

Using
Visual Basic

Using Visual Basic

Books Available
By both authors:
BP327 DOS one step at a time
BP337 A Concise User's Guide to Lotus 1-2-3 for Windows
BP341 MS-DOS explained
BP346 Programming in Visual Basic for Windows
BP352 Excel 5 explained
BP362 Access one step at a time
BP387 Windows one step at a time
BP388 Why not personalise your PC
BP400 Windows 95 explained
BP406 MS Word 95 explained
BP407 Excel 95 explained
BP408 Access 95 one step at a time
BP409 MS Office 95 one step at a time
BP415 Using Netscape on the Internet*
BP420 E-mail on the Internet*
BP426 MS -Office 97 explained
BP428 MS -Word 97 explained
BP429 MS -Excel 97 explained
BP430 MS -Access 97 one step at a time
BP433 Your own Web site on the Internet
BP448 Lotus SmartSuite 97 explained
BP456 Windows 98 explained*
BP460 Using Microsoft Explorer 4 on the Internet*
BP464 E-mail and news with Outlook Express*
BP465 Lotus SmartSuite Millennium explained
BP471 Microsoft Office 2000 explained
BP472 Microsoft Word 2000 explained
BP473 Microsoft Excel 2000 explained
BP474 Microsoft Access 2000 explained
BP478 Microsoft Works 2000 explained
BP486 Using Linux the easy way*
BP487 Quicken 2000 UK explained*
BP488 Internet Explorer 5 explained*
BP491 Windows 2000 explained*
BP493 Windows Me explained*
BP498 Using Visual Basic

By Noel Kantaris:
BP258 Learning to Program in C
BP259 A Concise Introduction to UNIX*
BP284 Programming in QuickBASIC
BP325 A Concise User's Guide to Windows 3.1

ii

Using Visual Basic

Using
Visual Basic

by

P.R.M. Oliver
and

N. Kantaris

Bernard Babani (publishing) Ltd
The Grampians

Shepherds Bush Road
London W6 7NF

England
www.babanibooks.corn

iii

Using Visual Basic

Please Note

Although every care has been taken with the production of
this book to ensure that any projects, designs, modifications
and/or programs, etc., contained herewith, operate in a
correct and safe manner and also that any components
specified are normally available in Great Britain, the
Publishers and Author(s) do not accept responsibility in any
way for the failure (including fault in design) of any project,
design, modification or program to work cor-ectly or to cause
damage to any equipment that it may be connected to or
used in conjunction with, or in respect of any other damage
or injury that may be so caused, nor do the Publishers accept
responsibility in any way for the failure to obtain specified
components.

Notice is also given that if equipment that is still under
warranty is modified in any way or used cr connected with
home -built equipment then that warranty may be void.

© 2001 BERNARD BABANI (publishing) LTD

First Published - February 2C01
Reprinted - June 2001

Reprinted - November 2001
Reprinted - December 2001

Reprinted - April 2002
Reprinted - August 2002

Reprinted - December 2002

British Library Cataloguing in Publication Data:

A catalogue record for this book is available from the
British Library

ISBN 0 85934 498 3

Cover Design by Gregor Arthur
Printed and Bound in Great Britain by Cox & Wyman

iv

Using Visual Basic

v

Using Visual Basic

Preface
Visual BASIC has become the most popular 'dialect' of
BASIC in use today on IBM and compatible computers. The
original version of BASIC (which stands for Beginner's
All-purpose Symbolic Instruction Code) was first developed
as a teaching language at Dartmouth College in 1964. In
1978 a 'standard BASIC' was adopted as a result of
recommendations on the minimum requirements of the
language.

BASICA, written by Microsoft for use with the IBM PCs,
and GWBASIC (its equivalent form running on compatibles),
was an enhanced version of standard BASIC, embodying
nearly 200 commands. These were bundled with pre -DOS 5
versions of the operating system, but users of MS-DOS 5
and higher had access to a cut -down version of Microsoft's
QuickBASIC, known as QBASIC.

QuickBASIC was Microsoft's first compiled version of
BASIC, the earlier ones being interpreted languages. With an
interpreted language each and every statement of code has
to be interpreted by a separate program called the interpreter
before the program is actually run. This happens each time a
statement is encountered, even if it appears within a loop.
With a compiled language, on the other hand, a separate
program, called the compiler, is used to check the whole
program for errors and then compiles it into the machine
specific code that will actually be executed by the computer
at run time. Statements within loops are only checked once,
which makes a compiled program far more effic ent than an
interpreted one.

Visual BASIC is now very different from these early
versions. It is an event driven, or Object Oriented, compiled
language that uses all of Windows' visual features. It also
includes most of the features built into QuickBASIC, so
earlier programs can be easily adapted to run on Visual
Basic. As well as being a stand-alone Windows
'programming environment', a slightly modified version of
Visual Basic is also included with Microsoft Office
applications as VBA, or Visual Basic for Applications.

vi

Using Visual Basic

About this Book

Using Visual Basic is loosely based on our earlier book,
Programming in VisJal BASIC for Windows, and is a guide to
programming in a 1,Nindows environment using Microsoft's
Visual Basic. For this book we used Version 6.0 of Visual
Basic, on a PC running under Windows Me. The reader is
not expected to have any familiarity with the language as
both the environment and statements are intrcduced and
explained with the help of simple programs. The user is
encouraged to builc these, save them, and keep imp-oving
them as more complex language statements and commands
are encountered.

The very size of Visual Basic and its progranming
environment, can be very daunting to a new user, so this
systematic approach should make leaning very much Easier.

The first three Chapters give an overview of Visual Basic
and the graphic based environment it uses. Forms and the
more simple controls that go with them are introduced, but no
attempt is made to explain how to use Microsoft Windows
itself. It is assumed that if you want to create programs that
work with Windows, you will be fam liar with tle interface
itself. If you do need to know more about the Windows
environment, then we suggest you select an apprcpriate
book from the 'Books Available' list - these are all published
by BERNARD BABANI (publishing) Ltd.

Chapters 4-7 cover the programming language and low it
is entered into your PC, dealing with the basic Visual Basic

vii

Using Visual Basic

statements which control program flow, input and output, and
leading to the concepts of strings and arrays.

In Chapter 8 we return to some of the more powerful
intrinsic Visual Basic controls that allow you to produce the
sort of Windows programs that you can buy. The next
chapter covers functions and procedures which expand the
programming capabilities of the user beyond the beginner's
level. Chapter 10 deals entirely with disc file handling
techniques and should be of special interest to those who
need to process large quantities of data. The two main types
of data files are discussed in some detail, namely sequential
and random access types. How to easily use the Windows
file handling procedures is also covered.

A chapter then introduces how Visual Basic can interact
with Microsoft's Office applications, Word, Excel, and the
database Access.

The last chapter gives an overview of the powerful
debugging features of the program, and describes how to
create, compile and package your application programs with
the Visual Basic wizards.

A glossary of mainly Visual Basic terms is included, which
should be used with the text where necessary. For reference
purposes, appendices also detail the Visual Basic naming
conventions, user -defined formats, event procedures and
main keyword listings and descriptions.

Like the rest of our computer series, this book was written
with the busy person in mind. It is not necessary to learn all
there is to know about a subject, when reading a few
selected pages can usually do the same thing quite
adequately. Using this book, it is hoped that you will be able
to come to terms with Visual Basic and start producing
programs of your own in the shortest possible time. Good
luck and enjoy yourself, because it can be fun.

If you would like to purchase a Companion Disc for any of our books listed

on page ii, apart from those marked with an asterisk, containing the
file/program listings which appear in them, then fill in the form at the back of

the book and send it to Phil Oliver at the address given.

VIII

Using Visual Basic

About the Authors

Phil Oliver graduated in Mining Engineering at Camborne
School of Mines in 1967 and since then has specialised in
most aspects of surface mining technclogy, with a part cular
emphasis on compute- related techniques. He has worked in
Guyana, Canada, several Middle Eastern and Central Asian
countries, South Africa and the United Kingdom, on such
diverse projects as: the planning and management of
bauxite, iron, gold and coal mines; rock excavation
contracting in the UK; international mining equipment sales
and international mine consulting. In 1988 he took up a
lecturing position at Camborne School of Mines (part of
Exeter University) it Surface Mining and Management. He
retired from full-time lecturing in 1998 to spend more time
writing, consulting, anc developing Wet sites.

Noel Kantaris graduated in Electrical Engineering at Bristol
University and after spending three years in the Electronics
Industry in London, took up a Tutorsnip in Physics at the
University of Queensland. Research interests in Ionospheric
Physics, led to the degrees of M.E. in Electronics and Ph.D.
in Physics. On return :o the UK, he took up a Post -Doctoral
Research Fellowship in Radio Physics at the University of
Leicester, and then in 1973 a lecturing position in
Engineering at the Camborne School of Mines, Cornwall,
(part of Exeter University), where between 1978 and 1997 he
was also the CSM Computing Manager. At present he is IT
Director of FFC Ltd.

ix

Using Visual Basic

x

Using Visual Basic

Acknowledgements

We would like to thank both Microsoft UK and AUGUST.ONE
Communications Ltd for kindly provicing the software that
was used to produce this book.

Trademarks

Arial and Times New Roman are registered trademarks of
The Monotype Corporation plc.

HP and LaserJet are registered trademarks of Hewlett
Packard Corporatior. .

IBM is a registered trademark of International Business
Machines, Inc.

Intel s a registered trademark of Intel Corporation.

Microsoft, MSDN, MS-DOS, Windows, Windows NT,
Visual Basic and Visual Studio, are either registered
trademarks or trademarks of Microsoft Corporation.

PostScript is a registered trademar< of Adobe Systems
Incorporated.

All other brand and product names used in the boom. are
recognised as trademarks, or registered trademarks, of their
respective companies.

xi

Using Visual Basic

Contents

1. Package Overview 1

Editions of Visual Basic 2

Visual Basic 6.0 2

VB Script 3
Visual Basic for Applications 3

Installing Visual Basic 3
System Requirements 3
The Installation Process 4
Installing the MSDN Help System 5
Installing the Service Pack 7

Some Housekeeping 8
Visual Basic Folder Structure 8
A Desktop Shortcut 9

A Working Folder 9
Sample Projects 10

2. The Visual Basic Environment 11

Starting Visual Basic 11

General Windows Skills 12
The New Project Box 12
The Visual Basic Window 13

Title Bar, Menu and Toolbar 13
The Form Designer 15
The Toolbox 16
Project Explorer Window 18
Properties Window 20
Form Layout Window 21

Code Editor Window 22
Customising the Environment 23

Dockable Windows 23
The Working Environment 24
Customising the Toolbar 25
The Options Dialogue Box 26

The MSDN Help System 27
Context Sensitive Help 30

xii

Using Visual Basic

3. Programming Basics 31

Programming Steps 31
Design Mode 31
Run Mode 31

A First Program 32
Creating ar Object 32
Changing a Caption 33
Entering Code 33
Running a Program 34
Saving a Program 35

Project Elements 36
The Interface 36

Forms 36
Modules 37
Applications 38

Visual Basic Controls 39
Setting Properties 40

Some Form Properties 40
Label Properties 42
Text Box Properties 42
Command Button Properties 43
Check Box and Option Button Properties 43
The Tab Order of Controls 44
Shortcut Keys 44

Writing Code 45
Code Editor Windows 45

Visual Basic Naming Convention 47
Naming Cont-ol Properties 47
Naming Cont-ols 48

4. Starting to Program 49

Entering Program Code 49
Using the Code Editor 50

Automatic Code Completion 51
Other Keyboard Shortcuts 52

Program Comments 54
Variables and Constants 54

Variables 54
Constants 55
Expressions 55

Using Visual Basic

Naming Convention 55
String Variables 57
Variable Type Declarations 57
The Dim Statement 58
The Val Function 60
The InputBox Function 60
The Print Statements 61

Arithmetic Operators & Priority 62
The Arithmetic Operators 62
Additional Operators 62
The Assignment Statement 64

Saving a Project 65
Saving Files 65
Adding and Removing Projects 65

5. Input and Output Control 67

Text Box Input 67
Changing a Property 69
Setting an Object's Focus 70

More on Print Output 70
Formatting with Tabs 71

Print Locations 72
Formatting Functions 75

User Defined Formats 77
Using Message Boxes 78

MsgBox Syntax 82
MsgBox Buttons 83
MsgBox Returned Values 84

6. Control of Program Flow 85

Control Structures 85
The For...Next Loop 85

Use of Step 87
Nested For...Next Loops 88

The Do Loop 90
The Do...Loop Until Configuration 90
The Do Until...Loop Configuration 91

The Do...Loop While Configuration 91

The Do While...Loop Configuration 92
The For Each...Next Loop 93

xiv

Using Visual Basic

The Line -Continuation Character 93
The While...Wend Loop 94
The If Statement 95

Relational Operators within If Statements 96
The If..Then..Else Statement 97
The ElseIf Statement 98

Simple Data Sorting 100
The Select Case Statement 102
Data Type Conversion 106
Exiting Block S-suctures 106

7. Strings and Arrays 107

String Variables 107
ANSI Character Codes 107

Option Compare (Binary I Text) 110
StrComp(s7rA, strB[, compare]) 111

String Functions 111
Left and Left$ Functions 111
Right and Right$ Functions 111
Mid and MidS Functions 111
Other String Functions 112

String Conversion Functions 116
ANSI Conversion 116
Character Conversion 116
String Conversion 116
Value of String 117
String Concatenation 117

Arrays 119
String Arrays 119

Subscripted Numeric Variables 121
Static and Dynamic Arrays 123

Control Arrays 127

8. More on Controls 129

The CONTROLS.VBP Sample 130
The Example Files 131

Control Buttons 132
Check Boxes 133
Option Buttons 135

xv

Using Visual Basic

Combo and List Boxes 136
A Simple Telephone List 137

The Timer Control 139
Pictures and Images 140

Supported Graphic Formats 140
The Picture Box Control 141
The Graphics Methods 143
Drawing Lines 144

Building a Menu Bar 146
A Simple VAT Calculator 146
The Menu Design Window 148

ActiveX Controls 151

Some Provided Controls 152

9. Functions and Procedures 153

Standard Mathematical Functions 153
ATN(X) 154
SIN(X), COS(X) and TAN(X) 154
SQR(X) 154
ABS(X) 155
EXP(X) 156
LOG(X) 156
INT(X) and FIX(X) 156
SGN(X) 157
RND and RANDOMIZE n 157

Derived Mathematical Functions 159
User -Defined Function Procedures 160
The Object Browser 161
Sub Procedures 162
Parameter Passing 163
Subroutines 164

GOSUB and RETURN Statements 164

10 Working with Files 165

Sequential Data Files 165
Saving a File to Disc 168
Loading a File from Disc 168

The Common Dialogue Control 169
Trapping Errors 172

Random Access Files 173

xvi

Using Visual Basic

Defining Records by TYPE 173
Binary Files 178
Drive, Dir and File List Boxes 179

An Image Viewer 181

11. Working with Other Applications 183

The Data Control 183
Binding Controls 184

Visual Basic for Applications 186
Connecting to Office Applications 187

Working with Excel 188
Working with Word 189

12. Some Loose Ends 191

Debugging Your Programs 191
Compile Errors 191
Run-time Errors 191
Logical Errors 191

Break Mode 192
The Debug Tools 192

The Debug Toolbar 193
Breakpoints 194
Using the Immediate Window 194

The Application Wizard 195
Compiling and Distributing 197

Packaging 198
Deployment 200

13. Glossary of Terms 201

Appendix A - The Code for VatCalc.vbp . 223

Appendix B - Naming Conventions 235

Object Naming Conventions 235
Prefixes for Controls 236
Prefixes for Data Access Objects 238
Prefixes for MenLs 238
Naming Constants and Variables 239

xvii

Using Visual Basic

Appendix C - User -Defined Formatting 241

User -Defined Numeric Formats 242
User -Defined Date/Time Formats 243
User -Defined String Formats 246

Appendix D - Language Reference 247

Event Procedures 247
Main Visual Basic Keywords 251

Listed by Programming Task 251
Listed Alphabetically 258

Index 279

xviii

Package Overview

Visual Basic lets you create your own programs or applications,
for running yourself, o- for running on other peoples PCs. The
applications you create can be as simple or as complex as you
like, and can even be used for such things as, manipLlating
databases, files, the Internet or almost arything else you want it
to do!

Visual Basic, unlike other structured languages such as its
predecessor QuickBASIC or C, is an event driven programming
language. Instead of tl-e program flow be ng controlled from the
written code and running mainly from the first to the last lines of
code, it is controlled by interactive events at run-tirre, such as
the clicking of a mouse on a button or form. When such an
event occurs, the program code attached to that event is
actioned. Buttons, forms, controls, the screen and your p -inter,
etc., are all considered as objects and Visual Basic is known as
an Object Oriented language. It reacts to the man pulation of
objects. Once this corcept is grasped, tie change from other
programming languages is much easier.

While you are buildirig your application you can 'run' it from
within Visual Basic to make sure it works properly. Whe'i you
are completely happy with it you can then compile and package
your program into an executable form that anyone else can
then run on their Windows based PC. In fact, if it is good
enough. you can even distribute your application royalty -free,
as long as you have registered your copy of Visual Basic.

One catch, though, with using Visual Basic to develop
programs is that other users of your applications will require the
MSVBVM60.DLL file, and possibly others (depending on which
controls you have used). to run your program. At some 1.3MB,
this file is quite large and can be a setback when you want to
distribute your program on the Internet, or on a floppy disc

1

1 Package Overview

Editions of Visual Basic

Since the original Visual Basic for Windows was released in
May 1991 there have been several updates and improvements
to the package, the major jump being from 16 bit to 32 bit which
took place with Visual Basic 5.0.

Visual Basic 6.0
At the time of writing, Version 6.0 was the current version. This,
like its predecessors, comes in several Editions.

The Working Model is sometimes distributed 'free of
charge' with the more expensive Visual Basic books. It is a
'cut down' version that allows you to experiment with the
program, but does not allow you to create your own
executable '.exe' files.

The Learning Edition is the simplest and cheapest version,
coming with the standard Visual Basic controls and allowing
the creation of executable '.exe' files from the code.

The Professional Edition comes with many more features
and ActiveX controls to supplement the standard ones, and
costs quite a bit more.

The Enterprise Edition is the top one, and is mainly for
programmers who are creating applications 'or servers and
networks. It costs several hundred pounds more.

To complicate matters further, as well as providing 'stand
alone' editions of Visual basic, Microsoft also produce a similar
range of Visual Studio editions. These are like development
compendium packages and all contain Visual Basic as well as
other development tools such as Visual C++, Visual J++ and
Visual FoxPro. For anybody who needs to get serious about
developing very 'heavy' Windows applications these may be the
best way to go.

If you are a student, a teacher or an academic there is also a
Students Edition. This is a Professional version of Visual
Studio sold at a very low cost to students (anyone working
towards a recognised qualification) and teachers. If you qualify,
this is definitely the version to get!

2

Package Overview 1

For most people, the Professional Edition is probably the best
option, as long as you are happy with the initial cost. While
updating this book we started off with the Students Edition and
then replaced it with the Enterprise Edition of Visual Studio.
You will find, however, that most of oJr examples are pretty
simple, so the book can be used equally with all of the flavours
of Visual Basic.

VB Script
VB Script is a simplified version of Visual Basic which is used in
Web pages. It has the major disadvantage that it is only
supported by Microsoft's Internet Explorer 4 browser or later.

Visual Basic for Applications
VBA is a slightly different edition of Visual Basic, which comes
with most of Microsoft's Office applications, such as Word,
Excel, etc. The basic program functions. are the same, but it is
customised for the particular application being used.

Installing Visual Basic

Whatever edition yot. have, the initial installation procedure is
very well automated. but before you start, make SUM your
system is suitable.

System Requirements
Microsoft specify the following minimum set-up. An IBM
compatible PC with a 486DX/66 MHz or higher processor (or
any Alpha processcr running Microsoft Windows NT
Workstation, or higher); a hard disc with at least 12CMB of
spare room, 16 MB o' RAM for Windows 95, 32 MB of RAM for
Windows NT Workstation, a mouse, a VGA or higher -resolution
screen display and a CD-ROM disc drive. This should be
running Microsoft Windows 95 or later, or Microsoft W ndows
NT Workstation 4.0 (Service Pack 3 recommended) or later.

3

1 Package Overview

To make use of the advantages of the Windows interface,
however, we would recommend the most powerful Pentium PC
you can get your hands on!

The Installation Process
The exact installation process will depend on which edition of
the program you have. With Windows open and no other
programs running, place the first CD into the CD-ROM drive,
with us this was the Visual Studio 6.0 Disc 1. The Setup
program may well start automatically, if not, click the Start
button on the Windows task bar, select Run, type eAsetup.exe
in the Open text box, as shown in Fig. 1.1, and click on OK. If
your CD-ROM drive is not the E: drive, you should obviously
use the correct drive letter instead.

Fig 1.1 Using the Windows Run Box

It's then just a case of following the instructions given. You will
be stepped through the procedures of accepting Microsoft's
License agreement and of entering the Product ID number.
This number should be shown as the 'CD Key' on the back of
your original CD box. When asked, opt for a customised
installation so that you can select what is actually placed on
your hard disc.

Fig. 1.2 A Custom Installation

4

Package Overview 1

Visual Studio 6.0 Egmont:a Custom

In the Debate be Wert the earn yeu want Petaled' dew the Item yo- went le be menoved

A gored box rah a check ncicates that cely oat of the component ne be related i o select al
components en the Opoon ket, cad, Select Al

agora Descaptm

Ancrosolt VMS, 8 ewe 6 0 50582 K

r Ithclosott Venial C 60
r Microsoft Visual FoxPto 6 0

421687 K

95782 K

r Ithoosce Vaud InterDen 6 3 58718 K

r Microsoft Vaud SourceSate 6 9 10882 K

F AcenteX 5094 K

F Data Accet- 116E6K
E rierprtse I . 56538 K

in tilts binapt =Sat, COM. mobiles.
'Meer ciPS la use n You appicaeon

Charge Option.

aelect AI

Faker to Currently Selected Opine -
C !Rogan Fiea,larrotort ../ovett 9tudO.Common Graphx.s

Space required on C 114671 K

Apace available Ce C 41404%

Fig 1 3 Selecting Which Items to Install

Ps can be seen in Fig. 1.3, we opted not to install the other
programming languages, just Visual Basic 6.0 and the other
'common' components. At any time in the future you can add or
remove components to your PC from this box by re -running the
Setup procedure.

When you click the Continue button the file transfer p-ocess
begins, as long as yoi.. have enough hard disc space. When
this is complete, click to Restart Windows if you are asked to.

Installing the MSDN Help System

Microsoft, in their wisdom, no longer include any Help
information actually built into the Visual Basic program. What
they do provide is al MSDN library of separate CD-ROMs.
This stands for Microsoft Developers Network and includes all
the Help files and program samples that you will need_ Once
installed, this works fairly seamlessly with Visual Basic, tut you
have to install it yourself.

5

1 Package Overview

When your PC starts up again the Installation Wizard should be
reloaded and should offer you the option to ins -.all the MSDN
Library. If this does not happen, you should re -start :he Setup
program from the original CD and choose MSDN from the
Add/Remove options. When requested, put the 'MSDN Library
Disc 1 - Setup' into your CD-ROM drive. We suggest you then
select the Custom option, as shown in Fig. 1.4.

ittrwett
Instals MSDN LiPary with the MOO tYP.cal urrµacOs and attntot4
sPace taco...remark COMB Max

&tistarn

Instals MSDN Li :eery components that you sleet to you local ditte
Ttpral in gelato:in is included by default

FLA

fracas entire MSDN Ltyny cone:m."1*re s to your local dr,e lexcluceej
Salle poduc1 samples! No CD will be teetered Or documentation,. 'ADA b
Met.

Fig. 1.4 The MSDN Installation Options

Selecting the options shown in Fig. 1.5 will let you use the
complete Visual Basic documentation from your lard disc.

I. the Ophreu let :elect 'he tee, you want totaled. cleat the terns oto di ,Int went tridaled

A payed boo twth a cher; ,hat ores part a/ the comm..* wet be inttaled T o select el cam,:
the Option ot.-t. Select Al

VB Documentation 12288 K

p VB Ploduct Samples 16704 K

r yr- Docunentation 161.TV.

r VFP Documentaaon 6971

r VFP Product Samples 29728 t

r ND Docrawentabon 2112 K

De.x.rption

TN, lea Search Ind., a onpanx to be o. t -at
sv:tele r. ceder to tee MSDN welch he CDt

Folder le Curren* Selected Ochon

C Anton, Ftes Abctot oft t'ilual Sado StISDN98 30./Se \ 1031

Space restated to C

5pac e available at C

122752 K

3748280 K

cortrue I Carted

'Meet AI

Fig. 1.5 Selecting the Visual Basic Documentation

6

Package Overview 1

When you click the Continue button the selected data files are
copied to your hard disc, and you are given a chance to read
about how to update your copy of MSDN on the Internet.

After a change of CD you should get a message box saying
the MSDN installation is complete. There is probably only one
more thing to do now.

Installing the Service Pack
If your program package contains a Se -vice Pack CD, this will
contain 'enhancements and fixes' not included on the main
program CDs. It is important that you install such a Service
Pack. The CD in our package was called Visual Studio 6.0
SP3, but yours may be different.

When the CD is placed in the drive, the installation should
automatically start, if lot, use a My Computer window to look in
its root folder and run the '.exe' file there. In our case this was
autorun.exe. The actual installation was started, though, by the
SetupSp3.exe file, which was located in the enu (English user?)
sub -folder.

The last time we c.iecked Microsoft's Web site, there was a
Service Pack 4 available as a download for Visual Studio. If you
have a fast Internet connection you could find this at:

http://www.msdn.microsoft.com/ystudio

but be warned the total file size was 58 MB!

That should complete the procedure and you should now have
a fully functional vers og of Visual Basic ready to go. We must
admit that this was the most convoluted installation we have
ever had to carry out, which is why we have spent several
pages describing it.

7

1 Package Overview

Some Housekeeping

Before getting too involved with Visual Basic we suggest you
find where the Visual Basic files have been installed on your PC
and carry out a couple of 'housekeeping' tasks.

Visual Basic Folder Structure
When our version of the program was installed. the program
files were placed in the VB98 folder on our hard disc, as shown
in Fig. 1.6 below.

FPI VB 98 _ O x

Ede Eck V.evo Favoritec look Hell?

Folders

', Documents

[Jig My Computes
a 331 Floppy IA I

9 fia Local Dok (C I

El C Plogtam Fie:

El CI Mocrosolt Vaud Stu6o

_:.) Common

(f, {:j MSDN98

Template

Tsol

al Ca Waal&

emplate s REF -NEST IM DLL

T sql ' SCO/BUS CHI

Weards SCCVBUS CHM

 ADDSCCUS DLL
BIBLIO MDB VB6 OLB

C2 EXEC VB6DEBUG DLL
CVPACK. EXE VB6EXT OLB

DATAV1EW DLL l VB6IDE DLL

MSCREATE DIR l VBAEXE6 LIB

:±3 MSDIS110 DLL VBDATAVW TLB

MSP0860 DLL VBEXT SRG

j MOND MDB VBHE LP SRG

REFVB DLL AVBSCC DLL

 REPVBRC DLL V1SDATA EXE

[US Me Canvas'

Fig. 1.6 Visual Basic Program Files and Location

This is a Windows Explorer view with the folder 'tree' structure
in the left pane edited to simplify the path. Your folder structure
may not be exactly the same, but you should not have too
much trouble identifying it.

The important file here is VB6.EXE. This is the one that
opens the Visual Basic program when it is executed. You could,
if you were a masochist, double-click on this filename in the
VB98 folder every time you wanted to start the program. There
are obviously easier ways though. The Windows Start cascade
menu is one, but using a Desktop icon is much easier.

8

Package Overview 1

A Desktop Shortcut
Many programs these days automatically put a shortcut icon on
the Windows Desktop as part of the installation procedure.
Visual Basic does not do this, but it is very easy to do it

yourself, once you have found the '.exe' file that opens the
program.

To do this, simply open the VB98 folder in a My Computer
window, select the file VB6.EXE and drag it, with the right
mouse button depressed, onto your Desktop. When you
release the mouse button a menu is opened as shown in
Fig. 1.7, waiting for instructions.

F g 1 7 Creating a Shortcut

VS*

Selecting the option Create Shortcut(s) Here and
then editing the highlighted title below will give you the
shortcut shows here to the left. Now all you have to do
is double-click this icon on your desktop to start Visual
Basic.

A Working Folder
A folder missing from the list shown in Fig. 1.6, is one sJitable
for storing the programs (called Projects in Visual Basic speak)
that you will be developing yourself. This is easily rectified, with
the VB98 folder open in a My Computer window, right -click the
mouse in the file area. select New, Folder from the cpened
menu, and name it Projects.

The reason for making the new projects folder a sub -folder of
VB98 will become obvious in the next chapter, but i= you prefer,
ypu can place it anywhere on your system!

9

1 Package Overview

Sample Projects

When you installed the MSDN Library on your PC you also
installed a very extensive collection of Visual Basic sample
projects. When you need inspiration it is well worth looking
through these for programming ideas. We shall also be
referring to them throughout the rest of the book.

Our installation placed these projects in the

C:\Program Files\Microsoft Visual Studio\
MSDN98\98VSa\1033\SAMPLES\VB98

folder, with each project having its own folder.

If you ever want more samples of Visual Basic projects and
examples of coding, the best place to look first is on Microsoft's
Web site at:

http://www.msdn.microsoft.com/vstudio

Look for the 'Samples and Downloads' section and obviously
choose Visual Basic.

There are also literally thousands of other Web sites that
cover the subject, but we will leave that for you to investigate.

Well that's enough to start with, in the next chapter we will
introduce the programming environment that you will soon,
hopefully, grow to know and love.

10

2

The Visual Basic Environment

Starting Visual Basic

There are three main ways of starting Visua Basic.
The easiest, as we saw in the last ciapter, is to
double-click a shortcut on the Windows desktop, like
ours shown here. If you tsaven't made oie yet,
perhaps now is a good time!

The other way Microsoft provide you with is a little more of a
fiddle and involves clicking the Windows Taskbar Start button,
selecting the Programs option and finding Microsoft Visual
basic 6.0 (or whatever version you have) in the cascade menu
system, as shown in Fig. 2.1.

..E 3'

16 v.. A. '&,,Acio 60

Prc93n

Mooed Vaud Slulo 60 Toole 0

7-CIIIIIIII.11.4Skol.o6OE ratio* 0

A Log On PI,

SP411

4.;Fr: air pot pop pm I IWord Pm M. OMj _JPrlict,

Fig 2 1 Tle Start Cascade Menu System

You can also double-click on a Visual Basic project file (one
with the extension .VBP or .MAK) in a My Computer window, in
which case the project will be loaded nto Visual Basic: at the
same time as it is started.

11

2 The Visual Basic Environment

General Windows Skills

We have assumed for the remainder of this book that anybody
setting out to learn to program in the Windows environment will
already be familiar with the workings of the Windows Graphic
User Interface (GUI). We do not cover the basics of moving,
re -sizing, iconising or generally manipulating windows, of
handling the mouse, or menu systems. If you need more
information on these skills, we suggest you first work through
one of the books on Windows listed at the front of this book.

The New Project Box

The first time you open Visual Basic the New Project dialogue
box, shown in Fig. 2.2, appears. This can look daunting to a
new user, but please don't panic. Most of the options are
outside the scope of this book, and depending on your version
of VB, may not be shown anyway.

Nemo Repel

ell Word
Menage

Aden% EXE AcbeeXIXI. Acteee% ro Aopecahon
Control veceed

Date Pr meet IM Appketon AdT Ade.%
Document DI

r DWI showOnddppntMlM

Fig. 2.2 The Initial New Project Dialogue Box

At this stage, make sure the 'Standard EXE' option is selected
and click the Open button. If you want to find out more about
this box you could click the Help button.

12

The Visual Basic Environment 2

The Visual Basic Window

The opening window of Visual Basic E.0 is shown in Fig. 2.3,
with some of the components slightly rearranged for clar ty.

P.opra II Mociosoll Vow. Balm lorcpni

Eb EA Pe frael hr.* 12,4.2 en 5/0.1, looks add --Ins)yrdc. ti?

MOM Bar

Toolbar

Protect Explorer Window
Properties Window

Form Layout Wirdow

B PnOttl (Pretoria)

Form

I 3D

Faso
11101.02.00006

%ad.
Fceml

daired in an
insiVars

Fig. 2.3 The Visual Basic Working Components

When the program first starts, it is in 'design mode', as shown
on the title bar above, with six separate elements making up
the window. To understand the workings of the program we
must spend some time looking at the various components that
make up this window.

Title Bar, Menu and Toolbar
This screen element contains the Title bar which shows the
current project title, the operating mode and the normal
windows control buttons, the Visual Basic menu bar, as well as
the standard Toolbar below.

Nowell - Microsoft Visual Banc [dawn] PRIM
ik Edit Vow eropct FQrry,at L.6.4 Run Quen, Divan, Ic.45 _Wins tdiniow Lek
III " - cinii X it 11! 041 I I Zi C5I W a.)

Fig. 2.4 The Visual Basic Title. Menu and Toolba

13

2 The Visual Basic Environment

By default, the Standard toolbar is displayed when you start
Visual Basic. Other toolbars for editing, form design, and
debugging can be toggled on or off from the View, Toolbars
sub -menu. Toolbars can be docked beneath the menu bar or
can 'float' if you select the vertical bar on the left edge and drag
it away from the menu bar.

The standard Toolbar contains 21 buttons, or icons, to give
shortcut access to some of the most commonly used menu
commands. These are shown below, and will be detailed later
as they become relevant to our text. Probably the icons you will
use most are the Run and Stop controls.

The meanings of the Toolbar options are as follows:

Option Action

Et$
Adds a project to the current project

Adds a new form to the current project

Opens the menu editor

Qr. Opens an existing project

Saves the current project

Cuts the current selection to the clipboard

tib Copies the current selection to the clipboard

is Pastes from the clipboard

Opens the Find and Replace dialogue box

Undoes last action

ter Redoes last 'undone' action

Starts to RUN the current project

Stops execution and switches to break mode

14

The Visual Basic Environment 2

Stops execution and ends run mode

Displays the Project Dtplorer window

Displays the Properties window

Displays the Form Layout window

Displays the Object Browser

Displays the Toolbox

Displays the Data View window

Displays the Visual Component wi idow.

The Form Designer
In Visual Basic a form is the interface with the applica: on you
create. You can have multiple forms and place contrcls, text
boxes and pictures on them when in design mode.

Pirosectl oeml limo)

Fig 2 5 The Form Designer Window

What you place on a form is what w II be seen in a window
when the application is run. To help when placing features on a
form, by default, a grid is active, as shown in Fig. 2.5.

15

2 The Visual Basic Environment

When new features are added to the form they automatically
align themselves to the nearest grid positions.

The Toolbox
This provides a set of tools that you use at design time to place
different types of control objects onto a form. As well as the
default toolbox layout, shown in Fig. 2.6, you can also create
your own custom control layouts by right -clicking in the toolbox,
selecting Add Tab from the context menu and adding the extra
controls you want to the resulting tabbed section.

Fig. 2.6 The Toolbox

The standard Toolbox contains Visual Basic's intrinsic controls,
which are outlined on the next page. These controls are
contained inside the Visual Basic .EXE file. Intrinsic controls
are always included in the toolbox, unlike ActiveX controls,
which can be removed from or added to the Toolbox.

ActiveX controls, called custom or OLE controls in early
versions of Visual Basic, are extensions to the Toolbox and
exist as separate files with an .0CX file name extension. These
include controls that are available in all editions of Visual Basic
(such as DataCombo and DataList) and those that are available
only in the Professional and Enterprise editions (such as
Listview, Toolbar, Animation, and Tabbed Dialog). Hundreds of
third -party ActiveX controls are also available to provide new
'functionality' for your applications.

16

The Visual Basic Environment 2

The following table summarises the intrinsic controls found in
the Visual Basic tool pox.

Control Name Description

Picture box - Displays bitmaps, icons, or
W ndows metafiles, JPEG, or GIF files. It

also displays text or acts as a visual
container for other controls.

A Label - Displays text a user cannot interact
with, or modify.

abl
-ext box - Provides an area to enter or
display text.

Frame - Provides a visual and fu ictional
container for controls.

Command button - Carries out a
command or action when clicked.

1.70
Check box - Displays a True/False or
yes/No option. Yoe can check any lumber
of check boxes on a form at one time.

Option button - With other option buttons
i: displays multiple choices as part of an
option group, from which a user can
choose only one.

Combo box - Combines a text box with a
I st box. Allows a user to type in a selection
or select an item from a drop -down list.

List box - Displays a list of items that a
user can choose from.

Horizontal scroll bar - Adds a horizontal
sc-oll bar.

1111
Vertical scroll bar - Adds a vertical scroll
bar.

17

2 The Visual Basic Environment

Pig

OLE

Timer - Executes timer events at specified
time intervals.

Drive list box - Displays and allows a user
to select valid disc drives.

Directory list box - Displays and allows a
user to select directories and paths.

File list box - Displays and allows a user
to select from a list of files.

Shape - Adds a rectangle, square, ellipse,
or circle to a form, frame, or picture box.

Line - Adds a straight-line segment to a
form.

Image - Displays bitmaps. icons, or
Windows metafiles, JPEG, or GIF files;
acts like a command button when clicked.

Data - Enables you to connect to an
existing database and display information
from it on your forms.

OLE container - Embeds data into a
Visual Basic application.

The pointer tool is not a control. You click
on it to return the pointer to its normal
mode, when you want to move and re -size
forms and controls.

Project Explorer Window
In Visual Basic you can only have one project open at a time.
The Project window displays a list of all the forms, modules,
custom controls and all of the items contained in an open
project. From the Project Explorer you can open the Form
window for an existing form by selecting its name and clicking
the View Object button. Similarly, you can open the Code
window for an existing form by selecting its name and clicking
the View Code button.

18

The Visual Basic Environment 2

"1.1 Sdinote (SDIMOTEYBP)
- Forms

terfrel (teld inn)
frmS0t (teen:10ns)

- -71 Modules4 ii==.1
4 Modie2 (f110ften.bes)

Fig 2 7 The Project Explorer Window

The following lists all the project items that will be shown in the
roject Explorer.

Forms

Modules

Class Modules

User Controls

User Documents

Property Pages

ActiveX Designers

Related Documents

Resources

All .frm files associated with the
project.

All .bas modules for the project.

All .cls files for the project.

All user controls for the project.

All document objects, .dcb files, in the
project.

All property pages, .pag files, in the
project.

All designers, .dsr files, in the project.

Lists all documents to which you want
a pointer. The path to the document
is stored rather than the document
itself.

Lists all of the resources you have in
your project.

If this window isn't open at any time, you can click its
Toolbar icon, shown here, use the View, Project
Explorer meru command, or use the <Ctrl+R>

Keyboard shortcut.

The Project Explorer is the quick way to access any of the
components of a proect in design mode.

19

2 The Visual Basic Environment

Properties Window
All the objects you create in Visual Basic (forms, boxes,
command buttons, etc.), have a very detailed set of 'properties'
which are controlled from the Properties Window, as shown in
Fig. 2.8 below.

F Far.1 r:
'Form' Form

Categorired

Name) Forml

axe 1 - 30

°Redraw False

olor ere000000Fe,
derStyle 2 - Suable

Form'

lipControls True

ontrolBox True

awflode 13 - Copy Pen

awStyle 0 - Solid

1

Trueof r 131-1000000008

1 - Transparent

MS Sans Serif

ontTransparent True

eColor '-i-19000130121x.

5/sets the text displayed in en
object's title bar or below an object's icon.

Ferrol Farm

B Appearance
Appearance 1 - 3D

BeckColor Bill3000000Fik
BorderStyle 2 - Sizable

Fcrm 1

FiColor IN -100000000&
Fit5tyie 1 - Transparent

FontTransparent TrJe
ForeColor 8190000012e.

Palette (None)

Picture (None)

B Behavior
AutoReckaw False

ClipControls Tr.*
DrawMode ta - Copy Pen

DrawStyle 0 - Soid

DreerWidth 1

t!!!!!111M1P. _MEW
Caption
Returns/sets the text deployed in an
object's ttie bar or beloin an object's icon,

Fig. 2.8 The Two Tabbed Views of the Properties Window

If it is not open, click the Properties Window icon on the
toolbar, use the View, Properties Window menu
command, or press tie F4 key.

The Object Box, at the top of this window, displays the
name of the object whose properties are listec. Clicking its
drop -down arrow (on the right) lets you select other objects
from a list.

The two tabs, immediately below this, let yoJ display the
items in the Properties List, either alphabetically or in category
groups, as shown in our examples in Fig. 2.8. These make it
very much easier to find your way through the list.

20

The Visual Basic Environment 2

The Properties List takes up the bulk of this window. All the
properties available for the selected object are listed, with the
current setting shown alongside. When you select a property
name in the list a short description of it is given in the bottom of
"he window.

You change a property by selectinc it in the list, and then
either typing a new value in the property value box alongside it,
or making a selection from the drop -down I st of those
available, as shown in Fig. 2.9.

I:ea...Width Ilk

E labied I - Dash
2 - Dot

F *Color
3 - Dash -Dot

F tSt ',le 4 - Dash -Dot -Dot
F xlt 5 - Transparent
FontTransparent 6 - Inside Solid

Fig 2.9 Selecting a Property Option

The drop -down button v, that you click to do this, does not
actually show until you click the mouse pointer into the property
value box.

Form Layout Window
The Form Layout w ndow, shown in Fig. 2.10, allows you to
graphically position where your application windows will be
placed on the screen at run time by dragging images around a
simulated screen.

Fig. 2.10 The Form Layout Window

21

2 The Visual Basic Environment

Code Editor Window
This is the editor for entering application code. A separate code
editor window can be created for each form or code module in
your application, which makes it easy to cut and paste between
them.

FM Piolecil Foiml (Code' PRO
'Form li 'Load

I i

.

Object Box Procedures Box 7
Split Ear

Procedure View Icon

Full Module View Icon
.

..± j

Fig. 2.11 An Empty Code Editor Window

The window components as shown in Fig. 2.11 are:

Object Box - Displays the name of the selected object.
Clicking the arrow to the right of the list box will display a list of
all the objects associated with the form.

Procedures Box - This lists all the procedures, or events,
recognised by Visual Basic for the form or control displayed in
the Object Box. When you select an event, the event procedure
associated with that event name is displayed in the Code
window below. All the procedures in a module are displayed in
a single, scrollable, alphabetically sorted list. When you select a
procedure from the two drop -down list boxes at the top of the
Code Editor window the cursor is placed at the first line of code
in the procedure.

