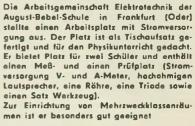
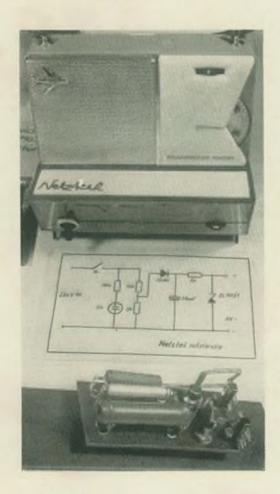

tunkamateur

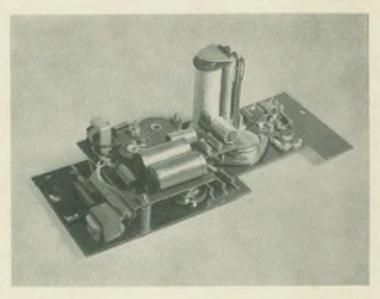
- mehrkanal-fernsteueranlagen
- meßgeräte mit transistoren

amateurfunk · fernsprechen radio · fernschreiben · fernsehen


verbesserungshinweise für das transistor-lichtsprechgerät

Entdeckt, geknipst und aufgeschrieben auf der


VI. Messe der Meister von Morgen



Einen Transistor-Kurzschlußmasser konstruierten Lahrlinge der Betriebsberufsschule NHKG In Ostrava/CSSR.

Das Gerät ist im Prinzip ein Transistor-Oszillator. Falls die geprülte Spulo einen Windungskurzschluß aufweist, ändert sich die Induktivität, und der Oszillator setzt aus, was an dem Absinken des Kolloktorstrames zu arkennen ist

Zusammen mit einem Telefon und einer "Diktina" stellt dieses Zusatzgerät eine Telefon-Diktieranlage dar. Es arbeitet mit vier Transisteren und drei Dioden. Der Preis beträgt etwa 100,- DM. Im VEB Atomkraftwerk Rhainsberg wurde es bereits

mit gutem Erfolg erprobt. Es kann an jede Talefonanlage angeschlossen werden. Wird die Telefonnummer gewählt, so schaltet sich das Gerät automatisch ein. Das Band der "Diktina" bewegt sich nur, wenn gesprochen wird. Diktierpausen werden unterdrückt, also nicht aufgenommen. Der Sprecher kann beliebig lange überlegen. Wöhrend der Sprech-pausen ist im Hörer des Diktierenden ein Kontrollton zu hören. Mit dem Auflegen des Hörers wird das Gerät ausgeschaltet

Bauanleitung ohne Worte. Es bleibt nur noch zu erwähnen, daß dieses "Sternchen"-Netztell von Jugendlichen des Halbleitorwerkes Frankfurt angefertigt wurde Fotos: MBD/Demme

ZEITSCHRIFT DES ZENTRALVORSTANDES DER GESELLSCHAFT FÜR SPORT UND TECHNIK, ABTEILUNG NACHRICHTENSPORT

AUS DEM INHALT

- 4 2-m-Empfanger mit haher Empfindlichkeit
- 7 Wettersichere Koaxialkabelverbindung
- 8 V. UKW-Treffen des PZK in Charzow-Katowice
- 10 Nach einmal: Einfaches Lichtsprechgerät
- 11 Hinweise für den Fernstauer-Mehrkanalbetrieb
- 16 Nachtübung deckt Schwächen auf
- 17 Bauanleitung für einen Rechteckwellengenorator
- 19 "fa"-Rechentip: Parallelschaltung von Wirk- und Blindwiderständen
- 20 Tonfrequenzvoltmeter und Gleichstromvoltmeter
- 21 Ein durchstimmbarer NF-Generator hoher Konstanz (Schluß)
- 23 Ein Konverter für 432 MHz
- 27 Die Grundschaltungen der Fernschreib-Obertragungsmittel (Schluß)
- 28 Mehrfachausnutzung von Obertragungskanölen in der Fernschreibtechnik
- 29 DM-Award-Informationen

Zu beziehen:

Albanien: Ndermorrja Shtetnore Botimeve, Tirana

Bulgarien: Petschatni proizvedenia, Solia, Legué 6

CSSR: Orbis Zeltungsvertrieb, Praha XII

Orbis Zeitungsveitrieb, Bratislava Postovy urad 2

China: Guozi Shudian, Peking, P.O.8. 50

Polen: P.P.K. Ruch, Warszawa, Wilcza 46

Rumänien: C. L. D. Baza Carte, Bukarest, Cal Masilar 62–68

UdSSR: Bei stödtischen Abtallungen "Soluspechatj". Postämtern und Bezirkspoststellen

Ungarn: "Kultura", Budapest 62, P.O.B. 149

Westdeutschland und übriges Ausland: Deutscher Buch-Export und -Import

TITELBILD

Auf der XIX. Alluniensausstellung der Funkamateure in Moskau wer auch dieser handliche Kleinstoszillagraf zu sehen, der mit Transistoren bestückt ist

Foto: Schubert

Meiner Meinung nach ...

... muß man dem Zusammenhang von Ökonomie und Landesverteidigung auch in unserer Organisation mehr Beachtung schenken. Dabei darf selbstverständlich das eine das andere nicht ausschließen. Aber beachten wir in unserer Arbeit immer diesen Zusammenhang? Unser Staat, dessen Vertrauen wir besitzen, stellt uns für die Ausübung unserer Sportarten in der GST große finanzielle und materielle Mittel zur Verfügung. Und was wird mitunter daraus gemacht? Einige Beispiele sollen das zeigen.

Bei den letzten Deutschen Meisterschaften im Nachrichtensport wurden auch Geräteappelle durchgeführt. Was man da teilweise sah, brachte das Herz eines Technikers zum Weinen. Ist es denn so schwierig, etwas mehr Sorgfalt der Pflege und Instandsetzung unserer Ausbildungsgeräte zu widr.en? In diesen Geräten steckt der Fleiß und die Mühe unserer Werktätigen, die uns diese Geräte geschaffen und uns zur Nutzung übergeben haben. Daran sollten wir in den Ausbildungsgruppen. Klubstationen und Radioklubs denken. Unsere Ausbildungsgeräte sind doch keine Verschleißware. Jeder Handgriff. den wir für ihre Werterhaltung tun, macht sich für uns alle doppelt bezahlt. Wir erhalten nicht nur unseren Gerätepark, sondern können ihn noch zusätzlich erweitern.

Großes Kopfzerbrechen bereitet unseren verantwortlichen Funktionären im Nachrichtensport wahrscheinlich die Planungsarbeit, d. h. die Planung der zur Verfügung stehenden finanziellen Mittel. Wie anders soll man es sonst verstehen, wenn immer wieder am Jahresende finanzielle Mittel ungenutzt bleiben. Unser Staat gibt uns doch dieses Geld nicht, weil er es übrig hat, sondern vielmehr will er es doch sinnvoll verwendet sehen. Auch auf diesem Gebiet hat der VI. Parteitag der SED für uns neue Maßstäbe gesetzt. Wir müssen auch in unserer Arbeit langsam damit beginnen, uns wissenschaftliche Methoden anzueignen. Um den technischen Fortschritt können wir als Nachrichtensportler keinen Bogen machen. Schon zum Europatresten 1960 in Leipzig wurden Maßnahmen zur Standardisterung von Geräten und Schaltungen gesordert. Es gab danach einige kleine Ansätze, aber seitdem herrscht wieder Stille.

Standardschaltungen und Standard-Ausbildungsgeräte vereinfachen aber nicht nur die Planungsarbeit. Das wäre nur ein wertvoller Abfall für die dafür verantwortlichen GST-Funktionäre. Einen weitaus größeren Nutzen aus der Standardisierung hätten doch unsere Mit-

glieder im Nachrichtensport. Bildet sich irgendwo eine neue Gruppe, so bestellt man die Baupläne für die wichtigsten Ausbildungsgeräte und kann mit dem Aufbau der Geräte beginnen. Wie gut würde eine solche Gelegenheit mancher Ausbildungsgruppe über die ersten Anfangsschwierigkeiten hinweghelsen.

Ich denke da z. B. an die Nachrichtensportler im RAW Berlin, Revaler Straße. Dort besuchte ich die Wahlversammlung der GST-Grundorganisation. Unter der Leitung des Kameraden Zeh arbeiten über 50 Nachrichtensportler. Aber sie haben kein Mitglied, das genügend Kenntnisse im Morsen besitzt, um eine Ausbildung durchführen zu können. Kein Mitglied beherrscht ausreichend funktechnisches Wissen, um eine interessante Ausbildung zu organisieren, nicht einmal eine Funksprecherlaubnis für die Funkstationen kleiner Leistung ist vorhanden. Bisher wurde lediglich auf dem Fernsprechgeblet gearbeitet. Daß man damit auf die Dauer nicht 50 Nachrichtensportler begeistern kann, wird mir jeder glauben. Standard-Bauanleitungen würden hier eine willkommene Itilfe darstellen. Denn solche sind ja dann auch in anderen Grundorganisationen bekannt, wo man sich Rat und Hilfe holen kann.

Im Radioklub der DDR wurde bei der Gründung ein gut ausgerüstetes Labor eingerichtet. Dort ist alles vorhanden um Standardschaltungen zu entwickeln. Neben Meßgeräten, Material und Literatur ist eine Werkstatt mit allen erforderlichen Maschinen vorhanden und dazu zwei Mechaniker. Aber das Wichtigste ist nicht vorhanden, ein Mitarbeiter, der in diesem Labor als Techniker oder Ingenieur arbeitet, um das tote Inventar zum Leben zu erwecken und für unsere Nachrichtensportler das zu entwickeln, was dringend gebraucht wird, nämlich Standardschaltungen. Auch das ist eine Frage der Ökonomie. Ich hoffe, daß meine Ausführungen über den Zusammenhang von Ökonomie und Landesverteidigung Sle interessiert hat und vielleicht zum eigenen Nachdenken in Ihrer Grundorganisation verhilft. Wenn Sie Gedanken oder Vorschläge haben, so lassen Sie mich das bitte wissen.

Bis zum nächsten Monat

Ihr

K-H. Pl-best

Verantwortlicher Redakteur

2-m-Empfänger mit großer Empfindlichkeit

G. WAGNER - DM 2 BEL

Auf Grund der Tatsache, daß uns der "funkamateur" in letzter Zeit — bis auf einige Ausnahmen — nur wenige UKW-Bauanleitungen anbot, entschloß ich mich, meinen 2-m-Rx vorzustellen und zu beschreiben. Gleichzeitig soll mein Bericht eine Aufforderung an alle OM sein, in Zukunft mehr und vor allem interessante Beiträge und Bauanleitungen zu veröffentlichen. Unsere Zeitschrift sollte aktuell und vor allem vielseitig sein, für den OM eine wahre Fundgrube!

Und nun zum Empfänger selbst. Das Gerät ist ein kompletter Baustein mit Konverter und Nachsetzer. Daß er verhältnismäßig klein und leicht ist, ist für Portable-Einsätze bei Contesten ein großer Vorteil. Die Frequenzen im Empfänger sind folgende:

Konverter:

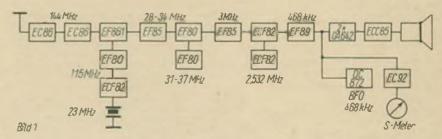
 $f_0 = 144-146 \text{ MHz}$ $f_0 = 115 \text{ MHz}$

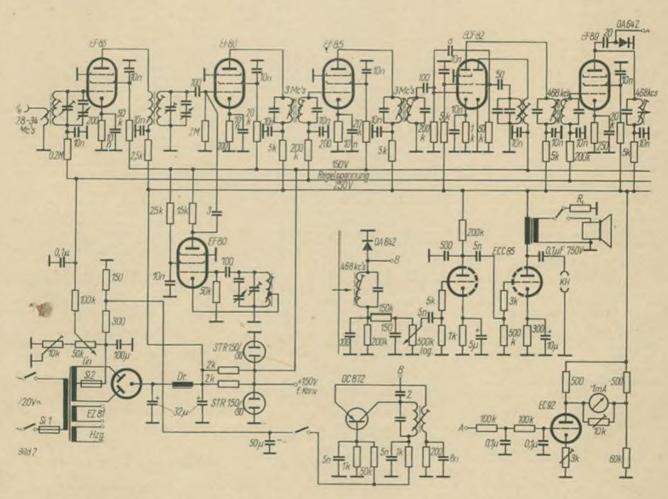
 $f_{Qu} = 23 \text{ MHz (x5)}$ e daraus resultierende ZF ist 29 k

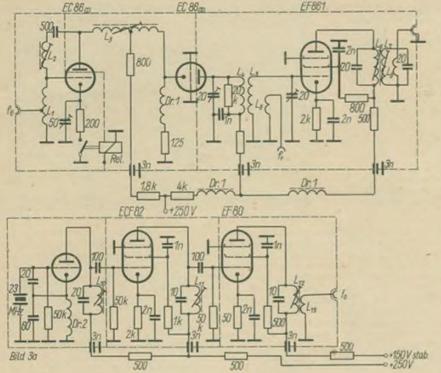
Die daraus resultierende ZF ist 29 bis 31 MHz (durchstimmbar)

Blld 1: Prinzipschaftbild des beschriebenen 2-m-Emplängers

Blid 2: Scholtbild des kompletten Nachsetz-Empfängertelles Nachsetzer:


f_o = 28-32 MHz f_{o1} = 31-35 MHz 1. ZF = 3 MHz f_{o2} = 2,532 MHz 2. ZF = 468 kHz BFO = 468 kHz (fest)


Wie man aus den Angaben entnehmen kann, ist der Eingangsabstimmbereich des Nachsetzers größer als notwendig. Um auch einen 70-cm-Konverter vor diesen Nachsetzer betreiben zu können, wählte Ich einen Abstimmbereich von 4 MHz. Zwar ist dieser im gegenwärtigen Stadium der 70-cm-Arbeit nicht erforderlich, da das 70-cm-Band entsprechend eines IARU-Beschlusses bekanntlich seine Bandgrenzen bei 432 bzw. 434 MHz hat, doch um ein wenig


zukunstssicher zu sein, wurde dieser Abstimmbereich gewählt. Das Prinzipschaltbild zeigt die Stufenzahl sowie die verwendeten Röhren, Bild 1.

Der Nachsetzer

Jeder OM, der sich seinen Stationsempfänger selbst gebaut hat, wird keine allzu großen Schwierigkeiten beim Bau eines solchen Nachsetzers haben. Großen Wert sollte man bei der Konstruktion auf mechanische und natürlich auch elektrische Stabilität legen. Aus dem Schaltbild (Bild 2) ist das Wesentlichste zu entnehmen. Schaltungstechnische Besonderheiten gibt es nicht. Natürlich kann man jeden anderen Empfänger mit der entsprechenden Eingangsfrequenz als Nachsetzer verwen-

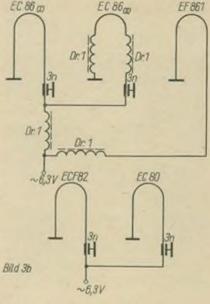


Bild 3a: Schaltbild des 2-m-Eingangsteiles mit Quarzgenerator

Bild 3b: Schaltung des Hoizkroises des 2-m-**Emplangstelles**

Wickeldaten für Konverterspulen:

4 Wdg., 9 mm Ø, 1 mm CuAg. 20 mm lang, (Luftspule) LI

L 2

9 Wdg., 7 mm Körper mit Kern M 220, 0,7 CuL, Wdg. an Wdg. 9 Wdg., 7 mm Körper mit Kern M 220, 1 mm CuAg, Wdg.-Abstand Draht-@

3 Wdg., 10 mm Ø, 1 mm CuAg, 10 mm lang (Luftspule)

2 Wdg.. 10 mm Ø, 1 mm CuAg, 10 mm lang (Lustspule)

L 6 12 Wdg., 7 mm Körper mit Kern M 153, Wdg. an Wdg.

L7 12 Wdg., 7 mm Körper mit Kern M 153, Wdg. an Wdg

1 Wdg., isol. Schaltdraht. 10 mm Ø, im kalten Ende von L 5 L8

4 Wdg., 0,7 CuL, Wdg. an Wdg., über kaltes Ende von L 7 1.9

L 10 12 Wdg., 7 mm Körper mit Kern M 153, Wdg. an Wdg.

L 11 3 Wdg., 7 mm Körper mit Kern M 220, 15 mm lang

3 Wdg., 7 mm Körper mit Kern M 220, 15 mm lang L 12

L 13 2 Wdg., isol. Schaltdraht über kaltes Ende von L 12

Dr. 1 Breitbanddrossel (s. Text)

Dr. 2 60 Wdg., 0.5 mm CuL, auf 1/2-W-Widerstand 1 MOhm

den (z. B. UKW "Emil", Stationsemp-fänger usw.). Das bleibt jedem selbst überlassen. Mir kam es darauf an, den Nachsetzer so empfindlich als möglich zu machen. Die Eingangsempfindlich-keit betrug bei 50 mW NF-Ausgangsleistung fast gleichmäßig über den Bereich 28-32 MHz $< 0.5 \,\mu\text{V}$, gemessen mit UKW-Meßgenerator Typ 2006 vom Funkwerk Erfurt. Von vornherein war mir klar, daß zwei Pfeisstellen (durch die Wahl der Frequenz des zweiten Oszillators 2,532 MHz) vorhanden sind, doch hoffte ich, diese durch gute Schirmung zu unterdrücken. Leider mißlang mein Vorhaben, doch diese Pfeisstellen machen sich nicht allzu unangenehm bemerkbar. Doch sollte beim Nachbau dieser Nachteil nicht in Kauf genommen werden, eventuell andere Frequenz wählen. Ich möchte nicht auf Einzelheiten im Nachsetzerteil eingehen, da es diesbezüglich Literatur in ausreichender Menge gibt. Der wesentlichste Teil meiner Beschreibung soll der Konverter sein.

Der Konverter

Die Schaltung des Konverters ist aus Bild 3a ersichtlich. Das Eingangssignal gelangt von der Antennenbuchse direkt an den Gitterkreis der in Katodenbasisschaltung arbeitenden EC 86. Der Gitterkreis besteht lediglich aus L1, dessen Resonanz in der Schaltung mit Hilfe der Gitter-Katodenkapazität bei Bandmitte, also 145 MHz, liegt. Die Anodenspannung der ersten EC 86 beträgt etwa 160 V bei einem Anodenstrom von etwa 25 mA. Es ist nicht ratsam, die Anodenspannung zu erhöhen, da dadurch kein Gewinn zu erwarten ist und außerdem die teuren Röhren größter Schonung bedürfen. Die Katode liegt HF-mäßig über etwa 50 pF an Masse. Der günstigste Wert dieser Kapazität sollte beim Abgleich, auf den noch näher eingegangen wird, ermittelt werden, da durch diesen Kondensator die Empfindlichkeit sehr beeinflußt wird. Allerdings sollte man den Wert nicht kleiner als etwa 30 pF wählen, da sonst unter Umständen die Stufe ins Schwingen geraten kann, was auch durch eine Neutralisation nicht behoben werden kann.

Da die EC 86 eine sehr empfindliche Röhre ist, wurde die Katodenleitung durch Relaiskontakte beim Senden unterbrochen, um ein "Übersahren" der Röhre zu vermeiden. Dadurch wird der Gitterstromkreis unterbrochen, an dem selbst beim Arbeiten mit Koax-Relais, also bei abgeschalteter Antenne, noch Spannungen austreten, die gegebenenfalls die Röhre zerstören können! Bekanntlich ist die EC 86 eine Spanngittertriode, deren Gitter nur wenige µ von der Katode entsernt montiert ist. Schon Sender mit geringer Ausgangsleistung gefährden die Röhre, selbst dann, wenn der Sender restles geschirmt ist! Gleichzeitig sollte man die Anodenspannung des Konverters mit diesem Relais beim Senden abschalten.

Neutralisiert wird diese Stufe durch eine Induktivität (L 2), die parallel zur Gitter-Anodenkapazität liegt und mit dieser einen Resonanzkreis (145 MHz) bildet. Der Kondensator 500 pF zwischen Anode und Neutralisationsspule dient lediglich zur galvanischen Trennung. Die nachsolgende Gitterbasisstuse ist über ein Pi-Filter mit der Katodenbasisstufe verbunden. In der Mitte wird die Anodenspannung über einen Entkopplungswiderstand zugeführt. Das Pi-Filter mit all seinen Kapazitäten (Cak und Cgk) wird ebenfalls auf Bandmitte abgeglichen. Der Grobabgleich kann mit einem Grid-Dip-Meter vorgenommen werden. Das Pi-Filter in der Kuskode-Stufe erhöht ihre Verstärkung und er niedrigt gleichzeitig die Rauschzahl des Konverters.

Die Katode der Gitterbasisstufe liegt über eine Drossel HF-mäßig hoch. Die Gittervorspannung wird durch den festgelegt. Der Katodenwiderstand Heizkreis der GB-Stufe wurde ebenfalls verdrosselt, um zu verhindern, daß ein Teil der Eingangsspannung über die Kapazität Ckf (Katode-Faden) verloren geht. Bei den Drosseln (Dr 1), die auch noch an anderen Stellen Verwendung Anden, handelt es sich um Breitbanddrosseln, die im Handel als Entstör-

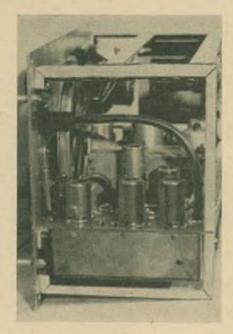


Bild 4 Ansicht des abgeschirmton 2-m-Emplangsteiles

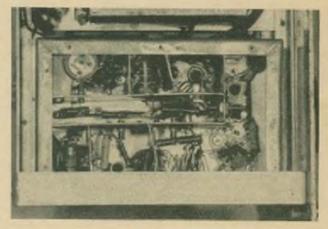


Bild 5 Verdrahtungsansicht des 2-m-Emptangsteiles

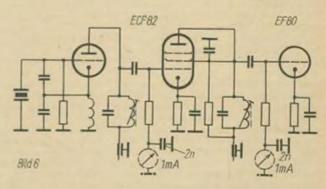
drosseln für elektrische Eisenbahnen erhältlich sind.

Die GB-Stufe wird über ein primärseitig bedampftes Bandfilter an die Mischstuse gekoppelt, mit dem man ohne Schwierigkeiten eine Bandbreite von 2 MHz erzielen kann. Gleichzeitig wird durch das Bandfilter die Kreuzmodulationsfestigkeit erhöht. Mischstuse wurde in der Originalschaltung mit einer E 180 F bestückt. Die Mischsteilheit der E 180 F beträgt etwa 5 mA/V und der äquivalente Rauschwiderstand annähernd 500 Ohm, so daß diese Röhre als Mischröhre sehr gut geeignet ist. Die Äquivalenttype, die bei uns erhältlich ist, ist die EF 861. Schaltungstechnisch zeigt die Mischstuse keine Besonderheiten. Die Oszillatorspannung wird über L8 induktiv dem Gitter zugeführt. Der Anodenkreis des Mischers wird auf die ZF abgestimmt. Um die nötige Bandbreite zu erreichen. wurde ein Bandfilterausgang gewählt und die ZF über die Koppelwindungen L 9 dem Nachsetzer über Koaxkabel zugeführt

Der Oszillator ist dreistufig und wird durch einen Quarz von 23 MHz frequenzstabilisiert. Durch Verfünffachung wird die erforderliche Frequenz von 115 MHz erreicht und nochmals verstärkt. Vom Anodenkreis der EF 80 über die Koppelwindungen L 13 und L 8 gelangt die Oszillatorfrequenz an den Mischer. Um ein Selbstschwingen der beiden Geradeausstufen zu verhindern, ist es unbedingt erforderlich, zwischen beide Stufen ein Trennblech einzufügen. Die Oszillatorfrequenz sollte nur über L 8 und L 13 ans Gitter des Mischers gelangen. Aus diesem Grunde ist es sinnvoll, den Oszillatorteil restlos abzuschirmen.

Es empfiehlt sich, für alle Stufen des Konverters nur beste, verlustarme Bautelle wie Keramikkondensatoren, -fassungen, versilberte Drähte zum Wickeln der Spulen, Trolitul- oder KeramikSpulenkörper usw. zu verwenden. Auf kürzeste Leitungsführung ist großer Wert zu legen. Die Anschlußdrähte der Bauelemente sind so kurz als möglich zu halten. Sämtliche Speisespannungen sind über Durchführungskondensatoren in die elnzelnen Fächer des Konverters geführt worden. Aus Bild 4 und 5 ist der mechanische Aufbau des Chassis

für den Konverter zu erkennen. Als Chassis wurde 1,5 mm starkes Messingblech und als Trennwände und Abdeckhaube 1 mm starkes Cu-Blech verwendet. Die Bleche werden an den Verbindungsstellen "wasserdicht" verlötet. Natürlich nicht ohne vorher gebohrt worden zu sein!


Der Abgleich

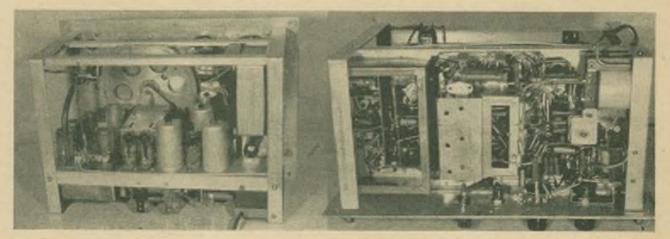

Der Abgleich des Oszillators wird wie folgt vorgenommen. Mit dem Grid-Dip-Meter werden alle Resonanzkreise auf ihre Sollfrequenz gebracht. Der Quarz wird in die Fassung gesteckt, Anodenund Heizspannung werden angelegt. In die Anodenleitung gehört ein Milliamperemeter. Der Anodenkreis des Triodensystems arbeitet auf der Quarzfrequenz. Soweit vorhanden, schaltet man ein zweites Instrument zwischen Gitterableitwiderstand des Pentodensystems der ECF 82 und Masse, siehe Bild 6. Der 23 MHz-Anodenkreis wird dann auf Maximum abgeglichen. Das ist

Bild 6 Schaltung zum Abgleich des Quarzoszillators

Bild 7 Rückansicht des kompletten 2-m-Empfängers (unten links)

Bild 8
Verdrahtungsansicht des
komplatten 2-m-Emplängers (unten rachts)



Bild 9 Vorderansicht des kompletten 2-m-Empfängers

erreicht, wenn der größte Gitterstrom fließt. Analog verfährt man mit der 115 MHz-Verstärkerstufe, der EF 80. Der letzte Kreis, der Anodenkreis der EF 80, wird folgendermaßen abgeglichen. In die Anodenleitung des Mischers wird ein Milliamperemeter gelegt. Die Vorstufen des Konverters sind abgeschaltet. Wenn nun der letzte Oszillatorkreis in Resonanz kommt, steigt der Anodenstrom des Mischers an. Ohne Ansteuerung durch fo beträgt er etwa 2 mA und sollte bei Ansteuerung auf 5 bis 6 mA ansteigen. Somit wäre der Abgleich des Oszillators erledigt.

Nun schaltet man den Konverter an den Nachsetzer. Das Rauschen im Empfängerlautsprecher wird dann sofort ansteigen. Das ZF-Bandfilter wird nun so abgeglichen, wenn möglich mit McBsender und Röhrenvoltmeter oder gar Wobbeleinrichtung, daß ein nahezu gleichmäßiges Signal über den gesamten Bereich von 29 bis 31 MHz zu hören ist. Sollte der Abfall an den Flanken der Durchlaßkurve zu groß sein, so ist der Sekundärkreis des Filters mit einem Widerstand von 3 bis 5 kOhm zu bedämpfen.

