
aking MS -D
Work
For You

N. KANTARIS & P.R.M. OLIVER

dERIS 1111151111811111111811111 MRS
WNW i MEM Mall SE all MR EV NI BE MDR Min a
oval Limy sae IN 1515 MP VII 55/ so ala lea 155 Rras glom see s
NV Hita 11181061 NE Mt IRO MIR OS Rid 111 MR IRO OM 101 Mt RIO I
falai& lima -al as ME ass mor imam au Mt ONO MIRO till' iTer -

I

Making MS-DOS
Work For You

iii

ALSO AVAILABLE

By both authors:

BP270 A Concise Introduction to Symphony
BP294 A Concise Introduction to Microsoft Works
BP302 A Concise User's Guide to Lotus 1-2-3 Release 3.1
BP306 A Concise Introduction to Ami Pro 3
BP336 A Concise User's Guide to Lotus 1-2-3 Release 3.4
BP338 A Concise Introduction to Word for Windows
BP339 A Concise Introduction to WordPerfect 5.2 for Windows
BP341 MS-DOS 6 Explained
BP343 A Concise Introduction to Microsoft Works for Windows

By Noel Kantaris:

BP232 A Concise Introduction to MS-DOS
BP243 BBC-BASIC86 on PCs. Bk 1 - Language
BP244 BBC-BASIC86 on PCs. Bk 2 - Graphics and Disc Files
BP250 Programming in FORTRAN 77
BP258 Learning to Program in C
BP259 A Concise Introduction to UNIX
BP260 A Concise Introduction to OS/2
BP264 A Concise Advanced User's Guide to MS-DOS
BP274 A Concise Introduction to SuperCalc5
BP279 A Concise Introduction to Excel
BP283 A Concise Introduction to SmartWare II
BP284 Programming in QuickBASIC
BP288 A Concise Introduction to Windows 3.0
BP314 A Concise Introduction to Quattro Pro 3.0
BP318 A Concise User's Guide to MS-DOS 5
BP325 A Concise User's Guide to Windows 3.1
BP330 A Concise User's Guide to Lotus 1-2-3 Release 2.4

Making MS-DOS
Work For You

by

N. Kantaris
and

P.R.M. Oliver

BERNARD BABANI (publishing) LTD.
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W6 7NF

ENGLAND

PLEASE NOTE

Although every care has been taken with the production of this
book to ensure that any projects, designs, modifications and/or
programs, etc., contained herewith, operate in a correct and safe
manner and also that any components specified are normally
available in Great Britain, the Publishers and Author(s) do not
accept responsibility in any way for the failure (including fault in
design) of any project, design, modification or program to work
correctly or to cause damage to any equipment that it may be
connected to or used in conjunction with, or in respect of any
other damage or injury that may be so caused, nor do the
Publishers accept responsibility in any way for the failure to
obtain specified components.

Notice is also given that if equipment that is still under warranty
is modified in any way or used or connected with home -built
equipment then that warranty may be void.

© 1992 BERNARD BABANI (publishing) LTD

First Published - November 1992
Reprinted - August 1993

British Library Cataloguing in Publication Data

Kantaris, Noel
Making MS-DOS Work for You
I. Title II. Oliver, Phil
005.4

ISBN 0 85934 319 7

Printed and Bound in Great Britain by Cox & Wyman Lid, Reading

ABOUT THIS BOOK

Making MS-DOS Work for You has been written for those who
already have some knowledge of MS/PC-DOS commands, but
who would like to be able to write customised batch files, create
specialist programs with the use of the debug program and, in
general, extend their abilities towards designing and setting up
their own professional looking menus so that they or others could
run any program application or package easily.

The book was not designed to teach you how to use DOS
commands in a routine manner. If you need to know about this
aspect of DOS, then may we suggest that you also refer to either
the book A Concise Introduction to MS-DOS (BP232) if you are a
pre -DOS 5 user, or A Concise User's Guide to MS-DOS 5
(BP318) if you use DOS 5, or MS-DOS 6 Explained (BP341) if
you use DOS 6. These books are also published by the
BERNARD BABANI (publishing) LTD and one of these might be
more appropriate for you at this stage with its lower entry point
into DOS.

This book was written with the busy person in mind. It is not
necessary to read hundreds of pages to find out all there is to
know about a subject, when a few pages can do the same thing
quite adequately! With the help of this book, it is hoped that you
will be able to get the most out of your computer in terms of
efficiency, productivity and enjoyment, and that you will be able
to do it in the shortest, most effective and informative way.

If you would like to purchase a floppy disc containing all the programs which
appear in this, or any other listed book(s) by the same author(s), then fill-in the
form at the back of the book and send it to P. Oliver at the stipulated address.

Jt

ABOUT THE AUTHORS

Noel Kantaris graduated in Electrical Engineering at Bristol
University and after spending three years in the Electronics
Industry in London, took up a Tutorship in Physics at the
University of Queensland. Research interests in Ionospheric
Physics, led to the degrees of M.E. in Electronics and Ph.D. in
Physics. On return to the UK, he took up a Post -Doctoral
Research Fellowship in Radio Physics at the University of
Leicester, and in 1973 a Senior Lectureship in Engineering at
The Camborne School of Mines, Cornwall, where since 1978 he
has also assumed the responsibility of Head of Computing.

Phil Oliver graduated in Mining Engineering at Camborne
School of Mines in 1967 and since then has specialised in most
aspects of surface mining technology, with a particular emphasis
on computer related techniques. He has worked in Guyana,
Canada, several Middle Eastern countries, South Africa and the
United Kingdom, on such diverse projects as: The planning and
management of bauxite, iron, gold and coal mines; rock
excavation contracting in the U.K.; international mining
equipment sales and technical back up; international mine
consulting for a major mining house in South Africa. In 1988 he
took up a Senior Lectureship at Camborne School of Mines in
Surface Mining and Management.

tx

X

ACKNOWLEDGEMENTS

We would like to thank colleagues at the Camborne School of
Mines for the helpful tips and suggestions which assisted us in
the writing of this book.

-

TRADEMARKS

Epson is a registered trademark of Epson Corporation

HP LaserJet is a registered trademark of Hewlett Packard
Corporation

IBM is registered trademark of International Business Machines
Corporation

Intel is a registered trademark of Intel Corporation

Lotus is a registered trademark of Lotus Development

MS-DOS, QBasic and Windows are registered trademarks of
Microsoft Corporation

Norton Editor is a registered trademark of Symantec
Corporation

Xi's/

CONTENTS

1. INTRODUCTION 1

The ASCII Code of Character Conversion 2
ASCII Conversion Codes 4

2. THE MS-DOS EDITOR 7

The Editor Menu Bar 8
Menu Bar Options 9
Dialogue Boxes 11

Moving about the Screen 12
Creating & Saving a Text File 13

Editing Text 13
Selecting Text 14
Moving Text 14
Clearing Text 15
Copying Text 15
Finding Text 16
Saving a Document 16
Opening a Document 17
Printing a Document 18

Exiting the Editor 18

3. THE EDLIN LINE EDITOR 19
The Insert Command on a New File 20
The List Command 20
The Edit Mode 21

The Insert Command on an Existing File 21

The Delete Command 22
The Move & Copy Commands 22
The Search Command 22
The Search & Replace Command 23
The Transfer Command 24
Exiting Edlin 24

4. BATCH FILES 25
Simple Batch Files 25
Special Batch File Commands 27

Environment Variables 29
The MORE Command 31

5. THE ANSI.SYS COMMANDS 33
Overview of ANSI.SYS Commands 33
The ANSI.SYS Console Commands 34

Cursor Control Commands 34
Erase Display Commands 36
Attribute and Mode Commands 36
Keyboard Control Commands 38
Extended Key Codes 39
Using Edit to Enter ESCape Commands 40
Using Edlin to Enter ESCape Commands 41
Changing Screen Colours 42

6. DEVELOPING A MENU SYSTEM 43
Designing the Main Menu Screen 43
Creating Interactive Batch Files 45

Creating a DEBUG Script File 45
Controlling the Cursor 46
The Menu Batch File 48
Controlling your Printer 51

An Epson Printer Menu 52
An HP (PCL) Printer Menu 55
A Laser Printer Batch File 57

Sample Utilities Menu 59
Formatting Floppy Discs 62
Cleaning a Floppy disc 62
A Simple Screensave Utility 64
Parking your Hard Disc 64

Implementing your Own Menu System 64
Automating your Menu System 64

7. OTHER SYSTEM BATCH FILES 65
File Management 65
Moving Files 66
File Protection 67
Returning to the Current Directory 68
Extending the Current Path 69
Increasing the Environment Space 70
Simplifying the BACKUP Process 70
A Disc Cataloguing System 73
Turning Off the NUMLOCK Key 74

NJ'

APPENDIX A - THE DEBUG PROGRAM 75
The Dump Command 76
The Fill Command 78
The Load Command 78
The Name Command 79
The Enter Command 80
The Write Command 80
Registers 81

The Register Command 84
Appending to a File 85
The Assemble Command 86
The Go Command 88
The Unassemble Command 88
The Quit Command 88

APPENDIX B - SYSTEM CONFIGURATION 89
The Config.sys File 89

Configuration Commands 90
The Autoexec.bat File 94

APPENDIX C - PRINTER COMMANDS 97
List of Common Printer Control Commands 97
List of Common Printer Typeface Commands 98
List of Common Printer Format Commands 99

INDEX 101

COMPANION DISC OFFER 111

1. INTRODUCTION

When you switch on your IBM compatible PC it will first perform
some memory test procedures, then, depending on your set-up,
it may print some lines of proprietary text on the screen, and
finally will leave you with a basic DOS prompt, such as:

C:\>
All of this will almost certainly be in a boring white text on a
black background. This is neither very inspiring nor very user
friendly.

On the other hand most commercial software is designed with
'user-friendly' screens incorporating such attributes as reverse
video and colour, and with information appearing in the right
place on the screen. MS-DOS can also be made to do just this,
provided you know how. To this end, you will be shown how to
write specialized batch files with the use of the Edit screen
editor or the Edlin line editor, and how to design your own
screen menus like the one below. You could, of course, buy a
commercial program that could do this, but then it would cost
you more, you would not learn anything new, nor have
anywhere near as much fun.

PERSONAL SYSTEM MENU

1 MICROSOFT WINDOWS
2 WORDPERFECT 5.1
3 LOTUS 1-2-3 v3.1
4 JETSETTER
S DATABASE PROGRAMS
6 PROGRAMMING LANGUAGES
7 OUCOM II UTILITY PROGRAMS
8 GAMES 8 NAVIGATION
9 DOS COMMAND LINE

Select from I - 9 above

To return from DOS type MENU

Which editor you use to write these specialized files will depend
largely on which version of DOS you are using, with pre -DOS 5

1

users being restricted to the use of Edlin. However, for the
sake of completeness, both these editors will be fully explained;
Edit in Chapter 2 and Edlin in Chapter 3. There are also many
other commercial text editors available, such as the Norton
Editor. If you have one of these we will assume that you are
familiar with its use. Text editors can be used to write simple
batch files to allow you to easily run an application, but creating
a professional looking batch file requires you to write some
specialised, but small, programs in assembler. For those who
would like to know more about how this is done, the Debug
program is explained in Appendix A.

However, provided you can handle one of the editors, you will
be shown how to extend your abilities towards designing and
setting up your own professional looking menu screens so that
you, or others, can choose and run program applications or
packages easily on your system, without having to become an
expert assembler programmer.

Although the internal DOS commands provide control over
the disc drives and, to a lesser extent, control over the
keyboard and display screen, the appearance of the screen can
be controlled far more effectively with the ANSI.SYS driver. This
is an external program supplied with your MS-DOS operating
system. Every device that is connected to your computer is
controlled by such an external "driver" program, usually having
the filename extension SYS.

However, before any ANSI.SYS command can be used, you
must make sure that the path is accessible from the root
directory of your system's disc and that the extra line
DEVICE=ANSI.SYS is included in your config.sys file.

If you are not absolutely sure what is meant by the contents
of the last paragraph, then refer to Appendix B which discusses
one way of configuring your system.

The ASCII Code of Character Conversion
The ASCII code (which stands for American Standard Code for
Information Interchange) is the accepted standard for
representing characters in computers. It defines codes 0 to 127;
the first 32 (codes 0 to 31) as control characters, which define
some action such as line -feed or form -feed, and the remaining
(codes 32 to 127) as standard characters which normally
appear on a computer keyboard. Since each byte can represent

2

one of 256 possible characters, there are another 128 codes
available (codes 128 to 255) for which, however, there is no
formal standard laid down. These codes are used by IBM and
IBM compatibles and are known as the IBM extended character
set.

The IBM extended character set includes four main groups:

a) Accented international characters (codes 128 to 168);
b) Line drawing characters (codes 169 to 223);
c) Greek letters (codes 224 to 239), and
d) Mathematical symbols (codes 240 to 254).

All the codes are shown in the ASCII Conversion Codes table
which appears in the following pages. The table shows all 256
characters and tabulates their values in both decimal (base 10)
and hexadecimal (base 16) representation. All, but one, ASCII
codes can be entered into the computer by holding the key
marked <Alt> down and typing the decimal character code on
the numeric keypad (not the numbers appearing on the first row
of keys of the normal keyboard. On releasing the <Alt> key, the
corresponding character appears on the screen. Thus, typing

C: \ > Alt+236

causes the symbol for infinity (00) to appear on the screen.
The one character code that can not be entered with this

method is the 'null' character (code 0). To enter this character,
which will appear as A@ on your screen, press F7 while at the
DOS prompt, or while using Edlin or the Debug program (the
last one of which will be discussed in some detail later). To
enter the same character while using Edit, first press the Ctrl+P
key combination, then press <Esc> followed by the <@> key.

The first 32 character codes (0 to 31) can also be entered
with the <Ctrl> key, as indicated in the ASCII Conversion Codes
table. Using this method, however, causes DOS to echo the
caret (A) character followed by the corresponding letter on the
screen. Edlin, like DOS, allows you to enter the control
characters with either the <Ctrl> key or the <Alt> key, but
always echoes a caret followed by the appropriate letter.

3

w
h
o
o
M
.
M
U
O
W
W

.
.
.
.
.

N
I
M
V
O
,
O
N
W
M
O
.

N
N
N
I
N
N
I
N
N
I
N
M
M

edge246.144g
4.)

t.)

gggggggggg

0.-iN
m

.w
invoN

oom
401V

O
N

W
0,inim

voC
onco040100W

W
42W

W
W

43W
W

W
W

,D
,D

W
W

W
W

W
,N

N
N

N
N

N
N

N
N

I...N
hhhhN

W
N
C
O
M
O
M
N
M
V
O
,
C
.
N
W
M
O
M
N
M
V
O
W
N
W
M
O
M
N
M
V
O
W
h

0
,
0
1
M
0
,
0
0
0
0
0
0
0
0
0
0

.
.
.
.
.

M
M
M
,
I
M
N
C
N
I
N
I
N
N
N
I
N
M

M
M
M
.
-
I
M
M
M
M
M
.
M
M

.
.
.
.
.
.
.
.
.
.

M
M

.
.
.
.
.

M
A
U
V
W
4
4
0
,
4
.
.
4
,
,
X
,
A
8
C
O
A
V
W
W
4
J
0
>
3
X
>
e
w
.
.
.
.
-
,

4
-
4

C
O

U
0W

W
0.-iN

m
w

o
0.-tcsim

vul,.0room
4C

O
U

O
W

W
0.-itN

enyul,ohcom
4M

V
041:1,

0
0
0
0
0

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

0
0
0
0
1
,
1
0
0
0
0
0
0
O
1
1
1
0
0
0

>
44U

N
O

M
U

4
IIV

V
V

V
M

C
W

.O
Z

Z
O

O
0=

05.=

g
g
g
g
g
g
g
6
g
g
g

v
o
w
h
o
o
m
o
,
4
1
,
1
m
v
o
,
o
h
m
m
o
,
o
N
m
v
o
w
N
w
m
o
.
-
I
r
q
m
v
u
l

W
W
w
w
W
W
h
r
-
h
h
n
r
-
N
N
N
N
W
W
W
w
W
w
w
w
w
c
o
m
m
o
m
o
m

w
oC

C
O

U
0W

W
0=

1.4,1=
4Z

Z
O

N
O

C
K

L
O

FD
>

5X
O

.N
.

0
.
e
4
m
v
a
l
w
s
c
o
c
n
.
L

0
.
-
o
r
s
a
r
n
v
o
t
o
h
c
o
M
4
M
U
M
W
N
o
.
.
4
c
4
m
v
i
n
w
N
c
o
m
m
C
M
U
0
W
W

0
0
0
0
0
0
0
0
0
0
0

N
N
N
I
N
N
N
r
s
I
N
N
(
V
N
N
N
N
N
N
M
M
M
M
M
M
M
I
M
M
I
I
M
M
M
M
M
M

O
M
N
M
V
O
,
C
,
N
W
O
,
0

N
M
V
O
W
F
W
M
O
M
N
M
V
O
W
N
W
M
O
M
N
M
W
O
W
N
W
C
A
O
M
N
M

M

M
M
M
M
M
M
M
M

.
.
.
.
.
.
.
.
.
.

t
r
o
O
M
O
V
I
O
V
1
0
0
0
W
W
W
W

5
!
t
Z
1
5
-
4
.
V
.
a
"
.
.
1

c
in w

O
.

m
4M

U
O

N
4.0=

1.4h
okoo

+
4-4M

4
1
1 lonm

m
 .v II nn.

ggO
ggO

gggO
6

0

U
C

0L11
-JC

O

1-

0qgQ

0

,
o
r
w
c
h
4
M
V
O
W
W
o
.
,
N
m
v
o
k
o
h
c
o
o
)
.
5
=
0
.
0
4
=
W
o
,
N
m
v
o
W
N
c
o
m
4
=
U
p
W
4
.

0
0
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
4
.
W
W
4
.
4
,
W
W
W
W
W
N
W
W
W
N
D
.

V
1
1
1
,
A
I
N
C
O
C
T
O
.
N
M
V
t
i
l
l
O
N
W
O
,
O
.
N
M
V
O
W
N
W
O
N
O
.
N
M
V
W
1
W
N
W
M
O
.
C
V
M
V
N

.
.
.
.
.
.
,
I
N
I
N
N
N
N
N
N
N
N
M
M
M
M
M
M
M
M
M
M

V
V
V
V
V
V
V
V
V
V

0
0
0
0
V
I
I
A

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N
N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

ti=
p4}-,

c/ co L. C
 w

 0 1,-.43.0a,o8ew
c

i
n

al ni
.

c n

U
IC

IW
W

O
.nrn..rul,orcoG

,<
M

U
M

W
W

o.rnm
,u1,or-W

aN
.4M

U
C

IW
W

o.,1.,o
4444.04=

=
=

=
=

=
=

=
M

M
P

IM
M

O
IM

M
0000000000000000000000

.
N
.
.
4
0
,
0
r
.
0
0
0
,
0
.
N
M
V
O
,
D
N
W
M
O
.
N
,
V
O
,
O
N
W
M
O
.
N
M
V
O
l
O
N
W
M
O
.
N
M

N
N
N
N
N
N
N
N
N
W
W
W
W
W
W
W
W
W
W
M
M
O
M
O
M
,
M
M
0
0
0
0
0
0
0
0
0
0
.
.
.
.

