
FOLE

AN INTRODUCTION TO CP/M

BP187

BP188

BP189

OTHER BOOKS OF INTEREST

A Practical Reference Guide to Word Processing
on the Amstrad PCW 8256 and PCW 8512
Getting Started with BASIC and LOGO on the
Amstrad PCW 8256 and PCW 8512
Using Your Amstrad CPC Disc Drives

AN INTRODUCTION TO CP/M

by

R. A. PENFOLD

BERNARD BABANI (publishing) LTD
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W6 7NF

ENGLAND

PLEASE NOTE

Although every care has been taken with the production of this book to
ensure that any projects, designs, modifications and/or programs etc.
contained herein, operate in a correct and safe manner and also that any
components specified are normally available in Great Britain, the
Publishers do not accept responsibility in any way for the failure,
including fault in design, of any project, design, modification or program
to work correctly or to cause damage to any other equipment that it may
be connected to or used in conjunction with, or in respect of any other
damage or injury that may be so caused, nor do the Publishers accept
responsibility in any way for the failure to obtain specified components.

Notice is also given that if equipment that is still under warranty is
modified in any way or used or connected with home-built equipment
then that warranty may be void.

CP/M is a registered trade mark of Digital Research

© 1986 BERNARD BABANI (publishing) LTD

First Published - October 1986

British Library Cataloguing in Publication Data
Penfold, R.A.

An introduction to CP/M
1. CP/M (Computer operation system)
2. Microcomputers
I. Title
005.4'46 QA76.6

ISBN 0 85934 157 7

Printed and Bound in Great Britain by Cox & Wyman Ltd, Reading

Preface
One of the first things that becomes apparent to anyone who
becomes involved in computing is the problem of software
compatibility. There are a multitude of different computers, each
requiring their own version of a program before they can load and
run it properly. There have been attempts to overcome this
problem, and CP/M is one of the most successful of these. There
are almost countless computers that are capable of running under
the CP/M operating system, and the CP/M system effectively
irons out differences between computers so that they can run the
same software (provided it is designed to operate with a CP/M
system of course). The success of CP/M has been such that there
are now thousands of programs available which run under this
system.

CP/M is more than just a program to give a common set of
standards, and hence software compatibility between various
machines. It includes a range of commands that help with such
things as file copying, file editing, and directing data output to the
appropriate device. In order to use and run applications programs
running under CP/M it is not essential to have even a basic
understanding of this system, but a reasonable knowledge of the
subject can certainly be of immense help when minor problems
occur, and also helps the user to fully exploit the potential of the
system. This book gives details of the CP/M commands, and it
does not assume a great deal of technical knowledge on the part of
the reader. It does assume that the reader has access to a
computer which will operate under CP/M, so that some simple
instructions which help to demonstrate the way in which
commands operate can be entered and run. It is not absolutely
essential to try out the example instructions, but doing so greatly
adds familiarisation with CP/M commands and makes it much
easier to gain a proper understanding of the way in which they
function.

R. A. Penfold

CONTENTS
Page

Chapter 1
CP/M BASICS ... 1
Discs and Drives .. 5
Formats... 11
Other Disc Sizes... 13
Hard Discs .. 14
Getting Started .. 15
DIRectory .. 17
ERAse... 19
REName .. 28
STAT... 29
SET .. 33
Printer ... 35

Chapter 2
USING PIP ... 36
PIP Command ... 36
PIP as a Program ... 38
Multiple Files... 39
SYSGEN .. 41
Devices.. 43
Screen Layout .. 50
Data Transfers ... 52
Concatenation .. 56
Partial Copies .. 58
Finally .. 60

Chapter 3
SET AND USERS .. 61
Passwords .. 61

READ ... 62
WRITE ... 62
DELETE .. 62
NONE ... 62

LABELS ... 65
USER ... 66
ASM ... 67
GET ... 70
PUT ... 73
SUBMIT... 74
Finally .. 76

Page
Appendix 1

CONSOLE AND ED COMMAND CODES............................. 77

Appendix 2
MAIN ED COMMANDS... 78

Appendix 3
PIP PARAMETER OPTIONS .. 80

Appendix 4
CP/M COMMANDS ... 82

Appendix 5
EXTENSION TYPES .. 83

Chapter 1
CP/M BASICS

For the newcomer to computing, or even for someone who has
some experience with computers, it can be a little difficult at first
to understand the basic function of an operating system such as
CP/M. It is, of course, a program which is loaded into the
computer, and it will respond to certain commands. In this respect
it resembles a programming language such as BASIC or LOGO,
but it is something less than a full computer language, and
although you will often come across references to CP/M
programs, these are not written in CP/M in the same way that
programs are written in BASIC or some other computer
language. The programs are written in machine code, BASIC, or
some other computer language, and run under the CP/M
operating system.

In order to understand what CP/M is all about, and what makes
it so useful, it is perhaps best to first consider operating systems in
general. All computers have some form of built in operating
system, however crude, and without one the machine would
simply crash at switch-on and would be useless. The operating
system is a program contained within the computer in a type of
memory known as ROM (read only memory), and as its name
suggests, data and instructions can only be read from ROM, and
the contents can not be changed once the device has been pro
grammed at the manufacturing stage. This is in fact an advantage
for something like an operating system where it avoids the pos
sibility of accidentally overwriting the ROM contents and
destroying the vital program it contains. Perhaps of more
importance, ROM is a non-volatile form of memory, which
simply means that its contents are not lost when the computer is
switched off.

With many home computers the operating system does little
more than perform some simple setting up routines and then hand
over control to a BASIC interpreter or some other form of prog-
gramming language. With other computers the operating system
is quite complex, and although control may be handed over to a
high level programming language almost immediately at switch

1

on, the operating system can still be a large program which is
almost continuously being accessed by the high level language.

The purpose of the operating system is primarily to enable the
various peripheral elements of the set up to work together as a
proper and co-ordinated system, rather than in a haphazard and
disorganised way. This is essential if the computer is to perform
even quite simple tasks efficiently and without crashing. It has to
be emphasized that by "peripheral elements”, I do not simply
mean the usual peripheral devices such as disc drives and printers,
but anything to which the computer provides an output or receives
any input. In other words, it includes things such as the keyboard
and the monitor screen which would ordinarily be thought of as
integral parts of the computer rather than peripherals. The reason
for including these as peripherals is simply that to the micro
processor at the heart of the computer they are all input/output
devices, and are treated in much the same way regardless of
whether they are built into the main unit or are add-ons of some
kind.

Where a computer has a complex operating system this can be
of advantage w-hen running an application program or a program
ming language other than any built in language. For example, the
programming language or application program may well need to
scan the keyboard at frequent intervals. If the operating system
has a routine for this scanning then the program running in the
computer can simply jump to this routine each time a scan is
required, rather than having to provide its own routine. A full
operating system provides routines to control all the peripheral
elements in the system, making it easy to write data to the monitor
screen, read it from a serial port, or whatever.

In an ideal world there would be a high degree of comptibility
between various computers aimed at particular types of user, so
that programs written for one machine could easily be changed to
run on similar types. In practice this ideal is a pipedream, and
computers tend to have totally different operating systems,
making it a relatively difficult and time consuming task to rewrite
a program for one computer to run on a different type. One
problem is simply that the hardware present varies from one
machine to another, both in terms of what peripherals are actually
included in the system, and the particular pieces of electronics

2

which are used to generate the screen display and so on.
CP/M is a registered trademark of Digital Research, and it

stands for “Control Program for Microprocessors”. The basic idea
is to provide a standard operating system for a wide range of
different computers, so that (with certain reservations) a program
written for one machine running CP/M will operate on any other
CP/M computer with little or no alterations required. The CP/M
operating system program itself is different for each computer, as
it has to be customised to suit the particular hardware preseni in
each machine. You therefore need to have the correct version of
CP/M for your make and model of computer before it can be
loaded and used to run CP/M programs.

Although CP/M is by no means available for every computer
ever made, it is applicable to a surprisingly wide range of
computers. It is mainly associated with computers that are based
on the 8080A or (more commonly) the Z80 microprocessor, but it
can run on machines that are based on other types of microproces
sor (although this usually involves the use of some extra hardware
in the form of a Z80 second processor rather than a solution fully
implemented in software). The limitations on CP/M compatibility
between various machines are inevitable due to a general lack of
standardisation in the computer world, as well as the inevitable
differences in the sophistication of different computer systems. It
is obviously no good trying to load a CP/M program if it is on a disc
that is incompatible with the disc drives of your computer. Also, it
is not possible to use a program properly if it requires the system
to include a printer, serial port, or some other item of hardware
which your system does not include, or if your computer simply
lacks the required memory capacity.

CP/M is often called a “disc operating system", which has led to
the popular misconception that it is only concerned with the
control and operation of the disc drives in the system. This is not
the case, and while it is true that the disc drives are very much at
the centre of things as far as most users are concerned, a full range
of peripherals are controlled by CP/M. It is a disc operating
system in the sense that it is not built into the computer in the form
of a program on ROM, but must be loaded from disc by the user.
The exact procedure for loading CP/M varies from one computer
to another, and it depends on whether the computer is designed

3

specifically to run CP/M or whether CP/M is just one of a range of
options. In most cases these days computers are not designed
specifically for CP/M operation, and can usually run some
machine-specific software as well as CP/M utilities and
applications. For example, I use the popular Amstrad CPC6128
with a word processor and spelling checker which run under the
built-in operating system, and a drawing program which runs
under CP/M. The manual for your computer or a separate CP/M
manual should give details of how to load CP/M. and this is
unlikely to require more than placing the program disc into drive
"A” and typing a simple command into the computer. For
instance, with the Amstrad CPC6I28 the command | CPM is used
to load the CP/M operating system.

While it is possible to run and use CP/M applications programs
without having even a basic understanding of the CP/M system, as
with most things associated with computing, an understanding of
the subject can be very useful. Not only can it help you to make
more effective use of the computer system, but it can also help to
get you out of difficulties if things should go slightly wrong.

An unfortunate aspect of CP/M is that there are several
versions, and although this slightly complicates things, it is under
standable in that the original version has had to be repeatedly
changed in an attempt to keep pace with the continuous advances
in computer technology. When CP/M came into being, a
computer with twin disc drives and 64k of RAM was rightly
regarded as an expensive business system. These days such a set
up tends to be regarded as rather basic, and many home computer
users have machines fitted with twin disc drives and 128k or more
of RAM.

The two most common forms of CP/M are CP/M 2.2, and CP/M
3 (which is more commonly called CP/M Plus). The 2.2 version is
the final one (at the time of writing this book anyway) for a
computer with the standard 64k of RAM. This is the maximum
amount of RAM that the 8080 and Z80 microprocessors can
directly address. However, some computers based on these
microprocessors but having much more than 64k RAM have
appeared, and this is achieved by some form of memory bank
switching. In other words, the memory is organised in blocks of
(say) 64k. and the microprocessor can only access one block of
RAM at a time. Some form of electronic switching enables it to

4

select any desired RAM bank though, so that all the RAM can be
accessed. This is somewhat slower and less convenient than with a
16 bit microprocessor that can directly address a few megabytes of
RAM (1000k = 1 megabyte), but on the other hand it greatly
increases the scope of an 8 bit type such as the Z80.

CP/M 2.2 can be used on a computer which has bank switched
memory, but as only the basic 64k will be recognised by the
operating system, it will considerably less than fully utilize the
computer’s resources. The main difference between CP/M 2.2
and CP/M Plus is that CP/M Plus is designed to be able to use bank
switched memory, making it ideal for the many 8 bit machines
which now sport this feature. It also has one or two other
refinements, but CP/M 2.2 and CP/M Plus are basically the same.
Most of the information provided in this book therefore applies to
both these versions of CP/M (as well as most earlier versions come
to that), and where there are divergences between the two
versions these will be pointed out.

An important point to note is that applications programs can
not be guaranteed to run properly unless you are running the right
version of CP/M, and obviously CP/M Plus can only run on a
computer which supports bank switched memory.

Discs and Drives
CP/M is perhaps a little easier to understand if you are familiar
with the fundamentals of discs and disc drives. Being a disc based
operating system it is a requirement of any computer system
running under CP/M that it has at least one disc drive, and it is
more usual for there to be two drives. Most disc drives are for the
so called "floppy” discs, and the standard size of floppy disc is
eight inches. However, the smaller (5!4 inch) mini Hoppy discs, or
"diskettes" as they are sometimes called, are now much more
common. Also, some smaller types (3 inch and 3'A inch) are now
coming into use and rapidly gaining in popularity.

A floppy dis» system could reasonably be regarded as a cross
between a magnetic tape system and a record player. The discs
resemble ordinary gramophone records, but are much thinner
and are not rigid (hence the term “floppy” disc). The discs do not
have grooves like a gramophone record, but are instead coated
with a magnetic coating of the type used on magnetic recording

5

tape. The disc drive has a recording/playback head which can be
moved across the rotating disc In this way it is possible to record
data onto the disc and to recall it again, but data is not placed onto
the disc in a continuous spiral like an ordinary gramophone
record. Instead the head has a number of fixed positions, with
each one covering a track around the disc. Each track is
subdivided into several sectors. A typical arrangement is shown in
Figure 1.

Fig. 1. Information is stored on a disc in blocks using this
track and sector arrangement. In practice there are many
more blocks than shown here.

6

This fragmented approach may not be very good for ordinary
audio recording, but for digital storage it is ideal. The data is
recorded onto the disc in blocks, with each block occupying one
sector of the disc. The main advantage of disc systems over a more
fundamental system such as program storage on cassette tapes is
the random access that a disc system provides. In other words, the
recording/playback head can be moved almost instantly to any
track and sector of the disc, and it can therefore jump almost
instantly to the beginning of any program stored on the disc.

Of course, discs arc not only suitable for program storage, and
they can also be used for such things as storing wordprocessor
documents. In fact it is in this type of application that their use is
most advantagous, since it is often necessary to store numerous
short data files, and with a disc system any file can be almost
instantly accessed. It is file rather than program storage which is
likely to be of most interest to the majority of CP/M users, and CP/
M makes it quite easy to perform tasks such a deleting and copying
files.

Obviously a disc system has to incorporate some means of
enabling the head to jump straight to the required file rather than
simply going through the disc track by track and sector by sector
until it finds the right data. Otherwise the random access
capability would not be utilized and a disc system would have
relatively little advantage over a lower cost method such as a
cassette tape storage system. There would still be some advantage
in that the slowest disc systems store and retrieve data at a rate
which is comparable to the fastest cassette system , but generally
with much better reliability. The fastest disc systems are several
times faster than any cassette system and still achieve excellent
reliability.

The way in which a disc system directs the head to the correct
track and sector is by allocating part of the disc to act as a
directory. This holds the name of each file on the disc plus its
position on the disc. When you call up a file the disc operating
system reads through the directory until it finds the right file
name, and then it reads the start position of the file. It can then
jump straight to ths correct track and sector, and start reading the
file. The directory is also used when placing files onto the disc, as
it can be read to find suitable free areas of the disc where the file

7

can be recorded. This is normally done by the disc operating
system, and is not something with which the user would usually
become closely involved. It is possible to inadvertently erase or
record over files that are wanted, but with most disc systems
(including CP/M) this is unlikely to occur unless the user gets
really careless.

Location Notches

Fig. 2. External appearance of a S'/C floppy disc.

Figure 2 illustrates the basic appearance of a SW' inch floppy
disc, and you will notice that there is a write enable notch in one
edge of the disc. This is similar to the tabs on the rear of a cassette

8

which can be removed in order to prevent the contents of the
cassette from being over-written. In this case though the notch is
normally exposed and it must be covered over with a tab (or
insulation tape or something of this nature) in order to protect the
contents of the disc.

One thing that often puzzles newcomers to computing is the fact
that floppy discs arc square rather than round. In fact the disc
proper is round, but it is contained in square protective sleeve.
This is not like an ordinary gramophone record where the disc is
removed from the sleeve prior to being placed on the player.
Floppy discs arc placed in the disc drive still in the protective
sleeve. A slot in the sleeve enables the head to come into contact
with the disc. Discs arc supplied in an outer protective sleeve
which must be removed before the disc is inserted into the player.
Discs should always be stored in the outer protective sleeve and
the exposed surface of the disc that can be seen through the head
window should never be touched. Finger prints can attract dust
which can in turn ruin the disc and cause at least part of the data it
contains to be lost. Disc systems are generally very reliable, but it
is still good practice to record any important files twice, and on
separate discs. It is also a good idea to store the two sets of discs
separately.