Im kalten Zustand werden die Vorstufen mit Hilfe des Grid-Dip-Meters abgeglichen. L 2 wird vom Gitter abgetrennt und dann L1 durch Spreizen oder Zusammendrücken auf Bandmitte, also 145 MHz, abgeglichen. Wenn das geschehen ist, wird L1 vorsichtig ab-gelötet und L2 wird wieder ans Gitter gelegt. L 2 wird dann mittels HF-Eisenkern ebenfalls auf 145 MHz gezogen. Dann lötet man L1 wieder ans Gitter und L2 von der Anode ab und bringt L3 auf die gleiche Frequenz durch Kernabgleich. Ist das erreicht worden, wird L2 wieder an die Anode gelegt. L4 und L5 können ebenfalls mit dem Griddipper auf Bandmitte gebracht werden, indem man die Spule, die man nicht messen will, mit einem Wider-

Der Feinabgleich wird dann mit den Trimmern vorgenommen. Mit einem Stück I mm starken, versilberten Draht wird nun die Antennenbuchse bzw. das Koaxkabel an die Mitte von L 1 angelötet. Mit einem Rauschgenerator, soweit vorhanden, wird, nachdem die Vorstufen des Konverters in Betrieb genommen worden sind, durch Verändern des Abgriffs an L 1 Rauschanpassung eingestellt. Der beschriebene Konverter wurde nach vorstehender Methode, ohne Rauschanpassung, da kein Rausch-

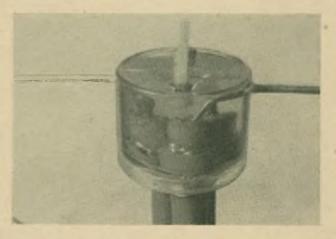
generator zur Verfügung stand, abgeglichen und anschließend exakt mit dem Meßsender abgestimmt. Es konnte durch Nachstimmen der einzelnen Kreise eine Empfindlichkeitsverbesserung erzielt werden.

Die Eingangsempsindlichkeit des Gerätes betrug bei 50 mW NF-Ausgangsleistung < 0.1 μ V! Als Meßsender wurde der UKW-Meßgenerator Typ 2006 vom Funkwerk Ersurt verwendet. Die Rauschzahl kann aus oben genanntem

Grunde nicht genannt werden. Laut Angaben in der von mir verwendeten Originalschaltung soll sie < 2 kTo sein. Der Empfänger hat sich bei den Contesten im vorigen Jahr und auch in diesem Jahr als sehr empfindlich erwiesen. Ich hörte mit ihm vom Bärenstein/Erzgeb. (GK 36 F) folgende Länder mit großer Lautstärke: G mit 58-9, ON 4 mit 59+, OZ-59+, HB 58-9, HG 1 KPB mit 56-7, YU mit 4/56, SP mit 58/9 sowie jede Menge DJ, DM und OK. meistens mit 59+. Meines Erachtens eine Gewähr für gute Empfindlichkeit. Die Frequenzkonstanz des Gerätes ist sehr gut. Nach dem Abgleich wurde die Skala geeicht (100 kHz-Eichung). Bis heute kann ich keine wesentlichen Veränderungen der Frequenz feststellen! Der Wunsch der Dresdner UKW-Amateure, die leider immer noch durch den TV Dresden benachteiligt werden, ist es. Montag abend nach Sendeschluß des großen Bruders recht viel Verbindungen herzustellen. Wir drehen unseren Beam auch nach Westen! Hallo -DM 2 ADJ - 3 HJ - 2 ABK - 2 ANG -3 UFI usw.! Wie steht's?

Literaturnachweis:

"DL-QTC", Heft 9 und 10/1959 Handbuch "Amateurfunk", Fischer, H.-J.: "Transistortechnik für den Funkamateur", beide Verlag Sport und


Wettersichere Koaxialkabelverbindung

Beim Anschluß eines Koaxialkabels an die Antenne tritt Immer wieder das Problem auf, die Verbindung und das Kabel gegen das Eindringen von Wasser und Schmutz dauerhaft zu schützen. Besonders bei UKW- und Dezi-Antennen ist oft durch eine Halbwellenumwegleitung ein Übergang von 240 Ohm auf 60 Ohm notwendig. Dabei treten neben den Dichtungsproblemen noch mechanische Probleme auf, so die der Besetigung der oft dünnen Drähte des unterbrochenen Elements des Faltdipols mit dem Koaxialkabel und die der Zugentlastung, der Umwegleitung und des Kabels.

Diese Aufgabe wurde von DM 2 CFL wie folgt gelöst: Nachdem die zukünftigen Drähte für das unterbrochene Element des Faltdipols, sowie das Koaxialkabel und die Halbwellen-Umwegleitung wie üblich erhöht wurden,

wird eine Agla-Kleinbildfilmbüchse aus Polystyrol auf zwei Seiten so geschlitzt, daß die Büchse gerade straff über die Drähte für den Faltdipol paßt. In den Boden der Büchse wurden vorher zwei Schrauben aus Polyamid oder Messing eingelassen, die später der Besestigung dienen. Die Kabelenden werden nun in die Büchse so eingeführt, daß die Dipoldrähte durch die vorbereiteten Schlitze ragen. Nun werden die Schlitze mit Klebestreisen (z, B. selbstklebendes glasklares Klebeband der Imbalwerke) verschlossen und die noch vorhandenen seinen Lustlöcher zwischen Büchse und Dipoldrühten mit Duosan abgedichtet.

Jetzt werden etwa 15 p Epoxydharz Epilox EGK 19 angesetzt und in den verbliebenen Hohlraum der Büchse gegossen. Nach 24 Stunden Härtung in senkrechter Lage, Schrauben nach unten, ist das Harz so weit ausgehärtet. daß wir die Klebestreifen und die Duosanreste entfernen können. Die so erhaltene Verbindung ist dicht und von ausgezeichneter mechanischer Festigkeit. Durch die Schrauben ist die Verbindung leicht am Querträger der Antenne zu befestigen. Aus dem Foto geht die Anordnung der fertigen Verbindung hervor.

stand 100 Ohm bedämpft.

V. UKW-Treffen des PZK in Chorzow-Katowice

Auf Wiedersehen 1963". Mit diesen Worten hatten wir uns im Herbst 1962 in Wisla-Malinka, dem Tagungsort des IV. UKW-Treffens des PZK, verabschiedet. Und wir sahen uns wieder. Ein Jahr später tagte der V. Kongreß der UKW-Amateure des Polnischen Amateurfunkverbandes. Diesmal war Chorzow bei Katowice der Tagungsort. Wir, Kamerad Oettel vom ZV, die Kameraden Böhme und Senf vom Radioklub Dresden und ich, wurden auf dem Bahnhol Katowice von SP 9 MM und SP 9 EU sowie einigen anderen begrüßt. Es war eine schnelle aber herzliche Begrüßung. Ab ging die Post per PKW nach Chorzow. Die Straße führte an einen drei Kilometer langen Erholungs- und Vergnügungspark entlang, an dessen Ende die Tagungsstätte, ein Touristenhotel, lag. Wir wurden "registriert" und bekamen unser Zimmer zugewiesen. Wer kann es uns verdenken, daß wir sie sogleich erstürmten, um uns zu erfrischen und etwas auszuruhen. Der größte Teil der Teilnehmer war noch nicht anwesend, und so hatten wir noch etwas Zeit. Wiederhergestellt mischten wir uns dann unter die Menge. Da waren viele Bekannte: SP 3 GZ, 3 PJ, 5 SM, 5 FM, 5 AH, 5 WW, 9 DR, 9 AFI, 9 ANI, 9 ANH, 6 ZG, 6 CT. OKIVR, IVCW, ISO, IVEX, HG5 KPB. Leider fehlten die vielen Freunde aus OK. Sie, die damals im kleinen Grenzverkehr nach Wisla gekommen waren, konnten diesmal nicht erscheinen, da der kleine Grenzverkehr wegen der zu dieser Zeit herrschenden Pocken in Polen nicht möglich war. Schade, wir hätten gerne wieder mit ihnen geplauscht. Neu war diesmal außer HG noch LZ1 AB (Manager) und LZ2 FA.

Der Vizepräsident des PZK, Jerzy Weglewski, SP5 WW, eröffnete dann den Kongreß. Es wurde die Freude des PZK über das Erscheinen der ausländischen Delegationen im Interesse der guten Zusammenarbeit zwischen den befreundeten Ländern zum Ausdruck gebracht. Nach dem gemeinsamen Abendessen kam es noch zu einigen zwanglosen Treffs.

Der Sonnabend begann mit dem Bericht des UKW-Managers SP 9 DR. OM Wojcikowski begann seine Ausführungen mit der Feststellung, daß im letzten Jahr zwar keine bedeutende Zunahme an UKW-Stationen zu verzeichnen war. dafür aber eine allgemeine Verbesserung der 2-Meter-Stationen sestzustellen ist. Diese technische Weiterentwicklung machte sich natürlich bemerkbar. Das ODX/MDX konnte erhöht werden. die Zahl der Auslandverbindungen stieg an und zu den Contesten ist die Durchschnittpunktzahl ebenfalls gesticgen. SP-Stationen beteiligten sich 1963 an 10 UKW-Conteste und am Marathon. Als beliebtester Contest wird der Polniden angeschen. Kritisiert wurde die A 3-Arbeit beim PD, da durch die enorm hohe Zahl von Stationen, besonders in OK, das QRM überhand nimmt. Zum Polni-den 1964 soll die Zahl der Portablestationen bedeutend erhöht werden. Es sollen besondere Stationen mit ausgesuchten Op's an den Contesten teilnehmen, um die Gesamtpunktzahl zu vergrößern. Es wurde allgemein festgestellt, daß portable Stationen nicht unbedingt bessere Ergebnisse nachweisen müssen als ortsfeste. Als Beispiel mag SP3GZ dienen, der meist an der Spitze liegt. Besonders hervorgehoben wurden nochmals die ufb Conds zum SP9-Contest 1962, zu dem halb Europa SP gerufen und gearbeitet hat.

Das Marathon ist in SP noch nicht so populär wie in OK. Gegebenenfalls sollen die Bedingungen geändert werden. Mit Beifall wurde die Ankündigung aufgenommen, daß man den besten OM als Preis die Teilnahme an einem internationalen Meeting ermöglichen sollte. SP 9 DR ging dann zur MS-Arbeit in SP über. Dabei stellte sich heraus, daß SP 5 SM der MS-King ist. Die Zahl der Stationen, die sich mit MS beschäftigen, nimmt zu, und es gibt immer mehr gute Erfolge.

Einige Tonbandausnahmen von MS-QSO's bzw. MS-Test aus SP, IIG, G gaben einen kurzen Überblick in diesen Teil der 2-m-Arbeit. Berichte einiger

Hier zwar der Kleinste, aber zu Hause hat er den größten Mast, SP 3 GZ

OM über ihre MS-Arbeit (SP 5 SM brauchte für einen Versuch 120! Nachtstunden) rundeten das Bild ab.

Kritik wurde an der Arbeit und technischen Ausrüstung von SP Ø /VHF geübt. Für die Zukunft soll ein neues
QTH gewählt und eine neue Station gebaut werden.

SP 9 DR zeigte an Hand einer Karte die Verbindungen der SP-Stationen mit dem Ausland. Dabei fiel auf, daß in Richtung Ost sehr wenige Verbindungen getätigt wurden. Richtung Nord-Ost ergab schon einige Erfolge. Es soll versucht werden, Moskau zu erreichen. Besonders hervorgehoben wurde die großzügige Hilfe der OKs, die den UKW-Amateuren Polens u.a. 900 UKW-Röhren zur Verfügung stellten. Die Schwierigkeiten in der Quarzbeschaffung sind überwunden.

Bedauert wurde, daß keine Amateur-KW-Empfänger aufzutreiben sind. Die weiteren Ausführungen waren der Zusammenarbeit mit den Nachbarländern gewidmet. Einen interessanten Einblick in die Arbeit in der IARU gewährte der Bericht vom IARU-Kongreß in Malmö.

Nach kurzer Pause folgten zwei Fachvorträge. Als erster sprach Dipl.-Ing. Miroslaw, SP9 MM, über Transistorprobleme bei der UKW-Arbeit und SP9 WD, Ing. Wichura, brachte interessante Ausführungen über 70-cm-Sender und -Empfänger. Leider mangelte es bei uns an polnischen Sprachkenntnissen und da einige Bekannte, die als Dolmetscher fungierten, nicht alles übersetzen konnten — schließlich wollten sie ja selbst etwas mitbekommen — war das Verständnis für die Vorträge schwach und man mußte sich mehr oder weniger an den Skizzen und Formeln erfreuen.

Nach dem Mittagessen sahen wir eine kleine, aber sehr interessante Ausstellung von Amateurgeräten. Das war natürlich einer der größten Anziehungspunkte. Die lieben OM kamen fast nicht zum Aufbau ihrer Geräte. Ständig wur-

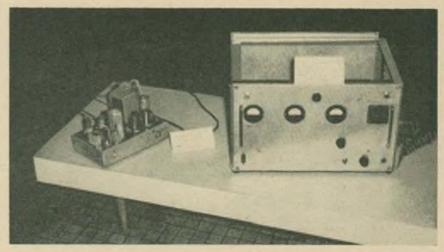
Wir tranken auch Bler – aber in Maßen. V. I. n. r.: DM 2 BJL, SP 3 GZ, SP 9 AFI, DM 2 AWD, SP 9 ANI. DM 2 ATF

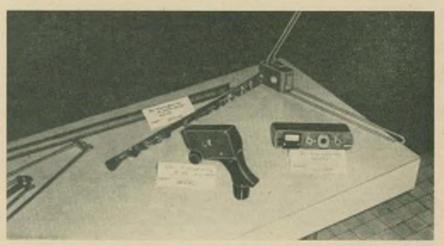
Konverter PO 86 PC 80 und TX von SP 9 ANI

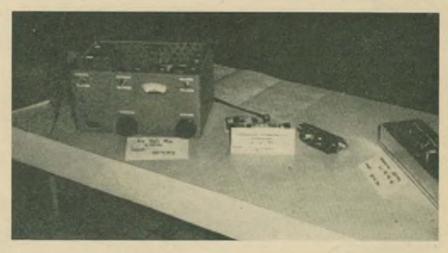
Transistor-Fuchsjagd-RX, SP 9 XZ; Transistordipper, SP 9 XZ; 2-m-Transistor-RX, OK 2 VEX

2-m-RX, SP 3 PJ; Kaaxralais, SP 5 FM; EC 86 gg-Kanvarter, SP 9 DW

Fotos: DM 2 AWD


den sie umlagert, und die Geräte gingen erst von Hand zu Hand, bevor sie ihren Platz fanden. Nun, was gab es alles zu schen. Gehen wir im Geiste nochmals die kleine Ausstellung durch. Da war zuerst die sauber und präzise aufgebaute Station von SP 9 ANI. Konverter mit PC 86, EC 80, xtal-Oszi, Trennstufe sowie sein TX mit der GU 29. SP 3 PJ zelgte seinen kompletten 2-m-RX, der in einigen Teilen einen kommerziellen Eindruck hinterließ. Ufb war das von SP 5 FM gezeigte Koaxrelais. SP 9 DW zeigte seinen 2 × gg-Konverter mit EC 86 vorsichtshalber gleich ohne Röhren. Auf Transistorbasis waren ein Fuchsjagdempfänger, ein Kleinstempfänger für 145 und ein Griddipper ausgebaut. Neu war die Lösung von SP9 XZ, der seinen Transistorempfänger im langen Haltegriff der Antenne unterbrachte. Warum der Transistordipper ausgerechnet bei 135 MHz Schluß machte, stand nicht dabei, läßt sich aber sicher noch ändern. Rauschgeneratoren, Endstufen, weitere Sender und Empfänger, McBgeräte, u. a. auch ein Strahlungsmeßgerät, rundeten das Bild ab. Die höheren Bänder waren nur durch einen 70-cm-Konverter nach DL & SZ von OK 1 SO vertreten.


Hoch her ging es auch in der allgemeinen Aussprache. Alle Probleme wurden lebhaft ausdiskutiert, wobei die Amateurzeitschrift eine tüchtige Portion abbekam. Auch TV Dresden wurde erwähnt, haben die SPs doch einen Bandplan und bei ufb Conds kommt es dann zu unschönen Erscheinungen.


Am Abend tagte die Kommission für internationale Zusammenarbeit. Die 1962 ausgetauschten Gedanken zum weiteren Anschluß der Nachbarländer zum Polni-den wurden wieder auf die Tagesordnung gesetzt. Zugegen waren die Delegationen aus OK, LZ, HG, DM und natürlich die Gastgeber. Von den offiziellen Vertretern der GST wurde die Bereitschaft zur gemeinsamen Organisation des Polni-den vorgebracht. Inzwischen gehen die Arbeiten für den Zusammenschluß zum PD-64 weiter. 1964 wird es dann lauten: XVI. Ceskoslovenky Polni-den; VI. Polski Polny dzien UKF und I. UKW-Feldtag der DDR. Es wird angestrebt, zum PD nur noch portable Stationen (wie in OK) zuzulassen. Näheres dazu wird noch bekanntgegeben.

In der Zukunst soll der Polni-den der QRP-Arbeit dienen. Man wird also in den nächsten Jahren bestrebt sein, die Sendeleistungen weiter einzuschränken. Die Entwicklung von QRP-Geräten soll angekurbelt werden. Kurz. man will also zu Arbeitsbedingungen ähnlich des BBT kommen.

Die anwesenden Vertreter der Organisationen bekräftigten ihren Willen, ihre Amateure zur Teilnahme an den wieder im August stattfindenden DM-UKW-Contest aufzurufen.

Weitere Probleme waren das Marathon in OK und SP sowie eine eventuelle Beteiligung DMs. Die Verbindung zwischen den UKW-Managern wurde diskutiert und einige Wege aufgezeichnet. Ein weiterer Punkt waren die jährlich stattfindenden UKW-Treffen in den einzelnen Ländern. Man äußerte Wunsch, möglichst viele OM aus den Nachbarländern an den Treffen teilnehmen zu lassen und erörterte Möglichkeiten, die Treffen mehr zu den Grenzen der Länder OK, SP, DM zu verlegen, um im Rahmen der touristischen Konventionen dieser Länder möglichst vielen Freunden eine Teilnahme

zu ermöglichen. Eine mögliche internationale Organisation solcher UKW-Treffen zeichnet sich zumindest zwischen OK-SP-DM ab.

Bis 01.00 Uhr dauerte diese anstrengende Sitzung.

Der Sonntag stand als letzter offizieller Tag des Treffens für die Gastdelegationen im Zeichen eines Ausfluges durch Schlesien. Die Busfahrt führte über mehrere Stunden durch die Industriegebiete.

Leider wurde das für den Nachmittag angesetzte Hamfest abgesagt und dafür ein gemeinsames Abschiedsessen ange-Schluß auf Seite 12

Einfaches Lichtsprechgerät

Die bestechende Einfachheit der im "funkamateur". Heft 4/1963, S. 130, beschriebenen Übertragungsanlage für Sprache und Musik mit helligkeitsmoduliertem Lichtstrahl dürfte manchen Funkamateur zur Erprobung dieses Gerätes angeregt haben. Obgleich die prinzipiellen Erläuterungen in dieser Arbeit für einen erfolgreichen Selbstbau ausseichen, glauben wir (Station Junger Naturforscher und Techniker, Melningen) die Erfolgsaussichten durch weitere nützliche und praktische Hinweise zu sichern.

Entscheidend für die anzustrebende. größtmögliche Reichweite ist die Ausführung und Einstellung der Optik. Größere Parabolspiegel als die einer Stabtaschenlampe mit etwa 6 cm Offnungsdurchmesser ergeben zwar theoretisch einen besseren Wirkungsgrad. Dennoch ist eine Fahrradlampe als Lichtstrahler völlig ungeeignet, da bei ihr die Einrichtung zur optimalen Fokussierung schlt. Aber gerade die gute Bündelung des Lichtstrahls ist sehr wichtig. Auch bei Lampenwechsel und Anderung der Lichtstrecke muß die Fokuseinstellung justlerbar sein. Diese Voraussetzungen sind bei der handelsüblichen Stablampe gegeben.

Für die Versuche ist ein Taschenlampen-Glühlämpchen von 2,5 V — 0,2 A am geeignetsten. Es besitzt eine relativ kurze Leuchtwendel (bündelungsförderlich) und ermöglicht ein überraschend gutes Klangbild, ohne wahrnehmbaren Verlust der höheren Tonfrequenzen. (Test: UKW-Empfänger als Modulator-Speisequelle). Zu einem Lämpchen mit größerer Stromaufnahme kann nicht geraten werden, weil die Würmeträgheit der Leuchtwendel den Frequenzgang spürbar nach oben schmälert.

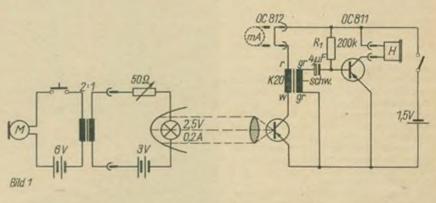
Auch die Größe und die sorgfältige Justlerung der Sammellinse vor dem Fototransistor ist zur Erzielung großer

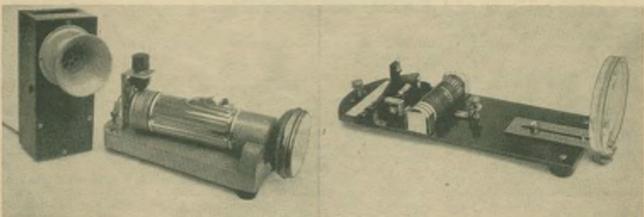
Bild 1: Schaltung des Lichtsprechgerätes

Bild 2: Ansicht des Lichtsenders (unten links)

Bild 3: Ansicht des Lichtempfängers (unten

rechts)


Reichweiten von wesentlichem Einfluß. Eine Leselupe mit einfacher Konvexlinse genügt allen Anforderungen. Entscheidend aber ist ihr Durchmesser. Wenn man bedenkt, daß das von der Linse erfaßte Licht dem Quadrat ihres Durchmessers direkt proportional ist, die Verdopplung des Durchmessers die Lichtleistung sonach um das Vierfache steigert, so ist diese Lichtgewinnung sehr "billig". Ein Durchmesser von etwa 7 cm kann als ausreichend angesehen werden. Unkritisch ist dagegen die Brennweite der Sammellinse.


Zur genauch Einstellung der Optik dient ein zwischen Batterle und Übertrager-Primärwicklung des Lichtempfängers eingeschaltetes mA-Meter, das den maximalen Kollektorstrom anzeigt, sobald die optimale Justierung der Sammellinse erreicht ist. Der Zeigerausschlag läßt erkennen, wie sehr hier die sorgfältige Justierarbeit lohnt. Die Helligkeit der Strahlerlampe muß allmählich vermindert werden, sobald der maximale Kollektorstrom den Wert von 3 mA übersteigen will. Beim Betrieb kann die Grundhelligkeit soweit herabgesetzt werden, daß der Kollektorstrom weniger als 1 mA beträgt. Zur Überbrückung kurzer Entfernungen unter 5 m kann die Lampe bis zum schwachen Glimmen zurückgedreht werden. Selbst in diesem Falle hat helles Tageslicht keine Einwirkung auf die Übertragung. Eine Rotlichtblende vor den Lichtstrahler bei Tageslicht zu setzen,

erübrigt sich, da sie lediglich die Aufgabe hat, den Strahler bei Dunkelheit unsichtbar zu machen. Hierzu kann aber nur ein spezielles Infrarotfilter benutzt werden.

Als Fototransistor empliehlt es sich. einen rauscharmen Typ (z. B. OC 812) herzurichten, der einen möglichst geringen Kollektorreststrom (kleiner als 100 (A) hat. Die Lichteintrittsöffnung erhält der Transitor an der nichtetikettierten Flachseite, wobci der Kollektor links neben dem Basisanschluß liegt. Solche "Selbstbau"-Fototransistoren, auch für Lichtschranken bestens geeignet, haben, wenn sie nicht extremen klimatischen Einflüssen ausgesetzt sind. eine beachtliche Lebensdauer und nach unseren zweijährigen Ersahrungen ihre Wirtschaftlichkeit im polytechnischen Unterricht bewiesen. Eine Beschädigung kann allerdings dann eintreten, wenn der Kollektorstrom durch zu helles Licht den zulässigen Wert übersteigt. Die durch die Modulation gesteuerte Helligkeitsschwankung der Lampe ist mit bloßem Auge nicht erkennbar. Mitbestimmend für den Wirkungsgrad ist die Modulationsspannung. Sie ist jedoch nur so weit zu steigern, daß ein Flakkern der Lampe nicht eintritt. Die Regelung der Lautstärke geschieht lediglich am NF-Verstärker.

Ebenfalls mit geringem Aufwand läßt sich eine transportable, transistorisierte Sprechanlage aufbauen, die von uns erarbeitet wurde. Wie Bild 1 zeigt, erfolgt die Modulation des Lampenstromes lediglich durch ein Kohlemikrofon. Der Sprechübertrager trennt galvanisch Mikrofon- und Lampenstromkreis und übernimmt die optimale Anpassung. Um den Ohmschen Spannungsabfall in den Wicklungen klein zu halten, ist für

diese eine relativ große Drahtstärke erforderlich. Da Übertrager dieser Art nicht handelsüblich sind, verbleibt die Selbstanfertigung. Die Daten: Kern M 42/15 (Dyn. Bl. IV. gleichsinnig geschichtet), Primärwicklung (Mikrofonkreis) 200 Wdg., 0,6 CuL, Sckundärwicklung (Lampenkreis) 100 bis 120 Wdg., 0.6 CuL.

Der Lichtempfänger erhält eine Transistor-Verstärkerstufe in üblicher Emitterschaltung mit dem Ankopplungs-Übertrager K 20 (Treibertrafo des "Sternchen"). Je nach dem Stromverstärkungsfaktor des verwendeten Verstärkertransistors ist R 1 so zu bemessen, daß am Kopshörer etwa die halbe Speisespannung abfällt. Will man die Anlage für Kommandozwecke (Sportplätze. Zeltlager usw.) benutzen, kann ein Transistor-NF-Verstärker entsprechender Leistung parallel zum Kopfhörer nachgeschaltet werden. Der Kopfhörer als Arbeitswiderstand bleibt also angeschaltet. In geschlossenen Räumen kann die Funktion der Anlage durch das Auftreten der akustischen Rückkopplung beeinträchtigt werden, deren Abhilfe aber durch geschickte Aufstellung des Lautsprechers bzw. Mikrofons möglich ist.

Den technischen Aufbau der Sprech-

anlage wird der erfahrene Funkamateur ganz nach seinem Geschmack und seinen Bedürfnissen gestalten, so daß eine Baubeschreibung sich erübrigen dürfte. Bild 2 und 3 zeigen die von uns ausgeführte Anlage, die vornehmlich Unterrichtszwecken dient und einen gewissen Anhalt geben soll. Kohlemikrofon, Sprechübertrager und Batterie (zwei kleine 3-V-Stabbatterien) sind in einem kleinen Holzkästchen untergebracht, an dessen linker Seite der Druckknop! zum Einschalten der Mikrofonbatterie ersichtlich ist. Die Lichtsender-Stablampe ruht unverrückbar auf einem mit zwei Gummisüßen versehenen Lagerbock, auf dem auch der Winkel mit dem Helligkeitsregler befestigt ist. Die hinter dem Winkel sichtbare Stellschraube ermöglicht die Höhenschwenkung des Lichtstrahls. Auch bei dem Lichtempfänger ist die gleiche Schwenkvorrichtung vorgesehen und erleichtert gerade hier erheblich die Justierarbeit. Im Brennpunkt der Sammellinse befindet sich auf einem senkrecht zur Grundplatte befestigten Isolierstreisen der Fototransistor und darunter der einstufige NF-Verstärker. Der Ausschalter hat seinen Platz vor der Bat-

A. Steiner

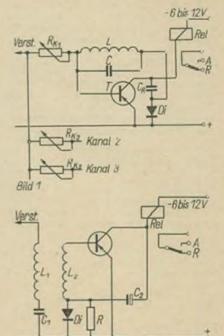


Bild 1: Rolaisstufe mit Parallelschwingkreis

Bild 4: Relaisstufe mit Reihenschwingkreis (Bild untan)

Hinweise für den Fernsteuer-Mehrkanalbetrieb

Dipl.-Ing. B. LINDEMANN

Bei der Fernsteuerung von Modellen besteht oft der Wunsch, mehrere Kommondas gleichzeitig oder nacheinander zu übertragen. Um dies zu erreichen, gibt es verschiedene Möglichkeiten für den Fernsteuer-Amateur.

