
■ i I J...

Simple Applications
of the Amstrad CPCs
for Writers

W. SINISTER

SIMPLE APPLICATIONS
OF THE AMSTRAD CPCs

FOR WRITERS

ALSO BY THE SAME AUTHOR

BP157 How to Write ZX Spectrum and Spectrum + Games
Programs

BP159 How to Write Amstrad CPC 464 Games Programs
BP175 How to Write Word Game Programs for the Amstrad

CPC 464, 664 and 6128

ALSO OF INTEREST

BP153 An Introduction to Programming the Amstrad CPC 464
and 664

BP189 Using Your Amstrad CPC Disc Drives
BP152 An Introduction to Z80 Machine Code

SIMPLE APPLICATIONS
OF THE AMSTRAD CPCs

FOR WRITERS

by

W. SIMISTER

BERNARD BABANI (publishing) LTD
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W6 7NF

ENGLAND

PLEASE NOTE

Although every care has been taken with the production of this
book to ensure that any projects, designs, modifications and/or
programs etc. contained herein, operate in a correct and safe
manner and also that any components specified are normally
available in Great Britain, the Publishers do not accept
responsibility in any way for the failure, including fault in design,
of any project, design, modification or program to work correctly
or to cause damage to any other equipment that it may be
connected to or used in conjunction with, or in respect of any
other damage or injury that may be so caused, nor do the
Publishers accept responsibility in any way for the failure to
obtain specified components.

Notice is also given that if equipment that is still under warranty
is modified in any way or used or connected with home-built
equipment then that warranty may be void.

All the programs in this book were written and tested by the
author using a model of the Amstrad CPC464 and DMP1 or
DMP2000 printer that were available at the time of writing in
Great Britain.

© 1987 BERNARD BABANI (publishing) LTD

First Published - April 1987

British Library Cataloguing in Publication Data
Simister, W.

Simple applications of the Amstrad CPCs
for writers.
1. Word processing 2. Amstrad CPC 464
(Computer) 3. Amstrad CPC 664 (Computer)
I. Title
652'.5'02854165 Z52.5.A4

ISBN 0 85934 165 8

Printed and Bound in Great Britain by Cox & Wyman Ltd, Reading

CONTENTS

Page
Introduction ... 1

Chapter One
THE HARDWARE .. 3

Chapter Two
SOME DETAILS OF THE PROGRAM 9

Chapter Three
MORE PROGRAM DETAILS .. 17

Chapter Four
GETTING USED TO THE PROGRAM 23

Chapter Five
A PROGRAM FOR FAST WRITING 34

Chapter Six
ADDING PAGING TO THE FAST WRITER 43

Chapter Seven
USING THE DMP 2000 WITH THE PROGRAM 53

Chapter Eight
MORE USE OF THE DMP 2000 65

Chapter Nine
POSTSCRIPT ... 74

Index 79

Introduction

The writer, whether writing novels, or articles for magazines and
newspapers, needs to present his copy on sheets that are
approximately A4 size (ll'A ins. x 8!4 ins), with double spacing
between the lines, and with a reasonable margin at the sides and
bottom. In addition they should be numbered on each page.

Usually the writer uses a pen or pencil, writes out and alters his
copy, types it, alters it again, and retypes it for presentation,
making a copy as he does so. In some cases the alterations require
typing more than twice to ensure they are correct, and in each re
typing there is the danger (one could almost say the certainty) of
more mistakes in spelling. It is extremely tedious - and
‘extremely’ is not the first word I wrote there. There are times
when one can hardly express it strongly enough.

Imagine the trouble caused when it is essential to insert a full
paragraph into a chapter early in the book, and the hours of re
typing needed to make the copy look good with consequent re
numbering of succeeding pages. Even a couple of extra words on a
page can demand a line or two being carried on to the next page.
The difficulties are only lessened in degree during the writing of
articles. Many of these run to four or more pages, and alterations
to them can be even more frustrating because of the greater
number of articles written.

The advent of personal computers, together with special
programs offered for ‘word processing’ seemed to be the answer
to these problems, and in some cases they were; but in many more
cases the difficulty of learning to handle the program of word
processing involved too much thought about the program, and not
on the actual writing. They are excellent programs in most cases,
and when used by a secretary typing out manuscripts for a writer
who can afford such a luxury, they fill the bill.

However, word processors are not the only way a writer can
obtain help in his work from a personal computer. Most of them
come complete with an in-built language, usually a variant of
‘BASIC’, which has commands built into it that will satisfy most
writers.

The original manuscript for this book was written using an
Amstrad CPC 464, with disc drives, and with a DMP1 printer;
together with the BASIC program that is described in its pages.

1

The program, of only fifteen lines, is so simple that in many cases
it will translate almost directly from the Amstrad to almost any
other kind of personal computer. Each of the lines will be dealt
with in turn, so that even someone who has no knowledge of
BASIC programming should be able to use it on any Amstrad 464,
664, and 6128. To use it on any other make of computer will
require the careful alteration of a few lines. The ‘WINDOW’
facility on the Amstrad is not available on some machines, but
that will be dealt with when we come to that chapter.

It is suggested that the book is read through most carefully to
the end, and then gone over chapter by chapter as you proceed.
One writer I tried it on (one who had never used a computer
before, but always wrote directly onto a typewriter) was able to
master it in less than two days, and immediately went out to buy
the same set-up. He tells me it has saved him many hours of work
each week, and that correcting errors, and producing extra
copies, is now simple.

Since the above was written a DMP 2000 printer has replaced
the DMP-1. This adds two chapters to the book, and is easy to
work with. It is advisable, though, for those writers who have a
DMP 2000, that all the chapters dealing with the DMP-1 are read
first, for in them are most of the details of the many program
features.

2

Chapter One

THE HARDWARE

The number of words used by any writer in his article or novel can
range from 500 to 80,000 or more, and to place that quantity of
words safely in the computer, so that it can be regained at any
time, is the purpose of this book. However, a computer considers
all characters separately (whether letters, figures, commas,
spaces, or anything else); and when a writer counts his words, one
does not normally think of the spaces, dots, and other inter
jections as characters. Therefore we must get that matter straight
first.

The sentence: ‘The cow jumped over the moon, and the little
dog laughed. ’ contains eleven words, but to a computer it contains
fifty-eight characters (including the two inverted commas at the
beginning and end). So we have the equation: as 11 is to 58, so 500
(or 80,000) is to X. X being the number of characters your writing
is composed of. That is the quantity that has to be considered
when working out what a computer and its storage system (discs
or tape) can deal with.

This is not a hint to start calculating. It has been worked out
(approximately) that a page of 27 lines, each line having an
average of 11 words (287 words per page), is roughly equal to
1,500 characters; or in computer language: 1.5k. So the contents
of a chapter of about 6000 words takes up 33k (that is 33,000
characters).

To this number of characters used up by the writing of the 6000
words has already been added the various characters used in
writing the program that puts the chapter into the computer; so it
can be stated (roughly) that each page of writing requires 1.5k.

The capacity of the Amstrad CPC464 is given as 64k. Yet, when
FRE is used to ask for capacity remaining in the empty computer,
the result is 42,249. so where has the extra 21,751 gone? It has
been used up by placing in the memory a program called ‘BASIC’;
a program that allows you to command the computer in various
ways.

But that is not all. You cannot use all that 42,249 for your
entries; about 10k is needed by the computer to print on the

3

screen the words you want to enter. So you are left with approxi
mately 30k to work with. That means that if your chapter is over
5500 words long you will have to divide it into two sections for
storing.

Whichever sort of computer you are using must therefore be of
a big enough capacity to hold a chapter. Anything of 64k or over
will be excellent. All the Amstrad personal computer range are
suitable, and so are many other computers. However, they must
have provision for use with a disc drive: that is a means of storing
the program; other than a tape recorder, which has the capacity
for storing long programs, but takes too long to do so, and is
somewhat uncertain in its results at times.

The disc drives supplied by Amstrad for use with either of their
personal computer have a capacity of 169k on each side of the
disc; but not quite all of this is available for storage. The
explanation of this is a little complex, but worth studying, for on it
depends how much you can store.

Let us suppose that you have three chapters to store. When the
first one goes in, and is corrected even once, a use of the CAT
command will produce a list, together with the number of ks it has
used, but it will be seen that the correction has produced two
versions of that program: one will be (in the instance of this
program) WRITERI .BAS and the other one is WRITERI
.BAK. The BAS version is the latest one, and the BAK version is
the one before you corrected it. The BAK version is left there in
case you have made a mistake, so that it is always available. It can
be recalled by clearing the computer, and entering SAVE
followed by the name of your program plus BAK, enclosed
between double inverted commas. This can be a real save at times,
but is not usually needed very often.

It does, however, use up more of the storage space, for if you
had three programs on that disc, each of 30k, they would amount
to 90k between them, and with the BAK version of one as well
while you worked on it, there would be 120k in use - plus another
30k for the use of the disc's memory while it was transferring a
program from the BAS to the BAK memory, making five times
30k in effect: 150k. Now the disc drive has only 169k in all.
Therefore, if there were 34k in each of the three programs, the
total would be 170k, and there would be a message to tell you the
disc is full when you try to save the full program.

4

That is not easy to understand, so we will express it in a dif
ferent way.

As soon as a program is entered, and seen to be correct and
complete, then erase the BAK version, thus releasing (say) 30k.
To erase it: see the instructions in Chapter 2.9 of the Amstrad
DDI-1 User Instructions.

This is done for each program in turn as it is completed, so that
as the third program is being entered and SAVEd, the CAT
command will produce: WRITERI .BAS 30k WRITER2 .BAS
30k WRITER3 .BAK 30k WRITER3 .BAS 30k. This is 120k in
all, and to it must be added (mentally) another 30k with which the
disc operates, making an effective use of 150k.

From this it can be seen that there are just 19k to spare, so that if
each chapter were 32k long, the remainder becomes just 9k,
which is as small a margin as you should allow.

After all, there are two sides to each disc, and each side can hold
(safely) three chapters of 5,000 words each, so a complete book of
(say) 24 chapters (120,000 words) can be held on four discs. At the
time of writing such discs can be obtained for as little as £23 for ten
of them, and there is every sign that prices will be lower in future.

To sum up what has gone before: a computer of not less than
64k capacity, and a disc drive that will hold 169k on each side is
needed to enter and hold almost any size of book, and will, of
course, deal with smaller pieces so much easier.

The Amstrad CPC464. with an attendant disc drive, and a
printer attached, will allow any writer to enter and save all his
writing. So will the CPC664, and the CPC6128. If you already
have a different computer, and so long as it has the capacities
mentioned, there should be no difficulty in using the program that
is described in this book.

Before leaving the disc drive it should be mentioned that a
double disc drive is a great advantage in the matter of safely saving
what has been written. The way I use it is as follows:

With a clean, formatted disc in each of the two machines: A is
the top one. and B is the bottom. I make sure the computer is in
the A mode. Just typing and entering |A will do that. The T is the
shifted sign l@' to the right of the letter P on the keyboard.

I then type and enter the name of that chapter, enclosed by
double inverted commas, and preceeded by SAVE. The disc drive

5

whirs and passes back the ready sign, after which I use |B to put it
in the B mode, and repeat the SAVE. Then I go back to |A again.
In this way what I have written has been saved on two separate
discs.

This is not essential at all, and it is perfectly correct to use only
one disc drive, and merely change the discs when you want a copy.
However, in the interest of simplicity of working when I am
thinking out some text, I use the two.

There is another matter related to the quantity of text entered:
it is the number of characters that can be entered in one numbered
line. This is another instance of thinking in terms of characters
rather than words.

When writing a program in ‘BASIC, a line number is typed
first, followed by the instructions. Have a look at the program in
this book (page 8) and you will see what is meant.

In entering a line of instructions (or anything else that is to be
put into that numbered line), only 256 characters can be entered;
and these have to include the number and whatever else is used in
the way of letters, spaces, commas, or other interjection.

For instance, in the case of the text for a book of any kind, there
must first be: 1000 PRINT #S, and this, together with the double
inverted commas at the beginning and end of the text, amounts to
16 characters, so there are then only 240 left. This means that
every three or four lines (depending on how you are using line
length in the finished print out) you have to start a new line.

This check to the stream of thought when producing the copy
has stopped some writers from using a computer, but it is a minor
irritation compared with the tedium of continually typing out
fresh copies, with the necessity of always having to watch for
typing errors. When the text on a computer is checked properly, it
never has to be done again. In any case, with the aid of the KEY
re-allocation facility on the Amstrad (and some other computers)
there need be only one key pressed after the number is entered.
This will be explained when we come to detailing the program
item by item.

Printers of other makes than Amstrad can be used with the
Amstrad, for it accepts the standard C E N T R O N I C S' style
interface printer. The one I use at present is the Amstrad DMP-1
printer, and any instructions given for the printer apply specifically

6

to that machine. I am given to understand, however, that the
intructions are easily adaptable to other printers.

Printers are normally passive partners to a computer, accepting
all orders passed to them by the computer, so far as they are able.
The DMP-1 is set into single spacing between lines, or double
spacing, by the flick of a dip switch. This is situated at the back of
the machine, on the right hand side when facing the back of the
machine. There are four small switches in a recess; the one on the
right (nearest the end of the machine) is No.4. If this is set down
(off) the machine prints single spacing between lines. If it is set up
(on) the printer uses double spacing between the lines. This switch
is so small, and set so deeply in its recess that it is difficult to
operate unless one is facing the back of the machine. Leaning over
from the front is not recommended - mainly because it is then so
very difficult to see and operate the tiny switch.

The DMP-1 cannot print both the pound sign and # at the same
printing. It prints one or the other, according to the setting of
No.3 dip switch (second from the right when facing the back of the
machine). When dip switch 3 is down (off), it prints #. If the
switch is set up (on), it prints the pound sign. Therefore, in all
printing one must decide before setting the machine which of
these two signs is the more important in the text. In this program,
for instance, the # sign is more important than the pound sign,
and so switch 3 is set down.

Most other normal commands are given in the computer
program. The relevant ones will be described when we are
explaining the program, but one that you may wish to use is given
here. It is possible on the DMP-1 to print words or lines at an
extended length. That is: each letter is extended to double its
former length. This is done by using two codes: CHR$(14) and
CHR$(15) in the form:
PRINT #8,CHR$(14) + -SIMPLE APPLICATIONS OF THE

AMSTRAD CPCs FOR THE WRITER",CHR$(15):’
It may have been noticed that in the above command two single

inverted commas were used in place of a double inverted comma.
This is necessary because when using the present kind of program
the double comma is reserved for use at the beginning and end of
the text only. If used in any other place it will cause trouble.
Therefore, all conversations in the text must have only single

7

inverted commas to enclose them. For example: John came into,
the room, and said, ‘Collect the mail, please.’ and the servant
did so.

This chapter has dealt only with the ‘Hardware’; that is with the
computer, the printer and the disc drive. In future chapters the
program will be explained thoroughly, and therefore some of the
previous remarks may be repeated.

10 REM
20 REM ♦♦♦♦ SIMPLE APPLICATIONS OF THE ♦«*
30 REM AMSTRAD CPCs FOR THE WRITER
40 REM «♦♦♦♦♦♦♦♦*+♦* WRITER! »♦♦*«»♦«*♦»
50 REM *♦♦♦♦♦♦♦♦♦«♦♦♦♦*♦♦♦**♦*♦♦«♦*♦♦*♦♦♦♦
60 KEY 138,"CLS:LIST 1000-"+CHR$(13) ¡KEY 128,"RUN"+CHRi(13):
KEY 129,'PRINT IS,'
70 INK 0,23:INK 1,0:BORDER 23
80 MODE 2:WIND0W 1,65,1,25
90 S=0:A=3:REM to 8 (inc!)
100 WIDTH 65:G0T0 1000
260 PRINT IS:PRINT IS'. PRINT IS¡PRINT IS,¡PRINT #S:PRINT I
S,SPC(30);A:PRINT #S:A=AH¡RETURN ’
270 PRINT ISsPRINT #S:PRINT IS,"_":PRINT IS:PRINT IS,SPCi30)
;A:PRINT IS:A=A+1:RETURN
230 PRINT IS:PRINT IS,'/¡PRINT ISzPRINT #S,SPC(30);A:FRINT
IS:A=A+1:RETURN
900 REM Iron 1010 only:- 19 lines(260)¡20 lmes',270):21 line
5(280): The rest: 26, 27, or 28.
1000 PRINT IS,“/¡PRINT ^¡PRINT #S,SPC(23);A:A=A+1:PRINT WS
¡PRINT »S:PRINT IS,SPC(5);"SIMPLE APPLICATIONS OF THE AMSTRA
D CPCs FOR THE WRITER"¡PRINT ISsPRINT ISiPRINT IS,"Chapter 0
ne The Hardware":PRINT #S:PRINT IS

8

Chapter Two

SOME DETAILS OF THE PROGRAM

Because a large number of writers have never used a computer
before, the explanation of these few lines of program is going to be
extremely detailed, so I ask more experienced programmers to be
tolerant. They may find some uses of ‘BASIC’ they have not met
previously, but much of what is explained will be simple. It is
based on the type of programming needed for the Amstrad, and
should require very little adaptation to be able to work well on
many other computers.

It is usual to number each line in steps of 10 normally, because
that leaves room for extra lines to be inserted later, when a use of
the program indicates such a need. There are instances, however,
when a greater jump than 10 seems to be an advantage. The
explanation of that will be given when we arrive at lines 260 of the
program on the preceeding page.

A space is left after the line number, and, starting at 10, the
word REM is found. This is short for REMark, and is a word that
makes the computer ignore everything in the line that comes after
it. It is most useful for adding in remarks to help yourself
understand what you intended, or what you should do, if you
come to the program after an interval. The computer reads each
number in turn, and what comes after it. In the case of REM it
immediately goes on to the next line number.

Lines 10 to 50 have been used to produce a decorative title for
the program. In line 20 I have used the title of this book. You
should put the title of your own book there.

Line 40 is a reminder of the name used for storing the program
on disc. WRITER', is the word used for the first chapter.
Succeeding chapters will have succeeding numbers at the end of
WRITER, so that as the need to SAVE a section is reached, a
glance at that title will help. It may seem to be a waste of labour
and space, but there is no doubt that when a number of programs
have been written, and one comes back to them after a period, a
glance at the program itself will not always reveal what it is about.
So, use REM lines in the heading to help yourself.

9

60 KEY 138,"CLS:LIST 1000-”+CHR$(13):
KEY 128.‘RUN’+CHR$(13):
KEY 129,"PRINT #S,”

Line 60 is the first important one. The word KEY' is what is
called a KEYWORD. It performs a function when used: in other
words the computer performs certain actions when that word is
used. In this case the computer will accept your instruction to
change the use of that key: it can be programmed to put some
other character (or characters) onto the screen.

