BBC

ENGINEERING DIVISION MONOGRAPH

NUMBER 79: DECEMBER 1969

F.M. Deviation: Calibration and Measurement by Edge Coincidence Techniques » DESIGNS DEPT.

M. H. RICHES, Graduate DE R.E.

(Transmitter Department, British Broadcasting Corporation)

BRITISH BROADCASTING CORPORATION

PRICE FIVE SHILLINGS

BBC ENGINEERING MONOGRAPH

No. 79

F.M. DEVIATION: CALIBRATION AND MEASUREMENT BY EDGE COINCIDENCE TECHNIQUES

bу

M. H. RICHES, Graduate I.E.R.E. (Transmitter Department, British Broadcasting Corporation)

DECEMBER 1969

BRITISH BROADCASTING CORPORATION

FOREWORD

His is one of a series of Engineering Monographs published by the British Broadcasting Corporation. About six are produced every year, each dealing with a technical subject within the field of television and sound broadcasting. Each Monograph describes work that has been done by the Engineering Division of the BBC and includes, where appropriate, a survey of earlier work on the same subject. From time to time the series may include selected reprints of articles by BBC authors that have appeared in technical journals. Papers dealing with general engineering developments in broadcasting may also be included occasionally.

This series should be of interest and value to engineers engaged in the fields of broadcasting and of telecommunications generally.

Individual copies cost 5s. or 5s. 9d. by post, while the annual subscription is £1 post free. Orders can be placed with newsagents and booksellers, or BBC PUBLICATIONS, 35 MARYLEBONE HIGH STREET, LONDON, W.1.

CONTENTS

Section		Title				Page
	PREVIOUS ISSUES IN THIS SER	IES		•		4
	SUMMARY .	•	•		•	5
1.	INTRODUCTION .	•			•	5
2.	DEVIATION METER CALIBRAT	ION			٠	5
	2.1 Calibration with Square-v	vave Modu	ulation			5
	2.2 Calibration with Sine-way					6
	2.3 Calibration with a Separa	te Squarin	g Circuit			7
3.	STROBE METHOD .		•		•	7
4.	ACKNOWLEDGMENT		•	•	•	8
5.	REFERENCE ,				•	8

