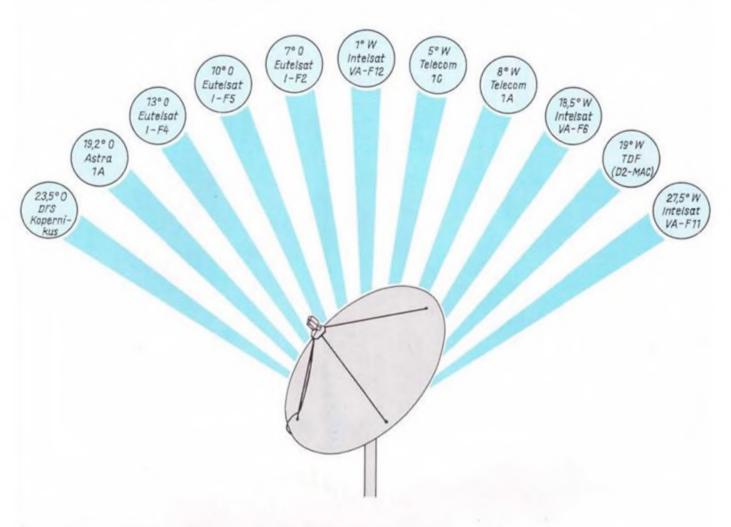


AMATEURFUNK FUNK ELEKTRONIK HEIMCOMPUTER

ISSN 0016-2833

2,50 DM



November 1990

IN DIESER AUSGABE:

- Technik der Videorecorder
- 50-MHz-Sende/Empfangs-Umsetzer
- Super-Bildschirmkarte für PC/M
- RGB/FBAS-Konverter

Satellitenprogramme auf einen Blick

Unsere Grafik zeigt die Positionen von Fernseh-Direktempfangs-Satelliten schematisch so, wie sie am Himmel stehen. Unten eine Auflistung der Programme, die von diesen Satelliten abgestrahlt werden. Blau gedruckt sind die vorwiegend deutschsprachig sendenden Satelliten. Nicht mit aufführen ließen sich hier die auf weiteren Ton-Hilfsträgerfrequenzen zusätzlich gebotenen Programme von Hörlunkstationen.

Die Spalten bedeuten v. l. n. r.:

- Sendefrequenz in GHz.
- Programm (* kodiert).
- Polarisation (H horizontal, V vertikal, L linksdrehend zirkular und R rechtsdrehend zirkular),
- Tontragerfrequenz in MHz

DFS Kopernikus 1 (23,5	01		Eutelsat I-F4 (13 O)			Intelsat VA-F12 (1 W)			TV-Sat (D2-MAC, 19 W)		
11,475 SAT 1		15.00	10.987 Teleclub, EBC	V	6.5	10.970 TV Ost	Н	6.6	11.747 RTL plus	ı.	(E)()
11 525 3 sat			11,007 RTL plus (EBC)		6.65	11,015 TV Norge		6.6	11 823 SAT1		UID
11.625 ARD 1 plus		6.61	11.091 (3 sat)	V	6.65	11,133 SVT 1 (C-MAC/T)		dig.	\$1,000 Table		14
11 875 ATL plus			11.140 Nordic Channel	V		11,178 SVT 2(C-MAC/T)		dig	11 of 2 they Say Book		141
12 559 PRO 7		6,65	11.176 TRT Int		6.6	11.471 TV West		dig	Tables ARD to be		og
12 658 West 3		6.65	11.472 TV5.		0,0	11.675 Nordisk TV 4		6.6			
12 692 Telc5		6.85	One World Ch	Н	6.6			0.0			
12.725 Bayorn 3		8 65	11.486 World Net		6.6				TDF (D2-MAC: 19 W)		
12.123 50,0113		0,0	11.507 SAT 1		6.65	T			Olympus (19 W)		
Astra 1 A (19,2 O)			11,650 Eurosport		6.65	Telecom 1C (5 W) 12.522 M 6	1/	6.0	11,804 Canal Enfant	R	dig
11 214 Sportk and (d1)	E	7.02	11,674 Super Channel		6.65	12,522 MG		5.8 5.8	Euromusique		- 8
11 220 RTL obs		6.50							11,881 La Sept	R	dig
11 244 TV 3 (D2-MAC)*		dia				12,606 La Cinq		5.8	11,958 Canal plus (dt.)*		dig
11,259 Eurosport		7.20				12,648 Canal Plus (*)			12.034 Canalplus (fr.)*		dig
11.273 Lifestyle			Eutelsat I-F5 (10 O)			12,690 TF 1		5.8	12.092 BBC-TV-Europo		dig
Children Co.	1.0	6.5	10.986 3 sat		6,65	12,732 CanalJ*	V	5.8	Eurostep		a.g
11 28 (5a ! 1		6.5	11,007 RAI uno		6.6				12.169 RAISAT	1	dig
11 302 TV 1903					6.65				ia, iso virturi	-	aig
©2-MAC1°	14	Tar C	11,149 TVE international		6.6	Telecom 1A (8 W)					
11 11 Sky 110		66-8	11,181 (Telefonica Espan.)		6.65	12 606 Canal Sante	V	5.8	Intelsat VA-F11 (27.5 W)		
11.332 Telechia		dg.	11,472 Canal Courses*		dig	12,648 Canal Satellite			10.975 Video (BTI)		6.65
11.317		el.	11,640 RAI Due	Н	6.6	Campanile	V	5,8	10,935 BBC-TV Europa*		6.65
11,345 Film Not*		0.6							11.015 Childrens Ch		6.65
11 377		65+5							11.155 CNN		6,65
11 391 ATL 4 Vermous		6.5	Eutelsat I-F2 (7 O)			Intelsat VA-F6 (18.5 W)			11,175 Discovery Ch		6.65
11 408 PRO 7		6.5	11.507 NHK	ы	6.6	10,975 Telespac	V	6.65	11.470 EBU (PSV/WSHT)		6.65
11 421 MTV Euros		0.5+5	11.591 World Net-USA		6.6	11,005 Telespac II		6.65	11.535 Brigh Star		6.60
			••-								
11 dish Sky Moules."	¥	6.5+5	11,676 (Visnews/WTN)	Н	6.6	11,135 Canale 5	V	6.65	11,531 SIS (B-MAC)	Н	dig

39. Jahrgang Ausgabe 11/1990

Vorsicht, Falle, oder: cool in den Weihnachtseinkauf

Weihnachten steht vor der Tür, spätestens jetzt macht man sich Gedanken über die Geschenke. Renner in diesem Jahr wird ganz sieher die Heimelektronik sein. Ich war für Sie beim Verbraucherschutz – danke an dieser Stelle Herrn Backasch für seine bereitwilligen Auskunfte – und habe mich erkundigt, was man beim Kauf beachten sollte.

Machen Sie Preisvergleiche, gehen Sie zu den Verbraucherschutzzentralen, informieren Sie sich dort aus den verschiedensten Publikationen über Preise, Angebote, Daten, um so gezielt einkaufen zu gehen, ohne sich von der Vielfalt des Angebots erschlagen zu lassen. Vor dem Kauf informieren Sie sich über die Allgemeinen Geschäftsbedingungen (AGB). Gewährleistungsbedingungen unterscheiden sich oft erheblich. Die Regel sieht bei Reklamationen zunächst eine zweimalige Nachbesserung vor, bevor getauscht oder zurückgezahlt wird. Alles andere läuft unter Kulanz, ebenso wie eine ausführliche Vorführung des Kaufgegenstands, die Sie eher beim guten Fachhändler als im Kaufhaus erwarten können. Dieser Fachhändler muß durchaus nicht in der City beheimatet sein, an der Peripherie der Stadt ist es bei gleich gutem Service oft billiger.

Bei Reklamationen ist per Geseiz allein der Händler zuständig, und zwar meist der, bei dem Sie gekauft haben. Es sei denn, der Händler an Ihrem Urlaubsort gibt Ihnen eine schriftliche Aufstellung von Servicepartnern, so wie es in der ehemaligen DDR üblich war. Dies gilt besonders bei Käufen im Ausland. Einige Händler und Hersteller fordern im Reklamationsfall ausdrücklich die Originalverpackung des Geräts zurück und weisen jede Beanstandung ohne diese von sich. Jene Praxis ist unrechtens, auch wenn sie in den AGB verankert ist. Dennoch sollte man zumindest in der Garantiezeit zum sachgerechten Transport die Verpackung außbewahren.

Ausdrücklich zu warnen ist vor dem an den Kauf gebundenen Abschluß eines sog. Servicevertrags. Hier wird man zur Zahlung eines monatlichen Beitrags verpflichtet und darf dann den Service der Firma für zumeist fünf Jahre kostenlos in Anspruch nehmen. Dagegen spricht, daß bei den 10 bis 12 DM, die monatlich gefordert werden, in fünf Jahren ein Betrag aufläuft. für den man sich oft bequem ein neues Gerät hätte leisten können. Andererseits sagt die Praxis, daß moderne Heimelektronik aufgrund ihrer hohen Zuverlässigkeit kaum nach der Garantiezeit ausfällt, die monatliche Zahlung also für die Katz ist. Apropos monatliche Zahlung: Hände weg von privatem Leasing von Heimelektronik, teurer geht's im Endessekt nicht! Manche Anbieter verschleiern den Begriff Leasing auch mit dem eingedeutschten "Mietkauf". Beim Teilzahlungskauf hilft auch ein sorgfältiger Vergleich der Händlerkonditionen mit denen der eigenen Bank oder gar denen der Familie. Barkauf ist letztendlich immer billiger! Überschlafen Sie verlockende Angebote, lassen Sie sich nicht von bunten Skalen zum Kauf verleiten, und überlegen Sie einmal, ob Sie tatsächlich das Fernschgerät mit 100 Kanälen brauchen, wenn es das zwar moralisch leicht angegraute, aber preisgünstigere Voigängergerät mit 30 Kanälen genauso gut macht. Reine Modernität ist etwas für die Schickeria, nicht für den, der sein Geld mit Arbeit verdient!

Fast zum Schluß noch eine Warnung vor Second-Hand- und Straßenhändlern, die keine Gewährleistung bieten und den Kunden nach dem Kauf im Regen stehenlassen. Ein leeres Computergehäuse ist kein netter Anblick, besonders dann nicht, wenn der Händler über alle Berge ist.

Ganz zum Schluß noch der Hinweis auf die Adressen der Verbraucherschutzzentren der Länder. Hier erfahren Sie auch, ob ein Verbraucherschutzzentrum ganz in Ihrer Nähe existiert. Die Adressen finden Sie komplett in unserer Rubrik Postbox auf S. 534.

Ich wünsche Ihnen einen harmorischen und erfolgreichen Weihnachtseinkauf und verbleibe mit

freundlichem Gruß

Ih

M. Schulz Redakteur für Computertechnik

39. Jahrgang | In dieser Ausgabe

Vorsicht, Falle, oder:	
cool in den Weihnachtseinkauf	523
Hirschau: im Zentrum Europas	524
Zweimal Paris und zurück Amiga 3000 –	525
die eierlegende Wollfleischmilchsau	525
Uhrennormale: Mit der Zeit immer genauer	526
Amateurfunk am Nordpol	528
Video-Überspielereien	529
Technik der Videorecorder (1)	530
Flachantennen contra Schüsseln?	532
CB-Handfunkgeräte	533
FA-POSTBOX	534
BC-DX-Informationen	534
Amateurfunkpraxis	
Axiome für den DX-Verkehr	563
SWL-QTC, Digit-QTC	565
Ausbreitung Dezember 1990, Conteste	566
Prüfungsbestimmungen für Funkamateure	567
Amateurfunktechnik	
50-MHz/28-MHz-Sende/Empfangs-Umsetzer	559
Skalenfeintrieb im Eigenbau	562
Bauelemente	
Transistoren für die Hochfrequenztechnik	B 35
Elektronik	
NF-Tester	547
Stcreo-Basisbreiten-Effekt	551
Soundeffekt vom Chip	552
RGB/FBAS-Wandler	553
Abgetrennter VA-Impuls	555
MIDI-Schnittstelle für den PC/M	556
Rechtecksignalgenerator in Prüfstiftform	557
Die Sicherheit hängt vom Strom ab	558
Für Einsteiger	
Alle Jahre wieder – Basteleien zum Fest	548
Mikrorechentechnik	
Einführung in die Assembler-	
programmierung des 8086 (7)	535
Echtzeituhr am Heimcomputer	536
Noch eine Repeatroutine	537
Atari-Textfiles - mit dem Z 1013 zu lesen	538
C 64-HIRES-Hardcopy mit dem K 6304 C	539
C 64-Floppy-Fehlermeldung	539
Mikro-RAM-Disk am C 64	539
Die Multifunktions-Bildschirmkarte (1)	540
Robotron-Heimcomputer (1)	542
Softwaretips Dos Patriobesustem MS DOS (2)	544
Das Betriebssystem MS-DOS (2)	545
Der FA-XT (7)	B 33

Titelbild

Weihnachten – jährlich eine neue Herausforderung für den Elektronikbastler in der Familie. Wir wollen Ihnen in unserem Beitrag auf den Seiten 548 bis 550 einige Anregungen zu festlichen Basteleien geben.

Foto: M. Schulz

Hirschau: im Zentrum Europas

H. RADKE

Der Ortsname Hirschau – eine mit knapp 6000 Einwohnern kleine Stadt in der Oberpfalz, unweit der Grenze zur ČSFR – dürfte FUNKAMATEUR-Lesern etwas sagen: Hier hat Conrad Electronic, eine als technisches Kaufhaus 1923 im Berliner Osten gegründete Firma, nach dem zweiten Weltkrieg neu begonnen. Unterdessen ist dieses Unternehmen zu Europas größtem Elektronik-Spezialversandhaus entwickelt. Acht Filialen gibt es derzeit in Deutschland: in Berlin, Hamburg, Hannover, Essen, Stuttgart, München, Nürnberg und Hirschau. Eine weitere in Dresden soll hinzukommen. Wir besuchten die Zentrale in Hirschau.

Im Jahre 1976 begann bei Conrad in Hirschau ein neues Kapitel der Firmengeschichte: Man forcierte den Versand von Elektronikprodukten. Die 28000 Kunden mit 150 Bestellungen pro Tag von damals sind gegenüber den heutigen Zahlen eher bescheiden: 1,5 Millionen Kunden. und pro Tag gehen 8000 bis 10 000 Bestellungen cin. 1983 wurde ein neues Verrandgebäude in Betrieb genommen, das mit moderner rechnergestützter Logistik den Versand von 10000 Sendungen pro Tag möglich machte. Firmenchef Klaus Conrad sagte damals "Nun baue ich nicht mehr." Das Leben strafte ihn Lügen. 1986 stand ein neuer Versandkomplex mit doppelter Kapazität, später wurde jene durch eine zweite Packstraße erneut erweitert, so daß jetzt 30 000 Sendungen täglich bewältigt werden können.

Klaus Conrad hat seine Philosophie allen Mitarbeitern zur Pflichtauffassung gemacht. Zufriedene Kunden sind das oberste Gebot. Sicher kein einmaliger Anspruch, wohl aber ist es die Konsequenz, durch die bei Conrad der Kunde König wird.

Beispiel Angebot und Katalog

Mehr als 30000 Artikel aus den Bereichen Elektronik und Technik für Heim und Haus, Unterhaltungselektronik, Kfz-Technik, Kommunikationstechnik/Funk, Meßtechnik, Bauelemente, Modellbau, Computer, Fachliteratur sind im Angebot. Der jährlich erscheinende Hauptkatalog enthält sie nicht nur alle (wobei aktualisierte Spezialkataloge die Offerten erganzen), sondern dieser einmalige Katalog ist zugleich ein unentbehrliches Handbuch für jeden Elektroniker.

Die Versandlogistik bei Conrad erlaubt es, daß die Ware Hirschau spätestens (!) zwei Tage nach Bestelleingang verläßt. Beim Rundgang machte mich Ludwig Birner, Bereichsleiter Verkauf, auf einige Eckpunkte der Logistik aufmerksam. die nicht sofort auf der Hand liegen. So die Poststelle. Bis zu 40 000 Poststücke gehen täglich ein; dienstags ist der Postberg am größten. Zwischen 7.00 und 10.30 Uhr wird all die Post geöffnet (wofür es maschinelle Hilfen gibt) und verteilt. Oder: Die Bestellbearbeitung durch den Rechner ist so organisiert, daß zu Arbeitsbeginn täglich zuerst die Sendungen für die am weitest entfernten Postleitzahlgebiete zusammengestellt werden. Letztes Beispiel: Die Vorbereitungsarbeiten durch den hauseigenen Rechner gehen so weit, daß Kartongroße, Gesamtmasse, Porto. Postaufkleber, Rechnungen, Zahlungsart usw. mit erfaßt sind. Die Warenzusammenstellung erfolgt ohne Akkorddruck, damit konzentriertes, aber praktisch sehlerfreies Arbeiten möglich

Beispiel technische Beratung

Zufriedene Kunden – das heißt bei Conrad nicht nur beste Qualität zu fairen Preisen und schnelle Lieferung, sondern auch Kundenservice durch und durch. Ein Bestandteil ist die technische Beratung. Allein sieben Techniker sind im Stammsitz der Firma angestellt, um Fragen zu beantworten. "Wer z. B. beim Löten Probleme hat, soll anrufen oder schreiben", erklärt Herr Birner. Übrigens reicht jener Service über die technische Information bis – soweit möglich – zur Schaltplanlieferung.

Im Januar 1990 neu bezogen wurde dieses siebenstöckige eiegante Bürogebäude, das mit modernster Kommunikationstechnik ausgestattet ist. In der Zentrale in Hirschau beschäftigt Conrad rund 650, bundesweit sind es sogar über 1000 Mitarbeiter.

Mehr als 1000 Seiten hat der '91er Hauptkatalog, der mit einer Auflage von 1,2 Millionen Stück vorliegt. Das Elektroniknachschlagewerk ist für 5 DM (plus 3,50 DM Versandkosten) per Nachnahme erhältlich. Er enthält neben 30 000 Artikeln rund 60 Seiten Tips, informationen, Grundlagen, Anleitungen.

Beispiel Reparaturservice

Die Kundenbetreuung hört bei Conrad nicht auf, wenn die Lieferung erfolgt ist. Für den Fall, daß selbst die technische Bentung nicht zum Erfolg führt oder ein Bauelement beim Einbau "zerspielt" wurde, kann der zuverlässig und zügig arbeitende Reparaturservice samt Ersatzteilsortiment in Anspruch genommen werden. Ab März 1991 wird mit dem Servicecenter 2000 ein wesentlich erweiterter Kundendienst wirksam, für den gegenwärtig am Firmenstammsitz wieder einmal gebaut wird.

Beispiel Garantie

Im neuen Verwaltungsgebäude ist auch das Conrad Technologie Centrum – CTC – integriert, das sowohl Ideen und Technik entwickelt, als auch die Prototypen neuer Conrad-Produkte auf Herz und Nieren prüft, um Qualität, Funktion und Einhaltung der gesetzlichen Richtlinien zu sichern. Conrad kann so den Kunden eine erweiterte Garantie für zwölf Monate zusichern.

Wer dennoch lieber im Ladengeschäft kauft – Conrad macht's möglich. Übrigens sind in dem Geschäft am Firmenstammsitz gerade Erweiterungsarbeiten abgeschlossen worden. Ein Besuch speziell dieser Filiale lohnt besonders. Zum einen ist es die mit dem größten Angebot (weil auf das gesamte Warenlager – es ist sieben Fußballplätze groß – zurückgegriffen werden kann). Zum zweiten werden nur hier bei Conrad Rundfunk- und Fernsehempfänger angeboten – ein Hinweis auf die Gründerjahre der Firma, die sich als Rundfunkfachhandel etablierte.

Unserer Ausgabe liegt ein Conrad-Werbematerial bei. Wir bitten um freundliche Beachtung.

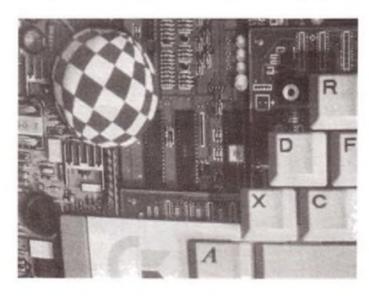
FA-Reisegewinner auf Tour

Zweimal Paris und zurück

Unser Brief bereitete Brigitte (32, Zahntechnikerin) und Georg Kähne (31, Fernmeldehandwerker bei der Post und FUNKAMATEUR-Leser seit mehr als seehs Jahren) eine fast schlaflose Nacht: Die Nachricht, daß sie die Gewinner der 4-Tage-Reise sind, die mit unserer Leser-Umfrage in der Ausgabe 6/90 verbunden war, brachte ihnen die Qual der Wahl: Brüssel, Paris, Amsterdum oder Wien – Köhnes muchten erst einmal eine seit Jahren gehütete Flasche Edelsekt auf. Dann: Paris und sonst nichts. Unser Bild zeigt Kähnes bei der Abfahrt des Busses in

Berlin am Funkturm. Zwölf Stunden später waren sie schon am Eiffelturm....

Georg Kähne war übrigens einige Jahre lang SWLer und beherrscht noch heute die Morsetelegrafie. Unterdessen aber verbringt er seine Freizeit vor allem an seinem sehon altgedienten Atari 130 XE. An dem hat er sogar sehon berechnet, wie hoch der Einsatz wäre, um einen lohnenden Lottogewinn zu erzielen. Ergebnis: Es ist viel preiswerter und erfolgversprechender, sich an FA-Gewinnaktionen zu beteiligen. Der Glückliche muß es ja wissen! H.R.


Amiga 3000 – die eierlegende Wollfleischmilchsau?

Das könnte man schon meinen, liest man die Commodore-Präsentation zur diesjährigen CcBit, auf der der neue 3000er erstmals in Europa vorgestellt wurde. Multimedia heißt das neue Zauberwort, mit dem Commodore sich ein weiteres Standbein im Profi-Bereich sichern will. Von DTP über Realbild-Video, Computergrafik par excellence, Standbildbearbeitung, Sterco-Supersound bis zur kompletten Lösung. dem Multimedia-Autorensystem "Amiga-Vision" bietet der neue Amiga, der mit bis zu 25 MHz getaktet ist und von einer Motorola 68030 angetrieben wird, alles, was Kreative von ihrem Computer erwarten können. Ein noch gegenübe: der Vorgängerversion verbesserter Videoadapter (VDE = Video Display Enhancer) verbessert die schon ohnehin kaum zu übertreffenden Grafikeigenschaften des Amiga weiter, so daß nun sogar die VideoclipProduktion ohne den sonst üblichen Aufwand kostengünstig wird. Selbstverständlich bietet auch dieser Amiga die nachrüstbare MS-DOS-Option, ist also kompatibel, wichtig vor allem für PC-Umsteiger und die Text-Portabilität.

An Amiga-Software und Hardwarekomponenten bis hin zu Genlock-Karten zur problemlosen Verbindung mit Video- und professioneller Fernschtechnik herrscht nach nunmehr fünf erfolgreichen Amiga-Jahren kein Mangel. Kompatibilität herrscht hier vom Einsteigermodell Amiga 500, das ab 799 DM zu haben ist, bis zum neuen Amiga 3000, der je nach Ausstattung 6000 bis 9000 DM kostet, preismäßig also noch unter ähnlichen Systemen liegt. Mit dem 3000er kam ein neues Betriebssystem, das Amiga-DOS 2.0, das sich wiederum durch Multitasking, wie bereits bei der Vorgängerversion, auszeichnet. Mit der neuen, ins Betriebssystem integrierten "Workbench 2.0" enthält es bereits eine noch leichter bedienbare Benutzeroberfläche mit Ferstertechnik. Auch die Geschwindigkeit des Betriebssystems ist durch dessen Programmierung in "C" erhöht worden. Weiter enthält das System eine Software-Kommunikationsschnittstelle A-Rexx, die den Datentransfer zwischen verschiedenen Programmen vereinfacht

Zwei der vier Amiga-Steckplätze sind als PC/AT-Slots nutzbar. Alle 3000cr haben eine 40-MB-Festplatte, bei einer der 3000-25-Versionen sind dies sogar 100 MB. Der Amiga 3000 wird im wesentlichen in zwei Versionen angeboten, einmal als Amiga 3000-16-40 mit 16 MHz, Coprozessor 68881, 1MB Chip-RAM als Arbeitsspeicher für die Prozessoren sowie 1 MB Fast-RAM allein für den Hauptprozessor. Beide Arbeitsspeicher sind auf zwei bzw. vier MB aufrüstbar, der Fast-RAM bei Erscheinen de: 4-MB-RAMs sogar auf 16 MB. Als Amiga 3000-25 geben sogar 25 MHz den Takt vor, hier tut ein MC 68882 als Coprozessor seinen Dienst. Der neue VDE-Ausgang kann einen normalen Multiscan-Monitor ohne Zusatzkarte bedienen, auch der 1084 ist natürlich weiter anschließbar.

Ein schneller Typ also, der eine ganze Menge kann, der sowohl dem DTP-Profi als auch dem Videomacher einiges bietet. Commodore sicht für den Amiga 3000 auch im Bereich der Präsentation berechtigte Chancer, bietet man doch eine komplette Lösung. Ob die Überschrift unseres Beitrags zutrifft, wird die Praxis, gemessen an Verkaufszahlen, ob des Preises sicher vorwiegend im professionellen Bereich, zeigen.

Eine der vielen Stärken des Amiga – die enorme Grafik-Auflösung, das Raster im Bild entstand lediglich durch die Druckwieder-

(Nach Commodore-Informationen zusammengestellt von M. Schulz)

Uhrennormale:

Mit der Zeit immer genauer

N. SCHIFFHAUER - DK8OK

In der vorigen Ausgabe stellten wir eine DCF 77-Funkuhr vor. Sie bezieht die Daten für ihre Anzeige aus Braunschweig – von der genauesten Uhr der Welt. Gangabweichung: 1s in 300 000 Jahren. Es gibt Projekte, diese Genauigkeit noch um ein Vielfaches zu verbessern.

Als in der Nacht vom 29. auf den 30. September die Uhr um eine Stunde zurückgestellt und damit die Winterzeit eingeläutet wurde, blieben die Räume des Zeitlabors der Physikalisch-Technischen Bundesanstalt in Braunschweig (PTB) dunkel. Zwar steht dort das "Zeitnormal" für die Bundesrepublik Deutschland und zugleich die genaueste Atomuhr der Welt. Aber die Umstellung von Sommer- auf Winterzeit nimmt ein Wochen vorher programmierter Computer vor. Der kam bisher auch noch nicht ins Stolpern, und so wurde auch dieses Jahr wieder um 3.00 Uhr "Mitteleuropäischer Sommerzeit" die Uhr für eine Stunde angehalten. Nicht nur in Braunschweig, sondern mit gleichem Automatismus bei einer Vielzahl von öffentlichen und privaten Uhren, die ihre Zeit von der PTB beziehen.

DCF 77

Seit nunmehr dreizehn Jahren legt das "Zeitgesetz" fest, daß die gesetzliche Zeit von der PTB nicht nur "dargestellt", sondern auch "verbreitet" wird. Diese Verbreitung geschicht über den Langwellensender DCF 77 in Mainflingen bei Frankfurt, der auf 77,5 kHz mit einer Sendeleistung von 50 kW rund um die Uhr ein im Umkreis von mindestens 1500 km hörbares Zeitzeichen ausstrahlt. Neben dem monotonen "Tick-Tack" wird außerdem regelmäßig ein Zeit-Telegramm verschickt. Es informiert jede Minute über Monat, Wochentag, Tag, Stunde und selbstverständlich eben diese Minute in einer BCD-kodierten Ziffernfolge. Damit steht die genaueste Uhrzeit der Welt heute bereits jedem Haushalt zur Verfügung. Uhren, die durch den Sender DCF 77 gesteuert werden, sind heute schon unter 150 DM und in vielen Ausführungen erhältlich. Neuester Schrei ist eine Armbanduhr, die immer wieder ihre Referenzzeit per Langwelle über DCF 77 bezieht.

Diese Uhren schöpfen jedoch in der Regel kaum die maximal mögliche Genauigkeit des Senders aus. Das bleibt professionellen Zeitgebern in der Preisklasse um 7500 DM vorbehalten. Sie werten nicht nur das Zeittelegramm aus, sondern zusätzlich ein seit

sechs Jahren gesendetes "pseudo-zufälliges Phasenrauschen". Auf der Empfangsseite läßt sich diese Pseudo-Zufallsfolge als Suchsignal reproduzieren und mit dem empfangenen Phasenrauschen kreuzkorrelieren. Diese Technik erlaubt eine genauere Bestimmung der Ankunftszeitpunkte der Zeitsignale und damit eine noch präzisere Zeitdarstellung, als sie bei nur alleinigem Empfang des Zeittelegramms möglich ist. Für den tagtäglichen Umgang mit der Zeit ist diese höhere Genauigkeit jedoch unnötig. Beträgt doch schon die Ungenauigkeit des Telegramms nur 1 s in etwa einer Million Jahre.

Zäsium-Ofen: alle 12 Jahre 5 g "Kohle"

Erzielt wird diese extreme Präzision mit der Hilfe von zwei hochgenauen Atomuhren, die zusammen mit einer Reihe anderer Präzisionsuhren in einer vollkommen abgeschirmten und auf Fels gegründeten Halle der PTB "ticken". Atomuhren werden benutzt, weil sie ungleich regelmäßiger laufen als die Erde sich um ihre Achse dreht. Immerhin war bis zum Jahr 1956 eine Sekunde als der 86 400. Teil eines mittleren Sonnentages definiert.

Daß sich die Erde gar nicht so regelmäßig drehte, zeigten schon 1934 Versuche mit Quarzuhren an der Physikalisch-Technischen Reichsanstalt. Aber selbst 1956 wollte man weltweit an der astronomischen Zeitbestimmung festhalten und bezog die Sekundendefinition nicht auf die Drehung der Erde um ihre eigene Achse. sondern auf ihren Lauf um die Sonne. Diese Ephemeridan-Sekunde aber erwies sich als noch weniger praktikahel. Zudem wurden parallel in den USA und in Großbritannien mit der Atomuhr noch präzisere Zeitnormale entwickelt, deren Genauigkeiten um einige Zehnerpotenzen über denen von Quarzuhren liegt.

Die Gesetzgebung folgte 1967 und definiert seitdem die Sekunde als das "9 192 631 770fache der Periodendauer der dem Übergang zwischen den beiden Hyperfeinstrukturniveaus des Grundzustandes des Atoms des Nuklids ¹³³Cs entsprechenden Strahlung".

Damit ist anstelle von Pendel, Unruh, Erdrotation und Quarzschwingung die Atomphysik getreten. Und sie wird bei dem 1985 eingeweihten Zäsium-Normal "CS 2" wie folgt genutzt: In einem kleinen Ofen erhitzt man Zäsium auf 170° und erzeugt damit einen Atomstrahl. Dieser besteht aus Atomen unterschiedlicher Energiezustände, die vereinfacht mit + und - bezeichnet werden können. Sogenannte Sortiermagnete trennen diese beiden Zustände. Nur Atome des "+"-Zustandes werden weiterverwendet, die anderen landen in einem elektronischen Abfalleimer.

Bild 1: Außenansichten eines Zeitnormals Die Zäslumuhr der Physikalisch-Technischen Bundesanstalt in Braunschweig. Foto: sci

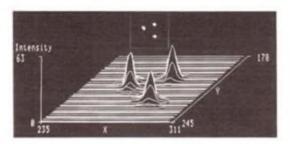


Bild 2: Ordnung in der Ionenfalle: Durch Bestrahlung mit Laserlicht wurden drei Magnesium-Ionen so stark abgekühlt, daß sie zum Kristall kondensierten. Im quadratischen Kästchen ist das Fluoreszenzbild der Ionen zu sehen, darunter in dreidimen-

sionaler Darstellung die gemessene lineare Intensitätsverteilung.

in Zukunft kann diese "lonenfalle" für Uhren verwendet werden, deren Ganggenauigkeit besser als 1 s in 30 Milliarden Jahren ist.

Foto: Max-Planck-Institut

Bild 3: Eine funkgesteuerte Hauptuhr wie diese HU/FG7 von Klenzielst unterteilt in den Empfånger für 77,5 kHz mit Ferritantenne (rechts) sowie in die Auswerte- und Steuerelektronik

Foto: Kienzie

Durch Anregung in einem elektromagnetischen Feld können die "+"-Atome nun wieder in einen "-"-Zustand überführt werden. Dazu muß die Frequenz exakt 9,192631770 GHz (Sekundendefinition) betragen. Diese gewinnt man durch Vervielfachung der Frequenz eines abstimmbaren Ouarzoszillators.

Das elektromagnetische Feld wirkt an zwei Stellen in einen dreifach gegen äußere Magnetfelder abgeschirmten Hohlleiter auf die Atome. Am Ende dieses etwa 0,8 m langen Ramsey-Resonators trennen wiederum Sortiermagnete den Strahl in Atome der beiden unterschiedlichen Zustände. Die Frequenz des Feldes wird nun mittels einer Regelschleife genau auf die charakteristische Übergangsfrequenz gezogen. Aus dieser Frequenz leitet man nun clektronisch die amtliche Zeit ab. die dann gänzlich undramatisch an der Buchse eines Meßgerätes jedermann zur Verfügung steht. Die Atomuhr läuft mehr oder weniger wartungsfrei, lediglich etwa alle 12 Jahre müssen 5 g Zäsium "nachgebunkert" werden.

Trotz der schon bisher hohen Genauigkeit geht es um noch exaktere Möglichkeiten der Zeitbestimmung. Prof. Dr. Klaus Dorenwendt (54), als Abteilungsleiter "Optik" zugleich für die Atomuhr der PTB zuständig: "Noch genauere Messungen sind an langsamen Atomen mit langen Flugzeiten durch den Resonator möglich." Das nächste Frequenznormal in Braunschweig wird deshalb mit einem vertikal montierten Ramsey-Resonator arbeiten, in dem die Gravitation die senkrechte Flugbahn der langsamen Atome nicht beeinflussen kann

Eine weitere Verbesserung kündigt sich durch Verwendung "optischer Pumpen" an, die jedoch, so Dorchwendt, frühestens Mitte der 90er Jahre einsatzreif sein dürften. Allerdings, so Dorenwendt weiter, dürfte es schwerfallen, die heutigen Uhren damit auch nur um eine Zehnerpotenz zu verbessern. Statt der Magnetfelder sollen dann passend abgestimmte Laser die Atome sortieren. Diese Laser sind aber bisher noch nicht entwickelt.

Das Ion in der Zeitfalle

Schon aber erscheint mit der "Ionenfalle" ein neues Prinzip der Zeitbestimmung am Horizont, das bereits in den 50er Jahren von dem Bonner Physiker Prof. Wolfgang Paul vorgeschlagen wurde. Idealerweise wird hier ein einzelnes Ion durch ein elektromagnetisches Feld in der Schwebe gehalten und mit Laserlicht angeregt. Die Frequenz dieses Lasers ist abstimmbar, um die sogenannte Resonanzfluoreszenz beobachten zu können: Leuchtet das Ion, so ist diese Frequenz erreicht.

Versuche hierzu werden u.a. am Max-Planck-Institut für Quantenoptik in Garching unter Leitung von Prof. Herbert Walther durchgeführt und haben zu bemerkenswerten Ergebnissen geführt.

Durch Kühlung auf eine Temperatur in der Nähe des absoluten Nullpunktes (-273 °C) treten aus einer diffusen lonenwolke tatsächlich einzelne lonen in der Anordnung eines Kristallmusters heraus – zugleich kommt es zu einem Sprung in der Fluoreszenzintensität. Die Frequenz dieser Strahlung ("Emissionslinie") ist extrem schmal und eignet sich daher noch besser als ein Zäsium-Normal zur Ableitung der Zeit.

An einem solchen "Normal" wird auch in Garching gearbeitet, wobei man ein einzelnes Ion einfängt und mit zwei Lasern unterschiedlicher Frequenz bestrahlt. Bei einer bestimmten Frequenz der Laser tritt dann urplötzlich ein Abbruch der Ionen-Fluoreszenz auf. "Damit", so Prof. Walther, "ließe sich eine Genauigkeit von 10⁻¹⁸ erreichen - das entspräche 1 s Abweichung in 30 Milliarden Jahren!" Diese Präzision liegt weit über dem heutigen Standard und sogar noch vier Zehnerpotenzen höher als die bisher exakteste Meßmethode, der Mößbauer-Effekt. Noch allerdings stehen die dafür benötigten Laser nicht mit einer hinreichenden Stabilität zur Verfügung. Prof. Walther ist aber überzeugt davon, daß seinem Team der Bau eines solchen Zeitnormals mit Indium-Ionen innerhalb der nächsten Jahre gelingen wird. Auch in Braunschweig arbeitet man

an einer solchen lonenfalle und hält Ytterbium-Ionen hierfür besonders geeignet.

Der Anwendungsbereich derart hoher Präzision liegt dann selbstverständlich nicht mehr im exakten Beginn der Tagesschau. Messen möchte man damit die von Albert Einstein vorhergesagte Rotverschiebung elektromagnetischer Strahlung durch den Einfluß der Schwerkraft sowie Gravitationswellen mit Hilfe eines erdgebundenen Lascrinterferometers, das am Max-Planck-Institut für Quantenoptik schon seit einiger Zeit intensiv geplant und vorbereitet wird. Doch schon die heutigen Zäsiumuhren dienen nicht primär der Steucrung von Bahnhofsuhren. Sie dienen - beispielsweise im 18 Satelliten umfassenden "Global positioning System GPS" der hochgenauen und dreidimensionalen Ortsbestimmung im militärischen und zivilen Bereich.

Sclbst die ungeheure Genauigkeit des Uhren-Ions ist noch nicht der Weisheit letzter Schluß. Ideal nämlich, so Prof. Dorenwendt von der PTB, wäre die Rückführung der Zeit auf echte Naturkonstanten wie die Lichtgeschwindigkeit oder die Elementarladung. Nur sei man heute noch nicht in der Lage, die Energiezustände oder Übergangsfrequenzen der Atome genügend genau als Kombination dieser Konstanten auszudrücken

Der Normalbürger hat in Sachen Zeit ohnehin ganz andere Sorgen als Ungenauigkeiten von einer Sekunde in einer Million oder 30 Milharden Jahren: Was er beispielsweise bei einem Ansagedienst in Italien am häufigsten abfragt, ist – das Kalenderdatum.

Suche Geschäftspartner in der ehemaligen DDR zum Absatz von gebrauchten Geräten aus Medizin, Technik, Wissenschaft, Nachrichtentechnik, Elektro, Elektronik u. v. m.

TRANSOMEGA, Hahnenbalz 36/Geb. 15, W – 8500 Nürnberg 10

Britisch-sowjetische Expedition Pol '90

Amateurfunk am Nordpol

Das Guinness-Buch der Rekorde nennt ihn "Den größten lebenden Entdecker der Welt", und neben der Bezwingung des Weißen Nils per Hovercraft, verschiedenen Wanderungen von Kanada aus durch das ewige Eis des Nordpolarmeeres, einem Fallschirmsprung auf den Jostedalsbreen-Gletscher (Norwegen) und einer Weltumsegelung via Polar-Route war er in diesem Jahr auf dem Weg zum Nordpol. Zu Fuß.

Die Rede ist von Sir Ranulph Fiennes, Abenteuerer aus Leidenschaft. Auf seiner neuesten Expedition wurde er begleitet von Dr. Mike Stroud, einem Mediziner, der sich auf die Erforschung der Reaktionen des menschlichen Körpers auf extreme Bedingungen spezialisiert hat. Eines der Ziele der gesamten Aktion war, auf die Arbeit der englischen Gesellschaft zur Erforschung der Multiplen Sklerose hinzuweisen und Geld für die Errichtung eines Lehrstuhls zu sammeln.

Am 7. März dieses Jahres machte sich das Team um Fiennes und Stroud auf den Weg Richtung Sibirien. Ihr Ziel war die Erreichung des Nordpols von der Sowjetunion aus, ein einzigartiges Unterfangen, für das der englische Thronfolger Prinz Charles die Schirmherrschaft übernommen hatte.

Die Aufgabe

Fiennes und Stroud wollten die 525 Seemeilen von Sibirien zum Nordpol ohne menschliche Hilfe oder die Nutzung von Tieren, wie z. B. Schlittenhunden, bewältigen. Die gesamte Ausrüstung, Nahrung, Werkzeuge, Zelte, Brennstoffe usw. wurde auf 125 kg schweren Schlitten nur durch die Muskelkraft der beiden Forscher bewegt.

Gegen den Strom

Anders als in der Antarktis gibt es am Nordpol nur driftendes Eis. Und diese Drift geht leider in die falsche Richtung, so daß die Forscher zudem noch "gegen den Strom" fortkommen mußten. So wurden aus den auf der Karte zu messenden 525 Seemeilen tatsächlich mehr als 900 zurückzulegende Seemeilen. Hinzu kam, so Fiennes, daß "wegen der extremen Temperaturen die Schlitten nicht gleiten. Sie mußten jeden Zentimeter gezogen werden, etwa so, als wenn man einen Schlitten mit drei 1,83 m großen Männern über 600 Meilen Sanddünen schleppen mußte. So erklärt sich auch, warum unser Vorhaben in dieser Form bisher noch nie durchgeführt worden ist".

Sowjetisch-britische Zusammenarbeit

Ein Novum auf dieser Expedition war auch der umfangreiche Einsatz von Amateurfunk-Kommunikation zwischen der Expedition und den Basis-Lagern. Eine Basisstation befand sich auf der Sredney-Insel im Norden Sibiriens. Hier hatte sich die englische Funkamateurin Morag Howell samt ihrem Mann Laurence mit einigen sowjetischen Funkfreunden in einem kleinen Camp eingerichtet. Es war vor allem Morag, die die Funkamateure der Welt mit regelmäßigen Botschaften auf Kurzwelle und vor allem über die Amateurfunksatelliten OSCAR 10 und 13 auf dem laufenden hielt. Durch die Unterstützung der sowjetischen Funkamateure aus der AMSAT-Sputnik-Gruppe und dem Adventure Club - allesamt Funkamateure, die sich auf au-Bergewöhnliche Einsätze des Amateurfunks spezialisiert haben – konnte im Basis-Camp auf Sredney eine sehr gut ausgestattete Amateurfunkstation eingerichtet werden.

Amateurfunk als Ortungshilfe

Neben der direkten Kommunikation diente der Amateurfunk aber auch noch als Ortungshilfe für die beiden Forscher im Eis. Der britische Amateurfunksatellit UOSAT-OSCAR 11 ermöglichte ihnen per Funk eine exakte Bestimmung der eigenen Position. Fiennes und Stroud übermittelten besondere Signale an den Satelliten, der darauf die Position ermittelte und die entsprechenden Angaben letztlich mittels eines Sprachsynthesizers als unmittelbar verständliches Wort zu den Forschern zurücksendete. Da dies auf Amateurfunkfrequenz geschah, die allgemein zugänglich sind, war es allen Menschen, die die entsprechenden Frequenzen abhörten. möglich, den Weg der Expedition zu verfolgen. Von diesen Möglichkeiten des Amateurfunks machten vor allem zahlreiche Schulklassen in England Gebrauch.

Eine Frau im ewigen Eis

Nachdem Fiennes und Stroud ungefähr zwei Drittel ihrer Strecke zurückgelegt hatten, flogen Morag und ein sowjetischer Funkamateur auf eine Eisscholle in der Nähe des Nordpols, um von hier aus das Kommunikationsnetz weiter auszubauen, denn bei Funkverbindungen am geografischen Nordpol, d. h. nicht weit vom magnetischen Südpol, müssen besondere physikalische Gegebenheiten berücksichtigt werden, die normale Funkverbindungen oft unmöglich machen.

Aber die Hauptlast der Expedition wurde natürlich von Fiennes und Stroud getragen, die sich per Schlitten gegen das driftende Eis bewegten. Wegen der außergewöhnlich schnellen Eisbewegungen benötigten die beiden Forscher allerdings länger für die Strecke, als ursprünglich vorgeschen war. Nach 47 Tagen waren ihre Lebensmittel aufgebraucht, und außerdem waren die Skier von Mike Stroud zerbrochen. 90 Kilometer vor dem Nordpol setzten sie am 22. April einen Hilferuf per Funk ab. Kurze Zeit später wurden sie von einem Rettungsflugzeug aufgenommen und in das Lager von Morag Howell gebracht. Nach einem kurzen Zwischenstopp kehrten die beiden Forscher Ende April nach Moskau zurück.

Bereits am Tag ihres Abflugs stand fest, daß sie – auch wenn sie ihr Ziel nicht ganz erreichten – viel für die Wissenschaft geleistet und daß sie vielen Menschen den Amateurfunk nahegebracht haben.

(nach "DARC-Report")

900 Seemellen durch das ewige Eis des Nordpolargebiets, auf bewegten Eisschollen durch meterhoch aufgetürmtes Packels und dle Schlitten als Boote nutzend - auch über Wasser bewähligten Sir Ranulph Flannes und Dr. Mike Stroud. Wesentliche technische Hilfe boten dabei fortschrittliche Amateurfunk-Techniken. Fotoquelle: DARC

Video-Überspielereien

J. WERNICKE

Videorecorder erfreuen sich bei alt und jung großer Beliebtheit. Über die ersten Startversuche hilft die Bedlenungsanleitung hinweg. Jedoch hüllt sie sich in Schweigen, wenn es um das Kopieren geht. Hierbei soll der Beitrag helfen.

Seit der Veröffentlichung einer Bauanleitung für einen Videoverstärker häuften sich die Anfragen nach seinem Einsatz. Einigen Lesern war nicht bekannt, wie dieser einzusetzen bzw. zu gebrauchen ist. Sicher liegt es daran, daß die Bedienungsanleitungen nicht genügend Auskunft über die Überspieltechniken sowie, und das ist schon recht unangenehm, über die einzelnen Funktionen der Anschlußbuchsen geben

Überspielen, ganz einfach

Im Lieferumfang eines Videorecorders ist immer ein HF-Kabel enthalten, mit dessen Hilfe man das Gerät über die Antennenbuchse anschließen kann. Hierbei werden das Video- und das Tonsignal recorderintern einem Modulator zugeführt, der ein komplettes HF-Signal liefert. In den meisten Fällen ist die Modulatorfrequenz einem UHF-Kanal zugeordnet und der Recorderkanal auf diesen Bereich einzustellen. Eine besondere Hilfe bietet ein Testbild, das das Videogerät selbst liefert und das in der Regel eingeblendet wird, wenn man auf Wiedergabe schaltet, ohne daß sich eine Kassette im Schacht befindet. Mit cinem zweiten Recorder plus HF-Kabel ist es kein Problem, eine Kassette zu überspielen.

Bild 1 veranschaulicht dies recht genau. Der aufzunehmende Videorecorder wird ganz normal an das Fernsehgerät angeschlossen. Am Fernsehgerät stellt man den betreffenden Videokanal ein, um den Überspielvorgang kontrollieren zu können. In den Antenneneingang dieses Recorders ist das HF-Kabel des wiedergebenden Gerätes zu stecken, das vom Modulator kommt. Die zu kopierende Kassette wird eingeschoben und die Wiedergabe betätigt.