All the keys used in re-allocating are shown in a drawing on
page 15 of appendix 111 of the Amstrad manual: the square
section of 12 keys numbered 0 to 9, with . and ENTER as well.
The ones I use are Nos. 138 (the full stop), 128 (the nought), and
129 (the figure 1) of that block. They are handy to get at, and there
are other keys with those characters elsewhere.

The formula is fixed: line number/space/KEY/space/138/
comma/double inverted comma/C LS/colon/LlST/space/1000-/
double inverted comma/+/CHR$(13)/colon.

Compare that with the program at line 60, and you will see that
the oblique lines are merely a device to separate off the various
elements of the command during the explanation. They are not
used in the program. After that colon comes another KEY re
allocation, for number 128. and after that another, for 129. When
you have got used to them they become easy to find.

Starting with the first one: key 138 (the full stop) is now used to
enter into the computer the order to LIST from 1 (WK) onward. The
dash after the 1000 means 'onward' in that context. The CLS is a
direct order to the computer to clear the screen. The +CHR$(13)
is equivalent to ENTER when used in this fashion, and the
command is momentarily flashed onto the screen prior to the
command being carried out. It will be realised from this that the
key is now printing 14 characters, instead of the single full stop it
printed before re-allocation.

Key 128 (the 0) is slightly different in that the CLS is not now
needed. This is because the command RUN cairies within itself
the order to clear the screen. Otherwise, it is a similar exchange of
use: it prints RUN. and is followed by ENTER.

Key 129 is different again, for it prints the characters w'e put into

10

the key, but does not clear the screen, nor does it use ENTER.
This is because we have not this time used either CLS or
+ CHR$(13). It just enters the 9 characters: PRINT #S. . and
leaves them on the screen. This is a very convenient way of saving
typing time.

At the beginning of each piece of text, during the typing of the
book or article, it is necessary to type in the line number, a space,
then PRINT #S. (9 characters), and then a double inverted
comma - beyond which comes the text. Now, all that is needed is
the line number (we can deal with that later), a space, the
characters on the new key (129) with one dab of a finger, and the
shifted 2 (to produce the double inverted comma).

The use of these pre-programmed keys does not come into
action until after RUN has been used, for the computer has to
read through the program before it can act on the command. If the
command had been entered directly, that is without a line
number, the computer would accept it directly, but when entered
after a line number it must be read in sequence with the program
to be acted on correctly.

Some of you will have become a little restive by now at the
repeated use of '#S'. because you will know that the command to
print on the printer is actually #8. This will be made clear when we
reach line 90. But before that we will deal with the numbering.

There is a facility of the Amstrad called AUTO. This will
automatically produce a new line number, with an increase of 10,
each time the ENTER key is pressed. It is cancelled by using the
ESC (break) key. and has to be re-introduced after that. It is
started off by entering your next line number preceeded by
AUTO and a space.

For instance, to start this paragraph I had previously reached
line 1350, so I typed in AUTO 1360 (the next one I needed)
pressed ENTER, and the new line number (1360) was produced,
complete with a following space. Then I had only to dab the figure
1 (previously pre-programmed), use shift 2 (for the double
inverted comma), and could at once continue with the text. At the
end of that line (about 200 characters) 1 pressed ENTER, and a
new number was produced, ready for the single finger dab and
■nverted comma that made a new line ready for new text.

This may not be quite clear, but will be explained in more detail

11

when we reach the stage of using the program in later chapters for
entering your own text.

70 INK0,23:INK 1,0:BORDER23

Line 70 of the program deals with the colours to be used in the
computer while writing. There are many arguments about which
colours arc the most restful on the eyes while continually staring at
the screen. I have now settled on a very pale blue background
(nearly white), with black lettering. For a time I used a pale yellow
background (25) with dark green letters (9), but found it not so
restful as the light blue and black, so that is the one I use. Do your
own experiments with these colours, and try each one for a time.

It is simply done, for the line at 70 is easily changed. Notice the
way it is done: INK 0,23:. INK is a key word, and tells the
computer, when picking the colour for 0 (its background), to use
No. 23, which is pale blue. The second command: INK 1,0:, tells
the computer to choose No. 0 (black) for the lettering. In MODE
2, which is used throughout this program, there can be only two
colours in use.

In experimenting for your own choice, then remember that it is
the second number after INK that is the colour. The list of colours
and their numbers is given on page F3.2 of the manual for the
Amstrad. The second number after the first INK is the
background colour, and the second number after the second INK
is the lettering colour.

The BORDER can be a different colour to the background and
may be any colour you choose. However, because the lettering is
always tight up against the border on the left hand side, it does not
help in the matter of clarity. I prefer to make the BORDER the
same colour as the background. Try some changes to that
command, and you will see what 1 mean. It operates in a different
way to the INK command: The only number after the BORDER
is the colour number.

80 MODE2:WINDOW 1.65,1,25

There are two commands in line 80: MODE and WINDOW.
Dealing with MODE first, it should be understood that there are

12

three MODEs on the Amstrad: 0. 1, and 2. In MODE 0 there are
twenty characters to the width of screen; in 1 there are forty; and
in 2 there are eighty. For the purposes of writing text for books or
articles, we need to use about 65 characters to the page, so this is
the most useful for our purpose. It is most difficult to make the
beginnings of each line level when using MODE 1, as will be
explained at greater length when we come to the section dealing
with typing your own text into the computer. For the present
please accept that MODE 2 best suits our purpose.

The second command in line 80 is WINDOW. This is a most
convenient facility of the Amstrad (and of some other
computers), for it allows us to put on the screen, before we
transfer it to the computer, the text written to the width of
characters that we require. The width of the screen (in MODE 2)
is eighty characters. We want to use (for instance) 65 characters.
With this facility we can make the screen size anything we like.
The width of (normally) 80, can be reduced to 65. and the depth,
which is 25 (lines) can also be altered. In fact quite a lot of
WINDOWS can be used on the screen at the same time - but that
is of no present concern. If you want to learn how to use this
facility for other purposes, then see page 53 of chapter 8 in the
Amstrad manual.

In fact we use WINDOW 1.65,1,25 for our purposes. After the
word WINDOW come four figures, separated by commas. The
first represents the left hand margin of the window, the second is
the right hand margin, the third is the top margin, and the fourth is
the bottom margin. Since the normal screen would be 1,80,1,25 it
can be seen that 15 character spaces at the end of each line are not
being used. If you put a different coloured margin around the
screen for a test, you will see that this is so. You can do that with
the BORDER command in line 70.

This simple command ensures that when we have entered a
piece of text, and wish to see what it looks like on the screen when
we use RUN, it will be the size we want it to be. There will be a
much fuller explanation of it in use in a later chapter.

Now, for some purpose of your own. you may wish to use a
different number of characters for your text. I first of all started
out by using 60, but after a time I considered that the lines were a
little too short, so adopted 65 as my standard. This is almost sure

13

to vary according to the type of printer you use. I use the DMP-1,
which prints 10 characters to the inch. That gives me 6!^ inches of
text width, and on an 814 ins. width of paper that gives sufficient
margins at the sides.

On the DMP-2000, which I hope to get shortly, I am told that
the use of 12 characters to the inch is possible. I could then
increase the width on the computer with WINDOW 1,72,1,25,
which will give me the same printer width in inches as at present,
provided I also alter the value given in line 100 (of which more
later).

90 S=0:A=3:REM to 8 (incl)

In this line comes the explanation of the #S that has been used
so frequently. When working on entering the text, whatever it
may be, it is often necessary to throw it onto the screen to see what
it looks like. If each line was prefaced with #8, which is the
command to direct the text to the printer, it would be an elaborate
procedure, and waste much paper. Instead, with this use of #S,
the text is directed to the screen; and is displayed on the screen
exactly as it would be on the paper. So we use a variable to change
the 0 to an 8.

A single letter variable, in the Amstrad and most other
computers, is a letter used to represent a number. If the letter has
the string sign ($) after it, it then represents a string of characters,
but that is not our present concern. We use a single letter to
represent a number, and do this at the beginning of the program
so that right at the start the letter S is made to equal the number 0.
Thereafter, whenever the computer encounters S it knows that S
means 0. and proceeds to PRINT to the screen. When we are
ready to use the printer it is only necessary to enter LIST, and then
alter the 0 to an 8 in line 90: S=8 instead of S=0. At once the text is
diverted to the printer at every place where it is commanded to by
PRINT #S..

This is easy to do, but can be forgotten after printing out some
sheets of text. Always, after finishing the printing, (for instance
when an alteration is needed) remember to alter that variable
back to the 0, so that it is ready for screen printing to check the
alteration.

14

The second command in line 90 is A=3. This is another much
used variable. The program list printed on page 8 is of the first
chapter, and the first page number of that chapter is 3. It may be
surmised from this that A is a variable used to represent the page
number, and the experienced programmer seeing the commands
to make A=A + l in lines 260, 270, and 280 will also surmise their
function.

However, this book sets out to help the beginner, and must
therefore explain in more detail. This will be done when we come
to the explanations of lines 260, 270, 280, and 1000, in chapter
three. For the present we will say only that A is made to equal the
first page of the each chapter as you come to it, and that the REM
remark that comes after it should be made to contain the last page
number in the chapter. Thus, in the heading, there is a record of
the page numbers in that chapter. It will be seen that in chapter 1
there were pages 3 to 8. Therefore A in the next chapter (2) will
have A=9, and the number after REM will be left until the
chapter is written, and then entered before it is permanently
saved.

100 WIDTH 65:GOTO 1000

In line 100 are two commands, and the first one, WIDTH, is a
direct command to the printer to print each line 65 characters
long. This is a most convenient command, for with it the printer
can be made to print within the limits of the number given. It
therefore makes it easy to type in lines of the correct length that
will print at the same length.

As will be seen it is used in conjunction with WINDOW in this
program. WINDOW gives a width of 65, and so does WIDTH.
So. if all the lines are typed to conform to that width, within the
window of 65, they will all be printed to justify on the right. In this
case to justify' means that all the letters at the extreme right hand
s>de of the text will end directly under each other, and there will be
as straight an edge to that margin as to the beginnings of each line.

All this justification is carried out by the writer in this program,
except that he is helped by the program form, and it must be done
manually. The way it is done will be explained when we deal with
entering one's own text.

15

Goto 1000 means exactly what it says: the computer is directed
to jump any intervening lines between 100 and 1000, and go
directly to line 1000. The explanation of these intervening lines
will be given in the next chapter.

16

Chapter Three

MORE PROGRAM DETAILS

The rest of the BASIC program, lines 260 to 1000, is there to place
the pages of text in a correct position relative to the sheets of
paper between the perforations that mark the separate sheets of a
continuous length, usually folded.

On the single sheet of paper, 1 lins. long, there is room for sixty-
six lines of printing by the DMP-1. Because double spacing is in
use (the fourth tag has been raised) we can talk about each page
containing 33 lines of printing. To provide for the margins at the
top and bottom, some of these 33 lines must be blank; and these
blank lines must be provided for by a similar number of ‘PRINT
#S;’ entries.

Also, it is a help to provide a small dash to print onto the
perforation, so that we can check that each page is filled with 33
lines. The first command in line 1000 provides a dash. Then there
is a blank line, followed by the page number. This can be seen in
the first three commands:

PRINT #S,“-”:PRINT #S:PRINT #S,SPC(28);A:

The first command, for a dash, is typed by pressing the ‘I’ key
(already programmed to provide for this in line 60), and a double
inverted comma (shifted 2), which is always necessary to enclose
anything to be printed. In the case of the first command it is for a
dash, which is made by the shifted zero key (on the main
keyboard). A colon (:) always separates each command, and in
effect causes the computer to start a new line. For a real beginner
it should be explained that a shifted key is one that is pressed at the
same time as the SHIFT key (at either end of the bottom line).
This particular dash, although it looks high on the key, is printed
at the base of the letter space. So in effect it does not contribute a
line of space to the page below, when it lands exactly on the
Perforated line. Conversely, the dash at the end of the page
'Which we shall come to later) adds its space (double space in this
Program) to the end of the page.

17

The second command should be clear by this time: it merely
adds a double line of space. The third command has two features
that may confuse. SPC(28);A: tells the computer to start the line,
print nothing (spaces) for 28 characters, and then print A. (which
has no inverted commas). Now we know that A equals 3 in line 90
of the program shown, so the computer prints what A stands for.
To repeat that: the computer does not print the letter A, but what
that A stands for; because there were no inverted commas.

Next comes A=A+ I. This is ‘computereese' for adding 1 to the
number that A stands for. Put in another way it means that A(3)
has now had 1 added to it. and A now equals 4, so that the next
time the computer is told to print A it will print 4. Remember, a
computer, (and by order of a computer - the printer) prints any
character enclosed by double inverted commas as it appears in a
program; but without those commas it prints what that character
stands for. If, for instance, you typed PRINT 4.4, it would print
16. The stands for multiply on a computer.

‘SPC(28)’ needs little explanation. SPC is an abbreviation for
space; in effect the command here is to print 28 spaces. In the
brackets is put the number of spaces required. Because it was not
enclosed by inverted commas the computer printed what it meant,
and not the actual letters and numbers. Of course that number
(28) can be altered to put the ‘A’ in any place along the row, so
that it can be at the right hand edge if wanted there.

PRINT #S:PRINT #S:PRINT # S,SPC(5):“SIMPLE
APPLICATIONS OF THE AMSTRAD CPCs FOR
THE WRITER "

The 5th. 6th. and 7th. commands in line 1000 should be quite
clear now because of the previous commands. There are two
blank lines, and then a command to leave 5 spaces, and print the
name of the program. This is printed on the third line below the
number, and is positioned by the number of spaces used.

It is a controversial point whether or not the book title should
be used at the head of each chapter. 1 prefer to do it because my
chapters are stapled, and the book title at the head of each chapter
prevents it getting lost, or placed in the wrong file. Line 1000 is
used only once, at the chapter beginning, so it is written in this
form. You must decide for yourself whether or not you wish to do
this. If you do not, then the 5th. 6th. and 7th commands should be
deleted from line 1000.

18

This, as you may realise, would mean there are three lines less
in this first page, and therefore line 800 must be looked at. This is a
line of REMinders only, put there to remind you that in order to
position each page of text on its sheet, there must be 33 lines on
each page between the dash marks ‘J. The lines of text must be
counted carefully, to ensure that this is achieved. When the
correct number of lines has been put in, a command is typed in
telling the computer to GOSUB to line 260, 270, or 280. This is
done because the text is entered in batches of three or less lines.
More details of why this is necessary will be given in the chapter
dealing with the entry of your own text.

The 33 lines for each page are made up from blank lines; the
No. line; the text; and the space at top and bottom that is left to
give a margin. In line 1000 (for the first page only) there are ten
lines incorporated, excluding the line making the dash. That
allows for either 19, 20, or 21 lines of your text before the
command to GOSUB 260 (or 270, or 280) is entered.

If however, you decide to delete the title from this program
during your writing (its spaces and words occupy 3 lines), then you
must add those three deleted lines from line 1000 to the number of
lines of text counted. That is: line 800 must now have the 19
altered to 22, the 20 to 23, and the 21 to 24. This is only applicable,
of course, to the text of the first page.

To put this another way: the part of line 800 dealing with the
counting of lines has to be altered by the same amount as an
alteration of the lines in 1000.

In our analysis of line 1000 we had reached the 7th command,
and will deal with the 7th to 12th commands together, for they are
similar to those that have gone before: two blank lines, and a
command to print the chapter number after 24 spaces, followed by
2 more blank lines.

This brings us to the next line, which is line 1010. This,
however. is the beginning of your own text so will be left until
later. For the moment we have to deal with the lines numbered
260, 270, and 280.

It will be as well to study the beginnings of each of these three
’nes, for they have only one difference, and that is the one caused
S' the number of lines of text.

19

260 PRINT #S:PRINT #S: PRINT #S:PRINT #S,
270 PRINT #S:PRINT #S:PRINT #S,"/'
280 PRINT #S:PRINT #S,“T

From the way these have been printed in this book: directly in
line, it will be seen that line 260 orders 3 spaces to be printed
before it prints the dash (which must be printed on the perforated
line). Line 270 orders 2 spaces, and 280 orders 1 space - in each
case. This is plus the space caused by printing the dash. This
makes room for either 26, 27, or 28 lines of your text before you
have to enter the GOSUB line.

The program lines have been deliberately numbered with the
number of text lines counted (with an 0 at the end). These are
entered into the GOSUB lines. This makes them easy to
remember, and is a practice that can make life a lot easier at times.

If you wish to have a larger space than I have allowed at the
bottom of the page, then make a new line 250 with one extra
PRINT #S: in it. That is: like 260, but with an added PRINT #S:.
This makes 4 in front of the dash ‘PRINT #S‘ Then remove line
280. From then on you can use only 25, or 26, or 27 lines of your
own text. This kind of alteration is easy with this program,
provided you remember to think in terms of a definite count of
these new numbers of your own lines of text you have decided
to use.

There has been mention of the fact that the dash must be set on
the perforated line between separate pages. This is not an
automatic act. It has to be arranged, and is done in this way:

On the DMP-1 printer there is a transparent plastic cover over
the paper as it emerges. The paper moving knob on the right
causes the paper to emerge. Count the side holes as they emerge.
When the 10th hole following after a perforation is exactly half
covered by the trailing edge of the plastic cover, then it is
positioned correctly for the dash to print on the perforation. But
only if the printer has already been used once or more since being
switched on. I make sure of this by using PRINT #8,"_" on its
own, directly into the printer, before I start getting the 10th hole
into place to put the perforation line in position to be printed on.

This is far simpler than it sounds when first read. The act of
preparing to print a chapter is almost automatic after one or two

20

mistakes. Enter LIST, and press ESC when the top half of the pro
gram appears: see that lines 60 to 100 are centred on the screen.
Then, by editing, see that in line 60 the KEY 138 command is set to
LIST 1000; that in line 90 the S is made to equal 8. then in line 100 set
the GOTO to 1000. After this enter the PRINT #S line, and then set
the number of holes from the trailing edge of the plastic cover as
directed above, and and you are ready to press the 0 key that has
been set to the command: RLJN. This description has taken it for
granted that you are able to 'EDIT' the screen. If not then study the
Amstrad manual, for the process is well described there.

The alteration of those lines (60 & 100) to 1000 can have been
occasioned by earlier alterations as you worked. They need not be
set to 1000 al) the time. As you work, and the program gets longer it
is useful to alter those numbers to ones that are much nearer the
line you arc presently working on. For instance, when working on
line 1500 and onward, I set them both to 1480, so that there is not a
long wait for the program to scroll on the screen after an alter
ation or addition. If they were always set at 1000 they would take a
long time to scroll up on the screen. I always work with those two
keys set a few lines back from the current line, and increase their
number by 10 lines or so as I work. This is the real reason they have
been pre-programmed.

For the beginner at programming the RETURN on the end of
lines 260. 270. and 280, should be explained. The command
GOSUB always has to have coupled with it a RETURN on the end
of that line, or section of program, to which GOSLIB has been
directed. The effect of RETURN is to send the computer back to
the line immediately after the line containing the GOSLIB. It never
makes a mistake.

