
eld
BaiDani Electronics Books

optv An Introduction
to PIC
Microcontrollers

Audio and acoustics

Circuits and projects

Data and reference IM

Music and MIDI

Tesit equipment

SW radio and communications

R. A. Penfold

AN INTRODUCTION TO PIC
MICROCONTROLLERS

Other Titles of Interest

BP385 Easy PC Interfacing

BP444 Practical PIC Microcontroller Projects

AN INTRODUCTION TO PIC
MICROCONTROLLERS

by

R. A. PENFOLD

BERNARD BABANI (publishing) LTD
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W6 7NF

ENGLAND

Please Note

Although every care has been taken with the production of this
book to ensure that any projects, designs, modifications and/or
programs, etc., contained herewith, operate in a correct and safe
manner and also that any components specified are normally
available in Great Britain, the Publishers do not accept respon-
sibility in any way for the failure, including fault in design, of
any project, design, modification or program to work correctly
or to cause damage to any other equipment that it may be
connected to or used in conjunction with, or in respect of any
other damage or injury that may be so caused, or do the
Publishers accept responsibility in any way for the failure to
obtain specified components.

Notice is also given that if equipment that is still under
warranty is modified in any way or used or connected with
home-built equipment then that warranty may be void.

0 1997 BERNARD BABANI (publishing) LTD

First Published — October 1997
Reprinted — April 2000

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0 85934 394 4

Cover designed by George Arthur

Printed and bound in Great Britain by Cox & Wyman Ltd, Reading

Preface

You could be forgiven for thinking that the microcontroller was
a very recent invention, but they have in fact been in existence
for many years now. However, it is only relatively recently that
microcontrollers have become available at very low prices. This
makes them suitable for many applications where they would
have previously represented an expensive solution, and has
resulted in an explosion in their popularity. The early micro-
controllers were basically just slightly stripped down versions
of the eight-bit microprocessors of the period, with some built-
in ROM, RAM, and input/output ports. Modern micro-
controllers are mostly designed as such from scratch, or have
evolved so far from their origins that they are effectively
purpose designed chips. This makes it relatively easy to write
the software, especially with the microcontrollers of the RISC
(reduced instruction set computer) variety.

The PIC series of microcontrollers seem to be the most
popular at present, and they have proven their ability to perform
well in a wide range of applications. They are quite inexpen-
sive, which means that they often have a cost advantage over
circuits based on conventional logic integrated circuits. PIC
based projects lend themselves to miniaturisation as in most
cases very little discrete circuitry is required. PIC microcon-
trollers are constructed using CMOS technology and they have
the low levels of power consumption associated with CMOS
logic devices. Consequently, they can be used in applications
where small battery powered equipment is required.

Although PIC microcontrollers are reasonably straight-
forward to use, designing a project based on a microcontroller
is obviously very different to designing a conventional equiva-
lent Even if you have some experience of computer program-
ming and electronic circuit design, producing projects based on
PIC processors could prove to be difficult at first. The main
difficulty is that the programming is done at a very low level
using assembly language. In order to undertake programming at
this level you need to have a reasonable knowledge of what the
processor does, and the registers it contains. Fortunately, the

PIC register and instruction sets are both quite simple, and
armed with a knowledge of both, plus some basic micro-
controller techniques, it is not too difficult to start producing
simple PIC based gadgets.

This book guides you through the basics of PIC program-
ming, including details of the register set, numbering systems,
the PIC instruction set, using the analogue to digital converter,
etc. The final chapter provides some simple demonstration
programs and circuits that you can experiment with. No
previous experience of microcontrollers or programming is
assumed, but you will, of course, need some electronics know-
how in order to design PIC based systems.

