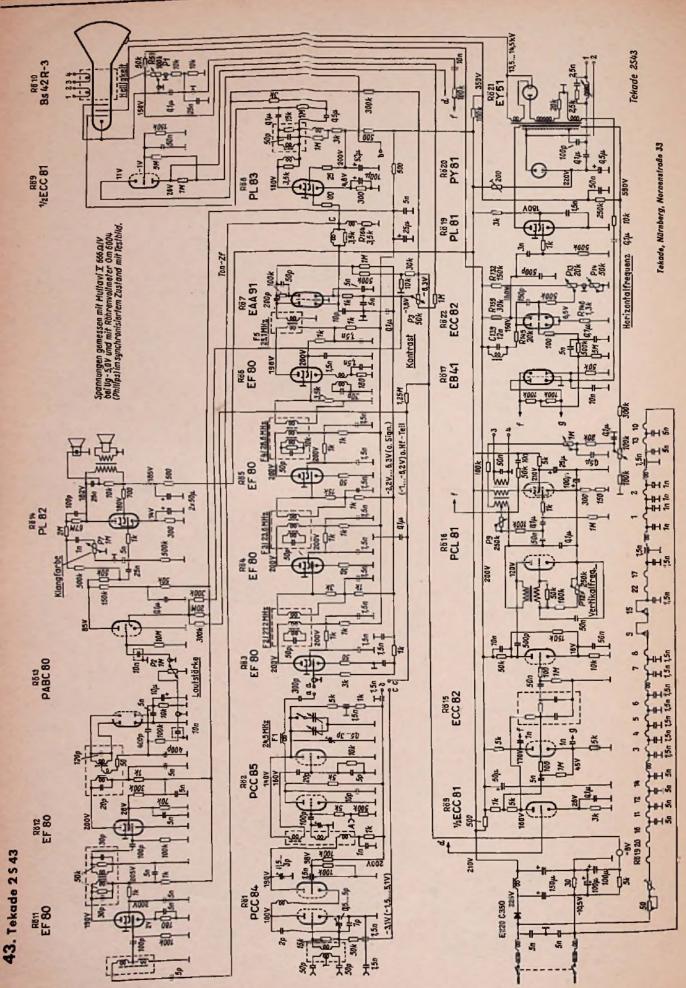

Zì 10 Bild 5. Zuschnitt für Montagewinkel (Aluminiumblech, 1mm) Bild 6. Steckerstift (3 Stück, 4-mm-Rundmessing) Bild 7. Zusammenbau der Steckerstitte Bild 8. Isolierplättchen, (3 Stück, Hartpapler 1mm) Schleppschalter Bild 9. Isolierleiste (Hartpapier, 2mm) Freie Heizfadenhälfte - DI 96 (DI 92) Bild 10. Umschaltfedersatz Bild 11. Prinzip des Schleppschalters Zusatzkasette 1,5 Volt 11

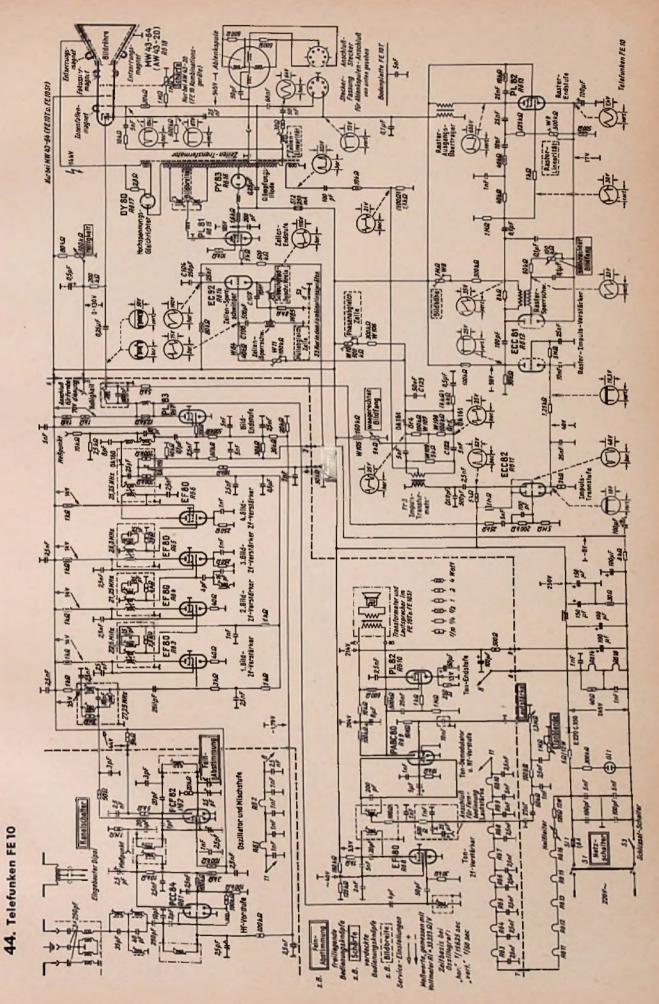
I ötösen

Bild 12. Bohrungen auf der Rückseite der Kassette

5, 11, 1955


Band 1955




49

Section Dilles Cabl Headure 1 Machabertalings 7

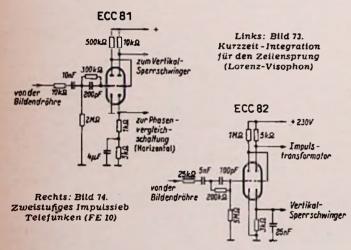
41. Philips-Krefeld 5322

Band 1955

Schaltungstechnik von Fernsehempfängern

Schaltungseinzelheiten aus den Empfängern:

Nordmende 564/574 Ge
Philips-Krefeld 5322 Ge
Schaub-Lorenz-Visophon Ge
Tekade 2 S 34 Ge
Telefunken FE 10 Ge


Gesamtschaltung Seite 49 Gesamtschaltung Seite 50 Gesamtschaltung Seite 51 Gesamtschaltung Seite 52 Gesamtschaltung Seite 53

Zu den Geräten dieses Jahrganges gehört auch der Empfänger Saba-Schauinsland S 505, dessen Gesamtschaltung bereits in der Schaltungs - Sammlung Band 1954, Seite 68 (Ingenieur-Beilage zur FUNKSCHAU 1954, Heft 24) veröffentlicht wurde.

Zellensprung

Der Synchronpegel der Fernsehsender wird nicht immer genau eingehalten. Man sindet daher gelegentlich besondert Schaltungen, die auch bei nicht normgerechtem Synchronpegel einen sauberen Zeilensprung gewährleisten. Bild 73 zeigt eine Anordnung mit Kurzzeit-Integration und zwei Systemen einer Röhre ECC 81, die auch bei zu geringem Synchronpegel flimmerfreie Bilder zu erzeugen gestatten (Lorenz-Visophon). Die beiden Triodensysteme sind als Gleichstromverstärker mit hochgelegter Katode des zweiten Systems geschaltet. Von der Anode des zweiten Triodensystems gelangen die Vertikalimpulse über die Integrationskette zum Vertikalsperrschwinger, von der Katode dieses Systems zur Phasenvergleichsschaltung bzw. zum Horizontal-Multivibrator.

Auf eine saubere Impulsabtrennung wird bei modernen Fernsehempfängern großer Wert gelegt. Man findet daher meistens zwei oder mehr Röhrensysteme in den Abtrennschaltungen. Die im Videosignal enthaltenen Synchronimpulse beeinflussen die Helligkeitssteuerung der Bildröhre nicht, da sie lediglich eine zusätzliche Dunkelsteuerung in den Rücklaufzeiten des Elektronenstrahles bewirken. Für die Steuerung der Ablenkschaltungen muß dagegen das zur Helligkeitssteuerung dienende Signal völlig unterdrückt werden, so daß nur die reinen Synchronisierimpulse aus dem Videosignal den Kippeinrichtungen zugeführt werden. Bild 74 zeigt eine häufig verwendete Impulstrennstufe mit zwei Röhren bzw. zwei Systemen einer Doppeltriode (ECC 82). Das gleiche Signal, das der Bildröhre zur Helligkeitssteuerung zugeleitet wird, gelangt auch auf das Gitter der ersten Röhre. Die in der Gitterleitung

liegenden Widerstände und Kondensatoren sollen den Einfluß von Störungen vermindern. Die Anode des ersten Systems ist mit dem Gitter des zweiten Triodensystems galvanisch verbunden. Am zweiten Triodengitter stehen nur noch die reinen Synchronimpulse, die somit vom Bildinhalt vollständig befreit sind. Im zweiten System werden die Impulse nochmals verstärkt und in ihrer Polarität umgedreht, dabei werden das Dach der Impulse abgeschnitten und mögliche Unterschiede in der Impulshöhe ausgeglichen. An der Anode des zweiten Systems stehen dann nur die reinen Impulse, vom Bildinhalt getrennt und auf beiden Seiten geglättet, zur Verfügung.

Die Zeitkonstante der RC-Kombination in der Katode des zweiten Triodensystems (3 k Ω . 25 nF, T = 75 μ s) ist so gewählt, daß diese Kette als Integrationsglied für die Synchronimpulse wirkt. Durch die Reihe der aufeinanderfolgenden fünf langen Vertikalimpulse baut sich eine wesentlich höhere Impulsspannung auf als durch die kurzen Horizontalimpulse. Die Impulsdauer wird also an dieser Stelle in Amplitudenunterschiede umgesetzt und damit eine Heraustrennung der Vertikalimpulse aus dem gesamten Impulsgemisch bewirkt. Die beschriebene Impulstrennstufe verwendet Telefunken in seinen Fernsehempfängern FE 10/53 T und FE 10/53 S.

Statt der Doppeltriode ECC 82 können für die Impulsabtrennung auch andere Röhren benutzt werden. So setzt z. B. S a b a in seinen Schauinsland-Fernsehempfängern an dieser Stelle die

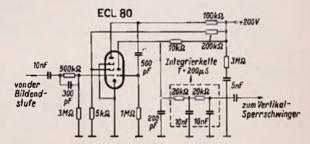


Bild 75. Die Röhre ECL 80 als doppeltes Impulssieb (Saba Schauinsland S 44)

Verbundröhre ECL 80 ein. Als erste Impulstrennstufe dient hier das Pentodensystem, als zweite das Triodensystem dieser Röhre. Wegen der gemeinsamen Katode für beide Systeme läßt sich in diesem Fall keine galvanische Kopplung zwischen der Pentoden-Anode und dem Triodengitter durchführen, zwischen beiden Systemen ist ein 500-pF-Koppelkondensator (Bild 75) angeordnet. Die Integrationskette zur Abtrennung der Horizontalimpulse von denen für die vertikale Ablenkrichtung besteht bei Saba aus einer doppelten RC-Kombination (R = 20 k Ω , C = 10 nF; T = 20 · 10³ · 0,01 · 10⁻⁰ = 0,2 · 10⁻ð = 200 µs).

Gelegentlich findet man vor der Impulstrennstufe noch eine Diodenstrecke zur Störbegrenzung (Nordmende, Chassis 564, 574). Bild 76 zeigt das Grundsätzliche der Schaltung. Von der Anode der Videoendröhre gelangt das Gemisch aus Bildinhalt und Synchronimpulsen über eine Diodenstrecke (erstes System einer Röhre EAA 91), die die Funktion eines Störbegrenzers ausübt, zum Pentodengitter der PCF 80, wo in der üblichen Weise das Impulsgemisch vom Bildinhalt getrennt wird. Das Impulsgemisch, das noch Horizontal- und Vertikalimpulse gemeinsam enthält, gelangt von der Pentoden-Anode zum zweiten Diodensystem der EAA 91, wo nun Störspitzen auf den Impulsdächern restlos abgeschnitten werden. Während die Horizontalimpulse direkt von der Diodenstufe zur Zeilenvergleichsschaltung gelangen, werden die Vertikalimpulse über eine Integrierkette dem Triodengitter der PCF 80 zugeführt, dort nochmals verstärkt und dem Vertikal-Sperrschwinger zugeleitet (siehe auch Hauptschaltbild der Nordmende-Fernsehempfänger).

Vertikal-Ablenkung

Für die Vertikalsynchronisierung hat sich heute fast ausschließlich der Sperrschwinger durchgesetzt, nur bei einigen Fabrikaten findet man an dieser Stelle eine Multivibratorschaltung. In der Vertikalendstufe ist als Generator für den hohen Ablenkstrom die Röhre PL82 üblich. Die Anpassung dieses hoch hohmigen Generators ($R_i \sim 20~\mathrm{k}\Omega$) an die Ablenkspulen als niederohmigen Verbraucher erfolgt durch den Vertikalausgangstransformator. Wegen der Induktivitäten im Anodenkreis der PL 82 ist der Strom in den Ablenkspulen in seinem zeit-

lichen Verlauf nicht mehr mit der Form des Röhrenstromes identisch. Man darf daher die Vertikalendröhre nicht mit einer linear ansteigenden Sägezahnspannung aussteuern, vielmehr muß die steuernde Spannung am Gitter dieser Röhre durch geeignete Schaltmaßnahmen so verformt werden, daß trotz der Induktivitäten im Anodenkreis ein linear mit der Zeit ansteigender Strom durch die Ablenkspulen fließt. Man erreicht die ideale Sägezahnform dadurch, daß man dem Anodenstrom eine sinusförmige Komponente überlagert.

Ein möglicher Weg zur Erzielung dieser Spannungsform ist die Hinzufügung einer Korrekturspannung, die durch eine Gegenkopplung von der Spannung an der Anode der PL 82 abgeleitet wird. Dabei wird die Form der erzeugten Korrekturspannung und damit die Linearität der Vertikalablenkung durch die Zeitkonstanten im Gegenkopplungsweg bestimmt (Bild 77). Durch Veränderung des im Gegenkopplungszweig liegenden Widerstandes R 9 (500 kΩ) läßt sich die Linearität des Vertikal-Sägezahns auf den optimalen Wert einstellen. Der besondere Vorzug dieser von Telefunken angewandten Schaltung ist, daß sich bei Justierung der vertikalen Linearität die Bildhöhe praktisch nicht ändert, so daß Linearität und Bildhöhe (mittels W 8 im Telefunken-Hauptschaltbild) unabhängig voneinander auf den richtigen Wert eingestellt werden können. Beim Rückschlag des vertikalen Ablenkstromes tritt an der Anode der PL 82 eine hohe positive Spannungsspitze auf, die auf der Sekundärseite des Übertragers als negative Impulsspannung erscheint. Diese Rücklaufspannung gelangt über den

Bild 76. Impulsabtrennung mit Störbegrenzung durch Diodenstrecken
(Nordmende 564)

PCF 80

TMD

1MD

1MD

100k

100k

500k

100k

500k

100k

500k

100k

500k

100k

500k

500k

100k

500k

100k

500k

500k

100k

100k

500k

100k

100k

500k

100k

100k

100k

500k

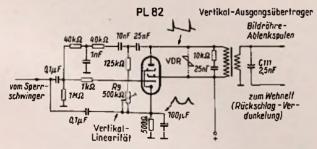
100k

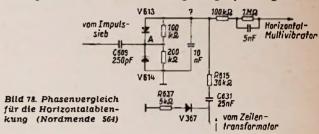
10

FAA91

2,5-nF-Kondensator C 111 an den Wehneltzylinder der Bildröhre und unterdrückt während des vertikalen Rücklaus den Strahlstrom.

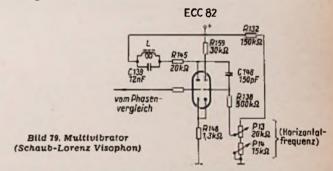
Parallel zur Primärwicklung des Vertikal - Ausgangsübertragers liegt in Bild 77 die Reihenschaltung eines Widerstandes (10 kΩ) mit einer Kapazität (25 nF). Diese RC-Kombination macht die hohen Rückschlagspannungen unschädlich. Gelegentlich verwendet man statt des RC-Gliedes auch einen VDR-Widerstand. Er ändert seinen Wert mit der an ihm liegenden Spannung, wodurch bei auftretenden hohen Rückschlagspitzen und entsprechend kleinem Widerstand die Überspannung in Wärme umgesetzt und der Transformator geschützt wird. Bei niedrigen Spannungen ist der Widerstandswert des VDR sehr groß und die Nutzspannung wird durch diesen nicht wesentlich herabgesetzt. Der VDR-Widerstand ist in Bild 77 gestrichelt eingezeichnet, in diesem Fall entfällt die RC-Reihenschaltung (G r a e t z).




Bild 77. Korrektur des Vertikal-Sägezahns (Telefunken FE 10)

Nortzontalablenkung

Die für die Horizontalablenkung am häufigsten benutzte Kippeinrichtung ist der Multivibrator. Der Vergleich der vom Generator erzeugten Kippfrequenz mit der vom Sender ausgestrahlten wird in einer mit Diodenstrecken aufgebauten Phasenvergleichsschaltung vorgenommen (Bild 78). Im 250-pF-Kondensator C 609 werden die Horizontalimpulse differenziert und erscheinen nun am Punkt A als Spitzen. Die beiden Dioden-


strecken V 613 und V 614 werden infolge der negativen Spitzen durchlässig, so daß der Punkt 7 kurzzeitig an Masse liegt. Der im 25-nF-Kondensator C 631 differenzierte Rücklaufimpuls aus dem Horizontaltrafo (s. a. Hauptschaltbild Nordmende) wird über den 30-k Ω -Widerstand R 615 ebenfalls dem Punkt 7 zugeführt. Je nach dem Zeitpunkt, in dem die beiden Diodenstrecken den Punkt 7 an Masse schalten, wird die Null-Linie der Sägezahnspannung an Punkt 7 nach oben oder nach unten verschoben. Bei absolutem Gleichlauf bleibt die mittlere Spannung Null.