The position of the line to which the GOSUB is directed does not
matter. The three lines 260. 270, and 280, have been placed at that
position because it keeps them within the program we are writing at
the moment. They could just as easily have been put at lines after
1000. Because they are in the compact 'heading' program, they
must be passed over by the computer when reading its way through
'he program; hence the GOTO KMX) in line 100. The computer
Passes over those lines until commanded by a GOSUB line to scan
them. Then it acts on the commands, and RETURNS to the line
after the one it came from: having read, and acted on. only the line
'' was directed to.

21

In these two chapters, two and three, the main program has
been explained thoroughly, and should prove a valuable source of
reference when first learning to use it. There is one point,
however, that might be referred to, and that is the lay-out, or
positioning, of the computer, the disc drives, and the printers in
relation to each other. It is usually a matter of personal
preference, but the resulting tangle of the attachment leads can
sometimes be horrific, so my own way of doing this might be of
interest to some.

My own arrangement is with the printer on the left, computer
and monitor centrally placed, and the disc drives to the right of the
monitor: 8ins. away, as specified in the manual.

I have placed the monitor on a 4 ins. high plinth, so that it is
more on eye-level, about 3 ins. back from the keyboard. It has the
lead for the printer (coming out of the left back of the keyboard)
going left to the printer, which is also placed on a plinth, making it
3!/2 ins. higher. Behind the printer is a box to contain the folded
continuous paper. The cover of this box is about 2 ins. lower than
the issuing paper, so it folds nicely into position. There is no front
to this box, so the paper unfolds out of it in a most satisfactory
manner.

The lead for the two disc drives comes from the right back of the
keyboard, and so is kept well separate. The whole set-up occupies
a table space of 4 feet by 2 feet (backward).

In addition, because I frequently type from a sheet of paper on
the left of the keyboard, I have made a very light table top from
hardboard, which sits on top of the printer when that is not in use,
and is supported by three legs. This fits closely against the top of
the printer, and on it I stand a small stand, which holds the paper I
am reading from. In this way I can easily correct anything I wish,
for both copy and monitor are on about the same level.

A couple of shelves, the lower one being 11 ins. above the table,
straddles the rear of the paper holding box, to hold all my spare
discs. This lay-out makes it easy to work, and is never disturbed,
except for the occasional spring-clean.

22

Chapter Four

GETTING USED TO THE PROGRAM

If you have read, and thoroughly understand the two previous
chapter (2 & 3), it is time to try your hand at entering some text. I
have chosen a chapter from a book of mine that is sufficiently
varied in text to demonstrate the method fairly clearly. It is the
beginning of Chapter Eight of ‘James of Little Heaton’.

The first move is to copy the complete main program, lines 10 to
1000 inclusive, from page 8 of this book. When this is entered
accurately, with all the punctuation marks and spaces correctly in
position, alter the title and chapter No. to ‘JAMES OF LITTLE
HEATON’, and Chapter Eight, and also change A to equal 129
(A=129 in line 90). Then RUN it, and you should get the page
number, the title, and Chapter Eight under each other, well
spaced out. but with no other wording, except the READY sign.

An easy way to enter those ‘PRINT #S:’ items in lines 260, 270,
280, and 1000, is to enter only up to line 100, and then at this point
RUN the program. The screen colour will change, and there will
be a ready sign, under the program you have entered so far, but
now it will all be in MODE 2: narrow black letters on a pale blue
screen. From now on those KEYS you have pre-programmed in
line 60 will be ready for use, but you can check them properly
later For the present continue to the end of line 1000.

Then is the time to check you have entered correctly the KEYS
line (60). With the heading on the screen, and the ready sign
waiting, press the full-stop sign that is pre-programmed, and
immediately the program should list the 1000 line only; nothing
more - except for the ready sign. If that is correct, then press the 0
S1gn, and that should return you to the display of the page number,
and title, etc. Note that you cannot press those keys with any
result until after an ordinary RUN has been typed and entered.
You are then ready to start, so can now press the full-stop again to
Produce the line 1000.

Make a start by typing ‘AUTO 1010', and then entering it. A
number will be produced in the proper place, ready for the next

23

command Ignore that for the moment, and press ENTER again.
It will produce 1020, and if you continue to press ENTER the
numbers will follow in tens. The way to stop it, and revert to
manual numbering, is to press ESC.

I do not often use AUTO now, for I prefer to correct lines as I
proceed, and that entails the use of ESC in most cases, so AUTO
is of little use to me. However, when using a written copy to type
from, I like to get on with the typing, and go back over the
previous lines to correct them after a paragraph or two have been
typed in. In such cases AUTO is invaluable.

Press the full-stop key again, and the listing of 1000 will appear
again. After producing a number (complete with a space after it)
press KEY 1. and 'PRINT #S,’will appear (I used it to print that).
Now use the SHIFT key and 2 to produce the double inverted
commas, and you are ready for text. It it is the start of a
paragraph, so you must type in some spaces after the double
inverted commas.

This is another matter of personal preference: Some prefer a
small indentation for starting a paragraph; others like a big one. I
normally use four spaces in this position. When using double
spacing on the printer they usually show up well enough.

One matter has to be stressed here before you proceed: if a
double inverted comma is used in the text (between the one at the
beginning and the one at the end) it will cause a mistake to stop the
computer when you RUN it. The double inverted commas in this
type of program can be used only in those two places: the
beginning (after the PRINT etc.) and the end of a numbered line.
This is a simple statement of fact. You have to use a single
inverted comma for all places in the text where you need double
ones: for instance when typing in a conversation.

Another restriction is on the number of characters that can be
put into the computer with one line number (including the line
number). It is 256. When the little black cursor reaches that
number it makes a small squawk, and stops there. Each time you
press a letter (at that point) it protests, giving a warning that it will
not take any more. The reason is that the buffer, (the mechanism
inside that stores the characters before putting them in the correct
place), can only hold that number.

Therefore, since we are using 65 characters to the line of text,
and 3 times 65 is 195 (leaving only 61 out of the 256) we must

24

restrict the number of lines of text we use to three. This together
with the fifteen taken up by the number and its command PRINT
#S." makes 210 characters in the line when we stop at the end of
the 3 lines (of 65 each). To attempt to enter more would cause a
broken line, for we would have only 46 characters left. This is
about two thirds of a line, and we could not work out a suitable
way of matching that with a new line.

I have digressed from the main instruction, which is about how
to enter part of a chapter. This is inevitable, and will occur
frequently.

The next move, after entering 1010, a space , and the PRINT
#S,”, is to enter some text:

V
1010 PRINT IS,' Phoebe gave the slab of butter an extra hard s
•ack, shaped it quickly, and then stamped it with the beechwood n
ould to put the Polefield «ark on it. That was the last one toda
y. Since' ,A

Please note that at the beginning and end of that three line
statement I have put a single inverted comma. You will have to
use double apostrophes. This is because, as 1 have explained
earlier, the computer will not accept double apostrophes inside a
statement, and to enter this in my program for this book, I had to
put the double apostrophes before the 1010, and after the last
inverted double commas.

When this is RUN it will be seen that ‘quickly’ and ‘Polefield’
start a letter in from the leading edge; and ’Since’ is not at the end
of the Iine; they need justifying.

Justification consists of making the end letter of each line sit at
the beginning and end of a line exactly: so that the entire piece of
typing (or printing) has straight edges at each left and right hand
fargin. It is simple to do. and extremely hard to explain in words.

LIST the program again, and study the position of the words
forming those three lines of text. The three lines actually start
directly after the double inverted comma (for we used four spaces,
and those are counted in the three lines). Now. under that double
aP°strophe, in a column, must come a space in each line,
terminated by the double apostrophe at the end, (see arrows).

To explain that differently: a column must start with a double

25

apostrophe, and below that must be a space, another space, anda
double apostrophe. And each of those two spaces must have a
character close to each side of it. This is achieved by adding an
extra space here and there in the text; as shown in the following
example.

V
1020 PRINT #S,' Phoebe gave the slab of butter an extra hard
smack, shaped it quickly, and then stamped it with the beechwoo
d aould to put the Polefield mark on it. That was the last one
today. Since'

A
A space has been placed before Phoebe", before "shaped", after

quickly,", before "That", and before 'Since". This second example
has been numbered 1020. so that you can enter and RUN both of
them together for comparison.

A careful count of the characters will show that the second
example has now got 64 characters in each line. The 65th one is
being used as a spacer while we enter the text. I will give one more
example, and this time will put a full stop in each place where a
space has been added.

V
1030 PRINT IS,' This is an example .to show .that spaces can b
e added easily here and there in a sentence, .without spoiling .i
ts .appearance when it is printed. .This sentence will finish in
the middle of'

A
When you have studied this, replace all those extra full stops

with a space, and then study it again after it has been RUN. It may
seem obvious to you that spaces have been added to various
places, but justification by a word processing program can be just
as obvious when searched for. Whoever receives your manuscript
will notice the straight edges, and will be pleased at the
presentation, having been used to receiving less tidy and
presentable copy.

When you are quite sure you understand the principle behind
this means of justification, then remove lines 1020, and 1030. so
that you can proceed with typing in the examples given in the
correct way. We will now move to line 1020, which, you may
recall, will have to start without an indent for a paragraph
beginning.

26

1020 PRINT IS,'she had come to work for James Somerton six years
ago she must have done that hundreds of time. There was more b

utter produced here than at any farm near by; and in the winter,
too; for this'

1030 PRINT IS,'was still the only farm that consistently kept the
ir stock alive right through the cold season.'

These three lines (1010 to 1030) form a single paragraph, and
paragraphs do not need to finish at the same place each time. In
some cases they may have only one word in a line, and in others
may complete a line. The only rule to remember is that in all cases
the column under the double apostrophe must contain a space
until the final double apostrophe (if this is not a para, end), and
that the only way to achieve this is to use spaces discreetly.
Sentence ends, and where commas occur, are good places to
choose, and the next best is where long words come close
together. Word processors cannot think things out in this way,
and are inclined to bung them in just anywhere.

1040 PRINT IS,' There was a gentle tug at her skirts, and she
looked down at little Anne, who was beaming up at her hopefully.
She smiled in response, and lifted up the three-year-old. He

r mother would'

1050 PRINT US,'chide her for spoiling the child, but a scolding
from Mistress Elizabeth was never very serious. She had a way

of letting you know which offences were really serious, and whi
ch were token'

1160 PRINT IS,'offences, like the one she was about to commit.'

1870 PRINT IS,' She sat the girl on her arm, while Anne hugged
her neck, and buried her face in Phoebe's yellow hair. Then, ove

r st the board table where the cream was separating in four large
Pans of milk,'

‘®60 PRINT IS,'she sat the girl on the table, reached for a large
*®den spoon, scooped up a generous portion of cream, and gave

27

the spoon to the child. 'Don't spill any, else I'll have tro
uble iron your'

1090 PRINT IS,'mam.'

1100 PRINT US,' There was a rapturous silence as the child
licked off the cream, and then she carefully handed the spoon b
ack to Phoebe, wiped her lips with the back of a small hand, an
d then held up'

1110 PRINT IS,'her arms to be lifted down. On the floor she turn
ed, looked up at Phoebe with a smile, said 'Ta.' and hurried off
out.'

1120 PRINT IS,' As she disappeared Hannah entered through anot
her door. With a glance at Phoebe's position near the cream pans,

and a glimpse of Anne's back, she knew what had happened.’

1130 PRINT IS,' 'You'll have Mistress Elizabeth after you.
She's told you before not to do that."

1140 PRINT IS,' Phoebe smiled. ‘I know. But when that chil
d smiles it's hard to resist her. I only let her have a little
bit, and she never clamours for more, as some children do.'

She grinned at’
1150 PRINT IS,'Hannah. ’She’s getting wise, is that one. She
always picks a time when her mother can't get here before she's a
way again.'

1160 PRINT IS,' Hannah smiled sympathetically, but as her gaz
e swept around the small room the smile left her face. 'You'll
have to hurry, Phoebe. Mark Rawson's ready to leave, and that bu
tter has to go'

1170 PRINT IS,'with him. Come on. I'll help you pack it."

When this is all typed into your own computer, and you look at
the listing, it will be easy to see (if you have entered the spaces

28

shown here), that right down the page, under each of the
apostrophes, is a column of blank spaces. Examine that closely,
and make sure there is a character close to each side of each space
in that column. In other words, look on that space as if it were the
margins of the ends and of the beginnings of all the lines; for in
effect that is what it truly is.

To draw together all that has been described in this chapter is
not easy, but put briefly it is this: type the line number, a space,
press KEY T, type a double apostrophe, type in four spaces (if
it's a paragraph start), and type in your text. You can ignore
spacing at first, but remember that only three lines of text can go
into any numbered line. Then add spaces where you think they
will produce a space under that first double apostrophe. If you
want both your margins to be ruler straight, then don’t put
another space next to that column of spaces.

If you don’t wish to justify the right hand margin of your work,
that is to leave it with your right hand margin as ragged as when
you are typing on a normal typewriter, then you will still have to
put some spaces into your text at times, in order to prevent words
being cut in two. In this case all you have to do is to see that no
word crosses that space under the double apostrophe. It will not
be of importance if a letter from the word on the left of that space
obtrudes into the space, but it must not extend beyond it.

I have found that it is very little (if any) more trouble to justify
the right hand margin while you are making sure no words are cut
in two.

While you are working, adding lines as you go. the use of the
Pre-programmed keys is most helpful. After entering a line, a
single press of'()’ (for RUN), will produce what you have typed.
After checking for mistakes, a single press of the 'full-stop’ will
Produce the listing once more. However, as you were warned
earlier, if you leave lines 60 and 100 to refer to 1000 all the time,
you will eventually have a long wait for the lines you are working
On at that moment to appear. That is why it is best (after entering
an additional 10 lines or so) to change the LIST number, and the
GOTO number in lines 60 and 100 respectively, to the number of
a line or two before the next one you wish to work on.

The next task confronting the writer using this program is to
SeParate off the pages, so that they will each print on the same

29

place on the pages formed by the perforation marks of a
continuous stack of folded paper.

Some writers may prefer to count their text lines as they go on
with their writing, adding in the GOSUB commands as they go,
but it is normally advisable to wait until the entire chapter is
finished, so that all the corrections and additions to the text are
completed - otherwise, after a correction that adds lines, an
erasion of all subsequent GOSUB lines is called for, with the
additional task of counting the lines again.

As I have said previously, the DMP-1 printer has 66 lines of
print between one perforation mark and the next. Using double
line spacing gives 33 lines. Ignoring the chapter headed first page,
each page has at its head: a space, a number, and another space.
Then comes the text, of 26, 27, or 28 lines. Then, and this is the
point, if there are 26 lines the program puts three lines of spaces
before producing the dash that prints onto the perforated line as a
marker. If there are 27 lines of text, then two lines of spaces are
given, and for 28 lines of text just one line of spaces is given; all
three quantities of spaces are plus the line of spaces where the
dash is printed of course. So this amounts to 33 lines in each
instance.

If you are using a printer other than the DMP-1, it is easy to find
out how many lines are allowed by that printer. With the printer
set to double spacing, type in a line as follows:

50000 FOR X=1 to40:print #8.X:NEXT

Using a line number well beyond any in your own program. When
this line is RUN, using RUN 50000' the printer will print on the
paper a column of numbers. See that a perforation line is about
level with the printing head on the printer, and you will then have
a permanent record of just how many lines that printer uses
between perforation marks.

After that digression we will go back to the DMP-1.
With the first page, because extra room is taken up by the title

and the chapter number (one space before the page number, two
before the title, two between title and chapter number, and two
before the text) there are seven less lines free for the text-
Therefore, the transfer to normal pages from first page is effects“

30

simply by using 19, 20, or 21 for the count of text lines. If there are
(on the first page only) 19 lines, then the GOSUB for 26 lines of
text is used, for 20 use the one for 27. and for 21 the one for 28.
There is a REM line at 800, that keeps this reminder in a
convenient place.

The manner in which these spacing lines are used is simple. At
the point reached when either 26, 27, or 28 lines matches the end
of a program line, an extra line is inserted between that program
line and the next one. Use a number finishing with 5 in each case:
if the 26 (etc.) line is at the end of 1170. type in 1175 GOSUB 260.
It is easy to remember, for one just adds a 0 to the number of text
lines in the GOSUB command. Of course, the RETURN at the
end of lines 260, 270, and 280 will send the computet back to the
line number after the GOSUB line number.

This is a suitable time to remind you that the use of jumps of 10
in line numbers is normally preferred. For this there is a very
sound reason. I will give an example. When I had moved well past
line 1900 in the program for this chapter. I found a good reason to
add in an extra paragraph at that point. I was able to use five extra
line numbers (1902 to 1906), and they slipped in easily. Then I
used the RENUM facility of the Amstrad to make the lines revert
to their jumps of 10, by entering RENUM 1900,1900,10, so that
every line from 1900 onward was renumbered in jumps of 10;
including my new paragraph.

There are nine extra program lines to be used between the
jumps of ten, and at three text lines to a program line, that gives
about a page of text. If your addition is liable to be more than that,
'hen renumber the lines immediately after the gap before you
start. Assuming the gap comes before line 1900, then first use:
‘RENUM 2900,1900,10.' and there will be a hundred lines waiting
'° be used. For beginners I should explain that the RENUM
aeility starts with the new number wanted, the old number you

W|shed to discard, and the amount of the jump wanted.
One further point needs to be covered: the way the lines are

tounted. It would seem to be too obvious to need explanation, but
ave found errors creep in.
Examine the lines you have typed in: lines 1010 to 1170. The
st- 'ext line finishes at the end of line 1080. so at 1085 you should

31

put ‘GOSUB 280’. This leaves just one line of a last sentence (the
word ‘mam.’) to be counted with the next page. It is frequently
possible for this to happen, but there is no way to avoid it - apart
from re-wording the sentence, and I prefer never to do this. Once
a word has been selected it must be changed only in order to
improve the sense of the sentence.

The remaining lines you have entered amount only to 20, too
few to make a normal page, so more lines would have to be put in
to fill that page. However, remember that on the second page of a
chapter (and on all succeeding pages) the number of lines to count
are 26, 27, or 28.

Everyone will count the number of lines in their own way, so my
explanation of the way I do it is given only as a guide. I count the
first double apostrophe (after the PRINT etc. command) and the
spaces (if any) that come directly below it: making sure not to
count the double apostrophe at the program-line end. The
existence of no double apostrophe at the end will only indicate
that the line finished elsewhere.

