
ELECTRIQUE

DEVELOPMENT AND MESEANCH LIBRAT AMERICAN TEL, & TEL 195 B'WAY, HENY YORK.

SOMMAIRE

A. CHAULARD

A propos de la propagation des ondes très courtes dans les tissus vivants.

R. BUREAU

Onze mois d'observation des atmosphériques.

S. et A. de HATTOWSKI

La télégraphie le long des réseaux de distribution de la lumière et de l'énergie.

J. GROSZKOWSKI

Détermination du rendement d'un générateur à lampes par la méthode thermométrique.

Chez les amateurs.

Congrès de T. S. F. à Paris, Pâques 1925.

Chronique du mois -:- Informations -:- Analyses

Étienne CHIRON, Éditeur

L'ONDE ÉLECTRIQUE

Revue mensuelle publiée par les Amis de la T

ABONNEMENT D'UN AN

30 fr. 35 fr.

Etienne CHIRON

40. RUE DE SEINE, PARIS

PRIX

DU NUMÉRO : 3 francs Tél : FLEURUS 47-49

SOCIÉTÉ DES AMIS T.

Adresser la correspondance administrative | Pai ment des cotisations a M. ATTHALIN, trésorier et technique à

M. MESNY, secrétaire général 21, rue lacob, Paris-6º

Banque de Paris et des Paus-Bas 3. rue d' Antin, Paris-2º Compte de chèques postaux nº 697-38

Les correspondants sont priés de rappeler chaque sois le numéro d'inscription porté sur leur carte. C IANGEMENTS D'ADRESSE Joindre 0.50 à toute demande.

COMITÉ

MM.

- † Georges LEMOINE, président de l'Academie des Sciences
- † L.E BERTIN, vice-président de l'Academie des Sciences.
- Alfred LACROIX, secrétaire perpétuel de l'Académie des Sciences.
- Emile PICARD, secrétaire perpétuel de l'Académie des Sciences.
- Henri DESLANDRES, ancien président de
- l'Académie des Sciences. BLOT-GARNIER, président de l'Union des Horlogers de France.
- Henri BOUSQUET, président du Conseil d'administration de la Compagnie Générale de Télégraphie sans Fil.
- Gabriel CORDIER. président de l'Union des Industries métallurgiques et minières. J. DAL PIAZ, président du Conseil d'administration de la Compagnie Générale

PATRONAGE

- S. DERVILLE, président du Syndicat des Chemins de fer de Ceinture de Paris
- Charles FERRAND, président de la Chambre syndicale des Constructeurs de Navires.
- Hubert GIRAUD, administrateur-délégué de la Société Générale de Transports Maritimes à Vapeur.
- Société des Ingénieurs Coloniaux.
- J. LE CESNE, président de l'Union Coloniale française
- Raynald LEGOUEZ, président de l'Union des Syndicats de l'Electricité.
- A MESSIMY, ancien ministre.
- Denis PÉROUSE, président du Syndicat des Armateurs de France
- J-B. POMEY, inspecteur général des Postes et Télégraphes.

De plus en plus rare!

Vous ne verrez bientôt plus un laboratoire sans casque Brown et un salon sans hautparleur Brown.

Transatlantique.

Pourquoi?

Parce que le système inimitable de diaphragme ampli-

ficateur à cône assure au technicien une sensibilité de réception inimaginable, à l'amateur de bonne musique une netteté et un volume de son incomparable.

S. E. R. BROWN, 12, rue Lincoln, PARIS-8°

Notice O franco

A PROPOS DE LA PROPAGATION DES ONDES TRÈS COURTES DANS LES TISSUS VIVANTS

Par le Commandant CHAULARD

SOMMAIRE

L'emploi des ondes très courtes, sous forme d'ondes stationnaires, permettrait d'obtenir une certaine localisation des effets de haute fréquence à l'intérieur de semi-conducteurs tels que les tissus vivants.

Peut-être faut il rapprocher les actions thérapeutiques qu'on peut aussi envisager des résultats obtenus par M. Lakhowsky dans ses essais de traitement des tumeurs cancereuses du Pelargonium zonatum (voir Radio-Électricité, numéro du 25 octobre 1924). Les tumeurs, comparables au cancer des animaux, étaient produites par inoculation du Bacterium tumefaciens. Soumises pendant un certain nombre de séances à l'action d'ondes de très grande fréquence, elles se nécrosaient puis finalement disparaissaient. Les organes sains étaient restés intacts, la plante complètement guérie avait retrouvé toute sa vigueur alors que l'intervention chirurgicale n'avait pu empêcher la récidive

L'étude de la propagation d'ondes planes dans un semi-conducteur est facile; elle se déduit immédiatement des équations de Max well; c'est maintenant un problème classique. Mais si les résultats en sont bien connus, peut-être n'est-il pas inutile d'insister sur les conséquences auxquelles ils conduisent lorsque le semi-conducteur est un tissu vivant et que la longueur d'onde est de l'ordre de quelques mètres.

Qu'indique la théorie?

Elle montre d'abord que dans un semi-conducteur la vitesse des ondes n'est plus qu'une fraction de la vitesse de la lumière. Le coefficient de réduction est :

$$\sqrt{\mu \epsilon} \left(\frac{1 + \sqrt{1 + \frac{16\pi^2 \sigma^2}{\epsilon^2 \omega^2}}}{2} \right)^{\frac{1}{2}}$$

où μ est la perméabilité du milieu, ε sa constante diélectrique, σ sa conductibilité en unités électrostatiques.

L'influence de la conductibilité est très sensible aux fréquences ordinaires (7 > 100 mètres), même dans le cas de l'eau de mer dont les propriétés sont voisines de celles des tissus vivants ($\epsilon = 80 - \sigma = 9.10^{\circ}$)

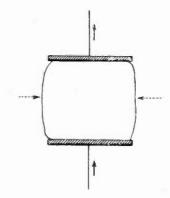
Mais bien qu'alors le coefficient de réduction soit considérable, la longueur d'onde de la propagation d'ins le semi-conducteur est toujours grande. Aussi, dans un tel milieu pris sous faible épaisseur, n'observe-t-on pas d'ondes stationnaires : il se comporte simplement comme un mauvais conducteur.

Quand la fréquence devient très grande, le rôle de la conductibilité s'atténue, mais la réduction de longueur d'onde est encore très forte en raison de la valeur élevée de la constante diélectrique. Pour une onde acrienne de 10 mètres, la longueur d'onde est réduite à trois mètres, elle est d'environ o m 27 pour une onde de 3 mètres. On arrive donc à cette conclusion : les ondes courtes que l'on produit maintenant avec une énergie notable permettent l'entretien d'ondes stationnaires dans un milieu tel que l'eau de mer pris sous faible épaisseur.

Il s'agit là d'ailleurs, en raison de l'amortissement, d'un type spécial d'ondes stationnaires, analogues à celles qu'on rencontre dans l'étude de la propagation d'un courant alternatif le long d'une ligne : les maxima d'amplitude vont progressivement en décroissant.

Ces résultats semblent applicables en thérapeutique. On a déjà introduit dans ce domaine sous le nom de « diathermie », un procédé qui permet, grâce aux courants de haute fréquence, de répartir la chaleur dans toute la masse des tissus de l'organisme.

Mais l'idéal scrait souvent de ne provoquer l'action thermique que dans les régions profondes, la ou est l'organe malade, là où elle peut exercer une action salutaire. Or, la création d'ondes stationnaires donne une solution approchée du problème. La superposition d'ondes stationnaires permettrait même théoriquement de le résoudre d'une façon aussi satisfaisante que possible, puisqu'une répartition périodique quelconque est toujours décomposable en une action sinusoidale et en ses harmoniques.


Toutefois, il ne s'agit là que de vues d'ensemble. Un examen détaillé révèle de réelles difficultés

D'abord en raison des notables différences de conductibilité que presentent les divers éléments entrant dans la composition d'un organisme vivant, il y aurait toute une technique délicate à mettre au point.

En fait, et il y a là une seconde difficulté, l'amortissement joue le rôle capital. Est-il trop fort, l'onde réflechie est par trop affaiblie pour interférer avec l'onde directe et le phénomène n'est plus sensible. Or l'amortissement est facile à calculer (1). Il est égal à 0,10 pour des

(!) Hest donne par la for oule
$$\frac{1}{\epsilon} \frac{O}{\sqrt{2}} \left(\sqrt{1 + \frac{10 - \sigma}{\epsilon} - 1} \right)^t$$

ondes aériennes de 10 mètres, à 0,16 pour des ondes de 3 mètres. Ce sont là des valeurs élevées puisque, pour l'onde de 3 mètres, l'amplitude serait réduite à une fraction $\frac{1}{e}$ (e=2,718.) de sa valeur initiale après un parcours de 6 centimètres; on ne pourrait donc observer d'ondes stationnaires que sous des épaisseurs de quelques centimètres. Cette épaisseur atteint-elle 20 à 30 centimètres, il faut recourir à des ondes aériennes de l'ordre de 30 mètres et la localisation dans les tissus est moins prononcée. Les résultats seraient d'ailleurs beaucoup plus favorables si la conductibilité était dix fois moindre, ce qui ne nous fait pas encore sortir de l'échelle des conductibilités des tissus vivants; alors, dans les deux cas envisagés ci-dessus, les amortisse-

ments ne seraient plus que 0.03 et 0,05. Mais ces valeurs sont encore fortes et limitent les applications.

Il faut ensin remarquer que les ondes planes, même pour des longueurs d'onde de quelques mètres, ne pourraient être employées qu'avec un dispositif encombrant et qui serait à étudier tout spécialement.

Il est bien plus commode de procéder comme on le fait actuellement en plaçant le corps à traiter entre les armatures d'un condensateur. Si l'onde est courte et le corps pas trop épais, on peut obtenir une double concentration : dans la longueur d'abord, en vertu de la propagation des ondes le long du circuit qui comprend comme partie intégrante le corps lui-même, et, aussi, en profondeur, perpendiculairement à la direction du courant. Ici l'action diffère un peu de la pénétration par ondes planes, mais les résultats sont du même ordre de grandeur.

Au reste, dans les cas simples, les phénomènes sont accessibles au calcul et dans les cas complexes l'expérience peut venir au secours de la théorie défaillante : on pourrait par exemple réaliser un milieu semi-conducteur analogue électriquement à celui qu'il y a lieu d'étu-dier, mais comprenant de l'albumine en solution convenable; celle-ci se coagulerait sous l'effet de la chaleur et révèlerait la répartition du courant.

Peut-être est-il permis de rapprocher ces effets de localisation des ondes dans les tissus, des faits signalés tout récemment par M. Lakhowsky. Cet auteur est parvenu, en utilisant des émissions faites sur deux mètres de longueur d'onde, à traiter avec succès les tumeurs cancéreuses d'une plante : le Pelargonium zonatum.

Il voit là une confirmation des vues qui l'ont guidé vers l'emploi des hautes fréquences. Pour lui en somme, dans les phénomènes vitaux, tout est radiation. Et en particulier l'action cellulaire : on la renforce par la résonance en soumettant la cellule à des oscillations appropriées

Mais il y a entre cette conception d'une action vibratoire d'ordre excessivement élevé et les résultats obtenus à l'aide de fréquences relativement basses une contradiction qui n'a pas échappé à M. Lakhowsky. Aussi, imagine-t-il que ce sont des harmoniques supérieures de ses émissions qui provoquent l'effet salutaire. Cette conclusion peut sembler quelque peu surprenante.