Another aspect of floppy discs which puzzles many people is the
index window. This operates in conjunction with the index hole,
which is a small hole in the disc itself. If you examine a disc, by
placing two fingers into the centre hole and slowly rotating the
disc you can carefully align the index hole so that it can be seen
through the index window'. A photoelectric circuit in the disc drive
is used to detect when the index hole and w indow are aligned, and
this provides essential timing information for the disc drive’s
control system. Remember that with the track and sector system it
is necessary for the disc control system to be able to place the head
at the correct position on the disc in two planes, and not just on the
required track.

The two notches on one edge of the disc are to help with the
correct positioning of the disc within the disc drive. When the disc
is placed into the drive these should be facing forward. The label
enables the disc number or some other means of identification to
be marked onto the disc. However, great care must be exercised

9

when doing this as too much pressure could seriously damage the
disc. A soft pencil or fibre-tipped pen are ideal for writing
identification labels onto discs.

A point that is worth bearing in mind when using cassettes,
floppy discs, or any form of magnetic recording medium, is that
strong magnetic fields can erase or damage the recording. Even if
considerably less than full erasure or only slight damage occurs it
could still result in valuable files being unloadable. Cassettes and
floppy discs should not be stored near large loudspeakers or
anything else which contains a powerful magnet. Also, they
should not be stored anywhere that is likely to get quite hot. Bear
in mind that even direct sunlight can produce quite high
temperatures. For most computers there are special programs
available which can be used to rescue at least some of the data on a
spoilt disc, but it is much better to never reach the stage where one
of these is needed.

8 inch discs are very similar in appearance to the S'A inch type,
but they have two index holes/windows. Of more importance the
system of write-protecting is different, with the tab normally
being in place, and being removed to prevent data from being
written to the disc.

3 inch and 3'/: inch diskettes have strong similarities to the 5'A
inch variety, but there are some important differences. Figure 3
shows the general appearance of a 3 inch diskette. The most
striking difference is that the disc is contained in a rigid plastic
casing, which is in turn generally housed in a rigid plastic case
during storage. This makes the disc far less vulnerable to physical
damage, and is probably well worth any increase in cost that it
causes. Also, there is a shutter mechanism which covers over the
head and index windows when the disc is not in use, so that there
is no need to worry about accidentally touching the surface
of the disc itself. Again, this is probably well worth the
additional expense it imposes. Note though, that although
the disc is mechanically well protected it still needs to be treated
with some respect, and it is still vulnerable to strong magnetic
fields.

10

Formats
If we just consider 5'/4 inch floppy discs for the moment, there are
various types in use, and not all disc drives format discs in the

11

same way. The two formats most commonly used are the 40 track
and 80 track systems. As these names suggest, they differ in that
one uses 40 tracks on the disc while the other uses 80 tracks, and
can consequently store around twice as much information. A 40
track disc has 48 tracks per inch, and therefore uses a band around
the disc which is slightly under one inch wide. This band is close to
the outside edge of the disc so that each track is as long as possible
and optimum reliability is obtained. Although the outer tracks are
somewhat longer than the inner ones the same amount of data is
usually stored on each track This means that the full storage
capacity of the disc is not utilized, but with this system it is much
easier to design the disc control system.

With the 80 track format a pitch of 96 tracks per inch is used
This gives only about half the track width of the 40 track format
which places more stringent requirements on the disc itself as well
as the disc drive. Many people seem to imagine that the discs
themselves are either 40 or 80 track types, but this is not strictly
true. The discs have continuous coating of magnetic oxide over
their surface, and the number of magnetic tracks placed onto
them depends entirely on the disc drive used. However, there are
single density and double density discs available. The difference
between the two is the quality of the oxide coating. Single density
discs could be used with an 80 track disc drive, but reliability might
not be all one would wish and it is advisable not to try this. It
would be perfectly alright to use double density discs with a 40
track disc drive, and no problems would result from this. The only
drawback of doing this is that you would be paying the extra cost
of double density discs when the lower cost single density type
would be just as good. Quad density discs and drives are now
available, but as yet these have not achieved the same degree of
popularity as the standard and double density types.

Double density discs should not be confused with double sided
discs. The latter are coated with magnetic oxide on both sides, and
the coating on both sides is checked and guaranteed to be up to to
standard. When used with a double sided disc drive both sides of
the disc can be utilized, giving double the storage capacity of an
equivalent single sided type per disc. If you look at a single sided
disc you will almost certainly find that it has the head window
cut on both sides, and that both surfaces of the disc are coated

12

magnetic oxide. All the 5'A inch floppy discs currently
manufactured are of this type. This is not to say that you can use
both sides of the disc by using one side and then turning it over to
use the other side. This will not work as the write enable notch and
index wnndow are only cut on one side of the protective sleeve. If
you turn the disc over they will therefore be on the wrong side of
the disc.

Not all 51/» inch disc drives use either the 40 or 80 track formats,
and with home computers in particular it is quite common for the
disc format to be one devised by, and unique to, that particular
computer manufacturer. However, the CP/M user is unlikely to
encounter one of these formats.

A common cause of problems when first using a disc based
system is that of not realising the necessity of formating each disc
before it can be used. A blank disc is unusable for storing
information as the disc drive and operating system rely on the disc
providing information to guide the recording/playback head. This
information consists basically of recorded numbers to mark out
the track positions and the sector boundaries. This is done with
the aid of program called a "formatter", and no technical skill is
required on the part of the user. You just place the new disc into
the disc drive, run the formatter, and when the program has
finished running the disc is ready for normal use. CP/M systems
are normally supplied with a utility program for formatting blank
discs, and this program might also permit copying of discs. A
useful feature of the CP/M formatter/copier provided with the
Amstrad CPC6128 is its ability to copy discseven if the system has
only a single disc drive. It can can also copy a disc, formatting the
disc onto which the copy is being made during the copying
operation if necessary. However, the formatter and any copying
or similar utility programs are provided by the computer manu
facturer, and consequently vary in nature according to which
particular machine you are using.

Another function of the formatter is to generate the disc
directory, although obviously it just lays down the framework of
the directory, and it initially contains no entries.

Other Disc Sizes
So far we have not considered standard 8 inch disc drives, but in

13

principle these are no different to the 5'/4 inch mini-floppy discs,
which are really just scaled down version of the original type.
Most 8 inch disc drives use 77 track format and give a storage
capacity which is roughly comparable to an 80 track mini-floppy
disc system. Unless you obtain secondhand equipment you are
not likely to obtain an 8 inch disc system as they are a feature of
few (if any) new systems.

You are much more likely to encounter one of the relatively
new disc systems based on 3 inch or 3!á inch discs, but again, these
are the same in principle as 5'/4 inch systems. One slight cause of
confusion with some 3 inch types is that they are “reversible”
rather than double sided. All that this means is that both sides of
the disc can be used, but that the drive has a single head. The
second side is used by inserting the disc the other way up, like
playing the "B" side of an ordinary record or cassette. Normal
density 3 inch discs have a capacity of about 250k per side
unformatted, but this is reduced to about 170 to 180k of storage
space after the formatting information has been placed onto the
disc. 3'/2 inch types have a somewhat greater capacity at 500k un
formatted, and around 350k when formatted.

Hard Discs
Hard discs are something that you are not likely to encounter
unless you use a mini-computer or a quite advanced personal
computer, although prices are dropping and they are not quite the
rarity that they once were. The disc is usually made from
aluminium coated with magnetic oxide on which data is stored in
the same way as on a floppy disc. However, the disc rotates con
tinuously at a fairly high rate of typically 2400 or 3600 RPM. The
aerodynamic heads and precision drive mechanisms allow the
heads to move over the discs without ever coming into contact
with them and causing damage. Obviously the discs also need to
be made to a very high degree of precision if they are not to acci
dentally come into contact with the read/write heads, and the discs
must be rigid. The discs must operate in clean air as dust particles
could have disastrous consequences for the disc and (or) heads.
Hard discs are therefore normally contained in a rigid air tight
container, and are not interchangeable in the same way as floppy
discs. This is not the major drawback that it might at first appear

14

to be, as a typical hard disc system would have a massive storage
capability of 10M (i.e. 1000k), and some some have capacities
many times greater than this. Despite this high capacity, any file
on the disc can be accessed almost instantly, and the load/save rate
is extremely high.

Although the cost of hard disc systems has fallen to the point
where they are not only available for upmarket personal
computers, but also for several home computers, these
"Winchester" disc systems are still too expensive for the vast
majority of small computer users. They are certainly well
worthwhile for those who can afford them and make full use of
their capabilities, which really means small to medium size
businesses, or those who are involved in specialised applications
such as CAD and CAM.

Getting Started
Once CP/M is loaded into the computer there should be a line of
text at the top of the screen which will state the version of CP/M
you have loaded, plus perhaps the name of the computer's manu
facturer. There might also be a message detailing the amount of
free memory space, and this will say something like “61k TPA”.
61k is typical of modern CP/M machines, and is the amount
needed to run most popular CP/M applications programs "TPA"
stands for “Transient Program Area" incidentally. The number of
drives that the system has detected connected and operational
may also be displayed (eg "Drive is A" for a single drive system or
“2 disc drives" for a two drive system). Note that if any of the disc
drives are separate from the main computer and have their own
on/off switch, it is normally advisable to switch them on before
switching on the computer. They should certainly be switched on
before booting CP/M. The exact screen messages obtained
depends on the particular version of CP/M and the computer
manufacturer concerned, but there should also be a prompt which
will probably be something like this:-

A>

This indicates that you are "in" disc drive A, and any command to
(say) load a program will be carried out using drive A. You can
switch to drive B by typing in:-

15

B: RETURN

The carriage return key might be marked “ENTER” on your
particular computer, or you might find that both keys are present
(in which case operating either will probably do). In this book
"RETURN” will always be used to indicate a carriage return, but
you must obviously use whichever key actually provides this
function. Once this command has been entered the prompt should
change to:-

B>

However, this will only work if a disc is present in drive B and is
obviously only possible in a two drive system. The command:-

A:

can be used to switch back to drive A, and to restore the original
prompt, but there should be a disc in drive A when you type the
command. In fact you may find that it is possible to repeatedly
change from one drive to the other without having discs in the
drives, but it is best not to do this as it risks getting the system
somewhat confused, and you might have problems getting either
the A or B prompt back. If the computer gets well and truly hung
up it might be that a “cold-start" is the only way of regaining
control. This simply entails removing all discs from the drives,
switching off the computer, turning it on again, and then booting
CP/M again. If the computer has some form of reset key it should
be possible to regain control by operating this and then booting
CP/M again. Most computers have some form of reset key, but in
some cases it is a function that is produced by pressing two or more
keys (CONTROL, SHIFT, and ESC simultaneously in the case of
the Amstrad CPC6128 for example). With CP/M 2.2 you can try a
“warm" start by pressing CONTROL and “C” simultaneously,
but this assumes that you have the CP/M program on the disc in
drive A (not in drive B even if this happens to be the current
drive). A warm start is quicker and easier, but will not often work
when the computer has become hung-up. With CP/M Plus
CONTROL C can be used to abandon a program or command

16

and take the computer back to the prompt, but if the computer has
crashed it might fail to do this.

If you type meaningless commands into the computer it is
unlikely to cause a crash, and it will normally just display
whatever you have just typed followed by a question mark (“?”)
to indicate that the command was not understood. The prompt
should also be displayed, indicating that the computer is ready to
receive the next instruction. If you make a typing error when
entering commands, remember that the delete key can be used to
rub out characters to the left of the cursor. If you make a mistake
near the beginning of a line but do not notice it until you have
almost finished typing the instruction, it might be easier to simply
cancel the line and start again rather than delete back to the error.
This can be achieved by pressing the CONTROL and “U” keys
simultaneously. This will not remove the line from the screen, but
will move the cursor to the beginning of the next line, and will
leave a hash (“#") sign after the unwanted line to show that it
effectively deleted. What is probably a better way of doing things
is to press the CONTROL and "X" keys simultaneously, as this
does erase the line, and avoids the possible confusion that an
erased line left on screen might produce. CONTROL and “H”
can be used to backspace and delete one character at a time. This
is much the same as using the delete key. but whereas the delete
key might become inoperational when running some CP/M
utilities, CONTROL and “H” should still function properly.

Returning to the changing from drive A to drive B or vice versa,
you can select a specific drive by typing “A:” or “B:” after a
command. This only changes the drive for this one command
though, and once this has been completed the system returns to
whichever drive it was "in” before the command was performed.
This will be confirmed by the presence of the "A" or "B" screen
prompt, as appropriate.

DiRectory
One of the most simple but useful of CP/M commands is "DIR"
(directory), and this lists all the files present on a disc. Try placing
the CP/M program disc into the current disc drive and typing:-

DIR RETURN

17

into the computer. This should give a full directory of the
programs present on the disc, which should include a variety of
utility programs as well as CP/M itself (but the latter will not be
present under the name “CP/M”). It is obviously very helpful to
be able to find out exactly what is on a disc, and with CP/M loaded
the DIR command should provide a list of the files on any disc
(including any non-CP/M types if your computer has an
alternative operating system). Each filename (or line of
filenames) will be preceded by "A" or "B" depending on which
drive the disc was read from. The filenames are in two parts, and
the first part is the filename proper. The second part is called an
“extension”, and it is used to indicate the type of file concerned.
As displayed on the screen there will probably be a large space
between the two parts of the filename, but when entering
filenames into the computer they are only separated by a fullstop

Thus, if one of the files displayed on the screen is:-

DISCKIT3 COM

it would be selected by typing:-

DISCKIT3.COM RETURN

into the computer.
The “COM" extension indicates that the file is a command type

"BAS" is used for BASIC source programs and “INT" is used for
intermediate BASIC programs. You are most likely to create data
files when using CP/M. when storing word processor documents,
spreadsheet data, or whatever. There is then no need to provide a
specific extension for the files, and you can make up your own
(e.g. “TMP" for temporary files, “BAK" for backup files, and so
on).

Mostly data files are created from within an application
program, and it is then a matter of following the instructions with
the program. This usually just involves something like selecting
"SAVE" from a list of menu options, and the program will then
ask for the filename (if you have not already provided one at some
stage), after which it saves the file onto a disc and takes the
program baqk to the menu again.

18

DISCKIT3.COM

The DIR instruction can be used to look for a specific file,
rather than to display a list of all the files on the disc. If you try
typing this command with the system disc in the current drive it
should respond with the PIP.COM directory listing to indicate
that the specified file has been found.

DIRPIP.COM RETURN

On the other hand, if you try typing:-

DIR TEST.BAS RETURN

the computer should return the message:-

No File

since there will be no file called "TEST.BAS” on the disc.
If you try to list the directory of a blank disc the “No File”

message will again be displayed to indicate that the disc has a
blank directory.

ERAse
This instruction is largely self explanatory, and it erases a
specified file. It will fail to do so if the disc is write- protected, as
what the ERA command actually does is to overwrite the
filename in the directory with nulls. This leaves the file itself intact
on the disc until it is overwritten by a new file. Despite this an
erased but non-overwritten file is not retrievable unless a utility
program for recovering deleted files is available. Obviously this
instruction needs to be used with some care in order to avoid
accidentally erasing wanted files.

