

AN INTRODUCTION TO PROGRAMMING
THE
ORIC-1

AN INTRODUCTION TO PROGRAMMING
THE
ORIC-1

by
R. A. & J. W. PENFOLD

BERNARD BABANI (publishing) LTD
THE GRAMPIANS
SHEPHERDS BUSH ROAD
LONDON W6 7NF
ENGLAND

Chapter 1

VARIABLES AND CODES

Among low-priced computers, ORIC—1 is one of the most
attractive, with one of the most pleasant to use keyboards.
With its serial attribute system it also allows a full-colour
screen display with remarkably economic use of memory. This
book is a guide to how to make the best use of its many
features.

You can’t go far in computing without an understanding of
variables. A good analogy of a variable is a pigeonhole in an
office filing system. We can store things in the pigeonhole,
we can look to see what the pigeonhole contains, we can alter
the contents of the pigeonhole, and we can make a copy of the
contents of the pigeonhole and store it in another, leaving the
original unaltered.

Our computer pigeonholes have labels, so that we can refer
to them easily. These labels are somewhat prosaically called
variable names. These need some discussion, as ORIC is a little
fussy about what it will accept as a variable name.

For a start, all variable names must begin with a capital
letter, though numbers (but not lower case letters or punc-
tuation marks) may be used subsequently. Variable names in
ORIC BASIC may be of any length (subject to the limitation
that a program line cannot be longer than 78 characters), but
ORIC only uses the first two characters to distinguish between
one variable and another. It may seem pointless to use variable
names of more than two characters, but in fact it is often very
useful to use words that give some indication of what the
variable contains, or what it is to be used for. This is called
mnemonic naming.

It is also important that the variable name does not contain
any BASIC keyword (the words which the computer recognises
as specific instructions). This can be limiting when you are
trying to use mnemonic names, as it means, for example, that
you cannot have TOTAL as a variable name (TO is a keyword)
or SCORE, as it contains the boolean operator OR. If you

1

want to invent computer cricket, you can’t have RUNS, and if
you turn to football you can’t have GOALS. GO is actually a
keyword, though in the V1.0 BASIC on which this book is
based, it doesn’t actually do anything. Two other words notin
the manual but which cannot be used as variable names are
INVERSE and NORMAL. Obviously, scope for development
has been incorporated in the system.

There are three types of variables. Two of these contain
numbers, on which arithmetic and algebraic operations may be
performed. These are collectively called numeric variables. The
third type is used to contain strings of characters, usually
letters or words or sentences, but numbers, and also punctua-
tion marks may be included. These are called string variables.
ORIC has an impressive collection of commands for mani-
pulating strings (put bluntly, this means lots of ways of
chopping them up), and strings can also be joined together
with the + operator.

The most frequently used type of variable is the real or
floating point variable. In ORIC, these may hold any number
between 2.93874E—39 and 1.70141E38. These variables are
given simple names like A or X or N2 or TRIES.

The other type of numeric variables are called integer
variables. As the name indicates, these can be used to contain
whole numbers only. If you try to store a number with a
decimal point in.it, the computer will truncate it to the nearest
whole number smaller than it before storing it. It is important
to remember that the computer never rounds up. Even 9.9999
will be truncated to 9. The range of numbers which can be
stored in an integer variable is from 32767 to —32768. The
advantage of integer variables when whole numbers are being
dealt with is that they use up considerably less memory space,
and that operations on integer variables usually execute faster
than operations on floating-point variables. Integer variable
names are indicated by a per cent sign as a suffix, for example
A%, X%, ROW%.

String variables can contain up to 255 characters, and can
contain any character that can be produced from the keyboard.
As the longest line that can be typed into ORIC is 78
characters, a string 255 characters long obviously cannot be

2

entered in one go, but it is possible to produce long strings by
joining several short ones together, a process known as conca-
tenation. Strings can contain BASIC keywords. These will not
have any effect on operations, and cannot be made to have
any effect. This also holds for punctuation marks, such as
commas, which are used for particular purposes in BASIC.

Special control characters, such as the serial attributes used
in ORIC to control the displayed colour on the screen, can be
incorporated in strings, and these wi// have their effect when
the string is PRINTED or PLOTTED. (More of this in the next
chapter.) String variables are indicated by a dollar sign as a
suffix to the name, e.g. A3 X3, NAMES, LTTRS.

It is important to understand that when we perform an
arithmetic operation on numeric variables, or a string manipu-
lation on string variables, in creating a new variable we do not
alter or destroy the old one(s). For example, if we have a
program line “COST=PRICE+TAX" we create a new variable
COST which is equal to the sum of the variables PRICE and
TAX, which keep their values. To go back to our original
analogy, this line could be explained as ‘‘make copies of the
contents of the pigeonholes labelled PRICE and TAX, add the
copies together, and store them in a new pigeonhole, and label
it COST. It could be, of course, that when the computer
comes to this line in a program, there is already a previously-
used variable called COST. In this case, the value of COST
would, of course, be altered.

There is thus a clear distinction between the ways in which
variables are used in BASIC and the ways in which they are
used in algebra. For example, X=X+1 would be a nonsense in
algebra, but lines like it are frequently used in BASIC, where it
means ‘‘make a copy of the contents of pigeonhole X add 1 to
it, and replace the current contents of X with it"”’, Remember
that when we refer to a variable, we are referring to the
contents of a memory location, and that the variable name is
the label of that location. Thus if we say X=10 we do not, as
in algebra, mean X represents the number 10, but rather that
“the contents of memory location labelled X is 10", This dis-
tinction is not always important in BASIC, but it can be very
important in other computer languages, and especially in

3

assembly language and machine code, so it is as well to under-
stand it from the start.

Sometimes it is very useful to group together variables
which are used for the same purpose, for example, in a data
file of names and telephone numbers. In BASIC, such a
grouping is called an array. An array can be thought of as a
row of pigeonholes, all identified by the same name, and
distinguished from each other by a number. In the case of our
data file, we could call one row of pigeonholes NAMES, and
identify the individual pigeonholes as NAMES 1, NAMES 2,
and so on.

This is very similar to what is done in BASIC, but the
number must be enclosed in brackets, and the numbering
starts from O, not 1. Thus our variables in the array would be
called NAMES$(0), NAMES$(1), and so on, according to how
many names and numbers we want to store.

ORIC is unusual in that it automatically pre-dimensions
arrays to 11 elements (numbered 0 to 10). Most other BASICS
require that arrays be declared before use. It is necessary to
pre-declare arrays if we want more than eleven elements. The
keyword DIM (abbreviated from DIMension) is used for this
purpose. Thus DIM NAMES$(100) would create an array to
store up to 101 names.

You may have noticed the dollar symbol after NAMES in
our BASIC example, and concluded from this that string,
integer, and real arrays are identified like string, integer, and
real variables, and you would be right. NAMES$(4) would be
an element in a string array, LINE%(67) an element in an
integer array, and X(0) the first element in a floating-point
array.

In our example of a file of telephone numbers and names,
we could use two arrays, one called NAMES$(N), and the other
called NUMBERS%(N). (When we do not intend performing
arithmetic on numbers, as would be the case with telephone
numbers, it is often more convenient to store them as strings.)

As an alternative, it is possible to dimension an array with
two dimensions. We could set up an array with two rows of
101 elements, storing the names in one row, and the numbers in
the corresponding positions in the other row. The statement to

4

set up such an array would take the form DIM BUSBY$(100,1).
If required, we could have a third row to hold the addresses
as well. This could be declared as BUSBY$(100,2). Note that
this is still a two-dimensional array. It has 101 elements in one
dimension and 3 in the other.

In theory, the number of elements you can have is limited
only by the available memory space in the computer. In
practice, large arrays, and especially string arrays, gobble up
memory at an alarming rate, so it is not good practice to make
arrays larger than you really need.

It is possible to have arrays with more than two dimensions.
In fact, the maximum number of dimensions is limited to 255,
but with a maximum line length of 78 characters, such an
array would be difficult to declare! A three-dimensional array
would be dimensioned by the statement DIM ARRAY (5,5,5).
The total number of elements in a multi-dimensional array is
given by multiplying together the number of elements in each
dimension, so even this small example would have (6*6*6)=216
elements, so beware! If you find arrays with more than two
dimensions difficult to comprehend, don’t worry. They are
not particularly useful and are not often used in programs.

The great value of arrays is that they fit easily into loops,
and this makes it relatively easy to design a program which can
sort through a list of data and pick out a particular item. For
instance, with our telephone numbers file, to pick out a name
and print out the number. In fact, we will do just this in a later
chapter.

To conclude this chapter, let us consider how a computer
stores letters in memory. As you no doubt know, a computer
stores things as numbers. In fact, at the lowest level it stores
things as 1s and Os, or more pedantically as ons and offs. A
code is therefore used which identifies each letter, numeral,
and punctuation mark by a number. The code used by ORIC
and almost all other computers is the American Standard Code
for Information Exchange, usually abbreviated to ASCIil and
pronounced ‘‘askey’” Fortunately, this code is fairly well
standardised, though different codes are used by different
computers for some symbols, for example the pound and hash
(#) symbols. These code numbers are also used to send charac-

5

ters to the printer.

One of the appendices in the ORIC manual gives the codes
of all ORIC’s available characters, but listings 1 and 2 are a
more fun way of exploring the ASCII codes. Listing 1 prints
the ASCII code of any letter or symbol you care to enter. You
do not need to press RETURN after the key — the program
responds immediately. In fact, if you do press RETURN you
will discover that this has an ASCII code, as do the arrowed
cursor keys, and the space bar! In fact, all the keys except the
SHIFTs and CTRL generate codes. You will discover that
holding down SHIFT or CTRL while pressing another key will
(in most cases) alter the code the key generates. It should be
obvious why this is so.

10 REM xListin3? 1%

20 REPERT

3@ GET LTRe

40 PRINT ASCCLTR®)
S@ UNTIL FALSE

One small warning about this program. If you press the
single inverted comma (‘) key, the program will stop with an
out of range error message. There is no real reason for this, it
is just a small fault in the operating system, or what is nor-
mally termed a bug. Even the best computers have them.

1@ REM *Listing 2x
20 REPERT

30 INPUT CODE

4@ PRINT CHR®¢CODE>
S0 UNTIL FALSE

Listing 2 will print the character corresponding to any code
number you enter. Note that if you enter numbers below 32
odd things may happen, and some codes will jam up the com-
puter completely. This is because numbers below those used
for characters are used as control codes. Numbers above the
character set are also used as control codes in ORIC, in part-
icular to control colour, as we shall see in subsequent chapters.

Don’t worry about how these programs work for the
moment, all will be explained in due course.

Chapter 2

INS AND OUTS

The ORIC has a powerful extended BASIC, and the sign of a
powerful language is that there are often several ways of
achieving the same end. One of the skills of programming is
deciding which is best to use in a particular circumstance. The
methods of displaying information on the screen and inputting
information into the computer are good examples of this.

There are three ways of sending information to the screen.
Firstly, by the PRINT statement; secondly by using PLOT;
and thirdly, by POKEing directly into the memory area used
for the screen display. These all have their particular advan-
tages and limitations.

PRINT is very flexible in what it can print on the screen
but, in ORIC BASIC, it is limited in the amount of control it
allows in positioning text. Numbers can be printed on the
screen either directly (e.g. PRINT 1) or by naming a variable
(e.g. PRINT A). The same holds for strings (e.g. PRINT
“Helto” or PRINT H$). PRINT can also be used to put control
characters on the screen, for example to change the foreground
or background colour, and these various items can be mixed
together in any order. For example, the following is a perfectly
legal PRINT statement (though actually a bit too long for
ORIC!).

PRINT CHR$(129);""The Total is ;CHR$(131);A;CHR&(129);"'points,
which is’;CHR$(131);08

As well as being used to print control characters on the
screen, CHR$(N) can also be used to produce all the ASCII
letters and symbols, i.e. PRINT ““A” and PRINT CHR$(65)
will have exactly the same effect. This is normally only of
academic interest, but it can be used to print on the screen the
one symbol which is not available from the keyboard, the
copyright character, ASCIl code 96. It can also be used to
print random characters from random numbers in the correct
range, and this is useful for some games, as we shall see at the

7

end of this chapter.

When a PRINT statement is executed, the text appears on
the screen at the position of the text cursor. This is normally
at the extreme left of the next available line (excluding the
two left-hand columns reserved for the INK and PAPER attri-
butes). In ORIC BASIC, there is no way of controlling the
vertical position of the cursor. There is a TAB command that
can be used to move the cursor in from the left-hand edge of
the screen by a specified number of spaces, but in the current
version (V1.0 BASIC) this does not work correctly. PRINT
TAB(10) or any number less than ten has no effect, and
numbers larger than ten tend to have unpredictable results.
This command can be useful, but one normally has to use trial-
and-error to produce the desired result.

An alternative is the function SPC(N), which prints N
spaces on the screen. This can be used at the beginning of the
line of text, and between sections of it, and is an easy-to-use
and effective way of controlling the screen layout. The
maximum number of spaces that can be printed is 255, which
of course would result in several blank lines on the screen.

The comma can be used in a similar way to SPC(N), butit
moves the text cursor to pre-set positions on the screen, rather
like the tab settings on a typewriter. These settings are,
according to the manual, at positions five character-spaces
apart, but in fact it seems to be more complicated than that,
and the effect of commas is different depending on whether
you are printing numbers or strings.

It is permissible to use the comma (or several commas)
immediately after the word PRINT if required, as in this
example.

90 PRINT,,A:* points,”;,, T;" tries”

Note that the comma within the inverted commas after
points does not have any effect. Also note the semi-colons
after A, "“points,” and T. These instruct the computer not to
go on to a new line. They are not always necessary, but it is
best to be on the safe side and include them. A further point is
the spaces between the inverted commas and the first letters
of points and tries. If these are not included the numbers (the

8

variables A and T) will be printed right next to the words.