To print out the chapter I make sure that lines 60 and 100 are set
at KMX) for LIST and GOTO respectively, and that A=8 and not
0. Then, setting the printer so that the perforated line is level with
the printing head (as explained previously, with the aid of the
tenth hole being level with the plastic cover end), I start it off with
RUN, carefully watching all the time to see that the dash sits on
the perforated line on every change of the page No. If one is
wrong then a press of ESC will stop both the printer and the
computer. A second dab at ESC will take it out of the computer’s
control, and the alteration can be made. It will only be a mis
count of lines that can allow it to go wrong. If it is correct make
sure it is put on disc at once.

The method I use to prepare for a new chapter may be of use to
some. This chapter has used ‘writer4’ as its title in the discs, and
that is first altered to ‘writer5’. I then make sure that lines 60 and
100 have had their LIST and GOTO set to 1000. Next line 90 is
altered: if S = 8 I change that to S=0. A is next altered to A = 34(l
after the no. of pages in the last chapter). Then I go to line 1000,
and alter the Chapter number to Five. This completes the alter
ation of the heading program, and it is necessary then to remove
the main text. This is done easily by entering: ‘DELETE 1010
10000’. This clears everything after line 1000.

32

If you are in any doubt about how to work with this program,
then read chapter 2, 3, and 4 again, using some examples on a
computer to check your progress. An entirely different program
to enter text is given in the next chapter. It may suit writers who
must write in a hurry when the mood attacks them.

10 nr" ■ ■ ■ x»"«»«« ■ ■ ■ ■ «TWWWWWWWWWWW iTTTIfll lift

20 REN ♦*♦«*♦*♦ SIMPLE TEXT WRITING wm»»
Kr" WW WWWWWTTT<<W<WWWWW W WWTTTTTWWWW WWTWWWWW

40 REN HHHHHHHHHtflH RAPAWORD HHHtltltHI
50 REM *+♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
60 KEY 138,"CLS:LIST 1000-"+CHR$(13):KEY 128,“RUN'+€HR$(13):
KEY 129, "DATA “
70 IK 0,23:INK 1,0:BORDER 23:M0DE 2:WIND0W 1,65,1,25
80 8=0
90 WIDTH 65
500 REM MHHHHHUHt» START OF ROUTINE «♦♦♦+««
510 FOR n=l TO 5
520 W5=-1
530 WHILE ws
540 READ zt(n)
550 z$(n)=z$(n)+CHR$(32)
560 WHILE LENlzl(n))>1
570 cv=INSTR(z»(n),CHR$(32))
580 qKEFTI(z$(n),cv-l):z$(n)=MID$(zt(n),cv+l)
590 IF q$=-B« then print tS,CW(8);“, “;:60T0 620
600 IF q$=-X" TIEN ws=0:GOTO 620
610 PRINT IS,q$+(W(32);
628 WEND:WEND
638 PRINT #S
640 reXT
458 REM hhwhh END OF ROUTINE ♦■hihhhhhhh

33

Chapter Five

A PROGRAM FOR FAST WRITING

The routine RAPAWORD'. on the previous page, is designed to
take advantage of the easy way in which a small BASIC program
can use the PRINT command to keep words in one piece when
moving to a fresh line. At no time does it cut any word in two. Its
great advantage is that one can type directly into the computet
without having to worry about words being broken at a line
ending. In many cases this is a great advantage to the writer who
finds it difficult to break his train of thought in order to deal with
extraneous matters, like the spacing of words in a sentence, for
words can continue to flow into the computer until it gives a
squawk: and then it is only necessary to delete back to the last
complete word, use ENTER, and start a new line with just the
word 'DATA’ and a space.

It does not justify the right hand line ends, however, for it
leaves them just as ragged as does an ordinary typewriter. It has
another snag. also. It will not accept a comma in any way. This
BASIC program treats all commas entered directly into the text as
if they were spaces. There is a line in the program that will puts
comma onto the screen, though (at 590), where provision is made,
that, if a lower case ‘ m ' w ith a space each side of it is entered in
place of the comma, it will print a in its proper place on the
screen. The DMP-1 printer, however, does not recognise the code
‘CHR$(8)’. which (to the computer) means 'move the cursor to
the left’, and so prints a comma, but with a space between the

'word and the comma.
However, both the computer and the printer will recognise»

semi-colon (;). and if you can remember to put one of these in
place of everv comma, it will do the job well.

Because of the use to which I put this program, this does no1
matter to me, for I use it in place of a piece of paper and a penal
when first writing articles. I will give an example later. For the
moment it will be best if I give a complete breakdown of the
program.

Ignoring lines 10 to 50. which have been explained earlier, tl*

34

first line of consequence is 60, which pre-programs the same two
keys as in the previous program. We do not, however, need the
■PRINT #S.’ sequence in this program, so that is omitted. We

however, need the word. DATA ' with a space after it, to put
on each line after the number, so that is put in line 60 also. With
the aid of this programmed key (after the use of AUTO for the
line number), we can now start each line with just a single key
strike of "T (right near to 'ENTER'), and the full stop followed by
some spaces if it is a new paragraph. The space after DATA is
alreadv programmed into the key. so that an interrupted sentence
can be continued at once.

The next line (70) specifies the background colour, and the ink
to be used; as well as doing away with the border by making it the
same colour as the background. It also introduces MODE 2, with
narrow characters. Incidentally, MODE 2 has no effect on the
printer. Then comes the WINDOW command. This, as in the
previous program, stipulates that all the characters in each row
amount to 65; mainly because that is the WIDTH to be used for
the printer, and one can then see what it is going to look like when
shown on the screen. The WINDOW command has been
explained in the description of the previous program.

In line 80 we give a value to the variable 'S': it is made to be
equal to 'O'. When you want to see on paper what you have typed,
then change the '()' in this line to '8'. Don't forget to change it back
to ‘O' when the printer has finished.

Line 90 contains a direct command for the printer only. It
ensures that everything is printed to that width. Both this
command, and the WINDOW command in line 70. must be given
the same number if, at some time, you wish to change the width of
your work.

We now come to the actual routine that prevents the computer
from cutting a word in two. It starts with line 500. which is merely
a REM line. Line 510 is a 'FOR' line which is tied to the number of
Paragraphs you have entered with this program. It was ‘5" with the
sample program I ran when testing it. There will be a fuller
explanation of its function when we come to use this program later
ln this chapter.

In line 520 starts the WHILE-WEND routines that can be used
to keep the program returning to the beginning again, ‘ws’ is made

35

to equal -1. While ws is equal to -1 it continues to move. As soon
as 'ws' is made equal to 'O', (see line 600), it comes to a stop. In line
600 it says: 'IF q$='X' THEN ws=0’. Then comes GOTO 620,
which passes over the PRINT command in line 610, and moves on
to 630 (print a space) and to 640, which is the ’NEXT' that sends
the computer back to line 510. Put in a rather crude way, this
means that when the computer comes across an X tn its reading
through the lines it brings into play the FOR-NEXT loop, and
starts a new paragraph.

During the explanation of these lines there will be many of
these digressions, for the lines in such a routine are usually inter
connected. We will now return to the earlier lines.

In line 530 is the first of the two WHILE-WEND loops. In 540
is the READ command. This tells the computer to look for
DATA somewhere in the program. It can be placed anywhere,
and such DATA is to be given the variable z$ (a string variable
that can handle words). It is also qualified by being followed by
(n). This 'n' is the variable we met in line 510. On the first passage
through the program it is equal to ‘T. so the computer will
continue to READ DATA until it meets a 'X'. Then line 600
becomes operative - but we have dealt with that, so we shall go
back to line 540. On the second pass through, if will be equal to
'2', so will take the second paragraph, and proceed on

We meet some rather more involved sequences in line 550 and
onward. Here we have: 'z$(n) = z$(n) + CHR$(32)'. This means
that from then on z$(n) means the word plus a space after it. for
the code 'CHR$(32)’ really means a space It could have been put
in a different way. but the computer responds well to the codes.

Line 560 starts a second WHILE-WEND loop; this time it will
continue until the word and space is greater than '1'. Line 570
contains the command word 'INSTR', which searches the string of
words, and makes 'cv' equal to the one chosen.

Now comes the line that makes sure that only complete words
are printed in the text on the screen, for the string handling
commands (LEFTS and MIDS) are used to give the variable 'q$
the position of such words, and in line 61(1 they are printed - but
not before (in lines 590 and 600) the variable 'q$' is compared with
a character 'm‘. and a character X'. in which cases some different
commands are given. In 590. if q$ = 'm'. then it prints a comma.aS

36

explained earlier; in 600. if q$=‘X', it stops printing that line to
order the computer, eventually, to NEXT, in order to start the
sequence all over again.

[t is well worth while studying line 580 thoroughly, for it is the
key to how this program does its job. LEFTS chooses the
character at a position (from z$(n)) that is to the left of'cv' (which
was defined in line 570) including 'cv'. The -T means that it must
be one character to the left of what that 'LEFTS' has chosen. Then
comes a colon (:), which separates off a new command, in which
z$(n) is now given a new value by using M1DS. In this case 'zS(n)’
is made to represent the words after the characters defined by 'cv'.
This means that on the next time through. 'zS(n)' represents only
the characters after the one chosen by INSTR in line 570.

This is not easy to understand at first, but for beginners I should
explain that the use of INSTR, and of LEFTS and MIDS in a
situation like this, can produce most of the mysterious things that
computers do - in this matter of juggling with words and letters. In
this case ’q$' is made to represent a word w ith a space each side of
it, and LEFTS selects that word for printing, while MIDS makes
sure it is not used a second time. The whole matter is made clear
when we remember that the computer is treating the string in 'q$'
as a single character for the purpose of printing, and therefore, if
there is not room for it on that present line, it goes to the next line
to print it.

Beginners at programming, and some that have been doing it
for a little time, should make every effort to understand how it is
done, and in particular how the commands are phrased, for the
efforts to do this will be repaid many times over.

The FOR-NEXT loop starting at line 510 controls the move
from one paragraph to another, so deserves a little more explan
ation. It works by separating all the text (until a 'X' is met), into
one complete batch. This is done by using the variable ‘n’ as a way
°f qualifying the string variable z$. which otherwise would
consider all the text as one great whole. That is why (n) is in use
following every ‘z$'. A FOR-NEXT loop always has a number
such as 1 TO 5 (or sometimes A TO Z, where this is of more use)
to make sure that the procedure inside the loop is repeated more
'han once. When I first wrote the program it had five paragraphs
ln the text I used, so the number there is 1 TO 5. Without that

37

‘X" to stop it, each of the paragraphs would follow directly behind
each other, as if the whole were one large paragraph. With its help
each new paragraph starts on a separate line.

On its first passage through the program the string is equal to
‘z$(l)’. Then it meets a ‘X’. and is forced to go on to the NEXT,
where it is sent back to line 510. This time the string is equal to
'z$(2)", until it meets another ’X'. And so it can go on until the
number in FOR n = l TO 5’ is met.

Another point should be cleared up before we start using this
program: the use of a comma. As explained previously the comma
cannot be accepted by the computer during the running of a
DATA line. I use a semi-colon (;), and if the printed copy is to go
out to an Editor, I always go over it with liquid paper to remove
the top dot of the semi-colon. This serves admirably.

In some cases, however, a proper comma may be wanted, and I
then use the letter'm' spaced out between the words in this way:
’bread m and cheese'. This prints out onto the screen perfectly
well, because of line 590. but. as mentioned earlier, it will pot be
printedproperlyby the printer; it turns out always as:'bread , and
cheese", because the DMP-l has no means of knowing the
meaning of 'CHR$(8)".

Therefore I use it only when the typing I am doing needs to be
seen on the screen only. This occurs when I wish to doctor, or alter
any sentences that would take so much pencil and rubber work
that it would leave a scribbled jumble. When this program is used
to put text on the screen, and the excellent EDITing facilities of
the Amstrad are used, it is easy to deal with.

One thing more should be mentioned again: the need to keep
one’s eye on the number of paragraphs used. Unless that
number in the FOR line (510). is maintained at the same level as
those of the (X)s. the computer will only print the number of
para's that conform to that number. For instance, if there was a 10
in line 510. and five paragraphs, then five paragraphs would be
completed, and a 'DATA exhausted" message would be printed.
If it were the other way about, with 5 in line 510. and ten
paragraphs, the computer would print five paragraphs, and just
forget the others.

When I am in a hurry I put a large number in that FOR l'ne
(510), (sometimes FOR n=l TO 50), and then get on with the

38

typing. I don’t need to worry about a screen message when I am
EDITing.

An example ot the way it can be used is shown at this chapter
end. This was only a short piece, accompanied by some drawings,
and was sent as it emerged from the printer, but with the addition
of a small heading.

Copy this into your computer, and save it as a pattern from
which you can buildup programs of your own. It can be adapted to
a variety of uses. Line 40 gives the name used to save it.

It will be seen that semi-colons have been used in place of
commas; it took only a few moments to erase the top dots. The
heading was put in front of the routine used to print the text (at
line 200), and consisted of two lines of space, the heading, and two
more lines of space. The routine carried on after that, and it was
all printed on a single sheet. The series of nine articles, each with
three drawings, was used by a gardening magazine, and the same
method has been in use for a year or two now.

Examining the first three lines (1000-1020), which cover two
paragraphs, note the full stop to ensure the use by the computer of
the four spaces that start it. In line 1010 the same device is used,
but this time it is a longer paragraph, which stretches on suf
ficiently to need a second numbered line (1020). Take note of the
way line 1010 is finished -at a word end, with nothing to terminate
it- Then notice how 1020 is started - with a space before the first
word (put there by DATA). This ensures that in printing it. on the
screen or the printer, the beginning of line 1020 is tight against the
end of line 1010, but with a space as well. It has followed closely
behind what has gone before.

This means that when typing into this type of program, the
writer does not have to think of anything more than his writing. At
'east, no more than he has to if he is writing with a pen and paper.
^>th the numbering set to AUTO, and the use of the pre
Programmed key (1). he can carry on writing easily. He just uses

’ TER at the end of the line, and that produces the number with
a space after it; then he dabs the T to produce DATA and a
sPace. and carries on with the next word. Notice that 'ENTER'
ar|d the 1' are near one another on the keyboard.

Some mention has been made of 'discs' and their capacity
earlier. At this stage in writing this book, near the end of a fifth

39

chapter, I find that it is all on one side of a disc, and that, with the
'BAK' portion of this chapter still on disc (17k) there is still 45^
free for future use. That, plus the 17k of the 'BAK', gives 62k for
another chapter. Sufficient to deal with a chapter of anything
short of 19k. However, I shall turn to the second side of the disc
for succeeding chapters, because it is always safer to have plenty
of disc space in hand.

I give my CAT reading here.

BUTFLY1.BAS 3k WRITER2 BAS 19k WRITERS BAS 17k
RAPA WORD.BAS 3k WRITER3 BAS 17k WRITERX.BAS 2k
WRITERO.BAS 5k WRITER4.BAS 26k
WRITERI BAS 15k WRITERS BAK 17k
45k free

You will see that the CAT readings are read down the first
column, then down the second column, etc. All these programs
are a part of this book, each with its own heading. This makes such
small items as the ‘Contents’ page into 2k. but it is well worth
while, for then they can be recalled, altered, and printed without
any trouble. WRITERX is the Contents page, and WRITEROis
the Introduction.

While we are on CAT readings, there is a simple way to print
them on paper. ENTER CAT, and when it comes up on the
screen, use the EDITing facility to put PRINT #8,' in front of it,
with the double apostrophe before, and after, the part you want to
be printed. If you used KEY 1' to put the PRINT #S, on the
screen, don't forget to alter the 'S' to ’8'.

If you have so many items on the disc that they will not all go into
a PRINT statement (too many for it to hold), then use a second
line, having finished the previous line at a good place. Four lines
of CAT will not quite go on. so it is best to finish at the end of the
third line, and use another line for the rest. 1 had to do this with m)
present entry of CAT.

While on the matter of EDITing'. those of you new to the
Amstrad may not have realised that there are three ways to EDIT-
For convenience it pays to select one method, and I have foun®
the ‘COPY CURSOR METHOD' to be the easiest and simply1
method of all It is fully described on page F2.8 of the manual-

40

Any use of the second method at times is liable to be confusing,
for it will be by using the ‘CLR" key. instead of the ’DEL’ key. It is
better to stick to one method only.

10 REM HlininilHHHHHtnttlHIHHHHI

20 REM ♦♦♦«♦♦♦♦ BUTTERFLY ARTICLES ooooo
30 REM HtHtHmHHItHHHHIIItHIHtHtHH
40 REM OOOOOO4 BUTFLY1 OO+OOOOO

50 REM
60 KEY 138,"CLS:LIST"+CHR$<13) :KEY 128,"RUN'+ClRil 13):KEY 12
9,"DATA '
70 INK 0,23:INK 1,0:BORDER 23:M0DE 2:MIND0W 1,65,1,25
80 S=0
90 WIDTH 65
200 PRINT IS,"_":PRINT IStPRINT IStPRINT #S,SPC(20);"THE RED
ADMIRAL"¡PRINT #S:PRINT #S

500 REM oootmt START OF ROUTINE ooooo
510 FOR n=l TO 5
520 ws=-l
530 WHILE ws

540 READ zi(n)
550 z$(n) =zi(n) +CHR$(32)
568 WHILE LEN(zKn)) >1
570 cv=INSTR(z$(n),CHR$(32))
580 q$=LEFT$(zl(n),cv-l):z$(n)=MIDi(z$(n),cv+l)
590 IF q$=>." TO PRINT tS,CHR$(8);";:GOTO 620

IF q$='X" THEN ws=0:GOTO 620
610 PRINT #S,q$+CHRi(32);
62® NEND:WEM)

PRINT #S
640 next
650 REM oooroo END OF ROUTINE ooo+oo

41

1000 DATA . There is little sexual difference in the Red
Admiral; but the female may be slightly larger; and have «r
e pronounced red patches. X
1010 DATA . The upper surface of both is velvety-black; «
ith scarlet bands on all four wings. There are white spots
and bands towards the tips of the forewings. The underside
of the forewing is bright with red; black; white and fawn pa
tches; but the
1020 DATA hind wing is mottled brown; like a leaf or piece o
f bark. X
1030 DATA . It can be seen from March-October; mainly bee
ause this butterfly migrates from the Continent; though a fe
w hibernate here. X
1040 DATA . The Red Admiral goes everywhere—fields; gard
ens; town and country—and likes over-ripe fruit. Eggs are
laid on the upper leaves of nettles; one egg to each plant;
and these hatch in about seven days. X
1050 DATA . The caterpillar varies in some individuals.
Normally it is velvety-black with black spines; spotted with
tiny white spots; and with a broken yellow line along its s

ide. Others may have buff or yellow spines; and some are ch
eckered with
1060 DATA lemon-yellow; so that the background appears to be
greenish grey. This caterpillar takes 23 days to mature. I

42

Chapter Six

adding paging to the fast writer

There may be occasions when the writer will wish to use the fast
writing method for more than a page or two, and therefore I have
devised a method of doing that. It is not very elegant, but it does
the job - within certain limits. At this chapter end is a program
that does the job. It will be seen to be the same program as
previously used, but with some additions. Those extra lines will be
dealt with here.

