

AN INTRODUCTION TO
PROGRAMMING THE

AMSTRAD CPC464 and 664

ALSO BY THE SAME AUTHORS

No.BP129
No.BP133
No.BP139
NO.BP142
NO.BP143
NO.BP147
NO.BP150
NO.BP152
NO.BP154
No.BP156
No.BP158
No.BP165

An Introduction to Programming the ORIC-1
An Introduction to Programming the DRAGON 32
An Introduction to Programming the BBC Model B Micro
An Introduction to Programming the ACORN ELECTRON
An Introduction to Programming the ATARI 600/800 XL
An Introduction to 6502 Machine Code
An Introduction to Programming the Sinclair QL
An Introduction to Z80 Machine Code
An Introduction to MSX BASIC
An Introduction to QL Machine Code
An Introduction to Programming the Commodore 16/Plus 4
More Advanced Programming with the Amstrad CPC464
and 664

N0.BPI66
No.BP167
No.BP169
NO.BP170

More Advanced MSX Programming
More Advanced Programming with the Sinclair QL
How to De-bug Your Programs
An Introduction to Computer Peripherals

AN INTRODUCTION TO
PROGRAMMING THE

AMSTRAD CPC464 and 664

by
R.A. & J.W. PENFOLD

BERNARD BABANI (publishing) LTD
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W6 7NF

ENGLAND

PLEASE NOTE

Although every care has been taken with the production of this book
to ensure that any projects, designs, modifications and/or programs etc.
contained herein, operate in a correct and safe manner and also that
any components specified are normally available in Great Britain, the
Publishers do not accept responsibility in any way for the failure,
including fault in design, of any project, design, modification or
program to work correctly or to cause damage to any other equipment
that it may be connected to or used in conjunction with, or in respect
of any other damage or injury that may be so caused, nor do the
Publishers accept responsibility in any way for the failure to obtain
specified components.

Notice is also given that if equipment that is still under warranty is
modified in any way or used or connected with home-built equipment
then that warranty may be void.

All the programs in this book have been written and tested by the
authors using a model of the Ainstrad CPC464 that was available at the
time of writing in Great Britain. Details of the graphics modes may vary
with versions of the machine for other countries.

©1984 BERNARD BABANI (publishing) LTD

First Published - October 1984
Revised and Reprinted - August 1985

British Library Cataloguing in Publication Data
Penfold, R.A.

An introduction to programming the Amstrad CPC 464
(BP153)
1. Amstrad CPC464 (Computer) - Programming
I. Title II. Penfold J.W.
001.64’2 QA76.8.A4

ISBN 0 85934 128 3

Printed and bound in Great Britain by Cox & Wyman Ltd, Reading

PREFACE

The Amstrad CPC464 is in many ways an unusual home
computer, and the most obvious aspect of this type is the
inclusion of an integral cassette recorder and a monochrome
or colour monitor with the machine. However, the package
as a whole represents outstanding value, and there are obvious
advantages in having the built-in cassette recorder, and a
monitor rather than the more usual course of using a
television set to provide the display. The fact that the
package costs relatively little does not mean that this
computer lacks anything in terms of performance. With its
good graphics capability, 80 column text mode, and out
standing sound generator it actually ranks as one of the best
home computers currently available.

The excellent hardware is well supported by the built-in
computer language, Locomotive BASIC. This has a large
range of useful commands available, including instructions
that support the excellent graphics and sound capabilities
of the machine. Although a complex BASIC of this type can
be a little intimidating to the beginner, it makes programming
much easier once the various instructions and functions have
been mastered. This is not as difficult as one might imagine
provided things are taken one step at a time, as (hopefully)
this book demonstrates.

In the summer of 1985 Amstrad introduced a second
machine, the CPC664. The 664 has much in common with the
464 and indeed all BASIC programs for the 464, including
those in this book, are completely compatible with the new
664. The main differences are that the 664 has a built-in disc
drive in place of the cassette recorder of the 464, plus a few
additional BASIC commands, most of these being concerned
with graphics. Chapter 11 covers the special features of the
664.

R.A. &J.W. Penfold

CONTENTS

Page

Chapter 1: VARIABLES & ARRAYS... 1
LOOPS.. 3
ARRAYS .. 5

Chapter 2: STRING VARIABLES... 12

Chapter 3: DECISIONS... 20
AND&OR.. 22
ON .. 23

Chapter 4: INPUT, PRINT & DATA 30
PRINT... 31
DATA, READ & RESTORE... 33
METRIC CONVERTER PROGRAM.................................. 34

Chapter 5: THE SOUND GENERATOR.................................. 45
SOUND.. 46
MUSIC... 49
RENDEZVOUS... 51
HOLD/RELEASE... 52
FLUSHING.. S3
NOISE... 54
ENV .. 55
ENT.. 59

Chapter 6: GRAPHICS 1 - MODES & COLOURS............ 61
LINE DRAWING.. 65
WINDOWS.. 72
DICE... 73
WINDOW SWAP.. 81

Chapter 7: GRAPHICS 2 - ANIMATION............................... 82
TEXT AT GRAPHICS CURSOR.. 90
JOYSTICKS & TEST .. 96

Page

Chapter 8: BINARY & HEX.. 103
BIN$... 105
HEXADECIMAL...107
LOGIC OPERATIONS ... 109

Chapter 9: INTERFACING.. 112
PRINTER...112
PRINTING.. 113
DISC PORT.. 114
EXTERNAL CIRCUITS .. 115
PEEK & POKE.. 119
OUTPUT PORT... 120

Chapter 10: INTERRUPTS .. 122
AFTER ..123
EVERY ..124

Chapter 11: THE AMSTRAD CPC664 126

Chapter 1

VARIABLES & ARRAYS

Consider a typical computer game. A feature of all good
games is a running score on the screen. From time to time,
you will zap an alien or whatever, and the score will increase.
The computer has to be able to remember the current score,
update it as necessary, then remember the new score.

Within the BASIC computer language, storage of informa
tion which has to be altered periodically is done through the
use of variables. These are distinct from constants, numbers
such as 1, 100, 11.273, which may be included in program
lines and which obviously cannot change in value.

So that variables can be referred to within a program,
they are given names. These variable names must not be the
same as a BASIC keyword - the words that the computer
recognises as specific instructions. In Locomotive BASIC,
variable names can contain upper and lower case letters and
numerals, but must start with a letter. All the letters and
numbers used in a name are used to distinguish one variable
from another. Many BASICs only use the first two charac
ters, which can cause difficulties. However, Locomotive
BASIC regards upper and lower case letters as the same in a
variable name. If a variable name ends with a dollar sign
($), it refers to a string variable. These are handled differently
to the numeric variables discussed in this chapter, and there
fore have a chapter of their own.

Though many programmers use algebra-style single-letter
variable names, it is better whenever possible to use longer
names that give a clear indication of what the variable is being
used to store. For example, if the variable contains the score,
call it “score”. However, the use of X and Y as variable names
for horizontal and vertical co-ordinates in screen plotting is
standard practice. Long variable names do, however, take up
more memory, but with the Amstrad there is little risk of
running out of space!

BASIC accepts keywords typed in upper or lower case

1

letters. However, keywords appear in upper case in subse
quent program listings on the screen. Variable names always
remain in the form in which they are typed in. It is therefore
a good idea to type all variable names in lower case, so they
stand out from the keywords.

All mathematical and logical operations can be performed
on variables, and the results of mathematical operations may
alter the contents of a variable, or create a new variable. Thus
score=score+10 alters the contents of the variable score,
price=cost+tax could create a new variable price, and store in
this the value of the contents of cost plus the contents of tax.
It could also be that the variable price already exists, in which
case the contents would be updated.

One important point to remember is that when variables
are used on the right-hand side of an assignment statement
like the above, they are not altered in value, unless they also
appear on the left-hand side, and they are not destroyed.
Therefore, in the example above, cost and tax continue
unaltered and could be used in (any number of) further
calculations if required.

From our first example, it is clear that the way in which
variables are used in computing and the way in which they are
used in algebra are very different. A line like X=X+10 is a
nonsense in algebra, but lines like it are very common in
computing. It should always be remembered that a variable is
a labelled storage space, the contents of which can be altered
as required. Thus the program line score=score+10 really
means look up the contents of the memory location labelled
score, add 10 to it, and store the result in the memory location
labelled score.

Locomotive BASIC also has integer variables which can be
used to contain whole numbers only. These are identified by
having a per-cent sign as the last character of the variable
name. These variables are limited to containing numbers
between -32768 and +32767, but have the advantage that
they take up less memory space, and arithmetic operations on
them can be performed faster.

If a non-integer value is assigned to an integer variable, it
is converted to an integer automatically. This is done by

2

simple truncation to the nearest whole number less-than the
non-integer value. Thus 3.3 and 3.897 would both be trun
cated to 3, and —3.53 would be truncated to —4 (this last
one is the cause of much programmer’s insomnia!).

LOOPS

One of the main uses of computers is to perform repetitive
tasks. When something has to be done a fixed number of
times, a variable is the obvious way of counting the number
of times it has been done. In fact, so useful is this that there
are special statements in BASIC to do it, FOR, STEP, and
NEXT, and WHILE ... WEND.

FOR . . . NEXT loops are the easiest to start with. These
loops are used when an action has to be repeated a known
number of times, or within defined limits. The special control
variable, which, in Locomotive BASIC must be a floating
point variable, is given a starting value and a terminating value
in the FOR statement. For example, the statement FOR
entries = 0 TO 20 sets the control variable entries to 0, and
sets the value at which the loop will terminate to 20. The
program statements which are to be repeated are placed after
the FOR statement, and after them is placed the line NEXT
entries. When this line is executed, program execution loops
back to the statement after the FOR statement, and the
value of entries is increased (usually) by 1.

After the control variable has been increased, it is checked
to see if it is greater than the terminating value. If it is, the
loop terminates. It is important to remember this if the
control variable is used for any purpose after the loop has
ended. The control variable is always greater than the
terminating value.

Normally, the control variable is incremented by 1 each
time the statement is executed, but this can be changed by
the optional STEP statement. For example FOR columns=
0 TO 39 STEP 5 will increase the control variable by 5 each
time, and FOR dots=0 TO 2*PI STEP 0.03 will increase the
value by 0.03. This second line also shows that the starting

3

and finishing values of the control variables do not need to be
constants. In fact, the starting value, terminating value, and
step size can all be constants, variables, or valid expressions.

It is also possible to have a negative step size. In this case,
it is essential that the starting value of the control variable is
less than the terminating value, if the loop is to execute more
than once.

FOR . . . NEXT loops are always executed at least once,
even if the starting control variable value is greater than the
terminating value (positive step size assumed). This is because
the control variable value is not checked until the NEXT
statement is executed.

It is perfectly permissible to use the control variable in
calculations or for other purposes within the loop, and this is
the main reason for having a variable step size. Using the
control variable as a co-ordinate in a LOCATE statement, a
character can be printed in successive positions down (or
across) the screen, and this is useful for decorative features in
screen displays. Using the control variable, it is simple to
write a program to print out, for example, the square roots of
all the whole numbers between 1 and 10.

You should be careful, however, not to alter the value of
the control variable within the loop. This does not cause an
error, the computer can cope with it, but it is very bad pro
gramming practice and should be avoided. At worst, you may
prevent the control variable from ever reaching the terminating
value, in which case the loop will continue indefinitely. Also,
you should not jump out of a loop using a GOTO. This can
thoroughly confuse the computer.

WHILE . .. WEND loops repeatedly execute the statements
between the WHILE statement and the WEND statement as
long as the condition set in the WHILE statement is true
(exactly what true means will be covered in a later chapter).
If the condition in the WHILE statement is not true when the
statement is executed, the program execution continues at the
line after the WEND statement, so a WHILE ... WEND loop is
not necessarily executed at all. This is in contradistinction
both to FOR . . . NEXT loops and the REPEAT . . . UNTIL
loops found in some other BASICs. It is sometimes helpful

4

to look on a WHILE ... WEND loop as a loop with condition
al entry, rather than conditional exit.

ARRAYS

So far, we have met simple variables and control variables, but
there is a third variety. These are arrays or subscripted vari
ables. These are groups of variables, all with the same name,
but distinguished from one another by number, or subscript.

Because arrays can take up a lot of memory, the computer
must be instructed to reserve space for them. This is done
with the DIM (for DIMension) statement. Thus, DIM sub-
totals(ll) will create an array with 12 elements, numbered 0
to 11. (Most BASICs count array elements from 0, but a few
count from 1.) In Locomotive BASIC, it is not always necessary
to dimension (or declare, as it is sometimes called) an array.
If you don’t, the computer will assume (or default to) a size
of 10 elements.

To refer to a single element in the array you use the name
and number, for example PRINT subtotals(7). The number in
the brackets does not have to be a constant. It can also be a
valid expression, or a variable. In fact, it is often the control
variable of a FOR . . . NEXT loop. Loops and arrays go well
together, and are the basis of many powerful programming
techniques, including sorts.

Listing 1 is a program which uses arrays and loops together
to solve a problem of the sort often found on the Brain
Teaser pages of computer magazines.

LISTING 1

20 DIM myshared 100)

30 FOR ba9s-l TO 100

40 my share< ba.9s)=ba9S-(ba9s*ba9s

/100)
5

58 NEXT ba9s

60 FOR ba9s-l TO 100

70 IF myshare<b*9s)>bestshar* TH

EN bestshare=mysharba9s X h i She

st-baSs

80 NEXT bass

90 PRINT hiShest,bestshare

The problem is: You are a poor peasant farmer. The local
wicked baron takes as his tax a percentage of your crop equal
to the number of sacks of corn you grow. That is, one sack,
one per cent, ten sacks, ten per cent, and so on. How many
sacks should you grow to have the maximum left for your
family?

There may be a mathematical formula to work this out,
but the easiest way with a computer is to work out the answer
for each number of sacks, store the answers in an array, and
then search the array for the highest result. Obviously, the
highest number of sacks we need consider is 100. More than
that would give a negative result.

Line 20 dimensions the array. Lines 30-50 are the first
loop, line 40 calculating and subtracting the tax and storing
the result in the array. Lines 60-80 are the second loop.
Line 70 compares a new variable, bestshare, with the contents
of each element of the array. If the array element is higher,
bestshare is set equal to it, and highest is set equal to the
control variable.

When the loop has completed, bestshare is equal to the
highest element, and highest contains the position of that
element in the array. Line 90 prints out the solution.

Note that in this program, the first loop completely

6

finishes before the second commences. It is also possible to
have two loops, one inside the other, a process generally
called nesting. Listing 2 is a graphic illustration of this. It
prints a solid rectangle of stars on the screen.

LISTING 2

20 CLS

30 FOR y=2 TO 20=REM top to bottom

40 FOR x»4 TO 36-REM side to side

50 LOCATE x,y

60 PRINT"*"

70 NEXT x

30 NEXT y

Line 20 clears the screen. The first loop is between lines
30 and 80. The second is between lines 40 and 70. Note
that the second loop is completely contained within the first.
This is the rule for loops. Either one must be completely
within another, or they must be completely separate, as in
Listing 1. If they overlap, an error will occur.

Line 50 positions the cursor, using the control variables
as co-ordinates, and line 60 prints the stars.

When you run the program, you will see that each
horizontal Une is completed before the next is started. The
horizontal position is controlled by the X loop.

Having run the program, list it, then swap around lines 30
and 40. If you now try to run the program, you will find it
stops with an error message, as the loops are not correctly
nested. Now swap around lines 70 and 80. The program
should run correctly again, but this time each vertical line

7

should be completed before the next is started.
It is possible to nest loops more than two deep, if

necessary. It is also possible to nest WHILE loops within FOR
loops, and vice versa. The same rule of one completely within
another, or completely separate, still applies.

The arrays we have met so far have had one dimension,
like a list of numbers down a page. In Locomotive BASIC it is
also possible to have two-dimensional arrays, like columns of
numbers down a page and also across it.

Listing 3 demonstrates the use of a two-dimensional array
in conjunction with nested loops. Line 30 dimensions the
array, with 6 elements (numbered 0 to 5) in each dimension.
Note that this is a total of 6*6=36 elements, not 12. The first
loop is between lines 40 and 80, the second between lines 50
and 70. Line 60 stores the result of multiplying the control
variables together in the array. The rest of the program is
just to print out the results to show it has worked. Compare
this part with Listing 2.

LISTING 3

20 CLS

30 DIM answers^5,5>

40 FOR factor1«0 TO 5

50 FOR factor2-0 TO 5

60 answers< factor1> factor2)=factor1

*factor2

70 NEXT factorZ

80 NEXT factorl

8

90 FOR lines=0 TO 5

100 FOR columns-0 TO 5

110 LOCATE 5*columns+2,3*1ines+1

120 PR I NT answers< co I u.mns, I i ties >

130 NEXT columns

140 HEXT lines

More than two dimensions are also possible. You could
think of three dimensions as the columns on a page, the
lines on a page, and the pages. Listing 4 illustrates this. It
is an extension of Listing 3. There is an extra dimension in
the array in line 30, and an extra loop, and an extra multi
plication in Une 70. We can only print two dimensions on the
screen, so in the second part of the program, an INPUT state
ment is used to choose which page to show (line 110). Line
120 is a trap which stops the program if an out-of-range
number is entered. Line 200 keeps the program looping
round until such an input is made.

LISTING 4

20 CLS

30 DIM answers<5,5,25)

40 FOR factor1*0 TO 5

30 FOR factor2*0 TO 5

60 FOR factor3=0 TO 25

70 answers< factor 1 .• factor2, factors >
9

»Factor1^Factor2*Factor3

80 NEXT Factors

90 NEXT Factors

100 NEXT Factorl

110 INPUT "Which Pa9e <0 to 25)";Pa

9e’<

120 IF Pa9e>i<0 OR Pa9e*>25 THEN STO

P

130 CLS

140 FOR lines«© TO 5

150 FOR columns»© TO 5

160 LOCATE 5*Columns+2.- 3*1 ines+1

170 PRIHT answers^ coIumns,Ii nes ,P a9

•% >

180 NEXT columns

190 NEXT lines

200 GOTO 110

10

Multi-dimensional arrays and nested loops are very useful
and important parts of programming, and it is worthwhile
to take the time to make sure you understand them
thoroughly.

11

Chapter 2

STRING VARIABLES

In the first chapter, we discussed the way the computer
stores numbers. The computer also needs to store text. In
computing, stored text is commonly referred to as strings. In
other words, it is thought of as a line of characters strung
together.

As with numeric variables, we can assign a string of char
acters to a variable, and print the variable. We can also assign
the contents of one variable to another (and if we do this, as
with numeric variables, the original remains in existence).

String variables are indicated by having a dollar sign as the
last character in the variable name, for example name$,
searchS. To assign a string of characters the characters must
be enclosed between inverted commas or apostrophes, thus:-
LET name$=“John” or alternatively LET name$=‘Robert’.
Strings of characters between inverted commas like this are
usually called string literals and are the string equivalent of
numeric constants (and so are occasionally called string
constants).

As well as simple assignment, there are a range of manipu
lations that can be performed on strings. The first of these is
concatenation, which simple means joining together end to
end. Most BASICs use the + sign for this, but it is important
not to confuse this with mathematical addition. For example,
LET a$=“Hello”:b$=“Sailor”:c$=a$ + b$:PRINT c$ will
print HelioSailor. Note that no space is inserted between the
words.