Il s'agirait, dans la conjoncture, d'harmoniques d'ordre 10¹⁰ pour le moins, d'après M. Lakhowsky lui-même. Arrivé à cet ordre de grandeur, on peut se demander qu'importent quelques zéros de plus et pourquoi des ondes de 100 ou 300 mètres qu'il est facile de produire avec une grande énergie ne seraient pas tout aussi efficaces.

Sans méconnaître l'importance des mouvements vibratoires dans la vie cellulaire et le rôle probablement très grand que doit jouer l'électricité dans ce domaine de l'histologie où elle ne semble encore que bien peu étudiée, il ne nous paraît y avoir accord entre des idées directrices et les faits observés que si, dans les expériences ci-dessus relatées, les émetteurs envoient, mais tout à fait indépendamment des harmoniques, des rayons que nous ne connaissons pas. Sans aller jusqu'à l'intervention des radiations encore inconnues, peut-être les faits observés s'expliquent-ils d'une façon beaucoup plus simple.

Ne seraient-ils pas liés à la répartition des ondes stationnaires qui très probablement prennent naissance dans le végétal mais surtout dans la région malade? Une différence de conductibilité entre les tissus sains et les tissus malades; une sensibilité différente à l'action de la

chaleur, ou encore une dissérence dans l'activité fonctionnelle que provoque l'excitation électrique, peuvent sans doute être envisagées. Et que tous ces effets créent dans la partie malade une zone de désagrégation du tissu, l'emplacement de la zone tuméfiée, sa forme, peuvent rendre compte de la répartition du courant et de la réduction progressive qu'opèrent les ondes sur la tumeur.

Sans doute un examen plus approfondi serait nécessaire. Il exigerait la connaissance de données numériques que nous ne possédons pas. Mais à l'appui de ces vues, on peut citer certains faits. C'est ainsi que d'après le tome IV des Tables annuelles des constantes et données numériques (Gauthier-Villard, 1913), la conductibilité des feuilles étiolées est environ trois fois plus forte que celle des feuilles normales. D'autre part chez les animaux, la cellule cancéreuse passe pour être détruite plus facilement par l'action de la chaleur que la cellule saine.

Enfin, en ce qui concerne la propagation des ondes le long de la tige d'un végétal, il est facile de voir que la longueur d'onde est très fortement réduite et l'amortissement considérablement accru lorsque le diamètre de la tige est très faible; ce serait dans la région cancéreuse plus large et probablement plus conductrice que les ondes stationnaires auraient une certaine importance.

Quoi qu'il en soit, il ne paraît pas impossible d'expliquer les faits observés par des actions simples qui se rattachent à la répartition d'ondes stationnaires dans les tissus vivants. Ces explications ne font d'ailleurs que ramener les faits nouveaux à d'autres tout aussi obscurs mais qui nous sont plus familiers. Elles n'ont plus malheureusement aucune portée philosophique. Elles perdent par cela même leur originalité, mais elles sont plus conformes aux faits connus.

Aussi bien cette discussion est secondaire : la thérapeutique est appelée à retirer un grand bénéfice de l'emploi d'ondes courtes. On conçoit déjà un effet général d'excitation dù à l'onde qui passe, un effet local dù a l'onde stationnaire. Mais on peut aller plus loin. On peut obtenir des effets plus localisés encore. Des ondes aériennes entretenues de l'ordre du décimètre, ou même plus courtes, qu'on est à la veille d'obtenir à l'aide des tubes à vide, seront réduites a quelques millimètres dans le semi-conducteur; malgré la valeur élevée de leur amortissement, on peut déjà envisager des effets de concentration en des points situés à l'intérieur des tissus grâce à l'emploi de lentilles ou de miroirs. Et peut-être y a-t-il là des procédés curatifs d'un grand avenir.

L. CHAULARD.

ONZE MOIS D'OBSERVATION DES ATMOSPHÉRIQUES

(Novembre 1923 à octobre 1924) (1).

par R. BUREAU

Chef de la Section des transmissions à l'Office National Météorologique

(Suite)

V. — Les relations entre les atmosphériques et les phénomènes météorologiques. — L'ensemble des constatations expérimentales faites pendant près de onze mois (15 novembre 1923 au 30 septembre 1924) peut être classé comme suit :

A. — Courants de perturbations météorologiques à propagation rapide.

Les atmosphériques sont intimement liés aux phénomènes météorologiques et aux courants de perturbations.

Dans les courants de perturbations météorologiques rattachés au front polaire principal et dans tous les courants à vitesse assez rapide et à noyaux de variation barométrique bien caractérisés, les atmosphériques ont un caractère nettement migrateur et présentent des directions de maxima et de minima bien déterminées, sauf au moment même du passage des zones de décharges au-dessus du poste récepteur.

Les atmosphériques apparaissent avec les fronts froids et les noyaux de hausse barom'trique et sont d'autant plus violents que l'invasion d'air polaire est plus vigoureuse. Ils présentent des recrudescences avec les fronts froids secondaires.

Ils disparaissent toujours avec les fronts chauds (quelques centaines de kilomètres en avant de la trace du front sur le sol)

Les atmosphériques préexistant disparaissent avec l'arrivée des fronts doubles, mais de nouveaux atmosphériques apparaissent aussitôt.

Les atmosphériques sont renforcés par l'ascension des fronts froids sur les montagnes

Ils sont également renforcés par l'échaussement des continents

^(†) Note présentée à la troisième Commission du Comité français de Radioté légraphie scientifique. Séance du 31 octobre 1924 (Voir L^i Onde Flectrique, janvier 1925, p. 31)

(d'où les variations constatées avec la latitude et la situation géographique).

B. — Courants de perturbations météorologiques à propagation lente

Dans les régimes météorologiques à pripagation lente où les noyaux de variation barométrique sont étalés, à demi-période très allongée et floue, et en particulier dans beaucoup de courants du sud-ouest, les atmosphériques n'apparaissent que lorsque certaines conditions de pression et de température sont réalisées. Il en résulte une localisation très nette dans le temps. On ne les observe qu'aux environs des mois de mai et d'août et seulement entre 13 h et 21 h.

· Ils sont alors d'une violence extrême, apparaissent partout en même temps sur de vastes espaces, s'observent également dans tous les azimuts et sont stagnants. Une telle situation peut se prolonger pendant plusieurs jours

L'établissement d'une période ainsi troublée se produit toujours à la suite d'une invasion d'atmosphériques à caractère migrateur, invasion correspondant à la propagation d'un front froid accompagné de discontinuités marquées.

Le retour à une période calme ou entrecoupée d'atmosphériques migrateurs peut se produire soit à la suite d'une modification des conditions de pression indispensables à la période troublée (extension de l'anticyclone atlantique au S. W. de la France qui donne dans cette région un faux noyau de hausse), soit à l'arrivée d'un puissant noyau de baisse barométrique.

C. — Caractères généraux des atmosphériques. Variations dynamiques et périodiques.

Alors que les précipitations, les grains, les orages sont des phénomènes accompagnant les fronts d'une manière souvent sporadique et irrégulière, les atmosphériques apparaissent ou disparaissent fatalement en même temps qu'eux et sur toute la longueur de leur développement. Autrement dit, la plupart des météores sont un caractère accidentel des perturbations météorologiques; les atmosphériques en sont un caractère spécifique. Les variations accidentelles des atmosphériques sont directement commandées par les variations dynamiques de l'atmosphère.

Ces relations s'observent en toute saison, mais avec des variations d'intensité d'une saison à l'autre, les fronts froids étant plus actifs en été qu'en hiver.

La variation diurne est analogue : les fronts étant plus actifs dans l'après-midi qu'au début de la matinée.

A cette variation diurne se superpose une seconde variation apparente et qui est due à une meilleure propagation des ondes amoities la nuit que le jour. De même, si la variation annuelle présente deux maxima (vers mai et août), et non un seul, ce phénomène est dû à la variation annuelle des causes météorologiques qui se superpose à la variation annuelle simple des atmosphériques (1).

VI -- Quelques exemples — Un choix d'exemples isolés et à des époques différentes est susceptible de frapper l'imagination. J'ai cependant préféré donner ici l'analyse succincte d'une période ininterrompue de dix jours. La période choisie est celle du 16 au 25 septembre 1924. Pour simplifier l'expose, les courants de perturbations se rattachant au front polaire principal seront appelés courants dépressionnaires par opposition aux courants du sud-ouest.

⁽¹⁾ L'explication physique de ces phenon enes ne fentre pas dans le cadre de fetude présente. Il y à toutefois lieu de noter que toutes ces conclusions d'ordre purement experimental confirment absolument le fapprochement qui à déjà été fait à plusieurs réprises et sous diverses formes en Amérique, en Allemagne et en France entre l'instal·lite verticale de l'atmosphere et les atmospheriques (voir par exemple L-W Austin Bulletin du Conseil rational des rechreches 1924 n. 41, S. Wiedenhoff, Jahrbuch octobre 1921 t. 18 p. 212 f. Herath. An ales de l'Orser vatoure de Lindenberg. 1922 t. 14 p. 110. R. Bereau (E.R., 1924 t. 175 p. 162).

Aucun brouillage n'est signale en France

La direction des atmospheriques a Paris varie de L-W (1 h) a ENE-WSW 13 h et a NF-SW (18 h et 22 h

Rares broudlages vers 2 h a Paris et Avord, vers 5 h a Toulouse et 9 h a Angers Direction a Paris N.E.S.W.

Quelques brouillages vers i h a Paris et Avord

Nombreux et violents brouillages entre 18 h 30 et 21 h dans les memes localités (la plupait des écontes cessent dans les autres postes après 18 h, ce qui explique qu'ils n'ont rien signale

La direction moyenne des atmosphetiques est toute la journee a Paris NI -S W. Un minimum dans la direcJournee du 16 septembre

Deux courants de perturbations, un courant depressionnaire d'ouest et un courant du sud-ouest. Le noyau de hausse du courant depressionnaire est tres etroit et resserre entre deux noyaux de baisse.

Journee du 17 septembre

Memos courants de perturbation Une hausse de regime sud-ouest traverse la France du S-W au N-E et concorde sensiblement avec le passage d'une hausse du regime depressionnaire.

Journee du 18 septembre

Memes courants de perturbations. Mais une forte hausse du regime depressionnaire apparaît le matin sur les îles britanniques et sa partie sud balaye la France qu'elle traverse douest en est (Son passage à Paris a lieu a 18 h 45) Elle est prolongée par une hausse du courant du sudonest.

• Un front froid tres net accompagne cette hausse et on l'observe a 18 h entre

Journee calme due a l'influence predominante des noyaux de baisse. Les variations dans la direction des atmospheriques correspondent au mouvement des noyaux de hausse barometrique.

Les brouillages correspondent au passage simultane des hausses barometriques des deux courants de perturbation

Premiere serie de brouillage due a la variation diurne

La deuxième serve n'apparait qu'avec le front froid.

Les broullages plus importants que les precedents correspondent à la forte invasion d'air polaire et a la discontinuite marquee qui traverse la France

Il n'y a pas de precipitations Il y a pourtant des atmospheriques.

⁽¹⁾ Joutes les heures sont exprimées en temps moven de Greenwich

Noir, pour plus de détails le Bulletin quotidien d'études de l'Office national météorologique

tion NS est remplace par un maximum dans la même direction à la fin de la journée (21 h).

Vers i h, brouillages à Paris, Avord et Tours. Direction à Paris E W et NE-SW.

Calme dans la matinee.