Schwingt der Multivibrator aus irgend einem Grunde zu schnell, dann entsteht an Punkt 7 eine positive Gleichspannung, bei zu geringer Multivibratorfrequenz ergibt sich eine negative Spannung. Die auf diese Weise erzeugte Regelspannung steuert

so nach, daß in einem definierten Bereich die Horizontalfrequenz im Takte der steuernden Impulse gehalten wird. Vom Horizontaltransformator werden die Rücklauf-Austastimpulse über die als Abschneidstufe geschaltete Diodenstrecke V 637 und den 5-kQ-Widerstand R 637 abgetrennt und gemeinsam mit den vertikalen Austastimpulsen dem Gitter 1 der Bildröhre zugeführt.

Bild 79 zeigt die in der Horizontalablenkungrichtung übliche Multivibratorschaltung, für die meist eine Doppeltriode vom Typ ECC 82 verwendet wird. Die Stabilisierung erfolgt durch den in die Anodenleitung des ersten Triodensystems geschalteten Schwungradkreis L—C 139 (12 nF). Dieser Schwungradkreis ist nicht auf die Horizontalfrequenz 15 625 Hz, sondern auf eine etwas darüber liegende Frequenz abgestimmt. Der Kreis wirkt auf die Multivibratorschaltung mitziehend, so daß Frequenzänderungen durch Spannungsschwankungen oder Störungen verhindert werden. Da in erster Linie die vom

Sender kommenden Horizontalimpulse die Frequenz des Generators bestimmen sollen, ist der Schwungradkreis auf einen über der Sollfrequenz liegenden Wert eingestellt. Bei zu tiefer Abstimmung — etwa genau auf die Horizontalfrequenz — ist der Bildfang unstabil. außerdem sieht man dann gewöhnlich in der Mitte des Bildes als schwarzen Balken die Austastlücke mit dem Horizontalimpuls, die normalerweise im Zeilenrücklauf liegen soll. Ist andererseits der Schwungradkreis zu hoch abgestimmt, so zeigt dieser Kreis keine wesentliche Wirkung mehr; der Bildfang ist zwar sehr fest, aber von Störungen leicht beeinflußbar.

Gelegentlich findet man als Horizontalgenerator auch den Sperrschwinger. Die von Telefunken im Fernsehempfänger FE 10 gewählte Schaltung zeigt Bild 80. Die in diesem Generator erzeugte Grundfrequenz hängt von der Zeitkonstanten T = (R 11 + R 84) \cdot C 106 ab. Weiterhin beeinflußt noch die Spannung am Fußpunkt des Gitterwiderstandes R 11 (0 bis 100 k Ω) die Eigenfrequenz. Durch Betätigen des 5-k Ω -Widerstandes R 5 (waagerechter Bildfang) läßt sich diese Spannung in gewissen Grenzen ändern. Zu dieser von Hand einstellbaren Spannung addiert sich die Spannung, die beim Phasenvergleich an den beiden Diodenstrecken Gl 4 und Gl 5 (OA 161) parallel zum Impulstrafo abfällt. Da der Gitterstrom der EC 92 die Dioden vorspannen und damit die Schaltung unsymmetrisch machen würde, wird der Gitterstrom des Sperrschwingers über die Reihenschaltung R 106, R 10 (horizontaler Phasenabgleich) kompensiert.

Das vom Impulssieb kommende Synchronsignal wird über den Impulstransformator Tr 2 im Gegentakt auf die beiden Dioden gegeben. Da beide Dioden das gleiche Signal mit gleicher Amplitude, jedoch mit entgegengesetztem Vorzeichen erhalten, heben sich die von beiden Diodenstrecken gleichgerichteten Spannungen auf. Es kann daher auch keine Regelspannung entstehen, solange nicht der Sekundärseite des Impulstransformators eine zusätzliche Spannung zugeführt wird. Da nur während der Zeitdauer des horizontalen Rücklaufs eine Impulsspannung auf die Sekundärseite des Transformators gegeben wird, können auch alle Störungen, die in der Zeit zwischen den Rückläufen auftreten und noch über die Impuls-

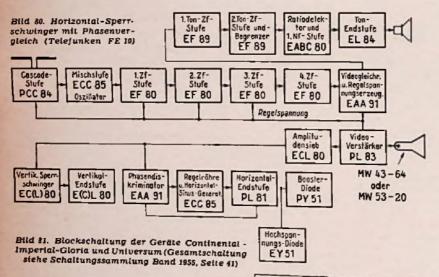
EC 92 zur Horizon-C105 talendstufe C104 250pl 40 it 1 horizontaler Nullabaleich Ď Ω105 100kΩ G1 5 0A 161 Impuls transformator Tr 2 von der om Horizan-Impulstalausgangs-transformator 1 trennstufe C121 OL 4 OA 161 waagerechter Bild lang T SKR

Horizontal-

Phasenabgleich

trennstufe hinweg in die Phasenvergleichsschaltung gelangen, die horizontale Synchronisierung nicht beeinträchtigen.

Aus der Spannung, die beim horizontalen Rücklauf am Horizontal - Ausgangsübertrager auftritt, wird eine Impulsform abgeleitet, die angenähert einen zur Null - Linie symmetrischen schrägen Verlauf hat (s. a. Telefunken FE 10, Hauptschaltbild). Dieser Impuls dient zum Vergleich mit der Phase des vom Sender ausgestrahlten Horizontalimpulses,


er wird auf die

Mittelanzapfung der Sekundärwicklung des Impulstransformators gegeben. Zusammen mit den Impulsen aus dem Amplitudensieb gelangt der Vergleichsimpuls an die Diodenstrecken, wobei die Polarität des letzteren für jede Diodenstrecke die gleiche ist, der Senderimpuls wird jedoch für die eine Diode in positiver Richtung, für die zweite Diode in negativer Richtung dazu addiert. Die beiden Amplituden sind gleich groß, d. h. es wird keine Regelspannung erzeugt, wenn die beiden Impulsreihen zeitlich übereinstimmen. Bei zu hoch liegender Eigenfrequenz des Sperrschwingers ist die Zeit zwischen zwei aufeinanderfolgenden Rückläufen der Ablenkung kleiner als der zeitliche Abstand zwischen zwei Senderimpulsen, der Senderimpuls addiert sich infolgedessen in einer solchen Weise zum Vergleichsimpuls, daß die positive Spannungsspitze an der einen Diodenstrecke kleiner, die negative Spannungsspitze an der anderen Diodenstrecke größer wird. Die Differenzspannung erscheint nun als negative Regelspannung am Gitterwiderstand der Röhre EC 92 und setzt die Eigenfrequenz herab. Infolge der Zeitkonstante der Regelspannungserzeugung, für die im wesentlichen der 50-nF-Kondensator C 123 maßgebend ist, haben Störungen einzelner Impulse auf die erzeugte Regelspannung keinen Einfluß; es wird vielmehr aus einer größeren Anzahl von Impulsen ein Mittelwert gebildet.

Bei einigen der neuen Fernsehempfängertypen steuert die erzeugte Regelspannung die induktive Reaktanz einer Triode, wie das Bild 82 veranschaulicht. Die im zweistufigen Impulssieb doppelseitig beschnittenen Horizontalimpulse gelangen zu der mit zwei Germaniumdioden bestückten Phasenvergleichsstufe, wo eine von der Phasenlage der Impulse gegeneinander abhängige Regelspannung erzeugt wird. Diese Regelspannung steuert die induktive Reaktanz des Triodensystems einer Röhre ECL 80 und bewirkt damit durch entsprechende Frequenzänderung des durch den Pentodenteil der ECL 80 dargestellten Sinusgenerators den zwischen Sender und Empfänger erforderlichen Synchronismus. Neuartig ist hier auch der Aufbau der Horizontalablenkung. Auf dem Horizontal-Ausgangstransformator ist eine Rückkopplungswicklung vorgesehen, durch diese wird erreicht, daß die Röhre PL 81 (siehe auch Hauptschaltbild Philips) beim Hinlauf in dem steil ansteigenden Teil des Ia-Ua-Kennlinienfeldes bei kleinem Innenwiderstand arbeitet; durch das Umknicken der Kennlinie zu höheren Werten des Innenwiderstandes wird anschließend der Rückschlag herbel-

geführt. Die Spannung wird während des Hinlaufs über die erwähnte Rückkopplungswicklung in den positiven Bereich gesteuert und dadurch die Hinlaufdauer bestimmt. Man erreicht mit dieser Anordnung, daß auch bei kleiner Signalfeldstärke die Synchronisation stabil arbeitet. Philips verwendet in seinen neuen Krefeld - Geräten diese Methode der Horizontalablenkung.

Die für die Aussteuerung der Zeilenendröhre Rö 16 notwendige Gitterspannungsform wird über den 100-kΩ-Anodenwiderstand des Pentodensystems von Rö 15 an der RC-Kombination 15 kΩ/2,2 nF (siehe Hauptschaltbild Seite 50) aufgebaut. Das Pentodensystem von Rö 15 arbeitet in C-Betrieb und dient als Entladungsstrecke für den eben erwähnten 2,2-nF-Kondensator. Die Linearisierung des horizontalen Ablenkstromes wird von der Boosterdiode Rö 17 in Verbindung mit dem 10-uF-Boosterkondensator übernommen, wobei durch Energierückgewinnung aus dem Magnetfeld des Zeilentransformators etwa 560 Volt gegen Masse entstehen.

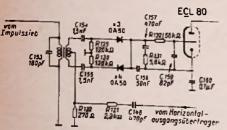
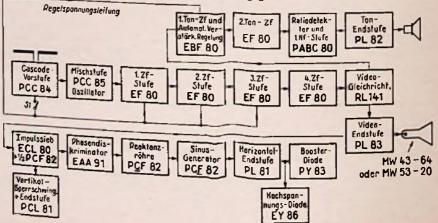



Bild 82. Reaktanzröhre als Steuerorgan für die Horizontalfrequenz (Philips 5322)

Rechts: Bild 83. Blockschaltung des Gerätes Nora F 11 (Gesamischaltung siehe Schaltungssammlung Band 1955, Sette 45)

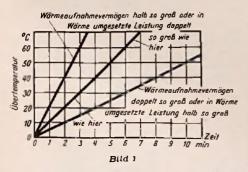
Dr.-Ing. F. Bergtold: Für den jungen Funktechniker

20. Von der Erwärmung

Die Temperatur

Den (fühlbaren, bzw. unmittelbar meßbaren) Wärmezustand beschreibt man durch die Angabe der Temperatur. Die dafür bei uns übliche Temperatureinheit ist der Celsiusgrad (abgekürzt °C). Das ist ein Hundertstel des Temperaturunterschiedes zwischen kochendem Wasser (bei 760 mm Quecksilbersäule und schmelzendem Eis). Die den elektrotechnischen Wertangaben zugrundegelegte Temperatur beträgt im allgemeinen 20°C.

Für die Temperaturbezeichnung in Celsiusgraden liegt der Nullpunkt auf der Temperatur des schmelzenden Eises. In seltenen Fällen wählt man statt dieses Nullpunktes den absoluten Nullpunkt. Er beträgt —273° C, womit die Zimmertemperatur, für die wir in der Regel 20° C annehmen, rund 300° höher liegt als der absolute Nullpunkt.


Die Einheit, die für Temperaturangaben vom absoluten Nullpunkt aus benutzt wird, stimmt mit dem Celsiusgrad überein. Um auf den anderen Nullpunkt hinzuweisen, spricht man hier jedoch nicht von Celsiusgrad, sondern von Kelvingrad.

Die Wärme oder Würmemenge

Die Wärme ist eine in besonderer Form aufgespeicherte Arbeit. Wir könnten die Wärmemenge, die in einem Körper steckt, demgemäß in Wattstunden (oder auch in Meterkilogramm) angeben. Doch hat sich als Einheit der Wärmemenge vor allem die (große) Kalorie eingebürgert. Das ist die Wärmemenge, die man braucht, um die Temperatur von einem Liter Wasser um ein Celsiusgrad zu steigern. Eine Kalorie ist etwas mehr als eine Wattstunde. Genauer gilt folgende Beziehung:

Arbeit in Kalorien ≈ 860 · Arbeit in Kilowattstunden.

Mit dieser Beziehung können wir einiges anfangen. Als Beispiel wählen wir einen Durchlauferhitzer. Für ihn stehe bei einer Spannung von 220 V ein Strom von 10 A zur Verfügung. Damit soll Wasser von etwa 10° C auf ungefähr 75° C erhitzt werden. Uns interessiert, wieviel Liter sich je Minute in dieser Weise erwärmen lassen. In der Minute haben wir es mit 10 A · 220 V = 2200 W min zu tun. Das bedeutet 860 · 2,2 kW min : 60 = 31,5 Kalorien oder für ebensoviele Liter eine Temperaturerhöhung von 1° C. Daraus folgen zu 75° C — 10° C = 65° C Temperaturerhöhung nur 31,5 : 65 = 0,485 l/min.

Die Zahl 60, durch die wir geteilt haben, erklärt sich aus der Tatsache, daß hier mit Minuten statt mit Stunden gerechnet wurde. Unser Beispiel zeigt, daß Durchlauferhitzer für größere Wassermengen erhebliche elektrische Leistungen voraussetzen.

Erwlirmung

Man kann einen Körper dadurch erwärmen, daß man ihm von außen her Wärme zuführt. Man kann in einem Körper aber auch Wärme aus anderer (z. B. elektrischer) Arbeit entstehen lassen. Hiermit wird der Körper ebenfalls erwärmt.

Infolge seiner Erwärmung nimmt der erwärmte Körper eine höhere Temperatur an als die, die er zuvor mit seiner Umgebung gemeinsam hatte. Der erwärmte Körper weist damit eine Übertemperatur auf. Das ist die Temperatur des erwärmten Körpers, vermindert um die Temperatur seiner Umgebung.

Die Übertemperatur bedeutet ein Temperaturgefälle vom erwärmten Körper zu dessen Umgebung. Der erwärmte Körper gibt demgemäß Wärme an seine Umgebung ab. Die Intensität der Wärmeabgabe wächst für ein- und denselben Körper mit dessen Übertemperatur.

Hat die Erwärmung des Körpers entsprechend hohe Übertemperaturen zur Folge, so ändert sich die Beschaffenheit einiger oder aller Stoffe, aus denen der erwärmte Körper aufgebaut ist. Einigermaßen empfindlich sind in dieser Beziehung die meisten der üblichen Isolierstoffe. Mit Rücksicht auf sie darf die Übertemperatur einen bestimmten, verhältnismäßig geringen Wert nicht übersteigen. Vielfach gilt als Grenze der zulässigen Übertemperatur 60° C, wobei als Höchstemperatur der Umgebung 35° C vorausgesetzt sind.

Kurzzeltige Erwitrmung

Wir erinnern uns: Erwärmen eines Körpers bedeutet Aufspeichern einer Wärmemenge in ihm und damit eine Übertemperatur, die eine Wärmeabgabe an die Umgebung zur Folge hat.

Eine Erwärmung wird "kurzzeitig" genannt, wenn während ihrer Dauer noch keine nennenswerte Wärme an die Umgebung abgegeben wird. Die Zeitspannen, die für kurzzeitige Erwärmung in Frage kommen, können sehr verschieden sein. Für einen dünnen, frei ausgespannten Draht ist die Erwärmung als kurzzeitig nur anzusehen, wenn es sich um Erwärmungszeiten von sehr kleinen Bruchteilen einer Sekunde handelt. Für einen großen Netztransformator hingegen kann eine Erwärmung von mehreren Minuten noch als kurzzeitig betrachtet werden.

Bei kurzzeitiger Erwärmung spielt also die Wärmeabgabe keine nennenswerte Rolle. Unter dieser Bedingung sind für die Höhe der jeweils erreichten Übertemperatur maßgebend: Die in Wärmeumgesetzte Arbeit und das Wärmeaufnahmevermögen des Körpers. Letzteres ist durch die zu 1° C Temperaturerhöhung des Körpers gehörende Wärme-

menge gegeben.

Das Wärmeaufnahmevermögen (die Wärmekapazität eines Körpers) wächst unter sonst gleichen Bedingungen mit seinem Gewicht. Diese Größe errechnet sich daraus, daß man die Gewichte der

sich daraus, daß man die Gewichte der verschiedenen Materialien, aus denen der Körper aufgebaut ist, mit den zugehörigen spezifischen Wärmen vervielfacht und die Summe dieser Produkte bildet. Die spezifische Wärme ist die Wärmemenge, die man braucht, um 1 kg eines Materials auf eine um 1° C höhere Temperatur zu bringen. Man findet die dafür geltenden Zahlenwerte in physikalischen Tabellen. Für die Praxis ist es bequemer, das

Für die Praxis ist es bequemer, das Wärmeaufnahmevermögen mit dem Rauminhalt des erwärmten Körpers in Beziehung zu setzen. Für die gebräuchlichen Metalle und Isolierstoffe gilt nämlich unter Einrechnung der üblichen Zwischenräume, daß für einen Liter (1 dm³) und 1° C ungefähr 0,5 Wattstunden benötigt werden. Hierzu ein Beispiel:

weiden. Hierzu ein Beispiel:

Ein Transformator hat einen Rauminhalt von 5 · 6 · 8 cm³ = 240 cm³. Ein
Liter hat 1000 cm³. Hieraus folgt das
Wärmeaufnahmevermögen zu 0,5 · 240 :
1000 = 0,12 Wattstunden je Grad Celsius.