Eine der ältesten Methoden, die vor allem beim A 1-Betrieb - also bei Einkanalanlagen - in Frage kam, bestand im Welterschalten von Schrittschaltwerken nach einem bestimmten Programm. Der hohe Stromverbrauch sowie das dabel bedingte hohe Gewicht setzen der Anwendung gewisse Schranken. Danebeh erwarb sich das Zungenresonanzrelais – in Verbindung mit dem A 2-Betrieb – viele Anhänger. Seine Verwendung setzt also einen entsprechend modulierten Träger voraus. Die Schwierigkelt der Konstanthaltung der einzelnen Signalfrequenzen, ganz abgesehen von der Beschaffung bzw. Selbstherstellung des Relais geben elektronischen Schaltungen zum Trennen der einzelnen Signale den Vorrang. Dabei ist leicht einzusehen, daß für jedes cinzelne Kommando mit einer testgelegten Signalfrequenz eine entsprechende Selektivstuse vorhanden sein muß. Diese baut sich im allgemeinen aus einem Schwingkreis und einer Verstärkerstuse für das jeweilige Relais auf. In der Praxis haben beide Formen des Schwingkreises - der Reihenkreis und der Parallelkreis - ihre Existenzberechtigung gefunden.

Schaltstufe mit Parallelkreis

Es gibt verschiedene Möglichkeiten. Parallelschwingkreise in Verstärkerstufen anzuordnen. Eine der bekanntesten Schaltungen ist die Tonkreisschaltstufe nach Schuhmacher III. Sie zeichnet sich durch ihre große Empfindlichkeit bei guter Trennschärfe aus; Bild 1 zeigt die Schaltung.

Das Typische an dieser Schaltstufe ist die "Gleichstrom-Rückkopplung". Die verstärkte Niederfrequenz gelangt vom Verstärker über einen Entkoppelwiderstand R auf den Parallelresonanzkreis L-C. Entspricht die Signalfrequenz der Resonanzfrequenz des Schwingkreises, so tritt wegen des hohen Resonanzwiderstandes des Kreises eine Ansteuerung der Basis des Transistors T cin. Das Signal wird verstärkt. Wegen des induktiven Widerstandes des Relais läßt sich leicht ein Teil der verstärkten Spannung über den Kondensator CR auf die Diode Di zurückführen. Durch die Gleichrichtung an der Diode entsteht eine negative Gleichspannung, deren Strom über die Induktivität den Arbeitspunkt des Transistors derart verschiebt, daß der Kollektorstrom ansteigt. Dies hat wieder eine verstärkte Rückführung der Signalspannung am Kollektor auf die Basis zur Folge, so daß die Stule sehr empfindlich arbeitet. Über die Entkoppelwiderstände RK können mehrere Tonkreisstufen parallel an den Verstärkerausgang angekoppelt

Eine Formel für die Schwingkreisgüte lautet bekanntlich:

(1)
$$\varrho = \frac{f_0}{b}$$
 $\frac{\varrho}{f_0}$ — Schwingkreisgüte $\frac{f_0}{f_0}$ — Resonanzfrequenz $\frac{f_0}{f_0}$ — Bandbreite

Bild 2 und 3 zeigen Resonanzkurven einer Tonkreisstufe bei verschiedener Ansteuerung. Dabei ist deutlich zu erkennen, daß der Kreis mit größerer Ansteuerung an Güte verliert, da die Bandbreite breiter wird. Da dies für den Betrieb nachteilig ist, soll der Parallelkreis prinzipiell eine hohe Güte besitzen. Die Güte für den Parallelkreis läßt sich auch noch anders darstellen:

(2)
$$\varrho_{P} = \frac{R_{P}}{2 \pi \cdot t_{0} \cdot L} = R_{P} \cdot 2 \pi \cdot t_{0} \cdot C$$

Beim Parallelkreis steigt also die Güte mit größer werdender Kapazität. Dies sollte beim Aufbau von Parallelschwingkreisen unbedingt berücksichtigt werden. Wegen der relativ niedrigen Ein- und Ausgangswiderstände des Transistors tritt aber für den Parallelkreis eine mehr oder weniger große Bedämpfung auf, die die Güte entsprechend verringert. Durch die spezielle Rückkopplung der Tonkreisstufe wird dles zum Teil wieder ausgeglichen. Voraussetzung für ein gutes Arbeiten der Schaltstuse ist ein hoher Stromverstärkungsfaktor des Transistors. Er sollte im allgemeinen über 100 liegen (Bild 2 und 3)! Ein hoher Widerstand R wirkt sich auf die Güte des Kreises günstig aus, da der Ausgangswiderstand des Verstärkertransistors nicht so stark bedampfend wirken kann Gleichzeitig setzt aber ein hoher Widerstand die Empfindlichkeit der Stufe herab. In der Praxis sollte man einen Kompromiß schließen, wobel beachtet werden muß, daß der Widerstand noch die entsprechenden negativen Steuerspannungen der einzelnen Stufen bei gleichzeitigem Schalten mehrerer Relais entkoppeln soll. Bewährt haben sich hier Einstellregler mit R =: 50 kOhm. die ein Trimmen der einzelnen Kanäle auf eine optimale Empfindlichkeit zulassen.

Für die Ansteuerung der Schaltstufen wird keine sinusförmige Spannung vorausgesetzt. Verzerrte Sinusspannungen sowie Rechteckspannungen, deren Grundwelle der Resonanzfrequenz des Kreises entspricht, bringen die Tonkreisstufe zum Schalten. Dabei muß aber auf den Oberwellengehalt geachtet werden. Die Tabelle 1 gibt neben einer oberwellensicheren Kanalverteilung ein entsprechendes Dimensionierungsbeispiel für die Schwingkreise an [1].

Kanal	f/kHz	L/mH	Wdg.	CuL/mm	Cinf
1	1080	225	570	0,1	110
2	1320	225	570	0,1	85
3	1610	140	440	0.12	70
4	1970	140	440	0.12	50
5	2400	140	440	0.12	40
6	2940	78	325	0.14	40
7	3580	78	325	0,14	3.0
8	4370	43	245	0.15	30
9	5310	43	245	0.15	25
10	6500	43	245	0.15	15

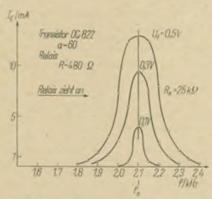


Bild 2: Kollektorstrom in Abhängigkeit von der Frequenz

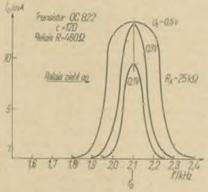


Bild 3: Kollektorstrom in Abhängigkeit von der Frequenz

Diese Angaben gelten für einen Schalenkern 8 × 14 ohne Luftspalt.

Schaltslufe mit einem Reihenrelais

Die Nachteile der Güteminderung der Parallelkreise durch die Transistorwiderstände lassen sich mit einer Schaltstufe vermeiden, wie sie in der Telecont-Anlage [2] eingesetzt wird. Diese Stufe arbeitet mit einem Reihenschwingkreis (Bild 4).

Die Güteverhältnisse beim Reihenkreis sind dual zu denen des Parallelkreises. Da die Güte des Reihenkreises durch das Verhältnis

(3)
$$o_R = \frac{1}{2 \pi \cdot f_0 \cdot C \cdot R_R}$$

 $R_R = Resonanzwiderstand$

gekennzeichnet wird, kommen die relativ niedrigen Transistorwiderstände diesem Schaltprinzip entgegen. Der Kondensator C1 und die Induktivität L1 bilden den Reihenkreis. Durch den Kondensator C 2 wird - im Gegensatz zur vorher beschriebenen Schaltstufe mit Parallelkreis - keine Rückkopplung hervorgerufen. Dadurch wird die Empfindlichkeit etwas geringer, aber es kann auch nicht zu Schwingeinsätzen (Relaisklappern) durch zu große Aussteuerung kommen, wie es mitunter bei der Parallelkreisschaltstufe vorkommt. Allerdings sollte diese Frage eine sekundäre Bedeutung haben. Allgemein ist der Empfänger ein Pendelaudion, und diese zeigen ja bei Übersteuerung durch ein zu großes Eingangssignal einen gewissen Begrenzerestekt. Die sich weiterhin immer stärker durchsetzende Rechteckmodulation ergibt am Verstärkerausgang ein ausreichendes Signal, um auch die weniger empfindliche Serienkreisschaltung auszusteuern.

Die Schaltstufe arbeitet prinzipiell wie folgt: Führt eine Signalfrequenz zur Resonanz des Serienkreises C1-L1. wird in der Sekundärspule L2 des Übertragers eine entsprechend hohe Spannung Induziert, die auf die Basis des Schalttransistors gelangt und ihn durchsteuert. Da das Relais wegen des niederfrequenten Kollektorstromes klappern könnte, wird zur Beruhigung der Kondensator C 2 eingesetzt. Wegen des Fehlens der Rückkopplung zeigt sich die Serlenkreis-Schaltstuse breitbandiger. Die Bandbreite ist durchschnittlich 3- bis 5mal so groß wie die der Parallelkreis-Schaltstufen. Die Kanalaufteilung muß deshalb in größeren Frequenzabständen geschehen.

Bei praktischen Versuchen mit Reihenkreisen in der Selektivstuse hat sich für die Auskoppelwicklung L2 eine Windungszahl von 10 Prozent bis 15 Prozent der Windungszahl der Primärspule L1 als vorteilhaft erwiesen. Weiterhin soll der Schwingkreiskondensator C1 den Wert von 5 nF keinesfalls überschreiten, da sonst die Kreisgüte zu ungünstig beeinflußt werden würde. Für den Aufbau der Induktivitäten sind nur Schalenkerne ohne Luftspalt zu empfehlen, um auch hier eine hohe Güte anzustreben. Eventuell kann bei Schalenkernen mit Luftspalt der Kern mit feinstem Schleifpapier auf einer ebenen Metallunterlage kürzer geschliffen werden. Anschließend muß eine neue Al-Wert-Bestimmung mit einer Probespule von 100 Wdg. erfolgen. Diese ist aber auch bei Verwendung von Schalenkernen ohne Lustspalt nötig, da hier die aufgedruckten Al-Werte zu starken Streuungen unterliegen, um bestimmte Induktivitätswerte zu errechnen.

Literaturangaben:

- "Ein neues Funkfernienksystem", Funkschau, 5/1060 "Telecont-Fernsteueranlage", modell, 3/1961
- Fernsteuer Mehrkanalbetrieb", modellbau und basteln, 8/1962 Resonanzschaltstufen-Praxis°, modellbau und basteln, 1/1963

Bauteile für Bild 1 und 4:

OC 822 Di OA 625 o. ä. Einstellregler 50 kOhm R_k C_R 0,1 µF R 500 Ohm/0,1 W 2 bis 4 µF - 6/8 V Rel

6 bzw. 12 V (200-500 Ohm) Schwingkreisdaten siehe Text

Schluß von Seite 9

setzt. Der Abend stand dann im Zeichen von persönlichen Begegnungen. Zwar war ein großer Teil schon am späten Nachmittag wieder abgereist, aber der Rest machte es sich gemütlich. Zuvor unternahmen wir noch einen ausgedehnten Spaziergang durch den riesigen Vergnügungs- und Erholungspark. Aber wie sollte es anders sein, wir fachsimpelten auch dabei mehr als genug. Am Montag besichtigten wir dann noch ausglebig Katowice.

Unser Begleiter war SP9DL, Leon Brezinski. Wir konnten das Leben und Treiben dieser Stadt kennenlernen, das dem Leipzigs zu den Messetagen gleicht. Am Abend nahmen wir dann unseren Zug in Richtung Heimat. In Gliwice verabschiedete uns der UKW-Manager SP 9 DR und dann begann wieder die zwölfstündige Reise. Aber wir kamen fast nicht zum Schlasen, denn wir hatten ja die Erlebnisse während des Treffens in Gedanken und im Gespräch nochmals durchzugehen.

Unser Dank gilt den OM SP 3 GZ, SP 9 ANI, SP 9 AFI und SP 9 DL, die uns in jeder Hinsicht zur Seite standen und helfend eingriffen, wenn alle Beteiligten mit ihren Sprachkenntnissen am Ende waren. Bleibt abschließend noch die Hoffnung, daß zum Pfingsttreffen in DM und zu den Treffen in SP und OK möglichst viele Amateure anwesend sein können.

Gerhard, DM 2 AWD

Bezirks-OSL-Vermittler

A: DM 2 AIA, Fritz Kirchner, Rostock. An der Hasenbük 6

B: DM 2 ACB, Heinz Stichm, Schwerin (Mcdkl.), PSF 185

C: Margarita Mach. Prenzlau, Franz-Wienhold-Str. 2

D: DM 3 SMD, Heinz Komm, Beelitz (Mark), PSF 8

E: DM 3 YPE, Eckehard Kitzrow, Eberswalde. Freienwalder Str. 64

F: DM 2 AMF, Werner Karow, Cottbus-Suchsendorf, Grenzstr. 14

G: DM 2 AMG, Siegfried Spengler, Hohendodeleben, Kleine Str. 125

H: DM 4 XNH, Erich Voigt, Halle a. d. S. Landrain 52

I: DM 2 AYI, Lutz Lindner, Erfurt. **PSF 481**

J: DM 3 EJ, Eckhart Bernau, Greiz. Naumannstr. 4

K: DM 2 AVK. J. Sittlg, Ilmenau. PSF 200

L: DM A ATL, Klaus Voigt, Dresden-A. 17, Tzschimmerstr. 18

M: DM 2 AHM, Martin Schurig, Fuchshain (Leipzig)

N: DM 2 ASN, Heinz Seifert, Karl-

Marx-Stadt, Scharfensteiner Str. 35 O: DM 2 AUO, Max Perner, Berlin-

Hohenschönhausen, Oberseestr. 30

Bringt Leben in die Bude

In einem Diskussionsbeitrag auf der Aktivtagung des Bezirks-Radioklubs Cottbus zur Vorbereitung der Wahlen in den Grundorganisationen und Vorbereitung des Ausbildungsjahres 1964 gab Kamerad Walter Sprecher, DM 2 ABF, einige wertvolle Hinwelse, die auch über den Rahmen des Bezirkes Cottbus hinaus gültig sind. Wir bringen deshalb einige Auszüge daraus:

Ich habe selbst als Reservist unserer NVA in diesem Jahr die noch nicht ersetzbare Drahtnachrichtentechnik, ich meine Fernsprech-, Fernschreib- und Funk-Fernschreibtechnik, besonders die komplizierte Aufschalttechnik auf modernste Funk- und Richtsunkmittel schätzen gelernt. Das heißt, ich habe mich von der überheblichen Voreingenommenheit, einer alleinigen Bedeudung der Funk-Nachrichtenmittel heilen lassen. Ich erhielt Gelegenheit, mich mit der kompliziertesten Nachrichtentechnik unserer Armee, dem Mehrkanal-Dezimeter-Richtfunk, gründlich vertraut zu machen, ja, Kameraden, da wurde plötzlich jede Geräteeinstellung oszillografiert, da hatte ich plötzlich mit Impulstechnik zu tun, das war doch was für einen Funkamateur. Auf Grund meiner Vorkenntnisse war es mir bald möglich, mehrere Wochen als technischer und militärischer Ausbilder arbeiten zu können. Zwei Jahre vor-her wurde ich als Reservist in der milltärischen Funkmeßtechnik (Radar) ausgebildet. So ging mein Wunschtraum in Erfüllung, diese beiden, mir als Amateur am interessantesten erscheinenden Nachrichtenzweige unserer NVA. gründlich kennenzulernen.

Aber, liebe Kameraden, das schnelle Verstehen dieser komplizierten Technik wäre nicht möglich gewesen ohne die langjährige Arbeit als aktiver Funkamateur unserer Organisation und deshalb bin ich stolz darauf

Seht einmal, welche ideale technische Basis und Ausbildungsmöglichkeit uns

Nachrichtensportlern, aber ganz besonders uns Cottbuser Kameraden mit dem neuerbauten Bezirks-Radloklub in die Hand gegeben wurde, ein neues und wertvolles Geschenk unserer Partei und Organisation. Aber unter den gegenwärtigen Bedingungen in der organisation Cottbus muß man wirklich darum ringen, diesen Klub mit Leben zu erfüllen. Mit diesem Geschenk wurde das Vertrauen in uns gesetzt, ein reges Organisationslehen zu entfachen und seine materielle Kapazität zu nutzen. Sicher müssen wir auch unser Programm erweitern, müssen das bringen, was den Jugendlichen interessiert. Vielleicht Hi-Fi-Übertragungstechnik, angewandte Transistortechnik, experimentielle industrielle Elektronik sozusagen und Radiobastelzirkel. Befaßt man sich mit dem sehr beachtlichen Umsatz unserer GST-Fachzeitschrift "funkamateur" oder der beliebten kleinen Heftreihe "Der praktische Funkamateur" so weiß man, wie groß das Interesse besonders bei den nichtorganisierten Jugendlichen ist. Ich werde als ersten Schritt im Wohngebiet Nord in der im Haus der Nationalen Volksarmee statt-Andenden Ausstellung ...Sport Technik" meine Amateurfunkstation DM 2 ABF ausstellen und von dort aus "portabel" Funkbetrieb aufnehmen. Ersahrungsgemäß sind die nur gelegentlich in der Öffentlichkeit auftretenden Amateursunkstationen ein äußerst beliebter Anziehungspunkt für funktechnisch Interessierte, und ich will natür-lich die Gelgenheit wahrnehmen, mit den Jugendlichen ins Gespräch zu kom-

Zur aktiven Unterstützung hat sich bereits der überwiegende Teil der Cottbuser Funkamateure bereit erklärt.

Dies sei also unser erster Beitrag zur Verbesserung der Arbeit im Wohngebiet und Auswertung unseres Jugendkommuniqués in der Praxis.

Ingenieur Walter Sprecher, DM 2 ABF

TV aufs Land

Auch in den ländlichen Gebieten der UdSSR breitet sich das Fernsehen in schnellem Tempo aus. In den Dörfern des Bezirkes Schujsk (Gebiet Iwanowo, RFSSR) hat bereits jeder dritte Haushalt ein Fernsehgerät.

Der zweiten Million entgegen

1,7 Millionen Fernsehgeräte werden in Polen 1964 in Betrieb sein, Ebenfalls in diesem Jahr werden 80 Prozent des Landes im Fernschsenderbereich liegen.

Bahnsteige im Bildschirm

Fünf Stationen der Moskauer Metro sind mit einer Fernschüberwachungsanlage zur Kontrolle des Ein- und Aussteigens der Fahrgäste und des Einlaufens und Absahrens der Züge versehen worden.

4000 km Kabel

Eine Fernmeldeverbindung von Moskau über Kiew-Krakau-Katowice-Brünn-Prag nach Berlin mit einer Gesamtlänge von über 4000 km wird in Kürze in Betricb genommen. Auf vier "Gleisen" des konzentrischen Kabels kann man bis zu 2000 Gespräche gleichzeitig führen. Ein Teil des Kabels ist für die Intervision vorgeschen.

Neues Fernamt

Das neue internationale Fernamt in der Berliner Dottistraße wird im Mai in Betrieb genommen. In dem Haus sind etwa 4000 Meter Kabel verlegt. Das Amt wird zu einer bedeutenden Zentrale im internationalen Fernsprechverkehr. Das nationale Amt in einer der sechs Etagen nimmt den vorgeschenen automatischen Selbstwählverkehr mit den Bezirkshauptstädten der DDR auf. Ein neues Rundfunkverstärkeramt und ein Trägerfrequenzamt werden ebenfalls in dem Gebäude untergebracht.

Symposium in Budapest

Die neuesten Ergebnisse auf dem Gebiet des mechanischen Entwurfes von nachrichtentechnischen und elektronischen Anlagen, Geräten und Bauteilen wurden auf einem Symposium mechanischer Konstruktionen in Budapest behandelt

Bald Taschenformat

Eine tragbare Elektronenrechenmaschine namens "Vega" entwickelte das Rechenzentrum Leningrad.

Aus der Plattenbox

Twist in der Nacht - Twist -(Kerber-Kerber)

Vor einem Jahr - langsamer Foxtrott -(Kerber-Kerber) Manfred Krug Rundfunk-Tanzorchester Leipzig Leitung: Walter Eichenberg 45 4 50 392

Manina, denkst du an mich Calypso (Mai-Bormann) Rec Demont Orchester Siegfried Mai

Vor dem Moulin Rouge - Foxtrott -(Maj-Fischer) Rec Demont und die Vier Collins Orchester Siegfried Mai 45 = 4.50.392

Allez Gaston - Orion -(Honig-Upmeier)

Heut' brauch' ich Musik - Orion -(Bath-Schüller) Vanna Olivieri Rundfunk-Tanzorchester Berlin Leitung: Günter Gollasch 45 = 450394

Wini - Wini - Foxtrott -(Hellmar-Petersen) Jane Swärd und das Columbia-Quartett Rundfunk-Tanzorchester Berlin Leitung: Günter Gollasch

Abends kommen die Sterne - Modorato-Walzer (Seeger-Schüller) Jane Sward Rundfunk-Tanzorchester Berlin Leitung: Günter Gollasch 45 = 450395

AKtüelle

"Sokol" mit 7 Transistoren

Ein neuer Transistor-Kleinstempfänger ist in der UdSSR im Handel erschienen. Das leistungsfähige Gerät hat etwa die Größe des "Sternchen". Es ist mit 7 Transistoren und einer Diode ausgestattet und verfügt über einen Mittelund Langwellenbereich. Der Empfänger wird in einem eleganten Kunststoffgehäuse angeboten.

Neuer Transistorempfänger

Ein Transistorgerät mit 8 Transistoren und Emplangsmöglichkeiten im Mittelund Kurzwellenbereich wurde in China entwickelt.

Farbig aus Prag

Die ersten Versuche mit Farbfernschen stellte vor einiger Zeit der Fernsehsender Prag an.

..funkamateur"-Korrespondenten berichten

Die besten Geräte zur Leistungsschau

Im Bezirk Frankfurt (Oder) ist es schon selbstverständlich, daß die Nachrichtensportler bei der Messe der Meister von Morgen vertreten sind. Dabei merkten wir immer wieder, daß für die Nachrichtentechnik großes Interesse da ist und wir viel zu wenig mit unserer Technik an die Öffentlichkeit kommen. Das mußte auch der Kreis Eberswalde seststellen. Durch die Ausstellung, bei der auch die Station DM 3 HE portable arbeitet, konnten 35 neue Mitglieder gewonnen werden. Auch in Beeskow war die Ausstellung ein Erfolg. Dort konnten die Nachrichtensportler dem Minister Reichelt, der die Ausstellung besuchte, über die Entwicklung des Nachrichtensports in den letzten fünf Jahren berichten.

Nehmen wir aber die Ausstellung unserer Geräte kritisch unter die Lupe, so müßten wir sagen, daß besonders bei der Bezirksmesse nicht die besten im Bezirk vorhandenen Eigenbaugeräte ausgestellt wurden, sondern das, was eben leicht zu erreichen war.

Dagegen sah man an den Ständen der Arbeitsgemeinschaften Junger Techniker wirklich gute Geräte, bei denen von der Lichtschranke bis zum Kleinoszillator alles vertreten war. Es gibt doch bei uns auch gute Geräte und wertvolle Entwicklungsarbeiten, aber leider haben wir es noch nicht geschafft, zur MMM eine Leistungsschau unserer Amnteure durchzuführen. Das kostet natürlich Vorbereitungsarbeiten. Es muß eine Ausschreibung da sein, und gelenkte Entwicklungsaufträge müssen materiell gesichert sein. Man sollte sich auch über einen Anreiz zum Bauen

Gedanken machen. Zum Beispiel könnten die als Standards geeigneten Geräte prämiiert werden. Es gibt leider Amateure und Bastler, die meinen, ihr Gerät wäre für eine Ausstellung zu schade. Von solchen Gedanken müssen sie sich freimachen, denn wie wollen wir denn unseren Fortschritt sonst der Öffentlichkeit dokumentieren? Diese Erfahrungen und Gedanken werden wir bei der Vorbereitung der DDR-Leistungsschau, die anläßlich des III. Kongresses im April in Görlitz stattfindet, berücksichtigen. Unser Bezirksklubrat hat den Termin der Bezirksausstellung zur Auswahl der besten Geräte für die DDR-Leistungsschau auf den 1. März sestgelegt Bereits vor längerer Zeit empsahlen wir den Sektionen besonders Fuchsjagdempfänger. Fuchsjagd-sender und einfache 2-m-Stationen zu entwickeln, die den Anforderungen eines Wettkampfes genügen. Der Kreisradioklub Eberswalde hat bereits mit dem Bau von Transistorempfängern für die Fuchsjagdwettkampimannschaft des Bezirks begonnen.

Von DM 3 CE im Halbleiterwerk Frankfurt wird die Arbeit im 2-m-Band entwickelt und macht erfreuliche Fortschritte. Diese Initiative strahlte auf andere Kreise aus und so gibt es bereits gute Ansätze in Strausberg, Beeskow, Frankfurt und Fürstenwalde. Wir sind jedenfalls bestrebt, unseren Teil zum Gelingen der DDR-Leistungsschau beizutragen. Je mehr wir die Zeit bis dahin nutzen, desto besser werden wir unseren Bezirk in Görlitz vertreten.

Paul Loose

Der Bezirksradioklub Gera

Der Bezirksradioklub Gera ist in drei Räumen des "Klubs der Jugend und Sportler" in Gera untergebracht. Das Klubhaus befand sich zu jener Zeit gerade im Umbau. In den uns zugewiesenen Räumen begannen nun die Geraer Funkamateure zu wirken. Viele Stunden waren nötig, um die Räume herzurichten. Nach Monaten konnten wir mit der Einrichtung des Radioklubs beginnen. Im größten Raum wurde das Funkpolygon installiert. Kumerad Werner Wilhelm, DM 6 AJ, brauchte Dutzende von Stunden, um dieses zu reparieren. In einem zweiten kleineren Raum bauten wir die Kollektivstation des Bezirksradioklubs, DM 6 AJ, auf. Der TX ist eine kommerzielle 200-W-Scefunkstation für 80 und 40 m. Als Modulator steht ein 75-W-Verstärker vom Funkwerk Kölleda zur Verfügung. Der RX ist ein Allwellenempfänger vom Funkwerk Dabendorf mit gespreizten Amateurbänden.

Für ein Funkübungsnetz wird als Leitstation eine 100-W-Seefunkstation installiert. FK 1, FK 1a, FK 5 sind ebenfalls vorhanden.

Der letzte zur Verfügung stehende Raum ist als Werkstatt ausgebaut.

Als Klubstation des BRK auf dem 2-m-Band arbeitet die Station DM 3 I.) auf dem GST-Flugplatz in Gera-Leumnitz. Zum Klub gehört auch ein Funkwagen vom Typ H 3 A.

Nach Überwindung vieler Schwierigkeiten läuft nun auch die Ausbildung an. Mit Artikeln in der sozialistischen Presse warben wir Mitglieder für den Radioklub. Vorträge in Schulen und die Verteilung Tausender von Handzetteln helfen ebenfalls neue Mitglieder zu gewinnen. Ein speziell für den Klub ausgearbeiteter Maßnahmeplan sorgt für die Kontrolle und Durchführung aller Beschlüsse.

In dem Plan ist auch ein Treffen der UKW-Amateure des Bezirkes Gera vorgesehen.

Volker Scheffer, DM 3 XIJ

Unser Ausbilder ist prima

Unser Ausbilder ist ein alter "Hase". Schon als kleiner Junge zeigte er reges Interesse für die Radiotechnik. Vor drei Jahren erweckte er in uns die Liebe zum Amateurfunk. Wir begannen mit der Morseausbildung. Als wir ansingen. sah die Sache recht vielversprechend aus. Aber das dicke Ende kam nach. Nach und nach stiegen immer mehr aus. daß unsere Nachrichtengruppe schließlich nur noch aus fünf Mann bestand. Wir bildeten uns auch im Betriebsdienst an der FK 1a und unserer Station weiter. Mit der Zeit fanden wir ein geeignetes oth an der Fliegerschule Neuhausen/Cottbus. Hier wurde so nach und nach unsere Station aufgebaut. Wir waren nach kurzer Zeit gry mit einem Neun - Röhren - Doppelsuperhet einem 2-m-Empfänger. Der Sender ist zweistufig mit einer LV3 in der PA. Die Leistung beträgt zur Zeit 25 Watt Input. Der Modulationsverstärker ist vierstulig mit EL 12 N im Gegentakt. Er bewährt sich ausgezeichnet. Die 41-m-Langdrahlanlenne ist aus Feldkabel hergestellt. Unser Netzgerät liefert

1000 Volt Gleichstrom. So arbeiteten wir eine ganze Zeit und fuhren ungefähr 300 QSOs. Damals waren wir unter DM 3 YSF im Ather. Das war das Call unseres Ausbilders, der an einer Klubstation arbeitete. Nachdem wir mit der Ausbildung fertig waren, zogen wieder in unser altes Kahren/Cottbus, obwohl die HF-Bedingungen in Neuhausen besser waren. Unsere Ausbildung an der FK la hatte sich auch bewährt. Als im Juni 1963 das Kreispioniertressen in Kahren stattsand. wurde unsere Nachrichtengruppe eingesetzt. Wir veranstalteten schon einige Geländespiele. Beim Marsch der Wafsenbrüderschaft und Freundschaft innerhalb unseres Bezirkes wurden unsere Gerüte auch eingesetzt. Sie bewährten sich ausgezeichnet. Unsere Freude war natürlich darüber sehr groß. Ich hoffe, daß wir mit unserem Ausbilder, Kamerad Schädel, an unserer Station DM 4 BF und mit der FK la noch viele schöne Erfolge haben.