Split Bar - Dragging this bar down, splits the Code window into
two horizontal panes, each of which scrolls separately. You can
then view different parts of your code at the same time.

Procedure View Icon - This displays the selected procedure
only in the Code window.

Full Module View Icon - This displays the entire code in the
module.

22

The Visual Basic Environment 2

Customising the Environment

Dockable Windows
All the windows except the Form Designer have a 'dockable'
property. A dockable window attaches itself to the nearest edge
of the screen, or to the nearest other dockable window. When
you move a dockable window around the screen, a rec-Angular
box is displayed while the left mouse button is depressed, as
shown in Fig. 2.12.

Ptoiectl Micoosoft Visual Basic idesigni

Eie Edit Yom' el.*Ct Fr"at QebuO 001 Q518r/ DNIVals ade

Q3- i. - ` Cia,* lil `P-.11 . , 1

Fig 2 12 Dragginc Dockable Windows around the Screen

When you drag this bcx into the centre of the working window
its lines become thick as shown in the lower box of Fig. 2.12.
When the button is released the dragged window beccmes an
undocked or, 'floating', window. When you drag the box over a
screen edge, as with the upper box above, it changes to fine
lines and when released it 'snaps' to that screen location.

A docked window is dominant. If you drag the Tooltox, for
example, to the top of the screen it cocks there anc all the
other windows change size to accommodate it.

23

2 The Visual Basic Environment

You can view the Dockable property of a
004able

Ulde
window by right -clicking your mouse inside the
window. If the word Dockable is checked, as

shown here, the window is dockable. When a window is not
docked, it is a 'floating' window. Windows that have their
Dockable property enabled also have another property. They
are 'always on top'. When they are open, they are visible and
not hidden behind another window.

The Working Environment
You don't really need all of these windows open all the time,
and the screen is awfully cluttered, unless you are lucky
enough to have a 19 inch monitor. It makes sense, then, to
close at least some of the windows and perhaps to undock
others. You have probably noticed by now that Visual Basic
opens up every time with the screen arrangement and settings
that were active when you last closed it.

The Project Explorer is an essential window. As your project
grows, you will need it to get from one part of the project to
another. But while you are designing your project's forms it will
almost certainly be in the way. Click on the x Close button in
the upper -right corner of the Project Explorer to close this
window. You can get it back when you need it by clicking the
Project Explorer icon on the toolbar.

You use the Form Layout window only once for each form in
the project, if that. So use the window when you fist add a form
to your project, then close it and use the toolbar to open it when
you need it again.

While you are designing the user interface of a form, you will
almost certainly need both the Toolbox and the Properties
window. Once you have placed all your controls, however, you
may want to close them to give you more room on the screen.

At the end of the day of course, it is all a matter of taste; you
will set your development environment up the way you like it.

You can always change it.

24

The Visual Basic Environment 2

Customising the Toolbar
There may well be options that are not on the standard toolbar
:hat you would like to have available at the click of a mouse.
=ortunately, it is easy to customise a toolbar as we shall see
next when we add an icon that opens the Code Editor.

To do this, right -click in the stancard toolbar and select
Customize from the pop-up menu that appears. -his opens
The Customize window shown in Fig. 2.13.

* rva 1014.41)1 t c.0

&dors caminds IIgoons

Dit

Protect
Fermat
Debug
Run

QUiri
Deccan,
Tools

' -
0ObJect

Deinbon

Last Postion

Object Browser

ri Immediate Wir dow

Fig. 2.13 The Toolbar Customize Dialogue Box

Select the Commands tab, click on View in the Categories list
box and drag the icon for the Code Editor window tD The main

Visual Basic toolbar, as shown in Figura 2.13.
Drop it just to the right of The Toolbox icon As we
are sure you are aware, this is a 'drat and drop'
operation and takes only seconds to carry out.

25

2 The Visual Basic Environment

The Options Dialogue Box
There are two general program settings that we think should be
made before you start developing any projects. One change
forces you to declare all your program variables, and the other
offers to save your project before you attempt to run it. For both
of these, use the Tools, Options menu command to open the
Options dialogue box shown in Fig. 2.14.

Options

Editor I Edtor Format 'General I Padang I

Code Setthgs

P Auto Syntax Gags

I:7 aegure Venable Declaration

r7 Auto Lat Members

P Auto Quick Into

P Auto Data Tpi

Windom Settings

7 P prag-and-Orop Text EdUng

P Default to Ful Module WAY

1 P Procedure Separator

Environment I Advanced I

P Auto trident

Ian Math; 4

OK I carom Hob

Fig. 2.14 The Options Dialogue Box

In this box you can change many of the Visual Basic program
settings. On the Editor tabbed page, shown above, select the
Require Variable Declaration option. Selecting this adds the
'Option Explicit' statement to general declarations in any new
module, which means that you will have to explicitly declare, or
define, all the variables you use in your projects. This can save
a lot of problems when your code begins to get complex.

While you are in the Options box, make one more change.
Select the Environment tab, click in the check box next to
Prompt To Save Changes. With this checked, when you run a
project from within Visual Basic, you are asked whether you
want to save any changes you have made. Usually it is much
safer to answer Yes, in case something goes wrong and you
lose all your code. Have a look at the other options and then
click the OK button to close the dialogue box.

26

The Visual Basic Environment 2

The MSDN Help System

As we saw in the first chapter, Visual Basic uses the powerk I
Help facility built into the MSDN library (Microsoft Developer;
Network) and provided on separate CD-ROMs. This includes a I
the Help files and program samples that you will need. When
learning the program this is one of the essential tools to use. In
fact, now Microsoft do not supply manuals, it is the only tool to
use, without having to fork out more money to them. Hopefullj
you have installed MSDN? If not, read the first chapter and go
back and do it straight away.

If all is well with the library, when you use the Help,
Contents menu command from Visual Basic the MSDN
window shown in Fig. 2.15 should open.

Els fAI 1%. EP WO

las* Laos..

Ad** Sat*
Nee Bat Caved

rda.c. N.. I keieSa I reMles I

L.1
Waxerb e YON LOU,
Ceide Slab Dieueetarri
Veudil Bre Douai ea,

ialflaw Doadvataaa No
whes Na Novai Bac 60

Cavallo/se WPC..

 valved vaaVinalBac 60
 vac vow Sac

 r
LI,Ite Repast. .0,U

 Cate SadiceS.Dacieralara
Ielern r.

0 D

MSDN Library
Visual Studio 6.0 release

The MSDN Letrary is the eSSehtia reference for
developers, with more than a grogabyt of
technical programme information, includeng
uample code, documentatron, technical articles,
rho Microsoft Developer Knowlede ease, and rriora corm.
anything else you mght need to tevele0
SOlutlOrIS that implement Microsoft techholCrev

Dr GUI flee..., 411
1:), ...eIocet Vsu
eftooloo 0 ...Hass a...
1.110011..6-

t he MSDN ubrary ,s a member of the Visual
uddo 6.0 !way of development products,

which inckates

VISA., Basic

VIV.14, C

Visual ioxPro

Visual InterDev

vikua

Visual SOuReSafill

Mead *Gout and WA. -0
11101. yews. teem, .4.technotel I/e
1.461,1,

fond wha t new 1.4 NI,
0.4.n Ie./
soldicead armada evadedadv Dr GUI 01

Le,. eaden Sea
n. Nos pr040,......for aw1,,1
aM what ao anaiM

Fig 2 15 The MSDN Opening Window

The format of this window should be familiar to anyone wanting
to program in the Windows environment, but two points are
worth special mention.

Firstly, depending on the installation options ycu used, you
may need to have the MSDN CD-ROM in the drive to use Help.

27

2 The Visual Basic Environment

Secondly, as MSDN includes documentation for all of
Microsoft's vast range of development software, make sure you

select the option Visual Basic
Documentation as the Active
Subset, as shown here.

Active Subset

I^Visual Basic Documentation

There are two ways to access the general Visual Basic help.
The first is to follow the links in the right-hand pane, until you
get the information level you want. To get to the screen shown
in Fig. 2.16, for example, we clicked the Visual Basic link,
followed by that for Programmer's Guide.

Programmer's Guide

welcome to the Visual Basics Programmer's Guide, a comprehensive manual on
programming with Visual Basic, To accommodate the wealth of features and
capabilities in Visual Basic, the Programmer's Guide is divided into two parts.

The first part covers the basic concepts, providing a foundation for programmers new
to Visual Basic. Part 2 covers more advanced programming concepts and techniques.
Additional information helpful in using the product is presented in the appendices.

et Visual Basic Basics

An introduction to programming in Visual Basic.

 What Can You Do With Visual Basic?

Advanced topics on Visual Basic programming.

lb visual Basic Specifications, Limitations, and File Formats

Technical details for Visual Basic.

visual Basic Coding Conventions

Suggested guidelines for consistent and readable code.

Native Code Compiler Switches

Details on command line switches for compiling to native code.

Adding Help to Your Application

Guidelines for adding online Help to a Visual Basic apr nr ar

Fig. 2.16 MSDN Programmer's Help

You can then treat this like a book and read about any of the
topics that interest you.

28

The Visual Basic Environment 2

The second method is to use the tree structure in the Contents
tabbed section, as shown in Fig. 2.17.

H (a Visual Bast Ciocurentation
[t V,su Banc Start Page

3 WI Vaud Banc Docunentabon Map

1
Vona Ban Editions
Visua Banc E nterprese E cfncri Features

%I What': Nam in Visual Basic 6 0
What 3 New n Data Access

I What: New n Internet Features
II Whets New n Contiots
I What s New n Component Cleatron
I What s New n Language Features
i What's New n Wizards
6 Upciedng 4436cabons that Use the Windows Common Cceards

E CU Getting Started with Visual Basic 6 0

Ej

Ilia: Weal

Denman Corwentrons
E to Usng ',area Ban

D Programmer's Grade (AI Editions)

Corry:one°, Took Gude (Pro. Enterprise only'
Enterprise Gude
Data Access Gude (Pro Enterprise only)

- 43 Reference
Language Reference

3 Controls Reference
3 Wzards and Add -Ins

El 'Namable Enos
51 Adds nal Information

Samples

Microsoft DAO 3 51

Using he Repostay with Visual Basic

Fig 2.17 The Visual Basic Hell Contents

The Contents tab lets you scroll through a table of contents for
Visual Basic Help. Clicking a '+' at the left of an item opens a
sub -list, clicking a '-' will close it again. Clicking a list item, with
the mark El as shown above, opens its help text in the
right-hand window pane.

The Index and Search tabs open up interactive Help index
and search facilities. If the Index tab is clicked anc you type the
first few letters of a word in the input text box, you are shown
the available options. Selecting one and clicking the Display
button opens its page, but it may ask for the MSDN disc to be
inserted.

The Search tab gives you access to a very powerful
individual word search facility of the whole Help system.

29

2 The Visual Basic Environment

The Favorites tab lets you keep a list of Help pages that you
want to use again in the future. This is very useful, as the
MSDN library contains an enormous amount of information and
it is not always easy to find a particular page again.

Context Sensitive Help
Once you have the MSDN library installed and working, it also
provides the normal context sensitive help we are all used to
with Windows applications. This is most useful to get help on
the various Visual Basic windows and controls, as well as the
programming language keywords and expressions.

To get help on something you have selected you simply
press the Fl key, to open a screen like that in Fig. 2.18.

'1111:11.:

(Genetan
.

lorw:DN

fie

11 ,111711 yx

As
ireger

id-, VIJ.11 'Aid.° 60

Edo Vow 20 li0
PR

,0 EA ,'* 0 D ez a
Show Locate Beck Forward Si., fleheett Haw Pdnt

Integer Data Type

5ee AIIQ F-mple 4ecilics

Integer variables are stored as 16 -bit (2 -byte) numbers ranging in vale from -
32,768 to 32,767. The type -declaration character for Integer is the percent sign
(%).

You can also use Integer vanables to represent enumerated values. An enumerated
value can contain a finite set of unique whole numbers, each of which ,as special
meaning in the context in which it is used. Enumerated values provide a convenient
way to select among a known number of choices, for example, black = 0, white = 1,
and so on. It is good programming practice to define constants using the Const
statement for each enumerated value

i-.

Fig. 2.18 Getting Context Sensitive Help

In most cases if you click the Example link you will be shown a
code example using the keyword, etc., you want help on. In our
case above, this is greyed out, so there was no example.

If you persevere with the Help system it wil become an
indispensable tool while you are using Visual Basic. However
good you get, you will still need assistance on something!

30

3

Programming Basics

Programming Steps

With most programming languages you must write countless
lines of code into an editor before anything happens. Some of
this code might be written to control the operation cf the
program, but probably most of it will control the screen &splay
and the interface with tie final user of the program.

Design Mode
With Visual Basic, on the other hand, you do not need to write
code to set the program interface; you design this graphically
or the screen in 'design mode'. All of the control features you
are used to in Windows, such as menu bars, list boxes, control
buttons, etc., can be almost instantly placed on 'Forms' at
design time. When you are happy with the interface, you then
enter code to control how its components interact with each
other, and with the final user. Even this operation is made easy
in Visual Basic, whici names and controls your input
procedures almost automatically.

Run Mode
When you finally run the program, or project, that you have
created, the Forms you designed become the prcgram
windows in 'run mode'. This means that Visual Basic gives you
the power to use most of Windows' built-in facilities, like
window manipulation, file opening and saving, etc., without
having to write much Drogra m code at all. You can get really
professional output with the minimum amount of effort, and that
is always a good thing!

31

3 Programming Basics

A First Program

The next step forward has to be a simple programming
example to show how these features fit together.

Start Visual Basic, or if it is already open, use the File, New
Project menu command, and accept Standard.exe as the
project type to create. If Forml is not open on your screen,
select it in the Project Explorer window and click the View

Object button, also in that window. If the Properties

61 window is not open, click the toolbar icon, shown here,
or press the F4 key.

Creating an Object
Now, to start, we will add a button to the form. Click the

.....J Command Button icon in the Toolbox and move the
pointer back over the form window. It should change to

a cross hair. Position this cross at the place in the form where
you want the top left corner of the button,
hold down the left mouse button and 'drag'
the button shape, as shown here. When you
release the mouse button your new button will

be placed on the form, with the name 'Command 1 ' placed in it.

Fig. 3.1 Placing a Command Button on a Form

32

Programming Basics 3

Another way of doing this, is to double-click the Command
Button icon in the Toclbox, which places a new button in the
centre of the form. You can then drag it to where you want it,
then resize it.

During this operation you could have used the number
indicators that appear when you are manipulating an object on
a form. The Position Indicator, when you are dragg ng, shows
the position of the top let corner of your button, while the Size
Indicator, when you are re -sizing, gives its dimensions. By
default, these dimens ons are in 'twips', a standard unit of
screen measurement equal to 1/20 of a printers point. In case
you wanted to know, 1,440 twips equal one inch, and 567 twips
equal one centimetre.

Changing a Caption
The new button should be 'selected' in the form and have a
series of black 'handles' around it, as shown in Fig. 3.1. If not,
click it with the mouse. Now, look at the P-operties window. The
highlighted property in the list should be 'Caption', showing as
'Command1'. The caption is what actually appears on the face
of the button.

Double-click the Command1 caption in the Properties
window, to select it, aid over -type it with the word Print
instead. The button should now have a new caption on it.

Changing an object's p-operties is as easy as that.

Entering Code
Now double-click on the newly created button. This opens the
Code Editor window, t tled Project1 - Form1 (Code), with two
lines of code and the cursor already placed for you. Type the
following text:

Print "My first Windows 'progran'?"

Your window should now look like that shown in Fig. 3.2. Don't
worry too much about the rest of it at this stage, all will be
revealed later.

33

3 Programming Basics

fleck

Private Sub Commandi_
Print "Hy first Windows 'program'?"
End Sub

Fig. 3.2 Our First Code

Running a Program
For neatness, close the Code Editor window by clicking
its x Close button, and click the Run toolbar button,
shown here, (or use F5, or the Run, Start menu

command). Visual Basic changes to Run mode and displays
the window Form 1 containing our Print button. Clicking the
mouse on this button prints the message in the window, as
shown in Fig. 3.3.

Fig. 3.3 Visual Basic in Run Mode

34

Programming Basics 3

Ir Run mode all you can do at the moment is print the message
every time the button is clicked. Not a very useful
program, but it is a start. To stop the program running,
and return to Design mode, click the Stop toolbar

button, shown here. The easiest way to move between Run and
Design modes is with the Run and Stop toolbar buttons.

Saving a Program
We may use this example as the basis for other applications,

so save it with the File, Save Project command, or the
Save Project toolbar icon. Use 'EXAMPLEI as the
name for both the form and the project, when asked, as

shown in Fig. 3.4.

Fig. 3.4 Saving a Project and its Form

If you look in the Project Explorer window now, you will s=e the
name changes have taken effect, as in Fig. 3.5 below.

- Project I (EXAlln I .VIIP)
not

11.1.1.11111111

Fig. 3.5 Project Explorer Window

35

3 Programming Basics

Project Elements
As can be seen from this very simple example, writing a
program in Visual Basic follows a very definite series of steps.

The interface is designed and built graphically, by
placing controls and boxes, etc., on a ser es of forms.

The properties of the forms, and controls used, are set
to produce the visual results required.

Code is written to link these up and generally make the
program work. Essentially this code,

controls the general action of the program and,

determines how it will react when specific actions
are carried out on specific objects by the end user,
such as when a button is clicked, or a form
double-clicked.

The Interface

This consists of one, or more, forms with control features
placed from the Toolbox, to enable the required program
functions to be carried out by the final user.

Forms
A form is a window, that opens at some stage when the
program is run, and is used to either show information to, or get
information from, the program user. When you start to build a
new project Form1 is available to use straight away. If you need
to open more, this is easily done with the Add New Form button
on the toolbar. When saved to disc, every form in a project is
saved in a separate file with a '.FRM' extension This makes it
possible to use a particular form in several different projects.

To include an existing form in an opened project, use the
Project, Add File command. It will then be listed, and be
accessible from the Project Explorer window. To remove one
from an opened project, select it in the Project Explorer

36

Programming Basics 3

window, click the righ: mouse button, and choose Remcve
from the opened menu, as shown in Fig. 3.6.

1.11111.111MINIII
M

Pros tI (example LAW
, rr,

.111.1=0
,..m1 EXAMPLE I Fr, y.,, ow.ct

0 VIIMI COO

pr.o.

*PAS CALC-FRM

Saw CALC RN 8s.

0000
tide

.1] P011it Component..

Fig 3 6 Removing a Form from a Project

Here, the form CALC. 7RM has been adced to our first example
project and is shown be ng removed as described above.

Modules
Most of the code in a program, or project, will be included in the
various forms of the project. However the code attached to a
form is only usable b9 that form. For code to be available for
other forms, or the project as a whole. it must be placed in a
separate 'module'.

Code modules are stored with a '.BAS' file extension a -d are
very much like more traditional BASIC programs. They co not
have the power to get input from the user, or to create graphic
displays.

To open a module, use the Project, New Module menu
command, which opens the Add Module dialogue box shcwn in
Fig. 3.7 overleaf.

37

3 Programming Basics

N- I ttrwil

4

r Ow* 1hr Oudipineofpos

Fig. 3.7 The New Module Dialogue Box

A module can include:

Declarations of constants, types, variables and DLL
(dynamic -link library) procedures.

General Procedures which can be called from
anywhere in an application. These can be either Sub
procedures, that do not return a value, or Function
procedures, that do return one, or Property procedures.

Applications
An application (or program), is a collection of forms and
modules (as well as user controls and documents, property
pages, ActiveX files and resources) that can be saved together
as a project, and can be combined into a single executable file,
with an '.EXE' extension. Forms and modules, and their code,
can also be incorporated in other applications.

As you progress with Visual Basic you should build up a
library of forms and procedures to use time and again. There is
no point re -inventing the wheel every time you build a new
application!

38

Programming Basics 3

Visual Basic Controls
As mentioned in the last chapter, controls are placed on forms
from the Toolbox. The form below shows a composite of the
more commonly used (intrinsic) controls and which icons are
clicked on the Toolbox to produce them.

 Foint2

Label

Frarr41

r it
lcombni

J1J

IT -----
: ,

-Di DI ----

t) 0

mo

14 4 jAf

Fig. 3.8 Vsual Basic's Intrinsic Controls

These controls should all be very familiar to any Windows
program user. They form the building blocks to make up all
types of dialogue boxes, etc.

We included some details of the individual Toolbox controls
on Page 17, and most will be covered n more details as they
are used throughout t le rest of the book.

39

3 Programming Basics

Setting Properties
Once your forms and controls have been chosen and placed,
their Properties have to be set in the Properties window, so that
they look and behave in the way you want. Most of the default
properties will not need to be altered; but some of the more
important variables are now described.

Some Form Properties
When designing a form you can set its position on the screen,
and its size, graphically with the mouse. You can also set the

Left, Top, Width and Height
properties for more precise
control.

Foirrd

IFonnl Form

alohabanc ICatanaricad

Caption

lipControls

ControlBox

Cr awMode

Dr away*
C,rawWrith

Enabled

FillCoiot

IStyle
ont

0 -None
1 Fixed

3 - Fixed Dialog
4 - Fixed ToolWindow
5 - Suable ToolWndow

1

True

 w00000000rk
1- Transparent

MS Sans Serif

The default form settings
include a control box, minimise
and maximise buttons on the title
bar, and a re -sizeable frame. This
lets the final user change the
resultant window with these
features, when the program is

J run. You can control all of these
features though.

Setting the ControlBox, Min -
Button and MaxButton properties
to False will turn t-iese features

off when the program is run. Changing the settings to True will
reactivate them.

ldReb:skets'iathe border sin* for an *Is&

Fig. 3.9 Border Properties

The BorderStyle property works in conjunction with these in
the following ways:

0 - None Switches off all border or related border
elements.

1 - Fixed Single Can include Control -menu box, title bar,
Maximise button, and Minimise button.
The window is re -sizable only by using
the Maximise and Minimise buttons.

40

Programming Basics 3

2 - Sizable The default setting. Re -sizable using
any of the optional border elements.

3 - Fixed Double Can include Control -menu box and title
bar; but not Maximise or Miiimise
buttons. It is not -e-sizable.

4 - Fixed Tool Displays a non -sizable window with a
Close button and title bar text in a

reduced font size.

5 - Sizable Tool Displays a sizable window with a Close
button and title bar text in a reduced
font size.

The best way to get used to all these settings is to change
them, one by one, and then click between design and run
modes from the Toolbar. For a very detailed description of a
property and its available settings, simply highlight it in the
Properties window and press the F1 key.

Caption sets what text will display in the title bar, whereas
Name controls the name of the form itself. Visual Basic needs
every form in an app ication to have its own distinctive name.
They are initially set a-. Form1, Form2, etc.

11111111111111111111
Form Form rt
43hdietic I Categorize:1M

/sets the bookoriaiOdiabr user'
team* trod and qaphics In an abject.

Fig. 3.10 Colour Palettes

BackColor sets the co our of the
window, and ForeColor the co our of
any text which is printed on it at run
time. To change the colours simply
double-click cn the colour square to
the right of the item in the property
list and select from the palettes
which open. The other attributes of
such text can be controlled with the
Font properties.

The Icon property lets you attach
a different icon to your fcrm w ndow,
which will replace he default
Command Menu button and show in
the Windows Taskbar when the
window is minimised at run time.

41

3 Programming Basics

You can select such icons from the extensive list of those
provided with Visual Basic (in our case these were in the
CAProgram Files\Microsoft Visual Studio\Common \Graphics\
Icons folder), or you can design your own.

MousePointer determines the shape of the pointer when it is
moved over the window at run time and Picture allows you to
attach a graphic image 'permanently' to a w ndow. Setting
FontTransparent to 'True' will then let you print text on the
graphic, without blocking it out.

Label Properties
A label usually holds text on a form that is not changed
interactively by the end user. The Alignment property
determines whether the Caption text (limited to 1024 bytes) is
Left, Right or Centre Justified.

When a label has its AutoSize property set to True, the
Word Wrap setting determines whether it expands vertically or
horizontally to fit the text specified in its Caption property. With
Word Wrap set to True the text wraps and the label expands, or
contracts, vertically to fit the text and the size of the font. The
horizontal size does not change.

With the default Word Wrap setting, False, the text does not
wrap and the label expands, or contracts, horizontally to fit the
length of the text and vertically to fit the size of the font and the
number of lines.

To prevent a label changing size at all, leave AutoSize with
its default setting of False.

Text Box Properties
A Text Box is used to hold text, entered at design time, entered
interactively by the user, or assigned in code at run time.

The Text property contains the text string that is displayed
and MaxLength determines whether there is a limit to the length
of the Text. The default is 0, or no maximum. Any number
larger than 0 indicates the maximum number of characters that
can be entered into the Text Box, (up to a maximum of 64K).

42

--

Programming Basics 3

SC1011baiS are ser t)

A2 here which give-,
a vertical bar zi

3Lh
bars

are set to itd.

bot
which cis

When MultiLine is set to True, the Alignment
property forces left, right or centre alignment
of Text. ScrollBars sets scroll bars as follows.
The default, 0, sets no bars. 1 sets a
Horizontal bar, 2 a Verdcal bar and 3 sets both
bars, as shown here.

Command Button Properties
Command buttons are placed on a form so that the end user of
the program can select them to begin, interrupt, or end a
process. When selec-.ei they appear to be depressed.

The Caption property determines the text displayed on a
command button. Clicking a button always selects it, but there
are two other ways hat should be used. With the Default
property set to True, pressing <Enter> will select it; and with
the Cancel property set to True pressing <Esc> will select it.
The former would be used to determine what command is
actioned in a window when the <Enter> key is pressed, and the
latter to control the <Esc> key, maybe for exiting the box, or the
program.

Check Box and Option Button Properties
Check boxes are used to allow the user to easily choose if
something is true or false, (switched 'on' or 'off), or to choose
more than one option from a selection. Option Buttons are used
in a group to display rr ultiple choices from which the user can
select only one. The p'operties of both are similar. The Value
property controls what state the object is in. When set at 0, the
default, it is unchecked, at 1 it is checked, and at 2 it is greyed
out, or dimmed.

When the Enabled property is set to True, the control is able
to respond to events. such as a click from the mcuse pointer.
When set at False it is inactive.

A frame control would usually be used for grouping option
button, or check box controls.

43

3 Programming Basics

The Tab Order of Controls
When a Windows dialogue box is active only one control on it

has the 'focus' at any one time. This is shown by
either a dotted box, as shown here, or a highlight,
on the control. You move the focus round the box

with the <Tab> key. When the <Tab> key is used in this way
the current control 'receives the focus'. When you design a
form you should make sure the tab order of the controls on the
form is correct.

Initially the order is set automatically and is the same as the
order in which you placed the controls. This order is actually
controlled by the Tabindex properties of the various controls on
a form. The control which will receive the focus when a window
is opened should have a Tabindex value of C, followed by
values of 1, 2, etc.

To prevent the focus being given to a control you can set its
TabStop property to False. Although the control still holds its
place in the tab order, determined by the Tabindex property,
the focus will not be given to it.

Shortcut Keys
There is yet another way to select some of the controls in a
running window, that is by pressing an <AJt+letter key>
combination from the keyboard. To do this you place an
ampersand, the '&' character, in front of the selected letter in

the Caption property. This underlines the next
letter on the control face. In our example on

. atilt me the left, the Caption entered was 'Cli&ck me'.

Most of the properties described so far are set during the initial
design process. Many of them, however, will also be changed
while the program is being run. This is done, either interactively
by the user, or under the control of code written into the
program.

44

Programming Basics 3

Writing Code

Visual Basic is unlike all the other programming languages we
were brought up with. Most of the hard work buildirg interfaces,
etc., is done almost automatically for you, once you know how
to steer the process Lines of code are required, however, to
string all the buildirg blocks together and actually produce
useful results.

It is very much an event -driven procedure based language,
with each independent procedure designed to carry out a
specific task. An event being an action which is recognised by a
form or control.

Code Editor Windows
As was introduced it the last chapter. the operation of writing
your code is carriec out in a special Code Editor Window.
There are two main ways of opening a Code Editor wirdow in
design mode. The easiest is to double-click on the form, or
control, whose code you want to edit. You can also select the
form or control (in oti-e- words make it active by clicking it), and
press the View Code button in the Project Explorer windcw.

re Punectl I mml llo4e) P111;11E:

'Form 11.1 IL L9.1

Fig 3 11 Code Ed tor Window with Procedures Box Open

45

3 Programming Basics

As described on Page 22, a Code Editor window contains two
drop -down list boxes in its top bar. The Object box lists the
current form and all the controls on it when you click its down
button. The other, the Procedures box, lists all the events
recognised by Visual Basic for the form or control displayed in
the Object box.

Every form and control has a set of pre -defined events that it
can recognise. The example on the previous page shows the
events list opened for the empty form 'Form1'. The active event
in the list is Load and the code in the form for that event is
shown, ready to edit, in the lower half of the window. When you
select an event, either the event procedure associated with that
event name, or a code template for the event, is displayed in
the bottom part of the Code Editor window.

Any code placed in this Load Procedure would be activated
when the form was first opened. In this case, as the form is
Form1 and would open first, the code would activate when the
program is first run.

You write code to attach event procedures only for events to
which you want a form or control to respond. If you leave an
event procedure empty that event will produce no program
action.

When writing code to attach an event procedure to a form or
control you do the following:

1 Select the event in the Procedures box for which you
want to add code.

2 Enter your code, in the template provided, in the
standard way for entering code and declarations.

3 If necessary, select other forms or controls from the
Object box in the Code Editor window and follow the
same process from step 1 above.

4 When finished, close the Code Editor window by
double-clicking its control box.

46

Programming Basics 3

Instead of using the template provided by Visual Basic, you can
also create a new procedure by typing

Sub ProcedureName

in the Code Editor window. In the future, you can rind this
procedure by select ng (general) from the Object box End then
looking in the Procedures box.

Visual Basic Naming Convention

The standard syntax when writing an event procedure s made
easier for you, as Visual Basic provides the names for
procedures automatically. It combines the control name with
the event name and separates them with an uncerscore
character Thus the standard name is

Control Event

In the open Code Editor window shown in Fig. 3.11, the
procedure name shown was

Form Load

This names the procedure that will activate whenever that form
is loaded, or opened. This convention might seem a little
confusing to start with, but it is so logical it soon becomes
second nature.

The full syntax for al event procedure is:

Sub ControlName EventName (arguments)

Local variable and constant definitions
Statements

End Sub

Naming Control Properties
The control properties, described earlier in the chapter, are
frequently assigned values or have their values charged, in
program code. The usual format for this would be

ControlName.Property = expressicl.

47

3 Programming Basics

Where ControlName is the name of the control. Property is
the Visual Basic name of the property concerned and
expression is a valid expression (such as a text string, or
arithmetic calculation). Note the '.' separating the property
name. As an example, the code

Textl.Text = "Type a number here"

would place the text string 'Type a number here' into the Text
property of the Text Box named 'Text1'. When this code is
activated, that is the message that will show in that Text box on
the form.

Naming Controls
When you first create an object (a form or control) Visual Basic
sets its Name property to a default value. For example, all
command buttons have their Name property initially set to
Commandn, where n is 1, 2, 3, and so on. Visual Basic names
the first command button drawn on a form Command1, the
second Command2, and the third Command3, etc.

You may choose to keep the default name, as we do in many
of our examples; however, when you have several controls of
the same type, it makes sense to change their Name properties
to something more descriptive. Because it may be difficult to
distinguish the Command1 button on Form1 from the
Command1 button on Form2, a naming convention can
obviously help. This is especially true with complex projects,
where an application may consist of several form, standard,
and class modules.

You can use a prefix to describe the class, followed by a
descriptive name for the control. Using this naming convention
makes the code more self -descriptive and alphabetically
groups similar objects in the Object list box of the Code Editor
window. So they are much easier to find.

For example, you might name a Check Box control like this:

chkReadOnly

We have included recommended naming conventions in

Appendix B. These are shown in more detail in the MSDN
section on 'Visual Basic Coding Conventions'.

48

4

Starting to Program

Entering Program Code

With what was discussed previously in mind, activate Visual
Basic and make sure the Auto Syntax Check option is

selected in the Editor section of the Options box opened with
the Tools, Optiors command. This ensures that every
entered line of code is checked for errors, with minor errors
being corrected automatically. We will low create a program to
calculate the ave-age of three numbers, in o -der to
demonstrate a few points.

Unlike QuickBasic, you can't just type code intc the program
and show the printed results straight on the screen when you
run the code. The Print command does not print to the screen,
but will print (after a fashion) to the background of a window.
However, if there are any controls on the window, in the print
area, they will block out the print output. A picture box receives
print output better, bu: for the moment we will stick to using a
plain window to demonstrate our code results.

Using the File, Open Project command, open the program
EXAMPLE1, which should have been saved from Chapter 3. If
not, take a few mirutes and do the very basic example now.
We will adapt Form1 as a work area for developing some
programs to help come to terms with the basics of the
programming language.

49

4 Starting to Program

Using the Code Editor

Double-click on the Print command button which should open
the Code Editor window with the Command1_Click procedure
showing. Delete the middle line of code, by selecting it and
pressing the key, and type in the code shown in Fig. 4.1.

PI Po oiecll Example2 (Cod,.:
it

MIRE!
Canamndi

PrILIL___J

ftivette .`...'ulo Comummull_Click() --

' Declare variables.
Dim Numberi, Number2, Number3, Sum, Average

Numberl - Val(InputBox(.Enter first number"))
Number2 Val(InputBox(.Enter second number"))
Number3 - Val(InputBox(.Enter third number"))

Print "You entered: " 4 Numberl C ", . 4 Number2; . and e 4 Number

Sum - Numberl + Number2 + Number3

Average - Sum / 3

Print "Average value is ": Average
Print __

Fig 4 1 The Code for Example2

This is presented to give you an idea of some Visual Basic
source code. The statements in it will be discussed in more
detail in the following pages, so there is no need to worry! But
you will get some experience of the editor.

When you have entered a row of code, press the <Enter>
key to start a new one. Note how the editor changes the
entered code. It places spaces in the line, capitalises keywords,
checks the line for syntax errors and changes `he colour of
some of the code. By default, Keywords are coloured blue and
Comment text is coloured green in the Code Editor window.
These colours make reading the code much easier.

If you attempt to leave a code line which contains an error, a
message box, maybe similar to the one shown in Fig. 4.2, will
open. Pressing the <Esc> key, or clicking the OK button, will
remove the box. You can then correct the code straight away,
or in the future. These messages can be a nuisance if you use

50

Starting to Program 4

the Cut and Paste facilities of the Edit menu. If so, ycu could
turn off the Auto Syntax Check option described earlier, but
we wouldn't recommend this.

Mimtoanit Vend Banc

Cntpb arot

E apeceed Ire mete a label of statement n end di StdbVIWi

Fig. 4.2 Compile Error Message Box

Automatic Code Completion
The Code Editor alsc makes writing code much easier with
some special features that can help by completing your code
statements, properties, and arguments for you. As you enter
code, the editor disp ays lists of appropriate choices, statement
or function prototypes or values, depending on what you are
doing.

When you enter the name of a control in your code, the Auto
List Members feature presents a drop -down list of properties
available for that control (see Fig. 4.6). If you type the first few
letters of the property lame it will be selected from the list and
then just pressing the <Tab> (or <Enter>) key will complete its
entry for you. This option is also helpf.J1 when yoJ arei't sure
which properties are available for a given control.

Auto Quick Info displays the syntax for statemerts and
functions, as shown in Fig. 4.3. When you enter the name of a
valid Visual Basic s:a:ement or function the syntax is shown
immediately below the current line, with the first argument in
bold. After you enter the first argument value, the second
argument appears in bald, etc.

!1,gEico.

MsgBax(PrOMPf, [Barony As VbMsgBoxStyle = rbOKOnlyl, (Content) As vbmsgeoxResun

Fig. 4.3 An Example of the Auto Quick Info Display

51

4 Starting to Program

If you prefer, you can switch both these features off (and on
again) in the Editor tab page of the Options dialogue box,
opened with the Tools, Options menu command. You can
then access the Auto List Members feature with the <Ctrl+J>
key combination, and the Auto Quick Info feature with the
<Ctrl+l> key combination.

Other Keyboard Shortcuts
To help you move around and get the best out of the program
you can also use the following shortcut keys to access
commands in the Code Editor window.

Shortcut Keys Description

F7 View Code window
F2 View Object Browser
Ctrl+F Find
Ctrl+H Replace
Shift+F4 Find Next
Shift+F3 Find Previous
Ctrl+Down Arrow Next procedure
Ctrl+Up Arrow Previous procedure
Shift+F2 View definition
Ctrl+Page Down Shift one screen down
Ctrl+Page Up Shift one screen up
Ctrl+Shift+F2 Go to last position
Ctrl+Home Beginning of module
Ctrl+End End of module
Ctrl+Right Arrow Move one word to right
Ctrl+Left Arrow Move one word to let
End Move to end of line
Home Move to beginning of line
Ctrl+Z Undo
Ctrl+Y Delete current line
Ctrl+Delete Delete to end of worc
Tab Indent
Shift+Tab Reduce indent
Ctrl+Shift+F9 Clear all breakpoints
Shift+F1 0 View shortcut menu.

52

Starting to Program 4

Now back to our example. Before running your code, return to
the design form, se ect the Print command button, press the
<Ctrl+C> Copy keys, followed by the Paste keys, <Ctrl+V>. You
could also use the Edit menu commands, but using the menu
is nowhere near as fast. Answer No to the question about
creating a control array, (we don't want to know about such
things at this stage!) and drag the two buttons until the rew one
is placed below the other. Now change its Caption property to
'Quit'. At this stage, that should be no problem, otherwise read
through the last two chapters again!

Pi Poolecll F ample2 (Code) Firim
'Command?

It is always a good idea to
LI give the user of a program

Private Sub Cournancl2_Click () an easy way to leave it.

Open the Code window
End 'Leave the program

for the Quit button and
place the very lengthy
code statement, shown in
Fig. 4.4, in the Click

Fig. 4.4 The Quit Button Code procedure. The End key-
word stops any more

code being looked at by Visual Basic and hence ends the
program.

To test the program out, click the Run toolbar icon and your
new window, with its two buttons, should open. Clicking the
Quit button, should place you straight back to design mode. If
not, check that the one word of code was entered properly!

End Sub

Els Int nadoot

Ca_2211

{5798

Fig. 4.5 Example 2 Output to Screen

53

4 Starting to Program

Clicking the Print button, should open an Input Box, as shown
on the left in Fig. 4.5, in which you enter data manually, in our
case a number. Typing in a number and clicking the OK button
will save the number as variable 'Numbert and open the Box
again for 'Number2'.

When all three numbers are entered, the first Print command
is actioned, the Sum and Average variables are calculated, and
the final result is printed on the form, followed by a blank line
(as shown on the right in Fig. 4.5).

All of which took many times longer to read, than to actually
do!

Program Comments

Our procedure code consists of statements and comments.
Program Comments follow an apostrophe character (`), which
can be placed anywhere on a line. Any text that follows this has
no effect on the running of a program. This allows the insertion
of remarks in the code to help the user remember the function
of program sections. They also help the programmer in the
future, we can assure you!

Variables and Constants

Variables
A variable is a quantity, or a string of text, that is 'eferred to by
name, such as Numberl, Number2, Number3, Sum and
Average in the previous program. Variables can take on many
values during program execution, but you must make sure that
they are given an initial value, as Visual Basic automatically
zeros numerical variables, and 'empties' text ones, when a
program starts.

54

Starting to Program 4

Constants
A constant is a quantity that either appears as a number (3 in
the seventh executable statement in the previous program) or
is referred to by name, but has only one value during p-ogram
execution, allocated to it by the user.

Expressions
An expression, when referred to in this -.ext, implies a ccnstant,
a variable or a combination of either or both, separated by
arithmetic operators.

Naming Convention
Variable and constart names are formed by combining upper
and lower case letters with numbers and the underscore
character (_). Other characters and spaces are not va id and
the first character must be a letter. The length of the name
must not exceed 255 characters. When naming your variables,
you should be careful not to use a name which is the same as a
Visual Basic reserved word, otherwise you may get an error
message.

To maintain corn pat bility with earlier versions of Basic you
can add the following suffix type -declaration characters (%, &, !,
#, @, and $) to variables to identify their type. A%, for example,
would always be treated as an Integer by Visual Basic.

The very powerful Variant data type is the default for Visual
Basic. This is the date type that is allocated to your variables if
they are not explicitly declared as some other type. The Variant
data type is a special data type that can contain numeric, string,
date, or currency data as well as the special values Empty and
Null.

There are a variety of other, more conventional, data types
for both variables and constants; the most commonly used
being the Integer and Single (single -precision floatinc-point)
types. An integer type can hold only integer (or whole number)
quantities and is distinguished from a floating-point type which
holds numbers containing fractional parts. The computer stores
these two types differently and tends to calculate much faster
when using integer -value variables or constants.

55

4 Starting to Program

Examples of integer and floating-point numbers are as follows:

-255 is an integer number
26.75 is a real, or floating point number
-.45E+16 is an exponential number. The E stands for

'times ten to the power of'.

Less commonly used types of numerical variables and
constants are Long (long integers) and Double (double -
precision floating point). In Visual Basic, the values of
single -precision variables are accurate to 6 significant figures,
while those of double -precision variables are accurate to 16.
String variables can be as long as 65,500 characters.

As we saw above, you do not need to set the type of a
variable, as by default, it will be a Variant and adapt to the data
involved. There are many times, however, when you will find it
necessary to force a specific data type in your coce.

The following table shows the data types supported by Visual
Basic, with their type -declaration suffix and the possible range
of each data type.

Type Suffix Range

Byte 0 to 255

Boolean True or False

Integer % -32,768 to 32,767

Long & -2,147,483,648 to 2,147,483,647

Single -3.402823E38 to -1.401298E-45 for -ve values:
1.401298E-45 to 3.402823E38 for +ve

Double # 1 79769313486232E308 to -4.94065645841247E-324
for -ve values, 4.94065645841247E-324 to
1 79769313486232E308 for +ve values.

Currency @ -922,337,203,685,477.5808 to
922,337,203,685,477.5807.

Decimal 28 decimal places with the smallest non -zero number
being +/-0.00000000000000000000000J0001.

Date January 1, 100 to December 31, 9999.

Object Any Visual Basic Object reference.

56

Starting to Program 4

String Fixed ength - 0 to approximately 65,400 7.,harac:ers.
Variable length - Up to 2 billion characters.

Variant None Any numeric value up to the range of a Double o. any
chaiacter text.

String Variables
A sequence of characters is referred to as a literal, and a literal
in quotation marks is called a string. For example, ABC123 is a
literal, and "ABC123" is a string.

