
Programming in

Visual BASIC

for Windows

1

Programming in Visual BASIC
for Windows

BOOKS AVAILABLE
By both authors:

BP306 A Concise Introduction to Ami Pro 3
BP327 DOS one step at a time
BP337 A Concise User's Guide to Lotus 1-2-3 for Windows
BP341 MS-DOS explained
BP343 A concise introd'n to Microsoft Works for Windows
BP346 Programming in Visual Basic for Windows
BP351 WordPerfect 6 explained
BP352 Excel 5 explained
BP353 WordPerfect 6.0 for Windows explained
BP354 Word 6 for Windows explained
BP362 Access one step at a time
BP372 CA-SuperCalc for Windows explained
BP387 Windows one step at a time
BP388 Why not personalise your PC
BP399 Windows 95 one step at a time*
BP400 Windows 95 explained*
BP402 MS Office one step at a time
BP405 MS Works for Windows 95 explained
BP406 MS Word 95 explained
BP407 Excel 95 explained
BP408 Access 95 one step at a time
BP409 MS Office 95 one step at a time
BP415 Using Netscape on the Internet
BP419 Using Microsoft Explorer on the Internet
BP420 E-mail on the Internet
BP426 MS -Office 97 explained
BP428 MS -Word 97 explained
BP429 MS -Excel 97 explained
BP430 MS -Access 97 one step at a time

By Noel Kantaris:

BP232 A Concise Introduction to MS-DOS
BP258 Learning to Program in C
BP259 A Concise Introduction to UNIX*
BP261 A Concise Introduction to Lotus 1-2-3
BP264 A Concise Advanced User's Guide to MS-DOS
BP274 A Concise Introduction to SuperCEIc 5
BP284 Programming in QuickBASIC
BP325 A Concise User's Guide to Windows 3.1

Programming in Visual
BASIC for Windows

by

P.R.M. Oliver
and

N. Kantaris

BERNARD BABANI (publishing) LTD.
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W6 7NF

ENGLAND

PLEASE NOTE

Although every care has been taken with tie production of
this book to ensure that any projects, designs, modifications
and/or programs, etc., contained herewith, operate in a
correct and safe manner and also that any components
specified are normally available in Great Britain, the
Publishers and Author(s) do not accept responsibility in any
way for the failure (including fault in desigr) of any project,
design, modification or program to work correctly or to cause
damage to any equipment that it may be connected to or
used in conjunction with, or in respect of any other damage
or injury that may be so caused, nor do the Fublishers accept
responsibility in any way for the failure to obtain specified
components.

Notice is also given that if equipment that is still under
warranty is modified in any way or used or connected with
home -built equipment then that warranty may be void.

© 1995 BERNARD BABANI (publishing) LTD

First Published - September 1995
Reprinted - October 1996
Reprinted - August 1997
Reprinted - June 1998

Reprinted - October 1998
Reprinted - May 1999

Reprinted - January 2000

British Library Cataloguing in Publication Data:

Oliver, Phil
Programming in Visual Basic for Windows

I. Title II. Kantaris, Noel
005.42

ISBN 0 85934 346 4

Cover Design by Gregor Arthur
Cover illustration by Adams Willis

Printed and Bound in Great Britain by Cox & Wymai Ltd. Reading

ABOUT THIS BOOK

This book is a guide to programming using Visual BASIC for
Windows. The reader is not expected to have any familiarity
with the language as both the environment and statements
are introduced and explained with the help of simple
programs. The user is encouraged to build these, save them,
and keep improving them as more complex language
statements and commands are encountered.

The book is not intended to replace the very extensive
manuals that come with the program but to complement
them. The very size of Visual BASIC and its completely new
programming environment, can be very daunting to a new
user, so this systematic approach should make learning very
much easier.

The first three Chapters give an overview of Visual BASIC
and the graphic based environment it uses. Forms and the
more simple controls that go with them are introduced, but no
attempt is made to explain how to use Microsoft Windows

that if you want to create programs that
work with Windows, you will be familiar with this interface.

Chapters 4-7 cover the programming language and how it
is entered into your PC, dealing with the basic Visual BASIC
statements which control program flow, input and output, and
leading to the concepts of strings and arrays.

In Chapter 8 we return to some of the more powerful
controls that allow you to produce tie sort of Windows
programs that you can buy.

The next chapter covers functions and procedures which
expand the programming capabilities of the user beyond the
beginner's level. Chapter 10 deals entirely with disc file
handling techniques and should be of special interest to
those who need to process large quantities of data. The two
main types of data files are discussed in some detail, namely,
sequential and random access types. The last chapter gives
an overview of the powerful debugging features of the
program.

Appendices are included that detail all the Event
Procedures available in Visual BASIC as well as a brief, but
complete, language reference listing.

ABOUT THE AUTHORS

Phil Oliver graduated in Mining Engineering at Cambcrne
School of Mines in 1967 and since then has specialised in
most aspects of surface mining technology, with a particular
emphasis on computer related techniques. He has worked in
Guyana, Canada, several Middle Eastern countries, South
Africa and the United Kingdom, on such diverse projects as:
the planning and management of bauxite, iron, gold and coal
mines; rock excavation contracting in the UK; internaticnal
mining equipment sales and techn cal back up and
international mine consulting for a major mining house in
South Africa. In 1988 he took up a ecturing position at
Camborne School of Mines (part of Exeter University) in
Surface Mining and Management.

Noel Kantaris graduated in Electrical Engineering at Bristol
University and after spending three years in the Electronics
Industry in London, took up a Tutorsh p in Physics at the
University of Queensland. Research interests in Ionospheric
Physics, led to the degrees of M.E. in Electronics and P.D.-
in Physics. On return to the UK, he took up a Post -Doctoral
Research Fellowship in Radio Physics at the University of
Leicester, and then in 1973 a lecturing position in
Engineering at the Camborne School of Mines, Cornv.all,
(part of Exeter University), where since 1978 he has also
assumed the responsioility for the Computing Deparment.

If you would like to purchase a floppy disc containing all the files/programs which appear
in this, or any other listed book(s) by the same author(s), then fill in the form at the back
of the book and send it to P R M Oliver at the address stipulated

i

TRADEMARKS

TrueType is a registered trademarks of Apple Corporation.
IBM, AT and OS/2 are registered trademarks of In:ernational
Business Machines Corporation. Intel is a registered
trademark of Intel Corporation. Access, BASICA,
GW-BASIC, Microsoft, MS-DOS, QBASIC, QuickBASIC,
and Windows are registered trademarks of Microsoft
Corporation. PC Paintbrush is a registered tradema-< of
ZSoft Corp.

All other brand anc product names are trademarks or
registered trademarks, of their respective companies

ACKNOWLEDGEMENTS

We would like to thank the staff of both Microsoft in the UK
and Text 100, for their valuable help and the provision of
software for the preparation of this book. We would also like
to thank colleagues at the Camborne School of Mines for
their helpful suggestions which assisted us in the writing of
this book.

PREFACE

Visual Basic is rapidly becoming one of the most popular
'dialects' of BASIC in use today on BM and compatible
computers. It comes in two types, one for the DOS
environment, and the other, described in this book, that
works with Microsoft Windows.

The original version of BASIC (which stands for Beginner's
All-purpose Symbolic Instruction Code) was first developed
as a teaching language at Dartmouth College in 1964. In
1978 'standard BASIC' was adopted as a resul!.. of
recommendations on the minimal requirements of the
language.

BASICA, written by Microsoft for use with the IBM PCs, and
GWBASIC (its equivalent form running on compatibles), was
an enhanced version of standard BASIC, embodying nearly
200 commands. These were bundled with pre -DOS 5
versions of the operating system, but users of MS-DCS 5
and higher have access to a cut -down version of Microsoft's
QuickBASIC, known as QBASIC.

QuickBASIC was Microsoft's first compiled version of BASIC,
the earlier ones being interpreted languages. With an
interpreted language each and every statement of code las
to be irterpreted by a separate program called the interpreter
before the program is actually run. This happens each time a
statement is encountered, even if it appears within a Icop.
With a compiled lancuage, on the other hand, a separate
program, called the compiler, is used to check the wnole
program for errors and then compiles it into the machine
specific code that will actually be executed by the computer
at run time. Statements within loops are only checked once,
which makes a compled program far more efficiert than an
interpreted one.

Visual BASIC is ar event driven, or Object Orierted,
compiled language that also includes most of the features
built into QuickBASIC, so earlier programs can be easily
adapted to run on Visual BASIC.

CONTENTS

1. PACKAGE OVERVIEW 1

Versions of Visual BASIC 1

Installing Visual BASIC 2
System Requirements 2
The Installation Process 2

Some Housekeeping 5

Minimising P-ogram Manager 5
Visual BASIC Directory Structure 5

2. THE VISUAL BASIC ENVIRONMENT 7
Starting the Program from DOS 7

Starting the Program from Windows 7

General Windows Skills 7

The Visual BASIC Tutorial 7
Programming Steps 9

Design Mode 9
Break (Debug) Mode 9
Run Mode 9

The Visual BASIC Screen 10
The Help System 10
Title and Toolbar 11

Visual BASIC Forms 12
The Toolbox 12
Project Window 13
Properties Window 13

A First Program 14
Creating an Object 14
Changing a Caption 15
Entering Code 15
Running a Program 16
Saving a Program 16

3. PROGRAMMING BASICS 17
Project Elements 17
The Interface 17

Forms 17
Modules 18
Applications 18

The AUTOLOAD.MAK File 18
Visual BASIC Controls 19
Setting Properties 21

Some Form Properties 22
Label Properties 23
Text Box Properties 24
Command Button Properties 24
Check Box and Option Button Properties 25
The Tab Order of Controls 25
Shortcut Keys 25

Writing Code 26
Code Windows 26

Visual BASIC Naming Convention 28
Naming Control Properties 28

4. STARTING TO PROGRAM 29
Basic Statements 29

Editing Code 30
Program Comments 32

Variables and Constants 32
Variables 32
Constants 32
Expressions 32
Naming Convention 32
String Variables 34
Variable Type Declarations 34
The Dim Statement 35
The Val Function 36
The InputBox$ Function 36
The Print Statements 37

Arithmetic Operators & Priority 37
Additional Operators 38
The Assignment Statement 39

Saving a Program 40
Saving Files 41
Importing a Text File 41

5. INPUT AND OUTPUT CONTROL 43
Text Box Input 43
Changing a Property 45
Setting an Object's Focus 45

More on Print Output 46
Formatting with Tabs 47
Print Locations 48

Formatting Functions 50
User Defined Formats 51

6. CONTROL OF PROGRAM FLOW 53
Control Structures 53
The For... Next Loop 53

Use of Step 55
Nested For... Next Loops 56

The Do Loop 57
The Do...Loop Until Configuration 57
The Do Until...Loop Configuration 58
The Do...Loop While Configuration 59
The Do While...Loop Configuration 59

The While...Wend Loop 60
The If Statement 61

Relational Operators within If Statements 62
The If..Then..Else Statement 63
The Elseif Statement 64

Simple Data Sorting 65
The Select Case Statement 68

Data Type Conversion 71

Exiting Block Structures 71

7. STRINGS AND ARRAYS 73
String Variables 73
ANSI Character Codes 73
String Functions 76

Left and Left$ Functions 76
Right and Right$ Functions 76
Mid and Mid$ Functions 76
Other String Functions 77

String Conversion Functions 80
ANSI Conversion 80
Character Conversion 81

String Conversion 81

Value of String 81

String Concatenation 81

Arrays 83

String Arrays 83
Subscripted Numeric Variables 85
Static and Dynamic Arrays 86

8. MORE ON CONTROLS 91
Control Buttons 92
Check Boxes 93
Option Buttons 94
Combo and List Boxes 95

A Simple Telephone List 96
The Timer Control 98
Building a Menu Bar 98

A Simple VAT Calculator 99
The Menu Design Window 100

9. FUNCTIONS & PROCEDURES 103
Standard Mathematical Functions 103

Atn(X) 103
Sin(X), Cos(X) and Tan(X) 104
Sqr(X) 104
Abs(X) 105
Exp(X) 105
Log(X) 105
Int(X) and Fix(X) 106
Sgn(X) 107
Rnd and Randomize n 107

Derived Mathematical Functions 109
User -Defined Function Procedures 110
Sub Procedures 111
Parameter Passing 112
Subroutines 113

The Gosub and Return Statements 113

10. WORKING WITH FILES 115
Sequential Data Files 115

Saving a File to Disc 117
Loading a File from Disc 118

Common Dialogue Custom Control 118
Random Access Files 121
Defining Records by Type 121

Binary Files 126

11. DEBUGGING YOUR PROGRAMS 127
Compile E.-rors 127
Run-time Errors 127
Logical Errors 127

Break Mode 127
The Debug Tools 128

Breakpoints 128
Using the Debug Window 129
Using Instant Watch 129
Calls 129
Tracing Execution 130

APPENDIX A - THE VATCALC.MAK CODE 131

APPENDIX B - THE EVENT PROCEDURES 137

APPENDIX C - LANGUAGE REFERENCE 141

INDEX 161

Companion Disc Offer 171

1. PACKAGE OVERVIEW

Visual BASIC, unlike other structured languages suc-i as C,
or QuickBASIC, is an event driven programming language.
Instead of the program flow being controlled from the written
code ard running mainly from the first to the last Ines of
code, it is controlled by interactive events at ri.n-time, such
as the clicking of a mouse on a button or form. When such an
event occurs, the program code attached to that event is
actioned. In the program, buttons, forms, controls, the screen
and your printer, e*.c., are all called objects and Visual BASIC
is known as an Object Oriented language. It reacts to the
manipulation of objects. Once this concept is grasped, the
change from other programming languages is much easier.

Versions of Visual BASIC
Visual BASIC is available for working in both the DOS and
Windows environments. Although many of the principles are
the same with both, this book covers only the versions used
under Microsoft Windows. A version of the Windows program
(later than v3.0) must be installed and running on your PC
before you start.

Since the original Visual BASIC for Windows was released
in May 1991 there have been several updates and
improvements to the package. At the time of writing, Version
3.0 is the current one. This, like its predecessor, comes in
two versions, a standard one for most users; and a
Professional Edition with many powe-ful extras attached to it,
and costing several times as much.

As far as this book is concerned, 1 does not matter which
version of Visua BASIC for Windows you have. The
examples were all developed with the Professio'ial Edition of
Version 3.0, but none of its custom controls were used In

fact they were all cisabled so as not to complicate the screen
displays more thar necessary.

Visual BASIC for Windows provides by far the easiest way
for you to produce real working applications (or programs) to
run under Windows. Once you have created your application
you can very easily produce an executable -Ile (with the
extension .EXE) w-lich can then be run without Visual BASIC.

1

In fact, if it is good enough, you can even distribute your
application royalty -free, as long as you have purchased, and
registered, your copy of Visual BASIC.

Installing Visual BASIC
The initial installation procedure is very well automated, but
before you start, make sure your system is suitable.

System Requirements:
Microsoft specify the following minimum set-up. An IBM
compatible PC with an 80286 processor, or higher: with a
hard disc, 1MB of memory (RAM), a mouse, an EGA (or
better) display, running MS-DOS (version 3.1 or later) and
Windows (version 3.0 or later) in standarc or enhanced
mode.

To make use of the advantages of the Wirdows interface
we would recommend at least a 386 based machine with
4MB of memory and 30MB of spare hard disc space. With
anything less, the quality of life can get somewhat strained.

The Installation Process:
To carry out the installation, start Windows in the usual way
and insert the Visual BASIC Setup disc (No 1) in your A
drive. From the Windows Program Manager screen, activate
the File menu, by clicking your mouse on File, then click on
Run and type

A:setup

in the Command Line box that is opened Pressing the
<Enter> key will produce an opening Welcome Screen with
options to Cancel Setup or to Continue. Click on the
Continue button, or press the 'C' key (you can action most
commands in two ways, either by clicking with the left mouse
button, or by pressing the highlighted letter key. Throughout
this book the highlighted letter will be shown underlined).

If you are installing from the system discs for the first time,
you will be asked for details of your name and company. This
information is stored on the first Setup disc and a further
installation from the same discs will produce the following

2

fairly strong copyright warning message.

Microsoft Visual BasicSetuo
MSS pews. ho. detected that this id has aired,

b bp

Phi Oliver
Permed Copp

II is acceptede kir the legal pone to reinstall this product n soder
to Wide'. et, seeing cosy or to orplece corrupted es missisg
seem el the papaw
You can contemns to initial this product. but pas should be aerate
that the psadoct s protected by copyright leer rd idenrationsl
treaties
Unauthonzsoropoduction ot I/retribution of We papas or are
portion of it mop esult n were civi and creed petrifies and

proseculml to the wiaarium extent rodeo bet

ita..(sm.

Select Continue and you are given the choice of where the
program files should oe stored. If you are at all in doubt here,
choose the default C:\VB, but if you prefer to install it

elsewhere, make the required changes. Select Continue and
if the directory you chose does not exist, you will be given the
option to Create it.

The next screen, with the Professional Edition, indicates
that you need 32MB of available hard disc space. Our set-up
only used 26.6MB out that is still an enormous chunk of
most peoples' storage capacity! Select Complete
Installation if you have enough space, or Custom
Installation to select what parts of the package to install.
Next, we suggest you Dont install ODBC, because if you
are still reading this section you are almost certainly not
going to need database programming links for a while yet.

The file unpacking and copying procedure should then
start and the bottom window frame will keep you informed
about what is happening. When required, you will be asked to
place the next disc into the A: drive.

3

After about 20 minutes the tedious operation should be
complete and you will be given a message to place the
command

Share.exe /L:500

in your AUTOEXEC.BAT command. As far as this book is
concerned you can ignore this message, but you may need
to remember it at a later stage.

Masoft

ga.
Installation is complete.

Choose Run Visual Basic to start using Visual Banc. or Return
to Windows to exit Setup.

Lastly you should see the Installation Complete box shown
above. This gives you the options to Return to Windows or
to Run Visual BASIC. Having spent the last half hour
feeding discs into your drive and waiting patiently, we are
sure you will want to choose the latter option, but bear with
us and return to Windows.

Mcsocoft Read me
Vnuai Banc

Vnuad Base 0.1e0,11 Control Plotesnonal
Het, H* Demo

HetsOot E den, HAP Conolef Wsn SDK Help We, 31 API Vnu...1Destw
Rola anon H* Gude

V 3 ,

Crystal Reports Crystal newels wsisatirp4
to VIVA Banc Heir, $41WPWAWIll

3
K no...46w

Base

3
VB API

Reretence

The Professional Edition, as shown above, places 15 icons
into a new Visual BASIC group window. Double-clicking the
Read me icon will open a file of program information that is
more recent than the published manuals.

4

We copied the program
start-up icon (the first
one in the previous list)
into our Work Group
window and reduced the
other options with their
group icon at the bottom
of the Program Manager
window.

Some Housekeeping
Before getting too involved with Visual BASIC we suggest
you carry out the following two housekeeping tasks.

Minimising Program Manager:
As you will soon find out (if you haven't done already), the
Visual BASIC working window is most unusual in that it

consists, by default, of five different windows a. perimposed
onto whatever screen background was active when the
program was opened. This can be most confusing and we
recommend that you minimise any other active programs to
icons to keep them off the body of the screen.

With the Program Manager itself this is best done with the
Qptions, Minimize cn Use command, as shown here If you

also check the Save
Settings on Exit option,
open the File sub -menu,
and select Exit while the
<Shift> key is depressed,
the new setting will be
saved without actually

is quite a useful and not very

Window Help

Minimize on Use
nave Settings on Exit

having to leave Windows. This
well documented trick.

Visual BASIC Directory Structure:
When our version of the program was irstalled, ten
subdirectories were placed on our hard disc, as shown on the
next page. At the learning stage, the most useful of these is
C: \VB \SAMPLES which contains, as you might expect from

5

its name, a very extensive collection of Visual BASIC sample
programs. When you need inspiration it is well worth looking
through these for programming ideas.

File Manager Qr-
File Dee View Qptions Tools Window Help

CV/Etr* - r CAVIAH17O

brtmaps
Gcdk
Ohc

testcard
1:3ubls

ADA)
- Obitmaps
-O cdk
- hc

(11 icons

-O metafile
-CD report
- i samples
-d setupkit
- cbt
- Ovinapi
wIndows

mr

Curren(Duectory wo

D dispcalc reg
autoload mak

Dbiblio mdb
o bnght chb

One directory missing from this list is one suitable for storing
the programs (called Projects in Visual BASIC speak) that
you develop yourself. This is easily rectified, w th the File,
Create Directory command from the Windows File Manager,
as shown above.

Also shown above is the fact that our C: drive was almost
wiped out when Visual BASIC was installed. Only 1.38MB of
free disc memory is not very clever for the main Microsoft
Windows drive. Because of this, we reinstalled Visual BASIC
on our E: drive, which explains any drive 'discrepancies'
shown in any screen dumps later in the book!

6

2. THE VISUAL BASIC ENVIRONMENT

Starting the Program from DOS
To start Visual BASIC, as long as the VB directory is included
on your system path, you need only type the words win vb at
the C:\> prompt. Otherwise you mus: specify the complete
path to the directory in the command, maybe as follows:

win C:\VB\VB

It is more usual however to start the p-ogram when Widows
is already running as explained below.

Starting the Program from Windows
As we saw in the last chapter, the SETUP program opens a
new group window in the Windows Program Manager and

places several icons in t.

mieuet Visual BASIC is started in Windows by

417:1
either double clicking the left mouse button on
the program icon shown here, or by double

Microsoft clicking on a Visual BASIC project file (with
Visual Basic the extension .MAK) in the Windows' File

Manager. In this case the project will be
loaded into Visual BASIC at the same :ime.

General Windows Skills
We have assumed for the remainder of this book that
anybody setting out to learn to program in the Windows
environment will already be familiar with the workings of the
Windows Graphic Lser Interface (GUI). We do not cover the
basics of moving, re -sizing, iconising or ge-erally
manipulating windows, of handling the mouse, or menu
systems. If you need more information on these ski Is, we
suggest you first work through one of the Concise Guides to
Windows listed at the front of this book.

The Visual BASIC Tutorial
Once the program is oaded, maybe the first thing you should
do is work through the tutorials which are started wish the
Help, Learning Microsoft Visual BASIC menu command

7

Working with f turns
end Controls

dding Menus

[lehugging Your Application

sing Calor and Graphics

The opening menu above has eight options for you to work
through, each taking about 10-15 minutes, and we strongly
recommend you do this. A sample screen is shown below

INIA...14,+.40 Pamir Works

CowInsis are took such as boxes, buttons, and labels you drew on a t-srm to
get input or to display output They also add visual appeal to your Corms.

- You two Ow
T *elbow to Wow
control. on
lova

8

You can of course run through these tutorial exercises as
often as you like. When you have finished with a tutorial,
either select another from the Main menu screen, or Dress
the Exit button.

Programming Steps
With most programming languages you must write countless
lines of code into an editor before anything happens. Some of
this code might be written to contro the operation of the
program, but probably most of it will control the screen
display and the interface with the final user of the program.

Design Mode:
With Visual BASIC, on the other hand, you do not need to
write code to set the program interface; you design this
graphically on the screen in 'design mode'. All of the control
features you are used to in Windows, such as menu bars, list
boxes, control buttons, etc., can be almost instantly placed
on 'Forms' at design time. When you are happy wi:-1 the
interface, you then enter code to control how its components
interact with each other, and with the final user. Even this
operation is made easy in Visual BASIC, which names and
controls your input procedures almost automatically.

Break (Debug) Mode:
Many powerful features are built into this mode of Visual
BASIC to help you check that your code is correct and to
track down problems, as and when they occur.

Run Mode:
When you finally run the program, or project, that yoi. have
created, the Forms you designed become tt-e program
windows in 'run mode'. This means tt-at Visual BASIC gives
you the power to use most of Windows' built-in facilities, like
window manipulation, file opening and saving, etc., without
having to write much program code at all. You can get really
professional output with the minimum amount of effort!

9

The Visual BASIC Screen
The opening screen of Visual BASIC 3.0 is shown below,
with some of the windows slightly rearranged. The
Professional Edition also contains 16, more advanced,
function icons in the Toolbar on the left, which we will ignore
in this book.

When the program first starts, it is in 'design mode', as shown
on the title bar above, with five separate elements making up
the screen.

To understand the workings of the program we must
spend some time looking at the various parts that make up
this screen.

The Help System:
Like most modern Windows based programs, Visual Basic
has a very powerful on-line Help facility and wt -en learning
the program this is one of the essential tools to use. It is
usually easier and quicker to find information this way, than
ploughing through the manuals. To demonstrate this, select
each of the screen elements, in turn, and press the Fl key, to

10

rile Edit Bookmark Help

lionserdeltanski0111111111-irstap*,100elisnsi
Menu Bar and Toolbar

Microsoft Visual Basic !design
file Ldll Ylew Bun Qebug QptIons Window Help

II% - MOOD RM
Click cn the Menu or Toolbar word or picture for more information.

The Visual Basic menu bar includes awe him. a tA,n,n e okauf, a a CPeepl.rnerst and
the names of the menus you can use in the active window. Although the menu bar is mieedly displayed at
the top of the screen. it can be moaed to another location and rowed

Tc open a menu and display its commands. click the menu name or press the ,1,-,4(sk$ Key.

To choose a command once ,rou've opened a menu. click the command name DI press the acme
key tt there is a shortcut key t 3(a command. it is indicated on ill t menu next to the commend mine.

Commands follOwed by an ellipsis (..) display a dialog box where you proinde more mforrnabor
before the command is executed

Closing me menu bar also closes Visual Basic

The toolbar contains buttons that we shortcuts to some commonly used menu items and two indicators at
the ngnt that display the positron end size of a selected form or control

open its Help screen, then to get details of an indi,idual
button, or menu command, click the 'hand' pointer on it.