Volker Werner, 14 Jahre. Oberschule Kahren

Jetzt lerne ich morsen

Mit Interesse verfolgte ich die von DM 4 CD ausgelöste Diskussion um SWL's und QSL's. Diejenigen, die eine QSL nur Hörern mit DM-Diplom zugestehen, sollten sich mal die Fälle vorstellen, wo nach einem Jahr regelmäßiger Teilnahme bei der Klubstation kein cw-Zeichen gehört oder gegeben werden kann. Ich kenne das aus eigener Erlahrung. Der Chef-op. und die Mitbenutzer fahren QSO's. Der Newcomer wird gefragt: "Kannst du morsen? -Nein? Schade!" Damit ist der Fall erledigt. Soll er sehen, wie er weiterkommt. (Gibt es wirklich solche barbarischen Klubstationen? Die Red.) Und gerade Morsen im Selbststudium zu erlernen, ist nicht einfach und schon mancher Interessierte hat resigniert aufgegeben. Er wird, wenn er noch nicht ganz aufgesteckt hat, zu Hause an der "Kiste" hocken und mit dem "unlizensierten Ohr" das Funkgeschehen auf 80 oder 40 m verfolgen.

Vielleicht interessiert es, wie ich arbeite: Mein RX Ist der "Ilmenau 210". allerdings nicht umgebaut, wie es im "funkamateur" 7/1962 und 8/1962 vorgeschlagen war, denn soweit reichen meine technischen Fählgkeiten nicht, hi! Ich habe das 80-m-Band nur gespreizt. Jetzt will ich allerdings auf dem K1-Bereich des "Ilmenau 210" das 40-m-Band heranholen, weiß aber noch nicht wie. Vielleicht findet sich auf diesem Wege ein mitleldiger QM. Meine Antenne ist eine 40-m-Langeraht.

Meine SWL-Berichte versende ich per Rückantwort-Postkarte entweder direkt (leider hinkt der Nachtrag zur Rufzeichenliste ewig hinterher) oder über das DM-OSI-Büro.

Meine SWL-Karten bedrucke ich mit einem Gummistempel, sie haben so ein sauberes Aussehen, und man braucht nur noch einige Zeilen auszufüllen. Von 263 versandten Karten habe ich schon 172 bestätigt zurück, darunter auch eine ganze Menge QSL-Karten.

Das HADM habe ich seit vorigem Jahr. Für das RADM IV habe ich schon alle Bedingungen, aber zuvor fehlt mir das

DM-Diplom. Ich will mich der Klubstation in der Nachbarstadt anschlie-Ben, um endlich morsen zu lernen.

Veranschaulichung meiner tionsbeschreibung lege ich noch ein Foto bei: In der Mitte der "Ilmen-au 210", links daneben meine Kartei, ähnlich der von SWL Tränkner im "fa" 10/63 beschriebenen, vorn neben den Kopshörern das improvisierte Logbuch, dahinter an der Wand das HADM Nr. 679, daneben als "Trophäen" QSL aus Belgien, Frankreich, der Schweiz, Schottland, Italien, Polen sowie DL. DJ und DM. Die QSL von DM Ø LMM erhielt ich übrigens für mein erstes abgehörtes QSO

Slegfried G. Tauer, Bitterfeld, R.-Wagner-Str. 7

Sonntagvormittag zu sprechen

Mein Name ist Hartmut ex DM 3 RXL. Ich bin seit Anfang August aus HL 74 g unter DM 2 CFL mit 25 Watt Input auf 2 m und 70 cm grv.

Der Sender (oberer Einschub) ist ein 4bzw. 6stuliger Bandfiltersender mit jeweils einer Y 32 in der PA. Sämtliche Ströme lassen sich durch Umschaltung der Meßgeräte laufend überwachen.

Ein 5stufiger Modulator mit 2 × EL 12 N gestattet eine Anoden-Schirmgitter-Modulation. Als Empfänger (zweiter Einschub von unten) dient ein 3fach-Super. Im Eingang auf 2 m arbeitet eine EC 86-Kaskode, während auf 70 cm eine EC 88 die erste Verstärkung des Signals übernimmt.

Sender und Empfänger lassen sich durch jeweils einen Schalter schnell von 2 m auf 70 cm umschalten.

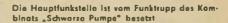
Trotz ungünstiger Tallage ist fast immer eine gute sone-Verbindung mit Berlin (etwa 160 km) und Prag (etwa 100 km) auf 2 m möglich. Der untere Einschub der Station ist das Netzteil. Die Antennenumschaltung übernimmt der auf der Station sichtbare magnetisch betätigte Koaxialumschalter.

Als Antenne dient eine 10-Elemente-Yagi, die mittels einer Nachlaufregelung in jede Richtung ferndrehbar ist. Bis auf den Modulator, der sich im Musikschrank befindet, ist die Station somit ein komplettes Gerät, das sich

auch verhältnismäßig gut zu einem Portable-9th transportieren läßt.

Die sicherste Arbeitszeit außerhalb von Ferien oder Feiertagen liegt bei DM 2 CFL aus grl-Gründen (Student in Dresden) am Sonntagvormittag.

Radioklub rief zum Volksfest


Angeregt durch das Jugendkommunique führte der Klubrat des Bezirksradioklubs Frankfurt in Hoppegarten bei Müncheberg ein Volkssest durch, um den Jugendlichen einen Einblick in die Arbeit der GST zu geben und allen Bewohnern der Gemeinde einige frohe Stunden zu bereiten.

Für die Kleinsten wurde eine Märchenstunde durchgeführt, wofür wir von der DSF nette sowjetische Filmstreisen bekamen. Anschließend zeigten wir einen DIA-Streisen der GST "Unsere Zeit braucht Helden".

Den Schülern und Jugendlichen stand eine Bastelstraße zur Verfügung, die auch regen Zuspruch hatte. Kameraden des Halbleiterwerkes Frankfurt standen mit Rat und Tat zur Seite. Hier hatten die Jugendlichen auch Gelegenhelt, die Ausbildungsgeräte der GST kennenzulernen und sich an der Morse-

übungsanlage zu versuchen. Den größten Andrang gab es am Luftgewehrstand, wo neben dem Blumenschießen ieder Gelegenheit hatte, das Schießabzeichen der GST zu erwerben. Darüber hinaus standen wertvolle Preise für ein Preisschießen zur Verfügung. An diesem Tage konnten der Jugend der Gemeinde 70 Schießabzeichen überreicht werden.

Bei Einbruch der Dunkelheit fand ein Fackelzug statt. Die Kinder marschierten nach der Marschmusik des Nachrichtenwagens durch das ganze Dorf. Am Abend traf sich jung und alt zum Funkerball, wobei Genossen einer Nachrichteneinheit zum Tanz spielten. Es war ein gelungener Tag, der ein gutes Verhältnis zur GST herstellte-und damit die Voraussetzung schuf, in Hoppegarten eine Grundorganisation zu P. L. bilden.

Trupps erreichten rechtzeitig ihren Raum und konnten mit dem Ausbau der Nachrichtenverbindungen beginnen.

Die Fernsprechtrupps bauten vier Fernsprechnetze mit je drei Endstellen aus, und die Funker errichteten ein Funknetz, das als Überlagerung der Drahtverbindungen diente, so daß bei Ausfall einer Drahtverbindung die Führung über Funk gewährleistet war.

Man darf aber nicht annehmen, daß alles auf Anhieb klappte. So kam es vor, daß die Vermittlung vom Trupp Jessen auf einmal zu keiner Endstelle mehr Verbindung hatte. Nach längerem Probieren merkte der Kamerad an der Vermittlung, daß lediglich der Abfrage-

Nachtübung deckt Schwächen auf

Im November überprüfte der Bezirksradioklub Cottbus den Ausbildungsstand der Funk- und Fernsprechtrupps
in einer Nachrichtenkomplexübung, um
daraus Schlußfolgerungen für die
Schwerpunkte im neuen Ausbildungsjahr zu ziehen.

Zur Übung waren alle Funk- und Fernsprechtrupps des Bezirks eingeladen. Leider konnten nicht alle erscheinen. Der Hauptgrund war, daß viele Trupps von den Betrieben für Sonnabend keine Freistellung erhielten, da sie schon während der Zeit der Volkswahlen Freistellungen erhielten und der Pro-

Die Vermittlung des Fernsprechtrupps aus Jessen hat keine Verbindung mehr. Wo liegt der Fehler?

duktionsplan nicht gefährdet werden kann. In Zukunst wird also der Anreisetermin auf Sonnabend, 18 Uhr, lestgelegt und der Übungsstoff mehr konzentriert. Ein Unterricht am Sonnabendnachmittag diente der Vorbereitung auf die Nachtübung. Die Kameraden frischten vor allem noch einmal die Kenntnisse in der Topografie auf, da nachts die Orientierung besonders schwer ist. Kartenlesen. Marschieren nach Marschrichtungszahl und Standortbestimmung nach der Karte waren die wesentlichsten Themen. Außerdem erhielten die Kameraden noch verschiedene Hinwelse für die Tarnung der Nachrichtentechnik. Auch die günstigste Ausnutzung des Geländes für gute Nachrichtenverbindungen wurde nochmals erläutert.

Anschließend lernten die Kameraden an Hand der Karte und des Draht- und Funkschemas, die mit einem Episkop an die Wand projeziert wurden, den gesamten Verlauf der Übung im Groben kennen, Jeder Kamerad wußte, was er nach Auslösung des Alarms zu tun hatte. Zu kurz gekommen war allerdings die Erläuterung der taktischen Lage. Dadurch konnte es passieren, daß während der Übung einige Kameraden nicht wußten, was zu tun ist, wenn vor Ihnen eln Knallkörper explodiert. Bei der nächsten Übung wird man also als erstes bei der Einweisung auf die taktische Lage genau hinweisen müssen.

Um 01.55 Uhr erscholl der Ruf "Alarm". Gleichzeltig entstand vor der Unterkunft durch Nebelkörper eine dichte Nebelwand. Trotz des Nebels besetzten die Trupps binnen kurzer Zeit die Fahrzeuge. Jeder Trupp erhielt die Aufgabe, nach Marschrichtungszahl in einen Bereitstellungsraum zu fahren. Alle

Der Kamerad Walter Schnelder überwacht den Funkverkehr und notiert sorgfältig jeden Fehler

apparat desekt war. Auch im Funknetz gab es Schwierigkeiten, besonders bei der Einhaltung der Funkdisziplin. Das lag zum Teil an dem nicht richtigen Verhalten der Hauptsunkstelle, die vom Kombinat Schwarze Pumpe gestellt wurde. Trotzdem kann man sagen, daß die Forderungen der Übung im allgemeinen erfüllt wurden. Schwierigkeiten gab es noch bei der Nachtorientierung. Die verantwortlichen Kameraden wollen daher in Zukunst mehr Wert auf die topograsische Ausbildung legen.

Die Kamcraden des Klubrates haben an Hand dieser Übung festgestellt, wo noch Schwächen in der Ausbildung liegen. So gilt es, neben den schon erwähnten Lehren vor allem die Verantwortlichkeit der Truppführer zu heben. Sie müssen mehr Eigeninitiative zeigen und ihre Trupps besser in der Hand haben.

Text und Fotos: Möcker

Bauanleitung für einen Rechteckwellengenerator

G. HEUCHERT

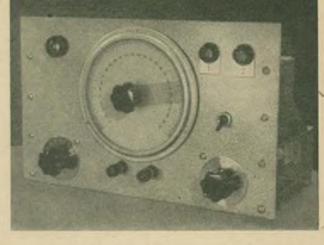


Bild 6
Frontansicht des beschriebenen Rechteckwellengenerators

In diesem Beitrag bezieht sich der größte Teil der Hinweise auf den konstruktiven Aufbau. Die angegebene Literatur enthält Angaben zur Anwendung des Gerätes bei der Prüfung von Verstärkern in der Rundfunk-, Fernsehund Tonbandtechnik, die hier wegen ihres Umfanges nicht wiedergegeben werden.

Arbeitsweise des Gerätes

Der hier benutzte katodengekoppelte Multivibrator arbeitet mit der ECC 91. Der gesamte Frequenzumfang von 50 Hz bis 95 kHz wird grob in 5 Bereichen durch C1 bis C5 mittels eines Stufenschalters (S 2) und fein mit dem Potentiometer (250 kOhm-lin) eingestellt. Die vom Generator abgegebenen Rechteckschwingungen haben noch eine starke Dachschräge, welche in der folgenden Begrenzerstufe (EF 80) fast völlig beseitigt wird. Um einwandfreie Ecken am Rechteck zu erhalten, ist es notwendig, den Elko von 8 uF an das Gitter 2 der EF 80 zu legen. Die folgende EC 92, als Anodenbasisstufe geschaltet, bewirkt eine weitere Begrenzung, somit die Herstellung einer fast idealen Rechteckschwingung.

An dem Schleifer des Katodenwiderstandes (Potentiometer 1 kOhm-lin) werden die Impulse abgenommen und dem G 1 der EC 92 zugeführt. Dle Anodenbasisstufe wurde nachgeschaltet, um stets den gleichen Innenwiderstand des Generators zu erhalten. Die Gleichspannung an der Katode, etwa 2 V, wird vom Ausgang durch einen Kondensator 4 uF-MP ferngehalten.

Netzteil

Das Gerät ist für den Anschluß an ein Wechselstromnetz von 220 V oder 127 V ausgelegt. Als Trafo wurde der Typ M 85 des VEB Elektro-Feinmechanik Mittwelda verwendet, der reichlich bemessen ist. Die eingeschaltete Netzspannung wird durch die Glimmlampe angezeigt. Die Gleichrichterröhre (EZ 80) erhält ihre Heizspannung aus einer gesonderten Wicklung, was jedoch nicht notwendig ist, da hier eine indirekte Heizung vorliegt. Die indirekt geheizte Röhre wurde verwendet, um einen Stabi mit geringem Strom verwenden zu können. Die Gleichrichtung mit Selengleichrichter ist nicht angebracht, da dann voin Moment des Einschaltens bis zum Erwärmen der Röhren 1 bis 4 die volle Gleichspannung am Stabi liegen würde und dieser den gesamten Anodenstrom des Gerätes zusätzlich aufnehmen müßte. Bei der hier verwendeten Type kann das zur Zerstörung führen. Der Lade- und der

Siebkondensator wurden vom Chassis isoliert gesetzt und sehr groß gewählt, da sich bei kleineren Elkos eine Rückwirkung der steilen Impulse bis zur Gleichrichterröhre bei der Kontrolle am Oszillografen zeigte. Die Anordnung eines speziellen Vorwiderstandes für den Stabi zwischen dem Siebelko und dem Stabi ist nicht zweckmäßig, weil durch den Stabi die Impulse nicht geglättet werden und das Rechteckssignal sonst an der gesamten Gleichspannungs-Zuführung entnommen werden konnte.

Als Siebwiderstand dient ein Drahtwiderstand 10 kOhm/10 W mit Schelle, wodurch sich sehr einfach der mittlere Querstrom von 8 mA für den Stabi einstellen läßt. An Stelle des verwendeten Stabis können noch folgende Typen bei entsprechender Änderung des Siebwiderstandes benutzt werden. GR 145/DP, GR 150/DK, GR 150/DM, GR 150/DP, GR 150/M, StR 150/20, StR 150/40 z. Das gleichzeitige Entfernen der Rö 1 bis 4 im Belrieb ist nicht zulässig, da der gesamte Anodenstrom den maximalen Querstrom des Stabis übersteigt.

Hinweise zum Aufbau

Als Material für das Chassis und die Seitendreiecke wurde 1,5 mm, für die Frontplatte und beide unteren Seitenstreben 2 mm starkes Alublech mittlerer Härte verwendet. Das Chassis hat eine Höhe von 75 mm. Die Maße sowie die wichtigsten Bohrungen des Chassis gehen aus Bild 1, die der Frontplatte aus Bild 2 hervor. Die Form des Chassis ist aus den Fotos zu ersehen. Alle größeren Öffnungen in den Metall-

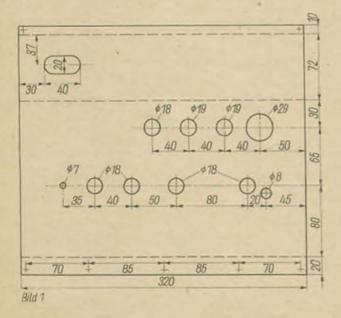
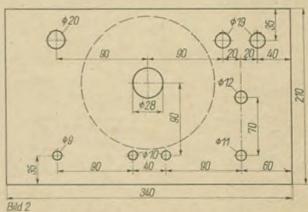



Bild 1 und 2 Maßskizzen für Chassis (nach aben biogen) und Frontplatte

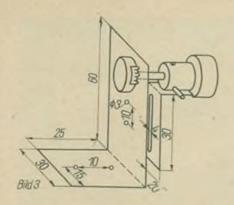


Bild 3: Skizze für Anschlagbegrenzung

flächen wurden mit der Laubsäge ausgearbeitet, dadurch bleibt die gerade Fläche erhalten. Die an der Frontplatte, am Bereichsschalter, am Ausgangsspannungsregler sowie an der Si 1 und 2 befindlichen blanken Platten sind mit der Laubsäge aus 2 mm Alu gesägt, mit Feile und feinem Glaspapier geglättet. danach mit Körner bzw. Schlagzahlen markiert. Mit einem Lappen und Elsterglanz" poliert man die Flächen blank. Die Fettreste werden mit einem in Spiritus getränkten Tuch entfernt. Ein stark verdünnter, farbloser Nitrolack ist über die blanken Flächen zu gießen und trocknen zu lassen. Der Glanz ist nach einem Jahr unverändert erhalten geblicben. Für die Frequenzcinstellung fand eine Kreisskala mit Fcintrieb (160 mm Ø) der Firmo Hruska, Glashütte (Sa.). Prießnitztalstr. 20a. Verwendung. Direkt lieferbar, Preis etwa 24,- DM.

Die Skala selbst wurde mit einer 270°-Teilung handgezeichnet. fotokopiert und angeklebt. Eichen läßt sich das Gerät mit Hilfe eines Tongenerators bzw. HF-Generators nach Schwebungsnull.

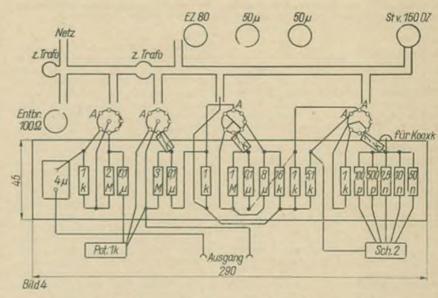
Bild 4: Vordrahtung der Bauelementeplatte Bild 5: Schaltbild des beschriebenen Rachteckwellengenerators

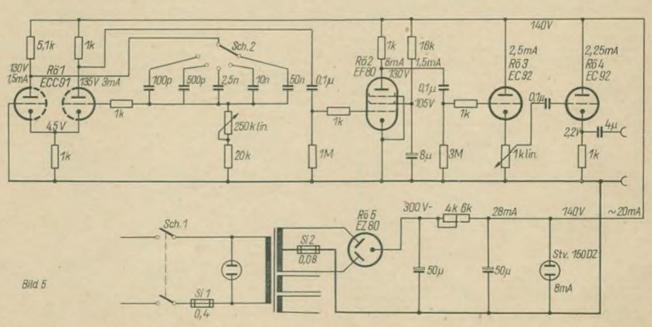
Auf Grund der Gradeinteilung der Skala ist die Ansertigung einer Frequenztabelle bzw. Eichkurve erforderlich. Da der Zeiger im Original durchgehend ist, wird ein Teil desselben abgesägt. Die Verbindung vom Potentio-meter 250 kOhm zu den Kondensatoren C1 bis C5 erfolgt über ein Koaxkabel durch eine Bohrung im Chassis. Beachtenswert ist, daß Potentiometer älterer Bauart einen Drehwinkel von 270 Grad haben, die neueren Ausführungen, 25 mm Ø, lassen sich bis etwa 300 Grad regeln. Da die Skala mit 270 Grad bereits fertig war, mußte eine Begrenzung eingebaut werden, die sich später bei der Eichung als sehr vorteilhaft zeigte. Zum Einführen der üblichen Achsen (8 mm Ø) ist im Antrieb der Skala eine entsprechende Bohrung mit drei Madenschrauben. Eine dieser Schrauben wird gegen eine etwa 15 mm lange Schraube ausgetauscht, sie stößt dann beim Drehen an den nach Höhe und Seite ver-änderlichen Winkel, wodurch sich An-fang und Ende des Drehwinkels leicht festlegen lassen. In Bild 3 ist die Anordnung der Begrenzung erkennbar. Bei der Befestigung des Winkels mit zwei Stück Schrauben M 3 ist der Schlitz 4 4 mm breit zu schneiden, um eine Korrektur nach der Seite zuzulassen.

Literaturangaben:

Joachim Herrfurth: Bauanleitung für einen Rechteckwellengenerator, radio und fernschen, 5/1961. Seite 146

Einfacher Rechteckwellengenerator, radio und fernschen, 20/1959, Seite 649

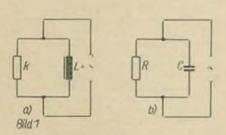

Erwin Voß: Rechteckwellengenerator, radio und fernschen, 10/1936, Seite 286

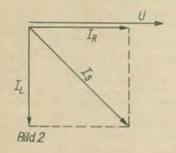

G. Herrmann und H. Sachs: Der Gegenparallelverstärker, radio und fernschen, 17/1957, Seite 522

Fritz Kunze: Spannungsstabilisatorröhren der DDR, radio wid fernsehen, 3/1960, Seite 85

Klaus-K. Streng: Der praktische Funkamateur, Bd. 30, "Messungen mit Rochteckspannungen", Seite 43, Deutscher Militärverlag

Schluß folgt





Parallelschaltung von Wirk- und Blindwiderständen

Bild I zeigt a) die Parallelschaltung eines Wirkwiderstandes und eines induktiven Blindwiderstandes und b) die Parallelschaltung cines Wirkwiderstandes und eines kapazitiven Widerstandes. Während die an den Widerständen liegende Spannung in allen Fällen gleich groß ist, teilt sich der Strom durch die Stromverzweigung in zwei Teilströme auf. Bei der Parallelschaltung eines Wirkwiderstandes und eines induktiven Widerstandes (Bild 1a) teilt sich der Gesamtstrom I in den durch den Wirkwiderstand fließenden Strom IR, der mit der Spannung U in Phase liegt und den Teilstrom II, der gegenüber der Spannung U um 00° phasenverschoben ist. IL eilt der Spannung U nach. Bild 2 veranschaulicht diese Verhältnisse geometrisch

Man nennt diese Darstellung ein "Zeigerdiagramm". Die Pfeile darin stellen die physikalische Größe nach Richtung und Größe in der Maßeinheit dar. Unverkennbar ist die Ähnlichkeit mit dem aus der Physik bekannten "Parallelogramm der Kräfte". Nach den dafür geltenden Regeln wird auch mit dem Zeigerdiagramm gearbeitet. In Bild 2 wird so aus dem Zeiger IR und dem Zeiger IL durch zeichnerische Ergänzung zum Parallelogramm, das hier in ein Rechteck übergegangen ist, und durch Einzeichnen der Diagonalen der Zeiger 18 (Scheinstrom) erhalten. Die Größen IR und II, werden also nicht arithmetisch addiert (dann müßte man sie in einer Richtung aneinander antragen). sondern geometrisch, wobei also neben ihrer Größe auch ihre Richtung berticksichtigt

Mit der Konstruktion nach Bild 2 erhalt man zwei rechtwinklige Dreiecke mit den Seiten IR, IL und Is, für die nach dem Satz des Pythagoras gilt:

$$I_{8}^{2} = I_{R}^{2} + I_{L}^{2}$$
 (1)

$$I_S = \sqrt{I_R^2 + I_L^2}$$
. (2)

In Gleichung (2) läßt sich nach dem Ohm-

$$\mathbf{1}_{R} = \frac{\mathbf{U}}{\mathbf{R}} \text{ and für } \mathbf{1}_{L} = \frac{\mathbf{U}}{\mathbf{X}_{L}}$$

einsetzen. Man erhält

$$I_{S} = \sqrt{\frac{U^{2}}{R^{2}} + \frac{U^{2}}{X_{L}^{2}}}$$
 (3)

nach Ausklammern und Radizieren von U

$$I_8 = U \sqrt{\frac{1}{R^2} + \frac{1}{X_L^2}}$$
 (4)

$$\frac{I_S}{U} = \sqrt{\frac{1}{R^2} + \frac{1}{X_L^2}}.$$
 (5) Fir die linke Seite der Gleichung (5) kann

$$\frac{I_S}{U} - \frac{1}{Z}$$

und erhält damit die endgültige Formel für die Berechnung der Parallelschaltung eines Ohmschen und eines induktiven Wider-

$$\frac{1}{Z} = \sqrt{\frac{1}{R^2} + \frac{1}{X_L^2}} \eqno(6)$$
 oder nach Umformung:

$$\frac{1}{Z} = \sqrt{\frac{R^2 + X_L^2}{R^2 \cdot X_L^2}}$$
 (7)

$$Z = \sqrt{\frac{R^2 \cdot X_1^2}{R^2 + X_1^2}}.$$
 (8)

Beispiel: Von der Parallelschaltung eines Ohnischen und eines induktiven Widerstandes sind bekannt: $R = 1400 \Omega$, L = 5 H und 1 - 50 Hz. Gesucht wird der Scheinwider-

Lösung: Es wird Formel (8) benutzt. Da $X_L - \omega L = 2 \pi f L$, crhâlt man mit den gegebenen Werten folgende Gleichung:

$$Z = \frac{1}{100^2} \frac{(0.28 \cdot 50 \cdot 5)^2}{(0.28 \cdot 50 \cdot 8)^2}$$

und als weiteren Rechengang:

$$Z = \sqrt{\frac{1400^2 \cdot 1570^2}{1400^2 + 1570^2}}$$

$$Z = \sqrt{\frac{14^2 \cdot 10^4 \cdot 18,7^2 \cdot 10^3}{10^4 \cdot (14^2 + 15,7^2)}}$$

$$= 10^2 \sqrt{\frac{190 \cdot 10^4 \cdot 240,5}{442,5}}$$

$$Z = 10^2 / \sqrt{109,2}$$

$$Z = 1045 \Omega$$

In der Praxis wird statt des Widerstandes
(1) oft sein reziproker Wert, der Leitwert, benutzt. Für den Wirkleitwert setzt man das Formelzeichen G, für den Blindleitwert eines induktiven Widerstandes das Formolzeichen BL und für den Scheinleitwert das Formelzeichen Y. Damit wird aus Formel (0):

$$Y = \sqrt{G^2 + B_L^2}, \qquad (9)$$

$$G = \frac{1}{R} \text{ und } B_L = \frac{1}{X_L}$$

Für die Parallelschaltung eines Wirkwiderstandes und eines kapazitiven Blindwider-standes lautet die Formel analog:

$$Y = V G^2 + B_C^2. (10$$

Bei der Benutzung der Formeln (0) und (10) sind die Rechenoperationen im allgemeinen einfacher. Zum Vergleich wird im folgenden die Lösung des angegebenen Beispiels unter Benutzung der Formel (9) gezeigt

$$Y = \frac{1}{Z} = \sqrt{G^2 + B_L^2}$$

Nebenrechnur

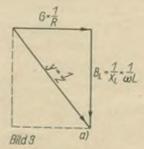
$$G = \frac{1}{1400} = 7.13 \cdot 10^{-4} \text{ S (Siemens)},$$

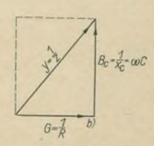
$$B_{L} = \frac{1}{6.28 \cdot 50 \cdot 5} = 6.37 \cdot 10^{-4} \text{ S}$$

Die erhaltenen Zahlen der Nebenrechnung werden in Formel (9) eingesetzt:

$$Y = \sqrt{(7,13\cdot 10^{-4})^2 + (6,37\cdot 10^{-4})^2}$$
.