As single-line spacing can have a crowded look, and be diffi-
cult to read on the screen, it is often desirable to put extra
spaces between lines. This can be done by putting PRINT in a
program line with nothing after it. As ORIC allows multi-
statement lines, it is possible, for example, to putin three line
spaces by a line such as:

180 PRINT:PRINT:PRINT

This is clumsy, but effective. Remember, considerable
typing can be saved by using ? instead of PRINT, but the word
will appear in full on subsequent listings.

A further advantage of PRINT is that, when printing
numbers or numeric variables, it is possible to have a calcula-
tion in the print line. This can be as simple as "PRINT2+2" or
it can be a complex function or equation. However, it must be
noted that the result of such a calculation is not put into a
variable, and so is not available to the rest of the program.

PLOT allows more control of the positioning of items on
the screen, as both X (horizontal) and Y (vertical) co-ordinates
must be specified, but it is in some ways more limited in what
it will print on the screen.

PLOT can be used to print a string of characters on the
screen, and the string may either be written after the PLOT
co-ordinates, enclosed in inverted commas (e.g. PLOT 5,10,
“Hello”’) or a string variable (e.g. PLOT 5,10,H%}. PLOT can
also be used to put control characters on the screen, for
example, PLOT 1,5,1 will make anything else on line 5 appear
in foreground red (1 is the code for the red foreground serial
attribute). As PLOT interprets any number as a code, it cannot
be used to directly print numeric variables on the screen. As an
example, the following lines would all have the same effect in
a program

30PLOT 10,10,”A""

30 A%=A:PLOT 10,10,A8
30PLOT 10,10,65

30 A=65:PLOT 10,10,A
30PLOT 10,10,CHR3(65)

The number 65 in these examples is of course the ASCII
code for a capital A. Numbers in the range of the ASCII
character set will produce these characters on the screen. Higher
and lower numbers will be interpreted as control characters.
The highest legal number is 255 (the largest number that can
be stored in a single byte). Anything above this will produce
an illegal quantity error message.

It should be obvious that in the last example, the CHR¥()
is completely superfluous. However, “PLOT X,Y,N’ does not
always have the same effect as “PRINT CHR$(N)"”. For
example, “PLOT X,Y,4" will be interpreted as the colour attri-
bute for foreground blue (as will PLOT X,Y,CHR%(4)) but
“PRINT CHR®(4)"" will be interpreted as CTRL D, the auto
double-height toggle control. To access the colour control
codes through a PRINT statement you have to use the ASCII
code numbers-above 128. Foreground blue is obtained by code
(128+4), i.e. PRINT CHR$(132).

PLOT can only be used to put a single string on the screen.
Complex strings cannot be built up as they can in a PRINT
statement. However, a complex string can be built up as a
string variable, and then PLOTted, as in this example.

110 LNGZ=NAMES+" lives at “+ADDRESS8
120 PLOT 1,5,LNG3

It is often desirable to print a numeric variable on the
screen at a fixed position, for example to display the score in
a game, and although this cannot be done directly using PLOT,
there is a way of achieving the desired result by first turning
the numeric variable into a string, using the function STR$(N),
where N is the name of the numeric variable we wish to plot.
Unfortunately, in V1.0 BASIC, there is a bug in this function
which inserts a colour control code in front of the number, so
the number is printed in green. This is a considerable problem
if you want to PLOT the number on a green background!

The only way round this is to strip off the unwanted first
character, by means of the following somewhat convoluted
method. There is no need to understand how this works at this
stage. In this example N is the numeric variable we wish to
display on the screen at a fixed position, co-ordinates 5,10

10

100 Ng=STR3(N)
110 NPE=RIGHTS(NS(LEN(NS)—1))
120 PLOT 5,10,NP8

One of the most important uses of PLOT is in animated
graphics, and this will be dealt with in detail in the next
chapter.

The BASIC function POKE directly inserts a given number
into a specified memory location. 1f the memory location is in
the area of memory used for the screen display, then the
character corresponding to the number will appear on the
screen (or its effect, if the number is in the control-code
range). Generally, POKE is not very useful as it can only send
one character to the screen, and cannot do anything that
cannot be done equally well by PLOT. It is generally much
more difficult to work out the memory addresses used by
POKE than to work out the co-ordinates used by PLOT.

POKE is useful, however, to put control codes into the far-
left screen column used in TEXT mode to control the PAPER
colour. This is not normally accessible to PLOT. In this way,
it is possible to create a two-(or more) colour background
without losing further screen space.

It is also possible to POKE into the status line at the top
of the screen (where CAPS and loading/saving messages
appear), but this is only of limited interest.

INPUTS

In ORIC BASIC there are three statements to allow for
entering information into the computer while the program is
running. These are INPUT, GET, and KEYS. INPUT and GET
can be used to enter either numbers or strings. KEY$ as the
name suggests, can only be used for strings. INPUT can be
used to enter any number of characters, subject to the
maximum allowable line length of 78 characters and spaces,
GET and KEY@ allow only a single character to be entered.
INPUT and GET cause the computer to interrupt the
program and wait for input, whereas KEY$ does not wait, and
input will only occur if a key is pressed at or before the instant

1

that the computer reaches the KEY$ statement. KEY$ is often
preceded by a pause (using the WAIT statement) to allow time
for a key to be pressed. KEY$ is much used in animated games
to allow control of the action without interrupting it.

With GET, program execution recommences as soon as a
key is pressed. With INPUT, you have to press RETURN to let
the computer know you have finished the input.

With all three methods, the input is placed in a variable.
With INPUT and GET, the variable name used will determine
whether a numeric or string input is required. INPUT NAMES
or GET A$ will specify a string input, INPUT CREDIT or
GET X% will specify a numeric input. If a string is input when
the computer is expecting a number, it will give a ?REDO
FROM START message for an INPUT statement, and go back
to the input line, and will stop program execution with a
SYNTAX ERROR message for a GET statement. To prevent
interruption of the program if a letter key is pressed, it is often
better to use GET for string input, and convert the string into
a number using VAL It is of course, perfectly legal to put a
number into a string. If the first (or only) character in a string
is anything other than a number (or +, —, or decimal point),
VAL will return the value 0.

The INPUT statement is quite flexible, in that it is possible
to put a line of text after it, which will be printed on the
screen, so that it can ask for the required input, e.g.

100 INPUT “What's your name’’ ;NAME$

Note that there is no question mark. The computer
provides this automatically, whether or not there is any text
after INPUT. The semi-colon after the text is compulsory.

It is also possible to have more than one input per input
statement, as in this example

130 INPUT "Enter three numbers’’;A,B,C

When entering the three numbers, they may be either
separated by commas, or RETURN may be pressed after each
number. String and numeric inputs may be mixed on one line,
but this can lead to practical problems in giving instructions to
the program user, and is probably best avoided.

12

250 GET ANSS:REM player enters letters

26@ PLOT ¢6+YRTRN), 15,RANS®:REM Printe Plaver‘s entries

270 RA%(YRTRN, 1)>aASCCANSS) REM stores Plaver’s entries in arraw
280 NEXT YRTRN

2952 WAIT 100

302 PLOT 2.7,0:REM makes letters resrpeasr

310 FOR S=@ TO COUNT:REM start of scorin?

320 IF A%(S.:0)>=R%S,1> THEN PTS=PTE+1:REM FTS variable is Polnts =c
ored

330 NEXT S

340 PRINT "You scored ";PTS:" out of "iCOUNT+1

330 IF PTS=COUNT+1 THEN PING:REM reward for full score!

360 WAIT S0

37@ COUNT=COUNT+1:REM increaces no. of letters by | for next round
380 PTS=0:REM resets Pointe counter

390 UNTIL COUNT=10:REM 9ame ends at 10 letters
400 CLS:PRINT CHR$(17)>:REM turns cursor on

410 STOP:REM end of Program

At the beginning of the game, the computer asks for your
name. This is an INPUT line, so you do have to press return
after this.

This program mostly uses ideas we have already discussed,
and with the explanatory REMs included in it, you should be
able to follow how it works. (There is no need to type the
REM:s in if you don’t want to — these are just REMarks which
you can include in programs to remind yourself how it works
— very useful when you list it a few months later. The
computer ignores anything after a REM.)

The FOR...NEXT loops will be discussed in a later
chapter. For now, it is enough to know that the computer will
repeat everything between FOR and NEXT a specified number
of times.

14

Chapter 3
ANIMATION AND LOOPS

Animation and Loop structures in programming go together
naturally, as most, if not all, animation is based on loops, and
animation is a good way to demonstrate loops.

A loop is, simply, a way of making a computer repeat a set
of instructions a number of times. An entire program may
consist of a single loop, and in fact the first two programs in
this book are like that. Loops are a vital part of programming,
and there are very few computer programs that don’t contain
some sort of loop somewhere.

ORIC BASIC has two loop structures. The first, the
FOR. ..NEXT loop, is used to repeat a set of instructions a set
number of times. The second, the REPEAT .. .UNTIL loop is
used to repeat a set of instructions until a specified condition
is met.

The following is a simple example of a FOR. . .NEXT loop.

10 FORC=1TO 10
20PRINTC
30 NEXTC

This loop will print out all the whole numbers between 1
and 10. A step size of +1 is assumed, but a different size can
be specified. If the first line was changed to 10 FOR C=1TO
10 STEP 2 the program would print out all the odd numbers
from 1 to 9. The variable C (usually called the control variable)
will never actually take the value 10. The loop will terminate
when the control variable is greater than the specified value.
On termination, C will have the value 11, and it is important
to remember this if the control variable is used outside the
loop for any purpose.

It is important to know that FOR.. .NEXT loops always
execute at least once. If the first line was changed to 10 FOR
C=11 TO 10 the program would print out 11. This is because
the terminating condition of the loop is not checked until it
reaches the NEXT line.

15

It is perfectly possible to have a negative step size, e.g. FOR
C=10 TO 1 STEP-1. In this case the first number after the
control variable must be larger than the second, if the loop is
to execute more than once.

It is quite legitimate to use the control variable in calcula-
tions, or for other purposes (in the Simple Simon game in the
last chapter, for instance, control variables were used to place
the ASCIl code values sequentially in the array, and to
position the letters on the screen). However, care must be
taken if the value of the control variable is altered. It is per-
missible to do this if necessary, but if the control variable is
prevented from reaching the terminating value, the loop will
continue forever, or at least until you press CTRL C, or pull
the plug!

The following is a simple REPEAT. . .UNTIL loop.

10 REPEAT

20 R=R+1

30 PRINT R

40 UNTIL R=10

This, in fact, does exactly the same as the simple FOR. . .
NEXT loop. If we were to change line 20 to 20 R=R+2 it
would print out the odd numbers like our second FOR. . .NEXT
example, except that it would just keep on going! In a
REPEAT. . .UNTIL loop the.condition specified in the UNTIL
line must be met exactly if the loop is to terminate. Like
FOR...NEXT loops, REPEAT...UNTIL loops always
execute at least once.

Of course, this example is much better done as a FOR. . .
NEXT loop. REPEAT.. .UNTIL loops are really for when
we cannot determine in advance how many loops will be
necessary before the condition to end the loop is met.

If you have tried the first two programs in this book, you
will have found that they go on forever, or until an error
occurs. You will see that the last line in these programs is
UNTIL FALSE. The exact meaning of FALSE will be dis-
cussed in a later chapter, but in fact it sets a condition which
will never be met! This is a standard way of producing an
infinite loop, and is very useful insimple exploratory programs.

16

Animation

All moving pictures, be they television, cine, computer games,
or what-the-butler saw, work by presenting a series of slightly
different images to the eye at such speed that the brain inter-
prets the changes as movement. In computer animation, a
character can be made to appear to move across the screen by
PLOTting it in successive positions on the screen in quick
succession. This can be easily achieved by using a FOR. ..
NEXT loop, and using the control variable as one of the co-
ordinates in the PLOT statement. Of course, once a character
is PLOTted, it stays PLOTted, so it is necessary to rub it out
again. This is most easily done by PLOTting a space over the
character. This is a very simple example:

5CLS

10 FOR Y=0TO 24
20 PLOT 20,Y,"*"
30 WAIT 10
40PLOT 20,Y, "'
50 NEXT Y

The WAIT 10 line is to give the image time to register on
the retina.

Of course, to be of any use in an animated game, we need
to be able to control the movement of our character on the
screen. Since we have keys with appropriate arrows on them,
(the cursor control keys), it would be nice to use them. As we
have discovered in the first chapter, these keys generate ASCI|
codes, and so we can use KEY$ to get an input from these
keys, and the function ASC() to determine which has been
pressed.

This brings us to our first animated game program. In this,
an arrow is fired at a target consisting of three stars. The
player has to steer the arrow onto the target using the cursor
keys. Note that this program is essentially a FOR.. .NEXT
loop, giving the movement, inside a REPEAT. . .UNTIL loop,
which keeps firing arrows until a hit is scored.

17

is pressed to move in the opposite direction. Line 90 allows
the space bar to be used to stop horizontal movement.

As these decision-making lines tend to slow down the
action, line 60 skips them if no key has been pressed on that
pass of the loop.

Line 100 actually alters the value of the horizontal co-
ordinate X if an appropriate key has been pressed.

If the arrow were to go off the edge of the screen, the
program would stop with an error message. Lines 110—120
prevent this by trapping illegal values of X. Lines 130—140
actually PLOT and rub out the arrow.

Line 160 is the end of the FOR. . .NEXT loop. If no hit has
been scored, the program goes back to the start and another
arrow is fired. Line 170 is to make sure the new arrow does
not carry on with any sideways movement of the old arrow.

If a hit has been scored it will be detected by the function
SCRN in line 180. 42 is the ASCII code for the star character.
In this case, the program stops with an appropriate sound
effect. Pressing any key will start the program again (line 200).

Note that this program has been written without REMs in
the action loop. This is to make it run as fast as possible. It
takes a computer as long to ignore a REM as it does to execute
an instruction! This program has also been written with single-
letter variable names, as this also seems to speed up action in
some cases. However, as X and Y are the normal way of
denoting horizontal and vertical co-ordinates, using these as
the names of the variables which control movement in these
directions just about counts as mnemonic naming anyway! |
like to reserve these letters for this purpose.

