

‘MuSlidl AppliCdtiMS
of the ^tdti STs

Penfold

BERNARD BABANI (publishing) LTD
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W6 7NF

ENGLAND

Please Note

Although every care has been taken with the production of this book to ensure that any information, projects,
designs, modifications and/or programs etc. contained herewith, operate in a correct and safe manner and also
that any components specified are normally available in Great Britain, the Publishers do not accept responsibility in
any way for the failure, including fault in design, of any information, project, design, modification or program to
work correctly or to cause damage to any other equipment that it may be connected to or used in conjunction with,
or in respect of any other damage or injury that may be so caused, nor do the Publishers accept responsibility in any
way for the failure to obtain specified components.

Notice is also given that if equipment that is still under warranty is modified in any way or used or connected with
home-built equipment then that warranty may be void.

The author used ATARI ST computers and versions of software that were available in Great Britain at the time of
writing this book. Certain details may vary with versions of these machines for other countries, and with versions of
software sold in other countries.

© 1988 BERNARD BABANI (publishing) LTD

First Published — September 1988
Reprinted — April 1991

British Library Cataloguing in Publication Data
Penfold, R. A.

Musical applications of the Atari STs.
1. Music. Applications of Atari ST micro computer systems
I. Title
780’ .23'54165

ISBN 0 85934 191 7

Set from disc by Commercial Colour Press, London E.7
Printed and Bound by The Guernsey Press Co. Ltd. Channel Islands

Preface

Not so very long ago there was no clear leader in the
music computer stakes, with the possible exception of
the Commodore 64. However, several computers were
quite popular for music applications, with the Com
modore 64 being just one of several machines with a
respectable range of music oriented software available,
as was the Atari ST. The "64"was the most popular,
but did not dominate the market. The ST gradually
overhauled all the competition, including the "64".
Once it gained a good lead the situation changed quite
rapidly, with the ST becoming very much the music
computer. It now has an unrivaled (but still rapidly
expanding) range of available software and music
add-ons. With its built-in MIDI ports, large memory,
excellent graphics, high processing power, and quite
moderate cost, it is perhaps the obvious choice for
demanding music applications such as MIDI
sequencing, and its sudden leap to total dominance is
not really all that surprising.

This book is aimed at the musician who wishes to
exploit the potential of the ST computers in music
applications. This mainly means using the ST in MIDI
systems, and much of the book is devoted to a
description of MIDI in general, MIDI as it applies to the
ST, and running MIDI applications on the ST. A
knowledge of computing is certainly an asset, but most
of the information is usable by someone with little
knowledge of computing. It is assumed though, that
the user has a basic knowledge of using the ST and
running programs on it. The small manual provided with
the ST provides instructions on using the mouse,
running applications programs, etc., and this is all the
preparation you should need. For those who are more
technically minded and favour the do-it-yourself
approach, there are chapters covering some simple
hardware projects, programming the ST's sound chip,
and MIDI programming (including some useful MIDI
processing routines).

R. A. Penfold

Acknowledgements

Fast BASIC is a registered trademark of Computer Concepts, Gaddesden Place, Hemel Hempstead, Herts., HP2 SEX.

ST and ST BASIC are registered trademarks of Atari Corporation, Sunnyvale, CA 94086, U.S.A.

Notator is a registered trademark of C-LAB Software, Postbox 70 03 03, 2000 Hamburg 70, Germany, whose U.K.
agents are Sound Technology PLC, 6 Letchworth Business Centre, Avenue One, Letchworth, Herts., SG6 2HR.

Hybrid Arts EZ-Track and EZ-Score are registered trademarks of Syndromic Music, 24—26 Avenue Mews,
Muswell Hill, London, N10.

Contents

Page

Chapter 1. THE INTERNAL SOUND GENERATOR................... 1
BASIC Sound Generation.............................. 2
WHILE , , . WEND... 3
Chip Description... 4
The Registers........... 5
Accessing The Registers.......................... 7

Chapter 2. MIDI CONNECTIONS.................................. 9
MIDI Advantages............. . .. 9
MIDI Wiring... 10
ST MIDI Ports...11
Basic Connections..................... 11
Star System.. 14
More Complex Set ups .. 15
Merging....................................... —................. . 16
Channel Limitations... 20
Multiple Outputs... 20

Chapter 3. GETTING THE MESSAGE.. 22
Modes ... 22
Mode 1... 22
Mode 2... 22
Mode 3............. 22
Mode 4.. ..22
Beyond Mode 4.. .23
Transmission Modes.. 24
Note On/Off................. 24
Key Pressure......... ...24
Controls...................... 25
Mode Change... 25
Program Change...25
Pitch Bend........................... 26
System Messages... 26
Song Position Pointer................................... 26
Song Select/Tune Request.......................... .27
System Exclusive................. 27
System Real-Time................. 27
Finally..............................28

Chapter 4. MIDI TECHNICALITIES......................... 29
The Interface...29
The Hardware.. 31
MIDI Codes... 31
Note On/Off... 31
Key Pressure.................. .31
Control Change Etc................................ .31
Pitch Wheel................................. 32
Program Change... 32
System Messages....................... 32

Chapters. APPLICATIONS PROGRAMS... 34
Sequencing........... .. 34
Why ST Sequencing?......... 34
Real-Time Sequencing.................................... .35
Filtering...37
Quantisation 38
Editing 40
Event Editing............................ .41
Notation Programs.................................. 42
All In One Approach...44

Page
In Practise........ 45
Other Program Types. ,.................... 47
Visual Editors... 49
PD Software................. 50
Some Programs... 50
MIDI Instruments.. 51

Chapters. ST ADD-ONS......................... 53
THRU Box.. 53
The Circuit... 54
Construction.. 55
MIDI Mixer...58
The Circuit...................... 58
Construction...59
MIDI Switcher...................... 59
CV/Gate Controller..................................... 63
Which Port?...64
The Circuit.. 65
Parallel Port....................................... 67
Adjustment................... 68
Programming.. 70

Chapter?. MIDI PROCESSING... 72
MIDI Processing..................................... 72
Channelising.. 73
ST Languages.......................... .76
Note Separator Program.................... 77
Fast BASIC Version.. 78
Channel Shifting... 80
Filtering............................ .81
Perfect Harmony.................. 82
Velocity Control.............83
All Change..... ... 84
MIDI Terminal.. 86
Effects... 87
Real-Time...............87
Hardware........... ... 87

index 89

Chapter 1
THE INTERNAL SOUND GENERATOR

The ST range of computers have gradually established
themselves as the standard machines for electronic
music applications, ousting the Commodore 64 from
this position. The inclusion of MIDI ports on all the ST
computers obviously played a big part in this success,
but a few other computers have been similarly equipped
but failed to gain widespread acceptance amongst
music users. The ST computers do not just have built-in
MIDI ports in their favour, they use the powerful 68000
microprocessor, have excellent graphics capability,
plenty of memory even in the basic models, and are
quite affordable. They really do deliver Atari's promise
of "power without the price"!

There are several versions of the ST from the original
620ST to the new "Mega" STs with their massive
memory. The 520ST models have been gradually
improved over the years. Originally the operating
system had to be loaded from disc each time the
computer was used, leaving little memory free for
applications programs. Later models have the operating
system built-in on ROM chips so that a large proportion
of the RAM is left free (and most owners of the early
machines have now had the ROM chips fitted to their
machines).

The 520STM has a built-in modulator so that it can
be connected to a television set which will act as a
colour monitor. This is a useful addition, as many
people who are primarily interested in using the ST for
music applications opt for the monochrome monitor.
The built-in modulator allows programs that run in the
low or medium resolution colour modes to be run
without having to go to the expense of buying a colour
monitor. However, the quality of the display provided

by a colour television might not be very good, and if
programs that will only run in a colour mode are to be
used a great deal, there is no real substitute for a good
colour monitor. Most music software seems to be
usable in medium resolution colour or high resolution
monochrome, but there have been a few that are
monochrome only (although mostly seem to have been
modified so that the current versions also run in colour).
There may be a few music programs that will only run in
one of the colour modes, but I have not yet
encountered one. It is perhaps worth mentioning that
the quality of the ST monochrome display is absolutely
superb. Unless a program makes really good use of
colour I have no hesitation in opting for monochrome
operation.

The standard version of the 520ST at the time of
writing this book is the 520STFM, which has both a the
television modulator and a floppy disc drive built-in.
Floppy discs are used for program and data storage,
and virtually all software for the ST computers is only
available on disc. The STs do not have a cassette port,
and little software is available in cartridge form (I think
that all STs are equipped with a cartridge port). Even
with cartridge software you might still need a disc drive

for data storage. An ST computer is of very limited use
without a disc drive. If you have an ST without a built-in
disc drive you will certainly need to buy an external drive
before you can use it properly (or use it at all) in music
applications. The built-in drive of the original 520STFM
was single-sided type having a formatted capacity of
about 360k. This is adequate for most purposes, but
there are some programs that require a double-sided
drive with its 720k formatted capacity. A 520STFM

1

plus an external double-sided drive might be suitable, or
it might be possible to have the computer upgraded to a
double-sided built-in drive. Current 520 STFM's are
fitted with a 720k drive.

The 1040STF is basically just a 520STFM with an
extra 520k of memory added to the printed circuit board
(all 1040 STFs have a double-sided drive). The absent
"M" in its name indicates that no television modulator is
included. However, some suppliers seem to offer a mod
ulator as an optional extra, and it seems likely that it
will be included as standard in the near future. If you are
interested in software that requires a double-sided drive
and the extra memory, a 1040STF is the obvious
choice. A lot of software will operate with 520k of
memory, but works much better with 1040k of RAM.
For example, a lot of sequencers will work on a 520k
machine, but have relatively limited note capacity. If
you only wish to store short sequences a 520ST series
machine should suffice, but otherwise a 1040k version
will be needed.

A lot of people (myself included) have opted for a
520STFM plus an upgrade to 1040k of RAM. This is
not a very difficult or expensive modification, and if you
are reasonably competent at electronics construction it
can be accomplished using a low cost do-it-yourself
memory upgrade kit. This gives results that are much
the same as would be obtained using a 1040STF, but at
a significantly lower price. Whether or not this remains
a worthwhile way of doing things obviously depends on
the future pricing policy of these computers, but it is
something worth considering.

The Mega STs look very different to the 520 and
1040 series, and have the keyboard and main elec
tronics as separate units, rather than in a single box.
Despite this they are basically just the same electronics
plus larger amounts of memory (2080k or 4160k). They
should eventually be fitted with the "blitter" chip as
standard, but at the time of writing this there seem to be
some delays here. The blitter is designed to speed up
certain processes, and in particular it gives higher speed
graphics with software that is designed to exploit it. For
most music applications the blitter and the increased
memory would not seem to be very important. How
ever, some sampling systems that are based on the ST
use the computer's memory for sample storage, and
can use very large amounts of memory, A Mega ST
could be very advantageous with a system of this type,
but we are talking in terms of some quite expensive
up-market equipment which few electronic musicians
can give serious consideration.

A point to keep in mind if you are not an ST owner
but are thinking of buying one for music purposes, or
for any other application come to that, is that you
should try to choose the software first. When you have
selected the best software for your purposes, determine
exactly what hardware is needed in order to run it
properly, and then buy the appropriate version of the
ST plus any peripherals (monitor, second disc drive,
etc.)'that are needed to run it. Buying a computer
system and then looking for software to run on it is
definitely a case of "putting the cart before the horse".

BASIC Sound Generation
Probably few musicians buy an ST because they want
to use its internal sound generator. On the other hand, if
you write software and you wish to have music and (or)
sound effects to accompany it, you will need to make
use of the sound generator. Some programs use the
MIDI output port plus external instruments to provide a
musical accompaniment, but this is normally as an
optional extra to the standard output from the built-in
sound chip.

We will start our exploration of the ST's music
capabilities with details of programming the sound chip
from BASIC, This is the easiest way of controlling the
device, as ST BASIC has two special commands for
handling sound. The "SOUND" instruction is particu
larly useful, and is aimed specifically at producing
musical notes rather than just sounds of arbitrary pitch
for sound effects applications. There is also a WAVE
instruction which is concerned with the control of
envelope shapes and other factors.

The SOUND instruction is followed by five numbers
which respectively control the channel, volume, note,
octave, and duration values. These are each described
in detail below

CHANNEL: The sound generator is a three channel
type, which merely means that it can produce three
notes at once (three voice polyphony in other words).
BASIC does not automatically assign any notes you
include in a program to a spare sound channel. It is up
to the programmer to handle this by assigning each
note to a specific sound channel. These channels are
simply numbered 1 to 3.

VOLUME: There are sixteen volume settings avail
able, from 0 to 15. 0 represents minimum volume,
through to maximum volume at a value of 15. I suppose
that strictly speaking there are only fifteen volume
settings, since a value of 0 switches off that channel
and gives zero output. The importance of this zero
volume setting will become apparent shortly.

NOTE: The note value is in the range 1 to 12, and this
gives a coverage of one octave in semitone increments.
This list shows the corresponding note for each
number.
1 C
2 C sharp
3 D
4 D sharp
5 E
6 F
7 F sharp
8 G
9 G sharp
10 A
11 A sharp
12 B

OCTAVE: A range of eight octaves are available,
using octave values of 1 to 8. Middle A (440Hz) would
to be note 10 in octave 4. The pitch range covered by
the sound generator under BASIC control is quite
impressive, but due to the way computer sound
generators work, the pitch accuracy at high frequencies
is usually very much less good than the accuracy at low
pitches. You may find that the pitch of some high notes
is less than perfect.

DURATION: This value determines the length of a

2

note, and is in fiftieths of a second. Some sources
quote this as being in sixtieths of a second, and it
probably depends on whether your ST has a European
(50Hz) or American (60Hz) display. I will assume here
that this value is in fiftieths of a second, and any readers
who are using an American version of the ST will have
to alter duration values to compensate for the slight
difference in the internal timing software of their
computers.

The duration value does not operate quite as you
might expect. Load ST BASIC and then try typing this
command into the computer: -

SOUND 1,12,10,4,50 RETURN

One might reasonably expect this to produce middle
A on channel 1 at a fairly high volume level for one
second. What will actually happen is that the note will
be produce alright, but after one second the "ok"
prompt will return and the note will continue to sound!
What the note duration parameter is actually doing is
providing a hold-off that prevents a new note from
starting for the specified time. It does not terminate a
note after the given period of time has elapsed. If you
are supplying a long sequence of notes to the sound
generator, this fact will not be apparent at first since a
new note will be commenced as soon as the duration
period on the previous one has expired. It will always be
apparent at the end of the sequence when the last note
continues indefinitely. To avoid this, each note or
sequence of notes must be terminated by a "dummy"
SOUND instruction having a volume parameter of zero.
For instance, to halt activity on channel 2, the
instruction: -

SOUND 2,0.0,0.0

could be used.
To switch off the demonstration SOUND example

given previously, all you have to do is press the
"RETURN" key. The key "click" will then take over
from your SOUND instruction, and will switch off the
sound generator once it has been completed.

Sequencing
Producing a simple sequence from BASIC is quite easy.
Probably the most simple way of tacking the task is to
use a FOR...NEXT loop to repeat a SOUND instruction
as many times as you need notes in the sequence. Note

values can be held in DATA statements, and READ on
each loop of the program. Note durations can be
programmed in the same way. Any parameter in a
SOUND instruction can be in the form of a variable
incidentally. This simple demonstration program at the
bottom of the page produces an ascending scale of C
major.

Lines 20 and 50 are the FOR...NEXT loop (called
"LOOPS"), and as eight notes are included in the
sequence these loop the program eight times. The note,
octave, and duration values are held in variables "n",
"o", and "d". These are READ at line 30 and used in
the SOUND instruction at line 40. I have not bothered
to make the volume programmable, but this could be
achieved by using a fourth variable in the program.

The sequence is stored in the DATA statement at line
60, and this contains sets of the three SOUND values.
Note that as the parameters are read in the order note,
octave, and value, they must be placed in the DATA
statement in the same order. Large amounts of data can
be held in DATA statements as it is quite in order to use
a number of these statements if there is too much data
to be held in a single statement. My sources of
information on ST BASIC do not seem to quote a limit
for the amount of data that can be stored in DATA
statements, but with most BASICs the maximum line
length (usually about 255 characters) sets the limit. In
practice it would be difficult to program long sequences
using this method, but it should be perfectly suitable
where a short "jingle" in a program is all that is
required.

WHILE...WEND
This improved sequencer program, shown overleaf,
makes use of the ST BASIC WHILE...WEND loop.

Line 20 sets variable n ("note") at a starting value of
1. The WHILE...WEND loop at lines 30 and 60 keeps
the program looping around these lines for as long as n
is greater than zero. The program operates in much the
same way as the previous one, with note, octave, and
duration values being READ from DATA statements at
the end of the program. However, in this case the
volume parameter of the SOUND instruction has also
been made a variable ("v"). This enables the volume of
notes to be programmed, but it also enables the sound
statement at line 50 to be used to terminate the
sequence. Using zero for each parameter at the end of
the final DATA statement has two effects. Firstly, it
ends the WHILE...WEND loop. Secondly, it sets the
volume parameter at zero so that the sound generator is
silenced. This method is much neater than the original
version, and there is no need to specify the number of
notes in the loop instructions. This makes things easier

10 REM SIMPLE SEQUENCER
20 FOR LOOPS = 1 TO 8
30 READ n , o,d
40 SOUND 1,12,n,o,d
50 NEXT
60 DATA 1.3.20,3,3,20,5,3,20,6,3,20,8,3.20,10,3,20,11.3,20,1,4,80
70 SOUND I.0,0,0,0

3

10 REM I MPROVED SEQUENCER
20 n = 1
30 WHILE n > 0
40 READ v, n, o, d
50 SOUND 1. v , n , o, d
60 WEND
70 DATA 12,1,3,20,12,3,3,20,12,5,3,20,12,6,3,20,12,8,3,20,12,10,3,20
80 DATA 12,12,3,20,15,1,4,80,0,0,0,0

if you program a fairly long sequence, or if you keep
changing the sequence. However, you must always
remember to include the four zeros at the end of the
final DATA statement.

Associated with SOUND there is the WAVE instruc
tion. This is used to control such things as the sound
chip's noise generator, channel enable/disable register,
and envelope shaper. It is very different to the SOUND
instruction in that ST BASIC does not provide much
help with this one. It is basically just taking the values
you put in the WAVE instruction and placing them in
some of the sound chip's registers. You therefore need
an understanding of the sound chip in order to make
proper use of this instruction. Many programmers pre
fer to simply control the registers of the chip directly!

Anyway, the WAVE instruction is normally followed
by four parameters, but it can have a fifth. Briefly, the
parameters are "enable", "envelope", "shape",
"period", and “wait". "Enable" determines which tone
channels are enabled, and can be used to mix the
output of the noise generator with one or more of the
tone channels. "Envelope” is used to enable or disable
the envelope shaper (which takes over from the volume
value when it is enabled). "Shape" selects one of
several envelope shapes. These shapes are built into the
sound chip, and apart from selecting the one you
require they are not under software control. The
duration of each envelope (or each cycle of a repeating
type) is controlled by the "period" value. The "wait"
parameter is often omitted, and it does not send a value
to a register of the sound chip. Its effect seems to be the
same as the duration value in a SOUND instruction. In
other words, it just provides a programmable delay
before the WAVE instruction is terminated and the
program moves on to the next instruction.

The function of each part of the WAVE instruction
should become clearer if you study the following
section which describes the sound chip in some detail.

Chip Description
For those who would like to delve more deeply into
using the sound chip this full description of the device is
provided. The importance of this information depends
on how you will be using the ST. If you are only
interested in running applications software the sound
chip is of no real importance at all. If you are only
interested in writing MIDI software it remains equally
unimportant. If you are programming the ST in a
language that provides high level support for the sound
chip, a detailed knowledge of the chip may be no more
than slightly useful. It depends which language you use,
and whether you wish to fully exploit the sound chip's

potential. If you wish to program sound on the ST using
a language that does not provide any major support for
the sound chip, a detailed knowledge of its registers is
essential, as this will be the only way of accessing it
(apart from using the XB1OS calls from a suitable
language, which still necessitates a fairly detailed
knowledge of the chip).

This description is only intended for reasonably
experienced programmers, and direct control of the
sound generator is not something I would recommend
for beginners. The sound chip is capable of quite good
results, but it needs carefully planned programming to
get the best from it. Quite frankly, programming a MIDI
instrument via the MIDI output port is a considerably
easier way to get much better results. On the other
hand, the internal sound chip is interesting for those
who like dabbling with computer hardware, and who
like a challenge!

The sound chip used in the ST computers is the
AY-3-8910 or equivalent. This does not seem to be held
in very high regard these days, but it was considered to
be one of the best computer sound chips a few years
ago. It seems to have lost ground in the face of
competition from the "SID" chip of the Commodore
64, the four channel sampling sound system of the
Commodore Amiga, and the Ensoniq synthesiser chip
of the Apple IIGS. Despite these advances, the
AY-3-8910 remains a reasonably competent device
capable of three channel tone generation plus noise
generation, ft lacks sophistication in that it does not
have variable waveforms and filtering, but it does
provide a variety of envelope shapes. You will often see
the Atari ST's sound chip referred to as a PSG, and we
will use this convention. PSG simply stands for "pro
grammable sound generator".

In order to program the PSG effectively you need to
understand the way in which it generates tones. The
effect of values written to its tone control registers can
otherwise seem to be rather strange. Electronic sound
generators can use a system which is analogous to a
piano, where each note is produced by a separate string
or other form of resonator. The electronic equivalent of
a mechanical resonator is an oscillator, which is a circuit
that produces a series of electrical pulses. When these
are used to drive a loudspeaker they produce an audio
tone at the frequency of oscillation.

This method has been used in the past with electronic
organs, but it requires a lot of oscillators in order to give
a wide range of notes. This is expensive, it takes a long
time to get everything set up and tuned correctly, and
frequent readjustment might be needed. Most
computer sound generators, including the ST's PSG,

4

use a totally different approach. The basic idea is to
have a high frequency oscillator, and to feed this to
some form of complex frequency divider having
numerous outputs. In this way a single oscillator can be
used to provide a wide range of output frequencies. The
oscillator used in this system can be a highly accurate
and stable quartz crystal controlled type, and tuning
adjustments are then unnecessary.

The ST's PSG uses a variation on this technique,
where the oscillator is fed to three divide by 'N' counters
(Fig.1.1). Here ’N' is a value written to registers of the
device, and by changing this value the output frequency
of each divider can be varied over very wide limits. This
gives what are effectively three adjustable tone gen
erator circuits. This is not as good as using a complex
divider circuit, which enables any desired number of
notes (within reason) to be produced simultaneously.
Three tones at once is sufficient for most computer
sound generator applications though, and it enables
much simpler circuits to be used.

first. What you are actually controlling with the pitch
control registers is the period of one output cycle. The
larger the pitch value, the longer the duration of each
cycle.

Another consequence of this method of frequency
synthesis is that very high resolution is obtained at low
frequencies, but very poor resolution is produced at
high frequencies. If you take any number and divide it
by two, three, four, etc., you will find that the answers
decrement in large steps at first, but as the divisor gets
larger, reductions in the answer get smaller. Computer
sound generators are often quoted as having very wide
output frequency ranges. While the ranges quoted
might be completely accurate, it is as well to bear in
mind that where accurate output frequencies are
required the usable output frequency range might be
substantially more restricted at the high frequency end
of the range.

Fig. 1.1. The basic system used in the A Y-3-8910 PSG.

The output frequency from one of he PSG's tone
generators is equal to the input frequency divided by
sixteen, and then divided by the value sent to the pitch
control registers. There are two pitch control registers
per tone generator, with one providing fine tuning and
the other giving coarse tuning. Only four bits of the
coarse tuning registers are implemented (the least
significant bits), giving 12 bit overall resolution. This
provides some 4096 different output frequencies. Due
to the system of frequency division used to vary the
output frequency, high values in the pitch control
registers give a large division ratio and a low output
frequency. This topsy-turvy relationship between
control values and output pitch can be a bit confusing at

The Registers
The AY-3-8910 is controlled by sixteen registers, and
basic details of these are provided below: —
Register Function
Number
0 Channel 1 pitch (fine)
1 Channel 1 pitch (coarse)
2 Channel 2 pitch (fine)
3 Channel 2 pitch (coarse)
4 Channel 3 pitch (fine)
5 Channel 3 pitch (coarse)
6 Noise pitch

5

7 Mixer control
8 Channel 1 volume/envelope control
9 Channel 2 volume/envelope control
10 Channel 3 volume/envelope control
11 Envelope period (fine)
12 Envelope period (coarse)
13 Envelope shape
14 Port A
15 Port B

Registers 14 and 15 are input/output ports which are
used for (amongst other things) the ST's parallel port.
They have no relevance to the sound generation
process, and will not be considered further here.

Registers 0 to 5 are the pairs of pitch control registers
for the three tone channels. Their action has already
been described. Remember that only the four least
significant bits of the coarse pitch control registers are
used (giving a control number range of 0 to 16). The
total value written to a pair of registers is equal to the
coarse value multiplied by 256 and then added to the
fine tune value.

The pitch of the noise signal is controlled by register
6, but only the 5 least significant bits are used. This
gives a control range of 0 to 31. Like the pitch of the
tone generators, the higher the value used, the lower
the pitch. The range of pitches available is a bit limited,
but is sufficient for simple sound effects. The noise
signal is the usual "white" noise "hissing" sound when
set for a high pitch. Lower pitches are not like filtered
white noise, and give a rather rough sounding noise
signal. This is still quite good for sound effects though.

Register 7 is the enable or mixer register, and it
controls which signals will be coupled through to the
output. Bits 0 to 2 control tone channels 1 to 3
respectively. Bits 3 to 5 enable the noise signal to be
mixed with channels 1 to 3 respectively. When I first
tried programming an AY-3-8910 I spent a great deal of
time sending values to the device with no resulting
output signals from it. Eventually I realised that I was
writing 1 s to bits 0 to 2 of register 7 to enable the tone
generators, whereas it is in fact Os that are required in
order to activate a channel. It is also Os that are required
in order to enable mixing of the noise signal with a tone
channel, Incidentally, the two most significant bits of
this port are utilized, and they set the data direction for
ports A and B (0 for input, 1 for output).

The volume of channel 1 is controlled by register 8,
but only the four least significant bits are used (giving
the 0 to 15 volume setting range in the ST BASIC
SOUND instruction). A value of 0 switches the tone
generator off, a value of 15 gives maximum volume. If
bit 4 of this register is set to 1 (i.e. a decimal value of 16
is written to this register) the volume is no longer
controlled by bits 0 to 3. Instead, the volume is
controlled by the envelope generator. The three most
significant bits of this register are left unused. Registers
9 and 10 operate in exactly the same way as register 8,
but they control channels 2 and 3 respectively.

The envelope period, or period of one cycle in a
repetitive type, is controlled by the 16 bit value written
to registers 11 and 12. The least significant byte is
written to register 11. All bits of both registers are
utilized, giving full 16 bit resolution (0 to 65535 in
decimal terms). The clock signal is divided by 256, and

then by the number written to these two registers. This
gives a very wide envelope period which can be
anything from a small fraction of a second to several
seconds. Unfortunately, the envelope shaper only uses
sixteen volume levels (including "off") and the output
signal can be usually be heard to step up and down in
volume during the course of an envelope.

Register 13 is used to select the desired envelope
shape. Only the four least significant bits of this register
are used. The available shapes and the (decimal)
numbers needed to select them are shown in Fig. 1.2.

Fig. 1.3 gives details of the AY-3-8910's registers in a
form that should be useful for quick reference purposes
when first getting to grips with the device.

6

REGISTER FUNCTION
BIT

7 6 5 4 3 2 1 0
0

CHANNEL 1 PITCH
FINE TUNING

1 UNUSED COARSE TUNE
2

CHANNEL 2 PITCH
FINE TUNING

3 UNUSED COARSE TUNE
4

CHANNEL 3 PITCH
FINE TUNING

5 UNUSED COARSE TUNE

6 NOISE PITCH UNUSED PITCH CONTROL

7 ENABLE
I/O NOISE TONE

B A C B A C A

8 CHANNEL 1 VOLUME UNUSED

EN
V VOLUME

CONTROL

9 CHANNEL 2 VOLUME UNUSED

EN
V VOLUME

CONTROL

10 CHANNEL 3 VOLUME UNUSED
EN

V VOLUME
CONTROL

1 1
ENVELOPE DURATION

FINE ADJUSTMENT
12 COARSE ADJUSTMENT
13 ENVELOPE SHAPE UNUSED ENVELOPE

14 I/O PORT A 8 BITS OF PORT A

15 I/O PORT B 8 BITS OF PORT B
Fig. 7.3. Details of the PSG registers.

Accessing The Registers
The 68000 microprocessor used in the ST computers
does not have a separate input/output map. Input/
output devices appear in the memory map, and are
accessed just like memory devices (which means using
PEEK and POKE from BASIC), Although there are
sixteen read registers and sixteen write registers, the
device only occupies two addresses in the memory
map. This Is achieved by having one address to select
the register you wish to access, and another address for
actually reading from or writing to that register. The
required register is selected by writing its register
number to address &HFF88O0, and then the value for
that register is written to address &HFF8802.

The best way to gain an understanding of any
computer peripheral chip is to try programming it, and if
necessary, to learn from your mistakes. As an example
to get you started, try the following ST BASIC
program. It gives a sort of brief explosion type sound
effect using the PSG's noise generator.

The program loops six times, and on each loop it
POKEs a value first to the register select register, and
then to the selected register. These values are held In
variables "r" and "v", and they are READ from the
DATA statement at line 70. The first pair of values write
31 to the noise pitch register, which gives minimum
pitch. The next pair enable the noise and mix it into
channel C, while the next two lines hand over volume

7

10 REM EXPLOSION PROGRAM
20 FOR LOOPS = 1 TO 6
30 READ r, v
40 POKE-B &HFF8800, r
50 POKE-B &HFF88O2.V
60 NEXT
70 DATA 6,31,7,223.10,16.11,0,12,20,13,9

control to the envelope shaper. The remaining values
set the envelope period and type. Using a higher noise
pitch value and shorter envelope period you can obtain
a gunshot type sound effect. Note that the program
uses the POKE-B instruction to write to the PSG. This
form of the instruction does not exist in the original
version of ST BASIC, and if this is the version you are
using, the program will require slight modification.
Slight modification might also be required if you use
some other version of BASIC.

In order to become competent at programming a
sound generator chip you really need to experiment
with it for a while in order to find out just what sounds
are available. Inevitably, programs will not always
produce quite the desired effect, and some "fine
tuning" will often be required. Practice makes perfect!

8

Chapter 2
MIDI CONNECTIONS

While the built-In MIDI ports of the Atari ST computers
are not a unique feature, they are something that few
other computers have as standard. In fact some
computers do not even seem to have MIDI ports as
optional extras, or as so-called "third-party" add-ons.
With the computing power of its 8MHz 68000 micro
processor, plus excellent graphics capability, and all at a
remarkably low price, it was inevitable that the ST
computers would take over from the Commodore 64 as
the computer for music applications. There is probably
more MIDI software available for the Atari ST com
puters than there is for all the other home and personal
computers put together. The list of available software
seems to grow daily! Many people are buying these
computers specifically to use them in music applications
(myself included).

Just how much you need to know about MIDI
depends on the complexity of the MIDI system you will
be using, and on whether or not you wish to undertake
any of your own programming. If you only wish to use a
fairly simple MIDI applications program with a single
synthesiser setup, you may be able to get away with
very little knowledge of MIDI at all. Even with a basic
setup of this type a more comprehensive knowledge of
the subject is likely to prove more than a little useful. As
with so much of today's technology, there are often
very simple solutions to problems that arise. However,
without a reasonable understanding of the subject you
may never find the solution. If you are intending to use
multi-instrument setups a more detailed knowledge of
MIDI's workings and terminology is almost certain to be
required, and for MIDI programming you must under
stand at least the more common codes used, and the
general method of coding.

MIDI can seem a bit confusing at first, but apart from
one or two idiosyncrasies it is really quite straight
forward. It is a very versatile system though, and the
almost limitless possibilities mean that there is a lot to
learn if you are going to become a real MIDI expert. A
great deal of thought needs to go into setting up a
system that will suit your requirements, and you should
avoid the temptation to rush into things. MIDI software
and equipment are relatively cheap when you take into
account the capabilities they provide, and what similar
equipment would have cost a few years ago (if
something with a similar specification could have been
obtained at all). In absolute terms, mistakes are still
likely to be quite expensive to rectify.