PREVIOUS ISSUES IN THIS SERIES

No.	Title	Da	te
1	The Suppressed Frame System of Telerecording	JUNE	1955
		SEPTEMBER	
	The Visibility of Noise in Television	OCTOBER	
		DECEMBER	
	Reproducing Equipment for Fine-groove Records	FEBRUARY	
	A V,H.F./U.H.F. Field-strength Recording Receiver using Post-detector Selectivity	APRIL	
7.	The Design of a High-Quality Commentator's Microphone Insensitive to Ambient Noise		1956
	An Automatic Integrator for Determining the Mean Spherical Response of Loudspeakers and Microphones	AUGUST	
9.	The Application of Phase-coherent Detection and Correlation Methods to Room Acoustics	NOVEMBER	1956
	An Automatic System for Synchronising Sound on Quarter-inch Magnetic Tape with Action on		
	35-mm Cinematograph Film	JANUARY	1957
11.	Engineering Training in the BBC	MARCH	
	An Improved 'Roving Eye'	APRIL	1957
	The BBC Riverside Television Studios: The Architectural Aspects	JULY	
14.	The BBC Riverside Television Studios: Some Aspects of Technical Planning and Equipment	OCTOBER	
	New Equipment and Methods for the Evaluation of the Performance of Lenses for Television	DECEMBER	
	Analysis and Measurement of Programme Levels	MARCH	
	The Design of a Linear Phase-shift Low-pass Filter	APRIL	
	The BBC Colour Television Tests: An Appraisal of Results		1958
	A U.H.F. Television Link for Outside Broadcasts		1958
	The BBC's Mark II Mobile Studio and Control Room for the Sound Broadcasting Service	AUGUST	
		NOVEMBER	
	The Engineering Facilities of the BBC Monitoring Service	JANUARY	
	The Crystal Palace Band I Television Transmitting Aerial	FEBRUARY	
	The Measurement of Random Noise in the presence of a Television Signal	MARCH	
	A Quality-checking Receiver for V.H.F. F.M. Sound Broadcasting		1959
	Transistor Amplifiers for Sound Broadcasting	AUGUST	
	The Equipment of the BBC Television Film Studios at Ealing	JANUARY	
28	Programme Switching, Control, and Monitoring in Sound Broadcasting	FEBRUARY	
	A Summary of the Present Position of Stereophonic Broadcasting	APRIL	
	Film Processing and After-processing Treatment of 16-mm Films		1960
31	The Power Gain of Multi-tiered V.H.F. Transmitting Aerials		1960
	A New Survey of the BBC Experimental Colour Transmissions	OCTOBER	
	Sensitometric Control in Film Making	DECEMBER	
	A Mobile Laboratory for UHF and VHF Television Surveys	FEBRUARY	
	Tables of Horizontal Radiation Patterns of Dipoles Mounted on Cylinders	FEBRUARY	
	Some Aspects of Optical Lens Performance	APRIL	
	An Instrument for Measuring Television Signal-to-noise Ratio		1961
		SEPTEMBER	
	Twenty-five Years of BBC Television	OCTOBER	
	The Broadcasting of Music in Television	FEBRUARY	-
	The Douacasting of masic in relevision The Design of a Group of Plug-in Television Studio Amplifiers	APRIL	
	Apparatus for Television and Sound Relay Stations		1962
	Propagational Factors in Short-wave Broadcasting	AUGUST	
	A Band V Signal-frequency Unit and a Correlation Detector for a VHF/UHF Field-strength Recording Receiver		
	Vertical Resolution and Line Broadening	DECEMBER	
	The Application of Transistors to Sound Broadcasting	FEBRUARY	
40.	Vertical Aperture Correction using Continuously Variable Ultrasonic Delay Lines		1963
48	The Development of BBC Internal Telecommunications		1963
40, 70	Apparatus for Measurement of Non-linear Distortion as a Continuous Function of Frequency		1963
		SEPTEMBER	
	Radiophonics in the BBC	NOVEMBER	
52	Stereophony: the effect of cross-talk between left and right channels	MARCH	
	Aerial distribution systems for receiving stations in the l.f., m.f., and h.f. bands		1964
	An Analysis of Film Granularity in Television Reproduction	AUGUST	
	A Review of Television Standards Conversion	DECEMBER	
56	Stereophony: the effect of interchannel differences in the phase/frequency and amplitude/frequency characteristics		
	Drop-out in Video-tape Recording		1965
58	Sine-squared pulse and bar testing in colour television	AUGUST	
50.		SEPTEMBER	
60	Colorimetric Analysis of Interference in Colour Television	FEBRUARY	
61	Sporadic E Ionisation and Television Interference	MARCH	
	Automatic monitoring		1966
63	The design of transmission lines and single-stage switching circuits for a line-store standards converter	AUGUST	
	Data for the acoustic design of studios	NOVEMBER	
	Tristimulus spot colorimeter	DECEMBER	
	VHF aerial gain calculation using tables of mutual resistance between the radiating elements	FEBRUARY	
	Pulse sound: A System of Television Sound Broadcasting Using Pulses in the Video Waveform	MARCH	
	Recent research on studio sound problems		1967
60. 60		SEPTEMBER	
	The dynamic characteristics of limiters for sound programme circuits	OCTOBER	
	The aynamic characteristics of limiters for sound programme circuits The Programme Effects Generator	NOVEMBER	
	Colour Sensitometric Parameters in Colour Film Telerecording	MARCH	
	Sonic booms and other aircraft noise in studios		. 1968
	Sonic booms and other aircraft noise in studios The non-linear characteristics of klystron amplifiers		: 1968 : 1968
74.	Pulse-code modulation for high-quality sound-signal distribution	DECEMBER	
		DECEMBER	
70. 77	The Variable Inductance Frequency Modulator The Automatic Control of Sound-signal Level in Broadcasting Studios	MARCH	
	Aspects of High-quality Monitoring Loudspeakers	SEPTEMBER	
/0.	Noperio of Induity monitoring roundpenders	JEAL LEWIDER	

F.M. DEVIATION: CALIBRATION AND MEASUREMENT BY EDGE COINCIDENCE TECHNIQUES

SUMMARY

A measuring technique is now described which enables a deviation meter to be calibrated using an oscilloscope. This is followed by a method for measuring any given f.m. deviation on an oscilloscope with the aid of a strobe unit. The principles employed require that the carrier frequency is low enough for the operation of pulse circuits, and that the deviation to be measured is greater than 10 per cent of the carrier. Within these limitations, applications apart from broadcasting are obviously possible.