Jetzt braucht man am aufnehmenden Ge-

rät nur noch den Kanal des abspielenden Recorders zu suchen, was in den meisten und einfachsten Fällen der Sender-Suchlauf (Search) für uns erledigt. Ist dies geschehen, kann der Überspielvorgang beginnen.

Nun soll natürlich nicht verschwiegen werden, daß diese Methode positive und negative Begleiterscheinungen mit sich bringt. Positiv ist, daß das Überspielen sehr schnell geht und daß jeglicher Kopierschutz nicht zum Tragen kommt. Negativ ist, daß die Qualität der Kopie darunter sehr leidet und daß das Videosignal über zwei Modulatoren geschleift wird. In extremen Fällen führt diese Tatsache dazu, daß die Kopie beim Kontrollabspiel nicht mehr richtig synchronisiert und deshalb unbrauchbar ist. Viele kennen diese unanangenehme Erscheinung sicher von unseriösen Videotheken: Das Bild flackert.

Wenn schon, denn schon

Wenn man schon überspielen will, sollte man es ernsthaft tun und die Möglichkeiten nutzen, die die Videorecorder bieten. Diese besitzen immer einen Anschluß, um den Fernsehempfänger mit einem direkten FBAS- und Tonsignal zu speisen.

Das wird in der Regel ein SCART-Anschluß (Bild 2) sein oder, wie im Beispiel von Bild 3, sogenannte Cinch-Stecker. Seltener findet man die Euro-DIN-Buchse vor, auf die deshalb auch nicht weiter eingegangen wird, da die Überspiel-Methode die gleiche ist.

An diesen genannten Buchsen liegen alle Ton- und Bildsignale, die zum Überspielen erforderlich sind. Die SCART-Buchse hat gegenüber den Cinch-Anschlüssen einige Vorteile, wie in [2] nachzulesen ist, da noch andere Signale abgegriffen werden können.

Bei der einfachen Überspielvariante be-

nutzt man zur Verbindung zwischen den beiden Recordern ein Kabel, das man, als Überspielkabel bezeichnet, überall im Handel erstehen kann. Damit ist ein Kopieren kinderleicht. Beide Recorder werden verbunden und der Aufzeichnungsvorgang am Fernschempfänger verfolgt. Ist das Mutterband (abspielendes Video) in der Qualität gut, erhält man in der Regel eine brauchbare Kopie, die allerdings schon einen höheren Rauschanteil besitzt als das Original.

Um solche Überspielverluste zu vermeiden, nutzt man Videoverstärker, bei denen man die Verstärkung einstellen und so die Verluste auf ein Minimum herabsetzen kann. Einige Varianten besitzen die Möglichkeit der Höhenanhebung, um die "Konturschärfe" zu verbessern. Dabei werden die hohen Frequenzen angehoben, was den Schärfeeindruck verbessern kann und gleichzeitig die Farbsättigung erhöht. Diese Verstärker sind in den Signalweg zu schalten, wie die Bilder 2 und 3 andeuten. In jedem Fall benötigt man zwei Überspielkabel.

Für Cinch-Buchsen hält der Handel ebenfalls die notwendigen Kabel bereit, die man, wie in Bild 3 gezeigt, anschließt. Ein Vorteil, den diese Buchsen gegenüber SCART-Anschlüssen haben, soll nicht verschwiegen werden. Da Ton- und Bildsignale getrennt gesteckt werden, muß die Tonquelle nicht unbedingt der "abspielende" Videorecorder, sondern kann beispielsweise die HiFi-Anlage sein.

Selbst das Bild kann von einem Computer kommen, um vielleicht ein eigenes Titelbild bzw. Label zu schaffen. Hier ist das Feld für experimentierfreudige Videofans offen. Beachten Sie auch den Beitrag "RGB/FBAS-Wandler" auf S. 553 dieser Ausgabe.

Literatur

- Wernicke, J.: Video-Überspielverstärker, FUNK-AMATEUR 39 (1990), H. 6, S. 290
- [2] SCART-Videoanschlußbuchse, FUNKAMA-TEUR 39 (1990), H. 9, S. 450

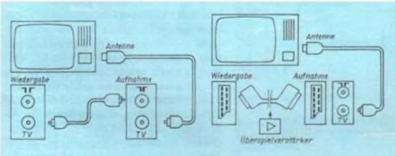
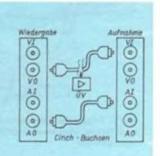



Bild 1: Einfachste Überspielmöglichkeit mit Hiffe der HF-Kabel

Bild 2: Überspielen mittels SCART-Buchsen. Es gibt Kebel, an denen Ein- und Ausgänge definiert sind. Bild 3: Überspielmöglichkeit

Bild 3: Überspielmöglichkeit über Cinch-Buchsen. Die Abkürzungen stehen für: VI = VI-deceing., VO = Videceusg., AI = Toneing., AO = Toneusg.

Technik der Videorecorder (1)

Dipl.-Ing. P. LEUE

Viele, die zu Hause einen VHS-Videorecorder benutzen, haben sich bestimmt gefragt, wie er funktioniert. Der nachfolgende Beitrag beschäftigt sich mit dieser Technik näher und gibt Einblick in die Funktionsweise eines solchen Gerätes.

Der moderne Videokassettenrecorder ist eine Präzisionsmaschine von unglaublicher technischer Finesse, gesteuert von einem Mikroprozessor und mit vielfältigem Know-how. Fast alle Neuerungen der Feinmechanik, der magnetischen Werkstofforschung, vor allem aber der Digitaltechnik und Mikroelektronik geben sich in seinem Innern ein Stelldichein.

Unser Beitrag kann trotz allen guten Willens nur an der Oberfläche schürfen. Vorausgesetzt werden Kenntnisse über den Aufbau des Fernschsignals und seine elektrische Übertragung einschließlich der Farbinformation.

Einführung und Entwicklung von VHS

Aus der Vielzahl der entwickelten und teilweise auch verkauften Videokassettensysteme (Video 2000, Betamax) ist für den Heimgebrauch schließlich der VHS-Videorecorder als uneingeschränkter Marktführer hervorgegangen.

VHS ist die Abkürzung für engl. Video Home-System, Videoheimsystem, das bereits im Jahre 1975 von der japanischen Firma JVC entwickelt wurde und für das internationale Normen bestehen. Neben VHS existiert heute praktisch nur noch das Video 8-System mit einer sehr kleinen Bandkassette, in der 8 mm breites Videoband läuft. Das System wird hauptsächlich in Camcordern (Videokamera mit integriertem Videorecorder) eingesetzt und ist mit VHS in keiner Weise verträglich.

Obwohl VHS ursprünglich nicht als das ausgereifteste der bestehenden Recorder-

systeme gelten konnte, hat es sich doch international durchgesetzt und weist heute durch verschiedene Weiterentwicklungen der Anfangsversion eine sehr gute Bildund Tonqualität, komfortable Bedienung und vielseitige Anwendbarkeit auf. Weiterentwicklungen des ursprünglichen VHS mit bis zu 4 Stunden Laufdauer einer Kassette brachten eine Longplay-Version mit doppelter Laufdauer, die Variante VHS-C mit wesentlich verkleinerter Kassette, eine Variante mit deutlich verbesserter Tonqualität (HiFi-Videorecorder) und über VHS-HQ schließlich S-VHS mit einem entscheidenden Durchbruch bei der Qualität des gespeicherten Bildes.

Die Preise für VHS-Recorder sind infolge der weltweiten Verbreitung in hohen Stückzahlen drastisch gesunken. Einfachere Geräte erhält man schon ab etwa 550,-DM, mit steigendem Komfort ist mit etwa bis zum Dreifachen dieses Betrages zu rechnen. Die hochwertigen S-VHS-Videorecorder kosten dagegen zwischen 2000,- und 4000,-DM, aber auch dieser Preis wird sicher noch fallen. VHS-C-Camcorder sind bereits ab etwa 1150,-DM zu haben.

Der VHS-Videorecorder als Normalversion

Infolge der gegenüber Tonsignalen wesentlich größeren Bandbreite der Videosignale (bis 5 MHz) kann man das Fernschbild nicht mit dem für Tonaufzeichnung üblichen Längsspurverfahren speichern (feststehender Magnetknopf schreibt oder

liest Magnetspur auf dem mit konstanter Bandgeschwindigkeit vorbeilaufenden Band). Um die erforderliche Aufzeichnungsgeschwindigkeit (zwischen Kopf und Magnetspur) von etwa 5 m/s auch bei geringer Bandgeschwindigkeit zu erreichen, wurde das Schrägspurverfahren eingeführt. Nur dieses ermöglicht eine genügend lange Laufdauer bei vertretbarer Größe der Videokassette. Wie die Bezeichnung bereits erkennen läßt, verlaufen die Magnetspuren schräg zur Bandlaufrichtung (Bild I). Dazu umschlingt das Videoband wendelförmig eine zylindrische Kopstrommel mit rotierendem Kopfrad, das in der VHS-Normalversion zwei um 180° gegenüberliegende Videoköpfe zur Aufnahme bzw. Wiedergabe der Bildinformation trägt. Der Umschlingungswinkel beträgt etenfalls 180°, d. h., er ist geringfügig größer (mindestens um die Länge von 3 Fernschzeilen), was für die notwendige Kopfumschaltung eine Überlappungszone schafft.

Das 1/2 Zoll breite Videoband wird an der Kopftrommel mit einer Bandgeschwindigkeit von etwa 2,34 cm/s vorbeigezogen. Der auf diese Weise entstehende Spurneigungswinkel beträgt bei VHS etwa 6°, die schrägen Spuren selbst bilden sich extrem schmal heraus (ungefähr 0,05 mm). Weil das Kopfrad mit exakt 1500 min⁻¹ rotiert. dauert das Schreiben einer Längsspur 20 ms. Es paßt genau ein Fernseh-Halbbild darauf, dessen Übertragung je ebenfalls 20 ms beansprucht. Die laufende Umschaltung der Videoköpfe muß kurz vor dem Halbbildwechsel vorgenommen werden. Dafür ist Voraussetzung, daß ein Regelmechanismus die Kopfradrotation so steuert, daß der Halbbildwechsel am Anfang einer zu schreibenden Videospur liegt. Dann ruft die Kopfumschaltung im Fernsehbild keine Störimpulse hervor.

Der erwähnte Regelmechanismus im Videorecorder sorgt übrigens auch dafür, daß die Bandtransportgeschwindigkeit bei Wiedergabe so nachgesteuert wird, daß jeder der beiden Videoköpfe stets auf die ihm zugeordnete Schrägspur trifft und während der ganzen Länge auf ihr verbleibt. Dazu wird schon bei der Bildaufnahme die Kontrollspur längs des Videobands mit einer 25-Hz-Impulsfolge bespielt, die bei der späteren Wiedergabe eine exakte Verknüpfung von Bandposition und Stellung der Videoköpfe garantiert.

Daß jeder Videokopf die von ihm geschriebene Spur wiedergeben muß, hat seine Ursache in der sogenannten Azimutaufzeichnung: Die Schrägspuren werden bei VHS ohne Zwischenraum unmittelbar nebeneinander auf das Band geschrieben. Um Videoübersprechen zwischen den Halbbildern zu vermeiden, sind die Spalte der Videoköpfe nicht exakt quer zur Spur angeordnet, sondern bei dem einen Kopf 6° nach links, bei dem anderen 6° nach rechts

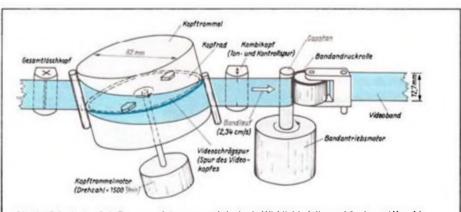
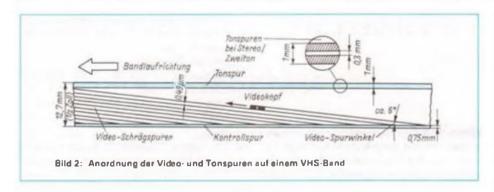



Bild 1: Prinzip des Schrägspurverfahrens, vereinfacht. In Wirklichkeit liegen Lösch- und Kombikopf, Bandantrieb sowie Bandführungselemente dicht an der Kopftrommel mit dem Einfädelmechänismus.

gedreht (Bild 3). Die Abmessungen der Normalkassette betragen 188 mm × 104 mm × 25 mm, im Gegensatz zur Audio-Kompaktkassette ist sie nur einseitig bespielbar. Die Laufdauer hängt von der Länge des enthaltenen Viceobandes ab und kann bis zu 4 Stunden betragen. Die teilweise angebotene VHS-Kassette E-300 (5 Stunden) enthält sehr dünnes Band, das nicht in jedem Recorder ohne Störungen läuft.

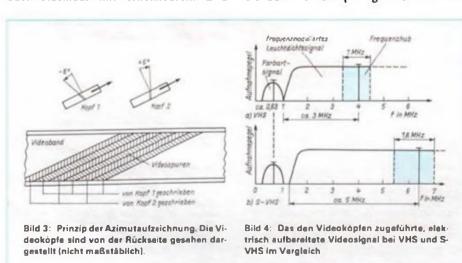
Der VHS-Recorder besteht aus folgenden Hauptbaugruppen: 1. Bandlaufwerk mit Antriebs- und Regelsystem sowie der Einfädelautomatik, 2. Kanalelektronik zur elektronischen Bearbeitung des Ton- und Bildsignals, diese muß, da alle VHS-Recorder farbtüchtig sind, dem entsprechenden Farbfernsehsystem angepaßt sein (PAL, SECAM, NTSC oder eine Kombination von mehreren), 3. Steuerelektronik (meist mit Mikroprozessor) zur Übermittlung der Bedien- und Anzeigebefchle und zur Koordinierung aller Teilsysteme und Automatiken bei den verschiedenen Betriebsarten des Recorders, 4. Fernseh-Empfangsteil.

Der Bandantrieb mit einer Capstanwelle und die grundlegenden Betriebsarten des Videorccorders entsprechen denen eines Audiokassettenrecorders: Aufzeichnen mit vorherigem Löschen evtl. vorhandener Aufnahmen, Wiedergabe, schneller Vorund Rücklauf. Außerdem sind häufig noch Sonderfunktionen wie beschleunigter Voroder Rücklauf mit erkennbarem Bild

(Cue/Review), Standbildwiedergabe, Zeitraffer/Zeitlupe/Rückwärtswiedergabe und elektronischer Schnitt möglich, der ein An- oder Einfügen (Assemble/Insert-Schnitt) von Aufnahmen oder kurzen Bildsequenzen bei einer schon bestehenden Bandaufnahme ohne Bildstörungen an den Szenenübergängen gestattet.

Nach Einsetzen der Videokassette in den Kassettenschacht des Recorders wird diese automatisch in Arbeitsstellung transportiert, dann wird das Band von der Einfädelautomatik aus der Kassette gezogen und um die Kopftrommel geführt. Dabei wird es auch an die anderen Magnetköpfe für die Längsspuren (Ton/Kontroll-Spur), den Löschkopf, die Bandführungen und die Capstanwelle angelegt, wodurch der Bandantrieb vorbereitet ist.

Die Löschung bei Aufnahme erfolgt im einfachsten Fall mit einem Löschkopf, dessen Spalt die gesamte Breite des Videobandes einschließlich Ton- und Kontrollspur erfaßt. Bei VHS-Recordern, die für elektronischen Schnitt geeignet sind, ergeben sich zum Teil kompliziertere Bedingungen für die Löschung, auf deren detaillierte Beschreibung wir aber verzichten wollen.


Vor der eigentlichen Aufzeichnung auf der magnetischen Schicht des Videobandes muß das Farbbildsignal mit seiner Bandbreite von 0 bis 5 MHz von der Kanalelektronik in ein Signal umgeformt werden, das sich zur magnetischen Speicherung besser eignet. Dazu wird der Leuchtdichteanteil bis zu einer Frequenzgrenze von etwa

3 MHz auf eine Trägerschwingung frequenzmoduliert (vgl. Bild 4, unten). Der Farbartanteil des Farbbildsignals wird dagegen in der Frequenzlage in einen Bereich unterhalb von 1 MHz herabgesetzt und zusammen mit dem frequenzmodulierten Leuchtdichtesignal den Videoköpfen zugeführt. Die Aufzeichnung erfolgt ohne Vormagnetisierungsstrom, und das Videoband kann bis zur Sättigung aufmagnetisiert werden. Das ist möglich, weil bei frequenzmodulierten Signalen die Information in der Länge der Einzelschwingungen und nicht mehr in der Amplitude steckt (für das nicht frequenzmodulierte Farbartsignal gilt das nicht, es hat aber eine geringere Amplitude, und da wirkt das in der Frequenz wesentlich höher liegende Leuchtdichtesignal als Vormagnetisicrungsstrom).

Bei der Bildwiedergabe "lesen" die gleichen Videoköpfe die Informationen wicder aus den Schrägspuren heraus, und alle Signalumformungen, die die Kanalelektronik am Aufzeichnungssignal vorgenommen hat, müssen wieder rückgängig gemacht werden. Danach steht das ursprüngliche Farbbildsignal wieder zur Verfügung. Es sei noch einmal betont, daß die Normalversion von VHS nur einen Frequenzumfang des Leuchtdichtesignals bis etwa 3 MHz speichern kann (das entspricht etwa einer Auflösung von 240 Linien). Dagegen hat das empfangene Farbbild eine Auflösung bis zu 320 Linien; zum Teil verringert cin VHS-Re∞rder also dessen Auflösung - und damit die subjektiv empfundene Schärfe.

Stationäre Videorecorder haben immer ein eigenes Fernseh-Empfangsteil mit Antenneneingang (Tuner). Daher können Aufnahmen unabhängig vom Fernsehgerät gemacht werden. Immer stärker setzen sich dabei Kabeltuner durch, die außer den üblichen Fernschkanälen auf VHF und UHF auch die Kabel-Sonderkanäle empfangen können. Bis über 30 programmierbare Stationsspeicher mit einfachem Tastenabruf sind keine Seltenheit, so daß bei Kabelanschluß kaum ein Wunsch offenbleibt. Selbstverständlich sind alle belegten Stationsspeicher in die Aufnahme-Vorprogrammierung des Recorders einbezichbar.

(wird fortgesetzt)

Flachantennen contra Schüsseln?

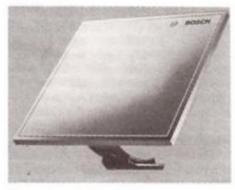
Dipl.-Ing. H.-D. NAUMANN

Seit einiger Zeit werden von den Herstellern von Satellitenempfangsanlagen Flachantennen mit teils euphorischem Werbeaufwand angeboten. Für den TV-Konsumenten entsteht der Eindruck, daß damit die Ära der parabolischen Schüsseln dem Ende entgegen geht. Verunsicherung des Käufers ist die Folge. Was hat es damit tatsächlich auf sich, gehört den "Flachmännern" die Zukunft?

Vorangestellt seien folgende Feststellungen:

- Das Prinzip der Flachantennen ist nicht neu, es wird vor allem in der Radartechnik seit Jahren genutzt.
- Die Bemühungen, dieses Prinzip in die Empfangsantennentechnik des Konsumgüterbereichs zu übertragen, sind etwa genauso alt. Sie scheiterten in der Vergangenheit vor allem an technologischen Hindernissen bei den für das Fernsehen genutzten Frequenzbereichen.
- Durch die Nutzung des SHF-Bereichs für die satellitengestützte Fernsehprogrammausstrahlung und die Fortschritte der Integrationstechnologien entstanden die Voraussetzungen, Flachantennen auch mit einem für die Konsumgüterelektronik vertretbarem ökonomischen Aufwand zu realisieren, allerdings vorerst für begrenzte Einsatzfälle.

Man darf aber heute mit hoher Sicherheit prognostizieren, daß den Flachantennen im Konsumbereich längerfristig die Zukunft gehören wird. Für einige zu erwartende Einsatzfälle, vor allem den mobilen Satelliten-Hörrundfunkempfang, stellen sie die einzige Lösung dar.


Prinzip und Aufbau

Eine Flachantenne, auch Planarantenne oder Planar-Array genannt, besteht aus einer großen Anzahl in einer Ebene angeordneter linearer Strahlerelemente, die durch ein spezielles Netzwerk gleichzeitig und (heute) gleichphasig gespeist werden. Sie besteht damit aus zwei Ebenen, einer, die das eigentliche Strahlersystem und einer, die die Ansteuerelektronik enthält Eine solche Strahleranordnung ergibt ein Richtdiagramm senkrecht zu dieser Ebene. Das Richtdiagramm entspricht dem einer Parabolantenne, wenn alle Einzeldipole gleichphasig angesteuert werden, wie es bei heute angebotenen Ausführungen der Fall ist. Werden die Einzelantennen jeweils um den gleichen Winkel phasenversetzt angesteuert, ist das Richtdiagramm gegenüber dem bei gleichphasiger Ansteuerung um den Winkel

$$\Theta = \arcsin \frac{\Phi \cdot \lambda}{2\pi d}$$

geschwenkt, wenn d der Abstand der Ein-

zelstrahler und λ die Wellenlänge sind. Damit besteht die Möglichkeit der elektronischen Strahlschwenkung, wozu allerdings das Speisenetzwerk mit einem zusätzlichen Netzwerk regelbarer Phasenschieber versehen sein muß. Die bisher marktwirksamen Flachantennen für den Satellitenempfang weisen diese Möglichkeit durchweg noch nicht auf. Ursachen sind der hohe technologische Aufwand und die damit verbundenen hohen Kosten. An akzeptablen Lösungen für den Konsumbereich

Planarantenne der Firma Bosch

(Bosch-Prospekt)

wird gearbeitet, da damit eine wichtige Voraussetzung für den mobilen Satellitenempfang geschaffen würde.

Vor- und Nachteile

Die Vorteile phasengesteuerter Planar-Arrays können wie folgt zusammengefaßt werden:

- geringe Bautiefe, geringe Masse,
- einfache Installation und mechanische Ausrichtung,
- geringer Windwiderstand,
- Herstellung durch moderne Integrationstechnologien,
- integrierbarer erster Abwärtsmischer,
- mögliche elektronische Strahlschwenkung,
- Empfangsmöglichkeiten zirkular polarisierter Wellen mit einfachen Grundelementen oder vorgeschalteten Polarisationselementen.

Dem stehen folgende generelle bzw. durch den Entwicklungsstand bedingte Nachteile gegenüber:

- aufwendiges Ansteuer- und Phasenschiebernetzwerk (mit z. T. beachtlicher Zusatzdämpfung),
- schlechtere elektrische Parameter als Parabolantennen.
- bedeutend höhere Nebenzipfelpegel, dadurch höhere Störgefahren durch terrestrische und kosmische Störquellen,
- zur Zeit noch keine vertretbaren Lösungen für das Phasenschiebernetzwerk für die elektronische Strahlschwenkung und
- insgesamt noch höhere Kosten.

Die Tabelle enthält einen Vergleich der drei Haupttypen von Spiegelantennen mit Planarantennen. Dabei schneiden letztgenannte immer schlechter ab, wenn es um hohe Gewinne geht, wie sie der Satellitenempfang erfordert. Reichen niedrigere Gewinne aus, ist die Planarantenne heute diskutabel und praktikabel. Das betrifft vor allem den Empfang von High-Power-Satelliten, wie TV-Sat 2, oder den Empfang digitaler Hörrundfunkprogramme via Satellit, wofür der notwendige Gütefaktor von 1 dB/K bereits mit einer nur 25 cm × 25 cm großen Planarantenne erreichbar ist. Hier sind derzeit auch die wichtigsten und marktwirksam angebotenen Einsatzgebiete zu sehen. Dieser Stand kann aber nicht als festgeschrieben betrachtet werden. Schon in abschbarer Zeit sind Planarantennen auch für Medium-Power-Satelliten, wie ASTRA, zu erwarten. Vor allem aber wird an ihrem Einsatz für den mobilen Rundfunksatellitenempfang gearbeitet.

	Fokus- gespeixter Parabol	Offset- gespeister Parabul	Cassegrain- Antennen	Planar Array
Flachenwirkungsgrad	50 60%	60 65 %	6070%	4080%
Mindestdurchmesser	20	10	75	15
konstruktive Lösung	cinfach	einfach	aufwendig	cinfach
Fertigungstechnologie	cinfach	einfach	aufwendig	cinfach
Montageaufwand	gering	gering	hoch	gering
Nebenkeulendämpfung	gut	schr gut	mittel	schlecht

Eine Marktübersicht

CB-Handfunkgeräte

Weihnachten naht – Zeit für Geschenke. Viele überlegen jetzt schon, wie sie ihren Lieben eine Freude machen können. Warum nicht ein Sprechfunkgerät verschenken, damit die geliebte Person stets in der Nähe und erreichbar ist. FUNKAMATEUR hat sich auf dem Markt umgesehen und präsentiert Geräte auf einen Blick.

Die hier vorgestellten Geräte sind wie folgt eingeteilt:

- 1. Hersteller bzw. Anbieter
- 2. FM-Kanäle, Sendeleistung (AM-Kanåle, Sendeleistung)
- 3. Stromversorgung
- 4. Besonderheiten
- 5. empfohlener oder Katalogpreis

Pocketphone

- 1. CONRAD Electronic
- 2. 1 K, 100 mW, (-)
- 3. 9 V-Block
- 4. Sendcanzeige und Batteriekontrolle mit LED, Rauschsperre
- 5. Verkauf paarweise: 49,50 DM

SINUS

- 1. DNT
- 2. 1 K, 100 mW, (-)
- 3. 9 V-Block
- 4. Sendeanzeige und Batteriekontrolle mit LED, kleinste Abmessungen
- 5. Verkauf paarweise: etwa 90 DM

PC 3

- 1. PAN International
- 2. 1 K, 100 mW, (-)
- 3. 9 V-Block
- 4. Sendeanzeige und Batteriekontrolle mit
- 5. Stück etwa 50 DM

BETA FM

- 1. stabo Elektronik
- 2. 1 K, 100 mW, (-)
- 3. 9 V-Block
- 4. Sendeanzeige und Batterickontrolle mit LED
- 5. Verkauf paarweise: etwa 90 DM

BETA PLUS

- I. stabo Elektronik
- 2. 1 K, 100 mW, (-)
- 3. 9 V-Block
- 4. LED-Batterickontrolle
- 5. Verkauf paarweise: etwa 100 DM

Mini 90

- I. TEAM
- 2. 1 K. 100 mW, (-)
- 3. 9 V-Block
- 4. LED-Batterickontrolle
- 5. Stückpreis etwa 45 DM

HF 12/3 FM

- I. DNT
- 2. 3 K, 100 mW, (-)
- 3. 8 Mignon
- 4. Akkuladehuchse, Rauschspeire
- 5. Stück 150 DM

GAMMA

- 1. stabo Elektronik
- 2. 3 K, 100 mW, (-)
- 3. 9 V-Block
- 4. Rauschsp., LED-Anz. f. Batt. u. Senden
- 5. Stück etwa 130 DM

MAXI 90

- I. TEAM
- 2. 40 K, 1 W, (-)
- 3. 10 Mignon
- 4. Rauschsp., ext. Mikrofon, LED-Sendeanz.
- 5. Stück ctwa 140 DM

HF 12/4

- 1. DNT
- 2. 40 K, 1 W, (-)
- 3. 8 Mignon
- grünes LED-Kanaldisplay, Akkuladebuchse, LED-Batterickontrolle, Rauschsperre
- 5. Stück etwa 130 DM

HT 4000 FM

- 1. DNT
- 2. 40 K, 0,5/4 W, (-)
- 3. 10 Mignon
- LED-Kanalanzeige, Rauschsperre, Akkuladebuchse, S-Meter und Batteriekontrolle
- 5. Stück etwa 200 DM

DNT scan 40

- 1. DNT
- 2. 40 K, 1/4 W, (-)
- 3. Akkupack
- belcuchtete LCD-Kanalanzeige, Rauschsperre, ext. Antennenbuchse, Wendelantenne, Suchlauf
- 5. Stück etwa 400 DM

SH 7500

- 1. stabo Elektronik
- 2. 40 K, 0,5/4 W, (-)
- 3. 10 Mignon
- analoges S-Meter und Battericanzeige, externes Mikrofon, Rauschsperre, rote LED-Kanalanzeige, Akkuladebuchse
- 5. Stück ctwa 280 DM

MAXI 9040

- 1. TEAM
- 2. 40 K, 0,5/4 W, (-)
- 3. 10 Mignon
- 4. Rauschsperre, rote LED-Kanalanzeige
- 5. Stück ctwa 150 DM

PC 4

- 1. PAN International
- 2. 40 K, 0,5/4 W. (-)
- 3. 10 Mignon
- 4. Rauschsperre, rote LED-Kanalanzeige
- 5. Stück etwa 300 DM

P 2040 C

- 1. ZODIAC
- 2. 40 K, 2 W, (-)
- 3. 10 Mignon
- beleuchtete LCD-Kanalanzeige, ext. Antennenbuchse, Akkuladebuchse, ext. Mikrofonbuchse, Halterung für Auto- und Feststations-Betrieb, Rauschsperre
- 5. Stück etwa 450 DM

Shinwa P-800

- 1. wipe electronic
- 2. 40 K. 2 W. (-)
- 3. 10 Mignon
- 4. wie P 2040 C, etwa baugleich
- 5. Stück etwa 500 DM

HF 12/5

- DNT
- 2. 40 K, 2 W, (12 K, 1 W)
- 3. 10 Mignon
- 4. grüne LED-Kanalanzeige, Rauschsperre, S-Meter und Battericanzeige, Akkuladebuchse
- 5. Stück etwa 150 DM

HT 4012

- 1. DNT
- 2. 40 K, 2 W, (12 K, 1 W)
- 3 10 Mignor
- grünc LED-Kanalanzeige, analoges S-Meter und Batterieanzeige, Akkuladebuchse, Sendeleistung umschaltbar
- 5. Stück etwa 230 DM

PC 412

- 1. PAN International
- 2. 40 K, 4 W, (12 K, 1 W)
- 3. 10 Mignon
- 4. rote LED-Kanalanzeige, Akkuladebuchse, LED-Battenekontrolle
- 5. Stück etwa 290 DM

SH 6200

- 0110200
- 1. stabo Elektronik 2. 40 K, 2 W, (12 K, 1 W)
- 3. 10 Mignon
- beleuchtete Skala, Akkuladebuchse, Sendeleistung umschaltbar, externes Mikrofon
- 5. Stück etwa 150 DM

SH 7000

- 1. stabo Elektronik 2. 40 K, 2 W, (12 K, 1 W)
- 2. 40 K, 2 W,
- 4 analoges S-Meter und Battericanzeige, LED-Sendeanzeige, Sendeleistung umschaltbar, Akkuladebuchse, rote LED-Kanalanzeige
- 5. Stück etwa 280 DM

Profi 90

-
- 1. TEAM 2. 40 K, 2 W, (12 K, 1 W)
- 3. 10 Mignon
- 4. LED-Kanalanzeige, Akkuladebuchse, S-
- 5. Stück etwa 200 DM

SH 8000

- 1. stabo Elektronik
- 2. 40 K. 2 W. (12 K. 1 W)
- 3. 9 Mignon. Akkupack
- Multi-LC-Display (Kanal, S-Meter), mikroprozessorgesteuerter Empfänger, Zweikanalüberwachung, AM/FM-Automatik, ext. Antennenbuchse, Akkuladebuchse
- 5. Stück etwa 400 DM

Redaktion FUNKAMATEUR Storkower Str. 158 Berlin O – 1055

Heißer Tip

Einige Elektronikversender bieten derzeit preiswerte Autoradios der Marke "Roadmaster" an, die mit dem Label "kleine Fehler" in der Preisspanne von 29 DM bis 39 DM gekennzeichnet sind. Da uns die Frequenzanzeige für ein anderes Projekt besonders interessierte, orderten wir einige dieser Geräte. Alle funktionierten auf Anhieb, lediglich einige Kassettenlaufwerke bedurften der Justage, und bei einigen Geräten mit digitaler Frequenzanzeige blieb die Anzeige selbst dunkel. Dieser Fehler ist sehr leicht zu beheben, indem man den Weg der grünen Leitung von der Anode der Anzeige bis zur Hauptplatine verfolgt. Dieser ist meist an einem Punkt verlötet, der keine 12 V, sondern Masse führt. Anlöten an den unmittelbar benachbarten 12-V-Lötpunkt läßt die Anzeige sofort aufleuchten, womit der Empfänger nun kompleti funktionsfähig ist.

Ortsverband Barkas

Beim RSV-OV Barkas, Y48ZN, (Barkas GmbH, PSF 64, Chemnitz, O-9040) trifft man sich an jedem Dienstag ab 16.00 Uhr bis 18.30 Uhr. Amateurfunk-Interessierte sind jederzeit gern geschen.

B. Lehnert, Y21GN

An unsere Autoren

Wir bitten alle unsere Autoren, uns für die Honorierung ihrer Beiträge (auch noch nicht veröffentlichter) ihre Kontonummern nebst Bankleitzahl mitzuteilen. Aus technischen Gründen ist künftig nur eine Überweisung von Honoraren auf Konten möglich.

Ibre Redaktion FUNKAMATEUR

Zu verschenken!

Ich möchte einem Computerneuling, der noch nicht das Geld für einen teuren Drucker ausbringen kann, meinen funktionstüchtigen Fernschreiber einschließlich Hardware zum Computeranschluß schenken. Bei Kontaktaufnahme bitte ich um eine frankierte Rückantwortpostkarte.

Kontakt: M. Romer, Paul-Verner-Str. 115, Berlin, O-1150

Der 12.8 | Diesel von Commodore

Opel

Ascona C-CC 2.01, Bj 6/88 VB **
09364/9473 ab 18 Uhr

Commodore 128d, Preis VB 2 09316 62609, ab 15 Uhr

Aufgespießt von unserem Leser S. Ginther in der MAIN-Post vom 17. 9. 1990

Schaltpläne gesucht

Ich besitze u. a. eine 1541 II, von der ich dringend einen Stromlaufplan suche. Wer kann mir helfen? Wer kann mich unterstützen, um meinen Schneider-PC-Monocrommonitor (Index Nr. 33632) an einen C64 II anzuschließen? F. Reissig

Ausgewählte Verbraucherschutzzentren

Verbraucherzentrale Berlin e. V. Bayreuther Straße 40

W-1000 Berlin 30 Tel.: 2 19 07-0

Verbraucherzentrum Berlin e. V. (Ost)

Warschauer Strafe 43 O-1017 Berlin

Tel.: 588 2014 und 588 2114

Verbraucherzenimie Mecklenburg/Vorpommern e. V. Beraluneszentrum Rostock

Neuer Markt 11 O-2500 Rostock Tel.: 37301

Verbraucher-Berstungs-Zentrum Brandenburg e. V.

Toni-Stemmler-Straße 77 O-1580 Potsdam

Verbraucher-Zentrale Sachsen-Anhalt e. V. Leninallee 93

O-4020 Halle Tel.: 28902

Verbraucher-Zentrale Sachsen e. V.

an der Handelshochschule Markgraffenstraße 2 O-7010 Leipzig

Tel.: 474791 App. 18

Verbraucherzentrale Chemnitz

Henriettenstraße 51 O-9000 Chemnitz Tel.: 300 S1

Verbraucherzentrale Thüringen e. V.

Kulzstraße 26 O-5020 Erfurt

Computererfahrungsaustausch gesucht

Z 1013: R. Hildebrandt, Marktgasse 68, Teutleben, O-5801

Atari-Clubkoniakte gesucht: A. Fiedler, Kleiststr. 4, Nordhausen, O = 5500

BC-DX-Infos

The World Service of the Christian Science Monitor

Diese religiöse Radiostation ist unter dem Namen "WCSN" in Deutschland schon lange keine Unbekannte mehr. Gesendet wird in verschiedenen Sprachen, so auch in Deutsch, direkt aus Scotts Corners. Maine, USA.

Das Hauptbüro des World Service/Herald befindet sich in Boston. USA

Außerdem werden die Programme über zwei weitere Schwesternstationen ausgestrahlt. So z. B. über WSHB aus Cypress Creek, SC, USA und von der exotischen Station KHBI aus Saipan, N. Marianen Inseln.

Momentan sind noch OSL-Karien von diesen drei Stationen zu haben, sie müssen angefordert werden bei:

World Service/Herald P.O. Box 860 Boston, MA 02123 USA

Der Hörer erhält dann drei verschiedene QSLs blanko, die er selbst mit den nötigen Details auffüllen muß und an die Station zurückschickt. Die Weiterleitung übernimmt Bosten. Schon nach wenigen Wochen treffen die detaillierten QSL-Karten mit Stempel und Unterschrift der betreffenden Stationen ein. Das ist eine echte Chance für QSL-Jäger – drei mit einem Schlag!

Der gültige Sendeplan (WCSH, WSMB, KHBI) wird auf Anfrage bei der schon genannten Adresse zugeschickt.

Zeitzeichensender

Bestimmt ist schon jeder DXer bei der täglichen Wellenjagd auf einen sogenannten Zeitzeichensender gestoßen. Diese Sender sind ein kleines, aber durchaus interessantes Spezialgebiet für Kurzwellenhörer.

Natürlich strahlen diese Stationen keine normalen Rundfunkprogramme aus, sondern nur Zeitinformationen. Für "nur Programmhörer" eine sicherlich monotone und langweilige Angelegenheit.

Dennoch bieten sich hier für DXer Möglichkeiten, neue Stationen zu empfangen, zum Teil aus Ländern, die sonst nicht oder nur sehr schwer zu hören sind.

Diese Sender haben die Aufgabe, Zeitsignale mit hoher Genauigkeit und unter ständiger Überwachung zu senden. Wichtig für die Seenavigation und für die Synchronisierung von Uhren. Auch Uhren des privaten Haushalts lassen sich, vorausgesetzt, die Feldstärke ist groß genug, genau stellen.

Gesendet wird auf verschiedenen Frequenzen der Kurzwelle. Standardfrequenzen sind z. B. 2500, 5000, 10000 sowie 15000 kHz. Die Sendezeiten sind von Station zu Station sehr unterschiedlich, von wenigen Minuten am Tag bis rund um die Uhr.

Obwohl Zeitzeichen-Stationen nicht auf Hörberichte angewiesen sind, so überraschen sie, fast alle sehr freundlich, auch mit hübschen OSL-Karten.

Natürlich sollte man die Empfangsberichte nicht mit technischen Angaben überfüttern, sondern alle Details wörtlich ausdrücken, also z. B. keinen SINPO-Kode verwenden.

Relativ gut und regelmäßig ist die Station BPM der Akademie Sinica aus Shanghai – VR China zu hören, bester Empfang in den Abendstunden auf 10 000 kHz.

Die Identifikation ist denkbar leicht. Jeweils in der 29. und 59. Minute nimmt eine Frau in chinesischer Sprache die Stationsansage vor. Außerdem wird in Morsekode gesendet. BPM bestätigt sehr schnell mit einer QSL-Karte und technischen Informationen über diese Station.

Emplangsberichte bitte an folgende Adresse:

Shan Ghai Observatory Academica Sinica P.O. Box 18 Lintong/Xian, VR China

M. Lindner

Einführung in die Assemblerprogrammierung des 8086 (7)

H. LIPPMANN

Entscheidend für erfolgreiche Programmierung eines Mikrorechnersystems ist die Kenntnis des Interruptsystems des eingesetzten Prozessors. Diese Folge unserer Serie behandelt das Interruptsystem des 8086.

Das Interruptsystem des 8086 soll hier so weit erklärt werden, wie es für das Verständnis aus der Sicht des Programmierers erforderlich ist. Die zugehörigen Hardwarefragen sind anhand der einschlägigen Literatur zu klären.

Im Gegensatz zum U 880, bei dem es zwei Interrupttypen, den maskierbaren und den nichtmaskierbaren Interrupt, gibt, sind es beim 8086 fünf Interrupttypen. Das sind:

- externer Hardwareinterrupt (maskierbar)
- Softwareinterrupt (nicht maskierbar)
- interner Interrupt
- nichtmaskierbarer Interrupt (NMI)
- RESET-Interrupt

Die Funktion von externem Hardwareinterrupt, Softwareinterrupt und NMI kann vom Programmierer festgelegt werden. Der interne Interrupt und der RESET-Interrupt haben intern festgelegte Funktionen. Der Hardware-, der Software- und der interne Interrupt laufen nach Prioritätsregeln ab. Die beim Interrupt zugeordnete Typ-Nr. bestimmt die Priorität. Typ 0 hat die höchste und Typ 255 die niedrigste Priorität. Einige Interrupttypen sind für spezielle Funktionen im 8086 vorgesehen. Der externe Hardware-Interrupt ist in seiner Bedeutung etwa dem maskierbaren Interrupt des U 880 vergleichbar. Im externen Hardware-Interrupt bezeichnet eine jeder Interrupt-Quelle zugeordnete Typ-Nummer eine Interrupt-Eingabeleitung des Interrupt-Controller-Bausteins (z. B. 8259 A), der sternförmig die Leitungen der verschiedenen Interruptquellen zusammenfaßt und das Interruptsignal, entsprechend einer in diesem Controller programmierbaren Prioritätsreihenfolge an den Prozessor weitergibt. Die der Interruptquelle zugeordnete Interrupt-Typ-Nummer wird dabei als Interruptvektor über den Datenbus übermittelt. Die Prioritätsreihenfolge innerhalb dieses Bausteins kann programmtechnisch verändert werden. Näheres dazu ist [2] oder [3], Folgen 2 und 3, zu entnehmen. Beim U880 war demgegenüber die in der Verdrahtung der Peripherieschaltkreise untereinander realisierte Interrupt-Prioritätskette die übliche Methode der Prioritätssteuerung der Interruptquellen.

Der externe Hardware-Interrupt läßt sich mit dem I-Flag maskieren. Ist das I-Flag gesetzt, ist der Interrupt zugelassen, im anderen Fall nicht. Zum Setzen und Rücksetzen dieses Flags dienen die Befehle STI und CLI. Sie haben damit die Bedeutung der Befehle EI und DI beim U 880.

Eine externe Interruptanmeldung durch ein Ereignis von außen erfolgt beim 8086 dadurch, daß am Pin 18 (INTR) logisch 1, also H-Pegel liegt. Hier gibt es Unterschiede zum U 880. Die Abfrage, ob eine Interruptanmeldung vorliegt, erfolgt im letzten Takt eines jeden Befehlslesezyklus. Die Quittung zur Interruptannahme erfolgt über Pin 24 (INTA). Dieses Signal ist im Gegensatz zu INTR L-aktiv, es wird also im Falle einer Interruptannahme logisch 0, also L-Pegel. Im zweiten Maschinenzyklus des Interrupt-Quittierungszyklus übermittelt die externe Hardware über die Anschlüsse AD0 bis AD7 die Interrupt-Typ-Nummer als Interruptvektor an die CPU.

Innerhalb der Interrupttypen des 8086 haben interne Interrupts die höchste und externe Hardwareinterrupts die niedrigste Priorität.

Laufende In:erruptroutinen können nur von höher priorisierten Interrupts unterbrochen werden. Interrupttypen mit gleicher oder größerer Typ-Nummer sind während dieser Zeit gesperrt.

Die Zuordnung eines Interrupts zu der zugehörigen Interruptroutine geschieht in einer Interrupttabelle anhand des Interruptvektors, der mit 4 multipliziert wird, um die zugeordnete Adresse in der Tabelle zu erreichen. Die Interrupttabelle kann nicht, wie beim U 880, an beliebiger Stelle angeordnet werden, sondern befindet sich am Anfang des Adreßraumes auf den Adressen 000H bis 3FEH und ist 1 KByte lang. Jede Eintragung besteht aus zwei Worten, die die Ansprungadresse der zugehörigen Interruptroutine enthalten. Tabelle 1 zeigt den Aufbau der Interrupttabelle.

Die erste dieser Adressen, sie ist der Offset der Interruptroutine, gelangt bei Interruptannahme in IP und die zweite, der zugehörige Segmentregisterinhalt, in CS. Die Adresse des Befehls, der als folgender bearbeitet worden wäre, wenn es keinen Interrupt gegeben hätte, wird, analog zum U 880, im Stack aufbewahrt. Nach Beendigung der Interruptroutine setzt sich an dieser Stelle die Befehlsabarbeitung fort. Dazu sind Offset und Segmentadresse im Stack zwischenzuspeichern. Außerdem wird im Interruptbestätigungszyklus das Flagregister gerettet. Daraus ergibt sich, daß für jede Interruptbehandlung eine Stacktiefe von 6 Byte erforderlich ist. Mit dem Maschinenbefehl IRET (Rücksprung aus der Interruptroutine) werden diese Maßnahmen rückgängig gemacht.

Benötigt man die Interrupttabelle in einem System nicht oder nur teilweise, so ist der betreffende Speicherbereich anderweitig nutzbar

(wird fortgesetzt)

Tahelle 1: Aufbau der Interrupttahelle des 8086

Adresse	Inh:	alt	zugeordneter Vektor	Verwendung
MFE	CS 2		Vektor 255	
IBFC	IP 3			
				Jur Anwender
				verlügbar
		-		
(In16	CS	5	Vektor 5	
UD14	IP	5		
0012	CS	4	Vektor4	Overflow
uuta	IP	4		
OODE	CS	3	Vektor 3	Breakpoint
OUUC	IP	-3		
UNDA	CS	2	Vektor 2	NMI
	1P	2		
OHU5	CS	1	Vektor 1	Single Step
0004	IP	-1		
0002	CZ	0	Vektor 0	Divide Error
OBOO	1P	U		

- Anzeige -

DISKLOADER v4.2 fur C 64 & C 128 (selbstumschaltend)

Die SOFTWAHE-Eigenentwicklung für Geschwindigkeitsrausch! Lädt Programme von SO33c-\$EOOO (222 Blöcke) und erstmals auch das Directory 14fach beschleunigt!

- · Programmauswahl menugesteuert.
- startet automatisch/manuell
 Basic- und Maschinen-Programme,
- belegt 0 (C 64) bzw. 1 Block (C 128) auf Ihrer Diskette.
- Installationsdiskette:
- Demoversionfür 50 Installationen

10,00 DM 19,90 DM

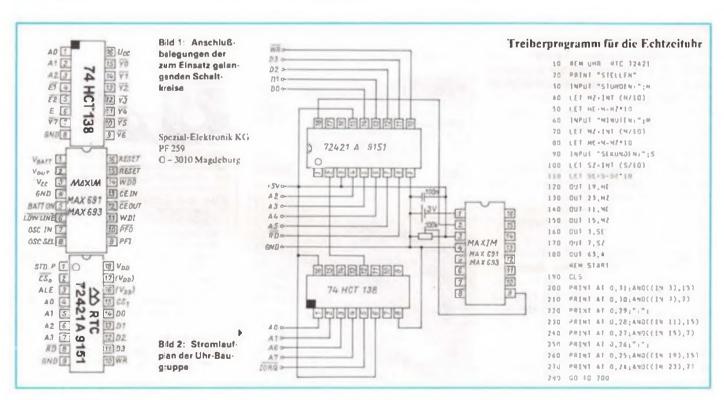
- für 100 Installationen

29,90 DM + Nachnahme

Richten Sie bitte Ihre Bestellung an: Steffen Solyga, Dunckerstr. 15 O – 1058 Berlin, Tel. 4480932

Echtzeituhr am Heimcomputer

J. REINMUTH


In letzter Zeit gelangten durch Werbeaktionen der Spezial-Elektronik-KG die Spezialschaltkreise der Firma MAXIM, die im übrigen auch im Elektronikhandel bzw. -Versand erhältlich sind, zu einiger Bekanntheit. Außer in industriellen Anwendungen sind diese IS auch für den Amateur interessant. Der vorliegende Beitrag beschreibt die Einbindung der batteriegepufferten Echtzeituhr RTC 421 (Seiko-Epson-Corporation) in ein Z 80-Computersystem.