Title and Toolbar:
As shown above, this screen element contains the main
Visual BASIC mem_ bar, with the ncrmal windows control
buttons. as well as the Toolbar. This bar contains 14 buttons,
or icons, to give shortcut access to some of the most
commonly used menu commands. Some of these are shown
below, others will be detailed later as they become relevant
to our text. Probably the icons you will use most are the Run
and Stop contols.

Open a new FORM

Open a new MODULE

AM'
SAVE a Project

Open MENU DESIGN window

Open a PROJECT

Debugging optic cos

Open PROPERTIES window

The Visual Basic TOOLBAR

S OP application n.nning

PAUSE application

tart to RUN an application

11

Visual BASIC Forms:
A form is
can

the interface with the application yoJ create. You
have multiple forms and place controIs, text boxes and

pictures on them when in
design mode. What you.of

place on a form is what will
be seen in a window when
the application is run. To
help when placing features
on a form, by default, a grid
is active, as shown here.
When new features are
added they automatically
align themselves to the
nearest grid positions.

The Toolbox:
This is used to place different types of control objects onto a
Visual BASIC form.

Pointer

Label

Frame

Check box

Combo box

Scroll bar

Timer

Directory list box

Shape

Image

Grid

Dialogue box

0

Picture box

Text box

Command button

Option button

List box

Scroll bar

Drive list box

File list box

Line

Data control

OLE control

12

Project Window:
In Visual BASIC you can only have one project open at a

time. The Project window displays a list of all the forms,
modules, and custom
controls in an open project,
or application. From the
Project window you can
open the Form window for
an existing form by selecting
its name and clicking the
View Form button.
Similarly, you car open the
Code window for an existing
form by selecting its name

and clicking the View Code button.

CI Projectl _11

View Form View Coce

Fcrml.frm Forml

CMDIALOG VBX

$1GRID VBX

Irt_MSOLE2.VBX

Properties Window:
All the objects you create in Visual BASIC (forms, boxes,
command buttons, etc.), have a very detailed set of

'properties' which are controlled
from this wincow. If it is not open,
click the Properties icon on the
toolbar, or press F4.

The Object Box, at the top of
this window, displays the name of
the object whose properties are
listed. Clickinc its drop -down arrow
(on the right) lets you select other
objects from a list.

The Settings Box, immediately
below this, lets you edit the setting
of the Property highlighted it the

Properties List. Properties often have an existing range of
setting options, whist- can be shows, and selected, by
clicking the drop -down arrow to the right of the Sett ngs Box.

The Properties List takes up the rest of this window. All
the properties available for the selected object are listed, with
the current setting shown alongside. You change a property
by selecting it in the list, and then either typing a new value in
the Settings Box, or making another selection in this box from
the drop -down list of those available.

,=.1 , Properties l'1
Foirn1 of, W
x w Fon1
Auloilectites F else

BerAColr r 1,1100P1 ii 3 3 '1
Act def Sn,le .3 r313enie

Ciffiel, 1 Noel
lig* ono,: I rue

Control:I, 1 rue

D ',w.f.', e 1"1 - Copy Pen

CnewSlyie 0 Solid

Cnevn03t h 1

E ruttier] true
FisColot vlontirr con%

t

E-,-

13

A First Program
The next step forward has to be a simple programming
example to show how these features fit together.

If Forml is not open on your screen, select it in the
Projectl window and click the View Form button, also in that
window. This should also open the Properties window, but if
not, press the F4 key.

Creating an Object:
Now, to start, we will add a button to the form. Click
the 'Command button' icon in the Toolbox and move
the pointer back over the form window. It should

change to a cross hair. Position this cross at the place in the
form where you want the top left corner of the button, hold

down the left mouse button and 'drag' the
button shape, as shown here. When you
release the mouse button your new
button will be placed on the form, with the
name 'Commandl' placed in it, as shown
below.

14

During this operation you could have used the two indicators
to the right of the Toclbar. The Position Indicator, cn the left,
shows the position of the top left corner of your button, while
the Size Indicator gives its dimensions. By default, these are
in 'twips', a standard unit of screen measurement equal to
1/20 of a printers point.

Changing a Caption:
The new button should be 'selected' in the form and have a
series of black 'hancles' around it. If -lot, click it with the
mouse. Now, look at the Properties window. The highlighted
property in the list should be 'Caption', showing as
'Command1'. The caption is what actually appears on the
face of the button.

Double click in the Settings box of the Properties window,
type Print and click the Enter button. The button should
now have a new caption on it. Changing an object's
properties is as easy as that.

Entering Code:
Now double click on the newly created button. This opens the
'Code window' Forml.frm, with two lines of code and the
cursor already placed for you. Type the following text:

Print "My first Windows 'program'?"

Your window should row look like that below. Don't worry too
much about the rest of it at this stage, all will be revealed
later.

Ubiet. [Command'

FonalAnk

P4.0 "rdi_

sob Conwandl_Click
Print -1,19 first Windows 'prograw-r
Ind Sub

15

Running a Program:
For neatness, close the Code window with the
<Alt+F4> keys and click the Run Toolbar button (or
use F5, or the sun, Start menu command).

Visual BASIC changes to 'Run' mode and displays the
window 'Form1' containing our Print button. Clicking the
mouse on this button will cause our message to be printed in
the window, as shown below.

In Run mode all you can do at the moment is print the
message every time the button is clicked. Not a very
useful program, but it is a start. To stcp the program
running and return to Design mode click the Stop

Toolbar button. The easiest way to move between Run and
Design modes is with the Run and Stop Toolbar buttons

Saving a Program:
We may use this example as the basis for other applications,
so save it with the File, Save Project command, or the Save
Project Toolbar icon. Use 'EXAMPLEI as the name for both
the form and project, when asked.

16

3. PROGRAMMING BASICS

Project Elements
As car be seen from the very simple example of the last
chapte-, writing a program in Visual BASIC follows a very
definite series of steps.

The interface is designed and built graphically, by
placing controls and boxes, etc., on a series of for -is.

The properties of the forms, and controls used, are
set to produce the visual results required.

Code is written to link these up and generally make
the program worl<. Essentially this code

controls the general action of the program and,
determines how it will react when specific actions
are carried out on specific objects by the end user;
such as when a button is clicked, or a 4orm
double-clicked.

The Interface
This consists of one, or more, forms with control feat_res
placed from the Toolbox, to enable the required program
functions to be carried cut by the final user.

Forms:
A form is a window, teat opens at some stage when the
program is run, and is used to either show information to, or
get it from, the program user. When you start to build a new

project 'Forrit is available to use straight away. If
111_11 you need to open more, this is easily done with the

Open Form button on the Toolbar. When saved to
disc, every form in a project is saved in a separate

file with a '.FRM' extension. This makes it possible to use a
particular form in several different projects. To include an
existing form in an opened project, use the File, Add File
command. It will then be listed, and accessible from, the
Project Window. To remove one from an opened pro.ect,
use the File, Remove File command.

17

Controls are the objects that are placed on forms and are
described in more detail later.

Modules:
Most of the code in a program, or project, wil be included in
the various forms of the project. However the code attached
to a form is only usable by that form. For code to be available
for other forms, or the application as a whole, it must be
placed in a separate 'module'.

Code modules are stored with a '.BAS' file extension and
are very much like more traditional BASIC programs. They
do not have the power to get input from the user, or to create
graphic displays.

To open a module, simply click the Open Module
icon, shown here, or use the File, New Module
command from the menu. A module can include:

Declarations of constants, types, variables and DLL
procedures.

General Procedures which can be called from
anywhere in an application. These can be either Sub
procedures, that do not return a value, or Function
procedures, that do return one.

Applications:
An application (or program), is a collection of forms and
modules that can be saved together as a project, and can be
combined into a single executable file, with an '.EXE'
extension. Forms and modules, and their code, can also be
incorporated in other applications. As you progress with
Visual BASIC you should build up a library of forms and
procedures to use time and again. There is no point
re -inventing the wheel every time you build a new application!

The AUTOLOAD.MAK File:
This file is included with Visual BASIC and controls the
general environment of a newly opened project, as well as
which files and custom controls are loaded wits it. To change
the contents of new projects, use the File, Open Project and
select the file AUTOLOAD.MAK.

18

When the Professioral Version of Visual BASIC 3.0 is
opened the Toolbox contains 16 more icons than :he
Standard Version. These are the extra 'custom controls'
which have the '.VBX' extension. If not wanted in your new
projects these can be removed from this 9Ie and, if necessary
at a later date, re -loaded with the File, Add File menu
command We left the three files, GRID.VBX,
CMDIALOG.VBX and MSOLE2.VBX, but removed the
others, to simplify the screen layouts.

This was done by selecting each file in the Project Window
and using the File, Remove File menu command. I you iJst
delete the files with the File Manager, you will get an error
message for each file every time the program starts up,
which can become very wearing.

Make any changes :o your preferred working environrrent
with the Options, Environment command and then save the
file in the usual way. Every new project that is opened from
now on will be controlled by the settings in
AUTOLOAD.MAK file

Visual BASIC Controls
As mentioned earlier, controls are placed on forms from the
Toolbox. The form below shows a composite of the more
commonly used contrcls and which icons are clicked on the
Toolbox to produce them.

19

These controls should all be very familiar to any Windows
program user. They form the building blocks to make up all
types of dialogue boxes.

Picture Box

Label

Text Box

Frame

Used to display graphical images, or
as a container to receive graphical or
'printed' text output.

Used for text that will not be changed
by the user, but can be changed with
program code.

Used to hold text that the user can
interactively enter or change.

Used to create a graphical or
functional grouping for controls. To
group controls, draw the frame first,
then draw controls inside the frame.

Command Button Used to create a button the user can

:21
click to carry out a command.

Check Box

Option Button

LI)

Combo Box

Used to create a box that the user
can easily choose to indicate if
something is true or false, or to
display multiple choices when the
user can choose more than one.

Used in a group of option buttons to
display multiple choices from which
the user can choose only one.

Used to draw a combination list and
text box. The user can either choose
an item from the list or enter a value
in the text box.

20

List Box Used to display a list of items from
which the user can choose one. The
list can be scrolled if it has more items
than can be displayed at one time.

Horiz. Scroll Bar Used to provide a scrolling tool for

111
quickly moving through a long list of
items or information, for showing the
current position on a horizontal scale,
or as an indicator of speec or
quantity.

Vert. Scroll Bar Used to provide a scrolling tool for
quickly moving through a long list of
items or information, for showing the
current position on a vertical scale, or
as an indicator of speed or quantity.

Timer

itE

Used to trap timer events at set
intervals. This control is invisib e at
run time.

Drive List Box Used to display the valid disc d-'ves
in the user's system.

Direct'y List Box Used to display a hierarchical list of
directories on a selected drive.

File List Box

IF])

Used to display a file list, that the user
can open, save, or otherwise
manipulate.

Setting Properties
Once your forms and controls have bees chosen and placed.
their 'Properties' have to be set in the Properties window, so
that they look and behave in the way you want. Most of the
default properties will not need to be altered; but some ct the
more important variables are now described.

21

Some Form Properties:
When designing a form you can set its position on the
screen, and its size, graphically with the mouse. You can
also set the Left, Top, Width and Height properties for more
precise control.

The default form settings include a control box, minimise
and maximise
frame. This lets the

cc
Cana

DrawMode 13 Copy Pen
DrawStyle 0 Sold
DraeNfelth
Enabled True

Wok. U10000000E1

FiSt 1, en!

0 - None

buttons on the title bar, and a resizeable
final user change the resultant window

with these features, when (s)he
runs the program. You can control
all of these features though.

Setting the ControlBox, Min -
Button and MaxButfon properties
to 'False' will turn these features
off when the program is run.
Changing the settings to 'True' will
reactivate them.

The BorderStyle property works
in conjunction with these in the
following ways:

Switches off all border or related
border elements.

1 - Fixed Single Can include Control -menu box, title
bar, Maximise button, and Minimise
button. The window is resizable only
using Maximise and Minimise buttons.

2 - Sizable The default setting. Resizable using
any of the optional border elements.

3 - Fixed Double Can include Control -menu box and
title bar; but not Maximise or Minimise
buttons. It is not resizable.

Form.,

1 - Fixed Single

Formi

2 - Sizable

Forml

3 - Fixed Double

22

The best way to get used to all these settings is to change
them, one by one, and then click between design and run
modes from the Toolbar.

Caption sets what text will display in the title bar, whereas
Name controls the name of the form itself. Visual BASIC
needs every form in an application to have its own distinctive
name. They are initially set at Forml, Fcrm2, etc.

BackColor sets the colour
of the window, and ForeColor
the colour of any text which is
printed on it at rur time_ To
change the colours simply
double -dick on the item in the
property list and select from
the palette which opens. The
other attributes of such text
can be controlled with the
Text.... properties.

The Icon property lets you attach a different icon to your form
window, which will show when the window is minimised at
run time You can select from the extensive list of ttose
provided with Visual basic (in the \VB\ICONS directory`,, or
you can design your own.

MousePointer determines the shape of the pointer when it
is moved over the window at run time and Picture allows you
to attach a graphic image 'permanently' to a window. Setting
FontTransparent to '-rue' will then let you print text or the
graphic, without blocking it out.

To find out in detail about a particular property, select it in
the Properties Window and press Fl. A full help screen page
from the manual is opened.

:::mzrzcazmr;
pitmzTmmw f
117K um.

weettumsm

1111IMMEMIN
IConboBox TM

ChawAlode 13 CopyPen
1 DIewStyle 0 -Solid

DiarAVdth 1 flri
E natied True II

Label Properties:
A label usually holds text on a form that is not changed
interactively by the end user. The Alignment property
determines whether the Caption text is Left, Right or Ceitre
Justified.

When a label has its AutoSize property set to True' the
Word Wrap setting determines whether it expands vertically
or horizontally to fit the text specified in i*.s Caption property.

23

With WordWrap set to 'True' the text wraps and the label
expands, or contracts, vertically to fit the text and the size of
the font. The horizontal size does not change.

With the default WordWrap setting, 'False', the text does
not wrap and the label expands, or contracts, horizontally to
fit the length of the text and vertically to fit the size of the font
and the number of lines.

To prevent a label changing size at all, leave AutoSize with
its default setting of 'False'.

Text Box Properties:
A Text Box is used to hold text, entered at design time,
interactively by the user, or assigned in code a: run time.

The Text property contains the text string that is displayed
and MaxLength determines whether there is a limit to the
length of the Text. The default is 0, or no maximum. Any
number larger than '0' indicates the maximum number of
characters that can be entered into the Text Box, (up to a
maximum of about 32K).

When MultiLine is set to 'True', the Alignment property
forces left, right or centre alignment
of Text; and ScrollBars sets scroll
bars as follows. The default, 0, sets
no bars, 1 sets a Horizontal bar, 2 a
Vertical bar and 3 sets both bars, as

shown here.

Command Button Properties:
Command buttons are placed on a form so that the end user
of the program can select them to begin, interrupt, or end a
process. When selected they appear to be depressed.

The Caption property determines the text displayed on a
command button. Clicking a button always selects it, but
there are two other ways that should be used. With the
Default property set to 'True', pressing <Enter> will select it;
and with the Cancel property set to 'True' pressing <Esc>
will select it. The former would be used to determine what
command is actioned in a window when the <Enter> key is
pressed, and the latter to control the <Esc> key, maybe for
exiting the box, or the program.

24

Check Box and Option Button Prcperties:
Check boxes are used to allow the user to easily chocse if
something is true or false, (switched 'on' or 'off), or to choose
more than one option from a selection. Option Buttons are
used in a group to display multiple choices from which the
user can select only one. The properties of both are similar.
The Value property controls what state the object is in. When
set at 0, the default, it is unchecked, at I it is checked, and at
2 it is greyed out, or dimmed.

When the Enabled property is set to 'True', the control is
able to respond to events, such as a click from the mouse
pointer. When set at 'False' it is inactive.

A frame would usually be used for grouping option button,
or check box controls.

The Tab Order of Controls:
When a Windows dialogue box is active only one control on it
has the 'focus' at any one time. This is shown by either a
dotted box, or a highlight, on the control You move the focus
round the box with tl-e <Tab> key. When the <Tab> key is
used in this way the current control 'receives the focus'.
When you design a fcrm you should make sure the tab order
of the controls on the form is correct.

Initially the order is set automatically and is the same as
the order in which you placed the controls. This order is
actually controlled by the TabIndex properties of the various
controls on a form. The control which will receive the focus
when a window is opened should have a TabIndex value of
'0', followed by values of 1, 2, etc.

To prevent the focus being given to a control you can set
its TabStop property to 'False'. Although the control still holds
its place in the tab order, determined by the Tabiodex
property, the focus will not be given to it.

Shortcut Keys:
There is yet another way to select some of the controls in a
running window; by pressing an <Alt+letter key> ccmbination
from the keyboard. To do this you place an ampersand, the
'&' character, in frorr. of the selected letter in the Caption
property. This underlines the next letter on the control face.

25

Most of the properties described so far are set during the
initial design process. Many of them, however, will also be
changed while the program is being run. This is done, either
interactively by the user, or under the control of code written
into the program.

Writing Code
Visual BASIC is unlike any other programming language we
know. Most of the hard work building interfaces, etc., is done
almost automatically for you, once you know how to steer the
process. Lines of code are required, however, to string all the
building blocks together and actually produce useful results.

It is very much an event -driven procedure based
language, with each independent procedure designed to
carry out a specific task. An event being an action which is
recognised by a form or control.

Code Windows:
The operation of writing your code is carried out in a special
editor called a Code Window. There are two main ways of
opening a Code window in design mode. The easiest is to
double-click on the form, or control, whose code you want to
edit. You can also select the form or control (in other words
make it active by clicking it), and press the View Code button
in the Project window.

LostF.us
MouseDown
MouseMove
MouseUp
Pant
QuayUnload
Reuse

26

A Code window contains two drop -down list boxes in its top
bar. The Object box I sts the current form and all the controls
on it, when you click its down button. The other, with the title
Proc:, is the Procedure box, which lists all the events
recognised by Visual BASIC for the form or control displayed
in the Object box.

Every form and control has a set of p-edefined aents :hat
it can recognise. The example on the previous page shows
the events list opened for the empty form 'Form1'. The active
event in the list is 'Load' and the code in the form for That
event is shown, ready to edit, in the lower half of the window.
When you select an event, either the event procecure
associated with that event name, or a code template for the
event, is displayed in the bottom part of the Code window

Any code placed in this Load Procedure would be
activated when the form was first opened. In this case, as the
form is Form1 and would open first, the code would activate
when the program is first run.

You write code to attach event procedures only for events
to which you want a form or control to respond. If you leave
an event procedure empty that event will produce no
program action.

When writing code to attach an event procedure to a form
or control you do the following:

1 Select the event in the Procedure box for which you
want to add code.

2 Enter your code, in the template provided, in the
standard way for entering code and declarations.

3 If necessary, select other forms or controls from the
Object box in the Code window and follow the same
process from step 1 above.

4 When finished, close the Code wirdow by
double-clicking its control box.

Instead of using the template provided by Visual BASIC, you
can also create a new procedure by typing

Sub ProcedureName

in the Code window. In the future, you can find this procedure
by selecting (general) from the Object box and then loo<ing
in the Procedure box.

27

Visual BASIC Naming Convention
The standard syntax when writing an event procedure is
made easier for you, as Visual BASIC provides the names for
procedures automatically. It combines the control name with
the event name and separates them with an underscore
character Thus the standard name is

Control Event

In the open Code window shown several pages back, the
procedure name shown was

Form Load

This names the procedure that will activate whenever that
form is loaded, or opened. This convention micht seem a little
confusing to start with, but it is so logical it soon becomes
second nature.

The full syntax for an event procedure is:

Sub ControlNameEventName (arguments)

Local variable and constant definitions
Statements

End Sub

Naming Control Properties:
The control properties, described earlier in the chapter, are
frequently assigned values or have their values changed, in
program code. The usual format for this would be

ControlName.Property = expression

Where ControlName is the name of the control, Property is
the Visual BASIC name of the property concerned and
expression is a valid expression (such as a text string, or
arithmetic calculation). Note the '.' separating the property
name. As an example, the code

Textl.Text = "Type a number here"

would place the text string 'Type a number here' into the Text
property of the Text Box named 'Text1'. When this code is
activated, that is the message that will show in that Text box
on the form.

28

4. STARTING TO PROGRAM

BASIC Statements
With what was discussed previously in mind, activate Visual
BASIC and make sure the 'Syntax Checking' option is set to
'Yes' in the Environment Options box opened with the
Qptions, Environment command. This ensures that every
entered line of code is checked for errors, with minor errors
being corrected automatically. We will now create a program
to calculate the average of three numbers, in order to
demonstrate a few points.

Unlike QuickBasic, you can't just type code into the
program and show the printed results straight to the screen
when you run the code. The Print command does not print to
the screen, but will print (after a fashion) to the background of
a window. However, if there are any controls on the window,
in the print area, they will block out the print output. A picture
box receives print output better, but for the moment we will
stick to using a window.

Using the File, Open Project command, open the program
EXAMPLE1, which should have been saved from Chapter 2.
If not, take a few minutes and do the very basic example
now. We will adapt Form1 as a work area for developing
some programs to help come to terms with the basics of the
programming language.

- F -F12=r1 13:311MIEF 1
-

Sub Commandt_Click ()

' Declare variables.
Dim Humbert, Number2, Number3, Sum, Average

Humbert - Val(Inputdox$("Enter first number")) ' Get user inpu.!.
'

Number2 - dal(Inputilox$("Enter second number-))
Number3 - Ual(lnputDox$("Enter third number"))

Print "You entered: " E Numberl t. ", " & Number2; " and " & Number3

Sum - Humbert Nunber2 Number3
Average - Sum / 3

Print "Average value is "; Average
Print

End Sub
El

0.. r . : .:E: El
-..

29

Editing Code:
Double-click on the Print command button which should open
the Code Window with the Commandl_Click procedure.
Delete the middle line of code, by selecting it and pressing
the key, and type in the code shown on the previous
page. This is presented to give you an idea of a Visual
BASIC source program. The statements in it will be
discussed in more detail in the following pages, so there is no
need to worry! But you will get some experience of the editor.

When you have entered a row of code, press the <Enter>
key to start a new one. Note how the editor changes the
entered code. It places spaces in the line, capitalises
keywords, checks the line for syntax errors and changes the
colour of much of the code. By default, Keywords are
coloured red and Comment text is coloured green in the
Code window. You can customise these colours in the
Environment Options box. We have also set Identifier text to
show in violet in our version. These colours make reading the

code very much easier.
If you attempt to leave a code

line which contains an error, a
message box, maybe similar to
the one shown here, will open.
Pressing the <Esc> key, or
clicking the OK button, will
remove the box. Ycu can then

correct the code straight away, or in the future. These
messages can be a nuisance if you use the Cut and Paste
facilities of the Edit menu. If so, you could turn off the 'Syntax
Checking' option, but we wouldn't recommend this.

Before running your code, return to the design :orm, select
the Print command button, press the <Ctrl+C> copy keys,
followed by Paste, <Ctrl+V>. You could also use the Edit
menu commands, but using the menu is nowhere near as
fast. Answer No to the question about creating a control
array, (we don't want to know about such things at this
stage!) and drag the newly placed button until it is placed
below the other. Now change its Caption property to 'Quit'. At
this stage, that should be no problem, otherwise read through
the last two chapters again!

 Likriseit vbx., saw-.

(I) Expected' expression

ELI

30

DfAMPLEZ.FRM

4,84408 15_ontaand2 t Pp.= if Ink

Sub Connind2 7:1141t OI
nd I a.sue t Int pp ograr.

Ina tub

It is always a good
idea to give the user
of a program an
easy way to leave it.
Open the Code
window for the Quit
button and place the

very lengthy code statement, shown above, ig the Click
procedure. The End keyword stops any more code being
looked at by Visual BASIC and hence ends the program.

Now to test the program out, click the Run Toolbar icon
and your new windcw, with its two buttons, should open.
Clicking the Quit button, should place you straight back to
design mode. If not, check that the one word of code was
entered properly!

Enloe 1..1 numbest

Icj

Fowl
You antenna- 45 7 3 99 and 78
A.noge value is 41 5633333333333

Clicking the Print button, should open an Input Box, as shown
on the left in the above composite, in which you enter data
manually, in our case a number. Typing in a 'lumber and
clicking the OK button will save tl-e number as variable
'Number1' and open the Box again for 'Number2'.

When all three numbers are entered, the first Print
command is actioned, the Sum and Average variab'es are
calculated, and the file' result is printed on the form, followed
by a blank line (as shown on the right above).

All of which took many times lcnger to read, than to
actually do!

31

Program Comments:
Our procedure code consists of statements and Comment, or
remark lines. Program Comments follow an apostrophe
character ('), which can be placed anywhere on a line. Any
text that follows this has no effect on the running of a
program. This allows the insertion of remarks in the code to
help the user remember the function of program sections.

Variables and Constants
Variables:
A variable is a quantity, or a string of text, that is referred to
by name, such as Numberl , Number2, Number3, Sum and
Average in the previous program. Variables can take on
many values during program execution, but you must make
sure that they are given an initial value, as Visual BASIC
automatically zeros numerical variables, and 'empties' text
ones, when a program starts.

Constants:
A constant is a quantity that either appears as a number (3 in
the seventh executable statement in the previous program)
or is referred to by name, but has only one value during
program execution, allocated to it by the user.

Expressions:
An expression, when referred to in this text, implies a
constant, a variable or a combination of either or both,
separated by arithmetic operators.

Naming Convention:
Variable and constant names are formed by combining upper
and lower case letters with numbers and the underscore
character (_). Other characters and spaces are not valid and
the first character must be a letter. The length of the name
must not exceed 40 characters. When naming your variables,
you must be careful not to use a name which is the same as
a Visual BASIC reserved word, otherwise you will get an
error message.

