Amateur Wireless and Radiovision, June 16, 1934.

TEN SHORT-WAVE FEATURES :: NEW THREE-IN-ONE VALVE

Amateur Wireles

TELSEN provides the BEST H. H. Choke FOR EVERY PURPOSE

STEADILY developed to the highest mechanical standards, and rigorously tested for lasting efficiency at every stage of construction, each Telsen H.F. Choke is the finest of its type possible to produce at the lowest price consistent with quality.

TELSEN SCREENED H.F. CHOKES

provide consistently high efficiency over the entire wave band for which they are intended. The metal screen, which is connected to an earthing terminal, entirely prevents interaction with other components. Small and compact.

STANDARD Screened H.F. Choke (100-2,000 metres)	3'6
SHORT WAVE Screened H.F. Choke (10-100 metres) -	3'6
ALL-WAVE Screened H.F. Choke (10-2,000 metres)	5′6

TELSEN STANDARD H.F. CHOKE

Particularly suitable for reaction circuits. Very low self-capacity with high inductance. Occupies 2/6

TELSEN SHORT WAVE H.F. CHOKE Covers the complete short wave band (10 to 150 metres). Blind spots have been eliminated, Extremely low self- 3/-

TELSEN BINOCULAR H.F CHOKE

For circuits of the highest class. Negligible external field, very low self-capacity and exceptionally high inductance (180,00 4/6 microhenries).

'n

Editor: D. SISSON RELPH Research Consultants: W. JAMES and PERCY W. HARRIS M.Inst.Rad.E. Assistant Editor: ALAN HUNTER

Published by BERNARD JONES PUBLICATIONS, LTD., 58/51 Fetter Lane, London, E.C.4. Telephone: Central 4341 (four lines). Telegrams: "Beejapee, Fleet, London." Subscription, post paid to any part of the world: 3 months, 4s. 6d.; 6 months, 8s. 9d.; 12 months, 17s. 6d. Published on Wednes lays and dated for the following Saturday.

News and Gossip of the Week

Lawn-tennis Radio

STARTING on June 25 is the All England Lawn Tennis Tournament at Wimbledon, into which B.B.C. commentators will break at frequent intervals.

You may expect to hear exciting excerpts of play in progress any time between 2 and 4.30 p.m. from Daventry and the medium-wave Nationals.

Exhaustive Arrangements

DAVENTRY'S Children's Hour may even be interrupted up to 5.30 for these tennis com-mentaries, while on the medium waves efforts will be made to butt into the programmes right up to the News Bulletins at six o'clock.

End of 24 Hours?

BACK to Old Father Time! The B.B.C. is reverting to ordinary timing in its publications from June 15 onwards.

To save its face just a little, the B.B.C. will continue to bracket 24-hour time with its normal ack

and pip emma figures. But the end of the B.B.C.'s fantastic experiment with time is in sight—public apathy and press antagonism have wrought their deadly work.

Selsdon Gets Busy

No grass is likely to grow under the feet of the Television Eight who are advising the P.M.G.

For already they have been snooping round No. 16 Portland Place, looking in at the 30-line Baird images as sent out twice a week from London National.

Plenty to See!

THIS Selsdon Committee is up and doing. Its members have plenty to see if they look at the several rival television systems now claiming attention.

It is a terrific responsibility to have to discriminate against laboratories that have spent so much on television research. Per-haps there won't be any such exclusion—perhaps they will all get a run for their money on the ultra-shorts.

Flotsam Back Again

BETTER known to listeners as Flotsam, B. C. Hilliam will be heard over the air again on June 15—without Jetsam. The occasion is "Happy Hikers"

an all-singing, all-hiking "tour" through Warwickshire.

Other stars in this unusual

programme will include Thorpe Bates and Hughes Macklin.

Sponsors' Competition

 $A^{\rm T}$ an international newspaper to convention starting on June to, the question of "space" competition by radio sponsors abroad will be raised.

In this part of the world newspapers have always been fully alive to the danger of radio

advertising sapping their revenue. Now that such stations as Luxembourg are taking so many British advertisers, the newspaper interests are again growing restive.

Beware of Cables!

As we lightly tripped around the corridors of Broadcasting House this week we were warned very severely to look out for cables !

No, the engineers were not re-wiring their three-valve sets. Just a part of the complicated arrangements involved in taking film "shots" of various parts of the building.

John Grierson is getting along with the famous B.B.C. film, it seems. But we shan't see it at the "flicks" until nearly the end of the year—if then.

Would-be Stars?

TAKE no notice of the rumour that the alluring bevies of "Big House" are going along to their hairdressers twice a week on the offchance of being "shot" during the film.

Yet, i' faith, some of them are pretty good lookers—and might even get by the searchingly cold eyes of the talkie Czars.

Once-over at Droitwich

So well is the work of the new Droitwich station advanced that Noel Ashbridge and his assistant popped up from "B.H." the other day to see the apparatus under test.

Apparently a closed-circuit test is not yet possible—but all is going according to plan.

Possibly it takes a little longer to "check the blueprints before inserting the valves" than with our sets, what?

Lisburn Under Way

So long have the patient Northern Ireland folk waited for their new high-power station to replace Belfast that they can hardly believe actual work has started

Anyway, the site has been

This new loud-speaker combines the duties of a flower-pot and a loud-speaker. It was shown at an exhibition in London recently

pegged out. Further delay is not likely, either to North Ireland Regional, North-Eastern or North Scottish Regional, since all three have been waiting to some extent on the design of a suitable building.

Pangbourne Disappoints

A FTER waiting for three nights A —and not very warm nights, at that !—the O.B. engineers decided that the nightingales of Pangbourne were not coming up to scratch.

So they groped around the hedgerows and leafy lanes looking for new birds. They found them —and you probably heard them some seven miles away from the original site.

Smart work by the Post Office linked up the newly-discovered point—and the birds then said it with trills over the B.B.C. network.

Only Three Talks!

Fancy that, now. Only three talks per week in the summer! Seems as though the B.B.C.

is becoming, well, almost human. One of these will be the Saturday-night sports talk at 6.30 p.m., the other two being topical.

Queer Fading JUST because the Midland Regional engineers changed over the feeder hut of their transmitter, listeners in Leicester-shire and Nottingham suffered.

They found the station faded quite badly. Which shows that one cannot play around with feeder huts and get away with it.

It Looked Acrobatic!

GLANCING up at the roof of Broadcasting House with a crowd of astonished passers-by, we saw two workmen seemingly trifling with a sticky death.

While on their cleaning expedition, they were balanced see-saw fashion on a plank passed between the lattice work of one of the masts. Gave us quite a turn |

Then we went up above and saw that our fears were un-founded; the workmen were wearing perfectly good safety belts.

606

Radio Down London River

Il.

Large Epoch moving-coil loud-speakers in the lounge of the Thames steamet, Royal Eagle, provide music for dancing on the homeward journey from Ransgate to London

HAD always imagined the lower reaches of the Thames to be most depressing. However, circumstances decreed that I should travel to Ramsgate and back one Sunday; there was no getting out of the journey and I had to miss the usual Sundaymorning sitting with my short-waver.

In due course I arrived on board the Royal Eagle at Tower Pier, found a nice sheltered corner, settled down for a trip down the Thames to Southend, across the sandbanks to Margate, and round the North Foreland to Ramsgate.

On Our Left-Wapping Steps!

Soon after the ship had left the pier, I was startled by a huge loud-speaker announcing that on our left was Wapping Steps. The quality and power seemed exceptional, so I roused up from my corner and went off to investigate.

In a little cabin on the ship's "sun deck" I found the cause of all the noise. Neatly fitted on a large piece of Sorbo rubber was one of the most compact public-address amplifiers I have ever seen. It was like a huge radiogramophone without any loud-speaker fret on the front.

You know how wireless fans get over introductions. I made myself at home with the operator by complimenting him on the fine results he was getting, and asking for information.

operator by complementing him on the life results he was getting, and asking for information. He was a very obliging sort of fellow. Every little detail of the gear was explained; far too much, in fact, to bother you with here. He started off by saying that over 1,000 volts high tension is required for the two output valves and the ship's supply is only 100 volts D.C. This roused my interest thoroughly.

Hefty Rotary Converter

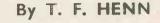
We left the wireless cabin and went down below to the engineroom, where he showed me a hefty rotary converter which provided 240 volts for the first amplifying stage and some 1,500 volts for the power stage.

On deck he pulled out the front of the amplifier and exposed the works. It was a two-stage amplifier, resistance-capacity coupled with two Ediswan ES75 power triodes in the output stage. "You must have some fine loud-

"You must have some fine loudspeakers to get that volume and fine quality," I remarked. "Well, come and tell me what you think of these," he said, and marched me off round the decks to where the loud-speakers were fixed. At the end of the "un the after-deck

fixed. At the the passagers and end of the "sun deck" in a commodious box was a big Epoch super-cinema energised moving-coil loud-speaker. The fret was backed by oilskin to keep salt water out—and in bad weather a board is slipped in front to keep the ocean out!

There were eight of these loudspeakers, two on the top decks, two in the glass-enclosed promenade lounge, and four in the dining saloons down below.


In his little cabin, the wireless officer showed me a switchboard whereby he could switch off any one of the loudspeakers at will.

"You see, not everyone who comes aboard wishes to be entertained with music all day, so for certain periods some of the loud-speakers are shut off. All the loud-speakers below have a volume control on the baffle so that the stewards can cut down the volume to reasonable limits."

I agreed with him; 30-odd watts in a

An artist's impression of the General Steam Navigation Co.'s steamer, Royal Eagle, which plies between Tower Pier, London and Ramsgate during the summer months

dining saloon is louder than can be called comfortable.

He then showed me the gadgets on the motorboard of the amplifier. There were two Marconiphone pickups and two Garrard gramophone motors, the pick-ups being controlled by a switch and fader arrangement. A microphone above the amplifier was also controlled by the same method.

"In the case of emergency," he told me, "passengers would be given instructions from the bridge and the captain's directions would be heard throughout the length and breadth of the ship.

"Thank goodness we have had no occasion to do this; but, as you can

Loud-speakers in the dining saloons have built-in volume controls so that lunch-time music is only a background and not an entertainment

see, gear of this sort would play an important part in getting passengers up on to the decks if a real emergency arose."

By that time we were approaching Southend Pier, and he asked to be excused to make an announcement.

"Will passengers going ashore at Southend please get their luggage from the cloakrooms and get ready to go ashore from the lower deck. Now we will have a programme of light music in the lounge; there will be no music on deck." I left our friend at that and went on deck to enjoy the sea breezes, while the loungers enjoyed their 30 watts of light music.

1.—First position of transmitter, which had to be located by the competitors. 2.—Hidden transmitter position. 3.—The first and only group to locate the transmitter (Southall Radio Society). This group obtained third prize. 4.—Mr. Corfield (5CD) and the mobile transmitter

and Fun with a Portable Set!

PORTABLE set lends itself to many experiments, and probably one of the most interesting is position-finding. Compared with modern commercial direction-finding apparatus, a "portable" may seem a crude affair, but if carefully handled it can be made to demonstrate the main principles and to produce results far above its modest appearance.

Map and a Good Compass

The only accessories needed are a map and good magnetic compass. The experiment a is based on the directional properties of a frame aerial being used to obtain compass bearings on two or more broadcasting stations, and the

and thinks it advisable to check his progress, he calls Croydon aero-drome and asks for his position. The ground operator takes a compass bearing of the 'plane's direction with his direction-finding receiver, and plots this on a large-scale map by means of a string-line. A second bearing is obtained

another direction - finding from station at Pulham in Norfolk, and when this is also plotted it is found that the two string-lines intersect. The point of intersection, of course, gives the position of the 'plane .on the map, and this information is then passed to the pilot.

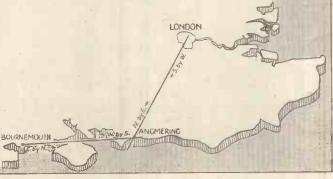
It is obvious that a single bearing, say from Croydon, would only show the direction of the 'plane, whereas the second bearing enables an exact location to be made. From this we get the data on which the experiment is based -that given the compass bearings from two known points upon an unknown point, the position of the unknown point can be estimated.

It is not a difficult matter to adapt this principle to a portable set so that its operator can work out roughly his position anywhere in the British Isles. As already mentioned, the idea is to use the directional properties of a frame aerial (the unknown point), to obtain compass bearings on two broadcasting stations (the known points). Plotting these bearings on a map with

pencil lines will give the position of the portable.

The first procedure in taking bearings is to set up the portable and to tune-in and identify two broadcasting stations, fairly widely two ' separated geographically. Now it is well known that with a frame aerial, maximum signal strength is obtained only when the edges of the frame are parallel to an imaginary line drawn from the transmitter. In other words, when one edge points directly towards the station and the other away from it.

Taking a Directional Bearing


Having tuned-in a station to maximum strength, therefore, it is a simple matter to place a compass on top of the frame and, using one edge as a pointer, to take a

directional bearing.

Of course, there is uothing to indi-cate which edge of the frame is pointing towards the transmitter, but if this is not known by a general sense of direction, then it can be worked out later by trial and error. It is advisable to use head-

phones when searching, and to keep the volume low side, other-wise it is difficult to judge the point of maximum signal strength. Naturally this is very important. as a small compass error may make a difference of miles to the final result

For the same reason a check on me "maximum-point" reading. the should be made by means of the "minimum-point" method.

Map showing how your correct redio bearings can be taken with a simple frame-aerial type of portable set

Amateur Wireless

On the beach at Angmering taking bearings with the aid of a portable set, a compass, and a map

Minimum volume or fade-out occurs when the aerial is flat-on to the transmitter, the compass reading being taken at right angles to the edges of the frame. This method is probably better than the first, as the ear can more easily detect a fade-out than a point of maximum strength.

ried out on the South Coast will help to clear up any doubts as to procedure.

The portable was put up on the beach, headphones attached, and London, tuned-in. Rotating the frame and obtaining the point of maximum signal strength, it was found that the edges of the aerial were pointing N. by E.

Having obtained two bearings, it is neces-sary to make an adjustment-the bearings must be reversed. The reason for this is that the compass readings are from the unknown point, and we cannot draw a line on a map beginning from an unknown place.

Reversal clears up this difficulty, however, for it converts the com-pass readings to bearings on the portable from two known points, the broadcasting stations.

For example, suppose that the London station was found to be due north from the portable, then the portable from London must be due south. Perhaps details of an actual test car-

and S. by W. Knowing London to be to the north, the N. by E. reading was chosen. It was then decided to use Bournemouth

as the second known point and, after tuning-in and adjusting the frame, a bearing W. by S. was obtained.

As explained, these bearings were reversed, N. by E. becoming S. by W. from London, and W. by S. becoming E. by N. from Bournemouth. Carefully plotting them as pencil lines on a map, it was found that intersection occurred at a point about two miles out to sea from Angmering, whereas, of course, the portable was on the beach.

If a Mistake is Made

It may seem from the above example that it is necessary to know roughly the position of the portable and the direction of the various transmitters before a result can be obtained, but actually this is not so. If the mistake is made of reading one or both of the compass bearings from the wrong edge or side of the frame aerial, then the lines on the map will not intersect.

A trial will soon show the correct readings, and it should be possible for anyone "dumped in an unknown locality with a portable and a map to work out his approximate position. The weakness of the idea lies in the fact that it is almost impossible to obtain accurate compass readings with such simple apparatus.

Now An A.C. PENTA-QUESTER!

O regular reader can have forgotten about the Penta-quester—the "hottest three in history" produced in the issue of AMATEUR WIRELESS of April 14. This hot battery three thrilled amateur

circles with its many novel features—not least being the clock-face tuning dial and the chromium bars making a "local aerial."

A wood-chassis set that gave a new meaning to the straight three-valve sequence—an all-pentode circuit that showed just how far modern valve technique had progressed.

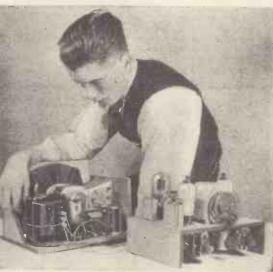
A pentode for high-frequency amplification, pentode for detection and a class-B pentode circuit for the output. What a combination !

Chassis and circuit went into a table cabinet with self-contained moving-çoil loud-speaker a cabinet big enough to take all the necessary batteries.

Country-wide Tests

We had that Penta-quester tested in Essex, in Yorkshire, in Cornwall, and in Sussex—a country-wide test that endorsed all we had ventured to claim for the set's performance. Stations simply rolled in at full loud-speaker strength, with a degree of selectivity and quality putting the design right in the

front rank of modern radio. Such a set deserved a wide appeal— and it got it ! We asked readers interested in the design to send for a full-size blueprint, which we gave away absolutely free of charge in order to give everyone a chance to see just what a really hot modern three could do.


Thousands of readers responded heartily to this invitation, and we were more than gratified that we had put over a real winner for the benefit of the homeconstructor.

But it was a battery set-and there are thousands of readers who are interested only in mains working. It was not long before we were requested to get to work on a mains version of the Penta-quester-which we forthwith did.

After a thorough test of the A.C.-mains model we can now announce that it will be presented in all its glory next week, when full constructional and working details will be published.

Much the same circuit has been adopted as for the battery job. One special difference is the use of an ordinary pentode output power valve in place of the class-B system. With this, of course, is an ordinary type of transformer coupling.

At every vulnerable point in the design, full decoupling has been added, so that even under the most stringent conditions the new design is absolutely stable.

Putting the A.C. Penta-Quester through one of its preliminary trials. It is another "A.W." winner!