R. A. Penfold

Contents

Page

Chapter 1 - MICROPROCESSOR BASICS 1
The Microprocessor 1
Seeing the Light 7
Keeping Count 8
In the Flow 9
Refining 13
One Step at a Time 14
Software or Hardware 19
Architecture 20
Points to Remember 25

Chapter 2 — NUMBERING SYSTEMS AND CODES 27
Applied Logic 27
Bits and Bytes 30
Counting Up 33
Signed Binary 33
Ones Complement 35
Twos Complement 36
Binary Coded Decimal 38
Hexadecimal 39
Octal 41
Conversions 42
Bitwise Operations 43
Rotate and Shift 45
ASCII Codes 50
Finally 53

Chapter 3 — SPECIFICS 55
ROM Types 55
Take Your PIC 57
Programming 61
Reset 63
Clocking On 65
Sleep Mode 70
Count On It 71

Chapter 3 (Continued) Page
Protection 72
The Registers 72
Status Symbols 76
Clocking On 78
Properly Addressed 80
PC and Stack 81
Exceptions 82
A/D Conversion 84
Points to Remember 88

Chapter 4 — THE INSTRUCTION SET 91
The Instruction Set 95
ADDLW 96
ADWF 97
ANDLW 97
ANDWF 98
BCF 98
BSF 99
BTFC 99
BTFSS 100
CALL 100
CLRF 101
CLRW 101
CLRWDT 101
COMF 102
DECF 102
DECFSZ 103
CrOTO 103
INCF 104
INCFSZ 104
IORLW 105
IORWF 106
MOVLW 106
MOVWF 107
NOP 107
RETFIE 108
RETLW 108
RETURN 108

Chapter 4 (Continued) Page
RLF 109
RRF 109
SLEEP 110
SUBLW 110
SUBWF 110
SWAPF 111
XORLW 112
XORWF 112
OPTION 113
TRIS 114
Operations on File Register Bytes 115
Operations on File Register Bits 116
Operations, Literal and Control 116
Points to Remember 116

Chapter 5 — GETTING IT TOGETHER 119
Four Aspect Signal 119
Software 124
Refinements 127
Chip Programming 130
Automatic Signal 131
Subroutines 135
Looking Up 139
A/D Conversion 143
Basic Voltmeter 146
Interrupts 152
Using the RTCC 159
Two Digits 162
Finally 164

Appendix 1 — ELECTRICAL RATINGS 165

Chapter 1

MICROPROCESSOR BASICS

A PIC microcontroller is virtually a complete computer on a
single chip. Admittedly it is a fairly basic computer in
comparison to the average PC, but for many purposes, such as
measurement and control applications, the power of even a
fairly modest PC is slightly 'over the top'. Although a PIC
microcontroller has limited computing power by normal
standards, it is more than adequate for a vast range of useful
applications. It is easy to underestimate the computing power of
a PIC processor, and it has to be borne in mind that all the chips
in the PIC series are RISC (reduced instruction set computer)
processors. Basically all this means is that they have a very
limited range of instructions (about 35 in the case of PIC
processors), but each instruction is completed very efficiently.
In fact a RISC processor normally completes most instructions
in just one clock cycle. As some PIC processors can handle 20
million clock pulses a second, this obviously enables tasks to be
carried out at a very high rate. In fact it is often necessary to
slow down the processor by using a reduced clock frequency or
by adding timing loops into the program. Operating speed is
also aided by having instructions that are well matched to the
likely applications of PIC processors. There are no instructions
for floating point calculations, but a PIC processor is not
intended for applications that involve any advanced
mathematics. The PIC devices are simple but streamlined
processors that are specifically intended for general control and
measurement applications, and they work very well when used
for suitable tasks.

The Microprocessor
Although a computer is extremely complex, its basic function
is fairly simple. The block diagram of Figure 1.1 shows the
basic arrangement used in a computer. Regardless of its
function, a computer does nothing more than take in data on its
inputs, process the data in some way, and then send the data to

1

its outputs. As a simple example, a word processor takes data
typed into the keyboard, and stores it in memory. In this
example the computer is not doing any mathematical
processing of the data, but it does enable the data to be edited
via further input from a keyboard. This can be in the form of
material added into the existing data, material being deleted, or
practically any required change. It is just a matter of having the
system alter the data in memory to give the required change to
the material. The data entered into the system is output to a
monitor so that the user can check that everything is as
required, and once a piece has been perfected it is sent to the
printer via another set of outputs.