32

To maintain compatibility with earlier versions of BASIC you
can add the following suffix characters (`)/0, &, !, #, @, and $)
to constants to identify their type. A%, for example would
always be treated as an Integer by Visual BASIC.

The very powerful Variant data type is the default fa- Visual
BASIC. This is tie data type that is allocated to your
variables if they are not explicitly ceclared as some other
type. The Variant rata type has no type -declaration character
(suffix) and is a special data type that can contain numeric,
string, date, or cu -rency data as well as the special values
Empty and Null.

There are a variety of other, more conventional, data types
for both variables and constants; the most commonly used
being the Integer and Single (single -precision floating-point)
types. An integer type can hold only integer (or whole
number) quantities and is distinguished from a floating-point
type which holds numbers containing fractional parts. The
computer stores these two types differently and tends to
calculate much faster when using integer -value variaoles or
constants.

Examples of
follows

-255
26 75
-.45E+16

integer and floating-point numbers are as

is an integer number
is a real, or floating point number
is an exponential number. The E stands for
'times ten to the power of.

Less commonly used types of numerical variables and
constants are Long (long integers) and Double
(double -precision floating- point). In Visual BASIC, the values
of single -precision variables are accurate to 6 significant
figures, while those of double -precision variabbes are
accurate to 16. String variables cal be as long as 65,500
characters.

As we saw above, you do not need to set the type of a
variable, as by default, it will be a Variant and adapt to the
data involved. There are many times, however, when you will
find it necessary to force a specific data type in your code.

33

The following table shows the fundamental data types
supported by Visual BASIC, with their type -declaration suffix
and the possible range of each data type.

Tyne Suffix Range

Variant None Any numeric value up to the range of a Double or any
character text

Integer % -32,768 to 32,767

Long & -2.147,483,648 to 2,147,483,647

Single -3.402823E38 to -1,401298E-45 for -ve values,
1 401298E-45 to 3.402823E38 for +ve values

Double # 1.79769313486232E308 to -4.94065645841247E-324
for -ve values, 4 94065645841247E-324 to

1.79769313486232E308 for +ve values

Currency @ -922,337,203,685,477.5808 to
922,337,203,685,477.5807

String 0 to approximately 65,500 bytes

String Variables:
A sequence of characters is referred to as a literal, and a
literal in quotation marks is called a string. For example,
ABC123 is a literal, and "ABC123" is a string.

Like numbers, strings can be assigned to variables. They
can be distinguished from numeric variables t y a $ after the
name, for example A$. A string can be assigned to a string
variable with a statement such as

A$ = "ABC123"

Variable Type Declarations:
As with QuickBASIC, variable types can be declared with the
use of the Deftype statement rather than using type
declaration characters. This method however is really kept
only to maintain compatibility. Using Dim type declaration
statements is far easier.

34

The various Deftype declaration statements are as follows:

Deftype Type of Variable

DefVar letterl [-Ietter2] Variant
Defint letterl [-letter2) Integer
DefLng letterl [-letter2] Long
DefSng letterl [-letter2] Single
DefDbl letterl [-letter2] Douole
DefCur letterl [-letter2) Currency
DefStr letterl [-letter2] Strirg.

Named variables carnot be defined with the Def statement;
what can be defined are all variables starting with the letter
specified within the Def statement (as letterl above). Ranges
of variables can be entered with a hyphen in between their
respective starting letters.

For example, to cefine all variables starting with letters
within the range from Ito N as integers, you coulc use

Def Int I -N

If a floating-point operand is assigned to an integer operand,
the floating-point number is first rounded and then truncated
to an integer, i.e., assuming that both I and K have been
declared as integers (either by the statement Defint I -K, or
with Dim..As), the statements 1=3.5 and K=0.37 will cause
Visual BASIC to assign the integer values of 4 and 0 to the
constants I and K, respectively. Fcr this precise reason,
mixing floating-point constants or variables with integers in
arithmetic operatiois, can have unexpected results! Thus,
mixed mode arithmetic is best avoided.

The Dim Statement:
In Visual BASIC this is the standard way to declare variables
and allocate storage space to them. It was not strictly
necessary in our program here (EXAMPLE2), but was used
because it is cons dered good programming practice to
declare and dimension any variables you use.

Dim on its own, as used in EXAMPLE2, simply declares
what variables are used. They will be treated by the program
as the Variant type

To implicitly declare a variable's type the format is

35

Dim Variable Name As Type

Where Type is one of those in the earlier list. Thus the
statement

Dim I As Integer

declares the variable 'I' and ensures that it will always be
considered as an integer. Remember that with Visual BASIC,
each variable must be declared with its own As statement.

It is usual to place Dim statements before any other code.
When used in the Declarations section of a form or module,
the variables declared with Dim are available to all
procedures within the form or module. When used at the
procedure level, as in our example, the variables are
available only in that procedure.

The Val Function:
This returns the numeric value of a string of characters. In
our case, in EXAMPLE2, we did not prevent non numeric
values being entered at run time. The Val function stops
reading the string at the first character that it cannot
recognise as part of a number. Val also strips blanks, tabs,
and line feeds from an argument string.

The InputBox$ Function:
This function displays a prompt in a dialogue box, waits for
the user to input text or choose a button, and returns the
string contents of the text box. The syntax for the function is

InputBox[$] (prompt [, [title]])

where:

prompt is the string expression displayed as the
message in the box.

title is the optional string expression displayed in
the title bar of the dialogue box. If you omit
the title, nothing is placed in the t tle bar.

If you click the OK button or press <Enter>, the InputBox$
function returns whatever is in the text box. Clicking the
Cancel button returns a null string ('"').

36

We could also, in our example, have used an InputBox
function (without the $). This returns a variant type variable,
instead of a string.

The InputBox$ statements provide one way of giving the
variables in our example a value. The values for The variables
Numberl, Number2 and Number3 are entered directli from
the keyboard. Once variables have values, they can be used
in assignment statements and/or expressions in the -est of
the program to perform desired calculations. A variable must
have a value before it is used in an expression or in the right
hand side of an assignment statement.

The Print Statements:
The Print statements allow the printing of the result of our
calculation. This result is held in the variable named Average.
A string within full quotes following the Print commanc allows
us to explain what is printed out. The statement Print, with no
destination given, causes output to be sent tc the current
window. Note the use of the ampersand character '&' to
concatenate strings and variables in one of the print
statements. The statement Print on its own on a line, causes
the program to print an empty line. This is useful for splitting
up print output.

We will delay discussion on formatting output until the next
chapter. However, the penalty of this in our program is that
we have to accept the default Visual BASIC form of printing
without any control on the number of digits printed out.

Arithmetic Operators & Priority
We shall now examine how the various arithmetic operations
in this program are performed. The calculations in the
program are performed by the statements

Sum = Numberl + Number2 + NLmber3
Average = Sum/3

Combining them into one line, we could also write

Av.,rage = (Numberl + Number2 + Number3)/3

but Not

Average = Nunberl + Number2 + Number3/3

37

It is important that the numerator of this expression is in
brackets. If it were not, BASIC would evaluate first
Number3/3 and then add to it Numberl+Number2, which
would give the wrong result. This is due to an inbuilt system
of priorities as shown in the table below:

Arithmetic Operators and their Priority
Symbol Example Priority Function

() (A+B)/N 1 Parenthesised operation
A AAN 2 Raise A to the Nth power

A*N 3 Multiplication
A/N 3 Division

A+N 4 Addition
A -N 4 Subtraction

Additional Operators:
There are two operators which are useful when performing
integer division. These are and Mod. The \ operator gives
the whole number part of the result of a division, while the
Mod operator gives the remainder (test these in a window).
For example, the program statement

Print 10\3

gives the result 3, while the program statemert

Print 10 Mod 3

gives the result 1.
It must be stressed, however, that the numbers on which

integer division (\) and Mod operate (called the operands)
are first rounded up or down and then converted to integers.
Thus, the statements

Print 10.1\3.1

Print 10.1 Mod 3.1

will give the same result as before, namely 3 and 1, while
Print 10.9\3.9

38

Print 10.9 Mod. 3.9

will give the result of 2 and 3, respectively.
Visual BASIC evaluates expressions, in the order of

priority indicated in the table above. Expressions in

parentheses are evaluated first; nested groups in

parentheses are evaluated beginning with the innermost
grouping and workirg outwards.

Through the use of parentheses, the order of pricrity of
execution, and therefore the final value of an expression, can
be changed. If a .ine has an expression which ccntains
several operators of equal priority, Visual BASIC will evaluate
them from left to right.

Let us examine how a complicated expression such as

Y=(A+B*X)2/C-D*X'

is evaluated. We assume that A, B, C, D and X have values.
First the parenthesised portion of the expression will be

evaluated. Within These parentheses the multiplication has a
higher priority and therefore it will be evaluated first. Tien, A
will be added to it, resulting in a numerical value to which we
will assign the letter Z. Now the expression is reduced to the
following:

Y -Z' /C-D*X1

The above has twc exponential expressions, the leftmost of
which is evaluated first. Writing Z, for the result of Z2 and X,
for the result of X', the expression is now reduced to

Y=ZIC-D*X,

Again, since division and multiplication have the same
priority, the leftmost. expression is evaluated first. Finally, the
result of the multiplication is taken away from the result of the
division and assigned to Y.

All this procedure is carried out automatically by Visual
BASIC, but if you intend to use complicated mathematical
expressions you must be familiar with it.

The Assignment Statement:
Note that what appears as an equation above is, in fact, an
assignment statement and not an algebraic identity. As long
as the values of variables on the right of an equals sign are

39

known, the calculated result will be assigned tc the variable
on the left of the equals sign.

As an example, consider the following lines:

= 0

K + 1

Print I<

where the second line would be meaningless had it been an
algebraic expression. In computing terms the statement
means 'take the present value in K, add one tc it and store
the result in K'. When this line is executed, the value of K (set
in the first line) is zero and adding one to it results in a new
value of K equal to one. On running this program, Visual
BASIC will print the result

in the current window.

Saving a Program
You can save a program by selecting the File, Save Project
option which will save the current project (.MAK) and all
forms and modules in it. If you have any new forms or
modules, you'll be prompted to save them, one at a time. The
filename you type in, must not be longer that 8 alphanumeric
characters (letters and numbers). Visual BASIC automatically
adds the default file -name extension .MAK for projects, .FRM
for forms, and .BAS for modules.

In our case, save the program as EXAMPLE2.MAK, so
that you can modify it in the future, BUT make sure you save
the form as EXAMPLE2.FRM. If you don't rename your forms
for each example, you will end up overwriting the previous
'FORM1' every time.

If you wish to rename an already named program, then
use the File, Save Project As command, which displays a
dialogue box, asking you for the new name of the project.
Simply type a new name, which will replace that shown in the
File Name box. Remember to change the Drives and
Directories settings. if different from the default before
pressing <Enter>, or the OK button.

40

Saving Files:
When you want to save the active form, or module, to disc
you use the File, Save File, or Save File As, commands in
the same way. You might want to do this so that a form or
module is available, under a new name, for a different
project.

Forms and modules can be stored in text format or in
binary (machine ccde) format. If you select Save As Text in
the dialogue box the current file will be saved in text format,
otherwise files are saved in binary format. Binary format runs
much more quickly, but text format programs include all the
property settings and can be read with a text editcr. This
gives you the ability to print on paper all the coce controlling
the design of your forms and controls, and is a useful way of
transporting code, say from a magazine article or book. Our
Appendix A contains the code of one of our example
programs saved in this way.

Depending on the complexity of the program, you could
either rebuild it by matching all the settings manually, or if
you are happy typing lots of material, enter the coce as it
stands into a text editor.

The File, Save Text command, or the other land, simply
saves the code contained on a form or module. It lists all the
contained procedures one by one, but saves no property
details. This method is used later in the book to show the
contents of some of the example programs.

Importing a Text File:
You can import a text file containing code into a Visual
BASIC project and use it with your own code To do this,
choose Load Text from the File menu, select the you
want to import. Then choose:

Replace

Merge

New

to replace all the existing code in the current
code window with the imported text.

to add the imported text at the insertion
point.

to load the text into a new module.

41

-

5. INPUT AND OUTPUT CONTROL

A program can be made to assign values to variab'es by
eithe- entering information on the keyboard, reading
information included with the code, or reading information
from data files. Output can be directed to a picture box or
window, sent to the printer, or written into a fi e. Reading
input from a data file and writing output to a data file will be
dealt with in a separate section.

Text Box Input:
Text boxes can be used on a form to enter data from the
keyboard. We have already used the InputBox statement
earlier on, but we will examine the other method now. This
will be illustrated by writing a program to calculate and
display 15% of any number input into a text box.

Open the previous
program, EXAMPLE2.MAK
and add a P cture Box,
Label and Text Bcx, as
shown here. We will use
the Picture Box as a print
area, the Text Box as an
input area (so that the user
can get information to the
code), the Prirt button to
start the calculation and
print output process and
the Quit button to close.

Change the Caption property of Labell to "Enter a number:"
and delete the Text property in Text1's property list, by

selecting it and pressing the or <Delete> key, to
ensure that the box is empty when the program starts. While
still in this list, set the Tablndex property to '0', to ensure that
the focus is also in this empty box at start up.

As the Print button will control what action this program
carries out we must write suitable code in its Click'
procedure. Double-click the Print button, to open its Code
window, delete the previous code between the Sub and End
Sub statements and type in the following.

1111111M11W-Autat=4 71f14

E Neff number L

43

Sub Commandl_Click () ' PerCent program
Dim Percent As Integer ' Dimension variables
Dim Number As Single

Dim Value As Single

Percent = 15

Number = Val(Textl.Text) ' Get number
Value = Number Percent / 100

Picturel.Print Percent; "% of"; Number;

Picturel.Print "="; Value

Textl.Text = ""

Textl.SetFocus

End Sub

' Empty the TextBox

' Place focus in TextBox

In the above, the keywords that are shown red on the screen
are highlighted, and comment text (green on screen) is in

italics. You do not need to
Fonal

152 ol 100 - 15
152 ol 561 999 95 199135

J-1

E Wee numbe.

time you enter a number
line is printed in the Picture Box.

The code above declares three variables to be used in the
routine, one as Integer type and the others 3s Single. If
necessary, look back at the last chapter to see the difference.
The 'Percent' variable is set as a constant with the statement

Percent = 15

and

worry too much about
spaces inside the
statements, as the editor
will sort this out for you.
Leaving empty lines in the
code does not affect the
running of a program, but
can make the code easier
to read.

Save the program and
form as EXAMPLE3, and
then try runniig it. Every

press the Print button, a result

This is one way of giving a value to a variable, but the value
cannot be changed, except by another similar statement in
the code.

44

The next line

Number = Val(Textl.Text)

is much more flexible. The value placed in the variable
'Number depends on the text in Text Box 'Textt at the time
the Print button was pressed.

The Val function is there to ensure that only numeric data
is passed to the variable. If you try entering different
combinations of numbers and letters, you will see very
quickly how Val works. It accepts any numeric entry until a
non -number character is entered and ignores anything else.
If you enter '556PP89007', for example, only the number 556
will be passed.

Changing a Property:
The last two lines of code in EXAMPLE3.MAK change two of
the properties of the Text Box, named Textl , when that
section of the code is run.

At any one time the Text property of a Text Box
determines what will be displayed in tha: box. In our program,
once a number is entered, processed and printed, we do not
want it to still display in the input box as it would interfere with
future entries. The statement

Textl.Text = ""

resets the Text property to contain whatever is held between
the inverted commas. In other words, nothing. Note that ("")
is, in Visual BASIC, a string not a zero. If, as in our case, you
want to use the box contents for numerical calculations, a
'Mixed Variables' error will be developed, unless you convert
the string to a number with the Val function.

Setting an Object's Focus:
The user of our program can only enter numbers into Textl
when the Text Box 'has the focus'. The box is then active
with the insertion point placed in it. Earlier on we set the
Tabindex property to '0', to ensure that the focus is in the box
at start up. This can also be done in code, as with the line

Textl.SetFocus

45

which places the focus in the empty Text Box, ready to
receive new input from the keyboard.

More on Print Output
In the last program, the lines of code

Picturel.Print Percent; "1/4 of"; Number;
Picturel.Print "="; Value

control what is printed by our program anc where it is placed.
Picturel.Print will send print output to the Picture Box named
Picturel and start printing at the beginning of it top line.

Print, on its own, will send output to the current form itself,
(the one holding -he code), as
shown here. This a so shows that
the print result flows behind any
controls on the window; the
Picture Box frame, in our

example. Printed output to a form, or Picture Box, does not
scroll when it reaches the end of the print area. Any further
output is simply lost.

If variables within a Print statement are separated by
semicolons, Visual BASIC writes their value :lose together
with no intervening space. If you leave spaces, when
entering code, they will be replaced with semicolons when
you move out of the line. A semicolon at the end of a line, as
above, will force the next Print statement to continue on that
line.

If variables within a Print statement are separated by
commas the values of these variables are displayed on the
same line, left -justified within inbuilt print zones. These print
zones have a width of 14 'average' characters of the font and
size that is being used. As most fonts these days are
proportional (the widths of characters displaced vary with
their size) such output can be erratic, especialy if you want
neatly lined up columns!

If a string is included within a Print statement, such as "%
of" in our example, on execution Visual BASIC displays the
actual characters within the quotation marks exactly as they
appear in the statement. It is a way of providing captions or
headings for the output.

1". _ 17 "Ic

46

Formatting with Tabs:
Presentation of tabular results can often be made easier to
understand by using custom Tabs with the Print statement
which allows output to be displayed in columns of your own
design.

The program below illustrates the use of this feature.

Sub Fom_Click 0 ' Use of Print Tabs

A= 15:B=25:C= 10:D=20

Print Tab(5); "A"; Tab(10); "B"; Tab(15); "C"; Tab(20); "D"
Print Tab(4); A; Tab(9); B; Tab(14); C; Tab(19); D

End Sub

To enter it as EXAMPLE4.MAK, type the code as a Click
procedure in the Form Code Window of a new file. When you
run the program, click the window that opens, to activate the
code. This simple method is useful for testing the code we
present, as well as the numerous examples given in the Help
section of Visual BASIC. If you like, you can maximise the
window to 'simulate' the older type Basic program
environment.

On Running this program, Visual BASIC will respond by
writing the following to the window

A

15 25 10 20

Another useful formatting function is the Print Spc statement
which provides a number of spaces between the last printed
position and the next one. For example, the first Print line of
the previous program could be replaced by

Print Spc(4); "A"; Spc(4); "B"; Spc(4); "c"; Spc(4); "D"

which would give a similar output if you were using a non
proportional font, such as Courier New. To try this place the
following two lines before the above Print statements. As you
can see, it is quite easy to control the font style of the printed
output.

Forml.FontName = "Courier New"
Forml.FontSize = 10

47

The Print Tab or Print Spc statements cannot be used to
move to the left of a current printing position in a given line.
Only progressive moves to the right are obeyed.

Note: Although tabulation using the Tab and Spc statements
can work very well with whole numbers, using this method to
format tables with floating-point numbers doesn't always work
because of the number of significant digits.

Print Locations:
The Visual BASIC co-ordinate properties CurrentX and
CurrentY positions the 'print head' at any point on the object
(e.g. Form or Picture Box), and printing starts on that
location, irrespective of the print head's previous position.

CurrentX determine the horizontal and CurrentY the
vertical co-ordinates for the next printing operation.

Co-ordinates are measured from the upper -left corner of a
Form or Picture Box object, with CurrentX being 0 at an
object's left edge and CurrentY 0 at its top edge. By default,
co-ordinates are expressed in twips, or the current scale
defined by the ScaleHeight, Scale Width, ScaleLeft,
Scale Top, and ScaleMode properties of the object being
printed on.

The Cis (Clear Screen) command clears tl-e current print
object, (Form or Picture Box), and sends the print head to the
upper left-hand corner of the screen, position (0,0). You
could place the command code

Picturel.Cls

in the Code Window of a command button. In which case
clicking the button would clear the Picture Box Picturel,
ready for new print output.

The next programs give examples of tt-e co-ordinate
system usage, the first prints an asterisk character (*) in the
middle of a window opened to full screen. Type the code as a
Click procedure in the Form Code window of a new file and
change the following Form properties.

Property Setting

ScaleMode 4 - Character
WindowState 2 - Maximized

48

ScaleMode determines the dimension units used in window
settings and the above sets the dimensions as characters.
With a maximised WindowState and the font style used, of 10
Point, Courier New, a window on our screen was 80
characters wide and 29 characters high. With a higher
resolution screen setting. yours might not be quite the same.

Sub Form_Click 0 ' Program EXAMPLES.MAK'

Forml.FontName = " Courier New" ' Set font style

Forml.FontSize = 10

Forml.CurrentX 39 ' Position at window centre

Forml.CurrentY 14

Forml.Print "*' ' Print asterisk

End Sub

The CurrentX and CurrentY properties in the following
program place an asterisk at each corner of an 80 character
wide x 29 high screen. Note that position (0,0) is the top left
corner position, not (1,1), as we would have expected. So
position 79 in used the X -direction, instead of position 80
when placing the asterisks at the right edge of the screen.

Sub Form_Click 0 ' Program EXAMPLE6.MAK

Forml.FontName = "Courier New" ' Set font

Forml.FontSize = 10

Forml.CurrentX = 0 ' Position top left

Forml.CurrentY = 0

Forml.Print "*"

Forml.CurrentX = 79 ' Position top right

Forml.CurrentY = 0

Forml.Print "*"

Forml.CurrentX = 0

Forml.CurrentY = 28

Forml.Print ""

Position bottom left

Forml.CurrentX = 79 ' Position bottom right

Forml.CurrentY = 28

Forml.Print ""

End Sub

49

This program has repeated statements and would obviously
benefit from some of the techniques covered in the next
Chapter.

Formatting Functions
Up to now we have let Visual BASIC display numbers with no
regular structure, but just 'how they come'. This is sometimes
satisfactory, but when not, the program has a very powerful
formatting facility, the Format$ function. This converts any
number to a string with a specific number, da*.e or time format
according to the instructions contained in a 'format
expression', (shown as "format name" below:i.

Format$(variable, "format name")

The easy way to format numbers is to use the following set of
common formats that have been built into Visual BASIC.

Format name Description

General Number Displays the number as it is, with no
thousand separators.

Currency Displays the number with thousand
separators and two aigits to the right
of the decimal point. Displays
negative numbers in parentheses.

Fixed Displays at least one digit to the left
and two digits to the right of the
decimal separator.

Standard Displays numbers with thousand
separators and two d gits to the right
of the decimal separator.

Percent Displays numbers, multiplied by 100,
with two digits to the right of the
decimal separator and followed by a
percent sign (%).

Scientific Uses standard scientific notation.
Yes/No Displays No if numbe: is 0, otherwise

displays Yes.
True/False Displays False if number is 0,

otherwise displays Trie.
On/Off Displays Off if numbe- is 0, otherwise

displays On.

50

You simply place the Format name in the above syn.-2x
expression, in inverted commas. You can also create your
own formats with standard characters that are explaired
later.

As usual the best way :o demonstrate something is to do it,
so enter the program below into a new form.

Sub Form_Click 0

Number = 586786.9800E7453

' Program EXAMPLE7.MAK
' Use of number formats

' Set in tial value

Print "General format", Format$(Number, "General Number")
Print "Currency format", Format$(Number, "Currency")
Print "Fixed format", FormatS(Number, "Fixed")
Print "Standard format", FormatS(Number, "Standard")
Print "Percent format" Format$(Number, "Percent")
Print "Scientific format", FormatS(Number, "Scientific")
Print "Yes/No format", FDrmatS(Number, "Yes/No")
Print "True/False format", Format$(Number, 'True/False")
Print "On/Off format", Format$(Number, "On,Off")

End Sub

The result of running this code is shown below. This
demonstrates the available formats quite well.

General format 586786.980367453
Currency format £586,786.98
Fixed format 586786.98
Standard format 586,786.98
Percent format 58678698.01%
Scientific format 5.87E+05
Yes/No format Yes
True/False format True
On/Off format On

User Defined Formats:
As well as the commcn pre -defined format types, you can
build your own using a series of 'special characters'. If you
need to get this detailed we suggest yo...1 spend some ti-ie
coming to terms with the Help section on the Format
command, as shown on the next page.

51

file Edit Bookmark Help

Format. Formatt Functions
Ex2frPl.!

Formats a number, date, time, or string according to instruct ons contained in a
format expression

Syntax

Format[$](eApression [. /Int])

Remarks
Format returns a Yaripat Formed returns a String
The Format [$] function has these parts

Part Description

EtkpleSS/0/7 i...1vInfmc, or slNrig ovrc.sic,n to be formatted

tint Format expression -a string of display -format characters that
specify how the expression is to be displayed or the name of e
commonly used format that has been predefced m Visual Basic
Different type format expressions (numeric, date/time, or string)
cannot be mixed in a single mit argument I

I

111

CI

Clicking the Example section opens a scr.er of sample code
on custom date formats. Try out this example yourself, use
the Copy button and then paste the code into the
Declarations section of a form, as shown below. You can
then press F5 and click the form to run the ccde.

Sub Form Click ()
Din Msg. M. ' horlare uariablgs.
TO Chr(10) ' Dr(Ane new1inr.
Msg - -Today's date is - 6 format(Tior, -Odddr) 6 6 NI
Pew] Msq 6 -The current time is - r. Fornat(lyr -Attt-)
Msq Msg I -
11sgRum Msg

' 01..pldu da1riline furmalting.
Ind Sub

1T 6,11r14, -et'i,41eZVArtaker-.

This is one of the very user friendly parts of the Visual BASIC
program. The Help facility provides example code to
demonstrate most of the program furctions. To quickly
access Help on a function, place the inserion point in the
function name in the editor and press Fl.