Adreßraumeinordnung und Registerfunktionen Rcg. 133 D? Westebereich Funktion Adresse DEZ HEX Schunden-Einer Sa Si 80 07 07 Ohis 5 Sekunden-Zehner San San Sı 11 nB MI Ohis 9 Minuten-Einer m m. m. m. OF MI. X 0 bis 5 Minuten-Zehner 15 III mar Min 10 13 14. h₂ Ohis 9 Stunden-Finer hi 23 17 X PM/AM Ohis 2/0 Stunden-Zehner Him h₂₀ 0 bis 9 Di Tage-Einer 1B d: d_1 31 Die X X do de Obis 3 Tage-Zehner 35 23 MO. Ohis 9 Monats-Einer M_a m m. m. 27 MO. X X X Obis 1 Monats-Zehner 39 Mia 43 Jahres-Einer 28 Y. y4 Obis 9 Уs y2 V. 17 2F Obis 9 Jahres Zehner ya. Yes y₂₀ 51 33 W X Obis 6 Wacheniag Sieuerregister 1) 37 D 30s IRQFLAG BUSY HOLD 55 59 **3B** E IRPISTND MASK Steuerregister E 24/12 REST 63 3F F TEST STOP Steuerregister F Mit X bezeichnete Bits sind nicht belegt. Das Testbit ist auf 0 zu setzen, BUSY ist nur zu lesen!

Die Hardware

Der Schaltkreis RTC 72421 enthält in einem 18poligen DIL-Gehäuse eine zu den Prozessoren 8048, 8051 und 8085 buskompatible Echtzeituhr mit integriertem 32768-kHz-Quarz und realisiert eine Zeit-, Datums- und Wochentagsanzeige. Der Hersteller des CMOS-Schaltkreises garantiert eine typische Stromaufnahme von 10 µA im nichtangewählten Zustand und die Schlaffunktion bis herab zu $U_{DD} = 2 V$. Die Funktionen des Schaltkreises werden über 13 Daten- und drei Steuerregister programmier:, die über vier Adreßleitungen anwählbar sind. Die Bereitstellung von 16 Adreßleitungen bereitet in Systemen mit eingeschränktem Adreßraum (z. B. infolge mehrdeutiger Dekodierung) gelegentlich Schwierigkeiten. In solchen Fällen kann man die Echtzeituhr auch über einen parallelen, bidirektionalen Schnittstellenschaltkreis bei Verzicht auf eine direkte Busankopplung betreiben. Dabei entfällt dann auch der im Bild 2 vorhandene Adreßdekoder. Zur direkten Busankopplung in Z80-Systemen legt man den Eingang ALE (Adress Latch Enable) des RTC 72 421 an die +5 V, da der Prozessor nicht über einen entsprechenden Ausgang verfügt. Damit ist das Adreßlatch ständig freigegeben. Die übrigen Ein- und Ausgänge werden mit den entsprechenden Leitungen des Z80 verbunden. Den H-aktiven CS-Eingang verbindet man wiederum mit den +5 V

Die Anwahl des Schaltkreises erfolgt über den L-aktiven CS-Eingang in Verbindung mit dem Adreßdekoder 74 HCT 138. In der Testkonfiguration – Betrieb an einem ZX

Spectrum – habe ich die Adreßeingänge A0 bis A3 des Uhrenschaltkreises mit den Adreßleitungen A2 bis A5 des ZX beschaltet, da die Adressen A0 und A1 bereits für interne Systemfunktionen vergeben sind [1]. Die Adreßleitungen A6 und A7 sind in Verbindung mit IORQ zur Selektion des Schaltkreises eingesetzt, der somit gemäß der Tabelle in den Adreßraum des ZX Spectrum eingeordnet ist. Aus dieser Tabelle ist gleichzeitig die Bedeutung der einzelnen Register zu ersehen [2].

Eine interessante Schaltungsergänzung ist die Einbindung eines Überwachungsschaltkreises (Watchdog) MAX 691 CPE, der hier allerdings nur zu einem Bruchteil seiner Möglichkeiten ausgenutzt wird [3]. Der MAX 691 schaltet bei Abfallen der Versorgungsspannung unter einen an Pin 9 vorzugebenen Schwellwert die Uhr auf Batterieversorgung um. Bei der geringen Stromaufnahme der Uhr im Schlafzustand sind akzeptable Betriebszeiten bereits mit zwei Mignon-Zellen erreichbar. Besonders empfehlenswert ist hier der gepufferte Einsatz von NiCd-Akkumulatoren.

Die Software

Das BASIC-Programm zeigt einen Minimaltreiber zum Stellen und Starten der Uhr sowie zur Anzeige der Uhrzeit. Dieses Programm stellt nur ein Beispiel dar, es ist weiter ausbaubar oder auch durch ein Maschinenprogramm zu ersetzen. Es ist wegen der notwendigen logischen Verknüpfungen (Bit-Maskierungen) unter Beta-BASIC erstellt.

Durch die Batteriepufferung stehen Uhrzeit und Datum auch nach längerer Nichtnutzung des Rechners sofort zur Verfügung. Das ermöglicht für Heimcomputer recht originelle Lösungen, wie z. B. das automatische Einsetzen des aktuellen Datums in Textverarbeitungsprogrammen.

Literatur

- Reinmuth, J.: Hardware-Erweiterung f
 ür ZX Spectrum, BVH Berlin, 1990
- [2] Datenblatt Real Time Clock Module RTC 72421/ 72423 Japan, 1989
- [3] Datenblatt Mikroprozessor-Überwachungsschaltungen MAX 690/691/692/693, Bückeburg, 1988

Noch eine Repeatroutine

A. KÖHLER

```
BEPEATTASTAUR OHNE WARTEN AUF TASTATURDRUCK
                             11ST KEINE TASTE GEDBUECKT, WIRD 400 UMERGBEN
08G 48000
REPEAT EDU 40000
0000
                        SO MERK
60 TAST
0001
                                      EDU
                                            40001
                                            BC
DE
0004
8000
B001 D5
                                      PUSH
                        80
6002 ES
                        90
                                      PUSH HL
8003 AF
8004 320400
                       100
                                                              A-REGISTER-O
                                            (TAST), A
                                                            TAST LOESCHEN
                                      RST
8007
                       120
                                            120
8008 04
8009 87
                      130
                                      DEFB #04
                                                            TASTE CEDRUECKT
      2004
                                            NZ, HI
EOOA
800C E1
6000 D1
800E C1
                      160 83.
                                            611.
                                                            ZUM HAUPTPROGRAMM
800F C9
                       190
                                            E.A TASTATURZETCHEN NACH E
A.(REPEAT) REPEATSTATUS HOLEN
180 SCHON REPEAT DUCHLAUFEN?
                       200 HIL
8011 JA0000
8014 FE80
                                            NZ, M2
                                                            NEIN, ERST REPEATSCHLEIFE DURCHLAUFEN
LETTTES ZEICHEN HOLEN
JOLEICHES ZEICHEN WIE GEDRUECKT?
JA GLEICHES ZEICHEN, ALSO MIT REPEATZEIT ZU MA
8016 2018
                      230
                                     32
8018 JA0100
                                            A, (MERK)
BOIC 2HOA
                                            Z. H4
                      260
                                     Ja
HOIE AF
HOIF 320000
BO22 78
                      270 M6:
                                                            NEIN
                                            (REPEAT), A
                                                             ALSO REPEAT LOESCHEN
                                                            LETZTES ZEICHEN NACH A
8023 320100
                                            (MERK).A
                      300
8026 1854
                      310
HO28 010007
                      320
                                            BC, #0700
                                                            REPEATZEITKONSTANTE VERRINGERN
4028 08
                      110
                           M5 i
                                     DDC
                                            BC
                      340
                                            A.B
                                                            REPEATZEIT ABGELAUFEN?
                                     01
8020 BI
                                            C
NZ, NS
MOSE SOFR
                      160
                                     38
                                            A, E
M3
D, 418
                                                           ZEICHEN NACH A
                      170
                                                            ID-ANZAHL REPEATSCHLEIFEN
IN-ZEITKONSTANTE FUER AUSGLEICHSSCHLEIFE
8033 1618
                       390
8035 00FF
8037 10FE
                       400
                                     DINZ MB
                      410 MB.
                                     NOR
      320400
                                              TAST). A
HOJD ES
                      440
803E DS
803P CS
8040 E7
                      450
                                      PUSH
                                            DE
                                                           TASTATURAHFRAGE
                                     DIFE
8041
      04
                       480
                                            804
                                            HL
8044 E1
                                                            LETETES TASTATURZEICHEN NACH E
8045 51
                      520
                                                            JA-ZEICHEN AUS MERK
NOCH IMMER GLEICHE TASTE GEDRUECKT
NEIN
8046
      340100
                      510
                                            A, (HERK)
                                            NZ, MG
804A 20D2
                                      JR
                       550
                                                            ANZAHL REPEATSCHLEIFEN VERHINGER
804C 15
                      560
                                                            NOCH NICHT NULL
REPEATSCHLEIPE ABGELAUFEN
REPEATDURCHLAUF MERKEN
                                            NZ.M7
804F
      3580
                      580
                                            (REPEAT), A
8051 320000
8054 78
                      590
                                                            LETZZES ZEICHEN NACH A
```

Immer noch arbeitet ein großer Z 1013-Userkreis mit dem Originalmonitor. Das hat verschiedene Ursachen, die von der Furcht vor einem Hardware-Eingriff bis zum Fehlen einer angepaßten Tastatur reichen. Um trotzdem z. B. leistungsfähige Texteditoren nutzen zu können. ist eine Tastaturrepeat-Routine sehr wichtig. Eine solche ist u. a. in [1] beschrieben, die aber Probleme des weitverbreiteten Texteditors "MI-CROWORD" von R. Brosig bringt. Die Ursache liegt in der Organisation der Tastaturabfrage. "MICROWORD" kehrt von jeder Tastaturabfrage mit einem Wert zurück. Ist keine Taste gedrückt, steht im Akku der Wert 00H, und es erfolgt nur eine Korrektur der Statuszellen. Die Routine in [1] kehrt jedoch nur mit einem Wert ungleich 00H zum Hauptprogramm zurück. Dadurch kann es bei Programmen wie "MICROWORD" dazu kommen, daß Statuszellen nicht korrigiert werden. Die hier beschriebene Lösung behebt diese Erscheinung.

Das Programm ist relocatibel, es werden zwei Zellen im RAM benötigt. Die Routine nutzt den RST 20H DEFB 04H. Dabei ist zu beachten. daß vor diesem Aufruf die Register BC, DE und HL gerettet werden müssen. Bei nicht gedrückter Taste erfolgt eine sofortige Rückkehr mit 00H im Akku, bei gedrückter Taste eine Abspeicherung des Testaturkodes in E. Danach kontrolliert das Programm, ob die Repeatschleife schon durchlausen ist. Wenn dies der Fall ist, erfolgt eine Kontrolle, ob die gleiche Taste wie bei der letzten Abfrage gedrückt ist. In diesem Fall wird nur die Repeatschleife durchlaufen, deren Dauer in Zeile 320 veränderbar ist. Falls eine von der vorhergehenden Abfrage verschiedene Taste gedruckt st, wird die Tastatur noch einige Male abgefragt, um festzustellen, ob die Taste gedrückt bleibt. Die Anzahl der Abfragen und damit die Repeatverzögerung läßt sich in Zeile 390 variieren. Die Zeilen 400 und 410 sorgen dafür, daß die Repeatschwelle für alle Tasten gleich lang ist. Bleibt eine Taste lange genug gedrückt, so wird der Repeatstatus gesetzt. Falls nicht, werden nur das Zeichen gemerkt und der Repeatstatus nicht gesetzt. Weitere Einzelheiten sind problemlos dem Quellisting zu entneh-

Literatur

 Köhler, A.: Repeat-Tastaturfunktion am Z 1013, FUNKAMATEUR 38 (1989), H. 4, S. 137

Atari-Textfiles – mit dem Z 1013 zu lesen

J. FISCHER

Seit es den zweiten Computer auf der Welt gibt, existiert auch das Problem der Kommunikation unter den Maschinen, das selbst im professionellen Bereich noch heute erhebliche Probleme bereitet. Trotz Industriestandards. Kaum hat sich ein System zum Quasi-Standard herausgebildet, schert ein Hersteller, meist derselbe, aus, noch viel verheerender wirkt sich die Systemvielfalt im Heimbereich aus. MSX hat sich nicht durchsetzen können, die Riesen haben nicht mitgespielt. Trotz gleicher Prozessoren sind Atari und Commodore nicht kompatibel. Und bei den Ex-DDR-Computer-Eigenbauten war hier der Wirrwarr komplett.

Trotz Bemühungen großer Computerclubs, wenigstens einen minimalen Konsens bei Hard- und Softwareschnittstellen zu erreichen, war letztlich jeder mit seiner Maschine mutterseelenallein. Die Z80-Gemeinde hat sich da ja wenigstens teilweise helfen können, das System war den Profis geläufig, aber Intel- und Motorola-Maschinenbesitzer hatten es da früher noch schwerer. In der letzten Zeit haben nun die Umsteiger zugenommen, das heißt aber auch, daß man wenigstens seine Texte auf die andere Maschine retten will.

Oder aber man möchte mit einem Computerfreak, der einen anderen Typ sein eigen nennt, kommunizieren, natürlich über Datenträger, versteht sich. Wir haben dieses Problem ja zu einem unserer Schwerpunkte erklärt, hier nun ein erster Beitrag zu diesem Thema, das noch lange nicht "abgegessen" ist.

Inzwischen hat sich für die Übertragung von BASIC-Programmen BASICODE recht gut bewährt, allerdings ist BASICODE nicht das Allheilmittel, wenn mit Textsystemen erarbeitete Texte auf eine andere Maschine zu übertragen sind.

Ich hatte es mir zur Aufgabe gemacht, Textfiles aus dem Atari 800/130 in den Z 1013 einlesen zu können. Das hieß, mit dem Atari war eine Kassette so zu beschreiben, daß man deren Files mit dem Z 1013 lesen kann. Ausgangspunkt waren ein Atari 800 und ein Z 1013 mit optimal angepaßten Drucker.

Die Ausgabe der Files erfolgt an einem Joystick-Ausgang des Atari zum Kassettengerät.

Das vorgestellte Programm bezieht sich auf einen Z 1013 mit 1 MHz, es ist relocatibel. Um es auf anderen 65xx-Computern lauffähig zu machen, sind vor allem die Merkzellen zu ändern.

Zum im Listing abgebildeten Programm will ich lediglich einige Hinweise zum Aufbau geben, um auch Besitzer anderer Computer anzuregen.

Zeile 10 bis 20: Einlesen der Daten des Maschinenprogramms in den String PRO\$. Es

wird eine Prüfsumme als Eingabekontrolle gebildet und mit einem Sollwert verglichen (B).

Zeile 250: Aufruf des Unterprogramms zur Kassettenausgabe.

Zeile 300 bis 330: Unterbrechen der Bildschirm-Interruptsteuerung, Initialisierung des Joystickports auf Ausgabe.

Zeile 400 bis 430: Ausgabe von 2048 Impulsflanken an alle Joystickports. Die Frequenz beträgt hierbei 330 Hz.

Zeile 500 bis 520: Ausgabe von zwei Impulsflanken mit einer Frequenz von 660 Hz.

Zeile 600 bis 640: Zwei Null-Bytes gelangen zur Ausgabe.

Zeile 700: Zwischensprungstelle. Sie wird beim Abarbeiten des Programms von oben übersprungen. Wird sie von unten angesprungen, erfolgt ein weiterer Sprung zum Programmschritt in Zeile 500. Diese Zwischensprungstelle habe ich eingerichtet. um eine Verschiebbarkeit von PRO\$ zu erreichen. Beim 65xx sind nur relative Sprünge von -126 bis +129 möglich.

Zeile 800 bis 880: 32 Bytes des Textfiles gelangen zur Ausgabe, zusätzlich erfolgt die Bildung der Checksumme.

Zeile 900: Zwischensprungstelle.

Zeile 1000 bis 1050: Die Checksumme wird übertragen.

Zeile 1100 und 1110: Der Zähler wird um 32 erhöht.

Zelle 1200 und 1210: Es erfolgt ein Test, oh bereits alle Bytes übertragen sind. Falls dies noch nicht geschehen ist, erfolgt nach Ausgabe von 15 Impulsflanken mit 330 Hz ein Rücksprung zur Zeile 500. Ansonsten springt das Programm die Endinitialisierung an.

Zeile 1300 und 1310: Endinitialisierung und Rückkehr ins BASIC.

Zeile 1400 bis 1420: Ausgabe von 15 Impulsflanken mit 330 Hz.

Zeile 1500: Rücksprung.

Das Programm realisiert nicht die Übergabe der Anfangs- und Endadresse des zu savenden Textfiles. Das kann man jedoch durch einfaches Poken in die Merkzellen

20 REH PROGRAMI ZUR Z 1013-LESBAREN FILE-AUSSABE REN (10,11)... MERKIELLE AMFAMBSADRESSE DES FILES REM (12,13)...MERRZELLE EMBADRESSE DES FILES REN (24.25)... NERRZELLE BILDUNG CHECKSLINGE AΔ 8=0 100 FOR 1=1 TO 352 110 READ SIPROS 1,11-CHR9(S) 120 B-8+S 130 MF17 1 200 IF B-44864 INEN 250 210 PRINT'FEMLERHAFTES PROGRAMM' : END 250 A-USR (ADR (PPDS)) 300 DATA 104,173,47,2,72,173,0,212,72,173 310 DATA 14,212,72,169,56,141,2,211,169,0 320 DATA 141,47,2,141,0,212,141,14,212,141 330 DATA 0.211 400 DATA 149,8,72,169,0,72,162,221,234,234 410 DATA 234,207,208,250,149,255,77,0,211,141 420 DATA 0,211,104,170,202,138,208,233,104,170 430 DATA 202.134.208.224 500 DATA 169,2,72,162,240,202,208,253,169,255 510 DATA 77,0,211,141,0,211,104,170,202,138 520 DATA 208.234 400 DATA 169,2,72,169,0,72,160,8,162,120 610 BATA 202,201,253,104,74,72,176,8,169,255 420 DATA 77,0,211,141,0,211,142,120,202,208 630 DATA 253,169,255,77,0,211,141,0,211,136 440 DATA 208,222,104,104,148,136,132,208,209 700 DATA 24,144,2,174,180 800 BATA 149,1,72,149,0,141,24,0,141,25 810 BATA 0,168,177,10,72,24,109,24,0,141 820 DATA 24,0,169,0,109,25,0,141,25,0 830 DATA 160,8, M2, 120, 202, 208, 253, 104, 74, 72 840 DATA 174,8,169,255,77,0,211,141,0,211 850 DATA 142,120,202,208,253,149,255,77,0,211 860 BATA 141,0,211,136,208,222,104,104,170,168 870 DATA 232,224,33,240,10,138,72,74,177,10 880 DATA 72,144,197,176,186 900 DATA 24,144,2,174,164 1000 9ATA 162,0,138,72,189,24,0,72,160,8 1010 BATA 162,120,202,208,253,104,74,72,176,8 1020 BATA 169, 255, 77, 0, 211, 141, 0, 211, 162, 120 1030 BATA 202,208,253,169,255,77,0,211,141,0 1040 DATA 211,134,200,222,104,104,170,232,224,2 1050 DATA 208,206 1100 DATA 24,169,32,101,10,133,10,169,0,101 1110 DATA 11.133.11 1200 DATA 165,11,197,13,144,21,166,10,202,138 1210 DATA 197,12,144,13 1300 DATA 104,141,14,212,104,141,0,212,104,141 1310 DATA 47.2.94 1400 DATA 169,15,72,162,221,234,234,234,202,208 1410 BATA 250,169,255,77,0,211,142,0,211,104 1420 DATA 170,202,138,208,233 1500 BATA 36,176,134

10 bis 13 erreichen. Auf die Plätze 10 und 12 sind der niederwertige Teil, auf die Plätze 11 und 13 der höherwertige Teil der Adressen einzusetzen. Damit ist eine flexible Gestaltung eines meist vorhandenen übergeordneten Programms möglich.

C 64-HIRES-Hardcopy mit dem K 6304 C

Derzeit sind, vor allem aus Robotron-Restbeständen, vielerorts billig Thermodrucker K 6304 zu erhalten. Mit einer Commodore-Schnittstelle ausgerüstet. sind diese auch am C64 betreibbar. Für den K 6304 habe ich eine Routine zum Ausdrucken des Bit-Map-Bereichs (HI-RES-Schirm) erstellt. Sie ist frei verschiebbar und nur 160 Byte lang. Bei der Installation sollte man aber beachten, daß das Programm verschiedene Betriebssystemroutinen benötigt. Also kann man es nicht unter dem Betriebssystem im RAM unterbringen. Weiter benutzt es die Bytes 251 (\$FB) und 252 (\$FC) in der Zeropage. Als Zwischenspeicher benötigt das Programm noch 8 Byte, die sich gleich im Anschluß an die Videomatrix befinden (2024 bis 2031 <\$s07E8 bis \$07EF>). Über den BASIC-Lader kann man die Gerätenummer des Druckers und die Lage des HIRES-Bereichs festlegen. Die Gerätenummer 4 oder 5 ist in Zeile 30, das H-Byte der HI-RES-Anfangsadresse in dezimaler Form in Zeile 40 festzulegen.

Der BASIC-Lader erzeugt ab der in Zeile 20 anzugebenden Basisadresse ein Maschinenprogramm und löscht sich danach selbst. Das Maschinenprogramm ist mit SYS (Adresse) bzw. JSR (Adresse) aktivierbar.

Beim Arbeiten mit dem Drucker empfiehlt es sich, dessen automatischen Zeilenvorschub abzuschalten (DIL-Schalter 8), da 10 RER DASIC-LADER HIRES-COPY HIT ROBOTRON R 6304 C c 1990 N.MJERL

20 MA-828:REM MASISABRESSE DES PROGRAMMS (FREI VERSCHIEBMAR)

30 GM-4:REN GERAETENDINER (4 COER 5)

40 MR-224:REM N-BYTE START MIRESBEREICH (224-IMIRES-MASTERS)

30 P=0:N=1WT((M+91)/254)(L=M+91-HE254

60 FOR 1-84 TO 84-160

70 READ INPOSE I, EIP-P-EIMEST 1

DO POLE MAS, GRIPOLE MAST, HRIPOLE MAS, LIPOLE MASA, H

90 IF PO21347 THEN PRINTINGE -FEM. SR'15ND

100 MEW

500 BATA 189,1,162,4,160,6,32,186,239,32,192,239,162,1,32
310 BATA 201,233,169,27,32,210,233,169,63,32,210,233,169,8,32
320 BATA 210,233,169,0,133,231,169,224,133,232,162,0,169,8,72
330 BATA 32,210,233,169,73,32,210,233,169,64,32,210,233,169
340 BATA 13,22,210,233,160,6,32,131,3,200,197,40,200,248,169
350 BATA 13,32,210,233,232,224,23,200,216,32,204,233,169,1
360 BATA 21,32,210,233,232,72,200,192,16,32,204,233,133,13
370 BATA 160,0,177,231,133,232,7,200,192,8,208,246,163,1,9
360 BATA 2,133,1,88,24,163,231,163,833,1163,232,103,6
370 BATA 133,232,160,0,169,0,172,6,202,742,232,224,8,200
400 BATA 247,32,210,233,200,192,8,200,236,104,168,104,170,44

es sonst zum "Ausdruck" von Leerzeilen kommen kann.

Abschließend noch meine Bitte an andere C64-Freunde: Wer hat evtl. schon eine GEOS-Treiberroutine für den K 6304 erstellt?

Kontakt: R. Hübl, Freiberger Str. 6, Dresden, O-8010

Literatue

- [1] Manual Robotron-Thermotransferdrucker K 6304 TS 80, Ausgabe 9/87
- [2] Commodore 64, Bedienungshandbuch
- [3] Hecht, J.: Das große Commodore 64-Buch, Data Becker-Verlag, Düsseldorf, 1989

Mikro-RAM-DISK am C 64

Bei der Arbeit mit dem C 64 besteht oft die Notwendigkeit, ein Programm zwischendurch schnell abspeichern und dann wieder laden zu können. Ist das betreffende Programm nicht allzu lang, bietet es sich an, einen Teil des normalen RAM als RAM-Disk zu nutzen. Mit dem vorgestellten Programm ist dies möglich. Jeweils ein BA-SIC-Programm läßt sich zwischenspeichern.

Nach dem Start des Programms mit RUN legt es den Maschinenkode ab Adresse \$C000 ab und springt das Maschinenprogramm anschließend an. Der Bereich von \$C100 bis \$CFFF ist als RAM-Disk genutzt. Daher beträgt hier die maximale Länge des zwischenzuspeichernden BA-SIC-Programms 3,75 KByte. Der Zugriff auf dieses erfolgt normal mit LOAD oder SAVE, wobei die Geräteadresse 9 anzugeben ist. Der Filename bleibt in diesem einfachen Programm unberücksichtigt. Ist allerdings noch kein Programm zwischengespeichert, so erfolgt beim Ladeversuch die Meldung "NO FILE".

K. Rőbenack

- O PRINT'HICRO-RAN-DISK 64 BY K. ROEBEMACK'
- 1 Y=0:FOR 1=0 TO 162:READ 2:Y=Y+3:PBRE 49192+1,2:MEST
- 2 IF YO 13203 THEN PRINT FEMLER IN DEN ONTO 18 11 ISTOP
- 3 SY8 491921MEN
- 4 DATA 169,29,141,50,3,169,192,141,51,3,169,71,141,48, 3,169,192
- 3 DATA 141,49,3,169,147,76,210,255,104,76,237,245,72, 143,184,203,161
- A DATA 192,208,244,104,169,0,133,37,169,8,133,38,169, 0,133,39,169
- 7 MTA 193,133,60,165,45,141,161,192,165,46,141,162, 192,76,130,192,104
- 8 BATA 76,145,244,72,145,186,205,140,192,208,244,104, 173,141,192,13,142 9 BATA 192,208,14,142,0,189,151,192,32,210,255,232,224,
- 10 DATA 203,744,141,0,133,57,149,193,133,58,149,0,133,59,
- 11 BATA 60,173,161,192,133,45,173,162,192,133,46,162,15,
- 12 DATA 145,59,135,208,249,230,58,230,60,202,208,240,149, 235,94,78,79
- 13 DATA 32,72,73,14,69,33,13,9,0,0

C 64-Floppy-Fehlermeldung

Wer kennt nicht das Problem: Quelltext fertig eingegeben, assembliert gestartet, Fertigmeldung "OK", und die LED an der Floppy blinkt. Was nun? Wie kommt man an die Fehlermeldung der Floppy heran. ohne den im Arbeitsspeicher noch vorhandenen Quelltext durch Überschreiben mit dem üblichen BASIC-Programm für die Fehlermeldung zu zerstören?

Die vorgestellte kleine Maschinenroutinc schafft hier Abhilfe. Sie liegt im Bandpuffer ab 828 und ist einfach mit SYS 828 zu starten. Die Fehlermeldung gelangt dann im Format: Fehlernummer, Fehlertext. Track, Sektor (z. B. 00, OK, 00, 00) zur Ausgabe. Um Nur-BASIC-Programmieren diese Routine nutzbar zu machen. habe ich einen BASIC-Lader geschrieben. der vor der eigentlichen Arbeit einzuladen und mit RUN zu starten ist. Danach ist die Routine nach Bedarf statt mit dem im

Floppy-Handbuch angegebenen vierzeiligen BASIC-Programm, das das Programmfile gefährdet, nur mit SYS 828 aufzurufen. R. Hühl

10 REA AUSSADE FLOPPY-FEMLERMELDUMG START SYS 828 (RETURN) c 1990 R.MAERL

20 FOR A-828 TO 890

30 READ BIPOLE A, BIC-C+8

40 E11 A

50 IF CO7408 THEN PRINT'SATA-FEHLER'IENS

40 MEN

100 DATA 149,15,142,8,160,13,32,184,255,149 110 DATA 0,32,189,255,32,192,255,142,15,32

120 BATA 198,255,160,0,32,207,255,153,123,3

130 BATA 201,13,240,4,200,76,84,3,32,204

140 MATA 255,169,15,32,195,255,160,0,185,123

150 BATA 3,32,210,255,201,13,240,4,200,74

160 DATA 108,3,96

 Hecht, J.: Das große Commodore 64-Buch, Data Becker Verlag, Düsseldorf, 1989

[2] Commodore 64. Bedienungshandbuch

[3] Bedienungsanleitung VC 1541 II

PLATINENSERVICE - MIETHE

Herstellung und Bestückung von gedruckten Schaltungen Einzelplatinen und Kleinserien.
Schnell und preiswert nach Ihren Vorlagen.
Jürgen Miethe, KugeHangtrift 61
W – 3000 Hannover 51, Tel. (0511) 6045341
Fordern Sie noch heute entsprechende Unterlagen an.

Die Multifunktions-Bildschirmkarte (1)

Ing. P.-J. THEIL

Die hier vorgestellte Bildschirmkarte realisiert alle gängigen Bildschirmformate wie 80 × 24, 80 × 25 (für CP/A – Statuszeile), 64 × 16 (Original PC/M) in normaler/inverser Darstellung, Darstellung mit Umlauten sowie die Darstellung von Pseudografik im Format 64 × 32 mit nachzuladendem Zeichensatz. Den Kern der Bildschirmkarte bildet der Einchipmikrorechner UB 8820.

Wer hat nicht schon verschiedene Programme auf seinen PC/M geladen und dabei chaotische Reaktionen des Bildschirms bemerkt? Der Grund dafür ist meistens das falsche Bildschirmformat. Also muß eine Bildschirmkarte her, die die Normen erfüllt und zur alten Karte kompatibel ist. Um nun nicht die mühsam erstellten Programme für das Bildschirmformat 64 × 16 umschreiben zu müssen, sollte dieses Format nach wie vor verfügbar sein.

Zunächst entstand eine Lösung des Problems in einer vollständigen Hardwareschaltung, aber der Aufwand war enorm. Die Steuerlogik, die das Gros am Gesamtaufwand hatte, mußte minimiert werden. Die Idee – ein Einchipmikrorechner. Er verfügt über programmierbare Ports, Timer, Unterbrechungslogik und viele Register und war somit für die Steuerung bestens geeignet.

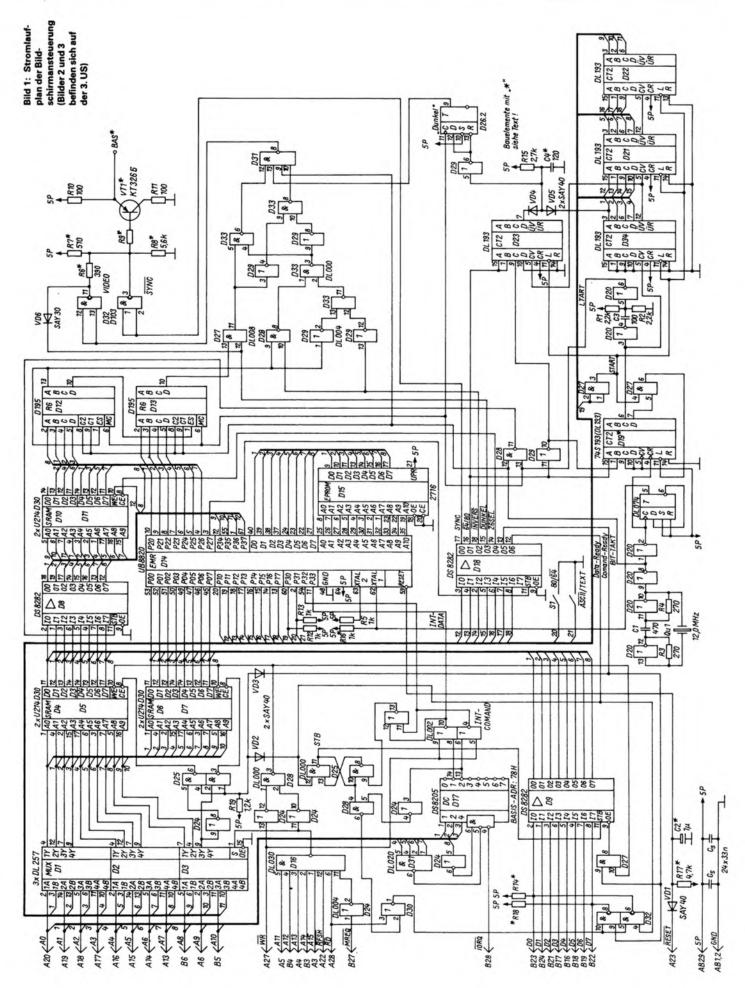
Die Bildschirmkarte nimmt nach dem Netzeinschalten oder bei jedem RESET ein durch zwei DIL-Schalter programmierbares Vorzugsformat ein (64×16 oder 80×24. ASCII- oder TEXT-Darstellung), welches mit einem Kommando jederzeit geändert werden kann. Der Zugriff zum Bildschirmspeicher erfolgt nach wie vor über den Adreß- und Datenbus.

Der EMR und seine Aktivitäten

Wer schon einen flüchtigen Blick auf den Stromlaufplan geworfen hat, wird sich fragen, wie das wohl funktionieren könnte. Es funktioniert, und zwar schon ein viertel Jahr ohne Komplikationen.

Ein kurzer Einblick in die Arbeitsweise des Einchipmikrorechners (EMR) erscheint mir unerläßlich. Eine ausführliche Beschreibung dazu findet man in [1].

Der EMR verfügt über 128 8-Bit-Register, die alle als Arbeitsregister benutzt werden können. Außerdem stehen noch 16 Register zur internen Steuerung des EMR zur Verfügung. So werden die Arbeitsweise der Ports, der Timer, des Stack und des EMR selbst programmiert. Die ersten vier Register bilden die Verbindung zur Außenwelt. Das sind die Ports 0 bis 3. So lassen sich die Ports 0, 1 und 2 als Eingabe-


oder Ausgabeport, aber auch in gemischter Betriebsart programmieren. Beim Port 2 kann das sogar bitweise geschehen. Port 0 arbeitet normalerweise nur als Eingabeport zum Kommandolesen und zum Lesen der Daten für den Zeichengenerator-RAM, wenn dieser extern geladen werden soll. Beim Laden des Zeichengenerators werden die höheren sieben Adreßbits über dieses Port ausgegeben, nachdem der interne Bus über das Modelatch hochohmig gesteuert worden ist. Port 1 arbeitet in der Ausgabemode und steuert die Videoadreßzähler und das Bildschirmmodelatch. Port 2 ist mit seinen nicderwertigen sieben Bits auf Eingabe programmiert. Nur beim Laden des Zeichengenerators werden über diese 7 Bits die Daten ausgegeben. Bit 7 dieses Ports ist ständig ein Ausgang und bildet das Strobesignal des Modelatch. Port 3 wird direkt zur Außenwelt geschaltet. Beim Port 3 sind die niederwertigen 4 Bits immer Eingabeleitungen. Alle Eingabeleitungen des Port 3 sind in der Lage, bei anliegendem H-Pegel einen definierten Interrupt auszulösen. In unserem Fall ist Bit 2 des Port 3 die Interruptquelle für die Kommandoübermittlung vom PC/M zur Bildschirmkarte. Die höherwertigen vier Bit des Port 3 sind immer Ausgänge. Sie bilden die niederwertigen drei Adreßbit und das Schreibsignal für den Zeichengenerator-RAM. Einen Überblick der Funktionen der Ports des EMR ist in Tabelle 1 gezeigt.

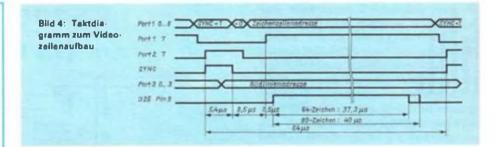
Der interne Systemtakt beträgt genau die Hälfte der Frequenz, die an XTAL 1 anliegt. Bei der Bildschirmkarte sind das also 3 MHz. Timer T0 liefert aus diesem Takt die Zeitbasis für die Zeilensynchronisation. Sie beträgt genau 64 µs. Bei jedem Nulldurchgang des TO-Rückwärtszählers wird ein Interrupt ausgelöst, der die Ausgabe des SYNC-Signals über das Modelatch zur Folge hat. Es folgt die Ausgabe der aktuellen Videozeichenzeilenadresse an die Vidcoadreßzähler. Die aktuelle Zeilenadresse wird über Port 3 ausgegeben und die Darstellung der Videozeile gestartet. Danach erfolgt die Berechnung der nächsten Zeilenadresse und bei Darstel-

lung einer neuen Zeichenzeile auch die Berechnung der nächsten Videozeilenadresse. Die Darstellung des oberen und unteren Bildrandes sowie die Ausgabe des Vertikalsynchronsignals wird durch den EMR gesteuert. Die einzelnen Zweige der Synchronisationsroutine haben eigene Endungen im Programm. Damit ist es möglich, durch geschicktes Einfügen von Füllbefehlen den Zeitpunkt der Annahme der Interruptbedingungen des Timers genau zu bestimmen, da schon eine leichte Abweichung davon zum Flattern der Bilddarstellung führt. Um die Rechenzeit für eine Zeilendarstellung so gering wie möglich zu halten, werden die Parameter für den Bildaufbau von einem Startprogrammteil in Register des Registerfiles 0 übertragen. Durch Register-/Register-Operationen verkürzen sich die Programmlaufzeiten erheblich (s. hierzu Tabelle 2). Tabelle 3 bietet einen Überblick der wichtigsten Programmteile und ihre Kurzbeschreibung.

Stromlaufplan

Die Schaltung der Bildschirmkarte läßt sich in drei Funktionsgruppen aufteilen. Das Steuerteil, das Interfaceteil, das die Schnittstelle zum Rechner bildet, und das Videoteil. Das Steuerteil wird aus dem EMR, dem EPROM und dem Modelatch D18 gebildet. Dieses Latch steuert wichtige Hardwarefunktionen. So wird über Pin 17 das SYNC-Signal bereitgestellt, mit Pin 16 der Bildpunktzähler D19 und der Austastzähler D23 entsprechend der Betriebsart voreingestellt. Ein L-Pegel an diesem Pin realisiert die Darstellung von 64 Zeichen/Zeile, ein H-Pegel die Darstellung von 80 Zeichen/Zeile. Pin 18 = L realisiert in allen Formaten die Inversdarstellung (schwarz auf weißem Hintergrund). Der Bildschirm wird über Pin 15 dunkelgetastet. Das Enable-Signal des Zeichengenerator-RAMs ist mit Pin 14 steuerbar. Zuletzt sind noch zwei Leitungen vorhanden, die den internen Bus beeinflussen: Pin 13, COMAND-READY und Pin 12, DATA-READY. Beide sind durch eine Lescoperation auf der Kommandoadresse verfügbar und teilen dem Rechnersystem den Status der Bildschirmkarte mit. Die Bedeutung der Statusbits ist aus Tabelle 4 ersichtlich. Diese beiden Leitungen haben aber noch wichtige Zusatzfunktionen auszuführen. So werden der Bildwiederholspeicher mit einem L an Pin 12 des Modelatch und mit einem H an Pin 13 das Dateneingangslatch D9 hochohmig gesteuert. Dies ist die Bedingung zum Freisteuern des internen Bus, damit sich der Zeichengenerator vom EMR beschreiben läßt. Während dieser Aktivität verbietet sich allerdings ein Schreibzugriff auf den Bildwicderholspeicher, da die Ausgangsstufen des Dateneingangslatch hiermit aktiviert werden würden. Die Grundstellung der beiden READY-Signale ist H.

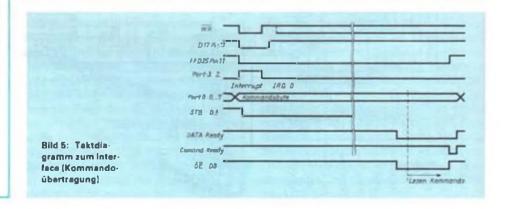
Robotron-Heimcomputer (1)


In den 80er Jahren sind mehr als 20000 Heimcomputer der Serien Z 9001, KC 85/1 und KC 87 hergestellt und verkauft worden. Der Hersteller behandelte die eigenen Produkte mehr als stiefmütterlich, und wir konnten die Robotron-HCs leider nur streifen, denn wir hatten andere Themenschwerpunkte gewählt und eine gewisse Arbeitsteilung mit der Zeitschrift "Mikroprozessotechnik" vereinbart, die ja diese Computer auch in ihrem "Computerclub" betreut hat. Unser Leser Lutz ElBner, der sich von Anbeginn intensiv mit dem KC beschäftigt hat, später an der Entwicklung des A 5105 mitarbeitete, hat viele Jahre seiner Freizeit dazu aufgewendet, "aus dem KC etwas zu machen". Mit Erfolg. Er schrieb kompatible Betriebssysteme, die es nicht an Komfort fehlen lassen, und entwickelte Hard- und Software, die den Oldie für viele, die ihn daheim, in der Schule oder in der AG stehen haben, noch einmal sehr attraktiv werden lassen können. Seine Entwicklungen könnten allein ein Buch füllen, doch welcher Verlag nimmt heute noch ein solches Projekt an, dessen Verkauf unsicher erscheint. Auch eine Sonderausgabe des FA, wie von vielen KC-Usern angeregt, ist ein für uns riskantes Objekt. Dies betrifft übrigens auch ein solches Vorhaben zum Z 1013 oder zum PC/M. Hier kann nur eine absolut verbindliche Marktbeobachtung, d.h., das artikulierte Interesse von Lesern an einem solchen Objekt eine kurzfristige Produktion auslösen. Ab ctwa 5000 Bestellungen könnte sich ein solches Projekt lohnen. Schreiben Sie uns doch bitte unter dem Stichwor: "Sonderausgabc"

In dieser und den folgenden Ausgaben wollen wir beginnen, Lutz Elßners Komponenten vorzustellen. Gegen ein wirklich geringes Entgelt erhalten Sie von ihm weitere Unterlagen und kostenlos Informationen.

192-KByte-RAM-EPROM-Modul

Speicher: 32 KByte sRAM und 160 KByte RAM/EPROM; Leiterplatte: 95 mm × 110 mm mit Modulgehäuse, DKL; K 1520-Bus (2-/3reihig), einsetzbate Speicher: 62256, 6264, 27128 bis 27512 bzw. Speicher größerer oder geringerer Kapazität; beliebige Zuordnung von RAM-Bereichen zu EPROM-Bereichen (per Software); Abschaltung der KC-internen ROMs vom Modul aus möglich. Durch die Bausteinkonfiguration sind Daten von Programmen, die im EPROM stehen, auf RAM-Bereichen ablegbar. Eigenes Betriebssystem; voll SCP-(CP/M)-kompatibel.


Kontakt: L. Elßner, PF 127-14, Freital, O - 8210

¹⁾ Videostartadresse ist gültig, wenn Port 1 Bit 7 ein 0-Signal führt.

Der Buchstabe vor der Signalbezeichnung kennzeichnet den Zustand des Ports. I steht für Input; O steht für Output

²⁾ Mode-Portsignale sind gültig, wenn Port 2 Bit 7 ein 1-Signal führt.