Apparition vers 12 h 30 d'atmosphériques violents a Paris Ils augmen-

tent jusqu'a 21 h

Brouillage important constate dabord a Bordeaux et Toulouse vers 15 h. puis a Avord, Châteauroux, Tours, Paris vers 18 h. A 13 h. direction des atmospheriques à Paris. NE-S.W. A 18 h, même direction pour le maximum; les atmospheriques sont nuls dans la direction NW-SE alors qu'ils augmentent dans la direction NE-S.W. A 21 h 30 la direction du maximum est E.W. (Voir fig. 3 a.)

Journee du 18 septembre (suite).

Amiens (14°) et Compiègne (19°) entre Bonn (13°) et Treves (19°), (fig. 4a).

On observe le passage à Paris à 18 h 45 (voir diagrammes de la Tour Eiffel, fig. 4b et 4c et diagramme de Dusseldorf Les discontinuités sont indiquées par la lettre D)

Journee du 19 septembre

Le noyau de hausse signale la veille s'éloigne vers l'est. Sa partie sud est encore sur la France.

Arrivee d'un noyau de baisse à l'ouest de la France.

Un systeme nuageux appartenant au courant du sud ouest apparaît sur le golfe de Gascogne et envahit la France par le sud-ouest à partir de 12 h. Il est lie à une discontinuité tres marquée.

Pendant ce temps, la baisse du courant depressionnaire s'avance par le nord-ouest. Comme les variations barometriques dues au courant dépressionnaire sont beaucoup plus marquees que les variations faibles et lentes du courant du sud-ouest, le prolongement de la baisse du premier courant masque dans le sud-ouest de la France la hausse du courant du sud-ouest. La perturbation du courant du sud-ouest n'en continue pas moins sa propagation vers le nord-est ainsi que le montre, par exemple, l'examen des nuages (Voir tigure 3 b)

Brouillages assez faibles produits par la hausse qui s'éloigne (directions concordantes).

Coincidence du calme et du noyau de baisse.

Coincidence entre la propagation du front froid du courant sud-ouest et celle du noyau d'atmospherique.

Action simultanee et inverse en un même point d'un noyau de baisse et d'un noyau de hausse appartenant a deux courants differents de perturbations

Journée du 20 septembre.

Les atmospheriques continuent a augmenter pendant la nuit (jusqu'a 2 h 15 a Paris). Ils provoquent des brouillages a Avord et au Mont Valerien. Disparition à peu pres complete dans le courant de la matinee Dans la region parisienne, reapparition d'atmospheriques nombreux violents à 13 h. Ils sont encore tres nombreux et en augmentation a 18 h.

A 21 h, diminution caracterisee. — Peu de brouillages signales en France (Bordeaux en signale a 15 h 30)

Direction des atmospheriques a Paris EW et NE-SW sans modifications dans le courant de la journee Le courant de perturbation du sudouest qui se meut tres lentement continue a faire sentir son influence sur le sud-ouest de la France.

Le courant depressionnaire d'ouest se poursuit et on assiste au défilé de la baisse barometrique importante signalee la veille, suivie d'une hausse peu etendue, puis d'une nouvelle baisse.

Le courant des perturbations du sudouest, presque stagnant maintenant, est pres de disparaître. Influence persistante de la perturbation du sud-ouest augmentee par l'accroissement de portee des atmospheriques pendant la nuit.

La hausse basometrique peu etendue et resserrée entre deux basses ne pro-

duit pas de brouillages

Les noyaux de baisse du courant depressionnaire provoquent le calme de la matinée (l'influence de la perturbation du sud-ouest ne se fait pas sentir à ce moment. Ces perturbations lentes ont un effet diurne très marque avec minimum de production d'atmosphériques au cours de la matinee)

Le dernier noyau de hausse du courant de perturbations du sud-ouest provoque la recrudescence d'atmosphe-

riques

Journée du 21 septembre.

Journee tres calme en general.

Le courant de perturbation depressionnaire subsiste seul. Les noyaux de variation qui s'y rattachent et qui defilent sur la France sont deux noyaux de baisse resserrant un etroit noyau de hausse.

Le noyau de baisse etouffe l'action du noyau de hausse qui le precède, avant que ce dernier ait pu agir d'une manière sensible (cas dejà constaté à diverses reprises les jours precedents). Première partie de la journee tres calme, quelques brouillages seulement vers 2 h à Paris.

Vers 12 h 30 apparition en moins d'une demi-heure d'atmosphériques violents à Paris (direction du maximum VSW) Ils s'y poursuivent toute l'apres-midi et disparaissent entre 17 h 30 et 18 h aussi brusquement qu'ils etaient apparus. Au moment de cette disparition le maximum de frequence et d'intensité est à l'est (cadre unidirectionnel)

Un minimum tres net s'observe dans la direction NNW-SSE. La disparition des atmosphériques commence en direction NS puis se continue en direction NW-SE.

A 21 h 30, quelques-uns sont encore perceptibles dans la direction est.

Ce sont la les caractères très nets du passage a Paris d'un phenomène migrateur. Les brouillages constatés en France confirment les précedentes observations. Il en fut constaté à Tours, Paris, Avord, Nîmes, Strasbourg, Mayence.

Ceux de Mayence se sont produits après 18 h quand ils avaient déjà disparu dans la région parisienne.

Un noyau de hausse barometrique aborde à 7 h l'ouest de la France, passe a Paris a midi, est centre sur le Rhin a 18 h. Un noyau de baisse suit a 900 km de distance. Il aborde l'ouest de la France à 18 h. Les noyaux et les fronts qui s'y rattachent se propagent a la vitesse de 900 km en douze heures (voir fig. 5).

Exemple caracteristique d'un noyau migrateur d'atmospheriques.

Influences successives et inverses d'un noyau de hausse et d'un noyau de haisse barométrique.

L'apparition du brouillage accompagne sensiblement l'arrivee du noyau de hausse (trace du front froid sur le sol).

Sa disparition a lieu 500 km en avant du bord avant du noyau de baisse et denote l'action du front chaud en altitude. Premiere série d'atmospheriques violents observes pendant la nuit dans la region parisienne Leur maximum est dans la direction N W-S E

Des brouillages sont constates dans les trois postes ayant assure des receptions pendant la deuxième partie de la nuit (Paris, Angeis, Avoid).

A Paris, calme complet dans la matinee jusque vers 14 h Aucun brouillage n'est signale aux mêmes moments en France, bien que les ecoutes assurées soient alors tres nombreuses.

Les atmospheriques apparaissent violents à Paris à 14 h lls augmentent encore vers 18 h. \ 2t h ils cessent daugmenter. Leur maximum de violence est alors dans la direction ouest (cadre unilateral). Pas de maximum de frequence.

De nombreux brouillages sont observes de 14 h a 15 h a Nimes, Lyon, Avord, Cazaux, Paris, Toulouse, vers 17 h et dans les heures suivantes à Marignane. Toulouse, Angers, Avord, Mayence, Tours et Paris. Les heures dapparition de ces brouillages dans les diverses localites denotent une propagation de l'ouest vers l'est à travers toute la France.

Le noyau de hausse signale la veille, et qui s'etend jusqu'au sud de la France ainsi que la surface de discontinuite, couvre les Alpes dans le courant de la nuit

Arrivee et passage d'un noyau de baisse barométrique. Pluie continue due au système nuageux lié à la baisse barométrique (matinee).

Un front froid (à 13 h, 18° à Touis, 13° a Angers, 17° à Beauvais et 13° au Havre) traverse la France, de l'ouest vers l'est.

Le noyau de hausse correspondant, et la rotation des vents d'ouest au nord-ouest, suivent avec un certain retaid. A 18 h, ils sont encore localises sur l'Angleterre et sur les côtes ouest de la France.

Les atmospheriques qui provenaient de ce noyau de hausse et qui avaient disparu, ont reapparu entre i h et 6 h du matin avec maximum vers 4 h. C'est un cas tres net du second maximum dans la variation diurne. Il montre que la portée des atmospheriques est plus grande la nuit (surtout dans la 2º partie) que le jour. C'eux-ci se comportent à ce point de vue comme des ondes amorties.

Correspondance entre l'absence complete de brouillages et le passage d'un noyau de baisse barométrique ainsi qu'avec le front et le corps d'un systeme nuageux dépressionnaire.

Avec la fin du noyau de baisse et du corps du système nuageux, apparaissent brutalement, avant les premiers grains, les atmospheriques violents.

Le brouillage se prolonge. Son maximum reste dirigé vers l'ouest à Paris. Ceci est en relation avec l'emplacement du principal noyau de hausse toujours à l'ouest

Des atmospheriques violents sont constates toute la journee de 1 h à 22 h

A Paris, a 1 h, les plus violents sont observés dans la direction NE-SW, le minimum de violence est observe dans la direction E W

A 13 h, la direction E domine. A 18 h et a 21 h la direction N E (mesures au cadre unilateral)

A 21 h, ils tendent à augmenter.

Des brouillages exceptionnellement nombreux et violents ont ete constates dans le sud de la France (Nîmes, Toulouse, Ajaccio, Istres, Antibes) pendant toute la journee Angers, Bordeaux, Avord, Châteauroux, Tours en signalent de même toute la journee. Paris seulement vers i h et à partir de 18 h. Mayence seulement a partir de 18 h.

Le noyau de hausse signale la veille traverse la France et y prend une direction nord-est.

Le noyau de hausse barometrique allonge du nord au sud, est surtout accentue au nord et au sud avec une faiblesse dans sa partie centrale (region parisienne et nord de la France) Sa partie sud est accompagnée d'un front froid provoquant de violentes discontinuités dans le midi de la France (à 13 h, 20° à Cette et 11° à Toulouse).

WEST

Les atmosphériques accompagnent le noyau de hausse.

Les discontinuites meteorologiques tres marquées du sud de la France sont accompagnees de brouillages tres intenses dans cette region. Mais les brouillages n'atteignent pas la region parisienne. Ceux qui v sont observes sont dus à la partie nord du noyau de tendances positives, ainsi que le montrent l'heure des brouillages à Paris et la direction des atmospheriques qui y fut observee

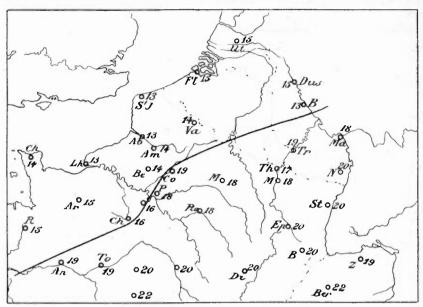


Fig 4a — 18 septembre 1924. — Température reelle à 18 heures.

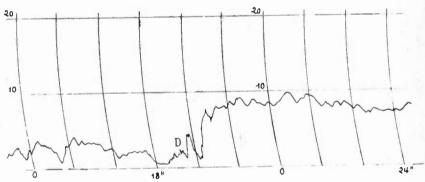


Fig. 4 b. — 18 septembre 1924. — Tour Eiffel. Sommet. Vitesse du vent

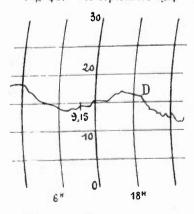


Fig. 4 c. — 18 septembre 1924. Lour Eistel Sommet. Température

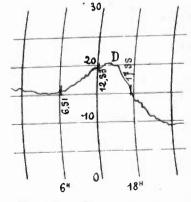


Fig. 4*d.* — 18 septembre 1924 Dusseldorf, Température

VII — La portée des atmosphériques. — Presque tous les auteurs ont admis jusqu'ici que les atmosphériques avaient une grande portée — plusieurs centaines et même plusieurs milliers de kilomètres. — Seul, à ma connaissance, M. de Bellescize s'est élevé contre cette opinion, et dans les cas où elle était appuyée par des expériences et des observations, il a montré qu'on pouvait donner des faits une explication très satisfaisante, sans faire appel à des portées qui supposeraient pour les décharges une puissance invraisemblable.