1. Introduction

Both amplitude- and frequency-modulated transmitters are used in broadcasting, and both types are adjusted to produce a specific degree of modulation when a modulating signal of standard amplitude is applied. It is therefore necessary to be able to measure both types of modulation.

The depth of modulation of an amplitude-modulated carrier can be measured without difficulty when it is displayed on an oscilloscope, but it is not so easy to measure the modulation on a f.m. carrier. What must be measured is peak frequency deviation, that is, the frequency difference between the unmodulated carrier and the maximum (or minimum) frequency that the carrier reaches during modulation.

Several methods are known for measuring f.m. deviation¹ but probably the most general arrangement uses a deviation meter calibrated by the Bessel zero method. A conventional deviation meter first demodulates the carrier, using a pulse count discriminator, then displays the peak amplitude of the detected alternating component on a meter calibrated in frequency. Thus the meter reads peak frequency deviation. The complete frequency deviation unit can be calibrated with Bessel zero equipment and a carrier (usually crystal-controlled) modulated by a good quality sine wave source.

2. Deviation Meter Calibration

In a conventional deviation meter, the input from the f.m. modulator will usually be mixed with the output of a built-in oscillator before being fed to the deviation meter itself, and the input to the deviation meter will therefore be referred to as the i.f. The centre frequency will probably lie in the range of 100-200 kHz, but the deviation will not have changed and a typical i.f. signal may have a deviation of \pm 50 kHz centred on 150 kHz. With a low i.f. of this order it is important that the oscillator should not be pulled by the incoming f.m. signal. The i.f. signal is amplified and squared, possibly with the aid of a Schmitt trigger, to produce an amplitude limited i.f. with edges of constant rise time over the entire range of deviation. Constant rise time is essential for proper operation of the pulse count discriminator which follows the mixer and also for the method of calibration to be described. In this method, the

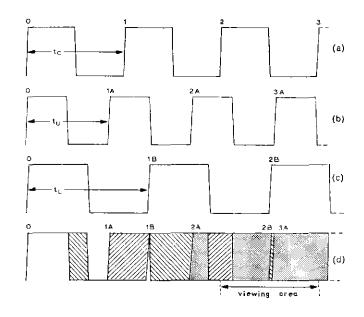


Fig. 1(a) Unmodulated carrier fc

(b) Upper deviation limit f_{σ}

(c) Lower deviation limit f_L

(d) Display for sine wave modulation just before coincidence of edges 2 and 3.
Full shading indicates overlapping areas.

i.f. waveform is displayed on an oscilloscope to show about three cycles, the oscilloscope being triggered from a positive-going edge. Without modulation the waveform appears as in Fig. 1(a): positive going edges are numbered consecutively and the edge '0' is that which triggers the oscilloscope. The frequency is f_c .

2.1 Calibration with square-wave modulation

Before proceeding to sine wave modulation the somewhat simpler results of applying a square wave are considered. The modulator output consists in the main of just two frequencies f_c and f_L , produced alternately as the square modulating waveform changes from one limit to the other. f_c is equal to the carrier plus deviation, and f_L to carrier minus deviation, i.e. $f_v = f_c + f_p$ and $f_L = f_c - f_p$, where f_p is the deviation and proportional to the peak amplitude of the modulating waveform. These two fre-

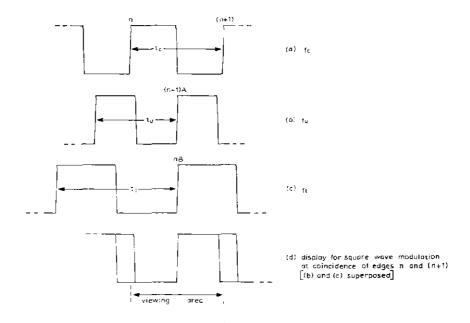


Fig. 2 Edge coincidence.

quencies are superimposed on the oscilloscope display but for clarity typical waveforms are shown separately in Figs. 1(b) and 1(c) with the edges suffixed A and B respectively. Thus as modulation is increased from zero, f_c is replaced by f_a and f_a which diverge in frequency. Deviation can be derived by measuring the time periods (t_c, t_c, t_a) of these waveforms, though with doubtful accuracy on some oscilloscopes, converting them to frequency and using the expression $f_p = f_c - f_a$. Rearranging this to

$$f_{D} = f_{\sigma} \left(1 - \frac{t_{\sigma}}{t_{L}} \right) \tag{1}$$

leads to an improved method because f_c is either known to some accuracy beforehand or can be satisfactorily measured when unmodulated, and the ratio t_c/t_c can be obtained from a graticule.