For the high-tension supply from the mains a maximum output of 250 volts is available from the full-wave valve rectifier. The equipment for the mains high-tension is fitted on the shelf of the loud-speaker,

supplying not only the high-tension but also the low-tension A.C. voltage and grid bias through the usual resistances.

Control is just the same in the mains version as in the original battery model. There is one knob for tuning, another for input-cum-volume control, and a differential reaction control.

Added Power from the Mains

All the excellent qualities of the battery

Penta-quester have been carefully retained— and, of course, there is no doubt that with the added power from the mains the quality and volume are even greater.

Further, there is the very great convenience of mains working, with its entire abolition of battery charging and renewals. The total consumption of the A.C. Penta-quester taken from the mains is not more than 40 watts, which is appreciably less than the consumption of the average electric-light bulb. From the illustration shown at the

centre of this page, you can appreciate the fact that the A.C. Penta-Quester divides itself into two parts-the main metallised wood chassis and the platform containing the power equipment behind the loud-speaker.

This is a very convenient way for the home-constructor to build a mains setand with this particular design there was the further advantage that the outline of the original layout could be retained.

Naturally, connecting leads go from the power unit to the chassis, but these are very simple to follow and there is no possibility of any mistake.

JUNE 16, 1934

609

Amateur Wireless

Let Us SEE!

Says PERCY W. HARRIS, M.Inst.Rad.E.

AM going to talk very frankly in this article. If I make any statements which cause offence in some quarters, it will not be through any desire to cause offence, but just because I have a very strong feeling that now is the time for the public to voice its views and to indicate, so far as television is concerned, that it is not going to have a repetition of the state of affairs which arose through lack of public interest at a time when the foundation of the modern broadcasting system was laid.

Strangely Chequered Career

Television, both in this country and America, has had a strangely chequered career and only in the last twelve months has it become a really serious businesslike affair. Up to that time the public was surfeited with wild prophecies, unsupported claims, so-called television apparatus which never should have been placed on the market for home use, and a broadcast service of television which, while of considerable value to experimenters, had little or no value as public entertainment. I shall not be surprised if a number of readers

write indignantly to say that they have greatly enjoyed the 30-line television broadcasts and I admit there is a fascination in receiving them when one is interested in the technical side. I have, in my laboratory here, an excellent mirror-drum, 30-line television apparatus which receives any of the B.B.C. broadcasts excellently, gives a good illuminated image of

Percy Harris, as every reader of AMATEUR WIRELESS knows, is one of the most experienced radio journalists and his opinions are of importance. Many people will disagree with what he has to say about television in this article -particularly when it comes to the entertainment value of thirty-line transmissions-but we nevertheless feel that his views should be put forward.

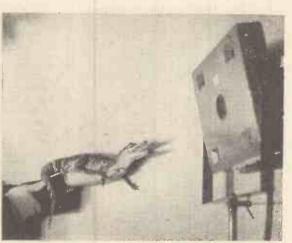
reasonable size, and maintains the pictures steadily during the whole transmission.

How often do I use it? Only when I am investigating some television problem and never in any circumstances do I sit down to look at it for its entertainment value.

Less than twelve months ago, the Baird Company management was reorganised. They then tackled seriously many of the technical problems which hitherto had held up progress, and, what is much more interesting, they reversed their previous policy of talking a lot about what they were *not* doing into the policy of *not* talking about what they were doing !

The net result was that after several months of intensive work they began not long ago to give a series of true radio demonstrations of

180-line television, the results of which were so good as almost to take my breath away. Day in and day out, over a period of weeks, but always to audiences of government officials, members of Parliament, representatives of the various fighting services, engineers, and scientists generally, the company demonstrated television received by radio (not over land line) on ultra-short waves from the Crystal Palace, right in the heart of London on apparatus of a type which could easily be installed in the home.


This apparatus is *not* on sale yet and public demonstrations have not yet been given, nor is there yet any broadcasting on this system, but as one who

has seen these demonstrations from time to time I can assure you that television of this kind has real entertainment value of a high order, and that technically real television has now arrived.

180-line television gives you a picture almost, but not quite, as sharp as the pictures obtainbut not quite, as sharp as the pictures obtain-able on a good-quality home cinema. 180-line television is also being developed by Electrical and Musical Industries, Ltd., in conjunction with the Marconi Company. Their television has not been shown to me yet; nor, so far as I can trace, to any other of the radio critics and technical journalists to whom the Baird Company have shown their television, so I cannot say whether it is good, bad, or indiffercannot say whether it is good, bad, or indifferent

Another firm, Scophony, has also talked a good deal, but again they, apparently, do not consider their system is yet in a sufficiently good working state to show to those of us whose duty it is to explain to the public the technical progress made technical progress made.

The Government, having seen the Baird television and had demonstrations of the E.M.I. high-definition system, have come to the conclusion that something must be done about it, and therefore we have the committee about which the announcements have already been made.

B.B.C. photo

An amusing incident for a Zoo television broadcast made by the B.B.C. A number of animals were taken to Broadcasting House and there televised

We are a docile race and support, much better than most nations would, the dictator-ship wielded by the British Broadcasting Corporation regarding what we should hear. When their charter was originally prepared, and when the subject of monopolistic broad-casting was originally discussed in the House of Commons, no one suggested that a group of people would insist on imposing upon the nation their religious and educational views during hours which presumably were intended to be spent in public entertainment. If they had, a good deal of opposition would have beep forthcoming at the time.

The Acid Test

Primarily, broadcasting was intended as public entertainment and the acid test of the present administration is simply the question, how long would a London theatre, music-hall, concert hall, or other place of entertainment remain a successful and paying proposition under the present B.B.C. management?

It is futile to reply, as is often done, to the public criticisms of the entertainment value of the broadcasting to say that the British broadcasting system is the best in the world. The answer to this is simply that no other broadcast organisation in the world has such a Personally, I am of the opinion that the

public should insist that so far as television is

concerned (I am speaking now of the administrative and programme side) we should start afresh free from existing prejudices with a different organisation and on a basis that primarily this service must be for public entertainment. I yield to no one in my admiration of Sir John Reith as an administrator, but entertainment is not made by administration, alone.

No Worry-Technically !

Remember that in the future when you come home at night you will be able to sit down in front of television apparatus and watch an entertainment which will be good, bad, or indifferent, according to the way the organisation is administered. You can take it from me that technically you will have no worry about the pictures—they will be good, clear, and bright; but no matter how good they may happen to be technically, they will bore you unless they are of the right kind. Furthermore, unless you express Continued at foot of next page

Herr Manfred von Ardenne is one of the best-known television workers in the world. Here he is with some of his apparatus

Amateur Wireless

Front view of the Kebtex Proscenium Four, a straight A.C./D.C. set

HEN a high-grade cabinet manufac-W turer decides to go into radio, one can at least expect that the external appearance of the receiver will be distinctly above the average. The Kebtex Company, who are well known to the trade for their cabinet work, have just introduced the Kebtex Proscenium Four, which is a receiver suitable for A.C. or D.C. mains. From our From our tests we are quite satisfied that the receiver does in every way do justice to the exceptionally fine walnut cabinet used

There can be no doubt that the cabinet is the product of an artist. It is of beautifully grained walnut with a cellulose finish, which is permanent, and the effect is distinctly better than the average french polishing to which we have become accustomed.

The name Proscenium has been well chosen, although until one actually sees the receiver the reason for it is not too obvious. Actually the loud-speaker fret takes the form of a theatre stage. It has been slightly recessed and is very realistic, as it gives the appearance of depth.

Although the receiver is entirely self-contained, it is far from being bulky. The overall height is $19\frac{1}{2}$ in. with a width of $14\frac{1}{2}$ in. and a depth of $9\frac{1}{2}$ in.

IN A NUTSHELL

Makers : Kebtex Radio, Ltd. Model : Proscenium Universal Four.

- Price : £11 115. Valve Combination : Screen-grid highfrequency stage (Tungsram SE2018), triode detector (Tungsram R2018), multi-grid output valve (Tungsram P2018), and half-wave valve rectifier (Tungsram PV4018). Power Supply : A.C. or D.C. mains of any voltage between 110 and 260 volts,
- any frequency A.C.
- *Type*: Table model in walnut. *Remarks*: A really fine straight receiver with a cabinet of what we consider is exceptionally good finish.

All controls are quite conventional. In the centre is the main tuner, while beneath it from left to right are the reaction condenser, volume control (which varies the gain in the high-frequency stage), and on the extreme right a combined wavechange and gramophone switch. The on-off switch is an entirely separate component, fitted through the left-hand side of the cabinet.

The tone control, enabling the user to vary the pitch of reproduction to suit individual

Sets of the Season Tested Kebtex Four-valver

taste, is fitted through the right-hand side of the cabinet.

This is the first receiver that we have ever tested with the tuning dial calibrated with a number of the more reliable American mediumwave stations, in addition to the normal European medium- and long-wave stations. To anyone who has not tested the receiver, this American calibration may seem to be a trifle unnecessary. We were inclined to believe that the manufacturers were being too optimistic, but after we had reviewed the capabilities of the receiver we were obliged to change our opinion.

The circuit is conventional, which perhaps accounts for the exceptional sensitivity, for we have in the past noted that the more simple circuits often give better sensitivity and certainly are more reliable. The first valve is a variable-mu screen-grid high-frequency amplifier, which is coupled to a steep slope triode detector. Transformer coupling is

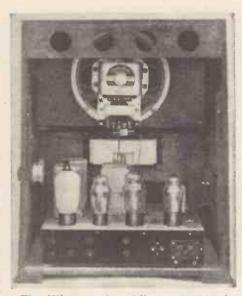
employed between this valve and the multigrid output valve which gives over 2¹/₂ watts. Quality is decidedly above the average. There is not an obvious reason for this, but

when we looked into the matter we discovered that the intervalve transformer was of massive dimensions and had a very high primary induc-tance. That was a good beginning. Then the output valve was supplied with a generous high-tension voltage which, combined with the fact that it was carefully matched to a large moving-coil loud-speaker, ensured that there was no loss of quality in this stage.

All of the smaller components are mounted beneath the metal chassis so that the general appearance is very clean and workmanlike. The only important components that can be seen are the tuning condensers, iron-cored tuning coils, which incidentally are highly selective, and the voltage-dropping resistance.

On test, the receiver more than justified the claims of the manufacturers. The tuning dial is of unique design and it is so accurately calibrated in station names that it is a very simple matter to identify the numerous foreign stations received, including those of American origin.

Our original tests were made in broad day light in the heart of the city on a short aerial of 25 ft. total length. Even under such adverse conditions we were able to hear twenty con-tinental stations at good strength. With such an aerial the selectivity was better than it


Let Us See!

Let Us See! Continued from preceding boge yourself forcibly at the present time you may find yourself landed with beautifully illustrated lectures on astronomy when a programme of dancing would be more to your taste; the perfectly depicted features of some nonentity who has used political influence to get in front of the televisor when you would like to see a theatrical performance; and a total absence of certain performance; and a total absence of certain kinds of picture entertainment because they do not happen to commend themselves to a group of comfortably circumstanced elderly people who happen to be running the television service at the time.

If you think that the present B.B.C. type of administration, which gives you the kind of programmes you now hear, is the kind of organisation to give you satisfactory pictures, then you will get that kind of organisation and you will get that kind of picture. If, on the other hand, as I suspect, you think that at least half of the entertainment value of television will be lost under such administration, write and say so. Let us hear all about your

would be normally and averaged about 9 to 10 kilocycles

Our second tests were made with an aerial having a total length of 80 ft. and without an earth connection as specified by the manufacturers. At a distance of 40 miles from London, we were able to obtain approximately 12 to 14 kilocycles selectivity without any juggling, although with careful adjustment of the reac-tion and volume controls this selectivity could be very considerably improved. After dark no difficulty was experienced in

The Kebtex receiver follows conventional lines, but there are controls at the sides

logging the bulk of the stations calibrated on the tuning scale—some sixty in all, which speaks very well for the design of the highfrequency stage.

Those readers who listen to such low wavelength stations as Fécamp need not have any fear about the set's tuning range, for Fécamp was tuned in with about 8 degrees to spare.

One evening during a late test we were able to pick up no fewer than seven American medium-wave transmitters, including WIOD, WCAU, KDKA, and WTIC.

views ! But don't be lulled into a false sense of security just because a committee is now sitting on the subject and don't assume that because they are sitting they must necessarily produce a scheme which will please you and satisfy the whole public. Remember, too, that two members of the committee are B.B.C. officials, anyway.

NEXT WEEK!

Literally thousands sent for the blueprints of the Pentaquester when it was produced as a battery model. Now the A.C.-mains version is ready and the AMATEUR WIRELESS Technical Staff will give full working details next week. All the advantages of the original Penta-questa plus mains power and quality-and the consump-tion is-only 40 watts!

No More Twenty-four Hours?

T seems more than likely that the B.B.C. will shortly abandon its use of the twenty-four-hour clock, for this has certainly not gone down well with listeners. So far, something over a thousand letters have been received on the subject, and the majority of them voice protests of varying strength.

One little thought occurs to me: We are told that large use is made of the twenty-fourhour system by foreign countries. It is-for railway timetables-but do you find it used for the wireless programme times in Continental newspapers?

For Television Receivers

A PART from its other merits, the cathode-ray tube is conveniently "elastic" in the sense that it can easily be adapted to handle either high—or low—definition television. For instance, the only part of the set affected in changing over from 180- to 30-line trans-mission is the resistance-capacity unit in the timing circuit.

The ordinary fluorescent screen is, in fact, particularly good for receiving low-definition pictures, because the "afterglow"—which tends to blur high-definition reproduction— helps to fill the gap between one "slow" picture and the next. Of course, with really highand the next. Of course, with really high-grade screens, the light response is instantaneous, so that there is no perceptible after-glow, though such screens are expensive and difficult to produce. .

Suicidal Set Prices

FRIEND of mine who has just returned A from a visit to Australia wants to know why the British manufacturers do not make an effort to popularise receivers over there.

After looking at some of the cheaper sets on sale in England, he says that the answer is rather obvious. In an endeavour to reduce the retail prices, the workmanship has deteriorated to such an extent that English sets cannot be compared with American sets at a similar price.

He goes on to say that the prices current over here are suicidal in view of the compara-tively limited sales, and unless English manufacturers are prepared to export so as to increase sales they will never be in a stabilised position.

There is certainly a lot in what he says, for from personal experiences I can tell some pretty tales of sets delivered with the wrong types of valves, wires missing, and knobs that have slipped off the spindles through bad workmanship.

Still Our Numbers Grow

TURNING over the pages of a bound volume of a wireless paper for ten years ago, I am amused to find the statement that wireless must almost have reached its satura-tion point and that no great increase in the number of wireless licences could be looked for in coming years ! Well, at the end of 1924 the total number of

licences was 1,140,119. And in ten years it has gone up more than five-fold, for we now muster some six and a quarter millions in the ranks of licence holders, and each month sees quite a substantial increase

Rather less than half the homes of these

By Thermion

islands are still without their wireless sets, and I think we have still got another million or two to go before we think about saturation points. ٠ +

That Ideal Set

FRIEND E. H. Robinson has had a tilt at me in last week's "A.W." over the ideal set. What he says makes it rather plain that probably there "ain't no sech thing !" One man's meat is another man's poison. His ideal brings in the two London stations

only at full loud-speaker strength. And that wouldn't do for me—nor probably for you. A couple of years ago I designed a set purely

and simply for bringing in the local stations with the best possible quality. I thought I should use it a whole lot. Actually I don't! I have found since then that, despite what E. H. R. says, you can get just as good quality on the locals from a set that will bring in a score or

And I do want foreigners. There are such magnificent programmes on the air from Continental stations, that it seems a thousand pities not to be able to pick them up at will.

What of S.A.V.C.? WHAT is E. H. R.'s objection to self-adjusting volume control? Even if he wants only the London stations, I should have thought that in the place where he lives, some forty miles from Brookman's Park, he would find the London National fading quite a bit at times. S.A.V.C. can have no possible ill effect on the quality, but it does act like a charm in

only the night before these notes were written I was listening to a very fine pro-gramme with an S.A.V.C. set. The volume was erfectly steady and the transmission was a joy to listen to.

As an experiment, I switched over to a set without S.A.V.C. The difference was simply amazing. Rather quick fading was in progress, and signal strength was waxing and waning in such a way that you could not possibly listen to the programme with any pleasure. And, by the way, if E. H. R. won't have S.A.V.C., why does he suggest a *double*-diode-

triode as detector?

On a super-het coming over ! By the rapt expression on the face of this fan a very favourite dance number has just been caught !

Good Servicing Here!

IN past weeks I have had occasion to refer to one or two instances of bad or unsatisfactory servicing of receiving sets under guaran-tees. Let me now turn to the other side of the medal and award a pat on the back where it is due

The firm of Ekco have always made a point of giving especially good service to their customers. Recently I had a couple of complaints from customers who weren't quite satisfied. I sent them on and received by return a letter thanking me for bringing these matters to the notice of the company. Within a week I had the news that both of

my correspondents had had a special visit from a service engineer who had put their apparatus absolutely right without a penny being charged.

That's the stuff to give 'em ! +

. A Battery Big 'Un

N a day or two I shall have the Philco 8-valve all-wave battery set down for a trial run. I am much looking forward to using it, for it A.C. mains all-waver. As you know, I have always contended that the battery set could be a real good thing, and I hold that so long as you use good fat batteries it needn't be frightfully expensive to run, no matter if it does contain a big family of valves. There are many joys about using an all-waver, not the least of which is the ease with

you can go over from waveband to which

waveband by merely touching a switch. It is extraordinary how lazy we human beings are in some ways. But one thing that But one thing that

H.M.V. photo

Is this prize cow listening to one of the B.B.C's talks to farmers? Or is she just licking off the tasty finish of the attractive-looking cabinet? It was an idyllic scene at Oxford, anyway !

goes entirely against the grain is the simple, though annoying, business of having to change coils of the plug-in variety when you want to change your waveband.