Die Ausrechnung ergibt:


$$Y = \sqrt{10^{-8} (7,13^{2} + 6,37^{2})}$$


$$10^{-4} \sqrt{51 + 40,5}$$

$$Y = 10^{-4} \sqrt{01,5} = 9.56 \cdot 10^{-4}$$

$$Z = \frac{1}{V} = 1046 \Omega$$

Auch die Formeln (9) und (10) lassen sich mit Hilfe des Satzes des Pythagoras geometrisch veranschaulichen (Bild 3). Die Aufgabe der Berechnung der Parallelschaltung cines Wirk- und eines Blindwiderstandes laut sich somit unter Benutzung der Leitwerte auch grafisch lösen.

Nun ist aber die grafische Lösung nicht von vornherein günstiger als die rechnerische. Man wird sie nur dann benutzen, wenn sich für Wirk- und Blindleftwert ein genieinsamer Maßstab finden läßt, der eine bequeme zeichnerische Darstellung erlaubt, die auch hinreichend genaue Ergebnisse liesert

lm gewählten Beispiel lassen die in der Nebenrechnung erhaltenen Zahlen für G und B_L eine graßsche Lösung zu. Als Maßstab für die Zeichnung wählt man $1\cdot 10^{-4}\,\mathrm{S}=1\,\mathrm{cm}$.

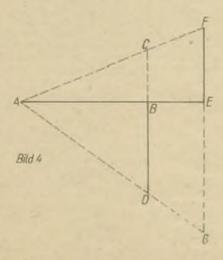
Bei der Berechnung der Parallelschaltung eines Wirk- und eines Blindwiderstandes wird man also folgenden Weg wählen:

- Durchführung der Nebenrechnung für die Benutzung der Formeln (0) bzw. (10), also Errechnung der Leitwerte,
- Überprüsen der Ergebnisse der Nebenrechnung auf Eignung für eine grafische Lösung der Aufgabe,
- je nach dem Ergebnis der Überprüfung die gra
 üsche Lösung oder die rechnerische unter Benutzung der Formeln (9) bzw. (10) durchführen.

Wenn jedoch die Blindwiderstände X_L bzw. X_C gegeben sind, wird man vorteilhaft die Formeln (10) bzw. (11) oder (12) benutzen.

Aufgabe 1: Leite die Formeln für die Parallelschaltung eines Wirkwiderstandes und eines kapazitiven Blindwiderstandes ab! Sie lauten:

$$\frac{1}{Z} = \sqrt{\frac{1}{R^2} + (\omega C)^2}.$$
 (11)


bzw

$$z = \int \frac{R^2}{1 + \omega^2 C^2 R^2}.$$
 (12)

Aufgabe 2: Berechne den Scheinwiderstand der Parallelschaltung einer Spule mit einer Induktivität von 2,6 mH und eines Widerstandes von 250 \Omega bei einer Frequenz von 10 kHz!

Lösung der Aufgaben aus dem vorigen Heft

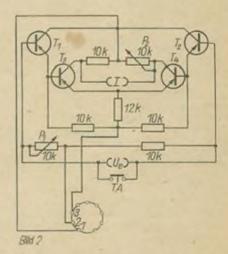
1) Zunächst sind die Blindwiderstände für die Spule und den Kondensator zu errechnen. Es ist $X_L=5000\,\Omega$ und $X_C=2480\,\Omega$ (für die Übertragung in eine Zeichnung abgerundete Werte). Durch Zeichnung findet man: $U_L=14\,V$, $U_C=7\,V$, $U=11,7\,V$ und $\cos\,\varphi=0,8$.

2) Die anzufertigende Dreieckskonstruktion zeigt Bild 4. Die gegebenen Stücke sind stark ausgezogen. Man zeichnet zunächst $AB \triangle R$ und $AE \triangle U_R$. In E wird auf AE die Senkrechte $EF \triangle U_L$ errichtet. Die gegebene Gleichung $R_C - R_L = 500\,\Omega$ wird mit -1 multipliziert, und man erhält nach Umstellung $R_L - R_C = -500\,\Omega$. Das Minuszeichen vor dem Zahlenwert bedeutet, daß man die Senkrechte auf AB in B nach unten errichten muß.

Mehgeräte mit Transistoren (5)

Tonfrequenzvoltmeter und Gleichstromvoltmeter

R. ANDERS


Besonders für den NF-Amateur ist der Nachbau eines Tonfrequenzvoltmeters lohnend. Vorliegende Schaltung nach Bild I wurde aus einer Schaltung der Firma Burchard entwickelt und den in der DDR erhältlichen Bauteilen angepaßt. Die Empfindlichkeit des Gerätes beträgt bei Vollausschlag des Instrumentes 10 mV und umfaßt einen Frequenzbereich von 10 Hz bis 30 kHz, was den NF-Anforderungen genügen dürste. Durch einen entsprechend dimensionlerten Spannungsteiler im Eingang lassen sich selbstverständlich noch andere, höher liegende Spannungsbereiche herstellen. Für die Transistoren T 1 bis T3 werden Transistoren vom Typ OC 811 bzw. OC 824 eingesetzt. Für T 4 und T5 je ein OC 818. Besser noch ist jedoch für T1 die Verwendung eines OC 812 oder OC 826. T 1 soll ein β von etwa 20, T3 und T4 ein ß von mindcstens 40 besitzen. Der Eingangswiderstand beträgt bei Ue = 10 mV etwa 100 kOhm.

Die Temperaturabhängigkeit des Voltmeters ist äußerst gering. Zur Linearisierung des Frequenzganges wurde eine Gegenkopplung vorgesehen. Trotz dieser Gegenkopplung liegt die Gesamtverstärkung immer noch bei etwa 80 dB. Die in Gractzschaltung liegenden vier Germanlumdioden werden durch den vorgeschalteten Widerstand 1 kOhm weitgehend temperaturkompensiert. Ausgangsseitig liegt die Gleichrichterbrücke am Emitter von T3 und bewirkt einen konstanten Ausgangsstrom und eine Linearisierung der Instrumentenskala. Der Gegenkopplungsgrad läßt sich mit dem Potentiometer P1 einstellen. Mit diesem Potentiometer wird die Elchung des Gerätes durchgeführt.

Eine einfache Tasterspitze mit einer Germaniumdiode kann ebenfalls am Eingang angeschlossen werden. Es können dann modulierte HF-Spannungen mit dem Kopfhörer abgehört werden. Der Hörer wird an den Buchsen Hö angeschlossen. Das Instrument ist an die Buchsen J anzuschließen.

Im Gegensatz zu den Transistoren T1 bis T4 wird der Transistor T5 nicht stabilisiert. Eine Veränderung Arbeitspunktes des Transistors spielt beim Abhören mittels Kopshörer keine Rolle. Bei vorliegender Schaltung wird die temperaturabhängige Arbeitspunktverschiebung von T 5 dahingehend ausgenutzt, daß man die Basiselektroden der Transistoren T1 und T2 mit der Kollektorspannung von T5 versorgt. Verringert sich z.B. bei Temperaturerhöhung die Kollektorspannung von T5. so verringert sich entsprechend auch der Kollektorstrom von T1 und T2. Die Verstärkung ändert sich damit im richtigen Sinne. Mit dem Potentiometer P2 kann somit der gewünschte Kompensierungsgrad eingestellt werden. Stellt man z. B. eine Überkompensierung ein, das heißt, der Schleifer von P2 steht am linken Anschlag (A), so wird die temperaturabhängige Kollektorspannung an der Basis von T1 und T2 wirksam. Die Gesamtverstärkung verringert sich so-mit bei steigender Temperatur. Steht dagegen der Schleifer von P2 am rechten Anschlag (B), wird die Verstärkung bei steigender Temperatur größer. In

Bild 2: Schaltung eines Gleichstramvoltmeters mit Transistoren

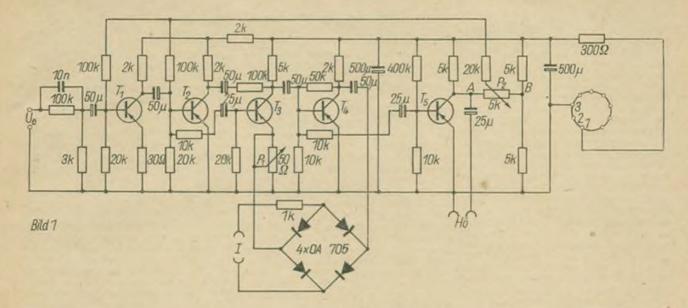


Bild 1: Scholtung eines Tonfrequenzvoltmeters

Mittelstellung des Schleifers ist die Verstärkung nahezu temperaturunabhängig. Steht eine Zenerdiode zur Verfügung, so läßt sich die Stabilität der Schaltung noch weiter verbessern.

Die Werte der im Schaltbild angegebenen Koppelelkos sollten keinesfalls kleiner gewählt werden. Die Betriebsspannung des Voltmeters beträgt 9 V. Bild 2 zeigt die Schaltung eines kleinen und sehr einfach aufgebauten Gleich-

spannungsvoltmeters. Dieses Voltmeter eignet sich besonders gut zur Messung kleiner Gleichspannungen. Die Empfindlichkeit liegt bei Verwendung von Transistoren mit großem β bei etwa 20 mV bei Vollausschlag des Instrumentes. Der Eingangswiderstand beträgt etwa 1 MOhm je Volt. Auch läßt sich eine Bereichserweiterung durch entsprechende Serienwiderstände erreichen. Bei dieser Schaltung läßt sich eine ausreichende Stabilität dadurch erreichen, daß man sämtliche Transistoren in ein Medlum guter Wärmeleitfähigkeit einbettet. Die Stromausnahme

des gesamten Gerätes beträgt nicht ganz 0,5 mA.

Der Abgleich des Gerütes geschieht wie folgt. Die Taste T_A wird gedrückt und der Eingang somit kurzgeschlossen. Mit P1 wird nun das Instrument auf Null eingestellt. Anschließend wird T_A geöffnet und mit P2 die Nullstellung des Instrumentes nachgestellt. Gegebenenfalls muß dieser Vorgang mehrmals wiederholt werden, was jedoch selten in Frage kommen dürfte. Die Betriebsspannung beträgt 9 V mit Abgriff bei 4,5 V. An den Buchsen J wird das Instrument angeschlossen.

Für den Amateur-Mehplatz

Ein durchstimmbarer NF-Generator hoher Konstanz

H. JAKUBASCHK

Schluß aus Heft 12/1963

Der Netzteil weist keine wesentlichen Besonderheiter auf. Die vom Netztrafo zu liefernden Ströme und Spannungen sind angegeben. Die Heizung der Röl bis 3 ist mit den beiden 100-Ω-Widerständen symmetriert, um ein "In-Tritt-Fallen" des Generators auf Vielfachen der Netzfrequenz (besonders bei 50 und 100 Hz) zu vermeiden, das sonst bei geringfügig abweichender Frequenz (z. B. 50,5 Hz usw.) zu unstabilem Verhalten des Generators führen kann. Zwar machte sich dieser Einfluß beim Mustergerät nicht allzustark bemerkbar; bei oszillografischen Untersuchungen, bei denen es auf hochkonstante Frequenz in der Gegend dicht neben 50 und 100 Hz ankam, störte diese leichte Synchronität aber doch. Aus diesem Grunde wurde auch auf gute Siebung der Anodenspannung geachtet. Der

I-k Ω -Siebwiderstand im Netzteil kann, wenn die Platzverhältnisse das zulassen (war beim Mustergerät nicht der Fall), vorteilhaft durch eine Drossel ersetzt werden. Auf eine andere, beim Mustergerät anfänglich beobachtete Fehlermöglichkeit sei hier noch hingewiesen: Es empfiehlt sich, Rö 1 in einigem Abstand vom Netztrafo anzuordnen. Es kann sonst geschehen, daß dessen magnetisches Streufeld, wenn es relativ kräftig ist und Rö 1 trifft, in dieser den Elektronenstrom "magnetisch moduliert", was ebenfalls zu einem "Mitziehen" der Frequenz bei 50 und 100 Hz führen kann!

Rö 4 wird aus einer eigenen Trafowicklung geheizt, die einpolig an Masse liegt und gleichzeitig die negative Gittervorspannung für die Dämpfungsröhre liefert. Hier ist ebenfalls auf ausreichende Siebung zu achten. Für die beiden mit 50 µF angegebenen Niedervoltelkos können zweckmäßig 100-µF-Typen mit ausreichend geringem Reststrom eingesetzt werden. Für D2 ist außer der OA 625 auch die OY 100 oder jede ähnliche Diode geeignet, auch ein kleiner Niedervolt-Selenbeliebig Gleichrichter genügt. Für Rö 4 können ebenfalls Selengleichrichter eingesetzt Die Anodenspannung für werden. Rö 1 und Rö 2 ist mit Rö 5 stabilisiert, hier ist an Stelle der Glimmstabilisatorröhre StR 150/40 auch jeder andere 150-V-Typ (z. B. die ältere GR 150 o. ä.) geeignet. R7 ist dann so abzuändern, daß sich der für den jeweiligen Stabi-Typ crforderliche mittlere Brennstrom einstellt. Eine etwa vorhandene Zündelektrode des Stabl wird über 1 $M\Omega$ an die Anodenspannung vor R 7 gelegt, die beim Mustergerät 220 V betrug. Sie darf - je nach Auslegung des Nctz-teiles - zwischen 210 und 250 V liegen. Lampe La im Netzteil dient als Einschaltkontrolle und kann evtl. als Skalenbeleuchtung für P2 ausgebildet

Der Abgleich

Zur Ersteichung ist ein guter Vergleichs-Tongenerator notwendig, den man sich ggs. in einem Werkstattbetrieb leihen oder die Eichung dort vornehmen kann. P1 wird dabei so sestgelegt, daß der Punkt für den gewünschten Bereichsanfang bei etwa 10 Prozent des Skalen-Drehwinkels liegt und das Bereichsende sich kurz vor Skalenende einstellt. Die Bereiche überlappen dann ausreichend. Pl wird hiernach nicht mehr verstellt und kann bei späteren Reparaturen o. ä. Eingriffen zur Nacheichung dienen, die dann nur noch für eine Frequenz (im einfachsten Fall für 50 Hz) vorgenommen zu werden braucht. Bei der Erstelchung zeigt sich, ob die Kondensatoren an S Lausreichend übereinstimmen, um mit einer einzigen Skala auszukommen. Abweichungen am höherfrequenten Ende des Bereiches III in Richtung zu tieseren Frequenzen haben fast immer ihre Ursache in zu großen Verdrahtungskapazitäten, Falls sie nicht zu groß sind und keine gleichzeitigen nennenswerten Amplitudenfehler auftreten (auch Ansteigen der Amplitude nach höheren Frequenzen im Bereich III kann zu hohe Verdrahtungskapazität zur Ursache haben!), genügt es dann, für Bereich III eine getrennte Skala aufzubringen. Die Skala von P2 soll zwecks ausreichend genauer Ablesung bei Rundskalen wenigstens 10 mm Radius, bei Linearskalen wenigstens 30 mm Zeigerweglänge haben.

Bevor diese Frequenzeichung durchgeführt wird, muß die Amplitudenregelung wenigstens annähernd richtig abgeglichen sein. Hierzu ist ein Ausgangsspannungsmesser erforderlich, für den sich wegen des niederohmigen Ausganges bereits ein guter Vielfachmesser mit wenigstens 4000 Ω/V eignet, falls kein Röhrenvoltmeter verfügbar ist. Die Einstellung erfolgt im Bereich II und wird später in Bereich I und III lediglich kontrolliert. Sehr nützlich ist ein Oszillograph, um die Kurvenform beobachten zu können. Er ist im übrigen auch für die Frequenzeichung nützlich (Frequenzvergleich), die sonst behelfsmäßig nach Gehör (Vergleichsgenerator auf Schwebungsnull bringen) erfolgen muß, ein bei hohen Frequenzen nicht sehr genaues Verfahren, wegen des dann unzureichenden Gehörsinnes. Der Abgleich der Amplitudenregelung erfolgt mit P3 und P5. Dies sind ebenso wie P1 kleine Einstellregler für Schraubenzieherbedienung, die im Gerätelnnern eingelötet werden. An der Frontplatte sind als Bedienungsorgane nur P 2, P 4, S I und S 2 vorhanden. Aus der Beschreibung der Regelung ergibt sich bereits, daß der Abgleich mit P3 und P 5 wechselseitig erfolgen muß. Zunächst bringt man P 5 in Mittelstellung und versucht mit P3 im Bereich II den Schwingungseinsatz zu erreichen. Falls dieser wesentlich von Mittelstellung P3 abweicht, empfiehlt es sich, R 5 und R 6 gegensinnig etwas im Wert zu ändern, bis ungefähre Mittelstellung von P3 erreicht ist (Summe R5 + R6 + P3 muß annähernd konstant bleiben und bei 10 bis 15 kΩ als Grenzwerte liegen!). Der Schwingeinsatzpunkt bei P3 ist relativ sehr scharf ausgeprägt. P3 wird nun so eingestellt, daß die Schwingungen auf allen drei Bereichen an beiden Skalenenden eben noch nicht abreißen. Der Schleifer von P3 soll nicht näher zur Anode hin stehen, als hierfür notwendig. Ergibt sich dabei eine unterschiedliche Stellung für die Bereiche I bis III (bzw. ist die Amplitude an Bereichsanfang und Bereichsende bzw. der Bereiche untereinander verschieden), so ist P5 ungünstig eingestellt. Man verstellt dann P5 schrittweise um geringe Beträge nach oben oder unten und versucht danach mit P3 Neueinstellung nach den genannten Gesichtspunkten.

Da sich bei Änderung von P 5 der Schwingeinsatzpunkt bei P3 verschiebt. kann sich u. U. auch in diesem Fall cine Anderung von R5 und R6 notwendig machen, um bei P3 genügend Regelbereich zu behalten. Durch diesen wechselseitigen Abgleich wird eine Einstellung gefunden, bei der die Amplitude über alle Bereiche völlig konstant ist. Die Ausgangsamplitude wird dann (P4 voll aufgedreht) bei etwa 5 V liegen. Sie hängt weitgehend von der Stellung von P5 ab, maßgebend ist jedoch dessen Einstellung auf geraden Amplitudengang! Diese wechselseitige Einstellung muß mit etwas Sorgfalt durchgeführt werden, ist jedoch wegen des relativ großen Regelumfanges Regelschaltung nicht schwierig.

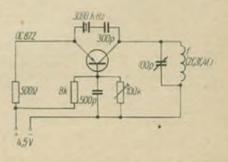
Ist die Einstellung für konstante Amplitude gefunden, so kann versucht werden, durch Verstellung von P3 und P5 erforderlichenfalls noch höhere Ausgangsspannungswerte zu erreichen, ohne daß die Amplitudenkonstanz über den Durchstimmbereich sich verschlechtert. Dabei sollte aber besonders an den Bereichsenden die Kurvenform oszillographisch kontrolliert werden, da es bei falscher Einstellung von P3 und P5 zu Begrenzungsessekten kommen kann, die scheinbare Amplitudenkonstanz am Voltmeter vortäuschen können und den Klirrfaktor beträchtlich erhöhen. Sie sind an einer versormten Sinusschwingung (eingeknickte Flanke, bei stärkerer Begrenzung verflachtes Dach) sofort sichtbar.

Nach beendeter Regelungseinstellung (sie wird mit P3 beendet!) erfolgt die endgültige Frequenzeichung. Da dle Einstellung von P3 und P5 relativ geringen Einfluß auf die Frequenz hat, kann auch so vorgegangen werden, daß die Regelung zunächst überschlägig abgeglichen, dann P2 geeicht wird. Nachdem später die Regelung endgültig abgeglichen ist, kann die dadurch verursachte geringe Skalenverschiebung mit P1 bei einer einzigen Frequenz (Bereich I, 50 Hz) ausgeglichen werden. Bei späterem Röhrenwechsel von Rö 1 oder Rö 2 macht sich ebenfalls ein geringer Nachgleich bei P3 und danach bei P1 erforderlich. Röhrenalterungen

haben auf die Funktion des Generators relativ geringen Einfluß. Bei dem über reichlich I Jahr fast täglich mehrere Stunden betriebenen Mustergerät war keinerlei Nachgleich erforderlich. Netzspannungsschwankungen von ± 20 Prozent ergaben keinen merklichen Einfluß auf Frequenz und Amplitude.

Der Aufbau

Zum mechanischen Aufbau wurde bei der Schaltungsbeschreibung bereits einiges gesagt. Gehäusegestaltung und Chassisaufbau können ganz nach den persönlichen Wünschen erfolgen. Es ist edoch zur Verwendung eines Ganzmetallchassis (3 mm Alu) zu raten. Die Frontplatte wird im wesentlichen von der Skalenfläche für P 2 ausgefüllt werden. Neben oder unter ihr finden S la. b und P4 sowie S2 und La Platz. Dabei soll S1 in unmittelbarer Nähe von Röl so angeordnet sein, daß an ihm dle Kondensatoren unmittelbar angelötet werden können und sich kürzestmögliche Verbindungen zu Rö 1 geben. Rö 2 mit P 3 und P 5 wird dicht neben Röl angeordnet, Rö3 und P4 dicht beieinander und beim Ausgangsanschluß A. Für A genügen bereits normale Steckbuchsen, besser ist jedoch eine Koaxialbuchse mit zugehörigem abgeschirmtem Meßkabel. Auf die unbedingte Notwendigkeit kurzer, kapazitätsarmer Verdrahtung wurde bereits hingewiesen, ebenso in diesem Zusammenhang auf die Montage von C1, C 2 und C 7, erforderlichenfalls (wenn räumlich große Kondensatoren oder solche mit Metallgehäuse benutzt werden), auch C 4 und C 5.


Abgeschirmte Leitungen dürfen nirgends benutzt werden. P4 soll, falls man sich nicht entschließt, diesen Regler mit 100 kΩ und C5 mit 1 μF zu bemessen, eine kleine Ausführung ohne Metallboden sein. Sein Knopf kann eine kleine, in Volt geeichte Skala bekommen. Diese Skala wird nach Abschluß aller anderen Arbeiten zuletzt im Bereich 11 mit dem Vielfachmesser oder einem Röhrenvoltmeter geeicht.

Im übrigen gelten die üblichen Gesichtspunkte für NF-Geräte, insbesondere ist darauf zu achten, daß alle Stromversorgungsleitungen in ausreichendem Abstand von der Verdrahtung um Röl und 2 verlegt werden und keine Erdschleisen entstehen (Massepunkt für jede Stufe, Chassis nur an einer Stelle mit Masse verbinden usw.), um keinen Netzbrumm einzuschleppen.

Transistor-Quarzoszillator

Für einen speziellen Zweck wurde ein Quarzoszillator benötigt. Da er wenig Platz einnehmen sollte, wurde eine Transistorschaltung ausgewählt und erprobt. Die Einstellung ist etwas kritisch. Einmal eingestellt, schwingt der Oszillator aber stabil. Mit dem Potentiometer wird ein Kollektorstrom von etwa 0,5 mA eingestellt. Der Schwingkreis wird auf die Quarzfrequenz oder ein Vielfaches von ihr eingestellt. Im Resonanzfall ergibt sich ein kleiner Dip am Instrument. Mit dieser Schaltung konnte mit einem 7-MIIz-Quarz die

vierte Oberwelle ausgenützt werden, während die sechste Oberwelle noch nachgewiesen werden konnte. Strietzet

Ein Konverter für 432 MHz

E. BARTHELS - DM 2 BUL/3 ML

Schluß aus Heft 12/1963

Ein Wort noch zum Versilbern: Der Tuner ist nicht versilbert, er geht aber trotzdem. Es ist zwar schön, einen schwer versilberten 70-cm-Tuner zu haben, doch dieses Versilbern ist kein Hinderungsgrund beim Mitmachen auf 70 cm! Wir sind auch nicht in der Lage, uns für einige 100 DM einen fertigen Konverter im Laden kaufen zu können. Und nun zur Schaltung, die sich grob in drei Teile gliedern läßt.

1. Das Eingangsteil

Das Antennenkabel wird direkt oder über einen kleinen Kondensator mit der Katode der ersten EC 86 verbunden. Da der Eingangswiderstand der EC 86 zwischen 60 und 80 Ohm liegt, ist diese Maßnahme erlaubt. Sie spart außerdem einen Topfkreis. Das Eingangssignal wird in der Vorstufe verstärkt und über den Rauschpegel der Mischröhre gehoben. In der Anode der ersten EC 86 liegt ein 1/2-Kreis, der auf 432 MHz abgestimmt ist. Über eine Koppelschleise gelangt das Signal auf den Katodenkrels der Mischröhre. In diesen Katodenkreis wird auch die Oszillatorspannung aus dem 1/4-Kreis der letzten Verdopplerstufe eingekoppelt. In der Anode der Mischröhre liegt ein Bandfilter, über das die Zwischenfrequenz ausgesiebt wird. Der Oszillator liefert eine Endfrequenz von 403 MHz, es ergibt sich also bei einem Empfangsbereich von 432 bis 434 MHz (70-cm-DX-Bereich) eine ZF von 29 bls 31 MHz. Um die erforderliche Bandbreite von 2 MHz zu erhalten, wurden die Kreise des Bandfilters noch zusätzlich bedämpft.

2. Die Trennstufe

Auf das Bandfilter folgt ein A-Verstärker mit einer EF 80. Er verstärkt die ZF noch etwas, wirkt vor allem aber als Trennstufe. Man sollte eine solche Trennstufe besonders wegen der Rückwirkungen des nachgeschalteten Empfängers in Form von unerwünschten Mischprodukten mit Oberwellen der Empfängeroszillatoren (Pfeifstellen) immer vorsehen. Das ZF-Signal wird über eine Windung auf dem letzten. ebenfalls bedampften Anodenkreis auf ein Koaxkabel gegeben, das mit dem Nachsetzer verbunden wird.

3. Der Oszillator

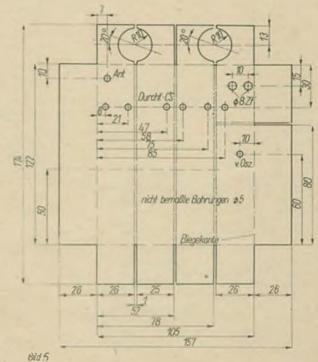
Die Frequenz des Quarzes f 8.394 MHz muß verachtundvierziglacht werden. Daraus resultiert die hohe Stufenzahl. In der ersten EF 80 schwingt der Quarz in einer kapazitiven ECO-Schaltung, in der Anode wird seine dritte Harmonische ausgesiebt, in der nächsten EF 80 verdoppelt und in weiteren Röhren auf die Endfrequenz von 403 MHz gebracht. Interessant an der Schaltung, die von DM 2 BDI, angege-

ben und in [6] beschrieben wurde, ist die Schaltung der ECC 91 als "echter" Verdoppler (Push-Push) und die Verwendung von Pi-Kreisen bei höheren Frequenzen. Durch diese Pi-Kreise erhält man größere L-Werte, damit höhere Güte und bezieht die Röhrenkapazitäten mit in den Kreis ein. Für den Trimmer sind größere Werte verwendbar, die Abstimmung wird vereinfacht

Mit anderen Quarzen erhält man andere Zwischenfrequenzen, so ergeben sich mit den 24,45-MHz- und 26-MHz-Quarzen nach Versechzehnfachung Zwischenfrequenzen von 41 bis 43 MHz (FuG 16) bzw. 20 bis 22 MHz. Es ist zweckmäßig, Oszillator und Eingangsfrequenz nicht zu weit auseinander zu legen, da man sonst die Oszillatorspannung nur mit Mühe in den Katodenkreis der Mischröhre zwingen kann.

