
OWEN BISHOP

Easy Add-oi
Projects for
Spectrum,
ZX81 & Ace

EASY ADD-ON PROJECTS
FOR SPECTRUM, ZX81 & ACE

OTHER TITLES BY THE SAME AUTHOR

BP73 Remote Control Projects
BP82 Electronic Projects Using Solar Cells
BP104 Electronic Science Projects
BP116 Electronic Toys Games and Puzzles

OTHER BOOKS OF INTEREST

BP109 The Art of Programming the 1 K ZX81
BP114 The Art of Programming the 16K ZX81
BP119 The Art of Programming the ZX Spectrum
BP128 20 Programs for the Spectrum and 16K ZX81

EASY ADD-ON PROJECTS
FOR SPECTRUM, ZX81 & ACE

by
OWEN BISHOP

BERNARD BABANI (publishing) LTD
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W6 7NF

ENGLAND

PLEASE NOTE

Although every care has been taken with the production of this book
to ensure that any projects, designs, modifications and/or programs etc.
contained herein, operate in a correct and safe manner and also that
any components specified are normally available in Great Britain, the
Publishers do not accept responsibility in any way for the failure,
including fault in design, of any project, design, modification or
program to work correctly or to cause damage to any other equipment
that it may be connected to or used in conjunction with, or in respect
of any other damage or injury that may be so caused, nor do the
Publishers accept responsibility in any way for the failure to obtain
specified components.

Notice is also given that if equipment that is still under warranty is
modified in any way or used or connected with home-built equipment
then that warranty may be void.

All the projects in this book have been designed and tested by the
Author using models of the Spectrum, ZX81 and Ace microcomputers
that were available at the time of writing in Great Britain. The Author
and Publishers accept no responsibility for failure of a project to operate
or any damage that may be so caused, should the manufacturers of the
microcomputers radically change the specification of their machines in
the future or for a particular overseas market.

© 1983 BERNARD BABANI (publishing) LTD

First Published - August 1983

British Library Cataloguing in Publication Data
Bishop, O. N.

Easy add-on projects for Spectrum, ZX81 & Ace. -
(BP124)
1. Sinclair computers
I. Title
001.64'04 QA76.8.S625

ISBN 0 85934 099 6

Printed and bound in Great Britain by Cox & Wyman Ltd, Reading

CONTENTS

Page
INTRODUCTION.. 1

Interfacing to microcomputers .. 1
Logic levels in computers... 1
The microprocessor...2
Address decoder... 6
Using the ZX Computers... 8
Using the Jupiter Ace ..9
Using other Computers ..10

PROJECT 1: PULSE DETECTOR 11
How it works.. 11
Building it... 13
Using it..13
Detecting a'high pulse'..14

PROJECT2: PICTURE DIGITISER...................................16
How it works.. 16
Addressing .. 21
Building it...22
Final check.. 26
Test program..27
Programming..28

PROJECT 3: FIVE-KEYPAD.. 35
How it works..37
Addressing .. 39
Building it...39
Testing... 41

PROJECT 4: MODEL CONTROLLER44
How it works..44
Building it...48
Programming.. 51

PROJECT 5: BLEEPER..54
How it works.. 54

Page
Building it.. 56
Programming..59

PROJECT 6: LAMP FLASHER ... 61
How it works..61
Building it.. 64
Programming..64

PROJECT 7: LIGHT PEN...66
How it works..66
Building it.. 68
Programming..71

PROJECTS: MAGNETIC CATCH78
How it works..78
Building it.. 84
Programming..85

PROJECT 9: LAP SENSOR...87
How it works..87
Building it.. 90
Programming..91

PROJECT 10: PHOTO-FLASH ... 94
How it works..95
Programming..99

PROJECT 11: GAMES CONTROL................................... 102
How it works.. 102
Building it...104
Programming..106

PROJECT 12: RAIN DETECTOR 111
How it works.. 111
Building it...111
Programming.. 113

PROJECT 13: WEATHERCOCK 115

Page
How it works.. 115
Building the vane... 118
Addressing ...119
Building the circuit...121
Programming.. 121

PROJECT 14: ANEMOMETER.. 124
How it works.. 125
Building it... 127
Programming.. 129

PROJECT 15: THERMOMETER’......................................131
How it works.. 131
Building it... 131
Calibration and programming.. 133

PROJECT 16: BAROMETER .. 137
How it works.. 137
Building it... 141
Programming.. 144

PROJECT 17: SUNSHINE RECORDER149
How it works.. 149
Building it... 152

Appendix A: THE ADDRESS DECODER 157
Building the project .. 162
Controlling the decoder..173
Programming the ZX81..174
Programming the Jupiter Ace.. 178

Appendix B: PIN LEAD-OUT DETAI LS..........................180

Special note for readers in USA.. 182

INTRODUCTION

Interfacing to microcomputers

This book describes how to build electronic circuits which
you can attach to your ZX Spectrum, ZX81 or Jupiter Ace.
All the devices have been tested with all of these computers.
Most of the circuits probably work just as well when connected
to a ZX80 micro or could be adapted to do so fairly easily, but
they have not been tested with this computer, and full con
necting details are not given here.

All the projects are simple and inexpensive ones, requiring
only a few transistors or integrated circuits. The integrated
circuits are of the less expensive kind. The wiring required for
each circuit has been kept to a minimum, an unusual feature
for a book of this kind, for microcomputer projects tends to
need rather more wires than projects of other kinds. The result
of this simplified approach used here is that all the projects
can be built easily and cheaply, even by a relative beginner.
Once built, they are simple to operate. Writing programs to
control them need not be complicated. Each project includes
a simple program or two to get you started. Of course, those
readers who are more expert at programming can have a lot of
fun in writing elaborate programs based on these projects, but
the beginner can start with the short program and perhaps add
extra features later.

The circuit designs apply equally well to the ZX81, ZX-
Spectrum and the Ace. If you have a ZX81 now and later buy
a ZX-Spectrum, the projects can be operated from your new
computer without having to change them. You may need to
modify the program slightly, since the Spectrum has a more
extensive BASIC than the ZX81. The differences are explained
later.

Logic levels in computers
Computers deal with numbers and other information as a
series of Os and 1s. The projects show many examples of this.

1

The Us and 1s, or binary digits (shortened to "bits") are rep
resented in the computer by voltage levels.

0 is represented by OV, we refer to this as "low".
1 is represented by +5V, we refer to this as "high”.

Numbers and other kinds of information, including instruc
tions, are handled in the computer by making one of these two
voltages (OV or +5V) appear on different wires (oi lines).

The microprocessor

Although these computers may differ in appearance and in
their facilities, their microprocessor (the Z80) is identical in
each.

The ZX micros and the Ace allow us to communicate
directly with the microprocessor itself, through the input/out
put port. This is the set of metallized pads (Figs.0.1 and 0.2)
on the edge of the circuit board, protruding from the rear of
the machine. This is where you attach your printer or extra
RAM. This is where you will soon be attaching some of the
projects from this book. These are the connections used:

The address bus: This is a set of 16 lines, but we use only 8
of them here (the lower 8 lines, numbered from AO to A7).
The Z80 uses the address bus to inform any other part of the
micro or any attached device (such as a project) that the Z80
wants to tell that part or device to do something or to receive
information from that part or device. It does this by putting
OV or +5V on different lines of the bus. Each part or device is
allocated its own address, and knows when its address is on the
bus. Then it becomes active and does what the Z80 wants it to
do. How it finds out that its address is on the bus is explained
later. The point of having an address bus is that the Z80 can
communicate with all other parts of the system, but with only
one part at a time. Each part responds to the message intended
for it and not to the messages directed to other parts.

Data bus: A set of 8 lines, of which we use only 4 (DO to D3)
in this book. Many of the projects use only one data line (DO).

2

E 3A6t

□ Ao
< □ AO

oa
ta
za

E

co

O
nl

y
co

nn
ec

tio
ns

 re
qu

ire
d

fo
r t

he
 pr

oj
ec

ts
 in

 th
is

 b
oo

k a
re

 la
be

lle
d.

W

ith
 re

sp
ec

t t
o

th
e

ke
y-

w
ay

, th
es

e c
on

ne
ct

io
ns

 ar
e in

 e
xa

ct
ly

 th
e

sa
m

e p
os

iti
on

s i
n b

ot
h

ZX
-8

1 a
nd

 Z
X-

Sp
ec

tru
m

.
(N

.B
. s

om
e o

f th
e

ot
he

r c
on

ne
ct

io
ns

, n
ot

 sh
ow

n h
er

e b
ec

au
se

 th
ey

ar

e n
ot

 us
ed

, m
ay

 no
t b

e i
n i

de
nt

ic
al

 po
si

tio
ns

.)

□ ov
□ iv
□ zv
3 EV,

s o

o CO

co

co
X
N

E

co

OH E
EIM E

C

□ 9V
□gv
□ fv

E

a O
Q.

CO

Fi
g.

 0.
1 The

 in
pu

t-o
ut

pu
t p

or
t c

on
ne

ct
or

 o
f Z

X
m

ic
ro

s a
s s

ee
n f

ro
m

 th
e r

ea
r o

f t
he

 m
ac

hi
ne

3

5 AO □

O

□ OH

LU
Q

eaC

2-o ro
03 Tí

Il II

o

o

5
O

o
? O o
O

□ 9V
□ 9V

CQ

□ IV
□ oa
□ za

¿v C
ove
tac

Cj

01 (U
§

ai

'S03
E

o
03

Q>
■s
E o
e
<13
Sí

01

'S

ni

03; o01 o
O 43

Q. O

Oí
«

o
O

<n

.03
O'
01-c

"Ö 018-E
o

8 & 01

O

$
Q.

<D

O

Q)

oj

■S’

4

The data bus is used for transferring data (instructions or
numbers) between the Z80 and other parts of the system
(including projects). The data is represented by the voltage
levels put on to its lines by the Z80 when it is sending data to
another part of the system, or put there by another part of the
system when it is sending data to the Z80.

Input-output-request Une: This is one of the control lines,
usually called IORQ for short. The voltage level on this line is
normally +5V (high) but, when the Z80 wants to communi
cate with a device which is attached to the micro (such as a
project), it makes the level low (OV). The line over the letters
IORQ mean that the voltage goes low when something is to
happen; we say it is "active-low". The low level on IORQ
alerts the device to the fact that the Z80 has already placed an
address on the address bus, and the device must check to see if
this is its own address. The Z80 has another control line called
"memory-request" (MEM RQ), which it uses when it wants to
communicate with its memory. We do not use MEMRQ in the
circuits of this book. Because of this, the projects can not
interfere with the normal working of the memory of the
computer.

Read line (RD): This is another control line and is active low.
The Z80 puts a low level on this line to indicate when it wants
the addressed device to send data to it. The device should
respond by putting the data on the data bus, so that the Z80
can read it.

Write Une (WR): The Z80 puts a low level on this line when it
wants to send data to a device.

Powerlines: We use two of these. All circuits need to be
connected to the OV line of the micro, because this is the line
against which all voltage levels are to be measured. The micros
have a regulated +5V line which could be used to power the
circuits of the projects. The difficulty is that there is usually
not much power to spare, particularly if several devices are
connected to the system at the same time. Instead, we use the

5

+9V line, which comes directly from the ZX or Ace Power
Pack. This is an unregulated supply, but a voltage regulator IC
is used to convert this to a regulated +5V supply.

Address decoder
Every device that we attach to the computer must have an
address decoder. This is a logic circuit which detects the
voltage level on each line of the address bus and works out if
these correspond to the address of the device concerned. The
projects use 8 address lines, and the address line voltages for
a given project might be:

Line A7 A6 A5 A4 A3 A2 A1 AO
Voltage 5 0 0 5 5 5 5 5
Bit 1 0 0 1 1 1 1 1

In the second row above, the voltages are listed as we might
measure them with a voltmeter (but see p. 11). The third row
shows their logical equivalents. These Os and 1s can be written
out as a binary number, 100 1 1111. Another way of
writing this number is as a hexadecimal, in which form it
becomes 9F (see Table 0.1). The decimal equivalent of this is
159. If a device has the address 159 then its address decoder
logic should respond when the voltage levels are as shown
above. For all other combinations of voltage levels it should
show no response of any kind.

The logic of the address decoder must also take into
account the levels present on the IORQ, RD and WR control
lines. An address decoder is not a simple circuit yet, because it
is essential for every project, it is something we can not do
without. Fortunately there is a relatively simple way of over
coming the problem. Building it with a PCB design as given on
p. 166 is easy, and it is not necessary for you to understand
how it works to make full use of it.

The decoder provides the address decoding for all the other
projects. It also provides a regulated +5V power supply and
has several other useful features. Once you have built the
decoder you rarely need to bother about address decoding
again, and the construction of the projects is therefore made

6

Table 0.1 Some binary numbers and their equivalents
Binary Hexadecimal Decimal

0 00 0
1 01 1

10 02 2
11 03 3

100 04 4
101 05 5
110 06 6
111 07 7

1000 08 8
1001 09 9
1010 0A 10
1011 OB 11
1100 OC 12
1101 OD 13
1110 0E 14
1111 OF 15

1 0000 10 16
1 0001 11 17
1 0010 12 18

* 1 1111 1F 31
10 0000 20 32
11 0000 30 48

♦ 11 1111 3F 63
100 0000 40 64

* 101 1111 5F 95
* 111 1111 7F 127

1000 0000 80 128
* 1001 1111 9F 159
* 1011 1111 BF 191
* 1101 1111 DF 223
* 1111 1111 FF 255

* these are the 8 addresses used for the projects

7

much simpler. The decoder itself is not really complicated, for
it is easy to understand how it works and, if correctly built,
should work perfectly first time. The main complication is
that it has a lot of wires, so you need to take care to make the
correct connections. Fig. D.4 (p. 166) is a printed circuit
board master for this project to help you get the connections
right. It is also possible to buy this PCB ready-made (see add
ress of supplier, p. 179).

To begin interfacing to your computer, build the decoder.
After that, you can choose which of the other projects you
want to make and connect them to the decoder. You can
connect several projects at once, if you wish, yet control them
individually.

Using the ZX Computers
Both of the Spectrum and ZX81 computers use Sinclair
BASIC, so programs written for one may be adapted for the
other fairly easily. One important way they differ is that the
Spectrum has the IN and OUT commands which allow it to
read or write data directly to the input/output port. It is by
these commands that we control the interfaces. The ZX81
lacks these two commands. Instead of these, we use simple
machine-code routines, as explained on p. 174.

Of the devices which provide data for the micro to read,
most use only the lowest line of the data bus, line DO. It is a
property of the logic circuits used in these micros that if a line
is unconnected and is not being used, it behaves as if the input
to it is 1. So when we are using only line DO, with lines D1 to
D7 unconnected, an input of 0 on line DO appears as:

1111 1110

All lines D1 to D7 are 'high'. On the Spectrum the IN
command returns 254, the decimal equivalent of this binary
number. When line DO has a 'high' level on it, the result of a
read operation is 1 1 1 1 1111, which is 255 in decimal.

The ZX81 gives different results. The machine-code routine
on p. 174, in conjunction with the command LET= USR
16514, returns a value which shows the contents of the B and

8

C registers of the microprocessor. The B register always holds
1111 1111 while the C register shows the state of the data
bus, in the way described above. So if line DO is 'low' we get:

1111 1111 1111 1110
which is 65534 in decimal.

If DO is 'high' we get:
1111 1111 1111 1111
which is 65535 in decimal.

So in the descriptions of programs in this book, you need to
add 65280 to values expected with the Spectrum to find what
values are to be expected with the ZX81.

Using the Jupiter Ace
As far as the projects in this book are concerned, the Ace
provides all the connections required. The edge connector on
the Ace board has exactly the same connections as on the
ZX81 or Spectrum, but on the Ace they are in a different
order. The design for the Decoder board therefore needs
amending slightly, or you can make a simple adaptor which
brings each line to its correct position for plugging into a
Decoder designed for the ZX computers.

The main advantage of using the Ace is that its language,
FORTH, gives it very high operating speed. This makes it part
icularly suitable for the pulse-timing operations required by
several of the interfaces in this book. Whereas a machine
code program is essential with the ZX computers, for a few of
the projects the Ace operates fast enough when using FORTH.
The FORTH language was, after all, designed to be used in
controlling astronomical telescopes so it is to be expected that
it should excel in controlling other kinds of interface too.

The devices in this book have all been tested with the Ace
and work as well on this machine as on the ZX Comptuers.
There is one difference. On the Ace (or at the least on the
model used during the writing of this book), unconnected lines
usually read as 0, except for line D4 which reads as 1. Con
sequently, with input to line DO only, the readings are 32

9

(0001 0000) or 33 (0001 0001) instead of the values found
on the ZX computers. In practice it was found that the values
on some of the unconnected data lines 'floated' occasionally,
reading either as 1 or 0 at random. For this reason, it is pre
ferable to AND the data input with the value 0000 0001 to
eliminated any values appearing on the unconnected lines.
The command required is:

31 IN 1 AND

where 31 is the address being read from. This sequence leaves
0 or 1 on the top of the stack, depending on the state of
line DO.

Using other computers
This book is written for three particular computers but all
computers which are based on the Z80 or Z80A micropro
cessor are the same at heart. Common examples are the Exidy
Sorceror, Nascom 1 and 2, North Star Horizon, Research
Machines 380Z, Sharp MX80, Superbrain, Transam Tuscan,
TRS-80 and Video Genie. If you can make connections to the
address bus, data bus and control bus of these machines, as
required for the decoder (see Fig.D.1) there is no reason why
you should not attempt to interface these machines with the
circuits described in the book. However, it must be stressed
that the circuits in this book have not been tested with any of
the machines listed above, so there is no certainty that they
will work. Neither can one be certain that they will not in some
way affect the normal operation of the computer, though this
is very unlikely. You should also check the terms of the
guarantee issued by the manufacturer of the machine to ensure
that you will not be invalidating it by connecting your own
devices to it.

10

Project 1

PULSE DETECTOR

This simple device is a very useful one for testing the other
interfaces. The trouble with micros is that they work very fast.
The micro produces pulses of current which may last for only
a fraction of a microsecond. This is far too short a time to
affect an ordinary voltmeter. Even with an oscilloscope it is
almost impossible to pick out the pulse you are interested in.
This circuit is designed to detect a low pulse produced by a
microcomputer. The words 'low pulse' mean that the voltage
at the point of testing is normally 'high' (anything between
+2V and +5V), but goes 'low' (falls below +0.8V) for a short
period. This circuit is quick enough to detect low pulses lasting
as little as a fiftieth of a microsecond, which is fast enough for
almost all pulses that a microcomputer can produce.

How it works
The detecting section of the circuit consists of two logic gates,
wired as in Fig.1.1 to make a flip-flop. The output from this
section (at pin 3) may be 'high' or 'low', but must be one or
the other. Remember that anything between + 2V and +5V
counts as 'high', while anything between OV and +0.8V counts
as 'low'. Voltages can not be higher than +5V because that is
the voltage at which we supply power to the circuit.

With the flip-flop in its 'reset' state, waiting for a pulse to
arrive, the output at pin 3 is 'low'. Both of its inputs, the one
labelled INPUT and the one labelled RESET are high. INPUT
is high because it is connected to the point at which a low
pulse is expected at any moment. Although RESET is not
connected to anything (for the button S1 is not being pressed),
it acfs as if it is high. This is a property of the TTL integrated
circuits used in most of the projects in this book. Any input
which is unconnected acts as if it was receiving a high voltage
level.

The 'low' output from pin 3 goes to another logic gate,
11

S1
RESET

OV
To OV: |C1 pin 7,9,10
To +5V: IC1 pin 14 O ov

Fig. 1.1 The circuit diagram of the pulse detector

which 'inverts' it. That is to say, the output of this gate (at
pin 11) is 'high'. The light-emitting diode, D1 is lit. You may
wonder why we do not drive the LED directly from pin 3. The
reason is that, if we do this, the flip-flop does not respond as
quickly and might miss the short low pulse it is waiting for.

When the low pulse arrives, the flip-flop changes state. It
becomes 'set'. The output at pin 3 goes 'high', which makes
the output at pin 11 go 'low', and the LED goes out. To reset
the flip-flop and put the LED on again, we press the 'reset'
button for an instant. Provided that the pulse is finished and
the voltage at INPUT has returned to a 'high' level, pressing S1
makes the flip-flop return to its 'reset' state.

12

Building it
This project can be built up on any small scrap of strip
board. There is hardly any need to put it in a case but it is easy
to find a small plastic container which will suit the purpose of
enclosing it. The push button and LED are mounted on the
case.

There is no need for a power supply switch. The best
arrangement is to have three wires about 20cm long to connect
the Detector to the circuit (or the line of the micro) which is
being tested. Solder a crocodile clip to the flying end of each
wire. Preferably use clips with insulating plastic covers, and
have clips of three different colours so that you know which is
which. One of the wires is for connecting the Detector to the
OV line of the micro, or test circuit. This wire connects also
the IC and to the other points shown on Fig.1.1. The second
wire is for taking power from to the +5V rail of the micro, or
tested circuit. This wire connects to pin 14 of the IC. The
third wire is the INPUT wire, going to pin 1.

Using it
Switch off the micro or the circuit you are testing. Clip the OV
and +5V leads to the OV and +5V rails of the micro or other
circuit. Clip the INPUT wire to the line you want to test for
low pulses. Then switch on the power supply.

The LED may or may not light to begin with, depending
on which state the flip-flop goes to when switched on. If the
LED does not light, press S1 for an instant. If the LED does
not light then, it may be that the tested line is not actually
*high', or that a series of 'low' pulses are coming along it so
often that the flip-flop becomes 'set' almost immediately
after you reset it. If this is the case, there is nothing more
you can do, for the detector is not designed to work with a
rapid series of 'low' pulses.

If the LED comes on and stays on when you press S1,
operate the micro or test circuit in the way which you believe
is going to produce that single 'low' pulse. If or when the pulse
arrives, the LED goes out.

13

Detecting a 'high' pulse
Fig.1.2 shows how the Detector may be adapted to detect a
'high' pulse on a line that is normally 'low'. As it happens, you
are more likely to be looking for 'low' pulses in most of the
projects in this book, but occasionally the important pulse is
a 'high' one. All that the gate of Fig.1.2 does is to invert the
pulse before sending it on to the flip-flop. The line to which
INPUT is connected must be one that is normally 'low'. The
output from pin 8 will therefore normally be 'high'. When a
'high' pulse arrives at INPUT, pin 8 will give out a 'low' pulse
and so trigger the flip-flop.

Input O
INPUTO To pin 1

ofIC1

Fig. 1.2 Adapting the pulse detector to detect high pulses

The gate used for the adapted version is the spare gate of
IC1. Instead of joining its inputs to the OV line, they are
joined to each other and used to receive the INPUT signal.
You could wire up your Detector so that it is possible to make
temporary connections by means of crocodile clips whenever
you want to look for 'high' pulses instead of 'low' ones.

14

parts REQUIRED for the PULSE DETECTOR
Resistors

R1 220R carbon, 0.25W, 5% tolerance
Semiconductor

D1 Tl L209 or similar light-emitting diode
Integrated Circuit

IC1 74LS00 quadruple 2-input NAND gate
Miscellaneous

S1 Push-to-make push-button switch
Scrap of stripboard (2.5mm matrix)
1mm terminal pins (5 off)
Crocodile clips, miniature size (3 off, of different colours)

(Better still are miniature clip-on probes, such as
'E-Z-Hooks'.)

14-pin IC socket (optional, but recommended)
Small plastic case (optional)
Connecting wire

15

Project 2

PICTURE DIGITISER

Using this device, you can scan a photograph or drawing and
see it appear on the screen of your micro. The scanner is rather
a low resolution one, so it works best when the picture has
large bold areas of contrasting shades. Fine detail will be lost
but, provided that you choose a suitable subject, it is fascina
ting to see the result building up block by block on the screen.
The scanner is moved by hand, so it works fairly slowly and
depends on you to move it accurately. It clearly demonstrates
the principle behind professionally-made (and highly
expensive) picture digitising equipment. There is a great
amount of fun to be had from the simple digitiser.

How it works

The idea behind this device is that the picture is broken down
into a number of picture elements, or pixels. The picture area
consists of rows and columns of pixels, as in Fig.2.1. The
scanner moves (or, in this instance, is moved) along each row
of pixels in turn. It measures the brightness of each pixel, and
reports this to the micro. Brightness is something which could
be anything between a brilliant white and the darkest of
blacks. There is an unlimited number of shades of grey in
between. If the picture is a coloured one, the different colours
can be considered to be equivalent to different shades of grey.

The micro can not accept an unlimited number of different
possible shades. To keep the circuit simple, this scanner is
designed to recognise only 4 different shades. The lightest is
white, the darkest is black and there are 2 shades of grey
(light grey and dark grey or equivalent colours) in between.
When the scanner measures the overall brightness of a pixel it
tells the micro to which of these 4 possible shades the pixel
shade is closest. The micro plots each pixel on the screen as it
is reported. It plots small squares which show a corresponding
range of brightness. White is a solid block of light on the

16

17

screen, and black is a blank area of screen. The greys are
represented by patterns of dots in which light grey has more
white dots than dark grey.

The way you represent the greys depends on the graphics
provided by your micro. The ZX81 has only one shade of
grey, so both shades of grey have to be plotted the same,
though the dark one could be plotted as black and the light
one as white if this makes the picture better to look at. With
the Spectrum you can define your own patterns with various
proportions of dots, as described later, and possibly use
BRIGHT 1 for white.

The circuit (Fig.2.2) relies on a photodiode (D1) to detect
the light reflected from the picture. The light comes from a
torch-bulb, which is mounted with the photodiode in the
scanner (Fig.2.4). If light is falling on D1, a small leakage
current flows through R1 and D1. The more light reaching D1,
the larger the current. The larger the current, the greater the
potential difference across R1. The greater the PD, the lower
the voltage at point A. This is because the voltage at the top
end of RI is fixed at +5V, so any increase in PD across it must
make the voltage fall at its other end.