As well as printing out or manipulating whole strings, it is
possible to pick out particular characters in a string. There are
three string functions to do this. LEFTS is used to slice off
characters from the beginning (left-hand end) of the string.
RIGHTS slices off characters from the end of the string (right
hand side). MID$ can be used to slice characters out of the
middle of a string, but can go right to either end if required.
All these functions can be used to slice out single characters,

12

or a number of consecutive characters. The number of
characters, and the string to be sliced, are given in brackets
after the variable name. In the case of MID$ we must also
give the position of the first character we wish to slice. Thus,
if we enter a$=“chopper”, PRINT LEFT$(a$,4) will print
chop, PRINT RIGHT$(a$,3) will print per, and PRINT
MID$(a$,2,3) will print hop. In the case of MID$, the start
ing point is given first, followed by the number of characters
we wish to slice. As well as being printed out directly like
this, string slices can also be assigned to or concatenated with
other strings. Either way, the original string continues intact.

Strings in Locomotive BASIC are not of fixed length. They
alter in length to accommodate the number of characters
currently assigned to them. The computer must keep a
record of how long a string is so that it knows how many
characters to print (or whatever). This length is returned by
the function LEN(). There is a maximum length for a
string, of 255 characters.

Listing 5 uses most of the ideas we have covered so far.
This program has its origin in a letter from a reader to a
computer magazine. He wanted a program to create person
alities and names for the characters in his adventure game.
Personalities are difficult, but this program will give a good
yidd of acceptable names!

LISTING 5

20 REM * Name Creation *

30 source»-"CRERTINGNRMESFORRDVENTU

REGRMESISFUNWITHRNRMSTRRDCOMPUTER "

40 WHILE 1

50 name»®""

60 FOR namelenSth-l TO RNDC1>*4+5
13

70 name»«name»+MID»< source».- RND< 1)*

LENC source» >♦!,1>

30 NEXT namelength

90 PRINT name»

100 WEND

Creating words at random is difficult. Just picking out
letters of the alphabet at random and assembling them into
words is not very successful, as all letters have an equal chance
of selection this way, whereas in real language some letters are
much more frequent than others. This program overcomes
this to some extent by using a phrase of English as a source,
source$ in line 30.

WHILE 1 in line 40 and WEND in line 100 are a way of
creating an infinite loop. Line 50 sets the variable name$ to
an empty string.

Line 60 is the start of a FOR ... NEXT loop. The function
RND is used to give the names a variable length between 5 and
9 characters.

Line 70 uses MID$ to slice out characters from sourceS at
random, and add them to name$. The function LEN is also
used. This makes it easy to use different source strings (by
editing line 30) without having to count the characters.

Line 90 prints out the names. The Amstrad’s Locomotive
BASIC is very fast, and the names scroll up the screen too
fast to read. You can stop the program by pressing ESCAPE
once, and restart by pressing any other key.

Locomotive BASIC also has string arrays. These must be
dimensioned just like numeric arrays. As with numeric arrays,
it is possible to have more than one dimension. The length of
each string element is variable, like ordinary strings, but
subject to the same maximum of 255 characters.

We said in Chapter 1 that the use of loops and arrays
together is the basis of sorts, and Listing 6 is an example of

14

this. This program falls into four parts; the initiation, lines
20 to 40; a routine to enter strings from the keyboard, lines
50 to 130; the sort proper, lines 150 to 260; and a routine
to print out the sorted strings, lines 280 to end.

LISTING 6

20 REM * Sort Demonstration %

30 entries«-!

43 DIM store«20)

50 PRINT "Please enter strings."

60 entry#«"*"

70 WHILE entry•<>""

80 INPUT entry#

90 IF entry#«"" THEN 130

100 LET entries«entries+l

110 store#C entr i es Xentry #

120 IF entries«20 THEN PRINT "Array

now full"

130 WEND

140 PRINT "Sortins..."

150 FOR strin9s«0 TO entries-1
15

160 comP are*-store« str i ngs >

170 Position-strings

180 FOR rest*strin9s+l TO entries

190 IF comPareOstore« rest > THEN c

omP arei-store« rest >:P os i t i on-rest

200 NEXT rest

210 IF Position-strings THEN 260

220 FOR moves-Position-1 TO strin9s

STEP-1

230 store« moves+1>-store« moves)

240 NEXT moves

250 store« str i ngs)-comP are*

260 NEXT strings

270 PRINT "...finished."

280 FOR strings-0 TO entries

290 PRINT store«strings>

390 NEXT strings

16

Line 40 dimensions the array (one dimension) to take 21
strings. The variable entries is used to count the strings, and
this is set initially at -1.

A WHILE . . . WEND loop is used to enter the strings, the
actual input being at line 80. Line 90, in conjunction with
the WHILE condition, allows the input routine to be ended
without entering all 21 possible strings by pressing enter
without typing anything. After a string is entered, entries
is incremented by 1, and the string stored in the array at this
position. This is why entries was started at -1, so the first
entry goes into the zero element. Line 120 gives a warning
if the array is filled.

The sort method is as follows. Using a FOR loop (Une
180), the contents of the first element in the array (selected
by the control variable strings in fine 160) is copied into the
variable compares, and the variable position is set to zero
(line 170). The variable compares is then compared to all the
(used) elements in the array in turn. If the contents of an
element comes before the current contents of compares in
alphabetical order, this element is copied into compares and
“position” is set to the position of this element (line 190).
At the end of the first pass, the first string in order is thus in
compares, and its position in the array “position”. If it is
already in the top position in the array, nothing needs to be
done, and line 210 checks for this.

If it is not at the top, the next part of the program puts
it there. Lines 220 to 240 move all the elements in the array,
from one above the element to be moved to the top, to the
top element in the array, down by one position. - The
contents of compares are then stored in the zero element of
the array (line 250).

On the second pass of the FOR strings loop, the second
element is compared with all those below it, and if
necessary, the second in order is moved to second position.
The process repeats until the last-but-one element is com
pared with the last.

The strings are then in order and are printed out by lines
280 to 300.

This sorting method is considerably faster than the more

17

common bubble sort. It also has the advantage that the
order of the elements is not disturbed unnecessarily, so it is
suitable for multi-field sorts. This means, for instance, if
you have data consisting of items and dates in two fields, if
you sort the data into alphabetical order and then into date
order, items of the same date will remain in alphabetical
order.

You may wonder how a computer stores letters in memory.
The answer is that each character has a code number, and it
is these numbers which are stored. There are two functions
which will give the code number of any character, and any
character from its code number. The first of these is called
ASC(). This comes from American Standard Code for
Information Interchange (ASCII), as the internal code used by
the Amstrad and most other computers is based on this.
Thus, PRINT ASC(“A”) will return 65, the code number for
a capital A. This function can be used with string variables
as well as string literals. If the string contains more than one
character, the code returned will be that of the first character
in the string. It is, of course, possible to slice out characters
from the middle of a string, for example PRINT ASC(RIGHT$
(a$,3)). If the string slice specifies more than one character,
again the code returned will be that of the first character of
the slice.

Listing 7 is a program that will print out the ASCII code
of any key pressed. Some keys, such as CTRL and SHIFT,

LISTING 7

20 REM ASCII code*

30 WHILE 1

40 a»=INKEY»=IF a»«"" THEN 40

50 PRINT ASCCa»)

68 WEND
18

do not generate codes themselves, but modify the codes
returned by other keys pressed simultaneously.

The function CHR$() returns, as a string, the single
character whose ASCII code is given in the brackets. Thus
PRINT CHR$(65) will print a letter A on the screen. This
function is useful for printing the graphics characters which
are not directly obtainable from the keyboard, and for
printing special control characters on the screen, such as
CHR$(10), which is a linefeed, or CHR$(12), which is
equivalent to CLS.

lusting 8 will print out the character for any code number
you enter. The highest valid code number is 255. Codes
below 32 are the control codes, and some of these have
surprising effects.

LISTING 8

20 REM Characters

30 WHILE 1

40 INPUT "Code number";code

50 PRINT CHR«code)

60 WEND

Two other string functions which are almost unique to the
Amstrad are UPPERS and LOWERS. These have the effect
of converting all the alphabetical characters in a string into
upper and lower case respectively. This can be used in string
sort and string search routines to make them non-case
dependent. Examples of the use of these will be found in
later chapters.

19

Chapter 3

DECISIONS

On the face of it the IF . . . THEN statement is very straight
forward to use. It takes the form IF condition THEN state
ment. If the condition is true, the statement is executed, if
not, program execution moves on to the next Une. However,
IF . . . THEN has one or two tricks up its sleeve which can be
useful in programming, but which are also pitfalls for the
unwary.

It is quite legal to put further statements on the same line
as an IF . . . THEN. However, it must be remembered that if
the condition in the IF . . . THEN is false, program execution
moves on to the next line. This means that all the statements
on the Une will not be executed, not just the one immediately
following THEN. This can be very useful when you want
several things to happen when, and only when, the condition
is true.

ELSE is an optional extension to the IF . . . THEN state
ment. When ELSE is used, if the condition after IF is true,
all the statements between THEN and ELSE are executed. If
the condition after IF is not true, then all the statements after
ELSE on the line are executed. Frankly, ELSE can cause
more problems than it solves, and I rarely find use for it.

Putting more than one statement on a line saves some
memory space compared to giving each statement a line of
its own. If a program uses up all memory when run, it some
times helps to go through it, making two (or more) Unes into
one. If you ever have to do this, remember not to put extra
statements after an IF ... THEN!

The IF . . . THEN statement acts according to whether a
condition is true or false. It is interesting to discover exactly
how this is determined. Try entering the following in direct
mode:-

A=6
PRINT A=6

20

PRINT 6=6
PRINT A=5
PRINT 6=5
PRINT A=B

On the face of it, you would expect all these lines to
produce error messages. In fact, the first two should produce
-1, and the last three should produce 0. This is because the
computer evaluates these as expressions, to see if they are
true or false, and true and false are given numerical values.
—1 is used to represent true, and 0 to represent false.

Obviously, A does equal 6, as we have just stored 6 in it.
Equally obviously, 6 equals 6, A doesn’t equal 5, and 6 does
not equal 5. In the last example, A doesn’t equal B, because
6 is stored in A, and the computer has not been told to assign
a value to B, so it is regarded as holding 0.

These values for true and false hold equally true for
comparisons of strings, and also for comparisons of greater
than, less than, not equal to, etc.

One advantage of this is that it is possible to test a single
variable in an IF . . . THEN statement. Try the following:-

IF A THEN PRINT “TRUE”
IF B THEN PRINT “TRUE”
IF NOT A THEN PRINT “FALSE”

The first will print TRUE because, in fact, any non-zero
value can be regarded as true. The second example will not
print because B contains 0, which is false.

The third example is more complicated. NOT reverses
the result of a test, so FALSE will be printed if A is false.
In this case it is printed. This is because when NOT is used,
only —1 counts as true. Any other value is regarded as false.
Some other computers, such as Atari and Sinclair models,
use +1 rather than —1 to represent true, and with these, NOT
still accepts any non-zero value as true, so false would not be
printed with these. This is a point to beware of if trying to
translate programs written for these computers to run on the
Amstrad.

21

This single variable testing is not just an academic trick.
It saves a little memory space, and, more important in many
cases, it saves time.

AND & OR

In Locomotive BASIC, AND and OR can be used as logical
operators, enabling two or more conditions to be tested in
one statement.

AND is used much as it is in the English language. If all
the conditions specified after IF, and joined by AND, are
true, then the statements after THEN will be executed. If
any of the conditions are false, then the statements after
THEN will not be executed.

With OR, if any of the conditions after IF, and joined by
OR, are true, then the statements after THEN will be
executed. If all the conditions joined by OR are true, the
statements after THEN will be executed. This is slightly
different to the way in which “or” is used in English.

Using AND and OR together is not always straightforward.
Consider this example. We have a program with three vari
ables; A, B, C. We want certain things to happen if A=6 and
B=3, or if C=7 and B=3. We cannot write the program line
thus:-

IF A=6 AND B=3 OR C=7 AND B=3 THEN ...

The computer will not associate the two conditions on the
right of the OR together, and the two conditions on the left
of OR together, as we do in English. If C=7, the statements
after THEN will always be executed, and they will always be
executed if A=6 and B=3, which is not quite what is required.

One way round this is to use brackets, thus:-

IF (A=6 AND B=3) OR (C=7 AND B=3) THEN . . .

The conditions within each set of brackets will be evalu
ated first, to either true or false, and then these results will be

22

evaluated, and if either is true, the statements after THEN
will be executed. This particular conditional could also be
written as:-

IF B=3 AND(A=6 OR C=7) THEN . ..

This would be the preferred form, as it is shorter, and
would also execute faster.

If you use NOT in a complex conditional, remember it
only affects the one expression immediately following it. It
does not operate globally on the entire expression. Thus

IF NOT A~6 AND B=3 THEN ...

will execute the statements after THEN if B=3 and A=any
value other than 6.

ON

ON is an alternative form of decision making. It is used when
it is required to make one choice from a list of possibilities.
This is done by branching, as ON can only be followed by
one of two statements, GOSUB or GOTO.

The ON statement takes the form ON variable GOSUB (or
GOTO) linenumber,linenumber .linenumber...

The value of the variable determines which linenumber the
program branches to. If it is 1, the program branches to the
first in the list, if it is 2, the second, and so on. If the value is
0, or if it is higher than the number of linenumbers in the list,
the program will go on to the next statement.

ON . . . GOSUB is most commonly used in conjunction
with menus in programs such as data bases. A list of options
is printed on the screen, like this:-

1. Enter Data.
2. Load file.
3. Edit file.
4. Search file.

23

5. Sort file.
6. Save file.
Please enter choice.

The user presses an appropriate number key, the value of
which is placed in a variable. This is then used in the ON .. .
GOSUB statement to call the subroutine to perform the
required function. The ON . . . GOSUB statement would
normally be followed by a GOTO statement to send the
program back to the start of the menu, so that the menu
reappears when the operation is completed, and also if a
number key higher than the number of options is pressed.

Though this is the most common use, it is by no means the
only one. ON is an under-used facility. Whenever a choice has
to be made from several options, the use of ON should always
be considered, as it can be considerably faster than a long list
of IF .. . THENs to make the choice.

The keyword ON is also used for other purposes in Loco
motive BASIC, for example ON ERROR, ON BREAK. These
are not really associated with the use of ON in decision
making, and are dealt with elsewhere.

Listing 9 is a guess-the-number game which uses a large
number of conditional statements. A random number is
generated, and you get a clue as to the size. You then have to
enter guesses, and the computer tells you how you are doing.
No line-by-line description of this program is included, as it is
quite straightforward, and REMs are included where necessary.

Try to follow the flow of the program on the listing as you
are using it. This is a good way to learn about how programs
work.

LISTING 9

20 REM t Guess The Number *

30 MODE 1= tr i es®1 ’ o I d iff=5000

40 CLS
24

50 LOCATE 5,5'PRINT "I am thinking

of a number-..."

60 LOCATE 5,7'PRINT "...it is betwe

en 1 and 5000."

70 REM this Ioop is to Produce a tr

uly random number

60 LOCATE 5,22'PRINT "PRESS A KEY T

0 PLAY"

90 WHILE INKEY*»""

100 number»INTCRNDC1>*5000)

110 WEND

120 LOCATE 5,22'PRINT SPACE«19)

130 LOCATE 5,10'PRINT "Here is a cl

ue..."

140 LOCATE 5,15'PRINT "It could be.

II
• ■

150 LOCATE 5,17

160 IF number<108 THEN PRINT "someo

25

ne's a9e."

170 IF number>99 AND number<408 THE

N PRINT "a cricket score."

180 IF number>399 AND number<1000 T

HEN PRINT "the PaGes in a book."

190 IF number>999 AND number<3000 T

HEN PRINT "the size of a car enGine

II
■

200 IF number>2999 THEN PRINT "some

one's telePhone number."

210 LOCATE 3,19'PRINT "Try no. ";tr

les

220 LOCATE 18,19=INPUT "Your Guess

">Guess

230 Guess®INT<Guess >

240 IF Guess<l OR Guess>3000 THEN L

OCATE 5,19'PRINT "SILLY!!!"'GOTO 22

0

26

259 d i ff-ABSi number-9uess)

260 REM skip to end if 9uess correc

t

270 IF diff-0 THEN 410

280 CLS

290 REM determine size of error and

print clue

300 LOCATE 5,5

310 IF number<9uess THEN PRINT "Too

bi9";

320 IF number>9uess THEN PRINT "Too

small"j

330 IF diff<10 THEN PRINT " but you

are very close.")

340 IF diff>9 AND diff<50 THEN PRIN

T " but you are quite close.")

350 IF diff>49 AND diff<200 THEN PR

INT "."

27

360 IF diff>199 THEN PRINT " by a I

on9 chalk!"

370 IF diff>oldiff THEN LOCATE 5,10

’PRINT "You are further out than la

st time!"

380 tri es=tr i es+1’oId if f=d i ff

390 LOCATE 5,15’PRINT "Last Guess "

,i Suess

400 GOTO 210

410 CLS

420 x=5

430 FOR y=5 TO 20

440 LOCATE x,y=PRINT "CORRECT!!!"

450 x=x+l

460 NEXT y

470 LOCATE 5,22’PRINT "Play A9ain (

y/n >?"

480 ans#«INKEY$=IF ans«®"" THEN 430

28

490 IF LOWER* ans« >"y" THEN RUN

500 END

29

Chapter 4

INPUT, PRINT & DATA

Almost every practical program will need some means of
communicating with the user whilst it is running. The INPUT
statement is provided to allow program execution to be
temporarily halted so that required data may be typed in.

When the computer stops for input, it signals that it is
waiting by printing a question mark on the screen. As the
input can be of any length, the computer needs some way of
knowing when the user has finished typing in the data. Data
entry is assumed to have finished when the RETURN key is
pressed, and program execution recommences.

INPUT can be used to obtain both string and numeric
data. When entered, the data is placed in a variable, and the
type of variable specified in the INPUT statement deter
mines whether the input is to be regarded as string or numeric.
“Regarded” because, of course, a string can quite legally con
tain numbers. On the other hand, if non-numeric characters
are entered when a numeric input is required, an error occurs,
and the message “? Redo from start” is printed.

It is possible to enter data into several variables from a
single INPUT statement, by listing the variables after the
INPUT, separated by commas, thus:-

100 INPUT NUM1 ,NUM2,NUM3
250 INPUT NAMES ,ADDR$

When typing in the various items they must be separated
by commas, RETURN being pressed when entry is complete.
This applies both to string and numeric input. This means
that commas cannot be included in strings entered in
response to an INPUT statement. To solve this problem,
there is a LINE INPUT statement. This will take any
characters typed, including commas and inverted commas,
but can only be used for a single variable at a time.

It is perfectly legal to mix string and numeric inputs in a

30

single statement. Whether such mixing is advisable is another
matter. Even the use of multiple INPUTs of one type can
cause problems, and should be used with discretion.

The problem with the INPUT statement is that the simple
question mark does not give any indication of what sort of in
put is required. To ease this problem, Locomotive BASIC has
provision to include a line of text in the INPUT statement,
which is printed on the screen along with the question mark,
as an input prompt. When this is used, using a semi-colon
between the prompt and the name of the variable will cause
the question mark to be printed. Using a commas will cause
it to be suppressed.

User-Friendly is a term that is much in use. It means
making a program easy and pleasant to use. Input prompts
are a vital part of this. They should clearly (and politely)
indicate what the user is intended to type in. NAME? appear
ing on the screen would certainly indicate what is required,
but is not very polite. “Please enter name” is better if the
question mark is suppressed, otherwise “What is your name,
please?” would be the best prompt to use.

One should avoid being obsequeous. If I came across an
input prompt “Would you mind entering your name, please?”
I personally could not resist entering NO!