In order to try out the erase command you can use a word pro
cessor or other applications program to create some short files and
then try erasing them with the ERA command. For instance, if you
wished to erase a file called DUMMY.TXT the instruction:-

ERA DUMMY.TXT RETURN

would be used. An important point to note is that a space is

19

PIP.COM
DIRPIP.COM

placed between the command and the filename, and with CP/M
commands are always followed by a space. If you were to type the
instruction as:-

ERADUMMY.TXT RETURN

the computer would not understand and would simply respond
with:-

ERADUMMY.TXT?

and do nothing.
In the absence of a suitable applications program with which to

create some files it is possible to do so using the ED (EDitor)
command This is what is called a "transient'' command, and it is
not a built-in feature of the main CP/M program. Instead it exists
on the CP/M disc as a program ("ED.COM ") which is loaded
when the ED command is issued. This makes it less accessible
than commands such as DIR and ERA since it must be present on
the disc you are currently using or it can not be loaded into the
computer when it is called. If you wish to experiment with the ED
program an easy way of doing this is to make a copy of the entire
CP/M program disc. It is standard practice to copy program discs
anyway, and to keep the original stored safely somewhere. The
copy is then used for everyday loading of the program, and if by
some means it should become damaged or simply worn-out, the
original can be used to make a new copy. For our present purposes
it would be best to make a second copy, and to not have this write
protected (since we will be using the disc to save text files, and this
will not be possible if the disc is write protected). Your computer
will probably be supplied with some form of utility program which
facilitates easy disc copying (DISCKIT3 in the case of the
Amstrad CPC6128 for example), and the computer’s manual
should be consulted in order to obtain details of the program to be
used and the appropriate procedure.

Assuming that you have a non-write protected copy of the CP/
M disc, and CP/M has been booted, try typing this command into
the computer:-

ED DUMMY.TXT RETURN

20

%25e2%2580%259cED.COM

An important point to note here is that the ED command is called
simply by using the letters "ED”, rather than by using its full
program name (“ED.COM"). When the instruction is issued the
computer will load the ED program and will search on the disc for
the file "DUMMY.TXT". There is no such file on the disc, and so
“DUMMY.TXT" will correctly be assumed to be a new file that
you wish to create. The computer should respond with something
like:-

NEW FILE

The is the prompt which shows that the editor is ready to
receive an instruction. In this case we wish to place some text in
the file, and this is accomplished by issuing the "Insert”
command. To do this simply type:-

I RETURN

This should cause the cursor to go to the beginning of the next
line, and the prompt will not be present there. This indicates
that the editor is ready to receive text rather than instructions.
Unless you are using an early version of CP/M the editor will
automatically number each line of text. You will therefore find
the cursor preceded by “1:”, indicating that you are on the first
line. Every carriage return will result in the next line number
being automatically displayed on the left hand side of the screen.
If a line of text is too long to fit onto one line of the screen display it
will continue on the next line, but a new line number will not be
issued. The editor program is only a very simple type, and it
should not be thought of as a word processor. It is more like an
ordinary typewriter in many ways. For example, it does not have a
word-wrap facility, and if you are in the middle of a word when
you reach the end of a line on the screen, the word will simply be
split in two and continued on the next line. Of course, you can put
in carriage returns in order to prevent this, and each line of text on
the screen will then have its own line number. These line numbers
only appear on the screen to aid editing incidentally, and if a file is
(say) sent to a printer, the printed copy will not include the
numbering.

21

%25e2%2580%259cED.COM

With CP/M 2.2 and CP/M Plus (but not earlier versions) there
are two versions of the insert command. If an upper case “I” is
used, then all the text will be in upper case. It may not appear this
way when you type it in, but this is the form in which it will be
stored on disc. Use a lower case “i” if upper and lower case letters
are required.

In order to try out the ED command and to create a file for
testing purposes, just type in a few lines of text, which need be no
more than some random characters. To finish entering text and
return to the command mode simply operate CONTROL and “Z”
simultaneously. This should cause the prompt to be returned.
The “B” (beginning) command can then be used to take the
“character pointer”, or “CP”, back to the beginning of the file.
The character pointer is not actually a character which is printed
on screen, but is a sort of imaginary or invisible cursor. The “T”
(“TYPE”) instruction can then be used to print the complete file
on screen. This instruction prints out the specified number of lines
following the character pointer, and it should be preceded by the
number of lines that are to be printed out. If the whole file is to be
printed out it is possible to use a hash (“#”) sign in place of the
number of lines in the file. These two commands should therefore
cause the entire file to be printed on the screen:-

B RETURN
T RETURN

In fact these could be combined in a single instruction, like this:-

B#T RETURN

If you try the command:-

B1T RETURN

this should print out just the first line of the file. The hash sign or
number must be placed ahead of the “T” and not after it or the
command will not work.

To save the file on to disc the “E” command is used, and to
implement this you simply type:-

22

E RETURN

The file is then saved onto disc, the editor program is terminated,
and the normal CP/M prompt is returned to the screen. An alter
native is to use the "H" command

H RETURN

Try using this one first to enable a few more lines of text to be
added, and then use the "E" command to save the file and return
to the command, or “console" mode as it is normally called in CP/
M terminology. After using CONTROL Z and issuing the “H”
command you will be back in the editor’s command mode, and
must therefore use the T" command to insert new text. If your
version of CP/M is one which gives automatic line numbering this
will start at line 1 again. Any lines of text you add will be placed
ahead of your original text. It is not placed after it and neither
does it replace it.

If you have a twin disc drive system you can produce files using
the editor without having to have the editor program on the disc
used to save the files. Assuming you are in drive A, place the CP/
M program disc in drive A, and place a formatted but blank disc in
drive B (or a disc with some empty workspace anyway). Then type
this instruction :-

ED B:DUMMY.TXT RETURN

Note that the instruction to implement the command on drive B
must come after the main command, but before the filename. You
can then proceed exactly in the same manner as described above.
This method is obviously a more convenient way of using the
editor since it is not necessary to have the editor program on the
same disc as the files. It is obviously only possible with a system
that has two or more disc drives though.

In fact this is not strictly true, and if you have a system which
runs under CP/M plus it is possible to use one disc drive to act as
both drive A and drive B. This is not quite as good as having two
disc drives in that it requires a lot of disc swopping that is
unnecessary with a two drive system. Also, you must be careful

23

to always have the right disc in the drive, although if a mistake
should be made it is normally possible to recover from it quite
easily and the computer is unlikely to crash. It is a feature that is a
major plus point for CP/M Plus, and it permits single drive set-ups
running under this system to undertake disc operations that are
not possible under CP/M 2.2 and earlier CP/M versions with a
single drive system.

When using one drive to act as two the commands typed into the
computer are exactly the same as when using a genuine two drive
system. In order to use “ED.COM" on the CP/M program disc to
generate a file called "DUMMY.TXT" on another disc the
procedure is much the same as that described above apart from
the disc swopping. First enter the command:-

ED B:DUMMY.TXT RETURN

This should be done with the CP/M program disc in the drive, and
the computer will load the “ED.COM" program from the disc. It
will then provide a message, probably in the form of a running
message across the bottom of the screen, requesting that the disc
should be placed in drive B, and that any key should then be
pressed. The disc onto which the new file is to be placed is then put
into the disc drive in place of the program disc, and any key is
operated. This should result in the "NEW FILE” message being
displayed, together with the prompt. In addition there will
probably be a message at the bottom right hand corner of the
screen informing you that you arc in drive B. The file is then
created and saved, exactly as before. Things can be a little
confusing after the “E” command has been executed, as the “A”
prompt will be returned, but the "Drive is B:" message may still
be displayed. However, the system is in drive A, and w<hen a
command is issued you will be requested to put the disc in drive A
and press any key. The “Drive is B:” message is then replaced
with the “Drive is A" message.

When you have produced the file, by whatever means, and have
the “A” prompt again, use the “DIR" command to read the
directory. With a two drive system you will presumably have the
“A” prompt but will have a disc w'ith the newly generated file in
drive B. The command:-

24

%25e2%2580%259cED.COM
%25e2%2580%259cED.COM

DIR B: RETURN

should therefore be used, rather than just:-

DIR RETURN

The directory should include a file called "DUMMY.TXT", as
one would expect, but there should also be one called
“DUMMY.BAK". This second file is not one that you created
directly, but is one that the editor generated for you. What
happened was that a file called 'DUMMY.TXT" was generated
when the "H" command was used, and this file had its name
changed to "DUMMY.BAK" when the "E" command was issued
and the updated version of "DUMMY.TXT" was created. This is
a common practice with programs that create files, and the
“BAK" (backup) file is created in case a mistake by the user, a
hardware fault, a brief power failure, or something of this nature
should result in the main file being accidentally damaged and
rendered irretrievable.

In fact when the "ED" command was first issued a file called
“DUMMY.$$$" was created on the disc, and this file was
replaced with "DUMMY.TXT" when the “H" command was
issued. It is for this reason that you will probably find it impossible
to successfully issue an "ED" command using the write-protected
master CP/M disc. When the "ED" command is entered the
computer will try to create a file with the appropriate name on the
disc, but will be unable to. With CP/M plus you can actually use an
“ED” command with the program on a write procted disc, but the
computer will provide a message stating that the disc is write-
protected, and giving the option of cancelling the command,
retrying it, or ignoring the fact that the disc is protected. These
options are selected using the “C". "R", or "I" keys respectively,
and it is the "I" option that must be used to get into the editor
program. The obvious thing to do then is to change discs so that
the newly created file can be saved to disc, but simply changing
discs and trying to write to the disc will not work as the computer
will have logged-on the first disc, and will detect the change in
disc. This will prevent the program from executing properly.
Changing discs at the wrong time is a common way of causing the

25

computer to hang-up. A so called “warm" boot by using the
CONTROL C combination is normally used when changing discs
so that the computer is conditioned to accept the new disc.

When you have established that the two files are present you
can display them on the screen using the “TYPE" instruction.

TYPE DUMMY.BAK RETURN

should result in the first version of the file being displayed, and:-

TYPE DUMMY.TXT RETURN

should result in the final version being printed on-screen. With
long files the initial part of the text might scroll up off the top of
the screen before you have a chance to read it. Pressing the
CONTROL and “S" keys will halt output to the console (screen)
to prevent this from happening. Use CONTROL “S” again to
restart output to the console, then CONTROL “S” again to halt
it, and so on. as required. Things are a little different with CP/M
Plus where CONTROL and “S” arc used to halt output to the
console, and CONTROL plus “O" are used to restore it again.

Returning to the erase command, the two files can be erased
using the “ERA” command plus the two filenames, as follows:-

ERA DUMMY.BAK RETURN

and

ERA DUMMY.TXT RETURN

Using the "DIR" command again will confirm that they have both
been delected from the disc. The filename must be given in full,
including the extension. The command:-

ERA DUMMY RETURN

will simply produce the response “No File”, and no files will be
erased.

The “ERA" instruction can be used to erase more than one

26

file at a time. One way of doing this is to use for the filename
and to give the extension in full. For example:-

ERA ..BAK

will erase all files having "BAK" as their extension. It will not
erase a file which has the letters "BAK" in the filename, but not in
the extension (e.g. "BAK.TMP" or BAKER.COM would not be
erased).

Similarly, the "." symbol can be used to replace the extension
with the filename being specified. Thus "DUMMY.BAK" and
DUMMY.TXT" could be erased with the single instruction:-

ERA DUMMY.. RETURN

With CP/M Plus this will produce the response:-

ERA DUMMY.. (Y/N)?

Either the “Y" key is operated in order to implement the
instruction, or the “N" key is pressed in order to cancel it. In
actual fact operating any key other than “Y” will cancel the
instruction. The point of all this is to greatly reduce the risk of
numerous files being obliterated by the operator making a
careless mistake. The “ERA" command is one that needs to be
treated with great care anyway, but especially so when it is being
used in a form that could eliminate a number of files.

An alternative to “.” is to use one or more question marks
(“?”). For example, if you generate files called “DUMMY.TXT”
and “DUSTY.TXT". these would both be erased by the
instruction

ERA DU???.TXT RETURN

Again, the computer will give you a chance to change your mind
before it deletes the two files, and any others that have “DU” as
the first two characters and "TXT" as the extension. In fact this is
not quite true, as the number of question marks has some
influence on which files are erased, and which ones are not.

27

BAKER.COM

“DUMMY.TXT” and “DUSTY.TXT" would both be erased by
the command:-

ERA DU????.TXT RETURN

even though there is one more question mark than there are
characters following “DU” in either filename. However, the
command:-

ERA DU??.TXT RETURN

would not erase either of them, as there are too few question
marks to cover the number of characters after “DU” in either
filename.

Incidentally, and “?” can be used with the directory
(“DIR”) command as well as with the erase one. In case you were
wondering if it is possible to wipe all the files from a disc using the
command

ERA ... RETURN

- it is!

This system of using dummy characters rather than a proper file
name is know as using “wild cards”, and this is a term which will
often be encountered when dealing with disc matters.

REName
The “REN” (rename) command is another very useful one, and it
simply renames the specified file. It takes the form:-

REN new name=current name RETURN

In order to try out this command generate a file called (say)
“DUMMY.TXT", and then type this command into the
computer:-

REN NEWNAME.TXT= DUMMY.TXT RETURN

28

Of course, the disc containing the "DUMMY.TXT” file must be
in the current drive when the command is issued. Use the DIR
instruction to read the directory and check that the name has been
changed. Remember that it is only the directory name that is
changed, and the file itself has not been altered. This command
does not operate by duplicating the file and giving it the new
name, but merely changes the filename in the directory. The old
filename therefore disappears from the directory. For this
instruction to operate properly the old filename has to be given in
full, including the extension. Any extension for the new filename
must also be included or it will obviously be omitted from the new
filename.

CP/M filenames can have up to eight characters plus the
extension. Although it is the convention to use a three character
extension, it is acceptable to use only one or two (but not more
than three). There are several characters which should not be
included in filenames, and these are:

.,;:?* = []<>

STAT
The “STAT” command is used to display status information, and
also to assign devices. Here we will only consider it in the former
role.

A simple but very useful application of “STAT” is to display the
amount of available space on a disc. To use it in this way it is just a
matter of typing the command:-

STAT RETURN

It then gives the number of bytes available on the disc in the
current drive (e.g. “Bytes Remaining On A: 128k"). This is a
transient command though, and not a built-in type, and it will only
work in this most basic form if the “STAT.COM” program is on
the disc being tested. With a two drive system the CP/M program
disc can be placed in drive A, and the disc to be tested can be fitted
into drive B. This command will then display the amount of free
space on the disc in drive B:-

STATB: RETURN

29

If you try changing the disc in drive B and repeating the
instruction you will get the same answer as before. In order to get
the right answer use CONTROL C when the new disc is in drive
B, and then issue the “STAT" instruction. The “STAT”
command might provide a response such as “R/W Space 123k”, or
"R/O Space 123k”. “R/W" stands for “read/write”, and indicates
that it is possible to read and write to the disc. "R/O" stands for
"read only", and indicates the the disc is write-protected and can
only be read.

The “STAT" command does not exist as such in CP/M Plus, but
disc status information can be read using the “SHOW” command.
With the "SHOW” instruction it is not necessary to implement
CONTROL C between disc changes if you are reading the
amount of space available on two or more discs. As “SHOW" is a
transient command it is still necessary to have the CP/M program
in the current drive before this instruction can be used. However,
with a single drive system the "SHOW" command can be used
with the one disc drive acting as drives A and B, in the same
general manner as for the "ED" command and described earlier.

In this form the SHOW command displays the number of free
directory entries:-

SHOW B:[DIR] RETURN

It is assumed here that the CP/M program disc is in drive A, and
the disc to be examined is in drive B. Note that the brackets
around “DIR” must be of the square type and not the regular
variety. By changing “DIR” for “DRIVE” the command will
display a lot of information about the characteristics of drive B
(total capacity, size of storage blocks, etc.). Using “USERS” as
the word in the brackets displays the number of files on the disc,
the number of active files, and the user number (which is a topic
which will be covered later). If "LABEL" is used as the word in
brackets then label information about the disc, where applicable,
is displayed. This is again something which will be described in
more detail in a later chapter.

Returning to CP/M 2.2 and the “STAT” instruction, it can be
used to give detailed information about a particular file. For
example, with the system disc in the current drive try typing this
command:-

30

STAT PIP.COM RETURN

The computer’s response should be a screen display something
along the following lines:-

Recs Bytes Ext Acc
58 8k 1 R/W A:P1P.COM
Bytes remaining on A: 7k

The “Rees" entry shows how many 128 byte blocks of the disc
(known in CP/M as “records”) have so far been taken up by the
file, and the “Bytes” figure shows how many kilobytes (1 kilobyte
or lk = 1024 bytes) of disc space are occupied by the file. Disc
space is allocated in 1 k blocks, even if only one byte of one record
is actually needed, and dividing the “Rees” number by 8 will often
give a somewhat lower figure than the “Bytes” number. In fact
with some disc systems, particularly hard discs, disc space may be
allocated in larger blocks of 2k, 4k, or even more. Originally the
128 byte records corresponded to the 128 byte sector size of the
disc, but with modern disc formats this relationship does not
always exist (although this is of only academic importance to the
user).