The level of voltage at point A is measured by three
comparators (IC1, IC2 and IC3). These each compare the
voltage at their inverting input (—) with the voltage at their
non-inverting input (+). In this circuit, the inverting inputs are
all connected to point A, while the non-inverting inputs are
each connected to the wiper of a variable resistor, (RV1, RV2
and RV3). Each resistor is set so that the voltage at its wiper
has a fixed value between OV and +5V. The setting is different
for each variable resistor. For each comparator, if the voltage
at the inverting input (from A) is higher than the voltage at
the non-inverting input (from the variable resistor), the output
of the comparator rises sharply toward +5V. If the voltage
from A is lower than the voltage from the variable resistor, the
output falls sharply toward OV.

The variable resistors are set so that when D1 is receiving
light reflected from white paper, the voltage at A is lower than
the voltage from any of the variable resistors. The outputs of
all three comparators are 'low'. If very little light is reaching

18

19

DI (reflection from black paper), the voltage from A is greater
than any voltage from the resistors, so all outputs are 'high'.
In between (shades of grey, or colours), one or more of the
comparators has a 'high' output and the others have a 'low'
output.

The output of each comparator goes to a transistor. When
the comparator has a high output, the transistor is switched
fully on. The voltage at its collector falls to OV (= 'low'). The
transistor inverts the output from the comparator. This voltage
is fed to a buffer gate in IC4. When the buffer is enabled (see
next section) and 'low' level is sent to the buffer, a 'low' level
is put on to the data bus. Conversely, when the comparator
has a 'low' output, a 'high' level appears on the data bus.

The various possible outputs of the circuit are listed in
Table 2.1. The top section of the table shows what happens
when the 'Send' button (S1, Fig.2.2) is not pressed. The out
put from its buffer is 'high' (see p. 11), so the micro reads the
four data lines as a number greater than 7. This tells the micro
that, whatever data may be appearing on the other lines, the
scanner is not actually ready in position over a pixel, so it
should ignore these other lines. When the 'Send' button is
pressed, its buffer output goes 'low'. Now the micro interprets
the other lines as levels of brightness, depending on how it has
been programmed (see later).

Table 2.1 Data output from the Picture Digitiser
'Send' Shade of Data lines Decimal Value
button pixel 3 2 10 equivalent displayed*

Not Any 1 X X X more more
pressed than 7 than 247
Pressed White 0 111 7 247

Light grey 0 0 11 3 243
Dark grey 0 0 0 1 1 241

Black 0 0 0 0 0 240
0 = 'low' 1 = 'high' X = 'low' or 'high'

* on Spectrum; on the ZX81 add 65280; on the Ace, '31 IN 15 AND'
gives the values shown in the 'Decimal Equivalent' column.

20

Addressing
The addressing of this project is not completely provided for
by the decoder (p. 158). The data inputs of the decoder are
able to receive only one data line from each device (in other
words, only one bit of data from each address). This project
needs to be able to send 4 bits of data to the micro. As Fig.2.2
shows, it has four data outputs which are connected directly
to lines DO to D3 of the data bus. The wires from the Picture
Digitiser go to 4 terminal pins on the board of the Decoder
but, from there, the connection is made directly to the data
bus of the micro, as shown in Fig.D. 1.

Single-bit data inputs have complete address decoding on
the decoder board; decoding of lines AO to A4 is done by IC1
and IC2, while the decoding of lines A5 to A7 is done (for
data inputs) by IC5. We can still use the decoding done by IC1
and IC2, but the Picture Digitiser needs to have its own IC to
take care of decoding A5 to A7.

The decoding of lines AO to A4 gives us a signal which is
called ADDRESS. This goes 'low' whenever data is to be sent
to any one of the addresses listed in Table D.2 (p. 173). If you
want to have only the Picture Digitiser plugged on to the
micro, and nothing else, there is no need to bother with any
further decoding. Simply connect the ADDRESS output
terminal of the decoder (Fig.D.1) to the ADDRESS' output
terminal of the Picture Digitiser (Fig.2.2). The Digitiser then
has all 8 of the possible addresses of Table D.2. The micro
reads the state of the pad, at any one of these addresses.

If you would rather be able to have several projects plugged
•nto the micro at the same time, the Picture Digitizer needs its
own address decoder to handle lines A5 to A7. Actually we
adopt a compromise here and decode only two of these lines.
This makes it possible to use just one IC for decoding. A suit
able decoder circuit is shown in Fig. 2.3. Since it does not
detect the state of line A7, which may be either 'high' or 'low',
this decoder responds to two addresses, 1F and 9F. You can
Use either of these addresses for reading the Digitizer. Alter
natively, use one of the decoder circuits shown in Fig.13.4.

21

To OV: pin 7
To +5V: pins 1,2,13,14

Fig. 2.3 An address decoder for Project 2.
This circuit gives it addresses IF (decimal 31)
and 9F (decimal 159)

Building it

The first thing to do is to make the scanner (Fig.2.4). There are
several ways in which you can construct this, depending on the
materials you have available and your skill at working with
these materials. You may decide to base it on a small metal or
plastic box, boring holes and fixing partitions to arrive at the
design shown in the figure. Or you may decide to begin with
a block of wood (or a large cork stopper, which is easier to
carve) and drill out the various channels required. The essential
points of the scanner are:

i. It rests flat on the picture.
ii. It has an aperture about 5mm square on the lower side;

22

From To detector circuit

be scanned

Fig. 2.4 The essential parts of a scanner, but not
showing how they are put together

this defines the area of the pixel.
'ii. A small lamp shines light on to the picture through this

aperture.
Iv- It must be possible to raise or lower the lamp so as to

adjust the amount of light reaching the picture. The

23

lamp should be a firm fit in its mounting, so that it does
not readily slide out of its fixed position.

v. The photodiode is to be fixed in position and aimed so
that it catches light reflected from the picture, but does
not receive light coming directly from the lamp.

vi. It is best if all surfaces in the scanner are painted matt
black to cut out unwanted reflections of light.

The prototype scanner was made from a large cork of the
type used in the demijohns in home wine-making. Such a cork
is cheaply obtainable from a store selling home wine-making
equipment. Buy one which already has a central hole. Shape
the hole at the lower end to make it square. The small filament
lamp (on the end of flexible leads) fits tightly in the upper end
of the hole and can be slid up and down. A slanting hole is cut
from one side of the cork, sloping down toward the aperture.
After soldering it to flexible leads, the photodiode is wrapped
round with insulating tape (with tape between its wires too,
to prevent short-circuiting) and wedged into the hole. Before
putting the lamp and photodiode into their final positions, the
insides of all holes are blackened using a felt-tip marker pen.

Black insulating tape is wrapped around the cork, except on
the lower surface, to keep light from entering from the out
side. Marks are made on the scanner to assist in registering its
position during scanning (see later).

Before laying out the circuit board, decide whether you are
going to include an extra IC for decoding lines A5 and A6.
You will need to provide terminal pins on the board for the
leads to the photodiode, and to the micro (7 leads: OV, +5V,
ADDRESS, and four data lines). You may also need to provide
pins for the power supply to the lamp. The lamp needs to be a
bright one which may take up to 0.3A of current. It is unlikely
that your micro will be able to provide such a supply,
especially if other devices are attached to it at the same time.
Therefore trie safest procedure is to power the lamp from dry
cells. If your lamp is rated to run on 2.5V, use two 1 5V cells.
A 3.5V lamp can run on 3 cells, and a 6V lamp on 4 cells.
Adapt an old electric torch case to hold the cells, or buy one
of the ready-made plastic battery-holders, which are inexpen-

24

25

sive. The power supply to the battery is then completely
separate from the mam circuit of the Digitiser.

Wire up R1 and DI first, and one of the coinpaiators (say
IC1 with KV1). Test the circuit with a voltmeter connected
to point A. In fairly low room lighting the voltage at A is close
to +5V but, when DI is moved toward the lamp (switched on),
the voltage drops almost to OV. If you fail to obtain a
changing voltage, is it possible that you have connected D1 the
wrong way rounu. Set RV1 to about the middle of its track;
the voltage at its wiper and at pin 2 of IC1 is then about 2.5V.
Move D1 toward the lamp, the output of IC1 (pin 7) is close
to +5V at first but suddenly swings to OV when D1 is put
closer to the lamp. Now wire up R2 and 01. Check that the
voltage at the collector of 01 (i.e. where 01 is linked to R2)
changes from OV to +5V as D1 is moved toward a lamp.

Repeat the above sequence of tests on the other two
comparators as you assemble these sections of the circuit.

Next wire up the buffer (IC4). Temporarily connect the
ADDRESS' input to the OV line, to enable the buffers. You
can then check that the outputs change as expected when D1
is moved toward the lamp (see Table 2.1). Adjust the settings
of RV1, RV2 and RV3 so that the outputs change in order as
D1 is moved toward and away from the lamp.

Finally, wire up the address decoder as in Fig.2.3, and
connect its output to the ADDRESS' input of IC4.

Final check
Before connecting the circuit to the micro it is important to
test it thoroughly. Use a multimeter or a circuit tester to check
that there are no short-circuits between next-door data lines,
or between data lines and the power lines. It is easy for a thin
thread of solder to form a bridge between such lines. Also
check that there is no short-circuit between the +5V power
line and the OV line. It is also worth testing each data line and
other control line to make sure that there really is a con
nection between the plug at one end of the line and the IC oi
other component which is at the other. A 'dry joint' which
causes a break in a line can cause all kinds of problems in

26

getting the circuit to work.
If it passes the tests above, the Digitiser should now be

ready to plug into the Decoder, which itself is plugged into the
micro. Switch on the power supply to the micro. If the display
on the screen is not as expected, switch off immediately and
repeat the checks.

Test program

Below is a short program for the ZX-Spectrum which tests that
the Digitiser is working properly.

10 FOR J=1 TO 100
20 PRINT IN 31 ;
30 PRINT "
40 NEXT J
50 PAUSE 200
60CLS
70 GOTO 10

If you are using the ZX81, you will need to incorporate the
machine code input routine into a REM statement on line 5,
as described on p. 174. This routine is called by a USR state
ment, so you will need to alter line 20 to LETX = USR(16514)
and add another line, '25 PRINT X;' .

The interface may be tested on the Ace by using the word:
: TEST 100 0 DO 31 IN 7 AND . LOOP ;

This reads input, then ANDs it with 7 (=01 1 1) to find what is
Present on the lower three data lines. The values obtained are
those listed in the Decimal Equivalent column of Table 2.1.

The program reads the output from the Digitiser 100 times
and displays the results on the screen. After a short pause, it
dears the screen and takes the next set of 100 readings. Since
the upper 4 data lines are unconnected, they read as 'highs',
giving a total value of 240 (1 111 0000) for those lines. On
the ZX81, the value is 65520 (1 1 1 1 1 1 1 1 1 1 1 1 0000) as
explained on p. 9. The output from the Digitiser is added to
'■his. Table 2.1 shows what values to expect. Place the scanner
°n white paper, and press the 'Send' button. The reading

27

should be '247' (65527 on the ZX81). Try it on black paper
also and on various shades of grey. You can adjust the variable
resistors slightly so that the readings change at the levels of
grey which you decide on.

The only possible readings when the button is pressed are
240, 241, 243 and 247 (or their equivalent on the ZX81),
depending on the brightness of the pixel. When the button is
not pressed, you will get 248, 249, 251 and 255. If you obtain
other readings, there is something wrong. Maybe the address
decoder is not working properly. This is likely if you get the
same result (especially '255') every time, no matter what the
brightness of light or whether or not you press S1. You can
check the address decoder by using the Pulse Detector (Project
1). Connect its input to the ADDRESS output of the Decoder,
or to the ADDRESS' output of IC5 (Fig.2.3). Reset it, then
run the test program. The LED should go off when the
program is run. If it does not, check the decoding circuits.

Assuming the address is being decoded properly, but you
are still getting unexpected numbers, write down the numbers
you get in binary form, and also write down, in binary, the
numbers you expect to get. By comparing these you may find
that one of the data lines is 'stuck', always giving 'high' or
'low' when it should be changing. If so, examine the wiring of
this line, looking for short circuits to next door data lines or to
the power lines. Look also for gaps and breaks in the line, dry
solder joints and other possible bad connections.

The logic circuits are not 'tricky' in the sense that they
need careful adjustment to get them to work. If you obtain
your IC's zrew from well known suppliers, they are very un
likely to be faulty, so if the circuit does not give the expected
results, it is nearly always a fault in the construction.

Programming
The program listed below shows how the Spectrum is used to
read data from the scanner and plot it on the screen.

10 LET J-0 : BRIGHT 0 : CLS
20 LETscan=IN 31

28

30 PAUSE 5
40 IF scan>247 THEN GO TO 20
50 IF scan 247 THEN BRIGHT 1 : LET pixel 128
60 IF scan 243 THEN LET pixel = 128
70 IF scan=241 THEN LET pixel=144
80 IF scan 240 THEN LET pixeh143
90 PRINT TAB J, CHRSpixel,

100 LET J-J+1 : BRIGHT 0
1 10 IF J 704 THEN STOP
120 LET scan=IN 31
130 PAUSE 5
140 IF scan<248 THEN GO TO 120
150 GO TO 20

The scanner is moved across the picture as shown in
Fig.2.6. First a ruler is laid across the picture, with its ends
aligned with two scales drawn down the sides of the picture.
The scanner is moved step by step from left to right along the
ruler. The 'Send' button is pressed each time the scanner is
put in a new position. At the end of the line, the ruler is
moved down one step, and the scanner returned to the left
hand end. The next line is scanned.

The program uses four character blocks to indicate the four
levels of brightness. White is represented by a white block,
with the screen brightness set at BRIGHT 1 (line 50). Other
wise screen brightness is normal. A white block at this level
represents light grey. A black block (character 143), represents
a black pixel. For dark grey we define a graphics block as
described on p. 92 of the ZX Spectrum handbook. This must
be done before you enter and run the display program below.
When defining the character, poke USR"a" in line 20, so that
the code number of the character is 144, as required for the
display program. The character itself is a chequer-board of
black and white dots (Fig.2.7), obtained by inputting the
binary numbers 01010101 and 10101010 alternately when
requested by the character defining program.

The 'dark grey' character is already available on key 'A' of
the ZX81, but this micro does not have the BRIGHT
command. This means that you can have only three shades —

29

30

B IN

0 10 10 1

10 10 10

0 10 10 1

10 10 10

0 10 10 1

10 10 10

0 10 10 1

10 10 10

Fig. 2.7 User-defined 'dark grey'graphics block for the
ZX-Spectrum. Enter the binary codes listed on
the righ t

white, grey and black. The program for the ZX81 will include
a line such as IF S=65523 OR S-65521 THEN LET P=8, Users
of the ZX81 will note that the codes for the pixels are different
(see p.181 of the ZX81 manual), as are the values read from
the interface (see p. 27).

This program reads from the scanner and plots the results
on the screen in 22 rows, each consisting of 32 pixels. Assuming
the aperture of the scanner measures 5mm x 5mm, the maxi
mum size of the picture scanned is 16cm wide and 11cm deep.
If you want to scan a bigger picture, enlarge the aperture of
the scanner.

Here are some words for using the interface with the Ace.
You need to define two characters to produce light grey and
dark grey on the screen. Page 71 of the Ace Manual explains

31

how to do this. Fig.2.8 suggest two patterns. Define light grey
as ASCII 1, and dark grey as ASCII 2. Next define WAIT, as
explained on p.151 of the Ace manual. The other words
needed are:

: SEND? BEGIN 31 IN DUP 8 AND WHILE
2000 WAIT REPEAT ;

: NEXT? BEGIN 2000 WAIT DROP 31 IN 8
AND UNTIL ;

: PIXEL I J AT DUP 4 AND IF 144 EMIT ELSE DUP 2
AND 1 EMIT ELSE DUP 1 AND IF 2 EMIT ELSE
SPACE THEN THEN THEN DROP ;

: SCAN INVIS CLS 24 0 DO 32 0 DO SEND? PIXEL
NEXT? LOOP LOOP;

The word SEND? waits for the 'Send' button to be pressed.
When the button is pressed, it leaves the input value on the
top of the stack. PIXEL looks at the input value bit by bit
(by successively ANDing it with 4, 2, and 1, and then prints
one of the 4 possible pixel graphics. NEXT? waits until the
button is released. SCAN repeats the operation of printing the
pixel over the whole screen.

There are many other possible ways of using the output
from the scanner. You can easily alter the program so that it
displays a negative image of the picture. You can provide
facilities for sending the completed display to the ZX Printer.
Once the picture is stored in the micro's memory, it is possible
for it to be processed in many different ways. In some appli
cations it might be interesting for the computer to work out
the proportion of light and dark areas, or the numbers of dark
or white spots in the picture. The computer could scan its
memory and locate the edges of each area of light and shade;
then it could generate an 'edges-only' display, which would
look rather more like a line drawing than a picture made of
solid areas of various tones. On the Spectrum, you could write
programs to create new images in colour based on the original
picture.

32

0 0 1 0 0 1

10 0 10 1

0 1110 0

0 10 0 10

10 10 10

10 0 110

0 1 10 0 1

1 0 1 0 1. 0

Fig. 2.8 User-defined grey characters for the Ace. Enter
the binary codes given on the right of each block

33

PARTS REQUIRED for the PICTURE DIGITISER
Resistors (carbon, 0.25W, 5% tolerance)

R1 100k
R2-R4 1k (3 off)

Variable Resistors
RV1-RV3 100k miniature horizontal preset (3 off)

Semiconductors
D1 BPX65 or similar photodiode

Q1-Q3 ZTX300 or similar general-purpose npn
transistors (3 off)

Integrated Circuits
IC1-IC3 311 comparator (3 off)
IC4 74LS125 quad bus buffer gate with three-

state output
IC5 74LS27 triple 3-input NOR gate (optional, if

required for decoding)
Miscellaneous

S1 Push-to-make push-button switch
Circuit board
8-pin IC sockets (3 off)
14-pin IC sockets (1 or 2 off)
10-way socket to fit 10-way plug of decoder board
Lamp for scanner, low voltage (2.5V to 6V), 0.3A (the type

which has a lens moulded into the end of the glass bulb
is strongly recommended, as it focusses a bright spot of
light on to the paper; available from most stores which
sell electric torches.)

Socket for lamp
Materials for making scanner
Connecting wire, including thin flexible wire for connec

tions to scanner

34

Project 3

FIVE-KEY PAD

Although it is usual to control the movement of the cursor, or
to aim and fire your space gun against the aliens, by using the
keys of the regular keyboard of the micro, it is very useful to
have a separate keyboard specially designed for this purpose.
This keyboard has 5 keys, which you may use in lots of
different ways.

For instance, mark four of them with arrows pointing up
down, left and right, and use them for steering the cursor or
anything else around the screen. The keys are arranged as in
Fig.3.1 so that it is easy to remember which is which and to
find the right key quickly. Another way of marking the four
keys would be according to the point of the compass - N,
S, E and Vv'.

The fifth key is a control key which has several possible
functions, depending on how you program the micro. In a
games program you can use it to fire the space-gun, or perhaps
to indicate "no move". In a program which draws pictures on
the screen, under the control of the four "arrow" keys the fifth
key can be used to indicate "pen down" (move the cursor to a
different position and draw a line as it moves) or "pen up"
(move the cursor to a different position, but do not draw a
line).

The keyboard can also be used as a special-purpose
controller for a model railway system or for slot-cars (see
Project 4), with the keys being marked 'Go', 'Faster', 'Slower',
and 'Reverse' (for locos at least!). The fifth key can be 'Emer
gency Stop'. A second keyboard can be used for controlling
Points or signal lamps.

Many two-player games are improved if each player has an
individual keyboard. They are especially useful if it is the sort
of game in which each player has to 'make a move' without
letting the other player know which move is being made. Also,
the computer can be programmed to read one keyboard or the
other, depending on whose turn it is to play. Playing out of

35

Fi
g.

 3.
1 Two

 p
os

sib
le

 la
yo

ut
s f

or
 a

 5-
ke

y
pa

d.
(a

) d
ire

ct
io

n
ar

ro
w

s f
or

 g
am

es
 c

on
tro

l, w
ith

 fir
in

g
ke

y.
 (b)

slo
t c

ar
 sp

ee
d

co
nt

ro
lle

r;

pr
es

s "
go

" a
nd

 o
ne

 o
f t

he
 n

um
be

re
d

sp
ee

d
bu

tto
ns

 a
nd

 th
en

 re
le

as
e "

go
" k

ey
.

36

turn is prevented.
The keyboard can be used as a remote-operating keyboard.

You place the micro in one room and the keyboard in an
adjacent room, sending instructions to the micro along a
6-wire cable.

How it works
Each key is connected to one input of an exclusive-OR gate
(Fig.3.2). An exclusive —OR gate has two inputs. When both
inputs are alike (both 'high' or both 'low') the output of the
gate is 'low'. The output is 'high' only when the inputs differ.
The IC used here belongs to the TTL family. The inputs of this
family have the property that if they are disconnected they
count as a 'high' input. Thus, when a button is not pressed the
corresponding input acts as if it were 'high'. Pressing any
button makes its input 'low'. The effect of pressing various
combinations of buttons are as shown in Table 3.1.

Table 3.1 Data output from the Five-key Pad
Keys pressed Data lines Decimal Value

5 4 3 2 1 3 2 10 equivalent displayed*
— _ _ _ _ 0 0 0 0 0 240
- - - - + 0 0 0 1 1 241
— — — 4- — 0 0 10 2 242

0 10 0 4 244
+ — — — 10 0 0 8 248

+ — _ — — 1111 15 255
+---------+ 1110 14 254
+ — + _ 110 1 13 253
+ - + — 10 11 11 251
+ 4- — 0 111 7 247

■ = key not pressed 0 = 'low'
= key pressed 1 = 'high'

* on the Spectrum; on the ZX81 add 65280; on the Ace, '31 N 15
AND.' gives the values shown in the 'Decimal Equivalent' column

37

Fi
g.

 3.
2 Ci

rc
ui

t d
ia

gr
am

 of
 th

e 5
-k

ey
 p

ad
. 8

5
is t

he
 'c

on
tro

l'
or

 'fi
re

' k
ey

38

The output of each exlusive-OR gate goes to a buffer with
three-state outputs (see p. 160). The outputs of these buffers
are connected to data lines DO to D3. The buffers are made to
put data on the bus by bringing the enable line low. This is
connected to an Addressed Output of the decoder (see
Fig.D.1). When one of the addresses of the decoder is read
from, the corresponding Addressed Output goes low. This
enables the buffer, and the data from the buffers is put on to
the data bus.

Addressing
As explained for Project 2 (p. 21), the addressing of this
project is not completely provided for by the decoder (p. 158).
If you want to connect only this project to the micro, you can
do as suggested on p. 21: wire the ADDRESS output terminal
of the decoder (Fig. D.1) to the ADDRESS' input terminal of
the 5-Key-Pad (Fig. 3.2). It can then be addressed using any
one of the addresses in Table D.2.

If you would like to have other projects connected at the
same time as this project, you need to add a decoder to this
project. To keep the wiring as simple as possible, the decoder
uses only lines A5 and A6 (Fig. 3.3). As explained on p. 21
it responds to two addresses, which are 3F and BE in this
instance.

If you are building a second pad, it must have a different
address. Use the same decoder circuit as in Project 2 (Fig. 2.3),
which has addresses 1 F and 9F. If you do this, you will not be
able to have the Picture Digitiser and the second 5-Key Pad
Plugged on the micro at the same time. Other decoding circuits
Vou could use are given in Fig. 13.4 (p. 1 20).

Building it

Although it is possible to use any kind of switch for the keys,
11 'S best to employ the type specially designed as keyboard
keys. Usually the switch is sold separately from the key-top.
Keytops fit on to the switch and are of various types. Some
l11akes of key have tops in a range of bright colours. Others

39

40

have white tops with transparent covers. You write a letter or
symbol on the top (or use rub-down lettering) then clip the
transparent cover over the top to protect the lettering from
wear. Alternatively, draw the symbol or letter on a small
square of card and insert this before clipping on the cover.

The project is best mounted in a small plastic case. Cases
can be obtained with a sloping top which makes them very
suitable for use as a keyboard enclosure. Alternatively, a
plastic box used for packing foods and other commodities
is generally obtainable free and may be used for housing this
project.

The layout and construction of the circuit presents no
problems. The two ICs and the decoder IC can easily be
accommodated on a small piece of strip-board which will fit
into the case. Cut an aperture in the lid for the keys. There are
nine leads between the pad and the decoder - 3 for addressing,
4 for data and 2 for power. These can be a metre or so in
length to allow you to operate the pad in any convenient
position. The leads end in a 10-way plug which fits the 10-way
plug of the Decoder board.

Testing

When construction is complete, test the circuit to make sure
that there are no short-circuits between next-door data lines or
address lines, or between these lines and the power lines. Also
make sure that there is no short-circuit between the two power
lines, OV and +5V. Connect the circuit to a 5V power supply
and temporarily connect the address inputs (ADDRESS' and
D5/D6 if used) to the OV line. Then press each button in turn,
while measuring the output from the corresponding buffer
with a voltmeter. Table 3.1 shows what to expect.

The pad may now be plugged on to the decoder which is
Pegged in to the micro. Switch on the micro. If the usual
display fails to appear on the screen, switch off immediately
ar|d repeat your checking of the circuit. Now run a simple test
Pr°gram, A program suitable for the Spectrum is given on
P- 27, but change the address on line 20 to 63. Below is a
similar program for use with the ZX81.

41

First, key in and RUN the input program listed on p. 174.
Then delete lines 20 onward and replace them by:

20 FOR J =1 TO 100
30 LET X=USR 16514
40 PRINT X,
50 PRINT "
60 PAUSE 200
70CLS
80 GO TO 20

This program displays values 65520 to 65535 depending on
which key is pressed (see Table 3.1). The right hand column of
Table 3.1 shows what numbers should appear on the screen.
If you fail to get the expected values, read p. 28 to find out
how to find the fault.