The first alteration is to line 80. where A is given a value of‘T.
This is similar to the same provision made in the list of a previous
program, for when its value is changed by adding 1 after each page
is printed, it will continue to number the pages correctly.
Therefore, line 80 is now:

80S=0:A = l

In line 200 there are two alterations: the title has been changed
to 'SOME GARDEN BUTTERFLIES' instead of being "THE
RED ADMIRAL’; and an addition has been made to the end, for
there is now an additional command: GOTO 500, which is the
beginning of the word wrapping routine. That line is therefore
now:

200 PRINT #S,‘_’:PRINT #S:PRINT #S,SPC(25);A:
A=A+ I :PRINT #S:PRINT # S.SPC(16);‘SOME
GARDEN BUTTERFLIES’:PRINT #S:GOTO 500

Don't forget that where I have put a single apostrophe, each
s>de of the bottom dash there should be double apostrophes,
and similarly around the title. This, as explained earlier, is caused
bY the use of the first program in this book for entering the lines.

After line 200, and before line 500, come six lines that are used
°niy by GOSUB commands, which is why the command 'GOTO
5t)0 was put in line 200. These six lines are put this early in the
Program because the writing of text (from line 1000 onward), is
'hen much easier.

43

Lines 250 to 290 are there to provide spaces at the page end and
beginning; in a similar way to those in the first program. This time
though, they are entered in a slightly different way. The ASC
CODE for moving to a lower paragraph is CHR$(10). This is used
in a form that will make it repeat as many times as we want, by
using the form: STRING$(7,CHR$(10)). The first number inside
the brackets is the number of times the cursor will move down the
page. This saves the repetition of PRINT #S: so many times. It is
hardly worth doing for as small a number as 1. but in the interests
of uniformity it is done in this present case. Therefore, the five
lines 250 to 290 are given in this way. The line 300 is merely a REM
line, to remind you of the letter to be used for sending the
computer back to a line to print spaces and a dash, a number anda
space, before the text starts again. Here are the six lines:

250 PRINT #S,STRING$(4,CHR$(10)):PRINT #S,
‘_’:PRINT #S:PRINT # S,SPC(28);
A:A=A+1: RETURN

260 PRINT #S,STRING$(3.CHR$(10)):PRINT #S,
‘_’:PRINT #S:PRINT # S,SPC(28);
A:A=A+1: RETURN

270 PRINT #S,STRING$(2,CHR$(40)):PRINT #S,
‘_’:PRINT #S:PRINT # S,SPC(28);
A:A=A+1:RETURN

280 PRINT #S,STRING$(1 ,CHR$(10)):PRINT
#S,‘ :PRINT #S:PRINT # S,SPC(28);
A:A=A+1: RETURN

290 PRINT #S,‘_’:PRINT #S:PRINT #S,SPC(28):
A:A=A+1: RETURN

300 REM 25 lines=U; 26 lines=V; 27 lines=W;
28 lines=Y; 29 lines=Z. Remember to count in th

heading and space on the first page.

Allowing for 3 lines at the top: the number, and the space above

44

and below it, there are 30 lines left out of the 33 each page will
carry- It is not correct to carry on the text until it reaches the
bottom, and the minimum of spaces below the text should be 2,
but preferably 3 or 4. With lines 250 to 290 I have allowed for
anything from 25 to 29 lines of text before the line which must be
the last one, but you should manage with 26. 27, or 28. We will
deal with the different ways of counting the lines later.

Looking at line 260, we see that ‘PRINT #S,' is still used at the
beginning. This is because it must work that way. The 3 is there to
control the number of lines down it must go by order of
CHR$(10), and then there is another ‘PRINT #S.’ to command
that the Dash is printed, another ‘PRINT #S:’ to lower it a
space more, and then a ‘PRINT #S,’ and after that 28 spaces
along the line to place the ‘A’ (which will be a number) in the best
place to be more or less centred. Incidentally, at this point you can
position that page number where you want, by altering the
number of spaces in that SPC(25) position. I keep it central
because there is more control over the paging in that place; if an
extra page is added it makes no difference.

To return to line 260. After the number of the page is in a
position that suits you, the next part is ‘A = A+1‘ to ensure that
the next page number is increased - as explained earlier. Then
comes the RETURN’, which sends the computer back to the
command after the one that sent it to 260. In this case to line 610,
at the point where a command tells it to GOTO 660, which sends
the computer back into the word wrapping routine.

All the lines 250 to 290 work in exactly the same way, but a
different number of spaces are put at the end of different text
lengths. Line 300 is a REM line to remind you of the letter to put
at the numbered line end - of which more later.

The next lines to be described (they are additions) are the ones
at 600 to 640, in the routine. They are given here.

600 IF q$=‘X’ THEN ws=0:GOTO 660
605 IF q$ = ‘U’ THEN ws=():GOSUB 250:GOTO 660
610 IF q$ = ’V THEN ws = 0:GOSUB 260:GOTO 660
620 IF q$ = ’W’ THEN ws = 0:GOSUB 27():GOTO 660
630 IFq$ = ‘Y' THEN ws = 0:GOSUB 280:GOTO 660
640 IF q$ = ‘Z’ THEN ws=():GOSUB 290:GOTO 660

45

These work in the same way that was explained in the previous
chapters, except that these work in response to the letters ‘U to
Z’. ‘X’ produces just a paragraph end, making sure that a new
paragraph starts. The rest incorporate a GOSUB line that sends
them to one or other of the lines we have recently described (250
to 290). Their working will become clearer when we describe the
actual entering of text into the program.

For the present it is enough to say that when the computer
compares the groups of characters it has collected, with any of
those in an IF’ line and finds a match, it carries out whatever
command follows that match. In this case it ends that paragraph,
and comes to GOSUB 250 (or 260, etc.) and goes to that line to
carry out those orders. At the end it comes back to find ‘GOTO
660’, and at that line starts the routine again by going to the ‘FOR’
line at 510.

Line 590 has been left in this routine for those who wish to usea
comma in their text. As 1 have explained earlier, the use of DATA
imposes some restrictions, and one of these is the use of a comma;
the computer ignores it when printing on the screen, so that it is
not printed. If it is essential to use a comma on the screen, then an
‘m’ , printed with a space each side of it, results in the printingofa
comma in its proper place, because of the way in which line 590
acts. Incidentally, the use of the colon causes a similar trouble, but
rather more serious, for it causes the rest of the line following the
colon to be left out, jumping to the next line number without a
break of any sort. It is for these, and similar reasons, that I
normally work with the first program in this book; except wherel
want to work at much greater length on a paragraph or more.

The text chosen for this demonstration of the working of the
pagination in this present program is an extension of the text ।
used a little earlier: about butterflies. There are one or two small
rules that must be observed: first of all sec that there are B0
numbered lines with more than two or three lines of words X1
them. That is: see that there are no more than 65 charactersead1
in two lines - with perhaps a few more characters to end ata
completed sentence. This will be more easily understood wh«X
you study the way I have entered my text into the lines. If you u^
longer numbered lines there can be trouble at times. This is no*a
difficult condition, for it merely means more numbered lines,af"

46

you are not likely to run out of numbers - even when steps of ten
are used - you will run out of computer memory long before you
run out of numbers for lines.

The second condition is that you use a semi-colon instead of a
comma at all times. This has been explained a little earlier in this
chapter.

The third condition is that you make no attempt to enter the
letters at the end of each numbered line other than an ‘X" where
you wish a paragraph to end. The other letters can only be put in
after you have RUN the text onto the screen, and can then count
the actual number of lines it makes there. The details of this will
be explained more fully after it is entered.

Be sure to enter the program lines first. They are at this chapter
end.

1 (MX) DATA . THE RED ADMIRAL. There is little sexual
difference in the Red Admiral; but the female may be slightly
larger; and have more pronounced red patches.

1010 DATA The upper surface of both is velvety-black; with
scarlet bands on all four wings. There are white spots and bands
towards the tips of the forwings.

1020 DATA The underside of the forewing is bright with red;
black; white and fawn patches; but the hind wing is mottled
brown; like a leaf or piece of bark.

We will deal with those three lines (1000-1020) before going
any farther, for they illustrate a point. Note first that each
numbered line finishes at a sentence end, with a full stop and
nothing else. Also, that, as they appear in the list, there are no
fore than three lines of text to each numbered line. In fact they
could be anything from about that length to just over three lines
without affecting our needs. These are: that when the lines are
RUN and we start counting the number of lines that are to be used
m a page, that there will be no more difference than three, or at
'he most four lines, when a sentence end is reached as near as
Possible to one of the numbers: 26. 27 or 28, because these leave a
'easonable bottom margin.

There will be times when one of those numbers is reached at
soirie point that is within a paragraph, but if you then throw the

47

listing on the screen, and it shows that the sentence ending js
inside a numbered line, then you must go back a sentence (or go
forward a sentence) to find a numbered line end that coicides with
one of the permitted numbers. It can usually be found in a range of
26 to 28, but the extra lines dealing with 25 or 29, in lines 250 and
290, are there to deal with those exceptions. You must count the
lines that are already RUN, and not those in the list, for the
computer works on them to produce a few extra spaces at the line
ends, and it is the RUN lines of text that will be going on the
pages.

Don't forget: that is the mam reason you restrict your text
writing to two or three lines in each numbered line. We shall now
continue with the text for this trial run.

1030 DATA . It can be seen from March-October; mainly
because this butterfly migrates from the Continent; though it few
hibernate here.

1040 DATA The Red Admiral goes everywhere - fields;
gatdens; town and country - and it likes over ripe fruit. Eggs are
laid on the upper leaves of nettles; one egg to each plant; and
these hatch in about seven days. X

1050 DATA . The caterpillar varies in some individuals.
Normally it is velvet-black with black spines; spotted with tiny
white spots; and with a broken yellow line along its side.

1060 DATA Others may have buff or vellow spines; and some
are checkered with lemon yellow; so that the background appears
to be greenish grey. This caterpillar takes 23 days to mature. X

1070 DATA . THE ORANGE TIP. The male Orange Tip has
its upper wing surfaces marked with orange and a black tip on a
white base. The upper wing surfaces are lightly marbled grey and
white.

1080 DATA The underwings are similarly marked jbut the hind
wings are more strongly marked. The female is similar, but is not
orange tipped. Y

1090 DATA . Normally the Orange Tip is seen during May-
June; but some may appear in August-September. It is fairly
common in Britain; except north of the Moray in Scotland.

1100 DATA It favours flowery hedges: meadows; and woody
borders. It hibernates as a crescent-shaped chrysalis; usually
suspended in a hedge. X

48

1110 DATA . The caterpillar; which takes 25 days to mature;
feeds on cruciferous plants; cuckoo flower; yellow rocket; garden
honesty, etc.

1120 DATA It is green on top; lightening down its sides to blue
green and then white. Underneath it is dark green. This
caterpillar is quite slender; and very even in its thickness
throughout. X

1130 DATA . THE BRIMSTONE. This is a species with
different sex colouring. The male has all its upper wing surfaces
bright lemon with an orange spot on each wing (larger on the rear
wings).

1140 DATA Underneath it is duller; tending towards buff on
the hind wings. The female has two colourings; one of greenish
white; and the other more yellow.

1150 DATA Herorange spots are duller than those of the male.
The points on all four wings are the same in both sexes. X

1160 DATA . It appears early; usually March-October; but
occasionally in February; and is common in the south of England
and in Wales.

1 170 DATA It hibernates on ivy or holly; clinging under a leaf;
and because of its shape and colour is perfectly concealed there.

1180 DATA Eggs are laid on the buckthorn (both species);
singly on the underside of leaves in May-June. X

1190 DATA . The caterpillar takes about 28 days to mature;
and is glaucous green on the back; tending towards blueness at the
white spiracular stripe along its side. Y

12(X) DATA The underside; below the line; is yellowish-green;
as are the legs. There arc minute black spikes all over it. X

You may have noticed that at the end of line 1080 is a ‘Y’. This is
a page ending, and was found by RUNning the program, and
counting the lines of text - including the title and its space below.
You will find there are 28 lines, and so the letter Y is chosen. Now,
count the lines of the listing, allowing two for the title as before.
You will find there are 31 lines to that page end. and that you
reached 28 at the end of line 1070. From this you can see that the
list has to be RUN on the screen before the page can be counted:
'he computer has made the text 3 lines longer at that point; by
moving to a new line before it has reached the full 65 characters -
>n order to avoid cutting a word in two.

49

This should emphasise the point I made earlier, about the
necessity for counting the lines from the RUN print-out, and not
from the list. Remember, the top of the sheet (the space, number
and space) has been provided for by the line that prints the dash (
). That gives 3 lines. Then a count of 28 leaves a margin at the
bottom of two lines. I hope this is now clear.

When doing this job (after all the text is typed in) it is a help if
you have written on paper the little table contained in line 300:
25=U,26=V,27=W,28=Y,29=Z. It should then be easy.

A sufficient amount of text has been included in this list to allow
for the third page to be started; in order for you to see that the
paging has been carried out correctly, for pages 1 to 3 are there. If
you now count (on the list) the number of lines from the first use of
‘Y’ to the second one, you will arrive at 31 lines. Provided you
remembered that this is not a first page, and there is no heading to
count in. However, there are just 28 lines on the RUN print-out,
and the third dash lands on the perforated line correctly.

These details have been emphasized here in order that, if you
are using a different printer, and one that allows a different
number of printed lines, you can adapt the program easily.

50

10 ntH ««««««»«iIxifixJIIFltlf jrTTTTTTIt TT

20 REM BUTTERFLY ARTICLES hhhhh
J0 REM
40 REM ♦♦+♦♦*♦♦+♦♦♦♦ BJTFLY2 »HHHHHtHt

ntn *■■"■"ITxTIxxIxTTxTTTIlftItttfttlttf1tt

¿0 KEY 138, "CLS:LIST 1000--+CHR* (13):KEY 128, "RUW+CHRS(13):
KEY 129,'DATA "
70 INK 0,23:11« 1,0:BORDER 23:MODE 2:HINDOH 1,65,1,25
80 5=0:A=1:REM PRINT #S,CHR$(27);T^CHRf (3)¡PRINT IS,CHM(2
7);’A"; CH« (24)
90 WIDTH 65
200 PRINT IS,'.'¡PRINT iS:PR!NT #S,SPC(25):A:A=A+1 ¡PRINT IS:
PRINT #S,SPC(16);'SOtE SARDEN BUTTERFLIES':PRINT IS:60T0 500
250 PRINT #S,STRING$(4,CHR$(10))¡PRINT IS,".“¡PRINT IS:PRINT
IS,SPC(28);A:A=A+hRETURN

260 PRINT IS,STRING$(3,CHR$(10))¡PRINT «/."¡PRINT «¡PRINT
ltS,SPC(28);A¡A=A+l¡RETURN ’

270 PRINT «,STRING$(2,CH«(10)) ¡PRINT IS,“ "¡PRINT «¡PRINT
*S,SPC (28) ^¡A=A+1 ¡RETURN

290 PRINT IS,STRINGS,CH?I(10)1 ¡PRINT IS,"."¡PRINT IS:PRINT
^tS,SPC(28);A¡A=A+l¡RETURN

??8 PRINT IS,'."¡PRINT SPRINT IS,SPC(28);A:A=A+1:RETURN
380 REM 25 lines = U; 26 lines = V; 27 lines = W; 28 lines =

Y; 29 lines = Z. Remenber to count in the heading and the s
Pace under it on the first page.

51

i£ a E
is

Sa
i 8

SS
Si

sg
a

500 REM hihhhihhh START OF ROUTINE Himim
510 FOR n=l TO 300

ws=-l
WILE ws
READ z«(n)
z$(n)=z$(n)+CHRi(32)
WILE LEN(zi(n)) >1
cv=INSTR(z$(n),CHR$(32))
q$=LEn$(z$(n>,cv-l):zf(n)=MIDf(zl(n),cv+l)
IF q*="«* THEN PRINT IS,CHR$(8);", ";:GOTO 660
IF q^'X" THEN ws=0:GOTO 660
IF q$="U* THEN ws=8:GOSUB 250:GOTO 660
IF q$="V THEN ws=0:GOSUB 260:GOTO 660
IF q^-r THEN ws=0: GOSUB 270: GOTO 660
IF q$="Y" THEN ws=0:GOSUB 280:GOTO 668
IF q^-Z’ THEN ws=8: GOSUB 290:GOTO 660
PRINT #S,q$+CHRI(32);
WEND:WE>ffi
PRINT IS
NEXT
REM M+HHHUt*** END OF ROUTINE hwhhhs

52

Chapter Seven

USING THE DMP 2000 WITH THE PROGRAMS

Since writing the previous six chapters the DMP 2000 has been
delivered, and installed in my set-up in place of the DMP-1. 1 had
hoped it would be an improvement, but it far exceeds anything I
had anticipated. Instead of the single type face, with the capability
of extended words of the DMP-1, the DMP 2000 has many type
faces, each one of them far superior, and much clearer to read.

In addition it has many commands that can be incorporated in
the computer programming to produce various results, including
the spacing of the lines. It is not my intention to describe these
(they are well demonstrated in the manual with the DMP 2000)
except where they impinge on the form of programs to which this
book is devoted, and that I shall do in the following chapters;
starting with the use of the DIP SWITCHES.

The dip switches on the DMP 2000 are the same in regard to the
use of Nos. 1,2, 3, and 4 as with the DMP-1, but with this newer
machine there is no need to alter the position of any of them. No. 4
can be left as it is on arrival, and will produce lists and text with
normal single spacing, because there is a method of programming
that will alter any text to the double spacing required for our
purposes. Therefore, do not alter the dip switches as I
recommended for the DMP-1. Instead, alter the line 100 in the
WRITERI program (page 8) as follows.

100 WIDTH 65:PRINT #S,CHR$(27);'A';CHR$(12):
GOTO 1000

Don’t forget that where I have put single apostrophes around
the A’, you will have to use double apostrophes in the program.

That interjection, from PRINT #S to CHR$(12) needs some
explanation. It is taken from page 4.10 of the DMP 2000 manual,
where it has: ESC A + n. for the variable n/72 inch paper feed.
This is perfectly clear, except for one thing. We are told that n
stands for the number we wish to put over 72, but we are not told
that it is presented in brackets after the CHRS code.

53

Beginners among us, and more experienced programmers, too
are aware that codes using CHR$(?) are used for many purposes
and may not tumble to its use here; even though an example is
given on that page. Let me therefore explain that: when one of
those formulae are given after ’TO SELECT' in the manual, and
there is a ‘ + n’ at its end. the number we choose is to go in brackets
after the ‘CHR$’ sign.

The next question to arise is: where does that 12 come from? A
little very elementary maths is called for. The normal single line
spacing on the DMP 2(M)0 is 1 /6th. of an inch. We have to find the
equivalent number to put over 72 to produce the same result. 6
into 72 equals 12. so multiply 1 by 12, and put that over 72. That
produces 12/72nds, which is exactly equal to l/6th. Therefore that
line, as entered at present, leaves the line spacing at l/6th. inch.

