
Computer
Hobbyists
Handbook

R. A. &J.W. PENFOLD

Computer
Hobbyists
Handbook

FREE CATALOGUE

If you would like, free of charge, a complete catalogue of our entire range of Radio, Electronics and Computerbooks, then please send a stamped addressed envelope to:-

BERNARD BABANI (publishing) LTD
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W6 7NF

ENGLAND

Computer
Hobbyists
Handbook

by
R. A. & J. W. Penfold

BERNARD BABANI (publishing) LTD
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W6 7NF

ENGLAND

PLEASE NOTE

Although every care has been taken with the production of this book to ensure that any information, projects,
designs, modifications and/or programs etc. contained herewith, operate in a correct and safe manner and also that
any components specified are normally available in Great Britain, the Publishers do not accept responsibility in anyway for the failure, including fault in design, of any information, project, design, modification or program to workcorrectly or to cause damage to any other equipment that it may be connected to or used in conjunction with, orin respect of any other damage or injury that may be so caused, nor do the Publishers accept responsibility in anyway for the failure to obtain specified components.

Notice is also given that if equipment that is still under warranty is modified in any way or used or connectedwith home -built equipment then that warranty may be void.

© 1989 BERNARD BABANI (publishing) LTD

First Published - May 1989
Reprinted - April 1990
Reprinted - May 1992

British Library Cataloguing in Publication Data
Penfold, R. A.

Computer hobbyist's handbook
1. Microcomputer systems
1. Title II. Penfold, J. W.
004.16

ISBN 0 85934 196 8

Printed and Bound by The Guernsey Press Co. Ltd, Channel Islands

Preface

There is a well known computer saying which runs

along the lines "there are true standards, broad

standards, and computer standards". This may seem

rather a pessimistic view of the computer world, but

in the past the practical experience of computer users

has tended to verify this belief. Changing to a differ-

ent computer almost invariably meant changing all

the software and peripherals as well. About the only

equipment that would be likely to operate with the

new system was the mains plugs! Fortunately, things

have improved considerably over the years, and soft-

ware compatibility has to some extent arrived. Also,

manufacturers' own interfaces have largely dis-

appeared in favour of standard types (albeit with a

range of different connectors in most cases).

The aim of this book is to provide a useful range

of data and general information on a variety of

computer topics, including, such things as interfaces,

computer languages, MIDI, and numbering systems.

There is also a useful lexicon of computer terms, and

some helpful appendices. This book is not intended

to be a course in computing, but does provide a

useful reference for data and information in a single

source where it can he quickly and easily found. It

does no: simply supply raw data, but where necessary

detailed explanations are also included. It should be

equally useful to both beginners and more experienced

hobbyists.

R. A. & J. W. Penfold

ACKNOWLEDGEMENTS

Many of the names and terms mentioned in this book are registered trademarks of various manufacturing, computer,semiconductor and/or software companies. For example:-

ST and ST BASIC are registered trademarks of the Atari Corporation.

IBM, PC, XT, AT, PS/2, PC -DOS and OS/2 are registered trademarks of the International Business MachinesCorporation.

GEM, DR LOGO, CP/M, CP/M Plus and DOS PLUS are registered trademarks of Digital Research Incorporated.
BASIC -2, Mallard BASIC and LocoScript are registered trademarks of Locomotive Software Limited.

MS-DOS is a registered trademark of the Microsoft Corporation.

AMSTRAD is a registered trademark of Amstrad Consumer Electronics plc.

Turbo C and Turbo BASIC are registered trademarks of Borland International.

UNIX is a registered trademark of AT & T.

8086, 8088, 80286 and 80386 are registered trademarks of the Intel Corporation.

Z80 is a registered trademark of the Zilog Corporation.

6800 and 68000 are registered trademarks of the Motorola Corporation.

6502 is a registered trademark of the Mostek Corporation.

CONTENTS
Page

Chapter 1
THE POPULAR MICROPROCESSORS

1

Precursors
1

The 8080
1

The 6800
1

The 8 -Bit Chips
2

The 6502
2

The Z80
4

The 6809
6

The 1802
7

The 16 -Bit Chips
7

The T19900
7

The 8086 Series
8

The Motorola 68000
9

Other 16 -Bit Designs
11

The Zilog Z8000/Z800
11

The National Semiconductor 16032 Series
11

The Way Forward
12

The Acorn ARM
12

The INMOS Transputer
12

Register Diagrams
12

Chapter 2
INTERFACES

17

Printer Ports
17

Computer End
21

Connections
22

Serial Ports
25

Word Formats
26

Multi -Wire Systems
27

Practical Ports
27

Other Serial Systems
30

MIDI

31

Monitors
34

RGB

36

Analogue RGB
37

Games Ports
39

IEEE488
42

Chapter 3
LANGUAGES

45

Machine Code
45

Assembly Language
45

BASIC

45

LOGO

47

Pascal and Modula 2
49

The Rest
50

Chapter 4
NUMBERING SYSTEMS

53

Binary Numbers
53

Signed Binary
54

Ones Complement
54

Twos Complement
55

Binary Coded Decimal
55

Hexadecimal
56

Octal
57

Conversions
57

Bitwise Operations
57

PageChapter 5
OPERATING SYSTEMS

59Purpose
59Using an Operating System
59The Commands
60Batch Files
63WIMPS

63
Chapter 6

COMPUTER GRAPHICS
69Block Graphics
69Bit -Mapped Graphics
71Extended Colour Systems
72Sprites
74Windows
74Co -Ordinate Systems
75

Chapter 7
LEXICON

77
Chapter 8

MIDI TECHNICALITIES
99The Hardware
99MIDI Codes
99Note On/Off

100Key Pressure
100Control Change Etc.
100Pitch Wheel
100Program Change
101System Messages
101

Appendix A
ASCII TABLE

103
Appendix B

EPSON STANDARD PRINTER CONTROLS
105

Appendix C
ABBREVIATIONS

107
Appendix D

SUPPORT CHIPS
111

Appendix E
DECIMAL - BINARY - HEX

113
Appendix F

THE STANDARD SYMBOLS FOR USE IN FLOW -CHARTS
115

Index
117

Chapter 1

THE POPULAR MICROPROCESSORS

Considering the large number of models of micro-
computer which have been produced. the number of
microprocessors which have been used is relatively
small. Of course, to the majority of users, the actual
MPU (microprocessor unit -- the usual abbreviation
for microprocessor) used is immaterial as the com-
puter will only be programmed in high-level languages,

or used with commercial software.
For the enthusiast, however, or for someone who

wants to program in assembly language, the MPU
used may be a key feature in choosing a machine.
The information given here should give an indication

of how easy (or otherwise) a particular microprocessor
is to program in assembly language.

Here we present details of the major MPUs used in

popular computers, plus a few rare ones. These have

been somewhat arbitrarily divided into groups, the
precursors, 8 -bit chips, 16-bit chips, and leading edge
designs. For each major chip we give a potted history,
details of registers, address modes and comments.

Precursors

The 8080
The Intel 8080 first appeared in 1973. The impor-
tance of this chip is not so much in what it achieved
itself, but more in the fact that it was the starting
point for the later Z80 and 8086/8088 designs -
arguably the most important microprocessors in

data processing applications.
Another important fact about the 8080 was that

the CP/M operating system was originally written for

it. This operating system was the first really success-

ful microcomputer operating system, and was

dominant in the market in the late '70s and early
'80s, and is still very much in use.

The 8080 series have eight 8 -bit registers, which
can be paired to form four 16 -bit registers. Most

important of these is the accumulator, which is used

as the destination for many arithmetic and logic
operations. This register can be paired with the flag

register for some operations. Normally the flag
register gives information about the result of opera-
tions on the accumulator.

The remaining sets of registers are called the BC,
DE and HL pairs, names which were carried over to

subsequent designs. All these can be used as general
purpose data or address registers, but the HL pair is
of particular importance as a memory pointer for
several memory reference instructions, and also as an
accumulator for 16 -bit arithmetic.

There are also a 16 -bit program counter, and a

16 -bit stack pointer. As is usual for 8 -bit

microprocessors, the 8080 has 8 -bit data and 16 -bit

address buses, allowing 64K of memory to be directly

addressed.
One problem with the 8080 was that the specialist

nature of some of the registers meant that the pro-
grammer had to remember which operations used
which register. and that the instruction set was
somewhat irregular and messy. Unfortunately this
is something else which has been carried over to
subsequent designs!

The 8080 has a basic set of 78 instructions, cover-
ing arithmetic, logic, and data moving operations, and

also ccnditional and unconditional jumps, I/O

operations, and interrupts.
There are four address modes. Direct addressing

includes the memory address in the instruction.
Register addressing specifies a register or register

pair. Register indirect again specifies a register or

register pair. but this time containing the address of
the data rather than the data itself. Finally, in
immediate addressing, the data immediately follows
the instruction opcode in memory.

Intel produced an improved version of the 8080,
the 8085A, but this found uses mostly in control

applications.

The 6800
First appearing in 1974, the Motorola 6800 is another

design more important for what followed than for
itself. It never achieved any real success in data
processing applications, though it was widely used for
educational "one board- computers, and in some
control applications (they are often to be found in
computer printers, for instance).

The main problem with the 6800 was its lack of

registers. It had two general purpose 8 -bit accumu-
lators, and a 16 -bit index register, but that is all. This
makes programming for data processing applications

difficult.
The register set is typically Motorola, being

elegant and straightforward, and this was in large part
the reason for the success of the 6800 in tutorial
applications. There are 72 basic instructions, but as
many are able to use more than one of the address
modes, the actual instruction count is 197.

The available address. modes are Direct addressing,

in which a single byte address is specified in the
instruction (so only the bottom 256 bytes, or "zero
page", of memory can be accessed); Extended, like
direct, but with a two -byte address covering the
whole of memory; Immediate, in which the instruc-
tion contains the data after the opcode; Inherent, in
which the instruction implies the location of the data

(i.e. a register); Relative, which allows branching in
memory of +129 to -125 bytes relative to the pro-
gram counter; and Indexed, which adds an offset

1

specified in the instruction to the contents of the
index register to form the address of the data.

Later designs which follow on from the 6800
include the MOSTEC 6502, the Motorola 6809. and
even the very advanced 68000 series owe their paren-
tage in part to this early design.

The 8 -Bit Chips

The 6502
The 6502 is, if you include slight variants such as the
6510, a contender for the title of "most popular chip
used in home computers". It is the MPU used in the
Apple I, II, and III computers, the 8 -bit Ataris, the
Commodore Pet and VIC-20, the BBC A. B, and
Master series, and (6510) in the Commodore C-64.
It has also been used in some less successful models,
such as the Acorn Electron and the Oric I and Oric
Atmos.

The 6502 was developed by MOS Technology
from the Motorola 6800, but in an interesting and
unusual way. Instead of adding extra features and
instructions, the normal course when developing a
new design from an existing one, the 6502 had all
unnecessary features removed, ending up with very
few registers and a small (but adequate) instruction
set. There was no attempt to maintain compatibility
with the 6800.

It may be thought that this would make the MPU
difficult to program, but far from it. There are some
difficulties, but on the whole, it is a lovely processor
to program in assembly language, and even program-
ming directly in machine code is possible to some
extent, something one could not say about most
other microprocessors intended for data processing
applications.

The lack of registers is partially offset by the fact
that the bottom 256 bytes of memory (known as
"zero page") can be accessed more rapidly than the

The 6502 is used in a number of home computers. This fast (2 MHz) "A" version is in a
BBC model B. The other large chips are display and serial port support chips.

rest of the address range (as the full address can be
contained in one byte instead of two) and so zero
page is normally reserved and used instead of internal
registers for many purposes.

The 6502 is very much an 8 -bit chip. All the
internal registers are 8 -bit, except the address register
which has 16 bits, allowing a 64K memory space to

be directly addressed. It follows from I 't(the
chip has an 8 -bit data bus and a I6 -bit

The 6502 does seem to be very lackir
having only an accumulator and two i

X and Y. The accumulator has to
destination in arithmetic and logical
X and Y registers are intended m
indexes to addresses, but can be

purpose registers. With some exc
be used interchangeably.

The stack pointer is also onl-
stack size to 256 bytes. Since
stack is to save the contents o
subroutine calls, with only 8-b
stack is not too much of a
always occupies "page 1" of
hex). The 8 -bit size of the i
much of a problem as the
access small blocks of dat.
Handling larger blocks o'
require some extra prograr

In fact, the 6502 trey

if it were organised int(
operation on memory v
boundary involves extra

All of this does no.
is a slow processor.
set allows fast deco'
"pipelining". where
while the current
the 6502 a very fa,

For I/O oper
mapped system,
specific input
mean, however ,

,llo
memory map, e tron
range. The 80o `-`"
maskable

Ifs)

usually use
interrupts.

One very
applications is its aon.
coded decimal) arithmetic
bit in the flags register has been set, ail ..

will be performed in BCD until the flag is clearta..
The 6502 has just 56 instructions in the instruc-

tion set, but a claimed 13 addressing modes, which
allow the limited instruction set to be used to best
advantage.

1. ACCUMULATOR ADDRESSING. This mode is
used by instructions which operate on the 6502's
accumulator without requiring external data. Such

operations may, however, require some external
memory access, i.e. the stack, or also involve the X
or Y registers.

2. IMPLIED ADDRESSING. This mode of address-

ing is used only by instructions which operate on one

or more of the 6502's internal registers without

requiring external data. Such operations may,
however, require some external memory access, e.g.

'he stack.

er7f0,_,
R A

ADDRESSING. In this mode, the
- nrogram, immediately after

ess-
is

ately

asolute
i single -
of a 2-

) be zero,
accessed.

intage over

i the 6502,
for branch

.he opcode is

a result of the
is true) this dis-
counter, causing

n most assemblers,
the program is to

Les the displacement

In indirect address-
te contain a

;its of this address, and
further address, which is

id. True indirect address -
microprocessors, and the

a single instruction, JMP.

E X ADDRESSING. In this
,ntains a two -byte address to

the X -index register is added.
.:an be easily incremented and

Je allows easy manipulation of
256 bytes or less.

9. /LUTE Y ADDRESSING. This is
the same as 8, exi-pt for using the Y register instead

of the X.

10. INDEXED ZERO PAGE X ADDRESSING. The
byte following the opcode in this mode contains an
address in zero page to which the contents of the X

3

register is added. However, no page boundary cross-
ing is allowed so if the result exceeds 00FF hex, a
wrap -around in page zero occurs.

11. INDEXED ZERO PAGE Y ADDRESSING. The
same as 10, except that it can only be used with two
instructions concerned with loading and saving the
X register.

12. INDEXED INDIRECT ADDRESSING. This
mode uses the X -index register. The contents of this
register is added to the contents of a single byte in
the instruction, to form an address in zero page (no
page boundary crossing allowed, as for 9 and 10
above). The contents of the byte pointed to and
the next byte form the effective address for the
instruction. In effect, this instruction allows zero
page to be treated as a set of 16 -bit address registers.

13. INDIRECT INDEXED ADDRESSING. This
mode uses the Y -index register. A byte in the
instruction is regarded as an address in zero page,
and the contents of this address and the byte follow-
ing it have the contents of the Y register added to
them to form the effective address for the instruc-
tion. This mode can be used to manipulate blocks
of memory of more than 265 bytes, but the high
byte of the address in zero page is not incremented
or decremented automatically when required, so
code must be written to do this.

The 6502 family includes a number of other
MPUs such as the 6503, which has a 4K address
range and comes in a 28 -pin package (the 6505 and
6506 are similar but with control line differences),
and the 6504, which has an 8K address range and
also comes in a 28 -pin package (the 6507 is similar
but with RDY instead of IRQ). The 6512 is a
special version intended for dual -processor applica-
tions. The 6513 and 6515 are also intended for
dual -processor applications, have a 4K address range
and come in 28 -pin packages. The 65CO2 is a low-

power CMOS technology version of the basic 6502,
and the 65C102 is similar, but with some extra
instructions added (mostly made up of combinations
of original instructions), intended to simplify pro-
gramming of interrupt servicing and subroutine calls.

One of the most important things about the 6502
is that it is widely regarded as one of the precursors
of the so-called RISC (Reduced Instruction Set Chip)
chips, which are becoming an increasingly important
strand of microprocessor design.

The Z80
Just as the 6502 was developed from the 6800, so the
Z80 was developed by Zilog from the Intel 8080
design. However, the Z80 designers took the much
more obvious path of adding features and instruc-
tions, while maintaining compatibility with the earlier
chip. The result of this is that the Z80 is undeniably

powerful, and with a comprehensive instruction set,
but it is not exactly an elegant design! The instruc-
tion set is rather untidy, and there are many
restrictions on which instructions can use which
address modes, so that few programmers would try
to write Z80 assembly language without the manual
open at their side.

In terms of the number of models of computer
designed around the chip, the Z80 can easily claim
the title of "most popular microprocessor". In the
field of home computers, the Z80 is best known as
the heart of the immensely popular Sinclair ZX
Spectrum models, and it was also used in the earlier
ZX80 and ZX81. It is also used in the hardly less
popular Amstrad CPC series, and in other models too
numerous to list.

The decision to maintain compatibility with the
8080 was a good move on the part of Zilog, as it
meant the Z80 had a good software base available
when introduced, including most importantly, the
Digital Research CP/M operating system. This O.S.
was very widely used during the early '80's (and
still is), and in fact there were far more Z80 based
CP/M systems designed than 8080 based, to the
extent that many people nowadays believe that
CP/M was in fact developed for the Z80.

By the standards of 8 -bit microprocessors, the
Z80 has a very large set of general purpose registers.
In fact, there are two complete sets of 4 sixteen -bit
registers, with two instructions to switch between
them. This is very useful when servicing interrupts,
as it allows the registers to be "saved" by switching
to the alternate set, instead of stacking them. These
16 -bit registers can also be used as pairs of 8 -bit
registers.

The program counter has sixteen bits, as does the
single stack pointer. The Z80 also has two sixteen -bit
index registers. There are also two registers which
are peculiar to the Z80. The I register is used during
a special interrupt mechanism called Mode 3, and the
R register is used for memory refresh purposes.

The Z80 has an 8 -bit data bus and a 16 -bit address
bus, allowing it to directly access 64K of memory.
It has special I/O instructions, so peripherals do not
use up space in the memory map.

The instruction set comprises some 158 instruc-
tions. This compares with 78 on the 8080. Though
there is compatibility between the two chips at the
source code level, some of the assembly language
mnemonics have been changed for the Z80.

Zilog claim 10 addressing modes for the Z80,
though it is hard to see how they arrive at this figure.
Manufacturers all have their own ideas as to what
constitutes an addressing mode. The following is a
summary of the modes available, and is comprehen-
sive, though it does not follow the manufacturer's
ideas exactly.

I. IMPLIED ADDRESSING. This is used by those
instructions which operate on one or more of the

4

The Z80 is available under other type numbers. This NEC version is in a ZX81.

Z80's registers without requiring external data.

(Zilog make a distinction between implied addressing,

which is limited to instructions which do not have a

specific field to point to an internal register, and

register addressing for instructions which do.)

2. IMMEDIATE ADDRESSING. In this mode, the

operand is included in the instruction immediately
after the opcode. As the Z80 has both 8 -bit and

16 -bit registers, there are two types of immediate

addressing, for 8 -bit and 16 -bit operands. Where

the operand is 16 bits long, the mode is sometimes

called immediate extended.

3. ABSOLUTE ADDRESSING. In absolute address-

ing, the location of the operand in memory is
specified in the instruction. The address is two bytes

long, so anywhere in the 64K of memory possible can

be accessed.

4. ABSOLUTE SHORT ADDRESSING. Similar to

3, but the address occupies only a single byte, so only

addresses in the first 256 bytes of memory can be

accessed (similar to the 6502's zero page). This

mode is only used by the RST instruction.

5. RELATIVE ADDRESSING. In this mode, the

byte following the opcode is regarded as a displace-

ment from +127 to -128. This is added to the
program counter to cause a program branch. Only

used by JR (jump relative) instructions. With most

assemblers, you would specify the address to which

you wish the program to branch, and the assembler

will calculate the displacement for you.

6. REGISTER INDIRECT ADDRESSING. Here,

any of the register pairs BC, DE or HL may be used

to contain the address where the operand is to be

found. Where the registers are used to point to
two -byte data, the low byte is at the address speci-

fied, and the high byte at the next higher address in

memory.

7. INDEXED ADDRESSING. In indexed addressing,

the address specified in the instruction is modified by

having added to it the contents of either the IX or IY

5

index register, thus giving the effective address for
the instruction. This is mostly used for accessing
elements in tables of data.

Zilog followed up the Z80 with the Z8000 (16 -bit)
and Z800 (8-16 bit with Z80 compatibility), but
neither of these has achieved any real success.

The 6809
Like the 6502, the 6809 was developed, in a sense,
from the 6800/6802, but this time by Motorola
themselves. They took a different course from either
MOS Technology with the 6502, or Zilog with the
Z80 (from the 8080). The 6809 was largely a new
design, without extra registers untidily tacked on or a
messy instruction set, but a degree of code compat-
ibility with the 6800 at the source code (assembly
language) level was maintained.

The 6809 is a very elegant design, with a nice tidy
set of registers, and an easy -to -use instruction setdevoid of complications as to which instructions can
use which address modes. It is, in the opinion of
many, the best of the 8 -bit chips.

It is therefore unfortunate to have to record that
the 6809 has never been used in a computer worthy
of its talents. The only notable designs to employ it
have been the Dragon and the Tandy Colour Com-
puter, which in fact are very similar machines in
terms of electronics. Though not bad computers,they were never among the best. The problem forthe 6809 was that it came along too late, when
programmers had learned to live with the deficiencies
(real and imagined) of the Z80 and 6502, and thesechips had acquired considerable software bases.

The 6809 has two 8 -bit accumulators, which canbe used together as a single 16 -bit register. It also
has two 16 -bit index registers, and two 16 -bit stack
pointers. The ability to maintain two independent
stacks makes it easy to implement high-level langu-
ages. The 6809 has a form of zero -page, allowing a
256 -byte page in memory to be used, in effect, asextra data registers, but thanks to an 8 -bit direct
page register, this can be anywhere in the memory
map.

The data bus is 8 bits wide, and the address bus
16 bits, allowing 64K of memory to be directly
addressed. Memory mapped I/O is used.

There is a basic set of 59 mnemonics in 6809
assembly language, but with variations allowed, and
ten address modes available, there are in effect some
1464 instructions available. So elegant and straight-
forward is the 6809 instruction set that it is the
favourite of many programmers for assembly
language programming. Uniquely in 8 -bit micro-
processors, the 6809 has an 8 -bit multiply instruc-
tion, yielding a 16 bit result. This gives some idea of
the advanced nature of the design.

The claim of 10 addressing modes for the 6809 is
an honest one. As some other manufacturers count,
there could be as many as 20.

6a

1. INHERENT ADDRESSING. Like implied
addressing, where the instruction implies any neces-
sary addressing information.

2. IMMEDIATE ADDRESSING. The data for the
instruction comes immediately after the opcode in
memory, and can be one or two bytes long.

3. EXTENDED ADDRESSING. In this mode, the
16 -bit address of the data follows the opcode in
memory.

4. EXTENDED INDIRECT ADDRESSING. One of
the very few examples of true indirection in micro-
processors. In this mode, the two bytes after the
opcode contain the address in memory where the
address of the data is to be found.

5. DIRECT ADDRESSING. This is similar to the
6502's zero page addressing. Where the opcode is
followed by an 8 -bit address. However, the highbyte of the address, instead of being forced to be
zero, is obtained from the direct page register, so
any page in memory can be used.

6. REGISTER ADDRESSING. In this mode the
opcode is followed by a reference to one or more of
the registers to be used in the operation.

7. INDEXED ADDRESSING. Really a whole range
of register -indirect addressing modes which can useeither of the index registers, either of the stack
pointers, and in some cases the program counter. In
general the contents of a register are added to an
offset, which can be zero offset, self-explanatory;
constant offset, where the offset is a two's comple-
ment number 5, 8, or 16 bits in length following the
opcode; accumulator offset, which uses an 8 or 16bit offset stored in one of or both of the accumula-
tors; auto increment, where a zero offset is used and
the pointer register is incremented by one or twoafter it has been used, allowing tables of one or two
byte data to be stepped through automatically; and
finally auto decrement, allowing tables to be stepped
through backwards.

8. INDIRECT INDEXED ADDRESSING. Used in
addition to one of the previous modes. In this case,
the address formed by the indexed mode points to
the address of the data, not the data itself.

9. RELATIVE ADDRESSING. This mode allows
jumping forward or backward in memory relative to
the program counter. A 16 -bit offset is allowed, sothe whole of memory can be covered. This mode is
used only by branch instructions.

10. PROGRAM COUNTER RELATIVE ADDRESS-
ING. This mode allows data to be accessed not by an
absolute address, but by their current difference from

the program counter. This mode, together with
the previous one, allows the writing of position
independent code, a very useful feature.

Though the 6809 never achieved great commercial

success, at least as far as use in home micros is

concerned, it was the immediate precursor of the
Motorola 68000 series of 8/16, 16 and 32 bit micro-

processors, widely regarded as the finest MPUs
currently available, at least as far as Comprehensive
Instruction Set Chips (CISC) are concerned.

The 1802
The 1802 MPU from RCA is one of the less well
known devices, but has probably been used to a
greater extent than many in the computer world

would think. It was in fact used in a home computer

called the "Comx 35". but this never sold in any
numbers in the U.K. By most accounts it was quite

fast for an 8 bit machine, which would suggest that
the 1802 does not lack anything in performance if

used skillfully. The 1802's claim to fame is that it

is a CMOS device, which means that it achieves a low

level of power consumption. These days a number of

popular MPUs are available in low power CMOS
versions, which has severely reduced the popularity of

the 1802. However, it was first launched quite early

in MPU history (about 1973), and at that time it was

the only low power microprocessor that was avail-

able. In fact it remained the only low power micro-

processor for a number of years. It achieved

substantial sales, probably because it could he used
in battery powered control systems etc. where the
high current consumption of other MPUs made them

virtually unusable.
The 1802 is rather crude by modern standards,

although it has one or two advanced features such

as built-in clock generator and DMA (direct memory

access) controller. It has sixteen 16 -bit general

purpose registers, and its instruction set very much

revolves around these. They can be used as program
counters, data registers, or memory pointers. The

1802 tends to be a little confusing when first using
the device, but it can work well in control applica-

tions. It can also run interpreted languages

surprisingly fast (as in the Comx 35 with its inter-

preted BASIC). It seems likely though, that the
1802 will continue to give way to low power versions

of more recent devices.

The 16 -Bit Chips

The 119900
The 9900 was introduced in 1976, and thus has some

claim to be the first 16 -bit chip. It was, however,
fabricated using the technology of the 8 -bit chips,
and this lead to some idiosyncracies in the design.
The memory address range was also limited to that
which would be expected of an 8 -bit chip.

The only computer to employ this chip was Texas
Instruments' own TI99. This computer had its good

points, but was very expensive and enjoyed only a
limited success, largely as a home games machine. It

now has a small cult following. The chip itself
achieved success in other fields, such as in navigation

systems and avionics where the 16 -bit architecture
was a real benefit.

It follows from this that the 9900 has never
acquired a large general-purpose software base.

One feature of the 9900, largely dictated by the

use of 1976 technology is that there are very few

registers indeed on the chip itself. Most of them,
including even the accumulator, are in RAM. The
only registers on -chip are a 15 -bit program counter

(to address 32K words of memory - byte addressing
not being possible), the status register, and a work-

space pointer. This is used to point to the area of

RAM which is being used as the registers which

would normally be on the chip. There are effectively
16 registers in a workspace, 6 of which have (at least

in part) dedicated functions. The remainder are
general purpose in nature. Multiple workspaces are

possible, so interrupts can be handled by switching
workspaces rather than by saving the registers on the

stack.
As already mentioned, the address bus is 15 bits

wide, and the data bus is 16 bits, as one would expect
from a true 16 -bit chip.

The 9900 instruction set contains 72 basic instruc-
tions, so is quite easy to learn, but coupled with eight
address modes (of which some instructions can use 5,

others one of the remaining 3) it is also quite flexible

and comprehensive.
As you might expect, many of the eight address

modes are unique to the 9900.

1. WORKSPACE REGISTER ADDRESSING. This
is similar to implied or inherent addressing modes,
where the instruction contains the address of the
workspace register which contains the operand.

2. WORKSPACE REGISTER INDIRECT

ADDRESSING. Here, the opcode includes the
address of a register which contains the address of

the data.

3. WORKSPACE REGISTER INDIRECT AUTO
INCREMENT ADDRESSING. This is the same as
(2), except that afte- the data has been fetched, the
register is incremented. This instruction is used for
stepping through tables of (16 -bit) data.

4. SYMBOLIC ADDRESSING. This is really direct
addressing, in which the address of the data follows
the opcode in program memory.

5. INDEXED ADDRESSING. In this mode, a base
address follows the opcode in memory, and the
contents of a register is added to this to form the

7

effective address. The contents of the register is a
signed number, allowing positive or negative offsets
from the base.

6. IMMEDIATE ADDRESSING. Conventional,where the word of memory immediately after the
instruction contains the operand.

7. PROGRAM COUNTER RELATIVE ADDRESS-
ING. Used only for jump instructions, and has a
range of -128 to +127 words.

8. CRU RELATIVE ADDRESSING. This mode is
used for I/O operations. The 9900 has a unique
Communications Register Unit for I/O.

The 8086 Series
When Intel saw the success which Zilog had with the
Z80, essentially an improved 8080A, they decided
not to respond with an enhanced 8080 design of their
own, but instead to move on directly to the next
generation of 16 -bit chips. Thus the 8086, which was
one of the first true sixteen -bitters to become com-
mercially available. The 8086 was an almost immedi-
ate success, both in data processing and in control
applications.

The 8086 was quickly followed by the 8088, a
software -compatible design but with an 8 -bit data
bus. This MPU has full 16 -bit architecture inside
but is slower in operation as it requires two fetches
for word -length data. It has the advantage of allow-ing cheaper systems to be constructed around it.In fact, the 8088 was for a long time the more
successful of the two types, being used in the IBM
PC, and many of the compatibles which have been
produced in vast numbers. However, the 8086 isnow used in the AMSTRAD PC1512/1640 com-
puters, and the sales figures of these could reverse
this.

The 8086 series has a vast software support,
largely because of its use in the IBM PC. There aretwo largely compatible operating systems, PC -DOS
(IBM) and MS-DOS (Microsoft). Virtually any type
of software ever written is available to run under
these, including a very wide range of languages.

The 8086 has fourteen 16 -bit registers. Theseare arranged as three sets of four registers, the
instruction pointer (program counter) and the flags
register.

The set of general purpose registers can be used as
either four 16 -bit registers or eight 8 -bit registers.
The registers are essentially similar to those in the
8080A, though the names used are slightly different.
Unlike the 8080A, the registers are in general inter-
changeable rather than dedicated to specific tasks,
but there are still some instructions which can only
use particular registers.

The second set of registers are called the segment
register file and are used for address generation. The
8086 has a unique form of memory management

called segment addressing. The chip can address 1

megabyte of memory, which would require a 20 -bit
address, but only 16 -bit values are handled within
the chip. To provide the required 20 -bit address, the
contents of a segment register is shifted left by four
bits, and ANDed with another 16 -bit value which
may come from the program counter, stack pointer,
an index register, a general register, or memory. The
four registers allow 64K of memory each, or 256K
in all, to be addressed without reloading the registers.
The registers are called the Code Segment (CS), Data
Segment (DS), Stack Segment (SS), and Extra Seg-
ment (ES).

The third set of registers contains index registers
and memory pointers. These include the stack pointer
(SP), Base Pointer (BP), also used for the stack
segment, and the Source Index (SI) and Destination
Index (DI) pointers.

The 8086 has a 16 -bit data bus and a 20 -bit
address bus. Multiplexing is used to allow these to be
provided in a package with only 40 pins. The 8088
has only an 8 -bit data bus.

The 8086 uses the system of having relatively few
mnemonics in the instruction set, but modifying
these by address mode and other qualifiers to provide
a comprehensive range of instructions. There are
roughly 100 mnemonics in the instruction set.

There are nine address modes available, the first
four of which are conventional. These are:-
REGISTER
IMMEDIATE
DIRECT
REGISTER INDIRECT

The other modes are:-

BASED ADDRESSING. In this mode the effective
address is computed by summing a displacement in
the instruction with the contents of the BX or BP
register. Using the BP register allows access to data
on the stack without POPing.

INDEXED ADDRESSING. Here the effective address
is computed by summing a displacement with the
contents of the SI or DI registers. Normally the
displacement will be the base of a table of data, and
the index register will be used to step through it.

BASED INDEXED ADDRESSING. The effective
address is computed by summing the contents of abase register, an index register and a displacement.
The use of two registers allows two-dimensional
arrays of data to be accessed.

STRING ADDRESSING. This is used with string
instructions which cannot use the above modes. In
this mode the index registers are used in place of the
SI and DI registers.

I/O DIRECT ADDRESSING. This uses an 8 -bit
address to directly access one of 256 I/O ports directly.

8

rr

The Motorola 68000
After the lack of success of the 6800 and 6809 in

data processing applications, Motorola countered
the Intel design with a processor which did much to

consolidate Motorola's reputation for producing

designs with both power and elegance.
The 68000 series are 'clean sheet' designs with no

attempt at compatibility with previous products.

They have, in fact, a 32 -bit internal architecture, and
various models are available with from 8 to 32 -bit
data buses, and 20 to 32 -bit address buses.

The 68000 series were slower to achieve commer-
cial success than the 8086 series, but are now used in

a wide range of computers, including the Apple
Macintosh (and the previous Lisa model), the Atari

ST series, and the Commodore Amigas. The cut -

down 68008 was used (some would say misused) in

the ill-fated Sinclair QL, and there are also several

very large multi-user systems based on these chips.

There are several operating systems implemented
from these microprocessors, including versions of

UNIX and XENIX for multi-user and multi -tasking

applications.

The 68000 series are particularly well endowed

with registers. There are eight 32 -bit data registers,

which are general-purpose in nature and interchange-

able (i.e. no instructions have to use a particular
register), and seven 32 -bit address registers, which

can be used as base or index registers, or as extra

stack pointers. The address registers can also be

used interchangeably. There are also two stack
pointers, one for 'user' mode and one for 'supervisor'

mode (used for servicing interrupts, among other
things), the program counter, and the flags register.

The 68000 has a I6 -bit data bus and a 24 -bit
address bus, thus having an address range of 16

Mbytes. The 68008 has an 8 -bit data bus and a 20 -

bit address bus (1 Mbyte). The 68010 is like the
68000 but with internal support for virtual memory
management. The 68020 has the full 32 -bit data bus

and 32 -bit address bus for a 4096 Mbyte address

range (!).
The 68000 has a straightforward instruction set

with just 56 basic mnemonics, but when multiplied

by the available addressing modes and data type
options you end up with a set of over 1000 unique

Thu 68000 micro. This one is fitted in a development system, but this processor is used

in popular computers such as the Atari STs and Commodore Amigas.

The 68008 is the 8 bit bus version of the 68000. This device is in a Sinclair QL.Most other computers seem to use the standard 16 bit bus version.

instructions. Most instructions can access byte, word
(16 -bit) or long word (32bit) data, but only word
and long word access can be used with the address
registers. Of particular interest is the MOVE instruc-
tion, which replaces the load and save instructions of
other processors, and allows memory to register,
register to register, and register to memory data
moves, and also direct memory to memory moves
without using processor registers.

There are fourteen address modes.

1. DATA REGISTER DIRECT. The operand is in a
specified data register.

2. ADDRESS REGISTER DIRECT. The operand is
in a specified address register.

3. ADDRESS REGISTER INDIRECT. The addressof the data is contained in one of the address
registers.

4. ADDRESS REGISTER INDIRECT WITH POST
INCREMENT. This is similar to (3), but the address

in the register is automatically incremented after use.
This can be used for stepping through data tables.
The amount of the increment can be 1, 2, or 4 for
byte, word or long word data.

5. ADDRESS REGISTER INDIRECT WITH PRE
DECREMENT. This is the complement to (4), and
is used for stepping down through tables. Note thatthe decrement occurs before the data is accessed.
These instructions can be used together for stack-type
pop and push operations.

6. ADDRESS REGISTER INDIRECT WITH DIS-
PLACEMENT. In this mode, a 16 -bit displacement in
the instruction is added to the contents of an address
register to form the effective address of the data. It
is a form of indexed addressing.

7. ADDRESS REGISTER INDIRECT WITH INDEX.
This is another form of indexed addressing, but here
the index value comes from a data register, and there
is also an 8 -bit displacement in the instruction. The
displacement, contents of the address register and

10

contents of the data register are added together to
form the effective address.

8. ABSOLUTE SHORT ADDRESSING. This is a
direct addressing mode, but the address can be only

16 bits long. It is similar to 6800 direct or 6502

zero -page addressing, but can access 64K bytes of

memory.

9. ABSOLUTE LONG ADDRESSING. A direct
addressing mode using a full 32 -bit address, capable

of accessing any valid memory location.

10. PROGRAM COUNTER RELATIVE WITH DIS-
PLACEMENT. This mode is provided to allow some

degree of position -independent code to be written.
A 16 -bit displacement is added to the contents of the

program counter to form the effective address of the

data.

11. PROGRAM COUNTER RELATIVE WITH

INDEX. In this mode the effective address is formed

by adding the contents of the program counter, an

index register, and an 8 -bit displacement in the

instruction. It allows the whole of memory to be

accessed relative to the program counter.

12. IMMEDIATE. This mode is conventional,
except that (as usual on the 68000) the data may be
byte, word, or long word in length.

13. CONDITION CODE/STATUS REGISTER. This
mode allows access to the SR or CCR to test, set or
reset bits in these registers, using logical instructions.

14. IMPLICIT. This mode is conventional.

Other 16 -Bit Designs

The 8086 series and the 68000 series are the only two
sixteen bit designs which have achieved commercial

success, at least in home and business computers.
There are, however, several other designs which have

not found wide application but are mentioned here
for completeness.

The Zilog Z8000/Z800
The Z8000 appeared shortly after the 8086, and on
the face of it seemed to be a better design, having
eight times the address range and faster performance.
However, sales never really took off. There are many
possible reasons for this. The Z8000 was not com-
patible with any previous product in any degree, but
the opportunity of starting with a clean sheet was not

used to provide a particularly tidy instruction set.
Also, the Z8000 was followed quickly by the 68000,
which caught the imagination of designers. The 8086
quickly generated a software base, the 68000 was
perceived as the most exciting design, so the Z8000
rather fell between two stools.

In fact, there is no processor actually called the

Z8000. This is the generic name for the family of
devices, of which there are four. The Z8001 has a
16 -bit data bus and a segmented address range of 8

megabytes. The Z8002 comes in a smaller (40 pin

instead of 48) package and has a 64K byte address

range only. The Z800.3 and Z8004 have virtual

memory and multi -processor support, but are other-
wise identical to the Z8001 and Z8002 respectively.

The Z8000 has a set of 110 basic mnemonics
which, in combination with the available data types
and address modes expands to a little over 400

discrete instructions. It can be seen that this does

not compare well with the 68000 which achieves
over 1000 instructions using just 56 mnemonics.