We will make use of other such examp es as we work
through this book.

52

6. CONTROL OF PROGRAM FLOW

Control Structures
Visual BASIC can force a section of code to be repeated by
the use of the For...Next loop, in the same way as cther
standard BASICs, or by the use of the While...Wend loon, in
the same way as cther enhanced versions of 3ASIC. In
addition to these, Visual BASIC upgrades the While...Wend
loop with the use of the Do loop, which tests for a condition
either at the beginning or the end of the loop.

In standard BASIC decisions are made with the use c' the
If...Then statement, while in advanced versions of i the
If...Then...Else, On...Goto, and On...Gosub statements are
also used. Visual BASIC advances these by the addition of
the block If...Then...Else...Endif and the Select Case
statements.

The For...Next Loop
The For and Next statements are used to mark the

ending points of program loops. Any
statements between the For and its corresponding Next will
be executed repeatedly according to the conditions supplied
by the 'control variable' within the For statement. An example
is given below.

Sub Form_Click () ' Program EXAMPLEIO.MAK

' FOR....NEXT loop

For K = 1 To 5 Step 1

Print K

Next K

End Sub

Within the For statement, the control variable K is assigned
the value 1 which is increased repeatedly by the number
following Step until it reaches 5. It thus has the values 1, 2, 3,
4 and 5. Since it can -lot have these values simultaneously, a
loop is formed beginning with the For and ending with the
Next. The statements within the loop are executed five times,
each time with a new value for K. The Next statement
increases the value of K and causes repeated jumps to the

53

For statement until K exceeds its final assigned value of 5.
When this happens, control passes to whatever statement
follows the Next statement.

One of our earlier programs, EXAMPLE2.MAK, has been
modified below to use a For...Next loop.

Sub CommandlClick () ' Program EXAMPLE11.MAK

Number = Val(InputBox$("How many numbers'"))

For Counter = 1 To Number

Sum = Sum + Val(InputBox$("Enter a number"))

Next

Average = Sum / Number

Print "You entered " & Number & " numbers "

Print "Average is "; Format(Average, "Standard")

Print

End Sub

Isrolan

Di. Counter As Intryyr Declarr variJblv
Di. NAN., As Infer),
Dim CAA As DAADIA
Aim AurlArir, A, DAADIA

As it stands the
above code will work
as long as numerical
input is entered from
the keyboard. To
prevent any errors the
variable types should

be declared as shown here. They are placed in the (general)
(declarations) section of the form, and are hence available
to any controls placed on the form.

When the program is run, Number is assigned a value
from an InputBox, which is the total number of entries to be
made. A For...Next loop is set up which loops the number of
times specified in the Number variable. Within tie loop, each
number is read and accumulated into the variab e Sum. Once
the loop is completed, variable Sum holds the summation of
all the numbers. The Print statements produce the output to
the window. Note the use of the Format statement which
forces the result variable Average to output to 2 decimal
places.

54

Use of Step:
In the last example, as the Step modifier was equal to +1 it
was omitted. If the step value desired Is not equal to +1, the
Step modifier must be included. As fo- example .n the next
small program.

Form

_31.11111111111111111113111111113K"

77roinrrwipw---°black

Sib Form_Db1Click () ' Program EXANFIF12.1.1AK
' CON0FRT1NIC INCHES 10 CFNTINETRES
Print 'Inches", "Cor
FM' Inches - 5 To 211 Step 5

C - 2.Sh Inches
Print ; Format(Inches, "Standard"); Tab(14); Format(Cm, -Standard'.

Next Inches

Eld Sub

This will convert 5, 10, 15 and 20 inches into centimetres, in
other words, in steps of 5. The output should be as follows:

Inches Cm
5.00 12.70

10.00 25.40
15.00 38.10
20.00 50.80

A negative Step modifier is legal in Visual BASIC For
example, the code

FOR J = 5 TO 1 STEP -1
PRINT J

NEXT J

will print the values 5, 4, 3, 2 and 1.
For positive step values, the loop is executed so long as

the control variable is less than or equal to its final value. For
negative step values the loop continues as long as the
control variable is greater than or equal to its final value.

55

Nested For...Next Loops:
For...Next statements can be nested to allow the
programming of loops within loops as shown in the example
below:

Sub Form_DblClick () ' Program EXMPLE13.MAK

'Nested FOR -NEXT loops

For K = 1 To 9

For L = K To 9

Print ; Format(L, "#");

Next L

Print

Next K

End Sub

On Running this program, two loops are set up as follows:

For K

For L

Next L
Next K

Outer loop

Nested loop

The outer loop is initialised with K=1 and, immediately, the
inner, nested loop is executed 9 times. Then the control
variable K is incremented by 1, so that now K=2 and the
nested loop is executed 8 times. This is repeated until K is
equal to 9, when the nested loop is executed only once.

The output of this program is as follows:

123456789

23456789

3456789

456789

56789

6789

789

89

9

56

The semicolon after the variable L in the Print statement
allows output to be printed close together on the same line.
However, each line cf print must be terminated with a line
feed (that is, it must send the computer display to the next
line). This is provided here by the empty Print statement.
Without it, all the numbers now appearng on different Ines
would be printed on the same line.

It is sometimes considered bad programming practice to
exit a For...Next loop which has not been completed. The
results may be unpredictable if you do. However, if such an
exit is needed, ther make sure you use the Exit 7.or
command (more about this later).

The Do Loop
The Do loop provides a method of looping through a blocs of
statements and has several variations; it can either check the
condition after or befo-e executing the block of statements.

The Do...Loop Until Configuration
In ths configuration the Do marks the beginning of the

loop, while the Loop Until marks the end. Any statements
between the Do and its corresponding Loop Until will be
executed repeatedly until the trailer of the Loop Until
statement is true.

To Hustrate the use of this loop configuration, enter the
program below:

Sub Form DblClick () ' Program EXMPLE14.MAK

Dim Value As Double

Dim Num As Double

Dim Percent As Double

Num = Val(InputBcx$("Enter number (-1 to END) "))

Do

Percent = Val(InputBox$("Enter "))

Value = Num * Percent / 100

Print

Print

Print

Print

Format(Percent, "###.0") & " % of

Format(Num, "#,###.00") fi " = ";

Format(Value, "###.00")

57

Num = Val(InputBox$("Enter number 1 to END) "))

Loop Until Num < 0

End Sub

All statements between the Do and Loop Until lines are
repeated until the trailer of Until is true (that is, until you type
a negative value in response to the prompt 'Enter number).

Note that

In this case, the condition is checked after the
statements in the block have been executed at least
once. Therefore typing -1 the first t me round will not
end the program.
These programs make use of the 'user defined'
formats mentioned on page 51.

The Do Until...Loop Configuration:
In this configuration the loop repeats the block of statements
as long as a certain condition is true. For example, the above
program can be rewritten as:

Sub Form_Db1Click H
' Program EXMPLEIS.MAK

Dim Value As Double

Dim Num As Double

Dim Percent As Double

Num = Val(InputBox$("Enter number (-1 to END) "))

Do Until Num < 0

Percent Val(InputBox$("Enter % "))

Value = Num * Percent / 100

Print Format(Percent, "###.0") & " % of

Print Format(Numr, "#,###.00") & " ";

Print Format(Value, "###.00")
Print

Num = Val(InputBox$("Enter number (-1 to END) "))

Loop

End Sub

Here, typing - 1 the first time round, ends the program.

58

The Do...Loop While Configuration:
In this loop configuration, the While statement can be used in
place of the Until statement, provided the relational test has
been replaced by its opposite. For example the EXMPLE14
program will have to be changed to what is shown below, to
produce the same logical behaviour.

Note that the relational test has been changed from less
than zero (<0) to greater or equal to zero (>4). These and
other relational operators will be discussed shortly.

Sub Form DblClick ' Program EXMPLEI6.MAK

Dim Value As Double

Dim Num As Double

Dim Percent As Double

Num = Val(InputBox$("Enter number (-1 to END) "))

Do

Percent = Val(InputBox$("Enter t "))

Value = Num Percent / 100

Print Format(Percent, "###.0") & " % of

Print Format(Num, "#,###.00") & " ";

Print ; Format(Value, "###.00")

Print

Num = Val(InputBox$("Enter number (-1 to END) "))

Loop While Num >= 0

End Sub

The Do While...Loop Configuration:
Similarly. the EXMPLE15 program will have to be changed to

Sub Form_Db1Click () ' Program EXMPLE1 7 . MAK

Dim Value As Double

Dim Num As Double

Dim Percent As Double

Num = Val(InputBox$("Enter number (-1 to END) "))

Do While Num >= 0

Percent = Val(InputBox$("Enter t "))

Value . Num Percent / 100

59

Print

Print

Print

Print

Format(Percent, "###.0") & " % of

Format(Numr, "#,###.00")

Format(Value, "###.00")

Num = Val(InputBoxS("Enter number (-1 to END) "))

Loop

End Sub

to produce the same logical behaviour as the program from
which it was derived.

The While...Wend Loop
The While...Wend loop is another possible configuration,
available in enhanced versions of BASIC, so included in
Visual BASIC for compatibility. It is of the general form:

WHILE

WEND

<relational test is true>

execute this }

block of 1

statements }

This loop configuration produces the same logical behaviour
as that of the Do While...Loop. In order to illustrate the point,
the EXMPLE17 program is rewritten below with appropriate
changes included.

We strongly suggest that you make the suggested
changes to these programs and verify for yourself that they
work as they should.

Sub Form_Db1Click O ' Program EXMPLEI8.MAK
Dim Value As Double

Dim Num As Double

Dim Percent As Double

Num = Val(InputBox$("Enter number (-1 to END) "))

While Num >= 0

Percent = Val(InputBox$("Enter t "))

Value = Num Percent / 100

Print ; Format(Percent, "###.0") & " % of ";

60

Print ; Format(Numr, "#,###.00") & " =

Print ; Format(Value, "###.00")

Print

Num = Val(LnputBox$("Enter number (-1 :o ENE) "))

Wend

End Sub

The If Statement
The If statement allows conditional Drogram branching. To
illustrate the point, edit the EXMPLE14 program to:

Sub Form_Db1Click

Dim Value As Double

Dim Num As Double

Dim Percent As Double

Do

Program EXMPLE19.MAK

Num = Val(InputBox$("Enter number (-1 to ENE) "))

If Num <0 Then End

Percent = Val(InputBoxS("Enter t "))

Value

Print

Print

Print

Print

= Nurr Percent / 100

Format(Percent, "###.0") & " % of

Format(Num, "#,###.00") & " = ";

Format(Value, "###.00")

Num = Val(InputBox$("Enter rumber (-1 to EN:) "))

Loop Until Num < 0

End Sub

When this program is run, you can now stop execution by
simply entering -1 in response to the "Enter number" prompt.
When the If statement is encountered, the value of variable
Number is compared with the constant appear ng after the
relational operator (<). If the test condition is met, the trailer
of the If statement is executed (n this case End). If,

however, the test condition is not met, the next statement
after the If statement is executed (in this case the Percent
input statement).

61

Note: The inclusion of the If...Then statement in the form
adopted above, has made the trailer of the Loop Until
statement (Number <0) redundant; it merely acts as a device
to force looping. In such cases we could use any variable as
trailer. We could, for example, use

Loop Until False

This will cause repeated looping, provided the variable used
as trailer is set to zero. If it has any other value, looping will
halt.

Relational Operators within If Statements:
The table below shows all the relational operators allowed
within an If statement.

Relational Operators

Symbol Example Meaning
= A = B A equal to B
< A < B A less than B
<= A <= B A less than or equal to B
> A > B A greater than B
>. A >= B A greater than or equal to B
<> A <> B A not equal to B

The power of the If statement is increased considerably by
the combination of several relational expressions with the
logical operators

And Or Xor Not Eqv And Imp

We can write the statement

If X>3 And M=5 Then

which states that only if both relational tests are met will the
trailer of the If statement be executed.

Another example is

If X>3 Or M=5 Then

62

which states that when either or both relational test(s) are
true, then the trailer of the If statement will be executed, while
the statement

If X>3 Xor M=5 Then

states that when either relational test is true, but not both,
then the trailer of the IF statement will be executed. Finally,
the statement

If Not(X<12) Then

has the same effect as If X>=12 Then in which the relational
test is the negation of that in the above.

The If...Then...Else Statement:
In many cases we have to perform an If statement twice over
to detect which of two similar conditions is true. This is
illustrated below.

Sub Form_DblClick ' Program EXMPLE20.MAK

' The two IF statements

Dim Num As Double

Num = Val(InputBox$("Enter number between 1 - 99 "))

If Num < 10 Then

Print "One digit number"

End If

If (Num > 9) Then

Print "Two digit number"

End If

End Sub

A more advanced version of the If statement allows both
actions to be inserted in its trailer. An example of this is
incorporated in the modified program below:

Sub Form_DblClick () ' Program EXMPLE21.MAK

' IF..THEN..ELSE statements

Dim Num AA Double

Num = Val(InputBax$("Enter number between 1 - 99 "))

If Num < 10 Then

Print "One digit number"

63

Else

Print "Two digit number"

End If

End Sub

Save this program under the filename EXMPLE21.MAK and
execute it, supplying numbers between 1 and 99. Obviously,
if you type in numbers greater than 99 the program will not
function correctly in its present form. But assuming that you
have obeyed the message and typed 50 the second Print
statement in the trailer of the If statement (after the Else) will
be executed. If the number entered was less than 10, the first
Print statement after Then would be executed. The general
structure of this block If is:

If <relational test> Then

{ execute this }

{ block of }

{ statements }

{ if true
}

Else

{

{

{

End If

execute this)

block of)

statements)

if false)

Note: In the above structure, no statements can follow the
words Then and Else.

The Elself Statement:
If your programming logic requires the use of the block If
statement to choose amongst several options by, say, using:

If <relational test_1> Then

{ execute this

Else

{ block

{ if true

If <relational test_2> Then
{ execute this }

64

block
}

{
if true }

Elee

{ execute this }

{
block }

{ if false

End If

End If

then use the Elseff statement to simplify the structure cf your
program to the following:

If <relational test_1> Then

{ execute this }

block }

{
if true }

ElseIf <relational test_2> Then

{ execute this

{
block

{
if true

Else

{ execute this

{
block

{ if false

End If

}

}

)

)

)

)

The ElseIf statement makes the whole structu-e easier to
understand.

Simple Data Sorting
The program below allows us to enter two numbers, then it
tests to find out which is the larger of The two anc prints them
in descending order. It also illustrates some of the points
mentioned above.

Sub Form_Db1Click 0 ' Program EXMPLE22.MAK

' 2 number sort

Dim Numl As Double

Dim Num2 As Double

Do

Numl = Val(InputBox$("Enter number [-1 to end]"))

Num2 = Val(InputBox$("Enter second number"):

65

If Numl = -1 Then

MsgBox "Operation finished" ' Display.
End

ElseIf Numl >m Num2 Then

Print Numl, Num2

Else

Print Num2, Numl

End If

Loop Until Falee

End Sub

The program can be stopped by entering -1 for Num1.
Otherwise, Num1 is compared with Num2 and the
appropriate Print statement is executed.

The sorting problem becomes more complicated, however,
if instead of two numbers we introduce a third one. For two
number sorting we had two possible Print statements (the
number of possible permutations being 1*2=2). For three
number sorting however, the total number of Print statements
becomes six (the total possible permutations being equal to
1*2*3=6). With numbers A, B and C, the combinations are
(A,B,C), (A,C,B), (C,A,B), (C,B,A), (B,C,A) and (B,A,C). Thus,
if we were to pursue the suggested logic in dealing with the
problem it would result in a very inefficient program.

Here is a way in which, with only two IF statements and
one Print statement, the same solution to the three -number
sorting problem can be achieved. It uses a different logic and
it is explained here with the help of three imaginary playing
cards (see Figure on the next page).

Assume that you are holding these cards in your hand and
you wish to arrange them in descending order. Look at the
front two (a) and arrange them so that the highest value
appears in front. Now look at the back two (b) and arrange
them so that the highest of these two is now in front.
Obviously, if the highest card had been at the back, in the
first instance, it would by now have moved to the middle
position, as shown in (c), so a repeat of the whole procedure
is necessary to ensure that the highest card is at the front (d).

66

10 10

8

10

(a) (b) (c)

10

Sorting three playing cards into descending order

The program below achieves this.

Sub Form_Db1Click () ' Program EXMPLE23.MAK

' 3 number descending sort

Dim A As Double

Dim B As Double

Dim C As Double

Dim Temp As Double

A = Val(InputBox$("Enter first number"))

= Val(InputBox$("Enter second number"))

C = Val(InputBox$("Enter third number"))

Do While A < B Or B < C

If A < B Then

Temp = A

A = B

B = Temp

End If

If B < C Then

Temp = B

B = C

C = Temp

End If

Loop

Print A, B, C

End Sub

67

The following actions are indicated: If the value in A is less
than that in B, exchange them so that the value of A is now
stored in B and the value of B is now stored in A. Note,
however, that were we to put the value of B into A, we should
lose the number stored in A (by overwriting). We therefore
transfer the contents of A to a temporary (Temp) variable,
then transfer the contents of B to A and finally transfer the
contents of Temp to B. The second rotation, necessary when
B is less than C, is achieved in a similar manner. The whole
process is repeated (with the help of the Do While...Loop
statement), for as long as both A is less than B, or B is less
than C. Type this program into the computer under the
filename EXMPLE23.MAK.

The Select Case Statement
This is a statement which allows program action to be made
dependent on the value of a variable, or an expression. It is
Visual BASIC's aid to writing readable programs and
provides an efficient alternative to multiple If statements. The
general form of the statement is written as follows:

Select Case Expression

Case A

(execute these
(statement(s))

Case B To D

(execute these 1

(statement(s)

Case E,X

(execute these

(statement(s))

Case Else

(execute these 1

1 statement(s))

End Select

where Expression can evaluate to either a number or a
string. A particular Case statement within the block (for
example, CASE A), will be executed only if Expression
evaluates to a constant or a string represented by A.

68

The following examples will help to illustrate the use of the
Select Case structure. The first and simpler one, Icoks for
input in the form of a number representing the day of the
week (Monday 1. Tuesday 2, etc.). It then evaluwes this
DayNum variable (which is the Expression in the general
format) to a constant, as follows:

Sub Form DblClick O ' Program EXMPLE24.MAK

' Using SELECT CASE

Dim DayNum As Integer

DayNum = Val(InputBox$("Enter day number "))

Select Case DayNum

Case 1 To 5

Print "Working day"

Case 6, 7

Print "Weekend"

Case Else

Print "Not a day"

End Select

End Sub

The second example (based on that in Help), is a bit more
complicated. You should make sure you unde"stand how it
works, as several keyboard entry error trapping methods are
introduced.

Sub Form_Click ' Program EXMPLE25.MAK

Dim Msg, Userinput ' Declare variables.

Msg = "Enter a letter or number from 0 through 9."

UserInput = InputBox(Msg) ' Get user input.

If Not IsNumeric(UserInput) Then ' Check input type

If Len(Userinput) <> 0 Then

Select Case Asc(UserInput) ' If a letter.

Case 65 To 90 ' Must be uppercase.

Msg = "You entered uppercase letter '"

Msg = Msg & Chr(Asc(Userinput)) & ''."

Case 97 To 122 ' Must be lowercase.

Msg = "You entered lower-case letter '"

Msg = Msg & Chr(Asc(UserInput)) &

69

Case Else ' Must be something else.

Msg = "Not a letter or number."

End Select

End If

Else

Select Case CDbl(UserInput)
' If a number.

Case 1, 3, 5, 7, 9 ' It's odd.

Msg = UserInput & " is an odd number."
Case 0, 2, 4, 6, 8 ' It's even.

Msg = Userinput & " is an even number."

Case Else ' Out of range.

Msg = "You entered a number outside

Msg = Msg & "the requested rang."

End Select

End If

MsgBox Msg ' Display message.

End Sub

In the first If statement, the expression Not IsNumeric only
accepts letters as input, not numbers. If the input is a
number, control passes to the Else statement.

In line 7, Asc returns a numeric value that is the ANSI
code for the letter entered (see table in next chapter). The
Case statements then act depending on these numeric
codes. The first one accepts uppercase letters (which have
ANSI codes in the range 65 to 90). The second one accepts
lowercase letters (which have ANSI codes in the range 97 to
122).

In line 10, the part of the expression Chr(Asc... changes
the ANSI code back to the original character, so that it can be
displayed in a message box.

The function CDbI in the second Select Case expression,
explicitly converts the data type to Double precision. The
following two Case statements select between odd and even
numbers. Anything that reaches the final Case Else
statement is neither a letter, or a number between 1 and 9,
so is flagged as such.

70

Data Type Conversion:
The CDbI function in the last example explicitly conve-ted an
expression from ore data type to another. Visual BASIC has
7 such functions to enable conversion to all the types of data.
The syntax is

CTyp2(expression)

Where CType is one of the functions from the list belcw and
expression can be any valid string or numeric expression.

Function Converts to:

CVar Variant
CCur Currency
CDbI Double
Clnt Integer
CLng Long
CSng Single
CStr String

You can use these data type conversion functions to ensure
that the result of a calculation is expressed as a particular
data type rather than the normal data type of the result

Exiting Block Structures
If, for any reason, you require to exit a loop, a function or a
procedure prematurely (for example when a data search for a
match is successful), then use one of the following:

Exit Do
Exit For
Exit Function
Exit Sub

the first two being used to exit loops, and the last, to exit
functions and procedures

71

-

7. STRINGS AND ARRAYS

String Variables
In Visual BASIC, string variables can be distinguished from
numeric variables by including the $ tag after their name, or
more usually, by declaring them as such in a Dimension
statement, such as:

Dim A AS String

By default, a string variable has a flexible length. It gets
longer, or shorter, as you assign different data to it To fix its
length you can add the required size to the statement:

Dim A AS String * 25

In this case A wi I always be allocated 25 characters of
storage space. If it does not need this length it will be
'padded' with trailing spaces. If the data it holds is longer than
25 characters it will be truncated (and some will be lost).

If a variable is not declared in a program it takes the
default Variant type, which is a special data type that can
contain numeric, string, date, or currency data.

As with numbers, strings can be assigned to variables in
several ways. For example, the code below assigns a string
to the variable named A$ and then prints A$ to the current
window.

A$="ABC123"
Print A$

When the code is run, Visual BASIC outputs

ABC123

ANSI Character Codes
Visual BASIC assigns a numeric code to each character on
the keyboard, according to the ANSI (American National
Standards Institute) code, as shown in the tables o.erleaf.
Thus, each letter of the alphabet is assigned a numeric
value. The first 128 characters (0 - 127) are common with the
ASCII set used in most DOS applications.

73

Table 1 of ANSI Conversion Codes

0 32 [space] 64 @ 96
1 33 I 65 A 97 a
2 34 66 B 98 b
3 35 # 67 C 99 c
4 36 $ 68 D 100 d
5 37 `)/0 69 E 101 e
6 38 & 70 F 102 f
7 39 71 G 103 g
8 40 (72 H 104 h
9 * 41) 73 I 105 i

10 42 74 J 106 j
11 43 + 75 K 107 k
12 44 76 L 108 I

13 45 77 M 109 m
14 46 78 N 110 n
15 47 / 79 0 111 0
16 48 0 80 P 112 p
17 49 1 81 Q 113 q
18 50 2 82 R 114 r

19 51 3 83 S 115 s
20 52 4 84 T 116 t
21 53 5 85 U 117 u
22 54 6 86 V 118 v
23 55 7 87 W 119 w
24 56 8 88 X 120 x
25 57 9 89 Y 121 y
26 58 90 Z 122 z
27 59 91 [123 {
28 60 < 92 \ 124 I

29 61 = 93] 125 }
30 62 > 94 A 126 -
31 63 ? 95 127

Characters not supported by Microsoft Windows
* * Values 8, 9, 10, and 13, above, convert to

backspace, tab, linefeed, and carriage return
respectively and can be used in programs to
create these actions.

74

Table 2 of ANSI Conversion Codes

128 160 [space] 192 A 224 a

129 161 i 193 A 225 a

130 162 0 194 A 226 a

131 163 £ 195 A 227 a

132 164 rz 196 A 228 a

133 165 Y 197 A 229 a

134 166
i
' 198 /E 230 ae

135 167 § 199 CT 231 c

136 168 200 E 232 e

137 169 © 201 E 233 e

138 170 a 202 234 e

139 171 0 203 E 235
140 172 , 204 I 236
141 173 205 I 237 i

142 174 0 206 1 238 i

143 175 207 I 239 i

144 176 . 208 D 240 45

145 177 ± 209 N 241 n

146 178 2 210 d 242 6

147 179 3 211 0 243 o

148 180 212 0 244 o

149 181 p 213 0 245 6

150 182 ¶ 214 0 246 b

151 183 215 x 247 -
152 184 216 0 248 0

153 185 , 217 U 249 0

154 186 0 218 U 250 0

155 187 D 219 U 251 u

156 188 'A 220 U 252 0

157 189 1/2 221 1' 253 y

158 190 3/4 222 ID 254 ID

159 191 l., 223 a 255 y

Note: The codes within the range 128 to 255 above contain a
series of special characters that are not on t-ie standard
keyboard. These include international and accented letters,
fractions and currency symbols.

75

When strings appear in an If statement, they are compared
character by character from left to right on the basis of the
ANSI values until a difference is found. For example, if a
character in a position in StringA has a higher ANSI code
than the character in the same position in StringB, then
StringA is greater than StringB. If all the characters in the
same positions are identical but one string has more
characters than the other, the longer string is the greater of
the two. Thus, strings of letters can be placed easily in
alphabetical order and sorted lists of names, etc., are
possible.