When the pad has been checked and found to be in working
order, the next step is to make use of it on one of your own
programs. Exactly how you do this depends on what sort of
program it is. The principle is simple: read the pad, and then
branch to different parts of the program depending on the
value that is obtained. The program of p. 28 illustrates two
points about reading from keys. A micro works fast, and it can
read a key hundreds of times while it is being pressed just
once! The program on p. 28 is controlled by pressing the 'Send'
key of the Picture Digitiser. In lines 20 to 40 it waits in a loop
until it detects that the key has been pressed. The pause in the
loop is intended to overcome the contact-bounce of the keys.
When a key is pressed it seldom changes straight from off to
on, but is more likely to go on-off-on-off-on-off and so on
several times until it finally settles at on. The pause allows it
time to settle to fixed state before taking the next reading.
The main part of the program next deals with the reading so
obtained. Then, before taking the next reading, the program
must check that the key has been released. It waits in another
loop (lines 120 to 140) until it detects that the key is no
longer being pressed. Then it jumps back to the beginning of
the program to wait for the key to be pressed the next time.

You may need to use routines of this sort in your key pad
program if you want to interpret a series of key-presses as a

42

series of commands. Of course, if the keys are simply to be
pressed and held down for as long as a particular action is to
continue, you simply read the pad repeatedly, without pauses,
until a change of input occurs.

PARTS REQUIRED for the FIVE-KEY PAD
Integrated Circuits

IC1 74LS86 quad exclusive-OR gate
IC2 74LS125 quad bus buffer gate with three-state

output
IC3 74LS27 triple 3-input NOR gate (optional, if lines

A5 and A6 are to be decoded)
Miscellaneous

S1-S5 Key-switches with tops (5 off)
14-pm IC sockets (2 or 3 off)
10-way socket to fit 10-way plug of decoder board
Key pad case
Connecting wire

43

Project 4

MODEL CONTROLLER

Putting a micro in command of model railway system adds
greatly to the realism of its operation. The locomotive can be
stopped, started, or reversed and its speed can be varied in a
number of stages. The project can also be used with other
electrically powered models such as slot-cars. If you are keen
on building your own robot, this project, provides a way to
control its actions. In fact, any model which is driven by low-
voltage DC motors, or is activated by electromagnets can be
controlled through this interface. On the model railway scene,
it may be used for switching points. The interface can also
switch lamps, so is ideal for signal switching.

Many of the circuits used for controlling the speed of a
motor require that the power source should have a higher
output voltage than is actually needed for driving the motor at
top speed. This circuit employs relays to do the switching, so
it is able to take power from the transformer or power pack
that you normally use for your model railways or slot-cars.
There is no need to obtain or build a special power supply.
The relays do not cause loss of voltage, so the motors run at
top speed when you want them to do so.

The project as described here is suitable for use with a
model railway but you will find it easy to adapt it to slot-cars
or other models. One point about the circuit is that you do
not need to build it all at once. You can start with just one
relay and expand it with further relays from time to time. As
your model railway system grows, you can build a second or
even a third version of the project, perhaps using one for con
trolling the locomotive and the other for controlling points
and signal lamps.

How it works
Fig.4.1 shows the relay-control side of the project. IC1
contains four latches. The D (for data) inputs of these are con-

44

45

nected to 4 lines of the data bus. The IC also has a 'clock'
input (pin 9). This is connected to one of the Addressed
Outputs of the decoder (Fig.D 1). When the micro wants to
send data to the Controller, it puts data on the data bus and
the Controller's address on the address bus. The address is
decoded completely by the decoder, with the result that the
corresponding Addressed Output goes low for an instant. This
low pulse triggers the latches of IC1. The output (Q) of each
latch becomes the same as its data input (D). Once the
triggering pulse is over, Q does not change even though D
changes. In fact, D changes immediately the trigger pulse is
over, for the micro is busily sending data to its memory, to the
printer or other devices, or is receiving data. But the data
which was on the bus at the instant the triggering pulse
occurred is held unchanged (latched) until the next time that
the micro sends data to the Controller.

The output of each latch supplies base current to a
transistor. If Q is 'low', there is no base current. If Q is 'high',
base current flows and the transistor is turned on. This causes
a collector cuirent to flow, which activates the coil of a relay.
What happens then depends on how the relay is wired.

Fig.4.2 shows a typical relay circuit for controlling a model
locomotive. Note that the power supply for the relay coils and
for the locomotive all come from the power supply unit which
belongs to the model railway. This must be a DC supply and
you must not use the circuit with voltages higher than 25V.
for this would damage the transistors. The normal voltage for
models is 12V or less, so this circuit is very likely to be suit
able for all your models.

Relay 3 (RLA3) is a simple on-off switch. It is wired so that
the circuit is closed (the loco moves) when the output of the
latch is 'high' and the transistor is turned on. The current to
the track may pass through two resistors (R5.R6), but either
or both of these may be short-circuited by closing relays 1 and
2. These are wired so that they are open when the output of
their latches is 'low'.

When relays 1 and 2 are both open, the current to the track
has to pass through R5 and R6, putting a resistance of
16.8ohms in series with the motor of the locomotive. This

46

gwes a slow starting speed. Incidentally, the values of resistors
shown in Fig.4.2 are those which were used with a particular
model locomotive when this circuit was being designed and
tested. You will probably find that you need quite different
values in your circuit, though those given should be good as a
Parting point for your own trials. When one of relays 1 and 2
ls closed, the resistance in series with the motor becomes 10 or
®-8ohms. These reduced resistances give two higher speeds.

47

Finally, both relays may be closed, reducing the resistance to
zero and putting the locomotive into top speed.

Relay 4 is a reversing relay. The relay has two pairs of
contacts which are changed over simultaneously. As a result,
the current flows one way or the other around the circuit and
the loco runs forward or in reverse.

Table 4.1 shows the outputs required from the latches in
order to produce differing speeds and direction.

Table 4.1 Command values for the Controller
Direction
of motion

Speed Latch outputs
04 Q3 02 Q1

\ Decimal
equivalent

Symbol in
REM (ZX81)

Forward STOP
Slow

Medium
Fast
Top

0 X X 0
0 0 0 1
0 0 11
0 10 1
0 111

0, 2.4.6
1
3
5
7

space, B,E,B
n
B
I
B

Reverse STOP
Slow

Medium
Fast
Top

1 X X 0
10 0 1
10 11
110 1
1111

8,10,12,14
9
11
13
15

S,B,£, :
H

s
?

0 = 'low' 1 = 'high' X = 'low' or 'high'

Building it
Since all decoding is done by the decoder, there is no need for
any address-decoding ICs on the board. The single IC takes up
very little room, but allow plenty of space for the relays and
for R5 and R6. C2 also takes up a lot of room. It is essential to
instai this capacitor, for a locomotive produces sparks as it
crosses the joins between one rail and the next, or if it
encounters a part of the track where the rails are rough or
slightly corroded. These sparks generate voltage 'spikes' which
can be transmitted through the circuit and reach the micro.
They are not likely to do any harm to the micro but may
cause some of the memory locations to change state. This
leads to rather odd error messages appearing which seem to

48

bear no relation to the program. If interference is worse the
program may "crash". This capacitor completely eliminated
all such interference in the prototype circuit. C2 should be
wired as close as possible to the two terminals which supply
power to the track. If a reversing relay is fitted, C2 must be as
close as possible to this, on the side nearer the other relays (see
Fig.4.2).

There are similar reasons for C1. Latches have the habit of
becoming 'unlatched' if there is interference around. They are
sensitive even to the voltage surges caused by switching the
relays on and off. Position C1 so that its wires are soldered as
close as possible to the power terminals of IC1 (pins 8 and 16).

The final protective feature is the diodes. When relays
switch off, a large reverse current is generated. This could
eventually damage the transistors. The diodes conduct this
current safely away to the +5V line. The diodes should be
wired as close as possible to the terminals of the coils of the
relays.

The controller is connected to the decoder board at 2
points. One connection is to the data lines; this cable requires
4 wires and may be plugged on to one of the 10-way plugs.
The other connection is to one of the 3-way plugs with an
Addressed Output; this needs 3 wires, one for the Addressed
Output, the others being the OV and +bV lines.

As mentioned earlier, there is no need to build the whole
circuit at once. If you want to try it out on a small scale first,
wire up just IC1, R1, Q1, D1, and RLA1. You also need to
include C1 and C2. This will allow you to experiment with
controlling- one relay which you might use, for example,
simply to start and stop the locomotive. Speed control and
reversing can be added later. At that stage you may decide to
use only one relay for speed control (giving just 3 speeds —
slow, medium, top-speed), so freeing a relay for use in
switcning points or operating signal lamps. The main point is
tnat, if you start with a small system, build it on a board large
enough to accommodate future expansion.

As mentioned above, the most suitable values for R5 and
R6 depend on the characteristics of the motor of the loco
motive or other model. The best course is to try connecting

49

the resistors in series with the locomotive before wiring tnem
permanently into the circuit. The amount of cuirent taken by
the motor may be 1 ampere or more, so it is essential to use
resistors rated at 2.5W at least. Fixed-value wire-wound
resistors are available cheaply. It is possible to obtain variable
wire-wound resistors (3 watts), but these are relatively
expensive so the best course is to buy a selection of fixed-
value resistors and experiment with these. If you are following
the two-relay/two-resistoi scheme of Fig.4.2, first find out
what resistance is enough to let the locomotive run at its
lowest steady speed. The speed must be such that the motor
does not stall when the loco crosses a gap in the track or when
running round sharp bends. Also it must allow a stationary
locomotive to begin moving while pulling the heaviest train it
is likely to have to pull. Having established the correct value
(which is the total value of R5 and R6), divide this value into
two parts, one rather larger than the other. In Fig.4.2, the
total value is 16R8 ohms, broken into 10R and 6R8 ohms.
These values are, of course, the nearest standard values obtain
able. If you need a value which is non-standard, it is often
possible to join two or more resistors in series; for example,
you can make up a resistance of 7R5 by joining 1 R, 1 R, 2R2
and 3R3 ohms in series. Often an easier method is to put two
larger resistors in parallel. In this instance, wire two 15R
resistors in parallel to obtain 7R5 ohms. When wired in parallel,
and providing the resistors are more-or-less equal in value,
they share the current. Resistors of lower rating may be used,
such as 1W or 2W carbon resistors.

Before connecting the controller to the micro, test it to
make sure that there are no short-circuits between adjacent
data lines, between the data lines and the power lines, and
between the two power lines. The model's +12V (or other)
power line does not connect directly to any line going to and
from the micro, but its OV line must be connected to OV I ne
of the project. To test the operation of the circuit, connect the
controller to the track, and to the power lines of the decoder
(plugged into the micro), but do not connect the data lines or
the Addressed Output line yet. Use leads with crocodile clips
to connect the data line terminals and Addressed Output

50

terminal of the controller to the OV line.
Switch on the power supply to the controller and the rail

way power supply unit. Connect the lead of terminal DO to
the +5V line. Then connect the Addressed Output lead (i.e. the
one which connects to the 'clock' terminal of IC1) to the +5V
line. As soon as it makes contact with the +5V line, the out
put of latch 1 changes from 'low' to 'high', because of the
'high' level on its input. Often it changes before you actually
touch the lead against the +5V line, for the slight rise in
voltage caused by taking it away from the OV line is enough to
trigger the latches. Putting the lead back on to the OV line has
no further effect. As the output of latch 1 goes 'high', the
locomotive should start moving slowly. Now put the DO lead
back to the OV line, touch the Addressed Output ('clock')
lead to the +5V line and the locomotive stops. This is because
the output from latch 1 has now returned to 'low'. In a similar
way check the action of the other latches and relays.

Programming

Programming the controller to perform a required action is
extremely easy. Just use the OUT command on the ZX-
Spectrum or Ace, or the equivalent machine-code subroutine
on the ZX81 (p. 1 74), with one of the values of Table 4.1.

There is one point to be considered when starting the loco
motive (or other motor) from rest. Some model power supply
units have an automatic cut-out which shuts down the supply
if it becomes overloaded. If you try to accelerate the
locomotive too rapidly by starting it off at top speed (Relays
1, 2 and 3 on together), the sudden surge of current may trip
the cut-out. You will then have to reset the power unit by
hand. If your unit is of this type, always start off the loco
motive at its slowest speed. Once it has started moving, it can
be put into higher speeds almost immediately without risk of
triggering the cut-out.

On the other hand, certain types of motor need an initial
burst of power to get them running, after which they can be
run at relatively low speed. Slot-cars are often like this,
requiring a quick 'kick' on the control lever to start them. If

51

your model is of this kind, you may find that the best proce
dure for starting it from rest is to begin with relays 2 and 3
closed, so that maximum power is delivered. Follow this
immediately with a command to open both relays. The micro
is programmed to deliver these two commands in very quick
succession, so that the initial high acceleration is over before
you have had time to notice it. The car apparently accelerates
smoothly away from its starting point.

With railway systems and models of some other kinds,
especially robots, it is possible (though quite a challenge!) to
write a program by which you can control the model from the
keyboard of the micro by pressing certain keys. While this is
happening, the computer is storing in its memory a list of all
the commands you have issued and the length of time for
which each command was in effect. When the sequence is over,
the micro repeats all the commands with the same timing, so
the model repeats the whole sequence automatically. This is
the way in which an industrial robot is 'taught' to perform a
complicated sequence of actions by an experienced instructor.

One way in which the controller may be helped to do its
job is to let the micro know what the model has actually done.
With a railway system, for example, it is helpful if the micro
can be told exactly which part of the track the train has
reached, when it is approaching a station, or when the end of
the train has moved fully into the siding. One way of locating
the train is to arrange beams of light across the track to be
broken by the train as it passes. The Lap Sensor described in
Project 10 is ideal for this purpose. One or more of these
placed at strategic positions on the railway system will make
practicable many kinds of automatic manoeuvre. A sophis
ticated program would allow the operator to type in the names
of the departure and destination stations, whereupon the
micro would work out the route, set the points and signal
lamps and drive the train from the one station to the other,
without any further guidance for the operation.

52

PARTS REQUIRED for the MODEL CONTROLLER
Resistors

R1-R4
R5, R6

1k carbon, 0.25W, 5% tolerance
Wire-wound resistors, 2.5W, of suitable

values (see p. 50)
Capacitors

C1
C2

100n polyester
4700q electrolytic, working voltage greater

than that of the model power supply
unit

Semiconductors
D1-D4
Q1-Q4

Integrated Circuit
IC1

Miscellaneous
RLA1-RLA3

1N4001 (4 off)
ZTX300 or similar npn transistors

74LS175 quad D-type flip flop

Miniature relays; coils rated to voltage of
model power supply unit; single-pole
single-throw contacts or change-over
contacts; contacts rated to voltage of
power supply to 2A minimum (3 off)

RLA4 Miniature relay, specification as above,
except that contacts are to be double
pole change-over

Circuit board
14-pin IC socket
10-way socket to fit 10-way plug of decoder board (a 4-way

or 5-way plug may do, as only the 4 data lines are
needed)

3-way socket to fit 3-way plug of decoder board
Plug to fit outlet of model power supply unit
Connecting wire

53

Project 5

BLEEPER

A device which emits a short 'bleep' when triggered by the
micro has many uses in connection with games programs and
in various applications around the home. Although the
Spectium and Ace already have a built in loudspeaker which
can be programmed to 'bleep', the loudspeaker is firmly fixed
inside the micro and can not be placed elsewhere. With this
project, the micro can be in one room and the bleeper in
another. For example, with the bleeper in the kitchen, you
could use the micro as an egg-timer, 'bleeping' at the ends
of the cooking times which each member of the family prefers.
If you have the ZX81, then the bleeper is a valuable addition
which will greatly enhance many of your programs.

How it works
The note emitted by the bleeper is produced by an oscillator
built from a single NAND gate (IC2, Fig.5.1). This gate has
Schmitt trigger inputs, which means that the output of the
gate swings sharply when the input voltage reaches a certain
value. The inputs of the gate are wired together (except for
one, which we shall discuss later), so it acts as an inverter.
When the inputs are 'high' the output is 'low', and when the
inputs are 'low' the output is 'high'. Suppose the input is low
to begin with, and the output is high. Current flows through
R2 and giadually charges the capacitor C2. When the voltage
across C2 reaches a certain level, this counts as a 'high' input.
The output swings low immediately. Now current flows from
C2 toward the output, which is at OV The capacitor gradually
discharges and the voltage across it falls. When it falls below a
certain level it counts as a 'low' input and so the output swings
'high' again. In this way the output swings 'low' and 'high'
continuously.

The rate at which the circuit oscillates depends on the
values of C2 and R2. For the circuit to work, the value of R2

54

55

must lie between 330 ohms and 470 ohms, but we can alter
the value of C2 over a reasonably wide range to give a note of
the chosen pitch. With the values shown in Fig.5.1, the pitch is
about 500Hz.

The duration of the 'bleep' is controlled by a 555 timer IC,
(IC1). This is wired so as to produce a single 'high' pulse (at
its output, pin 3), whenever a short 'low' pulse is delivered to
its trigger input (pin 2). The input pulse may be very short
indeed and in this circuit we use the pulse from an Addressed
Output of the decoder (Fig.D.1). The length of the output
pulse can be anything we choose, within reason. Its length
depends on the values of C1 and R1. The equation for
calculating the duration is:

t = 1.1RC
where t is the time in seconds, R is the resistance of R1 in
ohms and C is the capacitance of C1 in farads. With the values
given in Fig.5.1, the duration is about 2.4 seconds.

The output from the timer is normally 'low'. One input of
the NAND gate is held 'low', so the gate is prevented from
changing state. It can not oscillate and no sound is heard.
When the timer is triggered, its output goes high for 2.4
seconds, during which time the NAND gate is able to oscillate
and the 'bleep' is heard.

The sound is made by a piezo-electric audible warning
device. This is a thin slice of crystalline material which vibrates
when a pulsing signal is passed through it. It is rather like a
crystal microphone or record player cartridge, but working in
reverse. The output from the oscillator is insufficient to drive
the crystal directly, so we use a transistor (01) which is
switched on and off by the output from the oscillator. This
provides enough power to make a suitably loud noise come
from the crystal. If you prefer, a small loudspeaker may be
wired in place of the crystal.

Building it
The project may be housed in any plastic case big enough to
hold the scrap of circuit board on which it is assembled. It

56

needs only three wires from the decoder: OV, +5V and one of
the address outputs. If you intend to use the bleeper in
another room at some distance from the micro, it is best for
the main part of the circuit to be in its case close to the micro
with the crystal (or loudspeaker) on the end of a long pair of
wires leading to the other room.

One thing to think about before beginning construction is
the mounting of the audible warning device. The volume of
sound obtained is much greater if it is mounted on a firm (but
not too firm) surface. The surface acts as a sounding-board,
helping to transfer the energy from the crystal to the air
around. Most crystals are already in a light metal case with
metal lugs attached (Fig.5.2). These lugs are pushed through
holes bored in the plastic case containing the circuit board (or
a separate case, if the crystal is to be located in another room).
Then the lugs may be bent flat to hold the device firmly
against the wall of the case. If you are using a loudspeaker
instead of a crystal, mount it on the inside of the wall of the
case, with a few holes bored in the case to allow the sound to
escape. An old transistor radio set could be adapted for this
purpose, provided that its loudspeaker is in working order.
There is no need to remove the 'works' for there is sure to be
enough room to spare for the Bleeper board. Disconnect the
loudspeaker from the radio circuit and connect it to the
bleeper instead.

Apart from the points mentioned above, building the
circuit is very straightforward. The device needs no address
decoding other than that already done by the decoder. Simply
run a 3-way cable from one of the Addressed Output plugs of
the board.

The circuit may be tested by connecting it to a +5V or +6V
supply Usually it 'bleeps' as soon as it is switched on. Temp
orarily connecting pin 3 of IC1 to the OV line will make it
'bleep' again. If it does not, check the wiring carefully. If the
Pitch of the note is not as required, substitute a different
capacitor for C2. The larger its value the lower the pitch. If
'he length of the 'bleep' is not correct, alter C1 or R1.
Changing either or both of these to greater values, lengthens
the 'bleep'. It is possible to have the note sounding for several
tens of minutes.

58

Programming

This could not be simpler. With the Spectrum, the command
OUT 31,0 causes the device to 'bleep'. This supposes you are
using the first Addressed Output, if you are using another one,
use its address in place of the 31. The 0 is just a dummy value,
for we are not actually sending any data to the bleeper. You
could use any value in the range 0 to 255.

Programming is a little more complicated with the ZX81,
for you first have to put the machine-code output program
into memory, as explained on p. 1 74. Having done this, use the
command LET X = USR 16514. If you have other devices
connected at the same time, you will have to precede this by
POKE 1651 7, 31, or whatever address you have chosen for the
bleeper.

With the Ace, a word to trigger the bleeper is defined like
this:

: BLEEP 0 31 OUT ;

The word BLEEP will then trigger the bleeper into action. As
above, you should substitute the address you actually use for
the '3T in the definition.

PARTS REQUIRED for the BLEEPER
Resistors (carbon, 0.25W, 5% tolerance)

R1 22k
R2 330R
R3 470R
R4 1k

Capacitors (electrolytic)
C1 100p
C2 4p7
C3 10a

Semiconductor
Q1 ZTX300 or similar npn transistor

integrated Circuits
IC1 555 timer
IC2 74LS13 dual 4-input Schmitt trigger NAND gate

59

Miscellaneous
XTAL1 Piezo-electric audible warning device, PCB

mounting (loudspeaker, 3 ohm to 15 ohm
may be substituted)

Circuit board
8-pin IC socket
14-pin IC socket
1mm terminal pins (5 off)
3-way socket to fit 3-way plug of decoder board
Connecting wire

60

Project 6

LAMP FLASHER

This circuit flashes one or two lamps (possibly more) on and
off, whenever commanded to do so by the micro. It has lots
of applications in models, from flashing the 'eyes' of a robot,
to controlling signal lamps in model railway systems. It has
uses in games and more serious uses around the house for
operating warning or other indicating lamps. The lamps used
are light-emitting diodes, which are obtainable in several
colours - red, orange, yellow or green. There is also the possi
bility of using infra-red LEDs, which could have applications
for remote control of devices not actually wired to the
computer. It is also possible to modify the circuit to control
small filament lamps.

How it works
The basic circuit consists of a J-K flip-flop. LEDs are con
nected to its two outputs, Q and Q (Fig.6.1). These outputs
have opposite states, so one LED is on when the other is off.
This action can be made good use of for a pair of warning
lamps. For a model railway, with red LEDs placed side by side,
it imitates the typical pair of flashing lamps found beside the
road at the approach to a level crossing. If you want to flash a
S|ngle lamp on or off, you need connect only one to the flip
hop.

The J and'K inputs of the flip-flop are wired to the +5V
line. The effect of this is to make the flip-flop change state
whenever a pulse is applied to the 'clock' input. This is known
as a toggle action. If a given LED is off and is to be switched
°n, the micro addresses the flasher. This makes the Addressed
Output of the decoder go low for an instant, causing the LED
io come on. The LED stays on until the next time the lamp
f'asher is addressed, when it goes off. Note that it is when an
°utput from the flip-flop goes low that the LED lights.

Several modifications of the circuit are possible. The out-
61

puts from the flip-flop are insufficient to drive a filament lam?
directly, but with the addition of a transistor (Fig.6.2) it is
easy to switch such a lamp. Here the lamp is on when th«
output from the flip-flop is high. If the lamp has low curren1
requirements (not more than, say 60mA) and it it is rated t*

62

+5V

From OV q
of decoder

From OV of
^external power

supply (if used)

Fig. 6.2 How to use the lamp flasher with filament lamps

operate on +5V or a voltage close to this, it is reasonable to
use the +5V power supply of the micro. However, if you are
operating other interfaces at the same time there may not be
current to spare for this. In this event, or if the lamp requires
higher voltage, the lamp must be powered from some external
source, such as a battery or a power supply. The power supply
'fust be direct current. The voltage required depends on the
rating of the lamp, but should not exceed 25V; voltages
greater than this would damage the transistor. The gain of the
transistor limits the lamp current to about 40mA, so a 60mA
'amp may not light at full brilliance.

The IC contains two flip-flops, only one of which is used.
pin connections for the second IC are shown in brackets

ln Fig.6.1. Both 'clock' inputs can be connected to the same
^dressed Output, allowing two pairs of lamps to be
controlled. Alternatively, you can use a separate Addressed
Output for each, controlling the flip-flops independently.

63

Building it
The circuit takes up so little room that, when used in connec
tion with a model, it may be hidden away inside the model
itself. Otherwise it needs a small plastic box to contain it.
Wiring up the circuit presents no problems. No address
decoding is required, since this is done on the decoder board
(Fig.D.1). The only connections to the decoder board are the
two power lines and the Addressed Output line. If you intend
to place the lamps at some distance from the micro (for
example in another room, or on a mobile model) it is better to
have the circuit itself close to the micro and run pairs of wires
to the LEDs. The asterisks in Fig.6.1 show where the leads
should be extended.

When you have assembled the circuit, check that there are
no short-circuits between the three wires which connect it to
the decoder. Then plug it into the decoder at one of the
Addressed Output plugs, and switch on the power. One of the
LEDs comes on, though it is not possible to say in advance
which one this will be. Run a short program to write to the
device. On the Spectrum, use 'OUT 31,0'. If necessary, change
the '31' to whatever address you have chosen for the lamp
flasher. The '0' is a dummy value, for we are not actually
sending any data to the circuit. The mere act of addressing it
is enough to trigger it.

The program given on p. 176 for the ZX81 will trigger the
LEDs to change when run. On the Ace, the command is
'0 31 OUT'.