There is insufficient space available here for a
complete course in the theoretical and practical aspects
of MIDI. However, we will consider both aspects in
reasonable detail, including full details of the all
important MIDI messages. Various ways of combining
MIDI equipment will also be considered, but only in the
context of systems based on the Atari ST computers.
Details of the MIDI message types and codes are not
provided here, but the technicalities (including a full list
of MIDI code numbers) are covered in separate
chapters. Similarly, MIDI applications software is only
considered superficially here, but this subject is covered
in some detail in a subsequent chapter.

MIDI Advantages
If, for the moment, we just consider MIDI at the most
basic level, it is just a means of sending messages from
one device to another. MIDI is an acronym for "musical
instruments digital interface", and as yet it is only used
with electronic music equipment. It could be used with
virtually any piece of electronic equipment though, and
it would be quite feasible to have a MIDI controlled
robot for example. The point that I am trying to make
here is that MIDI is a means of communication, and it is
only musical in that it provides communications
between pieces of electronic music equipment. Some
people seem to think that a MIDI output provides a
signal that only needs to be connected to a hi-fi system
in order to produce music. In fact it will only produce
music byway of a suitably equipped electronic musical
instrument. Connecting a MIDI output to a hi-fi system
is a bit like connecting the printer port to the hi-fi system
and expecting it to speak the words that are sent to the
porti

Apart from two or more pieces of MIDI equipment
the only other requirement is a cable or cables to
provide the necessary connections between the various
pieces of equipment. In the past there have been
difficulties in interfacing one item of equipment to
another, especially in systems that used equipment
from several manufacturers. A lack of true standards
meant that connecting equipment together with
standard leads tn what seemed to be a perfectly
acceptable manner resulted in unpredictable results. In
many cases it resulted in total failure, and some
intervening electronics would often be required before
individual items of equipment would work properly
together as a true system.

MIDI is a true standard, and any piece of MIDI
equipment should work well with any other item of
MIDI gear. The only proviso here Is that the two pieces
of equipment must obviously be devices that could
reasonably be expected to operate together as a
system. A second point to bear in mind Is that MIDI is a
very versatile system that can couple virtually any type
of information from one piece of equipment to another,
but the MIDI specification does not lay down a
minimum standard for equipment. It Is a standard for
the basic communications hardware, and the system of
coding/decoding messages that are past from one
piece of gear to another. Few (if any) items of MIDI
equipment send and (or) recognise all MIDI messages.
What this means In practice is that you should not
assume that any features of an instrument or other item
of MIDI equipment are accessible via its MIDI input
socket. You must carefully check the MIDI speci
fications in equipment manuals to find out just what can
and what can not be achieved. This is particularly
important with older instruments, many of which had
the MIDI interface added very much as an afterthought.
In the early days of MIDI there were a lot of high quality
instruments with sophisticated features that had the
most basic of MIDI implementations!

Another problem In the pre MIDI era was the large
number of connecting cables required when building up

9

any reasonably complex system. The basic method of
connection was to have one lead to provide gate/trigger
coupling, and another one to connect the CV (control
voltage) sockets. The former provided note on/off
switching, while the latter gives note selection. In some
systems there would be a second CV connection, with
this second one giving control over the voltage con
trolled filter (or perhaps the VCA). The point to note
here is that two or three connecting leads are required,
and that this only provides monophonic operation (i.e.
only one note at a time can be played). Polyphonic
operation can be accommodated with a suitably sophis
ticated instrument, or (more probably) using a bank of
monophonic synthesisers, but for (say) eight note
polyphonic operation some sixteen or twenty four
■connecting leads would be required! Even with twenty
four cables used, there is still only a rather crude form of
control over the instruments.

MIDI is much more convenient in that only one cable
is needed in order to convey information from one
device to another. The system is not limited to basic
note on/off and note value information, and even if an
instrument is a sixteen or thirty two note polyphonic
type, one cable is all that is required! With a few modern
MIDI "black boxes" and a few connecting cables you
can have a neat and compact system. Not so many
years ago an equivalent system would have cost a
fortune and filled a decent sized room.

MIDI Wiring
The standard MIDI connector is a 5 way 180 degree
DIN type. Actually the standard specification does allow
for 3 way XLR type connectors to be used, but only if
the manufacturer makes DIN adaptors available as an
extra so that standard (DIN type) MIDI leads can be
used if required. In practice XLR connectors seem to be
little used, but might be found on some high quality

instruments intended to be able to withstand "life on
the road".

Ready-made MIDI leads seem to be available from
most retailers of electronic musical instruments, as well
as a number of Atari stockists. On the other hand, it is
not difficult to make your own leads at low cost if you
are handy with a soldering iron. The necessary connec
tions are shown in Fig.2.1. Although 5 way connectors
are used, only three pins are actually used (the other
two apparently being reserved for possible future
expansion of the MIDI standard).

The type of cable needed is the twin screened variety,
which has two insulated inner conductors covered by
an outer conductor and an overall layer of insulation.
There are numerous types of twin screened lead
available, but assuming you are only going to use cables
about 1 to 4 metres long, any twin screened type should
suffice. One of the thinner and more flexible types is
probably the best choice. Incidentally, MIDI is only
guaranteed to work over a distance of 15 metres, and
you might need to use a high quality cable to obtain
something approaching this maximum range.

Pin 4 on one plug connects to pin 4 on the other, and
the two pin 5s are also connected. These two sets of
connections are carried by the inner conductors. The
outer conductor is used to connect the two pin 2s
together. The signal is carried by the inner conductors,
and the outer one is needed to shield the cable to
prevent it from radiating radio frequency signals that
could cause interference to any nearby radio
equipment. Internally, pin 2 of MIDI ports is only
connected to earth at MIDI outputs (including "THRU"
types). All inputs have an opto-isolator, which is an
electronic component that consists of a light emitting
diode (LED) having its light output directed onto a
photo-transistor. The component is housed in an
opaque casing so that the photo-transistor is shielded

TWIN SCREENED LEAD

Fig. 2.1. DI Y MIDI lead connections.

10

from any ambient light. Passing a small current through
the LED results in its light output switching on the
photo-transistor.

This may all seem to be quite clever but an
over-complicated way of handling things. The
important point is that there is no electrical connection
between the various pieces of equipment in the system.
At least, there is no direct connection via the MIDI
ports. This is important for three reasons. One of these
is that it minimises the risk of "hum" loops being
produced by multiple earth connections. Probably most
people involved in electronic music will be all too
familiar with “hum" loops, and the background
"buzzing" that they produce. The opto-isolation does
not totally banish them, but it does at least remove
another possible cause of these loops.

The second reason is that it avoids problems with the
fairly high voltages that can exist between the earth rails
of mains powered equipment. It is mainly double
insulated equipment (that does not use the mains earth
connection) where this can be a problem. Even though
there is normally very little power behind these voltage
differences, they can still damage sensitive (and
expensive) electronic components. This is not a purely
academic problem, and on one occasion I did some
serious damage to a computer by not having it correctly
isolated from a short wave radio receiver it was
controlling.

Reason number three is that computers and other
digital controllers are very good at generating electrical
noise. Try operating a radio set next to most home and
personal computers and you are likely to find reception
very difficult indeed. There is little chance of electronic
musical instruments picking up this radiated signal, but
with direct electrical connection to a computer there is a
real risk of a certain amount of noise being inadvertently
coupled through the connecting cable. The opto
isolation and non-linking of the equipment earths avoids
this possibility.

ST MIDI Ports
The MIDI ports of the Atari ST computers are,
unfortunately, not quite true MIDI standard ports. I
suppose that for most purposes they can be regarded as
fully standard in that they can be used as normal "IN"
and "OUT" ports using any standard MIDI cable. In fact
the "IN" socket is quite normal, but the "OUT" socket
is actually a combined "OUT" and "THRU" type. The
normally unused pins 1 and 3 are used to carry the
"THRU" socket connections. Just why Atari chose to
do things this way is not immediately obvious, and
presumably was not to save the cost of a 5 way DIN
socketl Perhaps there was no space for the third
socket? Anyway, this arrangement is better than simply
having the "THRU" facility omitted altogether (it seems
to be absent from many pieces of MIDI gear, particu
larly keyboard instruments).

As an ST computer will normally be used as a
controller, the "THRU" socket will often be unneces
sary. The role of all three types of MIDI port is
something that we will considers little further on. If you
should need the "THRU" facility, one solution would be
to make up a little unit and connecting lead to give
standard "OUT" and "THRU" sockets. A cheaper and
easier solution is to use a non-standard lead to suit the

combined "THRU "/"OUT" socket of the ST s, and one
of the larger Atari dealers may well be able to supply a
suitable lead. If not, and provided you are at least
moderately efficient with a soldering iron, it is not too
difficult to make up a double lead to suit this port.
Connection details for this lead are provided in Fig.2.2.
Note that the outer conductors of both leads should
connect to pin 2 of the plug at the ST end of the lead.

Basic Connections
There are almost limitless combinations of MIDI
equipment that can be used, and there are usually
several ways of connecting together a given set of MIDI
devices. Provided you understand the basic function of
the three types of MIDI port, you should not find it too
difficult to wire systems together in a manner that will
provide the functions you require. Here we will consider
several setups that should give you the general idea of
how systems can be constructed.

A basic ST plus a keyboard equipped MIDI
instrument would use the arrangement shown in
Fig.2.3. Just what such an arrangement would achieve
in practice is entirely dependent on what software is
used on the ST. Using different programs a variety of
functions could be provided. The most common appli
cation for this setup would be to have the ST
functioning as a real-time sequencer. This is the MIDI
equivalent of a tape recorder, or perhaps a player-piano
is a better analogy. We will not consider applications
programs in detail here, as they are covered by a
separate chapter, but with a real-time sequencer,
anything played on the keyboard can be recorded by the
computer and played back later. In order to record a
sequence the keyboard must provide information to the
computer, and this information is carried by the lead
which connects from "OUT" on the keyboard
instrument to "IN" on the ST computer. To play back a
sequence the information must flow in the opposite
direction, and this is the purpose of the cable which
connects "OUT" on the ST computer to "IN" on the
keyboard instrument. MIDI can provide a two way flow
of information, but only via this system of cross
coupled "IN'7"0UT" sockets.

In a multi-instrument set-up the "THRU" sockets on
some pieces of equipment must be brought into
operation. Fig.2.4 shows the standard method of
connection for a system that consists of an ST plus a
keyboard instrument and two rack-mount instruments.
This utilizes what is called the "chain" method of
connection. This name is derived from the fact that a
number of instruments are connected in a long series,
with the "THRU” socket on one connecting to the "IN"
socket on the next. As you might have guessed, all the
"THRU" socket does is to provide a replica of any signal
picked up at the "IN" socket. In this way the signal from
the ST or other controller can be coupled to a number
of MIDI devices.

In theory you can connect as many instruments as
you like into the chain. In practice this method of
connection might not give satisfactory results with
really large setups. The "chain" system has a reputation
for introducing cumulative delays, but there should
really be no significant delay between a signal entering
at the "IN” socket and being reproduced at the
"THRU” socket. The problem is more likely to be one of

11

r

UJmiLLJLLU
Fig. 2.3. A basic ST plus MIDI keyboard instrument setup.

12

IN THRU IN
1

THRU

oI . □□□□naoa a
I I □ ctsaaaas

o a o □□□□□□□□ o

Etc

J______ I
IN OUT THRU

UHUJUJLlll
Fig. 2.4. Zl system utilizing "chain"connection.

IN IN

Fig. 2.5. Instrument connected using the "star" system.

13

the signal being degraded slightly on each coupling
from a MIDI “IN" to a "MIDI" OUT. With a long series
Of instruments the signal could be “smeared" to the
point where it can no longer be read properly by the
instruments towards the end of the "chain".

Another problem with the "chain” method of con
nection is that it can not be implemented with all pieces
of equipment. As pointed out previously, a lot of
instruments do not include a "THRU" socket, with
keyboard instruments being the worst offenders.
Matters seem to be improving, with many more
instruments now sporting a "THRU” socket, and they
seem to be standard equipment for rack-mount units. If
only one instrument lacks the THRU” socket there is no
real problem. Simply use this instrument as the last one
in the "chain". If two or more instruments do not have a
"THRU" socket, then the "chain" method of con
nection is not usable.

Note that only one instrument is connected to the
MIDI "IN" socket of the ST computer. In most cases

this is all that will be needed. The keyboard will be used
for recording real-time sequences, and no other device
will supply information to the computer. In a multi
keyboard system, it makes sense to have the "OUT"
socket of the instrument which has the best keyboard
as the one which is coupled back to the input of the
computer. This can be any instrument in the system
incidentally, and it does not have to be the first one in
the “chain".

Star System
If your instruments will not permit the "chain" method
of connection, the alternative is the "star" system of
Fig.2.5. This requires a device called a "THRU-box", or
they are sometimes called "MIDI expanders". This
second name is little used in this context these days,
and is mostly used to describe add-on units to give MIDI
pianos and organs more voices. The THRU box simply
takes an input signal and splits it to provide a number of
outputs. It does not simply channel the input signal to a

IN IN

IN

saasaona

□aoaoaaa

□aaanaac
13 □ □ □ □ □ OOI
aaaoaoaa

THRU

OUT OUTOUTOUT

□ □ □ □ □ □ □□ Q

MIDI THRU BOX

IN

OUT THRU

UJLLLJLLILLLI
Fig, 2.6. Using a combination of connection methods.

14

number of output sockets, and this approach would not
be acceptable. MIDI uses a drive current of about 5
milliamps, and splitting this between (say) five output
sockets would only give 1 milliamp per output. This is
unacceptable as it would probably not give sufficient
output current for each instrument driven from the
system. A THRU box Must have an amplifier or
amplifiers so that each output can be driven at the
correct output current.

Even if your instruments do have "THRU" sockets,
you may prefer to use the "star" system. It avoids
problems with delays, signal smearing, or whatever. On
the other hand, it does mean the added expense of a
THRU box. I think that I would be inclined to try the
"chain" method first, and only bother with a THRU box
if problems were experienced. Of course, you do not
need to use one system or the other, and a combination
of the two could be used if desired (perhaps if the THRU
box has fewer outputs than you have instruments).
Fig.2.6 shows an example composite system of this
type.

More Complex Setups
For most users the only items of MIDI equipment they
will use are musical instruments, plus perhaps a
computer or other micro- controller. There are many
other MIDI devices available though, including such
things as audio mixers and effects units. As far as the
MIDI connections are concerned, these devices are
wired into the system in exactly the same way as the
musical instruments. The only exceptions are devices
which act as controllers, and those which are MIDI
processor. By a MIDI processor I mean a device which
actually processes the MIDI signal in some way, and not
an audio processor that is under MIDI control.

A MIDI processor generally goes ahead of one item of

equipment, since in most cases it is oniy the information
for one device that must be altered. There are various
types of MIDI processor available, and a look through
some leaflets from the main equipment manufacturers
will give you a good idea of the sort of thing that can be
obtained. A typical example would be a MIDI filter,
which is a device that can be set up to remove certain
types of MIDI message from the data stream. For
example, you might want an instrument in the system
not to respond to external pitch bending. Some
instruments can provide built-in filtering of various
types, but with one that has no pitch bend disable
facility an external data filter could be used. This would
be used ahead of the instrument to which the filtering
must be applied, but after any other instruments in the
system, as in Fig.2.7. if the filtering must be applied to
more than one instrument, then the filter can be moved
to an earlier point in the chain. With the "star" method
of connection the filtering can only be applied to one
instrument (Fig.2.8) or all of them (Fig.2.9).

Filtering or other forms of MIDI processing can also
be applied to the signal from a keyboard prior to it being
fed into the ST computer. The necessary method of
connection is shown in Fig.2.10. Filtering is the most
likely form of processing to use in an arrangement of
this type, in particular, real-time sequencers normally
record all the MIDI data that is fed into them. This gives
a very faithful reproduction of the original performance
when the sequence is played back, but it can result in
the sequencer running out of memory before the
sequence is completed! Most sequencers can handle a
few thousand notes or more, and ST based systems can
often handle 50,000 notes or more. However, this
assumes that only basic note on and note off messages
are received.

Other types of data can take up a very large amount

IN THRU IN OUT

•■■ i □□□□□non a
I » □□□□□□□□

a ao □□□□□□□□ q
MIDI

FILTER

IN

ZZI________
o i * □□□□aaoc a

I 'I □□□aanoQ
a an o

J______ I “
IN OUT THRU

LULlllLlW
Fig. 2.7. "Chain " connection with filtering applied to one instrument.

15

IN

a I
OI t □□□□□□□□ •

1 I □□□□ODOO
• QO □□□□□□□□ e

IN

DpQppacc «
Bonnanoo

OUT OUT OUT OUT

MIDI THRU BOX

IN

J______ I
IN OUT THRU

OUT
IN

L1JU1JL1JL1L1
Fig. 2.8. "Star"connection with filtering applied to one instrument.

of memory, and seriously deplete the amount remaining
for note storage. In particular, pitch bend and key
pressure data can be transmitted at quite a high rate,
filling up memory remarkably quickly. You will often
find that sequencer specifications talk in terms of how
many MIDI "events" they can store. Each MIDI
message counts as an event, including note on and note
off types. A storage capacity of 100,000 events
therefore represents an absolute maximum of 50,000
notes (i.e. 50,000 note on and 50,000 note off
messages).

The more sophisticated sequencers permit at least
some basic MIDI filtering, and ‘ft is not uncommon for
them to offer comprehensive filtering. This facility is not
available on all sequencers though, and with the more
basic types an external MIDI filter can be more than a
little useful. Bear in mind though, that a new and better
sequencer might be cheaper than a MIDI filter! Also, it
might be possible to set the keyboard so that it does not
transmit certain types of data. It is always a good idea to
carefully check the MIDI specifications of equipment
and the control settings/functions available. There are
often details of some very handy features tucked away
in the "fine print”.

Merging
An essential point to bear in mind when using a MIDI
system is that MIDI only caters for a single controller per
system. In a system based on an ST computer, the
controller would normally be the ST itself. This can be a
bit limiting, in that you might want to control the system
from some other device. For example, you might wish
to play the instruments in the system from a keyboard,
perhaps when setting up the required sounds, or for
rehearsal purposes. It is, of course, quite possible to
unplug the lead from the ST's MIDI "OUT” socket and
connect it to the "OUT" socket on the keyboard
instead. However, this hardly represents a quick and
convenient way of doing things. Something to keep in
mind is that repeated plugging-in and unplugging of
leads can quickly result in the connectors becoming
worn and unreliable.

A simple solution to the problem is to use a MIDI
switcher. In its most basic form this has two inputs and
one output, and it is used to select one or other of the
inputs and couple it through to the output. It can be
used in the manner shown in Fig.2.11, which might
look a little confusing at first, but is really quite
straightforward. With the switcher set to position "2"
you have a standard arrangement where the ST

16

IN IN

Etc .
OUT OUT OUT OUT

MIDI THRU BOX

IN

OUT
MIDI FILTER

"iN

IN THRU

U1LL11L11L1U

OUT
IN ///////////////////

Fig. 2.9. "Star" connection and filtering applied to all instruments.

controls all the instruments in the system, and the first
instrument is a keyboard type which can feed infor
mation back to the ST for real-time sequencing.
Suppose you wish to control the instruments from the
keyboard for a while, and that you do not need the ST.
Setting the switcher to position "1" gives the desired
effect. The signal from the keyboard is still coupled to
the "IN" socket of the ST, but the output from the ST's
"THRU” socket is now coupled through to the two
rack-mount instruments. The ST takes no active role in
the system, and the setup is essentially the same as if
the "OUT” socket on the keyboard instrument was
coupled through to the "IN" socket on the first of the
rack-mount instruments. Note though, that the ST is
unlikely to provide a proper coupling from its "IN"
socket to its "THRU" socket unless it is left switched
on.

Some MIDI switchers (in fact most of them) have a
multi-way switch and several outputs. Being able to
direct a signal to one of several instruments is not
necessarily a particularly useful facility, especially in a
computer based system. For most purposes a basic two

way switcher will suffice. Going further up-market there
are MIDI "patch-bays”, "directors", or whatever the
manufacturer decides to call them! Whatever the name,
the idea Is to have a unit which has a number of inputs
and outputs, with the input and output of every piece of
equipment in the system being connected to it.
Switches on the unit are used to connect the inputs and
outputs in the required manner. Often there are several
programmed methods of connection available at the
touch of a button. This is a sort of highly flexible THRU
box. For a complex setup a unit of this type is certainly
very desirable, but the ones I have encountered have
been quite expensive. Probably most users would feel
that the money could be spent more effectively on some
other aspect of the system.

A more sophisticated form of data direction device is
available in the form of a MIDI "merge" unit. As its
name implies, it merges two signals together to give a
single output. A very basic merge unit simply mixes the
two signals together, and with simultaneous inputs will
not give an acceptable output. Simply jumbling two
digital signals in this way gives a totally "scrambled"

17

IN OUT THRU

OUT
IN

ULlinilLUJ

Fig. 2.10. Filtering the MIDI input to the ST.

IN OUT
MIDI FILTER

IN THRU IN

ZZI______ LZ
o ------------. □□□□□□□□ C

I I □□□□□□CXI
o a a onoanntu «

2

MIDI
SWITCH

1

OUT THRU

OUT
IN

THRU

millJLULUI
Fig. 2.11. Using a MIDI switcher.

18

output signal. A unit such as this might not seem to be
very useful, but it gives an action that is very much like
an automatic switcher. In other words, you must
arrange things so that only one input or the other is
active, and the unit then effectively switches this input
signal through to the output. A unit of this type should
work perfectly well in the system of Fig. 2.11 if it is used
in place of the switcher. Output signals from either the
keyboard instrument or the ST should then be coupled
through to the two rack-mount instruments without any
need to operate a changeover control.

A sophisticated merge unit will provide proper mixing
of the two input signals. If a signal is received on one
input, this is coupled through to the output socket. If an
input signal is received at the other input while the first
signal is still being processed, then this second signal is
stored in a small block of memory (called a "buffer").
When the first signal ceases, the stored signal is then
coupled through to the output. If, during the course of
the stored signa! being transmitted, the signal on the
first input should be resumed, this signal is stored in
another buffer until the output is free and it can be
transmitted. This can only work if the two inputs, on
average, are only busy for about 50% of the time. In
practice it is unlikely that there would be so much data
on the two inputs that it would be impossible to
transmit it all. It could happen though!

This is a very useful accessory, but is again one that
many users would probably consider to be too
expensive. With a proper merge unit a system of the
type outlined in Fig.2.12 becomes a possibility. Here
two rack-mount instruments are being played simul
taneously from a MIDI keyboard and the ST computer.
The ST could be providing something like a simple
repetitive accompaniment for the piece played "live”
from the keyboard. This method of connection includes
a lead from the final "THRU" output back to the "IN"
socket of the ST. This enables sequences to be
recorded from the keyboard into the ST if required.
Although a fairly simple method of connection, such a
setup is very versatile. You can play the instruments
from the keyboard, operate them from the ST, use both
methods of control simultaneously, and play sequences
into the ST while monitoring your playing on the
instruments. All this with no switching whatever being
needed when moving from one mode of operation to
another.

An important point to realise when designing MIDI
systems is that it is only signals received on the "IN"
socket of a piece of equipment that appear at its
"THRU" output. Signals generated by the device do
not appear at its "THRU" socket, and signals received
at its input do not appear at its "OUT" socket. On the
other hand, some instruments do seem to have options

IN THRU IN THRU

□□anaaon o □ douaatxi o

OUT

MIDI MERGE UNIT

IN IN

OUT

IN OUT THRU
IN

UlUlJLlJLill
///////////////////

Fig. 2.12. Using a MIDI Merge unit to combine two MIDI output signals.

19

that allow signals to be routed to sockets where they
would not normally appear. This can be very useful
indeed, and could quite possibly enable a setup that
would normally need a MIDI switcher or merge unit to
be produced without using either of these. If you have
an instrument with a facility of this type, make sure that
it*is only enabled when it is required. Odd things could
start to happen if signals start appearing at the wrong
places in a system. Be especially careful to avoid a
situation where the signal originated by a device is fed
back to its "IN" socket and then retransmitted through
the system. In theory this would result in signals being
circulated through the system indefinitely, and in
practice it would almost certainly cause the system to
run totally out of control.

It is also worth bearing in mind that some MIDI
sequencing software for the ST permits data received
on the "IN" socket to be "echoed" to the "OUT"
socket. This is an increasingly common feature, and
one that is well worth having. It can greatly simplify
matters when setting up a real-time sequencing system.

When designing any reasonably complex MIDI
system you should always draw out the entire system,
showing ail interconnections. Then trace the signal
paths to make sure that all the MIDI messages will get
through to where you want them to go. Check for any
feedback loops that could result in signals being
circulated indefinitely!

Channel Limitations
A single MIDI output is satisfactory for most require
ments, but for an ambitious system just one output can
become rather restrictive. It depends on the types of
instrument in the system, and the way in which you will
use it. For many purposes a single synthesiser will
suffice. Modern instruments are mostly multi-timbral,
which simply means that they can produce more than
one sound at a time. A typical synthesiser might have
eight voices, with each one being capable of providing a
different sound, plus perhaps a ninth voice capable of
several percussion sounds. Although It might appear
that only eight different sounds are available (plus the
drum sounds), most synthesisers have from about 32 to
128 different sounds loaded and available at any one
time. Via MIDI, it is usually possible to allocate any
sound (or "program") currently loaded to any voice of
the instrument. This gives only eight sounds available at
once, but perhaps a hundred or more sounds available
almost instantly simply by assigning any stored sound
to a voice of the instrument. Even with only monopho
nic operation on each voice this gives tremendous
potential, and with two or four note polyphonic
operation on each voice it gives the kind of potential
that would have needed a bank of instruments only a
few years ago.

However, suppose that you would like to have more
than eight sounds plus the percussion channel available
at any one time, and added a second and identical
instrument into the system. On the face of it there is no
problem here, and the instruments can provide up to
sixteen sounds at once plus two percussion channels. In
practice there is a slight problem here. MIDI uses a
system of channeling that enables messages to be sent
to just one device in the system, or with a suitable
instrument, to one voice of an instrument in the system.

There are sixteen channels, and while this may have
seemed to be quite generous when MIDI was first
devised (which was mostly in 1981 and 1982), modern
instruments make this look a bit miserly. In our two
instrument example above, with each voice and the
percussion tracks assigned to different MIDI channels,
some eighteen MIDI channels would be required. Using
a single MID! output this is clearly not possible.

Some instruments are not as versatile in assigning
sounds to voices as are most synthesisers. In particular,
sound samplers do not normally use program changes
to provide a choice of dozens of different sounds, al!
"on-tap" and assignable to any voice as and when
required. Due to the way sound samplers work, they
inevitably require quite large amounts of memory per
sound, and no instruments currently available have
sufficient memory to keep a hundred or so sounds
stored and ready to use. When using sound samplers
you often need to have a different voice per sound. If
you need to individually sequence each sound, then
each one must have a different MIDI channel. In other
words, you may be restricted to a choice of sixteen
sounds per score.

Even if a sampler can have more sounds stored than it
has voices, this does not necessarily improve matters. I
have an Akat S700 sampler which is a six voice
instrument, and can normally store up to six different
samples. With a memory expansion board added it can
store up to sixteen different samples at once, but to give
individual access to each one they must be placed on
separate MIDI channels. You then have instant access
to each sound, but are still limited to a maximum of six
notes at once. Unless sound layering is to be used,
adding another instrument to the system is not possible
as all sixteen available channels are already occupied.

Multiple Outputs
Problems with channel restrictions can sometimes be
eased using techniques such as keyboard splitting. This
is where one sound is assigned to the high notes, and
another is assigned to the low notes. In fact multiple
splits are sometimes possible, and drum machines
usually operate on the basis of using a single MIDI
channel with each sound assigned to a different note.
Even so, there is a limit to how many different sounds
can be properly handled using a sixteen channel
system. For the sake of convenience if nothing else, it
would often be much better to have more channels
available.

Although MIDI makes no provision for more than
sixteen channels, there is no need to accept the
restriction of having a single MIDI output. With (say)
three individually addressable MIDI outputs, each one
would have sixteen channels, giving a total of forty
eight channels available. It is difficult to envisage such a
large number of channels ever being required, but such
a setup would provide almost limitless possibilities, and
would be unlikely to be overtaken by advances in
electronic instruments. The limitations of such a system
would be those imposed by your imagination, or by the
number of instruments you could afford connect to it!

This is not all a matter of theory and possible future
developments. Some manufacturers of multi-track
MIDI software for the ST have realised that their
software can potentially go beyond the capabilities of a

20

single MIDI output port, and they have made available
interfaces that provide extra MIDI outputs. As far as I
am aware, there is no standardisation of these inter
faces, and each type is only designed to work with
particular programs from one manufacturer. If you set
up a complex MIDI system that makes use of multiple
MIDI ports, you must therefore ensure that you obtain
the right interface for the program you intend to use.

The C-Lab "Export" interface is a good example of a
multiple MIDI port, it is designed for use with the C-Lab
"Creator" and "Notator" programs, which provide 64
track operation. The ''Export” interface connects to the
ST's "modem” port (the RS232C serial port) and
provides three additional MIDI output designated ports
"B" to "D". The ST’s MIDI output acts as port "A”,
giving a total of four MIDI outputs and some sixty four
channels. In other words, the "Creator” and "Notator"
sequencers can operate on the basis of one track per
MIDI channel. With some sequencers you have perhaps
thirty two tracks available, but only a single MIDI output
and sixteen MIDI channels. Thirty two tracks into
sixteen channels will go, but only on the basis of two
tracks per MIDI channel or some similar arrangement.

A setup based on the ST plus a MIDI interface box
could be something along the lines of the system
depicted in Fig.2.13. While this does not look much
different to a standard MID! system connected in the
"star” configuration, it is substantially superior in that it
has many more channels available, and can potentially

provide much more complex and accurately timed
sequencing. With complex systems and a single MIDI
output there is a real risk of MIDI "choke". This is
simply where a sequence at times requires more data to
be sent over the MIDI interface than can be handled in
the available time. Just what happens when MIDI
"choke" occurs depends on the software in use, but it
will at least cause a significant error in the timing of
some notes. It could easily result in some notes being
missed out altogether, or notes being left switched on,
and at worst could result in the computer crashing.

A system of the type outlined in Fig.2.13 probably
goes beyond most peoples' needs, but if you are going
to set up a complex system there is a lot to be said in
favour of a MIDI output box and supporting software.

Whether you use a single instrument or a highly
sophisticated system, the ST computer should be
capable of controlling it very effectively. There is plenty
of MIDI software available for the ST, covering a wide
range of prices and just about every conceivable MIDI
application. You will be disappointed if you expect the
ST plus MIDI to make you a better musician overnight.
You wiil not be disappointed if you expect it to remove
the shackles so that you are limited only by your
imagination and not by other factors. With the aid of an
ST computer and MIDI equipment you should be able
to develop your skills much faster than you would have
thought possible.

IN THRU

Etc

o

Etc.
OUT OUT OUT

MIDI OUTPUT UNIT

IN

OUT THRU

L1JL1L1L1JL111

OUT
IN ///////////////////

Fig. 2.13. A multiple MIDI output port gives many more channels (a total of 64 in this case).

21

Chapter 3
GETTING THE MESSAGE

In the previous chapter various ways of interconnecting
MIDI equipment to an ST computer were considered,
but we did not consider the types of message that can
be sent via MIDI. This is quite an involved subject which
fully merits this chapter which is solely devoted to MIDI
message types. The scope of MIDI goes well beyond
the basic note on, note off, and note value information
of the gate/CV system. It can handle key velocity, key
pressure, synchronisation of sequencers, and many
other types of information. This aspect of MIDI can be a
little bewildering at first, but it is well worth taking some
time to study the message types and gain a firm
understanding of as many of them as possible. Unless
you understand a reasonable range of MIDI messages
you will have little chance of fully exploiting MIDI and
your ST.

Modes
Before looking at the various types of MIDI message it
would be as well to examine the subjects of channels
and operating modes. Unless you understand the four
MIDI modes and channelling, a lot of MIDI messages
will be difficult or impossible to fully understand.