There are 8 fairly conventional address modes.
Zilog tried for a second bite at the cherry with the

Z800. This is a 16 -bit design which is code -compatible

with the Z80 8 -bit chip, and so can (at least in

theory) use the Z80 software base, including CP/M.
However, by the time this chip appeared, the 8086

and the MS-DOS/PC-DOS operating systems had
become the new industry standard, and all the

companies which had formerly produced CP/M
machines had moved on to producing IBM PC

compatibles. Thus, when this chip arrived, there

was simply no place for it in the market.
The Z800 register set is virtually identical to that

of the Z80, with the addition of an extra stack
pointer. The instruction set is that of the Z80 with

all its shortcomings, with the addition of some
more "modern" instructions such as multiply and
divide. There are nine address modes, many of which
obviously are based on those of the Z80, but among
the extra ones are Program Counter Relative and
Stack Pointer Relative, which give a limited ability
for position independent code.

The National Semiconductors 16032 Series
Though National Semiconductors is one of the largest
semiconductor manufacturers in the world, they were

rather late onto the microprocessor scene. The

ambitious 16032 serifs of designs were intended to
enable them to catch up with the leaders.

As with the 68000 series, the 16032 series is a
range of compatible designs with 32 -bit internal
architecture, but with a choice of 8,16 or 32 -bit data

bus widths. The designs, in fact, have a great similar-

ity to the Motorola architecture, with eight general-
purpose registers and eight special-purpose registers.
The instruction set, again like the 68000 series, is
also regular and elegant. There are around 100 basic
mnemonics, but with 9 address modes and three data

types they expand to nearly 1000 distinct instructions.
All the 16032 series support virtual memory

operations. The 16032 has a 16 -bit data bus and a

24 -bit address bus, addressing 16 megabytes of unseg-
mented memory. The 16008 has a cut -down 8 -bit
external data bus, but the same address range. The
32032 has full 32 -bit data and address buses.

11

The main problem with the National Semiconduc-
tor designs was that they took a long time to actually
arrive in volume, and by the time they did, the
68000 series had taken residence in most of the
sockets they might have occupied. Such applications
as they have found are mostly in the scientific field.
The 16032 is available as a second processor for the
BBC Micros and is used in the BBC Master Scientific.

The Way Forward

Though the successful 16 -bit chips have a long life
ahead of them yet, rivals are appearing on the
scene. As mentioned in the section on the 6502,
there are two schools of thought in microprocessor
design. Chips such as the 68000 come from the
CISC (Complex [or Comprehensive] Instruction Set
Chip) school. The other school favours Reduced
Instruction Set Chips (RISC), in which the instruc-
tion set is reduced to a relatively few frequently -

executed instructions.
The idea behind this is that the microprocessor

spends a very high percentage of its time executing
these popular instructions, and the remaining instruc-
tions are used very infrequently. By reducing the size
of the instruction set, the processor has to do less
work internally to decode and execute the instruc-
tions, thus executing code faster. The jobs done by
the omitted instructions can be done by combinations
of the remaining instructions when required. Two
processors of this type are now available and coming
into use, and others are under development, though
they may not find their way into home/business
computers.

The Acorn ARM
The Acorn ARM comes from the manufacturers of
the BBC micros, who wanted a "super 6502" design
for a new range of machines. In fact, the ARM
(Acorn RISC Machine) is rather more than that. It
is used in the Acorn Archimedes computers, which
at time of writing are generally accepted as the fastest
available microcomputers.

The ARM has 44 instruction codes, to perform
such jobs as load/store single registers, load/store
multiple registers, arithmetic, logical, branch and
software interrupts. Instructions such as multiply
and divide, or block moves, are not included. An
interesting feature is that all instructions include a
conditional test. This helps reduce the number of
branches in a program, which would otherwise

reduce the efficiency of the ARM, which uses pipe -
lining to speed up program execution. Each time
there is a branch, the already -decoded instructions
in the pipeline have to be discarded.

Only two addressing modes are used, base relative
and program counter relative. However, the way
these are implemented is highly flexible, and allows
the more complex modes of CISC chips (such as
auto-increment/decrement modes) to be simulated.

The ARM has a 32 -bit data bus and a 26 -bit address
bus, allowing 64 megabytes of memory to be directly
addressed. There are 25 32 -bit registers on the chip,
of which 16 are normally available to the programmer.

At time of writing it is too soon to say how
successful the ARM chip and the Archimedes com-
puters will be, but they have the advantage of being
able to run both MS-DOS and 6502 software by
means of emulators, and they are now beginning to
attract native software support.

The INMOS Transputer
The Transputer is a much more radical design than
the ARM, being intended as a device for use in arrays
to produce parallel -processing machines - a very
radical concept.

The basic Transputer is a 32 -bit device with 32 bit
registers, 32 bit data bus and 32 bit address bus,
capable of addressing 4 gigabytes of memory. 16 bit
variants are also planned. The chip also has 2K of
on -chip memory. Each Transputer also has four high-
speed serial data links to other Transputers to enable
them to be connected in parallel processing
applications.

The Transputer has very few registers, in fact only
six, and three of these are dedicated to use as an
expression-evaulator stack. The on -chip RAM is used
to hold data in place of general-purpose registers.

The Transputer has around 60 instructions in its
instruction set, but it is not intended ever to be
programmed directly in assembly language. Instead,
a special high level language called Occam has been
developed for it, and this language is also designed for
parallel processing. Addressing modes in the conven-
tional sense do not apply to the Transputer.

Transputer add-on boards are now available for
several computers, including the IBM PC and
compatibles, and it is the heart of the Atari ABAQ.

Register Diagrams
For handy reference purposes, register set diagrams
for the popular 6502, Z80, 68000, and 8086 MPUs
are provided in Figures 1.1 to 1.4.

12

X Index Register

Y Index Register

Accumulator

Program Counter (H) Program Counter (L)

1 Stack Pointer

N

Status Register

B D C

7 6 5 4 3 2 1 0

Fig. 1. 1 The 6502 register set (it a more powerful processor than this would suggest)

Main Register Set

Accumulator Flags F
B Register C Register
D Register E Register
H Register L Register

Alternate Register Set

Accumulator' Flags F'
B Register' C Register'
D Register' E Register'

H Register' L Register'

General Registers

Interrupt Vector I Refresh R
Index Register X

Index Register Y

Stack Pointer

Program Counter

Flag Register Details

S H PV N C

7 6 5 4 3 2 1 0

Fig. 1.2 The Z80 register set

14

31

DO

D1

D2

D3

D4

D5

D6

D7

AO

Al

A2

A3

A4

A5

A6

A7

1615 8 7 0

PC

USER STACK POINTER

SUPERVISOR STACK POINTER

T SMI2

Fig. 1.3 The 68000 register set

11

STATUS FLAGS

N V C

I5

AX

BX

CX

DX

SP

BP

SI

DI

CS

DS

SS

ES

IP

General Registers
AH Register AL Register
BH Register BL Register
CH Register CL Register
DH Register DL Register

Pointer And Index Registers

Stack Pointer

Base Pointer

Source Index

Destination Index

Segment Registers

Code Segment

Data Segment

Stack Segment

Extra Segment

Instruction Pointer

0 D

Flag Register

I T S z M A P MC
11 10 9 8 7 6 5 4 3 2 1 0

Fig. 1.4 The 8086 register set

Chapter 2

INTERFACES

There can be relatively few people who use a

computer system that consists of a single stand-alone
unit. The vast majority of computer systems consist
of several interconnected units, and the system 1 am

using to write this piece is not untypical with its main

unit, separate keyboard, dot matrix printer, pen
plotter, monitor, and mouse. All these peripherals
connect to the main unit via the appropriate lead
and port on the main unit. About half a dozen ports
per computer would seem to be about "par for the
course", but some of the better endowed machines
(such as the BBC Model B) have a dozen or more.

In this chapter we will consider a number of the
more common types of interface in some detail. This
should help anyone who is trying to make up leads to

interconnect two pieces of reasonably standard
computer equipment, and should also help to avoid
problems with trying to connect together two incom-
patible items of equipment. I referred to "reasonably
standard" pieces of equipment above, rather than just
"standard" equipment. Having used a large number
of different computers and peripherals I have come to
the conclusion that there is no such thing as a true
computer standard. This may seem a bit cynical, but
it is probably just being realistic about it rather than

cynical! Many computer users have experienced
problems in connecting together two pieces of gear

that could reasonably be assumed to be totally
compatible and easily used together. Things are
actually much better now than they once were, as
manufacturers have tended to fall in line with market
leaders, and something close to true standards have
emerged in some cases. There can still be unsuspec-
ted problems though. My advice is to use ready-made
connecting cables as far as possible, even if you are
experienced at electronics and making up cables.
Ready-made cables can save a great deal of time and
frustration, and in most cases are not too expensive
these days.

Printer Ports
Printers are normally interfaced to computers via a
parallel port, or a "Centronics" port as it is often
called (presumably because it was originated by this

company). Plotters are sometimes connected via a
parallel port, but it is not used for many other types
of equipment. In fact there are no other common
items of equipment that use this type of interface,
and apart from printers and plotters it is generally
only used for special devices such as pieces of scien-

tific equipment. Printers and plotters are often
connected to computers by way of a serial interface.
However, this is a general purpose type of port which

is used with a wide range of equipment, and it is con-
sidered in a separate section of this chapter.

Data is sent to printers and most other computer
peripherals in the form of eight bit binary numbers.
With a parallel interface such as the Centronics type,
each bit of data is carried by a separate wire. These
are normally called "Data 0" to "Data 7", or more
usually just "DO" to "D7" (or some similar abbrevi-

ation). In terms of the electrical signals carried by
these wires, there are orly two valid signal levels.
The signal must be "high" (logic 1 or about 3 to 5
volts), or "low" (logic 0 or about 0 to 2 volts). In

terms of ordinary decimal numbers, a line always
represents 0 if it is at logic 0, or a certain value if it

is set to logic 1. This list shows the values repres-
ented by each line when it is set to 1.

Line
Data 0
Data 1
Data 2
Data 3
Data 4
Data 5
Data 6
Data 7

Decimal Value
1

2
4
8

16
32
64

128

By setting up various bit
outputs it is possible to represent any decimal integer
from 0 to 255. Exactly how each value is interpreted
by the printer depends on the design of the printer.
Most printers have a character set that is based on
the ASCII (American Standard Codes for Information
Interchange) set. For example, ASCII code number
85 is a "U" character. This is a subject that is cover-
ed in detail in another chapter, and it is not something
that will be considered further here.

The eight data lines plus an earth connection
enable values to be sent to the printer, but in practice
more connecting lines are required. The first problem
is that the printer must know when a new "byte" of
data is ready to be read from the data lines. Other-

wise it could read the same piece of data two or more
times, or bytes of data could be missed altogether.
The strobe line is used to indicate that new bytes of
data are present on the data lines, and the signal on
this line is a brief negative pulse (i.e. it is normally
high, but it goes low for a short period when a new
byte of data is present on the data lines).

There is a second problem in that a parallel inter-

face is capable of transferring data at quite pheno-

menal rates. The maximum rate achievable depends
on the exact hardware used, but a few hundred
thousand bytes per second would be quite typical.
Most printers can only print about 100 to 200
characters per second, and far less than this in the
"near letter quality" mode. The printer therefore

17

Standard IBM style parallel and serial ports. These are on an Amstrad PC1512, but other
computers such as the Atari STs use the same connectors and basic method of connection.

needs sonic means of signalling to the computer
whether or not it is ready to receive fresh data. It
can then provide a hold -off during periods when it is
processing received data, and is not ready to receive
any more. This method of controlling the flow of
data is known as "handshaking".

Parallel interfaces actually have two handshake
lines, which are called "BUSY" and "ACKNOW-
LEDGE". I am not quite sure why two handshake
lines should be deemed necessary, since one would
seem to be quite sufficient to control the flow of
data correctly. In fact some computers have parallel
printer interfaces that only implement one or the
other of these lines (the BBC Model B series of
computers only have the "acknowledge" handshake
line for instance). They should both be present and
fully operational on printers though. If we consider
the acknowledge line first, this is normally in the
high state. It stays at logic I when a byte of data
has been received, but when this byte has been pro-
cessed the "acknowledge" line is briefly taken low
by the printer. The computer must therefore provide
a fresh byte of data (if any data is ready to be sent)

each time it receives a negative pulse on the "acknow-
ledge" line. The "busy" line is normally low, and it is
set high by the printer when it receives a byte of data.
It is set low again when the printer has processed the
byte of data and is ready to receive the next one.

The timing diagram of Figure 2.1 shows typical
waveforms for a parallel printer interface. You will
note from this that the "acknowledge" and "busy"
signals are very similar. In a few cases I have found
it necessary to connect the "busy" input of the com-
puter to the "acknowledge" output of the printer in
order to obtain satisfactory results. However, this
type of thing is a rarity, and normally the handshake
outputs of the printer must be connected to the
corresponding handshake inputs of the computer.
In most cases connecting only one or the other of
these lines will suffice, but if both inputs are imple-
mented on the computer, then it is advisable to
connect them both at the computer end of the
system.

Figure 2.2 shows connection details for a standard
parallel printer port. This shows the connector look-
ing onto the port of a printer, or as it would be seen

18

Fig.2. 1 Timing diagram for a Centronics printer port

18 1

36 19

Fig.2.2 The standard Centronics port uses a 36 -way connector (see text for a rst of pin functions)

when connecting wires to the rear of a plug to fit a
printer port. A 36 way connector is the standard one
at the printer end of a parallel interface, and these are
sometimes referred to as "Amphenol" 36 way con-
nectors. More usually they are just called Centronics
or parallel printer plugs and sockets (the printer has
the plug - you need a socket to make the connec-
tions to it). This is a list of the parallel printer port
connections.

Pin Number Function InputlOutput
1 strobe IN
2 Data 0 IN
3 Data 1 IN
4 Data 2 IN
5 Data 3 IN
6 Data 4 IN
7 Data 5 IN
8 Data 6 IN
9 Data 7 IN
10 Acknowledge OUT
11 Busy OUT
12 Paper Empty OUT
13 +5V pull-up OUT
14 Auto Line Feed IN
15 No Connection
16 Ground
17 Chassis
18 No Connection
19 to 30 Ground
31 Init. IN
32 Error OUT
33 Ground
34 No Connection
35 +5V pull-up OUT
36 SLCT IN

Obviously there are a number of additional lines
included here, and not just the basic data and hand-
shake lines. A few terminals are not used, and a
number of others are ground (or "earth") connec-
tions. There may seem to be no need for so many
earth leads, and a single earth wire is in fact suffici-
ent to wire the earths of the two pieces of equipment
together. Several of the ground connections (notably
19 to 30) are needed to act as screens. Parallel
printer cables are often made from "ribbon" cable,
which has a number of leads side -by -side and a
subsequent flat, ribbon-like appearance. When used
with the appropriate (IDC) type of connectors, this
results in a lead connected to ground separating one
data lead from the next, and also separating the
handshake lines. This helps to prevent stray coupling
from one signal lead to another, and the corrupted
data that this would produce.

Even with this simple system of screening, parallel
printer interfaces are still only suitable for operation
over relatively short distances. The maximum recom-

mended lead length is only some 2 metres. This is a
bit restrictive, but is not unreasonable considering the
very high rate at which data can be exchanged. It is
not normally necessary to have printer leads much
longer than this anyway, but in practice a lead 3 or 4
metres long would probably give perfectly acceptable
results provided it is made using good quality
materials.

Some of the other lines are not implemented on all
computers/printers, or may have different functions.
The ones shown here are those of my Epson printer,
and are fai:ly typical these days. The "Paper Empty"
line is an output from the printer that can be used to
indicate to the computer that there is no paper in the
printer, and that a hold -off is required. This is
particularly useful when using a printer which is
hand -fed with single sheets, but by no means all com-
puters and software support this feature (it does
seem to be implemented by IBM PCs/XTs/ATs and
compatibles, plus most of the software that runs on
them). It is a feature that is not supported by most
home computers.

The "Auto Line Feed" input ofa printer is normal-
ly taken high, but is taken low if each carriage return
must be accompanied by a line feed. A common
problem when first using a printer is that of either
everything being printed on the same line, or of
double line spacing being obtained when only single
line spacing has been set. Everything being printed
on one line occurs when neither the printer nor the
computer add a line feed after each carriage return.
The double spacing occurs when they both add the
line feed. The "Auto Line Feed" input is not often
used, or needed. It is usually possible to set the soft-
ware to suit the default line feed setting of the
printer. Failing that, there are usually DIP switches
somewhere on (or in) the printer that can be used
to over -ride this input and set the appropriate operat-
ing condition.

In some cases the "Error" output is used to
indicate that the printer has detected what could
genuinely be termed an error, but in most cases it
simply goes low when the printer is out of paper, or
it is merely switched "off-line". The "Init" input
is pulsed low in order to initialise the printer. In
other words, a low pulse on this input takes the
printer to its normal switch-on state. This effectively
counteracts any control signals it has been sent, such
as switching it to a graphics mode, switching on bold
type, or something of this nature.

The SLCT input enables printer select and deselect
codes when it is taken high, and disables them when
it is taken low. This is another input that can usually
be over -ridden by a DIP switch on the printer. The
+5 volt pull-up terminals are used if there is an
unused input on either the printer or the computer
that must be taken high rather than low (any unused
lines which must be taken low are simply connected
to a ground terminal). These two terminals are not
normally required.

20

Computer End
In theory, each terminal of the printer's parallel port
is connected to the corresponding terminal of the
computer's parallel port. In practice things are not
always so straightforward. One potential problem is
the lack of either an "acknowledge" or "busy"
terminal at the computer end of the system. This
does not really matter, and it is just a matter of
connecting which one happens to be present. Either
one of these handshake lines should be sufficien: to
give a properly regulated flow of data from the com-
puter to the printer.

What is a more difficult problem is that there is
no properly standardised connector for the computer
end of a parallel printer interface. There may be a
computer that uses a standard 36 way Amphenol
connector here, but I have never come across one.
The nearest thing to a standard connector at the
computer end of a parallel printer link is the 25 way
D type connector as used on the IBM PC/XT/AT and
compatibles. This is also used on the Atari ST range
of computers, and the later versions of the Commo-
dore Amiga. Note that the original Amiga (the
"1000") has a 25 way D connector for its parallel
printer port, but that this is a plug rather than the
socket of the IBMs etc. Details of the standard IBM
style printer port are shown in Figure 2.3, with the

Amiga 1000 version shown in Figure 2.4. In common
with most computer printer ports, the basic layout of
the connections roughly matches that of the 36 way
connector at the printer. This makes things very
much easier for the do-it-yourself printer lead con-
structor. I doubt if the do-it-yourself approach is
worthwhile with an IBM printer lead. Buying the
two connectors and a piece of multi -way lead could
easily cost more than a ready-made lead! As these
leads are so popular, the ready-made ones mostly sell
for just a few pounds each.

The BBC model B computers (including the B
Plus, Master 128, etc.) have a 26 way IDC connector
at the parallel printer port. The computer has a plug,
and the lead must therefore be terminated in a 26
way IDC header socket. Details of this port are
shown in Figure 2.5. Note that in its unexpanded
form the BBC model A computer does not have a
printer port. Several home computers have used IDC
connectors for their printer ports, including the Oric
and Oric Atmos (Fig.2.6) and one or two other
obsolete models.

The Amstrad CPC series of computers have a built-
in printer port which uses an edge connector (which
is just a simple connector formed by part of the
machine's printed circuit board). Details of this port
are provided in Figure 2.7. Connections to this are

Data 5
Data 6
Data 7

Ack
Busy

PE

Select

0 0 0 0
1325

0 0 0 0 0 0 0 0 0 0 0 0

11111
0 0 0 0 0

1 E
0 0 0 0

Gnd

Data 4
Data 3
Data 2
Data 1
Data 0
Strobe

141 ©

1 1 1

Fig.2.3 The standard IBM style printer port

Autofeed
Error
Initialise
Select In

Data 4
Data 3
Data 2
Data 1

Data 0
Strobe

I 1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 2013 c° 114

Data 5
Data 6
Data 7
Ack
Busy

I 1

PE

Select

Gnd 1 1 I 1 1 1 I II I 1 L Reset
No Con
+5V

Fig.2.4 The Amiga A 1000 printer port is a variation on the standard IBM type

by way of a 2 x 17 way 0.1 inch pitch edge connector
which should ideally be fitted with a polarismg key at
the correct position so that the connector can not be
fitted the wrong way round. Like most home com-
puter printer ports, it is fairly basic and has an
absolute minimum of connections. A point worth
noting about the Amstrad CPC printer port is that
data line 7 is simply connected to earth at the
computer. This means that the computer can not
send values of more than 127 to the printer. The
ASCII set does not use values above this figure, and
most printer control codes do not require any values
above 127. However, some printers do have features
that can only be accessed using values of 128 to 255,
and these are not available from any computer which
only provides a seven bit output.

The MSX computers have an unusual connector
for their printer ports. This is a 14 way Amphenol
connector, which is a sort of miniature and cut down
version of the standard 36 way parallel printer con-
nector. Details of the MSX printer port are shown in
Figure 2.8. A home-made MSX printer lead should
be easy enough to make up, but a suitable 14 way
connector for the computer end of the lead could be
difficult to obtain.

Connections
The main point to watch when making up a printer
lead is that at the very least the "strobe", eight data
lines, one ground terminal, and either "acknowledge"
or "busy" are interconnected. As explained previous-
ly, it is a good idea to have ground leads to screen the
data and handshake lines from one another, especially
if the lead is going to be more than about half a
metre in length. Three or four metres is the maxi-
mum length of cable you are likely to get away with
in practice, and the maximum recommended cable
length is only two metres. Do not try a cable of more
than two metres in length unless you really need a
longer cable.

A printer will normally work properly if an unused
input (such as "Init" or "Auto Line Feed") is left
unconnected. Problems should only arise if one of
these inputs is taken to a ground terminal on the
computer's port when it should be allowed to "float"
to the high state. For example, pin 14 of the
Amstrad CPC printer port is connected to ground,
but this terminal of many Epson printers is the "Auto
Line Feed" input. To avoid unwanted double line
spacing these two terminals should not be linked, and
with a ready-made cable that links these two terminals

22

Data 6
Data 7

Ack
No Con
No Con
No Con

Data 5
Data 4
Data 3
Data 2
Data 1
Data 0
Strobe

25

26

1

0000000000000
0000000000000

1

1

2

Gnd
I 1

Fig.2.5 The BBC printer port lacks a "Busy" input, but has a full set of ground terminals for screening purposes

Data 4
Data 5
Data 6
Data 7

Ack

Data 3
Data 2
Data 1
Data 0
Strobe

00000 0 0000
19 1

20 20000000000
All Gnd it tit 451

Fig.2.6 The Oric printer port, like the BBC one, lacks a "Busy" line

2,

No Con
Busy

No Con
No Con

Gnd
No Con

Gnd
No Con

1
In

No Con 1
1No Con

Gnd
No Con
No Con
No Con
No Con

I

11 Li tij

Data 7
Data 6
Data 5
Data 4
Data 3
Data 2
Data 1
Data 0
Strobe

All Gnd

FIg.2.7 The Amstrad CPC printer port. A polarising key prevents the plug from being fitted to the port thewrong way round

Data 3
Data 4
Data 5

Data 2
Data 1
Data 0
Strobe

-11111-11M-11M1-1111.-MI-H--

Cround
No Connection
No Connection I H Data 6

Data 7
No Connection
Busy

Fig.2.8 The MSX printer port uses a 14 way cut -down version of the standard 36 way connector

4

it could be beneficial to carefully cut the wire that
connects them. If the handshaking does not provide
a proper hold -off, make sure that either the "acknow-
ledge" or "busy" terminals are properly linked. If
linking one set of terminals does not have the desired
effect, try linking the other set as well. If that fails,
try connecting "busy" on one unit to "acknowledge"
on the other. It sometimes provides a cure, and it
should certainly not harm either piece of equipment.

Another point to watch is that the lead is not
short circuiting a power supply output to earth. If
this should happen it is likely that the overload
protection in the equipment providing the supply
output would prevent any damage from occurring,
but it is best not to find out! There is not usually
any problem with +5 volt pull-up outputs, as they
normally have a current limiting resistor that enables
them to be connected to earth with only a very small
output current flowing. Greater care needs to be
taken with a computer such as the Commodore
Amiga 1000, where pin 23 of its printer port is a
proper 5 volt supply output. Obviously an output of
this type must be left unconnected, or it should be
connected to a "No Connection" ("NC") terminal
on the other piece of equipment.

A possible cause of confusion is that some manu-
facturer's connection diagrams identify the data lines
as "Data 1" to "Data 8", not "Data 0" to "Data 7".
In this case "Data 0" connects to "Data 1", "Data 1"
connects to "Data 2", and so on, through to "Data
7" which connects to "Data 8".

Serial Ports
A parallel printer port is fine for its intended applica-
tions, but it has a couple of major shortcomings as a
general purpose computer interface. The most
obvious one is that it provides only one-way com-
munications. I suppose that this is not insurmount-
able, and could be overcome by having devices
equipped with both a parallel input and a parallel
output. The second problem is a more serious one,
and is the limited operating range. If you want to
connect a computer to a piece of equipment in
another room, the chances are that a parallel interface
will not be able to give reliable results over the
modest range involved. A related problem is that a
large number of connecting leads are required, and
this makes long parallel connecting cables prohibi-
tively expensive.

The standard general purpose computer communi-
cations interface is the RS232C serial type. In its
most basic form this requires just two connecting
leads. These are the signal lead plus a ground connec-
tion. Clearly it is not possible to send eight bits of
data at once with only one data line available.
Instead, the data must be sent one bit at a time. The
least significant bit is sent first (i.e. the "Data 0"
signal), running through in sequence to the most
significant bit (the "Data 7" signal). The receiving
device must monitor the state of the data line at

regular intervals so that it can determine the state of
each bit and reconstitute the eight bit byte of data.

For this system to work it is essential that the
receiving device samples the data line at intervals that
match those at which the transmitting equipment
places fresh data onto the data line. This is achieved
by having data sent at standard rates, or "baud"
rates as they are termed. There are a number of
standard baud rates, and it is obviously important
that the transmitting and receiving devices are set for
the same rate. The normal baud rates are 45.45, 50,
75, 110, 150, 300, 600, 1200, 1800, 2400, 3600,
4800, 9600, and 19200 baud. The baud rate is

merely the number of bits sent per second with
continuous transmission.

Having standard baud rates only partially solves
the problem of synchronisation. The receiving device
must know when to start reading in bits for a new
byte of data. One way of tackling the problem is to
have an extra connecting wire which carries some
form of synchronisation signal. This is normally in
the form of pulses which indicate when each bit of
data should be read from ihe data line. This is known
as a "synchronous" serial link, and there are some
interfaces of this type in use. They are relatively rare
though, and most serial links, including the RS232C
type, are of the "asynchronous" variety. These have
the synchronisation signals placed on the same line
as the data.

In fact the RS232C system uses only one syn-
chronisation signal which is transmitted at the
beginning of each byte. As one would reasonably
expect, this is called the "start" bit. This change
from the data line's normal quiescent state to the
active one indicates to the receiving equipment that
it must sample the data line at regular intervals there-
after until a full byte of data has been read in and
converted back to parallel data.

There are also "stop" bits, but these are not really
for synchronisation purposes. During the stop bits
the signal line is at its normal quiescent level, and
these just provide a minimum gap between bytes.
Apart from giving the receiving device time to do
something with each decoded byte before starting to
read in the next one, this ensures that the data line
is in the quiescent state prior to each start bit, so that
the receiving equipment can recognise each start bit.

One further complication is parity checking. This
seems to be little used in practice, although many
serial devices are equipped to use it. The general idea
is that there should always be an even number of bits
set to one in each byte (even parity), or there should
always be an odd number of bits set to one (odd
parity). Obviously the character codes will not
conform to either standard without some help from
the serial interface, which must add a bit to some
codes in order to produce an odd or even number of
bits, as required. The point of doing this is that a
very simple error checking circuit at the receiving end
of the system can be used to detect an odd number of

25

+ 1 2 V

- 1 2 V

F -

C93 I V- ID

I I-
M

I-
0-4

I I- I
I -

M I
!-I- M 1

g
M

E
Ib
U3

F ig.2.9 RS232C waveform for one start bit, eight data bits, one stop bit, and no parity

bits when there should be an even number, or vice
versa. This method of error checking is not very
sophisticated though, and a double glitch can result
in the wrong character being produced, but with the
correct parity being detected. Any parity bits added
by the serial interface are placed after the last data
bit and before the stop bit or bits.

The waveform diagram of Figure 2.9 helps to
show the way in which serial data is encoded onto a
single data line. Note that the signal voltages used
for RS232C signals are not the standard 5 volt logic
levels. They are nominally plus and minus 12 volts,
but under full load (i.e. when connected to a serial
input via a long cable) signal voltages as low as plus
and minus 3 volts are acceptable.

RS232C signals should never be connected direct
to inputs that are only intended for operation with
normal logic levels. The user ports of the Commo-
dore 64 and VIC-20 computers can be used as
RS232C interfaces, but they are only designed to
send and receive standard logic levels. Also, they
provide signals of the wrong polarity. They require
an interface unit which provides signal inversions
and voltage shifting for operation with standard
RS232C equipment. A few items of equipment
have inputs and outputs that are suitable for opera-
tion with logic level serial signals such as those
provided by the Commodore 64 and VIC-20 user
ports.

Word Formats
There are a lot of possible word formats with serial
interfaces, and more than you might expect from the
above description. One universal factor is that there
is always one start bit. There can be anything from
five to eight data bits though, and one or two stop
bits. If five data bits are used, there is normally one
or one and a half stop bits (not two). Then there
can be odd parity, even parity, or (more usually) no
parity used at all. In a computing context word
formats having less than seven bits are not normally
used as they would not be able to handle the seven
bit ASCII codes. A few seven bit word formats were
at one time quite common, but they seem to have
largely given way to eight bit formats in recent times.

Much computer communications requires the inter-
change of eight bit codes, and this is obviously not
possible with a seven bit word format.

Before two pieces of equipment can be success-
fully linked via their RS232C interfaces it is clearly
necessary to get both interfaces set for the same word
format and an identical baud rate. It does not matter
too much which word format is used, except where
eight bit codes must be exchanged. Obviously an
eight bit word format is then required. In the interest
of a speedy data exchange, a word format which has
just one stop bit and no parity is best. This would all
seem to indicate that a word format of one start bit,
eight data bits, one stop bit, and no parity is the best
one for general purpose computer use. This does
seem to be emerging as the most popular word
format. Remember that the baud rate is the number
bits sent per second, not the number of bytes. With
one start bit, eight data bits, and one stop bit, there is
a total of ten bits per byte. A baud rate of (say)
1200 baud therefore provides an absolute maximum
data transfer rate of 120 bytes per second.

For speedy data transfer a high baud rate is

obviously best, but there are a couple of points to
keep in mind here. The first one is that a high baud
rate is rather pointless if either the transmitting or
receiving equipment can not handle large amounts of
data in a short space of time. The same thing is true
if data will only he sent in short and very intermittent
bursts. The rate of data exchange would then be
limited by other parts of the system and not the serial
interfaces. Most of the time the interfaces would be
idle. It would then be better to use a lower baud
rate, as this would not make the overall system
significantly slower, and it should give better
reliability.

The second point to bear in mind is that the higher
the baud rate, the lower the maximum range of the
system. RS232C systems are guaranteed to operate
over a range of at least 15 metres at 19200 baud.
Probably this is sufficient for the vast majority of
applications, but lower baud rates permit much
longer ranges to be achieved. For very long ranges
the serial signals are usually tone encoded/decoded
using a modem (a subject covered in detail elsewhere
in this book).

26

Multi -Wire Systems
So far we have only considered a basic one signal
wire plus earth system, for one-way communication.
An RS232C interface has both input and output
terminals, and is therefore capable of two-way
communication. It is just a matter of interconnecting
the earths of the two interfaces, and cross -coupling
their input and output terminals. A basic two way
system of this type is suitable for some applications,
including most modem communications systems.
However, some applications require handshake lines.

Practical Ports
The standard connector for an RS232C is a 25 way
D connector which has the method of pin numbering
shown in Figure 2.11. Note that this diagram shows
the pin numbering when looking onto a computer's
RS232C port (which normally has a male connector),
or looking onto the rear of a socket to fit an RS232C
port. This type of connector is used on many com-
puters and other items of equipment, including the
IBM PC/XT and compatibles, and the Atari ST range.
However, not all the terminals are necessarily

S Se e
r

TXD TXD

a a
RXD RXD

GND GND

P CTS PCTS
0 0r
t

RTS r
t

RTS

Fig.2. 10 RS232C connections for two way communications with handshaking

A two-way RS232C setup with handshaking in
both directions would use the method of connection
shown in Figure 2.10. This is the basic earth plus
two signal wires, with the other two leads providing
the handshaking (two leads as there is separate
handshaking in each direction). RS232C interfaces
have a reputation for being difficult to get properly
connected and fully operational. In part the problem
is due to the variety of word formats and baud rates
in use, and getting one end of the system to properly
match the other.

The main cause of problems seems to be the
connecting cable, and getting the handshake lines
properly sorted out. In the simple example system
of Figure 2.10 the flow of data from terminal 2 to
terminal 1 is controlled by the "RTS" ("Request To
Send") output. This goes positive when terminal I is
ready to receive data, and negative when it is not.
This output is read by the "CTS" ("Clear To Send")
input on terminal 2. and hardware or a mixture of
hardware and software at terminal 2 provides a
hold -off when necessary. The handshaking in the
opposite direction uses the same arrangement. There
are alternative handshake lines on an RS232C inter-
face, and "DTR" ("Data Terminal Ready") can be
used instead of "RTS", and "DSR" ("Data Set
Ready") may be used instead of "CTS".

implemented. In particular the various "secondary"
connections are often omitted, and are not really
needed. They are only included as back-ups to the
primary connections. The terminals that carry
timing signals only need to be implemented in
synchronous serial systems, but all computer RS232C
interfaces seem to be of the asynchronous type.

This list is for the full RS232C implementation.

Pin No. Function
1 Protective Ground
2 Transmitted Data
3 Received Data
4 Request To Send (RTS)
5 Clear To Send (CTS)
6 Data Set Ready (DSR)
7 Signal Ground
8 Data Carrier Detect (DCD)
9 Reserved For Data Set

Testing
10 Reserved For Data Set

Testing
11 Not Used
12 Sec. Rec. Line Sig. Det.
13 Secondary CTS
14 Secondary Transmitted Data

Inpu tlOutput

OUT
IN
OUT
IN
IN

IN

27

0 0 0 0 0 0 0 0 0 0 0
13

14 250 0 0 0 0 0 0 0 0 0 0 0

Fig.2. i 1 Pin numbering for the standard RS232C connector

Pin No. Function
15 Transmission Signal

Element Timing
16 Secondary Received Data
17 Receiver Signal Element

Timing
18 Not Used
19 Secondary Request To

Send
20 Data Terminal Ready

(DTR)
21 Signal Quality Detector
22 Ring Indicator
23 Data Signal Rate Selector
24 Transmit Signal Element

Timing
25 Not Used

In tpu t Ou tput

OUT

IN

A lot of serial ports are substantially cut down
versions of the full system. The RS232C interface
was designed as a general purpose type not intended
specifically for computer use, and it has a number
of functions that are of little or no value in com-
puting applications. As explained previously, as
little as five terminals (ground, data input, data
output, and two handshake lines) are sufficient for
a basic two way link with handshaking. Computer
RS232C ports often use a different type of con-
nector. This is understandable, since the 25
terminals of the standard D cornector are
unnecessary with perhaps only five or six terminals
actually being implemented. On the other hand,
it does mean that standard RS232C connecting
leads are unusable with these ports (although ready-
made serial leads for many non-standard ports are
available).

Figure 2.12 provides connection details for the
serial ports of IBM AT and compatible computers,
and the Epson LQ800 printer. These use a 9 way D
connector and a 6 way DIN type respectively. The
LQ800 only needs to receive data, and it has what is
basically just a data input, handshake Dutput, and

earth connections. This should be quite sufficient
though. Note that an adaptor is available for AT
computers, and this couples the 9 way D connector
to a standard 25 way type (an adaptor of this type
was supplied with my AT compatible, but it is
apparently not always included as standard).

If a ready-made serial lead for your equipment
can not be obtained, or you are determined to make
up your own lead, the first thing is to ensure that
the ground terminals of the two ports are inter-
connected, and that the data input/output terminals
are cross connected. If only a one-way link is
required, such as when driving a printer from a
computer, then obviously only one data input to
data output connection is required. It is advisable
to check equipment manuals to determine whether
or not equipment is genuinely of the one-way type.
A lot of plotters have serial ports, and some of
these (notably the Hewlett-Packard and truely
compatible types) can operate in modes where they
output data to the computer! The data link from
the plotter back to the printer may still not be
needed though, since most software seems to ignore
this facility. I have encountered one or two pieces of
software that will only drive a plotter if full two-way
communications is provided.

In some cases handshaking will not be needed, and
no further connections will be required. Handshaking
is often unnecessary when using a computer with a
modem, and at modest baud rates it may not be
needed when transferring data from one computer to
another. It is almost certain to be needed with
printers, plotters, or any relatively slow device. The
only exceptions are when the device receiving data
has a large buffer. It may then be able to read in
data at a very high rate, and a hold -off will only
become necessary if the buffer should become filled.
If handshaking is not required, the handshake lines
can usually be ignored. This is not always the case
though, and sometimes a serial port will not output
data unless one of the handshake inputs (or the data
carrier detect terminal) is tied to a particular signal

28

RSD

TXD
RXD

D
GndIR

0 0 0
5 1

9 60 0 0 0
RI

CTS
R TS

DSR

Fig.2.12 The Epson L0800 and IBM AT serval ports. A lot of serial ports use non-standard connectors.

level. You may then need to implement one hand-
shake interconnection, even though it will always
enable the data flow and will never go into the hold -
off state. If equipment refuses to provide a flow of
data for no apparent reason it is certainly worth
trying it with the handshake lines connected. Some
serial interfaces have a +12 volt output which is
intended as a tie -point for a handshake line that must
be permanently enabled. Any terminal of this kind
is not a standard RS232C signal, and would usually
utilize one of the normally unused terminals rather
than replacing one of the assigned but not required
functions.

Where handshaking must be implemented there are
a number of possible methods of connection, and
sometimes it is necessary to adopt a "suck it and see"
approach in order to get satisfactory results. There
are devices called RS232C "break-out" boxes which
enable changes in the method of interconnection to
be made quickly and easily, plus an array of diagnos-
tic devices for use when struggling with RS232C
links. Be careful not to get two outputs connected
together. The RS232C standard stipulates that
current limiting should be used at outputs, and
getting two outputs connected together should not
cause any damage. Nevertheless, with any inter-
facing it is still best to avoid this type of mistake
if possible. The connection diagram of Figure 2.13
shows two methods of interconnection. Both are
quite simple and will be successful in most cases (I
have used the method of connection shown in (a)

on several occasions without encountering any
difficulty).

One final but important point to note is that
there are two types of RS232C port. These are the
"data communications equipment" ("DCE") and
"data terminal equipment" ("DTE") types. Most
RS232C ports encountered in computing are of the
DTE variety, which is the normal type where the port
transmits on its "data ot, t" terminal, and receives on
its "data in" terminal. DCE equipment has a port
which is the opposite of this, with data being trans-
mitted on the input terminal, and received on the
output terminal.