Like numbers, strings can be assigned to variables. They
can be distinguished from numeric variables by a $ after the
name, for example A$. A string can be assigned to a string
variable with a statement such as

strAdd$ = "ABC123"

or with the more usual declaration and assignment

Dim strAdd As String
strAdd = "ABC123"

Variable Type Declarations
As with QuickBASIC, variable types can be declared (at module
level) with the use o' the Deftype statement rather thar using
type declaration characters. This method however is really kept
only to maintain compatibility. Using Dim type dec aration
statements is far eas e-.

The various Deftype declaration statements are as follows:

Deftype Type of Variable

DefBool letterl [-letter2] Boolean
DefByte letterl [-letter2] Byte
Deflnt letterl [-lete-2] Integer
DefLng letterl pletter2j Long
DefSng letterl [-letter2] Single
DefDbl letterl [-letter2] Double
DefCur letterl [-letter2] Currency
DefDate letterl [-letter2] Date
DefStr letterl pletter2j String
DefVar letterl [-le:ter2] Variant.

57

4 Starting to Program

Named variables cannot be defined with the Def statement;
what can be defined are all variables starting with the letter
specified within the Def statement (as letterl above). Ranges of
variables can be entered with a hyphen in between their
respective starting letters.

For example, to define all variables starting with letters within
the range from Ito N as integers, you could use

Deflnt I -N

If a floating-point operand is assigned to an integer operand,
the floating-point number is first rounded and then truncated to
an integer, i.e., assuming that both I and K have been declared
as integers (either by the statement Defint I -K, or with
Dim..As), the statements 1=3.5 and K=0.37 will cause Visual
Basic to assign the integer values of 4 and 0 to the constants I

and K, respectively. For this precise reason, mixing
floating-point constants or variables with integers in arithmetic
operations, can have unexpected results! Thus, mixed mode
arithmetic is best avoided.

The Dim Statement
In Visual Basic this is the standard way to declare variables and
allocate storage space to them. It was not strictly necessary in
our program here (EXAMPLE2), but was used because it is
considered good programming practice to declare and
dimension any variables you use.

Dim on its own, as used in EXAMPLE2, simply declares what
variables are used. They will be treated by the program as the
Variant type.

To implicitly declare a variable's type the format is:

Dim Variable Name As Type

where Type is one of those in the earlier list. Thus the
statement

Dim intName As Integer

declares the variable 'intName' and ensures that it will always
be considered as an integer.

58

Starting to Program 4

It is usual to place Dim statements before any other code.
When used in the Declarations section of a form or module, the
variables declared with Dim are available to all procedures
within the form or module. When usec at the procedure level,
as in our example in Fig. 4.6, the variables are available only in
that procedure.

Private Sab Form_Click()
Dim a$, bi, cc, d', e#, fQ

Dim dblFred as dol

IP DragConstants

aP DragModeConstants
DragOverConstants
DravAAodeConstants
DraviSYyleConstants

DrrveListBox

Fig 4 E The Auto List Members Feature

Here we were in the process of entering a Dim declaration into
the Code Editor; as soon as we finished typing 'as', an Auto List
Members menu opened, as shown, for us to select the type of
variable we wanted. We carried on typirg 'do' until Double was
selected in the mer u and pressed <Tab> to complete the
declaration. The Editor then 'tidied up' the entry to the following:

Dim dblFred As Double

This example shows the two ways of declaring variable types.
With type -declaration suffixes, as used in older versions of
BASIC, and a full declaration statemen: using a 'long' variable
name that is more descriptive. The first three letters of the
name being standard, depending on the variable type. (See
Appendix B for the conventional names Jsed).

Private Sub Torm_Click ()
Dim a$, 13%, cc, d', go, f@
Dim dblTred lu DoubltildleAs Double I

Fig 4 7 Identifying a Variable Type

If you want to know a variable's type when using the Code
Editor, highlight it, press the right mouse button and select
Quick Info as shown above.

59

4 Starting to Program

The Val Function
This returns the numeric value of a string of characters. In our
case, in EXAMPLE2, we did not prevent non numeric values
being entered at run time. The Val function stops reading the
string at the first character that it cannot recognise as part of a
number. Val also strips blanks, tabs, and line feeds from an
argument string.

The InputBox Function
This function displays a prompt in a dialogue box, waits for the
user to input text or choose a button, and returns the string
contents of the text box. The syntax for the function is

InputBox(prompt[,title] [,default])

InputBox$ can also be used. In this statement:

prompt is the required string expression displayed as
the message in the box. If prompt consists of
more than one line, you can separate the lines
using a carriage return character (Chr(13)), or
a linefeed character (Chr(1 0)), or both
between each line. Make sure you put an
ampersand character '&' before and after them
though.

title is the optional string expression displayed in
the title bar of the dialogue box. If you omit
the title, nothing is placed in the t tle bar.

default is the optional string expression displayed in
the text box as the default response if no other
input is provided. If you omit default, the text
box is displayed empty.

There are in fact three other optional arguments that can be
used at the end of the above expression, before the final
bracket ')':

[,xpos] [,ypos] [,helpfile, context]

With these you can exactly position the Input Box on the screen
and specify a help file that can be opened.

60

Starting to Program 4

If you click the OK button or press <Enter>, the InputBox
function returns whatever is in the text box. Clicking the Cancel
button returns a null string ("").

The InputBox statements provide one way of giving the
variables in our example a value. The values for the variables
Numberl , Number2 and Number3 are entered directly from the
keyboard. Once variables have values, they can be used in
assignment statements and/or expressions in the rest of the
program to perform desired calculations. A variable mt.st have
a value before it is used in an expression or in the right-hand
side of an assignment statement.

The Print Statements

The Print statements allow the printing of the result of our
calculation. This result is held in the variable named Average. A
string within full quotes following the Print command allows us
to explain what is printed out. The s:atement Print, with no
destination given, causes output to Pe sent to the current
window. Note the J se of the ampersand cha-acter to
concatenate strings and variables in one of the print
statements. The statement Print on its own on a line, causes
the program to print an empty line. This is useful for splitting up
print output.

We will delay discussion on formatting output until tie next
chapter. However, the penalty of this in our program, is that we
have to accept the default Visual Basic form of printing without
any control on the number of digits printed out. Sometimes this
can look ugly, as we are sure you have found out by now.

61

4 Starting to Program

Arithmetic Operators & Priority
We shall now examine how the various arithmetic operations in
this program are performed. The calculations in the program
are performed by the statements

Sum = Numberl + Number2 + Number3
Average = Sum/3

Combining them into one line, we could also write

Average = (Numberl + Number2 + Number3:/3

but Not

Average = Numberl + Number2 + Number3/3

It is important that the numerator of this expression is in

brackets. If it were not, Visual Basic wou d evaluate first
Number3/3 and then add to it Numbed +Number2, which would
give the wrong result. This is due to an inbuilt system of
priorities as shown in the table below:

The Arithmetic Operators

Symbol Example Priority Function

() (A+B)/N 1 Parenthesised operation
A AAN 2 Raise A to The Nth power

A'N 3 Multiplication

A/N 3 Division

A+N 4 Addition

A -N 4 Subtraction

Additional Operators
There are two other operators which are useful when
performing integer division. These are \ ald Mod. The \
operator gives the whole number part of the result of a division,
while the Mod operator gives the remainder. We suggest that
you test these in a window.

62

Starting to Program 4

For example, the program statement

Print 10\3

gives the result 3, while the program statement

Print 10 Mod 3

gives the result 1.

It must be stressed, however, that the numbers on which
integer division (\) and Mod operate (called the operands) are
first rounded up or down and then conve-ted to integers. Thus,
the statements

Print 10.1\3.1

Print 10.1 Mod 3.".

will give the same result as before, namely 3 and 1, while

Print 10.9\3.9
Print 10.9 Mod 3.9

will give the result of 2 and 3, respectively.

Visual Basic evaluates expressions, in the order of priority
indicated in the table on the previous page. Expressions in
parentheses (brackets) are evaluated first; nested groups in
brackets are evaluated beginning with tl-e innermost grouping
and working outwards.

Using brackets, the order of priority of execution, and
therefore the final value of an expression, can be changed. If a
line has an expression which contains several operatcrs of
equal priority, Visual Basic will evaluate them from left to right.

Let's examine how a complicated expression such as

Y=(A+B*X) /C-D*X

is evaluated. We assume that A, B, C, D and X have values.

First the bracketed portion of the expression wi I be
evaluated. Within these brackets the multiplication has a hgher
priority and therefore i: will be evaluated first. Then, A will be
added to it, resulting in a numerical value to which we will
assign the letter Z. Now the expression is reduced to the
following:

63

4 Starting to Program

Y=Z2/C-D*X3

The above has two exponential expressions, the leftmost of
which is evaluated first. Writing Z1 for the result of Z 2 and X1 for
the result of X 3, the expression is now reduced to

Y=Z,/C-D*X,

Again, since division and multiplication have the same priority,
the leftmost expression is evaluated first. Finally, the result of
the multiplication is taken away from the result of the division
and assigned to Y.

Of course, all this procedure is carried out automatically by
Visual Basic, but if you intend to use complicated mathematical
expressions you need to be familiar with it.

The Assignment Statement
What appear as equations above are, in fact, assignment
statements and not algebraic identities. As long as the values
of variables on the right of an equals sign are known, the
calculated result will be assigned to the variable on the left of
the equals sign.

As an example, consider the following lines:

K 0

K K + 1
Print K

where the second line would be meaningless had it been an
algebraic expression. In computing terms the statement means
'take the present value in K, add one to it and store the result in
K'. When this line is executed, the value of K (set in the first
line) is zero and adding one to it results in a new value of K
equal to one. On running this program, Visual Basic will print
the result

in the current window.

64

Starting to Program 4

Saving a Project

You can save a program by selecting the File, Save Project
option which will save the current projec: (.PRJ) and all 'orms

and modules in it. If you have any new
forms or modules, you'll be prompted
to save them, one at a time. Visual
Basic automatically adds the default
file -name extension .PRJ for prciects,
.FRM for forms, and .BAS for modules.

tow Protect CAlsai

1;4; Qpen Protect..0100

Add Project...

Remove Protect

5111, Protect

SeetPreject As... In our case, you should use the
gave Forint Irm arts Save Project As command, (as you
Save Form 1 frtn ea... probably used a previous file as a
Fig. 4 8 File Menu 'template' to build the example). Save

Options the project as EXAMPLE2.PRJ, so that
you can modify it in the future, BUT

make sure you save the form as EXAMP.E2.FRM. If you don't
rename your forms for each example, you wi I end up
overwriting the previous form every time.

To prevent this happening it is a good idea to use a separate
folder for each project but with small programs like ours this
can get somewhat cumbersome.

Saving Files
When you want to save the active form, or module, to disc you
use the File, Save Form..., or Save Form... As, commands in
the same way. You might want to do this so that a form or
module is available, under a new name, 'or a different project.
As shown in Fig. 4.8, the menu options actually change
depending on the feature that is active at the time.

Adding and Removing Projects
The Acid Project and Remove Project options, shown above,
let you combine several projects and all their component files
into one. This is where the Project Explorer window comes in
very handy, as they are siown separately in it.

65

4 Starting to Program

66

5

Input and Output Controls

A program can be made to assign values to variables by either
entering information on the keyboard, reading information
included with the code, or reading information from data files.
Output can be directed to a picture box, message bpx or
window; sent to the vinter: or written irro a file. Reading input
from a data file and writ ng output to a data file will be dea t with
in a separate section.

Text Box Input

Text boxes can be used on a form to enter data fro - the
keyboard. We have already used the InputBox statement
earlier on, but we will examine the other method now. This will
be illustrated by writing a program to calculate and display 15%
of any number input into a text box.

Eraglni PI x

Eriet a ntrzei

Fig. 5 1 Form Design for Example3

Open the previous program, EXAMP_E2.VBP and add a
Picture Box, Label and Text Box, as shown in Fig. 5.1. We will
use the Picture Box as a print area, the Text Box as an input
area (so that the user can get information to the code), the Print

67

5 Input and Output Controls

button to start the calculation and print process and the Quit
button to close the program.

When you are happy with the layout of the controls on the
form, change the Caption and (Name) properties of the form to
'Example3', change the Caption property of Labe11 to 'Enter a
number:' and delete the Text property in Text' s property list,
by selecting it and pressing the <Delete> key, to ensure that the
box is empty when the program starts. While still in this list, set
the Tabindex property to '0' (zero), to ensure that the focus is
also in this empty box at start up.

As the Print button will control what actior this program
carries out we must write suitable code in its 'Click' procedure.
Double-click the Print button, to open its Code window, delete
the previous code between the Sub and End Sub statements
and type in the following.

Private Sub Commandl_Click() ' Example3

Dim Percent As Integer ' Dimension variables

Dim Number As Single

Dim Value As Single

Percent = 15

Number - Val(Textl.Text)

Value - Number * Percent / 100

' Get number

Picturel.Print Percent; "t of"; Number;

Picturel.Print "="; Value

Textl.Text = ""

Textl.SetFocus

End Sub

' Empty the TextBox

' Place focus in TextBox

In the above, the keywords that are shown blue on the screen
are highlighted, and comment text (green on screen) is in
italics. You do not need to worry too much about spaces inside
the statements, as the editor will sort these out for you. Leaving
empty lines in the code does not affect the running of a
program, but can make the code easier to read.

Save the program and form as EXAMPLES, and then try
running it. Every time you enter a number and press the Print
button, a result line is printed in the Picture Box.

68

Input and Output Controls 5

xande 1.11;11:1

iSZatIOC - 15
15tolt5E99.688485

Era nabac 658

Fig. 5.2 The Window at Run Time

The code for Example3 declares three variables to be used in
the routine, one as Integer type and tt-e others as Single. If
necessary, look back at the last chapter to see the difference.
The 'Percent' variable is set as a constant with the satement

Percent = 15

This is one way of giving a value to a variable, but the value
cannot be changed, except by changing the statement in the
code.

The next line

Number = Val(Textl.Text)

is much more flexible. The value placed in the variable
'Number' depends on the text in Text Box 'Textt at the time
the Print button was pressed.

The Val function is there to ensure that only numeric data is
passed to the variable. If you try entering different combinations
of numbers and letters, you will see very quickly how Val works.
It accepts any numeric entry until a non -number character is
entered and ignores anything else. If you enter '556PP89007',
for example, only the number 556 will be oassed.

Changing a Property
The last two lines of ccde in EXAMPLE3.VBP change two of
the properties of the Text Box, named Textl , when that section
of the code is run.

69

5 Input and Output Controls

At any one time the Text property of a Text Box determines
what will be displayed in that box. In our prcgram, once a
number is entered, processed and printed, we do not want it to
still display in the input box as it would interfere with future
entries. The statement

Textl.Text = ""

resets the Text property to contain whatever is held between
the inverted commas. In other words, nothing. Note that ("") is,
in Visual Basic, a string not a zero. If, as in our case, you want
to use the box contents for numerical calculations, a 'Mixed
Variables' error will be developed, unless you coivert the string
to a number with the Val function.

Setting an Object's Focus
The user of our program can only enter numbers into Text1
when the Text Box 'has the focus'. The box is then active with
the insertion point placed in it. Earlier on we set the Tabindex
property to '0', to ensure that the focus is in the box at start up.
This can also be done in code, as with the line

Textl.SetFocus

which places the focus in the empty Text Box, ready to receive
new input from the keyboard.

More on Print Output

In the last program, the lines of code

Picturel.Print Percent; "% of"; Number;
Picturel.Print "="; Value

control what is printed by our program and where it is placed.
Picturel.Print will send print output to the Picture Box named
Picturel and start printing at the beginning of its :op line.

Print, on its own, will send output to the
current form itself, (the one holding the
code), as shown here. This also shows
that the print result flows behind any

E xample 3

70

Input and Output Controls 5

controls on the window; the Picture Box frame, in our example.
Printed output to a form, or Picture Box, does not scroll when it
reaches the end of ft -e print area. Any 'urther output is simply
lost.

If variables within a Print statement are separated by
semicolons, Visual Basic writes their value close together with
no intervening space. If you leave spaces, when entering code,
they will be replaced with semicolons when you move out of the
line. A semicolon at the end of a line, as above, will force the
next Print statement to continue on that I,ne.

If variables within a Print statement are separated by
commas the values of these variables are displayed on the
same line, left -justified within inbuilt pr nt zones. These print
zones have an 'average' width depending on the font and size
that is being used. As most fonts these days are proportional
(the widths of characters displayed vary with their size! such
output can be erratic, especially if you want neatly lined up
columns!

If a string is included within a Print statement, such as "% of"
in our example, on execution Visual Basic displays the actual
characters within the quotation marks exactly as they appear in
the statement. It is a way of providing captions or 1-eadirgs for
the output.

Formatting with Tabs
Presentation of tabular results can often be made easier to
understand by using custom Tabs wit') the Print statement
which allows output to be displayed in columns cf your own
design.

The program below illustrates this feature.

Private Sub Form_Click () ' Examp.:e4 - Using Print Tabs

Dim A, B, C

A = 15: B = 25: C = 10

Print Tab(5); "A"; Tab(10); "B"; Tab(15); "C"

Print Tab(4); A; Tab(9); B; Tab(14); C

End Sub

71

5 Input and Output Controls

To enter it as EXAMPLE4.VBP, type the code as a Click
procedure in the Form Code Window of a new file. When you
run the program, click the window that opens, to activate the
code. This simple method is useful for testing the code we
present, as well as the numerous examples given in the Help
section of Visual Basic. If you like, you can maximise the
window to 'simulate' the older type Basic program environment.

When this program is run, Visual Basic will respond by
writing the following to the window

A 3

15 25 10

Another useful formatting function is the Print Spc statement
which provides a number of spaces between the last printed
position and the next one. For example, the first Print line of the
previous program could be replaced by

Print Spc(4); "A"; Spc(4); "B"; Spc(4); "C"

which would give a similar output if you were using a non
proportional font, such as Courier New. To try this place the
following two lines before the above Print statements. As you
can see, it is quite easy to control the font style of the printed
output.

Forml.FontName = "Courier New"
Forml.FontSize = 10

The Print Tab or Print Spc statements cannot be used to
move to the left of a current printing position in a given line.
Only progressive moves to the right are obeyed.

Note: Although tabulation using the Tab and Spc statements
can work very well with whole numbers, using this method to
format tables with floating-point numbers doesn't always work
because of the number of significant digits.

Print Locations
The Visual Basic co-ordinate properties Current" and CurrentY
positions the 'print head' at any point on the object (e.g. Form
or Picture Box), and printing starts at that location, irrespective
of the print head's previous position.

72

Input and Output Controls 5

CurrentX determine the horizontal and CurrentY the vertical
co-ordinates for the next printing operation.

Co-ordinates are measured from the upper -left corner of a
Form or Picture Box cbject, with CurrentX being 0 at an object's
left edge and CurrentY 0 at its top edge. By cefault,
co-ordinates are expressed in twips, or the current scale
defined by the ScaleHeight, Scale Width, ScaleLeft, Scale Top,
and ScaleMode properties of the object being printed on.

The Cis (Clear Screen) command clears the currert print
object, (Form or Picture Box), and sends the print head to the
upper left-hand corner of the object, position (0,0). You could
place the command coce

Picturel.Cls

in the Code Window of a command Dutton. In which case
clicking the button would clear the Picture Box Picture1, ready
for new print output.

The next programs give examples of the co-ordinate system
usage, the first prints an asterisk character (*) towards the
middle of a window opened to full screen. Type the code as a
Click procedure in the Form Code window of a new file

Private Sub Form Click () ' Program EXAMPLES

Forml.FontName 'Courier New" Set font style

Forml.FontSize I 10

Forml.CurrentX 39 Position at window centre
Forml.CurrentY . 14

Forml.Print "" Print asterisk

End Sub

Then change the following properties for Form1

Property Setting

ScaleMode 4 - Character
WindowState 2 - Maximized

ScaleMode determines the dimension units used in window
settings and the above sets the dimensions as characters. With

73

5 Input and Output Controls

a maximised WindowState and the font style used, of 10 Point,
Courier New, a window on one of our screens was 80
characters wide and 29 characters high. With higher resolution
screen settings, these are obviously not the same.

The CurrentX and CurrentY properties in the following
program place an asterisk at each corner of an 80 character
wide x 29 high screen. Note that position (0,0) is the top left
corner position, not (1,1), as we would have expected. So
position 79 in used the X -direction, instead of position 80 when
placing the asterisks at the right edge of the screen.

Private Sub Form_Click () ' Program EXAMPLES

Forml.FontName . "Courier New" ' Set font

Forml.FontSize = 10

Forml.CurrentX . 0 ' Position top left

Forml.CurrentY = 0

Forml.Print "*"

Forml.CurrentX = 79 Position top right

Forml.CurrentY = 0

Forml.Print "*"

Forml.CurrentX = 0 Position bottom left

Forml.CurrentY = 28

Forml.Print "*"

Forml.CurrentX . 79 ' Position bottom right

Forml.CurrentY . 28

Forml.Print "*"

End Sub

Note: This program has repeated statements and would
obviously benefit from some of the techniques covered in the
next Chapter.

74

Input and Output Controls 5

Formatting Functions

Up to now we have let Visual Basic d splay numbers with no
regular structure, but jJst 'how they come'. This is sorretimes
satisfactory, but when not, the program has a very powerful
formatting facility. The Format function converts any number to
a Variant (and Format$ to a string) with a specific number,
date or time format according to the instructions contained in
tie 'format expression' shown below.

Format(variable, "format expression")

The easy way to format numbers is to J se the followinc set of
common format names that have been built into Visual Basic.

Format name Description

General Number Displays the number as it is, with no
thousand separators.

Currency Displays the number witn thousand
separators and :wo digits to the -ight of
the decimal point. Displays negative
numbers in parentheses.

Fixed Displays at least one digit tc the left and
two digits to the right of the decimal
separator.

Standard Displays numbers with thousand
separators and two digits to the right of
the decimal separator.

Percent Displays numbers, multiplied by 100,
with two digits to the right of the decimal
separator and followed by a percent
sign (%).

Scientific Jses standard scientific notation.
Yes/No Displays No if number is 0, otherwise

displays Yes.
True/False Displays False if number is 0, otherwise

displays True.
On/Off Displays Off if rumber is 0, otherwise

displays On.

75

5 Input and Output Controls

You simply place the Format name in the above syntax
expression, in inverted commas. You can also create your own
formats with standard characters that are explained later.

As usual the best way to demonstrate someth ng is to do it,
so enter the program below into a new form.

Private Sub Form_Click () ' Program EXAMPLE7

' Use of number formats

Dim = Number

Number - 586786.980067453 ' Set initial value

Print "General format", Format(Number, "General Number")

Print "Currency format", Format(Number, "Currency")

Print "Fixed format", Format(Number, "Fixed")

Print "Standard format", Format(Number, "Standard")

Print "Percent format", Format(Number, "Percent")

Print "Scientific format", Format(Number, 'Scientific")

Print "Yes/No format", Format(Number, 'Yes/No")

Print "True/False format", Format(Number, "True/False")

Print "On/Off format" Format(Number, "On/Off")

End Sub

The result of running this code is shown in Fng. 5.3 below,
which demonstrates the available formats quite well.

Exaaple7
General format
Cuirency format
Fixed format
Standard format
Percent format
Scientific format
yes/No format
!Tfue/Fatse format
an/Off format

586786.980067453
£586,786.98
586786.98
586,786.98
58678698 01%
5 87E45
Yes
True
On

Fig. 5.3 The Visual Basic Common Formats

76

Input and Output Controls 5

User Defined Formats
As well as the common pre -defined format types, you can build
your own using a se.-ies of 'special characters'. If you need to
get this detailed, we suggest you spend some time coming to
terms with Appendix C, which lists the available format
characters, and the MSDN Help section on the Format function,
as shown in Fig. 5.4.

MSDN tibial Visual Studs° 6 0

fie Ed'

Ca

gks tisk)

Format Function

See/ILIA Lama Spectfi.:

Returns a Valiant (String) containing an expression formatted according to
instructions contained in a format expression.

Syntax

F ormat (expressron [, format[, firstdayofweek[, firstweeFofyearj]])

The Format function syntax has these parts.

Part Description

expression Required. Any valid expression.

format Optional. A valid named or user -defined format expression

firstdayofweek Optional. A constant that specifies the first day of the week

firstweekofyear Optional. A constant that specifies the first week of the year

Fig 5.4 Visual Basic Help on the Format Functior

Clicking the Example link opens sample code on custom
formats. Try out this example yourself, by highlighting the code,
copying it to the clipboard, and then pasting it into the
Declarations section (Click event) of a new form. You will need
to add Print commands yourself though, otherwise rothing
happens! Then press F5 and click the form to run the code.

This is one of the very user friendly parts of the Visual Basic
package. The Help facility provides example code to
demonstrate most of Visual Basic's functions and features.

77

5 Input and Output Controls

Using Message Boxes

Another way of getting output to the screen is to use the
message box statement, MsgBox. This can be used
simplistically to display a short message on the screen. For
example, the following code

Private Sub Form Click()

MsgBox "A short message"

End Sub

Plotectl

A shod message

produces the message box, shown above, when the object
'holding' this code is clicked. Not very exciting ye:, but it is easy
to get message boxes to give much more useful output. Below
we have modified EXAMPLE2.VBP so that its output is
displayed in a message box (see Fig. 5.5).

Private Sub Commandl_Click() ' Example7a

' Declare variables.

Dim Numberl, Number2, Number3, Sum, Average, NL

Dim strMsg As String

NL = Chr(10) 'Define NL as newline character

' Get user input.

Numberl = Val(InputBox("Enter first number"))

Number2 = Val(InputBox("Enter second number"))

Number3 = Val(InputBox("Enter third number"))

' Build the message to be output

strMsg = "You entered: " & Numberl & ", " & Number2

strMsg = strMsg & " and " & Number3 & NL & NL

Sum = Numberl + Number2 + Number3

Average = Sum / 3

strMsg = strMsg & "Average value is "

strMsg = strMsg & Format(Average, "Fixed")

MsgBox strMsg 'Send final output to Message Box

End Sub

78

Input and Output Controls 5

Fig. 5 3 More Complex Message Box Output

This works by building up the final message to be output in the
string variable called strMsg. The varioJs parts of the message
are concatenated together using the ampersand '&' operator,
as follows

strMsg = strMsg & "next part of message.."

Jsing the CHR funct on in the statement

NL = CHR(10)

-eturns the ANSI control character (10), the linefeed character.
So whenever Chr(10i or, in our case NL, appears in the
message string a newl ne is forced.

To format the result of the calculated output the expreasion

Format(Average, 'Fixed",

is used. The Format function was covered several pages back,
and in this case it converts the final ni.mber to "Fixed" format,
with two decimal points.

You may have noticed by now that our EXAMPLE7a does
not, in fact, need an open window to run. The input is optained
from Input boxes and the output is shown on a Message box.
Thus the form and ccmmand buttons have become redundant.

To make this project run without the opening windcw, use
tie Project, Add Module command to add a new mocule, as
shown in Fig. 5.6. Type

Sub Main

and press the <Enter> key. Visual Basic opens a Sub
Procedure called Main. Copy the code from the previous
example inside the main template, as shown in Fig. 5.3, and
save the module as EXAMPLE7b.BAS.

79

5 Input and Output Controls

IxAmplr/b ModuklHod,1 11117r

(Gnewe)

Option Explicit
Sub Main() Exampi.-1

-.

. Declare variables.
Dim Number), Number2, Number3, Sum, Average, NL
Dice stritsg As String

NL Chr(10) 'Define NL as neeline character

Get user input.
Number) - Val(InputBox("Enter first number"))
Number2 .. Val(InputBox("Enter second number"))
Number3 Val(InputBox("Enter third number"))

Build the message to be output
strMsg ^Tou entered: " 4 Number) A ", " i Number2
strssg strMsg A ^ and . i Number3 A NL i NL

Sum Numberl + Number2 + Number3

Average - Sum / 3

strMsg .. strMsg A "Average value is .

strRag strMsg B Format(Average, ^Fixed.)

strMsg 'Send final output to Message Bo,

N

Fig. 5.6 A 'Self Starting' Module

When you run this project, the first Input box should open
straight away. With Visual Basic, a project usually starts from
Forml, (unless you specify another form), or from the Sub Main
procedure of a module. If you get this wrong, an error message
will open, with the following Help information.

SiPAIN I dolaiv Vs.u.11 Muth° h II

9. EssEewDeUee

<;Cl G. c 0 n
Stow Bair Busied Reked.

11741":

Must have startup form or Sub Main()

No former the current project is designated as the startup form, and the
current project doesn't have a Sub procedure named isle in any
module you must have one or the other to run a Visual Basic
application

Fig. 5.7 Startup Error Help Message

80

Input and Output Controls 5

To set the start-up cbject, open the Project Properties dialogue
box shown in Fig. 5.8, with the Project, Properties menu
command.

Fig 5.9 The Project Properties Box

As shown above, our example has Sub Main set as its Startup
Object. This dialogue box contains some pretty heavy features,
way beyond the sccpe of this book. The Help button is well
worth pressing. Note that it is here that you can give your
project a unique Project Name, which is used internally by
Windows. This is not the same as the file name, but appears
on the title bar, as shown in Fig. 5.8.

We suggest you have a good look at the Project Properties
dialogue box, some of its features will come into play when you
come to make an executable .EXE file from your project code.
Maybe not yet though, with the type of projects we are starting
with!

81

5 Input and Output Controls

MsgBox Syntax
Visual Basic gives you easy access to some ten different types
of message boxes, having different combinations of buttons
and icons on them.

The full syntax for the MsgBox statement is

MsgBox(prompt[, buttons] [, title] [, helpfile, context])

The parameters must be used in the correct sequence and
have the following meanings:

Parameter Description

prompt

buttons

title

helpfile

The required string expression to be
displayed as the message. The max-
imum length of prompt is approximately
1024 characters.

An optional numeric expression that
specifies what buttons to display and
the icon style to use. If omitted, the
default value for buttons is 0.

The optional string expression displayed
in the title bar of the message box.

The optional string expression that
identifies the context -sensitive Help file
to be used.

context The Help context number assigned to
the appropriate Help topic by the author.

If you want to omit any 'middle' parameters you need to show
this by including their comma placeholders. To display a default
message box, for example, with a specified title you should use
the following format

MsgBox "Prompt", "Title"

If you type the text strings straight into the statement you need
to enclose them in inverted commas, as above. To include
inverted commas themselves in the string you would have to
enter two together for each one.

82

Input and Output Cc ntrols 5

MsgBox Buttons
-he buttons argumert settings are:

Constant Value Buttons and/or Icons Displayed

vb0KOnly 0 OK button only.
vbOKCancel 1 OK and Cancel buttons
vbAbortRetrylgnore 2 Abort, Retry, and Ignore buttons.
vbYesNoCancel 3 Yes, No, and Cancel buttons.
vbYesNo 4 Yes and No buttons.
vbRetryCancel 5 Retry and Cancel buttons.
vbCritical 16 Critical Message icon.
vbQuestion 32 Warning Query icon.
vbExclamation 48 Warning Message icon.
vbInformation 64 Information Message icon.

When entering a 'BLttons' parameter you can use the actual
r umber values above, or preferably, the constants shown.
These constants are specified by Visual Basic for Applications
end can be used anywhere in your code in place of the actual

values. We strongly
MsgBox(F J vbMsgBoxRight recommend you use the

=ha Sub al rbAlsgBoxRtIReading
vbMsgBoxSetforeground constants as their meaning is
vb0VCancel obvious wherever they are

J.1 vb0KOnty used. which cannot be said
 vbRetryCancel for the numbers themselves!

They are also easily
accessed from the Code
Editor's Auto List Members

feature, shown here, That presents a drop -down list of available
properties as you type your MsgBox s:atement.

To help to visually show the differences between the different
message boxes we show all the possible combinations of
buttons and icons in the next three figures. Each one is named
with its button constant.

Fig. 5.9 Auto List Me-nbers

vbill(On11, v1,111(1:anuel vbAboilHeloylcmoie

YbAboriflohylcroe

Fig 5.10 Message Box Button Styles (0. 1 and 21

83

5 Input and Output Controls

Fig. 5.11 Message Box Button Styles (3, 4 and 5)

Fig. 5.12 Message Box Button Styles (16, 32, 48 aid 64)

MsgBox Returned Values
When a message box is opened in a running program, Visual
Basic waits for the user to click a button, and returns an Integer
indicating which of the seven available buttons the user clicked.

The values returned are:

Constant Value Button Pressed

vbOK 1 OK
vbCancel 2 Cancel
vbAbort 3 Abort
vbRetry 4 Retry
vblgnore 5 Ignore
vbYes 6 Yes
vbNo 7 No

These return values, or their constants, can be used in your
code to determine what action to take, depending on which
button was pressed.

84

6

Control of Program Flow

Control Structures

Visual Basic can force a section of code to be repea-.ed by
using the For...Next Icop, in the same way as other standard
Basics, or with the While...Wend loop, in the same way as
cther enhanced versions of Basic. In addition to t'iese, Visual
Basic upgrades the While...Wend loop with the Do loop which
tests for a condition either at the beginning or the end of the
loop.

In standard Basic, decisions are made by using the If._Then
statement, while in more advanced versions of Bas c the
If...Then...Else, On...Goto, and On...Gosub statements are
also used. Visual Basic advances these with the additior of the
block If...Then...Else...Endif and the Select Case statements.

The For...Next Loop

The For and Next statements are used to mark the beginning
and ending points of p-ogram loops. Any statements between
the For and its corresponding Next will be executed repeatedly
according to the conditions supplied by the 'control variable'
within the For statement. An example is given below, and the
code is shown in Fig. 5.1.

Private Sub Form Click 0 ' EXAMPLE9

For K = 1 To 5 Step 1
Print K

Next K

End Sub

85

6 Control of Program Flow

Fig. 6.1 A Simple Loop Counter

The above dimension statement was put in the (General)
(Declarations) section, so that it could be available for all the
project controls. The Code Editor window is shown in Full
Module View (see page 22), so all the code is visible. In this
view if you click inside a procedure's code, the Object and
Procedures boxes (at the top) change contents, to indicate the
event involved.

Within the For statement, the control variable k is assigned
the value 1 which is increased repeatedly by the number
following Step until it reaches 5. It thus has the values 1, 2, 3, 4
and 5. Since it cannot have these values simultaneously, a loop
is formed beginning with the For and ending with the Next. The
statements within the loop are executed five times, each time
with a new value for k. The Next statement increases the value
of k and causes repeated jumps to the For statement until k
exceeds its final assigned value of 5. When this happens,
control passes to whatever statement follows the Next
statement.

One of our earlier programs, EXAMPLE2.VBP, has been
modified below to use a For...Next loop.

Private Sub CommandlClick C ' ExAr7T107.,

Declare variables.

Dim intNumber, intCounter As Integer

Dim dblSum, dblAverage As Double

86

Control of Program Flow

intNumber = Val(InputBox("How many numbers?"))

For intCounter = 1 To intNumber

dblSum dblSum Val(InputBox("Enter a number'))

Next

dblAverage db1Sum / intNumber

Print "You entered " & intNumber & " numbers "

Print "Average is "; Format(dblAverage, "Standard')

Print

End Sub

tks it stands, the above code will work as long as numerical
nput is entered from the keyboard. W len the program is run,
:he variable intNumber is assigned a value from an InputBox,
which is the total number of entries to be made. A For...Next
oop is set up which loops the number of times specifiei in the
ntNumber variable. vVithin the loop, each number is read and
accumulated into the variable dblSum. Once the oop is
completed, variable dblSum holds the summation of all the
numbers. The Print statements procuce the output to the
window. Note the Format statement which forces the result
variable dblAverage to output to 2 decimal places.

Use of Step
In the last example, as the Step modifier was equal to +1 it was
omitted. If the step va.ue desired is nct equal to +1, the Step
modifier must be included, as in the next small program.

UK))

Private Sub Pore:lbek() EXARILE11
CONVERTING INCHES TO CINTINETVU

D1a dblInebee, cli.Or Le Double

Print 'Inches., "Ca"

or dblInches . 5 To 20 Step 5
dblOn . 2.54 dblIncbes
Print ; orra:)dblIncbea, 'Standard.); leib(14),
Print Formet(eblZn, "Standard')

Ntrt

Fig 6 2 Code for Examp ell

1

87

6 Control of Program Flow

This will convert 5, 10, 15 and 20 inches intc centimetres, in
other words, in steps of 5. The output should be as follows:

Inches Can

5.00 12.70
10.00 25.40
15.00 38.10

20.00 50.80

A negative Step modifier is also legal in V sual Basic. For
example, the code

FOR TO STEP
PRINT

NEXT

will print the values 5, 4, 3, 2 and 1.

For positive step values, the loop is executed as long as the
control variable is less than or equal to its final value. For
negative step values the loop continues as lcng as the control
variable is greater than or equal to its final value.

Nested For...Next Loops
For...Next statements can be nested to allow the programming
of loops within loops as shown in the example below:

Private Sub Form_Db1Click () EXMPLE.2

' Nested FOR -NEXT loops

Dim K, L As Integer

For K = 1 To 9

For L = K To 9

Print ; Format(L, "#");

Next L

Print

Next K

End Sub

When this program is run, two loops are set u a as follows:

88

Control of Program Flow 6

For K

For L

Next L
Next K

4

4 Outer loop

Nested cop

The outer loop is in tialised with K=1 and, immedia-Rly, the
inner, nested loop is executed 9 t mes. Then the control
variable K is incremented by 1, so that now K=2 and the nested
loop is executed 8 t mes. This is repeated until K is egJal to 9,
when the nested loop is executed only once.

The output of this p-ogram is as follows:

123456789
23456789
3456789
456789
56789
6789
789
89
9

The semicolon after the variable L in the Print statemert allows
output to be printed close together on the same line. However,
each line of print mus-. be terminated with a line feed (t -at is, it

must send the computer display to the next line). This is
provided here by the empty Print statement. Without it, all the
numbers now appeariig on different lines would be printed on
the same line.

It is sometimes considered bad programming practice to exit
a For...Next loop wiich has not been completed. The results
may be unpredictable if you do. However, if such ar exit is
needed, then make sure you use the Exit For common.: (more
about this later).

89

6 Control of Program Flow

The Do Loop

The Do loop provides a method of looping through a block of
statements and has several variations: it can either check the
condition after or before executing the block of statements.

The Do...Loop Until Configuration
In this configuration the Do marks the beginning of the loop,

while the Loop Until marks the end. Any statements between
the Do and its corresponding Loop Until will be executed
repeatedly until the trailer of the Loop Until statement is true.

To illustrate using this loop configuration, enter the program
below:

Private Sub Form DblClick () ' EXAMPLE:

Dim dblValue, dblPercent, dblNum As Double

dblNum s Val(InputBox("Enter number (-1 to END) "))

Do

dblPercent = Val(InputBox("Enter "))

dblValue dblNum dblPercent / 100

Print Format(dblPercent, "###.0') & " % of ";

Print ; Format(dblNum, "#,###.00') & " = ";

Print ; Format(dblValue, "###.00')

Print

dblNum - Val(InputBox("Enter number (-1 to END) "))

Loop Until dblNum <

End Sub

All statements between the Do and Loop Until lines are
repeated until the trailer of Until is true (that is, until you type a
negative value in response to the prompt "Enter number..").

90

Control of Program Flow 6

Note that

In this case, the condition is checked after the
statements in .he block have been executed 3t least
once. Therefore typing - 1 the first time round will not
end the program.

These programs make use of the 'user defined' formats
mentioned in the previous chapter and Appendix C.

The Do Until...Loop Configuration
n this configuration the loop repeats the block of statements as
long as a certain condition is true. For example, the above
program can be rewritten as:

Private Sub Form DblClick 0 EXAMPLEI4

Dim dblValue, dblPercent, dblNum As Double

dblNum . Val(InputBox("Enter number (-1 to END) "))

Do Until dblNum < 0

dblPercent . Val(InputBox("Enter "))

dblValue dblNum dblPercent / 100

Print Format(dblPercent, "00.0") & " % of ";

Print Form&t(dblNum, 4,00.00") & " ";

Print Format(dblValue, ")I#0.00")

Print

dL1N= = Val:InputBox("Enter number (-1 to END) "))

Loop

End Sub

Here, typing -1 the first time round, ends the program.

The Do...Loop While Configuration
Ii this loop configuration, the While statement can be used in
place of the Until statement, provided the relational test has
been replaced by its cpposite. For example the EXAMPLE13
program will have to be changed to that shown next, to produce
tie same logical behav our.

91

6 Control of Program Flow

Note that the relational test has been changed from less than
zero (<0) to greater or equal to zero (>=0). These and other
relational operators will be discussed shortly.

Private Sub Form DblClick EXAMPLE15

Dim dblValue, dblPercent, dblNum As Double

dblNum = Val(InputBox("Enter number (-1 to END) "))

Do

dblPercent Val(InputBox("Enter % "))

dblValue = dblNum * dblPercent / 100

Print ; Format(dblPercent, "##0.0") & " % of ";

Print ; Format(dblNum, "#,##0.00") & " =

Print ; Format(dblValue, "##0.00")

Print

dblNum = val(InputBox("Enter number (-1 to END) "))

Loop While db:N1:::-. >.

End Sub

The Do While...Loop Configuration
Similarly, the EXAMPLE14 program will have to be changed to

Private Sub Form DblClick () EXAMPLE16

Dim dblValue, dblPercent, dblNum As Double

dblNum Val(InputBox("Enter number (-1 to END) "))

Do While dblNum >. 0

dblPercent Val(InputBox("Enter % "))

dblValue = dblNum * dblPercent / 100

Print ; Format(dblPercent, "##0.0") A " % of ";

Print ; Format(dblNum, "#,##0.00") & " =

Print ; Format(dblValue, "##0.00")

Print

dblNum = val(InputBox("Enter number (-1 to END) "))

Loop

End Sub

92

Control of Program Flow 6

to produce the same logical behaviour as the program from
which it was derived.

The For Each...Next Loop

A For Each...Next loop is similar to a For...Next loop, but it
repeats a group of statements for each element in a collection
of objects or in an array, instead of repeating the statements a
specified number of times. This is especially helpful if you don't
know how many elements are in a collection.

Here is the syntax fcr the For Each...Next loop:

For Each element In group
statements

Next element

This statement type is actually a little advanced for our present
text. The following example is given on the MSDN Help page,
in which a Sub procedure opens a database file Biblio.ndb and
adds the name of each table to a list box.