The concept of MIDI channels is quite easy to
understand. At the beginning of each MIDI message
there is some data which specifies the message type
(note on, note off, etc.). Most messages also carry a
channel number tn this initial part of the message, so
that they can be directed to one particular instrument in
a system, or even to one voice of an instrument in the
system. These are the MIDI "channel" messages.
Some messages do not carry a channel number, and are
directed at the entire system. Appropriately, these are
called MIDI "system" messages.

MIDI channels are notional rather than real, since any
device receiving a MIDI instruction can act on any
channel number the message may contain in whatever
way the equipment designer chooses. This includes
simply ignoring channel numbers! Remember that MIDI
channels are simply numbers at the beginning of
messages, and that they are not channels in the sense
of separate connecting cables. It is for this reason that
there are several MIDI modes, and these operating
modes only differ in the way that MIDI channel numbers
are treated. In all other respects they are the same.

Mode 1
Mode 1 is alternatively known as "omni on/poly", and
was originally called just "omni" mode (and often still
is). This is the most simple mode, and the one to which
most instruments default at switch-on. The "omni" part
of the name means that channel numbers are ignored,
and that an instrument in this mode will respond to any
note on and note off messages that are received
regardless of the channel number they contain. Exactly
how received notes are assigned internally to an
instrument's voices depends on the design of the
instrument, and there is no standard for this. In most
cases an instrument in mode 1 will respond to notes
received via the MIDI input in exactly the same way as it

would respond to the same sequence played on its
keyboard.

This mode is intended as a basic mode which should
enable any piece of MIDI equipment to function to
some degree in conjunction with virtually any other
piece of MIDI gear. It lacks versatility though, and is far
from ideal for most sequencing. It is fine if you are using
a single instrument which has all its voices producing
the same sound, but it is not much use for anything
else.

Mode 2
This has the alternative name of "omni on/mono". Like
mode 1, channel numbers are ignored in this mode. The
"mono” part of the name indicates that only mono
phonic operation is provided. This mode was presu
mably included In order to accommodate monophonic
synthesisers, but few monophonic instruments
equipped with MIDI interfaces have ever been
produced. This mode is not normally included on
polyphonic instruments, as there is no obvious
advantage in downgrading them to monophonic types
(which is effectively what would happen by switching to
this mode)!

Mode 3
This is a powerful mode which does acknowledge the
existence of MIDI channels, it has the alternative name
of "omni off/poly". The "omni off" section of the name
indicates that channel numbers are recognised, while
the "poly" part indicates that polyphonic operation is
possible. In other words, an instrument in mode 3 will
only respond to notes on one channel, and the
instrument will work with more than one note at a time
switched on. MIDI does not set down any maximum or
minimum number of notes that a mode 3 instrument
must be able to handle at once. It is up to the user to
ensure that an instrument used in this mode is not
supplied with more notes than it can handle. With most
instruments there is no major disaster if they should be
fed with more notes than they can accommodate.
Usually it simply results in existing notes being cut short
so that new ones can be sounded. This is obviously
something that should still be avoided if at all possible.

This mode has great potential for sequencing applica
tions, since it is possible to have a number of
instruments on separate MIDI channels providing dif
ferent sounds. This gives you a sort of computer
controlled orchestra, and tremendous potential to
develop complex pieces of music. This mode was
originally called "poly" mode incidentally, and is still
occasionally referred to by this name.

Mode 4
This mode is widely regarded as the most powerful one
for sequencing purposes, although 1 suppose that this is
not strictly true. Its alternative name is "omni
off/mono", but it is probably still better known by its
original "mono" name. As the "omni off" part of the
name implies, MIDI channel numbers are recognised in

22

this mode. The "mono" part of the name is perhaps a
little misleading in that it suggests that a mode 4
instrument can only provide monophonic operation.
This is not true though, and operation is monophonic
only in that each voice of the instrument operates
monophonically. If an instrument has sixteen voices,
then in mode 4 each voice is assigned to a different
MIDI channel and overall, sixteen note polyphonic
operation is possible. This may not seem to be much
better than the basic mode 1, but it gives tremendous
scope when applied to a multi- timbrai instrument. Each
channel can then have a different sound, and a single
instrument can provide a computer controlled
orchestra.

This sort of system is actually less powerful than a
mode 3 type having a number of instruments, because
in mode 4 each channel only gives monophonic
operation. It is popular with MIDI sequencer users
because it gives extremely good results at an affordable
price. A sixteen channel mode 4 instrument (or two
eight channel mode 4 instruments) should cost sub
stantially less that sixteen mode 3 instruments! An
important point to realise is that you do not need to
have ail the instruments in a system working in the same
mode. It is perfectly alright to have something along the
lines of the system shown in Fig.3.1. Here the ST is
controlling two mode 4 instruments on channels from 1
to 15, and an eight channel polyphonic instrument in
mode 3 on channel 16, These three instruments could
not be accommodated using mode 4 alone, as this
would require twenty two MIDI channels, and there are
only sixteen available. When sequencing using more
than two instruments it is normally the case that a
mixture of modes 3 and 4 offers the greatest potential,
but this obviously depends on the precise facilities
offered by the instruments.

Beyond Mode 4
The MIDI specification only details these four operating
modes, but as MIDI and instrument technology has
progressed, so have MIDI operating modes. A number
of equipment manufacturers now produce instruments
which have operating modes that do not adhere strictly
to the MIDI specification, and which provide greater
versatility. These are given various names such as
"multi" mode, and "special" mode, and as far as 1 am
aware there is no standardisation of these modes. In
order to find out whether or not any of your instruments
support any extra modes, and if so, what facilities they
provide, you must carefully study the manuals.

What is probably the most basic enhanced mode is a
version of mode 4 where the channels occupied by an
instrument do not need to be contiguous. In other
words, instead of having (say) a six voice instrument
which can occupy channels 1 to 6, 2 to 7, 3 to 8, etc.,
each voice could be assignable to any desired MID!
channel. A common and very useful mode is one that is
very much like mode 4, but with each voice not being
restricted to monophonic operation. The exact way in
which this works varies from one instrument to another,
but as an example a sixteen note polyphonic instrument
could be designed to provide two note polyphony on
eight channels, four note polyphony on four channels,
or eight note polyphony on two channels. With
something like a thirty two note eight voice polyphonic
instrument you might be able to have the instrument on
eight MIDI channels with four note polyphonic oper
ation on each channel. Some manufacturers seem to be
working hard on these "single instrument ensembles"
which are primarily aimed at MIDI sequencing applica
tions. This sort of mode is generally called "multi"
mode, but this is an unofficial title.

Some instruments are very flexible in their allocation

IN THRU IN

(MODE 4, CHANNELS 1 TO 9) (ST 16 CHANNEL SEQUENCER)

Fig. 3,1. A MIDI system can use more than one mode, as in this Mode 3/4 example.

23

of notes, voices, and MIDI channels. With (say) a six
voice six note polyphonic instrument, it could be
designed so that up to six notes at once could be
provided by each voice. This is not to say that 36 notes
(six at once on each of six channels) can be provided.
Usually with this type of mode you are still restricted to
a maximum of six notes at once (or whatever), but
those six notes can be on any voice or combination of
voices. In other words, you could go straight from six
notes on one voice to one note on each of the six voices
without any mode change.

These extra modes are mainly aimed at those who
use MIDI for sequencing, and are the type of feature
that should prove very useful to someone with an ST
based system. Although they might seem to com
promise compatibility with other MIDI equipment, this
is not usually the case. To a sequencer it does not
matter whether it is driving eight separate polyphonic
synthesisers in mode 3, or one instrument that is using a
special MIDI mode to give the same effect. To the user
there can be a massive difference, in that the single
instrument ensemble approach can be vastly cheaper,
but the end results are not necessarily inferior. Inciden
tally, when an instrument can provide polyphonic
operation on several MIDI channels, each voice is
sometimes referred to as a "virtual" instrument.

Transmission Modes
So far we have only considered reception modes, and
not transmission modes. Really, modes are a standard
for handling received data, and talking about trans
mission modes is perhaps not totally valid. With a
sending device you do not normally set an operating
mode as such. If you have a sequencer giving mono
phonic operation on four channels, then I suppose that
it could be accurately described as a mode 4 device.
You would not set the device to mode 4 though, you
would set it up to have four monophonic tracks on
separate MIDI channels, and this would just happen to
give a form of mode 4 operation.

Even if a MIDI controller is driving an instrument (or
instruments) that are in mode 1, and which will ignore
channel numbers, a channel number must still be
included in each MIDI channel message. It does not
matter which channel is used, but the convention is to
use channel 1.

Note On/Off
For basic sequencing it is only necessary for the
controlling device to be able to switch notes on and off,
and to select the required notes. Switching notes on
and off is handled using separate messages, not by
having a single note on message that includes a note
duration value. This second method is only usable in
step-time sequencing, which renders it useless in many
MIDI applications. Each note on message must always
be followed by a note off message after the appropriate
interval, or notes will be left "droning".

The note on and note off messages have the same
basic format with each message being sent as three
separate pieces of information. Most MIDI messages
require more than one block of information, but as a
three block message can be sent in less than one
thousandth of a second there is not normally any
problem with the data stream becoming overloaded.

The first block of data contains the note on or note off
code number, plus the MIDI channel number. The
second block carries the note number, and MIDI
supports a note range of 0 to 127. Each increment by
one represents an increase in pitch by one semitone. A
range of 128 semitones is a compass of well over ten
octaves, which should be more than adequate. This is
over three octaves more than the range covered by
most pianos. In fact few MIDI equipped instruments
actually accommodate the full note range. It is useful to
bear in mind that many can handle a wider compass via
their MIDI interface than they can using their keyboard.
Incidentally, middle C is at a note value of 60.

The third block in the message carries the velocity
value for the note, which with most instruments
controls the volume of the note. Most instruments are
velocity sensitive these days, but there are still some
that are not, and many early MIDI instruments did not
implement this feature. This data must always be
present though, so as to maintain full compatibility
between items of MIDI equipment. A non-touch
sensitive instrument simply ignores any velocity infor
mation it receives, and transmits an intermediate
"dummy" value in any note on messages it transmits.

Note off messages only differ from the note on type
in that the message code in the first block is different. It
might seem at first that not all the information provided
in note off messages is actually needed, but remember
that there could be sixteen polyphonic instruments
connected to a MIDI output. A note off message must
make it clear which note on and which channel of which
instrument must be terminated. There is an alternative
method of switching off notes, which is to use a note on
type having a velocity value of 0. I am not quite sure
why this alternative method was deemed necessary, but
some instruments do seem to use it (the SCI synthe
sisers in my original MIDI system certainly seemed to
use this method for all note off operations). MIDI
equipment should be able to handle either method, and
this is all of only academic importance for most users.

Key Pressure
At one time very few instruments responded to any
form of key pressure (after-touch), but it now seems
quite common for overall key pressure to be
implemented. This is the most basic type of key
pressure response, and it is a sort of average pressure
value for however many keys are pressed. There are
various ways in which this information can be used by
an instrument, but it normally controls either the
volume or the filtering after the initial attack and decay
phases of the signal.

This type of message requires only two blocks of data
to be sent, and the first of these is the overall pressure
code number together with the MIDI channel number
for the message. The second block of data is the
pressure value, which is from 0 (minimum pressure) to
127 (maximum pressure).

Polyphonic key pressure is much the same as the
overall type, but individual MIDI messages are sent for
each note. This is much more sophisticated, and offers
excellent control, but it is relatively difficult to
implement. It is a feature that, as yet, is far from
common. The polyphonic key pressure message takes
the same basic form as the overall type, but a third

24

block of data is needed to identify the note to which the
pressure value applies. This block is placed between the
code number and pressure value blocks.

An important point to keep in mind when using
instruments that implement either form of key pressure
is that holding down keys can result in a lot of MIDI data
being generated. This applies more to the polyphonic
type than overall key pressure. With polyphonic key
pressure, if you are holding down around five keys at a
time, five sets of key pressure data will be transmitted.
Key pressure is not something that is sent once per
note, and there can be several sets of pressure data for
each note. The implications of this for real-time
sequencing are clear - you could easily end up with
most of the available memory being taken up with
pressure data rather than note on/off messages! This
might not matter with short sequences if a lot of free
memory is available. Otherwise, it might be necessary
to disable the instrument's aftertouch, or to use some
method of filtering to remove the pressure data.

Key pressure is not something that is restricted to use
with keyboard instruments. A lot of MIDI rack-mount
modules will respond to aftertouch, and there is no
reason that a step-time sequencer should not be
designed to implement key pressure. However, if you
have equipment that can handle this type of thing, the
memory problem described above must be kept in
mind.

Controls
MIDI includes a general purpose control message,
which can be used to control master volume, filter
resonance, or anything a manufacturer cares to
implement. The only MIDI control number which the
MIDI specification allocates to a specific function is
control number 1, which is the modulation wheel. It
seems to be the convention for control 4 to be a foot
pedal, control 7 to be the main volume, and for control
number 64 to be the sustain pedal. However, these are
only conventions, and not ail equipment necessarily
conforms to them.

Controller messages are standard three block types,
with the first block carrying the controller message code
and the channel number. The next chunk of data is the
number of the control, and the last one is its new value
(from 0 to 1271. Control numbers from 0 to 63 are used
for continuous controls (i.e. adjustable types like
volume and tone controls) whereas control numbers
from 64 to 95 are used for switches and only give a
simple on/off action. For these switch type controls,
only values of 0 (off) and 127 (on) are valid, and other
values will be ignored.

The continuous controls are complicated slightly by a
system of pairing, which has control numbers 0 to 31
paired with controls 32 to 63 respectively. The idea is to
have the values sent to a pair of controls merged to give
one large number. This permits much more accurate
settings than are possible using one control in isolation.
Whereas one control has 128 different settings from 0
to 127, a pair of controls gives 16384 settings from 0 to
16383. In practice the degree of control provided by
pairs of control values is usually higher than is needed.
Also, where a control is being continuously varied, such
fine resolution requires vast amounts of data to be sent.

It is unlikely that MIDI could send data fast enough to
fully utilize such high resolution. In practice it seems to
be quite common for the "fine tuning" controller not to
be implemented. It is then only control numbers from 0
to 31 that are used, while those from 32 to 63 are
ignored. As a point of interest, in several instruments I
have used not even the full 0 to 127 range has actually
been used, with some controls only having 64 or 32
different settings.

Mode Change
Control numbers from 96 to 127 are either not assigned
to any purpose, or are used for things such as mode
changing. The functions of the control numbers that
have been assigned a task are listed below:-

Contro! Function
Number
121 Reset all controllers
122 Local control on/off
123 All notes off
124 Omni mode off
125 Omni mode on
126 Mono mode on (poly mode off)
127 Poly mode on (mono mode off)

These are all switches where the value sent to them is
either 0 (off) or 127 (on) or a dummy data number of 0
is used. The only exception is control number 126. Here
the value sent specifies the number of voices to be used
in mono mode (a value of 0 sets all available voices to
mono mode).

Local control on/off is where the normal (built-in)
method of controlling the instrument can be disabled.
This usually means switching off the keyboard. One
reason for doing this is merely to prevent accidental
operation of an instrument while it is being sequenced
from a computer. It also enables a keyboard instrument
to effectively be used as a separate keyboard and sound
generation module. The salient point here is that the
keyboard will still transmit on the MID! "OUT" socket,
and the instrument will respond to data received on the
MIDI "IN” socket. You can even feed the MIDI output
through some form of processor (which could be the ST
running a suitable program) and then feed the pro
cessed signal back into the instrument, as shown in
Fig. 3.2.

The all notes off message is not intended as the
norma! way of switching off notes. It seems to be
intended more as a means of switching off any
"droning" notes in the event of some form of malfunc
tion. Incidentally, changes in MIDI mode also switch off
any notes that are switched on at the time.

MIDI does not have specific messages to select mode
1, mode 2, etc., but instead the right combination of
omni on/off, mono, and poly have to be selected. This
should all be quite straightforward if you consider
modes in terms of their current names rather than their
numbers (e.g. omni on/poly instead of mode 1).

Program Change
The program change message uses two blocks of data.
The first of these is the appropriate message code and
channel number, while the second is the new program
for that channel. In this context "program" generally

25

IN OUT THRU

U1U1JUJLW
(LOCAL OFF)

///////////////////OUT

ST AS MIDI PROCESSOR

Fig. 3.2. The ST can be used as a versatile MIDI processor.

means a set of control settings for a synthesiser, so we
are really talking in terms of a change in sound for the
voice of an instrument. It is usual for synthesisers to
have around 32 to 128 programs stored in memory,
with any of these being assignable to any voice of the
instrument. The ability to change sounds mid-sequence
via MIDI is more than a little useful. If you have a
synthesiser with eight voices and capable of multi-
timbral operation in mode 4, on the face of it you only
have eight different sounds available. If the sequencer
and the synthesiser both support program changes,
then you could have as many as 128 different sounds
available. You would still be limited to no more than
eight notes at once, but would have a vast range of
sounds available for use in each piece of music. Not
quite as good as having a bank of synthesisers, but
nearly!

There is potential for a lot of confusion with program
changes as there is no standard method of numbering.
One manufacturer might use numbers from 0 to 127,
while another might use numbers from 1 to 128. Some
manufacturers have a totally different approach. For
instance, my Casio CZ1 synthesiser has programs
selected by two banks of push-buttons which are
labelled "1" to "8" and "A" to "H". This gives sixty
four programs from "A-0" to "H-8". I he manual for an
instrument should make it quite clear if there is a
discrepancy between the numbers of programs, and the
values used in program change messages to select
them. Often there fs a chart showing program change
values and which program each one selects.

It ts important to realise that there is no standardi
sation of program numbers and sounds. It is up to the
user to ensure that a program change message will
actually produce the desired sound from an instrument.
It is also worth noting that few instruments have the full
range of 128 programs available. Most seem to offer 64
or 100 programs, and will ignore any out of range
program change messages.

It is worth noting that program change messages are
not only recognised by synthesisers and other
instruments. Devices such as MIDI controlled mixers
and effects units often make use of them as well. The
usual way in which this works is that sets of control
adjustments are assigned to program numbers so that

they can be called up as and when required using the
appropriate program change Instructions, program
changes are an important part of much MIDI
sequencing.
Pitch Bend
Pitch bending could be accomplished using an ordinary
MIDI controller, but it has been assigned its own MIDI
message type. This message consists of three blocks,
with the first one containing the pitch bend message
code and the channel number. The other two blocks of
data contain the pitch bend value, with the two
numbers having to be combined into one large pitch
bend value at the receiving device. The MIDI speci
fication does not lay down rules stipulating exactly how
much given changes in pitch bend value actually affect
the pitch of an instrument. Pitch bend information
recorded from one instrument might not produce
exactly the same degree of bend if it is played back to a
different instrument.

System Messages
System messages consist of one or more blocks of
data, and the first block always contains the system
message code. As no channel numbers are used for
these instructions, the vacant area left by the unused
channel numbers can be used to define the precise
nature of the message. System messages have a variety
of functions, but they are mainly concerned with
timing, and the synchronisation of sequencers. This
almost invariably means keeping the built-in sequencer
of a drum machine properly synchronised with the main
sequencer which controls the rest of the system. There
is another important category of system message in the
form of "system exclusive" types, which seem to be
playing an increasing prominent role in the world of
MIDI.

Song Position Pointer
A MIDI sequencer which is capable of using MIDI
synchronisation signals can keep track of the number of
beats that have elapsed since the start of a sequence tor
"song"). The maximum number of beats that can be
handled is 16384, and each beat is equal to Visth note.
The idea of this is to enable a sequencer to randomly
access any part of a song. Perhaps more accurately, the

26

idea is to enable two sequencers operating in tandem to
be set to exactly the same point in a song, and any
desired point in a song. Without this random access
feature they could only be kept in synchronisation by
always starting them both from the beginning of a
sequence, or by using a lot of trial and error.

The song position pointer uses two blocks of data,
but these two numbers are combined to give one large
number of 0 to 16383. Note that some sequencers take
a significant time to adjust to a song pointer instruction,
and that they must be given time to respond to one of
these messages before they are restarted. Also note
that this message only moves the sequencers to a
certain point in a song, it does not set the sequencers in
motion.

Song Select/Tune Request
Although these messages have names that suggest a
similar function, they are actually quite different. The
song select message is used to select the desired
sequence from a sequencer that can store more than
one song, and which supports this feature. As with
virtually every type of MIDI message, do not assume
that your equipment actually implements this feature.
Always check the MIDI specifications very carefully to
find out what features are supported and which are
ignored. This message uses one data block, and this is
the song number. Song numbers are from 0 to 127 in
terms of the actual number sent in a song select
message. However, this is another example of the
identification numbers used by manufacturers not
necessarily being the same as the actual values used in
the MIDI message, and not necessarily being the same
from one manufacturer to another.

in the tune request message it is "tune" in the sense
of tuning an instrument. This is for use with instruments
which have an automatic tuning facility. The message
only consists of the message code with no data being
sent. No timing information is sent with this message,
and all it fs really doing is telling instruments to tune
themselves against their internal tuning references.
Presumably any instruments that implement this feature
would then accurately tune themselves to the usual
pitch of A - 440Hz, and would all be accurately in tune
with each other. This is not a feature that seems to be
much used these days, and few instruments seem to
support this MIDI message.

System Exclusive
Most MIDI messages are universal, and can be
implemented by any equipment manufacturer. This is
an important aspect of MIDI, as one of the prime
reasons for its introduction was, as far as possible, to
eliminate incompatibility between devices from different
manufacturers. On the other hand, MIDI needed to be
flexible enough to permit future expansion and develop
ments. Manufacturers needed to be able to do their
"own thing", and implement any novel ideas that they
might develop. Without this built-in flexibility it was
unlikely that MIDI would have been adopted by all the
main electronic music equipment producers.

Much of MIDI's flexibility lies in the system exclusive
message. This consists of the message code followed
by the manufacturers identification code. The idea of
this code is that it enables equipment to filter out and

ignore system exclusive messages that do not have the
correct manufacturers identification number. This is an
important feature, because the data that follows the
identification code can be anything the equipment
manufacturer desires. The data here will either be
meaningless to the wrong piece of equipment, or worse
still it could have totally the wrong effect and render a
piece of equipment temporarily useless. The system is
only usable with this method of filtering included. There
is no fixed number of data blocks in a system exclusive
message, and there can be as much data here as the
application requires. The end of a system exclusive
message is marked by a special (single block) MIDI
message.

System exclusive messages are used for such things
as program dumps, sample dumps, or any non-standard
feature that an equipment producer wishes to
implement via MIDI. A number of recent instruments
seem to use system exclusive messages to provide MIDI
control of their sound generator circuits, rather than
making these adjustable via standard MIDI controller
messages. This is perhaps an unfortunate trend, as
units (or a computer like the ST plus some software)
that are intended for general MIDI programming via
controller messages are not usable with these system
exclusive oriented instruments. They can only be
programmed by way of a matching programmer unit, or
custom software.

On the other hand, manufacturers who use system
exclusive messages are supposed to publish details of
the method of coding used, and to allow anyone to
freely use this coding. Once system exclusive details
have been published, no changes should be made to the
specification (except perhaps, to extend it rather than
modify any existing details). It is quite in order for a
software company to produce programming software
that accesses instruments via system exclusive mes
sages, and a number of programs of this type are
available for the ST computers.

There have been moves towards standardising some
system exclusive messages. As far as I know, the only
standard system exclusive message at present is the
MIDI sample dump standard. This uses the sample
dump standard identification code where the manufac
turers code number would normally be, and it then has
quite a complex method of sending samples. This
complexity is inevitable, as this standard is designed to
accommodate a wide range of instruments at different
levels of sophistication. It is also designed to leave
sufficient "headroom" for future developments. It has
facilities for error checking, and has two way communi
cations so that a receiving device can temporarily halt
the flow of data if it is becoming overloaded. However,
it is only fair to point out that not all samplers use the
sample dump standard at the moment, and it might
never be adopted as the only sample dump standard.

Incidentally, this type of system exclusive message is
sometimes known by the rather contradictory name of
"system exclusive common" message.

System Real-Time
The system real-time messages are the ones which
provide synchronisation between two sequencers, and
are analogous to the clock pulses used to synchronise
drum machines in the pre-MIDI era land probably still

27

much used today). The MIDI system is substantially
different to the old system though. In particular, the
clock signal is not just a regular series of electronic
pulses. It is a regular series of MIDI clock messages, and
it is sent continuously, not just while a sequence is in
progress. Because of this a number of other messages
are needed in order to make the system workable. It
should be pointed out here that in the original MIDI
specification synchronisation was handled in a slightly
different manner. This original method is now com
pletely obsolete though, and is certainly not to be found
on any currently produced equipment.

With a continuous clock signal it is obviously
necessary to have stop and start messages so that
sequences can be started and halted as required.
Actually there are two types of start message, "start"
and "continue". They differ in that a "start" message
results in the sequence starting from the beginning,
whereas continue causes it to start from wherever it left
off (i.e. the current position of the song pointer). If a
song pointer instruction is used to move to the middle
of a sequence, it is "continue" and not "start" that
should be used to restart the sequence.

The system real-time messages include a "reset"
instruction, which simply takes the equipment back to
its initial state (i.e. the state in which it would be if you
were to switch it off and then turn it on again). This is
not implemented on all instruments, and would not be
worthwhile with many disc based instruments such as
samplers, which can not produce any sound in their
switch-on state (they must first have data loaded from
disc).

Another little used facility is active sensing. The idea
here is that the MIDI controller sends out an active
sensing message at reasonably frequent intervals (not
more than 0.3 seconds between each one), and the
controlled devices then check that they are receiving
these messages at suitable intervals. If a gap of more
than 0.3 seconds should elapse without an active
sensing message being received, all notes are termi
nated. This is quite a good idea as it avoids having an
instrument stuck with notes activated or in some other
"hung-up" state if a connecting cable becomes dam
aged, or something of this sort should occur.

This facility seems to be little used in practice though.
It has the disadvantage of increasing the amount of
MIDI data that is transmitted, which increases the risk
of MIDI "choke". This would not seem to be a major

problem though, as it only needs three to four messages
per second to be transmitted. Perhaps equipment
manufacturers feel that the processing power of their
instruments and controllers could be put to better use in
other MIDI departments, or perhaps they feel that this is
an unnecessary complication that few people will want
to bother with. Anyway, you are unlikely to encounter
any equipment that actually implements this feature.

All these system real-time messages are single block
types, and none of them contain any data. Being forms
of system message, they do not carry a MIDI channel
number either.

Finally
This is a full list of the standard MIDI messages, and if
you are intending to use MIDI anything more than
occasionally you really need to have at least a basic
knowledge of what messages are used, and what
features can be controlled via MIDI. It is well worth
spending some time studying the basic details of all the
messages. It is unlikely that you will ever use them all,
but you really need to know what functions are available
to you before you can use MID) effectively. Do not
assume that all of these messages will be implemented
by your MIDI equipment. You must study the speci
fication sheets for your equipment to determine which
messages are actually implemented. MIDI specification
sheets normally include a chart which lists MIDI
message types, and indicates those that the equipment
transmits and those which it recognises. There are often
substantial differences between the types of data that
are transmitted and recognised, if your instruments
make use of system exclusive messages there should be
details of these tn the manuals, or this information
should be available from the equipment manufacturers.

Even if you are only intending to use the ST with
commercially produced applications software, and do
not intend to take the do- it-yourself approach, a basic
understanding of the MIDI messages is still very
important. The same is true of MIDI as implemented on
your particular equipment. Without this knowledge you
could waste a great deal of time trying to implement a
feature which your equipment does not support, or miss
out on some useful feature which it can implement.
Grasping the fundamentals of MIDI will take a certain
amount of study, but it should prove to be well worth
the effort.

28

Chapter 4
MIDI TECHNICALITIES

The previous two chapters have provided most of the
important information MIDI users will need to know. In
this chapter we will consider MIDI in a more technical
manner, giving the kind of detailed information that is
needed by MIDI programmers and hardware designers.
For users who will only use ready-made equipment and
software this is only of academic importance. You may
well prefer to skip this chapter if you are not interested
in the technicalities, but a quick read through this
chapter might give you a better understanding of just
what happens each time you generate some MIDI data.
Another point worth making is that MIDI software does
not need to be complex in order to be useful. Some very
simple utilities can prove to be invaluable on occasions,
and they are easily written by someone who has a
reasonable grasp of MIDI codes and is moderately
proficient at programming in any language relevant to
the ST computers. A knowledge of the technical side of
MIDI could be more useful than you might think,
especially for an ST owner.

The Interface
MIDI is a form of serial interface, and it is very similar to
the standard RS232C and RS423 computer serial
interfaces. Computer interfaces send data in the form of
binary numbers, with a "high" voltage (actually only
about 3 to 5 volts in most circuits) representing a 1, and
a low voltage (0 volts to about 2 volts) representing a 0.

can seem to be decidedly useless! In fact any value that
can be represented in ordinary decimal form can be
represented by a binary number. Except for very small
values it requires a lot more digits for the binary version
though.

The binary system is very simple in concept, and is
basically the same as the decimal system. However, its
base number is 2 rather than 10. Whereas in a decimal
number the columns of figures represent (working from
right to left) units, tens, hundreds, thousands, etc., in a
binary number they represent units, 2s, 4s, 8s, 16s,
32s, 64s, 128s, etc. A few years ago the majority of
micro computers were 8 bit types (such as the Atari
400/800 series), and this meant they dealt in blocks of
binary data 8 digits long. A "bit" is just a binary digit,
and is a contraction of these two words. An 8 bit chunk

of data is normally called a "byte". 8 bit bytes enable
numbers from 0 (00000000 in binary) to 255
(11111111 in binary) to be accommodated. 8 bit
computers can handle larger numbers, but only by
using two or more bytes together, and processing each
byte of a large number separately.

The ST computers have a 68000 microprocessor,
which is a 16 bit type. In fact many of its internal
registers are 32 bit types. This gives much greater
processing power, but in many ways it is irrelevant for
MIDI use. MIDI only deals with 8 bit bytes of data. In
fact MIDI data (as opposed to instruction bytes) only
use 7 bits of data, and are in the range 0 to 127). Some
MIDI data requires 14 bit numbers, but these are sent
over the MIDI link as two 7 bit numbers. MIDI can only
handle data of more than 8 bits in this way,

Some interfaces send data in parallel form, which
simply means that there is a separate lead to carry each
bit of data, or eight signal leads plus a ninth one for the
earth connection for an 8 bit system. The ST's printer
port is an example of a serial interface. MIDI is a form of
serial interface, and the signal is sent down a single wire
plus an earth or return lead. The signal must be literally
sent bit-by-bit and not one byte at a time. This tends to
be much slower than the byte-by-byte transfers of a
parallel interface, but It is more practical in that the need
for expensive multi-way cables is avoided. Also, parallel
interfaces tend to have rather limited maximum oper-

The standard method of operation for a serial
interface is as shown in Fig.4.1. First a "start" bit is
sent, and this Indicates to the receiving device that a
byte of data is about to commence. The receiving
equipment then samples the state of the input line at
regular intervals. The transmitting device outputs the
bits of the byte that are being transmitted, one by one,
also at regular intervals. It starts with the least
significant bit (the "l.s.b." or units digit) and works in
sequence through to the most significant bit ("m.s.b."
or the 128s bit in this case). There is then a "stop" bit,
which is really does no more than ensure that there is a
reasonable gap between one byte and the next. It does
not carry any data and it is not needed for synchroni
sation purposes.

The RS232C serial system has various word formats,

29

with from 5 to 8 data bits, one or two stop bits, and
sometimes a form of error detection known as parity
checking is implemented. This system of error detection
involves the transmission of extra bits on some bytes.
Fortunately, MIDI is properly standardised, and it only
uses a word format of one start bit, eight data bits, one
stop bit, and no parity. This word format can be
accommodated by all the serial interface chips I have
encountered, and MIDI hardware does not require any
non-standard components.

A lot of difficulties are experienced by users of
RS232C equipment due to problems with the hand
shake lines. These enable a receiving device to instruct

the sending equipment to temporarily halt the flow of
data in the event that data is received at a higher rate
than it can be processed. There is no risk of any similar
problems with MID! interfacing as handshaking is not
used. At least, handshaking of the hardware variety is
not used. Some equipment uses system exclusive
messages where a two-way dialogue takes place so that
the flow of data can be regulated, and any errors can be
corrected. This system can work very well, and the lack
of hardware handshaking is not a major drawback.