The idea is that by having pieces of equipment of
opposite types, they can be connected by a cable
which has each pin of one socket connected to the
same pin on the other socket (i.e. not the usual
cross coupling of most pins). You are unlikely to
encounter DCE equipment, but it might be worth-
while checking manuals to ensure that "data out"
is the function of that pin, and not the terminal it
must connect to on the other port. The only DCE
RS232C port I can remember encountering was on a
Sinclair QL computer that had two serial ports, with
one configured as a DTE port and the other connec-
ted as a DCE type. This permitted easy connection
to any piece of equipment having an RS232C port
(in theory anyway). It is important to realise that
there is no fundamental difference between DTE
and DCE equipment.They only differ in the way
in which they are wired up to the 25 way D connec-

29

F Gnd (1) 0
TX Data (2) 0-
RX Data (3)

RTS (4)

CTS (5)

DSR (6)

S Gnd (7)

DCD (8)

DTR (20)

 F Gnd (1)
0 TX Data (2)

RX Data (3)

RTS (4)

CTS (5)

DSR (6)

 S Gnd (7)
DCD (8)

DTR (20)

Fig.2. 13a The most common form of "null modem" lead

F Gnd (1) 0 0
TX Data (2)

RX Data (3) t.)

RTS (4)

CTS (5)

DSR (6)

S Gnd (7)

DCD (8)

DTR (20)

Fig.2. 13b An alternative "null modem" lead

F Gnd (1)

TX Data (2)

RX Data (3)

RTS (4)

CTS (5)

DSR (6)

S Gnd (7)

DCD (8)

DTR (20)

tor. An adaptor cable is all that is needed in order to
convert one type to the other. The two cables of
Figure 2.13 will in fact convert one type of port to
'the other. This type of cross -coupled RS232C cable
is usually termed a "null modem" cable incidentally.

Other Serial Systems
There are other forms of serial link which have been
devised in an attempt to improve on the performance
of the RS232C type. This generally means longer

range. for a given baud rate, and higher maximum
baud rates. Probably the best known of these alter-
native serial interfaces is the RS423 type (not the
RS432 type as it is often referred to). This is used
on the BBC model B and Master series of computers,
and was also used on the Enterprise computers.
Connection details for the BBC and Enterprise
serial ports are shown in Figure 2.14.

The RS423 interface is essentially a streamlined
version of the RS232C type, with the little -used

30

No Con- '-RTS

Fig.2.14 The BBC and Enterprise RS423 ports

terminals omitted. It uses lower signal voltages and
a higher drive current, and it is more tolerant of any
distortion of the signal. This helps to give greater
range for a given baud rate. The minimum signal
voltage is still sufficient to drive RS232C inputs, and
an RS423 input can take the higher voltages of an
RS232C type. The two types are therefore compat-
ible provided the baud rates and word formats can
be matched properly.

There is a more advanced serial interface in the
form of the RS422 type. This is capable of very
high speed operation due to the use of a balanced line
technique (i.e. the signal is carried by two lines which
carry signals that are the opposite of one another).
There is another high speed serial system in the form
of the RS449 type. Other "improved" RS232C
interfaces have been suggested from time to time,
but the standard RS232C type is still far more
common than any of the alternatives.

MIDI
MIDI is an acronym of "Musical Instrument Digital
Interface", and it is a means of connecting two
electronic musical instruments together. This is
normally done so that playing on one instrument also
plays the second (or any number of additional instru-
ments). It can be used for other purposes though,
such as exchanging sound data between instruments,
or recording tracks of music into a sequencer and
playing them back into a MIDI instrument or instru-
ments. This is rather like a cross between multi-
track tape recording and a player piano, but is

potentially much more versatile than either of these.
At first sight MIDI might not seem to have much

to do with computing, but a few computers have a
built-in MIDI interface (the Atari ST series for
example), and it is an add-on that is available for

many more computers. With suitable software a
computer can make an excellent sequencer, and
computer based sequencers are probably superior to
dedicated units in most respects. Computers can also
be used to good effect in other MIDI applications,
such as MIDI data processing. MIDI is therefore very
much an important part of modern computing.

From the technical point of view MIDI is very
similar to an RS232C interface, but it is not com-
patible with an RS232C interface. In some cases it is
possible to add a simple adaptor to an RS232C inter-
face so that with suitable software it can operate as
a MIDI port. This is the system normally used with
the Commodore Amiga computer for instance. In
most cases this approach is not possible because
MIDI uses a non-standard baud rate of 31250 baud.
The hardware in some computers can actually be
set for this baud rate, and these could be used with a
simple adaptor. This would probably only be worth-
while if matching software is also available. The
MIDI word format is the common one of one start
bit, eight data bits, one stop bit, and no parity.

An important difference between MIDI and the
RS232C standard is that MIDI uses a current loop
signal and not two different voltages to represent the
two logic levels. MIDI uses a current flow of zero to
represent one logic level, and a current flow of 5
milliamps (a small fraction of that consumed by the
average torch bulb) to represent the other. Connec-
ting a MIDI interface to a RS232C type is not likely
to damage either piece of equipment, but it is not
likely to give the desired result. MIDI inputs use
opto-isolators to couple the signal into the equipment
without having any direct electrical connection
between the driving device and the main circuit of
the driven equipment. This avoids potential problems
with mains "hum" or other noise being produced on

31

The Akai S700 rack -mount sound sampler. It. can only be played via MIDI.

the audio outputs of equipment in the system, and it
also eliminates any risk of damage occurring due to
the earths of two pieces of equipment being at differ-
ent voltages.

MIDI interfacing is much more straightforward
than RS232C interfacing. A factor that helps to
greatly simplify matters is that MIDI does not use
any form of handshaking. This is not quite true, as
MIDI does under certain circumstances use software
handshaking, where the start/stop messages are
passed via the data in/data out connections and not
by way of separate lines (a system sometimes used
with RS232C interfaces incidentally). MIDI does
not use hardware handshaking with handshake
connections though. This gives just three wires to
connect one MIDI device to another. Two of these
are the signal wires, and the third is the earth
connection. Note that the earth connection is only
connected internally at MIDI outputs, and is left
unconnected at inputs. This is due to the isolation
used at inputs, which would be bypassed by the
earth connection if it was connected at both ends
of the system. The only reason for using the earth
lead is to provide screening of the signal wires so that
they do not radiate significant amounts of radio

frequency interference. MIDI leads are made- from
twin screened lead, with the inner conductors carry-
ing the signals, and the outer braiding connected to
earth so that it provides the screening. The problem
of radiating radio frequency interference is not one
that is peculiar to MIDI connecting cables. RS232C
and parallel printer cables are also potential sources
of interference, and should really be properly
screened in order to minimise the problem.

Apart from MIDI "IN" and "OUT" sockets there
is also the "THRU" variety. This is a form of MIDI
output, and it simply sends out any signal received
on the MIDI input. The idea of this is to permit
several pieces of equipment to be connected together
in "chain" fashion, so that one controller can be used
in conjunction with several instruments. Figure 2.15
shows a typical setup of this type.

The standard connector for MIDI interfaces is the
5 way 180 degree DIN type. The MIDI standard also
sanctions the use of the higher quality XLR type
connectors, but only if manufacturers make available
optional adaptors to permit standard MIDI (DIN
type) leads to be used with their equipment that uses
XLR connectors. In practice there seems to be very
little equipment that does not use the standard DIN

32

Most modern MIDI equipment has the full complement of three sockets.
The THRU socket is absent on some keyboard instruments though (especially older types).

IN THRU

11=1 00000000 000000000
0 0 0 00000000 0

OUT

IN OUT THRU

o 1.1111111111111

IN

IN THRU

T1 00000000 Etc.
00000000Do 00000000 0

COMPUTER
CONTROLLER

MENEMIIMOM
111111111111111111=

1E1

MELOMM
=OM

1111111111
MUM
=NM

Fig.2.15 MIDI "chain" connection

1 NI

33

THRU

No Con

Loop Return --11

Shield Ground
Data Out

No Con -

No Con

Loop Return -11

No Con

IN

Data In -
No Con -

OUT

No Con

Loop Return -11

Shield Ground

THRU Loop
Return

Loop Return

j
Data Out

No Con -

THRU/OUT

Shield Ground
Data Out

THRU Data Out -

Fig.2. 16 MIDI port details (including the ST THRU/OUT type)

connectors. Connection details for all three types of
MIDI port are provided in Figure 2.16. This also
gives details of the non-standard arrangement used
on the OUT/THRU socket of the Atari ST com-
puters. This can in fact be used as a standard MIDI
OUT provided the THRU facility is not required.
The THRU facility is provided by the two normally
unused terminals of the OUT socket. A non-standard
lead is needed if the THRU facility of the ST is to be
used (often it will not be required), but larger ST
dealers can probably supply a suitable lead. Do-it-
yourself MIDI leads are not difficult to make up, and
Figure 2.17 shows the wiring needed.

Monitors
Like so many aspects of computing, there are stand-
ards for monitors, but a number of them, and not all
monitors conform to one of these standards. The
most simple type of monitor interface is the
composite video type which conforms to the broad-
cast standard. In other words, a monitor of this
type will work just as well with the composite video
output of a video recorder (or other item of video
equipment) as it will with a computer that has the
appropriate type of output. This interface has just
two terminals which carry the earth and single signal
connections. The horizontal sychronisation, vertical

34

TO ST

MIDI OUT

RED

TWIN SCREENED LEAD

TWIN SCREENED LEAD

BLUE

Fig.2. 17 A DIY MIDI THRU/OUT lead for the Atari ST computers

OUT

THRU

synchronisation, and main picture signal are all mixed
in together with this type of interface, but any audio
signal is carried by a separate set of connectors and
lead.

Sound is something that should be borne in mind
when selecting a monitor for a computer that does
not have a built-in loudspeaker for its sound genera-
tor. With a computer of this type there will be no
audio output unless the monitor has an audio input
(which might not actually matter too much, particu-
larly if the computer is only needed for something
like word processing).

Composite video outputs seem to be used mainly
with monochrome monitors, and there seems to be a
popular myth that they are only suitable for this type
of signal. In actual fact a composite signal can
include colour information, and with computers such
as the Commodore Amiga and Atari ST a colour
signal is provided by their composite outputs. In fact
colour can be handled very well by a composite video
output, with an infinite colour range available. As we
shall see shortly, some other types of monitor inter-
face permit only a very restricted range of colours to
be displayed. Do not assume that a composite video
output is always a colour type, as not all computers
necessarily put any colour information on this output
signal.

Not all systems that use composite signals conform
to the broadcast signal standard. In particular, high
resolution monochrome systems often use a higher
frame rate than the broadcast standard of 50 frames
per second. Although there are fifty frames per
second, each frame consists of only every other line
of the display. Consequently, two frames are needed
to make each complete picture, and there are only
twenty-five frames per second. With high resolution
screens this system tends to give a very pronounced
flickering, especially if it is used to display high
contrast pictures or pictures having large bright
areas. Interlacing helps to minimise the flickering,
but it does not eliminate it. This effect can be seen
when using the Commodore Amiga computer with
one of its modes that have a vertical resolution of
400 lines (or 512 lines on *.he PAL versions). A long
persistence monitor is one solution to the problem,
but a higher scan rate (often without interlacing) is a
better one. As an example, the high resolution mono-
chrome mode of the Atari ST computers has a
vertical scan frequency of '2 Hertz, and gives a very
stable picture. Although broadcast standard compo-
site input monitors can be used in the two colour
modes of the Atari ST computers, a special monitor
is required for the high resolution monochrome mode
(which uses a separate output terminal of the video

35

port). It is not safe to assume that the composite
input of a monitor is suitable for use with high
resolution displays.

RGB
Most colour monitors do not have a composite input,
or do have one, but are normally driven from another
input wherever possible. The alternative input is
almost invariably some form of RGB (red -green -blue)
input. It should perhaps be pointed out that some
monochrome monitors have an RGB input, but
obviously they can not provide a colour display.
They will usually display the colours as different
shades of grey though, which is a definite improve-
ment on a true monochrome display. However, in
some cases there is very little difference between
many of the shades of grey, and the IBM colour
graphics adaptor (and compatible display adaptors)
often provide disappointing results when used with
monochrome monitors. This is not really a fault in
the video board, which is obviously optimised for
true colour operation.

With an RGB input there are several input signals
to the monitor. For a basic RGB monitor with TTL
inputs (i.e. standard logic signal inputs) there are
normally five inputs plus an earth terminal. The five
inputs are red, green, blue, intensity, and composite
synchronisation (i.e. horizontal and vertical syn-
chronisation signals merged into a single signal).
Anyone who studied physics at school will probably
realise the importance of having red, green, and blue
signals. The classic colour experiment is to project
three circles of light onto a white screen, with the
circles overlapping slightly. Coloured filters are used
to produce red, green, and blue circles of light. This
gives the result shown in Figure 2.18, with the colours
mixing at the overlaps to provide extra colours.

Seven colours are shown in Figure 2.18, but with
all three light sources extinguished black is produced,
and so a simple on/off RGB system is capable of
producing eight colours (including black and white).
An RGB monitor uses colour mixing in exactly the
same way to give the pallette of eight colours. Where
the intensity input is utilized it is possible to switch
all the colours to half intensity. The number of colours

Fig.2. 18 A basic RGB system gives eight co/ours (all three switched off gives black)

BBC B etc.
Gnd Red

Sync

Blue

Blue

L

Oric

Gnd
Green

+5V

Blue

Red

Green

Blue

Amstrad CPC
Gnd Red

Sync

Blue -t
IBM CGA

V Sync
H Sync

Fig.2. 19 Details of some common RGB/RGBI ports

Lum

T
Blue

Red

Gnd

Lu m

No Con

available from this RGBI (red, green, blue, intensity)
system is often stated as being sixteen. However, half
intensity black is presumably still black, and the
number of colours available is actually only fifteen.

A lot of computers have RGBI outputs, including
the BBC micros, the Electron, IBM PC/XT/AT com-
puters fitted with the CGA (colour graphics adaptor)
card, and the Amstrad CPC computers. Some have
just the RGB outputs with no intensity output being
implemented (the Oric computers for example).
There are also computers which have the same colour
pallette as RGB or RGBI monitors, but which provide
their colour output in composite video form (some of
the Commodore machines fall into this category).
There is no difficulty in connecting an RGB or RGBI
output to a monitor which has the appropriate type
of input, and it is just a matter of connecting each
terminal of the monitor's input socket to the corres-
ponding terminals of the computer's monitor port.

The only slight problem is that a variety of connectors
are used at both the computer and monitor ends of the
system. A selection of RGBI input/output sockets are
detailed in Figure 2.19. Some monitors are supplied
with leads for connection to the 9 pin D connector of
the IBM CGA card, and a short adaptor lead is then
usually the easiest way of connecting them to a
different type of computer.

Analogue RGB
For most purposes eight or fifteen colours are quite
adequate, but for some applications a greater range
of colours is preferable of even essential. Paint pro-
grammes that are limited to eight colours can be
quite good fun, but do not really compare with
programmes that can provide thousands of colours.
The IBM EGA (enhanced graphics adaptor) and
compatible display boards have a form of TTL
output, but they have eight outputs plus an earth

37

terminal. Two of these outputs are separate vertical
and horizontal synchronisation signals, and the other
six are RGB outputs. Each colour has two outputs
("primary" and "secondary"), and with six logic
outputs there are sixty-four different output combin-
ations possible.

This gives the EGA display its pallette of sixty-
four colours, but only sixteen of these can be
displayed on the screen at any one time. This is not
due to any deficiency in this method of interfacing
or the monitor, both of which can provide all sixty-
four colours on screen simultaneously. This
limitation is imposed by the graphics adaptor card,
or to be more precise. by its 256K of memory which
can only map the 640 x 350 pixel display in sixteen
colours. This arrangement of having more colours
available than can be displayed at any one time is by
no means unique to the EGA display, and is actually
quite common with high resolution colour displays
(as well as some medium resolution types). In some
cases there are clever software tricks that can be used
to take the number of on -screen colours beyond the
official limit. The standard EGA connector is a 9
way D type, and it has the pin assignment shown in
Figure 2.20.

Going beyond the EGA display with its sixty-four
colours there are the displays that have analogue RGB
outputs. Whereas a digital output only has two valid
levels, an analogue signal can be varied continuously
over its limits, and in theory anyway, has infinite

resolution. A monitor having analogue RGB inputs
can therefore mix the three primary colours in any
relative quantities to produce any desired colour.
This is not to say that a computer which has analogue
RGB outputs has an infinite range of colours and that
they can all be displayed on screen at once. The
circuits which drive the outputs are derived from
digital circuits, and can only provide a limited number
of steps.

The Commodore Amiga provides some 4096
colours by having sixteen different intensities for
each of the three primary colours (16 x 16 x 16 =
4096), while the Atari ST has 512 available colours
and presumably uses 8 intensities for each of the
primary colours. Normally only about 16 of these
colours are available at any one time, but both of
them can use "tricks" to provide the full range of
colours on -screen simultaneously (the "HAM" mode
of the Amiga for example). Both of these computers,
and other computers with similar capabilities (some
of the VGA modes of the new IBM PS/2 computers
for instance), can provide some really impressive
results. They produce an almost photographic
quality which does not seem to be achievable with
computers that have similar resolutions but only a
few colours available.

As far as interconnections are concerned, there
are the three colour signals to be coupled from the
computer to the monitor, plus an earth connection.
It also seems to be the standard practice to have

Pri Green
Pri Blue

V Sync
H Sync t

Pri Red
Sec Red
Gnd

Sec Green
Sec Blue

Fig.2.20 The EGA card uses a 9 pin D connector, but the connections are different to those of the
CGA card

;ti

separate earth (or "ground") connections for the
three colour signals in addition to an overall earth.
This gives some four earth leads, plus possibly a
fifth if there is also a separate earth for an audio
input. I am not entirely sure why separate earths
should be necessary, but this is usually done where
there is a risk of a common earth causing stray
coupling of one signal into another. Most analogue
RGB systems seem to use a single synchronisation
signal, but the VGA and MCGA systems seem to have
separate vertical and horizontal synchronisation
signals.

Analogue monitors and computers which have
analogue outputs seem to use a variety of connec-
tors. The popular NEC multisync II monitor has a
standard CGA style 9 way D connector, but this
operates in a variety of configurations depending on
which of its operating modes is selected. A "multi -
sync" monitor, incidentally, is one which can
operate with a range of video standards, from
standard RGB and RGBI to the more exotic ones
which give higher resolutions and usually demand
higher scanning rates (such as the EGA, VGA, and
MCGA modes). Most multisync monitors will
operate with both digital and analogue RGB signals,
but the exact capabilities do seem to vary significant-
ly from one monitor to another. If you need a
multisync monitor for an unusual video mode it
would be advisable to check that the particular one
you are considering has the requisite inputs and
scanning rate capability rather than just assuming
that it does. Returning to the operating modes of
the NEC multisync II, this table shows how each of
its nine input terminals are allocated in each of its
four operating modes.

apparently use a different method of connection. It
is unfortunate that two standards have somehow
arisen, but the method of connection shown in
Figure 2.21 seems to be the most common one for
computer equipment (and is the only one I have
encountered).

Games Ports
A joystick port is something that can be found on
most computers, and where it is absent there is

usually a popular add-on that provides this function.
The most common form of games port is the Atari/
Commodore type, or a variation on this basic scheme
of things. Figure 2.22 gives details of the Commo-
dore 64 games port 1, which is a fully standard form
of Atari/Commodore games port. Where a second
games port is available (which it is on most computers
including the Commodore 64) the second port uses
what is essentially the same method of connection.
However, pin 6 only functions as a firebutton on
the second port, and it can not be used as an input
for the lightpen.

There are two basic types of joystick: the switch
and potentiometer varieties. The switch type
indicates one of eight directions to the computer,
and (usually) an on -screen object is moved in the
direction indicated by the joystick. A potentiometer
type is very different, and indicates a screen position
to the computer. Usually, an on -screen object of
some kind is moved to the indicated screen position.
Atari/Commodore style games ports are intended for
use with switch type joysticks.

The direction is indicated by four switches which
connect to "JOYAO" to "JOYA3". These switches
connect between their input terminals and the ground

Pin No.

1

3

4
5

6
7

8

9

CGA (TTL)
GROUND
GROUND
RED
GREEN
BLUE
INTENSITY
NO CON
HOR SYNC
VERT SYNC

EGA (TTL)
GROUND
SEC RED
PRI RED
PRI GREEN
PRI BLUE
SEC GREEN
SEC BLUE
HOR SYNC
VERT SYNC

PGC (ANAL)
RED
GREEN
BLUE
COMP SYNC
MODE CONT
RED GND
GREEN GND
BLUE GND
GND

VGA (ANAL)
RED
GREEN
BLUE
HOR SYNC
VERT SYNC
RED GND
GREEN GND
BLUE GND
GND

There is a standard connector for monitors, and
this is the 21 way SCART type. This is to be found
on some computer monitors (the Commodore 1081
for example), and should become more common as
time passes. Details of the SCART connector are
provided in Figure 2.21. Note that most monitors do
not implement all these connections, and that the
"data" and some of the audio terminals are usually
just left unconnected. Also note that some monitors

terminal of the port (pin 8). They respectively give
up, down, left, and right indications. Moving the
stick (say) up and to the right will operate both the
"up" and "right" switches, and will indicate that
both upwards movement and movement to the right
is needed. Thus the four switches can indicate a total
of eight different directions. The "firebutton" input
is wired to ground via the push-button switch of the
joystick.

39

Green Gnd
Blue In

Blue Gnd
Audio Out (LH)
Audio Out (RH) -11

Green In
Red Gnd
Red In
Comp. Video Gnd
Comp. Video Out

rScreening

0000000000
1 19

2 200000000000
Audio In (RH)

Audio Gnd
Audio In (LH)

Source Sw
Data

4 4

Comp. Video In
Video Blank Gnd
Video Blanking
Data Gnd
Data

Fig.2.21 The standard SCART video connector. In practice many of the pins are often left unused.

There are a few additional input terminals on the
port, and these are for use with potentiometers.
The two potentiometers connect from the +5 volt
supply terminal to their respective inputs. I suppose
that it would be feasible to use potentiometer joy-
sticks with this type of games port by utilizing these
two inputs, but they do not seem to be used this way
in practice. They are primarily intended for use with
games "paddles", which are effectively potentiometer
joysticks which only provide side to side control. In
fact this facility seems to be little used even for
"paddles", and it appears to have been omitted
altogether from some recent computers that have this
style of games port (the Atari ST series of computers
for instance).

There have been modified versions of this original
form of the games port, of which the Atari ST version
is just one example. Apart from omitting the paddle
inputs, it has been modified to permit a mouse to be
connected to port 1 (or "Port 0" as Atari have
designated it). The games ports of the Commodore
Amiga computers have been similarly modified, but
still seem to retain the ability to take games
"paddles". This is achieved by having many of the
terminals serve more than one function. They can

both operate with standard Atari/Commodore style
joysticks.

The Amstrad computers use a modified version of
the standard arrangement which omits the "paddle"
inputs but permits a single port to accommodate two
joysticks. In fact this is not strictly correct, and only
one joystick connects to the port. The second joy-
stick plugs into a 9 way D plug fitted to the first
joystick. Figure 2.23 provides details of the Amstrad
style games port.

This follows the standard Atari/Commodore lay-
out quite closely, and it should be possible to use a
standard switch type joystick if only a single joystick
is to be used. The "Common" input replaces the
"GND" terminal of the standard games port, but it
is used in precisely the same way. A standard switch
type joystick might not be satisfactory if used with
an Amstrad computer, since the Amstrad port has
provision for a second "firebutton", which is absent
from the standard switch type joystick. The second
joystick is connected in the same way as the first
apart from the fact that it uses the "COM2" terminal
instead of the "Common" one.

Analogue joysticks seem to be used with few
computers. They are the standard type for

40

JOYA2
JOYA1 I JOYA3

JOYAO POT AY

0 0 0 0 0
1 5

6 90 0 0 0
BUTTON A/LP -1

1

POT AX
+5V GND

Fig.2.22 Details of the standard Atari/Commodore games port

LEFT
DOWN I RIGHT

UP UNUSED

0 0 0 0 0
1 5

6 90 0 0 0
FIRE 2 1 1 CCMA 2FIRE 1 COMMON

Fig.2.23 The Amstrad games port can accommodate two joysticks

41

Analogue Gnd
OV

Channel 1

Analogue Gnd

8

Channel 0
V. Ref.

Firebutton 0

150 0 0 0
0 0 0 0 0 0 0

1

90 0 0

Channel 3
OV

till IL- Light Pen
Firebutton 1

V. Ref.
Channel 2

Fig.2.24 The BBC computer's joystick port. Four analogue inputs accommodate two joysticks.

the IBM PC etc. and compatibles, but this type of
controller does not seem to be in widespread use in
the U.K. (probably due to the built-in switch type
joystick interface on the popular Amstrad PCs).
This type of joystick was used on the now obsolete
Dragon computers, but they are probably most
widely used in the U.K. with the BBC series of
computers (apart from the model A which lacks the
analogue input port). Figure 2.24 shows details of
the BBC computer's analogue port, which uses a 15
way D type connector.

Unlike the "paddle" inputs of an Atari/Commo
dore games port, all three terminals of the potentio-
meter are used by the BBC port.

The track terminals connect across the 1.8 volt
reference voltage and the analogue ground terminal
(separate terminals are available for each joystick).
The wiper terminal (which is usually the middle
one of the three) connects to one of the analogue
inputs ("Channel 0" to "Channel 3"). There are two
inputs for each joystick so that each one can provide
control in two planes. "PBO" and "PB1" are the
"firebutton" inputs, and these are used in the same
way as their equivalents on a switch type joystick.

Obviously switch type and analogue joysticks are
totally incompatible, and you must use the right
kind for the type of port fitted to your computer.

IEEE488
The IEEE488 interface (also called the "Hewlett
Packard Instrument Bus" or something similar) is
one of the less well known computer interfaces. It
is mainly used for scientific instruments and other
specialised pieces of equipment, although I believe it
was used on some early Commodore machines for
communications with peripherals such as disk drives.
In fact it is still used on Commodore 8 bit machines
such as the Commodore 64, but in considerably
modified form. The standard IEEE488 interface
uses a 24 way connector which is rather like a cut
down Centronics type connector. The connector
for the Commodore IEEE488 style interface is a 6
way DIN type. Connection details for these are
provided in Figures 2.25 and 2.26.

The main difference between these two types of
interface is that the full IEEE488 interface is a
parallel type while the Commodore type is a form of
serial interface. The two are therefore totally incom-
patible, although interface units to permit the
Commodore 64 etc. with standard IEEE488 devices
have been (and probably still are) available.

An important difference between these interfaces
and most other types is that they provide two-way
communications via a single wire (Commodore
version) or an 8 bit parallel bus (standard IEEE488

42

NRFD

NDAC

IFC

SRQ

ATN

Shield

All Gnd

12

24

I I V

DAV
E01

D104

D103

D102

f
D101

1

13
,-61111111-M-1111M-IM-1-11M-MMI-M-GM.-

I L 256
D107

D108

Fig.2.25 The 1EEE488 interface uses a 24 way connector

SRQIN

Reset

Gnd

Fig.2.26 Connection details for the Commodore
serial interface

version). Devices that transmit on the data lines are
"talkers", and those that receive on them are
"listeners". A device does not have to be one or
other of these, something like a disc drive will need
to both send and receive data. Devices of this type
are "talkers/listeners", but at any one time they can
only provide one or other of these functions. This
limitation is enforced by the single data wire or set
of data wires. There is another category of 1EEE488

device, and this is the "controller". For a system
of this type to function properly it is essential to have
a controlling device which ensures that only one device
at a time is sending out data onto the data line or
lines. The purpose of the "control" is to provide this
supervision of the system, and it is almost invariably
a computer or some form of dedicated microprocessor
based controller.

The data lines actually carry more than just data
being passed from one device to another, and they
carry such things as "addresses" and status informa-
tion. Addresses are important in a system of this
type where there will usually be several "listeners",
and it will often be necessary to direct information
to just one of these at a time. Other lines are used
for general control and handshaking. The DAV (data
valid) line is use6 to indicate that valid data is present
on the data lines (similar to the strobe line of a
Centronics interface), while the E01 (end or identify)
is used to show when the transfer of data has been
completed. 1FC (interface clear) is a sort of reset
line that is used by the controller to initialise the
system. The NDC (not data accepted) line is used by
a "listener" to show that it is receiving data. SRQ
is the service request l.ne, and it is used by any
device that wishes to gain the attention of the
"controller". The ATN (attention) line is activated

43

by the controller when it is placing an instruction
onto the data lines (or data line in the case of the
Commodore serial version). The REN (remote
enable) line is used to enable and disable the data
bus. The data bus is disabled when manual control
of a device is required. The sophisticated method of
handshaking used in this system ensures that there
are no difficulties with devices sending data more
quickly than other devices can process it. The whole
system is effectively slowed down to a rate that can

be handled by the slowest unit in the system.
Obviously the Commodore serial version lacks

many of the control lines, but this system still works
in broadly the same way. Being a serial system it
tends to be much slower than the parallel version.
Note that it is a synchronous system, with a clock
signal rather than a standard baud rate to ensure
proper synchronisation of the sending and receiving
devices.

44

Chapter 3

LANGUAGES

Machine Code
Machine code is the native language of microproces-
sors. As explained in Chapter 1, each microprocessor
has its own instruction set, though there are
'families' of devices using the same code. How
difficult it is to learn machine code depends to some
extent on which microprocessor you wish to
program, however, in general, it is never easy.

Machine code consists entirely of numbers.
Machine code programming involves writing pro-
grams directly in these numbers, or opcodes as they
are called. It is difficult for humans to remember
which number represents which operation, unless the
number of operations available is very small. Also,
it is only possible to tell which numbers represent
instructions within a program, and which represent
addresses or data, by their positions within the
program. It is therefore very difficult to 'read' a
pure machine code program.

Pure machine code programming is hardly ever
done for the microprocessors used in home and
small business computing, though it is done to a
limited extent with the small microprocessors used
in such things as washing machines. Sometimes a
machine code program is written using the
mnemonics for the instructions in the first place,
and then is converted into machine code by looking
up the opcodes corresponding to the mnemonics,
but this is strictly a form of assembly language
programming, hand assembling.

Assembly Language
Assembly language is the first step in changing the
nature of computer programs from what the machine
requires to what it is easy for humans to write and
comprehend.

Assembly language is a method of writing machine
code programs, but instead of having to deal directly
with the machine opcodes, each operation is repre-
sented by a mnemonic, usually consisting of three
letters, e.g. ADD, BEQ, JSR. The program is first
written as a text file, using an editor or word
processor, and is then passed through the assembler,
which looks up the opcodes corresponding to the
mnemonics, and thus forms the final machine code.

In fact a good assembler will do much more than
this. Most will automatically calculate the displace-
ments for branch instructions, so you need to know
only where you want the program to branch, not
how many bytes it is from the branch instruction.
Often you can use labels for addresses, which makes
the program easier to read as well as write. A good
assembler will also accept data in either hex or
decimal form, and often binary as well.

There are, however, less sophisticated assemblers,
usually supplied as parts of machine code monitor
programs, or as part of a high-level language (e.g.
BASIC) interpreter.

The simplest assemblers are the direct or in -line
type. These offer few facilities, and assemble each
line as it is entered, putting the code directly into
memory. They are usually found only as part of
machine code monitor programs, and are used for
experiment rather than for writing extensive pro-
grams. The code is usually assembled direct into
memory then executed from the monitor. This type
of assembler cannot usually calculate branch offsets,
and does not allow the use of labels.

Similar assemblers are sometimes included in
BASIC interpreters (the best known, perhaps, being
the one in the BBC micro). These are mainly used
to write short bits of assembly language programming
as parts of BASIC programs, the code being assem-
bled when the program is run, and then executed
from within the BASIC, tnough they can be used to
write stand-alone machine code. Calculation of
branch offsets is usually possible with these
assemblers.

The most efficient assemblers are of the two -pass
type with separate edam. As the name suggests,
the assembler makes two passes of the assembly
language text file to generate the machine code pro-
gram. This allows forward as well as backward
branch offsets to be calculated. During the first pass,
if the assembler finds any labels in branch instruc-
tions for which it has no address (which means they
are further on in the program) it keeps a table of
where the labels are referred to, and then during
the second pass the actual address is inserted. (Some
of the assemblers included in BASIC interpreters can
be turned into two -pass types by putting the
assembly language within a BASIC loop.)

Some assemblers for some microprocessors actual-
ly use a third pass, this being an optimising pass,
changing some instructions to shorter forms giving
more compact code or allowing faster execution
where this is possible.

BASIC
BASIC is ubiquitous in computing. It is the language
which is supplied as standard with the majority of
microcomputers, and with home computers it is

normally built-in on ROM, so that when you turn on
the computer you go straight into the language. On
such machines it can be difficult to separate BASIC
from the operating system.

The name BASIC is an acronym, derived from
Beginners All-purpose Symbolic Instruction Code
(alternative derivations are to be found, but this is

45

the generally accepted one). It was devised in its
original form at Dartmouth College in the U.S.A.

BASIC is an interpreted language. This means it
has the usual disadvantage of being rather slow.
However, by comparison with other interpreted
languages, the best BASICs are fast. As might be
expected with such a popular language, there are
many compilers for various versions of BASIC,
including some of the versions supplied built-in to
home computers, and also versions written specifi-
cally for compiling (some of which have interpreters
for program testing!).

In BASIC variables are typed, which is to say
they are defined as either numeric, representing
numerical values on which mathematics can be
performed, or string, which are simply strings of
the characters which can be printed on the screen
(including the numeric characters and special
control characters). Functions are usually provided
to convert strings of valid numeric characters to
numeric form, and numeric values to string form.
Numeric variables may be further typed into integer,
real, double precision, and other types.

Large amounts of data, both string and numeric,
can be handled by subscripted variables, commonly
called arrays. In arrays, the individual variables are
addressed by the variable name and one or more
numeric values, the subscripts, representing the
position of the variable in the array. As the numeric
value(s) can be given as either constant or numeric,
this allows easy programming to step through an
array in sequence, or to access it randomly.

BASIC is a good number crunching language,
and has full facilities for floating-point mathematics,
and often for integer arithmetic as well (some early
and primitive BASICs may be integer only). A wide
range of mathematical and trigonometric functions
are built-in, but the range provided does vary some-
what from dialect to dialect. There is almost invari-
ably a facility provided to generate your own
functions from combinations of the ones provided
to obtain more advanced facilities. In some versions
these user -defined functions are very sophisticated,
and may be spread over several lines.

On the other hand, BASIC handles text, especially
formatted text, rather clumsily. Storage in strings is
not really adequate, and the string -handling functions
rather limited.

Facilities for handling constant data within pro-
grams is also limited. Lists of data can be included in
programs, and accessed sequentially, though in some
versions, the RESTORE statement allows limited
random access. In others it only allows you to start
reading the data list again from the beginning. The
only way to add constant data is to edit the program.

If variable data is to be saved from one running of
a program to another, it must normally be explicitly
saved to disc (or other non-volatile medium) by the
program, and reloaded when the program is run again
(in a few small home computers, saving the program

also saves the variables). Advanced BASICs provided
with or for computers intended for business use may
include facilities for handling data files directly on
disc, and in some cases these facilities can be very
sophisticated (for example Locomotive Software's
Mallard BASIC and BASIC 2).

The earliest BASICs date from the days when the
usual output from a computer was on a teleprinter
rather than a VDU screen. To make editing programs
easier (or possible!) in this environment, the program
lines were numbered, and were stored in memory,
and (jumps and branches excluded) executed in the
order of the line numbers. Line numbering has until
very recently been an identifying feature of BASIC,
as very few other languages use this feature. However,
with VDUs for output, screen editing is possible and
line numbers are not necessary, and on the latest
versions they are optional, and are used simply as
labels. The lines are stored as entered on the screen,
not necessarily in the order of any numbering.

When first introduced, BASIC was rather a poorly -

featured language. This was necessary because of the
small amounts of memory available on the machines
of that time. Decision making was in the form of
IF . .. THEN statements which could test a condition
and either continue execution in sequence if the test
failed or branch to a specified line if true. Writing
practical programs involved a fair amount of use of
unconditional branches, the infamous 'COTO'. This
lead to BASIC getting the reputation of being an
unstructured and untidy language.

When graphics and sound were first added to
microcomputers there were at first no BASIC com-
mands to control these, and such control was only
possible either by direct memory addressing using
PEEK and POKE, or by direct port addressing. Pro-
grams using a lot of graphics and sound could be very
difficult to follow, consisting almost entirely of
numbers, and little better than machine code. (The
Commodore 64 BASIC was perhaps the most notori-
ous in this respect.)

However, BASIC is very much a living language,
and extra features have been added as new versions
have been written, partly to improve the structure
of the language, and partly to give easy access to all
the graphics and sound capabilities of current
machines. As a result of this, BASICs are now some
of the most powerful languages around. Many
modern BASICs have some or all of the following
advanced features.

PROCEDURES. Instead of the subroutines of the
early BASICs, modern versions allow the use of
named procedures. Provided sensible names are
chosen, these make program readability much better.
Generally, you can also pass parameters to procedures,
which means you can send data to them on which
they are to work when calling them, just as you can
with in-built commands.

46

MULTI -LINE IF . . . THEN STATEMENTS. As

mentioned above, early BASICs only allowed
branching after IF ... THEN tests. The first improve-
ment was to allow the execution of other statements
conditionally, and then to allow a choice between
two sets of statements by using IF . . . THEN . . .

ELSE conditionals. More than one statement could
be placed after THEN (and also after ELSE), but the
whole statement had to be on one line. This could
lead to very long untidy lines. Latest versions allow
such conditionals to be spread over several lines. The
block starts with the IF . . . THEN statement with
the conditional test in it. It is followed by the
statements to be executed if the condition is true.
Optionally, there may then be the ELSE statement,
followed by statements to be executed if the condi-
tion is false. The end of the block is indicated by a
statement which is usually ENDIF.

MULTI -LINE USER -DEFINED FUNCTIONS. Most
BASICs allow user -defined functions to evaluate
expressions which are used often in a program.
Usually such functions can contain only one expres-
sion, and can only be used to execute mathematical
operations, not other statements such as PRINT.
More powerful versions have user -defined functions
which are procedure -like, which can be spread over
several lines, and contain almost any statement in
the language.

LOOP STRUCTURES. The first loop structure to be
included in BASIC was the FOR . . . NEXT loop,
which allowed the statements in the loop to be
repeated a set number of times, a variable being used
to count the repetitions and control the loop. Later,
the REPEAT . . . UNTIL and WHILE . . . WEND
loops were added. Both of these will continue to
loop until a condition (like those used in IF . .

THEN statements) is true. In REPEAT loops the
condition is at the end of the loop, in WHILE loops
it is at the end. BASICS tended to have one or the
other, but not both. The best modern versions do
have both, or they may have them in the DO . . .

LOOP form, which allows the condition to be placed
at either end as required, i.e. DO WHILE . . . LOOP
or DO ... LOOP UNTIL.

You may have gathered that there are now con-
siderable differences between different BASICs.
Whilst this is certainly true, the incidences of one
command word being used for two (or more)
different purposes are fortunately quite few, and it
is usually possible for a person who is familiar with
one version of BASIC to program in another version,
though frequent consultations of the manual are
likely to be necessary!