Sub ListTableDefs() ' EXAMFLE17

Dim objDb Ai; Database

Dim MyTableDef As TableDef

Set objDb CpenDatabase("c:\vb\biblio.mdb",

True, False)

For Each MyTableDef In objDb.TableDefs()

Listl.AddItem MyTableDef.Name

Next MyTableDef

End Sub

The Line -Continuation Character
Note the ' line -continuation character sequence (a space
'ollowed by an underscore), used at the end of the Set line in
:he above code. In the Visual Basic code editor you can break a
ong statement into multiple lines in the Code window using this
ine-continuation character.

93

6 Control of Program Flow

The While...Wend Loop

The While...Wend loop is another possible configuration,
available in enhanced versions of BASIC, so included in Visual
Basic for compatibility. It is of the general form:

While <relational
{ execute this

{
block of

{
statements

Wend

test is true>

This loop configuration produces the same logi.:;a1 behaviour as
that of the Do While...Loop. In order to illustrate she point, the
EXAMPLE16 program is rewritten below with appropriate
changes included.

We strongly suggest that you make the suggested changes
to these programs and verify for yourself that they work as they
should.

Private Sub Form DblClick () EXAMPLEIS

Dim dblValue, dblPercent, dblNum As Double

dblNum = Val(InputBox("Enter number (-1 to END) "))

While dblNum >.= 0

dblPercent Val(InputBox("Enter % "1)

dblValue dblNum dblPercent / 100

Print ; Format(dblPercent, "##0.0") a " % of ";

Print ; Format(dblNum, "#,##0.00") 4 " = ";

Print ; Format(dblValue, "##0.00")

Print

dblNum = Val(InputBox("Enter number (-1 to END) "))

Wend

End Sub

94

Control of Program Flow 6

The If Statement

The IF statement allows conditional program branching. To
illustrate the point, edit the EXAMPLE13 program to:

Private Sub FormDb1Click () EXAMPLEI9

Dim dblValue, dblPercent, dblNum As Double

Do

dblNum Val(InputBox("Enter number (-1 to END) "))

If dblNum <0 Then End

dblPercent Val(InputBox("Enter "))

dblValue dblNum dblPercent / 100

Print ; FormatidblPercent, "##0.0") 4 " % of ";

Print ; FormatidblNum, "#,##0.00") Q " =

Print ; FormatldblValue, "##0.0C")

Print

dblNum Val(TnputBox("Enter number (-1 to END) "))

Loop Until dblNum < 0

End Sub

Wt -en this program is run, you can stop execution by simply
entering -1 in response to the "Enter number" prompt. When
the If statement is encountered, the value of variable dblNum is
compared with the constant appearing after the relational
operator (<). If the test condition is met, the trailer of the If
statement is executed Or this case End). If, however, the test
cordition is not met, the rext statement after the If statement is
executed (the dblPercent input statement).

No -m: The inclusion of the If...Then statement in the form
adopted above, has made the trailer of the Loop Until
statement (dblNum < 0) redundant; it merely acts as a device to
force looping. In such cases we could use any variable as
trai er. We could, for example, use

Loop Until False

This will cause repeated looping, provided the variable used as
trailer is set to zero. If it las any other value, looping will halt.

95

6 Control of Program Flow

Relational Operators within If Statements
The table below shows the relational operators allowed within
an If statement.

Relational Operators

Symbol Example Meaning
= A=B A equal to B
< A < B A less than B
<= A <= B A less than or equal to B
> A > B A greater than B
>= A >= B A greater than or equal to B
<> A <> B i A not equal to B

The power of the If statement is increased cor siderably by the
combination of several relational expressions with the logical
operators

AND OR XOR NOT EQV and IMP

We can write the statement

If X> 3 And M= 5 Then

which states that only if both relational tests are met will the
trailer of the If statement be executed.

Another example is

If X> 3 Or M= 5 Then

which states that when either or both relational test(s) are true,
then the trailer of the If statement will be executed, while the
statement

If X > 3 Xor M = 5 Then

states that when either relational test is true, but not both, then
the trailer of the If statement will be executed. Finally, the
statement

If Not (X < 12) Then

has the same effect as 'If X>=12 Then' in which the relational
test is the negation of that in the above.

96

Cortrol of Program Flow 6

The If...Then...Else Statement
In many cases we have :o perform an IF statement twice over
to detect which of two similar conditions is true. This is
illustrated below.

Private Sub Form_Db1Click () EXAMPLE20

' The two IF statements

Dim dblNum As Double

dblNum . Val(InputEox("Enter number between 1 - 99 "))

If dblNum < 10 Then

Print "One digit number"

End If

If dblNum > 9 Than

Print "Two digit number"

End If

End Sub

A more advanced version of the If statement allows both
actions to be inserted in its trailer. An example of th s is
incorporated in the mod fied program below:

Private Sub Form_Db1Click EXAMPLE21

IF..THEN..ELSE statements

Dim dblNum As Double

dblNum . Val(InputBox("Enter number between 1 99 "))

If dblNum < 10 Then

Print "One digit number"

Zlse

Print "Two digit number"

End If

End Sub

Save this program under the filename EXAMPLE21. VBP and
run it, supplying numbers between 1 and 99. Obviously, if you
type in numbers greater than 99 the program will not function
correctly in its present 'orm. But assuming that you have
obeyed the message and typed, say 50, the second Print

97

6 Control of Program Flow

statement in the trailer of the If statement (after the Else) will
be executed. If the number entered was less than 10, the first
Print statement after Then would be executed. The general
structure of this block If is:

If <relational test> Then
execute this

block of

{
statements
if true

Else

execute this
block of
statements
if false }

End If

Note: In the above structure, no statements can follow the
words Then and Else.

The ElseIf Statement
If your programming logic requires the use of the block If
statement to choose amongst several options by, say, using:

If <relational test 1> Then
execute this

block
if true

Else

If <relational test_2> Then
I execute this 1

block
if true

Else
execute this }

block
if false

End If

End If

then you can use the Elself statement to simplify the structure
of your program to the following:

98

Control of Program :low 6

If <relational test_1> Then
{ execute this }

{ block
}

{ if true }

E lseIf <relational test_2> Then
{ execute this

{ block
}

{
if true

}

E ls
{ execute this

{ block

{ if false

End If

The ElseIf statement makes the whole structure much easier
to understand.

99

6 Control of Program Flow

Simple Data Sorting

The program below allows us to enter two numbers, then it
tests to find out which is the larger of the two and prints them in
descending order. It also illustrates some of the points
mentioned in this chapter.

Private Sub Form_Db1Click () EXAMFLE22

' 2 number sort

Dim dblNuml, dblNum2 As Double

Do

dblNuml = Val(InputBox("Enter number [-1 to end]"))

dblNum2 = Val(InputBox("Enter second number"))

If dblNuml = -1 Then

MegBox "Operation finished"

End

ElseIf dblNuml >. dblNum2 Then

Print dblNuml, dblNum2

Else

Print dblNum2, dblNuml

End If

Loop Until False

End Sub

The program can be stopped by entering -1 for dblNuml.
Otherwise, dblNuml is compared with dblNum2 and the
appropriate Print statement is executed.

The sorting problem becomes more complicated, however, if
instead of two numbers we introduce a third one. For two
number sorting we had two possible Print statements (the
number of possible permutations being 1'2=2. For three
number sorting however, the total number of Print statements
becomes six (the total possible permutations being equal to
1*2*3=6. With numbers A, B and C, the combinations are
(A,B,C), (A,C,B), (C,A,B), (C,B,A), (B,C,A) and (B,A,C). Thus, if
we were to pursue the suggested logic in dealing with the
problem it would result in a very inefficient program.

100

Coltrol of Program Flow 6

Here is a way in which, with only two If statemen-.s and one
Print statement, the same solution to the three -number sorting
problem can be achieved. It uses a different logic and it is
explained here with the help of three imaginary playing cards,
shown in Fig. 6.3 below.

7

(a) (b)

of

Sorting three playing cards into descending order

Fig. 6 3 Sorting Three Cards

Assume that you are holding these cards in your hand and you
wish to arrange them it descending order. Look at the frort two
(a) and arrange them so that the highest value appears in front.
Ncw look at the back two (b) and arrange them so that the
highest of these two is now in front. Obviously, if the highest
card had been at the back, in the first instance, it would by now
have moved to the middle position. as shown in (c), so a repeat
of the whole procedure is necessary to ensure that the highest
card is at the front (d).

The program below achieves this.

Private Sub Form_Db1Click () EXAMPLE23

3 number descending sort

Dim A, B, C, dblTemp As Doubl

A = Val(InputBox("Enter first number"))

B = Val(InputBox("Enter second number"))

C = Val(InputBox("Enter third number"))

101

6 Control of Program Flow

Do While A < B Or B < C

If A < B Then

dblTemp = A

A = B

B = dblTemp

End If

If B < C Then

dblTemp = B

B = C

C = dblTemp

End If

Loop

Print A, B, C

End Sub

The following actions are indicated: If the value in A is less than
that in B, exchange them so that the value of A s now stored in
B and the value of B is now stored in A.

Note, however, that were we to put the value of B into A, we
should lose the number stored in A (by overwriting). We
therefore transfer the contents of A to the temporary variable
dblTemp, then transfer the contents of B to A and finally
transfer the contents of dblTemp to B.

The second rotation, necessary when B is less than C, is
achieved in a similar manner. The whole p-ocass is repeated
(with the help of the Do While...Loop statement), for as long as
both A is less than B, or B is less than C Type this program
into the computer under the filename EXAMPLE23.VBP.

The Select Case Statement

This is a statement which allows program action to be made
dependent on the value of a variable, or an expression. It is
Visual Basic's aid to writing readable programs and provides an
efficient alternative to multiple If statements The general form
of the statement is written as follows:

102

Control of Program Flow 6

Select Case Expression
Case A

execute these }

statement(s) }

Case B To C
f execute these 1

{ statement(s) }

Case E,X
{ execute these }

{ statement(s) }

Case Sloe
execute these }

{ statement(s) }

End Select

where Expression can evaluate to either a number or a string.
A particular Case statement within the block (for example,
CASE A), will be executed only if Expression evaluates to a
constant or a string rep'esented by A.

The following examples will help to illustrate using the Select
Case structure. The first and simpler ore, looks for input in the
form of a number representing the day of the week (Monday 1,
Tuesday 2, etc.). It then evaluates this intDayNum variable
(which is the Expression in the genera format) to a ccnstant,
as follows:

Private Sub Form DblClick () ' EXAMPLi--;

Dim intDayNum As Integer

intDayNum = Val(InputBox("Enter day number (1-7) "))

Select Case intDayNum

Case . To 5

Print "Working day"

Case

Print "Weekend'

Case Else

Print "Not a day'

End Select

End Sub

103

6 Control of Program Flow

The second example (based on one in the Help system), is a
bit more complicated. You should make sure you understand
how it works, as several keyboard entry error trapping methods
are also introduced.

Sub Form Click EXAMPLE25

Dim Msg, Userinput ' Declare variables

Msg = "Enter a letter, or a number between 0 and 9."

Userinput InputBox(Msg) ' Get user input

If Not IaNumeric(UserInput) Then ' Check input type

If Len(Userinput) <> 0 Then

Select Case Asc(UserInput) ' If a letter

Case 65 To 90 ' Must be uppercase.

Msg = "You entered the uppercase letter

Msg Msg & Chr(Asc(Userinput)) & "'."

Else

Case 97 To 122 ' Must be lowercase.

Msg a. "You entered the lower-case

Msg Msg & Chr(Asc(Userinput)) &

Case Else ' Must be something else.

Msg . "Not a letter or number."

End Select

End If

letter
.11.

Select Case CDbl(UserInput) ' If a number.

Case 1, 3, 5, 7, 9 It's odd.

Msg . Userinput & " is an odd number."

Case 0, 2, 4, 6, 8 ' It's even.

Msg = Userinput & " is an even number."

Case Else ' Out of range.

Msg = "You entered a number outside "

Msg Msg & "the requested range."

End Select

End If

MsgBox Msg ' Display message

End Sub

104

Control of Program Flow 6

In the first If statement, the expression Not IsNumeric only
accepts letters as input, not numbers. If the input is a number,
control passes to the Else statement.

In lice 7, Mc returns a numeric value that is the ANSI code
for the letter entered (see table in next chapter`,. The Case
statements then act depending on these numeric codes. The
first one accepts uppercase letters (which have ANSI ccdes in
tie range 65 to 90). The second one accepts lowercase letters
(which have ANSI codes in the range 97 to 122).

In line 10, the part of the expression Chr(Asc... changes the
ANSI code back to tt-e original character, so that it can be
displayed in a message box.

The function CDbl in the second Select Case expression,
explicitly converts the data type to Double precisior. The
following two Case statements select between odd and even
numbers. Anything tt-a-. reaches the final Case Else statement
is neither a letter, or a number between 1 and 9, so is flagged
as such.

105

6 Control of Program Flow

Data Type Conversion

The CDbI function in the last example explicitly converted an
expression from one data type to another. Visual Basic has 7
such functions to enable conversion to all the types of data.
The syntax is

CType(expression)

Where CType is one of the functions from :he list below and
expression can be any valid string, or numeric expression.

Function Converts to:

CVar Variant
CCur Currency
CDbl Double
CInt Integer
CLng Long
CSng Single
CStr String

You can use these data type conversion functions to ensure
that the result of a calculation is expressed as a particular data
type rather than the normal data type of the result.

Exiting Block Structures
If, for any reason, you require to exit a loop, a function or a
procedure prematurely (for example when a data search for a
match is successful), then use one of the follcwing:

Exit Do
Exit For
Exit Function
Exit Sub

the first two being used to exit loops, and the last two to exit
functions and procedures.

106

7

Strings and Arrays

String Variables

In Visual Basic, str ng variables can be distinguished from
numeric variables by ncluding the $ tag after their name, or
more usually, by declaring them as such in a Dimension
statement, such as:

Dim strA As String

By default, a string variable has a flexible length. It gets onger,
or shorter, as you assign different data to it. To fix its length you
can add the required size to the statement:

Dim strA As String * 25

In this case strA will always be allocated 25 characters of
storage space. If it does not need this length it will be 'padded'
with trailing spaces. f the data it holds is longer than 25
characters it will be truncated (and some will be lost).

If a variable is not declared in a program it takes the default
Variant type, which is a special data type that can contain
numeric, string, date, or currency data.

ANSI Character Codes

Visual Basic assigns a numeric code to each character on the
keyboard, according to the ANSI (American National Standards
Institute) code, as shown in the tables overleaf. Thus, each
letter of the alphabet is assigned a numeric value. The f rst 128
characters (0 - 127) are common with the ASCII set used in
most DOS applications.

107

7 Strings and Arrays

Table 1 of ANSI Conversion Codes

0 32 [space] 64 @ 96

1 33 ! 65 A 97 a

2 34 .. 66 B 98 b

3 35 # 67 C 99 c

4 36 $ 68 D 100 d

5 37 % 69 E 101 e

6 38 & 70 F 102 f

7 39 71 G 103 g

8
 . 40 (72 H 104 h

9

10

 *
**

41

42
)
;.

73
74

I

J

105
106

I

]

11 43 + 75 K 107 k

12 44 76 L 108 I

13 * * 45 77 M 109 m

14 46 78 N 110 n

15 47 / 79 0 111 o

16 48 0 80 P 112 p

17 49 1 81 Q 113 q

18 50 2 82 R 114 r

19 51 3 83 S 115 s

20 52 4 84 T 116 t

21 53 5 85 U 117 u

22 54 6 86 V 118 v

23 55 7 87 W 119 w

24 56 8 88 X 120 x

25 57 9 89 Y 121 y

26 58 90 Z 122 z

27 59 91 [123 {

28 60 < 92 \ 124 I

29 61 = 93] 125 }

30 62 > 94 A 126

31 63 95 127

Characters not supported by Microsoft Windows. Values 8, 9, 10, and 13, above, convert to
backspace, tab, linefeed, and carriage return
respectively and can be used in programs to create
these actions.

108

Strings and Arrays 7

Table 2 of ANSI Conversion Codes

128 160 [space] 192 A 224 a

129 161 i 193 A 225 a

130 162 it 194 A 226 a

131 163 £ 195 A 227 a

132 164 a 196 A 228 a

133 165 $ 197 A 229 a

134 166 '
1

198 1E 230 m
135 167 § 199 C 231 c

136 168 200 E 232 e

137 169 © 201 E 233 é

138 170 202 E 234 e

139 171 0 203 E 235 e

140 172 , 204 I 236
141 173 205 I 237 1

142 174 ® 206_ 1 238 T

143 175 207 1 239 I
144 176 ° 208 0 240 6

145 177 ± 209 N 241 n

146 178 2 210 0 242 6
147 179 3 211 6 243 6
148 180 212 0 244 6

149 181 p 213 0 245 6

150 182 If 214 0 246 6
151 183 215 x 247 +

152 184 216 0 248 0
153 185 1 217 U 249 6

154 186 ° 218 U 250 u

155 18' * 219 U 251 u

156 188 1/4 220 U 252
157 189 1/2 221 Y 253 y

158 190 3/4 222 ID 254 p

159 19' 223 R 255 y

Note: The codes within the range 128 to 255 abcve contain a
series of special characters that are not on the standard
keyboard. These include international and accented letters,
fractions and currency symbols.

109

7 Strings and Arrays

As with numbers, strings can be assigned tc variables in
several ways. For example, the code below assigns a string to
the variable named strA and then prints strA to the current
window.

strA = "ABC123"
Print strA

When the code is run, Visual Basic outputs

ABC123

By default, when strings appear in an If statement, they are
compared character by character from left to right on the basis
of the ANSI values until a difference is found. For example, if a
character in a position in StrA has a higher ANSI code than the
character in the same position in StrB, then StrA is greater than
StrB. If all the characters in the same positions ara identical but
one string has more characters than the other, the longer string
is the greater of the two. Thus, strings of letters can be placed
easily in alphabetical order and sorted lists of names, etc., are
possible.

In Visual Basic, however, the Option Compare statement
effects the evaluation of string comparisons.

Option Compare (Binary I Text)
This statement controls the way string comparisons are
performed. When the Binary option is specified comparisons
are performed in the default manner as described above. The
Text option causes the comparisons to be case insensitive,
and no distinction is made between upper and lower case
letters during comparisons (in other words, "A" = "a").

The Option Compare statement must appear before any
procedures in a code module and will only effect the
comparisons in the module in which it appears. If no Option
Compare statement is present in a module the default
comparison option of Binary is used.

110

Strings and Arrays 7

StrComp(strA, strB[, compare])
This function compares strA with strB, using the comparison
mode specified in (compare) and returns an integer value. If
compare is not provided, the current Option Compare mode is
used. This function allows you to override the current Option
Compare mode for ar individual string comparison.

String Functions

In the statements given so far, the string variables have been
considered in their entirety. We shall now introduce some
functions which give access to any character within a given
string and hence allow manipulation of that string.

Left and Left$ Functions
These both return a number of characters from the left of a
string argument. The function is used as follows:

Left [(StrA, n)

and will return the leftmost n characters of StrA. When used
without the $ suffix, Left returns a Variant; whereas Left$
returns a String. In most cases you are probably beler off
adding the $ and declaring all your strinc variables as such.

Right and Right$ Functions
These work in exactly the same way as the Left[$] furctions,
but they return the rightmost characters of the specified string.

Mid and Mid$ Functions
In the same way, these return a Variant or String from part of a
source string, as follows:

Mid ($) (StrA, Start [, Length])

Where Start and Length are numbers. In this case the string
with Length number of characters and beginninc at position
Start of StrA will be returned.

111

7 Strings and Arrays

If Length is omitted, the Mid[$] function returns all the
characters from the start position to the end of the string.

Other String Functions
There are a few more functions that help with string
manipulation, many of which will be demonstrated in later
examples.

The Len(StrA) function is used to find the number of
characters in StringA.

The InStr([Startj StrA, StrB) function returns the location of
StrB in StrA, optionally beginning the search Start characters
into the string. If Start is omitted the search w II begin at the first
character. This function is very useful for locating spaces
between words in a string.

Space$(Num) will create a string with Num spaces in it, and
String$(Num, "X") will create a string consisting of Num
characters of type X. If a number is used for X the ANSI code
character will be used. The first is useful, with no number to
place spaces between words being built in a string expression,
the second for building lines with graphic type characters.

Ucase$(StrA) and Lcase$(StrA) convert all the characters in
StrA to upper, or lower, case respectively. An example of their
use is to convert keyboard entry characters before testing for
the entry. Otherwise you would have to test far both upper and
lower case letters.

The best way to understand these functions is by entering
and playing with an example; so build the Form shown in Fig.
7.1.

This small program doesn't really serve any great purpose. It
expects you to enter your first and last names into the top text
box separated by a space. Clicking the Go button then places
the two parts of the name into their respective text boxes. The
Clear button resets the boxes and Quit exits the program.

112

Strings and A -rays 7

Fig. 7.1 E Kample26 Form in Run Mode

Tie form has 3 Text boxes, with a Label placed above each,
and 3 Command buttons, as shown. You may have to go back
tc the earlier chapters if you need help setting these up. Set the
fcllowing object Properties as shown below, but leave the
others with the default settings.

Object Property Setting

Command1 Caption Go
Default* True
Name CmdGo

Cornmand2 Caption Clear
Name CmdClear

Command3 Caption Quit
Cancel* True
Name CmdQuit

Labell Caption Enter first and last names

Label2 Caption First Name

Label3 Caption Last Name

Text1 TabIndex 0

Text Cleared

Text2 Text Cleared

Text3 Text Cleared

See end of example for more explanation.

113

7 Strings and Arrays

When you have finished the above Property changes, double

click the background of the form and enter the declaration

statement below into the (General) (Declarations) section.

I xemplel6 lunf xemple26 'Coder

CAmegell

RPM

Option Explicit
Dtm strInput L. String

Fig. 7.2 The General Declarations for Example26

The Option Explicit statement should be placed there

automatically, as long as you have followed our

recommendations on page 26. If not, why not go back and do it

now. The Dinistatenientallowsthevariabk3strInputto be used

from any of the form's commands.

Then double-click the Textl box on the form and enter the

following code, making sure it is entered into the Change

procedure code window. This will then be actioned whenever

the text entered into the box is changed at run time.

Private Sub Textl_Change

strInput = Textl.Text

End Sub

The main code to work the program is next entered in the code
window of the Go Command button.

Private Sub CmdGo Click

Dim LWord, Msg, Rword, SpacePos ' Declare variables.

SpacePos = InStr(1, strInput, " ") Find the space.

If SpacePos Then

LWord = Left(strInput, SpacePos - 1)

Rword = Right(strinput, Len(strInput) - SpacePos)

Text2.Text = Wase$(1..Word) ' First name

Text3.Text = Wase$(Rword) ' Last name

Klee

Msg . "You didn't enter two words."

MegBox Msg Display error message.

Textl.Text = "" ' Clear text box

114

Strings and Arrays 7

Textl.SetFocus ' Place insertion point in box

End If

End Sub

In the Click procedure code window of the Clear Command
button, enter the following code which clears the text boxes and
places the insertion point in the first, ready for input.

Private Sub CmdClear_Click ()

Textl.Text = ""

Textl.SetFocus

Text2.Text

Text3.Text

End Sub

Last of all, place the one word of cote in the Qjit Command
button code window as follows:

Private Sub CmdQuit_Click ()

End 'Close program

End Sub

The logic of the code 'behind' the Go button should be fairly
easy to follow. Four Iccal variables are first declared, which are
only used in this subroutine. The Instr function then looks for a
space (" ") in the ene-ed text held in the variable strinput (short
for User Input string).

If a space is found, the lines uncer the If statement are
actioned. The first and last names are cut out of the strinput
string and then conve-ted to upper case.

If no space character is found, the Else statements are
actioned. An error message is placed on the screen, the input
text box is cleared and the focus is placed back i -Ito it to
receive correct input.

Two of the Prcperties set in th s example need more
comment. The Quit Command button property Cancel was set
to True. This contrcls the action of the <Esc> key in the
program. With this setting, pressing the <Esc> key is the same

115

7 Strings and Arrays

as clicking this button. The Go Command button property
Default was also set to True. This controls the action of the
<Enter> key. Pressing this key then has the same effect as
clicking the Go button.

String Conversion Functions
There are four additional string functions in Visual Basic:

ASC () , CHR$ () , STR$ () and VAL (

Examples of these functions are given next.

ANSI Conversion
Using the ASC function in the statement

N = ASC ("ABCD")

will return the ANSI code for the first character of the string
enclosed in the brackets of the function. In this case, 65 will be
returned (see Table on ANSI Conversion Codes). The function
name ASC actually refers to ASCII code conversion as used in
previous DOS versions of Basic. But all the usual keyboard
codes are the same in both codes, so the name has been kept
in Visual Basic to maintain compatibility witl- code written for
earlier versions.

Character Conversion
Using the CHR$ function in the statement

C$ = CHAS (66)

will return the ANSI character that corresponds to the value of
the argument, in this case the letter B. The value of the
argument must lie between 0 and 255.

String Conversion
Using the STR$ function in the statement

S$ = STR$ (X)

116

Strings and Arrays 7

will convert the value of the argument into a string. X is a
numeric variable which might be the result of a calculation. In
this case, if X had the numerical value of 98.56, say, then S$
would be converted -.o the string "98.56'.

Value of String
If R$ represents a string given by

R$ = "3.123E12 netres"

then the statement

X = VAL(R$)

will return the value of the string up to the first non -numeric
character, in this case 3.123E+12. If the string begins with a
non -numeric character then the value G is returned.

String Concatenation
Visual Basic allows the concatenation, or joining together, of
strings. We shall illJstrate this facility by considering the
following program in which the computer asks you to enter your
surname first, followed by your first name. It then concatenates
the two (first name fist followed by surname with a space in
between) and prints the result which is held in string variable
strOutput.

Private Sub Form Click EXAMPLE27

Dim strSName, strFName, strName, strOutput As String

strSName = InputBox$("Enter SURNAME please")

strFName = InputBox$("Enter FIRST NAME please")

strName = UCase$(3trFName) + Space$(1) + UCaae$(strSName)

strOutput = "HELLO " 4 strName

Print strOutput

End Sub

As it stands, the program is rather trivial. However, using
concatenation together with some of the string functions
mentioned earlier, cal result in a somewhat more spectacular
result.

117

7 Strings and Arrays

To illustrate this, delete the Print statement of the above
program and replace it with the following lines to the program:

FontName = "Courier New" ' EXAMPLE28

FontSize . 10

Intlength . Len(strName)

If Intlength > 22 Then

strName WaseMeft$(strFName, 1) + " " + strSNrw,-)

Intlength Len(strName)

Had If

For I 1 To Intlength

Print Mid$(strName, I, 1);

If I 1 Then Print " "; strName;

If I = Intlength Then Print " "; strName;

Print Tab(Intlength + 4); Mid$(strName, I, 1)

Next I

Also add the following statement with the other declarations.

Dim intLength, I As Integer

Run the program and supply it with your full name (surname
first). What you would see in the form window, if your name
was JOHN BROWN, is shown below. This would not work
properly without the line of code setting the prnting font to
Courier New which is not proportional.

Example28 IMF M
.7 JOHN BROW J
O 0
H H

N N

O 0
V

 JOHN BROWN N

Fig. 7.3 Printout for Example28

118

Strings and Arrays 7

Note that the program has worked out the length of your full
name and allowed enough space between the two vertical
columns to write it horizontally on the first and last rows.

Now Run the program again, but this time type in a really
long name, say CHRISTOPHER VERYLONGFELLOW. Can
you work out from -.he program lines and the output on your
screen what has happened? Try it.

Arrays

Some people find difficulty understanding the concept of arrays
in programming. An array is a set of sequentially indexed
elements of the same type and name, with each element
having a unique index number to identify it. Charges made to
one element of an array do not affect the other elements.

An array can only store data of the same type. Of course, if
the array data type is Variant, then numerical, string and
date/time data can a I be stored in the same array.

String Arrays
A number of strings can be stored under a common name in a
string array. Let us assume that we have four names, e.g.,
SMITH, JONES, BROWN and WILSON that we want to store
n a string array. In Visual Basic, whenever an array is to be
used in a program, you must declare your intention tc do so.
There are several ways of doing this. One is to place a Dim
statement, like the ore on the next page, into the (General)
(Declarations) section of a form. This dimensions the array
Names() with the elements 1 to 4, and allows the array to be
used from any of the form's commands.

Dim Names(1 To 4) As String

Enter this line into The declarations section of a new project
form and then type the following code into the Click procedure:

119

7 Strings and Arrays

Private Sub Form_Click () EXAMPLE29

Use of a string array

Dim I As Integer

Names(1) "SMITH"

Names(2) = "JONES"

Names(3) = "BROWN"

Names(4) . "WILSON"

For I = 1 To 4

Print "Names (*; ")",

Next I

Print

For I = : To 4

Print Namesi: ,

Next I

Print

End Sub

Load array

When run, this program demonstrates how the 4 elements of
the array Names() can be manipulated by using the index
number of each element in your code. Any reference to an
array name within a program must be of the form

Names(I)

Another way of dimensioning this array with 4 elements is:

Dim Names(4) As String

However, the element numbers in this case would be 0 to 3, as
unless the range is implicitly declared it starts, by default, from
0. You can, if you want, force the lower 'bound' to 1 by placing
the line

Option Base 1

in the declarations section of your form.

A simple way to visualise a string array is as follows:

SMITH JONES BROWN WILSON

120

Strings and Arrays 7

The four names are stored in a common box which has four
compartments (or elements), each compartment coitaining
one name. Thus, Names(2) refers to the 2nd element of string
array Names(), and Names(4) to the 4th element.

Subscripted Numeric Variables

Array variables are often called subscripted variables and they
permit the representation of many quantities with one variable
name. A particular cuantity is indicated, as we saw above, by
writing a subscript it parentheses afte- the variable name. So
an array allows you to use a single variable name for a
complete list of related data. Items from the list are located by
their index (or subscript) number, which can be referred to as a
number, or an expression that results in a number. Ir Visual
Basic an array may have up to 60 dimensions, each one
represented by a different subscript.

The elements of a one-dimensional array can be represented
as follows:

A(0) A(1) A(2) A(3) A(4)

while those of a two-dimensional array as:

A(0,0) A(0,1) A(0,2) A(0, 3)

A(1,0) A(1,1) A(1,2) A(1,3)

A(2,0) A(2,1) A(2,2) A(2,3)

The first of the two subscripts refers to the row number, running
from 0 to the maximum number of declared rows, and the
second subscript to The column number, running from 0 to the
maximum number of declared columns.

A three-dimensional array can be thought of as stacked
two-dimensional arrays with the third subscript, running from 0
to the maximum height of the stack. More complex structures
follow the same procedures.

121

7 Strings and Arrays

As with string arrays, numerical arrays must be declared prior
to their use, either with a Dim statement placed in the

declarations section of a form or module, with a Global
statement placed in the declarations section of a module, or
with a Static statement placed in the procedure.

When declared with:

Global an array is available to any form or module
contained in a project.

Dim an array is available to any procedure on the
form or module on which it is placed.

Static an array is available only wi:hin the procedure
in which it is declared.

The form of the statement is shown below:

Dim X(15), Y(3,5), Z(3,5,4)
Global X(15), Y(3,5), Z(3,5,4)

Static X(15), Y(3,5), Z(3,5,4)

where array X() has been declared to be a one-dimensional
array with a maximum of 16 elements (don't forget the zero'th
element), array Y(,) has been declared as 3 two-dimensional
array of 4 rows and 6 columns, and array Z() as a

three-dimensional array of 4 rows and 6 cplumns stacked 5
deep. The number of arrays that can be declared
simultaneously is dependent only on the available memory in
your computer. Don't forget that multi -dimensional arrays can
very quickly eat into your available memory.

122

Strings and Arrays 7

Static and Dynamic Arrays

Visual Basic allows you to assign a pertion of memory for array
use in two different ways. These are:

Static arrays When the declaration is made with
subscripted variables, for example
DIM Year(198C TO 2000) or
DIM Aname(15)

Dynamic arrays When the declaration is made with
empty subscript brackets, for example
Dim Year() or Dim Aname()

Static array memory is always the same size for each r..rn of the
program and cannot be used for any other purpose.

Dynamic memory is allocated during run time and the space
may vary for each run of the program. Dynamic memory can be
freed up at any time for other use, with the statement

Erase Array name

This command alsc reinitialises the elements of fixed arrays as
well as freeing dynamic array storage space.

Before your program can refer to the dynamic array again, it
must re -declare the array variable's dimensions using a ReDim
statement. However, although dynamic arrays are memory
efficient, accessing values held in them may be slightly slower
that accessing values held in static arrays.

There are two main error messages which relate to the use
of arrays. These are:

Subscript out cf range

Overflow

The first error occurs if an attempt is made to use an array
element that is outside the declared dmension, or if an attempt
has been made to dimension the array with a negative number
of elements. The second error occurs if an attempt is made to
use an array for which there is no room in the computer's
memory.

123

7 Strings and Arrays

As an example of array usage we will build a small stocktaking
program. After you have studied it, enter the code as
EXMPLE30.VBP.

First declare two arrays in the declarations section of a new
project form as follows:

Dim Item(4) As String
Dim Stock(4, 2) As Double

Then enter the following code into the Click procedure of the
form. Note the use of the colon (:) to separate multiple
statements on a line. You could enter all the Prirt statements
together on one line if you prefer.

Private Sub Form click ' EXAMPLE30 - Stocktaking

Dim I As Integer, Xname As String

Item(1) . "INK ERASER" 'Load data into arrays

Stock(1, 1) 200: Stock(1, 2) .1

Item(2) "PENCIL ERASER"

Stock(2, 1) 320: Stock(2, 2) .15

Item(3) . "TYPING ERASER"

Stock(3, 1) 25: Stock(3, 2) .25

Item(4) "CORRECTION FLUID'

Stock(4, 1) . 150: Stock(4, 2) . .5

Do

Xname = InputBox$("Which item? 'END' to finish")

If UCase$(Xname) "END" Then End

For I = 1 To 4

If UCase$(Xname) = Left$(Item(I), 3) Then

Print Item(I); " ";

Print Stock(I, 1) i " in stock 0 ";

Print Format(Stock(I, 2), "Currency");

Print " each."

End If

Next

Loop Until False

End Sub

When run, the Input Box will only accept an entry whose first
three letters are the same as one of the items entered into the
Item() array.

124

Strings and Arrays 7

Data Entry

Enter Data for Each Stock Item

Teel

rem

es stock Ur cost

Duey alat I

Fig. 7.4 Entry Form for Example3l with Text Boxes Named

The last example included all the data for the arrays in the
code. This is not always convenient, so the next one has a
front-end data entry form and the user can enter any suitable
data at run time.

Form1, shown here in Fig. 7.4, has been given the Caption
property 'Data Entry'. t has 3 Text Boxes, 4 Command Buttons
and several Labels. Open a new prcject (EXAMPLE31.VBP)

with 2 forms anc a Code Module. This is
the first time we have used mo-e than
one form. Don't panic, simply click the
Add Form icon on the Toolbar. shown
open in Fig. 7.5, and select Form and
Module. The second form will be used
purely as a window to hold our print
output, and the module will be used for
global declarations of our arrays.

We will leave it to you to build the
Form1 entry form on your own. The code
for the various objects is shown below.

The declarations placed in the new
code module are:

adt,i

Eorrrt

7.9 MDIForrn

Module

class Motile

User Control

Property Page

DFITML. Page

Data Report

Wetly:lass

Scrcsoft UserConnection

'Mae Act.NeX Desapers,..

CD1+0

Fig. 7.5 Add Options

Option Bass 1

Global Item(10) As String

Global Stock(10, 2) As Double

125

7 Strings and Arrays

Set the TabIndex properties to 0, 1 and 2 for the text boxes
Text1, Text2 and Text3 respectively. Then add the code for the
4 command buttons, which have been renamed, as shown
below, to cmdEnter, cmdPrint, cmdQuery and cmdQuit.

Private Sub cmdEnter_Click() ' EXAMPLE31

' Improved stocktaking program

Static Counter As Integer

If Counter < 1 Then Counter = 1

Item(Counter) = Textl.Text

Stock(Counter, 1) = Val(Text2.Text)

Stock(Counter, 2) = Val(Text3.Text)

Counter = Counter + 1

Textl.Text

Text2.Text = ""

Text3.Text

Textl.SetFocus

End Sub

Private Sub cmdPrint_Click()

Dim I As Integer

Form2.Show

For I = 1 To 10

If Item(I) <> "" Then

Form2.Print Item(I), Stock(I, 1),

Form2.Print Format(Stock(I, 2), "Currency")

End If

Next I

End Sub

Private Sub cmdQuery_Click()

Dim I As Integer, Xname, Msg As String

Do

Form2.Show

Msg = "Which item? 'END' to finish"

Xname = InputBox$(Msg, "Data Query", 7000, 5000)

Xname = Left$(Xname, 3)

For I = 1 To 10

If UCase$(Xname) "END' Then Exit Do

If UCase$(Xname) = UCase$(Left$(Item(I), 3)) Then

126

Strings and Arrays 7

Form2.Print Item(I); ";
Form2.Print Stock(I, 1) & " in stock @ ";

Form2.Print Format(Stock(I, 2), "Currency");

Form2.Print " each."

End If

Next I

Loop Until False

Form2.Hide

Forml.Show

Textl.SetFocus

End Sub

Private Sub cmdQuit Click()

End

End Sub

You should, by now, be able to follow this code quite easily.
Remember that if you forget the correct syntax for a corr mand,
simply select it in the editing window and press F1. As it stands
the program will accept 10 sets of data, but would be easy to
modify.

The Static decla -ation allows the variable 'Counter' to
maintain its value; without this it would be re -set each time the
Sub was run.

The statement Form2.Show opens the window Form2 and
Form2Hide makes it nvisible to the user. The Prim statements
t-ave to be prefixed with 'Form2.' to force printing orto this
window (otherwise it will run behind the features on Form1.

The InputBox$() statement has a ti:le as well as X and Y
co-ordinates to force the box to the lower right portion of the
screen. Otherwise it opens over the Form2 printing window.
You must use all the positioning commas, as shown, to get
tiese to work. Good luck!

Control Arrays

An array can be very useful in Visual Basic with ccntrols. If, for
example, you need four command buttons which are related
and must be the same size, such as tt-e buttons on a toolbar.

127

7 Strings and Arrays

You can create one button then copy it and paste it onto a
frame. A message box will inform you that you already have
such a control and asks if you would you like to make an array.

If you click the Yes button, you can then paste as many
buttons as you like, and each will be designated Dy the name of
the first button followed by an index number in brackets, such
as cmdToolbar(1), cmdToolbar(2), etc. All arrays start at zero
so your original button will now be cmdToolbar(0). This method
uses less memory and keeps groups of controls (with a related
purpose) into one area.

As an array of command buttons will alsc have a common
click, or mouse move event, you must be careful how you write
the code behind them. The most common rr ett-od is to use a
Select Case statement (see page 102). The following is an
example of data control related command buttons in an array
named cmdData(Index), where Index is the number
designating which button we are addressing (beginning with
zero for the first button in the array).

cmdData_ click()
Select Case Index

Case 0 'first button in the array
Datal.recordset.addnew
Case 1 'second button in the array
Datal.recordset.delete
Datal.recordset.movenext
Case 2
Datal.recordset.update

End Select

The actual commands are not important here, but note how all
the database code can now be found in one place. You could
also have one error handler for all of the database related
buttons.

128

8

More on Controls

In Chapters 2 and 3, we briefly described the main controls
available in Visual Basic, but so far we have not actually used
some of them. We have concentrated more on the
fundamentals of the programming language behind the controls
themselves. Perhaps the easiest way to come to terms with the
other controls is tc study how the sample program
CONTROLS.VBP works. This should have been installed with
Visual Basic.

It was located in our set-up in he folder "C:\Program
Files\Microsoft Visual Studio\MSDN98\98VSa\1033\SAMPLES\
VB98\Controls" With your version the path may not be the
same, but by now you should be able to find it OK. You might
also want to look at an overview of the sample program in
MSDN Help, as shown in Fig. 8.1 below.

annel few/ft&

 t werrerre,.reriNi.k.=
Veer Sado fearer=

(1,11 Se= lirec Dairrentron

telles Dritmetaron
4

Ver

OMM es SIM Pegs

 =era =an Verrl Err 60
 were Sure erahVerl ear GO
 oneveuelleee
 Reran.

Li raw=
IV Lower Ed= and Prolaser drams

laced= scare
 ATMS.=

] ritee Sew=
11 ereire Sri=
rj Alb Sa=

.,1 ere Sarrie

14

1) bard Plea Serie

(late Seer.
 relate,

Coetrols (Controls.vbp)

e

IS, sample appecatem demonstrates the use of Visual Saw
controls such as the Ueda°, Cornrnendeutton, Image
and others. The sample rustrates the usage of many standard
properties

Background

The sample ts comensed of several /ones, each .nth a :ont
fset of controls on It Controls demonstrated nclude the
llowng Tend/Wt. licrelltser, UMW*, Pecturelleses

OsetlenButten, Cornasendllutten and label control "or
more informaton. see 'Creates; and Uses; Controls.' el tire
Programmes Goods.

Fee DescrIptlen

eutton.fne Fonm demonstrates; the usage J.
Commandeutton controls.

Button fro Binary data hie for Ise Button. Tin h

Fig. 8.1 MSDN Help on Visual Basic's Examples

129

8 More on Controls

The CONTROLS.VBP Sample

Load this project and set up your screen as shcwn in Fig. 8.2.
Here, we have opened the frmMain by selecting tin the Project
Explorer window and then clicking the View Object button.

1:11.11011 M.:11111141 Visual Nana idesKini

Err tot 11v. eal2 Pyre* Lutre0 Run %pry 01-f0reo Tank Ade los einem ,.,

- 4 lel IS '+ r

F.

B (C0147ROLS.VIIP)

Toms
 Irtriketcrk (button Ton)

errnCheck (ceddon)
tt. lernbnerges (enages.hen)

.11.1111111111
"TOPT1TPTo (aPTIorte Inn)

InnTiret (text Inn)
 SerneardWrep (rrordrerep Inn)

ernei sin

AlPheleeoc I I

313

irOPOCOOCCOFee

2 - 92itie

True

True

13 - Copy Pen

0 - Sold

True

Ntrocaccas
1 Transparent

.145 Wu Serf

Fig. 8.2 Visual Basic's Controls Example Program

This form has six command buttons and an Exit button, which
you should be very familiar with; and a menu, shown opened
above. The six buttons and the menu give access to the other
six forms which make up this project.

If you double-click the frmMain window in design mode and
open the Object drop -down list you will see reference to all the
button and menu code procedures. The screen dump of Fig.
8.3, on the next page, shows this list and a typical Procedure
code.