Programming
As explained earlier, the lamps are triggered to change state
every time the lamp flasher is addressed. This program for the
Spectrum will make the two lamps flash on and off 1 0 times:

10 FOR J=1 TO 20
20 OUT 31.0
30 PAUSE 50
40 NEXT J

64

An equivalent effect can be obtained on the Ace by defining
the word GAIT (as on p.151 of the manual) and then this
word:

: F LASH 20 1 DO 0 31 OUT WAIT LOOP ;

Entering FLASH causes the LEDs to flash on and off 10 times.
Of course there is a lot more to programming than simply

making the LEDs flash. Commands are inserted in a wide
variety of programs whenever the flip flop is to change state.
When using the LEDs as indicators, the rate of flashing can be
varied according to what information it is intended to convey.
An interesting programming project would be to devise a
Morse Code sender. This would be a helpful practice device.
The user types in a message at the key-board of the micro.
When 'Enter' is pressed, the micro converts the message into
the equivalent symbols of the Morse Code and then flashes a
single LED to transmit the message.

PARTS REQUIRED for the LAMP FLASHER
Resistors

R1.R2 150R(2off)
Semiconductors

D1, D2 TIL209 or similar light-emitting diodes (any
colour, 2 off)

Integrated Circuit
IC1 7473 dual J—K flip-flop, with clear. (Note: this

project requires the standard TTL version not
Low-Power Schottky (LS) version.)

Miscellaneous
Circuit board
14-pin IC socket
3-way socket to fit 3-way plug on decoder
1mm terminal pins (3 off; 7 off if LEDs are mounted

remotely)

65

Project 7

LIGHT PEN

You may already have seen a light pen being used with a com
puter and know some of the ways in which it can be used.
Often it is used to 'draw' on the screen. The user moves the
pen across the screen, just as if drawing, and a line appears on
the screen, following the tip of the pen. This Light Pen can be
used in the same way, though rather more slowly than the
commercially made pens, but it has the advantage of being
extremely easy and cheap to build.

There are several other ways in which the light pen is used.
For example, it is used in selecting choices from a 'menu' dis
played on the screen. Beside each item there is a flashing
patch. You point the pen at the patch beside the item of your
choice and the computer then does as requested. The same
idea can be applied to learning programs that have multiple
choice questions. A flashing patch appears next to each of the
answers. You point the pen at the patch beside the answer
which you think is correct. Many people are unfamiliar with
the layout of a typewriter keyboard and perhaps slightly
apprehensive about trying to use one. For such people it is
easier to point with a light pen than to look at a keyboard
and try to find and press one of several possible keys.

There are applications for the light pen in games too.
Instead of making your moves by using the key board or a joy
stick, use the light-pen.

How it works
A light pen works by sensing light coming from the screen.
In this design, the sensor is a light dependent resistor or LDR,
often called a cadmium sulphide photoconductive cell (PCC).
The resistance of an LDR is inversely proportional to the
amount of light falling on it. Its resistance is very high in dark
ness (a megohm or more), but decreases to only a few hundred
ohms when it is in the light. In Fig.7.1, R4 is the LDR. It is in

66

Fig. 7.1 The circuit diagram of the Ugh t pen

series with a fixed resistor, R1. Together, they make up a
potential divider. In darkness or dim light, the potential at
point A is high, since the resistance of the LDR is much
greater than that of R1. As the amount of light falling on the
LDR is increased, the potential at A falls. In very bright light
it is only a fraction of a volt.

The potential at A is compared by an operational amplifier
(IC1) with a reference potential which is set by adjusting the
variable resistor RV1. The amplifier is very sensitive to small
differences of potential. If the potential at A is a little higher
than that at the wiper of RV1, the output of the amplifier falls
very sharply, almost to OV. On the other hand, if the potential
at A falls slightly so that it becomes just a little lower than
that at the wiper of RV1, the output voltage swings sharply

67

upward, almost to +5V. In this way the circuit gives a low out
put in darkness or dim light, and high output in brighter light.
There is a rapid swing at a fixed level of brightness. We can
choose this threshold level by the position in which RV1 is set.

The output from the amplifier is a clear cut signal which is
entirely suitable for feeding to a TTL logic gate. The output is
taken directly to one of the Data Input terminals on the
decoder (Fig.D.1).

Building it
The circuit is connected to the decoder board by only three
wires: the two power lines, and a wire to one of the Data
Input plugs. There are two wires going to the LDR and two to
the variable resistor, which is best mounted on the case of the
project. It is possible to use a miniature preset resistor for
RV1, and to set the level once and for all. However, it is con
venient to be able to adjust the threshold level occasionally,
especially if you are using displays with backgrounds of
differing colours, so a 'volume control' type is preferred.

Almost any type of LDR can be used with this project. The
one specified is a relatively small one, measuring 8mm in
diameter. One of the larger types, such as the ORP12, will
work just as well. The resistance ranges of different types vary,
the resistance of RI should be about the same as that of the
LDR in average room lighting conditions. If necessary,
substitute a resistor of different value for R1.

There is scope for experimentation and ingenuity in making
the pen. In its simplest form (Fig.7.2) it consists of a tube into
which the LRD fits fairly tightly. The LRD needs to be set
back about 3cm horn the open end so as to confine its field of
view to a small area of the screen. With the ZX computers the
size required is a little smaller than one of the graphics blocks.
The actual dimensions of this depend on the size of the screen
of your TV. With the tube held close to the screen the LDR
should receive most of the light from a single graphics block,
but none from adjacent blocks. It will help if the inside of the
tube is painted dull black. Use a felt-tip spirit marker for this
If you use a metal tube, take care to cover its end with a softer

68

69

or more flexible material so that there is no danger of
scratching the front surface of the TV tube.

If you are using one of the larger LDRs, the tube into
which it fits needs masking at one end to reduce the view to a
single graphics block. A wider tube may make it more diff-,
cult to see the screen when you are drawing, so a better plan
is to make a tube which tapers toward the open end.

A simple tube must be held close to the screen, almost
touching it, to sense light from the selected area only. If you
fit a small lens to the end of the tube and adjust the position
of the LDR so that light from a small area of the screen is
concentrated on it, you will be able to hold the pen further
away. The only difficulty then is that it becomes harder to
know exactly where the pen is pointing.

When the circuit is complete, connect it to a power suppl/
(+5V or +6V) and connect a voltmeter to the output of IC1.
Switch on the micro and the TV. Print a black graphics block
on the screen, if the background is white, or print a white
block on a black ground. Point the pen squarely and accurately
at a white area of screen. Adjust R1, if necessary, to make th*
voltmeter read +5V (or a reading very close to this). Now
move the pen to point to a black area. The voltage falls almost
to zero. If it does not, RV1 needs further adjustment. You will
soon find the position of R1 in which the voltage swings
sharply to OV or +5V as the pen is pointed at white or black
areas.

The Light Pen may now be plugged into the decoder and
tested on the micro. Here is a simple test program for the ZX
Spectrum:

10 PRINT AT 20,20;"BB"
20 PRINT AT 21,20;"BB"
30 PAUSE 5
40 PRINT AT 10,10; IN 31
50 PRINT AT 20,20;" "
60 PRINT AT 21,20;'' "
70 PAUSE 5
80 PRINT AT 10,10; IN 31
90 GO TO 10

70

Users of ZX81 will need to modify this program as explained
on p. 174. If your pen is attached to one of the other Data
Input plugs, alter the address in lines 40 and 80 accordingly.
This program puts a flashing square of four graphics blocks on
the screen. Point the pen at the square. As it flashes, you will
see the number (which indicates the input) alternating between
255 (white) and 254 (black). This is because unused data lines
count as 'high' while the used line (DO) is alternating between
'high' and 'low'. This gives binary numbers 1111 1111 (=255)
and 1111 1 110 (=254) respectively. When you move the pen
away from the square to point at a white area of screen, the
number stays at 255. If you cover the end of the pen to
exclude the light, the number stays at 254. If you do not get
the changes described here, it is likely that RV1 may need
further adjustment to put the threshold point in the range of
brightness of your TV.

The pauses in this program give the pen time to respond to
the changes in brightness, and also gives you a chance to see
that the pen is responding correctly. The lengths of the pauses
can be reduced to PAUSE 3 and, with more precise adjustment
of RV1, eliminated altogether.
Programming
Although this is such an easy project to build, you need to
think out the programming very thoroughly. The two main
ways of using it are (i) to select a choice from a menu or other
display on the screen, and (ii) to draw on the screen. Let us
consider choice selection first. The choices (items of the menu,
answers to a question etc.) are printed on the screen with a
Hashing patch beside each one (Fig. 7.3). The best approach is
to print the choices first then to print the patches using
PRINT AT. The patches need be only a single graphics block
ln size, so you alternately print a white block (a space) and a
black block (an inverse video space) in quick succession. The
trick is to flash only one patch at a time. We begin with a
white screen. Then (supposing there are three choices and
three patches) patch no. 1 is made black. This is followed by a
Pause (say, PAUSE 3) after which the input from the pen is
read. If the pen is already pointing at that patch its output

71

Flashing
patches

Fig. 7.3 A menu displayed with flashing patches for use
with the light pen

goes low, so you need a program line which finds out what
input is coming from the pen at that instant, and acts accord
ingly. It might be something such as:

50 IF IN 31=254 THEN GO TO 200
On the ZX81 you will need to use the input routine given on
p. 174 and the value 65534 instead of 254. If the input is not
254, this means that the pen is not pointing at that patch, but

72

possibly at one of the other patches. So patch no 1 is made
white again and patch no 2 is made black. After a pause,
comes another line to read the input from the pen, perhaps
like this:

80 IF IN 31=254 THEN GO TO 450

If this test fails, the pen is not pointing at patch no 2 -
perhaps it is at patch no 3, or possibly it is just pointing at
some other part of the screen. The next step is to flash patch
no 3. If the pen is not there either, the program goes round in
a loop to flash the patches in order again. Sooner or later it
finds the pen in this way and the micro is sent to one of a
number of sub routines according to which patch the pen is
pointing.

You may have noticed the slight complication that if the
pen is not pointing at the screen at all, its output is 'low' all
the time and the test at line 50 will succeed, sending the
program to line 200. One way of dealing with this is to keep
the pen pointed at the screen when it is not being used.
Another is to make the program wait until the pen is certainly
pointing at the screen:

40 IF IN 31=254 THEN GO TO 40

A line like this is needed before all the lines which make the
patch black. This ensures that the input really /s 255 before
the micro makes the patch black and tests if it changes to 254.
There are various ways of programming for drawing on the
screen. The commercial systems find out where the pen is
Pointing by scanning the whole screen, row by row, with a
moving flashing patch. The input from the pen is read at every
Point. When the patch reaches a point at which its flash is
followed immediately by a change in output from the pen, the
micro knows that it has 'found' the pen. It plots a black
graphics block there (or white if the background is already
black). This kind of program is not too hard to write, but
unless you write it in machine code, it is extremely slow. Also
the time required for this simple pen to respond to the flash
Would still make it a very slow program.

There are two ways of speeding things up. One way is to
73

make the drawing start at a fixed point on the screen. The pro
gram scans only the 8 blocks adjacent to this area, trying to
find out where the pen has moved to. When it finds the pen it
plots a mark at the new position of the pen. Then it scans th*
8 areas adjacent to this area, and so on.

Here is the program, to run on a Spectrum:
10 DIM s(21,31)
20 LET y=10
30 LET x-15
40 PRINT AT y,x;"B"
50 LET s(y,x) = 1
60 PAUSE 5
70 IF IN 31 255 THEN GO TO 60
80 LET j=y -1
90 LET k x 1
100 PAUSE 5
110 IF IN 31-254 THEN GO TO 100
120 IF s(j,k) 1 THEN GO TO 170
130 PRINT AT j,k;"B"
140 PAUSE 5
150 IF IN 31 = 254 THEN LET y=j:

LET x=k: LET s(j,k)=1: GO TO 80
160 PRINT AT j,k," "
170 LET k k+1
180 IF k<x+2 THEN GO TO 100
190 LET j=j+1
200 IF j<y+2 THEN GO TO 90
210STOP

This program is easily adapted for the ZX81 (see p. 174). It is
worth while studying this program in some detail as it illus
trates several points of importance in operating the light pen
successfully. First of all the program sets up an array (line 10)
which holds a 'map' of the screen. The idea of this is to keep
a record of which squares have been drawn on. Though it is
possible to PEEK the video RAM for this information, there
are three equations to be used in different areas of the screen.
This is too complicated. Unfortunately, having to set aside .
memory for the array means that this program needs more

74

memory than the unextended ZX81 possesses. After printing a
black block in the centre of the screen the program waits (lines
60-70) for the input from the pen to change to 254, which is
taken to indicate that the pen has been placed on the block.
As soon as the pen is placed there the variables j and k are
initialised ready to begin scanning (Fig. 7.4). Nothing else
happens now until the pen is moved off the first block (lines
100- 110) and the input becomes 255. As soon as this happens,
it is assumed that the pen has been moved on to one of the
adjacent white blocks. Note the pause at line 100, which gives
the pen time to move away from one block and arrive at the
next. The program then scans the adjacent blocks, making
each one black in turn (line 130) and reading input to see if it

Fig. 7.4 Pattern of scanning in the drawing program. The
blocks are flashed once each in the order shown
by numbers and the pen is 'found' at block 5

75

has fallen to 254. However, before leaving this it looks to see if
this block has already been drawn on and, if so, (line 120i
skips the flashing routine. This prevents the program front
erasing a block it has already drawn. If the pen happens to b*
pointing at one of these blocks by mistake, odd things may
happen. Even this fairly elaborate program needs improving!

If it 'finds' the pen (line 150), it updates the values of x and
y, (representing the current position of the pen), to the values
of k and j, (the coordinates of the square being flashed). A
black block is printed there and is also recorded in array s
Having done this, the program begins again from line 80.
basing its scan on the new values of x and y.

When using this program it is important to move the pen to
exactly where you want the next block to be. If it is half-way
between one block and the next, flashing either block may fail
to reduce the input to 254, because of light reaching the pen
from the unflashed block. In this event the scan fails to 'find'
the pen and the program runs through to the end. Rather than
lose a drawing by such an accident, position the pen correctly,
then type in the direct command GO TO 80.

Another approach to programming relies on the DRAW
command of the Spectrum and Ace. Scan the whole screen,
row by row with a flashing patch. This takes longer than
merely scanning adjacent squares but time is saved when the
pen is 'found', for the program can be made to DRAW a line
directly from the last location of the pen to the present loca
tion. Another variation is to use the CIRCLE command. Point
the pen where the centre of the circle is to be. The screen is
scanned and this point 'found'. Then point the pen at any
point location on the circumference of the circle to be drawn.
The micro 'finds' this, computes the radius and plots the
circle. You could work out similar programs to plot squares,
triangles or other shapes.

PARTS REQUIRED for the LIGHT PEN
Resistors (carbon, 0.25W, 5% tolerance)

R1 1K8 (depending on average resistance of R4)
76

R2, R3 10k (2 off)
Other Resistors

MKY7C38E light-dependent resistor: dark resistance 300k,
sunlight resistance 100 ohms: ORP12 is
possible alternative but larger

RV1 10k variable potentiometer
Integrated Circuit

IC1 7611 CMOS operational amplifier
Miscellaneous

Circuit board
8-pin IC socket
3-way socket to fit 3-way pin on decoder
Knob for RV1
1mm terminal pins (7 off)
Materials for making the body of the pen
Connecting wire, including light flexible wire for the lead to

the pen

77

Project 8

MAGNETIC CATCH

This circuit has a once-for all action. It is reset manually ant
remains reset until triggered by the micro. Triggering leads t(
some kind of mechanical action. After this, it must be reset
manually again. Exactly what action occurs when the catch i:
triggered depends on the application to which it is put. Il
could be triggered to release the bolt on a door, so, foi
example, letting the cat out early in the morning. Or maybe
the bolt is on the door of a cupboard which is to be opened'
only when the correct secret password is typed into thecoma
puter. It could be used to discharge a quantity of food into art
aquarium, so overcoming the problem of feeding the fish on
Saturday evening when you are away for the weekend. If you
are away for the day, and if the thermometer of Project 15
is used to monitor the temperature in your greenhouse, the
magnetic catch can be triggered by the micro when the term
perature gets too high. It opens the window or door or lets
the sun-blinds roll down over the roof.

How it works
The action of the catch depends upon briefly energising a coil,
or solenoid. There is a sliding soft-iron core partly inside th8
solenoid. When a burst of current flows, the magnetic field so
created pulls the core swiftly into the solenoid. This motion is
used to perform whatever mechanical action is required. One
of the problems with solenoids is that the more powerful ones
have coils with a relatively low resistance. They would dra*
too much current from the micro. If a battery supply was pro
vided, the batteries would soon be exhausted if the coil were
to remain energised for periods of a few hours. This circuit
uses capacitors to store the energy needed to activate thi
solenoid (Fig.8.1). When the circuit is being reset, button S1 1
pressed and charges the capacitor up to maximum voltage. ।
the supply is taken from the micro this is +5V. If the solenok

78

79

requires a higher voltage for satisfactory operation, it $
charged from a battery or other external supply.

The capacitors are prevented from discharging through th*
solenoid immediately because there is a thyristor in the circuit.
This does not conduct until a high pulse is sent to its gat-
electrode (g). Otherwise the capacitors remain charged fo,
many hours, and during this time the only power required to
operate the catch is that needed by IC1 (about 8mA).

The gate electrode is held at low voltage by resistor R 1. The
gate is also connected, through a coupling capacitor C4 ana
two inverting gates, to the output of a flip flop. When this flip
flop is reset by pressing S2, its output goes low. The inverted
output goes 'high', putting the LED on to indicate that th*
circuit is now reset. The doubly inverted output goes 'low'.

The flip-flop is triggered by a low-going pulse from an
Addressed Output of the decoder (p. 158). When the micro
addresses the catch, the flip-flop changes state. The LED is
turned off and a high pulse passes through C4 to the gate of
the thyristor. This causes the thyristor to begin conducting. It
conducts very easily and the capacitors are discharged almost
instantaneously through the solenoid. This creates the strops
magnetic field required to operate the catch. Once th*
capacitors have been discharged, no further action occurs until
the flip flop has been reset and the capacitors have been re
charged.

If the capacitors are to be charged from the +5V supply O'
the micro, it is essential to include a resistor (R2) in th*
charging circuit. Otherwise, the sudden drain on the powei
supply of the micro is too great and its program is lost. Th'
resistor reduces the charging current to a manageable amount,
though it then takes about 10 seconds to recharge th*
capacitors.

The mechanical side of the project is left to the ingenuity
of the reader, for so much depends on the application fo1
which it is intended, the strength of the particular soleno^
used, and the skill of the reader in constructing mechanics
devices. Fig.8.2 shows how a pull from the core can be maC'
to release a prop, so causing a window (e.g. of a greenhous"
to fall shut under the action of gravity. Fig.8.3 shows hoW '

80

Fi
g.

 8.
2 A

sim
pl

e m
ec

ha
ni

sm
 to

 cl
os

e a
 w

in
do

w

81

o

oó

O)

82

platform carrying the required daily quantity of fish food may
be released, so scattering the food into the aquarium below.

As an alternative to a solenoid with a sliding core, the
reader may prefer to use a solenoid with a fixed core which
attracts a moving armature. An old electric bell or buzzer
could be adapted for this purpose. Fig.8.4 shows how the
motion of an armature can release a sprung lever, so initiating
a relatively more forceful operation.

83

Building it
The catch needs no address decoding other than that already
provided for on the decoder board (Fig. D.1). It requires three
wires to connect it to the board; the two power lines, and the
wire connecting it to an Addressed Output. The circuit should
be connected to the micro by fairly short wires. If the solenoid
is to be located at some distance from the micro its leads may
be extended at the points marked * in Fig.8.1. The circuit is
best housed in a case, on which are mounted the two push
buttons and the LED. If you are using a battery for charging,
the case needs to be large enough to hold this too.

It is best to design, build and test the mechanical side of the
catch before constructing the electronic side. It is essential to
make certain that the solenoid you intend to use will develop
enough power to actuate the mechanism. You can connect
the capacitors together on a bread board or by leads ending in
crocodile clips. Then charge them from a battery and try dis
charging them through the solenoid. If the force developed is
insufficient, there are several ways of increasing it:

i. Begin with the moving core further inside the coil
(though this also reduces its length of travel)

ii. Use a solenoid with more turns of wire
iii. Add more capacitors in series with C1— C3
iv. Charge the capacitors to a higher voltage (assuming this

is within the rating of the solenoid)
It is also worth while checking that the mechanical design is
sound. For example, parts that are supposed to slide should do
so smoothly, without undue friction. A transverse force
applied to the core by the weight of an attached lever may
prevent it from sliding easily into the solenoid.

Once assembled, the electronics are tested for short-circuits
between the lines which connect it to the micro. It is then
ready for testing on the micro. Plug it on to the decoder
board. Key in this short program.

10 OUT 31, 0

This simply addresses Addressed Output 0. If you are using
84

another address, as in Table D.2, substitute this in the line
above. Running the output program on p. 176 has the same
action with the ZX81. On the Ace, use 0 31 OUT.

Press S2 to reset the flip-flop; the LED comes on. Next
press S1 to recharge the capacitors. Hold the button pressed
down for about 10 seconds if you are charging from the
micro's own power supply. Reset the mechanism so that it is
ready to be triggered. When all is reset, RUN the program. The
solenoid is energised, the mechanism is operated and the LED
goes out.

Programming
The essential program line is the one given above. Apart from
that, the rest depends on the application.

PARTS REQUIRED for the MAGNETIC CATCH
Resistors (carbon, 0.25W, 20% tolerance)

R1 2M2
R2 100R (required if micro power supply used for

charging)
R3 180R

Capacitors
C1— C3 4700p electrolytic (3 off)
C4 10OnF polyester

Semiconductors
D1 Tl L209 or similar light-emitting diode
D2 1N4001
THY1 C106 or similar thyristor

Integrated Circuit
IC1 74LS00 quadruple 2-input NAND gate

Miscellaneous
L1 Solenoid with soft-iron moving core, rated to

operate at 6V, 12V etc. (alternatively an old
electric bell, buzzer or relay)

S1, S2 Push-to-make Push-button switches (2 off)
Circuit board
14-pin IC socket
3-way socket to fit 3-way plug of decoder

85

1mm terminal pins (9 off)
Parts for making mechanism
Connecting wire

86

Project 9

LAP SENSOR

Although this Project is called 'Lap Sensor', it has many other
applications. In its original application as a lap sensor for slot
car racing, it detects when a car passes a given point on the
track. Depending on how the micro is programmed, it can
keep count of the number of laps, it can measure the lap time,
or it can do both things at once. From this information it can
calculate and display the lap speed and the race speed. Since
the device works by the breaking of a beam of light passing
across the track it does not matter what it is that breaks the
beam. It could equally well be used for bicycle races, horse
races or in many kinds of athletic track events.

Likewise, it does not have to count how many times the
same object breaks the light beam, but could be counting how
many times different objects break the beam. It can count
people going into a room, cars going into a car park, or objects
on a conveyor belt. It works so fast that it can count objects
(or other causes of interruption of the beam) which corne so
quickly in succession that it would be difficult, if not impos
sible, to count them by eye.

Another class of application is that in which we want the
computer to wait for and act on a single interruption of the
beam. An obvious example is in connection with intruder
detection. A beam of light across a corridor is broken by the
intruder. The micro detects this and sounds the alarm. It could
even be programmed to detect the setting of the Sun and then
switch on the porch light!

How it works

The light is detected by a photodiode (D1, Fig.9.1). This
receives light from a source some distance away. A special
lamp may be provided to focus a well-defined beam across the
track or corridor, but this is not always essential. If a table
lamp with a 60W bulb is placed on one side of a corridor and

87

88

the photodiode is on the opposite side, pointing at the lamp,
the shadow of a person passing between them is sufficient to
trigger the sensor. On the smaller scale, (for example, on the
slot-car track or model railway), an unshaded 6V 60mA torch
bulb placed 10cm or slightly more from the lamp is entirely
suitable as a source of light. The only point to look out for is
that other lamps in the vicinity do not shine on the photo
diode when the light from the source lamp is supposed to be
interrupted.

The photodiode works best with light from filament lamps,
but is relatively insensitive to light from fluorescent tubes. It
works with daylight but, since the intensity of daylight varies
so much with cloudiness and time of day, this is not a reliable
source.

The photodiode is connected so that it is reverse-biassed.
The amount of leakage current increases in proportion to the
amount of light falling on the photodiode. As the current
increases the PD across the diode increases, so the potential
at point A rises. The operational amplifier IC1 compares the
potential at point A with a standard potential at the wiper of
the variable resistor RV1. We adjust the standard potential to
be very slightly /ess than the potential at A when the beam of
light is unbroken. The tiny difference of potential is amplified
and the output of IC1 swings sharply to +5V ('high'). When
the beam is broken, the current through D1 decreases, the
Potential across D1 decreases, and the potential at A falls below
that of the wiper of RV1. The potential difference between
the inputs may still be tiny, but it is now a difference in the
opposite direction. Consequently, the output of IC1 swings
sharply to OV ('low'). We can adjust RV1 to allow for the
brightness and distance of the light source.

The output of IC1 goes to a flip-flop (IC2). The flip-flop is
reset by a low pulse from an Addressed Output of the decoder
lb. 158). In this state, its own output goes 'low'. The output of
the flip-flop is connected to a Data Input of the decoder. In
’he 'reset' state the computer reads this output as a 0 on data
line DO. When the beam of light is broken, even for a few mill i
Seconds, the flip-flop is triggered to change state. Its output
9°es 'high'. When the micro next reads from the Lap Sensor's

89

address, it finds a 1 on line DO. The flip-flop remains in this
state indefinitely, so it does not matter if the micro does net
read the lap sensor immediately after the flip flop has been
triggered. This means that the micro does not miss brief inter
ruption of the beam if it happens to be engaged in some other
part of its program at the time it occurs.

When the micro has read the lap sensor and found that it
has been triggered, it resets it by writing to its address. This
causes a low pulse to appear at the Addressed Output, and this
triggers the flip-flop to reset. Now it is ready to detect the
next interruption of the beam.

Building it

The circuit is housed in a small case with the potentiometer
RV1 mounted on it. The photodiode can be hidden inside the
case, with an aperture cut in the wall to allow light to enter.
This arrangement helps screen off unwanted light from other
souices. In certain applications it may be more convenient to
have the light source and photodiode at some distance from
the micro, perhaps in another room. In this even, the circuit
should be close to the micro, but the leads to the photodiode
maybe extended where marked ' in Fig.9.1.