Zum Chassis:

Das Eingangsteil wird aus 1-mm-Messingblech zusammengelötet, nachdem zuvor alle Öffnungen gebohrt wurden. Einzelheiten gehen aus den Fotos und Zeichnungen hervor. Von den Röhrenfassungen wird der Mittelansatz entfernt und die Gitteranschlüsse sowie ein Heizungsanschluß nach dem Einsetzen mit dem Gehäuse verlötet. Die Innenleiter werden freitragend zwischen den Trimmern und den Anschlüsschen den Trimmern und den Anschlüsschen den Trimmern und den Anschlüsschen


sen an der Röhrenfassung aufgehängt. Das Eingangsteil wird durch einen festsitzenden Deckel, der innen eine Schaumgummischicht mit aufgeklebter Kupfer- oder Messingfolie besitzt, verschlossen.

Da der Innenleiter des letzten Oszillatorkreises auf Anodenspanungspotential liegt, kann er nicht auf der Trennwand verlötet werden, sondern muß über einen "Klatsch"-Kondensator HFmäßig geerdet werden. Zu diesem Zweck wird an das obere Ende des Innenleiters eine Platte gelötet, die etwas kleiner als der Topfkreisquerschnitt ist (etwa 22 × 22 mm) und unter Zwischenlage einer dünnen Folie (Triazetatfolie) mit der Trennwand isoliert ver-schraubt wird. Die Verbindungsschrauben müssen ebenfalls isoliert werden. Verbindung des Tuners mit dem Chassis sieht etwas eigenartig aus. Sie ermöglicht aber die kürzestmögliche Zuleitung von Antenne, Oszillator und ZF-Stufe bei gleichzeitiger guter Zugänglichkeit des Eingangsteiles. Sicher lassen sich aber auch dem Auge besser gefallende Lösungen als dieser "Rucksacktuner" finden. Zu dem Aufbau des Oszillators sei noch einmal auf [6] verwiesen. Alles übrige entnimmt man den

Zum Abgleich:

Zuerst werden die Oszillatorstufen in Betrieb genommen, alle Kreise werden mit dem Griddipper vorabgeglichen und im Betrieb auf Maximum gezogen. Gute Dienste leistet dabei ein µA-Meter mit Diode und einer kleinen Koppelschleife. An der Katode der Mischröhre müssen etwa 1 bis 2 Volt HF stehen, um zufriedenstellend mischen zu können. Diese Spannung wird über einen Röhrenvoltmeter bei abgeklemmter Anodenspannung gemessen.

Dann werden die Kreise für die ZF

-Bild 5 Maßskizza für das Konvertergehäuse

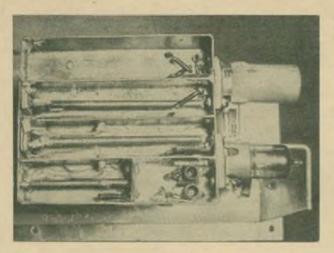


Bild 6 Bild in das geöffnete Konvertergehäuse

Ansicht der Verdrahtung der Osziliotorstulen

mit Hille eines Meßsenders und des nachgeschalteten Empfüngers abgeglichen. Nach Inbetriebnahme des Eingangsteiles lassen sich dunn die ersten Aussagen über ein Funktionieren des Gerätes machen.

Folgende Kriterien müssen erfüllt sein: 1. Zicht man den Oszillatorquarz, muß das Rauschen deutlich abnehmen. Tritt dieser Effekt nicht auf, ist die Mischamplitude zu gering.

- 2. Zieht man die Mischröhre heraus. muß das Rauschen stark abnehmen.
- 3. Ebenfalls muß beim Ziehen der Vorröhre das Rauschen abnehmen.

Ein Schwingen der Vorstuse ist gleichfalls ein Kriterium für deren Verstärkungswirkung. Abhille kann hier durch Neutralisation, Veränderung der Erdpunkte und Herabsetzen der Anodenspannung geschaffen werden.

Der Abgleich des Tuners ist das Schwierigste, weil hier im Normalfall ein Prüfgenerator fehlt. OMs in Dresden haben es da einfach, sie nehmen das S 9-Signal von DM @ UHF. Eine weitere Möglichkeit ist die Ausnutzung der Oberwellenausstrahlung der handelsüblichen Prüfgeneratoren, z. B. des PG 1. Man stellt den PG 1 auf die halbe Emplangsfrequenz ein, der vorhandene Oberwellenanteil (Klirrsaktor bei 10 Prozent) reicht sicher aus. Allerdings erhält man kein T9-Signal, sondern ein rauhes Zischen, das ziemlich unstabil ist, doch es ermöglicht einen Abgleich. Anstelle des PG 1 kann man auch den eigenen 2-m-Sender nehmen, dessen dritte Harmonische man dem Empfängereingang zuführt. Die oben berechneten Topfkreise lassen sich über einen sehr weiten Bereich durchstimmen, so daß man keine Befürchtungen wegen eines "Danebenliegens" haben braucht. Ein in [4] durchgerechnetes Beispiel verwendet einen Trimmer von 3 bis 7 pF, was einen Durchstimmbereich von 390 bis 500 MHz ergibt!

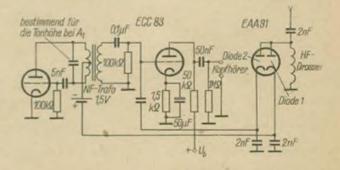
Durch Verbiegen der Koppelschleifen versucht man zum Schluß den Konverter auf maximale Leistung zu bringen. Der Einbau eines Eingangskreises erhöht die Selektion und transformiert den Antennenwiderstand geringfügig. Allerdings erhöht er die Fehlermöglichkeiten und bringt bei nicht korrekter Anpassung der Antenne (Wahl des Anzapfungspunktes) cher Verluste, deswegen wurde er auch weggelassen. Der Verfasser hofft, mit diesem Artikel der 70-cm-Arbeit etwas Auftrieb zu

Literaturangaben:

- UKW- und Deziarbeit bei DM 3 ML. funkamateur. Heft 9/1861
 Schweitzer. Dezimeterwellentechnik
 Rothammel. DM 2 ABK. Antennen-bisch
- Dohlus, DJ 3 QC, Elektronikingenicur-seite, Funktechnik, Heft 7 u. 8/1961 Rint, Handbuch der Hochfrequenz-
- DM 2 BQL. UKW- und Deziarbeit bei DM 3 ML, funkamateur, 3-5/1963

Schaltungshinweise und Werkstatt-Tips (8)

Monitore, kleine Geräte zum Abhören der eigenen Sendungen, sind für den Funkamateur äußerst wichtig. Nur so kann er die Qualität seiner Sendungen ständig (durch Mithören) überwachen. W 6 CQK machte hierzu einen originellen Scholtungsvorschlag (Bild 1):


Bei A 1-Betrieb werden die getasteten HF-Impulse von einer Hilfsantenne aufgenommen und in der Diode 1 der EAA 91 (oder 6 H 6) gleichgerichtet. Die so entstandene Gleichspannung (ihr Wert ist auf Grund der großen Feldstürke ebenfalls groß) dient zum Spelsen eines kleinen NF-Oszillators mit einer Triode und einem NF-Trafo. Da manche Oszillatoren bereits mit der Dioden-Anlaufspannung als Anodenbetrlebsspannung anschwingen, wurde die Anodenspannungsleitung des Oszillators eine "verkehrt gepolte" Monozelle eingefügt (zu beachten ist die Polarität der Monozelle). Ihre Spannung von 1,5 V muß erst "überwunden" werden, bevor die Anode gegenüber der Katode positiv wird, d.h., ein Elcktronenfluß in der Röhre überhaupt möglich ist.

Es entsteht ein getastetes NF-Signal vom gleichen Rhythmus wie die ausgestrahlte Sendung. Ein verbrummter Träger ist mit dieser Anordnung gut zu hören. In einem weiteren Triodensystem wird die NF-Spannung verstärkt und gleichspannungsfrei den Kopfhörern zugeführt. Zu beachten ist, daß die zusätzliche NF-Stufe eine Anodenbetriebsspannung von etwa 250 V aus dem Tx erhält!

Bei A3 richtet Diode 2 die HF-Spannung gleich. Das demodulierte Signal wird ebenfalls dem Steuergitter des erwähnten NF-Nachverstärkers zugeleitet und in den Kopshörern hörbar gemacht.

Ein anderes Problem ist die sogenannte Stummabstimmung des Empfängers. Gewiß gehört diese nicht zu den unbedingt notwendigen Einrichtungen, doch erweist es sich als nervenschonend. Schaltungen folgen im Teil 9.

Ing. Streng

Kristians kühner Gedanke

Endlich hatten wir es geschafft. Stefan Kristián, Vorsitzender der Grundorganisation des SVAZARM im Betrieb "Zornica", Bánovce bei Bebravou, rieb sich zufrieden die Hände. Was geschafft wurde, war die Gründung eines Zirkels für Funkamateure. Außer Stefan, der die Ausbildung im Zirkel übernommen hatte, gehörten zum Zirkel noch die Kollegen Bohuš Milovsky, Jozef Cagan, Villam Valach und noch elnige weitere

Stefan Kristian, Vorsitzender der GO des SVAZARM im Betrieb "Zornica", Bánovce/CSSR

Kollegen. Das war zu Beginn vorigen Jahres.

"Es ist nur schade, daß Simo nicht bei uns mitmachen will!", meint der Vorsitzende mit Kopfschütteln. "Der hat Erfahrungen! Der könnte uns so manchen guten Rat geben".

Man mußte eben ohne ihn ans Werk gehen. Material war ausreichend vorhanden. Über Kenntnisse verfügte Kollege Kristian auch und die übrigen hatten anfangs ebenfalls Interesse an der Sache. Sie begannen ihren ersten Empfänger zu bauen, hier und da mußten sie etwas verändern, dort wieder etwas überarbeiten - aber über den Bau des Empfängers kamen sie nicht hinaus. Die Freunde begannen die Lust zu verlieren. Ständig an derselben Sache herumbohren, gar nichts Neues anfangen, ach ... und nach einem halben Jahr war es aus mit der Begeisterung der Zirkel zerfiel.

"Das ist eine Schande" mußte der Vorsitzende bekennen. Im Grunde aber ging es ihm nicht so sehr um die Blamage. Er zerbrach sich den Kopf mit einer anderen Frage: Warum haben die Leute denn eigentlich die Lust verloren? Woran kann das liegen?

Wie wäre es denn, wenn wir uns einmal mit einer anderen Sache beschäftigen würden, überlegte er. Und dieser Gedanke ließ ihn nicht mehr los. Als Leiter der Instandhaltung hatte er einen Überblick über sömtliche Maschinen im Betrieb. Er wußte, daß aus Westdeutschland die teuren Kannengießer-Pressen nur deshalb eingeführt werden müssen, weil die einheimischen keine automatische Schaltung haben.

Wenn wir so einen Schalter... ertappte sich bei einem kühnen Gedanken. Zuerst erschrak er über seine eigene Kühnheit. Dann begann er näher zu überlegen, und schließlich ließ es ihn nicht mehr los. Wieviel Schaltbilder zelchnete er wieder. Wieviel Einzelteile gingen dabei kaputt! Aber es ließ ihm keine Ruhe. Die automatische Schaltung wurde geradezu der Sinn seines Lebens. Auch in der Nacht verfolgte sie ihn. Je komplizierter, je unmöglicher ihm die Sache erschien, desto verbissener arbeitete er daran. Dutzende von Fachbüchern - neue Versuche. Dutzende von Stunden, die er dem Funktionsmodell opferte, bis eines Tages... "Jungens! Jungens! Kommt her" rief er die, die ihn im Zirkel allein gelassen hatten.

"Zeig her!" Alle interessierten sich dafür.

"Das funktioniert tatsächlich, Stefan!" Sie montierten den Schalter auf eine tschechoslowakische Presse, stellten die Zeit ein, und Stefan drückte mit zitternden Fingern den Knopf. Fünf, zehn, zwanzig, fünfzig Sekunden und im Schalter knackte es; die Presse hob sich. Es funktionierte wirklich!

Im Verzeichnis der Verbesserungsvorschläge des Betriebes lesen wir unter der Nummer 50/63:

Stefan Kristian – automatischer Zeitschalter, Ergebnis: Erhöhung der Arbeitsproduktivität – Erhöhung der Qualität – Verbesserung des Arbeitsschutzes – Prämie zwanzigtausend Kronen.

Ihr hättet sehen sollen, wie der Funkamateurzirkel zu arbeiten begann. Nämlich...

Zuerst muß man aber sagen, daß die Betriebsleitung die Erfindung des SVAZARM-Mitglieds hoch einschätzte und der Betrieb "Zornice" in Banovce keine Pressen aus Westdeutschland mehr bezieht.

"Euer Zirkel, Kollege Kristián, soll bis Ende des Jahres noch vierzig solcher Schalter anfertigen; wir werden alle unsere Pressen damit ausstatten". So lautete die Anordnung des technischen Direktors, Kollegen Emil Budsky.

So begann also der Zirkel für Funkamateure wieder zu arbeiten. Alle, die ihn verlassen hatten, kamen wieder in den Zirkel, sogar Kollege Simo machte mit!

Wie sieht es mit der Ausbildung aus

fragten wir Horst Neckmann, DM 3 LH. Ausbilder im VEB Zementanlagenbau Dessau.

Dos Programm für dieses Jahr ist ihm bekannt. Er weiß auch, daß er 40 Mitglieder ausbilden soll, aber momentan ist es ihm noch schleierhaft, wie er das schaffen soll, Der Kreisvorstand Dessau geht in die vollen. Massenausbildung steht auf seinem Panier. Das scheint aber wirklich leichter gesagt als getan. well es im Kreisradloklub weder genügend Ausbilder noch Ausbildungs-möglichkeiten gibt. Auch Horst Neckmann hat seine Sorgen mit den Ausbildern. Ihr Wissen ist sehr unterschledlich. Sie müssen jetzt Gelegenheit bekommen, sich auf die Mit-benutzer-Prüfung vorzubereiten, das wird ihnen und den jungen Kameraden, die im Durchschnitt 14 Jahre alt sind, viel helfen.

Ob denn nun die vormilitärische Ausbildung sinnvoll mit der Fachausbildung verbunden wird, interessierte uns noch. Wir waren überrascht, vom Kameraden Neckmann zu hören, auf welch praktische Art das Problem in Dessau gelöst wird, nämlich so: an der Station gibt es nur fachliche Ausbildung, die vormilitärische ist Sache der Schulen. Wirklich praktisch, aber leider grundfalsch. Macht es doch wie viele andere. hinaus ins Gelände mit der FK 1! Dort kann man Ausbildung gewissermaßen Hand in Hand mit der Funkausbildung erfüllen. Und den Jungen macht es nebenbei bestimmt noch großen Spaß. Eines verstehen wir nicht ganz. Dessau

war einmal die Hochburg der Fuchsjäger. Heute gibt es hier keine Fuchsjagd mehr. Von ein paar Einzelgängern abgesehen. Diese Einzelgänger haben aber schon unsere Republik im Ausland vertreten. Auch Kamerad Neckmann gehört zu ihnen. Wäre es für sie nicht eine dankbare Aufgabe, ihre Heimatstadt wieder zu einem Begriff für die Fuchsjagd zu machen? Junge Menschen, die von ihnen lernen wollen, würden sich bestimmt finden.

Jeden Montag wird gebaut

Jeden Montag sind die Jungen in der Station. Sie kommen gern, denn bei Meister Nitsch können sie viel leinen (Bild oben links)

Ob as schon funktioniert? Wolfgang problert sein salbstgebautes Gerät (Bild oben rachts)

So mußt Du es mochen, Jörg. Meister Nitsch berät und hilft geduldig, wenn es noch nicht gleich klappt (Bild unten)

Die Arbeitsgemeinschaft Elektro-Nachrichtentechnik der Station Junger Naturforscher und Techniker in Genthin umfaßt drei Arbeitsgemeinschaften aus den Klassen der Oberstufe. Ihr gemeinsamer Lehrmeister ist der Uhrmachermeister Walter Nitsch, der trotz seiner 65 Jahre mit der Jugend verbunden ist.

Den Jungen Pionieren steht reichlich Handwerkzeug zur Verfügung; Schraubstöcke, Sägen, Hämmer, Zangen, Lötkolben und alles was man braucht. Sie lernen fachgerecht damit umzugehen. Zur ersten Arbeit gehört das Ansertigen eines Schlüsselbrettes aus Eisen. Dabei lermen sie, wie man anreißen, nieten, bohren und feilen muß. Die Pioniere einer anderen Gruppe sind dabei, nach Zeichnung Kombinationsgeräte für Morsen, Blinken und Sprechverkehr selbst zu bauen. Reinhardt, Peter, Ingolf, Wolfgang, Jörg, Jürgen und Karl Heinz richten eine Chassisplatte aus Pertinax her, worauf das Gerät montiert wird. Auch Schalter mit Umstecker für Licht und Anschlüsse für Zeltlampen können sie anfertigen. So ein Nachmittag ist sehr interessant, und die Pioniere kommen gern zur Arbeitsgemeinschaft. Als nächstes werden sie mit Transistoren bekanntgemacht. 1961 war die Station Republiksieger. Meister Nitsch konnte mir auch nachweisen, daß aus der Station schon mancher gute Monteur für Rundfunkgeräte hervorgegangen ist. Auf der nächsten Spartakiade wollen sie wieder Sieger sein.

Text und Fotos: Herbert Rösener

Die Grundschaltung der Fernschreib-Übertragungsmittel (Schluß)

HAUPTMANN ING. H. KÖSLING

2.4 Die 2-Drahtimpulstelegraficschaltung (Bild 4)

Diese Schaltungsform überwindet den Nachteil, daß zum Betreiben der bis-Schaltungen zwei Doppelleitungen benötigt wurden. Sie arbeitet nach dem Prinzip der Wheatstonschen Brücke und kann ebenfalls zwischen zwei Fernschreibvermittlungen eingesetzt werden. Zum Aufschalten der Teilnehmermaschinen wird eine Umsetzerschaltung benötigt. Bei dieser Schaltung muß man nach "Ruhestrom A" und "Ruhestrom B" unterscheiden, was sich, wie unsere Schaltung zeigt, auf das jeweilige Potential an der Trennseite des a-Ankers bezieht. Durch die Regelwiderstände W I und W 2 werden für die Leitung 40 mA und für die Ortsseite 20 mA eingestellt. Wird nun von der Stelle A ein Zeichenstromschritt ausgesandt, so werden beide Batterien gegeneinandergeschaltet und die Leitung wird stromlos. Auf der empfangenden Stelle wirkt nur der Ortsstromkreis von 20 mA, auf Grund des Spannungsabfalls

erwünschtes Rückschreiben auftreten

stromschrittes liegen beide Batterien in Reihe. Der durch den 40 mA-Stromkreis erzeugte Spannungsabfall am Widerstand W 2 erzeugt einen Impuls für das B-Relais in der Form, daß der b-Anker auf Trennseite umschlägt. Mittels entsprechender Umsetzerschaltung werden die Teilnehmermaschinen angeschaltet.

2.5 Umsetzerschaltungen

Die Teilnehmermaschinen werden in der Regel in der Betriebsart 2-Drahteinfachstrom betrieben. Um nun die vorangegangenen Schaltungen (4 DD. 2 DIT) auf der Ortsseite von Vermittlungen mit den Maschinen zusammen-

am Widerstand W 4 wird ein Impuls durch das B-Relais geschickt und der b-Anker geht auf Zeichenseite. Auf der sendenden Stelle verhindert der Ortsstromkreis ein Umschlagen des b-Ankers auf Zeichenseite, so daß kein un-

Bei der Übermittlung eines Trenn-

schalten zu können- benutzt man sogenannte Umsetzerschaltungen zwischen den verschiedenen Schaltungen.

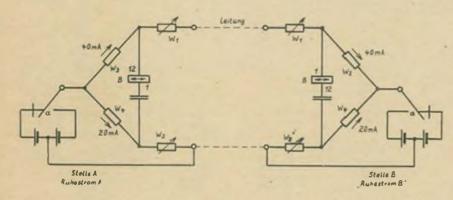
2.51 Umsetzerschaltung von 2-Drahteinfachstrom auf 4-Drahldoppelstrom (Bild 5)

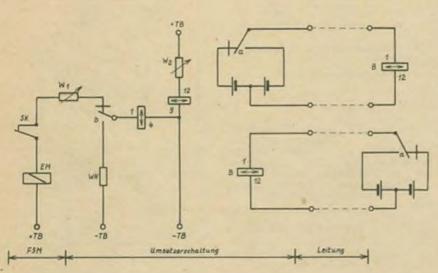
An dieser Schaltung wollen wir uns mit dem Prinzip der Umsetzerschaltungen vertraut machen; sinngemäß sind diese Erkenntnisse für weitere Umsetzer-schaltungen, wie z. B. 2 DE auf 2 DIT, anzuwenden.

Durch die Regelwiderstände W1 und W 2 wird für die Wicklungen 1...4 des A-Relais eine Stromstärke von 40 mA und für die Wicklungen 9...12 des A-Relais ein 20 mA-Strom eingestellt. Wird nun durch Offnen des Sende-Kontaktes ein "Kein-Stromschritt" ge-sendet, so wird der 40 mA-Stromkreis unterbrochen und der a-Anker mittels des 20 mA-Stromkreises auf Zeichenseite gelegt. Bei der Übermittlung eines "Stromschrittes" bleibt der Sendekon-

Im Ausbildungsjahr 1964 ist sicherzustellen, dall in jedem Fernsprechbautrupp mindestens zwei Kameraden die Funksprecherlaubnis der GST für die Funkgerüte kleiner Leistung erwerben. Durch die Fernsprechausbilder sind in Zusammenarbeit mit den Klubräten und den örtlichen Arbeitsgemeinschaften Nachrichtentechnik der Pionierorganisation Patenschaften abzuschlie-Ben. Ziel dahel ist, die gegenseitige Unterstützung bei der Organiserung und Durchführung der Fernsprechausbildung mit den Jungen Pionieren.

> Aus der Anweisung für die sozialistische Wehrerziehung 1964


takt geschlossen und der 40 mA-Stromkreis legt den a-Anker auf die Trennseite. Diese Zeichen- bzw. Trennstromschritte werden zum B-Relais der Gegenstelle gesandt und legen den b-Anker auf Zeichenseite, was für die Gegenstelle auf Grund der Unterberchung des Empfangsmagnetenstromkreises den Empfang eines "Keinstromschrittes" bedeutet. Geht der b-Anker auf Trennseite, so wird der Empfangsmagnet vom Strom durchflossen, was gleich dem Empfang eines Stromschrittes ist. Der Widerstand WN ist so dimensioniert, daß beim Umlegen des b-Ankers auf Zeichenseite über diesen ein 40 mA-Strom für die Wicklungen 4 des A-Relais sichergestellt und damit ein unerwünschtes Rückschreiben verhindert wird.


In den vorangegangenen Betrachtungen konnten aus der Vielzahl der möglichen Schaltungsvarianten nur einige typische Schaltungsanordnungen betrachtet werden. Der interessierte Leser findet in der entsprechenden Fachliteratur weiteres Material über dieses Problem.

Literaturhinweise:

Heinrich Fülling, "Fernschreibübertragungstechnik", R. Oldenbourg, München

Otto Beyer, "Grundlagen der Fern-sprech- und Fernschreibtechnik", Fachbuchverlag Leipzig, 1964

Mehrfachausnutzung von Übertragungskanälen in der Fernschreibtechnik

Hptm. Ing. Kösling

1. Einleitung

Die enorm hohen Investitionskosten für neue Übertragungskanäle, z. B. die Neuverlegung von Kabellinien, führten bereits bei Entwicklungsbeginn der Fernschreibtechnik zu Versuchen, bestehende Übertagungskanäle mehrfach auszunutzen. Heute reicht die Skala praktischer Anwendungsmöglichkeiten von der einfachen Vierer-Telegrafie bis zur technisch ausgereiften Wechselstromtelegrafie.

Aus der Menge der Möglichkeiten wollen wir einige typische Verfahren betrachten.

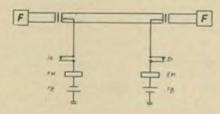
2. Verfahren zur Mehrfachausnutzung von Übertragungskanälen

2.1 Die Vierer-Telegrasie

Die bereits bestehenden Fernsprechnetze gaben Anlaß zu Versuchen der Mehrlachausnutzung in Form des zuleitungen vorliegen. Eine weitere Ausnutzung dieser Richtung, wie zum Beispiel Achter-Tlegrafie usw., scheitert in der Praxis meist an der Unsymmetrie der Übertragungskanäle.

2.2 Unterlagerungstelegrafie (UT)

In den zwanziger Jahren wurde die sogenannte Unterlagerungstelegrafie (UT) entwickelt, die heute zum Teil noch im Einsatz ist. Von der Erkenntnis ausgehend, daß man zur Sprachübertragung nur das Frequenzband über 300 Hz benötigt (Bild 3) und die Telegraficrfrequenz mit 25 Hz darunterliegt, suchte man nach Möglichkeiten, diesen Umstand für die Mehrsachausnutzung zu verwenden. Mittels Hochund Tiefpässen werden auf der sendenden und empfangenden Seite die Sprachfrequenzen von denen Schreibfrequenz getrennt.


Der Übertragungskanal überträgt das gesamte Frequenzband. Die Ruf-

kanäle. Im Gegensatz zu den bisher beschriebenen Verfahren handelt es sich hier um eine reine Fernschreibmehrfachausnutzung. Im Prinzip geht es dabei um eine Mehrfachausnutzung der Übertragungskanäle in der Form, daß die Fernschreibzeichen in Wechselstromzeichen verschiedener Frequenzlage umgewandelt werden, wobei die Fernschreibmaschine selbst weiterhin mit Gleichstrom arbeitet.

Man unterscheidet in der Wechselstromtelegrafie nach der Art der Modelung der Trägerfrequenz:

a) Amplitudenmodulation (Bild 5) mit einem Modulationsgrad von 100 Prozent, d. h., die Signale der Nachricht bestehen aus einer Folge von Abschnitten mit Trägerschwingung voller Amplitude und Abschnitten ohne Träger-schwingung. Diese Betriebsart entspricht dem Einsachstromversahren der üblichen Telegrasiermodelung. Wie uns Bild 5 zeigt, kann man dabei noch den Arbeitsstrom und Ruhestrom unterscheiden. Nachteilig macht sich bei dieser Betriebsart jedoch bemerkbar, daß man eine Leitungsunterbrechung nicht von der Übermittlung eines Trennstrom- bzw. Zeichenstromschrittes unterscheiden kann.

Schluß im nächsten Heft

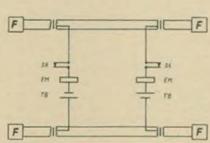
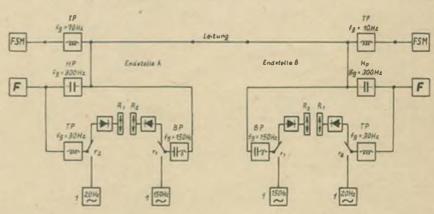
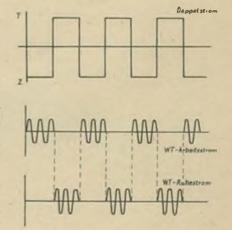


Bild 1: Phantemtelegrafie
Bild 2: Vierer-Telegrafie

sätzlichen Fernschreibverkehrs. Dabei ist die Bildung von Phantomkreisen die älteste Art der Mehrfachausnutzung; sie wird heute noch beisplelsweise bei den bewaffneten Kräften unserer Republik angewandt. Bild 1 zeigt eine solche Schaltung. Hierbei wurde die Erde als Rückleitung benutzt, was selbstverständlich nur geringe Reichweiten zuläßt. Wegen dieses Nachteils benutzt man in der Regel für die Rückleitung ebenfalls die Mitte des Vierer-Übertragers (Bild 2). Die Fernschreibmaschine wird an die Mitte der Ring-übertrager angeschlossen.

Die Wirkungsweise dieser Schaltung ist auf das Prinzip einer abgeglichenen Brückenschaltung zurückzuführen. Um eine Störung des Fernsprechkreises durch den Fernschreibverkehr zu verhindern, muß Symmetrie der Stamm-




Bild 4: Blockschaltbild einer UT-Verbindung (1 Polwechsler)

Blid 5: Amplitudenmodulation

frequenz der Fernsprechverbindung von 25 Hz wird, um Störungen der Fernschreibzeichen zu verhindern, auf der sendenden Stelle auf 105 Hz umgesetzt bzw. am Empfangsort wieder in die Ausgangsfrequenz zurückgewandelt (Bild 3). Das Blockschaltbild einer UT-Linie zeigt uns Bild 4.