³⁾ Schalterstellungen werden nur bei INIT nach RESET des EMR abgefragt

Tabelle 2: Registerbelegungen

Reg	File	Reg.	Funktion
0	0	0	Pon0
1	0	1	Pon I
2	0	2	Port 2
3	0	3	Port 3
4	0	4	aktuelle Adresse für Zeichenzeile im BWS
5	0	5	Zeilenzähle: für darzustellende Bildzeilen
6	0	6	Festwert 08H. Dunkeltastung ausschalten
7	0	7	Zeichenzeilenlänge, Festwert entspr. Bildformat
8	0	8	Bildzeilenzähler für Dunkelzeilen bis Bildwechsel
9	0	9	Bildzeilenzahler für Dunkelzeilen insgesamt
10	0	10	Bildzeilen pro Zeichenzeile, Festwert entspr. Format
11	0	11	Festwert 07EH für SYNC aus
12	0	12	Festwert 080H für STB Mode-Port
13	0	13	Festwert 07FH für STB Mode-Port aus
15	0	15	Festwert 000H für Test auf Bilddarstellung
30	1	14	Spiegelregister für Mode-Port
43	2	11	Indexregister, adressiert die aktuelle Zeichenzeile im Zeichengencrator-RAM, Reg. 106 bis 127
104	6	8	Dummy-Register zur internen Taktsynchronisation und Anfangsadresse des Stapelzeigers

Tabelle 3: Programme und ihre Adressen

Adr.	Name	Funktion
00CH	INIT	Initialisierung des EMR, der Hardware und Einstellung der an
		den DIL-Schaltern ausgewählten Grundbetriebsart.
OBOH	HALT	Waiteschleife in der Betriebsart "Bilddarstellung".
0 B9H	SYNC	Interruptroutine, wird alle 64 µs aufgerufen und organisiert
		die Horizontal-/Vertikal-Bildsynchronisation, die Adreßvor-
		einstellung der Videoadressenzähler und die Adressierung
		deraktuellen Zeichenzeilenadresse am Zeichengenerator-RAM.
131H	COMAND	Diese Routine verzweigt je nach Kommando in die Routinen
		FORMAT, MODIFY, ZGLEXT oder INIT.
152H	FORMAT	Haidwareeinstellung nach Bildschirmformat, Laden des Zeichen-
		generator-RAMs mit dem ASCII-Zeichensatz
182CH	MODIFY	Schaltet Normal/Invers-Darstellung ein und modifiziert den
		Zeichengenerator-RAM für die TEXT-Darstellung.
ICFH	ZGLEXT	Routine zum externen Laden des Zeichengenerator-RAMs mit
		einem selbst definierten Zeichen/Pseudografik-Satzüber eine
		Large von 1024 Bytes
23CH	INTCOMD	Interrupt routine, liest das Kommandobyte und ruft COMAND.
260H	START	Diese Routine startet die Bilddarstellung entsprechend der
		eingestellten Parameter
2E1H	INIZGR	Routine zur Umschaltung der Hardware auf die Betriebsart "Bilddarstellung".
2F4H	INIZGW	Routine zur Umschaltung der Hardware auf die Betriebsart "Zeichengenerator Schreiben"
307H	ZGWRITE	Routine zum byteweisen Beschreiben des Zeichengenerator-RAMs
390H	TXTTAB	Zeichentabelle zum Modifizieren des Zeichengenerator-RAMs.
		Jedes Zeichen beginnt mit der Anfangsadresse im Zeichengene-
		rater-RAM, ab der es geschrieben werden soll, gefolgt von
		8 Bytes, die das Zeichen definieren.
H004	ASCIITAB	Zeichentabelle des ASCII-Zeichensatzes für den Zeichengenerator

Tabelle 4: Interface der Bildschirmkarte

1/0	0,	A dı	7.				nktion SEN	Funktion SCHREIBEN	
	7 A 1						tusbyte lefiniert	Kommandobyie Daienbyie	
		ds.	yte:					Bedeutung	
7	6	5	4	3	2	1	0		
0	x	x	x	x	x	x	0	Grundzustand vor und nach einem Kommando bzw. RESET	
1	X	X	X	X	X	X	1	Kommandobearbeitung, keine Bild- darstellung, keine Interfacearbeit	
1	X	X	X	X	X	X	0	Es kann ein Datenbyte übertragen werden	

Das Interfaceteil besteht aus den Multiplexern D1, D2 und D3 und den Adreßgruppendekodern D16 für die Speichersteuerung sowie dem I/O-Adreßdekoder D17 mit dem Sammelgatter D31. Das Dateneingangslatch D9 gehört ebenfalls zum Interface. Daten für den Bildwiederholspeicher D4, D5 und D6, D7 werden bei gültiger Adresse CF800H bis OFFFFH, erkannt mit D16, über das Dateneingangslatch und in den internen Bus auf die Dateneingänge des Bildwiederholspeichers geführt und eingeschrieben. Die Multiplexer D1, D2 und D3 schalten die niederwertigen 10 Adreßbit auf den Bildwiederholspeicher Eine Kommandoübertragung, erkannt durch D31 und D17 mit WR-Signal bewirkt das Setzen des Datenflipflops D25. Dadurch erhält der STB-Eingang des Dateneingangslatch L-Pegel, und das Kommando wird abgespeichert. Eine nachfolgende Abfrage des Statusbytes würde bei Bit 0 und 7 jeweils H-Pegel ergeben, da das Daten-Flipflop den Zugriff auf die Statusleitungen über D32, Pin 6 und 8 sperrt. Pin 2 des Port 3 wird zur Zeit des Einschreibens des Kommandos H. Diese Zeit reicht aus, einen Interrupt auszulösen, um das Kommando auszuführen. Das Kommandolesen erfolgt mit COMAND-READY = L. Die Beendigung der Kommandoausführung führt zu DATA-READY = L und somit zum Rücksetzen des Daten-Flipflops Beide READY-Linien nehmen nun wieder H-Pegel an, und die normale Bildschirmarbeit wird fortgesetzt. Bild 5 zeigt die zeitliche Reihenfolge der Signale auf einen Überblick. Die Übertragung der Daten zum Zeichengenerator-RAM erfolgt analog zur Kommandoübertragung, jedoch ist die COMAND-READY Leitung bis zur Beendigung des Kommandos L. Sie ist nur für den Zeitpunkt H, wenn das Datenbyte in den Zeichengenerator-RAM geschrieben wird. Damit ist durch Abfrage des Statusbyte vor jeder Kommando- oder Datenübertragung komplikationsfrei die Kommunikation mit dem Rechner gewährleistet.

Kontakt: P.-J. Theil, Zerbster Str. 88, Berlin, O-1150

(wird fortgesetzt)

KC 85/2/3

WordPro-Erweiterung WPRONKOP

Bei Erstellung von mehr als einem Exemplar eines mit WordPro erarbeiteten Schriftstücks macht es sich negativ bemerkbar, daß jedesmal die Gesamtheit aller Bedienschritte auszuführen WPRONKOP erlaubt ein rationelleres Drucken. Dabei ist sowohl die Verarbeitung von Rollenpapier als auch von Einzelblättern möglich. Das Programm ist sowohl in den von Word-Pro nicht genutzten Bereich BC00 bis BCFF als auch beliebig in eigene Versionen einbindbar. Es erweitert das Drucker-Ikon durch Einfügen von "0,1,n" und fordert bei Aufruf des Druckers die Eingabe der gewünschten Anzahl von Kopien an. Bei Eingabe von 0 oder nur ENTER erfolgt nur eine einmalige Ausgabe, bei "1" der Einzelblattausdruck (ENTER/BRK), ab 2 bis 99 erfolgt die Ausgabe von n Kopien ohne Abbruchtest

Das Programm ist wie folgt aufgebaut:

BC00 bis BC0B - Anforderung der Werte

BC0C bis BC2C - Ausgabe des Textes

BC2D bis BC44 - Entscheidung: fertig/weiter

BC45 bis BC78 - UP Anforde:ung Anzahl

Kopien

BC7C bis BC94 - Initialisierung (Start mit

NKOP oder selbststartend

BC95 bis BCA4 - Drucker-Ikon

Bei der Anforderung der Werte werden die WordPro-Unterprogramme FROM (05F2), TO (058A) und LINES (1A6D) genutzt. Am Ende des Original-Druckprogramms von WordPro (19FD) wird jeweils RET (C9) eingesetzt und nach Ausgabe des Textes wieder auf JP (C3) zurückgesetzt. Da letzteres überflüssig ist, könnte die Belegung von 19FD mit C9 einmalig auch bereits bei der Initialisierung erfolgen. Das Einfügen ist in folgenden Schritten ausführbar:

- Eingabe des Programms WRONKOP mittels MODIFY BC00
- Abspeichern mit SAVE BC00 BCB0 BC83
- WordPro laden und starten (bei Bedarf als geänderte Eigenversion mit dem WordPro-Kopierprogramm nach Vorschrift abspeichern),
 WordPro nutzen.

Die erfolgte Einbindung der Programmerweiterung ist am Eintrag der Zeichenfolge "0,1,n" im Drucker-Ikon erkennbar.

H.-J. Zühlsdorff

S 3004 über M 001

Analog der Druckerschnittstelle am KC nach [1] ist die S 3004 als Druckausgabegerät auch über ein Modul M 001 oder die PIO-Schnittstelle nach [2] zu betreiben. Hierzu stellt man ein Verbindungskabel her, das die Anschlüsse A11 (S 3004) mit Bit 0 am Port B des KC-PIO-Moduls und A12 (S 3004) mit Bit 1, Port B über jeweils einen Schutzwiderstand von $1.5\,\mathrm{k}\Omega$ verbindet (A13 mit GND des Computers).

Zur erhöhten Sicherheit des ungeschützten Anschlusses an der S 3004 kann man zusätzlich Optokoppler vorsehen. Die Ansteuerung der

S 3004 erfolgt mit dem Treiberprogramm gemäß Listing. Vor der Druckausgabe initialisiert man die Schnittstelle mit "S 3004" über das Grundmenü. Ansonsten verhält sich der Treiber wie in [1] beschrieben. Will man zusätzlich zu den dort beschriebenen ESCAPE-Kodes die volle Leistungsfähigkeit der Schreibmaschine S 3004 nutzen, lassen sichhier auch über den Einsprung bei Adresse OBACAH die S 3004-Steuerkodes verwenden. Bedingung hierbei ist der auszugebende Kode im Register C, dabei wird Register AF verändert und ist eventuell zu retten. Varianten dieser Treiberroutine wurden auch erfolgreich in das Textsystem "WordPro" eingebunden sowie zur Grafikausgabe genutzt.

T. Adler

Literatur

- Adler, M. u. T.: Druckerschnittstelle am KC 85/2/3 für S 3004, FUNKAMATEUR 37 (1988), H. 9, S. 432
- [2] Adler, T.: PIO-Schnittstelle für den KC 85/2/3, FUNKAMATEUR 37 (1988), H. 12, S. 587

C 64

PEEKs, POKEs & SYSs

Erst mit der Kenntnis aller Interna des Betriebssystems macht das Arbeiten am Computer richtig Spaß. Hier einige interessante Details aus den Tiefen des Systems:

POKE 650,128 - Repeat POKE 650,64 - Repeat POKE 650,0 - Repeat

Repeat für alle Tasten
Repeat für keine Taste
Repeat nur für INS, DEL,

SPACE und CURSOR
POKE 775,200 – Listschutz
POKE 775,167 – kein Listschutz

POKE 788,52 - RUN/STOP keine Wirkung
POKE 788,49 - RUN/STOP aktiviert
POKE 792,193 - RUN/STOP-RESTORE

keine Wirkung
POKE 808,225 - RUN/STOP-RESTORE

abgeschaltet und Listschutz POKE 808,237 – Reaktiviert RUN/STOP-

RESTORE

POKE 808,251 - Programm kann nicht gestoppt werden

POKE 198,0 – gedrückte Taste vergessen POKE 657,128 – Zeichensatzumschaltung

POKE 120,2 sperren
- der C 64 nimmt nun keine
Befehle mehr an

POKE 649,0 - Tastatur abgeschaltet
POKE 649,10 - Tastatur wieder eingeschaltet

POKE 56325,5 - Kursor rasend schnell POKE 56325,49 - Kursor normal

SYS 64767 – RESET SYS 59626 – schiebt den Bildschirm

SYS 65126 - wirkt wie RUN/STOP-

RESTORE
SYS 65409 - VIC in Grundzustand ver-

setzen
POKE 781, Zeile: – löscht Bildschirmzeile
SYS 59903 (0 bis 24)

Th. Wolf

Betriebssystem MS-DOS (2)

Dipl.-Ing. M. KRAMER - Y23VO

Außer den drei Systemprogrammen IO.SYS, MSDOS.SYS und COMMAND.COM gehören zum Betriebssystem weitere Programme für die wichtigsten Aufgaben, wie z.B. das schon erwähnte FORMAT.COM. Im zweiten Teil unserer Beschreibung des Betriebssystems MS—DOS wollen wir die Kommandos in der Reihenfolge besprechen, in der man sie nach der Anschaffung eines Computers benötigt. Die alphabetische Folge, wie sie fast immer in den zahlreichen Büchern über das Betriebssystem verwendet wird, ist vor allem zum Nachschlagen geeignet, wenn man schon weiß, welche Funktion mit dem jeweiligen Kommando ausführbar ist und sich nur nicht mehr an alle Einzelheiten des Aufrufs und der Nutzung erinnern kann.

DISKCOPY - Sicherheitskopie anlegen

Nach dem Kauf eines Computers ist das Betriebssystem meist schon vom Händler betriebsfähig auf Diskette oder Festplatte installiert, und man kann zu Hause sofort arbeiten. Als erste Tätigkeit sollte man Sicherheitskopien von allen vorhandenen Programm- und Datendisketten anfertigen. Denn auch bei größter Vorsicht kann mal etwas schiefgehen und eine Datei versehentlich gelöscht und überschrieben oder eine Diskette mechanisch beschädigt werden, so daß wertvolle Programme oder mit viel Mühe erstellte Dateien verloren gehen. Das Kommando DISKCOPY ist ein externes Kommando, also als Programmdatei vorhanden. Es erlaubt auf einfache Weise, den Dateninhalt einer Diskette komplett zu kopieren. Als Parameter können Quell- und Zieldiskettenlaufwerk angegeben werden, z. B.

DISKCOPY A:

wenn man die Diskette in Laufwerk A: auf diesem kopieren möchte. Daes sich um ein externes Kommando handelt, muß sich das Programm DISKCOPY. COM beim obigen Beispiel im aktuellen Verzeichnis des aktuellen Diskettenlaufwerks A: befinden, oder der Zugriffspfad ist mit anzugeben, wenn sich die Programmdatei z. B. im Unterverzeichnis DOS auf Festplatte C: befindet:

C \ DOS \ DISKCOPY A: B:

Weil diese Art des Aufrufs mit kompletter Pfadangabe bei allen externen Kommandos gilt, wollen wir darauf bei den weiteren Kommandos nicht gesondert eingehen. Wir besprechen später noch eine Möglichkeit, häufig wiederkehrende Zugriffspfade vereinfacht zu nutzen.

Das zweite Beispiel für den Aufruf setzt voraus, daß im Computer zwei gleiche Diskettenlaufwerke vorhanden sind; so kann man auch von einem auf das andere kopieren. Dabei ist A: die Quelle und B: das Ziel. Nach dem Aufruf des Kommandos wird man aufgefordert, die Quelldiskette einzulegen. Das Programm lädt deren Inhalt (gegebenenfalls in Teilen) in den Speicher und schreibt ihn nach einer entsprechenden Aufforderung, die Zieldiskette einzulegen ("Insert target diskette"), zurück. Bei der Abarbeitung des Programms erfolgt auf dem Bildschirm noch eine Meldung, die über das Diskettenformat (Anzahl der Spuren, der Sektoren je Spur und der Schreib/Leseköpfe) Auskunft gibt.

Wenn es sich bei der Zieldiskette um eine neue, unformatierte handelt, wird sie zuvor automatisch formatiert. So entsteht ein genaues Abbild der Quelldiskette. Natürlich muß dies technisch möglich sein; man kann z. B. eine hochdichte Diskette mit einer Kapazität von 1,2 MByte nicht auf eine Diskette mit doppelter Dichte (360 KByte) überspielen.

Beim Kommando DISKCOPY können auch zwei "Schalter" gesetzt werden, dies sind Parameter beim Aufruf, die durch einen Schrägstrich gekennzeichnet sind und die Arbeitsweise des Programms beeinflussen. Der Schalter /1 ist für die Praxis heute fast ohne Bedeutung, er erlaubt das Kopieren einseitiger Disketten auf doppelseitigen Laufwerken. Mit dem Schalter /V überprüft das Programm die geschriebenen Daten durch nachfolgendes Lesen (Verify). Allerdings funktioniert dieser Schalter nicht bei allen Versionen des Betriebssystems. Bedingt durch die hohe Zuverlässigkeit der modernen Diskettenlaufwerke ist dies jedoch kein Beinbruch, zumal uns das externe Kommando DISK-COMP zur Verfügung steht, mit dem wir die DISKCOPY kopierten Disketten anschließend miteinander vergleichen können. Parameter des Aufrufs können Quellund Zieldiskettenlaufwerk und Schalter für einseitige Disketten (wie bei DISK-COPY) sowie für 8 Sektoren je Spur sein (für die Praxis ohne Bedeutung).

Beispiele für den Aufruf dieses Kommandos:

DISKCOMP

wenn wir das Kommando vom aktuellen Laufwerk z. B. A: laden und eine Diskette auf diesem Laufwerk vergleichen wollen oder

DISKCOMP A: B:

wenn die Disketten in den Laufwerken A: und B: stecken.

FORMAT - DISKETTEN formatieren

Natürlich können wir Sicherheitskopien auch anfertigen, indem wir Disketten ganz normal formatieren und die Dateien dann kopieren. So können Quell- und Zieldisketten unterschiedliche Diskettenformate verwenden, wir können z. B. Dateien von teueren hochdichten 3,5"-Disketten auf preiswerte 5,25"-Disketten mit der üblichen doppelten Aufzeichnungsdichte umsetzen. Auch für die normale Arbeit müssen die Disketten formatiert werden. Der externe Befehl FORMAT.COM unterstützt nur einige der vielen möglichen Diskettenformate und arbeitet durch den Zugriff auf ROM-BIOS-Routinen bei XTund AT-Computern etwas unterschiedlich. Der Aufruf erfordert immer einen Laufwerksbezeichner als Parameter, denn durch FORMAT werden alle eventuell auf der Diskette vorhandenen Daten gelöscht. Durch den stets einzugebenden Laufwerksbezeichner ist leichter vermeidbar. daß man versehentlich den aktuellen Datenträger löscht, was vor allem bei der Festplatte ein großer Schaden wäre. Die möglichen Schalter zur Steuerung des Diskettenformates stehen hinter dem Laufwerksbezeichner:

FORMATA: /4

Dieses Beispiel erlaubt es, in einem hochdichten Laufwerk (80 Spuren, 1,2 MBytc Kapazität) eine einfache Diskette (doppelte Dichte) im Standardformat mit 40 Spuren zu erzeugen. Durch den Schalter/S, den man noch anfügen kann, kopiert FOR-MAT anschließend die Systemdateien 10-SYS, MSDOS.SYS und COMMAND-.COM auf die neue Diskette und erstellt damit eine Systemdiskette. Es sei ausdrücklich darauf hingewiesen, daß es nicht sinnvoll ist, auf alle Disketten auch das Betriebssystem zu kopieren, wie dies z. B. bei CP/M üblich ist. Im Gegensatz zu diesem kann bei MS-DOS der dadurch eingesparte Speicherplatz mit Anwenderdateien genutzt werden. Die anderen Schalter des FORMAT-Programms sind heute ohne praktische Bedeutung. Sie erlauben es, einseitige Disketten oder 8 Sektoren/Spur zu erzeugen. Bei der Version 3.30 des Betriebssystem (und darunter) gab es noch den Schalter /V, mit dem ein Diskettenname festgelegt werden konnte. Ab der Version 4.0 erfolgt eine entsprechende Frage bei jedem Formatieren.

COPY - Dateien kopieren

Der interne Befehl COPY ist einer der leistungsfähigsten des Betriebssystems. Er erlaubt das Kopieren von Dateien zwischen allen logischen Einheiten des Computers. Die Syntax lautet immer:

COPY QUELLE ZIEL

So kann man z. B. auf einfache Weise eine Datei anlegen, indem man sie von der Konsole kopiert. In der nachfolgenden Befehlszeile ist CON: die Quelle und NAME.DAT der Dateiname, in den die Zeichen von der Tastatur gelangen:

COPY CON: NAME.DAT

Nachdem man diese Zeile mit ENTER gültig gemacht hat, können Textzeilen eingegeben werden. Bei ASCII-Dateien ist das Ende stets durch das Steuerzeichen ^Z gekennzeichnet, d.h., hierdurch wird die Eingabe in die Datei beendet. Ein Mangel ist natürlich, daß bei dieser einfachen Form der Texteingabe das Bearbeiten nur in der aktuellen Zeile möglich ist. Will man in einer schon mit ENTER abgeschlossenen Zeile etwas verändern, so ist dies mit COPY nicht möglich. Trotzdem sollte man diese einfache Möglichkeit zum Anlegen einer Datei in Erinnerung behalten, denn manchmal kann man damit schneller sein Ziel erreichen als mit einem umfangreichen Textverarbeitungsprogramm. Mit der nachfolgenden Befehlszeile kann man eine Datei ausdrucken:

COPY NAME.DAT LPT1:

Auch das Verketten von zwei oder mehr Dateien zu einer ist möglich:

COPY NAME1.DAT+NAME2.DAT NAME.DAT

Es dürfen nur zwei Parameter verwendet werden, d. h., man muß darauf achten, im ersten Parameter die Namen (es dürfen auch mehr als zwei sein) ohne Leerzeichen zwischen dem Pluszeichen zu schreiben.

Der häufigste Fall ist natürlich das Kopieren von Dateien zwischen Disketten und Festplatten. Hierbei ist die Angabe von Pfadnamen und die Verwendung der Gruppenbezeichner * und ? möglich. Beispiele:

COPY C: \ ORCAD \ SDT \ *.* A:

COPY COMMAND.COM B:

In der ersten Zeile werden alle Dateien des Unterverzeichnisses SDT des Programmpaketes ORCAD von der Festplatte C: auf die Diskette in Laufwerk A: kopiert, im zweiten wird aus dem aktuellen Verzeichnis kopiert. Welches Verzeichnis und Laufwerk gerade aktuell ist, kann man in dieser Befehlsfolge nicht erkennen. In einem Verzeichnis kann ein bestimmter Name nur einmal stehen, daher ist das Kopieren von Dateien mit dem gleichen Na-

men auf einer Diskette nur in verschiedenen Verzeichnissen möglich oder im ZIEL muß man einen anderen Namen verwenden. Soll z. B. eine Datei im ROOT-Directory der Diskette im Laufwerk A: in das Unterverzeichnis DOS kopiert werden, so lautet die Befehlszeile:

COPY DATEI1.TXT A: \ DOS

Durch Eingabe eines Dateinamens hinter DOS im zweiten Parameter des Befehls könnte man die Datei umbenennen; in diesem Fall muß natürlich kein anderes Verzeichnis bei Quelle und Ziel verwendet werden.

Den COPY-Befehl kann man auch mit den nachfolgenden Schaltern verwenden:

- /A Die Datei wird bis zu einem Zeichen ^Z kopiert. (Voreingestellt bei ASCII-Dateien)
- /B Die Datei wird entsprechend ihrer Länge im Verzeichnis kopiert.
- /V Nach dem Kopieren wird verglichen.

Die in den obigen Beispielen verwendeten Unterverzeichnisse lassen sich nicht wie Dateien mit dem COPY-Befehl anlegen.

Behandlung von Unterverzeichnissen

Unterverzeichnisse erhöhen die Übersichtlichkeit bei der Arbeit mit Disketten und Festplatten beträchtlich. Außerdem heben sie die Grenze von 112 Datei-Eintragungen für das ROOT-Directory auf, denn im Unterverzeichnis sind beliebig viele Eintragungen zulässig.

Mit der Befehlszeile

MD UVNAME

wird ein Unterverzeichnis mit den Namen UVNAME angelegt. Es ist auch möglich, einen kompletten Pfad anzugeben. Beispiel: Es existiert schon ein Unterverzeichnis WS für das Programmpaket Word-Star, das im ROOT-Directory eingetragen ist, und nun soll dort noch ein Unterverzeichnis mit den Namen TEXTE darunter angelegt werden. Die Kommandozeile lautet:

MD C:\WS\TEXTE

Für den Befehl MD ist auch die Schreibweise MKDIR zulässig, sie hat die gleiche Wirkung.

Durch das Anlegen eines Unterverzeichnisses hat sich das aktuelle Verzeichnis für den Computer nicht geändert. Wenn wir darin arbeiten wollen, müssen wir das aktuelle Verzeichnis wechseln. Dies geschieht mit dem Befehl

CD UVNAME

wenn UVNAME der Name des Unterverzeichnisses ist. Auch die (lang-)Schreibweise CHDIR für CD ist zulässig. In obiger Form gilt der Befehl, wenn wir in der Hierarchie vom ROOT abwärts wollen, in der umgekehrten Richtung lautet das Kommando

CD..

für eine Stufe. Wollen wir aus einem beliebigen Unterverzeichnis ins Wurzelverzeichnis zurück, so lautet der Befehl:

CD\

Damit können wir gleich mehrere Stufen überspringen. Das Löschen von Unterverzeichnissen ist nur möglich, wenn sie keine Datei-Eintragungen enthalten. Der zu den obigen Beispielen passende Befehl lautet:

RD UVNAME

Auch hier ist mit RMDIR eine umständlichere Bezeichnung zulässig.

Einfache Befehle

Wir wollen nun einige Befehle besprechen, deren Handhabung sehr unkompliziert ist, die aber häufig auftreten.

Wenn man einer Diskette beim Formatieren keinen Namen gegeben hat oder dieser später geändert werden soll, kann dies mit dem externen Befehl

LABEL

erfolgen. Dem Befehl kann ein Laufwerksbezeichner folgen, wenn nicht der Datenträger im aktuellen Laufwerk gemeint ist. Nach dem Aufruf des Befehls wird erst der alte Name angezeigt und dann eine neue Namenseingabe erwartet. Mit dem internen Befehl

VOL

kann man sich den Datenträgernamen nur anzeigen lassen. Der externe Befehl

SYS d:

überträgt die Systemdateien IO.SYS und MSDOS.SYS, die sich mit COPY nicht kopieren lassen, auf die mit d: bezeichnete Diskette oder Festplatte. Sinnvoll ist dies, wenn man beim Formatieren vergessen hat, den Schalter /S zu setzen, die Disketten also noch leer sind, oder wenn die Dateien durch andere Programme versehentlich gelöscht wurden. Den COMMAND.COM muß man dann mit dem Befehl COPY getrennt dazu kopieren.

Der interne Befehl **VER** liefert eine Meldung der Versionsnummer des Betriebssystems auf dem Bildschirm.

Ebenfalls interne Befehle dienen zum Löschen und Umbenennen von Dateien: DEL NAME.DAT

oder

ERASE NAME.DAT.
löschen die Datei NAME.DAT.
REN NAME1.DAT NAME2.DAT verändert den Dateinamen auf NAME2.DAT
(wird fortgesetzt)

Der FA-XT (7)

Dipl.-Phys. A. BOGATZ; Dipl.-Phys. S. GÜRTLER

Nachdem wir in dieser Folge unserer Serie die Beschreibung der Prozessorkarte fortsetzen, kommen wir zur ausführlichen Beschreibung der Speicherkonfiguration. Hier erfolgen auch bereits wichtige Hinweise zu den von Ihnen zu wählenden Ausbaustufen.

Mit Beginn des nächsten CPU-Befehlsholezyklus, d.h. mit der steigenden Flanke des Taktsignals, übernimmt das Flipflop D14.B diese Information. Dieses Flipflop verriegelt sich über seinen S-Eingang selbst. Das Ausgangssignal von Flipflop D14.B zeigt dem DMA-Controller über dessen Eingang HLDA mit H-Pegel an, daß mit dem DMA-Transfer begonnen werden kann. Daraufhin schreibt der DMA-Controller D12 mit Hilfe eines Impulses am Ausgang ASTB über seinen Adreßbus DB0 bis DB7 die höherwertige Transferadresse (A8 bis A15) in das Register D17. Mit der nächsten Taktflanke des Systemtaktes übernimmt das dritte Flipflop des Latches D16 den Ausgangszustand des Flipflops D14. Der Ausgang von D16 bildet über das als Treiber fungierende Gatter S23.B das Ausgangssignal AEN = L. Damit wird allen Einheiten am Slotstecker angezeigt, daß ein DMA-Zugriff in Arbeit ist. Das Gatter D23.C stellt dieses Signal negiert bereit, wodurch der Bustreiber D11, die Adreßlatches D4, D5, D6 abgeschaltet werden. Damit ist der Prozessor vom Systembus getrennt. Gleichzeitig werden über den Eingang AEN des Buscontrollers D8 dessen IO-Ausgangssignale abgeschaltet. Darüber hinaus erfolgt mit L-Pegel am Ausgang des Gatters D22.C die Anforderung des Wartezustands über RDY1 am Taktgeber D1. der dies über seinen Ausgang READY = L realisiert. L am Eingang CEN versetzt den Buscontroller D8 an seinen Ausgängen in den hochohmigen Zustand, so daß auch der Steuerbus der CPU vom Systembus getrennt ist. Mit dem nun folgenden Systemtakt wird das HDLA-Signal endlich in das zweite Flipflop des Latches D16 übernommen. Am Ausgang des Gatters D24. A erscheint daraushin L-Pegel, wodurch die Ausgänge der Adreßlatches D17, D20. A und das DMA-Scitenregister D18 freigegeben werden. Somit sind die Adressen A4 bis A19 am Adreßbus erzeugt und der Bustreiber D19 in seiner Richtung umgeschaltet, wodurch die Adreßsignale A0 bis A3 und die Steuersignale IOR, IOW, MEMR und MEMW des DMA-Controllers an den Systembus geschaltet werden. Damit hat also der DMA-Controller den Systembus komplett unter Kontrolle. Der DMA-Controller

meldet die Bus-Übernahme der anfordernden Einheit mit Aktivierung des entsprechenden DACK-Signals, im betrachteten Fall also mit DACK0 = L.

Handelt es sich bei der anfordernden Einheit z.B. um den Floppy-Controller, der ein Byte in den Speicher übertragen möchte, so aktiviert der DMA-Controller die Leitung IOR. Dadurch wird der Floppy-Controller veranlaßt, das zu übertragende Byte auf den Datenbus zu legen. Nun aktiviert der DMA-Controller zusätzlich die Leitung MEMW, wodurch der Speicher das auf dem Datenbus liegende Byte direkt übernimmt. Daraufhin werden der Adreßzähler des aktiven DMA-Kanals im DMA-Controller erhöht und die DACK-Leitung deaktiviert, dann HRQ deaktiviert und der Systembus in oben beschriebener Weise nacheinander an die CPU zurückgegeben. Ist dies erfolgt, erhält der Prozessor über Ready = H die Möglichkeit zur Weiterarbeit am bereits eingelesenen Befehl. Neben dieser Einzelbyte-Übertragung, bei der der Prozessor zwischendurch mindestens einen Besehl abarbeiten kann (selbst wenn DRQ ständig aktiv bleibt), kann der DMA-Controller bei entsprechender Programmierung auch ganze Datenblöcke übertragen, wobei die CPU im Wartezustand verbleibt. Dabei wird das Ende der Übertragung, d. h., wenn der DMA-Zählerstand der gewünschten Endadresse entspricht, mit Hilfc dcs Ausgangs EOP am DMA-Controller D12 mitgeteilt. Dieser Anschluß ist daher für den Anwender am Slotstecker in Form des Signals TC (B27) verfügbar.

Im Falle des RAM-Refresh findet natürlich kein Datentransport statt. Der entsprechende DMA-Kanal befindet sich in der Betriebsart Prüf-Modus. Dabei werden nur der Adreßzähler des DMA-Kanals erhöht und das Quittungssignal DACKO erzeugt. Die Schreib-/Lese-Leitungen IOR, IOW, MEMR und MEMW bleiben inaktiv. Mit Hilfe des DACKO-Signals wird das RAS-Signal aller RAM-Bänke aktiviert, wie wir später noch sehen. Der DMA-Controller ist für den Refresh also nur als komplizierter und etwas teurer Zähler eingesetzt, da selbstverständlich keine höherwertigen Adressen zu erzeugen sind. Der DMA-Controller muß nur Speicherzellenadressen, d. h. von 0 bis 127 zählen!

Soweit also zu dem zugegebenermaßen etwas komplizierten Kapitel der DMA-Steuerung. Hieran sieht man jedoch, daß der Einsatz von 8-Bit-Peripherieschaltkreisen (zu denen alle im XT üblicherweise eingesetzten gehören) innerhalb von 16-Bit-Rechnersystemen teilweise erhebliche Hardware-Klimmzüge mit sich bringt. Als Ausweg gehen daher kommerzielle Anbieter den Weg kundenspezifischer Schaltungen, sogenannter Gate-Arrays. Als typischer, hierzulande relativ verbreiteter Vertreter sei hier der Schneider-PC 1512 genannt, in dem sich neben den Standard-Peripherieschaltkreisen zwei Gate-Arrays befinden, die u.a. die gesamte DMA-Hilfslogik enthalten. Im Sinne der einfachen Nachbaumöglichkeit setzen wir aber nur Standard-Logik ein.

Nachdem wir mit Bild 19 den Kern unserer CPU-Karte besprochen haben, wenden wir uns nun dem Bild 20 zu.

In Bild 20 ist die System-PIO D25 mit ihrer wichtigsten Aufgabe, der Tastaturüberwachung, dargestellt. Der Inverter D28.A setzt nach dem Empfang eines Tastenkodes bzw. während der Initialisierungsphase des BIOS die Tastaturkode-Empfangslogik D27.A und D26 zurück. Der L-Pegel auf der Leitung HLDKBCLK hält das von der Tastatur kommende Taktsignal ebenfalls auf L-Pegel Die Tastatur erhält somit mitgeteilt, daß keine Datenübertragung erlaubt ist. Nun erfolgt zunächst die Freigabe von D27. A bzw. D26 durch L-Pegelaufder Leitung ENKB und anschließend gibt HLDBCKL = H den Tastaturtakt irci. Das nun von der Tastatur crzeugte Taktsignal KBCLK wird mit Hilfe des Flinflop D27.B mit dem Peripherietakt PCLK synchronisiert und negiert, wodurch die Abtastung des Datenstromes der Leitung KBDATA mit der fallenden Flanke des Signals KBCLK, d. h., in der Mitte eines Bits erfolgt, wie dies aus Bild 13 ersichtlich ist. Mit der neunten fallenden Flanke des Signals KBCLK gelangt das letzte der acht Datenbits des zu übertragenden Tastatur-Scankodes in das Schieberegister D26. Gleichzeitig wird das Startbit (H-Pegel) in das Flipflop D27.A eingeschober, wodurch dieses sich über L-Pegel an seinem Setzeingang selbst verriegelt, den Eingang des Schieberegisters D26 sperrt und die Leitung KBDATA mit Hilfe von D29.A auf L-Pegel zwingt. Gleichzeitig erfolgt über das Gatter D47. A am Interrupt-Controller eine Anforderung des Si-

Damit wird dem Prozessor mitgeteilt, daß ein Tastatur-Scankode zur Abholung von PIO-Port A von D25 bereitliegt.

Eine weitere Funktion der System-PIO liegt in der Abfrage der DIL-Schalter S2, über die man der BIOS-Installationsroutine bestimmte Anforderungen bzw. die Systemkonfiguration mitteilen kann. So ist für Kontroll- und Inbetriebnahmezwecke

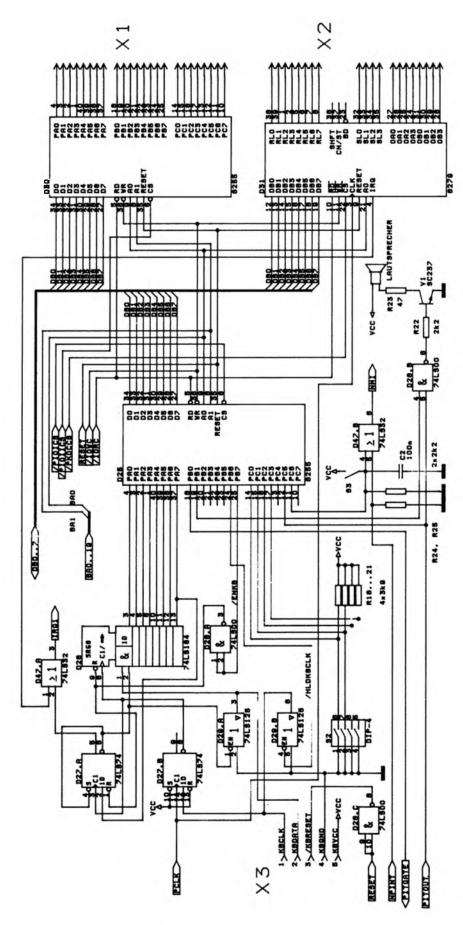


Bild 20: Teilstromlaufplan der CPU-Karte mit System PIO, PDKC, User-PIO und Konfigurationslogik

z. B. der Speicher-Selbsttest abschaltbar. Die Bedeutung der einzelnen DIL-Schalter erläutern wir im Zusammenhang mit dem BIOS. Weiterhin ist die System-PIO in Zusammenarbeit mit dem Timer-Kanal 2 für den Sound verantwortlich. Dies erfolgt durch Steuerung des Timers über das Signal PITGATE und über das Gatter D28.B. Es steuert über Transistor V2 direkt einen Kleinlautsprecher an. Zu guter Letzt erfolgt über den Anschluß PC6 der System-PIO während eines durch NMI ausgelösten Bedienprogrammes die Abfrage, ob es sich um ein durch die Taste S3 erzwungenes NMI oder um einen Interrupt des Coprozessors über NPINT handelt. Zusätzlich befindet sich auf unserer CPU-Karte mit Blick auf den Einsatz als Einplatinen-Experimentierrechner eine weitere PIO D30. Deren Port-Anschlüsse sind sämtlich auf einen 26poligen Pfostenstekker geführt, an dem auch die Masse und die +5-V-Versorgungsspannung angeschlossen sind. Für diese PIO ist eine Fassung vorgesehen, wodurch sie nur bei Bedarf nachrüstbar bzw. in der Folge unachtsamen Experimentierens leicht wechselbar ist. Ebenfalls mit Blick auf den Einsatzfall Ein-

platinenrechner ist der Keyboard- und Display-Controller PKDC D31 vorgesehen, dessen Anschlüsse ebenfalls auf einen 26poligen Pfostenstecker geführt sind. Damit dieser auch einen Tastatur-Interrupt auslösen kann, ist dessen Interruptleitung ebenfalls über D47.A an den Eingang IRQ1 des Interrupt-Controllers geführt. Auch der PKDC wird nur im Bedarfsfall bestückt. Allerdings kann man über diese IS auch eine eventuell vorhandene Tastatur (passive Tastatur, d. h. eine reine Anordnung von Tasten in Form einer Matrix) als Rechnertastatur betreiben. Darüber hinaus haben wir vorgesehen, über diesen PKDC die Inbetriebnahme der Platine vorzunehmen, da dann auf bestimmte Tastendrücke hin auf einem Siebensegment-Display Testausschriften erfolgen können. Die Beschaffung einer solchen IS erscheint daher auf jeden Fall sinnvoll, wobei der Preis von weniger als 10 DM auch nicht sonderlich hoch ist.

Die letzte noch zu besprechende Teilbaugruppe unserer CPU-Platine ist der Speicher. Diese Schaltung ist in Bild 21 dargestellt. Die Anschlußbelegung der Verwendung findenden RAM- bzw. EPROM-Bausteine zeigt Bild 22. Für die RAM-Bausteine D32 bis D37 sind aus Platzgründen 1-MByte-RAMs vorgesehen, die als 256 K × 4 Bit organisiert sind. Jeweils zwei dieser RAMs bilden eine Speicherbank zu 256 KByte. Eine Bank wird gebildet durch D32/33, D34/35 und D36/37. Die RAS-Signale der beiden zu einer Bank gehörenden Speicherschaltkreise sind ebenso wie die Schreibsignale WE miteinander verbunden und bilden die Bankauswahlsi-

(weiter bitte S. B40)

FUNKAMATEUR - Bauelementeinformation

Transistoren für die Hochfrequenztechnik

Hinweise

- Es wurden häufig verwendete und neue Typen zusammengestellt; SMD-Bauclemente blieben unberücksich-
- Einsatzgebiele sind Video-, KW-. VHF- und UHF-Verstärker sowie Oszillatoren
- Bild 1 bringt die Anschlußbelegung mit Ansicht von unten auf den Sockel (obere Zeile) bzw. Draufsicht (untere
- Befindet sich in der Spalte "Typ" unter der Typenbezeichnung eine weitere Bezeichnung aus zwei Buchstaben. Ziffern oder einer gemischen Zeichengruppe, so ist dies Bestandteil der Gehäusebezeichnung.
- In der Spalte .. Art" bedeutet S Silizium. P Planartransistor. E Epitaxialtransistor, n Zonenfolge npn und p Zonenfolge pnp.
- In der Spalte "Anwendung" bedeutet AZ Antennenverstärker, fx für Vervielfacher. MF für Verstärker, ns mit geringem Rauschen, O für Oszillatoren, S für Mischstufen, VF für Hochfrequenzverstärker, VF° für geregelte Hochfrequenzverstärker. Vs für Breithandverstärker, u für UHF-Verstarker, v für VHF-Verstarker und m für Mikrowellenverstärker.
- In der Spalte "Hersteller" bedeutet Mar Marconi Electronic Devices

Ltd., Großbritannien, S Siemens AG. Deutschland, T Telefunken electronic, Deutschland, Tc TESLA - Picstany, CSFR, Th Thomson-CSF Frankreich und V Valvo GmbH. Deutschland (identisch mit Erzeugnissen von Philips, Holland).

Symbole

Uc	10 10 10	Genausciemperatur
Pun		Gesamtverlustleistung
Ucao		Kollcktor/Basis-Spannung
		bei offenem Emitter
UCER		Kollektor/Emitter-Span-
		nung bei ohmschem Wider-
		stand zwischen Basis und
		Emitter
UFBO		Emitter/Basis-Spannung
		bei offenem Kollektor
1_{C}		Kollcktorstrom
Ics		Kollcktorspitzenstrom
8,		Sperrschichttemperatur
Rihja		Warmewiderstand zwischen
11.75		Sperrschicht und Gehäuse

Umgebungstemperatur

 R_{ibjc} Wärmewiderstand zwischen Sperrschicht und Umgebung Kollektor/Emitter-UCE

Spannung

Kleinsignal-Stromverhale starkung in Emitterschaltung

Verstärkung in Basisschaltung bei angegebener Frequenz

Transitfrequenz f_1 Grenzfrequenz Rauschfaktor

1,r	Art	An wen- dung	a.	Pas	U, = 1	Unin.	U ₁₌	1. 0.	0,	Ra.	Can	J,	A [dB]*	1.	-	Gehause		Sed
			tel	[mW]	[V]	IAI.	IVI	(mA)	L.C.I	[K/M]	M	[mA]		[MHz]	(18)			
BF310	SPEn	VFv	45	300	30	30	4	25	150	350	10	4	>24	580		TO-92Z	Т	2h
BF311	SPEn	MF-TV	25	360	35	25	4	40	150	350	10	15	79>40	750		TO-92Z	T	2a
BF314	SPEn	VFv	45	300	30	30	el .	25	150	350	10	4	>25	450	<3	TO-92Z	T	26
BF324	SPEp	VFv.u	45	250	30	30	14	25	150	420	10	4	50>25	450	3	SOT-54	V	21
								1			10	1	>45	350	3.5			26
BF362	SPEn	VF°v.u	25	750	30	20	3	20	125	166	10	3	50>20	2011		TO-50	T	6
											7	12	40.>12					
										1	10	3	12.5>10*	800.	4.5			
BF.\63	SPEn	S+O	25	750	30	20	1,3	20	125	166	10	3	50>20	700		TO-50	T	6
											7	12	40>12					
											10	3	12.5>10°	800*	5			
BF414	SPEp	VFv	45	300	40	301	14	26	150	350	10	-1	100>30	560	2.8	TO-92Z	T.5	21
BF419	SPEn	AZ	70	SIXI	300	250	15	100	150	100	10	20	45	1		TO-126	V	8
			901*	6 W				3(8)*		101			$i = 0.5 \mu S$					
BF420	SPEn	Vi	25	830	300	300	15	25	150	150	201	25	>40	100		TO-92	S	20
BF420L	SPEn	Vi	25	625	300	300	15	500	150		10	30	>	70		TO-92	S	20
BF420S	SPEn	Vi	25	830	300	30x1	5	25	150	150	20	25	>50	>60		TO-92Z	T	20
BF421	SPEp	Vi	25	830	3(10)	30XI	15	25	150	150	20	25	>30	100		TO-92	S	20
BF421L	SPEP	Vi	25	625	300	3(X)	15	500	150		10	30	>25	70		TO-92	S	20
BF421S	SPEp	Vi	25	830	300	300	5	25	150	150	20	25	>50	>60	1	TO-92Z	T	22
BF422	SPEn	Vi.	25	830	250	250	15	25	150	150	20	25	>50	100		TO-42	S	20
BF422L	SPEn	Vi	25	625	250	250	15	500	150		10	30	>30	711		TO-92	S	20
BF422S	SPEn	Vi	25	830	250	250	15	25	150	150	20	25	>50	>60		TO-92Z	T	20