For short-wave reception there is nothing to touch the superhet with S.A.V.C. You have got the punch, and fading—that bugbear of short-wave reception-ceases to be a nuisance.

Another schoolboy howler!

Big Wireless Factory

ONGRATULATIONS to the Cossor people (O on undertaking the building of their fifth and latest factory in London. When finished it will contain 60,000 square feet of floor space and work will be available for over a thousand hands.

I can't quite remember when I used my first Cossor valve, but it must be the best part of a dozen years ago. Do you remember the old "tin-hat" pattern? It was a bright emitter, which got its name from the fact that its plate was shaped rather like the steel millinery that was in vogue during the Great War.

Then, shortly after the coming of the dull-emitter, Cossors were, I believe, the first people to use the principle of locked electrodes in the construction of their toobs. We all owe a big debt to the firm of Cossor,

for they have been pioneers in many ways. It was they, wasn't it, who gave us the first class-B valve?

For some time they have been turning their attention to television problems, and I believe that they have got some good things up their sleeve.

. **Programmes Over the Mains**

COME time ago, if you remember, I menvireless programmes over the lighting mains

Radio marches on ! Two Ratio marcnes on ! I woo striking views of the new Cossor factory now going up at Highbury. The height will be 75 ft. for the five storeys, for which 500 tons of British steel are needed. 60,000 sq. ft. of floor space will be available for over 1,000 workers.

had been invented. Recently a most interesting demonstration of the system was given in Liverpool.

Its great point is that not a single extra wire is needed. The receiver, or selector as it is called, plugs straight into the mains. Three alternative programmes are relayed simultaneously over the mains and all that you have to do is to pick your fancy as you turn a switch to position one, two, or three. It's a good idea and it seems to work very

But if I know anything of the wireless enthusiast, he won't want to be tied down to three programmes and to be left without any knobs to twiddle !

+ Radio's Big Problems

.

WHAT, in your view, are the biggest VV problems still to be tackled in wireless sets? You can most easily find the answers if you think about your own set for a moment and try to discover its shortcomings—provided, of course, that you will admit that it has any ! I'd say that the biggest of all problems at the moment is that of wave-change switching.

The average switch has two bad faults. The first is that as you go over from medium to long waves or vice versa there is a sickening thud from the loud-speaker. And the second? Ask any service man his views about wave-change switches and you

will find that they are responsible for about 70 per cent. of the trouble that occurs in receiving sets.

Wave-change switching and the elimination of second channels in superhets are far and away the biggest problems that still await solution

Now then, you inventors ! • •

Fitting Extra Loud-speakers

+

WITH a large house and only one radio set, it is a good idea to wire up the more useful rooms by means of a single wire so that extra loud-speakers can be used when required. The wiring is very simple, and if a little care is taken the quality and volume from the parent set need not be impaired.

First, the output stage must be converted to choke feed. That means the high tension to the last valve only must be supplied through a low-frequency choke. Then connect one side of a 2-microfarad fixed condenser to the anode of the power valve. Obtain enough single wire to reach the first room, join one end of it to the remaining side of the fixed condenser, and the other end to one side of a 2-pin plug, which should be fixed to the wall of the first room.

If you only want one to use a single extra loud-speaker, just earth the blank side of the 2-pin plug as directly as you can. On the other hand, several other units can be wired up in the same way. Join the second or earth side of the first plug to one side of the second plug, wherever it may be, simply earthing the second side of the second plug. A switch of the make-and-break toggle type is then con-nected directly across the terminals of each loud-speaker to act as a cut-out.

At least half a dozen units can usually be wired up in this way and, as it is very unlikely that they will all be in use at the same time, no difference will be noticed at the receiving. set end.

+ **Radio Passports**

ELECTRICAL AND MUSICAL INDUS-**L** TRIES—that great concern which includes His Master's Voice, Columbia, and Marconi-phone—are providing their service engineers with neat little identity cards, each containing a photograph of its owner.

This is a jolly good idea, for thefts of wireless apparatus by spoof service men are by no means infrequent.

A chappie calls at the door, announcing that he is from the XYZ company and that he has come to give absolutely free service to the receiving set. Sometimes it works. He is admitted and for a time tinkers with the set. Then he announces that he must take it away with him for an hour or two-and that's the last you see of that set.

The passport system puts an end to this kind of thing, and it is to be hoped that other makers will adopt it.

. **Musical Valves**

.

HERE is a distinct touch of genius in the idea of "taming" a back-coupled valve and converting the usual output of squeaks and howls into orderly music, as Theremin did when he first played his "magic box" before an astonished public.

Since then quite a variety of electronic music-makers have been produced on more or less the same lines, though in some cases the ordinary valve has been replaced by one of the Thyratron type—which is equally sensitive to control, but is capable of delivering a greater volume of sound.

A recent development, based on a somewhat different principle, takes the form of a piano in which the ordinary sounding strings or wires are replaced by small metal strips, the largest of which is only a few inches long. The notes produced by striking the keys are practically The notes inaudible until they are passed through low-frequency amplifiers, which magnify them up to any desired strength.

The beauty of the arrangement lies in the flexibility of the volume control. In fact, by using a pair of headphones, a student can practise the piano to his heart's content without being heard by anyone except himself.

Tip for D.C. Mains Users

+ +

A RE any of you having trouble with the valves "going phut" in D.C. mains sets? If so, here is a tip for you.

A neighbour of mine made a four-valve table-model D.C. super some months ago. In three months no fewer than four output valves gave up the ghost. He checked up all the applied voltages, anode currents, and so on, only to find everything correct. He then went to the valve makers for help.

The suggestion made by them was that the temperature was too great inside the cabinet, causing the valves to go soft. The cabinet was certainly on the small side,

as the set had been converted from a battery three to a mains four and, in addition, the voltage-dropping resistance gave off a lot of heat.

So the set was taken out of the cabinet, and I don't know whether the last valve was de-gassed at a higher temperature or whether the vacuum was better, but the fact remains that he has not had any further trouble with loss of quality through valves going soft.

I should be interested to hear from any readers who may have suffered in this wayand from anyone who has by chance tried out my suggestion as a remedy.

Amuteur Wireles

New 3-in-1 Valve

O longer need the muchneglected battery set user look with envious eyes at the introduction of new mains valves, for to-day the makers are bringing out many new types

for battery filaments. Take the new Osram HD21, for example. Here is a red-hot valve for the keen fan who is anxious to obtain distortionless detection, with or without the added boon of self-adjusting volume control—commonly known as "A.V.C."

Or, rather, we should say, take the HD21 in either the Osram or Marconi ranges—for both are represented, of course. The valve is made by the Marconi Osram Valve Co., Ltd., and marketed by the Marconiphone Co., Ltd., as a Marconi HD21 and by the General Electric Co., Ltd., as the Osram HD21.

It is a very interesting battery

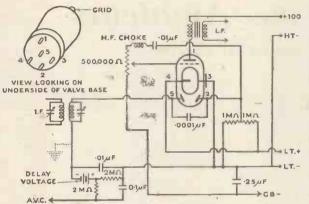
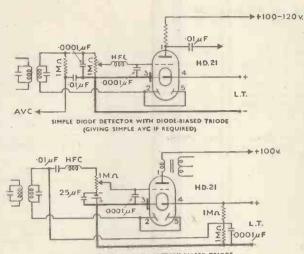


Fig. 2.—Here a small additional bias battery is needed for obtaining delayed self-adjusting volume control

valve, a combination or three-in-one valve— actually a double-diode-triode. Perhaps the most startling point about the


valve, quite apart from its several applications in modern super-hets, is the unique construction of the electrode system. The valve is built up around two separate

2-volt .1-ampere filaments, these being connected in parallel and worked from

the usual 2-volt accumulator. One filament "limb" forms the basis of the triode, a three-electrode valve of the HL class-more detailed figures in a moment. The other limb has the two diode anodes mounted around it, the whole of this limb being enclosed by a large earthed screen

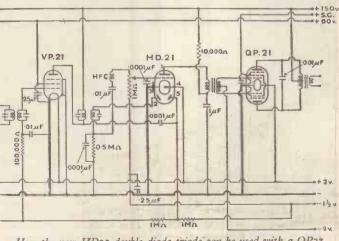
Peculiar Construction

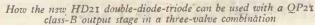
You may, perhaps, wonder why all this peculiar construction is necessary. For a start—and per-haps this is one of the most importany reasons-it enables the makers to use a standard HL2 construction for the triode portion, with all the ensuing advantages of a good amplification factor. Furthermore, amplification factor. Furthermore, it improves the efficiency of the diode sections. And then it pro-vides a simple way of obtaining not merely self-adjusting volume

SIMPLE DIODE DETECTOR WITH BATTERY-BIASED TRIODE DIODE BIASED TO IN POSITIVE

. 1.—Two good circuits the makers recommend for the new HD21 battery double-diode-triode valve Fig.

> control, but delayed S.A.V.C. as well


> By this construction, also, the diodes can be very easily screened from the triode portion. This is very essential when we are dealing with modern S.A.V.C. systems.


We may remind you that the HL2 characteristics, as obtained from the triode portion of the new HD21 double-diode-triode, are as follows : Amplification factor, 27. Impedance, 18,000 ohms.

Mutual Conductance, 1.5 milli-

amperes per volt. So much for the triode section, whose moderately high ampli-fication factor simplifies the predetector circuit in which it might be used.

With all multiple valves using diodes, it is very important to ensure a low capacity between the diodes and the amplifying elements-in this case the triode section. The HD21 is safe on this score, owing to the adop-tion of the special metal shield for the diodes and separate filament. Moreover, the design of the grid support and its connections ensures the lowest possible diode-grid capacity.

Type HD21 is the latest addition to the Osram and Marconi battery valves. It is a double-diode-triode valve, with the diode and triode elements on and triode elements on two separate filament limbs. The valve is for diode detection followed by triode amplification, the second diode providing self-adjusting volume control if desired

HD21 valve can be used as a simple diode detector with low-frequency amplification in sets using one or more efficient stages of high-frequency amplification. Or, of course, the valve is highly useful in super-hets, where its function as distortionless detector with provision for self-adjusting volume control is shown to the fullest possible advantage.

For delayed systems of self-adjusting volume control the two diodes have to be used separately, of course, and a small additional bias battery is needed for the second diode.

Transformer or Resistance Coupling

HD21 can be used with transformer coupling to load an output pentode valve, such as the PT2 or the QP21 class-B valve, or with resistance-capacity coupling can be used after the HD21 to connect it to the driver valve of a class-B output stage. For this latter the makers stress the need for good anode decoupling arrangements.

From the Fig. 2 diagram you will see that the connections to the HD21 are made by means of a standard 5-pin base. The actual

connections are as follows: Pin I, anode; pin 2, diode nearest end of filament connected to pin 3; pin 3, filament and metallising where supplied; pin 4, filament and diode shield; pin 5, diode nearest end of filament connected to pin 4; top cap, triode control grid.

The present stock of HD21 is, naturally, limited, but by the time you read this supplies should be available to the amateur. The price

is 9s. From the makers' suggested circuits given with this article, you will be able to gather at a glance some of the applications of the new valve, which we consider is a notable addition to the extensive battery

ranges of the Osram and Marconi groups.

It is a valve that at present has only a limited application among amateurs, but there is no doubt it ought to have an appreciable influence on set design in the future. There is no reason why the amateur should not experiment with the anatom valve, especially in modern types of super-het, and from the circuits the keen fan ought to be able to make a start.

Doubtless in due course we shall produce a design embodying the double-diode-triode, which presents quite interesting possibilities in providing delayed automatic volume control in battery supers. This type of valve does much to put the battery set on a par with

mains sets—and we expect manu-facturers will take advantage of it in future designs, too.

Your Short-wave Log

By J. GODCHAUX ABRAHAMS

TITH the advent of summer, alterations are being made in the schedules of VV are being made in the schedules of stations, and, in addition, as is customary at this period of the year, alternative channels may be tested, with the result that in some instances a change in wavelength may have to be registered.

Listeners who, at odd times, may have captured transmissions from VK2ME, Sydney, may care to learn that Melbourne is testing out a new 20-kilowatter, namely, VK3MR, working on 31 metres (9,670 kilocycles). Although a regular time table has not yet been compiled, broadcasts have been heard between 1130 and 1200, B.S.T, on weekdays.

Recalling Costa Rica

Some of the older hands may recall T14NRH. of Heredia, Costa Rica. For some time no news of this station was forthcoming, and it was presumed—quite correctly, as it happens that it had closed down. Its owner has moved to Granada, Nicaragua, and, under the call sign YNCRD, has resumed his transmissions on 7,170 kilocycles (41.84 metres), almost on the channel used by HJ4ABB, of Manizales (Colombia). The best time for a search on any day is between B.S.T. 2000 and 2100.

Another South American which has altered its time schedule is YV3BC, Caracas (Venezuela) well heard in the British Isles. It should uela) well heard in the Brutsh Isles. It should be noted that the transmissions are now as follows: Daily from B.S.T. 1540-1810 and from 2140-0310; on Sundays from 1425-1510; from 1825-2040, and from 2340 until 0240 (Monday). The wavelength remains at 48.78 metres (6,150 kilocycles). From inquiries received, and also from recomprise published in the Press. I gather

paragraphs published in the Press, I gather paragraphs published in the Fress, I gather that some confusion seems to exist regarding the Moscow channel of 50 metres, and what is supposed to be an harmonic on 25 metres. The latter is no harmonic, but a definite wavelength on which special transmissions are given and which differ from the better-known 50-metre broadcast.

English Talks From Moscow

For your guidance, the English talks from Moscow are given at B.S.T. 2100 on Sundays, Mondays, Wednesdays and Fridays, on 50 metres, and on 25 metres from 1100-1200 and from

2000-2100. The 50-metre trans-mission is S.B. on 1,724 metres. So far, the weekly Columbia broadcasts to the Byrd Antarctic Expedition have been carried out since November last on every Saturday night E.S.T. (Sunday morning B.S.T.). Beginning May 30, they are now made on Wednesdays and can be picked up through the WABC, New York, relays between 0300-0330 B.S.T. (Thurs-

day). For the month of June, slight changes have been made in the times of the Zeesen (Germany) times of the Zeesen (Germany) short-wavers. DJB starts up at B.S.T. 0635 and carries on until 0830, followed by DJA from 1245-1700. DJD and DJC broadcast simultaneously to Africa between 1830-2200. At 2300 DJA is brought into action with programmes destined to South America and closes down at 0215 closes down at 0215.

For North American listeners DJB has a special transmission from 1345-1700 followed by DJD from 2300-0015, DJC from 0045, to which is added DJD at 0245. These stations sign off at 0430. LCL, Jeloy, during the past fortnight has

been trying out various channels for the relay of the Oslo radio entertainments; it now appears to have settled down, at least temporarily, on 31.41 metres (9,550 kilocycles), just above DJA, Zeesen, and on most nights provides an excellent signal. From letters received I gather there is

some doubt in the minds of readers regarding the United States and Canadian short-wavers and the networks to which they belong. It is useful to make a list of these transmitters with a clear note in regard to the transmissions you may hear through them.

Bear in mind that there are the two important competing broadcasting associations in the U.S.A., the N.B.C. (National Broadcasting Company) and C.B.S. (Columbia Broadcasting System); the former possesses two main networks, namely, Red and Blue, of which respectively WEAF, New York and WJZ, Boundbrook, are the principal or key stations. In the case of the short-wavers, therefore,

it will be seen that they relay programmes from their individual "mother" stations, from their individual "mother" stations, comprised in one of these networks, and through them at different periods of the day broadcasts from the key studio. If, in consequence, you wish to hear N.B.C. transmissions from New York (WEAF, Red

Network), you have the option of tuning in W2XAD and W2XAF, relaying WGY, Schenectady; W1XAL working for WEEI, Boston, or W9XAA, which is fed through WCFL, Chicago.

From the Blue Network

If radio entertainments from the Blue Network are desired you have an even larger choice; W8XK, Saxonburg (KDKA); W3XL and W3XAL, Boundbrook (WJZ); W1XAZ, Millis, as relay of WBZ, Boston; W9XF, taking WENR, Chicago, and W8XAL (WLW, Cincinnati).

The short-wave relays of the Columbia Broadcasting System are not so numerous, but, on the other hand, they are very reliable and well received on this side of the Atlantic. Programmes from WABC, New York, may be picked up through W2XE, Wayne (New Jersey), and W3XAU is a good "catch" for entertainments from WCAU, Philadelphia.

With the Amateurs

By KENNETH JOWERS

T is rather interesting when one is collating the reports received from different parts of the country to note how from time to time comparatively unknown stations come in for short periods and are then not heard of any Quite a number of these listeners have more. been hearing the Swiss station HB9AQ whose 40-metre phone transmissions have been very well received. This station usually comes over

well received. This station usually comes over at R9 with quality like the local B.B.C. station. Another station is EA1BB of Spain, and is on the 20-metre band every evening after dark at 2100 calling W phone stations. Another station that requires reception reports is WIAJD, of Massachussetts, and

the girl operator would welcome any reports from English or European listeners. It seems as a general rule that the 20-metre

band is really well worth searching, for the following stations have been heard in almost every part of the country. W2KI, W2CMT, W8SSA, W9BGI, W9BHT, W3ZJ, W1BVL, W4GW, W8DKK, W3NK, W8CPC, W9RD, all of U.S.A. VE2CA and VE2BG of Canada, CM2WZ of Cuba, K4SA of Porto Rico, F8VP, F8PI and F8SY of France, ON4AU of Belgium and numberless Dutch stations.