Bei gleichbleibender in Wärme umgesetzter Leistung wächst der Wert der in
Wärme umgestaten ungestaten ungestaten.

Bei gleichbleibender in Wärme umgesetzter Leistung wächst der Wert der in Wärme umgesetzten Arbeit im selben Verhältnis an wie die Zeit. Das Wärmeaufnahmevermögen ist eine Konstante des erwärmten Körpers. Das bedeutet, daß die Übertemperatur bei kurzzeitiger Erwärmung der Erwärmungszeit proportional zunimmt. Bild 1 veranschaulicht das.

Dauerzustand der Erwärmung

Wird ein Körper über lange Zeit erwärmt, so bleibt schließlich seine Übertemperatur auf einem konstanten Wert stehen. In diesem Dauerzustand speichert sich keine weitere Wärmemenge in dem erwärmten Körper auf. Dazu würde ein Anstieg der Temperatur gehören. Wenn aber nichts aufgespeichert wird, muß stets ebensoviel Wärme an die Umgebung abgegeben werden, wie im gleichen Augenblick an Wärme entsteht oder an Wärme dem Körper zugeführt wird. Mit anderen Worten: Im Dauerzustand der Erwärmung ist die zugeführte, bzw. in Wärme umgesetzte Leistung gleich der an die Umgebung abgegebenen Leistung.

gebung abgegebenen Leistung.
Im Dauerzustand ist das Wärmeaufnahmevermögen des erwärmten Körpers belanglos. Für die Höhe der Dauerübertemperatur spielen lediglich die in Wärme umgesetzte Leistung und das Wärmeabgabevermögen des Körpers eine Rolle.

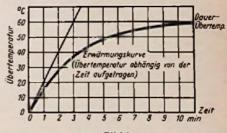


Bild 3

Das Wärmeabgabevermögen wird dargestellt durch die für 1° C Übertemperatur des Körpers von ihm abgegebenen
Wârmeleistung. Wir erhalten den "Wert
des gesamten Wärmeabgabevermögens
eines Körpers, wenn wir die einzelnen
Teile seiner Oberfläche mit den zugehörigen Wärmeabgabezahlen vervielfachen
und die Summe der so erhaltenen Produkte bilden.

Glücklicherweise genügt es in der Regel, wenn man die Wärmeabgabezahl für Flächen, die an die Luft angrenzen, mit 0,1 W für 1 dm² und 1°C Übertemperatur ansetzt

Bild 2 zeigt die zeitliche Konstanz der Übertemperatur für den Dauerzustand.

Tatsüchlicher Temperaturanstieg

An Hand von Bild 1 und 2 kann man sich leicht einen Überblick über den tatsächlichen Temperaturverlauf verschaffen. Ist die Übertemperatur noch gering also weit unter dem für den Dauerzustand geltenden Wert, so steigt sie an, als ob überhaupt keine Wärme an die Umgebung abgegeben würde — d. h. gemäß Bild 1. Nach einer längeren Zeit ergibt sich der Dauerzustand, womit der zeitliche Verlauf der Übertemperatur durch eine waagerechte Linie gemäß Bild 2 dargestellt wird.

Zwischen dem ersten Anstieg und dem konstanten Dauerwert der Übertemperatur findet ein allmählicher Übergang statt: Je mehr sich die Übertemperatur dem für den Dauerzustand geltenden Wert nähert, desto größer fällt der an die Umgebung abgegebene Anteil der Wärmeleistung aus und desto weniger Wärmeleistung bleibt folglich für die weitere Temperaturerhöhung übrig.

Bild 3 veranschaulicht den Temperaturanstieg für einen Körper, der mit konstanter Leistung durch und durch einheitlich erwärmt wird. Die Kennlinie des Bildes 3 heißt Erwärmungskurve. Diese Kurve zeigt einen Zusammenhang, wie er — im Prinzip — nicht nur für die Erwärmung, sondern auch für den Stromanstieg in Spulen mit Induktivität und für den Spannungsanstieg beim Aufladen eines Kondensators gilt.

Fachausdrilde

Celsiusgrad: Bei uns übliche Temperatureinheit, hundertster Teil des Temperaturunterschiedes zwischen der Temperaturkochenden Wassers bei einem Luftdruck von 760 mm Quecksilbersäule (100°C) und der Temperatur des schmelzenden Elses (0°C).

Dauerzustand der Erwärmung: Der Zustand, der sich bei ständiger Zufuhr einer konstanten Wärmeleistung endgültig einstellt. Im Dauerzustand ist die Temperatur des erwärmten Körpers konstant. Die gesamte in Wärme umgesetzte Leistung wird hierbei an die Umgebung des erwärmten Körpers abgegeben.

Erwärmung: Zufuhr von Wärme oder Bildung von Wärme aus einer andern Arbeitsform (z. B. aus elektrischer Arbeit) in einem Körper. Die Folgen der Erwärmung des Körpers sind: die Erhöhung seiner Temperatur über die seiner Umgebung, dadurch Wärmeabgabe an die Umgebung und, falls die Temperatur des erwärmten Körpers entsprechend hohe Werte erreicht, dauernde chemische oder physikalische Änderungen.

Erwärmungskurve: Kennlinie, die den Temperaturverlauf für einen mit gleichbleibender Leistung gleichmäßig erwärmten Körpers zeigt. Die Kennlinie steigt zunächst steiler und dann immer flacher an, um schließlich in einen waagerechten Verlauf überzugehen.

Kalorie: Wärmenmengeneinheit. Man unterscheidet große und kleine Kalorien. Die meist benutzte große Kalorie ist die Wärmemenge, die man braucht, um die Temperatur von einem Liter Wasser um 1°C zu steigern. Die kleine Kalorie ist ein Tausendstel davon.

Kelvingrad: Temperatureinheit, die ebenso groß ist wie das Celsiusgrad. Die Temperaturangabe in Kelvingraden bezieht sich jedoch mit ihrem Nullpunkt nicht auf die Temperatur des schmelzenden Eises sondern auf den absoluten Nullpunkt 0° K== ~ 273° C.

Kurzzeltige Erwärmung: Erwärmung, bei der die Wärmeabgabe an die Umgebung noch vernachlässigbar ist, bei der also die gesamte Wärmemenge die Temperaturerhöhung des erwärmten Körpers bewirkt (Erwärmung ohne gleichzeltige Wärmeabgabe).

Spezifische Wärme: Wärmemenge, die notwendig ist, um 1 kg eines bestimmten Materials auf eine um 1°C höhere Temperatur zu bringen. Man kann die spezifische Wärme auch als reine Zahl auffassen, wenn man die Wärmemenge, die die Temperaturerhöhung eines Liteis Wasser um 1°C bewirkt, als Vergleichsbasis wählt.

Temperatur: Fühlbarer, bzw. unmittelbar meßbarer Wärmezustand.

Temperaturgefälle: Temperaturunterschied zwischen einem Körper höherer Temperatur und seiner Umgebung oder zwischen ihm und einem anderen Körper, der eine niedrigere Temperatur aufweist als er. Man kann das Temperaturgefälle auch auf eine Wegstrecke oder einen Abstand beziehen. In diesem Fall ist das Temperaturgefälle der auf die Langeneinheit der

Wegstrecke oder des Abstandes bezogene Temperaturunterschied.

Wärmeabgabevermögen: Maß für den Wärmeübergang von einem erwärmten Körper auf seine Umgebung. Es wird bezogen auf 1°C Übertemperatur des erwärmten Körpers. Summe der Produkte aus den Oberflächen-Anteilen und zugehörigen Wärmeabgabezahlen.

Wärmeabgabezahl: Wärmeleistung, die je Flächeneinheit — z. B. je dm² — für eine Übertemperatur von 1º C abgegeben wird. Die Wärmeabgabezahl ist von Art und Beschaffenheit der Oberfläche, von deren räumlicher Anordnung und von den Lüftungsverhältnissen abhängig.

Wärmeausnahmevermögen: Wärmemenge, die zu einer Temperaturerhöhung des erwärmten Körpers um 1º C benötigt wird. Das Wärmeausnahmevermögen eines Körpers ergibt sich ungefähr als Summe der Produkte aus den Gewichten der einzelnen Werkstoffe, aus denen er besteht und den zugehörigen Werten der spezifischen Wärme.

Wärmekapazität: Dasselbe wie Wärmeaufnahmevermögen.

Wärmemenge: Arbeit in Form von Wärme.

Als Maß für die Wärmemenge dient in erster Linie die (große) Kalorie. Doch ist dafür z. B. auch die Wattstunde verwendbar.

Richtantennen aus Viererfeldern

Einige Datenblätter kommerzieller Richtantennen von Telefunken geben Gelegenheit, die Eigenschaften verschiedener Anordnungen zu vergleichen. Die einzelnen Kombinationen setzen sich durchweg aus Bausteinen nach Bild 1 zusammen. Dieses Viererfeld besteht aus vier \(\) \(2-\) Strahlern mit Stützern und Speiseleitung sowie Symmetrierschleife mit \(\) Hf-Kabelanschluß und Reflektorwand. In-

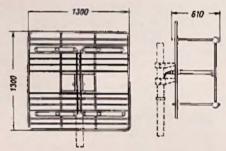


Bild 1. Richtantenne aus einem Viererfeld für den 160-MHz-Bereich. Vier Stück ½2-Strahler mit Stützer und Speiseleitung, Symmetrierschleife mit Hf-Kabelanschluß sowie Reflektorwand

folge der im Verhältnis zur Länge sehr dicken Strahlerelemente ist die Antenne ziemlich breitbandig. Die Fehlanpassung ist gleich oder kleiner als 1,2, bezogen auf 60 Ω für einen Frequenzbereich von 156 bis 230 MHz. Der Leistungsgewinn in Strahlrichtung ist siebenfach gegenüber einem einfachen Dipol. Horizontal- und Vertikaldiagramm dieser Antenne ist in den Kurven A und C in Bild 2 und 3 dargestellt. Der Öffnungswinkel beträgt je 640.

Setzt man jetzt nach Bild 4 zwei solcher Viererfelder übereinander, dann steigt der Leistungsgewinn auf 14. Das Band wird allerdings auf 156 bis 175 MHz eingeengt, wenn man die gleiche Fehlanpassung von 1,2 zuläßt. Interessant aber ist die Auswirkung auf das Strahlungsdiagramm. Horizontal tritt keine Änderung ein. Die Kurve A in Bild 2 bleibt auch für diese Antenne erhalten. Dagegen ist die Bündelung in vertikaler Richtung schärfer geworden, wie Kurve D in Bild 3 zeigt. Der Öffnungswinkel beträgt nur noch 34°. Als Empfangsantenne würde diese Anordnung Störungen von unten her besser unterdrücken, also z. B. Zündstörungen von Autos, die auf einer Straße dicht am Hause entlang vorbeifahren (vgl. "Ausnutzen der vertikalen Richtwirkung von Fernsehantennen", FUNKSCHAU 1955, H. 9, S. 181).

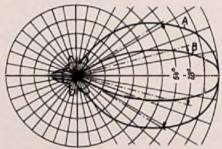
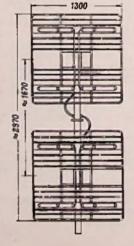
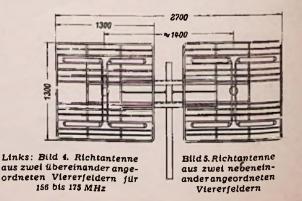




Bild 2. Horizontaldiagramme eines Viererfeldes (Kurve A) und von zwei Viererfeldern nebeneinander (Kurve B)

Bild 3. Vertikaldiagramme von Richtantennen. C = ein Viererfeld, D = zwei Viererfelder übereinander, E = vier Viererfelder übereinander; man erkennt, wie die Richtwirkung horizontal immer schärfer wird

Auge in Auge mit der ganzen Welt

Das neue PHILIPS Fernsehgeräte-Programm unterscheidet zwei grundsätzliche Gerätetypen, den Regionalempfänger und den Fernempfänger. Ein bekannter Fachjaurnalist sall diesmal über seine Erfahrungen mit dem Fernempfänger RAFFAEL berichten:

Ingenieur E. O. Kappelmayer:

"RAFFAEL" - der Fernseher mit den großen Reserven.

Die Versorgungszone, die ein Fernsehsender überstrahlt, kann man in ein Nahfeld und ein Fernfeld unterteilen. Der Nahbereich umfaßt bei einem 100 KW Sender etwa einen Kreis von 50 km Durchmesser, das Fernfeld 50... 100 km. Allerdings hängen die sicheren Reichweiten von der Tapagraphie des Sendergeländes und des Empfangsortes wesentlich ab.

In technischer Hinsicht unterscheidet sich der Zonalfernseher vom Regionalgerät hauptsächlich durch die Anzahl der Röhren (22 gegen 16), also durch höchste Empfindlichkeit und Bildfestigkeit. Die vierfache ZF-Verstörkung ist so ausgelegt, daß sich die größte Bandbreite ergibt und damit eine sehr feine Auflösung des Bildes.

Die große Verstärkung bedingt hächste Nachbarkanalunterdrückung. Daraus ergeben sich auch erhebliche Trennschärfereserven für die Zukunft, wenn das Sendernetz viel dichter sein wird, als

Die beste Schärfe bis zu den äußersten Rändern wird durch richtige Dimensionierung der Ablenkmittel gewährleistet.

Durch Einhaltung des echten Schwarzpegels wird eine naturgetreue Wiedergabe des vom Sender ausgestrahlten Signals ermöglicht und Helligkeitsschwankungen des Bildes können nicht auftreten.

Was Kraftreserven bedeuten, weiß der Autofahrer am besten. Er braucht zwar meist nur die halbe Kraft seines Motors, aber er fährt im Gebirge leichter, sicherer und beruhigter, wenn er weiß, daß seine Maschine nach Reserven in sich trägt. So auch beim "RAFFAEL", dem Fernsehempfänger mit den großen Kroftreserven.

Bild 6. Vier Viererfelder neben- und übereinander

Setzt man dagegen nach Bild 5 die beiden Viererfelder nebeneinander, so kehren sich die Verhältnisse um. Horizontal verengt sich die Charakteristik auf 28° nach Kurve B in Bild 2. Dagegen bleibt jetzt vertikal die Kurve C des einfachen Viererfeldes erhalten. Nebeneinander an-geordnete Strahlergruppen blenden also besser seitlich einfallende Störungen aus.

Ordnet man nach Bild 6 vier solcher Felder neben- oder übereinander an, so ist zu erwarten, daß horizontal und vertilst zu erwarten, daß horizontal und verti-kal die Richtwirkung schärfer wird. Tat-sächlich ergeben sich mit dieser Anord-nung die Kurven B und D, also 25% hori-zontal und 34% vertikal. Der Leistungs-gewinn steigt dabei auf 28 gegenüber einem Halbwellendipol.

Baut man jedoch die vier Felder nach Bild 7 in einer Zeile übereinander, dann

wird gegenüber Bild 4 und 6 die horizon-tale Bündelung noch schärfer. Der Öff-nungswinkel beträgt nur noch 14°, entspre-chend Kurve E in Bild 3. Das Horizontaldiagramm dagegen entspricht dem eines einzelnen Feldes, nämlich der Kurve A in Bild 2. Ordnet man vier solcher Antennenzeilen als Sendeantenne im Quadrat um einen Mast herum an, so erzielt man eine vollständige Rundumstrahlung, denn die vier Keulen mit je 64th Öffnungswinkel schlie-

Ben sich dann infolge der Überlappung fast zu einem Kreis zusammen. Dagegen ergibt sich — räumlich gesehen — als Gesamtstrahlungsdiagramm flache ringartige Scheibe. Dies bedeutet, daß weder unnötig Energie nach oben in den Wel-tenraum, noch dicht am Sender in den Erdboden hineingestrahlt wird. Diese Anordnung eignet sich also beson-ders gut zur UKW-und Fernseh - Versorgung größerer Gebiete in ebenem Gelände. (Nach Telefunken-Unter-

Bild 7. Vier Viererfelder übereinander

1300 eine

Fernseh-Antennenverstärker - auch für UKW

Grundsätzlich läßt sich die Schaltung eines Fernseh-Antennenverstärkers mit anderen Spulen auch für den UKW-Bereich verwenden.

Der in der FUNKSCHAU 1955, Heft 11. Seite 229, beschriebene Antennenverstär-ker läßt sich auch für den UKW-Rundfunkbereich verwenden. Hierfür gelten folgende Werte:

1. Spulendaten bei Verwendung als UKW-Antennenverstärker. Frequenzumlang 67 MHz bis 100 Milz, Abgleich auf Bandmitte.

Eingangskreis:

Primär 3,5 Wdg. Wickellänge 15 mm Sekundär 9 Wdg. Wickellänge 20 mm

Die Primärwicklung liegt über der Sekun-därwicklung. Zwischen beiden befindet sich ein Preßpanstreisen, 0,2 mm stark. Die Mitte der Primärspule ist geerdet. Zur Neutralisation wurde ein Kondensator 3 of verwendet.

Kreis zwischen Anode und Katode der PCC 81:

9 Wdg. Wickellänge 25 mm

Kreis zwischen Eingangsröhre PCC 84 u. EF 80:

Primär 7,5 Wdg. Wickellänge 15 mm 6 Wdg. Wickellänge 10 mm Sekundär

Die beiden Spulen sind nebeneinander angeordnet. Die Primärwicklung befindet angeordnet. Die Primärwicklung befindet sich am Fußpunkt des Kernes. Die beiden Spulenenden in der Mitte sind: für die Primärseite der Anschluß für die Spannungsversorgung der PCC 84, für die Sckundärseite der Anschluß für die Gittervorspannung und des Trimmers.