Гур	Art	An- wen-	9.	P _{tot}	<i>U</i> _{СВО}	UCEO UCER*	UEBO	lc lcm*	0,	R _{thja} R _{thjc} *	UCE	lc	A [dB]*	J.	F	Gehäuse	Her siel-	So ke
		dung	[°C]	max [mW]	max [V]	max [V]	max [V]	max [mA]	max [°C]	max [K/W]	[v]	[mA]		[MHz]	[dB]		ler	
3F423	SPEn	Vi	25	830	250	250	5	25	150	150	20	25	>50	100		TO-92	s	20
3F423L	SPEn	Vi	25	625	250	250	5	500	150	1.50	10	30	>30	70		TO-92	s	2
3F423S	SPEn	vi	25	830	250	250	5	25	150	150	20	25	>50	>60		TO-92Z	T	20
3F440	SPEp	MF°-FM	25	450	40	40	4	25	150	275	10	1	60-220	250	1	TO-92Z	T	2
3F441	SPEp	MF-FM	25	450	40	40	4	25	150	275	10	l i	30-125	250	2	TO-92Z	Ť	2
3F450	SPEp	MF,VFv	45	250	40	40	4	25	150	420	10	l i	60-200	325	2	SOT-54	v,s	
8F451	SPEp	MF.VFv	45	250	40	40	4	25	150	420	10	l i	30-90	325	2	SOT-54	v.	
3F457	SPEn	Vi	25	1,2 W	160	160	5	100	150	104	10	30	>26	90	12	TO-126	v"	8
)[4J/	SF EII	* i	90.	6 W	100	100		300°	130	10.	10	30	-20	130	1	10.120	١*	ľ°
F458	SPEn	v _i	25	1,2 W	250	250	5	100	150	104	10	30	>26	90		TO-126	v	8
1 430	SI LII	l*'	90.	6 W	230	20	٦	300*	1,30	10	1.0	30	-20	120		10-120	1	ľ°
F459	SPEn	Vi	25	1,2 W	300	300	5	100	150	104	10	30	>26	90		TO-126	v	8
1 437	J. L.	l.,	90.	6 W	300	1500	٦	300*	1.50	10*	1.	30	-20	1,0		10-120	Ι'	ľ
F469	SPEn	lvi	114*	1.8 W	250	250	5	30	150	100	20	25	>50	>60	1	TO-126	Т	8
F469S	SPEn	vi	110*	2 W	250	250	5	30	150	20*	20	25	>50	>60		TO-126	Ϊ́τ	8
F470	SPEp	vi	114*	1,8 W	250	250	5	30	150	100	20	25	>50	>60	1	TO-126	Ť	8
F470S	SPEp	vi vi	110.	2 W	250	250	5	30	150	20*	20	25	>50	>60	1	TO-126	Ť	8
F4705	SPEn	vi Vi	114	1,8 W	300	300	5	30	150	100	20	25	>50	>60		TO-126	T	8
F471S	SPEn	vi Vi	110.	1,8 W	300	300	5	30	150	20*	20	25	>50	>60		TO-126	T	8
F4715		Vi Vi	114		300	300	5	30	150	100	20	25	>50 >50	>60	1	TO-126	T	8
	SPEp		110	1,8 W	300	300	5		150	20.	20	25	15.0		1		T	
F472S	SPEp	Vi						30			10		>50	>60		TO-126		8
F479T	SPEp	VFu,v	55	160	20	20	3	50	150	600		10	>20	1850	1-1	TO-50	T	6
E402	CD.	S	1 25	020	200	250		60	100	150	10	10	14,5>13*	800*	<6	COT SI	l.,	1
F483	SPn	Vi	25	830	300	250	5	50	150	150	20	25	>50	70–110	1	SOT-54	V	20
FACE	00	lve.		020	200	200		100*	1,00	1,50	20	40	>20	70	1	COT	 . .	1-
F485	SPn	Vi	25	830	350	300	5	50	150	150	20	25	>50	70–110		SOT-54	V	20
	0.5	[]	٠. ا					100*	1		20	40	>20	50	1		 .	1.
F487	SPn	Vi	25	830	400	350	5	50	150	150	20	25	>50	70–110	1	SOT-54	ľ	20
					l			100°	l		20	40	>20	1				
F494	SPEn	VFv,O	75	300	30	20	5	30	150	250	10	1	66-222	260	4	SOT-54	V	22
F495	SPEn	VFv,O	75	300	30	20	5	30	150	250	10	1	36–125	200	4	SOT-54	V	22
F496	SPEn	VF-ns	75	300	30	20	3	20	150	250	10	2	13-40	550		SOT-54	V	2t
					1	1			1		10	3	27°	200°	2,5			1
								1	1		7	12	>5,45	530°			1	ı
F506	SPEp	O,S,VF	25	500	40	35	4	30	150	250	10	3	>25	550		TO-92Z	T,S	21
					1						10	3	17>15°	200°	<4		1	
F509	SPEp	VFv	25	450	40	35	4	30	150	275	10	3	70>25	750	1	TO-92Z	T	2t
					1			1	1		10	3	17>15*	200°	2,6			1
F509S	SPEp	VFv	45	300	40	35	4	30	150	350	10	3	70>25	800		TO-92Z	T	2t
					1						10	3	17>15*	200°	2,6			1
F583	SPn	Vi	25	1,6 W	300	250	5	50	150	25	20	25	>50	70-110		TO-202	V	9
			25*	5 W				100°		78°	20	40	≥20	1	1			
F585	SPn	Vi	25	1,6 W	350	300	5	50	150	25	20	25	>50	70-110	1	TO-202	V	9
		1	25*	5 W				100		78°	20	40	>20		1			
F587	SPn	Vi	25	1,6 W	400	350	5	50	150	25	20	25	>50	70-110		TO-202	v	9
			25°	5 W				100°		78°	20	40	>20					
F606A	SPEp	VFv,O	75	300	40	30	4	25	150	250	10	1	>30	>500		SOT-54	V.5	22
	,	'									10	5	50				"	
F679T	SPEp	VF°v,u	55	160	35	30	3	30	150	600	10	3	13>11*	800°	<3.5	TO-50	Т	6
_	,	-									10	3	>25	930	"		1	Ĺ
F681	SPEp	Sv,u,O	55	160	40	35	3	30	150	600	10	3	14>12°	800*	<5	TO-50	т	6
	P	-,-,-	"	1							10	3	>25	950	1			آ
F689K	SPEn	VFv,u	25	500	25	15	3,5	25	150	250	5	2	>20	[1	SOT-54	lv l	2t
		0	60	360	~		"	50•		-55	5	20	35-70	1800				٦
		[[5	2	16*	200	3		1	
F763	SPEn	VFv.u	25	500	25	15	3,5	25	150	250	10	5	16*	800*	5	SOT-54	V,5	3
		"	50	360	-		"	50•		-25	5	ĺ	25-250	1800	٦		"	آ
F819	SPn	AZ	75	1,2 W	300	250	5	100	150	62,5	10	20	45			TO-202	lv l	9
	j	-	75°	6 W	1-55			300*		12,5*	1		$t_1 = 0.5 \mu s$				1	1
F857	SPn	Vi,VF	25	2 W	160	160	5	100	150	62,5	10	30	>26	90		TO-202	v	9
. 057	3	''''	75°	6 W	1.00	1.00	ľ	300*	1.50	12,5*	1.0	١٠٠	1-20	~		1.0-202	1	ľ
F858	SPn	Vi,VF		2 W	250	250	5	100	150	62,5	10	30	>26	90		TO-202	$ _{\mathbf{v}} $	9
. 050	J. "	''''	75*	6 W	"			300*	1.50	12,5°	1,,	~	""	~		3-202		ľ
F859	SPn	Vi,VF		2 W	300	300	5	100	150	62,5	10	30	>26	90		TO-202	v	9
. 037	3. "	' ' ' '		6 W	1300	300	ا آ	300*	1,30	12,5*	1,0	٠,	20	"	1	1.0-202		ľ
F869,A	SPEn	Vi,VF		5 W	250	250	5	50	150	25*	20	25	>50	100		TO-202	S,V	0
F869S.	or Ell	* ', * ',	23	7 "	250	230		30	1,30	"	20	23	1-30	1.00	1	10.202	3.4	ľ
гвоуз, А	SPEn	Vi,VF	25*	SW	250	250	5	50	150	85	20	25	>50	>60		TO-202	Т	9
^	SEED	VI, VF	23.	- W	230	230	ا 'ا	100°	1,30	25*	20	23	1-30	1000		10-202	[1	ľ
E070 A	CDE-	l _{vave}	25.	5 11/	250	250			150	25*	20	25	50	100		TO 200		0
F870,A	orep	ViVF	25*	p ₩	250	250	5	50	150	25	20	25	>50	100		TO-202	S,V	۲
F870S,	CD-	J.,	254		200	200			1.00	۰,	000	20				TC 411	_	-
A	SPEp	Vi,VF	25*	o ₩	250	250	5	50	150	85	20	25	>50	>60		TO-202	T	9
B051		,,					ارا	100°		25*		۱				ma	ا ۽ ا	-
F871,A	SPEn	Vi,VF	25°	5 W	300	300°	5	50	150	25*	20	25	>40	100		TO-202	S,V	9
F871,S													1	l				
A	SPEn	Vi,VF	25*	5 W	300	300°	5	50	150	85	20	25	>50	>60		TO-202	T	9
								100°		25*							1	4

Тур	Arı	An- wen- dung	o,	P_{tot}	U _{C MI}	Unit	U₁ wı	4 4 4 4	D,	R _{this}	Uci	14	1/dB]*	1.	F	Gehäuse	Her stel- ler	
			FCI	max mW	max [V]	max [V]	max [V]	mux [mA]	max [PC]	max [K/W]	[V]	[mA]		[MHz]	[98]			
	SPEp	Vi,VF	25°	5 W	300	300°	5	50	150	25"	20	25	>4()	100		TO-202	S.V	9
BF872.S SA	SPEp	Vi.VF	25"	5 W	300	300*	5	50	150	85	20	25	>50	>60		TO-202	т	y
BF881	SPEn	Vi,VF	25	1.8 W	400	400*	5	100*	150	25° 100	20	25	>50	>60		TO-202	s	9
BF883S	SPEn	Vi,VF	25° 25	7 W 1.8 W	275	275	5	50	150	100	20	25	>50	>60		TO-202	т	9
BF885S	SPEn	Vi.VF	25° 25	7 W 1.8 W	350	350*	5	100° 50	150	100	20	25	>50	>60		TO-202	т	9
BF926	SPEp	VFv.O.S	25* 45	7 W 250	30	20	4	100° 25	150	420	10	1	30	350		SOT-54	v	2a
BF936	SPEp	VFv.O.S	45	250	30	20	4	25	150	420	10 10	3	17,5>14° >26	200° 350	5<6	SOT-54	v	2b
BF939	SPEp	VFv°	55	225	30	25	3	20	150	420	10 10	3 2	17.5>14° 36>16	200° 750	5<6	SOT-54	V	2b
D. 7.07	0.2		"								10	2 9	16° >2.5°	200*	<4		ľ	
BF959	SPEn	MF,VFv	25	500	30	20	3	100*	150	250	10 10	5 20	>35 85>40	>7(X)	4	TO-92	s	2a
BF967	SPEp	VFu°.O	55	160	30	30	3	20	150	600	10	3	60>15	900		SOT-37	v	6
											10	7	>10 13>11	>200 800°	4<5			
BF97()	SPEp	VFu.S	55	160	40	35	3	30	150	600	10	3	50>25	1000		SOT-37	S.N T	6
BF970A	SPEp	VFu.S	55	160	40	35	3	30	150	600	10 10	3	14.5>13° 50>25	900°	1<6	SOT-37	v	6
BF979	SPEp	VFu.v-	25*	550	20	20	3	50	125	500	10 10	3 10	15>13° 50>20	800° 1350	1<6	TO-50	Т	6
		ns	55	140						225*	5 10	15 10	16°	1000	4<6	SOT-37	v	6
BF979S	SPEp	VFu.O	50	160	30	25	3	50	150	600	10	10	>20	1600 800*		TO-50	s	6
BFG23	SPEp	Vs	60	180	15	12	2	35	150	500	5	30	16,5° >20	5000	<4.5	SOT-103	v	4
								50°		75	5 5	30 30	14.5° 6.5°	2000°	2.3			
BFG32	SPEp	Vs	70	700	20	15	3	75 150°	175	150 75°	10 10	50 50	>20 13°	4500°	4.3	SOT-103	v	4
BFG34	SPEn	Vs	45	l w	25	18	2	150	175	130	10. 10	50 100	6° >25	2000* 3700		SOT-103	v	4
										50*	10 10	100 100	14° 7°	800° 2000°	2.3			
BFG51	SPEp	Vs	60	180	20	15	2	25 35°	150	500	10	14	>50	5000 800°	3.4	SOT-103	v	1
DEC46	CDC-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	46	2/80	20	10	2.5		150	2(V)	10	14	K*	200019	"	COT 103	,	
	SPEn	Vs	65	300	20		2.5	50	150	300	8	15 15	100>60 10,5°	7500 2000°	3	SOT-103		1
BFG90A	SPEn	Vs	60	180	20	15	2	25	150	500	10 10	14 14	90>40	5000 800°	2.4	SOT-103	v	4
BFG91A	SPEn	Vs	60	300	15	12	2	35	150	300	10	14 30	12° 90>40	2000° 6000	3.6	SOT-103	v	1
					''						8	30 30	16,5° 8°	800° 2000°	2,3			
BFG%	SPEn	Vs	70	700	20	15	3	150	175	150	10	50	50>25	5000		SOT-103	v	4
										75*	10 10	50 50	8.	2000°				
BFG195	SPEn	Vs	50	500	20	10	2.5	100	150	200	8 5	50 50	12° >40	2000° 7500		SOT-103	V	4
BFP90A P0	SPEn	Vs	125	250	20	15	2	30	175	200	10 10	14	90>40 23°	5000 500*		SOT-173	v	7
	505			200	١.,	.,		60	176	200	10	14	19*	800*	2,4	COT 133		,
BFP91A Pi	SPEn	Vs	105	350	15	12	2	50	175	200	5 8	30 30	90>40	500*		SOT-173	ľ	7
BFP96	SPEn	vs	75	500	20	15	3	100	175	200	8 10	30 50	18° >25	5000°	2.3	SOT-173	v	7
P6											10 10	50 50	19°	500°	3,7			
BFQ22S	SPEn	Vs.AZ	65	150	15	12	2	35 50°	200	900 600*	5	10 10	50-110 >21°	5000 200°	<2,5	TO-72	v	lc
BFQ23	SPEp	Vs,AZ	60	180	15	12	2	35	150	500	5	30 30	16° >20	500° 5000	,	SOT-37	v	5
		Vs.AZ	105	350	15		2	50° 50	175	200	5 8	30 30 30	16.5°	500°	2.4	SOT-173		7
BFQ23C											5	30	>20	5000	3.1			
BFQ24	SPEp	Vs,AZ	65	150	15	12	2	35 50*	200	600°	5	30 30	50>20 15*	5000	2,4	TO-72	V	lc
BFQ28	SPEn	VFu	150	200	20	15 20°	1.5	15 20*	200	250	10 10	10 15	>20 14°	5000 2000*	3	TO-220	S	10

Тур	An	An- wen- dung	0. 0.	P _{tot} max [mW]	Max [V]	UCEO UCER*	WEBO	Ic I _{CM} * max [mA]	ϑ; max [°C]	R _{thic} * max [K/W]	(V)	/c [mA]	hzie A [dB]*	(MHz)	F [dB]	Gehäuse	Her stel- ler	
BFQ32	SPEp	Vs,AZ	60	500	20	15	3	75 150	175	230	10	50 75	>20 >20	4200 4600		SOT-37	v	5
		1	1	1	1						10	50	14*	500°	3,75			1
BFQ32C	SPEp	Vs	75	500	20	15	3	100	175	200	10	50	13*	800°	4,3	SO-173	v	7
			1								10	50	>20	4500				1
BFQ32S	SPEp	Vs,AZ	70	700	20	15	3	100	175	150	10	70	>20	4500	1	SOT-37	V	5
				l	١.						10	70	-65 ¹⁾	793°			l	١.
BFQ33	SPEn	Vs	80	140	9	7	2	20	150	500	5	14	>25	12 GHz	100	SOT-100	ľ	1
			1	1	1		1				5	14	13,7° 7,4°	2000° 4000°	2,5 3,8			ı
BFQ33S	SPEn	Vs	120	140	9	7	2	20	150	200	5	14	>50	12GHz	3.0	SOT-173	V	17
D1 Q333	Si Lii	1''	1,50	1,40	′	l '	-	1	1.50	1200	15	14	13,3*	2000°	3	301-173	Ι'	ľ
		1	1	1						1	15	14	7,6*	4000°	١		1	ı
BFQ34	SPEn	Vs	125*	2,25W	25	18	2	150	200	15	15	75	>25	3500	1	SOT-122	v	lı
			1								15	150	>25	4000				П
			1						1	1	15	120	16,3*	500°	8			ı
											15	120	$U_{\rm o} = 1.2 {\rm V}$	793°	1		1	ı
BFQ34T	SPEn	Vs	45	1 W	25	18	2	150	175	130	10	100	>25	3700		SOT-37	V	5
										50*	10	100	20*	300°	1			
			1								10	100	$U_o = 1 \text{ V}$	285°				1

¹¹ Intermodulationsabstand für -6dB

Systeme für die Typenbezeichnung

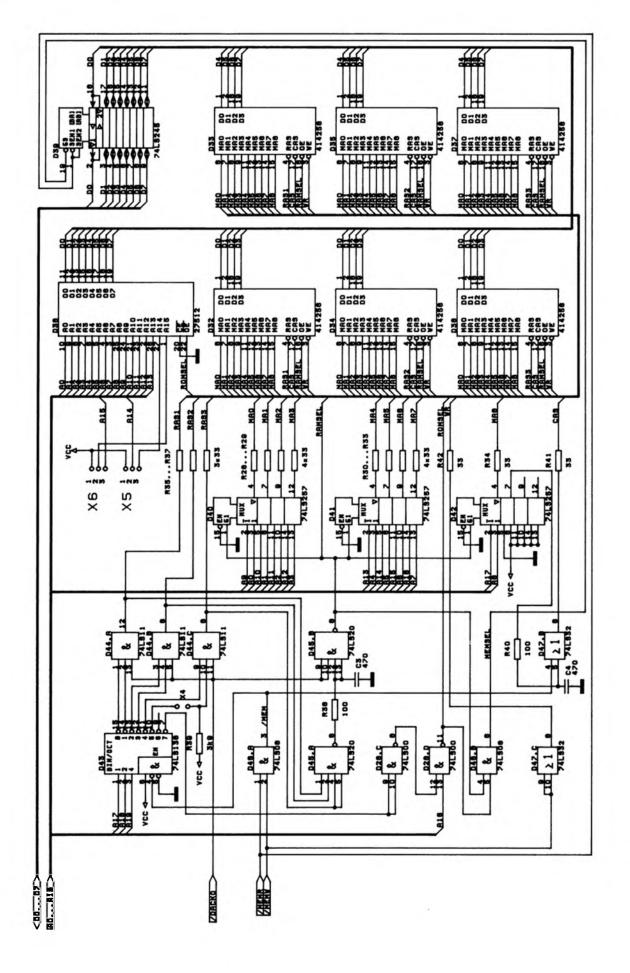
- In Europa herrscht das internationale Typenbezeichnungssystem nach Pro Electron. Es wird nebenstehend vorgestellt. Dieses Bezeichnungssystem erlaubt eine recht genaue Aufschlüsselung des Bauelements.
- Dem Typenbezeichnungssystem nach JEDEC sind hingegen Hauptanwendung und Halbleitermaterial nicht zu entnehmen. 1 N mit zwei bis vier nachgestellten Ziffern bedeutet Diode. 2 N mit zwei bis vier nachgestellten Ziffern bedeutet Transistor.
- Eine weitere Möglichkeit sind firmeneigene Bezeichnungssysteme. Hier müssen nähere Hinweise den Firmenkatalogen entnommen werden.

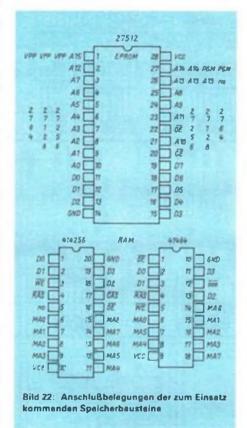
Typenbezeichnungssystem nach Pro Electron

- Dei erste Buchstabe gibt das Halbleiter-Ausgangsmaterial an: A Germanium, B Silizium, C Galliumarsenid
- Der zweite Buchstabe kennzeichnet die Hauptanwendung: A Diode für die Signalverarbeitung (Gleichrichtung, Mischung) mit kleiner Leistung, B Diode mit variabler Kapazität zum Abstimmen und Nachstimmen, E Tunneldiode, X Diode für Frequenzvervielfacher, C Transistor für niedrige Frequenzen und kleine Leistung, L Transistor für Hochfrequenz und kleine Leistung, L Transistor für Hochfrequenz und große Leistung, S Transistor für Schaltzwecke und kleine Leistung, U Transistor für Schaltzwecke und große Leistung
- Den beiden Buchstaben kann eine dreistellige Zahl von 100 bis 999 folgen, dann handelt es sich um ein Bauelement für die Unterhaltungselektronik, oder ein weiterer Buchstabe und eine zweistellige Zahl (Y10 bis A99), dann handelt es sich um ein Bauelement für professionelle Geräte.
- Ein beliebiger Zusatzbuchstabe außer R kann folgen, wenn der gekennzeichnete Typ nur geringfügig vom Grundtyp abweicht.
- Der Buchstabe R folgt, wenn zum Grundtyp entgegengesetzte Anschlußpolarität besteht
- Beispiel für HF-Transistoren: BF Kleinleistungs-Siliziumtransistor, BFR, S, T, V, W, Y Kleinleistungs-Siliziumtransistor für industrielle Anwendung, BLX, Y Siliziumleistungstransistor für industriellen Einsatz

(wird fortgesetzt)

Bild 1: Anschlußbelegungen (1 bis 3 von unten, 4 bis 13 von oben gesehen)




Bild 21: Teilstromlaufplan der CPU-Karte mit dem Speicher

gnale RASI, RAS2 und RAS3. Die CAS-Signale aller Speicherschaltkreise sind ebenso wie die Schreibsignale WE miteinander verbunden und bilden die Signale CAS und WE. Die 18 niederwertigen Adressen werden mit Hilfe der Multiplexer D40, D41 und D42 umgeschaltet. So entsteht der den RAMs zugeführte Multiplex-Adreßbus AM0 bis AM8. Eine Dekodierlogik erzeugt die Signale RASI bis RAS3.

Die Dekodierlogik wertet dazu die oberen drei Bit des Adreßbusses, also die Signale A17, A18 und A19 aus. Dazu wird mit Hilfe des Gatters D46. A aus dem Speicherschreib- bzw. -lesesignal MEMW und MEMR das Speicherzugriffssignal MEM gebildet. Dieses Speicherzugriffssignal MEM gelangt, ebenso wie die höchstwertigen Adreßsignale A17, A18 und A19 an den Dekoder D43. Am Ausgang dieses 1aus-8-Dekoders stehen nun Freigabesignale zur Verfügung, die den Anfangsadressen von 128-KByte-Blöcken entsprechen. Mit diesen Anfangsadressen haben wir der Übersicht halber die Ausgangsleitungen bezeichnet. Aus jeweils zwei dieser Freigabesignale werden mit Hilfe der Gatter D44.A, D44.B und D44.C dic Bank-Freigabesignale RASI, RAS2 und RAS3 erzeugt. Mit Hilfe der Brücke X4 ist die letzte Bank zur Hälfte deaktivierbar, was bei Einsatz der CPU unter MS-DOS notwendig ist, falls als Bildschirmadapter eine EGA- oder VGA-Karte zum Einsatz kommt. Zur näheren Erklärung sei auf die später beschriebenen Grafiksteuerkarten verwiesen. Bei geschlossener Brücke stehen also 768 KByte RAM auf der CPU-Karte zur Verfügung und bei geöffneter Brücke 640 KByte.

Für das Auffrischen der dynamischen Speicherbausteine dient, wie bereits erläutert. das Signal DACKO. Dieses wird vom DMA-Controller erzeugt, nachdem er die aufzufrischende Zeilenadresse auf den Adreßbus gelegt hat. DACKO = L aktiviert über die Gatter D44.A, D44.B und D44.C alle Bankauswahlsignale parallel und frischt somit alle Bänke auf. Aus den drei Bankfreigabesignalen RASI, RAS2 und RAS3 wird mit Hilfe der Gatter D45.A und D45.B das RAM-Freigabesignal RAMSEL crzeugt. Es ist immer dann aktiv, wenn über RASx auf eine der drei Bänke ein Zugriff erfolgt und es sich dabei nicht um einen Refresh-Zugriff handelt. Dieses Signal RAMSEL ist mit Hilfe von R38, C3 um etwa 50 ns verzögert, da es gleichzeitig zum Umschalten der Adreßmultiplexer dient. Nachdem nun die Adreßmultiplexer umgeschaltet haben, erscheint am Pin 12 des Multiplexers D42 L-Pegel. Dieses Signal wird über R40, C4 cbenfalls wieder etwa 50 ns verzögert dem Gatter D47.B zugeführt, an dessen Ausgang das Speicherspaltenaktivierungssignal CAS zur Verfügung steht. Damit das CAS-Signal am Ende eines Speicherzugriffes sofort deaktiviert wird, ist das Speicherzugriffssignal MEM an das Gatter D47.B herangeführt. D47.C puffert das Schreibfreigabesignal für alle Speicherbänke. Alle Signale, die zu den RAMs führen, sind wegen der relativ großen kapazitiven Last über Dämpfungswiderstände geführt.

Soll die Karte als Einplatinenrechner laufen und daher nur mit 64 KByte RAM bestückt werden, so kann dies in Bank 1 durch den Einsatz von zwei IS 41464 (64 K × 4 Bit) erfolgen. Dazu müßte man jedoch zu viele Leitungen per Brücken umlegen, so daß dafür eine Adapterplatine vorgesehen ist, die in die IS-Anschlüsse der Bank 1 einzusetzen ist und auf der sich die zwei 61464 befinden. Da der Adreßdekoder je-

doch weiterhin das gleiche RASI-Signal wie beim Einsatz einer 256-KByte-Bank erzeugt, erscheint die 64-KByte-Bank außer ab Adresse 00000H auch noch dreimal gespiegelt auf 10000H, 20000H und 30000H. Dieser Umstand ist jedoch bedeutungslos, da der Einplatinenrechner ja für eigene Experimente dient – man muß sich nur gegebenenfalls daran erinnern.

Abschließend zum Thema RAM soll nicht unerwähnt bleiben, daß im kommerziellen PC/XT/AT jeweils je 8 Bit ein zusätzliches Paritätsbit ermittelt und gespeichert wird. Beim Lesen erfolgt dann ein Paritätsvergleich, der bei ungleicher Parität zwischen Lesen und Schreiben zu einer Fehlermeldung führt. Diese Paritätslogik löst dabei ebenfalls ein NMI aus.

Da es sich beim Paritätstest lediglich um cine Fehlerseststellung handelt und dennoch keine Fehlerkorrektur möglich ist, haben wir aus Platzgründen zugunsten anderer Schaltungserweiterungen auf die Paritätsprüfung verzichtet. Schließlich erscheint es uns bedeutungslos, ob bei RAM-Ausfall das Programm abstürzt oder der Computer günstigenfalls mit einer Fehlermeldung stehenbleibt. Selbst wenn das entsprechende NMI-Programm die Speicherplatzadresse ausschreibt, nützt dies überhaupt nichts, da unklar bleibt, um welches der 8 Bits es sich handelt. Bei Speicherausfällen muß also ohnehin stets ein Diagnoseprogramm zu Hilfe genommen werden.

Soweit zur Schaltung des RAM. Die Selektion des EPROM zeigt sich dagegen relativ harmlos. Hier ist nur das Signal ROMSEL zu erzeugen, welches immer dann aktiv werden soll, wenn die höchstwertigen 64 KByte des Systems angesprochen werden, also A16 = A17 = A18 = A19 = H. Realisiert ist dies durch Verknüpfung des höchstwertigen Freiausgabeausgangs am Dekoder D43 über den Negator D28.C mit dem Adreßbit A16. Am Ausgang des Gatters D28.D sight damit das Signal ROM-SEL zur Verfügung, womit über seinen OE-Eingang der EPROM D38 aktiviert wird. Die beiden Signale RAMSEL und ROMSEL sind mit Hilfe des Gatters D46.B zum Signal MEMSEL verknüpft, mit welchem der Datenbustreiber D39 aktiviert wird. Die Richtungsumschaltung des Datenbustreibers D39 erfolgt mit Hilfe des Speicherlesesignals MEMR. Soll bei Einsatz der CPU-Karte als Einpla-

sprechend folgender Aufstellung einzustellen: 2764 X5.1 - X5.2 X6.1 - X6.2 27128 X5.1 - X5.2 X6.1 - X6.2 27256 X5.1 - X5.3 X6.1 - X6.2

27512 X5.1 - X5.3 X6.1 - X6.2

tinenrechner ein kleinerer EPROM, min-

destens jedoch 2764, zum Einsatz kom-

men, so sind die Brücken X5 und X6 ent-

Beim Einsatz des 2764, 27128 und 27256 werden wie beim 27512 die gesamten höchstwertigen 64 KByte des Systems angesprochen, d. h., alle EPROMs melden sich ab Adresse F0000H. Darüber hinaus folgt beim 27256 ein gespiegeltes Auftreten ab Adresse F8000H.

Analoges gilt für den 27128, der ab Adresse F0000H, F4000H, F8000H, FC000H erscheint bzw. für den 2764, der an den Adressen F0000H, F2000H, F4000H, F6000H, F8000H, FA000H, FC000H und FE000H erscheint.

(wird fortgesetzt)

NF-Tester

B. KRAUSPE

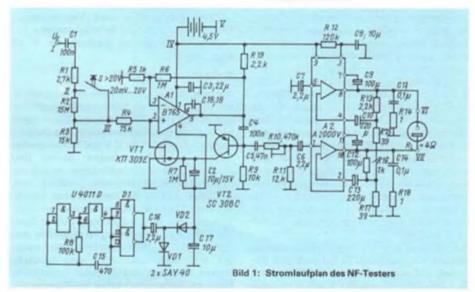
Der nachfolgend beschriebene NF-Tester ist für all jene Amateure gedacht, die sich mit der Tontechnik befassen. Mit Hilfe dieses kleinen Gerätes kann schnell einmal in eine Schaltung "hineingehört" und die Qualität des Tonsignals an verschiedenen Stellen überprüft werden.

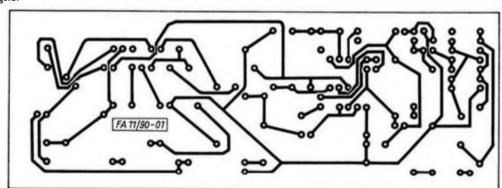
Dem, der sich oft mit dem Bau von NF-Verstärkern, Equalizern, Mischpulten u. ä. beschäftigt, kommt es gelegen, wenn er die Teile in Betrieb testen kann. Meist geht es darum, festzustellen, welcher Art das Signal ist, der Pegel ist dabei zunächst uninteressant. Man möchte erst einmal in die Schaltung "hineinhören". Aus der Möglichkeit, daß Verzerrungen auftreten und wo sie auftreten, kann man sich ein Bild über die vorliegende Schaltung machen.

Wie wäre es, wenn man einen schon fertiggestellten Schaltungsteil des Geräts nimmt, ihn vervollkommnet und gesondert aufbaut? Man braucht dazu: Einen Spannungsteiler, einen Dynamikkompressor sowie einen Kopfhörer- und Lautsprecherverstärker (oder beides). Daß noch eine negative Betriebsspannung erzeugt werden muß, ist erst einmal unbedeutend.

[1] enthält einen geeigneten Dynamikkompressor. Sein Kompressionsbereich war zu gering, deshalb habe ich R6 erhöht. Dieser Baustein besteht aus einem Operationsverstärker mit einer Rückführung Sie enthält zwei Transistoren VT1 und VT2. Der Kanalwiderstand von VT1 wirkt als Stellglied. Der Kanalwiderstand andert sich in Abhängigkeit vom Eingangspegel zwischen etwa $100\,\mathrm{k}\Omega$ und $120\,\Omega$. Das ergibt den zufriedenstellenden Kompressionsbereich von $60\,\mathrm{d}B$. Der zugehörige Eingangsspannungsbereich liegt zwischen $20\,\mathrm{mV}$ und $20\,\mathrm{V}$. Sollten sehr geringe NF-Spannungen auftreten, ist de: Spannungstei-

ler mittels Schalter S zu überbrücken. Wechselspannungen Uctt > 20 V treten höchstens am Netz auf. Aus diesem Grunde ist nicht wenig Sorgfalt auf den Eingangsspannungsteiler zu legen. Das ist besonders beim Aufbau zu beachten. Bleibt ein Problem: Die Masse ist als negative Operationsverstärkerbetriebsspannung ungeeignet, da es schnell zu Verzerrungen kommt, wenn der FET gegen Masse stellt (s. auch [2]).


Dem schließt sich an: Ein möglichst variabler Endverstärker – sowohl für Kopfhorer- als auch für Lautsprecher-Betrieb. Geeignet ist die Monobrückenschaltung nach [3]. Aus der Erfahrung (früherer Aufbau) muß gesagt werden, daß man dafür einen Eingangspegel von mindestens Uem = 40 mV benötigt. Der ist beim Dynamikkompressor-Ausgang auf jeden Fall gegeben, da die Amplitude um 500 mV liegt. R10 bleibt offen.


Da der entstehende NF-Tester mit einer Flachbatterie betrieben werden soll, sind unbedingt die Maße der Batterie 3R 12 zu beachten. Die Leiterplatte ist 130 mm × 47,5 mm groß (Bilder 2 und 3). Beim Aufbau sind die drei Drahtbrükken nicht zu vergessen. Die Leiterplatte habe ich mit PVC-Teilen umgeben und diese verklebt.

Dabei sind die Anschlüsse herausgeführt. Die Batterie 3R 12 ist mit einem Gummi am Gehäuse zu befestigen. Die Flachbatterie erlaubt etwa 3-Stunden-Betrieb. Diese Betriebsdauer hängt stark von der eingestellten Lautstärke ab. Als NF-Tester-Spitze tut z. B. eine Stricknadel gute Dienste. Zu beachten ist dabei, daß sie nach dem Löten verkleht werden sollte.

Literatur

- Automatische Verstärkungsregelung, radio fernsehen elektronik 29 (1980), H. 4, S. 205
- [2] Külinel, C.: Erzeugung der negativen Betriebsspannung f. Operationsverstärker aus der positiven Spannung für Digitalschaltkreise, radio fernsehen elektronik 32 (1983). H. 9. S. 575
- [3] Jahn, K.: FUNKAMATEUR-Bauelementeinformation A 2000 V, A 2005, 38 (1989). FUNKAMA-TEUR. H. 11, S. 545

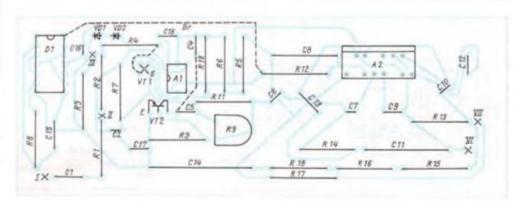


Bild 2: Leitungsführung der Leiterplatte des NF-Testers

Bild 3: Bestückungsplan des NF-Testers

Alle Jahre wieder - Basteleien zum Fest

M. SCHULZ, J. WERNICKE

Weihnachten naht, die Adventskränze leuchten schon in die Winternacht, mehr oder weniger aufwendig-teure Lichterspiele erfreuen uns allenthalben, auf den Straßen, in den Fenstern, an unseren Weihnachtspyramiden, Tannenzweigen und sonstigem Weihnachtsschmuck. Wieder eine Chance für den Hobbyelektroniker, seiner Familie den praktischen Sinn seines Hobbys zu demonstrieren. Glänzende Kinderaugen angesichts weihnachtlicher Lichterspiele sind doch das schönste Erfolgserlebnis für jeden, der noch einmal tief in seine Bastelkiste (und dabei möglichst wenig ins Portemonnaie!) greift und seinen Lieben damit eine kleine Freude bereitet. Unser Beitrag soll vor allem Anregungen dazu liefern, aber auch kleine, komplette und schnell realisierbare Projekte. Wir wünschen viel Spaß!

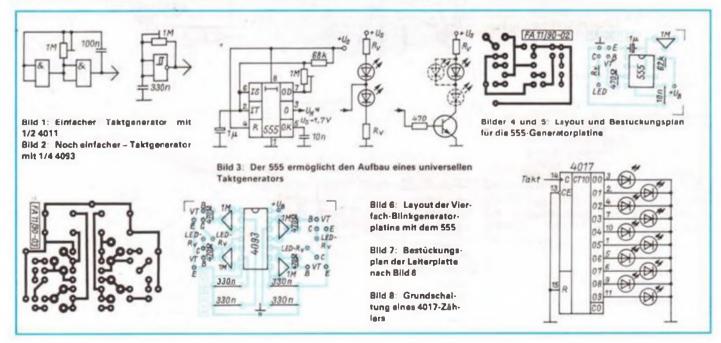
Ohne Takt läuft nichts

Gemeint ist hier nicht der uns alle gewöhnlich zur Weihnachtszeit heimsuchende besondere Höflichkeitsdrang, sondern die Grundlage einer jeden irgendwie blinkenden oder "laufenden" Leucht- (Dioden-) Anordnung.

Den einfachsten Standard bieten Gatter, bei uns in Form von 4011-NANDs und 4093-Gattern. Bild 1 zeigt eine verbreitete Schaltung, die sich ebenso wie die in Bild 2 durch minimalen Bauelementeaufwand bei stabiler Funktion auszeichnet. Sowohl die Widerstandswerte als auch die der Kapazitäten sind in weiten Grenzen individuell anpaßbar. Die Einstellregler finden wohl meist Ersatz durch Festwiderstände, sobald man eine optimale Einstellung gefunden hat. Taktverhältnisse sind mit diesen einfachen Schaltungen natürlich nicht zu verändern, aber das soll uns nicht stören.

Der 555 bietet da in der vorgeschlagenen Konfiguration Vergleichbares. Er hat noch dazu den Vorteil, daß er gegenüber den CMOS-Gattern, die (über Vorwiderstand!) lediglich maximal eine LED, die ihn nicht mit mehr als 8 mA belasten sollte, schon "größere" Lasten treiben kann. Bis zu 200 mA lassen sich mit ihm steuern, und natürlich ist auch er, wie die Gatter mit

einem Treibertransistor, für noch höhere Lasten ergänzbar. So kann er schon recht bedeutende LED-Anhäufungen, je nach Vorwiderstand, LED-Typ und gewählter Betriebsspannung, bedienen. Dies sogar im Wechsel, wie Bild 3 zeigt.


Was soll denn leuchten?

Apropos, ja, was soll denn nun eigentlich leuchten? Wir wählten als Schwerpunkt Leuchtdioden, die uns große Glühlampenprobleme ersparen und uns vom Netz fernhalten. Ein Steckernetzgerät mit etwa 5 bis 12 V und 300 mA genügt nahezu allen Anforderungen. Zudem sind Leuchtdioden heute in zahlreichen, optisch ansprechenden Konfigurationen erhältlich, von der Chip-LED bis zur Jumbo-(10mm Durchmesser)-LED, zweifarbig und auch schon selbstblinkend ohne weitere Elektronik. Unser Titelbild soll einige Anregungen zu möglichen Anordnungen geben, besonders beliebt sind natürlich Weihnachtssterne Aber auch Glocken, Herzen, Kleidungs- und Geschenk-Anstecker in Form des Anfangsbuchstaben des Namens des Beschenkten, sind sicher Anregungen, die ihre Phantasie beflügeln sollen. Auf der Grundlage von Universalleiterplatten sind LEDs beliebig anzuordnen, so haben wir bei unserer stilisierten Glocke als Köppel eine Zweifarb-LED gewählt, die ihre Farbe im Takt der restlichen Ansteuerung wechselt. Auch ein kleiner Button, den man sich ir der Disco anstecken kann, wirkt besonders, wenn er mit Zweifarb-LED bestückt wird

Durchzähleni

Kehren wir wieder zu unserer Ansteuertechnik zurück. Um eine Figur entstehen zu lassen, also einen wachsenden oder abnehmenden Weihnachtsstern oder ein Lauflicht, braucht man schon mindestens etwas, das unseren Takt irgendwie zählt. Doch bevor wir dazu kommen, noch eine Antegung, für den, der den Zufall liebt. Einfach vier Grundschaltungen gemäß Bild 2 aut einer Leiterplatte unterbringen (der 4093 muß ja schließlich ausgenutzt werden), und fertig ist ein in vier verschiedenen Taktperioden einstellbarer "Zufallsgenerator": Es wirkt bei einem Weihnachtsstern schon dekorativ, wenn die vier Ebenen willkürlich ausgeuchten.

Aber die Deutschen lieben die Ordnung, also soll so ein Ding auch schön im Takt leuchten. Die einfachste Lösung bietet uns hier der CMOS-Dezimal-Zähler/Dekoder 4017, der, gemaß Bild 8 beschaltet, schon eine zehnteilige LED-Anordnung steuern kann. Die Wahl des Taktgenerators bleibt dabei Ihnen überlassen, das Layout in Bild 9 läßt sich beliebig kombinieren. Mit Hilfe eines Treiberschaltkreises 4050 (nicht invertierend) oder eines 40098 (invertierend) lassen sich höhere Ströme und damit auch Leitungslängen realisieren (Bild 11). An dieser Stelle muß gesagt werden, daß man bei der Planung seiner LED-Anordnung immer im Hinterkopf haben sollte, daß bei einer wegen des relativ geringen Strombedarfs zu empiehlenden LED-Reihenschaltung immer gilt, daß die Summe der Flußspannungen der LED maximal nur Ub - 1,7 V sein darf, man also bei roten LED, die eine Flußspannung von etwa 1,5 V haben (eine Betriebsspannung von 15 V vorausgesetzt), nur maximal acht LED in Reihe schalten kann. Bei grunen und gelben LED verringer, sich diese Zahl auf bis zu vier. Abhilfe schaffen hier wiederum nur ein Treibertransistor und eine damit verbundene, aus Stromersparnis nicht zu häufig angewendete Parallelschaltung der LED.

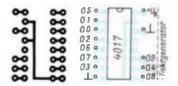


Bild 9: Teillayout für die Platine des 4017-Zählers

Bild 10: Bestückungsplan der Leiterplatte nach Bild 9

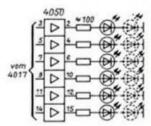
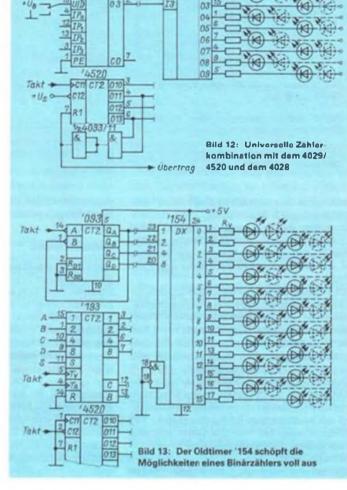



Bild 11: Ein Treiberschaltkreis erweitert die Ausgangsbelastung des 4017

Die CMOS-Baureihe bietet aber noch weitere interessante Zahler für unsere Zwecke, so den 4029 und den 4520. Der 4029 ist ein voreinstellbarer Vor/Rückwarts-Zähler, der zudem zwischen dezimaler und binärer Zählweise umgeschaltet werden kann. Er ist in aller Regel mit dem Dekoder 4028 kombiniert, wenn man eine dezimale Ausgabe erreichen will. Unsere einfache Konfiguration in Bild 12 soll zum Experimentieren mit diesem vielseitigen Zähler anregen. Die Teilschaltung mit dem 4520 zeigt dessen Anwendung als Dezimalzähler. Läßt man die Rückstellogik weg, ergibt sich bei der Kombination mit dem 4028 eine kleine Pause nach jedem Umlauf; manchmal ist das ja gewollt. Das Bild 12 deutet aber auch eine weitere Möglichkeit an, unsere LED-Kombination deutlich aufzubessern, nämlich die Kaskadierung von Zählern. Alle Zähler enthalten einen sogenannten Übertragsausgang, der beim letzten Zählimpuls den nächsten Zähler ansteuert. Doch meist reichen uns ja ein oder, wie beim 4520 möglich, zwci Zähler völlig aus.

Ein alter Bekannter kommt wieder zu Ehren

Die goldene Mitte stellt hier wohl die volle Ausdekodierung eines Binärzählers durch einen Demultiplexer/Dekoder dar. In zahlreichen Bastelkisten noch vorhanden - der 74154 o. ä., der das Anzeigen von vollen 16 Zählerständen gemäß dem BCD-Kode ermöglicht. Er läßt sich nahezu beliebig ansteuern. Unser erprobter Layoutvorschlag zeigt die Ansteuerung sowohl mit einem '093, der lediglich vorwärts zählen kann, als auch mit einem '193, der dazu noch eine Voreinstellung und den Wechsel zwischen Vor- und Ruckwartszählen erlaubt. Angedeutet ist ebenfalls die Lösung mit einem 4520, der jedoch eventuell, besonders bei Betrieb mit unterschiedlichen Betriebsspannungen von TTL- und CMOS-IS, cincr Pegelanpassung laut Bild 18 bedarf. Aber keine Angst, bei gleicher Betriebsspannung klappt es schon ohne Anpassung Diese interessante Lösung kam bei unserer

Glocke zum Einsatz: Auf beiden Seiten "wächst" die Glocke symmetrisch, der Klöppel wechselt im Takt die Farbe, und der "Aufhänger" leuchtet ständig. Probieren Sie's aus! Hier leistet der gute alte TTL-Schaltkreis '154 noch treue Dienste.

Thema Nr. 1 - der Stern

Nicht zuletzt wollen wir zum Thema Weihnachtsstern noch an einen Bekannten aus unserer Ausgabe 2/88 erinnern, einen beliebig konfigurierbaren Effektstern, der sowohl als wachsender Ring als auch als wachsender Stern aufgebaut werden kann. Die Bilder 13 bis 15 zeigen die Modifikation für jeweils sechs bzw. eine beliebig geringere Anzahl von Ebenen. Näheres zur Funktionsweise dieser Schaltung lesen Sie bitte in unserem Heft 2/88, S. 72, nach.

Der Leiterplatten-Tip

Für viele dieser kleinen Konfigurationen lohnt es sicher nicht, extra eine Leiterplatte anzusertigen. So leistet hier die in ihrer Form dem Leuchtobjekt angepaßte Universalleiterplatte gute Dienste; ebenso unsere Universalleiterplatte aus Hest 12/89, S. 591, die in den dort angegebenen Größen auch bei unserem neuen Leiterplattenhersteller beziehbar ist (s. FA 10/90, S. 518). Hier läßt sich das gewünschte Layout sehr einfach durch Herauskratzen der nicht benötigten Verbindungen herstellen.

Darf's auch etwas mehr sein?

Die Basteleien mit den weihnachtlichen Lichteffekten machten uns soviel Spaß, daß zum krönenden Abschluß auch noch ein großer Weihnenden Abschluß auch ein großer Weihnenden Abschluß auch noch ein großer Weihnenden Abschluß auch noch ein großer Weihnenden Abschluß auch ein großer Weihnenden Abschluß auch ein großer Weihnenden Abschluß auch ein gestellt auch ein großer Weihne Abschluß auch ein großer Weih

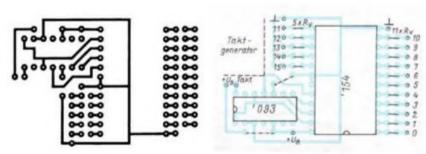


Bild 14: Layout der Platine des kompletten Binarzählers mit dem 1093

Bild 15: Bestückungsplan der Leiterplatte nach Bild 14

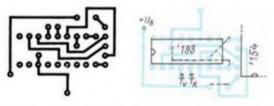
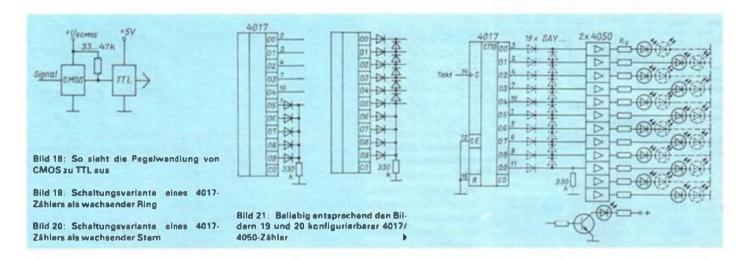



Bild 16: Layoutvorschlag für den Einsatz eines 193 als Zähler

Bild 17: Bestückungsplanzu Bild 16

nachtsstern dran kam. Er ist ebenfalls im Titelbild zu sehen.

Grundlage dieser Idee ist ein Stern mit fünf LED-Reihen, wobei jede sechs Dioden enthält. Bild 22 zeigt den Stromlaufplan. Zu beachten ist, daß dort nur fünf LEDs pro Reihe abgebildet sind.

Als Taktgenerator dient die CMOS-IS 4001, die hier als Multivibrator arbeitet. Frequenzbestimmend sind der Kondensator C1 und der Widerstand R1. Mit einem Kapazitätswert von $4.7 \mu F$ wird eine Taktfrequenz von etwa einer Sekunde erreicht. Das ist jedoch Geschmackssache und kann individuell ausprobiert werden.

Der am Ausgang Pin 10 liegende Takt steuert die Zähleingänge der 1S 4520 an. Dieser Schaltkreis verfügt über zwei getrennte binäre Vorwärtszähler mit unabhängigen Rücksetzeingängen. Die Zähler können nur vorwärts zählen und sind auch nicht voreinstellbar, was aber in unserem Fall nicht stört.

Die binäre Arbeitsweise dieses Schaltkreises bewirkt eine optisch sehr wirksame Ansteuerung der LEDs.

Da die Reset-Eingänge R1 und R2 auf Masse liegen, beginnt der Zählvorgang nach Ablauf eines Durchganges ständig von neuem.

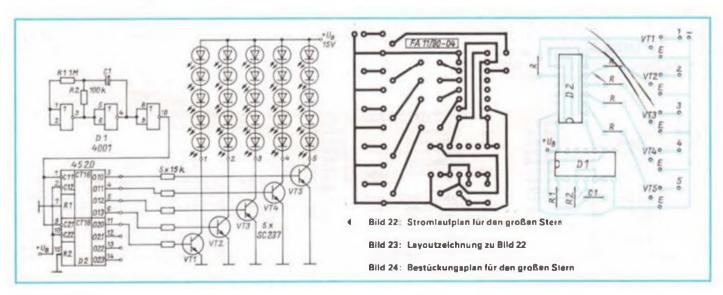
Die Zählerausgänge, in unserem Fall sind nur fünf benutzt, steuern über Vorwiderstände die eigentlichen Treibertransistoren an. Da für jeweils einen LED-Kreis die Dioden in Reihe geschaltet sind, ist der Gesamtstrom relativ klein, und es können normale Miniplast-Transistoren

verwendet werden. Außerdem kommt es dem Netzteil zugute, das nicht soviel Strom zu liefern braucht.