I have always felt quite sure that this summer would show a big revival in 5-metre working. I have already received quite a number of schedules from London trans-mitters, but here is one from Cheshire. G60M tells me that G6GL of West Kirby, G6DO of Birkenhead, and G6OM of Heswall, will be operating on a regular schedule on a wavelength

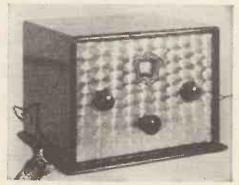
of 5 metres. They will be using I.C.W. and telephony on Mondays, Wednesdays, and Fridays, from 2230 to 2330 and on Sunday from 1100 till 1230.

GGL and GGOM are working duplex so that they should be quite easy to pick up, so that for those readers who are preparing for television, these transmissions should be a great help, for they will be able to tune up their sets and at the same time will be of assistance to these three amateurs in their experiments.

I had rather an amusing experience last evening. W2AOG had been trying to get in touch with me without any luck, so he gave a message to the English station message to the English station G_2AX , who passed it on to me by telephone. He took back the information he wanted, so that the whole business was done in twenty-four hours, resulting in a second enable second considerable saving in time.

Eric Cooper, better known as BRS1327, sends me an interesting

Trying out the Eddystone Kilodyne Four, a most efficient shortwaver supplied in kit form for constructors


letter about his experiences on the short waves. He uses a Kolster-Brandes six-valve super-het with a .short-wave adaptor with which he obtains very consistent results from all over the world.

One of his best stations is the American W3ZX of Collingwood, New Jersey

Short Waves with a Converter

YET another item has been added to the Peto-Scott catalogue of short-wave apparatus-and a very welcome addition it is. Peto-Scott Company, who have specialised in short waves for many years, have recently redesigned their short-wave converter so that it incorporates all of the latest ideas.

The new unit is intended primarily for use in receivers without a high-frequency stage. It is supplied with a plug-in socket so that all

The revised Peto-Scott short-wave converter; this can be used with any ordinary broadcast set to put you in touch with the short-waves

one has to do is to remove the detector valve, replace it by the socket, and to put the valve into the adaptor. This arrangement holds good whether the receiver is battery or A.C. mains operated.

There are only three controls in the unitthe left-hand knob for reaction; in the centre a master tuner; and on the right-hand side a series aerial condenser, the use of which will overcome any dead spots there might be.

This short-wave adaptor covers all wavelengths between 16 and 52 metres without coil changing, so all of the important broadcast stations such as Boundbrook, Pittsburg, Sydney, Zeesen, Cape Town, and Johannesburg can be covered.

Versatile Unit

This versatile unit can also be used as a super-het converter, when the broadcast set embodies one or more high-frequency stages. When used with such a receiver one has the equivalent of a five- or six-valve short-wave super-het, so that stations from all over the world can be tuned-in without any difficulty. At the price of 45s., it is a very valuable addition to a standard broadcast set.

Suitable Valves for the Short-wave World-beater

Make	Screen- grid High- frequency	Detector	Low- frequency	Power
Cossor	210SPT*	210Det*	210LF*	220PA*
Dario		TB172	TB172	TB122
Hivac		D210	L210	P220
Lissen		L2	L2	LP2
Marconi	VP21	L210	L21	LP2
Mazda		HL2	L2	P220
Mullard	SP2	PM2DX	PMILF	PM2A
Osram	VP21	M210	L21	MP2
Triotron		SD2	SD2	E235
Tungsram	_	LD210	LD210	P215
362	- 1	L2	L2	P2

*Valves used during AMATEUR WIRELESS tests.

More World-beating!

By NELLY CORRY (G2YL)

D

FTER a two-days' trial of the AMATEUR WIRELESS Short-wave World-beater, I must say that for compactness, ease of opera-tion, and general liveliness it has most shortwave sets I have come across beaten to a frazzle !

Conditions were bad for DX reception during the test period and U.S.A. broadcasters were much below their usual strength, while the "locals"—such as Daventry, Paris, Zeesen, and Rome-came roaring in at all hours of the day. In spite of this, signals were logged from all parts of the globe, including Pittsburg, Shanghai, Sydney, California, Canary Isles, Buenos Aires, and Tokio.

I found the signal-to-mush ratio was higher than one would have expected from a fourvalver, and the background noise when in oscillation was quite reasonable. The ganged condenser, slow-motion drive, and large tuning scale are a great advance on the average short-wave receiver, and make tuning an easy matter.

The dial setting of any particular station, though dependent on the position of the series aerial condenser, is not affected by an alteration in aerial length, and I found that results on a 20-ft. wire indoors were not appreciably worse than on an efficient outdoor aerial.

In conclusion, it says much for this receiver that whereas in the usual way I confine my listening to the amateur bands, I spent several hours dial-twiddling and found that the more I handled the set the more I liked it. I certainly recommend the AMATEUR WIRELESS Worldbeater to anyone who wants to build a really efficient short-wave receiver.

DIAL READINGS WITH THE SHORT-WAVE WORLD-BEATER Dial Stations **Red-spot** Coils *5-10 40-metre Amateur Band

, 10	40 11061	C Istilleous Adulle.	
13	HAS ₂	Szekesfehervar. Hungary.	
19	ORP	Ruysselede. Belgium.	
30	DDX	Berlin-Tempelhof.	
32	OXY	Skamlebaek. Denmark.	
		Broadcast stn. 49.5 m.	
33	DJC	Zeesen. Germany. Broad-	
		cast stn. 49.83 m.	
124-130	80-metr	e amateur band.	3
	Yellow	v-spot Coils	
32	I2RO	Rome. Italy. Broadcast	
		stn. 25.4 metres.	
60		Aranjuez. Spain. 30 metres.	
71	VK2M1	E.Sydney. Australia. '31.28	

VK2ME.Sydney. Australia. '31.28 metres.

Amaieur Wireless

Nelly Corry, a well-known amateur transmitter, operates her station G2YL

hal			Stations.
71	1/2	W2UA	F Schenectady. U.S.A. 31.48
			metres.
72		GSB	Daventry. 31.55 metres
132-	139	40-met	re Amateur Band.
		Bh	ue-spot Coils
35		LOC	
41		IRW	Rome.
46		PCS	Kootwijk. Holland.
59		GSG	Daventry. 16.86 metres. Huizen. Holland. 16.88
60		PHI	Huizen. Holland. 16.88
			metres.
6 I		XGM	Shanghai. China.
77		WKQ	New Brunswick. U.S.A.
83		RKB	Moscow.
91		FYA	Paris. Radio Coloniale.
			19.68 metres.
92		W8XK	0
		-	metres.
92		DJB	Zeesen. Germany. 19.73
			metres.
001		JAC	Tokio. Japan.
IOI		HBJ	Berne. Switzerland.
EO3		PCT	Kootwijk. Holland.
	109		re Amateur Band.
115		EAK	
		OVD	14,820 kilocycles.
130		OXR	
55		I2RO	Rome. 25.4 metres.
/1	2000	loosting	Approximate.
(1	proa(reasting	stations appear in italic.)

From an Old Hand

To the Editor, AMATEUR WIRELESS. YOU will be interested to know that I have built your Short-wave World-beater, and have every reason to congratulate you on publishing such a fine circuit. I have been a keen amateur for the past twelve to fourteen years, and have made a few sets in my time, but I can honestly say I have not come up against one to equal your set.

On all wavebands-10, 20, 40, 80, and 160the set behaved splendidly; reaction was the notable feature, being so smooth. Another asset is the absence of background noises one usually gets on the higher frequency. I fully intend to advise this receiver to all the old R.S.G.B. friends.

A little alteration I have made in the original

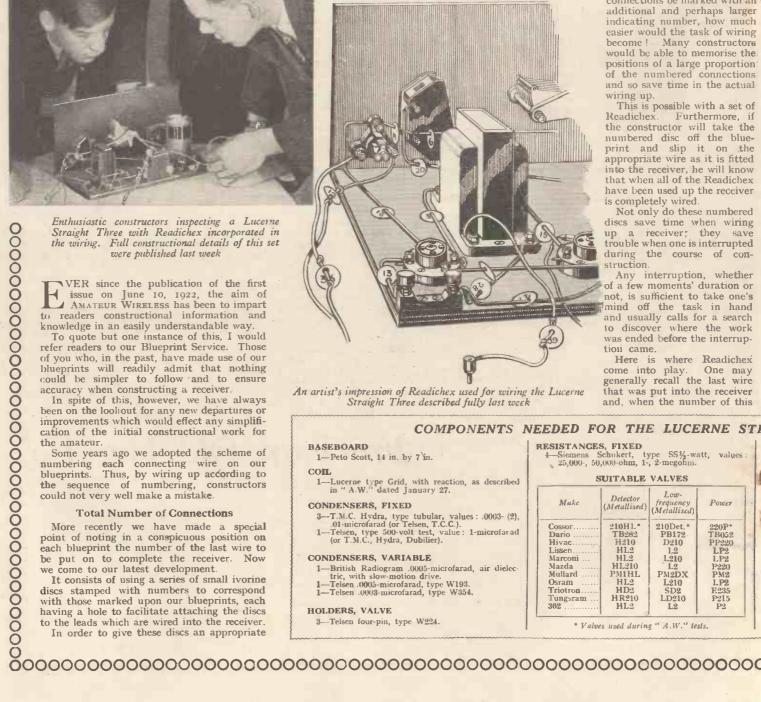
plan is to include a .00005 microfarad J.B. pre-set as a trimmer on one of the sides of the tuning condenser; this is a great help as the coils may not be matched.

If you care to publish this report, please do so coupled with my advice that any person who is interested in the short waves will do themselves a good turn by building the Short-wave World-beater.

Wishing AMATEUR WIRELESS continued success.

W. T. COOPER

(Radio BRS29). P.S.-Anyone who lives near my address who would like to hear the above receiver is welcome if they care to make me a call. Walthamstow, E.17. 1105


Amateur Wireless

READICHEX for Wir

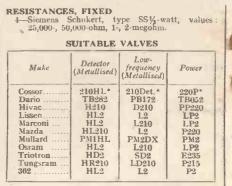
distinctive we have and name coined the word Readichex-ready checks.

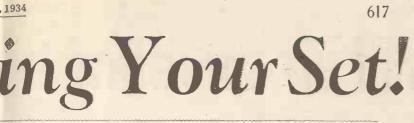
The advantages to be gained by the use of these Readichex discs may not be altogether apparent at first. But if I explain how I propose they should be used, the reader may develop his own system from what he gathers by reading the following notes

Assuming that the constructor has all his component parts fitted to his baseboard and panel (or

chassis) and is ready to start wiring up, he first arranges his blueprint by the side of his receiver to be, and then begins a search for connecting wire No. 1. Having accomplished this and wired up connection No. 1, he turns his attention to connection No. 2, and so on.

Our New Scheme for Simplifying Co


A Little Disconcerting


A little disconcerting, is it not? Alternating between a search on the blueprint for a wire number and then turning your attention to the blueprint and a little practical interlude. If the search could be carried out before starting the wiring, and the various numbered

connections be marked with an additional and perhaps larger indicating number, how much easier would the task of wiring become ! Many constructors would be able to memorise the positions of a large proportion of the numbered connections and so save time in the actual wiring up.

This is possible with a set of Readichex. Furthermore, if the constructor will take the numbered disc off the blue-print and slip it on the appropriate wire as it is fitted into the receiver, he will know that when all of the Readichex have been used up the receiver is completely wired.

Not only do these numbered discs save time when wiring up a receiver; they save trouble when one is interrupted during the course of con-

onstruction By L. A. CHAPMAN

has been noted, its successor can readily be found by reference to the discs still remaining on the blueprint.

Readichex possess yet abother big advantage —and one that will be appreciated more by the methodical constructor than by the experienced and more impetuous set-builder. It embraces the preservation of the information

At enfortaces the preservation of the information contained in our blueprints. As can be expected, blueprints become dilapidated, punctured, and torn during the construction and assembly of a receiver. Very often, in fact, they are of little or no further use after the receiver has been com-letedy, using and family torted pletely wired and finally tested.

For Future Reference

If they have been splashed with acid from an accumulator they may be fit only for the fire. And yet their import may be preserved for future reference if the following procedure is adopted

When the receiver has been completely wired, it is usual, according to our continually reiterated advice, to check up the wiring before putting the set on an actual reception test. This final checking can be put to double use in the following way : Obtain some double sheets of ruled foolscap

paper and mark it out as shown by the accompanying diagram. Fill in the name of the set at the top of the paper and, beneath it, the name and date of publication and blue-print number.

Now rule a column, one inch wide down the left-hand side of the paper

If you will continue to do this for every wire connection number marked on the blueprint and duplicated in your set you will have compiled a wiring reference fully appreciated and understood by yourself and you will also have concluded a double check of the wiring of your receiver.

Now, in the event of a wire becoming loose or disconnected at a later stage of the set's life, you have only to refer to your wiring compendium, and the Readichex still dangling from the particular wine to determine the particular wire, to determine

the necessary correct connections. I would advise that these foolscap sheets be "stitched" at the bend into a suitable binding the bend into a suitable binding cover or even clipped into a spring-back to facilitate their being preserved for future refer-ence. Needless to say, the blueprint itself may likewise be preserved, if still worthy of

Publis	shed the fure Tily of Blueprint Nº 14 437
Wire Nº	From To
1	arial terminal to M.P. of arial Serier Courts.
2	FP. of latter to Terminal A of Coil.
3	S on coil to Ware-range Switch
4.	Other side of latter to terminal E of Boil
5	Terminal Eon coil to MP. of A.T.C.
6	MP of A.T.C. to M.P of Reaction Conder.
7	M.P. of R.C. Lo 1st Earninal of 3-Point-Poich
8	From Catter to reg fil of Powervalve.
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	in hours
-	Vy No

Set Licerne Straight Three

1111. 0100

How the constructor can draw up for himself a point-to-point wiring list for any set he builds up-very useful for future reference

Amateur Wireless

<text><text><text><text><text><text><text><text><text><text><text><text><text><text>

How Large Pictures Can Be Obtained

By H. CORBISHLEY

LL ordinary systems of television at the present time impose certain limitations on the size of the picture, and the consequence is that it is unsuitable for viewing by a large audience. For example, with the simple disc apparatus

elapsed between the taking of the film and the projection and even if it was most desirable to speed the process up the time entailed would be a matter of hours.

This, it is contended by some, is not of consequence for it is argued that a transmission

of an event taking place during the day could be pro-jected in the evening much in the same that way records are made of current events and broadcast at a later time. It must be conceded, however, that this is not true television; even if the time interval can be reduced to a matter of a few seconds it is not, strictly speaking, television though there need be no serious objection

Motor

Do

bd

Ø

d

σο

anning

ØQ

Disc

60

In the first apparatus of this type ordinary film was used, but it was found that for a programme of any considerable length of time process was costly, so a system was developed which used the film at both transmitter and receiver over and over again.

How this is accomplished is shown by the diagrams and it will be seen that at the transmitting end, after the film has been scanned the sensitive coating is removed when it is dried, re-emulsioned, again dried and then passed through the camera and developed and fixed, when the process is repeated.

Receiving Arrangements

A similar series of events takes place in the receiver, but here, instead of the film passing through the camera, it is passed in front of the scanning apparatus where the transmitted image is impressed upon it and, after develop-ing and fixing, it is passed through the projector in the ordinary way.

Removal of the emulsion and re-emulsioning is then carried out and the film is again ready to be passed in front of the scanner.

It will be clear that apparatus of this kind opens up possibilities for large-scale television; though the actual apparatus is costly, the system, by reason of the fact that the film is used over and over again, is not particularly expensive so far as maintenance is concerned.

Most of the technical difficulties have been overcome and it would appear to be the only practicable method of large screen projection which is likely to be available for some time to come in view of the present possibilities of television.

Obviously, it is apparatus of a type which is

Projector

AA

H 6

scene to be on transmitted is taken and the Kerr-Cell Clease

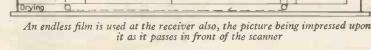
on this account. The German Fernsch A.G.

have actually succeeded in reducing the time

between reception and projection to a matter

lan

Emulsioning


The system is as follows : in the first instance

developing and fixing of this film takes place immediately by pass-ing it direct into special tanks. From these it passes in front of the scanning de-vice and the picture is transmitted in ordinary the

way

of ten seconds.

a film of the

A

6

Ы

Developing.

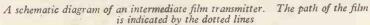
H

Fixing

h

٨

At the receiving end the modulated light is used to produce another film which again is immediately developed and fixed and then projected and, as stated before, the time interval between the taking of the original film and final projection is a matter of seconds.


HOW THE TELEVISION TRANSMISSIONS ARE MADE IS FULLY EXPLAINED BY EUSTACE ROBB, B.B.C. Tele-Production vision Director, IN THE JUNE ISSUE OF "TELEVISION" monthly, 1/-

quite outside the sphere of home reception, but it seems evident that television must develop along two separate lines-one for the home and the other for large audiences, and this system provides a practical solution of the first.