Some serial system are "synchronous", which means
that they use an extra connecting cable to carry some
form of synchronisation signal. MIDI is a form of

30

"asynchronous" serial interface, which means that the
timing signals are sent on the same line as the data. In
fact the only synchronisation signal is the start bit at the
beginning of each byte. This indicates the com
mencement of a byte of data, and that the voltage on
the connecting lead must be tested at regular intervals
thereafter until a full byte of data has been received. It
does not ensure that the transmitting and sending
devices are properly synchronised while each byte of
data is sent. This is achieved by sending/receiving data
at a standard rate, with (usually) quartz crystal con
trolled oscillators (as used in quartz watches) to ensure
excellent accuracy at both ends of the link.

The standard MIDI "baud" rate is 31250 baud, or
31.25 kilobaud if you prefer. This simply means that
data is transmitted at a rate of 31250 bits per second
(assuming a continuous flow of data). This is not a
standard RS232C baud rate, and might seem to be a
unusual choice. Originally the baud rate was 19200
baud, which is the highest standard baud rate for
RS232C interfaces. However, this was deemed to be
too slow, and in the final MIDI specification it was
increased to 31250 baud. This is convenient from the
hardware point of view, as it is well within the
capabilities of most serial interface chips. Also, 31250
multiplied by 32 equals 1000000, and this fact enables
the baud rate of MIDI interfaces to be controlled using
"off the shelf" crystals intended for communications
applications and microprocessor circuits.

The Hardware
RS232C and RS423 interfaces use different voltages to
represent logic 0 and logic 1 levels, but MIDI is different
in that it uses a 5 milliamp current loop. In other words,
the current is switched on to indicate one logic level,
and switched off to represent the other logic state. This
is done due to the use of opto-isolators at each input,
which keep items of equipment in the system electri
cally isolated from one another (as explained in chapter
2).

A MIDI link is therefore something along the lines
shown in Fig.4.2. This is mostly straightforward, but
note that the opto-isolator can not be a "bog-standard"
device such as the TIL111. It needs to be a high speed
type, and I have found types having a photo-transistor
driving a common emitter switch (such as the 6N139)
give the most reliable results. Alternatively, it is possible
to get away with using a relatively slow and insensitive
device such as the T1L111. It must be connected in the
same configuration used in the 6N139 etc., but with an
external switching transistor. This seems to give good
results, and is usually much cheaper than using a high
quality opto-isolator such as the 6N138 or 6N139.

MIDI Codes
All MIDI instructions have a header byte that consists of
two 4 bit sections (or "nibbles" as they are sometimes
called). The most significant nibble indicates the nature
of the instruction (note on, note off, or whatever). The
least significant nibble is the channel number in most
messages, but no channel number is required for any
form of system message. With system messages the
most significant nibble is the system message code, and
the least significant nibble defines the precise type of
system message (MIDI clock, reset, etc,). In terms of

the total decimal value in a header byte, it is just a
matter of taking the values of the two nibbles and
adding them together. For instance, an instruction
nibble of 128 and a channel value of 12 would be sent
as a byte having a total value of 140, With MIDI it is
often easier to work with hexadecimal numbers, as each
nibble represents one digit of a hexadecimal number.

The most significant bit of header bytes is always set
to 1, but this bit of data bytes is always 0. It is for this
reason that MIDI data bytes only cover a 0 to 127
range, and not the full 0 to 255 span afforded by 8 bit
operation. The point of arranging things this way is that
it enables receiving equipment to sort out MIDI
messages from amongst MIDI data. Although this
might appear to be unnecessary with one MIDI message
being fully transmitted before the next one is com
menced, things do not always happen in this way. It is
obviously necessary for MIDI clock messages to be sent
at strictly regular intervals, without them being delayed
too long while a message in progress is completed. The
MIDI specification therefore allows for clock messages
to be mixed into other messages. Complete bytes must
always be sent, and a byte must not be aborted so that
a clock message can be sent. It is still possible to have
something like a note on message and the note value
sent, followed by a MIDI clock message, and then the
velocity data byte of the note on messagel As the most
significant bit of the clock message will be set to 1, the
receiving equipment can recognise it as such and will
not mistake it for the velocity data byte.

Note On/Off
The note on nibble is 1001 in binary, which is equivalent
to 144 in decimal. From here onwards, values will be
provided in binary, followed by the decimal equivalent
shown in brackets. The least significant nibble is the
channel number, which is from 0000 (0) to 1111 (15).
As MIDI channels are normally numbered from 1 to 16,
this means that the value used in a MIDI channel
message to select the desired channel is actually one
less than the MIDI channel number. In other words a
value of 0 selects channel 1, a value of 1 selects channel
2, and so on. The note on message is followed by two
data bytes, which are the note number and the velocity
value.

Note off messages have 1000 (128) as the most
significant nibble, and the channel number as the least
significant nibble. The header byte is followed by two
data bytes, which are again the note number and
velocity value. A note on message having a velocity
value of 0 can be used as an alternative form of note off
message.

Key Pressure
Overall key pressure (sometimes called "channel"
pressure) has the instruction nibble 1101 (208) and is
followed by a single data byte. Polyphonic key pressure
has 1010 (160) as the instruction nibble, and is followed
by two data bytes. These are the note value first, and
the pressure value second. For both types of message
the least significant nibble of the header byte contains
the channel number.

Control Change Etc.
The control change header byte has 1011 (176) as the

31

most significant nibble in the header byte, while the
least significant nibble is the channel number value. The
header is followed by two data bytes, which are the
control number followed by its new value. Controls
from 0 to 31 are paired with controls from 32 to 63
(respectively), and these operate as high resolution
continuous controls. Each pair of seven bit numbers are
combined to give a single 14 bit value. The lower
numbered controller always provides the most sig
nificant bits, with the higher numbered control pro
viding the seven least significant bits. In terms of
decimal numbers, the range available is from 0 to
16383. Note that it is quite acceptable to only change
one or other of the controls in a pair, and a change to
one does not necessitate a change to the other.

Not all equipment actually uses the high resolution
capability of the MIDI continuous controls, and most
equipment only uses a resolution of seven bits or less.
For 7 bit resolution it is the most significant nibble
(lower control number) that is utilised, and the least
significant one that is ignored. For less than seven bit
resolution the least significant bit or bits are left at zero,
while the most significant bits are utilized.

Control numbers from 64 to 95 are used for switch
type controls. Only control values of 0 (off) and 127
(on I are valid with these, and other control values will
be ignored. Control numbers from 96 to 120 are, as yet,
unassigned. These are available for future expansion,
and may be assigned specific functions in the future.

The remaining control numbers (121 to 127) are used
for mode changes and similar functions. These have a
value of 0 for the control value byte, apart from controls
122 (local on/off) and 126 (mono on). Local control is a
standard on/off switch type control, and is 127 to
activate the keyboard (or whatever), and 0 to switch it
off. When mono mode is switched on, the control value
selects the number of voices to be set to mono mode (a
value of 0 sets all the instrument's voices to mono

Table 1

mode). The MIDI specification only calls for mono
mode channels to be contiguous, but some instruments
have special modes which allow them to be assigned to
any desired channels.

Pitch Wheel
The pitch wheel header byte has 1110 (224) as its most
significant nibble, and the channel number value as the
least significant nibble. Two data bytes are used, and
the two seven bit values these contain are combined to
give a 14 bit pitch wheel value. The least significant
byte is the one sent first. A value of 10000000000000
(8192) represents zero pitch change. If less than the full
14 bit resolution is implemented some of the least
significant bits are ignored by a receiving device, and
always set at zero by a transmitting device.

Program Change
The program change code nibble is 1100 (192). The
least significant nibble of the header byte is the channel
number value. The header is followed by a single data
byte, which is the number of the new program for that
channel. The value in the data byte is from 0 to 127, but
some manufacturers number programs differently.
Where this is the case, equipment manuals often have a
conversion chart to make things easier.

Table 1 provides a summary of the channel messages
for quick reference purposes. The channel mode
messages require some further amplification, and this is
provided in Table 2.

System Messages
These all have 1111 (240) as the most significant nibble
in the header byte. No channel numbers are used, as
these messages are sent to the whole system. This
leaves the least significant nibble free to indicate the
type of system message. Table 3 gives a full list of these
messages, but note that some of the sixteen available

Table 2

Header Function Data
1000 (128) Note Off Note Value/Velocity Value
1001 (144) Note On Note Value/Velocity Value
1010 (160) Poly Key Pressure Note Value/Pressure Value
1011 (176) Control Change Control Number/Value
1100 (192) Program Change New Program Number
1101 (208) Overall Pressure Pressure Value
1110 (224) Pitch Wheel l.s.b./m.s.b.

Control No. Function Data
121 Reset All Controls 0
122 Local Control 0 = off, 127 = on
123 All Notes Off 0
124 Omni Mode Off 0
125 Omni Mode On 0
126 Mono Mode On Number of Channels (0 = All

Channels Set to Mono Mode)
127 Poly Mode On 0

32

Table 3

Nibble Code Function Data
0000 (0) System Exclusive ID/As Required
0001 (1) Undefined
0010 (2) Song Position Pointer l.s.b./m.s.b.
0011 (3) Song Select Song Number
0100 (4) Undefined
0101 (5) Undefined
0110 (6) Tune Request None
0111 (7) End System Exclusive None
1000 (8) Clock Signal None
1001 (9) Undefined
1010 (10) Start None
1011 (11) Continue None
1100 (12) Stop None
1101 (13) Undefined
1110 (14) Active Sensing None
1111 (15) System Reset None

codes are as yet undefined. Many of them do not
require data bytes, and are just single byte messages.

The values shown in brackets are the decimal
equivalents for the binary nibbles. These must be
boosted by 240 to give the total decimal value for each
header byte (e.g. the value sent for a clock signal is 240
+ 8 = 248). The system exclusive message is followed
by a data byte which gives the manufacturer's identifi
cation code, and then as many data bytes as required
follow on from this. The "end system exclusive"
message marks the end of a system exclusive message.
Table 4 provides a list of manufacturer's identification
numbers. The sample dump standard is a "system
exclusive common" message, which can be used by
any MIDI equipment producer.

This is only a brief description of the MIDI codes, but
more background information on many of them is
provided in chapter 3, which should be consulted if any
points here are unclear.

Table 4

Manufacturer Number (decimal)
SC1 1
Big Briar 2
Octave 3
Moog 4
Passport Designs 5
Lexicon 6
Ensoniq 15
Ob er heim 16
Bon Tempi 32
SIEL 33
Kawai 64
Roland 65
Korg 66
Yamaha 67
Casio 68
Sample Dump Standard 126

33

Chapter 5
APPLICATIONS PROGRAMS

The ST has what is almost certainly the biggest range of
available music oriented software. There are other
computers which have a substantial music software
base, but their music software lists mostly seem to be
static or shrinking. By contrast, the range of music
programs for the ST computers seems to be continually
growing. If a piece of software for a certain music
application is not available for the STs, then it is
probably not available at all!

There are dozens of ST music programs available, but
inevitably some programs cover much the same ground
as one or more others. There are only a few different
categories of music software, but programs within each
category can vary considerably in terms of price,
facilities, and sophistication. In general you get what
you pay for, but some titles do seem to offer much
better value than others. Also, there is little point in
buying an expensive program that has advanced
facilities you do not need, when a much more simple
program at less than half the price would be just as
good for your purposes. When selecting software you
need to carefully study all the possibilities, obtain
demonstrations of likely candidates if you can, and give
a lot of thought to which one best suits your needs.
While there may seem to be no point in selecting a
program that goes well beyond your current needs, it
would be as well to leave some room for future
expansion. This applies particularly to sequencing
software, where you may quickly progress to the point
where you are producing pieces of far greater complex
ity than you might have expected before starting any
sequencing work.

Sequencing
Of the multifarious types of music software that are
available, I suppose that the various sequencing
packages probably form the largest category. There are
two main types of sequencer; the "real-time" and
"step-time" varieties. With a real-time sequencer, in its
most basic form, anything you play on the keyboard is
stored in the computer's memory, together with timing
information. This information can then be played back
into the instrument. It is a sort of space-age version of
the old player- piano idea. As with player-pianos, just
how accurate (or otherwise) the played back music
happens to be when compared with the original
performance depends on the sophistication of the
system. Most sequencers, unless told otherwise, record
all the MIDI data that they receive. If you are using an
instrument that fully implements velocity, polyphonic
aftertouch, etc., then the sequence played by the
computer should be a very accurate reproduction of the
original performance. This assumes that the sequencer
operates with a fairly high degree of timing resolution,
which is not always the case. If low timing resolution is
al) that the sequencer can offer, the played back
sequences might sound rather "mechanical” and
lacking in artistry.

A basic step-time sequencer enables notes to be

programmed by entering data into the computer via the
computer's keyboard or mouse. This tends to be a
relatively slow and tedious way of entering sequences,
but it does have its advantages. The most obvious one
is that you do not need to be particularly talented at
playing a keyboard, or any instrument for that matter.
Virtually anyone can program any sequence, regardless
of how complex it might be. The computer will always
play it note-perfectly. How quickly step-time sequences
can be entered into the computer is largely dependent
on the sophistication of the program. Entering data only
in numeric form can be very slow, confusing, and
error-prone. Some form of graphics display can make it
very much easier and quicker to enter sequences.

Why ST Sequencing?
Obviously the ST (or some other computer) is not the
only way of entering the world of MIDI sequencing.
Many of the more expensive electronic instruments
have built-in sequencers, as do some in the low to
middle price range. These include step-time and real
time sequencers of various levels of sophistication, as
well as some dual role types which permit both types of
sequencing. Also, some neat stand-alone sequencer
units are available, and these offer quite respectable
levels of performance and ranges of facilities.

The only real advantage of built-in or stand-alone
units are that they are much more portable than a
system based on an ST. This could be of great
importance, but synthesisers with five octave key
boards and many other popular instruments of today
are quite sizeable and heavy objects. An ST plus
monitor will not necessarily make that much difference
to the overall bulk of the system. Probably the main
drawback of the ST for "on the road" work is that the
monitor is relatively vulnerable to damage, and would
need to be treated with due respect.

It is the monitor that gives much of the ST's
advantage when compared to built-in and stand-alone
units. The latter generally have simple liquid crystal
displays (l.c.d.) or even just simple light emitting diode
(l.e.d.) types. The displays on electronic music equip
ment have improved greatly over recent years, and
some do now sport l.c.d. types that are capable of
producing a few lines of text or simple graphics.
However, even the low resolution colour display of the
ST can show much more information than most of
these, and the medium and high resolution displays are
even better. The larger display of a 12 or 14 inch
monitor is also much easier to see, which can be crucial
if you will be looking at the display for long periods of
time. Being able to display a reasonable amount of data
at a time is important for much sequencing work. With
only small amounts of data on view you can easily keep
losing track of where you are, making entering notes or
editing sequences very difficult.

Another advantage of using the ST is that even the
more simple sequencer software for this computer

34

seems to be packed with features in comparison to
most built-in and stand-aione units. It is difficult to find
anything comparable to the up-market ST sequencer
packages, apart from some software packages for one
or two other 16 bit computers.

In the value for money stakes a built-in sequencer is
likely to be the cheapest solution. It is also likely to
provide the least features, but if a built-in type is
adequate for your purposes there is clearly no point tn
paying out money for an ST based system or a
stand-alone unit. An ST based system could well prove
to be the most expensive solution, but it is also likely to
be the one that provides the most facilities. If you need
a powerful sequencer there is probably no better
solution than an ST plus one of the more sophisticated
sequencer programs. A point to keep in mind when
comparing costs is to remember that a sophisticated
sequencer system based on an ST computer is not
restricted to sequencing applications. With some addi
tional software it can be used for games, word
processing, computer art, and a hundred and one other
things that computers are used for every day. These
alternative applications include other music types,
including such things as voice filers/editors and visual
sample editors. A stand-alone sequencer is just that,
and nothing more.

Real-Time Sequencing
As explained previously, a real-time sequencer merely
records MIDI data received on the MIDI input, and plays
it back on demand, from the MIDI output. All the ST
sequencer programs I have encountered, including very
low cost types, seem to go well beyond this most basic
level of operation. The most obvious addition is some
form of speed control, so that the tempo during
playback can be varied. You can then play a difficult
piece slowly, and then play it back at the correct speed.
Unlike trying the same thing with tape recording,
changes in tempo when using MIDI do not produce any
changes in pitch.

tn its most fundamental form, variable playback
speed affects the entire sequence. This is a standard
feature which has been present tn every sequencer I
have used. The more sophisticated sequencers permit
more subtle changes to the tempo of a sequence, with
different passages being able to have different tempi.
This sort of facility is far from standard though, and is
something of an up-market feature.

All the sequencers for the ST seem to be of the
multi-track variety. These are used in much the same
way as a multi-track tape recorder, with complex
sequences being built up by recording the first track,
then a second track is recorded along-side that one, and
so on. Most real-time sequencers even have tape
recorder style controls, such as play, record, stop,

35

rewind, and fast-forward. This is not just a gimmick,
and it helps to make them easy to use, especially when
you are first getting to grips with sequencing. Most
sequencers offer at least eight tracks, and sixteen,
twenty four, thirty two, or even more tracks are quite
ordinary.

There can be advantages in having a lot of tracks to
play around with, but vast numbers of tracks may be of
no value at all. For a large number of tracks to be useful,
both you and your equipment must be able to handle
them properly. Whether or not you can handle thirty
two or more tracks properly is a subjective assessment
and is something you have to decide for yourself. As a
point of interest, most large scale classical orchestral
works (such as Beethoven's Fifth Symphony) could be
accommodated by a sixteen track sequencer.

Whether or not you have the equipment to justify a
large number of tracks is a more objective matter.
Unlike multi-track tape recording you can not use a
single instrument to build-up an unlimited number of
tracks. To play back a completed sequence you must
have an instrument, or a voice of an instrument, to play
each track. For polyphonic tracks the instrument must
be capable of providing an adequate number of notes
simultaneously. With a single synthesiser of reasonable
sophistication you would probably be able to handle
eight monophonic tracks. If you wish to have (say)
twenty tracks, with some of these playing polyphonic

sequencers, you are probably going to need at least
three or four instruments to play ail those tracks
properly.

Another important point to keep in mind is that there
are only sixteen MIDI channels available. Some
up-market sequencers can be used with special add-on
MIDI interfaces that provide extra MIDI "OUT" sockets
for the ST, and enable (say) thirty two tracks to be
sequenced on the basis of one per MIDI channel. By no
means alt sequencers which have more than sixteen
tracks support a feature of this type though. With more
tracks than MIDI channels, tracks must share channels.
With one track only using notes above a certain pitch,
and another only using notes below that threshold
pitch, you might genuinely be able to use more than
sixteen tracks with a single MIDI output. Some
instruments, including most samplers, can be set for
"keyboard split" operation, where each voice is
assigned to a certain range of notes. This feature can be
used to match tracks of a sequencer to voices of an
instrument (which can each produce a different sound).
In fact this system can be used to effectively put three
or more instruments/tracks on each MIDI channel, but
the more voices you use per MIDI channel, the more
restricted the compass of each one must become.

Some sequencers have (say) sixteen tracks, but
enable tracks to be merged. Thus, if you run out of
tracks, you may be able to merge some together to clear

36

Process Data
■ DEM07.S0N (c) 1988 Lengeling/Adan

A

1-111
PROCESS DATA

1*11*1 “<*■

ARF

TRANSPOSE
DELAY
VELOCITY
COMPRESSION

1 Pae

One of "Notator's" pop-up control screens. Using an add-on interface up to 64 tracks on separate
MIDI channels can be handled.

53 Mr.
35-Bum

137 STOI

1 1
5B 0

1 I 1
MIDI CHANNEL
QUANTIZE

: £/: = ££:£•. cc
i START VELOCITY

END VELOCITY
ZE.E'E

HIGHEST
LOWEST

1
768 LEFT 1111

RIGHT 1111

CANCEL

1 1 1

RECORD

T^CONl]

f

tracks for further recording. If only a single MIDI output
and sixteen channels are available, this would seem to
be as good as having twenty four or thirty two tracks.
Two tracks merged into one and operating on a single
channel is no different to two separate tracks sending
on the same channel. Either way the sixteen MIDI
channels will be the factor that limits the possibilities of
the system. A possible advantage of having the extra
channels is that it could be easier this way if you wish to
make drastic alterations to a piece. Once you have
merged two tracks it is not usually possible to un- merge
them again! There is actually a way around this, which
is to save the sequence to disc prior to making any
drastic (and non-reversibte) alterations. If your editing
does go completely wrong, you can then return to the
original version and try again.

Another way of squeezing more on to each track is to
have a facility that enables a fresh track to be recorded
onto and merged with an existing track. This is a slightly
risky way of doing things in that if a serious mistake is
made and you want to remove the newly added
material, there may be no means of deleting it without
also deleting the original material on that track.
Recording new material onto a separate track and then
merging it with the existing track once you are satisfied
with it is generally a much safer method.

A useful feature that seems to be gaining popularity is
one which enables a short sequence to be repeated

throughout a score. The idea behind this is to have a
drum machine controlled directly from the main
sequencer, rather than being controlled by its internal
sequencer and synchronised to the main sequencer.
This avoids getting the wrong drum sequence and is
generally a more satisfactory way of doing things.

Filtering
Most sequencers have some form of user selectable
filtering of MIDI data. Filtering can operate during
record, playback, or both. Something like aftertouch
filtering would normally be used during record as a
means of conserving memory. With this type of data
filtering there may be no point in filtering it once it has
been recorded. The exception would be when under
taking multi- track sequencing to build up a complex
piece of music. Each track, as it is recorded, might be
totally free from MIDI "choke". However, when all the
tracks are replayed together it could be a different story.
There could be quite severe problems with MIDI choke,
and filtering out non-essential data at playback could
totally eliminate the problem. Some up-market
sequencers have quite sophisticated control routines
that will automatically remove the least important data if
MIDI "choke" starts to occur. This avoids problems
such as notes left droning.

A facility that is not, strictly speaking, a form of

37

Options Edit CopyDesk File Functions Quantize

ARRANGE R B C D INPUT FILTER
5 1 1768

MIDI

2 Dattero:

(c) 1388

PUNCH! RECORD

EDIT »«

»>
ill!

START I tÕÍÕ|no Unit

STOP

One of the "Notator's" MIDI set-up screens. This one controls input filtering
(there is a similar facility for output filtering).

TRACK: 1

.J ù ,

71017
! -S££ --■cel L - : : Í intern 120

:
1/16

ZE
4/ 4.«e

nA r»ft Afte« r

r ^9,'^ 1,J, IJJ
■ ■ ■■ ■ ■ ' 3

NOTES
PROGRAM
CONTROL
PITCH U
p PRESS
c PRESS

Sy sEx

«<

1

filtering, but is often included in the filter facility of
sequencers, is the MIDI clock on/off switching. This
either enables MIDI clock messages (plus start, stop,
continue, etc.) to be transmitted, or turned off. Unless
you are using a drum machine or other device that
requires these signals it is best to switch off the MIDI
clock messages. This helps to take the load off the
computer and reduces the risk of MIDI “choke".

Other features often found in the MIDI filter or MIDI
control part of sequencer programs are local on/off and
MIDI THRU controls. Local on and local off simply send
the corresponding MIDI message. This is useful
because it represents a quick and easy way of control
ling this facility. Also, some instruments do not seem to
have any built-in control sequence that permits local
on/off switching. You can then only access this feature
via your sequencer. MIDI THRU has the effect of
transmitting on the MIDI output any data received on
the MIDI input. This enables a MIDI keyboard con
nected to the MIDI input of the ST to perform a dual
role. It can be used for playing sequences into the
sequencer, or it can be used to play an instrument
connected to the MIDI output of the ST, or both at
once. This facility is often used in conjunction with local
off capability if the MIDI keyboard is actually the
keyboard of a sequencer or other instrument. There is
otherwise a slight risk of the instrument responding to
both the notes received via its keyboard and those

received via the ST. However, most instruments will
ignore the any notes via their MIDI input if they are
already playing the same notes due to keyboard
information. Things can go wrong though, especially if
you start using "special" MIDI modes.

Quantisation
This is a term that seems to keep cropping up in
different contexts, and with slightly different meanings.
In a sequencer context it normally refers to some form
of note duration correction facility. In other words, if
you play with rather ragged timing, the sequencer's
quantisation facility can tidy things up for you.

Ideally the sequencer should record sequences with
high resolution timing so that it can give an accurate
rendering of your playing. Remember that most music is
played with considerably less than mathematically
perfect timing, not because the player is not very good,
but as a means of giving expression and feeling to the
music. A heavily quantised piece may be perfectly timed
from the mathematical stand-point, but it may also be
totally lacking in expression.

Again, Ideally, quantisation should be implemented
during playback, and not on the data stored in the
computer's memory. The important difference here is
that quantisation during playback can be changed or
removed altogether if you change your mind. It is taking

38

Desk File Edit Tracks Global
SEL S^E NAME REC PLAY SOLO MIDI

Bl
82

VERY L0M6 HMfE
81

<?

83
94
85

81
tn

CLIK 1/4
PUNCH
INTCLOKlin

« <

zz c After-Touch Filter OH
96
87
68
05
IB c

MIDI Clock Send

Local Control

MIDI Thru

E
OH

OK

TEMPO 120
001:81:808

001101:800

OFF

OFF

OFF

OFF

MEM 0807 K
001:01:808

zz ■ I 1111 I

RECORD

08:800 000:90:980

li
12
13

14
15

OK

Bl

J
K

16 Bl

One of the set-up screens of the 32 track sequencer. This includes MIDI dock on/off switching.

the data stored in memory and processing it before it is
sent out on the MIDI port. To remove the quantisation
you merely instruct the sequencer to stop this pre
processing of the data. If the quantisation is implemen
ted by adjusting the timing values stored in memory,
there is unlikely to be any way of reversing the process.
As explained previously, with any drastic and non
reversible process it is always a good idea to save the
data to disc prior to making the change. If it does not
give the effect you expected, you are then in a position
to go back one step to the original version stored on
disc, instead of having to start right from the beginning
again. Some sequencers automatically keep a copy of
your data (usually in memory rather than on disc) so
that you can back-track one stage if desired. This is
called "non-destructive editing", and seems to be
implemented in few sequencer packages. Even where
this feature does exist it might not work with all types of
editing.

Many of the quantisation facilities offered by
sequencer packages seem to be far from ideal. In some
cases this feature has been put forward as a great asset,
but closer examination of the specifications would
suggest that the quantisation is unavoidable due to the
low timing resolution of the system! Most sequencers
these days are more sophisticated and do not have this
enforced quantisation. This is just as well, since a
sequencer which can not record sequences with

reasonably accurate timing accuracy is of dubious
value. Most sequencer packages for the ST seem to
record with quite high timing resolution, and apply the
quantisation to the data stored in memory. In other
words, the quantisation is mostly of the non-reversible
type. The degree of quantisation is normally selected on
the basis of correcting tinning to the nearest eighth note,
sixteenth note, etc.

More sophisticated forms of quantisation are now
emerging, and these take a variety of forms. They are all
aimed at tidying up playing without introducing a
monotonous "mechanical" sound to the final product.
The success of this type of quantisation is something
your have to decide for yourself, but some quite
impressive results can certainly be obtained. Some
sequencers used to provide a "randomise" feature
where the lengths of notes were randomly shortened or
lengthened slightly in order to give a less mechanical
"feel" to the music. This facility seems to have fallen
from favour and has been largely replaced by more
sophisticated techniques.

A simple but useful feature to be found on most
sequencers is a metronome. This provides the standard
metronome "click" sound via the ST's internal sound
generator, and in some cases a so-cailed MIDI "click" is
also sent. There may even be an on-screen graphical
representation of a metronome, complete with swing
ing pendulum! Apart from the obvious one, another use

39

I

of the metronome is to provide a sort of count-down
facility so that all tracks can be started at precisely the
same point. In other words, you start the sequencer by
operating the on-screen "record" control, wait until the
metronome has "ticked-off" (say) two bars, and then
commence playing at the start of the third. Up-market
sequencers usually provide an adjustable lead in period,
but this is by no means always present on the less
expensive sequencer programs. Another way of hand
ling things is a facility that automatically starts recording
as soon as something is played on the MIDI keyboard.

Editing
Probably the main attraction of MID) multi-track
recording over conventional multi-track tape recording
is the editing possibilities it opens up. Obviously some
degree of editing is possible with tape recording, and a
skilled sound engineer can punch out unwanted notes,
piece together several imperfect takes to make one
good one, and so on. The advantage of MIDI is that this
type of thing becomes very much quicker and easier.
What would otherwise require a highly skilled sound
engineer and a great deal of work can often be
accomplished at the touch of a few buttons by virtually
anyone. Also, MIDI editing capabilities go well beyond
those offered by tape recording systems.

If you have ever wondered why some sequencei
programs cost so much more than others which seem
to have a similar basic specification, the answer
probably Ites in their editing facilities. With the less
expensive sequencers the editing facilities may be
bordering on the non-existent. By contrast, with the
most expensive of ST sequencer packages you have
access to all or virtually all the data stored in memory,
and can make any change within reason. We are not
just talking in terms of being able to remove an incorrect
note. With a sophisticated sequencer you can take out
the wrong note and put in the right note!

The more basic sequencer programs only permit
editing on a track basis, rather than at individual MIDI
event level. For example, you would typically be able to
quantise a track, merge tracks, delete a track, name a
track, and time shift a track. This last feature means
being able to move a track backwards or forwards in
time, so that any lack of synchronisation between
tracks can be corrected. Transposition is another
common feature, and as one would expect, this can be
used to shift the notes in a track up or down in pitch by
a certain amount. The amount of shift can generally be
anything from one semitone to several octaves.

Another common feature is the ability to exercise
some control over how the velocity information is
handled. This basically means reducing the dynamic
range (or disabling velocity sensitivity altogether), or

40

boosting it. Not all instruments handle velocity infor
mation in precisely the same way, and a track when
played back might not be quite as you would like
relative to the others. This velocity control feature might
enable you to improve matters As many recent
instruments have a similar feature built-in, it is not
necessarily an important facility to have in a sequencer.
You may well be able to adjust your instruments to react
to velocity information in precisely the desired manner.
This obviously depends on which instruments you are
using.

Event Editing
Even with just some of these basic editing facilities a
multi-track MIDI sequencer is an extremely powerful
piece of equipment. On the other hand, it lacks
versatility and can be a bit frustrating at times. One
minor error can leave no alternative but to re-record a
whole track. Most basic sequencers permit part , of a
track which contains errors to be recorded-over with
new (and, hopefully correct) material. Using this
method it can be quite tricky to make quite minor
corrections, although it is something that can be
mastered with practice.

Providing a program with the ability to alter data at
MIDI event level might seem to be only a minor
improvement, but it really does offer tremendous

versatility and convenience. Unfortunately, programs
with this ability do seem to be quite expensive. The
problem is not so much giving a program the ability to
alter data, but making this facility easy to use. In order
to present masses of complex data in a form that makes
it easy to interpret and alter it is necessary to have some
complex programming and some clever or graphics
displays. With a program that has complex editing
facilities, the editing part of the program is likely to be
much larger than the main sequencing part!

The way in which data is presented for editing
purposes varies tremendously. At a most basic level a
text-only display can be provided, with something like
different headings for different categories of data, or
even just a list of data in hexadecimal form. It is then a
matter of scrolling through the data to find the section
you wish to edit, and to then make the changes using
the mouse and (or) keyboard. Sequencers have a "tape
counter" or accurate clock to help you keep track of
where you are in a sequence, and this should help to
direct you to the area of data you wish to edit. Apart
from editing purposes, a sequencer that can display
received data is very useful for diagnostic purposes
when something goes wrong with the system, or
something appears to be amiss. A quick study of the
data spewed out by your instruments can also be very
educational for someone starting to use MIDI
equipment.

41

Editing of the type described above is called "event
editing", because you are presented with full details of
all the MIDI events that have been recorded. This
includes such things as pitch bend and aftertouch data,
and is not confined to straightforward note on and note
off events. Up-market sequencer programs for the ST
often offer some form of graphical editing environment,
or "grid editor" as these are generally called. A grid
editor would typically show notes on something resem
bling a multi-story stave, but notes would be repre
sented by horizontal bars between lines, rather than in
conventional notation form. The longer the bar, the
longer the note duration. The vertical positioning of the
bars would therefore indicate their relative positions.
Editing could be accomplished by "dragging" notes in
order to change their duration, position on the "stave",
etc. This type of display and method of control can
make editing notes very much easier than a simple
event editor, or even one of the more sophisticated
event editors. It requires no knowledge of MIDI
whatever. The drawback of a system of this type is that
it usually gives only pretty basic editing facilities. Note
values and durations are easily altered, but other data
may not be accessible.