V
V
V

V
V
V
V
V
V
V

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
N
N
N
N
N
N
N
N
N
N
N
N
N
N

- -

tr-71
I

I
1=

11
II 47 -II

IH
 1=

1
II I

o
.
N
,
v
o
,
o
r
o
o
m
<
M
U
C
I
W
W
0
.
,
N
m
e
o
w
,
h
c
o
m
4
0
0
0
W
W
0
-
4
N
m
v
m
.
m
m
4

w
w
w
w
w
=
c
o
m
m
w
w
w
w
w
w
c
o
m
m
m
c
A
o
m
m
m
m
m
m
m
m
m
m
o
4
4
4
4
4
4
4
4
4
4
4

W
M
O
.
N
r
n
f
u
l
,
O
N
W
C
A
O
.
N
.
V
6
f
,
D
N
W
O
,
O
.
C
.
4
,
,
V
O
W
N
W
M
O
.
N
o
,
V
O
W
N
W
M
O

,
t
s
_
N
.
M
2
M
2
,
M
M
M
M

V
V
V
V
V
V
V
V
V
V

0
0
0
L
1
1
1
1
1
0
,
A
N
O
U
I
W
Y
,
W
W
O
k
O
W
W
W

W

1
.
.

V
V
V

.
.
.
.
.

N

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

1
1
:
7
,
6
,
4
4
4
.
0
D
4
:
0
4
1
:
0
4
.
4
4
4
8
4
,
0
:
0
,
0
0
,
7
4
5
,
*
=
4
.
.
w
*
A
%
,
4
,
4
=
d
o
l
.
Q
L

I,

2. THE MS-DOS EDITOR

MS-DOS provides you with a full screen editor, called Edit, with
which you can create special ASCII files to customise your
system. These are text files which, when sent to the screen or
printer, are interpreted as text, unlike the .COM or .EXE files
which are binary files.

Edit can also be used to create the source code of various
programming languages, such as Fortran and C. In such cases,
do remember to give the files the appropriate extension, which
for the two languages mentioned, are .for and .c, respectively.

To invoke Edit, the MS-DOS system start-up disc or a disc
that contains it, must be accessible and the full path of the file
you want to create or edit must be specified. Thus, typing the
corn mand:

C:\>edit test.txt

expects to find both Edit and the fictitious file test.txt on the
disc in the logged drive (in this case C:), while typing

C:\>edit A:test.txt

expects to find Edit on the C: drive, and the file test.txt on the
disc in the A: drive.

If the file does not exist on the specified disc or directory, then
Edit displays a blank screen, as follows:

File Edit Search Options

7

The Edit screen is subdivided into several areas which have
the following function:

Area

Menu bar

Function

allows you to choose from several main
menu options

Title bar displays the name of the current file. If a
new file, it displays the word <Untitled>

Status bar displays the current file status and in-
formation regarding the present process

Scroll bar allows you to scroll the screen with the
use of the mouse.

The area bounded by the Title bar and the two Scroll bars is
known as the view window. It is in this area that you enter the
contents of a new file, or load and view the contents of an old
file.

The Editor Menu Bar
Each menu bar option on the editor, has associated with it a
pull -down sub -menu. To activate the menu bar, either press the
<Alt> key, which causes the first item on the menu bar (in this
case Eile) to be highlighted, then use the right and left arrow
keys to highlight any of the items of the menu bar, or use the
mouse to point to an item. Pressing either the <Enter> key, or
the left mouse button, reveals the pull -down sub -menu of the
highlighted menu item.

The pull -down sub -menus can also be activated directly by
pressing the <Alt> key followed by the first letter of the required
menu option. Thus pressing Alt+O, causes the Options sub -
menu to be displayed. Use the up and down arrow keys to
move the highlighted bar up and down within a sub -menu, or
the right and left arrow keys to move along the options of the
menu bar. Pressing the <Enter> key selects the highlighted
option, while pressing the <Esc> key closes the menu system.

8

The Menu Bar Options:
Each item of the menu bar offers the options described below.
However, dimmed command names in the Edit sub -menu
indicate that these commands are unavailable at this time; you
might need to select some text before you can use them.

The information given below can be displayed by highlighting
the required sub -menu option and pressing the Fl help key.
This information is listed here for easier reference.

The File Sub -Menu
Selecting File causes the following pull -down sub -menu to be
displayed:

New: Use to create a
new document file.

Open: Use to open an
existing document so
you can edit or print it.

Save: Use to save the
current version of your
document.

Save As: Use to save

File

Neu
Open...
Save
Save As.. .

Print...

Exit

your document as a file.
To preserve the previous version of your
rename it in the File Name dialogue box.

Print: Use to print all or part of a document.

Exit: Use to quit the MS-DOS Editor environment.

The Edit Sub -Menu
Selecting Edit causes the following pull -down sub -menu to
displayed:

Cut: Use to remove
selected text and put it
on the Clipboard, a
temporary holding area.

Copy: Use to copy
selected text to the
Clipboard. The original text remains unchanged.

document,

be

Edit

Cut Shift+Del
Copy
Paste
Clear

Ctrl+Ins
Shift+Ins

Del

9

Paste: Use to insert a block of text from the Clipboard at
any point in a document.

Clear: Use to delete selected text without copying it to
the Clipboard, whose contents remain unchanged.

The Search Sub -Menu
Selecting Search causes the following pull -down sub -menu to
be displayed:

Find: Use to search for a
text string. You can
request a case -sensitive
match or a whole -word
match.

Search

Find...
Repeat Last Find F3

Change...

Repeat Last Find: Use to repeat the search performed
by the most recent Find or Change command.

Change: Use to replace one text string with another.

The Options Sub -Menu:
Selecting Options causes the following pull -down sub -menu
be displayed:

Display: Use to control
screen colour, scroll bars
in windows, and the
number of spaces <Tab>
advances the cursor.

to

Options

Display...
Help Path...

Help Path: Use to change the directories that the
MS-DOS Editor searches to find the Help file EDIT.HLP

Help Menu
Selecting Help causes the following pull -down sub -menu to be
displayed:

Getting Started: Use to
find out about using
MS-DOS Editor menus,
commands, and dialogue
boxes. Also to get Help
on using the Editor.

10

Help

Getting Started
Keyboard

About...

Keyboard: Use to find out about keystrokes for
performing tasks on the MS-DOS Editor, and the
WordStar keystrokes that can be used with the Editor.

About: Use to display the version number and copyright
information for the MS-DOS Editor.

Dialogue Boxes:
Three periods after a sub -menu option, means that a dialogue
box will open when the option is selected. A dialogue box is
used for the insertion of additional information, such as the
name of a file to be opened, or to be acted upon in some way.

To understand dialogue boxes, type the word 'hi' in the edit
screen, then press AIt+S, and select the Change option from
the revealed sub -menu of Search. The dialogue box shown
below will now appear on the screen.

Change

Find What: hi

Change To: hello

C l Match Upper/Louercase C] Whole Word

2 Find and Uerify I < Change All > < Cancel > < Help >

The <Tab> key can be used to move the cursor from one field
to another within a dialogue box, while the <Enter> key is only
used to indicate that the options within the various fields within
the dialogue box are specified correctly. Every dialogue box
contains one field which is enclosed in emboldened angle -
brackets (<Find and Verify>, in the above example). This field
indicates the action that Edit will take if the <Enter> key is
pressed (in our example, the word 'hi' will be changed to 'hello',
if this is what we choose to type against the 'Find What' and
'Change To' fields.

Pressing the <Esc> key aborts the menu option and returns
you to the editor.

11

Moving About the Screen:
The cursor can be moved to any part of the text being typed in
the view window, and corrections can be made, with the use of
the key strokes described below.

Key Function

Left Arrow moves cursor to the left one character
Right Arrow moves cursor to the right one character
Ctrl+Left Arrow moves cursor to the beginning of the

previous word on the current line
Ctrl+Right Arrow moves cursor to the beginning of the next

word on the current line
Home moves cursor to the first column of the

current line
End move cursor to the end of the last word

on the current line
Up Arrow moves cursor up one line
Down Arrow moves cursor down one line
Ctrl+Home moves cursor to the first line of the cur-

rent screen
Ctrl+End moves cursor to the last line

rent screen
PgUp moves cursor to the previous screen
PgDn moves cursor to the next screen
Ctrl+PgUp moves cursor left one screen
Ctrl+PgDn moves cursor right one screen
Ins toggles the Insert mode from ON (its de-

fault position) to OFF and back again
Enter moves cursor to the beginning of the next

line, provided the insert mode is in the
ON position

Ctrl+Y deletes the line at the current cursor posi-
tion

Ctrl+N inserts a blank line at the current cursor
position

Shift+Arrows marks block areas on the screen to be
used with the sub -menu of the Edit op-
tion, namely Gut, Copy, Past, and Clear.

When areas of text are marked, with either the use of the
Shift+Arrows or by clicking and dragging the mouse, Edit

12

keeps the contents of the blocked (highlighted) area of text in a
temporary storage area known as the 'clipboard' from which it
can be retrieved later when the Cut, Copy, and Paste options
are used. The Clipboard stores only one block of information at
a time. If you attempt to store a second block of information, it
simply overrides the previously stored block.

If you are not using a mouse, you might want to clear the
scroll bars from the screen, to give you more room. This can be
done by pressing Alt+O, selecting the Display option and
pressing the <Tab> key until the cursor is positioned in the
'Scroll Bars' field. Pressing the spacebar toggles the option into
the off position by clearing the letter X from within the square
brackets.

If you are using a mouse scrolling text in the view window is
easy. Place the mouse pointer on the top, bottom, left or right of
the scroll bars and click the left mouse button to scroll upwards,
downwards, to the left or to the right, respectively.

There are a lot more commands associated with Edit, but
you'll find that the ones given above are sufficient for almost all
your needs.

Creating & Saving a Text File
As an example, type the following lines in Edit's view window:

File Edit Search Options Help
TEST, TXT

First line of text
Second line of text
Third line of text
Fourth line of text

MS-DOS11111.11111111.111111111111111111.1111111111111M1ditor a1=Melp> Press ALT to activate menus

Editing Text:
To edit any part of the document, use the up or down arrow
keys to place the cursor at the beginning of the line you want to
edit, then use the right or left arrow keys to place the cursor at
the required position where you want to begin editing.

13

If you have a mouse, simply point to the place you want to edit
and click the left mouse button to place the cursor at the
position occupied by the mouse pointer.

Use one of the above techniques to change the second line of
our document to

Second line of text, edited

Selecting Text:
To select text, place the cursor at the required starting position,
and while holding down the <Shift> key, press the right or left
arrow keys to highlight as much of the text on that line as you
like. With the mouse, place the mouse pointer at the required
starting position and while holding down the left mouse button,
move the mouse horizontally to the right or left to highlight the
required text on that line.

If you try to select text which runs to more than one line, the
whole line (first and subsequent) will be selected. Thus, you can
either select text from part of a line, or you select text from
whole lines.

As an example, select the words ' of text' (including the
leading space) from the second line, as shown below:

File Edit Search Options Help
TEST.TXT

First line of text
Second line
Third line of text
Fourth line of text

of text , edited

MS-DOS Editor <F1=Help> Press ALT to activate menus

Moving Text:
Having selected the part of text you want to move, use the Edit,
Cut command, then place the cursor at the required point
where you would like to move the text to, and use the Edit,
Paste command.

As an example, select the words ' of text' (including the
leading space) from the second line, then use the Edit, Cut,

14

followed by the Edit, Paste commands, to move the selected
text to the end of the fourth line. The result is shown below:

File Edit Search Options Help
TEST.TXT

First line of text
Second line, edited
Third line of text
Fourth line of text of text

1
MS-DOS Editor <F1=Help> Press ALT to activate menus

Clearing Text:
To remove text from a document without changing the contents
of the Clipboard, highlight the unwanted text, then use the Edit,
Clear command.

Use this command to remove from the fourth line both
repetitions of the words 'of text', then, to prove that the contents
of the Clipboard have not changed, use the Edit, Paste
command to restore the fourth line to its original form.

In fact, you can paste the contents of the Clipboard to any
part of a document, as many times as you like, because pasting
does not empty the Clipboard.

Copying Text:
To copy text, highlight the required text, then use the Edit,
Copy command.

Use this command to copy the whole of the second line to the
Clipboard, then use the Edit, Paste command, to paste a copy
of it on to the fifth line of the document. Next, change the words
'Second' to 'Fifth' and 'edited' to 'added', as shown.

File Edit Search Options Help
TEST.TXT

First line of text
Second line of text, edited
Third line of text
Fourth line of text
Fifth line of text, added

g
MS-DOS Editor (F1=Help> Press ALT to activate menus

15

You will have to use the key to delete the unwanted
words as the editor is normally in 'insert' mode and when typing
text it inserts it at the cursor position. To toggle the edit mode
from 'insert' to 'overtype', press the <Ins> key once.

Finding Text:
To find a specific word or part of a word, use the Search, Find
command which causes the following dialogue box to appear
on your screen:

MEM= Search Options Help

TEST.TXT
First line of text
Second line of text, edited
Third line of text
Fourth line of text
Fifth line of text, added

Find What:

Find

Fi

[] Match Upper/Louercase [] Whole Word

El 0K0 < Cancel > < Help >

FI=Help Enter=Execute Esc=Cancel Sals-lamt Field Arrou=Next Item

Note that the word nearest to the cursor is offered in the 'Find
What' field as a default. In the above example, if the cursor is at
the beginning of the document, the default word will be 'First'.

As an example, to find all the words that begin with the letters
'Fi', after typing these in the 'Find What' field, press the <OK>
button. Edit highlights the first word containing these letters,
and to find the next occurrence you will have to use the Search,
Repeat Last Find command.

Saving a Document:
To save a document that you have already named, use the
File, Save command. To save an unnamed document, or to
save it under a different name, use the File, Save As
command.

16

Selecting this last command, causes the following dialogue box
to appear on your screen:

File Edit Search Options Help
TEST. TXT

First line of text
Second line of tex
Third line of text
Fourth line of tex
Fifth line of text

File Mane:

C:\

Saue As

TEHP's

Dirs/Drives

TEMP

TURBOC
UTILS
UNDOUS
(-A-I

[-B-]

[-CA

OK < Cancel > < Help >

Fl.Helm Enter=Execute Esc.Cancel Tab=Mixt Field m.Mext Item

Note that you can save a document to any subdirectory or drive
by selecting appropriately from the Dirs/Drives list within the
dialogue box.

Opening a Document:
Once a document has been saved to a file on disc, you can
open it by using the File, Open command which causes the
dialogue box shown on the next page to appear on your screen.

Again, you can select any of the .txt files (which is the default
file extension) from the logged drive and subdirectory, or indeed
change the extension to, say, .bat if you want to work with
batch files such as the autoexec.bat file.

Also note that you can change the logged directory or drive
by selecting appropriately from the Dirs/Drives list within the
dialogue box.

17

. File Edit Search Options Help

TE'r.TXT

Open

File Name: x.TXT

A:

Files Dirs/Drives

TEST.TXT

- IMMIMINVININNINSUISIONSON-

I -A-1

(-B-]

[-C-]

0 OK 1 < Cancel > < Help >

F1=Help Enter=Execute Esc=Cancel Tab=Hext Field Arrou=Next Item

Printing a Document:
To print a document, use the File, Print command which
causes the 'Print' dialogue box to appears on your screen

Note that you can choose to print the complete document
(which is the default setting) in the dialogue box, or a
pre -selected part of the document. If you are printing the whole
document, simply press the <OK> button, but if you are printing
a selected part of the document (which must have been
selected before initiating the File, Print command), then choose
the 'Selected Text Only' option from the dialogue box.

The Print command works only if you have a printer
connected to or redirected through your parallel printer port
(LPT1).

Exiting the Editor
To end the current session and exit Edit, select the File menu
and choose the Exit option from the revealed sub -menu.

If you were working with a new file or a file that had been
changed but not saved, Edit will prompt you to save it before
exiting.

18

3. THE EDLIN LINE EDITOR

MS-DOS provides you with a simple line editor, called Edlin,
and it is worth becoming familiar with its use. In general, Edlin
allows the creation and editing of ASCII files. These are text
files which when sent to the screen or printer are interpreted as
text, unlike the .COM or .EXE files which are binary.

Edlin can also be used to create the source code of various
programming languages, such as Fortran and C. In such cases,
remember to give the file the appropriate extension, which for
the two languages mentioned, are .for and .c, respectively.
However, if you intend to write large programs which might
require extensive editing, you might be better off using a full
screen editor or your word processor, provided it can save files
in ASCII format.

To invoke Edlin, the MS-DOS System disc or a disc that
contains it must be in one drive, and the file you want to create
or edit must be specified. Thus, typing the command:

C:\>Edlin test.txt

expects to find both Edlin and the fictitious file test.txt on the
disc in the logged drive (in this case C:), while typing

C:\>Edlin A:test.txt

expects to find Edlin on the disc in the logged drive and the file
test.txt on the disc in the A: drive.

If the file does not exist on the specified disc, then Edlin
responds with

New File

and waits for further commands, while if the file already exists,
then Edlin loads the file into RAM and responds with

End of input file
*

Note the `*1 prompt which is characteristic of Edlin.
Let us now create a text file, called test.txt, which we will use

to demonstrate the power of Edlin. To start, type at the
MS-DOS prompt

19

C:\>Edlin test.txt

which should cause Edlin to respond with

New File
*

if that file does not exist on your disc. If it does exist and you do
not want to spoil its contents, then type q (for quit) and press
the <Enter> key.

The Insert Command on a New File
To insert lines of text, use the command i (for insert) at the
prompt. In the case of a new file, as no lines of text exist in the
file, type 1i and then type in the short text given below.

*1i
1:*first line of text
2:*second line of text
3:*^C

*

After typing 1i at the prompt, Edlin responds by giving a new
line number (in this case 1:) with an asterisk after it to indicate
that this is the current line. At this point we type 'first line of text'.
On pressing the <Enter> key, Edlin gives us an additional line
number, now 2:*, into which we type 'second line of text'. Again,
on pressing <Enter>, we are offered a further line number, and
so on. To end the insertion mode, type CtrI+C. The character
"C is the two -key depression Ctrl+C (hold the key marked Ctrl
down and press the C key).

The List Command
To see what text is in the file, type 1 (for list) at the prompt, as
follows:

*1
1: first line of text
2:*second line of text

The line numbers are inserted by Edlin so that you can refer to
the line you want to edit. The '*' in line 2 indicates that this line
was the last to be edited or inserted when Edlin was used last.

20

Note that now there is only one current line. Should the file you
are listing be very long, listing in this manner causes the current
line to appear in the middle of the listing.

To list specific lines, use the I command with line numbers.
For example,

*5,151
will list lines from 5 to 15 inclusive. Note the syntax of the
command which is: "From line number to line number
Command". There must be no comma between the second line
number and the command letter.