Listing 5 is a “DUCKSHOOT" game which shows how
several things can be made to move at once. A line of ducks (a
redefined character) move across the top of the screen, and the
player shoots them by pressing the space bar.

1@ REM Listing
2@ REM XDUCKSHOOT
3@ REM J.W.F S-83
35 IFCPEEKC#26R> AND 13=1 THEN PRINT CHR$:17)

4@ FOR DUCK=46624 TO 46630

19

%0 REM Duck character definition

60 REM memory addressss are for 43K

70 READ R

8@ POKE DUCK.R

98 MEXT DUCK

100 DRTR ©,26.27.12.30.63.30

110 CLS:FRPER 4

120 PLOT 10,3,0:PLOT 10.7.0

130 DUCK®=CHR®(3)>+"D D D D"

140 B=20:REM arrou start pPoint

150 REPEART

160 FOR X=RNDC1)>%5 TO 23

170 PLOT X,0.DUCKS

180 IF KEY®=" " THEN FIRE$=" ":SHOOT:SHOTS=SHOTS+1
19@ IF FIRE®="" THEN LAIT 1@:GOTO 240

200 PLOT 19,8+3," ":REM rubs out srrou

210 PLOT 19,B."~"

220 IF SCRN (19,B-2)>=68 THEN PING:HITS=HITS+1
230 B=B-3:IF R(=0 THEN FIRES=""'B=2@:FLOT 13.2." "
240 NEXT X

250 PLOT 25.0." "

260 PLOT 1.9, "SHOTS"

270 PLOT 7,5,STRSCSHOTS)

280 PLOT 1,7,"HITS"

290PLOT 7.7,STR$CHITS)

300 UNTIL SHOTS)>=20

310 PRINT "Prescs any key to 90 3gain”

320 GET REs

330 RUN

Actually, although there are four ducks on the screen, there
are really only two moving objects, the ducks and the arrow,
as the ducks are all part of a long string, assembled in line 130.
Note that this string effectively rubs itself out, because of the
spaces between the ducks, and the colour attribute to the left

20

of the last duck. It is necessary to rub out the line when it has
gone as far to the right as it can go. This is done by line 250.
There are 10 spaces between the inverted commas.

The movement of the ducks is controlled by the control
variable X but the movement of the arrow is completely
independent, so the player can fire at any time. It is possible
to fire more than once on each pass of the ducks, but not to
have more than one arrow on the screen at a time.

A score is displayed on the screen, but it is only updated at
the end of each pass of the ducks. This is because putting the
score plotting lines inside the FOR. . .NEXT loop was found
to slow the action too much.

As, in this game, the direction of the arrow is not under
control, it is only necessary to give an impression of its
position. It is therefore only PLOTted in every third position
(see line 230). This also allows much faster flight. In fact,
if you are quick on the trigger you can get two ducks on one
pass!

Line 300 stops the game after 20 shots. Note that we test
for “‘greater than or equal to”, as it is possible for more than
20 shots to have been fired.

When you have understood the ideas in these two programs,
you might like to try to put them together, so that you use the
keys to fire and steer an arrow onto a moving target.

Finally, to show how the cursor control keys are used to
control movement in four directions, a short program that
allows the computer to be used in HIRES mode as a sketch-
pad, in a similar way to ETCHA—SKETCH (Listing 6).

2 REM Listing &

€ REM Hires Sketchprad
7 REM J.W.P 4-83

1@ HIRES

15 C=1

20 CURSET 12@,1@e.C
3@ REFERT

42 GET RS

S@ IF RSC{H$>=9 THEN X=1

21

Chapter 4

ATTRIBUTES, CHARACTERS, AND TIME

Serial Attributes

The ORIC—1 uses the system of serial attributes to control the
colour (and other aspects) of the screen display. This system,
which is used in all modes, allows a full-colour display with
flashing and double-height characters, while using remarkably
little memory space in comparison with parallel-attribute
systems. It is slightly more limiting in the control it allows
over the screen display, but this is not a gr'eat disadvantage.

In essence, a serial attribute can be thought of as a special
character which, when printed on the screen, controls one
particular aspect of everything that appears on the same line
and to its right, unless and until another attribute is printed
that cancels its effect.

When an attribute is printed on the screen it takes up one
character space, which appears as a blank (but a space
occupied by a background colour attribute will appear in its
own background colour).

The effects that are controlled by the serial attributes are
foreground colour, background colour, flash (foreground only,
flashing backgrounds are not possible), double height
characters, and whether the standard (alphanumeric) or alter-
nate (mosaic graphic) character set is printed.

The global INK and PAPER commands work by placing the
appropriate attributes in the two far-left columns of the
screen. This is why these two columns cannot be used for
characters.

The LORES modes are slightly different to the TEXT and
HIRES modes, in that they have no global PAPER command.
The column that normally holds the background attributes for
the whole screen is, in these modes, used to determine whether
the standard or alternate character set is used. A second
difference is that when a background colour attribute is placed
on the screen, it directly affects only the position it occupies,
instead of making the whole line to its right take on the

23

Blue 20 148

Magenta 21 149
Cyan 22 150
White 23 151

Listing 7 shows how it is possible to have all the foreground
and background and flashing colours on the screen at the same
time. |f you experiment, you will also find you can add alter-
nate and double-height characters.

S REM listina 7

10 REM Printing attributes demcnstration”

z@ FOR CODE=123% TO 134

3@ PRINT CHR$:COCE »: "Foregrcund Colours"

4@ PRIMT CHR®(CODE+1€ 7, "Rackaround Colouwrs®

5@ PRINT CHRS$(14@); CHR$(CQLE »; "Flashing foredround”
€@ PRINT CHRS$:14@); CHRS(CODE+160; "What does this do?"
7@ NEXT CODE

8@ GET A% END

To place attributes on the screen in HIRES mode, the
PLOT numbers are used, but with a different statement, FILL.

The horizontal colour resolution in HIRES mode is the
same as in TEXT mode, i.e. there are 40 colour cells across the
screen. Vertically, however, the colour resolufion is the full
200 lines. FILL places attributes in a given number of lines
downards, by a given number of cells horizontally, starting at
the cursor position. The FILL statement is therefore normally
preceded by a CURSET statement.

The horizontal position of the cursor is not critical. Any
setting between 0 and 5 will FILL the first column of cells,
anywhere between 6 and 11 the second, and so on.

The FILL statement therefore has three arguments. The
first specifies how many lines are to be filled, the second how
many cells are to be filled, and the third specifies the attribute.
Thus, starting with the cursor at 0,0 (top left), FILL 100,1,20
would fill the first column to half-way down the screen with
the background blue attribute. The top half of the- screen
would therefore turn blue. The same FILL statement, but with

25

1 REM Listine 9

2 REM *¥ Fla9 ¥x

3 REM J.W.P. 4-~83

S HIRES:FAPER S

1@ FOR x=239 TQ &6 STEP-€
15 Y=INT(I%X/6)>

20 CURSET X.,Y-5,3

30 FILL S.1.18

40 CURSET X, 200-Y,3
S8 FILL S.1.21

€60 NEXT X

78 CURSET 0,99.3

80 FILL 99.1.18

9@ CURSET 6.0,3

100 FILL 99.1.6

110 FILL 99.1.1

120 FOR ¥=40 TO 20@ STEP 15
125 Y=INT(Z¥X 6>

130 CURSET X,VY.3

142 CIRCLE 20,1

150 CIRCLE 10.1

160 CURSET 240-X,VY.3
170 CIRCLE 20,1

188 CIRCLE 10.1

190 NEXT X

200 PING

The fact that background colour attributes only directly
affect the position they occupy in LORES modes can be put
to effect to draw multi-colour patterns on the screen. Listing
10 is a tapestry of background colour squares, using a simple
mathematical base to determine which colour is PLOTted in
each position.

27

S REM Listing 10

1@ LORES ©

20 FOR X=@ TO 38

30 FOR Y=0 TO 26

40 IF INT(Xs2)¢(Xs2) THEN C=17

5@ IF INT(Ys/3)<(Ys/3)> THEN C=20

60 IF INTIX/2)CCX/23AND INTCY,3)CY+3) THEN C=19
7?0 PLOT X.Y.C

80 NEXT Y.X

50 PLOT ©.0.20

100 REPEAT :UNTIL KEY®<>""

Multi-colour fields for games can also easily be produced by
this method, as we shall see in a later chapter.

There is a peculiarity of the background attributes that can
be put to good use in this application. If you use the code
numbers normally used with the PRINT statement with the
PLOT statement, the actual position occupied by the colour
attribute will appear in its complementary (inverse) colour.
That is, if you PLOT 129, it will appear cyan (the inverse of
red) but will produce the red background colour to its right.

It is also worth noting that the function SCRN can be used
to detect the attribute occupying the specified screen position.

Defining New Characters

As both the standard and alternate character sets are down-
loaded into RAM on power-up, all the characters can be re-
defined. Characters are designed on a six-by-eight grid. There-
fore, to redesign a character, you have to specify eight
numbers, representing the eight horizontal rows. Each position
on each horizontal row contributes a certain value according
to its position, and you add these values together to obtain the
number which defines that row. Figure 1 gives the values for
each position in the horizontal rows, and Figure 2 shows how
these are added together to define which positions are on
(foreground colour) or off (background). Figures 3 and 4 are

28

32 16 8 4 2 1

1. =0
2 =1
3 =2
4 =4
5 =g
6 =16
7 =32
8 =0

Fig. 1. Values of positions in the row

a couple of demonstration characters, which we will be
meeting again later in the book.

Characters are stored in order of their ASCI| codes, starting
at memory location 46080 in TEXT and LORES modes. In
HIRES, they start at 38912, In the 16K version, these
addresses are lower by 32768.

The formula for finding the locations for any character is
(starting address for mode/model in use)+(ASC!l code of char-
acter to be redefined+#8). This gives the address of the first
byte, and the character occupies this and the next seven bytes.

The normal way of POKEing the new values into memory
is by way of a FOR. . .NEXT loop, holding the numbers to be
POKEd in a DATA statement. You will have seen an example
of this in the “DUCKSHOOT" game, where the letter D was

29

wards in hundredths of a second from 65535 (the highest
number that can be stored in two bytes) to O, and then starts
again from 65535. When the computer executes a WAIT state-
ment, it sets the clock to the number following the WAIT, and
then recommences program execution when it detects the
clock crossing zero. If you try putting PRINT DEEK(630)
immediately after a WAIT you will find it always returns
65535 (unless ORIC is really on its toes, when you may catch
it still at 0).

It is perfectly in order to set and read this clock for other
timing purposes in programs, provided we remember that it
will be altered by any WAIT statement in the program. The
clock is also slowed if the screen scrolls, and this must be
borne in mind when using it.

Listings 11 and 12 are two simple reaction games which
show how the clock can be used. In Listing 11, after a random
pause of between 2.5 and 10 seconds, a cross is PLOTted in
the middle of the screen, and the computer PINGS. Line 90 is
interesting. This is included to prevent cheating by pressing a
key before the cross appears. Line 100 sets the clock to
10000, which gives a maximum possible reaction time of 100
seconds, which should be enough! Line 110 PLOTs the cross,
and line 120 waits for any key to be pressed.

$ REM Lieting 11

1@ REM Reaction Test

2@ REM J.W.P. S-83

3@ CLS:PLOT 10@.10,"Reaction Test Game"
40 WRIT S0

50 CLS

€@ PLOT 11.5."Press any key"

7@ PLOT 9.7."when cross appears"
€2 WRIT RND(1)>%750+2%50

90 FLUSHS=KEY®

190 DOKE 63@.10800:PING

112 PLOT 18,12."+"

120 GET Ae

33

SOUND, MUSIC, and PLAY. Although SOUND can be used to
produce music, and MUSIC can be used to generate sound
effects, in general it is much easier to use the MUSIC
command when music is required and the SOUND command
for the production of sound effects. In this book we will only
consider the use of these two commands in their principle
roles. The PLAY command is used in conjunction with
SOUND and MUSIC to give envelope shaping (to vary the
volume of the sound to give the desired effect), or simply to
stop the sound generator from operating after the appropriate
length of time. The PLAY command does not in itself produce
sound, but there would normally be at least one PLAY
command used with each SOUND or MUSIC command, or
series of commands.

Each time SOUND is used it must be followed by three
numbers which define three of the four main parameters of
the sound output. The first selects the required sound channel,
and there are three channels which produce tones (we will
ignore the noise channel for the time being). It is possible to
use all three channels simultaneously, but for the time being
we will only consider the use of a single channel. The three
channels are simply numbered 1, 2, and 3, and when using a
single channel it is channel 1 that must be used.

The second number defines what the ORIC manual calls
the period of the signal, but this means the period of each
cycle of the signal not the duration of the whole sound. In
other words it is the frequency or pitch of the sound that this
figure determines. Strictly speaking it is the wavelength of the
note that this number sets, and the practical importance of
this is that the larger this number is made, the lower (not
higher) the pitch of the tone. Basically what happens in the
sound generator is that a tone generator of fixed frequency is
divided by an amount equal to the second number used in the
sound command, and a doubling of this number therefore
gives a halving of pitch.

The ORIC manual does not specify the maximum number
that can be used to define period, but the 8912 sound
generator used in the machine has 12 bit tone period registers
which take a maximum number of 4095, and experiments

36

seem to verify that this is the largest number that can be used.
In fact the program does not crash if a larger number is used
(up to 65536 anyway), but the sound generator will only
respond to the lower 12 bits of the number, and 4095 thus
gives the lowest achievable pitch.

A very wide tone range can be obtained using the SOUND
command, from a sub-audio signal to an ultrasonic one. A sub-
audio pitch will give an audible output because strong
harmonics (multiples) of the fundamental frequency will be
present, and these will be at audible frequencies. The same is
not true if an ultrasonic pitch is used because the fundamental
and harmonics will all be too high in pitch to be heard, and
there will be no apparent output from the unit!