Notation Programs
Taking the grid edit idea a stage further, some programs
can display sequences in standard notation form. This is

obviously a great boon to those who have been brought
up on traditional music notation, and are used to doing
things this way. Programs that have this feature cover a
wide range of prices, and some are much more
sophisticated than others. These days even the cheaper
programs seem to offer a reasonable range of facilities.
The display is not usually just a basic stave and notes
type - even the cheaper programs usually support
multiple staves, various key signatures, clefs, time
signatures, and notation marks. The difference between
the cheaper and more expensive packages tends to be
just how many staves can be accommodated, and how
many of the more unusual aspects of notation are
supported (how many of the "C" clefs can be used for
example).

Really there are several substantially different types of
notation program. Some are not primarily notation
programs, but are up-market real-time sequencers
which offer a notation display as one of the editing
options. There will often be compromises with this type
of package, and you might for instance, be restricted to
displaying one stave at a time.

Some notation or "scorewriter" programs are only
intended for producing printed out scores, and have no
MIDI sequencing capability at all. These can either be
the music equivalent of word processors, or they can be
designed to take data files from sequencers and convert
these into standard notation scores (with the aid of

42

some editing by the user). Both types can obviously be
very useful, but seem rather limited in scope when
compared to some other forms of sorewriter program.

We have not considered the subject of step-time
sequencing in any detail yet, and the choice of
step-time sequencer programs for the ST computers
seems to be relatively limited. Probably there is insuffi
cient demand for step-time sequencers for the software
houses to expend much effort in this direction. If you
require a good step-time sequencer there are two basic
options. The first is to buy one of the better real-time
sequencers which has really good editing facilities at
event level. Although these facilities may be primarily
intended to permit alterations to recorded data, most
will allow data to be added "from scratch", In other
words, you can program any MIDI data and timing
information, and build up complex sequences if desired.

The second approach is to use a scorewriter program
that does include MIDI sequencing capability. I suppose
that a notation program that can play the scores via
MIDI might seem to be an out-and-out step-time
sequencer. However, the programs of this type that I
have encountered (both for the ST and other compu
ters) usually include real-time sequencing, in other
words, you can play a sequence into the unit via a MIDI
keyboard, and as you play the notes they pop-up onto
the stave. This is quite impressive to watch, but the
programs I have tried have had what is only very limited

real-time sequencing capability. They are often easily
overloaded by playing too many notes too quickly.
Programs of this type normally include a print-out
facility so that sheet music can be produced. An
ordinary 9 or 24 pin dot matrix printer can produce quite
good results, but make sure that the printer you intend
to use is fully compatible with the notation program you
select.

For real-time sequencing, a notation program is
probably the best type of sequencer to use. If you are
not familiar with standard music notation, and you wish
to undertake a lot of real- time sequencing, then it will
probably be worthwhile taking some music lessons! The
standard system of music notation has evolved over a
long period of time to the point where it enables very
complex pieces of music to be written down in a very
compact form. Dynamics, variations in tempo, etc., are
al! accommodated by this system. With a good notation
program if, for example, you mark a point in the score
"ppp", the music will be played very quietly (assuming
you are using touch sensitive instruments). Notation
programs generally offer much greater versatility than
that afforded by grid editing, and they are much quicker
and more convenient than programming masses of data
using an event editor. Programs of this type seem to be
gaining in popularity, and there is much more of this
type of software available now than was the case a few
years ago.

43

Al! In One Approach
There has been a general trend over recent years
towards programs that perform a whole range of related
tasks rather than just one (the so-called "integrated"
approach). This is something which can easily be
applied to MIDI sequencing software. Instead of having
separate real-time, step-time, notation, and score print
ing programs, why not have one program to do the
whole lot? This offers much greater convenience than
having separate programs, even if these programs have
compatible file formats so that data from one can be
loaded into another.

A few integrated sequencing programs for the ST are
now beginning to appear, and offer tremendous versati
lity. Software of this type is highly desirable, but as yet
it is also quite expensive. In fact a package of this type
could easily cost more than a 520STFM plus monoch
rome monitor. On the other hand, on a number of
facilities to the pound basis this type of software can
offer much better value than many of the cheaper
sequencers. If you need all the facilities provided by an
integrated package, or even a large percentage of them,
a program of this type is likely to be the best choice.

The exact facilities offered will clearly vary somewhat
from one package to another. Normally a system of this
type will basically be an up-market real-time sequencer
having a comprehensive range of facilities, including a
good event editor plus (possibly) some form of grid edit

facility. Data from the real-time sequencer section
should be usable with the notation part of the program.
Also, and importantly, the notation part of the program
should ideally be able to export data into the real-time
sequencer. This interaction of the two sections of the
program brings a number of important advantages.

The most obvious one is that it permits no
compromise real-time sequencing to be mixed with
step-time sequencing via either the notation section of
the program or the event editor. For the real-time
sequencer there is the convenience of using the
notation part of the program for sequencing! and then
using the event editor for "fine tuning" purposes. If you
program a passage to be very quiet, but you do not feel
that the program makes it quiet enough, by using the
event editor you can probably correct this and have the
finished sequence exactly as you want it. If the
reproduced music sounds a bit mechanical, you may be
able to manipulate note durations slightly to add some
expression to it. A combination of MIDI and an ST
computer provides the musician with tremendous
creative potential, but you need some top quality
software in order to stretch the creative possibilities to
the limit.

A multi-purpose program should work well as a
scorewriter for producing printed out scores. A full
range of notation marks (pedal, cresc/dim, etc.) should
be available, and a useful range of printers should be

44

supported. There may well be some useful extra
features, such as the ability to record system exclusive
messages to disc, and to play them back over the MIDI
output. This is useful for such things as storing program
dumps, or sample dumps. There is a potential snag with
this type of facility in that some system exclusive
messages are two way types. An instrument may only
send data to the computer if the computer responds
with the correct acknowledgement messages. This
requires software designed specifically for the make of
instrument concerned. Some programs support the
sample dump standard, but few (if any) seem to go
beyond this.

The more sophisticated sequencer and integrated
packages often have a large range of minor features
available, but these vary considerably from one program
to another. Some are potentially quite useful, but others
seem to have no immediately obvious use! As with just
about everything concerned with MIDI, it is a good idea
to carefully read through software specifications to
familiarise yourself with the available functions.

In Practice
If we go through the basic sequence of events when
recording a track in real-time, and assume that every
thing is set up and is ready to go, the first task is
normally selecting the required track. This is generally
just a matter of ''clicking'' the ST's mouse on the
appropriate box or other on-screen icon. Usually you
can name tracks, and the name normally used is one
that describes the sound and instrument to be played on
that track (e.g. "DX7 flute"). Remember that a MIDI
sequencer only stores MIDI data and replays it. It is up
to you to make sure that each track is sequencing the
right sound, and meaningful names for tracks (not just
"sound 1", "sound 2", etc.) will make it much easier to
get everything right when you return to a piece after a
period of time.

With the aid of pull-down menus and on-screen
control panels you then set up the sequencer with the
desired parameters. For example, you might wish to
switch in the aftertouch filtering, activate the
metronome facility, and activate the MIDI THRU
facility. You will normally have to set the MIDI channel
number as well. While you may have to set the channel
number on the MIDI keyboard, with notes being stored
in the ST's memory with whatever channel number they
are received with, most sequencers are much more
versatile than this. It may be possible to set the
sequencer to record only those notes that are on a

45

Into the "Notator" score edit function. This in fact can be used as the sole method of note entry,
and can print out up to 32 stave scores!

certain MIDI channel, but this is often not possible, or
necessary.

More usually the sequencer will record notes on any
MIDI channel and place them into the track being
recorded. If notes are on several channels they are
effectively merged onto the same channel, which is
whatever channel you select for that track using the
sequencer's control panel. The MIDI channel is some
thing that can be changed at will even after a track has
been recorded, it is generally much easier to have
control of the system centralised at the sequencer, but
this feature is more than just useful if the MIDI keyboard
is one of those that can only operate on channel 1. The
ability to record several tracks at once is something that
you are only likely to find on one or two of the more
sophisticated sequencers, but most users prefer to work
on the basis of one track at a time anyway.

With everything set up and ready to go, the next step
Is to actually record the first track. Hopefully, the
sequencer has some form of built-in "countdown"
facility to lead you in, but if not you can simply leave a
couple of empty bars a the beginning of every track to
act as your "countdown". Operate "RECORD", and
after the "countdown" has finished start playing your
masterpiece. When the track is finished you use what
will normally be tape recorder style controls to "STOP"
recording, and to "FAST REWIND" (or "«") back to
the beginning of the sequence. The "PLAY" control

should then reproduce the track, provided you have a
suitable instrument connected to the MIDI output and
set to the correct MIDI channel. If nothing has been
recorded it is probably because the track you are using
has not been set to the "record" mode. There should be
some form of control to set each track to "record",
"play”, or "off".

Recordihg the next channel is much the same, with
the track being named, everything being set up
correctly and ready to go, and "RECORD” then being
operated. Remember to set the second track to the
"record" mode, and the first track to the "play" mode
so that you do not record over it. It is very easy to get
absent minded and end up with the wrong control
settings, but most sequencers will not let you do
anything really silly. You do not have to set track one to
the play mode, and could simply switch it off. However,
with track one in the "play" mode you can hear it
playing via an instrument connected to the ST's MIDI
output port, so that it is easy to get the second track
properly synchronised with the first one. As you
gradually build up more tracks you might find it
beneficial to only have certain tracks playing as you add
each new one.

Having built up your masterpiece you can edit it by
changing the tempo, using the "punch in/out" facility
to record over any less than perfect sections. When
editing sections of a track the "tape counter" is often

46

important in finding the right section. This type of
editing is much easier if the sequencer provides some
assistance, such as the ability to play back the track,
and then mark the offending section by "clicking" the
mouse. You can then record over the marked section,
taking several attempts if necessary, without running
the risk of obliterating a larger piece of the track. For
beginners it is easy to make matters worse rather than
better, and it is a good idea to store the sequence safely
on disc before undertaking any editing. If your
sequencer has one, the event editor is generally the
easiest and safest means of making any minor correc
tions. it will probably permit fine adjustment of any
aspect of a track that is not quite as you would wish.

Other Program Types
MIDI software for the ST does not just mean
sequencers, and there are several other types of
program available. Probably the most popular of these
are the patch generation and librarian programs, par
ticularly those for the Casio CZ and Yamaha FM
synthesisers. The most simple of these programs are
merely for storing patches on discs via the ST’s disc
drive. Few synthesisers have built-in disc drives, and
storage of sounds beyond the capability of any interna!
memory has usually been by way of cassette tapes or
memory cartridges. Cassette tapes are slow, inconve
nient, and often not very reliable. In fact few synthe

sisers are actually equipped with a cassette port these
days. Cartridges are a much better way of handling the
problem, but tend to be quite expensive.

Dumping and retrieving patches via MIDI and an ST,
provided you already own an ST computer and the
librarian program is not too expensive, and is a more
practical solution. It is fast, reliable, and inexpensive in
that a large number of patches can be stored on a single
3.5 inch single sided disc. With a well written program it
is also easy to select the desired sounds and load them
into the synthesiser. Some programs offer advanced
facilities such as being able to sort out sounds of a
particular type (bass sounds for example).

Going one stage beyond basic librarian facilities there
are the "editor" packages. Adjusting the sound gen
erator circuits of modern synthesisers is quite a long and
difficult task. In fact many users seem to settle for the
factory preset sounds, or sounds bought on cartridge
{or whatever). With the aid of MIDI and a computer
such as the ST it is possible to make adjustment of the
sound generator settings very much easier. One way of
handling things is to have a program which has
on-screen "controls" such as sliders and switches
which can be manipulated using the mouse. These
controls are related to various MIDI controllers, and can
be used to program any MIDI instrument which makes
use of MIDI controllers for its sound generator circuits.
Operating any control results in the corresponding MIDI

47

Desk File Functions Quantize MIDI Options Edit Copy

ON

'Notator" has fully integrated functions. Data entered via the score editor can be "fine-tuned" in the
event editor. The boundary between the two can be "dragged" up or down to the desired position.

*
» 1 XiGuitar: H 0 T A T 0 R 1,1 (c) 1388 Lengeling/Adan
64361
• = £t

0 H intern 120 1/16 4/ 4 A A AA AAA
UU UUiMUU

— C * _ £ -■ ■ :e •e-f : .- 1 ■ - - : I j’.A* E • - . - - 5

PROGRAMI
CONTROL;
PITO
p cPRES

1 4 1 45 SysExcl
*. vLM

FKSYE

67« Yamaha
126 3 118 76 77 32

32 70 75 83 83 63

controller being set to the appropriate value. With
instant access to a large number of controls it is very
easy to trim the sound generator circuits to produce
precisely the required sounds. It takes things back to
"the good old days" (about ten years or so ago) when
all synthesisers had rows of front panel knobs and
switches and were easy to adjust.

This method is not applicable to all instruments, as
not all give access to the sound generator circuits via
MIDI. Also, many of those that do now seem to provide
access via system exclusive messages rather than by
way of standard MIDI controller messages. This is
perhaps not a very helpful development, as it means
that general purpose MIDI controller software (or MIDI
controller hardware units) can not be used to much
effect with instruments of this type. You may be able to
adjust a few basic parameters such as master volume
and modulation amount, but nothing more than this.

Controlling software for a number of the more
popular instruments is now available for the ST
computers, and this seems to be the fastest growing
area of the ST MIDI software market. There could soon
be more software of this type than sequencing soft
ware. Although these programs have the same goal,
their methods of operation are very different. Some
have simple on-screen controls, while others are some
what more complex. For example, to adjust the
envelope shape of a sound you might manipulate a

graphical representation of the envelope shape rather
than using ADSR style controls.

Getting the desired sound from some modem synthe
sisers can be quite difficult and time consuming.
Adjusting one parameter can have an affect on others,
making it difficult to predict just what will happen when
a given control is adjusted. In particular, FM synthesis
has often been criticised on this count. There are some
quite novel and advanced aids to getting the right sound
In some editor programs. One idea is to have the
computer generate random variations that are close to
any given starting sound. If you have a sound that is
close to the one you want, a system of this type can
help you to home-in on precisely the required sound.
Another idea is to have conventional ADSR controls for
the VCA and VCF so that sounds are easily set up and
fine tuned, just like adjusting a conventional analogue
synthesiser. This may not seem to be a particularly
brilliant feature, but remember that FM synthesisers do
not have conventional VCA and VCF envelope shapers.
The computer is having to do some heavy calculations
in order to turn the control settings into synthesiser
parameters that will have the desired effect.

For the more technically minded there are waveform
displays, and even 3-D Fourier analysis displays. A basic
Fourier analysis display shows the frequency compo
nents present in a signal, and for a simple repetitive
waveform this is the fundamental signal plus harmonics

48

X:íiilUr

Sample print-out from "Notator" using a 24 pin dot matrix printer.
(N.B. Illustration shown slightly reduced for reproduction.)

(multiples of the fundamental frequency). A display of
this type is usually a 2 dimensional type which has
frequency on the X axis and relative strength shown on
the Y axis. A basic display of this type has severe
limitations in that the waveform of most signals
changes considerably during the course of the signal.
With most natural sounds the harmonics decay much
faster than the fundamental signal. A 3 dimensional
Fourier display has an additional (Z) axis, which
effectively goes into the page away from the viewer.
The display is shown as viewed from slightly above and
to one side, so that a "mountain range" type display is
obtained. For the experienced user this shows exactly
how a sound will vary over its entire envelope period.

Editor and librarian software is a valuable asset, and
most users seem to consider purchases of this type of
software as money well spent. It is only fair to point out
though, that this kind of software is not available for all
MIDI equipped synthesisers. If you have one of the
more popular synthesisers, then there will probably be
several editor/librarian programs to choose from. If you
have one of the less popular ones, you will be lucky if
there is even one editor program available for it. If there
is an editor program available for one of the rarer
instruments, then it is almost certain to be a program for
the ST.

Visual Editors
Editors are available for some sound samplers, but here
the requirements are usually very different to those for
synthesisers. The storage of data is not usually a
problem, as samplers almost invariably have a built-in
disc drive. Filters and envelope shapers are generally
quite straightforward and easy to adjust. The problem is
more one of obtaining good loop points. There is
insufficient space available here to give a complete
course in the art of sound sampling and looping.
However, much sound sampling is done on the basis of
recording a relatively short sound, and then repeating
the end section of the sound over and over again in
order to give an output that can be sustained indefin
itely. Standard synthesiser voltage controlled filters and
attenuators can then be used to process the signal to
give the required decay characteristic, etc.

This sort of thing, is fine in theory, but tends to be
very tricky to implement properly in practice. The

human ear is not easily f ooled, and it is difficult to find a
section of the signal that can be repeated without at
least slight "clicks" or other audible glitches being
produced. Some of the more recent sound samplers
have built-in l.c.d. displays that enable the stored
waveforms to be examined so that the best loop points
can be found reasonably easily. Others have provision
for a monitor to be connected so that this can be used
to provide a graphics display for the same purpose. A
number of sound samplers are devoid of any facility of
this type though, and unless an oscilloscope is
available, finding the optimum loop points is a matter of
trial and error. I know from my own experience that
finding good loop points by this means can be very time
consuming Indeed, and is not always successful.

A visual editor package takes sound samples via the
MIDI output of the sampler and feeds them into the
computer's memory. They can then be used to provide
an on-screen waveform display which will make it easy
to find the optimum loop points. Sometimes the
program is simply used as an aid to selecting the loop
points, with the controls of the sampler then being
adjusted to the appropriate settings, but often all the
setting up and adjustments can be carried out from the
computer via MIDI.

If you are into producing your own sound samples
and you have a sampler that lacks any form of built-in
waveform display, a visual editor can certainly save a
great deal of time. With awkward samples you may still
be unable to obtain really good results, but at least you
will realise that a "silent" loop is unobtainable fairly
early in the proceedings, instead of wasting hours trying
to achieve the impossible. One point worth making
though, is that most of these programs are quite
expensive. You may well consider that a full set of
factory discs or a small oscilloscope represents a more
cost effective solution!

This covers the main categories of MIDI software for
the ST, but no doubt other types of software will
emerge in due course. There are developments in the
field of so-called "intelligent" music programs. This
usually means what is basically a conventional
sequencer, but with some novel features to provide
automatic harmonising and accompaniment. The same
sort of facility is possible using a computer as a real-time
MIDI processor, but this is more difficult as the

49

computer has to come up with almost instant solutions.
This sort of thing seems likely to become more common
in the future as more sophisticated (and effective)
programs are developed. I suppose that this type of
feature is something you either love or hate, and I must
confess that I prefer the do-it-yourself method. Other
types of program are starting to appear, such as control
programs for complex MIDI controllable audio mixers.
The versatility of MIDI is such that it can easily
accommodate virtually any form of sophisticated con
trol. Again, this is a general type of program that is likely
to become more common in the future, in order to keep
up to date with developments you really need to keep
studying the advertisements in the electronic music
magazines.

PD Software
A book such as this can give you a good idea of what
types of MIDI software are available for the ST, and the
types of function they can provide. You can only fully
appreciate the creative possibilities provided by the ST
and MIDI software by trying out some programs, and if
you own an ST computer (or have access to one) this
need not be expensive. Buying a selection of commer
cial MIDI software certainly would be, but there is a
much cheaper alternative in the form of "PD" software.
"PD" stands for "public domain", and software of this
type is available from computer user groups and
commercial organisations. So-called public domain
software seems to cover three distinct types of software
in reality.

The first type is the true public domain software. I
have seen various explanations as to what constitutes
true public domain software, and most of these seem to
suggest that the originator of the program retains the
copyright, but allows anyone to use the program in any
way they wish. This includes modifying the program
and including ail or part of it in your own programs. The
only real restriction is that you can not sell the program
for profit (but you can give it away). I would have to
point out that this does not agree with my understand
ing of the term "public domain", which can be applied
to books, poems, music scores, or anything in which
copyright can be held. My understanding of the term is
that it applies to material in which no one holds the
copyright. This can be due to the copyright having
lapsed due to the passage of time, something being of a
very general nature so that no one could reasonably
claim copyright on it (such as a list of ASCII codes), or
the author having given up the copyright.

Whichever interpretation is correct, as far as the user
of public domain software is concerned, it is free. In
practice there are usually some costs involved, but
these are simply the cost of the disc onto which the
software is copied, postage charges, and so on. There
is no charge for the software itself. There seems to be
relatively little software in the true public domain
category, and most of the software of this type is pretty
basic (which is not really surprising).

The second category is "shareware" software. This is
commercial software, but anyone can copy it, try it out,
and use it. However, if you find a shareware program
useful and intend to go on using it, you are asked to
send a donation to the author. You may get something
like a printed manual for your money, or the payment

may bring no advantage other than peace of mind. The
registration fees are normally quite low compared to the
cost of similar ordinary commercial programs. You have
to set against this the fact that you are usually very
much on your own with shareware programs tn the
event of any difficulties. This is especially the case with
programs that originate overseas. A call to the author
on the other side of the Atlantic could prove costly even
at off-peak times! Much shareware software seems to
originate from outside the U.K., and sending a donation
to the author of a program could be difficult and
expensive (but if you contact your bank it can probably
be done).

The third category is demonstration programs. These
are usually something close to the full working commer
cial programs, but with one or two important features
disabled. This generally means that no data can be
saved to disc, but there may be one or two other
facilities absent. These are excellent as they enable you
to try out and fully evaluate software without having to
spend (and possibly waste) large sums of money. Note
though, that some are running demonstrations. A
demonstration program of this type simply goes
through an automatic sequence which shows what the
program can do. You have no control over the program,
and have less opportunity to evaluate it.

Some Programs
The number of public domain programs is constantly
growing. You will need to get hold of one of the public
domain software catalogues for the ST in order to find
out exactly what is available at present. You should find
some simple patch generators for Casio CZ and some
Yamaha DX synthesisers, and voice libraries for these
instruments. There is an interesting 32 track real-time
sequencer available (this is shareware and not a public
domain program), which some claim to be better than
the cheaper commercial sequencers white others are
less enthusiastic, it will only cost you a few pounds to
buy the disc and decide for yourself, but when I tried it
out it seemed to compare quite well with the low cost
commercial alternatives.

In common with much public domain and shareware
software, the documentation supplied on the disc is
extremely sparse. The controls are not quite as obvious
in operation as the author would have you believe, but
with a little experimentation you should be able to get
everything up and running properly. This program
certainly represents a good and inexpensive way of
trying your hand at real-time MIDI sequencing. If you
rapidly progress to more sophisticated software, or
decide that MIDI sequencing is not for you, at least you
will not have wasted a lot of money on a basic
sequencer program.

There is a demonstration version of the Hybrid Arts
"EZ Track" sequencer program, which is another basic
real-time MIDI sequencer. This is a fully working version
of this 16 track program except that saving of data to
disc is not implemented. There is no documentation at
all included on the disc I obtained, but with some
experimentation it is not too difficult to work out how to
use the program. Like the 32 track sequencer men
tioned above, it uses a standard GEM environment.
There is also a demonstration version of the Hybrid Arts
"EZ Score Plus" program which you might be able to

50

obtain. This is a basic but interesting notation and
step-time sequencer program, which also has some
real-time sequencing capability. It is again a largely
working version of the program, but you will have to
buy the real thing if you want to use it in earnest. In
both cases you have a chance to try out some quite
powerful MIDI software at very little cost. Remember
that once you have finished trying out the programs you
can wipe the discs clean and use them as blank discs,
recouping some of your outlay!

You are unlikely to find examples of the more unusual
types of MIDI program in the public domain software
libraries, but there is no harm in studying a few lists to
see if you can find something of interest. The quality of
public domain and shareware software covers a wide
span. Some programs do not work at all, or do not do
very much if they do work. Other programs are quite
professional, being both easy to use and fully oper
ational. You are paying nothing for the software, and
have to accept that some programs will be worth what
you paid for them. You do not have a lot to lose by
trying out a few programs, but you could gain a lot of
valuable experience from them, and might pick up a real
bargain.

MIDI Instruments
The requirements for instruments in a MIDI studio are
not that much different to the requirements for "live"
performances, but they are slightly different. Obviously
the sounds of the instruments are ail-important
regardless of the exact way in which they will be used.
Equally obviously, for MIDI work the instruments must
be equipped with MIDI sockets. Synthesisers,
samplers, and any reasonably up-market electronic
music equipment seems to be fitted with MIDI sockets
these days. MIDI is also to be found on a lot of
electronic pianos and organs, as well as some other
instruments such as the more sophisticated portable
keyboards. It is best to check this point rather than
jumping to conclusions, especially if you are buying
secondhand equipment. Anything pre 1982 will not be
equipped with MIDI sockets, and MIDI did not imme
diately "take off" after its inception. Accordingly, few
instruments immediately after this period are MIDI
equipped.

The fact that an instrument has MIDI sockets does
not mean that it is ideal for sequencing purposes. Many
of the instruments currently available are multi-timbral
and can implement mode 4 and (or) some form of
"special" or "multi" mode. This enables them to act as
(typically) eight virtual instruments, giving tremendous
potential and flexibility. Two instruments of this type
effectively give you a programmable orchestra. Some

51

instruments can only implement mode 1 and mode 3,
and these are far from ideal for much sequencing work.
Using instruments of this type, in order to get several
sounds simultaneously you will need to have several
instruments, and with mode 1 you can not individually
sequence the instruments from a single MIDI output.
Such an approach is one most of us would find
prohibitively expensive. Again you need to take care
when buying secondhand equipment. Typical MIDI
specifications of a few years ago are rather basic when
compared with the norm of today. Also bear in mind
that some instruments have had their MIDI speci
fications steadily improved over the years. A model a
few years old may not have such a good implemen
tation as the current version. Make sure you know
exactly what you are buying before parting with any
money!

Ideally, before buying an instrument you should study
its operating manual. The general specification and

sequencer users rely on either real-time sequencing, or
a mixture of real-time and step-time sequencing. Either
way you will require at least one instrument having a
good quality keyboard, or a separate MIDI keyboard.
The better synthesisers and samplers have good quality
five octave keyboards that are velocity sensitive and
often transmit some form of aftertouch information.
One of these is perfectly adequate for most purposes. If
you want more than five octaves you will probably have
to opt for one of the more expensive MIDI equipped
electronic pianos. A seven and a bit octave keyboard
inevitably requires a fair amount of space though..
Non-keyboard players should note that there are now
other types of MIDI instrument, including MIDI guitars
and wind instruments. With the advent of these and
sophisticated step-time sequencing programs, the MIDI
studio is no longer restricted to keyboard players of
reasonable competence.

details of the MIDI implementation should make it quite
clear just what can and what can not be achieved. The
MIDI specification normally includes charts which show
what MIDI messages are recognised, which ones are
transmitted, the modes that can be used, and so on.
Does the instrument have mode 4 or multi-mode? Does
it respond to velocity, pitch bend, and aftertouch
information? Does it have any useful system exclusive
capabilities or other useful MIDI extras? The more
complete the MIDI implementation, the more useful the
instrument is likely to be in a MIDI studio environment.

If you are only interested in step-time sequencing you
do not require a keyboard instrument. However, most

For a multi-instrument system there is a lot in favour
of using some rack-mount types. The most obvious
advantage to these is that they avoid the cost of several
keyboards if you only need one for recording purposes.
Another big advantage for the spare bedroom MIDI
studio is that they are much more compact than
keyboard instruments. A stack of three or four rack
mount instruments will fit onto quite a small (but
strongl table, desk, or even a reasonably deep shelf. It is
also worth noting that some rack-mount units have
better MIDI specifications and occasionally other
features which are not present on any keyboard
alternatives.

52

Chapter 6
ST ADD-ONS

The electronics do-it-yourself addict can produce some
simple, inexpensive, but useful music add-ons for the
ST, The units described in this chapter are all reasona
bly simple, and in most cases are extremely straightfor
ward to build. With one exception (the gate/CV
interface) they should be well within the capabilities of
those with relatively little experience of electronics
construction. In fact some of them are so simple that
they should be suitable for complete beginners to
electronics construction. Stripboard layouts and wiring
diagrams are provided for all the circuits apart from the
gate/CV interface, and no difficult construction tech
niques are involved. In most cases they can be built for
a fraction of the cost of any comparable ready-made
units. A substantial amount of technical information is
provided for those who require it, but you can ignore
the technicalities and simply build up the projects if that
is the limit of your interest.

The gate/CV interface can not be recommended for
complete beginners at electronics construction, and not
just because it is a bit more complicated than the other
projects. There can be difficulties in using a unit of this
type, and you need to be sure that the instrument you
intend to control via this device is fully compatible with
it prior to commencing construction! Remember that
there was no true standard method of interfacing
synthesisers in the pre MIDI era.

THRU Box
The virtues of the THRU box were discussed in a

previous chapter, but to briefly recapitulate, in order to
use the "star" system of MIDI connection a number of
MIDI outputs are required. The "star" system is not
possible with unaided ST computers as these have just
a single MIDI output port. A THRU box has a MIDI
input plus two or more THRU outputs, so that a number

of units can be driven without any need for "chaining"
them together. This avoids problems with so-called
MIDI delays, and should improve reliability. If your
instruments lack THRU sockets there may be no
alternative to using a THRU box. If only one instrument
lacks this facility, then this one can be used as the last
one in the "chain". However, if two or more instru
ments do not have a THRU socket, the "chain" method
of connection is unusable.

A THRU box does not have to have an opto-isolator
at its input. The MIDI instruments or other items of
equipment driven from the unit should all have isolated
inputs, and this should prevent the THRU box from
producing any interconnections between them, or
between these units and the driving device. Despite
this, I still prefer the use of an opto-isolator at the input
of any MIDI equipment, including something as basic as
a THRU box. To be strictly within the MIDI standard the
opto-isoiation must always be present at any MIDI
input. Of greater importance, the circuit driving the
input is something of an unknown quantity. Using an
opto-isolator at the input of the unit is a good way of
ensuring that the unit will operate properly with any
MIDI output that provides a proper 5 milliamp current
loop signal.

The two types of opto-isolator most commonly used
in MIDI applications are the CNY17 and 6N139, or
similar devices to these two types. Pin-out details and
internal circuits for these two components are shown in
Fig.6.1. The CNY17 is a standard device of the infra-red
l.e.d. and photo-transistor variety. In a MIDI application
this would normally be used in a circuit of the type
shown in Fig.6.2. RI provides current limiting which
helps to set the l.e.d. current at approximately the
correct level. It also gives the input side of the
opto-isolator a degree of protection if the equipment is

CNY17 6N139

Fig. 6.1. Internal circuits and pinout details for the CNY17 and 6N139.

53

Fig. 6.2. Input stage using a CNY17.

Much better results can be obtained using a more
complex opto-isolator such as the 6N139, although it is
only fair to point out that the cost of devices of this type
is relatively high. However, they are probably worth the
extra cost. The l.e.d. has its output directed at a
photo-diode, and this offers a very fast switching speed
when compared to a photo-transistor. On the other
hand, it offers an extremely low level of efficiency
(typically only a small fraction of 1%), The diode is
connected so that its leakage current provides a base
current to a switching transistor. This transistor in turn
provides an amplified current to the base of a second
transistor. This gives a combination of very high
efficiency and high operating speed. In some opto-iso
lators a similar arrangement is used, but the photo
diode is omitted and the first transistor operates as a
photo type. This arrangement seems to offer a simitar
level of performance.

wrongly connected or a malfunction occurs. On the
output side of the circuit, R2 is the collector load
resistor for the photo-transistor. Normally this transistor
is switched off, and R2 takes the output to logic 1.
When the l.e.d. is activated, its light output results in
the transistor switching on. A heavy leakage current
flows, but the effect is much the same as if the device
was switched on via a base current. It pulls the output
voltage down to little more than the 0 volt supply
potential, or logic 0 in other words.

Although fine in theory, I have experienced problems
with this type of input stage. Most opto-isolators,
including the popular TIL111 and near equivalents, are
totally unsuitable for this application. They fail on two
counts, and one of these is simply that they lack
efficiency. The 5 milliamp input signal produces such a
low output current that a good logic compatible output
signal can not be produced. The other problem is simply
one of operating speed. Opto-isolators are inherently
slow devices, and an ordinary type can not handle high
frequencies. The maximum fundamental frequency in a
MIDI signal (obtained when sending alternate Is and
Os) is 15625Hz (i.e. half the baud rate). This is at the
upper end of the audio range, and switching at this
frequency might not seem to be too demanding.
However, it is well beyond the capabilities of most
opto-isolators.