2.3 Wechselstromtelegrafie (WT)

Die Wechselstromtelegrafie gehört zu den modernsten Formen der Mehrfachausnutzung bestehender Übertragungs-

DM-Award-Informationen

Heute veröstentlichen wir wieder die frei übersetzte Kurzfas-sung einiger Diplom-Ausschreibungen, die uns erreichten:

Hungarian Rummy Diploma (HRD):

Der Zentrale Radio Club der ungarischen Amateure (Central Radio Club, P.O. Box 185. Budapest 4) gab 1960 ein neues Diplom heraus, das "Rommé-Spiel im Äther" oder "Hungarian Rummy Diploma" genannt wird. Für dieses Diplom gelten ab 1. 5. 1963 nachstehende neue Bedingungen: Die mitspielenden ungarischen Amateure (vgl. Tabelle) bestütigen auf besondere Anforderung mit ihnen getätigte QSOs mit einer QSL-Karte, die zugleich eine Rommé-Spielkarte ist. Dabei vergeben jeweils 2 bestimmte Stationen wahlweise zwei verschiedene Rommé-QSL, die wähernd des QSO angefordert werden müssen, z. B. "HA 5 BG de DM 2 ACB . . . pse QSL R/n (oder R/o oder Y)". Die Antwort der HA-Station lautet dann "DM 2 ACB de IfA 5 BG . . . ok QSL R/n (oder R/o oder Y)". Mit "Y" wird ein Joker angefordert, mit dem jede beliebige andere Rommé-Karte ersetzt werden kann. Wie im normalen Rommé-Spiel ist es auch beim Rommé-Spiel im Äther daher ein besonderes Glück. einen Joker zu bekommen. Es sind 2 Joker im Spiel, es ist jedoch dem Diplom-Bewerber nicht bekannt, wer die Joker vergibt, denn je 2 von 23 HA-Stationen wechseln sich hierin vierteljährlich ann 1. Januar, 1. April, Der Zentrale Radio Club der ungarischen Amateure (Central

Tabelle der Mitspielers

Rulzelchen	R/a	R/b	Rufzeichen	R/a	R/b
HA 1 SP HA 6 KFZ	Pik 2	Herz D	HA 5 KDQ HA 8 UD	Karo 2	Kreuz D
HA 1 KSA HA 0 OS	Pik 3	Herz B	HA 5 KFR HA 6 KNB	Karo 3	Kreuz B
HA 3 MA HA 3 KMF	Pik t	Herz 10	HA 5 BU HA 8 CF	Karo 4	Kreuz 10
HA o KDR JIA o HII	Pik 5	Herz 9	HA 5 DU HA 8 KCU	Karo 5	Kreuz 9
HA 5 FB HA 8 KWG	Pik 0	Herz 8	HA 7 PZ HA 1 KVM	Karo 6	Kreuz 8
HA 5 BG HA 6 HC	Pik 7	Herz 7	HA 6 FO HA 1 VB	Karo 7	Kreuz 7
HA 5 BT HA 4 KKB	Pik A	Herz G	JIA 8 CZ HA 6 AW	Karo 8	Kreuz G
HA 5 BI HA 1 VA	Pik 9	Herz 6	HA 5 BB HA 6 NI	Karo 9	Kreuz 5
HA 6 BJ HA 5 KDF	Pik 10	Herz 4	HA 9 OZ HA 5 AT	Karo 10	Kreuz 4
HA 8 KUC HA G KVC	Pik B	Herz 8	HA 0 KOB HA 7 PF	Karo B	Kreuz 3
HA 5 FX HA 8 KGC	Pik D	Herz 2	HA & AQ HA 7 KPF	Karo D	Kreuz 2
HA 5 DQ HA 2 MJ	Pik K	Herz A	HA & AM HA o KDA	Knro K	Kreuz A
HA 5 KBP	Pik A	Herz K	HA 5 BE HA 8 KWD	Karo A	Kreuz K

Die zwei Joker sind im vierteljährlichen Wechsel bei folgenden Stationen zu auchen: HA 1 SB, 1 ZA, 1 ZD, 1 ZH, 5 AF, 5 AH, 5 AH, 5 AK, 5 DR, 5 FQ, 5 FR, 6 VC, 7 LA, 7 LC, 7 FM, 8 UA, 8 UE, 8 WD, 8 WT, 8 WU, 9 FB, o IIB, o HR, o HN. (Mitgetellt von HA 6 BB, Stand 1. Mai 1963.)

1. Juli und 1. Oktober eines jeden Jahres ab. Jedes Vierteljahr werden also 21 der betreffenden Stationen die Anfrage nach einem Joker ablehnen müssen. Da nur 2 Joker im Spiel sind, dürfen für den Diplom-Antrag auch nur 2 Joker verwendet werden. Diese müssen von 2 verschiedenen HA-Stationen sein. Es sind für das Rommé-Spiel alle Bänder und alle Betriebsarten (CW, AM, SSB) zugelassen, jedoch darf innerhalb einer Stunde von der gleichen HA-Station auf dem gleichen Band und in gleicher Betriebsart nur eine Romme-QSL (R/a oder R/b) angefordert werden.

Das HRD wird in 3 Klassen verliehen:

Das HRD wird in 3 Klassen verliehen:
Klasse I: Der Bewerber muß Karten mit einem Gesamtwert
von mindestens 50 Punkten nachweisen (Joker, Bube, König,

von mindestens 50 Punkten nachweisen (Joker, Bube. König, Dame, As, zählen je 10 Punkte, die übrigen Karten ihren aufgedruckten Wert, also 2, 3, 4 usw.).
Klasse II: Der Bewerber muß 14 Rommé-QSL nachweisen, die nach den Rommé-Spielregeln Serien von inindestens je 3 Karten bilden (in der Zählweise aufeinanderfolgende Karten jeweils einer Farbe, z. B. Herz-As, Herz 2, Herz 3 oder Kreuz-Bube, Kreuz-Dame, Kreuz-König, Kreuz-As). Dabei ist in jeder Serie des "gemischten Handrommé" nur jeweils ein Joker erlaubt, insgesamt aber maximal 2 Joker. Klasse III. Der Bewerber muß ein komplettes Rommé-Spiel mit 52 Karten und 2 Jokern nachweisen (alle Karten Kreuz, Pik, Herz, Karo). In der Klasse I wird das dekorative "Rommé-Diplom" verliehen, bei Erfüllung der Bedingungen der Klassen II und III erhalten die Bewerber hierzu die betreffenden Stikker. Erforderlich ist eine vom Award-Manager bestätigte Liste

der im Besitz befindlichen Karten. Die Kosten betragen im allgemeinsam für die Klasse I 5 IRC, für die Klassen II und III je 3 IRC. DM-Stationen erhalten das Diplom kostenfrei. Die mitspielenden HA-Stationen achten auf Rommé-Anrufe insbesondere jeden ersten und letzten Freitag im Monat in der Zeit von 20 bis 23 Uhr MEZ.

Worked Belo Horizonte Award (WBH):

Der Vorstand der LABRE von Minas Gerais, Brasilien (Award-Manger PY 4 AA, P. O. Box 314, Belo Horizonte, Minas Genais, Brazili) verleiht das Diplom "Worked Belo Horizonte" an alle lizensierten Amateure, die seit 1. 11859 10 (für brasilianische Stationen), 5 (für amerikanische, europäische und afrikanische Stationen) bzw. 3 (für asiatische und pazifische Stationen), SOS mit der Stadt Belo Horizonte hatten. Zugelassen sind alle Bünder, ew oder fone. Der Mindestrapport muß RST 338 bzw. RS 33 sein.

Erforderlich ist ein Logauszug mit den gearbeiteten brasilia-

Dzw. RS 33 sein.
Erforderlich ist ein Logauszug mit den gearbeiteten brasilianischen Rufzeichen, dem Band, dem Datum und dem Rapport.
Das Diplom wird erst verliehen, nachdem die Amateur-Stationen in Beio Horizonte die QSL-Karten des Antragstellers für die betreffenden QSOs erhalten haben (zweckmößig dem Antragstellers für

trag beifügen!). Die Kosten be betragen 5 IRC. (Mitgetellt mit PY 1 ZG, Oktober 1963).

Worked 10 Hagener Sendeamateure-Diplom (WXHS):

Worked 10 Hagener Sendeamateure-Diplom (WXHS):

Der "OV Hagener Sendeamateure" gibt das WXHS-Diplom heraus. Diplom-Manager ist DL 1 MS, Hermann Zimmerhücker, (58) Hagen, Lützowstr. 68. Bewerber aus DL und DM benötigen 10 Punkte, andere europäischen Bewerber 5, außereuropäische Bewerber 3 Punkte. QSOs mit Mitgliedern des OV Hagener Sendeamateure zählen jeweils 1 Punkt. Für Dreiband-QSOs mit der gleichen Station kann ein Sonderpunkt angerechnet werden. QSL-Karten sind nicht erforderlich. Es genügt ein entsprechender Logbuchauszug. Die Kosten betragen 2 IRC.

Es werden alle Verbindungen gewertet mit DL/DJ-Stationen des DOK 0 8. z. B. DL 1 MK, 1 ML, 1 MN, 1 MP, 1 MQ, 1 MR. 1 MS, 1 NS, 1 RS, 3 IF, 3 IM, 6 BI, 9 JR, 9 NU, DJ 2 FV, 3 NS, 3 NW, 3 XV, 4 ZJ, 5 NS, 5 UH, 5 UR, 5 UV (Stand Juli 1963, mitgeteilt von DL 1 MS).

Diplom Worked Japan DX Radio Club (WJDXRC):

Diplom Worked Japan DX Radio Club (WJDXRC):

Der "Japan DX Radio Club" (Award-Manager JA 8 AQ, Sas Mitsumata, 350 Motonopporo, Ebetsu, Hokkaido, Japan) verleiht das Diplom WJDXRC auf Antrag für QSOs mit 5 Mitgliedern (für JA-Stationen 10 Mitgliedern). Erforderlich ist eine Aufstellung der gearbeiteten Stationen und Vorlage der QSLs. Das Diplom ist kostenfrei. Für Rückporto werden 5 IRC gefordert. (Der DM-Award-Manager wird noch klären, ob die QSLs beim DM-Award-Manager verbleiben können und auf das geforderte Rückporto verzichtet werden kanni). Mitglieder des JDXRC sind: JA 1 AA, AAW, AB, AS, BF, BK, CC, CJ, CO, CR, DM, NF, JM, KAB, KF, LL, NP, TD, TJ, VP, JA 2 AW, BL, DN, JM, LC, UU, WB, JA 3 AA, BG, IW, SJ, JA 5 AB, JA 6 AD. AO, HK, TA, ZD, JA 7 AB, JA 8 AA, AQ, JA 9 AA, AC, BE, JA 0 AA, BR, CA (Stand Februar 63, mitgeteilt von JA 8 AQ).

Heard Japan DX Radio Club (HJDXRC):

Unter den gleichen Bedingungen wie vorstehend wird für SWLs das Diplom "Henrd Japan DX Radio Club" verliehen. Die Bestätigungen der Hörberichte sind nachzuweisen (nach JA 8 AQ).

SHIZUOKA-Award

SHIZUOKA-Award

Der "Shizuoka Amateur Radio Club, SARC" (Award-Manager JA 2 JW c/o SARC, P.O. Box 153 Shizuoka, Japan) verleiht das SHIZUOKA-Award in 2 Klassen für QSOs mit 2 SARC-Mitgliedern (Klasse 1) und für QSOs mit 5 Stationen in der Präfektur Shizuoka, davon mit mindestens 2 SARC-Mitgliedern (Klasse II). Außer einer Aufstellung der QSOs werden die QSL verlangt (wird noch geklärt!).

Die Kosten für die Diplome betragen 6 IRC je Klasse.
SARC-Mitglieder sind JA 2 ACW. AEH, AOF, APV, APV, AWB, BFD. BGN. BGY, BDB. BP, BUO, BVX, BWV, BY, CCA, CCG, CU, HF, JW, JZ. KB, MZ, RW, SG, SK, TH, UJ, WB, YAB, YK, ZJ, ZV.

Günstige Bedingungen zum Fernen.

ZJ, ZV.

Günstige Bedingungen zum Erwerb des Diploms schaftt der SARC Marathon Contest, der jührlich in der Zeit vom 10. bis 20. August durchgeführt wird (Stand Mai 62, inligeteilt von 1A 2 BY).

IRC für Diplome, die bisher nicht in die Diplom-Liste des

IRC tür Diplome, die bisher nicht in die Diplom-Liste des Radioklubs der DDR aufgenommen sind, also nicht im CQ-DM veröffentlicht sind, müssen grundsätzlich vom Antragsteller seibst beigebracht werden (vgl. hierzu auch die Ausführungen in den DM-Award-Informationen "funkamateur" 11/63!). Eine Veröffentlichung von Diplom-Bedingungen im "funkamateur", auch wenn dies unter der Rubrik "DMI-Award-Informationen" geschieht, ist nicht gleichbedeutend mit der Aufnahme einzelner Diplome in das Diplom-Verzeichnis.

Das war's für heute. Vy 33 und viel Erfolg auch im Jahre 1964!

DM 2 ACB

Contestkalender

Februar:

DM-Aktivitätscontest ARRL Contest Teil I fone ARRL Contest Teil I cw REF Cotest cw-Teil

Marz:

ARRL Contest Tell II fone ARRL Contest Tell II cw 7.— 8. 21.—22.

April:

H 22 Contest cw SP Contest HA Contest REF Contest fone-Tell

UKW-Bericht

Der UKW-Bericht soll diesmal einem Thema gewidmet sein, mit dem sich auch die OM beschäftigen sollten, die ansonsten ihre Ohren verschileßen, wenn es um etwas Neues geht. Mit QSO fahren ist nämlich noch nicht alles getan, Dieses heutige Thema behandeit das Rapportsystem. Daß das eine recht wackelige Angelegenheit ist, ist wohl allen klar. Ich möchte den DM sehen, der da sagt, es gibt keinen "Kavaliersrapport". Natürlich wird es auch in Zukunft immer Leute geben, die beim Erhalt von S 5 aus Rache S 4 geben und welche, die das mithören und dann S 1 geben und meinen, die anderen glauben an ihren ufb RN. In diesem Sinne Ring frei für DM 2 BMLs und 3 SMLs Vorschlag.

Ein neues Rapportsystem für UKW: OPQ

Dipl.-Ing. Günter Höhme, DM 3 SML Dipl.-Ing. Henning Peuker, DM 2 BML

Dipl.-Ing. Henning Peuker, DM 2 BML
Dipl.-Ing. Henning Peuker, DM 2 BML
Das RST-System, das aus den Anflingen des Kurzwellenamateurfunks stammt, hat, durch die Entwicklung bedingt, viele Mängel. Sie sind bewußt oder unbewußt, jedem OM bekannt. Da ist z. B. der T-Rapport: Wer gibt heute der Gegenstation schon T-i oder T-5, selbst bel äußerst schiechtem Ton? Ein T-7 ist auf den Bändern eine Seitenheit. Die Qualität der Gerftie ist zwar bedeuten derses reworden, aber in vielen Füllen wird aus falsch verstandener Hüflichkeit nicht der währe Rapport gegeben. Der M-Rapport sie in den deutschsprachigen Lündern Beurteilung der Mcapport sie in den deutschsprachigen Lündern Beurteilung der Modulation zur Verbindung. Die Zahl sogt oft mehr aus, als eine minutenlange Beschreibung mit Wenn und Aber: "Ich glaube, Sie sind ein klein wenig übermodullert. Drehen Sie doch Ihren entsprechenden Regler etwas zurück, aber nur ein bildchen!" Der nächste OM spricht von leichter bis mittlerer Untermodulation, und so dreht man den Regler von ges zu gee "Met Vertung der Werten der Werten der Wertenholt. Ein S-QSO ist selbst mit den besten Emptängern auf Kurzwelle nicht mehr möglich, da das QRM normalerweise bei S-5 bis S-6 liegt. Auf UKW sprechen andere Gesichtspunkte gegen den S-Rapport ist das einzig Sinnvolle am RST-System, wenn er exakt gehandhabt wird.

Ein gutes Rapport-system muß korrekt aussagen, wie man den Partner des QSOs emptängt. Der Partner will sich in seiner Verkehrsabwicklung nach dem Rapport richten. Dazu ist die Angabe der absoluten Peidstärke in erster Linie von untergeordneter Bedeutung, Außerdem muß gefordert werden, daß Ger Signalatätevecode der Rapports eichbar ist. Eine wichtige guter Kompromiß (if den Arnateurfunk, Kommerzielle Dienste verwenden zum Teil id Stellen: RAFISQEMBOI Die drei Stellen RST genügen im allgemeinen zustätzliche Angaben wie QRM.
QRN, QSB usw. lassen sich prinzipiell verschildssein. Das System würde aber zu lang und nicht anschaulich.
Wird das RST-System auf UKW benutzt, so treten zusätzlich

zeichnung OPQ.

Die Abkürzungen OPQ sind so gewählt, daß sie sich gut vom RST unterscheiden. Sie sind bei Telegrafie gut zu unterscheiden und lassen sich gut geben und hören. Sie bedeuten im einzelnen:

Verständlichkeit O

Hier wird der Gesamteindruck der Verständlichkeit beurteilt. Es wird damit objektiv angegeben, wie das QSO von der Gegenstation abgewickelt werden kann. Der Einfuß von QRM, QRN, QSB, Modulationsqualität, Frequenzschwankungen und der Signalstärke im Vergleich zum Rauschpegel wird im O-Code beurteilt. Damit ist die Verständlichkeit die wichtigste Angabe im Rapportsystem OPQ. Es ist daher sinnlos, die Rapporte zu beschönigen. O gleicht der ersten Ziffer im RST-System: O1: nicht aufnehmbar, O2: zeitweise aufnehmbar, O3: schwer aufnehmbar, O4: aufnehmbar, O5: gut aufnehmbar.

Signal-Rauschabstand P

Bei einem Signal-Rauschabstand von 30 dB ist ein Signal rauschfrei. (Für "UKW-Qualität" werden bei be-Empfängern 26 dB angegeben!) Ein rauschfreies Signal muß aber mit der höchsten Stufe des P-Code benannt werden. Man kann subjektiv kein "rauschfreiers" Signal definieren. Da die sinnvolle Abstufung in 6 dB-Stufen beibehalten werden soll, muß man für ein rauschfreies Signal P5 angeben. Die anderen Stufen ergeben sich damit zu:

		Signal-Rauschverhältnis Sollwert Bereich		
PO	Grundrauschen, kein Signal		3 dB	
P1	gerade im Rauschen wahr-			
	nehmbares Signal	6 dB 3 dB	· · · 9 dB	
P 2	stark verrauschtes Signal	12 dB 9 dB	15 dB	
P 3	verrauschtes Signal	18 dB 15 dB	· · · 21 dB	
PI	leicht verrauschtes Signal	24 dB 21 dB	· · · 27 dB	
P 5	rauschtreies Signal	30 dB gruße	r als 27 dB	

Wer ein geeichtes P-Meter hat, kann selbstverständlich an-geben: "P5 + 20 dB" oder "S0 dB— über dem Rauschen" (zu-sätzlich zum Rapport). Eine dB-Angabe ohne geeichten Emp-fünger ist sinnios und sollte in Zukunft unterbieben! Mit P1 ohne QRM ist ein einwandfreies CW—QSO mit Tempo 40 BpM möglich. Damit können alle fünf Ziffern ausgenutzt werden

Signalqualität Q

Die Signalqualität wird sowohl bei Telegrasie als auch bei Telesonie angegeben. Im Logbuch muß dann die entsprechende Modulationsart eingetragen werden. Das kann nichts prinzipleil Neues bedeuten. da man A3 und SSB ebenfalls nicht im Rapport unterscheiden kann. Das Q gleicht bei Telesonie dem MRapport des RSM-Systems. Es wurde jedoch etwas abgeändert. Bei Telegrasse wird ein Tell der bisherigen Skala benutzt, und zwar sind die unteren Stusen weggefallen. Bei unserem derzeitigen technischen Stand dürste keine Station mehr TonRapporte unter Q4 (entspricht T9) bekommen, so daß eine Einteilung in 9 Stusen nicht mehr sinnvoll ist. (Von Aurora-Signalen wird dabel abgesehen!) Es soll nicht heißen, daß wir schmeichelhasse Rapporte geben sollen. Ein Rapport nützt nur dann, wenn er echt ist. Die Bedeutung der Q-Stusen sind: Teelgrasse: Q1 rauher, 50 H2-modulierter Ton; Q2 stark vertrummter Ton; Q3 leicht verbrummter Ton; Q4 reiner Ton mit geringer Brummspur, Q5 reiner Ton.
Telesonie: Q1 unverständliche Modulation: Q2 stark verzerrte und kaum verständliche Modulation; Q3 verzerrte bzw. schwerverständliche Modulation; Q4 leicht verzerrte bzw. verständliche Modulation: Q5 einwandsreie Modulation.
Die Bezeichnungen OPQ sind so gewählt, daß sie (in englischer Sprache) folgenden Sinn ergeben:

(Verkehrsmöglichkeit, Verständlich-O operation-possibility

keit) (Leistungs-Rausch-Verhältnis P power over noise Q quality of signal (Signalqualitit)

Anwendung des OPQ-Systems

Anwendung des OPQ-systems

(Therefore 1964 beraten werden. Sofern es sich als brauchbar erweist, werden es SP und OK voraussichtlich ebenfalls einführen. Bis dahin sollten alle UKW-DMs dieses System texten und in allen DM-QSOs bis zum UKW-Treffen (außer Context-CSOs und QSOs außerhalb DM) dieses OPQ-System benutzen. Jeder OM ist aufgerufen. uns die mit diesem System gemachten Erfahrungen mitzuteilen.

DX Bericht

für den Zeitraum vom 1. November bis 30. November 1963, zusammengesteilt auf Grund der Beiträge folgender Stationen: DM 3 ZNB, DM 3 DG, DM 3 ZYH, Eike DM 3 ML/2 BKL für 3 FML, GML, JML, VML, WML, NBB; D 3 JBM, PBM, RBM, SBM, DM 3 JZN für 3 ZN, BZN, CZN, OZN, YZN, DM-2025/G, DM-1842/H, DM-1882/K, DM-1825/L, DM-1949/M, Zschenker/H. Zocher/L1

ker/H. Zocher, Li
DX-Neuigkeiten, entnommen den Zeitschriften "Radioamateur",
SP-DX-Bulletin, "Amaterske Radio", "Radio", "DX-Press",
DL-QTC 11/63. Tnx OK 1 GM!
28 MHz: Wieder Totenstille.
21 MHz: Das Band öffnet sich vormittags nach Asien, nachmittags USA. Bedingt durch die Nähe der oberen Grenzfrequenz sind die condx sehr wechselhaft. Erreicht:
Na: KP 4 (1730) SA: nil OC: VK 2. 4, 5(1200), ZL 3 IS (1100), KC 6 RO (1002).

KC 6 BO (0930).

AF: ET 3 GC, ET 3 USA. ET 3 RR (1030), FR 7 ZD (1500). 9 Q 5 AB (1200) 9 Q 5 TJ (1530), 5 A 3 (1100). CN 8 FN, FW (1100. 1400).

VQ 2 W, WM (1500), ZE 4 (1500), CR 6 CA (1600) 6 WMDD (1800), ZS 1, 6 (1530). AS: JT 1 CA (1645), VS 9 HAA (1200), VS 9 HRK (1250, 0730), 4 S 7 (1140), KR 6 (0830). EU: ZB 1 RM (1545).

Gehört: 8 YANG (1515), VS 1 LV (1130), MP 4 DAH (1100) YV 0 AA (1500). CN 8 FF (1650). SV 0 WAA (1430), TT 8 AJ (1200), 8 G 1 EC (1600 f), LX 1 DE (1430 f), 9 G 5 BB (1500), 14 MHz: Nach wie vor sind die Vormittagsstunden die günstigsten. In kurzer Zeit ist das WAC möglich. Das Band schließt

sten. In kurzer Zeit ist das WAC möglich. Das Band schließt gegen 1800 MEZ.

NA: KL 7 (1245, 1050 ssb), VE 6, 7 (0930, 1700), OX 3 KM (1730 ssb), KP 4 (1230 ssb), OX 3 KW (1320),

SA: PZ 1 BW (1100), PZ 1 CE (1140 ssb), PJ 2 CY (1200), PY (0900), YV 1 (1140 ssb),

AS: XW 8 AL (1530 88b), HZ 2 AMS (12, 1430), EP 2 AO (1430), MP 4 DAH (1445), EP 2 AV (13), OD 5 LX (1630), KR 6 MH (1200 ssb), KR 6 ML (0845), UA 0 YE (Zone 23,0700), JT 1 AG (0820), VS 9 HAA (0820), VS 9 HAK (1030),

AF: ET 3 RR (1800), EL 2 P (1730), 5 A (1900), 5 T 5 AD (1015), 5 R 8 AI (1830), ZE 1 BA (1815), TT 8 AL (2020 ssb), 9 X 5 MV (Kigall-Rwanda, 1600),

OC: VK 2,3,4 (1000—1300), KG 6 AAY (1300).

EQ:GC 3 FKW (1145), GD 3 FXN (1245), OY 1 AA (1300) TF 3 KB (1915), F 9 UC/FC (1240 ssb), SV 0 WR (1100 ssb), SL 8 AY/MM (1415),

(1915), F9 UC/FC (1240 ssb), SV 0 WR (1100 ssb), SL 8 AY/MM (1415), Gehört: MP 4 BEE (1000), VR 2 DK (1100), VS 1 LV (1130); VP 2 AV (1630), ZD 7 BW (1830), ZS 2 MI (1930), HP 1 IE (2000), K 4 EMW/KG 6 (1230), 4 S 7 NE (1615), VK 0 VK (1700), T1 2 LA (1845), CR 6 (1900), ZS 3 HX (2000), 9 L 1 TL (1830), 9 L 1 LH (1730), ZS 8 (1700), FR 7 ZF (1700), 9 Q 5 EI (1745), SV 0 WFF (1800), ET 3 USA (1850), TN 8 AF (1730), UA 1 KAE (1700), K 1 KSH/KG 6 (1500), AP 2 NM (1600 f), EA 8 CG (1700), VK 9 MD (1630), ZA 1 KF 190077), TT 8 AJ (0900), TL 8 SF (1500), 4 S 7 EC (1515), AP 5 HQ (1700), 6 W 8 AC, DD (2000), CR 4 DU (2230), 4 U 1 TX (1600), FM 7 WP 2230), OX 3 AB (1830), VS 4 RS (1100), M 1 XS (1630), TC 3 ZA (0900), OY 2 H (1545), SV 0 WO (1745), CN 8 FE,MT (2100), CE,PY.HK.CP (2100), CX 1 FB (1100), EP 2 AN (1630 f), DQ 5 BE (1000).

7 MHz: Der WW-DX-Contest hat gezeigt, daß auf diesem Band allerhand los ist und sämtliche Kontinente erreicht werden können. In den Nachtstunden sind die condx ausgezeichnet wie in den besten Zeiten des 14-MHz-Bandes.

Konnen. In den Nachtstunden sind die condx ausgezeichnet wie in den besten Zeiten des 14-MHZ-Bandes.