130

More on Controls 8

ossrautlens .1 Web

ii
darap_Click)

ck event :r the menu
Lob

Private Sub ForreLoadll
frabain.beight 360C
frmatrinAlidth 4965

End Sub

Private Sub resubuttona_C Lick I

display the form
fralutton.Sbo

En1 Sub

Fig. 8.3 Object Drop Down List

In fact for each menu item,
the code simply opens the
relevant form window using
the Show statement.

If you look at the code
behind the six command
buttons, you will see just one
line ii each, such as:

mnuButtonsClick

This is the code in the
cmdButtons_Click procedure,
which simply activates the
relevant menu option.

This is a very easy way to
transfer control around the program, ald we will look at how to
set up menus a little later on. In the meantime, run the program
and move between the various options. You will be amazed at
what can be produced in Visual Basic with very little in the way
of code.

The Example Files
This Controls example program has been included, in one
form or another, with all the versions of Visual Basic we have
used. By looking at the coding behind the sections of this
program, you can learn an awful lot. We strongly recommend
you spend several hours doing this.

Hopefully it will be provided with future versions cf Visual
Basic as well. Just to be on the safe side, though, we have
included the source f les on the Companion Disc to this book
(see inside back cover) and on one of our Web sites. To
download the latter, enter the following URL address iito your
browser.

www.philoliver.com/visbasic/ControlsVBP.exe

This will download a self -extracting file to your hard disc, after
asking you where you want to place it Save it in a folder of its
own and run the file tc obtain the files

131

8 More on Controls

Control Buttons

The Test Buttons routine shows a traffic light which
- changes from green to amber and then red when a

command button is clicked.

- Conti°Is lthclosoll Visual Basic 'design'

Flt Edt loco NS.* &Btu) gut, qyztry cuscruu

GI e31 .

111111111A

r=1111.01=1=.Jaliii
4

AL r7

P 6

Usl

9L y

0 0
 M
er)

GI V9

 lest Buttons

:4;: 1J 0

OB.B I

ci*Ombilahrimp:

JtAebiae ta, ti
r rs Al

c=11
ri Eli co

L antral. (I (WINO(is VW) d

.1

±f-
111E11112111111MINMEI-

Sli1900Biikl

0 Appearance
Aware. 0 Rat

Bordat9yle

Fate
Billehavuir

Orea:con More)

paphc to be *Owed n

Fig 8.4 Dissecting the Test Buttons Form

On close inspection, the form actually has three Dicture icons
with different colours active, superimposed on top of each
other, with only one having its Visible property set as True
Clicking the Change Signal button calls the ChangeSignal
procedure shown here.

Private Sub ChangeSignal()

If imgGreen.Visible = True Then

imgGreen.Visible = False

imgYellow.Visible = True

ElseIf imgYellow.Visible = True Then

imgYellow.Visible = False

imgRed.Visible = True

Else

imgRed.Visible = False

imgGreen.Visible = True

End If

End Sub

132

More on Controls 8

This steps through the colour sequence in the right order
setting only one as isible at a time.

Note that ChangeSignal is a Sub procedure not related to
any particular object action (such as c.icking the mouse). It can
be called from anywhere on the current form and so is placed in
the (General) procedure section.

Before we leave the Buttons part of the program, look at the
code that is activated by clicking the Close button.

Unload Me

As its name suggests, this closes the active window and wipes
its display from the screen. In this program, control then returns
to the frmMain opering window.

Check Boxes
Check boxes are used on the WordWrap form which
also gives a clear demonstration of how the AutoSize
and WordWrap properties of a Label work.

Fig. 8.5 The WordWrap Form

A long cap -ion has been
entered into a _abel of
specific size. Clicking the
two check boxes selects
whether the AutoSize and
WordWrap properties of
a Label are to to set or
not.

When the program is
run, you can change the
check box setti-igs and
see the result
immediately in the label.
Clicking the Cycle button

steps you through the different combinations of label properties,
and the result can be seen in the display. The code behind the
Cycle button is:

133

8 More on Controls

Private Sub cmdCycle_Click()

' cycle through the four possible combinations

' 1 Neither check box is selected

If chkAutoSize.Value = 0 And

chkWordWrap.Value = 0 Then

' select the AutoSize check box

chkAutoSize.Value = 1

' 2 Both check boxes are selected

ElseIf chkAutoSize.Value = 1 And

chkWordWrap.Value = 1 Then

' deselect the AutoSize check box and

' select the WordWrap check box

chkAutoSize.Value = 0

chkWordWrap.Value = 1

' 3 Only the WordWrap check box is selected

ElseIf chkAutoSize.Value = 0 And

chkWordWrap.Value = 1 Then

' deselect both check boxes

chkAutoSize.Value = 0

chkWordWrap.Value = 0
' 4 Only the AutoSize check box is selected
Else

' select the WordWrap check box - the

AutoSize check box is already selected
chkWordWrap.Value = 1

End If

End Sub

This routine checks and changes the AutoSize and WordWrap

check box settings which themselves change the AutoSize and

WordVVraTisetfingsofthelabelin the Display procedure on the
(General) section of the form, as shown below. If either is

selected, its Value property will be '1' and will set the Label

property to 'True', as shown here.

If chkWordWrap.Value = 1 Then

lblDisplay.WordWrap = True
End If

If chkAutoSize.Value = 1 Then

lblDisplay.AutoSize = True

End If

134

More on Ccntrols 8

A Check box displays an X when selected and, as we have
seen, is used to give the user True/False or Yes/No options.
-hey are usually used n groups to display multiple choices, any
of which can be selected.

Check boxes and Option buttons function similarly tut only
one Option button in 3 group can be selected.

To display text next to the Check box, enter it into the
Caption property of the box.

The Value property determines the state of a Check pox, as
used in the above program - the available settings being:

0 is Unchecked, the default setting.
/ is Checked, or selected.
2 is Greyed (dimmed), or unavailable.

Option Buttons
An Option button displays an option that can be turned
on or off. They are used to display multiple choices from
which the user can select only one. You can group

option buttons by drawing
them inside a frame or a
picture box, or directly onto a
form. All those placed directly
onto a form are treated as a
separate group.

The Options example,
showr here, uses two groups
of Option buttons, one in a
frame and the other straight
onto the form itsel'. The
choice made in the left group
of buttons sets a value to the

string variable strCo-nputer. That made in the right grouping
sets a value to the variable strSystem.

Fig. 8.6 The Options F Drm

135

8 More on Controls

The two default Options (in this case 486 and Windows 95),
have their Value properties set to True, so they are 'selected'
when the program is first run. At start-up the other Options will
then have their Value properties as False.

In this example, when an Option is clicked, one of the two
variables strComputer or strSystem is set, as shown in the
procedure below.

Private Sub opt486_Click()

' assign a value to the first string variable

strComputer = "486"

call the subroutine

Call DisplayCaption

End Sub

The DisplayCaption sub routine is then called, which builds up
the message displayed in the Label field.

Sub DisplayCaption()

'
concatenate the caption with the two string

variables.

lblDisplay.Caption = "You selected a " &

strComputer & " running " & strSystem

End Sub

Combo and List Boxes
These are both used to display a list of items from
which the user can choose one. The list can be scrolled
if it has more items than can be displayed at one time. A

Ell list box only allows a choice from ar existing list,
whereas a Combo box has a Text box feature at the top

of the list, into which the user can type a new choice.

Dependant on the Style property, Text determines the text
that is contained in the text edit area of a Combo box, or the
selected item in the list box. This property is read-only at both
design and run time.

The Style property sets the type of combo box drawn:

136

More on Coitrols 8

0 - Dropdown Combo Includes a drop -down list and an
edit area. The user can select
from the list, or type into edit
area.

1 - Simple Combo Includes an edit area an: a list
that is always displayed. The user
can select from the list, or type
into the edit area. By default, this
type is sized so that none of the
list shows. Increasing the Height
property will show more of the
list.

2 - Dropdown List This style only allows selection
from the crop -down list.

if the Sorted property is set to 'True', all items in a list are
automatically alphateically sorted at run time. The default
setting, 'False', does not sort a list.

A Simple Telephone List
The following small program shows how Combo, or List, boxes
can be loaded at run time, and usefully used. It represents a
very small telephone 'directory' with, as it stands, only room for
5 entries, but it could very easily be extended.

The form, shown here in Design
mode, has a Combo box and
three labels. The only reason a
List box is not used is that it

takes uo much more room on
the forn-I

Fig 8 7 Example32 Form Set the Style property of the
Combo to the defau I 0 -

Dropdown Combo and the label Captton properties as shown
11 Fig. 8.7.

We will use two arrays, one to hold the names and the other,
the telephone numbers, so place the following code in the
General Declarations section of the form.

137

8 More on Controls

Dim SName(0 To 4) ' Dimension arrays.

Dim TelNum(0 To 4)

The main body of the code loads the arrays with data and then
places the names in the Combo list. This should be carried out
when the program first starts up, so the code is placed as a
Form_Load procedure.

Private Sub Form_Load () EXAMPLE32.MAK

Dim I As Integer Declare variable.

' Enter data into arrays.

SName(0) "Jane Dean"

SName(1) . "Leona Woolgatherer"

SName(2) . "Angie Smith"

SName(3) . "Sheila Splurg"

SName(4) . "Joan Bloggs"

TelNum(0) . "0173 789987"

TelNum(1) = "54645"

TelNum(2) "010 45 678123"

TelNum(3) . "01209 311887"

TelNum(4) "789456"

For I = 0 To 4 Add names to list.

Combol.AddItam SName(I)

Next I

Combol.Listlndex = 0 'Display first list item

End Sub

You could obviously substitute more meaningful data in the
above if you wanted. All that remains now is to place a line of
code behind the Combo so that the telephone number of the
person selected in the List shows in the main Label box.

Private Sub Combol_Click ()

' Display corresponding Number for name.

Labe13.Caption = TelNum(Combol.ListIndex)

End Sub

When you have entered the code and are happy with the way it
works, try changing the Style property of the Combo box to see
the different types available. With the above code, whatever
you do, don't try sorting the list with the Sorted property.

138

More on Controls 8

The array indices would not then be the same and iicorrect
phone numbers would be displayed!

As we saw in this previous examp e, to display items in a
combo or list box, yoL. use the Addltem statement. To remove
items, you would use Removeltem in tie same way.

The Listlndex property determines tie index of the currently
selected item in a list; this cannot be used at design time. The
ListCount property (also not available at design time) specifies
the number of items in the list. The statement

Combol.ListCount

would return the number of items in the list of Corr bol

The Timer Control

Visual Basic's timer, which is invisible to the user at run
time, is used for background processing. A Timer
Control runs code at regular intervals by causing a

Timer event, which occurs when a pre-set interval of t me has
elapsed. The timinc frequency is set in the control's Interval
property, which specifies the length of lime in millisecords. The
other main Timer property is the Enabled property. When this is
set to True with the Interval property greater than zero, the
Timer event waits for the period specified in the Interval
property.

A very simple digital clock can be p-ogrammed by placing a
Timer and a Label on a form as shown on the left of Fig. 8.8.
The clock running is shown on the right.

Clock

07 04 06 PM

Fig. 8.8 A Simple Digital Clock

139

8 More on Controls

The code required is minimal, consisting of just two lines.

Private Sub Form_Load ()

Timerl.Interval = 1000 Set timer interval.

End Sub

Private Sub Timerl_Timer

Labell.Caption Time ' Update time display.

End Sub

In the first procedure, the Timer Interval property Is set to 1000
milliseconds, or 1 second. In the second, the Timer is set to call
the Visual Basic Time function after every 1 second interval, the
Label Caption being updated every second with the computer
system time.

As we saw, when run, a digital clock is operational in the
window. By changing the form and label properties, and
formatting the Time output (see Appendix C), you could
customise this 'clock' with alarms, colours and fonts, etc.

Pictures and Images

Visual Basic makes it easy to display and manipulate graphic
images and pictures. They can be placed straight onto a form
itself, or into Picture box and Image controls.

Supported Graphic Formats
Visual Basic can display picture files in any of the following
standard formats.

Format Description

Bitmap A bitmap (with file name extensions .bmp or
.dib) defines an image as a pattern of dots or
pixels. You can use bitmaps of various colour
depths, including 2, 4, 8, 16, 24, and 32 bits,
but a bitmap only displays correctly if the
display device supports the colour depth used
by the bitmap.

140

More on Controls 8

Icon An icon (with file name extension .ico) is a
special kind of bitmap, with a maximum size of
32 pixels by 32 pixels.

Cursor Cursors (with file name extension .cur), like
icons, are essentially bitmaps, but they contain
a 'hot spot', a pixel that tracks the location of
the cursor by its x and y co-ordinates.

Metafile A metafile is different as it defines an image
as coded lines and shapes. Conventional
metafiles have the file name extension .wmf,
and enhanced metafiles .emf.

JPEG JPEG (with file name extensions .jpg cr .jpeg)
is a compressed bitmap format which supports
8- and 24 -bit colour. A: 24 -bit resolution it is an
ideal '-ormat for photographs and is co -nmonly
used on the Internet.

GI= GIF (with file name extension .gif) is a

compressed bitmap format which was
orig nally developed by CompuServe. It

supports up to 256 colours and is also a
popular file format on tne Internet.

The Picture Box Control
The picture box control is similar to the Image control in
that each can be used to display graphics in your
application, but a picture box can act as a container for

Dthe r controls and also supports graphics methods (such as
.0ircle, Line, and Point,, and text printing.

Pic -Ares can be loaded into a Picture box control at design
:ime by selecting them in the Picture property (in the Properties
Nindow), or at run time by using the Picture property and the
_oadPicture function, as follows.

picMain.Picture = LoadPicture ("fred.jpg")

The LoadPicture function can actually have more sett ngs for
picture control and selection, but we will not get too involved
sere. Try the Help system if you ever need them.

141

8 More on Controls

To clear the graphic from the picture box control, use the
LoadPicture function without specifying a file name.

By default, graphics are loaded into a Picture box at their
original size, so if the graphic is larger than the control, the
image will be clipped. You can make a picture box
automatically resize to display an entire graphic by setting its
AutoSize property to True. The control will then grow or shrink
in size to that of the graphic, but be careful as th s can lead to
some interesting problems with large pictures. Unlike the Image
control, however, the Picture box control cannot stretch the
image to fit the size of the control.

To show how easy it is to add pictures, we will modify the
phone book created in EXAMPLE32 to show the photo of the
selected person, as well as their phone number. A modern 'little
black book' maybe!

Fig. 8.9 A More Visual Phone Book

To do this, you add a Picture box to the form, as shown in Fig.
8.9 above, and set its AutoSize property to True. You must
have photograph files of all your 'contacts' reduced to a suitable
size for the form. In our example, these were scar ned in as .jpg
files which were saved in the same folder as the project itself.

We will use another array to hold the names of these graphic
files, so add the following code in the General Declarations
section of the form to dimension the array.

Dim },h,.)t t To

142

More on Controls 8

To load the pictures into the new a -ray when the program
starts, add the following code to the Form_Load procedure.

Photo(0) = "jane.jpg"

Photo(1) "leona.jpg"

Photo(2) "angie.jpg"

Photo(3) "sheila.jpg"

Photo(4) "joan.jpg"

If you prefer, you can keep the graphic files in another folder,
out you then have to include the path to them it each of the
above statements. All :hat remains to be done now is to add the
'ollowing LoadPicture statement to the Combol_Click() sub
orocedure:

' Display corresponding Picture for name.

picPhoto.Picture = LoadPicture(Photo(Combol.List:ndex))

That's all there is to it. It is well worth doing this example. If you
don't have any suitable graphic files to play with, ours are
ncluded in the Companion Disc.

The Graphics Methods
icture boxes and forms can be used to receive the output of

:he Visual Basic graphics methods sLch as Circle, Line, and
oint. For example, you can use the Circle method to draw a

circle in a picture box by setting the control's AutoRedraw
property to True.

Picturel.AutoRedraw = True

Picturel.Circle (1200, 1000), 750

Fig. 8.10 A Circle in a Picture Box

Fig. 8.10 shows the result
of running this code.

Setting AutoRedraw to
True allows the output
from these methods to be
drawn to the control and
automatically redrawn
when the picture box
control is re -sized or
re -displayed after being
hidden by another object.

143

8 More on Controls

Drawing Lines
Perhaps the best way of demonstrating how easy it is to use
the Line method in Visual Basic to draw freehand on a Form or
Picture box is to create a small project.

Fig. 8.11 A Simple Drawing Program

Fig. 8.11 shows our project at run time. Just one form (Form1)
with the following controls on it with their respective properties:

Optionl Option2
Name: optRed Name: optBlue
Value: TRUE Value: FALSE
Caption: Red Caption: Blue

Commandl Command2
Name: cmdClear Name: cmdExit
Caption:Clear Caption: Exit

When all four objects have been placed on the form, it's time to
enter the source code. The two Command buttons are very
simple. In cmdExit_Click, as usual, we just put End to exit the
program. In cmdClear_Click, we put the following:

Forml.Cls

Cls (clear screen) simply clears the form when we are fed up
with what is drawn.

Next double-click on the form to open the Code Editor, find
the MouseDown Event of Form1 and type the following:

Forml.CurrentX = X

Forml.CurrentY = Y

144

More on Controls 8

This defines the X and Y co-ordinates when the mouse is
clicked somewhere on the form at run time.

Lastly, put the following in the form's MouseMove Event:

Dim strColour Ae String

If optRed = True Then
strColour = 4

End If

If optBlue = True Then
strColour = 1

End If

If Button = 1 Then
Line (Forml.CurrentX, Forml.CurrentY)-(X, Y)
QBColor(strColour)
End If

Now save the project as DRAWING.VBP and try it out. In this
code we first declared the string strColour to represent the
colour's numerical value to be used later in the QBColor
function. Then two If...Then statemen-.s return the colcur value
of 4 (Red) if optRed is selected, or 1 (Blue) if optBlue is
selected.

The last If...Then statement determines if the left mouse
button is being pressed down on the form. If so, the program
uses the Line method to draw a line as the user crags it across
the form. QBColor is the colour which you program the line to
be. Black would be 0 so you would write: QBColor = 0.

Overall, a line statement has the following form:

Line (Xl, Yli - (X2, Y2), QBColor(colour)

As usual with Visual Basic, it doesn't take much code to get
some quite interesting results. Do try his example, you will find
it well worth while. It could obviously be extended tc include
maybe, other colours, and line formatting features.

145

8 More on Controls

Building a Menu Bar

To make creating menus for your windows reasonably easy,
Visual Basic has a Menu Design window in which you can
create custom menus and define their properties. Before we
can demonstrate this procedure, though, you need a program
with a form that needs a menu bar. We suggest you create the
following small program.

A Simple VAT Calculator
Appendix A contains all the code, complete with object
properties, for you to build the small program named
VATCALC.VBP, that asks for number input and then calculates
and displays VAT information, as shown below.

es VAT Calculate!

Enka amount . Teat 1

Ted2

Teat3

reAmide

m VAT Calculate'

&bons

Enter amount £230.00

Amount plus 17.52 VAT !! E235.00

Amount less 17.52 VAT - E170.21

Fig. 8.12 The VatCalc Example in Design and Run Modes

The main form, frmVatCalc is shown on the left above in
Design mode, and on the right in Run mode. The Label Caption
and Text box Text properties are shown named above so that
you can see where they are. These must all be deleted (in the
Properties window) before the program will work properly!

You should have no problem building this form from what we
have covered so far, except for the Menu bar. This has only
one item (Options) on the main bar, and three sub -menu items
when it is opened, as shown in Fig. 8.13.

146

More on Controls 8

Fig 8.13 The Opened Menu

Governments have a t-abit of
increasing tax levels at regular
intervals, so the first menu
item allows the user to change
the VA- rate (from the present
17.5%).

The Exit item is no: really
necessary, as this is already
taken care of with a Command
button, but it is always better to
have too many ways out, than
not enough.

The About menu item
opens another form and displays some information about the
program, as shown it Fig 8.14.

About ValCals

Val
VatCAlc

Vetsmn 2.0.0 Nov 2000

T hrs :meal pogrom calculates and display: the effects
of VAT cin an amount the VAT Fee is Intl* set at
17 57-_, but you can uae the menu option b charge
this.

No Copyrght Fes ncltons apply

System Into

Fig. 8.14 A Standard Visual Basic About Dialogue Box

This is included to cemonstrate some other tecnniquas and
was, in fact, almost 'automatically' crea:ed for us, becai. se it is
one of Visual Basic's standard forms tt-at are available for you
tD use

To create this form, click the Add Form toolbar button (see
Fig. 7.5) and select the Form option. This opens the Adi Form
dialogue box shown in Fig. 8.15. Select About Dia og and click
the Open button to add the standard form to your project.
-here are several otter standard forms here, that are worth
explor ng.

147

8 More on Controls

Fig. 8.15 The Add Form Dialogue Box

We will leave it to you to complete the About form. Have a look
at the code already placed behind it. You will find that the
Version and Application Title details are generated at run time
from information placed in the Project, Properties dialogue

properties of the Labels concerned.

The Menu Design Window
With the main frmVatCalc form selected, choose Menu
Editor from the Tools menu, or use <Ctrl+E>, or click
the toolbar icon shown here. All of these will open the

Menu Editor window,

Fig. 8.16 The Menu Editor

shown i -1 Fig. 8.16.

In the Caption text
box, you type the
menu item caption
that you want
displayed on the
menu bar. In our
case you type
&Optiors.

The ampersand
(&) character will give

148

More on Controls 8

:he user keyboard access to this menu item. At run time, the
next letter is underbned, and the menu can be accessed by
pressing Alt plus the access key, <Alt+0>.

If you had wanted to create a separator bar in your menu,
you could type a single hyphen (-) in this box.

In the Name box, type the control name that will be used to
refer to this menu item in code, in our case mnuOption.

Leave the other options in the Design Window at their default
settings and click the Next button. Type &VAT Rate in the

Caption text box and mnuVATRate in the
Name box. Now click the Right Arrow on the
Wincow button bar to make this menu item

-1.61 secondary to the first, as shown here, and
press Next. Add the other two menu items as
follows:

Caption Name

&About mnuAbout
E&xit mnuExit

The Menu Design Window should now look like ours, shown
Delow in Fig. 8.17. Pressing OK will close the window and place
:he menu bar on your form.

Fig. 8.17 The Completed Menu for VatCalc

149

8 More on Controls

Using the left and right arrows you can have up to four levels of
sub -menus. The up and down arrows change the position of a
menu item in the list box. We did not use the other features in
the Design Window, but their functions are:

Index Type an index number to control the
position of a menu item within a control
array.

Shortcut Use to assign a shortcut key to a menu
item by selecting a key from the
drop -down list.

WindowList Select if you want the current menu
control to include the name of open MDI
child forms (outside the scope of this
book).

HelpContextlD Enter a unique number if you plan to
provide a context -sensitive Help topic.

Checked Select if you want a check mark to
appear at the left of a menu item to
indicate that the control is turned on.

Enabled Select if you want the menu item to
initially respond to events. Clear the box
if you want the menu item to be
unavailable (greyed on the menu) to be
enabled later in your code.

Visible Select if you want the menu item to
appear on the menu.

NegotiatePosition Allows you to select the menu's
NegotiatePosition property, which
determines whether and how the menu
appears in a container form.

The menu items you created, although visible, will not do
anything until you write code for them (as with other controls).
In Design mode, if you click on a Menu Bar item the sub -menu
will open, but if you click on a sub -menu item its code window
will open. As an example, the code below is placed behind the
VAT Rate sub -menu item.

150

More on Controls 8

Private Sub mnuVATFateClick ()

Get new VAT rate from user.

NVATRate = Val(InputBox$("Enter new VAT rate'))

VATRate = NVATRate

End Sub

This opens an Input Box that requires a new VAT rate to be
entered. The other code for the two forms and all their controls
is given in Appendix A.

The Sub mnuAbout_Click procedure loads the contents into
the form named frmAbcut with the statement

frmAbout.Show 1

The Show command d splays a form. The following integer (1
Of 0) sets the style as modal or modeless. When a form is
modal, it must be remcved with the UnLoad command before
the program can continue. (Done in the Sub cmdAboir_Click
procedure). The default is modeless, which lets the form stay
active, and a 0 is not actually necessary.

ActiveX Controls
An ActiveX control is an extension to the Visual Basic toolbox.
They were formerly called OLE controls and are included with
the Professional and Enterprise Edit ons of Visual Basic.
ActiveX controls have the file name extension .ocx.

You use ActiveX cursols just as you would any cf the built-in
intrinsic controls discussed so far. When you add one to a
program, it becomes part of the development and run-time
environment and adcs new features to your application. For
example, the Windows Common controls allow you to create
applications containing Windows 95 type' toolbars, status bars,
and directory structure tree views. Other controls allow you to
create applications us ng the Internet.

With the above editions of Visual Bas c, the setup procedure
ir stalls ActiveX contrcls automatically. You just add a control to
your project Toolbox to use it in that project.

151

8 More on Controls

To do this, open the Components dialogue box with the
Project, Components menu command and you will find a list
of all the objects and ActiveX controls you can use. You just
select the check box to the left of a control name in the list, and
click on OK, to add it to the Toolbox.

Some Provided Controls
The list below shows the main ActiveX controls provided by
Microsoft (MS). The ones you have on your system will depend
on the version of Visual Basic you are using.

Component Name

MS ADO Data Control 6.0
MS Chart Control 5.5
MS Comm Control 6.0
MS Common Dialog Control 6.0
MS Data Bound Grid Control 5.0
MS Data Bound List Controls 6.0
MS Data Repeater Control 6.0
MS Data Grid Control 6.0
MS Data List Controls 6.0
MS FlexGrid Control 6.0
MS Grid Control
MS Hierarchical Flex Grid Control 6.0
MS Internet Transfer Control 6.0
MS MAPI Controls6.0

MS MaskedEdit Control 6.0
MS Multimedia Control 6.0
MS PictureClip Control 6.0
MS RemoteData Control 6.0
MS RichTextBox Control 6.0
MS Syslnfo Control 6.0
MS TabbedDialog Control 6.0
MS Windows Common Controls 6.0

MS Windows Common Controls -2 6.0

MS Windows Common Controls -3 6.0
Ms Winsock Control 6.0

Control

ADO Data Control
Microsoft Chart
MSComm
CommonDialog
DBGrid
DBList, DBCombo
DataRepea-.er
DataGrid
DataList, DataCombo
MSFlexGrid
Grid
MSHFlexGrid
Internet Transfer control
MAPIMessages, MAPISes-
sion
MaskedEdit
Multimedia MCI
PictureClip
RemoteData
RichTextBox
Syslnfo
Microsoft Tab Control
TabStrip, Toolbar, Status -
Bar, ProgressBar,
TreeView, ListView,
ImageList, Slider, Image -
Combo
Animation, UpDown,
MonthView, DTPicker,
FlatScrollbar
CoolBar
WinSock

152

9

Functions and Procedures

Standard Mathematical Functions
Visual Basic contains built-in functicns to perform many
mathematical operatipns. They allow calculations using such
common functions as logarithms, square roots, sines of angles,
and so on. As with earlier versions of BASIC, mathematical
functions have a three -letter call name follcwed by a

parenthesised argument. They are pre -defined and may be
used anywhere in a program. Some of the most ccmmon
standard functions are listed below.

Standard Visual Basic Functions

Name Function

ABS(X) Retims the absolute value of X
ATN(X) Arc -tangent of X (1.573796 to -1.570796)
COS(X) Cos ire of angle X, where X is in radians
EXP(X) Raises e to the power of X
INT(X) RetJrns the truncated integer part of X
FIX() RetJrns the integer part of X
LOG(X) ReUrns the natural logarithm of X
SGN(X) Retims 1, 0 or -1 to reflect the sign of X
SQR(X) ReUrns the square root of X
SIN(X) Sine of angle X, where X is in radians
TAN(X) Tangent of angle X, where X is in radians
RND Generates a pseudo -random number from 0

to 1, but which does not include 1.

Function calls can be used as expressions or elements of
expressions wherever expressions are legal. The argument X
of the function can be a constant, a variable, an expression or
another function.

153

9 Functions and Procedures

A more detailed explanation of using these functions is given
below.

ATN(X)
The arc -tangent function returns a value in racians, in the range
+1.570796 to -1.570796 corresponding to the value of a
tangent supplied as the argument X. Conversion from radians
to degrees is achieved with the relationship Degrees =
Radians*180/Pi, where Pi=3.141592654.

SIN(X), COS(X) and TAN(X)
The sine, cosine and tangent functions require an argument
angle expressed in radians. If the angle is stated in degrees,
then use the relationship Radians = Degrees'Pi/180.

SQR(X)
The SQR function returns the square root of the number X
supplied to it.

To illustrate using some of the above functior s, consider a
simple problem involving a 2m -long ladder resting against a
wall with the angle between ladder and ground being 60
degrees. With the help of simple trigonometry we can work out
the vertical distance between the top of the ladder and the
ground, the horizontal distance between the focit of the ladder
and the wall and also the ratio of the verlica to horizontal
distance.

The program uses the trigonometric functions SIN, COS, and
TAN, to solve the problem.

Sub Form_Click () EXAMPLE36

' Ladder against a wall

Dim AngleDeg, AngleRad, Vert, Horiz, RatioPi As Double

Dim Pi As Double

Pi = 3.141592654

AngleDeg = 60 'in degrees

AngleRad = AngleDeg Pi / 180 ' In radians

Vert = 2 * Sin(AngleRad)

154

Functions and Procedures 9

Horiz = 2 Cos(AngleRad)

Ratio = Tan(AngleRad)

Print "Original angle = "; AngleDeg; Chr(176)

Print "Vert. distance = "; Format(Vert, "Fixed"); "m"

Print "Hor. distance = "; Format(Horiz, "Fixed"); "m"

Print "Ratio of Vert:Hor. =

Print Format(Ratio, "Fixed"); ":1"

End Sub

When the program is run and the opened window is clicked,
Visual Basic will respond with

Original angle = 50'

Vert. distance = 1.73m

Hor. distance = 1.00m

Ratio of Vert:Hor. = 1.73:1

ABS(X)
-he ABS function returns the absolute (that is, positive: value
of a given number. For example ABS(1.234) is 1.232 while
ABS(-2.345) is returned as 2.345.

The ABS function can be used to detect whether the values
of two variables say, X and Y, are within an acceptable limit by
using the statement i i the form

If Abs(:: < . 1 Then

VI which case the block of statements following the THEN will
be executed only if the absolute difference of the two variables
is less than the specified limit, indicating that they are
approximately equal. We need to use The ABS function in the
above statement otherwise a negative difference, no matter
how small, would be less than the specified small positive
number.

155

9 Functions and Procedures

EXP(X)
The exponential function raises the number e to the power of X.
The EXP function is the inverse of the LOG function. The
relationship is

Log(Exp(X)) = X

LOG(X):
The logarithm to base e is given by the above function.
Logarithms to the base e may easily be converted to any other
base using the identity

log,(N) = LOG(N)/LOG(a)

where Ioga(N) stands for the desired logarithrr to base a, while
LOG(N) and LOG(a) stand for the logarithm lo the base e of N
and a, respectively.

Antilogarithm functions are not provided but they can easily
be derived using the following identities:

Antilog(X) = eAX '(base e; this is Exp(X))

Antilog(X) = 10AX '(base 10)

INT(X) and FIX(X)
The integer functions returns the value of X rounded down to
the nearest integer. Thus, INT(6.97) returns the value 6. The
difference between Int and Fix is that if X is negative, Int
returns the first negative integer less than or equal to X, but Fix
returns the first negative integer greater than or equal to X. For
example:

Int(-5.3) = -6

Fix(-5.3) = -5

Fix(X) is equivalent to:

Sgn(X) * Int(Abs(X))

Numbers can be rounded to the nearest whole number, rather
than rounding down, by using the function Int(X+0.5). For
example, Int(5.67+0.5) returns the value 6. It can also be used

156

Functions and Procedures 9

to round to any given number of decimal places, or to the
nearest integer power of 10, by using the expression:

Iht(X*10'D+0.5)/10'D

where D is (a) a positive integer or (b) a negative integer
supplied by the user. =or rounding to the first decimal, D=1; to
the nearest 100, D=-2. The program below should -ielp to
illustrate these points.

Private Sub Form_Click () EXAMPLE37

' Rounding numbers

Dim X, N As Double

Dim D As Integer

Do

X = Val(InputBox("Enter any number "))

If X = 0 Then End

D = Val(InputBox("Round to how many places?"))

N = Int(X * 1, " D + .5) / 10 D

Print N

Loop Until False

End Sub

Try it yourself. To stop the program enter 0 (zero) in the first
Input box, press its X close button, or the Cancel button.

SGN(X)
The sign function returns 1 if X is positive, 0 if X=0, and -1 if X
is negative.

RND and RANDOMIZE n
The Rnd function is used to produce a pseudo randomly
selected number from 0 to 1, but not including 1. The
Randomize function allows the random -number generator Rnd
to start from a 'seed number' and prodJce a series of numbers
based on the seed. By using the same seed again, the same
series of numbers can be obtained. The statement
Randomize, by itself uses the computer's internal clock to
seed the random -number generator, while Randomize n seeds
the random number generator Rnd with the number n.

157

9 Functions and Procedures

Random numbers are used in statistical programs and in all
kinds of simulations from simple games to complex computer
models. In some programs, especially business simulations, it
is necessary to reproduce the same 'random' conditions from
run to run. This is done with the 'dice throwing' program given
below. To see this, enter the following program.

Private Sub Form Click 0 ' EXAMPLE38 - Throwing dice
Dim : As Integer

Randomize 2

Print "THROW", "NUMBER"

For I = 1 To 6

Print I, Rnd

Next I

End Sub

Every time it is run, the program produces the same random
throws as shown below.

THROW NUMBER

1 1.414126E-02
2 .6076428
3 .3568624
4 .9575312
5 .2980418

6 .7864588

In some contexts it is a severe disadvantage to have the same
series of random numbers produced. You would then use the
statement

Randomize

at the beginning of a program. When no seed number is given,
this function uses the system clock to get its seed, and could
be said to be 'truly random'.

In the previous dice throwing simulation the numbers were
obviously not integers (as with dice). To produce random
integers in a given range, use the formula:

Int((Upper - Lower + 1) * Rnd + Lower)

where, Upper is the highest number in the range, and Lower is
the lowest - for a dice these would be 6 and 1.

158

Functions and Procedures 9

Derived Mathematical Functions

For reference purposes, some useful mathematical functions
which can be derived from standard Basic functions are listed
below:

Derived Mathematical Functions

Function Formula

TRIGONOMETRIC
Cosecant CSC(X)=1/SIN(X)
Cotangent COT(X)=1/TAN(X)
Secant SEC(X)=1/COS(X)

INVERSE TRIGONCMETRIC
Arc Cosecant ACSC(X)=ATN(1 /SCIR(X*X-1))+(SGN(X)-1)'Pi/2
Arc Cotangent ACOT(X)=-ATN(X)+Pi/2
Arc Secant ASEC(X)=ATN(SQR(X*X-1))+(SGN(X)-1)'P1/2

HYPERBOLIC
Hyp Cosine
Hyp Sine
Hyp Tangent
Hyp Cosecant
Hyp Cotangent
Hyp Secant

COSH(X)=(EXP(X)+EXP(-X))/2
SINH(X)=(EXP(X)-EXP(-X))/2
TANH(X)=-EXP(-X)/(EXP(X)+EXP(-X))'2+1
CSCH(X)=2/(EXP(X)-EXP(-X))
COTH(X)=EXP(-X)/(EXP(X)-EXP(-X))'2+1
SECH(X)=2/(EXP(X)+EXP(-X))

INVERSE HYPERBOLIC
Arc Cosh ACOSH(X)=LOG(X+SOR(X*X-1))
Arc Sinh ASINH(X)=LOG(X+SCIII(X*X+1))
Arc Tanh ATANH(X)=LOG((1+X)/(1-X))/2
Arc Cosech ACSCH(X)=LOG((SGN(X)*SQR(X*X+1)+1)/X)
Arc Cotanh ACOTH(X)=LOG((X+1)/(X-1))/2
Arc Sech ASECH(X)=LOG((SQR(-X*X+1)+1)/X)

Note: The constant Pi in the above formulae has the value of
3.141592654.

159

9 Functions and Procedures

User -Defined Function Procedures

In some programs it may be necessary to use the same
mathematical expression in several places, and often using
different data. User -defined functions enable definition of
unique operations or expressions. These can then be called in
the same manner as standard functions.

A user -defined function is defined as shown in the following
example.

Function Area (Radius) As Double

' Calculates area of circle of Radius units
Pi = 3.141592654

Area = Pi Radius ^ 2

End Function

Entering it into your program is made very easy; simply typing
in an empty section of the Code Editor, the word Function,
followed by its Name, will create a new code entry template for
the function in the (General) section of the form, as shown
here, in Fig. 9.1.

RI I xample 19 Itfrif x.110..1411 41,1,1

(Gene r)

Function Area()

End Function

4

Fig 9 1 A New Function Template, Ready to Enter Code

Enter the above function and the rest of this small program as
shown below.

Private Sub Form_Click() EXAMPLE39

Using a user defined function

Print "Radius", "Area of circle"

For Radius = 1 To 10

Print Radius, Area(Radius)

Next

End Sub

160

Functions and Procedures 9

You will also need to declare the variables usec in the
(General) (Declarations) section, like this:

Dim Radius, Pi As Double

The program calculates the areas of circles with radii of integer
values between 1 and 10. The formula is given in the =unction
Area() statement and the Function is called the same way as
Visual Basic's built-in functions. The value for the radius is
passed to the function via a parenthesised variable .Nhich in
fact could be any legal expressicn; its value is simply
substituted for the function variable.

The Object Browser

w An easy way to track down the procedures and functions
in your program is to use the Object Browser, which is

opened with the tootar icon shown here, or the F2 key.

. Obiert Humors .tt RIM
t aomple 19 J .111 GIAL.j..111 1.1

:I iliF.
Search Rcesues

Library j ;lass I Member1

I

ICI:Asses of ernExamMe3W
Act, ve, -intro

4 ft rnE xample39 , Appearance
111, A...1

AutoRedraw
BackColor

Publrc Funch.nlites(RWA4 As Double
Member or il*I.Pit a riaiWaisitle

Fig 9.2 The Object Browser

The Object Browse-, as shown in Fig. 9.2, gives you details of
all the procedures in your project, as well as the classes,
properties, methods, events, and corstants ava lable from all
the object libraries you have access to on your system.

161

9 Functions and Procedures

You can use it to find and use objects you create, like the
function in our example, as well as objects from other
applications. You can get more information by searching for
'Object Browser' in the Help system.

Sub Procedures

Visual Basic supports several kinds of procedures;
user -defined Functions, Sub -procedures (or Subs), and
Property procedures. The differences between them are that a
Function returns a value, a Sub is complete in itself, and a
Property procedure can return and assign values, and set
references to objects.

Most of the Visual Basic code we have seen in this book so
far has been made up of Event Procedures, or blocks of
program code which are carried out when a certain action is
implemented. You can also write your own Subs, which can
then be called from anywhere in your program.

You enter a Sub into your program in the same way as
described on the previous page for entering Funct ons (but you
type Sub instead of Function). To illustrate how we can use a
'user defined' Sub -procedure, we will develop a small program
which asks for the dimensions of three cylinders and calculates
their volumes.

Private Sub Form_Click () EXAMPLE40

Volume of 3 cylinders

Dim Radius As Double, Height As Double

Dim I As Integer

For I = 1 To 3

Radius . Val(InputBox("Enter cylinder radius"))

Height = Val(InputBox("Enter cylinder height"))

Volume Radius, Height

Next I

End Sub

Here, the Volume statement is calling the following Sub, called
Volume, and passing to it the values of Radius and Height.

162

Functions and Procedures

Sub Volume (Rad As Double, Ht As Double)

Dim BaseArea, Vol, Pi As Double

Pi . 3.141592654

BaseArea = Pi Rad " 2

Vol - BaseArea Ht

Print "Cylinder radius = " & Rad & " units"

Print "Cylinder height = " & Ht & " units"

Print "Cylinder volume = " & Vol & " cubic units'

Print

End Sub

Note that the Sub above accepted tl'e two arguments, even
though they had different names. In older versions of Basic the
Sub would have been called with the statement

Call Volume (Radius, Height)

This is acceptable to Visual Basic, bu: if used, the arguments
must be enclosed in brackets, as shown. Just rememper, no
Call, no brackets!

After a Sub has been executed, program control is returned
to the statement following the calling statement. It is, therefore,
possible to build up a ibrary of standard procedures, which can
then be invoked from a main program to solve large and
complex problems.

Parameter Passing

There are two fundamental rules relating to parameter passing.
These are: (a) the number of argumerts in an argume-t list of
the calling statemert must be the same as that of the formal
parameters, and (b) the data type of each argume-t must
match the data type of the corresponding formal parameter.

The formal parameters in a procedure, whether a

subprogram or function, are variable names local to that
particular procedure. The actual parameter passed to the
procedure can eithe- be (i) a variable name local to the calling
program or (ii) a literal, constant, or expression.

163

9 Functions and Procedures

In the first case, when a parameter is a variabe, parameter
passing is by 'reference', which means that the address of the
variable is passed to the procedure. As the formal parameter
within the procedure is also assigned to the same address, this
means that any changes to the formal parameter within the
procedure can be passed back to the main program.

In the second case, when a parameter is a literal, constant,
or an expression, parameter passing is by 'value', which means
that the actual value is passed rather than the address in which
the value is held. In this case, the value of an expression is
calculated, the result is stored in a temporary location and the
address of the temporary location is passed to the procedure.
As a result, any change to this parameter by the procedure is
only reflected in the temporary address and the original value
accessed by the main program remains unmodified.

Subroutines

Subroutines are similar to Sub procedures in many ways but
they are not as powerful. They are supported by Visual Basic
primarily for backward compatibility, so that programs written
for standard BASIC can be easily adapted to run under Visual
Basic.

GOSUB and RETURN Statements
When Visual Basic encounters the GOSUB statement in the
main body of the program, it branches to the first statement of
the subroutine, and continues to execute the statements within
the subroutine until the RETURN statement is encountered.
This diverts program flow to the statement immediately
following the GOSUB statement which called the subroutine.
Thus, the GOSUB statement broadly corresponds to the Sub
calling statement, while the RETURN corresponds to the END
SUB.

When successive GOSUB statements branch to the same
subroutine, each time the RETURN statement is reached, the
main program is resumed at the last GOSUB statement from
which it branched.

164

10

Working with Files

Programs and 'data files' can be stored on disc quite easily and
Visual Basic allows you to access them from your program
front end with the standard Windows file hancling dialogue
boxes. Before describing this, though, we will spend some time
getting to grips witl- some of the code needed to create and
read from your own application data files.