BASIC remains very much a living (and growing)
language. The latest versions allow full access to the
graphics control environments (e.g. Digital Research's
GEM), and as computer facilities grow, no doubt

BASIC will grow with them. However, these
advanced forms are now so comprehensive that they
run the risk of being incomprehensible, and the claim
of BASIC to be a beginner's language must in some
cases be considered questionable.

Although BASIC has come in for a lot of criticism
over the years, the best of the latest BASICs are
extremely good in most respects. It is language that
we have used for a wide range of applications - some
quite mundane and others of a specialised scientific
nature. BASIC must be -ated as one of the most
versatile of programming languages, unlike many
programming languages that are highly specialised in
their practical applications.

LOGO
LOGO was invented by Dr Seymour Pappert of MIT
as a teaching language for beginners to programming,
particularly young children It is a highly structured
language, which forces academic concepts of
`correct' programming technique on the user. LOGO
is strictly an interpreted language, there are no
compiled LOGOS, and such a thing would be contrary
to the whole concept of the language, which is essen-
tially interactive.

LOGO is best known for its 'turtle graphics' in
which the 'turtle', which can be either a robot device
or a 'virtual turtle' on the screen, moves around in
response to such commands as "FORWARD 50"
and "RIGHT 90", drawing line figures.

There is, however, much more to LOGO than this.
It is one of the family of list processing languages,
which means data is stored in the form of lists of
`words', and you car. also have lists of lists, list of
lists of lists, and so on. Lists can be manipulated in
various ways to allow information to be extracted.
LOGO can be a good second language for BASIC
programmers, as the two are very different, and some
things which are very complicated to program in
BASIC are relatively straightforward in LOGO. One
example of this is data pattern matching.

LOGO comes with a set of in-built commands
called primitives. You use these primitives in com-
bination to form procedures, which in effect add
new commands to the language. The idea is that you
can use the primitives and your procedures in very
much the same way, thus extending the language to
your needs. Having written procedures, you can then
use these within other procedures to perform even
more complex tasks. You do not so much write a
LOGO program to do a job and then run it, as extend
the language to give it the required capabilities, and
then work interactively with the language from
command mode, or lop level' as it is called.

LOGO is not really intended as a number crunch-
ing language, and in-built mathematical functions are
usually limited. The language can, of course, be
extended to perform almost any arithmetic or mathe-
matics you require, but this can take a lot of
programming.

47

Variables are not typed in LOGO. Both numeric
quantities and what would be strings in other langu-
ages are stored as words, which can be simple
variables or elements of lists.

LOGO is a highly standardised language and
there are far fewer dialects than there are in most
other languages. The two main ones are MIT LOGO
an LSCI LOGO. Of the minor variants, Edinburgh
LOGO is used mostly in primary schools, and Open
LOGO, devised by the Open University in the U.K.,
which presumably is used by the Open University. It
isn't found anywhere else, though. There are few
differences between the dialects, and once you have
learned one it is relatively easy to adapt to another,
and even to convert programs between dialects (a
mug's game in BASIC).

C
C is a compiled language (apart from a few inter-
preters that are intended for debugging purposes),
and some computer users seem to have gained the
impression that the "C" name stems from the fact
that it is Compiled. In fact it is a development of the
"B" programming language. C has its origins in the
1960s when a team at Cambridge produced a langu-
age called CPL (Combined Programming Language),
or BCPL (Basic Combined Programming Language)
as the eventual and somewhat cut down version
became known. BCPL is still around today inciden-
tally, but does not seem to be used to any great
extent. It was from BCPL that the B language was
developed in the U.S.A. in 1970 by Ken Thompson.
This was further developed into C by Dennis
Ritchie of Bell Laboratories in 1972, and it was
defined in the book "The C Programming Language"
by Dennis Ritchie and Brian Kernighan. This book
is also known as "The C Programmer's Bible", and it
is generally considered to be essential reading for
anyone who is going to undertake any major C
programming.

C has become very popular, and it has a number
of factors in its favour. As someone who has to work
with several microcomputers, the ability to use the
same language on several machines without having to
adjust to changes in syntax etc. when changing
machines is a highly attractive one. There is also
the possibility of writing a program for one computer
and then easily converting it for operation on several
other computers, which has an obvious appeal to
virtually any programmer. A lot of computer langu-
ages are supposedly very "portable", but few can
genuinely produce portable programs. C is certainly
an exception, and it is aided in this respect by the
fact that it was quite rigidly defined at the outset.
This has left little scope for authors of C compilers
to do their own thing and introduce non-standard
features. Of course, as with any programming
language the portability of programs is dependent on
add-ons to the language (such as graphics libraries)
either not being used, or being available for any

computer on which the program must be run. Pro-
vided no add-ons of this type are used, C programs
will usually run on other computers with little or no
conversion being necessary.

C is not really a beginner's language. The brevity
of its name is reflected in the program listings which
are almost invariably cryptic in the extreme. I have
heard it described as a high level language for low
level programmers, and this seems a pretty apt
description. It has some features which have parallels
in assembly language, but it is a genuine high level
language with string functions and the like. On the
face of it, C should be easy for someone who has
used BASIC plus assembly language routines, which
means a good many home computer users. Not
everyone with such a programming language finds C
palatable though. A BASIC program line might be
legal in C, but it might not provide the same function.
You have to be prepared to learn C right from the
beginning rather than trying to jump straight in and
produce large programs. In C you have to declare
variables, rather than simply inventing them as you go
along, as in BASIC. This is no great problem as
modern text editors make it easy to go back to the
beginning of a program and add in any variables that
are newly added. You have to get used to this way
of doing things though, and be careful not to over-
look any undeclared variables. The transition from
BASIC to C could be difficult for someone who has
become set in his or her ways. It is a type of language
that is suitable for dabbling in if you are experienced
in another language, and would like to try it out by
producing a few simple programs.

Pointers are usually reckoned to be the most
difficult aspect of C for beginners to grasp. Basically
a pointer is just a variable that selects another variable.
One use of this "indirection" is to enable one pro-
gram module to operate with several sets of data,
with the pointer or pointers being used to select the
desired set. A more common use is to enable a
program to easily access a character within a block
of text, or something of this nature. This type of
thing can only be undertaken in a relatively clumsy
fashion using many programming languages.

Although C is not regarded by all as a structured
language, it can be used for large and structured
programs. It is not a structured program in the sense
that it does not force the use of a highly structured
approach. It is a very powerful and versatile language
which enables you to tinker in an unstructured
manner at a low level if that is what is called for. It
was originally designed for writing operating systems
and other "background" software, but it is used for
a wide range of program types. It is well suited to
small utility programs as well as large projects such as
spreadsheets, databases, and word processors. It is
much used by professional programmers, and is
arguably the fastest programming language for
microcomputers apart from assembly language/
machine code. Probably its main drawback is that it

48

can be easy to make mistakes and difficult to debug
the affected programs.

Pascal and Modula 2
Pascal was written to provide a programming language
that would encourage good (structured) program-
ming techniques, and it was designed by Professor
Niklaus Wirth in the early seventies. A Pascal pro-
gram generally takes the form of a main program
having a series of conditional instructions, plus
sub -programs (or whatever term you prefer) which
the main program branches to. Of course, these
days this is not exactly a unique feature, and a
number of languages permit this structured approach.

Whereas C does little to disguise the way in which
the computer stores and handles data, Pascal has a
so-called "real -world" approach in which there are
strict data types which can only be handled in ways
in which the programming language considers to be
valid. It is very logical in this respect, but possibly
a little limiting. Of course, many languages have
data types, but in Pascal the types can be precisely
defined. If some variables will be integers in the
range 0 to 100, then you can define a data type as
integers in this ramie, and then use this data type
for these variables. With most other languages you
would select the nearest applicable data type from
a list of predefined types. In our example above
this would probably be a simple 8 bit number (0 to
255 in decimal terms), but you might have to use a
multi -byte variable where a single byte would suffice.

Whereas C is rather cryptic, and following pro-
gram listings can be difficult for even an experienced
C programmer, Pascal listings are generally much
easier to follow. You do not have to use long vari-
able names etc., but this is the convention with
Pascal programs. Of course, this improved readability
is at the expense of more typing by the programmer.

Pascal is a good general purpose language which
has been used to produce a great deal of high quality
software. It is not without its drawbacks though.
One of these is that it is relatively difficult to learn
and to fully master. It is a rather fussy language
which makes it difficult to use on a quick trial basis.
It is a matter of doing some determined learning or
not bothering at all! It lacks features compared to
some other popular programming languages, and it
relies heavily on external libraries to augment the
basic language. This is not an uncommon way of
handling things with modern programming languages
but these add-on libraries are perhaps more important
with Pascal than is the case with some of its competi-
tors. Stemming from the lack of features of the
original language, a lot of "improved" variations have
been produced. This makes Pascal less portable than
some other languages, particularly C.

Pascal is intended for use with the structured
"top -down" approach to programming. This is where
you gradually work out the overall structure of a

program, breaking it down into sections and
sub -sections until it is at the stage where you can
begin to write the code. The traditional BASIC
approach is the "bottom -up" method, which is gener-
ally a less well planned ''suck it and see" method.
Top -down programming is often likened to washing
your hands after gcing to the lavatory - everyone
says they do it! What is often seen as a blunder in
the design of Pascal is that the sub -program defini-
tions have to be included in the source program,
which would seem to make it necessary to plan
programs from the top -down and write them from
the bottom -up. I would presume that the idea is to
have the program thoroughly worked out before
starting to write it. There is then no problem in
writing it with the procedure definitions in the
source program. Not everyone gets on well with
such in depth program planning, and the nature of
some programming is to some extent experimental,
where a certain amount of the "suck it and see"
approach is necessary in order to gauge the
feasibility of the project.

Modula 2 tends to be regarded as the successor to
Pascal, although I doubt if dedicated Pascal pro-
grammers see it in this way. It was designed by
Professor Niklaus Wirth, the creator of Pascal. It is

designed to use separately compiled program
modules - something which is not part of the
original Pascal language, but which is present in
some more recent implementations.

The idea behind Modula 2 is to provide a pro-
gramming language that Is analogous to the way
computer and electronic hardware is designed.
Modern electronics is based very much on integrated
circuits which generate electrical signals, or take in
electrical signals and process them to produce a
modified output signal. Even circuits which do not
exclusively use integrated circuits are still largely
composed of electronic "building-blocks" which
produce or process signals. This brings tremendous
advantages for the electronics designer who does not
need to design each circuit from scratch. By using
integrated circuits and established circuit blocks it
is possible to put together quite complex circuits in
a reasonable amount of time. The main tasks of the
electronics engineer are to design the overall system,
to make sure all the blocks fit together properly, and
to design any circuit blocks where existing circuits
do not provide exactly the iequired function.

Software development has tended to lag some
way behind hardware, and the idea of Modula 2 is to
use program modules to permit large programs to be
quickly and easily built up. Rather than hardware
processing electrical signals. it is program modules
processing data. New modules can be produced
where existing ones are inappropriate. The modules
are sometimes called "software chips". Due to its
modular nature, Modula 2 is well suited to large pro-
jects where two or more programmers will undertake
the work. By having rigid rules for input/output,

49

the modules produced by different programmers can
be guaranteed to operate properly together.

This description of Modula 2 is a bit simplistic,
and in practice things are a little more difficult to
fully master. For someone who has become an
expert BASIC programmer the transition to Modula
2 could be a difficult one. For the Pascal program-
mer the transition should be relatively painless.

Being a relatively new programming language,
some implementations lag well behind other popular
programming languages in terms of sophistication and
ease of use. Some recent versions are very good in
both respects, but others tend to be difficult and
cumbersome in use. I have a version of Modula 2
for a powerful 16 bit computer, but with its masses
of files it is barely usable. Modula 2 is not particu-
larly fast by compiled language standards, but again,
some recent implementations are much better in this
respect and comparable to most Cs.

The Rest
This covers the most popular languages for micro-
computers, but there are a larger number of other
languages in use. Some of these are rather specialised
in nature, such as the artificial intelligence languages
Lisp and Prolog, and their many mutations. These
languages do not really meet most people's definition
of "intelligence", and are not capable of original
thought. The idea is to provide a set of rules so that
the program can make an intelligent guess instead of
having to be fed with explicit data in normal com-
puter fashion. For example, the CAD program
AutoCAD is written using Lisp (a list processing
language), and it includes a clever hatching feature.
You indicate a border area, and the computer fills it
in with a predefined pattern of lines. This may not
seem particularly revolutionary, but the AutoCAD
hatching facility goes beyond this basic scheme of
things. You can select objects that will define a
border area, and can also include objects within that
area. The program decides which objects constitute
part of the border and which are within the border
area. It then hatches inside the border, but avoids
drawing over the selected objects within the border.
You do not have to tell the program which is which
- it makes up its own mind. This type of thing can
certainly make programs much quicker and easier to
use, and takes them a step forward in terms of
sophistication. It is something that might become
more common as programmers endeavour to make
their products more powerful than those of the
competition.

Another use of artificial intelligence is in expert
systems. In fact this is probably their main use. One
application of this type is in medical diagnosis, where
an expert system can be used to effectively give a
doctor of relatively little experience some of the
expertise of a consultant. This type of system is
basically a database. However, the "intelligence" is

used to take a list of symptoms and other relevant
information and give a list of possible ailments,
indicating the relative likelihood of each one. The
program is not using some form of magic formula to
come up with the answers - it has to be meticulously
fed with data by an expert, and it is using his or her
experience to work out what are most likely to be the
right answers. For the program to work well it must
be correctly seeded with data by an expert.

Both these languages are available as commercial
programs for some computers, and they are also
available as public domain/shareware software for
certain machines.

Forth is a language that seemed likely to become
very popular at one time, but is something of a rarity
these days. Apparently it was originally designed for
the control of radio telescopes. It is well suited to
other control applications though, and could poten-
tially be used in a wide range of applications. It has
been described as being as difficult to learn as
assembler while having the operating speed of BASIC.
This is something of an exaggeration, and it is gener-
ally very much faster than an interpreted BASIC.
It is somewhat lower level language though, and as
such it is that much more difficult to master. It is a
threaded interpretive language rather than a truly
compiled type, which helps to give it the speed edge
over an interpreted language such as a (non -compiled)
BASIC. In effect, the source program statements are
stored in a semi -interpreted form so that they can be
quickly turned into a fully executable form and run
when the program is run. With fully compiled
languages now so commonplace the speed of Forth is
perhaps less impressive than it once was. Also, with
computers generally having much larger memories
these days, a range of compiled languages (which
tend to require large amounts of memory) are now
available for most machines.

Forth's main claim to fame is its dictionary of
instructions. The user can define new commands and
add them to the dictionary, and they are then treated
just like the original command words. This gives a
form of modular approach with parts of a program
being defined as new command words which can then
be used as and when required.

Forth is certainly a very versatile language, but
many programmers simply prefer to use assembly
language where speed is important, or BASIC where it
is not. It is available commercially for a number of
computers, and there are also shareware/public
domain versions for some machines. It is an interest-
ing language to try out, but its reverse Polish notation
is rather back-to-front compared with conventional
notation, and it could take some getting used to.

C++ is a language which seems to have gained a fair
amount of attention recently. It is an extension of C
which permits object orientation. This subject is
sufficiently involved to defy quick and meaningful
explanations, and an in-depth study of the subject
would seem to be in order if you wish to gain a real

50

understanding of this subject. Apparently C++ was
inspired by a language of the 1960s called "SIMULA",
which was intended for programming real-time
simulations. Another language inspired by SIMULA
is "Smalltalk", which was produced by Xerox Parc
in the 1970s. The most notable feature of Smalltalk
is its use of windows and mice, and it is generally
regarded as having inspired the use of these in the
Macintosh and subsequent WIMP computers/soft-
ware. It does in fact have a number of novel features.
and is a very interesting language. However, it is

something of a rarity, and finding a full implementa-
tion of Smalltalk for your particular computer could
prove to be difficult (or impossible).

Fortran is a language which exists in both com-
piled and interpreted forms, but is normally compiled.
There is more than one version of this language, but
"Fortran 77" is the "standard" version. It is aimed
primarily at scientific and engineering applications.
Unlike BASIC and Forth which are often used in these
same areas of application, it is more specialised and
is little used for any other purposes. It is almost
certainly the best choice for the majority of scien-
tific and engineering applications. Its main drawback
is that there are few (if any) low cost versions of this
language. Also, like many advanced high level
languages, it is mainly used on 16 -bit systems rather
than 8 -bit types.

51

fr
.2 -NV* f

."
4.:

!FOP_
r ,

y

r,
.4.4

-10

.47 -

VT3f

1.! AlF4.-114;)il ..d
4:..

.fa. #

Chapter 4

NUMBERING SYSTEMS

The numbering system we use in everyday life is, of
course, the decimal system, or "denary" system as it
is alternatively known. This method of numbering is
based on the number 10, but it is quite possible to
have a system based on any number. There is normal-
ly no point in doing so, and the old imperial measures
which were based on a variety of numbers (twelve in
the case of feet and inches for example) are now well
on the way to being phased -out in favour of the
metric system. Truly "metricated" computers seem
to be some way off, and for the foreseeable future
they will work in binary.

Binary Numbers
I suppose that binary could reasonably be regarded as
the simplest possible method of numbering. It is

based on the number two, and where in the decimal
numbering system the single digit numbers are from
0 to 9, in binary they are only from 0 to 1. In other
words, the only valid number for each digit is 0 or 1,
and absolutely nothing else is allowed! This might
seem to be a pointless way of handling numbers, but
it is very convenient from the hardware point of view.
Representing just two numbers by an electrical signal
is very easy. A low voltage (normally about 2 volts or
less) is used to represent a 0, and a higher voltage
(usually about 3 to 5 volts) represents a 1. These
signal levels are often called "low" and "high" respec-
tively, or "logic 0" and "logic 1". Although conveni-
ent for the hardware producers, this system has its
limitations and drawbacks. There have been sugges-
tions over the years that circuits which can work
directly in decimal will be a practical proposition for
widespread use before too long, but there seems to be
little real prospect of such a development in the near
future. For the time being circuits which work in
binary are the only practical ones for general use.

Binary is easier to understand if you first analyse
what an ordinary decimal number represents. If we
consider the decimal number 238 for instance, the
eight represents eight units (10 to the power of 0),
the 3 represents three tens (10 to the power of 1),
and the 2 represents two hundreds (10 to the power
of 2). Things are similar with a binary number such
as 1101. Working from left to right again, the
columns of numbers respectively represent the units
(2 to the power of 0), the 2s (2 to the power of 1),
the 4s (2 to the power of 2), the 8s (2 to the
power of 3), and so on. 1101 in binary is therefore
equivalent to 13 in decimal (1 + 0 + 4 + 8 = :3).

It takes a lot of binary digits to represent numbers
of quite modest magnitude, but this is the price that
has to be paid for the convenience of simple birary
hardware. A binary digit is normally contracted to
the term "bit". One bit on its own is of limited value,

and bits are normally used in groups of eight, or
multiples of eight. A group of eight bits is normally
termed a "byte". A byte can only handle numbers
from 0 to 255 (decimal). This is adequate for some
purposes, but often larger values must be handled. A
16 bit binary number is usually termed a "word",
and this gives a range of 0 to 65535 (decimal). 32
bits gives a range of 0 to something over four thou-
sand million, which should be adequate for most
purposes. A 32 bit number is normally termed a
"long word".

You can not do much computing without coming
across the term "k". This is the abbreviation for
"kilobyte", which is a thousand bytes. In fact, to be
precise, it is 1024 bytes. This may seem to be an odd
number to choose, but a .0 bit binary number covers
a range of 0 to 1023, or 1024 different values in
other words. The extra 24 on each k is often not of
great significance, but it .s interesting to note that a
computer with a "megabyte" of memory has
1048576 bytes of memory. Not a million bytes, and
some 47k to 48k above the million byte mark. A

"megabyte", which is often abbreviated to just "M",
is the usual unit of measurement for large amounts
of data, RAM, or whatever.

This table shows the number represented by bits
in 16 bit numbers, and this might help to clarify the
way in which the binary system operates. The
numbers in the table are the ones that the bits
represent when a I is present in that column of the
binary number. If there is a 0 in a column, then that
column always contributes 0 to the value of the
number. We are using tie convention of calling the
units column bit 0, running through to bit 15 for the
left -most column (not bits 1 to 16). The units
column is often called the "least significant bit", or
"LSB" for short. Bit 31 (or the left -most column
that is actually used) is termed the "most significant
bit", or just "MSB".

Bit Decimal Value Bit Decimal Value
0 1 8 256
1 2 9 512
2 4 10 1024
3 8 11 2048
4 16 12 4096
5 32 13 8192
6 64 14 16384
7 128 15 32768

Addition of two binary numbers is a straight-
forward process which is really more simple than
decimal addition. Here is a simple example of binary
addition.

53

First number 240 11110000

Second number 85 01010101

Answer 325 101000101

As with decimal addition, start with the units
column and work towards the final column on the
left. In this case there is a 1 and a 0 in the units
column, giving a 1 in the units column of the answer.
In the next column two Os give a 0 in the answer,
and the next two columns are equally straight-
forward. In the fifth column there are two Is to be
added, giving a total of 2. Of course, in binary the
figure 2 does not exist, and this should really be
thought of as 10 (one 2 and no units), and it is

treated in the same way as 10 in decimal addition.
The 0 is placed in the answer, and the 1 is carried
forward. In the seventh column this gives a total of
3 in decimal, but in this binary calculation it must be
thought of as the binary number 11 (one 2 and one
unit). Therefore, 1 is placed in the answer and 1 is
carried forward. In the eighth column this gives an
answer of 10, and as there are no further columns to
be added, both digits are placed in the answer.

Signed Binary
The binary system described so far, which is often
called "direct binary", is inadequate for many
practical purposes. Its main drawback is that it can
not handle negative numbers. Obviously you can
simply add a minus sign ahead of a binary number
to indicate that it is a negative number, but you have
to bear in mind that for computer applications this
is not valid. There is logic 0 and logic 1, but no
logic - level!

One way around the problem is to use "signed
binary". With a signed binary number the first bit
is used to denote whether the number is positive or
negative. The convention is for the first bit to be a
0 for positive numbers and a 1 for negative numbers.
With this system the normal 8 bit range of 0 to 255 is
replaced with a range of -127 to +127 (11111111 to
01111111). The problem is solved at the expense of
decreased maximum magnitude for a given number of
bits. Note though, that where two or more bytes (or
words or long words) are used together to form a
large number, only the most significant bit of the
most significant byte needs to be used to indicate the
sign of the number. It is not necessary to sacrifice
the most significant bit of each byte to this task.

Obviously a certain amount of care needs to be
exercised when dealing with binary numbers, and you
must know whether you are dealing with direct or
signed binary numbers. For instance, 10000001 could
be 129 (direct binary) or -1 (signed binary). I have
encountered computers which have a binary to
decimal conversion facility, and which seem to get
confused in this way. Results were as expected for
answers up to 32767, but things went completely
wrong with high numbers. This happens where the

computer operates with binary numbers of up to 16
bits in length, and it interprets any values it is fed as
signed binary. This works fine if you know that it is
working with signed binary. It also works fine if it is
fed with binary values of 15 bits in length or less.
The leading zeros then inform the computer that the
number is a positive one, and the right answer is
obtained. For numbers of more than 32767 the most
significant bit is a 1, telling the computer that it is a
negative number, even if you require a direct binary
conversion.

In this basic form the signed binary system has its
limitations. The problem is that although it can
represent a wide range of positive and negative values
perfectly adequately, calculations on simple signed
binary numbers do not give the correct result. This is
of only academic importance to users of high level
applications programs and applications software.
You give the computer such numeric data, positive,
negative, or a mixture of the two, and everything is
sorted out for you. It is something that is of greater
importance to the low level (assembly language or
machine code) programmer. Confusing results can be
obtained unless you understand just how the micro-
processor is handling things.

Ones Complement
The simple calculation shown below illustrates the
problem that occurs using simple signed binary.

First number 16 00010000

Second number -5 10000101

Answer -21 10010101

Adding 16 to -5 should obviously give an answer
of 11 and not -21. What is happening is that the
negative sign of the -5 is being added to the answer
so that the answer must always be negative if one of
the numbers being added is a negative type. This is
clearly incorrect, as in this example. The main bodies
of the numbers are simply added together, and their
signs are ignored. Negative values therefore incre-
ment the figure in the answer rather than decrement-
ing it.

An alternative and related method of handling
binary numbers is the "ones complement system".
Here a negative number is the complement of its
positive equivalent. For example, 16 is 00010000 in
binary, and so -16 is 11101111 in ones comple-
ment binary. In other words, the Os are simply
changed to Is and the 1 s are changed to Os. This
gives much better results when used in calculations,
as demonstrated by the example given below.

First number 16 00010000

Second number -5 11111010

Answer 266 100001010

54

I suppose that on the face of it this answer is even
further from the right answer than when simple sign-
ed binary was used. The margin of error is certainly
much greater, but the usefulness of this system
depends on how the answer is interpreted. The first
point to note is that the positive number starts with a
0 while the negative number has a 1 as the first digit.
Provided sufficient digits are used this will always be
the case, and in this respect the ones complement
system is the same as straightforward signed binary.
The answer is completely wrong of course, but if the
carry is ignored the answer is much closer to the right
one. The answer is then 1010 in binary, or ten if
converted to decimal. This is just one away from the
right answer. So what happens if we try another
example and ignore the carry.

First number 32 00100000

Second number -4 11111011

Answer 27 00011011

As before, the answer is wrong but it is just one
less than the right answer (which is of course 28 in
this case).

Twos Complement
Clearly this system can be made to operate correctly,
and it is just a matter of finding some way of correc-
ting the minor error in the answer. The standard
method used with most microprocessors is called
"twos complement". This differs from ones
complement in that once the complement of a
number has been produced, one is added to it.
Therefore, rather than -5 being represented as

11111010, it becomes 11111011 in twos comple-
ment. If we now apply this to one of the examples
given earlier we obtain the following result.

First number 16 00010000

Second number -5 11111011

Answer 11 00001011

This time, provided we ignore the carry, we do
indeed obtain the correct answer of 11. This is a
convenient way of handling subtraction (for micro-
processors if not for humans), since subtraction can
be carried out by the same circuit that handles
addition. To handle a calculation such as 45 - 25
the value of 25 is converted to twos complement
and then added to 45. In other words, instead of
handling this calculation in the form 45 - 25 it is

undertaken in the form 45 + (-25), and either way
the answer is 20.

The following table shows some sample numbers
in twos complement form, and this should help to
clarify the system for you. Note that, like ordinary
signed binary, the first digit is used to indicate
whether the number is positive or negative.

Number Positive Negative
0 00000000 00000000
1 00000001 11111111
2 00000010 11111110
3 00000011 11111101
4 0000C100 11111100
32 00100000 11100000
126 01111110 10000010
127 01111111 10000001
128 010000000 10000000

Note that with 8 bit twos complement numbers
the range is from -127 to +128 (not -127 to +127
as with simple signed binary).

So far we have only considered calculations where
the answer is a positive quantity, but the twos
complement system works equally well if the answer
is negative. This point is demonstrated by the
example provided below.

First number 16 00010000

Second number -31 11100001

Answer -13 11110001

The twos complement system also functions
properly when the two numbers being added are both
negative, as in this example.

First number -4 11111100

Second number -8 11111000

Answer -12 11110100

Binary Coded Decimal
Several microprocessors can operate using another
form of binary called "binary coded decimal", or
just "BCD". This is a somewhat less compact and
efficient form of binary, it is generally somewhat
slower, and it is not used in most applications. It
does have its advantages though, and the main one
is that it can be used to provide a very high degree
of precision.

With BCD four binary bits (often termed a

"nibble") are used to represent each decimal digit.
The system operates in tie manner shown below.

Decimal Number Binary Code
0 0000

1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

55

The binary number is in fact just the ordinary
binary bit code for the number concerned, and it is
only for numbers of more than 9 that the system is
different. The binary codes from 1010 to 1111 are
unused, and all two digit decimal numbers require 8
bit BCD codes. For instance, the decimal number 64
would be represented by the 8 bit BCD code
01100100. The first four bits (0110) represent the
six, and the second four bits (0100) represent the
four. Each byte can therefore represent any two
digit decimal number from 0 to 99, which compares
to a range of 0 to 255 for an ordinary 8 bit binary
number. This helps to contribute to the relative
inefficiency of the BCD system. Of course, when a
nibble is incremented by 1 from a value of 1001 (9
in decimal) it does not go to 1010 (which is an illegal
code in BCD), but cycles back to 0000. A carry
forward of 1 should then be taken to the next BCD
nibble.

With this system there is no difficulty in handling
large numbers, and it is just a matter of using several
bytes in order to accommodate the required number
of digits. Negative numbers and decimal points can
also be handled with ea:2 by this system, but this
requires several additional bits. This information is
usually carried in the most significant bits (i.e. the
left hand end of the number). Some microprocessors
perform BCD calculations by performing calculations
in ordinary binary and then adjusting the result, but
some have a true BCD operating mode.

Hexadecimal
Hexadecimal is a numbering system that you are
almost certain to encounter a good deal. It is usually
called by its abbreviated name of "hex". A problem
with binary numbers is that they tend to have many
digits with each one being a 0 or a 1, which makes
them rather difficult to deal with in many circum-
stances. For instance, dealing with 16 or 24 bit
addresses or microprocessor instruction codes in their
binary form would probably be beyond most peoples'
ability. On the other hand, binary numbers give a
graphic representation of each bit in the register of a
microprocessor, control register of a peripheral chip,
output terminals of a printer port, or whatever. This
is something that is often important, especially when
dealing directly with the peripheral chips of a com-
puter. Decimal numbers are much easier to deal with
in that they are much shorter and are in a more
familiar form. Unfortunately, a decimal number does
not give much idea of the state of each bit in its
binary equivalent. Converting a decimal number to
its binary equivalent is not a particularly quick or
easy process (without the aid of some computerised
help anyway). Decimal numbers are consequently
rather inconvenient when things must be visualised
on a bit by bit basis.

The hexadecimal system gives the best of both
worlds in that it takes just a few digits to represent

even quite large numbers, and it is in fact slightly
better than the decimal numbering system in this
respect. On the other hand, it is quite easy to convert
hexadecimal numbers to their binary equivalents
when the state of each bit must be known. The con-
version process is quite simple even with very large
numbers. The hexadecimal system is based on the
number 16, and there are sixteen single digit numbers.
Obviously the numbers we normally use in the
decimal system are inadequate for hexadecimal as
there are six too few of them. This problem is over-
come by augmenting them with the first six digits of
the alphabet (A to F). It is from this that the system
derives its name. The table given below helps to
explain the way in which the hexadecimal system
operates.

Decimal Hexadecimal Binary
0 0 0000

1 1 0001
12 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111
16 10 10000
17 11 10001
18 12 10010
163 A3 10100011

What makes hexadecimal so convenient is the ease
with which multi -digit numbers can be converted into
binary equivalents. The reason for this is that each
hexadecimal digit represents four binary bits. Take
the hexadecimal number A3 in the above table for
example. The digit A represents 1010 in binary, and
the digit 3 converts to 0011. A3 therefore represents
10100011 in binary. You may find that you can
memorise each of the sixteen four bit binary codes
represented by hexadecimal digits, but a little mental
arithmetic is all that is needed in order to make the
conversion if you can not.

The digits in a hexadecimal number represent,
working from left to right, the number of units, 16s.
256s, 4096s, 65536s, 1048576s, and 268435450s
(approx.). You are unlikely to use hexadecimal
numbers of more than eight digits in length, and
mostly you will probably only deal with hexadecimal
numbers having four digits or less.

56

Octal
Although the octal numbering system was much
used in computer circles at one time, it seems to have
fallen from favour. Hexadecimal now seems to have
superseded it. As its name suggests, it is based on
the number 8. The columns of figures therefore
represent the units, 8s, Ms, 512s, 4096s, 32768s,
etc. Only the first eight digits (0 to 7) of the
decimal numbering system are utilised by the octal
system, and so neither 8 or 9 are legal characters in
octal.

In common with hexadecimal, octal helps to keep
the number of digits in large numbers down to
reasonable proportions, but it can easily be converted
into binary if the state of each bit must be known.
Whereas each hexadecimal digit represents a four bit
binary code, each octal digit represents just three
binary bits. With modern computing being based on
8 bit bytes, or multiples of eight bits, the three bit
octal codes are less than totally convenient. It is

probably this factor that has led to its decline in
favour of the hexadecimal system. Here is a list of
octal digits and the three hit binary codes that they
represent.

Octal Digit Binary Code
0 000

1 001
2 010
3 011
4 100
5 101
6 110
7 Ill

As with hexadecimal digits, the binary codes they
represent are just the standard codes for the numbers
concerned. It is probably not worthwhile taking the
time to familiarise yourself with the octal numbering
system as it is rarely if ever encountered in practice
these days.

Conversions
Conversion from hexadecimal to binary is, as we have
already seen, fairly straightforward. With a little
experience a little mental arithmetic is all that is

needed to make this type of conversion. Conversion
in the opposite direction is equally simple. It is just a
matter of breaking down the binary number into four
bit groups and then converting each group to its
corresponding hexadecimal digit.

Conversions that involve decimal numbers are a
little more difficult to deal with. The easy way of
handling the problem is to use a computer to make
the conversion. Most BASICs can provide a hexa-
decimal to decimal conversion. If the computer
accepts hexadecimal numbers with (say) a "&H"
prefix to indicate that they are in hexadecimal, then
giving the instruction:

PRINT &HXXXX RETURN

where "XXXX" is the hexadecimal number to be
converted, should result in the decimal equivalent
being printed on the screen. A conversion in the
opposite direction might also be possible, and this is
most commonly found in the form of a HEX$
function You may even find that decimal to octal
conversion is possible using an OCT$ function (as in
Amiga BASIC for instance), although these days such
a function would seem to be of largely academic
interest.

Bitwise Operations
In computing numbers are not only manipulated
using the normal mathematical functions. There are
also the "bitwise" operations called "AND", "OR",
and "XOR". These compare two binary numbers
(literally) bit -by -bit, and the answer produced
depends on the combination of Os and Is present in
each column. ANDing produces a 1 in the answer
only if there is a 1 in that column of both the num-
bers being ANDed. In other words, if a bit is set to 1
in the first number and the second, a 1 is placed in
that bit of the answer. Hence the "AND" name of
this logic operation. Here is a simple AND example.

First number

Second number

Answer

15

243

3

00001111

11110011

00000011

The answers obtained from bitwise operations can
tend to look a bit random unless you consider what is
happening on a bit by bit basis. A common use of
the bitwise AND function .s when less than all eight
bits of a byte must be read. For instance, assume
that we wish to know the state of bit 3 of a register
in a peripheral device. Most computer systems do not
provide any means of reading just bit of memory or
peripheral devices. One way around the problem is to
use a bitwise AND operation to mask off the unwant-
ed bits. In this case bit 3 represents eight when it is
set to logic 1, and so the masking number to use is
eight (00000100 in binary). In the answer all the bits
except bit 3 must be set to zero, as there is no way
they can be set to 1 in both numbers. The situation
is different for bit 3, where both bits could be at logic
1 if the second number also has this bit set to 1. The
answer therefore reflects tie state of bit 3 in the
second number, and is eight if this bit is high, or zero
if it is at logic 0. The ANDing provides the desired
function with, in effect, only the required bit being
read. It is possible to read more than one bit if
desired. Just set any bits wnich must be read to logic
1 in the masking number - set any bits which must
be masked off to logic 0 in the masking number.

Bitwise ORing is a similar process to ANDing, but
a 1 is placed in a bit of the answer if there is a 1 in
that bit of the first number, or the second number,

57

or both. XORing differs from ORing in that it will
place a 1 in a bit of the answer if there is a 1 in that
bit of the first number or the second, but not if there
is a 1 in both bits of these numbers. A common use
of these bitwise operations (and the AND function)
is in computer graphics. They are often used to

ensure that the desired effect is obtained where one
on -screen object overlaps another.

Note that many BASICs have AND and OR func-
tions. but these can not always be made to operate
in a bitwise manner. These bitwise operations should
always be available at machine code level though.

58

Chapter 5

OPERATING SYSTEMS

An operating system is one of those things that almost
defies description. Practically every computer has
what could be described as an operating system, and
practically every time you get a computer to do
something, however trivial, you are almost certainly
making use of the operating system (even if only in
an indirect manner). With a lot of home computers,
when you switch on the machine it loads and runs its
BASIC interpreter. With a computer of this type the
operating system is largely hidden from the user, and
it may be virtually inseparable from the BASIC
interpreter program.

The operating system is usually more obvious with
business computers where you are normally "in" the
operating system once the computer has gone
through its initial start-up and checking procedure.
Some business computers are set up as "turnkey"
systems, where they automatically run an applications
program after the initial testing routine has been
completed. In fact a system of this type still goes
into the operating system after the initial checking
routine, but the operating system is set up so that it
automatically runs the applications program.
Although the user may not be aware of it, the
applications program will almost certainly make
extensive use of the operating system.

Purpose
So just what is the purpose of an operating system?
Its main function is to provide a set of routines to
control input and output. In most cases any form of
input or output is via the operating system, which
means such things as the keyboard and the monitor
screen as well as printer and serial ports. In other
words, it provides a link between the microprocessor
at the heart of the computer, and the various peri-
pheral devices that connect it to the outside world.
We are not talking here about physical links, but of
software routines that control everything. These
routines are usually available to the user via com-
mands typed from the keyboard, so that tasks such
as copying discs or printing out a disc file can be
undertaken. They can also be accessed by applications
programmers. It is not usually obligatory to access
the peripheral chips via the operating system, but it
is a convenient way of handling input and output.
Why bother to write routines to control the peri-
pheral devices when they are already there in the
operating system just waiting to be used? Well, there
is one reason which is speed. Where an application
demands speed and the operating system proves to be
inadequate in this respect, most programmers simply
access the peripheral devices directly in an attempt
to improve matters.

This is not necessarily something that is of purely
academic importance. A purpose of many operating
systems (including CP/M and MS-DOS) is to provide a
standard input/output interface for applications
programs. In other word;, although two computers
might have substantial differences in their hardware,
provided they have the same operating system, an
applications program designed to operate under that
system should work equally well on either computer.
In effect, where necessary the operating system soft-
ware will disguise one piece of hardware to make it
appear to operate like another (and similar) piece of
hardware. It is this type of manipulation that can
tend to slow down an operating system. If an
applications programmer writes a program to directly
access the input/output chips, assumptions have to be
made about which chips the computer will use, and
where they will appear in the input/output map. In
practice this means that the program becomes
"machine specific", and is unlikely to run on any
other computer even if it is running under the appro-
priate operating system. The practical result of this
is that computers designed for one of the popular
operating systems do not just use the same micro-
processor as other machines designed for that operat-
ing system, but all their hardware is usually very
much the same. The best example of this is the
IBM PC and its derivatives such as the AT. There
are countless IBM PC compatibles in existence, most
of which are the same basic design as the original,
albeit in somewhat disguised form in the majority of
cases.