String Functions
In the statements given so far, the string variables have been
considered in their entirety. We shall now introduce some
functions which give access to any character within a given
string and hence allow manipulation of that string.

Left and Left$ Functions:
These both return a number of characters from the left of a
string argument. The function is used as follows:

Left[$] (StringA, n)

and will return the leftmost n characters of StringA. When
used without the $ suffix, Left returns a Variant; whereas
Left$ returns a String. In most cases you are probably better
off adding the $ and declaring all your string variables as
such.

Right and Right$ Functions:
These work in exactly the same way as the Left[$] functions,
but they return the rightmost characters of the specified
string.

Mid and Mid$ Functions:
In the same way, these return a Variant or String from part of
a source string, as follows:

Mid[$] (StringA, Start[, Length])

76

Where Start and Length are numbers. In this case the string
with Length number of characters and beginning at position
Start of StringA will be returned.

If Length is omitted the Mid[$] function returns all the
characters from the start position to the end of the string.

Other String Functions:
There are a few more functions that help with string
manipulation, most of which will be demonstra:ed it later
examples.

The Len(StringA) function is used to find the number of
characters in StringA.

The InStr([Start,] StringA, StringB) function eturrs the
location of StringB in StringA, optionally beginning the search
Start characters into the string. If Start is omitted the search
will begin at the first character. This function is very useful for
locating spaces between words in a string.

Space$(Num) will create a string with Num soaces in it,

and String$(Num, "X") will create a string consisting o= Num
characters of type X. If a number is used for X the ANS code
character will be used. The first is useful, with nc number to
place spaces between words being built in a string
expression, the second for building lines with graphic type
characters.

Ucase$(StringA) and Lcase$(StringA) convert all the
characters in StringA to upper, or lower, case respectively.
An example of their use is to convert keyboard entry
characters before testing for the entry Otherwise you would
have to test for both upper and lower case letters.

The best way to understand these functions is by ertering
and playing with an
example, so build the
Form shown here. This
small program does not
really serve any great
purpose. It expects you to
enter your First and last
names into the top text
box separated by a
space. Clicking the Go
button places the two

PlokaIttMsWvesiearbas4
1.w and 60 names

Plsase

Second Name

L

77

parts of the name into their respective text boxes. The Clear
button resets the boxes and Quit exits the program.

The form has 3 Text boxes, with a Label placed above
each, and 3 Command buttons, as shown. You may have to
go back to the earlier chapters if you need help setting these
up. Set the following object Properties as shown, but leave
the others with the default settings.

Object Property Setting

Command 1 Caption Go
Default* True
Name ComGo

Command2 Caption Clear
Name ComClear

Command3 Caption Quit
Cancel* True
Name ComQuit

Labell Caption Enter first and last names

Label2 Caption First Name

Label3 Caption Last Name

Text1 TabIndex 0
Text Cleared

Text2 Text Cleared

Text3 Text Cleared

See end of example for more explanation.

When you have finished the above Property changes, double
click the background of the form and enter the declaration
statement below into the (general) (declarations) box. This
allows the variable Usr$ to be used from any of the form's
commands.

78

Then double-click the Textl box and enter the following
code, making sure it is entered into the Change procedure
code window. This will then be actioned whenever the text
entered into the box is changed at run time.

Sub Textl Change ()

Usr$ = Textl.Text

End Sub

The main code to work the program is next entered in the
code window of the Go Command button

Sub ComGo_Click 0

Dim LWord, Msg, Rword, SpcPos ' Declare variables.

SpcPos InStr(1, Usr$, " ") ' Find the space.

If SpcPos Then

LWord = Left(Usr$, SpcPos - 1)

Rword Right(Usr$, Len(Usr$) - SpcPos)

Text2.Text = UCase$(LWord) ' First name

Text3.Text = UCaseS(Rword) ' Last name

Else

Msg = "You didn't enter two words."

MsgBox Msg ' Display error message.

Textl.Text = "" ' Clear text box

Text1.SetFocus ' Place insertion point in box

End If

End Sub

In the Click procedure code window of the Clear Command
button. enter the following code which clears the text boxes
and places the insertion point in the first, ready for input.

Sub ComClear Click ()

Textl.Text = ""

Textl.SetFocus

Text2.Text =

Text3.Text =

End Sub

1111

79

Last of all, place the one word of code in the Quit Command
button code window as follows:

Sub ComQuit_Click ()

End 'Close program

End Sub

The logic of the code 'behind' the Go button should be fairly
easy to follow. Four local variables are first declared, which
are only used in this subroutine. The lnstr function then looks
for a space (" ") in the entered text held in the variable Usr$
(short for User Input).

If a space is found, the lines under the If statement are
actioned. The first and last names are cut out of the Usr$
string and then converted to upper case.

If no space character is found, the Else statements are
actioned. An error message is placed on the screen, the
input text box is cleared and the focus is placed back into it to
receive correct input.

Two of the Properties set in this example need more
comment. The Quit Command button property Cancel was
set to True. This controls the action of the <Esc> key in the
program. With this setting pressing the <Esc> key is the
same as clicking this button.

The Go Command button property Default was also set to
True. This controls the action of the <Enter> key. Pressing
this key then has the same effect as clicking the Go button.

String Conversion Functions
There are four additional string functions in Visual BASIC:

Asc () , Chr$ () , Str$ () and Val()

Examples of the use of these functions are given next.

ANSI Conversion:
The use of the Asc function in the statement

N = Asc ("ABCD")

will return the ANSI code for the first character of the string
enclosed in the brackets of the function. In this case, 65 will

80

be returned (see Table on ANSI Conversion Codes) The
function name ASC actually refers to ASCII code conversion
as used in previous DOS versions of EASIC. But all the usual
keyboard codes are the same in both codes, so the -lame
has been kept in Visual BASIC to maintain compatibility with
code written for earlier versions.

Character Conversion:
The use of the Chr$ function in the statement

CS = Chr$(66)

will return the ANSI character that corresponds to the value
of the argument, in this case the letter B. The value of the
argument must lie between 0 and 255.

String Conversion:
The use of the Str$ function in the statement

S$ = Str$(X)

will convert the value of the argument into a string. X is a
numeric variable which might be the result of a calculation. In
this case, if X had the value of 98.56, say, then S$ becomes
equal to "98.56".

Value of String:
If R$ represents a string given by

R$ = "3.123E12 metres"

then the statement

X . Val(R$)

will return the value of the string up to the first non -numeric
character, in this case 3.123E+12. If the string begins with a
non -numeric character then the value 0 is returned.

String Concatenation:
BASIC allows the concatenation (joining together) of strings.
We shall illustrate this facility by coisidering the following
program in which the computer asks you to enter your
surname first followed by your first name. It then

81

concatenates the two (first name first followed by surname
with a space in between) and prints the result which is held in
string variable X$.

Sub Form Click () ' Program EXAMPLE27.MAK

Dim SName, FName, WName

SName = InputBox$("Enter SURNAME please")

FName = InputBox$("Enter FIRST NAME please")

WName UCase$(FName) + Space$(1) + UCase$(FName)

Print "HELLO " & WName

End Sub

As it stands, the program is rather trivial. However, using
concatenation together with some of the string functions
mentioned earlier, can result in a somewhat more
spectacular result. To illustrate this, delete the Print
statement of the above program and replace it with the
following lines to the program:

FontName = "Courier New" ' Program EXAMPLE28.MAK

FontSize = 10

L = Len(WName)

If L > 22 Then

WName = WaseS(LeftS(FName, 1) +

L = Len(WName)

End If

For I = 1 To L

Print Mid$(WName, I, 1);

If I = 1 Then Print " "; WName;

If I = L Then Print " "; WName;

Print Tab(L + 4); Mid$(WName, I, 1)

Next I

+ SName)

Run the program and supply it with your full name (surname
first). What you would see in the form window, if your name
was JOHN BROWN, is shown on the next page. This would
not work properly without the first line above, which sets the
printing font to Courier New which is not proportional

82

J JOHN BROWN J
O 0
H H

N N

R R

O 0

N JOHN BROWN N

Note that the program has worked out the length of your full
name and allowed enough space between the two vertical
columns to write it horizontally on the first and last rows.

Now Run the program again, but tiis time type in a really
long name, say CHRISTOPHER VERYLONGFELLOW. Can
you work out from the program lines and the output on your
screen what has happened? Try it.

Arrays
Some people find difficulty understanding the concept of
arrays in programming. An array is a set of sequentially
indexed elements of the same type and name, with each
element having a unique index number to identify it. Changes
made to one element of an array do not affect the other
elements.

An array can on'y store data of the same type. Of course,
if the array data type is Variant, then numerical, stri-ig and
date/time data can all be stored in the same array.

String Arrays:
A number of strings can be stored urder a common rame in
a string array. Let us assume that we have four names, e.g.,
SMITH, JONES, BROWN and WILSON that we want to store
in a string array. In Visual BASIC, whenever an array .s to be
used in a program, you must declare your intention tc do so.
Thee are several ways of doing Uiis. One is to pace a
Dimension statement, like the one on the next page, nto the
(general) (declarations) section of a form. This, dimensions
the array Names() with the elements 1 to 4, and allows the
array to be used from any of the form's commands.

83

Dim Names(1 To 4) As String

Enter this line into the declarations section of a new project
form and then type the following code into the Click
procedure:

Sub Form_Click () ' Program EXAMPLE29.MAK

' Use of a string array

Dim I As Integer

Names(1) . "SMITH" ' Load array

Names(2) . "JONES"

Names(3) = "BROWN"

Names(4) . "WILSON"

For I . 1 To 4

Print "Names("; I; ")",

Next I

Print

For I . 1 To 4

Print Names(I),

Next I

Print

End Sub

When run, this program demonstrates how the 4 elements of
the array Names() can be manipulated by using the index
number of each element in your code. Any reference to an
array name within a program must be of the form

Names(I)

Another way of dimensioning this array with 4 elements is:

Dim Names(4) As String

However, the element numbers in this case would be 0 to 3,
as unless the range is implicitly declared it starts, by default,
from 0. You can, if you want, force the lower 'bound' to 1 by
placing the line

Option Base 1

in the declarations section of your form.

84

A simple way to visualise a string array is as follows:

SMITH JONES BROWN WILSON

The four names are stored in a common box which has four
compartments (or elements), each compartment containing
one name. Thus, Names(2) refers tc the 2nd element of
string array Names(), and Names(4) to the 4th element.

Subscripted Numeric Variables
Array variables are often called subscripted variables and
they permit the representation of many quantities with one
variable name. A particular quantity is indicated, as we saw
above, by writing a subscript in parentheses after the variable
name. So an array allows you to use a single varrable name
for a complete list of related data. Items from the list are
located by their index (or subscript) number, which can be
referred to as a number, or an expression that results in a
number. In Visual BASIC an array may have up to 60
dimensions, each one represented by a different subscript.

The elements of a one-dimensional array can be
represented as follows:

MO) A(1) A(2) A(3) A(4)

while those of a two-dimensional array as:

A(0,0) A(0,1) A(0,2) A(0,3)

A(1,0) A(1,1) A(1,2) A(1,3)

A(2, 0) A(2,1) A(2,2) A(2, 3)

The first of the two subscripts refers to the row number,
running from 0 to the maximum number of declared rows,
and the second subscript to the column number, running
from 0 to the maximum number of declared columns.

A three-dimensional array can be thought of as stacked
two-dimensional arrays with the third subscript, running from
0 to the maximum height of the stack. More complex
structures follow the same procedures.

85

As with string arrays, numerical arrays must be declared prior
to their use, either with a Dim statement placed in the
declarations section of a form or module, with a Global
statement placed in the declarations section a' a module, or
with a Static statement placed in the procedure.

When declared with:

Global an array is available to any fcrm or module
contained in a project.

Dim an array is available to any procedure on the
form or module on which it is placed.

Static an array is available only within the
procedure in which it is declared.

The form of the statement is shown below:

Dim X(15), Y(3,5), Z(3,5,4)
Global X(15), Y(3,5), Z(3,5,4)

Static X(15), Y(3,5), Z(3,5,4)

where array X() has been declared to be a one-dimensional
array with a maximum of 16 elements (don't forget the zero'th
element), array Y(,) has been declared as a two-dimensional
array of 4 rows and 6 columns, and array Z() as a
three-dimensional array of 4 rows and 6 columns stacked 5
deep. The number of arrays that can be declared
simultaneously is dependent only on the available memory in
your computer. Don't forget that multi -dimensional arrays can
very quickly eat into your available memory.

Static and Dynamic Arrays
Visual BASIC allows you to assign a portioi of memory for
array use in two different ways. These are.

Static arrays When the declaration is made with
subscripted variables, for example
DIM Year(1980 TO 2000., or
DIM Aname(15)

Dynamic arrays When the declaration is made with
empty subscript brackets, for example

86

Dim Year() or Dim Aname()

Static array memory is always the same size for each run of
the program and cannot be used for any other purpose.

Dynamic memory is allocated during run time and the
space may vary for each run of the program. Dynamic
memory can be freed at any time for other use with the
statement

Erase Array name

This command also reinitialises the elements of fixed arrays
as well as freeing dynamic array storage space.

Before your program can refer to the dynamic array again,
it must re -declare the array variable's dimensions using a
ReDim statement. However, although dynamic arrays are
memory efficient, accessing values held in them may be
slightly slower that accessing values held in static arrays.

There are two main error messages which relate to the
use of arrays. These are:

Subscript out of range
Overflow

The first error occurs if an attempt is made to use an array
element that is outside the declared dimension, or if an
attempt has been made to dimension the array with a
negat.ve number of elements. The second error occurs if an
attempt is made to use an array for which there is no room in
the computer's memory.

As an example of array usage we will build a small
stocktaking program. After you have studied it, enter the
code as EXMPLE30.MAK.

First declare two arrays in the declarations section of a
new project form as 'ollows.

Dim Item(4) As String
Dim Stock(4, 2) As Double

Then enter the following code into the Click procedure of the
form. Note the use of the colon (:) to separate multiple
statements on a line. You could enter all the Print statements
together on one line if you prefer.

87

Sub Form_click ()
' Program EXAMPLE30.MAK

' Stocktaking program
Dim I As Integer, Xname As String

Item(1) "INK ERASER" 'Load data into arrays
Stock(1, 1) 200: Stock(1, 2) .1

Item(2) "PENCIL ERASER"

Stock(2, 1) = 320: Stock(2, 2) .15

Item(3) "TYPING ERASER"

Stock(3, 1) 25: Stock(3, 2) . .25

Item(4) "CORRECTION FLUID"

Stock(4, 1) = 150: Stock(4, 2) .5

Do

Xname = InputBox$("Which item? 'END' to finish")

If UCase$(Xname) = "END" Then End
For I = 1 To 4

If UCase$(Xname) = Left$(Item(I), 3) Then

Print Item(I); " ";

Print Stock(I, 1) & " in stock @ ";

Print Format(Stock(I, 2), "Currency");

Print " each."

End If

Next I

Loop Until False

End Sub

When run, the Input Box will only accept an entry whose first
three letters are the same as one of the items entered into
the Item() array.

Dole bay i

DATA I NTFIY IONIA

I nice dale 101 each Nock aen

Nameal.mt

Numbs. in .ock CasthIe

Lihij Lad

The last example included all
the data for the arrays in the
code. This is not always
convenient, so the next one
has a front-end data entry
form and the user can enter
any suitable data at run time.

Forml shown here, has
been given the Name
property 'Data Entry'.

88

It has 3 Text Boxes, a Command Buttons and seve-al Labels
Open a new project (EXMPLE31.MAKi with 2 forms and a
Code Module. This is the first time we nave used more than
one form. Don't panic, simply click the New Form and New
Module icons on the Toolbar. The second form will be _sed
purely as a window b hold our print output, and the module
will be used for globa declarations of our arrays.

We will leave it to you to build the 7-orm1 entry form on
your own The code for the various objects is shown in the
File, Save Text format.

Firs: the declarations placed in the new code module:

Option Base 1

Global Item(10) As String

Global Stock(10, 2) As Double

Then the code for the 4 command buttons, which have teen
renamed, as shown below, to Enter, Print, Query and Qui:.

Sub Enter_Click () ' Program EXAMPLE31.MAIC

' Improved stocktaking program

Static Counter As Integer

If Counter < 1 Then Counter = 1

Item(Counter) = Textl.Text

Stock(Counter, 1) = Val(Text2.Text)

Stock(Counter, 2) = Val(Text3.Text)

Counter . Counter t 1

Textl.Text = ""

Text2.Text = ""

Text3.Text = ""

Textl.SetFocus

End Sub

Sub Print_Click ()

Form2.Show

For I = 1 To 10

Form2.Print Item(I), Stock(I, 1),

Form2.Print Format(Stock(I, 2), "Currency")

Next I

End Sub

89

Sub Query_Click ()

Dim I As Integer, Xname As String

Do

Form2.Show

Msg = "Which item? 'END' to finish"

Xname = InputBox$(Msg,"Data Query"7000,5000)

If UCase$(Xname) = "END" Then End

For I = 1 To 10

If UCase$(Xname) = UCaseS(Left$(Item(I), 3)) Then

Form2.Print Item(I); " ";

Form2.Print Stock(I, 1) & " in stock w ";

Form2.Print Format(Stock(I, 2), "Currency");

Form2.Print " each."

End If

Next I

Loop Until False

End Sub

Sub Quit_Click ()

End

End Sub

You should, by now, be able to follow this code quite easily.
Remember that if you forget the correct syntax for a
command, simply select it in the editing window and press
Fl. As it stands the program will accept 10 sets of data, but
would be easy to modify.

The Static declaration allows the variable 'Counter' to
maintain its value: without this it would be re -set each time
the Sub was run.

The statement 'Form2. Show' opens the window Form2
and the Print statements have to be prefixed with 'Form2 ' to
force printing onto this window (otherwise t will run behind
the features on Form1.

The InputBox$() statement has a title as well as X and Y
co-ordinates to force the box to the lower right portion of the
screen. Otherwise it opens over the Form2 printing window.
You must use all the positioning commas, as shown, to get
these to work.

90

8. MORE ON CONTROLS

In Chapter 3, we briefly described the main controls avai able
in Visual BASIC, but so far we have not actually used some
of them. We have concentrated more on the fundamentals of
the programming language itself.

Perhaps the easiest way to come to terms with the other
controls is to study how the sample program
CONTROLS.MAK wor<s. This was found in our set-up in the
VB\SAMPLES\CONTROLS directory. Load this projec-. and
set up your screen as shown below. Here, we have opened
the MAIN.FRM by selecting it in the Project window and then
clicked the View Form button.

1 .,111111111111.1.1.

I.Bnisolt Visual B.. [design'
obug pton WI.d. flub

VitoodWrap and Auto
Cheek Boa
Number System
List Box
Multi -column ill III.
auoll 1316
Centro) ABoy

Pant Shoo Po

CO TROLS MAX

Km Coda

n ARRAY 1111t ITFIMIRY 1.9Jlan

t CHI CI II. SOW
'1 Its van:, ION INLIft.

1401.11111

rl MULTI FRIA

II. ...me.
"Z, ST no, 1-1.1 .,,en11os1

71 WOOD WRAP II

This form has an Exit button, which you should be very
familiar with, and a menu item, shown opened above. The
menu gives access to the other forms which make up this
project.

If you double-clic< the MAIN.FRM window and open the
Object drop down list you will see reference to a I the menu
code windows. The screen dump overleaf shows This list and
a typical Procedure code.

91

In each case, the code
simply opens the
relevant form window
using the Show
statement.

This is a very easy
way to transfer control
around the program,
and we will look at how

to set up menus a little later on. In the meantime, run the
program and move between the various options. You will be
amazed at what can be produced in Visual BASIC with very
little in the way of code.

Control Buttons
The Test Buttons routine shows a traffic light which changes
from green to amber and then red when a button is clicked.

likresoll Visual Bak
Elk EMS Pew Bow w

11 1 itJklikakiikagah_

AIMAY.11111 1.0:crikip
7.1

On close inspection the form actually has three picture icons,
with different colours active, superimposed on top of each
other, with only one having its Visible property set as True.

92

find Champed pal 11
Cf.eck to ,er ,Cal Leila- Me light is and change
it to thin nest color. III* ardr, IS gretn.
and II.. rra.

If ingdreenAlisilly - True Thee
IndrwernAlinillie
laddellarAistild fret

IISeIf I.9VelVV fvetylnle - Irue flwa
Impellow.V11.11.14, false
IWAIRfd.U11.Illf Irw

[Ise
1raillea.U1 eeeee false
ImgCrten.lisidlt - Erre

End II
End Sul

Clicking the Change
Signal button calls
the ChangeSignal
procedure shown
here, which steps
through the colour
sequence in the
right order setting
only one as Vsible
at a time.

Note that ChangeSignal is a Sub procedure not related to
any particular object action (such as clicking the mouse). It
can be called from anywhere on the current form and is
placed in the (general) procedure section.

Before we leave the Buttons part of the program, look at
the code that is activated by clicking the Close button.

Unload Me

As its name suggests, this closes the active window and
wipes its display from the screen. In this program control
returns to the MAIN.FRM opening window.

Check Boxes

- -t, --.Wen1WriP sodmow* rr-m,-.1.4 1

dormanattatIon ol
AuleSwe end

AutoSaw

EiWard

Check boxes are used on
the WO R DWRAP form
which also gives a clear
demonstration of how the
AutoSize and WordWrap
properties of a Label work.

A long caption has been
entered into a Label of
specific size. Clicking the
two c'ieck boxes selects

whether the AutoSize and WordWrap properties of a Label
are to be set or not When the program is run, clicking the
Oisplay button sets the two Label properties, and the result
can be seen in the display. The code behind the Pisplay
button is:

Sub cmdDisplay_Click ()

' Reset the example

93

lblDisplay.AutoSize = False

lblDisplay.WordWrap = False

lblDisplay.Width = 1695

lblDisplay.Height m 255

Check for WordWrap and Autosize

If chkWordWrap.Value = 1 Then

lblDisplay.WordWrap = True

End If

If chkAutoSize.Value = 1 Then

lblDisplay.AutoSize . True

End If

End Sub

This, first sets the AutoSize and WordWrap settings of the
label to False, sizes the label and then looks at the Check
box settings. If either is selected, its Value property will be '1'
and the above procedure will set the Label property to 'True'.

A Check box displays an X when selected and, as we
have seen, is used to give the user True/False or Yes/No
options. They are usually used in groups to display multiple
choices, any of which can be selected.

Check boxes and Option buttons function similarly but only
one Option button in a group can be selected.

To display text next to the Check box, enter it into the
Caption property of the box.

The Value property determines the state of a Check box,
as used in the above program - the available settings being:

0 is Unchecked, the default setting.
1 is Checked, or selected.
2 is Greyed (dimmed), unavailable.

Option Buttons
An Option button displays an option that can be turned on or
off. They are used to display multiple choices from which the
user can select only one. You can group option buttons by
drawing them inside a frame or a picture box, or directly onto
a form. All those placed directly onto a form are treated as a
separate group.

The Number System example in CONTROLS.MAK uses
Option buttons to make a choice between three options.

94

Nmibmilyofts x404
EneafraWm;

C, t.. pct.

* se dermal

0 1.. tydruadessal

The three Option buttons
shown, form a group on the
form, so only one of them can
be set at any one time.

To set a default opticn (in
this case Use dezimal, set
the Vakie property of that
option to True.

In this example, when a
number is entered into the

Text box it is screened and given the variable name of
CurrentNum. If you click the Use octal option button, the
following code will be actioned

Sub optOctButton_Click 0

txtNumber.Text Oct(CurrentNum)

End Sub

which places the Octal format of the number into the Text
box.

Combo and List Boxes
These are both usec to display a list items from which the
user can choose one. The list can be scrolled if i: has more
items than can be displayed at one time A list box only
al,ows a choice from an existing list, whereas a Combc box
has a Text box feature at the top of the list, into which you
can type a new choice.

Dependant on the Style property, Text determires tha text
that is contained in the text edit area of a Combo box, cr the
selected item in the list box. This property is read-only at both
design and run time

The Style property sets the type of combo box drawn:

0 - Dropdown Combo Includes a drop -down list and
an edit a -ea. The user can se-
lect from the list, or type into
the edit a -ea.

1 - Simple Combo Includes an edit area and a list
that is always displayed The
user can select frorr the ist, or
type into the edit area. By

95

default, this type is sized so
that none of the list shows. In-
creasing the Height property
will show more of the list.

2 - Dropdown List This style only allows selection
from the drop -down list.

If the Sorted property is set to 'True', all items in a list are
automatically sorted alphabetically at run time. The default
setting, 'False', does not sort a list.

A Simple Telephone List:
The following small program

Phone Beek,, 111.

I [j Phone nu.bee

shows how a Combo box, or
List box, can be loaded at
run time, and usefully used.
It represents a telephone
'directory' with, as it stands,
only room for 5 entries, but
it could very easily be
extended.

The form, shown here in
Design mode, has a Combo

box and two labels. The only reason a List box is not used is
that it takes up much more room on the form.

Set the Style property of the Combo to 0 - Dropdown
Combo and the Caption properties as shown.

We will use two arrays, one to hold the names and the
other, the telephone numbers, so place the following in the
general declarations section of the form.

Dim SName(0 To 4)
' Dimension arrays.

Dim TelNum(0 To 4)

The main body of the code loads the arrays with data and
then places the names in the Combo list. This is carried out
when the program starts up, so the code is placed as a
Form_Load procedure.

Sub Form Load 0
Dim I

AutoSize = True

96

' Program EXMPLE32.MAK
' Declare variable.

SName(0) . "Dean, Jim" ' Enter data into arrays.

SName(1) "Woolgatherer, Larry"

SName(2) "Smith, Archibold"

SName(3) = "Splurg, Andrew"

SName(4) "Bloggs, Alfred"

TelNum(0) "0173 789987"

TelNum(1) = "54645"

TelNum(2) = "010 45 678123"

TelNum(3) "01209 311887"

TelNum(4) "789456"

For I . 0 To 4 ' Add names to list.