The circuit does not need any special addiess decoding, so
it requires only 4 wires to connect it to the decoder boaid: the
two power lines, and connections to an Addressed Output and
a Data Input, preferably having the same address.

There are no difficulties in wiring up the circuit. When it is
complete, connect it to a power supply (+ 5V or +6V) and
connect a voltmeter to point A. Point the photodiode toward
a nearby light source (e.g. a table lamp). As you place yrW'
hand between the lamp and the photodiode, the voltage at A
should rise. Then connect the voltmeter to the output of id
Adjust RV1 until the output just swings to +5V. Interrupting
the beam makes it swing sharply to OV. Finally connect tb*
voltmeter to the output of the flip-flop (pin 3, IC2). Briefb
connect pin 5 to the Ov line to reset the flip-flop. Its outpu
goes high (+2.5V or slightly more). When the light beam
interrupted, the output falls to 'low' (close to OV). The circ<J11

90

is now ready to be tested on the micro.
Here is a simple test program for the ZX81. First of all type

in and run the combined input-output routine given on p. 177.
Remember to include the correct value for the address (Table
D.2). Then delete lines 20 to 70 and type in the following:

20 LET X - USR 16514
30 PRINT X
40 LET X - USR 16521

Line 20 reads the output from the Sensor. If it has been
triggered, line DO is high, and so X takes the value 65535
(see p. 9). If the device is not triggered, the value is 65534.
Line 30 prints the reading and the sensor is reset by the write
command given in line 40. Run the piogram once just to reset
the sensor. Then run it again; since you have not broken the
beam before running it, '65534' is displayed. Now break the
beam by placing your hand in it. The next time the program is
run, the figure '65535' is displayed.

On the Spectrum the corresponding program is:
10 PRINT IN 31
20 OUT 31,0

Use another address if appropriate. The values 254 and 255 are
obtained.

Programming

The commands to read and to reset the lap sensor are easy
enough to understand, but there are one or two points to con
sidei when using them. Take as an example this program for
the Spectrum:

10 LET n = 0
20 OUT 31,0
30 IF IN 31 = 254 THEN GO TO 30
40 LET n=n+1: PRINT n
50 OUT 31,0
60 IF IN 31 = 255 THEN GO TO 50
70 GO TO 30

91

This is a program to count how many times the light beam i-
broken. It could be used for purposes such as those described
on p. 87. Line 10 initialises the counter variable, n. Line 20
resets the sensor, just in case it goes into the 'set' condition
when the power was first switched on. Line 30 waits for the
flip flop to become 'set'. As soon as the beam is broken the
input becomes 255 and the program drops through to line 40.
Here the counter n is incremented and n is displayed. At line
50 the micro attempts to reset the sensor ready to count the
next interruption. But micios work more quickly than most
objects move, so it is likely that the beam is still broken. If
this is so, the sensor will not leset. The micro waits in a loop
(lines 50 and 60) continually attempting to leset the sensor
and then leading it to find if it has been successful. Eventually,
when the object has moved out of the beam and the light level
is restored to normal, the sensor resets and line 60 detects that
this has happened. The program then goes to line 70 and back
to line 30 to wait for the next interruption. This example
demonstrates that it is essential to reset the sensor at the
beginning, and to allow the beam to be restored and confirm
that the sensor has been reset after each interruption.

Lap timing programs need two routines similar to lines 30,
50 and 60 above, to detect an interruption and then reset the
sensor. At the first interruption the time is recorded using the
micro's internal clock. At the second inteiruption the time is
taken again. The difference is the lap time. You read the
micio's internal clock by PEEKing certain addresses. For the
Spechum the expression is:

LET time-(65536' PEEK 23674+256' PEEK 23673 ‘
PEEK 23672) 50

In the USA the divisor is 60. Details of how to use this expres
sion are given on p.130 of the manual.

For the ZX81 the expression is:
LET T=(256* PEEK 16437 + PEEK 16436» 50

Again, the divisor 60 is used in the USA. On the ZX81,
expression allows timing of periods up to about 9 hours, but
do not use the PAUSE command during this time, foi it alters

92

the values contained in the two addresses. Indeed, for timing
periods of more than a few seconds, it is easier to make the
computer wait for, say PAUSE 100 (one second) and count
the number of PAUSEs between the first time the beam is
broken and the second time it is broken. This gives the Lap
time to the nearest second.

Page 142 of the Jupiter Ace handbook describes some
words for timing on this machine.

PARTS REQUIRED for the LAP SENSOR
Resistors

R1 100k carbon, 0.25W
RV1 100k variable potentiometer

Semiconductor
BPX65 photodiode (or almost any type)

Integrated Circuits
IC1 7611 CMOS operational amplifier
IC2 74LS00 quadruple 2-input NAND gate

Miscellaneous
Circuit board and case
Knob for R V1
8-pin IC socket
14-pin IC socket
3-way sockets to fit 3-way plugs on decoder board (2 off)
1mm terminal pins (9 off)
Connecting wire
A source of light

93

Project 10

PHOTO-FLASH

There are really two sections to the project, and you may use
either one of them or both together. One section allows the
micro to fire a photographic flash gun. The other section is a
sound sensor. The two are intended to be used together to fire
the flash gun when a sound is heard. One application of this is
in high-speed photography. The camera is aimed at an inflated
balloon (or even a glass bottle). The lights are turned out and
the shutter is opened. Prick the balloon with a pin (or strike
the bottle with a hammer) and the resulting noise triggers the
flash. The result is a photograph of the bursting balloon or
breaking bottle. Of course, a sound sensor could be connected
directly to a circuit to fire a flash-gun, but having these circuits
interfaced to a micro means that you can program the micro
to delay the firing until a fixed period of time after the sound
occurs. In this way you can obtain photographs taken at
different intervals after the initial impact. With more than one
flash circuit, the micro could fire a succession of flashes,
producing multiple images on one frame.

Another application is to take photographs of nocturnal
animals. A noise made by the animal triggers the flash. The
sound detection circuit can be used on its own in many ways.
It is particularly sensitive to sharp noises (clapping, snapping
fingers) and to the higher-pitched whistles, so it provides a way
of controlling the micro by sound. This section of the project
could be used in conjunction with Project 4 to control the
action of a model locomotive or slot car by blowing a whistle,
by clapping your hands, or by calling out "Go!" or "Stop".

Project 8, the Magnetic Catch is another one which can be
controlled by sound, through the agency of the micro.

The photo-flash section can also be used on its own,
perhaps simply to give a timed delay in taking a photograph of
a group when you want to be included in the picture. Project 9
can be useful with the photo-flash. Instead of triggering the
flash by sound, why not trigger it when a beam of light is
broken? a.

How it works
The photo-flash section is controlled by an Addressed Output
which is connected to a flip-flop (Fig.10.1). The flip-flop is
reset by pressing S1. Its output is then 'low'. When the device
is addressed, the low pulse from the Addressed Output sets the
flip-flop. Its output goes 'high' switching on transistor 01.
The coil of RLA1 becomes energised and the contacts of the
relay are closed. The relay contacts are connected across the
terminals of a flash gun, which then fires. Note that power to
operate the flash comes from the flash-gun, not from this
circuit. The relay contacts do the same job as the contacts
inside the camera which are normally used for firing the flash.
Once the flash has been fired, the flip-flop must be reset
manually before the flash can be fired again. It is possible to
dispense with S1 and wire pin 5 of IC2 directly to another
Addressed Output. This would allow the micro to reset the
flip-flop ready for another photograph. If you are using the
kind of flash gun which requires flash bulbs to be renewed
there is little point in doing this. If you have an electronic
flash gun, it is possible to program the micro to make multiple
exposures by firing the gun again after a short interval.

The sound sensor takes the signal from a crystal micro
phone and amplifies it by the operational amplifier IC1. In the
absence of sound the output from the amplifier is about 2.5V.
When sound is detected it oscillates above and below this level.
Low-going voltage changes act as a low pulse to the other fIip-
Hop, causing it to set. Its output, which is normally 'low',
changes to 'high'. This can then be read by the micro. Note
that the flip-flop stays high once it has been set, so it does not
Tatter if the micro is not actually reading data from the sensor
at the instant the sound occurs.

The flip-flop is reset by pressing S2. For the original appli
cation of this project, manual resetting is all that is required.
However, in some applications it might be convenient to have
the micro do the resetting. This is done by replacing S2 with a
Wire from pin 13 of IC2 direct to an Addressed Output of the
decoder. This allows the micro to reset the flip-flop after a
sound has been detected, ready to detect the next sound.

95

+5
V

O

le
ad

s m
ay

 be
 ex

te
nd

ed
 at

 th
es

e p
oi

nt
s

96

The device needs a minimum of four lines to connect it to the
micro: the power lines, plus connections to an Addressed Out
put and a Data Input. It needs more lines if either of the flip
flops are to be reset by the micro, instead of being reset
manually. Assuming either that the flip-flops are to be reset
manually or, that they are to be reset by the micro using
separate Addressed Outputs, all address decoding is done by
the decoder, and there is no need to provide for this in the
project itself.

The photo-flash should be housed in a case, on the outside
of which the microphone can be mounted. The two push
buttons are mounted on the panel of the case. The switch
contacts of the relay are wired to a socket, on the panel of the
case. You need a plug to fit this socket, with wires leading to
the flash-gun.

As explained earlier, this project consists of two parts, and
there is no need to build both if you are interested in only one
aspect of it. If you want to operate several flash guns, it is easy
to add a second 74LS00 IC from which two more flip-flops
may be constructed.

When assembly is complete and the project has been tested
for short-circuits between the various lines which link it to the
micro, it may be given its preliminary test. Connect it to a +5V
or +6V supply. If you alternately press S1, and touch a
grounded (OV) wire to pin 1 of IC2, you should be able to
see or hear the relay switching on and off. Then connect a
voltmeter to the data output (pin 8 of IC2). Press S2 and the
output goes low. Make a sound near the microphone and the
output abruptly goes 'high' (+2.5V or more). It responds best
io sharp clicking or clapping sounds. Try snapping your fingers
about 50cm from the microphone. Even a gentle 'snap' should
be enough to trigger it. If this fails, try tapping the micro
Phone gently. If this fails, the circuit is at fault. Failure to
respond to sound of reasonable loudness may be due to lack of
°otput from your microphone. To improve amplification, try
substituting a resistor of higher value for R4. A resistor of
3^3 or 4M7 will increase the gain.

The photo-flash may now be tested on the micro. Plug its
‘eads in the decoder and switch on. Press both reset buttons. If

97

you have an electronic flash, you can use this while testing. |f
you need to use expendable flashbulbs, this would be too
expensive a session. Instead, wire up an ordinary low-voltag»
bulb, in place of the flashbulb shown in Fig.10.2. On the
Spectrum, the command for flashing a bulb is OUT 31,0. Sub
stitute another address in this line if appropriate. On the
ZX81, simply run the output program given on p. 176. On the
Ace, the word F LASH is defined like this:

: FLASH 0 31 OUT ;

When the sound-sensor flip-flop is reset its output is low, so
reading from its address gives 254 on the ZX computers. When
a sound has been detected, the reading changes to 255. The
reading command is PRINT IN 31 on the Spectrum. On the
ZX81 use the program on p. 175, and X takes the value
'65534' or '65535'.

Battery of
flash-gun

Filament lamp
(in place of flash bulb)

Fig. 10.2 How to use a filament lamp while
testing the circuit

98

Programming
Controlling the photo-flash is relatively simple, and several
examples of possible uses for it have already been described.
Here are programs which fire the flash a short period after a
sound has been detected. This one runs on the Spectrum:

10 IF IN 31=254 THEN GO TO 10
20 PAUSE 5
30 OUT 31,0
40 PRINT "Photograph taken"
50 STOP

The PAUSE gives a delay of one tenth of a second (a twelfth
of a second in USA). With the ZX81 type in and run the
combined input-output program given on p. 177. Then delete
lines 20 to 70 and type in:

20 LET X = USR 16514
30 IF X = 254 THEN GO TO 20
40 PAUSE 5
50 LET X = USR 16521 -
60 PRINT "PHOTOGRAPH TAKEN"
70 STOP

To program the Ace you need the word PAUSE, defined on
P.147 of the Ace manual, and these three words:

: FIRE 0 31 OUT ;
: LISTEN BEGIN 31 IN 1 AND UNTIL ;
: PHOTO-FLASH LISTEN 10 PAUSE FIRE ;

The figure in the definition of PHOTO-FLASH sets the length
of the interval between detecting the sound and firing the
flash.

In the programs above the micro waits in a loop until it
finds that the sensor has been triggered. Then, after a pause, the
length of which you can adjust, it fires the flash. It would be
a useful precaution to begin the program with a routine which
reads the sensor to make sure that you have remembered to
reset it first. If it finds that it is not reset, it displays a message
to that effect. Then when it detects that you have reset it, it

99

goes on to the routine listed above, waiting for the sound)»
occur. Something of this sort will eliminate the risk of the
micro firing the flash as soon as you run the program. Another
refinement, especially useful if you are using the device to
photograph any animals which might come close to the
camera, is to insert a long pause in the program to give you
time to get away before it becomes able to respond to sound.
In this event it would be a good idea to have the sensor reset
by the micro, so that the sounds of your departure do not
permanently trigger the sensor.

If you are using the micro to reset the sensor after a sound
is detected, the program must test that it has reset successfully.
If it attempts to reset whilst the sound is still continuing, it
will be unsuccessful (see p. 92).

As explained on p. 10, unconnected data lines in the Ace
are 'floating' and may give either 0 or 1 when read. To read the
state of line DO alone, we simply perform the logical AND opera
tion with the data reading. If it is ANDed with 0000 0001,
the result gives the state of line DO, irrespective of the state of
the other data lines. Thus we can read the output of the sound
sensor by using the word:

: SOUND? 31 IN 1 AND . ;
Note that the photo flash can have the same address for both
of its sections, for the operations of reading and writing are
independent.

PARTS REQUIRED for the PHOTO-FLASH
Resistors (carbon, 0.25W, 5% tolerance)

R1, R2 100k (2 off)
R3 10k
R4 2M2
R5 470R

Capacitor
C1 10On polyester

Semiconductor
Q1
D1

ZTX300 or similar npn transistor
1N4001 100

Integrated Circuits
IC1 7611 CMOS operational amplifier
IC2 74LS00 quadruple 2-input NAND gate

Miscellaneous
RLA1 Reed relay or other single-pole single-throw relay

operating on 6V
S1, S2 Push-to-make push button switches (2 off)
MIC Crystal microphone or microphone insert
8-pin IC socket
14-pin IC socket
Socket for connection to flash-gun
3-way plugs to fit 3-way sockets on decoder board (2 off)
Circuit board
1mm terminal pins (8 off)
Connecting wire

101

Project 11

GAMES CONTROL

A games controls adds a whole new aspect to computer fun. It
consists of a small box with a control knob on top. As you
turn the knob one way or the other, you move a 'bat' round
the screen, aim a 'laser gun', steer a 'racing car', or in some
other way take a very active part in the game. You can build
and operate 2 or more of these if you wish. Another possibility
is to house this project in the same case as the 5-Key Pad
(Project 3).

How it works
The control knob alters the setting of a variable resistor (RV1,
Fig.11.1). This is wired between two 56k resistors, and the
chain of resistors is connected between OV and +5V. As the
wiper of RV1 is moved from one end of its track to the other,
the voltage at the wiper ranges between a little over 1.25V
and a little under 3.75V. The voltage varies smoothly over this
range. We say it is an analogue quantity. But micros are not
able to accept such an input. A micro understands only two
kinds of input, 'high' and 'low'. So, IC2 converts the smoothly
varying analogue voltage into one which alternates between
'high' and 'low'. This IC is driven by a clock, built up from
two NAND gates of IC1. The clock pulses cause a voltage
(Vramp) inside IC2 to ramp down from about 3.75V to 1.25V.
This actually happens in a series of 128 steps, but for all
practical purposes it is a smooth ramp, as shown in Fig.11.2.
Whenever the input analogue voltage is higher than Vramp, the
output of the IC is 'high'. Otherwise it is 'low'. The result is
that we get a waveform which has a fixed frequency (one
128th of the clock frequency), but has a varying mark-space
ratio. As input voltage rises the 'mark' (or 'high' level)
decreases, and the 'space' (or 'low' level) decreases. The micro
is programmed to find out how much time is spent in the
'high' or 'low' states and, from this information it can work

102

103

out the level of the input analogue voltage.
We call IC2 a voltage to-time converter. It is not a true

analogue-to-digital converter, for time, like voltage, is an
analogue quantity. But time can be represented by 'highs' and
'lows' and in this form can be understood and measured by the
micro.

Building it
The device needs three lines to connect it to the decoder: the
two power lines and a line to a Data Input. It is best housed in
a small plastic box, preferably with a sloping top. The variable
resistor is mounted on top, and the remainder of the circuit's
assembled on a small circuit board placed inside.

104

If you have an oscilloscope, you can test the clock circuit
and the output from IC2 after assembly. The clock runs at
about IkHz. Its exact rate is not important. The output from
|C2 has a frequency of about 8Hz, As you alter the setting of
RV1 the mark-space ratio varies from about 1:20 to about
20:1. If the output is continuously low when RV1 is at one end
of the track, the input voltage has fallen below 200mV, which
¡s the minimum required. This may happen if resistors are not
quite of their specified values. To compensate, increase R4. If
the output of IC2 stays 'high' at the other end of the track,
the analogue voltage is exceeding all values of Vramp. Increase
the value of R3. Without an oscilloscope, the outputs can be
detected by connecting a crystal earphone (e.g. from a tape
recorder) to the output pins and the Ov line, with a 100nF
(approx.) capacitor in series. You should hear a high-pitched
note when it is connected to IC1 and a low buzzing sound
when connected to IC2.

After completing construction, test for short-circuits
between the lines which are to be connected to the decoder.
Then plug the control into the decoder. To test its output on
the micro, you need a program which reads input repeatedly
and displays it. This program is for the Spectrum:

10 LET x = IN 31
20 PRINT x
30 GO TO 10

As the program runs, a succession of values appear on the
screen, changing regularly from 254 to 255. With an equivalent
Program on the Ace, you may get 32 and 33. If the unused
data lines are floating, other values may appear. It is better to
eliminate these by the AND operation:

: TEST 31 IN 1 AND . ;
TEST gives 1 when the output from the circuit is 'high' and 0
when it is 'low'. If you place this in a loop:

: WAVE 200 0 DO TEST LOOP;

Vou will see a series of 1s and 0s changing regularly in response
to the waveform from IC2. The proportion of 1s to 0s varies

105

with the setting of RV1. If you ever get all 1s or all Os, the
input voltage is swinging out of range and the value of R3 or
R4 should be altered, as explained earlier.

Programming
The most frequent use for the control is to move 'bats' 01
other objects around the screen. There are two ways o'
assessing the output from the circuit. One method is for the
micro to measure the length of time for which the output is
'high'. This is the timing method. To do this accurately
requires that the micro should be working quickly, so i
machine-code program is virtually essential. We shall return to
a discussion of this method later.

The other method is to read the output a fixed number of
times and count how many of these readings are 1. This is the
sampling method. Its result is related directly to the maA
space ratio. It is necessary to take at least 100 readings to get«
reasonably reliable result. Readings must extend over several
waveforms in order to get a fair sampling of the relative times
spent in the 'high' state and in the 'low' state. This means that
the method tends to be rather slow. This BASIC program for
the Spectrum uses the sampling method:

10 LET x 0
20 FOR j=1 TO 100
30 IF IN 31=255 THEN LET x=x+1
40 NEXTj
50 LET x=x/3
60 CLS
70 PRINT TAB x;"*"
80 GO TO 10

This may be easily adapted to the ZX81, using the routine
described on p. 175. If necessary, alter the address 31 t0
that used by your control. The program takes 100 samples
rapid succession. The number found to be 'high' varies frolTI
about 5 to about 95, depending on the setting of the control
This is too big a value to be used directly, and in any event *
subject to a certain amount of sampling error. This aris**

106

mainly because we do not begin to sample at exactly the same
stage in the output sequence of the circuit on each occasion
the program is run. Dividing the result by 3 (line 50) gives a
value suitable for use with TAB, and at the same time averages
out almost all the error. When the program is run the 'bat' (the
asterisk) moves across the top of the screen, as you turn the
knob of the control.

This program is just a simple one to get you started on
using the control. Your next step is to incorporate versions of
this into your games programs.

The program given above is slow. If you try to speed it up
by taking fewer samples, the sampling is less reliable and the
'bat' jumps around like a tennis-player waiting to receive a fast
service. Perhaps this adds realism to the game! If you want a
faster yet still reliable action, use this machine-code program,
which is based on the timing method:

LD B, 0
LDC, 0

A:INA,(1F)
INC A

reset register B
reset register C
read address 1 F to acc.
increment accumulator

06 00
0E 00
DB 1F
3C
20 FB JR NZ jump back to A, if not zero
DB 1F B: INA, (1F) read address 1 F to acc.
3C INC A increment accumulator*
28 FB JR Z jump back to B, if zero
OC C: INC C counting in register C
20 01 JR NZ jump to D if C is not zero
04 INC B carry to register B
DB 1F D:INA, (1F) read address 1 F to acc.
3C INC A increment accumulator*
20 F7 JR NZ jump to C, if not zero
C9 RET jump back to BASIC program

The program times the length of a 'high' period by building up
a count in registers B and C of the MPU. First these registers
are reset to zero. Next, the input is read. As explained above,
11 is 254 or 255, so the accumulator register of the MPU
Microprocessor) now contains one of these values. The
accumulator is next incremented (at •) by 1:

107

254 (1 1 1 1 1 1 1 0) is incremented to 255 (1 1 1 1 1 1 1 1)
255 (1 1 1 1 1 1 1 1) is incremented to 0(0000 0000)

It is just like the mileometer of an old car, which changes from
99999 miles to 00000 miles when it exceeds the maximum
that it is designed for. The point about this operation is that
when any register changes to zero, the 'zero flag' is set. The
next step of the program is to jump back to A if this flag is not
set, that is, if the input is 'low'. Thus the MPU waits in a loop
for as long as the input is 'low'. If you start the program
running when output is 'low', it waits until it goes 'high'. If it
is 'high' when the program beings, it goes straight on to the
next step.

The next step is like the previous one, except that it is now
waiting for the input to go 'high', jumping back to B if it is
not. The two loops prevent the MPU from beginning counting
until the input changes from 'low' to 'high', no matter what
state it is in when the program is started. Now it goes around a
third loop for as long as input is 'high' but in this loop it incre
ments register C each time round. Register B is incremented
each time C changes from 255 to 0. The MPU jumps back to
the BASIC program when input finally goes 'low'. It now
holds a count in its B and C registers, the size of the count
depending on the length of the 'high' period. The USR routine
of ZX computers allows you to transfer the contents of the
B and C registers to a variable by using a statement such as
LET X = USR 23760 with the Spectrum, or LET X = USR
16514 with the ZX81.

As explained on p. 175, a machine-code program may be
loaded into the memory previously occupied by a REM line.
The program below can be used either with the Spectrum or
the ZX81, except that you have to substitute 1 6514 for 23760
when using the ZX81. Since the machine-code program |S
fairly long, we simply put it all into a DATA statement and
then use a loop to POKE it into memory:

10 REM this is for the machine-code
20 FOR j=0 TO 23
30 READ x

108

40 POKE 23760+j,x
50 NEXTj
60 DATA 6, 0, 14, 0, 219, 31,60, 32, 251,219, 31,

60, 40, 251, 12, 32, 1,4, 219, 31,60, 32, 247,
201

70 LET x=USR 23760
80 IF x<10THEN GO TO 70
90 LET x= INT (x/250)
100 CLS
110 PRINT TAB x;"*''
120 GO TO 70

If you are not using address 31, substitute the correct value
three times in line 60, in place of all the 31s. When you have
run this program once, the whole of the text in the REM will
have been replaced by various symbols, for that section of
memory now holds the machine-code program. You can then
delete lines 20 to 60 in order to make space for your games
program. Running this program as it stands produces the same
result as the earlier program, but it is much faster. If you find
that the 'bat' does not move far enough to the right, reduce
the value of the divisor in line 90. This fast program occasion
ally picks up very brief and spurious 'high' pulses coming from
the IC, and returns with a count of 1 or 2. Line 80 is there so
that such pulses are ignored.

A machine-code program similar to the above would work
on the Jupiter Ace too, for this also has a Z80 as its MPU. You
need to change the INC A codes to AND 1. The code for this
operation is E6 01. Enter this in place of 60 at three points in
the program. The program may be placed in the parameter
field of a word, as described on p.147 on the Ace's manual.

FORTH runs so much faster than BASIC that there is little
to gain by using machine-code. Here are some FORTH words
which will display a moving 'bat' on the Ace, using the timing
method:

: HIGH? BEGIN 31 IN 1 AND UNTIL ;
: LOW? BEGIN 31 IN 1 AND WHILE 1+ REPEAT ;
: BAT INVIS 4 HIGH? LOW? SWAP / 0 SWAP CLS

AT ;
109

: PLAY 200 0 DO BAT LOOP ;

HIGH uses BEGIN . . . UNTI L, so waits until the input condi
tion is true (1). By contrast, LOW? uses BEGIN . . . WHILE,
so waits until input is false (=0). In the word BAT, HIGH?
waits for input to become 'high'. Then LOW? waits for it to
become 'low' again, and increments the top of stack whil*
doing so. Then the count is divided by 4, and the 'bat' is dis
played on the top line of the screen at the corresponding
position. Note that a low result is obtained if input is 'high'
when the program is started. After that, the program keeps
pace with the changing input. If the 'bat' moves too little,
change the 4 of the BAT definition to 3. If it moves too much,
change it to 5. The definition could be adapted to floating
point numbers to obtain the required range of the 'bat' with
greater precision.