A still better method is to adjust deviation until edge coincidence is obtained at particular $f_c: f_L$ ratios, coincidence can be set with some precision because the edges are of constant rise time and superimpose exactly. $f_c: f_L$ ratios of (n + 1): n where n is an integer are easily set, for example in Fig. 1 edges 2A and 1B can be made coincident providing a 2:1 ratio, or 3A and 2B for a 3:2 ratio. Fig. 2 shows the general case of first coincidence when edges (n + 1)Aand nB are time coincident, the waveforms of Figs. 2(b) and 2(c) being superimposed in Fig. 2(d). In this condition $(n + 1)t_c = n.t_L$. Substituting

$$t_c = \frac{1}{f_c + f_p}$$
 and $t_L = \frac{1}{f_c - f_p}$ provides $f_p = \frac{f_c}{2n + 1}$

and deviation is obtained in terms of f_c the unmodulated i.f., which can be measured to any required degree of accuracy. The deviation meter can therefore be calibrated at a frequency which is an odd divisor of f_c from $f_c \div 3$ (when n = 1) to a practical lower limit caused by observational difficulties of about $f_c \div 41$. Coincidence always occurs midway between n and (n+1) in Fig. 2(a) so a useful procedure is to make one cycle fill the screen with edge n on the left and (n+1) on the right; modulation is then applied slowly to observe the first coincidence, which will occur at the centre of display as indicated in Fig. 2(d). It is important that the *first* coincidence should be observed: if edges representing differences of more than one cycle are brought into coincidence, the result will, of course, be falsified.

2.2 Calibration with sine wave modulation

If the modulating square wave is now replaced by a sine wave of the same peak amplitude the same peak deviation is produced so f_v and f_L are unchanged, but between these limits a whole range of frequencies is generated and Fig. 1(d) shows that such frequencies produce illuminated areas bounded by the f_v and f_L limits. These limits are very well defined and the three methods just described can still be used although there is a small error associated with edge coincidence. Sine modulation produces a more complex display than at first appears and the positive-going and negative-going edges in Fig. 1(d) representing f_v and f_L respectively do not maintain these frequencies as the display progresses to the right. Analysis of the display is not attempted here but it can be shown that errors are negligible for modulation indices greater than 10.

In a typical case where $f_p = 50$ kHz and $f_M = 400$ Hz, m = 125 and the error is negligible.

Fig. 1(d) shows the waveform just before edge coincidence for n=2. The area of interest—which is similar in appearance for any *n* integer—is indicated and by use of

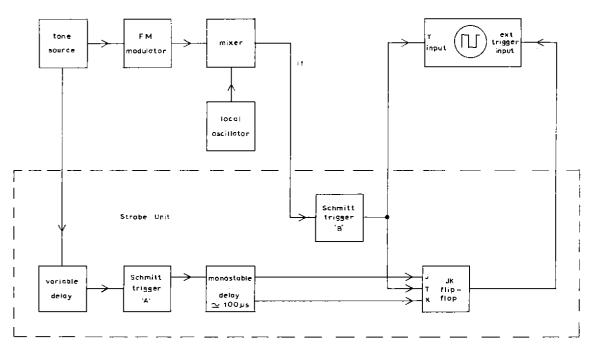


Fig. 3 Strobe method test arrangement.

X-expansion and X-shift this area should if possible fill the screen, using the unmodulated carrier as a guide, as suggested for square wave modulation. Deviation is adjusted for the minimum possible overlap between edges 2B and 3A and is seen as a thin bright line at the conjunction; deviation in this instance is then $f_o \div 5$. The use of a constant rise time waveform ensures that edges are presented parallel to one another, a waveform lacking this quality results in edge crossover.

Coincidence can also be obtained between negativegoing edges but if the waveform contains any degree of asymmetry these edges will not be placed exactly at times 0.5t, 1.5t etc. from the '0' edge and serious errors can arise.

Under sine modulation, deviation obtained from expression (1) is practicable for values between 33 per cent f_c and approximately 10 per cent f_c ; above 33 per cent the display becomes difficult to interpret and below 10 per cent, oscilloscope reading errors of 0.5 per cent will produce deviation errors greater than 5 per cent.