It is very difficult to phrase input prompts to deal with
multiple input statements, except at the very basic “enter
three numbers” level. On the whole, when writing programs
which will be used by others (and especially by non
programmers) it is better to have a separate INPUT statement
for each item, with a clear and simple prompt for each.

PRINT

As the general-purpose statement to display all text and
numeric output, and some graphics on the screen, PRINT is
necessarily a very flexible and versatile statement. PRINT is
followed by a list of items, which may be string or numeric,
variables or constants, or any permutation thereof, and may
even contain calculations, string manipulations and logical

31

comparisons.
Numeric array elements and substrings may be directly

included in PRINT statements.
Various punctuation marks are used in the print list, and

these control aspects of how the items are to appear on the
screen.

The BASIC computer language dates back to the mid-60’s,
at which time the usual interface to a computer was via a
printer and keyboard, rather than a VDU. This explains why
the word PRINT is used, and some aspects of how the PRINT
statement works.

Whenever a PRINT statement is completed, the computer
normally moves on to a new line. If each item to be printed
is given a separate statement (not necessarily in a separate
program line) each will be printed on a separate Une.

If more than one item is included in a PRINT statement,
the punctuation mark used to separate them determines how
they will be printed. If they are separated by commas, the
computer will separate them by a number of spaces. If they
are separated by semi-colons, they will be printed right up
against each other without any spaces.

The other important punctuation marks in PRINT state
ments are inverted commas. These are used to enclose string
constants. The inverted commas are not printed. This means
that it is unfortunately not possible to include inverted
commas within a string constant to be printed.

Numeric constants in a PRINT statement do not need to
be thus enclosed. The statement PRINT 18 will do exactly
that. PRINT HELLO on the other hand will print O, as
HELLO will be interpreted as a variable name.
PRINT“HELLO” will print HELLO.

This is a typical PRINT statement :-

1000 PRINT “You have scored ”;SCORE;“ points
from ”;TRIES;“ attempts.”

The first item in the print list is a string constant. Note
the extra space at the end. The semi-colon means that the
numeric variable SCORE will be printed immediately after

32

it, directly followed by another string constant, another
numeric variable, then another string constant. When this
statement is executed, something like this will appear on the
screen:-

You have scored 18 points from 7 attempts.

This ability to join several items together so that they
appear as one on the screen is very valuable in producing
readily intelligible output from programs.

The effect of the comma in PRINT statements is to pro
duce a tabular display. The screen is regarded as being divided
into fields 13 columns wide (by default). When a comma (not
enclosed between inverted commas in a string literal) is
encountered in a PRINT list, the print position moves to the
start of the next field, moving on to a new line if necessary.

DATA, READ & RESTORE

As well as variable data that may be typed in while a program
is running, most programs require constant data. Such data
can be stored within a program using the DATA statement,
and placed in variables as required using the READ statement.

The DATA statement is followed by the list of constant
data, with the items separated by commas. The list can be
spread over several program lines if necessary (each begin
ning with DATA) and these do not necessarily have to be
grouped together in the program. The computer, however,
always treats all the DATA statements in a program as if they
were one long list.

DATA statements may contain both string and numeric
constants. String constants do not need to be enclosed in
inverted commas. This is, however, necessary if the string is
to include a comma.

The READ statement is used to place items from the data
list into variables. The READ statement starts with the first
item in the list and works through it sequentially. The state
ment READ A$ will place the first item in the data list into

33

the string variable A$.
The statement READ A will take the next item in the data

list and place it in the numeric variable A, provided it consists
of numbers (or other valid numeric characters, such as the
decimal point). The READ statement can place any characters
into a string variable, but only valid numeric characters into a
numeric variable.

Items in DATA statements can be read directly into array
elements.

If you try to READ more items of data than there are in
the list, an error will result.

To allow data to be used more than once in the running of
a program, the RESTORE statement is provided. This resets
the data pointer which keeps track of the current position in
the data list back to the beginning.

In Locomotive BASIC, the RESTORE statement has an
extra feature. It can be used to set the data pointer to a
particular program line, so that the READ statement will
start from that point. This allows you to jump about in
the data list, and is a very valuable and useful feature.

DATA statements are very useful for such things as holding
the data to be used by SOUND statements, to. play tunes in
games. A FOR . . . NEXT loop can be used, looping around
the right number of times for the number of notes, with a
READ statement and a SOUND statement within it.
RESTORE with a line number can be used before the FOR
statement to ensure the data is read from the right place.

METRIC CONVERTER PROGRAM

This program, Listing 10, illustrates many of the points made
in this Chapter, and also introduces an important program
ming concept, the subroutine.

This program will perform imperial/metric and metric/
imperial conversions for most common units of length, weight,
area and volume. This is understandably a somewhat complex
program.

34

This program has to perform a number of functions:-

1. Obtain user-input of the units to be converted.
2. Check whether the units entered are covered by the

program.
3. If they are not, print a message and allow further input.
4. If they are, obtain user-input of the quantity to be

converted.
5. Calculate and print the result.

Each of these functions is practically a program in its own
right, and this is the idea of subroutines. Each separate
operation is written as if it were a separate program. These
are then called by the GOSUB statement as required. Each
subroutine must include a RETURN statement, and when
this is executed, the program returns to the statement
immediately after the GOSUB.

It is quite possible for a subroutine to be called from
within another subroutine, a process known as nesting (as
with loops). There is a limit to the depth of this nesting,
however, as the computer has to remember the return
address for each subroutine, and the memory space for this
is limited.

In addition to the subroutines to perform the functions
listed above, there are a couple of others. One prints an
introduction to the program on the screen, the other
prints a list of the units covered by the program.

Line 20 is the program title. Line 30 makes sure the
computer is in the right mode, and also clears the screen.
Line 40 dimensions the arrays. Line 50 calls the sub
routine to print the introduction on the screen. This
subroutine consists of lines 1000 to 1080.

Line 1010 prints the program title. Line 1020 has two
naked PRINTS in it. This is the simplest way of obtaining
two Une spaces. Lines 1030 to 1060 are a FOR/NEXT loop.
This READs the Unes to be printed from DATA statements,
and prints them. The DATA statements are in Unes 100 to
150. After Une 1080, program execution returns to Une 60.

The subroutine in Unes 2000 to 2060 READs the units

35

and conversion factors into the two arrays. This is more
convenient than using them direct from the DATA state
ments, though the program could be written in this way.

The subroutine between lines 3000 and 3090 is the input
routine for units. As rather a long input prompt is required,
it is in two PRINT statements, rather than in the INPUT.
This is in part to prevent words being split at the end of
screen lines.

If HELP is entered here, the subroutine from line 4000
is called. This is the one to print the list of units from the
array.

Typing QUIT causes the program to stop. Note the use
of UPPERS here, so that either upper or lower case input
will work.

If the input in line 3030 is not HELP or QUIT, the
subroutine from line 5000 is called to search through the
conversion data in the array. Line 5010 sets the variable
foundflag to 0. The search is done by a FOR . . . NEXT
loop in lines 5020—5050. Lines 5030 and 5040 do the
actual checking, and if a match is found, set the variable
confactor to the appropriate conversion factor, and set
foundflag to-1.

When the program returns to line 3070, if a match was
not found, foundflag will be set to 0. In this case, the
subroutine from line 8000 is called to print a message, and
the program flow is diverted back to line 3010 for further
input.

Line 3080 is only executed when a match is found. After
the quantity is input at line 6050, the subroutine from line
7000 is called. Note how the actual conversion calculation is
performed in a PRINT statement in line 7020. This statement
is complex, consisting of a numeric variable, a string constant
(a single space), a string variable, a string constant (= sign),
the calculation, a string constant (another space), and finally
a string variable, all separated by semi-colons so they print
as one Une.

After the conversion, the program goes back to line 6030,
so further conversions can be performed without having to
re-enter the units. You should always try to make your pro

36

grams work in the way which will be most useful.
If 0 is entered at line 6050, the RETURN statement in

line 6060 is executed. This takes the program back to line 80,
which clears the screen, then goes back to line 70, so that the
units can be changed if required.

The END statement in line 90 is really there only as a
marker when reading the listing. It is never executed. You
should always put an END statement between the main
program and the subroutines, whether it is executed or not.
If the computer comes across a RETURN when it has not
executed a GOSUB, an error occurs.

The placing of DATA statements in a program is arbitrary.
Between the main program and the subroutines is as good a
place as any. However, when DATA statements are only used
by one subroutine, it is sometimes a good idea to include
them within the subroutine.

The use of subroutines is vital to good programming, and
it is worth taking the time to understand them properly.
Again, try to follow the flow of this program on the listing
as you are using it.

LISTING 10

23 REM metric converter ProGram

30 MODE 1

40 DIM factors<9, 1 >,unit$(9,1 >

50 GOSUB 1000'REM Prints instructio

ns

60 GOSUB 2000:REM fills arrays

70 GOSUB 3000=REM input

30 CLS'GOTO 70
37

90 EHD

100 DATA This Program Performs metr

iczimPerial

110 DATA and imPerlal/metric conver

sions.

120 DATA Type 'HELP' as a units ent

ry to see

130 DATA the list of units covered.

140 DATA You must tyPe the units ex

actly as

150 DATA they aPPear in the list.

160 DATA INCHES,2.54,CENTIMETRES,.3

937

170 DATA FEET,.3048,METRES,3.291

180 DATA MILES,1.609,KILOMETRES,.62

14

190 DATA SQ INCHES,6.452,SQ CENTIME

TRES,.1550

38

200 DATA SQ FEET,.0929,SQ METRES,10

.76

210 DATA SO MILES,2.59,SQ KILOMETRE

S, 0.3361

220 DATA CUB INCHES,16.39,CUB CENTI

METRES,.06102

230 DATA CUB FEET,.02832,CUB METRES

,35.31

240 DATA GALLONS,4.546,LITRES,.22

250 DATA OUNCES,28.35,GRAMS,.03527

1000 REM instructions

1010 LOCATE 12,5’PRINT "METRIC CONV

ERTER"

1020 PRINT’PRINT

1030 FOR lines=l TO 6

1040 READ text#

1050 PRINT text#

I960 NEXT lines

39

1070 PRINT

1080 RETURN

2000 REM array fill routine

2010 FOR conversions»© TO 9

2023 FOR systems»© TO 1

2030 READ unit«conversions,systems

),factors(conversions,systems)

2040 NEXT systems

205© NEXT conversions

2060 RETURN

30©0 REM units inPut routine

301© PRINT "Please enter units to b

e converted"

3020 PRINT "or HELP to see list, or

QUIT."

3030 INPUT unit*

304© IF UPPER«unit*)*"QUIT" THEN C

LS'STOP

40

3050 IF UPPERiCunit«)«"HELP" THEN G

OSUB 4000:GOTO 3010

3060 GOSUB 5000

3070 IF HOT foundfla9 THEN GOSUB 80

00:GOTO 3010

3080 IF foundfla9 THEN GOSUB 6000

3090 RETURN

4000 REM help routine

4010 CLS

4020 LOCATE 12,1=PRINT "UNITS COVER

ED"

4030 FOR lines«© TO 9

4040 LOCATE 1,Iines*2+3=PRINT unit«

(lines,0)

4050 LOCATE 20,Iines*2+3=PRINT unit

«<Iines,1)

4060 HEXT lines

4070 LOCATE 5,24=PRINT "PRESS ANY K

41

EY TO CONTINUE"

4080 ansS=INKEYS:IF ansS«"" THEN 40

S3

4090 CLS

4100 RETURN

5000 REM search routine

5010 Found£la9=0

5020 FOR Possibles«© TO 9

5030 IF UPPERS(unitS)=unit$(Possibl

es .< 0) THEN contactor=factors< P oss i b

I es .■ 0) conv$«un i t* P oss i b I es .• 1): f ou

ndfla9=-l

5940 IF UPPER* units >«unitS(Possibl

es, 1 > THEN confactor=factors<Possib

I es .■ 1): con vS«un i tS< P oss i b I es .• 0 >: f ou

ndfla9=-l

5350 NEXT Possibles

5060 RETURN

42

6300 REM quantity inPut

6010 PRINT

6020 PRINT "Convert ";UPPER«unit#)

" to " ; conv#

6025 PRINT

6030 PRINT "Please enter Quantity t

o be converted"

6040 PRINT "or 9 to change units."

6050 INPUT qty

6060 IF 4ty=0 THEM RETURN

6070 GOSUB 7000

6080 GOTO 6030

7000 REM calculate/Print

7010 PRINT

7020 PRINT qty;" ";UPPER#(unit#);"

• ";qty*confactor;" ";conv#

7030 PRINT

7940 RETURN

43

8800 REM not found message

8010 PRINT

8020 PRINT "The units you have ente

red are not in"

8030 PRINT "the list. Please enter

HELP to see the"

8040 PRINT "full list."

8050 PRINT

8060 RETURN

44

Chapter 5

THE SOUND GENERATOR

The CPC464 has quite an advanced sound generator which
can simultaneously produce up to three tones plus noise. This
is in fact not exceptional by any means, as most of the better
home computers have a sound generator with a similar speci
fication. What makes the CPC464’s sound generator better
than most is the advanced BASIC which fully supports it, and
makes it relatively easy to get the most from the sound
generator. The word relatively is an important qualification
in this statement, since most users tend to find the sound
section of a computer one of the more difficult aspects to
master. This often leads to users settling for just a few
simple beeps and never really fully utilising the sound
capability of the machine. This is especially the case with
a machine, such as the CPC464, which has an advanced
sound generator with what can at first seem like a
bewildering array of facilities.

The secret of success with any sound generator is to run
a few simple demonstration programs which show just what
each instruction, and part of the instruction, actually does.
A number of programs of this type, together with descrip
tions of their action, are included in this Chapter. It is also a
good idea to experiment with the sound generator as this is
really the only way to fully master it. Even if you fully
understand every aspect of all the instructions associated
with the sound section of a computer, it is difficult
(probably impossible) to correctly relate a set of parameters
to the sound they produce unless you have some practical
experience with the machine. Even once some experience
has been gained it will often be necessary to modify your
original program to fine tune it to give exactly the desired
effect.

The CPC464’s sound is reproduced through an internal
loudspeaker in the computer (not the monitor), and a
volume control is provided on the side of the machine. A

45

respectable volume level is available from the internal loud
speaker, and this should suffice for normal requirements.
There is a socket at the rear of the machine (the I/O socket)
which enables the audio output to be connected to a hi-fi
or other amplifier in order to give greater volume. Con
nection is via a stereo 3.5mm plug, and the output is a
stereo output of sorts (one channel drives the left hand
output, another drives the right hand output, and the third
is mixed into both to give a centre channel). The output
level is quite low, and might not drive some amplifiers proper
ly. Although the output socket matches the type of plug
fitted to headphones of the type for use with personal stereo
units, unfortunately the output is totally inadequate to drive
this type of headphones properly.

SOUND

As one might expect, the main instruction for use with the
sound generator is SOUND. This can be used with other
instructions, but a wide range of effects can be achieved using
only the SOUND instruction, and it is advisable to master
SOUND before trying out any of the associated commands.

SOUND is followed by seven parameters, but these are not
all required in most cases. The first figure selects the channel
or channels to which the instruction is directed. This operates
in the following manner:-

1 selects Channel A
2 selects Channel B
4 selects Channel C

Thus, if we want the instruction to generate sound from
channel B we would use 2 for the first parameter, or if we
wanted the sound from all three channels 7 would be used as
the number (1 +2+4 = 7). There are other facilities which
this parameter can control, but this description is adequate
for the time being.

The next number controls the pitch of the sound. In

46

common with most computer sound generators, this operates
in the opposite way to what one would probably expect,
with high figures giving low pitches, and vice versa. This is an
inevitable consequence of the way in which computer sound
generators operate (unless some extra software is used to alter
things, which rarely seems to be the case). The sound genera
tor chip takes the computer’s 4MHz clock and divides this by
16 to give a frequency of 125kHz. This is then divided by
the number used as the pitch value. Obviously high numbers
give a higher division rate, and therefore a low output
frequency. Pitch values of 4 or less give an output frequency
that is beyond the upper limit of human hearing, and only
those with good hearing will be able to hear the output with
pitch values of around 5 to 8. At the other end of the range
the maximum usable pitch value of 4095 gives an output fre
quency of only about 30Hz which is a very deep bass
frequency. The computer’s small internal loudspeaker is
unable to reproduce very low audio frequencies properly,
and this results in an output that gives a sort of buzzing
sound.

The third parameter sets the duration of the sound in one
hundredths of a second. This gives a good degree of control
over the duration, enabling a variety of sound effects as well
as music to be easily generated. The maximum duration
figure is 32767, which should be more than adequate in
practice since it represents a duration of over 5 minutes.

The volume is controlled by the fourth parameter, and
when using just a sound instruction (with no ENV instruc
tion) this figure is from 0, which switches off the relevant
sound generator channel or channels, to 7 which gives maxi
mum volume. We will discuss the ENV command later, but
when this is used in conjunction with a SOUND instruction
the volume range is from 0 to 15.

The other three parameters of a SOUND command can
be ignored for the moment, and simply set at 0. Thus the
command: SOUND 1,250,100,6,0,0,0 would give from
channel A a pitch of 250 for one second at a high volume
level of six. A slightly richer sound can be produced by
using two or three channels simultaneously, but the differ

47

ence between one channel and all three producing the same
pitch is not very marked, as this short program demonstrates.

10 SOUND 1,200,100,6,0,0,0
20 SOUND 7,200,100,6,0,0,0

This simply produces from channel A a one second output at a
pitch value of 200, followed by the same thing from all three
channels. The most noticeable difference between one
channel and three is the higher volume of the latter.

The next listing starts with a pitch value of 1 and then
steps this upwards to the maximum allowable value of 4095.
In other words it takes the sound generator through its entire
pitch range.

10 FORP= 1 TO 4095
20 SOUND 1,P,1,7,0,0,0
30 NEXT P

If you run this program you will notice that there is an initial
rapid fall in pitch, followed by a pitch reduction that is barely
detectable towards the end. This is a result of the system of
sound generation used, and a change from a pitch (division
rate) of 5 to 6 obviously represents a much greater percentage
change than a change from (say) 4000 to 4001. Nevertheless,
a useful range of higher pitches is still available.

Simple sound effects can be obtained by sweeping the pitch
value. For instance, the next program produces a falling pitch
lazer zap sound.

10 FOR P = 20 TO 80
20 SOUND 1,P, 1,7,0,0,0
30 NEXT P

This simply sweeps the pitch from 20 to 80 with each pitch
being reproduced for the minimum period of one hundredth
of a second so that a suitably short sound overall is obtained.
An improved zap can be obtained by having a high initial
volume level and then reducing this as the pitch falls. This

48

varying of the volume is called envelope shaping. A falling
pitch - falling volume zap sound is produced by the program
given below.

10 V = 7
20 FOR P = 20 TO 80
30 SOUND 1,P,1,V,0,0,0
40 V = V-0.1
50 NEXT P

This program is much the same as the original, but line 10
starts the volume at 7 while line 40 decrements it by 0.1
on each loop of the program. One might expect this to crash
the computer as V (the volume parameter) will not always be
an integer. In practice this seems to be alright, and the sound
generator effectively converts V to an integer so that there is
no need to include a line in the program to achieve this.

MUSIC

It is quite easy to program music, and the computer is capable
of producing music in three part harmony. However, unless
you have a fair degree of musical expertise it is probably better
to settle for simple single line melodies. Also, if you wish to
do anything more than add a short single or multipart piece of
music to a program it would be advisable to use a composer
program rather than program from BASIC.