But, if we want twice that spacing, (as we do for presentingour
copy to Editors) we can now alter the number 12 to 24 (after the
CHR$), and the printer will then proceed to print out the copy
with double spacing between the lines. The paper feed rate
between lines, is now set to 24/72. which is the equivalent of 2/
6ths. or one third of an inch. Put in another way: the mean
distance between lines of double spacing produces three lines to
the inch, while single spacing gives six lines to the inch.

However, that is not quite all. The computer is now set to a line
space for the printer of 24/72. In effect, because the PRINT #S,’
starts that command, the printer will continue to produce double
spacing until it is altered. If, for instance, a ‘LIST #8’ was asked
for, it would be produced in double spacing.

To send the computer a signal to revert to 12/72 (1/6) is very
simple. Immediately after a printed copy of the text has been
produced, LIST the program, and stop it where lines 90 and 100
are available, and alter the 8 to an 0. and the 24 to a 12. Switch off
the printer to cancel out its previous orders, and then switch it on
again. Now RUN the program (onto the screen) for a short
distance in order to ensure that the computer has read through
line 100 again. In line 100 the ‘CHR$’ code is now 12/72. and the
printer, if told to ‘LIST #8’, will do so with single spacing-
Another method is to give a separate message to the printer as
soon as it has finished its print-out of the text. This will be without
a line number, as follows:

54

PRINT #8,CHR$(27);-A ;CHR$(12)
Do not forget 'o put double apostrophes where I have put the

single ones. This will make the printer revert to single line spacing
jf you tell it to: ‘LIST #8'.

To ensure there is no mistake about this, a copy of that program
from page 8 (WRITERI), is shown in its modified form to
suit the DMP 2000 (without its dip switches altered) at the end
of this chapter. This w ill be sufficient for anyone to use as a means
of producing ‘justified copy, using the standard type face
provided by the DMP 2000, provided he follows the full
description of how to justify’ given in chapter 4.

Writers who own a DMP 2000 may have jumped directly to this
chapter, having skipped over the proceeding chapters. I should
warn them it is essential to read chapters 2. 3, and 4, before
moving to this chapter, for the explanations in those chapters
refer to almost any printer; they are mainly computer program
details, and may require changing for other computers.

It is my practice with the DMP 2000 to proceed with all text
entering, or altering, in the single line space setting of 12/72 in line
1000; changing that only if I need a double line space print-out.

There are a number of other changes that can be made to the
program when using a DMP 2000, changes which affect the
printer, but have to be put into the program. For instance there
are the different sorts of type face available. These, and the way to
produce them are adequately described in the DMP 2000 manual,
and they should be studied thoroughly. The three main ones from
the writer’s point of view are the ‘Proportional’, 'Italics' and the
NLO' (Near Letter Quality) options. ‘Standard’ is the one
selected by the printer when first switched on.

These different type faces are very well decribed in the manual,
but at one point I was left searching for ways of preventing the
Printer staying in the same type face all the time However, what it
boils down to is that you have to cancel each type face (except for
Standard), by using a different code before proceeding to use a
different type face. This can be puzzling at times, for the ways of
coupling them up are not very clear. I append here an extra program
*hich displays most of the type faces available, and it will print out
asampleofeachone. if‘GOTO 5000’ is used. In it you will find the
"'ays you can cancel one type face before going on to the next. It
Can sit at the end of your present program, with a stop at 4900.

55

5000 REM *** TYPE FACES ***
5010 PRINT #8,‘This is Standard’
5020 PRINT #8, CHR$(27);‘x’;CHR$(l);‘This is

N L Q Standard’;CHR$(27);‘x’;CHR$(0)
5030 PRINT #8,CHR$(27);‘p’;CHR$(l);'This is

Proportional' ;CHR$(27) ;‘p’ ;CHR$(0)
5040 PRINT #8,CHR$(27);‘W’;CHR$(l);‘This is

Double Width’;CHR$(27);‘W’;CHR$(0)
5050 PRINT #8,CHR$(27);‘-’;CHR$(l);‘This is

Underlined’;CHR$(27);‘-’;CHR$(0)
5060 PRINT #8,CHR$(27);‘S’;CHR$(l);‘This is

Subscript’;CHR$(27);‘T’
5070 PRINT #8,CHR$(27);‘S’;CHR$(0);‘This is

Superscript’;CHR$(27);‘T’
5080 PRINT #8,CHR$(27);‘M’;‘This is

Mini’;CHR$(27);‘P'
5090 PRINT #8,CHR$(27);‘4’;'This is

Italics’;CHR$(27);‘5’
5100 PRINT #8,CHR$(27);'G’;CHR$(27);‘4’;‘This is

Italics-Double strike';CHR$(27);‘H’;CHR$(27);‘5’
5110 PRINT #8,CHR$(27);‘E’;‘This is

Bold ’ ;CHR$(27);‘F’
5120 PRINT #8,CHR$(15);‘This is

Condensed’ ;CHR$(18)
5130 PRINT #8:PRINT #8
5140 LIST 5000-5140 #8

Once again I must point out that in that program, as given here,
you must replace all single apostrophes with double ones. This
applies to the letters or numbers, and the actual text to be printed
by the program; there are two apostrophes in lines 5010 and 5120,
and six in lines 5020-5110, with ten in 5100. In line 5010 is the
Standard type face, for it is the one always selected by the printer
when switched out of another type face by a suitable command, or
when first switched on.

In this program (at 5000), the various type faces have been
chosen for the manner in which they are commanded, and
rejected. Lines 5020 to 5050 are similar in that they all use the
number 1 to turn them on, and 0 to turn them off. CHR$(27) is a

56

way of telling the printer that what follows immediately after it in
the apostrophes is not to be printed, but is a code. That code can
be a letter or number. Make sure you use either upper or lower
case for this code, as shown here. The code tells the printer which
of the type faces to choose. Following it is the CHR$(1) (or (0)),
as mentioned above. Note the punctuation mark used: following
#8 it is a comma, all the rest of them are semi colons. The dash
between apostrophes in line 5050 is the one on the key holding the
equal mark (=) as well - not the one on the zero (0). Incidentally,
while mentioning the zero: to make the printer produce the
correct 0 sign, and not the capital O, then turn the DS2-1 dip switch
to ON (the first in the second block). This is done by flicking it
down. Make sure to switch off the printer before doing this.

So, line 5020 means: PRINT #8, (to the printer); CHR$(27),
(ESC, or not to be printed); ‘x’ (This is the code to use); CHR$(1)
(turn it on). Then in double apostrophes comes the text to be
printed (in the type face chosen by the previous code ‘x’). Follow
ing that comes the same sequence of signals, except that the end
number is 0 (zero) and not 1. That turns it off.

Put briefly it says, print in the type face ‘x’ and then revert to the
Standard type face.

Lines 5030 to 5050 are the same, except that the code number or
sign, is different, ‘p’ means Proportional, ‘W’ means Double
width, and the dash means underline those words.

At first sight lines 5060 and 5070 appear to be similar to the
preceeding lines, but they are not. Here the lCHR$(l)’ sign is not
the turning on code. A combination of the letter ‘S’ and the
’CHR$(1)’ turns on the Subscript type face, while the code for
Superscript is ‘S’ with 'CHRS(O)’. In this case the actual kind of
code appears to be triggered by the 1 or 0. In both cases they are
both turned off’ by the use of ‘T’ after the use of CHR$(27).

Subscript appears to be the same as Superscript but is really
different in its position on the line compared with other larger
texts. Subscript is level with the bottom of Standard (it runs on the
same bottom line), while Superscript is level with the top of the
line. That means you could use Superscript to provide the small
th’, after a number such as 4. Or you could perhaps provide a
fraction, with the top number in Superscript, then a diagonal (/),
followed by the lower number in Subscript. This would need many
characters, but we can deal with that later.

57

Line 5080, for the Mini type face, is different again, for a single
‘M’ is used after the CHR$(27), and that is all. It is turned off
again by using ‘P’ (after the CHR$(27)). No other effort is needed
to produce a very nice and smaller version of the Standard type
face.

The Italic version, in line 5090, is also good looking. It works in
the same way as the Mini line (5080), but ‘4’ is needed to produce
it, and '5' to revert to Standard (after CHR$(27)) in both cases, of
course.

For this Italic line I have not used the turning off’ signal in any
way, for the following line is for Italics, with a Double strike code
added. This is in line 5100, which is written as if the Italics had
been turned off. This is done deliberately to show how one code is
added to another. One complete code follows the other with just a
semi-colon between them.

By now you have learnt sufficient about these codes to see that
‘G’ turns this ‘Double strike' code on, and that ‘H’ turns it off.
And that ‘4’ turns on the Italics, while ‘5’ turns them off. Perhaps
it has occurred to you that 1 need not have added the 'CHR$(27)’
and '4' to line 5100. and you would be correct; it was already in the
printer memory. However, for the beginner an example of how it
is done is worth lots of explanation.

When you have entered and saved this program at 5(M)0, then
delete the section: CHR$(27);'4’ from line 5100. You will find
that this make no difference to the final result. The ’Italics’ code is
still in the memory, so there is no need to put it in again.

Line 5120 produces the Condened type face. This is a fine
example of what the DMP 2000 can do, for it is clear, and really
good looking. It is produced by a simple command: 'CHR$(15),
and is removed from printer memory by CHR$(18)’. The
simplest, and yet most useful of type faces.

Try a LISTing of this program, just entering (without a line
number) 'RUN 5000'. The first PRINT command tells the printer
which type face to use, and the second one (at line 5140) ordersa
list on the printer. You will be pleased with the result in the
Condensed type face.

Line 5130 makes the printer leave two line spaces before it acts
on line 5140, which is to LIST program 5000 from line 5000 to 5140
on the printer. This small program will print each of the type faces

58

named, and then produce the list of the program. It is worth
keeping as a reference, for above the space is the type face to see,
and below it is the way to produce it. I have left it at the end of this
Chapter Seven, but if you wish to use it separately, then the word
■TYPEFACE’, having just eight characters, can go onto a disc on
its own.

Earlier in this chapter I mentioned the use of Subscript and
Superscript for fractions. Here is a line that will do that. It is
placed at line 10000.

10000 PRINT #8,’ This measures ’;CHR$(27);‘S’;
CHR$(0);‘7’;CHR$(27);‘T’;7’:CHR$(27);‘S’;
CHR$(l);‘8ths.’;CHR$(27);‘T’;‘ of an inch.’

Once more, do not forget to use double apostrophes in place of
the single ones I have used in that line. There are ‘18’ of them in
all.

When you GOTO 10000 the result will please you - provided
you have entered it correctly, and are using a DMP 2000. It is nice
to have such a facility available; but what a lot of characters! It
would be better to be able to use shorter versions of each of the
codes. And this is possible, using string variables, which are a
letter (or more) followed by the dollar sign ($), which is made to
equal a string of characters. For instance: ‘aa$ = PRINT
#8,CHR$(15)’ is an instance of one string variable being the same
as seventeen characters; after it has been entered into the
computer’s memory.

This is done simply by adding a ‘GOSUB 6000' to the end of line
70, and at line 6000 having a subroutine that will make all the
variables equal to something. If there is then a ‘RETURN' at the
end of section 6000, the computer will go there at the end of line
70, put the variables into memory, and return to line 80 to carry on
with the program.

On page 3.11 of the DMP 2000 manual is a description of how to
do this. However, it does not cover all the many possible
"ariations you could use. Therefore I will devote time in the next
chapter to outlining a scheme to do this. For the present I will deal
with the present four codes used in that line, using f, ee, and e,
because two of the four are the same.

59

70 INK0,23:INK 1.0:BORDER 23:GOSUB 6000
6000 f$=CHR$(27) + ‘S'+CHR$(0):ee$=CHR$(27)

+ ‘T’:e$=CHR$(27)+‘S'+CHR$(l)
6010 RETURN

Don't forget the six double apostrophes, in place of singles in
line 6000. There is another point about the making of string
variables that should be noted: where you would use a semi colon
to separate off any two parts of a code in the normal way, when
forming a variable it is necessary to use the plus sign (+) in place
of the semi-colon. This is essential.

Now, with line 70 containing GOSUB 6000, and lines 6000 and
6010 in place, the computer will respond to the entering of any of
those variables with the code it contains-provided only that RUN
is not used; GOTO can be used instead, but not RUN, for that
flushes out all the variables when used, and then the variables we
have used will not contain the ‘CHRS' commands. Each of the
variables will contain only the letter or number that is within the
double apostrophes. So don't use RUN in such circumstances.

Because I have just made that same mistake (for over an hourl
couldn’t get the variables to do their job) I have now altered line
60 in this program (in which the keys arc redefined). Key 128 is
now re-programmed to: 'GOTO 10', instead of to 'RUN', as it
was before. (Key 128 is the ‘O' key on the square block of
numbers). GOTO does all that RUN does, without flushingout
the variables. With all this in mind, now enter this program:

10000 REM ******** TEST *******
10O10 PRINT #8.' This measures ‘;f$;‘7’;ee$;7’

e$;'8ths.‘:cc$;’ of an inch.’
10020 PRINT #8,’ This measures ‘:CHR$(27);‘S’;

CHR$(0);‘7’;CHR$(27);‘T’;7’;CHR$(27);
‘S’;CHR$(l);‘8ths.’;CHR$(27);‘T’;‘of an inch.’

There are 10 single apostrophes in line 10010 that must be
changed to double apostrophes, and 18 in line 10020 that must be
changed similarly. The reason has been explained earlier.

If you now use 'GOTO 10000', not RUN 10000', the two lines
will be displayed on the printer, and will be exactly alike. They

60

will show more clearly than any explanation can, that the use of
the string variables is a great saving, both in typing and in space.

They are shown printed out on page 64.
Do remember, however, that the use of RUN when using such

variables as these (variables that contain commands of the CHR$
type) will destroy the function of the variables. In future use only
‘GOTO’ for programs that may have such variables in them,
reserving ‘RUN’ for the first command after loading the program.

The three test programs, at 5000, 6000, and 10000, are all given
at the end of this chapter. They have been printed out in the
Condensed type face, using ‘WIDTH 60’.

There is a method of printing a double apostrophe in the
program, and that is with the use of a re-defined key. It has not
been mentioned previously because some regular typists would
find it difficult to type. It entails using the letter 7 in the block of
letters on the right of the keyboard. This key is re-defined as
follows:

KEY DEF 10,0,162

Put this at the end of line 60 (with a colon first) so that it is the
fourth key re-defined, but in a different way. In this fourth case
the key code number is taken from page 16 appendix 3 of the
Amstrad manual (not page 15 as are the other three keys). It is
shown in the list WRITERIB. Now, whenever you want a double
apostrophe inside a statement that key can be used.

61

10 REM
20 REM «*♦ SIMPLE APPLICATIONS OF THE ♦♦♦♦
30 REM ♦♦♦ AMSTRAD CPCs FOR THE WRITER »«
40 REM ♦♦♦♦♦+♦♦♦♦+♦♦ WRITERIB ♦♦*♦♦♦♦♦♦♦♦♦♦
50 REM ♦*♦♦♦*♦*♦*♦*♦♦♦*♦»♦♦♦♦♦♦♦♦♦♦♦»♦♦♦*♦»
60 KEY 138,“CLSiLIST 1000-"+CHR$(13):KEY 128,"RUN"+CHR$(13)!
KEY 129,"PRINT IS,"
70 INK 0,23:INK 1,0:BORDER 23
80 MODE 2:WINDOW 1,65,1,25
90 S=0:A=3:REM to 8 (ind)
100 WIDTH 65:PRINT IS.CHRi(27);"A";CHR$(12):GOTO 1000
260 PRINT #S:PRINT #S:PRINT #S:PR!NT #SPRINT #S:PRINT I
S,SPC(30);A:PRINT #S:A=A+1:RETURN
270 PRINT #S:PRINT #S:PRINT IS,“/¡PRINT IS-.PRINT IS,SPC(3«)
;A:PRINT IS:A=A+1:RETURN
280 PRINT iS:PR!NT #S,'/:PRINT #S:PRINT #S,SPC(30);A:PRINT
IS:A=A+1:RETURN
800 REM From 1010 only:- 19 lines(260):20 lines(270):21 line
s(280): The rest: 26, 27, or 28.
1000 PRINT IS,"/-.PRINT #S:PRINT IS,SPC(28);A:A=A+1:PRINT IS
:PRINT IS:PRINT IS,SPC(5);"SIMPLE APPLICATIONS OF THE AMSTRA
D CPCs FOR THE WRITER“:PRINT IS:PRINT #S:PRINT IS,"Chapter 0
ne":PRINT IS:PRINT IS

62

This is Standard
This is N L Q standard
This is Proportional
Th i = d ou.h 1 width
This is underlined
Th 1 m ±m -t h m Subwcrlpt
Thlm Im th» Sup»r«cript

This is Mini
This' is Italics
This is Italics. Double strike
This is Bold.
This is Condensed

5000 REM«*»***** TYPE FACES *»»♦»**♦
5010 PRINT 18,’This is Standard"
5020 PRINT H8,CHR4(27);'x";CHR$(D;'This is N L Q standard";
CHRX27); "x“;CHR$(0)
5030 PRINT l8,CHR$(27);"p";CHR$(l);"This is Proportional";CH
R$(27);"p';CHR$(0)
5040 PRINT #8,CHRi(27);"N";CHR$(l);"This: double mdth";CHR$
(27);"W;CHR$(0)
5050 PRINT I8,CHR$(27);"-";CHR$(D;"This is underlined";CHR$
(27);"-";CHR$(0)
5060 PRINT I8,CHR$(27);"S";CHR$(D;"This is the Subscript";C
HR$(27);"T"
5070 PRINT l8,CHR$(27);"S“;CHR$(0);“This is the Superscript"
;CHR$(27);"T"
5080 PRINT #8,CHR$(27);"M";"This is Mini";CHR$(27);"P'
5090 PRINT #8,CHR«(27);"4”;"This is Italics'
5100 PRINT #8,CHRJ(27);'4";CHRi(27);"6";"This is Italics. Do
uble strike';CHR$<27);"H';CHR$(27);"5"
5110 PRINT #8,CHR$(27);"E";"This is Bold.";CHR$(27);"F"

63

5120 PRINT I8,CHR$(15);"This is Condensed";CHRi(18)
5130 PRINT #8:PRINT #8
5140 WIDTH 60:PRINT #8,CHR$(15):LIST 5000-10020 #8
5150 PRINT #8,CHR$(18)
5990 STOP
6000 REM ♦ * ♦ » ♦ ♦ MAKING VARIABLES
6010 f (27)+"S"+CHRi(0): ee$=CHW (27)+"T": e$=CHR$ (27) +'S
"+CHR$(D
6100 RETURN
6900 STOP
10000 REM TEST »»hum
10010 PRINT #8," This measures ";H;"7";ee$;“/";ei;,8ths.';
ee$;" of an inch.'
10020 PRINT #8,' This measures H;CHR$(27);“S";CHRi(0);"7";C
HR$(27)i"T";'/“;CHR$(27);"S";CHR$(l);"8ths.";CHRt(27);"T";"
erf an inch."