Combol.AddItem SName(I)

Next I

Combol.Listlndex = 0 'Display first list item

End Sub

You could obviously substitute more meaningful data ;n the

above if you wanted. All that remains now is to place a line of

code oehind the Combo so that the telephone number of the

person selected in the List shows in the main Label box.

Sub Combol_Click

' Display corresponding Number for name.

Labell.Caption = TelNum(Combol.ListIndex)

End Sub

When you have entered the code and are happy with the way

it works, try changing the Style property of the Combo box to

see the different types available. With the above code,

Whatever you do, don't try sorting the list with the Sorted

property. The array indices would not then be the same and

incorrect phone numbers would be displayed!

As we saw in the previous example, to display items in a

combo or list box, you use the Addltem statement To
remove items, you would use Removeltem in the same way.

The Listlndex property determines the index cf the

currently selected item in a list; this cannot be used at design

time. The ListCount property (also not available at design

time) specifies the number of items in the list. The statement

Combol.ListCount

would return the number of items in the list of Combol.

97

The Timer Control
Visual BASIC's timer, which is invisible to the user at run
time, is used for background processing. A Timer Control
runs code at regular intervals by causing a Timer event,
which occurs when a pre-set interval of time has elapsed.
The timing frequency is set in the control's interval property,
which specifies the length of time in milliseconds. The other

main Timer property is the
Enabled property When this is
set to True with the Interval
property greater than zero, the
Timer event waits for the
period specified in the Interval
property.

A very simple digital clock
can be programmed by placing a Timer and a Label on a
form as shown here. The code required is minimal.

Sub Form_Load ()

Timerl.Interval = 1000 ' Set timer interval.

End Sub

I. Abell

Sub Timerl_Timer

Labell.Caption = Time

End Sub

' Update time display.

In the first procedure, the Timer Interval property is set to
1000 milliseconds, or 1 second. In the second, the Timer is
set to call the Visual BASIC Time function after every 1

second interval, the Label Caption being updated every
second with the computer system time.

When run, a digital clock is operational in the window. By
changing the form and label properties you can customise
this 'clock' with alarms, colours and fonts, etc.

Building a Menu Bar
To make creating menus for your windows reasonably easy,
Visual BASIC has a Menu Design window in which you can
create custom menus and define their properties. Before we
can demonstrate this procedure you need a program with a
form that needs a menu bar. We suggest you create the
following small program.

98

A Simple VAT Calculator:
Appendix A contains all the code, complete with object
properties, for you to build the small program named
VATCALC.MAK, that asks for number input and then
calculates and displays VAT information, as shown below.

1111VVID.1-
Options

im-
Label? T 17

Lae° T,13

Qptions

(S. .d IL um ou

Asgard pkr 17 St VAT . (117.50

Masud lers 17 St VAT . I05.11

The main form, frmVatCalc is showr on the left above in
Design mode, and on the right in Run mode. The Label
Caption and Text box Text properties are shown named
above so that you can see where they are. These must all be
deleted (in the Properties window) before the program will
work properly!

You should have no problem buildirg this form from what
we have covered so far, except for the Menu bar. This has

only one item (Options) on the
main bar, and three sub -menu
items when it is opened, as
shown here.

Governments have a habit of
increasing tax levels at regular
intervals, so the first menu item
allows the user to change the
VAT rate (from the present
17.5%).

The Exit item is not really
necessary, as this is already

taken care of with a Command button, but it is be'ter to have
too many ways out, Man not enough.

99

SIMPLE VAT CALCULATOR

PRMO 1996

VAT I.Y. aeel et
17.5r. U.. the OINISI
delta. le cargo it

You should find it in the
your system.

The About menu item opens
another form and displays some
information about the program.

This is included to demonstrate
some other techniques and is, in
fact, based on a similar form
which you will find in the sample
program TEXTEDIT.MAK. It is a
demonstration of a fully working
text editor and we will use this
project again in a later chapter.

VB\SAMPLES\MENUS directory of

The Menu Design Window:
With the main frmVatCalc form selected, choose
Menu Design from the Window menu, or use
<CtrI+M>, or click the toolbar icon shown here. This
will open the following window. In the Caption text

box, you type the menu
item caption that you
want displayed on the
menu bar. In our case
you type &Options.

The ampersand (&)
character will give the
user keyboard access
to this menu item. At
run time, the next letter
is underlined, and the
menu can be accessed
by pressing Alt plus the
access key, <Alt+O>.

If you had wanted to
your menu, you could type a single

teem.' 110easea 1

New [anuOplera

!nee' [71 Ehedeul kennel 111
0 Windom(al HeleCanbeed0 10

 checked M Enabled 1:4 feeble

JF

create a separator bar in
hyphen (-) in this box.

In the Name box, type the control name that will be used to
refer to this menu item in code, in our case mnuOption.

Leave the other options in the Design Window at their
default settings and click the Next button. Next type &VAT
Rate in the Caption text box and mnuVATRate in the Name

100

Caption

&About
E&xit

box. Now click the Right Arrow on the
Window button bar to make this menu
item secondary to the first, as shown
here, and press Next. Add the other
two menu items as follows:

Name

mnuAbout
mnuExit

W418111111MAilit OtialiVINWie;

Caen.. 1E10

Prartcyl It --0

If 111FLIWzi
LO P.m

&VAl Hair

Mer111169111111111111411tidi..X.914

Window, but their functions are:

The Menu Desigr Window
should now look ike offs,
shown alongside. Pressing
OK will close the window
and place the menu ba- on
your fcrm.

Usirg the left and right
arrows you can have uo to
four levels of sup -menus.
The U3 and down arrows
change the position of a
menu tern in the list box.

We did not use the other
features in the Design

Index Type an index number to control the
position of a menu item withii a

control array.

Shortcut Use to assign a shortcut key to a
menu item by selecting a key from the
drop -down list.

WindowList Select if you want the current menu
control to include the name of open
MDI child forms (outside the scope of
this book).

HelpContextlD Enter a unique number if you plan to
provide a context -sensitive Help topic.

101

Checked

Enabled

Visible

Select if you want a check mark to
appear at the left of a menu item to
indicate that the control is turned on.

Select if you want the menu item to
initially respond to events. Clear the
box if you want the menu item to be
unavailable (greyed on the menu) to
be enabled later in your code.

Select if you want the menu item to
appear on the menu

The menu items you created, although visiple, will not do
anything until you write code for them :as with other
controls). In Design mode, if you click on a Menu Bar item
the sub -menu will open, but if you click on a sub -menu item
its code window will open. As an example, the code below is
placed behind the VAT Rate sub -menu item.

Sub mnuVATRate_Click ()

' Get new VAT rate from user.

NVATRate = Val(InputBox$("Enter new VAT rate"))

VATRate NVATRate

End Sub

This opens an Input Box that requires a new VAT rate to be
entered. The other code for the two forms and all their
controls is given in Appendix A.

The Sub mnuAbout_Click procedure loads the contents into
the form named frmAbout with the statement

frmAbout.Show 1

The Show command displays a form. The following integer (1
or 0) sets the style as modal or modeless When a form is
modal, it must be removed with the UnLoad command
before the program can continue. (Done in the Sub
cmdAbout_Click procedure). The default is modeless, which
lets the form stay active, and a 0 is not actually necessary.

Make sure you study the comments in the code, as they
explain several of the features of the program. The rest we
will leave to you.

102

9. FUNCTIONS & PROCEDURES

Standard Mathematical Functions
Visual BASIC contains built-in functions to perform many
mathematical operations They allow calculations using such
common functions as logarithms, square roots, sines of
angles, and so on. As with earlier versions of BASIC,
mathematical functions have a three -letter call name followed
by a parenthesised argument. They are pre -defined and nay
be used anywhere in a program. Some of the most common
standard functions are listed below.

Standard Basic Functiors

Name Function

Abs(X) Returns the absolute value of X
Atn(X) Arc -tangent of X (1.570796 to -1.570796)
Cos(X) Cosine of angle X, where X is in radians
Exp(X) Raises e to the power of X
Int(X) Returns the truncated integer part of X
Fix() Returns the integer part of X
Log(X) Returns the natural logarithm of X
Sgn(X) Returns 1, 0 or -1 to reflect the sign of X
Sqr(X) Returns the square root of X
Sin(X) Sine of angle X, where X is in radians
Tan(X) Tangent of angle X, where X is in radians
Rnd Generates a pseudo -random number f-orn

0 to 1, but which does not include 1.

Function calls can be used as expressions or elements of
expressions wherever expressions are legal. The argument X
of the function can be a constant, a variable, an expression
or another function. A more detailed explanation of the use of
these functions is given below.

Atn(X):
The arc -tangent function returns a value in radians, in the
range +1.570796 to -1.570796 corresponding to the value of
a tangent supplied as the argument X. Conversion from

103

radians to degrees is achieved with the relationship
Degrees = Radians*180/Pi, where Pi=3.141592654.

Sin(X), Cos(X) and Tan(X):
The sine, cosine and tangent functions require an argument
angle expressed in radians. If the angle is stated in degrees,
then use the relationship Radians = Degrees*Pi/180.

Sqr(X):
The Sqr function returns the square root of the number X
supplied to it.

To illustrate the use of some of the above functions, consider
a simple problem involving a 2m -long ladcer resting against a
wall with the angle between ladder and ground being 60
degrees. With the help of simple trigonometry we can work
out the vertical distance between the top of the ladder and
the ground, the horizontal distance between the foot of the
ladder and the wall and also the ratio of the vertical to
horizontal distance.

The program uses the trigonometric functions Sin, Cos,
and Tan, to solve the problem.

Sub Form_Click 0 'Program EXMPLE33.MAK

'Ladder against a wall

Dim AngleDeg, AngleRad, Vert, Horiz, Ratio
Pi = 3.141592654

AngleDeg = 60 'in degrees

AngleRad AngleDeg * Pi / 180 ' In radians
Vert . 2 * Sin(AngleRad)

Horiz = 2 * Cos(AngleRad)

Ratio = Tan(AngleRad)

Print "Original angle = ; AngleDeg; Chr(176)

Print "Vert. distance = ; Format(Vert, "Fixed");

Print "Hor. distance = "; Format(Horiz, "Fixed");

Print "Ratio of Vert:Hor.

Print Format(Ratio, "Fixed"); ":1"

End Sub

104

When the program is run and the opened window is clicked,
Visual BASIC will respond with

Original angle = 60°

Vert. distance = 1.73m

Hor. distance = 1.00m
Ratio of Vert:Hor. = 1.73:1

Abs(X):
The Abs function returns the absolute (that is, positive) value
of a given number. For example Abs(1.234) is 1.234, while
Abs(-2.345) is returned as 2.345.

The Abs function can be used to detect whether the
values of two variables say, X and Y, are within an
acceptable limit by using the statement in the form

If Abs(X-Y) < 0.0001 Then

in which case the block of statements following the Then will
be executed only if the absolute difference of the two
variables is less than the specified limit, indicating that they
are approximately equal. We need to use the Abs function in
the above statement otherwise a negative difference, no
matter how small, would be less than the specified small
positive number.

Exp(X):
The exponential function raises the number e to the power of
X. The Exp function is the inverse of the Log function. The
relationship is

Log(Exp(X)) = X

Log(X):
The logarithm to base e is given by the above function.
Logarithms to the base e may easily be converted to any
other base using the identity

loge(N) = Log(N)/Log(a)

105

where loga(N) stands for the desired logarithm to base a,
while Log(N) and Log(a) stand for the logarithm to the base
e of N and a, respectively.

Antilogarithm functions are not provided but they can
easily be derived using the following identities:

Antilog(X) = e^X '(base e; this is Exp(X))
Antilog(X) = 10^X '(base 10)

Int(X) and Fix(X):
The integer functions returns the value of X rounded down to
the nearest integer. Thus, Int(6.97) returns the value 6. The
difference between Int and Fix is that if X is negative, Int
returns the first negative integer less than or equal to X, but
Fix returns the first negative integer greater than or equal to
X. For example

Int(-5.3)

Fix(-5.3) = -5

Fix(X) is equivalent to:

Sgn(X) * Int(Abs(X))

Numbers can be rounded to the nearest whole number,
rather than rounding down, by using the function Int(X+0.5).
For example, Int(5.67+0.5) returns the value 6. It can also be
used to round to any given number of decimal places, or to
the nearest integer power of 10, by using the expression:

Int(X*10^D+0.5)/10'D

where D is (a) a positive integer or (b) a negative integer
supplied by the user. For rounding to the first decimal, D=1;
to the nearest 100, D=-2. The program below should help to
illustrate these points.

Sub Form_Click 0 'Program EXMPLE34.MAK

'Rounding numbers
Dim X As Double, N As Double

Dim D As Integer

Do

X = Val(InputBox("Enter any number "))

106

If X = 0 Then End

D = Val(InputBox("Round to how many places?"))

N = Int(X * 10 ^ D + .5) / 10 ^ D

Print N

Loop Until False

End Sub

Try it yourself. To stop the program enter 0 (zero) in the first
Input box, or press its Cancel button.

Sgn(X):
The sign function returns 1 if X is positive, 0 if X=O, and -1 if
X is negative.

Rnd and Randomize n:
The Rnd function is used to produce a pseudo randomly
selected number from 0 to 1, but rot including 1. The
Randomize function allows the random -number generator
Rnd to start from a 'seed number' and produce a series of
numbers based on the seed. By using the same seed again,
the same series of numbers can be obtained. The statement
Randomize, by itself, uses the computer's internal clock to
seed the random -number generator, while Randomize n
seeds the random number generator Rnd with the number
that n represents.

Random numbers are used in statistical programs and in
all kinds of simulations from simple games to complex
computer models. In some programs, especially business
simulations, it is necessary to reproduce the same 'random'
conditions from run to run. This is done with the 'dice
throwing' program given below. Enter the program.

Sub Form_Click () ' Program EXMPLE35.MAK

' Throwing dice

Dim I As Integer

Randomize 2

Print "THROW", "NUMBER"

For I = 1 To 6

Print I, Rnd

Next I

End Sub

107

Every time it is run, the program produces the same random
throws as shown below.

THROW NUMBER
1 1.414126E-02
2 .6076428
3 .3568624
4 .9575312
5 .2980418

.7864588

In some contexts it is a severe disadvantage to have the
same series of random numbers produced. To do this you
use the statement

Randomize

at the beginning of a program. With no seed number given,
this function uses the system clock to get its seed, and could
be said to be 'truly random'.

In the previous 'dice throwing simulation' the r umbers were
obviously not integers (as with dice) To produce random
integers in a given range, use the formula

Int((Upper - + 1 * Rnd + 1.nwyr)

where, Upper is the highest number in the range, and Lower
is the lowest - for a dice these would be 6 and 1

108

Derived Mathematical Functions
Some useful mathematical functions which can be derived
from standard Basic functions are listed below:

Derived Mathematical Functions

Function Formula

TRIGONOMETRIC
Cosecant Csc(X)=1/Sin(X)
Cotangent Cot(X)=1/Tan(X)
Secant Sec(X)=1/Cos(X)

INVERSE TRIGONOMETRIC
Arc Cosecant
Arc Cotangent
Arc Secant

HYPERBOLIC
Hyp Cosine
Hyp Sine
Hyp Tangent
Hyp Cosecant
Hyp Cotangent
Hyp Secant

Acsc(X)=Atn(1/Sqr(X*X-1))+(Sgn(X)-1)*Pi/2
Acot(X)=-Atn(X)+Pi/2
Asec(X)=Atn(Sqr(X*X-1))+(Sgn(X)-1)*Pi/2

Cosh(X)=(Exp(X)+Exp(-X))/2
Sinh(X)=(Exp(X)-Exp(-X))/2
Talh(X)=-Exp(-X)/(Exp(X)+Exp(-X))*2+ 1
Csch(X)=2/(Exp(X)-Exp(-X))
Coth(X)=Exp(-X)/(Exp(X)-Exp(-X1)*2+1
Sech(X)=2/(Exp(X)+Exp(-X))

INVERSE HYPERBOLIC
Arc Cosh Acosh(X)=Log(X+Scgr(X*X-1))
Arc Sinh Asinh(X)=Log(X+Sqr(X*X+1))
Arc Tanh Atanh(X)=Log((1+X)/(1-X))/2
Arc Cosech Acsch(X)=Log((Sgn(X)*Sgr(XX+1)+1)/X)
Arc Cotanh Acoth(X)=Log((X+1)/(X-1))/2
Arc Sech Asech(X)=Log((Sqr(-X*X+1)+1)/X)

Note: The constant Pi in the above formulae has the value of
3.141592654.

109

User -Defined Function Procedures:
In some programs it may be necessary to use the same
mathematical expression in several places, and often using
different data. User -defined functions enable definition of
unique operations or expressions. These can then be called
in the same manner as standard functions.

A user -defined function is defined as shown in the
following example.

Function Area (R) As Double

' Calculates area of circle of radius R units

Pi = 3.141592654

Area = Pi * R - 2

End Function

Entering it into your program is made very easy; simply
typing anywhere on a form, the word Function, followed by
its Name, will create a new code entry wirdow for the
function in the (general) section of the form, as shown here.

leummudi

Function Area 0

End Function

Enter the function and the rest of this small program as
shown in the screen dump below.

Sue Foro_Cl ch () ' rogram EXPrtE36.MAK
Use of user defined Reaction

Print -oodles% "Oren of circle
ForR-) to SO

Print Pi, Ttrea(R)

Next R
End Sub

110

The program calculates the areas of circles with radii of
integer values between 1 and 10. The formula is given in the
Function Area() statement and the Function is called the
same way as Visual BASIC's built-in functions. The value for
the radius is passed to the function via a parenthesised
variable which in fact could be any lecal expression, its value
is simply substituted for the function variable.

The bottom example on the facing page also shows the
View Procedures box opened by pressing F2 when in
Design mode. This gives an easy way to track doN.vn the
procedures and functions in your program.

Sub Procedures
Visual BASIC supports two kinds of procedures; user -defined
functions and Sub -procedures, or Subs. The difference
between the two is that a Function returns a value, whereas
a Sub is complete in itself. Most of the Visual BASIC code we
have seen in this book so far has been made up of Event
Procedures, or blocks of program code which are carr ed out
when a certain acion is implemented. You cal also write
your own Subs, which can then be called from anywhere in
your program.

You enter a Sub into your program in the same way as
described on the previous page for entering Functions (but
you type Sub instead of Function).

To illustrate how we can use a Sub -procedure, we will
develop a small program which asks for the dimens ons of
three cylinders and calculates their vo umes.

Sub Form_Click () ' Program EXMPLE37.MAK

' Volume of 3 cylinders

Dim Radius As Double, Height As Double, I As Integer

For I . 1 To 3

Radius = Val(InputBox("Enter cylinder radius"))

Height = Val(InputBox("Enter cylinder neigh="))

Volume Radius, Height

Next

End Sub

In the above, the Volume statement is calling the fol'owing
Sub and passing to it the values of Radius and Height

111

Sub Volume (Rad As Double, Ht As Double)

Dim BaseArea As Double , Vol As Double

Pi = 3.141592654

BaseArea Pi t, Rad " 2

Vol = BaseArea Ht

Print "Cylinder radius = " & Rad & " units"

Print "Cylinder height = " & Ht & " units"

Print "Cylinder volume = " & Vol & " cubic units"

Print

End Sub

Note that the Sub above accepted the two arguments, even
though they had different names. In older versions of BASIC
the Sub would be called with the statement

Call Volume (Radius, Height)

This is acceptable to Visual BASIC, but the arguments must
be enclosed in brackets, as shown. Just remember, no Call,
no brackets!

After a Sub has been executed,
returned to the statement following the calling statement. It is,
therefore, possible to build up a library of standard
procedures, which can then be invoked from a main program
to solve large and complex problems.

Parameter Passing
There are two fundamental rules relating to parameter
passing. These are: (a) the number of arguments in an
argument list of the calling statement must be the same as
that of the formal parameters, and (b) the data type of each
argument must match the data type of the corresponding
formal parameter.

The formal parameters in a procedure, whether a
subprogram or function, are variable names local to that
particular procedure. The actual parameter passed to the
procedure can either be (i) a variable name local to the
calling program or (ii) a literal, constant, or expression.

In the first case, when a parameter is a variable, parameter
passing is by 'reference', which means that the address of
the variable is passed to the procedure. As the formal

112

parameter within the procedure is also assigned to the same
address, this means that any changes to the formal
parameter within the procedure can be passed back to the
main program.

In the second case, when a parameter is a literal, constant,
or an expression, parameter passinc is by 'value', which
means that the actual value is passed rather thar the
address in which the value is held. In this case, the value of
an expression is calculated, the result is stored in a
temporary location and the address of the temporary location
is passed to the procedure. As a result, any changes to this
parameter by the procedure is only reflected in the temporary
address and the original value accessed by the main
program remains unmodified.

Subroutines
Subroutines are similar to Sub procedures in many ways but
they are not as powerful. They are supported by Visual
BASIC primarily because they are the only way that standard
BASIC can code frequently used sections of logic into
subprograms. Thus, programs written for standard BASIC
can be easily adapted to run under Visual BASIC.

The GOSUB and RETURN Statements:
When Basic encounters the Gosub statement in the main
body of the program, it branches to the first statement of the
subroutine, and continues to execute the statements within
the subroutine until the Return statement is encountered.
This diverts program flow to the statement immediately
following the Gosub statement which called the subrcutine.
Thus, the Gosub statement broadly corresponds to the Sub
calling statement, while the Return corresponds to the End
Sub.

When successive Gosub statements branch to the same
subroutine, each time the Return statement is reached, the
main program is resumed at the last Gosub statement from
which it branched.

113

10. WORKING WITH FILES

Programs and 'data files' can be stored on disc quite easily
and Visual BASIC allows you to access them from your
program front end with the standard Windows file handling
dialogue boxes. Before describing this, though, we will spend
some time getting to grips with some of the code that needs
to be placed behind these file handling dialogue boxes and
menus

Three types of data files can be used to store information,
namely sequential, random access or binary files. Each type
has advantages and disadvantages. Sequential files use disc
space efficiently, but are difficult to update and best used for
files which store only text. Random files are less effic ent as
far as usage of disc space is concerned, but provide quick
access to information. Binary files offer great flexibility, but
have no structure and, therefore, are difficult to program. We
shall investigate the first two of these, by first locking at their
individual structure and then by showing how data can be
written to, and read from, each type of file.

Sequential Data Files
A sequential data fi e can be thought of as a one dimensional
array with each array location being one byte, capable of
holding one character of a string. For example, the name of a
friend together with his telephone number

ADAMS M. 02-1893

could be stored as shown below:

Byte 1 2

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Char "ADAMS M. " , " 0 2 - 1 8 9 3 "i 11

Of special importance to sequential data files ae the three
ASCII control characters, 10 (linefeed - LF), 13 (carriage
return - CR), together shown by tie symbol II, and 26
(End -of -File marker - EOF), shown above as U. The
combination CR/LF (¶) is issued every time you press the
<Enter> key.

115

Two friends' names would be stored with details of the
second following the first, separated by LF/CR, with the EOF
character marking the end of the file. For example,

"ADAMS M.","02-1893"1"SIMS I.","01-1351"14

Carriage returns/linefeeds ID mark the end of blocks of
information called 'records' with each recorc containing
related information such as names and telephone numbers
separated by commas, called 'fields'. Fields can hold any of
the different types of variables, such as strings (which appear
in quotation marks), integers, long integers, single- and/or
double -precision variables.

To write data into a sequential data file you must write a
small Visual BASIC program which will 'create' such a file
and then 'print' into it the characters representing the
information you want to store on disc.

To demonstrate this, we will develop the most simple
ASCII text editor imaginable, which treats all the text in the
file as one variable.

Open a new project and build the simple 'orm shown
below, which has one large Text box and four command
buttons.

" lissic Ted EftwefiliC '

I

7lu 1.r

....i4AL'Lts F-7-71 [fd

Make sure the Multiline property of the Text box is set to
True, so that any long lines of text you enter will wrap onto
subsequent lines, and then enter the following code.

116

Dim Filename As String
' General declaration

Sub cmdSave_Click () ' Program EXMPLE38.MAK

' Save entered file to disc

Filename = InputBox$("Enter file name")

Open Filename For Output As #1

Print #1, Textl.Text

Close #1

End Sub

Sub cmdLoad_Click ()

' Load a text file from disc

Filename = InputBox$("Enter file name")

Open Filename For Input As #1

Textl.Text = InputS(LOF(1), 1)

Close #1

End Sub

Sub cmdClear_Cl:ck 0

Textl.Text = ""

Textl.SetFocus

End Sub

Sub cmdExit_Click ()

End

End Sub

' Clear the text box

' Exit the program

To test out the program, run it, type a few lines of text imo the
editing section of the opened window and then save the text
by clicking the Save button. To check that this worked, you
could Clear the window and Load your file back again, or
open your file into the Notebook. Even the Cut and Paste
functions work (with their keyboard short-cuts), you car get a
lot for a small amount of code with Visual BASIC.

Saving a File to Disc:
In the cmdSave_Click Sub, following the InputBox line, the
commands Open Filename For Output As #1, Print #1 and
Close #1 are all directed to the filing system. The first Jpens
the named file for output, through the communications
channel #1. By opening a file, the name of that file is
automatically written to the directory of the logged drive. If the
filename already exists, the Open ccmmand wi I delete its

117

contents, which means that you lose all the information
already stored in that file. Once the data has been written to
the file, with the Print # command, the file is Closed.

Note the special way of writing Visual BASIC commands
which are directed to the filing system. They all end with the
hash character (#), followed by the channel number n (with
values between 1 and 255) through which you communicate
with the file. Finally, when you finish with a file you close the
communications channel with the Close #n command.