Or, aucune des observations que j'ai été amené à faire et qui sont résumées ci-dessus ne vient à l'appui des grandes portées et beaucoup d'entre elles, qui permettent de calculer approximativement la portée des atmosphériques, fournissent pour celle-ci des distances très faibles. Voici quelques exemples de portée pendant le jour.

Premier exemple. — 24 septembre 1924. Il a été analysé ci-dessus. Des atmosphériques extrêmement violents qui ont affecté tout le midi de la France pendant toute la journée et qui se rattachent à une discontinuité très marquée, n'ont pas fait sentir leur action à Paris. Celle-ci s'est étendue seulement jusqu'à la vallée de la Loire. Les heures et les brouillages ont été notés à Paris et la direction des atmosphériques rattache les uns et les autres, non pas à la discontinuité du midi de la France, mais à un noyau de hausse barométrique entièrement différent. En supposant que les atmosphériques du midi n'émanaient que de la région centrale de la discontinuité, on a pour les atmosphériques une portée maxima de 300 kilomètres. Elle est très probablement beaucoup moindre. Or, il s'agit là cependant d'un phénomene d'une violence tout à fait exceptionnelle

Deuxième exemple. — Succession de troubles et de calmes en un point donné. Le 9 septembre, à 13 h, le passage d'un grain à Saint-Cyr est accompagné d'atmosphériques violents. Ils diminuent rapidement après le passage du grain, disparaissent complètement, réapparaissent aussitôt en augmentant progressivement jusqu'au passage d'un second grain. Les deux grains étaient éloignés de 130 kms. La portée des atmosphériques de chacun était donc certainement inférieure à 70 kms.

Troisième exemple. — Passages successifs d'un front froid et d'un front chaud. Le 22 septembre, l'arrivée d'un front froid provoque, en moins d'une demi-heure, un brouillage intense concordant sensiblement avec l'arrivée du front. Ils disparaissent en aussi peu de temps par suite de l'approche d'un front chaud.

La distance qui sépare le front froid du front chaud (au sol) est d'environ 900 kms. Les fronts parcourent cette distance en douze heures.

La zone troublée par les atmosphériques est large de 500 kms environ et défile en six heures (de 12 heures à 18 heures). En

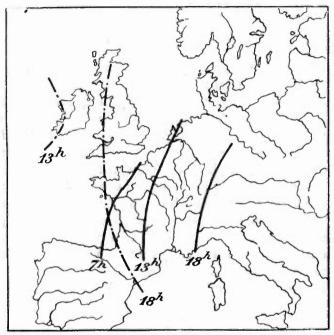


Fig 5. — 22 septembre 1924. — Emplacements successifs des lignes de tendances (variations barométriques en trois heures) positives maxima et de la tête des noyaux de tendances négatives.

tendances positives maxima tête des noyaux de tendances negatives

admettant que les atmosphériques ne proviennent que de la ligne centrale de cette zone, ils n'auraient encore qu'une portée maxima de 250 kms.

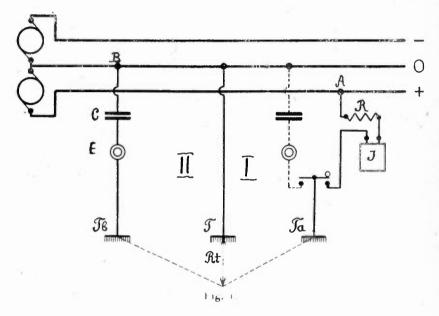
Or, ce cas n'est même pas réalisé. En effet, le maximum de brouillage est atteint en une demi-heure; le brouillage ne commence à diminuer de violence qu'une demi-heure avant sa disparition totale. Les fronts météorologiques et les zones où se produisent les atmosphériques (qui ont une même vitesse) parcourent, pendant ce temps, entre 30 et 35 kilomètres, qui représentent la portée réelle des atmosphériques dans les circonstances considérées.

R. BUREAU.

LA TÉLÉGRAPHIE LE LONG DES RÉSEAUX DE DISTRIBUTION DE LA LUMIÈRE ET DE L'ÉNERGIE

Par S. et A. de HATTOWSKI Membres de la Societe de Radiotechniciens a Wilno.

Depuis quelque temps on s'occupe de plus en plus du problème des haisons radiotélégraphiques le long des réseaux de distribution de l'énergie électrique. Les systèmes déjà connus (de haute fréquence) permettent seulement l'utilisation des lignes télégraphiques et téléphoniques ou des réseaux aériens de haute tension (Radioélectricité, Nr. 4, 1921; Telefunhenzeitung, Nr. 21, 1920 et Nr. 24, 1921; Jahrbuch f. dr. T. u. T., II. 3, B. 18, 1921; H. 4. B. 22, 1923, Funksonderheft der ETZ., 1924). Ces systèmes ne peuvent pas être appliqués aux réseaux de distribution de la lumière (câbles souterrains de basse tension) à cause de l'énorme capacité de ceux-ci par rapport à la terre. En utilisant une fréquence relativement basse (50000 à 30000 périodes), on obtient une très forte capacitance de ces réseaux par rapport à la terre et par conséquent une énorme fuite de courant comme le montre la formule :


$I = E \omega C$

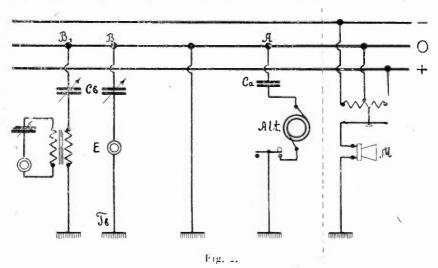
Cependant il est possible de résoudre ce problème par les moyens les plus simples en utilisant des courants alternatifs musicaux de fréquence comprise entre 150 et 2000 périodes.

Pour expliquer le principe théorique du fonctionnement du système décrit ci-dessus, prenons le cas le plus simple : un réseau de courant continu avec le conducteur neutre réuni à la terre (fig. 1). En réunissant le point $\bf A$ du pôle positif (ou négatif) à la terre $\bf T_a$, par l'intermédiaire d'une résistance $\bf R$ et d'un interrupteur électrolytique $\bf J$ on obtient le circuit I fermé par la terre $\bf T$. Les pulsations du courant qui parcourt ce circuit produisent alors, par une chute de tension sur $\bf Rt$, qui représente la résistance effective de toutes les prises de terre du conducteur neutre, une force électromotrice de la même fréquence, qui charge le condensateur $\bf C$ placé en parallèle avec $\bf Rt$ entre le conducteur neutre et la terre $\bf Tb$. La pratique montre que, même dans les plus vastes réseaux avec un grand nombre de prises de terre, la valeur effective de la résistance $\bf Rt$ ne descend pas au-dessous de 0,1 à 0.5 ohm; alors les pulsations d'un courant de 5 ampères produisent

sur Rt une chute de tension de 0,5 à 2,5 volts (ce qu'un voltmètre prouve en réalité). Un écouteur téléphonique E placé en série avec le condensateur C d'une capacité de 1 µF donnera alors un son musical pouvant être entendu dans une vaste pièce. Les changements de valeur de la résistance Rt que l'on observe pendant les saisons de sécheresse, de pluie, etc., sont si faibles qu'ils ont une influence négligeable sur la force des signaux.

Des considérations théoriques montrent, et la pratique prouve, que dans un vaste réseau le facteur d'atténuation δ des impulsions dans le circuit 2 pour des fréquences allant jusqu'à 2000 périodes n'est pas élevé, d'abord à cause des très petites résistances ohmiques

des conducteurs et de la valeur de Rt, ensuite à cause des prises de terre du conducteur neutre et de la self-induction relativement grandes des câbles blindés. On sait en effet que:


$$o = \frac{R}{2} \sqrt{\frac{C}{L}}$$

Il en résulte que la distance entre les postes A et B n'a pratiquement aucune influence sur la force des signaux, ce qui est loin d'être le cas pour les signalisations sur fil en haute fréquence.

Il y a encore un autre avantage : le circuit de réception BT, couplé

directement et très faiblement avec le circuit d'émission par l'intermédiaire de $R_{\rm t}$, a une résistance relativement grande et une faible capacité; son réglage ne dépendra que des valeurs de $R_{\rm t}$, C et L qui lui sont propres et on pourra l'accorder sur les impulsions qui arrivent au point $B_{\rm t}$.

Les harmoniques des dynamos et des moteurs, les appareils médicaux, etc., produisent dans l'écouteur un bruit spécifique de secteur, mais ce bruit est relativement stable et, en comparaison de la force des signaux, si faible qu'il n'empêche nullement la réception. La pratique montre que les parasites atmosphériques sont beaucoup plus

nuisibles et dangereux dans un récepteur radiotélégraphique pour la sûreté des communications

Pour obtenir un courant de fréquence musicale, les interrupteurs électrolytiques ne sont ni commodes ni sûrs; ils ne donnent pas une note pure; il est plus avantageux d'utiliser les turbines à mercure (type radiologique) en augmentant seulement le nombre des segments pour atteindre une fréquence minima de 300.

Mais il faut dire qu'en général l'usage de toutes les sortes d'interrupteurs, qui provoquent un gaspillage d'energic (99%, se perd dans la résistance R et dans l'interrupteur lui même et 1 % seulement est utilisé sur la résistance Rt), est peu recommandable parce que le courant obtenu ne permet pas d'utiliser l'accord du circuit de réception.

Il faut employer un très petit alternateur d'une puissance maximum de 100 watts et d'une fréquence de 200 à 2000 périodes comme le

montre la figure 2. Un pareil alternateur présente beaucoup d'avantages; son fonctionnement est stable et économique, il donne une note pure et permet d'utiliser les effets de résonance. Dans le cas d'une machine de 500 périodes et d'une tension de 25 volts, le condensateur Ca doit posséder une capacité de 20 µF, pour donner dans le circuit d'émission une intensité de courant de deux ampères.

Pour augmenter le rendement en baissant la tension de l'alternateur on peut employer un circuit d'émission accordé (fig. 4). Dans le cas d'un réseau à courant triphasé, le conducteur neutre est réuni à la terre, non directement, mais par une résistance inductive dont l'impédance, pour un courant de fréquence musicale, est de quelques dizaines ou même de quelques centaines d'ohms au lieu de 0,1 à 1 ohm; cette disposition permet d'abaisser considérablement l'énergie employée.

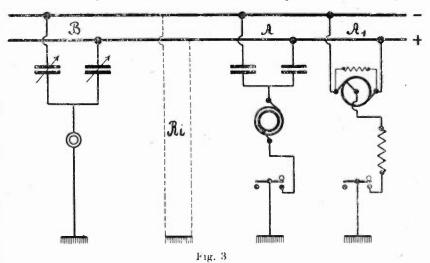
L'expérience montre qu'un courant musical de quelques centaines de milliampères vaut mieux qu'un courant de 5 à 10 ampères produit au moyen d'un interrupteur électrolytique.

Un microphone normal M étant installé comme sur la figure 2, et parcouru par un courant allant jusqu'à 2 ampères, le chant, la parole et quelquefois des phrases entières étaient assez bien reçus dans l'écouteur E; le seul inconvénient était que le fonctionnement du microphone était irrégulier avec un tel courant.