Aufbauhinweise

Bild 23 zeigt das Platinenlayout. Die Maße der Platine betragen 50 mm × 50 mm, klein genug, um hinter dem Stern angebracht zu werden. Die Leitungsführung ist relativ unkompliziert und kann leicht mit einem Zeichenstift, der eine ätzresistente Farbe enthält, gezeichnet werden.

Wie man seinen Stern anfertigt, ist jedem selbst überlassen. Die meiste Arbeit machen das Aussagen der Sternform selbst sowie das Bohren und Zeichnen, wenn das Ergebnis ordentlich aussehen soll. Da man den Zimmer- oder Fensterschmuck alle Jahre wieder verwenden wird, ist es ratsam, eine solide Platine anzufertigen.


Natürlich ist der im Titelbild abgebildete Weihnachtsstern nur ein Ideenvorschlag. Ebenso sind die Form des Sterns, die Anordnung der LEDs und ihre Farbzusammenstellung Phantasiesache. Denkbar ist auch volle Ausnutzung des 4520, so daß noch drei Reihen mehr eingesetzt werden können, zumal Leuchtdioden in den Amateur-Filialen supergünstig angeboten werden (zwischen 8 Pf und 12 Pf).

Durch die Reihenschaltung der Dioden sind der Aufbau bzw. die Verdrahtung unkompliziert. Man sollte nur beachten, daß für manche Reihen, je nach LED-Typ, eventuell Vorwiderstände eingesetzt werden sollten. In unserem Fall mußten wir für die roten Dioden Widerstände (68 Ω) einsetzen, da der Gesamtstrom ein "wenig" zu hoch ausfiel und wir Lehrgeld in Form von 10 Dioden zahlen mußten. Beim ersten Probestart deshalb die Spannung nicht zu hoch treiben!

Die Zusammenschaltung der beiden Platinen bzw. die Verbindung der LEDs mit den Transistorausgängen sollte individuell ausprobiert werden. Letztendlich ändert sich nur die Blinkkombination. Um eine geschmacklich ansprechende zu finden, vertrödelten wir eine Menge Zeit. Es machte allerdings viel Spaß, und mit der Suche nach der besten Variante kann man die ganze Familie beschäftigen. Mit den angegebenen Werten beträgt die Versorgungsspannung 12 V bis 15 V.

Bleibt zum Schluß zu hoffen, daß wir mit diesem Projekt den Bæstlernerv getroffen und Sie Lust bekommen haben, feste zum Feste zu basteln. Selbst gestandene Elektroniker können sich der blinkenden Weihnachtselektronik nicht entzie-

Einen Nachteil hat dieser ganze Spaß allerdings: Mit Sicherheit werden Sie nämlich gebeten, so etwas auch noch für andere zu bauen.

Stereo-Basisbreiten-Effekt

B. KRAUSPE

Die nachfolgend beschriebene Schaltung ist ein Leckerbissen für experimentierfreudige Musikelektroniker. Mit ihr ist es möglich, die Stereo-Basisbreite frequenzabhängig zu steuern, so daß der Eindruck einer Instrumenten-Wanderung innerhalb der Basisbreite entsteht.

Auf den sparsamen Einsatz eines Effektes kommt es bei der Schaltung nach Bild 1 an Nach [1] handelt es sich beim oberen Teil des Bildes um die beiden Endstufen eines Stereo-Verstärkers. Dabei sind die beiden Lautsprecher in Boxen zu einer Ebene angeordnet, meist parallel zum Fußboden eines Wohnzimmers.

Der Grundgedanke besteht darin, frequenzabhängige Impulse des einen Kanales des Stereo-Verstärkers in den anderen Kanal zu übertragen. Und das geschicht gleichwertig bei beiden Kanälen in den Endstufen. Die Folge ist eine frequenzabhängige Stereo-Basisbreitenansteuerung. Dieser Effekt wirkt sich so aus, als würde in Abhängigkeit von der Frequenz eines Instrumentes ein unterschiedlicher Standort in der Ebene entstehen. Grundlage dazu ist, daß ein oder mehrere Instrumente durch eine Aufnahme in Verbindung mit mehreren Mischungen in der Ebene angeordnet werden. Ein Mono-Abspiel hätte demzufolge die Basisbreite Null und eine

frequenzabhängige Basisbreite von ebenfalls Null

Interessant wäre der Fall, wenn alle Instrumente gleichwertig in Abhängigkeit von der Frequenz einen Ort in der Ebene zugewiesen bekämen. Damit ließen sich Basisbreiten von Null verschieden durch Monoaufnahmen erreichen.

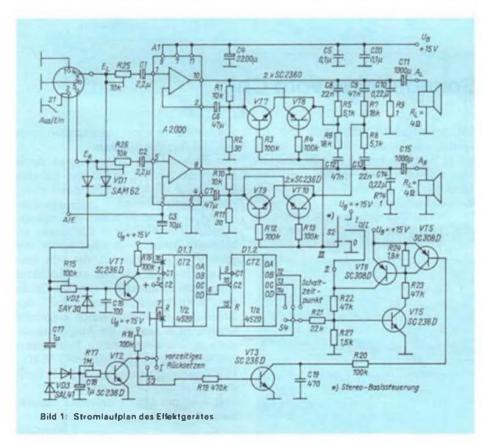
Nach [1] ist die Funktion der frequenzabhängigen Sterco-Basisbreitensteuerung abschaltbar, d. h., wenn der Zustand eintritt, daß der Effekt zu stören beginnt, läßt er sich abstellen. Ein "zuviel" kann beeinflußt werden.

Die Schaltung nach Bild 1 ist so aufgebaut, daß der Effekt der frequenzabhängigen Basisbreite erst nach einiger Zeit des abgespielten Musikstückes einsetzt und in den Pausen abgeschaltet wird. Dabei ist der Einsatz des Effektes nach dem 32fachen, 64fachen oder 128fachen Überschreiten einer Amplitudenschwelle am Programmierfeld oder Schalter S4 voreinstellbar.

Das Überschreiten der Schwelle kommt

durch das Integrierglied Widerstand R15/Kondensator C16 und der Basis/Emitter-Spannung von Transistor VT1 zustande. Die Zähler D1.1 und D1.2 zählen diese Takte. Sobald am Pin 12, 13 oder 14 H erscheint, werden über R21, VT4, VT6, R3, R4, R12 und R13 die Transistoren VT7 bis VT10 durchgestellt. Die Transistoren VT4 und VT6 verriegeln diesen Zustand. Damit zum Überschreiten der bestimmten Schwelle sowohl der linke als auch der rechte Kanal fähig sind, gibt es die Dioden VD1.

Nachdem der Effekt einsetzt und bis zum Schluß eines Stückes anhalten soll, muß nach dem Ende eines Titels der Zähler D1 rückgesetzt werden. Das geschicht am ersten Teil des Zählers D1.1 durch das Rücksetzen an Pin7 und am zweiten Teil des Zählers D1.2 durch das H-Ausgangssignal selbst. Dadurch, daß nicht beide Zählerteile zugleich rückgesetzt werden, erreicht man unterschiedliche Einsatzpunkte des Effektes.


Über den Spannungsverdoppler C17, VD3 und C18 wird, wenn kein Signal anliegt, der Rückstelleingang Pin 7 durch Transistor VT2 gestellt. Die Zeitschwelle läßt sich mit R7 kontinuierlich einstellen.

Während des Rücksetzzeitpunktes wird über die Transistoren VT3 und VT5 das Flip-Flop VT4/VT6 rückgesetzt. Die Transistoren VT7 bis VT10 beginnen zu sperren.

Voraussetzung für die Funktion der Endstusen sind Spannungspegel von $U_{\rm eff}=1300\,{\rm mV}\dots 1800\,{\rm mV}$. (Das sind für Geräteübergänge nicht genormte Spannungswerte.) Lautstärkeeinstellungen, Balanceeinstellung und Höhen- und Tiesenbeeinflussung müssen deshalb vor dem Schaltungseingang erfolgen. Deshalb ist es solgerichtig, vor den Eingang der Schaltung eine Emitterschaltung zu setzen.

Es bleibt nach dem Abgleich der digitalen Schwellen R15 und R17 der Abgleich der Widerstände R25 und R26, die natürlich auf gleiche Widerstandswerte gebracht werden. Das ist ein Abgleich nach Gehör. Der Aus/Ein-Schalter S1 wurde aus [1] übernommen. Die Schalter S2, S3 und S4 können an der Frontplatte bedient oder in Form dreier Programmierfelder angebracht werden. Der Schalter S4 ist auf der Leiterplatte (Bilder 2 und 3) als Programmierfeld angeordnet. Die Schalter S2 und S4 müssen auf jeden Fall verdrahtet werden. Schalter S3 muß nicht extra vorgesehen sein. Die Maße der Leiterplatte betragen $175 \,\mathrm{mm} \times 70 \,\mathrm{mm}$.

Wenn jemand statt doppelt kupferkaschiertem Leiterplattenmaterials einfachkaschiertes verwendet, so sind die Verbindungen in Bild 3 durch angelötete zu ersetzen.

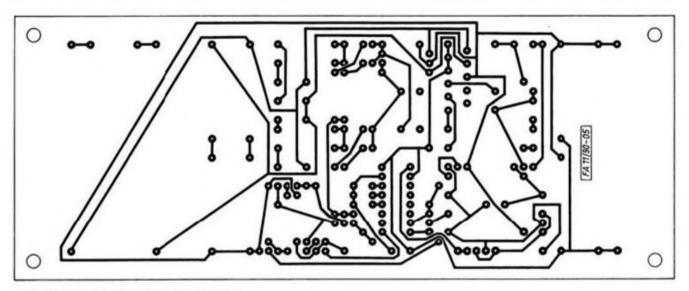


Bild 2: Leitungsführung der Leiterseite des Gerates

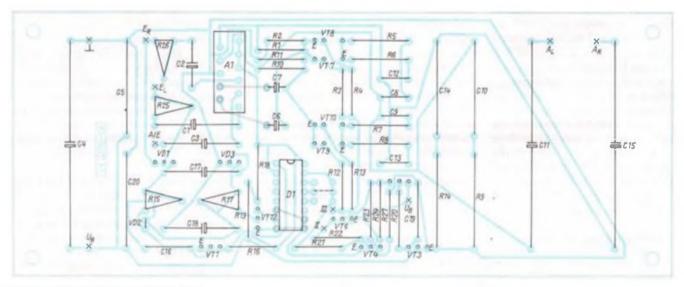


Bild 3: Bestückungsplan des Effektgerates

Zur Beachtung:

Die Leitungsführung der Bestückungsseite wurde aus Platzgrunden nicht extra abgebildet, da nur wonige Leiterzüge vorhanden sind. Diese Positionen sind grau abgebildet und müssen bei Verwendung einseitiger Platinen als Drahtbrücken eingelötet werden.

Soundeffekte vom Chip

Ein interessanter Schaltkreis, der für Spielautomaten entwickelt wurde, ist der HT 88. Mit ihm kann man acht verschiedene Geräuschessekte erzeugen, die sich durch Veränderung der Frequenz mittels R₁ noch variieren lassen.

Die Palette der einzelnen Sounds geht

salleiterplatte verwenden kann. Die Eingänge A, B und C sind Testeingänge. vom Vogelgezwitscher über Laserkano-Schaltet man Eingang C auf Masse, ernung mittels eines zweiten Potentiometers einstellbar zu gestalten (etwa 50 k Ω). überschreiten. Viel Spaß mit diesem universell einsetz-

hält man einen Rechteckgenerator mit großem Frequenzbereich, der sehr universell einsetzbar ist. Die am Kollektor anliegende Frequenz hat etwa die Größe Versorgungsspannung. Soll der Soundchip als Prüfgenerator eingesetzt werden, ist es ratsam, die Ausgangsspan-

Die Versorgungsspannung darf 5 V nicht

nen bis hin zu verschiedenen Sirenenty-

Der Blick auf den Stromlaufplan verrät

einfachsten Aufbau, so daß man auf eine

Leiterplatte verzichten und eine Univer-

pen und Signalgeräuschen.

baren Schaltkreis.

J. Wernicke

Literatur

[1] Jahn, H.: Doppel-NF-Leistungsverstarker-Schaltkreis A 2000 V (\$1)/A 2000 V (\$1). Applikationsschaltungen, FUNKAMATEUR 38 (1989), H. II

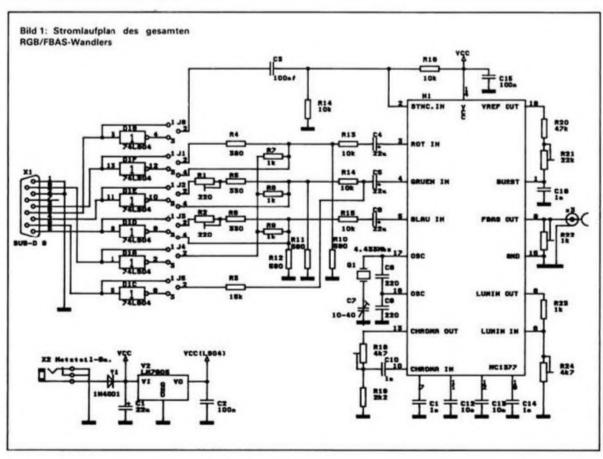
RGB/FBAS-Wandler

Dipl.-Phys. A. BOGATZ

Die hier vorgestellte Baugruppe ist zwar speziell für Computerfreaks bestimmt, läßt sich aber mit kleinen Änderungen auch als komfortabler Video-Überspielverstärker verwenden. Dann ist es sogar möglich, die Farbtöne individuell einzustellen.

Die ersten Schritte eines Computeranwenders werden aus Kostengründen in der Regel vom Einsatz eines einfachen Monochrom-Monitors begleitet. Dabei liefert häufig der eingesetzte Computer bereits Signale zum Anschluß eines RGB-Monitors. Es liegt also nahe, z. B. ein schon vorhandenes Farbfernsehgerät mindestens hin und wieder (falls es der Familienfrieden erlaubt) als Datensichtgerät zu "miß"brauchen. Attraktiv ist dies in jedem Fall für graphische Anwendungen oder aber auch nur zum entspannenden Spielchen.

Verfügen moderne Farbfernsehempfänger über eine SCART-Buchse, so ist die Zuführung der RGB-Signale und des Synchronsignals kein großes Problem (jedenfalls nicht, falls es sich um eine vollständig beschaltete SCART-Buchse handelt). Will man jedoch z. B. selbst erstellte Farbgraphiken mit dem Videorecorder aufzeichnen oder steht nur ein Farbfernsehempfänger mit FBAS-Eingang zur Verfügung, so


ist etwas mehr schaltungstechnischer Aufwand vonnöten. Außerdem ist zu beachten, daß allein aus der Bezeichnung "RGB"-Ausgang eines Computers noch nicht auf die Eigenschaften dieser Signale rückgeschlossen werden kann. In der Regel handelt es sich dabei um TTL-Signale, also digitale Schaltspannungen, mit denen entsprechend 3 Bit 8 Farbzustände realisiert werden können. Häufig findet man zusätzlich noch ein Intensitätssignal 1. wodurch mit den Signalen RGBI 16 Farbzustände erzeugt werden können. Dies ist zum Beispiel der Fall bei den CGA-Karten des IBM-PC/XT/AT. Die dabei möglichen Farben sind in folgender Tabelle angege-

Farbe	1	R	G	B
Schwarz	0	0	0	0
Blau	0	0	0	1
Grün	0	0	1	0
Gelb	0	0	1	1
Rot	0	1	0	0

Violett	0	1	0	1
Braun	0	1	1	0
Weiß	0	1	1	1
Grau	1	0	0	0
Hellblau	1	0	0	1
Hellgrün	1	0	1	0
Hellgelb	1	0	1	1
Hellrot	1	1	0	0
Hellviolett	1	1	0	ŀ
Hellbraun	1	1	1	0
Hellweiß	1	1	1	1

Demgegenüber gibt es Computer, die unter der Bezeichnung RGB jeweils eine Analogspannung im Bereich bis zu maximal 0,7 V oder maximal 2 V abgeben. Ein typischer Vertreter dieser Klasse ist z. B. der Atari ST.

Weiterhin ist zu beachten, daß die Polarität der beiden Austast- und Synchronsignale H (Horizontalsynchronpuls) und V (Vertikalsynchronouls) ebenfalls nicht einheitlich vorkommt. Hier können beide Laktiv oder H-aktiv sein. Will man nun einen universellen RGB/FBAS-Wandler ausbauen, so sind all diese Gegebenheiten zu berücksichtigen. Mit Hilfe des RGB/ FBAS-Wandlers muß aus den Signalen R, G, B, I, H und V ein normgerechtes PAL-Farbsignalgemisch erzeugt werden. Dieses Farbsignalgemisch besteht aus Farb-, Bild-, Austast- und Synchronsignal, woraus sich der Name FBAS-Signal ableitet. Die deutsche Fernsehnorm sieht dabei vor, daß eine Bildzeile eine Länge von 64µs hat, wovon 52 us auf den Bildinhalt und 12 us auf

die Austastlücke fallen. Innerhalb dieser Austastlücke werden der Horizontalsynchronimpuls und ein Kennimpuls (Burst) aufmoduliert. Dieser Burst kennzeichnet den Farbträger als PAL-Farbsignalgemisch und wird vom PAL-Demodulator im Fernsehgerät ausgewertet. Aus den drei Farbsignalanteilen R, G und B müssen das Helligkeitssignal (eigentlich übertragener Bildinhalt wegen der Kompatibilität zum Schwarz/Weiß-Empfänger) und zwei Farb-

differenzsignale gebildet werden. Diese Farbdifferenzsignale werden dann durch Phasenmodulation der Farbhilfsträgerfrequenz von 4,433619MHz übertragen, die dem Helligkeitssignal überlagert ist. Die Farbdifferenzsignale werden dabei in jeder Zeile abwechselnd übertragen. Soweit der kurze Ausflug in die Theorie.

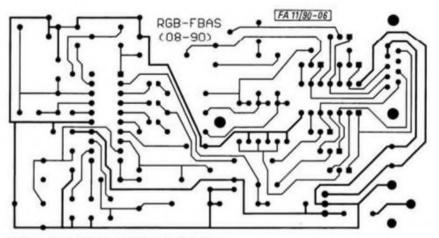


Bild 2: Leitungsführung der Platine des Wandlers

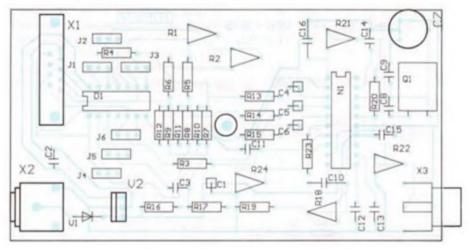
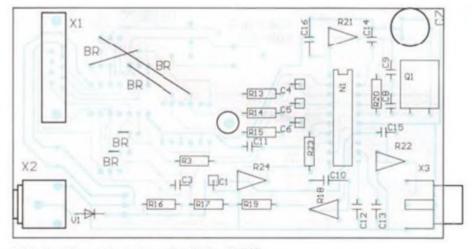
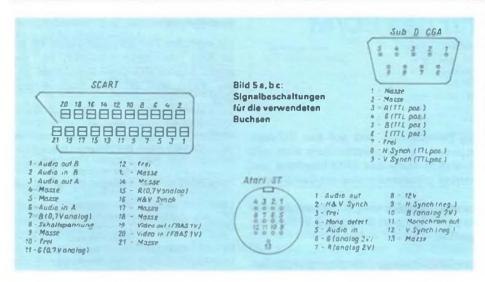


Bild 3: Bestückungsplan der Leiterplatte




Bild 4: Bestückungsplan der Leiterplatte für den Atari ST

Für die Realisierung der eben beschriebenen Aufgaben steht der spezielle Schaltkreis MC 1377 zur Verfügung, der nur eine geringe Außenbeschaltung benötigt.

Bild 2 zeigt die erprobte Schaltung des RGB/FBAS-Wandlers. Um allen Eventualitäten auch noch so exotischer Computer Rechnung zu tragen, werden die Signale R, G, B, I, H und V über den Sub-D9-Stecker XI sowohl direkt, als auch über die Inverter D1A bis D1F an die Steckbrücken J1 bis J6 herangeführt. Für die Signale H (J6), V (J5) und I (J4) kann dem MC 1377 somit entweder das direkte oder das invertierte Signal zugeführt werden. Die Signale R (J1), G (J2) und B (J3) können direkt oder invertiert zum Additionsnetzwerk R4, R7 bzw. R1, R5, R8 und R2, R6, R9 gelangen. Mit diesem Additionsnetzwerk wird den RGB-Signalen das Intensitätssignal I zugemischt. Gleichzeitig erfolgt eine Spannungsteilung dieser TTL-Signale auf einen Pegel von etwa maximal 2 V. Darüber hinaus besteht an den Brücken J1 bis J3 die Möglichkeit, das Additions- und Spannungsteilernetzwerk zu umgehen, wie es für Analog-RGB-Signale mit 2-V-Pegel nötig ist. Die Vorwiderstände R13, R14 und R15 schützen die Eingänge der IS MC 1377 vor Übersteuerung. Dic Quarzfrequenz von 4,433619 MHz kann mit Hilfe des Trimmers C7 auf ihren genauen Wert abgeglichen werden. Mit Hilfe des Einstellers R24 läßt sich die Bildhelligkeit einstellen, und der Einsteller R18 dient zum Abgleich des Farbkontrastes. Mit Hilfe des Einstellers R21 kann die zeitliche Lage des Burst-Impulses zum Synchronpuls eingestellt werden. R22 erlaubt die Variation der Amplitude des FBAS-Ausgangssignals, das an der Cinch-Buchse X3 zur Verfügung steht.

Die Spannungsversorgung der Baugruppe erfolgt über die Klinkenbuchse X2 z.B. über ein 12-V-Steckernetzteil. Dabei ist die Diode V1 als Verpolungsschutz eingesetzt worden. Der Festspannungsregler V2 stellt die Versorgungsspannung für die TTL-IS D1 bereit.

Bild 3 zeigt die Leiterplatte und Bild 4 den Bestückungsplan für die voll ausgebaute Schaltung. In Bild 5 ist demgegenüber die abgerüstete Bestückungsvariante für Atari ST und gleichartige Computer dargestellt. Hierbei entfällt die Bestückung der IS D1 und des Addiernetzwerkes. Ebenso entfällt in diesem Fall der Festspannungsregler V2. Bild 6 zeigt die Anschlußbelegung einer SCART-Buchse, die Anschlußbelegung der Atari-ST-Monitorbuchse und des CGA-Sub D9-Steckers. Die Anschlußbelegung der Sub D9-Buchse X1 stimmt mit der Anschlußbelegung der CGA-Buchse überein. Nach dem sorgfältigen Aufbau der Platine bringt man zunächst alle Einsteller in Mittelstellung. Nachdem der Computer und das Fernsehgerät mit den entsprechenden Buchsen verbunden sind.

in ein Plasthalbschalengehäuse Typ SD 10 paßt. Dieses Softline-Gehäuse hat die Außenmaße von 123 mm × 29 mm × 70 mm. Die gehohtte Leiterplatte kann zum Preis von 10 DM über die untenstehende Adresse schriftlich hestellt werden. Darüber himus können das Fertiggerät zum Preis von 109 DM oder der komplette Bausatz einschließlich Gehäuse und Plæine zum Preis von 79 DM schriftlich angesordert werden. Ein passendes Steckernetzteil dazu kostet 14,90 DM. Der Versand ersolgt per Nachnahme zuzüglich Versandkosten.

Bezugamöglichkeit: ABCOM electronic, Dipl.-Phys. Andreas Bogatz, Würzburger Str. 12a, Leipzig O – 7031

kann der Platine die Betriebsspannung zugeführt werden. Für den Abgleich der Schaltung ist es nun zweckmäßig, ein Farbbalken-Testbild mit Hilfe des Computers zu erzeugen. Auf einfache Weise läßt sich dies mit Hilfe einer beliebigen Hochsprache wie etwa BASIC, Turbo-Pascal, Co. ä. erzeugen. Jeder sollte dazu die ihm geläufige Programmiersprache benutzen oder aber diese Aufgabe als einfache Programmierübung verwenden.

Anhand des Computerhandbuches oder durch Oszillographieren werden die Polarität der RGB- bzw. HV-Signale bestimmt und die Steckbrücken J1 bis J6 entsprechend eingestellt. Für die beiden Fälle Atari ST und IBM-XT mit CGA-Karte sind folgende Brücken notwendig:

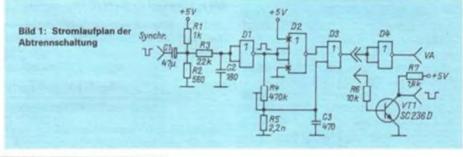
Atari ST:	J1.1-J1.4	J2.1-J2.4	J3.1-J3.4
	J4 entfällt	J5.1-J5.2	J6.1-J6.2
CGA:	J1.1-J1.2	J2.1-J2.2	J3.1 - J3.2
	14.1 - 14.2	15 3 - 15 2	16 3 - 16 2

Ist also das Testprogramm gestartet, wird mit Hilfe eines Abgleichwerkzeuges (also möglichst kein Schraubendreher) C7 solange betätigt, bis das Bild in Farbe erscheint. Kann dies nicht erreicht werden oder stimmt die erzeugte Farbe der Testbildstreifen nicht mit der gewünschten Farbe überein, so ist dies auf eine falsche zeitliche Lage der Burst-Impulse zurückzuführen. Die Lage des Rurst läßt sich mit Hilfe des Einstellers R21 entsprechend korrigieren. Die Einsteller R1 und R2 verschieben die Grund- bzw. Mischfarben gegeneinander. Falls notwendig, kann man mit Hilfe der Einsteller R24 und R18 die Helligkeit bzw. die Farbsättigung des Bildes im Vergleich zum normalen Fernsehbild (gleichbleibende Reglerstellung am Fernsehempfänger) angleichen. Sollte keine Synchronisation des Bildes oder eine Übersteuerung vorliegen, so kann die Amplitude des Ausgangssignals an X3 mit Hilfe von R22 korrigiert werden. Ist die Einstellung zur Zufriedenheit geglückt, so sollte ein Feinabgleich der Farbhilfsträgerfrequenz erfolgen. Dabei C7 so einstellen, daß sich zwischen den Farbbalken saubere Farbübergänge ergeben. Die Leiterplatte wurde in ihrer Größe so bemessen, daß sie

Literatur

- [1] M. Gerdes: PC-Bausteine, C t (1988), H. 10, S. 212
- [2] V. Gosch: A. Burgwitz: Farbe ins Spiel, C't (1987), H 6, S, 68

Abgetrennter VA-Impuls


Für meßtechnische Zwecke kann aus den Synchron-Impulsen der Vertikalaustastimpuls herausgelöst werden. Bild 1 zeigt den Stromlaufplan.

Die Signale können sowohl vom Bildmustergenerator als auch vom Fernsehempfänger bereitgestellt werden. Das kann z. B. für Messungen der Bildwechsel-Frequenz als auch für Zählungen durch digitale Schaltungen für Bild- oder Teilbildgeneratoren von Bedeutung sein, z. B. der Anzeigedauer einer zusätzlichen Einblendung.

Die VK-Austastimpuls-Dauer wird bei optischer Kontrolle mit einem Oszilloskop durch Verschieben der Rückslanke am Wi-

derstand R4 auf 1,2 ms Dauer eingestellt. Der Einsatzpunkt des VK-Austastimpulses wird durch R3/C2 gesetzt. C1 trennt den niederohmigen Eingangsspannungsteiler gleichspannungsmäßig vom Eingang. Am Ausgang von Gatter D1 liegt der zeitlich versetzte, negierte Eingangsimpuls, R4 und C3 integrieren den Impuls. D2 und D3 lassen die Vorderflanke passieren. Der Austastimpuls wird durch Gatter D4 oder den Transistor VT geformt. Als CMOS-Schaltkreis kam der 4001 zum Einsatz. Für C2 und C3 werden Polystyrol-Kondensatoren verwendet. Die Abmessungen der Leiterplatte betragen 42,5 mm \times 37 mm.

B. Krauspe

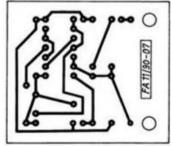
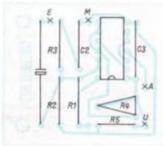



Bild 2: Leitungsführung der Platine

Bild 3: Bestückungsplan der Platine

MIDI-Schnittstelle für den PC/M

Dr.-Ing. A. MUGLER - Y27NN

Elektronische Musikinstrumente haben im Heimbereich und auf den Bühnen einen festen Platz eingenommen. In den letzten Jahren verbreitete sich mit der Computertechnik in den gleichen Bereichen auch das MIDI-Interface zur Kopplung von unterschiedlichsten Instrumenten miteinander und mit Computern unterschiedlichster Bauart.

Hiermit soll nun auch für den PC/M ein solches Interface vorgestellt werden. Es werden die erforderliche Hardware und ein paar Tips zum Einsteigen in die Programmierung der MIDI-Schnittsstelle vorgestellt.

Hardware

Das PC/M-MIDI-Interface besteht aus den für derartige Schnittstellen üblichen drei Teilen (Bild 1):

- MIDI-IN

- der Eingang für MIDI-Informationen in den PC/M

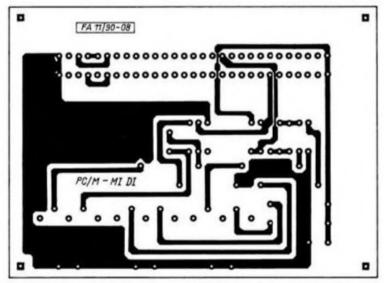
- MIDI-THRU - gibt die unveränderten MIDI-Informationen von MIDI-IN unmittelbar weiter

- MIDI-OUT - der

Ausgang für MIDI-Informationen vom PC/M

Entsprechend den üblichen Forderungen ist der Eingang potentialgetrennt ausgeführt (A1). Die Daten werden vom Ausgang des Optokopplers unmittelbar an den Datencingang der SIO-Kanal B im PC/M weitergereicht. Gleichzeitig wird über doppelte Negation das MIDI-IN-Signal am MIDI-THRU-Ausgang wieder zur Verfügung gestellt.

Die MIDI-OUT-Informationen werden unmittelbar durch die SIO-Kanal B über einen Treiber (D1) auf die Buchse X2 geführt. Bei den Steckverbindern X2 bis X4 handelt es sich um Diodenbuchsen für Leiterplattenmontage, die normgerecht beschaltet sind (Bilder 2 und 3). Die Widerstände R1 bis R4 sorgen für die erforderliche Strombegrenzung auf 5 mA.

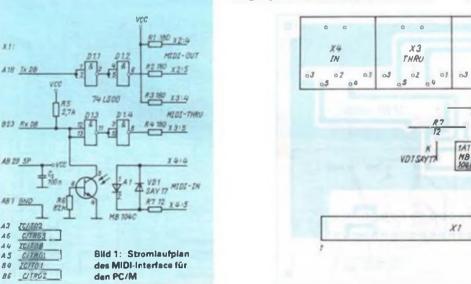

Die Leiterplatte ist einseitig ausgeführt und wird unmittelbar an den USER-Steckverbinder X2 des PC/M angeschlossen. Zu beachten ist die Anschlußbelegung nach FUNKAMATEUR, Hcft 11/1988, S. 535.

Test-Software

Ein einfacher Test der MIDI-Hardware ist mit dem Testprogramm möglich. Im Programm werden SIO-Kanal B und zugehöriger Taktgeber-CTC wie folgt initialisiert:

IC	Adr.	Wert	Bedeutung
DSS-CTC	080H	000H	INT-Vektor
DSS-CTC	081H	005H	Zeitgeber, Vorteiler 16, ohne Interrupt
DSS-CTC	081 H	005H	Zeitkonstante = 5 entspr. 2.5 MHz: 16:5 = 31.25 kHz
D57-S10	08BH	018H	Rücksetzen der SIO
D57-S10	08BH	004H	Anwahl Schreibregister 4
D57-SIO	H680	00CH	Taktinude • 1,2 Stopbits ohne Paritätsbit
D57-S10	08BH	005H	Anwahl Schreibregister 5
D57-S10	08 BH	068H	8 bit je Charakter, Senderfreigabe
D57-S10	08BH	003H	Anwahl Schreibregister 3
D57-SIO	08 BH	0C1H	Emplanger 8 bit je Charakter. Emplanger freigabe

Das abgebildete Programm nutzt die Consol-Schnittstellen des PC/M ab Version 3 (BIOS-Eingänge ab Adrese 0D600H). Für die Versionen 1 und 2 sind die unterstriche-


X2

our

BIId 2: Leiterseite für das PC/M-MIDI-Interlace

Bild 3: Bestückungsplan der Schnittstelle

D' 000

nen Adressen auf BIOS-Eingänge ab Adresse 0DE00H zu ändern.

Nach Ausgabe der Programmüberschrift können von der Tastatur Zeichen eingegeben werden, die über MIDI-OUT gesendet und von MIDI-IN empfangen werden (1:1 Kabel zwischen MIDI-IN und MIDI-OUT). Das empfangene Zeichen wird unkodiert und nach einem Trennzeichen in Hexadezimaldarstellung wieder auf dem Monitor ausgegeben.

Anwender-Software

Für erste praktische Tests mit einem Synthesizer oder einem anderen Instrument kann die im Testprogramm vorhandene Initialisierung sofort verwendet werden. Die exakte Programmierung richtet sich nach dem verwendeten Instrument. Damit lassen sich bereits unmittelbar Register vorwählen oder Tone und Tonfolgen programmieren, die u. U. noch von Hand eingegeben werden. Gleichermaßen ist auf die Art und Weise die Abfrage von internen Registem und von Parametern der einzelnen Stimmen möglich (z. B. beim FB-01 von YAMAHA). Die gelicferten Daten fallen aber dann auch mit 31,25 KBit/s an. Die meisten Bildschirmausgaberoutinen (im Betriebssystem) sind dafür

	0100	CD	73	01	21	A4	01	CD	6F	01	CD	QA_	20	27	20	44	01
Testprogramm	0110	80	CB	47	28	F4	0E	20	0	QC_	Da	03	49	4F	CD	OC.	Da
(ab Adresse 0100H)	0120	Œ	20	CD	90	Po	FS	OF	OF	OF	OF	Ea	OF	Fa	30	FE	30
	0130	38	02	Ca	07	4F	CD	0C	Do	F1	E6	OF	Fa	30	FE	JA	38
	0140	02	C6	07	4F	CD	QC.	Dá	Œ	20	CD	QC_	PA	30	20	CD	00
	0150	Dá	18	30	CD	09	PA	FE	18	ca	FS	4F	CD	90,	Da	FI	CD
	0160	64	01	18	AS	FS	DB	88	CI	37	28	FA	F1	D3	89	C9	46
	0170	79	37	CB	E5	CD	QC,	Da		23	18	F4	3E	00	D3	80	3£
	0180	09	D3	81	3E	03	03	81	3E	1.0	D 3	AB	3E	04	DS	83	36
	0190	oc	D3	83	3€	05	D3	83	3E	68	23	83	3E	03	23	81	36
	0190	CI	D3	81	C9	OC	50	43	25	40	20	40	49	44	49	20	54
	0130	45	33	54	OB	OA	00										

zu langsam. Folglich ist es erforderlich, die anfallenden Daten unmittelbar im Computer abzuspeichern und zu verarbeiten.

Die Programmierung der MIDI-Schnittstellen sollte aufgrund der zeitkritischen Programmierung im Normalfall in der Programmiersprache C, in Assembler oder bedingt auch in PASCAL erfolgen. BASIC-Programme sind sicherlich für erste einfachste Tests auch geeignet.

Wendet man die Programmierung TURBO-PASCAL an, läßt sich durch Einbindung von Assemblerteilen der Komfort von TURBO-PASCAL mit der optimalen Arbeitsgeschwindigkeit von Assembler kombinieren.

Leiterplatten

Leiterplatten sowie weitere Informationen und Programme können über folgende Adresse bestellt werden:

Dr. Albrecht Mugler Postfach 24 Oberlungwitz O – 9273

Literatur

- [1] FM-Soundgenerator FB-01, Bedienungsanleitung, YAMAHA - Japan, 1987
- [2] Programmierbarer polyphoner Synthesizer POLY-800. KORG - Tokyo, 1984
- [3] Schulze, H.-J.: Moderne Musikelektronik, Militärverlag, Berlin 1989

Rechtecksignalgenerator in Prüfstiftform

M. EBERT

Zur Inbetriebnahme oder Reparatur von Digitalschaltungen oder zur Testung von Schaltkreisen erweist sich ein kleiner Rechteckgenerator in Größe eines Prüfstiftes als gut handhabbares Hilfsmittel.

Ein großer Versorgungsspannungsbereich (5 V bis 15 V) erlaubt den Einsatz in TTL-, CMOS- als auch anderen Schaltungen, die in diesem Spanungsbereich arbeiten.

Der Prüfstift erlaubt die Betriebsarten "kontinuierlich", "Einzelimpuls" sowie eine statische Pegelabgabe. Der abgegebene Pegel wird durch eine LED angezeigt (LED leuchtet bei H-Pegel). Die Betriebsspannung läßt sich über eine 3,5-mm-Klinkenbuchse zuführen und direkt von der zu prüfenden Schaltung abgreifen (z. B. mittels Krokodilklemmen).

In Betriebsart "kontinuierlich" (S2 geschlossen) kann man mittels S1.1 bis S1.4 eine Frequenz wählen. Bei geschlossenem Schalter S1.1 beträgt die Frequenz 1 Hz. Mit dem jeweils nächsten Schalter kann die Frequenz um den Faktor 10 vergrößert werden.

Die Betriebsart "Impuls" ist eingeschaltet, wenn S2 geöffnet ist. Betätigen von S3 bewirkt die Abgabe eines positiven Einzelimpulses entsprechend der über S1.1 bis S1.4 eingestellten Frequenz.

Ein statischer L-Pegel liegt an, wenn ein beliebiger Schalter von S1 eingeschaltet und S2 ausgeschaltet ist. Positiver Pegel wird aktiviert, wenn man S1 und S2 ausschaltet und S3 betätigt.

Schaltungsbeschreibung

Betriebsart "kontinuierlich"

Wenn der Betriebsartenschalter S2 (Reset inaktiv) und der Einschalter von S2 geschlossen sind, so arbeitet A1 als astabiler Multivibrator mit sehr kurzer L-Zeit. Die Frequenz kann mit der Formel

$$f \approx \frac{2}{r_1 \cdot C_1} \tag{1}$$

abgeschätzt werden. Das unsymmetrische Rechtecksignal wird dem Takteingang D1 zugeführt. D1 arbeitet als 2:1-Teiler. Da D1 nur bei Pegelwechsel von L nach H umschaltet, entsteht am Ausgang ein symmetrisches Rechtecksignal (Bild 2). Die beiden Schalttransistoren VT1 und VT2 werden im Gegentakt angesteuert. Zur visuellen Kontrolle des Taktsignals dient die LED VD2. Damit der Strom durch die LED bei verschiedenen Betriebsspannungen nahezu konstant bleibt, wurde VT3 als Konstantstromquelle eingeschaltet.

Impulsbetrieb

Ist der Betriebsartwahlschalter S2 ausgeschaltet und ein Schalter von S1 geschlossen, arbeitet A1 im Impulsbetrieb. Bei Betätigung von S3 wird über C3 ein positiver Rücksetzimpuls für D1 gebildet. Der Widerstand R7 dient zum Entladen von C3 nach Tastenbetätigung. Der Ausgang Q geht auf H-Pegel, schaltet VTI durch (Ausgang & H) und erlaubt über Eingang R das Einschalten von Al. Der Ausgang von A1 bekommt positives Potential. Das Flip-Flop D1 reagiert jedoch auf diese U H-Flanke nicht, weil R1 zu diesem Zeitpunkt noch keinen L-Pegel erreicht hat. Nach Ablauf der durch R1, C1 bestimmten Zeit schaltet der Ausgang (O) von Al kurzzeitig auf L. Weil Eingang IT zu diesem Zeitpunkt L-Pegel führt, beginnt erneut ein Ladezyklus von C1, und das Ausgangspotential nimmt H-Pegel an.

Mit dieser L/H-Flanke schaltet D1 den Ausgang Q auf positives Potential, wodurch VT2 durchgesteuert wird und der Ausgang L-Pegel erhält. Gleichzeitig geht Ausgang Q auf L, sperrt VT1 und setzt A1

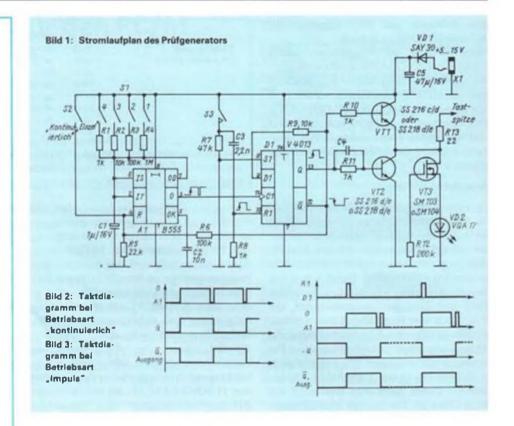
Die Sicherheit hängt am Strom

Längst sind die Zeiten vorbei, in denen die Starterbatterie im Kraftfahrzeug in erster Linie ihrem Namen gerecht wurde, indem sie für problemlosen Start des Motors sorgte, und "nebenbei" einige nützliche Funktionen wie Beleuchtung und Versorgung des Scheibenwischermotors übernahm. Nach und nach ist sie zu einer Art Versorgungszentrum und damit zum Herzen des Fahrzeugs geworden. Funktioniert sie nicht, ist mit einem modernen Kraftfahrzeug nichts mehr anzufangen.

Strom für Sensoren und Stellglieder

Neuerdings sind es vor allem die elektronisch arbeitenden Sensoren und Stellglieder für eine Fülle von automatischen Verrichtungen, die die Batterie zunehmend beanspruchen. Es sind besonders vier Bereiche, in denen fortschreitend Elektronik eingesetzt wird, allen voran die Sicherheit. Aber auch Antrieb, Komfort und Kommunikation stellen ihre Ansprüche.

Keine Information ohne Strom


Nicht nur die Heizungs- und Klimaregelung verbraucht jede Menge Strom. Auch der Bereich Kommunikation fordert ein Stück vom Kuchen. Hier ist natürlich der Rundfunkempfänger zu nennen, der Bordcomputer, diverse neue Anzeigetechniken für Geschwindigkeit, Drehzahl. Kraftstoffverbrauch, Temperatur und Uhrzeit sowie die elektronische Sprachausgabe. Hinzu kommen neuerdings auch die Leit- und Informationssysteme für Autofahrer.

Da müssen sich die Batteriehersteller schon einiges einfallen lassen, um allen Ansprüchen gerecht zu werden. Die Lösung der mit dem allfälligen Stromverbrauch zusammenhängenden Probleme liegt dabei weniger in einer nackten Erhöhung der Batterie-Kapazitäten, sondern mehr in einer fahrzeugtypbezogenen speziellen Ausrichtung der Batterie.

Anwendungstechnik ist gefragt

Die Anwendungstechniker des Batterieherstellers Varta führen zu diesem Zweck Untersuchungen an zahlreichen Fahrzeugtypen durch. In solchen Untersuchungen werden die spezifischen Bedürfnisse der Autotypen an elektrischer Energie unter möglichst allen Betriebsbedingungen ermittelt, um eine für jedes Fahrzeug optimale Batterie zu schaffen.

Varia-Presseabteilung

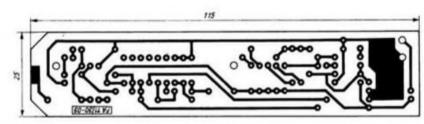


Bild 5: Bestückungsplan der Leiterplatte des Prüfstifts

zurück. Damit ist der stabile Ausgangszustand wiederhergestellt.

Aufbau

Die Schaltung wird auf einer Leiterplatte 25 mm × 115 mm aufgebaut. Als S1.1 bis S1.4 sowie S2 kommen Miniaturschiebeschalter (DIL-Schalter) zum Einsatz. Für S3 kann ein Taster oder ebenfalls ein D1L-Schalter mit abgewinkelten Anschlußbeinen verwendet werden.

X1 ist eine Klinkenbuchse für Leiterplattenmontage. Die Leiterplatte wurde in ein Tastkopfgehäuse 130 mm × 40 mm × 20 mm, wie es von Völkner-Electronic (komplett mit Tastspitze) überall angeboten wird, eingebaut. Allerdings bleibt in diesem Standardgehäuse viel freier Raum. Eine optimale Gehäusegestaltung kann

durch Selbstbau aus Leiterplattenmaterial erreicht werden. Dies ist zur Zeit immer noch die schnellste Methode, zu einem Gehäuse nach Wunsch zu kommen. Außerdem können so vielleicht endlich einmal die in der Abfallkiste liegenden Leiterplattenreste verarbeitet werden. An Stelle der Tastspitze ist es möglich, eine Telefonbuchse (Einfachbuchse) einzubauen. Als Tastspitze kann eine größere Nähnadel oder Kanüle Verwendung finden. Diese werden anstatt der Leitung im Bananenstecker angeklemmt.

Literator

- Rheinländer, H.: Mikroelektronik Datenbuch CMOS - Logikschaltkreise, MV der DDR, Berlin 1989
- [2] Schlenzig, K.: Bläsing, K.-H.: Timerschaltkreise B 555 D. Amateurreihe electronica, Band 213/214, MV der DDR, Berlin 1984

50-MHz/28-MHz-Sende/ Empfangs-Umsetzer

S. HENSCHEL - Y22QN

Ab 1. April dieses Jahres gibt es in der Bundesrepublik befristete und auf den Bereich 50,080 MHz bis 50,400 MHz sowie 25 W ERP beschränkte Genehmigungen. Zu Redaktionsschluß deutete sich an, daß es mit der Übernahme bundesdeutscher Regelungen in den Amateurfunk der ehemaligen DDR hier weitere solche Genehmigungen geben wird. Die zum entsprechenden Zeitpunkt geltenden gesetzlichen Bestimmungen sind unbedingt zu beachten!

Das 50-MHz-Band ist sehr interessant, da es zwischen KW und UKW liegt und einige Ausbreitungsbesonderheiten aufweist. Sie treten in diesem Band wesentlich häufiger auf als auf 144 MHz, was Überreichweiten in den Fernsehkanälen 2 bis 4 beweisen. So ist es in den Sommermonaten nicht allzu schwer, ganz Europa zu arbeiten.