This measures o-f an inch.
This measures o-f an inch.

64

Chapter Eight

MORE USE OF THE DMP 2000

In Chapter Seven I promised to give details of the making of
variables to carry the different type faces of the DMP1. One
method of doing it is given in the manual, but I feel that it is not
quite what I wanted. Therefore I have adopted a system of a single
letter for starting the type face, and two of that same letter to
cancel it, beginning with ‘a’. In addition it was the intention to
make it as a unit, transferable from one program to another. With
this in mind I put this variable making program at the end of any
program in which it will be needed; starting with line 5000; so that
it could be MERGEd with any program, so long as room is left for
it at 5IXX) to 5200.

The Amstrad 464, fitted with disc drives, is not keen on any use
of MERGE, even though it is supposed (by the manual), to do so.
However, the 464 has a tape recorder built in which will do the job
very easily. It is my practice, therefore, to keep a spare tape in the
recorder for just this purpose. I give this list at the end of this
program. It is called MAKING VARIABLES, and a suitable title
for recording it is MAKEVAR'. Because the title is only 7
characters long it will go on either tape or disc.

To use the tape for MERGE', it is only necessary to first be
sure there is a space in the program in the computer’s memory to
allow for lines 5000 to 12000. Then ENTER ‘[tape' (it doesn’t
matter whether upper or lower case is used). Now . with the tape
number set to coincide with the beginning of the SAVEd
program, type in 'Merge', followed by a space and two double
apostrophes. Then follow the directions on the screen. This is all
that is needed. When the ready signal is given, do not forget to
enter '¡disc' If you are not used to discs, the ‘ ' is the one on the
key next to P, entered with the shift key.

Owners of Amstrad CPC 664s and 6128s will, of course, have to
use a separate cassette recorder.

Before explaining the program MAKING VARIABLES', it
will be necessary to add one point: at line 90 of WRITERIB, add a
couple of GOSUBs, preceded by a REM, so that line 90 now
becomes:

90 S=0: A= 1 :REM GOSUB 5000:GOSUB 6000

65

The REM is put there at this point because, while writing the
rest of the program those GOSUBs will not be needed. If you wish
to print out the result, then you must alter line 90 only. Change the
0 to 8, and take away the REM. This makes it ready. Another
warning should be given here. After running the printer with
those GOSUBs operative, you must alter back line 90: to do this
change the 8 toO, and put back the REM. In addition you must use
RUN to clear the memory of the variables. It is assumed you are
following the clear directions given in Chapter Seven to always
use GOTO instead of RUN in normal conditions. Also that only
command codes that apply to the ‘DMP 2000’ are put in those
lines at 5000 and 6000.

This will perhaps be more clear when it is explained that an
order to the printer has a different effect when it goes to the
screen, and they come into effect when those GOSUB orders are
made operative. When the REM is reinstated, 8 is changed to 0,
and RUN is used, they arc flushed out.

The locating of the perforation mark on the DMP 2000 is not
the same as on the DMP-1. although 1 use the same principle. On
pressing ‘ON LINE' on the printer the paper runs back as well as
forward by turning the knob. With the perspex cover off I move
the paper so that the twelfth hole has not quite reached to the back
of the casing edge over which it runs after printing. Some
experiments will be called for to get it exactly right, but the result
is that with the same paging described for the DMP-1, the DMP
2000 will always put the dash on the perforation.

After those digressions we return to the explanation of the lines
at 5000, and at 6000. They are at this chapter end. and a look at
them will help. The description of the various codes in use have
been given in Chapter Seven. This time note the use of a to k, and
aa to kk as the variables used. With the aid of the list given here, it
should be easy to select whichever you want.

a=NLQ (Near Letter Quality)
b = Proportional Lettering
c=Double Width lettering
d=Underlined words
e=Subscript (lower level)
f= Superscript (upper level)

66

g=Mini (smaller than Standard)
h=Italics
i = Double Strike (Makes lettering heavier)
j = Boid (similar to standard, but bolder)
k=Condensed (16 characters to the inch)

a' or ‘aa’ applies to Near Letter Quality lettering. a$ puts it into
use, and aa$ cancels it. b’ produces Proportional lettering, (which
has less space around slim letters such as ‘i’ or T'). b$ brings it into
use, and bb$ cancels it. When using these variables it is easy to see
that when a single letter is used to start off a type face, then double
that letter will stop it, and bring it back to Standard - or whatever
else you command it to. Having once looked up the letter that
applies to that face, then there is little thinking to do about
cancelling it.

I have printed it out on a piece of card I keep on top of the
monitor. There it is in use very often, although I am beginning to
memorise some of the letters already.

The use of codes is shown here, and in line 10000 at the end.
Line 12000 is the command used to print the list.

‘This is a ‘;k$ ¡’demonstration ‘;kk$;’of using a few ‘;h$;’type
faces ‘;hh$;’in a sentence, and includes *;j$;’four *;jj$;’different
faces.’

There are fourteen single apostrophes that have to be changed
to doubles in thaf statement. The double apostrophes are around
the words to be printed. The codes are separated from them by a
semi-colon on each side. Remember the distinction from the way
codes are separated in the making of a variable. In the variable a
+ sign is used to join parts of a variable.

The routine at 6000 is directed at the printer only. It is not used
except for this purpose: line 6020 tells the printer to commence
printing 3 characters from its normal starting place on the left
hand margin. The letter ‘1’ (lower case L) is here used as the code
to trigger this off; the ’3’ after CHR$.states the number of
characters. This is done so that the perforations on each side of the
paper can be trimmed off afterwards, leaving a clean sheet, 11 x
8.25 inches.

In line 6010 the ‘A’, followed by the number after CHR$ will
put the printer into double line space mode, as explained in the

67

previous chapter more fully. This code, 'A', means something
different to the computer, and is one of the reasons why it is kept
separate by REM (in line 90), and flushed out by RUN, when the
printer is not being used. If not treated thus it will make the text or
list, on the screen, appear alternatively in reverse colours: white
on black, instead of black on white.

The explanations in this and the previous chapter of the ways to
use the DMP 2000 with the first ‘writer' program are complete
enough now to enable anyone to use it competently. It remains to
deal with the ‘fast writer’ program, first described in Chap. Five,
and with the improved listing between chapters Six and Seven,
which had paging added to it.

To that ‘BUTFLY2’ listing can now be added some more lines,
that will adapt it for use with the DMP 2000. We will first add to it
the alteration of ‘RUN’ to ‘GOTO 10’ in line 60, for the key that
re-programs the 0 in the block of numbers. This is to prevent
trouble after using the printer, as explained before. A simple
alteration to line 90, which carries the WIDTH command at
present, will be the addition of the line spacing code, and a code to
permit using a different type face. The BOLD code is being used
in this instance, but you can change that to anything you w ish. The
line must also have a ‘REM’ in front of it while you are working on
the screen, which will be removed or replaced when you change
the 0 to 8, or vice versa, (with 8 the REM comes out). The
corrected line is given here.

90 REM WIDTH 65:PRINT #S,CHR$(27);‘A';
CHR$(24):PRINT #S,CHR$(27);‘E’

Remember to use double apostrophes in place of the single
ones in that line; there are four of them.

The way the first code (CHr$(27);‘A';CHR$(24)) works has
been explained in the previous chapter. Because the REM is
replaced when using the screen, there is no need to change the 24
to 12 in this instance.

The second code used after ‘WIDTH’ is the one to define the
type face to be used throughout. In this case the code is for the
‘BOLD’ type face. It is printed rather more black than is the
‘STANDARD’, but takes longer to print out. If you change this

68

BOLD for anything else, remember always to switch off the
printer before starting to use a different type face; this makes sure
the old type face is not left in the printer’s memory.

This revised program, now given the label of‘BUTFLY2B’, for
use in either tape or disc, is given at the end of this chapter. The
line used to provide this listing, without any line number, is now:

WIDTH 60:PRINT #8,CHR$(15):LIST 10-690 #8

This gives a list exactly 3.5 inches wide, in the Condensed type
face, which suits the size of these pages. Both the WIDTH
command, and the type face command, can be altered to suit your
own requirements. Without the WIDTH command, the line
would give a list that stretched right across the sheet - provided
you had switched off, and on, the printer first; for it would
otherwise have in its memory the 'WIDTH 65’ used in the
program.

Similarly, the type face code can be changed; that is, all the
wording between 'WIDTH' and LIST’. The use of the numbers
after the word LIST (and before the ‘#8’) tells the printer just how
much of the listing to print.

The writer who has not yet started working with a computer,
and who might like to try it, would be well advised to obtain an
Amstrad CPC464 with disc drive, and a DMP 2000 printer. With a
set-up like that, and by using the program ‘WriterT (page 8), any
writer will be able to provide professional looking copy. A
knowledge of how to handle and modify the program for your own
purpose will be gained by the careful study of this book. The index
will give a guide to the different sections for future reference.

69

10 REM ♦*♦♦+*+♦♦+♦*+♦+♦♦♦+♦♦♦♦♦♦*♦♦♦♦♦♦♦♦♦♦
20 REM ♦+« SIMPLE APPLICATIONS OF THE w«
30 REM ♦« AMSTRAD CPCs FOR THE WRITER +♦♦
40 REM ♦++++♦*++++++ WRITERIB

m sF^F ^HF IF^FiF IF ̂ F^F^F^F^HF ^F^F ^F^F ^F^F IF^F w^^F^FIFniF

60 KEY 138,“CLS: LIST 1000-‘+CHR$(13):KEY 128,"RUN"+CHR$(13):
KEY 129,'PRINT IS,'
70 INK 0,23:INK 1,0:BORDER 23
80 MODE 2:WINDOW 1,65,1,25
90 S=0:A=1:REM GOSUB 5000:6QSUB 6000
100 WIDTH 65:PRINT tS,CHRt(27);*A“;CHR$(24)¡GOTO 1000
260 PRINT IS:PRINT #S:PRINT #S:PRINT #S,'_":PRINT IS:PRINT I
S,SPC(30);A:PRINT IS:A=A+1:RETURN
270 PRINT #S:PRINT #S:PRINT #S,"_“:PRINT #S:PRINT IS,SPC(30)
;A:PRINT IS:A=A+1:RETURN
280 PRINT #S:PRINT #SPRINT #S:PRINT #S,SPC(30);A:PRINT
IS:A=A+1:RETURN
800 REM fro« 1010 only:- 19 lines(260):20 lines(270):21 line
s(280): The rest: 26, 27, or 28.
1000 PRINT IS,*_":PRINT IS:PRINT »S,SPC(28);A:A=A+1:PRINT IS
:PRINT IS:PRINt'#S,SPC(5);"SIMPLE APPLICATIONS OF THE AMSTRA
D CPCs FOR THE KRITER":PRINT #S:PRINT #S:PRINT IS,“Chapter 0
ne":PRINT IS:PRINT IS

70

10 REM
20 REM ihhhhhhh* BUTTERFLY ARTICLES ♦♦♦♦+«♦«
30 REM hhhhhh«hhhh»«whhhhhh

40 REM *♦♦++++++*♦♦♦ BUTFLY2B ♦**♦♦♦♦♦«♦««
50 REM «♦++♦♦♦♦♦«♦+♦+♦+♦♦*+♦♦♦♦♦♦♦♦♦♦♦♦♦+♦♦♦
60 KEY 138,"CLS:LIST 1000-"+CHR$(13)¡KEY 128,“GOTO 10"+CHRt(
13)¡KEY 129,"DATA '
70 INK 0,23:INK 1 ^¡BORDER 23:M0DE 2:WINDOW 1,65,1,25
80 S=0: A=1
90 REN WIDTH 65¡PRINT IS,CHR$(27);"A";CHRt(12):PRINT IS.CHRI
(27);"E"
200 PRINT IS,"J:PRINT IS:PRINT #S,SPC(25);A:A=A+1:PRINT IS:
PRINT #S,SPC(16);"SOME GARDEN BUTTERFLIES"¡PRINT #S:60T0 500
250 PRINT #S,STRING$(4,CHR$(10))¡PRINT IS,"/¡PRINT IS:PRINT
#S,SPC(28);A:A=A+1:RETURN ”

260 PRINT IS,STRING$(3,CHR$(10))¡PRINT IS,"/¡PRINT IS:PRINT
IS,SPC(28);A:A=A+1:RETURN

270 PRINT IS,STRING$(2,CHR$(10))¡PRINT #S,"/:PRINT IS:PRINT
#S,SPC(28);A¡A=A+l¡RETURN

290 PRINT IS,STRING$(1,CHR$(10))¡PRINT IS,"/¡PRINT tS¡PRINT
IS,SPC(28);A:A=A+1:RETURN

290 PRINT IS,'/¡PRINT IS:PRINT IS,SPC(28);A:A=A+1 ¡RETURN
300 REM 25 lines = U; 26 lines = V; 27 lines = N; 28 lines =

Y; 29 lines = Z. Remember to count in the heading and the s
pace under it on the first page.

71

500
510
520
530
540
550
560
570
580
590
600
605
610
620
630
640
650
660
670
680
690

REM HHtHHt START OF ROUTINE ♦♦♦♦♦♦♦♦♦♦
FOR n=l TO 300
W5=-l
WHILE «
READ z$(n)
zl(n)=z$(n)+CHR$(32)
WHILE LEN(zi(n))>l
cv=INSTR(z$(n),CHR$(32))
q$=LEFTJ(z$(n),cv-l):z$(n)=MIDI(z«(n),cv+l)
IF q$=■»,, THEN PRINT IS,CHR$(8);";:GOTO 660
IF q$=T THEN ws=0:GOTO 660
IF q$="U' THEN ws=0:GOSUB 250:GOTO 660
IF q$="V" THEN «=0: GOSUB 260:GOTO 660
IF q$='W THEN ws=0:GOSUB 270:GOTO 660
IF q$='Y" THEN «MJ: GOSUB 280: GOTO 660
IF q$="Z" THEN «=0: GOSUB 290:GOTO 660
PRINT #S,q$+CHR$(32);
WEND:WEND
PRINT «
NEXT
REM «hh-hhhhhh END OF ROUTINE »♦♦♦♦♦♦♦♦«

72

5000 REM ♦♦♦««* MAKING VARIABLES «♦♦♦♦♦*
5010 a$=CHRI(27)+"x"+CHR$(l):aal=CHR$(27)+"x"+CHft$(0)
5020 b$^)Fi(27)+"p"+CHR$(l) :bb$=CHR$(27)+“p"+CHR$(0)
5030 cl=CHR$(27)+"W"+CHR$(l):ccl=a^
5040 di=CHR$(27)+"-"+CHR$(1):ddi=CHR$(27)+"-"+CHR$(0)
5050 e$=CHR$(27)+"S"+£W$(1):eel=CHRI(27)+"T"
5060 f$=CHRt (27) +"S"+€HR$ (0):ff$=CHR$(27) +"T"
5070 g$=CHR$(27)+“Mn:gg$=CHR$(27)+"P"
5080 h$=CHR$(27)+"4":hhi=CHR$(27)+"5"
5090 i$=CHR$(27)+"6":ii$=CHR$(27)+"H"
5100 j$=CFR$(27)+"E":jj$=CHR$(27)+'F"
5110 k$=CHRi(15):kk$=CHR$(18)
5120 RETURN
6000 REM »hhwwhhwhhhhhhh

6010 PRINT IS,CHR$(27);"A";CHRi(18)
6020 PRINT #S,CHW(27);"1";CHR$(3)
6030 RETURN
10000 PRINT IS,"This is a ";k$;"demonstration ";kk$;"of usin
g a few ";h$;'type faces ";hhS;"in a sentence, and includes
";ji;"four "different faces."
12000 WIDTH 60:PRINT #8,CHR$(27);'1";CHR$(8):PRINT #8,CHRI(1
5):LIST #8

73

Chapter Nine
POSTSCRIPT

Further experience with using the WRITERIB program during
the period between writing the previous chapters and the proof
reading have demonstrated the versatility and adaptability of the
program, for some minor modifications have been carried out.

These show how each writer can modify or adapt this program
to suit his own requirements. It should be emphasized, though,
that it is essential to study and learn all that is explained in the
earlier chapters in order to be able to alter programs to suit your
own purposes.

The new program, JAMES7. is shown at the end of this
chapter, and the differences between this and WRITERIB, will
be shown here line by line.

Line 60 contains the first difference, for in it is a means of using
a double apostrophe anywhere in a line of text that is bounded by
the two double apostrophes.

This has been mentioned in a previous chapter, but here is the
explanation of how it works. The computer, in reading the line of
text, comes to that first double apostrophe - but it does not read it
as a double apostrophe. To the computer it is the symbol for the
key 2 when it is used in conjunction with a shift key. Therefore, if
we can get another key to produce the double apostrophe, it will
not treat that as if it is an apostrophe, or that it comes from key 2
on the main keyboard, but will handle it as it does other letters. In
other words it is key 2 being used together with the shift key that
triggers off the mechanism to separate off the text.

Therefore, if we can find a different key to carry the small
double apostrophe, we can use that. In appendix III. page 8of the
Amstrad manual, is No. 162 in the character set. It is the ideal
character for our use. for it is smaller than the proper double
apostrophe, its two parts are separated more than in the larger
one, and when the two are printed on the screen they look
different. Try that now. Enter ‘ PRINT CHR$(162)', and then just
press the shift key and 2 together. You will see two different
looking double apostrophes. The machine will also use its ‘Syntax
error' message, but that will not matter. You will be able to
compare the two.

74

So which key shall we redefine to carry this symbol for us? The
one 1 have chosen in this case is the number 7 in the block of
numbers to the right of the main keyboard. To give that a new
character a different code to any we have used is needed. This
code is the one now given at the end of line 60, and is the only one
to use here. It is KEY DEF 10,0,162. On key 10 we now want the
symbol 162. The KEY numbers for this purpose are shown on
page 16 of appendix III in the Amstrad manual. It only works on
using the key WITHOUT THE SHIFT KEY. If you use the shift
key it will only print 7.

The only other difference in that line is the transposition of
KEY 129 to the first position, instead of the third. This has no
effect; it is merely done that way because I happened to type it in
first. There are now four commands in that line, and they can be
put in any order.

In line 70 there is no change, but in line 80 the WINDOW is
changed. It now gives 66 characters to the line, and the text is
placed more centrally on the screen. The way this has been done is
clear from a comparison of the first two numbers in the command:
1,65, has now become 7,72. The only difference to our working is
that line 100 must have the WIDTH changed to 66.