PARTS REQUIRED for the GAMES CONTROL
Resistors (carbon, 0.25W, 5% tolerance)

R1 220k
R2, R5 100k (2 off)
R3, R4 56k (2 off)
RV1 100k variable potentiometer

Capacitor
C1 47n polyester

Integrated Circuits
IC1 CD4011 CMOS quadruple 2-input NAND gate
IC2 507C voltage-to-timer converter

Miscellaneous
Case suitable for mounting control potentiometer
Knob for RV1, suitable for use in games
Circuit board
1mm terminal pins (6 off)
8-pin IC socket
14-pin IC socket
3-way socket to fit 3-way plug of decoder board

110

Project 12

RAIN DETECTOR

The remaining projects in the book make up a weather station
series. They can all be plugged into the decoder and operated
together to record certain aspects of the weather. These are
easy projects and are not precision instruments, but they give
enough information to allow the micro to try to predict what
the future weather is likely to be. Although these last six
projects are concerned with meteorology, many of them have
several other useful applications.

This project is the simplest in the whole book. It tells you
when it is raining. Not only does this allow the micro to keep a
record of the number of rainy days, or the number and
duration of rain showers, but it has other uses around the
home.On washdays it is handy for detecting when it starts to
rain. If the Bleeper (Project 5) is connected at the same time,
and is located in the kitchen (or beside the TV set?), the micro
can sound a warning that the washing must be taken in. The
project also detects when water rises above a given level. In
conjunction with the micro it can warn you when the bath is
overflowing, or when the well is running dry.

How it works
The base current to the transistor (01, Fig.12.1) comes by
way of a probe. This consists of strips of conducting material
placed close together. Their distance apart is such that rain
drops are able to bridge the gap. A single raindrop will allow
sufficient conduction to occur to turn on the transistor. The
result of this is that the level at the Data Input falls from 'high'
to 'low'. Fig.12.2 shows an easy way to make the probe from a
scrap of strip-board.

Building it
Two small scraps of strip-board are required, one for the

111

Fig. 12.1 The circuit diagram of the rain detector

circuit and one for the probe. It is in fact possible to build the
whole device on one piece of board, covering the area on
which the components are placed and leaving the rain-detecting
area exposed. This circuit gives a DC output, so it is in order to
have a long wire connecting the output to the Data Input of
the decoder board.

Test the circuit by connecting a voltmeter to its output. It
should read +5V. When you let a drop of water fall on the
probe, the voltage should fall close to OV. The same effect can
be obtained by touching the probe with a moistened finger, so
this device could also have applications as a touch-control
switch.

The probe should be mounted in an exposed position out
doors, so that buildings or trees do not protect it from driving
rain coming from certain directions, it is best to slope it

112

Fig. 12.2 The probe for the rain detector

slightly, so that rain drains away when the shower is finished,
and the probe dries quickly.

Programming
All that is needed is a program line which reads the input from
the project at regular intervals. If it is raining, the input on the
Spectrum is 254 and if it is dry the input is 255. On the ZX81,
it is 65534 and 65535. With the Ace you will obtain 32 or 33,
though you may prefer to AND the input reading with 1 (see
P 10) so as to obtain 0 for rain and 1 for diy.

113

PARTS REQUIRED for the RAIN DETECTOR
Resistor

R1 1k
Semiconductor

Q1 ZTX300 or almost any npn transistor
Miscellaneous

Stripboarci for circuit and probe (small scrap)
3-way socket to fit 3-way plug on decoder board
Connecting wire

114

Project 13

WEATHERCOCK

Knowing the direction of the wind is an essential requirement
for weather forecasting. This project reads wind direction and
passes the information to the micro. It is also interesting as an
example of the way in which the micro can be informed of a
position which is being measured as an angle.

How it works
The position of the weather vane is sensed by three light
dependent resistors (LDRs). Fig.13.1 shows the circuit for one

IC1 pm 7
IC2 pin 7

Fig. 13. 1 The circurt diagram of the weathercock.
ADDRESS' comes from the on-board decoder
(Fig. 13.4)

115

of these. The LDRs receive light which comes from a lamp and
passed through an encoder disk (Figs.13.2 and 13.3). This disk
is fixed to the shaft of the weather vane. The disk is tran$.
parent but has a pattern of black sectors on it. In any given
position of the vane (and hence of the disk), each one of the
LDRs is either shaded or unshaded. As the wind direction
changes, the vane and the disk rotate. Some LDRs become
exposed to the light from the lamp and some become cut off.

A closer look at the disk (Fig.13.2) shows that the pattern
of the black sectors does NOT represent a sequence of binary
numbers. Reading clockwise and converting to decimal, we
find: 0, 1, 3, 2, 6, 7, 5, 4. This is what is known as "Gray
Code". The featuie of this sequence is that as we go from one
number to the next (or return to the first number from the
last number) only one digit changes each time. To see why this

Fig. 13.2 Marking out the encoding disc for the
weathercock

116

Cable to
circuit

Rig. 13.3 The main features of the mechanical
construction of the weathercock

117

is important let us look at what would happen if we began the
sequence with 0,1,2......... The first change would be:

0 0 0
changing to 0 0 1

This creates no problems and this change is found in the Gr«y
sequence. But the second change could be troublesome:

0 0 1
changing to 0 10

This would be all right if both digits changed at exactly the
same instant. In a piece of equipment such as this it is very-
unlikely that the LDRs are so precisely arranged and then
resistances are so exactly matched that each will respond in a<
identical manner. They will not all change at the same instant
If the middle digit changes before the right hand digit, we ger
an intermediate stage showing 011. We get the same if the
right-hand digit changes first. Instead of getting 0, 1,2,...
as the disk rotates, we get 0, 1, 3, 2 The 3 is only there
briefly, but there would be time for the micro to take a
reading and obtain a false result. The Gray code overcomes
this problem, since only one digit changes each time.

Building the vane
Fig.13.3 shows the general features of a typical Weathercock.
Exactly how you construct yours depends on what materials
and tools you have available and on your skill in making such a
device. It is often possible to adapt a ready-made weathercock.
Such instruments are obtainable cheaply from stores selling
educational equipment. Often they are made from plastic and
while these cheaper models are generally less durable than
those intended for serious use, they are usually easier to adapt-
The disk is made from clear transparent plastic. A sheet of
thick acetate film can be used, and may be painted by using3
black marker pen (felt-tip spirit pen). Alternatively, the sectors
may be cut out from black PVC insulating tape and stuck on
the disk. In order that the readings indicate the major points
of the compass (N. NE, E, SE etc), the LDRs are placed so

118

that the centre of each sector lies over the line of LDRs when
the vane is aligned with the main compass points.

For clarity, Fig.13.3 shows the disk several centimetres
above the LDRs, but it is much better if the gap is small and
the disk almost touches them. The lamp should be mounted a
few centimetres above the disk, so that its light spreads fairly
equally to all three LDRs. Leads are taken from each LDR
back to the main circuit which is to be housed in a small case
near to the micro.

Fig.13.3 shows a way of preventing rainwater from running
down the shaft into the mechanism. The cone deflects it on to
the top surface of the light-proof box. It is not essential for
the hole where the shaft enters the enclosure to be absolutely
light-proofed, though a collar around the shaft helps to
prevent light from scattering toward the LDRs.

The circuit uses three lines of the data bus (lines DO to D2).
IC1 has three-state outputs (p. 160) which are enabled by a
low from the address decoder circuit.

Addressing
As explained for Project 2 (p. 21), the addressing of this
project is not completely provided for by the decoder (p. 158).
If you want to connect only this project to the micro, you can
do as suggested on p. 21: wire the ADDRESS output terminal
of the decoder (Fig.D.1) to the ADDRESS' input terminal of
the Weathercock detector (Fig. 13.1). It can then be addressed
using any one of the addresses in Table D.2.

If you would like to have other projects connected at the
same time as this project, you need to add a decoder to this
project. You will probably want to have several weather-station
projects working at once, so make sure they all are at different
addresses. To keep the wiring as simple as possible, the
decoder uses only lines A5 and A6 (Fig.13.4). As explained on
P- 21, it responds to two addresses, which are 5F and DF or
7F and FF.

119

120

Building the circuit

The device is to be plugged on to one of the 10-way plugs of
the decoder (p. 172). It requires 9 lines: the two power lines,
three data lines, 2 address lines and the ADDRESS line. It also
wires from the negative ends of the three LDRs. The type of
LDR recommended is small, but any LDR of small diameter
can be used instead. Larger types can be used if these are the
only ones available, but to use these requires that the disk
must also be made larger. If the LDRs are not of the type
specified and have a higher or lower resistance range, it may be
necessary to substitute resistors of a different value for R4 R6.

It is best to build and test the circuit for one LDR first. It
is then easy to check that the correct resistance is being used
for R4-R6, before proceeding with the remainder of the
construction. When all is finished, temporarily wire the buffer
enable input (IC2, pins 1, 4 and 10) to OV to enable the out
puts. Slowly rotate the disk to measure the output of each
buffer with a voltmeter. Fig.13.2 shows what results to expect,
where 0 represents a 'low' output (less than 0.8V) and 1
represents a 'high' output (more than 2V). Assuming that all is
correct, test all wires going to the decoder board to check that
there are no short-circuits between any pair of them.

Programming
All that is required is to read the data input. This circuit leaves
the top 5 data lines unconnected, so they each take the value
1 With zero input from the Weathercock, the data bus reads
1111 1 000, which gives 248 in decimal on the Spectrum. A
simple program such as:

10 LET x= IN 95
20 PRINTx

results in a number between 248 and 255 being displayed. You
then have to write 8 program lines to interpret this reading.
This is one of them:

30 IF x=248 THEN LET windS="North"

121

On the Ace, it is best to AND the input with 7, so as
obtain a numbei between 0 and 7. A suitable woid definition
is:

: WIND? 95 IN 7 AND . ,

In the listings above we are assuming that the weathercock r.
addressed at 5F (hexadecimal, or 95 in decimal). If you ar»
using another address modify the lines accordingly.

You may be able to use the wind direction to predict the
weather. What the prediction will be depends very much on
your locality. It may also depend on other features of the
cunent weather measured by some of the other projects. As
well as reading diiection, you can use the weathercock to
detect changes in the wind direction over a period of several
hours. If the wind is veering, that is to say, changing direction
in a clockwise direction, possibly indicates an approaching
depression, with the likelihood of low cloud and iain.

Another aspect is the steadiness of wind direction. If the
weathercock is read every minute and it is found that the
direction is changing frequently, this can be another clue to
what future weather is likely to be. There are seveial books on
weather which will help you woik out your predictions. You
may also be able to program the micro to work these out for
y ou.

PARTS REQUIRED for the WEATHERCOCK
Resistors (carbon, 0 25W, 5" tolerance, except R 1 R3)

R1 R3 MKY7C38E or similar light-dependent resistor
(preferably small) (3 off)

R4- R6 5k6 (but see text) (3 off)
R7- R9 1 kO (3 off)

Semiconductors
01- 03 ZTX300 or similar npn transistor (3 off)

Integrated Circuit
IC1 74LS14 Hex Schmitt trigger
IC2 74LS125 quadruple bus buffer gate with three

state output

122

Miscellaneous
LP1 5V 60mA filament lamp
Socket for LP1
14-pin IC sockets (2 off, if on-board decoder used)
10-way socket to fit 10-way plug on decoder
Circuit board
1mm terminal pins (14 off)
Materials for the mechanical parts

Parts for Alternative Address Decoders
(a) IC3 74LS27 triple three input NOR gate
(b) IC3 74LS10 triple three input NAND gate

123

Project 14

ANEMOMETER

The anemometer measures wind speed. It has a set of three or
four cups arranged on top of a shaft (Fig.14.1) so that they
spin round when the wind blows. It is assumed that the cuds
travel at a speed close to that of the wind itself so, knowing

Fig. 14.1 The main features of the mechanical
construction of the anemometer

124

the radius of the assembly and the rate, of rotation, we
estimate wind speed. In effect, the circuit of this project is a
tachometer, a circuit to measure rate of rotation. The circuit
could be adapted to measure the rate of rotation of other
machinery.

How it works
Figure 14.1 shows that there is a wheel at the base of the shaft
of the anemometer. This rotates at the same rate as the cups.
The wheel is made from non-magnetic material such as plastic
or wood. It carries a small permanent bar magnet at one point
on its circumference. The magnet is arranged with one of its
poles protruding slightly. As the wheel rotates, the magnet is
carried past an IC which is mounted to one side of the rotating
assembly. This is a Hall Effect IC. The Hall Effect occurs when
a piece of semiconducting material is placed in a magnetic
field. Those who remember learning Fleming's Left Hand Rule
in physics lessons will know that there is an interaction
between a current and a magnetic field. In Fig.14.3 a current is
passed along a slice of semiconductor. The moving electrons
are deflected to one side when a strong magnetic field is
present. The result is a potential difference between the two
sides of the conductor. This is detected and amplified by
circuits within the IC. The outputs of IC1 are normally at
about 2V. When a magnet is held close to the IC1 the voltage
at one output rises slightly and the other falls. The operational
amplifier IC2 compares these voltages. When they are equal (or
nearly equal) its output is 'low'. When the voltages are unequal
(i.e. when a magnet is near), the output of IC2 rises sharply to
+5V. This quickly switches on Q1. The voltage at the input of
the counter (IC3) falls sharply, triggering the counter. Thus
the counter is incremented every time the magnet passes close
to IC1.

IC3 is wired as a divide-by-16 counter, so its D output
changes at one-sixteenth of the rate at which the anemometer
is rotating. This rate is measured by the micro, which then
calculates the wind speed.

125

126

Building it
Unlike most of the interfaces in this book, the whole circuit is
best located close to the sensor. The output from IC3 is a
slowly changing one, making it suitable for transmission along
a relatively lengthy line to a Data Input of the decoder. The
circuit requires three connections to the decoder: the two
power lines and a wire to a Data Input.

The circuit is to be housed in a weatherproof case. It may
be convenient to mount IC1 on the outside of the case. Leads
to this should be covered with melted paraffin wax or a
weather proofing and water-proofing compound to eliminate
the possibility of short circuits.

The anemometer assembly is easy to build. Empty food
cartons may be used for the cups and the cross-pieces can be
made from stiff wire. The main essential is that the assembly
rotates freely. Its diameter should be about 30cm or possibly a
little more. The wheel which carries the magnet can be cut
from wood, plastic or a large cork stopper. A suitable magnet
is usually sold with the Hall Effect IC. Take care when
mounting the magnet and the IC that there is no danger of the
two coming into contact as the assembly rotates, particularly
in high winds. On the other hand, the end of the magnet needs
to pass within about 1mm of the centre of the IC in order to
generate a sufficiently great voltage difference.

Build the entire circuit, then connect it to a +5V power
supply for testing. Connect a voltmeter to one of the outputs
of IC1. Rotate the anemometer slowly and note the rise or fall
of voltage as the magnet passes the IC. Now transfer the volt
meter to the output of IC2. The output should be OV, but
rises sharply to +5V whenever the magnet passes IC1. If this
does not happen, the polarity of the maqnet is wrong; remove
it from the wheel and replace it the other way round. Connect
the voltmeter to the D output of IC3. The output should rise
to 'high , fall to 'low' and rise to 'high' once for every 16
rotations of the anemometer.

The output from D changes at a slow rate so the cable
between the interface and the decoder board can be several
metres long. This allows the device to be mounted as high as

127

128

possible above ground so as to expose it to the full speed of
the wind.

Programming
We require a program which measures the length of pulses
coming from the D output. The machine-code program on
p. 107 is suitable for use with the ZX81 and Spectrum. How
ever, the pulse rate is slow, so a BASIC program will generally
be adequate. With the Ace, use the word definitions on p. 109.

By turning the anemometer by hand at a known rate, it is
possible to relate the value obtained to a given number of
revolutions per second. Turn the anemometer by hand (about
1 revolution per second) for 20 or so revolutions. Count the
number of revolutions exactly and also measure the time
taken. Calculate the rate in revolutions per second. As the
same time run the timing program to see what value is
obtained. This gives the figure which corresponds to the rate
of turning. Repeat this several times to obtain an average result
for use in calculations later. Remember that the figure
obtained is inversely related to the rate of rotation. For
example, doubling the rotation rate halves the figures.

Assuming that the cups of the anemometer are moving with
the same speed as the wind, the wind speed is:

S - 2 X nr X R X 3600^- 100000
Where S is the wind speed in kilometres per hour, R is the rate
of rotation in revolutions per second, and r is the radius of the
anemometer assembly in centimetres. The symbol tr has its
usual value 3 1d12, so the equation can be simplified to:

S = 0.226 X r X R
The corresponding equation for British units is:

S = 0.357 X r X R
where S is in miles per hour, R is revolutions per second and
r is in inches.

Either of these equations can be used in a program to
calculate the wind speed, given the rate of rotation. For

129

example, if the interface is giving 1 count per second, this
corresponds to a rotation rate (R) of 16 revolutions per
second. If the radius of the anemometer is 15cm, the wind
speed is:

S 0.226 ■ 15 ■ 16 54 km/h
With a similar anemometer with radius of 6 inches, the wind
speed is:

S = 0.357 ■ 6 X 1 6 34 mph

The anemometer circuit can easily cope with rotations of
double this late so can register winds of 100km/h or more.

PARTS REQUIRED for the ANEMOMETER
Resistors (carbon, 0.25W, 5% tolerance)

R1. R2 2k2 (2 off)
R3, R4 10k (2 off)
R5 6k8

Semiconductors
Q1 ZTX300 or similar npn transistor

Integrated Circuits
IC1 634SS2 Hall Effect IC (complete with magnet)
IC2 761 1 CMOS operational amplifier
IC3 7493 4 bit binary counter divider

Miscellaneous
Circuit board
8 pin IC sockets (2 off, including one for IC1)
14-pin IC socket
1mm terminal pins (7 off)
3-way socket to fit 3-way plug of decoder board
Materials for making anemometer assembly
Connecting wire

130

Project 15

THERMOMETER

Although this project is part of the weather-station series, it
has many other applications. It may be used indoors to
measure room temperatures, or perhaps the temperature of
photographic solutions. It can be used to detect excessive
temperature as part of a domestic fire alarm system.

How it works
The circuit works in much the same way as that of the Games
Control (Project 11). Instead of the variable potentiometer
used in that circuit we have a variable resistor of another kind
(fig.15.1). This is a thermistor, the resistance of which varies
significantly with temperature. The thermistor used in this
circuit (Fig.15.1) has what is known as negative temperature
coefficient, which means that, over its usual working range, its
resistance decreases as its temperature increases. An increasing
temperature causes the resistance of the thermistor to fall,
resulting in a falling potential at point A and a falling analogue
voltage at the input of IC2. As explained under project 11, the
waveform of the output of IC changes (see Fig.11.2), and the
change can be measured by the micro.

Building it
Normally the thermistor is located outdoors. For use in
weather recording, the best place is inside a meteorological
screen. This shades it from direct sunlight yet allows air to
circulate freely around it. If you do not have such a screen,
mount it in a place where direct sunlight can not reach it and
where air circulation is good. It should be several centimetres
away from any surface such as a wall or fence, otherwise it
may take the temperature of the wall or fence, instead of that
of the air. If it is in the open, protect it from rain, for this may
cause a partial short-circuit, and readings will be incorrect. One

131

132

method of waterproofing is to melt some paraffin wax and to
dip the thermometer in the wax to coat it. Another method is
to mix a quantity of epoxy resin adhesive (e.g. Araldite) and
coat it with this.

The rest of the circuit is built in a small case, located close
to the micro. It needs three wires to connect it to the micro:
the two power lines and a wire to a Data Input. The circuit
does not require any address decoding except that provided by
the Decoder.

When the circuit is ready, it may be tested in the same way
as the Games Control (see pp. 104-6). You can try the effects
of various temperatures by immersing the thermistor in warm
water or in water containing melting ice cubes. In such
extremes the output of IC2 should never be continuously
'high' or 'low'. If this condition is found, replace R3 by a
resistor of different value, or possibly wire an additional
resistor between R4 (the thermistor) and the OV line. Exactly
what you may need to do depends on the characteristics of
the thermistor you are using and the range of temperature over
which you require it to operate.

Calibration and programming
The simplest method of programming is to read the output
from the circuit many times and count how many 'high's are
obtained. This is the sampling method referred to on p. 106.
With the ZX81 and Spectrum we may use a very similar
program to that given there, except that it is feasible to take
many more samples to obtain a more reliable result. Line 20
might be amended to take, say, 500 samples instead of only
100. The additional time required for this does not matter
in this application. Lines 50—70 are not applicable, though
something similar could be employed to plot a graphics
'thermometer' on the screen. Instead, type in this line:
50 PRINT x.

Having obtained a value x which varies in proportion to
temperature, the next step is to calibrate the thermometer.
Place the thermistor in a glass of water containing melting
ice-cubes. Stir occasionally, and allow at least 5 minutes for

133

the thermistor to take up the temperature of the water. This
is close enough to 0'C (32°F).

Run the program several times and find an average value for
x. Results should be in the region of 20 to 50. If the count still
seems to be decreasing, wait a while longer, foi the thermistor
has not cooled fully. If the ice cubes melt completely, replace
them. Now repeat the procedure, but using a glass full of warm
water at say 30' C (or say 90 F). Choose a temperature which
is a little above the upper end of the range which you want to
measure. You will need a thermometer to find out what the
exact temperature is. Readings should now' be at the upper end
of the range, over 300 at least.

If the difference between the lowest and highest readings is
too small you will not be able to obtain an accurate result.
In this event you may need to replace R3, or wire in an
additional resistor, as already mentioned.

Let us suppose that you obtained a reading of x, at 0°C
and x2 at T C. The formula for converting the reading x at
any temperature t is:

For example, if the count is 40 at 0°C and 420 at 30°C, then
a count of 1 50 is equivalent to a temperature of:

*-<150-40) X 4^

90 X 30/380 = 7.1°C
The same formula may be used on the Fahrenheit scale,

except that having calculated t, you add 32 degrees to it.
As a program line, given the values mentioned above, the

formula becomes:
60 LET t-(x-40)*30/380

On the Ace, we can use a set of words similar to those
used with the Game Control:

134

; HIGH? BEGIN 31 IN 1 AND UNTIL ;
: LOW? BEGIN 31 IN 1 AND WHILE REPEAT ;
: COUNT HIGH? LOW? 0 500 1 DO 31 IN 1 AND

IF 1+ THEN LOOP ,
: TEMP 30 COUNT 33 - * 302 / . ;

'HIGH' is as given before, but LOW? does not act as a counter.
The word COUNT does this but waits for output to go 'high'
and then 'low' before it starts. It then takes 500 sample
readings and counts those which are high. This extends over
several output pulses from the circuit. It finishes with this
count on top of stack. TEMP performs the calculation. This
definition is based on a calibration count of 33 at 0 C and 335
at 30°C. (N.B. 302 = 335-33). This word prints out the temp
erature as an integer. You could adapt the definition to work
in floating-point so as to obtain a more precise result.

As well as reading temperature at a given instant, the micro
can be programmed to take readings at regular intervals and
record them in memory. They could then be displayed daily or
on demand and a table could be printed out. If the readings
are taken frequently enough it is easy to program the micro to
print out the maximum and minimum daily temperatures too.

PARTS REQUIRED for the THERMOMETER
Resistors (carbon, 0.25W, 5%tolerance)

R1
R2, R5
R3
R4

220k
100k (2 off)
56k
VA1056S rod thermistor, or any negative

temperature coefficient thermistor having
resistance about 47k at 25 C (disc and
bead types equally suitable)

Capacitor
C1 47n polyester

Integrated Circuits
IC1
IC2

CD4011 CMOS quadruple 2-input NAND gate
507C voltage-to-time converter

135

Miscellaneous
Suitable housing for thermistor
Case for circuit
Circuit board
1mm terminal pins (5 off)
8-pin IC socket
14-pin IC socket
3-way socket to fit 3-way plug of decoder board
Connecting wire

136

Project 16

BAROMETER

A barometer measures the pressure of the atmosphere. It is
almost essential for forecasting the weather. The approach of
depressions or anticyclones is announced by a fall or rise in
pressure. This gives us advance warning of what kind of
weather to expect. The rate of change of pressure, tells us how
soon we may expect the weather to change. In addition, rapid
changes of pressure mean strong winds, while slow changes or
no changes at all are associated with calm weather.

Devices for measuring atmospheric pressure electronically
are usually very expensive. Indeed, an IC which does this may
cost about as much as a ZX811 This project is far cheaper and
although it does not give an accurate reading, it is the changes
which are important. It is much less important to know what
the exact pressure is. So this device is a useful one for the fore
caster.

How it works
The barometer is based on an extremely simple idea which is
often featured in books of science projects for young people
(Fig. 16.1). The inverted tube contains air. As atmospheric
Pressure increases, the air inside the tube becomes more com
pressed and the water rises up inside the tube. When pressure
falls again, the air expands and the water level falls. Pressure is
measured by measuring the level of the water. Unfortunately
this apparatus has one big snag as a barometer. Air expands
when heated. If the temperature increases, the water level falls,
even though the atmospheric pressure may not have changed.
If is possible to allow for the change in temperature by
Working out how much it would alter the volume of the air.
This is too much trouble to be bothered with for the simple
barometer of Fig.16.1, but if we make a similar barometer and
attach it to a micro, the micro can do all the working out for
us!

137

In order to compensate for changes in temperature, th*
micro must know what the temperature is in the region of th«
barometer. It can find out this if we have the thermomet«'
(project 15) operating at the same time. There is an equation
which brings volume, temperature and pressure together:

Pressure x Volume--- =----------------- = constant Temperature--- „
Pressure and volume can be measured in any units we lik«
(provided that we always keep to the same units), while temp

138

erature must be measured in kelvin. To work out any
temperature in kelvin, just take the temperature on the Celsius
scale (sometimes wrongly cally the Centigrade scale) and add
273.