A byte is an 8 bit binary number, which equates to a decimal
(integer) number in the range 0 to 255. When applied to a com
puter’s memory we are really talking in terms of the number of 8
bit binary numbers that can be stored, and the situation is the
same with discs. Although storing numbers in the range 0 to 255
may seem a rather limited and pointless excercise, these numbers
can represent program instructions, they can be combined to
represent very large numbers equivalent to decimal numbers
many digits long, or they can represent text characters. In this last
role computers normally use the ASCII (American Standard
Codes for Information Interchange), or an ASCII based set of
codes. The number in each byte corresponds to a particular
character (the number 85 is the code for the letter “U” for
instance). With a text file the “Rees” and “Bytes”“ figures give a
fairly accurate idea of the number of characters in the file (bearing
in mind that things such as spaces and carriage returns count as
characters).

31

PIP.COM
A:PIP.COM

The blocks of data on the disc are grouped in 16k chunks called
“extents”, and the “Exts” field details the number of 16k blocks
allocated to a file. Of more interest is the “Acc” field, or “access”
field. This can be read/write (R/W) or read-only (R/O),
depending on whether or not it is possible to write to a disc, or it
can only be read. So far we have only considered write-protected
discs in the sense of one that is physically write-protected by a
notch (or whatever) in the disc’s casing. An individual file can
also, be write protected by placing a special code onto the disc.
Before writing to a file and altering it, CP/M checks to see if this
code is present, and if it is, it aborts the write operation. It is also
possible to put a code on a disc that write-protects the whole disc,
which is effectively a sofware equivalent of a write-protect tab.

The write-protect code is placed on the disc using the “STAT"
command. To try this out, put a copy of the CP/M system disc (on
a mechanically non-write protected disc) into the current drive
and type:-

STAT PIP.COM $R/O RETURN

An on-screcn message stating something like “PIP.COM Set To
R/O” will be placed on the screen. You can then use the "STAT"
command to read the status of “PIP.COM” again, and it should
have been changed to “R/O”. If you now try to alter the
“P1P.COM” file in some way, such as by trying to erase it using
the “ERA” command, the computer will fail to do so and will
respond with an error message such as:-

BdosErr On A: File R/O

“Bdos” incidentally, stands for “Basic Disc Operating System".
The “PIP.COM” file can be set back to being a read/write type

using the “STAT” instruction again, shown as follows:-

STAT PIP.COM $R/W RETURN

Using the “STAT” instruction to once again read the status of the
“PIP.COM” file should reveal that it has been set back to being a
read/write type.

32

PIP.COM
%25e2%2580%259cPIP.COM
PIP.COM

It is permissible to use wild cards with the “STAT” instruction,
and the instruction:-

STAT ..COM RETURN

for instance, would provide details of any file on the disc in the
current drive and having “COM” as its extension. Apart from
information about the specified file or files, “STAT” also displays
the amount of unused storage space on the disc (e.g. Bytes
Remaining On A: 7k).

The “STAT” instruction can be used to set a file to “SYS”
(“system”) status, which makes it undetectable to the “DIR”
command. It can also set the status from “SYS” back to “DIR”
again, so that it can be listed by the directory. Thus the
instruction :-

STAT PIP.COM $SYS RETURN

would make the file “PIP.COM" a system file. Reading the
directory for the disc should result in no sign of “PIP.COM”.
Information on “PIP.COM" can still be read using the “STAT”
instruction though, and the “PIP.COM” filename will appear in
brackets to show that it is a system file.

STAT PIP.COM $DIR RETURN

can be used to set “PIP.COM” back to the directory mode, and
the “DIR” command should then list it.

SET
When running CP/M Plus the “SET” command provides some of
the functions given by “STAT" in other versions of CP/M. This
includes the ability to set a file as read/write or read-only, and to
set a file as a system type or directory type. This operates in a very
similar manner to the “STAT” command, but there are a couple
of differences in points of detail. In order to set a file to the read
only mode, rather than using the dollar sign followed by “R/O”,
“RO” in square brackets is used. Therefore, to set the file
“PIP.COM” as read-only the following command would be used:-

33

PIP.COM
%25e2%2580%259cPIP.COM
%25e2%2580%259cPIP.COM
PIP.COM

SET PIP.COM [RO] RETURN

It would be set back the the read/write mode using the same
command, but with “RW" inserted in place of “RO”. Changes
from directory to system and vice versa are handled in the same
way. For example

SET PIP.COM [SYS] RETURN

would set “PIP.COM” to the system mode, and:-

SET PIP.COM [DIR] RETURN

would set it back to the directory mode.
After the SET command has finished executing, it displays the

filename and its current settings on the screen (e.g. “A:PIP COM
set to system (SYS), Read Write (RW)”). It is possible to set both
RO/RW and DIR/SYS with a single command, in this fashion:-

SET PIP.COM [RO SYS] RETURN

This would set the “PIP.COM” file to read-only and system
mode.

So far we have only considered write-protection of files, but a
whole disc can be protected in much the same way. This
instruction would write-protect drive B:-

SETB:[RO] RETURN

The computer will respond with an on-screen message such as
“Drive B: set to Read Only (RO)”. It is important to realise that
although it is the accepted practice to talk in terms of the drive
having been write-protected, it is in fact the disc that has been
protected. In other words, changing the write-protected disc for a
read/write type will not result in drive B being unable to write to
the disc. Placing the read only disc back in drive B will prevent the
drive from carrying out write operations.

The “STAT” and “SET” commands are capable of doing more
than just the simple functions described here, and they will be
described in greater detail in later chapters.

34

PIP.COM
PIP.COM
%25e2%2580%259cPIP.COM
PIP.COM
PIP.COM

Printer
CP/M provides a useful facility which enables anything printed on
the screen to also be sent to a printer. If your system is equipped
with a printer, try pressing CONTROL and “P” simultaneously.
Thereafter, anything which is printed on the screen should also be
sent to the printer, including the prompt. In order to switch off the
printer again simply press CONTROL and “P” again.

This facility is probably of greatest use with the “TYPE” and
“ED” commands. By enabling output to the printer and then
using “TYPE" to display a file on the screen, a printed copy of the
file will also be obtained. By getting into the editor program and
then using the “I” instruction, as copy is typed into the computer it
will be printed out as well as appearing on-screen. This obviously
lacks the facilities of a word processor, or even a good electronic
typewriter, but it could be useful for making rough notes or
writing short letters. CONTROL - “P” must be used when in the
“ED” command mode, rather than when in the “Insert” mode.
With a modern version of CP/M any line numbers that are auto
matically displayed on the screen will also be sent to the printer,
since this mode of output simply gives a hard-copy of what is
printed on the screen. However, when in the “ED” command
mode the automatic line numbering can be switched off by
typing

-V RETURN

The automatic line numbering can be restored by typing:-

V RETURN

when in the “ED” command mode. When the “TYPE” command
is used, line numbers in a file are not printed on the screen, and
they are therefore not sent to the printer either.

35

Chapter 2
USING PIP

Most of the important fundamentals of CP/M were covered in
Chapter 1. but there was one glaring omission in that no mention
of "PIP'' was made. “PIP" is a program that exists on the CP/M
program disc as “PIP.COM”, and it can either be used as a
transient command or as a program. “PIP”stands for "Peripheral
Interchange Program" and its prime purpose is to copy files from
one disc to another. However, it can do much more than this, and
the file transfers do not need to be from disc to disc. For example
the transfer could be from (say) a disc to an RS232C serial port. It
is also possible to do such things as joining files together
(concatenation), and format text.

PIP Command
If we take “PIP” as a command first, it can be used to make a copy
of a file on one disc drive on to the disc in another drive, but rather
like the transient command "ED", this is only possible if the
"PIP.COM” program is accessible to one of the disc drives. As a
simple test of the “PIP” command, make a non-write-protected
copy of the CP/M program disc, and then use the directory
command to read the directory. One of the files on the disc should
be “ERASE.COM”, and in order to make a copy of this to a non
write-protected disc in drive B the following instruction would be
used (as explained more fully a little later, some of these initial
“PIP” examples will only run properly under CP/M Plus, and
slightly different methods are required for earlier versions of CP/M):-

PIP B:ERASE.BAK=ERASE.COM RETURN

This assumes that the program disc is in drive A, and that this is
the current drive. The instruction is fairly self explanatory with
“PIP” being followed by the name to be given to the copy of the
file. As the copy is to be made on drive B rather than the current
drive (A), the filename is preceded by “B:”. The equals (“ = ”)
sign tells the computer to make a copy of the file having the name
that follows. The file to be copied is in the current drive (which is

36

PIP.COM
ERASE.COM

still A), and so no drive needs to be specified here.
If you try this instruction and then list the directory of drive B

you should find "ERASE.BAK” is listed in the directory. Of
course, the disc in B must have sufficient spare storage capacity to
accommodate “PIP.COM”, and it is probably best to use a blank
but formatted disc when carrying out this familiarisation with the
“PIP” command. If you list the directory for drive A you should
find that “ERASE.COM” is still present there, as copying a file
from one disc to another does not destroy the original.

As will probably be apparent to you, the “PIP” command takes
this form:-

drive letter:new filename=
drive letterexisting filename

Of course, the drive identification letter is only required if the
filename that follows is to be read from or created on a drive other
than the current one.

When using “PIP” in this simple form it will usually be
necessary to transfer the “PIP.COM” program onto the disc from
which a file is to be copied, or onto the the disc onto which it is to
be copied. Using the CP/M program disc in drive A, and the
largely blank disc in drive B, as before, try this command:-

PIP B:PIP.COM = PIP.COM RETURN

This will make a copy of “PIP.COM” on the disc in drive B,
retaining the “PIP.COM” filename for the copy. It is essential not
to use a different name as “PIP.COM” is the one that the
computer will search for when the “PIP” command is executed.
Check the directory of drive B to ensure that the copy has been
made successfully.

If you now remove the program disc from drive A, and take the
disc from drive B and place it in drive A, by using the following
command a copy of the “ERASE.BAK” file, called
“ERASE.TWO”, should be made:-

PIP ERASE.TWO=ERASE.BAK RETURN

37

B:PIP.COM
PIP.COM
%25e2%2580%259cPIP.COM

Again, use the directory to check that the file has been copied. It is
a good idea to experiment a little with file copying until you are
sure that you fully understand what is involved and can easily
produce copies. A point worth noting is that it should be possible
to copy any disc files successfully, whether or not they are
generated by a program running under CP/M. Of course, this
assumes that your computer has the capability of running under
an alternative operating system, and that the files concerned have
not been copy-protected in some way (much games and other
software is doctored to prevent easy copying).

With a computer which runs under CP/M Plus and has only a
single disc drive it is possible to use the one drive as both drive A
and drive B, in much the same way as for the "ED" command
which was briefly described in the previous chapter.

PIP as a Program
When used in the form described above “PIP” is somewhat
restricted by the fact the "PIP.COM" program must be present on
an accessible disc. Even with a twin disc drive system this can be a
little awkward, and ideally it should be possible to take any two
discs and transfer a file from one to the other. This is in fact
possible if “PIP.COM" is run as a program, and in order to do this
it is merely necessary to put the CP/M program disc into the
current drive and type this instruction into the computer:-

PIP RETURN

Do not type:-

PIP.COM RETURN

The computer should respond with a simple message stating
“PIP” and the CP/M version you are running. There should also
be a “.” prompt to indicate that the program is ready to receive an
instruction. The program is then used in much the same way as the
“PIP” transient command, but the word “PIP" is not needed at
the beginning of each instruction. As an example, suppose that
the file called “DUMMY. FLE” on the disc in drive A is to be
copied to drive B and called "NEW.FLE". The instruction used to
do this would be:-

38

PIP.COM
%25e2%2580%259cPIP.COM
PIP.COM

B:NEW.FLE = DUMMY.FEE RETURN

Incidentally, there is an abbreviated form of the copy command
which can be used if the copy is to have the same filename as the
original. The command then takes the form:-

drive letter (for copy) = drive letterfilename
Thus, in order to copy a file called "DUMMY.FLE" from drive A
to drive B the instruction shown below would be utilized.

B: = DUMMY.FLE RETURN

In order to exit from "PIP" and return to the command mode of
the main CP/M program it is merely necessary to press the
“RETURN” key. The "PIP" program can be used with one disc
drive acting as drive A and drive B if you have system which runs
under CP/M Plus, just as the “PIP" transient command can. I have
to emphasize that this ability to use one drive as both the A and B
type is only a feature of CP/M Plus (CP/M 3), and it is not
supported by CP/M 2.2 and earlier implementations.

Multiple Files
One way of copying several files from one disc to another is to
copy them one by one using the method described previously. If
all the files on a disc are to be copied, your computer system might
well have been supplied with a disc copying utility program, and
then this could be used to copy all the files. If all but one or two
files are required, the easiest solution might be to copy the whole
disc and then delete the one or two files that are not required. In
some cases there is a third alternative available, and this is to use
“PIP” plus the “?” and “.” symbols. This operates in essentially
the same way as when using these symbols with the “ERA”
command, as described in Chapter 1. For example, if the disc in
drive A contained the files "DUMMY.FLE", "DUMMY.TXT",
“DUMMY.BAK”, and “FILE.TXT", the instruction:-

B: = DUMMY,. RETURN

would copy "DUMMY.FLE", "DUMMY.TXT", and
“DUMMY.BAK" from drive A to drive B. The symbol

39

provides a match with any extension, and so any file with
"DUMMY” as the main part of the filename is copied across from
drive A to drive B. Accordingly, “FILE.TXT” will not be copied,
and if the disc in drive A contained a file called "DUSTY.TXT"
this would not be copied either, since the first part of the filename
does not perfectly match "DUMMY” However, the instruction:-

B: DU??Y.- RETURN

would result in "DUSTY.TXT" being copied, together with the
three "DUMMY" files.

"PIP” can be used to copy all the files on a disc, but this is not
quite the same as copying a whole disc. It will not copy the CP/M
program itself, and if used to copy a disc which contains the CP/M
program it will copy everything else. The CP/M program is effect
ively invisible to “PIP" as far as file copying is concerned. CP/M is
also invisible to the "DIR" command, and you can not check to
see if CP/M is on a disc by examining the directory. However, if
CP/M is on a disc then it should be possible to load it from the disc
and carry out CP/M commands. The CP/M program is usually
stored on a couple of reserved tracks of the disc, which must be
formatted correctly so that these tracks are reserved (“System"
format rather than “Data” format). The formatting software
provided with the system should give the option of “System” or
“Data" formatting where appropriate.

In order to copy all the files on a disc you simply use the normal
file copying instruction, but with as the filename. Thus, in
order to copy all the files in the disc in drive A across to drive B
this instruction would be used (assuming drive A is the current
drive):-

B: = ... RETURN

Most CP/M systems are supplied with some form of disc
copying utility program, and where a whole disc carrying a great
deal of data is to be copied it is generally much quicker and easier
to use this program. One possible advantage of using "PIP" is that
it will probably put the files onto the disc in a more compact form

40

without any large gaps between files. This might slightly speed
things up or effectively enable more files to be placed onto the disc
than would otherwise be possible, but it does not really provide
any great advantage. Note that any disc copying utility provided
with the computer will almost certainly copy the CP/M program if
it should be present on the disc being copied.

When copying a disc using "PIP”, " VO ” can be placed at the
end of the command. The “V" causes the computer to verify that
the copy is an accurate representation of the original. This
obviously avoids the possibility of having what is thought to be an
accurate copy when it is actually seriously flawed. Unfortunately,
the verification process slows down the copying quite
significantly, and it might not be considered worthwhile unless
accurate copying is very important for some reason. The "O" is
used for files which have an end of file symbol, or where you think
there might by an end of file symbol. It is not necessary to use both
the “V” and the “O" together, and one or the other can be added
to the instruction. Incidentally, copying using "PIP” can be
stopped at any time by pressing virtually any key of the keyboard,
and a message confirming that the copying has been aborted will
then be displayed on the screen.