Le circuit BT, (fig. 2) est un récepteur simplifié, et la formule connue:

$$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$

montre que pour y obtenir une résonance aigué, il faut que la résistance ohmique soit la plus petite possible; il existe des écouteurs de Seibt avant seulement une résistance de 30 ohms avec une self-induction de 0,1 H. Si le condensateur C, peut varier de 0,1 à 1,0 µF (groupe de condensateurs fixes au mica se réglant par plots), on peut avoir dans le même réseau trois stations émettrices travaillant avec des fréquences de 250, 500 et 1 000, pour trois groupes de stations réceptrices. En effet, dans un récepteur accordé pour une fréquence de 500, les courants de brouillage des fréquences 250 et 1000 n'atteignent que 0,03 à 0,1 de la valeur du courant à fréquence 500.

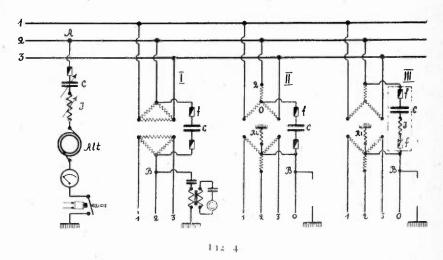

Le récepteur B₁ donne une sélection plus poussée et, avec un monotéléphone de Seibt qui s'accorde sur des fréquences allant de 450 à 1500, il est possible d'éliminer tous les brouillages ou d'augmenter le nombre des stations émettrices.

La figure 2 donne donc un schéma universel pour tous les réseaux

de courant continu et aussi pour les réseaux de courant alternatif, mais seulement de basse tension; l'utilisation d'un récepteur B_t et d'un monotéléphone garantit contre les brouillages provenant du courant du secteur.

Pour les petits réseaux de courant continu, la figure 3 montre un schéma encore plus simple. La valeur de la résistance d'isolement Ri du réseau entier par rapport à la terre varie entre 100 et 100000 ohms, ce qui augmente considérablement le rendement, car évidemment la machine émettrice travaille dans ce cas presque à vide.

Au lieu d'un petit alternateur A et d'un récepteur accordé, on peut


employer une machine à courant continu A_1 excitée en dérivation, par exemple une machine d'une puissance maxima de 200 watts dont une des lames du collecteur est réunie à un balai; en marche il se produit entre ce balai et la terre une tension alternative presque sinusoidale, dont la valeur est :

$$Em = \frac{Ec}{\sqrt{2}}$$

Avec une machine bipolaire de 4500 tours-minute, on obtient une fréquence 75, et une machine à quatre pôles donne 150 périodes, ce qui fournit une note assez pure; on doit seulement choisir des machines ayant un grand nombre de lames au collecteur. En série avec le manipulateur, il est prudent de placer une résistance de sécurité de 50 à 200 ohms, pour, le cas d'un court-circuit entre un pôle du réseau et la terre.

Jusqu'ici nous avons exposé les nombreux cas d'application de ce système dans les réseaux de basse tension. L'utilisation d'un réseau à courant triphasé d'une tension movenne (maximum 5000 volts) est plus difficile. Néanmoins la figure 4 donne le schéma d'une telle installation.

Supposons qu'un alternateur branché par le point A au réseau de haute tension débite un courant de fréquence de 500 à 1500; la question suivante se pose : quel mode de haison faut-il adopter pour transporter ce courant dans le secteur de basse tension? Le montage du transformateur i est tout à fait impraticable, car il présente le plus grand danger au cas où son condensateur serait percé; en outre ce dernier doit posséder une capacité assez grande pour que les récep-

teurs B recoivent un courant suffisamment intense; pratiquement un tel condensateur ne pourrait être exécuté que pour une tension inférieure à 1000 volts (diélectrique en verre). Le transformateur 2 présente au premier coup d'œil un grand avantage, car le potentiel du point O est nul par rapport à la terre; on pourra alors employer un condensateur avec un diélectrique plus mince et même, si celui-ci est percé, il n'y aura presque aucun danger pour le secteur de basse tension. Malheureusement la réactance de l'enroulement 2 à 0 de ce transformateur pour les fréquences de 500 à 1500 est grande et, ce qui est pire, elle n'est pas constante.

Seul le montage du transformateur 3 est utilisable. La bobine d'inductance J et le condensateur C sont calculés de telle sorte que le circuit f-f est en résonance sur la fréquence de l'alternateur, c'està-dire que la réactance de ce circuit est nulle :

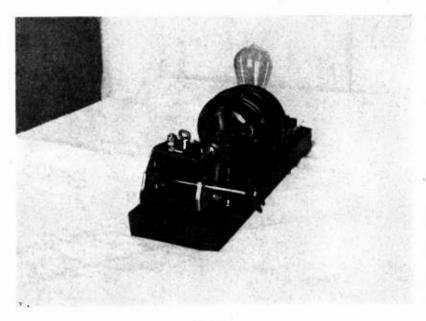
$$L \omega - \frac{1}{C\omega} = 0.$$

Pour une fréquence de 1000 par exemple, J doit avoir 0,25 H. et C., 0,1 µF. (un tel condensateur et une telle bobine sont faciles à réaliser). L'impédance du circuit est alors égale à la résistance ohmique de la bobine J.

Au poste d'émission A, les valeurs de J et de C sont calculées de même, mais elles doivent être réglables.

Si un tel réseau alimente un grand nombre de transformateurs et en conséquence un très grand nombre de récepteurs, l'installation représente un circuit dérivé. Si ses parties individuelles (circuit f-f-aux transformateurs et circuits des récepteurs) sont bien accordés, on peut, en réglant J et C au poste d'émission, compenser la réactance, qui existe encore dans le circuit total (capacité et inductivité des fils du réseau).

L'impédance totale de ce circuit est alors équivalente aux résistances ohmiques des bobines J et des bobines de couplage des récepteurs (la résistance des fils du réseau est négligeable). Il résulte de là qu'un alternateur à basse tension (50 à 100 volts) peut débiter dans le réseau un courant important.


Une intensité de un milliampère du courant à fréquence musicale actionne les récepteurs en haut-parleur. Si nous avons un grand réseau, d'une puissance de 20000 kilowatts par exemple, on peut supposer que ce réseau possède approximativement 200 transformateurs avec 100 récepteurs branchés sur chacun d'eux. Chaque transformateur exige alors un courant de 0,1 ampère et le réseau total 20 ampères. La résistance inductive Ri, qui réunit à la terre le conducteur neutre, présente pour un courant d'une fréquence musicale une impédance assez grande en comparaison de l'impédance totale des 100 récepteurs branchés en parallèle; la fuite du courant dans cette résistance n'est donc pas considérable (c'est l'inverse dans le cas du réseau à courant continu) (fig. 1 et 2)

La puissance dépensée (1 à 2 kilowatts) peut provoquer des brouillages dans les lignes téléphoniques, mais ici nous avons envisagé le cas où l'on désire par exemple transmettre des signaux horaires à 20000 récepteurs en haut-parleur (pour l'écoute au casque, le courant dans un récepteur ne dépasse pas 0,1 à 0,3 milhampères). Dans ce cas,

les brouillages ne durent que quelques minutes et ne peuvent pas même être considérés comme tels.

S'il s'agit seulement d'établir une communication entre un réseau de haute tension et le secteur de basse tension (l'usine centrale et les sous-stations) ou entre quelques secteurs de basse tension, l'énergie appliquée est très faible.

Le montage décrit ci-dessus présente encore un avantage : les circuits de liaison à transformateur étant des filtres électriques facilitent l'installation de transmissions simultanées pour divers secteurs de

1-12 50

basse tensic ou l'établissement de communications bilatérales entre divers secteurs.

Dans la pratique, le circuit f-f, composé du condensateur C, de la bobine J et de fusibles de 1 ampère, est renfermé dans une caisse métallique remplie d'huile

Nous n'avons donné ici qu'une brève description du système.'Il a été décrit en détail dans la Revue Electro-Radiotechnique, Varsovie, 19, 1923 et 10. 1924. Les premières expériences ont été faites en 1914; interrompues par la guerre, elles ont été reprises en 1920; en avril 1922 une description détaillée a été déposée chez M. le prof. Dzieslewski, à l'Ecole polytechnique de Lemberg. Depuis 1920, à Vilna (courant

continu de 220-0 220 volts, puissance de 2000 kilowatts, réseau souterrain couvrant une étendue de 30 kilomètres carrés), il existe plusieurs communications privées utilisant des appareils à interrupteurs adoptés à cause de leur simplicité. La figure 5_n représente un tel appareil, possédant un interrupteur à air, qui ressemble à un éclateur tournant et qui produit en marche une étincelle musicale, en réglant la vitesse du moteur qui l'entraîne, on obtient des fréquences de 200 à 500 périodes; le courant d'émission pour l'appel ne dépasse pas 0.5 ampère (efficace); pour la transmission 0.2 ampère suffit (le calcul montre

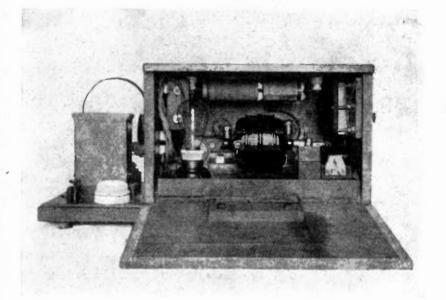
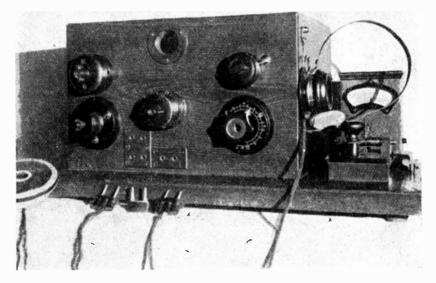


Fig. 5

que l'amplitude maxima atteint 2 ampères). Sous 200 volts ceci représente 50 watts d'énergie consommée: le moteur consomme en outre 30 watts. La réception a lieu sur écouteur sans amplification, et cela prouve le bon rendement du système.

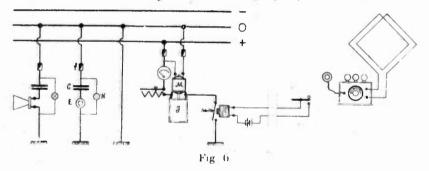

On peut objecter que ce procédé ne permet pas de réaliser plus de 3 à 5 transmissions simultanées sur le même réseau; mais on sait que les transmissions haute fréquence sur lignes aériennes de haute tension ne le permettent pas non plus (expériences des professeurs l'assbender et Wagner en Allemagne) et, en outre, on doit considérer ici les grandes difficultés occasionnées par les réseaux souterrains.

Quant à la discrétion de la transmission, elle ne peut évidemment

être assurée que par le chiffrage, mais aujourd'hui que les amateurs captent les ondes de 50 jusqu'à 25000 mètres, peut-on parler sérieusement d'une émission secrète, non chiffrée, transmise à la main?

La seule chose que l'on pourrait craindre serait les brouillages dans les lignes téléphoniques; une pratique de quatre ans montre qu'une ligne à double fil ne souffre nullement.