Devices such as the CNY17 have guaranteed high
efficiencies of about 100%, and offer improved switch
ing speeds. They can operate perfectly well in a MIDI
application, but there can still be occasional reliability
problems. This centres around the fact that the
efficiency of one opto-isolator can be substantially
different to that of another one of the same type. Also,
although the MIDI loop current is set at a nominal level
of 5 milliamps, in practice it can vary substantially from
this figure. These factors would not matter if the
opto-isolator had a switching speed that was far higher
than that demanded for the transfer of a MIDI signal,
but this is not the case. A fast opto-isolator such as the
CNY17 is only just fast enough for this application. The
value of the load resistor therefore needs to be right for
the efficiency of the device used and the exact input
current. In practice some fine "tuning" of the load
resistor value may be needed in order to get good
results.

Fig. 6.3. Input stage using a 6N139.

------> +5V

R3
390

------► OUT

It is important to realise that this type of opto-isolator
is not a Darlington Pair device. It would be a Darlington
type if the collectors of the two transistors were to be
connected together. However, this is not the correct
method of connection for a device of this type, which is
normally used in the manner shown in Fig.6,3, The first
transistor has its collector connected to the positive
supply rail, while the second one drives the load
resistor. Resistor R2 acts as an emitter load for the first
transistor. This ensures that the first transistor operates
at a reasonably high current, and that it therefore
operates quite rapidly. Without this load resistor there is
normally a substantial reduction in the operating speed
of the device, rendering the circuit inadequate for MIDI
applications. Although this arrangement is only margi
nally different to the Darlington Pair configuration,
there is an important difference in terms of perform
ance. While a Darlington device may offer a similar level
of sensitivity, its switching speed would be very much
slower. In fact Darlington types are extremely slow in
operation, and are totally unsuitable for an application
of this type.

The Circuit
The circuit diagram for the MIDI THRU box appears in

54

Fig.6.4. One way of obtaining the desired action would
be to have an opto-isolator circuit followed by several
inverters and open collector output stages, with each
inverter/output stage driving a THRU socket. I found
that the 6N139 was capable of providing a much higher
output current than the 5 milliamps required for each
MIDI output. This permits this much more simple
arrangement to be used. The second transistor in the
6N139 is used as an open collector output stage which
drives four MIDI THRU sockets. This requires IC1 to
provide an output current of only about 20 milliamps,
and it is perfectly capable of doing this. In fact there
should be no difficulty in adding two or three more
THRU outputs to the unit if required. It is just a matter
of adding extra sockets and pairs of current limiting
resistors to the circuit . A single resistor of about 470R in
value would suffice for the current limiting, but it seems
to be quite normal to use this twin resistor arrangement.
This method presumably gives better protection against
excessive current flows in the event of an output being
incorrectly connected or a malfunction occurring.

The circuit is powered from a 6 volt battery such as
four HP7 size cells in a plastic battery holder. These
holders have standard PP3 style press-stud type con
nectors incidentally. No on/off switch is shown in the
circuit, and it is probably not worthwhile adding one.

Under quiescent conditions only minute leakage cur
rents flow, and these are typically well under one
microamp. This is not sufficient to significantly run
down the battery even over a period of several months.
The current consumption when the unit is working
depends on the number of outputs that are actually in
use, and the density of the data stream. Under worse
case conditions with four outputs in use the average
current consumption can be no more than about 10
milliamps. Under normal operating conditions the aver
age current consumption will be far lower than this
(probably only about 1 milliamp).

Construction
Details of the component board are provided in Fig.6.5.
This layout is based on a 0.1 inch pitch board which has
30 holes by 17 copper strips. The board is not sold in
this size, but it is easy to cut a larger piece down to the
right size using a hacksaw. Cut along rows of holes, and
then use a file to smooth any rough edges that result.
Next drill the three mounting holes, which should be
about 3.2 millimetres in diameter (to take OBA or M3
mounting bolts). Then make the eleven breaks in the
copper strips at the points indicated in the diagram. A
special strip cutter is available, but a hand-held twist
drill of about 5 millimetres in diameter will do the job

SK2 SK3 SK4 SK5
THRU1 THRU2 THRU3 THRU4

6V

Fig. 6.4. The circuit diagram of the MIDI THRU Box.

55

X

IC1
R2C

E
E
E

Ry

R10□ R8

XJ
XD

R3 R5 R7

RI X R4 R6

BREAK IN STRIP

Fig. 6.5. The strip board layout for the THRU Box.

56

quite well. Make sure you cut the strips properly, but be
careful not to bore deeply into the board, which could
seriously weaken it!

Fitting the components in place should not be
difficult as the layout is reasonably well spread out.
Start with the resistors, then add the link wires and tC1.
Fit and connect the components one at a time. Preform
the leads of the resistors so that they can be dropped
into place on the board, doing some reforming if you do
not get it quite right first time. The leadout wires are
trimmed on the underside of the board using a small pair
of wire clippers, and then the soldered joins are made. If
you are new to electronics construction it would be as
well to try soldering a few pieces of wire to an odd scrap
of board before trying any construction in earnest. Any
small electric soldering iron (of about 15 to 25 watts in
rating) should be suitable, but it must be fitted with a
miniature bit of around 1 to 3 millimetres in diameter.
Keep the bit well tinned with solder (i.e. make sure the
tip of the bit is kept covered with a coating of fresh,
shiny solder).

Soldering is not difficult using modern solders and
components, but it inevitably takes a certain amount of
experience to become proficient at it. The correct solder
to use is a multi-core flux type having a 60% tin and
40% lead content in the alloy. Avoid types which do not
contain flux, or which are made from a 40% tin and
60% lead alloy. For small electronic work of this type 22
s.w.g. solder is usually easier to use than the thicker 18
s.w.g. type. The main point to keep in mind when
making soldered joints is that the bit of the iron should
be applied to the joint first, and then the solder should
be fed into the joint. The solder should then flow over
the end of the lead and the copper track to leave a neat
mountain shaped joint, A rounded globular shape is
usually indicative of a "dry" joint. If this happens it is
best to remove the solder, clean the end of the leadout
wire by scraping it with the blade of a penknife, and
then try again.

The main enemy when using stripboard is the solder
bridges that are easily produced between two adjacent
copper strips. These are most likely to occur where
there are a lot of joints close together, which mainly
means where integrated circuits are fitted to a board.

Check the finished board very carefully for these solder
bridges, paying particular attention to the areas of the
board where there are a lot of connections.

The link wires can be made from 20 to 24 s.w.g.
tinned copper wire, and pieces of leadout wire trimmed
from the resistors may well suffice here. IC1 is not a
static sensitive device, but it is not a particularly cheap
component either. I would therefore recommend that it
is fitted on the board via an 8 pin DIL integrated circuit
holder. At this stage 1 millimetre diameter printed
circuit pins are fitted to the boards at the points where
the connections to the off-board components will be
made. Single-sided pins will do, and these are pushed
into the holes from the copper side of the board. Solder
them in place, and then generously tin the tops of the
pins with solder.

Virtually any small metal or plastic case will accom
modate the circuit board, but be careful to choose one
that will also take the battery and leave sufficient space
for the five sockets. The sockets are all of the standard
MIDI (5 way 180 degree DIN) variety, and must be of
the "chassis" mounting type (not printed circuit mount
ing sockets). They each require a main mounting hole of
about 15 millimetres in diameter, plus two smaller holes
of about 3.2 millimetres in diameter for the short M3 or
6BA mounting bolts. The positions of the smaller holes
can be located, after the main mounting holes have
been drilled, by using a socket as a sort of template. The
component pane! is bolted to the base panel of the case
using M3 or6BA bolts plus fixing nuts. It is advisable to
use spacers over the mounting bolts in order to keep the
component panel clear of the base panel. If the case is a
metal type it is essential to use spacers as the
connections on the underside of the board will other
wise be short circuited through the case. Even when
using a plastic case it is still a good idea to use spacers,
as without them there is a strong risk of the board
becoming seriously distorted as the mounting nuts are
tightened, and it could easily become badly cracked.

The wiring to the sockets is detailed in Fig.6.6, which
operates in conjunction with Fig.6.5. Point "A" in one
diagram connects to point "A" in the other, point "B"
in one diagram connects to point "B" in the other, and
so on. Use ordinary multi-strand p.v.c. Insulated

Fig. 6.6. The THRU Box wiring.

57

connecting wire for these interconnections (not the
single core type). Making the connections should not be
difficult provided the ends of the leads and the tags of
the sockets are well tinned with solder first. Note that
pin 2s of the sockets (the middle pins) are all wired
together, as shown in Fig.6,6,

In use the unit is used in the standard "star"
configuration. Its "IN" socket (SK1) is connected to the
"OUT" socket of the ST, and its "THRU" sockets are
then connected to the MIDI devices that are to be
driven by the ST. Standard MIDI cables are used for all
the interconnections. Of course, the unit is not only
suitable for use with ST computers, and it should work
perfectly well with any MIDI control unit.

Components (Fig.6.4)
Resistors (all 0.25 watt 5% carbon)
RI, R3toR10 220 (9 off)
R2 1k

Semiconductor
IC1 6N139

Miscellaneous
B1 6 volt (i.e. 6 x HP7 cells in plastic

holder)
SK 1,2,3,4,5 5 way 180 degree DIN, chassis

mounting (5 off)
Case
0.1 inch pitch stripboard 30 holes
by 17 strips
Battery connector
Wire, solder, etc.

MIDI Mixer
The merits of MIDI merge and switch units were
discussed in an earlier chapter. Just how useful a unit of
this type will be depends on the precise setup you have
in mind, and it might also depend on the software you
are using with the ST. If the programme you are using
has a "THRU” facility, it might be possible to arrange a
system that is convenient to use but does not require a
merge or switching unit. This is something that was

covered previously, and it will not be covered again
here. If you do wish to build up a system that requires a
MIDI switcher, then this unit should fit the bill.

Strictly speaking it is not a MIDI merge unit or a MIDI
switcher. It falls half way between these two types of
equipment, and is what I suppose could be termed a
MIDI "mixer". Its effect is analogous to an audio mixer,
and it combines three MIDI input signals into a single
output signal. However, whereas a mixed audio output
may be perfectly usable, a mixed MIDI signal is not.
Any receiving device would be unable to sort out one
message from another, and the mixed signal would be
totally unreadable. The idea of this unit is to give a sort
of automatic switching action. Feeding an input signal
to one of the three input sockets results in that signal
appearing at the output socket. If you feed a signal to
each input socket in turn, then each signal will appear,
in turn, at the output of the unit.

The effect is much the same as if the unit automati
cally switched itself to direct each input signal through
to the output. This is convenient in use as it enables
various units to be used to control the system without
the need for any manual switching. A certain amount of
care needs to be exercised when using a unit of this
type though. A true MIDI switching unit will only couple
one input signal through to the output. If two or three
input signals are present, only one will find its way
through to the output, and there should be no
malfunctions in the units receiving the output signal.
With this mixer unit, two or more signals received
simultaneously will almost certainly result in a "scram
bled" output signal, and its effect on the controlled
units would then be unpredictable.

The Circuit
The full circuit diagram of the MIDI mixer unit appears
in Fig.6.7. It consists basically of three opto-isolator
circuits with their open collector outputs wired
together. Switching on any one of the output transis
tors therefore produces a 5 milltamp loop current to
flow, and gives the required mixing action. R7 and R8
are the output current limiting resistors, and are
common to all three output stages.

It would be possible to base the circuit on three

RI 22«

SKI
INI

IC1

R7 r
22« LI

4 O
SK4
OUT

5

R3 22« RS 226

TIL111

R2
Ik

5

R9
22«

TRI
BC549

SK2
1N2

R4
Ik

11

IC3IC2

TIL111TILUl

8K3
IN3

5

s TR3
BC549

R6
Ik

Bl
9V

1

4

Fig. 6.7. The circuit diagram of the MIDI Mixer.

58

6N139 (or similar) opto-isoiators, but this would be a
rather expensive solution to the problem. The "budget"
solution used here is to base the circuit on three
inexpensive opto-isolators such as the TIL111 (4N27
and MC72P opto-isolators seemed to work just as well).
As explained previously, inexpensive opto-isoiators
such as these have neither the speed or the efficiency
for MIDI applications, but both deficiencies can be
counteracted by using an external switching transistor.
The transistor in each opto-isolator is used as an emitter
follower stage which directly drives a discrete switching
transistor. For instance, TR1 is the switching transistor
for JC1. An emitter load resistor for each internal
transistor ensures they operate at a realistic currents,
and this aids fast switching. The fact that they are
operating in the emitter follower mode also aids rapid
switching. The external transistors provide a large
amount of current gain which compensates for the lack
of efficiency in the opto-isolators.

In terms of performance this arrangement does not
equal that of a 6N139, which seems well able to handle
baud rates in excess of ten times the MIDI baud rate!
However, performance seems to be perfectly adequate
for this application where only one output must be
driven. I tried a number of TIL111 and similar devices in
the circuit, and none failed to work properly. It is just
possible that a very low efficiency device would fail to
operate in this circuit, but even if you buy an extra
opto-isolator to allow for the possibility of one not
functioning reliably in the unit, the cost of the semicon
ductors for this project will almost certainly still be little
more than that of a single 6N139.

Like the previous circuit, the current consumption
under quiescent conditions is so low as to be of no
significance. An on/off switch is therefore unneces
sary. The current consumption when the unit is fed with
an input signal depends on the density of the data
stream, but is not more than about 2.5 milliamps, and is
typically well under 1 milliamp. A medium capacity 6
volt battery (such as 4 HP7 size cells in a plastic holder)
should provide many hundreds of hours of operation.

Construction
Details of the component layout for the 0.1 inch matrix
stripboard are shown in Fig.6.8, while the wiring to the
input and output sockets is illustrated in Fig.6.9. The
board measures 38 holes by 17 copper strips.

Detailed constructional notes will not be provided for
this project, as they would largely be repeating the
constructional notes for the THRU box described
previously. One point of difference is that the opto-iso
lators used in this project are much cheaper than those
used in the MIDI THRU box, and you might not
consider it worthwhile using sockets for them. You
might find it difficult to obtain suitable sockets for them
anyway, as their 6 pin DIL encapsulation is an unusual
type. If you do decide to use sockets (and I always use
them for any DIL device), 6 pin DIL types are stocked by
one or two component retailers, or it is not too difficult
to trim down an 8 pin DIL type to the required size.
Alternatively, you could fit 8 pin DIL sockets on to the
board and just ignore the two terminals of each one that
are not required.

The unit is wired into the system using standard MIDI
leads, and to test it you merely need to feed the inputs

from three MIDI control units (the ST, MIDI instru
ments, or whatever) and connect the output to a MIDI
instrument. Operating any one of the control units
should result in the instrument responding to its signal
in the normal way. Of course, if you only require two
inputs, it is quite in order to leave one of the input
sockets unconnected (or you can omit one of the input
sockets and the associated opto-isolator circuit).

Components (Fig.6.7)

Resistors (all 0.25 watt 5% carbon)
R1 220 R7
R2 1k R8
R3 220
R4 Ik
R5 220
R6 Ik
Semiconductors
IC1,2,3 TIL111 (3 off)
TR1,2,3 BC549 (3 off)

220
220

Miscellaneous
B1
SK1,2,3,4

6V (e.g. 4 x HP7 in plastic holder)
5 way 180 degree DIN, chassis
mounting (4 off)
0.1 inch matrix stripboard 38 holes
by 17 strips
6 pin DIL t.c. holder (3 off - see
text)
Case
Battery connector
Wire, solder, etc.

MIDI Switcher
For some systems a simple MIDI switcher might be
preferable to the mixer unit described above. Although
a true switching unit has the disadvantage of requiring
manual adjustment to select the desired input, it does
have some possible advantages. One of these is simply
that it does not require a battery as it is purely a passive
device. It consists of no more than a few switches and
sockets. Another, is that only one input at a time is
connected through to the output. Inadvertently supply
ing the unit with more than two input signals at once
will not produce corrupted data at the output. A third
advantage is that the unit is bidirectional. In other
words, it can be used to select one of several input
sources and connect it through to an instrument or
series of instruments), as in Fig.6.10, or to feed a single
source to one of several destinations, as in Fig.6.11. I
do no know if this second method of use has any
widespread practical application, but it is there if you
should need it!

Fig.6.12 shows the basic circuit for a four in/one out
or four out/one in MIDI switcher. This consists of just
the five input/output sockets plus a 4 way 2 pole rotary
switch. The switch connects the required input through
to the output, and the only point to watch is that no
crossed wires are produced. The wiring diagram of
Fig.6.13 should help with the avoidance of any errors of
this type. It is assumed in the wiring diagram that the
switch is a standard 6 way 2 pole rotary type with the
end-stop set for four way operation.

59

AB CD

X = BREAK IN STRIP

Fig. 6.8. The stripboard layout for the MIDI Mixer.

60

Fig. 6.9. The MIDI Mixer wiring.

IN

o i i no
I 4 □ □

o nana
SEQUENCER

IN OUT THRU

LlJLlimJLLlJ

Fig. 6.10. Feeding a MIDI signa! to one of several destinations.

61

THRU

o

o

THRU IN

• ZZI □aaaaaao o
□□□□□□□a
□□□□□□□□ o

OUT

MIDI SWITCHER
a

——1 oo SEQUENCER o a □□ IN 1 IN 2 IN 3

OUT

OUT ///////////////////
OUT THRU

UJUULllLlll
IN

Fig. 6.11. Using a switcher to select one of several signal sources.

SKI
OUT

Sia O 4
SK5
IN 4

4
SK3
IN 2

SK4
IN 3

SK2
IN 1

Sib

Fig. 6.12. The circuit diagram of the MIDI 4-1 switcher.

62

Fig. 6.13. The MIDI switcher wiring.

CV/Gate Controller
Much of this book has been concerned with MIDI,
which is not surprising when one considers its dominant
role in modern electronic music systems. There are still
a lot of pre-M I DI instruments in existence though, and
many of these are suitable for computer control. These
are the synthesisers that use the gate and CV (control
voltage) method of control. If you try using an ST
computer with this type of instrument, you need to bear
in mind that you are likely to run into the problems of
non-standardisation that MIDI was designed to over
come. The gate/CV interface described here is only
suitable for synthesisers that have a logarithmic control
voltage characteristic. In other words, instruments of
the "standard" 1 volt per octave type. With these, if
middle C is obtained at a control voltage of 4 volts, the
C an octave higher would be obtained at 5 volts, and
the one an octave above that would be obtained at 6
volts. The Cs one and two octaves below middle C
would be produced by control potentials of 3 and 2
volts respectively.

One could reasonably consider this to be a linear
characteristic, with the pitch of the synthesiser increas
ing by one volt per octave, or 83.33 millivolts (0.08333
volts) per semitone if you prefer. The control voltage to
musical interval relationship is indeed a linear type, but
the control voltage to frequency relationship is not.
Each 1 volt increment in the control voltage produces a
doubling of frequency, which is a very non-linear
characteristic. This is not something of purely academic

importance, and there have been some synthesisers
produced that have a linear control voltage/pitch
characteristic. In other words, with middle C produced
by an input of 4 volts, raising the pitch by one and two
octaves would require control voltages of 8 and 16 volts
respectively. The Cs one and two octaves below middle
C would require control voltages of 2 and 1 volt
respectively. The one volt per octave characteristic
lends itself well to computer control, but a linear
characteristic does not. This interface is totally unsuita
ble for use with synthesisers that have linear control
characteristics.

There can also be compatibility problems with the
gate or trigger input. Most synthesisers have a proper
gate input, and the gate pulse has much the same effect
as holding down a key of the keyboard for the same
duration. A trigger input is somewhat simpler, and is
usually present on synthesisers that have a basic
attack/decay style envelope shaper. Here the duration
of the pulse has no effect on the sound produced, and it
is just a matter of producing a pulse that is not below a
certain (and usually very short) duration. The degree of
control provided via the trigger input is not inferior to
that provided by the keyboard, since how hard a key is
struck and how long it is pressed has no effect on the
sound either! It is only fair to point out that there is
some confusion over the terms "trigger" and "gate",
and you might need to consult the manual for an
instrument to determine if whether it has a true gate
input or a simple trigger type. If an instrument has an

63

ADSR (attack-decay-sustain-release) type envelope
shaper, then it will almost certainly have a proper gate
input. If it has a simple attack/decay envelope shaper, it
will probably just have a basic trigger input.

There is usually no major incompatibility problem
between gate and trigger inputs, apart from the fact
that one provides more limited control than the other,
and an instrument which has a trigger input can not
accurately mimic one which has a gate input. From the
computer control point of view, it makes little difference
which type is being controlled, except that there is no
point in having a programmable gate period if the
controlled instrument is only a trigger input type. The
main incompatibility problem lies in the signal levels
used by various instrument producers.

Standard logic levels are about 0 to 2 volts for logic 0,
and around 3 to 5 volts for logic 1. Some instrument
manufacturers (SCI for example) used these standard
logic levels for the gate/trigger inputs on their equip
ment, but others chose to use different levels. Some
used a +15 volt level for logic 1, but a lot of equipment
of this type is compatible with 5 volt logic signals. Korg
used the "short to earth" system on a lot of their
instruments, and this type of input is not compatible
with standard logic levels. However, as explained later,
an extremely simple circuit is all that is needed to drive
an input of this type from a standard 5 volt logic signal.
The most awkward instruments from the gate/trigger
interfacing point of view are the types which use a — 15
volt signal level. It should be possible to produce a
converter circuit to give a suitable drive voltage from a
standard 5 volt input level. However, this is not
something that will be pursued here. As described here,
the gate/CV Interface is only suitable for use with
instruments that have a 1 volt per octave (logarithmic)
control voltage characteristic, and a 5 volt logic
compatible gate or trigger input. Instruments which
have a "short to ground” type gate input should work
properly with this interface provided the simple add-on
circuit is used at the gate output of the unit.

Which Port?
There are several ports to choose from on the ST when
it comes to selecting which one to use for a simple
add-on unit of this type. The obvious choice is the
parallel printer port which can provide latching outputs
that are ideal for driving a digital to analogue converter
and providing the gate/trigger signal. On the other
hand, a printer is a very popular form of peripheral, and
presumably many ST users will already have the printer
port tied up for use in its intended application. Another
possibility would be to use the MIDI port, but presuma
bly most people who are interested in using the ST in
music applications will already have the MIDI output
port in use as such. The cartridge port offers a third
possibility, but interfacing on to the buses of the
computer is relatively difficult, and a bit risky if mistakes
are made.

The fourth option, and the one I adopted for the final
design, is to use the serial ("modem") port. This
represents a relatively safe and easy way of extracting
signals from the computer, and most users will probably
not already have something connected to this port. If
something should already be in use with the serial port,
you should be able to obtain an RS232C selector unit
that will enable you to switch between two devices
connected to this port. Unfortunately, a suitable switch
over unit might be quite expensive, but they are
generally less expensive than types for parallel printer
ports. If preferred, the serial Interface section of the unit
can be omitted, and it can be driven from the printer
port, as described later.

The block diagram of Fig.6.14 shows the general
arrangement used in this interface. The first task of the
interface is to convert the incoming serial data back into
parallel form. There are a number of special integrated
circuits that are designed specifically for serial interfac
ing, but many of these are only suitable for use with
microprocessor based circuits as they are designed for
software control. For the present application a UART
(universal asynchronous receiver/transmitter) is the
only form of serial interface chip that is suitable. These

64

are controlled via input terminals which can be driven
from the data bus of a computer, or simply wired to the
appropriate supply rail. They are therefore suitable for
both software and hardware control. UARTs also have
tristate outputs which can drive the data bus of a
microprocessor circuit, or be used to drive indicator
l.e.d.s (or just left unused) in non-micro based designs.

This unit is based on an industry standard UART, and
the serial input signal is fed to this via a level shifter
stage. The standard RS232C serial output signal of the
ST computer's "modem" port is at nominal levels of
plus and minus 12 volts, but the UART requires an input
signal at ordinary 5 volt logic levels. The level shifter
provides the necessary changes in voltage levels, and it
also provides an inversion of the signal. This inversion is
needed in order to give a signal of the right polarity for
the UART.

The baud rate at which the interface operates is
controlled by a crystal controlled clock oscillator and a
frequency divider circuit. The oscillator operates at
2.4576MHz, and the UART requires a clock signal at
sixteen times the required baud rate. The ST will
operate at baud rates of up to 19200 baud, and it is
advisable to use the maximum baud rate in order to
minimise the time taken for each message to be sent to
the interface. A little mathematics will show that a
divide by eight action through the divider stage gives
the required rate of 19200 baud. The divider can
provide other division rates, and it can also accommo
date baud rates of 9600, 4800, 2400, 1200, If you
would prefer to use a lower baud rate for some reason,
there should be no difficulty in doing so.

One of the UART's eight latching outputs (the most
significant output) is used to provide the gate output
signal. The other seven outputs drive a linear digital to
analogue converter. This converter is actually an eight
bit type, and normally gives an output equal to 10
millivolts (0.01 volts) per least significant bit. In this
case the least significant input is simply connected to
the 0 volt supply rail, and the other seven inputs are
driven from the seven least significant outputs of the
UART. This effectively downgrades the converter to a
seven bit type having a resolution of 20 millivolts.

It gives 128 different output voltages, and can
therefore provide a range of notes which is comparable
to that provided by the MIDI system. Obviously not all
instruments can handle such a wide compass, but most
analogue synthesisers seem to cover a very wide pitch
range via their CV inputs, in fact many seem to cover a
far wider compass via their CV input than can be
covered using the keyboard (even allowing for any
octave up/down switch that might be included).

With increments of only 20 millivolts at the output of
the converter, some amplification is needed in order to
boost this to the required 83.33 millivolts per semitone
of the 1 volt per octave CV system. This requires a
simple d.c. amplifier circuit which has adjustable
voltage gain, so that the output voltage range can be
adjusted to precisely the correct one.

The Circuit
Fig,6.15 shows the full circuit diagram for the gate/CV
interface. The clock oscillator uses TR1 in a popular
configuration, and this circuit has an output of suffi
cient amplitude to drive the next stage without the need

for any buffering. This next stage is a CMOS 4024BE
seven stage binary divider. Here we are using the third
output in order to obtain a divide by eight action, and
stages four to seven of the device are left unused.
However, you can bring more stages into play if you
require a lower baud rate. This table shows the standard
baud rates that are obtainable, and the pin of IC1 that
should be used in order to obtain each one.

Baud Rate Pin Of IC 1
1200 3
2400 4
4800 5
9600 6
19200 9

IC2 is the UART, and this is the 6402 industry standard
device. R3 and C4 provide a positive reset pulse at
switch-on, and the control inputs of the device are
connected in such a way as to give a word format of
one start bit, eight data bits, one stop bit, and no parity.
A word format which has eight data bits is essential, as
we are using all eight outputs of the UART. This word
format is one which is supported by the "modem" port
of ST computers incidentally. The most significant
output of the UART directly drives the gate output
socket (SK1), and there should be no need for any
buffering here.

The other seven outputs drive the digital to analogue
converter chip, which is IC3, This is a Ferranti ZN426E,
which is relatively inexpensive and easy to use, but has
quite a high standard of performance, it has a built-in
high quality 2.55 volt reference source, and this sets the
full scale output voltage at the same figure. R4 and C5
are the discrete load resistor and decoupling capacitor
for the converter, and these are the only discrete
components that IC3 requires.

IC4 is the d.c. amplifier, and this is almost a standard
operational amplifier non-inverting type. It differs from
the standard form of this configuration only in that IC4
is operating without a negative supply rail. This is
possible because the CA3140E used In the IC4 position
is a device that can operate with its output at voltages
right down to the 0 volt supply potential, even in the
absence of a negative supply. Most other devices
(including the standard uA741 C type) are unable to do
this, and will not operate in this circuit unless they are
provided with dual supply rails. VR2 is used to adjust
the voltage gain of the circuit to precisely the required
level, and VR1 is an offset null control. In theory the
circuit should work perfectly welt at low output volt
ages, but in practice operational amplifiers tend to be
plagued by small offset voltages that cause errors in the
output level. These are often unimportant, but would
give unusable results in a critical application of this type,
VR1 Is used to trim these offsets to an insignificant
level.

The level shifter/inverter stage is based on TR2, and
this is just a simple common emitter switching stage.
The main circuit requires a reasonably stable 5 volt
supply, but IC4 requires a higher voltage if it is to
provide a reasonably wide output voltage range. With
the suggested method of powering the circuit, a 9 volt
battery acts as the power source, but the main circuit is
powered via 5 volt monolithic voltage regulator IC5. IC4

65

cu
CD

COin
cu 00

ct m
Nto □o ii

ii cuti ii i>II
IIcocu

n

CT

LU
m

in
s

S
ct
cn

LU
to
CU

LU
s

CJCT

tc
i-

oo
CT

CU

ID
O

w
L>

tn

LU

OJ

ct

co

cu
cu

cu
cu

in
cuID

X coo s cu II CD

u s

W rT
U N

' cu

II

CU
CK S
> -i

Ct s

ID
CJ

CU

cu

tn
CT

CT
CT

cu

II

II

Fi
ff.

 6.
15

. T
he

 fu
ll

ci
rc

ui
t d

ia
gr

am
 o

f t
he

 C
V

In
te

rfa
ce

.

66

is powered direct from the 9 volt battery. You should
note that the maximum output voltage of IC4 is about 2
volts less than its supply voltage, or about 7 volts in this
case. This is an over-simplification in that the battery
voltage will actually start at about 9.5 volts, and will
drop to around 8 volts as it nears exhaustion. About 6
volts therefore has to be regarded as the maximum
output level that can be reliably achieved by the circuit.
This gives a range of 6 octaves, and should be sufficient
for most purposes. However, if a higher maximum
output voltage is required, it is merely necessary to
power the unit from two 9 volt batteries connected in
series (giving an 18 volt supply). The unit should then
give the full coverage of over ten octaves.

Although many serial devices have very high current
consumptions, this is not the case for the 6402 which is
a low power CMOS device. The total current consump
tion of the circuit is only about 8 to 9 milliamps (very
little of which is consumed by IC2), and any 9 volt
battery should be able to supply this economically.

Parallel Port
If you would prefer to drive the unit from the printer
port, this is not difficult to do and the circuit can be
greatly simplified. The following components can be
omitted: -

IC1, IC2, TRI, D1, C1, C2, C3, C4, R1, R2, R3, R5,
R6, R7, X1, and SK3

1C3 is then driven from the parallel port in the manner
shown in the "skeleton" circuit of Fig.6.16. The seven
least significant lines of the printer port drive IC3, while
the most significant line is used to provide the gate
signal. In other words, the parallel interface chip of the
ST is used in exactly the same way as the parallel output
of IC2. Fig.6.17 provides details of the connections to
the printer port of the ST. Note that you need a 25 way
D plug to make the connections to the printer port, but
a 25 way D socket to make the connections to the
"modem" port.

If you use this method of driving the interface it is
probably best to write data direct to the parallel
interface chip rather than to use the normal parallel
printer port commands. This is simply because the
gate/CV interface does not require any handshaking
lines to be implemented, since it can keep up with the
data flow from the computer. Writing data to the printer
port in the usual fashion could cause problems as the
computer's operating system will be looking for
responses from the handshake lines in the normal way,
but the gate/CV interface has no outputs to drive the
handshake lines. This seems to result in the computer
hanging up indefinitely. Using direct POKEs (or what
ever) to the parallel interface chip overcomes this
problem, and makes programming of the interface quite
straightforward.

The parallel printer port's data lines are provided by
port B of the sound chip (refer to chapter 1 for details of

11
DATA 0 < 2)
DATA 1 < 3 > <-
DATA 2 < 4 >
DATA 3 < 5 >
DATA 4 < 6)
DATA 5 < 7 >
DATA 6 <8>

GROUND <23)

10

12

13

1

2

3

5

6

R4

9 C5

+ 5V

TO IC4
PIN 3

SKI
GATE
OUT

0V

DATA 7 (9 > *

Fig. 6.16. Driving the interface from the parallel port.

67

IC3 PIN NUMBERS

11

0V

Fig. 6.17. Printer port connection details.

the sound chip registers). Address &HFF880O is used to
select the required register, and then address
&HFF8802 is used when writing data to the selected
register. First port 8 must be set as an output port, and
this is achieved by selecting register 7 and then writing a
value of 128 to it. Data for the interface is then written
to it by selecting register 15 and then writing the
appropriate values to &HFF8802. In case the computer
alters the selected register from time to time, it is a good
idea to select register 15 each time before writing data
to it, rather than just selecting it once and then POKEing
a series of values to it. As a simple example, this simple
routine will trigger a note via a gate/CV interface
connected to the parallel port.