The microprocessor is at the centre of the computer, and in a
sense it controls everything else. However, the microprocessor
itself is actually controlled via a program which is stored in the
computer's memory. This memory is in the form of random
access memory (RAM) and read only memory (ROM). The
difference between the two is that ROM retains its contents
when the computer is switched off, whereas RAM only retains
its contents while the computer is turned on. Although the
names suggest that the data in RAM can be accessed randomly
whereas the data in ROM can not, with both types it is possible
to access any memory location whenever required. In a normal
computer system the ROM stores a simple program that gets
the system under way when it is switched on. The application
program (word processor, spreadsheet, or whatever) is then
loaded into RAM and run. Some of the RAM is set aside for use
by the program to store data entered by the user, or whenever
large amounts of data must be put into temporary storage.
A PIC processor does not handle things in quite the same

way, and the program that gets the computer under way and the
main program are one and the same. The program is therefore
stored in ROM, and the RAM is only used for temporary data
storage. One reason for this method of working is that the
amount of RAM contained in the processor is strictly limited.
Loading large and complex programs into RAM is simply not
an option. However, the main reason is that PIC systems are
dedicated to a single function, and they do not operate on the
basis of having a general hardware which is made to perform
the required function by loading suitable software. If you

3

require three different functions it is necessary to have a
separate PIC based system to handle each one.

This may seem to be a bit extravagant, but it has to be
remembered that each PIC based system is quite inexpensive.
Also, in typical PIC applications you require easy to use items
of equipment that you simply switch on and they start to
operate immediately. You do not really want the bother of
loading programs from disc, or the added size, weight, and cost
that would result from adding a disc drive to the system. With
microcontroller based systems it is not usually apparent to the
user that they are dealing with a form of computer based
equipment. By normal computing standards the amount of
storage space for your programs is tiny, but NC processors are
not normally used to perform highly complex tasks. Even so, it
is sometimes necessary to write efficient software if it is to fit
into the ROM.

The microprocessor communicates with the memory circuits
via the data bus, which has eight wires in the case of PIC
processors. A collection of connecting wires is known as a bus,
and PIC processors have an eight bit bus. The data bus is bi-
directional, which simply means that it is used both when the
microprocessor is writing data to the memory circuits and when
it is reading data from them. This bus is also used when reading
data from or writing it to external hardware via the input and
output ports. The required memory location or input/output port
is selected via another bus which is called the address bus. In
the case of PIC processors this bus is 9 to 12 wires (bits) wide,
depending on the amount of memory the chip contains. The
address bus is not bi-directional, and it is a set of outputs on the
microprocessor, and inputs on the memory and input/output
circuits.

The program in ROM controls the microprocessor, but it is
the microprocessor itself that generates the signals which
control the rest of the hardware and ensure everything happens
in the right order. The necessary signals are carried via a
collection of wires that are called the control bus, but this is not
really a bus in the same sense as the address and data buses. The
control bus carries what are really individual signals and not a
set of signals that operate together in quite the same way as
those in the address and data buses. The main function of the

4

control bus is to ensure that the memory and input/output
circuits read from and place data onto the data bus at the correct
times. Having a bi-directional data bus simplifies the circuit in
many ways, but the timing of read and write operations is
obviously critical. The system will crash if the microprocessor
and a peripheral circuit try to place data on to the data bus
simultaneously, and it is also possible that the hardware could
be damaged. Having the microprocessor in control of this
function ensures that conflicts on the data bus should never
occur. The control bus is not included in Figure 1.1 for the sake
of clarity, but it is clearly an essential part of the system. An
advantage of using a microcontroller is that the buses are an
internal part of the device, and are not externally accessible.
Therefore, this is an aspect of the hardware that PIC system
designers do not have to bother about.