If we measure pressure, volume and temperature of the air
inside the barometer on two separate occasions, and since the
calculated result is a constant we can say:

1st pressure X 1st volume
1st temperature

2nd pressure X 2nd volume
2nd temperature

or, rearranging the above:
2nd pressure =
1st pressure X 1st volume

2nd volume X
2nd temperature
1st temperature

We use an ordinary barometer to measure the 1st pressure
when we first take a reading with our home-made barometer.
As the same time we measure 1st temperature and the 1st
volume. Some time later we (or the micro) measure 2nd
volume and 2nd temperature and can then calculate the 2nd
pressure. Project 15 measures temperature, while this project
measures volume. The micro then calculates the pressure.

In this project, the air is contained in a plastic or glass tube
(Fig.16.2). The top end of the tube has a tap to make it air
tight. Its bottom end dips into a small jar containing water.
The water has been made black by having had Indian Ink
added to it. The most extreme changes of pressure and temp
erature make the water level move over a range of about 2cm.

In the region over which the water level will move, the tube
is covered with black insulating tape, except for slits on
opposite sides of the tube. Light from a small lamp passes
through one slit, across the tube and out through the other
slit. It is picked up by a light-dependent resistor (LDR). The
resistance of this varies according to the brightness of the light
<P. 66). Since the water is black, it cuts off a varying amount

light, depending on its level. In this way, changes in water
l^vel are turned into changes in electrical resistance. In the
Prototype of this Project the LDR resistance was 940ohms
when the water was at its lowest level but increased to 1700

139

' (c)

Fig. 16.2 The main features of the barometer, (a) the
whole barometer {masking on tube not shown);
(b) how the tube is masked. There is an
identical slit behind the tube to pass light
coming from the lamp. Screening around the
lamp and LDR not shown, (c) The first stage in
masking

140

ohms when the water had completely cut off the light. For the
same reasons as are given on p. 67, changes in the resistance of
the LDR (Fig.16.3) affect the voltage at point A. This
changing voltage is fed to IC2, which is a voltage-to-time con
verter. The way this works is explained on p. 102. The overall
effect is that as pressure increases, the volume decreases, the
voltage at A increases and the waveform from IC2 spends pro
portionately more time in the 'high' state. If the micro is
programmed to measure this time, the figure obtained is
greater.

It is important to realize that the response of this device is
far from linear. That is to say, equal increases in pressure do
not bring about equal increases in the value found by the
micro. However, the figure the micro obtains can be used to
assess whether pressure has increased or decreased over the
past hours or days, and whether it is changing slowly or
quickly.

Building it
First of all build the barometer itself. There are several ways of
doing this. The tube may be of glass, though clear plastic
tubing such as is sold for aquarium aerating systems is very
suitable. A tap to fit the tubing may also be obtained from a
shop specializing in aquaria. The tube may be held straight by
stapling it to a strip of wood. This is mounted vertically on a
wooden base. The water container can be a small plastic or
glass bottle such as is used to hold medicine tablets.

Prepare two strips of black insulating tape about 2cm long
and wide enough to leave two gaps about 1.5mm wide when
they are fixed on the tube (Fig.16.2c). Wind two other strips
around the tube about 2cm apart, as in Fig.16.2b. This leaves
two slits about 2 cm long and 1.5 mm wide on opposite sides of
the tube. Measure the length of the slit and the distance
between the tap and the top of the slit to the nearest milli
metre. Mount a small filament lamp to one side of the tube,
about 1cm from it. The lamp should be housed in a small box,
made from thin white card, to keep light from reaching the
LDR directly, and to reflect as much light as possible toward

141

142

the slit. On the other side the LDR is enclosed in a similar
box made of thin card. It is better if the whole assembly is
housed in a light-proof case to prevent daylight from inter
fering with the readings.

The electronic side of this device requires three connections
to the decoder board: the two power lines and a wire to a Data
Input. If the barometer is to be placed at some distance from
the micro, the leads may be extended at the points marked *
in Fig.16.3. The circuit itself must be reasonably close to the
micro. In practice there is much to be said for having the
entire apparatus indoors, for atmospheric pressure is more or
less the same indoors and out. If it is placed indoors, in a room
which is kept at a reasonably steady temperature, there is no
need to correct for changes of temperature, and programming
is simplified.

When construction is complete, test the leads going to the
decoder to make sure that there are no short-circuits between
them. Then plug the barometer into the decoder board and
switch on the power. Since this device uses the same converter
IC as Project 11, a similar program may be used in testing:

10 LET x=0
20 FOR j=1 TO 1000
30 IF IN 31 = 255 THEN LET x=x + 1
40 NEXTj
50PRINT x;" ";
60 GO TO 10

Run the program with the tube empty. The result should be
reasonably low, perhaps between 200 and 500, but the value
obtained depends very much on the type of LDR used, and
'nany other features of construction. However, it should not
vary by more than about 2 or 3 each time the program repeats.
Take an average of 20 such readings; these are the scale
minimum readings.

Now make a mixture of 3 parts of water with 1 part of
black ink (Indian Ink preferred). Add one drop of washing-up
detergent. Pour the 'black water' into the jar. Open the tap
2nd slowly suck the water up the tube. Take care, or you may
find yourself sucking a mouthful of black water! Suck the

143

water up to a level just above the taped region, so that the slit
is completely blacked out. Now run the program again. This
gives a series of readings higher than before. The values
obtained should not vary by more than 2 or 3. They should be
at least 50 or 60 greater than the values obtained with the
empty tube. If the increase is smaller than this, try replacing
R3 with a resistor of lower value. When you have settled on a
satisfactory value, take the average of 10 such values; this is
the scale maximum reading.

Now open the tap slightly and let the water run down until
its level is about half-way along the slit. Allow the tube to
stand for a minute to let water drain down from the walls of
the tube above.

If the barometer is to be kept in a fairly constant tempera
ture, it is now ready for programming. Then run the program
and take an average of half-a-dozen results. This is the initial
reading. At the same time, measure the temperature and
pressure (use an ordinary aneroid or Fortin barometer). You
now have several figures ready for the final programming (Fig.
16.4):

MAX Maximum scale)
M IN Minimum scale)
IN IT Initial reading)

values obtained from the test
program

P 1st pressure — in millibars etc
T 1st temperature — in kelvin (Celsius + 273)
LT Length of tube above slit (in mm)
LS Length of slit (in mm)

Programming

The first thing to work out is the value we are to use in the
program to represent the initial position of the water level, as
measured from the top of the tube. This is what we have called
the '1st volume'. It is the volume with which all later readings
of volume are to be compared. Using the abbreviations listed
at the end of the previous section, the formula for this is:

144

Fig. 16.4 The readings needed to calibrate the barometer

1 st volume = LT + (MAX - INIT) X LS
MAX - MIN

For example, if the tube is 100mm long, the slit 20mm long,
MAX count is 270, MIN count is 200 and the INIT count is
250, then we work out:

1st volume = 100 + X 20 = 106 (rounded off)

145

This value is used in all later calculations until, perhaps you
find that the water has dried out and needs replacing, in which
event you start again with new measurements and a new value
for 1 st volume.

The same formula applies for calculating the volume at other
times, except that you use the actual count obtained in place
of INIT. For example, if the reading (x) is 230, the computer
calculates the new volume as1 1 1, using the line:

60 LET new = 100 + (270—x)*20/70
We now have a new volume (the same thing as the 2nd volume
referred to on p. 139), which is used to work out the new
pressure. Actually, if you are not bothering to correct for
temperature there is no need to go any further. You can use
the new volume figures directly. If pressure is rising, these
figures show a decrease, and conversely, if pressure is falling,
the figures rise. You then discover, by experience, just how
rapid the rise or fall has to be to predict a change in the
weather.

If you want to convert the new volume into a pressure
reading, the program line is:

70 LET pressure = 106*P/new
where P is the initial pressure. The figure 106 refers to the 1st
volume as already calculated. Your 1 st volume will probably
require a different figure to be substituted here. The value of
'pressure' can then be displayed, and its units are the same as
those used when you read the aneroid or Fortin barometer to
begin with.

If you want to take temperature into account, you first
need to program the micro to read this, using Project 15. Let
us assume that you have done this and the temperature in
degrees Celsius is held in the variable 'temp'. The unconverted
pressure is the variable 'pressure' calculated as already des
cribed. The line for conversion is:

80 LET pressure=pressure*T/(temp+273)
T is the initial temperature (p. 144).

If you want extra precision, you should allow for the fact
146

that the water vapour in the tube also exerts its own pressure,
depending on temperature. An approximate correction for
this, over the range that the barometer is likely to encounter
can be added to the line above:

80 LET pressure = pressure*T/temp + 273 — (temp + 10)/27

This gives you a reading of pressure with as much exactness as
the barometer is capable. You can use it for keeping records.
Check it against a proper barometer, or against a recent
weather map sometimes, as factors within the apparatus may
change and you may need to alter some of the constants of the
program. Certainly the water will need topping up occasionally,
and eventually need renewing, when many of the constants
will need recalculating. Thus it is better to regard this as an
experimental project, suited for detecting short-term pressure
changes and forecasting the weather accordingly.

PARTS REQUIRED for the BAROMETER
Resistors (carbon, 0.25W, 5% tolerance)

RI 220k
R2 100k
R3 830R
R4 MKY7C38E light-dependent resistor (or similar type

such as ORP12)
R5 100k

Capacitor
C1 47n polyester

Integrated Circuits
IC1 CD4011 CMOS quadruple 2-input NAND gates
IC2 507C voltage-to-time converter

Miscellaneous
LP1 5V 60mA filament lamp, wire ended (socket required

if wire-ended type not used)
Circuit board
8-pin IC socket
14-pin IC socket
3-way socket to fit 3-way plug of decoder
1mm terminal pins (5 off)

147

Plastic tubing about 20cm long, about 5mm external
diameter (e.g. aquarium aerator tubing, but must be
transparent with glass-clear walls)

Tap to fit tubing (aquarium aerator line tap), or screw clip
black PVC insulating tape

Small glass or plastic jar, bottle or medicine tube
Other materials for building the assembly

148

Project 17

SUNSHINE RECORDER

We finish this series of weather station projects and the book
itself in an optimistic mood! This project measures the amount
of light energy arriving from the Sun over a given period of
time. It is an integrating circuit, which means that instead of
telling you how much energy is arriving at any given moment,
it tells you how much has arrived since you last set it. Thus the
micro has only to take a reading from time to time. The fact
clouds may pass across the Sun or the shadow of a tree may
pass across the garden while the micro is otherwise engaged,
will be taken account of when the next reading is made.

How it works
This is one of the more complicated projects, but certain
features of it will be familiar to you if you have already built
some of the other projects. Sunlight falls on a photovoltaic
cell (B1, Fig.17.1). This is a silicon cell of the type often
referred to as a solar cell. This produces a voltage of approxi
mately 0.45V when fully illuminated, the voltage depending
on the amount of sunlight reaching it. This voltage is fed to
an operational amplifier (IC1) which is wired as an adder. Its
function is to add the voltage from the photocell to the
voltage from the potential-divider RV1. The reason for this
will be explained in a moment.

The output of IC1 goes to a transistor Q1. This is acting as
a constant-current device which is charging capacitor C1. We
rely on the fact that, for any given base current, the collector
current is relatively unaffected by the PD between the
collector and emitter. As C1 charges, the potential at point A
Uses. The result is that the PD between the collector and
emitter of Q1 decreases. However, until this PD falls much
'°vver than we ever allow it to fall, the reduction of PD does
n°t reduce the current flowing into C1.

The amount of current flowing depends on the base current
149

150

flowing through to Q1 from IC1 and passing through R6. The
value of R6 is high, to keep this current very small. Until the
potential at the output of IC1 exceeds about 0.6V there is no
base current at all and QI is switched off, but, in dim light the
PD across Bl may be less than 0.6V. We have to ensure that as
soon as any PD is developed across B1 a current begins to flow
to Q1. This is the reason for the adder. The output of IC1 is
the sum of the two inputs. RV1 is set to deliver an input of
0.6V, so that any additional input due to B1 goes fully
toward driving Q1.

Actually this is an inverting adder, so we apply 1.9V from
RV1 (this is 0.6V less than the half-way voltage at pin 3 of
IC1) and the cell is connected with its negative terminal to R2.
This results in a positive output to Q1.

Over a period of several tens of minutes, or perhaps an
hour, C1 charges at a rate depending on the amount of
sunlight from moment to moment. The PD across C1 rises,
faster when the Sun shines strongly, more slowly when a cloud
covers it or at the end of the day, and not at all during the
night. The PD is fed to another operational amplifier, IC2,
whch is wired as a unity gain voltage follower. This is used as a
buffer between C1 and the voltage-to-time converter, IC3. The
input of IC3 has an impedance of about 100k, which would
allow current to leak away from C1 almost as quickly as it
was arriving from Q1. But the input impedance of IC2, which
is a CMOS IC, is extremely high (about 1 Teraohm, or 1x1012
ohms!). Leakage to this input is virtually non-existent. The
output of IC2 follows the PD which is across C1 exactly. As
explained in Project 11 (p. 102), IC3 converts this voltage into
a waveform. The shape of this depends on the level of the
voltage.

For IC3 to operate properly the input voltage must be in
the range 1.25V to 3.75V. During a period of measurements
the PD should start at a little above 1.25V and must not
exceed 3.75V before the reading is taken.

The micro is given the task of adjusting the PD across C1
to a little more than 1.72V each time a measurement period
is to begin. It discharges C1 through resistor R8, which is
switched into circuit by a CMOS switch (IC5). This is con

151

trolled by a flip-flop made from two gates of IC4. The other
two gates of this IC make up the clock for IC3 (seep. 105).The
flip-flop is controlled by two Addressed Outputs. Addressing
one of these sets the flip-flop, which closes the CMOS switch
and begins to discharge C1. The micro checks the PD by
reading the Data Input. When the PD has reached a suitably
low level, the micro addresses the other Addressed Output.
This action resets the flip-flop, which opens the CMOS switch
and C1 begins to charge again. It requires a 'high' level on pin
13 of IC5 to close the switch.

The length of each measurement period is fixed so that,
even with continuously brilliant sunshine, the PD across C1
never exceeds 3.75V.

Building it
The project requires 5 lines to the decoder: two power lines, a
wire to a Data Input, and two lines from Addressed Outputs.
If the solar cell (B1) is to be mounted away from the micro,
the leads may be extended where marked * in Fig.17.1. The
solar cell need not be a large one, in fact a small one is better,
for it delivers less current and so allows longer measurement
periods. It is often possible to buy small fragments of solar
cells very cheaply from hobby suppliers. One of these may
welt prove to be suitable. This is a reminder that solar cells
are easily broken, unless you have one that is in a protective
case. It must be mounted where it is protected from the
weather and physical damage yet receives full sunshine for as
much as possible of the day. The cell must be horizontal,
facing upward. Fig.17.2 shows one way of protecting it. If,
later, you find that the capacitor charges too rapidly, a layer
or two of white paper may be fixed inside the cover to reduce
the amount of light reaching the cell. Remember to clear away
any debris which may fall on the cover, especially leaves in
autumn.

Wire up IC1 and Q1 and their associated components first.
Do not include the connection to IC5 at this stage. The circuit
may be tested by connecting it to a +5V or +6V supply.
Connect a voltmeter across C1 (at point A). Shade B1 so that

152

153

no light reaches it. Alter the setting of RV1 several times. In
some positions you will see the PD across C1 slowly increasing.
It should take several minutes to increase by as much as 0.1V.
Adjust RV1 so that the PD just does not rise. This is the point
at which it is delivering approximately 1,9V. You would need
to wait for, say, 10 minutes to make certain that no rise in
PD is occurring, but for the present be satisfied if it does not
apparently change in one or two minutes. Now uncover B1.
The needles should start to move, showing a rising PD. The
rate of rise depends on the amount of light. Let bright sun
light fall on it, or hold a table-lamp a few centimetres away
from it and the rate of rise should increase perceptibly.

Next add IC2, IC3 and IC4 to the circuit. When tested as
above, with a voltmeter connected to the output of IC2 (pin
6), the same result should be obtained. With an oscilloscope
connected to the output of IC3, you see a waveform similar to
that of Fig.11.2. The proportion of time spent in the 'high'
state is gradually reduced as C1 charges.

Finally, wire up the flip-flop of IC4 and the single CMOS
switch of IC5. Note that the control inputs of the other
switches need to be connected to either OV or +5V (see list
of connections on Fig.17.1). The flip-flop may be controlled
by wiring its inputs to +5V temporarily, then briefly connecting
either one or the other to OV instead. As the flip flop changes
state the switch is turned off or on. When the switch is on, C1
discharges.

The capacitor discharges much more rapidly than it charges,
but still takes several seconds. It must not discharge too
rapidly or the micro will be unable to stop the discharge at the
correct level.

Before connecting the completed device to the decoder,
test all the leads to ensure that there are no short circuits
between them. Plug the device into the Decoder and switch on
the power. Allow C1 to charge until the PD across it is
between 1 25V and 3.75V, as measured by a voltmeter.

Use a program like that on p. 106 to read the input from the
voltaqe-to time converter. Cover the photo-cell to exclude all
light and set RV1 so that the reading obtained by the micro
does not deci ase ovei a long period, say 10 mmutes. Of course,

154

individual results may vary by 2 or 3 counts, but the average
should remain unchanged. The setting should be such that any
slight movement of the wiper of RV1 toward the OV end of its
track, causes the capacitor to begin charging, and the figure
displayed by the micro to fall. Now uncover the photo-cell.
The reading should begin to fall immediately, and its rate of
fall should vary with the amount of light reaching the photo
cell.

Discharge C1 until the PD across it is a little more than
1.25V, You can do this either by operating the flip-flop by
'OUT' commands or, more simply, by temporarily connecting
a 10k resistor across it. When the capacitor is discharged to the
correct level, run the program again several times. The reading
should be at the high end of the range. Select a value as the
'discharge level'. The program for discharging the capacitor
requires two output addresses. Supposing that these are 31 for
discharging the capacitor and 51 for charging (i.e. stopping
discharge), and supposing that the value for the 'discharge
level' is 420, the following program will control the process:

WOUT 31,0
20 PAUSE 10
30 OUT 51,0
40 LET x=0
50 FOR j=1 TO 500
60 IF IN=255 THEN LET x=x+1
70 NEXT j
80 IF x<420 THEN GO TO 10
90

Lines 10 to 30 turn on the CMOS switch for a tenth of a
second. Lines 40 to 80 read the voltage to find if it has fallen
to the 'discharge level'. If it has not, the process is repeated.
When it has reached 'zero level', the program drops through to
line 90. Here, the micro goes into some other routines while
the capacitor charges again at a rate depending on the amount
of sunlight. These routines must include some kind of timing
sub-routine so that, say, 30 minutes later, the micro returns to
read the value shown by the sunshine recorder. This is propor
tional to the amount of sunlight which has reached the photo

155

cell during the measurement period. This value may be
displayed, or stored in memory to be added to values obtained
throughout the day.

PARTS REQUIRED for the SUNSHINE RECORDER
Resistors (carbon, 0.25W, 5% tolerance, unless otherwise
specified)

R1 — R5 10k, 1% tolerance (5 off)
R6 10M
R7, R10 100k (2 off)
R8 10k
R9 220k
RV1 100k, miniature preset resistor

Capacitors
C1 4700p electrolytic
C2 47n polyester

Semiconductor
Q1 ZTX300 or similar npn transistor

Integrated Circuits
IC1, IC2 7611 CMOS operational amplifiers (2 off)
IC3 507C voltage-to-time converter
IC4 CD4011 CMOS quadruple 2-input NAND gate
IC5 CD4016 CMOS quadruple analogue switch

Miscellaneous
B1 Silicon photo-voltaic cell (solar cell), small
8-pin IC sockets (3 off)
14-pin IC sockets (2 off)
3-way sockets to fit 3-way plugs on decoder board (3 off)
Circuit board
1mm terminal pins (7 off)
Materials for making protective case and for mounting the

cell

156

Appendix A

THE ADDRESS DECODER

It is essential for you to make this, for you need it when you
come to connect the projects to the micro. It does several
things beside decode addresses. We will explain how it works
in some detail, but if you would rather go ahead and build it,
skip the description that follows and go straight to p. 162.

Fig.D.1 is the circuit diagram. All the lines coming in on
the left-hand side of the diagram come from the micro. Lines
AO to A4 all go to IC1. This is a NAND logic gate. When the
inputs to this gate are all 'high' (+5V), the output of the gate
(pin 8, where the small circle is), goes 'low' (OV). The gate has
8 inputs but three of these are made 'high' permanently by
wiring them to the +5V supply. Therefore the output of IC1
is normally 'high', but goes 'low' when the address on the bus
is XXX1 1111. In this expression 'X' means either 0 or 1,
for it makes no difference, as lines A5 to A7 are not connected
to IC1. If you look at Table 0.1, you will see that all the
binary numbers marked * end with a run of five 1s, and in fact
the 8 numbers so marked are all the possible ones of the form
X X X 1 1111. When any one of these is on the address bus,
the output of IC1 goes 'low'.

The output of IC1 together with the IORQ and RD lines
go to another logic gate, which is one of the gates in IC2.
These are NOR gates, and have three inputs. The output of a
NOR gate goes 'high' when all its inputs are 'low'. The only
conditions for which this can happen are:

Output of IC1 is 'low' — address XXX1 1111 on the
bus

and IORQ is 'low' — the Z80 wants to communi
cate with an external device
(p. 5)

and RD is low — the Z80 wants to read data
from that device.

This happens only when the Z80 is trying to obtain data from
157

158

IC2 pin 14 IC2 pin 7
IC3 pin 16 IC3 pin 8
IC4 pin 16 IC4 pin 8
IC5 pins 12,13,14 IC5 pin 7

Fig. D. 1b The power supply for the decoder

one of the projects. When the output of the NOR gate (IC2,
pin 12) is 'high', the output of the next NOR gate (pin 8)
becomes 'low'. This is because this NOR gate has all its input
pins wired together. This makes it behave as an INVERT gate;
if its inputs are 'high', its output is 'low', and the other way
about.

When the output from IC2, pin 8, goes 'low' this makes the
Strobe input of IC3 'low'. IC3 is a data selector IC. It has 8
Data Inputs, to which you can connect up to 8 different
projects. When the Strobe input goes 'low', one of these inputs
becomes connected to the output Y at pin 5. The state of that
input (i.e. the data from one of your projects) appears on line
DO of the data bus. The Z80 then reads the data bus to find
out whether the data is 0 or 1 ('low' or 'high').

But which one of the Data Inputs is connected to the bus?
This is decided by the state of the Select inputs A, B and C.
As you can see from Fig.D.1, these are wired to lines A5, A6
and A7 of the address bus through three buffer gates (IC5).
The buffers provide extra power for driving the inputs of IC3,

159

IC4 and any other decoder circuits we may need. If these three
lines are all 'high', this in effect puts 1 1 1 at the Select inputs.
Binary 111 is 7 in decimal (see Table 0.1). If you have a
device connected to Data Input 7 of IC3, the data from this
device appears at the output (Y) and goes to the data bus.
When lines A5 to A7 are all 1 and lines AO to A4 are also all 1,
the address on the bus is 1 1 1 1 1 1 1 1, or 255 in decimal. The
device which is connected to input 7 of IC3 has the address
255. If you want the micro to read the data coming from this
device, you must program it to read from address 255. The
way to do this is explained later.

As another example, suppose you want to read data from a
device attached to Data Input 4. Decimal 4 is 1 00 in binary,
so A7 must be 'high' while A6 and A5 are 'low'. The complete
address required is 1 001 1 1 1 1, or 159 in decimal.

Output Y of IC3 is known as a three-state output. When the
Strobe input is 'low', Y has the same level (0 or 1) as is present
on the selected input line. If the input is 0, Y is 0; if the input
is 1, Y is 1. Y goes to its third state when the Strobe input
goes 'high'. The third state is neither 0 nor 1, but what is
called 'high impedance'. It is as if the output terminal of the
IC becomes disconnected from line DO. The ability to dis
connect Y is essential, for there are many other ICs connected
to the data bus. The RAM and ROM ICs, the keyboard (in
some computers, but not in ZX computers), the Z80 itself and
many other devices may all have connections to the bus. If
they all were putting data on to the bus at once, it would be
like a room full of people all shouting together. No one would
be heard. So all outputs to the bus are of the three-state kind.
When the Z80 addresses a particular IC, as it does when it
makes I0RQ and RD low and puts one of their addresses of
IC3 on the address bus, only the addressed IC is able to put
data on to the bus. At that time, all the other ICs are in a high-
impedance state and are, in effect, disconnected.

So far, we have seen how the Z80 reads data from our
projects. The 8 Data Inputs (Fig.D.1) are for use by those
projects which deliver output on only 1 line. We say they have
a Tbit output. A few projects need to transmit more than 1
bit at a time. These each have their own IC with three-state

160

outputs to connect them with the data bus.
Some projects do not send data to the micro, but simply

need to be told when they are to operate. All they need is a
brief message to tell them when to begin. IC4 has 8 outputs,
the Addressed Outputs, which are used to trigger such projects
into action. The IC has 3 Enable inputs. G2A and G2B are
connected to the output of IC1 and to the IORQ line. Both of
these inputs must be 'low' to enable IC4. The third Enable
input, G1, is connected to the WR line by way of an INVERT
gate (part of IC2). To enable IC4, G1 must be made 'high'; this
happens when WR goes low. So, if the Z80 wants to tell a
device to do something, it puts its address (X X X 1 1 1 1 1) on
the bus, and makes IORQ and WR low. This action enables IC4.

The outputs of IC4 are normally all high, but when the IC
is enabled, one of these goes low. Which one goes low depends
on the state of the 3 Select inputs, as it did for IC3. For
example, if the address is 01 1 1 1111 (127 in decimal), the
number is presented to the Select inputs is 01 1. In decimal,
this is 5, so Addressed Output Y5 goes low, while the others
remain high. The device attached to output Y5 is designed so
as to respond when the output goes low. In this way we can
trigger up to 8 devices to operate, simply by programming the
micro to write to the appropriate Addressed Output.