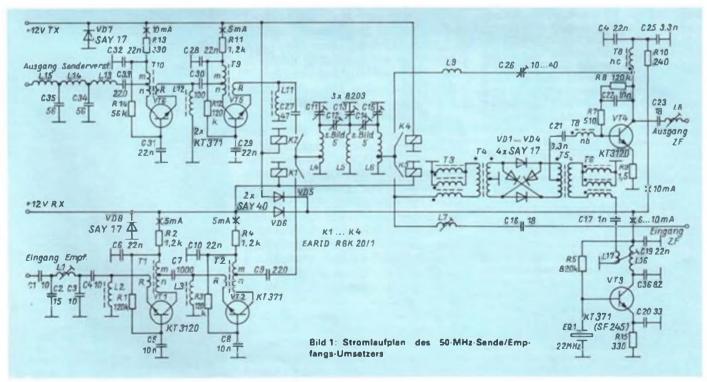
Das in [1] vorgestellte Konzept eines 144-MHz/28-MHz-Sende/Empfangs-Umsetzers ist infolge seiner Breitbandigkeit sehr gut für eine einfache Lösung geeignet. Im Prinzip brauchen nur die Selektionsmittel ausgetauscht zu werden.

Konzeptionelle Besonderheiten

Da dieses Band (50,0 bis 52,0 MHz) in Europa z. Z. noch mit Fernsehsendern (K2A-Bildträger 49,75 MHz) belegt ist, sollte man vor dem Mischer die HF-Bandbreite so weit verringern, daß nur das gewünschte Bandsegment durchgelassen wird. Mein Muster habe ich für den europäischen Ba-

kenbereich von 50.0 bis 50.5 MHz ausgelegt. Dadurch ist die Gefahr der Bildung unerwünschter Mischprodukte gering. Mit den in [1] verwendeten Wendeltopskreisfiltern lassen sich -3-dB-Bandbreiten von etwa 300 kHz bis 2 MHz im 50-MHz-Band einstellen. Bei einer -3-dB-Bandbreite von 500 kHz beträgt die -60-dB-Bandbreite etwa 3,5 MHz. Auf der Sendeseite ist die Erzeugung eines oberwellen- und nebenwellenarmen Signals Voraussetzung für die Durchführbarkeit von Amateurfunk in diesem Band, denn es ist zu bedenken, daß die 1. Oberwelle (100 bis 104 MHz) genau ins UKW-Rundfunkband fällt. Bei einer um 60 dB gedämpften Oberwelle, wie das Gesetz es erfordert, hört der argwöhnische Nachbar immer noch viel zu viel, und das OSO-Fahren wird sich auf Diskussionen mit den Nachbarn beschränken. Deshalb ist das Wendeltopskreisfilter auch im Sendezweig unmittelbar nach dem Anpaßverstärker angeordnet, um dem Verstärker-

Empfangsumsetzer		
Durchgangsventärkung		22 dB
Rauschmaß		<2 KT.
Selektion	- 3dB	SOO kHz
	-60 dB	3.5 MHz
Intercept Point		-2dBm
ZF-Festigkeit		60 dB
Spickelselektion		43 dB
Sendenmsetzer		
Eingangespannung		≤ 250 mV
Ausgangsleistung		≥5mW
Nebenwellendampfung		
für alle Mischprodukte		>65 dB.


zweig nur das Nutzsignal zuzuführen. Ein Tiefpaßfilter dämpft die bei der Verstärkung entstehenden Oberwellen um etwa 30 dB. Dem nachfolgenden Leistungsverstärker ist ebenfalls ein Tiefpaßfilter nachzuschalten.

Außerdem sollten alle Antennenleitungen und Antennen so weit als möglich von Rundfunkantennen getrennt sein. Dabei muß man auch Verkopplungsmöglichkeiten über das Lichtnetz beachten.

Stromlaufplan

Der geänderte Stromlaufplan ist aus Bild 1 ersichtlich, es sollen jedoch nur die Änderungen gegenüber der Schaltung nach [1] genannt werden. Eine solche Änderung ist der nun auf der Platine befindliche Quarzoszillator. Die Verstärkerstufe für das Oszillatorsignal (VT3) wurde entsprechend geändert. Alle Änderungen sind in den Bildern 1 und 6 berücksichtigt.

Im Empfängerzweig habe ich die untere Grenzfrequenz des Breitbandverstärkers durch Neudimensionierung auf 5 MHz ge-

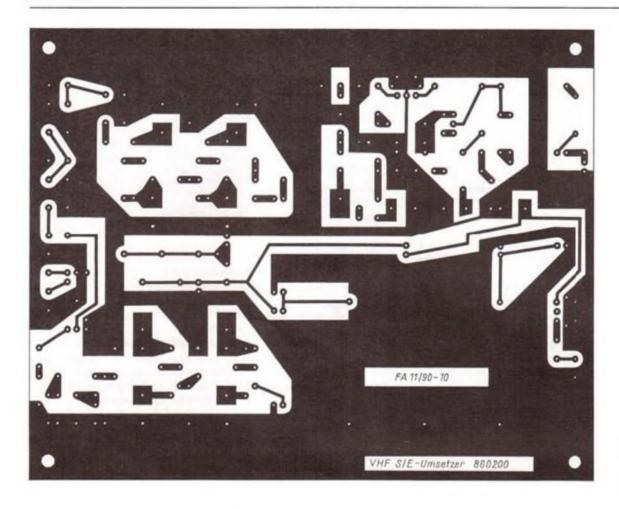


Bild 2: Leitungsführung der Platine 860200 (s. auch [1]) für den 50-MHz-Sende/Empfangs-Umsetzer

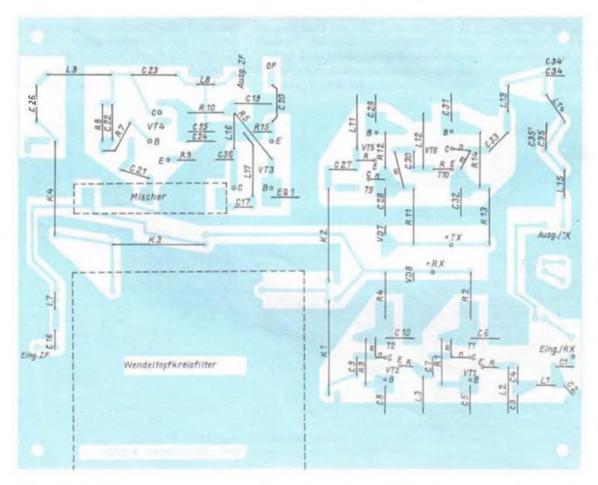
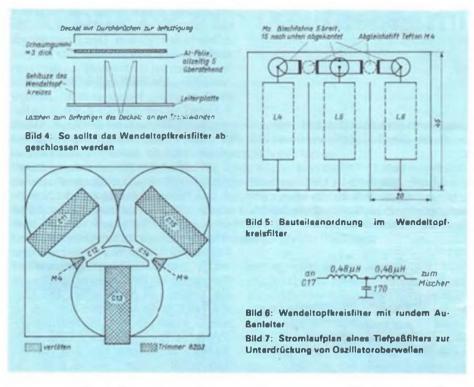



Bild 3: Bestückungsplan der Leiterplatte des 50-MHz-Sende/ Emplangs-Umsetzers

senkt, womit sich der Baustein auch für andere KW-Bänder eignet. Der Eingangskreis stellt einen Kompromiß zwischen geringer Durchgangsdämpfung und hoher Selektion dar. Eine -3-dB-Bandbreite von 3 MHz ergibt zunächst für die benachbarten Fernsehkanäle schon genügend Selektion, so daß evtl. starke Fernsehsender den Verstärker nicht "überlasten".

Spulendaten 0,9 aH. 12 Wdg., 0,5-mm Cul., auf Spulenkorper T1, Kern Mf 321 12.3 5-µ11-HF-Droseln 14.6 26 Wdg.; I-mm-CuL; 30 mm lang; auf 10-mm-Dorn gewickelt; Anzaplung 0.5 Wilg von Masse 26 Wdg.; 1-mm-CuL; 30 mm lang; auf LS 10 mm-Dorn gewickelt; gegensinnig zu La und La 1,67 H 12 Wdg.; 0,2 mm-CuL; auf 17 8 Miniaturfilterspulenkorper; Kern Mf 330 1.11, 12 1-µH-HF-Drosseln 1.13 6,5 Wdg.; 0,5-mm-CuL; auf Spulenkomer T1 1.14 9,5 Wdg.; 0,5-num-CuL; auf Spulenkorper T 1 2.15 5,5 Wdg.; 0,5-mm-CuL; auf Spulenkörper T1 1.16 O.o. H.H. 10 Wdg; O. Smn+CuL; suf Spulenkorper T1. Kem M1330 L17 2 Wdg.; 0,3-nim-Schaltdrabt, auf L16 T1,2,9,10 1 Wdg. (R) + 4 Wdg. (m) + 11 Wdg. (n); 0,14-mm-CuL auf kleinen Doppellochkern aus M1330 T3,6 3 × Wdg.; 0,14-mm-CuL; auf kleinen Doppellochkern aus Mf 310 T4.5 3 × 2 Wdg., 0,14-mm-CuL auf kleinen Doppellochkern aus Mf 330 KT. 2 Wdg. (nb) + 10 Wdg (nz); 0,14-mm · CuL auf kleinen Doppelloch · kernaus Mf 330

Beim Aufbau des Wendeltopfkreisfilters ist selbstverständlich auf eine gute allseitige Schirmung zu achten. Ein Abschluß nach Bild 4 hat sich als günstig erwiesen.

Mechanische Hinweise

Bild 5 zeigt die Draufsicht des Wendeltopfkreisfilters. Die Koppelkondensatoren C12 und C14 sind von der Leiterseite her abstimmbar; diese Anordnung gibt mechanisch mehr Stabilität. Beim Wickeln der Spulen für das Filter beachte man, daß L5 entgegengesetzten Wickelsinn zu L4 und L6 besitzt! Zur Verbesserung der mechanischen Stabilität ist es günstig, in die Spulen L4 bis L6 einen Isolierstreifen aus Polystyrol einzukleben, wobei ein verlustarmer Klebstoff zu verwenden ist (z. B. in Benzol aufgelöste Polystyrolspäne – Vorsicht, Benzol ist sehr giftig!).

Mechanisch stabiler und einfacher läßt sich das Wendeltopskreisfilter nach Bild 6 aus Kupferrohr oder verkupfertem Messingrohr herstellen. Es finden Rohre von 30 mm × 1 mm × 50 mm Verwendung. Sie bekommen für C11, C13 und C15 entsprechende Bohrungen und für C12 und C14 einen 8 mm × 10 mm großen Ausschnitt. Die drei Rohre lötet man gemäß Bild 4 zusammen. An den bezeichneten Stellen wird 8 mm von der Oberkante M4-Gewinde eingeschnitten. Eine eingeschraubte Kunststoffschraube dient als Dielektrikum für die Koppelkondensatoren (s. auch [2]; dieser Beitrag enthält Hinweise zur Wendeltopskreisberechnung). In die vorbereiteten Rohre werden am masseseitigen Ende die Spulen eingelötet. Die Montage der Abgleichtrimmer erfolgt zum Schluß. Achtung, die Ein- und Auskoppelanzapfungen L4 und L6 nicht vergessen!

Die Oberseite der Wendeltopfkreise wird entweder mit einem passenden Deckel oder einer eingesetzten Scheibe abgeschlossen.

Inbetriebnahme und Abgleich sind nach [1] durchzuführen. Beim Oszillatorabgleich kann man evtl. C20 variieren; sein Wert hängt etwas von der Schwingfreudigkeit des Quarzes ab. An C17 sollten mindestens 0,7 V Oszillatoramplitude vorhanden sein, um den Mischer gut durchzusteuern. Die mit dem hier vorgestellten Transverterbaustein erreichten technischen Daten sind als Tabelle dargestellt.

Sollten die Mischprodukte, die sich aus den Oszillatoroberwellen ergeben, stark im UKW-Rundfunkband stören, so ist in Reihe zu C17 ein Tiefpaßfilter nach Bild 7 zu schalten. Die dadurch erreichbare zusätzliche Dämpfung der Nebenwellen beträgt etwa 25 bis 30 dB! Ohne dieses Filter sind die Mischprodukte mehr als 85 dB gegenüber dem Nutzsignal gedämpft.

Literatur

- Henschel, S.: 10-m/2-m-Sende/Empfangs-Umsetzer in moderner Schaltungskonzeption, FUNKAMA-TEUR 37 (1988), H. 6, S. 297
- [2] Henschel, S.: Bandpaßfilter f
 ür das UKW-Rundfunkband, Elektronisches Jahrbuch f
 ür den Funkamateur 1989, MV der DDR, Berlin 1988, S. 200

Aus der Postmappe

"Nur" ein Hobby?

Ich verstehe durchaus, daß im RSV nach Jahrzehnten vormilitärischen Kommandobetriebs der Übergang zu einem Hobby gern hervorgehoben wird. Dieser Begriff hat aber auch Nachteile: Hier in Deutschland-West wurden nicht alle "funksportlichen" Betriebsmittel (gegen bekannte Verpflichtungen) vom Staat vermittelt einschließlich Unterkünften, Strom, Heizung und Freistunden für das Stationspersonal. Je mehr sich die Bundesrepublik füllt, je mehr von Funkamateuren nacheinander mühsam hergerichtete Räumlichkeiten in Altbauten anderen Projekten weichen müssen, um so schwieriger wird es, bei Behörden entsprechende (und andere) Wünsche durchzusetzen. "Wozu brauchen Sie das, für ein Hobby'? Tut uns sehr leid." Anders kann die Antwort lauten, wenn man nutzvolle Zwecke der Betreiber eines Funkdienstes vortragen kann, als der der Amateurfunkdienst ja bei der ITU geführt wird. Das dürfte sich in Deutschland-Ost wohl ähnlich entwikkeln. Das habe ich auch den RSV-Vorsitzenden auf der HAMRADIO vorgetragen.

Noch eine Anmerkung zum Beitrag im Heft 8/90, Seite 408: Keineswegs ist das 50-MHz-Band in der Bundesrepublik allgemein freigegeben. Vielmehr wurden maximal 600 Anträge, d. h. von knapp 1 % der hiesigen Funkamateure angenommen, vorausgesetzt, sie hatten ein Telefon und ihren Standort nicht in der Nähe von Primärbenutzern wie TV-Sendern usw.

A. Måller, DL1FL

Skalenfeintrieb im Eigenbau

Ing. M. BORSTEL - Y24RG

Für ein einfaches Eigenbaufunkgerät greift man noch gern zum Drehkondensator als Abstimmelement. Ohne Feintrieb geht es damit aber kaum. Für versierte Mechaniker hier eine Anregung zum Eigenbau.

Der vorliegende Feintrieb arbeitet nach dem Prinzip des Planetentriebs, d. h., auf dem Umfang einer Achse rollen in einer Buchse, die z. B. einen Drehkondensator antreibt, drei Kugeln. Die Buchse enthält, gleichmäßig am Umfang verteilt, drei Bohrungen zur Aufnahme der Kugeln. Darüber befindet sich ein Käfig, mit dem man den gesamten Feintrieb an der Frontplatte befestigt.

Der Durchmesser der Kugeln, um die die darauf befindlichen Scheiben (T3) laufen, also die Stelle, an der die Scheiben die Kugeln berühren, und der Durchmesser der Achse bestimmen die zu erreichende Untersetzung. Je dünner die Achse und je größer der genutzte Kugelumfang, desto größer die Untersetzung:

$$U = \frac{N}{n} = \frac{2(D+d)}{d}$$

U – Untersetzung; N – Umdrehungen des Abstimmknopfes; n – Umdrehungen Drehkondensatorachse; D – Durchmesser der Kugeln; d – Durchmesser der Achse (dünnste Stelle).

Mit einem Kugeldurchmesser von 6,7 mm und einem Achsendurchmesser von 1,8 mm ergibt sich danach eine Untersetzung von 1:9,4.

Den Zusammenbau des gesamten Feintriebs stellt Bild 1 als Halbschnitt dar. In dieser Gesamtzeichnung sind alle Einzelbauteile beziffert.

Teil 1 (Bild 2) stellt die Achse dar, an der man den Abstimmkopf befestigt. Im Gcgensatz zum Aufbau in [1] habe ich die Führung der Kugeln konkav gestaltet. Das hat den Vorteil, daß es nicht zur Abnutzung der Kanten kommen kann, die durch das Eindrehen der Rille zum Führen der Kugel It. [1] entstehen. Damit ist die Gefahr der Entstehung von Laufungenauigkeiten (z. B. Schlupf, Veranderung des Untersetzungsverhältnisses, Achsenspiel) geringer. Der Idealfall für ein 100 %iges Arbeiten des Feintriebes wäre Formschluß zwischen Achse und Kugel, wozu jedoch äußerste Präzision nötig ist. Um der Abnutzung der Achse entgegenzuwirken. wurde sie gehärtet. Eine weitere Möglichkeit besteht in der Verwendung von harten Werkstoffen. Das setzt jedoch entsprechende Schneidwerkzeuge voraus.

Teil 2 ist die Abdeckscheibe, die den Käfig, der alle weiteren Einzelteile aufnimmt,

verschließt. Am äußeren Umfang dieser Scheibe befindet sich ein Gewinde, wodurch es möglich ist, die Scheihe in den Käfig zu schrauben. Eine weitere Aufgabe

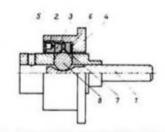


Bild 1: Gesamtzeichnung des Feintriebs, Teile 1 bls 5 s. Bild 2; Teile 6 bis 8 s. Text

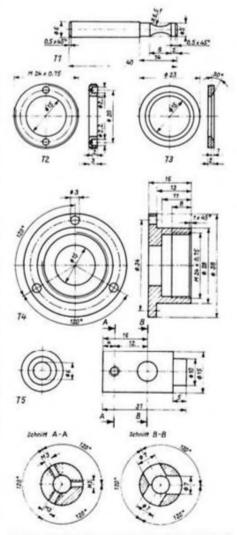


Bild 2: Detailzeichnungen der Einzelteile Teile 1,2, 3 und 5 aus St 38 o. 8.; Teil 4 aus X8 CrNiTi 18.11 o. 8.

der Scheibe besteht darin, eine Korrektur des Anpreßdrucks der Kugeln auf die Achse zu ermöglichen. Den Anpreßdruck muß man sorgfältig einstellen. Er hat gro-Ben Einfluß auf die Genauigkeit der zu erreichenden Untersetzung. Ist der Anpreßdruck zu gering, kommt es im Belastungsfall zum Durchdrehen der Achse (kein Bewegen der Buchse). Ist der Anpreßdruck zu groß, wird der Feintrieb sehr schwergängig, und die kleinste Unebenheit an Kugel oder Achse führt zum unregelmäßigen Gang (Rucken) am Abstimmkopf. Die beiden kleinen Bohrungen in der Scheibe dienen dem Einführen eines Spezialschlüssels, einer Rundzange o. ä. zum Ein- bzw. Herausschrauben der Scheibe.

Teil 3 stellt die Scheibe dar, die zusammen mit Teil 7 (Scheibe) einen Hohlraum zum Einbringen von Fett für ein ruhiges Laufen von Kugeln und Achse bildet. Die Lage von Teil 3, übrigens zweimal benötigt, bestimmt wesentlich das Untersetzungsverhältnis. Je weiter außen am Umfang die Scheiben die Kugeln berühren (auf die Mittelachse bezogen), um so größer die Untersetzung.

Teil 4 ist der Käfig, der alle Einzelteile aufnimmt und zusammenhält. Er besitzt ein eingeschnittenes Gewinde, um die Aufnahme der Abdeckscheibe (Teil 2) zu ermöglichen. Außerdem besitzt der Käfig drei um 120° versetzte Bohrungen, die dazu dienen, den Käfig und somit den gesamten Feintrieb an der Frontplatte zu be-

Teil 5 ist die Buchse, in der die Achse und die Kugeln laufen. Die Buchse besitzt drei gleichmäßig am Umfang verteilte Bohrungen zur Aufnahme der Kugeln. In drei ebenfalls gleichmäßig am Umfang verteilte Gewindebohrungen befinden sich nach dem Zusammenbau drei Schrauben M3, die ihrerseits die Achse, die das nachfolgende Bauteil (z. B. den Drehkondensator) antreibt, fest und lösbar mit der Buchse verbinden.

Von der Scheibe Teil 6 werden 2 Stück benötigt (15 mm Innen- und 21,7 mm Außendurchmesser, 0,25 mm dick). Die Scheibe Teil 7 hat 17 mm Innen- und 22,8 mm Außendurchmesser und ist 1,4 mm dick. Teil 8 (3 Stück) sind Kugeln von 7 mm Durchmesser aus St. 38 o. ä.

Um ein sicheres Arbeiten des Feintriebes zu gewährleisten, muß man ausreichend Fett (großer Zähigkeit) für die Schmierung der rotierenden Teile vorsehen.

Der Zusammenbau der Einzelteile ist unproblematisch und bedarf keiner weiteren Erläuterung. Ein Nachspannen des Antriebs nach einer gewissen Zeit infolge Abnutzung läßt sich mit diesem Funktionsprinzip allerdings nicht vermeiden.

Literatu

[1] Scherreik, G.: Bauanleitung für einen Skalenfeintrieb, FUNKAMATEUR 16 (1967), H. 7, S. 329.

Axiome für den DX-Verkehr

Dipl.-Ing. F. SCHULZE - Y24SH

Neben den Funkamateuren, die sich von der technischen Seite her für den Amateurfunk interessieren, gibt es andere, die sich mehr dem praktischen Funkbetrieb und in diesem Rahmen der DX-Arbeit verschrieben haben.

Verstand man früher unter einer DX-Verbindung ausschließlich eine interkontinentale, so besteht der Ehrgeiz der "DXer" heutzutage darin, möglichst jedes der etwa 320 DXCC-Länder zu erreichen. Sie ruhen nicht eher, bevor sie die begehrte OSL-Karte dieses oder jenes entlegenen Gebietes der Erde in ihrer Sammlung haben. Jeder Funkamateur, der genügend Fähigkeiten und Ausdauer mitbringt, kann "DXer" werden. Nachfolgend dazu einige praktische Tips und Tricks.

Know-how gefragt

Grundvoraussetzung für eine erfolgreiche DX-Tätigkeit sind der Besitz eines hochempfindlichen und trennscharfen Empfängers sowie einer hoch über Grund installierten Antenne. Die Praxis zeigt, daß man mit einer einfachen Stationsausrüstung auch zum Ziele kommen kann. Köpfehen ist gefragt. Sendeleistung hat nicht die gleiche Bedeutung wie optimale Betriebstechnik, wie Geschicklichkeit und Ausdauer sowie die Kenntnis der Ausbreitungsbedingungen der elektromagnetischen Wellen. Es müssen auch anfangs nicht gleich cine Linearendstufe von 500 W und eine Quad sein. Ich habe mit einem Teltow 215 D sowie einer FD4-Antenne mehr als 210 Länder gearbeitet.

Hören, hören, hören ...

Besonders wichtig ist es zunächst zu wissen, daß erfahrene DX-Amateure auf der Suche nach neuen Ländern oder seltenen Stationen niemals "CQ-DX" rufen, sondern hören, hören, hören Derjenige Funkamateur, der eine DX-Station zuerst hört, hat die Chance, mit ihr in Kontakt zu kommen, bevor der Andrang einsetzt. Zudem drehen DXpeditionen ohnehin nicht über das Band, sondern haben meist ihre Standardfrequenzen.

DXpeditionen und ihre voraussichtlichen Arbeitsfrequenzen werden vielfach vor ih-

rer Aktivität in der einschlägigen Amateurfunkpresse veröffentlicht und aktueller in Rundsprüchen und in DX-Runden angekündigt.

Hat man eine DX-Station gehört, so besteht die erste Aufgabe darin, ihre genaue Empfangsfrequenz zu finden. Wir müssen davon ausgehen, daß einige DX-Stationen auf getrennten Sende- und Empfangsfrequenzen arbeiten. Sie bedienen sich gern des Split-Betriebes (engl.: split frequency). Damit wollen sie das Gedränge (engl.: pile up), das zuweilen herrscht, von der eigenen Sendefrequenz fernhalten. Sie hören deshalb auf einer Frequenz, die gewöhnlich einige Kilohertz höher (oder seltener niedriger) liegt als ihre Sendefrequenz. Sie selbst haben damit zwar ihre Ohren nicht entlastet, erreichen aber, daß sie von Anrufern immer gut verstanden werden und so das pile up steuern können. Damit der potentielle Anrufer sofort erkennt, auf welcher Frequenz er rufen soll. geben das umsichtige Funker sofort wie folgt zu verstehen: QRZ DE 3W0A UP3. Das heißt, daß 3W0A 3kHz oberhalb der eigenen Sendefrequenz hört. Bei FK8FS DWN 5 empfängt diese Station 5 kHz unterhalb der eigenen Sendefrequenz. Für SSB-Betrieb gelten folgende Redewendungen analog: "3W0A listening 3kHz up" bzw. "FK8FS listening 5 kHz down" Tritt der Fall ein, daß hei Split-Betrieb eine Station keinen konkreten Hinweis auf ihre

Empfangsfrequenz gibt (CQ DE VU7JX UP), so sucht man diese erst einmal oberhalb in den Grenzen von 2 bis 5 kHz. Im allgemeinen findet man die Frequenz recht schnell, denn auf ihr rufen andere Amateurfunkstellen die DX-Station.

Schwarze Schafe

Bedauerlicherweise gibt es Funkamateure, die diese Problematik nicht beherrschen. Immer wieder hört man OMs, die die DX-Station unmittelbar auf ihrer Sendefrequenz ohne Split-Betrieb anrufen und dadurch den Funkbetrieb ganz erheblich stören. Trotz mehrmaliger Hinweise von anderen Stationen in Form von UP rufen sie hartnäckig weiter.

Da viele DXpeditionen ihre Sendefrequenz überwachen, erhalten solche Funker dann als Antwort lediglich die "Ehrenbezeichnung" LID (lousy inconsiderate dummy) und kommen bestenfalls auf die sehwarze Liste der Stationen, durch deren Verhaltensweise sich die DX-Station stark beeinträchtigt fühlte.

Jeder Kenner der Materie weiß, daß trotz Split-Betrieb das pile up auf den Empfangsfrequenzen der DX-Stationen gewaltig ist. Denn mittlerweile ist die Anzahl der Funkamateure und damit die Konkurrenz im DX-Verkehr erheblich angestiegen. Obendrein herrscht in der Amateurfunkgemeinde nicht immer der Gemeinschaftssinn, der sich in sportlicher Fairneß und gegenseitiger H:lfshereitschaft äußern sollte. Zugegeben: In gewissen Momenten ist der drängende Wunsch, eine seltene Station und damit vielleicht ein neues Land zu erreichen, nur schwer zu zügeln. Dennoch -Dauerrusen ist undiplomatisch, provoziert die anderen Konkurrenten und kann. wenn es viele tun, den gesamten Betrieb lahmlegen.

Das DXpedition-QSO

Findige DX-Amateure sind stets bemüht, das pile up durch ein geschicktes In-die-Lücke-Plazieren des eigenen Rufzeichens zu knacken. Sicher leichter gesagt als getan. Trotzdem, auch hier hilft vorerst einmal das Hören weiter, das Beobachten und Sondieren des Betriebsdienstes der DX-

Station. Damit verschafft sich der versierte Funkamateur einen Überblick. Er sucht und findet damit bald den geeigneten Zeitpunkt, zu dem das eigene Rufzeichen am günstigsten zu senden ist, um von der DX-Station gehört zu werden.

Der Anruf sollte jedoch erst dann erfolgen, wenn die DX-Station den CQ-Ruf beendet oder QRZ gerufen hat. Niemals aber dazwischenrufen! Die größte Taktlosigkeit besteht nämlich darin, den Rapport-Austausch oder die OSL-Information zu stören. Bei der Verbindung mit DXpeditionen haben wir zu bedenken, daß sic aus solchen Gehieten funken, in denen häufig keinerlei ständige Amateurfunktätigkeit vorhanden ist. So wird vielen Funkamateuren die Gelegenheit geboten, dieses Land zu erreichen. Die OMs von DXpeditionen tun alles, um den Funkverkehr zügig abzuwickeln. Darum ist es unfair, während des QSOs nach dem QSL-Manager, QTH oder gar Namen zu fragen. Genauso unkameradschaftlich ist es, eine seltene DX-Station auf dem gleichen Band und in der gleichen Sendeart ein zweites Mal anzurufen, nur um noch einmal im Log zu stehen. Viele DXpeditionen führen inzwischen eine computergestützte Auswertung durch. Dabei werden alle Doppel-OSOs automatisch im Programm gestrichen, und es kommt dann überhaupt keine QSL-

Darüber hinaus besteht gar kein Grund anzunehmen, daß das QSO nicht ordentlich geloggt wurde, wenn die DX-Station den Empfang bestätigt hat. Man darf jedoch den Rapport für die DX-Station erst dann senden, wenn sie das Rufzeichen richtig wiederholt hat.

Wie sollte nun eine Verbindung mit einer DX-Station aussehen? Dafür gibt es eine alte Amateurfunkregel: Antworte der Gegenstelle in dem Tempo, in dem sie selbst tastet, und sende deine Antwort nach dem gleichen Schema! Gibt die DX-Station neben dem Rapport das QTH und den Namen, so mache es auch! Gibt sie dir nur RST (RS), so antworte ebenso kurz mit deinem Rufzeichen und dem Rapport! Erfahrungsgemäß läuft ein QSO mit einer DXpedition etwa nach folgenden Muster ab:

- QRZ P4UV
- DE Y21AA
- Y21AA 599 BK
- QSL UR 599 DE Y21AA.

Aus dem vielstimmigen Chor der Anrufer kann die DX-Station oftmals nicht so leicht komplette Rufzeichen der Anrufer korrekt aufnehmen. Deshalb versuchen sie, dem pile up aus dem Weg zu gehen, indem sie einen "Selektivruf" anwenden.

Darunter ist zu verstehen, daß die DX-Stationen die Gegenstellen nacheinander mit ihrem Landeskenner oder nach den Ziffern bzw. nach den letzten Buchstaben im Rufzeichen zum QSO aufrufen. "QRZ

9Q5KI listening only number 2 in the call sign" heißt demnach, daß 9Q5KI nur auf Stationen mit der Ziffer 2 im Rufzeichen hört (UA2..., K2..., Y42...). In CW ist das etwas kürzer: QRZ 9Q5K1 NR 2 BK. In SSB benutzt man zum Selektivruf mit Vorliebe den letzten oder die letzten Buchstaben des Rufzeichens: "ORZ VP9DBA last letter H". Hierbei hört VP9DBA nur auf Rufzeichen, die mit dem Buchstaben "H" enden (UA2FH, K2XH, Y21AH,...). Es gibt aber auch die Möglichkeit, Splitbetrieb und Sclektivruf miteinander zu verbinden: "QRZ XF4L listening up 5 number 3 only" bedeutet demzufolge, daß XF4L 5 kHz oberhalb der eigenen Frequenz und nur auf Stationen mit der Ziffer 3 im Rufzeichen hört

Länder ohne QSL-Būro

A5	Bhulan	VP1E	Anguilla
A6	U.A.E.	VR6	Pitcairn
A7	Quatar	V6	Mikronesien
BV	Taiwan	XT	Burkina Faso
C9	Mozambique	XU	Kambodscha
D6	Komoren	XW	Laos
ET	Athiopien	XX	Macao
HZ	Saudi Arabien	XZ	Burma
15	Guinca-Bissau	YA	Afghanistan
KC4	US-Antarktis ¹¹	ZA	Albanien
KC6	Belau (W.C.I.)	ZD7	St. Helena
KHI	Baker/Howland	ZD9	Tristan da Cunh
КНЗ	Johnston	ZK2	Niuc
KH5	Palmyra	ZK3	Tokelau
KH7	Kure	3C	Aquat. Guinea
KHY	Wake	3V	Tunesien
KPI	Navassa	311	Victnam
KP5	Desecheo	3X	Guinea
P5	Nordkorea	411.	u. 70 Jemen
SO	Rep. Westsahara	SA	Libyen
T2	Tuvala	5H	Tanzania
T3	Rep. Kiribati	5R	Madagaskar
T5	Somalia	SU	Niger
TJ	Kamerun	5X	Uganda
TL	Z Afr Rep.	70	Malawi
TN	Rep. Kongo	NO	Mulediven
TT	Tschad	9G	Ghana
17	Benin	YN	Nepal
TZ	Mali	90	Zaire
V4	Christopher	9U	Burundi

11 US-Antarktis = KC4 plus 3 Buchstaben im Suffix

Listenbetrieb

Rei Telefonie und hesonders im 3,5-MHz-Band wird häufig mit einem sogenannten Listenmacher oder einer Net-Control-Station gearbeitet. Eine starke europäische Station, die die DX-Station gut hört. nimmt eine Liste von Anrufern auf und ruft dann die einzelnen Stationen zum OSO. Nicht selten kommen dabei aber nur "Schatten-QSOs" zustande, d. h., es ergibt sich dabei nur ein QSO mit dem Listenmacher oder der Net-Control-Station, die dann letztlich an die DX-Station übermittelt. Der Wert eines solchen "QSOs" ist deshalb mehr als fragwürdig. Mitunter erlebt man hierbei auch, daß trotz langen Wartens nur gute Bekannte drankommen.

Funkamateure aus einigen Ländern werden einfach vergessen oder überhört, wenn die Liste entsteht.

Letzteres rührt daher, daß es Funker gibt, die aus der Arbeit der seltenen Stationen Kapital schlagen wollen. Wie anders soll man es sonst verstehen, wenn sich exzellente CW-Funker nach einer dubiosen Liste in SSB arbeiten lassen. Man muß eben erst eine angemessene Spende überwiesen haben, bevor man auf die Liste kommt. Und sollte es nicht zum OSO kommen, die QSL-Karte kommt in nicht so seltenen Fällen trotzdem prompt, denn sie ist ja bezahlt. Auf diese Art und Weise soll ein Fünfband-QSO mit einer sehr gefragten DXpedition 100,00 DM gekostet haben. Mit diesem korrupten Verhalten einiger OMs ist es möglich, für Geld die seltensten Länder bestätigt zu bekommen. Bleibt im Interesse aller ehrlichen Funkamateure zu hoffen, daß solche Versuche, den Amateurfunk zu vermarkten, nicht weiter Schule machen.

Der Weg zur QSL

Diese Erörterungen haben uns in ein weiteres Gebiet der DX-Arbeit geführt. Wie kommt man nach einem gelungenen DX-QSO an die erwünschte OSL-Karte?

DX-Stationen schicken ihre QSL-Karte vielfach erst cann, wenn die Karte der Gegenstelle eingegangen ist oder beim angegebenen QSL-Manager vorliegt. Bisweilen teilen DX-Stationen nach bestimmten Zeitabständen ihre Anschrift oder die ihres QSL-Managers mit bzw. verweisen sie mit der Abkürzung CBA auf ihre Callbook-Adresse hin.

Rufzeichen von QSL-Managern erscheinen z. B. regelmäßig in der cq-DL. In Ländern, die kein QSL-Büro haben, können die QSL-Karien nur über einen QSL-Manager oder über das "home call" an den Mann gebracht werden.

Leider ist der Prozentsatz beantworteter QSL-Karten beim Direktversand weitaus höher als beim Austausch über das QSL-Büro. Funkamateure, die ihre Karte direkt schicken, kommen der DX-Station entgegen und erleichtern ihr die Arbeit, wenn sie der QSL-Karte einen Briefumschlag mit der eigenen Anschrift beifügen (SAE). Versicht man den Rückantwortbriefumschlag mit gültigen Briefmarken des jeweiligen Landes (SASE), so erspart man der DX-Station außerdem zusätzliche Ausgaben und kann mit baldiger Antwort rechnen.

Wenn es jedoch erfolgreiche DXpeditionen auf 50 000 QSO und mehr gebracht haben, kann sich die Beantwortung der QSL-Karten, trotz Computerlog, über mehrere Monate hinziehen. Hinzu kommt, daß zahlreiche DXpeditionen ihre QSL-Karten erst nach dem Abschluß der DXpedition zum Druck auflegen, um unnötige Kosten zu sparen.

Einstieg Link zu

SWL-QTC

Bearbeiter: Andreas Wellmann, Y24LO PSF 190, Berlin, O – 1080

Ausbreitungsbedingungen - Prognosen - Baken

Wer als SWL im KW-Bereich auf DX-Jagd gehen will, muß sich auch mit der Theorie der Ausbreitung beschäftieen. Finführende Literatur in den Amateurfunkdienst oder Antennenbucher vermitteln dieses Wissen. Nach dem Lesen wird man feststellen, daß die Kurzwelle zwar prinzipiell für den Weitverkehr sehr gut geeignet ist, viele Faktoren ihn aber auch oft verhindern. Hauptvoraussetzung ist das Vorhandensein einer reflexionsfahigen Luftschicht (lonosphare), die die auftreffenden Raumwellen reflektieren kann. Die Wirksamkeit dieser Schicht ist von der Sonnenaktivität. Sonneneinstrahlung und jahreszeitlichen Schwankungen abhängig. Mit der Untersuchung der Ausbreitungsbedingungen beschäftigen sich auf der ganzen Welt wissenschaftliche Institutionen. Die Ergebnisse dieser Untersuchungen münden u. a. auch in Funkwetterprognosen. Si: geben Auskunft darüber, auf welcher Frequenz, zu welcher Uhrzeit und zwischen welchen konkreten Zielgebisten eine Verbindung möglich sein wird. Diese Angaben haben in der Regel einen Vorlauf von mehr als einem Monat. Wòchentliche Rundsprüche sind da schon wesentlich aktueller. Sie berücksichtigen zu erwartence Störungen oder Ausbreitungsphänomene

Wer sich täglich über die aktuelle Situation informieren möchte, kann da auch einen Service der Deutschen Bundespost nutzen. Eine Forschungsgruppe der DBP Telekom beim FTZ Darmstadt liefert diese Daten über einen Anrufbeantworter. Erreichbar ist dieser Anschluß über (04863) 2741. Aus dem Gebiet der ehemaligen DDR ist dieser Anschluß in der Regel über folgende Nummernfolge erreichbar: 0649-4863-2741. Jeder kann aber auch seine persönlichen Ausbreitungsstudien betreiben. Sehr nützlich in diesem Zusammenhang sind Bakensender. Diese Sender arbeiten automatisch. Die Leistung liegt meist bei 10 W. Zur Identifikation senden sie ihr Rufzeichen.

Der automatische Betrieb der Baken sichert eine Beobachtungsmöglichkeit unabhängig von Aktivitäten auf den Bandern. Konkrete Rufzeichen. Standorte, Leistung und Frequenzen können zum Beispiel dem "Jahrbuch für den Funkamateur 1990" aus dem DARC-Verlag entnommen werden.

Sehr interessant ist das Bakensystem auf 14,1 MHz. Weltweit wurden 10 Bakensender verteilt. In einem Zyklus von 10 min ist jeweils für 58s eine Bake in Betrieb. Man kann sich so in sehr kurzer Zeit über die aktuelle Bandsituation informieren.

Inhalt einer Aussendung	Leistung
OST DE (Rufzeichen) BEACON	100 W
Dauerstriche (9s)	
mit vorangestellten Punkten	
I Punkt und Dauerstrich	100 W
2 Punkte und Dauerstrich	10 W
3 Punkte und Dauerstrich	1 W
4 Punkte und Dauerstrich	0,1 W
SK (Kulzeichen)	100 W

Rufzeichen	Sendezeiten	
4UIUN/B	Minute 0, 10, 20, 30, 40, 50	
W6WX/B	Minute 1, 11, 21, 31, 41, 51	
KH6O/B	Minute 2, 12, 22, 32, 42, 52	
JA2IGY/B	Minute 3, 13, 23, 33, 43, 53	
4X6TU	Minute 4, 14, 24, 34, 44, 54	
OH2B	Minute 5, 15, 25, 35, 45, 55	
СТ3В	Minute 6, 16, 26, 36, 46, 56	
ZS6DN/B	Minute 7, 17, 27, 37, 47, 57	
LU4AA	Minute 8, 18, 28, 38, 48, 58	
HK4LR/B	Minute 9, 19, 29, 39, 49, 59	

Digit-QTC

Bearbeiter: Eberhard Schrickel, Y21ZK Hinter der Stadt 7. Schmelkalden, O – 6080

Nach langen und teilweise nahezu aussichtslosen Gesprächen und Verhandlungen mit der alten GST-Führungsspitze im RSV und der dann möglich gewordenen schnellen Realisierung unserer Wünsche bezüglich der Frequenzvergabe durch die Deutsche Post liegt nun endlich ein in sich geschlussenes Konzept für den Aufbau eines PR-Netzes auf dem Gebiet der chemaligen DDR vor. Diese Planungsunterlage ist in gemeinsamer Arheit mit dem BuS-Referat des DARC entstanden, und die Anbindungen an das bestehende Netz sind koordiniert. Hier nun das von Matthias, Y24KK, veröffentlichte Dokument in etwas abgewandelter Form:

Koordinierung der Anträge durch das BuS-Referat des RSV e. V. für das Gebiet der ehemaligen DDR (Stand: 16. 9. 1990)

Vorbemerkung: Diese Koordinierung stellt den Extrakt einer mehrmonatigen Tätigkeit des RSV-e.V-BuS-Referates dar. Es offenbaren sich hierbei teilweise erhebliche Probleme. So konnten für den Raum Berlin nur sehr unzureichende Zusagen getroffen werden. Hier bitten wir die beteiligten SysOps der Region um rasche Vorschläge. Ein weiterer Problemkreis ist die Koordinierung im Harz. Ein geplanter Standort auf dem Brocken kann erst nach Überarbeitung der Standorte und Frequenzen in der Harzregion koordiniert werden. Dazu ist noch für dieses Jahr eine "Harzkonferenz" geplant. Der Vorteil dieses Standorts wären jedoch Links mit hoher Reichweite und großem Datendurchsatz in entfernte Regionen.

Mit der Angabe "2" werden tragfähige Konzepte gekennzeichnet, für die bereits jetzt Frequenzen "reserviert" wurden. Derzeitig arbeiten: Y51K, Y52K, Y51G, Y51O, Y51F, Y25TN (Y52N), Y51N (sporadisch), Y23XL (Y51L) und weitere Testsysteme.

Das BuS-Referat des RSV e.V. dankt allen OMs für ihre großartige Unterstützung von Y2-Aktivitäten! Ein besonderer Dank gilt dem BuS-Referat des DARC, das immer mit Rat und Tat hilfreich war.

M. Fehr, Y24KK Sprecher des BuS-Referates des RSV c. V.

Aufgrund der teilweise noch unklaren Formulierung der Anträge der einzelnen Gruppen ist es durchaus möglich, daß nicht alle Linkwünsche berücksichtigt wurden, bzw. daß sich hier oder da kleine unwesentliche Fehler eingeschlichen haben. Folgende Anträge wurden vom BuS-Referat bearbeitet und befürwortet:

Multi-Mode-Relais

(Vorschlag des BuS-Referats zur Unterstützung der Experimentaltätigkeit dieser Crew. Leider liegt bis heute kein Konzept der Gruppe vor.)

Rufz.	Standort	SysOp	Eingabe/Ausgabe
YSIN	Hohenstein-E.	Y28PN	70 cm/23 cm

Bulletin Board Systems (BBS, Mailbox)

Rufz.	Standort	SysOp	Einstieg	Linkz
Y7IA	Rostock	Y24TA	-	YSIA
Y71RSV	Suhl	Y24KK	_	Y51K
Y7IG	Magdeburg	Y71SG	438,025	YSIG
Y71H	Ballenstedt	Y26EH		Y52H
Y711	Nordhausen	Y38W1	-	Y521
	Y7IA Y7IRSV Y7IG Y7IH	Y71A Rostock Y71RSV Suhl Y71G Magdeburg Y71H Ballenstedi	Y71A Rostock Y24TA Y71RSV Suhl Y24KK Y71G Magdeburg Y71SG Y71H Ballenstedt Y26EH	Y71A Rostock Y24TA – Y71RSV Suhl Y24KK – Y71G Magdeburg Y71SG 438,025 Y71H Ballenstedt Y26EH

Sonstige Experimental-Systeme

Standori

Amateurlunk-Datenbank-Experimental-System	m
---	---

SysOp

Y81DB	2 2nui	Y48KK	-	YSIK		
Digipeater						
Rufz.	Standori	SysOp	Einstieg	Link zu		
YSIA	Marlow	Y23LA	-	YSIB		
			144,650	YSIC		
				Y71A		
Y51B	Ludwigslust	2	438,150	DBONDS		
			144.675	YSIA		
Y51C	Waren	Y23LA	438.150	YSIA		
			144,625	Y52D Y52C		
				YSIB		
				nach		
				OZ(?)		
Y52C	Helpterberg	Y23LA	438,100	YSIC		
.,,,	· · · · · · · · · · · · · · · · · · ·		144,650			
YSID	Brandenburg	Y26RD	438,100	DBOBLN		
			144,675	Y52G		
Y52D	Zehdenick	Y24UD	?	Y510(?)		
			144,650			
Y51F	Gehren	Y24EF	430,600	YS3F		
			144,625	Y510		
Y52F	Schlieben	Y24RF	430,605	Y53F		
			144,675	Y51M(?)		
Y53F	Spremberg	Y23XF	438,350	YSIF		
			144,650	Y52F		
				Y52L		
YSIG	Magdeburg	Y38ZG	438,475	Y52G		
			144,650	Y71D		
Y52G	Stendal	Y221G	430,650	YSID		
			144,625	DBONDS		
YSIH	Merseburg	-	438,350	YSIM		
Venu	Dellananda	VACELL	144,650	Y52H		
Y52H	Ballenstedt	Y26EH	430,625 144,625	Y51H		
			144,023	DB0ABZ Y71H		
YSII	Immentade	Y38W1	438,425	DBONID		
	mmem sac	. 30 ** .	144,675	Y711		
YSIK	Schmücke	Y24KK	438,500	Y52K		
IJIK			144,650	Y54K		
				Y52N		
				Y71RSV		
Y52K	Mommelstein	Y21ZK	438,325	Y51K		
			144,625	DBOMW		
Y54K	Sonneberg	Y31VK	430,600	DB0RT		
				Y51K		
YSIL	Dresder	Y23XL	438,300	Y52L		
	_		144.675			
Y52L	Frauensin	Y23XL	438.325	Y52N		
				YSIL		
VEINA	• alasia	VACCIA	420 276	Y53F		
Y51M	Leipzig	Y49GM		Y52F Y51H		
			144,625			
Y52N	Totenstein	Y25TN	430,675	Y52N (?) DB0GU		
. 7414	COLUME	123114	144,625	YSIK		
			1-,023	YS2L		
Y510	Berlin	Y26WO	438,300	DBOLN		
	(FS-Turm)			(?)		
	,		oder	YSIF		
			430,600	(70 cm)		

ATV-Relais

Rufz.	Standort	SysOp	Eingabe/Ausgabe
Y910	Berlin	Y27DO	70 cm/23 cm

Bleibt zu hoffen, daß alle beteiligten Gruppen ihre Systeme so schnell wie möglich realisieren, damit wir dieses Netz recht bald nutzen können.