The Edit Mode
To change the current line, type the new line number and press
<Enter>. This puts you in edit mode and will cause the line
whose number you typed to be displayed. Pressing <Enter>
again, confirms that you are happy with the contents of that line,
otherwise you can either press the right cursor key to reveal
each letter of that line, or re -type the entire line, making any
necessary changes. In our case, we want to change line 2 to

second line of text, edited

so enter the edit mode and change the line appropriately. This
is best done by using the right arrow cursor key to reveal the
whole of the existing line and then typing the extra information
at the end of it. The <Ins> and keys can also be used to
edit the text.

The Insert Command on an Existing File
To insert lines of text, use the command I (for insert) at the
prompt. However, be warned. Using i on its own will insert the
new line before the current line (the one with the * after the line
number). To insert lines at any other point, give the line number
before the command.

In our case, we would like to insert two additional lines after
the existing two. To do this, type

*3i

*

3:*third line of text
4:*fourth line of text
5:*^C

21

Again, insertion mode is terminated in line 5: by pressing
Ctrl+C. If we now list the contents of the file, we get:

*1
1: first line of text
2: second line of text, edited
3: third line of text
4:*fourth line of text

*

The last line to be inserted becomes the current line.

The Delete Command
To delete unwanted lines of text, use the d command (for
delete) at the prompt. However, if you use the d command
without any number associated with it, you will delete the
current line (the one with the asterisk). Therefore, if you want to
delete line 13, say, type

*13d

or if you want to delete a group of lines, type

*13,15d

which is translated as 'lines 13 to 15 to be deleted'.

The Move & Copy Commands
To move or copy text, use the m or c commands (for move or
copy). These commands must be preceded by three numbers,
as follows:

*13,15,8m

which is interpreted as 'lines 13 to 15 to be moved to a position
before line 8'.

Similarly, the c command will copy a block and insert it before
the given line. To move or copy a single line, the first two
numbers in the command will have to be the same. After
moving or copying lines, always use the list command to force
re -numbering of the file's contents.

The Search Command
To search for the occurrence of a word or a specified number of
characters in a file you have created using Edlin, use the

22

search command. Just as in the list and delete commands, a
line range is first specified, followed by the s (for search)
command. Thus, typing

*1,4s edited

evokes the response

2: second line of text, edited
*

which displays the line containing the word 'edited'.
Note that the space between the command s and the word

'edited' becomes part of the search string. Had we been
searching for the characters 'con' within the word 'second', we
would have had to omit the space between the command s and
the string 'con'.

The search command finds only the first occurrence of the
specified string. To continue the search for further occurrences
of the same string, simply type s again. Thus, typing

*1,4sir
1: first line of text

*8
3: third line of text

causes Edlin to first find the string 'ir' in the word 'first' of line 1:,
then by typing s again, it forces Edlin to find the same string 'ir'
in the word third' of line 3:.

The Search & Replace Command
This command is similar to the search command, except that it
requires a replacement string. Thus, typing

*1,4r edited^Z re-edited

will cause all occurrences of the word 'edited' to be replaced by
the word 're-edited' in all the specified lines of text. Here, of
course, it only occurs once in line 2: of the text. The character
AZ is the two -key depression CtrI+Z (hold the key marked Ctrl
down and press the Z key), which acts as a delimiter between
the two strings. Again note that the space in front of both words
becomes part of both the searching and the replacing strings.

23

1

The Transfer Command
This command transfers the contents of a file into the file
currently being edited. The format of the command is:

En] T filespec

where

n specifies the line number where the new data is to
be inserted. The data is inserted before the
specified line. If the line number is omitted, then the
current line is used.

filespec specifies the file that you want to insert the contents
of into the current file in memory.

Exiting Edlin
To end the current session and exit Edlin at any point, type

*e

which saves a new file under the chosen filename.
However, if the filename already existed on disc prior to using

Edlin, ending Edlin has the following effect:

First the name of the old file on the disc is given the extension
.bak, then the new file you have created by editing the old one
is saved with the original extension. In this way you can make
mistakes without disastrous effects since the system makes a
back-up file of the original. If need be, you could delete the .txt
file and then rename the back-up file (.bak) to its original name
and extension.

Note that Edlin is disciplined not to allow editing of back-up
files so, should you want to start using Edlin to edit the
contents of a .bak file, you must first rename it, by giving it a
different extension, before proceeding.

If, on the other hand, you realised that too many mistakes
were made during editing, you could use the q command to
quit, as follows:

*ci

instead of using the e command as discussed above. Doing this
causes Edlin to ask you whether you want to abort. Typing y
(for yes), leaves the name and contents of the original file on
disc unaltered.

24

4. BATCH FILES

A batch file is a text file that, in its simplest form, consists of a
list of DOS commands. It must have a name ending with the
extension .bat (such as list.bat). The commands in such a file
can be executed by simply typing the file name from the DOS
prompt (for example, by typing list in the above case). A small
amount of time creating batch files can save hours of repetitive
typing.

To help you in setting up and maintaining your system's hard
disc, you will need to create a few batch files and locate them in
a special subdirectory, which you might call \BATCH. Do not
forget that to make these batch files always available, you must
change the PATH command in the autoexec.bat file to include
the \BATCH subdirectory.

Simple Batch Files
Let us assume that you need to know the exact name of a DOS
command that you have forgotten, and that all your DOS files
are stored in the subdirectory \DOS. This can be achieved by
creating a batch file to display the contents of the DOS
subdirectory, whenever the word dos is typed. An example of
such a batch file (which we will call dos.bat), is:

@ECHO OFF
CD \DOS
DIR/P
CD \

In the second line, the directory is changed to that of \DOS and
the third line causes the contents of the \DOS subdirectory to
be displayed using the paging (/P) option. Finally, the fourth line
returns the system back to the root directory. Thus, typing dos,
displays the \DOS subdirectory on the screen. Once you have
found the external DOS command you were looking for, typing
its name will invoke the command, provided, of course, the
\DOS subdirectory is also included in the PATH.

Further, let us assume our system has several different
versions of the BASIC programming language all stored in the
subdirectory \BASIC, and that we want to be able to access
each direct from the root directory. However, we can not include
the \BASIC subdirectory in the PATH command within the

25

autoexec.bat file, as we must be able to specify which version
of the Basic language is required. For example, two such
versions were included in the IBM PC -DOS System disc (BASIC
and BASICA; A for advanced), while GWBASIC (which is the
implementation of the language for use with the compatibles)
was included with pre -DOS 5 versions of the operating system.
MS-DOS 5 includes a superior version of Basic which is a
sub -set of Microsoft's QBasic. Apart from the above versions,
you might also have BBCBASIC - a version of BBC -Basic which
runs on the IBM and compatible machines.

We can create a rather special batch file, in the \BATCH
subdirectory, to access any of these Basic interpreters,
provided they are all in the same \BASIC subdirectory, with the
following commands in a batch file which we shall call bas.bat

@ECHO OFF
CD \BASIC

CD \

Note the variable %1 in line 3. This can take the name of any of
the Basic languages mentioned above, provided the
appropriate name is typed after the batch file name, when it is
run. For example, typing:

BAS QBASIC

at the prompt, starts executing the commands within the batch
file bas.bat, but substituting QBASIC for the %1 variable.

Thus, line 3 causes entry into QBASIC, provided it exists in
the BASIC directory. Similarly, typing:

BAS GWBASIC

causes entry into GWBASIC.
Alternatively, we could use named parameters in batch files

which allow definition of replaceable parameters by name
instead of by number. To identify named parameters, we use
two percent signs, as follows:

%BASTYPE%

We can use the SET command to define the named parameter.
For example, the command:

SET BASTYPE=QBASIC

26

replaces the %BASTYPE% parameter by the filename QBASIC.
The SET command can be used either before the batch file is
run, or it can be included within the batch file itself. Thus, the
DOS environment variables can be defined as named
parameters in a batch file to allow different environments for
different applications.

Special Batch -file Commands
Apart from the DOS commands, there are some specific
commands which can only be used for batch -file processing.

Command Action

CALL Allows you to call one batch file from
within another. The general form of the
command is:

CALL filespec

where filespec specifies the drive, subdi-
rectory and name of the batch file to be
called. This file must have the extension
.bat, (which must not be included in the
file -spec part of the CALL command).

In the case of pre -v3.3 of DOS, the CALL
command can only be used as the last
statement of the current file to call
another batch file. Return to the first
batch file is not possible.

In the case of DOS v3.3 and later, the
CALL command can be issued from any
place within the current batch file to pass
control and execute another batch file.
On termination of the called batch file,
execution control returns to the calling
batch file at the command following the
CALL command.

Pipes and redirection symbols must not
be used with the CALL command. Batch
files that require replaceable parameters

27

ECHO

FOR

can be CALLed. The CALL command
can be used to call the current batch file,
but care must be taken to eventually ter-
minate execution of the batch file.

Enables or disables the screen display of
MS-DOS commands which are being ex-
ecuted from within a batch file, or dis-
plays the message that follows ECHO.
To get a blank line on your display use
the command:

echo.

To prevent any commands being echoed
to the screen while a batch file is running
place the following line at the beginning
of the file:

@echo off

This only works with v3.3 DOS and later.

Repeats the specified MS-DOS com-
mand for each 'variable' in the specified
'set of files'. The general form of the com-
mand is:

FOR %%variable IN (set of files) DO command

where command can include any DOS
command or a reference to the %%var.
For example,

FOR %%X IN (F.OLD F.NEW) DO TYPE %%X

will display F.OLD followed by F.NEW.

GOTO label Transfers control to the line which con-
tains the specified label. For example,

GOTO end

:end

sends program control to the :end label.

28

IF Allows conditional command execution.
The general form of the command is:

IF [NOT] condition command

where condition can be one of

EXIST filespec
string1==string2
ERRORLEVEL=n

Each of these can be made into a nega-
tive condition with the use of the NOT
after the IF command.

PAUSE Suspends execution of a batch file.

REM Used for adding REMarks to a batch file.
Lines beginning with REM are ignored.

SHIFT Allows batch files to use more than 10 re-
placeable parameters in batch file pro-
cessing. An example of this is as follows:

@echo off
:begin
TYPE %1 I MORE
PAUSE
SHIFT
IF EXIST %1 GOTO begin

If we call this batch file display.bat, then
we could look at several different files in
succession by simply typing:

display filel filet file3

The SHIFT command causes each to be
taken in turn.

Environment Variables:
The system environment is controlled by 'environment
variables' which have names and values allocated to them. The
SET command can be used to display, change or delete these
environment variables. SET typed without parameters displays
the current environment.

29

Some software packages require you to SET environment
variables to their specifications if the package is to work
correctly. However, since there is a limited amount of space
allocated to the environment by DOS, space held by these
variables in the environment should be freed when no longer
needed. This is achieved by typing SET followed by the
environment variable and the = sign.

Environment variables can be used in a batch file to represent
the variables' value, provided the environment variable is
enclosed in percent signs (i.e. %PATH%).

For example, typing at the command line

FOR %N IN (%PATH%) DO ECHO %N

will produce the output

C:\
C: \ DOS

C:\BATCH
C: \ UTILS

on the screen, provided you have included these directories in
the PATH. If you intend to include the above line in a batch file,
remember that you need to include two percent signs before N
(i.e. %%N) in both occurrences in the FOR statement.

As an example of this, let us write a batch file which will
display the contents of the autoexec.bat and config.sys files
on the screen. This could, of course, be achieved by using the
type command at the prompt and specifying the name of each
file individually. To achieve the same thing, use either Edit or
Edlin to create the file show.bat in the \BATCH directory, as
follows:

CLS
FOR %%N IN (\ CONFIG . SYS \ AUTOEXEC . BAT) DO
TYPE %%N
@ECHO OFF
CD\

which, from now on, when you type show, will display the
following, or something like it, on your screen:

C:\>FOR %N IN (\CONFIG.SYS \AUTOEXEC.BAT)
DO TYPE %N

30

C:\>TYPE \CONFIG.SYS
FILES = 20
BUFFERS = 30
BREAK ON
COUNTRY=044,437,C:\DOS\COUNTRY.SYS
DEVICE=C:\DOS\ANSI.SYS

C:\>TYPE \AUTOEXEC.BAT
@ECHO OFF
PATH C:\;C:\DOS;C:\BATCH;C:\UTILS
C:\DOS\APPEND \BATCH
MOUSE
C:\DOS\KEYB UK,437,C:\DOS\KEYBOARD.SYS
PROMPT PG
SET TEMP=D:\
ECHO HELLO ... This is your PC using
VER

The contents of these two files may well differ considerably
from those of your system, particularly if you are using MS-DOS
5 on a 386/486 computer with over 1 Mbyte of RAM.

The MORE Command:
The MORE command displays one screen of output at a time. It
can best be used with the 'redirection characters' (<, > and »),
as shown in the following batch file. Type this with your text
editor and give it the name addtext.bat.

@ECHO OFF
CLS
IF "%1"=="" GOTO Error
ECHO. Press 'F6' & 'ENTER' to end session
IF NOT EXIST %1 GOTO Newfile
MORE<%1
:Newfile
MORE>>%1
GOTO Quit
:Error
ECHO. This batch file opens a new text
ECHO. file, and lets you add text
ECHO. on the screen, or opens an existing
ECHO. file and appends text to it.
ECHO.
ECHO. To use type: %0 'filename'
:Quit

31

This batch file could be used instead of Edlin for creating, or
adding text lines to, another batch file. Try it out by typing:

addtext

from the DOS prompt. Line 3 checks to ensure the name of the
file to be worked on is given in the command line. In our case it
was not, so the :Error routine (following line 10) is invoked and
instructions are output to the screen. Now type:

addtext test.txt

A blinking cursor should show below an instruction line at the
top of the screen. Add some lines to test.txt by typing:

line 1
line 2

Use the <Enter> key at the end of each line, except the last.
Save the file and return to the DOS prompt by pressing <F6>
followed by <Enter>. To check the contents of the new file type:

addtext test.txt

The file is displayed on the screen and you can append more
lines if you need to. You can try this out on your own.
Unfortunately this batch file will not let you edit the contents of a
line once you have ENTERed it, but it does give a quick way of
working with short batch files.

In addtext.bat line 6 uses the '<' redirection character to
direct the contents of the file named by the variable %1 through
the MORE command, which causes it to display on the screen
one page at a time. Command is then passed to line 8 where
MORE appends any collected screen information to the file
named by %1 with the '»' redirection character. If a single '>'
character had been used the routed text would have overwritten
any previous contents of the file.

32

5. THE ANSI.SYS COMMANDS

Overview of ANSI.SYS Commands
ANSI.SYS display commands can be used to position the
cursor on any part of the screen, change the intensity of the
displayed characters, change their colour, or clear part or all of
the screen. ANSI.SYS keyboard commands can be used to
re -define keys. For example, you could re -define the function
keys so that when you press one a complete command is
issued as if it was typed at the keyboard.

ANSI.SYS commands are also called 'escape sequences'
because they all begin with the ESCape character (code 27)
followed by a left square bracket (D. Commands can also
include a numeric or alphabetic code, and each command ends
with a different letter. The general form of the command is
written as:

ESC [<code><letter>
where the <code> is a numeric or string value and the ending
<letter> identifies the command and is case sensitive (that is, H
has a different meaning to h, the former identifying the
command that moves the cursor, while the latter sets the
display mode). Sometimes, the <code> value might be more
than one number or string, in which case it is separated by
semi -colons. For example,

ESC[2J

clears the screen, while

ESC [2 ; 35H

moves the cursor to the 2nd row and 35th column.
ANSI.SYS commands cannot be typed directly into the

keyboard because on receiving the ESCape code, MS-DOS
cancels the command. Instead, a text editor, such as Edit or
Edlin, has to be used to create a file with the ESCape codes
inserted in command lines. The ANSI.SYS commands in the file
can then be sent to the console with the use of the ECHO
command, or the entire contents of the file can be displayed
with the use of the type command.

These commands, and the way they are inserted into Edit or
Edlin, will be discussed fully now.

33

The ANSI.SYS Console Commands
The ANSI.SYS commands for controlling the console (display
and keyboard) fall into four groups. The first three of these have
to do with the control of the display, while the fourth deals with
the control of the keyboard. They are:

(a) Cursor control commands,
(b) Erase display commands,
(c) Attribute and mode commands, and
(d) Keyboard control commands.

What follows is a complete summary of all ANSI.SYS console
commands appearing under their appropriate category. Each
command starts with ESC[(the ESCape character -code 27,
followed by a left bracket). The general form of the command is:

ESC [<code><letter>
where <code> is a string or numeric value (if more than one,
they are separated by semi -colons) which identifies the display
attribute, display mode, column or row number (or both) to
which the cursor is to be moved, the string to be produced
when a key is pressed, or the key to be defined. The ending
<letter> identifies the command and is case sensitive.

Cursor Control Commands:

Cursor Position ESC[#;#H or ESC[#;#f

Moves the cursor to the specified
position. The first # specifies the
row (1-25), while the second #
specifies the column (1-80) to which
the cursor is to be moved. If either
the row or column is omitted, their
default value, which is 1, is taken.

To omit row, but specify column, the
semi -colon must follow the left
bracket. If both row and column are
omitted then the cursor moves to
the home position which is the
upper left corner of the screen.

34

Cursor Up ESC[#A

Moves the cursor up without chang-
ing column. The value of # specifies
the number of rows by which the
cursor is to move up. If the cursor is
on the first row, the sequence is ig-
nored. The default value is 1.

Cursor Down ESC[#B

Moves the cursor down without
changing column. The value of #
specifies the number of rows by
which the cursor is to move down. If
the cursor is on the last row, the se-
quence is ignored. The default
value is 1.

Cursor Right ESC[#C

Moves the cursor to the right without
changing rows. If the cursor is on
the last column, the sequence is ig-
nored. The default value is 1.

Cursor Left ESC[#D

Moves the cursor to the left without
changing rows. If the cursor is on
the first column, the sequence is ig-
nored. The default value is 1.

Save Cursor Position ESC[s

Saves the current cursor position.
The cursor can be moved to this
position later with a Restore Cursor
Position command.

35

Restore Cursor Position ESC[u

Restores the cursor position to the
value it had when it was last saved
with the Save Cursor Position com-
mand.

Cursor Position Report ESC[#;#R

Reports the current cursor position
to the standard input device. The
first # specifies the current row,
while the second # specifies the
current column.

Device Status Report ESC[6n

When this command is received, the
console driver outputs a Cursor
Position Report sequence.

Erase Display Commands:

Erase Display ESC[2J

Erases the screen and moves the
cursor to the home position.

Erase Line ESC[K

Erases all text from the current cur-
sor position to the end of the line.

Attribute and Mode Commands:

Set Attribute ESC[#;...;#m

Turns on a display attribute. More
than one attribute can be specified
provided they are separated by
semi -colons.

36

Omitting the value of attribute is
equivalent to specifying attribute 0,
which turns off all attributes.

Attribute parameter numbers can be
any of the following:

Attribute Colour Foregrd Backgrd
0 None Black 30 40
1 Bold Red 31 41

4 Underline Green 32 42
5 Blink Yellow 33 43
7 Inverse Blue 34 44
8 Invisible Magenta 35 45

Cyan 36 46
White 37 47

Set Display Mode ESC[=#h

Changes the screen mode and al-
lows line wrap at the 80th column.