The CPC464 covers an impressive range of notes, and it
actually has a compass of 8 octaves. However, as explained
earlier, the number of available pitches at the high frequency
end of the range is relatively limited, and low frequency
sounds can not be reproduced properly by the internal loud
speaker. This results in some pitches in the top two octaves
not being as accurate as those in the lower octaves, and gives
a rather thin and unmusical sound from the lowest octave. It
is therefore advisable to mainly restrict oneself to the other
five octaves when programming music. The computer can not
be programmed directly in musical values, and the table in

49

appendix VII of the CPC464 manual should be used to find
the appropriate pitch values for notes.

The program that follows can be used when programming
single line melodies.

10P= 1
20 WHILE P()0
30 READ P,D,V
40 SOUND 1 ,P,D,V,0,0,0
50 WEND
60 DATA 239,50,5,213,50,5,190,50,5,179,50,5,159,50,

5,142,50,5,127,50,5,119,100,7,0,0,0

A WEND . . . WHILE loop is used to loop the program until
the melody has been completed. The required pitch, duration,
and volume figures are read from the DATA statement at line
60, in that order. The parameters must therefore be placed in
line 60 in sets of three, with the three parameters in the order
given above. The program is terminated by using a pitch value
of zero, but note that dummy duration and volume figures
must be included or the program will crash at line 30 and give
an out of data error message.

The sample values in line 60 give an ascending scale of C
major, with duration and volume figures of 50 and 5 used for
all notes except the final one, which has figures of 100 and 7
respectively. However, by using suitable values any desired
tune could be played. With long list of notes it would be
advisable to use several data statements as this makes check
ing and alterations much easier. It may not seem necessary
to include a volume setting facility in the program, but apart
from giving increased control over the music, this also enables
short breaks to be included between notes. This is essential
where two or more notes having the same pitch value follow
in succession. Without a very brief pause between these
notes they would in fact simply merge into one long note,
making nonsense of the music.

50

RENDEZVOUS

So far we have only considered the first parameter in the
sound instruction in its channel selecting mode, but it does
in fact control other things as well. One of these is the ability
of one channel to rendezvous with another channel or
channels. In other words, one or two channels wait until a
SOUND instruction for the third channel is received, where
upon the SOUND instructions for the two or three rendez
vous channels start simultaneously. The following numbers
are used to give the specified rendezvous:-

8 Rendezvous with channel A
16 Rendezvous with channel B
32 Rendezvous with channel C

This short program helps to demonstrate how the rendezvous
system operates.

10 SOUND 12,100,50,5,0,0,0
20 FOR D=1 TO 1000: NEXT D
30 SOUND 33,200,50,5,0,0,0

Line 10 is a SOUND instruction for channel C that must
rendezvous with channel A. The first parameter (the channel
status parameter as Amstrad call it) has a value of 12, which
is 4 to select channel C, plus 8 to give a rendezvous with
channel A. This instruction is not carried out until a suitable
SOUND instruction for channel A is encountered. Line 20
simply provides a short delay, while line 30 is a SOUND
instruction for channel A. Note that a channel status value
of 33 rather than 1 has been used. This is 1 to select channel
A, and 32 to give the rendezvous with channel C. The rendez
vous will only occur if both the channels concerned have
suitable channel status figures. If you run this program there
should be a short delay (about one second) followed by both
SOUND instructions being carried out simultaneously.

The next program demonstrates a practical use for the
rendezvous facility.

51

10 SOUND 1,120,50,5,0,0,0
20 SOUND 2,50,100,5,0,0,0
30 SOUND 17,100,50,5,0,0,0
40 SOUND 10,150,50,5,0,0,0

The first two lines produce tones from channels A and B, but
the durations are different with the channel A tone lasting
half a second while the channel B tone lasts one second. The
next two instructions are again SOUND instructions for
channels A and B, but they have channel status numbers that
cause them to rendezvous. In this case it means that channel
A will not produce its second note until channel B does so.
This effect should be clearly audible if you enter and run
the program.

The practical importance of this is that when writing two
or three part harmonies it is not necessary for each part of the
music to have the same rhythm, and rests can be easily pro
grammed. The rendezvous system also provides an easy way
of ensuring that the lines of music remain properly
synchronised.

HOLD/RELEASE

Another facility provided by the channel status facility is
HOLD/RELEASE. Hold is obtained by adding 64 to the
channel status number. This short program shows how this
facility operates.

10 SOUND 65,100,100,5,0,0,0
20 SOUND 66,150,100,5,0,0,0
30 SOUND 68,250,100,5,0,0,0
40 FOR D = 1 TO 1000:NEXTD
50 RELEASE 7

The three SOUND instructions at lines 10 to 30 are for
channels A, B and C respectively, but as 64 has been added
to each channel status number the hold facility is obtained,
and these instructions will not be executed as they are

52

reached. Line 40 merely provides a delay of about one
second before the RELEASE instruction at line 50 is reached.
The RELEASE instruction removes the hold on the specified
channel or channels, and allows any SOUND commands that
have been queuing to be completed. In the RELEASE instruc
tion the following numbers are used to select the desired
channel.

1 selects Channel A
2 selects Channel B
4 selects Channel C

If more than one channel is to be RELEASED the sum of the
appropriate channel numbers is used. Thus in the example
given above all three channels are released by using a figure of
7.

FLUSHING

The final facility provided by the channel status parameter is
flushing, and this is obtained by adding 128 to the channel
status number. This short program demonstrates the effect of
flushing.

10FORC=1 TO 60
20 SOUND 129,1,1,0,0,0,0
30 NEXT C

Unes 10 and 30 are used to loop the program 60 times, and
the duration parameter in the SOUND instruction gives a one
second tone on each loop. However, the channel status value
of 129 gives a tone on channel A with flushing (1 for channel
A plus 128 for flushing = 129). The effect of flushing is to
make the sound instruction take effect at once, regardless of
any queuing on the channel concerned. If you run this
program you will find that the sound instruction only runs
its full duration after the last loop, and that the others last
only as long as it takes to complete each loop. As the

53

version of BASIC used in the CPC464 is a fast one the total
duration of the sound is not much more than a second, and
not the one minute that would be obtained without the use
of flushing.

One use of flushing is to switch off one or more channels
of the sound generator, as in the following demonstration
program.

10 SOUND 65,200,100,7,0,0,0
20 SOUND 129,1,1,0,0,0,0
30 RELEASE 1

Line 10 generates a one second tone on channel A, but with
hold. Line 20 flushes channel A and produces no tone due
to the volume parameter of zero. Finally, line 30
RELEASES channel A, but no tone should be produced
since the flushing at line 20 over-rides the hold at Une 10.

NOISE

A noise signal can be generated and mixed into one or more
of the tone channels, but note that there is only one noise
generator and only one noise sound at a time can be pro
duced. It is not necessary to have a tone produced together
with the noise, and by using a small pitch value of 1 or 2 the
tone can be made inaudible so that only the noise will be
apparent on the output. The type of noise produced is the
usual hissing type noise sound, and the pitch can be control
led. The noise is enabled by using a number of between 1
and 31 as the last parameter in a SOUND instruction (a value
of zero is used to suppress the noise). 31 gives minimum
pitch — 1 gives maximum pitch. A range of 31 pitches may
seem rather restrictive, but the main use of noise is in sound
effects, and the available range of noises is adequate for this
appUcation.

The most common use of noise is in the generation of
explosive sounds. The program that follows gives an explosion
sound effect.

54

10 P= 12
20 FORV = 7 TOO STEP-1
30 SOUND 1,1,20,V,0,0,P
40 P = P + 2
50 NEXT V

The SOUND instruction at line 30 generates sound on channel
A, but the tone is too high pitched to be heard. The duration
is one fifth of a second on each loop of the program, and the
volume and noise pitch values are controlled by variables V
and P respectively. V is stepped from 7 to 0 as the program
loops, giving maximum volume, steadily decreasing to zero.
This shaping of the volume is essential in order to give a
reasonable simulation of an explosive sound. Line 40 increases
the noise pitch by 2 on each loop of the program, giving a
reduction in pitch and something approaching minimum pitch
at the end of the signal.

This program is easily modified to give a gunshot sound
simulation, and it is merely necessary to use a higher pitch
range and give the sound a shorter duration. A suitably
modified version of the program is provided below.

10P = 3
20 FOR V = 7 TO 0 STEP -1
30 SOUND 1,1,3 ,V,0,0,P
40 P = P + 1
50 NEXT V

ENV

For most purposes a SOUND instruction plus perhaps a loop
or some other support is all that is needed to give the desired
effect. However, where complex shaping of the volume or
pitch is required it is easier to use a SOUND instruction with
either an ENV (envelope - volume) or an ENT (envelope -
tone) instruction. We will consider ENV first.

The first parameter in an ENV instruction is merely an
identification number (from 1 to 15) that enables the required

55

ENVelope to be called up in a SOUND instruction. This is
accomplished by using the ENV number as the fifth para
meter in the SOUND instruction. The next three numbers in
the ENV instruction control the number of steps, the decrease
or increase in volume provided by each step, and the duration
of each step (in hundredths of a second). The number of steps
must be in the range 0 to 127, while the volume step size can
be between —128 and +127. However, bear in mind that there
are only fifteen volume levels plus off, and the volume step
size would normally be in the range —15 to +15. The maxi
mum duration per step is 255. As a simple example, to give a
step down in volume from 15 to 0 in fifteen steps of one
tenth of a second (ten hundredths) in duration, the instruc
tion

ENV 1,15,-1,10

would be used (assuming the ENVelope is to be identified as
ENVelope 1).

In practice up to five sections of envelope shaping can be
used, with each section requiring three figures to set the
number of steps, step size, and step duration. This can make
complex envelopes a little difficult to calculate, and it is
often worthwhile drawing out the envelope shape before
calculating suitable figures for the ENV instruction. Figure
1 gives an example of this. The aim of this envelope is to give
an envelope shape similar to that of a piano and many other
instruments. A fast initial rise from zero to full volume is
required, followed by a fairly rapid fall in volume to a
medium level, after which the sound is sustained at that level
for a period, and then gradually decays. This is normally
termed ADSR (attack, decay, sustain, release) envelope
shaping. In Figure 1 the sound rises to full volume in just
five one hundredths of a second. With 15 volume levels
this requires five steps of minimum duration and a step
size of +3. The first part of the ENV instruction would
therefore be:-

ENV 1,5,3,1

56

57

The next stage lasts 20 one hundredths of a second, and the
volume falls four units. This requires four steps of five one
hundredths of a second in duration, with the volume falling
by one unit per step.

The next section has just one step, there is no drop in
volume, and it lasts 50 one hundredths of a second. Finally,
the fourth step has eleven single step falls in volume with
each step lasting 10 one hundredths of a second. If you work
out the entire ENV-instruction to give this shape you should
end up with the one given below.

ENV 1,5,3,1,4,-1,5,1,0,50,11,-1,10

This can be used in a simple program to play music, as in the
example given below.

10 ENV 1,5,3,1,4,-1,5,1,0,50,11,-1,10
20 READ P,D
30 IF P = 0 THEN 70
40 SOUND 1 ,P,D,0,l ,0,0
50 GOTO 20
60 DATA 239,50,213,50,190,50,179,50,159,50,142,50,

127,50,119,185,0,0

This is similar to the music program described earlier, and
with the values shown in the DATA statement at line 60 this
one also plays a scale of C major. The values in the DATA
statement are pairs of note and duration values, in that order.
No' volume parameter needs to be set from the data statement
since the envelope shaping ensures that successive notes of the
same pitch stand out from one another and do not merge
together. In fact, in this case the volume cannot be altered
from the DATA statement since a volume figure of 0 has to
be used. Otherwise the required start and finish at zero
would not be produced by the ENV instruction, and also the
volume parameter would go out of range.

An important point to note is that the duration of each
note is set at the SOUND instruction. This is in fact only
possible if the duration in the SOUND instruction is less than

58

that set in the ENV instruction, or if the ENV instruction
gives a final volume value of other than zero. Otherwise the
sound ends when it reaches zero at the end of the ENV
instruction.

ENT

ENT operates in a similar manner to ENV, and as before, the
first parameter is simply a number in the range 1 to 15
which identifies the ENT instruction. It is called up from a
SOUND instruction by using this number as the sixth
parameter in the SOUND instruction. Again, three numbers
are used to define the characteristics of each section of the
envelope shaping, and up to five sections can be used. The
first one sets the number of steps (0 to 239), the second sets
the number of pitch units jumped in each step (—128 to
+127), and the third controls the duration of each step (0 to
255 in one hundredths of a second).

If we take a simple example, the following program gives
a police car siren type sound.

10 ENT-1,20,2,1,20,-2,1
20 SOUND 1,50,1000,6,0,1,0

The first point to notice is that the envelope number is nega
tive, and this is done to give an automatic repeat of the
envelope. Using a positive number gives just one execution of
the envelope, and the pitch then stays at its final value until
the SOUND instruction is terminated. A positive ENT number
is used in the sound instruction.

The values in the ENT instruction give 20 rises in pitch
with the pitch being incremented by two in each step. Each
step lasts the minimum duration of one hundredth of a
second. The second set of three figures simply reverse this
process and steps the pitch back to its original figure. The
initial pitch value is set by the pitch value in the relevant
SOUND instruction. In this case this pitch value is swept
upwards by 40, then down by 40, and so on, giving the

59

required continuous fall and rise in pitch.
If the duration figure used in the SOUND instruction is

too short to permit the tone envelope to be completed, the
signal is nevertheless terminated after the duration set in the
SOUND instruction.

It is perfectly possible to use both ENV and ENT instruc
tions together with a single SOUND instruction. For example,
the music program provided earlier can have line 5 added and
Une 40 modified, as shown below.

5 ENT-1,1,1,4,2,-1,4,1,1,5
40 SOUND l,P,D,0,l,l,0

The ENT instruction simply varies the pitch value by plus
and minus 1, giving quite a good vibrato effect.

60

Chapter 6

GRAPHICS 1 - MODES & COLOURS

In most computers supporting several screen display modes,
there is a clear trade-off between the number of colours that
can be displayed in a given mode, and the amount of detail
that can be shown — more detail — less colours.

The Amstrad is a good example of this. It has three modes,
numbered from 0 to 2. Mode 0 has the lowest resolution
and the most colours. It can display 20 columns of text (all
modes display 25 Unes of text), and can use up to 16 colours
at once. The graphics resolution is 160 x 200, which means
it can plot 160 separate dots across the screen, and 200 up
the screen. The large number of colours which can be
displayed at once makes this a good mode for games playing,
where very fine detail is not generally of great importance.

Mode 1 is the default mode - the one the computer is in
when first turned on. It can display 40 columns of text, and
has a graphics resolution of 320 x 200. It. can display four
colours at once. This is a good mode for general-purpose
programming, and for scientific and business graphics, where
the extra detail can be more important than lots of colour.
Four colours are generally quite adequate for these uses.

Mode 2 displays 80 columns of text, and has a graphics
resolution of 640 x 200. It can display only two colours at
one time. This mode is suitable for graphics when detail is
of the utmost importance, and is also ideal for applications
such as word-processing and spreadsheets. The problem with
this mode is that the text may not be clear on a colour
monitor unless the two colours are chosen carefully, and is
not generally readable at all on a T.V. used with the optional
modulator.

The Amstrad display hardware is capable of producing 27
different colours. You can choose the colours you want to
use from these, the number of choices being set by the mode
in use. It is rather as if you have 27 bottles of ink from which
you can fill your pens. You have 2 pens if you want to write

61

very small, four for normal writing, and 16 for bold writing.
You can fill the pens with any of the inks you like (and can
fill two or more pens with the same colour if required). The
colour of the paper you use must be chosen from one of the
inks in the pens. Of course, if you were drawing on paper,
you could go back to your bottles of ink and refill a pen with
a different colour. You can do this with the Amstrad com
puter, but if you do, all the writing already done with that
pen will change to the new colour! This can actually be very
useful in programming.

This is a useful analogy, because the keywords used to con
trol the colour in Locomotive BASIC are INK, PEN, and
PAPER. INK assigns one of the 27 available colours to one
of the available pens, PEN selects which pen is to be used for
writing (continuing until another PEN command is issued),
and PAPER selects which PEN colour is to be used for the
background.

In fact, all the pens have default values, so you do not
necessarily have to use INK commands. You can use the
colours assigned by the computer. Try turning your com
puter on, and typing “pen 2”, When you press ENTER, the
“Ready” message will appear in light blue. Type “pen 3”
(which will also be in blue) and the “Ready” message will
be in red. By default, the mode 1 pens are filled with dark
blue (pen 0), yellow (pen 1), light blue (pen 2) and red (pen
3). Pen 0 is used for the background (PAPER), and pen 1 is
used for foreground, until changed.

If you now type “paper 1”, future text will appear in red on
a yellow background. If you set the paper to the current text
pen, any text printed will be invisible (i.e. enter paper 3).

To illustrate changing the ink in a pen, reset the computer
(SHIFT/CTRL/ESCAPE), then type “ink 0,24”. The screen
should turn yellow, and of course the yellow writing will be
invisible! Next type “ink 1,1”. You won’t be able to see what
you are typing but you should manage. When you press
ENTER the writing should all re-appear in dark blue. It
may, however, look black. INK 1,2 will give a brighter blue.
The first number in the INK command is the number of the
pen you wish to refill, the second number is the colour of the

62

ink (0 to 26).
In fact, you can assign ink colours to all 16 pens no matter

which mode you are in, but you can only actually use the
number of pens available. That is, pens 0 and 1 in mode 2,
pens 0-3 in mode 1, and pens 0-16 (i.e. all of them) in mode
0. The currently selected pen is not altered by a mode change,
so if you select pen 3 in mode 1 (red by default) and then
change to mode 0, text will still be in red.

' If you select a pen number higher than that available in a
given mode, the number will be reduced modulo the number
available. Thus, if you select pen 4 in mode 1 you will get
pen 0, and pen 5 will give you pen 1. This is not altered on a
mode change. That is, if you select pen 6 in mode 1, you will
get pen 2. If you then change to mode 0, pen 2 will still be
selected. However, if you change to mode 2, a further modulo
reduction will occur, and pen 0 will be forced. (In this
instance, as this will, by default, be the same as the PAPER
colour, text writing would be invisible.)

Listing 11 demonstrates the colour capabilities of mode 0.
The first loop, Unes 50 to 80, puts a line of text in each of
the 16 default colours on the screen. The pen 0 line cannot
be seen as it is the same as the background. The second part
of the program, lines 90 to 140, are two nested FOR . . .
NEXT loops, which cause all 16 pens to cycle through all 26
colours. This obviously leaves all pens set to colour 26! The
rest of the program resets the four pens used by mode 1 to
their default colours, so you can see what you are doing!
You may like to try to modify this program so that it resets
all 16 pens (HINT: Use a FOR . . . NEXT loop and DATA
statements. Alternatively you could simply replace lines 140
to 210 with CALL &BBFF, an operating system subroutine
which resets screen colours and mode, but not current pen
selections.)

The ink command also allows any pen to be set to pro
duce a flashing effect. This is done by specifying two ink
colours, which will appear alternately. An on-off flash can
be obtained by setting one of the ink colours to the current
background colour.

The rate of flash is controlled by the SPEED INK

63

command. This is followed by two numbers, which must
be integers. The first gives the time the first colour is to
appear, the second the time the second colour is to appear,
so both speed of flash and relative duration of the colours
is controllable. These commands are beautifully easy to use,
and experimentation is recommended, but don’t get too
goggle-eyed!