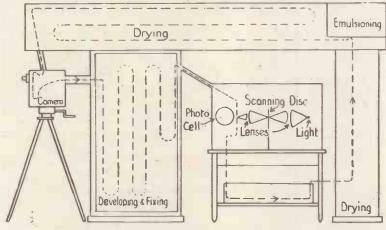
Television Society for Cheshire

TELEVISION society has been formed for Cheshire and south-west Lancashire. If suitable arrangements can be made it is

proposed to put out a 30-line transmission. Readers who are interested should write to the Secretary, c/o Jensen & Base, 223 Seaview Road, Wallasey, Cheshire.

it is difficult for more than four people to see the picture at the same time; the mirror drum will permit of an audience of about ten to fifteen, and even at the latest Baird demonstration, at which a picture was shown measuring approximately 16 in. square, it was evident that for an audience to see the pictures in comfort it would necessarily be limited to a matter of a hundred or so persons.

The whole problem is wrapped up in the difficulty of modulating a sufficient value of light of, alternatively, producing a modulated light of sufficient intensity to cover a large screen and at the present time no solution of these difficulties has been found.


There is, however, another angle from which the problem can be tackled, though this brings

it outside of the sphere of pure television. It is obvious that if we have a small picture it will be quite possible to transfer this to a film and then project this upon a screen in the ordinary way, and the size of the projected picture need only be governed by the amount of detail that is present; excessive enlargement would, of course, reveal that detail was missing unless the audience were a considerable distance away when the object of enlargement would be defeated.

The Intermediate Film System

A good example of this procedure was shown at a recent demonstration of the Cossor velocity-modulation system. Ordinarily, the reception is upon the screen of a cathode-ray tube which is about 7 in. in diameter and obviously a picture of this size would be useless for showing to an audience of four or five hundred persons. In order to overcome the difficulty a film was made of the picture as received on the cathode-ray tube and this was projected in the ordinary way so that the picture on the screen was a replica of that received.

In this case it is probable that several days

Amateur Wirelesg

Short-wave Commercial Stations

Here are some additional Commercial Stations working on the short waves; most of them can be received without difficulty

Metr	e 1	Frequency	Call	Station	Observations
9.8	2	30,604	IAG	Golfo Aranci (Sardinia)	Works with Fiumincino (Italy).
10.0		29,817	IAF	Fiumincino (Italy).	to the wren i runnicho (runy).
14.1		21,150	HAS ₄	Szekesfehervar (Hungary)	
14.9		20,040	OPL	7	Works with Brussels.
15.1		19,750	ORA		Works with Congo.
15.4			ORH		
		19,430	PMA	Elizabethville (Congo)	Works with Belgium.
15.5		19,355		Bandoeng (Java).	387 - L - 11 T - 1
15.8		18,890	ZSS	Klipheuvel (South Africa)	Works with London.
17.1		17,480	VWY	Poona (India)	Works with Great Britain.
17.3		17,261	DAF	Norddeich (Germany)	Works with ships.
17.5		17,080	GBC	Rugby (Great Britain)	Works with ships.
21.4	*		GBA	Rugby (Great Britain).	
21.7		13,811	SUZ	Abu Zabal (Egypt)	Works with London.
21.9		13,685	HAS ₂	Szekesfehervar (Hungary).	
23.4.	5	12,795	IAC	Coltano (Italy)	Works with ships.
23.4	7	12,780	GBC	Rugby (Great Britain)	Works with ships.
23.5	4	12,745	DAF	Norddeich (Germany)	Works with ships.
24.3	4	12,325	DAF	Norddeich (Germany)	Works with ships.
24.7	5	12,120		Algiers (North Africa)	Works with Ste. Assise.
25.1	9	11,910	SUW	Abu Zabal (Egypt)	Works with Europe.
28.2	8	10,610	WEA	Rocky Point (N.Y.)	Relays to Europe.
29.1	3	10,330	LSL ₂	Monte Grande (Buenos Aires).	
29.1		10,290	DIQ	Königswusterhausen	Tests with U.S.A., relays pro-
		,-,-	76	(Germany)	grammes.
29.8	4	10,055	SUV	Abu Zabal (Egypt)	Works with London and Berlin.
30.3		9,890	LSN ₂	Monte Grande (Buenos Aires)	Works with U.S.A. and Europe.
30.4	-	9,870	WON	Lawrenceville (N.J.)	Works with Great Britain, also
30.4		9,070	***	Lawrencevine (IV.J.)	relays U.S.A. programmes.
30.9	2	9,700	LQA	Monte Grande (Buenos Aires)	Works with Berlin.
31.0		9,650	DĞU	NT 10	Works with Abu Zabal.
32.1			CGA4		
		9,330	ZSB		Works with Great Britain.
33.7	00	8,900	LSD	Klipheuvel (South Africa)	Works with Bridgewater (Great
34 5	6	8 680		Pughy (Creat Dritain)	Britain).
34.5		8,680	TAC	Rugby (Great Britain)	Works with ships.
35.2		8,515	IAC	Coltano (Italy)	Works with ships.
35.4		8,470	DAF	Norddeich (Germany)	Works with ships.
35.8		8,380	IAC	Coltano (Italy)	Works with ships.
44.0	-	6,810	JNL .	Nagoya (Japan)	Works with Berlin.
44.4		6,755	WOA	Lawrenceville (N. J.)	Works with Great Britain.
45.1		6,650	IAC	Coltano (Italy)	Works with liners.
57.0	3	5,260	WQN	Rocky Point (N.Y.)	Relays N.B.C. programmes occa-
					sionally.
60.3		4,975	GBC	Rugby (Great Britain)	Works with liners.
68.1		4,400	DAF	Norddeich (Germany)	Works with ships.
68.8	8	4,355	IAC	Coltano (Italy)	Works with ships.
69.4	4	4,320	GDB	Rugby (Great Britain)	Tests.

What Do You See in Radio?

"JUST what is contained in a radio set?" is a question that few listeners ever trouble to ask themselves. But the answer is given in a letter published in *The Cossor Courier*, and here it is :—

"I see Entertainment, Enjoyment, Comfort, Joy, Instruction, and Profit. I wonder if it is possible to work out the cash value of one day's work from an average radio set? One wakes up in the morning to the strains of music arranged expressly to assist us in doing our daily dozen.

Cheaper than a Doctor !

"It's impossible to compute the cash value of that; one never knows till the doctor has to be called in, and a wireless set is much cheaper than a doctor.

"A little later comes the morning service. This is not a subject to be treated flippantly, so I will say with due reverence and earnestness that the value of this half-hour to many thousands of listeners is beyond rubies.

"Next comes, say, a cooking talk to the ladies, and who can say what benefits have accrued from that or what cash values to place upon it?

"Then there is a music lesson or languages, or an instructional talk on gardening, any or each of which would cost a considerable amount of money to procure in any other way.

, "There are the purely entertaining items, such as concerts, plays, dance bands, and vaudevilles, most of which would cost anything from 1s. to 5s. if one wished to enjoy them in any other way than 'on the air.'

"Can anyone possibly say what is the cash value of the SOS messages to the persons concerned?

"These, then, are only a few of the things that I see in a modern wireless set, and I say quite definitely that one could not purchase one-tenth of these privileges for 5s. per day, and yet they are all at one's beck and call and controlled by the switch of a wireless set.

set. "Now, here's the point. Five shillings per day is over £90 per year, and a wireless set costing under £20 and giving value at the rate of £90 per year is the world's best investment."

A chap by the name of Hewitt Got better results- + he knew it.

But he confessed , Well I'm blessed, being able to test

Means cash for the way you can do it !"

£1 A WEEK for a YEAR 10/- a Week for a Year £10 CASH and 25 other Prizes

If you can enjoy cash as well as good radio, here is your chance to win the first by the ease with which you can get the second. Ask your radio dealer for particulars of the Free AvoMinor Competition. Just your normal interest in set performance can bring you a valuable prize enjoyably won.

All radio dealers have free entry forms and full particulars, but if you have any difficulty, write direct.

THE AUTOMATIC COIL WINDER & ELECTRICAL EQUIPMENT CO., LTD., Winder House, Douglas Street, London, S.W.1

Amateur Wireless

620

International Abbreviations

Every keen short-wave amateur should acquaint himself with what is known as the "Q" code. These abbreviations are often used by amateur transmitters, especially when signalling is done

y the 1	norse code.	1
1bbrev	iations Meaning	
)RA)RB	What is the name of your station? At what approximate distance are you from my station?	
QRG	Will you indicate to me my exact fre-	
ORH	quency in kilocycles? What is your exact frequency?	
ĎRI	Is my tone bad?	
ŽRJ	Are you receiving me badly?	
	Are my signals weak?	
QRK	Are you receiving me well?	
opr	Are my signals good?	
QRL QRM	Are you busy?	
ORN .	Are you being interfered with? Are you troubled by atmospherics?	
ÖRO	Must I increase power?	
ŐRP	Must I decrease power?	
ÕRW	Must I advise that you are calling	T
	him?	
QSA	What is the strength of my signals?	
QSB	Does the strength of my signals vary?	a
QSC	Do my signals disappear entirely at	th
ARE	intervals?	tr
QSE QSL	Are my signals distinct?	ve
Sor	Can you give me acknowledgment of receipt?	ex
QSM	Have you received any acknowledg-	fo
	ment of receipt?	0\
QSN	Can you receive me now?	
000	Must I continue to listen?	u
çso	Can you communicate with	W
OTR	directly (or through)?	n lig
SIL	What is the exact time?	118

QTU What are the hours during which your station is open?

Audibility Code

In defining the strength of a received signal it is very useful to be able to refer to a recognised standard—which the "R" code undoubtedly pro-vides. This takes you from the faintest signals right up to signals of full loud-speaker strength.

- RI Faint signals; just readable
- R₂ Weak signals; barely readable.
- Weak signals; but can be copied. R3
- Fair signals; easily readable. Moderately strong signals. RA
- R5
- R6
- Good signals. Good strong signals, that come through QRM and QRN. Very strong signals; heard several feet R7
- **R**8 from the 'phones.
- Ro Extremely strong signals.

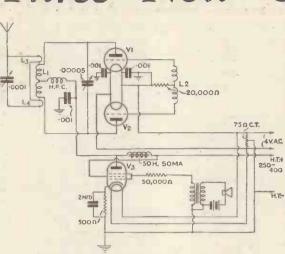


Fig. 3. Speech transmitter for 5-metre working

VER since L. O'Heffernan (G5BY) raised the 5-metre transmission record to over 1 200 miles from the top of Snowdon to point near Hoddesdon in Hertfordshire, here has been increasing interest in 5-metre ansmission and reception.

Even though the average range of these ery short waves is only 15 to 20 miles, the streme simplicity of the apparatus required or either transmitting or receiving more than vercomes the snag of limited range.

It must be remembered that wavelengths of nder 10 metres do not behave in the same ay as the normal short or long waves, in as much as they are quasi-optical or similar to light beams. This means that unless you can actually see the transmitting station there is very little possibility of the transmission being picked up.

Contact at 300 Miles

When we say "see" perhaps it is rather misleading, for should the transmitting station be 200 or 300 miles away from a receiving station, provided there are not any hills or towns in between, there is every possibility of contact between the two being made

As an example of this, a regular commercial telephone service is in operation in America between two isolated towns some 250 miles apart. As both towns are some hundreds of feet above sea level, the intervening towns and hills do not affect reception in any way

In this country, at the present time, there a considerable number of amateur transmitters who have a regular schedule, so that there will be no shortage of transmissions on which a 5-metre receiver can be tested. In addition, the television transmissions from the Crystal Palace offer a special opportunity

Three New Circi

for ultra short-wave enthusiasts to find out for themselves whether or not they are in the service area of the television programmes which are being sent out daily. We have had reports from

readers as far south as Brighton who, can pick up these television transmissions on simple two- and three-valve sets. Of course, a super-regenerative receiver is not suitable for receiving good television pictures as the quality is not of a sufficiently high standard, but the construction and use of such a receiver will give the operator plenty of opportunity to investigate the little idiosyncracies of these ultra-short waves. When the time comes for the B.B.C. and other bodies to broadcast ultra-short wave television, those who have had previous experience will be in an advantageous position. Although there are three types

of receivers that can be used only one type is really worth considering. The super-het, although it is without question the most efficient ultra-short wave receiver, is not to be advised at this stage, as the transmitting stations are not too stable.

The simple oscillating detector, although it does work in a way, gives a very low percentage of amplification so that it is not worth con-sidering. This leaves us with a super-regenerative circuit and, of course, variations on this arrangement.

Simple to Operate

This type of circuit gives enormous amplification, and is quite simple to operate. The arrangement is not very well known, and until the introduction of ultra-short waves was not as popular as the super-het. It consists of a conventional detector circuit

which has been adjusted so that it is nearly oscillating. If we apply a small voltage to the grid of the valve—such as would be obtained from a weak station—the circuit would go into complete oscillation because of the sudden voltage surge.

What actually happens is that the anode current of the nearly-oscillating detector valve changes very considerably as compared with the small change in voltage applied to the grid. In other words the arrangement is a sensitive type of trigger relay.

Such a circuit would not be capable of reproducing signals, for once the receiver began oscillating it would remain in this state when the original voltage was removed from the grid, because the effective resistance of the circuit is negative. To overcome this defect (so that the resistance could be varied) a special quenching arrangement was designed

JUNE 16, 1934

621

is a three-valve super-regenerative receiver

with a separate quencher and detector valve and an additional low-frequency amplifying stage. With this circuit there is a variable

voltage applied to the detector valve, while, as the quenching is also a separate function,

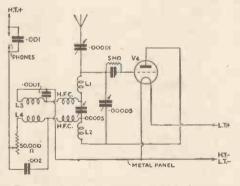
Amateur Wireles

5-metre Working A more ambitious circuit (shown in Fig. 2)

As the quenching circuit causes an audible whistle, the frequency of the quenching coils must be raised to an almost inaudible fre-quency. The greater the difference between the frequency of the quencher coils and the frequency of the station which is received, the greater will be the amplification.

Fig. 1 shows the necessary connections for a single-valve combined detector and quencher. It is fundamentally a conventional detector, with a grid coil LI and a reaction coil L2,

plus the quenching coils L3 and L4; L1 and L2 consist of three turns of 12-gauge wire, $\frac{1}{2}$ in. in diameter with a space of 1 in. between each turn.


These coils can be wound on a fountain pen or a similar type of former. Owing to the thick gauge of the wire they will keep completely rigid without any means of fixing. Quencher coils L3 and L4 consist of 500 turns each of No. 38 gauge enamelled covered wire, slab wound on a 1-in. diameter former.

As the construction of these coils is likely to try the patience of some of our readers, we may say they can be bought from Strattons for 4s. 6d.

The high-frequency choke is worth home constructing, as it only consists of 75 turns of No. 36 enamelled wire, wound solenoid fashion on

a ¹/₂-in. former. Except that the voltage applied is rather critical, the circuit functions in a very satisfactory manner. The range is not outstanding, but stations twenty-five miles away can be picked up without trouble.

The valve used is also very important. Tt must be of low impedance, round about 2,000 to 3,000 ohms. We found the most suitable valve for the purpose was the Tungsram LP220, which has an impedance of 2,600 ohms.

Simple super-regenerative detector Fig. I. circuit using home-made coils

+HT+ -00005 -HJT-00005 50,000 50,000 LS .002 ł EL. 0000 2001 ů, METAL PANEL

More elaborate super-regenerative circuit with a Fig. 2. separate quencher and detector valve

the receiver has quite a wide range. In theory the range limit is four or five hundred miles. The coils L1 and L2 are the same as for a single-valve receiver, while L3 should be a foo turns of 38 s.w.g. enamel wire and L4, 500 turns of 38 s.w.g. enamel, both wound slab fashion on a 1-in former.

As with a one-valve receiver, the valves used are of primary importance, and here again Tungsram valves appear to be of the correct lungsram valves appear to be of the correct characteristics; v1, the detector valve, should have an impedance of between 10,000 and 15,000 ohms. The LD210 an impedance of 11,000 ohms will do very well indeed. The quencher valve v2 should be of lower impedance, and the LP220 with an impedance of 22 00 ohms will be found to

impedance of 23,00 ohms will be found to be the most suitable. We also tried a Cossor 215P with equally good results. The output valve should be a pentode, such as the Tungsram PP220 or the Cossor 220HPT.

Simplest Arrangement

As we mentioned before, a 5-metre speech transmitter is the simplest arrange-ment we can imagine. Fig. 3 rather proves the point. Here we have a complete transmitter, consisting of a single pentode valve as a speech amplifier, with the microphone transformer coupled to its grid circuit and two triode valves in pushpull which feed directly into the aerial.

the background noise which is rather high in the single valve receiver is decreased to a LIMITED OFFER WITH FREE negligible quantity. Coupled with this is the fact that the pentode SHORT-WAVE EQUIPMENT output does give loud-speaker volume, while including- Handsome polished walnut table for the set.
 Special Philco 9 in. Radio Globe of the World showing time differentiations. 3 Philco short-wave aerial kit.

4 One year's free subscription to "World Radio." 5 One year's free subscription to the International Short-Wave Club Monthly Magazine. 6 Station Finding Charts. 7 Specially written

A MARVELLOUS BARGAIN FOR SHORT-WAVE ENTHUSIASTS

Eleven-Valve ALL-WAVE SUPERHET

treatise — "The Thrills of Short Wave Reception." £45 VALUE IN RADIO EQUIPMENT FOR THE PRICE OF THE SET ALONE

PRICE 35 GNS

or yours for £3-15-0 and 12 monthly payments of £2-19-4 on our hire purchase terms. on our tirre purchase terms. We have made exceptional ar-rangements to offer a limited number of the most famous All-Wave receivers in the world-the PHILCO MODEL 16B-balanced Superheterodyne with 11 valves, the finest and most reliable all-wave receiver ever designed.