A mode parameter number can be
one of the following:

Param Mode
0 40x25 b&w
1 40x25 colour on
2 80x25 b&w
3 80x25 colour on
4 320x200 graphics, colour on
5 320x200 graphics, b&w
6 640x200 graphics, b&w
7 Turn on wrap at end of line

Reset Display Mode ESC[=#1

The reset mode parameter numbers
are the same as those for the Set
Display Mode, except that para-
meter number 7 resets the wrap at
the end of a line mode. The I is a
lower case letter L.

37

Keyboard Control Commands:

Define Key ESC[#;...;#p

Assigns one or more characters to
be produced when a specified key
is pressed. The first # specifies the
key to be defined, provided the key
is one of the standard ASCII char-
acters with a number from 1 to 127.
If the key is a function key, keypad
key or a combination of Shift+, Ctrl+
or Alt+key and some other key, then
two numbers are required separ-
ated by a semi -colon, the first of
which is always 0 and the second
taken from the table overleaf.

The last # is the character or char-
acters to be produced when a key is
pressed. It can be defined as an
ASCII code, an extended key code,
a string enclosed in double quotes,
or any combination of codes and
strings separated by semi -colons.

Example:

ESC[0;68;"dir I sort I more";13p

re -defines the F10 key so that the
directory command is first piped to a
sort command, then to a more com-
mand, followed by a carriage return.

To restore a key to its original
meaning, enter a Define Key com-
mand sequence that sets the last #
equal to the first #.

Example:

ESC[0;68;0;68p

restores F10 to its original meaning.

38

Extended Key Codes:
The extended key codes used with the ANSI.SYS Define Key
command are shown below. Each key can be pressed 'alone',
or with the <Shift>, <Ctrl> or <Alt> keys. A long dash is used in
the table to indicate that the key cannot be re -defined.

TABLE 2 Extended Codes - Standard ASCII Characters

Key Alone Shift+ Ctrl+ Alt+

Tab 9 0;15 - -
45 95 0;130

0 48 41 - 0;129
1 49 33 - 0;120
2 50 64 0;121
3 51 35 - 0;122
4 52 36 0;123
5 53 37 - 0;124
6 54 94 - 0;125
7 55 38 0;126
8 56 42 - 0;127
9 57 40 0;128
= 61 43 - 0;131
a 97 65 1 0;30
b 98 66 2 0;48
c 99 67 3 0;46
d 100 68 4 0;32
e 101 69 5 0;18
f 102 70 6 0;33
g 103 71 7 0;34
h 104 72 8 0;35
i 105 73 9 0;23

i 106 74 10 0;36
k 107 75 11 0;37
I 108 76 12 0;38
m 109 77 13 0;50
n 110 78 14 0;49
o 111 79 15 0;24

P 112 80 16 0;25
q 113 81 17 0;16
r 114 82 18 0;19

39

s 115 83 19 0;31
t 116 84 20 0;20
u 117 85 21 0;22
v 118 86 22 0;47
w 119 87 23 0;17
x 120 88 24 0;45

Y 121 89 25 0;21

z 122 90 26 0;44

Extended Codes - Function and Numeric -keypad Keys

Key Alone Shift+ Ctrl+ Alt+

Fl 0;59 0;84 0;94 0;104
F2 0;60 0;85 0;95 0;105
F3 0;61 0;86 0;96 0;106
F4 0;62 0;87 0;97 0;107
F5 0;63 0;88 0;98 0;108
F6 0;64 0;89 0;99 0;109
F7 0;65 0;90 0;100 0;110
F8 0;66 0;91 0;101 0;111
F9 0;67 0;92 0;102 0;112
F10 0;68 0;93 0;103 0;113
Home 0;71 55 0;119
CurUp 0;72 56
PgUp 0;73 57 0;132
CurLft 0;75 52 0;115
CurRgt 0;77 54 0;116
End 0;79 49 0;117
CurDn 0;80 50
PgDn 0;81 51 0;118
Ins 0;82 48
Del 0;83 46
PrtSc 0;114

Using Edit to Enter ESCape Commands:
The screen editor Edit can be used to enter ESCape command
sequences into a file. The ESC character (ASCII 27) is entered
by first typing CtrI+P, then press the <Esc> key which causes
the left arrow (4-) to appear on the screen. Thus, to enter

40

ESC [2J

which is the ESCape sequence for 'clear screen', evoke Edit
and type the appropriate character sequence, as shown below:

File Edit Search Options Help

CLEAR

4-E 2.1

HS -DOS Editor <F1=Help> Press ALT to activate menus

Using Edlin to Enter ESCape Commands:
You can use the Edlin line editor to enter ESCape command
sequences into a file. The ESC character (ASCII 27) is entered
by typing CtrI+V (displays as "V) followed by T. Thus, to enter

ESC[2J

which is the ESCape sequence for 'clear screen', evoke Edlin
and type the appropriate character sequence, as follows:

edlin clear
New file
*li

1:*"v[[2J
2 :*"C

*e

You must type two [[, one as part of the ESCape character and
the other as required by the ESC[sequence. It might be a good
idea to create this and subsequent example files in a dedicated
subdirectory \UTILS.

Note: If you use the Edlin I (list) command, you will notice that
the "Va ESCape sequence has been changed to either [A[(if
you are using MS/PC-DOS v3.0 & v3.1), or AR (if you are using
MS/PC-DOS v3.3 and above).

To send the ESCape sequence to the display and, in this
case, clear the screen, we must use the type command as
follows:

type clear

41

which clears the screen and causes the prompt to reappear on
the second row of the display.

Another way of sending the ESCape sequence to the screen,
is from within a batch file using the echo command. To do this,
we must create a .bat file and include the command

echo ESC [2J

in it. The file is then evoked by typing its name only. To
eliminate the second prompt which appears on the screen, you
must insert, as a first line in the batch file, an @echo off
command.

One advantage of using the type command to send ESCape
sequences to the display, is that it is almost instantaneous. The
echo method can be very slow, particularly if an elaborate
screen is to be built up. For this reason, we will use the "typing"
technique to display elaborate screens throughout the rest of
this book.

Changing Screen Colours:
As long as ANSI.SYS is loaded in a system it is very easy to
change the screen colours displayed by DOS. In the same way
as above, generate a text file named bluescrn containing the
following single line:

ESC[0;37;44m

If you now use the type command as follows:

type bluescrn

your screen should be set to write in white on a blue
background. You may have to clear the screen with the cls
command to get the full benefit of this.

If you check the table at the top of page 37 you will see why
the three numbers in the above ESCape sequence are used.
The 0 (zero) sets attributes to "none", the 37 sets the
foreground colour to white and the 44 sets blue as the
background colour.

We will use this method to control the screen colours when
generating our menu system in the next chapter. If you would
prefer your system to default to such a blue screen, simply
place the type bluescrn command in your autoexec.bat file,
but make sure that the file bluescrn is in the \UTILS directory,
which should, by now, be on your PATH.

42

6. DEVELOPING A MENU SYSTEM

We are now in a position to start writing some sample files to
produce a simple screen menu system. To do this, use either
Edit, Edlin, or a proprietary text editor, as explained previously,
to enter the ESCape code sequences. Some of the menu files
which follow will be much easier to enter with a screen editor,
than with Edlin.

In all the following examples the ESCape code sequence is
shown as {ESC}, with ESC appearing in curly ({ }) brackets to
make identification easier. You must, of course, type the code
sequence for your editor whenever this appears.

Designing the Main Menu Screen
If you are sitting comfortably, it is time to begin. Type in the 23
line routine shown on the next page and save it as menumain.
At first glance this looks very complicated, but once you get
started you can simplify the job by copying line 3 to form the
basis of lines 4-21, then editing the latter lines. Make sure you do
this in 'overstrike' mode. Another important thing is to insert the
correct number of blank spaces, as shown overleaf.

When finished, exit your editor and from the DOS prompt type,
type menumain. You should get the following screen layout; if
not, you have probably not entered the text correctly.

PERONJ41. MENO

1 MICROSOFT WINDOWS
2 WORD PROCESSING
3 SPREADSHEET
4 DATABASE
5 UTILITY PROGRAMS
6 PROGRAMMING LANGUAGES
7 PRINTER SET-UP
8 GAMES
9 DOS COMMAND LINE

Select from 1 9 above

To return from DOS type MENU

43

(
E
S
C
H
0
;
3
6
;
4
4
m

{
E
S
C
}
[
2
J

{
E
S
C
}
(
3
)
2
3
H
[
E
S
C
I
[
0
;
3
0
;
4
6
m

(
E
S
C
)
(
m

{
E
S
C
H
4
;
2
3
H
{
E
S
C
I
[
0
:
3
0
;
4
6
m

(
E
S
C
)
(
0
;
3
1
;
4
6
m
P
E
R
S
O
N
A
L

S
Y
S
T
E
M

M
E
N
U
{
E
S
C
}
(
0
;
3
0
;
4
6
m

{
E
S
C
H
5
;
2
3
H
[
E
S
C
1
[
0
;
3
0
;
4
6
m

(
E
S
C
)
[
m

(
E
S
C
H
6
;
2
3
H
I
E
S
C
H
0
;
3
0
;
4
6
m

1
M
I
C
R
O
S
O
F
T

W
I
N
D
O
W
S

(
E
S
C
1
[
m

(E
SC

}
[

7;
23

H
{E

SC
)

t0
;3

0;
46

m
2

W
O

R
D

 P
R

O
C

E
SS

IN
G

[
E
S
C
U
m

(
E
S
C
)
[
8
;
2
3
1
1
{
E
S
C
}
[
0
;
3
0
;
4
6
m

3
S
P
R
E
A
D
S
H
E
E
T

[
E
S
C
U
m

(
E
S
C
H
9
;
2
3
1
4
{
E
S
C
H
0
;
3
0
;
4
6
m

4
D
A
T
A
B
A
S
E

[
E
S
C
)
[
m

(
E
S
C
)
[
1
0
:
2
3
H
{
E
S
C
)
[
0
;
3
0
;
4
6
m

5
U
T
I
L
I
T
Y

P
R
O
G
R
A
M
S

(
E
S
C
)
[
m

[
E
S
C
H
1
1
;
2
3
1
1
{
E
S
C
)
(
0
;
3
0
;
4
6
m

6
P
R
O
G
R
A
M
M
I
N
G

L
A
N
G
U
A
G
E
S

{
E
S
C
}
[
m

(
E
S
C
I
[
1
2
;
2
3
H
{
E
S
C
}
[
0
;
3
0
:
4
6
m

7
P
R
I
N
T
E
R

S
E
T
U
P

{
E
S
C
}
[
m

(
E
S
C
H
1
3
;
2
3
1
1
{
E
S
C
}
(
0
;
3
0
;
4
6
m

8
G
A
M
E
S

{
E
S
C
}
[
m

(
E
S
C
H
1
4
;
2
3
1
1
{
E
S
C
H
0
;
3
0
;
4
6
m

9
D
O
S

C
O
M
M
A
N
D

L
I
N
E

(
E
S
C
U
m

(
E
S
C
H
1
5
;
2
3
H
{
E
S
C
)
(
0
;
3
0
;
4
6
m

(
E
S
C
}
(
m

(
E
S
C
H
1
6
;
2
3
H
{
E
S
C
H
O
;
3
0
;
4
6
m

(
E
S
C
)
(
m

(
E
S
C
H
1
7
;
2
3
H
{
E
S
C
)
(
0
;
3
0
;
4
6
m

S
e
l
e
c
t

f
r
o
m

(
8
S
C
)
[
0
;
3
1
;
4
6
m
1

-

9
(
E
S
C
H
0
;
3
0
;
4
6
m

a
b
o
v
e

(
E
S
C
H
1
8
;
2
3
1
1
{
E
S
C
)
(
0
;
3
0
;
4
6
m

(
E
S
C
)
(
m

(
E
S
C
H
1
9
;
2
3
1
1
{
E
S
C
)
(
0
;
3
0
;
4
6
m

T
o

r
e
t
u
r
n

f
r
o
m

D
O
S

t
y
p
e

M
E
N
U

(
E
S
C
1
(
m

(
E
5
C
)
[
2
0
;
2
3
H
{
E
S
C
)
(
0
;
3
0
;
4
6
m

(
E
S
C
U
m

{
E
S
C
}
[
2
1
;
2
3
1
1
{
E
S
C
}
(
0
:
3
0
;
4
6
m

(
E
S
C
)
(
m

(
E
S
C
1
[
2
2
;
2
4
H

{
E
S
C
)
(
m

(
E
S
C
H
0
;
3
7
;
4
4
m

(
E
S
C
)
(
m

(
E
S
C
H
m

Note that to get the shadow on the right of the menu display, a
space is inserted after each {ESC}[m code of lines 5-22. The
position of the code dictates the starting point of the shadow.

Hopefully by now you can see what an improvement our menu
will be over the straight DOS prompt. Obviously at the end of the
day you will be using the system yourself, on your own machine,
so you will need to adapt it to your own set-up.

One look at the screen we have produced should show up two
problem areas. The DOS prompt and cursor spoil the bottom left
corner of the screen for one. Also at the moment we have no
way, with the basic system, of "letting DOS know" which item we
have selected from our menu.

Creating Interactive Batch Files
In order to make batch files interactive, we need to create a
small program, we will call it respond.com, which 'responds' to
the keyboard keys most recently pressed. This is a bit similar to
the INKEY command in the BASIC computer language that
reads a character from the keyboard.

Normally, when a key is pressed, a code representing that key
is sent to DOS for translation and subsequent display. However,
DOS also stores the value of this code in a part of memory which
can be accessed and is normally referred to as the 'errorlevel'.
The key codes of both the standard ASCII and extended ASCII
characters were discussed earlier and are listed in Tables 1 and
2, respectively.

Because the first number of the two -number value
representing the extended key codes is always 0, DOS sets
errorlevel to the second number. This, inevitably produces some
duplication between standard and extended key codes (for
example, the numeric key 0, Alt -b and Shift -Ins all set errorlevel
to 48), but we can put up with it because the keys responsible
are unrelated.

We will create respond.com using Debug, but don't get
worried no programming knowledge will be required. If you do
want to get more involved with Debug we have included a short
crash course in Appendix A.

Creating a DEBUG Script File:
The easiest way to use Debug is to create a text file which
contains all the commands for Debug to process. This is usually

45

called a script
started with the
"<" redirection c

To create res
follows:

file. Once it has been created DEBUG can be
contents of the script file directed to it, with the

haracter.
pond.com, use Edlin to create its script file as

edlin respond.scr

1:*a 0100
2 : * mov AH,07
3:* int 21
4 : * cmp AL , 00
5:* jnz 010C
6 : * mov AH,07
7 : * int 21
8:* mov AH, 4C
9:* int 21

10 : *

11:*r cx
12 : *10

13 :*n respond.com
14 :*w
15 : *q

Make sure you type the above with no mistakes. Particularly
make sure you do not forget the q in line 15. Without this, Debug
will hang the system when it is invoked. You can use your text
editor to produce the script file if you prefer, in which case do not
type the line numbers, colons or asterisks. Make sure you leave
line 10 as a blank. Now, invoke Debug by typing:

debug < respond.scr

which will create respond.com, the desired program and save it
in the \UTILS directory. We will test respond.com a little later,
but in the meantime will use Debug to generate two cursor
control programs.

Controlling the Cursor
We can improve the appearance of the previously written menu
screen by incorporating two assembly language programs which
control the cursor. The first program is designed to turn the
cursor off, so that it does not appear in unwanted areas on the
screen, while the second is designed to turn it back on again.

46

Now use Edlin to first write the script file nocurs.scr, to turn the
cursor off, with the following contents:

1:* a 0100
2:* mov AH,01
3:* mov CH,20
4:* int 10
5:* int 20
6:*
7:* r cx
8:* 08
9:* n nocurs.com
10:*w
11:*q

then write the script file normcurs.scr, to turn the cursor on, with
the following contents:

1:* a 0100
2:* mov AH,OF
3:* int 10
4:* cmp AL,07
5:* jz 010D
6:* mov CX,0607
7:* jmp 0110
8:* mov CX,OBOC
9:* mov AH,01
11:* int 10
12:* int 20
13:*
14:* r cx
15:* 16
16:* n normcurs.com
17:*w
18:* q

Now, use Debug with its input redirected to the script file
nocurs.scr, to create the nocurs.com program, as follows:

debug < nocurs.scr

followed by the reactivation of Debug with its input redirected to
the script file normcurs.scr to create the normcurs.com
program.

47

Both these programs (as indeed all the programs we will create
using Debug) can be used by themselves, not just in the
following batch files. Thus typing nocurs will make the cursor
disappear from the screen, while typing normcurs makes it
reappear.

The Menu Batch File
We have now created all the basic components for our menu
system. Make sure the following files are present in your \UTILS
directory - menumain, bluescrn, respond.com, nocurs.com
and normcurs.com. All we need now is a means of linking these
together and controlling the menu system. To do this we will
generate a batch file called menu.bat. In its initial form this will
be used to test that our components and logic are satisfactory.
Use your screen editor to enter menu.bat, as follows:

@ECHO OFF
CLS

:again
C:
CD \UTILS
TYPE menumain
nocurs

:getkey
respond
IF ERRORLEVEL 58 GOTO getkey
IF ERRORLEVEL 57 GOTO dos
IF ERRORLEVEL 56 GOTO games
IF ERRORLEVEL 55 GOTO printer
IF ERRORLEVEL 54 GOTO proglang
IF ERRORLEVEL 53 GOTO utilities
IF ERRORLEVEL 52 GOTO database
IF ERRORLEVEL 51 GOTO spreadsheet
IF ERRORLEVEL 50 GOTO wp
IF ERRORLEVEL 49 GOTO windows
IF NOT ERRORLEVEL 49 GOTO getkey

:dos
CLS
TYPE bluescrn
GOTO quit

48

cont...

:games
normcurs
CLS
ECHO. Games
PAUSE
GOTO again

:printer
normcurs
CLS
ECHO. Printer
PAUSE
GOTO again

:proglang
normcurs
CLS
ECHO. Programming languages
PAUSE
GOTO again

:database
normcurs
CLS
ECHO. Database
PAUSE
GOTO again

:utilities
normcurs
CLS
ECHO. Utility routines
PAUSE
GOTO again

:spreadsheet
normcurs
CLS
ECHO. Spreadsheet
PAUSE
GOTO again

:wp
normcurs
CLS
ECHO. Word processor
PAUSE

49

cont...

GOTO again

:windows
win
GOTO again

:quit
ECHO.To return to the MENU SYSTEM type MENU
C:
CD \
normcurs

Now, when you run menu.bat, by typing menu, your main
screen menu should display without a flashing cursor.

Menu.bat has been designed to be as modular as possible;
this helps to make its operation easier to understand and should
facilitate any future changes to the file which may be required
when you customise the menu to your system. Each module has
a label and is accessed with the GOTO command. The :again
module makes the C:\UTILS directory current (not strictly
necessary if it is on the path), types the main menu on the
screen and removes the cursor. Control then passes to :getkey
which uses the respond program to check which key is pressed
and stores it as 'errorlevel' if it is a number between 1 and 9. The
next 11 lines are the core of the system, they check which key
was pressed and direct the next action accordingly. The line

IF ERRORLEVEL 58 GOTO getkey

checks whether the ASCII code of the key pressed is equal to or
greater than 58. (All keys with an ASCII code greater than that of
the digit 9). If one of these was pressed the getkey routine is
repeated. Succeeding lines check for code 57 (the digit 9), code
56 (the digit 8)... down to code 49 (the digit 1) and route control
to the required subroutine with the GOTO command. The last
line of :getkey ensures that no other codes will be acted upon.