The microprocessor flows from one instruction to the next at
a rate which is controlled by the clock oscillator, which is often
referred to simply as the 'clock'. All this circuit does is to
provide a regular stream of electrical pulses at a rate that is
normally a few million pulses per second. One of the
peculiarities of PIC processors is that they can operate with a
very wide range of clock frequencies. With a normal
microprocessors it is only possible to use a fairly restricted
range of clock rates as anything outside this range does not
provide suitable bus timing. There can also be problems with
the memory getting a severe case of amnesia. The acceptable
range of clock frequencies varies from one PIC processor to
another, but in some cases there is no lower limit. Although
there seems to be a never ending quest for higher and higher
clock rates in the world of computing, not all applications
require a very high operating speed. With a normal
microprocessor it is often necessary to slow things down by
inserting lots of timing loops in the software to provide delays.
In some cases PIC processors offer the simple alternative of
using a very low clock frequency. However, note that this
method is only practical in applications where the processor
never needs to operate at high speed. In theory it is possible to
stop the clock and start it again without crashing the system!
When I tried this with a simple PIC based circuit the short rest
when the clock was stopped did not prevent the unit from

5

C'

functioning properly when the clock was restarted. This is
certainly not possible with most other microprocessors.

Seeing the Light
So how would a microprocessor based system handle a simple
task such as controlling an automatic three-colour signal for a
model railway? Figure 1.2 shows a general scheme of things,
with three tracks sensors in addition to the signal. The basic
idea is for the signal to change to red when the train passes
sensor one, which is positioned right next to the signal. When
the train passes sensor two, which is positioned further down
the track, the signal changes to amber. Finally, when the train
passes sensor three the signal is sent back to green once again.
This is basically the same system that is used on 'the real
thing', and it ensures that there is always a reasonable distance
from one train to the next.

In our model train example the signal would contain three
LEDs or miniature bulbs that would be controlled by three outputs
of the microcontroller. The three sensors would be something
fairly basic such as micro-switches or reed switches that would
close momentarily as the model train passed by. For the sake of
this example we will assume that sensors one, two, and three are
read by input lines one, two, and three of the microcontroller.
Similarly, we will assume that the green, red, and amber signal
lights are controlled by outputs one to three respectively.

Logic outputs only have two valid states which are logic 0
('low') and logic 1 ('high'), and logic inputs only recognise
these two states. The two logic levels are respectively
represented by a low voltage of around two volts or less, and a
higher voltage of about three to five volts. It is from this that
their alternative low' and 'high' names are derived. The
program in the microcontroller would initially set the signal to
green by placing output one high, and the other two inputs low.
Actually, the hardware could be designed to operate the other
way round with a low logic level switching on a light, but it is
generally better if things are done the obvious way, which in
this case means having a high level to switch on a light.

The program would then monitor the three sensor switches
at a high rate so that there would be no risk of a change in state
being missed. Eventually the train would reach and operate

7

sensor one. Again, the hardware could be designed to provide
either a high or a low logic level when a sensor switch is
operated. Doing things the obvious way makes life easier, and it
would therefore be sensible to have each switch generate a high
logic state when it is activated. The program would therefore
keep testing the sensor switches until it receives a high logic state
from one of them. If everything goes according to plan it will be
sensor one that is activated first. The program then sets output
one low to switch off the green light, and sets output two high to
turn on the red light. The testing of the sensor switches then
continues until sensor two is activated. The program then
switches off the red light by setting output two low, and the
amber light would be activated by setting output three high. The
testing process would then continue again until a signal from
sensor three was detected. The green light would then be turned
on by setting output one high, and the amber light would be
switched off by setting output three low. This takes the system
back to its initial state, and it would then repeat this whole
process indefinitely as the train went around the track.
A simple set-up of this type is really under-utilizing the

capabilities of a microcontroller, but it demonstrates the basic
way in which a microcontroller can be applied to a practical
application. A signalling system based on a microcontroller
would be quite capable of controlling several signals, together
with added complications such as direction sensors and four-
state signals. The limits are often those of the designer's
imagination and programming skills rather than those of the
microcontroller.

Keeping Count
When a microcontroller is first switched on it goes through a
resetting and initialisation process that ensures everything is set
up and working correctly before the first instruction is fetched
from memory and run. A certain address is used for the start of
the program, and the address bus is initially set to the
appropriate pattern of logic levels for this particular memory
location. The first instruction is then fetched from memory and
executed. The next clock pulse increments a counter within the
microprocessor (the program counter or PC), and this moves
the address bus on to the next memory location.