En définitive ce système donne un moyen très simple, sur et économique de communications télégraphiques le long de réseaux souter rains de basse et movenne tension qui jusqu'ici n'ont pas été utilisé


Lig 5

dans ce but Certes il ne donne pas le moyen de téléphoner; mais si l'on essaye à New-York de résoudre le problème de la radiotéléphonie le long des réseaux aériens en appliquant une puissance d'émission de 250 watts et en recevant sur amplificateur à une distance de 10 kilomètres, on peut dire que les résultats attendus ne sont pas très intéressants et, au point de vue de l'utilisation de l'énergie, il vaudrait peut-être mieux recevoir tout simplement une radiotransmission sur cadre, ce qui permettrait d'atteindre des distances de 50 à 100 kilomètres au moins. Quant à l'idée émise par Armstrong en 1905 qu'à l'avenir chacun aura sa propre station d'émission et de réception, comme un abonnement au téléphone, elle nous semble bien loin d'être

réalisée, tant au point de vue technique qu'au point de vue social.

Il existe un cas où notre procédé peut trouver une très large application : c'est celui de la diffusion générale du temps. Le système des pendules électriques est assez cher, en outre ces pendules ne donnent pas toujours un temps exact, alors que la vie fébrile de nos jours exige de plus en plus d'exactitude. Les grands centres de l'Europe sont dans une situation privilégiée à cause de la proximité de la Tour Eiffel et de Nauen; la propagation de la radiotéléphonie facilite la solution du problème sur toute l'étendue de la France et de l'Allemagne, quoique l'entretien d'un poste de radiotéléphonie, même le plus simple, exige quelques dépenses et de l'embarras. Dans d'autres pays (Europe centrale et orientale, colonies, par exemple) on se trouve bien moins favorisé

Dans ces cas le système décrit ci-dessus peut venir en aide. Il permet la transmission de signaux radiotélégraphiques reçus par un seul

récepteur (observatoires, bureaux de poste, établissements maritimes, etc.), et la diffusion générale le long de réseaux d'éclairage et cela avec les appareils les plus simples, n'exigeant aucun entretien.

On peut employer deux modes de transmission : le mode automatique avec un appareil d'inscription qui actionne l'émetteur par relais et la transmission à la main; dans ce dernier cas, l'expérience montre que l'erreur n'atteint pas cinq dixièmes de seconde.

La municipalité de Vilna est en train d'appliquer ce procédé; la figure 6 donne un schéma général de l'installation. La réception des signaux de FL ou de POZ se fait au moyen d'un cadre; la transmission a lieu à la main. Une turbine à mercure travaille sur une fréquence de 400; le courant d'émission est de 5 ampères. Le récepteur se compose d'un écouteur de type normal (500 ohms) pour l'usage privé et d'un écouteur muni d'un pavillon métallique pour les endroits publics. Le condensateur possède une capacité de 0,25 à 0.5 microfarad; le

fusible f est du type téléphonique de 0,25 ampère. Une lampe à néon N est branchée en parallèle avec l'écouteur et le condensateur; sa résistance interne est presque infinie jusqu'à 150 volts aux bornes (le potentiel entre B et la terre varie de 0 jusqu'au maxima 20 volts); elle ne provoque alors aucune fuite du courant à la terre, mais si, à cause de quelque réparation ou changement dans l'installation de l'éclairage électrique, le récepteur se trouve branché non pas au conducteur neutre mais au pôle négatif ou positif du réseau, la lampe s'allume en signalant automatiquement l'état anormal et en indiquant le pôle du réseau mis à la terre.

Le courant dans les récepteurs est si fort, qu'il est très facile de le rectifier et de l'amplifier au moyen d'un transformateur B. F. et de lampes à trois électrodes pour actionner un inscripteur Morse. On peut donc réaliser une transmission des radiogrammes météorologiques, de la bourse, etc. Nous croyons que le système que nous venons de décrire est la première solution du problème d'utilisation des réseaux de distribution de la lumière, dont l'idée a été exprimée par M. le professeur A. Turpain (Radioélectricité. Nr. 19, 1923, page 523).

S et A. DI HALLOWSKI.

DÉTERMINATION DU RENDEMENT D'UN GÉNÉRATEUR A LAMPES PAR LA METHODE THERMOMÉTRIQUE,

par le Capitaine J. GROSZKOWSKI,

Charge de cours a l'Ecole Polytechnique de Varsoite

Tous ceux qui ont exécuté des mesures ayant pour but la détermination du rendement d'un générateur à lampes connaissent bien toutes les difficultés techniques que présente la solution de ce problème.

Ce problème est lié étroitement avec le problème de la détermination des pertes de puissance dans les lampes.

On sait que le rendement η d'un générateur à lampes, par analogie d'ailleurs avec tout appareil où intervient un échange d'énergie, est déterminé par la formule

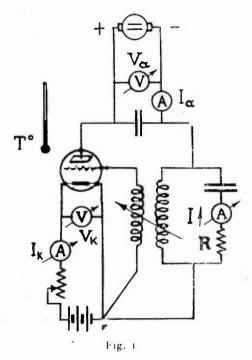
$$\gamma_i := \frac{\mathbf{W}}{\mathbf{W}_i} = \frac{\mathbf{W}_i - \mathbf{W}_i'}{\mathbf{W}_u} \mathbf{W}_i'$$

Dans cette formule W, correspond à la puissance plaque, fournie au générateur, W,' à la puissance plaque, perdue dans la lampe, W à la puissance utile des courants alternatifs.

De cette formule résultent deux procédés de détermination de n. Le premier consiste à mesurer la puissance fournie et la puissance utile, le deuxième à mesurer la puissance fournie et la puissance perdue dans la lampe.

Les deux procédés offrent néanmoins beaucoup de difficultés.

Pour le premier procédé, ces difficultés concernent la détermination de la puissance utile, car bien que cette puissance soit déterminée par l'expression l'R et que la détermination de 1 ne présente pas de difficultés, il n'est pas toujours facile de déterminer la grandeur de la résistance pour les courants à haute fréquence.


Pour le deuxième procédé, les difficultés concernent la détermination de la puissance perdue dans la lampe.

Seule la détermination de la puissance fournie au système générateur peut être facilement effectuée, car cette puissance correspond au produit de la tension plaque constante V, par l'intensité moyenne du courant plaque (fig. 1)

Ces deux grandeurs peuvent être mesurées à l'aide des appareils de mesure pour courants continus (avec cadre mobile).

Pour la détermination de la puissance perdue dans la lampe. plusieurs méthodes peuvent être employées. Preuner et Pungs (4), par exemple, utilisent à cet effet un calorimètre, dans lequel est placée la lampe génératrice à examiner.

Évidemment, c'est une méthode précise, mais elle est compliquée et ne peut être employée en dehors du laboratoire, d'autant plus

qu'on est souvent obligé d'exécuter les mesures sur des postes dont l'installation est déjà achevée, où il est à peu près impossible de placer la lampe dans le calorimètre sans modifier les conditions de travail du poste.

Une autre méthode, la méthode optique, consiste à mesurer à l'aide de la photométrie la plaque de la lampe génératrice. On peut trouver la description de cette méthode dans un article de M. Jouaust (2). Son principe est le suivant :

2 1. Onde 1 lectrique 1923 p. 331.

Jahrbuch der drahtt Tel u Tel, 1920, vol VV, p. 409

La puissance perdue par le courant plaque dans la lampe se manifeste sous forme de chaleur rayonnée par la plaque dans le milieu environnant.

Quand l'équilibre entre la chaleur dégagée dans la plaque et le rayonnement est établi, la température de la plaque devient constante et atteint par exemple T.º. Si cette température est suffisamment élevée, la plaque devient incandescente. M. Jouaust définit l'état d'incandescence de l'anode à l'aide du pyromètre optique de Le Châtelier; le fonctionnement de ce pyromètre est basé sur la comparaison de deux surfaces, dont une est éclairée par la source de rayonnement à examiner, l'autre par une lampe-étalon.

La mesure de la puissance W_u' est effectuée de la façon suivante. D'abord, lorsque le générateur travaille dans des conditions normales (pour l'antenne ou le circuit équivalent en question), on établit l'équilibre photométrique au pyromètre optique. Ensuite, on sépare le circuit oscillant, et on ramène la plaque à l'état précédent, en modifiant le courant plaque, fourni par la source à tension constante.

Dans ce dernier cas, la puissance fournie se dégage de l'anode, donc, étant donné que l'état de la plaque est le même dans les deux cas, elle est égale à la puissance W_{n} .

Preuner et Pungs ont employé une méthode semblable.

Ils comparent l'intensité lumineuse de l'anode incandescente avec celle d'une lampe électrique à filament de carbone.

Quoique les procédés optiques soient beaucoup plus commodes que les procédés calorimétriques, bien que moins précis, néanmoins, ils présentent des inconvénients assez sérieux

Premièrement, on ne dispose pas toujours d'un pyromètre optique, ou d'un photomètre. Deuxièmement, les mesures sont très difficiles à cause de la lumière dégagée par le filament de la cathode; on rencontre surtout cette difficulté lorsqu'on emploie pour la comparaison une lampe à incandescence

Enfin, la méthode optique n'est point applicable dans le cas d'une lampe travaillant à une basse température de l'anode, ce qui est le cas pour les lampes à faible puissance.

Pour obvier à ces inconvénients, une méthode thermométrique à été élaborée au Laboratoire des courants à haute fréquence de l'École polytechnique de Varsovie; c'est une méthode intermédiaire entre la méthode calorimétrique et la méthode photométrique.

Son principe est le suivant :

Pendant le fonctionnement du générateur, autour de la lampe génératrice s'établit une certaine répartition des températures.

Un état d'équilibre est réalisé pour la puissance dégagée de la lampe après un certain temps de travail du générateur. Cet état correspond à la quantité de chaleur rayonnée par la lampe dans le milieu environnant

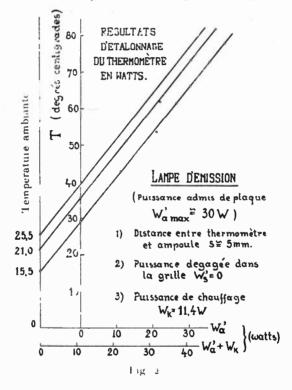
Les parties de l'ampoule qui se trouvent aux environs de la plaque ont la température la plus élevée; au fur et à mesure qu'on s'éloigne de la lampe, la température diminue pour devenir égale à celle du milieu. Si nous plaçons au voisinage de l'ampoule (du côté de la plaque) un thermomètre (par exemple, à mercure), il indiquera certaine température, lorsque l'état thermique sera établi. Cette température est la température propre du thermomètre, qui est due au rayonnement thermique de la lampe ainsi qu'à la conductibilité de l'air entre la lampe et le thermomètre.

La température indiquée ne varie pas si la puissance dégagée dans la lampe, (donc la température de l'anode et de la cathode) ainsi que la température du milieu ne changent pas.

La température du thermomètre, qui correspond à la puissance constante dégagée dans la lampe, se fixe après un certain temps, dont la durée dépend des conditions de l'expérience : la température se fixe d'autant plus rapidement que le thermomètre est plus près de l'ampoule et que les objets du voisinage sont plus écartés; la température de ce milieu dépend en effet de la température de la lampe et de la température de ces objets.

Si la distance du thermomètre à la lampe est faible par rapport à la distance des objets voisins (par exemple, de 1 cm à 10 cm), la température du thermomètre s'établit en même temps que celle de la lampe.

Lorsque, à cause de l'augmentation de la puissance dégagée dans la lampe, sa température augmente, elle provoque une augmentation de la température du thermomètre. La diminution de la puissance dégagée dans la lampe cause l'abaissement de la température du thermomètre.


Dans ces conditions, à chaque valeur de la puissance électrique perdue dans la lampe (Wa') correspond une valeur de la température du thermomètre. Le thermomètre peut donc être étalonné en fonction des « watts dégagés dans la lampe ».