Because the IF command checks that ERRORLEVEL is equal
to or greater than the number stated, the routine must start the
testing sequence with the highest code numbers and work down
to the lowest (58 down to 49, in our example).

The other labelled routines are self explanatory. Any useful
menu system must give the user a way of 'escaping' from it,

especially while it is being developed. In our case the DOS
COMMAND LINE option provides this. It produces a cleared blue

50

screen with instructions on how to get back to the menu,
followed by the DOS prompt. The only other menu option that
does anything useful at the moment is the Windows option. This
of course assumes that you have Microsoft Windows installed in
the standard way on your system, in which case just typing WIN
from the DOS prompt will start the program up. The :windows
routine does just this and is followed by the GOTO again
statement to return command to the main menu when the
Windows program is closed. All the other routines in menu.bat
are set up to test that the interactive section of the system works
correctly. Once you have tested them you can change the test
routine to one that is more meaningful for your system.

As an example, let's assume you have the Lotus 1-2-3
spreadsheet installed on your system in the C:\LOTUS directory
and to start the program requires the command 123 to be given
from that directory. To implement this in our menu you would
need to change the :spreadsheet routine to the following:

normcurs
CLS
C:

CD \LOTUS
123
GOTO again

The normcurs command is to ensure that the cursor is available
when the menu is not being displayed. Of course if you had more
than one spreadsheet on your computer the above routine would
not be satisfactory; in that case you could easily create a second
menu screen to facilitate the choice between them. This
procedure will be demonstrated when we build the PRINTER
SET-UP routine later.

If you have worked through to this section of the chapter you
should have no problems customising some of the other menu
options for your system.

Controlling your Printer
In our experience more people have trouble setting up and
controlling their printer than any other piece of computer
hardware. When you use a proprietary software package, such
as a word processor, as long as it is installed correctly, it will take
over control of the printer. If, however, you want to print text files
from the DOS environment, you may find that a little help comes

51

in useful. The two most popular 'types of printers' are the Epson
compatible dot matrix and the Hewlett-Packard (HP) compatible
laser. Nearly all modern printers should be able to emulate one
of these types. With both of them you can use ANSI.SYS
ESCape codes to send control instructions to the printer.
Detailed control codes for both these types of printer are given in
Appendix C. Our menu system will include an example of some
of the more useful commands for each printer type, but you can
change these if you so wish.

The ESC character code 27 is a particularly important one for
printers. It has the special meaning that the next character
specifies a printer command, not something to be printed.
Sending the character "4" to an Epson compatible printer will
cause it to print the number 4, but sending ESC4 will cause the
printer to start printing in italic mode.

The way we will send codes to the printer is by redirecting
ECHO commands. For example the above would be:

ECHO {ESC}4> PRN

These could be typed in from the keyboard, or more easily,
included in a batch file.

An EPSON Printer Menu:
Load the file menumain into your text editor, edit it using
'overstrike', to the text shown below, and save it as menuepsn.

EPSON PRINTER SET-UP

1 NLQ TEXT
2 EXPANDED
3 COMPRESSED
4 VERY SMALL
S ITALICS
6 BOLD
7 UNDERLINE
8 RESET PRINTER
9 RETURN TO MAIN MENU

Select from 1 - 9 abode

52

As you can see, once you have made up one full menu screen, it
is a very easy matter to adapt it, by simply editing the text shown
in the box. If you prefer, you could of course experiment with
different box colours, sizes and shading. Make sure your new
menu screen is correct with the type menuepsn command.

When you are happy with it enter the following file with your
editor and call it prnepson.bat. You would probably find it much
easier to adapt the file menu.bat, as they are quite similar.

Note: When entering the ESCape code sequences make sure
that you do not leave any spaces, especially in front of the
redirection character '>'. The command for compressed text
does not have an ESCape in it, but the character v. This is often
written as <Alt+15>. With both the DOS and Norton editors it is
obtained by typing CtrI+P, then 15 typed from the numeric key
pad on the right of the keyboard, while the Alt key is depressed.
Depending on your editor this may show as either or as -0'.

@ECHO OFF
CLS

:again
C:

CD \UTILS
TYPE menuepsn
nocurs

:getkey
respond
IF ERRORLEVEL 58 GOTO getkey
IF ERRORLEVEL 57 GOTO quit
IF ERRORLEVEL 56 GOTO reset
IF ERRORLEVEL 55 GOTO underline
IF ERRORLEVEL 54 GOTO bold
IF ERRORLEVEL 53 GOTO italics
IF ERRORLEVEL 52 GOTO vsmall
IF ERRORLEVEL 51 GOTO compressed
IF ERRORLEVEL 50 GOTO expanded
IF ERRORLEVEL 49 GOTO nlq
IF NOT ERRORLEVEL 49 GOTO getkey

:nlq
ECHO {ESC}xl> PRN
GOTO getkey

53

cont...

:expanded
ECHO {ESC}W1> PRN
GOTO getkey

:compressed
ECHO 0> PRN
GOTO getkey

:vsmall
ECHO 0{ESC}SO{ESC}30> PRN
GOTO getkey

:italics
ECHO {ESC}4> PRN
GOTO getkey

:bold
ECHO {ESC}E> PRN
GOTO getkey

:underline
ECHO {ESC} -1> PRN
GOTO getkey

:reset
ECHO {ESC}@> PRN
GOTO getkey

:quit
menu

Before trying out this printer menu link it into the main menu by
altering the :printer routine of the file menu.bat to the following:

:printer
prnepson
GOTO again

You should now have a working printer set-up menu which
operates as a sub -menu of the main one. Try it out by typing
menu and selecting option 7. If your printer is Epson compatible,
you should be able to force it to print compressed text, when
next used, by selecting 3 and then 9 to return to the main menu.
Return to the DOS prompt and type:

COPY prnepson. bat LPT1

If all is well you should get a print-out that can hold up to 132
characters per normal 80 character line.

54

If that is not small enough, the 'very small' option should print
text small enough to almost need a magnifying glass to read!
This option does three things - turns compressed print on, starts
superscript and sets the line spacing to 15/216 inch. The LPT1 in
the above command assumes your printer is connected to the
parallel port of your computer.

An HP (PCL) Printer Menu:
If you use a laser printer which can use the Hewlett-Packard
printer control language (PCL), the following sub menu will be of
more use. Load the file menumain into your text editor, edit it,
using 'overstrike', to the text shown below, and save it as
menuhp.

HP LASER PRINTER SET-UP

1 SET PAGE MARGINS
2 LANDSCAPE ORIENTATION
3 DOUBLE SPACED

VERY SMALL
5 ITALICS
6 BOLD
7 UNDERLINE
8 RESET PRINTER
9 RETURN TO MAIN MENU

Select from 1 9 above

As you can see, once you have made up one full menu screen, it
is an easy matter to adapt it, by simply editing the text shown in
the box. If you prefer, you could of course experiment with
different box colours, sizes and shading. Make sure your new
menu screen is correct with the type menuhp command.

When you are happy with it, enter the following file with your
editor and call it prnhp.bat. You would probably find it much
easier to adapt the file menu.bat, as the two files have much in
common.

55

Note: When entering the ESCape code sequences make sure
that you do not leave any spaces, especially in front of the
redirection character '>'.

In several of the ESCape sequences below the '&' character is
followed by 'I' which is a lower case 'L', so do not confuse it with
the digit '1' when you enter text.

@ECHO OFF
CLS

:again
C:

CD \UTILS
TYPE menuhp
nocurs

:getkey
respond
IF ERRORLEVEL 58 GOTO getkey
IF ERRORLEVEL 57 GOTO quit
IF ERRORLEVEL 56 GOTO reset
IF ERRORLEVEL 55 GOTO underline
IF ERRORLEVEL 54 GOTO bold
IF ERRORLEVEL 53 GOTO italics
IF ERRORLEVEL 52 GOTO vsmall
IF ERRORLEVEL 51 GOTO double
IF ERRORLEVEL 50 GOTO landscape
IF ERRORLEVEL 49 GOTO margins
IF NOT ERRORLEVEL 49 GOTO getkey

:margins
ECHO fESCI&a5L{ESC}&15E> PRN
GOTO getkey

:landscape
ECHO IESC1&110> PRN
GOTO getkey

:double
ECHO {ESC}&13D> PRN
GOTO getkey

:vsmall
ECHO {ESC}(s16.66H{ESC}&14C> PRN
GOTO getkey

cont...

56

:italics
ECHO fESC1(s1S> PRN
GOTO getkey

:bold
ECHO {ESC}(s3B> PRN
GOTO getkey

:underline
ECHO fESCl&d0D> PRN
GOTO getkey

:reset
ECHO {ESC}E> PRN
GOTO getkey

:quit
menu

Before trying out this printer menu link it into the main menu by
altering the :printer routine of the file menu.bat to the following:

:printer
prnhp
GOTO again

You should now have a working printer set-up menu which
operates as a sub -menu of the main one. Try it out by typing
menu and selecting option 7. If your printer is HP laser
compatible, you should be able to set it to print with landscape
orientation when next used (prints across the page instead of
down the page), by selecting 2 and then 9 to return to the main
menu. Return to the DOS prompt and type:

COPY menumain LPT1

If all is well, you should get a print out across the page. If the
print is not small enough, you could try the 'small print' option.
The LPT1 in the above command assumes your laser printer is
connected to the parallel port of your computer.

A Laser Printer Batch File:
While we are on the subject of controlling HP laser printers, you
may find the following batch file useful for printing the odd text
file. Try it out by typing it with your editor and naming it
hpprint.bat.

57

@ECHO OFF
REM Print control of HP LaserJet

IF "%1"=="" GOTO error
REM Set orientation - landscape or portrait
REM 1 = landscape, 0 = portrait
ECHO {ESC}&110> PRN

REM Set top margin to 5 lines
ECHO {ESC}&15E> PRN

REM Set left column to 3 columns
ECHO {ESC}&a3L> PRN

COPY %l 1ptl

REM Resets printer and ejects page
ECHO {ESC}E> PRN
GOTO QUIT

:error
ECHO.HP LaserJet print control
ECHO.Needs a file name to print
ECHO.
ECHO.Type HPPRINT filename
ECHO.

:quit

This batch file expects you to enter hpprint <filename> from the
DOS prompt, where <filename> is the name of the file you want
to print.

Several of the control lines in it are very easy to modify, so that
you can customise it to your needs. Line 6 controls whether your
printing is landscape or portrait orientated. The penultimate
character in the ESCape sequence {ESC}&110, is '1' which sets
the printer to landscape mode. A zero character ('0') here, would
force portrait orientation.

The digit '5' in line 8 sets the top paper margin to 5 lines, while
in line 10 the digit '3' sets the left paper margin to 3 columns of
print. By changing these two numbers in the batch file you can
set the margins to wherever you want them to be.

58

Sample Utilities Menu
To complete the menu system layout we will build a utilities
sub -menu containing some routines you may find useful for your
system. These are only examples and you can, of course, build
up your own set of routines. In fact, some of the batch files
developed in the next chapter could be included.

Load the file menumain into your text editor and, as before,
edit the menu text to the following using overstrike mode. Save
the file as menutils.

SYSTEM UTILITIES MENU

1 START DOS EDITOR
Z SET DATE
3 SET TIME
4 FORMAT DISK IN A:

FORMAT DISK IM B:
6 QUICK CLEAN DISK IM A:
7 BLANK SCREEN
8 PARK HARD DISK
9 RETURN TO MAIN MENU

Select from 1 - 9 aboue

Some of these routines are simple commands which could be
implemented at the DOS prompt, but once you get used to using
the menu system you will probably prefer to work from it for as
much of the time as possible.

Adapt one of the previous menu batch files to the following,
with your text editor, and save it as utils.bat:

@ECHO OFF
CLS

:again
C:

CD \UTILS
TYPE menutils
nocurs

59

cont...

:getkey
respond
IF ERRORLEVEL 58 GOTO getkey
IF ERRORLEVEL 57 GOTO quit
IF ERRORLEVEL 56 GOTO park
IF ERRORLEVEL 55 GOTO screensave
IF ERRORLEVEL 54 GOTO cleanA
IF ERRORLEVEL 53 GOTO formatB
IF ERRORLEVEL 52 GOTO formatA
IF ERRORLEVEL 51 GOTO setime
IF ERRORLEVEL 50 GOTO setdate
IF ERRORLEVEL 49 GOTO editor
IF NOT ERRORLEVEL 49 GOTO getkey

:editor
CLS
normcurs
C:
CD \DOS
Edit
GOTO again

:setdate
normcurs
CLS
DATE
GOTO again

:setime
normcurs
CLS
TIME
GOTO again

:formatA
normcurs
CLS
FORMAT A: /F:1.44mb
GOTO again

:formatB
normcurs
CLS
FORMAT B: /F:1.2mb
GOTO again

60

cont...

:cleanA
normcurs
CLS
ECHO.WARNING
ECHO.THIS WILL DESTROY ALL THE
ECHO.FILES AND DIRECTORIES ON THE
ECHO.DISC IN DRIVE A:
ECHO.
ECHO.PRESS THE
ECHO.ANY OTHER
respond

Fl KEY TO ABORT
KEY TO CONTINUE

IF ERRORLEVEL 59 IF NOT ERRORLEVEL 60 GOTO again
ECHO Y RECOVER A: > NUL
ECHO Y DEL A:* .* > NUL
GOTO again

:screensave
ECHO {ESC}[0:30;30m
CLS
PAUSE>NUL
GOTO again

:park
CLS
PARK
GOTO again

:quit
menu

link this utilities sub -menu into the main menu by simply altering
the :utilities routine of the file menu.bat to the following:

:utilities
utils
GOTO again

The :editor routine simply calls the Microsoft editor Edit which is
usually kept in the C:\DOS directory. The :setdate and :setime
routines allow you to adjust the date and time as used by your
system. If you do not keep these correct, your files will be
stamped incorrectly whenever they are saved.

61

Formatting Floppy Discs:
The next two routines allow you to format floppy discs in your A:
and B: drives. The assumption has been made that your A: drive
is a 3.5 -inch, high density drive, capable of using 1.44MB discs
and that B: is a 5.25 -inch drive capable of using 1.2MB discs.
This obviously will not apply to everyone. If your system is
different, change the fourth line of the :format routines to
whichever of the following are applicable.

Using a 1.44MB, double -sided, quadruple density, 3.5 -inch drive:

FORMAT n: /F:1.44mb

Using a 1.2MB, double -sided, quadruple density, 5.25 -inch drive:

FORMAT n: /F :1.2mb

Using a 720KB, double -sided, double density, 3.5 -inch drive:

FORMAT n: /F:720kb

Using a 360KB, double -sided, double density, 5.25 -inch drive:

FORMAT n: /F :360kb

To format a 360KB disc in a 5.25 -inch high density drive:

FORMAT n: /4

The last command should produce formatted discs which are
usable in your own drive but they may well not work in all other
disc drives. You may need to experiment here. In all of the
above, the 'n' should be replaced by the drive letter being used,
either 'a' or 'b'.

Needless to say, you should be careful when using the
FORMAT command. If by mistake you specify your hard disc
drive, instead of a floppy disc drive, the results could be
catastrophic.

Cleaning a Floppy Disc:
The routine in :cleanA clears all the files and subdirectories from
the disc in the A: drive, leaving an empty disc. This uses the
RECOVER command which, without a filename as a parameter,
assigns all the files on the disc a new filename in the root
directory. The existing files and subdirectories are simply
discarded - see 'warning' on the next page.

62

WARNING: If you specify a hard disc drive in this routine
you will lose all the contents of that drive, so be very careful
how you type in the text.

The first few lines of :cleanA, produce a screen warning and the
option to abort the procedure. The line

IF ERRORLEVEL 59 IF NOT ERRORLEVEL 60 GOTO again

checks what key has been pressed and stored by the respond
command. If the Fl key was pressed (ASCII 59), command is
transferred to :again and the routine is aborted. Any other key
will be ignored by this line. This demonstrates a useful procedure
for checking for individual key strokes in batch files. The first part
of the IF statement is satisfied if the ASCII code of the key
pressed is 59 or higher. The second part (IF NOT
ERRORLEVEL 60), excludes keys with codes of 60 or above,
thus leaving only 59 (the Fl key), to satisfy the two IF tests.

The next line

ECHO YIRECOVER A: > NUL

echoes a 'Y' character to the RECOVER command through a
pipe, the character. The 'Y' pre -answers a question that the
RECOVER utility asks and prevents the operation from stopping.
The 1). NUL' redirects the output from RECOVER to the NUL
device, which prevents it showing on the screen. It simply goes
nowhere.

The next line echoes a to the DEL A:*.* command, which
then deletes all the files created on the disc by the previous line,
without stopping and 'asking' if this is OK. Again, the written
output is redirected to NUL to keep the screen clean.

As the DOS command RECOVER is a potentially dangerous
utility, if you have version 5 of DOS you could use a quick format
procedure to clear your floppy discs. The command:

FORMAT A: /Q

could replace the middle 11 lines of the :cleanA routine. This
command only works on previously formatted discs. It checks the
disc's existing format -type and carries out a rapid reformat.

Even if you use this quick format procedure, some of the
tricks' included in the original batch file above, could be usefully
employed in your future batch files.

63

A Simple Screensave Utility:
Some people worry that leaving their computer switched on for
any length of time with the same screen display may cause
damage to the monitor screen. To obviate this, the :screensave
routine blanks out the screen when selected, until any key is
pressed, when the menu returns for use.
The line:

ECHO {ESC}[0;30;30m

sets the screen to black background and foreground, the CLS
command following, implements this and blanks the screen.
PAUSE>NUL halts the system until a key is pressed, the usual
screen output from this command being redirected to the NUL
device for neatness.

Parking your Hard Disc:
The :park routine assumes you have a utility that parks your
hard disc and that it is stored on the system path, most likely in
the C:\DOS directory. It is good practice to park a hard disc -drive
when the computer is switched off to avoid the possibility of
damage if the unit is bumped or moved. The parking action
moves the drive heads to a section of the disc not used to store
data.

Implementing your Own Menu System
You should now have all the tools to hand to build yourself a
professional looking menu system for your PC. If necessary, you
can nest as many sub -menus as you like, to give you an
enormous amount of flexibility. Do not forget though, to always
build in a route to let you move back out of the system, to the
main menu and then to DOS.

Automating your Menu System:
Once you are happy with your own menu system and it operates
with no problems, you can invoke it automatically every time your
computer starts up. To do this simply add the command menu to
the end of your autoexec.bat file using your text editor.

64

7. OTHER SYSTEM BATCH FILES

This chapter contains an assortment of other batch files and
routines which we have found useful over a period of time. It is
suggested that you try them out for yourself. We think that it is
only by using existing batch files and puzzling out how they work
that you can master the art of handling the DOS command
language.