The third number sets the volume of the signal, and this
must be between 1 (minimum volume) and 15 (maximum
volume). If O is used here the volume is controlled by the
PLAY command, but we will not consider this in detail for
the time being.

An obvious omission from the sound generator commands
is some means of controlling the length of each sound. This
parameter is in fact controlled using the WAIT command,
which is not just for use with the sound generator, and can be
used to put a period of inactivity in any program.

The WAIT command is one of the easiest to understand,
and it simply stops the program from progressing any further
for a length of time that depends on the number which follows
the word WAIT. The delay is in one hundredths of a second,
ard WAIT 50, for example, would hold up the program for
0.5 seconds. An important point to bear in mind when using
this command is that apart from giving an output from the
sound generator and producing the TV display the computer
can do nothing else while it is executing a WAIT command.

The sound generator is switched off using the command:

PLAY 0,0,0,0

The following program will give a one second burst of tone:

37

10 SOUND 1,100,12
20 WAIT 100

30 PLAY 0,0,0,0

40 STOP

Try running this, and then alter the period, volume, and WAIT
figures to see what effect this has on the sound that is pro-
duced. A little experimentation of this type will help to
familiarise you with the actual sounds that are produced by
various parameters in the SOUND and WAIT commands. Note
that if you use 2 or 3 as the sound channel in line 10 no
output will be obtained, and channel 1 must be used in a
simple program such as this. Whichever of the three tone
channels is selected there should be no discernable difference
in the sound output that is obtained.

If you wish to change the note it is not necessary to use the
PLAY 0,0,0,0 command to switch off the sound generator
before using the new SOUND command. In fact it is not advis-
able to do so since this seems to produce a noticeable click
during the changeover from one note to another. It is much
better just to use two (or more} SOUND and WAIT commands
followed by PLAY 0,0,0,0 at the end of the sequence. The
following program demonstrates this point, and it simply gives
an initial note, a lower note, and then the original note again
with all three notes 0.75 seconds long.

10 SOUND 1,100,112
20 WAIT 75

30 SOUND 1,200,12
40 WAIT 75

50 SOUND 1,100,12
60 WAIT 75

70 PLAY 0,0,0,0

80 STOP

Although the computer cannot carry out commands while
it is executing a WAIT cycle, it is quite possible to use
commands between the SOUND and WAIT lines so that some-
thing (such as a change in the display) coincides with each
change in pitch. For instance, adding the following lines to the

38

program above

15 PRINT “NOTE 1"
35 PRINT “NOTE 2
55 PRINT “NOTE 3"

should result in NOTE 1, NOTE 2, or NOTE 3 being printed
on the screen at the start of the appropriate note from the
sound generator. An important point to bear in mind when
doing this is that it takes time for the additional commands to
be executed by the computer, and this effectively extends the
WAIT statements. With a simple instruction such as a short
PRINT command this is unlikely to be significant, but it might
sometimes be necessary to shorten the WAIT period in order
to obtain the desired effect, or in an extreme case it might
even be necessary to remove it completely!

If you try using 4,5 or 6 as the sound channel number in
the SOUND instruction you should find that the effect is just
the same as using the tone channels, and it only seems to be
possible to obtain a noise output in conjunction with the
PLAY command. Similarly if you try adding several SOUND
instructions ahead of the WAIT command (with each SOUND
instruction using a different channel number) only the first
SOUND command will be executed. It is only possible to
obtain multichannel operation from the SOUND instruction if
it is accompanied by a suitable PLAY command, as we shall
see shortly.

In fact quite good effects can be obtained using a single
channel, and it is by no means essential to use several channels
in order to obtain good results. However, a single sound
command, or just a few strung together, are capable of giving
only a rather limited range of relatively uninteresting sounds
that are probably of less use than the four preprogrammed
sounds.

In order to obtain really good sound effects it is necessary
to vary the volume and (or) pitch of the tone in a way that
would require an impractically large number of SOUND
instructions. Fortunately, there is an easy solution to the
problem, and this is to use a numeric variable for period and
(or) volume in the SOUND command, and to use a loop so

39

that the values of the variable (or variables) can be changed in
some way. Perhaps a simple sound effect program is the best
way of explaining this. The program given below gives a bomb
drop sound effect with a falling pitch sound followed by an
explosion sound (the latter being the preprogrammed
EXPLODE command and not part of the SOUND instruc-
tion).

10 LET PERIOD =25

20 SOUND 1,PERIOD,12

30 LET PERIOD = PERIOD + 1

40 IF PERIOD = 150 THEN EXPLODE ELSE GOTO 20
50 STOP

The first line sets the initial value of variable PERIOD at 25
which gives a suitably high starting pitch. The next line is the
sound instruction and this sets period as variable PERIOD, and
sets the volume at 12 (or whatever figure you wish to use).
PERIOD is simply incremented by one in line 30, and line 40
checks whether PERIOD has reached a value of 150 (which
gives a suitably low finishing note). If it has not, the program
is looped back to line 20 where the pitch of the tone generator
is reduced. When PERIOD does reach 150 the EXPLODE
command is carried out and the program is stopped at line 50.
There is no need to include a PLAY 0,0,0,0 program line to
halt the output from the sound generator because the
EXPLODE command takes over from the sound instruction,
and in the normal way it switches off the sound generator
once the command has been completed.

PLAY

In order to synthesise most sounds reasonably well it is
essential to vary the volume in the appropriate manner. Rather
than using a numeric variable for the volume figure in the
SOUND command it is easier to use one of the seven pre-
programmed envelopes available from the PLAY instruction.
However, it is useful to bear in mind that it is possible to use a
variable for the volume figure if you wish to do so, perhaps
because the PLAY command does not provide a suitable

40

envelope shape for your requirements.

When using the PLAY instruction in conjunction with one
or more SOUND commands it is essential to use O for the
volume level in the SOUND command or commands, since this
switches control of the volume level to the PLAY instruction
that follows. This command uses four numbers which select
any tone channels that are required, the noise channel (if
required), the desired envelope shape, and the duration of the
envelope.

Taking the tone enable figure first, this is from 0 to 7 with
0 being used to cut off the tone channels (if only noise is to be
used). Assuming that channel 1 will be used where only a
single tone is required, and channels 1 and 2 will be employed
if two channels are needed, the numbers to use are 1 and 3
respectively. All three channels are selected using number 7.
The ORIC manual gives the full list, but normally only the
four modes mentioned above will be needed.

The same system of numbering is used to select which
channel or channels the noise signal is mixed into. It is
important to note that there is only one noise source, not
three. Assuming that tone channel 1 will always be in use, it is
only necessary to use 1 as the noise enable figure. This is also
suitable if only the noise (and no tone) is to be used. O is used
to suppress the noise generator.

The envelope modes are shown diagramatically in the ORIC
manual, and are all fairly straight forward. Mode 1 gives an
almost instant rise to full volume followed by a much slower
fall in volume until the signal becomes inaudible. Many natural
sounds are of this basic type, including many string and
percussive instruments, explosions, etc. Mode 2 is the inverse
of this with a slow build up and almost instant fall to zero.
This gives a rather weird and unnatural effect.

Mode 3 is similar to mode 1, but the envelope automatic-
ally repeats itself. Mode 6 is the repeating version of mode 2.

In mode 4 the volume is smoothly varied up and down, and
this is another repeating envelope. Modes 5 and 7 are similar,
with the volume level gradually building up to maximum and
staying there until a new note is started or the sound output is
halted by a PLAY 0,0,0,0 command. The difference between

41

the two is that in mode 7 there is a straight forward rise in
volume until the maximum level is reached, but in mode 5 the
volume starts at maximum, steadily falls to zero first, and then
builds up to maximum. The envelope diagram for mode 5 in the
ORIC manual seems to be slightly in error incidentally (in the
early versions anyway). There also seems to be an error in the
diagram for mode 4 where it shows the sound level starting at
minimum, whereas it does in fact start at maximum volume.
As mode 4 gives a repeating envelope this will not often be of
any practical importance though.

The fourth figure in the PLAY instruction controls the
duration of the envelope. Where the envelope is a repeating
type it is the duration of a single rise and fall in volume that
is controlled by this figure. An important point to bear in
mind is that a WAIT command must be used after the PLAY
instruction to prevent the next SOUND and PLAY commands
from being reached too quickly. In some cases it is necessary
to have the envelope period figure and the WAIT time matched
reasonably accurately in order to obtain the proper envelope
shape.

As an example of this, let us assume that envelope mode 1
is to be used, and that the WAIT command will give a note
duration of one second using WAIT 100. If the envelope
period is made too long the sound will be cut off abruptly
before it has had time to naturally drop to zero. If the
envelope period is made too short the sound will fall to zero
before the WAIT period ends and the next note is produced.

For modes 1 and 2 the figure for the envelope period
should be 20 times larger than the figure used in the WAIT
command. In our example this would obviously give an
envelope period figure of 2000. The maximum figure that can
be used for the envelope period is 65535 (and not 32767 as
stated in the manual). Of course, you can purposely mismatch
the WAIT and envelope period numbers if this gives the effect
you require.

With the other envelope modes the question of matching
these two figures does not normally arise. With the repeating
modes the envelope period would normally be made quite
short in relation to the WAIT time so that a fairly large

42

number of repeats would be produced. Similarly, modes 5 and
7 would normally be used with quite short envelope periods
when compared to the length of the note set by the WAIT
instruction. However, in modes 3 and 6 the length of one
envelope cycle (i.e. a single rise and fall in volume) is the same
as for modes 1 and 2, and the rise in volume of mode 7 is also
on the same time scale. Note though, that in modes 4 and 5
(presumably because both the attack and decay times are long)
a given envelope period figure gives double the envelope dura-
tion when compared with the other modes.

If we now take a simple example sound effect using the
SOUND and PLAY instructions, the program given below
produces a burst of tone which has a fast attack and slow
decay (mode 1), and is similar in nature to the preprogrammed
PING command.

10 SOUND 1,25,0
20 PLAY 1,0,1,2000
30 WAIT 100
40STOP

The program is very simple in operation with line 10
selecting channel 1, a fairly high pitch, and giving control of
the volume to the PLAY instruction that follows in line 20.
This enables tone channel 1, disables the noise generator,
selects envelope mode 1, and matches the envelope period to
the following WAIT command (i.e. uses a figure 20 times
larger than that in the WAIT instruction). Line 30 and the
envelope period give a note duration of one second.

An advantage of this program over the PING command is
that the pitch of the sound can be changed by using a different
pitch value in the sound command. You might like to try using
envelope mode 2 and hear the way the change in envelope
shape totally changes the character of the sound.

A more bell-like sound can be produced by adding a second
sound channel, as shown in the program that follows.

43

the ORIC manual are also helpful in this respect.

It is possible to have both pitch and amplitude modula-
tion, and the program shown below demonstrates a simple way
of achieving this.

10 LET PERIOD =50

20 SOUND 1,PERIOD,0

30 PLAY 1,0,1,150

40 LET PERIOD =PERIOD +5

50 IF PERIOD = 200 THEN PLAY 0,0,0,0 ELSE GOTO 20
60 STOP

This is a simple loop similar to that used in the falling pitch
program described earlier, but in this case envelope mode 1 is
used so that the sound level falls until the program loops back
to the SOUND and PLAY commands again. The volume is
then restored to maximum, but immediately starts to fall until
the program loops back to lines 20 and 30 again, when full
volume is then restored. Thus, although a non-repeating
envelope mode is used, the looping action of the program gives
a repeating action. The frequency of the amplitude modulation
is controlled by the time it takes the computer to complete
each loop, but a WAIT instruction could be included to slow
things down slightly and give a lower modulation frequency if
desired. However, the fact that the pitch reduces in steps
rather than continuously would become much more apparent,
although this could still give an interesting effect.

Noise Channel

The noise channel is primarily of use for producing explosive
sounds such as the preprogrammed EXPLODE and SHOOT
sounds. The program below gives a sort of machine gun effect
by using the noise generator in conjunction with one of the
repeating envelope modes.

10 SOUND 4,3,0
20 PLAY 0,1,3,200
30 WAIT 300
40 PLAY 0,0,0,0
50 STOP
45

In line 10 channel 4 is used to enable the noise generator,
the pitch value of 3 selects quite high frequency noise (a high
pitched hissing sound), and O for the volume level hands
control of the volume to the subsequent PLAY instruction in
the normal way. Something which must be kept in mind when
using the noise generator is that the number used to select the
pitch is between 0 and 31 because the 8912 sound generator
chip has only a 5 bit noise period register. The highest pitch is
produced using a pitch figure of 0 and 31 gives the lowest
pitch. This obviously gives far fewer pitch options than when
using the tone generators, which can have pitch values of up
to 4095. The nature of noise signals is such that a range of 32
pitches is quite satisfactory in practice.

In the PLAY command at line 20 zero is used as the first
parameter so that all the tone channels are disabled. 1 is
used for the next parameter to enable the noise generator,
and envelope mode 3 is used as this gives a fast attack, like the
sound produced by a gun. A figure of 200 for the envelope
period gives a realistic modulation frequency (or fire rate if
you prefer), but you can try changing this value to speed up or
slow down the rate of fire if you wish.

Most effects only require the use of noise or the tone
channels, but it is possible to use both at once, and this can
sometimes give quite effective results. The program listed
below gives a sound rather like engine noise.

10 SOUND 1,1000,0
20 SOUND 4,10,0
30 PLAY 1,1,3,50
40 WAIT 300

50 PLAY 0,0,0,0

60 STOP

The first two lines select suitably low tone and noise
pitches to give a reasonable simulation of engine noise. In the
PLAY command at line 30 tone channel 1 is enabled and so is
the noise generator. Envelope mode 3 is used and an envelope
figure of 50 produces the fairly fast modulation rate that this
sound effect demands. As with the previous example
programs, it is @ good idea to try varying some of the para-

46

meters to discover what effect this has, and to see if you can
improve on the effect. You might also like to try adding in
tone channels 2 and 3 by adding extra SOUND instructions
and altering the PLAY command at line 30.