Using an Operating System
There are several operating systems in common use
these days, and although they have many differences,
they also have a number of features in common.
When you are "in" an operating system there is
normally a "prompt" to indicate that the computer
is ready and waiting for a typed command. This is
often a ">" symbol, but others are used and there
may be several options. Often the prompt is preced-
ed by a letter to indicate which disc drive you are
"in". All this means is that unless you specify a
particular drive, or other input/output device, the
computer will assume that the current drive is the one
that should be used as the source for input or the
destination of any output The drives are usually
named "A", "B", "C", etc., but other methods of
identification are also used. For instance, in
AmigaDOS the drives are called "DFO", DF1", etc.
("DF" presumably standing for "drive -floppy").

Most modern operating systems permit the disc
drive of a single drive system to operate as both drive

59

"A" and drive "B". This is not always possible, and
it is not a feature of CP/M prior to CP/M version
3.0 (or "CP/M Plus" as it is often called). A lack of
this facility limits the usefulness of a single drive
system as there may be no way of copying disc files
or backing -up complete discs. Where it is permitted,
how can one drive act as two? Nothing particularly
clever is needed in order to achieve this, and it is just
a matter of the drive acting first as drive "A", then as
drive "B", then as drive "A" again, and so on. This is
not quite as good as having two drives as a large
amount of disc swapping can be needed. Some pro-
grams are unusable on a single drive system as they
would require an inordinate amount of disc swapping.

AmigaDOS does not allow one disc drive to act as
two, but it still permits disc copying and similar func-
tions to be carried out without any difficulty. There
is more than one way of achieving this type of thing,
but the usual AmigaDOS method is to use discs as
logical devices. The precise way in which logical
devices are treated varies from one operating system
to another, and AmigaDOS is rather more advanced
than many in this respect. The general idea of logical
devices is to have a number of notional devices (the
logical devices), and the actual (physical input/output)
devices of the computer. Usually it is possible to
assign logical devices to actual devices. For instance,
"PRN" might be the notional printer device, and by
assigning this to the second serial port, this port
would effectively be made the printer port. The usual
way of identifying logical devices is to use a colon
(:) at the end of the device name.

If AmigaDOS encounters a logical device name
that is not one of its normal devices (such as the
keyboard, printer port, etc.) it assumes that this
device is a disc. I do not mean that it assumes this
device to be a disc drive - I mean it assumes it is a
floppy disc. Many operating systems permit
"labelling" of discs, where the disc is given a name
which is actually stored on the disc. In most cases
though, this is not of any great significance, and
its purpose is much the same as a paper label stuck on
a disc for identification purposes. With some operat-
ing systems, including AmigaDOS, the naming of
discs is of greater importance. If you wish to (say)
copy a file from one disc to another, you can use
the name of the source disc (complete with colon)
followed by the file name, and the name of the
destination disc (again complete with colon). The
computer then knows precisely what it must do,
and it then tells you when to place which disc in
which disc drive. If the system only has a single
drive, then this drive will always be used for any
reading from or writing to disc. Th:s method can
seem to be a little fussy and awkward when com-
pared to systems which simply use one drive as
drives "A" and "B". It certainly needs a certain
amount of planning in that it only works properly
if you name each disc before starting to use it. It is
really a very advanced and versatile way of handling

things, and is especially good for those with single
drive systems.

The Commands
An operating system can be used to perform a variety
of input/output related tasks, but just what are these
tasks? The exact facilities available varies consider-
ably from one operating system to another, but basic
ones such as disc copying and formatting should be
available on any operating system. In the section that
follows this there is an alphabetical list of MS-DOS
commands, together with a brief explanation of each
one. Some of the more obscure commands which
defy brief explanation have been omitted. This list
gives a good idea of the types of task that can be
undertaken using a typical operating system. With
most operating systems there are two basic varieties
of command; "internal" commands and the "exter-
nal" type. An internal command is one that is loaded
into the computer's memory when the operating
system is "booted". Internal commands are therefore
available at any time. The frequently used commands
such as "copy" are mostly of the internal type. An
external command is one which is stored on disc,
and which is consequently only available if that disc
can be accessed by the computer.

An obvious omission from the list of commands is
one to run application programs. With MS-DOS, and
most other operating systems, it is merely necessary
to type the name of the program and press the
"RETURN" key in order to run an applications
program, and there is no "RUN" command as such.

Assign
Assign is used to assign a different drive letter to a
disc drive This is mainly used where an applications
program does not let you use the drive or drives you
wish to use. With the assign command you can get
such a program to use one disc drive while it thinks it
is using a different one.

Attrib
This command sets or resets the read only attribute
of a file, or it can be used to display the current state
of this attribute. Discs can be write protected via
their write protect tab, but most operating systems
also allow for software write protection of discs, or
in some cases (including MS-DOS) individual files can
be write protected.

Backup
Backup is used to make backup copies of discs as
insurance against the original becoming lost or
damaged. In practice it is mainly used with hard disc
machines to backup the hard disc onto a number of
floppy discs.

Break
It is possible to break out of some operating system
activities (even from within applications programs) by

60

pressing the "CONTROL" and "C" keys. Normally
the operating system only checks for this break
sequence when reading the keyboard, or writing to
the screen or printer. The break command can be
used to extend the break sequence to other activities
such as reading from and writing to discs.

Chdir
Chdir is an abbreviation for "change directory". In
fact MS-DOS accepts the further abbreviation of "cd".
Directories and sub -directories are mainly used with
hard discs, although they can (and sometimes are)
used with floppy discs. Directories and sub -
directories divide a disc into what are effectively
separate compartments. If, for example, a computer
is to be used to run a spreadsheet, a word processor,
and database program, these could each be given their
own directories. Initially the operating system is in
what is called the "root" directory, and the director-
ies for the three programs would really be sub -
directories of the root directory. However, the
convention is for sub -directories of the root directory
to be called directories. Sub -directories of these
directories are called sub -directories, as are any sub -
directories of the sub -directories (they are not called
sub -sub -directories). You can have a large number of
sub -directories if desired, and this is often a con-
venient way of doing things. For instance, the three
programs could each have a separate sub -directory for
each month's data. This would make it relatively
easy to track down a required file. With floppy discs
the limited capacity of each one tends to compart-
mentalise data for you so that, provided you label the
discs sensibly, it can be easily located and retrieved at
a later date. With hard discs having a typical capacity
of around 40 megabytes these days, finding data can
be a protracted business unless the disc is sensibly
organised into directories and sub -directories. In fact

you can keep branching into ever deeper levels of
sub -directories indefinitely, but it is best to keep
things within reason. Otherwise the use of sub -
directories might make matters more difficult rather
than easier. The normal way of showing the arrange-
ment of sub -directories is to use a directory "tree",
as in the example of Figure 5.1.

Chicdsk
This is a disc checking command, and it simply
checks the disc in the specified drive for errors. A
report on the disc is printed on the screen.

Cls
This simply clears the terminal screen, and is similar
to the BASIC CLS command.

Command
This command starts the command processor (the
program which contains all the internal MS-DOS
commands). This instruction is usually run auto-
matically at switch -on, and does not normally need
to'be run again thereafter.

Copy
Copy is one of the most frequently used commands,
and it is mainly used to copy a file on one disc to
another disc. It is more flexible than this though,
and it can be used to copy data from any file or
device to any other file or device. As a couple of
examples, it is quite possible to copy input from the
keyboard to a disc file, or to copy data from a disc
file to a serial port.

Ctty
Normally commads are issued from the keyboard, or
what is called the "console" in MS-DOS terminology.
The ctty instruction enables a different source to be

Root

Database
I

WordProc Sprds-it

Jan88 Feb88 Mar88 Apr88 May88 Jan88 Feb88 Mar88 Apr88 May88

Jan88 Feb88 Mar88 Apr88 May88

Fig. 5. 1 An example directory tree

specified as the source for commands, such as a
serial port.

Date
Used to set the date on the MS-DOS clock/calendar.

Del
This is the delete command, and it deletes the
specified file or group of files. Like a number of
other MS-DOS commands, it accepts so-called
"wildcards". This is where you use dummy char-
acters in a filename, and MS-DOS then accepts any
character in that position. The dummy character
is an interrogation mark ("?"). MS-DOS filenames
consist of the main name followed by an "exten-
sion", which is a further group of up to three
characters. The two parts of the name are separated
by a fullstop (.). Some extensions have special
significance to the operating system, and must not be
used out of context. There are also some conven-
tions that it is best to adhere to. The standard
MS-DOS extensions are listed below.

EXE
COM

BAT
SYS
DOC
TXT
BAK
BAS
H LP
OVL
OVR
MSG
$$$

An executable program.
An MS-DOS command (also used
for any short programs).
A batch file.
A system file.
A text (document) file.
A text file.
A backup file.
A BASIC program file.
A help file.
A program overlay file.
A program overlay file.
A program message file.
A temporary file.

A "*" character can be used in place of the main
file name and (or) the extension if the delete com-
mand must be applied to any main filename and (or)
extension. Thus "*.*" would be used to delete all
the files in a directory or on a floppy disc, and
"*.BAK" would be used to delete all the backup
files.

Dir
This is the directory command, and it simply lists
all the files in the specified directory. It provides
some basic information such as the time and date
each file was created, and the amount of space left
on the disc.

Diskcomp
This compares two discs and reports that they are
the same, or not, as the case may be.

Diskcopy
The diskcopy command simply makes a copy of a
disc. It copies the disc track by track, and sector by

sector, so that any sub -directories are copied and not
just the root directory. It can only be used with
floppy discs, and can not be used with hard discs.

Fdisk
The fdisk command is used to configure a hard disc
for use with MS-DOS, and it must be run before a
hard disc can be used with MS-DOS. Once the disc
has been configured, fdisk should not be needed
again.

Find
A little known but potentially useful command. It
searches for a string of characters in a file or series of
files (rather like the find facility found in many
word processors).

Format
This command simply formats the disc in the speci-
fied drive. It is used with both floppy and hard discs.

Keybxx
In its normal state MS-DOS is configured for use with
an American layout keyboard. By running the appro-
priate keybxx program MS-DOS can be reconfigured
for a different type of keyboard (keybuk for use with
U.K. layout keyboards for example).

Label
Places a volume label onto a disc. This label can be
up to eleven characters in length. Like file names.
letters and numbers are acceptable in labels, but these
characters are not: * ? / \ . , : ; + = <> [j .

Mkdir
This is the make a new directory command. It does
not move the system into the new directory, it simply
creates it.

Mode
This sets the operating mode for certain input/output
devices. It is used for such tasks as setting the baud
rate and word format of serial ports, the screen
display mode, and directing printer output to a serial
port.

More
The more command sends output to the console
(monitor screen) one screen -full at a time. The
"RETURN" key is pressed to move on from one
screen -full to the next.

Path
Normally MS-DOS only searches the current direct-
ory for external commands. The path command can
be used to direct it to another directory if it fails to
find a command program in the current directory.

Print
This command enables a file to be sent to a printer,

62

but it is not the same as using copy to provide this
function. It provides background printing, which
means that you can issue further MS-DOS commands
while the operating system is working away in the
background sending out data to the printer.

Prompt
The prompt command can be used to change the
MS-DOS prompt. In fact it can be used to do some-
what more than this, such as changing the display
colour on suitable systems.

Ren
This instruction is simply used to rename a file.

Replace
The replace command provides an easy way of
replacing old files with new files. It is mainly
intended for use when replacing existing software
with an updated version.

Restore
As explained previously, the backup command is
used to take backup copies of files. If disaster
should strike and (say) the hard disc is accidentally
formatted (which removes its previous contents),
restore is the command that is used to take the data
on the backup discs and replace it on the hard disc.

Rmdir
This is rather like the delete command, but it is for
directories and not files. You can not remove a
directory unless all the files in it have been deleted
(a factor which is common to all the operating
systems I have encountered).

Sort
Using this command the contents of a file are read,
sorted into alphabetical order, and then printed out
on the screen of the monitor.

Tree
The tree command lists the path of each directory
and sub -directory on the specified drive. It just
gives a list, it does not draw out a directory tree
diagram!

Type
This command displays the contents of a file on the
screen. With a large file the screen will probably
scroll far too rapidly to permit its contents to be
read properly. Pressing "CONTROL" and "s" can
be used to start and stop the "typing", as required
(or the "more" command can be issued together
with the "type" command).

Ver
Issuing the ver (version) command simply results in
the particular version of MS-DOS in use being printed
on the screen.

Verify
This command turns the verify switch on or off. In
other words, when data is written to a disc the com-
puter verifies that the data has been successfully
stored on disc, and gives a warning message if it can
not be stored on disc in uncorrupted form.

Vol
This command merely displays the volume label of
a disc, if it has one.

Xcopy
The xcopy command is much the same as the copy
command. They differ in that xcopy, unless instruc-
ted otherwise, copies all files in the specified
directory, and will also copy any sub -directories.

Batch Hes
This should give you a good idea of the kind of
tasks that can be handled via the operating system,
but this is only a rather superficial look at what is
quite a complex subject. Most operating systems
have a lot of subtle and potentially very useful
features. A very useful feature of MS-DOS is its batch
files. This is where a series of instructions are con-
tained in a disc file having "BAT" as its extension.
By typing the name of the file it is run by the com-
puter which then follows the list of instructions just
as if they were typed from the keyboard. If a batch
file called "AUTOEXEC.BAr' is placed in the root
directory, this will be run automatically at switch -
on, as soon as the MS-DOS command processor has
been loaded. This is useful for automatically loading
any software that must always be run at switch -on.
This includes memory resident programs, mouse
drivers, etc. If a computer is only used with one
applications program, this facility can be used to
automatically load and run this program at switch -on.

WIMPs
Although operating systems provide a wide range of
very valuable features, they tend to be difficult to
learn and use. Some quite simple tasks can require a
long and complicated command to be typed into the
computer. In an attempt to make their computers
easier to use, some manufacturers now supply them
with WIMP based "user interfaces". These are also
available as add-ons for some computers that do not
have them as standard. GEM of the Amstrad PCs and
the Atari ST range is an example of a WIMP based
user interface, as is the Amiga's "Workbench".

WIMP stands for "Windows - Icons - Mouse -
Pointer". A window is merely an area of screen
which is given over to a particular function, and an
icon is a graphical representation of something. For
example, a disc would be represented by a simple
graphical representation of a floppy disc. This type
of user interface differs from a conventional operat-
ing system in that it uses a graphics screen rather than
a text screen. Wherever possible icons tend to be

63

File Options Arrange DESKTOP

C:

:Ewi:' :EmEEit

mirMa

:CS

Disk Ives;

. MUM

inD

-

A GEM screen taken from an Amstrad PC1512.

used instead of text, but text can (and often is)
mixed in with the graphics where it is helpful in
clarifying matters. The mouse, as no doubt most
computer users are aware, is a small box which is
moved around on the desk top in order to move the
on -screen pointer to the desired position. The
pointer is sometimes a simple arrow shape, or it can
be something a little more elaborate. Esther way its
function is just the same - it indicates which icon
you wish to manipulate. The mouse has two or
three control buttons which are used to indicate
when the pointer is over the desired icon, and things
of this nature.

With a WIMP based operating system you would
normally run a program by placing the program disc
in (say) drive A, and then double "clicking" on the
drive A icon. Double "clicking" simply means
placing the pointer over an icon and then pressing the
left mouse button twice in rapid succession. Doing
this on the drive A icon does not run the program, it
opens a window in which the contents of the disc are
displayed in icon form. Some of the icons might be

for "drawers" or "folders", which are sub -directories
in normal computer terminology. Double "clicking"
on one of these opens another window and displays
its contents. This might reveal icons for further sub -

directories, which can then be opened by double
"clicking" them. To run a program you must double
"click" on its icon.

Copying a file from one disc to another is quite
straightforward. First windows for the two discs
must be opened, and if the file to be copied is in a
directory or sub -directory, a window for that direc-
tory must be opened. Similarly, if you wish to copy
the file into a sub -directory, then a window for that
sub -directory must be opened on the destination disc.
To copy a file you drag its icon to the window for
the disc and (where appropriate) directory or sub -
directory you wish to copy it to. Dragging merely
means positioning the pointer over the icon, pressing
the left mouse button, and then moving the mouse/
pointer. The icon will move with the pointer. Delet-
ing a file is usually similar, with the icon for the
unwanted file being dragged to a "trashcan" icon.

64

rile Options grange DESKTGV

nn
07

Drive A: is not responding, You must

use the right kind of disk, insert it

correctly, and close the door, If the

w problem is with a hard disk, check the

disk's connections,

(irr,

A GEM screen showing a typical dialogue box.

To increase the features available from a WIMP
based operating system it is usually backed -up with a
pop -down menu system which permits facilities such
as disk renaming and formatting to be accomplished.
A good WIMP based operating system is very versa-
tile, but is probably somewhat less so than a text

based system. Some computers offer both environ-
ments as standard. The Commodore Amiga
computers for example, have their "Workbench"
WIMP user interface for beginners, and a command
line interpreter (CLI) for experienced users.

65

The Amiga's Workbench user interface. The system "drawer" in the upper "window"
has been "opened". The lower "window" shows its contents.

!)6

Desk File 'el Options

irpla_I Show as Icons A:\

174 Show as Text n 20 items,

/ Sort by Mane 7 7

E Sort by Date r_ -,-.;.-c.: :,E:E .1.7" .-A% .E i :

Sort by Size --,.

Sort by 'Igoe __, ,-,z_

- ::e..E .1: ..:::r.." .F=: _ ,E -:.E :::"Eg".E .7"

FS.:.00.711 R14,7.Co.FE:

459555 bytes used in 9 items.

_Y

CREATOR .RE:

GEM on the Atari ST in the high resolution screen mode.
Note the pop -down menu at the top of the screen.

()7

Chapter 6

COMPUTER GRAPHICS

Block Graphics
In the beginning there were flashing lights on panels,
then the teletype, then line printers, but with the
arrival of the Visual Display Unit (VDU) with
cathode ray tube came the possibility of computers
displaying graphics as well as text. The first graphics
on home computers, however, were based on text
displays and took the form of modified characters.
These characters were in the form of blocks of
various types, and were intended to be used to form
decorative lines on displays. They were printed on
the screen just like the normal alphanumeric
characters. By using suitable combinations, single
and multiple lines, broken lines and checkered
patterns could be produced.

A further development of this was to allow users
to design their own character patterns. The block

shapes were stored in memory as bit patterns, and
could be modified by poking new values into the
appropriate memory locations. Often this could be
quite involved, as the bit patterns started off in ROM.
To modify them, the entire character set had to be

copied into RAM, some or all of the characters
altered, and the computer then instructed to use
the new set in RAM.

An advantage of block graphics is that it does not
require a lot of memory to store the video display.
Each character needs only one byte of memory, so a
40 x 25 character display needs less than 1k of
memory. A byte can hold values from 0 to 255, so
256 possible characters could be displayed, though
character sets would normally be smaller than this.
It is normal for the first 128 characters to be the
normal alphanumeric characters, punctuation marks,

The block graphics on the Sinclair ZX81 can be entered direct from the keyboard,
and are seen here marked on the keys.

NOMMINISSIK

MORMANIM

This "digital watch" has been drawn using the well-known teletext block !graphics.

etc. and for the second 128 to contain the graphics
characters (however values below 32 are not normally
used for printable characters).

Many early animated computer games were writ-
ten using user -defined characters. Such animation
was not particularly smooth, as the characters could
only be moved by a smallest increment of one
character space, across or up/down, but fast action
was possible, even with programs written in BASIC.
A feature of block graphics is that the circuitry which
generates the display has to refer to the character
definition table in memory each time a frame is sent
to the VDU, which is usually 25 times a second. If
the character tables are altered, the characters on
screen will alter. This was frequently used in games
to make the aliens, monsters or whatever wave their
arms as they attacked.

Block graphics have not entirely died out. There
are graphics characters in the character set of the
IBM PC, and printers intended for use with this
computer can even print out these characters (this
includes some daisy wheel types). However, perhaps
the best-known example of block graphics remaining

are the teletext graphics, familiar from the Oracle
and CEEFAX TV displays. The BBC microcomputers
also have these characters built in, and these teletext
or mode 7 graphics have something of a cult follow-
ing among some BBC users.

A special feature of teletext graphics is the use of
`serial attributes'. Some characters in the set do not
appear as characters (their places in the display
appear as spaces in background colour), but they
alter the appearance of whatever comes after them
on the same display line. They can alter foreground
and background colours, set flashing on or off, and
change the display to double -height characters (this
requires printing exactly the same thing on two
consecutive lines). These serial attributes allow a
sophisticated 8 -colour display to be built up, while
still requiring just 1000 bytes to store a 40 x 25
screen.

Block graphics, however, really belong to the
days when memory was expensive, and 16K was a
lot of RAM. Now that large memories are the norm,
more sophisticated graphics are provided.

70

Bit -Mapped Graphics
When a reasonable amount of memory can be set
aside for the graphics display, it is possible to use a
system where each point which can be displayed on

the screen is controlled by one bit in memory. If

the bit is set, the point will appear as foreground, if

it is clear it will appear as background. This is the
basis of a bit -mapped display. On this type of dis-
play, as well as displaying the normal text characters,
it is possible to draw lines, and also to fill large areas,
that is, display them in foreground colour.

In theory it is perfectly straightforward to display
text characters on a graphics screen, and in practice
most computers with bit -mapped displays offer this
facility. It is often possible to place text anywhere
on the screen, not just on the standard text lines and
columns. This is useful for labelling graphs and
similar uses, and, in conjunction with user -defined

characters, for smooth pixel -by -pixel animations.
User -defined characters can still be used to produce

aliens and monsters, but changing the character
definition in memory will not change the appearance

of characters already on the screen, so making them

wave their arms needs extra programming!
It is common for computers which offer high -

resolution bit mapped displays also to have text -only

display modes, which normally use much less

memory and are useful for applications like word-
processing where graphics are not required and the
memory freed can be used to store larger documents.

There were a few early computers which had

separate text and graphics modes, and which did not
allow text easily to be displayed in the graphics
mode. Notable among these was the Dragon. The
standard way of getting around this was to draw text
onto the screen using the line drawing commands.
This was effective, but a bit of a nuisance, and
probably played a part in the demise of this machine.

Bit -mapped displays do need a fair amount of
memory. A display capable of showing 640 points
horizontally by 200 vertically (this is a common type
of display) needs 128000 bits, which is 16K. (In fact,

it is 16000 bytes whereas 16K is actually 16 x 1024

or 16384 bytes, but it would be normal to reserve a

C

I

E

T

F

U

C

T
I

CREME NNUEFORPle with fmot tee kegs .
CONNIIIDS t ispe and press (RETURN) .

END OUTPUT B press DREW)
CON Nom= s
play swim" draw
salve re load

Reeds e

Line graphics combined with text are useful for scientific and technical programs.

An example of user -defined characters, in conjunction with line/fill graphics,
to produce a game display.

full 16K block for this size of display.)
A true bit -mapped display of this type is only

capable of showing two colours, foreground and
background. If a colour display is required, more bits

are needed for each point. It is common to find
computers offering several display modes. Either

more memory is required for more colours at the
same resolution, or a fixed amount of memory is
used for the display, and there is a trade-off between

the number of colours which can be displayed and

the available resolution. This second system is the
more common. One popular range of computers
offers three modes, either 640 x 200 in two colours

(1 bit per point), 320 x 200 in four colours (2 bits
per point), or 160 x 200 in 16 colours (4 bits per
point). Such displays are still, however, called bit -
mapped.

Though such a display is limited to two, four or
16 colours at any one time, it is usually possible to
choose the colours to be displayed from a "palette"
which contains many more colours. The values
stored in screen memory are called the logical colour

numbers, and the numbers of the colours in the
palette are called the actual or physical colours. The

colours for the display are selected by assigning actual

colours to physical colours.
This is often likened to having a limited number of

pens, each of which can be filled from a larger
number of bottles of ink. The number of colours
you can draw in at any one time is limited by the
number of pens, but you can empty a pen and fill it
with a different ink. This is not a very good analogy,
however, as if you change the colour of ink in a pen
(assign a different actual colour to a logical colour)
anything drawn on the screen in the original ink will
change to the new colour. This last fact can be put
to good use, however, especially in games. For

instance, by changing an assigned colour from a fore-
ground colour to the background colour, things can
be made to appear and disappear instantly.

Extended Colour Systems
If a large number of colours are required in a display.

as is often needed in games, the choice of needing

72

either to use a large area of memory or limit the
resolution becomes a problem. If the area of memory
becomes very large, firstly not much room is left for
anything else, and secondly, the large manipulations
needed for animation will tend to make game play
sluggish. For these reasons, several methods have
been devised to allow more colours to appear on
screen with less memory overhead.

In a system where a small number of colours
selected from a larger palette can be displayed, the
actual assignment is done by part of the computer
hardware as the screen image is sent to the VDU.
A simple way of showing more colours is to cause this
hardware device to use a different selection of colours
for different parts of the picture. This is done by
timing, often by use of interrupts. Because of the
way in which the picture is built up on the VDU
screen, in horizontal lines from top to bottom, the
colours usually can only be altered in horizontal
bands across the screen.

An extension of this system is to allow each screen
line to have its own set of assigned colours. This does

require some extra memory, as the colour assign-
ments for each line must be stored, but the overhead
is small, and displays using this system can be very
impressive. With both these methods some care is,
however, necessary, as object blocks moving down
the screen could easily change colour as they move
through areas with different assignments.

An alternative system is the use of "parallel
attributes". This system is used by the Sinclair
Spectrum, and is based on the text screen display.
Each character position has a set of attributes which
control the foreground and background colour for
that position, and also the degree of intensity (normal
or bright) and whether steady or flashing. Thus you
can have only two colours in each position, but all
the available colours can be displayed simultaneously.
The attributes for each position are set automatically
as a line is drawn through that position (or a character
printed), and this causes one limitation of the system.
If you have drawn through a position in one colour,
and subsequently drawn through it in another colour,
the part of the original line passing through that

File Program Edit Fonts Colours Patterns Lines Windows B4S1C2

Hasa c

eady

Dialogue f

5;;t51;1488874030 ROM

DED COLod FILL WITH 8

-RND(6)

r T4 1234,5,6
1 MB a: TO finish

With modern graphics, a display like this dice with rounded corners
can be produced very simply.

Fonts Colours ittIrns Lines windows BASIC2

26
27 week
28
29 11

30
31
32 '''s

34 vcan-
35 H
36
37 44-
30 34ty

A feature of 'WIMP' graphics is a range of 'FILL' patterns.
This is the choice offered by GEM on an Amstrad PC.

position will change to the new colour.
The serial attribute system of the teletext display

system has been used just once in a high -resolution
graphics display, on the One and Atmos series of
computers (which used the teletext system for their
text display). Each serial attribute was only one
pixel deep, but eight pixels wide, aligned on char-
acter position boundaries. As the positions occupied
by the attributes appeared in background colour only
this placed a lot of limitations on screen displays,
and could not be considered a great success.

Sprites
Sprites, also called Moveable Object Blocks or MOBs,
belong to the golden age of animated games, now
past. In some ways a sprite is similar to a user -defined
character in that it has a shape defined as a bit
pattern in memory, but in most cases it can be larger
than a character, and it may also be able to be multi-
coloured. The way in which sprites are implemented
can differ from machine to machine, but in general
they do not form part of the bit -mapped screen

memory. They are added to the display by a hard-
ware device.

Sprites can be moved around the screen display
smoothly, and it is not necessary to erase them from
a previous position before moving them to a new
one, which makes programming very easy. In fact,
in the most sophisticated implementation, the sprite
can be given a velocity and direction, and the hard-
ware takes care of all movement. The hardware
device also signals to the program, either by a form
of interrupt or by use of flags, when two sprites
collide or when a sprite passes over a particular
colour on the main display. This makes it possible
to detect when a 'hit' has occurred.

It is interesting that although in the great home
computer boom of the early eighties many machines
with sprite systems were available, none was ever
supplied with a version of BASIC which allowed all
the sprite facilities to be exploited.

Windows
Windowing is a method of allowing the total screen

74

areas to be divided up into two or more smaller areas
which can be separately controlled. In particular it
allows part of the screen to be designed as a text
window and part as a graphics window. Text can
then be printed in the text window without having
to specify exactly where on the screen it will be
printed, and the text screen allowed to fill up and
scroll, without any risk of the graphics window
being corrupted by text being printed across the
display. It should, however, be mentioned that
with most simple windowing systems the windows
can overlap, and it is up to the programmer to ensure
that they do not unless intended.

Where windowing is based on a bit -mapped screen
display, the windows will normally have to display
the same colours, unless one of the extended colour
methods described above is in operation.

A more sophisticated form of windowing is now
common. In simple windowing, if text scrolls out of
a text window it is lost, and if anything is written
over the contents of a graphics window the graphics
is lost. In the more sophisticated systems, the
printed text which scrolls out of the window is
stored, and it is possible to scroll up and down
through the contents, usually by use of a mouse,
but cursor key control is also provided. It is also
possible with these systems to open one window on
top of another window, and subsequently close it,
and to have the contents of the first window restored.

A further feature of these systems is that window
sizes and positions can be controlled by the user,
usually again by means of a mouse. If a window is
made smaller, all the original contents is stored, and
if the window is subsequently restored to its original
size, all the original contents will be redrawn, both
text and graphics.

These advanced windowing systems are normally
provided as part of operating system front ends. In
addition to the windowing, simplified file -handling
facilities are normally provided, together with
advanced graphics facilities such as text fonts in a
variety of styles and sizes, line styles for drawing
(solid in various widths, dotted, dashed), and patterns
for area fills. The first such system to gain popularity
was the operating system for the Apple Macintosh,
and this has been followed by DR GEM and
Microsoft WINDOWS, among others.

Co -Ordinate Systems
In any graphics system, some means is needed to
specify where on the screen drawing is to be done.
Positions on the screen are specified by systems of
co-ordinates. On a graphics screen, drawing is done at
the position of the cursor. Unlike the cursors on text
screens, which are normally visible, graphics cursors
are normally purely notional and not displayed,
though some of the recent windowing systems do
display a crosshair cursor unless instructed otherwise.
In drawing a line or moving to a new position on the
screen, the co-ordinates specify how far the cursor is

to move, either relative to its current position or
relative to a graphics origin, the point which has
co-ordinates of 0, 0.

When the new position of the cursor is specified in
terms of how far it is to move from its current
position. this is termed relative co-ordinates. This
system is generally more difficult to work with than
the alternative system of specifying the position
relative to a graphics origin. It is found mostly on
lower-pnced computers like the Sinclair Spectrum.
When drawing on the screen, it is usually necessary
to use two variables to keep track of the absolute
position of the cursor on the screen, as computers
with relative co-ordinate systems also tend to be the
ones which generate an error if you try to draw to a
position off the screen.

When new positions for the graphics cursor are
specified relative to a graphics origin, this is termed
absolute co-ordinates. This system is generally quite
easy to use. The position of the graphics origin is
normally the extreme bottom left-hand corner of the
screen, in contradistinction to the usual text co-
ordinate system which has its origin in the top left-
hand corner. Some computers allow the user to
specify the position of the graphics origin on the
screen. If the origin is in the conventional position,
only positive co-ordinates are required. If it is moved
anywhere else, both positive and negative co-ordinates
are needed in order to be able to specify any point
on the screen. For some purposes, it is convenient
to move the graphics origin to the centre of the
screen.

Whether relative or absolute co-ordinates are

being used, it is conventional to give the horizontal
co-ordinate first, followed by the vertical co-ordinate.
These are conventionally termed the X direction or
axis (X is a cross) and the Y direction or axis (Y's up).

A further system which should be mentioned is
the system of turtle graphics which has its origin in
the LOGO computer language. This is not really a
co-ordinate system, but is one in which the cursor,
which is called a 'turtle', is moved around the screen
by commands which indicate how far it should move,
forward or backward, arid angles through which it
should turn, right or left, normally specified in
degrees. This type of graphics is now included in
some other languages, in particular in some recent
versions of BASIC. (In fact, some versions of LOGO
also allow the turtle to be placed using a system of
absolute co-ordinates.) This type of graphics was
designed as a learning aid, and apart from this is

limited in application.
It may seem obvious to match the co-ordinate

system to the resolution of the screen image, so that
a change of 1 unit equtes to a movement of 1 pixel,
and simple computers with one screen mode frequ-
ently do use a system of this sort. Where there are
several screen modes with different resolutions,
however, if graphics originally written for one mode
were displayed in another mode, the size would alter,

75

and in many cases the shape too, as changes in
screen resolution with mode in many cases only
affect resolution in one direction. In such cases, the
co-ordinate system used may have more points than
can be resolved by the display in any mode, and the
number of points per pixel will change with mode,
but the size and shape of the graphics will remain
constant.

This also allows another problem to be solved,
the fact that pixels are frequently not square. If a
co-ordinate system based on pixels is used, and the
pixels on the screen are in fact wider than they are
high, if you drew a circle using the usual formulae,
it would appear as an ellipse. If the co-ordinate
system is non -pixel based, it can be adjusted so
that equal changes in co-ordinates do equate to
equal distances on the screen in both horizontal
and vertical directions, and circles will then be circles.

A good example of this is the BBC microcom-
puter. This has graphics modes with resolutions of
640 x 256, 320 x 256 and 160 x 256. It uses a
co-ordinate system with 1280 points by 1024, and

these do relate to equal distances on the screen. In
the highest resolution mode the pixels are 2 units
wide by 4 high, in the middle mode they are 4 units
wide by 4 high - a rare case of truly square pixels
- and in the lowest resolution they are 8 units wide
by 4 high.

In some of the latest versions of BASIC for use
with windowing environments much smaller points
are used for specifying positions. In BASIC 2 on the
Amstrad PCs, which runs under GEM, a co-ordinate
system with 5000 units along the shorter dimension
of a window, and as many as necessary along the
longer dimension to ensure equal increments, is used.
These high values are used in part because these
environments are designed to allow output to be
sent to devices other than the screen with little or
no re -writing. Some other devices, such as laser
printers and pen plotters, can have a resolution very
much higher than a VDU screen. Using these very fine
co-ordinates allows these devices to be used to their
full potential.

76

Chapter 7

LEXICON

Absolute Addressing
In assembly language and machine code program-
ming, absolute addressing is the address mode in
which the address of the data is given directly in
the instruction. It is sometimes also called direct
addressing.

Acoustic Coupler
This is a form of modem, but it refers specifically to
a type which is not connected directly to the tele-
phone system. Instead it has a receptacle for a
telephone handset. Signals from the computer
(usually sent and received via an RS232C serial port)
are converted into tones which are fed to the mouth-
piece, while the tones from the earpiece are decoded
and fed to the computer.

With all other factors being equal, this generally
works a little less reliably than a modem that con-
nects directly to the telephone lines. On the other
hand, it gives convenience, and can be used anywhere
where a telephone having a reasonably standard
handset is available. I suppose that strictly speaking
the acoustic coupler is only the part that actually
couples the audio tones into the handset, and picks
up the tones from the earpiece. However, this term
seems to be applied to a complete modem which uses
this method of coupling.

ANDing
See "BITWISE".

Artificial Intelligence
A branch of programming which deals with programs
which "learn" or which can seem to "think" about a
problem and make an intelligent decision. The most
common applications of artificial intelligence are the
"expert system" type of database. This is an area in
which there is much controversy. On the one hand,
some people think that it is wrong to consider a
machine to have any kind of intelligence, and prefer
the term "applied intelligence". On the other hand,
some artificial intelligence lobbyists have suggested
that computers running this type of software have a
form of sentience and should be considered a new
life -form.

ARM
This is an acronym standing for Acorn Reduced
instruction set Machine, and it is the RISC type
microprocessor used in the Acorn Archimedes series
of computers. These machines stand as excellent
justification of the claims for speed made for RISC
chips.

Array
The term "array" is mostly used in BASIC program-
ming, but it is also used elsewhere. It refers to a form
of variable by which tabular data may be easily stored
and manipulated. An array consists of a number of
variables of one type, which have a common name
and are distinguished from each other by numbers
called subscripts. These subscripts represent the
positions of the individual variables, called elements,
in the table. Arrays can have one or more dimen-
sions, with each element having a subscript for each
dimension. A single dimension array would have
only one subscript, and would be analogous to a
simple list. A two-dimensional array is analogous to
a table with rows down the page and columns across
it. Each element would have two subscripts, giving
its row number and column number. A three
dimensional array can be thought of as like a number
of pages of rows and columns, and a four dimensional
array as a number of books, each with a number of
pages. Different versions of BASIC differ in the
number of dimensions allowable and the number of
elements allowed in each dimension. The number of
elements allowed is often limited to 255, but may be
higher on 16 -bit computers. The number of dimen-
sions allowed may be limited to one or two, or to
255, or limited only by the available memory. In

most versions of BASIC, the subscripts are given in
brackets after the variable name used to identify the
array, the individual subscripts being separated by
commas. Generally, both string and numeric arrays
are possible, but all elements must be of one type.
In some BASICS, elements of string arrays must be
of fixed length, and in other (primitive) versions,
string arrays are not supported.

ASCII
These letters stand for "American Standard Code for
Information Interchange". Computers do not store
and manipulate text as such, but deal with all inform-
ation in the form of binary numbers. Text is handled
using a simple code whereby each text character
(including such things as line feeds and carriage
returns) is assigned an individual code number. For
example, the ASCII code for "U" is 01010101 in
binary, which is equivalent to 85 in the ordinary
decimal numbering system. If you should ever need
to deal with ASCII codes, it will almost certainly be
with them in their decimal form rather than as raw
binary numbers. The ASCII codes are now almost
universally accepted as the standard set of text code
numbers, but information in ASCII form is not
necessarily fully compatible between one system and
another. Many word processors and other text hand-
ling programs use additional codes when formatting

77

the text instead of using large numbers of line feeds,
carriage returns, and spaces. This gives more com-
pact text files, but it does mean that the control
codes of one program may not be understood by
another program. This may simply result in oddly
formatted text (with perhaps a few odd looking
characters mixed in with the text), or in an extreme
case it could cause the program to hang up. Some
text processing programs have a facility for storing
and retrieving text in pure ASCII form. Some also
have conversion facilities so that they can produce
files that are compatible with popular text
processing programs.

Assembler
Many programs are written in a high level computer
language (such as BASIC) which makes the job of
programming very much easier. The alternative is
to program in machine language (also known as
machine code). This means directly programming
the microprocessor at the heart of the computer with
its instruction code numbers. Machine code is not
really practical for anything other than very short
routines, and it is usual for assembly language to
be used. This is essentially the same as machine
code, but a program called an "assembler" is used
to convert easily remembered mnemonics into the
corresponding machine code numbers. In fact most
assemblers provide a bit more help than this, but
assembly language programming is something that is
restricted to those who are prepared to learn about
computers in some detail. The advertising for some
programs boast that they are largely written in
assembly language, and the advantages of assembly
language are more for the user than the programmer.
There is really only one advantage, and this is speed.
The computer is simply executing the program.
without having to do any interpreting from a high
level computer language into machine code instruc-
tions as it goes along. Assembly language programs
are therefore very fast - as fast as the computer can
run in fact.

Auto -Dial
This is a feature of many modems. As this term
implies, the modem automatically dials the required
number. In fact these days it is more usually the
computer that controls things, and the store of
numbers are held in the computer. In this case, both
the software and the modem must support auto-

dialling if it is to function properly.

Axis
This is the term used in computer graphics to refer
to the direction in which specified co-ordinates apply.
The X-axis runs horizontally across the screen, and
the Y-axis runs vertically down it. Note that the axis
has direction, but not position. The axis is not a line
running half -way up or half -way across the screen.
Conventionally, in giving the co-ordinates of a point,

the X-axis co-ordinate is given first, followed by the
Y -co-ordinate. In three-dimensional graphics. the
third axis, the direction perpendicular to the screen
surface, is called the Z-axis. Of course, it is not really
possible to draw in 3-D on a flat screen, but forms of
perspective drawing can be programmed.