10 REM PARALLEL TEST PROG
20 POKE-B &HFF8800,7
30 POKE-B &HFF8802,128
40 POKE-B &HFF8800,15
50 POKE-B &HFF8802.140
60 FOR D = 1 TO 1000
70 NEXT
80 POKE-B &HFF8800,15
90 POKE-B &HFF8802,12

This merely sets port B as an output port, and then
writes an initial value of 140 to the gate/CV interface.

This sets the gate output high (i.e. switches on a note),
and the note value is 12 (128 + 12 = 140). After a
delay provided by the FOR...NEXT loop, the final two
lines of the program output a value of 12 to the gate/CV
interface. This leaves the note at a value of 12, but sets
the gate output low (i.e. terminates the note, which will
actually continue until the release period has expired).
Note that this program assumes that the current ST
BASIC is used; the POKE instructions will need to be
modified if you are using one of the previous versions of
ST BASIC.

If you wish to use the interface with an instrument
that has a "short to ground" style gate or trigger input,
the add-on circuit of Fig.6.18 should give a gate output
pulse that is compatible with this type of equipment.
This is just a VMOS transistor used as a common source
switch. It is switched on when the gate signal goes
high, giving the required low resistance path to earth.

Adjustment
Whichever version of the unit you choose, the circuit
should not be too difficult to construct using a custom
printed circuit board, stripboard, or any other standard
method of production. Bear in mind that IC1, IC2, and
IC4 are all MOS input devices, and that they conse
quently require that standard anti-static handling pre
cautions to be observed. Although IC3 is a bipolar
device, it is also not one of the cheapest of integrated
circuits, and I would also recommend that this device
should be fitted in a DIL i.e. holder. Any 2.4576MHz
crystal should suffice for XI, but a type in a small

68 1

102
PIN 5

0V

SKI
GATE OUT

Fig. 6.18. Driving a "short to ground"
input from the CV interface.

data is written to the interface. As far as I can gather,
there are no ST BASIC commands which give control
of the baud rate and word format. This does not matter,
as al! you have to do is use the GEM desktop to set the
required parameters as the serial port defaults. Accord
ing to the "Atari ST Owner's Manual" there is a "Set
RS232 Config." option obtained via the "Desk" menu
bar. On booting my 520STFM with the "Language
Disc" in the drive, this option proved to be absent.
However, there is a "Control Panel" option, and the
RS232 setup menu can be obtained as a sub-menu of
this. The correct parameters to select are listed
below: -
Parameter Setting
Baud Rate 19200
Parity None
Duplex Full
Bits/Char 8
Strip Bit Off
Xon/Xoff Off
Rts/Cts Off

wire-ended (HC-18/U) style case is probably the most
convenient from the constructional point of view.

Assuming the interface is driven from the serial port
(Fig,6.19), and that you will use it with a programme
written in ST BASIC, data is written to the device using
the OUT instruction. The "modem" port is device 1,
and data is therefore sent to the interface using the
instruction: -

OUT 1, x

where "x" is the value that is to be written to the
interface. Note that the serial interface must be set up
for the correct baud rate and word format before any

As an initial test of the interface, try repeatedly writing
values of 0 and 128 to it (i.e. OUT 1,0 and OUT 1,128).
If all is well, this should set the gate output low and high
respectively. If the gate output does not respond,
switch off at once and thoroughly recheck everything.
Assuming all goes well, the two preset resistors must be
set up correctly before the interface is ready for use.
This is just a matter of first sending a fairly high note
value to the unit, and adjusting VR2 for the correct note
from the synthesiser. Then send a low note value to the
interface, and adjust VR1 for the correct note from the
synthesiser. Repeat this procedure a few times until
correct tracking between the two notes is obtained.
Most synthesisers have the ability to switch between
the keyboard and external control, and this can be
useful for comparison purposes when making these

SK3
(R5 >

SK3
< EARTH }

Fig. 6.19. Only two connections to the serial port are needed if the interface is driven from this port.

69

adjustments. Note that with many instruments external
control is only possible once this feature has been
enabled via the correct control settings, and that the
unit will therefore have no effect until the correct
settings have been selected. Note also, that VR1 and
VR2 should ideally be good quality multi-turn "trim
pots". Ordinary miniature preset potentiometers could
be very difficult to adjust properly, and might have
inadequate resolution.

Programming
As the unit is driven from the serial port there should be
little difficulty in using it with any high level language
(which wili presumably provide support for the serial
interface). If the unit is connected to the parallel port
things might be a little less straightforward, but most
languages give easy access to memory and input/
output devices (including BASICS and C), and obvi
ously there is no difficulty in this respect when using
assembler.

It would be possible to develop quite sophisticated
sequencer software for the unit if desired, but I suspect
that these days a system such as this would rarely be
used for anything more complex than something like a
repetitive bass line. The complexity of sequences is
restricted by the fact that the system is strictly
monophonic, although sequences of many thousands
of notes In length could probably be programmed if
desired. Here we will assume that the unit is only to be
used for short repetitive tracks. However, programming
something of this type is not too difficult, and any
reasonably competent BAS IC programmer should have
no difficulty in developing the suggested routines if
something more sophisticated is required.

In order to produce a note from the synthesiser the
program must output a value to the interface that is
equal to the required note value plus 128. The extra 128
is, of course, needed in order to set the gate output high
and trigger the note. With most synthesisers a note
value of 1 is equal to a C somewhere below middle C,
but it is normally possible to shift the tuning up and
down by one or two octaves, and there is frequently
some form of pitch shift control that enables the
instrument to be continuously varied over a range of
several semitones. It is up to you to make sure that the
values you output are the right ones for the settings of
the instrument.

At some time before the start of the next note the
gate pulse must be terminated. You can not simply
leave the gate output permanently high, because a low
to high transition is needed at the start of each new note
in order to trigger a new envelope period. To terminate
the gate pulse you simply output a value equal to the
current note value, without the 128 added.

Using ST BASIC it is possible to control the interface
and synthesiser in a similar manner to the one used in
chapter 1 to control the ST's internal sound generator.
The program shown below will produce a short
repetitive track.
This works in much the same way as the "improved
sequencer" program in chapter 1, but the SOUND
instruction has been replaced by a few lines (50 to 90)
which output values to the serial port, and provide a
timing loop so that note durations can be programmed.
A FOR...NEXT loop is a rather crude way of providing
the note duration timing, but my documentation on ST
BASIC does not mention any form of built-in timer
function. Getting the times right initially will take a little
trial and error, but looking on the plus side, this method
of timing seems to give (roughly) millisecond resolution
so that times can be set very precisely.

The program is looped indefinitely by the GOTO
instruction at line 120, but this can be omitted if a single
pass sequencer is required. The RESTORE instruction
at line 110 is not then needed. The purpose of this
instruction is to reset the data pointer so that the data is
read from the beginning again on each run through the
sequence. Without this instruction the program would
crash with an "out of data" error message. There are
only two parameters controlled in the DAT A statement
at line 130, and these are the note value and duration.
They must appear in the DATA statement in pairs, with
the note value given first. Assuming that a note value of
1 is a C, the example values play an ascending scale of
C major with alternate short and long notes. Values of 0
and 0 must be used at the end of the sequence as these
are needed to end the WHILE...WEND loop.

A useful addition to the program would be a line
between lines 60 and 70 to multiply the duration value
(variable "d") by a certain amount. This would enable
the tempo to be altered without having to change every
duration value in the DATA statement. Tempo values
greater than 1 would slow the sequence down -
numbers less than 1 would give faster tempos.

10 REM ANALOGUE SYNTH LOOP SEQUENCER
20 n = 1
30 WHILE n 0
40 READ n , d
50 a = n + 128
60 OUT 1, a
70 FOR b = 1 TO d
80 NEXT
90 OUT 1 , n
100 WEND
110 RESTORE
120 GOTO 20
130 DATA 1,500,3.1000,5,500.6.1000.8.500,10,1000,12,500,13,1000,0,0

70

Components (Fig.6.15)

Resistors (al! 0.25 watt 5% carbon) Semiconductors
R1 1M2 1C1 4024BE
R2 2k2 IC2 6402
R3 2k2 IC3 ZN426E
R4 390 IC4 CA3140E
R5 2k2 IC5 UA78L05
R6 2k7 TR1 BC549C
R7 3k9 TR2 BC549C

D1 1N4148
Potentiometers
VR1 10k multi-turn trimpot Miscellaneous
VR2 10k multi-turn trimpot XI 2.4576MHz crystal

SK1,2,3 Standard jack sockets (3 off)
Capacitors Bl 9 volt (PP3, PP7, etc.)
C1 100n ceramic Case
C2 27p ceramic plate Circuit board
C3 27p ceramic plate Battery connector
C4 47u 10V radial elect 8 pin DIL holder
C5 2u2 63v radial elect 14 pin DIL holder (2 off)
C6 100n ceramic 40 pin DIL holder
C7 100n ceramic Wire, solder, etc.

71

Chapter 7
MIDI PROCESSING

For the do-it-yourself programmer the ST and MIDI
applications provide a lot of scope. However, in my
opinion at any rate, there is not a great deal of point in
developing complex sequencer programs. Even if you
are a reasonably expert programmer it is difficult to
compete with the up-market MIDI software which is of
a very high standard indeed. It is the type of thing that
takes a small team of expert programmers months or
even years to perfect! Even the more simple sequencer
programs involve a great deal of highly skilled program
ming time. Given the reasonably low cost of some
sequencing software, and the fact that there are very
cheap programs available from shareware/public
domain software sources, it is probably only worthwhile
producing your own sequencer program if this is
something that particularly interests you.

Of course, if all you want is a program that will
provide a short and simple repetitive track for backing
purposes, then even a moderately sophisticated real
time or step-time sequencer could reasonably be
considered as providing substantial "over-kill". For a
simple monophonic sequence something as basic as the
sequencer program provided at the end of the previous
chapter should suffice. Of course, it must be modified
to output data to the MIDI output port rather than the
serial interface, and it must supply valid MIDI data
instead of gate/CV data. A suitably modified version of
the program is provided below: -

program to loop back to the beginning again. A
"dummy" value of 64 is used tn the velocity byte (the
third value in the note-on set), but this could be made
programmable as well if desired. It would just be a
matter of adding a third parameter into the READ
instruction, using this parameter as the velocity byte,
and placing sets of three values in the DATA statement.

in my experience of MIDI keyboard instruments there
is no problem if you drive them from the MIDI input
while at the same time playing them via the keyboard.
The only point to bear in mind is that many instruments
only offer six or eight note polyphony, and when using
them in this way there is a definite danger of the
instruments running out of voices. There should be no
problem with sixteen or thirty two note polyphonic
instruments though.

If you are interested in a simple real-time sequencer
routine, this subject is covered later in this chapter.

MIDI Processing
MIDI processing is an area in which the ST plus a simple
do-it-yourself program can give excellent results. MIDI
processors have moderated in price over recent years,
but a couple of these units could still prove to be quite
expensive, and will only provide two processing func
tions. Multi-function are something of a rarity, and are
far from cheap. The ST plus a simple program offers a
cost-free approach if you already own an ST. This

10 REM M ID I BAS IC SEQUENCER
20 n = 1
30 WHILE n > 0
40 READ n.d
50 OUT 3.144
60 OUT 3 , n
70 OUT 3,64
80 FOR b = 1 TO d
90 NEXT
100 OUT 3,128
110 OUT 3,n
120 OUT 3,0
130 WEND
140 RESTORE
150 GOTO 20
160 DATA 60.500,62.1000,64,500,65 1000,67,500,69,1000,71.500,72,1000,0,0

This program operates in much the same way as the
original, but in order to trigger or terminate a note it
must output a standard MIDI three byte group. It will be
assumed in this chapter that you are familiar with MIDI
messages and the actual code numbers used. You
should refer to chapters 3 and 4 if you are unclear about
either of these aspects of MIDI. The values in the DATA
statement are pairs of MIDI note values and duration
values (approximately in milliseconds). Values of 0 and
0 are required to terminate the sequence and cause the

combination can provide any type of MIDI processing
(within reason), and using a range of programs a variety
of processes can be accommodated. Provided the
program will run fast enough, it should even be possible
to provide several types of MIDI process at once.
Although there may be no commercial stand-alone unit
that provides the type of processing you require, it may
well be possible to obtain the desired action using the
ST plus a some simple software.

The main limitation of using the ST as a MID!

72

processor is that it can not run other MIDI applications
(such as sequencer software) at the same time. The ST
is not a multi-tasking computer, and as it only has a
single set of MIDI input and output sockets, it would
make no difference if it was. Despite this limitation,
being able to use the ST for MIDI processing is a very
worthwhile asset, especially if your interest is mainly in
"live" performance rather than MIDI sequencing and
recording applications.

Before discussing some examples of MIDI processing
using the ST, it would be as well to explain exactly what
is meant by MIDI signal processing. A point which has
to be made from the outset is that we are talking here
about processing the MIDI data stream, and we are not
talking about MIDI controlled processors which doctor
the audio output signal of an instrument. Processing the
MIDI data may not seem to have great potential for
improving a system, and it is a subject which seems to
have been largely neglected in the past, but it is
something that can be put to very good use in many
systems, it is not something that is only applicable to
complex systems, and it can be used effectively with
something as basic as a single MIDI keyboard
instrument.

Channelising
MIDI signal processing is used for one of two reasons:
to make up for some inadequacy in the system, or to
add an advanced feature to the setup. Most MIDI
processors provide processing of the former type rather
than the latter. Probably the most common type of
MIDI processing is so-called "channelising". One
reason for doing this is to provide split keyboard
operation. This feature seems to be increasingly
common on modern MIDI keyboard instruments, but
has been something of a rarity in the past. The idea is to
have the keyboard split into zones, with each zone
operating on a different MIDI channel (as in the example
of Fig.7.1). You can then have each section of the
keyboard controlling a separate Instrument. With an
instrument that has mode 4 or (preferably) some form
of "multi" mode, much the same effect can be
obtained, with each zone controlling a different voice of
the instrument.

This is a feature that can often be added to a
keyboard that does not have a such a function built-in.
The basic idea is to take the MIDI output from the
keyboard, and then alter the channel number in
messages that contain certain note values. The pro
cessed output signal is then sent from the MIDI output
and used to drive an instrument or instruments. A unit
that provides this form of channelising is sometimes
called a "note separator". One way in which this type of
processing can be used is shown in Fig.7.2. For the
sake of this example we will assume that the output of
the keyboard is on channel 1, and that we want it to
control its own sound generator circuits on channel 1,
plus the drum machine on channel 2. However, the
bottom four notes of the keyboard must control four
voices of the drum machine, while the other notes must
control the keyboard's internal sound generator circuits.
This sacrifices four keys of the keyboard, but in return
provides the player with a four piece percussion set
which can be played from the keyboard.

What might seem to be the obvious method of
interconnection for such a setup is as shown in Fig.7.3,
but this will not give the desired effect. Anything played
on the keyboard (including the lowest four notes) will
operate the instrument's internal sound generator
circuits in the normal way. What we require is for the
lowest four keys to have no effect on the internal sound
generator, and to only play the drum machine. This can
be achieved by the original arrangement of Fig.7.2
provided the drum machine is set for mode 3 operation
on channel 2, the keyboard's sound generator circuits
are set for mode 3 operation on channel 1, and the
keyboard is set to "local off". All the ST then has to do
is to pass notes above a certain threshold level without
altering them, and to shift notes at or below that level
up one channel. These shifted notes will then be played
by the drum machine and not by the keyboard's internal
sound generator circuits.

The ST can be used as a channelfser in more
sophisticated setups, such as the one shown in Fig.7.4.
Here the keyboard could be simply that (i.e. no built-in
sound generator circuits) with one rack-mount unit
being controlled on channel 1 via the bottom half of the
keyboard, and the other being controlled on channel 2

UlULlUlllIUlLUllllU
CHANNEL 1 CHANNEL 2 CHANNEL 3

Fig. 7.1. These days much use is made of keyboard "splits", as in this example.

73

THRU IN

So DRUM MACHINE on no m

IN OUT THRU

OUT
IN

L1JLLL1LL1UU
(LOCAL OFF >

Fig. 7.2. A Practical keysplit setup.

by way of the top half of the keyboard. Alternatively,
the system could be quite effective with the keyboard
having an internal sound generator covering its full
compass, and the rack-mount units in the same
key-split operation and being used to "thicken" the
sound of the keyboard instrument. Fig.7.5 shows a
more sophisticated way of using the system. Here the
keyboard instrument is used in the "local off" mode so
that it effectively operates as a separate MIDI keyboard
and sound module. The ST is used to process the
output from the keyboard and feed the signal back to
the sound generator circuits. The THRU output of the
instrument then couples the processed signal on to the

two rack-mount units. This system could be set up for a
three-way split if desired.

It is only fair to point out that some MIDI channelisers
provide a split of the type outlined in Fig.7.6, but the ST
can not be used in this way. Here the signal is split into
three separate output signals, with one for the low
notes, one for the middle notes, and the third one for
the high notes. All three outputs operate on the same
MIDI channel (usually channel 1). Some MIDI
instruments, particularly a lot of early examples, are
only capable of operation on channel 1 and (or)
operating with 'omni on'. In either case, they are
unlikely to be suitable for use in the systems described

IN

IN OUT THRU

UJULIUILLLI

OUT
IN

Fig. 7.3. This setup looks plausible, but will not give the desired action.

74

IN THRU
“□________________ CZ

o t - —I □□□□□□□□ o
1 I □□□□□□□□

O □ □ □□□□□□□□ o

_____________ ■
IN OUT THRU

LiiuiLumi

Fig. 7.4. A more complex keysplit system.

IN THRU

□□□□□□□a o
□□□□□□□a

OUT THRU

D Luminimi
(LOCAL OFF)

Fig. 7.5. A system capable of a three way keyboard split.

IN
I

O I . □□□□□□«] o
U.. -J □□□□□□□□

o □□ □□□□□□□□ o

OUT
IN

IN

■ —« □□□□□□oo
1 □□□□□□□□

□ a □□□□□□□□

///////////////////

75

earlier as they can not pick out information on just one
channel, or be switched to a suitable channel. In fact
you might be able to use an instrument which is capable
of mode 3 operation only on channel 1, but this will only
work if just one instrument in the system is of this type.
This instrument could be used on channel 1, with the
other instrument or instruments being switched to other
channels. The arrangement of Fig.7.6 is more versatile
in that the separate outputs enable notes to be directed
to individual instruments, even if those instruments only
support channel 1 or "omni on” operation. The ST can
not provide this type of processing as it possesses only
a single MIDI OUT socket.

CH. 1 CH.l CH.l
BASS MID TREBLE

OUT 1 OUT 2 OUT 3
MIDI SPLITTER

IN

IN OUT THRU

LLILUIWWJ
Fig. 7.6.

The ST cannot provide this type of channelising.

ST Languages
This type of program should not prove to be too difficult
to write in any high level language. In fact it should not
pose too much of a problem in assembler. With
computers that have add-on MIDI interfaces there can
be problems in reading the interface from a relatively
slow language such as an interpreted BASIC. The
problem is caused by MIDI sending what are usually
two or three byte messages, with the bytes sent
"end-to-end". Remember that MIDI can handle over
three thousand bytes per second. By the time a slow
language detects that there is a fresh byte of data to
read, and actually reads the MIDI port, the first byte or
two of data may well have been overwritten by a
subsequent byte.

The situation is much better with ST for two reasons.
One of these is simply that as the MIDI port is built-in, a
high level language for the machine should include
support for the MIDI port. In other words, the language
should include routines that make it easy to read the
MIDI port, so that you are not having to directly read
and control the hardware. What this often means in

practice is that the MIDI port is monitored by the
operating system, and that when bytes are received
they are read from the port and stored in an area of
memory (called a "buffer"). When you read the MIDI
port from a language that provides this facility, what
you are actually doing is reading any received bytes
currently in the buffer, not reading directly from the
MIDI interface hardware. Bytes received in rapid
succession will be safely stored in the buffer so that
they can be read when the program gets around to it.
This is not a perfect solution as it is still possible for
bytes to be lost. If data is received at a high average rate
the bytes may be stored in the buffer more rapidly than
they can be processed by the program. Eventually the
buffer will overflow and data will be lost. Even if an
overflow does not occur, there is still a risk of small but
significant timing errors occurring.

These problems are eased by the second advantage
of the ST, which is its substantial processing power. As
a result of this, languages for the ST tend to run much
faster than equivalents on other machines. ST BASIC is
not particularly fast by ST standards, but the latest
version still manages to run at a rate which is
substantially faster than most 8 bit BASICs.

Other BASICs are available for the ST, and these are
mostly much faster than ST BASIC. Some of these are
interpreted BASICs, and some are compiled types (and
some are available in both versions). An interpreted
language is one which stores the program as a series of
command words, data etc. When the program is run,
each command is translated into machine code instruc
tions which are then run by the microprocessor. This is
a slow way of doing things, as the interpreting process
often takes very much longer than running the inter
preted instruction! In fact it often takes one hundred to
one thousand times longer. A compiled language
converts the program to machine code, and then stores
it on disc as a stand-alone program which can be run
without any need to run the language program first.
There Is no interpreting to do when the program is run,
as this was effectively ail done when the program was
compiled. This gives much faster running speed,
although the program produced by a compiled language
is normally less compact and slower in operation than
one written in assembler by a skilled programmer.
Actually, many compiled programs seem to include a
"run-time module" which provides a certain amount of
interpreting or pseudo-interpreting when the program is
run.

Compiled languages have the advantage of produc
ing fast, compact, stand-alone programs, but they are
generally more difficult to use. Apart from the fact that
complied languages tend to be more difficult to learn,
there is the drawback that they are more difficult to
debug. A good, fast, interpreted language that enables
the interpreter and program to be used together as a
pseudo stand-alone program is an attractive pro
position.

Probably the nearest thing to a standard language for
the ST for do-it-yourself programers is Computer
Concepts "Fast BASIC", which is a high speed inter
preted BASIC. It is an excellent implementation of
BASIC which, apart from being very fast in operation,
also gives excellent support to the ST's special features
and firmware, and has a built-in assembler. It also has

76

features that are of interest to those who like a
structured approach to programming. Unusually for an
interpreted language, with the aid of a low cost add-on
program it can produce stand-alone programs that can
be run without having to load Fast BASIC, then toad the
program, and finally run it. Stand-alone programs
produced using Fast BAS I Care not compiled programs
incidentally, they area combination of the program file
and the Fast BASIC run-time module (i.e. the inter
preter part of the Fast BASIC program). There are no
copyright problems with the run time module, and
stand-alone Fast BASIC programs can be sold or given
away, complete with this interpreter part of the
program.

In this chapter we will only consider programs written
in the latest version of ST BASIC and programs written
in Fast BASIC. These two languages have been chosen
simply because ST BASIC is supplied free with STs,
and Fast BASIC seems to be the most popular
alternative to ST BASIC (in the U.K. at any rate).
Obviously there are many other programming lan
guages available for the ST, and several of these are
quite popular (GFA BASIC and various 'flavours' of C
for example). There simply is not enough space
available here to cover even a small selection of the
available languages. However, the principles outlined in
this chapter should be easily applied to other languages,
and none of the programs are particularly complex. We
will mainly be concerned with Fast BASIC, as its fast
operating speed makes it more suitable than ST BASIC
for a demanding application such as MIDI processing.

Note Separator Program
The only slightly awkward aspect of producing a
channeliser program is that the byte which contains the
note values is not the one that contains the channel
value. Furthermore, the byte which contains the chan
nel value precedes the one which carries the note value.
The logical way to handle the problem is to read in bytes
from the MIDI port, and to simply pass them straight
through to the MIDI output port unless they are the first
byte in a note on or note off message. If one of these
messages is detected then the program must store this
value. The next two bytes (the note and velocity values)
are then read in and stored. The note value byte can
then be checked, and if it is outside certain limits the
note on/off byte can be boosted or decremented in
order to give the desired shift in channel number.
Remember that MIDI channels are normally numbered
from 1 to 16, but that the actual values used to select
them are from 0 to 15.

This example program is written in ST BASIC and its
effect is to increment the channel number by 1 for any
note that is above middle C (MIDI note 60). Note that
like the other ST BASIC programs in this book, it has
only been tested with the new version of ST BASIC and
it might need slight modification to run under the
original version.

5 REM ST BAS IC CHANNEL 1 SER
10 A = 1 NP(3) AND 255

20 1 F A > 127 AND A < 161 THEN GOTO 1000
30 OUT 3,A
40 GOTO 10
1000 B = 1NP(3) + 256
1010 C = 1NP(3) + 256
1020 IF B > 60 THEN A = A + 1
1030 0UT 3 , A
1040 OUT 3 , B
1050 OUT 3,C
1060 GOTO 10

ST BASIC and Fast BASIC both provide support for
the MIDI ports via the INP and OUT functions, which
are respectively used for reading input devices, and
writing to output devices. In both cases the MIDI port is
device number 3. Both of these versions of BASIC
seem to produce unusual results when reading the MIDI
port. ST BASIC seems to provide negative numbers,
whereas Fast BASIC provides numbers from 65280 to
65535 (not the correct 0 to 255 for standard 8 bit
bytes). What seems to be happening is that 16 bit
values are being read, and that the eight most signifi
cant bits are always set to 1. Fast BASIC interprets the
read values as straightforward binary values, whereas
ST BASIC is presumably interpreting them as some
form of signed binary and Is consequently providing
negative values. As far as I can ascertain, the top eight
bits of returned values provide no useful information.
Presumably the MIDI port is read via a BIOS routine
which provides 16 bit values, and neither implemen
tation of BASIC strips the unnecessary bits.

in some applications it seems to be quite in order to
ignore the fact that the IN P(3) function is not returning
8 bit bytes. This is not the case here, as the program will
test received values and provide one action or another,
depending on what range of values received bytes fall
within. We must therefore convert received values to
normal 8 bit values before testing them. There is more
than one way of achieving the conversion, but the most
reliable method for either type of BASIC is to bitwise
AND each value returned by the INP(3) function with
255. It is the purpose of line 10 to read in values and
make the necessary conversion.

Bitwise AN Ding is a simple process that compares
two binary numbers on a bit by bit basis. A 1 is placed in
the answer if both the corresponding bits of the two
numbers are 1. If a bit is at 0 in either or both of the
numbers, then a 0 is placed in that bit of the answer. In
this case we are AN Ding values read from the port with
255 (11111111 in binary), and the eight least significant
bits of the answer will be the same as those provided by
the values from the 1NP(3) function. The eight most
significant bits in the "masking" number (255) are all
zeros. It makes no difference what logic states these are
at in the values returned by the INP(3) function - they
must always be 0 in the answer since there can never be
a 1 In both bits of the two ANDed values. This method
is much safer than simply adding or taking away a fixed
amount from received values in order to bring then into
the correct range. With the bitwise AND method the
correct result will always be obtained, even if one of the
most significant bits should be set to 0 for some reason.
This is not the case if values are simply boosted or

77

reduced by a certain amount.
Note that the INPO function always waits for new

data to be received if none is already present when an
INPO instruction is reached in the program. Therefore,
there is no need to construct a loop to continually test
for data. You might like to add a "timeout" facility to
halt the program if no data is received for a certain
period of time. I found such a facility to be less than
helpful though, and omitted it from the final program.

At line 20 a check is made to determine whether the
received byte is a note on/off type, or some other form
of MIDI message. Note on/off messages conveniently
have a decimal value in the range 128 to 160, and this
line simply checks to see if the received value is within
this range. If it is, the program branches to a sort of
pseudo subroutine at line 1000. If not, it goes to line 40
where the byte of data is transmitted on the MIDI
output port.

The pseudo subroutine starting at line 1000 reads in
the next two bytes of data which should be the note and
velocity values. There is a potential problem here in that
MIDI clock messages can be mixed into other mes
sages. None of my equipment actually seems to do this
though, and in many applications it would be possible
to simply avoid having the clock signal transmitted
anyway. Accordingly, this potential problem is not
catered for by this program, but it would probably not
be too difficult to add a suitable "catch" to the
program to collect any MIDI clock messages and send
them straight on to the output. In the interest of
having the program run as fast as possible, it is
probably best not to bother with anything of this type
unless you really need to.

When all three bytes have been read in, line 1020
checks whether the note value (variable "B") is greater
than 60. If it is, the header byte (which is tn variable
"A" and contains the channel number) is incremented
by 1.1 have set the split point at a note value of 60, or
middle C in other words. However, it would obviously
be quite easy to set the split point at any desired point
simply by altering theappropriate value in the program.

Also, by having several lines of this type with different
split point values, multiple splits could easily be
produced.

The next three lines output the three bytes in the
correct order, and then the program loops back to line
10 to wait for the next byte. The reason for using this
pseudo subroutine rather than the real thing is that the
program must start from the beginning once again
when it exits the routine. With a real subroutine it would
take up where it left off, or move on to line 40 in other
words. This would result in byte "A" being outputted
a second time, which would obviously cause a
malfunction of the system.

Fast BASIC Version
ST BASIC is reasonably fast by BASIC standards, but it
is barely fast enough for MIDI processing applications.
The split-keyboard program works well enough if it is
only receiving note on/off messages plus perhaps a
moderate amount of additional data such as aftertouch
messages. With large amounts of data to process,
perhaps due to pitch bending or a great deal of
aftertouch information being produced by the keyboard
driving the unit, things start to go wrong. I did not find
that the program had any tendency to crash, but with
large amounts of data to process there were quite
noticeable timing errors. These could be large enough
to totally change the rhythm of a piece!

In order to be certain of avoiding any significant
delays when processing MIDI data it would probably be
necessary to resort to a good compiled language.
However, Fast BASIC lives up to its name and works
fast enough for most MIDI processing applications.
While I did find it possible to overload a Fast BASIC
program with MIDI data, this was only by using a
combination of controls that would not generally be
used in normal use. I will not guarantee that the Fast
BASIC version of the split keyboard program is not
overloadable, but I will claim that it will perform quite
adequately in most situations. The Fast BASIC version
of the program is provided below: -

REM FAST BAS I C SPL I T PROG
FOR FLUSH = 1 TO 200
IF I NPSTAT(3) THEN DUMMY = INP(3)
NEXT
REPEAT
A = (I NP(3) AND 255)
I IF A > 127 AND A < 161 THEN PROCRA I SE ELSE PROCNORM
UNTI L FALSE

DEF PROCRAISE
B = (INP(3) AND 255)
C = INP(3)
I F B > 60 THEN A = A + 1
OUT 3,A,B , C
ENDPROC

DEF PROCNORM
OUT 3 . A
ENDPROC

78

In Fast BASIC line numbers are optional. They are
retained in order to give compatibility with earlier
BASICS, as are the GOTO and GOSUB instructions.
This program has been written without line numbers,
and using the PROCedures instead of GOTOs and
GOSUBs.

The FOR...NEXT loop at the beginning of the
program reads in any MIDI data left in the buffer, and
dumps it into the variable "DUMMY". If any data
should be received by the ST after switch-on but before
running this program, this routine should clear it away
and prevent it from being outputted (which could
otherwise cause droning notes, or other problems). It
might be useful to add a routine of this type at the
beginning of the ST BASIC version if that is the version
you intend to use.

The main program is the four lines of the
REPEAT...UNTIL loop, which loops indefinitely in this
case. To break out of the program simply press
ESCAPE and then operate any key of the MIDI
keyboard (this method can be used with all the Fast
BASIC programs described tn this book). The
REPEAT...UNTIL loop reads in any bytes received by
the MIDI input, and it then tests to determine whether
or not they are in the range 128 to 160. If they are in the
relevant range the program is directed to PROCRAISE,
which reads in a further two bytes of data. It then
boosts the channel number by one if the note value is
greater than 60. If received bytes are not note on/off
messages, the program is directed to PROCNORM
where bytes are sent to the MIDI output without
undergoing any further manipulation.

This basic routine can easily be expanded to provide
greater versatility. For example, the version shown
below provides two split points which are decided by
the user when the program is run.