All your batch files should be placed in one dedicated
directory, usually C:\BATCH, which must be listed on the PATH
command of your autoexec.bat file.

File Management
Even without expensive utilities you can easily locate a file
anywhere on a drive, however complicated the directory
structure. Type in the file findfile.bat, as follows:

@ECHO OFF
CLS
CD \
IF "%l"=="" GOTO message
ATTRIB %1 /S
GOTO quit

:message
ECHO.Input the name of the file
ECHO.you want to locate.
ECHO.
ECHO.For example FINDFILE filename.ext

:quit

Try it out by typing findfile <filename.ext> at the prompt. If the
file searched for exists on the drive, its full path, as well as a list
of its attributes, (A: Archive, R: Read-only, H: Hidden, S: System)
will be displayed before the prompt is restored.

Do not forget the '/S' after the ATTRIB statement, as this
forces the search to include all subdirectories on the drive.

The wild card characters '*' and 'T can be used in the filename
to extend the power of the search. For example,

**
*.tmp
*.t??

would list all files on the drive
would list all files with the extension .tmp
would list all files with an extension starting with a't' .

65

Moving Files
DOS does not have a command to move a file, or files, from one
location to another. You have to first COPY them, then DELete
or ERASE the originals. It is easy to write a batch file to carry out
these operations, but you must be careful to check that the
copied file(s) actually exist in the new location before the
original(s) are deleted. If, for example, you specify an incorrect
path to the destination location, the file(s) would not be copied
but the original(s) would be lost. The following file, call it
move.bat, checks that the copy operation has been successful
before carrying out the deletion.

REM MOVE.BAT
@ECHO OFF
CLS
IF "%2"=="" GOTO message
GOTO move

:message
ECHO.^G You must specify what to move
ECHO. and where to move it!
ECHO.
ECHO. For example move *.txt a:*.txt
ECHO.
GOTO quit

:move
COPY %1 %2 > NUL
IF NOT EXIST %2 GOTO fail
ERASE %1
GOTO quit

:fail
ECHO.^G The move operation failed.
ECHO. Check your input names etc..

:quit

The file initially checks to ensure you have specified what to
copy and where to copy it. If not, a help message is shown. The
'"G' characters, AIt+7, cause the computer to beep when an
error is encountered.

You can move file(s) from, and to, any drive or directory with
move.bat, but you must spell out both the paths and filenames
in both cases.

66

File Protection
It is very easy to accidentally delete files in a directory if you are
in a hurry and not thinking of what you are doing. However, you
can easily protect those files that will not need frequent updates,
by making them READ ONLY with the ATTRIB command.

ATTRIB +R C:\config.sys

will make the file config.sys read only, in which case you will not
be able to edit it without reversing the command, as follows:

ATTRIB -R C:\config.sys

The following batch file, protect.bat, gives you an easy way to
implement and cancel protection of the two system files that you
will need to edit fairly frequently, config.sys and autoexec.bat.

REM PROTECT.BAT
@ECHO OFF
IF "%1"=="1" GOTO protec
IF "%1"=="0" GOTO unprotec

:protec
ATTRIB +R
ATTRIB +R
GOTO quit

:unprotec
ATTRIB -R
ATTRIB -R

:quit

C:\confiq.sys
C:\autoexec.bat

C:\config.sys
C:\autoexec.bat

You could also add any other files that you want to protect to the
lists in the above routine.

To make these files read only simply type protect 1 at the
DOS prompt. Test what has happened with the command:

ATTRIB C:\autoexec.bat

This should produce the following on the screen:

A R C:\AUTOEXEC.BAT

The 'R' indicates the read only attribute is set, as well as the
archive. Whenever you need to edit one of the files, first type
protect 0 to cancel the protection. Don't forget to implement the
protection again when you are finished.

67

Returning to the Current Directory
This routine is a little more involved than the previous ones. It
solves the problem of making a batch file return control to the
same drive and directory that was current when the batch file
was called. Before using it you must create several files which
will become 'permanent' to your system.

Place in your \BATCH directory the file cdspace.bat which will
have only one line containing the text "CD " ("CD" followed by a
space). An easy way to do this would be with the addtext utility
covered at the end of Chapter 4, by typing at the prompt:

ADDTEXT C:\BATCH\cdspace.bat
CD

making sure that you follow the space with F6 and <Enter>.
Alternatively, Edlin, your text editor, or COPY CON could also be
used to produce this file.

To enable the routine to keep track of the current drive you will
need to add a file called drive.tmp to the root directory of all the
drives on your system. Each of these files should hold the letter
of the drive followed by a colon. For example, drive.tmp in C:\
would contain "C:" followed by <Enter> on the first line and "^Z"
(Ctrl+Z, or F6) on the second.

To make sure these files do not get accidentally deleted you
could set their attributes to read only, as described on the
previous page. Once these files are installed enter return.bat:

REM RETURN. BAT
@ECHO OFF
REM Batch file to return you to the current
REM directory, on the current drive.
REM Can be used by placing:
REM CALL return
REM at the beginning of another batch
REM file, and placing:
REM CALL back
REM in that file when you want control
REM returned to the original location.
REM
REM
CD > C:\batch\return.tmp
COPY \drive.tmp + C:\batch\cdspace.bat
....+ C:\batch\return.tmp C:\batch\back.bat > nul
DEL C:\batch\return.tmp

68

The penultimate line of the file starts with COPY \drive.... This
has only been broken up to fit this book page. You should type it
as one long line without the four dots.

The batch file works by opening the file return.tmp and
placing the current path in it (without the drive letter in front).
This is done by the command CD > C:\batch\return.tmp. The
next long line builds the file back.bat in the C:\batch directory
containing two lines; the current drive identifier (such as C:) on
the first line and CD <current path> on the next.

To use this routine you should add the command CALL return
to the beginning of any batch file that changes the current drive
or directory. At the end of the file add the command CALL back,
and control will be returned to the original directory when the
batch file ends.

If your version of DOS is earlier than v3.3 the above two CALL
commands will need to be changed to COMMAND /C return.bat
and COMMAND /C back.bat respectively.

Extending the Current Path
Due to both the limited space in the DOS environment, and to
aid system speed, it is not advisable to include too many
directories on the permanent PATH statement in the
autoexec.bat file. The following file cures this problem:

REM ADDPATH.BAT
@ECHO OFF
CLS
IF "%1"=="" GOTO message

:loop
SET PATH=%PATH%;%1
SHIFT
IF "%1"=="" GOTO quit
GOTO loop

:message
ECHO.This file adds more directories
ECHO.to the existing PATH when run.
ECHO.
ECHO.Example %0 C:\lotus C:\WP51
ECHO.

:quit
ECHO.Path is now %PATH%

69

DOS does not include an easy way to extend the PATH without
retyping the whole statement, but this file uses SET and the
variable %PATH% to accomplish this. My number of directories
can be appended to the path (not exceeding 127 characters in
all) by including them as parameters to the command addpath.
Each one is appended in :loop - the SHIFT command makes the
next parameter (%1) the first - and the looping process continues
until all the parameters have been processed.

Increasing Environment Space
If you plan on using extensive additions to your PATH it may be
wise to increase the default 256 bytes (in the case of DOS 5) of
available space in your environment by including the following
line in your config.sys file:

SHELL=C:\COMMAND.COM C:\ /P /E:512

This sets the environment to 512 bytes, which should be plenty,
but you can increase it to a maximum of 32KB! The '/P' switch
makes this copy of cornmand.com permanent.

The above SHELL statement works with the command file in
the root directory of the C: drive. If you wanted to keep your root
directory clear, you could store command.com in the DOS
directory and change the path in the SHELL command
accordingly, say to CADOS\COMMAND.COM.

Simplifying the BACKUP Process
Everyone knows that you should backup the files on your hard
disc at very regular intervals to avoid the horrors of lost data if
the disc fails. Does everybody do it though? The DOS routines
provided, BACKUP and RESTORE, can, to say the least, be very
temperamental. Excellent commercial packages are available,
but at a cost. You may find the following procedure both
adequate and easy to carry out.

You should have original versions of your software programs
on disc, so why spend a lot of time backing your programs up? If
necessary, you can re -install them from the original discs. That
probably takes care of most of your hard disc contents. The
remaining data files obviously must be backed up. This will entail
putting copies of every file onto floppy discs. The following batch
file bacup.bat should make this a simple process. Once you are
set up just run it once a day.

70

REM BACUP.BAT
@ECHO OFF
CLS
IF "%1"=="" GOTO message
ECHO.Backup of changed data files in %1
ECHO.and in all sub -directories of %1
ECHO.
ECHO.Place a FORMATTED disc in drive A:
ECHO.
PAUSE

:loop
XCOPY %1*.* A: /s/e/v/m
IF ERRORLEVEL 5 GOTO error
IF ERRORLEVEL 4 GOTO full
IF ERRORLEVEL 1 GOTO nofiles
IF ERRORLEVEL 0 GOTO quit

:error
ECHO.^G There is a problem, check Drive A:
GOTO quit

:full
ECHO."G Place another disc in Drive A:
PAUSE
GOTO loop

:nofiles
ECHO.No files found to backup
GOTO quit

:message
ECHO.^G No directory to backup specified
ECHO.
ECHO.Example %0 C:\LOTUS123\DATA

:quit

This routine uses the external DOS command XCOPY which is a
very versatile command. Here, we force it to copy only files that
are new or have been updated since the last time it was run.
XCOPY reads as many files as will fit into RAM and then saves
them, one by one, to the destination disc. Hence, it operates
much faster than the COPY command.

In DOS v5.0, XCOPY does not copy hidden or system files,
whereas v3.3 version did. If your DOS is older than v3.3 you will

71

not have XCOPY at all, so maybe it is time to think about
upgrading.

The bacup routine is simple to use. Let us assume your word
processor files are stored in the C:\WP51\DOCS directory and
maybe also in some subdirectories of this. Before using bacup
for the first time, you will need to set the archive attribute of all
the files in these directories. Make each directory in turn current
and issue the command:

ATTRIB +A *.*
You will only need to do this once. Place a formatted disc in the
A: drive and enter the command:

bacup C: \wp51\ docs

After some initial messages the routine will copy all the files in
the DOCS directory, as well as in all the subdirectories, to a
series of discs in the A drive. The original subdirectory structure
will be maintained on the floppy discs. As each file is copied
XCOPY will cancel the archive attribute, so unless that file is
modified, it will not be copied when next bacup is run. DOS itself
sets the archive attribute, or flag, whenever a file is changed.

The operation of XCOPY is controlled by its switch
parameters. In our routine the following switches are set:

/s causes all subdirectories of the source path and their
contents (except empty ones) to be copied

/e copies empty subdirectories
/v verifies the disc copy, by comparing the destination

disc with the source
/rn copies only those files which have the archive flag

set and then cancels the flag on all the files copied.

Other XCOPY switches which you could also use, are:

/a does the same as /m but without altering the archive
flag after copying

/d:date copies only files that have been changed, or created,
since the date specified

/p prompts for confirmation before each file -copy
/w makes XCOPY operation wait until any key is

pressed - like a built-in pause command.

72

A Disc Cataloguing System
This file is for those people who have hundreds of files stored on
an assortment of floppy discs and when they come to find a
particular file have to search disc after disc. If this is a familiar
scenario, read on. To get your discs organised you must first
give each one a unique name. The simplest would be Disc 1,
Disc 2 and so on, but with more ingenuity you could come up
with a naming system to help indicate a disc's contents, or the
time period during which it was used. If you keep each name
less than 11 characters you can both write it on the outer label
and use it with the LABEL command as below.

The batch file diskcat.bat shows a sorted directory listing of all
the files on the disc in the A: drive on the screen, to remind you
of its contents, and asks you for the disc label. Enter the disc
name, or if the disc is already labelled press <Enter> followed by
'N' to the question "Delete current volume label (Y/N)" to keep
the label. The disc name and a sorted list of all its contents is
then appended to the file diskcat.txt in the C:\utils directory. The
batch file will then loop through this routine for a series of discs
in the A: drive, until the Fl key is pressed to quit.

@ECHO OFF
REM DISKCAT.BAT
:loop
CLS
DIR A:\ /0 /S
LABEL A:
DIR A:\ /0 /S » C:\UTILS\DISKLAB.TXT
CLS
ECHO.Disc catalogued. Press Fl to quit
ECHO.any other key to catalogue another
respond
IF ERRORLEVEL 59 IF NOT ERRORLEVEL 60 GOTO quit
GOTO loop

:quit

As it stands this routine will only work with DOS v5.0 and above.
Previous versions of the DIR command have very limited switch
options. For older DOS versions replace the DIR commands
above with DIR A: ISORT. This will not list any subdirectories
on the disc though.

73

When you have processed your discs simply load the text file
disklab.txt into your word processor, format and print it, to give
you a clear permanent record of the contents of all your discs.
This stage you can make as detailed, or simple, as you want.

Turning Off the NUMLOCK Key
If, like us, you prefer to work with the NUMLOCK key switched
off and your system leaves it on whenever it starts up, the
following Debug routine may come in useful. As described
previously, enter the following text into the file nonumlok.scr
with your editor:

A
XOR AX,AX
MOV DS,AX
AND BYTE [417],DF
RET

R CX
A
N NONUMLOK.COM
W
Q

When you are happy your text is exactly the same as the above,
save the file and from the C:\utils directory type the following:

DEBUG < nonumlok.scr

You should now have a small file nonumlok.com, which when
run, turns off the NUMLOCK key. Simply place the command
nonumlok in your autoexec.bat file and one of life's small
irritations should be cured each time your system boots up.

74

APPENDIX A
THE DEBUG PROGRAM

In order to use the Debug program its command file
debug.com must be in the currently logged directory or there
must be a path to it, as the program is an external DOS file, in
exactly the same way as Edit and Edlin. If you are using a
floppy system, copy the debug.com file to your working floppy.

Debug can be used to look at memory locations, as well as
change such memory locations. It provides a controlled test
environment for binary and executable files (files with the .COM
or .EXE extension). Here, we first start by looking at memory
locations of loaded programs, before venturing further afield. In
order to demonstrate how this can be done, we will use a four
line test.txt file which you should create with the use of either
the Edit screen editor or the Edlin line editor. The file should
contain the following lines of text

first line of text
second line of text, edited
third line of text

To start Debug, type its name followed by the name of the file
you want to examine or change. In this case we type

C:\UTILS\>debug test.txt

provided the file test.txt is to be found in the same directory as
Debug. If it does, it causes Debug to respond with its own
command prompt, in this case a hyphen (-).

The general form of starting Debug is:

debug filespec arguments

where filespec can be the full file specification, including drive,
directory and filename. The arguments refer to parameters
used by the program you want to examine.

When Debug loads a program into memory, it loads it starting
at address 0100 hexadecimal (hex 0100, for short) in the lowest
available segment. It also loads the number of bytes placed in
memory into the CX register (more about this shortly).

75

If the filespec is not given when Debug is started, then it is
assumed that you want to do one of the following:

(a) Examine current contents of memory,
(b) Load a program into memory using the Debug Name or

Load commands
(c) Load absolute disc sectors into memory with the Load

command.

The Dump Command
To examine the contents of memory while using Debug, type d

(for dump), followed by 100 (the starting address on which to
start the dump) and press <Enter>. This causes the first 128
bytes of memory starting from hex 100 to be displayed on the
screen. In our case, the command

-d 0100
causes the following block to be displayed on the screen:
1318:8108
131B:0110

66 69 72 73 74 28 6C 69-6E 65 20 6F 66 28 74 65
78 74 OD 8A 73 65 63 6F -6E 64 20 6C 69 6E 65 20

131B:8120 6F 66 28 74 65 78 74 2C-28 65 64 69 74 65 64 OD
1318:8130 OA 74 68 69 72 64 28 6C-69 6E 65 28 6F 66 28 74
1318:0140 65 78 74 OD 0A 66 6F 75-72 74 68 20 6C 69 6E 65
1318:0158 28 6F 66 28 74 65 78 74-8D 8A OD 0A 74 1C 33 CO
1318:0160 F6 06 C2 6F 28 74 09 FF-36 CA 6F 9A A3 76 E0 09
1318:0178 88 F8 ES 5D FD 75 03 96-EB C6 5E C3 88 C7 88 lE

first line of to
xt..second line
of text, edited.
.third line of t
ext..fourth line
of text....t.3.

...l.u....'

Note that information is divided into three main areas:

Address Byte value in Hex ASCII characters

xXXX:0100 66 69 72 73 74 20 6C 69-6E 65 20 6F 66 20 74 65 first line of to

where 'address' refers to the address in memory, starting at hex
1DC8:0100 which is shown above as XXXX:0100 because the
first part of the address (the XXXX portion of it) broadly defines
the location of it in the computer's memory and is dependent on
how much memory is installed and on how many resident
programs happen to be loaded at the time. This part of the
address will, more likely than not, be different on different
computers, therefore it is shown above as XXXX.

76

Following the address, there is a block of 16 hexadecimal
numbers representing the information held in memory so that
location 0100, for example, holds the hex value of 66 (which is
the ASCII value of the letter f), while location 0108 (just after the
hyphen) holds the hex value of 6E (which is the ASCII value of
the letter n). The hyphen here serves to divide the block of 16
bytes in half, for easy location - the first half contains bytes 0 to
7, while the second half contains bytes 8 to 15 inclusive.

The last area of the dump is the ASCII characters contained
in the file we happen to be examining. Note that any bytes in
that portion of memory having a hex value less than 32 are
shown by Debug as periods within this last area. Thus, OD
(carriage return - decimal 13) and OA (line feed - decimal 10)
which occur in memory locations 0112 and 0113, respectively,
are shown as .. in the second line of the ASCII character portion
of the dump. It is worth your while spending some time
examining this dump. For example, try to locate the positions of
the 'spaces' in the text which have the hex value of 20.

The dump command can also be used without any
parameters (i.e. the starting memory location taken as hex
0100 in our previous example). If this had been done the first
time we issued the dump command, after starting Debug, then
dumping would have started at memory location 0100 anyway,
as this is the default starting value for a dump of memory. The
next time d is typed, then the contents of the next 128 bytes of
memory are dumped. from hex 0180 to 01FF.

The dump command can also be used to display a specific
number of bytes. If this is required, then the command must be
followed by the starting and ending address of memory. That is,

d start stop
Thus, to display the first line of our example, you must type

-d 0100 010F
and press <Enter>.

Another form of the command, in controlling the number of
bytes to be displayed, is by specifying the starting location and
the length (L) of the required bytes. For example, the first line of
our example can be displayed by typing

-d 0100 L 10

77

In the above command, we used uppercase L to specify length,
as the lower-case letter could easily by mistaken as the
numeral 1. The number of bytes to be displayed above follows
L and is hex 10 which is decimal 16.

The Fill Command
In the dump of the file test.txt, we showed the display with
certain values after location hex 015A. These values might be
different with your computer, because it depends on what
happened to be loaded in these locations at the time. We can
achieve a more aesthetic result with the use of the f (for fill)
command. The command takes the following form:

-f 0100 0180 0

which means 'fill memory locations hex 0100 to 0180 with 0'. Do
this and verify it by following it with

-d 0100

Now all the displayed locations hold the hex value 0 and the
ASCII character part of the dump contains only periods.