Three types of data files can be used to store information,
namely sequential, random access or binary files. Each type
has advantages and disadvantages. Sequential files use disc
space efficiently, but are difficult to update and best used for
files which store only text. Random files are less efficie-t as far
as usage of disc space is concerned, but provide quick access
to information. Binary files offer great flexibility, but have no
structure and, therefore, are difficult to program. We shall
investigate the first two of these, by first looking at their
individual structure and then by showing how data can be
written to, and read from, each type of 'He.

Sequential Data Files

A sequential data file can be thought of as a one dimensional
array with each array location being one byte, capable of
holding one character of a string. For example, the name of a
friend together with his telephone number

ADAMS M. 02 -1893

could be stored as shown below:

Byte 1 2

0123456789012345678901
Char "ADAMS M. " , "02 -1893"111

165

10 Working with Files

Of special importance to sequential data files are the three
ASCII control characters, 10 (linefeed - LF), 13 (carriage return
- CR), together shown by the symbol IT, and 26 (End -of -File
marker - EOF), shown above as ll. The combination CR/LF (11)
is issued every time you press the <Enter> key.

Two names would be stored with details a' the second
following the first, separated by LF/CR, with the EOF character
marking the end of the file. For example,

"ADAMS M. " , "02 - 1893 " ("SIMS I " , "01-1351"i,,

Carriage return/linefeeds (¶) mark the end of blocks of
information called 'records' with each record containing related
information such as names and telephone numbers separated
by commas, called 'fields'. Fields can hold any of the different
types of variables, such as strings (which appear in quotation
marks), integers, long integers, single- and/or double -precision
variables.

To write data into a sequential data file you must write a
small Visual Basic program which will 'create' such a file and
then 'print' into it the characters representing the information
you want to store on disc. To demonstrate this, we will develop
the most simple ASCII text editor imaginable, which treats all
the text in the file as one variable.

Fig. 10.1 Our 'Text Editor' in Design Mode

166

Working with Files 10

Cpen a new project and build the simple form shcwn in
F g. 10.1, which has one large Text box (Text') and four
command buttons, (cmdSave, cmdClear, cmdLoad and
cmdExit).

Make sure the Mu/Wine property of :he Text box is set to
True, so that any long lines of text yoJ enter wil wrap onto
subsequent lines, and that you clear the Caption property Then
ester the following code.

Dim Filename As String ' General declaration

Private Sub cmdSave_Click ' EXAMPLE41

' Save entered file to disc

Filename = InputBox$("Enter file name")

Open Filename For Output As #1

Print #1, Textl.Text

Close #1

End Sub

Private Sub cmdLoad_Click ()

' Load a text file from disc

Filename = InputBox$("Enter file name")

Open Filename For Input As #1

Textl.Text Inpx_tS(L0F(1), 1)

Close #1

End Sub

Private Sub cmdClear_Click () ' Clear the text box
Textl.Text ""

Textl.SetFocu
End Sub

Private Sub cmdExit_Click ()

End

End Sub

Exit the program

TD test out the program, run it, type a few lines of text irto the
editing section of the opened window and then save the text by
cicking the Save button. To check that this worked, you could
Clear the window anc Load your file back again, or open your
file into the Notebook. Even the Cut and Paste functions work
(with their keyboard short-cuts), you can get a lot for a small
amount of code with Visual Basic.

167

10 Working with Files

Saving a File to Disc
In the cmdSave_Click Sub, following the InputBox line, the
commands Open Filename For Output As #1, Print #1 and
Close #1 are all directed to the filing system. The first opens
the named file for output, through the communications channel
#1. By opening a file, the name of that file is automatically
written to the directory of the logged drive. If the filename
already exists, the Open command will delete its contents,
which means that you lose all the information already stored in
that file. Once the data has been written to the file, with the
Print # command, the file is closed.

Note the special way of writing Visual Basic commands
which are directed to the filing system. They all end with the
hash character (#), followed by the channel r umber n (with
values between 1 and 255) through which you communicate
with the file. Finally, when you finish with a file you close the
communications channel with the Close #n command.

Loading a File from Disc
Once your text file has been created, you must be in a position
to read it back into the computer so that your information can
be retrieved. This is done, in our example, with the short
cmdLoad_Click procedure.

The third line Opens the file whose name is held in string
variable Filename, for Input through channel #1. The next line
reads the contents of the whole file using the Input$ statement.
The LOF(1) part of the statement gives the length of file to be
input. Finally, the file is Closed as before.

As it stands, our text editor is usable but the file handling
procedures, by Windows standards, leave a lot to be desired.
You even have to remember the name of the file you want to
retrieve! With one addition, however, and a few extra lines we
can improve it enormously.

168

Working willh Files 10

The Common Dialogue Control

in' The Common Dialogue control, shown here, allows you
to automatica ly use five of Windows' main dialogue
boxes, and ir yoke the Windows Help System, from

your programs. These are the Open, Save As, Print, Color and
Font boxes. We will make use of the first two to improve our
simple editor.

With Visual Basic 6.0 you must first add the Common
D alogue control to the Toolbox by selecting Compone its from
the Project menu, Iccating and select ng the control .n the
Controls tabbed section, as shown in Fig. 10.2 below, and
finally clicking the OK Dutton.

OMeclirilem 2.0 OLE Cat-ol
0 Microsoft Actereelova Control
0 Microsoft ADO Data :orcrol 6.0 (SP3) (01E08)
 elaosoft Agent Como! 2.0
ID Microsoft Calendar C_Int-ed 8.0

On:resat Chart Cont-ol a0 (51,3) (OLED8)
°Microsoft Caren Control 5.0

Qt

 Microsoft Data Dogrel Grid Contrd 5.0 (5P3)
Microsoft Data Bound US Controls 6.0

0 Microsoft DataGrd Cxiscil 6.0 (5P3) (OLEO)
plimsoll Deadest Con* 6.0 (SP3) (OLED8)
ri Microsoft DatePepeater Conned 6.0 (OLECEI)fi

f --

Microsoft Cornrocn Ciabg Control 6.0 (SP3)

Lccabon: Ci1VISEs)W515Y5TEM1CCSIX632.0CX

liefecteg Items Only

Fig. 10.2 Add ng a Component to the Toolbox

.101
A new icon, like that shown here, will be added to the
Toolbox. In Design mode, drag a Common Dialogue
control onto the form of the last example. It doesn't

matter where you place it, as, like the Timer, it is inv sible at run
time. Then edit the code of the Save and Load procedures to
that shown on the next page.

169

10 Working with Files

Dim Filename As String General declaration

Dim F As Integer

Private Sub cmdLoad_Click

Using OPEN dialogue box

CommonDialogl.Filter . "All Files (*.*)I*.*IText
Files (*.txt)1*.txt1Satch files (*.bat)I*.bat"

CommonDialogl.Filterindex = 2

CommonDialogl.Show0pen

Filename CommonDialogl.Filename

F = FreeFile

Open Filename For Input As #F

Textl.Text = Input$(LOF(F), F)

Close #F

End Sub

Private Sub cmdSave_Click ()

Using SAVE AS dialogue box

CommonDialogl.Filter = "All Files (*.*)I*.*IText

Files(*.txt)1*.txt1Satch files (*.bat)I*.bat"

CommonDialogl.Filterindex = 2

CommonDialogl.ShowSave

Filename = CommonDialogl.Filename

F = FreeFile

Open Filename For Output As #F

Print #F, Textl.Text

Close #F

End Sub

The first extra line, in both cases, sets th3 Fi,'ter property to
control what type of files will be displayed in :he dialogue boxes.
Each filter to be displayed needs a description and the actual
filter, separated by the pipe character (I).

The line

CommonDialogl.Show0pen

determines which Windows dialogue box is used. You use the
appropriate method from the following table, to display one of
the available dialogue boxes.

170

Working with Files 10

Method Dialogue box displayed

ShowOpen Cpen
ShowSave Save As
ShowColor Color
ShowFont Font
ShowPrinter Print
ShowHelp Invokes Windows Help

In our example, the dialogue box returns the name of the file
se ected and stores it in ttie variable 'Filerame' in the line

Filename = CommonDialogl.Filename

The screen dump in F g. 10.3 shows our program, named
EXAMPLE42.VBP, using the Save As dialogue box.

.J.., At

Mypy

110
Venktop

MY C.twatiti

t

Netwoll.

Fig. 10.3 The Save As Dialogue Box

Ycu have probably noticed the line

F = FreeFile

in our modified code. As Visual Basic can access up to 255 file
channels, it is safer and better practice, to use the FreeFile
function to return the next file number available for use. If this is
passed to a variable (F in our case), the variable can be used
whenever a channel # is required.

171

10 Working with Files

Trapping Errors
If you have not done it already, try pressing the Cancel button
from one of the Common Dialogue boxes when your program is
running. With the code given so far, Visual Basic stops the
program running with the following message.

iusoli Visual Basic

Fig. 10.4 A Run-time Error Message

The Open and Save As dialogue boxes handle most of the
possible disc handling errors automatically (like having no disc
in a drive), but it is left to you to handle what hz ppens when the
Cancel button is pressed. No real problem, just add the line

On Error GoTo ErrHandler

to the beginning of both the cmdLoad and cmdSave
procedures, and add the following to their ends.

ErrHandler:

' User pressed Cancel button.

Exit Sub

172

Working with Files 10

Random Access Files

Random-access data files are like a collection of equal -length
sequential files, which means that each file can have a number
of records (each with a record length specified by parameter
Len). A visual representation of random access data files is
shown below:

1 2 3 4

12345678901234567890123456789012345678901234

ADAMS M. 02-1893 iissssdddddddd
SMITH A. D. 03-864243 iissssdddddddd
LONGFELLOW A. E. C. 01-5513567iissssdddddddd

In This example, each row represents a record and each record
is divided into 5 'fields . The first field, which is 20 characters
long, contains names, the second, which is 10 characters long,
contains phone numbers, the third to the fifth field contains
numerical data which is encoded to strings of lengths 2, 4 and 8
characters, representing integer, single- and double -precision
floating-point numbers, respectively. Thus the record length of
each row in the above representation is 44 characters
(20+10+2+4+8 = 44).

Defining Records by TYPE

When using random access, Visual Basic requires you to
define your records wits the Type..End Type declaration. This
allows the creation and storage of data in a composite format;
mixing string and numeric types. A suitable Type definition for
the above data would bp,:

Type Record

Aname As String *

Phone As String 1J

Units As Integer

Price As Single

Amount As Double

End Type

173

10 Working with Files

To open a file and specify its length, with this data would
require the following statement:

Open Filename For Random As #1 Len = 44

As random access is the default for the Open statement, the
words For Random are not strictly required, but we
recommend that you get used to including them.

The next program, EXAMPLE43.VBP, shows how data sets
can be entered into a form and added to a random access file
from the form. It is intended more as a demonstration than to
perform a useful task, but the principles can be adapted to
almost any kind of consistent format data entry.

Fig. 10.5 A Random Access File Example

The main form layout is shown above on the left. It consists of
four Text boxes to receive the data, each with a Label to
identify it, and three Command buttons to control the entry or
retrieval of data to and from a file.

Build this form, as shown, but don't forget to clear the Text
properties of the Text boxes, as the names above are only to
help identify them. Then open one more form and a module
(see Fig. 7.5). The second form is used purely to receive
printed output from the data file, as shown on the right above.

The module file, with the extension .BAS, is needed to hold
the Type definition. Save all the files into a folder of their own,
and enter the code shown on the next few pages.

174

Working wiTri Files 10

This first code is paced in the separate module. It defines a
custom data type 'Record'. The Option Explicit statement
forces Visual Basic to accept only declared variables.

Option Explicit
Type Record

FirstName As String

SurName As String

Phone As Strinc 1:

Age As Integer

End Type

The next code is for Forml, the 6 Dim statements beinc placed
in the general declarations section of the form.

Dim Person As Record

Dim RecordLen As Long

Dim F As Integer

Dim Msg As String

Dim FileName As String

Dim Position As Integer To track record number

Private Sub Form_Load

ChDrive App.Path

ChDir App.Path

RecordLen Len(Person)

Msg 'Give file name for data"

FileName = InputBox$(Msg)

F . FreeFile

Open FileName For Random As F Len RecordLen

Position 1

End Sub

Private Sub cmdAddRecord_Click ()

GetRecord Load data from text boxes

Put #F, Position, Person 'Save to file

Position . Position + 1 'Increase pointer

txtCName.Text ""

txtSName.Text . ""

txtPhone.Text ""

txtAge.Text ""

txtCName.SetFocus

End Sub

Empty text boxes

175

10 Working with Fibs

Private Sub cmdDisplayFile_Click ()

Dim I A Integer, Caption As String

Caption "File - " + UCase$(FileName)

Form2.Caption Caption

Form2.Show

Form2.Print "Name"; Tab(30);

Form2.Print Tab(50); "Age"

Form2.Print

For I . 1 To Position - 1

Get IF, I, Person Read a record

' Name window

' Open a print window

"Phone Number";

from file
' Trim blanks from and print the record

Form2.Print

Form2.Print

Form2.Print

Form2.Print

Next I

Form2.Print

Form2.Print

End Sub

Trim$(Person.FirstName):
" " + Trim$(Person.SurName);

Tab(30); Trim$(Person.Phone);

Tab(50); Trim(Person.Age)

"Click window

Sub cmdQuit_Click

Close IF

Kill FileName

End

End Sub

to continue"

' Close the file

' Delete file from disc

Sub GetRecord ()

Load PERSON variable from text boxes

Person.FirstName txtCName.Text

Person.SurName = txtSName.Text

Person.Phone txtPhone.Text

Person.Age . Val(txtAge.Text)

End Sub

The last code, below, is placed in the Clic' procedure of
Form2. This lets you remove the print window when you are

happy that your data file is working.

Sub Form_Click ()

Forml.txtCName.SetFocus

Unload K.

End Sub

176

Working with Files 10

The random access method only works if, after declaring a data
Type, you then declare a variable of that type, as done in the
line

Dim Person As Record

The Form_Load Sub s actioned when Form1 is opened at run
time. The ChDrive and ChDir statements set the current drive
and directory to tha: of the running application. This is so that
the location of the file created is controlled. The line

RecordLen = Len(Person)

passes the length of our defined data Type to a variable, which
is then used in the Open statement.

You are then expected to enter data manually into the text
boxes. When happy with your data, click the Add Record
button which actions the cmdAddRecord Sub.

This, first calls the Sub 'GetRecord' which loads the data
elements from the text boxes to the respective compoients of
the 'Person' variable. It then Puts this data, as one record, into
the previously opened file

Put #F, Position, Person

F represents the channel number used to communicate with
the opened file. The 'Position' variable keeps track of the
record number being processed, and is incremented after the
Put operation. The text boxes are thei emptied and the focus
returned to the first one, so that you can continue to add as
many records as you want.

When you want to view all the records entered, click the
Display File button which activates the cmdDisplayFile Sub.
This sets the caption of Form2 and opens it w th the Show
command. The Get statement is used to retrieve the data from
the file, one record at a time.

Get #F, I, Person

It is the complement of the Put staterrent. Each record is then
Trimmed, to remove any padding spaces, and printed to the
opened Form2 window.

177

10 Working with Files

When you have worked out how it all functions, you can press
the Quit button, which Closes the open file and celetes it from
your disc with the Kill statement. In a working application you
would not need this line, but we have added it to save your hard
disc getting cluttered.

We have tried to make the code of these examples as simple
as possible, to make them easier to understand, so there is
little attempt at error trapping or other sophistications.

If you want to develop the programs further, we suggest you
first study the sample programs provided with Visual Basic.

Binary Files

A binary file is the most rudimentary type of file whch offers the
greatest flexibility, but its use imposes considerable
responsibility on the programmer as binary files do not have
any structure. They are a sequence of characters without any
delimiters, or records. The characters simply occupy positions
0, 1, 2, and so on, within the file. They are used when you need
to keep the size of your data files to the absolute minimum.

Due to their complexity we will not give any more detail on
binary files here, as they are a little outside the scope of this
book.

178

Working witi Files 10

Drive, Dir and File List Boxes

There are also three controls included on the standard
Visual Basic Toolbox that allow you to easily list drives,
folders and files. We must say a few words on these
before leavirg the subject of files, but you may find that
the Common Dialogue features are really all you need.

12)
Try putting one of each of these onto an empty form, as
shown in Fig. 10.6.

Nk F amt RFD

ADDS MUSDLL

27.1
BIBLIC MDB
C2 DE
CVPACKEXE
DATAvIEW DLL

PrQgryn -ilr, EXAM 'LE2a. FRM
EXAM 311241 VBP

Micre,ryi V.1$1.1421i tudoc EXAM LE 2a vbv.
D<AM.LE7aFRM

__I My DO-, example; LINK.EXE
MSDIS 110.DLL
MSPDB60.DLL
NWIN) MDB

Fig 10.6 The DriveList, DirList and Fi eList Box Controls

4Nher placed they access your system as shown, and if you run
the form as it is, each box will access your drives, folders and
files. You must place code, though, to link the boxes together
so that the files shown represent those of the folder selected,
for example.

The DriveList cortral has a Drive property which uses the
following syntax:

Drivel.Drive = Drive

The DirList and FileL st controls have a Path property which
uses the following syntax:

Filel.Path = Path

Dirl.Path = Path

It is very easy to write code to link the three controls. With the
following code, when you change the drive, or folder, the other
lists are updated.

179

10 Working with Files

Private Sub Drivel_Change() EXAMPLE44

On Error GoTo DriveHandler

' Update directory list box to synchronise with the

' drive list box.

Dirl.Path = Drivel.Drive

Exit Sub

' If there is an error, reset Drivel.Drive with the

' drive from Dirl.Path.

DriveHandler:

Drivel.Drive = Dirl.Path

Exit Sub

End Sub

' This event occurs when a new directory is selected

Private Sub Dirl_Change()

' Update file list box to synchronise with the

' directory list box.

Filel.Path = Dirl.Path

End Sub

As you can see, this requires very little code. There is even an
error trapping routine to cope with the time that the user selects
a removable drive with no disc in it. Without this the program
would just stop.

In our routine above, to actually use the results of the file
selection procedure in more code, you would use
File1.FileName to represent the name, and Dirl.Path to
represent the path of the selected file.

You can use the Drive property to change drives at the
operating system level by specifying it as an argument to the
ChDrive statement, such as:

ChDrive Drivel.Drive

To set the current working directory, use the ChDir statement.
For example, the following statement changes the current
directory to the one displayed in the directory list box:

ChDir Dirl.Path

180

Working with Files 10

An Image Viewer
Before we leave this section, we will give an example of how
these features could be used to create a simple, but useful,
image viewer. For this, you can use the previous
EXAMPLE44.VBP form and code, but with the Drive, Directory
and File List Boxes re -arranged as shown in Fig. 13.7.

w. I x ample45 bait iimr1p1,4.5 Ii ointI PIPIr
Image Viewer

C

C'

CHARTHDR

al MA032960
C3 MA0321361

(21146.003050
litA1333051

GT

130068Se
13260850
133121368
133113 958
13323 BSB
Ausbahe_SE_1832 pg
Jain Speed World 162 -
Pacific Ocean Cook ad
easy I

Salley1 (pi
USApl

FIRM

Fig. 10.7 The Design Form for an Image Viewer

One more thing, before the form is complete, is to drag
an Image Cortrol from the Toolbox, as shown above.
Give this control the Name property imgGrapiic, but

eave the other properties with their default settings.

Now for the code. Double-click on the form in Desig i mode
:o open the Code Ed tor and add the following procedure.

Private Sub Form Load)

Fliel.Pattern = jpg; ..gif"

End Sub

This is actioned wren the form is loaded and filters the
contents of the File List Box to display only .jpg and .gif graphic
lles.

181

10 Working with Files

In the Sub Did_Change add the lines

ChDrive Drivel. Drive

ChDir Dirl.Path

These set the selected drive and folder, or directory, as the
current system ones. Any files then selected will rot need to be
given a path. Then add one more procedure, as fcllows:

Private Sub Filel_Click()

imgGraphic.Picture = LoadPicture(Filel.FileName)

End Sub

This simply uses the LoadPicture function (see page 143) to
load the selected graphic file into the Image control when the
File List is clicked. You could also use Set to do this:

Set imgGraphic.Picture = LoadPicture(Filel.FileName)

Fig. 10.8 The Image Viewer in Operation

Give it a try. When you run this example you can have a quick
look at all the graphic files you have filled your hard disc with.
We have actually produced something useful, at last!

182

11

Working with Other Applications

The fact that Microsoft s Office applicat ons, Word, Access and
Excel, use Visual Basic themselves makes it easy to nteract
with them. As the majority of developed programs have to
process data of some kind, perhaps the most importan: link is
that between databases and Visual Bas c itself.

The Data Control

The Data ccn-.rol, shown here, is an intrinsic control
located on the Toolbox that makes it very easy to
create a database, as well as view and modify the data

stored in many types of existing databases, including M crosoft
Access, Btrieve, dBASE, Microsoft FoxPro, and Paradox. You
can also use it to access Microsoft Excel, Lotus 1-2-3, and
standard ASCII text files as if they were true databases. Visual
Basic also includes the even more powerful ADO Data control
(ActiveX Data Objects), but we will leave that one for you to
explore.

Fl St record in set
Last recoil

Next record

Previous record

Fig. 11 1 A Data Control at Design Time

As shown in Fig. 11.1 above, the control has four buttons that
allow the user to scroll backwards and forwards through the
record set that is linked to it.

183

11 Working with Other Applications

You don't need to have the Access program itself on your PC to
work with its database files. In our next example, we will work
with NWIND.MDB, one of the database files which should have
been placed in the same folder as the Visual Basic program
when it was installed, (see Fig. 1.6 for our details). If it is not
there and you want to work through this, you will have to add it
by re -running the Visual Basic Setup, as described on page 5.

Open a new project and add a Data control to it, as well as
three labelled text Boxes as shown in Fig. 11.2.

Fig. 11.2 Using a Data Control

The first thing to do is to connect the Data control to the
database. With the Data control selected, find the

DatabaseName property in the
Properties Window, click the button
in the right-hand side, and select the file
NWIND.MDB.

Fig. 11.3 Properties

Next, select the RecordSource
property and choose the Shippers table,
as shown in Fig. 11.3, from the list of
available tables in the database.

Binding Controls
We have now 'locked' the Data control onto the table in the
database we want, but we must set the Text boxes up so that
they display the data in the table. This is called 'binding' the
controls to the data source.

Make sure you delete the Captions of the Text boxes, and
then set the DataSource property of each to the Data1 control.
Next, set the DataField properties of each Text box to

184

Working with Other Applications 11

ShipperlD, CompanyName and Phone, for Text1, Text2 and
Text3, respectively.

When you run the project, it should show the contents of one
f eld of the database :able and let you move easily between the
cther fields with the Data control buttons, as in Fig. 11.4.

Fig 11 4 Using a Data Ccntrol

So, with no code at all, you can include a database viewer in
your project; but by adding a few command buttons and using
the code in the table below in their Click procedures you could
do all your database editing, etc., from your project. Have
another look at the code example on page 128, it shoulc make
more sense now! Good luck.

Action Code Needed

Add a Record Datal.recordset addnew

Delete a record Datal.recordset.delete

Datal.recordset.movenext

Save changes Datal.recordset.update

Move to next record Datal.recordset.movenext

Edit a record Datal.recordset.edit

Address a field Datal.recordset.fields("fieldname")

Bookmark a record Let varX = Datal.recordset.bookmark

Table record count Datal.recordset.count

185

11 Working with Other Applications

Visual Basic for Applications
As mentioned in the first chapter, VBA (Visual Basic for
Applications) is included with the later versions of Microsoft
Office. With this you can automate application procedures, or
even develop customised applications of your own.

To access the feature from Word, Access or Excel, you use
the Tools, Macro, Visual Basic Editor menu commands, or
the <Alt+F11> keyboard shortcut. Fig. 11.5 below, shows the
editor and some of its features opened from Word 2000.

Mictosoft VItual Besse Datum -nil 0 m
Efr Edit Ftraat 064 E., lads Vd-b. 1Slydaw U.*

®,7-0 X M n t, it IL %I *
-'31==l11111111C4

ns en

Tesdllont teisSoi

kW frotsmoneed

oSsze Fehe

olds Fake
oMardkilect True

otos El 6140000.
-ftilect,

derColor Ifek:10C0
stork* 0 finked.. t

mt t:Coss.
ortrertestext
mMoheroor 0 - firOregfito

naked True

riforfnelskohavO foisted is,

rtfit444Yeetentf Ike
at Taken.
ueColse eiefif0030f

It

ontextd) 0
Selector. Tioe

0 brain, s
eseelMeick Tom

eft 24

Used oinsl x

o ,11,6

Pawl kepi I

Tiob TefiZ I

Fig. 11.5 The Visual Basic Editor Opened from Word 2000

Some of the features are very slightly different as they are
designed to complement the Office applications, but on the
whole VBA is the same as the standard Visual Basic 6.0 we
cover in the rest of the book. If you are going down this route, it
may be worth your while working through VBA's Help pages.

186

Working with Other Applications 11

A 6
cp..* liPO.Oefesil blew I

V.KW Bow Complual I ic.
V. Bari How-U.10p.
Vaud Ram LausegaReleserce
Vosal Bs Adden Model
4,rosdt F010BROment

VkaidI Bask

ottorne to the Visuel basic documentation

010004 BOW includes man. documentatun tools, .acts designed b help you Warn
end use parbculor aspect of the product The documentation envetted tett, VHutI
Bast Includes the fottothog

thsual basic User Interface Help

kook here for Help on interface elernnts of the Visual basic fr!Aor, such
thirimends, dialog boxes, windows end toolbars

thsual bow Conceptual Topics

The Conceptual teep topics include irrsormthon to help you unierstand \Athol
basic orogrammmb

Huai basic How To Topics

hook in the How to sechon of Help to And useful common procedures,
. sample, hoe to tit the Object Premeer or hoc* to set thsuel lbasoc
trovirpvnttnt oretons

...eel Bask Language Reference

-he lerqualte OvArrence is the place :o hnd Help on Visual Basic the long. aVa
.11 its methods, properties, staternentz, h/ncoons, 01011,0tort. the objects

tisual basis Add -In Modal

 too want to custOmot the Visual befit editor, see this langege refererce Icr
yelp on the object model *het allows -ou to rtand tha erste.° wnent

111.0,0t0ft forms Reference

book here for Help on Overtones end controls, and how to program Arth them
t sing ktsuel Basic

Fig. 11.6 Visual Basic for Applications Help Opening Page

As you would expect. tnese are accessed from the Help menu
of whatever Office application Visual Basic Editor you are
using.

Connecting to Office Applications
It is possible to get Visual Basic to talk to and control both
Microsoft Word and Excel with code, bLt the office applications
need to be installec on the target machine before their objects
can be accessed. They cannot be distributed with the
application you create.

To assign the Application to an object variable, as we do
here, the relevant object libraries have to be selected. To do
this, use the Project, References menu command from Visual
Basic 6.0 and selec. 'Microsoft Excel 9.0 Object Library' for
Excel, and 'Microsoft. Word 9.0 Object Library' for Word, as
shown in Fig. 11.7. These are the library names for Office 2000
versions of Excel and Word. You may nave different versions,
in which case the names will not be the same, but you should
be able to recognise what libraries to include.

187

11 Working with Other Applications

Rdyftwes EsmoANI7

Ayr:lade References: ot

b., For Applk It Cartel
,,,x1 Banc runt/na °Weds, end procedures

.rsoal Basic objects and procedures
ALE Automaton ifrowre

`It', Microsoft Excel 9.0 Ob t lbw
.96

c:J

Acrobat
Actobat Drstier
Act,ve Setup Control Livery
Act:metier Control

: Actryeatovie control type lixery
Actryec DLL to peel con thvatron of MS Pepostory v I
Actor Interface
address I 0 Tax Luau 2'1

Prints

2_11

Microsoft Word 9.0 ObWt livery

Location: .7.1Program FieslPAcosoft Officei3Office MSWOR09.01.8

Language. Standard

Fig. 11.7 Including the Word and Excel Object Libraries

Working with Excel

Here is a small example showing how to connect to and talk
with the Excel spreadsheet application.

Option Explicit

Dim xlsApp Ae Excel.Application

Private Sub Commandl_Click() 'EXAMPLE47

Set xlsApp = Excel.Application

With xlsApp

'Show Excel

.Visible a True

'Create a new workbook

.Workbooks.Add

'Put text in to the cell that is selected

.ActiveCell.Value = "Hello there"

' Put text into cell A3 regardless of the

' selected cell

.Range("A3").Value = "This is an example of

connecting to Excel"

End With

End Sub

188

Working with Other Applications 11

In this routine we put the object in the variable xlsApp and
make Excel visible to the user. When Excel is started like this it
does not contain a workbook, so one has to be created or
opened. In this example we created a new workbook. Once
there is a workbook open you can use it however you want in
real time.

When you have finished with Excel, you can close it from
Visual Basic as follows:

Private Sub Command2_Click()

' Close the workbook

xlsApp.Workbooks.Close

' Close Excel

xlsApp.Quit

End Sub

This routine first closes the workbook (if necessary bringing up
a prompt from Excel asking if you want to save it), then closes
Excel itself.

Working with Word
The following routines work in a similar way with the Worc word
processor

Option Explicit

Dim wrdApp As Word.Application

Private Sub Commandl_Click() 'EXAMPLE48

Set wrdApp = New Word.Application

With wrdApp

'Show Word

.Visible . True

'Create New Document

.Documents.Add

'Add text to the document

.ActiveDocument.Content.Text 'Hello there"

End With

End Sub

189

11 Working with Other Applications

The routine to close the document and application is:

Private Sub Command2Click()

'Close the current document

wrdApp.ActiveDocument.Close

'Close Word

wrdApp.Quit

End Sub

As before, Word prompts you to save the document if it is
necessary, before it will close down.

190

12

Some Loose Ends

Debugging Your Programs

As you develop more and more complicated code ii your
programs you will inevitably make mistakes and produce error
messages. There are three types of errors you may encounter
as you develop your applications.

Compile Errors
These occur when your code is incorrectly constructed, such as
a Next statement wit -lout a corresponding For statement, or a
misspelled word, or a data type mismatch with your variables.
Compile errors include syntax errors, which are errors in

grammar or punctuation recognised by Visual Basic and are
flagged by the compiler as you attempt to enter the code.

Run-time Errors
These occur when you attempt to run your program. Common
examples include attempting to write to a file that coesn't exist,
or dividing by zero.

Logical Errors
Often the most difficult type of error to correct is when the
program doesn't perform as you expect, and produces incorrect
results, because your programming logic is at fault.

The first of these error types are sorted out with the help of the
compiler when you enter your code into the editor. Run-time
and logic errors though, may need the help of Visual Basic's
debugging tools, which let you look at the state of the program
and all the variables, etc., in the middle of a run.

191

12 Some Loose Ends

Break Mode

So far we have encountered two of Visual Basic's operating
modes. Design, when you enter controls and code, and Run
when you start it running. There is a third one, Break mode,
which is used for most of the debugging processes. You can
easily see what mode you are currently in, as it is displayed on
the title bar in brackets, as shown in Fig. 12.1.

" Exaniple40 Mims°It Visual Basic lbeakji enQ
5h Ede ?pro 0,0red Fermat pkoug gun Query *gem loch add -Ins tc.x=w deb

' ' It 4,1 17.1

7imample40 hmUmmnple40[Codel

:lice... eh :j I(Declae wboos)

'option Explicic

Private Sub orm_Cllckl) EXAAPLE40
' Volume of 3 cylinders

Dim Radius Is Double, Height Is Double, I As Integer

Fig. 12.1 A Program in Break Mode, with a Debug Toolbar

Any time a program is running you can change to Break
mode by clicking the Break icon on the T Dolbar, shown

here. While in Break mode, the Immediate pane s opened and
you can edit and debug your code and usually continue
execution of the program.

The Debug Tools

The best way to get a rapid overview of the debugging
possibilities of Visual Basic is to spend ten minutes with the
Help system. To do this, use the Help, Index menu command
and search for 'debugging, basic concepts'.

192

Some Loose Ends 12

Work your way through the presented screens which have
been very professionally put together and show several working
examples of debugginc in practice.

The Debug Toolbar
Most of the debugging tools are best accessed from the Debug
bolbar. This is not open by default, but with the View,
Toolbars, Debug toggle command.

-TiDgg? ereal.point

7 ..t.tep Into

,tep 1,t?'

step

Debut) ENE
51 CI el

Call Stack

Our k Watch

Watch window

Immediate %Widow

Louis window

Fig 12.2 The Debug Toolbar Icons

-he icons on the DeLug Toolbar have the following purposes:

Debugging tool Purpose

Breakpoint Defines a line in the Code window
where Visual Basic suspends
execution of the application.

Step Into Executes the next executable line of
code in the application and steps into
procedures.

Step Over Executes the next executable line of
code in the applicat on without
stepping into procedures.

Step Out Executes the remainder of the current
procedure and breaks at the next line
in the calling procedure.

193

12 Some Loose Ends

Locals Window Displays the current value of local
variables.

Immediate Window Allows you to execute code or query
values while the application is in Break
mode.

Watch window Displays the values of selected
expressions.

Quick Watch Lists the current value of an
expression while the application is in
Break mode.

Call Stack While in Break mode, presents a

dialogue box that shows all
procedures that have been called but
not yet run to completior.

Breakpoints
You can set breakpoints in your code in Design mode to halt
your program execution at those points and check the values of
variables or see what actions will be taken next.

To set a breakpoint, place the insertion point anywhere in a
line of code where you want the program to stop and use the
Debug, Toggle Breakpoint command, the F9 function key, or
click the Toggle Breakpoint icon on the Debug -.00lbar. Visual
Basic adds the breakpoint and highlights the line.

Using the Immediate Window
To execute code in the Immediate, or Debug window as it used
to be called, while in Break mode you simply type a line of
code in the window and press <Enter> to execute the
statement.

In the Immediate window, you can do most of the things you
do in the Code window, but statements in the Immediate
window are not saved with the project.

194

Some Loose Ends 12

The Application Wizard

So far, all the examples in this book have been started either by
clanging an existing project, or 'starting from scratch'. There is
an alternative in Visual Basic 6.0, and that is to build the
framework of a new project semi -automatically using a wizard.
As you probably know, a wizard in Microsoft terminology, is just
an automated procedure.

To have a look at this feature, start Visual Basic but in the
New Project dialogue box (see Fig. 2.2 on page 12) select the
VB Application Wizard option, and click the Open button.

Fig 12.3 TI -e Application Wizard Cpening Page

You move from page to page with the Next and Back bjttons.
Fress the Help buttcn if you don't understand anything on a
page. The help information provided is very good.

This wizard really makes it easy to generate different types of
very high quality procrams which can contain a menu system,
toolbar and a status bar. The default forms toolbar is similar to
a Microsoft Office toolbar, and includes the New, Open, Save,
Frint, Cut, Copy, Paste, Bold, Italic, Underline, Align Left,
Align Right, and Centre buttons. Explorer -style applications
have a default toolbar with the Navigation Buttons, Cut, Copy,

195

12 Some Loose Ends

Paste, Delete, Properties, View Large Icon, View Small
Icon, View List, and View Details buttons. The status bar
includes information about the status of the application and the
date and time, as shown on our example form in Fig. 12.4.

Fig. 12.4 A Form Generated with the Default Settings

Your application can contain a variety of different form types,
many of which are way beyond our present scope. Once the
application has been created, you have to modify the forms and
controls to your exact needs. Many features will need code
adding to them to make them actually do anything useful. To
help here, the wizard adds "ToDo" notes in the comments
where you need to customise the code, as shown below.

.11 "ie. II IrntM...ro 11,,d, 1

Private Sub mnuViewOptiona_Click()
.ToDo: Add 'tusauVlevOloclona_Click. code.
agBox "Add 'anuViemOptions_Click. code."

End Sub

Private Sub mnuVieallefresh_CIIckl)
.ToDo: Add .mmullierRefreshClick. code.
RagBox "Add 'mnuVierRefreab_Click. code."

End Sub

Fig. 12.5 Wizard Generated Code with "ToDo" Comments

196

Some Loose Ends 12

Compiling and Distributing
So far all the projects we have created have been run in the
Visual Basic environment to test how they perform. That's fine
curing the development stage, but once your program is
complete, you don't want to have to open Visual Basic every
t me you want to run the program.

At this stage you car compile the program code and c-eate a
.axe file from it. It ther becomes an executable file which you
can double click to rraKe it run. This is easily done, as long as
your project runs successfully. With the project open in Visual
Basic, action the File, Make exe command. This will open
tie Make Project box for you to select a file name and
cestination. You can also click the Options button and add
information about the program that will be included with its
properties, as shown in Fig. 12.6.

ValCak Pooled Pt werhes 113

Version Number

Major: Minor: flovision:

r -
r.: Auto Increrrert

version Inform/ton

Two;

Application ak.

Icso:

The 'y AT Calculator

frmvatCak

Company
A Very srrnde pr crgr am Ft, it Calculates
VAT rates for entered an -wits.

flue Arguveits:

Corrptallon Argurnerts; I

Rgnove thrombus about unused AvectiX Contrcas

OK I Ca___.L_v iced

Fig. 12.6 Setting a Project's Properties

"our project will then be compiled and the executable file will
be placed with the other project files, unless you specified an
alternative location.

197

12 Some Loose Ends

Packaging
Compiling a project is fine as far as it goes, but the .exe file
produced will only work on your PC, or on one that has all the
library files on it that were used to create the prcgram in Visual
Basic.

To prepare a project so that it can be distributed on discs (or
on the Internet) and installed and run on other PCs, there are
two more stages to go through. In Microsoft speak, these are
packaging and deployment and are carried out by the Visual
Basic Package and Deployment Wizard.

You must first compile your project and create its .exe file.
Then close Visual Basic and select Package and Deployment
Wizard from the Visual Basic section of the Windows Start
menu system to start the wizard, as shown in Fig. 12.7.

Fig. 12.7 The Main Screen of the Package and Deployment Wizard

Click the Package button and work your way through the series
of screens that prompt you for information about your project
and let you choose options for the package. Each screen
explains what information is necessary before you can move
on. For more information on any screen, press F1 or click the
Help button.

198

Some Loose Ends 12

The wizard brings together all the files necessary for your
project to run, and then packages them into .cab compressed
files ready to place on the final distribution discs. Even hr our
tiny VATCALC example there were six files needed, five of
which are shown below. The other was SETUP.EXE.

4 Package and Deployment Waded - Included Files

The ties n theist below will be rctuded n your petite:ie. Etc k
ALA to include additional fie; Clear the checi. itbox to t -e left of
the file none to remove a fie from the package.

40_, SE TUP 1 .EXE

ST61.116T .EXE

VATCALC.exe

E VI36 Ratline and OLE Automation

C:Ive6snxr.c4.1

C:\Progr am FiesiMicrosort

CAPrcgram Filesgicrosoft V19

CAFirograrn ResgecrosoftVIA

C:\WIfDOWS\SYSTEM

Fig. 12.8 The F.Ie3 Included in the VATCALC Example

When the packaging operation is complete you will be
presented with a report, maybe like ours shown next.

4. VAT CALC VBP -Packaging Report rr-r-
The wooed hes bui kab(s) for your appkabon. The cabs are n
CAProgam FilesVicrosoft Visual 5n.ploW1398%ProjectsiVatCaic%Package

e is also a batch fee n the support directory (CAProgarn
%Microsoft Venial

1V1396%ProtecisWatCeic%Package%SupportWATCALC.BAT) that will
you to cm-reale the cab Pies in case you make changes to some of

files.

have Report I

Fig. 12.9 A Packaging Report

199

12 Some Loose Ends

Deployment
The next stage is to click the Deploy button on the main wizard
screen (see Fig. 12.7). This steps you through the procedure of
loading the project's packaged files onto the disc or Internet
media you specify. It took two 1.44MB floppy d scs to hold the
VATCALC package! I guess these days everyth ng is geared to
CD-ROMs.

The results from this whole procedure are excellent though.
When the SETUP.EXE file produced is run, the package is very
professionally installed onto your PC. Now we know where the
dark blue installation screen came from.

The program is added to the Start menu system, as shown in
Fig. 12.10 below, and is also added to the menu in the
Add/Remove Programs 'applet' contained in the Control Panel.
We hope all these features work with your version of Visual
Basic, as they did with ours.

j Downs,*
 letbngs

Se110

ti*
S:1 Burt

41 Sly Down

rs=

fl!f.,,s The VAT Cabiatoi

Fig. 12.10 Our Program Added to the Start Manu

Well that's it folks. All that remains is a glossary and a range of
Appendices with (hopefully) useful reference information to help
with your Visual Basic programming. We have barely scratched
the surface, but you should now be able to develop into those
areas we could not mention.

200

13

Glossary of Terms

Access key A key pressed while holding down the
Alt key that allows the user to open a
menu, carry out a command, select an
object, or move to an object For
example, <Alt+F> opens the File menu.

Action query A query that copies or changes data.

Active document An ActiveX document or a document
that contains ActiveX controls, Java
Applets, or VBScript.

Active window In an application, the w ndow that
appears in the foreground with a

highlighted title bar or border to
distinguish it from other visible windows.

ActiveX Microsoft's brand name for the
technologies that enable interoperability
using the Component Object Model
(COM).

ActiveX control An object that you place on a form to
enable or enhance a user's interaction
with an application. ActiveX controls
have events anc can be incorporated
into other controls. These controls have
an .ocx file name extension.

Add -in

Address

A customised tool that adds capapilities
to the Visual Basic development
environment.

A unique number or name that identifies
a specific computer or user on a

network.

201

13 Glossary of Terms

Alias In Visual Basic, an alternate name you
give to an external procedure to avoid
conflict with a Visual Basic keyword,
global variable, constant, or a name not
allowed by the standard naming
conventions.

ANSI Character Set American National Standards Institute
(ANSI) 8 -bit character set used to
represent up to 2E6 characters
(0 - 255) using your keytoard.

API Application programming interface. The
set of commands that an application
uses to request and carry out
lower -level services performed by a

computer's operating system.

Software (program) designed to carry
out certain activity, such as word
processing, or data management.

A program that can be downloaded over
a network and launched on the user's
computer.

Archie is an Internet service that allows
you to locate files that can be
downloaded via FTP.

Application

Applet

Archie

Argument

Array

A constant, variable, or expression that
supplies additional information to an
action, procedure, or metiod.

A set of sequentially indexed elements
having the same intrinsic data type.
Each element of an array has a unique
identifying index number.

ASCII character set American Standard Code for
Information Interchange (ASCII) 7 -bit
character set widely used to represent
letters and symbols founc on a standard
U.S. keyboard.

202

Glossary of Terms 13

ASP Active Server Page. File format used for
dynamic Web paces that gel their data
from a server based database.

Assignment statement A statement that assigns a value to a
variable or property. A Set statement
assigns an object -eference.