8

The next instruction is then fetched from this memory
location, and performed. The program could just continue in
this fashion, going sequentially through all the instructions one
by one until they had all been completed. This is a bit limiting
though, and is not the way things operate in practice. One
problem is that the processor would rapidly run out of
instructions and grind to a halt. Practical applications require
the system to go on functioning indefinitely.

Practical programs make use of loops, jumps, and branches,
which take the program out of its normal straightforward
sequential scheme of things. The most simple form of loop is
where the program simply goes back to the beginning once the
final instruction has been performed. This is a feature of most
programs, and is the most simple means of keeping the system
running indefinitely. Loops, branches, etc., are considered in
more detail later on.

In the Flow
When working out even the most simple of programs it is
generally a good idea to start with a simple chart or diagram
which goes through the program step-by-step. A diagram of this
type is called a flow chart, and there is a standard set of
symbols for this type of chart (Figure 1.3). Few programmers
seem to adopt standard flow charts, and most seem to use charts
of their own style. In fact many programmers seem to use what
would be more accurately described as a flow list or flow table
rather than a chart. My own preference is for a list of program
steps with lines to show how the program branches in and out
of the main flow. The precise form of the chart, list, or table is
not really that important. Provided it enables you to get
everything clear in your mind so that it is easy to write the 'real
thing', the chart (or whatever) will have served its purpose.

When working out a flow chart it is not necessary to get too
technical, since its purpose is simply to provide you with a
logical sequence of events that will provide the desired result.
In our example of an automatic model train signal, it would not
be necessary to deal in terms of actual input/output ports and
the lines of these ports that would be used. Instead, it would just
be a matter of working on the basis of what each program step
would actually achieve. For instance, the first program step

9

/
Manual Operation Input/Output Process

CD CD o
Terminal/Interrupt Preparation Decision

Merge

Connector

Document

Manual Input

Communications Link

Dispiay

A

V
Off Page

Fig. 1.3 The standard set of flowchart symbols

would set the signal at green, and the first symbol in the chart
would be marked accordingly. It would not be labelled
something along the lines of set line three of port A high'.
Once the initial chart has been completed you may wish to
work out a more detailed version before writing the program

10

code. It would certainly be necessary to at least make a few
notes detailing the function of each input and output port, and
where appropriate the function of each line of each port. Once
again, programmers generally work out their own way of
working, and the best method for one person is not necessarily
well suited to anyone else.

Figure 1.4 shows a suggested flow chart for the automatic
model train signal. Most programs start with some initial
conditions being set and in this case the only thing to set at the
outset is the state of the signal which is set to green. The next
step is to read the sensor switches to determine whether or not
any have been activated. The program then has to make a
decision which is dependent on the results of reading the sensor
switches. If a switch has not been activated the program must
read the switches again and continue reading them until one has
been operated. This is achieved by simply looping the program
back to the instruction where the sensors are read. The program
therefore loops around these two program instructions until a
switch has been activated. It then breaks out of the loop and
moves on to the next section. This looping process is an
essential part of practically every program ever written, and
even quite simple programs usually feature several loops. The
same is true of decision making instructions of the ' if this
condition is met then do this, else do that' variety. You need to
be careful when writing loop routines as it only requires a
minor oversight to get the program into a loop from which it
can never break out!

Once a switch has been activated, the program moves on to
the next section where it must make the appropriate alteration
to the signal. This requires more decision making instructions,
and there is more than one way of handling this sort of thing. In
this case there are only three possible actions that the program
can take, which are to set the signal to red, amber, or green. The
most simple solution is probably to use a series of three
decision making instructions, one for each possible outcome.
The first of these instructions tests to see if sensor one was
activated, and sets the signal to green if it was. The next two
instructions are similar, but test sensors two and three, and set
the signal to amber and green respectively if they detect that the
switch has been activated. Once these three instructions have

11

Fig.1.4 The initial flowchart for the automatic signal

been completed the signal must be at the correct state, and it is
then a matter of looping back to the part of the program where
the sensor switches are read. The program then continues to
loop around these instructions once again until a sensor is
activated. This whole process repeats for as long as power is
applied to the system.