One final point about the SOUND and PLAY commands is
that it is not essential to use envelope shaping if you are using
more than one channel. By using in the PLAY instruction the
appropriate tone enable and noise enable figures for the
channels used in the SOUND commands, zero can be used for
both the envelope mode and envelope period figures. The
sound then simply switches on and off with virtually instant
attack and decay. This is demonstrated in this simple program:

10 SOUND 1,100,12
20 SOUND 2,150, 8
30 SOUND 3,200,6

40 PLAY 7,0,0,0

50 WAIT 300

60 PLAY 0,0,0,0

70 STOP

In actual fact this is a more versatile way of generating
sounds since the volume of each channel can be different (the
volume levels being set by the final figure in the SOUND
command or commands). By stringing together sets of SOUND
and PLAY instructions it would be possible to vary the volume
of each channel and thus produce any desired envelope
shaping, and the pitches of the tones could be varied as well.
In this way a vast number of complex effects could be
generated, but even with this system streamlined and arranged
to be as quick and simple to use as possible, it would still be a
rather long and awkward way of doing things, and would pro-
bably not be a practical proposition. For most purposes the
preprogrammed envelopes will give more than adequate
results.

MusIC

The MUSIC command is used in conjunction with the PLAY
command in exactly the same way as the SOUND instruction.

47

4@ MUSIC 2,R-1.B.0
45 MUSIC R.A+!1.B.Q
%@ PLRY 7.@,1.70@

€@ LAIT C

€5 NEXT N

70 PLAY @.,2.0.9

€@ DPATRZ.1.25.3.3,29. 3. 5,25, 3.6, 25

2@ DRTR3.2.25.3.19.27,3.12.25.4.1, 102

This is quite straight forward with three parameters in the
DATA statements, A is the octave, B is the note, and C is the
length of the note. The sample figures in the DATA statements
give a simple scale of C major, but obviously any desired tune
could be produced using this method, and any note within the
compass of the MUSIC commandcan be obtained. All the data
could in fact be placed in a singlte DATA instruction in this
instance, and it has been placed in two lines simply to demon-
strate that long sets of data can be accommodated in this way.
The only limitation on the number of DATA lines that can be
used are those imposed by the available memory space, and
very long sequences of notes could normally be used if desired.

All three channels are used, but channels 2 and 3 play the
same note as channe! 1. However, they are set an octave lower
and an octave higher respectively, and this is a very simple but
effective way of obtaining a more interesting and musical
output from the sound generator. An important point to bear
in mind is that lines 65 and 70 could be transposed, but the
sound generator would then be switched off after each note.
This is undesirable as it would produce a click sound after each
note; something that is avoided by having these instructions
in the order shown in listing 13.

If a program of this type is used as a subroutine it will only
operate properly the first time it is used (see the section on
character definition in chapter 4). The alternative is to READ
the data into an array, and a simple example of this is given in
one of the programs in a subsequent chapter.

It would not normally be necessary to mix noise and music,
although an attempt to simulate a cymbal or similar sounds

49

using the noise generator could obviously be made. The noise
generator cannot be controlled using the MUSIC command,
but there seems to be no problems if SOUND and MUSIC
commands are mixed and used in conjunction with the same
PLAY command. It is therefore possible to use MUSIC
commands to generate musical notes and to use a SOUND
command to add in noise and control the pitch of the noise.

50

structure is the statement ELSE. When ELSE is used (and its
use is optional) if the statement following IF is TRUE every-
thing after THEN is executed, and everything after ELSE is
ignored. If the statement is FALSE, everything after ELSE is
executed, and the instructions after THEN ignored.

With REPEAT. . UNTIL loops, the computer will branch
out of the loop when the statement after UNTIL is TRUE.
You can now understand how we produce an infinite loop by
the statement UNTIL FALSE. FALSE can never be TRUE, so
the loop goes on for ever. UNTIL FALSE is a standard way
of producing an infinite loop for short investigatory or demon-
stration loops, like the first two programs in this book.

It follows that a loop ending with UNTIL TRUE would
only execute once (remember REPEAT...UNTIL loops
always execute at least once).

It is possible to test for more than one condition using the
logical operators AND and OR. AND requires all the set
conditions to be TRUE. OR requires one (or more) of the con-
ditions to be true. AND and OR can be used together, as in
this example:

100 IF A=6 AND B=7 OR C=D THEN F=F+1

However, when using lines like this, it must be realised that
as far as the computer is concerned, |F is one long expression,
and the rules of operator precedence must be borne in mind if
the intended result is to be produced. AND and OR are low-
priority operators, and will always be executed last, and AND
has precedence over OR.

In this example A=6, B=7 and C=D would be evaluated
first, to return either 0 or —1. Then the results of A=6 and
B=7 would be ANDed and if both were TRUE this would
return —1, and then this would be ORed with the result of
C=D, and if either of these were —1, the whole expression
would be TRUE, and the variable F would be increased by 1.

If in doubt about which parts of a complex expression will
be evaluated first, remember that it does no harm to enclose
the parts that must be evaluated first in brackets, even if the
brackets are not in fact necessary.

It can be seen from the above explanation that the logical

52

and bit-by-bit operations of AND and OR in fact amount to
the same thing (if you do not understand AND and OR as
applied to binary arithmetic, an explanation will be found in
the chapter on interfacing).

ORIC also has the logic operator NOT. This reverses the
result of a test. For example we could use UNTIL NOT TRUE
instead of UNTIL FALSE. NOT is not the most useful of
operators, but when needed it is usually indispensible. It is
most often used in conjunction with functions. For example,
the function SGN(X) will return —1 if X is negative, 0 if X is
zero and +1 if X is positive. We cannot use a line like IF
SGN(X) THEN PRINT “NEGATIVE" because in fact all non-
zero values are regarded as TRUE, but it is possible to use the
line IF NOT SGN(X) THEN PRINT “POSITIVE".

So far we have only considered testing numeric variables for
equality, but we can also use the tests less than, greater than,
less than or equal to, greater than or equal to, and not equal
to, and by using NOT we can also test for not less than and
not greater than.

We can also apply tests to string variables. When string
variables are tested, the ASCIl codes are compared on a
character-by-character basis. In effect, this means that words
can be tested for alphabetical order.

Often, we will want several things to happen in response to
an IF.. .THEN statement. Sometimes the required results can
be obtained by using a multiple statement line, but ORICs’
maximum line length of 78 characters is restricting. Long
multiple statement lines can also be hard to follow. An alter-
native is to use the IF.. . THEN statement to skip over the
lines containing the things we don’t want to happen. When
doing this it is not necessary to use THEN and GOTO. One or
the other will suffice, and most programmers omit the GOTO.

However, when we want a complex series of events to
follow an IF.. .THEN statement, an altogether more elegant
way of doing things is to use subroutines, and these will be
explored in the next chapter.

The program in this chapter (listing 14) is a guess-the-
number game that relies almost entirely on IF.. THEN state-
ments. The loop in lines 80—100 generates a random number.

53

230 PRINT

240 IF NUMBER<GUESS THEN PRINT "Too bio ";

250 IF NUMBER>GUESS THEN PRINT "Too small ",

260 IF DFFC1O0THENPRINT “but you are very close"

278 IF DFF>10 AND DFF(SOTHEN PRINT"butyou are quite close"

280 IF DFF>3@ RND DFF<200 THEN PRINT".:PRINT

290 IF DFF>200 THEN PRINT"by a long chalk!"

30@ IF NOT SGN¢DFF~0DFF >THEN PRINT ' PRINT"You are further out than 1
ast time!"

210 TRIES=TRIES+1:0ODFF=DFF

o

320 PRINT:FRINT CHR®(129); "Press any key to try again”

330 GET R$'CLS:PRIMNT:PRINT:PRINT 'PRINT “Last Quess ",GUESS:PRINT'CO
T0 170

34@ PRINT CHR$(142),CHRS 148);CHR®. 129); "CORRECT! " ;CHR®{ 146)

3%0 FRINT CHR®$<142);CHR®7 148);:CHR®(129); "CORRECT! ",CHR®C146)

RFQ PRINT:PRINT:PRINT

370 PRINT CHRS$7123);"Fress any key tno try again"

380 GET RES$ RUN

The guess is input at line 200. Line 210 is a garbage filter
for out-of-range input. If the guess is correct line 220 sends the
program to the win sequence at the end (lines 340 onward). If
the guess is not correct the rest of this line after ELSE calcu-
lates the size of the error.

The rest of the program drops hints as to what the next
guess should be, depending on the size and direction of the
error. Note the effect of the semi-colons at the end of the lines
240 and 250.

Line 300 is interesting. It uses the function SGN and the
operator NOT to indicate whether the error on the current
guess is greater than the error on the last guess. A logic
problem here is that it regards an equal error as being greater.

Some of the lines in this program push ORIC’s acceptable
line length to the limit. In some cases, it is only possible to
type them in by using ? in place of PRINT. The word appears
in full on subsegquent listings. It may also be helpful to

55

remember that as far as ORIC is concerned, the variable names
NU and NUMBER are the same.

56

Chapter 7

STRUCTURED PROGRAMING

So far, the programs in this book have been fairly simple, so
it has been easy to write them in a straight-through fashion,
starting at the beginning and running through to the end,
sometimes with a line at the end to send the program back to
some point near the beginning, avoiding the necessity of con-
tinually retyping RUN.

As programs become longer and more complex, it becomes
more difficult to write them in this fashion. In particular,
matters become difficult when we want a number of things to
happen following an IF.. . THEN statement. There will also be
some events which are required to occur several times in the
run of a program, and it is wasteful of time and memory to
have to write the same program lines in several places.

The answer to these problems is the subroutine. A sub-
routine is a section of a program designed to do a specific task
in the program, and which can be called by the main program
whenever the particular task has to be performed.

A subroutine is called by the statement GOSUB N where N
is the first line number of the subroutine. At the end of the
subroutine, the statement RETURN is used. This returns the
program to the statement following the GOSUB. It is very bad
practice to end a subroutine with a GOTO. RETURN should
always be used. If necessary, the statement after the GOSUB
can be a GOTO — on the same line if necessary.

It is perfectly permissible to call a subroutine from within
another subroutine. This is called nesting. Nesting to a maximum
depth of 16 is possible with ORIC, though it is doubtful if
this would often be necessary or desirable.

Writing programs as a series of subroutines is known as
structured programming. In fact, the loop structures FOR. . .
NEXT and REPEAT...UNTIL are also program structures,
as are user-defined functions. It would be possible to create a
loop by using IF.. . THEN...GOTO at the end to send the
program back to the first line of the loop, but | am sure you

57

would agree that it is easier to use (and easier to follow)
listings using the special structures provided.

Structured programming has become something of a sacred
cow, especially among educationalists. With this has grown the
idea that since it is good for you, it must taste nasty! Structured
programming is held to be desirable, but difficult. This is most
certainly not the opinion of the author! | personally find it
much easier to conceive and write a long program as a series of
subroutines than as one long stream of lines, and there can be
no denying that a structured program is easier to modify and
extend. When the program does not run as intended, it is also
normally easier to track down and rectify the faults.

Structured programs can be easier to follow than unstruc-
tured ones, and we can make them easier to follow by intelli-
gent use of REMS. | stress intelligent because | have seen very
few programs where the REMS were really of any help. Too
often, programs are littered with lines like 220 INPUT NAME$:
REM gets users name, but with nothing to explain what, for
example, a complex string-manipulating routine is meant to
achieve.

It is always a good idea to put a REM on a line that calls a
subroutine, to say what the subroutine does. It is also a good
idea to make the first line of a subroutine a REM, again saying
what the routine achieves. The more structured a program is,
the more important this becomes, as the main section of a full-
structured program may consist entirely of GOSUBS, in con-
junction with IF. . . THEN:s.

Just how far programs should be structured is a matter of
conjecture. The purists hold that every individual task should
be a separate routine, even if it is only executed once in a
program. This is really a counsel of pedantry, and can lead to
programs that are over-long and slow-running. However, any
task, however trivial, that takes more than two or three lines
and is performed more than once in a program, can usefully
be made a separate subroutine.

There are some things, such as dimensioning arrays and
defining functions, that should not really be done within sub-
routines. These jobs should be done, preferably, at the very
beginning of a program, immediately after the programmers’

58

self-indulgent title!

It is important that a subroutine should never be executed
except by being called by a GOSUB. [f this should happen, a
RETURN WITHOUT GOSUB error occurs when the computer
comes to the RETURN statement. Subroutines are normally
placed after the main program, with high line numbers, and
the main program terminated with an END statement, so that
this cannot occur.

Listing 15 is a fairly complex game program, written in a
highly structured form.

S REM Listing 15

1@ REMEXEFXAXNRAKKK

20 REMX x

3@ REM¥ UGLICHRSE ¥

4@ REMY x

S0 REM¥ J.W.P.’83 x

6@ REMYX x

7@ REMEXXRXXRXFXIIN.