Background (Printing)
Some programs have the ability to send data to the
printer and at the same time get on with other jobs.
With a word -processor, for example, you may be able
to print one document while writing or editing
another. This is called background printing. You
may be able to specify a list of files to be printed, one
after another, while getting on with other things.
Some operating systems may allow a general facility
to do this with all programs, and it may be possible
to print graphics files as well as text. This can be a
great time-saver, but it may be found that program
execution may be slowed while printing is in progress,
or that printing slows or temporarily stops when a
program is active (i.e. not waiting for you to press a
key). This is especially true with graphics output.
(See also SPOOLER)

Background (Program)
A background program is one which is resident in
memory and is running all the time, but generally
does not produce any output, so that the user is not
aware of it, but can be called upon when necessary.
The most obvious example is a real-time clock. There
are also background alarm programs which can be set
to alert the user at some given time, provided, of
course, that the computer is in use at that time. (See
also RESIDENT, MULTI -TASKING)

Back -Up
As a noun, this is a copy of software or data which is
kept as insurance in case something happens to the
original. Data and programs are normally backed -up
on floppy discs, but for hard disc users there are
tape streamers which will back-up the entire disc
much more rapidly and with far less effort on the
part of the operator. As a verb, this term means the
actual act of making back-up discs (or whatever). A
less than interesting task, but one that should be done
fastidiously. It is easy to overlook just how much
data a floppy disc can hold until one becomes
damaged. Losing the entire contents of a hard disc
with no back-up data available does not bear thinking
about.

BASIC
A popular programming language for beginners.
BASIC stands for "beginners all-purpose symbolic
instruction code". This is the most generally accep-
ted explanation of the name, but is not universally
accepted. Although it has received a fair amount of
criticism over recent years, good BASIC languages
are relatively easy to learn and are very versatile. A

78

lot of the criticisms aimed at BASIC are really only
valid when applied to early implementations of the
language which are now mostly obsolete. BASIC
programs tend to be quite slow in operation, although
a modern interpreted BASIC running on one of
today's more powerful microcomputers can run fast
enough for many requirements. BASIC compilers
are available for many computers these days, and
these provide a very respectable operating speed.
Maybe it is not the ideal computing language for
professional programmers, but its success with home
computer users speaks for itself.

Baud Rate
This is a term that applies to serial communications
ports, such as the RS232C and similar RS423 serial
ports that are fitted to many computers. It is a

measure of the speed at which data is sent from a
port, and it is merely the number of bits sent per
second (assuming a continuous data stream). Many
modems, for example, work with a baud rate of
1200, or 1200 bits per second. Note that seven or
eight bits are required for a complete byte of data
(e.g. an ASCII character), and timing bits accom-
pany each byte. Thus about ten bits are required
per character, and 1200 baud only represents about
120 characters per second, not 1200. RS232C serial
ports are asynchronous types. To the user the
practical importance of this is that the system relies
on the baud rate at which data is being transmitted
accurately matching that to which the receiving
equipment is set. For this system to be workable it
is essential to have standardised baud rates, and there
is a wide range of these running from 50 to 19200
baud. Although it might seem better to have just
one standard baud rate, serial links are used with a
wide variety of equipment types. A standard rate
that might be painfully slow for one piece of equip-
ment could be impractically high for another. The
standard baud rates are 50, 75, 110, 150, 300, 600,
1200, 1800, 2400, 4800, 9600, and 19200 baud.
Most of these are available from the majority of
computer serial ports, but one or two are usually
unobtainable (the highest and slowest rates are often
absent). Peripherals such as printers and plotters
which have a serial interface often only provide a
very limited range of baud rates. It is then a matter
of setting up the computer to suit the peripheral
device.

Binary
Computers handle data in what is really a rather
crude form, with electronics circuits that provide a
low output voltage (about 0.8 volts or less) to
represent 0, or a higher voltage (about 3 to 5 volts)
to represent 1. This is very convenient from the
point of view of designing the electronics, but the
normal decimal system can not be accommodated by
a system which only allows each digit to be 0 or 1.
Instead the binary system of numbering has to be

used. Whereas the columns of figures in the decimal
system represent the number of units, tens, hundreds,
thousands, etc., in the binary system they represent
the number of units, twos, fours, eights, sixteens, and
so on. This enables any desired number to be repre-
sented, but it requires a large number of digits when
compared to the decimal system. This is the only
practical way of handling things with the present
technology though. Each binary digit is usually given
its abbreviated name of a "bit". Data is often mani-
pulated in the form of 8 bit numbers, or "bytes" as
these are generally termed. With 8 bits, numbers in
the range 0 to 255 can be catered for, and with 16
bits, numbers from 0 to 65535 can be accommodated.
In fact numbers of any magnitude can be handled by
an 8 or 16 bits computer, but only by using several
bytes to represent large numbers, and processing the
data one byte (or 16 bit "word") at a time. Unless
you get involved in programming this is all of
academic importance, and is not something that is
normally encountered when running applications
software. The hardware converts data input in
decimal form into binary, and converts any binary
numbers into decimal before they are output. The
fact that the computer is operating using binary data
is therefore not apparent to the user.

Bit
A contraction of Binary digiT. See BINARY above.

Bitwise
This is where two binary numbers are compared on a
bit by bit basis, and the answer depends on the logic
states of each pair of bits. With bitwise ANDing, a 1
is placed in the answer only if both bits are at logic 1.
Bitwise ORing is similar, but a 1 is placed in the
answer if either or both bits that are compared are
at logic 1. XORing is almost the same as ORing, but
a 1 is placed in the answer only if a 1 is present in
one or other of the ORed numbers. Unlike bit -
wise ORing, with XORing a 0 is placed in the answer
if both the compared bits are at logic 1. Bitwise
ANDing is used where only one bit (or perhaps a few
bits) of a byte must be read. All three types of bit -
wise manipulation can be used in graphics programs
to obtain various effects.

Blitter
The term "blitter" derives from "bit image manipula-
tor". It is a hardware device which is used for moving
blocks of memory around rapidly, without requiring
action from the computer CPU. Blitters can also
provide bitwise ANDing, ORing etc. on areas of
memory. It is mostly used for rapid movement of
parts of the VDU screen image, giving effects similar
to, but more sophisticated than, sprite animation. It
is therefore mainly regarded as a graphics device, but
could also be used for other things.

79

Boot
This is a slightly vague term, but one which is

generally accepted as being the process by which an
operating system seems to load itself from disc and
into the computer at switch -on. This is likened to
someone lifting themselves up by their bootstraps,
and is sometimes given the alternative name of
"bootstrapping". Of course, the disc operating
system does not really load itself at switch -on, and
there is a very basic operating system in the computer
which loads the disc system. The disc operating
system then takes over control from the built-in
start-up routine.

Brush
Brush in a computer context is a paint program term.
Although mainly associated with the Amiga com-
puter, it now seems to be gaining a wider acceptance.
As the name suggests, it is the notional object with
which the drawing is painted. However, some paint
programs enable quite complex "brushes" to be
used. Not only can quite complex shapes be used,
multiple colours can be used within the shape. In
some cases you can select an area of a drawing and
then use that as a brush.

Buffer
This is another term which is a little imprecise in its
meaning, but it is most often used to refer to a block
of memory. This memory does not have to be in the
computer, and many printers incorporate a buffer.
With these the idea is that the computer can rapidly
load a document into the printer's buffer, and the
printer can then print it out while the computer is
then free to get on with other tasks. There are also
buffers within computers, such as the keyboard
buffer. Characters typed into the keyboard are often
stored in a buffer and read from this, rather than
being read direct from the keyboard and acted upon
immediately. This reduces the risk of characters
being missed when demands on the computer are
high. Even so, if you type data into the computer
at the wrong time it may well be overlooked and
not acted upon.

Bug
A general term for a fault in a computer system, but
one which is generally applied to problems with
software.

Bulletin Board
This is a system that can be accessed by anyone who
has a suitable computer and modem simply by
dialing up the appropriate number. There are a fair
number of these at present, mostly run by computer
enthusiasts. A few are run by companies or tech-
nology departments of schools, colleges, and univer-
sities. The facilities offered vary enormously from
one to another. The "bulletin board" name is
derived from the basic facility of being able to leave

messages which can be read by anyone who accesses
the system. If you are having difficulty with your
computer system for example, you could leave
details of the problem with a request (plea?) for help
from anyone who has experienced the same problem
and found a solution. Some services offer free soft-
ware which can be down -loaded into your computer.
The type of service that is most likely to be of real
benefit to you is one which specialises in software
and general information for your particular type of
computer, or one which serves some other specialist
interest of yours.

Byte
Eight binary digits (bits). See BINARY.

C
A compiled programming language. Most imple-
mentations of C are very fast, and a lot of commercial
software is written in this language. It is not really a
beginner's language, but most people who have some
programming experience with BASIC and assembler
find it reasonably easy to master. It is a very versatile
language, but is considered to be rather too low level
by some programmers. It is very "portable".

CAD
Either "computer aided drawing", "computer aided
drafting", or "computer aided design". The first two
are really the same, and mean a sort of computer
equivalent of an ordinary drawing board, paper, and
pen. A CAD system is more versatile than conven-
tional methods of drawing in that it is much easier to
make changes to a drawing. It is really the drawing
equivalent of a word processor. CAD seems to have
become very popular in recent times, and modem
CAD programs and output devices can provide some
very good results. Even low cost systems are quite
capable these days. The drawings in this book were
produced using a CAD system incidentally.

Computer aided design generally means mathe-
matically modelling something to check that it works
before it is made. Making and testing some types of
equipment is so expensive that this is the only prac-
tical way of doing things. As yet it is only something
that is used in a few specialist areas of interest, and
many CAD systems of this type are custom built
one -offs!

Camera Device
A camera device is a peripheral device which is usual-
ly connected to the monitor output of a computer,
and is used to produce photographic slides or prints
of screen output onto (usually) 35mm photographic
film. The camera device contains its own picture
tube and lens system. The film transport may also
be built-in or it may be in the form of a conventional
camera body (usually of single lens reflex type)
which attaches to the device. The main benefit of
using a camera device is the avoidance of the distortion

80

which normally occurs if a monitor screen is simply
photographed with a camera, and also the banding
which can result from a mismatch between the
shutter speed used and the scan rate of the monitor.
The definition will be the same as the screen defini-
tion. Camera devices can be very expensive, and are
only worthwhile where large numbers of screen
pictures are required on a regular basis.

Centronics
This is a form of interface, and it is sometimes called
a "parallel" interface. The Centronics name is that
of a printer manufacturer who pioneered this type
of interface, but it is now the accepted standard for
printers, as well as plotters and a few other devices.
However, some printers and other equipment use an
RS232C serial port instead. My printers and plotters
have both types of port built-in as standard, and
there seems to be a definite trend towards this dual
standard.

A parallel port differs from a serial type in that it
uses eight connecting wires to transfer data from the
computer to the printer. It therefore transfers data a
byte at a time, whereas a serial type sends data
(literally) bit -by -bit. A parallel interface is generally
much faster than even the highest speed serial type,
but in many cases the slowness of the peripheral
which receives the data will make this irrelevant.
Long connecting cables are permissible with serial
links, but with parallel types proper operating is only
guaranteed over cables of 2 metres or less in length.
Note that a parallel port is only an output type, and,
unlike a serial type, it is not to be used to feed data
into the computer. You may occasionally come
across references to bidirectional parallel ports, but
this is a bit misleading. Ports of this type can be set
to operate as an input type for specialist applications,
but they can not be used simultaneously as an input
port and an output type.

CGA
This stands for "colour graphics adaptor", and it is a
type of screen display adaptor for IBM PCs and
compatibles. It provides 640 x 200 pixel resolution
in monochrome, and 320 x 200 pixel resolution in
four colours (which includes the background colour).

CISC
This is an acronym for Comprehensive (or Complete
or Complicated) Instruction Set Chip. This describes
the currently most popular type of microprocessor,
which has a large number of instructions, as distinct
from the reduced instruction set chips (RISC).

CLI
CLI is an acronym for "command line interpreter".
This normally refers to an operating system where
the commands are typed in at the keyboard (as with
MS-DOS and CP/M) rather than using a WIMP
environment (like GEM for example).

Clock
All computers have a simple electronic circuit which
generates electrical pulses at a regular rate, and this is
the "clock". The clock frequency is usually control-
led by a quartz crystal (as used in watches, etc.). The
clock controls the rate at which the computer func-
tions. The faster the clock, the faster the computer
runs. You can not speed up a computer simply by
raising its clock frequency, as the microprocessor,
memory circuits, etc. have a strict limit on their
maximum operating speed. Most computers are run
at a clock speed very close to the maximum at which
the various pieces of hardware are guaranteed to still
operate reliably. More than marginally raising the
clock speed is almost certain to cause a malfunction.
The clock rate is normally specified in megahertz
(MHz), and 1MHz is one million pulses per second.
Note that the number of instructions the micro-
processor performs per second is not normally equal
to the number of clock cycles per second. Complex
instructions on some microprocessors take more than
twenty clock cycles to complete.

Comms
This is an abbreviation of "communications". A
comms program is one which simplifies the use of a
modem by setting up the necessary baud rates and
protocols, and which will also have other facilities
such as auto -dial and auto -answer.

Compatible
There is a popular computer joke about the diction-
ary definition of "compatible", which should be
something like "unique and totally unlike anything
else on the market". This is perhaps a gross exaggera-
tion, but is not totally untrue. Manufacturers can
not produce an exact copy of an existing product, or
even a very close copy, for obvious legal reasons. It is
quite alright to produce a product that will emulate
another one, provided it works in a slightly different
way to the original. However, by working in a differ-
ent manner it is virtually inevitable that any emulation
product is going to be less than fully compatible.
Compatible is a term that is mainly applied to the
so-called "clones" of the IBM PC range of computers.
Most modern "clones" are very compatible, and there
are few programs (if any) that will not run properly
on the average "clone". However, if you use an IBM
compatible computer it is always a good idea to
check that a program will run on it properly before
actually buying it.

Compiler
Programming languages such as normal versions of
BASIC are interpreted languages. In other words,
when the program is run the computer takes each
BASIC instruction, converts it into a machine code
routine that the microprocessor can run, and then
runs that routine. This system of interpreting each
line as the program progresses can be very slow, with

81

the interpreting taking longer than it takes the
machine code routines to run. In fact it can often
take a hundred or even a thousand times longer for
each instruction to be interpreted than it does for the
resultant machine code routine to execute. It is this
factor that makes interpreted languages relatively
slow in operation. A compiler does things in a
different way. A completed program is first compiled
into a machine code program, or a sort of pseudo
machine code that needs minimal interpretation, and
then it is run. This gives very much faster operation.
There are drawbacks to compiled languages, one of
which is that they still tend to be relatively expensive
to buy. The main drawback is simply that they
generally give the programmer less help than inter-
preted languages. This makes program writing more
difficult, especially for beginners.

Composite Video
This is a standard for sending the VDU output from a
computer to the monitor. It allows all the necessary
signals for intensity and (where appropriate) colour
to be sent using a single wire (with earth return).
Many computers have a composite video output, but
currently it is losing ground to analogue RGB and
RGBI type outputs, which allow a slightly better
picture quality, in theory at least.

Co -Ordinates
In drawing graphics on a computer system, some
system of specifying where lines and points are to be
placed is necessary. In order to do this, the screen or
other drawing surface is treated rather like a sheet of
graph paper, with a grid of horizontal and vertical
lines, though the lines are never visible. Points can
then be specified by giving their displacement in
terms of horizontal and vertical offsets on the
imaginary grid. These offsets are the co-ordinates of
the point, and are usually given relative to the
graphics origin, which is the point with co-ordinates
0, 0. Usually the graphics origin is the bottom left-
hand corner of the drawing surface, but in some cases
it may be placed in the centre of the screen (this is
usual with graphics in the LOGO language). Some
systems allow the graphics origin to be placed any-
where on the drawing surface the user requires. When
the graphics origin is in the bottom left-hand corner,
only positive co-ordinates are required. In all other
cases, co-ordinates can be either positive or negative.

When drawing on the screen, a co-ordinate system
where the units correspond to the actual screen is
sometimes used. This is termed pixel co-ordinates.
However, it is now common to use a system where
the increments of the co-ordinate system are much
smaller than the screen pixels. This makes it possible
to transfer graphics from the screen to a device (such
as a plotter) with a higher resolution, and make full
use of this extra potential.

Context Switching
Context switching is similar to multi -tasking in that
it is a system which allows two or more application
programs to be in memory simultaneously. Unlike
multi -tasking, however, only one program at a time is
actually running, the others being held in a state of
suspension. It is possible, however, to quickly switch
from one program to another, usually without having
to save the work you have done to disc (this may be
done automatically). Context switching avoids much
of the complication of multi -tasking, but allows a
computer user to move much more readily from one
job to another than is the case if programs have to be
loaded and run from disc. It is a system which
deserves to be used much more widely than it is.
Perhaps the best-known context switching system is
the in-built software in the Cambridge Computers
Z88 portable computer.

Co -Processor
Some computers (notably the BBC model B series)
have the ability to take add-on boards which have a
different microprocessor to the one fitted in the
computer. With this board (or external co -processor
unit) activated, its microprocessor effectively takes
over from the one in the computer. The idea of a
co -processor is to increase the processing power of
the computer, or to provide compatibility with an
operating system which requires a microprocessor
other than the one fitted in the computer. For
example, the BBC model B series of computers are
fitted with a 6502 microprocessor, but with the Z80
co -processor fitted they can run the CP/M operating
system. Do not confuse a co -processor with a maths
co -processor, which is a very different concept (see
MATHS CO -PROCESSOR).

CP/M
This is a disc operating system for 8 bit personal
computers. Although it is regarded by many as
obsolete, there are a large number of computers run-
ning under this system in use today. CP/M has had
something of a renaissance due to the popularity of
the Amstrad 8 bit computers which can run under
this operating system. There is a vast range of soft-
ware available for use on CP/M machines, and it is
possible to obtain CP/M emulators for MS-DOS
computers and some other computers (the Atari ST
range for example). The idea of these emulation
programs is not usually to provide a means of setting
up a 16 bit system to run exclusively under CP/M.
It is more a matter of providing existing CP/M users
with a means of running their existing programs on
more modern hardware while making the transition
to using more modern equipment. Emulation pro-
grams in general run rather slowly, and a powerful 16
bit computer running a CP/M emulation program
might operate more slowly than an 8 bit machine
designed for CP/M use! Running CP/M on a 16 bit is
not necessarily a means of obtaining a "turbo" per-
formance CP/M system.

82

CPS
This stands for "characters per second", and is a

measure of how fast a printer can produce text. Some
manufacturers are reasonably honest about the speed
of their printers, but many quote speeds obtained
under the most favourable possible settings and
conditions, and seem to have longer seconds than
the rest of us!

CPU
This stands for "central processing unit", and it is
perhaps better known these days as a microprocessor.
This is the component at the heart of a micro-
computer, which controls everything, does all the
calculating, etc. Actually most computers have
special components which handle functions such as
graphics and sound with a minimum of information
being supplied by the microprocessor. This reduces
the workload on the microprocessor and generally
results in programs running faster. The fact that
two different computers are based on the same CPU
does not, therefore, mean that they are equal in
terms of computing power.

Cursor
With most programs where you input data onto the
screen there is an on -screen character which indicates
where the next piece of data will appear. In the
case of the word processor I am using to produce this,
for example, it is a short line on the screen which
flashes on and off a couple of times per second. This
on -screen character is the cursor. There is an alterna-
tive but little used meaning, and this is for a device
(such as a mouse) which is used to control the
position of the cursor.

Daisy -Wheel
This is a term used to describe a type of printer. It
has a sort of wheel with numerous spokes, and the
type -faces are at the ends of these spokes. In opera-
tion the wheel spins so that the required character is
at the top, and a hammer mechanism then presses it
against the ribbon and paper. This type of printer
can produce superb results, especially if it is used
with a carbon ribbon. There are drawbacks to
daisy -wheel printers though, which are mostly
quite noisy, slow (only about 10 to 20 cps in most
cases), and are not really suitable for graphics use.
They have waned in popularity somewhat in recent
years, probably due to the improvements in the
various types of dot-matrix printer.

Data
Data simply means any stored information. Almost
any type of computer generated file can be termed a
data file, with the exception of stored programs.
The term is most commonly used to describe files
generated by database and spreadsheet programs, but
is by no means exclusive to these. In the BASIC
language. DATA is a keyword which indicates to the

interpreter that what follows on the program line is
constant data for use by the program when running.

Database
I suppose that any store of information could be
termed a database. It is generally taken to mean a
large store of information stored in an electronic
(computer controlled) system that enables any
desired piece of data to be easily located and
retrieved. There are many programs available that
will enable a computer to operate as a database. It is
also possible to access enormous databases using a
computer plus a modem, but these systems are
generally for professional users, and can be quite
expensive. On the other hand, they provide almost
instant access to vast amounts of information, and
can be very worthwhile if a system (or systems)
having the right kind of information can be found.

Default
In a colour display, a computer will display a stand-
ard set of colours, but it may be possible to change
these to others when required. The standard colours
are an example of defaults, the action a computer
takes unless it is told to do something else. This term
has many applications, co"ering areas such as screen
modes, baud rates for communications, which printer
port to use, and what character to use for the cursor.
On some machines the defaults can be changed to the
user's preferred settings either by storing the changes
in a special area of memory which is not lost when
the machine is switched off (battery backed or non-
volatile RAM) or by automatically running a batch
file on switch -on.

The term can also be applied to peripheral devices
such as printers. Printers will default to a particular
print size, style and character set at switch -on, and
these defaults can be altered by software commands
or by controls on the printer. Often the default on
printers can be changed by control switches, or on
more recent ones by EEPROM.

Digitiser
A digitiser is a sort of electronic drawing board which
connects to the computer It is used to control the
cursor, very much like using a mouse. However, the
cursor is controlled using a sort of electronic pen,
and placing this on the drawing board sets the cursor
to the equivalent point on the screen. Digitisers are
mainly used with computer aided drawing (CAD) and
paint programs. They can be used to trace over exist-
ing drawings and load them into the computer. Many
programs that operate with a digitiser have a menu
overlay that is placed on the drawing board, and the
pen is then used for menu selection to control the
program. In some cases the alphabet is included on
the overlay, and even text is entered from the
digitiser instead of from the keyboard!

An image digitiser or video digitiser is an electronic
device which takes a signal from a video camera, video

83

recorder, or broadcast TV signal and converts it to a
digital form which can be displayed on a computer
screen, and also modified by a drawing program.
Such devices can be very expensive, but simpler and
moderately priced systems intended for the home
user are available.

Directory
This is a list of files and sub -directories on a disc.
From MS-DOS a directory can be displayed on the
screen simply by typing the DIRectory command
(e.g. "DIR A: RETURN" to list the files and sub -
directories on the disc in drive A:). Some other
operating systems use CAT (catalogue) instead.
Apart from telling what is on a disc, this command
will also tell you how much unused space is available
on the disc.

Disc (Disk)
This is the all-important device used for storing
programs and data. There are a range of disc sizes
from 2.8 inches to 8 inches. The 8 inch discs are now
obsolete, although there is still a great deal of equip-
ment fitted with this size of disc still in use. The 5.25
inch discs are probably the most common type,
although the 3.5 inch type have now become the
standard, and in the fullness of time should become
the only type of disc in use. The 3 inch discs are
not used on many computers, but they are still quite
common due to their use on the very popular
Amstrad 8 bit machines. The 2.8 inch discs were
designed for use with electronic musical instruments
such as sound samplers, and do not seem to have
been used in other applications.

The discs are coated with a magnetic material,
and data is recorded onto them in a fashion that is
essentially the same as conventional tape recording.
The advantage of a disc over a tape system is that it is
easy for the disc drive to jump to any part of the
disc almost instantly (so called "random access"). A
tape system has to wind backwards or forwards
through a tape until it comes to the required section,
which can be very slow indeed. A disc is formatted
into a number of tracks, and each track is divided
into sectors. The 360k IBM standard discs have 40
tracks on each side of the disc, and 9 sectors per
track. This gives 360 sectors on each side of the disc,
720 sectors in total, and with each one providing
0.5k of storage this gives a capacity of 360k.

You will sometimes find references to 500k and
1M discs, which in fact only seem to have capacities
of 360k and 720k respectively. The discrepancy
arises due to the amount of disc space taken up by
the formatting process. Discs are normally supplied
in unformatted form, and you have to format them
prior to use. The formatting process lays down the
basic framework of the tracks and sectors, and also
provides the basic framework for the directory. This
is part of the disc which stores information about

what is on the disc, and just where it is on the disc.
When you access a file on a disc, the operating
system uses this information to find out where the
required file is stored, and it can then quickly jump
to the appropriate sectors of the disc. An arrange-
ment of this type is essential if the potential speed of
a disc system is to be fully realised.

There are a variety of disc formats in common
use, as some discs have 40 tracks per side while others
have 80. Some discs are single -sided while others use
both sides of the disc. There are also single and
double density drives (actually it is the disc inter-
face rather than the drive which squeezes twice as
much data onto each sector of the disc). You can
sometimes read a disc using a drive and interface of
the wrong type, but this is not usually possible. You
may also be able to get away with using a blank disc
of the wrong type provided it is formatted correctly
for your disc drive. Single -sided discs always seem to
have the magnetic coating on both sides - they are
not guaranteed to be usable on the second side. You
may get away with using single -sided discs in a

double -sided drive, but the small saving in cost
would hardly seem to justify the increased risk of
lost data. There is no risk in using a disc which is
over -specified, such as using an 80 track type in a
40 track drive. This should actually give marginally
improved reliability, but the discs will cost more of
course.

There are high density ("HD") discs in both the
5.25 and 3.5 inch sizes. These are 80 track types,
but they are used in drives which cram a large amount
of data onto each track. The 5.25 inch high density
discs have a capacity of about 1.6 megabytes, leaving
a formatted capacity of about 1.2 megabytes. Ordin-
ary 40 and 80 track discs will not give good reliability
if used with a high density disc drive. Only use the
proper high density discs of good quality with these
drives.

A hard disc is basically the same as ordinary 5.25
inch floppy types, and is used to magnetically store
and retrieve data. The disc is built into the disc
drive, and is not removable and interchangeable like
floppy discs. For this reason the alternative term of
"fixed disc" is sometimes used. This type of disc and
drive is highly refined, and can usually save and load
data at least ten times faster than a good floppy disc.
Unlike a floppy disc, the disc rotates all the time the
computer is switched on. This avoids any waiting
while the discs gets up to the correct rotation speed.
This is important as the disc (which in practice is
actually several discs stacked one above the other) is
relatively heavy, and rotates at a relatively high speed.
It consequently takes it much longer than a floppy
disc to get up to full speed. The recording and play-
back heads are aerodynamic so that they fly over the
disc and never come into contact with it. Due to the
high disc speed the consequences of a head coming
into contact with the disc would apparently be
catastrophic.

84

The storage capacity of a hard disc is many times
higher than that of a floppy disc at around 10 to
100 megabytes or even more (which compares with
about 0.36 megabytes for an average floppy disc).
Thus, the fact that the disc is not interchangeable is
not a great disadvantage. They may be called hard
discs, but they are certainly not hardy discs. They
must be treated with due respect if they are to give
many years of trouble -free service. They are some-
times more expensive than the computer they are
used with, but they are often worth the expense as
much of the best software available will only work
really well on a machine equipped with a hard disc.

Dot Matrix
This normally refers to a printer which has (most
commonly) 9 pins in the print head. The printed
characters are made up from patterns of dots, and
when used in the high-speed "draft" mode these
dots are usually quite visible. Most dot matrix
printers also have a higher quality NLQ (near letter
quality) mode where each line of characters is

printed twice, with the paper being moved up frac-
tionally on the second run. This sort of merges the
dots together, but does not necessarily disguise them
completely. It substantially reduces the printing
speed. Dot matrix printers are the most popular
type, and offer great versatility including good
graphics capability. Reasonably priced 24 pin types
have now been introduced, and these offer higher
print quality while still maintaining a fairly high
print speed. Where high quality is of prime impor-
tance, daisy wheel printers (which work in a manner
more like a conventional typewriter) still represent
the better choice. Note that ink -jet, laser, and
l.e.d. printers all use the same dot method of pro-
ducing characters. In fact this is essentially the
same process that is used to generate characters on
a computer's display.

Editor
This is a program for producing and editing text files.
It could be regarded as a word processor that has
been stripped of all its "frills". In fact some text
editors have quite comprehensive features these days,
including word-wrap, search and replace, etc. Where
they really differ from a word processor is that they
have no pagination facilities and have no built-in
means of outputting text to a printer. They are
intended for such things as producing batch files, and
for producing program files for use with an assembler
or compiler. Business computers are often supplied
with a text editor which is part of the operating
system. However, these text editors are often quite
crude compared to the best text editors that are
available. They are not noted for being particularly
easy to use. For most purposes a word processor is
much better. An editor can be useful when it is
important to produce a pure ASCII file (such as a
control file that will be used by a program). Many

word processors add their own brand of formatting
codes to the text, and these tend to crash applications
programs if you use such a word processor to pro-
duce a control file. Some word processors have a
facility to produce ASCII files which are free from
their formatting codes, but in my experience these
do not always give the desired result when used to
produce control files for "fussy" programs.

EGA
EGA stands for "enhanced graphics adaptor". This
is a display adaptor for IBM PCs and compatibles, and
it goes some way beyond the capabilities of the CGA
board. It provides resolutions of 640 x 200 pixels in
16 colours, 640 x 350 in monochrome, and 640 x
350 in 16 colours. The full range of colours is only
available if the board is fitted with the full 256k of
RAM (most EGA boards these days have the full
256k of memory as standard). To obtain the benefits
of the EGA display a high resolution monitor having
a higher scan rate than the ordinary CGA monitors
is required. Apart from its improved graphics
capability, the EGA display also provides a much
neater text display than the CGA display. The cost
of EGA boards and monitors has fallen considerably
in recent years, but is still substantially higher than
that of CGA equipment.

Emulator
An emulator is a program or a hardware device which
allows a computer to act as if it were a different type
of computer. The main purpose of this is to allow
one machine to run software designed to run on a
different machine, or under an alien operating
system. Emulators are rarely more than partially
successful. Simple software emulators generally run
much slower than the machines they emulate, and
more complex hardware emulators are often virtually
complete computers, only using the host machine's
display (and perhaps memory). They can be nearly
as expensive as the computer they emulate. See
CP/M.

Expert System
This is a relatively new and advanced form of soft-
ware. It is an extension of CAD (computer aided
design). With CAD a computer is used as a design
aid, and it will help with the production of a design,
and mathematically test the design to predict how
well (or otherwise) it will work. An expert system
uses so-called artificial intelligence to go on step
further. The basic idea is that you tell the system
what you want, and then it designs it for you.
Systems of this type are not limited to designing
though, and are used in medicine and other fields of
interest. The point of an expert system is that it
enables practically anyone to undertake the type of
thing that would normally require someone with
years of training and experience behind them. As yet
there are relatively few expert systems that really live
up to their name.

85

Extension
See FILE.

Feature
1. An aspect of a computer's or program's specifica-
tion found in the advertising but not in the instruction
manual.
2. A documented bug.

File
If, for instance, you write a letter using a word
processor, and then store the letter on disc, the stored
data is called a "disc file", or just a "file". If you
list the contents of a disc using the MS-DOS DIR
instruction, each file will be displayed as a separate
entity, together with its file name. Prcgrams of any
form of data stored on disc are held in files.
MS-DOS file names can have up to eight letters and
(or) numbers, and a few other characters are per-
mitted. The three character "extension" is also
permitted, and this is separated from the main file
name by a full stop. There are certain conven-
tions that are used for program file extensions
(".BAS" for a BASIC program for example), but for
data files the user can opt for any extension he or
she feels is appropriate. Often you can simply omit
extensions if you prefer, but a few applications
programs insist on having an extension if they are
to function properly, and some automatically add
one for you!

Flag
In programming, it is sometimes necessary to leave a
signal that something has happened so that this can
be checked by other parts of the program. This is
done by means of flags. At the machine code level,
a flag is normally a single specified bit of a particular
byte in memory. This can be set or cleared as
required, and checked as often as necessary. In
higher -level programming (e.g. in BASIC), variables
can be used for this purpose.

Floppy Disc
See DISC.

Floppy Tape
This is a rather silly name for a system which uses a
continuous loop of tape in a cartridge as a data
recording medium. It is intermediate in both speed
and cost between floppy discs and audio tape
cassettes, has not achieved any great popularity, and
should now be considered obsolescent.

Format
Before a disc can be used to store data it must be
formatted. This means dividing the disc up into
convenient sized blocks and putting down the basic
framework of data that will enable the computer to
rapidly locate any particular block on the disc, and
the data it contains. Formatting is usually carried out

via the computer's operating system using the
"FORMAT" instruction. With some home com-
puters that were originally designed more for use with
cassette tapes than with discs, a separate formatting
program may be required. Take due care with for-
matting commands, as they effVctively wipe any data
from a disc that has been in use and is accidentally
reformatted. Hard disc users need to be especially
careful.

The term format can also be used to describe the
way in which the data is recorded on the medium.
Programs may have their own format for data storage
which will prevent data files generated by one pro-
gram being loaded into another for which they are
inappropriate. However, there are also some standard
formats expressly designed to allow data to be trans-
ferred from one program to another. For example, a
model generated on one spreadsheet could be used on
another different spreadsheet program, or used by a
graphics program to generate graphs or diagrams.
When choosing software, it is always worth checking
whether new programs can work in conjunction with
your existing ones in this way, even if you think you
will never need this facility. If you have the ability to
swop data between programs you will probably soon
fmd a use for this facility!

Formula
A mathematical expression in a spreadsheet. See
FUNCTION.

Frame Grabber
An electronic device which stores a picture from a
video camera or recorder, or broadcast TV, in a form
suitable for computer storage, display and modifica-
tion. See also DIGITISER.

Front End
This is the part of a program or operating system
with which the operator interacts. WIMP environ-
ments such as the Apple Macintosh operating system
and GEM are termed "friendly front ends".

Function
A function is a mathematical operation expressed in a
computer language. Most computer languages include
a number of in-built functions for basic mathematics,
and in some languages these can be used together to
perform more complex operations. These combina-
tions are called user -defined functions. In compiled
languages the functions are usually contained in a
`library' which has to be added to the object code
during compilation.

In spreadsheets, functions are called formulas.

Function Keys
These are extra keys provided on many computer
keyboards. These do not normally produce on -screen
characters, but are used by many applications pro-
grams to call up certain functions (f10 might be used
to save data to disc for example).

86

GEM
This is the trade name of the Digital Research opera-
ting system front end/graphics system. It is an
acronym deriving from Graphics Environment
Manager. It is available for many machines, and is
supplied as standard with the Atari ST series and
the Amstrad PC1512/1640.

Graphics
This means anything which deals with drawings of
some kind, instead of being purely text based. Most
graphics programs include text, but the text char-
acters are normally defined by the applications
programs and are not the normal (text screen) text
characters. Some text programs are actually graphics
types, and this is where various sizes and styles of
text are used. These can not be handled by a normal
text screen (or printer), and are produced using the
graphics capability of the system.

Hard Disc
See DISC.

Hard Copy
This simply refers to a printed copy of a text
document, drawing or whatever.

Hard Page
This is a word processing term and refers to a page
break which is inserted by the user rather than being
inserted automatically by the program, the latter
being a "soft page". Soft page breaks will be moved
if you add text ahead of them. Hard pages are fixed.

Hard CR (Carriage Return)
This is another word processing term, and refers to a
carriage return which is inserted by the user rather
than the program. Normally word processing pro-
grams automatically take care of carriage returns,
automatically beginning a new line where necessary.
Hard returns generally only need to be inserted to
end paragraphs or to insert extra line spaces in a
document.

Hardware
Any piece of equipment in the system (computer,
printer, etc.) is a piece of "hardware". Programs are
the "software". Software built into the computer
and contained on components within the computer
is sometimes called the "firmware".

High Level (Language)
A high level computer language is one which makes
concessions to human ways of thinking and doing,
and is therefore hopefully easy for humans to under-
stand and write. It is especially applied to interpreted
languages like BASIC and LOGO.

I/O
I/O simply stands for "input/output". It is generally

used in connection with ports such as the RS232C
serial port, rather than data stored and retrieved on
disc, or something of this type.

Icon
A general term for a graphical representation of some-
thing (usually a program or file), displayed on the
monitor's screen. A mouse or other pointing device
is used to select the desired icon, rather than typing
in a program name, file name, or whatever. This is
the system used when running GEM desktop.

Indirection
In machine code, an instruction may contain an
address in memory. and this address in memory will
in turn contain the address at which the data to be
used by the instruction will be found. This process is
termed indirection. In theory, an infinite number
of stages of indirection are possible, but in fact in
microprocessors true indirection is hardly ever
implemented, largely because it is very greedy of
stack space. Instead, register indirection is normally
used, where an address register in the microprocessor
is specified in the instruction and is used to contain
the address of the data. Tndirection is most common-
ly used when accessing tables of data in memory. The
register containing the address can be incremented or
decremented to step through the table.

Ink -Jet
This is a type of printer which forms characters in the
standard dot-matrix format. However, instead of
having a 9 or 24 pin print -head and a ribbon, they
work by squirting minuscule droplets of ink from the
print -head. They can give very good quality, are
very fast, extremely quiet, and the modern types are
very reliable. The cost is substantially more than
that of a good dot matrix printer, but they can be
worthwhile for those who will make extensive use
of their printer. This type of printer is incapable of
producing carbon copies, and this will rule them out
for some applications.

Instruction
A machine code program consists of a series of
instructions. Each instruction consists of an opcode
and an operand or operand field. These terms are
explained below. However, in some cases an instruc-
tion can consist of an opcode alone.

Interface
The original meaning of "interface" was a port, such
as a Centronics or RS232C type, that enabled two
items of equipment to be interconnected. This is
still its primary meaning, but you may also encounter
this term in the context of a so-called "user inter-
face". This is the means by which the user interacts
with the computer, and GEM desktop is an example
of a user interface.

87

Interpreter
A program which is the key part of a programming
language. When a program written in an interpreted
language is run, the interpreter scans the program
line by line, determines what needs to be done, and
does it. This process is necessarily slow (by com-
puting standards) but programs in interpreted
languages have the advantage that they are easily
modified and tested. See also COMPILER.

Interrupts
There are various hardware devices within and
attached to computers which periodically need to
grab a share of the microprocessor's attention.
They do this by putting a signal on a special pin
on the MPU chip. This signal causes the MPU to
suspend its current activity, to store all necessary
information so that it can resume where it left off
(usually on the stack), and then to branch to a
special section of code in memory which contains
the instructions to service the peripheral device.
This process is termed an interrupt and the code
is called the interrupt routine. Most micro-
computers run under continuous interrupts, but
since each interrupt only takes a small fraction of
a second to service, the user is not aware of this.