Automation A technology that enables applications
to provide objects in a consistent way to
other applications, development tools,
aid macro languages.

AVI Audio Video Interleaved. A Windows
multimedia file format for sound and
moving pictures.

Backbone The main transmission lines o' the
Internet, running at over 45Mbps.

Backup To make a back-up copy of a file or a
d sc for safekeeping.

Bandwidth The range of transmission f-equencies
a network can use. The creater the
bandwidth the more information that
can be transferred over a network.

Benchmark A type of test used to measure
hardware and software performance.

Binary format Machine-readable form. This format is
different from ASCII or ANSI formats,
which encode data as text.

Bit

Bitmap

A binary digit; the smallest unit of cata a
computer can store. Bits are expressed
as 1 or 0.

An image represented by pixels and
stored as a collection of bits in which
each bit corresponds to one pixel. On
colour systems, more than one bit
corresponds to each pixel. A bitmap
usually has a .bmp file name extension.

203

13 Glossary of Terms

Bookmark For the Internet, a saved reference (in
the form of a URL or hyperlink) to a
particular location, page, or site, making
it easy to return there.

Boolean data type A data type with only two possible
values, True (-1) or False (0). Boolean
variables are stored as 16 -bit (2 -byte)
numbers.

Boolean expression An expression that evaluates to either
True or False.

Bound control

Break mode

Breakpoint

Browser

Buffer

Bug

Cache

Cascade

A data -aware control that can provide
access to a specific column or columns
in a data source through a Data control.

Temporary suspension of program
execution in the development environ-
ment. In break mode, you can examine,
debug, reset, step through, or continue
program execution.

A selected program line at which
execution automatically stops.

Software that interprets HTML, formats
it into Web pages, and displays it to the
user. Modern browsers can also contain
ActiveX components and can play
sound or video files.

A temporary holding area in memory
where information can be stored.

An error in coding or logic that causes a
program to malfunction.

A special memory subsystem in which
frequently used data values are
duplicated for quick access.

The process of one action triggering
another action.

204

Glossary of Terms 13

Case -sensitive Capable of distinguishing between
uppercase and lowercase letters.

CD-ROM Compact Disc - Read Only Memory; an
optical disc which information may be
read from but not written to.

Char data type A data type that stores a fixed -length
character string of length set by the Size
property.

CG I Common Gateway Interface - a

convention for servers to commuricate
w th local applications and allow users
to provide information to scripts
attached to web pages, usual'y through
forms.

Class

Class module

Click

Client computer

Code ccmponent

Code module

Code pane

The formal definition of an object. The
class acts as the template from which
an instance of an object is created at
rIn time.

A module containing the definition of a
class (its property and method
definitions).

To press and release a mouse button
once without moving the mouse.

A computer that accesses shared
network resources provided by another
server computer.

.exe or .d11 file that provides objects
created from one of the classes the
component provides.

A module contair ing public code that
can be shared among all modules in a
project. (Called a standard module in
Visual Basic 6.0).

A pane contained in a code window that
is used for entering and editing code. A

205

13 Glossary of Terms

code window can contain one or more
code panes.

COM Component Object Model. An industry -
standard architecture fo- object -oriented
development. It defines interfaces on
which ActiveX components are built.

Command line The path, file name, and argument
information provided by the user to run
a program.

Comment Text added to code that explains how
the code works. In Visual Basic, a

comment line can star with either an
apostrophe (') or with the Rem keyword
followed by a space.

Compaction A process that gatl-ers or packs
memory or storage irto as small a
space as possible.

Comparison operator A character, or symbol, indicating a
relationship between two or more
values or expressions.

Compile error An error that occurs during compile time
as the result of incorrectly constructed
code.

Compile time The period during which source code is
translated to executable code.

Configuration A general purpose term referring to the
way you have your computer set up.

Constant A named item that retains a constant
value throughout the execution of a
program.

Context menu A floating menu that is displayed over a
form by right -clicking the mouse. Also
called a pop-up menu.

206

Glossary of Terms 13

Control

Control array

Currency data type

Custom control

An object you can place on a form that
has its own set of recognised
properties, methods, and events.

A group of controls that share a
common name, type, and event
procedures.

A data type that is used for calculations
involving money or for fixei-point
calculations of high accuracy.

Now called an ActiveX cont-ol.

Data access page A Web page, created by Access, that
has a connection to a database; you
can view, add, edit, and manipu ate the
data in this page.

Data source The data the user wants to access and
its associated operating system, DBMS,
and network plalorm (if any).

Data type The characteristics of a variab e that
determine what kind of data the variable
can hold.

Database A set of data related to a particular topic
or purpose. A database contains tables
and can also contain queries and table
relationships, as well as validation
criteria.

DBMS (DataBase Management System). The
software used to organise, analyse, and
modify information stored in a database
such as Microscft Access.

Date data type A data type used to store dates and
times as a real number.

DDE (Dynamic Data Exchange). A form of
communications that uses shared
memory to exchange data between
applications.

207

13 Glossary of Terms

DDL (Data Definition Language). The
language used to describe, change, or
define the attributes of a database,
especially the layout of tables, columns,
and their storage strategy.

Decimal data type A data type that contains decimal
numbers scaled by a power of 10.

Declaration Non executable code that names a
constant, variable, or procedure, and
specifies its characteristics, such as its
data type.

Default The command, device or option
automatically chosen.

Desktop The Windows screen working
background, on which you place icons,
folders, etc.

The time during which you build or
develop an application.

A special window displayed by the
system, or application, to obtain a
response from or provide nformation to
the user.

Design time

Dialogue box

DLL

Docked window

Document

(Dynamic -Link Library). A set of routines
that can be called from procedures and
are loaded and lirked into your
application at run time.

A window that is attached to the frame
of the main window.

Any self-contained work created with an
application and giver a unique file
name.

Domain A group of devices, servers and
computers on a network.

208

Glossary of Terms 13

Double-click

Double data type

Drag -and -drop

Dynamic array

To quickly press and release a mouse
button twice.

A data type that holds double -precision
floating-point numbers.

A combination of features that allow the
user to drag an object and drop it onto a
form or other ob.ect using the mcuse.

An array whose size can change at run
time.

Dynaset A type of Recordset object that returns
a dynamic set of pointers to live
database data.

EISA Extended Industry Standard
Architecture, for construction of PCs
with the Intel 32 -bit micro -processor.

Embedded object An object whose data is stored along
with that of its container but that runs in

Error number A whole number in the range
0 - 65,535, that corresponds to the
Number property setting of the Err
object.

Error trapping The process of intercepting an error
using error -handling features in Visual
Basic.

Event

Event procedure

An action recognised by an object, such
as clicking the mouse or pressing a key,
and for which you can write code to
respond.

A procedure automatically invoked in
response to ar event initiated by the
user, program code, or the system.

209

13 Glossary of Terms

Executable file A Windows -based application that can
run outside the development environ-
ment. An executable file has an .exe file
name extension.

Expression Any combination of operators,
constants, literal values, functions, and
names of fields, controls, and properties
that evaluates to a single value.

FAT The File Allocation Table. An area on
disc where information is kept on which
part of the disc a file is located.

Field A category of information stored in a

table in a database.

File extension

Filename

Filter

Firewall

Flag

Focus

Form

The suffix following the period in a
filename. Windows uses this to identify
the source application program. For
example .mdb indicates an Access file.

The name given to a file. Ii Windows 95
and above this can be up to 256
characters long.

A set of criteria applied to rows in order
to create a subset of the rows.

Security measures designed to protect
a networked system from unauthorised
access.

A variable used to keen track of a
condition in an application. You can set
a flag using a constant or combination
of constants.

The ability to receive mcuse clicks or
keyboard input at any one time.

A window or dialogue box and a
container for controls.

210

Glossary of Terms 13

FTP (File Transfer Protocol). A protocol for
the transfer of files from one location to
another over the Internet.

Function key Any of the keys labelled Fl to F12. They
often provide shortcuts for frequently
carried out commands and actions.

Function procedure A procedure that performs a specific
task within a Visual Basic program and
returns a value.

GIF Graphics Interchange Format file. A
graphics compressed bitmap format file
developed for transmitting mages over
the Internet.

Graphics method A method that operates on an object
such as a Form PictureBox, or 3rinter,
and performs run-time c rawing
operations.

HTML Hypertext Markup Language. The main
language in which Web documegts are
written.

HTTP

Hyper ink

Hypermedia

Hypertext

Hypertext Transfer Protocol. The
Internet protocol that delivers inform-
ation over the Web.

A location on a page from which a user
can go to another page or location.
Includes visible text or a graphic and the
URL of the destination.

Hypertext extended to include linked
multimedia.

A system that allows documents to be
cross -linked so that the reader can
explore related links, or documents, by
clicking on a highlighted symbol.

211

13 Glossary of Terms

Icon A graphical representation of an object
or concept, as a bitmap with a
maximum size of 32 x 32 pixels.

Index A number that identifies an element in
an array, control array, or :ollection.

Integer data type A data type that holds integer variables
stored as 2 -byte whole numbers in the
range - 32,768 to 32,767.

Internet A worldwide network of thousands of
smaller computer networks and millions
of personal, commercial, educational,
and government, computers.

Intranet A network within an organisation that
uses Internet technologies.

Intrinsic constant A constant provided by an application.
Visual Basic constants are listed in the
Visual Basic object library and can be
viewed using the Object Browser.

Intrinsic control A standard control located on the Visual
Basic Toolbox.

IP Internet Protocol. The network layer for
the TCP/IP protocol suite.

IP address A 32 -bit network address that uniquely
identifies a system or device on an
intranet or the Internet.

ISDN (Integrated Services Digital Network). A
telecom standard using digital
transmission technology to support
voice, video and data communications
applications over regular telephone
lines.

ISP Internet Service Provider - A company
that offers access to the Irternet.

Java An object -oriented programming
language created by Sun Microsystems

212

Glossary of Terms 13

for developing applications and applets
that are capab e of running on any
computer, regardless of the operating
system.

JPG Joint Photographic Experts Group
(JPEG) file. A graphics file format
supported by most browsers that was
developed for compressing and storing
photographic images.

Keyword A word, or symbol, recognised as part
of the Visual Basic programming
language.

Line -continuation The combination of a space followed by
an underscore (_) used in the code
editor to extend a single logical line of
code to two or more physical lines.

Linked object An object that is created in another
application and linked to a Visual Basic
application.

Locked The condition of a data page, row,
Recordset object, or Database object,
that makes it -ead-only to all users
except the one currently entering data.

Logic error A programming error that can cause
code to produce incorrect results or
stop execution.

MDI Multiple -Document Interface appl cation,
with an MDI form as the container for
any MDI child forms in the application.

Megabyte (MB); 1024 kilobytes of information or
storage space.

Megahertz (MHz); Speed of processor in mil ions of
cycles per second.

Message A packet of information passed from
one application to another.

213

13 Glossary of Terms

Method A procedure that acts on an object.

MIDI

MIME

(Musical Instrument Digital Interface) -
enables devices to transmit and receive
sound and music messages.

(Multipurpose Internet Mail Extensions).
A messaging standard that allows
Internet users to exchange e-mail
messages enhanced with graphics,
video and voice.

MIPS (Million Instructions Per Second).
Measures the speed of a system.

Modem Short for Modulator -demodulator
devices. An electronic device that lets
computers communicate electronically.

Monitor The display device connected to your
PC, also called a screen.

Module A set of declarations followed by
procedures.

MPEG (Motion Picture Experts Group). A video
file format offering excellent quality in a
relatively small file.

Multi -tasking Performing more than one operation at
the same time.

Network Two or more computers connected
together to share resources.

Network server Central computer which stores files for
several linked computers.

Node Any single computer ccnnected to a
network.

Numeric expression Any expression that can be evaluated
as a number. Elements of the
expression can include any combination
of keywords, variables, constants, and
operators that result in a rumber.

214

Glossary of Terms 13

Object A combination of code and data that
can be treated as a unit, fo- example, a
control, form, or application component.
Each object is defined by a class.

Objec: Browser A dialogue box in which you can
examine the contents of an object
library to get information abcut the
objects provided in it.

Object library A dynamic -link library (DLL) with one or
more type library resources that typically
has the extensicn .olb. You can use the
Object Browser to view its contents.

Object module A module that contains code specific to
an object.

ODBC (Open Database Connectivity). A
standard protocol that Derm its
applications to connect to a variety of
external database servers or files.

OLE

Parse

Path

Pixel

Plug -and -play

(Object Linking and Embedding). A
special case of ActiveX that enables
applications to be created that contain
components :rom var ous other
applications.

To identify the parts of a statement or
expression and then validate those
parts against the appropriate la iguage
rules.

The location of a file in the fo der, or
directory, tree.

Short for 'picture element; a dot that
represents the smallest graphic unit of
measurement on a screen.

Hardware which can be plugged into a
PC and that can be used immediately
without configuration.

215

13 Glossary of Terms

Point In typography, a point is 1/72 of an inch.
The size of a font is usually expressed
in points.

POP (Post Office Protocol). A method of
storing and returning e-mail.

Pop-up menu

Print zone

See context menu.

Print zones begin every 14 columns.
The width of each column is an average
of the width of all characters in the point
size for the selected font.

Private Variables that are visible only to the
module in which they are declared.

Procedure A named sequence of statements
executed as a unit. For example,
Function, Property, and Sub are types
of procedures.

Procedure template The beginning and ending statements
that are automatical y irserted in the
Code window when you specify a Sub,
Function, or Property orocedure.

Project A Visual Basic program, or set of
modules.

Project Explorer A window that displays a list of files
associated with a Visual Basic project or
project group.

Project file A file with a .vbp extension that keeps
track of the files, objects. options, and
references associatec with a project.

Properties window A window used to display or change
properties of a selected form or control
at design time.

Property A named attribute of an object.

Public Variables declared using the Public
statement are visible to all procedures

216

Glossary of Terms 13

Query

Read-only

Record

Recursion

Registry

in all modules it all applications unless
Option Private Module is in effect

An instruction to a database to either
return a set of records o perorm a
specified action on a set of records.

A type of access to data where
information can be retrieved but not
modified.

A set of related data about a person,
place, event, or some other item. Table
data is stored in records (rows) in a
database.

When a procedure calls itself.
Uncontrolled recursion usually results in
an 'Out of stack space' erro- message.

In Windows 95 and higher, the
Windows registry serves as a central
configuration database for user,
application, aid computer -specific
information.

Relational A type of database that stores
information in tables.

Resource file A file in a Visual Basic project with an
.res file name extension that can
contain bitmaps, text strings, or other
data.

Restricted keyword A word that Visual Basic uses as part of
its language.

Run time The time when an application is
running.

Run-time error An error that occurs when code is
running. A run-time error results when a
statement attempts an invalid operation.

Scope The attribute of a variable or procedure
that determines which sections cf which

217

13 Glossary of Terms

Server

Shortcut key

Single data type

SDI

SLIP

Socket

Stack

Standard control

Startup object

Statement

modules recognise it. Scope can be
public, module, or procedure.

The system designed to share data with
client applications: servers and clients
are often connected over a network.

A function key or key combination, such
as F5 or <Ctrl+A>, that executes a
command.

A data type that stores s ngle-precision
floating-point variables as 32 -bit (2 -byte)
floating-point numbers.

(Single Document Interface). An
application that can support only one
document at a time.

(Serial Line Internet Protocol). A method
of Internet connection that enables
computers to use phone lines and a
modem to connect to the Internet
without having to connect to a host.

An endpoint for sending and receiving
data between computers.

A fixed amount of memory used by
Visual Basic to preserve local variables
and arguments during procedure calls.

An intrinsic control included in the Visual
Basic Toolbox.

The first form displayed in an
application, which is usually the first
form created in the development
environment.

A syntactically complete unit that
expresses one kind of action,
declaration, or definition, usually in a

single line of code.

218

Glossary of Terms 13

Static

String constant

A Visual Basic keyword you can use to
preserve the value of a local variable.

Any constant consisting of a sequence
of contiguous characters interpreted as
the characters themselves rather than
as a numeric value.

String data type A data type consisting of a sequence of
contiguous characters that can include
letters, numbers, spaces, and punc-
tuation. The dollar sign ($) type -
declaration character represents a

String in Visual Basic.

String expression Any expressior that evaluates to a

sequence of contiguous characters.

String literal Any expression consisting of a

sequence of contiguous characters
surrounded by quotation narks that is
literally interpreted as the characters
within the quotation marks.

SQL (Structured Query Language). A
language used in querying, updating,
and managing relational databases.

Sub procedure A procedure that performs a specific
task within a program, but returns no
explicit value.

Syntax The prescribed order and punctuation
for putting programming language
elements into statements that are
meaningful to V sual Basic.

Syntax error An error that occurs when you enter a
line of code that Visual Basic doesn't
recognise.

System modal Describes a window, or dialogue box,
that requires the user to take some
action.

219

13 Glossary of Terms

Tab order The order in which the focus moves
from one field to the next as the Tab or
<Shift+Tab> keys are pressed.

Table The basic unit of data storage in a
relational database. A table stores data
in records (rows) and field 3 (columns).

TCP/IP (Transmission Control Protocol/Internet
Protocol). The Internet standard for
transferring data among networked
computers.

Text data type A field data type.

Time data type A data type that stores a time value.
The value is dependent on the clock
setting of the data source.

Time expression Any expression that can be interpreted
as a time.

Toggle To turn an action on and off with the
same switch.

Twip A screen -independent unit used to
ensure that placement and proportion of
screen elements in your screen
application are the sane on all display
systems. A twip is a unit of screen
measurement equal to 1/20 of a
printer's point.

Type -declaration A character appended b a variable
name indicating the varable's data type.

URL (Uniform Resource L Dcator). An
address to an object, document, or
page or other destination cn the Internet
or an intranet.

User -defined type Any data type defined using the Type
statement.

220

Glossary of Terms 13

VarBinary data type A data type that stores variable -length
binary data. The maximum ength is 255
bytes.

Variable A named storage location that can
contain data that can be modified during
program execution. Each variable has a
name that uniquely identifies it within its
scope.

Variart data type A special data type that can contain
numeric, string, or date data as well as
the special values Empty and Null.

Variant expression Any expression that can evaluate to
numeric, string, or date data as well as
the special values Empty and Nu'l.

VBScript (Visual Basic Script). Microsoft's
Internet scripting technology, based on
Visual Basic

Virus A malicious program, downloaded from
a web site or disc, designed to wipe out
information on your computer.

WAIS (Wide Area Information Server). A
Net -wide system for looking up specific
information in Internet databases.

Watch expression A user -defined expression that enables
you to observe the behaviour of a

variable or expression in the Watch
window of the Visual Basic Editor.

WAV Waveform Audio (.wav) - a common
audio file format for DOS/Windows
computers.

Wildcard characters The asterisk (*), question mark (?),
hash sign (#), exclamation mark (!),
hyphen (-), and brackets ([]) can all be
wildcard characters. They can be used
in queries and expressions to include all
records, file names, or other items that

221

13 Glossary of Terms

Windows API

WinSock

begin with specific characters or match
a certain pattern.

The Windows Application Programming
Interface consists of the functions,
messages, data structures, data types,
and statements you can use in creating
applications that run under Microsoft
Windows.

Windows Sockets is a standard way for
Windows -based programs to work with
TCP/IP.

Wizard A tool that helps create an executable
file by asking questiors and then
creating a file based on the answers.

Working directory A specified directory on a local
computer used to store files when they
are checked out of the version control
program's database.

World Wide Web A system for navigating the Internet by
using hyperlinks. With a browser, such
as Internet Explorer, the Web appears
as a collection of documents, controls,
pictures, sounds, and digital movies.

Yes/No data type A column data type that contains a
Boolean (True/False or yes/no) value.

222

Appendix A

The Code for VatCalc.vbp

All the code and property details for the two forms of the
example program VatCalc.vbp are included here. As yoJ may
have noticed, Visual Basic 6.0 .frm files are saved in text
format. All you need to do to look inside them is to open them in
Notepad, or another text editor. You could also create t- emin
this way as well. In the code below, sone extra formatting has
been added to make it easier to follow.

NOTE - Where one line of code will not fit on the book page,
the Visual Basic continuation character ' has been placed at
the end of the book line.

Begin VB.Form frmVatCalc

Appearance = 0 'Flat

BorderStyle = 1 'Fixed Single

Caption = "VAT Calculator"

ClientHeight = 3465

ClientLeft = 1860

ClientTop = 2085

ClientWidth = 4005

BeginProperty Font

Name = "MS Sans Serif'

Size = 8.25

Charset = 0

Weight = 700

Underline = 0 'False

Italic = 0 'False

Strikethrough = 0 'False

EndProperty

ForeColor = &H80000008&

LinkTopic = "Forml'

MaxButton = 0 'False

PaletteMode = 1 'UseZOrder

223

Appendbt A - The Code for VatCalc.vbp

ScaleHeight = 3465

ScaleWidth 4005

Bagia VB.TaxtBox Text3

Appearance = 0 'Flat

BackColor &H8000000F&

BorderStyle = 0 'None

Height = 285

Left 2760

TabIndex = 7

TabStop = 0 'False

Top 1080

Width 1215

End

!login VB.TextBox Text2

Appearance = 0 'Flat

BackColor = &H8000000F6

BorderStyle 0 'None

Height = 285

Left 2760

TabIndex = 8

TabStop = 0 'False

Top 720

Width 1215

End

Begin VB.CommandButton Cammandl

Appearance = 0 'Flat

Caption `E.Calculate"

Default -1 'True

Height = 375

Left 1200

TabIndex = 2

Top 1560

Width 1215

End

Begin VB.CommandButton Cammand3

Appearance 0 'Flat

Caption `C&lear'

Height 375

Left 1200

224

The Code for VatCalc.vbp - Appendix A

TabIndex = 3

Top = 2760

Width = 1215

End

Begin VB.CommandButton Command2

Appearance 0 'Flat

Caption = u&Exit"

Height = 375

Left 1200

TabIndex 4

Top = 2160

Width 1215

End

Begin VB.TextBox nixt1

Appearance 0 'Flat

BackColor &H8000000F&

ForeColor &}100000000&

Height 285

Left 2160

TabIndex 0

Top 240

Width 1335

End

Begin VB.Label Labell

Appearance 0 'Flat

Caption Enter amount"

ForeColor &H80000008&

Height 255

Left 840

TabIndex 1

Top = 240

Width 1215

End

Begin VB.Label Labe13

Appearance 0 'Flat

ForeColor &H80000008&

Height 255

Left 240

TabIndex = 6

225

Appendix A - The Code for VatCalc.vbp

Top = 1080

Width = 2415

End

Begin VB.Label

Appearance 0 'Flat

ForeColor = &H80000008&

Height 255

Left 240

TabIndex 5

Top = 720

Width 2295

End

Begin VB.Menu anuOptions

Caption "&Options"

Begin VB.Menu mnuVATRate

Caption "&VAT Rate"

End

Begin VB.Menu mnuAbout

Caption "&About"

End

Begin VB.Menu mnuExit

Caption = "E&xit"

End

End

End

Attribute VB_Name = "frmVatCalc"

Attribute VB_GlobalNameSpace = False

Attribute VB_Creatable = Pals.

Attribute VB_PredeclaredId = True

Attribute VB_Exposed = False

Option Explicit

Dim Cost As Currency

Dim CostPlus As Currency

Dim Costless As Currency

Dim VATRate As Double

Dim NVATRate As Double

Private Sub Commandl_Click()

If NVATRate > 0 Then

VATRate = NVATRate

226

The Code for VatCalc.vbp Appendix A

Sloe: VATRate = 17.5

Sad If

Cost = Val(Textl.Text)

CostPlus - Cost * (1 + VATRate / 100)

Costless = Cost / (1 + VATRate / 100)

MsgPlus = "Amount plus " & VATRate & "t VAT

MsgLess = "Amount less " & VATRate & "t VAT

Label2.Caption = MsgPlus

Text2.Text = CostPlus

Label3.Caption = MsgLess

Text3.Text = Costless

Textl.Text = Format$(Cost, "currency')

Text2.Text = Format$(CostPlus, 'currency")

Text3.Text = Format$(Costless, "currency')

Sad Sub

Private Sub Command2_Click()

End ' Leave the VAT calculater

End Sub

Private Sub Command3_Click() 'Clear text areas

Textl.Text = "'

Text2.Text = "

Text3.Text = "

Label2.Caption = ""

Label3.Caption = ""

Textl.SetFocus

Sad Sub

Private Sub mnuAbout_Click()

frmAbout.Shov 1

End Sub

Private Sub mnuExit_Click()

Sad ' Leave the VAT calculater

End Sub

Private Sub mnuVATRate_Click()

NVATRate = Val(IaputBox$("Enter new VAT rate'))

VATRate = NVATRate

End Sub

Appendix A - The Code for VatCalc.vbp

Begin VB.Form froAbout

BorderStyle 3 'Fixed Dialog
Caption = "About VatCalc"

ClientHeight = 3555

ClientLeft = 2340

ClientTop = 1935

ClientWidth = 5730

ClipControls = 0 'False

LinkTopic = "Form2"

MaxButton = 0 'False

MinButton 0 'False

ScaleHeight = 2453.724

ScaleMode = 0 'User

ScaleWidth = 5380.766

ShowlnTaskbar 0 'False

B.gin VB.PicturoBox picIcon

AutoSize = -1 'True

ClipControls = 0 'False

Height = 540

Left 240

Picture = "ABOUT.frx':0000
ScaleHeight = 337.12

ScaleMode = 0 'User

ScaleWidth 337.12

TabIndex . 1

Top = 240

Width 540

End

Migin VB.CommandButton mod=

Cancel = -1 'True

Caption = "OK"

Default -1 'True

Height 345

Left = 4245

TabIndex = 0

Top 2625

Width = 1260

End

228

The Code for VatCalc.vbp - Appendix A

Begin VB.CommandButton andSysinfo

Caption "&System Info..."

Height 345

Left 4260

TabIndex = 2

Top = 3075

Width = 1245

End

Begin VB.Lins Linel

BorderColor = &H00808080&

BorderStyle = 6 'Inside Solid

Index = 1

X1 = 84.515

X2 = 5309.398

Y1 = 1687.583

Y2 = 1687.583

End

Begin VB.Label IblDescription

Caption $"ABOUT.frx":030A

ForeColor &H00000000&

Height 1170

Left 1050

TabIndex 3

Top 1125

Width 3885

End

Begin VB.Label lblTitle

ForeColor = &H00000000&

Height = 480

Left = 1050

TabIndex = 5

Top 240

Width = 3885

End

Begin VB.Line Linel

BorderColor = &HOOFFFFFF&

BorderWidth = 2

Index = 0

X1 = 98.6

229

Appendix A - The Code for VatCalc.vbp

X2 = 5309.398

Yl 1697.936

Y2 1697.936

End

Begin VB.Label lblVersion

Height

Left

TabIndex

Top

Width

End

225

1050

6

780

3885

Begin VB.Label lblDisclaimer

Caption = "No Copyright restrictions

apply"

ForeColor = &H00000000&

Height = 825

Left = 255

TabIndex = 4

Top 2625

Width = 3870

End

End

Attribute VB_Name = "frmAbout"

Attribute VB_GlobalNameSpace = False

Attribute VB_Creatable False

Attribute VB_Predeclaredld - True

Attribute VB_Exposed = False

Option Explicit

Reg Key Security Options...

Const READ_CONTROL = &H20000

Const KEY_QUERY_VALUE = &H1

Const KEY_SET_VALUE = &H2

Const KEY_CREATE_SUB_KEY = &H4

Const KEY_ENUMERATE_SUB_KEYS = &H8

Const KEY_NOTIFY &H10

Const KEY_CREATE_LINK = &H20

Const KEY_ALL_ACCESS = KEY_QUERY_VALUE +

KEY_SET_VALUE + KEY_CREATE_SUB_KEY + -

KEY_ENUMERATE_SUB_KEYS +

KEY_NOTIFY + KEY_CREATE_LINK + READ CONTROL

230

The Code for VatCalc.vbp - Appendix A

' Reg Key ROOT Types...

Const HKEY_LOCAL_MACHINE &H80000002

Const ERROR SUCCESS = 0

Const REG_SZ = 1 'Unicode nul terminated string

Const REG_DWORD = 4 '32 -bit number

Const gREGKEYSYSINFOLOC = "SOFTWARE\Microsoft\Shared

Tools Location'

Const gREGVALSYSINFOLOC = "MSINFO"

Const gREGKEYSYSINFO = "SOFTWARE\Microsoft\Shared

Tools\MSINFO"

Const gREGVALSYSINFO = "PATH"

Private Declare Function RegOpenKeyEx Lib "advapi32"

Alias "RegOpenKeyExA" (ByVal hKey As Long,

ByVal 1pSubKey As String, ByVal ulOptions As Long,

ByVal samDesired As Long,

ByRef phkResult As Long) As Long

Private Declare Function RegQueryValueEx Lib

"advapi32" Alias "RegQueryValueExA" (ByVal hKey As

Long, ByVal 1pValueName As String, ByVal 1pReserved

Long,

ByVal 1pData As String, ByRef 1pcbData As Long) As Long

Private Declare Function RegCloseKey Lib "advapi32"

(ByVal hKey As Long) As Long

Private Sub cmdSysInfo_Click()

Call StartSyslnfo

End Sub

Private Sub cmdOK_Click()

Unload Ne

End Sub

Private Sub Form_Load()

Me.Caption = "About " & App.Title

lblVersion.Caption = "Version " & App.Major & "."

& App.Minor & "." & App.Revisicn & " Nov. 2000"

lblTitle.Caption = App.Title

End Sub

Public Sub StartSyslnfo()

On Error OoTo SyslnfoErr

231

Appendix A - The Code for VatCalc.vbp

Dim rc As Long

Dim SyslnfoPath As String

' Try To Get System Info Program Path\Name From

' Registry...

If GetKeyValue(HKEY_LOCAL_MACHINE,

gREGKEYSYSINFO, gREGVALSYSINFO, SyslnfoPath) Than

' Try To Get System Info Program Path Only From

' Registry...

ElsIf GetKeyValue(HKEY_LOCAL_MACHINE,

gREGKEYSYSINFOLOC, gREGVALSYSINFOLOC,

SyslnfoPath) Than

' Validate Existance Of Known 32 Bit File Version

If (Dir(SyslnfoPath & "\MSINF032.EXE") <> "")

Than

SyslnfoPath = SyslnfoPath & "\MSINF032.EXE"

' Error - File Can Not Be Found...

Elm
GoTo SyslnfoErr

End If

' Error - Registry Entry Can Not Be Found...

Els
GoTo SyslnfoErr

End If

Call Shell(SysInfoPath, vbNormalFocus)

Exit Sub

SysInfoltrr:

MagEox "System Information Is Unavailable At This

Time", vbOKOnly

End Sub

Public Function GetKeyValue(KeyRoot As Long, KeyName

As String, SubKeyRef As String, ByRef KeyVal

As String) As Boolean

Dim i As Long ' Loop Counter

Dim rc As Long ' Return Code

Dim hKey AA Long ' Handle To An Open Registry Key

Dim hDepth As Long

Dim KeyValType As Long' Data Type Of A Registry Key

Dim tmpVal As String

232

The Code for VatCalc.vbp - Appendix A

' Tempory Storage For A Registry Key Value

Dim KeyValSize As Long

' Size Of Registry Key Variable

' Open RegKey Under KeyRoot (HKEY LOCAL MACHINE...)

rc = RegOpenKeyEx(KeyRoot, KeyName, 0,

KEY_ALL_ACCESS, hKey) Open Registry Key

If (rc <> ERROR_SUCCESS) Then GoTo GetKeyError

' Handle Error...

tmpVal = String$(1024, 0)

' Allocate Variable Space

KeyValSize = 1024

' Mark Variable Size

Retrieve Registry Key Value...

rc = RegQueryValueEx(hKey, SubKeyRef, 0,

KeyValType, tmpVal, KeyValSize)

' Get/Create Key Value

If (rc <> ERROR_SUCCESS) Then GoTo GetKeyError

' Handle Errors

If (Asc(Mid(tmpVal, KeyValSize, 1)) = 0) Then

' Win95 Adds Null Terminated String...

tmpVal = Loft(tmpVal, KeyValSize - 1)

' Null Found, Extract From String

Sloe

' WinNT Does NOT Null Terminate String...

tmpVal = Loft(tmpVal, KeyValSize)

' Null Not Found, Extract String Only

Sad If

233

Appendix A - Tb. Code for VatCalc.vbp

' Determine Key Value Type For Conversion...

Select Case KeyValType

' Search Data Types...

Case REG_SZ

' String Registry Key Data Type

KeyVal tmpVal

' Copy String Value

Case REG_DWORD

' Double Word Registry Key Data Type

For i = Len(tmpVal) To 1 Step -1

' Convert Each Bit

KeyVal = KeyVal + Hex(Aac(Nid(tmpVal,

i, 1))) ' Build Value Char. By Char.

Next

KeyVal = Format$("&h" + KeyVal)

' Convert Double Word To String

End Select

GetKeyValue = True

' Return Success

rc = RegCloseKey(hKey)

' Close Registry Key

Exit Function

GetKeyError: ' Cleanup After An Error Has Occured...
KeyVal = ""

' Set Return Val To Empty String

GetKeyValue = False

' Return Failure

rc = RegCloseKey(hKey)

' Close Registry Key

End Function

234

Appendix B

Naming Conventions

This appendix presents a set of suggested coding conventions
for Visual Basic programs, representing programming guide-
lines that focus not on the logic of the program but on its
physical structure and appearance. They make the code easier
to read, understand, and zo maintain.

The main reason for using a consistent set of coding
conventions is to standardise the structure and coding style of
an application so that both you and other users can easily read
and understand the code.

Good coding conventions result in precise, readable, and
unambiguous source code that is consistent with other
language conventions and is as intuitive as possible.

The names you give to forms and controls:

Should begin wi*:h a letter.

Should contain only letters, numbers, and the under-
score character Punctuation characters and spaces
are not allowed.

Should be no loncer than 40 characters.

Object Naming Conventions
Objects should be named with a consistent prefix that makes it
easy to identify the object's type. Recommended conventions,
(as included in Microsoft's MSDN Library:, for the main objects
supported by Visual Basic are listed below. In this book we
have only used a small p-oportion of these object types.

235

Appendix B - Naming Conventions

Prefixes for Controls

Control Type

3D Panel
ADO Data
Animated button
Check box
Combo box
Command button
Common dialogue
Communications
Control (unknown type)
Data
Data -bound combo box
Data -bound grid
Data -bound list box
Data combo
Data grid
Data list
Data repeater
Date picker
Directory list box
Drive list box
File list box
Flat scroll bar
Form
Frame
Gauge
Graph
Grid
Hierarchical flexgrid
Horizontal scroll bar
Image
Image combo
ImageList
Label
Lightweight check box
Lightweight combo box
Lightweight cmd button

Prefix

pnl
ado
ani
chk
cbo
cmd
dig
corn
ctr
dat
dbcbo
dbgrd
dbist
dbc
dgd
dbl
drp
dtp
dir
dry
fil
fsb
frm
fra
gau
gra
grd
flex
hsb
img
imgcbo
ils
lb!
Iwchk
Iwcbo
Iwcmd

Example

pnlGroup
adoBiblio
aniMailBox
chkReadOnly
cboEnglish
cmdExit
dIgFileOpen
comFax
ctrCurrent
dat3ibiio
dbcboLanguage
dbardQueryResult
dbIstJobType
dbcAuthor
dgdTitles
db1Publisher
drp_ocation
dtpPublished
dirSource
drvTarget
filSource
fsbMove
frmEntry
fraLanguage
gauStatus
graRevenue
grdPrices
flexOrders
hsbVolume
imglcon
imgcboProduct
ilsAllIcons
IblHelpMessage
IwchkArchive
IwcboGerman
IwcmdRemove

236

Naming Conventions - A3pendix B

Lightweight frame
Lightweight hor. scroll bar
Lightweight list box
Lightweight option button
Lightweight text box
Lightweight vert. scroll bar
Line
List box
ListView
MAPI message
MAPI session
MCI
Menu
Month view
MS Chart
MS Flex grid
MS Tab
OLE container
Option button
Picture box
Picture clip
ProgressBar
Remote Data
RichTextBox
Shape
Slider
Spin
StatusBar
Syslnfo
TabStrip
Text box
Timer
Toolbar
TreeView
UpDown
Vertical scroll bar

lwfra
Iwhsb
lw1st

Iwopt
Iwtxt
lwvsb
lin
1st

Ivw
mpm
mps
mci
mnu
mvw
ch
msg
mst
ole
opt
pic
clp
prg
rd
rtf
shp
sld
spn
sta
sys
tab
txt
tmr
tlb
tre
upd
vsb

lwfraSaveOptio is
1whsbVolL me
IwIstCostCenters
IwoptlncomeLevel
IwoptStreet
lwvsbYear
linVertical
IstPolicyCodes
lywHeadings
mpmSentMessage
mpsSession
mciVideo
mnuFileOpen
mvwPeriod
chSalesbyRegion
msgClients
mstFirst
oleWorksheet
optGender
picVGA
clpToolbar
prgLoadFile
rdTitles
rtfReport
shpCircle
sldScale
spnPages
staDateTime
sysMonitor
tabOptions
txtLastName
tmrAlarm
tlbActions
treOrganization
updDirection
vsbRate

237

Appendix B - Naming Conventions

Prefixes for Data Access Objects

Database Object

Container
Database
DBEngine
Document
Field
Group
Index
Parameter
QueryDef
Recordset
Relation
TableDef
User
Workspace

Prefix Example

con conReports
db dbAccounts
dbe dbeJet
doc docSalesReport
fld fldAddress
grp grpFinance
ix idxAge
prm prmJobCode
qry qrySalesByRegion
rec recForecast
rel relEmployeeDept
tbd tbdCustomers
usr usrNew
wsp wspMine

Prefixes for Menus

Applications frequently use many menu controls, making it
useful to have a unique set of naming conventions for these
controls. Menu control prefixes should be extended beyond the
initial `mnu' label by adding an additional prefix for each level of
nesting, with the final menu caption at the end of the name
string. The following table lists some examples.

Menu Caption Sequence Menu Handler Name

File Open
File Send Email
File Send Fax
Format Character
Help Contents

mnuFileOpen
mnuFileSendEmail
mnuFileSendFax
mnuFormatCharacter
mnuHelpContents

When this naming convention is used, all members of a
particular menu group are listed next to each other in Visual
Basic's Properties window, and the menu control names clearly
document the menu items to which they are attached.

238

Naming Conventions - Appendix B

Naming Constants and Variables

As well as objects, ccnstants and variables also requi-e well -
formed naming conventions. This section lists recommended
conventions for constants and variables supported by Visual
Basic.

Variables should always be defined with the smallest scope
possible. Global (Public) variables can create enormously
complex situations and make the logic of an application
extremely difficult to understand. Glotal variables also make
the re -use and maintenance of code much more difficult

Variables in Visual Basic can have the following scope:

Scope Declaration Visible in

Procedure -level 'Private' in procedure, The procedure in which
sub, or function it is declared

Module -level 'Private' in the declara- Every procedure in the
tions section of a form form or code module
or ccde module (.frm,
.bas)

Global 'Public' in the declara- Everywhere in the appli-
tions section of a code cation
module (.bas)

In a Visual Basic app ication, global variables should be used
only when there is no other convenient way to share data
between forms. When global variables must be used, it is good
practice to declare them all in a single module, grouped by
function. The module should be given a meaningful name that
indicates its purpose, such as Public.bas.

It is good coding practice to write modular code whenever
possible. For example, if your application displays a dialogue
box, put all the controls and code required to perform the
dialogue's task in a single form. This helps to keep the
application's code organised into useful components and
minimises its run-time overhead.

239

Appendix B - Naming Conventions

As project size grows, so does the value of recognising variable
scope quickly. A one -letter scope prefix preceding the type
prefix provides this, without greatly increasing the size of
variable names.

Scope Prefix Example

Global g gstrUserName
Module -level m mbInCalcInProgress
Local to procedure None dblVelocity

A variable has global scope if it is declared Public in a standard
module or a form module; and module -level scope if declared
Private in a standard module or form module.

The body of constant names should be mixed case with
capitals initiating each word. Although standard Visual Basic
constants do not include data type and scope information,
especially for large programs, the prefix can be extended to
indicate the scope of the variable, as follows.

Data type Prefix Example

Boolean bin bInFound
Byte byt bytRasterData
Collection object col colWidgets
Currency cur curRevenue
Date (Time) dtm dtmStart
Double dbl dblTolerance
Error err errOrderN JM
Integer int intQuantity
Long Ing IngDistance
Object obj objCurrent
Single sng sngAverace
String str strFName
User -defined type udt udtEmployee
Variant vnt vntCheckSum

240

Appendix C

User -Defined Formatting

With the system time at just after 5.08pm on 7th November
2000, the following Visual Basic and user -defined formats
produced the output shown from our UK based PC:

Format

Format(Now, "General Date")
Format(Date, "General Date")
Format(Date, "Long Date")
Format(Date, "Mediu-n Date")
Format(Date, "Short Date")
Format(Time, "Long Time")
Format(Time, "Mecium Time")
Format(Time, "Short Time")
Format(Now,
Format(Now, "ttttt")
Format(Now, "d/m/yyyy")
Format(Now, "d-mmmm-yy")
Format(Now, "d-mmmm")
Format(Now, "mmmn-yy")
Format(Now, "hh:mrn AM/PM")
Format(Now, "h:mm:ss a/p")
Format(Now, "h:mm")
Format(Now, "h:mm:ss")
Format(Now, "d/m /yy h:mm")
Format(Date, "dddd, d mmm yyyy")
Format(Time, "h:m:s")
Format(Time, "hh:mn:ss AMPM")
Format(14)
Format(1233.4, "#:###0.00")
Format(368.9, "###0.00")
Format(0.5, "0.00%"
Format("HI THERE", "<")
Format("Thank you Fred", ">")

Displays

07/11/2000 05:08:2C
07/11/2000
07 November 2000
07 -Nov -00
07/11/2000
05:08:20
05:08 PM
17:08
07 November 2000
05:08:20
7/11/2000
7 -November -00
7 November
November 00
05:08 PM
5:08:20 p
17:08
17:08:20
7/11/00 17:08
Tuesday, 7 Nov 2000
17:8:20
05:08:20 PM
14 (but as the string "14")
1,233.40
368.90
50.00%
hi there
THANK YOU FRED

Some date and time output formats depend on the country and
personal settings of your system.

241

Appendix C - User -Defined Formatting

The following tables identify the characters you can use to
create user -defined formats in your Visual Basic programs.
They are all used with the Format function, as in our previous
examples.

User -Defined Numeric Formats

Character Description

0 Digit placeholder. Display a digit o- a zero

Digit placeholder. Display a digit o- nothing.