Ausgangskreis:

8 Wdg. Wickellänge 12 mm

Auskopplung über 90 pF von einer Anzapfung, die vom kalten Ende zwei Windungen entfernt ist. Die Kabellänge des Impedanztransformators beträgt 110 cm.

Als weiteres Beispiel seien Angaben für den Fernsehkanal 4 im Band I gemacht...

2. Spulendaten bei Verwendung des Verstärkers für den Fernsehkanal 4.

Eingangskreis:

Primär 5 Wdg. Wickellänge 10 mm 15 Wdg. Wickellänge 20 mm Sckundär

Die Primärwicklung befindet sich auf der Sekundärwicklung. Zwischen beiden befindet sich ein Preßspanstreisen 0,2 mm. Die Mitte der Primärspule ist geerdet. Der Neutralisationskondensator fällt fort, der Kondensator 10 pF von der Katode der PCC 84 auf das kalte Ende der Gitterspule wird auf 15 pF vergrößert.

Kreis zwischen Anode und Katode der PCC 84: 15 Wdg. Wickellänge 25 mm

Kreis zwischen Eingangsröhre PCC 84 u. EF 80:

Primär 12 Wdg. Wickellänge 10 min Sekundär 11 Wdg. Wickellänge 10 mm

Beide Spulen sind zweilagig gewickelt und auf dem Kern nebeneinander angeordnet. Zur Isolation liegt jeweils zwischen den beiden Lagen ein Preßspanstreifen 0.1 mm. Der Abstand zwischen Sekundär und Primärspule beträgt 5 mm!

Ausgangskreis:

Primär 11 Wdg. Wickellänge 15 mm zweilagig gewickelt

Sekundär 5 Wdg. Wickellänge 10 mm

Die Sekundärwicklung befindet sich auf der Primärwicklung. Es ergibt sich also insgesamt eine dreilagige Anordnung! Die Mitte der Sekundärspule ist geerdet. Bei diesem Ausgangskreis (niedrige Frequenz) wird kein Impedanztransformator ver-wendet, sondern eine symmetrische Aus-gangsspule. Ein Impedanztransformator gangsspule. Ein Impedanztransformator würde bei diesen niedrigen Frequenzen zu unförmig werden. W. Dk.

Veraltete Hochantennen auf den Dächern

Der Hausbesitzer kann bei Gefährlichkeit ihre Beseitigung verlangen

Die Rechtsprechung der oberen Gerichte hat in den letzten Jahren klargestellt, daß der Hausbesitzer grundsätzlich verpflichtet ist, die Anlage von Hochantennen für ein Rundfunkgerät eines Mieters seines Anwesens: zu dulden. Allerdings sei darauf hingewiesen, daß ein Mieter vor Anlage einer Hochantenne die Genehmigung des Hauseigentümers zur Errichtung derselben einholen muß, und zwar auch dann, wenn dieses Recht dem Mieter im Mietvertrag eingeräumt ist. Würde ein Mieter diese Regel nicht beachten, so liefe er Gefahr, daß der Hausbesitzer in einer solchen Anlage eine Besitzstörung erblicken und daraus einen Anspruch auf Beseitigung der Anlage geltend machen könnte.

geltend machen könnte.

Auch nach der bisherigen Rechtsprechung gilt jedoch diese grundsätzliche Pflicht eines Hausbesitzers, die Errichtung einer Hochantenne zu duiden, nur unter gewissen Einschränkungen. Die Pflicht zur Duldung solcher Anlagen fällt dann weg, wenn der Hausbesitzer gegen die Anbringung einer Hochantenne aus der baulichen Anlage des Hauses (unzugängliches Dach; Schwierigkeit der Anbringung) Einwendungen erheben kann. Die Gerichte haben ferner auch darauf hingewiesen, daß ein Hausbesitzer die Genehmigung zur Anbringung einer weiteren Hochantenne versagen kann, wenn bereits verschiedene Hochantennenanlagen vorhanden sind und zusätzliche Anlagen entweder die bereits vorhandenen behindern oder etwa in der Nähe verlaufene Licht- oder Starkstromleitungen gefährden könnten.

Vor einiger Zeit hat ferner das Landgericht Berlin in einem Urtell vom 12. Oktober 1954 (64 S 181/54) darauf hingewiesen, daß veraltete Hochantennen, die eine Gefahrenquelle bilden und das Ansehen eines Hauses beeinträchtigen, zu entfernen sind. Nach dem Tatbestand dieser Entscheidung wurde festgestellt, daß eine etwa 27 cm über dem Dach verlaufende Hochantenne eines Mieters eine Reihe von Gefahrenquellen in sich birgt. Sie entsprach außerdem in keiner Weise mehr dem technischen Fortschritt und war als veraltet anzusehen. Der Mieter wandte sich gegen die Beseitigung dieser veralteten Hochantenne durch den Hausbesitzer und verlangte Schadenersatz. Er hatte jedoch mit seiner Klage keinen Erfolg, Das Landgericht Berlin belehrte ihn in den Urteilsgründen wie folgt: "Wenn ein Mieter aus irgendwelchen Gründen Wert darauf legt, eine besondere Außenantenne zu haben, dann muß er sie auch so anlegen, daß Gefahrenquellen nicht mehr bestehen. Er muß haben, dann muß er sie auch so anlegen, dan Gefahrenqueilen nicht mehr bestehen. Er muß auch insoweit dem technischen Fortschritt Rechnung tragen, der heute die Anlage von Antennen ermöglicht, die in jeder Hinsicht gefahrlos sind. Wenn ein Hausbesitzer solche veralteten gefährlichen Hochantennen beseitigt, handelt er nicht widerrechtlich und ist dem Mieter nicht schadenersatzpflichtig."

In diesem Zusammenhang wird auch betont, daß ein Hausbesitzer nicht verpflichtet ist, eine der früher beseitigten Hochantenne entsprechende Hochantenne zu duiden, die in größerer Höhe über dem Dach angelegt wird. Auch hat ein Hausbesitzer ein Recht nach dieser Entscheidung darauf, seinem Grundstück ein bestimmtes Gesicht zu geben und das Entstehen eines Netzes von Hochantennen zu verhindern. Das Landgericht Berlin führt in der Entscheidung wörtlich aus: "Heute kann der Mieter, der Wert auf eine Außerhochantennen legt — fast überall reichen heute Innenantennen aus — nicht verlangen, daß ihm die Anlage einer unmodernen und daher in dieser Form nicht notwendigen Antenne gestattet wird. Wenn er höhere Ansprüche als die normalen an eine Antenne stellt. dann muß er auch die dem Stand der Technik wirklich entsprechende Antenne anlegen lassen. Geichzeitig betont auch das Landgericht Berlin. daß das Recht eines Mieters auf die Anlage einer Hochantenne da aufhört, wo Recht einer Hochantenne da aufhört, wo Recht einer Hochantenne het kommen und erfährdet werden können. "Die Technik naf Antennen entwickelt, die" — so führt das Landgericht Berlin aus — "ohne nennenswerte Schwierigkeiten den Anschluß mehrerer Mieter an einen Antennenstab ermöglichen. In solcher Gemeinschaftsform wird der Hausbesttzer eine Außerdem wird in dem Urteil des Landgerichts Berlin erneut dargelegt, daß die

Außerdem wird in dem Urteil des Land-gerichts Berlin erneut dargelegt, daß die Kosten einer Gemeinschaftsantenne anteing von den Mietzvon den Mietern des Anwesens getragen wer-den müssen, die von ihr den Nutzen naben.

Rechtsanwalt R. Zeitlmann

FUNKSCHAU-Bauanleitung

Verstärker-Kleinzentrale V 553

Ein Verstärker, bei dem auch das Anschließen und die Bedienung der übrigen Teile der Anlage sorgfältig berücksichtigt wurden.

Zwed

Oftmals wird eine kleine Übertragungsanlage zur Wiedergabe von Schallplatten, Rundfunksendungen und Mikrofonansagen benötigt, die preiswert und möglichst leicht zu bedienen sein soll. Bisweilen hilft man sich hierbei mit einem Rundfunkempfänger größerer Ausgangsleistung, der dann in dem betreffenden Raum, z. B. einer Gastwirtschaft, irgendwie auf einen Wandbrettchen untergebracht wird. Ein solcher für Wohnräume bestimmter Empfänger ist aber für diese Zwecke etwas sehl am Platz. Er fällt zu sehr auf, die Schallabstrahlung ist zu sehr an den Ausstellort gebunden, und er enthält einen Komfort, der nicht voll ausgenutzt wird.

Eine vollständige Verstärkeranlage mit Mischeinrichtung und getrennten Lautsprechern erhöht aber den Aufwand wieder zu sehr. Deshalb wurde der hier beschriebene Verstärker (Bild I) entworfen, der im wesentlichen nur eine Gegentaktendstufe mit zwei Röhren EL 84 darstellt. Er kann hinter einen der neuen preiswerten Kleinsuper aus der 200-DM-Preisklasse geschaltet werden und liefert dann die Leistung zum Betrieb einer größeren im Raum angebrachten Lautsprecheranordnung. Um die Bedienung für den Laien besonders betriebssicher zu machen, wurde die Schaltung so gestaltet, daß sämtliche Verbindungsleitungen zum Rundfunkgerät, Plattenspieler und Mikrofon einmalig fest hergestellt und lästiges Umstöpseln oder unübersichtliches Leitungsgewirr vermieden werden.

Auch an Kleinigkeiten ist dabei gedacht. Rundfunkempfänger, Plattenspieler und Verstärker benötigen z. B. jeder eine Netzzuführung. Meist ist nur eine Steckdose vorhanden, in die dann ein Abzweigstekker eingesteckt wird, an dem die drei Netzschnüre hängen und den Abzweigstecker leicht aus der Steckdose herausziehen. Ferner sind die Geräte einzeln ein- bzw. auszuschalten. Alle diese Verbindungen und Handgriffe wurden in dem Verstärker V 553 zusammengefaßt. Deshalb erhielt die Einrichtung die Bezeichnung-Verstärker-Kleinzentrale.

Die Schaltung

Bild 2 zeigt die Blockschaltung. Nur die Kleinzentrale V 553 wird an das Lichtnetz angeschlossen. Plattenspieler und Rundfunkempfänger erhalten ihre Netzspannungen aus der Kleinzentrale. Ein darin befindlicher gemeinsamer Netzschalter schaltet alle drei Geräte gleichzeitig ein oder aus.

Der Tonabnehmeranschluß des Empfängers sowie dessen Ausgangsspannung sind zur Kleinzentrale durchgeschaltet, ebenso die Leitung vom Tonarm des Plattenspielers, vom Mikrofon und zur Lautsprechergrunge.

Die vollständige Schaltung ist in Bild 3 dargestellt. Der Verstärker enthält eine

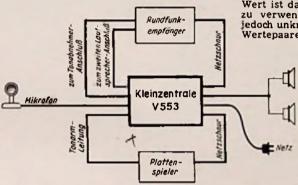


Bild 2. Blockschaltung der gesamten Anlage

Doppeltriode ECC 83 und zwei Endröhren EL 84 im Gegentakt. Ein System der ECC 83 dient zur Phasenumkehr für die Gegentaktendstufe. Es arbeitet in Katodyn-Schaltung mit je einem 100-k Ω -Widerstand in der Katoden- und Anodenleitung. Der zusätzliche 3-k Ω -Widerstand in der Katodenleitung erzeugt in üblicher Weise die negative Gittervorspannung. Die Bemessung dieser Schaltung erfolgt nach Telefun- ken - Unterlagen (vgl. FUNKSCHAU 1955, Heft 9, Seite 185).

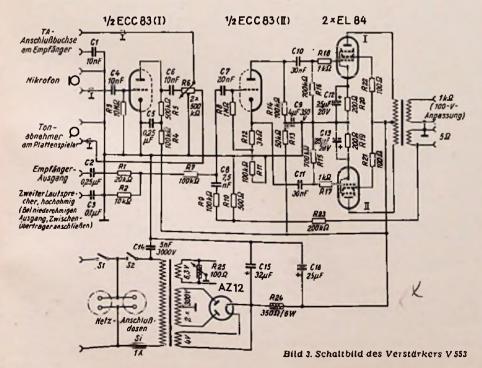
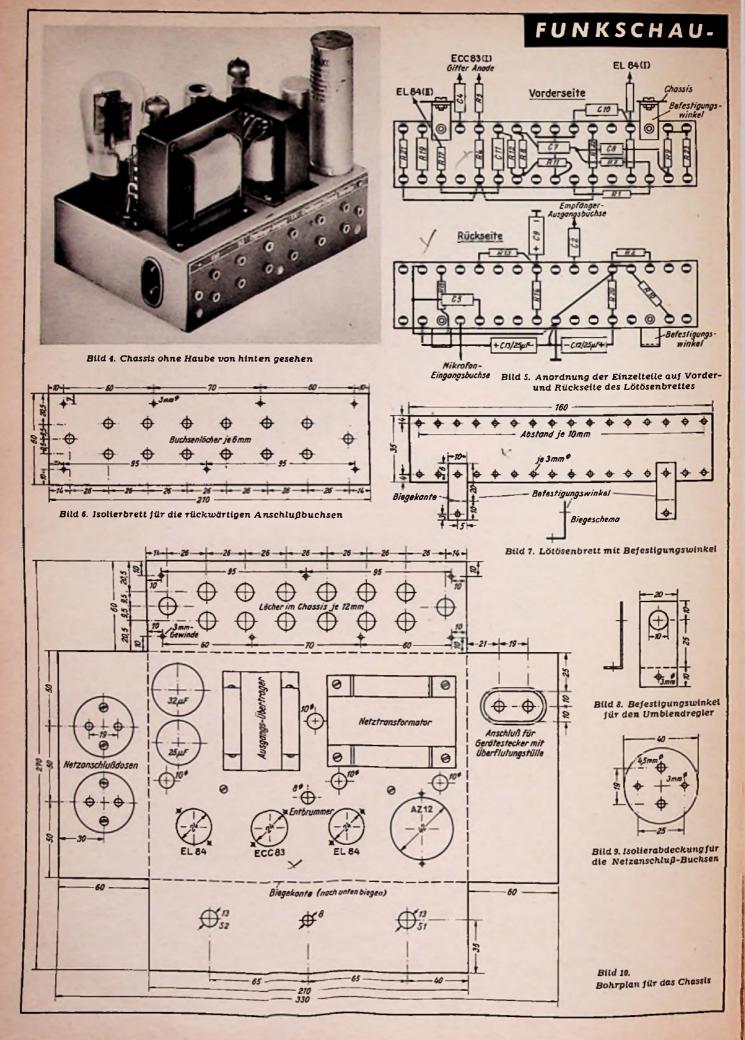


Bild 1. Verstärker-Kleinzentrale V 553

Zur einwandfreien Symmetrierung muß $R_{14}=R_{11}+R_{12}$ sein, d. h. R_{12} soll genau 3 k Ω kleiner als R_{14} sein. Die beiden 100-k Ω -Widerstände müssen also ca. 3% voneinander verschieden sein. Sie sind aus einer größeren Anzahl Widerstände durch Messen auszuwählen, und der kleinere Wert ist dann für den Katodenwiderstand zu verwenden. Der endgültige Wert ist jedoch unkritisch. So können z. B. folgende Wertepaare genommen werden:

 $k\Omega$ — 100 $k\Omega$ $k\Omega$ — 101 $k\Omega$ $k\Omega$ — 102 $k\Omega$ $k\Omega$ — 103 $k\Omega$ $k\Omega$ — 104 $k\Omega$ $k\Omega$ — 105 $k\Omega$


Das zweite Triodensystem der Röhre ECC 83 dient zur Vorverstärkung für den Mikrofonkanal, da die Verstärkung des Empfängers allein für ein Mikrofon im allgemeinen nicht ausreicht Die

meinen nicht ausreicht. Die Vorspannung dieses Mikrofonverstärkersystems wird durch den Anlaufstrom an dem hochohmigen Gitterableitwiderstand erzeugt. An den Anodenkreis ist ein Umblendregler von 2×500 kΩ (von der Firma Preh) angekoppelt. Der Schleifer dieses Reglers führt zur Tonabnehmerbuchse des Empfängers. In der linken Endstellung des Schleifers ist das Mikrofon voll an den Empfänger angeschaltet. Durch Zurückdrehen läßt sich die Lautstärke regeln, ohne daß am Empfänger etwas geändert zu werden braucht.

Die andere Seite des Umblendreglers führt zum Tonabnehmer des Plattenspielers. In Rechtsstellung des Schleifers ist also die volle Lautstärke bei Schallplattenwiedergabe vorhanden. Durch Zurückdrehen läßt sich ebenfalls die Lautstärke herabsetzen. Durch Übergang von der einen in die andere Endstellung erfolgt das Umblenden von Mikrofon auf Schallplattenwiedergabe, z. B. zum Ansagen von Schallplattendarbietungen. Eine regelrechte Mischeinrichtung ist absichtlich nicht vorgesehen, um die Bedienung narrensicher zu machen. Eine Mischeinrichtung wird für den gedachten Zweck auch gar nicht benötigt.