Loading a File from Disc:
Once your text file has been created, you must be in a
position to read it back into the computer so that your
information can be retrieved. This is done, in our example,
with the short cmdLoad_Click procedure.

The third line Opens the file whose name is held in string
variable Filename, for Input through channel #1. The next
line reads the contents of the whole file usinc the Input$
statement. The LOF(1) part of the statement gives the length
of file to be input. Finally, the file is Closed as betre.

Common Dialogue Custom Control
As it stands, our text editor is usable but the file handling
procedures, by Windows' standards, leave a lot to be

desired. With one addition, however, and a few extra
lines we can improve it enormously.

The Common Dialogue control shown here
(located at the bottom of the Toolbox) allows you to

automatically use five of Windows main dialogue boxes in
your programs. These are the Open, Save As, Print, Color
and Font boxes. We will make use of the first two to improve
our editor. In Design mode, drag a Common Dialogue control
onto the form of the last example. It doesn't matter where you
place it, as, like the Timer, it is invisible at run time. Then edit
the code of the Save and Load procedures to that shown on
the facing page.

NOTE - Where one line of code will not fit on the book page,
the characters '..' have been placed at the end of the book
line. Do not type these in, but join the next book line(s) to
form one long line in the code entry window.

118

Sub cmdLoad_Click 0 ' Using OPEN dialogue box

Dim Filename As String

CMDialogl.Filter = "All Files (*..)*.*,Text

Files (*.txt)1*.txt1Batch files (*.bat)1*.bat"

CMDialogl.Filterindex = 2

CMDialogl.Action = 1

Filename = CMDialogl.Filename

F = FreeFile

Open Filename For Input As SF

Textl.Text = Input$(LOF(F), F)

Close

End Sub

Sub cmdSave_Click 0 ' Using SAVE AS dialogue box

Dim Filename As String

CMDialogl.Filter = "All Files (*.*)14,.`1Text

Files (*.txt)1*.txt1Batch files (*.bat)I*.bat"

CMDialogl.FilterIndex = 2

CMDialogl.Action = 2

Filename = CMDialogl.Filename

F FreeFile

Open Filename For Output As #F

Print *F, Textl.Text

Close SF

End Sub

The 'irst extra line, in both cases, sets the Filter property to
control what type of files will be displayed in the dialogue
boxes. Each filter b be displayed needs a description and
the actual filter, separated by the pipe character (j). Make
sure you type these two lines above as one long cne!

The line

CMDialogl.Action = n

determines which Windows dialogue box is used, n being
selected from the following list.

Setting In) Dialogue Box Displayed

0 No action
1 Open

119

2 Save As
3 Color
4 Font
5 Print (needs code to make print)
6 Starts the Windows Help engine.

The dialogue box returns the name of the file selected and
stores it in the variable 'Filename' in the line

Filename = CMDialogl.Filename

The screen dump below shows our program, named
EXMPLE39.MAK, using the Save As dialogue box.

I ...I

L.A
Ind Sr
Sr esisrl_Clek

Dm Famine As

You have probably noticed the use of the line

F = FreeFile

in our modified code, As Visual BASIC can access up to 255
file channels, it is safer and better practice, to use the
FreeFile function to return the next file number available for
use. If this is passed to a variable (F in our case), the
variable can be used whenever a channel # is required.

120

Random Access Files
Random-access data files are like a collection of equal -length
sequential files, which means that each file can have a
number of records each with a record length specified by
parameter Len). A isual representation of random access
data files is shown below:

1 2 3 4

12345678901234567890123456789012345678901234

ADAMS M. 02-1893 iissssdddddddd

SMITH A. D. 03-864243 iissssdddddddd

LONGFELLOW A. B. C. 01-5513567iissssdddddddd

In this example, each row represents a record and each
record is divided in-.° 5 'fields'. The first field, which s 20
characters long, contains names, the second, which s 10
characters long, con:ains phone numbers, the third to the fifth
field contains numerical data which is encoded to strings of
lengths 2, 4 and 8 characters, representing integer, single -
and double -precision floating-point numbers, respect.vely.
Thus the record length of each row in the above
representation is 44 characters (20+10+2+4+8 = 44).

Defining Records by Type
When using random access, Visual BASIC requires you to
define your records with the Type.. End Type declaration.
This allows the creation and storage of data in a composite
format; mixing string and numeric types. A suitable Type
definition for the aboe data would be:

Type Record

Aname As String 20

Phone As String 10

Units As Integer

Price As Sirgle

Amount As Double

End Type

121

To open a file and specify its length, with this data would
require the following statement:

Open Filename For Random As #1 Len = 44

As random access is the default for the Open statement, the
words For Random are not strictly required, but we
recommend that you get used to including them.

The following program, EXMPLE40.MAK, shows how data
sets can be entered into a form and added to a random
access file from the form. It is intended more as a
demonstration than to perform a really useful task, but the
principles can be adapted to almost any kind of consistent
format data entry.

; - Remiss Aceerip IV* s ' I -I.
Fet Pima 5..name

Phone mambo

kd

7_1
r!**,'#a:;71.1

Entry Form

ti

Fie -PHONEDAT 1.14
Phu.. M. Ape

Jim Locket 01205 145679 7
Angola Ponwoo 241.122 13
Jock °gangs& Unknown 116
Pro414 lado 010733479 73

Clock meadow lo connirow

File Print Out

The main form layout is shown above on the left. It consists
of four Text boxes to receive the data, each with a Label to
identify it, and three Command buttons to control the entry or
retrieval of data to and from a file.

Build this form, as shown, and open one more form and a
module. These are best opened by clicking the two leftmost
buttons on the Toolbar. The second form is used purely to
receive printed output from the data file, as shown on the
right above.

The module file, with the extension .BAS, is needed to hold
the Type definition. Name all the files so that they do not
overwrite others in the same directory, and enter the code
shown on the next few pages.

122

This first code is placed in the separate module. It def nes a
custom data type Record'. The Option Explicit statement
forces Visual BASIC to accept only declared variables.

Option Explicit

Type Record

FirstName As String 20

SurName As String 15

Phone As String 12

Age As Integer

End Type

The next code is for Form1, the 6 Dim statements being
placed in the general declarations section of the form.

Dim Person As Record

Dim RecordLen As Long

Dim F As Integer ' Filenumber

Dim Msg As String

Dim FileName As String

Dim Position As Integer To track record number

Sub Form_Load

ChDrive App.Path

ChDir App.Path

RecordLen = Len(Person)

Msg = "Give file name for data"

FileName = InputBox$(Msg)

F = FreeFile

Open FileName For Random As F Len = RecordLen

Position . 1

End Sub

Sub cmdAddRecord_Click ()

GetRecord ' Load data from text boxes

Put *F, Position, Person 'Save to file

Position = Position + 1 'Increase pointer

txtCName.Text ' Empty text boxes

txtSName.Text = ""

txtPhone.Text = ""

txtAge.Text = ""

txtCName.SetFocus

End Sub

123

Sub cmdDisplayFile_Click 0

Dim I As Integer, Caption As String

Caption . "File - " + UCase$(FileName)

Form2.Caption = Caption ' Name window
Form2.Show ' Open a print window

Form2.Print "Name"; Tab(30); "Phone Number";

Form2.Print Tab(50); "Age"

Form2.Print

For I = 1 To Position - 1

Get #F, I, Person ' Read a record from file
' Trim blanks from and print the record

Form2.Print Trim$(Person.FirstName);

Form2.Print " " + Trim$(Person.SurName);

Form2.Print Tab(30); Trim$(Person.Phone);

Form2.Print Tab(50); Trim(Person.Age)

Next I

Form2.Print

Form2.Print "Click window to continue"

End Sub

Sub cmdQuit_Click

Close #F ' Close the file

Kill FileName ' Delete file from disc

End

End Sub

Sub GetRecord 0
' Load PERSON variable from text boxes

Person.FirstName = txtCName.Text

Person.SurName = txtSName.Text

Person.Phone = txtPhone.Text

Person.Age = Val(txtAge.Text)

End Sub

The last code, below, is placed in the Click procedure of

Form2. This lets you remove the print window when you are

happy that your data file is working.

Sub Form_Click ()

Forml.txtCName.SatFocus

Unload Me

End Sub

124

The random access method only works if, after declaring a
data Type, you then declare a variable of that type, as done
in the line

Dim Person As Record

The Form_Load Sub is actioned when Form1 is opened at
run time. The ChDrive and ChDir statements set the current
drive and directory to that of the application (almost certainly
\VB). This is necessary so that the location of the file created
is controlled. The line

RecordLen = Len(Person)

passes the length of our defined data Type to a variable,
which is then used in the Open statement.

You are then expected to enter data manually into the text
boxes. When happy with your data, click the Add Record
button which actions the cmdAddRecord Sub.

This, first calls the Sub 'GetRecord' which loads the data
elements from the text boxes to the respective components
of the 'Person' variable. It then Puts this data, as one record,
into the previously opened file

Put #F, Position, Person

F represents the channel number used to communicate with
the opened file. The 'Position' variable keeps track of the
record number being processed, and is incremented after the
Put operation. The text boxes are then emptied and the
focus returned to the first one, so that you can continue to
add as many records as you want.

When you want to view all the records entered, click the
Display File button which activates the cmdDisplayFile Sub.
This sets the caption of Form2 and opens it with the Show
command. The Get statement is used to retrieve the data
from the file, one record at a time.

Get #F, I, Person

It is the complement of the Put statement. Each record is
then Trimmed, to remove any padding spaces, and printed to
the opened Form2 window.

When you have worked out how it all functions, you can
press the Quit buton, which Closes the open file and

125

deletes it from your disc with the Kill statement. In a working
application you would not need this line, but we have added it
to save your hard disc getting cluttered.

We have tried to make the code of these examples as simple
as possible, to make them easier to understand, so there is
no attempt at error trapping or other sophistications.

If you want to develop the programs further, we suggest
you first study the two sample programs TEXTEDIT.MAK and
RECEDIT.MAK, provided with Visual BASIC.

Binary Files
A binary file is the most rudimentary type of file which offers
the greatest flexibility, but its use imposes considerable
responsibility on the programmer as binary files do not have
any structure. They are a sequence of characters without any
delimiters, or records. The characters simply occupy
positions 0, 1, 2, and so on, within the file. They are used
when you need to keep the size of your data files to the
absolute minimum.

Due to their complexity we will not give any more detail on
binary files here, as they are a little outside the scope of this
book.

126

11. DEBUGGING YOUR PROGRAMS

As you develop more and more complicated code in your
programs you will inevitably make mistakes and produce
error messages. There are three types of errors you may
encounter as you deve op your applications.

Compile Errors:
These occur when your code is incorrectly constructed, such
as a Next statement without a corresponding For statement,
or a misspelled word, or a data type mismatch with your
variables. Compile errors include syntax errors, which are
errors in grammar or punctuation recognised by Visual
BASIC and are flagged by the compiler as you attempt to
enter the code.

Run-time Errors:
These occur when jou attempt to run your program.
Common examples include attempting to write to a file that
doesn't exist, or dividing by zero.

Logical Errors:
Often the most difficult type of error to correct is when the
program doesn't perform as you expect, and produces
incorrect results, because your programming logic is at fault.

The first of these error types are sorted out with the help of
the compiler when you enter your code into the editor.
Run-time and logic errors though, need the help of Visual
BASIC's debugging tools, which let you look at the state of
the program and all he variables, etc., in the middle of a run.

Break Mode
So far we have encountered two of Visual BASIC's ope-ating
modes. Design, when you enter contrcls and code, and Run
when you start it ruin ng. There is a third one, Break mode,
which is used for mcst of the debugging processes. You can
easily see what moce you are currently in, as it is displayed
on the title bar in brackets, as shown on the following page.

127

Title bar in break mode

Oebug Qptlons Window Help

Run/Continue

THE TOOLBAR DEBUG TOOLS

Procedure Step
Single Step
Calls
Instant Watch
Breakpoint

At any time a program is running you can change to Break
mode by clicking the Break icon on the Toolbar. While in
Break mode you can edit and debug your coce and usually
continue execution of the program. If not you have to restart
the program.

The Debug Tools
The best way to get a rapid overview of the debugging
possibilities of Visual BASIC is to spend ten mi lutes with the
program tutorial. To do this, use the Hep, Learning
Microsoft Visual Basic menu command End click the
Debugging Your Application menu button.

Work your way through the presented screens which have
been very professionally put together and show several
working examples of debugging in practice.

Breakpoints:
You can set breakpoints in your code in Design mode to halt
your program execution at those points and check the values
of variables or see what actions will be taken next.

To set a breakpoint place the insertion point anywhere in a
line of code where you want the program to stop and use the

Debug, Toggle Breakpoint command, the F9
function key, or click the Breakpoint toolbar icon.
Visual BASIC adds the breakpoint and highlights the
line.

128

Using the Debug Window:
To execute code in the Debug window while in break mode
you simply type a line of code in the Debug window and
press <Enter> to execute the statement.

The Debug window allows you to examine code and watcn
expressions It can be accessed only in break mode

T M Wo_h pone
Oho.. the atue
notch expisnons

The loonotholn pone Anon
eat to <.e one We of
code a lose

While in the Debug window, you can do most of the th.ngs
you do in the Code window, but statements in the Debuc
window are not saved with the project.

Using Instant Watch:
While in break mode, you may want to check the current
value of a variable or expression, this is easy to dc using the
Instant Watch command.

To display an instant watch, highlight an expression in
either the Code window or the Immediate pane of
the Debug window (shown above) and click the
Instant Watch toolbar icon. A dialogue box should
open displaying the current va ue of the expression.

Calls:

`.4111

If you ever get code that includes nested
procedures you may be glac of the Calls facility
which helps to trace any active procedure cal s in
your program.

129

Tracing Execution:
Visual BASIC's tracing tools are very useful as it is not
always obvious, with an object oriented program, which
statement will be executed next. The following two
procedures are best actioned from their Toolbar icons.

Single Step Steps through each line of code,
including procedures, and stops. You
can see what code is actioned and, if
you have Watches set, you can see
the effect of each statement on the
program variables.

Procedure Step Steps through your code as above,
but treats each procedure as if it were

1111 a single statement.

130

APPENDIX A
THE VATCALC.MAK CODE

All the code and property details for the two forms 0' the
example program VATCALC MAK are included here, as
created with the File Save File As meiu commard, with the
Save As Text opticn selected in the dialogue box. Some
extra 'ormatting has been added to make the code easier to
follow

NOTE - Where one line of code will no: fit on the book page,
the continuation characters '..' have been placed at the end of
the book line. Do not type these in, but join the next nook
line(s; to form one loin line in the code entry window.

Begin Form frmVatCalc

BorderStyle = 1 'Fixed Single

Caption = "VAT Calculator"

ClientHeight = 3465

ClientLeft = 1860

ClientTop = 2085

ClientWidth = 4005

Height = 4155

Left = 1800

LinkTopic = "Forml"

MaxButton = 0 'False

ScaleHeight = 3465

ScaleWidth = 4005

Top = 1455

Width = 4125

Begin TextBox Text3

BorderStyle = 0 'None

Height = 285

Left = 2760

TabIndex = 7

TabStop = 0 'False

Top = 1080

Width = 1215

End

131

Begin TextBox Text2

BorderStyle = 0 'None

Height = 285

Left = 2760

TabIndex = 8

TabStop = 0 'False

Top 720

Width = 1215

End

Begin CommandButton Commandl

Caption "&Calculate"

Default = -1 'True

Height 375

Left 1200

TabIndex = 2

Top = 1560

Width = 1215

End

Begin CommandButton Command3

Caption = "C&lear"

Height = 375

Left = 1200

TabIndex = 3

Top = 2760

Width = 1215

End

Begin CommandButton Command2

Caption = "&Exit"

Height = 375

Left = 1200

TabIndex = 4

Top = 2160

Width = 1215

End

Begin TextBox Textl

ForeColor = &H000000FF&

Height = 285

Left = 2160

TabIndex = 0

132

Top

Width

240

1335

End

Begin Label Labell

Caption "Enter amount"

Height = 255

Left 840

TabIndex = 1

Top = 240

Width 1215

End

Begin Label Labil13

Height 255

Left 240

TabIndex 6

Top 1080

Width 2415

End

Begin Label Labe12

Height = 255

Left 240

TabIndex = 5

Top = 720

Width 2295

End

Begin Menu mnuOptions

Caption = "&Options"

Begin Menu mnuVATRate

Caption = "&VAT Rate"

End

Begin Menu mnuAbout

Caption = "&About"

End

Begin Menu mnuExit

Caption = "E&xit"

End

End

End

133

Dim Cost As Currency ' Dimensions in general section

Dim CostPlus As Currency

Dim Costless As Currency

Dim VATRate As Double

Dim NVATRate As Double

Sub Commandl_Click ()

' Check to see if VAT rate has been changed.

If NVATRate > 0 Then

VATRate = NVATRate

Else VATRate = 17.5

End If

Cost = Val(Textl.Text)

CostPlus = Cost (1 + VATRate / 100)

Costless = Cost / (1 + VATRate / 100)

MsgPlus = "Amount plus " & VATRate & "% VAT

MsgLess . "Amount less " & VATRate & "t VAT

Label2.Caption = MsgPlus

Text2.Text = CostPlus

Label3.Caption = MsgLess

Text3.Text = Costless

Textl.Text = Format$(Cost, "currency")

Text2.Text = Format$(CostPlus, "currency")

Text3.Text = Format$(Costless, "currency")
End Sub

Sub Command2_Click ()

End ' Leave the VAT calculater

End Sub

Sub Command3_Click () 'Clear text areas

Textl.Text = ""

Text2.Text = ""

Text3.Text = ""

Label2.Caption

Label3.Caption

Textl.SetFocus

End Sub

Sub mnuAbout_Click ()

' Places text in the About box. All the CaptionText
' variables are concatenated with the Chr$(10) line
' feed characters, to display the text.

134

CaptionText1 "SIMPLE VAT CALCULATOR"

CaptionText2 "PRMO - 1995"

CaptionText3 . "VAT rate is set at"

CaptionText4 "17.5t. Use the menu"

CaptionText5 "option to change it."

frmAboutllblAbout.Caption CaptionText1 &..

Chr$(10) & Chr$(10) & CaptionText2 & Chr$(10) &..

Chr$(10) & CaptionText3 & Chr$(10) &..

CaptionText4 a Chr$(10) & CaptionText5

' Show (with style = 1) is used to display the

' form as modal. Unloading it is handled in the

' form's cmdOK Click event procedure.

frmAbout.Show 1

End Sub

Sub mnuExit_Click 0

End ' Leave the VAT calculater

End Sub

Sub mnuVATRate_Click

' Get new VAT rate from user.

NVATRate Val(InputBox$("Enter new VAT rate"))

VATRate . NVATRate

End Sub

Begin Form fraAbout

BackColor = &HOOCOCOCO&

BorderStyle 1 'Fixed Single

Caption = "About"

ClientHeight 3705

ClientLeft 2610

ClientTop 1710

ClientWidth = 3855

ClipControls 0 'False

ControlBox = 0 'False

Height = 4110

Left 2550

LinkTopic = "Form1"

MaxButton 0 'False

MinButton 0 'False

ScaleHeight 3705

135

ScaleMode = 0 'User

ScaleWidth = 3851.005

Top = 1365

Width = 3975

Begin CommandButton cmdAbout

Cancel = -1 'True

Caption = "OK"

Default = -1 'True

Height = 495

Left = 1440

TabIndex = 1

Top = 3000

Width . 975

End

Begin Frame fraAbout

BackColor = &HOOCOCOCO&

Height = 2415

Left = 240

TabIndex = 0

Top = 240

Width = 3375

Begin Label lblAbout

Alignment = 2 'Centered

BackStyle = 0 'Transparent

Height = 2535

Left = 120

TabIndex = 2

Top = 240

Width = 3135

End

End

End

Sub cmdAbout Click ()

' This form is loaded as modal. The program will

' not continue until this button is actioned.
' The Unload statement is used here to unload form
' from memory when the user clicks this button.

Unload frmAbout

End Sub

136

APPENDIX B

THE EVENT PROCEDURES

The following is a complete alphabetic list of the event
triggered procedures of Visual BASIC, where an event is an
action which is recognised by a form or control. The event
name is substituted it the procedure declaration as follows

Sub ControlName_EventName (arguments)

Event Description

Activate Occurs when a form becomes the active
window.

Change

Click

DblClick

Deactivate

DragDrop

DragOver

Indicates that the contents of a control
have changed.

Occurs when the user clicks (presses
and then releases) a mouse button over
an object.

Occurs when the user quickly double
clicks a mouse button over an object

Occurs before a different form becomes
the active window.

Occurs when a drag -and -drop operation
is completed by dragging a control o,..er a
form or other contrcl.

Occurs when a drag -and -drop operation
is in progress. Can be used to monitor
when the mouse pointer enters, leaves,
or is directly over a valid target.

DropDown Occurs when the list portion of a combo
box is about to drop down; this event
does not occur if a combo box's Style
property is set to 1 Simple Combo)

137

Error Occurs only as the result of a data
access error that occurs when no Visual
BASIC code is being executed.

GotFocus Occurs when an object receives the
focus, either by tabbing to or clicking on
the object, or with the SetFocus method
in code.

KeyDown Occurs when the user presses a key
while an object has the focus. Used with
the KeyPress event.

Key Press Occurs when the user presses and
releases a key, with an ANSI code.

KeyUp Occurs when the user releases a key
while an object has the focus. Used with
the Key Press event.

LinkClose Occurs when a DDE conversation
terminates.

DDE conversation.

LinkExecute Occurs when a command string is sent
by a destination application in a DDE
conversation.

LinkNotify Occurs when the source has changed
the data defined by the DDE link,
(destination LinkMode property set to 3 -
Notify).

LinkOpen Occurs when a DDE conversation is
being initiated.

Load Occurs when a form is loaded.

LostFocus Occurs when an object loses the focus,
either by tabbing to or clicking on the
object, or in code wits the SetFocus
method.

138

MouseDown

MouseMove

MouseUp

Paint

PathChange

PatternChange

QLeryUnload

Reposition

Resize

RcwColChange

Scroll

SelChange

Timer

Unload

Occurs when the user presses a mouse
button.

Occurs when the user moves the mcuse.

Occurs when the user releases a mouse
button.

Occurs when part, or all, of a form or
picturebox is exposed after it has Deen
moved or enlarged, or after a window
that was covering the object has Deen
moved.

Occurs when the path changes by
setting the FileName or Path properties
from code.

Occurs when the file filter (e.g. "*.*': has
changed by setting the FileName or
Pattern properties from code.

Occurs before a form or application
closes.

Occurs after a record becomes the
current record.

Occurs when a form first appears or the
size of an object changes.

Occurs when the currently active cell
changes to a different cell.

Occurs while a user drags the box on a
scroll bar.

Occurs when the selected -3nge
changes to a different cell or range of
cells.

Occurs when a preset interval for a timer
control has elapsed.

Occurs when a form is about to be
removed from the screen.

139

Updated Occurs when an objects data has been
modified.

Validate Occurs before a different record
becomes the current record; before the
Update method (except when data is
saved with the UpdateRecord method),
and before a Delete, Unload or Close
operation.

140

APPENDIX C

LANGUAGE REFERENCE

The following is a complete list of Visual BASIC's reserved
function, statement and method key -words. Where a
function is a standard procedure that performs a specific
task and returns a value; a statement is a reserved word
which forms part of a complete exp-ession indicating one
kind of action, declaration, or definition; and a method is a
Visual BASIC reserved word that acts on a particular object.

For more detailed information on any Df these key -words we
suggest you searci the Visual BASIC Help facility This
includes working examples of them all.

Those expressions with '(Pro)' aloncside are only available
in the Professional Edition of Visual BASIC.

Abs Function
Returns the absclute value of a number.

AddItem Method
Adds a new item to a list or combo box, or adds a new
row to a grid comrol at run time.

Add New Method
Clears the copy buffer in preparat on for creating a new
record in a Table or Dynaset.

AppActivate Statement
Activates an application window.

Append Method (Pro)
Adds a new object to a collection.

AppendChunk Method
Appends data from a String to a Memo or Long Binary
field in the copy buffer of a specified Table or Dynaset.

Arrange Method
Arranges the windows or icons within an MDI Form.

Asc Function
Returns a numeric value that is the ANSI code for the first
character in a string expression.

141

Atn Function
Returns the arctangent of a number.

Beep Statement
Sounds a tone through the computer's speaker.

BeginTrans Statement
Begins a new transaction.

Call Statement
Transfers program control to a Visual Basic Sub
procedure or a dynamic -link library (DLL) procedure.

CCur Function
Explicitly converts expressions to the Currency data type.

CDbI Function
Explicitly converts expressions to the Double data type.

ChDir Statement
Changes the current default directory on a specified drive.

ChDrive Statement
Changes the current drive.

Choose Function
Selects and returns a value from a list of arguments.

Clnt Function
Explicitly converts expressions to the Integer data type.

Chr, Chr$ Function
Returns a one -character string whose ANSI code is the
argument.

Circle Method
Draws a circle, ellipse, or arc on an object.

Clear Method
Clears the contents of a list or combo box, or clears the
contents of the operating environment Clipboard.

Clone Method (Pro)
Returns a duplicate record set object that refers to the
same record set from which it was createc.

CLng Function
Explicitly converts expressions to the Long data type.

142

Close Method
Closes a specified Database, QueryDef, or record set.

CIs Method
Clears graphics and text generated at run t me from a
form or picture.

Command, Command$ Function
Returns the argument portion of the command line used
to launch Microsoft Visual BASIC.

CommitTrans Statement
Transcends the current transaction.

CompactDatabase Statement
Compacts and encrypts or decrypts a Microsoft Access
database.