8@ DOKE#40@,0

9@ 1F (PEEKCE18)AND1 =1 THEN PRINT CHRS$(17)
100 IF (PEEK(618)ANDB)>=A THEN PRINT CHRSCE)
11@ IF (PEEK(S24)>AND128)>=128 THEN PRINT CHR®/20>
120 CLS:LORES @:INK @

13@ DIM UG(4,1)

142 DIM TUNE(?.2)

1%0 GOSLB 10809 'REM Character definitions
160 GOSUB 2020:REM Fil1l1 music array

170 GNSUBR 23000 :REM Back3round fill strin3
189 GOSUB 402@:REM Drauws rlayfield

190 GOSUR 5000:REM Scoring

200 GOSB £020:REM Plots maze blocks

210 GOSUB 7202:REM Plots characters

22@ COSIB 8200 :REM Moves man

2230 GOSUR 32@0:REM Moves u3lie

242 1F E=1 THEN COSUR 12200:GOTD 1R@

59

259 IF E=2 THEN GOSUR 11002:'G0T0 18@

26@ GOTO 220

270 END

999 REM Charscter definitions

1000
1010
1022
1032
1240
j1a%e
106@
1999
2000
2010
202
2e2a
2040
20%e
2060
2e7e

FOR C=4641C TN 46431

READ A

POKE C.R

MNEXT C

DATA 12.32.12.632,12,30,18.19

DATA 18,12.30,%1,4%.12,18,51

RETURM

REM Fills music array

FOR N=@ TOQ 7

READ Q.P.D

TUNECHM, @)>=0

TUMNECM, 1)=P

TUNECM, 2 =D

NEXT N

DATA 2.10.23¢,32.10.,1%.3,10,1%.2,10.1%
9.3.7.20.2.12,20.4.2,9

RETURM

REM Rsckaround fill strin2

FOR C=1 TN 29

Fe=FE+CHRS(22)

MEXT

RETURN

REM Drauws playfield

FOR LX=4 TO 34

PLOT LX.2.,20

PLOT LX,22,20

NEXT LX

FOR LY=3 TD 21

PLOT 4.LY.20

60

PLOT 34.LY.20
ME¥T LY
FOR FY=3 T0 21

2 PLOT S.FY.Fs

MEXT FY

RETLURM

REM Scorin?
Q$=CHRS(2 >+"SCORE"+STRS(PTS)

IF PTS>DEEK(#4@9)> THEN DNKEW40Q.PTS
HS$=CHRS(2>+ "HISCORE" +STRS(DEEK(#4002)
PLOT 3.1.S

PLOT 23,1.HSS

RETURN

REM Plots maze blocks

FOR BLOCK=1 TO 7%

BX=RNDC 1 M¥28+3

BY=RMD(1 >¥19+3

IF SCRNCBY.RY)>=13@ THEM €01@

PLOT BX.BY.15@

NEXT BLOCK

RETURN

REM Plnots characters

2 ¥=20:Y=12

PLOT X.Y,"x"

FOR C=0 TO 4

LG C.0)3INTC(RHNDC | YX2646)

IF CLGCC.0>17)ANDCLIGL . @Y 23)THEN 7230
UGCC, 1)=INTCRNDS 1 Y%X18+4)

IF CUGCC. 1)>3XANDCLIGIC. 1) 1%OTHEN 70%@
PLOT LIGCC.@),UIGLC. 1Y, "+"

MENT €

RETLIRN

REM Moves man

DNKE 63@. INTCRNDC 1 %302 Y

61

20QT REFEAT

801@ M9aKEYS: IF Me=""THEN 8110

8022 M=ASC(M®>

8@2A O¥=X:0Y=Yy

8Q4Q IF M=8 THEM X=¥-1

80352 IF M=2 THEN Xm¥+1

QP60 IF M=10 THEN Y=Y+1

A7@ IF M=11 THEN Y=Y-1{

RARA IF SCRNCX,Y)I=13A THEN ¥=QX:Y=0Y:SHOOT:PTS=PTS-%:COTO 8112
£29@ PLOT 0OX,0Y,.22

Q100 PLOT ¥,Y."¥"

8110 GOSUR S

812@ UNTIL DEEK(AIRI>IAA

2130 RETURMN

8999 REM Moves ualis

9002 FOR C=@ TN 4

201 IF SCRNIUGCL.A)Y,IIGIC.1))=1%52 THENIQ9A
9@2@ PLOT UGLC,@A),UG(C,1).22

9032 IF LG(C. AN THEM UGCC,2)alIG(C, A ~1
242 IF UGIC. @K THEN LIGIC,0)=LIGIC, A +1
2ATA IF UGIC, 1Y THEN UGIC, 1)=GlC, 1)-1
Q€A IF LIGOC, 1Y THEN UG, 1)=UGMC, 1 +1
287@ IF SCRMCUGIC.B), UG, 1Y>=1%A THEM ZAP:PTS=PTC+3:GOTN 209A
Q22@ FLOT UGIC, @A), LIGIC, 1), "+"

A9A NEXT ©

2102 REM next Part checke win or locse
211@ FOR T=-1 TN 1

2120 FOR U=-1 TO 1

2130 IF SCRMN(M+T,Y+1Y=43 THEN E=1

9140 IF SCRMNCX+T.Y+L)=20 THEN E=2

21%7A MEMT L. T

9160 GOSUB T002:REM Scorina

Q17@ RETLIRN

2200 FOR T=-1 TN 1

62

2993 REM losinQ sedquence

j1ee2e
1ee192
10015
10220
10030
10040
1007@
10080
1005@
10999
11008
11010
11020
11@3@
11035
110492
1107@
11062
1127@
1109

110592

ENPLOD

E

PTS=0:0PTS=0

FLUSHS=KEYS

PRINT CHR®¢129); "FRESS ANY KEY"

GET Ae

CLS

LORES @:INK @

E=Q
RETLIRN

REM winning seduence

GOsSUB 12000

PTS=PTS4+20

IF PTS-0PTS=4S THEN PTS=PTS+S

GOSUB Teee

FLUISHe=KEY®

PRINT CHR®C129)>"PRESS RANY KEY"

GET Rs

OPTS=PTS :E=@

CcLs

LORES 2 INK 2

RETLIRM

MUSIC
MUSIC

MUSIC

1

2
2

el

S REM Plays tune

A FOR N=2 TO ?

STUNECN. @), TUNECN. 1), @
s TUNECM. 2541, TUNEC(N. 15.0

s TUNECM. @22, TUNECN, 15,0

PLAY 7.2.7.2%52

WARIT TLNEIN.2)

MEXT N

PLRY 0.0.0.92

RETLIRN

63

This may not be the most original of games, but it is enter-
taining and has a definite strategy to it.

The playfield has a blue border, and is scattered with
random red blocks, on a cyan background. Your little man
starts in the middle of the field, and you can move him
around, one position at a time, using the cursor keys. There
are also five Uglis in the field, and these will advance towards
your man. The idea is to move so that the Uglis are attracted
onto the red blocks. When this happens, they are zapped, and
you score 5 points. Your man cannot move onto the red
blocks. If you try to do so, you will hear a warning shot, and
you lose 5 points. You score 20 points if you move adjacent
to the blue border, and the round ends. If you zap all 5 Uglis
and make it to the border without losing any points on the
blocks, you gain 5 bonus points. However, if an Ugli manages
to make it onto a position adjacent to your man, you will hear
an explosion, and you lose the gamel

Points from winning rounds are carried over, and the idea is
to achieve as high a score as possible. A hiscore is also displayed,
and is carried forward, win or lose, as long as the program is
running. The authors’ personal best at time of writing is 995.
Yes, it was very frustrating!

If you examine this listing, you will see that, after the
authors self-indulgent title, the early part consists of minor
tasks, like turning off the cursor and CAPS message that make
the screen untidy, that only need to be done once. It would
not be worth writing these as a subroutine. Then comes
dimensioning of two arrays, which should always be done
early in the main program. The remainder of the main program
(up to line 270) consists almost entirely of calling subroutines.

The first three routines are performed once only, but being
fairly complex, are better written as separate routines rather
than in the main program. All the remaining routines are
executed several times. In particular, the scoring routine is
called from several points within the program. Note that this
routine is called both from the main program and from within
other subroutines. There is one subroutine, the one that plays
the tune, that is only called from within another routine. The
DATA to play the tune is read into an array as the tune is

64

played several times. This is difficult to achieve using the
DATA statement direct.

Most of this program uses ideas we have already met, but
the following points are of interest.

In the subroutine from line 1000 (note how the descriptive
REM has been put on line 999 so it is never executed — small
point but it saves time), by using two successive characters to
redefine (the + and *) we can do the necessary POKEing with
a single loop. The data for the two characters has, however,
been put in two separate DATA statements.

The subroutine from line 3000 makes a long string of cyan
background attributes which fill the playfield with an
impressive sweep.

The subroutine from 4000 actually draws the playfield.
Note how the top and bottom borders are drawn together, as
are the two sides. The last part, 4080 to 4100 uses the string
from the previous routine to fill the middle.

The scoring routine is really to print the scores on the
screen. The calculations have to be done in several places, by
the nature of the game. This routine does, however, update
the hiscore as necessary. The hiscore value is stored in the
spare memory area from #400 onward. This is a throwback to
the early, less elegant prototype version of this program, where
CLEAR had to be used after a losing round, so a variable could
not be used to store the hiscore value. In the current version,
an ordinary variable could be used instead, but this method
has been retained to show how the spare memory can be used
for things other than machine code.

The subroutine from 6000 plots the random blocks. Note
that the value plotted is 150, which is actually the value for
background cyan used with the PRINT statement. It is used
here so that the blocks appear in red, but so that the square
immediately to the right of a block does not turn red if a
character moves on to it, as would occur if a value of 16
(normal PLOT background red) was used. Line 6030 is to
prevent two blocks being PLOTted in the same place.

The subroutine from line 7000 onwards PLOTs the
characters. The man is always started from the same point, but
the Uglis are placed in random positions. Lines 7040 and 7060

65

are to prevent these starting positions being too close to the
man.

The method of moving the man is the same as used in
previous programs. Line 8000 sets a random time up to 3
seconds in which you have your turn. Line 8080 detects if you
try to move onto a red square, and penalises you accordingly.
Note that the character is rubbed out after each move with a
background attribute rather than a space. Line 8120 ends the
routine when the time is up.

The method of moving the Uglis is really quite simple,
though it never fails to impress the uninitiated. The X and Y
co-ordinates of each Ugli are checked in turn, and if not the
same as the co-ordinates of the man, the difference is reduced
by one. Line 9070 detects when an Ugli moves onto a red
block, and zaps it! Line 9010 is to prevent it from subsequently
re-appearing. Lines 9110 to 9150 check all the squares
adjacent to the man character, and the one he is on, to detect
either an Ugli or the blue border, terminating the round on
either condition, via lines 240—250. You may feel that this
should be a separate routine, so it could also be called after the
moves man routine. You may care to see if you can do this
yourself (but remember you will also have to put duplicates
of lines 240—250 after the moves man routine has been called
from the main program if it is to have any effect).

The remaining subroutines are the winning and losing
sequences, and are fairly straightforward. Line 11020 adds the
bonus points when earned.

The program is restarted from line 180, which calls the
draws playfield subroutine. None of the earlier routines needs
to be repeated. Indeed, an OUT OF DATA error message
would occur if we tried to repeat the first two.

66

200 PRINT" 3. Search for a number."

210 PRINT

22@ PRINT" 4. Alter an entry."

230 PRINT

24@ PRINT" S. DisPlay all entries,"

250 PRINT:PRINT:PRINT

2€0 PRINT CHR®(129);" SELECT BY NUMBER"
270 GET CHOICES: CHOICE=VAL(CHQICE®)

280 ON CHOICE GOSUB 100Q.220@,3208, 4000, 5090
290 GOTO 158

300 END

999 REM entry subroutine

1000 GOSUB 6eee

1019 REFERT

1020 ENTRIES=ENTRIES+1

1032 INPUT" Enter name";HNRMESCENTRIES)
1042 PRINT

1030 IMPUT" Enter number";NIMSCENTRIES)>
106@ PRINT

1279 PRINT" N’ to exit, any key to continue" GET RS
1080 PRINT

109@ UNTIL (Rs="N")>OR(A%="n")

1100 RETLRN

1997

1998

1999 REM f1i1{n2 subroutine

2000 MEMLOC=#3DR@

201@ FOKE MEMLOC, 172

2020 FOR FSN=1 TO ENTRIES

2032 FOR NAME=1 TO LEN(NAMESCPSNY)>

2049 MEMLOC=MEMLOC+1

2050 CODE=ASCCMIDS!NAMESCPSN),NAME, 1))

68

POKE MEMLOC.CODE
NEXT NRME

MEMLOC=MEMLOC+1

PQOKE MEMLOC,235:REM end of word marker

FOR MUM=1 TO LENCNUMSCPSN)Y)>
MEMLOC=MEMLOC+1

CODE=ASC< MID®CNUMBCPSN >, NUM, 13>
POKE MEMLOC.CODE

NEXT NUM

MEMLOC=MEMLOC+1
POKE MEMLOC,25%5'REM end of number marker

NEXT PSN

PRINT :PRIMT :PRINT
INPUT"Enter your filename";FILE®
POKE MEMLOC+1,170@
CSAVE FILES,S,ANSDOA. ECMEMLOC+1)

RETURN

REM cearch subroutine
GOSUR 6000
PRINT" Search by name facilitu."

PRINT : X=0

69

INPUT" Enter the name";SEARCHS

FOR PSN=@ TO ENTRIES

IF SEARCHE=NAME®(PSN> THEN x=1:GOSUB 5002
NEXT PSN

IF X=@ THEN GOSUB R@@e

GOSue 7eee

RETLRN

REM alter entry subroutine

GOsSuB seee

PRINT " Entry alterstion facilitu"
PRINT

INPUT" Enter the name".SERRCHS

PSH=@

REPERT

PSN=PSN+1

UNTIL SEARCH®=NAME®C(PSN> OR PSN>ENTRIES

IF PSN>ENTRIES THEN GOSUB 89@@

GOsue soee

PRINT

PRINT:PRINT"Change name?":GET RS PRINT

IF AS="Y" OR A®="y THEN INPUT"New name"; NARMESCPSN)>
PRINT

PRINT"Chan9e number?":GET A®:PRINT

IF Ae="Y" OR Ag="y" THEN INPUT"New number';NUM®{PSN>

RETURN

REM disPlay entries subroutine

GOSUB 6200

FOR PSN=1 TO ENTRIES

PRINT MNAMESCPSN), SPC(20-LENCNAMESCPSN) > . NUMSCPSN >

PRINT

70

IF PSN/S=INTC(PSM/3)> THEN GOSUB?@092'GNSUR 600
MEXT FSN

GNSUR 7eee

RETURN

REM title subroutine
CLs
FRGIE LRRA22 222329202808 0400280208¢00¢32303¢03 8

TITLES=CHR®(148)+CHRSC 131 M+ CHR$(138)+"TELEPHONE FILE

PRINT STARS®
PRINT SPC?3),TITLES

A FRINT SPC(S), TITLES

PRINT STRR®
PRINT :PRINT:PRINT
RETIURN

REM "Preas spPace..." subroutine
Se=CHRS 129)>+"Precs (SPACE> tn continue"
PLOT S,23,S8

REPEART

GET Re

UNTIL R$=" "

PLOT S.23."