Ausbreitung Dezember 1990

Bearbeiter: Dlpl.-Ing. František Janda, OK1HH 251 65 Ondřejov 266, ČSFR

Nach halbjährigem Verlauf der Sonnenaktivität ohne größere Schwankungen kam es nun zur Übereinstimmung der Vorhersagen verschiedeaer Institute. Die Sonnensleckenrelativzahl liegt bei 130, der Sonnenstrom bei 180. Das reicht immer noch aus, damit sich alle KW-Bänder regelmäßig offnen, von Zeit zu Zeit selbst das 50-MHz-Band. Dabei ist die große Erhöhung der Sonnenaktivität Ende August noch nicht in Betracht gezogen, nach der die Ansichten üher die weitere Entwicklung wieder etwas auseinandergingen.

Der Juli war frei von Überraschungen, wie die wichtigsten Indizes zeigen. Die Sonnenstromdaten waren 235. 252, 240, 224, 219, 209, 204, 182, 163, 157, 153, 154, 153, 149, 143, 141, 143, 137, 138, 147, 153, 161, 172, 180, 204, 201, 194, 183, 173, 181 und 176, emsprechend einem Durchschnitt von 178.1. Die durchschnittliche Zahl der Sonnenflecken war 147, und der Durchschnitt für Januar betrug 150,2. Die Aktivität des Magnetfeldes der Erde Ax erreichte 6, 9, 8, 10, 14, 10, 7, 12, 10, 20, 10, 10, 19, 16, 11, 8, 6, 10, 17, 20, 8, 6, 6, 4, 4, 15, 14, 74, 51, 14 und 9. Die übliche Sommerberuhigung ging tiefer als gewöhnlich; das mündete zusammen mit der größeren Sonnenstrahlung in vorwiegend günstigen KW-Ausbreitungsbedingungen. Erst die Störungen vom 28. und 29. 7. bewirkten ein Sinken unter den Durchschnitt, in Richtung Nordamerika bis auf das Nizeau der Störung. Die besten Tage waren der 3.7. und der 26.7. Im ersten Fall bewirkte die sporadische E-Schicht Offnungen der oberen KW-Bander bis hin zum 144-MHz-Band, im zweiten Fall handelte es sich um eine positive Störungsphase, die sich als Vorzeichen für weitere Störungen zwei Tage später erwies. Die E.-Aktivität war darüber

Der Dezember wird freilich etwas verlockender werden. Gegenüber November sinken zwar die hochsten nutzbaren Frequenzen in die meisten Richtungen bzw. die Offnungen verkürzen sich wesentlich, trotzdem darf man auch mit einer Nutzbarkeit des 50-MHz-Bandes für DX rechnen. Die geringere Dampfung bei Verbindungen auf der Nordhalbkugel der Erde betrifft hauptsächlich die niederfrequenten Bänder, hat aber auch Bedeutung für den gesamten KW-Bereich bis zum 28-MHz-Band. Die Verlängerung der Fenster in die anspruchsvollsten Richtungen, besonders in den Pazifik, wird auf den niederfrequenten Bändern markant. Die verringerten Möglichkeiten zu Verbindungen über den langen Weg, also über die Südhalbkugel, resultieren aus dem dortigen Sommer. Die kurze, aber interessante Öffnung Richtung Nordosten gegen 1500 erreicht nicht nur die Westküste Nordamerikas, sondern auf 7 und 10 MHz (evtl. zusätzlich 3.5 und 14 MHz) auch Polynesien.

Bei den nachfolgenden Öffnungszeiträumen steht wie gewöhnlich in Klammern die Zeit, zu der die Dämpfung minimal und das Signal am stärksten ist.

1.8 MHa: UAOK von 2200 bis 0500 (0100), W3 von 0400 vis 0500, W2/VE3 von 2100 bis 0800 (2300 und 0500), TF von 1400 bis 0930 (0100 bis 0300).

3.5 MHz: A3 von 1350 bis 1710 (1430), JA von 1500 bis 2330 (1900 und 2300), VK6 von 1615 bis 2215 (1800), 3B von 1830 bis 0230, PY von 2210 bis 0730 (0700), OA von 0100 bis 0800 (0300 und 0700), W5 von 0100 bis 0830 (0330), W6 von 0000 bis 0830 (0740), FO um 0800 und 1500.

7 MHz: 3D2 von 1120 bis 1820 (1400), JA von 1200 bis 2400 (1730 und 2300), P2 von 1230 bis 2100 (1500), 4K1 von 1800 bis 2100 (2000), KP4 von 2030 bis 0800 (0200), VE7 von 1330 bis 1750 (1600) und von 2100 bis 1000 (0200)

10 MHz: JA von 1130 bis 2330 (1800), PY von 0600 bis 0730 und von 2000 bis 0430 (2400), W4 von 0715 bis 0930 und von 2100 bis 0500 (0300), VR6 um 0900.

14 MHz: A3 von 0840 bis 1500 (1230), BY1 von 1100 bis 1500 (1300), PY um 0700 und von 2000 bis 2200, OA um 0800, FO von 0930 bis 1100, VE7 um 1630.

18 MHz: P2 von 1200 bis 1500 (1400). VE7 um 1700, FO um 1000

21 MHz: 3D2 von 0900 bis 1300 (1200), BY1 von 0600 bis 1200 (1030), YB von 1300 bis 1500, 3B von 1440 bis 1630, VR6 um 1100, CE0A um 0900.

24 MHz: 3D2 um 1200, VK9 von 1300 bis 1400, BY1 von 0600 bis 1200 (0930).

28 MHz: W3 um 1430, VE3 um 1500, U1 von 0730 bis 1100, J2 von 0700 bis 0900

Conteste

Bearbeiter: Dipl.-ing. Klaus Volgt, Y21TL PSF 427, Dresden, O-8072

Ergebnisse des HNY-Contests 1990

ibber 100 W: 1. Y27DL 5 980, 2. Y42WB 4 992, 3. Y24TF/a 2 381, 4. Y31NJ 1 953, 5. Y24HB 1 430, 6. Y58UA 1 248, 7. Y21TN 350, 8. Y42VN/p 222, 9. Y22YF 136; ibber 10 W: 1. Y21FA 3 010, 2. Y74XG 1 800, 3. Y31RL 1 403, 4. Y89RL 1 350, 5. Y23 RJ 1 060, 6. Y22FG 702, 7. Y23GB 532, 8. Y43YK/p 385, 9. Y64ZL 243, 10. Y38OB 198; unter 10 W: 1, Y23YJ 288, 2. Y24SH 128, 3. Y22XF 85, 4. Y24XO 33, 5. Y21MF 15, 6. Y24KB/p 6; \$: 1. Y57-03-E 3 168, 2. Y34-12-16 8

Ergebnisse des Ibero-America-Contests 1989

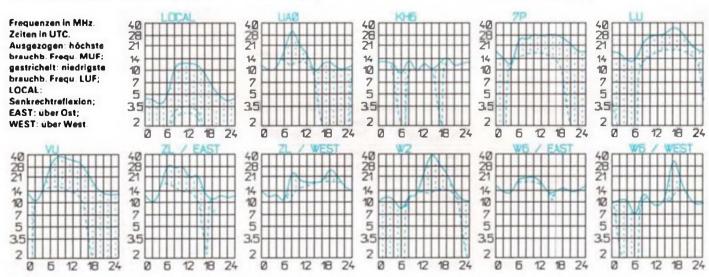
E: I. Y38ZB 413, 2. Y23GB 26; 7: 1. Y47ZF-16; 14: 1. Y82XN 374, 2. Y22VI 320; 21: 1. Y27AN 220, 2. Y25PE 60, 3. Y66ZF 36, 4. Y23TL 3; \$: 1. Y38-01-B 368; K: Y35WF, Y55ZA/p.

Ergebnisse der W/VE-Conteste 1990

CW

E: 1. Y32WF 135774, 2. Y49RF 87840, 3. Y54TO 67032, 4. Y55TJ 43512, 5. Y31EM 43200, 6. Y22HF 34272, 7. Y37ZM 32040, 8. Y62SD/p 19881, 9. Y61ZM 17010, 10. Y26DM 16632, 11. Y77YH 5643, 12. Y56ZA 4026, 13. Y51ZEpp 3864, 14. Y67UL 3822, 15. Y23HJ 2280, 16. Y92ZL 1350; 1,8: 1. Y33UL 1404; 3,5: 1. Y43GO 12717; 14: 1. Y21KF/a 18600, 2. Y32NL 7209, 3. Y51YJ 4554, 4. Y22WF, 4260, 5. Y42WB 1734; 21: 1. Y44QN 14454; QRP: 1. Y25NA 15141, 2. Y23TL 2106, 3. Y21NC 5655; M: 1. Y41CM (Y21RM, Y41YM, Y41ZM) 1744155, 2. Y71CA (Y711A, Y71KA) 19431; K: Y21VF/a: Y23IA, RJ; Y24WJ; Y33VL; Y39FA; Y43GO; Y55SC.

FONE


E: 1. YZZWF 237363, 2. Y49LF 88452, 3. Y72SL 5148U, 4. Y56VF 40002, 5. Y67UL 16224, 6. Y23TN 15460, 7. Y32WF 7029; 1,8: 1. Y33UL 576; 21: 1. Y24XA 16029, 2. Y34XF 4752; 28: 1. Y33VL 166992, 2. Y22JJ 133164, 3. Y24GE 71400, 4. Y32EE 31968, 5. Y21LF/p 2460, 6. Y32RD 1440, 7. Y26KL 828, 8. Y25ML 594; M: 1. Y51CO (Y51OO; XO, Y54NL) 534852, 2. Y73CA (Y73XA; YA) 36630; K: Y22TD, Y24MB, Y25BL, Y26NL, Y49ZD/p, Y51YJ, Y53SF.

Ergebnisse des 1. Subregionalen UKW-Contests 1990

E 144: 1. Y27EO 9141, 2. Y23DM 8742, 3. Y22UC 6390, 4. Y32IN 2600, 5. Y25NA 2125, 6. Y21IF 1547, 7. Y21VF/p 1428, 3. Y34PF 836, 9. Y25FF/a 756, 10. Y23OD 318, 11. Y66YF/p 70, 12. Y24CE 60, 13. Y21QE 12, 14. Y66ZF 10, 15. Y24QE 8; M 144: 1, Y34CJ 12274, 2. Y72CM 7038, 3. Y52CE 2793, 4. Y46CE 405, 5. Y46CF 10; S 144: 1. Y59-14-F 6003, 2. Y32-14-L 528, 3. Y66-03-F 40; E 432: 1. Y25AN/p 450: K: Y21GL, Y21NF, Y22OE, Y23JF.

Ergebnisse des 2. Subregionalen UKW-Contests 1990

E 144: 1. Y2/DL6FBL 130 624, 2. Y31SM/a 33400, 3. Y27EO 12080, 4. Y41NK 11581, 5. Y21VC/p 11375, 6. Y21VF/p 9052, 7. Y25NA 6561, 8. Y22UC 6344, 9. Y2/ DL2ZAV 5830, 10. Y27CO/p 4940, 11. Y21VL 4082, 12. Y72ZM 3591. 13. Y26WH 2499, 14. Y26IL 1144, 15. Y53WL/p 1128, I6. Y27ON 1078, 17. Y25DE 136, I8. Y66YF/p 60, 19. Y21QE 15, 20. Y21DR 14, 21. Y51TO 3; M 144: 1. Y350 111210, 2. Y46C1 73416, 3. Y34CJ/p 57180, 4. Y34H 47530, 5. Y33E 30820, 6. Y35J 25740, 7. Y31CA/p 24586, 8. Y67QG/p 21096, 9. Y24CM 18012, 10. Y46Cl/p 17455, 11. Y46CE/p 7801, 12. Y34CF/p 7074, 13. Y48CL 4427, 14. Y67CN/p 1582; S 144: 1. Y41-27-E 69, 2. Y59-14-F 8526, 3. Y47-01-F 1442; E 432: 1. Y2/DB9FH 8029, 2. Y26AN/p 3266, 3. Y25AN/p 2500, Y24LA 730, 5, Y31SM/a 440; M 432; 1, Y35O 1513. 2. Y67QG/p 1022; E 1296; 1. Y26AN/p 336; K: Y23VI. Y24CF, Y27RN, Y82ZI, p

Prüfungsbestimmungen für Funkamateure

Wer sich heute mit dem Gedankes trägt, eine Amateurfunkprüfung abzulegen, hat oft kaum Gelegenheit gehabt, einen aktiven Funkamateur über den Ablauf einer solchen Prüfung zu befragen. Nicht zuletzt haben sich diese Modalitäten mit der Wirksamkeit bundesdeutschen Rechts (u. a. schriftliche Prüfungen nach Fragenkatalog) deutlich geändert. Wie es genau abläuft, bestimmt die nachfolgend abgedruckte Anlage 1 der Verwaltungsanweisung zur Verordnung zur Durchführung des Gesetzes über den Amateurfunk (VwAnw DV-AFuG). Im Anschluß noch zwei Hinweise zur Amateurfunk-Antragstellung.

Die Prüfungsbestimmungen sollen die einheitliche Abnahme der fachlichen Prüfung für Funkamateure (§ 2 Abs. 1 d AFuG) bei den Oberpostdirektionen sicherstellen

1. Zweck der Prüfung

Zweck der Prüfung ist es festzustellen, oh ein Rewerher die erforderlichen Kenntnisse und Fertigkeiten besitzt, um einen ordnungsgemäßen Betrieb der Amateurfunkstelle zu gewährleisten. Das Bestehen der Prüfung ist Voraussetzung für die Erteilung einei Amateurfunkgenchmigung.

2. Průfungsbehörden und Průfungsausschuß

- 2.1. Prüfungsbehörden sind die Oberpostdirektionen. Diese können Ämter des Fernmeldewesens mit der Vorbereitung und Durchführung der Prüfungen beauftragen.
- 2.2. Die Mitglieder des Prüfungsausschusses werden von der Prüfungsbehörde nach §3, Abs. 3 DV-AFuG benannt. Bei der Berufung von erfahrenen Funkamateuren in den Prüfungsausschuß sind Vorschläge der Amateurfunkvereinigungen zu berücksichtigen.

3. Zulassung und Einberufung zur Prüfung

- 3.1. Über die Zulassung zur Prüfung entscheidet die Prüfungsbehörde aufgrund der nach §2 DV-AFuG beigebrachten Unterlagen. Einzelheiten hierzu sind in der Verwaltungsanweisung geregelt.
- 3.2. Zeitpunkt und Ort der Prüfung werden von der Prüfungsbehörde festgesetzt und den Bewerbern nach Eingang der Anmeldung mitgeteilt.
- 3.3. Die Prüfungsbehörde leitet die Prüfungsunterlagen (Antrag und Zulassungsbescheid) dem Prüfungsausschuß zur Durchführung der Prüfung zu
- 3.4. Der Bewerber hat sich vor Beginn der Prüfung über seine Person auszuweisen und nachzuweisen, daß er die Prüfungsgebühren (§ 19 DV-AFuG) bezahlt hat.

4. Anwesenheit Dritter bei Prüfungen

- 4.1. Die Prüfungen sind nicht öffentlich
- 4.2. Der Vorsitzer des Prüfungsausschusses kann Zuhörer zulässen.
- 4.3. Die als Zuhörer zugelassenen Personen dürfen weder in die Prüfung eingreifen noch an der Beratung über das Prüfungsergebnis teilnehmen. Die Zuhörer sind vor Beginn der Prüfung entsprechend zu belehren.
- 4.4. Die Einsichtnahme in die Prüfungsarbeiten und -unterlagen ist Dritten zu versagen.

5. Durchführung der Prüfungen

5.1. Der Prüfungsstoff (siehe Anlage 2 zur DV-AFuG) gliedert sich für die Klassen A und B ir drei theoretische Teile und einen praktischen Teil, für die Klasse C in drei theoretische Teile.

Für die theoretischen Prüfungsteile sind die vom FTZ herausgegebenen Prüfungsbögen zu verwenden.

- 5.2. Die Prüfungen in den theoretischen Teilen werden schriftlich durchgeführt.
- 5.3. Die Prüfungsteilnehmer erhalten für jeden theoretischen Prüfungsteil einen Prüfungsbogen, auf dem die zur Verfügung stehende Zeit und die für jede Frage zu erreichende Punktzahl vermerkt sind. Die Prüfungsbögen werden von der Prüfungsbehörde ausgewählt. Bei hintereinanderfolgenden Prüfungen sind stets verschiedene Prüfungsbogen zu verwenden.
- Die Fragen sollen gleichmäßig möglichst viele Prüfungsabschnitte (Anlage 2, 1.1, 1.2 und 1.3 zur DV-AFuG) berücksichtigen. Je Fragebogen sollen etwa 100 Punkte erreichbar sein.

- 5.4. Die Prüfungsbögen sollen die nachfolgend für die einzelnen Prüfungsteile festgelegte Anzahl von Fragen enthalten:
- a) betriebliche Kenntnisse (DV-AFuG, Anl. 2, 1.1): 10 bis 15 Fragen, Beantwortungszeit: 30 Minuten;
- b) technische Kenntnisse (DV-AFuG, Anl 2, 1.2): 10 bis 15 Fragen, Beantwortungszeit: 75 Minuten;
- e) Kenntnis von Vorschriften (DV-AFuG, Anl. 2, 1.3): 10 bis 15 Fragen, Beantwortungszeit: 30 Minuten.
- 5.5. Zwischen den einzelnen Prüfungsteilen sind den Prüfungsteilnehmern angemessene Pausen zu gewähren.
- 5.6. Im praktischen Teil (DV-AFuG, Anl. 2, 1.4) sind innerhalb der Prüfung zwei Versuche zulässig. Mehrdeutige oder unleserlich geschriebene Zeichen sind als Fehler zu werten.
- 5.7 Korperbehinderten, die infolge ihrer Behinderung gegenüber anderen Prüfungsteilnehmern wesentlich benachteiligt sind, können ihrem Leiden entsprechend angemessene Erleichterungen gewährt werden.
- 5.8. Die Prüfungsbögen sind spätestens nach Ablauf der vorgeschriebenen Prüfungszeit einzusammeln und sogleich auszuwerten. Das Prüfungsergebnis (mit der erreichten Punktzahl) ist auf dem Prüfungsbogen zu vermerken.

6. Aufsicht

- 6.1. Das Ausfüllen der Prüfungsbögen ist durch mindestens ein Mitglied des Prüfungsausschusses zu beaufsichtigen.
- 6.2. Fragen von Prüfungsteilnehmern, die sich auf die Lösung der Aufgaben beziehen, sind von dem Aufsichtsführenden nicht zu beantworten.

7. Täuschungsversuche

7.1. Es sind geeignete Maßnahmen zu treffen, um Täuschungsversuchen von Prüfungsteilnehmern vorzubeugen.

Prüfungsteilnehmer, die unzulässige Hilfsmittel benutzen oder versuchen zu läuschen, können von der weiteren Prüfung ausgeschlossen werden. Dasselbe gilt für Prüfungsteilnehmer, die zu einem Täuschungsversuch eines anderen Prüfungsteilnehmers Beihilfe leisten. Der Beschluß über den Ausschluß eines Prüfungsteilnehmers ist vom Prüfungsausschuß einstimmig zu fassen und im Prüfungsprotokoll entsprechend zu vermerken. 7.2. Die Prüfungsteilnehmer sind vor der Prüfung auf diese Bestimmungen hinzuweisen.

8. Bewertung der Leistungen

8.1. Werden die in der Anlage 2 zur DV je Prüfungsteil angegebenen Punktzahlen erreicht bzw. wird die zulässige Fehlerzahl nicht überschritten, gilt der jeweilige Prüfungsteil als bestanden. Für richtige Teilantworten sind anteilige Bewertungspunkte anzurechnen.

8.2. In Zweifelsfällen, z. B. wenn in einem theoretischen Prüfungsteil die Mindestpunktzahl geringfügig unterschritten wird, kann der Prüfungsausschuß eine mündliche Nachprüfung vornehmen.

9. Ergebnis der Prüfung

- 9.1. Das Ergebnis der Prüfung lautet "bestanden" oder "nicht bestanden". Von einer Bekanntgabe der erreichten Punktzahlen ist abzusehen.
- 9.2. Das Ergebnis der Prüfung sowie das Datum sind auf dem Antragsformblatt des betreffenden Prüfungsteilnehmers zu vermerken. Der Vermerk über das Prüfungsergebnis ist vom Vorsitzer zu unterschreiben.
- 9.3. Über jede Prüfung ist eine Niederschrift (Formblatt 946 169 000) zu fertigen, die folgende Angaben enthalten muß:

Tag und Ort der Prüfung,

Namen der Profe-

Namen der Prüfungsteilnehmer, jeweils beantragte Klasse.

Prùfungsergebnisse in den einzelnen Prùfungsteilen, Wiederholungsfristen.

Die Niederschrift ist von allen Mitgliedern des Prüfungsausschusses zu unterschreiben.

- 9.4. Die in den einzelnen Prüfungsteilen erreichten Punktzahlen sind weder auf dem Antragsformblatt (siehe 9.2) noch auf der Niederschrift (siehe 9.3) zu vermerken.
- Nach Abschluß der Pr
 üfung gibt der Vorsitzer den Pr
 üfungsteilnehmern das Ergebnis der Pr
 üfung bekannt.
- 9.6. Die vom Vorsitzer zu bestimmende Frisi für die Wiederholungsprüfung richtet sich nach dem Prüfungsergebnis und sollte nicht weniger als zwei Monate, aber nicht mehr als vier Monate betragen.
- 9.7. Bewerber für die Genehmigungsklassen C und A sind auf folgendes hinzuweisen: Bei Erreichen der Mindestpunktzahl für die Genehmigungsklasse A oder B wird in der Genehmigungsurkunde vermerkt, daß der Prüfungsteil "Technische Kenntnisse" für die Klasse A oder B (nach erreichtem Prozentsatz in diesem Prüfungsteil) erfüllt ist. Bei Zusatzprüfungen ist sinngemäß zu verfahren.

Hierdurch wird nachgewiesen, daß bei einer später beantragten Zusatzprüfung die Leistungen für diesen Prüfungsteil bereits erbracht sind.

9.8. Den Prüfungsteilnehmern ist eine Mitteilung nach dem Muster der Anlage 7 auszuhändigen.

10. Genehmigungsurkunde

Die von der Prüfungsbehörde vorbereitete Genehmigungsurkunde ist, nachdem das Rufzeichen eingetragen wurde, vom Vorsitzer zu vollziehen und dem Prüfungsteilnehmer möglichst sofort nach bestandener Prüfung auszuhändigen oder spätestens 14 Tage nach der Prüfung von der Genehmigungsbehörde dem Prüfungsteilnehmer zu übersenden.

11. Prüfungsunterlagen

Nach Abschluß der Prüfung leitet der Prüfungsausschuß die Prüfungsunterlagen mit den notwendigen Vermerken einschließlich der Prüfungsarbeiten und der Prüfungsniederschrift der Prüfungsbehörde zu.

Antragstellung

Lt. § 2 der DV-AluG ist "der Antrag auf die Zulassung der Prüfung für den Erwerb der Amateurfunkgenehmigung ... schriftlich unter Angabe des Geburtstages und -inhres, der Staatsangehörigkeit und der Klasse, für die die Genehmigung ausgestellt werden soll, sowie des genauen Standortes der vorgesehenen Amateurfunkstelle an die Oberpostdirektion zu richten, in deren Bezirk der Antragsteller seinen gewöhnlichen Aufenthalt hat. Dem Antrag ist ein Führungszeugnis ... beizufügen mit einem Ausstellungsdatum, das nicht länger als drei Monate zurückliegt. Der Antrag eines Minderjährigen bedarf der Einwilligung seines gesetzlichen Vertreters." Nach Abschnitt 1 der VwAnw DV-AFuG wird solch ein bei der zuständigen Oberpostdirektion eingehender Antrag daraufhin geprüft, ob die Angaben vollständig und die Genehmigungsvoraussetzungen erfüllt sind. Bei Antragstellern unter 18, aber mindestens 14 Jahren besteht kein Rechtsanspruch auf Zulassung zur Prüfung. Über die Zulassung zur Prüfung entscheidet die OPD als Prüfungs- und Genehmigungsbehörde. Ein Ablehnungsbescheid (z. B. infolge Bedenken wegen schwerer oder wiederholte: Vergehen gegen Strafgesetze oder wegen Vergehen gegen § 15 des Gesetzes über Fernmeldeanlagen) ist mit einer Rechtsbehelfsbelehrung zu versehen. Der Zulassungsbescheid soll dem Antragsteller innerhalb von vier Wochen nach Eingang des Antrags zugeschickt werden. Außerdem erhält der Antragsteller ein Exemplar der "Bestimmungen über den Amateurfunkdienst" kostenlos übersandt.

ACHTUNG!!

Der Leiterplatten- und Layoutservice aus Dresden!

Die Firma CMI bietet allen interessierten Funkamateuren,

Computerclubs und Elektronikern Leiterplattenherstellung

zu Festpreisen

- einseitig ($10 \times 10 \text{ mm} = 0,10 \text{ DM}$)
- zweiseitig

 $(10 \times 10 \text{ mm} = 0.14 \text{ DM})$

nicht durchkontaktiert, gebohrt, Pb/Sn angeschmolzen, maßgefräst,

Entwicklung von Layouts nach Ihrem Schaltplan und Ihren Maßangaben (auch SMD) in ein- und mehrlagigen Platinen.

Die Ausgabe erfolgt auf

- Disc 5.25": Formate Gerber, SM 1 000
- Filme, Folien, Plotterzeichnung
- Preis je Pin 1,00 DM

Programmieren von

- GAL's 16V8 und 20V8 (programmierbare Logikschaltkreise)
 - nach Vorlage des Logikplanes
 - als ASCII-Datei im JEDEC-Format auf 5.25" Disc²
 - Preis ie Gatter 0.50 DM zuzüglich Preis für GAL
- EPROM's 2716 bis 27011

- nach Ihrem Master-EPROM
- nach Ihrer Datei im ASCII-Format auf 5.25" Disc²
- Preis pro KByte 0,50 DM
- Löschen von EPROM's (1,00 DM)

Bauteilversand von

- TTL, LS-TTL, CMOS, FAST, HCT und andere auf Anfrage
- Micro's (Z 84 C . . u. a.)
- statische und dynamische RAM's
- u. v. a.

Unverbindliche Lieferzeit aller Aufträge innerhalb 8 Tagen! Aufträge werden nur schriftlich entgegengenommen.

²auch 3.5" Disc

Dresden, 8030

COMMERCIAL METAL **INSTRUMENTS** Inh. U. Lorenz Franz-Lehmann-Straße 29 Hh.

Bauteile *PC-XT/AT* **SCI** Komplettanlagen IG ATACOM PF 48 O -7022 LEIPZIG

Verkauf

Original IBM-XT/portabel-Computer: 640 k Memory, integr. 40 MB-Harddisk, 51/4"-Memory, integr. 40 MB-Harddisk, 5 1/a"-Laufwerk, Bernsteinmonitor, Tastatur; RS 232-Karte, CGA-Karte, Druckadapter-232-Name, CGA-Karte, Druckadapter-karte; Spewry-Farbmonitor, Logitec-Matrix-printer; DOS 4.01, div Software wie Afu-progr; 2. Reservelaufwerk 5 1/4" für 2.200,-DM. G. Poh, DK4UV, Bensheimer Ring 10B, W-6710, Frankenthal, Tel 06233-6.27.89

Atari XL/XE nur zum Spielen? Verk. billig Stopuhrpr. RTTY-Pr., FAX-Pr. (eigene Eni-wicklungen), Info gegen Rückumschlag. Loebel, Beethovenstr. 84. 0-9071 Chem-

Verkaufe EO 174 A (Eigenbau mit Original-teilen) voll funktionsfähig und datenhaltig. Angebote bitte an Lutz-Chr. Wille, Nexo-Ring 16, Rostock 22, 2520

Verkaufe digit. Kapazitätameßgerät 0,1 pF – 100 000 µF, neuwerlig 270 DM. T. Bubbe, Platz der Einheit 4, Kirchmöser,

Ankauf

Suchen (evtl. auch Tausch) Programme für den KC 85/4. möglichst COM-Programme. Schenk, Nr. 25, Friedrichswalde, 8301

Gilt immer: Suche militärische Nachrichtenübermittlungs-, Sende- und Empfangsgeräte, Umformer, Zubehör, Unterlagen, Beschreibungen etc. und Teile

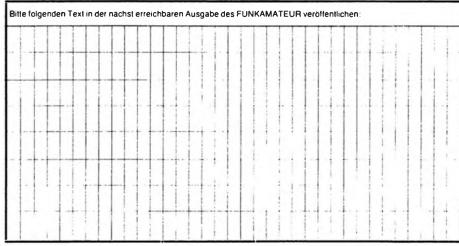
davon bis 1945. Angebote mit Preisvorstellung

Alfred Jung, Liststr. 20, Fach 14-38, Wurzen, O-7250

CB-Funk *** CB-Phone *** Satellitenempfang

Preisgünstig durch Direktkauf, bitte Gratisinfo anfordern! Handelsvertretung M. Schulz, Klausenerstr. 1, Kleinmachnow, 1532

Ihre Anzeige im FUNKAMATEUR? Kein Problem!


Mit diesem Vordruck sind Sie dabei! Ausfüllen, ausschneiden, abschicken an: Brandenburgisches Verlagshaus, Anzeigendienst FUNKAMATEUR, Storkower Str. 158, Berlin, O-1055

	hrift:	
nterschrift	Ich bestätige, daß ich innerhalb von 10 Tagen nach Rechnungserhalt zahle.	Datum

- Preis für private Kleinanzeigen: Druckzeile 4,90 DM + 14 % MWSt
- Preise für gewerbliche Kleinanzeigen (mit Rahmen): 1/16 Seiten s/w 180,- DM, 2farbig 230,- DM + 14 % MWSt

Bitte beachten: Preisangaben in Anzeigen müssen die MWSt bereits enthalten.

Softwareverkaufsanzeigen sind nur möglich, wenn die eigene Urheberschaft ausdrücklich vermerkt ist oder der Verkauf durch autorisierte Firmen erfolgt.

Bitte in gut lesbaren Groß- und Kleinbuchstaben ausfüllen. Auch für Satzzeichen und Leerräume ein Feld verwenden,

Die Alternative zum Betriebsfunk: Albrecht AE 4550.

Otto-Hahn-Straße 7 D-2077 Triffqu Tel.: 04154-80 72 86

ADX-54 D PRESELECTOR AKTIVE ANTENNE

unauffälige kleine Antenne für de VHF 6 m (30.54 MHz) Band Empfang. Das berondere an der ADX - 54 D Antenne ist die abstimmbare Vorselektion in 6 Teilbereichen, dadurch werden Großsignolprableme wirksom unterdrückt und sehr gulie Empfangsleistungen erzielt. Durch die äußerst genngen Austmaße gegenuber passiven Drahtantennen ist die Mantage der Antenne auch unter schwierigsten Bedingungen möglich. Technische Daten

50 54 MHz in 6 Beneichen schaltbar, die abstimmbare Vorselektion erfolgt im Ant Kopl. Versterkung: 16 - 18 dB; schaltbarer HF Abschwacher -26 dB; Impedanz: 50 Ohm. Kaazial: sämfliche Abstimmfunktio -20 dt; Impedant: 30 Uhm. Rodizol; sammiche Absimmituratio nen: faringasteueri über das Kouzialababi. Maße Antennenhapil. Barkit, 80±169±55 mm; Stablange: ca. 130 cm; Anschluß-buchsen: N. Norm, wassendicht; Maße Controlligenbi. BxHxT. 200x90x200 mm; Betriebsspannung: 221 V.

DM 398

9

and

Hannover,

90

0

ē

FC - 60 PR LW/MW/KW-Converter

Dei LW/MWKW - Converter FC = 60 PR renvandelt den vorhandenen VHF/UHF Scanner-Emplanger den vorhandenen MHFUHF Scanner-Erpfanger einfach und bequam zum "Weltempfanger" is sind die vollstandigen LWMWIKW-Bareiche und der untere VHF-Bereich, incl. 50 MHz, lucken-las und in Abhangigkeit vom jeweils vervendeten Scanner-Empfanger in allen Betnebsarten, wie AM, SSB, CW, FM emplangbar, unterheilter Presielet. Ein eingebauter, in 6 Bändern unterheilter Presielet.

Ein singebauter, in 6 Bändern unterteilter Preselek tar fiefert eine optimal abstimmbare Vorlekhon der gewünschten Bereiche. Ein hachtimeines, ara-festioneller Schaftly Ringmischer dient zer sausberen Signalumetzung, Hachste Frequenzstabilität wird durch Quarziteuerung erreicht. Frequenzbereicht: 50 kHz = 60 MHz in 6 Teilbereichen: Ausgangsfrequenz: 100.05 = 160 MHz/MF seitenbondenhig, Frequenzbeuerung: Quarz Toleranz max. 0,001 %: Verstarkung: 50 kHz = 60 MHz = 6 dB; Impedanz: 50 Chm, koazial: HF Abschwacher: 20 dB schaftbor; Betriebsspannung: 220 V. Netz, DC Ausgang 12 V. O.J. A hur ADX:60; Abmestung: B z.H. z. T. 200 z. 90 = 200, Anschlusse: KW — Pt-(UHF) Specker. (bei den meisten Scanner-Eimpfanger in Verweindung.

A. Lusere Gerate geben wir 24 Monate Qualifongarantel Umere auf Brichen sendung eines frankerten Elzésmechlegs, Katalog gegen S., DM in Briefmeren. Jivilchen Prospette erhalten Sic saam Sie

FACHHANDLER MIT UNSEREM PRODUKTPROGRAMM:

Corvad Electronic 14: 09622/30 0 nd ates Cowad Electronic Shipson

schaments 1 / Schurerblan 2 2000 Homburg 6 - 040/43656 oder 434699 fa: 040/4390925

Funitechnik Umpach Ernu Ruharai Sir 9 3400 Gornam Tel 0551/676/0

Funkaniogen Vert Exhboridamin 178 1000 Berth \$1 Tel: 030/4 45065 Fps 030/4146417 Charle H Hard ADDR Evodens Edebahir 70 5630 Remarked & 02191/80598

VH1 Imper Bradenia 65 4904 Enger Ed. 05224/269 fee: 05224/871

Daise Zonner Commissionis 5600 W. opero 1 0202:784024 Fas 0202/789237

Pada Drage Communication Soohe 11 21 1000 SA 1001 071:/6403164

150 kHz 30 MHz in 6 Bereichen schaftbar

FC 2P VIFILWING COMME

Verstarkung 16 18 dB 1 P 3 30 dBm-schaltbarer Abschwöcher - 20 dB Impedanz 50 Ohm, Kaassal Betnebsspannung: 220 V oder 12 -13,8 VDC

ADX - 2000 Aktive VHF/UHF Antenne

ADX - 30 D Aktive Preselector Antenne

ADX - 30 D Aktive Preselector A
De deale Emplangsantenne für den Innenraumbetrieb
Wenn die Außenantenne ADX -54 D o.a. nicht montent wer
den kann oder darf. Die Abstimmborkent für jede Frequenz
von 150 kNr - 30 MNr bringt eine sehr bohe Emplangsleishu
auch unter schwierigen Bedingungen. Die sogenannte Prese
lectamiritung liefert besonders bei anzumaten und
eine spürbare Verbesserung des Grabianahverhalten und
der Empfindlichtet
Technische Daten.

Die neue kleine einsungstante VM/FUMF Emplangsantense im Berech on 25.2000 MMz = rauscharmer, professioneller GaAs FET uns SMD-lechnologie Ein speziell entwickelter Amenienstrahler als mehrfach gestackte Sy. trem, some ein Sperritter für Frequenten unter 25 MHz, sorgen für apti-nore Bersebsegenschaften.

Techniche Detrei.

Echniche Detrei.

Frequenzbereich. 25 - 2000 MMz:

Verstorkung. 12 - 15 dB über 1000 MMz - 4 dB Rückgang.

Rauschmaß. 2,7 dB / b = 900 MMz.

I.P.3 - 30 dBm / b = 900 MMz. b2 = 905 MMz. 1dB Verst. Compression dBm: Impedanz. 50 Ohm. koozial. Betriebsspannung. 12 V DC, 300 mA Stromaulrahme: Anschlüßnarm Antennenkopf. N - Norm. Antennenge hause B = H = T - 120 = 80 = 55, witherungs: und wasserdichter ABS.

Ozuckgu/Bgehause und Innenschieringehause auf Weißblich, MF dicht. Antersessesbehoner. 20 cm Jackpossides. Destricktschliche. nenstablange ca. 70 cm (gekapselter Spezialstrahler)

ELECTRONIC

D 2100 Hamburg 90

Nederlande Benev. Doesen Electronic Schumptoor 58 NI 7901 EE Moog

\$ 05280'69679 Fg. 05280'222;

Poly Electronic Sprangierny 30 CH 8303 Basendari Ini 078368237 Fax 01/8369241

FC 50P on Amoreu bondconverter ADX-60 Anne America 10 kHz 60 MHz DM 248 DM 298 DM 198 NEU" JIM M-100 GOAS For Venverier 24 2150 AUT Low None Authorition for the Scorner DAI 198 Gazertstrafie 76 -Tel. 040/777554 - FAX 040/777554

IGS Electronic
Ing G Schmidbouer Ges in b H Millery 7 4 4041 Las/D = 0732/733178 Point Electronics Gos m b.H. Stumpergosse 41 43 A. 1060 Wien ₩ 0222/5970880

Wir suchen noch Fachhandelspartner im osteuropäischen Raum!

Hledame jesté společníky odborného obchodu v východoevropskych usemich!

Мы еще ищем компаньоны-специалисти в восточноверопенском рафоне!

Orwiech

ICHLE

Funk-center

BERLINS GRÖSSTES FACHGESCHÄFT

.. ietzt funkt's im ganzen Land . . .

MOBILFUNK

NEU DANITA MK III Mobillunkgerät

40 CH/FM, anmelde- u. gebührenfrei (CEPT.-Zulassung)

PC 404 Mobillunkgerät mit »Mikekompressor«

Albrecht AE 4550 Mobillunkgerät inkl. Selektiv-Tonrul

NEU Stabo XM 5000 Mobillunkgerät

Neu – mit »FMO« = elektronische Rauschunterdrückung, Nachtdesign **nur 368**F

Stabo XM 4000 Mobilfunkgerät 40 CH/FM, anmelde- und gebührenfrei

nur **305**:

Sonderangebot

Stabo SH 7500 40 CH/FM, 4 Watt, inkl. Tasche nur 189:

Stabo Beta

FM Reichweite his 300 m

HANDFUNK DER SPITZENKLASSE

Zodiac Shinwa P8000 -... das Super-Gerät

Stahlgehäuse, Mobil- oder Stationsbetrieb wahlweise

nur **468**=

WELTEMPFÄNGER

NEU SONY ICF-SW 7600 UKW-Stereo/VSB-LSB-regelbar

nur **478**=

National-Panasonic RFB 65 DA

nur **538**=

GRUNDIG Satellit 500

nur **778**-

STRESEMANNSTR. 92/BERLIN 61, KREUZBERG

DIREKT AM ANHALTER BAHNHOF

☎251 10 54

Elektronik - Schnell - Versand

großes Lager von aktiven u. passiven Bauelementen, wie: EPROMs, dRAMs, sRAMs, Micros, Transistoren, Optos,

Computer-Steckverbinder, Specials, Bastlersortimente, Bausätze, Satelliten-Empfangsanlagen, Computerhardware,

ständig SONDERANGEBOTE am Lager! ausführliche Preislisten anfordern bei:

SLY - electronic PSF 98 Berlin 1120

Vorschau auf Ausgabe 12/90

- "Dreibeinige" Spannungsregler in der Hobbypraxis
- · 6-Kanal-Infrarotfernsteuerung
- Einchiprechnertastatur
- AFE 12-Transceiver mit 7 MHz

FUNKAMATEUR

Redaktion:

Storkower Straße 158

O-1055 Berlin

Telefon: 430 06 18, App. 276/338/260

Fax: 4361092

Telex: 11 26 73

Dipl.-Journ. Harry Radke (Chefredakteur), Dipl.-Ing. Bernd Petermann, Y22TO (stelly. Chefredakteur/Amateurfunktechnik/-praxis), HS-Ing. Michael Schulz (Mikrorechentechnik/ Anfängerpraxis), Jörg Wernicke (Elektronik), Hannelore Spielmann (Gestaltung), Brigitte Wulf (Sekretariat), Heinz Grothmann (Zeichnungen), Frank Sichla (ständiger freier Mitarbeiter)

Klubstation: Y63Z

Manuskripte

Wir bitten vor der Erarbeitung umfangreicher Beiträge um Rückfrage am besten telefonisch - und um Beachtung der "Hinweise zur Gestaltung von technischen Manuskripten" Isiaha FUNKAMATEUR 11/88 oder bei uns anfordern).

Nach Manuskripteingang erhält der Autor Nachricht über unsere Entscheidung.

Herausgeber und Verlag:

Brandenburgisches Verlagshaus **GmbH**

Registrier-Nr.: 1504 Herstellung:

Markische Verlags- und Druck-Gesellschaft mbH

Nachdruck

im In- und Ausland, auch auszugsweise, nur mit ausdrücklicher Genehmigung der Redaktion und des Urhebers sowie bei deren Zustimmung nur mit genauer Quellenangabe.

Die Beiträge, Zeichnungen, Platinen, Schaltungen sind urheberrechtlich geschützt. Außerdem können Patentoder Schutzrechte vorliegen. Die gewerbliche Herstellung von Leiterplatten und das gewerbliche Programmieren von EPROMs darf nur durch von der Redaktion autorisierte Firmen erfolgen.

Die Redaktion haftet nicht für die Richtigkeit und Funktion der veröffentlichten Schaltungen sowie technischen Beschreibungen. Beim Herstellen, Veräußern, Erwerben und Betreiben

von Funksende- und Empfangseinrichtungen sind die gesetzlichen Bestimmungen zu beachten.

Bezugsmöglichkeiten:

Üter die Postzeitungsvertriebs-Amter oder über den internationalen Buch- und Zeitschriftenhandel

BRD: Kunst und Wissen, Erich Bieber OHG, Wilhelmstr. 4, PF 46, W-7000 Stuttgart 1: ESKABE GmbH, Kommissicns-Grossobuchhandlung, Gras. hofstr. 7b, W-8222 Ruhpolding: Georg Lingenbrink, Stresemannstr 300. W-2000 Hamburg 50; Verlag Harri Deutsch, Grafstr. 47, W-6000 Frankfurt/Main 90; Gustav Fischer Verlag. Wellgrasweg 49. PF 720 143, W-7000 Stuttgart 70

Berlin: Gebrüder Petermann GmbH, Kurfürstenstr. 111, W-1000 Berlin 30; HELIOS Literaturvertriebs GmbH. Eichborndamm 141-167, W-1000 Barlin 52 (nur Abo):

Osterreich: Globus-Verlagsenstalt GmbH, Höchstädtplatz 3, A-1206 Wien 20;

Schweiz: Freihofer AG, Postfach, CH-8033 Zürich

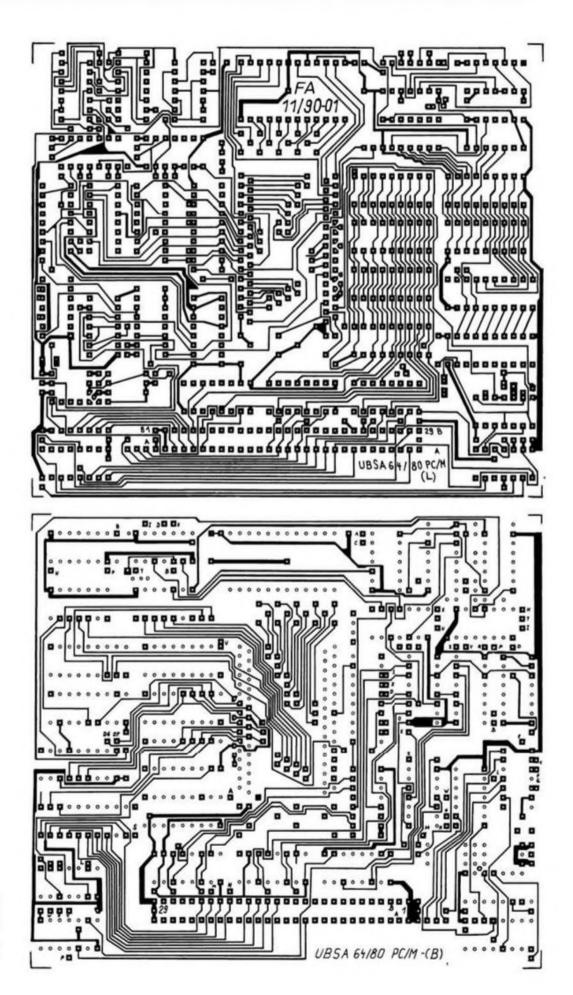
Bei Bezugsschwierigkeiten im Ausland wenden sich Interessenten bitte an das Brandenburgische Verlagshaus, Abt. Vertrieb, Storkower Str. 158, O - 1055 Berlin, Germany. Anzeigen:

Die Anzeigen laufen außerhalb des redactionellen Teils der Zeitschrift. Anzeigenannahme

- für Kleinanzeigen (Leseranzeigen) Anzeigenannahmestellen sowie Anzeigendienst (s. u.).
- für Wirtschaftsanzeigen Redaktion oder Anzeigendienst Brandenburgisches Verlagshaus, Storkower Str. 158, O-1055 Berlin.

Erschelnungsweise:

Die Zeitschrift FUNKAMATEUR erscheint einmal monatlich.


Bezugspreis:

Preis je Heft 2,50DM. Bezugszeit monatlich. Auslandspreise sind bei den Händlern zu erfragen. Anikel-Nr. (EDV) 582 15

Redaktionsschluß: 1. Oktober 1990.

Druckerei-Versand: 21. November 1990

Super-Bildschirmkarte für den PC/M

Zu unserem auf S. 540 dieser Ausgabe veröffentlichten Beitrag an dieser Stelle die Layouts der zugehörigen Leiterplatte (oben Leiterseite, unten Bestückungsseite). Wählen Sie, soviel Sie möchten!

Auf die Plätze, fertig, los:

Die große Völkner-5,-DM-Kεnnenlern-Aktion! \@LKN\R

Mit Ihrem Paket erhalten Sie zusätzlich den 516seitigen Volkner-Elektronik-Führer 1990 im Wert von 3. DM. Gratis für Sie!

Tragen Sie die Anzahl der gewünschten Artikel ein, schreiben Sie Ihren Namen und Anschrift in das dafür vorgesehene Feld, und schicken Sie die ganze Seite an:

Völkner electronic GmbH & Co KG Postfach 53 20 3300 Braunschweig Telefon (0531) 87 62-0

Mindestbestellwert: 15,- DM. Die Versandkosten trägt Völkner electronic. Lieferung gegen Nachnahme.

Vomame, Name			

PLZ. Wohnort

Straße, Hausnummer