Const Statement
Declares symbolic constants for use in place of values.

Cos Function
Returns the cosine of an angle (angle in radians).

CreateDatabase Function (Pro)
Creates a Microsoft Access database, and returns a
Database object that is open fo- exclusive read,'write
access.

CreateDynaset Method (Pro)
Creates a Dynaset object from a specified Table object,
QueryDef object, or SQL statement

CreateQueryDef Method (Pro)
Creates a new QueryDef in a specified database.

CreateSnapshot Method (Pro)
Creates a Snapshot object from a specified 'Able,
QueryDef, or SQL statement.

CSng Function
Explicitly converts expressions to the Single data type.

CStr Function
Explicitly converts expressions to the String data type.

143

CurDir, CurDirS Function
Returns the current path for the specified drive.

CVar Function
Explicitly converts expressions to the Variant data type.

CVDate Function
Converts an expression to a Variant of VarTy De 7 (Date).

Date, Date$ Functions
Returns the current system date.

Date, Date$ Statement
Sets the current system date.

DateAdd Function
Returns a Variant containing a date to which a specified
time interval has been added.

DateDiff Function
Returns a Variant containing the number of time intervals
between two specified dates.

DatePart Function
Returns a specified part of a given date.

DateSerial Function
Returns the date serial for a specific year, month, and
day.

DateValue Function
Returns the date represented by a String argument.

Day Method
Returns an integer between 1 and 31, inclusive, that
represents the day of the month for a date arc ument.

DDB Function
Returns the depreciation of an asset for a specific period
using the double -declining balance method.

Declare Statement
Declares references to external procedures in a
dynamic -link library (DLL).

DefInt Statement
Sets the default data type as Integer.

144

DefLng Statement
Sets the default data type as Long.

DefSng Statement
Sets the default data type as Single.

DefDbl Statement
Sets the default data type as Double.

DefStr Statement
Sets the default data type as String.

DefVar Statement
Sets the default data type as Variant.

Delete Method
Deletes the cu -rent record in a specifiec Tab e or
Dynaset.

DeleleQueryDef Method (Pro)
Deletes a specified QueryDef from a database.

Dim Statement
Declares variables and allocates storage space.

Dir, Dir$ Function
Returns the name of a file or directory that matches a
specified pattern and file attribute.

Do...Loop Statement
Repeats a block of statements while a condition is true or
until a condition becomes true.

DoEvents Function, DoEvents Statement
Causes Visual Basic to yield execution so that Windows
can process events.

Drag Method
Begins, ends, or cancels dragging controls.

Edit Method
Opens the current record in a specified record set for
editing by copying it to the copy buffer.

End Statement
Ends a Visual Basic procedure or block.

145

EndDoc Method
Terminates a document sent to the Printer, releasing it to
the print device or spooler.

Environ, Environ$ Function
Returns the string associated with an operating system
environment variable.

EOF Function
Returns a value during file input that indicates whether the
end of a file has been reached.

Erase Statement
Reinitialises the elements of fixed arrays anc deallocates
dynamic -array storage space.

Err, Erl Function
Returns error status.

Err Statement
Sets Err to a specific value.

Execute Method
Invokes an action query in a specified database.

ExecuteSQL Method
Executes an action query SQL statement in a specified
database.

Exit Statement
Exits a Do...Loop, a For...Next loop, a Function
procedure, or a Sub procedure.

Exp Function
Returns e (the base of natural logarithms) raised to a
power.

FieldSize Method
Returns the number of bytes in a text or binary field.

FileAttr Function
Returns file mode or operating system file information
about an open file.

FileCopy Statement
Copies a file.

146

FileDateTime Function
Returns a String that indicates the date and t me a
specified file was created or last modified.

FileLen Function
Returns a Long integer that indicates the length of a file in
bytes.

FindFirst Method
Locates the first record that satisfies specified criteria and
makes that record the current one.

FindLast Method
Locates the last record that satisfies specified criteria and
makes that record the current one.

Find Next Method
Locates the next record that satisfies specified criteria and
makes that record the current one.

FindPrevious Method
Locates the previous record that satisfies specified criteria
and makes that record the current one.

Fix Function
Returns the intecer portion of a number.

For...Next Statement
Repeats a group of instructions a specified number of
times.

Format, Format$ Function
Formats a number, date, time, or string accordng to
instructions contained in a format expression.

FreeFile Function
Returns the next valid unused file number.

FreeLocks Statement
Suspends data processing, allowing a database to
release locks or record pages and make all data in the
local Dynaset objects current in a multi-user erviron-lent.

Function Statement
Declares the name, arguments, aid code that form the
body of a Function procedure.

147

FV Function
Returns the future value of an annuity based on periodic,
constant payments and a constant interest rate.

Get Statement
Reads from a disc file into a variable.

GetAttr Function
Returns an integer that indicates a file, directory, or
volume label's attributes.

GetChunk Method
Returns all or a portion of a Memo or Long Binary field in
a specified record set.

GetData Method
Returns a picture from the Clipboard object.

GetFormat Method
Returns an integer indicating whether there is an item in
the Clipboard matching a specified format.

GetText Method
Returns a text string from the Clipboard.

Global Statement
Used in the Declarations section of a module to declare
global variables and allocate storage space.

GoSub...Return Statement
Branch to, and return from, a subroutine within a
procedure.

GoTo Statement
Branches to a specified line within a procedure.

Hex, Hex$ Function
Returns a string that represents the hexadecimal value of
a decimal argument.

Hide Method
Hides a form, but does not unload it.

Hour Function
Returns an integer between 0 and 23, inclusive, that
represents the hour of the day corresponding to the time
provided as an argument.

148

If...Then...Else Statement
Allows conditional execution, based on the evaluation of
an expression.

Ilf Function
Returns one of two parts depending on the evaluation of
an expression.

Input, Input$ Function
Reads characters from a sequential file.

Input # Statement
Reads data from a sequential file and assigns it to
variables.

InputBox, InputBox$ Function
Displays a prompt in a dialogue box and returns input
from the user.

InStr Function
Returns the position of the first occurrence of one string
within another string.

Int Function
Returns the integer portion of a number.

IPmt Function
Returns the interest payment for a given perioc of an
annuity based on periodic, constant payments and a
constant interest rate.

IRR Function
Returns the internal rate of return for a series of periodic
cash flows.

IsDate Function
Returns a value indicating whether or not a Variant
argument can be converted to a date.

IsEmpty Function
Returns a value indicating whether or not a Variant
variable has been initialised.

IsNull Function
Returns a value that indicates whether or rot a Variant
contains the special Null value.

149

IsNumeric Function
Returns a value indicating whether or not a Variant
variable can be converted to a numeric data type.

Kill Statement
Deletes file(s) from a disc.

LBound Function
Returns the smallest available subscript for the indicated
dimension of an array.

LCase, LCase$ Function
Returns a string in which all letters of an argument have
been converted to lowercase.

Left, Left$ Function
Returns the leftmost n characters of a string argument.

Len Function
Returns the number of characters in a string expression
or the number of bytes required to store a variable.

Let Statement
Assigns the value of an expression to a variable.

Line Input # Statement
Reads a line from a sequential file into a String or Variant
variable.

Line Method
Draws lines and rectangles on an object.

LinkExecute Method
Sends a command string to the other application in a
dynamic data exchange (DDE) conversation.

LinkPoke Method
Transfers the contents of a control to the source
application in a dynamic data exchange (DDE)
conversation.

LinkRequest Method
Asks the source in a dynamic data exchange (DDE)
conversation to update the contents of a control.

150

LinkSend Method
Transfers the contents of a picture cortrol to the
destination application in a dynamic data exchange (DDE)
conversation.

ListFields Method (Pro)
Creates a Snapshot with one record for each field in a
specified record set.

Listlndexes Method (Pro)
Creates a Snapshot with one record for each field in each
index in a specified table.

ListParameters Method (Pro)
Creates a Snapshot with one record for each parameter in
a specified QueryDef object.

ListTables Method (Pro)
Creates a Snapshot with one record for each Table or
QueryDef in a specified database.

Load Statement
Loads a form or control into memoy.

LoadPicture Function
Loads a picture into a form, picture box, or image control.

Loc Function
Returns the current position within an open file.

Lock, Unlock Statement
Controls access by other processes to an opened file.

LOF Function
Returns the size of an open file in bytes.

Log Function
Returns the natural logarithm of a number.

LSet Statement
Left aligns a string within the space of a string variable, or
copies a variable of one user -defined type to another
variable of a different user -defined type.

LTrim, LTrim$ Function
Returns a copy of a string with leading spaces removed.

151

Mid, Mid$ Function
Returns a string that is part of some other string.

Mid, Mid$ Statement
Replaces part of a string with another string.

Minute Function
Returns an integer between 0 and 59, inclusive, that
represents the minute of the hour correspording to the
time provided as an argument.

MIRR Function
Returns the modified internal rate of return for a series of
periodic cash flows.

MkDir Statement
Creates a new directory.

Month Function
Returns an integer between 1 and 12, inclusive, that
represents the month of the year for a date argument.

Move Method
Moves a form or control.

MoveFirst, MoveLast, MoveNext, MovePrevious Method
Moves to the first, last, next, or previous record in a
specified record set and makes that record curent.

MsgBox Function
Displays a message in a dialogue box, waits for the user
to choose a button and returns a value indicating which
button was pressed.

MsgBox Statement
Displays a message in a dialogue box and waits for the
user to choose a button.

Name Statement
Changes the name of a disc file or directory.

NewPage Method
Ends the current page and advances to the next.

Now Function
Returns a date that represents the current date and time
according to the computer's system clock.

152

NPer Function
Returns the number of periods for an annu ty based on
periodic, constant payments and a constant interest rate.

NPV Function
Returns the net present value of an investment based on
a series of pericdic cash flows anc a discount rate.

Oct, Oct$ Function
Returns text that represents the octal value of the decimal
argument.

On Error Statement
Enables an e'ror-handling rout ne and specifies the
location of the routine within a procedure.

On...GoSub, On...GoTo Statement
Branches to one of several specified lines, depencing on
the value of an expression.

Open Statement
Enables input/output (I/O) to a file.

OpenDatabase Function (Pro)
Opens an existing database and returns a Database
object.

OpenQueryDef Method (Pro)
Opens a specified QueryDef for editing.

OpenTable Method (Pro)
Opens an existing table and returns a Table object.

Option Base Statement
Declares the default lower bound for array suoscripts.

Option Compare Statement
Declares the default comparison mode to use when string
data is compared.

Option Explicit Statement
Forces explicit declaration of all variables.

Partition Function
Returns a string indicating where a number occurs within
a calculated series of ranges.

153

Pmt Function
Returns the payment for an annuity based Dn periodic,
constant payments and a constant interes: rate.

Point Method
Returns the RGB colour of the specified point on a form or
picture box.

PopupMenu Method
Displays a pop-up menu on a form at the current mouse
location, or at specified coordinates.

PPmt Function
Returns the principal payment for a given period of an
annuity based on periodic, constant payments and a
constant interest rate.

Print # Statement
Writes data to a sequential file.

Print Method
Prints a text string on an object using the current colour
and font.

PrintForm Method
Sends a bit -for -bit image of a non-MDI form to :he printer.

PSet Method
Sets a point on an object to a specified colour.

Put Statement
Writes from a variable to a disc file.

PV Function
Returns the present value of an annuity based on
periodic, constant payments to be paid in the future and a
constant interest rate.

QBColor Function
Returns the RGB colour code corresponding to a colour
number.

Randomize Statement
Initialises the random -number generator.

Rate Function
Returns the interest rate per period for an annuity.

154

ReDim Statement
Used at the procedure level to declare dynamic -array
variables and allocate or reallocate storage space.

Refresh Method
Forces an immediate update of a form, contro , or ooject.

RegisterDatabase Statement
Makes connect information for an ODBC data source
name available for use by the OpeiDatabase function.

Rem Statement
Used to include explanatory remarKs in a program.

Removeltem Method
Removes an item from a list or combo box, cr removes a
row from a grid control, at run time

RepairDatabase Statement
Attempts to repair a corrupted Microsoft Access database.

Reset Statement
Closes all disc files.

Resume Statement
Resumes program execution after an e-ror-handling
routine is finished.

RGB Function
Returns a long integer representing an RGB colour value.

Right, Right$ Function
Returns the rightmost n characters of a string argument.

RmDir Statement
Removes an existing directory.

Rnd Function
Returns a random number, between 0 and 1.

Rollback Method
Ends the currer.t transaction and restores the database to
the state it was in when the transaction begar.

RSet Statement
Right aligns a string within the space of a string variable.

155

RTrim, RTrim$ Function
Returns a copy of a string with trailing (rig itrrost) spaces
removed.

SavePicture Statement
Saves a picture from a form, picture box, or image control
into a file.

Scale Method
Defines the co-ordinate system for an object.

Second Function
Returns an integer between 0 and 59, inclusive, that
represents the second of the minute for a time argument.

Seek Function
Returns the current file position.

Seek Statement
Sets the position in a file for the next read or write
operation.

Select Case Statement
Executes one of several statement blocks depending on
the value of an expression.

SendKeys Statement
Sends one or more keystrokes to the active window as if
they had been entered at the keyboard.

Set Statement
Assigns an object reference to a variable.

SetAttr Statement
Sets attribute information for a file.

SetData Method
Puts a picture in the Clipboard using the specified format.

SetDataAccessOption Statement
Sets a global option for data access usage.

SetDefaultWorkspace Statement
Establishes the user ID and password for protected
(security -enabled) Microsoft Access databases

156

SetFocus Method
Sets the focus to a form or control.

SetText Method
Puts a text string in the Clipboard using the specified
Clipboard format.

Sgn Function
Returns an integer indicating the sign of a number.

Shell Function
Runs an executable program.

Show Method
Displays a form.

Sin Function
Returns the sine of an angle (angle in radians).

SLN Function
Returns the straight-line depreciation of an asset fcr a
single period.

Space, Space$ Function
Returns a string consisting of a specified number of
spaces.

Spc Function
Skips a specified number of spaces in a Print # statement
or Print method.

Sqr Function
Returns the square root of a number.

Static Statement
Used at the procedure level to declare variables and
allocate storage space. Variables declared with ,.he Static
statement retain their value as long as the program is
running.

Stop Statement
Suspends execution of the running Visual BASIC code_

Str, Str$ Function
Returns a string representation of the value of a numeric
expression.

157

StrComp Function
Returns a Variant indicating the result of the comparison
of two string arguments.

String, String$ Function
Returns a string whose characters all have a given ANSI
code or are all the first character of a string expression.

Sub Statement
Declares the name, arguments, and code that form the
body of a Sub procedure.

Switch Function
Evaluates a list of expressions and returns a value or an
expression associated with the first expression in the list
that is True.

SYD Function
Returns the sum -of -years' digits depreciation of an asset
for a specified period.

Tab Function
Used with the Print # statement and the Print method to
advance the print position.

Tan Function
Returns the tangent of an angle (angle in radians).

TextHeight Method
Returns the height of a text string as it would be printed in
the current font of an object.

TextWidth Method
Returns the width of a text string as it would be printed in
the current font of an object.

Time, Time$ Function
Returns the current system time.

Time, Time$ Statement
Sets the system time.

Timer Function
Returns the number of seconds that have elapsed since
12:00 a.m. (midnight).

158

TimeSerial Function
Returns the time serial for a specific hour, minute, and
second

TimeValue Function
Returns the time represented by a String argumert.

Trim, TrimS Function
Returns a copy of a string with both leading and trail ng
spaces removed.

Type Statement
Defines a user -defined data type containing one or mcre
elements.

UBound Function
Returns the largest available subscript for the indicated
dimension of an array.

UCase, UCase$ Function
Returns a string with all letters of an argument converted
to uppercase.

Unload Statement
Unloads a form or control from memory.

Update Method
Saves the contents of the copy buffer to a specified Table
or Dynaset.

UpdateControls Method
Gets the current record from a data control's record set
and displays the appropriate data in controls bound 0 a
data control.

UpdateRecord Method
Saves the current values of bound cortrols.

Val Function
Returns the numeric value of a string of characters.

VarType Function
Returns a value that indicates how a Variant !s stcred
internally by Visual BASIC.

159

Weekday Function
Returns an integer between 1 (Sunday) and 7 (Saturday)
that represents the day of the week fcr a date argument.

While...Wend Statement
Executes a series of statements in a loop as long as a
given condition is true.

Width # Statement
Assigns an output -line width to a file.

Write# Statement
Writes data to a sequential file.

Year Function
Returns an integer between 100 and 9999, inclusive, that
represents the year of a date argumert.

ZOrder Method
Places a specified form or control at the front or back of
the z -order within its graphical level.

160

INDEX

A
Abs function 105, 141
Alignment property 23
Alphabetical

comparison of strings 76
sorting 76

Ampersand (&) 37
And statement 62
ANSI

codes 70, 73
conversion 80

Apostrophe (') 32
Applications 18
Arithmetic

functions 103
operators 37
priority 37

Arrays
dimensioning 84
dynamic 86
Erase statement 87
errors 87
numeric 83, 85
static 83
string 83

Asc function ... 70, 80, 141
ASCII

conversion 80
codes 73

Assignment Statement 39
Atn function 81

AUTOLOAD.MAK file 18
AutoSize property .. 23, 93

B
Basic Statements 29
Binary files 126
Border styles 22
Boxes

Check 20, 25, 93
Combo 20, 95
List 95

Break
mode 9, 427
points 128

Buttons
Command 24, 92
Option 25, 94

C
Calls 129
Caption property 15, 23
Character conversion ... 70
ChDirectory statement 125
ChDrive statement 125
Check boxes 20, 25, 93
Chr$ function 142
Clear Screen 48
Close # method .. 118, 143
Cis method 48, 143
Code

enter 15
window 26

Colour property . 23
Combo oox 20, 95
Commo, Dialogue 118
Compile errors 127
Concatenation 81

Constants 32
Control of Program Flow 53
Controls 19, 91
CONTROLS.MAK file ... 91

Co-ordinates 48
Cos function 104. 143
Create

direcory 6
Object 14

CR control character ... 115

161

Currency
data type 34
format 50

Current X/Y properties 48

Data
files 115
sorting 65
type conversion 71
types 34

Debug
program 127
tools 128
window 129

Declare variables 35
Defined functions 110
Define records byType 121
Derived Functions 109
Design

form 22
mode 9

Digital clock 98
Dim Statement 35
Dimensioning arrays 84
Directory list box 21
Double precision 33
Do Loops 57
Drive list box 21
Dynamic arrays 86

E

Edit
code 30
program 30

Editor (code) 26
ElseIf statement 64
End statement 31, 146
Enter key 80
Entering code 15
Environment, save 19,29

162

EOF control character . 115
Eqv operator 62
Erase Statement 87
Error

handling 126
message box 30
types 127

Escape key 80
Event driven procedure 26
Executable File 2, 18
Exit

block structures 71
loops 57

Exp function 105, 146
Expressions 32

F

Fl key 10
F2 key 111
F4 key 14
F5 key 16
F9 key 128
File

filters 119
List box 21
menu commands 17
types 115

Fix function 106, 147
Fixed format 50
Floating point numbers 33
Focus, setting 45
FontName property 82
For...Next loop 53
Formatting functions 50
Forms 12, 17
Frame 20
FreeFile function 120
Function procedure 110
Functions

standard 103
derived 109

mathematical 103
string 76
user -defined 110

G
General

declarations 54, 78
procedures 18

Get # statement . 125 148
Global declarations . 86
Gosub...Return 113

H

Help system 10, 52, 128
Housekeeping 5

If statement 61, 149
Logical operators 62

If Then Else Statement . 63
Immediate pane 129
Imp operator 62
Import text file 41

InputBox$ function . 36, 43
Input$ function ... 118, 149
Install Visual BASIC 2

Instant watch 129
Instr function 77
Interface 17
Int function 106, 149
Integer

arithmetic 33
numbers 33
variables 33

IsNumeric function 70

K
Keyboard error traps 62
Kill statement 126, 150

L
Label 20
Language reference ... 141
Lcase$ function .. 77, 150
Left$ function 76, 150
Len funcion 77, 121, 150
LF Control character ... 115
List box 29 95
Locations 48
LOF function 118, 151
Log function 105, 151
Logical

errors 127
operators 62

Long integers 33
Loop corfigurations 53

M
Main Menu 11

Menu
bar 98
desigr window ' 00

Mid$ function 76, ' 52
Mod operator 38
Modes

Break 9, 127
Design 9

Run 9

Modules 18

N
Naming convention 28, 32
Nested loops 56
Not operator 62, 70
Numeric arrays 83, 85

0
Object

box 13 27
create 14
orientated 1

163

Open
statement . 117, 122
For Input As 117
For Outut As 117
For Random As 122

Opening project 29
Operators

arithmetic 37
logical 62
relational 62

Option
Base statement 84
Explicit statement ... 123

Option buttons ... 20, 25, 94
Or statement 62
Overview, program 1

P

Parameters 112
Percent format 50
Picture box 20
Position indicator 15
Print

statement 117
method
Spc function
Tab function

Print output
Priority, arithmetic 37
Procedure

box 27
step 130

Project
elements 17
Open 29
Run 16
Save 16
window 13

Professional Edition 10, 19
Program flow 53
Properties

29,37,46
47,157
47,158

46

change 45
Check box 25
Command button 24
Label 23
list 13
setting 21
Text box 24
window 13

Put # statement 125

R

Random
access data files 121
numbers 107

Randomize statement . 85
RECEDIT.MAK file 126
Record defn byType

. 121
ReDim statement 87
Relational operators 62
Remarks 32
Reserved words 141
Right$ function 76, 156
Rnd function 107, 156
Rounding numbers 106
Run

mode 9
program 16
time errors 127

S

Save
commands 16, 40
environment 19

Scientific format 50
Screen 10
Scroll bars 21
Select Case statement 68
Sequential data files 115
SetFocus method 45, 79
Setting

focus 45

164

properties 21

Sgn function 107, 157
Shortcut keys 25
Show statement . 92, 102
Sin function 104, 157
Single

precision numbers 33
stepping 130

Sorting
alphabetic 76
data 65

Space$ function .. 77, 157
Spc function 47, 157
Sqr function 104, 158
Standard format 50, 54
Start Visual BASIC 7

Statements 29, 141
Static

arrays 86
declarations 86

Step modifier 55
Str$ function 81, 158
String$ function 77, 158
String 73

arrays 83
Concatenation 81

conversion 81

functions 76
variables 33, 73

Sub procedures . 93, 111
Subroutines 113
Subscripted variables .. 85
Syntax checking 29
System requirements ... 2

T
Tab function 46, 158
Tab

index property
order

Tabulations

25
25
46

Tan function 104, 158
Text

Box 43
file 41

TEXTEDIT.MAK file 100, '26
Timer control 21, 98
Title bar 11

Tool
Bar 11, 128
Box 12

Tools, debug 128
Trace

calls 129
execution 130

Tutorial 7, 128
Twips 15, 48
Type statement . 1121, 159

U

Ucase$ function . 77, 159
Unload statement . 93, 102
User -defined

formats 51

functions 109

V
Val function 36, 160
Variables 32

double 33
integer 33
floating-point 33
long 33
single 33
string 33
subscripted 85
type declaration 34

Variable suffixes 33
Variant variable 33
VAT calculator 99
View procedures box ... 111

165

Visual BASIC
Controls
directory structure

19, 91
5

icons 4
install 2

W
Watch 129
While..Wend loop 60
Windows

skills 7
versions 1

WordWrap property 23, 93
Writing code 26

X
XOR operator 62

166

NOTES

NOTES

NOTES

NOTES

COMPANION DISCS TO BOOKS

COMPANION DISCS are available for most books written ty the
same author(s) and published by BERNARD BABANI (publisiing)
LTD, as listed at the front of this book (except for those marked
with an asterisk). These books contain many pages of file/program
listings. There is no reason why you should spend hours typing
them into your computer, unless you wish to do so, or need the

practice.

COMPANION DISCS come in 31/2" format with all example listings.

ORDERING INSTRUCTIONS

To obtain your copy of a companion disc, fill in the order form
below or a copy of it, enclose a cheque (payable to P.R.M. Cliver)
or a postal order, and send it to the address below. Make sure you
fill in your name and address and specify the book number and title

in your order.

Book
No.

Book
Name

Unit
Price

Total
Pr ce

BP £3.50

BP £3.50

BP £3.50

Name

Address:

Sub -total

P & P

(@ 45p/disc)

Total Due

£

£ .

£

Send to: P.R.M. Oliver, CSM, Pool, Redruth, Cornwall, TR15 3SE

PLEASE NOTE
The author(s) are fully responsible for providing this Companion Disc service The publishers of this
book accept no responsibility for the supply, quality, or magnetic contents of the disc. or in respect of

any damage. or injury that might be suffered or caused by its use.

..,

Babani Computer Books

Programming in Visual BASIC for Windows
Shows you how to use Visual BASIC to produce profes-
sional looking programs that run under Microsoft
Windows.

Written using Visual BASIC for Windows 3.0, but can also
be used with any other of the Windows versions. No prior
programming knowledge is assumed, but a working
knowledge of the Microsoft Windows environment is.

Designed to complement the very extensive manuals
provided by Microsoft. Working through the book, and
using the program's Help system, a user should learn
the basics of Windows programming in the shortest
possible time.

The book contains
Details of the installation and set-up of Visual BASIC
for Windows.

 A description of the graphic based environment it uses.
 A primer on the BASIC language used by the package,

with extensive use of examples.
 Appendices giving a complete reference to the Event

procedures, Statements, Methods and Functions used
in the language. These alone will be essential reference
whenever you use Visual BASIC for Windows.

pgi Beginners 1g Intermediate Advanced

BP 346

E6.99 9

ISBN 0-85934-346-4

780 859 34 346 6

0 0 6 9 9>