The general form of the fill command is as follows:

f range list

If a range is specified that contains more bytes than the number
of values in the list, Debug uses the list repeatedly until it fills all
bytes in the range. If the list contains more values than the
number of bytes in the range, Debug ignores the extra values
in the list.

The Load Command
We can now 'load' our test.txt file from the buffer into these
zeroed locations with the L (for Load) command. Again we use
an uppercase letter to avoid confusion by mistaking it for the
numeral 1. Thus, typing

-L 0100
and pressing <Enter>, loads our file from the buffer. To display
the result, simply type

-d 0100
and press <Enter>.

78

Now you will get a 'cleaner' display of the dump, as the empty
memory locations are now filled with Os.

Note the very last byte of the file in location hex 15A; it
contains the value 1A which is what you get when you type
Ctrl+Z, and represents the end -of -file marker.

The Name Command
The n (for name) command is used to assign a filename to
Debug to use later with the load and write commands. When
Debug is started without specifying a file, the name command
must be used in order to set a file. For example,

-n file
-L

The name command can also be used to supply a program that
is to be used by Debug with information essential to its proper
execution. For example, we can use the name command to
name a file that requires some data by

-n filel.com datafile
-L

To take up the earlier example of our file test.txt and the
requirement of an uncluttered display, we can achieve the same
thing by simply typing

-f 0100 0180 0
-n test.txt
-L 0100
-d 0100

causes the following display to appear on your screen:

1318:0180 66 69 72 73 74 29 6C 69-6E 65 28 6F 66 28 74 65 first line of to
1318:0118 78 74 OD BA 73 65 63 6F -6E 64 20 6C 69 6E 65 20 xt..second line
1318:0120 6F 66 20 74 65 78 74 2C-20 65 64 69 74 65 64 OD of text, edited
1318:0138 BA 74 68 69 7Z 64 Z8 6C-69 6E 65 28 6F 66 20 74 .third line of t
131B:0140 65 78 74 OD BA 66 6F 75-72 74 68 28 6C 69 6E 65 ext..fourth line
1316:0150 20 6F 66 28 74 65 78 74-0D BA OD 0A 80 00 00 00 of text
1318:0160 00 08 88 80 80 80 00 00-00 00 00 88 08 80 00 88
1318:0178 00 08 80 88 88 00 00 80-88 88 08 80 08 00 00 80

79

The Enter Command
The e (for name) command allows us to enter data directly into
memory as byte values or as a string of characters. The
general form of the command is

e address list

where the values in list replace the contents of one or more
bytes starting at address.

Again, assuming that the test.txt file has been loaded by
Debug, we can substitute the existing values in memory
starting at address hex 0120 with the string "edited by debug",
and display the result, with the following commands:

-e 0120 "edited by debug"
-d 0100

What is now displayed on your screen is as follows:

1318:8180 66 69 7Z 73 74 28 6C 69-6E 65 20 6F 66 20 74 65 first line of to
1318:0110 78 74 OD BA 73 65 63 6F -6E 64 20 6C 69 6E 65 20 xt..second line
1310:8120 65 64 69 74 65 64 28 62-79 20 64 65 6Z 75 67 OD edited by debug.
1318:8139 0A 74 68 69 72 64 28 6C-69 6E 65 28 6F 66 20 74 .third line of t
1318:0149 65 78 74 OD 8A 66 6F 75-72 74 68 28 6C 69 6E 65 ext..fourth line
1318:0158 20 6F 66 20 74 65 78 74-8D BA OD BA 00 80 00 09 of text
1318:0168 08 00 08 BO 80 00 88 80-00 08 80 08 00 00 BB 00
1318:0178 00 08 00 00 88 89 80 80-08 88 90 88 80 98 88 00

The same changes could be achieved by typing the actual
values we want to change in hex. For example, typing

-e 0120 65 64 69 74 65 64 20 62 79 20 64 65 62 75 67

produces the same change as "edited by debug"!
If the list parameter is omitted, then Debug displays the

address, its contents, and a period, and waits for input.

The Write Command
The w (for write) command writes an area of memory to the file
was either last loaded by Debug or most recently named with
the name command. Thus, we can save the changed file of our
example above by first naming a file we would like to save the
results of the changes in and then writing to that file.

For example, assuming that the test.txt file has been
changed with the edit command, we could type

80

-n testl.txt
-w

which will save the changes in the testl.txt file, leaving the old
test.txt file unaltered.

The general form of the write command is:

w start

where start is the starting address in memory from which a
number of bytes are written to the file. If 'start' is omitted,
Debug starts at address 0100.

When the write command is executed, Debug informs you of
the total number of bytes (in hexadecimal) it wrote to the file.

In this case, the message

Writing 0005B bytes

appears on the screen.
This number is the same as that placed in the CX register

when the original file was loaded into memory. In this case, the
operation will be correct since we have not changed the actual
length of the file. However, had we changed the overall length
of the file by, say, appending information to it, then before
writing the changes to file, we must change the value held in
the CX register to the new length.

Registers
The Intel Central Processing Unit (CPU) family that includes the
8086, 8088, 80x86, are similar in many respects. All these
processors can handle 16 -bit data internally and can, therefore,
accept a common set of instructions. In addition, all these
processors communicate with the outside world with a 16 -bit
data bus, with the exception of the 8088 which operates with an
8 -bit data bus, thus making it slower.

The CPUs provide special internal 'memory locations', called
registers. For the 8088-80286 CPUs there are 14 such registers
each being 16 -bits wide, and for the 80386 (or higher) CPUs
there are 16, 32 -bit registers. Since these registers are
integrated within the processor chip, they can manipulate
information very quickly. These registers are subdivided into
groups according to the tasks they normally perform. The
following two tables list the names, length and normal tasks
associated with the registers.

81

TABLE A-1 Names and Tasks of 16 -bit Registers

15 7 0

AH AL

DH DL

CH CL

BH BL

BP

SI

D1

SP

DS

SS

ES

IP

Flags

AX, Accumulator

DX, Data

CX, Count

BX, Base

Base Pointer

Source Index

Destination Index

Stack Pointer

Code Segment

Data Segment

Stack Segment

Extra Segment

Instruction Pointer

Status flags: NV UP El PL NZ NA PO NC

The first four of the CPU registers are referred to as the general
purpose registers AX, BX, CX, and DX. These can be used as
either 16 -bit or 8 -bit registers, which is why they are shown in
two halves; the high half (H) and the low half (L). Each half can
be addressed separately.

82

4

Following the general purpose registers are two pointer and two
index registers, which serve as pointers to locate data in main
memory. These are referred to as SP (stack pointer), BP (Base
pointer), SI (source index), and DI (destination index).
Since all the CPU registers are 16 -bits long, this means that
any such register can only access 218 = 65,536 (or 64K) bytes
of memory. To overcome this limitation, any of these registers
can be combined with an appropriate segment register to
address much larger chunks of memory, the actual size being
dependent on the total number of combined bits.

For example, SS and SP are combined for stack operations,
while CS and IP are combined to locate the next instruction.
Mostly, these combinations are arranged within the CPU by
default. The maximum addressable memory, when two 16 -bit
registers are combined end -to -end, corresponds to 220 bytes
which is one megabyte. Such memory addressing is called the
'effective address'. The segment register is combined with the
offset register in the following way.

Suppose that the CS register contains 53C2h and the IP
register contains 107Ah, then the physical address will be

53C2Oh Segment times 10h (16 decimal)
+ 107Ah Offset

54C9Ah

Therefore, if the contents of CS and IP were set to address the
highest accessible address (OFFFFFh) then CS would contain
F000h and IP would contain FFFFh (CS could contain FFFFh
and IP contain 000Fh). In other words, there is more than one
way of defining a physical memory address.

In the case of the 80386 (or higher) processor, the CPU
registers are 32 -bits long and addresses may be formed using
a 16 -bit segment and a 32 -bit offset. This gives a maximum
possible address space of 248 or a massive 4 gigabytes of
memory (this addressing is only permitted when the CPU is
operating in 'protected' mode, such as under Microsoft
Windows 3.0 or higher and other multitasking environments. A
description of this mode of operation is beyond the scope of this
book.)

The table on the next page shows the size and general usage
of each register in the 80386 (or higher) CPUs.

83

TABLE A-2 Names and Tasks of 32 -bit Registers

31 23 15 7 0

AH AL

DH DL

CH CL

BH BL

BP

SI

DI

SP

CS

DS

SS

ES

Fs

GS

'P

Flags

EAX, Accumulator

EDX, Data

ECX, Count

EBX, Base

Base Pointer

Source Index

Destination Index

Stack Pointer

Code Segment

Data Segment

Stack Segment

Extra Segment

Extra Segment

Extra Segment

Instruction Pointer

Rags

The Register Command:
The register command allows us to display the names and
contents of the registers. To display all the registers, type

-r
which will cause Debug to respond with

84

AX=0000 BX=8000 CX=085B DX=0080 SP=FFEE BP=0000 S1=0000 D1=0080
DS=1318 ES=I31B SS=131B CS=131B IP=0100 NU UP El PL NZ NA PO MC
1318:0100 66 DB 66

assuming that file testi .txt was in memory at the time. Note the
contents of the CX register which is 005B, the length of our file.

To change the contents of a register, type the register
command, followed by the name of the register. Thus, in the
case of the CX register, type

-r cx

which causes Debug to repeat the name of the register and the
current value held in it (in hex), and then prompt you for a new
value by displaying a colon. For example,

CX 005B

At that point we can type the new length of the file in hex, or
press <Enter> to abort.

Appending to a File
As an example, let us add the string "Last line addition" to the
end of the previous file. We start with address 15A which
contains the value 1A representing the Ctrl -Z at the end of the
file. This is not needed and can be overwritten. Thus, typing

-e 15A "Last line addition"

adds 18 (decimal) bytes to the length of the file which was hex
005B (decimal 91) - look up Table 1 in Chapter 1 for conversion
of decimal to hex, and vice versa.

Since we have already overwritten the contents of location
15A, the new length is 91-1+18 = 108 bytes, occupying
locations 0100 through to 0166. Now add a carriage return (OD)
and a line feed (OA) to the end of the additional line by typing

-e 016C OD OA

which now makes the length to 110 (decimal) bytes or hex 6E.
We now need to change the contents of the CX register, and

to this end we type

-r cx

85

which causes Debug to display the present contents of the
register and prompt for the change, which we type in as 6E, as
follows:

CX 005B
:6E

Before we write the present contents of memory to file, we can
name a new file with the n command, say test2.txt, by typing

-n test2.txt
-w

which causes Debug to respond with

Writing 0006E bytes

A screen dump of the reloaded file is shown below, which
verifies what we have been discussing above.

131B:8108 66 69 7Z 73 74 20 SC 69-6E 65 28 6F 66 20 74 65
13113:0110 78 74 OD BA 73 65 63 6F -6E 64 ZB 6C 69 GE 65 28

1316:0120 65 64 69 74 65 64 28 62-79 20 64 65 62 75 67 OD

1318:8138 OA 74 68 69 72 64 28 6C-69 6E 65 28 6F 66 28 74

1318:8140 65 78 74 OD BA 66 6F 75-7Z 74 68 28 6C 69 6E 65

1318:8158 28 6F 66 28 74 65 78 74-8D 0A 4C 61 73 74 28 6C

131B:0168 69 6E 65 20 61 64 64 69-74 69 6F 6E 8D BA 88 88

1318:0178 08 00 00 80 88 88 88 00-08 08 08 08 88 08 88 08

first line of to
xt..second line
edited by debug.
.third line of t
ext..fourth line
of text..Last 1
ine addition....

The Assemble Command
The general form of the a (for assemble) command is

a address

where address is the memory location we want to start Debug
assembling the statement we enter. If the address parameter is
omitted, then Debug starts assembling with the location
following the last location assembled. If the assemble command
had not been used since starting Debug, the assembling starts
with the location pointed to by CS:IP which is CS:0100 if no file
is loaded or if the file loaded is a .COM file.

When all statements have been entered, the <Enter> (or
<Return>) key must be pressed to provide an empty line which
signifies the end location for the assembly.

All numeric values must be entered as 1 to 4 hex digits. Prefix
assembler mnemonics must be entered in front of the operation

86

codes (called opcodes) to which they refer, but can also be
entered on a separate line. In general, a line of source code is
divided into the following four sections:

Label Mnemonic Operand Comment

The 'label' is a symbolic reference to the memory location
where the next instruction is located, normally used as the
target of a jump or subroutine call. A label can contain
alphanumeric characters and the underscore character, but the
first character must be a letter. A colon is typed at the end of a
label to indicate that this label will be referenced only within the
current segment of code.

The 'mnemonic' symbolises a CPU instruction, such as MOV
(for move), while the 'operand' refers to the operation to be
executed, such as AH,02 (AH referring to the destination, with
hex 02 referring to the source).

The 'comment' symbolises an explanation of the instruction
and must be preceded by a semi -colon.

Thus, the line

begin: MOV AH,02 ; move hex 02 into register AH

represents one possible line of assembler instruction.
Below is a list of the mnemonics, together with their meaning,

which we will be using later in this book.

TABLE A-3 List of Common Assembler Mnemonics

ADD Add destination to source
CMP Compare destination to source
INT Call interrupt type
IRET Interrupt return
JMP Jump to target
JNZ Jump if not zero
JZ Jump if zero
MOV Move into destination the source

87

The GO Command
The g (for go) command executes the program in memory. Its
general form is:

g =address1 address2

where address1 is the address where Debug begins execution
and changes both the CS and IP registers, while address2 sets
break-points which stop program execution. If both addresses
are omitted, then Debug executes the program normally. If the
segment is not specified, then Debug replaces the value in the
IP register with addressl . The equal sign must be included with
address1. When program execution reaches a break-point, the
Debug displays the registers, flags, and decoded instructions of
the next instruction ready for execution.

The go command uses the IRET instruction to cause a jump
to the program under test. When a program is completed, then
you must reload the program before you can execute it or
debug it again.

The Unassemble Command
The u (for unassemble) command, converts memory back to
assembly language mnemonics (disassembles bytes) along
with address and byte values. The display of a disassembled
code looks just like a file ready for assembly. The format is:

u address

Or
U range

where address is the address at which disassembly starts with
the location pointed to by CS:IP. If address is omitted, then
Debug starts converting code after the last location
disassembled. If range is omitted, Debug disassembles 20 hex
bytes.

The Quit Command
The q (for quit) command can be used to leave Debug and
return to DOS without saving any changes made. To save the
contents of memory to file, the write command must be issued
before the quit command.

There are a lot more commands in Debug, but what has
been presented here is more than enough for what we need.

88

APPENDIX B
SYSTEM CONFIGURATION

If you are using a computer with a hard disc, then it is assumed
that you have structured it in such a way as to hold all the DOS
external command files in the subdirectory \DOS, all the batch
files in the subdirectory \BATCH, and that you hold the other
utility programs we develop in this book, in a subdirectory called
\UTILS.

The Config.sys File
This file (located on the root directory of the boot -up drive)
allows you to configure your computer to your needs, as
commands held in it are executed during booting up the
system. The easiest way to amend this system file is with the
use of either the Edit screen editor (available only to users of
DOS 5), or the Edlin line editor (available to users of all other
versions of DOS), as discussed in the preceding chapters.

If you are setting up your system for the first time, you will
need to change the config.sys file that is created for you by the
SETUP program, because it might not include all the
commands you will require to run your system efficiently. To
view the contents of the file, use the type command followed by
the filename, at the system prompt.

The commands included in the config.sys file below, could
be quite adequate for versions of DOS prior to MS-DOS 5.0.

SHELL=C:\DOS\COMMAND.COM C:\DOS\ /E:256 /P

DEVICE=C:\DOS\ANSI.SYS
COUNTRY=044C:\DOS\COUNTRY.SYS
BREAK=ON
FILES -30
BUFFERS=30

LASTDRIVE=E

Commands in config.sys file for DOS versions prior to DOS 5.0.

Do remember that any changes made to this file only take effect
after re -booting which can be achieved by pressing either the
reset button on the system unit of your computer, or the 3 keys
Ctrl+Alt+Del simultaneously.

89

If, on the other hand, you are running DOS 5, then the above
commands will not be adequate enough. Exactly what
command you include in your config.sys file will depend on the
type of processor in your machine and the available size of
extended memory in your system.

The list below, contains commands that you can include
within your config.sys file when running DOS 5 on a 386
processor machine with at least 3 Mbytes of RAM.

SHELL=C:\DOS\COMMAND.COM C:\DOS\ /E:256 /P
DEVICE=C:\DOS\HIMEM.SYS
DOS=HIGH,UMB
DEVICE=C:\DOS\EMM386.EXE RAM I=B000-B7FF,I=E000-EFFF
DEVICE=C:\DOS\ANSI.SYS
DEVICEHIGH=C:\DOS\SMARTDRV.SYS 1024 128
DEVICEHIGH=C:\DOS\RAMDRIVE.SYS 512 /E
DEVICEHIGH=C:\DOS\SETVER.EXE
COUNTRY=044C:\DOS\COUNTRY.SYS
BREAR=ON
FILES=30
BUFFERS=30
LASTDRIVE=E

Commands in config.sys file for DOS 5 version on a 386 machine.

Again, do remember that any changes made to this file only
take effect after re -booting which can be achieved by pressing
the reset button, or the 3 keys Ctrl+Alt+Del simultaneously.

Configuration Commands:
A brief explanation of the configuration commands, which can
be included within the config.sys file, is given below:

BREAK By including the command BREAK=ON in the
config.sys file, you can use the key
combination Ctrl+C (hold the key marked Ctrl
down and press C) or Ctrl+Break, to interrupt
MS-DOS I/O functions.

BUFFERS MS-DOS allocates memory space in RAM,
called buffers, to store whole sectors of data
being read from disc, each of 512 bytes in
size. If more data are required, MS-DOS first
searches the buffers before searching the
disc, which speeds up operations.

90

The number of buffers can be changed by
using:

BUFFERS=n

where n can be a number from 1 to 99.
However, as each buffer requires an additional
0.5 Kbyte of RAM, the number you should use
is dependent on the relative size between the
package you are using and your computer's
RAM. Best results are obtained by choosing
between 10-30 buffers.

COUNTRY MS-DOS displays dates according to the US
format which is month/day/year. To change
this to day/month/year, use the command

COUNTRY=044

where 044 is for U.K. users.

Non U.K. users can substitute their
international telephone country code for the
044. The default value is 001, for the USA.

DEVICE MS-DOS includes its own standard device
drivers which allow communication with your
keyboard, screen and discs. However, these
drivers can be extended to allow other devices
to be connected by specifying them in the
config.sys file. Example of these are:

DEVICE=ANSI.SYS

which loads alternative screen and keyboard
drivers for ANSI support - features of which
are required by some commercial software.

DEVICE=SETVER.EXE

which sets the version number that MS-DOS
v5 reports to a program. You can use this
command at the system prompt to display the
version table, which lists names of programs
and the number of the MS-DOS version with
which they are designed to run, or add a

91

program that has not been updated to
MS-DOS 5.