This operates in much the same way as the original
program, but the two split points are requested at the
beginning of the program and placed in variables
"SPL1T1" and "SPLIT2". If only a single split point is
required, simply make the second split point at a note
value that is higher than the highest note of your
keyboard. A value of 128 will do, and is beyond the
range of any MIDI keyboard. Even though this is not a
valid MIDI note value, this will not upset the operation
of the program. PROCRAISE has been modified so that
it raises the channel number in any note on/off message
which has a value greater than "SPLIT1". It then
provides a further increment in the channel number if
the note value is higher than "SPLIT2". Assuming the
keyboard is operating on MIDI channel 1, low notes
remain on channel 1, middle notes are placed onto
channel 2, and high notes are sent on channel 3.

With note separation techniques it is important to
realise that only note messages are channel shifted.
Messages such as pitch bend and channel aftertouch
are left unaffected, as there is no way of ascertaining
with any certainty which note they are aimed at. The
choice is basically one of shifting all non-note on/off
channel messages or leaving them unaltered. There are
actually other alternatives, such as sending these other
messages on the normal and shifted channels, or
getting the computer to make an intelligent guess as to
which channel or channels a message should be sent
on. However, bear in mind that any extra processing
could take up a lot of extra time, and could cause MIDI
clogging. It is best to only worry about this type of thing
if all the equipment involved supports aftertouch etc.,
and it is important to you that the "slave" instrument
should respond to it.

The situation is different with polyphonic aftertouch
where a note value is included in one of the data bytes.

REM FAST BAS 1 C DOUBLE SPLIT PROG
INPUT "ENTER FIRST SPLIT POINT “ SPLIT1
INPUT "ENTER SECOND SPLIT POINT “ SPLIT2
FOR FLUSH = 1 TO 200
IF INPSTAT(3) THEN DUMMY = INP(3)
NEXT
REPEAT
A = (INP(3) AND 255)
IF A > 127 AND A < 161 THEN PROCRAISE ELSE PROCNORM
UNTIL FALSE

DEF PROCRAISE
B = (I NP(3) AND 255)
C = INP(3)
IF B > SPLIT1 THEN A = A + 1
I F B > SPLIT2 THEN A = A + 1
OUT 3 . A . B , C
ENDPROC

DEF PROCNORM
OUT 3 , A
ENDPROC

79

These messages could therefore be processed in much
the same way as note on/off messages, although it is
obviously only worthwhile doing so if you have one of
the few keyboards that support polyphonic aftertouch. 1
suspect that most keyboards that do have this feature
also have comprehensive split facilities, and that this is
all of only academic importance.

Channel Shifting
Note separation is not the only form of channelising, an
alternative method is one where a straightforward shift
from one channel to another is provided. This type of
processing is mainly used with instruments that are
restricted to operation on MIDI channel 1. Few (if any)
current instruments are restricted in this way, but many
early MIDI equipped instruments are confined in this
manner. If you wish to control two instruments of this
type on separate channels, this is possible if a channe-
liser is used ahead of one instrument and used to take
messages on (say) channel 2 down to channel 1. This
effectively puts two channel 1 instruments on channels
1 and 2, but if you are using the chain method of
connection you must remember to use the processor
and the "shifted" instrument at the end of the chain.
Remember that the channeliser will affect any device
placed after it in the "chain".

Another possibility with this type of channel shifting
is to layer sounds. In other words, you might be able to
play one "instrument" from the keyboard, and play
another "instrument" using what is actually another
channel and timbre of the same instrument. This would
work best with an instrument which has a multi-mode
that permits polyphonic operation on two MIDI
channels. With the two virtual instruments on channels
1 and 2, and the keyboard transmitting on channel 1,
the ST could be used to raise signals from the MIDI

output onto channel 2, and feed them to the MIDI
input. Here (with a suitable instrument) they would play
the same notes but with a different sound. A point to
keep in mind with this type of processing is that each
note you play is actually two notes as far as the
instrument is concerned. An eight note polyphonic
instrument would therefore be reduced to four note
polyphonic operation.

A third method of channelising is straightforward
channel filtering. This is used with instruments that only
have "omni on" and no "omni off" modes. Conse
quently they always respond to notes on any MIDI
channel, and are of limited value in many MIDI setups.
Again, this is a shortcoming which it pretty well extinct
in modern instruments, but which was not uncommon
in the early days of MIDI. A channel filter simply passes
messages that are on a particular channel, but ignores
any that are on other channels. Added ahead of an
"omni on" instrument, this effectively sets it to mode 3
operation (assuming it is a polyphonic type) on the
channel selected using the channeliser.

Obviously a number of different types of channel
shifting and filtering are possible, some of which have
been outlined above. Here we will consider two
shift/filter programs which cover a variety of possible
applications, and illustrate the basic principles involved.
This first program, shown below, takes notes on any
channel and outputs them on a user-specified channel.

The channel number is entered at the INPUT
instruction, and it is placed in variable "C". It is then
decremented by one. Remember that MIDI channels are
from 1 to 16 but we must deal in the true channel values
of 0 to 15 when undertaking MIDI processing. In this
case it is not merely note messages that we wish to alter
— all channel messages should be shifted. The channel
messages are sorted out from other messages using the

REM FAST BAS IC CHANNEL SH I FTER
FOR FLUSH = 1 TO 200
IF INPSTAT(3) THEN DUMMY = 1NP(3)
NEXT
INPUT “ENTER OUTPUT CHANNEL “ C

C = C - 1

REPEAT
A = (I NP(3) AND 255)
I F A > 127 AND A < 240 THEN PROCCHAN ELSE PROCNORM
UNTIL FALSE

DEF PROCCHAN
A = (A AND 240)
A = A + C
OUT 3.A
ENDPROC

DEF PROCNORM
OUT 3,A
ENDPROC

80

same basic system that was adopted for note message
selection in the previous programs. Message header
bytes are always greater than 127, and the system
messages are at values of 240 and above. Channel
message header bytes are therefore greater than 127
and less than 240, making it easy to detect them. In this
application we do not need to read in three byte groups
as it is only the header byte that is required. In
PROCCHAN these bytes are ANDed with 240 to set the
least significant nibble to 0000. Variable C is then added
to the answer so that the new channel number is
substituted for the old one. The modified byte is then
sent to the MIDI output port.

This second channel shifter program, shown below,
is similar to the first one, but it enables both input and
output channels to be selected. It therefore provides
both channel shifting and filtering, and is suitable for
most channel shifting/filtering applications.

Filtering
Some instruments now have some basic MIDI filtering
built-in. This can take the form of MIDI messages that
can be disabled so that they are not transmitted, or
making the instrument "deaf" to certain types of
received message. The type of thing we are talking
about here are messages such as program changes,
where you might want a slave instrument to have the
same sound throughout a piece, while the main
instrument is switched through several programs.
Another common use of filtering is to remove
aftertouch messages or other data that could rapidly eat
up the memory of a sequencer. MIDI filtering is
something that can easily be handled by an ST acting as
a signal processor if your equipment does not have
suitable built-in filtering. The routine shown overleaf,
removes channel aftertouch messages.

REM FAST BAS I C CHANNEL SH I FTER/FI LTER
FOR FLUSH = 1 TO 200
IF INPSTAT(3) THEN DUMMY = INP(3)
NEXT
INPUT "ENTER INPUT CHANNEL " IC
INPUT "ENTER OUTPUT CHANNEL “ OC
IC=lC-l:0C = 0C-l

REPEAT
A = (INP(3) AND 255)
B = (A AND 15)
I F A > 127 AND A < 240 AND B = IC THEN PROCCHAN ELSE PROCNORM
UNTIL FALSE

DEF PROCCHAN
A = (A AND 240)
A = A + 0C
OUT 3,A
ENDPROC

DEF PROCNORM
OUT 3 , A
ENDPROC

The output channel is set in much the same way as
on the earlier channel shifter program, but in this
version the output channel number is placed in variable
"OC". The test in the R EPEAT...UNTIL loop detects
any channel message header bytes, as in the previous
program. However, in this case we also need to sort out
messages that have the right channel number (entered
as variable IC). Variable "B" masks off the channel
number, and an additional test inthe program compares
this with "IC". If all the test conditions are met the
program goes to PROCCHAN where the output channel
number is altered. Otherwise it branches to PROC
NORM where the unprocessed input byte is sent to the
MIDI output port.

Received bytes of data are read in, and then ANDed
with 240 to strip off the channel number. If a value of
208 (the channel aftertouch header nibble value) is
detected, the program branches to PROCDUMP. Here
the next byte, which is the aftertouch data byte, is
placed in variable "8". However, nothing is done with
this variable, or with variable "A" which contains the
header byte. Aftertouch messages do not, therefore,
get passed through to the output. Other messages are
handled by PROCOUT, and are passed through to the
output.

This routine could easily be changed to suit other
message types. Simply change the 208 value to the
appropriate one for the header nibble of the message
type you wish to suppress. Also, PROCDUMP must
read in the right number of data bytes for the message

81

REM FAST BAS 1 C MIDI Fl LTER PROG
FOR FLUSH = 1 TO 200
IF I NPSTAT(3) THEN DUMMY = I NP(3)
NEXT

REPEAT
A = (I NP(3) AND 255)
IF (A AND 240) = 208 THEN PROCDUMP ELSE PROCOUT
UNTIL FALSE

DEF PROCDUMP
B = INP(3)
ENDPROC

DEF PROCOUT
OUT 3 , A
ENDPROC

that is being removed. This would be two bytes for
polyphonic aftertouch messages for example. For
something like MIDI clock messages there are no data
bytes, and there would then be no need to have
PROCDUMP at all. The main program would simply
have to branch to PROCOUT if the received message
was a wanted type, or carry straight on with the loop if
it was the type that the program had to filter out.

Perfect Harmony
A harmoniser used to be a device that processed the
audio output signal of an electric or electronic instru
ment. The general idea was to have an oscillator which
locked on to the input signal, but which was set higher
in pitch by some musical interval (often a fifth). This
can give so-called "thicker" sounds, and is particu
larly useful for enriching one finger accompaniments.
MIDI offers an alternative method of processing the
MIDI data to shift notes up or down in pitch by the
required amount. One way of using a MIDI harmoniser

would be to take the MIDI output of one instrument and
to then apply the processed signal to the input of
another. In this situation the MIDI harmoniser might be
unnecessary, as some instruments have a "transpose"
facility that could give much the same effect. Another
way of using a MIDI harmoniser is to process the MIDI
output of an instrument and then feed the signal back
into the same instrument. With all the instruments I
have used, an arrangement of this type works well, with
the required two notes being produced per key-press.

Of course, you are not limited to two note harmonies,
and two or more extra notes can be produced if desired.
Remember though, that you must have sufficient voices
available for all the notes. With three notes being
produced per key-press and an eight voice polyphonic
instrument, the system will only work properly if no
more than two keys are operated at a time.

Shown below is a basic single note Fast BASIC
harmoniser program.

REM FAST BAS IC HARMON I SER PROG
INPUT “ENTER NOTE SHIFT (IN SEMITONES) " INC
FOR FLUSH = 1 TO 200
IF INPSTAT(3) THEN INP<3> =DUMMY
NEXT

REPEAT
A = (INP(3) AND 255)
I F A > 127 AND A < 161 THEN PROCSHIFT ELSE PROCNORM
UNTIL FALSE

DEF PROCSHIFT
B = INP(3) AND 255)
C = INP(3)
B = B + INC
OUT 3 . A , B , C
ENDPROC

DEF PRONORM
OUT 3 , A
ENDPROC

82

This works in a similar manner to the previous
programs. Non-note on/off messages are passed
straight through to the output via by PROCNORM,
whereas the note messages are processed by PRO
CSHIFT. This reads in complete three byte messages,
increments the note value (variable "B"), and then
outputs the three bytes to the Ml DI port. The required
shift in pitch is entered at the beginning of the program
and negative values are used if a downwards shift in
pitch is required.

Below is a version of the program that provides two
output notes with user adjustable pitch offsets.

in the program superfluous. Unless you are using a
really fast language it is advisable to keep the amount of
processing to a minimum so that the program can
execute at a suitably fast tempo.

Velocity Control
Although quite rare at one time, most MIDI keyboards
are now touch sensitive and generate velocity values. A
lot of keyboards have been criticised for having poor
touch sensitivity, with it being impossible to put much
expression into the music played on them. This can be
due to notes tending to be quite loud even if the keys
are pressed quite softly, or (more usually in my
experience} playing "fffff" seeming to give something

REM FAST BAS IC DUAL HARMON I SER PROG
I NPUT " ENTER TWO NOTE SHIFTS (IN SEM I TONES) " I NCI , I NC2
FOR FLUSH = 1 TO 200
IF INPSTAT(3) THEN DUMMY = INP(3)
NEXT

REPEAT
A = (I NP (3) AND 255)
I F A > 127 AND A < 161 THEN PROCSH I FT ELSE PROCNORM
UNTIL FALSE

DEF PROCSHIFT
B = (1NP(3) AND 255)
C = INP(3)
D = B + INC!
E = B + INC2
OUT 3 . A, D, C
OUT 3,A,E,C
ENDPROC

DEF PROCNORM
OUT 3, A
ENDPROC

This is fundamentally the same as the earlier pro
gram, but two shifts are entered at the INPUT line.
When entering these a comma is used as the separator.
PROCSHIFT adds the two offset values to note value
"B" and places the modified note values in variables
"D" and "E". These values are then placed into three
byte note on/off messages which are sent to the MIDI
output port.

It is possible that the program could generate invalid
note values (i.e. less than 0 or more than 127). It would
be easy to trap and correct this with a few program lines
such as "IF D> 127 THEN D = D - 12 ", so that values
are brought within the legal range by transposing them
up or down an octave. In practice it will probably not be
worthwhile doing this. Most MIDI keyboards get
nowhere near the MIDI minimum and maximum note
values, and out of range values are unlikely to be
produced provided you use a reasonable pitch offset. A
more likely problem is that of notes being produced that
are not within the compass of the instrument. Again, it
is probably not worthwhile putting in lines to trap and
correct this. Most instruments (probably all) include
their own routines to do this, making any similar facility

less than maximum volume from an instrument.
This problem is not necessarily the fault of the

keyboard, and it could be the way in which the sound
generator circuits are interpreting received velocity
values. With some instruments the user has consider
able control overthedegreeof touchsensitivity,but this
is not a universal feature by any means. It is possible to
introduce this feature to most MIDI instruments by
setting them to the "local off" mode, and then connec
ting a velocity processor between its MIDI "OUT" and
"IN" sockets. Quite complex processing could be used
if necessary, but for most purposes multiplying the
velocity values by a certain amount is quite sufficient.
Multiplying values by more than one should help if the
instrument seems unable to reach full volume, while a
multiplier of less than one should be beneficial if the
problem is of the "ad or nothing" variety. A simple
velocity processor program is shown overleaf.

83

REM FAST BASIC VELOCITY CONTROL PROGRAM
I NPUT “ ENTER THE VELOCITY MULT I PL I ER " MULT
FOR FLUSH = 1 TO 200
IF INPSTAT(3) THEN DUMMY = INP(3)
NEXT

REPEAT
A = < I NP(3) AND 255)

1 F A > 127 AND A < 161 THEN PROCMULT ELSE PROCNORM
UNTIL FALSE

DEF PROCMULT
B = INP(3)
C% = < INP(3) AND 255)
C% = C% * MULT
IF C > 127 THEN C% = 127
OUT 3,A,B,C%
ENDPROC

DEF PROCNORM
OUT 3 , A
ENDPROC

This sorts out note on/off messages in the same way
as some of the previous programs. However, in this
case the processing is done on the third byte in the
message which is placed in variable C%. An integer
variable is used because we must only supply in- range
integers (0 to 255) to the MIDI port. Using an integer
variable is an easy way of discarding any figures after
the decimal point. The velocity value is multiplied by the
user supplied variable "MULT", and then the three
bytes of the message are transmitted. A line is included
to reduce C% to 127 if it goes over this maximum
permissible figure. Multiplier values of between 0.5 and
2 are usually sufficient to provide the desired effect. Of
course, a processor of this type can only work with
equipment that is touch sensitive. If the problem is due
to something in the system lacking touch sensitivity,
there is nothing a processor of this type can do to
improve things.

All Change
Often when playing "live" it is necessary to introduce
program changes. I mean by this, "program in the
sense of a set of parameters to give a certain sound
from an instrument, and a MIDI program change
message therefore gives a change in sound. In fact
MID! program changes can go beyond this in scope,
and there are mixers, effects units, etc. which can be
switched from one set of parameters to another via
program change messages. Most synthesisers can
produce program changes from the front panel controls
without too much difficulty, but it is often much easier if
they can be generated using a foot-pedal as the
controller. Unfortunately, few instruments seem to
provide such a facility.

This is something which would seem to be quite easy
to implement via the ST. Simply connect a foot-switch
to one of its input ports and get it to provide a suitable
program change message each time the switch is
operated. In practice the only complication is that
joystick port 1 (the one not used for the mouse) is the
obvious port to use, but it is not easily read from many
ST programming languages, including ST BASIC and
Fast BASIC. The problem seems to revolve around the
fact that (unlike most computer joystick ports) the ST's
game/mouse ports do not connect to interface devices
in the main unit. Instead, they connect to the keyboard
circuit. Although the ST (in its non "Mega" form) may
appear to be an all-in-one unit and not one which has a
separate keyboard, this is only true physically. From the
electronic point of view the keyboard is a (more or less)
self contained unit with its own dedicated processor,
and a serial data link to provide two-way communica
tions with the main computer circuit. The keyboard,
including the joystick ports, is therefore read via a rather
indirect route.

Fast BASIC does have a facility to read the mouse
port (port 0) using (logically) the "MOUSE" function.
The disadvantage in using this is that you would have to
keep swopping over the mouse and the foot-switch, or
have an adaptor that would enable them both to be
connected to the port at the same time. A little
experimentation showed that reading the right mouse
button also read one of the trigger inputs on the other
port. Consequently, a foot switch connected to port 1
in the manner shown in Fig.7.7 can be read by the
MOUSE function. The connections to port 1 are made
by way of a 9 way D socket incidentally. A suitable
program for this setup is shown overleaf.

84

REM PROG CHANGE PEDAL PROG
PRG = 0
REPEAT
MOUSE X%, Y%, B%, K%
IF (B% AND 2) = 2 THEN PROCCHANGE
UNTIL FALSE

DEF PROCCHANGE
PRG = PRG + 1
OUT 3,192
OUT 3 . PRG
TIME = 0
WHILE TIME < 400
WEND
MOUSE X%.Y%,B%.K%
ENDPROC

TO SWITCH

It is assumed that the initial program wifi be program
0, and that on each operation of the foot-switch the
program number must be incremented by one. The
program number is held in variable "PRG" and is set at
an initial value of 0. This value is never transmitted, as it
is assumed that the instrument will be set to program 0
via its controls, but obviously a simply routine to
transmit this initial value could easily be added at the
beginning of the program if desired. The MOUSE
function reads several parameters into four integer
variables, and In this case it is bit 1 of the value in B%
that is of interest. Port 1 is repeatedly read by a
REPEAT...UNTIL loop until this bit is set to 1 (which
occurs when the foot-switch is activated). The program
then branches to PROCCHANGE which increments
"PRG" and outputs It to the MIDI output after first
sending the program change header byte. The rest of
PROCCHANGE provides a delay and a dummy read of
port 1 before returning to the main body of the
program. These are required in order to avoid multiple

Fig. 7.7. Connecting a foot-switch to Port 1.

reads of the foot-switch, and consequent multiple
jumps in the program number.

One slight problem with this setup is that very brief
operations of the switch can pass unnoticed by the
program. This is not really a serious drawback in
practice since the foot-switch would not normally be
closed for such a brief period anyway,

A second version of the program, shown below
enables the user to select the output channel for the
program change messages. The original version sends
the messages on channel 1, and is adequate for most
purposes, but this version can be used if operation on
various channels will be required. This program includes
a reset facility that cycles the program back to 0 if an
attempt is made to raise it beyond the maximum valid
value of 127. If your instruments can not handle the full
0 to 127 range, the appropriate lower figure should be

REM I MPROVED PROGRAM CHANGE PEDAL PROG
INPUT “ENTER CHANNEL NUMBER (1 TO 16) “ CH
CH = CH - 1
PRG = 0
REPEAT
MOUSE X%,Y%,B%,K%

1 F (B% AND 2) = 2 THEN PROCCHANGE
UNTI L FALSE

DEF PROCCHANGE
PRG = PRG 4- 1
IF PRG = 128 THEN PRG = 0
OUT 3,192 +CH
OUT 3, PRG
TI ME = 0
WHILE TIME < 400
WEND
MOUSE X%,Y%,B%,K%
ENDPROC

85

used in the program (many instruments have a range of
0 to 63 or 0 to 99).

This is just one way of tackling program changes. It
would be quite possible to have a program that
permitted the user to select a sequence of program
numbers, rather than just having a simple increment on
each operation of the foot-switch.

MIDI Terminal
The program shown immediately below, is a sort of
MIDI terminal, and it displays values received on the
MIDI input as well as letting you output values to the
MIDI output port. This is useful for checking purposes,

REM FAST BAS I C MI DI TERM INAL PROG
REPEAT
IF INPSTAT(3) THEN PROCPRINT
IF 1NPSTAT(2) THEN PROCOUT
UNTIL FALSE

DEF PROCPR I NT
A = (INP(3) AND 255)
PRINT A
ENDPROC

DEF PROCOUT
INPUT B
OUT 3,8
ENDPROC

and it can give access to features of an instrument that
are not accessible via Its controls. For example, some
instruments can only be set to "local off" (and back to
"local on" again) by way of MIDI messages.

The program loops indefinitely checking to see if
there is any data to be read from the MIDI input or the
keyboard. If some MIDI input is detected, the program
branches to PROCPRINT. Here it reads the MIDI input
port and prints the returned value on the screen. If data
from the keyboard is detected, the program branches to
PROCOUT. Here an INPUT instruction reads the value
from the keyboard (which should be terminated with a
"RETURN") and then sends it to the MIDI output. You
must enter the messages one byte at a time, and in
decimal form. For instance, values of 176, 122, and 0
would select "local off", and values of 176,122, and 127
would switch back to "local on" again. If you will need
to send certain MIDI messages time and time again, it
would be a good idea to produce a program that will
automatically send these messages, with each message
perhaps being initiated by pressing a certain key. Fast
BASIC provides easy access to GEM menus, and these
offer another method of initiating the required
messages.

The speed at which data can be read from the port is
restricted by the speed at which the ST prints
characters on the screen. If large amounts of data must
be rapidly read into the computer, it would be better to
store the values in a block of memory so that they can
be given a detailed inspection afterwards via a suitable
routine.

REM FAST BAS IC M ID I DELAY PROG
I NPUT " ENTER NOTE SHI FT (! N SEMI TONES) ‘ INC
INPUT “ENTER DELAY IN 200THS SEC “ DEL
FOR FLUSH = 1 TO 200
IF INPSTAT(3) THEN DUMMY = INP(3)
NEXT

REPEAT
A = (1NP(3) AND 255)
IF A > 127 AND A < 161 THEN PROCRAISE ELSE PROCNORM
UNTI L FALSE

DEF PROC RA ISE
TIME = 0
8 = (INP(3) AND 255)
C = INP(3)
OUT 3 , A , B , C : REM THIS IS OPT IONAL
D = B + INC
REPEAT
UNTIL TIME > DEL
OUT 3 , A. D, C
ENDPROC

DEF PROCNORM
OUT 3 . A
ENDPROC

86

Effects
These routines should prove useful in their own right,
but should also form a good basis for your own MIDI
processor programs. With the aid of a computer there
are few types of processing that are not possible,
including quite advanced functions. As an example, one
type of input message can be converted to any desired
output message or messages. At a basic level the
system could convert program change messages to a
controller message, or a different program change type.
At a more advanced level a program change message
(or any other type) could be changed to a whole series
of messages that could set up any MIDI controllable
features on subsequent devices in the system. This is an
area of MIDI which has so far gone largely "untapped",
but MIDI processing is certainly well worth investigat
ing, and provides numerous creative possibilities.

As an example of one of the more interesting effects
that can be obtained using MIDI processing, try the
delay program shown at the bottom of page 86. It is
similar to the harmoniser program, but the altered note
is not sent to the MIDI output until a user specified
delay has elapsed. Keep this delay quite short (figures of
around 5 to 12 work well) and use a sensible pitch offset
(say a fifth or an octave). It works best with sounds that
have a fairly spiky envelope shape (guitar and harp type
sounds for example). The optional line is not needed if
you are feeding the processed signal back into an
instrument, as it will already have played the
unprocessed note (unless the instrument is used in the
"local off" mode of course).
Real-Time
The final program, shown overleaf, is a simple real-time
sequencer. It filters out MIDI note on and note off
messages (nothing else is recorded) and it places the
groups of three bytes in an array. It also records times
using the Fast BASIC built-in timer (the variable
"TIME"). This gives a resolution of 1/2OOth second,
which gives a very accurate reproduction of the original
playing during “playback". The variable "TIME" is reset
to zero each time a message is stored, and the stored
times are therefore the intervals from one message to
the next. This avoids having the very large values that
could result if "TIME" was only set to zero at the start
of the program, and the recorded times were the inter
vals as measured from the beginning of the sequence,
"T%" controls the maximum number of messages that
can be stored, and the suggested value gives a maximum
of 500 notes (two messages are required per note). This
could probably be made much larger if desired.

This program seems to work quite well, and seems to
be able to handle as many notes as a fairly agile set of
fingers can play on the keyboard. Aftertouch and pitch
bend data will be filtered out and will not eat up
memory, but it is possible that these could upset the
timing of the circuit slightly. In order to record this type
of data properly a faster language than Fast BASIC
might be required, and expanded memory could also be
useful on a 520ST.

There is plenty of scope for experimentation with this
program. As it stands, data is recorded with whatever
MIDI channel number it is received with. The stored
values could be processed to change the channel
number, or this could be done at playback. However,

avoid too much processing at playback or the timing
accuracy of the reproduced sequence could be
adversely affected. The note durations are held in
memory, and by manipulating these values the tempo
of the sequence could be altered. By rounding the times
up and (or) down it is possible to introduce quanti
sation. You could even add a facility to enable note
values to be edited. What would probably be the most
useful addition would be a routine to enable sequences
to be saved on disc and reloaded again.

Hardware i
For the technically minded, the MIDI interface of the ST
computers is provided by a 6850 ACIA (asynchronous
communications interface adaptor). This has its data
register (read and write) at address &HFFFC06, and the
status/control register at address &HFFFC04. Bit 0 of
the status register is the "Receive Data Register Full"
bit, and bit 1 is the 'Transmit Data Register Empty"
flag. In practice it should not be necessary to control
the device directly, and it should be possible (and
much easier) to read/write MIDI data via the operating
system. In fact direct control of the 6850 ACIA would
probably only be possible if the operating system
could be persuaded not to control it. Writing a value
of 21 to the control register keeps the right baud rate
and word format, but disables interrupts. This seems
to keep the 6850 away from the attentions of the
operating system, if you should need to use direct
control for some reason.

87

REM FAST BAS I C REAL-TIME SEQUENCER
T%= 1000
DIM notestore| (T%.2),t imestore%(T%)
F%=FALSE
N%=0

REPEAT
CLS
IF N%=T% THEN PR I NT "Note Store Is Full"
PRINT "Press R To Record"
PRINT "Press P To Playback "
K$=GET$
IFK$= "R" THEN PROCrecord
|FK$= "P" THEN PROCp I ay
UNTIL FALSE

DEF PROCrecord
PROCflush
CLS
PRINT "Press Any Key To End"
N%=0
REPEAT
F%=INPSTAT(2)
I F INPSTAT(3) THEN PROCstore
UNTIL F%
ENDPROC

DEF PROCstore
A=(INP<3) AND 255)
IF A>127 AND A<161 THEN
notestore(N%,0)=A
notestore(N%,1)=INP(3)
notestore(N%,2)=INP(3)
PROCt ime
N%=N%+1
IF N% = T% THEN F%=TRUE
END! F
ENDPROC

DEF PROCt ime
1 F N%=0 THEN
t imestore%(N%)=0
ELSE
t imestore%(N%)=TlME
END IF
TIME=0
ENDPROC

DEF PROCp I ay
CLS
PRINT "Playing.. . "
FOR P% = 0 TO N%
TIME = 0
REPEAT: UNTI L T I ME>t i mesto re%(P%)
OUT 3 , notestore|(P%,0) , notestore|(P%, 1) ,notestore|(P%, 2)
NEXT P%
ENDPROC

DEF PROCf lush
FOR f lush = 1 TO 200
IF INPSTAT(3) THEN dummy = INP(3)
NEXT f I ush
ENDPROC

88

Index

A
Add-ons, 53
Applications programs, 34
AY-3-8910 (chip), 4
B
Baud-rate, 31,65
Binary, 29
Bits, 29
C
Chain system, 11,13
Channelising, 73
Channel shifting, 80
Channels (MIDI), 22
Clock (MIDI), 28
Controllers (MIDI), 25,31
CV interface, 63
D
Disc drive, 1
Divide by "N", 5
E
Editing, 40
Editor programs, 47
Effects program, 87
Envelope Shapes, 6
Event editing, 41
F
Filtering (MIDI), 15,37,81
G
Grid edit, 42
H
Harmoniser, 82
I
Integrated software, 44
K
Key pressure (MIDI), 24
Key split, 74,75
L
Librarian programs, 47
M
Merge (MIDI), 16
MIDI

Chain system, 11,13
Channelising, 73
Channels, 22
Clock, 28
Codes, 31
Connections, 8
Controllers, 25,31
Effects, 87
Filtering, 15,37,81
Hardware, 31
Instruments, 51
Key pressure, 24,31
Merge, 16
Messages, 22
Mixer, 58

Mode change, 25
Modes, 22
Mono mode, 22
Multi mode, 23
Multiple outputs, 20
Note on/off, 24,31
Omni on/off, 22
Pitch bend, 26
Pitch wheel, 32
Poly mode, 22
Ports, 11
Processor, 15,72 onwards
Program change, 25,32
Song pointer, 26
Song select, 27
Star system, 14
Switcher, 17,59
System exclusive, 33
System messages, 26,32
Terminal, 86
THRU,11
THRU box, 14,53
THRU Lead, 12
Tune request, 27

Mixer (MIDI), 58
Mode change (MIDI), 25
Modulator, 1
Mono mode, 22
N
Notation programs, 42
Note on/off (MIDI), 24,31
Note separator, 77
Noise, 6
O
Omni mode, 22
Opto-isolators, 53
P
PD software, 50
Pitch bend (MIDI), 26
Pitch wheel (MIDI), 32
Ploy mode, 22
Processing (MIDI), 15,72 onwards
Program change, 25,31,84
Program change pedal, 84
PSG 4
Q
Quantisation, 38
R
Real-time sequencing, 35,87
Registers (AY-3-8910), 5,7
RS232C interface, 29
S
Sequencing, 3,34,70,72,87
Serial interface, 29
Song pointer (MIDI), 26
Song select (MIDI), 27
SOUND (BASIC), 2
Star system, 14

89

ST BASIC, 3,76
ST languages, 76
Step-time sequencing, 3.43,70,72
Switcher (MIDI), 17,59
System exclusive (MIDI), 33
System messages, 26,32

T
Terminal (MIDI), 86
THRU (MIDI), 11
THRU box, 14,53
THRU lead, 12
Tracks, 36
Transmission modes (MIDI), 24
Tune request (MIDI), 27

V
Velocity control, 83
Visual editors, 49

W
WHILE...WEND (BASIC), 3
Word format, 32

90 I

n

DtKNUKU KHtiHNI nFI—JLnJL_JLnJUU LI

Music dl A^licdtiûiis

Whatever the nature of your musical interests are in the ST computers,
this book will provide you with plenty of interesting and useful material, and
hopefully help you to develop your musical talents to the full.

■ MIDI is covered in much detail, with particular emphasis on how it
applies to ST computers. These MIDI chapters will prove invaluable for
reference purposes with full details of MIDI messages and coding being
provided.

The Atari ST’s are now firmly established as the computers to use for
electronic music applications. The range and sophistication of these
applications are much greater than most people may realise, but there are
still a lot of misconceptions about just what can and cannot be achieved.
This book will help you sort out the fact from the fallacy and to get the
most musically from the ST’s.

A wide selection of topics are covered, including the internal sound chip;
MIDI; applications programs such as sequencing and score writing, etc; simple
but useful add-on projects and MIDI programming. Most of the material is
usable by anyone who understands no more than the basics of running
software on an ST, and who does not possess a vast amount of technical
knowledge.

£5.95

	Acknowledgements

	Page