LISTING 11

20 REM colour demonstration

30 MODE 0

40 CLS

50 FOR colour«© TO 15

60 PEN colour

70 PRINT "This is Pen colour

8© NEXT colour

90 FOR 4uill=© TO 15

100 FOR coIour=0 TO 26

110 INK quills colour

120 FOR deIay=1 TO 200-NEXT delay

130 NEXT colour

140 NEXT quill

64

150 MODE 1

160 INK 0,1

170 INK 1,24

180 INK 2,2

190 INK 3,3

200 PEN 1

210 END

LINE DRAWING

The Amstrad has a comprehensive set of commands for
drawing lines and plotting points on the screen. These use
a system of co-ordinates to give the horizontal and vertical
positions.

Though the resolution in the three modes differs, the
co-ordinate values are the same. This means a given set of
DRAW commands will draw the same shape in the same
place on the screen in all three modes. This is a consider
able benefit. Of course, the amount of detail possible and
fineness of line will differ.

In fact, all three modes have the same vertical resolution,
200 lines. The co-ordinate system uses a scale of 400
vertically, so this means that points 0 and 1 in the co-ordinate
system will refer to the same point on the screen, as will 2
and 3, 4 and 5, and so on. This means there is no point in
using odd numbers when specifying vertical co-ordinates.

The horizontal co-ordinates use 640 points horizontally.
This matches the highest resolution mode, mode 2. Mode 1
has 320 lines horizontally, which means that points 0 and 1
refer to the same point, as in the vertical. Illis means that

65

mode 1 has equal resolution in the two directions, which can
be useful for some graphics display purposes. Mode 2 has
only 320 points horizontally, which means that points 0,1,2,
and 3 refer to the same point.

The on-screen graphics co-ordinates run from 0 to 639
horizontally, 0 to 399 vertically. The position 0,0, called
the origin, is in the bottom left-hand corner (unlike the
text origin which is top left) but it can be moved to anywhere
on the screen (or, indeed, off it) with the ORIGIN
command.

With the Amstrad, it is quite legal to draw off the screen.
The off-screen position is correctly recorded, which means
if you draw off the screen, and then back on again, the second
line will have the correct angle. This makes some perspective
drawing effects easy to achieve.

The computer has a graphics cursor, as well as a text cursor,
but the graphics cursor is invisible. When lines are drawn,
they are drawn from the current cursor position to the new
position specified.

There are two ways of specifying co-ordinates, relative and
absolute. Relative means that the values specified are a dis
placement relative to the current cursor position. Absolute
means that the values specified are absolute co-ordinates on
the imaginary screen grid, or to put it another way, relative
to the graphics origin. Negative co-ordinates are legal in both
relative and absolute.

On the whole, it is likely that you will find the absolute
co-ordinate system the easiest and most useful, but relative
co-ordinates can simplify some jobs.

The three main graphics commands are MOVE, DRAW,
and PLOT. These are the absolute forms. The relative
forms have an extra R on the end, MOVER, DRAWR,
PLOTR. MOVE simply moves the graphics cursor without
making a mark on the screen. DRAW draws a line from the
graphics cursor position to the new position specified. PLOT
is similar to MOVE, but it plots a point at the new cursor
position.

Listing 12 illustrates MOVE and DRAW, and relative and
absolute co-ordinates. It draws a box on the screen, the size

66

and position of which are entered in INPUT statements in
lines 50 to 70. The actual box-drawing part of the program
has been written as a subroutine, which you could adapt for
use in your own programs.

Line 1010 moves the graphics cursor to the absolute
position specified in line 50. The next four lines draw the
box, using relative co-ordinates. The order of drawing is left
side, top, right side, bottom. Note that drawing up and to
the right are positive displacements, down and to the right are
negative.

LISTING 12

20 REM box drawing

30 MODE 1

40 WHILE 1

50 INPUT "Bottom corner Position (x

> y >";x»y

60 INPUT "Height";high

70 INPUT "Width";wide

80 CLS

90 GOSUB 1000

100 WEND

1000 REM box drawing subroutine

1010 MOVE x.y

67

1020 DRRHR 0.hi9h

1030 DRRHR wide.©

1040 DRRHR ©.-high

1050 DRRHR -wide.©

1©60 RETURN

Locomotive BASIC does not include any circle drawing
command. It is, however, quite easy to draw a circle using
the in-built SIN and COS functions. This is illustrated in
Listing 13, which draws an interesting pattern of ellipses
within a circle, using the default colours in mode 1.

Line 30 sets the colour of the border around the screen
area. The border can be set to any of the 27 available colours,
or to flash between any two of them, irrespective of current
pen settings and the number of colours available in the
current mode. The colour number(s) in the BORDER state
ment therefore come from the list of 27 colours, and not the
pen numbers. In this case, however, I have used a current
pen colour.

Lines 50 to 80 draw a box around the screen. Note the
extra parameter on the end of the DRAW statements. The
colour used for graphics line drawing is not controlled by the
current text pen setting. It is controlled by this extra para
meter, which must be a number of an available pen. If no
colour is specified in a DRAW statement, the last colour
specified remains in use, defaulting to pen 1 colour.

Lines 100 to 140 draw the circle. In line 100, x and y are
the co-ordinates of the centre of the circle, and d sets the
diameter (actually, the number is the radius in graphics units,
and would be better called r, but I have been using d for this
parameter for too long to change now!). Line 110 moves the
graphics cursor to the first point on the circle, and the FOR
. . . NEXT loop in lines 120 to 140 do the actual drawing.
Note that Une 130 selects pen 2 colour.

68

Lines 160 to 250 draw the pattern of ellipses. This is a
modification of circle drawing, the circles being stretched in a
direction controlled by line 170 (the number by which PI is
divided in this line controls the number of ellipses) and by an
extent controlled by the constant inline 190 (100 in this case).
Lines 200 to 230 do the drawing. Note that the order of SIN
and COS in lines 200/210 are reversed compared to line 130.
Thus the ellipses are drawn clockwise, and the circle is drawn
widdershins. Line 220 moves the cursor to the start point of
each ellipse. Line 230 draws in pen 3 colour.

LISTING 13

20 MODE 1

30 BORDER 2

40 REM draw box

50 DRAW 0,399,1

60 DRAW 639,399,1

70 DRAW 639,0,1

80 DRAW 0,0,1

90 REM now draw circle

100 x=320=a=200:d=l96

110 MOVE x+d,y

120 FOR c=0 TO 2*PI STEP 0.03

139 DRAW x+d*C0S(c),a+d*SIN(c),2

69

140 NEXT c

150 REM now draw the ellipses

160 d=92

170 FOR e=0 TO PI STEP PI^5

1S0 FOR P=0 TO 2*PI STEP 0.03

190 f=100*COS(P)

200 xI-x+f*SIN(e)+d*SIN<P +e >

210 y I =y +f*COS<e >+d*COS< P +e)

220 IF P=0 THEN MOVE xl.yl

230 DRAW xLi»b3

240 HEXT P

250 NEXT e

260 END

Listing 14 demonstrates PLOT. It simply plots dots on the
screen at random positions in random colours. The results
can be quite pretty.

LISTING 14

20 MODE 0

30 WHILE 1
70

40 PLOT RND< 1 2*640, RND< 1 2*400.. RND< 1

2*15

50 WEND

Finally in this section, Listing 15 is the program used to
produce the screen display in the cover photo. Again, it is a
modification of the circle-drawing formula. In this case, the
value of d is decremented (line 140) producing a spiral. The
spiral is not drawn, the cursor is simply moved to points on it
(Une 120). A second spiral, related to the first, is generated
by line 130, in conjunction with line 100. Lines are drawn
from the points on the first spiral to points on the second
spiral. The variable x controls the colour. The available
colours are taken in sequence, except that the background
colour is suppressed (line 80) and the two flashing colours
are omitted (line 90).

LISTING 15

20 MODE 0

30 BORDER 2

40 PAPER 5=CLS

50 x«l‘d«350

60 WHILE d>34

70 FOR c«0 TO 2*PI STEP 0.1

80 IF x=5 THEN x=6

90 IF x=14 THEN x»l
71

100 e=d~50

110 IF e<0 THEN e=9

120 MOVE 320+d*COSCc>,200+d*SIN(c>

130 DRAW 320+e*COS<c-0.5>,200+e*SIN

C c-0.5 x

140 d=d-l

150 IF e<0 THEN e=0

160 x=x+l

170 NEXT c

180 WEND

130 GOTO 130

WINDOWS

Normally the whole screen of the monitor or television set,
apart from the border area, is available when PRINTing,
LISTing, etc. However, it is possible to divide the screen into
sections, and then PRINT or LIST in each section, or
“window” as they are usually termed. The CPC464 can have
up to eight of these windows. As one would expect, the
WINDOW instruction is used when defining a window, and
this instruction has five parameters. The first of these is the
channel or stream number, and this is a means of identifying
the windows so that the appropriate one can be selected in
(say) a PRINT instruction. The other four parameters specify
the limits of the window using the ordinary screen co

72

ordinate system. The first two of these parameters determine
the width and lateral position of the window, as they are
respectively the left and right most columns occupied by
the window. Similarly, the last two figures specify the top
and bottom lines that are occupied by the window.

As a simple example,

WINDOW#!,10,20,15,22

would produce a window having 1 as its channel number,
with screen co-ordinate 10—15 at the top left hand corner,
and co-ordinate 20-22 at the bottom right hand corner. Of
course, the exact area of the screen that this would occupy
is dependent on the screen mode used, as the co-ordinate
numbering is different for each mode.

DICE

The “Dice” program of Listing 16 helps to show the way in
which windows can be used. The idea of the program is to
graphically represent a pair of dice on the screen. Operating
the spacebar causes the dice to roll a few times and then
display the final numbers with the spots in the appropriate
patterns. Two windows are used in the program, and these
produce the bodies of the dice.

Line 20 sets the required mode, and in this case high
resolution is not needed, but a wide range of available colours
is an advantage, and mode 0 has therefore been selected. Line
30 sets the paper colour to light blue and line 40 gives a bright
green border. The windows are defined at the next two lines,
and these are given channel numbers 1 and 2. Figure 2 shows
the size and positions of the windows, as well as the positions
of the spots on each die. Each window is 7 co-ordinates wide
by 14 high, but as each screen co-ordinate (in mode 0 any
way) is about twice as wide as it is high, this gives reasonably
square dice. Similarly, each spot is one co-ordinate wide by
two high, and reasonably square.

Lines 70 to 140 set the paper and pen colours for each

73

74

window, with the appropriate channel numbers being used
at lines 110 to 140. The right hand die is yellow with
orange spots, while the right hand one has a bright magenta
background with red spots. However, you should have no
difficulty in changing these to any colours you prefer. Lines
150 and 160 are used to clear the backgrounds of the windows
to the set colours. The next few Unes produce two random
integers from 1 to 6 and assign these to variables 1 and r (left
die and right die). Line 200 simply provides a cUcking sound
effect each time the dice roll.

The spots are placed on the dice using a series of IF . . .
THEN instructions and a series of subroutines. Four sub
routines are used for each die, and the first of these draws the
centre spot. For the left hand die this is the subroutine
starting at Une 400. A new instruction is introduced here, and
this is LOCATE. It is used to place the cursor at the desired
position within a window. In this case it is used to position
the cursor at the point where one of the spots must be placed,
and then a PRINT instruction is used to print a suitable
character on the screen at this position. The character we are
using here is number 143, and if you refer to the character set
in the CPC464 manual (Appendix III) you wiU find that this
is simply a soUd block of the current pen colour. Two of these
blocks are needed to produce each spot, and each one requires
separate LOCATE and PRINT instructions.

As akeady pointed out, the first subroutine draws the
centre spot. The next draws the top-right and bottom-left
spots, while the thkd produces the other two corner spots.
The fourth routine draws the spots to the left and right of
the centre one. By calling up the appropriate subroutines at
the IF . . . THEN instructions the correct pattern of spots can
be produced. For example, the second and third subroutines
give the pattern for a four, and the final three subroutines give
the correct pattern for a six. Separate sets of subroutines are
used for the two dice.

An important point to note about the LOCATE instruction
is that it does not use the normal screen co-ordinates. Instead,
each window has its own co-ordinates starting at 1—1 in the
top left hand corner. Thus the centre spot for the left hand

75

die is not as co-ordinates 6-11 and 6-12, but is instead at
4—7 and 4-8. Also, because of this system the co-ordinates
used in the subroutines for the left hand die are exactly the
same as those for the right hand die. The only difference
between the two sets is the channel number used in the
LOCATE and PRINT instructions.

Lines 330 to 360 are used to loop the program a few times
to give the rolling of the dice. Variable x is set randomly at
0, 1, or 2, on each loop of the program, and the dice roll
until it is set at 1. This gives typically about three rolls of the
dice, but the number can be anything from one to about a
dozen times. The old spots must be blanked before a new set
is added, but this is achieved quickly and neatly by simply
sending a CLS instruction to each window. Line 370 is used
to hold up the program until the spacebar is operated, where
upon the old dice are blanked and the program branches back
to line 180 to set the dice rolling again.

LISTING 16

20 MODE 0

30 INK 0,2

40 BORDER 19

50 WINDOW#!,3,9, 5, 18

60 WIND0W#2,12,18,5,18

70 INK 2,25

80 INK 3,15

90 INK 4,8

100 INK 5,6
76

110 PAPER#1,2

120 PAPER#2,4

130 PEN#1,3

140 PEN#2,5

150 CLS#1

160 CLS#2

170 RANDOMIZE TIME

180 I = INT <RND*6+1>

190 r = INT <RND*6+1>

200 SOUND 1,1,2,7,0,0,2

210 IF I = 1 THEN GOSUB 400

223 IF I - 2 THEN GOSUB 430

230 IF 1 = 3 THEN GOSUB 409'GOSUB 43

0

240 IF 1 = 4 THEN GOSUB 430'GOSUB 48

0

250 IF I =5 THEN GOSUB 400'GOSUB 43

0=GOSUB 489

77

260 IF I = 6 THEN GOSUB 430’GOSUB 48

0=GOSUB 530

270 IF r = 1 THEN GOSUB 580

280 IF r = 2 THEN GOSUB 610

290 IF r = 3 THEN GOSUB 580:GOSUB 61

0

300 IF r = 4 THEN GOSUB 610:GOSUB 66

0

310 IF r = 5 THEN GOSUB 580=GOSUB 61

0■GOSUB 660

320 IF r - 6 THEN GOSUB 610=GOSUB 66

0:GOSUB 710

330 x = INT (RND*3>

340 IF x = 1 THEN 370

350 CLS#PCLS#2

360 GOTO 180

370 a» = INKEY#-IF a# O CHR»(32) TH

EN GOTO 370

78

380

390

409

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

CLS#1’CLS#2

GOTO 180

LOCATE#1,4,7’PRINT#1, CHR«143)

LOCATE#!,4,8 ’ PRINT#1, CHR«143)

RETURN

LOCATE#!,6,3’ PRINT#!, CHR«143)

LOCATE#1,6,4’PRINT#!, CHR«143)

LOCATE#1,2,11= PRINT#1, CHR«143)

LOCATE#!,2,12’PRINT#!, CHR«143)

RETURN

LOCATE#1,2,3’PRINT#1, CHR«143)

LOCATE#1,2,4’PRINT#1, CHR«143)

LOCATE#1,6,11’PRINT#1, CHR«143)

LOCATE#1,6,12’PRINT#1, CHRS<143)

RETURN

LOCATE#1,2,7’PRINT#1, CHR«143)

LOCATE#!,2,8’PRINT#!, CHR«143)

LOCATE#!,6,7’PRINT#!, CHR«143)

79

563

573

390

590

600

610

620

630

640

650

660

670

630

690

703

710

720

730

LOCATE#1,6,8'PRINT#1, CHR«143)

return

L0CATE#2,4,7'PRINT#2, CHR«143)

L0CATE#2,4,3'PRINT#2,CHR$(143)

RETURN

LCCATE#2,6,3'PRINT#2, CHR*(143)

L0CATE#2,6,4'PRINT#2, CHR«143)

L0CATE#2,2,11=PRINT#2, CHR«143

L0CRTE#2,2,12'PRINT#2, CHR«143

RETURN

L0CRTE#2.2,3'PRINT#2, CHR«143)

L0CRTE#2,2,4'PRINT#2, CHR«143)

L0CRTE#2,6,11'PRINT#2, CHR9<143

L0CATE#2,6,12'PRINT#2, CHR«143

RETURN

L0CATE#2,2,7'PRINT#2, CHR$<143)

L0CATE#2, 2,3' PRINT#2, CHR« 143)

L0CATE#2,6,7'PRINT#2, CHR«143)

80

749 L0CRTE#2,6,8'PRINT#2, CHR$(143)

750 RETURN

WINDOW SWAP

WINDOW SWAP is an instruction that can be used to swap
over the channel numbers of two windows. For example, to
direct data for channel 3 to channel 4 (and vice versa) the
instruction

WINDOW SWAP 3,4

would be used. This command can be used to direct data
that would normally go to the main screen (which is channel
0) to a window. For example, WINDOW SWAP 0,4 would
result in data being sent to the channel 4 window instead of
the main screen. It should be possible to modify the dice
program to use this instruction and one set of subroutines to
accommodate both dice. You might find it instructive to
try out this idea.

81

Chapter 7

GRAPHICS 2 - ANIMATION

The principle of animation is simple. Print a character on the
screen, then block it out and print and the same character in
an adjacent position. Repeat this at appropriate speed and the
character will appear to be moving across the screen.

It is also possible to animate an object consisting of more
than one character, and this is very easy if only horizontal
motion is involved. Listing 17 illustrates this. It moves a
bucket, consisting of two characters from the graphics set
and two underline characters across the bottom of the screen.
By putting a space (CHR$(32)) at each end of this string, it
effectively blocks itself out as it moves. Motion of the bucket
is controlled from the keyboard using the z key for left move
ment and the \ key for right movement. These keys are
checked using the INKEY function in lines 60 and 70. INKEY
returns —1 when the key specified is not pressed, and various
other values when it is pressed, depending on whether the
shift key, control key, or both, are also down. We can
therefore check simply for pressed or not pressed by using
IF NOT, as explained in Chapter 3.

Lines 80 and 90 are to prevent the bucket moving off the
edges of the screen.

Line 95 needs some explanation. When this program is
run, a double image of the bucket is sometimes visible as it
moves. CALL &BD19 calls an operating system subroutine
which causes the machine to wait for the start of the next
frame of the video display. I tried this to see if it would
reduce the double effect. You may agree with me that it is
not effective in this case.

Once you can move a bucket, you can catch things in it.
Let’s see how to tackle vertical motion, then the two ideas
can be put together into a game.

82

LISTING 17

20 REM bucket moving

23 CLS

30 buck et*=CHR«(32)+CHR«(205 2+"__" +

CHR$<204 2+CHR«(32 2

40 bx=17=by=24

50 WHILE 1

60 IF NOT INKEYC712 THEN bx=bx-l

70 IF NOT INKEYC22) THEN bx®bx+l

80 IF bx<l THEN bx»l

90 IF bx>34 THEN bx=34

95 CALL &BD19

180 LOCATE bx,by'PRINT bucket«

110 WEND

Listing 18 causes the heart shape from the graphics set
(CHR$(228)) to move vertically down the screen.

Line 40 seeds the random number generator. Line 45 sets
initial values to two variables which will be used to remember
the last position of the falling heart for blocking out purposes.
Line 50 sets the horizontal position of the heart at random.

The descent is controlled by a FOR . . . NEXT loop, lines
60 to 100. The control variable is used as the vertical

83

co-ordinate. Line 70 prints the heart, line 80 blocks it out at
the previous position. Line 90 updates the variables odx and
ody.