SYSGEN
The “SYSGEN" transient command is one which was not covered
in Chapter 1, and it is relevant here in that it permits the CP/M
program to be copied from one disc to another. It is not
implemented in CP/M Plus, but is available in CP/M 2.2 and
earlier versions. It is run as a CP/M program by typing:-

SYSGEN RETURN

into the computer with the system disc in the current drive. It is
then just a matter of following the on-screen prompts.

As mentioned earlier, the methods of copying files described so
far can only be guaranteed to operate properly with CP/M Plus,
which is more tolerant of disc changes than are the earlier versions
of CP/M. If you load CP/M 2.2, then run “PIP”, and then try to
change the system disc for one which contains the file that you
wish to copy, this disc change will not be tolerated by the system,

41

and probably the only way that the computer will be persuaded to
progress any further is to replace the system disc in the current
drive. If you have a three drive system this is not a great drawback
as you can leave the system disc in place in the current drive
(which will presumably be drive A), and then use drives B and C
for the copying, with the drive indentification letters being
inserted into the copying instructions at the appropriate points.
Unfortunately, few users of CP/M (or any other system for that
matter) have the luxury of three disc drives.

With a two drive system the simple way around the problem is
to always have CP/M and the "PIP.COM” program on one of the
discs involved in the copying process. First use the "SYSGEN"
command to copy CP/M on to a suitably formatted disc, and then
use “PIP” to copy “PIP.COM” onto the disc. The following
procedure can then be adopted.

Place the disc containing CP/M and "PIP.COM" in the current
drive (which we will assume to be drive A), and put the other disc
involved in the copying process in drive B. We will assume for the
sake of this example that all the files on A are to be copied across
to B. Press CONTROL C to recondition the computer to accept
the change to the new discs. Then type:-

PIP RETURN

to load the “PIP” program. This instruction will then produce the
required copying of the files on the disc in A across to the disc in B.

B: = ... RETURN

In fact with “PIP.COM" and the CP/M program on one of the
discs the copying could be facilitated from the command mode
without needing to run “PIP" as a program. This instruction:-

PIP B: = ... RETURN

would have the same effect as running "PIP” and then using the
program command given earlier.

With a two drive system running under CP/M 2.2 or an earlier

42

PIP.COM
PIP.COM
%25e2%2580%259cPIP.COM

version it is possible to copy from a one disc to another when
neither of them contain the CP/M program or “PIP.COM", but
this can only be achieved by a slightly roundabout method. In fact
it is necessary to first copy the file onto a disc which does contain
CP/M and “PIP.COM", and to then copy the file from here onto
the disc which is its final destination. The unwanted copy on
the system disc is then erased. Of course, this method is only
possible if the disc used for temporary storage purposes has
sufficient vacant storage area for the file, and if it is not write-
protected.

In order to try out this method, copy the CP/M program and
“PIP.COM" onto a disc, and place this in drive A. Make a short
file for test purposes on a blank disc, called (say) "TEST.DTA",
and place this in drive B. Use CONTROL “C" to condition the
computer to these two discs, and then copy "TEST.DTA" onto
the disc in A using this instruction:-

P1P A:=B:TEST.DTA RETURN

Use "DIR" to check that “TEST.DTA” has been copied across to
the disc in A. Then place a blank but formatted disc in drive B,
and use CONTROL “C" to condition the computer to, the disc
change. Now use this command to copy the file to the disc in B:-

PIP B:=TEST.DTA RETURN

Check the directory of drive B to ensure that the transfer has been
accomplished properly, and then use this instruction to delete the
unwanted version of the file on the disc in drive A:-

ERA TEST.DTA RETURN

The file transfer is then complete. If you intend to transfer files
using this method it is obviously a good idea to keep disc
containing the CP/M program, "PIP.COM", and plenty of free
storage area, especially for use as the intermediate disc.

Devices
So far we have only considered the use of "PIP" to transfer files

43

%25e2%2580%259cPIP.COM
%25e2%2580%259cPIP.COM
%25e2%2580%259cPIP.COM
%25e2%2580%259cP1P.COM

between any two logical devices (within the constraints of those
devices). In addition to the disc drives, there are four other logical
devices, as listed below (this is for CP/M 2.2 and earlier versions,
and not CP/M Plus):-

CON: The console
PUN: A punch device
RDR: A reader device
LST: A listing device

CP/M has its origins fairly early in computing history, and this is
reflected in the "PUN:” and "RDR:” names, which were
originally high speed paper punch and reader machines. While it
is highly unlikely that you will ever use a computer equipped with
either of these, "PUN:” and "RDR:” will still be available in your
system, but will be used for other purposes (such as a serial port).
“LST:”. the listing device, would normally be a printer, and the
“CON:" or console device is the keyboard and monitor. “PUN:”
and “LST:” are for output only, “RDR:” is for input only, but
“CON:“”is for input and output.

These are called logical devices so that they can be differen
tiated from actual, physical devices. There are four physical
devices associated with each logical device, and this operates in
the manner shown in Figure 4. Each logical device connects to one
of four physical devices, with switches being used to select one
physical device per logical device. In reality there are no switches
as such, and the selection of the physical devices is under software
control. On the face of it there can be a maximum of sixteen
physical devices in the system, but some of the physical devices
can be assigned to more than one logical device, which reduces the
true number of options. Also, in a practical system there would
not normally be anything like this number anyway. There would
typically just be the console and a printer port, plus perhaps a one
or two channel serial port of the RS232C type.

Because the hardware present in each system is different, and
the method of reading from and writing to various pieces of
hardware requires different routines, the CP/M program has to be
tailored to suit your particular computer system, so that to

44

45

applications programs running under CP/M, the hardware always
appears to be the same. This is sometimes referred to as a software
interface or a software bus, as the differences between various
input/output devices are compensated for in the program without
using any additional electronics.

With the CP/M program being tailored to suit the particular
hardware present in the computer, it follows from this that
changes to the hardware might not be compatible with CP/M.
There are many add-on boards available for most popular
computers, and if you obtain something like an add-on RS232C
serial port which you wish to use with CP/M applications
programs, it is essential to make sure that it is compatible with CP/
M, or is supplied complete with software which enables it to be
integrated into and recognised by the CP/M system. If it is not
recognised by CP/M then it is unlikely to be of much practical
value, if any.

The physical devices have to be given names so that CP/M can
differentiate between them, and a list of the valid physical device
names is shown.

BAT: Input from RDR:, output to LST:
CRT: Cathode Ray Tube (normally the monitor and

keyboard)
LPT: Line Printer (normally a Centronics type

printer output)
PTP: Paper Tape Puncher (or other output device)
PTR: Paper Tape Reader (or other input device)
TTY: Teletype Terminal (or other input/output

device)
ULI: User Defined Listing (output) device
URI: User Defined Reader (input) device
UR2: Second User Defined Reader (input) device
UP1
UP2

User Defined Punch (output) device
Second User Defined Punch (output) device

In a typical set-up “CRT:” (the keyboard and screen) would be
assigned to “CON:”, “LPT:” (a Centronics style printer port)
would be assigned to “LST:”, and “TTY” (the input and output
channels of an RS232C serial port) would be assigned to “RDR:"

46

and “PUN:”. “URI:” and “UP1:” could be assigned to “RDR:”
and “PUN:” respectively to provide an optional second RS232C
channel. Some physical devices are likely to be absent, and will be
null inputs and outputs. Anything written to these should not
cause the system to crash, and reading from a null input simple
provides an end-of-file character code. Null inputs and outputs
could be useful for testing purposes, as well as offering the
possibility of system expansion.

The way devices are handled is slightly different under CP/M
Plus and CP/M 2.2. Taking the latter first, this version of the
“STAT” command can be used to display the current physical
device assignments:-

STAT DEV: RETURN

With the author’s Amstrad CPC6128 computer this results in the
following being displayed, and as explained above, these are
typical default settings.

CON: is CRT:
RDR: is TTY:
PUN: is IT Y:
LST: is LPT:

However, your system could obviously be different to this.
With CP/M Plus the “DEVICE” instruction is used to display

the physical device assignments, as shown below:-

DEVICE RETURN

The CPC6128 can run both CP/M 2.2 and CP/M Plus, and when
running CP/M Plus and trying this instruction the following
assignments are displayed:-

CONIN: = CRT
CONOUT: = CRT
AUXIN: = Null Device
AUXOUT: = Null Device
LST: = LPT

47

As will probably be apparent from this, CP/M Plus does not use
quite the same logical device format as other versions of CP/M.
One difference is that “CON:” has been separated into two logical
devices, one handling input (“CONIN:” which is the screen) and
the other providing output (“CONOUT:” which is the key
board). “PUN:” and “RDR:” are replaced by “AUXIN:” and
“AUXOUT:”, which are normally assigned to the input and
output of an RS232C serial port. The serial port is an add-on and
not a built-in feature of the CPC6128, and consequently these
physical devices are null devices. Things are greatly streamlined in
CP/M Plus, and physical device names such as “TTY:” and
“UP1:” are not used.

With both CP/M 2.2 and CP/M Plus it is possible to reassign
physical devices. Again taking CP/M 2.2 first, entering this
instruction will give give a brief list of valid “STAT” commands:-

STAT VAL: RETURN

Remember to have the system disc in the current drive before
entering the command, and to use CONTROL “C” first if
necessary. The information displayed should include a table
showing the legal physical device assignments for each logical
device, and it should be something like this:-

CON: = TTY: CRT: BAT: UC1:
RDR. = TTY: PTR: URI: UR2:
PUN: = TTY: PTP: UP1: UP2:
LST: = TTY: CRT: LPT: ULI:

As explained earlier, in most practical CP/M systems the system
recognises more physical devices than actually exist, and many of
the valid options are not practical options.

The “STAT” command is used to change assignments, and the
instruction takes the form:-

STAT logical device = physical device RETURN

As a simple example, the instruction:-

STAT LST: = CRT: RETURN

48

sends output destined for the printer to the screen instead. If you
try this and then use CONTROL “P” to switch on output to the
printer from the console, you should find that every character
thereafter is printed on the screen twice. The first character is the
normal screen display, and the second one is the redirected
printer output. You have to be careful when reassigning devices as
it is easy to hang-up the computer. This will happen if the
instruction

STAT CON: = UC1: RETURN

is entered into the computer. This instruction results in the
computer looking for its keyboard input from physical device
“UC1:”, and disconnects the keyboard. The only way out of this
might be to remove the discs from the drives, switch the computer
off, and then switch it on again and reboot CP/M.

With CP/M Plus the "DEVICE” instruction is used to reassign
physical devices in much the same way that “ST AT” does with CP/
M 2.2. With CP/M Plus there is a much more limited range of
theoretical physical devices, but any physical device can be paired
with any logical device except where an input/output mismatch
makes a pairing nonsensical. This is a very useful scheme of
things, making it easy to do something like having the output for a
parallel (Centronics) type printer redirected to the serial
(RS232C) output if your printer happens to have a serial
interface. This example assigns the monitor screen (“CRT") to
the parallel printer output ("LST"), but it still leaves the console
connected to “CRT”.

DEVICE LST=CRT RETURN

With CP/M Plus there seems to be no need to include the colons
after logical or physical device names when using the “DEVICE”
command. If you try this example and then enter CONTROL
“P", as in our earlier CP/M 2.2 example, every character will be
printed on the screen twice (including double line spacing).

If you try to hang-up the computer by cutting off the keyboard
using this instruction:-

49

DEVICE CONIN=NULL DEVICE RETURN

the system will be too clever for you and will not accept the
command. However, this instruction will cut off the monitor
screen

DEVICE CONOUT=NULL DEVICE RETURN

This does not hang-up the computer though, and if you type in a
command such as:-

DIR RETURN

the disc drive will be activated, and the computer will carry out the
instruction. The directory will be written to nowhere though, and
it will not be printed on screen.

Screen Layout
Another function of “DEVICE” is to set the required screen
layout. Of course, CP/M 2.2 and earlier CP/M implementations
do not have any form of the “DEVICE” instruction, and can not
control the screen layout. This instruction will display the current
screen layout:-

DEVICE CONSOLE [PAGE] RETURN

This instruction requires the CP/M program disc to be in the
current drive incidentally. It should produce a response
something along these lines:-

Console width set to 79 columns
Console page set to 24 lines

To change the effective page size this instruction is used:-

DEVICE CONSOLE [COLUMNS=X LINES=Y]
RETURN

where “X” is the required number of columns and “Y” is the

50

required number of lines. If you try out this instruction with quite
low numbers for both the columns and lines parameters the effect
should be immediately obvious when you type commands into the
computer. If you try using the “TYPE” instruction to display a
text file on the screen you will notice that the number of columns is
controlled by the text file. and not the "DEVICE” instruction. On
the other hand, the effective page length will be controlled by the
“DEVICE” instruction, with output to the screen being halted
every ten lines (or whatever) with an instruction such as:-

Press RETURN to Continue

being displayed.

Another function of “DEVICE” is to set the operating speed of
physical devices, and to enable or disable handshaking. In most
cases these are parameters that only apply to a serial interface,
and the command:-

DEVICE LPT[XON,4800] RETURN

would enable handshaking on LPT and set its baud rate at 4800.
The instruction

DEVICE LPT [XOFF.50] RETURN

would set the baud rate of LPT at 50 and would disable hand
shaking. The baud rate is the number of bits transmitted per
second with a continuous data stream, and dividing by ten gives
the approximate transfer speed in bytes per second. There are a
number of standard baud rates available, and these are 50, 75,
110, 150, 300, 600, 1200, 1800, 2400, 3600, 4800. 9600, and 19200
baud. Handshaking is where the device receiving data can
indicate to the transmitting equipment via a control line that it has
received all the data that can currently be handled, and that a
hold-off is required. When it is ready to receive data again it
indicates this via the control line, and the flow of data is resumed.

51

With modems it is not normal for handshaking to be
implemented, and it can usefully be disabled. With something like
a printer which might well be unable to keep up with the flow of
data from the computer it is usually necessary to implement
handshaking, and it should obviously not then be disabled from
software.

In practice, if your computer is equipped with a with serial port,
or the manufacturer produces an add-on serial port, the CP/M
software may well include a special command to permit easy
setting of the baud rate, handshaking, and other factors such as
the number of data and stop bits. For example, the Amstrad
CPC6128 includes the “SETSIO” command on the CP/M
program disc. The manual for your computer should include at
least basic details of any command of this type. With such a
command available it is obviously preferable to use this rather
than the “DEVICE” command. Also, note that lot of possible
“DEVICE” instructions are quite meaningless since many peri
pheral devices use parallel and not serial interfacing. The
computer will almost certainly not accept any commands of this
type.

You do not really need to understand what is meant by terms
such as “stop bits” or “parity”, and it is just a matter of ensuring
that the word format and baud rate of the computer are set to
match the printer or other device connected to the serial port.

Data Transfers
Although so far we have only considered “PIP” for use when
transfering data from one disc to another, or between other
peripheral devices, it is perfectly possible to transfer data from a
disc to a printer or other peripheral device. It is also possible to
take data from a peripheral source such as the keyboard and
transfer it to disc. This can easily be tested by trying out a few
practical examples, and this command will transfer the file
“DUMMY.TXT" to the printer.

PIP LST: = B:DUMMY.TXT RETURN

This assumes that you have produced a suitable test file which is

52

on the disc in drive B, and that the CP/M program disc is in drive
A. Of course, you must also have a printer set up and ready to
operate as device ‘'LST:’’. Note that this simply takes the text in
the file “DUMMY.TXT” and sends it to the printer, and that the
text is not displayed on the screen. Figure 5 helps to illustrate the
way in which this operates, and all file transfers operate in the
same general manner. First the file is read by the computer and
the data is placed in a block of memory, and then it is transferred
from here to the printer. Large files are handled in relatively small
blocks of data in order to keep within the memory limitations of
the computer. This may seem like an unnecessarily complicated
way of doing things, but in many cases direct transfer from one
device to another would be impractical. With disc drives it is
practically impossible to read data one character at a time and
transfer it to a printer which can only take characters one by one.
It might be possible to devise such a system, but it would probably
be very slow and wearing on the disc drives. Using a block of
memory as a buffer enables data to be taken from the disc drives
(or other peripherals) in conveniently sized blocks, and then
transferred to the printer or other device as and when it can accept
it.