FREE CARBIAGE by goods train in England, Scotland and Wales, or delivery free in our extensive

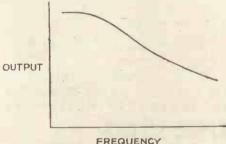
FREE HOME DEMONSTRATIONS Demonstrations in customer's homes in the London area, any evening, except Sunday, free of charge and without obligation. AFTER - SALES SERVICE. Each instrument accompanied by the Phileo 90 day guarantee of after-sales-service.

SPECIFICATION

Range from 23 mergacycles to 520 ke/s (13 motres to 373 metres). Extremely powerful. In addition to receiring standard broadcasts, provides the most modern and efficient reception of the complete bort-wave stations tuning mide casy by Dual Ratto Tuning, which provides a 70 to 1 ratio for fac tuning of ehort-vare stations. New FillLOB Bilanced Towner Chassie, PHILOD Network stations tuning the thot of the superheterodyne with Bass Com-Chassie, PHILOD Network stations tuning the thot after Control. New and improve Pietero-Dynamic Bpcaker and 11 new FHILOD High Efficiency alves. Calibret in Back Walaut missin with instrument panel in the same free offer of highly figured Oriental Wood, hand-rubbed: A.C. 2002-240 volts.

About Our Real Quality Series

More Letters on REAL QUALITY


NOEL BONAVIA-HUNT Replies to his Critic

BELOW we publish a further letter from James Moir, Grad.I.E.E., with reference to Noel Bonavia-Hunt's real-quality series. Mr. Moir now produces a detailed criticism of the article entitled "Coupling the First and Second Low-frequency Valves" (pages 465-466, AMATEUR WIRELESS, May 5).

We have cut his letter into sections and interpolated Noel Bonavia-Hunt's comments at the appropriate places. These comments appear in italic type :

To the Editor, AMATEUR WIRELESS.

I WOULD like to congratulate you on publishing my letter (No. 1089) on the real-quality series. Such a broadminded attitude is unexpected. Mr. Bonavia-Hunt prefers to make no comment, but this may be

FREQUENCY Fig. 1.—General shape of frequency characteristic.

due to the fact that I made no particular criticism. I intend to correct this by taking one article, No. 8, and pointing out all the "tripe" it contains:

r.—The first point is his method of checking "real quality" using a pair of headphones. "Real quality" and headphones are a thing apart. Reference to any standard work showing characteristics of headphones will confirm this.

I definitely stated that the frequency response of headphones is defective. But "quality" is none the less "pleasing" from the point of view of listening so long as the listener bears in mind the limit of response at each end of the musical spectrum.

in mind the limit of response at each char of the musical spectrum. See Capt. Eckersley's article on page 280 of "Popular Wireless," May 26, where he asks the question, "Why is it that the quality of the headphone is so pleasing?" He then gives the response curve of headphones and labels it, "This is best." He also says: "The art of reproduction is the intelligence, not for the

labels it, "This is best." He also says: "The art of reproduction is a question for the intelligence, not for the technician who can only think in technical terms." I personally think this is going too far, but there is good sense in what he says. Anyway, I do NOT "check" quality with headphones, and never stated that I do.

2.—The next mistake is one which Mr. Ronavia-Hunt consistently repeats. He apparently thinks that a low anode resistance makes the bass response suffer. This is absolutely wrong. A low anode resistance gives loo per cent. response at any audio frequency.

How can anyone with common sense suppose that a 100 per cent. buss response is anything like adequate for low-volume reception in a small room? What loud-speaker gives 100 per cent. response at all frequencies? It is obvious that some compensation in the bass is necessary in order to get straight-line aural reception. Has not this point been the basis of the complete series of articles? What on earth is the use of a straight-line amplifier?

3.—The scheme of using two sets of resistances in series for high and low notes is further evidence of a lack of knowledge of the principles involved. Reference to "pockets of wave-oscillation" or wave-pockets is also entirely without meaning.

The idea of shunting a portion of the anode resistance to cut down the high-note response is good; it has been used for many years, but Mr. Bonavia-Hunt's explanation is entirely wrong. The frequency characteristic is not as described by him, but is of the general shape shown in my Fig. I. This circuit works because of the decrease of anode impedance with increase of frequency.

of the uterase increase of frequency. Reference to "formant bands," etc., is imagination on the part of Mr. Hunt. His reference to "important discovery," "momentous discovery," etc., is mere word-play. I would suggest that any reader desiring to try this circuit remove the two fixed resistances. This will give the same results and save 2s.

This criticism is typical of the radio engineer who works out the frequency-response characteristic curve of an amplifier on the basis of one single frequency at a time. This, to the musical expert, is absurd and is no true test of the efficiency of an amplifier to reproduce a musical item.

The curve Mr. Moir gives in his Fig. 1 is merely the response curve of a single frequency test. An entirely different curve would result if a large number of frequencies were impressed on the grid of the amplifying valve simultaneously.

I do not shunt the upper portion of the anode resistance to cut down high-note response; I adopt the shunted and unshunted portions in series in order to sort out the upper frequencies from the lower when massed combinations of notes are simultaneously amplified.

This is a subject about which the radio engineer cannot—qua engineer—know anything, since it is outside his province. Only an acoustician or a musician can advise the radio engineer on such a matter. The latter does not even know the technical terminology of the subject.

4.—His rule for obtaining the impedance of the valve by reference to the coupling impedance is without any foundation.

Mr. Moir talks as if the impedance of the valve were the only factor to consider. The relation of the amplification factor to the impedance is of vital importance in this connection.

5.—His suggestion that the external impedance is 28,500 ohms is also wrong, but this point is much too deep for Mr. Bonavia-Hunt to note.

I did not use the expression "external impedance," but external "resistance." The D.C. resistance is obviously 28,500 ohms, as I stated. The A.C. impedance was not given. I am sufficiently endowed with grey malter to know that the 25,000-ohm fixed resistance, being in parallel with the potentiometer, reduces the A.C. impedance.

6.—The final points covering the use of a resistance as a grid leak are also entirely wrong. The time constant of the circuit cannot be determined by reference to the resistance

alone. Resistances of several megohms would be quite in order if the grid condenser was suitable.

Of course, I am aware of the formula, T—CR. Was the Professor bound to explain the time constant formula? As a matter of fact Mr. Moir is wrong in assuming that the time constant of a megohm or more multiplied by a very small condenser is "in order." It may or it may not be.

No single stage can be designed without due attention being paid to the effect of other stages. But, of course, he knows this as well as I.

7.—His reference to transients only demonstrates that he is not aware of the requirements for good transient response. If any reader still believes that Mr. Bonavia-Hunt's articles are worth the paper they are written on I'll be pleased to take any one of them and show that "tripe" is an apt description.

I do not regard this statement as criticism. The only reference I made to transients was that the amplifier was quite capable of dealing with them.

8.—As a final point I might add that the letters M.A. after Mr. Bonavia-Hunt's name are no more evidence of his qualifications to deal with "high quality" than the letters F.R.H.S. (Fellow of the Royal Horticultural Society).

I am not aware that I have ever advanced my M.A. degree as a qualification. I note that Mr. R. W. Hallows, a frequent contributor to the wireless press, has the M.A. degree printed after his name. Surely this is entirely a matter for editors? I happen to know more than one holder of the A.M.I.E.E. diploma who claims very little knowledge of radio.

This letter is rather long, but I did not want to take single statements and contradict them without reference to the complete article. JAMES MOIR, Grad.I.E.E.

[2010

Rugby.

Further Comments

A GREAT SUCCESS

To the Editor, AMATEUR WIRELESS IT is to be hoped that Mr. Moir is feeling better now and that he is regretting his ill-mannered letter published in your issue of May 26.

It might be of interest to this gentleman, as well as your readers, to know that the writer is now using one of Mr. Bonavia-Hunt's amplifiers which was published recently in *Wireless Magazine* and it has proved a great success.

The quality of reproduction from a musical point of view far surpasses any straight-line amplifier which the writer has heard.

Although Mr. Bonavia-Hunt's explanations may not be found in Mr. Moir's copy-book, if the latter gentleman will arise from his armchair of criticism and take the trouble to carry out some experiments on the lines suggested by Mr. Bonavia-Hunt, he will no doubt profit thereby.

As far as the writer is aware, this is the first time that an amplifier has been described in the popular press which has a characteristic designed to compensate for the natural shortcomings of present-day loud-speakers. Continued on page 624

Amateur Wiveles

Wherever there are A.C. Mains, there you will find Westinghouse Metal Rectifiers in use. Adopted by set manufacturers and constructors everywhere specified again and again. Why? Because they are reliable. 60,000 hours use at full load, and no falling off in output. No other rectifier can show even the smallest approach to such a record.

> The Westinghouse Brake & Saxby Signal Co. Ltd., 82, York Road, King's Gross, London, N.1.

You must hear the BLUE SPOT "STAR"

The new Blue Spot "Blue Star" moving coil has taken the technique of loud-speaker reproduction a very long stride forward.

The new magnet system and the chassis design have between them secured a standard of performance that has amazed everybody to whom this new speaker has been demonstrated.

There is only one way to convince yourself of what has been achieved. Ask your dealer to give you a comparative demonstration." After hearing it, you will have no hesitation in agreeing that any receiver will be enormously improved by the addition of the Blue Spot "Blue Star."

Write for descriptive Catalogue.

THE BRITISH BLUE SPOT Co., Ltd.

Blue Spot House, 94/96 Rosoman St., Rosebery Avenue, London, E.C.1 Distributors for Northern England, Scotland and Wales: H. C. RAWSON (Sheffield and London), Ltd., Sheffield: 22, St. Mary's Parsonage, Manchester; 117 Westgate Road, Newcastle-upon-Tyne; 37, 38 39 Clyde Place, Glasgow.

Please Mention " A.W." When Replying to Advertisements

More Discussions on Real Quality Continued from page 622

In passing, I should be obliged to know why is that a sound-on-film engineer considers it is that he knows so much about high-quality reproduction.

Have any of your readers yet heard a talkie installation which gives anything like an approach to high-quality reproduction? Per-haps Mr. Moir will let us know where there is one of his installations working in London so

that we may go along to hear it. Beyond being a satisfied reader of Mr. Bonavia-Hunt's articles, I have no connection whatsoever with that gentleman. SPENCER L. ALLWORTH.

2011 Purley, Surrey.

PRACTICAL TRIAL

HAVING just read the letter of Mr. J. Moir's published. I just couldn't let it pass by without some comment. Perhaps if Mr. Moir tried a few of the circuits of Mr. Bonavia-Hunt's he would alter his opinion.

Take the Westector, for instance. The circuit Mr. Bonavia-Hunt uses for reaction purposes is more or less the same as the original one when the Westector first came on the market.

But take Mr. Bonavia-Hunt's circuit of the transformer-coupled Westector and there you have a real good, distortionless arrangement, and as near to real quality as anyone will get for a little while.

It is the ideal detector circuit. I know, because I have tried it out sometime last year, when Mr. Bonavia-Hunt gave some of his talks on quality in Wireless Magazine.

Now take the coupling between the first and second low-frequency stages—that is R.C.C. pure and simple, with just a few alterations in component values.

Now the next stage; that type of coupling has been used by me for months. The com-ponent values are not the same, I will admit, but the circuit is there.

As for Mr. Moir's saying that Mr. Bonavia-Hunt develops theories of his own—of course he does. He wouldn't be much of a designer if he didn't and, besides, I like a man who thinks for himself. I detest copyists.

I will admit we have to copy a lot sometimes, but when you can use your own brains, do so. Please don't think I am in any way connected

with Mr. Bonavia-Hunt. I am not. I don't even know what he looks like, but I don't like to see a person who speaks his own mind run down.

H. REID-CARR. [2012 Wellingborough. .

SOUND-FILM STANDARD

I HAVE read with disgust the letter of your correspondent, James Moir, with reference to the above, and I cannot see any reason for him to be so rude.

I notice your correspondent signs himself Grad.I.E.E. Firstly: What has this degree to do with radio? I thought this belonged to the heavy electrical engineer! Secondly : I do not know how old your correspondent is, but should surmise quite a youngster in radio. He also says he is a designer with one of

the leading sound film companies, and if he is going to base his criticism on this type of equipment, perhaps this may be why he cannot appreciate quality, as I have already given up going to the pictures for this reason.

Regarding the design of Noel Bonavia-Hunt's equipment, I have not had the pleasure of hearing this, but should think your corres-pondent might have asked to hear this before passing his rude remarks

I have only been tempted to write this letter for the reason that I do not like to see anybody write in this strain and call it criticism, when it is only ignorance.

Wishing your paper success.

R. WALDE EMERSON. St. John's Wood, N.W.8. 2013

Readers' Views on This and That

Listeners' Letters

FRAME AERIALS

To the Editor, AMATEUR WIRELESS

THOROUGHLY endorse R. Adam's letter T (No. 1093) re frame aerials. I am sure, he says, the larger majority prefer a compact aerial to an unsightly outdoor erection, not to mention the ease with which a frame aerial can be kept in good condition as compared with the overhaul of an outdoor wire

I own a Super 60 receiver, as published in Wireless Magazine for March, 1931, which I intend to keep in the hope that you will produce a frame-aerial super-het as good as but employing some form of the original. second-channel suppressor to cure the only trouble existing in a very fine receiver.

May I conclude by offering my appreciation of a very fine weekly paper which I hope will long continue to reign.

D. G. COLEMAN. [1100

UNSKILLED DEALERS

Stamford.

N supporting Thermion's comments on the menace of the unskilled dealer, may I point out the good work which has been done by the Wireless League in this connection?

The League are appointing a chain of dealers throughout the country and to date about 320 such traders have been registered. Everv approved dealer has been examined in the theory of broadcast reception, and in his ability to service receivers. He has also to have in his possession sufficient test apparatus to put his knowledge into practice, and the means of effecting satisfactory service repairs. My committee are very careful in their

selection, and I can claim conscientiously that every approved dealer is one of the best men in his neighbourhood. Every trader is supplied with a Wireless League diploma signed by Prof. A. M. Low and other eminent technicians, and an official sign is displayed outside the premises.

Every lay member of the League can obtain the names and addresses of approved traders on application. May I point out in passing that those listeners who join the League now as Associates, the subscription for which is only 2s. per annum, will not be required to pay again till September, 1935, so that three months' membership is free. Full particulars of the free handbook, free

insurance, etc., may be obtained on application to me at the head offices of the Wireless League, at 12 Grosvenor Crescent, London, S.W.I. ALFRED T. FLEMING, M.I.W.T. General Secretary.

[1101

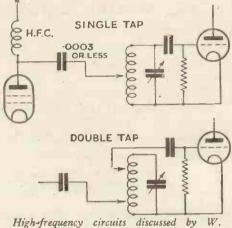
[1102

London, S.W.2.

SHORT WAVES

MAY I congratulate AMATEUR WIRELESS with heartily upon its devotion of a few pages to the short-wave enthusiast. I have patiently waited for this, and now I hope you will let us have really accurate news of the amateur, broadcasting, and telephony stations week by week.

I suggest that readers be allowed to send in reports of all DX, and these reports should be printed according to their value to other readers in each issue. Why not deal with amateur transmitting, and give circuits of oscillators, modulators, and deal with portable


transceivers? • Come on "A.W." you gave the lead with the Superheterodyne, why not do the same with the short waves? Boost this interesting side of radio and of world-wide reception. FRANCIS A. BEASE side of radio and give to all the pleasure of

Halstead, Essex

TUNED-GRID VERSUS TRANSFORMER COUPLING

BELIEVE that I was one of the first to T adopt the former type of high-frequency coupling, while my brother Noel was experi menting on the low-frequency side. Both transformer and tuned-anode methods gave poor results owing to the high impedance of the screen-grid valve.

In the case of the transformer, a 1: 1 ratio obviated this to some extent; but the result H.T.+

Bonavia-Hunt in letter No. 1103

was extremely flat tuning. There seemed to me to be only one way out of the difficulty, and that was to use a high-frequency choke* with a coupling condenser of low value and tap the tuned-grid coil at a point low enough to obtain

tuned-grid coil at a point we the selectivity needed. The power so resulting was little, if at all, reduced; but the selectivity was much higher than could be obtained with transformer than could be. W. BONAVIA-HUNT. [II03] coupling (1 : 1). W. BONAVIA-HUNT. Littleport, Cambs. [1103 * I first used a serialised M.M. H.F. barrel

A.W. transformer here. Quite O.K. This was in 1925-6. Mr. Hallows was working on these lines at the same time.—W. B. H.

WAVELENGTH SHUFFLES

IN reply to Mr. H. Gardner's observations on my letter (No. 1084), I certainly insist that the old conditions (2LO, 5GB, and 5XX) gave a far better arrangement than that we now endure. To lead off with, I find horrible distortion on the daily service at 10.15. That never happened with 2LO. Mr. Gardner says when stations worked on fewer kilowatts listeners could count on at

fewer kilowatts, listeners could count on at least one uninterrupted programme, but to-day that is only possible during daylight hours, unless one gives up all hope of real quality

Unfortunately our unnecessary powerful transmitters have forced foreigners to increase power, so to-day we have interference and stuff not worth listening to after dark.

We should have stuck to several low-power transmitters or else one or two man in transmitters, say two in England, two in Scotland, and two in Ireland. They could (if Scotland, and two in Ireland. They could (if given suitable wavelengths) have radiated six home programmes (enough for anybody).