A few of the projects need more than 1 data line. The
decoder provides them with up to 4 such lines (DO to D3), as
shown at the bottom right-hand corner of Fig.D.1. These come
directly from the data bus of the micro. These projects are also
supplied with lines A5 to A7 (indirectly from the buffer gates
of IC5) as well as the decoded output of lines AO to A4, IORQ
and RD. The final stage of address decoding for these projects
is carried out by the circuit of the project concerned.

The remaining section is a + 5V regulator circuit. This pro
vides power for operating the address decoder and for all the
projects which are attached to it. The regulator draws its
supply from the + 9V line of the micro. This is able to supply
only a limited amount of power (up to about 200mA,
piobably less if you already have a printer, disk drive or extra
RAM connected). Most of the projects in this book require
only a few milliamps so there is no problem in powering two

161

or three of these at once. If you want to have many projects
connected at one time, it is advisable to use a separate un-
legulated DC powei pack. You could employ a second ZX
Power pack, or any othei pack which delivers rectified direct
current of suitable voltage. The regulator IC can be powered
by any supply voltage in the range 7V to 25V, and delivers a
current of up to 1A. If you use a separate power pack rather
than the supply from the micro, the circuit diagram and PCB
layout must be modified.

Building the project

If you want to be able to run a printer, extra RAM or disk
drives at the same time as the projects, adopt the method of
connection shown in Fig. D.2. Fig. D.3 shows the expansion
board with keyway positioning. If you are connecting the
project to a Spectrum,which has a 28-way connection, with
the key at position 5, you can use an edge connector socket
of this description, though there is no need to do so. As
Fig. 0.1 shows, the projects do not use any of the lines at the
ends of the Spectrum connector and a socket which fits the
ZX81 can be plugged on to the Spectrum too. On the Ace, the
key is at position 23, so we simply turn the connector the
other way up. The lugs of the socket pass through a row of
holes in the circuit and are soldered to the board. The lugs are
then bent slightly to bring the two rows closei together and
are soldered to a strip of board which acts as an edge con
nector for any other device (such as the printer) which you
may want to plug on to the system. This is a double-sided
board with 22 parallel tracks (27 for the Spectrum) on each
surface (Fig. D.3). If you have a ZX81 and think it likely that
you will be upgrading to a Spectium, it is worthwhile to pro
vide a board with 27 Packs per suiface at this stage.

Frq.D.4 shows the design of a PCB for the project. This is
reproduced full size, so you can tiace it or photocopy it if you
want to make the boaid yourself. The board is also on sale
ready made from the supplier named on p. 179.

If you decide to design your own PCB or to assemble the
project on stripboard, note the way in which connections are

162

Fig. D.2 Using the decoder at the same time as the extra
RAM or printer

Provided for attaching the other projects to this board
(Table D. 1). The Data Input plugs each have 3 pins. One pin on
each socket is connected to the OV line, and one to the +5V
line. The third pin is connected to the corresponding input

163

11DIDII
Keyway slot at 5 for Spectrum
Keyway slot at 3 for ZX81
Keyway slot at 1 for Ace

Fig. D.3 Expansion board — actual size — double-sided

terminal of IC3. The pins have been spaced 2.5mm apart, so
that you can use ready-made PCB plugs which give a handy
and reliable way of connecting other projects to the board.
Note that with this system, the plug is soldered to the board,
and the socket is at the end of a lead. These 10 plugs (i to r,
Fig. D.4e) allow you to have 10 projects operating at once but,
if you do not want to have as many as this, just buy and
mount as many plugs as you think you will need. A similar
system caters for Addressed Outputs (a to h, s and t, Fig. D.4e).

164

Ta
bl

e D
. 1 Co

nn
ec

to
r p

in
 ou

tle
ts

165

D
at

a I
np

ut
s

If you prefer, you can solder 3 separate 1mm diameter
terminal pins in place of each socket. Make soldered connec
tions to each pin (or use crocodile clips) to join a circuit to the
board.

There are two plugs (10 pins each) for connecting those
projects which require more than 1 line of the data bus.
Table D.1 shows the connections to each pin.

Fig. D.4a Layout of ZX81 /Spectrum decoder board — side 1.
(The edge connector terminals run from
1 on the left to 23 or 28 on the right.)

166

The first step in building the decoder is to solder the edge
connector socket and extension strip (Fig.D.3), if used, to the
board. Then assemble the 5V regulator circuit (IC6, C1, C2
and R1). You can test this by plugging the card into the micro
and switching on the ZX power pack. Use a voltmeter to
measure the voltage across R1, which should be almost exactly
5V. If you are using the PCB design and intend to use a
separate power pack, cut the tracks at the points shown in
Figs. D.5 or D.6. Solder the wires from the power-pack to

Fig. D.4b Layout of ZX81 /Spectrum decoder board — side 2
167

the wires of C1, as shown.
Next wire up IC1 and IC2. Test this without plugging the

board into the micro. The inputs to this circuit are all un
connected and act as if they were 'high' inputs. This being so,
the output of IC1 pin 8 is 'low' IC2 pin 12 is 'high' and IC2
pin 6 is 'low'

The data input side of the circuit is completed by assembling
IC3 and IC5. Test the output of IC5 by connecting each of A5
to A7 in turn to the OV line. Their outputs should fall from

Fig. D.4c Layout of Ace decoder board — side 1.
(The edge connector terminals run from
2 on the left to 23 on the right.)

168

+5V to OV. Now connect IORQ and RD to OV, as if the micro
is attached and is trying to read data. This should make the
output of IC2 (pin 8) go 'low' and so enable IC3. Its Y output
(pin 5) should be 'high'. If A5 to A7 are unconnected, they act
as 3 'high' inputs, equivalent to address '7'. If you now
connect input 7 to the OV line, the output of IC3 should like
wise fall to OV. There is no need to check the circuit with
other addresses unless you have reason to suspect that the IC
itself is faulty.

Fig. D.4d Layout of Ace decoder board — side 2
169

Finally, add the remaining IC, IC4. This can be tested in a
similar manner. First test all its outputs, which should be at
+5V. Now connect WR and IORQ to the OV line, to enable
this IC. The address is '7', as before, so test output 7 (pin 7) to
check that it has fallen to OV. The remainder of the checking
is best done by using the micro, as described in the next
section.

a b c d e f i J k I m n oha b c d e f 9 h i 1 k I m n o p q r s t ODOOODiOODDODOOi OMC

Z) IC5

Spectrum numbering

ZX81 or Ace numbering

Fig. D.4e Component layout for both decoder boards — side 1-
(Note terminal 1 is not present on the Ace board
as it is a key way.)

170

171

172

Controlling the decoder
The Spectrum is easier than the ZX81 to program for testing
the decoder, so we will deal with this first. To test the Data
Input side we simply use the command LET X = IN 31 , where
the number following IN is the decimal address of the input
we want to read. These addresses are listed in Table 0.1, p. 7
and again in Table D.2. Address 31 corresponds to data input
0. With all data inputs unconnected, run this program:

10 LET X = IN 31
20 PRINT X

Data bus lines which are unconnected (i.e. lines D4 to D7)
count as 1s, and so do any unconnected data inputs to the
decoder. Therefore all lines read 1, and the value returned for
X is 255 (i.e. 1111 1 1 1 1 in binary). Now connect data input
0 of IC3 (NOT line DO of the data bus) to OV. Run the pro
gram again. This time the data bus is 1 1 1 1 1 1 1 0 in binary, so
the program returns 254. If you disconnect data input 0, and
connect data input 1 to 0V instead, the program returns 255
for you are still addressing input 0. Change line 10 to LET X =
IN 63 and the result 254 is returned.

This program finds out whether a given data input is 0 or
1. When you have a project attached to the decoder and are
programming the micro to work with it, use the command

Table D.2 Addressing codes

Character
in REM

POKE N
to 16517

Data input
number

Address
code

0 1F 3 31
1 3F Z 63
2 5F 95
3 7F 127
4 9F inverse * 159
5 BF inverse Z 191
6 DF TO 223
7 FF 255

173

"IFTHEN. . ." to make the micro perform one action if
X = 254, and a different action if X = 255.

The Addressed Output section is tested in a similar way,
but there is one small problem. The IORQ and WR lines are in
their active-low state for such a short time that you can not
use a voltmeter to detect the brief fall in voltage at the output
of IC4. Even an oscilloscope will not show what happens. The
best method is to build a simple pulse detector. Project 1
describes how to do this. Connect the detector to output YO
(pin 15), reset the detector (LED on) and run this program:

WOUT 15,0
The 15 is the address of YO. The 0 is the data which is
supposed to go to this address, but in this case we are not
sending any data. It is sufficient to address the output. When
you run the program, the LED goes out. The other outputs
can be tested in the same way, but using their addresses (Table
D.2) instead.

Programming the ZX81
The Z80 microprocessor inside the ZX81 can do just the same
things as the Z80 inside the Spectrum, but the ZX81 does not
have the IN and OUT commands in its BASIC. We have to use
a machine-code program to tell the ZX81 to communicate
with attached devices. Fortunately, these programs are very
short. The program for reading from a data input (equivalent
to using IN, as described above for the Spectrum) is simply
this:

06 FF LDB, FF
0E 1F LDC, 1F (the address)
ED 48 IN C, C (read addressed port)
C9 RET

Do not worry if you do not understand what machine code
is all about. It is listed here just as a matter of interest for
those who do. You can use the program from an ordinary
BASIC program without the need to know how it works. The
best way of using this program is to place it at the very

174

beginning of your BASIC program, in the form of a REM
statement. Chapter 26 of the ZX81 Handbook explains some
thing about this.

Here is a BASIC program which puts the machine code
program in memory from address 16514 (where all BASIC
programs begin), and lets you use it by means of the USR
command:

10 REM B :3 TAN
20 POKE 16515, 255
30 POKE 16518, 237
40 POKE 16519, 72
50 LET X = USR 16514
60 PRINT X
70 STOP

The REM puts some of the machine code groups directly into
memory by making the ZX81 store the codes which correspond
to various symbols and characters (see Appendix A of the
ZX81 Handbook). The 3, for example, gives the code for 1F,
the address of Data Input 0 of the address decoder. Type in
line 10 with great care, leaving one or two spaces where shown.

Some codes can not be put in as a REM statement so
we POKE them in with lines 20 to 40. Line 50 makes the
micro run the machine code routine from address 16514 on
ward. When it comes back again, having read the input from
data input 0, the value of X tells us what is in the B and C
registers of the Z80. We already know that register B contains
1111 1111 for we put it there with the program. Register C
shows the data which has just been read. This is 1 1 1 1 1111
if all. lines are high (all data inputs left unconnected), and
1111 1 1 1 0 if data input 0 has been connected to the 0V
line. So X has one of two values:

1111 1111 1111 1111, which is 65535 (high input)
or 1 1 1 1 1111 1111 1110, which is 65534 (low output)

When you run this program the number 65535 or 65534
appears at the top left corner of the screen.

When the program has been run once, the 'missing' codes
will have been inserted in the REM line, so do not be surprised

175

that line 1 0 now reads:
10 REM H COPY :3 GOSUB ? TAN

To test the other addresses, alter line 10 as in Table D.2. If the
table lists a character, put this in place of the 3 in line 10. If it
does not, poke the number N. Type a space in place of the 3,
and add this line to the program:

25 POKE 16517, N

If you have several devices controlled by the same BASIC
program, you will want to be able to alter the address in the
machine-code program to address each device. This is simply
done by:

200 POKE 16517,N
where N is the decimal address required (see Table D.2).
Follow this with the USR function (as in line 50 above) to
read data. The address can be changed as often as you want
during the program.

The machine-code program for output is slightly longer:
06 FF LDB, FF
0E 1F LDC, 1F (the address)
16 00 LDD, 00 (the data)
ED 51 OUT(D),D
C9 RET

As a BASIC program, this becomes:
10 REM M :3— TAN
20 POKE 16515,255
30 POKE 16520,237
40 POKE 16521,81
50 LET X = USR 16514
60 STOP

There is no need for 'PRINT X' this time, since we are not
trying to obtain any data but merely to trigger the attached
circuit. Using the USR function is all we need to do. Connect
the Pulse Detector (Project 1) to output Y0 of IC4. Reset it
so that the LED comes on. Now run the program given above.

176

The LED goes out immediately. You can test other outputs
by using other addresses. Table D.2 tells you what to use
instead of the 3.

As with the other program, new symbols appear in the
REM after the program has been run once:

10 REM B COPY :3- GOSUB?TAN

There are two spaces after the —. The first of these corresponds
to the data (a space is code 00). With Project 4 you need to
send data to the data latches. In this case you will need to
modify the program by substituting one of the symbols shown
in Table 4.1 for the first space after the —. As with the first
program, you can POKE different addresses into the machine
code program at any stage during your BASIC program so as
to control several devices at once.

With this program and the other you can delete the 'POKE'
lines when the program has been run once, for the first run
places all the required codes in memory. These programs may
be saved on tape or disk. After the first time the program is
run, the REM line holds the address of the first device to be
addressed by that program. If your BASIC program is control
ling several devices with different addresses, note that the
saved version holds the address of the last device to be used.
If this is not the same as the first device, your program must
begin by POKEing in the address of the first device.

If you want to read and write in the same program, both
machine code programs may be placed one after the other.
The combined program is:

10REMB:3 TANB :3- TAN
20 POKE 16515,255
30 POKE 16518,237
40 POKE 16519,72
50 POKE 16522,255
60 POKE 16527,237
70 POKE 16528,81

Run the program once, then delete lines 20 to 70. These can
be replaced by lines of your own program. To read data, use
the statement LET X = USR 16514 as before. To write data

177

or trigger a device, use the statement LET X = USR 16521.
To change the address of the device to be read, POKE 16517,
as before. To change the address of a device to be written to,
POKE 16524.

Programming the Jupiter Ace

The Ace has two words which allow it to interact with the
decoder. For reading data from the decoder, or from inter
faces attached to the decoder, it has the word IN. Before IN
is used, we place the address to be read from on the top of the
stack. For example, to read from address 31 (Data Output 0),
we use

31 IN
This leaves the required data on the top of the stack. As
explained on p. 10, it is safer to AND this to eliminate floating
values on other data lines. To read line DO only, we use:

31 IN 1 AND

To read the bottom three lines DO to D2 we use:
31 IN 7 AND

To read all four data lines DO to D3 we use:
31 IN 15 AND

To write to an interface we use the woid OUT. This needs
the data to be present as second on stack and the address on
the top of stack. Thus to send data 12 to address 63 we type:

12 63 OUT

Many of the interfaces work by simply addressing an Addressed
Output, without actually sending data. Data of some sort is
still required on the stack for use by OUT, so a convenient
form of command is:

0 63 OUT

178

PARTS REQUIRED for the ADDRESS DECODER *
Items marked * are optional
Resistor

R1 4k7, 0.25W, 5% tolerance
Capacitors

C1 220n polyester
C2 470n polyester

Integrated Circuits
IC1 74LS30 8-input NAND gate
IC2 74LS27 triple 3-input NOR gate
IC3 74LS251 8-line to 1-line data selector/multiplexer
IC4 74LS138 3-to-8 line decoder/multiplexer
IC5 74LS125 quadruple bus buffer gate with three-state

output
IC6 7805 voltage regulator, 5V, 1A

Miscellaneous
Stripboard or ready-made PCB

* Extender board
Edge-connector to suit machine (pin 1-28 marked for

Spectrum; pin 1-23 marked for ZX81 and Ace)
* 14-pin IC sockets (3 off)
* 16 pin IC sockets (2 off)
* 3-way connector and socket (a—t) (20 off)
* 10-way connector and socket (w & x) (2 off)
* 1mm Terminal pins (if used instead of PCB plugs)

* The double-sided plated through hole pi inted circuit board for the
Decoder, together with all necessary components either in ktt form or
as individual items are available from:

KELAN (HOBBYBOARD),
A DIVISION OF KELAN ENGINEERING LTD,
NORTH WORKS,
HOOKSTONE PARK, HARROGATE,
NORTH YORKSHIRE, HG2 7BU, ENGLAND.
Telephone: Harrogate (0423) 883672

PLEASE NOTE: The Publishers are in no way responsible for the
manufacture or supply of the above and all enquiries must be sent
directly to Kelan (Hobbyboard).

179

Appendix B

PIN LEAD-OUT DETAILS

Fig. A. 1 Pin numbering of integrated circuits,
as seen from above

Fig. A.2 Pin numbering of the 634SS2 Hall effect IC,
as seen from above

180

Pin view
Photodiode BPX65 or similar 1 N4001 or similar

Fig. A.3 Pin connections and symbols of semiconductor
devices used in this book

181

SPECIAL NOTE FOR READERS IN USA

The ZX81 is available in the USA under that name or as the
Timex-Sinclair TS 1000. When this book was in preparation
both the ZX Spectrum and Jupiter Ace were imminently due
for launching in America.

The circuits in this book have not been tested with the
versions of these machines marketed in the USA, but providing
the USA versions have not been radically changed in those
details which relate to the operation of the add-ons, it is
thought that the reader should not experience any difficulties
in this direction.

Almost all the integrated circuits specified in the projects
originate from the USA, so there should be no difficulties in
obtaining these. Below are brief details of components which
may not be so readily available:

BPX65 photodiode: planar 1 mm sq. silicon PIN photo
diode, in TO18 case with glass window. Almost any photo
diode can be substituted for this.
C106 p-gate thyristor: since this is operated at low voltage,
almost any other type will do.
MKY7C38E: any light-dependent resistor, with dark resist
ance about 300 k and sunlight resistance 100 ohms. One
with small diameter is preferred.
ZTX300 transistor: any npn transistor with gain of 100 or
more and able to take a 500 mA collector current.
311 is the LF311 comparator IC.
7611 is the ICL7611 CMOS operational amplifier.

Please note overleaf is a list of other titles that are available in
our range of Radio, Electronics and Computer Books.

These should be available from all good Booksellers, Radio
Component Dealers and Mail Order Companies.

However, should you experience difficulty in obtaining any
title in your area, then please write directly to the publisher
enclosing payment to cover the cost of the book plus adequate
postage.

If you would like a complete catalogue of our entire range
of Radio, Electronics and Computer Books then please send a
Stamped Addressed Envelope to:

BERNARD BABANI (publishing) LTD
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W6 7NF

ENGLAND

221 28 Tested Transistor Projects 1.25p
222 Solid State Short Wave Receivers for Beginners 1.25p
223 50 Projects Using IC CA31 30 1 25p
224 50 CMOS IC Projects 1 35p

226 How to Build Advanced Short Wave Receivers 1.95p
227 Beginners Guide to Building Electronic Projects 1.95p
228 Essential Theory for the Electronics Hobbyist 1 95p
RCC Resistor Colour Code Disc 20p
BP1 First Book of Transistor Equivalents and Substitutes 1.50p

75p
40pBP7 Radio and Electronic Colour Codes and Data Chart

BP14 Second Book of Transistor Equivalents and Substitutes 1 75p
BP24 52 Projects Using IC741 1.25p
BP27 Chart o* Radio Electronic Semiconductor and Logic Symbols 50p
BP32 How to Build Your Own Metal and Treasure Locators 1.95p
BP33 Electronic Calculator Users Handbook 1.50p
BP34 Practical Repair and Renovation pf Colour TVs 1 ?5P

BP37 50 Projects Using Relays, SCR's and TRlACs 1 95p
BP39
BP40
BP41

50 (FET) F,eld Effect Transistor Projects
Digital IC Equivalents and Pin Connections
Linear IC Equivalents and Pm Connections

1 75p
3.50p
3.50p

BP42 50 Simple L.E.D. Circuits 1.50p
BP43 How to Make Walkie Talkies 1.95p
BP44 IC555 Projects 1.95p
BP45 Projects m Opto E lectronics 1 95p

1.3SP
1 95pBP48

BP49
BP50
BP51
BP52
BP53

Electronic Projects for Beginners
Popular Electronic Projects
IC LM3900 Projects
Electronic Music and Creative Tape Recording

1.95p
1 35p
1.95p
1.95p
2.95pPractical Electronic Calculations and Formulae

BP55 Radio Stations Guide 1 75p
BP56 Electronic Security Devices 1 95p
BP57 How to Build Your Own Solid State Oscilloscope 1 95p
BP58 50 Circuits Using 7400 Series IC's 1 75o
BP59 Second Book of CMOS IC Projects 1 50p
BP60 Practical Construction of Pre amps. Tone Controls Filters & Attn 1 45p
BP61 Beginners Guide to Digital Techniques 95p
BP62 Elements of Electronics — Book 1 2 25p

2.25pElements of Electronics - Book 2
BP64 Elements of Electronics - Book 3 2 25p
BP65 Single IC Projec is 1 50p
BP66 Beginners Guide to Microprocessors and Computing 1.75p
BP67 Counter Driver and Numeral Display Projects 1 75p
BP68 Choosing and Using Your Hi Fi 1 65p
BP69 Electronic Games 1.75p
BP70
BP71
BP72

Transistor Radio Fault Finding Chart 50p

A Microprocessor Primer
Remote Control Projects

1 75p
1.950
1 75p

BP73
BP 74 Electronic Music Protects
BP75 Electronic Test Equipment Construction 1 ?5p
BP76 Power Supply Projects 1 75p
BP77 Elements of E lectronics - Book 4 2.95p

1 7 5pPractical Computer Experiments
BP79
8P80
BP81
BP82

Radio Control for Beginners
Popular Electronic Circuits - Book 1

1 75p
1 95p
1.75p
1 95pElectronic Projects Using Solar Cells

BP83 VMOS Projects 1 95p
BP84 Digital IC Projects 1 95p

2.95p
1 95p
1 35pBP37 Simple L E D Circuits Book 2

BP88 How to Use Op Amps 2 25p
BP89 F lements of Electronics — Book 5 2 95p
BP90
BP91

Audio Projects 1 95p
An Introduction to Radio DX mg

BP92 Electronics Simplified - Crystal Set Construction 1 75p
BP93 Electronic Timer Projects 1 95p
9P94 Electronic Proiects for Cars and Boats 1 95p
BP95 Model Railway Proiects 1.95p
BP96 C B Projects 1 95p
BP97 IC Proiects for Beginners 1 95o
BP98 Popu'a' Electronic Circuits - Book 2 2 25p
BP99 Mmi Matrix Board Proiects 1 95o
BP 100 An introduction to Video 1 95p
BP101 How to identify Unmarked ¡C s 65u
BP102 The 6809 Companion 1 95p
BP103 Multi Circuit Board Proiects 1 95p
BP 104 Electronic Science Prefects 2.25p
BP105 Aenal Proiects 1 95p
BP 10b Modern Op Amp Projects 1.95p
BP107 30 Soide'tess Breadboard Projects - Book 1 1.95p
BP108
BP 109

International Diode Equivalents Guile 2.25p
The Art of Programming the 1K ZX81
Hew to Get *Our Elect-on IC Proiects Work .ng
Elements o’ Electrons* - Book 6
A Z 80 Workshop Manual
30 Solderless Breadboard P-oiects - Book 2

1 95p
3.50P
2 75p
2 25p
2 50p

BPI 10
BPI 1 1
BPI 12
BP1 13
BP1 14
BP’15
BP1 16
BP 1 17
BP118

I BP119

The p<e Computer Book
Electronic Toys Games and Puzzles
°'act.cai Electronic Budding Blocks — Book 1
Prac’ cai Electronic Budding Blocks - Book 2

1 95p
2.25p
2 25p
2 25p
2 95pThe Art O* Programming the ZX Spectrum

BP120 Audio Amplifier Fault Finding Chart 65p
BP121 Hqw to Design ano Make Your Own PCBs 2 25p
BP122 Audio Amplifier Construction 2.25p
BP123 A P-acticai introduction to Microprocessors 2 25p
8P124 How to i-esign Electronic Projects 2 25p

BERNARD RARANI RP124

Easy Add-on Projects for
Spectrum, ZX81

VQW'ggg

This book describes how to build a number of electronic
projects which you can use with your Spectrum, ZX81 or
Jupiter Ace microcomputer.

The projects include a Pulse Detector, Picture Digitiser,
Five-key Pad, Model Controller, Bleeper, Lamp Flasher, Light
Pen, Magnetic Catch, Lap Sensor, Photo-flash, Games Control
and six more projects that make up a Weather Station.

All the projects are fairly simple and inexpensive to con
struct. The most complicated part, the Address Decoder, is
constructed as a separate item that can then be used with any
of the projects.

Once built, the projects are easy to operate and a simple
program or two is included to get you started. Of course, those
readers who are more experienced at programming can have a
lot of fun in writing elaborate programs for these projects, but
the beginner can start with a short program and perhaps add
extra features later.

	Interfacing to microcomputers

	Logic levels in computers

	The microprocessor

	Address decoder

	Using the ZX Computers

	Using the Jupiter Ace

	Using other computers

	PULSE DETECTOR

	How it works

	Building it

	Using it

	Detecting a 'high' pulse

	PICTURE DIGITISER

	How it works

	Addressing

	Building it

	Final check

	Test program

	Programming

	FIVE-KEY PAD

	How it works

	Addressing

	Building it

	Testing

	MODEL CONTROLLER

	How it works

	Building it

	Programming

	BLEEPER

	How it works

	Building it

	Programming

	LAMP FLASHER

	How it works

	Building it

	Programming

	LIGHT PEN

	How it works

	Building it

	MAGNETIC CATCH

	How it works

	Building it

	Programming

	LAP SENSOR

	How it works

	Building it

	Programming

	PHOTO-FLASH

	How it works

	Programming

	GAMES CONTROL

	How it works

	Building it

	Programming

	RAIN DETECTOR

	How it works

	Building it

	Programming

	WEATHERCOCK

	How it works

	Building the vane

	Addressing

	Building the circuit

	Programming

	ANEMOMETER

	How it works

	Building it

	Programming

	THERMOMETER

	How it works

	Building it

	Calibration and programming

	BAROMETER

	How it works

	Building it

	Programming

	SUNSHINE RECORDER

	How it works

	Building it

	THE ADDRESS DECODER

	Building the project

	Controlling the decoder

	Programming the ZX81

	Programming the Jupiter Ace