RETLURM

REM entry not found routine

PRINT

PRINT" There is no entry for that name"
PRINT

PRINT" Please use facility S for a"

7

"+CHR®!

8040 PRINT" manual search"
8030 GOSUB 7000

8060 POP'RETURN

8997

8998 -

8992 REM Prints search names

9000 S=20~LENCNAME®CPSNY)

9010 PRINT

9020 PRINT NAME®/PSN), SPCCS), NUMSIPSN)Y
9038 PRINT

5048 RETURN

9957 :

o958 -

9999 REM dsta recovery subroutine
10000 MEMLOC=#2000: C=@

10010 IAR®="": Il @g=""

10028 REPERT

1023@ C=C+1

10940 REPEAT

18050 MEMLOC=MEMLOC+1

1006@ 1F PEEK{MEMLQC)>=233 THEM 10050
10070 M$=CHREC PEEKCMEMLOC))

10080 IRS=IAS+MS

10050 UNTIL PEEKCMEMLQC >=25S
10100 NRMES(C)=1Ae

10110

12120 REM that was a name

1013@ -

10140 REPEART

1217@ MEMLOC=MEMLOC+1

12160 1F PEEK(MEMLNOC =255 THEN 10152
10179 M$=CHRS(PEEK(MEMLOC)Y)

12180 ILS=IUS+MS

10192 IINTIL PEEW{MEMLOC)Y=2%%

72

10200 NUMS/C) =1Us

10210

10220 REM that was a number
10230 -

10240 IAs="" IUS=""

10250 UNTIL PEEK(MEMLOC+1)=170
1026@ ENTRIES=C

18272 RETURN

This program takes the ideas on using subroutines discussed
in the previous chapter a stage further. The program consists
of a main section (up to line 270) which is a menu of all the
facilities available. The user can choose from them by pressing
the appropriate number key. This selects the particular sub-
routine which performs the task. The subroutine to recover
previously-taped data is selected automatically when
appropriate. This is discussed later. There are also a number of
service routines that are called by the principal subroutines,
but not directly by the user.

The program starts with the usual initialising lines to set the
colours, set the caps lock (to on in this case) and turn off the
cursor. | personally dislike flashing cursors. Since this program
calls for user-input you may feel it is better left on, in which
case line 120 may be omitted. Lines 90 and 100 will be dis-
cussed when we come to the tape filing section. Line 130
dimensions two arrays to hold the names and numbers. As
mentioned in the first chapter, this could be done with one
two-dimensional array, but | think using two arrays makes for
a clearer program in this instance. Line 140 selects the auto-
matic recovery subroutine, and again will be covered later.

Lines 150 to 260 print the title page on the screen. Note
that printing the main title has been made a separate sub-
routine as it is used several times in different parts of the
program.

In line 270 we use GET to obtain user-input. Note that we
use it to obtain a string input, as if we used it to input a
number directly, pressing a letter key would cause an error,

73

stopping the program and losing any data. When a number key
is pressed, it is converted into a numeric variable by the
function VAL. A letter key returns the value zero. Line 280
uses the ON...GOSUB statement which is very valuable in
menu-driven programs. The value of the variable CHOICE
determines which subroutine the program branches to. If
CHOICE=1 the first line number (1000) is selected, if 2 the
second (2000) is selected, and so on. Note that it is the
position in order after the GOSUB that counts, not the actual
line numbers. They only go up in thousands because | like to
make things tidy. It would work if | had used intervals of 500
or 300, or irregular intervals.

ORIC’s ON...GOSUB statement is particularly user-
friendly. If the value of CHOICE is 0, as when a letter key is
pressed, or greater than five, the program simply falls through
line 280, and line 290 sends the program back to the start of
the menu section. Most other computers with ON. . .GOSUB
statements generate an error if the variable is out of range, and
require an extra error trapping line.

Line 290 also sends the program back to the start of the
menu sequence after the RETURN from each subroutine.

The first subroutine is the one to input the data into the
arrays. It is really quite straightforward. The variable
ENTRIES is used to count the number of items entered, and is
used in several of the subroutines. Note that the first (zero)
element in each array is wasted. It is difficult to write a
routine that uses the first element, but allows further entries
to be made without over-writing previous ones.

The second subroutine is the one that creates a tape file of
the data. In the version of ORIC BASIC on which this book is
based, the only functional tape commands are CLOAD AND
CSAVE which can be used to save programs (which are not
saved with variables) or blocks of memory. There are no
specific commands to save arrays. We therefore have to create
our own data structure in an area of free memory, and then
CSAVE the contents of this area. This sounds awfully diffi-
cult, butin factitisn’t.

First, let us consider how ORIC stores string variables and
arrays. In the area of memory immediately above the program,

74

ORIC uses 3 bytes of memory to store the length of each
string variable, and the address of the first character of the
string. The actual characters are stored from the top of the
available memory area (called HIMEM) downwards. The
default setting of HIMEM (that is, the position it assumes on
switch on) is #9EFF. It is raised to #B3FF if the GRAB
command is given, and lowered to #97FF if the RELEASE
command is given or if HIRES modes is selected. (It follows
from this that if you intend entering string variables, and later
changing to HIRES mode in the same program, you should use
the RELEASE command at the start of the program, or you
will lose some or all of your strings).

To reserve an area of memory as a workspace to file our
data, we use GRAB in line 90 to protect memory up to
#B400, and then use HIMEM #9D00 in line 100. ORIC then
uses the area from #9CFF downwards to store the strings, and
we use #9D00 upwards to store them in a form suitable for
recording.

Line 2000 sets the byte at address #9D00 to 170 decimal.
Line 140 uses this to determine whether any data has been
loaded from tape. Lines 2020 to 2070 then slice each name
into individual characters, convert them into their ASCII
codes, and then POKE them into successive memory locations.

At the end of each name, lines 2100—2120 POKE the value
255 into the next byte as a marker for the end of the word.
This is used by the recovery routine. Lines 2150 to 2230 then
do the same thing for the corresponding number. The loop
between lines 2020 and 2260 repeats until all the entries have
been converted.

Line 2310 POKEs the byte after the last number to 170,
again as a marker for the recovery routine.

Line 2300 asks for a suitable name for the file, and it is
then recorded on tape by line 2320. If your tape recorder does
not have automatic motor control, start it recording before
pressing RETURN after entering the file name. After
recording, the program returns to the menu.

Note that the program provides the start and end addresses
for the block of memory to be recorded. We do not need to
know what they are, as they are encoded on the tape along

75

with the data. In fact, there is no point in specifying start and
end addresses when reloading tapes, as they always reload at
the encoded addresses.

Whilst it is perfectly possible to record a block of memory
from within a program, it is not possible to reload while the
program is running. This is because there is a pointer in ORIC’s
memory that is set to the last address of the last file to be
loaded. This is supposed to contain the highest address used by
the program file. (The address of this pointer is #9C.) Since,
after we have loaded our data file, this pointer will be set
higher than our setting of HIMEM, ORIC will assume it has
run out of memory space, and stop with the appropriate error
message.

So, in order to recover our data, it is imperative that the
data tape is loaded first, followed by the program tape, then
all will work correctly. This explains why line 140 can be used
to recover data automatically. Unused bytes in RAM in ORIC
are set to 85, so if line 140 finds #9D00 set to 170, it knows
there is data to be loaded. Be warned that if you have a lot of
numbers in the file it can take a considerable time to recover
them, and there may be quite a pause between running the
program and the menu appearing.

If you examine the recovery routine in lines 10000—10270
you will see that it is almost the opposite of the filing routine.
Each byte in turn is converted from ASCIl code into
character, and these are joined together (lines 10080 and
10180) to reform the names and numbers. When a byte set to
255 is discovered, the (completed) name or number is placed
in the appropriate array. When line 10250 finds a byte after a
number set to 170, it ends the process, sets the value of
ENTRIES to the appropriate value (line 10260) and exits the
subroutine.

Note that in the recovery routinewe use REPEAT. . .UNTIL
loops, as we do not know in advance the length of each name
or number, or the number of entries, whereas in the filing
routine we used FOR. . .NEXT loops.

It may be that in the future simpler methods of data
recording and recovery with ORIC will be revealed. In the
meantime, this method works and is reliable.

76

It will be noted that line 2320 records the data at the slow,
300 baud rate. This is necessary for reliable operation with my
particular cassette recorder. If you can successfully record and
reload programs at the fast rate, you should also be able to use
2400 baud for data.

The subroutine from line 3000 is the search routine. After
asking for the search string to be input, at line 3030, it
compares it with all the entries in the array, and prints out any
match. If it finds more than one match it prints them all. The
printing is done by a separate subroutine {from line 9000), and
this avoids a long multiple-statement line at line 3050. This
print routine is also used elsewhere in the program. If no
match is found, another subroutine, from line 8000, prints a
suitable message. A ““Press SPACE to continue’’ message is
printed at the bottom of the screen, and again, this is a
separate routine as it is used in several places in the program.

The subroutine from line 4000 searches for an entry like

the previous routine, but it stops if a match is found. It then
has facilities to change either the name, or number, or both.
Notice how we can use INPUT after an |F.. . THEN state-
ment, also how we can make the computer accept either an
upper or lower case Y.
" A problem with both the search routines is that the
computer will only respond to an exact match. Even one space
too many or too few will cause an entry to be passed by. It is
therefore a good idea to standardise the format of entries as
much as possible, like using capital letters only, and putting a
full stop but no space after initials.

If no match is found, this routine calls the same subroutine
as the previous one.

There is no specific deletion facility in this program, but
this subroutine can be used to over-write an entry that is no
longer required. Don’‘t forget you have to record the new
version whenever you make an amendment!

The last subroutine prints out all the entries in groups of
five, line 5040 interrupting the program as appropriate. The
subroutine used in the search routines could have been used to
print the entries, but as it takes only a single line, this was
considered unnecessarily complex. Note how SPC has been

77

used to print the names and numbers neatly in columns. Try
the effect of omitting the commas in lines 5020 and 9020.

The service subroutines are really quite straightforward, but
line 8060 in the ,entry not found, routine is interesting. It has
the effect of making the program go straight back to the
menu, instead of through the subroutine that called the sub-
routine. This avoids having to press the space bar twice to get
out of the search routine if no match is found, and also is an
elegant way of skipping lines 4090 onwards in the alteration
routine, which are not appropriate if no match is found.

In the press space routine, you will note that the value 129
is used to give the foreground red colour to this line. You may
remember from the chapter on serial attributes, and the game
in the previous chapter, that when we use the high values for
background attributes with PLOT statements, the actual
position they occupy appears in the inverse colour. With fore-
ground attributes, they appear in the inverse of the current
background colour, in this case blue. In fact, this value was
used because it was originally intended to PRINT this line, but
when | changed it to PLOT, | rather liked the effect of the
blue square to the left of the line, and decided not to change it.

This program is not pefect. No program is. All are capable
of being extended and improved. | hope you will experiment
with it, perhaps try to add search routines that try to match
only the first few letters, to make it easier to find an entry if
you cannot remember exactly what you entered.

Remember, nothing you type in on ORIC’s keyboard can
harm it, and once you have a copy of a working program on
tape, it does no harm to change it. If the modifications don‘t
work, just pull the plug and reload the original, and start again.

If you aren’t sure if a programming idea will work, try it
and find out. Don’t worry about error messages. They are
tools for the adventurous, not traps for fools. Practically every
program in this book contains some line that | was not sure
about until | tried it. It’s the only way to learn.

78

Chapter 9

INTERFACING

Using a computer for control and measurement applications
seems to be an increasingly popular aspect of home-computing.
Probably the majority of ORIC owners will not use the
machine for anything other than games, filing, or similar
applications that require standard extras such as a TV set or
cassette recorder, but for those who do wish to try using the
unit as the basis of something a little more exotic the ORIC
has good potential.

There are several sockets on the rear of the machine, one
of which is a phono socket which connects to a TV set (which
acts as @ monitor) via the lead supplied with the computer.
There is also an RGB monitor output which enables a colour
monitor to be used with the machine.

The parallel printer output is the 20 way IDC connector,
and it is advisable, if possible, to check before you buy a
printer that it will operate properly with the ORIC. There are
minor variations on parallel (and series) printer ports, and
problems of incompability between a particular computer and
a particular printer do sometimes arise.

At the time of writing ORIC’s own colour printer was
imminently due for release, this of course should operate
perfectly with ORIC—1.

The cassettte socket is a 7 way DIN type and permits
control of the motor in the cassette recorder provided the
latter has a remote socket. There is also an audio output here
which seems to give adequate output to drive a hi-fi or similar
amplifier so that increased volume can be obtained, but there
does not seem to be any way of muting the internal loud-
speaker of the ORIC (although this is not a great drawback). It
is possible to use the audio output as an input if desired,
incidentally. If you find that when loading a program from
cassette the output of the recorder is reproduced loudly
through the internal loudspeaker of the machine and loading
of the program does not occur, this almost certainly means

79

that the cassette lead is not connected correctly and the audio
output from the recorder has been connected to the audio
output of the computer. If a cassette lead specifically for the
ORIC cannot be obtained it seems to be possible to use a BBC
cassette lead without any problems. Most cassette recorders
require a lead fitted with two 3.5mm jacks and one 2.5mm
jack, but some others require a DIN connector and you must be
careful to obtain the correct type for your recorder. With the
type that use jack plugs it is essential to connect the two
3.5mm plugs correctly (one to the earphone socket and the
other to the microphone or line input socket), but if you are
in any doubt about this there is little risk of anything being
damaged if you determine the correct method of connection
by trial and error.

Expansion Socket

The expansion socket is the 34 way IDC type, and it is
probably best not to try experimenting with any home-
constructed add-ons to this unless you are reasonably sure that
you understand what you are doing. The ORIC is not easily
damaged by accidental short circuits and similar mishaps at the
expansion port, but there is the potential for causing expensive
damage if a serious mistake should be made.