On fait cet étalonnage à l'aide du courant continu, le circuit oscillant étant séparé, de manière à ce que toute la puissance fournie se dégage dans la lampe sous forme de chaleur.

En traçant la courbe d'étalonnage on peut tenir compte de la puissance plaque W' seulement, ou de la puissance totale $W' = W_{a'} + W_{e} + W_{y'}$, c'est-à-dire de la somme des puissances plaque, de chauffage et de la puissance dégagée dans la grille.

Quant à cette dernière, si nous disposons d'une tension plaque suffisamment haute, ou si le coefficient d'amplification n'est pas trop élevé on peut admettre qu'elle est égale à zéro, à condition que V_j soit négatif.

Au cas contraire, on peut tenir compte de la puissance W,' en

supposant qu'elle contribue avec la puissance W_a' à l'augmentation de la température de la plaque

Cette courbe d'étalonnage, tracée pour une certaine position du thermomètre et une certaine température du milieu, permet de déterminer la puissance W_a' pour toutes les conditions de travail du générateur, par conséquent, elle permet de calculer le rendement 5

L'expérience montre que la courbe d'étalonnage $T = f(W_a')$ ne s'écarte que légèrement de la ligne droite (fig. 2). Son inclinaison est d'autant plus grande que le thermomètre se trouve plus près de la plaque. Évidemment, toutes les courbes d'étalonnage, correspondant aux diverses distances du thermomètre, passent par le point corres-

pondant à la température du milieu (cas où la puissance perdue dans la lampe est nulle).

De même, toutes les courbes d'étalonnage correspondant à une même distance du thermomètre, mais à diverses températures du milieu, sont parallèles entre elles.

Cette considération permet de faire une correction relative à la température du milieu dans le cas où l'étalonnage et les mesures ultérieures ne sont pas exécutés dans les mêmes conditions de température extérieure.

Évidemment, quand on veut déterminer la valeur de η correspondant à un certain état de travail du générateur, on peut ne pas tracer toute la courbe d'étalonnage; il suffit d'en tracer quelques points, et ensuite on peut interpoler ou extrapoler facilement, grâce à la forme rectiligne de cette courbe.

Quant au temps nécessaire pour que la température du thermomètre s'établisse, il est fonction de la distance du thermomètre à l'ampoule de la lampe. La température s'établit d'autant plus vite que cette distance est plus faible (quelques millimètres), toutefois le thermomètre est alors plus sensible aux différentes influences extérieures tels qu'un courant d'air, une secousse (changement de distance), etc.

Pour les lampes à faible puissance (puissance admissible 10-100 watts), la distance de 3 à 10 mm paraît la plus commode; on obtient alors des températures variant entre 40° et 100° C.

En tout cas, le plus avantageux est de placer le thermomètre du côté de la plaque de l'anode, afin que le rayonnement de l'anode puisse agir sur lui de la façon la plus efficace, car alors les variations de température, correspondant aux variations de la puissance dégagée dans l'anode, seront maxima.

De nombreuses mesures et la comparaison des résultats obtenus par cette méthode avec les résultats obtenus par des procédés différents ont démontré sa grande précision.

Cette méthode est évidemment pratique, car elle n'exige point d'autres appareils qu'un thermomètre et des appareils de mesure pour courants continus; les mesures peuvent donc être faites dans toutes les circonstances et rapidement, le temps nécessaire pour la fixation des températures étant de l'ordre de quelques minutes (tout au plus une dizaine quand on demande une grande précision). En général, la précision obtenue peut être évaluée à 1 ou 2 %.

Janusz Groszkowski.

CHEZ LES AMATEURS

Le bon fil pour les bobines destinées à la réception des ondes courtes.

L'emploi des ondes courtes et très courtes a appelé l'attention des amateurs sur les pertes qui se produisent dans les appareils aux fréquences très élevées auxquelles elles correspondent.

Celles qui sont causces par la résistance due à l'effet pelliculaire sont ordinairement combattues par l'emploi de fil de gros diamètre. C'est ainsi qu'on a conseillé aux amateurs d'endes courtes d'utiliser des bobinages en gabion de 8 à 10 centimètres de diamètre en fil de 20 10 millimètres sous deux couches de coton.

Mais il est, d'autre part, fâcheux de placer des masses métalliques importantes dans le champ d'une bobine. C'est là une autre cause de pertes, et du trop gros fil peut devenir plus nuisible qu'utile, puisqu'il se trouve lui-même dans le champ qu'il produit.

Il existe donc probablement, dans des conditions données, un diamêtre optimum de fil, pour lequel les pertes sont réduites au minimum.

M. Greenleaf W. Pickard, l'inventeur des détecteurs à cristaux, à recherché quel est le meilleur diamètre de fil à employer, sous deux couches de coton, dans le cas de bobines en gabion de 8 à 10 centimètres de diamètre (QST, septembre 1924, p. 39).

Pour le déterminer, il a construit une série de bobines de 100 microhenrys sur onze broches disposées selon un cercle de 82 millimètres de diamètre, le fil étant fixé par des ligatures de ficelle, à l'exclusion de tout vernis, avant de dégager la bobine du dispositif de construction.

Ces bobines furent faites en fils allant de 4 10 à 20 10 de millimètre, et leur résistance fut mesurée en haute fréquence pour diverses longueurs d'onde. Les résultats de ces mesures furent figurés par des courbes montrant, pour les diverses longueurs d'onde ou pour les fréquences en kilocycles qui leur correspondent, la résistance des bobines selon le diamètre du fil dont elles étaient faites.

Comme on pouvait le prévoir, il fut constaté qu'il existait un diamètre de fil donnant une résistance minimum. Dans les conditions choisies, qui répondent au cas le plus courant de la construction des bobines de réception, ce diamètre optimum fut de 10/10 à 13-10 de

millimètre, le fil de 10/10 paraissant le meilleur pour 500 kilocycles (longueur d'onde de 600 mètres), tandis que celui de 13/10 semblait un peu moins résistant pour 2.000 kilocycles (longueur d'onde de 150 mètres).

L'allure des courbes est très différente de part et d'autre du minimum : la résistance ne croît que très lentement pour des fils dediamètre plus petit; elle croît, par contre, très vite pour des diamètres plus grands. Pour la fréquence de 2.000 kilocycles (i = 150 mètres), la résistance de la bobine de 100 microhenrys faite en fil de 13 10 de millimètre sous deux couches de coton est d'environ 6 ohms; elle ne s'élève qu'à 8,5 ohms pour le fil de 4,10 de millimètre, dont le diamètre est cependant trois fois moindre, alors qu'elle atteint près de 20 ohms pour le fil de 20,10 de millimètre, qui n'est pourtant qu'une fois et demie plus gros. La résistance croît donc très vite avec le diamètre à partir du diamètre optimum, et si l'on s'écarte de celui-ci, c'est du côté des petits diamètres, et non des grands, qu'il y a intérêt à le faire

L'accroissement de la résistance en haute fréquence avec le diamètre est due aux courants de Foucault qui se développent dans le fil, chaque spire se trouvant plongée dans le champ produit par ses voisines, de sorte qu'au-dessus d'un certain diamètre de fil, plus il y a de cuivre dans la bobine, plus grande est sa résistance en haute fréquence. L'ascension rapide des courbes du côté des grands diamètres est due au fait que les pertes par courants de Foucault croissent comme le carré du diamètre du fil, tandis que leur lente ascension du côté des petits diamètres tient à ce que la diminution des pertes par courants de Foucault, à mesure que le fil devient plus fin, compense en partie l'augmentation de celles qu'occasionne la résistance ohmique proprement dite.

On pourrait songer à l'emploi de fil divisé pour diminuer les pertes par courants de Foucault, mais pour d'autres raisons, son emploi n'est pas à conseiller pour des fréquences supéricures à 1000 kilocycles (longueurs d'onde inférieures à 300 mètres)

* *

Une autre cause de mauvais rendement des bobines qu'evitent les amateurs avec de plus en plus de soin, est leur capacité répartie. C'est pour diminuer cette capacité qu'ils ont recours à tous les artifices modernes d'enroulements entrecroisés, et quand ils construisent des bobines cylindriques, il leur est bien recommandé de n'imprégner

le guipage du fil d'aucun vernis qui viendrait jouer le rôle d'un indésirable diélectrique interposé entre les spires.

Mais de telles bobines « sans vernis » ont aussi leurs inconvénients. Il arrive, en effet, que le coton qui les recouvre, s'il n'est pas imprégné de vernis, s'imprègne lui-mème... d'humidité, et que les pertes par défaut d'isolement rendent plus qu'illusoires les mérites de l'absence du vernis. Tel appareil, par exemple, qui présente des irrégularités « d'accrochage », ne doit cette irritante particularité qu'à l'absorption d'humidité par le guipage de coton non verni de ses enroulements.

Aussi, de même qu'il existe un compromis optimum, pour le diamètre du fil, entre les pertes par résistance ohmique et celles par courants de Foucault, y a-t-il lieu de chercher à combattre les effets de l'humidité, tout en évitant autant que possible d'accroître la capacité répartie.

A cette fin on a préconisé, au lieu de l'enduit épais de vernis à la gomme-laque qu'on utilisait souvent autrefois, un vernis léger obtenu en faisant dissoudre quelques rognures de celluloid dans de l'acétate d'amyle.

Les chiffres donnés par M. J. Granier au sujet de l'absorption des ondes courtes (L'Onde Electrique, décembre 1924, p. 578) semblent tout à fait de nature à réhabiliter la paraffine, à condition de n'en utiliser que le minimum nécessaire pour assurer la protection contre l'humidité.

La meilleure solution paraît être d'adopter du fil émaillé sous deux couches de coton. La très mince couche d'émail placée sous un épais revêtement de coton ne doit augmenter qu'insensiblement la capacité répartie, tout en assurant un bon isolement. Ce fil, utilisé en Amérique sous le nom de « cotenamel », n'est pas actuellement de vente très courante en France, mais il le deviendrait certainement s'il était demandé aux fabricants qui n'ont aucune difficulté à recouvrir de coton du fil émaillé.

Du fil « cotémail » de 13/10 de millimètre pourrait donc constituer « le bon fil » pour la construction de bobines en gabion de 8 à 10 centimètres de diamètre, destinées à la réception des ondes courtes

8 XYZ

CONGRÈS DE T. S. F. A PARIS PAQUES 1925

(14 au 19 Avril)

Nous donnons ci-dessous les ordres du jour et les programmes des congrès de juristes et d'amateurs qui vont se tenir à Paris au mois d'avril

Nous prions instamment les personnes qui s'intéressent à ces questions d'envoyer aussitôt que possible leur adhésion pour faciliter l'organisation du congrès.

ORDRES DU JOUR

Congrès Juridique du Comité International de la T. S. F.

- 1° Régime Juridique des Ondes. Droits de l'Emetteur et du Récepteur. — Contrôle de l'État.
 - 2º Réglementation Internationale des Longueurs d'Onde.
- 3° La Propriété Artistique et Littéraire et les Emissions Radiotéléphoniques. — Droits d'Auteur. — Intérêts des Artistes Exécutants. — Droits de Priorité d'Exploitation des Informations de Presse, de Finances et de Publicité

Congres de l'Union Internationale des Amateurs de T. S. F.

- 1° Organisation d'une Union Internationale des Amateurs de T. S. F.
- 2º Organisation Internationale des Essais et Communications bilatérales d'Amateurs.
- 3° Répartition des Longueurs d'Onde entre les Emissions d'Amateurs et la Radiotéléphonie.
 - 4° Langue Internationale Auxiliaire.
 - 5º Utilisation Educative de la Radiotéléphonie.