Refining
Once you have worked out a general form for a program it is
necessary to make a detailed investigation to see whether you
have overlooked or over simplified anything. In this example
there are one or two questions to answer, and potential flaws
that must be addressed. One question is where do the series of
three decision making instructions obtain their data? One
possibility is for each of these sections of the program to read
the sensor switches, or to read the relevant sensor switch
anyway. This is probably a viable way of handling the program
in this case, but is not the usual way of handling things. The
only thing that might prevent the program from working
properly using this method would be if the sensor switch was
only activated for a very short time. It would then be possible
for the program to break out of the small loop, but for the series
of three decision making instructions to leave the signal
unaltered because the switch would have returned to its standby
state before the program reached them. This is unlikely in
practice because the program would execute very rapidly
provided a high clock frequency was used. However, this
possibility can be avoided by placing the data initially read
from the switches in RAM. The series of three decision making
instructions can then operate on this data rather than reading the
sensor switches again. This ensures that the signal must be set
to the correct state even if the sensor switch has returned to the
standby state.
A more likely cause of problems is the program executing

too rapidly so that the active sensor switch is still active when
the program loops back to the point where the switches are read
again. In this particular case the program should still function
properly if this should happen because it does not matter if the
program keeps executing the three decision making
instructions. It would simply result in the signal being

13

repeatedly set to the new state, which would mean in practice
that it would remain in the correct state. In some applications
though, this sort of unscheduled looping would cause problems
and would have to be avoided. In this example it could be
eliminated by including a time delay between the final decision
making instruction and the loop back to where the sensors are
read. Short delays are easily added using dummy instructions
that do not actually achieve anything other than wasting time.
Longer delays can be produced using a form of loop routine.

With many types of programming, the faster the program
runs the better. The same is not always true of the software for
control and measurement applications. It is often essential that
the program operates in unison with hardware in the outside
world. Sometimes this is achieved via signals passed to-and-fro
between the processor and the external hardware, which is a
system known as handshaking'. On other occasions the
synchronisation is achieved by using delaying routines as and
where necessary. This second method is more easily
implemented, but it will not always provide adequate timing
accuracy. Handshaking is generally the more reliable method.
In applications where timing is critical it is essential to know
how long certain sections of the program take to execute.
Fortunately, this is easily calculated provided the duration of
each clock cycle is known. It is just a matter of adding the total
number of clock cycles that a routine will take, and then
multiplying this by the duration of one clock cycle. Where
good timing accuracy is essential it is normally necessary to
use a crystal controlled clock oscillator.

One Step at a Time
When writing computer software you have to bear in mind that
the microprocessor operates in what are really very simple
steps. This is especially the case with a RISC processor such as
a PIC type. When producing an initial flow chart it does not
matter too much if each section of the chart actually involves
more than one processor instruction. You may also have to
modify the way in which the program operates in order to suit
the instructions that are available. At some stage though, things
have to be worked out in greater detail, and in a fashion that can
actually be implemented by the processor. You may prefer to

14

',

Fig.1.5 The flowchart for the decision making process

leave this until you start writing the program code, or you may
like to produce a more detailed flow chart first. In our model
signal example the series of three decision making instructions
would almost certainly have to consist of more than three
processor instructions. The flow chart of Figure 1.5 shows one
possible way of handling the decision making process.

The first instruction determines whether or not sensor one
was activated. If it was, the program sets the signal to red, and
then jumps forward to the end of the routine. Programs usually
contain numerous jump instructions which enable parts of the
program to be bypassed. A loop uses a form of jump instruction
to move backwards and repeat an action, but in this case the
jump is forwards to avoid actions we do not require. This type
of instruction is called a 'skip'. If sensor one was not activated,
the program moves on to a second decision making stage where
sensor two is tested. If sensor two is set, the signal is set to
amber, but if it was not activated it must have been sensor three
that was set. In this case the signal is set to green. In either
event, once the signal has been set the program jumps to the
end of this routine.