DEVICE=MOUSEAnn.SYS

allows the use of specific mouse devices.

DEVICE=VDISKSYS n

allows you to specify the size n in Kbytes
(default 64) of RAM to be used as an extra
very fast virtual disc. With computers which
have more than 640 Kbytes of RAM, the option
/E can be used after n in the command to
allocate the specified memory size from the
extra area of RAM.

DEVICE=DRIVER.SYS

allows you to connect an external disc drive.

DEVICE=EGA.SYS

provides mouse support for EGA modes.

DEVICE=COMn.SYS

specifies asynchronous drivers for the serial
ports, where for n=01 specifies an IBM PC AT
COM device, and n=02 specifies an IBM PS/2
COM device.

DEVICEHIGH Loads device drivers into the upper memory
area.

DOS Sets the area of RAM where MS-DOS will be
located, and specifies whether to use the
upper memory area. The command takes the
form:

DOS=HIGH

DRIVPARM Sets characteristics of a disc drive.

FCBS Specifies the number of FCBs that can be
opened concurrently. The command takes the
following form:

92

FCBS=x,y

where x specifies the total number of files by
FCBs, from 1 to 255, that can be opened at
any one time (the default value being 4), and y
specifies the number of opened files (from
1-255) that cannot be closed automatically by
MS-DOS if an application tries to open more
than x files.

FILES MS-DOS normally allows 8 files to be opened
at a time. However, some software such as
relational databases, might require to refer to
more files at any given time. To accommodate
this, MS-DOS allows you to change this
default value by using:

FILES=n

where n can be a number from 8 to the
maximum required by your application which
usually is 20, although the maximum allowable
is 99.

INSTALL This command runs a terminate -and -stay -
resident (TSR) program, such as FASTOPEN,
KEYB, NLSFUNC, or SHARE while MS-DOS
reads the config.sys file. The command takes
the following form:

INSTALL=filespecfparams)

where params specifies the optional line to
pass to the filespec which must be
FASTOPEN.EXE, KEYB.EXE, NLSFUNC.EXE
or SHARE.EXE.

LASTDRIVE This command is used if additional drives are
to be connected to your system, or you are
sharing a hard disc on a network. The
command takes the form:

LASTDRIVE=x

where x is a letter from A to Z (default E).

93

REM REM followed by any string, allows remarks to
be entered in the config.sys.

SHELL Manufacturers of some micros provide a 'front
end' or an alternative Command Processor to
COMMAND.COM as real -mode command -line
processor. To invoke this, the command
SHELL must be included within the config.sys
file. The command takes the form:

SHELL=FRONTEND.COM

where FRONTEND is the name of the
alternative Command Processor. The default
value of SHELL is COMMAND.COM.

STACKS Sets the amount of RAM that MS-DOS
reserves for processing hardware interrupts.

SWITCHES Specifies the use of conventional keyboard
functions even though an enhanced keyboard
is installed.

The Autoexec.bat File
This is a special batch file (located on the root directory of the
boot -up drive) that MS-DOS looks for during the last stages of
booting up and if it exists, the commands held in it will be
executed. One such command is the KEYB xx which configures
keyboards for the appropriate national standard, with xx
indicating the country. For the U.K., the command becomes
KEYB UK, and you will need to execute it if your keyboard is
marked with the double quotes sign on the 2 key and/or the @
sign over the single quotes key and/or the £ sign over the 3 key.

The easiest way to amend this system file is with the use of
either Edit or Edlin, as discussed earlier. If you are setting up
your system for the first time, you will need to change the
autoexec.bat file that is created for you by the SETUP
program, because it might not include all the commands you
will require to run your system efficiently. If your system has
been implemented by, say, your computer staff, do not edit this
file or use Edit or Edlin to look at its contents, unless you have
to and you know precisely what you are doing, as the file

94

contains entries that MS-DOS uses to define specific operating
attributes. To view the contents of the file, use the type
command followed by the filename, at the system prompt.

The commands included in the autoexec.bat file below,
could be quite adequate for versions of DOS prior to DOS 5.0.

@ECHO OFF
SET COMSPEC=C:\DOS\COMMAND.COM
VERIFY OFF
PATH C:\DOS;C:\WINDOWS;C:\BATCH;C:\UTILS
C:\WINDOWS\mouse.COM
C:\DOS\APPEND \Batch
C:\DOS\REYB URC:\DOS\REYBOARD.SYS /ID:166
C:\DOS\GRAPHICS GRAPHICS
PROMPT PG
SET TEMP=D:\
ECHO H E L L 0 ... This is your PC using

VER

Commands in autoexec.bat file for DOS versions prior to DOS 5.0.

Exactly what command you include in your autoexec.bat file
when running DOS 5 will depend on the type of processor in
your machine and the available size of extended memory in
your system. The list below is suitable for a 386 processor
machine with at least 3 Mbytes of RAM.

@ECHO OFF
SET COMSPEC=C:\DOS\COMMAND.COM
C:\WINDOWS\SMARTDRV.EXE
VERIFY OFF
PATH C:\DOS;C:\WINDOWS;C:\BATCH;C:\UTILS
LOADHIGH C:\WINDOWS\mouse.com
LH C:\DOS\APPEND \Batch
LH C:\DOS\KEYB URC:\DOS\REYBOARD.SYS /ID:166
LH C:\DOS\GRAPHICS GRAPHICS
LH C:\DOS\DOSREY
PROMPT PG
SET TEMP=D:\
ECHO H E L L 0 ... This is your PC using

VER

Commands in autoexec.bat file for DOS 5 version on a 386 machine.

95

Do remember, that any changes made to the autoexec.bat file
only take effect after typing

autoexec

at the system prompt, or when re -booting the system by either
pressing the reset button on your computer's system unit, or the
three keys Ctrl+Alt+Del simultaneously.

Other commands within the autoexec.bat file carry out the
following functions:

Command Function
APPEND Enables programs to open data files in

specified directories from the current di-
rectory.

ECHO Displays messages on screen, or turns
the echo feature on or off.

GRAPHICS Allows MS-DOS to print on a graphics
printer the information appearing on the
screen. The parameter GRAPHICS indi-
cates that printer is an IBM printer.

KEYB Identifies the type of keyboard connected
to your system.

MOUSE Loads the mouse driver that comes with
the mouse device.

PATH Sets a search path for executable files.
PROMPT Changes the appearance of the MS-DOS

command prompt. The parameter $P
forces the display of the current drive and
path, while the parameter &G displays
the greater -than sign (>).

SET Allows an environment variable named
TEMP to be associated with the string
C:\WINDOWS\TEMP. This is the subdi-
rectory where Microsoft Windows creates
and later deletes temporary files.

VER Displays the version of MS-DOS running
on your system.

VERIFY Turns on/off verification that files are
written correctly to disc.

96

APPENDIX C
PRINTER COMMANDS

This Appendix lists some of the more useful printer commands of
the Epson EX800 compatible and the HP LaserJet III compatible
printers. The commands are categorised under three printer
functions; 'printer control', 'typeface', and 'format'.

The commands use the following conventions:

^G as in Table C-1, is obtained by holding down the Ctrl
key and pressing the upper case letter G.

{ESC} represents the ASCII character 27 (called 'Escape')
and if you are using the screen editor Edit you
should enter it by first typing CtrI+P, then pressing
the <Esc> key which causes the left arrow (4--) to
appear on the screen. If, on the other hand, you are
using the line editor Edlin, then enter it by first typing
Ctrl+V (which displays as AV) followed by [.

0 as in AO in Table C-2, represents uppercase letter o.

as in {ESC}In in Table C-3, is the lower case letter L
(not 1).

n represents a number (e.g. number of columns in
above example).

0 as in {ESC}O in Table C-3, represents character
zero.

TABLE C-1 Ust of Common Printer Control Commands

Function Epson HP Ill
Bell - Sounds the printer beep "G "G
Cariage Return "M "M
Form feed - advances paper "L "L

to top of next page (with
the HP, it also ejects page)

Horizontal TAB {ESC}BanR
Line feed "J "J
Reset - resets printer to {ESC}g {ESC}E

standard settings
(with HP it also ejects a page)

97

TABLE C-2 List of Common Printer Typeface Commands

Function Epson HP 111

Character height - Points {ESC}(nV
Condensed start "0
Condensed stop "R
Double -strike start {ESC}G
Double -strike stop {ESC}H
Expanded start - one line only AN

Expanded start - until stopped {ESC}W1
Expanded stop - stops "N only "T
Expanded stop - stops {ESC}W1 only {ESC}WO
Italic start {ESC}4
Pitch (characters per inch) {ESC}(snH
Spacing - Proportional {ESC}p2 {ESC}(s1P
Spacing - Fixed {ESC}31 {ESC}(sOP
Style Italic {ESC}4 {ESC}(s1S
Style Upright - normal {ESC}5 {ESC}(sOS
Style Subscript start {ESC}S1
Style Superscript start {ESC}SO
Style Subscript/superscript stop {ESC}T
Stroke weight Light {ESC}(s-3B
Stroke weight Medium {ESC}(0B
Stroke weight Bold {ESC}(s3B
Symbol set to PC -8 {ESC}(10U)
Symbol set to Roman -8 {ESC}(8U
Typeface Line Printer {ESC}(sOT
Typeface Boldface start {ESC}E
Typeface Boldface stop {ESC}F
Typeface Pica {ESC}P {ESC} (s1 T
Typeface Elite {ESC}M {ESC}(s2T
Typeface Courier {ESC}(s3T
Typeface Helvetica {ESC}(s4T
Typeface Times Roman {ESC}(s5T
Underline start {ESC} -1 {ESC}&dOD
Underline stop {ESC} -0 {ESC}&d@

98

TABLE C-3 List of Common Printer Format Commands

Function Epson HP III
Line spacing to 14 inch {ESC}2
Line spacing to 14 inch {ESC}O
Line spacing in n multiples of h/72" {ESC}An
Line spacing in n multiples of l/,,,- {ESC}3n
Line spacing to specified {ESC}&InD

lines per inch
Margin Left - sets margin to {ESC}In {ESC}&anL

specified nth column
Margin Right - sets margin to {ESC}Qn {ESC}&anM

specified nth column
Margins Clear - both Left and Right {ESC}9
Motion index Horizontal {ESC}&knH
Motion index Vertical - sets {ESC}&InC

space between rows to
specified multiple of/.,'

Page length to specified {ESC}COn
number of inches

Page length to specified {ESC}Cn {ESC}&InP
number of lines

Page orientation {ESC}&In0
Portrait n=0, Landscape n=1

99

too

INDEX

Addtext. bat 32, 68
ANSI.SYS 2, 33
APPEND

command 96
mode (Debug) 85

Archive attribute 65, 72
ASCII

codes 2
files 7

Assemble mode (debug) .. 86
Assembler mnemonics ... 87
AUTOEXEC.BAT file . 30, 94
ATTRIB command 65, 67

BACKUP command 70
Base pointer 83
BASIC 25, 45
Batch

file commands 27
CALL 27, 68
ECHO 28, 96
FOR 28
GOTO 28
IF 29
PAUSE 29
REM 29
SHIFT 29, 70
files 1, 25
use of % parameter 26

Beep code 66
Booting up 89
BREAK command 90
BUFFERS 90

Clean disc 62
Clear screen 41

Colours (screen) 37, 42
COMMAND.COM 70, 94
CONFIG.SYS file 2, 89
Configure system 89

Console commands
COPY

34

command 13,
mode (Edlin)

66, 71

22
to printer 57

COUNTRY 91

CPU 81

Ctrl+Alt+Del 90, 96
Ctrl+C 20
Ctrl+G 66
Ctrl+P 40
Ctrl+Z 23, 68
Current

line (Edlin) 20
directory 68

Cursor
control 34
on/off 46

Cut command (Editor) ... 13
CX register 81

DATE command 60
Debug 2, 75

Append 85
Assemble 86
Dump 76
Enter 80
Fill 78
Go 88
Load 78
Name 79
Quit 88
Register 84
script file 46
Unassemble 88
Write 80

Define key 38
DELete command 63, 66
Delete mode (Edlin) 22
Destination index 83

101

DEVICE 2, 91

Device drivers 92
DEVICEHIGH 92
DIR 73

/0 option 73
/P option 25
/S option 73

Directory
current

65, 89
68

return to 68
root 89, 94

Disc
cataloguing 73
clean 62
formatting 61

parking 64
types 62

Display
attribute
erase

36, 72
36

set/reset mode 37
DOS

command 92
internal commands 2
SHELL command 70
prompt
versions

1,
1,

59
86

DRIVPARM 92
Dump mode (Debug) 76

ECHO command 28
Edit command (Editor) 7
Edit mode (Edlin) 21

Edit
dialogue boxes 11

Edit commands 9
File commands 9
Help menu 10
menu bar 8

Options menu 10
Search/replace 10

screen
scroll bar
status bar
title bar

Editors
Edlin line editor 2,
Enter mode (Debug)
Environment

space
variables

Epson compatible printers

7
8
8
8
2

19
80

70
29
52

ERRORLEVEL 50, 63
Erase display 36
ESCape codes 33

Entering 40
printers 52, 97

Exit EDITor 18
Exit Edlin 24
Extended codes , 3, 39
Extending path 69
External commands 25

Fl key 63
FCBS 92
FILES 97
File 65

extensions
find

7, 25
65

management 65
moving 66
open 17
protection 67

Fill mode (Debug) 78
Find

file 65
text 16

FOR command 28
FORMAT command 62

Go mode (Debug) 88
GOTO command 28

102

GRAPHICS command 96
Hidden attribute 65
HP compatible

Control language 55
Laser printers 55

IF
command 29
ERRORLEVEL 50

Insert mode (Edlin) 21
INSTALL 93

KEYB command 96
KEYBOARD.SYS 95
Keyboard control codes ... 38
KEYB UK command 94

LABEL command 73
Landscape orientation 57
Laser printer control 55
LASTDRIVE 93
Line editor 19
List mode (Edlin) 20
Listing directories 73
Load mode (Debug) 78
LPT1 55, 57

Memory addressing 83
Menu system 43
Mnemonics 87
Mode commands 36
MORE filter command 31

MOUSE command 96
MOUSE.SYS 92
Move

files 66
mode (Edlin) 22
text (Editor) 14

Name mode (Debug) 79
Named parameters 26

NUL device
NumLock key
Paper orientation
Park hard disc
PATH

63
74
57
64

command 2,
extending

30, 96
69

PAUSE command 72
PCL printer language 55
Portrait orientation 57
Print

document (Editor) 18
margins 58

Printer
control 51

dot matrix 52
Epson compatible ..
escape codes
laser 55,
menu
reset
types

52,
52,
57,
52,
54,

97
97
97
55
57
52

Printing
bold
compressed

54, 56
53

italics
expanded

54, 56
53

line spacing 56
nlq 53
orientation 57
setting margins 58
underline
vsmall

54, 57
55

PRN re -direction 52
PROMPT command 96

Quit
Debug 88
Edlin 24
Editor 18

103

RAM 91

Read-only attribute ... 65, 67
RECOVER command 62
Re -direction 31

Register mode (Debug) ... 84
Registers 81

REM command 29
Replace mode (Edlin) 23
Reset button 90, 96
RESTORE command 70
Root directory 89, 94

Search mode (Edlin) 22
Screen

clear 41

colours 42
control
edit

2, 34
7

movement 12
save 64
shadowed box 45

Select text (Editor) 14
SET command ... 26, 29, 96
SETUP 94
SHELL command 70, 94
SHIFT command 69
Size of discs 62
SORT filter command 73
Source index 83
Stack pointer 83
STACKS command 94
Subdirectories 72, 89
SWITCHES command 94
Switches

DIR 73
XCOPY 72

System
attribute 65
set-up 95

TIME command 60

Transfer mode (Edlin) 24
TYPE command 33, 42
Type of discs 62
Text

editing (Editor) 13
files 7, 25, 65

Unassemble (Debug) 88
Utilities menu 59

VER command 96
VERIFY command 96
Very small print 55, 56

Wildcard characters 65
Write mode (Debug) 80

XCOPY
command 71

switches 72

104

NOTES

105

NOTES

106

NOTES

107

NOTES

108

NOTES

109

NOTES

110

MAKING MS-DOS WORK FOR YOU

COMPANION DISC

This book contains many pages of batch file listings. There is no
reason why you should spend many hours typing them in, unless
you are learning to type and need the practice.

The COMPANION DISC for this book comes with all the listings,
organised into a separate subdirectory for each chapter. It is
available in both 3.5 -inch and 5.25 -inch formats.

COMPANION DISCS for all books produced by either, or both,
authors, with the same publisher, are also available and are
listed at the front of this book. Make sure you specify the book
number with your order (eg BP 319)

ORDERING INSTRUCTIONS

To obtain your copy use the order blank below and enclose a
cheque, payable to P.R.M.Oliver, or a postal order.

Book
No.

Book
Name

Unit
Price

Total
Price

BP 319 Making MS-DOS Work for You £2.50

£2.50

£2.50

Name
Address

Disc Format 3.54nch 5.25 -inch

Sub -total

P & P

Total Due

£

£.... 0.45

£

Send to: P.R.M.Oliver, CSM, Pool, Redruth, Cornwall, TR15 3SE

PLEASE NOTE

The authors are fully responsible for providing this Companion Disc service. The publishers
of this book accept no responsibility In any way for the supply, quality, or magnetic contents
of the disc, or In respect of any damage, or injury that might be suffered or caused by its use.

111

i'.

1

xx

BERNARD BABANI BP319

Making or For o
H If you are a PC user and are at ease with the day-to-day usage of the MS-DOS operating

system, this book could help you improve your system set-up and provide you with a simple
to use, but professional looking, menu system. The routines described will help you
understand more of the workings of MS-DOS and help you get the most out of your computer
in terms of efficiency, productivity and enjoyment.

The book was written with the busy person in mind and, as such, it has an underlying
cture based on "what you need to know first, appears first". Nonetheless, the book has

0 been designed to be circular, which means that you don't have to start at the beginning
and go to the end.

H The book explains:
How to write customised batch files which allow you to display what you want on your

. screen, and in the form and order you want it; instead of being forced to use the DOS
prompt on a black screen.

How to design and set up a fast interactive and professional looking menu system, so
that you or anyone else can run utility applications or commercial software packages
easily.

How the ANSI.SYS display and keyboard commands can be used to position the cursor
on any part of the screen, change the intensity of the displayed characters or change
their colour.

How the Edit screen editor or the Edlin line editor can be used to enter ESCape
(ANSI.SYS) commands into simple ASCII files to allow control of both your screen
display and your printer.

How to control the operation of the two main types of printers in use today, Epson
compatible dot matrix and HP compatible laser printers.

How to use several useful routines, such as moving and finding files, protecting files from
accidental erasure, a simplified backup process, a screen saver, and a disc cataloguing
system.

The Debug program and how it can be used to create, see and change the contents of
any file, including those of programs written in assembler code. This includes how to find
your way around the names and tasks of the CPU registers and the meaning of some
simple assembler mnemonics.

The book is relevant to all versions of both MS-DOS and PC -DOS as implemented on
M and other IBM-compati4le PCs.

£4.95

9

ISBN 0-85934-319-7

10
780859

11
343190

0 0 4 9 5