LISTING 18

20 REM vertical motion

30 CLS

40 RANDOMIZE TIME

45 odx=l:ody=i

50 LET dx=INT<RHD*30+5)

60 FOR dy = l TO 23

70 LOCATE dx.dy : PRINT CHR* 228)

80 LOCATE odx.ody:PRINT CHR$(32)

90 odx=dx!ody=dy

100 NEXT dy

110 GOTO 50

Listing 19 is the Bucket Game which brings these two ideas
together. The first part of this program, lines 20 to 70, does
things which only need to be done once, such as defining the
“bucket” string, and printing the screen labels.

The second part, Unes 90 and 100, do things which must be
done for each bomb. Line 100 selects which of two characters
will be printed, the heart, or a downwards-arrow. The idea of
the game is that you must catch the hearts (scoring 10 points)

84

and avoid the arrows (penalty — points halved if you don’t!).
Line 110 sets the horizontal position as in Listing 18.

Line 120 calls the subroutine which controls the main
play, lines 1000 to 1120. It can be seen that this is construc
ted from Listings 17 and 18 interwoven together, with a few
extras, such as PEN and SOUND commands.

When each bomb reaches the bottom of the screen, line
130 compares the horizontal co-ordinates of bomb and
bucket. If a catch has occurred (the bomb must be over the
underline characters to count) the routine from line 2000 is
called. This routine actually uses the variable c, which other
wise controls the bomb colour, to determine how to change
the score (lines 2010 and 2020, which include appropriate
sound effects). This routine also prints the score on the
screen.

A round consists of 20 bombs. After this, line 150 calls
the subroutine from line 3000, which offers the option of
another round or exiting the program. Line 3015 is interest
ing. The INKEY function checks to see if a key is pressed,
but does not remove a character from the input buffer. This
means that all the keypresses from moving the bucket are
stored (up to the limit of the buffer). Line 3015 strips
these keypresses, so that the program does not fall through
line 3030. Line 3060 holds the program in this routine if
one of the two play keys is pressed by mistake, which can
easily happen. This routine does not interpret the player’s
response.

Line 160 determines what action to take. If the y key
is pressed, another round follows. If any other key is
pressed, line 170 resets the default colours and screen mode,
and the program ends.

The routine in lines 4000 to 4050 is a simple routine to
print the highest score since the program was run on the
screen.

The last routine, from line 5000, was an afterthought.
This causes the program to wait until a key is pressed before
starting each round, so the player can get ready. This
routine is called by line 85.

This game has been written using the default colours in

85

mode 1. You may find the arrows a little difficult to see
(they are bright yellow). If so, it is easy to put a line some
where near the beginning of the program (line 45, say) re
defining the colour for PEN 1.

Animation using the text co-ordinates will always be a
little jerky, but can be quite fast and exciting, and is useful
for simple games of this sort.

LISTING 19

20 REM Bucket Game

30 MODE 1

40 BORDER 18'PAPER 2'CLS

50 buck et«=CHRS< 32 2+CHR« 205 2+ "__" +

CHR$< 204 >+CHR«<32 2

55 bx=17'by=24

60 LOCATE 1,1'PEN 0'PRINT "SCORE"

70 LOCATE 34,1'PRINT "HISCORE"

80 RANDOMIZE TIME

85 GOSUB 5000'REM 'Press any key' r

out i ne

99 FOR bombs=l TO 20' REM round ini

tiation

86

100 IF RND>0.5 THEN bomb»=CHR»(228>

’c=3=ELSE bomb»=CHR«241>’c=1

110 dx=INT<RND*25>+7

120 GOSUB 1000:REM Plaa routine

130 IF (dx=bx+2) OR (dx=bx+3) THEN

GOSUB 2000:REM scoring

135 LOCATE odx,ody’PRINT CHR«32)

140 NEXT bombs

150 GOSUB 3900’REM another round?

155 GOSUB 4000’REM hiscore

160 IF LOWER«ans»>"y" THEN 35

170 CALL &BBFF’PAPER 0’PEN 1’CLS

180 END

1S00 REM Play loop routine

1010 odx=7’ody=l

1020 FOR dy*l TO 23

1930 LOCATE odx,ody’PRINT CHR«32)

1040 LOCATE dx,dy’PEN c’PRINT bomb»

87

i 950 odx=dx •• oda =da

1055 SOUND 1.da*50.5

I960 IF NOT INKEY(71> THEN bx=bx-l

1070 IF NOT INKEYC22) THEN bx=bx+l

1030 IF bx<l THEN bx=l

1090 IF bx?>34 THEN bx=34

1100 LOCATE bx,ba=PEN 0'PRINT bucke

t«

111© NEXT da

1120 RETURN

2000 REM scoring

2010 IF c=3 THEN Pts=Pts+l©’SOUND 1

.50.50

2020 IF c=l THEN Pts«CINT(Pts/2) ’SO

UND 1.1000.100

2030 LOCATE 1.2’PEN 0’ PRINT Pts

2040 RETURN

3000 LOCATE 15.10

88

3010 FEM 3

3015 WHILE INKEY« -NEND

3020 PRINT "Another Go? (yzn)"

3030 ans«=INKEY«IF ans#="" THEN 30

30

3040 LOCATE 15,10

3050 PRINT SPACE« 18)

3860 IF LOWER« ans#>"z" OR ans#« "

x" THEN 3000

3070 RETURN

4000 IF Pts>hiscore THEN hiscone=Pt

4310 LOCATE 34,2

4020 PEN 0

4030 PRINT hiscore

4040 Pts=0

4050 RETURN

5000 REM start routine

89

5310 LOCATE 10,10

5020 PEN 3

5030 NHILE INKEY$<>"”'WEND

5040 PRINT "Press any key to start"

5050 a*=INKEY«IF a$="" THEN 5050

5069 LOCATE 10,10

5070 PRINT SPACE«22>

5030 RETURN

TEXT AT GRAPHICS CURSOR

Where smoother animation is required, it is possible to place
text characters at the position of the text cursor. Characters
can then be moved on the screen by a pixel at a time, giving
much smoother movement.

The command to do this is TAG. Normal printing at the
text cursor is resumed with TAGOFF, or automatically if the
BASIC returns to command mode.

When TAG is in force, the colour in which characters are
printed is not controlled by PEN commands. Instead, they
will be printed in the current graphics foreground colour,
as set in any previous DRAW or PLOT commands (or pen 1
colour by default). When TAG is in force, the background
to colours is always the current graphics paper colour, pen
0 colour by default.

The Amstrad has a number of graphics colour modes,
which allow graphics drawing and TAG printing to react to
what- is already on the screen. The default is colour mode 0,
which forces the current foreground and background colours

90

- that is, ignores what is already there. In mode 1, the
colour which appears is the colour plotted XOR the colour
already there. Mode 2 uses AND and mode 3 uses OR.

For animation, XOR is the most useful, as plotting the
same thing twice in the same place under XOR restores what
was originally there, so a character can be moved across a
multi-coloured background without changing the background.
Also, provided the graphics background colour is left as pen
0 colour, the character’s paper colour is effectively trans
parent, as (number XOR 0)=number.

By using XOR, it is also possible in a very simple way to
make the moving character pass in front of some objects on
the screen, and behind others. Listing 20 illustrates this. This
draws a desert scene with yellow sand, blue sky, and a couple
of red pyramids. A small black tank moves across the desert,
behind the first pyramid, and in front of the second.

To do this, we must reset a number of pen colours. When
doing this type of effect, it is much easier if a pen number of 8
or higher is used for the character, and pen numbers less than
8 for the background. In this case pen 8 is used for the tank.

Pen 3 is used for the desert. This pen is set to yellow by
the INK command in Une 30. 3 XOR 8 is 11, and as we want
the tank to be black, pen 11 is set to black in line 50.

We have to use different pens for the two pyramids. Pen 5
is used for the first, pen 1 for the second. Both these pens are
set to red in lines 60 and 70. 1 XOR 8 is 9. As we want the
tank to pass in front of the second pyramid, pen 9 is set to
black (line 40). 5 XOR 8 is 13. As the tank is to pass behind
the first pyramid, pen 13 is set to red (line 80).

Note that the colour for pen 8 does not have to be reset,
as it never actually appears!

Lines 80 and 90 clear the screen to yellow. Lines 100 to
120 produce the sky by setting a window and clearing it to
blue. Lines 140 and 150 draw the pyramids by calling the
subroutine from line 1000. This uses a FOR . . . NEXT loop
to fill the triangular shapes by drawing Unes close together.

There is no BASIC statement to set the graphics colour
mode. Instead it is done by sending control codes to the vdu
driver. This is done in line 180. CHR$(23) is the code to set

91

the colour mode, and this is directly followed by the mode
required. You must use either a semicolon, or the + (con
catenation) sign between the two characters. Any other
print separator (such as a comma) will not work. Line 180
resets the mode at the end of the program.

The tank is moved across the screen by the subroutine from
line 2000. The principle is similar to the way the bombs were
erased in the last program, with variables to remember the old
position, but in this case, only the x co-ordinate changes, so
we have x and ox, but no oy, and the erasure is by reprinting
the character rather than overprinting a space. Line 2050
actually does the overprinting, line 2070 the printing. Line
2020 is to make the first erasure by line 2050 at a point off
the screen. The calls to &BD19 should make a tangible
improvement to the animation in this program. Line 2085 is
simply short delay to control the speed of movement.

At the end of the program, line 190 waits for a keypress,
then line 200 resets the mode to 1 and colours to defaults.

The tank, CHR$(254), is a redefined character (line 130).
Figure 3 shows how the numbers in the SYMBOL statement
are arrived at (the first, 254, being the code for the character
to be redefined). Of course, it is not necessary to work out
the numbers in decimal, as the Amstrad will accept binary
numbers, indicated by preceding them with &X.

LISTING 20

20 MODE 0

30 INK 3,12

40 INK 9,0

50 INK 11,0

60 INK 1,3

70 INK 5,3
92

93

80 INK 13,3

80 PAPER 3!CLS

100 WINDOW #1,1,20,1,10

110 PAPER #1,6

120 CLS#1

130 SYMBOL 254,0,0,31,24,126,255,25

5,126

140 c=5=x=250:y=150=GOSUB 1000

150 c= 1:x=450;y=200 = GOSUB 1000

160 PRINT CHR«23>,CHR« 1);

170 GOSUB 2000

180 PRINT CHR«23>;CHR«0);

130 WHILE INKEY»®"":WEND

200 MODE 1!CALL WBFF = PAPER 0

210 END

1000 REM draw Pyramids

1010 i,.i=200

1020 FOR v=l TO 100

94

1030 MOVE x-w/2,y+v

1040 DRAWR w,0,c

1050 w=w-2

1060 NEXT v

1070 RETURN

2000 TAG

2010 PLOTR 3,0,3

2020 3=212=ox=-64' REM tank start P

Dint

2030 FOR x=0 TO 640 STEP 4

2040 MOVE ox,y

2045 CALL &BD19

2050 PRINT CHR« 234)7

2060 MOVE x,3

2065 CALL &BD19

2070 PRINT CHR« 254)7

2030 ox=x

2035 FOR d«l TO 100'NEXT

95

2090 NEXT x

2100 TAGOFF

2110 RETURN

JOYSTICKS & TEST

When movement on the screen has to be controlled in 4 direc
tions, joysticks are a much better bet than using the keyboard
Listing 21 is a computer version of the game where you have
to move a ring along a bent wire without the ring and wire
touching. Things are somewhat the other way round, how
ever, in that you have to draw a yellow Une between two
parallel red Unes, without touching them. This program also
illustrates the TEST function, which returns the ink value of a
specified point on the screen.

The pattern taken by the parallel lines is set a random. As
this game is most fun played competitively, and as different
patterns can vary markedly in difficulty, the program has
been written so that a pattern can be repeated any number
of times.

The subroutine from line 1000 sets the co-ordinates for the
parallel lines using RND (line 1020) and stores them in an
array. The subroutine from line 2000 then draws- the screen,
outlining it in red (lines 2020—2050) as well as drawing the
parallel lines (2060—2160). Line 2170 sets the start point
for the yellow line.

The WHILE . . . WEND loop in lines 80-110 repeatedly
calls the two routines starting at lines 3000 and 4000, until
the yellow line reaches the right-hand side of the screen.

The routine from line 3000 does most of the real work,
lines 3020 and 3030 read the joystick, and amend the
drawing co-ordinates px and py as appropriate. Diagonal
movement is not permitted. Note that although most switch
type joysticks have the same type of plug, there is some
difference of opinion between manufacturers as to which

96

way round joysticks should work. If you find your joysticks
work in the wrong sense for this program, you can either
change over the + and — signs in lines 3020 and 3030, or hold
the joystick upside down!

Line 3040 checks the point which is about to be plotted
to see if it is red (ink 3). If it is, px and py are reset to their
previous values (see also line 3010), a one-second time penalty
is incurred, and a buzz is produced. Otherwise the new point
is plotted (line 3050).

The routine from line 4000 prints the elapsed time on the
screen, using the function TIME. The variable t is set to the
value of the internal clock in line 70. Line 4020 calculates
the elapsed time in seconds by subtracting t from the current
TIME value, and dividing by 300 (as the internal clock incre
ments every 1/300 of a second). You can thus see how the
one-second penalty for a contact in line 3040 is added, by
subtracting 300 from the value of t.

Line 4020 also uses a PRINT USING specifier. This is a
string of characters which controls how output is to be format
ted on the screen. In this particular case, the time is printed
with up to 3 digits ahead of the decimal point, and 2 after it.
There are many PRINT specifiers, both for strings and for
numbers, and the best way to learn how to use them is to
experiment.

After completion of the yellow line, the routine from
line 5000 asks if you want to repeat the screen. If you answer
y, the program goes to line 60 to re-draw the screen.

If you answer n, you are offered the choice of a new
screen. If you answer y, the program goes to line 50. Other
wise it terminates and the computer is reset to mode 1 and
default colours.

An interesting feature of the Amstrad is that the joysticks
actually put characters into the keyboard buffer when moved.
These stored characters would interfere with lines 5030 and
6030, so these lines have been written so that they will only
respond to the y and n keys.

97

LISTING 21

20 REM * BUZZLINES *

30 MODE 0

40 DIM y:«8>

50 GOSUB 1000:REM set Pattern

60 GOSUB 2000-REM draw screen

70 t=TIME

80 WHILE Px’«630

90 GOSUB 3000-REM move

100 GOSUB 4000:REM display time

110 WEND

120 GOSUB 5000'REM 'try a9ain?'

130 IF LOWER* ans« >"y " THEN GOTO 6

0

140 GOSUB 6000:REM 'new screen'?'

150 IF LOWER«<ans«>"y" THEN GOTO 5

0

160 MODE 1:CALL &BBFF'PAPER 0=PEN 1

98

170 END

1 009

1010

1020

1030

1040

2000

2005

2010

2020

2030

2040

2050

2060

2065

2070

2080

2090

REM screen co-ords

FOR P?ints=0 TO 8

y r« P o i nts >=RND*200+100

NEXT Points

RETURN

REM draw screen

MOVE 0,0

PAPER 8=BORDER 3=CLS

DRAWR 0,399,3

DRAWR 639,0

DRAWR 0,-399

DRAWR -639,0

MOVE 0,yX<0>+20

Points=0

FOR xX=79 TO 639 STEP 30

DRAW xX, y"« P o i nts >+20

P o i nts=Po i nts+1

99

2100 HEXT xX

2110 Points»©

2120 MOVE 0,YX< 0 2-20

2130 FOR TO 639 STEP 30

2140 DRAW xX .• y X< P o i n ts 2-20

2150 Points»Points+l

2160 NEXT xX

2170 PxX»10!PyX=yX<0>

2130 RETURN

3000 REM movement routine

3010 aX»P xX1 dX=P y X

3020 P xX=PxX+4#C JOY(0 2=82-4t< JOYC0 2

=4 2

3030 PyX=P y X+2#<JOY(0 2=12-2*(JOY<32

=2 2

3040 IF TEST< PxX, PyX 2=3 THEN PxX=aX

;P yX=dX:t=t-300:SOUND 1,1000,20

3050 PLOT PxX,PyX,l

100

3060 RETURN

4000 REM Print elapsed time

4010 LOCATE 2,2

4020 PRINT USING "###,##".:< TIME-t)/

300

4030 RETURN

5000 REM 'try a9ain' routine

5010 LOCATE 2,4

5020 PRINT "Try A9ain? (y/n)"

5030 ans*»LOWER« INKEY«) = IF ansiO"

y" AND ans«>"n" THEN 5030

5040 LOCATE 2,4

5050 PRINT SPACE«16)

5060 RETURN

6030 REM 'new screen' routine

6010 LOCATE 2,4

6920 PRINT "New Screen? (y.'n)"

6030 ans«=LOWER« INKEY«)= IF anstO"

101

y" AMD ans»O"n" THEN 6930

6040 LOCATE 2,4

6059 PRINT SPACE«16>

6969 RETURN

102

Chapter 8

BINARY & HEX

A great deal of programming can be undertaken without
having an understanding of the way in which a computer
operates, or even having to understand a few basic principles,
especially when using a high level language such as the
Amstrad CPC464’s Locomotive BASIC. However, even when
using a sophisticated high level language there are still some
aspects of programming which can only be fully understood
if some of the more important fundamentals of computer
operation are understood. The binary numbering system is
perhaps the best example of this. Computers do not operate
directly in our ordinary numbering system, but do everything
in binary of one form or another. ,

The numbering system we normally use is commonly called
the decimal system and is, of course, based on the number 10.
There are ten single digit numbers from 0 to 9. This system
of numbering is not very convenient for an electronic circuit
in that it is difficult to devise a practical system where an
output has ten different voltage levels so that any single digit
decimal number can be represented. It is much easier to use
simple flip/flops which have just two output levels, and can
only represent 0 or 1. However, this bars such circuits from
operating directly in the decimal numbering system. Instead,
the binary system of numbering has to be utilised.

This system is based on the number 2 rather than 10, and
the highest single digit number is 1 rather than 9. If we take
a decimal number such as 238, the 8 represents eight units
(10 to the power of 0), the 3 represents three tens (10 to the
power of 1), and the 2 represents two hundreds (10 to the
power of 2 or 10 squared). Things are similar with a binary
number such as 1101. Working from right to left again, the
1 represents the number of units (2 to the power of 0, the
0 represents the number of twos (2 to the power of 1), the
next 1 represents the number of fours (2 to the power of 2),
and the final 1 represents the number of eights (2 to the power

103

of 3). 1101 in binary is therefore equivalent to 13 in decimal
(1 +0+4 + 8 = 13).

The table given below shows, the number represented by
each digit of a 16 bit number when it is set high. Of course,
a digit always represents zero when it is set low.

Bit 0 1 2
1 1

3 4
1

5
1

6 7
1 1

8
1

1
1 1
2 4 8

1
16

1
32

1 1
64 128

1
256

Bit 9 10 11 12 13 14 15।
512 1024 2048 4096

1
8192

1
16384 32768

A binary digit is normally termed a bit, and a group of 8
bits are called a byte.

Using 16 bits any integer from 0 to 65535 can be repre
sented in binary fashion, or using 8 bits any integer from 0 to
255 can be represented, and this exposes the main weakness
of the binary numbering system. Numbers of modest magni
tude are many binary digits in length, but despite this draw
back the ease with which electronic circuits can handle
binary numbers makes this system the only practical one at
the present time.