I agree again with Mr. H. Gardner that we may, under existing methods, be forced to may, under existing methods, be forced to gramophones—or perhaps wired wireless laid on locally and only needing a loud-speaker, will come about. Then good-bye to the set-manufacturers' business. W. H. MORRIS. Wimble Jon, S.W. [1104

Amateur Wireles

ly Broadcasting Diary

Sunday

BEGAN with a little chamber music this afternoon and heard the Spencer Dyke people play a favourite quartet of mine by Beethoven. Quite pleased with it. Also with Betty Humby, who played me some Weber I did not know. That, except that I heard Ethel Evans sing a ballad, is all I have heard to-day

Criticisms by WHITAKER-WILSON

Monday

A LITTLE of Henry Hall I liked; still less of Act II of The Mastersingers, which I liked rather less than Henry, to be candid-didn't come through as well as I hoped-and then settled down to hear those two Scandinavian plays.

Thought Three Trappers quite good and, in a sense, original. Howard Rose, producing, departed from his usual careful reserve in effects. Too much rattling of crockery.

Otherwise no complaints, which is another way of offering a compliment to Rodney Ackland, Charles Mortimer, and Matthew Boulton for their splendid acting.

The Copy, produced by M. H. Allen, appealed to me less. The comedy in it was rather laboured. Again, well acted. Good acting in serious plays is now a feature of the B.B.C. productions. Harold Scott was amazingly good. . + 14

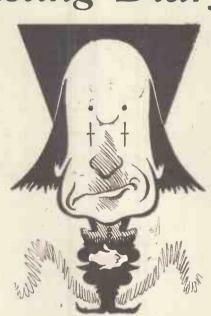
.

Tuesday

PICTURE PEOPLE definitely a good show. Mr. Clayton-Hutton must go on with this idea of relays from sound tracks of films. Such programmes are sure to be popular. Wednesday

NICE supper concert to-night. I do not A NICE supper concert to-night. 1 do not make a habit of having wireless on at meal-times, but I was trying out my new set, specially made for me in the AMATEUR WIRELESS laboratories plus a Baker loudspeaker.

The C Orchestra, led by Marie Wilson and conducted by Joseph Lewis, appealed to me because they played a light programme with because they played a light programme with all the delicacy—and yet the dignity—of a full symphony orchestra. Also John Armstrong sang Onaway, Awake ! in a straightforward, musicianly manner, without sobbing and getting sentimental, as tenors generally do when they sing that most beautiful of all love songs songs.


Between those two I switched on to Peter-borough Cathedral for the Choir and Cloister broadcast. Candidly, I didn't think much of the Peterborough boys; but, then, I am a very hard critic of cathedral singing, having lived that sort of life once on a time. What I really did like was the gorgeous sense

of echo. None of your synthetic stuff, such as we get in spookey plays, but a real, healthy three-and-a-half-second affair with some atmosphere about it.

Finished up with the symphony concert of Russian music. I even listened to Prokofiev; but, then, Albert Coates was conducting and I knew I should get an authoritative rendering. Thursday

There was a Ridgeway Parade.

BEGAN my listening later than usual to-night. Lauri Kennedy's 'cello recital wholly delightful. He played works that

An impression of Wilkie Bard, the well-known music-hall star

should have appealed to all lovers of the 'cello as a solo instrument.

Just about to switch off when I heard the announcer say Engle Lund was singing folks songs of many lands. On looking at the programme I found them to be in German, French, English, Yiddish, Swedish, and Norwegian

Rarely have I enjoyed a recital of this kind more. Miss Lund's diction was so clear that especially as she supplied translationswords of her songs were equally intelligible in all languages.

Her broken English during her announce-ments added to the charm of her recital, and I liked her Danish encore most of all. May she be asked again?

Fridav

NOTICED to-night that the announcer gave news-headings before reading the lletin. I suggest emphatically that this be bulletin. continued. So often I have thought to myself "I won't listen to the news to-night; I shall see it in the paper to-morrow," whereas if I had heard an attractive item in spoken headings I might have acted otherwise.

I submit to Broadcasting House that it would be a good idea definitely to use headings, making a feature of them. I am sure it would be appreciated.

Saturday

THE In Town To-night's do vary ! Suppose it can't be helped, but to-night's lot were feeble.

Variety good. I liked the Dalton Sisters because their voices matched in tone; I liked Jenny Howard because she can hiss her s's better than anyone I know, except Stainless Stephen; I liked Wilkie Bard immensely because he handled both audiences so well; I liked Arthur Askey's song, What, No Milk?; I liked Scott and Whaley in their ridiculous sketch about taking the girl out to dinner; I liked Al Bowly better than his songs; and I definitely liked the way the Theatre Orchestra played Erric Coates' London Bridge. To Kneale Kelley, Konductor, kongratulations !

Amateur Wireles

H.T. THAT SAVES POUNDS Why not end H.T. problems for good with a Standard Wet Bat-tery? Smooth, abundant H.T. year in, year out at half cost of dry H.T. Saves pounds. 120. 12,500 m.a. £2, carr. paid. All Standard H.T. Spore. List Free. WET H.T. BATTERY CO. - 26 LISLE STREET - LONDON, W.C.2

ASK FOR A

Puzzling Broadcasters

By JAY COOTE

IT is often puzzling to account for the reason for which during certain periods signals from particular stations are weaker or more powerful than at other times. Many sugges-tions are put forward, including weather conditions, full moon, fading, barometric readings and anything which might or might not influence radiation.

On the other hand, as fate will have it, the true reason—and probably the simplest one—is discovered later and we find that our hypotheses were hopelessly at fault.

I quote four examples, namely Moscow I, which suddenly on 1,724 metres provides a much heftier signal than hitherto; Prague, which without reason almost dropped out of our logs; the relatively anaemic character of Langenberg broadcasts; and Budapest, which, from a faint whisper during the afternoon, clears its throat and comes across at full blast towards 5 p.m. (1700 B.S.T.).

The answers to the puzzles are : (1) Moscow hitherto working on 200 kilowatts, and capable of 500 kilowatts, since May 15 has worked at (2) Prague's aerial was struck by lightning

and the older and smaller station has been used pending repairs.

(3) Langenberg, now being converted to a 100-kilowatter, is closed down and the 17kilowatt station is on the air.

(4) The Budapest aerial mast is being repainted; the high-power station is out of action between B.S.T. 0645 and 1645, all broadcasts being sent out through the old transmitter.

Another item of interest lies in the fact that notwithstanding contradictory statements, it is now definitely confirmed that Radio Toulouse

has been authorised to use the 60-kilowatt St. Agnan station which, completed many months ago, was not permitted to be brought into operation. With this power in hand it should be well heard : it is unfortunate that the channel is within 7 kilocycles of Radio Luxembourg's fourth harmonic (326 metres), which can be picked up as a background to Brno.

The new Nice P.T.T. station, in course of construction at La Brague, is being hurried forward and I learn that tests may be expected in August next; the wavelength to be used is 253.2 metres (τ , 185 kilocycles), or just below Copenhagen. It will be one of France's highpower transmitters.

Powerful Catholic Station ?

For some months past in Roman Catholic circles proposals have been put forward to install in mid-Europe a powerful station for the transmission of broadcasts in defence of the transmission of broadcasts in detence of Catholic interests. At the outset a site was to be chosen in German Switzerland, but since the change in the policy of the Austrian Government and its resistance to Hitler propaganda, this latter country has been selected as being more favourable for such broadcasts in the German language. We may therefore see a new transmitter

We may therefore see a new transmitter spring up in the neighbourhood of Salzburg or Innesbrueck in order that the talks may be heard over the greater part of Germany and Central Europe.

By the way, Austria has made arrangements to exchange broadcasts from the Salzburg Musical Festival with Italy, as against relays of operatic performances from the Scala at Milan

New Sets for Old!

IN these days when one part of the country is on D.C., another part on A.C. and some of the remainder without mains at all, it is certainly a problem for the battery user who is about to have mains laid on to determine just

what he is going to do with his old battery set. The Universal High-voltage Radio Company have solved this problem in a very satisfactory manner. They have formed what they call a set conversion department, consisting of a number of highly-trained radio engineers who will alter any battery set so that it will run from A.C., D.C. mains or both.

They will also modify any existing D.C. mains set to run from A.C. mains, so that any

SECRET PROCESS

old receiver that you may think will be obsolete when the supply changes is now given a new lease of life.

This unique service has proved so satis-factory and the volume of business so great that this company is now able to make con-versions of this kind at the *low cost of ios. per valve holder* and the price of the new valve. For example, a three-valve battery set conplus the cost of three mains valves. This service is not restricted to any parti-

cular types of receivers. Commercial sets of any make or type, as well as home-constructed kit sets, can be modified in this way.

(1) LONGER LIFE [2] PURER TONE It gives you:-(3) GREATER VOLUME (A) ENHANCED CLARITY

Supplies are delivered to your dealer each week thus ensuring that you receive a perfectly fresh battery.

LISSEN LIMITED, LISSENIUM WORKS. WORPLE RD., ISLEWORTH, MIDDLESEX H.T.BATTERY Send a card for free literature on all Lissen Products.

Amateur Wiveler

O BOOK

HINTS TO BETTER

Partie V

BRILLIANT

Medium-wave Broadcasters

This week we give details of all the important European medium-wave stations. Next week we shall publish a list of short- and long-wave transmitters.

	Kilo-	Station and Call	Power	1	Kilo-	Station and C
Metres	cycles	Sign	Country (Kw.)	Metres	cycles	Sign
203.5	1,474	Flymouth	Great Britain3 Great Britain 1	312.8	959	Poste Parisien,
203.5	1.474	Bournemouth	Great Britain	315.8 318.8	950 941	Breslau Goteborg
206	1.456	Pecs	France	321.9	932	Brussels (2)
208.6	1,438	Miskolez	Hungary	322.2	931	Algiers
209.4	1.432.5	Beziers	France 1.5	325.4	922.	Brno
209.9	1,429	Newcastle	Great Britain	328.6	913	Radio Toulouse
211.3	1,420	Tampere	Finland 1.2	331.9	904	Hamburg
214	1,402	Sofia	Bulgaria	335.2	895	Limoges PTT Helsinki
215.1	1,394.9	Radio Lyon	France	335.2 338.6	895 886	Helsinki
218.2	1,364	Warsaw (2) Basle, Berne	Switzerland5	338.6	877	Graz London Regional
221.1	1.357	Turin (2)	italy	345.6	865	Poznan
222	1.354	Turin (2) Dublin (2)	Irish Free State 1.2	347.2	864	Sofia
272.2	1.354	Milan Vigentino (2)	Italy 4	349.2	859	Strasbourg
222 6	1,348	Koenigsberg	Germany	350	857	Bergen
222 6	1.348	Bordeaux S.O	France	352.9	850	Valencia
224	1.339	Montpeller	France	356.7 358.6	841	Berlin
225.6	1.330	Lodz		350.0	836.0	Paris, LL
22.3.0	1,000	Hamburg relays	Germany 1.5	364.5	823	Moscow (4) Bucharest
227.6	1318.5	Magyarovar	Hungary	368.6	814	Milan
230.2	1,303	Danzig	Hungary	373.1	804	Scottish Regional
231.8	1,294	Linz and other		377.8	794	Barcelona (EAJI)
	1.000	Vienna relays	Austria	378.8	792	Lwow
233.5	1.285	Aberdeen	Greac Britain I	382.2	785	Leipzlg
234.3 235.1	1,200	Dresden Stavanger and other	Germany1.5	386.6 386.6	776 776	Fredriksstad
433.1	1,20	Oslo relays	Norway 5	391.1	767	Midland Regional
236.8	1,267	Nurnberg	Germany 2	395.8	758	Katowice
238.5	1,258	San Sebastian (EAJ8)	Spain	400.5	749	Katowice
238.5	1.258	Rome (111)	italy	405.4	740	Munich
240.2	1,249	Juan-les-Pins	France 2	410.4	731	Seville
241.9	1,240	Cork	Irish Free State I Germany	410.4	731	Tallinn
245.5	1,231	Gleiwitz	Germany	414.4	724 722	Madrid (Espana) Kiev
247.3	1,231 1,222 1,213	Trieste Lille PTT	France 1.4	420.8	713	Rome
249.2	1,204	Prague Strasnice (2)	Czechoslovakia ·3	426.1	704	Stockholm
251	1,195	Frankfurt - am - Main		431.7	695	Paris PTT
		and relays	Germany 17 U.S.S.R. 35	437.3	686	Paris PTT Beigrade
253.2	1.185	Kharkov (2)		443.1	677	Sottens
255.1	1,176	Copenhagen Monte Ceneri	Denmark	449.1 455.9	668 658	North Regional.
259.1	1,158	Moravska-Ostrava	Czechoslovakia II	463	648	Langenberg Lyons PTT
261.1	1.149	London National	Great Britain 50	470.2	638	Prague (1)
261.1	1,149	West National	Great Britain 50 Great Britain 50	476.9	629	Trondheim
263.2	1,140	Turin (1)	1estv 7	476.9	629	Lisbon (tests)
265.3	1,131	Hoerby Belfast	Sweden 10	483.9	620	Brussels (1)
267.4	1,122	Belfast	N. Ireland I	483.9	620	Cairo (tests)
267.4 269.5	1,113	Nyiregyhaza Kosice	Hungary	491.8 499.2	610 601	Florence
269.6	1.112.6	Radio Vicus (Paris)	France	499.2	601	Rabat
271.7	1,104	Naples	Italy 1.5	506.8	592	Vienna
274	1,095	Madrid EAJ7	Spain 3	514.6	583.2	Riga
276.2	1,086	raiun	Sweden 5	514.3	724	Agen
277 2	1,082	Zagreb	Yugoslavia:	522.9	574	Muhlacker
278 280.9	1,079	Bordeaux PTT	France	531	565 556	Athlone Beromunster
283.3	1.059	Tiraspol	Italy	539.6 549.5	546	Budapest
285.7	1.050	Scottish National	Great Britain 50	559.7	536	Wilno
238.6	1,040	Leningrad (2)	U.S.S.R. 100	569.3	527	Viipuri
288.6	1,040	Rennes PTT	France 1.3	569.3	527	Liubliana
290	1,034.5	Parede (Lisbon)	Portugal S	578	519	Innsbrueck
291	1,031	Heilsberg	Germany 60 Spaln 2	696	431	Oulu
293.5	1,022	Barcelona (EAJ15)	Great Britain 50	724.6	414 401	Ostersund Geneva
298.8	1,013	North National Bratislava		748	401	Moscow
301.5	995	Hilversum	Holland 20	775.2	387	Boden
304.3	586		Italy	824	364	Smolensk
304.3	986	Cracow	Poland 1.7	833.4	360	Budapest (11)
307.1	977	West Regional	Great Britain 50	845	355	Vadso
312	962	Grenoble PTT	France	ŀ		

and Call		Fewer
lgn	Country	(Kw.)
sien, Paris	France	60
	Germany	60
	Sweden Belgium	10
2)	North Africa	. 13
*********	Czechoslovakia.	
	Czecnoslovakia.	. 60
ouse	France Germany France Finland	100
TT	France	
	Finland	. 10
	Austria Great Britain Poland	. 7
gional	Great Britain	. 50
	Poland	. 17
	Bulgaria	3
	France	. 15
	Norway	. 3
	Cormany	100
	France	1.2
)	Germany France U.S.S.R. Roumania	. 1.2
	Roumania	12
	If all V	. 50
gional	Great Britain Spain Poland	. 50
gional EAJI)	Spain	. 8
	Poland	.21.5
TT	France Great Britain Poland France	
all second	Casas Princip	7
gional	Great Britain	. 16
PTT	France	. 2.5
	Spain	. 1.5
	Estonia	. 11
pana)	Spain Estonia Spain U.S.S.R. Italy	. 1
	U.S.S.R	. 36
	lealy	. 50
	Sweden	. 50
	France	2.8
**********	Yugoslavia Switzerland	25
ional -	Great Britain	55
ζ	Germany	. 60
	Germany	15
sts)) 	Czechoslovakia	. 120
	Norway	. 1.2
sts)	Portugal	20
)	Belgium	. 15
(\$)	Egypt	. 20
<mark> </mark>	Italy Sweden	20
	Sweden	. 6
	Austria	100
	Latvia	. 15
	Latvia	. 5
	Germany	. 100
	Germany Irish Free State.	60
er	Switzerland	. 60
	Hungary	120
	Poland Finland Yugoslavia	. 16
·····	Finland	. 13
	Tugoslavia	. 7
	Austria	
· · · · · · · · · · · · · · · · · · ·	Sweden	6
	Switzerland	1.5
	Sweden Switzerland U.S.5.R.	. 20
	U.5.S.R.	. 10
(11)	Hungary	. 3
	U.5.S.R. Hungary Norway	. 10

Image: Note of the second s
ANY INTELLIGENT MAN or WOMAN
can add substantially to income
manufacturing patented articles for Battery or Mains Radio. No expensive machinery, large capital or experience required. Particulars with circuit value 6d. sent immediately for 2d. stamp. England - Richards Co., 33D, King's Lynn.
B.B.C. CABINETS Bare 334 %. Finest Radio Gram Cabinets: On FREE TRIAL. PICKETY SEND FOR LIST Cabinet (A.W.) w orks, BELLEYREATH, Nr. London
RADIO SUPPLIES Send your list of Radio needs for our quotation. Kits, Parts, Sets, etc. Everything in Radio stocked, prompt delivery. 7 days' approval. Catalogue free Tayler & Standard Wet H.T. Replacements stocked. A. TAYLOR, 9 GROVE ROAD, BALHAM S.W.12
See the JUNE issue of
"TELEVISION"
for Constructional Details
for HIGH QUALITY
AMPLIFIER
suitable for Mirror-drum
television reception

ON SALE TODAY, Price I/-

NOTE:-The following wavelengths are common to several transmitters: 206 m. (1,456 kcs.); 207.3 m. (1,447 kcs.); 208.6 m. (1,438 kcs.); 211.3 m. (1,420 kcs.); 218.2 m. (1,375 kcs.); 221.1 m. (1,357 kcs.); 225.6 m. (1,330 kcs.); 228.7 m. (1,312 kcs.); 235.1 m. (1,276 kcs.); 236.8 m. (1,267 kcs.); 251 m. (1,195 kcs.);

Notes and Jottings

A FTER extensive research by Ediswan engineers on the reliability of contact of valve top-cap connections, it has been decided that the plug-type metal contact is far more reliable than the screw type. The metal plug-type contacts will be fitted as standard connection to all future Mazda

valves having a top terminal and many of the existing types will also be fitted with the

blug-type cap. When ordering replacement valves with the alternative connection, the type required must be specified.