Erreicht: CP5JA (1900), HZ1AB (2000), KP4 (2300), CM2QN (0130), YV5 (0150), 5 A 1 TW (0030), YV5BLW/8 (0600), YS10 (0430), CN8 FW (2100) VQ4 FV (2215), 5 A 3 CJ 21) VK5 NO (2015), SV 0 WAA (2100), JA 3,6 (2230), VS 9 HAA (0040), SV 1 YY (0530), ZB1BX (0230), JA 6 AK (2230).

gehört: PY 1.5.7.8 (21—0030), MP 4 QBF (2145), MP 4 BEE (2200), 9 Q 5 AB (2045), OX 3 DL (2130), VS 9 OC (2300), KC 6 BO (2200), FB 8 ZZ (2020), HL 9 KH, HK 3 RQ (0800), VP 8 GQ (0030), IS 1 ME (1920), JA 1.3.6 (2200),

3,5 MHz: Erreicht: M 1 M (2200), 4 X 4 DI (2115), CT 1 DJ (2100) Gehörf: JA 6 AK (2150), 4 X 4 (2150), KC 6 BO (2100, RST 339)

... und was sonst noch interessiert"

DL 1 FF erreichte das WAC auf 160 m. Auf 80 m glückte ihm ein QSO mit Gus unter AC 5 A/4. Die noch nicht bestätigten Ergebnisse des 9. WAEDC ergeben folgendes Bild:
DJ 3 KR 122 000 Punkte, DM 2 AND 31 000, DM 2 ATD 24 000, UA 9 DN 80 000, 60 1 ND 79 000, W 2 JAE 64 355, HC 1 DC 32 040.
SV 0 WF und SV 0 HQ- sitzen auf der Insel Rhodos, ebenfalls SV 0 WR. Auf Kreta sind SV 0 WH, WO, WT, WZ.
Für den "DX-Jäger" einige Tips von seltenen DX-Stationen:

VK9LA FU8AG SV1AC 1 400 MEZ, 14 056 kHz 14 001 kHz, 14 100 kHz

14 040 kHz

MHZ

15

KG 6 SE AC 5 PN VK 9 LA EA 0 AB VK 0 DM 14 315 kHz 14 113 kHz 14 066 kHz 2 100 MEZ, 14 032 kHz 1 100 MEZ, 14 080 kHz 1 100 MEZ, 14 400 KHZ 0 200 MEZ, 14 400 KHZ 14 085 kHz, 14 090 kHZ 2 100 MEZ, 14 003 kHz 1 330 MEZ, 14 025 kHz 0 800 MEZ, 14 050 kHz 1 200 MEZ, 14 112 kHz CE 0 AB VP 8 HD HS 1 L KG 6 SA FK 8 AU

Nach einer Mittellung von XZ 2 TH ist die Station XZ 2 KN ein Pirat. XZ 2 TH ist die einzige lizenzierte Station in Burma.

Wer noch auf eine QSL von 4X5 DS (Expedition in Burma. Wer noch auf eine QSL von 4X5 DS (Expedition zum Roten Meer) wariet, wende sich bitte an K7 ADD. Auf Jan Mayen sind QRV: LA 2 NG/P in CW, LA 4 WH/P in SSB und LA 8 SE/P. Auf Kermadee Isl. arbeitet in SSB ZL 1 ABZ auf 14 125 und 14 285 kHz. W 2 QHH arbeitete mit 10—35 Watt 315 DXCC-Länder und erwarb 200 Diplome. PM 1 XX ist ein Pirat. ET 3 AZ versprach QSL 100 % via Box 31142 Addis Abeba.

DXCC-Anerkennung: Ab 16. September werden die Prefixe 9M2-VS1-VS4 u. ZC5, also 4 separate Länder, zusammengefaßt zu 2 DXCC-Ländern.

Malaysia (9M2 u. VS1) und VS4/ZC5.

VE 8 RN ex VE 7 ARN/VE8 ist auf der Ellefringnes Insel. 78°50', 103 -32' Zone 2 stationiert.

DX-Expeditionen:

VK 0 VK arbeitete einige Tage von Heard Isl. Gus. W 4 BPD wendet jetzt eine neue Taktik an. Wenn er sich vor zu vielen Anrufen auf seiner Hörfrequenz 5 kHz unterhalb nicht mehr retten kann, gibt er kurz "nw listen on 003 bk" und hört dann auf den Frequenzen 14 001—14 005 kHz. Sein letztes Call war AP 5 BG in Ost-Pakistan.

Die RAF Amateur Radio Society und die World Radio Propagation Study Association waren die Organisatoren der Kuria Muria Isl.-Expedition unter den Calls VS 9 HAA, VS 9 HRK und VQ 4 IN/VS 9 H. QSL via W 4 ECI.

VQ4 IN/VS 9 H. QSL via W 4 ECI.

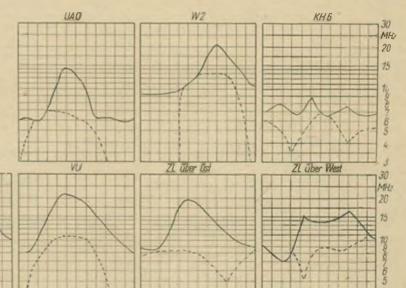
Die Perim Insel in der Straße von Aden ist z. z. vertreten durch VS 9 PHH. QSL via W 2 CTN. Einen neuen Kenner für die Türket veririt TC 3 ZA. QSL via G 8 KS. Der Radio Club Venezuela unternahm mit Unterstützung der venezolanischen Marine eine Expedition nach der Aves Insel unter YV 0 AA. Die Station arbeitete im CQ-WW-Contest. Leider liegen keine Meldungen von DM-Stationen über ein QSO vur. Ab 1. 1. 1964 wird FB 8 WW auf der Crozet-Insel QRV sein. 1T 1 TAI hat bereits die Lizenz für JY 1 TAI (Ende 63 — Anfang 64) in der Tasche. ZD 7 BW wrk auf 14 068 kHz. QSL C 3 PEU. QSL-Mannger von ZS 2 MI ist ZS 1 OU. SEC und 1 IRC erforderlich. Momentan ist VP 8 HK von Folkland QRV. QSL wird er 1964 aus England senden. Die Ablösung der belgischen Antarktisexpedition hat das Call OR 4 AG. Eine neue Station auf Fernando Noronha Isl ist PY 7 AKW.

Der op von VP2AV ist G3CYC. QSL W2CTN. Die Prince Edward Insel für das WA-VE ist vertreten durch W1ZJJ/VE1

Edward Insel für das WA-VE ist vertreten durch W 1 ZJJ/VE 1 und W 9 NLJ/VE 1.

KC 6 BO sitzt auf West-Caroline Isl. QTH Palau. QSL W 4 YHD. VP 1 TA in British Honduras ist auf 21 MHz in AM zu erreichen. FK 8 AU ist an Wochenenden sehr aktiv in SSB ab 14.00 MEZ. Eine neue Station in Sarawak ist VS 4 IH op Barry. Ungeführ 4 Monate wird Barry Crampton in Togo unter VE 3 BSB/5V4, 1edder nur in SSB. VE 8 RG sezt seine Reise fort und wird in Kürze QRV sein unter VP 4 und FS 7. Bis jetzt QRV unter VP 2 VS, PJ 5 MF und VP 2 KT.

Ludwig, DM 3 RBM


KW-Ausbreitungsvorhersage für Februar 1964 nach Angaben von OK1GM

Unsere neuen Angaben zeigen in dem Raum zwischen der ausgezogenen und der gestrichelten Kurve das Gebiet der benutzbaren Frequenzen.

Die obere, ausgezogene Kurve stellt die MUF-Werte (MUF = hachste, brauchbare Frequenz) dar. Die untere, gestrichelte Kurve stellt die LUF-Werte (LUF niedrigste, brauchbare Frequenz) dar.

2 4 6 8 10 12 14 16 18 20 22 24

2 4 6 8 10 12 14 16 18 20 22 24

2 4 6 8 10 12 14 16 18 20 27 24

4

2 4 6 8 10 12 14 16 18 20 27 24

VEB MESSELEKTRONIK BERLIN

Für den Elektronik-Amateur sind unsere elektronischen, steckbaren Baugruppen in gedruckter Schaltung sehr gefragt.

Die Baugruppen bestehen aus Bauelementen, welche jeweils im Selbstbau montiert werden. Folgende Baugruppen sind erhältlich:

> KUV 1 Kleinslgnal-Universal-Verstärker 2 NV 1 Zweistufiger Niederfrequenz-Verstärker KRS 1 Kombiniertes Regel- und Siebglied GES 4-1 Gegentakt-Endstufe mit Treiber
> EBS 1 HF-Eingangsbaustein
> RG 1-1 Rufgenerator
> 2 GV 1-1 Zweistufiger Gleichstrom-Verstärker

EBS 2-1 HF-Eingangsbaustein

Ferner das Prüfgerät "Tobitest 2" (Ton- und Bildtester)

Mit diesen Baugruppen lassen sich interessante, elektronische Geräte zusammenstecken, z. B.

Taschenempfänger für Lautsprecher, Taschenempfänger für Kopfhörer, Wechselsprechanlage, Dämmerungsautomatik, Plattensplelerverstärker, Telefon-Mithör-Verstärker.

Weitere Beispiele enthält die im Januar 1964 erscheinende Broschüre "Bausteintechnlik für den Amateur" (Reihe: Der praktische Funkamateur)

RFT-Industrieladen, Bauteile und Ersatzteile Berlin O 34, Warschauerstraße 71, Ecke Grünbergerstraße

Telefon: 58 23 90

DX-Adressen 1

Box 4427, Modellin-Colombia
Box 37, Kadena-Okinawa
Box 26, Rabat-Morocco
Box 3042, Addis Abeba
via 3A2CN, Piorro Andorhalt, Rue Grinoldi 49,
Princep. de Monaco
Box 970, Dakar
Box 970, Dakar
Box 2060, Rabat
Box 2060, Rabat
Box 3028, Dakar
Box 3003, Dekar
Box 6986, Habana
Box 26, Douglas-Eiro
Box 4, North Pusan-Korca
Box 20597, E.A.P.T., Dar ca Salalim
Box 251, Damasone, Syrla
Box 675, Monrovia, Liberia
Box 7388, General Post Office, New York 1, NYUSA HK4JC KR6BQ CN8MZ ET3AZ GWSDH CN8DM CN8LA GW8AB GW8DF CM2PP GD5Sk YK2MN JT1CA VKOBII, VRIN ET3RR, ET3GC, ET3USA APO 843, New York City, USA C. ETTUSA APO 843, New York City, USA
ROX 159, Tananarive
Costorstraat 60. Paramaribo-Surinam
Box 383, Willomstad-Cucacao
Toro S. Paulson-Cape Linn. Svelbard via Anders
M. Thorrud, Rosenkrantzgatan 370, Drammen-SR8AI PZIBW PJ2CR

LAORG/P

MS, MP4MAP, MP4TAX, VKODR, via Hammer-lund, Box 7388, G.P.O.; N.Y. USA via W4QJV Ed Cusbing, Box 8045, Jackstonville, YXOAA, HZ2AMS.

CEOZI

lund, Box 7388, G.P.O.; N.Y. USA
via W4 QJV Ed Cusbing, Box 8045, Jackstonville,
Florida

VR4CU, FU8AF, via Q8UOU, Henry Radio, 11240 West Olympio
Blvd, Los Angoles 64
N.S. rl Naser, Box 433, Kuwait

9G1AW
Box 194, US-Embassy-ACCRA-Ghana

TH5BR
APO 116, Now York, N.Y.-USA
FY7RJ
28 Goinet, Cayonno, French Guiana
FK8AU
Box 697, Noumea-Now Galedonia
6X6JE
Box 59, Entebbo-Uganda
TI3EH
Box 3913, San Joso-Costa-Rica
H. E. Lo Dain, Villa, Samares Street.
Clement-Isle of Jersey-Channel Isl.

QSL-Manager

via W2CTN
via W2CTN
via W2CTN
via W2EQS
via W2JAE
via W4YHD
via W5MML
via DU1CE MP4QAR/4W8 via W4ECI 9N1MM via W3KVQ/2 VR30 via W46MAZ TG6PB via W44AYX PXIIK via H98KU OH2EW/Ø 5N2ACB 5H3HV VR30 TG6PB PX1IK PJ2AF HL9KW CR7IZ W8WES KC6BO via KiOGT via W9VZP via K3HQJ via VR2EO HLTF DUØDM OX3BT via OZ7UU

KLEINANZEIGEN

Verkaule O - V - 1, 80, 40, 20, m. Stackspulen ohne Gahäuse, 100,- DM.

Ang. BZ 4628 DEWAG Berlin N 54

aufo dringend KW-Empfänger AQSt, Felnobstimmung, Berta. Drucktastensuper Halt 5, sowie Elgenbou-Super.

Angebote mit Preis on Egon Schulze, Salzwedel (Allm.), W. Diedemann-Straße 20

Suche Quarze 100 kHz, 1 MHz, 27, 12 MHz zu kaufen od. tauschen, blete 1-, 2-, 3-, 4-fach kW-Drakos, Spulenravalver, Röhron.

Siegfried Kranke, Böhlen bei Leipzig, Str. der Einheit 15

Verkaufe: Ringk,-Regeltr. 0-250 V. 6 A, für 150,-: EAW IV Violfachmessg., 20 kV, für 180,-; MP-Kand. 10/1,9 kV, für 20,-.

D. Heldmoyer, Freital II, Brükkonstraßa 3

Kurzwollenemplänger für Amateurbander oder Allwellenemp plänger gesucht.

Zuschr. u. Nr. 3539 an DEWAG-Werbung Pirna

Verkaufo BG 23, neuw., m. Ta-sche, 650,-; 1 Kristallmikrofon 2che, 650,-; 1 Kristallmikrofor 25,-; 1 FS-Chassis "Putrlat" mit versch. Toilon 45,-

M. Reime, Oederan (Sc.), Frankenberger Str. 8

Die Anzeigenverwaltung

für diese Zeitschrift liegt ab 1. Januar 1964 in den Händen der

DEWAG WERBUNG BERLIN Berlin C 2, Rosenthaler Straße 28-31

Aufträge und Anfragen bitten wir künftig an den zuständigen DEWAG-Betrieb oder an die nächst-gelegene Zweigstelle der DEWAG WERBUNG in den Bezirken der DDR zu richten.

Für das uns bisher entgegengebrachte Vertrauen danken wir allen Inserenten und bitten, es in gleicher Weise der DEWAG WERBUNG entgegenzubringen.

DEUTSCHER MILITARVERLAG, BERLIN-TREPTOW

VEB RAFENA WERKE RADEBERG

Exporteur:

Heim-Electric Deutsche Export- und Importgesellschaft mbH., Berlin C 2, Liebknechtstraße 14, Deutsche Demokratische Republik

Zeitschriftenschau

Aus der sowjetischen Zeitschrift "Radio" 10/1963

Außer dem Leitartikel befaßt sich ein Beitrag N. Kasanskis (S. 8-9) mit der Vorbereitung der Allunions-Spartaknade 1964/65. Kasanski gibt vor allem Hinweise für die Durchführung von Wettkampfen auf den Gebieten der Schneiltelegrafie und der Fuchsjagd. Auf S. 11 folgt ein Bericht von den Meisterschaften der RSFSR im Funkmehrweitkampf. Besondere Aufmerksamkeit wird der Arbeit an den Schulen gewidmet. So finden wir auf S. 4-6 Tagebuchaufzeichnungen eines Physiklehrers aus Armmwir über die Arbeit mit seinem Funkzirkel. Auf S. 7 berichtet ein Schulinspektor aus Gomei über die UKW-Arbeit an den dortigen Schulen. Unter den KW- und UKW-Nachrichten sind vor allem die Berichte vom Feldtag und von der "Woche der Rekorde" zu nennen (S. 12 u. 13). Die Auswertung ist allerdings noch nicht abgeschlossen. Auf S. 13 isind die Weltrekorde auf den UKW-Bändern abgedruckt sowie ODX, MDX und Anzahl der Länder der sowjetischen 2-m-Stationen, anschließend folgt der DX-Bericht. Der SSB-Bericht folgt auf S. 24. Auf technischem Gebiet wird die Artikelserie für den Anfänger fortgesetzt. Auf S. 36-38 folgt die Fortsetzung der in Heft 9 begonnenen Baubeschreibung des Supers. anschließend folgt ein Artikelserie für den Anfänger fortgesetzt. Auf S. 36-38 folgt die Fortsetzung der in Heft 9 begonnenen Baubeschreibung des Supers. anschließend folgt ein Artikelüber die Anwendung von linearen Potentiometern. Die stabilisierende Wirkung von Kristalidioden in Reinisschaltungen usw. wird auf S. 43 u. 44 erläutert. Danach (S. 45-47) folgt ein Deitrag über NF-Verstärker mit Transistorene Weitere Artikelüber des Supers auf Filme (S. 51-63), ferner mit Transistorenempfängern mit "Erdbatterie (d. h. zwei verschiedene Metalle in die Erde gesteckt).

ner mit Transistorenempfängern mit "Erd-batterie (d. h. zwei verschiedene Metalie in die Erde gesteckt). Die Baubeschreibungen beginnen auf S. 19 u. 20 mit einfachen Morseübungs-summern (Glimmlampensummer — Schal-tungen mit einem Transistor — zwei Transistoren und Lautsprecher — Schal-tungen und Röhren).

Veteranenparade

Ein Urahne des Plattenspielers. Phonograph nannte Edison dieses von ihm 1878 erfundene Gerät.

Die gagen eine Metallmembrane geleiteten Schallwellen bewegen diese und damit den daran befindlichen Schreibstichel. Dieser gräbt entsprechende wellenförmige Verbindungen in eine umlaufende Wechselwalze. Foto: Demme

Auf S. 21—24 folgt die Beschreibung einer Station für 430—440 MHz (5 Röhren). Der Sender (Gegentaktoszillator) wird auf eine feste Frequenz abgestimmt, der Empflinger (0-V-2) ist abstimmbar. — Ein Fotorelais, bei dem als lichtempfindliche Zelle ein Thyratron mit kalter Katode benutzt wird, finden wir auf S. 29. Weiter werden noch zwei Transistorengeräte beschrieben: ein Transverier mit & Transis werden noch zwei Transistorengeritte beschrieben: ein Transverter mit 8 Transistoren (S. 54) und ein Gerät zum Aussortieren von Widerständen, die mehr als 10 vom gegebenen Wert abweichen (S. 28). Eine Antenne für TV-Troposphärenempfang (S. 31—33) soll auf große Entfernungen noch gute Ergebnisse bringen. Aus der jugoslawischen Fachzeitschrift wurde ein einfacher Fuchsjagdempfänger übernommen (S. 61).

F. Krause - DM 2 AXM

Aus der tschechoslowakischen Zeitschrift Amatérske Radio" 10/1963

Der Leitartikel des Heftes 10 bringt unter der Überschrift "Wir und die Schule-eine Betrachtung über das Ausmaß des Physikunterrichtes in den allgemeinbildenden Schulen. Der Autor kommt zur Feststellung, daß der Physik-Unterricht und besonders das Teilgebiet "Elektrizitätnach dem derzeitigen Lehrprogramm unzureichend ist und durch außerschulische Zirkel ergänzt werden soll.

Auf Seite 283 wird ein leistungsfühiger Niederfrequenzteil für den, in fleft 7 der gielehen Zeitschrift, angegebenen Emp-fangssuper mit Transistoren beschrieben. gleichen Zeitschrift, angegebenen Emplangssuper mit Transistoren beschrieben. Nach einem sehr ausführlichen Artikel über Impuls-Code-Modulation folgt eine theoretische Abhandlung über Transistor-Parameter. In mehreren kurzgefaßten Artikeln wird auf das Anbringen einer Außenantenne bei Transistor-Täschenempfänger eingegangen. Es folgen detaillierte Angaben über einen transistorisierten genau gehenden Quarz-Oszillator unter Verwendung eines Transistorpärchens. Ein weiterer Artikel befaßt sich mit den Möglichkeiten der Prüfung von Elektrolyt-Kondensatoren, der Feststellung des inneren Widerstandes von Meßinstrumenten und der Beschreibung eines transistorisierten Kleinstgerätes für die Registrierung von radioaktiven Strahlungen. Auf Seite 294 wird ein transistorisiertes Niederfrequenzfilter für Telegrafie-Empfang beschrieben. Es ist mit 3 Transistoren bestückt und hat die größte Durchlässigkeit beim 725 H. Auf dieser Frequenz beträgt das Q 45. Es folgen zwei Weitere Kurzartikel über einen Dynamitz-Expandor sowie zwei Frequenz-Teiler-Schaltungen. Beide Schaltungen sind mit Transistoren aufgebaut.

Ber Hauptbeltrag in diesem Heft ist die Beschreibung eines universellen Fuchsjagdsenders, der sowohl auf 3,5 als auch durch einfache Umschaltung eines einzigen Knopfes auf 145 MHz betrieben werden kann. Das Gerät ist auf der Titelseite des Heftes sowie auf Seite 297 abgebildet. Im Eingang wird die Röhre ECF 82 verwendet. Der Triodenteil der Röhre bildet einen Quarzoszillator mit einer Frequenz von 3,6 bis 3,65 MHz. Im Anodenteil der Röhre befindet sich zuerst ein Schwingkreis, der auf 18 MHz eingestellt ist, darunter ein zweiter Schwingkreis mit 3,6 MHz. Durch einfaches Zuschalten eines

Kondensators schwingt der Oszillator nach Wunsch auf der genannten Fi quenz.

Es folgt dann im Pentodenteil der 1. Röhre Es folgt dann im Pentodenteil der 1. Röhre die Vervielfachung auf 72 MIZ, diese gelangt an das Gitter des Triodenteiles der 2. Röhre (ECL 84), wird dort auf 145 MHz gebracht und kommt an das Gitter des Pentodenteiles der gleichen Röhre, die als PA-Stufe arbeitet. Die Frequenz von 3,6 MHz gelangt direkt über eine Drossel an das Gitter der Endröhre. Im Modulator wird eine Röhre 6 L 31 verwendet, (Besser ist die bei uns erhältliche EL 95), das ie mit einem weit geringerem Heizstrom arbeitet. Es wird ein Kohlemikrofon verwendet. Anschließend wird zum Gerät ein Transverter, der mit den Translstoren Transverter, der mit den Transistoren 2 X OC 16 bestückt ist, beschrieben. Zusammen mit diesem Transverter kann ein Akkumulator kleiner Kapazität verwendet werden. Das Gerift lißt sich jedoch auch direkt an eine Neusstromquelle anschlie-

Mcd.-Rat Dr. Krogner - DM 2 BNL

Aus der polnischen Zeitschrift "Radloamator 9/1963

Auf der Seite 229 finden wir einen Bericht Tuber die 17. Sitzung der Plenarkommission Technik der OIRT vom 9, bis 13. 7. 1963 in Moskau und über den Satelliten Tel-

Die Beschreibung der theoretischen Grundlagen sowie des mechanischen und elektrischen Aufbaus eines Transistor-Superhet-Empfängers mit Gegentakt-Endstufe finden wir auf den Seiten 232—236. An Hand von 2 Prinzipschaltbildern werden die Parameter des Transistorempfängers mit einem entspruchenden Böhrenden die Parameter des Transistorempfängers mit einem entsprechenden Röhrenempfänger verglichen. Auf der Seite 230 folgt eine Mitteilung des polnischen Minteitums für Fernmeldewesen über die Sperrung der Bänder 2300–2450 K und 5670–5800 für den Amateurfunkgebrauch. Es schließt sich eine Abhandlung über die Vergrößerung des Eingangswiderstandes von Voltmetern mittels verschiedener Transistorverstürker an. Auf den Seiten 241–244 finden wir den ersten Teil der Baubeschreibung eines Phasenadapters für SSB-Sender. Dann folgen Erläuterungen für den Bau und die Anwendung eines Transistormonitors zur Kontrolle des abgestrahlten A 1-Signals. gestrahlten A 1-Signals.

Der Newcomer findet auf den Seiten 246 bis 248 die Baubeschreibung eines einfachen Kurzwellen-Super-Konverters mit der ECF 82.

Neben verschiedenen anderen Mitteilungen aus dem polnischen Amateurleben können wir auf den Seiten 249—251 die "Regeln des DX-Marathons". Anschriften seitener Stationen aus aller Welt und Erläuterungen zu verschiedenen Diplomen lesen. Außerdem finden wir auf den Seiten einen Bericht über die schwedische Kurzweilenamateurarbeit sowie eine ausführliche Beschreibung der 2-m-Station OK 1 VCW. Raxmond aus Prag QRA IIK 73 g. 295 m über N. N. Neben verschiedenen anderen Mitteilun-

Ein kurzer Artikel auf Seite 252 befaßt sich mit der Vergrößerung der Empfind-lichkeit von Transistorempflingern.

Gunter Werzlau - DM-1517/M/

"funkamateur" Zeltschrift des Zentralvorstandes der Geseilschaft für Sport und Technik, Abteilung Nachrichtensport

Veröffentlicht unter der Lizenznummer 1504 beim Presseamt des Vorsitzenden des Ministerrates der DDR

Erscheint im Deutschen Militärverlag, Berlin-Treptow. Am Treptower Park 6

Chefredakteur: Günther Stahmann

Redaktion: Ing. Karl-Heinz Schubert, DM 2 AXE, Verantwortlicher Redakteur; Rudolf Bunzel, Redakteur

Sitz der Redaktion: Berlin-Treptow, Am Treptower Park 6, Telefon: 63 20 16, App. 3 98 Druck: I/18/01 Druckerei Märkische Volksstimme, Potsdam

Anzeigenannahme: Werbekoliektiv Josef Weber, Erfurt, Clara-Zetkin-Str. 48, und alle Betriebe der DEWAG-Werbung. Zur Zeit gültige Anzeigenpreisilste Nr. 5. Anzeigen lau-fen außerhalb des redaktionellen Tells. Nachdruck — auch auszugsweise — nur mit Quellenangabe gestattet. Für unverlangt eingesandte Manuskripte keine Haftung. Postverlagsort Berlin

Blid 1: In zwei großen Sälen des Polytechnischen Museums waren, nach Fachgebieten geerdnet, die Exponate ausgestellt



Bild 2: Vielseitig angewandt wird in verschledenen Radiaklubs der DOSAAF bereits die Fernsehtechnik mit selbstgebauten Gerdten

XIX. Allunionsausstellung der Funkamateure in Moskau

Ein ausführlicher Bericht erscheint in unserer Februar-Ausgabe

Bild 3: Ein vielseitiges elektronisches Musikinstrument konstruierte der Funkamateur Bogoslowski aus Simferopol, daneben links eine kleinere Ausführung

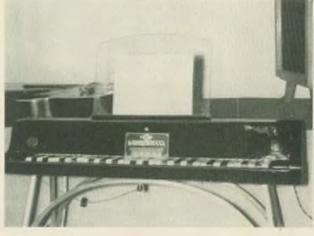


Bild 4: "Canzonetta" nannte L. N. Nikolskij aus Kalinin sein elektronischos Musikinstrument, mit dem sich viele Klangeflekte erzielen lassen

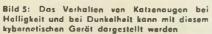
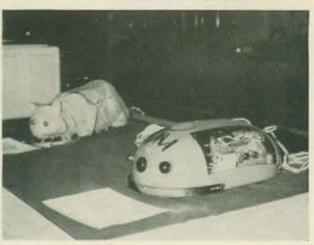



Bild 6: Mit Röhren- und Transisterschaltungen versehen sind diese kybernetischen Modelle einer Katze und einer Schildkröte



Bild 1: Verschiedene Modelle von Transistar-Radios und eines Transistor-Bandtongerätes. Auch der kleinste Empfänger (unten Mitte) enthielt einen selbstgebauten Lautsprecher

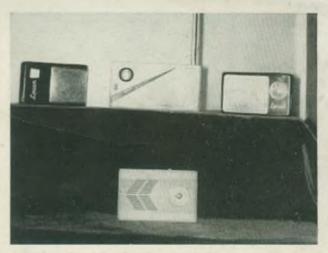


Bild 2: Modelle von verschiedenen Transistorempfängern. In der Ausstellung konnte man die Fotokopien der Bauanleitungen käuflich erwerben

Bild 3: Verschiedene KW-Empfänger-Konstruktienen. Das Gerät in der Mitte ist ein Transisterempfänger 10 bis 80 m mit 17 Transistoren. Es ist ein Doppelsuper mit Quarzfilter

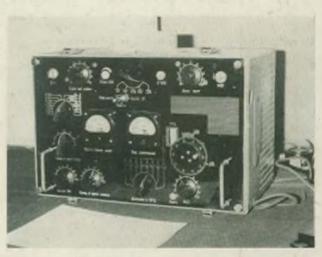


Bild 4: Einen vorbildlich aufgebauten SSB-Exciter für alle KW-Amateurbänder zeigte UB S WF aus Lwow. Das Gerät erlaubt den Betrieb in AM, CW und SSB

Bild 5: Velloutomatisch kann man mit diesem Geröt Fotolilme entwickeln. Die Zu- und Abfuhr der Flüssigkeiten wird mit Relais über einen Zeitschalter ermöglicht

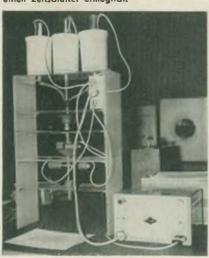


Bild 6: Zwei Amateurkonstrukteure aus Swerdlowsk bauten dicses elektronische Zählgeröt für einen Meßbereich bis zu 5000 Impulsen/sec. Bestückt ist das Gerät mit 19 Röhren

Bild 7: Der Sender von UW 3 NF arbeitet auf allen KW-Amateurbändern. Betrieben werden kann er in AM und CW

Fotos: Schubert