All the connections one would hope for are present at the
expansion port, including the address bus (AO to A15), the
data bus (DO to D7) and a number of control lines (including
the clock signal at pin 5). Although the ORIC uses a 6502A
microprocessor, which is the 1.56MHz version of the popular
6502 microprocessor, the clock signal is at a frequency of
1MHz. Standard 1MHz peripheral interface devices such as the
6821 and 6850 can be connected to the expansion port, and it
is not necessary to use the more expensive A series devices.

The 6502 is normally used with straight forward memory
mapped input and output devices. In other words, the input
and output devices appear to the 65602 as if they were ordinary
RAM or ROM memory locations, and a gap or gaps for the
input and output circuits (including the internal ones of the
computer) must be left somewhere in the 64K addressing

80

range of the microprocessor. Reference to the memory map in
Appendix A of the ORIC manual shows that there are spare
memory locations from BFEOQ to BFFF inclusive. However, an
important point to bear in mind is that the 48K version of the
ORIC has 64K RAM chips which occupy every memory loca-
tion within the address range of the 6502, The ROM which
contains the basic interpreter and operating system is used to
overlay (approximately) the 16K at the upper end of the
memory.

The practical importance of this is that it slightly com-
plicates interfacing to the expansion port. There is no real
problem when using this port as an output because this simply
means that any data sent to an output device will also be sent
to RAM which shares the same memory location. It is difficult
to envisage circumstances under which this would be of any
importance, or even where it would become apparent to the
user at all.

The situation is rather different when information is fed
into the expansion port. When the microprocessor reads the
memory location where the input device is situated it will also
read the RAM at that location. This would result in both the
input device and the RAM placing an output onto the data bus
simultaneously. This is not likely to result in any damage to
any of the hardware, especially when one takes into con-
sideration the very short period of time that both devices
would be producing an output onto the data bus. However, it
is obviously not a very satisfactory state of affairs, and the
data from the input device would almost certainly be
corrupted.

There is a simple solution to the problem, since the ORIC is
designed so thatinternal devices such as the RAM can effectively
be disconnected from the data bus when reading from an input
device. The relevant pins on the expansion port are 1 (MAP), 2
(ROMDIS), and 6 (I/O Control). These are normally in the
high logic state, but taking them low when reading from an
input circuit enables the data to flow unhindered into the
machine.

81

Simple Circuits

The basic method of interfacing to the expansion port is
perhaps best explained with the aid of simple output and input
port circuits, such as those shown in Figure 5 and Figure 6
respectively. We will consider the circuit of Figure 5 first as
this is the more straightforward of the two.

Output Port

The top twelve address lines (A4 to A15) are decoded by
IC1 to IC3. IC1 is a dual 4 input NAND gate and IC2 is a
single 8 input NAND gate. The output of a NAND gate goes
low if all its inputs are high, but IC1a is used as a simple
inverter which is interposed between A14 and one input of
IC1b. IC3 is a quad 2 input NOR gate, but in this circuit only
two of the four gates are used. These simply combine the out-
puts of IC1b and IC2 so that a low output is only produced
from IC3b when both these outputs are low. Thus a brief
negative pulse is produced by IC3b when address lines A4 to
A15 are high, apart from A14 which must be low (due to the
inclusion of an inverter here). This occurs with any address from
BFFO to BFFF (in Hex), and this block is within the range of
spare addresses mentioned earlier. If more than one input/
output port is required the lower four address lines could also
be decoded, or the use of a special PIA device such as a 6522
or 6821 might be a more practical approach.

IC4 is a 74LS273 octal D type flip/flop, and this is used to
provide eight latched outputs from the data bus. This device
latches on a negative transition of the CP input at pin 11. A
suitable pulse is supplied to IC4 by IC3b whenever an address
in the range BFFO to BFFF appears on the address bus. The
POKE command can be used to send the desired number to
the data bus (and at one of the appropriate addresses). For
example, POKE #BFFF,255 would send 255 to the output
port (all eight outputs in the high state). Note that the # sign
must be used to show that the address is given in Hex. It does
not matter which particular address in the range BFFO to
BFFF is used, and it is not even necessary to always use the

82

v 1 IC1a IC1 = 74L520
2 IC2 = 74LS30
r & =——— 1C3=74L527
= 6 IC4 = 74L.S245
A14 O e———
IC1b
A15 0O & p—-—
A13 O——— 8 4 6
A12 O = 1 o
A1]
_
A100 2 1C2 1C3a
A8 O
A70 8‘ 8
A6 O T 9j1of 11
Aso—q2
1 1C3c
R/WO 3 1 IC3b
O~ 8
ov
1/oMAPO
peavis 12
2
D7 o———— ;-2—-0 D7
D6 o—.—%- h%—o D6
D5 O= = -0 D5
P E—Y = D4 |
g; o (*) IC4 4 gD3 nput
D20 1 S _oD2
D1 O~ : ; —Q D1
DO O —() DO
* 1
ov . .
IC1 pin 14,1C2 pin 14,
Y,
svo o ey IC3 pin 14 and IC4 pin 20
ov O T 100nF IC1 pin 7, IC2 pin 7,

IC3 pin 7 and IC4 pin 10
Fig. 6. A simple input port for the Oric 1

85

circuit, whereas a 2 input type was used in the first one. This
has been done so that the R/W (read/write) line can also be
gated along with the upper twelve address lines. This simply
ensures that an accidental write operation to the input port
cannot result in the microprocessor placing an output onto the
data bus at the same time as the input port. The R/W line is
high during read operations, and IC3c is therefore used as an
inverter which gives the required negative signal to IC3a when
the input port is read.

IC4 is a 74LS245 octal transceiver, but it is used here with
the send/receive terminal (pin 1) permanently held low so that
the device is always in the receive mode. It would in fact be
possible to use an octal tri-state buffer such as the 74LS244
for IC4 but the pin layout of the 74LS245 is more convenient
and this device is probably a more practical choice.

Pin 19 of IC4 is the negative chip enable input, and this will
normally be in the high state so that IC4 is disabled and its
outputs are at a high impedance. This is essential as the device
would otherwise be permanently providing an output on the
data bus and would prevent proper operation of the computer.
Only when an address between BFF0Q and BFFF is read will
the negative chip enable input be taken low and the outputs of
IC4 then placed onto the data bus whatever logic levels are fed
to their inputs at that instant.

The MAP ROMDIS and 1/0O Control terminals of the
expansion port are all taken low when the port is read so that
internal devices of the computer are all disconnected from the
data bus while the read operation takes place. It is essential
that these three lines should only be taken low at this time
since the normal working of the computer is blocked while
they are in this state (in other words the microprocessor is
only able to communicate with an external device while these
inputs are low) |f you try manually taking these lines briefly
to the low state the computer will simply stop operating and
is unlikely to start again when they are refurned to the high
state since the operating system will have crashed (although
switching off and turning the unit on again should restore
normal running).

Data is read from the port using the PEEK command (i.e.

86

PRINT PEEK (#BFFF) or X = PEEK (#BFFF)) As was the
case with the output port, any address from BFFQ to BFFF
can be used when communicating with the input port, and it is
not necessary to always use the same address, although it
would be advisable to do so to avoid possible confusion. The
number obtained from the port is an eight bit binary type, but
this is converted by the computer into a decimal number of
between 0 and 255. This is just like writing to the output port
but in reverse. For example, if input lines DO, D1, D2 and D3
are high the number returned would be 15 (1 + 2+ 4+8=15)

When using more complex input/output ports it would be
necessary in most cases to use more of the control lines of the
computer, such as the reset, clock, and IRQ (interrupt request)
lines, but these are all available at the expansion port. Appendix
F of the ORIC manual gives full details of the connections to
all the sockets on the rear of the machine.

Logic AND

When using an input port it is not always all eight inputs that
are of interest, and it may be that just one or two lines are all
that need to be read. There is no way of reading less than the
full eight lines, but there is a simple way of masking any input
lines that are of no interest and effectively reading only those
that are significant.

This is achieved using the logic AND function. Here we are
using the AND command in what is often termed the bitwise
role, and not in the more simple role which we have used in
programs given earlier in this book, where it is used in much
the same way as the plain English word “and”’. When employed
in the bitwise mode it is analagous to a logic AND gate.

Probably the best way to explain the operation of the AND
command is to take a simple example of its use. We will
assume that we wish to read an input port but only wish to
know the state of line D7 (which equals O when low or 128
when high). In order to read just one bit the number from the
input port is ANDed with whatever number that bit represents
when it is in the high state, or 128 in this case. Thus using the
command PRINT PEEK (#BFFF) AND 128 would give the

87

answer 0 if D7 is low, or 128 if it is high.

What actually happens when two numbers are ANDed is
that they are compared bit by bit, and a 1 is produced in the
answer only if there is a 1 in that bit of both the first number
AND the second. For example, if the number returned from
the input port is 15 and it is ANDed with 128 this gives the
following result:

15 = 00001111
128 = 10000000
0 (answer) = 00000000

Obviously the answer is zero since no column has a 1in
both numbers. {f the number returned from the input port was
143 the result would be as follows

143 = 10001111
128 = 10000000
128 (answer) 10000000

It can be seen from this that using a 0 in a bit of one of the
numbers ensures that there must be a 0 in that bit of the
answer, but if a 1 is used in a bit of one number the result in
that bit of the answer is equal to the number in the corres-
ponding bit of the other number. By setting the lower seven
bits to O the lower seven bits of the answer must be O, but by
setting the top bit (most significant bit or MSB) to 1 the
answer is a true reflection of that bit in the number from the
input port. Of course, one of the numbers does not need to be
a reading from an input port, and it is possible to AND any
two eight bit binary numbers in this way. By using the appro-
priate masking number it is possible to read any one bit, or
more than one bit if necessary (3 would be used to read the
two least significant bits for instance).

Logic OR

This is another command that can be used virtually as an
ordinary English word, or as a logic operation. When used as a
logic operation it is used in much the same way as AND, but
when the two binary numbers are compared a 1 appears in the

88

Chapter 10

ODDS AT THE END

This chapter is a miscellany of useful odds and ends, and
explains some of the mystery lines used in the programs in this
book.

Some of ORIC’s operations, such as the keyclick control
and the caps lock, are controlled either from the keyboard or
from within programs by a toggle on-off action. This makes it
hard to ensure from a program that, for example, the key-
click is turned off so it doesn’t interfere with sound effects.
If you put the statement PRINT CHR$(6) in to turn the key-
click off, if the user has already turned off the keyclick with
CTRL F before running the program, it will turn it on again!

Fortunately, there is a telltale byte in memory which can
be PEEKed to determine whether these toggle controls are set.
It is at location 618 decimal (#26A). This byte contains the
status of the keyclick, cursor, printer, VDU protected column
and auto double-height toggles. Location 524 decimal (#20C)
contains the status of the caps lock toggle.

To determine whether a particular control is on or off, we
have to determine whether a particular bit in the byte is high
or low. We can do this by using the Boolean AND operator.
Thus, if we AND PEEK(618) with 1 it will check the first bit,
which reveals the cursor status, and if we AND it with 8 it
checks the keyclick status. So the line:

IF (PEEK(618)AND1)=1 THEN PRINT CHR$(17)

will ensure the cursor is turned off. Reversing the test ensures
it is always turned on, thus:

IF(PEEK(618)AND1)=0 THEN PRINT CHR$(17)

To check for caps lock set we AND PEEK(524) with 128.
Using =0 will ensure caps on, using=128 will ensure caps off.
The numbers to be used with PEEK(618) are as follows:

90

Notes

Notes

Notes

Notes

Notes

Notes

Notes

Notes

OTHER BOOKS OF INTEREST

BP86: AN INTRODUCTION TO
BASIC PROGRAMMING TECHNIQUES
S. Daly, M.B.C.S.

This book is based on the author’s own experience in learning BASIC
and in helping others, mostly beginners, to program and understand the
language.

Also included is a program library containing various programs that
the author has actually written and run — these are for biorhythms,
plotting a graph of y against x, standard deviation, regression, generat-
ing a musical note sequence and a card game.

The book is completed by a number of appendices which include
test questions and answers on each chapter and a glossary.

96 pages 1981
0 85934 061 9 £1.95

BP115: THE PRE-COMPUTER BOOK
F. A. Wilson, C.G.l.A,, C.Eng., F..E.E., F.l.LE.R.E., F.B.l.M.

Aimed at the absolute beginner with no knowledge of computing,
this entirely non-technical discussion of computer bits and pieces and
programming is written mainly for those who do not possess a micro-
computer but either intend to one day own one or simply wish to know
something about them.

Also highly recommended for the new computer owner who may be
beset with uncertainties and, also, the person who cannot understand
the jargon and technical terms used by most manufacturers in their
sales leaflets.

96 pages 1983
0 85934 090 2 £1.95

BP126: BASIC & PASCAL IN PARALLEL
S. J. Wainwright, B.Sc., Ph.D., M.1.Biol.

This book takes the two languages BASIC and Pascal , and develops
programs in both languages simultaneously. Emphasis is placed on
structured programming by the systematic use of control structures;
and modular program design is used throughout. Example programs are
used to illustrate the program structures as they are introduced, and the
reader can learn by example.

If the book is used as an introduction to BASIC programming, the
structured approach will encourage good programming techniques
which will be compatible with Pascal programming at a later date, and
will eliminate many of the difficulties met by BASIC programmers

	PREFACE

	CONTENTS

	VARIABLESAND CODES

	INS AND OUTS

	INPUTS

	ANIMATION AND LOOPS

	Animation

	Defining New Characters

	TIME

	USING THE SOUND GENERATOR

	PLAY

	Noise Channel

	MUSIC

	DECISIONS

	STRUCTURED PROGRAMING

	DATA FILING IDEAS

	INTERFACING

	Expansion Socket

	Input Port

	Logic OR

	ODDS AT THE END

	Useful Memory Locations

	Simple Renumber Program

	fe BERNARD DADAN! BP12S

	An Introduction

	to Programming

	the ORIC-1