In der Mittelstellung rastet der Umblendregler spürbar ein. Die Tonabnehmerzuleitung des Empfängers liegt dann an Erde, so daß beim Rundfunkempfang keine Störspannungen vom Mikrofon oder vom Plattenspieler eingeschleppt werden.

Der eigentliche Empfängerausgang ist unmittelbar über einen Spannungsteiler R 1/R 2 zum Gitter der Phasenumkehrtriode geführt. Dieser Spannungsteiler stellt die richtige Steuerspannung und das günstigste Nutz-/Störspannungs-Verhältnis ein. Infolge der starken Stromgegenkopplung durch den 100-kΩ-Katodenwiderstand der Triode ist eine relativ hohe Steuerspannung erforderlich. Sie wird unmittelbar an der Anode oder an einem hochohmigen Anschluß für einen

Konstruktionsseiten

Im Modell verwendete Einzelteile

Doppeltriode ECC 83 (Telefunken) 2 Endpentoden EL 84 (Telefunken) 1 Gleichrichterröhre AZ 12 (Telefunken) 20 kΩ ± 10°/e 0.5 W 10 kΩ ± 10°/4 10 MΩ ± 10°/₀ 100 kΩ ± 10°/₀ R 3 (Dralowid) 0,5 W 500 kΩ ± 10º/a 2 × 500 kΩ Umblender, Zeichnungs-Nr. 4106 (Preh) 100 kΩ ± 10% 0.5 W $1 M\Omega \pm 10\%$ 0,5 W 100 kΩ ± 10% 0,5 W R 10 500 Ω \pm 10 $^{\circ}/_{\circ}$ 0,5 W 100 kΩ R 11 1) 0,5 W ± 10% зкΩ 0,5 W R 13 50 kΩ ± 10% 0,5 W R 14 R 15 100 kΩ 700 kΩ 1) 0,5 W ± 10% 0.5 W (Dralowid) 0,5 W ± 10°/0 R 16 700 kΩ 0,5 W 17 1 kΩ ± 104/4 R 18 1 kΩ R 19 200 Ω I kΩ ± 10°/e 0,5 W ± 10% 2.0 W ± 10°/a 2,0 W 21 100 Ω ± 10°/e 0,25 W R 22 100 Ω \pm 10°/ \circ 0,25 W R 23 200 k Ω \pm 10°/ \circ 0,25 W ± 10º/e 350 Ω 6.0 W R 25 100 Ω Entbrummer Kondensatoren $0.1~\mu F \pm 20^{\circ}/_{\circ}$ 500 V-0,25 pF ± 20% 500 V-2 (Wima) 0,1 µF ± 200/a С nF ± 20ª/a 500 V-C 5 C 6 C 7 0,25 µF ± 20°/e 250 V-400 V 10 nF ± 20% nF ± 204/e 20 500 V-(Wima) 7.5 nF (5 + 2.5 nF) ± 20% C 9 4 µF C 10 30 nF ± 20% C 11 30 nF ± 20% 350/385 V (Elektrolyt) (Wima) 500 V 500 V (Wima) c 10/12 V (Hydra) 25 µF 12 10/12 V (Hydra) 3000 V— (Wima) 13 25 nF ± 204/e C 14 5 C 15 32 µF 500/550 V (Frako) 350/385 V (Philips) C 16 25 μF

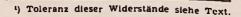
Transformatoren

Netztransformator 110/220 V 2 × 300 V/70 mA Größe M8 6,3 V/2 A; 4 V/2 A

Gegentakt-Ausgangsübertrager 2 × EL 84

Primär 2 X 5 kΩ Größe M 6 Sekundar 5 Ω und 1 kΩ

Sonstige Einzelteile


- 2 Novalfassungen Nr. 4984 (Preh)
- 1 Novalfassung Nr. 5464 (Preh) 1 Abschirmhaube Nr. 5360/50 (Preh)
- 1 Stahlröhrenfassung
- 14 Telefonbuchsen Bu 20. Lötende verzinnt (Hirschmann)
- Anschlußleisten Best.-Nr. 45102 (Mentor) Geräteanschluß mit Überflutungstülle
- 2 Kippschalter, einpolig, Aus Ein 1 Zeigerknopf Best.-Nr. K 414 M (Mentor)
- Feinsicherung 1 A mit Halter

Chassis und Einzelteile nach Zeichnungen

ca. 30 Schrauben M 3 mit Muttern 30 Nietlötösen

- 5 Lötösen zum Anschrauben
- 4 m isolierter Schaltdraht
- 1 m blanker Schaltdraht
- 1 m abgeschirmter Schaltdraht

Die angegebenen Marken-Bautelle bitten wir, über den Fachhandel (nicht direkt vom Hersteller) zu beziehen.

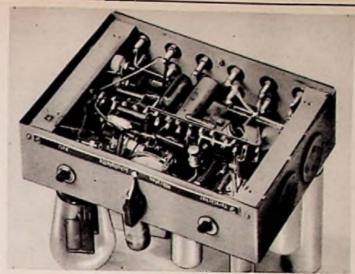


Bild II. Ansicht des verdrahteten Chassis

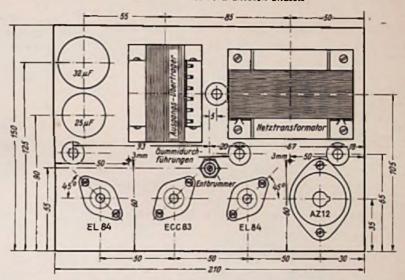
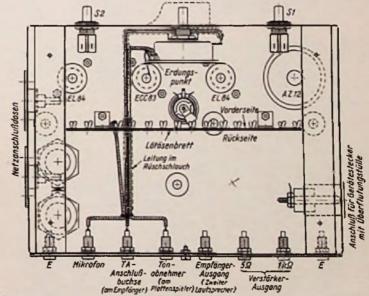
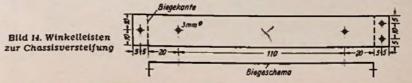




Bild 12. Anordnung der Einzelteile oberhalb des Chassis

Anordnung der Teile und der kritischen Eingangsleitungen unterhalb des Chassis

FUNKSCHAU-Bavanleitung

(Fortsetzung des Textes von Seite 479)

zweiten Lautsprecher des Empfängers abgegriffen. Falls der zweite Lautsprecheranschluß niederohmig ist, wird zweckmäßig ein zweites Buchsenpaar für einen zusätzlichen hochohmigen Anschluß an der Rückwand des Empfängers angebracht oder ein Zwischentransformator, z. B. ein "umgedreht" angeschlossener Ausgangsübertrager (ca. 4 Ω : ca. 7 k Ω = ca. 1:40) vorgesehen.

Der Verstärker V 553 erhält einen Gegentakt-Ausgangstransformator für zwei Röhren EL 84. Die niederohmige Ausgangswicklung dient zum unmittelbaren Anschluß von dynamischen Lautsprechern. Von dieser Wicklung führt auch eine frequenzunabhängige Gegenkopplung zurück auf den Eingang des Verstärkers. Die hochohmige Ausgangswicklung des Übertragers ist für eine Belastung von 1 kΩ bemessen. Man erhält damit die bevorzugte 100-V-Anpassung, denn die Ausgangsleistung des Verstärkers beträgt rund 10 W

$$N = \frac{u^2}{R} \text{ oder } u = \sqrt{N \cdot R}$$

d. h. u = $\sqrt{10 \cdot 1000}$ = 100 V

Der Netzteil enthält eine Zweiweggleichrichterröhre AZ 12. Zur Siebung der
Gegentaktendstufe genügt ein 350-Ω-Widerstand in Verbindung mit dem Kondensator C 16. Die Anodenspannungen der
Vorröhren werden durch zusätzliche RCGlieder R4/C5 und R13/C9 gesiebt.

Der Primärseite des Netztransformators sind über den Schalter S 2 zwei Steckdosen parallelgeschaltet. Sie befinden sich am Chassis der Kleinzentrale selbst und dienen zur Stromversorgung des Plattenspielers und des Rundfunkempfängers. S 1 ist der gemeinsame "Hauptschalter" für die ganze Anlage. Wird er ausgeschaltet, so hat man die Gewißheit, daß weder Verstärker noch Plattenspieler oder Rundfunkempfänger versehentlich weiterlaufen. S 2 schaltet nur den Verstärker ab, wenn z. B. der Empfänger für sich betrieben oder Schallplatten nur über den Empfängerlautsprecher wiedergegeben werden sollen.

Die wenigen Bedienungselemente sind damit an der Kleinzentrale vereinigt. In Bild 1 sitzt links der Hauptschalter S 1 in der Mitte der Umblendregler und rechts der Netzschalter S 2 für den Verstärker.

Mechanischer Aufbau

Der mechanische Aufbau erfolgt auf einem Chassis nach Bild 10. Die Anordnung der Einzelteile oberhalb des Chassis ist aus Bild 12 und unterhalb des Chassis aus Bild 13 zu ersehen. Sämtliche Tonfrequenzbuchsen befinden sich an der Rückseite auf einem Hartpapierbrett nach Bild 6. Die Lochgruppen sind entweder auf die Chassisrückseite in Bild 10 zu übertragen, oder sie sind gemeinsam mit dem Chassis zu bohren. Anschließend sind dann die Löcher im eigentlichen Chassis auf 12 bis 14 mm aufzubohren. Dadurch, daß die Tonfrequenzanschlüsse auf der Rückseite sitzen, sind sie dem Zugriff durch Laien entzogen. Netzanschlüsse und Netzzuleitung sitzen in den Seitenteilen.

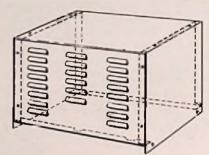


Bild 15. Abdeckhaube mit Lüftungsschlitzen

Das Chassis wird durch zwei Winkelleisten nach Bild 14 versteift, auf die später die Bodenplatte mit Gummifüßen aufgeschraubt wird. Das Chassis kann unbedenklich größer oder mit anderen Seitenverhältnissen gewählt werden, jedoch sollte die Anordnung der Teile ungefährbeibehalten werden, um gegenseitige Beeinflussungen von Nf- und Netzleitungen zu vermeiden.

Bild 11 läßt ein Lötösenbrett unterhalb des Chassis erkennen, auf dem die Widerstände und Kleinkondensatoren angeordnet sind. Bild 7 gibt die Abmessungen und Befestigungswinkel dieses Lötösenbrettes wieder und Bild 5 die Anordnung der Einzelteile auf der Vorder- und Rückseite dieses Brettes.

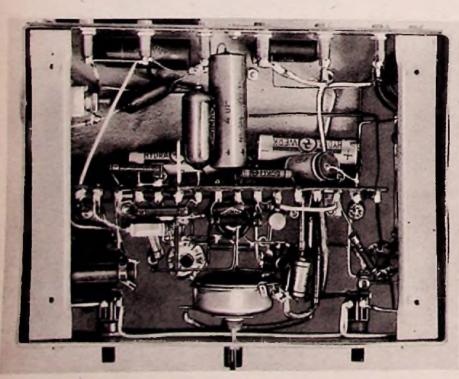


Bild 16. Unterseite des verdrahteten Chassis

Der Umblendregler R 6 sitzt auf einem Winkel nach Bild 8. Für die Netzsteckdosen finden Mentor-Anschlußleisten Best.-Nr. 45 102 Verwendung. Sie werden durch Hartpapierplatten nach Bild 9 absedeckt. Wird auf glatten äußeren Abschluß weniger Wert gelegt, dann können hierfür Aufputzsteckdosen montiert werden. Für die eigentliche Netzzuführung wurde eine Gerätesteckdose vorgesehen um nachträglich Kabel in genau passender Länge anbringen zu können, damit das Herunterhängen von langen Leitungen oder Verlängerungsschnüre vermieden werden.

Bild 13 zeigt einen Blick in die Verdrahtung und Bild 4 das Chassis ohne Haube von hinten.

Anwendung

Die Kleinzentrale soll lediglich als Endstufe größerer Leistung dienen. Die Klangregelung liegt im eigentlichen Empfänger, denn selbst einfache 6/9-Kreissuper in der Preisklasse um 200 DM sind heute bereits mit getrennter Baß- und Höhenregelung ausgerüstet. Der Verstärker V 553 erhielt daher keine Frequenzkorrekturen. Die bei der Entwicklung dieses Verstärkers gestellten Forderungen wurden voll erfüllt. In Verbindung mit einem Tele funken-Empfänger Jubilate und einer Lorenz-Schallecke ergab sich damit eine hervorragende raumfüllende Wiedergabe.

Funktechnische Fachliteratur

Schliche und Kniffe für Radiopraktiker

Von Ing. Fritz Kühne. 64 Seiten mit 57 Bildern. Band 13 der "Radio-Praktiker-Bücherei"; 5. und 6. Auflage. Preis: kart. 1.40 DM. Franzis-Verlag. München.

In diesem Band, der nun schon seine 5. und 6. Auflage erlebt, sind viele Werkstatterfahrungen zusammengetragen. Oft sind es Kleinigkeiten, aber sie helfen doch sehr bei der täglichen Arbeit. Gleichglüttig, ob es sich um den Bau eines verzerrungsfrei arbeitenden Lautstärke - Regeltransformators oder das Schwärzen von Aluminium handelt, ... stets sind es Winke aus der Praxis für die Praxis, die von Kollegen erprobi und nicht am grünen Tisch erdacht wurden.

Widerstandskunde für Radio-Praktiker

Von Dipl.-Ing. Georg Hoffmeister, 63 Selten mit 9 Bildern, 4 Nomogrammen und 6 großen Zahlentafeln, Band 16 der "Radlo-Prüktiker - Bücherei". 3. Auflage, Preis: kart. 1.40 DM. Franzis-Verlag, München.

Das am meisten in der Radiopraxis verwendete Schaltelement ist der Widerstand. Man sollte über ihn eine Menge wissen, um ihn stets richtig anzuwenden. Dieses Wissen vermittelt dieses Buch, das bereits in der 1. Auflage erscheint. Neben den allgemeinen Grundlagen und den Wärmeeinflüssen behandelt der Verfasser besonders das Verhalten des Hochohmwiderstandes in Hf-Krelsen. Zahlreiche Rechenbelspiele erleichtern das Verständnis der Schrift, die durch Abschnitte über die wichtigsten Schaltungsarten und die Kennzeichnung von Widerständen im Nachrichtengerätebau vervollständigt wird.

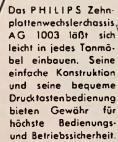
Fernseh-Experimentier-Praxis

Von Heinz Richter. 252 Seiten mit 109 Bildern im Text, 33 Tafelbildern, 66 Oszillogrammen und Leuchtschirmaufnahmen sowie 2 Ausklapptafeln im Anhang. Preis: In Halbleinen 15.— DM. Franckh'sche Verlagshandlung, Stuttgart.

Franckh'sche Verlagshandlung, Stuttgart.

Dieser Leitfaden vermittelt praktisches Wissen für eigenes Experimentieren beim Bau von Fernsehempfängern und den zugehörigen Prüfeinrichtungen. Dabel werden zuerst die Einzelteile behandelt, deren Selbstbau lohnend und interessant ist, dann vollständige Baustufen wie UKW-Eingangstell. Zi-Teil usw., so daß sich daraus die Richtlinien für den Bau eines vollständigen Fernsehempfängers eherauskristallisieren. Die richtige Arbeitsweise des Empfängers kann mit den gleichfalls beschriebenen Fernseh-Meßgeräten überprüft werden. Dabei verdient der Selbstbau eines Dia-Abtasters besondere Beachtung.

Wer sich ernsthaft mit dem Bau von Fernsehempfängern und mit der Fernseh-Sendetechnik befassen will, dem wird das Buch zahlreiche nützliche Anregungen vermittein.

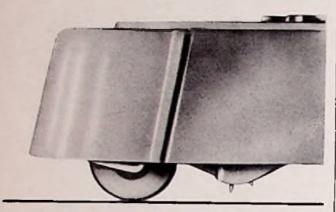

Der PHILIPS Diamant-Tonkopf AG 3015 gewährleistet ein Höchstmoß an Klangqualität bei gräßter Plattenschanung über einen langen Zeitraum.

DM 48.-

HIGH FIDELITY-Anlage:

- Plattenwechsler mit besonders günstigen Gleichlauf- und Rumpelverhältnissen. Für alle Schallplatten geeignet.
- Verstärker mit Breitbandcharakteristik, Schneidentzerrung für Schallplatten, getrennte Hoch- und Tieftonregelung mit aptischer Anzeige, Aussteuerungskontrolle.
- Lautsprecherkombination mit getrennter Hoch- und Tieftanwiedergabe, bestehend aus Tieftanbox und zwei Hochtanprojektoren.

DM 1990. -

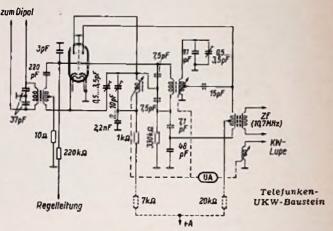

DM 158. -

FILE HIGH FIDELITY

Das vollautomatische Fahrgestell des

fühlt durch Druck auf eine Taste jede Plattengröße ab, wird eingezogen und gibt erst dann die gewählte Saphirnadel frei. Mit diesem Gerät können alle Normalund Mikrorillenplatten (33, 45, 78 U/min)
einzeln automatisch gespielt werden,
Außerdem ermöglicht die
dazugehorige Abwurfsäule ein Wechseln
von 10 Mikrorillenplatten mit
großem Mittelloch.