If you wish to display a file as it is printed, one way to do this is
to use the “TYPE” command plus CONTROL P to switch on
output to the printer (e.g TYPE B:DUMMY.TXT CONTROL P
RETURN). This is not a very good way of doing things in many
cases as it will result in the A prompt being printed out at the end
of the file (remember that with output to the printer enabled using
CONTROL P, everything that appears on screen is normally sent
to the printer as well).

What is probably a better way of doing things is to use “STAT”
or “DEVICE” to pair the printer with the monitor, so that output
for the printer is also sent to the monitor. For instance, with a
machine running under CP/M Plus this instruction will give the
current device assignments.

DEVICE RETURN

It also gives the opportuninty to change assignments or to just

53

54

press RETURN in order to leave them unaltered. This instruction
would pair the monitor (CRT) with the printer:-

LST=CRT,LPT

The file dummy text could then be printed on-screen and sent to
the printer using exactly the same instruction that was used
previously just to give a printed copy.

A couple of “PIP" options were mentioned earlier in this
chapter, and there are several others. As one example, “U” can
be used to convert all lower case letters to upper case. Try this
instruction to print out “DUMMY.TXT" to the printer (use
“CON” instead of “LST” if you would prefer the file to be sent to
the screen

PIP LST: = B:DUMMY.TXT U RETURN

The “PIP” extensions are described in Appendix 5, and some
experimentation with these should soon lead to familiarisation
with them.

“PIP" provides an alternative to using “ED" or an applications
program to create a text file on disc. The basic way in which this is
done is to provide data transfer from the keyboard to a specified
disc file (which can be a new one and does not have to be one that
already exists). For the sake of this example we will assume that
you have a system running under CP/M Plus, with the CP/M
program disc in drive A, and a disc with some spare storage
capacity in drive B. This instruction will set up the system ready
for you to enter text:-

PIP B:NEW.TXT=CON:

This simply gives the name of the new file (“NEW.TXT") and
the drive on which it is to be created (B), and sets “CON:” (the
keyboard) as the source. The new file will not be sent to disc
character by character as you type it in. As explained earlier, disc
drives deal in blocks of data rather than one character at a time.
The data typed into the computer is stored in memory until

55

CONTROL and Z are pressed to indicate that the file is complete.
The file is then stored on disc and the computer is returned to the
command mode. When entering text you will probably find that
RETURN and ENTER do not provide both a line-feed and a
carriage return. However, these can be obtained by using
CONTROL J and CONTROL M respectively.

When the file has been completed and stored on disc, the
“DIR" command can be used to check that the new file has been
created, and “TYPE" can be used to print it on the screen. If you
try repeating the instruction, adding some more text to
“NEW.TXT", and then use "TYPE" to display the file on the
screen, you will find that the new text has replaced the original
rather than being added to it.

Concatenation
Concatenation is simply the joining together of two or more files
to make one large one. This is mostly done with text files, and
these are the only type most CP/M users will deal with. Text files
have an “end of file” (EOF) code as the final character, and it is
this code that is generated when CONTROL “Z” is typed at the
end of a file. In order to join two text files end-to-end it is not just a
matter of placing the two files on disc as a single entity with no gap
in between, but it is also necessary to eliminate the end of file
character at the end of the first file. Concatenation of text files is
perfectly straightforward with the “PIP” command, and it
automatically removes this end of file character.

In order to try out concatenation, generate three short text files
called “FILE1.TXT”, “FILE2.TXT”, and “FILE3.TXT”. With
the CP/M program disc in drive A, and the file disc in drive B, this
instruction will generate a file called “BIG.TXT” by joining
“FILE1.TXT" and “FILE2.TXT".

PIP B:BIG.TXT=B:FILE1.TXT,B:FILE2.TXT
RETURN

The “DIR" instruction can be used to confirm that "BIG.TXT"
has been generated on drive B, and then with "TYPE” the new
combined file can be displayed on-screen so that a check on its
contents can be made.

56

More than two files can be concatenated simply by including the
filenames in the instruction with a comma between each one. This
instruction would generate a file called “VERYBIG.TXT” from
“FILE1.TXT”, FILE2.TXT", and “FILE3.TXT”.

PIP B:VERYBIG.TXT=
B:FILE1.TXT,B:FILE2.TXT,B:FILE3.TXT
RETURN

Again, "DIR” and "TYPE" can be used to check that the new file
has been produced correctly. Note that “B:” must precede every
filename, as the files being read and the one being created are all
on drive B, while it is drive A that is the current one. In fact it
might be easier to set drive B as the current drive, and then use
this modified version of the instruction.

A: PIP VERYBIG.TXT=
FILE1 .TXT,FILE2.TXT,FILE3.TXT RETURN

It is not necessary to give the concatenated file a new filename,
and it is perfectly acceptable to use the name of one of the
constituent files if desired. For example, this instruction would
concatenate “FILE1.TXT”, “FILE2.TXT”, and “FILE3.TXT”
to generate a new "FILE1.TXT” which would overwrite and
replace the original file of that name.

A: PIP FILE1 TXT=
F1LE1.TXT,FILE2.TXT.FILE3.TXT RETURN

When using “PIP” to concatenate files you must bear in mind
that a new and probably quite large file is being generated, and
that the disc must have sufficient storage capacity to
accommodate it. If the constituent files are no longer required
they can be deleted using the “ERA” command, but both the old
and the new files will still be on the disc immediately, after
concatenation, and it must still have sufficient capacity for all of
them. Of course, provided it is within the limitations of your
system, the new file can be generated on a different disc to the one
from which the constituent files are read.

57

Partial Copies
In most cases you will probably wish to copy complete files, but it
is possible to copy just a portion of a file if this should be necessary
for some reason. However, this can only be done in a way that
might not be applicable to every situtaton. The basic method is to
specify the character string where the copying process must start,
and a second string where it must cease. The strings can be any
series of characters that occur within the text file, but in practice
these would normal be words, or possibly simple codes devised by
the user specifically to enable portions of a file to be selected. In
order to demonstrate partial copying use "ED" to make the
following text file called "PAGES.TXT".

Page 1
This is line 1 of the first page.
This is the second line of the first page.
And this is the third line.
Page 1
Page 2
This is line 1 of the second page.
This is the second line of the second page.
And this is the third line.
Page 2
Page 3
This is the first line of the third page.
This is the second line of the third page.
And this is the third line.
Page 3

When using “PIP” as a command it will often not work properly
when making partial copies as it effectively turns lower case letters
in the file to upper case types, preventing a proper match from
being obtained. It is consequently much easier to use “PIP” as a
program when carrying out this type of copying operation.

With the CP/M program disc in drive A, the disc containing
“PAGES.TXT” in drive B, and the “PIP" program running, try
this instruction:-

CON: = B:PAGES.TXT[SPage 1ZQ Page 1Z] RETURN

58

Note that “Z" here is used to indicate that CONTROL and “Z"
are pressed simultaneously (which will be printed on the screen as
a vertical arrow preceding the “Z" character). This instruction
sends "PAGES.TXT" to the console, or prints it out on the
monitor in other words, but the “S” option tells the computer to
start at the first occurance of the text string "Page 1" rather than at
the beginning of the file. The “O" option tells the computer to
finish at the string "Page 1" rather than at the end of file character.
However, it is the next occurance of "Page I" that causes output
to the monitor to be terminated, and the effect of the instruction is
therefore to print everything between the "Page 1" at the top of
the file, and "Page 1" at the foot of page 1. It is important that the
specified text strings exactly match those in the text file (use upper
and lower case letters to match the strings in the text file, and do
not omit spaces). Another point to watch is that the “Q" string
only occurs at the point in the file where you wish output to cease,
and that it does not occur earlier. Output will be halted at the first
occurance of the string, whether that is the one you had in mind or
not.

By entering this instruction it is possible to pick out just Page 3
and to print it on the screen.

CON:=B:PAGES.TXT[SPage 3ZQPage 3Z]
RETURN

An alternative way of achieving the same thing is to simple print
the file from the first occurance of "Page 3” to the end of the file,
as in this instruction:-

CON: = B:PAGES.TXT[SPage 3Z] RETURN

There is no equivalent to this in our earlier example where Page 1
was printed out, and telling the computer to simply print
everything as far as "Page 1 ” would not have the desired effect. It
would stop at the first occurance of "Page 1”, and not the second.
As will probably be obvious to you by now, both the stop and start
strings are included in the portion of the file that is printed out.

Simply by using “LST:" instead of "CON:" it is possible to

59

make a disc copy of part of a file, as in this example which will
make a copy of Page 2 of “PAGES.TXT”, called “PAGE2.TXT”.

B:PAGE2.TXT=B:PAGES.TXT[SPage 2ZQPage 2Z]
RETURN

If you try out this instruction, press RETURN afterwards to
return to the CP/M command mode, and then use “DIR” and
“TYPE” to check that the new file has been created correctly.

Finally
Probably most CP/M users only ever require “PIP” for simple disc
to disc transfers, but it is well worthwhile being aware of its other
capabilities. The ability to output files to an RS232C port or to
read them from this port is a good example of something that can
be very useful on occasions. Much of what “PIP” does can seem to
be rather fundamental, but it gives a CP/M system great versa
tility, and its usefulness is perhaps something that is only fully
appreciated by those who have struggled with systems that do not
provide the same features.

60

Chapter 3

SET AND USERS

In the first two Chapters of this book most of the important
features of CP/M have been described, but there are still some
that have received only superficial treatment, or have not been
mentioned at all. In this chapter we will deal with some of these
omissions, covering such things as further uses of the “SET"
command and user areas.

Passwords
The “SET" command was briefly covered in Chapter 2, but only
its functions having “STAT” equivalents were discussed. Another
function of "SET” is to assign a password or label to a disc or to a
file. Bear in mind that “SET" only exists in CP/M Plus, there is no
equivalent to it whatever in earlier versions of CP/M, and the
examples provided here will only run if your system operates
under CP/M Plus.

In order to use passwords it is first necessary to switch on this
facility. We will assume that the CP/M program disc is in drive A,
and that a disc with a copy of (say) “PIP.COM” is in drive B. In
order to protect “PIP.COM” with a password we must first enable
protection on the disc in B. This would be achieved using this
instruction:-

SET B: [PROTECT=ON] RETURN

We must now assign a password to “PIP.COM”, and note that the
file must exist first and then be given a password, rather than
assigning a file to a password. For the sake of this example we will
use “KEY” as the password. This would be assigned to
“PIP.COM” using this instruction:-

SET B:PIP.COM [PASSWORD = KEY] RETURN

There are four different levels of protection afforded by the use of
a password, and details of each one are as follows:-

61

PIP.COM
%25e2%2580%259cPIP.COM
SETB:PIP.COM

READ This gives the highest degree of protection, and the
correct password must be given in order to read, copy, write to,
delete, or rename the protected file.

WRITE This permits reading and copying of the file, but it is not
possible to write to the file. Apart from straightforward writing to
the file to modify it, this also prevents deleting and renaming.
When using passwords bear in mind that it is not the file itself that
is altered in any way, but the directory. The only normal way of
reaching a file is via the directory, and a password system at the
directory therefore protects the file. Deleting and renaming
involve writing to the directory, and are therefore prevented by
the “WRITE” mode. Of course, by using software which directly
controls the disc drives it is possible to read from or write to any
disc, and this form of protection is not unbeatable. However, it
does prevent all but the most expert of computer users from
reading, copying, or adulterating any protected files.

DELETE This only prevents deleting or renaming of the file
without the password. The file cap be read or modified without
having to give the password.

NONE In this mode no password exists for the file. By setting this
mode any existing password can be deleted.

If you try the simple example given above, the computer will
provide an on-screen message stating that “PROTECT
= READ”, and it obviously makes sense to have the default
setting the one that gives the highest level of protection. If you use
the command:-

DIR B: RETURN

the “PIP.COM” entry should be listed on the screen. However, if
you try to operate on the drive B “PIP.COM” file in any way you
will be required to enter the password. To test this out, try erasing
“PIP.COM”:-

ERA B:PIP.COM RETURN

62

B:PIP.COM

When challenged to give the password give the wrong one and
press RETURN. This should result in the appropriate error
message, and if you list the directory for drive B the “PIP.COM”
file should still be intact. Then try repeating the procedure, but
give the correct password this time. This time there should be no
error message, and when the directory is listed “PIP.COM”
should be absent.

Using “PIP”, make another copy of “PIP.COM” on the disc in
drive B, and then give the file “KEY” as its password again. In
order to give a different level of protection the “SET” instruction
is used again, as in this example:-

SETB:PIP.COM [PROTECT= DELETE] RETURN

Of course, this instruction will not be carried out immediately,
and in order to change the degree of protection it is necessary to
give the password when it is requested. You will notice that the
password is not printed on the screen when you type it in, which
reduces the risk of someone discovering it. When the password
has been entered, press the RETURN key, and the computer
should then respond with a message such as:-

B:PIP COM Protection=Delete

to confirm that the instruction has been carried out.
It is possible to read the “PIP.COM” file with only the delete

level of protection, and the command:-

TYPE B:PIP.COM RETURN

should produce a line of characters on the screen without having
to enter the password. However, trying to delete “PIP.COM”
with this instruction will only be successful if the correct password
is entered when it is requested.

ERA B:PIP.COM RETURN

•For the sake of this exercise, give the wrong password so as

63

SETB:PIP.COM
B:PIP.COM
B:PIP.COM

to leave the “PIP.C.OM” file intact on drive B, and then try this
instruction:-

SET B:PIP.COM[PROTECT=NONE] RETURN

Provided you supply the correct password when requested, this
removes the pasword protection from "PIP.COM" altogether,
and it can then be read, altered, copied, and erased in the normal
way. As an example:-

ERA B:PIP.COM RETURN

would erase it from the directory.

The "SET" command accepts wild cards, and an instruction
such as:-

SET B:...[PROTECT = ON, PASSWORD = KEY.
PROTECT=READ] RETURN

would give all the files on the disc in drive B the word KEY as their
password, and the "READ" level of protection. Try copying
some files from the CP/M program disc across to the disc in drive
B, say “PIP.COM", "ERASE.COM”. and “RENAME.COM"
and then enter the instruction given above. The computer should
list the three files, giving “KEY" as the password and "READ" as
the degree of protection for all three. Note that in this single
instruction three parameters have been set by including a comma
and a space between each one.

Although using one password for numerous files may not seem
like a very good idea, and it does reduce the degree of security, it
does have the advantage of being more manageable. Using a
number of different passwords would make it necessary to write
them down somewhere unless you have a particularly good
memory, and this would compromise security at least as much as
having a single password. In the example given above the files all
have the same degree of protection, but it is of course, possible to
modify the level of security of individual files. This instruction
would set “ERASE.COM" to the write level of protection.

64

P1P.COM
B:PIP.COM
%25e2%2580%259cPIP.COM
%25e2%2580%259cERASE.COM
%25e2%2580%259cRENAME.COM
%25e2%2580%259cERASE.COM

SET B:ERASE.COM[PROTECT= WRITE]
RETURN

An important point to note is that the four levels of security are
applied to files, and that they can not be applied to a disc. An
instruction of this type will not be accepted by the system

SET B:[PROTECT=WRITE] RETURN

For a disc the only valid instructions are "PROTECTION” and
“PROTECT=OFF”, and with protection switched on it is
possible for each file to be given one of the four levels of
protection.

LABELS
The “SET” command can be used to give a disc a label, or name.
The SHOW command can be used to display a disc’s label. To try
out these versions of the “SET" and “SHOW” commands place a
copy of the CP/M program disc in drive A, and a non-write-
protected and formatted disc in drive B. In order to give the disc in
drive B a label it is merely necessary to use the “SET” command in
this way:-

SET B:[NAME=LABEL] RETURN

If we wish to label the disc in drive B as “DISCI”, then this
instruction would be used:-

SETB:[NAME=DISC1] RETURN

The label can be anything that would be acceptable as a CP/M
filename, including an extension if desired.

The label can be protected by a password to prevent any
unauthorised person from altering it. The “SET” command
assigns the password, and if we wished to have “LOCK” as the
password, this instruction would be utilized:-

SET B:[PASSWORD=LOCK] RETURN

65

If you now try to alter the name of the disc to (say) “DISC
1234.DTA" using this instruction:-

SET B:[LABEL = DISC1234.DTA] RETURN

the password will be requested, and the label will only be changed
if the right one is provided.