Addition of two binary numbers is a straightforward
business which is really more simple than decimal addition.
A simple example is shown below:—

First number 11110000
Second number 01010101
Answer 101000101

As with decimal addition, start with the units column and
gradually work towards the final column on the left. In this
case there is 1 and 0 in the units column, giving a total of 1 in
the units column of the answer. In the next column two 0s
give 0 in the answer, and the next two columns are equally
straightforward. In the fifth one there are two Is to be added,

104

giving a total of 2. Of course, in binary the figure 2 does not
exist, and this should really be thought of as 10 (one 2 and no
units), and it is treated in the same way as ten in decimal
addition. The 0 is placed in the answer and the 1 is carried
forward to the next column of figures. The sixth column
again gives a total of 10, and again the 0 is placed in the
answer and the 1 is carried forward. In the seventh column
this gives a total of 3 in decimal, but in this binary calculation
it must be thought of as the binary number 11 (one 2 and one
unit). Therefore, 1 is placed in the answer and 1 is carried
forward. In the eighth column this gives an answer of 10,
and as there are no further columns to be added, both digits
are placed in the answer.

A detailed explanation of how a computer handles complex
calculations in binary would be out of place here, and pro
vided you understand how numbers can be represented by an
electronic circuit using this direct binary system you should
be able to use and understand the functions of the CPC464
that require a knowledge of binary.

BINS

A useful feature of the CPC464 which is not often found in
home computers is its BINS function. In the basic form of
this function the specified (decimal) number is converted into
its binary equivalent. For instance

PRINT BIN$(8)

would return a value of 1000.
There is a slightly more complex version of this command

where the first number is the one to be converted to binary,
and the second number specifies the number of digits. For
example

PRINT BIN$(8,12)

would print on the screen

105

000000001000

In other words it gives a conversion of 8 (in decimal) to the
equivalent binary number, giving an answer with 12 digitsand
the leading zeros not suppressed. Note that specifying fewer
digits than the converted number requires will not result in
it being shortened. Thus the command:-

PRINT BIN$(8,2)

would print on the screen

1000

and not

00

The CPC464 will accept binary numbers, but these must be
preceded by &x to indicate to the computer that the number
is in binary and not decimal. The computer can therefore give
binary to decimal conversion. For instance, the command

PRINT &X1000

would print on the screen 8.
The largest number that can be accommodate is 65535,

or 1111111111111111 (i.e. 16 digits) in binary. Negative
numbers can be accommodated, but the way in which these
are handled in the binary system goes beyond the scope of
this book [“An Introduction To Z80 Machine Code” (BPI 52)
by the same publisher and authors as this book gives more
detail on this topic, and covers machine code programming on
the CPC464].

106

HEXADECIMAL

While on the subject of numbering systems it would perhaps
be worthwhile dealing with another system which you will
inevitably come across quite frequently, and this is the
hexadecimal system. A problem with binary numbers is that
they tend to have many digits with each' digit being either 0
or 1, which makes them rather difficult to deal with in many
circumstances. On the other hand, binary numbers give a
graphic representation of the state of each bit in the registers
of the microprocessor, and this is something that is often
important. Decimal numbers are easier to use in that they
are much shorter and are in a familiar form. However,
converting a decimal number into an equivalent binary one
is not a very quick and easy process, especially where large
numbers are concerned, and this is inconvenient when it is
necessary to visualise things on a bit by bit basis.

The hexadecimal system gives the best of both worlds in
that it requires just a few digits to represent fairly large
numbers, and is in fact slightly better than the decimal
system in this respect. On the other hand, it is easy to
convert hexadecimal to binary, and it is easy to use when
operating at bit level. The hexadecimal system is based on
the number 16, and there are sixteen single digit numbers.
Obviously the numbers we normally use in the decimal
system are inadequate for hexadecimal as there are six too
few of them, but this problem is overcome by augmenting
them with the first six letters of the alphabet. It is from
this that the system derives its name. The table following
helps to explain the way in which the hexadecimal system
operates.

107

Decimal Hexadecimal Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F mi
16 10 00010000
17 11 00010001
163 A3 10100011

What makes hexadecimal so convenient is the way in which
multidigit numbers can be so easily converted into binary
form. The reason for this is that each hexadecimal digit
represents four binary bits. Take the hexadecimal A3 in the
above table for instance. The digit A represents 1010 in
binary, and the digit 3 converts to 0011. A3 therefore
represents 10100011 in binary. You may find that you can
memorise the four bit binary number represented by each
of the sixteen hexadecimal digits, but a little mental arith
metic is all that is needed to make the conversion if you can
not.

The digits in a hexadecimal number represent, working

108

from right to left, the number of units, 16s, 256s, and 4096s.
You are unlikely to use hexadecimal numbers of more than
four digits in length when using the CPC464, and often you
will deal with hexadecimal numbers only two digits long.

The CPC464 can provide decimal to hexadecimal conver
sion using the HEX$ function. As a simple demonstration try
typing :-

PRINT HEX$(16)

into the computer. This should return a value of 10 (one
16 and no units).

The CPC464 will accept hexadecimal numbers, but they
must be preceded by either & or &H to indicate to the
computer that they are in hexadecimal. This facility can be
used to give hexadecimal to decimal conversion. For example,
typing :-

PRINT &FF

into the computer should return a value of 255.

LOGIC OPERATIONS

The BASIC words AND and OR can be used almost as if they
are plain English words, as we have seen in a previous chapter.
Exclusive or (XOR) has also been briefly covered in an earlier
chapter when it was used as a bitwise logic operator. In fact
all three of these logic operators can be.used in the bitwise
mode, and as this is an important topic we will consider bit
wise operation in some detail here.

In this mode two (usually) 8 bit binary numbers are
compared bit by bit to produce an 8 bit binary answer. If
you enter numbers into the computer in decimal form when
performing bitwise operations this can produce what at first
sight seem to be rather nonsensical answers. Try typing the
following command into the CPC464:-

109

PRINT 15 AND 245

This should return a value of 5, and not 260 as one might
expect. If we convert the three numbers into binary this
gives the following result

15
245
5

00001111
11110101
00000101

This may not seem any less confusing, but what actually
happens here is that the computer compares the two
numbers bit by bit, and a 1 is placed in the answer only if
there is a 1 in that bit of both numbers. There is a 1 in the
least significant bit of both numbers, and a 1 appears in the
least significant bit of the answer. The situation is different
for the most significant bit as a 1 only appears here in one of
the numbers, and a 0 therefore appears in this bit of the
answer.

This may seem to be of only academic interest, but there
are practical applications for this type of logic operation.
The AND function is particularly useful for use as a mask
when only certain bits of a number are of interest, and the
others must be effectively eliminated in some way. The way
in which this is done is to use a masking number which has a
1 in each bit that is of interest, but a 0 in any bits which
must be masked. To read (say) the two least significant
bits the masking number would be 3, since these bits (when
set to 1) represent 1 and 2 respectively, giving a total of 3.
The following example shows how this masking operates

85
3
1 (answer)

01010101
00000011
00000001

All that is happening here is that a 0 in a bit of the masking
number ensures that this bit cannot be at 1 in both of the

110

ANDed numbers, and that particular bit therefore has to be 0
in the answer. If a bit of the masking number is set at 1,
that bit of the answer will be set at 0 or 1, depending on
which of these occurs in the other number, and this bit is not
masked.

The OR function operates in a similar way, but a 1 appears
in a bit of the answer if there is a 1 in that bit of the first
number or the second (or both). Thus, if 85 and 3 are ORed
the following answer is obtained

85
3
87 (answer)

01010101
00000011
01010111

The XOR function again operates in a similar fashion, but
a 1 appears in the answer only if there is a 1 in that bit of one
or other of the numbers, but not if a 1 appears in that bit of
both numbers. EO Ring 85 and 3 gives this result

85
3
86 (answer)

01010101
00000011
01010110

111

Chapter 9

INTERFACING

Many of the interfacing problems that occur with other home
computers are avoided by the system approach of the CPC464,
which has a built-in cassette recorder and is supplied with
either a monochrome or a colour monitor (together with the
necessary connecting leads). Provided Amstrad accessories
such as joysticks are used with the machine, these will plug
straight into the appropriate socket without any problems.
Of course, the use of a built-in cassette recorder does not
totally avoid the problems associated with this medium of
program storage, and it is still necessary to use a good quality
ferric tape and to keep the tape heads clean in order to
obtain reliable results. The use of the standard (1000 baud)
rate rather than the fast (2000 baud) rate also helps to give
optimum reliability.

PRINTER

An attractive feature of the CPC464 is its built-in parallel
(Centronics type) printer interface which enables it to be used
with a wide range of printers from inexpensive dot matrix
types to high quality daisy wheel machines suitable for word
processing. If possible I would always recommend the use
of a ready-made printer lead, even if you are familiar with
electronics and soldering, as this can save a great deal of time
and frustration. However, if a suitable lead proves to be
difficult to get or you prefer to make your own, it is simply a
matter of using a piece of 23 way ribbon cable about 1 metre
long (and definitely no more than two metres in length) to
connect a suitable edge connector to a Centronics 36 way
plug. Each pin of the edge connector connects to the pin of
the same number on the Centronics plug. The diagram in
Appendix V of the CPC464 manual gives the pin numbering
for the printer port, and Centronics plugs are conveniently

112

marked with pin numbers. Note that several of the pins do
not need to be connected (only those listed in Appendix V of
the manual). Also, note that there is no Acknowledge Hand
shake line implemented on the printer port. The way in
which handshaking operates is that a negative pulse is pro
duced on the Strobe line when a fresh character is available
on the eight data lines (DO to D7), to indicate to the printer
that new data is available. The printer then indicates on the
Acknowledge or Busy handshake line when it has finished
processing the data and is ready to receive another character.
Only the Acknowledge line or the Busy line need to be imple
mented, and not both. The lack of an Acknowledge input is
therefore not important provided the user is aware of its
absence and uses the Busy line instead.

A slight problem that could arise when making up a
printer lead is that of obtaining a suitable connector for the
printer port. A 2 by 17 way 0.1 inch pitch female edge
connector is required, but a connector having the right number
of ways might not be obtainable. A simple solution is to buy
a larger type and carefully cut it down to size using a hacksaw.

One final point is that although eight data outputs are
provided, D7 is in fact just connected to ground. This is
quite acceptable for ASCII codes which only use numbers up
to 127, and do not require D7. However, some printers can
use control codes which require numbers in the range 128 to
255, and these can not be accommodated by the printer port.

PRINTING

Programs can be listed on a printer using the normal LIST
command, but with a channel number of 8 rather than the
usual default channel (which prints on the screen). Thus
the command :-

LIST#8

would list the entire program to the printer. If (say) only
lines 10 to 100 must be listed to the printer, then it is merely

113

necessary to specify this line number range in the command in
the normal way (i.e. LIST 10-100,#8).

You can also PRINT data on the printer using the normal
PRINT command with a channel number of 8 (i.e.
PRINT#8,“this will be printed on the printer”).

A useful command associated with the printer port that
should not be overlooked is WIDTH. This sets the maxi
mum number of characters per line (assuming a value less
than the maximum number of characters per line of the
printer is selected). For instance, the command:-

WIDTH 25

would Umit the maximum line length to 25 characters. This
command can be very useful, and it was used to print out the
listings in this book to line length that would fit the page size
properly.

DISC PORT

The floppy disc port although primarily intended for use with
an Amstrad disc drive can act as a general purpose interface
for other devices. In particular, it is an ideal port for user
add-ons. For someone with suitable experience it should be
quite easy to utilise this port, but it is only fair to point out
that it would be unwise for anyone without the necessary
experience to dabble with this port. Doing so could easily
result in expensive damage to the computer. The information
on interfacing the disc port that is provided below is only
intended for those readers who possess the necessary technical
experience.

The disc port provides the full data, address, and control
buses, together with a 5 volt supply output (which seems to
be able to supply at least 100 milliamps). Connection to this
port is via a 2 by 25 way 0.1 inch pitch edge connector, and a
suitable connector should be readily available from most of
the larger electronic component retailers. The standard
method of interfacing with a system based on a Z80 micro

114

processor is to decode only the lower eight lines (AO to A7)
of the address bus to provide up to 256 input and output
addresses. There are separate memory and input/output maps,
with MEMRQ going low when a memory device is accessed,
and IORQ going low when an input or an output device is
accessed. In addition to the address bus, IORQ therefore
has to be decoded as well in order to ensure that add-on
circuits are not spuriously operated when a memory circuit
having the same address is accessed.

In common with some other Z80 based home computers,
the CPC464 does not strictly adhere to the standard Z80
method of interfacing. The system adopted in this case is to
use the upper eight address lines (A8 to Al 5) to select the
required input/output circuit, with the lower address lines
being left free to provide additional addresses if an input/
output circuit requires more than one address. The point of
this system is that it enables considerably less than full
address decoding to be utilized, and helps to simplify the
hardware. The only drawback of the system is that by using
the wrong address more than one input/output circuit at a
time can be activated. This is not likely to cause any damage
to the computer though, or even a crash of the system for that
matter, but it could result in something like break-up or
distortion of the display. Care must therefore be exercised
when directly addressing any input/output device, whether
it is an internal circuit or an external one. When using
machine code only input and output instructions where the
B register provides the upper eight bits of the address bus can
be used, and block instructions that utilize the B register as a
counter can not be used properly.

EXTERNAL CIRCUITS

The area of the input/output map that is free for user add-ons
is from &F800 to &FAFF. However, full decoding of the
address bus is not needed, and the basic system of address
decoding suggested by Amstrad is to have external circuits
activated when address line A10 goes low. If more than one

115

input/output address is required up to 256 addresses are avail
able by decoding all or some of the eight least significant
address lines with A10.

Figure 4 shows how a simple 8 bit (latching) output port

116

can be added to the disc port. IC1 is an octal D type flip/
flop with three-state outputs. In this application is it used as
an 8 bit data latch with the address decoder providing a
negative latching pulse to the clock pulse input at pin 11 of
IC1 when data is written to the port. The address decoder
is very simple, and it just comprises two 2 input OR gates from
a 74LS32 device which are wired so that the negative latching
pulse is provided when A10, IORQ, and WR (the write line)
are all low.

Data can be written to the port from BASIC using the
OUT instruction, and the port is at address &F800. In fact
the use of only partial address decoding means that the port
appears at numerous output addresses, but &F800 is a safe
and convenient address to use in practice. As a simple
example of writing data to the port:-

OUT &F800,255

would set all the output lines high.
Figure 5 shows an additional circuit that can be used to

provide an 8 bit input port having a latching facility. IC2a
of Figure 4 plus one of the previously unused gates of IC2
(IC2c) are used to decode the A10, IORQ, and RD (read)
lines, so that the a negative enable pulse is supplied to IC4
when input/output address &F800 is read. The decoding of
the WR and RD lines enables the input and output ports to
share the same address without the two circuits interfering
with one another in any way. IC4 is an octal transparent
latch. With the Strobe input left unused it operates as a
straightforward 8 bit input port. However, if the Strobe
input is normally taken low, a positive pulse can be used to
latch data into the port. This can be useful if the port is
driven from a signal source such as an analogue to digital
converter which is operating in the continuous conversion
mode. The circuit can be arranged so that the converter
latches the result of each new conversion into the port.
Reading the port then takes the latest reading from the
converter, and avoids the need for handshake lines.

The port can be read from BASIC using the INP function.

117

For instance

PRINT INP(&F800)

would read the port and print the returned value on the
screen.

These circuits illustrate the basic method of interfacing to

118

the disc port, and the same general scheme of things could be
used to interface other circuits to the port, including Z80A
peripherals such as the Z80A PIO. As the CPC464 uses the
high speed (4MHz) version of the Z80 (the Z80A) any Z80
peripherals used with the computer must also be the high
speed A versions.

The disc port includes a Sound terminal which is an audio
input. About 50 millivolts RMS is needed to fully drive this.
Of course, there is also a stereo audio output available on the
rear panel of the computer, and connections are made to this
via a 3.5 millimetre stereo jack socket (the type that is used
with personal stereo headphones). This output can be used
to drive a suitable audio amplifier, but there is not an adequate
output level to drive a pair of headphones. The light pen
input is another useful facility of the disc port. The registers
of the 6845 CRT controller, including the light pen registers,
can be read by first writing the register number to output
address &8C00 and then reading input/output address &8F00.
The light pen registers are registers 16 and 17 incidentally.
These do not directly provide horizontal and vertical screen
positions, but combine to form a 16 bit number which must
then be processed to provide the screen co-ordinates.

PEEK & POKE

We have covered the OUT instruction and the INP function
which are used with input/output devices, and mention should
be made of POKE and PEEK which are the equivalents for
memory circuits. With many computers these are both very
important, but the hardware and built-in software of the
CPC464 are such that you are unlikely to use them very
often, if at all. The CPC464 has 64k of RAM (random access
memory) which covers all the Z80A microprocessor’s address
range of 0 to 65535. You can PEEK or POKE any address
in this range, but note that POKEing some addresses could
crash the computer (but you can not damage it using PEEK
or POKE). Some addresses, in fact half of them, are shared
by RAM (where programs and other data are stored) and ROM

119

(which contains the built-in software — the Locomotive
BASIC and the computer’s operating system). Only the
RAM is accessible using PEEK and POKE.

OUTPUT PORT

When the printer port is not being used as such it is quite
possible to use this as an 8 bit latching output. Data for this
port is written to address &EF00. Bits 0 to 6 of this port
connect to DO to D6 respectively of the printer port con
nector. As explained earlier, D7 of this port is connected to
ground, but bit 7 is available at the Strobe output. However,
this bit is inverted, whereas the other seven bits are not.
Obviously this bit could be re-inverted if necessary.

It is possible to read the Busy input, which is bit 6 of input
address &F500. It is possible to read just one bit of an input
port while masking off all the other bits, and this is achieved
using the bitwise AND function which was described in the
previous chapter of this book.

There is also a BASIC instruction which can be used to
monitor one, or perhaps several bits of an input port, and this
is the WAIT instruction. In its most simple form this merely
monitors the specified bit or bits of the given address, and
loops until the monitored bit (or one of the monitored bits)
goes high. Forexample:-

WAIT &F800,3

would loop until bit 0 or bit 1 of the input port at address
&F800 went high. What this instruction actually does is to
bitwise AND the value returned from the specified port
with the masking number given in the instruction, and the
computer repeats this procedure until an answer of other
than zero is obtained.

There is another form of this instruction where a third
parameter (the inversion) is included. What happens here is
that the returned value is bitwise ANDed with the masking
number, and then exclusive ORed with the inversion. The

120

idea of this is that the program can be made to loop until a
certain bit or certain bits go low rather than high since the
exclusive ORing simply inverts the specified bit or bits.
For example:-

WAIT &F800,3,3

would loop the program until either bit 0 or bit 1 of the
input port at &F800 went low, rather than until one of
these bits went high.

121

Chapter 10

INTERRUPTS

An unusual feature of Locomotive BASIC is its ability to
generate interrupts, or at least a form of interrupts.
Strictly speaking interrupts are generated by items of hard
ware in the computer which activate special interrupt inputs
of the microprocessor. A typical application of interrupts
would be to give a timer function. Here a hardware circuit
would generate an interrupt at regular intervals, and
typically about 100 times a second (300 times a second in
the case of the CPC464). A software interrupt routine
associated with the timing circuit increments the number
stored in a series of memory locations by one each time an
interrupt is generated by the timer circuit. Reading the
number in these memory locations therefore gives a timer
function, which could even be used as a real-time clock
with suitable mathematical manipulation of the readings
that are obtained. Most home computers use interrupts a
great deal, including such things as scanning the keyboard
and synchronising sound channels.