DM 139.50 einschl. Abwurfsäule



Dual GEBRÜDER STEIDINGER

Vorschläge für die WERKSTATTPRAXIS

Verbesserter UKW-Empfang durch neue UKW-Einheiten

In den Jahren 1950 bis 1953 wurden die meisten Geräte mit UKW-Tellen gellefert, die heute nicht mehr genügend trennscharf und empfindlich und auch manchmal nicht ganz störstrahlsicher sind. Dies liegt zum größten Tell an den Abstimmeinheiten, während die Zf-Teile meist den heutigen Anforderungen genügen. In leizter Zeit sind von einer Reihe von Firmen UKW-Einhelten entwickelt worden, mit deren Hilfe solche älteren Geräte wieder recht preiswert und mit beslem Erfolg modernisiert werden können. Als Beispiel möge die in allen Telefunken-Geräten verwendete Einheit dienen (Bild)).

Diese Einheit hat einen günstigen Preis (32.40 DM) einschließlich Röhre ECC 85 und ist klein aufgebaut — 45 × 50 × 100 mm — so daß sie meist ohne große Mühe in ein Gerät zusätzlich eingefügt werden kann. Mechanisch und elektrisch gibt es keine Schwierigkeiten, Voraussetzung ist nur, daß die Zf-Verstärkung des Gerätes ausreicht (Zf = 10,7 MHz). Im folgenden soll noch für einige wahllos herausgegriffene Geräte über die Erfahrungen mit diesem Umbau berichtet werden:

- 1. Ein großer Phonosuper, Jahrgang 1952, arbeitete mit 15 Röhren. Davon entflelen fünf Röhren EF 42 und eine EB 41 auf den UKW-Teil. Trotzdem befriedigten die Empfangsleistungen auf UKW nicht mehr. Nachdem die ersten beiden Röhren EF 42 entfernt worden waren und der Zf-Ausgang des neuen UKW-Bausteines an das Gitter und die Regelspannungsleitung der dritten Röhre EF 42 angeschlossen waren, ergab sich ein sehr guter UKW-Empfang.
- 2. Bei einem Empfänger des Jahrganges 1952, bei dem in tiblicher Weise die AM-Mischröhre zur Zf-Verstärkung für 10,7 MHz diente, wurde die Zwischenfrequenz aus dem neuen UKW-Baustein auf das Gitter 1 der Hexode gegeben. Der Erfolg war ebenfalls sehr gut!
- Sogar bei einem Gerät des Jahrganges 1953/54 konnte eine sehr ichnende Verbesserung erzielt werden.

In allen Fällen ist selbstverständlich der Zf-Ausgang des UKW-Bausteins nachzustimmen. Verbindungsleitungen, die Hf- oder Zf-Spannungen führen, müssen abgeschirmt und kurz gehalten werden.

Da heute oftmals nur im UKW-Bereich befriedigender Empfang möglich ist, geben diese Umbauten, die unter Anleitung von einem Lehrling im dritten Lehrjahr durchzuführen sind, die Möglichkeit. die Werkstatt durch Kundendienstarbeiten zusätzlich zu beschäftigen oder schlecht verkäufliche Altgeräte in gute Empfänger zu verwandeln.

Verbesserte drehbare UKW-Antenne

Die in der FUNKSCHAU 1953, Heft 17, Seite 341, beschriebene drehbare UKW-Antenne mit elektrischer Steuerung wurde, zunächst als Versuchsanordnung, nachgebaut. Hierbei störten folgende Einzelheiten:

I. Die selbsttätige Umsteuereinrichtung arbeitete nicht exakt genus-Selbst beim sofortigen Anhalten der Antenne ist diese melst schon über den Punkt der größten Feldstärke hinweggedreht, so daß im ungünstigsten Fall die Antenne noch zweimal eine halbe Drehbewegung machen muß, um wieder in dieselbe Richtung zu kommen.

Deshalb wurde im Bedienungsteil ein dreipoliger Umschalter (Keliogschalter K 1...K 3) mit Mittelstellung "Aus" eingebaut (Bild), um von Hand aus auf Rechts- oder Linkslauf schalten zu können. Das vorhandene Relais wurde dabei zur Umschaltung der Feldwicklung des 24-V-Motors benutzt. Die Umschaltung des Motors von Rechtsauf Linkslauf erfolgt durch Umpolung der 30-V-Gleichspannung am Bedienungsteil.

Parallel zur Ankorwicklung des Motors liegt, über einen kleinen Gleichrichter, das Umschaltrelais. Bei richtiger Polung wird dieser Gleichrichter stromdurchlässig und erregt das Relais, das über seine

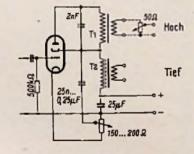
^{&#}x27;) Vgl. auch: FM- und Zf-Einheitsbauteile in Rundfunkempfängern, FUNKSCHAU 1955, Heft 13, Seite 265.

Kontakte die Motorfeldwicklung umschaltet. Wird diese Gleichspannung umgepolt, so sperrt der Gleichrichter die Relaisspannung und die Feldwicklung ist enigegengesetzt geschaltet. Damit wird durch kurzes Rechts- und Linksdrehen der Antenne und Beobachten des

Magischen Auges am Empfänger schnell der Punkt der größten Feldstärke gefunden. Somit können auch die Umschaltkontakte 29 sodle Umschaltnocke 33 der Originalanordnung fortfallen. Auf eine Anzeige der Antennenrichtung im Bedie-nungsteil konnte verzichtet werden, da die Stellung der Antenne nicht nur vom Senderstandort, sondern auch von Reflexionen abhängig ist und das genaue Einpellen ohnehin nach dem Magischen Auge bzw. entsprechend der Lautstärke vorgenommen werden muß.

2. Der Aufwand für ein zusätzliches vieradriges Kabel ist, besonders in Mietwohnungen vom Erdgeschoß zum Dach, nicht immer möglich. Deshalb wird die gesamte Anlage über das 240-9-Bandkabel der Antennenableitung gesteuert, ohne daß eine merkpliche Empfangsbeeinfüssung eintritt. Entsprechende C - Glicder werden entsprechend

www Feld Delgis AAAAAAA Kapazitiver Gleichricht. Übertrager zum Diool -/+ 70990 0000 UKW-Drosse 240Ω Bandkabal Prinzipschaltung einer ver chten Fernsteuerung für eine drehbare einfachten zum Empfänger -Richtantenne


dem Schaltbild am Antennenkopf hinter dem kapazitiven Übertrager und am Empfängereingang eingebracht.

Mit dieser Anlage konnten in einer westfällschen Kleinstadt in 5 m Röhe über der Erde auf dem Dachboden, umgeben von höheren Häusern neben den örtlichen Programmen (UKW-West, -Nord) zusätzlich die Programme von Radio Bremen II. Südwestfunk I und II. Hessischer Rundfunk I und II sowie AFN Frankfurt sowie die von mehreren holländischen Sendern bei verhältnismäßig guten Eingangsfeldstärken rauschfrei empfangen werden. Als Dipol wurde ein Faltdipol mit Reflektor und Direktor verwendet.

Einfache Zweikanal-Nf-Schaltung

Bei dieser im Bild dargestellten Schaltung werden neben der üblichen kapazitiven Frequenzweiche die beiden möglichen Grundcharakteristiken der Röhre selbst zur Trennung der hohen und tiefen Tonfrequenzen herangezogen. Dabei wird durch die Größe des Schirmgitterkondensators und entsprechende Einstellung des neuartigen Schirmgitter-Regiers eine gute Abstufung beider Kanäle und eine in weiten Grenzen regelbare Klangcharakteristik erreicht.

Die Auftrennung in zwei Kanäle erfolgt durch die Übertrager T1 und T2. Für T1 wirkt die Röhre als Pentode, für T2 als Triode

Folgendes ist dabel zu beachten:

- Der Transformator T1 braucht nicht optimal angepaßt zu sein, da hier nur die hohen und mittleren Frequenzen abgenommen werden, und T2 über den Tiefton-Lautsprecher für den entsprechenden Ausgleich sorgt.
- 2. Die Anpassung von T2 liegt etwa bei 50% des für die betreffende Endröhre gebräuchlichen Widerstandswertes.
- 3. Da der Verstärkungs-Faktor für Pentoden höher liegt, gibt auch T1 eine entsprechend größere Leistung an den Lautsprecher ab. Durch einen Widerstand (Entbrummer) wird die Spannung deshalb etwas herabgesetzt.
- 4. Die Größe des Schirmgitterkondensators bestimmt maßgebend die Frequenz-Verteilung, der als Kaloden-Widerstand benützte Regier hauptsächlich die Toncharakteristik. Dabei greifen beide Funktionen ineinander über.

Diese Endstufe ist praktisch erprobt und zeichnet sich besonders durch brillante Wiedergabe bei geringem Klirrfaktor aus. SIEMENS RADIO

SIEMENS-RUNDFUNKGERÄTE

Reiner Klang -Reine Treude DURCH RAUMTON

Kontrastreicher

DURCH SELEKTIVFILTER

SIEMENS & HALSKE AKTIENGESELLSCHAFT

Briefe an die FUNKSCHAU-Redaktion

Auch die Frau ist mit dem FUNKSCHAU-Lautsprecher einverstanden . . .

Hier ein Bild meines Zimmers mit dem berühmten FUNKSCHAU-Lautsprecher in der Ecke. Er enthält ein Wigo-Breitbandsystem mit 245 mm Durchmesser. In der dargestellten Weise läßt sich der Lautsprecher unauffällig unterbringen. Auch meine Frau ist mit dieser Lösung einverstanden. (Bauanleitung für den Lautsprecher s. FUNK-SCHAU-1954. Heft 3. Seite 47.)

W. Keller, Rapperswil, Schweiz

Werks-Veröffentlichungen

Wenn von Bosch die Rede Ist, denkt man zunächst an die Kraftfahrzeug-Elektrik oder an Elektrowerkzeuge und MP-Kondensatoren. Nur der Kundige weiß, daß Bosch zahlreiche Tochtergesellschaften hat, zum Belspiel Blaupunkt, die Fernseh-GmbH, Kino-Bauer, Deutsche Elektronik und andere mehr. Wer sich über die "Bosch-Famille" unterrichten will, liest mit Interesse die reich bebilderte Schrift "Wenn von Bosch die Rede ist..." (Robert Bosch GmbH, Stuttgart.)

Vorbildliche Kundendienstschriften ... so wird jeder sagen, der die Reparaturdienst-Listen für die Graetz - Geräte 4 R/216 bis 218 und 221 durchsieht. Neben vollständigem Schaltbild und Abgleichanweisung sowie einer ganz ausführlichen Stückliste findet man Chassisbilder im Format DIN A 4, auf denen mit Hinweisstrichen jedes Einzelteil, also auch jeder Kondensator und Widerstand mit der Positionsnummer verzeichnet ist. Die Fehlersuche und Reparatur ist mit solchen Unterlagen ein Kinderspiel (G r a e t z, K G, Altena/ Westfalen).

Philips-Fachbücher für Technik und Wissenschaft lautet der Tittel des neuesten Kataloges 1955/56, den die Verlags-Abteilung der Deutschen Philips GmbH im Oktober herausgab. Am bekanntesten sind die Werke der Bücherrelhe "Elektronenröhren", zu denen sich laufend Neuerscheinungen gesellen. Zuletzt sind drei Bücher über Fernsehempfangstechnik erschienen, ein viertes befindet sich in Vorbereitung. Interessante Spezialthemen werden in den Werken "Elektronenröhren in der Impulstechnik — Dehnungsmeßstelfen — Einführung in die Fernseh-Servicetechnik — Drahtlose Fernsteuerung behandelt. Mehrere Bücher, die in Kürze erschelnen sollen, sind bereits angekündigt. Ferner verzeichnet der Katalog Werke über Lichttechnik, die Philips - Lehrbriefe und die Zeitschriften der Philips - Unternehmungen (Verlags-Abteilg. De ut sich e Philips GmbH, Hamburg 1955)

Wisi-Hauptkatalog August 1955.
Das ist eine originelle Form für einen Katalog. In der Aufmachung gleicht er einem jener Fernsprechverzeichnisse, bei

denen jede Seite um etwa einen Zentimeter länger ist als die vorhergehende. Da die überstehenden Teile der Selten als Register dienen, findet man im Handumdrehen den gerade gesuchten Artikel (Wilhelm Sihn jr. KG, Niefern/Baden).

Normen - Verzeichnis Kunststoffe. Der Fachnormenausschuß
"Kunststoffe" stellt DIN-Normen
über Kunststoffe auf, wobei
hauptsächlich nachgenannte Gebiete bearbeitet werden: Begniffe
und Klassifizierung — Typisierung, Eigenschaften und Lieferbedingungen — Prüfverfahren
und Prüfgeräte — Abmessungen
und Prüfgeräte — Abmessungen
und Toleranzen für KunststoffErzeugnisse — Preß- und Spritzgußwerkzeuge. Bereits vorliegende Normen und Norm-Entwürfe sind in dem "Normen-Verzeichnis Kunststoffe" aufgeführt,
das vom De utschen Normen ausschuß und von der
Beuth-Vertrieb Gmb H,
Berlin W 15, Uhlandstraße 175,
und Köln, Friesenplatz 16, abgegeben wird.

Die besprochenen Schriften bit-

Die besprochenen Schriften bitten wir a u s s c h l i e ß l i c h bei den angegebenen Firmen anzufordern: sie werden an Interessenten bei Bezugnahme auf die FUNK-SCHAU kostenios abgegeben.

Neuerungen

Entstörmittel für UKW-Autoradio müssen hohe Ansprüche befriedigen und für den in Aussicht genommenen Verwendungszweck speziell zugeschnitten sein Neu herausgekommen sind der Verteilerläufer EVL 4/6, sowie die Entstörkombinationen SK 189 und SK 170. Bei der letztgenannten Ausführung sind die Eingangsanschlüsse geschirmt überdacht um Störstrahlungen zu unterbinden (Beru Verkaufs-Gesellschaft mbH. Ludwigsburg, Württ.)

Geschäftliche Mitteilungen

Diesem Heft der FUNKSCHAU liegt eine 12seitige Preisilste der Firma Metrofunk, Berlin, bei. Auf Wunsch sendet die Firma gern ein weiteres Exemplar dei Liste auf dauerhaftem, nicht durchscheinenden Kunstdruck-papier zu, eine Ausführung, die aus Gewichtsgründen der FUNKSCHAU nicht beigelegt werden konnte.

Der Franzis-Verlag teilt mit

1. Bitte an Jahres-Bezieher; In diesen Wachen geht Ihnen die Abannements-Rechnung für das Jahr 1956 zu. Wir bitten alle Jahres-Bezieher herzlich darum, diese Rechnung safort noch Empfang zu bezahlen; dadurch ersporen Sie der liefernden Buch- oder Fachhandlung bzw. dem Verlag kostspielige und zeitraubende Mahnungen und sich selbst eine evtl. Unterbrechung der Zeitschriften-Lieferung. Die günstigen Bedingungen unserer Jahres-Rechnung, die in portofreier Lieferung bestehen (Sie ersporen dadurch mehrere Mark im Jahr), haben die pünktliche Bezahlung unserer Rechnung zur Varausselzung.

die pünktliche Bezohlung unserer Rechnung zur Vorausselzung.

2. Sie lossen sich doch den Jahrgang 1955 Ihrer Fachzeitschrift einbinden? Im Jahresband haben Sie alle Hefte stels griffbereit und gut geschützt zur Hand; der gebundene Jahrgang bietet sich als ein aktuelles, umlassenders Fachbuch dar, das Sie laufend zur Unterrichtung und Fartbildung verwenden können. Wir raten Ihnen, zu prüfen, ab sich alle Helte des Jahrgangs vollzählig in Ihrem Besitz befinden; fehlende Helte können wir jelzt noch nachliefern, während in wenigen Manalen schon ein größerer Teil vergriffen sein dürfte. Bitte bestellen Sie fehlende Hefte sofart! Einbanddecken für 1955 sind in Vorbereitung; der Preis beträgt 3.— DM zuzüglich 50 Ptg. Versandkosten. Auch hier bitten wir um baldige Bestellung. — Auch Hefte und Einbanddecken des Jahres 1954 sind noch in beschrönktem Umfang und bei sofartiger Bestellung lieferbar.

in beschränktem Umfang und bei safartiger Bestellung lieferbar.

3. Funktechnische Arbeitsblätter, Lieferung 12, sind soeben erschienen; 20 Blötter = 40 Seiten mit 80 Bildern, 24 Zahlentafeln und 4 graßen Arbeits Diagrammen und Namagrammen Preis 4.80 DM. Von den Funktechnischen Arbeitsblällern liegen jetzt 12 Lieferungen (Preis je 4.80 DM) vor. Das Werk ist erst dann von Wert, wenn man es vallständig zur Hand hat. Wir senden auf Anfarderung gern ausführliche Prospekte mit Inhaltsverzeichnissen, an Hand deren sie feststellen können, welche Lieferungen Ihnen fehlen, damit Sie diese zur Kamplettierung nachbeziehen können. Jeder, der mit den "Funktechnischen Arbeitsblättern" arbeitel, sollte die bequeme Sammelmappe verwenden, in der alte Blätter in der richtigen Reihenfolge gemäß der FtA-Systematik untergebracht werden können. Die Mappe ist stabil mit teinenrücken und praktischer Ordnermechanik ausgeführt, sie nat Goldprägung und kastet 4.80 DM zuzüglich 50 Pfg. Versandkosten. Ähnliche Mappen sind auch für die "Schallungssammlung" (Preis 4.80 DM) und für die "Röhren-Dokumente" (Preis 4.— DM) erhältlich.