A new password can be assigned to the label using the same
instruction format that is used when initially assigning a pass
word. However, the existing password must be given when
requested in order to successfully complete the instruction. This
form of the "SET" instruction can be used to remove the
password:-

SET B:[PASSWORD = RETURN

Of course the password will be requested and must be typed in
before the instruction will delete it.

USER
CP/M Plus supports the built-in command “USER”, and this is a
fairly simple type. Its basic effect is to divide up the directory of a
disc into a maximum of sixteen different user areas which are
numbered from 0 to 15. The default setting is 0 (i.e if you do not
specify user numbers then 0 is used for files). The general idea is to
enable several users to share the computer, with each user having
his or her own user number, and his or her own files segregated
from those of other users. This is a facility which is probably of
more use in a true multi-user system (one where a single computer
is shared via a number of consoles), rather than where one
computer and console is used by several people. There is actually
a multi-user version of CP/M called MP/M, but it has not achieved
the same widespread acceptance as CP/M.

If you would like to experiment with the USER command to
familiarise yourself with it, place the CP/M disc in drive A and a
blank formatted disc in drive B. Then use “PIP" tocopy a file from
the CP/M program disc to the disc in drive B (“ERASE.COM” for
instance). Then type this instruction into the computer:-

USER7 RETURN
66

This should result in the normal screen prompt being modified by
the addition of a figure seven ahead of the letter A (i.e, “7A If
you try reading the directory for drive B it should return a "No
File" message, as the "ERASE.COM” file with its user number of
0 is invisible to user number 7. If you enter this instruction:-

USER0 RETURN

and then read the directory for drive B again, the “PIP.COM" file
should be listed. Switch to any other user number and it will
seemingly disappear from the directory again.

One drawback of user numbers is that they can make programs,
including CP/M transient commands, invisible to the computer,
making it necessary to have a copy of each one for each user. This
can be overcome by having files in user area 0 with the “SYS"
attribute set. For example, type these three instructions into the
computer:-

USER 0 RETURN
SET B:ERASE.COM[SYS] RETURN
USER 7 RETURN

This sets the “SYS" attribute of the “ERASE.COM" file on the
disc in drive B. and the file is in user area 0 of course. The
computer is then set to user 7. If the directory for drive B is listed,
the “ERASE.COM” file will not be listed as the “SYS" attribute
being set renders it invisable to the “DIR" command. It is
accessible to any user number though, and the command:-

TYPE B:ERASE.COM RETURN

should result in the “ERASE.COM" file being displayed on the
screen (it will be mostly just random characters interspersed with
some recognisable text).

ASM
This is a command which is only likely to be of interest to
advanced CP/M users, and it is a form of assembler program. The

67

%25e2%2580%259cERASE.COM
%25e2%2580%259cPIP.COM
%25e2%2580%259cERASE.COM
%25e2%2580%259cERASE.COM
B:ERASE.COM
%25e2%2580%259cERASE.COM

microprocessor in the computer, which is an 8080 or Z80 type for a
CP/M machine, responds to instructions which are in the form of
numbers. For an 8 bit microprocessor these are integers in the
range 0 to 255, but they are fed to the microprocessor in the form
of 8 bit binary numbers. Instructions in this basic form are called
“machine code". and programming in true machine code is quite a
difficult business. Assembly language is somewhat easier, and this
uses mnemonics instead of the instruction numbers. For instance,
the mnemonic for the return from subroutine instruction is
"RET", which is easier to remember than the instruction number
which is 201. The assembler converts the mnemonics into the
appropriate instruction numbers, which can be loaded into the
computer and run as a machine code program. Programming in
assembly language is more difficult than programming in a high
level language such as BASIC, and it requires a reasonable
knowledge of how the microprocessor operates, together with
some understanding of how the system as a whole functions. The
book BP 152 "An Introduction To Z80 Machine Code", by the
same author and publisher as this book, provides more infor
mation on this topic for those who would like to persue the subject
further.

For the assembler to function the assembly language program
must be placed in a text file having "ASM" as its extension (it will
not operate if the wrong extension or no extension at all is present
on the filename). The assembler takes the source file and
generates two new files from it, one of which is the assembled
machine code. It is in a form of numbering known as “hexa
decimal", or just “hex”, and accordingly the new file is given the
same name as the source file, but with “HEX” rather than "ASM"
as the extension. The second file is a list of the assembly language
program plus the assembled machine code, together with any
error messages where appropriate. The purpose of this file is to
provide a printable file which is useful when writing and
debugging programs, and it is given the original filename plus
"PRN" as the extension.

In its most basic form the “ASM” instruction takes this form:-

ASM filename RETURN

68

This assumes that the "ASM.COM" program and the file to be
assembled are both on the current drive, and that the two new files
are to be sent to this drive. In most cases this will not be so, and a
fullstop plus three letters are added after the filename (the
“ASM" extension is not used in the filename, incidentally). The
first letter indicates which drive contains the source file that is to
be assembled, while the second letter designates which drive will
receive the assembled hexadecimal file. Using the letter "Z”
prevents the hexadecimal file from being created. The third letter
designates the drive which should receive the "PRN" file, and
using a “Z” here again suppresses the creation of the file. Thus it is
possible to generate only the "HEX" file or the "PRN” file if
desired. Of course, if the "ASM.COM” program is not on the
current drive the instruction must be preceded by the letter of the
drive where the program is to be found, together with the usual
colon.

As a simple example of the “ASM" command, this instruction
would assemble the program held in the text file called
“LOOP. ASM" on drive B. placing the assembled program in a
file called “LOOP.HEX" on drive B. Generation of the
“LOOP.PRN" file would be suppressed.

ASM LOOP.BBZ RETURN

The transient command "LOAD” is used to generate a
command file from the assembled "HEX” file. In other words it
generates a file with a “COM” extension which can be used as a
normal transient command. There is no "LOAD" instruction in
CP/M Plus, but an equivalent command is available in the form of
“HEXCOM".

“ASM” should not be confused with the “DUMP" command,
which gives a hexadecimal listing of the contents of the specified
file. For example, this instruction would give a hexadecimal listing
of the characters in the file "PAGES.TXT" (with the transient
command program "DUMP.COM" accessible on the current
drive, and "PAGES.TXT" available at drive B):-

DUMP B:PAGES.TXT RETURN

69

%25e2%2580%259cASM.COM
DUMP.COM

With “ASM” the hexadecimal numbers produced are the
assembled machine code for the assembly language program in
the text file. "LOAD" is a much more simple command, and it
simply takes each character in the file, and gives the (hexa
decimal) number for its ASCII code. Remember that the text
characters are stored by computers as code numbers from 0 to 255
in the ordinary decimal numbering system, or 00 to FF in
hexadecimal. The letter “A” for instance, is stored as ASCII code
number 65 (decimal) or 41 (hexadecimal) The numbers produced
by the "DUMP” command are displayed on a sixteen column
format, with addresses down the left hand side of the screen
indicating the positions of the characters within the file. These
character addresses are in hexadecimal. With CP/M Plus the text
characters themselves are displayed at the right hand side of the
screen.

The "DDT.COM" program is as an aid to debugging programs,
and its use goes well beyond the scope of this publication. It is not
included with CP/M Plus incidentally.

“MOVCPM” is a transient command that can be used to
produce CP/M with a different TPA size. It is not a command that
many CP/M users are likely to require, and it is not included in CP/
M Plus.

The "ED" command was discussed briefly in Chapter 1. and
two of the appendices give brief details of "ED" commands and
control codes. Many CP/M systems are supplied complete with
sophisticated word processor programs, and most users soon buy
one if suitable software was not supplied with the system. This
renders “ED" superfluous to the vast majority of CP/M users
these days, and it is probably not worthwhile spending a great deal
of time getting to grips with its commands. Most word processors
provide the same facilities as a simple editor program, plus a great
deal more besides, and are very much easier to use.

GET
This is another transient command which is only available to CP/
M Plus users, and which is not included in earlier implement
ations. Its basic function is to take the console input from a file
rather than direct from the keyboard. This is not just a matter of

70

DDT.COM

printing the contents of the file on the screen such as when using
the “TYPE" instruction, and neither is it the same as calling up a
..COM file (where the contents of the file have to be an
executable program rather than text). When “GET" is used, the
computer will respond to words in the file just as if they were
commands typed in from the keyboard. As a simple example to
try out “GET", use “ED" or some other means to produce a text
file called "CONTROL.PRG" which simply reads:-

DIR RETURN

With the system disc in the current drive (A) and the
“CONTROL.PRG" file on the disc in drive B, try typing this
command into the computer:-

GET FILE B:CONTROL.PRG[SYSTEM] RETURN

The computer should respond with a message which reads
something like “Getting console input from file:B:CONTROL.
PRG”. It should then print on the screen the instruction read from
the file (“A DIR”), and then in response to this it should list the
directory for drive A on the screen.

When using “GET”, the computer continues to take its input
from the file until the end of the file is reached, or until “GET
CONSOLE" is read from the file. If you make this modified
version of “CONTROL.PRG" and then enter the “GET”
instruction used previously, the computer will list the directory for
drive A as before, but at “GET CONSOLE" it reverts to the
keyboard for input, and the directory for drive B is not displayed.

DIR RETURN
GET CONSOLE RETURN
DIRB: RETURN

When input is no longer taken from the file the computer gives a
“stopped" message, plus a message which states something like
“Getting console input from console". If you try making a version
of “CONTROL.PRG" with the "GET CONSOLE" line

71

removed, on running the “GET” instruction again you should find
that both the A and B directories are listed on the screen.

This form of the “GET” command switches off the “echo”, so
that instructions read from the file are not printed on the screen
(but the screen prompt will still be printed).

GET FILE B:CONTROL.PRG [NO ECHO SYSTEM]
RETURN

The word “ECHO" is used to reinstate this facility.
An alternative way of using the “GET" command is to first just

enter:-

GET RETURN

and then at the prompt enter the filename plus any required
options (NO ECHO and (or) SYSTEM). So far we have only
considered “GET” when used in conjunction with the
“SYSTEM” option, which causes it to immediately go to the
specified file and execute the instruction or instructions it
contains. Without the “SYSTEM” option set, the “GET”
command works in a more indirect way. This example should help
to clarify matters. Make up a file called “CONTROL. PRG”
which reads as follows:-

PIP.COM RETURN

and place this in drive B. With the CP/M program in the current
drive (A), enter this command:-

GET FILE B:CONTROL.PRG RETURN

The computer will respond with a message which reads something
along the lines of “Getting console input from file:
B:CONTROL. PRG”, but the “A” prompt will return and the
computer will appear to have done nothing apart from accessing
the disc drives. However, if you then enter the command:-

TYPE RETURN

72

PIP.COM

the computer will print the contents of “PIP.COM” onto the
screen (this will be a line of largely meaningless characters).
Normally if “TYPE" is entered without specifying a filename,
the computer will request one. In this case it does not though,
but instead takes the necessary information from
“CONTROL.PRG”, and prints the contents of “PIP.COM” on
the screen. The effect of the "SYSTEM" option is to make "GET"
operate on the whole system, rather than just on a program.

PUT
By using the "PUT" command it is possible to send output for the
printer or the console to a specified file. The output can be echoed
to the console or printer as well if desired. This is a command
which is only available with systems that operate under CP/M Plus
incidentally.

As an initial experiment with the "PUT" command, place the
CP/M program disc in the current drive (which we will assume to
be drive A), and put a formatted disc with some spare storage
capacity in drive B. Then enter this instruction:-

PUT CONSOLE OUTPUT TO FILE B:SEND.TXT
RETURN

If a file called called “SEND.TXT” should already exist on drive
B, the computer will inform you of this fact and ask whether or not
to delete it (so that it can generate an initial file called
“SEND.$$$” in its place). We will assume here that no file of that
name already exists, or that if it does the computer is told to delete
it (by pressing the “ Y” key) so that the instruction can go ahead. If
you then enter this instruction into the computer:-

TYPE PIP.COM RETURN

the computer should type on the screen the contents of
“PIP.COM", and it should also send this information to the file
“SEND.$$$” and change its name to “SEND.TXT". You can
check this by getting the computer to display the contents of
“SEND.TXT” using this instruction:-

TYPE BiSEND.TXT RETURN

73

%25e2%2580%259cPIP.COM
P1P.COM
%25e2%2580%259cPIP.COM

If you repeat this but use NO ECHO as the option at the end of
the "PUT" instruction, it will operate in the same manner as
before, but when writing the contents of “PIP.COM" to the file it
will not also echo it to the console. When sending data for the
printer to a file the default setting is for no echo, and if data must
be sent to both the printer and the file the echo facility must be
enabled using the ECHO option on the "PUT" instruction.
Further options are FILTER and NO FILTER (the former being
the default setting). Filtering has the effect of translating control
characters to printable characters. If you try the examples given
above you will probably notice that w hen "PIPCOM” is echoed to
the screen it has fewer characters than when the version of
"PIP.COM" stored in "SEND.PRG" is printed on the screen.
This is due to the filtering converting unprintable characters
(which are actually machine code instructions in the "PIP.COM"
program) into control characters. Trying the same instructions
but with the NO FILTER option added to the "PUT" instruction,
the echoed version of “PIP.COM" should exactly match what
appears on-screen when “SEND.PRG" is printed using the
“TYPE" command. The SYSTEM option is available with the
“PUT" command, and it sends system as well as program output
for the console/printer to the specfied file.

SUBMIT
Last, but by no means least, the “SUBMIT” command enables
commands in a file with a “SUB" extension to be carried out on
execution of the “SUBMIT" instruction. As a simple demon
stration, use “ED” or some other means to create a text file called
"TRYOUT.SUB" and having these two lines as it contents:-

DIR RETURN
DIRB: RETURN

With the disc containing “TRYOUT.SUB” in drive B, and a
non-write protected copy of the CP/M system disc in drive A, try
this instruction:-

SUBMIT B:TRYOUT RETURN

74

%25e2%2580%259cPIP.COM
%25e2%2580%259cPIP.COM
PIP.COM
%25e2%2580%259cPIP.COM

This should result in the two instructions in “TRYOUT.SUB”
being executed, with the directories for drives A and B being
displayed on the screen. Note that the “SUB" extension does not
need to be included in the “SUBMIT" instruction, and that the
file being called must have “SUB" as its extension or the
instruction will not be carried out.

The “SUBMIT” instruction can go one stage further than this,
with parameters being omitted from the file. and being included in
the “SUBMIT” instruction instead. The parameters are called $1,
$2, etc. through to $9, and these are analogous to variables in a
BASIC program. As a simple example of this facility, make a new
version of "TRYOUT.SUB” having these two lines:-

DIR$1 RETURN
DIR $2 RETURN

Then try this version of the "SUBMIT" instruction:-

SUBMIT B:TRYOUT A: B: RETURN

This should again list the directories for drives A and B. However,
if you try this “SUBMIT” instruction, “TRYOUT.SUB” will then
list the directory for drive A twice:-

SUBMIT TRYOUT A: A: RETURN

The point of all this is to make it easy to carry out long
sequences of commands that are frequently used. When
executing, the “SUBMIT” command produces a temporary file
on the same disc as the one which contains “SUBMIT.COM” (the
“SUBMIT” transient command program), and for this reason the
disc containing “SUBMIT.COM” must not be write protected. If
you try out the last example given above, you should find the
temporary file listed in the first directory listing, but not in the
second one as it is deleted once the final instruction is reached,
and prior to it being carried out. Of course, the disc which
contains “SUBMIT.COM" must have some space to accom
modate this temporary file.

75

%25e2%2580%259cSUBMIT.COM

With computers running under CP/M Plus there is further
refinement available when using “SUBMIT”. When the CP/M
program is booted, it checks for a file called “PROFILE.SUB” on
the system disc, and if such a file exists it carries out the
instructions it contains. If you have computer which runs under
CP/M Plus you can demonstrate this facility by placing a text file
called “PROFILE.SUB” on a non-write protected copy of the
system disc, and including a few simple instructions on it (“DIR”,
“DIR B:”, etc.). On booting CP/M from this disc, the usual initial
screen display should be produced, and the instructions in
“PROFILE.SUB” should then be executed immediately.