Line 90 has changed considerably. Between the A=4 (A= 101
in JAMES 7) and the final REM is now a list of commands for the
printer. One of them has been transferred from line 100, and that
is the one that spaces out the lines when printing. It is now the
third in the list of four printer commands in 90, and its spacing has
been changed from 12 to 24 (to give double spacing of the lines).

A REM has been placed at the commencement of these com
mands, and the first after that is an order to the printer to print in
one direction only. It was found (and it may only be a fault in my
own machine) that occasionally the printer would come to a
stop at a word it had started to spell wrongly at the end of a line.
Using this command to print only from left to right has cured this
fault for me. It is the command using ‘U’ +1 for its purpose. It
takes a little longer to print each page.

The second command in line 90 uses T+ a number to indicate
'he distance the printing has to start from the edge of the paper.
This places the printed text on the paper at a suitable position to
give a better margin on the left hand side of the text. A number

75

is chosen that suits your own way of working, and you can cut the
paper edges off to centre the text in the sheet. If you use a hand
guillotine to cut the edges (and this is a reasonable expense for a
writer) it is a good plan to put a mark on the board to indicate the
cutting places.

The third command has been dealt with, and the fourth is the
one that chooses the type face to use. In this case I have used the
PROPORTIONAL one. but you should make your own choice.
The previous chapters have dealt with that.

The REM at the end of line 90 is for your own use. 1 find it
useful to keep a record of the number of the last page in the
chapter I am writing.

In use line 90 is left with the S=0 and a REM after A = 101 in
cases where you want it to print to the screen. When you need to
use the printer, then you must change that 0 to an 8 (S=8), and
take out the REM. On wishing to stop using the printer, and print
to the screen, you MUST remember to change the 8 into an Oand
replace the REM. Then you MUST use RUN to clear all the odd
variables from the computer. When the computer is ordered to
RUN it flushes out variables, and re-reads them. The REM stops
it from doing this re-reading of that line.

Line 100 is now a simple WIDTH and GOTO line.
The lines 260, 270, and 280 arc now changed to 240, 250, and

260. This has been done in order to leave a larger margin at the
bottom of each page. At the same time those repeated uses of
PRINT #S, have been reduced by using the STRINGS command.
If you compare lines 240 on JAMES7 with 260 on WRITERIB
you will see how this is done. CHR$(10) tells the computer to
print on a line lower, and the string of 4 makes them skip four
lines.

Line 800 has been changed to conform with the new lines 240,
250, and 260, and is just a REM line to remind you of which line
you use for the number of lines you count.

Line 900 is a new REM line to remind you of the new way to
locate the perforated lines between pages. You may wish to use
different wording. The new positioning obviates the waste of a
plain sheet each time you position the paper. The new position is
with the leading edge of the paper just showing ('/sth. inch)
beyond the ribbon. The amount showing is subject to a little trial
and error, but in any case is an improvement on the method used
previously.

76

In line 1000 is shown the change that has taken place to let you
position the paper more accurately. The printing of a dash has
been removed, although it is still in place for all the rest of the
pages. With this removed (by taking out the first two PRINT #S,
statements and the *_’) the line starts with the first printing of the
page number. That is the only difference, apart from a REM at
the end to remind you of the number of lines to count at the
beginning of the first page. Under this system the line 1010 starts
with the seventh line of counting, and there is now no difference
between the counting of the first page and all the succeeding ones.

If you have read and understood the previous chapters, the
changing of WRITERIB to JAMES7 should cause you no
trouble. The new program is suitable for almost any use a writer
can think up in his particular profession; whether it be short
articles, or a long novel. A study of the DMP 2000 handbook, and
some changes here and there, should enable anyone to produce
clean copy.

There has been much talk about word processors, and the way
they can prevent bad spelling. I have never yet found one that
could differentiate between ‘there’ and ‘their’, and this is one of
the mistakes a writer does not care to think about; it can happen
far too easily. There are many more words that are liable to be
confused; think of‘too’, ‘to’, and ‘two’. To a computer they are all
spent properly, but the sense of them is different.

So far I am convinced that a BASIC program, such as J AMES7,
is a far better proposition than a word processor as such. It is the
easiest sort to adapt to a different manner of use, for it can quickly
be changed into a program to write your letters, for example.
There are many other possibilities.

You may probably think of other modifications to the program.
If you do, then write to me care of the publisher, for I shall be very
pleased to hear about them.

77

1A DCM ID non rTIxTTxTTTTTTT

28 REM JHHHHH JAfES of LITTLE HEATON
7Q DCMJO ntn “«ITTTTTTTfTTTTTTTTT

AA DCM &X&XXJLXXX&XJLB 1AMCC 7 *»» Hix imm«^xTF^FiF^F ^r^F J D * TF^Fm^TiF ^F^F^F^FH^F^F^x

CA DCMJO ntn xTxTTTtTFffIFIIIFFITFIIFTTTJltTTFFTf

¿8 KEY 129,"PRINT #S,":KEY 138,"CLS:LIST 1000-“+CHR$(13):KEY 12
8,'RUN'*CHR$(13):KEY DEF 10,0,162
70 INK 0,23:INK 1,0:BORDER 23
80 MODE 2:WINDOW 7,72,1,25
90 S=0:A=101:REM PRINT tS,OR$(27);"U";CHR$(1):PRINT IS,CHRi(27
);'1';CHR$(6):PRINT IS,Clf«(27);"A";CHR$(24) ¡PRINT IS,CHR$(27);
■p';CH«(l):REM to 111 (incl)
100 WIDTH 66 ¡GOTO 1000
240 PRINT IS,STRING$(4,CHRI(10))¡PRINT IS,"/¡PRINT #S:PRINT IS
,SPC(38);A:PRINT #S¡A=A+l¡RETURN
250 PRINT IS,STRINGS(3,CHR$(10))¡PRINT IS,¡PRINT IS:PRINT IS
,SPC(30);A¡PRINT iS¡A=A+l¡RETURN
260 PRINT IS,STRING$(2,CH«(10) »¡PRINT IS,"_':PRINT IS:PRINT IS
,SPC(30);A:PRINT #S¡A=A+l¡ RETURN
800 REM for paging:- 24 lines GOSUB 240, 25 lines (250), 26 lin
es (260)
980 REM » ♦ To start set leading edge of paper just l/8th. inch
froa the ribbon

1800 PRINT IS,SPC(28);A:A=A+1:PR1NT IS:PRINT IS,SPC(20);"JAMES
OF LITTLE HEATON":PRINT IS:PRINT IS,SPC(25);"Chapter Seven":PRI
NT IS:REM 6 lines

78

INDEX

Page
#S ... 14
ASC Code .. 44
AUTO .. 11
CAT .. 40
Characters .. 3, 6, 24
Colours .. 12
Copy Cursor... .40
DATA-... 31,46,47
DELETE .. 32
DMP 2000..53
DMP-1 .. 7
Disc Drives .. 4
Disc capacity .. 4, 40
Double apostrophe .. 24, 25, 74
Extended type ... 7
FOR-NEXT.. 36, 37
FRE .. 3
GOSUB .. 21,45
GOTO .. 16
Hardware .. 3
INSTR .. 36
Justifying .. 29
KEY .. 10
LEFTS .. 37
Line count ... 30, 32
Line numbers .. 9, 31
Lines to page... 17,75
Listing... 69
MERGE ... 65
MIDS ... 37
MODE .. 12
Paging ... 15,19,31,43
Perforations .. 20
Printer codes .. 53, 54, 74
REM ... 9,19
RENUM .. 31
RETURN ... 21,45
Rapaword ..34
SHIFT .. 17
SPC .. 18
STRINGS .. 44
Spacing words... 29
String variables .. 59
Text entering .. 23
Typefaces .. 55,66,76
Variable ... 14
WHILE-WEND ... 35
WIDTH .. 15,75
WINDOW ... 13

79

Notes

Notes

Notes

Notes

Notes

Notes

Notes

Notes

Please note following is a list of other titles that are available in
our range of Radio, Electronics and Computer books.

These should be available from all good Booksellers, Radio
Component Dealers and Mail Order Companies.

However, should you experience difficulty in obtaining any title
in your area, then please write directly to the publisher enclosing
payment to cover the cost of the book plus adequate postage.

If you would like a complete catalogue of our entire range of
Radio, Electronics and Computer books then please send a
Stamped Addressed Envelope to:

BERNARD BABANI (publishing) LTD
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W6 7NF

ENGLAND

160 Coil Design and Construction Manual £2 50
202 Handbook of Integrated Circuits (ICs) Equivalents and Substitutes £2 95
205 Hi-Fi Loudspeaker Enclosures £2 95
208 Practical Stereo and Quadrophony Handbook £0 75
214 Audio Enthusiast's Handbook £0 85
219 Solid State Novelty Projects £0 85
220 Build Your Own Solid State Hi-Fi and Audio Accessories £0.85
221 28 Te st ed Transistor Projects £2 95
222 Solid State Short Wave Receivers tor Beginners £1 95
223 50 Projects Using IC CA3130 £1.25
224 50 CMOS IC Projects £2 95
225 A Practical Introduction to Digital ICs £1 75
226 Howto Build Advanced Short Wave Receivers £2 95
227 Beginners Guide to Building Electronic Projects £1 95
228 Essential Theory for the Electronics Hobbyist £2 50
BP1 • 14 First & Second Books of Transistor Equivalents & Substitutes £3 50
BP2 Handbook of Radio, TV, Industrial and Transmitting Tube £0 60

and Valve Equivalents
BP6 Engineer's and Machinist's Reference Tables £1 25
BP 7 Radio and Electronic Colour Codes Data Chart £0 95
BP27 Chart of Radio. Electronic. Semiconductor and Logic Symbols £0 95
BP28 Resistor Selection Handbook £0 60
BP29 Major Solid State Audio Hi-Fi Construction Projects £0 85
BP33 Electronic Calculator Users Handbook £1 50
BP34 Practical Repair and Renovation of Colour TVs £2 95
BP36 50Circuits Using Germanium Silicon and Zener Diodes £1 50
BP37 50 Projects Using Relays, SCRs and TRIACs £1 95
BP39 50 (FET) Field Effect Transistor Projects £1 75
BP42 50 Simple LED Circuits £1 95
BP44 IC 555 Projects £2 50
BP45 Projects in Opto-electronics £1.95
BP48 Electronic Projects for Beginners £1 95
BP49 Popular Electronic Projects £2.50
BP53 Practical Electronics Calculations and Formulae £2 95
BP54 Your Electronic Calculator and Your Money £1 35
BP56 Electronic Security Devices £2 50 J
BP58 50 Circuits Using 7400 Series ICs £2 50
BP59 Second Book of CMOS IC Projects £1 95
BP6O Practical Construction of Pre-amps. Tone Controls.

Filters and Attenuators
£1 95

BP61 Beginners Guide to Digital Techniques £1 95
BP62 The Simple Electronic Circuit & Components £3 50

(Elements of Electronics - Book 1)
BP63 Alternating Current Theory £3 50

(Elements of Electronics - Book 2)
BP64 Semiconductor Technology £3 50

(Elements of Electronics - Book 3)
BP65 Single IC Projects £1 50
BP66 Beginners Guide to Microprocessoi sand Computing £1 95
BP67 Counter Driver and Numeral Display Projects £2 95
BP68 Choosing and Using Your Hi-Fi £1 65
BP69 Electronic Games £1 75
BP70 Transistor Radio Fautt-finding Chart £0 95
BP71 Electronic Household Projects £1 75
BP72 A Microprocessor Primer £1 75
BP73 Remote Control Projects £2 50
BP74 Electronic Music Projects £2.50
BP75 Electronic Test Equipment Construction £1 75
BP76 Power Supply Projects £2 50
BP77 Microprocessing Systems and Circuits £2 95

(Elements of Electronics - Book 4)
BP78 Practical Computer Exjjeriments £1 75
BP79 Radio Control for Beginners £1 75
BP80 Popular Electronic Circuits Book 1 £2 95
BP82 Electronic Projects Using Solar Cells £1 95
BP83 VMOS Projects f1 95
BP84 Digrtal IC Projects £1 95
BP85 International Transistor Equivalents Guide £3 50
BP86 An Introduction to BASIC Programming Techniques £1 95
BP87 50 Simple LED Circuits - Book 2 £1 35
BP88 How to Use Op-Amps £2 95
BP89 Communication £2 95

(Elements of Electronics - Book 5)
BP90 Audio Projects £1 95
BP91 An Introduction to Radio DXing £1 95
BP92 Electronics Simplified Crystal Set Construction £1 75
BP93 Electronic Timer Projects £1 96
BP94 Electronic Projects for Cars and Boats £1 95
BP95 Model Railway Projects £1 96
BP97 IC Projects for Beginners £1 96
BP98 Popular Electronic Circuits - Book 2 £2 25
BP99 Mini-matrix Board Projects £1 95
BP101 How to Identify Unmarked ICs £0 96
BP103 Multi circuit Board Projects £1 95
BP104 Electronic Science Projects £2 25

BP105 Aerial Project» £1.95
BPI 06 Modern Op-amp Project» £1 95
BP107 30 Solderless Breadboard Projects - Book 1 £2 26
BPI 08 International Diode Equivalents Guide £2.25
BP109 The Art of Programming tha 1K ZX81 £1 95
BP110 How to Get Your Electronic Projects Working £1 95
BP111 Audio (Elements of Electronics - Book 6) £3 50
BP112 A Z-80 Workshop Manual £3.50
BP113 30 Solderless Breadboard Projects - Book 2 £2.26
BP114 The Art of Programming the 16K ZX81 £2 50
BP115 The Pre-computer Book £1 95
BP117 Practical Electronic Building Blocks - Book 1 £195
BP118 Practical Electronic Building Blocks - Book 2 £1.95
BP119 The Art of Programming theZX Spectrum £2.50
BP120 Audio Amplifier Fautt-finding Chart £0.95
BP121 Howto Design and Make YourOwnP.C.B s £1.95
BP122 Audio Amplifier Construction £2.25
BP123 A Practical Introduction to Microprocessors £1 95
BP124 Easy Add-on Projects for Spectrum. ZX81 & Ace £2.75
BP125 25 Simple Amateur Band Aerials £1 95
BP126 BASIC & PASCAL in Parallel £1 50
BP127 How to Design Electronic Projects £2.25
BP128 20 Programs for the ZX Spectrum and 16KZX81 £1.95
BP 129 An Introduction to Programming the ORIC-1 £1.95
BP130 Micro Interfacing Circuits - Book 1 £2 26
BP131 Micro Interfacing Circuits - Book 2 £2 25
BP132 25 Simple Shortwave Broadcast Band Aerials £1.95
BPI 33 An Introduction to Programming the Dragon 32 £1.95
BP134 Easy Add-on Projects for Commodore 64, Vic-20, BBC Micro and Acorn Electron £2 95
BP135 Secrets of the Commodore 64 £1 95
BP 136 25 Simple Indoor and Window Aerials £1 75
BP137 BASIC & FORTRAN in Parallel £1.95
BP138 BASIC 8« FORTH in Parallel £1.95
BP139 An Introduction to Programming the BBC Model B Micro £1 95
BP140 Digital IC Equivalents and Pin Connections £5.95
BP141 Linear IC Equivalents and Pin Connections £5.95
BP142 An Introduction to Programming the Acorn Electron £1 95
BP143 An Introduction to Programming the Atari 600/800 XL £1 95
BP144 Further Practical Electronics Calculations and Formulae £4 95
BP 145 26 Simple Ttopical and MW Band Aerials £1.75
BP146 The Pre-BASIC Book £2 95
BP147 An Introduction to 6502 Machine Code £2 50
BP148 Computer Terminology Explained £1 95
BP149 A Concise Introduction to the Language of BBC BASIC £1.95
BP150 An Introduction to Programming the Sinclair OL £1.95
BP 152 An Introduction to Z80 Machine Code £2 75
BP153 An Introduction to Programming the Amstrad CPC 464 and 664 £2 50
BP154 An Introduction to MSX BASIC £2 50
BP155 International Radio Stations Guide £2.95
BP156 An Introduction to QL Machine Code £2 50
BP157 Howto WriteZX Spectrum and Spectrum ■ Games Program* £2 50
BP 158 An Introduction to Programming the Commodore 16 and Plus 4 £2 50
BP159 How to Write Amstrad CPC 464 Games Programs £2 50
BP161 Into the QL Archtve £2 50
BP 162 Counting on QL Abacus £2 50
BP163 Writing with QL Quill £2 50
BP164 Drawing on QL Easel £2 50
BP 169 How to Get Your Computer Programs Running £2 50
BP170 An Introduction to Computer Peripherals £2 50
BP171 Easy Add-on Projects for Amstrad CPC 464, 664. 6128 and MSX Computers £2 95
BP173 Computer Music Projects £2.95
BPI 74 More Advanced Electronic Music Projects £2 95
BP175 How to Write Word Game Programs for the Amstrad CPC 464,664 and 6128 £2 95
BP176 A TV-DXers Handbook £595
BP177 An Introduction to Computer Communications £2 95
BP178 An Introduction to Computers in Radio £2 95
BP 179 Electronic Circuits for the Computer Control of Robot» £2.95
BP 180 Computer Projects for Model Railways £2.95
BP181 Getting the Mostfrom Your Printer £2.95 ¡
BP182 MIDI Projects £2 95
BP 183 An Introduction to CP^M £2 95
8P184 An Introduction to 68000 Assembly Language £2 95
BP19S Electronic Synthesiser Construction £2 95
BP186 Walkie-Talkie Project» £2 95
BP187 A Practical Reference Guide to Word Processing on the Amstrad PCW 8256

and PCW 8512
£5 95

BP 188 Getting Started with BASIC and LOGO on the Amstrad PCW 8256 and PCW 8612 £6 95
BP189 Using Your Amstrad CPC Disc Drives £2 95 ।
BP190 More Advanced Electronic Security Projects £2 95
BP191 Simple Applications of the Amstrad CPC» for Writers £2 95
BP192 More Advanced Power Supply Projects £2.95
BP193 Starting LOGO £2.95
BP194 Modern Opto Device Projects £2 96
BP195 An Introduction to Communications and Direct Broadcast Satellites £3 95
BP196 BASIC & LOGO in Parallel £2 95

fel BERNARD RARANIRP191

Simple Applications
of the Amstrad CPCs

for Writers

■ Many dedicated word processor programs are expensive and so
sophisticated that using them detracts the writer's thoughts from the
actual job in hand, that is creative writing.

■ This book shows how an Amstrad CPC464, 664 or 6128 with disc
drives and DMP1 or DMP 2000 printer can be turned into a simple but
adequate word processor by using a BASIC program of only fifteen lines.
Each of the program lines are dealt vyith in detail so that even someone
encountering BASIC for the first timi should be able to use it with the
minimum of difficulty.

■ A useful addition to the library of all CPC owning authors, writers,
journalists, students or anyone who has to prepare or present a typed
report, article or manuscript.

£2.95

0029 5