Even with this new improved decision making routine it
is possible that five stages in the flow chart would translate
into more than five processor instructions. This does not
really matter though, and the purpose of the flow chart is to
provide the programmer with a sensible basis for the program
rather than to provide a sort of pseudo programming code.
Provided the general scheme of things in the flow chart is
workable, there should be no difficulty in converting it into a
working program.
On the other hand, do not expect to get everything right first

time when you start programming. The first thing you learn
when you begin programming is that microprocessors are very
unforgiving. You have to get everything just right or the
program will not run properly. Programs for measurement and
control applications are often quite simple, but they also tend to
be rather pernickety. You often need to have to consider what is
happening almost literally from one nanosecond to the next.
However, provided you proceed carefully and thoughtfully
programs can be perfected with a minimum of ' fine-tuning'.

Although the system outlined in Figure 1.5 is in many ways

16

-73

ISet Signal
To Red

Set Signal
To Amber

Set Signal
To Green

_

Fig. 1.6 A possible basis for the automatic train signal

Set Signal
To Red

Set Signal I
To Amber

Fig.1.7 An alternative approach to the automatic signal program

Set Signal I
To Green

sound, it has one major flaw. This is simply that it does not
translate easily into PIC instructions. It is generally better to
rework ideas to suit the instructions that are available rather
than trying to put together convoluted routines that follow your
initial scheme of things. The systems outlined in Figures 1.6
and 1.7 match up better with the actual instructions available.
The method used in Figure 1.6 is to test to see if a particular
switch has been set, and then jump one instruction ahead if it
has not. The next instruction will set the signal to the
appropriate state if the switch has been activated, but it will
simply be skipped if it has not. The saine basic procedure is
repeated for all three switches. This method is delightfully
simple, but in practice it only operates properly if the signal can
be set to the desired state in a single instruction. With
something as simple as controlling some LEDs there should be
no problem in this single instruction limit, but in many
applications this may be too limiting.

The alternative method of Figure 1.7 overcomes the single
instruction limit. Again the sensor switches are tested one by
one, but this time the program goes to a subroutine if a switch
has been activated. There is a separate subroutine for each
switch, and each subroutine sets the signal to the appropriate
state for the switch that controls it. A subroutine is effectively a
small program in its own right, and they are sometimes referred
to as subprograms. Within the memory limits of the processor,
the subroutines can be as long as you like, and they can
undertake quite complex tasks if necessary. Subroutines form a
major part of most software.

Software or Hardware
When designing a system based on a microcontroller there are
often decisions to be made about how much of the task is
handled by the processor and its program, and how much is
tackled by external hardware. For example, if the system must
drive seven segment displays, should these be controlled via
external display decoders or direct from outputs of the
microcontroller. The advantage of using external decoders is
that it simplifies the software, and it also requires fewer output
lines on the microcontroller. Using the microcontroller to
provide the decoding simplifies the hardware and reduces cost,

19

but it greatly increases the time needed to write the software.
Also, remember that a microcontroller has limited storage
space available for the program and does not have a vast
number of input/output lines.

In some cases there may be no choice but to augment the
microcontroller with some fairly sophisticated hardware. In
fact a microcontroller is sometimes only a fairly minor part of
the hardware, but it could still greatly reduce the overall cost
and complexity of the system. Each case has to be considered
on its own merits, and it often depends on how much time you
are prepared to spend writing the software. As far as reasonably
possible, it clearly makes sense to use the microcontroller to
handle as much of the work as possible as this produces a
neater and cheaper finished product.

Architecture
Microprocessors vary considerably in the way that they handle
data, and in their internal arrangements (their 'architecture' as
it is generally termed). The original microcontrollers were
really just modified versions of the microprocessors of the day,
and were far from ideal for many applications. They included
facilities that were 'over the top' for most applications, and
lacked some that would have been very useful. They were also
very expensive in comparison to most of today's micro-
controllers. Because of their expense and complexity, the early
microcontrollers were really only suitable for the more
advanced applications. For anything more straightforward it
was usually cheaper and easier to use conventional logic
circuits. Many of the more modern microcontrollers (including
the PIC processors) are relatively simple and are a practical
choice for anything but the most basic of applications.
Internally they are either very basic or very streamlined,
depending on your viewpoint. Although the streamlined
approach may ultimately be a bit limiting, it does make it much
easier to get started with your own simple microcontroller
projects.
We will not consider the precise internal arrangements and

functioning of PIC processors as this is something that you do
not really need to understand in order to use them. On the other
hand, when programming PIC processors you will not