4.80 DM) und für die "Röhren-Dokumente" (Preis 4.— DM) erhältlich

4. Die Radio-Praktiker-Bücherei nähert sich ihrer Vervallständigung: Bis Ende
des Johres dürften fast alle heute nach fehlenden Nummern in Neuaullagen
vorliegen. In den nächsten Wachen erscheinen die Nummern 4, 33, 45/46, 50 und
55/56 in überarbeiteten, dem neuesten Stand der Technik angepaßten Auflagen.
Die Bände Nr. 2/20 (auf dappelten Umfang erweitert und nunmehr allen UKWRähren und ihren Schaltungen gewidmet) und Nr. 11 (als überarbeitete Neuauflage), ferner die Neuerscheinungen Nr. 72/73 (Drahtlase Fernsteuerung von
Flugmodelten), Nr. 79 (Bastelpraxis Bond III), Nr. 81/83 (Elektrische Grundlagen
der Radiotechnik) und Nr. 84 (Fernsehantennen-Fraxis) sind sämtlich im Druck
und erscheinen anfangs nächsten Jahres.

5. Die Rähren-Taschen-Tobelle ist zur Zeit vollständig vergriffen, aber gleichfalls in neuer Auflage im Druck; auf 160 Seiten verstärkt wird sie anfangs 1956 herauskommen.

FRANZIS-VERLAG - München 2, Luisenstraße 17 - Postscheckkonto München 57 58
Bezug durch alle Buch- und Fachhandlungen und direkt vam Verlag.

Köpfe für den Magnet-Tonfilm

Zur Tonaufzeichnung im Filmatelier benutzt man heute fast ausschließlich perforierten und mit einer Magnetschicht versehenen 35-mm-Film der auch Mehrkanal - Aufzeichnung zuläßt. Übliche Magnetköpfe sind hierfür wenig geeignet, weil sie sich zu schneil abschleifen. Die neu entwickelten Köpfe von W. H. W. Bogen, Berlin-Lichterfelde-West, sind dagegen speziell auf den Magnetfilm abgestimmt, sie besitzen eine verbreiterte Auflagefläche aus Spezial-Messing, das die gleichen Abschliff - Eigenschaften besitzt wie das Mu-Metallpaket.

Die Auflagefläche ist sehr überlegt gestaltet. Sie besitzt eine Nut. damit sich beim gelegentlichen Verwenden des nur 17,5 mm breiten Splitfilmes keine Kanten einschleißen können. Außerdem sorgt ein eingearbeiteter "Absatz" dafür, daß die Randperforation nicht auflegen kann und die sonst entstehende 98-Hz-Störfrequenz unterdrückt wird. Die Wiedergabeköpfe sind mit statischer Leitsilber-Abschlrmung zum Ableiten von Knistergeräuschen überzogen, und bei den Löschköpfen gibt es eine Spezialausführung mit Doppelspalt und Ferriteinsatz, die sich durch lange Lebensdauer und geringen Löschleistungsbedarf auszeichnet.

Für 17,5-mm-Magnetfilm-Laufwerke älterer Bauart, die mit Tonrollen-Andruck arbeiten, werden Köpfe mit Spezial-Hohlschliff gebaut, der genau zur Rolle paßt, Nach der Inbetriebnahme ist nur eine
kurze Einschleifzeit erforderlich, bis die Köpfe ihren Soll-Wert erreicht haben. Sie behalten ihn dann über lange Zelt bei, well ein
sehr hartes chromlegiertes Mu-Metall verwendet wird und weil alle
Eogen-Köpfe mit hartem Kunstharz hinter dem Spalt vergossen und
künstlich gealtert werden.

Elektrische Spritzpistole für die Radiowerkstatt

Das Lackieren von Frontplatten und Geräten mit dem Pinsel ist eine recht umständliche Sache. Abgesehen davon, daß sich der Radio-praktiker nur ungern mit solchen Arbeiten befaßt, fällt auch eine so ausgeführte Lackierung seiten einwandfrei aus. Das viel bequemere Spritzverfahren eiforderte bisher eine umfangreiche Kompressoranlage, deren Anschaffung sich nur für größere Betriebe lohnt.


anlage, deren Anschaffung sich nur für größere Betriebe lohnt.

Die kürzlich herausgekommene Mistral Spritzpistole für Netzanschluß!) bildet daher eine Neuerung, die auch der Funkpraktiker
zu schätzen weiß. In einem pistolenförmigen Handgriff sitzt ein elektrisches Gebläse, das Druckluft in einen thermoplastischen Perionbehälter pumpt. Dort befindet sich das Spritzgut — also z. B. Nitrolack —, das man durch eine Düse auf die zu lacklerende Fläche spritzt.
Zusammen mit der Pistole werden drei verschieden kalibrierte Düsen
gellefert, damit man den Farbenstrahl der verwendeten Lacksorte
anplassen kann. Außerdem läßt sich der Spritzdruck mit einem Hebei
am Pistolengriff verändern. Für das Spritzen schwer zugängiger Steilen, an die man mit der Pistole schwer herankommt, gibt es eine
"Düsenverlängerung", also im Prinzip einen Schlauch, den man im
Bedarfsfall zwischen Spritzbehälter und Düse schalten kann. Der
Preis der Einrichtung einschließlich einem Farbenbehälter und drei
Düsen beträgt 140 DM.

1) Hersteller: H. Altstaedten, Großkönigsdorf/Rhld.

TUNGSRAM

Die wichtigsten Anwendungsgebiete:

Tonfilm Sicherheits-Anlagen Licht-Relais industr. Messungen

Zu beziehen durch:

TUNGSRAM G.M.B.H.

Berlin SW 68 · Hedemannstr. 21

TUNGSRAM S.A. Carouge-Genève Verkaufsbüro Zürich - Bederstr. 1

ORION Fabriks- & Försäljnings - AB
Stockholm - Svarvargatan 14

TUNGSRAM ELETTRICA ITALIANA S. p. A.

Viale Lombardia, 34 - Milano

TUNGSRAM S.A.

55, Quai au Bois à Brûler . Bruxelles

Ludwig Seibold · Wien I · Helferstorferstr. 6

PRODUCTOS TUNGSRAM - Carlos Veszprémi Lavalle 376 - Buenos Aires

Aufsetzer hachgeklappt als Plattenspieler

Aufsetzer heruntergeklappt als Tonbandspieler !

2-W-Tonband-Aufsetzer

für Plattenspieler mit der proktischen Klappvorrichtung, verwandelt jeden Plattenspieler in ein
modernes Tonband-Aufnahme- und Wiedergabegerött 2 Bandgeschwindigkeiten, lange Spieldau er
bis 2x1 Stunde, Dappelspur. Der Adapter ist auch
für die Vertanung von Schmalfilmen nach neuartigem, einfachen Verfahren geeignet.

Bousatze ab DM 39.50 - Prospekt frei l

EUGEN WEBER

Stuttgart - Untertürkhelm - Stubalerstraße 49

EXPORT

Röhren- u. Material-Sortimenter für den Fachhandel BERLIN-NEUKOLLN, SILBERSTEINSTR. 5/7 Röhren-Angebote stets erwünscht!

Schwingquarze von 1 kHz bis 30 MHz in Einbau und Steckfassungen

Normalfrequenzgeneratoren Kurzzeitmeßgeräte

HANS HILGER, (13b) PLANEGG bei München Hofmarkstraße 30

TRANSFORMATOREN

Serien- und Einzelanfertigung aller Arten Neuwicklungen in drei Tagen

Herbertv.Kaufmann

Hamburg - Wandsbek 1 Rüterstraße 83

STABILISATOREN

und Eisenwasserstaffwiderstände zur Kanstanthaltung von Spannungen

STABILOVOLT GmbH., Berlin NW 87 Sickingenstraße 21 · Telefon 39 40 24

liefert einen neuen Zimmer-Isolator für Bandkabel

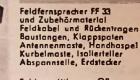
"ASTRO-FIX"

ist schlagfest, praktisch und eignet sich für alle Kabelstärken.

ADOLF STROBEL Antennes und Zubehör 220 BENSBERG BEZIRK KOLN

Auszug aus Röhren-Material-Sonderangebot IV/55:

IV/55:


1.40: AZ 41, 3 B 7, 6 R V. 1.45: AZ 11, 7 N 7, CF 3. 2.10: OA 70, OA 74, 6 G 6. 2.40: EZ 40, EZ 80, 6 X 5, 35 Z 5. 2.65: 1 S 5, DL 92, EC 92. 2.75: DF 91, DK 91, 3 Q 4, EAA 91, EB 41, EB 91, 35 W 4. 2.95: EF 41, EF 85, UF 41, 1 U 4, 6 AT 6, 1629. 3.20: EAF 42, EBC 41, UBC 41, 3 V 4, 6 BA 6, 25 L 6. 3.40: DM 70, EL 41, EL 24, EL 90. 12 SQ 1. 3.50: DAF 96, DF 11, DF 96, DK 92. EF 11, 6 AU 6, EK 90, 12 BA 6, 35 L 6. 3.55: ECH 81, PY 82, 3.60: DC 90, DL 96, EM 4, EM 34. UAF 42, UL 41, 12 BE 6, 12 SK 7, 25 Z 5. 3.70: DK 96, EF 6. 3.75: AF 7, EBF 80, ECC 82, ECC 83, ECH 42, UC H 42, 1 U 5. 3.85: EABC 80. EM 11, 6 Q 7, 50 L 6. 3.95: DC 11, EF 40, EF 89, EL 11, EM 80, 3 A 5, 12 SH 7, 4.—: AF 3, EL 42, PL 82, PY 83, UAA 91. 4.10: ECC 85, ECC 91. 6 AC 7, 6 SN 7, 12 SA 7, 4.25: AL 4, ECC 40. EL 8, PCC 84, PCC 85, PL 83, PY 81. 4.40: ECL 80, EM 85, EY 51, P 2000. 4.50: 50 C 5, PY 80. 4.55: ABC 1, EBL 21, UF 89. 4.75: EF 12, 6 A 7, 6 A 8. 4.95: DY 80, EF 43, PCF 82, 2051. 5.75: EBF 11, PL 81, UABC 80, UBF 11, 43. 3.90: UCH 21, UCH 71. 6.—: ECL 11, OD 3, 6 AC 7, 6.70: ECF 12, UCH 5, 6.40: ABL 1, AK 2, DL 11. EBL 71, ECH 11. EF 804, EL 12, UCF 12, 2 D 21. 6.75: ECL 113, UCH 11, UCL 11. 6.95: AD 1. AK 1, DAF 11, 7.35: ACH 1, UBL 1, 1374d. 7.95: AD 1/350, CBL 1. 8.25: DDD 11, EL 12/375. 8.75: DCH 11. 19.75: 832 A. — Original- oder in du' strieverpackt — 6 Monate Garantie. Wieder' verkautspreise. Bei Aufträgen unter 10.— Differential of the strievery act 1 6 D S. 100. Schedut 1 6 D M. Zuschlag von -.50 DM

Joh. Schmitz, L.f.R. Seibt-Kundendienst Fürstenfeldbruck, Dachaver Straße 17

X Besondere Kaufgelegenheiten X

Für Behörden-Stellen

Feldvermittlungen OB für 5, 10 ader 20 Teilnehmer Brust- und Kehlkapfmikrofone Verbindungskabel und Stecker Fernschreibvermittlungen

Abfrage- und Mithörapparate Fernsprechwählerzentralen OB und ZB Telefanapparate Netztelle, Ladegleichrichter Scheinwerfer kamplett f. 220 V Stative verstellbar Notstromaggregate

Amerikan. Nachrichtengeräte BC und GRC Typen, Zubehärmaterial Spezialfunkempfänger Minensuchgeräte, Ersatztelle

Für Industrie

Einbauschalter und Drücker 40 V Selbsischalter 40 V, 6-75 A Schaltrelais 24 V Klemmleisten u. Klemmen Mikrofane und Sprechgeschirre imbus-Schraubensartimente (Zail) Einbau-Heckleuchten Einbau-Heckleuchten mit Glas MarineSchraubkupplungen Grubenleuchten in Gußgehäuse Drehzahl- u. Druckmesser Blegsame Antriebswellen Station. Benzin-Motore Kleinmotoren 24 V,

Umformer Lichtmaschinen 24 V 2000 W Handgeneratoren 4 V 4 A 16 Watt je grāß. Posten am Lager

Für Funkamateure

Sender 80 WSa o/R 95. — Sender 30 WSa o/R 95. — Sender 20 WSd o/R 85. — Sender 5 Watt o/R 85. — Sender 5K 10 o/R 45. — Sender SL 10 o/R 25. — S/E Dorette S/E Feldfuspr. a/R 75. -Typen b, d, f

Ferner: Morsetasten Blattantennen Peitschenantennen Kehlkopfmikrofone
Wählertelefone W 28
Hör- und Sprechkopseln
Zerhacker WGL 2,4 u. 12 a
Zerhackeranaden
Stredrohmen für Fug 10

Empfänger EX 10 Empfänger EL 10 Torn Eb.

Klemmbrettchen Klemmen 95 - Antennenbuchsen usw. Lo 40 k 39 mit Netzgerőt komplett DM 320 – 15 Watt Sender Empfönger b 3 - 7,5 MHz . DM 175 – Empfönger 8C 348 DM 250 –

Flugzoug - Bordgeräte

Stauscheibenvarlometer Fahrtmesser variometer FL 22 386
Fahrtmesser FL 22 234
Drehzahlmesser FL 22 234
Drehzahlmesser FL 22 234
Sauerstoffwächter FL 30 489
Mutterkompasse
Kurskrelsel Vendeharizonte Rudermaschinen FL 20 511
Rudermaschinen FL 20 574
FL 34 218
Automaterschalter FL 32 404

FI 22 386

rerner:
Anzelgegeråte
Oldruczylinder
Biegsame Aniřebsweilen
Argus-Benzinschläuche
Mipolanschläuche
Motorgetriebe 24 V
Tragflächenbeleuchtungen Wendeharizonie FL 20 511 beleuchtungen
Rudermaschinen FL 22 574 Stecker und Kupplungen
Lichtmaschinen FL 34 218 Schalter v. Klemmleisten
Automatenschalter FL 32 404 Umfarmer 24 V 500 Hz

Welteres ungenanntes Material In größeren Pasten varrätig

FEMEG FERNMELDEGERATE

Jetzt auch Ladenverkaufl

HERBERT MITTERMAYER MUNCHEN

Augustenstraße 16

Telefon 59 35 35

RADIOGROSSHANDLUNG

HANS SEGER

REGENSBURG

Tel. 2080, Bruderwährdstraße 12 liefert zuverlässig ab Lager i

- Rundfunk- und Fernsehgeräte
 - Phonogeräte und Magnetophone
 - Koffer-v. Autosuper, Musikschränke

und alles einschlägige Radiomaterial folgender Firmen:

Blaupunkt

Loewe-Opta

Dual Ebner Lorenz

Emud

Nora Philips

Graetz

Saba

llse

Schaub

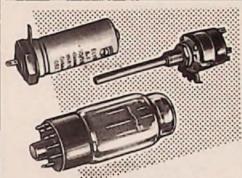
Imperial

Siemens

Kuba

Telefunken

Der Radio-Fachhandel kauft beim Radia-Fachgroßhandel, seinem natürlichen Partner!



10000000000

Zusatzkassette

» Mira-Mimikry «

Kanrad Sauerbeck - Mira-Geräte und funktechnischer Madellbau - Nürnberg - Hahfederstraße 8 - Telefan 512 66

Radio - Röhren - Großhandel · KAETS

Berlin-Friedenau

ledstra Be 17 Tel. 83 22 20 - 83 30 42

Neue Skalen für alle Geräte

BERGMANN-SKALEN BERLIN-SW 29, GNEISENAUSTR. 41, TELEFON 663364

SELEN-GLEICHRICHTER

für Rundfunkzwecke: (Elka-form)

für 250 V 20 mA zu 1.45 brutta für 250 V 30 mA zu 1.90 brutta für 250 V 40 mA zu 2.40 brutta für 250 V 60 mA zu 2.80 brutta

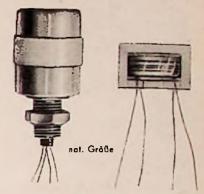
sowie andere Typen liefert:

H. KUNZ, Gleichrichterbau Berlin-Charlottenburg 4, Giesebrechtstr. 10

Keramische Rohrkondensatoren

MIT KAETS BESSER GEHTS

in Batterlea zu 8 Röhren-kondensateren 5000 pF und 3500 pF (-+2*/s, 2100 v. Prülsp.) im gauzen 17000 Stick, auch in kleineren Posten sehr preisg, abzugeb.