Justification
This is a word processing term, and refers to the
process whereby the margins are made even down
the length of the document. The left margin
normally is justified as the text lines start from the
left margin, but the right margin will be ragged as the
lines will be of differing length. The right margin
can also be justified, and the simplest way of doing
this is by inserting extra spaces between words. This
can be done on -screen and in the printed document.
A better system is micro -space justification, where
extra space is placed between letters within words,
as well as between words. This gives a neater
appearance to the document, but is not possible with
all printers. It requires a high degree of co-ordination
between printer and program. Word processors
employing microspacing justification do not usually
justify on -screen. For some purposes, justification is
undesirable, so there is nearly always provision for
turning it off.

Right -only justification is also provided in some
cases. Here, the lines are not padded out, but are
shifted right to justify them, leaving the left margin
ragged.

You may also come across centre justification. In
this, lines are not padded at all. Each line is centred
so that it has equal space either end, but both margins
are ragged. This is not a true form of justification.

Keyed File
This is a system of organising database files, whereby
each entry in the file also has entries in one or more
index files. These work just like the index in a book.

When looking for a record in the file, the part of the
record you specify is looked up in the appropriate
index, and the record or records which match your
specification are thus located. Keyed files allow very
rapid file location, but take up a lot of disc space as
both the data file and the indexes have to be stored.
A very few versions of BASIC allow users to write
their own keyed file programs.

Kilobyte (Kbyte or k)
This simply means one thousand bytes, or if you
want to be pedantic, it actually means 1024 bytes.
It is the most convenient unit for expressing the size
of computer memory (RAM and ROM) and disc
capacity.

LAN
LAN stands for "local area network". This means
connecting computers together effectively for one
large system which can share software, swop data,
share peripherals such as printers, etc.

Laser Printer
A LASER printer is based on photocopier tech-
nology, but a laser beam is used to generate a page of
printing/graphics. This gives very high quality output
with each page being produced very rapidly (typically
about eight pages per second). Very nice if you can
afford one! Like ink -jet printers, carbon copies are
not possible, but the speed of laser printers makes the
production of multiple copies a practical proposition.

LCD
In a computer context this generally applies to the
screen of a portable computer. LCD stands for
"liquid crystal display", and it is the same technology
that is used in the displays of watches, calculators,
etc. Early liquid crystal displays for computer use
were often small and low in quality. More recent
types are generally larger, display more information,
and are much clearer.

LED
The main use of LEDs (light emitting diodes) is in
displays, but they are little used in computer applica-
tions. In a computing context you are more likely to
encounter the term as a description of a printer.
LED printers are very similar to laser types, but use a
LED light source instead of a laser.

Library
In computing the term library is used mostly in the
context of programming. In compiling languages, the
library is a collection of complex machine code
routines which perform the more involved mathe-
matical operations and similar tasks. With the better
compilers, only the parts of a library actually requir-
ed by a program are added to it. In simpler com-
pilers, the entire library is always added. This means
that the programs written with such a compiler will

88

always be larger than they need to be. Unfortunately,
most compilers are of the latter type. Libraries can
also cause complications if programs in a compiling
language are being written for commercial sale. The
library routines will be the copyright of the producer
of the compiler, and a licence may be required to sell
programs containing them. With some languages,
additional libraries can be obtained, extending the
language's capabilities in such areas as graphics.

In programming in languages such as BASIC, the
term library is usually used to mean a collection of
subroutines or procedures of a general purpose nature
which are kept on disc and which can be merged into
any program one is writing which needs them.

List
This term is used in languages such as LISP and
LOGO, which are list processing languages (LISP is
in fact derived from LISt Processing). They are the
primary form of data storage in these languages. A
list is a collection of words, which in fact can be any
collection of one or more printable characters. It is
possible in these languages to add words to either
end of a list, to remove words from either end of a
list, and to transfer words from one list to another.
There are also functions to determine whether a
word is a member of a list, the position of a word in
a list and so on. It is also possible to have a list of
lists, a list of lists of lists, and so on (theoretically)
ad infinitum. These facilities may seem limited, but
in fact a great deal can be done with them, and these
languages form the basis of artificial intelligence
research.

Low Level (Language)
A low level language is one which makes few conces-
sions to humans and keeps close to the requirements
of the machine. It is most often used to mean
machine code or assembly language.

Mac
This is an affectionate abbreviation of the popular
Apple Macintosh computer, one of the original
WIMP machines, and certainly the one which made
graphical front ends a success.

Machine Code
See ASSEMBLER.

Mainframe
A mainframe computer is a very powerful type,
generally capable of carrying out many tasks at
once with many users. Equivalent in power to a
larger number of microcomputers in fact.

Maths Co -Processor
Some computers, including most IBM PC/XT/AT and
compatible machines, have a socket on the main
printed circuit board for a maths co -processor. This
is an integrated circuit which looks very much the

same as the microprocessor in most cases. Its purpose
is to aid the microprocessor by taking over and hand-
ling the calculations when floating point and other
intensive calculations must be performed. Maths co-
processors are very complex devices, and have prices
that are generally between about £100.00 and
£500.00. This may seem rather expensive, but they
can provide a very worthwhile improvement in per-
formance. Just how niuch of an improvement
depends on the software in use. Most maths co-
processors will only operate with software that is

written to take advantage of them. Some programs
are supplied in two versions - one for use with
computers that are fitted with a maths co -processor,
and one for use with computers that lack this facility.
A maths co -processor can be of little benefit with
programs that do not make extensive use of complex
mathematical calculations_ A maths co -processor will
not speed up a word processor for example. They are
of most benefit with software such as spreadsheets
and CAD programs. The effect of one of these com-
ponents is to speed up certain types of calculation by
a factor of fifty or more. However, this does not
mean that adding one will speed up a spreadsheet or
CAD program by this amount. Probably no practical
applications programs are pure mathematical calcula-
tions. The speed-up can be very worthwhile though,
and adding a maths co -processor might speed up
many parts of a CAD program by a factor of about
three. The exact boost in performance is very much
program dependent though.

Megabyte (Mbyte or M)
This is a million bytes, or a thousand kilobytes. To
be precise, it is actually 1048576 bytes, or 1024
kilobytes. This unit is becoming more useful to
express memory size, as many computers are now
becoming available with memories in this range.
It is also the most convenient unit to express the
storage capacity of hard discs.

Memory
A computer's memory is the circuit where it stores
programs and data. Some of this is the system firm-
ware which boots the operating system at start-up
amongst other things. For the user it is the RAM
(random access memory) that is of more interest.
This is used to store any programs or data that are
fed into the computer, and there must be enough
RAM available. Eight bit computers are normally
restricted to 64k of normal RAM. Although this
seemed to be a massive amount not so long ago, it is
very restrictive these days. Many 8 bit computers
have some form of "paged" RAM which enables
virtually any amount of RAM to be accommodated.
This is done by switching between banks of RAM so
that no more than 64k is active at any one time. The
microprocessor provides no support for this type of
extended RAM though, and this tends to make it
rather difficult to use, slow in operation, and prone

89

to crashing the system. If carried out properly, this
system can work remarkably well though.

Sixteen bit computers can mostly take much
larger amounts of memory. I megabyte is normally
the minimum limit, and many sixteen bit micro-
processors can handle sixteen megabytes or more of
RAM. The only problem with this is that in practice
most computers do not have such large amounts of
RAM fitted (which would be rather expensive).
Where a really large program is to be used, a common
technique is to use program overlays. In other words,
much of the program is left on disc and not loaded
into the computer. If a function that requires part
of the program which has not been loaded should be
called, this part of the program is loaded into
memory. It then overwrites part of the program
already in RAM. If the overwritten part of the
program is needed at a later time, it must be read
back into memory from disc again. Some programs
use a similar method to enable them to deal with data
files that are too large to be fully loaded into RAM.
In order to work well these systems need the speed
and higher capacity of a hard disc. With a program
that makes extensive use of overlays there can be an
advantage in having a fast access (40ms or less) hard
disc.

Memory Resident
This is a type of program. and it is one which when it
is run, lays dormant in memory. It can then be
invoked by pressing a certain combination of keys.
The idea is to run memory resident programs from
within other programs. You could, for example.
have a memory resident calculator that could be
called up at any time, such as when word processing,
and then put back into dormant mode when you have
finished your calculations. Although memory resi-
dent programs are a very good idea, and can be
invaluable, there can be problems in using them.
There can be clashes between memory resident
programs and main applications programs, leading to
crashes of the computer. A lot of applications
programs are so complex these days that they often
use up practically every byte of memory. Programs
of this type (which includes virtually all the programs
I use) can not be used in conjunction with memory
resident programs as there is simply not enough
memory available to accommodate all the programs.

Menu
Where a program presents the user with a series of
possible options, one way of choosing the required
option would he to remember the right key to press.
This can be difficult, especially when first using a
system when there might be dozens of key codes to
remember. Many programs provide a simple help
screen with a list of functions and the appropriate
key or keys to press in order to obtain each one.
This is a sort of menu system, but with a proper
menu it is merely a matter of using the mouse or

cursor keys to position the cursor alongside the
required function. This function is then selected by
"clicking" the mouse or pressing RETURN on the
keyboard.

Microcomputer (Micro)
A microcomputer is simply a computer that is based
on a microprocessor. Virtually all personal and home
computers are of this type.

MIDI
MIDI is an acronym for "Musical Instruments Digital
Interface". It is a form of serial interface used to
send data from one electronic musical instrument to
another, or as a means of communication between a
computer and one or more electronic instruments. A
few computers have a built-in MIDI interface (the
Atari ST series for example), and it is an add-on
which is available for any of the more popular home
and personal computers. It is similar to a standard
RS232C interface, and the common word format of
one start bit, eight data bits, one stop bit, and no
parity is used. However, the baud rate is non-
standard and quite high at 31250 baud, and MIDI
uses a 5 milliamp current loop signal rather than the
two voltage levels of the RS232C system. Conse-
quently, an RS232C interface can not be used for
MIDI purposes unless it can accommodate the higher
baud rate and a simple interface box is used to pro-
vide the necessary changes in the input/output
signals. This is the normal method of MIDI interfac-
ing used for the Commodore Amiga computer, but
most other add-on MIDI interfaces connect to the
expansion bus of the computer.

Minicomputer
Strictly speaking a minicomputer is a somewhat cut -

down and less powerful version of a mainframe
computer. As the top notch microcomputers become
ever more powerful the distinction between these
and minicomputers becomes less clear cut. Probably
the most sophisticated microcomputers will gradually
take over from minicomputers.

Modem
The term modem is a contraction of "MODulator/
DEModulator". It is a device which enables two
computer systems to communicate via the telephone
lines. It operates by converting the signals from the
computer's serial port into two audio tones, and con-
verting received tones back into RS232C serial
signals. Direct coupled types are connected direct to
the telephone system, and acoustically coupled types
send and receive signals via an ordinary telephone
handset (see ACOUSTIC COUPLER).

Modulator
An electronic device which converts the video output
of a computer (the signal to drive a monitor) into a
form suitable to drive a domestic TV via the aerial

90

socket. Picture quality obtained from this system is
normally markedly inferior to that obtained from a
proper monitor.

MSDOS
This is currently the main operating system for 16
bit computers. It is mainly used with IBM compat-
ible computers (the very similar PCDOS is the
operating system normally used on the IBM PCs
themselves). There is a vast amount of software that
is designed to run under this operating system, and
this enables MS-DOS machines to be used in a vast
range of applications. In fact there are probably
more programs available for these machines than any
others.

Multi -Tasking
It is possible to obtain software that enables a com-
puter to undertake several tasks simultaneously. What
is really happening is that the computer spends a
short time doing one task, then moves on to the next
one for a short while, and so on. This can work well
because computers do not normally work flat out all
the time. For example, when word processing the
computer spends most of its time waiting for the next
character to be typed rather than actually printing
characters on the screen or manipulating the text in
some way. Multi -tasking inevitably means that the
computer runs each application more slowly than
normal, and if two or three applications put heavy
demands on the computer simultaneously things can
grind along very slowly. (See also CONTEXT
SWITCHING and RESIDENT)

Multi -User (System)
Multi -tasking should not be confused with multi-user
systems. They are similar in that the computer is
time-shared, but with a multi-user system there are
several users, each with their own keyboard and
monitor. Multi-user systems were originally based
on minicomputers and mainframes, but there are
microcomputer based systems. The relative cheap-
ness and lower
type of system
with mini and
have a system
tasking.

power of microcomputers makes this
a less attractive proposition than it is
mainframe types. It is possible to
which is both multi-user and multi -

Numeric Keypad
This is a calculator style keyboard which is included
on many computer keyboards, usually towards the
right-hand end of the keyboard. On some computers
these keys are also used for cursor control and similar
purposes. These keys are duplicating functions
available on the top row of the standard "QWERTY-
typewriter part of the keyboard, but the numeric
keypad can be much more convenient for applica-
tions that require a larger amount of numeric data to
be entered into the computer.

Object Code
In a machine code program produced using an assem-
bler or compiler, the object code is the machine code
output produced by the assembler or compiler.

Object Oriented
This is a term which is normally applied to drawing
programs. Paint type programs are pixel oriented,
which means that the drawing is produced by alter-
ing the pixels on the screen of the monitor, and it is
stored as a simple bit map of the screen display. This
is a very simple way of handling things which is
adequate for many purposes, but it has disadvantages.
One of these is that the resolution of most computer
displays. even the higher resolution types such as the
IBM EGA display, have what is by normal standards a
rather poor level of resolution. Output devices such
as printers and plotters are normally capable of a
much higher resolution output than the screen. With
the image only stored at the screen resolution, it can
only be output to the printer or plotter at this resolu-
tion, giving what are often disappointing results.
Some recent paint programs have routines which try
to smooth out the steps ;n curves and diagonal lines
when hard -copy is produced, but usually results are
still some way short of the best that can be achieved
by the output device.

CAD programs use a different approach. They
store the drawings in terms of objects, such as lines,
circles, text etc. Details of each object's size, posi-
tion, etc. are stored in very high resolution form.
Most CAD programs will accept dimensions into the
tens of thousands, with about half a dozen decimal
places being permitted if desired. In terms of pixel
resolution, the drawing may well be stored on the
basis of a few billion pixels on each axis, and count-
less billions of pixels in total. Of course, the drawing
can not be displayed on screen in anything like this
resolution, and the program simply provides the best
possible on -screen representation that can be pro-
duced. In fact the same is true whatever the output
device. and the accuracy of the hard -copy from a
CAD program will normally be limited by the output
device rather than the program, no matter how good
the output device happens to be.

Which type of program is best depends on the
application. An artist would feel rather restricted by
a CAD program, and would feel more at home with
the freedom and "tricks" afforded by most paint
programs. A draftsman would feel severely hampered
by the lack of accuracy provided by a paint program,
and would have little use for the "spraycans" etc. of a
paint program. An important advantage of CAD
programs and their object orientation is that single
objects, or a group of objects can be selected and
then manipulated in some way. The usual facilities
are such things as scaling, rotating, stretching, etc.
With pixel oriented programs the same sort of things
are usually possible, but these facilities work on an

91

area of the screen rather than specific objects, which
does not always give the desired effect.

Opcode
The opcode is the part of a complete instruction in
machine code which directs the CPU to perform a
specific task. It normally comes at the beginning of
the complete instruction. In some cases, instructions
may consist of an opcode alone.

Operand
The majority of instructions in a machine code pro-
gram will contain, in addition to the opcode, either
some data on which the instruction is to operate,
or the memory location where data is to be found or
placed, or more than one of these. This part of the
instruction is termed the operand. The term operand
field is also used, meaning the part of the instruction
containing the operand. Some instructions do not
require an operand, and in some others it is implicit.

Operating System
The main point about an operating system such as
MS-DOS is that it effectively turns the computer into
a standard machine which will run any software
intended for that particular operating system. This
enables different computers to run the same soft-
ware. In practice things are not quite as straight
forward as this, and there can be compatibility
problems. Software that controls the computer's
input/output devices via the operating system can run
rather slowly. Many programs use direct control to
some extent in order to speed things up. Programs of
this type are to some extent hardware specific, and
simply having the right operating system does not
guarantee that they will run properly. Another point
to bear in mind is that to run some programs properly
the system must include extra memory or other hard-
ware which goes beyond the specification of most
computers that use the operating system concerned.
An operating system therefore only offers conditional
software compatibility.

An operating system also enables useful tasks such
as disc formatting, disc copying etc. to be carried out,
and it is not just needed to enable applications pro-
grams to be run.

ORing
See BITWISE.

OS/2
This is a relatively new operating system from
Microsoft (the company that is also responsible for
the industry standard MS-DOS operating system).
OS/2 requires an 80286 or 80386 based computer
(8088 and 8086 based machines are unsuitable) and
it provides multi -tasking. In other words, it provides
the ability to run more than one program at a time.
It requires a lot of memory though (1 megabyte for
the operating system alone). It is still early days for

this operating system, but it looks very much as
though it will become dominant in the 1990s.

Overlay
In very large programs, if the whole of the program is
loaded into memory at once, there may not be
enough memory space left for the storage and
manipulation of data. In such cases, some lesser used
parts of the program may not be loaded into memory
when the program is first loaded. They are only
loaded from disc if actually required, when they over-
write part of the program already in memory. If the
overwritten part is subsequently required, it must be
reloaded. Sections of program loaded on demand like
this are called overlays. When using a program which
has overlays it is often necessary to leave the program
disc in the drive all the time the program is running.
Such programs are difficult to use unless you either
have a two -drive computer or are running from a hard
disc.

Paint Program
Paint programs is the name generally given to pixel -

orientated drawing programs. These allow pictures to
be drawn on the screen, normally using a mouse, and
provide facilities for lines, circles, boxes and other
shapes to be drawn and, if required, filled with colour
or patterns. Freehand drawing is also supported, and
there are facilities to move, copy, and "flip" (dupli-
cate as a mirror image) parts of the drawn picture.
The picture is stored only in screen memory, and can
not be scaled up or down. Programs of this sort are
used mostly for recreational purposes or for produc-
ing screen images for use in conjunction with games
programs. They are generally not suited to serious
technical applications. However, some word proces-
sing programs allow pictures produced with com-
patible paint programs to be included in documents.

Pal
This is the standard used for colour TV transmission
in the U.K. and most of the rest of Western Europe
with the exception of France. It stands for Phase
Alternate Line.

Parallel Interface
See CENTRONICS INTERFACE.

Parallel Processing
A system of computing whereby a number of micro-
processors work on a task at once, that is, in parallel,
allowing very fast processing. This system is as yet
very little used, but has enormous potential if it can
he effectively implemented.

Parsing
In an interpreted language, during program execution,
the interpreter must scan each line in order to deter-
mine what action it must take. In the case of lines
containing mathematical expressions, several scans of

92

the line may be necessary in order to work out the
correct order in which the operations must be per-
formed, according to the rules of operator precedence.
This process of scanning a line is called parsing. It is
also sometimes used to describe the process of an
assembler or compiler scanning the source code in
order to assemble or compile it.

PC -DOS
PC -DOS is the operating system used in IBM personal
computers, and it is largely compatible with MS-DOS
software. The two are not totally compatible, but
most programs are available in MS-DOS versions
rather than as PC -DOS programs aimed specifically
at the IBM personal computers.

Peripheral
A general term for any hardware add-on for a
computer (printer, plotter, modem, etc.).

Pipelining
This is a term used in multi -tasking systems when the
output of one program is used directly as the input
to another program running concurrently. Generally
this is implemented by the use of areas of memory
designated as buffers. If output of one program is
sent to another by means of disc files (including RAM
disc files) this does not count as pipelining, but is
usually termed importing and exporting. True pipe -
lining is very rarely found on microcomputers.

Pixel
This term is derived from "picture element" and
refers to the individual points which make up the
VDU screen image. The size of a pixel therefore sets
the size of the smallest detail which can be displayed.
Screen resolution is usually given in pixels, so that a
resolution of 640 x 350 means that 640 points can
be resolved horizontally by 350 vertically, provided
of course that the monitor is good enough.

Pixel Oriented
See OBJECT ORIENTED.

Plotter
A plotter is a device that, under computer control,
draws out diagrams on paper or film using a pen. It is
a sort of mechanical draftsman! The main uses of
plotters are for producing business graphics and
technical drawings. For business graphics the plotter
is normally armed with fibre-tip pens of various
colours and plotting paper or transparency film. For
technical drawing the pens are something very similar
to conventional technical pens, and the paper is
normally some form of tracing paper or drafting film.
The drawings in this book were produced using a
Roland DXY980A plotter. Although plotters are a
rather odd mixture of microprocessor technology,
pulley -wheels, and wires, they can produce superb
drawings and business graphics. Unfortunately, they

remain very much more expensive than most printers,
and large high resolution types can cost many thou-
sands of pounds. They are of little use as text
printers as they are very slow (typically around one
character per second), but they are designed speci-
fically for drawing purposes and nothing else.

Pointer
In WIMP environments, the pointer is the on -screen
symbol, usually an arrow or hand, which is moved by
the mouse and is used to point to icons etc.

In programming, a pointer is an address in memory
which contains the address of another place in
memory where specific data is held. In high-level
programming, it can mean a variable which contains
the number of an element of an array where specific
data is held.

Port
Another general term, and one which describes any
electrical connector (plug or socket) on a computer
which is used to connect it to other devices. This
includes such things as the keyboard socket, and not
just things like the serial and parallel interfaces.

Portable
A computer that is fitted with a handle! It is also a
term which is used to describe a programming langu-
age that has few (if any) differences between various
implementations. Few computer languages are truly
portable, but C is a language which seems to be more
portable than most.

Position Independent Code
A form of machine code program which contains no
references to absolute addresses within the program,
and which can in consequence run at any position in
memory. Some operating systems require all pro-
grams to be written in position independent form.
This is especially true of multi -tasking and context
switching systems.

QWERTY Keyboard
A term which seems to confuse many people, but it
simply means a typewriter style keyboard.
"QWERTY" is merely the first six letters along the
top row of letters keys. The "QWERTY" form is
the standard form in the English speaking world, but
slight variants are found elsewhere. For example, the
"AZERTY" form is found in France and Scandinavia.

RAM
This is a form of memory device, and RAM stands for
"random access memory". There is another form of
memory called ROM (read only memory). The
random access name is a little misleading, in that any
part of ROM and RAM banks can be randomly
accessed by the computer. The real difference is that
the contents of RAM can be altered by the computer,
whereas the program or data stored in ROM is put

93

there at the manufacturing stage, and can not be
changed. Also, the contents of RAM are lost when
the computer is switched off, whereas the contents
of ROM devices are retained. RAM is used to store
programs and data loaded into the computer, or
entered from the keyboard, but any important data
must be saved to disc prior to switching off. ROM
is used to hold things such as the "boot" routine
which loads the operating system from disc when
the computer is switched on. In fact, the term
random access was originally coined to distinguish
this type of memory from "sequential access
memory", where the memory can only be read in
sequence from the first location to the last.
Sequential access memory is no longer used in
computers, but it will be found in other electronic
devices (e.g. lenses for autofocus SLR cameras).

RAM Disc
If the computer has more memory than an applica-
tions program requires, part of RAM can be set aside
to act as a sort of pseudo disc drive. This technique
is mostly used with programs that use the overlay
technique. Storing some of the routines in a RAM
disc can make these programs operate very much
faster than using a floppy disc to hold the overlays.
When using a RAM disc bear in mind that anything
stored on this "disc" will be lost when the computer
is switched off. This does not matter if the RAM
disc is used for program storage, as the program
overlays can be loaded from disc each time the
system is used. Any data stored in a RAM disc is
lost at switch -off though, unless it is copied to a
hard or floppy disc.

Random Access File
A random access file is one in which records can be
accessed in any sequence, and is distinct from a
sequential file in which records can only be accessed
in order starting from the first and continuing to the
last. Records in random access files normally have
to be of a fixed length, and this can be wasteful of
disc space, as the length has to be chosen to suit the
longest record, and the shorter records padded out.
In most random access systems, records are specified
by record number, which is the position the record
occupies in the file.

Random Number
A truly random number is one which has no reference
to any number that has gone before, and has no
influence on any number which may follow. In a
series of true random numbers, therefore, it is
impossible to predict what any number in the
sequence will be from others in the sequence. True
random numbers are generated in computer systems
usually by the use of electronic devices such as noise
diodes. The best-known example of this is ERNIE,
the computer which generates the numbers of
Premium Bonds to be awarded prizes. Most computer

languages which provide a random number facility in
fact generate pseudo -random numbers, where the
numbers do in fact belong to a mathematical series,
hut where the series is so long and involved that it is
very difficult to predict what the next number will be.

Real Time
A much misused term, which really means that the
computer is running at precisely the same rate as
some event outside the machine. This generally
means that it has been deliberately slowed down, but
in some very complex tasks a microcomputer has
inadequate power to run in real-time. Examples of
real time applications would be where the computer
is controlling something such as a robot, flight
simulation, and processing of an audio signal. Real
Time Programming is the branch of programming
which deals with control applications and devices,
including such things as automatic washing machines
and military weapons systems.

Relative Addressing
In a machine code program, relative addressing is a
form of addressing in which the address of data or a
branch destination is given as a displacement (normal-
ly in bytes) from the current address. It helps to
enable programs to be written which can run any-
where in memory (i.e. position independent code).

Relative Co -Ordinates
A graphics co-ordinate system in which the position
of the next point is given as a displacement from the
current point. Generally, relative co-ordinates are not
as easy to use as absolute co-ordinates. They are
found mostly on the simpler home computers, but
some of the better machines give a choice of either
relative or absolute.

Relocatable Code
A form of machine code program which can be
adjusted to run at any location in memory by the
use of a special program called a relocator, which
corrects any absolute addresses used in the program
to those required for where it is to run.

Reset
If a computer is reset it is taken back to its start-up
state. This generally means that any data in RAM
will be lost. To reset the MS-DOS computers the
"Alt", "Ctrl", and "Del" keys must all be pressed
simultaneously. It is almost impossible to accidental-
ly press this combination of keys. Many computers
(including a lot of MS-DOS machines) have a reset
button. This is sometimes tucked away in an inacces-
sible place where it is not likely to be pressed
accidentally. You would normally only need to reset
a computer when it has crashed and has hung -up in a
state where it refuses to take any of the instructions
normally used with the applications program it was
running. Resetting some computers does not always

94

have the desired effect. It is then necessary to resort
to switching off the computer, waiting a few seconds,
and then switching on again.

Resident
Usually used to describe a program which is held
permanently in memory, and which is run usually by
pressing a combination of keys, while another pro-
gram is in memory and running (but suspended while
the resident program is in operation). Resident
programs are usually such things as diaries and
calculators. Do not confuse resident programs with
background programs such as clocks and alarms,
which are also permanently in memory, but running,
though the user will not be aware of them for most of
the time.

Resolution
This generally refers to the screen resolution of a
computer, and it is measured in terms of horizontal
and vertical pixels. A pixel is simply a dot on the
screen, and the display is built up from thousands of
these. For example, in its highest resolution mode
the Atari ST computer has a screen resolution of 640
by 400 pixels. The higher the resolution, the greater
the detail that can be shown on graphics displays. If
you encounter a screen resolution of something like
80 by 25, this will almost certainly be the text
resolution (i.e. 80 columns of text characters by 25
lines of characters) and not the graphics resolution.

RGB
This stands for Red Green Blue, and is a standard for
sending signals from a computer to a monitor where
each of the primary colours has a separate wire
controlling it. There are in fact two standards, logic
level RGB, where each colour can be either on or
off, limiting the display to eight colours, and
analogue RGB, where the level of each colour is
continuously variable, allowing shaded colours.

RGBI
A system for sending signals from a computer to a
monitor which is similar to logic level RGB, but
where there is an extra wire allowing each colour to
be either half -intensity or full -intensity, increasing
the range of colours which can be displayed.

RISC
An acronym for Reduced Instruction Set Chip. The
idea of these is that, instead of a large set of complex
instructions, this type of microprocessor has only a
small set of simple instructions, the instructions
which most microprocessors spend most of their
time doing anyway. By reducing the time taken to
decode the instructions in a program, execution
speed is increased. When necessary, the complex
instructions can be made up by combinations of the
simple ones. This type of chip is currently growing
in popularity.

RS232C
This is the most common form of serial interface
used in computing, and few computer serial inter-
faces are of a different type. Serial interfaces
generally operate well over reasonably long distances,
and need relatively few connecting wires. The trans-
fer of data is often comparatively slow, but as many
computer peripherals are even slower, this is often
of no importance in practice! Some computers (such
as the BBC model B etc.) are fitted with an RS423
serial interface. This is largely RS232C compatible,
and there are not usually any problems in using a
computer of this type with equipment fitted with
an RS232C interface.

Scanner
A scanner could be regarded as the opposite of a
printer or plotter. A drawing or photograph is placed
in the unit, and then this is scanned by a photo-
electric device. With suitable software, information
from the scanner is used to build up the picture in a
form that can be used with a graphics application
program such as GEM Paint. Some scanners are
complete units, but some low cost types are just the
photo -electric part of the system. This second type
are designed to operate in conjunction with a

particular printer or plotter which scans the photo-
cell over the picture.

Sector
Data is stored on floppy discs in a number of concen-
tric tracks (usually forty or eighty on each side of a
disc). Each track is sub -divided into sectors, and
there are usually eight or nine of these per track. This
compartmentalisation of a disc helps the operating
system to rapidly access any desired data stored on
the disc.

Sequential File
The simplest form of computer file, in which the
records can only be read in sequence, starting from
the beginning. In processing a sequential file, it is
normal to read all the file into memory, and, if
changes are made, to subsequently send the entire file
to disc, discarding the previous version. In BASIC
programming, the records would normally be read
into arrays. Sequential files are economic of disc
space, as no space is wasted padding records to a
fixed length.

Software
Another name for programs, and programs of any
description come under this category. In fact data
for programs (such as libraries of pictures for graphics
programs) would also qualify as software.

Source Code
In assembly language and compiled languages, the
source code is the text file which is written by the
programmer and read "Dy the assembler/compiler to

95

produce the object code. It is sometimes used to
describe the written form of a program in an inter-
preted language such as BASIC, but this use is not
strictly correct.

Spooler
This is usually a piece of software which enables the
computer to print out a file while carrying on with
another task as well. It is sometimes applied to a
printer buffer, which is a device that includes a
large amount of RAM. This enables a file to be
loaded into the RAM, and then printed out from
there, leaving the computer completely free to get
on with other tasks.

Spreadsheet
A general-purpose type of mathematical program,
where numeric data can be entered in rows and
columns of "cells", and other cells can contain
formulae, or mathematical functions containing refer-
ences to some of the data stored in the spreadsheet.
The results of evaluating the formulae are displayed
in the cells containing them. For example, at the
bottom of a column of figures, you could have a
formula to add the figures in the columns together,
displaying the sum. If some of the data contained in
the spreadsheet is altered, all the formulae can be
recalculated (automatically or on demand), showing
the effect of the changes. These programs are there-
fore much used in financial planning, and have been
termed "what if" programs.

Stack
A stack is an area of memory reserved for use by the
computer CPU in executing a program. It is also
used by the CPU to 'remember its place' in a pro-
gram when called upon to service an interrupt. The
main feature of the stack is that it is organised on a
`last in - first out' basis. Some MPUs allow multiple
stacks so that, for instance, one can be used by the
operating system and one by a high-level language.

System Disc
The system disc is the one which contains the
operating system, and which is used at switch -on
when booting the operating system into the computer.

Thermal Printer
A thermal printer is similar to a dot-matrix printer,
but instead of pins in the head it has small heating
elements. These either make marks on special
thermal paper, or use a thermal ribbon which carries a
film of ink which is melted onto plain paper by the
printhead. Some thermal printers can use both
systems. Thermal printers are usually inexpensive.
frequently battery powered and portable, and give a
quality of output ranging from till -roll abysmal to
quite acceptable. They cannot produce carbon copies.
A big advantage for some purposes is that they are
very quiet, being matched in this only by the ink -jet

printers which are substantially more expensive.

Toggle
Many programs use keys to "toggle" them between
two operating modes. For instance, the word
processor I am using to write this piece operates in
the "insert" mode normally, but can be toggled to
the "overwrite" mode by operating the "Ins" key.
Operating the "Ins" key again takes the program back
to the "insert" mode, operating it again takes the
program into the "overwrite" mode once more, and
so on. In other words, each time the key is operated
the program is changed, or "toggled" to its alterna-
tive operating mode.

Track
Data is stored on a disc in a number of tracks around
the disc. It is not like a gramophone record where
there is one spiralling track on each side of the disc.
A floppy disc has a number of concentric tracks,
normally forty or eighty per side.

Transputer
This is a proprietary name for a particular family of
microprocessor -type devices. The main feature of
these is that they are designed so that a number of
them can be used together in parallel processing
applications, allowing very powerful computers to
be built up. They can also be used singly. They
are RISC type chips.

Turbo
This is a term which, in computing, is usually applied
to an IBM compatible computer which operates at a
higher clock speed than the original IBM machine.
For example, a lot of PC "clones" operate at 8MHz,
10MHz, or even more, whereas the original PC has
a clock speed of 4.77MHz. The higher clock speeds
mean that these "turbo" computers carry out most
tasks proportionately faster (some tasks, such as disc
accesses, are not necessarily any faster). Most
"turbo" computers have the ability to switch down
to the standard clock frequency if desired. This
facility is mainly included to avoid problems with
some copy protected programs that refuse to run
properly with the higher clock frequencies.

Turtle
The turtle is a feature of the LOGO computer langu-
age. The turtle can be either a robotic device which
moves around on a sheet of paper on the floor,
drawing lines by means of a pen (called a 'floor
turtle') or it can be a symbol on the screen (usually
a triangular pointer, but on some Atari computers
it is actually a turtle shape, complete with cutesie
feet!) which moves around leaving lines behind it.
The turtle moves in response to commands such as
FORWARD 50, RIGHT 90, BACKWARD 100
which move it specific distances and turn it through
specific angles. Drawing can be stopped and started

96

with PENUP and PENDOWN. This type of graphics
has subsequently been incorporated in other langu-
ages (notably in versions of BASIC and FORTH) and
is now called Turtle Graphics.

User Friendly
A somewhat
means that a
ware) is easy
knowledge of

over -used phrase which supposedly
piece of software (or possibly hard -
to use, even for someone with little
computing. Software which is totally

crash -proof and provides unambiguous instructions
whenever a command is required (preferably with
menu selection of commands) would be very user
friendly. A program which responds only to the
right combination of obscure letter codes would be
very user unfriendly. A point which is often over-
looked is that user friendly programs, although easy
to use initially, may be rather slow going once you
have mastered them. Ideally a complex program
should offer user friendly control, with short cuts
available for experienced users.

Utilities
A term which describes programs that provide useful
but limited functions, and do not really qualify as
applications software. As an example, a program to
recover a deleted file from a disc would be a typical
utility.

WIMP
This is an acronym for Window Icon Mouse Pointer,
and describes the type of graphical front end environ-
ment popularised by the Apple Macintosh computer,
and since copied by such products as DR GEM and
Microsoft WINDOWS et al.

Winchester Disc
This is a type of hard disc, but hard discs are general-
ly just referred to as such these days, or the alternative
name of "fixed disc" is used.

Word Processor
This very popular type of program (which naturally
is being used to write this book) allows text to be
entered from the keyboard, altered, edited, added to,
deleted, formatted and finally printed out. Additional
facilities allow text to be stored on disc, and allow
documents to be merged or split into parts. The
best word processors will also provide a thesaurus and
a spelling checker, and may allow you to work on
more than one document at once, copying text
between them.

Word -Wrap
Word-wrap (also known as wrap -around) is a word
processing term. It simply means that when the end
of a line is reached, the current word is transferred to
the beginning of the next line. This avoids having
words split between two fines. Unlike a typewriter,
when using a word processor it is not necessary to
put in carriage returns at the end of each line. The
carriage returns are effectively added for you by the
automatic word wrapping. This is a standard word
processor feature, and you are unlikely to find one
which does not incorporate it.

Write -Protect
Usually this means place a write -protect tab on a
floppy disc so that it is impossible to write data to
it. It can still be read of course. It is normal to fix
write -protect tabs onto program discs so that there
is no risk of accidentally over -writing and damaging
the program. Data discs which hold important data
should be treated in the same way. In fact it is more
important to use write -protect tabs on these as
inadvertent over -writing of files is more easily done
with data discs. Some systems support software
write -protect schemes.

XORing
See BITWISE.

97

1,4,
nss

Chapter 8

MIDI TECHNICALITIES

MIDI is an acronym for "Musical Instruments Digital
Interface". Computers are now very much part of
the electronic music world, and really seem to be a
vital part of it these days. Few computers have a
MIDI interface as standard (they are present on the
Atari ST series and a few others), but they are avail-
able as add-ons for all the popular microcomputers.
MIDI is a form of serial interface, and it is very
similar to the standard RS232C and RS423 com-
puter serial interfaces. The RS232C serial system has
various word formats, with from 5 to 8 data bits,
one or two stop bits, and sometimes a form of error
detection known as parity checking is implemented.
This system of error detection involves the trans-
mission of extra bits on some bytes. Fortunately,
MIDI is properly standardised, and it only ues a word
format of one start bit, eight data bits, one stop hit,
and no parity. This word format can be accommo-
dated by all the serial interface chips I have
encountered, and MIDI hardware does not require
any non-standard components.

A lot of problems are experienced by users of
RS232C equipment due to difficulties with the
handshake lines. These enable a receiving device to
instruct the sending equipment to temporarily halt
the flow of data in the event that data is received at
a higher rate than it can be processed. There is no
risk of any similar problems with MIDI interfacing
as handshaking is not used. At least, handshaking
of the hardware variety is not used. Some equipment
uses system exclusive messages where a two-way
dialogue takes place so that the flow of data can be
regulated, and any errors can be corrected. This
system can work very well, and the lack of hardware
handshaking is not a major drawback.

Some serial systems are "synchronous", which
means that they use an extra connecting cable to
carry some form of synchronisation signal. MIDI is
a form of "asynchronous" serial interface, which
means that the timing signals are sent on the same
line as the data. In fact the only synchronisation
signal is the start bit at the beginning of each byte.
This indicates the commencement of a byte of data,
and that the voltage on the connecting lead must be
tested at regular intervals thereafter until a full byte
of data has been received. It does not ensure that the
transmitting and sending devices are properly syn-
chronised while each byte of data is sent. This is
achieved by sending/receiving data at a standard rate,
with (usually) quartz crystal controlled oscillators (as
used in quartz watches) to ensure excellent accuracy
at both ends of the link.

The standard MIDI "baud" rate is 31250 baud,
or 31.25 kilobaud if you prefer. This simply means
that data is transmitted at a rate of 31250 bits per

second (assuming a continuous flow of data). This
is not a standard RS232C baud rate, and might seem
to be an unusual choice Originally the baud rate
was 19200 baud, which is the highest standard baud
rate for RS232C interfaces. However, this was deem-
ed to be too slow, and in the final MIDI specification
it was increased to 31259 baud. This is convenient
from the hardware point of view, as it is well within
the capabilities of most serial interface chips. Also,
31250 multiplied by 32 equals 1000000, and this
fact enables the baud rate of MIDI interfaces to be
controlled using "off the shelf" crystals intended for
communications applications and microprocessor
circuits.