Decimal placeholder

Percentage placeholder. The expression is
multiplied by 100. The percent character (%) is
inserted in the position where it appears in the
format string.

Thousand separator

Time separator. Separates hours, minutes, and
seconds when time values are formatted. This
is determined by your system settings.

Date separator. Separates the day, month, and
year when date values are formatted. This is
determined by your system settings.

E- E+ e- e+ Scientific format. If the format expression
contains at least one digit placeholder (0 or #) to
the right of E-, E+, e-, or e+, the number is
displayed in scientific format and E or e is
inserted between the number and its exponent.

Display a literal character. To display a

character other than one of those listed,
precede it with a backslash (\) or enclose it in
double quotation marks (" ").

Display the next character in the format string
To display a backslash, use two backslashes
(\\).

%

242

User -Defined Formatting - Appendix C

"ABC" Display the string inside the double qt..otation
marks (" "). To include a string in format from
within code, you must J se Chr(34) to eiclose
the text (34 is the character code for a

quotation mark (")).

User -Defined Date/Time Formats

Character Description

Time separator.

Date separator.

c Display the date as ddddd and display the time
as ttttt, in that order. Display onl,# date
information if there is no fractional part to the
date serial number; display only time
information if there is no integer portion.

d Display the day as a number without a leading
zero (1 - 31).

dd Display the day as a number with a leading
zero (Cl - 31).

ddd Display the day as an abbreviation (Sun - Sat).

dddd Display the day as a full name,
(Sunday - Saturday).

ddddd Display the date as a complete date (ircluding
day, month, and year), formatted according to
your system's short date format setting. The
default short date format is m/d/yy.

dddddd Disp ay a date serial number as a complete
date (including day, month, and year) formatted
accorcing to the long date setting recognized
by your system. The default long date format is
mmmm dd, yyyy.

243

Appendix C - User -Defined Formatting

w Display the day of the week as a number (1 for
Sunday through 7 for Saturday).

ww Display the week of the year as a number
(1 -54).

m Display the month as a number without a
leading zero (1 - 12). If m immediately follows
h or hh, the minute rather than the month is
displayed.

mm Display the month as a number with a leading
zero (01 - 12). If m immediately follows h or hh,
the minute rather than the month is displayed.

mmm Display the month as an abbreviation
(Jan - Dec).

mmmm Display the month as a full month name
(January - December).

q Display the quarter of the year as a number
(1 - 4).

y Display the day of the year as a number
(1 - 366).

yy Display the year as a 2 -digit number (00 - 99).

yyyy Display the year as a 4 -digit number
(100 - 9999).

h Display the hour as a number w thout leading
zeros (0 - 23).

Hh Display the hour as a number with leading
zeros (00 - 23).

N Display the minute as a number without leading
zeros (0 - 59).

Nn Display the minute as a number with leading
zeros (00 - 59).

S Display the second as a number without
leading zeros (0 - 59).

244

User -Defined Formatting - Appendix C

Ss Display the second as a number with leading
zeros (30 - 59).

ttttt Display a time as a complete time (in:Iuding
hour, minute, and second), formatted using the
time separator defined by the time format
recogn zed by your system. The defatit time
format is h:mm:ss.

AM/PM Use the 12 -hour clock and display an
uppe-case AM with any hour before noon; and
an uppercase PM with any hour between noon
and 11:59 P.M.

am/pm Use the 12 -hour clock and display a lowercase
AM with any hour before noon; and a

lowercase PM with any hour between ncon and
11:59 P.M.

A/P

a/p

Use the 12 -hour clock and display an
uppercase A with any hour before noon; display
an uppercase P with any hour betweefl noon
and ' 1:59 P.M.

Use -.he 12 -hour clock and display a lowercase
A with any hour before noon; display a
lowercase P with any hour between noon and
11:59 P.M.

AMPM Use the 12 -hour cloc< and display the AM
string literal as defined by your system with any
hour before noon; anc display the PM string
literal as defined by your system with ary hour
between noon and 11:59 P.M.

245

Appendix C - User -Defined Formatting

User -Defined String Formats

Character Description

Character placeholder. Display a character or a
space. If the string has a character in the
position where the @ appears in the format
string, it is displayed.

Character placeholder. Display a character or
nothing.

Force lowercase. Display all characters in
lowercase format.

Force uppercase. Display all characters in
uppercase format.

Force left to right fill of placeholders. The
default is to fill placeholders from right to left.

246

Appendix D

Language Reference

Event Procedures

The following is an alphabetic list of the event triggered py-ocedures
of Visual Basic you are most likely to use. An event is an action
which is recognised by a form or ccntrol. The event name is
substituted in the procedure declaration as follows:

Sub ControlName_EventName (arguments)

Event Description

Activate Occurs when an object becomes the active
window.

ButtonClick Cccurs when the user clicks or a BLtton object
it a Toolbar control.

Change Indicates that the contents of a control have
clanged.

Click Occurs when the user clicks (presses and then
releases) a mouse button over an object.

DateClick Occurs when a date on the control is clicked.

DblClick Occurs when the user quickly double clicks a
mouse button over an object.

Deactivate Occurs when an object is no longer the active
window.

DonePainting Occurs immediately after the chart repaints or
recraws.

DownClick Occurs when the down or left arrow button are
clicked.

247

Appendix D - Language Reference

DragDrop Occurs when a drag -and -drop operation is
completed by dragging a control over a
form or other control.

DragOver Occurs when a drag -and -drop operation is
in progress. Can be used tc monitor when
the mouse pointer enters, leaves, or is
directly over a valid target.

DropDown Occurs when the list portion of a combo
box is about to drop down; this event does
not occur if a combo box's Style property is
set to 1 (Simple Combo).

EnterCell Occurs when the currently active cell
changes to a different cell.

EnterFocus Occurs when focus enters the object.

Error Occurs as the result of a data access error
that occurs when no Visual Basic code is
being executed.

ExitFocus Occurs when focus leaves the object.

GotFocus Occurs when an object receives the focus,
either by tabbing to or clicking on the
object, or with the SetFocJs method in
code.

KeyDown Occurs when the user presses a key while
an object has the focus. Used with the
KeyPress event.

KeyPress Occurs when the user presses and
releases an ANSI code key.

KeyUp Occurs when the user releases a key while
an object has the focus. Used with the
KeyPress event.

LinkClose Occurs when a DDE conversation
terminates.

LinkError Occurs when there is an error during a
DDE conversation.

248

Language Reference - Appendix D

LinkExecute

LinkNotify

LinkOpen

Load

LostFocus

MouseDown

MouseMove

MouseUp

Paint

PathChange

PatternChange

QueryUnload

Reposition

Resize

RowColChange

Scroll

Occurs when a command string is sent by a
destination application in a DDE conversation.

Occurs when the source has changed the data
defined by the DDE link, (destiration LinkMode
property set to 3 - Notify).

Occurs when a DDE conversation is being
initiated.

Occurs when a form is loaded.

Occurs when an obect loses t-ie focus, either
by tabbing to or clicking on the object, or in
code with the SetFocus method.

Occurs when the user presses a mouse button.

Occurs when the user moves the mouse.

Occurs when the user releases a mouse
button.

Occurs when pad, or all, of a form or
picturebox is exposed after it has been moved
or enlarged, or after a window that was
covering the object has been moved.

Occurs when the path changes by setting the
FileName or Path properties from code.

Occurs when the file filter (e.g. *.*) has
changed by setting the FileName or Pattern
p-operties from code.

Occurs before a form or application closes.

Occurs after a record becomes the current
record.

Occurs when a form first appears or the size of
an object changes.

Occurs when the currently active cell changes
to a different cell.

Occurs while a user drags the box on a scroll
bar.

249

Appendix D - Language Reference

SelChange Occurs when the selected range changes
to a different cell or range of cells.

Timer Occurs when a preset interval for a timer
control has elapsed.

Unload Occurs when a form is about to be
removed from the screen

UpClick Occurs when the up or right arrow button is
clicked.

Updated Occurs when an object's cata has been
modified.

User Occurs in response to the firing of a

run-time defined event.

Validate Occurs before the focus shifts to a

(second) control that has its
CausesValidation property set to True.

250

Language Reference - Appendix D

Main Visual Basic Keywords

The following are listincs of Visual Basic's main function, statement
and method key -words Where a function is a standard procedure
that performs a specific task and returns a value; a statement is a
reserved word which forms part of a complete expression indicating
one kind of action, declaration, or definition; and a method is a
Visual Basic reservec word that acts on a particular object.

In the first section the keywords are grouped in an alphabetical
listing of the main tasks you are likely tc perform in Visual Basic. In
the second, they are just listed alphabetically with a short
description.

First find the available commands for the operaticn you are
carrying out, then 'o. more detailed information, look in the
alphabetical details list at the end o: this Appendix. Then we
suggest you search the reference section of the Visual Basic Help
facility. This includes working examples of them all.

Listed by Programming Task

Action Keywords

Arrays
Change default lower limit Option Base
Declare and initialise Dim, Private

Public, ReDim
Static

Find the limits Lbound, Ubound
Reinitialise Erase, ReDim
Verify and create IsArray, Array

Controlling Program Flow
Branch GoSub...Return

GoTo
On Error
On...GoSub
On...GoTo

Exit or pause the program DoEvents, End
Exit, Stop

251

Appendix D - Language Reference

Loop

Make decisions

Use procedures

Do...Loop
For...Next
For Each...Next
While...Wend, With
Choose, Switch
If...Then...Else
Select Case
Call, Function
Property Get
Property Let
Property Set, Sub

Conversion
ANSI value to string Chr, Chr$
String to lower or upper case Format, Lcase

Ucase
Date to serial number DateSerial

DateValue
Decimal numbers to other bases Hex, Hex$

Oct, Oct$
Number to string Format, Format$

Str, Str$
One data type to another CBool, CByte, CCur

CDate, CDbI, CDec
CInt, CLng, CSng
Cstr, CVar, CVerr
Fix, Int

Serial number to date Day, Month
Weekday, Year

Serial number to time Hour, Minute
Second

String to ASCII value Asc
String to number Val
Time to serial number TimeSerial,

TimeValue

Cutting, Copying, and Pasting
Use the Clipboard object Clear, GetData

GetFormat, GetText
SetData, SetText

252

Language Reference - Appendix D

Data Types
Convert between data types

Set intrinsic data types

Verify data types

Dates and Times
Get current date or time Date, Date$, Now

Time, Time$
Perform date calculations DateAdd, DateDiff

DatePart
Return a date DateSerial

DateValue
Return a time TimeSerial

TimeValue
Set the date or time Date, Date$

Time, Time$
Time a process Timer

Error Trapping
Generate runtime errors Clear, Error, Raise
Get error messages Error
Get error -status data Err
Return error variait CVErr
Trap errors while ruining On Error, Resume
Type verification IsError

CBool, CByte, Ccur
CDate, CDbI, Cdec
Cint, CLng, Csng
CStr, Cvar, CVErr
Fix, Int
Boolean, Byte
Currency, Date
Double Integer
Long, Object
Single, String
Variant
IsArray, Is Date
IsEmpty, IsError
IsMissing, IsNull
IsNumeric. IsObject

253

Appendix D - Language Reference

File Input/Output
Access or create a file Open
Close files Close, Reset
Control output appearance Formal, Print

Print #, Spc
Tab, Width #

Copy one file to another FileCopy
Get information about a file EOF, FileAttr

FileDateTime
FileLen, FreeFile
GetAttr, Loc
LOF, Seek

Manage disc drives or directories ChDir, ChDrive
CurDir, CurDir$
MkDir, RmDir

Manage files Dir, Kill
Lock, Unlock, Name

Read from a file Get, Input, Input #
Line Input #

Return file length FileLen
Set or get file attributes FilAftr, GetAftr

SetAttr
Set read-write position in a file Seek
Write to a file Print #, Put, Write #

Financial
Calculate depreciation DDB, SLN, SYD
Calculate future value FV
Calculate interest rate Rate
Calculate internal rate of return IRR, MIRR
Calculate number of periods NPer
Calculate payments IPmt, Pmt, PPmt
Calculate present value NPV, PV

Graphics
Change coordinate system Scale
Clear run-time graphics CIs
Draw shapes Circle, Line, PSet
Draw text Print

254

Language Reference - Appendix D

Find size of text TextHeigh-.
TextWidth

Load or save a picture file LoadPicture
SavePictura

Work with colours Point, QBColor
RGB

Manipulating Objects
Arrange forms or controls
on the screen Arrange, ZOrder
Direct user input to a control SetFocus
Display dialogue boxes InputBox, MsgBox
Drag and drop Drag
Hide or show forms Hide, Show
Load or unload obiects Load, Unload
Move or re -size controls Move
Print forms PrintForm
Update the display Refresh
Work with list and combo boxes AddItem

RemoveItem

Mathematical
General calculations Exp, Log, Sqr
Generate random numbers Randomize, Rnd
Get absolute value Abs
Get the sign of an expression Sgn
Numeric conversiors Fix, Int
Trigonometry Atn, Cos, Sin, Tan

Operators
Arithmetic

Comparison

Logical operations

Mod, +, &, =
=, <>, <, >, <=
>=, Like, Is
Not, And, Or
Xor, Eqv,

255

Appendix D - Language Reference

Printing
Control output appearance

Control printer
Print

Procedures
Call a Sub procedure
Reference an external procedure
Define a procedure

Exit from a procedure

Strings
Compare two strings
Convert case

Create strings of repeating characters
Find the length of a string
Format strings
Justify a string
Manipulate strings

Set string comparison rules
Work with ASCII and ANSI values

Miscellaneous
Automation

Colour
Process pending events
Provide a command line string
Run other programs
Send keystrokes to an application
Sound a beep
System

Scale, Spc, Tab
TextHeight
Text Width
EndDoc, NewPage
Print, PrintForm

Call
Declare
Function...End
Function, Sub...End
Sub
Exit Function
Exit Sub

StrComp
Format, Lcase
Ucase
Space String
Len
Format
LSet, RSet
InStr, Left, Ltrim
Mid, Right, Rtrim
Trim
Option Compare
Asc, Chr

CreateObject
GetObject
QBColor, RGB
DoEvents
Command
AppActivate, Shell
SendKeys
Beep
Environ

256

Language Reference - Appendix D

Registry
Delete program sett ngs DeleteSetting
Read program settings Get Setting

GetAllSettings
Save program settings SaveSetting

Variables and Constants
Declare variables or constants

Declare module as private

Const, Dim, Private
Public, New, Static
Option Private
Module

Get information about a variant IsArray, IsDate
IsEmpty, sError
IsMissing, IsNull
IsNumeric, IsObject
TypeName, VarType

Refer to current object Me
Require explicit variable declarations Option Explicit
Se: default data type Deftype

257

Appendix D - Language Reference

Listed Alphabetically
Below is an alphabetic listing of Visual Basic's main function,
statement and method key -words, with a siort description of
each. For more details of their use, look in the program Help.

Abs Function
Returns the absolute value of a number.

AddItem Method
Adds a new item to a list or combo box, o- adds a new row
to a grid control at run time.

AddNew Method
Clears the copy buffer in preparation for creating a new
record in a Table or Dynaset.

AppActivate Statement
Activates an application window.

Append Method
Adds a new object to a collection.

AppendChunk Method
Appends data from a String to a Memo o- Long Binary field
in the copy buffer of a specified Table or Cynaset.

Arrange Method
Arranges the windows or icons within an MDI Form.

Array Function
Returns a Variant containing an array.

Asc Function
Returns a numeric value that is the ANSI code for the first
character in a string expression.

Atn Function
Returns the arctangent of a number.

Beep Statement
Sounds a tone through the computer's speaker.

BeginTrans Statement
Begins a new transaction.

258

Language Reference - Appendix D

Call Statement
Transfers program control to a Visual Basic Sub procedure or a
dynamic -link library (DLL) procedure.

CCur Function
Explicitly converts expressions to the Currency data type.

CDbI Function
Explicitly converts expressions to the Double data type.

ChDir Statement
Changes the current default directory on a speciled dive.

ChDrive Statement
Changes the current drive.

Choose Function
Selects and returns a value from a list of arguments.

CInt Function
Explicitly converts expressions to the Integer data type.

Chr, Chr$ Function
Returns a one -character string whose ANSI code is the
argument.

Circle Method
Draws a circle, ellipse, or arc on an object.

Clear Method
Clears the contents of a list or combo box, or clears the
contents of the operating environment Clipboard.

Clone Method
Returns a duplicate record set object that refers to the same
record set from which it was created.

CLng Function
Explicitly converts expressions to the Long data type.

Close Method
Closes a specifiec Database, QueryDef, or record set.

CIs Method
Clears graphics and text generated at run time from a form or
picture.

259

Appendix D - Language Reference

Command, Command$ Function
Returns the argument portion of the command line used to
launch Microsoft Visual Basic.

CommitTrans Statement
Transcends the current transaction.

CompactDatabase Statement
Compacts and encrypts or decrypts a Microsoft Access
database.

Const Statement
Declares symbolic constants for use in place of values.

Cos Function
Returns the cosine of an angle (angle in radians).

CreateDatabase Function
Creates a Microsoft Access database, and returns a

Database object that is open for exclusive read/write
access.

CreateDynaset Method
Creates a Dynaset object from a specified Table object,
QueryDef object, or SQL statement.

CreateQueryDef Method
Creates a new QueryDef in a specified database.

CreateSnapshot Method
Creates a Snapshot object from a specified table, QueryDef,
or SQL statement.

CSng Function
Explicitly converts expressions to the Single data type.

CStr Function
Explicitly converts expressions to the String data type.

CurDir, CurDir$ Function
Returns the current path for the specified drive.

CVar Function
Explicitly converts expressions to the Variant cata type.

CVDate Function
Converts an expression to a Variant of VarType 7 (Date).

260

Language Reference - Appendix D

Date, Date$ Functions
Returns the current system date.

Date, Date$ Statement
Sets the current system date.

DateAdd Function
Returns a Variant containing a date to which a specified time
interval has been added.

DateDiff Function
Returns a Variant containing the number of time intervals
between two specified dates.

DatePart Function
Returns a specified part of a given date.

DateSerial Function
Returns the date se-ial for a specific year, month, and day.

DateValue Function
Returns the date represented by a String argument.

Day Method
Returns an integer between 1 and 31, inclusive, that represents
the day of the month for a date argument.

DDB Function
Returns the deprec ation of an asset for a specific period using
the double -declining balance methoc.

Declare Statement
Declares references to external procedures in a dynamic -link
library (DLL).

Deflnt Statement
Sets the default data type as Integer

DefLng Statement
Sets the default data type as Long.

DefSng Statement
Sets the default data type as Single.

DefDbl Statement
Sets the default data type as Double.

261

Appendix D - Language Reference

DefStr Statement
Sets the default data type as String.

DefVar Statement
Sets the default data type as Variant.

Delete Method
Deletes the current record in a specified Table or Dynaset.

DeleteQueryDef Method
Deletes a specified QueryDef from a datatase.

Dim Statement
Declares variables and allocates storage space.

Dir, Dir$ Function
Returns the name of a file or directory tat matches a
specified pattern and file attribute.

Do...Loop Statement
Repeats a block of statements while a condition is true or
until a condition becomes true.

DoEvents Function, DoEvents Statement
Causes Visual Basic to yield execution sc :ha.. Windows can
process events.

Drag Method
Begins, ends, or cancels dragging controls.

Edit Method
Opens the current record in a specified record set for editing
by copying it to the copy buffer.

End Statement
Ends a Visual Basic procedure or block.

EndDoc Method
Terminates a document sent to the Printer, releasing it to
the print device or spooler.

Environ, Environ$ Function
Returns the string associated with an operating system
environment variable.

262

Language Reference - Appendix D

EOF Function
Returns a value du-ing file input that ndicates whether the end
of a file has been reached.

Erase Statement
Reinitialises the elements of fixed arrays and deallocates
dynamic -array storage space.

Err, Erl Function
Returns error status.

Err Statement
Sets Err to a specific value.

Execute Method
Invokes an action query in a specified database.

ExecuteSQL Method
Executes an actior query SQL statement in a specified
database.

Exit Statement
Exits a Do...Loop, a For...Next loop, a Function procedure, or a
Sub procedure.

Exp Function
Returns e (the base of natural logarithms) raised to a power.

FieldSize Method
Returns the number of bytes in a text or binary field.

FileAttr Function
Returns file mode or operating system file informatior about an
open file.

FileCopy Statement
Copies a file.

FileDateTime Function
Returns a String that indicates the date and time a specified file
was created or last modified.

FileLen Function
Returns a Long intecer that indicates the length of a file in bytes.

263

Appendix D - Language Reference

FindFirst Method
Locates the first record that satisfies speci'ied criteria and
makes that record the current one.

FindLast Method
Locates the last record that satisfies specified criteria and
makes that record the current one.

FindNext Method
Locates the next record that satisfies specified criteria and
makes that record the current one.

FindPrevious Method
Locates the previous record that satisfies specified criteria
and makes that record the current one.

Fix Function
Returns the integer portion of a number.

For...Next Statement
Repeats a group of instructions a specified number of times.

Format, Format$ Function
Formats a number, date, time, or string according to
instructions contained in a format expression.

FreeFile Function
Returns the next valid unused file number.

FreeLocks Statement
Suspends data processing, allowing a database to release
locks on record pages and make all data in the local
Dynaset objects current in a multi-user environment.

Function Statement
Declares the name, arguments, and code that form the body
of a Function procedure.

FV Function
Returns the future value of an annuity based on periodic,
constant payments and a constant interest rate.

Get Statement
Reads from a disc file into a variable.

264

Language Reference - Appendix D

GetAttr Function
Returns an integer hat indicates a file, directory, or volume
label's attributes.

GetChunk Method
Returns all or a portion of a Memo or Long Binary :ield in a
specified record set

GetData Method
Returns a picture from the Clipboard object.

GetFormat Method
Returns an integer indicating whether there is an item in the
Clipboard matching a specified format.

GetText Method
Returns a text string from the Clipboard.

Global Statement
Used in the Declarations section of a module to declare global
variables and allocate storage space.

GoSub...Return Statement
return from, a subroutine within a procedure.

GoTo Statement
Branches to a spec fled line within a procedure.

Hex, Hex$ Function
Returns a string that represents the hexadecimal v3lue of a
decimal argument.

Hide Method
Hides a form, but does not unload it.

Hour Function
Returns an integer between 0 and 23, inclusive, that represents
the hour of the day corresponding to the time provided as an
argument.

If...Then...Else Statement
Allows conditional execution, based on the evaluation of an
expression.

Ilf Function
Returns one of two parts depending on the evaluation of an
expression.

265

Appendix D - Language Reference

Input, Input$ Function
Reads characters from a sequential file.

Input # Statement
Reads data from a sequential file and assigns it to variables.

InputBox, InputBox$ Function
Displays a prompt in a dialogue box and returns input from
the user.

InStr Function
Returns the position of the first occurrenc9 of one string
within another string.

Int Function
Returns the integer portion of a number.

IPmt Function
Returns the interest payment for a given period of an
annuity based on periodic, constant payments and a
constant interest rate.

IRR Function
Returns the internal rate of return for a se-ies of periodic
cash flows.

IsDate Function
Returns a value indicating whether or not a Variant
argument can be converted to a date.

IsEmpty Function
Returns a value indicating whether or nct a Variant variable
has been initialised.

IsNull Function
Returns a value that indicates whethe' or not a Variant
contains the special Null value.

IsNumeric Function
Returns a value indicating whether or not a Variant variable
can be converted to a numeric data type.

Kill Statement
Deletes file(s) from a disc.

266

Language Reference - Appendix D

LBound Function
Returns the smallest available subscript for the ndicated
dimension of an array

LCase, LCase$ Function
Returns a string in which all letters of an argument have been
converted to lowercase.

Left, Left$ Function
Returns the leftmost r characters of a string argument.

Len Function
Returns the number of characters in a string expression or the
number of bytes required to store a variable.

Let Statement
Assigns the value of an expression to a variable.

Line Input # Statement
Reads a line from a sequential file into a String or Variant
variable.

Line Method
Draws lines and rectangles on an object.

LinkExecute Method
Sends a command string to the other application in a dynamic
data exchange (DDE) conversation.

LinkPoke Method
Transfers the contents of a control to the source application in a
dynamic data exchange (DDE) conversation.

LinkRequest Method
Asks the source in a dynamic data exchange (DDE)
conversation to update the contents of a control.

LinkSend Method
Transfers the contents of a picture control to lie destination
application in a dynamic data exchange (DDE) conversation.

ListFields Method
Creates a Snapshot with one record for each field in a specified
record set.

267

Appendix D - Language Reference

Listlndexes Method
Creates a Snapshot with one record for each field in each
index in a specified table.

ListParameters Method
Creates a Snapshot with one record for each parameter in a
specified QueryDef object.

ListTables Method
Creates a Snapshot with one record for each Table or
QueryDef in a specified database.

Load Statement
Loads a form or control into memory.

LoadPicture Function
Loads a picture into a form, picture box, or image control.

Loc Function
Returns the current position within an open file.

Lock, Unlock Statement
Controls access by other processes to ar opened file.

LOF Function
Returns the size of an open file in bytes.

Log Function
Returns the natural logarithm of a number.

LSet Statement
Left aligns a string within the space of a string variable, or
copies a variable of one user -defined type to another
variable of a different user -defined type.

LTrim, LTrim$ Function
Returns a copy of a string with leading spaces removed.

Mid, Mid$ Function
Returns a string that is part of some other string.

Mid, Mid$ Statement
Replaces part of a string with another string.

268

Language Reference - Appendix D

Minute Function
Returns an integer between 0 and 59, inclusive, that represents
the minute of the hour corresponding to the time provided as an
argument.

MIRR Function
Returns the modifiec internal rate of return for a series of
periodic cash flows.

MkDir Statement
Creates a new directory.

Month Function
Returns an integer between 1 and 12, inclusive, that represents
the month of the year for a date argument.

Move Method
Moves a form or control.

MoveFirst, MoveLast, MoveNext, MovePrevious Method
Moves to the first, last, next, or previous record in a specified
record set and makes that record current.

MsgBox Function
Displays a message in a dialogue box, waits for the user to
choose a button and returns a value indicating which button was
pressed.

MsgBox Statement
Displays a message in a dialogue box and waits for the user to
choose a button.

Name Statement
Changes the name of a disc file or directory.

NewPage Method
Ends the current page and advances to the next.

Now Function
Returns a date tt-a-. represents the current date and time
according to the computer's system clock.

NPer Function
Returns the numbe- of periods for an annuity based or periodic,
constant payments and a constant interest rate.

269

Appendix D - Language Reference

NPV Function
Returns the net present value of an investment based on a
series of periodic cash flows and a discount rate.

Oct, Oct$ Function
Returns text that represents the octal value of the decimal
argument.

On Error Statement
Enables an error -handling routine and specifies the location
of the routine within a procedure.

On...GoSub, On...GoTo Statement
Branches to one of several specified lines, depending on the
value of an expression.

Open Statement
Enables input/output (I/O) to a file.

OpenDatabase Function
Opens an existing database and returns a Database object.

OpenQueryDef Method
Opens a specified QueryDef for editing.

OpenTable Method
Opens an existing table and returns a Table object.

Option Base Statement
Declares the default lower bound for array subscripts.

Option Compare Statement
Declares the default comparison mode :o use when string
data is compared.

Option Explicit Statement
Forces explicit declaration of all variables

Partition Function
Returns a string indicating where a number occurs within a
calculated series of ranges.

Pmt Function
Returns the payment for an annuity based on periodic,
constant payments and a constant interest rate.

270

Language Reference - Appendix D

Point Method
Returns the RGB colour of the specified po nt or a form or
picture box.

PopupMenu Method
Displays a pop -op menu on a form at the current mouse
location, or at specified coordinates.

PPmt Function
Returns the principal payment for a given period of an annuity
based on period c, constant payments and a constant interest
rate.

Print # Statement
Writes data to a sequential file.

Print Method
Prints a text striig on an object using the current colour and
font.

PrintForm Method
Sends a bit -for -bit image of a non -V DI form to the printer.

PSet Method
Sets a point on an object to a specified colour.

Put Statement
Writes from a variable to a disc file.

PV Function
Returns the present value of an annuity based on periodic,
constant payments to be paid in the future and a constant
interest rate.

QBCoIor Function
Returns the RGB colour code corresponding to a colour
number.

Randomize Statement
Initialises the random -number gene-ator.

Rate Function
Returns the interest rate per period for an annuity.

271

Appendix D - Language Reference

ReDim Statement
Used at the procedure level to declare dynamic -array
variables and allocate or reallocate storage space.

Refresh Method
Forces an immediate update of a form, cortrol, or object.

RegisterDatabase Statement
Makes connect information for an ODBC data source name
available for use by the OpenDatabase fun:tor.

Rem Statement
Used to include explanatory remarks in a program.

Removeltem Method
Removes an item from a list or combo box, or removes a
row from a grid control, at run time.

RepairDatabase Statement
Attempts to repair a corrupted Microsoft Access database.

Reset Statement
Closes all disc files.

Resume Statement
Resumes program execution after an erro --handling routine
is finished.

RGB Function
Returns a long integer representing an RGB colour value.

Right, Right$ Function
Returns the rightmost n characters of a stri ig argument.

RmDir Statement
Removes an existing directory.

Rnd Function
Returns a random number, between 0 and 1.

Rollback Method
Ends the current transaction and restores the database to
the state it was in when the transaction bewn.

RSet Statement
Right aligns a string within the space of a string variable.

272

Language Reference - Appendix D

RTrim, RTrim$ Function
Returns a copy of a string with trailing (rightmost) spaces
removed.

SavePicture Statement
Saves a picture from a form, picture box, or image control into a
file.

Scale Method
Defines the co-ordinate system for an object.

Second Function
Returns an integer 'between 0 and 59, inclusive, that represents
the second of the minute for a time argument.

Seek Function
Returns the current file position.

Seek Statement
Sets the position in a file for the next read or write operation.

Select Case Statement
Executes one of several statement blocks depending on the
value of an expression.

SendKeys Statement
Sends one or mcre keystrokes to the active window as if they
had been entered at the keyboard.

Set Statement
Assigns an object reference to a variable.

SetAttr Statement
Sets attribute info-mation for a file.

SetData Method
Puts a picture in the Clipboard using the specified for-nat.

SetDataAccessOption Statement
Sets a global optior for data access usage.

SetDefaultWorkspace Statement
Establishes the user ID and password for protected
(security -enabled) Microsoft Access databases.

SetFocus Method
Sets the focus to a form or control.

273

Appendix D - Language Reference

SetText Method
Puts a text string in the Clipboard using the specified
Clipboard format.

Sgn Function
Returns an integer indicating the sign of a number.

Shell Function
Runs an executable program.

Show Method
Displays a form.

Sin Function
Returns the sine of an angle (angle in radians).

SLN Function
Returns the straight-line depreciation of an asset for a single
period.

Space, Space$ Function
Returns a string consisting of a specified number of spaces.

Spc Function
Skips a specified number of spaces in a Print # statement or
Print method.

Sqr Function
Returns the square root of a number.

Static Statement
Used at the procedure level to declare variables and
allocate storage space. Variables declared with the Static
statement retain their value as long as the program is
running.

Stop Statement
Suspends execution of the running Visual Basic code.

Str, Str$ Function
Returns a string representation of the value of a numeric
expression.

StrComp Function
Returns a Variant indicating the result of the comparison of
two string arguments.

274

Language Reference - Appendix D

String, String$ Function
Returns a string whose characters all have a given ANSI code
or are all the first character of a string expression.

Sub Statement
Declares the name arguments, and code that form :le body of
a Sub procedure.

Switch Function
Evaluates a list of expressions and returns a value or an
expression associated with the first expression in the list that is
True.

SYD Function
Returns the sum -o' -years' digits depreciation of an asset for a
specified period.

Tab Function
Used with the Print # statement and the Print method to
advance the print position.

Tan Function
Returns the tangent of an angle (angle in radians).

TextHeight Method
Returns the height of a text string as it would be priited in the
current font of an object.

TextWidth Method
Returns the width of a text string as it would be priited in the
current font of an object.

Time, Time$ Function
Returns the current system time.

Time, Time$ Staterreit
Sets the system time.

Timer Function
Returns the number of seconds that have elapsed since 12:00
a.m. (midnight).

TimeSerial Function
Returns the time serial for a specific hour, minute, and second.

275

Appendix D - Language Reference

TimeValue Function
Returns the time represented by a String argument.

Trim, Trim$ Function
Returns a copy of a string with both leading and trailing
spaces removed.

Type Statement
Defines a user -defined data type containing one or more
elements.

UBound Function
Returns the largest available subscript for the indicated
dimension of an array.

UCase, UCase$ Function
Returns a string with all letters of an argumen: converted to
uppercase.

Unload Statement
Unloads a form or control from memory.

Update Method
of the copy buffer to a specified Table or

Dynaset.

UpdateControls Method
Gets the current record from a data control's record set and
displays the appropriate data in controls bound to a data
control.

UpdateRecord Method
Saves the current values of bound controls.

Val Function
Returns the numeric value of a string of characters.

VarType Function
Returns a value that indicates how a Variant is stored
internally by Visual Basic.

Weekday Function
Returns an integer between 1 (Sunday) and 7 (Saturday)
that represents the day of the week for a date argument.

276

Language Reference - Appendix D

While...Wend Statement
Executes a series of statements in a loop as long as a given
condition is true.

Width # Statement
Assigns an output -lice width to a file.

Write# Statement
Wr tes data to a sec uential

Year Function
Returns an intege- between 100 and 9999. inclJsive, that
represents the year of a date argument.

ZOrder Method
Places a specified form or control at the front or back of the
z -order within its Graphical level.

277

Appendix D - Language Reference

278

Index

Abs function 153, 155
ActiveX controls ... 16, 151
Addltem statement ... 139
Adding

module 79
projects 65

And statement 96
ANSI

codes 107
conversion 116

Apostrophe (') 54
Application 38

Wizard 195
Arithmetic

functions 153
operators 62
priority 62

Arrays 119
Control 127
dimensioning 122
dynamic 123
Erase statement 123
static 123
string 119

Asc function 116
ASCII

conversion 116
Assignment Statement .. 64
Atn function 153, 154
Auto

List Members 51, 83
Quick Info 51

syntax checking 49
AutoSize property 42

BAS files 37

Binary
files 178
Option 110

Binding controls 184
Bitmap file format 140
Boolean variable 56
Border styles 40
Boxes

Check 17
Corr bo 17
List 17

Break
mode 192
points 193

Byte variable 56

Caption property 33
Character conversion .. 116
ChDir statement 177
ChDrive statement 177
Check boxes 17, 133
Chr function 60, 116
Circle method 143
Clear Screen 73
Close # method 168
CIs method 73
Code

Editor 22, 45, 50
enter 33

Colour property 41
Combo box 17, 136
Command button .. 17, 132
Comments 54
Common Dialogue 169
Compi ing 197
Components box 169

279

Index

Concatenation 117
Constants 55

Control Arrays 127
Control of Program Flow 85
Controls 16, 39, 129

naming 48
.vbp sample project . 130

Converting data types . 106
Co-ordinates 33, 73
Cos function 153, 154
CR control character .. 166
Currency

data type 56
format 75

Current X/Y properties 72
Cursor file format 141
Customising

Toolbar 25
Visual Basic 23

Data
control 18, 183
files 165
sorting 100
type conversion 106
types 55

Date variable type 56
Debug

program 191
Decimal variable 56
Declare variables 58
Defined functions 160
Define records by Type 173
Deployment 200
Derived Functions 159
Design mode 13, 31
Desktop shortcut 9
Digital clock 139
Dim Statement 58
Dimensioning arrays ... 122
Dir list box 18, 179

DLL files 1

Dockable windows 23
Do Loops 90
Double precision 56
Drawing lines 144
Drive list box 18, 179
Drop -down

button 21
Combo 137

Dynamic arrays 123

Edit code 22
Editions 2

Editor (code) 50
Elself statement 98
Enter key 51

Entering code 33, 49
Error trapping 172
Event driven procedure . 45
Example

files 131
programs 10

Excel 187
Executable File 197
Exit

block structures 106
loops 89

Exit For command 89
Exp function 153, 156
Expressions 55

Fl key 30
F2 key 161
F5 key 34
Favorites (Help) 30
File

filters 181
List box 18, 179
types 165

Fix function 153, 156
Fixed format 75

280

Index

Floating point numbers 56
Focus, setting 70
Folder structure 8

For...Next loop 85
Formatting functions 75
Form

Designer 15
Layout Window 21

Forms 36
Frame 17
FreeFile function 171
Freehand drawing 144
Functions 153

derived 159
formatting 75
mathematical 153
standard 75
string 111
user -defined 160

GIF file format 141
Gosub...Return ... 164
Graphic Formats 140
Graphics Methods ... 143
Grid 15

Help system 5, 27
Housekeeping 8

Icon
file format 141

property 41
If statement 95
If Then Else Statement 97
Image control 18
Immediate window 194
InputBox function 60
Input function 168
Install Visual Basic 3

Instr function 112
Interface 36

Int function 153. 156
Integer variables 56
Intrinsic controls 16
IsNumeric function ... 105

JPEG file format 141

Keyboard shortcuts 52
Kill statement 178

Label 17
properties 42

Language reference 247
Lcase$ function 112
Left function 111
Len furction 112
Line

continuation character 93
control 18
method 143

List box 17, 136
LoadPicture function .. 142
LOF function 168
Log function .. 153, 156
Long integers 56
Loop configurations 85

Main Menu 13
MSDN Help 5, 27
Menu

bar 13
design window 148

Message boxes 78
Metafile file format 141

Mid function 111
Mod operator 62
Modes

Break 192
Design 31

Run 31

Modules 37

281

Index

MsgBox
buttons 83
returned values 84
syntax 82

Naming convention .. 47, 55
Nested loops 88
New Project box 12

Object
box 22
Browser 161
orientated 1

OCX files 16, 151
OLE control 18
On/Off format 75
Open

For Input As 168
For Outut As 168
For Random As 174

Opening project 49
Operators

arithmetic 62
logical 96
relational 96

Option
Base statement ... 120
Compare statement 110
Explicit statement 26

Option buttons 17, 135
Options dialogue box 26, 49
Output controls 67
Overview, program 1

Packaging 198
Parameters 163
Percent format 75
Picture box control . 17, 141
Point method 143
Pointer 18
Print 61

statement 168
method 61, 70
Spc function 72
Tab function 72

Priority, arithmetic 62
Procedure box 22
Programmer's Guide 28
Project

elements 36
Explorer 18

Properties 20, 40
change 21

Check box 43
Command button 43
Form 40
Label 42
list 20
Option button 43
setting 40
Text box 42
window 20

QuickBasic 1

Quick info 59

Random access files 173
numbers 157

Randomize statement 157
Record defn by Type 173
ReDim statement 123
Relational operators 96
Remarks 54
Removeltem statement 139
Removing projects 65
Return statement 164
Right function 111
Rnd function . .. 153, 157
Rounding numbers 157

282

Index

Run
mode 31

program 34
time errors 191

Sample projects 10
Save

commands 168
form 35
project 35, 65

Scientific format 75
Scroll bars 17
Searching for help 29
Select Case statement 102
Sequential data files .. 165
Service Pack 7

Setting
focus 70
properties 21

Sgn function 153, 157
Shape control 18
Shortcut keys 44, 52
Sin function 153
Single precision numbers 56
Sorting data 100
Space$ function 112
Spc function 72
Split bar 22
Sqr function 153, 154
Standard

EXE 12
format 75
Toolbox 16

Start Visual Basic 9, 11
Startup object 81

Static arrays 122
Step modifier 87
Stop program 35
Str$ function 116

String
concatenation 117
functions 111
variables 57, 107

Sub procedures 162
Subroutines 164
Subscripted variables 121
System requirements

Tab
function 72
index property 44
key 51

order 44
Tan function 153, 154
Text

Box 17, 67
Option 110

Timer control 15, 139
Title bar 13
Tool bar 13, 25
Toolbox 16
Trapping errors 172
True/False format 75
Twips 33
Type statement 57

Ucase$ function 112
Unload statement 133
User-cefined

formats 77, 241
functions 160

Val function 60, 69, 117
Variables 54

boolean 56
byte 56
currency 56
date 56
double 56
floating-point 56

283

Index

integer 55
long 56
object 56
single 55
string 56
subscripted 121
type declaration 57
variant 55

Variant variable 55
VBA 186
Visual Basic

controls 17, 39
editions 2
file types 19
folder structure 8
install 3
Service Pack 7
shortcut 9

starting 11

window layout 13
Visual Studio 2

While..Wend loop 94
Windows Taskbar 11

Word 187
Working environment ... 24
Writing code 45

Yes/No format 75

284

Companion Discs

COMANION DISCS are available for many of the computer books
written by the same author(s) and published by BERNARD BABANI
(publishing) LTD, as listed at the front of this book (except fo. those
marked with an asterisk). These books contain many pages of
file/program listings. There is no reason why you should spend
hours typing them into your computer, unless you wish to dc so, or
need the practice.

ORDERING INSTRUCTIONS

To obtain companion discs, fill in the order form below, or a copy of
it, enclose a cheque (payable to P.R.M. Oliver) or a postal order,
and send it to the adcress given below. Make sure you fill in your
name and address and specify the book number and title n your
order.

Book
No.

Book
Name

Unit
Price

Total
Price

BP 498 Using Visual Basic £3.50

BP £3.50

BP £3.50

Name

Address

Sub -total

P & P
(@ 45p/disc)

Total Due

£._.

£. .

£

Send to: P.R.M. Oliver, CSM, Pool, Redruth, Cornwall, TR SE

PLEASE NOTE
The autior(s) are fully responsible for providing this Companion Disc service The publishers of this
book accept no responsibility for the supply, quality. or magnetic contents of the clisc, or in respect of
any damage or injury that might be suffered or caused by its use

285

Notes

286

Babani Computer Books

Using Visual Basic
Learn to use Visual Basic to produce professional looking programs
in :he shortest possible time.

Written using Visual Basic 6.0, but can also be used with any other
Windows version, including VisJai Basic for Applications. No prior
programming knowledge is assumed, only a woi-king knowledge of
the Windows environment itself.

The book contains details of: -

-low to install and set-up Visual Basic.

 The graphic environment it uses.
 A primer on the Basic language used by the package. with many

sxamples for you to try.
 -low to handle files and graphic, images.
 -tow to create, compile and package you' own application

programs.

A glossary and detailed appendices are included, owing a useful
reference to the naming convections, user -defiled formats, event
procedures, and the main keywords used in the language. These
alone will be essential reference whenever you use Visual Basic.

gi Beginners M Intermediate Advanced

BP 498

9

ISBN 0-85934-498-3

78 085 9 344982

0 0 6 9 9>