Finally
Although not all aspects of CP/M have been given in-depth
coverage, if you are able to follow the points covered in this book
you should be well able to use a CP/M computer system and deal
with any minor difficulties that arise. The appendices should be
useful as they provide an easy way of checking what control code
is needed for a particular function, whether or not a particular
command is supported by the version of CP/M you are using, etc.

76

Appendix 1

CONSOLE AND ED COMMAND CODES

CONTROLC Warm boot (CP/M 1.4/2.2), Abandon
(CP/M 3.0)

CONTROLE
CONTROLH
CONTROLJ
CONTROLM
CONTROLP

Carriage return (without executing line)
Backspace and delete
Line feed
Carriage return (no line feed)
Echo screen output to printer (use control P
again to switch off output to printer).

CONTROLQ
CONTROLR
CONTROLS

Resume screen output (CP/M 3.0)
Retype line
Halt output to screen (with CP/M 1.4/2.2 use
Control S again to restart output)

CONTROLLI
CONTROLX
CONTROLZ

Discard line
Delete from start of line to cursor
End of file character

Note that CONTROL H, J, M, R and X are not supported by CP/
M1.4.

77

Appendix 2

MAIN ED COMMANDS

A Append a line from the file to the edit buffer memory
block (or the number of lines specified in the figure
preceding the letter "A")

B Moves character pointer to beginning of file
-B Moves character pointer to end of file
D Deletes character at the character pointer (positive or

negative number ahead of the letter “D” results in the
specified number of character forwards or backwards
being deleted)

E Ends session and saves file
Fstring Finds the specified string which must be after the

current position of the character pointer, and places
character pointer at final character of the string)

FI Performs the E command after which ED is executed
again

I Insert new lines of text after character pointer (with
CP/M 2.2 and CP/M 3.0 an upper case “I” gives all
upper case characters, and a lower case “i” gives
upper and lower case characters)

xK Delete (Kill) the specified (x) number of lines (use
positive number to delete after character pointer, or
negative number to delete lines ahead of it)

xP Print “x” pages of text (with “x” omitted only the
current page is printed, positive and negative numbers
print pages after or before the character pointer
respectively)

Q Quit from ED (NO ..BAK file is created)
Soriginal textCONTROL Znew text

Searches after character pointer in buffer for original
text, and replace it with new text (a numberat the end
of the command will cause it to be repeated the
specified number of times)

78

xT Type (display) the characters from the character
pointer to the end of the file (where “x” is included,
the specified number of lines before or following the
character pointer will be displayed depending on
whether “x” is negative or positive)

U All entered characters are translated to upper case
(use -U to disable the translation process)

V Switch on line numbering display (default mode of
CP/M 2.2 and CP/M Plus)

79

Appendix 3

PIP PARAMETER OPTIONS

B BLOCK MODE TRANSFER. Data is transferred to
buffer until an OFF (CONTROL S) character is
received. It is then transferred to disc.

Dx DELETE. Characters after column “x” are deleted
during transfer, and the effect is therefore to truncate
lines to the specified line length.

E ECHO. The transfers data is echoed to the console
(monitorscreen).

F FORM FEED STRIP. During transfer all form feeds
are removed from the file.

Gx GET FILE FROM USER AREA “X”. Self
explanatory.

H HEXADECIMAL. Used for transfering hexadecimal
(i.e.“. HEX”) files.

L LOWERCASE. Converts all upper case letters to
lower case during transfer.

N LINE NUMBERS. Adds line numbers to each line
that is transferred. Use “N2” to prevent leading
zeros being suppressed and to insert a tab space after
each line number.

O OBJECT FILE TRANSFER. When this option is
used the end of file character is ignored. This is used
when copying a file which is not a text type and does
not have a “COM" extension.

Px PAGE EJECTS. Simply inserts a form feed character
every “x” lines. Default value is 60 lines.

□string CONTROL Z
QUIT COPYING. The transfer stops when the
specified string is reached. CONTROL Z is used to
terminate the string.

R READ SYSTEM FILES. Read files with system
(SSYS) status.

80

Sstring CONTROL Z
ST A RT COPYIN G. Starts copying from the
specified string, rather than at the beginning of the
file. Use CONTROL Z as the terminator at the end of
the string.

Tx TAB. During transfer the TAB characters are
expanded to every “x” columns. CONTROL I
generates a TAB character (which is normally fixed
at a length of seven characters).

U UPPERCASE. During transfer all lower case letters
are converted to upper case.

V VERIFY. Verifies that data has been copied correctly,
and is only usable when data is being transferred to
disc.

W WRITE. Overwrites read-only (RO) files.
Implemented in CP/M 2.2 and CP/M 3.0 only.

Z ZERO PARITY BIT. Zeros the parity bit on input of
each ASCII character.

81

Appendix 4

CP/M COMMANDS

Command CP/M 1.4/2.2 CP/M 3.0
ASM Yes Yes
DEVICE No Yes
DDT Yes No
DIR Yes Yes
DUMP Yes Yes
ED Yes Yes
ERASE Yes Yes
GET No Yes
HEXCOM No Yes
LOAD Yes No
MOVCPM Yes No
PIP Yes Yes
PUT No Yes
REN Yes Yes
SAVE Yes Yes
SET No Yes
SHOW No Yes
STAT Yes No
SUBMIT Yes Yes
SYSGEN Yes No
TYPE Yes Yes
USER No Yes

82

Appendix 5

EXTENSION TYPES

ASM Assembly language program in text file form
BAK ED backup file (also used by other applications

programs)
BAS BASIC program source files
COM Transient command
HEX Hexadecimal (machine code) program file ready

for LOAD command
INT Intermediate BASIC program file
PRN Assembly language program listing
SUB Text file with built-in CP/M or transient commands
$$$ Temporary files created and overwritten by ED and

other and other applications programs

83

Notes

Notes

Please note following is a list of other titles that are available in our range
of Radio, Electronics and Computer books.

These should be available from all good Booksellers, Radio
Component Dealers and Mail Order Companies.

However, should you experience difficulty in obtaining any title in your
area, then please write directly to the publisher enclosing payment to
cover the cost of the book plus adequate postage.

If you would like a complete catalogue of our entire range of Radio,
Electronics and Computer books then please send a Stamped Addressed
Envelope to:

BERNARD BABANI (publishing) LTD
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W67NF

ENGLAND

160 Coil Design and Construction Manual £2.50
202 Handbook nt Integrated Circuits (ICs) Equivalents and Substitutes £2.95
205 Hi-Fi Loudspeaker Enclosures £2 95
208 Practical Stereo and Quadrophony Handbook £0 75
214 Audio Enthusiast's Handbook £0 85
219 Solid State Novelty Projects £0.85
220 Build Your Own Solid State Hi-Fi and Audio Accessories £0.85
221 28 Tested Transistor Projects £2 95
222 Solid State Short Wave Receivers for Beginners £1 95
223 50 Projects Using ICCA3130 £1 25
224 50 CMOS IC Projects £2 95
225 A Practical Introduction to Digital ICs £1 75
226 Howto Build Advanced Short Wave Receivers £2 95
227 Beginners Guide to Building Electronic Projects £1 95
228 Essential Theory for the Electronics Hobbyist £2 50
BP1 - 14 First & Second Books of Transistor Equivalents & Substitutes £3 50
BP2 Handbook of Radio. TV, Industrial and Transmitting Tube £0 60

and Valve Equivalents
BP6 Engineer's and Machinist's Reference Tables £1 25
BP7 Radio and Electronic Colour Codes Data Chart £0 95
BP27 Chart of Radio, Electronic, Semiconductor and Logic Symbols £0 95
BP28 Resistor Selection Handbook £0 60
BP29 Major Solid State Audio Hi-Fi Construction Projects £0 85
BP33 Electronic Calculator Users Handbook £1 50
BP 34 Practical Repair and Renovation of Colour TVs £2.95
BP36 50 Circuits Using Germanium Silicon and Zener Diodes £1 50
BP37 50 Projects Using Relays, SCRs and TRIACs £1 95
BP39 50 (FET) Field Effect Transistor Projects £1 75
BP42 50 Simple LED Circuits £1 95
BP44 IC 555 Projects £2 50
BP45 Projects in Opto electronics £1 95
BP48 Electronic Projects for Beginners £1 95
BP49 Popular Electronic Projects £2 50
BP53 Practical Electronics Calculations and Formulae £2.95
BP54 Your Electronic Calculator and Your Money £1 35
BPS6 Electronic Security Devices £2 50
BP58 50 Circuits Using 7400 Series ICs £2 50
BP59 Second Book of CMOS IC Projects £1 95
BP60 Practical Construction of Pre-amps, Tone Controls,

Filters and Attenuators
£1.95

BP61 Beginners Guide to Digital Tech niques £1.95
BP62 The Simple Electronic Circuit 8i Components £3 50

(Elements of Electronics - Book 11
BP63 Alternating Current Theory £3 50

(Elements of Electronics - Book 2)
BP64 Semiconductor T echnology £3.50

(Elementsof Electronics - Book 3)
BP65 Single IC Projects £1 50
BP66 Beginners Guide to Microprocessors and Computing £1.95
BP67 Counter Driver and Numeral Display Projects £2 95
BP68 Choosing and Using Your Hi-Fi £1 65
BP69 Electronic Games £1 75
BP70 Transistor Radio Fault-finding Chart £0 95
BP71 Electronic Household Projects £1 75
BP72 A Microprocessor Primer £1 75
BP73 Remote Control Projects £2.50
BP74 Electronic Music Projects £2.50
BP75 Electronic Test Equipment Construction £1.75
BP76 Power Supply Projects £2.50
BP77 Microprocessing Systems and Circuits £2 95

(Elements of Electronics - Book 4)
BP78 Practical Computer Experiments £1 75
BP79 Radio Control for Beginners £1 75
BP80 Popular Electronic Circuits - Book 1 £2 95
BP82 Electronic Projects Using Solar Cells £1.95
BP83 VMOS Projects £1 95
BP84 Digital IC Projects £195 !
BP85 International Transistor Equivalents Guide £3 50
BP86 An Introduction to BASIC Programming Techniques £1.95
BP87 50 Simple LED Circuits - Book 2 £1 35
BP88 How to Use Op-Amps £2.95
BP89 Communication £2 95

(Elements of Electronics - Book 5)
BP90 Audio Projects £1 95
BP91 An Introduction to Radio DXing £1 95
BP92 Electronics Simplified - Crystal Set Construction £1 75
BP93 Electronic Timer Projects £1.95
BP94 Electronic Projects for Cars and Boats £1 95
BP95 Model Railway Projects £1.95
BP97 IC Projects for Beginners £1.95
8P98 Popular Electronic Circuits - Book 2 £2.25
8P99 Mini-matrix Board Projects £1 95
BP101 How to Identify Unmarked ICs £0 95
BP103 Multi-circuit Board Projects £1.95
BP104 Electronic Science Projects £2.25

BP105 Aerial Projects £1 95
BP106 Modern Op-amp Projects £1 95
BP107 30 Solderless Breadboard Projects - Book 1 £2 25
BP108 International Diode Equivalents Guide £2 25
BP109 The Art of Programming the 1K ZX81 £1 96
BP110 Howto Get Your Electronic Projects Working £1 95
BP111 Audio (Elements of Electronics - Book 6) £3 50
BP112 A Z-80 Workshop Manual £3 50
BP113 30 Solderless Breadboard Projects - Book 2 £2 25
BP114 The Art of Programming the 16K ZX81 £2 50
BP115 The Pre-computer Book £1 95
BP117 Practical Electronic Building Blocks Book 1 £1 95
BP118 Practical Electronic Building Blocks - Book 2 £1.95
BP119 The Art of Programming the ZX Spectrum £2 50
BP120 Audio Amplifier Fault-finding Chart £0 95
BP121 Howto Design and Make Your Own P C B s £1 95
BP 122 Audio Amplifier Construction £2 25
BP123 A Practical Introduction to Microprocessors £1 95
BP 124 Easy Add-on Projectsfor Spectrum ZX81 & Ace £2 75
BP125 25 Simple Amateur Band Aerials £1 95
BP126 BASIC & PASCAL in Parallel £1 50
BP127 How to Design Electronic Projects £2 25
BP 128 20 Programs for the ZX Spectrum and 16KZX81 £1 95
BP 129 An Introduction to Programming the ORIC 1 £1 95
BP130 Micro Interfacing Circuits - Book 1 £2 25
BP131 Micro Interfacing Circuits - Book 2 £2 25
BP132 25 Simple Shortwave Broadcast Band Aerials £1 95
BP133 An Introduction to Programming the Dragon 32 £1 95
BP134 Easy Add on Projectsfor Commodore 64, Vic 20. BBC Micro and Acorn Electron £2 95
BP135 Secrets of the Commodore 64 £1 95

j BP136 25 Simple Indoor and Window Aerials £1 75
BP137 BASICS FORTRAN in Parallel £195
BP138 BASICS FORTH in Parallel £1 95
BP139 An Introduction to Programming the BBC Model B Micro £1.95
BP140 Digital IC Equivalents and Pin Connections £5 95
BP141 Linear IC Equivalents and Pin Connections £5 95
BP 142 An Introduction to Programming the Acorn Electron £1 95
BP 143 An Introduction to Programming the Atari 600/800 XL £1 95
BP144 Further Practical Electronics Calculations and Formulae £4 95
BP145 25 Simple Tropical and MW Band Aerials £1 75
BP146 The Pre BASIC Book £2 95
BP147 An Introduction to 6502 Machine Code £2 50
BP148 ComputerTerminology Explained £1 95
BP149 A Concise Introduction to the Language of BBC BASIC £1 95
BP150 An Introduction to Programming the Sinclair QL £1 95
BP 152 An Introduction to Z80 Machine Code £2 75
BP153 An Introduction to Programming the Amstrad CPC 464 and 664 £2.50
BP154 An Introduction to MSX BASIC £2 50
BP155 International Radio Stations Guide £2 95
BP156 An Introduction to QL Machine Code £2 50
BP157 Howto Write ZX Spectrum and Spectrum ■ Games Programs £2 50
BP 158 An Introduction to Programming the Commodore 16 and Plus 4 £2 50
BP159 How to Write Amstrad CPC 464 Games Programs £2 50
BP161 Into the QL Archive £2 50
BP162 Counting on QL Abacus £2 50
BP163 Writing with QL Quill £2 50
BP164 Drawing on QL Easel £2 50 {
BP 169 Howto Get Your Computer Programs Running £2 50
BP170 An Introduction to Computer Peripherals £2 50
BP171 Easy Add -on Projectsfor Amstrad CPC 464, 664. 6128 and MSX Computers £2 95
BP173 Computer Music Projects £2.95
BP174 More Advanced Electronic Music Projects £2 95
BP175 Howto Write Word Game Programs for the Amstrad CPC 464. 664 and 6128 £2 95
BP176 A TV-DXers Handbook £5 95
BP177 An Introduction to Computer Communications £2 95
BP178 An Introduction to Computers in Radio £2.95
BP179 Electronic Circuits for the Computer Control of Robots £2 95
BP180 Computer Projects for Model Railways £2.95
BP181 Getting the Most from Your Printer £2 95
BP182 MIDI Projects £2.95
BP 183 An Introduction to CP/M £2 95
BP184 An Introduction to 68000 Assembly Language £2 95
BP185 Electronic Synthesiser Construction £2 95
BP186 Walkie-Talkie Projects £2 95
BP187 A Practical Reference Guide to Word Processing on the Amstrad PCW 8256 £5 95

■ nd PCW 8512
BP188 Getting Started with BASIC and LOGO on the Amstrad PCW 8256 and PCW 8512 £6.95
BP189 Using Your Amstrad CPC Disc Drives £2.95
BP190 More Advanced Electronic Security Projects £2 95
BP191 Simple Applications of the Amstrad CPCs for Writers £2 95
BP 192 More Advanced Power Supply Projects £2 95
BP193 Starting LOGO £2 95
BP194 Modern Opto Device Projects £2 96
BP195 An Introduction to Communications and Direct Broadcast Satellites £3.95
BP196 BASK & LOGO in Parallel £2.95