The Hardware
RS232C and RS423 interfaces use different voltages
to represent logic 0 and logic 1 levels, but MIDI is
different in that it uses a 5 milliamp current loop. In
other words, the current is switched on to indicate
one logic level, and switched off to represent the
other logic state. This is done due to the use of opto-
isolators at each input, which keep items of equip-
ment in the system electrically isolated from one
another. This eliminates the risk of damage occurring
when two or more items of equipment are connected
together, due to their chassis being at different volt-
ages. It also helps to reduce the risk of "hum" loops
being produced when a number of instruments and
other equipment are connected together. Finally, it
also helps to avoid having electrical noise coupled
from a computer into the audio stages of an instru-
ment. If there is one thing computers do better than
space invaders or number crunching it is generating
electrical noise! Refer to the relevant section of
Chapter 2 for MIDI port connection details.

MIDI Codes
All MIDI instructions have a header byte that consists
of two 4 bit sections (or "nibbles" as they are some-
times called). The most significant nibble indicates
the nature of the instruction (note on, note off, or
whatever). The least significant nibble is the channel
number in most messages, but no channel number is
requIred for any form of system message. With
system messages the most significant nibble is the
system message code, and the least significant nibble
defines the precise type of system message (MIDI
clock, reset, etc.). In terms of the total decimal
value in a header byte, it is just a matter of taking
the values of the two nibbles and adding them
together. For instance, an instruction nibble of 128
and a channel value of 12 would be sent as a byte
having a total value of 140. With MIDI it is often

99

easier to work with hexadecimal numbers, as each
nibble represents one digit of a hexadecimal number.

The most significant bit of header bytes is always
set to 1, but this bit of data bytes is always 0. It is

for this reason that MIDI data bytes only cover a 0
to 127 range, and not the full 0 to 255 span afforded
by 8 bit operation. The point of arranging things this
way is that it enables receiving equipment to sort out
MIDI messages from amongst MIDI data. Although
this might appear to be unnecessary with one MIDI
message being fully transmitted before the next one
is commenced, things do not always happen in this
way. It is obviously necessary for MIDI clock
messages to be sent at strictly regular intervals,
without them being delayed too long while a message
in progress is completed. The MIDI specification
therefore allows for clock messages to be mixed into
other messages. Complete bytes must always be
sent, and a byte must not be aborted so that a clock
message can be sent. It is still possible to have
something like a note on message and the note value
sent, followed by a MIDI clock message, and then
the velocity data byte of the note on message! As
the most significant bit of the clock message will be
set to 1, the receiving equipment can recognise it as
such and will not mistake it for the velocity data
byte.

Note On/Off
The note on nibble is 1001 in binary, which is equiva-
lent to 144 in decimal. From here onwards, values
will be provided in binary, followed by the decimal
equivalent shown in brackets. The least significant
nibble is the channel number, which is from 0000 (0)
to 1111 (15). As MIDI channels are normally
numbered from 1 to 16, this means that the value
used in a MIDI channel message to select the desired
channel is actually one less than the MIDI channel
number. In other words a value of 0 selects channel
1, a value of 1 selects channel 2, and so on. The
note on message is followed by two data bytes, which
are the note number and the velocity value.

Note off messages have 1000 (128) as the most
significant nibble, and the channel number as the
least significant nibble. The header byte is followed
by two data bytes, which are again the note number
and velocity value. A note on message having a
velocity value of 0 can be used as an alternative form
of note off message.

Key Pressure
Overall key pressure (sometimes called "channel"
pressure) has the instruction nibble 1101 (208) and
is followed by a single data byte. Polyphonic key
pressure has 1010 (160) as the instruction nibble,
and is followed by two data bytes. These are the
note value first, and the pressure value second. For
both types of message the least significant nibble of
the header byte contains the channel number.

Control Change Etc.
The control change header byte has 1011 (176) as
the most significant nibble in the header byte, while
the least significant nibble is the channel number
value. The header is followed by two data bytes,
which are the control number followed by its new
value. Controls from 0 to 31 are paired with controls
from 32 to 63 (respectively), and these operate as
high resolution continuous controls. Each pair of
seven bit numbers are combined to give a single 14
bit value. The lower numbered controller always
provides the most significant bits, with the higher
numbered control providing the seven least signifi-
cant bits. In terms of decimal numbers, the range
available is from 0 to 16383. Note that it is quite
acceptable to only change one or other of the con-
trols in a pair. and a change to one does not
necessitate a change to the other.

Not all equipment actually uses the high resolution
capability of the MIDI continuous controls, and most
equipment only uses a resolution of seven bits or
less. For 7 bit resolution it is the most significant
nibble (lower control number) that is utilised, and the
least significant one that is ignored. For less than
seven bit resolution the least significant bit or bits
are left at zero, while the most significant bits are
utilised.

Control numbers from 64 to 95 are used for
switch type controls. Only control values of 0 (off)
and 127 (on) are valid with these, and other control
values will be ignored. Control numbers from 96 to
121 are, as yet, unassigned. These are available for
future expansion, and may be assigned specific
functions in the future.

The remaining control numbers (122 to 127) are
used for mode changes and similar functions. These
have a value of 0 for the control value byte, apart
from controls 122 (local on/off) and 126 (mono on).
Local control is a standard on/off switch type con-
trol, and is 127 to activate the keyboard (or what-
ever), and 0 to switch it off. When mono mode is
switched on, the control value selects the number of
voices to be set to mono mode (a value of 0 sets all
the instrument's voices to mono mode). The MIDI
specification only calls for mono mode channels to
be contiguous, but some instruments have special
modes which allow them to be assigned to any
desired channels.

Pitch Wheel
The pitch wheel header byte has 1110 (224) as its
most significant nibble, and the channel number
value as the least significant nibble. Two data bytes
are used, and the two seven bit values these contain
are combined to give a 14 bit pitch wheel value. The
least significant byte is the one sent first. A value of
10000000000000 (8192) represents zero pitch
change. If less than the full 14 bit resolution is imple-
mented some of the least significant bits are ignored

100

by a receiving device, and always set at zero by a
transmitting device.

Program Change
The program change code nibble is 1100 (192). The
least significant nibble of the header byte is the
channel number value. The header is followed by a
single data byte, which is the number of the new
program for that channel. The value in the data
byte is from 0 to 127, but some manufacturers
number programs differently. Where this is the case,
equipment manuals often have a conversion chart
to make things easier.

Table 1 provides a summary of the channel
messages for quick reference purposes. The channel
mode messages require some further amplification,
and this is provided in Table 2.

Table 1

Header
1000 (128)
1001 (144)
1010(160)
1011 (176)
1100 (192)
1101 (208)
1110 (224)

Function
Note Off
Note On
Poly Key Pressure
Control Change
Program Change
Overall Pressure
Pitch Wheel

Data
Note Value/Velocity Value
Note Value/Velocity Value
Note Value/Pressure Value
Control Number/Value
New Program Number
Pressure Value
l.s.b./m.s.b.

Table 2

Control No. Function
122 Local Control
123 All Notes Off
124 Omni Mode Off 0

125 Omni Mode On 0

Data
0 = off, 127 = on
0

126 Mono Mode On Number Of Channels (0 =
All Channels Set To Mono
Mode)

127 Poly Mode On 0

System Messages
These all have 1111 (240) as the most significant
nibble in the header byte. No channel numbers are
used, as these messages are sent to the whole system.
This leaves the least significant nibble free to indicate
the type of system message. Table 3 gives a full list
of these messages, but note that some of the sixteen
available codes are as yet undefined. Many of them
do not require data bytes, and are just single byte
messages.

The values shown in brackets are the decimal
equivalents for the binary nibbles. These must be

boosted by 240 to give the total decimal value for
each header byte (e.g. the value sent for a clock
signal is 240 + 8 = 248). The system exclusive
message is followed by a data byte which gives the
manufacturer's identification code, and then as many
data bytes as required follow on from this. The "end
system exclusive" message marks the end of a system
exclusive message.

Table 3

Nibble Code Function Data

0000 (0) System Exclusive ID/As Required

0001 (1) Undefined
0010 (2) Song Position Pointer I.s.b./m.s.b.

0011 (3) Song Select Song Number

0100 (4) Undefined
0101 (5) Undefined
0110 (6) Tune Request None

0111 (7) End System Exclusive None

1000 (8) Clock Signal None

1001 (9) Undefined
1010 (10) Start None

1011 (11) Continue None

1100 (12) Stop None

1101 (13) Undefined
1110 (14) Active Sensing None

1111 (15) System Reset None

Table 4 provides a list of manufacturer's identifica-
tion numbers. The sample dump standard is a

"system exclusive common" message, which can be
used by any MIDI equipment producer.

Table 4

Manufacturer
SC I

Big Briar
Octave
Moog
Passport Designs
Lexicon
Ensonique
Oberheim
Bon Tempi
SIEL
Kawai
Roland
Korg
Yamaha
Casio
Sample Dump Standard

Number (decimal)
1

2

3

4

5

6

15

16

32
33

64
65
66
67
68
126

101

.1
I .4

;

',111,1 1Sligg.; ,1 T

' t'
!..

:111- Jill:
 A

pr

V

le

Appendix A

ASCII TABLE

Decimal Hex Binary Character
0 00 0000000 NUL
1 01 0001 SOH
2 02 0010 STX
3 03 0011 ETX
4 04 0100 EOT
5 05 0101 ENQ
6 06 0110 ACK
7 07 0111 BEL
8 08 1000 BS
9 09 1001 HT
10 OA 1010 LF
11 OB 1011 VT
12 OC 1100 FF
13 OD 1101 CR
14 OE 1110 SO
15 OF 1111 SI

16 10 0010000 DLE
17 11 0001 DC1
18 12 0010 DC2
19 13 0011 DC3
20 14 0100 DC4
21 15 0101 NAK
22 16 0110 SYN
23 17 0111 ETB
24 18 1000 CAN
25 19 1001 EM
26 1 A 1010 SUB
27 1B 1011 ESC
28 IC 1100 FS
29 ID 1101 GS
30 1E 1110 RS
31 1F 1111 US
32 20 0100000 [SPACE]
33 21 0001 !

34 22 0010 11

35 23 0011 #
36 24 0100 $

37 25 0101 %
38 26 0110 &
39 27 0111

40 28 1000 (

41 29 1001)

42 2A 1010

43 2B 1011 +

44 2C 1100 ,

45 2D 1101

46 2E 1110 .

47 2F 1111 /

48 30 0110000 0

49 31 0001 1

50 32 0010 2

51 33 0011 3

52 34 0100 4

53 35 0101 5

Decimal Hex Binary Character
54 36 0110 6

55 37 0111 7

56 38 1000 8

57 39 1001 9

58 3A 1010

59 3B 1011 ,

60 3C 1100 <
61 3D 1101 =

62 3E 1110 >
63 3F 1111 ?

64 40 1000000 (a)

65 41 0001 A
66 42 0010 B
67 43 0011 C
68 44 0100 D
69 45 0101 E
70 46 0110 F

71 47 0111 G
72 48 1000 H
73 49 1001 I

74 4A 1010 J

75 4B 1011 K
76 4C 1100 L
77 4D 1101 M
78 4E 1110 N
79 4F 1111 0
80 50 1010000 P

81 51 0001 Q
82 52 0010 R
83 53 0011 S

84 54 0100 T
85 55 0101 U
86 56 0110 V
87 57 0111 W
88 58 1000 X
89 59 1001 Y
90 5A 1010 Z
91 5B 1011

i

92 SC 1100 \

93 SD 1101
i

94 SE 1110 A

95 5F 1111 4-

96 60 1100000 '

97 61 0001 a

98 62 0010 b

99 63 0011 c

100 64 0100 d

101 65 0101 e

102 66 0110 f

103 67 0111 g

104 68 1000 h

105 69 1001 i

106 6A 1010 j

107 6B 1011 k

103

Decimal Hex Binary Character Decimal Hex Binary
108 6C 1100 1 118 76 0110
109 6D 1101 m 119 77 0111
110 6E 1110 n 120 78 1000
111 6F 1111 o 121 79 1001
112 70 1110000 p 122 7A 1010
113 71 0001 q 123 7B 1011
114 72 0010 r 124 7C 1100
115 73 0011 s 125 7D 1101
116 74 0100 t 126 7E 1110
117 75 0101 u 127 7F 1111

Character
v
w
x
y

{

1

}

DEL

104

Appendix B

EPSON STANDARD PRINTER CONTROLS

The EPSON standard printer control sequences
(ESC -P) are used by many other manufacturers, and
are the accepted industry standard. Only the basic
control sequences are given here. For the full syntax,
number of extra bytes required, etc. refer to your
printer manual or to Babani book number BP181
"Getting the Most from your Printer".

No one printer utilises all the codes given here.
Again, you should consult your printer manual to
find which codes are functional on your machine.
Some printers, while generally conforming to the
codes given here, may use different codes for some
particular functions, or may implement some func-
tions in a different or non-standard way. Actual
line spacings may be different from those given
below, especially in portable printers and those
with more than 9 print pins.

Code Sequence

SO
ESC SO
DC4
ESC W
SI
ESC SI
DC2
ESC E
ESC F
ESC G
ESC H
ESC 4
ESC 5
ESC M
ESC g
ESC P
ESC -
ESC S
ESC T
ESC !
ESC p
ESC x
ESC k

ESC K
ESC L
ESC Y
ESC Z
ESC A
ESC ?
ESC *

Function
TYPE STYLES
Enlarged (one line only)
Same as SO
Cancel the above
Set/cancel enlarged
Condensed
Same as SI
Cancel condensed
Set emphasised
Cancel emphasised
Set double strike
Cancel double strike
Set italic
Cancel italic
Set 12 -pitch
Set 15 -pitch
Cancel 12/15 pitch
Set/cancel underline
Set super/subscript
Cancel super/subscript
Set any combination of styles
Set/cancel proportional spacing
Set/cancel letter quality
Select character style

GRAPHICS MODES
(DOT GRAPHICS)
Normal density bit image
Dual density bit image
Fast dual density bit image
Quad density bit image
Nine pin bit image
Reassign ESC K, L, Y, Z
Select any bit image mode

Code Sequence Function
REDEFINABLE CHARACTERS

ESC : Copy ROM characters into RAM
ESC & Define downloadable character(s)
ESC % Select ROM/RAM characters
ESC 6 Set codes 128-159 as printable
ESC 7 Set codes 128-159 as controls
ESC I Set unused codes as printable
ESC m Set codes 128-159 as graphics

ESC 0
ESC 1
ESC 2
ESC 3
ESC A

ESC sp
ESC $
ESC
ESC a

ESC C
ESC N
ESC 0
VT
ESC B
ESC /
ESC b
ESC I
ESC Q
HT
ESC D
ESC e
ESC f

CR
LF
FF
BS
ESC i
ESC J
ESC j

ESC t
ESC R
CAN
DEL
DC I

LINE SPACING
Set line spacing to 1/8"
Set line spacing to 7/72"
Set line spacing to 1/6"
Set line spacing to n/216"
Set line spacing to n/72"

CHARACTER SPACING/
JUSTIFICATION
Set character spacing
Set absolute dot position
Set relative dot position
Set justdication mode

TABLES AND FORMS
Set page length
Set auto perforation skip
Cancel perforation skip
Execute vertical tab
Set vertical tabs
Set VFU channel
Set VFU positions
Set left margin
Set right margin
Execute horizontal tab
Set horizontal tabs
Set horizontal/vertical tab spacing
Set skip positions

PRINTER OPERATING
COMMANDS
Carriage return
Line feed
Form reed
Backspace
Incremental print mode
n/216"line feed
n/216 " reverse feed

OTHERS
Select code table
Select international character set
Clear print buffer
Delete last character
Enable printer

105

Code Sequence Function Code Sequence Function
DC3 Disable printer ESC 8 Disable paper -end detector
ESC V Select auto character repeat ESC 9 Enable paper -end detector
ESC # Cancel MSB control ESC U Select unidirectional print
ESC > Force MSB to I ESC < Unidirectional print (one line)
ESC = Force MSB to 0 ESC s Select quiet (half -speed print)
BEL Sound bell/beeper ESC r Select print colour
ESC @ Initialise printer ESC EM Operate sheet feeder

106

Appendix C

ABBREVIATIONS

ALT
Alternate. A key to be found on many computer
keyboards. It is a form of shift key and does not
generate a printable character.

ANSI
The American National Standards Institute. A body
which lays down various standards, including some
computer standards (which are not necessarily
adhered to by manufacturers).

ASCII
American Standard Code for Information Inter-
change. ASCII is the standard form of binary coding
for text characters, although there are some com-
puters which use alternatives (notably the Sinclair
Spectrum series).

ASM
This is a popular abbreviation for an "assembler".

BBS
Bulletin Board System. A system that can be
accessed using a modem and computer to download
programs, articles, or whatever, amongst other things.

CAD
Computer Aided Drawing (or Drafting). A program
or computer system for producing accurate technical
drawings. CAD can also stand for "computer aided
design". In this context it usually means a program
that mathematically models something (electronic
circuits, wear on engine parts, etc.). It effectively
enables something to be tested without actually
having to make it.

CAE
Computer Aided Education. Any program or com-
puter system which is intended for educational use.

CAM
Computer Aided Manufacture. A program or com-
puter system that aids the manufacture of something
(computerised cutting equipment in the textile
industry for example).

CGA
Colour Graphics Adaptor. The CGA card has been
the most popular colour graphics board for the IBM
PC and compatibles, although it seems likely to be
overtaken by EGA and VGA boards in the near
future. Its two graphics modes are 640 x 200 in 2
colours and 320 x 200 in 4 colours.

CISC
Comprehensive Instruction Set Computer. The normal
type of microprocessor it other words (not a RISC
type).

CMOS
Complementary Metal Oxide Semiconductor. This is
a general type of chip, and it refers to a particular
method of manufacture. Most types of computer
chip are available in CMOS forms, and the main
advantage of this technology is that it provides very
low power consumption.

CP/M
Control Program for Microcomputers. This is the
standard operating system for 8 bit (Z80 or 8080
based) computers.

CPI
Characters Per Inch. This is a printer term, and is
merely the number of characters in a one inch line
of text.

CPS
Characters Per Second. A printer term used as a
measure of a printer's speed. It is the number of
characters printed per second, and often needs to be
taken with the proverbial "pinch of salt".

CPU
Central Processing Unit. Another name for a
microprocessor.

CR
Carriage Return. Takes the print head of a printer
back to the beginning of a line (and in practice is
usually accompanied by a linefeed which winds the
paper up to the next line).

DD
Disc Drive (usually applied to floppy rather than
hard discs).

DMP
Dot Matrix Printer.

DOS
Disc Operating System. Simply an operating system
that is loaded from disc.

DPI
Dot Per Inch. A printer term - the more dots per
inch the better the print quality is likely to be.

107

DRAM
Dynamic Random Access Memory. A type of
RAM chip (the type used in most computers).

DSDD
Double Sided Double Density. A disc format - uses
both sides of the disc with double the standard
amount of data per track.

DSSD
Double Sided Single Density. A disc format - uses
both sides of the disc with the standard amount of
data per track.

DTP
Desk Top Publishing. A computer system that
enables documents (newsletters, magazines, books,
reports, advertising sheets, etc.) to be prepared.
It differs from a word processor in that a wide
variety of lettering styles, fonts, and sizes are avail-
able, and in most cases graphics can also be incorpor-
ated in the document.

EEPROM
Electronically Programmable Read Only Memory.
An EEPROM device differs from an EPROM type
in that it can be electronically erased.

EGA
Enhanced Graphics Adaptor. This is a video adaptor
card for IBM PCs and most compatibles. Its main
mode provides 640 x 350 resolution in 16 colours.

EMS
A standard for extended memory boards for IBM
PCs and compatibles (enables them to go beyond the
normal 640k limit, but only operates with software
written to support this standard).

EPROM
Erasable Programmable Read Only Memory. This
type of memory circuit differs from ROM in that it
is not programmed at the manufacturing stage.
Instead it is programmed using a special programmer
(which is often an add-on device for a computer
rather than a stand-alone unit). EPROM can be
erased using ultra -violet light, and then reprogrammed.

ESC
Escape. A key that is found on most computer key-
boards. Its function depends on the particular
computer in use, and in most cases on the software
it is running.

FDD
Floppy Disc Drive.

FF
Form Feed. If a printer is sent a form feed it advances
the paper to the end of the page.

HD
Hard Disc.

HPGL
Hewlett Packard Graphics Language. This is the
graphics language used for Hewlett Packard plotters,
and emulations of it are used by several other plotter
manufacturers. Most software that has plotter
support can be used with HPGL or HPGL emulation
plotters.

I/O
Input/Output. A term that generally refers to the
ports of a computer, but which can be applied to any
form of input and output (reading and writing to disc
for instance).

IC
Integrated Circuit. The components on which
computers are based - a microprocessor is a type of
integrated circuit. (If you look inside a computer,
the black plastic components having two rows of pins
are the integrated circuits [some ICs these days have
different types of case, including large square ones
with pins on all four sides] .)

K
Kilobyte (1024 bytes).

KB
Kilobyte.

LAN
Local Area Network. A setup which has two or more
computers connected together to effectively operate
as a single system.

LC

Lower Case (i.e. small letters, not capitals).

LF
Linefeed. If a printer is sent a linefeed it advances
the paper by one line (but does not move to the
beginning of the line which requires a carriage return).

LQ
Letter Quality. A printer term which applies to the
quality of the printed text. LQ is high quality text,
comparable to that provided by a good quality
typewriter.

M
Megabyte (1048576 bytes).

MB
Megabyte.

Micro
Microcomputer or Microprocessor. These days the
term "micro" is more usually applied to a micro-
computer than to a microprocessor.

108

MIDI
Musical Instruments Digital Interface. This is a form
of serial interface that enables a computer to operate
in conjunction with a suitably equipped electronic
musical instrument. It is not compatible with the
standard RS232C computer serial interface.

MODEM
Modulator - Demodulator. A device which enables
computer systems to communicate via the telephone
system.

MOS
Maching Operating System or Metal Oxide Silicon.
The first is a computer operating system such as
MS-DOS or CP/M, and the second is a manufacturing
process for integrated circuits (many computer ICs
are of the MOS variety).

MPU
Microprocessor Unit. This is just another term for a
microprocessor.

MS-DOS
Microsoft Disc Operating System. The standard
operating system for IBM PC compatible computers,
and a few other machines.

NLQ
Near Letter Quality. Most dot matrix printers pro-
vide rather mediocre print quality at their highest
printing speed. Most have near letter quality mode
which provides a much higher print quality by using
a double -pass system (but the print speed is usually
much lower).

OS
Operating System (MS-DOS, CP/M, etc.).

PC
Personal Computer. Any microcomputer could be
called a personal computer, but these days it general-
ly refers to a business micro. In fact it is most often
applied to IBM compatible computers.

PC -DOS
Personal Computer Disc Operating System. The
operating system used on the IBM PCs (compatibles
use the very similar MS-DOS).

PD
Public Domain. In a computer context this applies to
software which is free. What you pay for when you
buy PD software is merely the cost of the disc,
duplication fees, etc. PD is different to "shareware"
software in that the latter is free to try out, but if
you go on using it the author requires a registration
fee.

QWERTY
This does not stand for anything. It is the first six
letters on the top (letters) row of a typewriter style
keyboard. A QWERTY keyboard is therefore just an
ordinary computer keyboard.

RAM
Random Access Memory. This is memory which the
computer can use to store data and read it back again.

RISC
Reduced Instruction Set Computer. A computer
based on a microprocessor that has a relatively small
number of instructions, but each one can be perform-
ed very rapidly.

ROM
Read Only Memory. A form of memory which is
programmed at the manufacturing stage. Thus the
computer can only read ROM, it can not alter its
contents.

SSDD
Single Sided Double Density. A disc format - only
uses one side of the disc but places twice the normal
amount of data on each track.

SSSD
Single Sided Single Density. A disc format - only
uses one side of the disc and places the standard
amount of data in each track.

UART
Universal Asynchronous Receiver/Transmitter. This
is a type of serial interface integrated circuit. It is a
general purpose type which is not intended for
operation with one particular family of microproces-
sor. In fact they are usable with non -microprocessor
based systems as well.

UC
Upper Case (i.e. capital letters).

VDI
Visual Display Interface. Less well known alternative
to VDU.

VDU
Visual Display Unit. This usually refers to a terminal
unit (i.e. a keyboard and monitor plus supporting
electronics), which is usually one of many terminals
connected to a mini or mainframe computer.

VGA
Video Graphics Array. This is the video circuit in
the IBM PS/2 series of computers. Add-on VGA
cards for the IBM PC and most compatibles are also
available. It includes all the standard IBM PC graphics
standards as well as some new ones (including a
640 x 480 16 colour mode, and a 320 x 200 256
colour mode).

109

WIMP
Windows - Icons - Mouse - Pointer. A graphics
based computer environment which makes use of a
mouse to manipulate things via on -screen windows,
pointer, and icons (as with GEM for example).

WP
Word Processor.

WYSIWYG
What You See Is What You Get. A term mostly
used with word processors where the on -screen
text looks (more or less) like the printed out version.

110

Appendix D

SUPPORT CHIPS

Designing the hardware for a computer is probably
not as difficult as most computer users would
imagine. The microprocessor manufacturers also
produce what, in general, is a useful range of support
chips, and these greatly ease the problem of com-
puter hardware design. At one time most computers
consisted of a microprocessor, memory chips, some
standard peripheral chips, a few general purpose
logic devices, and pieces of hardware such as the
drives and keyboard. In modern computers the
standard peripheral chips are perhaps less in evidence,
and there has been a marked trend towards custom
chips which combine functions of several peripheral
devices plus some general logic devices in one purpose
made integrated circuit. Rightly or wrongly, this is
generally thought to give better reliability, and pro-
vided the computer sells in suitably large numbers,
it is certainly cheaper. Despite the trend towards
custom chips, most computers still have some
standard peripheral devices (the sound chip of the
Atari ST computers for example, is the standard
AY -3-8910 or equivalent, as found in several other
machines).

This is a list of some common microprocessors and
their standard support chips, plus a list of non -
microprocessor specific devices. Note that a device
which is intended specifically for one microprocessor
is often usable with many other types. albeit with a
certain amount of difficulty in most cases. Some
microprocessors are (more or less) bus compatible
with other microprocessors, and their peripheral
chips are then largely interchangeable (the 6800
and 6502 series of microprocessors are a good
example of this). Sometimes peripheral devices are
used in a computer even though, on the face of it,
they seem to be largely incompatible with the
microprocessor used in the design. The Z80A based
Amstrad CPC computers for example, use the 6845
video chip which is really intended for use with the
6800 series of microprocessors.

6502
6520 Parallel I/O interface
6522 Parallel I/O interface and twin 16 bit

timers
6526 Parallel I/O interface and timers

(Commodore)
6532 RAM - I/O - Timer combination
6541 Keyboard/display controller
6545 Display controller
6551 Serial I/O interface
6566 Video controller (Commodore)
6567 Video controller (Commodore)
6581 Sound generator (Commodore)

The standard devices are for operation up to
1MHz. Those having a "B" suffix can operate up to
1.5MHz, and those with a "C" suffix are suitable for
use up to 2MHz. Where indicated, the devices are
manufactured by Commodore Business Machines Ltd
and are not in general use.

Z80
Z8OPIO Parallel I/O interface
Z8OCTC Timers
Z8ODART Dual serial I/O interface
Z8ODMA Direct memory access
Z8OSIO Serial I/O interface

The standard devices are suitable for clock
frequencies of up to 2.5MHz. The "A" suffix chips
(as used in many computers) are suitable for opera-
tion at frequencies up to 4MHz.

6800
6821
6828
6840
6844
6846
6850
6852
6871
6875

Parallel I/O interface
Interrupt controller
Timer/counter
DMA controller
ROM - I/O - Timer combination
Asynchronous serial I/O interface
Synchronous serial I/O interface
Clock generator
Clock generator

The standard devices are suitable for clock
frequencies up to 1MHz. The "B" suffix devices can
operate up to 1.5MHz, while the "C" suffix devices
are suitable for use up to 2MHz.

8080
8155
8224
8228
8250
8251
8253
8255
8256
8257
8259
8279

RAM - I/O - Timer combination
Clock generator
Control/data bus demultiplexer
Asynchronous serial I/O interface
Universal serial I/O interface
Timer (3 x 16 bit)
Parallel I/O interface
Multi -function serial I/O interface
DMA controller
Interrupt controller
Keyboard/display interface

8080 series peripherals have good bus compati-
bility with the Z80 microprocessor, and are often
used in Z80 based computers.

111

68000
68230
68450
68451
68661
68681

Parallel I/O and timer/counters
DMA controller
Memory manager
Communications controller
Serial I/O interface

The 68000 series of microprocessors can also be
interfaced to 6800 peripheral chips.

8086
Uses 8080 series peripheral chips.

General Support Chips
76489 Three channel (plus noise) sound

genera tor

AY -3-8910 Three channel (plus noise) sound genera-
tor, plus dual parallel I/O ports

AY -3-8912 As above but without the parallel ports
AY -3-1015 UART (universal asynchronous receiver/

transmitter)
6402 UART (universal asynchronous receiver/

transmitter)
ZN427E Analogue to digital converter
ZN447E Analogue to digital converter
ZN426E Digital to analogue converter
ZN428E Digital to analogue converter
446818 Real-time clock and CMOS RAM
58174 Real-time clock
58274 Real-time clock
SP0256 Speech Synthesiser
74C922 Keyboard decoder
74C923 Keyboard decoder
TMS9929A Video controller

112

Appendix E

DECIMAL - BINARY - HEX

Decimal Binary Hexadecimal
0 0 0
1 1 1

2 10 2
3 11 3
4 100 4
5 101 5
6 110 6
7 111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F
16 10000 10
17 10001 11
18 10010 12
19 10011 13
20 10100 14
21 10101 15
22 10110 16
23 10111 17
24 11000 18
25 11001 19
26 11010 IA
27 11011 113

28 11100 1C
29 11101 1D
30 11110 IE
31 11111 IF
32 100000 20
33 100001 21
34 100010 22
35 100011 23
36 100100 24
37 100101 25
38 100110 26
39 100111 27
40 101000 28
41 101001 29
42 101010 2A
43 101011 2B
44 101100 2C
45 101101 2D
46 101110 2E
47 101111 2F
48 110000 30
49 110001 31
50 110010 32

Decimal Binary Hexadecimal
51 110011 33
52 110100 34
53 110101 35
54 110110 36
55 110111 37
56 111000 38
57 111001 39
58 111010 3A
59 111011 3B
60 111100 3C
61 111101 3D
62 111110 3E
63 111111 3F
64 1000000 40
65 1000001 41
66 1000010 42
67 1000011 43
68 1000100 44
69 1000101 45
70 1000110 46
71 1000111 47
72 1001000 48
73 1001001 49
74 1001010 5A
75 1001011 5B
76 1001100 5C
77 1001101 5D
78 1001110 5E
79 1001111 5F
80 1010000 60
81 1010001 61
82 1010010 62
83 1010011 63
84 1010100 64
85 1010101 65
86 1010110 66
87 1010111 67
88 1011000 68
89 1011001 69
90 1011010 6A
91 1011011 6B
92 1011100 6C
93 1011101 6D
94 1011110 6E
95 1011111 6F
96 1100000 70
97 1100001 71
98 1100010 72
99 1100011 73
100 1100100 74

113

e:

 f...Afp. ; .447epu " 4,1"540.1e -44144k
- -

. - r-1.

ce

VT:

Appendix F

THE STANDARD SYMBOLS FOR USE IN FLOW -CHARTS

Manual Operation Input/Output

C)
Process

Terminal/Interrupt Preparation Decision

Merge Document

Connector

JO
Manual Input

Communications Link

Display

A

V
Off Page

Index

16008 11 BBC joystick port 42
16032 11 BBC Master 2
1802 7 BBC 2, 12, 45, 70, 76
32032 11 BCD 3, 55
6502 (diagram) 13 BCPL 48
6502 2, 12 Binary 53, 79
6510 2 Bit -mapped 71
68000 (diagram) 15 Bit 79
68000 2, 9, 11 Bitwise operations 57, 79
6800 1 Blitter 79
68008 9 Block graphics 69
6809 2,6 Boot 80
8080 1 Break 60
8080A 8 Brush 80
8086 (diagram) 16 Buffer 80
8086 8, 11 Bug 80
8088 8 Bulletin board 80

BUSY 18
ACKNOWLEDGE 18 Byte 80
Acorn Electron 2
Acorn 12 C++ 50
ALT 107 C 48,80
Amiga 1000 printer port 22 CAD 80, 107
Amiga 9 CAE 107
Amstrad CPC games port 41 CAM 107
Amstrad CPC printer port 24 Camera device 80
Amstrad 4, 8, 76 CEEFAX 70
Analogue RGB 37 Centronics port 19, 81
AND 57, 77 CGA port 37
ANSI 107 CGA 81, 107
Apple 2, 9, 75 Chdir 61
Archimedes 12 Chdisk 61
ARM 12, 77 CISC 7, 12, 81, 107
Array 77 CLI 65, 81
Artificial intelligence 50 Clock 81
ASCII 17, 77, 107 Cls 61
ASM 107 CMOS 107
Assembler 45, 78 Co-ordinate 75
Assembly language 45 Co -processor 82
Assign 60 Command 61
Atari ABAQ 12 Commodore 2, 9, 46, 64
Atari/Commodore games port 41 Commodore serial port 43
Atari 2, 9 Compatible 81
Attrib 60 Compiler 46, 81
Auto line feed 20 Composite video 35, 82
Auto -dial 78 Context switching 82
AutoCAD 50 Control change 99
Axis 78 Conversions 57

Copy 61
B 48 CP/M 4, 11, 82, 107
Background 78 CPS 83, 107
Backup 60, 78 CPU 83, 107
BASIC 2, 45, 46, 48, 50, 75, 76, 78 CR 107
Batch files 63 Ctty 61
Baud rate 26, 79 Cursor 83
BBC Master Scientific 12
BBC printer port 23 Daisey-wheel 83

Dartmouth College 46
117

Database
Date
DD
Default
Del
Digital Research
Digitiser
DIN

83
62

107
83
62

4
83
32

IC
Icon
IDC
IEEE488 port
IEEE488
Indirection
Inkjet
Intel

108
87
20
43
42
87
87

1, 8
Dir 62 Interface 87Directory 84 Interpreter 88
Disc 84 Interrupt 3, 88Diskcomp 62
Diskcopy 62 Joystick 39
DMP 107 Justification 88
DOS 107
Dot matrix 85 Key pressure 99
DPI 107 Keybxx 62
DR GEM 75 Kilobyte 53, 88
Dragon 6,71
DRAM 107 Label 62
DSDD 107 LAN 88
DSSD 107 Laser printer 88
DTE/DCE 29 LCD 88
DTP 107 LED 88

LF 108
Edinburgh LOGO 48 Library 88
Editor 85 Lisp 50
EEPRPOM 107 List processing 47
EGA port 38 Locomotive Software 46
EGA 85, 107 LOGO 46, 75
EMS 108 LQ 108
Emulator 85 LSCI LOGO 48
ESC 108
Expert system 85 Machine code 45

Macintosh 51, 75
FDD 108 Mallard BASIC 46
Fdisk 62 Maths co -processor 89
FF 108 Megabyte 53, 89
File 86 Memory resident 90
Find 62 Memory 89
Flag 86 Menu 90
Flowchart symbols 115 Microsoft WINDOWS 75
Format 62, 86 Microsoft 8
Forth 50 MIDI codes 99
Fortran 51 MIDI ports 34
Frame grabber 86 MIDI chain 33
Function key 86 MIDI 31, 90, 109

MIT LOGO 48
Games ports 39 Mkdir 62
GEM 76, 87 MOB 74

Mode 62
Handshaking 28 Modem 90
HD 108 Modula 2, 49
Hexadecimal 56 Modulator 89
HPGL 108 Monitors 34

More 62
I/O 108 MOS Technology 2, 6
IBM style printer port 21 MOSTEC 2
IBM AT RS232C port 29 Motorola 1, 2, 6, 9, 11
IBM 8, 11, 12 MS-DOS 8, 11, 12, 60, 89

118

MSX printer port 24 RGB ports 37
Multi -tasking 9,91 RGB 36,95
Multi-user 9,91 RGBI 37,95

RISC 12,95
National Semiconductor 11,12 Rmdir 63
Nicklaus Wirth (Prof.) 49 ROM 109
N LQ 109 RS232C port numbering 28
Note on/off 99 RS232C port 25,95
Null modem cables 30 RS232C interconnections 27
Numeric keypad 91 RS422 31

RS423 30
Occam 12
Ones complement 54 Scanner 95
OPEN LOGO 48 SCART 40
Operating systems 59 Sector 95
OR 57,92 Serial attributes 70,74
Oracle 70 Serial port 25
Oric Atmos 2,74 Seymour Pappert (Dr.) 47
Oric printer port 23 Signed binary 54
Oric 2,74 SIMULA 51
OS/2 92 Sinclair 4,9,59,73
Overlay 92 SLCT 20

Smalltalk 51
Paddles 40 Sort 63
PAL 35,92 Source code 95
Parallel attributes 73 Spectrum 4,73,75
Parallel processing 92 Spooler 96
Parallel port 17 Sprites 74
Parsing 92 ST MIDI lead 35
Pascal 49 Stack 96
Path 62 Support chips 111
PC -DOS 8,11 System messages 99
PC 109 System disc 96
PD 109
Pipelining 93 Tandy 6
Pitch wheel 99 Teletext 70
Pixel 93 Texas Instruments 7

Plotter 93 Thermal printer 96
Pointer 93 TI9900 7
Position independent code 93 Toggle 96
Potentiometer joystick 42 Track 96
Print 62 Transputer 12,96
Printer port 17 Tree 63
Program change 99 Turbo 96
Prompt 63 Turtle 47,96

Twos complement 55
QL 9 Type 63
QWERTY 93,109

UART 109
RAM disc 94 UNIX 9
RAM 93
RCA 7 Ver 63
Read time 94 Verify 63
Relocatable code 94 VGA 39
Ren 63 Vol 63
Replace 63
Reset 94 Winchester disc 97
Resident 95 WIMP 51,97
Resolution 95 WIMPs 63
Restore 63 Window 74

119

Word format 26 Z80 (diagram) 14Word processor 97 Z80 4Word-wrap 97 Z800 11Write protect 97 Z8000 11
WYSIWYG 110 Z8001 11

Z8002 11Xcopy 63 Z8003 11XENIX 9 Z8004 11Xerox 51 Zero page 2X LR 32 Zilog 4,6,8,11XOR 58,97 ZX80 4
ZX81 4,59

120

1

6

BERNARD BABANI BP251

Computer
Hobbyists
Handbook

 How many times have you spent hours looking through
computer books and magazines in an attempt to find some snippet
of information? An ASCII code perhaps, or connection details for a
computer port? "Computer Hobbyists Handbook" provides a range
of useful reference material in a single source so that it can be
quickly and easily located.

 The subjects covered include microprocessors and their
register sets; interfacing serial, parallel, monitor, games and MIDI
ports; numbering systems; MIDI codes; operating systems
computer graphics. There is also a useful glossary of computer
terms, and appendices covering topics such as ASCII codes, Epson
control codes and flowchart symbols.

 You are not simply presented with raw data, but in most cases
there are useful explanations so that the information can be used by
beginners as well as more experienced users. Although primarily
aimed at the computer hobbyist, no doubt, this book will also prove
to be very useful to those involved in computing professionally, as
well as being a useful source of information for students.

___.11111111111111111111111

£5.95

9

ISBN 0-85934-196-8

780859
10

341967

0 05 95