Voici d'autre part le programme du Congrès :

PROGRAMME

Congrès Juridique du Comité International de la T. S. F.

Congrès de l'Union Internationale des Amateurs de T. S. F.

MARDI 14 AVRII

17 heures. — Discussion de l'ordre du jour.

 heures. — Séance solennelle douverture. Réception des congressistes 17 heures. — Discussion de Fordre du jour Désignation des sous-commissions.

MERCREDI 15 AVRIL

16 heures — Régime juridique des ondes — Droits de l'émetteur et du récep teur — Contrôle de l'Etat Matinee. - Excursion et visite scientifique

14 heures 30 — Séances de travail.

JEUDI 16 AVRIL

Matinée. - Excursion et visite scientifique.

15 heures. — Réglementation internationale des longueurs d'ondes notamment des émissions d'amateurs et de la Radiotéléphonie.

VENDREDI 17 A VRIL

16 heures. — La propriété
artistique et littéraire
des émissions radiotélé
phoniques — Droits
d'auteurs

Matinée. — Excursion et visite scientifique

14 heures 30. — Séances de travail

SAMEDI IN A VRII

16 heures — Le dioit de priorité d'exploitation des informations de presse, de finances et de publicité, et la 1 S F to heures — Concours de lecture au son

17 heures 30 — Séance de cloture — Questions diverses

14 heures 30. — Séances de

DIMANCHE 19 AVRIL

14 heures - RADIO-RALLYE

Tous les matins, reunion des Sous Commissions a 10 heures. — Les seances et reunions auront lieu à la Faculte des Sciences ou plusieurs salles pourront être mises à la disposition des Congressistes ayant à traiter des sujets différents. — Le programme definitif sera étable à la scance plemere du Mardi 14 Arril 1925.

INSCRIPTIONS ET COTISATIONS

Les cartes, rigoureusement personnelles, seront délivrées aux Congressistes et aux Membres de leurs familles par les soins du Secrétariat Général des Congrès La présentation de la carte de Congressiste sera obligatoire.

Le prix de la carte de Congressiste a été fixé au minimum à 25 francs pour le Congrès de l'Union Internationale des Amateurs de T. S. F. ou pour le Congrès Juridique du Comité International de la T. S. F. et à 40 francs pour la participation aux deux Congrès. Des cartes supplémentaires pour chacun des membres de la famille d'un Congressiste (père, mère, femme et enfants) seront délivrés avec une réduction de $50\,^{\circ}/_{\circ}$.

Le montant des cotisations, calculé en francs français, devra être adressé le plus tôt possible en même temps que les demandes d'inscription au

SECRÉTARIAT GÉNÉRAL DES CONGRÈS 2, rue de l'Échaudé-Saint-Germain, PARIS-6 (France)

L'inscription sera close le 4 Avril 1925 au soir.

L'American Radio Relay League doit envoyer prochainement au Comité du Congrès un projet de constitution de l'Union Internationale des Amateurs de T. S. F.; les Congressistes qui auraient à soumettre différents projets ou suggestions sur ce point ou sur toute autre question portée à l'ordre du jour, sont priés d'envoyer leur communication avant le 31 mars 1925, dernier délai.

FACILITÉS DE VOYAGES ET DE LOGEMENT

Voyages. — Les Congressistes désireux de proliter des réductions possibles et des meilleures combinaisons de billets directs ou circulaires pour se rendre à Paris, peuvent s'adresser au

BUREAU CENTRAL DE VOYAGES "EXPRINTER" 2, rue Scribe, PARIS-9.

Logements. — Il sera réservé aux personnes qui en témoigneront le désir, et dans la mesure des disponibilités, des chambres suivant leur indication.

Pour ce faire, elles devront joindre à leur demande le montant de la première journée qui leur serait remboursée au cas où la demande étant trop tardive il ne pourrait y être fait suite. Le Bureau Central des Voyages "Exprinter" est à la disposition des Congressistes qui désireraient des renseignements sur les billets de voyage, en France et à l'Etranger, ainsi que sur les hôtels dans toutes les villes.

Scries diverses	Hotel meme genre que	Prix moyen	
		1 personne	2 personnes
Série B	Hôtel du Louvre	10	55 >
- C	- Normandy	25	35 >
- D.	- Londres et New-York	20 •	30 »
— E	Atlantic	15 »	27

Excursions. — Entre les différentes séances des Congrès, les visites et excursions suivantes seront organisées par l'agence "Exprinter"

- 1º -- Excursion en autocar. Visite du poste de la Tour Eiffel et d'un établissement de Télémécanique.
- 2º Excursion en autocar à la Malmaison pour la visite des Etablissements E. Belin (Téléautographie, Transmission de dessins et photographies par T S. F.)
- 3º Excursion en autocar jusqu'à Sainte-Assise pour visiter la station radiotélégraphique

Pour les Congressistes qui pourraient prolonger leur séjour à Paris, les deux excursions suivantes seront organisées à prix spéciaux.

A. — Excursion à Versailles en passant par Saint-Cloud et les bois de Vaucresson. Visite du Château et Lunch Après le déjeuner, promenade par le parc, aux Trianons et la Galerie des Voitures. Retour à Paris avant le dîner.

Prix par personne: 36 », lunch et entrée compris

B. - Visite de Paris en autocar en deux sorties en passant par :

LI MATIN — Carrousel Palais-Royal, Louvre, Saint-Germain l'Auxerrois, Iulleries, Place de la Concorde Avenue des Champs Hysées Flysée, Paic Moncéau Arc de Triomphe de l'Étoile, Avenue du Bois-de-Boulogne, Frocadéro, Champ de-Mais, Tour Eiffel Ecole Militaire, Invalides, Tombéau de l'Empéreur, Quai d'Orsay, Chambre des Députés Madeleine, Opéra

L'Après-Midi — Carrousel, Bourse Banque de France Hotel des Postes, Halles Centrales Saint Fustache Pont Neuf Palais de Justice Conciegeric, Sainte-Chapelle Fontaine Saint-Michel, Palais des Thermes Feole de Médecine Saint Germain-des Prés Saint Sulpice, Luxembourg et Jardins Panthéon, La Sorbonne Musée de Cluny, Notre-Dame, Hotel de Ville, Saint-Gervais, Place des Vosges, La Bastille, Pere Lachaise, Grands Boulevards.

Prix comprenant l'autocar et les entrees : 24 »

CHRONIQUE DU MOIS

SOCIÉTÉ DES AMIS DE LA T. S. F.

Réunion du mercredi 21 janvier.

Liste des nouveaux sociétaires

MM. Ragonot (Edmond). administrateur-délégué des Établissements Ragenot 13, route de Montrouge, à Malakoff (Seine

Chaye Dalmar (Adrien), electricien, villa Marquerite aux Rosaires, par Plerin (C. du N.)

Lavergne (Marcel), ingenieur F. C. P. 5, rue de Drulingen, a St. asbourg

Chrétien (Henri), ingenieur E. S. F., professeur à l'Institut d'Optique 23, rue Preschez, Saint Cloud (S. et-O.)

Nanty, professeur aux l'acultés Catholiques 25, que du Plat a Lyon

Becker (Eugène), ingénieur 8 que Marechal Joffre a Hagondage (Moselle)

Girin (Pierre), ingénieur civil des Mines, 9, place des Ternes, Paris

Bresse (Gaston), professeur de Mathematiques spéciales au Lycée Descartes à Tours, villa

Dupire (André), ingemeur-chimiste 6 avenue de Paris, à Thiais (Seine)

Cruzat (Gaston), ingenieur chimiste, directeur de la Société des Usines Rousselot, à Chateaurenault (Indre et Loire)

Thiebault (Alphonse), ingénieur-constructeur, 113, 14e Flachet à Lyon-Villeurbanne

Officina Radiotelegrafica ed Elettrotecnica del Genio militare 19 Viale Angelico Roma

Société anonyme « La Plastose », 45, boulevard Saint-Martin, Paris

Villars (Paul), ingenieur 6 rue des Atchers a Fives-Lille

Vieillard (Paul), ingenieur, capitaine du genie en réserve spéciale, 18, rue du Colonel Moli. Paris (XVII)

Vautier (Théodore), professeur à la l'aculté des Sciences 5, Montee de Balmont, à Lyon.

Rigot (Marcel), pépinieriste, 36, rue Chevreul prolongee Dijon

Petit (Benjamin), professeur de physique au Lycce de Marseille

Poizat (Ernest), banquier 8 rue de la Benfaisance, Paris (VIII)

Dubroca (Marcelin), professeur de physique au Lyce Pasteur a Neurlly sur Seine

Faure (Paul), ingémeur, 6 rue d'Ars, a Rantigny (Oise)

Carimey (Eugène), professeur honoraire, 44 boulevard Saint Michel Paris (VI)

Villem (Raymond), ingenicus 32 rue Levert Paris XX

Bunzli (René), horloger-mécanicien, 11, rue du Surmelin, Paris (XX')

Puzenat (A.), a Charbonnieres les-Bains (Rhône).

Fleischel (Gaston), ingénieur constructeur, a Bléneau (Yonne).

Husson (Léon), ancien directeur des câbles sous marins, « Ker Ys » Port Solidor, Saint-Servant (Ille-et-Vilaine).

Henriau (Gérard), employe de commerce, 33 rue de Lyon, Paris (XII)

Sosnowski (Kasimir), ingénieur, 85, 1ue de la Victoire, Paris

Aupetit (Louis), ingénieur A et M., 1, rue Gide, à Levallois Perret (Seine)

Maunoury (Maurice), 67, rue La Boetie, Paris (VIII)

Courtheoux (J.), 13, rue Joffre, Hagondage (Moselle)

Boivin (André), ingénieur civil, 78, rue de Courcelles, Paris (VIII)

Guittard (Jean), 7, rue du Bouloi, Paris (ler).

Viennot (Lucien), ingénieur E. C. P., villa Bellevue, rue du Chateau. Saint-Leu la-Forèt (S. et-O.).

Charron (Edmond), professeur de physique a l'Université catholique de Lille 13, rue de Toul, Lille.

Varin (Pierre), industriel, 40 rue des Halles, Beauvais.

Stirnemann (Auguste), ingénieur. 6, rue des Bonnes-Gens, a Colmar (Haut-Rhin).

Melon (Jean), dessinateur, 78, rue d'Assas, Paris (IXº).

Capou (Mathurin), chef monteur radio, 55, rue Gauthey, Paris (NVII*)

Lacaille, 65, tue d'Amsterdam, Patis (VIII').

de Valbreuze, 16 que d'Avon, fontainebleau

Communications.

Un nouveau montage à résonances multiples, par M. Rouge.

 Historique résumé de l'emploi des circuits oscillants dans les amplificateurs. – Le couplage par lampes

 Le succès du montage dit à résonance. Ses avantages et ses inconvénients. Sa supériorité technique pour les petites ondes

3, Le poste "C. A. M. G.". Son principe. Sa réalisation. Ses résultats. Expériences.

Le poste radiotéléphonique de la Tour Eiffel, par le capitaine Bergeron.

Description du poste dans son état actuel Ahmentation. Emission. Modulation. - Projections.

Réunion du mercredi 18 mars

Communications probables.

Alimentation des récepteurs en courant alternatif, par M. Beauvais.

Contribution à l'étude de la lampe à deux grilles, par M. ANYE.