2.3 Calibration with a separate squaring circuit

Calibration of a frequency deviation meter by observation of its own constant rise-time waveform is both economic and convenient. However, if a suitable waveform is not available a separate limiter may be employed, and with this arrangement the technique becomes a useful alternative to the deviation meter. The modulating frequency used is not critical although for sine modulation a lower frequency produces the appearance of a more complete 'fill-in' of the illuminated areas.

Of the three methods described in Section 2.1, edge coincidence is by far the most accurate as the waveform is self-calibrating and requires no measurement, but for all of them observational difficulties prevent deviation larger than one-third i.f. from being measured and to overcome this limitation the strobe method may be used.

3. Strobe Method

The strobe unit enables any part of a f.m. wave to be extracted and displayed on an oscilloscope so that the ratio t_c/t_L can be measured and deviation obtained as before from expression (1), with the advantage that large peak deviations—approaching 100 per cent f_c —can be measured with sine or other repetitive waveforms. Fig. 3 shows the strobe unit schematic together with the complete test arrangement where it is seen that the strobe unit produces an oscilloscope trigger and a suitable display waveform. I.f. may be obtained from a deviation meter as before or direct from the mixer as shown, and the remaining input is from the tone source. The oscilloscope trigger mode is external.

The display consists of one or two cycles of i.f. similar in appearance to Fig. 1(a) strobed from a given position in the modulating cycle, their frequency depending on the deviation at that point. When the variable delay in the strobe is adjusted through the modulating time period, the displayed waveform slowly changes frequency between the limits f_{u} and f_{L} , either limit easily identifiable as a minimum or maximum waveform duration respectively. If the maximum duration t_{L} is placed against a horizontal scale and the modulation is then removed—while retaining a feed from the tone source to the strobe unit—the ratio t_c/t_L is measured and deviation calculated.

The strobe unit operates as follows. Schmitt trigger 'A' sets the monostable once per modulating cycle; this primes

the 'J' input of the flip-flop which then sets on the next i.f. edge after this from Schmitt trigger 'B'. This triggers the oscilloscope which displays the next few cycles of i.f. After 100μ s the monostable resets to its stable condition, the 'K' input becomes primed, and the flip-flop is reset by the next i.f. edge. This completes the cycle. The variable delay could enable the strobe to be set to any point in the f.m. wave but in practice the amount of delay provided need only be sufficient to identify f_L , say 60 degrees if properly centred over f_L . The monostable delay shown typically as 100μ s should extend over several cycles of i.f. at minimum deviation to ensure that the flip-flop is properly triggered while the upper limit is set by the maximum modulating frequency to be used.

It is probably obvious that, as the i.f. is not locked to a multiple of the tone, the oscilloscope trigger will jitter in time according to the delay between the monostable set time and the arrival of the next i.f. edge from Schmitt trigger 'B'; if over this period the deviation changes, the displayed waveform may show a slightly thickened edge after one i.f. cycle. However, the variable delay is normally set to view f_L which is a turning point in the modulating cycle, and here the deviation is virtually constant so that although the trigger does jitter the display is clean.

As stated in the previous section, the minimum practical deviation using the ratio method is about 10 per cent f_c due

to reading errors, but with the strobe method the maximum value now approaches 100 per cent f_c and reading errors assume less importance with large deviations. Again the modulating frequency plays no part in the measurement although with the low duty cycle display a higher frequency is desirable. The displayed waveform is square for ease of measurement only.

So far only the lower deviation has been measured; to measure upper deviation the expression

$$f_{\rm D} = f_{\rm c} \left(\frac{t_c}{t_{\rm p}} - 1 \right)$$

derived from (1) may be used by taking the ratio t_c/t_o after t_o has been strobed. This enables separate upper and lower measurements to be made in applications where the deviation is asymmetric.

4. Acknowledgment

The author wishes to thank the Director of Engineering of the British Broadcasting Corporation for permission to publish this article.

5. Reference

1. P. Broderick, F.M. Deviation Measurements, The Radio and Electronic Engineer, Vol. 35, No. 5, May 1968.

© The British Broadcasting Corporation 1969

Published by the British Broadcasting Corporation, 35 Marylebone High Street, London, W.1. Printed in England by The Broadwater Press Ltd, Welwyn Garden City, Herts. SBN 563 09315 3