The largest number of public-address jobs ever booked by Marconiphone for one day will be carried out on July 18. There will be in use 129 loud-speakers and fourteen microphones.

On the same day there will doubtless be hundreds of other sports meetings throughout the country which will be covered by Marconi-phone agents, and it would be really interesting to know just how much Marconiphone gear is in use on this day.

In the list of components for our Hiker's Headphone Portable, described in AMATEUR WIRELESS dated May 12; we incorrectly specified the accumulator as an Exide type MR2; this should have been type LCJ1.

Four new Drydex batteries of the Yellow Triangle series have been added to their list. These are the types H1091 (which replaces the type H1075), H1092, H1093 and H1094. Continued on next page

PREPAID ADVERTISEMENTS

PREPAID ADVERTISEMENTS Advertisements under this head are charged THREE PERVEORD, minimum charge THREE SHILLINGS, DEPOSIT SYSTEM. As the publishers cannot accept responsibility for the bona fides of advertisers in this Section, they have introduced a system of deposit which it is recommended should be adopted by readers when dealing with persons with whom they are unacquainted. The amount ot the Deposit and Fee must be remitted by Postal Order or Registered Letter (Cheques cannot be accepted), addressed to ""Amateur, Wireless," Advertisement Department, 58/61 Fetter Lane, London, E.C.4.

PATENTS.-Trade Marks." Advice Handbook" free.--B. T. King, Regd. Patent Agent, 146a Queen Victoria Street, London.

REPAIRS TO MOVING-COIL SPEAKERS. and R Coils fitted or rewound. Eliminators and Trans-formers quoted for. Loud-speakers; L.F. and Speech Transformers, 4/- each, post free. Trade invited. Satis-faction guaranteed. Prompt 'service.-Loud'speaker Repair Service, 5 Balham Grove, London, S.W.12. Battersea 1321.

RADIO DEALERS.—"Cambridge " the World's Best Bikes—will help you through the summer. Send for lists and catalogues—trade 'only' supplied by Nasco, Pittville House, Alma Street, Birmingham 6.

SCREENED COILS. Will give you greater selectivity. Aluminium Coll Screens with base, size 31 in. high, 23 in. diameter. Price 1/6 each.--"M.P.R.," Ltd., Romford, Essex.

REGENTONE ELIMINATOR W1A. 160v., 30a.; high, low: 4v., 4a., 45/-2 Montbelle Road, New Eltham. .4a., 45/--

N. P. (late Nash Products) for Battery Charging Plants, 20/- to £20. N. P. for Battery Chargers on Hire Purchase. No interest, no guarantees, etc.

N. 9. send photographs and terms. State you require-nents.—N. P. Electrical Co., 514 Alum Rock Road, Birmingham.

GRAMOPHONES, RADIOGRAMS.—64-page. How to make 'em, 3d. Motors, Arms, Pick-ups, Speakers. Horns, Springs, Repairs. Accordians.—Regentein, 120 Old Street, London.

UTILITY SALES CO. Stock Everything You Require in Radio, electrical, scientific, and domestic goods of all descriptions; send P.C. for complete lists; there's much to interest you.

V Superbet, You. VERY SPECIAL—Just arrived; 5-valve 200-2,000 metres Superbet. Midget Chassis, with M.C. speaker, A.C. D.C., 100-250 volts, grano. plug and valves, latest type; limited quantity; will never be repeated at this price, 82/6.

Radio-GRAM Electric Motor, complete with turntable, accessories, works from 41-volt dry cell, 4-volt accumulator; 15/-. ELECTRIC SOLDERING IRON.—Perfect, very handy, specify voltage: 4/6

E specify voltage; 4/6.
 M ETRO-VICK '' MAINS TRANSFORMER, 200-240 wolts, 250-0-250, 60 milliamps., 4 volts 5 amps., 4 volts 2 amps., guaranteed; 10/-

" I GRANIC " BAND PASS UNIT, 3 iron cored screened coils on base, with switch; 14/6 (list 33/-).

"VARLEY" CONSTANT SQUARE PEAK COILS, new, boxed; 3/3 each (list 15/-). TIME SWITCH CLOCK, to turn off Radio at pre-set

time; 3/6.

ELECTRIC CLOCK, in beautiful Bakelite case; works from 4-volt battery, without attention for 2 years; sent complete; guaranteed; 12/6.

AL GOODS Delivered Within 24 Hours, carriage paid; Cash with order. UILLTY SALES CO., 27a Sale Street, Paddington, London, W.2.

INFORMATION BUREAU

Will every querist please observe the follow-ing revised rules? Please white concisely, giving essential particulars. A fee of one shilling, postal order (not stamps), a stamped, addressed envelope and the coupon on this page must accompany all queries. Not more than two questions should be sent at any time.

this page must accompany all queries.
Not more than two questions should be sent at any time.
The designing of apparatus or receivers cannot be undertake.
Slight modifications of a straightforward nature only can be made to blueprints. For more serious alterations the minimum charge is 2/6.
Blueprints supplied by us will be charged for in addition, but, of course, readers may send their own blueprints for alteration.
Modifications to proprietary receivers and designs published by contemporary journals cannot be undertaken. Readers' sets and components cannot be tested by us. Queries cannot be answered by telephone or personally. Readers ordering blueprints and requiring technical information in addition should address a separate letter to the Information Bureau and should see that their remittance covers the price of the Blueprint and tha amount of the query fee.
We do not answer queries in cases where the fee is omitted.

The fee is omitted. Queries should be addressed to the Query Dept., "Amateur Wireless," 58/61 Fetter Lane, London,

Canalitation and a construction of the second secon

BURGOYNE £4 4s. De Luxe 3-valve Battery Sets, complete; £2 19s. 6d. MARCONI £4 4s. 3-valve Battery Sets, complete, £2 5s.

TRIOTRON Class B Units, with Valve, 21/6.

STALL Class B Driver and Choke; pair, 8/6.

TRIOTRON 8 Mfd. Electrolytic Condensers, 2/8.

DUBILIER 1,500-volt Condenser Banks 1 by 2, 1 by 25, 3 by 1, 4 by 1 Mfds., 4/6. Dubilier 1,500-volt Condensers 2 by 2 Mfds., 2/6. UGERNE Iron Cored Colls, 2/6.

AMPLION Dual Range Coils, 2/6.

VARLEY Constant Square Peak Coils (list 15/-), 2/6.

COSMOS 2-volt Green and Blue Spot Valves, 2/6.

COSMOS 4 or 6-volt Red Spot Valves, 1/6.

TRIOTRON VALVES, 3/6; Power, 4/6; Super, 5/-;

TRIOTRON VALVES, 3/6; Power, 4/6; Super, 5/-;
 AMPLION 39/6 Permanent Magnet M.C. Speakers, 17/6.
 Amplion 27/6 Sonette Permanent Magnet M.C. Speakers, 10/6. Celestion 27/6 Soundex Permanent Magnet M.C. Speakers, 19/6. Celestion 27/6 Soundex Permanent Magnet M.C. Speakers, 10/6.
 IGRANIC 7/6 Parvo Transformers, 2/6.

FERRANTI A.F.3 Transformers, 11/6; A.F.8, 6/6.

OSRAM Thirty Three Music Magnet Kits, Assembled and Tested. List £6 15s. 6d.; 70/-. POST PAID, cash with order, or C.O.D. P.C. for Bargain

TUNNEL RADIO, Chester Street, Birkenhead.

HIGHEST POSSIBLE ALLOWANCE made on used wireless sets or parts in exchange for any new set, kit, or parts. Peto-Scott kits supplied. Goods bought for cash.—R. Wigfield, Furlong Road, Goldthorpe, Yorks.

BANKRUPT BARGAINS.—List free. S.T. 300 Kit, 35/-S.T. 400 Kit, 45/-. S.T. 500 Kit, 52/8. Burgoyne Class B3 Sets, £4 complete. Celestion Soundex P.M., 13/6. Universal and A.C. Sets at keenest prices. A.C. Elimin-ators from 25/-. Full stock of components. Part exchange. —Butlin, 143b Preston Road, Brighton. Preston 40.0.

Notes and lottings-Contd. from preceding page

The last mentioned is a grid-bias battery, the others being high-tension.

Egypt has ordered two radio stations. These two have been built by the Marconi company One of the transmitters, a high-power installation operating on 483.9 metres, is at Abu Zabal near Cairo and the other a relay transmitter operating on 267.4 metres, is at Ras el Tin, near Alexandria.

The stations are connected by landlines with a suite of studios at Radio House, Cairo, the headquarters of the State Broadcasting service.

A Radio Leg-pull

A SOUTHEND pilot was recently the victim of a curious radio leg-pull. He was making a trip to Leeds, with an urgent delivery of Ekco sets, and shortly after leaving the aerodrome he discovered that his machine stubbornly refused to settle down on the proper course.

Instead of steering "as the crow flies," he found himself going "as the crab crawls." Every time he checked his position by land-marks, he found himself further off his course, although the compass had been corrected only a few days before.

With visions of arriving at Yarmouth or Bristol instead of at Leeds, he decided that it might be as well to land to carry out investigations.

He found that, when the cargo was stowed. an Ekco Model 54 had been packed within nine inches of the instrument board.

This particular set is battery-operated, and the permanent magnet of the moving-coil loud-speaker was deflecting the compass needle over 30 degrees from its true reading !

Removal of the set to a different position cured the trouble, and the flight was completed without further incident.

When ordering, please send Postal Order, NOT STAMPS. Quoty the

CRYSTAL SETS (6d. each) 1931 Crystal Set ... Four Station Crystal Set AW308 AW427

ONE-VAL	VE	SE'	rs	(1s.	eac	h)
asy to Build One						AW304
ortable Short-wave	One		÷.			AW354
P.C. One valuer						AW387

ne-valver for	America	 • •	 AW42

EPO B.

IWU-VALVE SEIS (IS. each)	
Home Station A.C.2 (D, Pen) AW3	74
B.B.C. National Two (D, Trans) AW3	77
Melody Ranger Two (D, Trans) AW38	
"A.W." Iron-core Two (D, Trans) AW39	
"A.W." Iron-core Two with Q.P.P AW3)6
Big Power Melody Two, with Lucerne Coils	
(SG Trans) AW338	1.
B.B.C. National Two, with Lucerne Coils (D,	
Trans)	
Consolectric Two (D, Pen) A.C AW4	
Lucerne Minor (Det, Pen) AW4	
Screen-grid Two (SG Det, Trans) WM2	
A Two for 7 Metres (D, Trans) WM12	
New-style Radiogram (D, Trans) WM2	
A.C. Quality Gem (D, Trans) WM3	12

THREE-VALVE SETS (1s. each)

Everybody's Home Radiogram (SG, D, Trans) AW381
Our Up-to-the-Minute Three (SG, Wes-
tector, LF, Trans) AW384
Class B Three (D, Trans, Class B) AW386
"Up-to-the-minute Three" with Class B, 1/6 AW384B
A.C. Triodyne (SG, D, Pen) AW399
Home-built Coil Three (SG, D, Trans) AW404
Fan and Family Three (D, 2LF) AW410
£5. 5s. SG. 3 (SG, D, Trans) AW412
A.CD.C. Universal Three (SG. Det, Pen) AW414
1934 Ether Searcher (SG, Det, Pen) Baseboard AW417
1934 Ether Searcher (SG, Det, Pen) Chassis AW419
Lucerne Ranger (SG, Det, Trans) AW422
P.W.H. Mascot (Det. R.C. Trans) AW337A
Cossor Melody Maker with Lucerne coils AW423
Mullard Master Three with Lucerne coils AW424
Schoolboy's Three (Det, 2. RC) AW428
Penta-quester (HF, Pen, Det, Pen) AW431

FOUR VALVE SETS (10 Ed. anoh)

I OUII-TALTE OLIO (IS. OU. CO	acony
"A.C. Melody Ranger " (SG, D, RC, 'I'rans)	AW380
Home-lover's New All-electric 3 for A.C. mains	
	AW383
Melody Ranger (SG, D, RC, Trans) with copy	
of "A.W." 4d. postage	
	AW398
	AW402
	AW421
Lucerne Major (2 H.F., Det, Trans)	AW433

FIVE-VALVE SEIS (IS. OG.	eacn)
The Etherdyne (Super-het)	AW406
Super-quality Five (2 HF, D, RC, Trans)	WM320
Ideal Home Super (Super-het)	WM280
Easytune 60 (Super-het)	WM284
New Class-B Five (SG, D, LF, Class-B)	WM340
Class-B Quadradyne (2 SG, D, LF, Class-B)	WM341

SIX-VALVE SEIS (15. 60.	each)
1934 Century Super (Battery super-het)	AW413
1934 A.C. Century Super (Super-het)	AW425
CEVEN VALVE SETS /1. C	(

GEVEL-VALVE		3.	ou	cauly
Super Senior (Super-het)	C	• •		WM256
Seventy-seven Super (A.C.	Super-net)			WM305

PORTABLES (1s. 6d. each) General-purpose Portable (SG, D, RC, Trans) AW351 Midget Class-B Portable (SG, D, LF, Class-B) AW383 Holiday Portable (SG, D, LF, Class-B) AW393 Town and Country Four (SG, D, RC, Trans) WM234 Everybody's Portable (five-valve Super-het) ... WM291 Spectrum Portable (SG, Det, QP21) ... WM357

AMPLIFIERS (1s. each)

Universal Push-pull Amplifier	 AW300
"A.W." Record Player (LF, Push-pull)	 AW319
Battery-operated Amplifier	 AW362
"A.W.'s '' Push-push Amplifier	 AW376
Class-B Gramophone Amplifier	AW391
Universal A.C. Amplifier (3-valve)	AW411
Five Q.P.P. Output Circuits	 WM315

MISCELLANEOUS (1s. each)

" A.W." Trickle Charger			 AW352
Add-on Band-pass Unit	. 2		 AW359
Plug-in Short-wave Adaptor			 AW382
Experimenters' D.C. Mains			
Experimenters' A.C. Mains U	Jnit	• •	 AW432

Copies of the "Wireless Magazine" and of "Amateur Wireless' containing descriptions of most of these sets can be obtained at 1s. 3d, an, 4d, respectively, post free. Index letters "A.W." refer to "Amateur Wire less " sets and "W.M." to "Wireless Magazine." Address letters :

Amateur Wireless Blueprint Dept., 5:-51 Fetter Lane

Printed in Great Britain for the Proprietors and Publishers, BERNARD JONES PUBLICATIONS, LTD., 58-61 Fetter Lane, London, E.C.4, by The Sun Engraving Co., Ltd., London and Watford. Sole Agents for South Africa: CENTRAL NEWS AGENCY, LIMITED. Sole Agents for Australia and New Zealand : GORDON & GOTCH (A'SIA), LIMITED. Saturday, June 16, 1934

Amateur Wirelesy

VARIABLE-MU S.G. CIRCUIT CLASS "B" OUTPUT * PENTODE DETECTOR

MOVING COIL LOUD SPEAKER * SINGLE KNOB TUNIN

SPECIFICATION, MODEL 435B.

Cossor 4-valve Battery-operated Receiver Model 435B with Class "B" Amplification, complete with Cossor Valves as follows: Screened Grid Variable-Mu H.F., H.F. Pentode Detector, Driver and Class, "B" Output, Fully screened, super-selective low-loss coils. Single knob moving-pointer tuning with horizontal full-vision scale calibrated in wavelengths, Combination switch for on-off, wavelength change and gramophone pick-up. Selectivity control and volume control. Permanent Magnet Moving Coil Loud Speaker of the latest type. Handsome wglnut and brown finish cabinet 20" x 14" x 10", with accommoda-tion for batteries. Terminals for pick-up and sockets sion loudspeaker.

ext		£8	8.1	5	s.	
Hire	purch	ase term	tș : I	6/6 d	eposie	
and	(Exc	onthiy 1 lusive of	Batte	ts of tries).	16/6	

Here is something unusual in performance ... unusual in economy . . . unusual in price. The Cossor Model 4358 is powerful; modern in design; modern in appearance . . . a brilliant example of modern radio at reasonable cost.

A, Variable-Mu S.G. Circuit gives exceptional range and wide choice of programmes. Fully screened low-loss coils ensure utmost selectivity, whilst for distortionless detection and great amplification, a Pentode Detector is incorporated.

The final touch of perfection is added with a Class "B" Cutput Stage which gives "mains" volume and true-to-life, tone with low H.T. consumption.

Ask your dealer to demonstrate Model 435B and judge for yourself.

4 - VA	LVE BATI	TERY RECEIVER
WITH	CLASS "B"	AMPLIFICATION

	To AC. COSSOR, LTD., Melody Dept., Highbury Grove, London, N.5		
1	Please send me a copy of your Leaflet No. L 115.	Name	
4-1 1-1	L.115	A.W. 16/6/31	
			CA 5111

1 4.7 7744.6-

iv