The point about interrupts is that they are not normally
apparent to the user of the computer. Whether in the
command mode or running a program, the interrupts normally
continued to operate in the background, and the fact that
they are continually interrupting any program that is running
is not apparent due to the short time taken to complete each
interrupt routine. When an interrupt is generated the micro
processor finishes the current instruction, carries out the
interrupt routine, and then continues where it left off. The
interrupts generated from BASIC in the CPC464 are
analagous to real interrupts, but are different in that they are
essentially software rather than hardware generated. However,
they still have the ability to run in the background while a
program is running. They can only operate while a program
is running though, and cannot be used in the command mode.

122

AFTER

There are two instructions that can be used to generate inter
rupts: AFTER and EVERY. Taking AFTER first, this
generates an interrupt after the specified time has elapsed.
The way the system operates in practice is to have a sub
routine associated with each AFTER instruction. After the
specified time has elapsed the program breaks off from its
normal procedure and goes to the subroutine. After this
routine has been completed the program picks up where it
left off. If required up to four AFTER instructions can be
used at once, with each instruction using a different channel
number (0, 1, 2, or 3). The default channel is zero. The
short program given below helps to show the way in which
the AFTER instruction operates.

10 AFTER 50,0 GOSUB 100
20 AFTER 100,1 GOSUB 200
30 AFTER 150,2 GOSUB 300
40 AFTER 200,3 GOSUB 400
50 PRINT “program looping”
60 GOTO 50
100 PRINT “Interrupt 0”
110 RETURN
200 PRINT “Interrupt 1”
210 RETURN
300 PRINT “Interrupt 2”
310 RETURN
400 PRINT “Interrupt 3”
410 RETURN

The first four lines of the program set up four AFTER
interrupts, specifying the time to elapse before they interrupt,
the interrupt channel, and subroutine to be called by each
interrupt (in that order). The delay before the interrupt is
called is in fiftieths of a second incidentally. Lines 50 and 60
simply loop the program indefinitely, printing program
looping on the screen. The four subroutines are at lines 100
to 410, and these merely print “Interrupt” followed by the

123

number of the channel that generated the interrupt. If you
run the program you should find that in amongst the
numerous “program looping” messages that are printed on
the screen, “Interrupt 0”, “Interrupt 1”, and so on appear
after the appropriate time delays (1, 2, 3, and 4 seconds).

EVERY

The EVERY instruction differs from AFTER only in that
rather than just once, the specified subroutine is called
repeatedly. The delay given in the instruction sets the time
before the first execution of the subroutine, and the period
between subsequent executions, again in fiftieths of a second.
This short listing demonstrates the EVERY instruction.

10 X = 0
20 EVERY 50 GOSUB 100
30 WINDOW 1,34,40,1,1
40 PRINT “program looping”
50 GOTO 40 “ ”
100 X = X + 1
110 PRINT 1,X
120 RETURN

Line 10 starts variable X at a value of 0, while line 20
calls the subroutine at Une 100 at one second intervals. Note
that with both the AFTER and the EVERY instructions the
subroutine must end with RETURN, like a normal subroutine
caUed with a GOSUB. The subroutine simply prints a number
in the WINDOW (see line 30) at the top right hand corner of
the screen. The number starts at one and is incremented by
one each time the subroutine is called. In other words it
provides a simple seconds counter action. Lines 40 and 50
provide a continuous loop which repeatedly prints “program
looping” on the screen.

If you run the program the seconds count should appear in
the top right hand corner of the screen, but note that each
number will only appear momentarily as no means of pre

124

venting the screen from scrolling (and scrolling the numbers
off the top of the screen) has been included in the program.

DI (disable interrupts) and EI (enable interrupts) are two
instructions associated with the timed interrupts. As their
names imply, they are respectively used to disable interrupts
to prevent an unwanted disruption of a routine, and then to
re-enable interrupts after the routine has been completed.
REMAIN is a function associated with timed interrupts, and
it prints the remaining count from the specified channel
(e.g. REMAIN(2) would return the number of fiftieths of a
second remaining before the channel 2 timer would time out
and generate an EVERY or AFTER timed interrupt). An
important point to realise about the REMAIN function is that
it sets the specified timer channel to zero, and prevents the
relevant subroutine from being called. As the EVERY and
AFTER instructions use the same four timers it is not possible
to simultaneously use EVERY and AFTER instructions that
use the same channel number. The maximum delay number
that can be used is 32767, and this represents a delay of nearly
11 minutes, which should be adequate for most practical
applications.

125

Chapter 11

THE AMSTRAD CPC664

The Amstrad CPC664 is a new model introduced in the
summer of 1985. It has much in common with the 464
model, and indeed all BASIC programs for the 464 (including
those in this book) are completely compatible with the new
model.

The main change in the 664 model is the inclusion of a
single disc drive in place of the cassette recorder built into the
464. This disc drive uses the same 3 inch microdiscs as the
add-on drive for the 464, and software on disc for the 464
can be used on the 664, and vice versa. This size of disc has
not gained the popularity of the 3^ inch size, but is freely
available.

As the 664 does not have a built-in cassette recorder, it
is fitted with a cassette interface so that cassette programs
for the 464 can be loaded. There is also an interface for a
second disc drive.

The advantage of the disc drive is that it allows programs
and data to be loaded and saved much more quickly than
they can be on cassette. A disc can also store more than
can be stored on a cassette. The disc filing system also
allows much more versatile and flexible data file handling.
Applications such as word processing and extensive data base
use are not really feasible without a disc system.

The keyboard on the new model has also been tidied up, with
a new and more tasteful colour scheme. The numeric keypad
is now configured as function keys, though it can still be used
for numeric entry. The cursor key cluster has been made
larger, with styling rather like a MSX machine. The extra
size of the disc drive has made the new model slightly wider
than the old. Like the 464, the monitor supplies all power
(5 volts for the computer and 12 volts for the disc drive) so
only one mains plug is necessary.

As well as the addition of the disc drive, the version of
Locomotive BASIC supplied with the 664 has been
enhanced with the addition of some new commands. Most

126

of these are concerned with the graphics.
A command has been added to fill enclosed areas with

colour. This is an improvement on the method of using
windows to put blocks of colour on the screen, as the areas
can be any shape. This command takes the form ‘FILL n’,
where n specifies the colour to be used for the fill. The area
is filled from the cursor position up and sideways, then
down and sideways, until a pixel of non-background colour
is found. This is essentially similar to the FILL and PAINT
commands found in several other BASICs.

A new command is provided for plotting dotted or
dashed lines. This command is ‘MASK’, and the pattern of
the line is derived from the bit pattern in the binary form of
the mask., For example, either 85 or 170 would give dotted
lines, these numbers being 01010101 and 10101010 in
binary. 15 is 00001111 in binary, and this would give a
dashed line.

GRAPHICS PEN and GRAPHICS PAPER commands
have been added for simpler colour control in graphics work,
and you can also change colour by means of an added
parameter to the MOVE command.

For improved smoothness in animation, there is now a
FRAME command which causes the machine to wait for the
frame flyback on the video display before updating the
graphics display. This reduces flicker as characters move
about the screen, and can also be used to improve scrolling
and colour-change effects.

A further command allows a character to be read from the
screen. This can be useful both in games and in text
handling applications for screen editors.

The ‘transparent’ background colour, previously only
available in text printing, can now also be used in graphics.
This makes it simpler to place characters on the screen using
TAG for animation. The EOR method described in Chapter 7
is now unnecessary in some instances, though it remains the
most elegant way of animating a character over multi
coloured backgrounds, and remains the only way of moving
a character in front of some colours and behind others, as in
listing 20.

127

The line-drawing commands now include an extra para
meter. This allows the last point in the line to be left
unplotted, and is for use when drawing boxes using the EOR
plotting option. Normally, this results in points at the corners
being ‘unplotted’ because they are plotted twice. The new
parameter avoids this.

Unfortunately, it will not be possible to upgrade the exist
ing 464 model to use the new commands. Though all BASIC
programs written on the 464 can be loaded and run on the
664, programs written on the 664 using the new commands
cannot be run on the 464.

Some extra error handling commands have been added to
cover disc operations, but this is beyond the scope of this
book.

A disc containing CP/M and DR LOGO is included with
the computer. It is hoped that some CP/M business software
suitable for running on the Amstrad CPC664 will become
available in the near future.

128

Notes

Notes

Notes

Notes

ALSO OF INTEREST

BPI52: AN INTRODUCTION TO
Z80 MACHINE CODE

R.A. & J.W. Penfold

Home computers are equipped with built-in software that
enables them to be easily programmed to do quite complex
tasks. The price that is paid for this programming ease is a
relatively slow running speed, far lower than the speed at
which the computer is really capable of running. Machine
code programming entails direct programming of the micro
processor without using a built-in high level computer language
such as BASIC. This gives a vast increase in running speed,
but is something that can only really be undertaken by some
one who has a reasonable understanding of the microprocessor
and some of the other hardware in the computer.

Machine code programming is not as difficult as one might
think, and once a few simple concepts have been grasped it
is actually quite straightforward (although admittedly never as
quick and easy as using a high level language). This book takes
the reader through the basics of microprocessors and machine
code programming, and no previous knowledge of these is
assumed. The microprocessor dealt with here is the Z80
which is not one of the most simple types, but is generally
acknowledged as one of the most powerful 8 bit devices, and
is by no means excessively difficult for beginners.'The Z80,or
in most cases now the faster version the Z80A, are used in
many home computers, including several of the most popular
machines such as the Sinclair ZX81 and ZX Spectrum, plus
the Memotech MTX500 and MTX512 machines, and the
Amstrad CPC464. A few simple demonstration programs that
can be run on these computers are included in this book.

112 pages
0 85934 127 5

1984
£1.95

Please note following is a list of other titles that are available in our
range of Radio, Electronics and Computer Books.

These should be available from all good Booksellers, Radio
Component Dealers and Mail Order Companies.

However, should you experience difficulty in obtaining any
title in your area, then please write directly to the publisher
enclosing payment to cover the cost of the book plus adequate
postage.

If you would like a complete catalogue of our entire range of
Radio, Electronics and Computer Books then please send a Stamped
Addressed Envelope to:

BERNARD BABANI (publishing) LTD
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W6 7NF

ENGLAND

160 Coil Design and Construction Manual £1.95
202 Handbook of Integrated Circuits (IC's)

Equivalents & Substitutes £1.95
205 First Book of Hi-Fi Loudspeaker Enclosures £0.95
208 Practical Stereo and Quadrophony Handbook £0.75
214 Audio Enthusiasts Handbook £0.85
219 Solid State Novelty Projects £0.85
220 Build Your Own Solid State Hi-Fi and Audio

Accessories £0.85
221 28 Tested Transistor Projects £1.25
222 Solid State Short Wave Receivers for Beginners £1.95
223 50 Projects Using IC CA3130 £1.25
224 50 CMOS IC Projects £1.35
225 A Practical Introduction to Digital IC's £1.75
226 How to Build Advanced Short Wave Receivers £1.95
227 Beginners Guide to Building Electronic Projects £1.95
228 Essential Theory for the Electronics Hobbyist £1.95
RCC Resistor Colour Code Disc £0.20
BP1 First Book of Transistor Equivalents and Substitutes £1.50
BP2 Handbook of Radio, TV, Ind & Transmitting Tube &

Valve Equivalents £0.60
BP6 Engineers and Machinists Reference Tables £0.75
BP7 Radio and Electronic Colour Codes and Data Chart £0.40
BP14 Second Book of Transistor Equivalents & Substitutes £1.75
BP24 52 Projects Using IC741 £1.75
BP27 Chart of Radio, Electronic, Semi-conductor and

Logic Symbols £0.50
BP28 Resistor Selection Handbook £0.60
BP29 Major Solid State Audio Hi-Fi Construction Projects £0.85
BP32 How to Build Your Own Metal and Treasure Locators £1.95
BP33 Electronic Calculator Users Handbook £1.50
BP34 Practical Repair and Renovation of Colour TVs £1.95
BP36 50 Circuits Using Germanium, Silicon and Zener

Diodes £1.50
BP37 50 Projects Using Relays, SCR's and TRI ACS £1.95
BP39 50 (FET) Field Effect Transistor Projects £1.75
BP42 50 Simple L.E.D. Circuits £1.50
BP43 How to Make Walkie-Talkies £1.95
BP44 IC 555 Projects £1.95
BP45 Projects in Opto Electronics £1.95
BP47 Mobile Discotheque Handbook £1.35
BP48 Electronic Projects for Beginners £1.95
BP49 Popular Electronic Projects £1.95
BP50 IC LM39OO Projects £1.35
BP51 Electronic Music and Creative Tape Recording £1.95
BP52 Long Distance Television Reception (TV-DX) for

the Enthusiast £1.95
BP53 Practical Electronics Calculations and Formulae £2.95
BP54 Your Electronic Calculator and Your Money £1.35
BP55 Radio Stations Guide £1.75
BP56 Electronic Security Devices £1.95
BP57 How to Build Your Own Solid State Oscilloscope £1.95
BP58 50 Circuits Using 7400 Series IC's £1.75
BP59 Second Book of CMOS IC Projects £1.95
BP60 Practical Construction of Pre-amps, Tone Controls,

Filters & Attenuators £1.95
BP61 Beginners Guide To Digital Techniques £0.95
BP62 Elements of Electronics - Book 1 £2.95
BP63 Elements of Electronics - Book 2 £2.25
BP64 Elements of Electronics - Book 3 £2.25
BP65 Single IC Projects £1.50
BP66 Beginners Guide to Microprocessors and Computing £1.95
BP67 Counter, Driver and Numeral Display Projects £1 75
BP68 Choosing and Using Your Hi-Fi £1.65
BP69 Electronic Games £1 75
BP70 Transistor Radio Fault-Finding Chart £0.50
BP71 Electronic Household Projects £1.75
BP72 A Microprocessor Primer £1.75
BP73 Remote Control Projects £1.95
BP74 Electronic Music Projects £1 75
BP75 Electronic Test Equipment Construction £1.75
BP76 Power Supply Projects £1 95
BP77 Elements of Electronics - Book 4 £2.95

BP78 Practical Computer Experiments £1.75
BP79 Radio Control for Beginners £1.75
BP80 Popular Electronic Circuits - Book 1 £1.95
BP81 Electronic Synthesiser Projects £1.75
BP82 Electronic Projects Using Solar Cells £1.95
BP83 VMOS Projects £1.95
BP 84 Digital IC P o(ects £1.95
BP85 International Transistor Equivalents Guide £2.95
BP86 An Introduction to BASIC Programming Techniques £1.95
BP87 Simple L.E.D. Circuits — Book 2 £1.35
BP88 How to Use Op-Amps £2.25
BP89 Elements of Electronics - Book 5 £2.95
BP90 Audio Projects £1.95
BP91 An Introduction to Radio DXing £1.95
BP92 Easy Electronics - Crystal Set Construction £1.75
BP93 Electronic Timer Projects £1.95
BP94 Electronic Projects for Cars and Boats £1.95
BP95 Model Railway Projects £1.95
BP96 C B Projects £1.95
BP97 IC Projects for Beginners £1.95
EP98 Popular Electronic Circuits - Book 2 £2.25
BP99 Mini-Matrix Board Projects £1.95
BP100 An Introduction to Video £1.95
BP101 How to Identify Unmarked IC's £0.65
BP102 The 6809 Companion £1.95
BP103 Multi-Circuit Board Projects £1.95
BP104 Electronic Science Projects £2.25
BP105 Aerial Projects £1.95
BP106 Modern Op-Amp Projects £1.95
BP107 30 Solderless Breadboard Projects - Book £2.25
BP108 International Diode Equivalents Guide £2.25
BP 109 The Art of Programming the 1 K ZX81 £1.95
BP110 How to Get Your Electronic Projects Working £1.95
BP111 Elements of Electronics - Book 6 £3.50
BP112 A Z-80 Workshop Manual £2.75
BP113 30 Solderless Breadboard Projects - Book 2 £2.25
BP114 The Art of Programming the 16K ZX81 £2.50
BP115 The Pre-Computer Book £1.95
BP116 Electronic Toys Games & Puzzles £2.25
BP117 Practical Electronic Building Blocks - Book 1 £1.95
BP118 Practical Electronic Building Blocks — Book 2 £1.95
BP119 The Art of Programming the ZX Spectrum £2.50
BP120 Audio Amplifier Fault-Finding Chart £0.65
BP121 How to Design and Make your Own P.C.B.s £1.95
BP122 Audio Amplifier Construction £2.25
BP123 A Practical Introduction to Microprocessors £2.25
BP 124 Easy Add-on Projects for Spectrum ZX81 & Ace £2.75
BP125 25 Simple Amateur Band Aerials £1.95
BP126 BASIC & PASCAL in Parallel £1.50
BP127 How to Design Electronic Projects £2.25
BP128 20 Programs for the ZX Spectrum & 16K ZX81 £1.95
BP129 An Introduction to Programming the ORIC-1 £1.95
BP130 Micro Interfacing Circuits — Book 1 £2.25
BP131 Micro Interfacing Circuits — Book 2 £2.25
BP132 25 Simple Shortwave Broadcast Band Aerials £1.95
BP133 An Introduction to Programming the Dragon 32 £1.95
BP134 Easy Add-on Projects for Commodore 64 & Vic-20 £2.50
BP135 The Secrets of the Commodore 64 £2.50
BP136 25 Simple Indoor and Window Aerials £1.95
BP137 BASIC & FORTRAN m Parallel £1.95
BP138 BASIC & FORTH in Parade! £1.95
BP139 An Introduction to Prooramming the BBC Model

B Micro £2.50
BP140 Digital IC Equivalents and Pin Connections £3.95
BP141 Lmea' IC Equivalents and Pin Connections £3.95
BP142 An Introduction to Programming the Acorn Electron £1.95
BP143 An Introduction to Programming the Atari 600XL

and 800XL £2.50
BP144 Further Practical Electronics Calculations and

Formulae £3.75
BP145 25 Simple Tropical a~d M.W. Band Aerials £1.95

«d BERNARD BABANI BP153

An Introduction
to Programming the

trad CPC464 and 664
■ The excellent hardware of the Amstrad CPC464'or 664 rujming with!
Locomotive! BASIC go to make up an extremely potent and versafiieT
machine a this book has been written io help th$ reader eixpand the]
potential of (his powerful combination, with the minimum of difficulty.

■'The authors adopt a step-by-step approach starting with the funda
mentals and then moving on to more advanced topii
pie programs being included to illustrate ahd clarify

with many exam-
lints.

■' In a book of this size it is impossible to fully cover every aspect of
machines as complex as the Amstrad CPC464 or 664, but the authors

'er every aspect of

have tried, as far as possible, to complement the information supplied by
the manufacturer rather than just duplicate it.

■ The text is divided into the following chapters: 1, Variables & Arrays;
2, String Variables; 3, Decisions; 4, INPUT, PRINT & DATA; 5, The
Sound Generator; 6, Graphics 1 - Modes & Colours; 7, c—
mation; 8, Binary & Hi
CPC664.

ex;
ihics 1 - Modes & Colours; 7,
9, Interfacing; 10, Interrupts;

Graphics 2 - Ani-
11, The Amstrad

GB Í NET + OOE • SO

0-ÔSÍ34-1BÔ-3ISBN

002 5 0

>
“pt
5'

3
CL

-KXr
o'

“W

o

o
CQ
Q>

Ï
5’. «o
Er 1®t

3 «
CÙ
CL
a
■u
o

m
o>
CL

OCR

https://acpc.me/
[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[eng] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

https://acpc.me/

	PREFACE

	CONTENTS

	VARIABLES & ARRAYS

	STRING VARIABLES

	INPUT, PRINT & DATA

	THE SOUND GENERATOR

	GRAPHICS 1 - MODES & COLOURS

	GRAPHICS 2 - ANIMATION

	BINARY & HEX

	INTERFACING

	THE AMSTRAD CPC664