Ang. v. 88500 Annoncen-Wankum, Düsseldorf, Graf-Adolf-Platz 1

UKW-Einheit Telefunken, wie S. 484 beschrieben liefert

Ingenieur BECHT

Birkenfeld, Württemberg. Handel, Rabatt Umtauschracht geg. Rå innerh. 6 Wachen

Haufe-Kleinstübertrager

Wieder ein neuer Haufe-Miniaturübertrager (Graße E-19)

> T 119 Eingangsübertrager 0.1:20 mit Primär-Mittelanzapfung

> > 20 Hz - 20 kHz

+ 1.5 db

Dipl.-Ing. Hellmut Haufe

Studio-Technik

USINGEN-TAUNUS

Fernsehen

nach besser mit

ASA-Fernseh-Regeltrafos

Beseitigen kippende und lautende Bilder

DM 95.-

Type 100 Regel v. Anpastrafo

Type 200 Regeltransformator DM 78.-

Type 300 Regel- v. Trenntrans- DM112.-

Viele Großhandler liefern diese Typen ab Lager. Fordern Sie Prospekte und aufklärende

Druckschriften kostenlos. Transformatoren- u. Apparatebau

ASA(16) AROLSEN 21

erstklass. Ausführung, prompt und billig 20jährige Erfahrung

Spezialwerkstätte

HANGARTER . Karlsruhe Erzbergerstraße 2a

Gleichrichter-Elemente

und komplette Gerâte llefert

H. Kunz K. G. Gleichilchteibau Berlin-Charlottenburg 4 Glesebrechistraße 10

Breitband-Fernseh-Oszillograph

"VARIOTEST"-AM-Prüfsender

Große übersichti. Feinstellskola, Bereich: K-M-L-ZF und 10,7MHz, kompl. m. Röhre ECH81 u.HF-Kobel DM 88.— Verlangen Sie die Interessante Sanderliste mit Schal-tungen Nordfunk-Elektronik durch

NORDFUNK-YERSAND . BREMEN . AN DER WEIDE 4/5

Die Qualitats-Schallplatte mit dam aledrigen freis

DM 2.85 brutto

HANS DATZ Ing. Radio. v. Elektrograßhandlung AMBERG/OBERPFALZ

WALLAU/LAHN Kreis Biedenkopf · Fernruf Biedenkopf 964

Radio • Röhren • Zubehör • Rundfunk-, Fernsehgeräte • Musikschränke Nogoton-UKW-Einbau-Super, sowie Elektromaterial

> llefert selt Jahrzehnten zu günstigen Rabatten bei prompter Lieferung Ihr Großhändler

HERBERT JORDAN - Nürnberg 9 - Singerstraße 26 - Postschließfach 46

Wir suchen

Fachvertreter

für Vulkanfiber-Platten, -Rundstäbe, -Formstücke und -Dichtungen auf dem Gebiet der Textil- und Elektroindustrie, des Fahrzeug- und allgemeinen Maschinenbaues.

HOLZ UND PAPIER

Rundfunkmechaniker

unter Nummer 5996 G

ledig, firm in Rundfunk- und Fernseher-Repa-

raturen, Akustik, Antennenbau usw. auch

zum Einsatz in Kundendienst und Beratung

in moderne Kleinstadt am Oberchein ge-

sucht. Gewünscht werden gute Umgangs-

formen, Führerschein evtl. Sprachkenntnisse.

Transformatoren

Qualitätsarbeit, 20 jährige Praxis. ING. HANS KONEMANN

Rundfunkmechanikermelster

Hannover - Ubbenstraße 2

Telefonzentralen mit 4 bls zu 50

Anschlüssen sowie Telefonopparate liefern wir ein-

mally preisgonstig for thre interne Housanlage.

40000 Shik-Relais 3x 10 and 5x 6 A

5000 Brechkupplungen, 4polig

4000 Kehikopimikrofonkapseln

1000 HF-Instrumente 400 mA 7000 Selenfolozellen

10000 Bosch-Magnetschalter 2x 15 A

40000 Rähren, Durchschnittspreis DM 1.-

Des weiteren geben wir folgende Posten ab:

für Netz, NF-Technik und Elektronik, Hi-Fi- u. Madulationsübertrager, Laut-sprecherreparaturen. Handwerkliche

Zuschriften mit den üblichen Unterlagen erbeten

Deutscher Innen- und Außenhandel BERLIN W 8 · Mayerstraße 77

Moderne Radiogehäuse

ous Holz und Plastic zu günstigsten Prelsen ab Lager lieferbar. de Vivanco & Co. Hamburg 1, Langereihe 29, Telex: 0212527

Lautsprecher und **Transformatoren**

reparient in 3 Tagen gut und billig

Bekannte eingeführte Großhandlung, Sitz im Raum Düsseldarf, sucht Werksvertretung

leistungsfähigen Werkes der Fernseh-,

Rundfunk- ader Elektroindustrie zu

übernehmen. Verkaufsorganisation, Lieferwa-

gen, Ausstellungsräume, Loger, vorhanden.

Beste Erfolge und Referenzen nachgewiesen.

Angebote erbeten unter Nummer 5997 W

Radiolot

WILHELM PAFF

Lõtmittelfabrik - Wuppertal-Barmen

SZEBEHELY

EF 80

EF85

EF 94

EL 84

UF 85

UM 11

UL2

Germanium-Dioden OA 50, OA

51, oder äquivalenten DM - .90

Liste kastenlas! - Lieferung an Wiederverkäufer

6 Monate Garantie - Hamburg-Altona, Schlachter-

buden 8 (ehem. Kleine Elbstroße) - Telefon 426350

blitzichnell

Auszua aus meiner neuen Liste

EABC 80 2.95

ECC 81 3.05

ECC 85 3. -

ECH 81 3.-

415

5.65

4.10

2.30

AL4

CL4

EBL 1

EC 92

STELLENGESUCHE

Kl. Konstr. - Aufgaben u. Zeichenarb. übern. Student (HTL - Fein-mech. u. Mengenfert.) Pünktl. u. gewissen-hafte Arbeitt A. Kirch-ner. Stuttgart-Wangen, Weißensteinerstr. 8

Suche Drenkondensato-ren: 1. kombiniert mit isoliertem UKW-Rotor (möglichst NSF); 2. mit Calitachse ca. 220-400 pF (Wehrmacht). Angeb. unter Nr. 5994 N Suche Wickelmaschine.

a. reparaturbedürttig. G. Jung, Elsern/Siegen

AEG - Magnetophon Studiomaschine K 4 m. Gestell-Verst. V 5 und V 7 sowie Netzteil N 7 O. Röhr. sow. 1 RES 224 mit Sockel, gegen An-gebote unt. Nr. 5533 S abzugeben

SUCHE

Suche Drehkondensato

Empfänger, Type Su-per - Skyrider 28 Mc (Hallicrafters) zu kau-fen gesucht. Angebote unter Nr. 5972 M

Suche gebr. Rimavox-Koffer- oder Einban-Bandger. o. ä. W. Hake-mann. Lahr / Golden-stedt i. O.

Suche 20 - W - Autover-stärker-Anlage kpl. £ Batterle-u.Netzbetrieb. Angeb. unt. Nr. 5993 A

Radio-Röhren, Spezial-röhr., Senderöhr. gec. Kasse z. kauf. gesucht. Krüger, München 2. Enhuberstraße 4

Labor-Meßgeräle usw kit. lfd. Charlottenbe Motoren, Berlin W 33

Suche Kopfhörerteile, Selen-Gleichrichter, Kupfer-Lackdraht 0.33 b. 0,45 umsponnen, so-wie Röhren aller Art. TEKA, Weiden/Opf-Bahnhofstraße 5

Suche Grundig Ton-band-Reporter 700 L. Preisangebote an Foto-Tiedemann, Hannover. Dragonerstraße 21

BC 312 zu kaufen get. Heninger, München. Schillerstraße 14

Rundfunkmechaniker Rundfunkmechaniker bzw. Rundfk.- u. Fern-sehtechniker für Re-paraturwerkstätte in größ. Einzelhandels-betrieb in der Pfalz gesucht. Dauerstellung u. gute Bezahlg. Möbl. Zimmer vorhand. Ang. unt, Nr. 5991 R erb.

VERKAUFE

Gelegenheitskauf: Voll-Gelegenheitskauf: Vollständige Radioreparatur - Werkstattanlage umständehalb. zu verkaufen; meist Philipsgeräte. Interessenten wollen bitte Fotografie der Anlage anfordern. Teilverkauf aussichtsbes nur geschlossen. los, nur geschlossen abzugeben unter Nr. 5992 H

Neumann-Kondensat.-Mikrofon mit Ständer. Mikrofon mit Ständer. Kugel- u. Nierenkap-sel 275.— DM. Schall-plattenschneldger. mit Neumann R 12a (78/33/s) 240.- DM. Bausatz zum Schneldgerät m. Motor (78/331/3), Schneldfüh-rung Teller Schneld-7(8/331/3), Schneidführung, Teller, Schneid-köpfen und Zubehör 110.— DM. Tonfollen, Ang. unt. Nr. 5995 E

Weg. Lagerräumung z. verk.: Magnettonband a. Plexiglasspule 180 m a. Plexiglasspule 180 m DM 7.—, dto. a. Plexi-glassp. 350 m DM 12.—, für 19 cm und weniger Geschw. dto. freitrag. auf 70 mm Kern, 1000 m DM 14.—, f. 76 u. 38 cm Geschw. Zuschr. unter Nr. 5610 V

Verk. geg. Höchstgeb. neuwert. BC 348 kpl. neuwert. BC 348 kpl. mit Grundplatte. Ang. unt. Nr. 5990 S

UND - ANGEBOTE

KLEIN-ANZEIGEN

Anzeigen für die FUNKSCHAU sind ausschließlich an den FRANZIS - VERLAG, (13b) München 2. Luisenstraße 17. einzusenden. Die Kosten der Anzeige werden nach Erhalt der Vorlage angefordert. Den Text einer Anzeige erbitten wir in Maschinenschrift oder Druckzeschrift. Der Preis einer Druckzeile, die etwa 25 Buchstaben bzw. Zeichen einschl. Zwischenzaumen enthält, beträgt DM 2.—. Für Zifferanzeigen ist eine zusätzliche Gebühr von DM 1.— zu bezahlen.

Zifferanzeigen: Wenn nicht anders angegeben, lautet die Anschrift für Zifferbriefe: FRANZIS-VERLAG, (13 b) München 2, Luisenstraße 17.

1500 Drchspulrelais H & B 18µA 15000 Relais T. rls. 64a, 54a, 55a, 57a, 43a, 42c 200 AEG-Zeltrelais RZeh

Fordern Sie unser Angebot.

PRUFHOF Unterneukirchen

 Klein-Reporter Typ 150 (früher W 52 B) speziell für Konferenz und Diktat mit Fußschalter und Telefonaufnahme *)

Magnettanmaschinen Typ 007 U und 166 für Rundfunksender (bereits selt 10 Jahren bestens eingeführt bei vielen Sendern)

Magnettongeråte Typ MTG 9 – Typ 118 f
 ür berufliche Zwecke

Spezialgeräte für Sonderzwecke - Automatische Ansage in Personenaufzügen, Fahrzeugen, Verkaufsautomaten usw.

EBERHARD VOLLMER, ESSLINGEN A.N.-METTINGEN

*) Zum Ausbau des Vertriebs werden am Kundendienst interessierte Firmen gesucht

Export

2.80

2.70

2.40

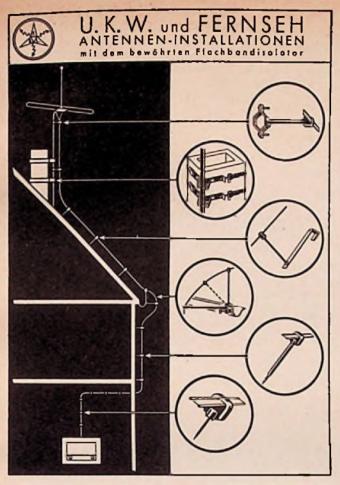
2.90

2.90

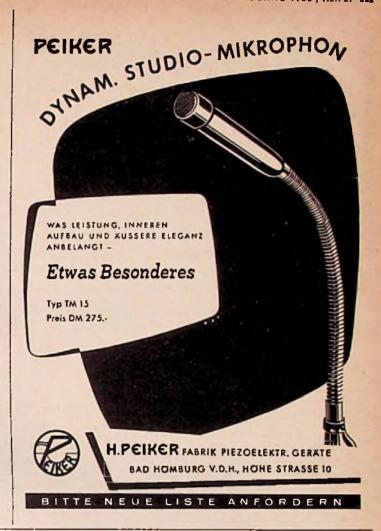
5.05

4.05

so oder so


können Sie eine ROKA-Kofferantenne verwenden. Die Lösbarkeit vom Gerät ist aber ein Vorteil, den Ihnen nur eine ROKA-Antenne bletet.

Dipol ab DM 9 .-


Verlängerungskabel DM 6.-Tasche DM 3.-

ROBERT KARST, Berlin SW 29, Gnelsendustraße 27

BETTERMANN ELEKTRO G.M.B.H. LENDRINGSEN KR. ISERLOHN TELEFON 23:39 MENDEN, TELEGR.-ADR. OBO LENDRINGSEN, FERNSCHREIBER 0:32:157

Sonderangebote

Kleinstvitrine mit 3 tourigem Plattenspieler DM 69.50

Kleinvitrine mit 10-Platten-Wechsler DM 119.-

Phono- und Musikschränke

Plattenspielschrank mit 10-Platten-Wechsler . . . DM 149.-

Plattenspielvitrine mit 10-Platten - Wechsler Acellapolsterung und Spiegelbar . . DM 189 .-

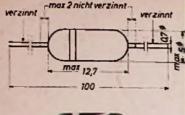
Nettopreisel

Restposten Radio Serie 54155 preisgünstig

Prospekte kostenios und unverbindlich

Musikschrank m. 3tour. Plattenspieler Markensuper 56, 2 Lautsprecher DM **295.**—

Musikschrank mit 10-Platten-Wechster u. Loewe "Luna 56"-Chassis, 2 Lautsprecher DM 380.-



3 D-Musikschrank mit 10-Platten-Wechsler und Loewe "Palette 56"-Chassis, 4 Lautsprecher DM 490.-

3 D-Musikschrank mit 10-Platten-Wechsler u. Loewe "Palette 56"-Chassis, 6 Lautsprecher . . . DM 528.-

V. SCHACKY UND WÖLLMER ELEKTROAKUSTIK UND RUNDFUNKTECHNIK
München 19 Lachnerstraße 5 Telefon 6 26 60

VALVO GERMANIUM-DIODEN OA 81 · OA 85

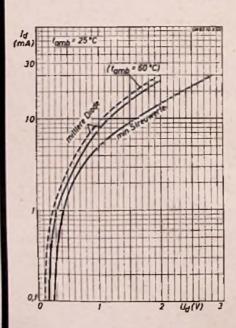
Der Anwendungsbereich von Germanium-Dioden hat sich im Laufe der Zeit erheblich vergrößert. Zugleich sind die an die Dioden gestellten Anforderungen weiter gewachsen.

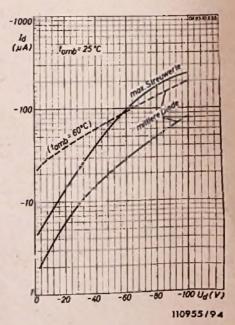
Für viele Bedürfnisse – sowohl in Schaltungen, welche von der Gleichrichter - Eigenschaft der Dioden Gebrauch machen, als auch in Anordnungen, in denen die Dioden Schalterfunktionen ausüben sollen – benötigt man Germanium-Dioden mit besonders hohen Sperrspannungen, hohen Sperrwiderständen, niedrigen Durchlaßwiderständen sowie kleinen Fertigungsstreuungen.

Zusätzlich zu der bereits bewährten OA 70er Serie sind jetzt zwei Germanium - Punkt-Kontakt-Dioden entwickelt worden, die die genannten Eigenschaften in hohem Maße besitzen. Die beiden Dioden mit der Typenbezeichnung OA 81 und OA 85 sind in der bekannten Allglas-Technik mit Schwärzung gegen Lichteinflüsse und hoher Widerstandsfähigkeit gegen mechanische und atmosphärische Einwirkungen ausgeführt.

Die Dioden sind für eine Spitzen-Sperrspannung von 115 V bei 25°C und 100 V bei 75°C zugelassen. Die Sperrströme betragen bei einer Sperrspannung von 100 V und einer Umgebungstemperatur von 60°C weniger als 450 µA.

Die hohen Sperr- und niedrigen Durchlaßwiderstände erlauben daher auch die Verwendung der Dioden für Geräte, in denen Temperaturen von 60-75° C nicht vermeidbar sind.


HAMBURG 1 BURCHARDSTRASSE 19


Einige Kenndaten:

	OA 81		OA 85		
bei Umgebungstemperaturen von	25° C	60°C	25° C	60°C	
in Durchlaßrichtung bei $I_d=$ 0,1 mA $U_d=$ max. bei $I_d=$ 10 mA $U_d=$ max. bei $I_d=$ 30 mA $U_d=$ max.	0,25 2,3 4,0		0,25 1,6 2,8		>>>
in Sperrichtung bei – U_d = 10 V – I_d = max. bei – U_d = 75 V – I_d = max. bei – U_d = 100 V – I_d = max.	11 180 275	450	7 155 250	430	μ Α μ Α μ Α

Einige Grenzdaten:

		OA 81 und OA 85		
bei Umgebungstemperaturen vo	on	25 ° C	75° C	- 2
Sperrspannung (Effektivwert)	$-U_{d} = max.$	90	75	٧
Sperrspannung (Splizenwert)	$-U_{dsp} = max.$	115	100	٧
Durchlaßstrom (Effektivwert)	$I_d = max.$ (bei $-U_d = 0 \text{ V}$)	50	17	mA
Durchlaßstrom (Effektivwert)	$I_d = max.$ (bei – $U_{dsp max}$)	15	5	mA
Durchlaßstrom (Spitzenwert)	I _{d sp} = max.	150	150	mA
maximal zulässiger Überlastung: Stromstoß in Durchlaßrichtung, maximale Dauer 1 s	IstoB	500	500	mA
Umgebungstemperat	uren: min 50°C;	max. + 7	5 ° C	