20

normally be using a high level language that almost totally
shields you from the internal workings of the processor. You
normally have to deal with the processor using a low level
language that requires you to have some knowledge of how the
processor handles instructions and data. Fortunately, a
superficial knowledge of the internal goings on is all that is
needed. At this stage we will settle for a brief look at the
general way in which microcontrollers operate, but more
specific information about PIC processors is provided in a later
chapter.
A microcontroller contains a lot of complex logic circuitry

which provides mathematical functions, and generally ensures
that everything happens correctly. Although this circuitry is
essential to the operation of the microcontroller, it is
'transparent' to the user. You program the processor with a
series of instructions, and it carries them out. The exact way in
which it decodes and executes the ilstructions is largely of
academic importance, and the complexity of the internal
circuits of microprocessors is such that this is probably just as
well. All you really need is a basic knowledge of the parts of the
processor that actually handle your data, and simply take for
granted the circuits that operate in the background and perform
the instructions.

The parts of the processor that you deal with first-hand are
the registers. These store information, and the information that
they contain can be overwritten and altered as frequently as
required. In this respect the registers are much like RAM, and
some of the registers in a microcontroller are effectively its
RAM. Some of the registers have specific functions though,
and are not simply used as general purpose data stores. Figure
1.8 shows the architecture for a simple microcontroller which
demonstrates some of the fundamentals of microcontroller
operation. The registers break down into two basic types, which
are those in the memory map, and those which are an integral
part of the microprocessor. With a conventional microprocessor
there is a clear cut distinction between the two types, because
the registers in the memory map are external to the
microprocessor. These registers are accessed via an address
placed on the address bus, and they are the RAM, ROM, and
the input/output ports. Things are much the same with a

21

PROGRAM COUNTER

STATUS REGISTER

INPUT/OUTPUT PORT

INPUT/OUTPUT PORT

INPUT/OUTPUT PORT

G.P.REGISTER

G.P.REGISTER

G.P.REGISTER

G.P.REGISTER

G.P.REGISTER

G.P.REGISTER

G.P.REGISTER

ROM

ROM

ROM

ROM

ROM

ROM

ROM

ROM

ROM

ROM

ROM

CONTROL REGISTER

CONTROL REGISTER

ACCUMULATOR

A.L.U.

Fig. 1.8 Example register set for an ultra-simple
microcontroller

22

microcontroller, but the RAM, ROM, and ports are integral
rather than discrete. As already pointed out, the RAM is not
used for program storage; the program is stored in the ROM.
The RAM is used for general purpose data storage.
Microprocessors have built-in registers that can be used as
temporary data stores, but with microcontrollers the general
purpose registers in the RAM are effectively merged. In a
microcontroller context, the RAM is generally called the data
registers, file registers, or something similar. The accepted term
for PIC processors is file register (or register file, as you prefer).

With some microprocessor; the input/output ports are placed
in a separate map (the input/output map), and are accessed
using a separate set of instructions. Most microcontrollers
operate on the basis of having the ports in the memory map, and
they are accessed using the same instructions that are used for
memory accesses. This method is easier for the programmer,
since it is only necessary to learn one type of instruction. On the
other hand, you do have to keep in mind the addresses of the
ports so that you do not inadvertently try to use them as
ordinary registers.

Although there may appear to be no way of utilizing the
registers that are not in the memory map, there are special
instructions which enable them to be used. The most important
of the extra registers is the accumulator, although it is not
necessarily referred to by this name these days. The
accumulator operates in conjunction with the arithmetic logic
unit (ALU), which is the circuit that provides mathematical
calculations such as addition and subtraction. The accumulator
is very much at the centre of things, with virtually all data
entering the accumulator at some stage. This can produce
something of a bottleneck, and some microprocessors have two
accumulators. Another approach is to enable the results of
calculations or other processing of the data to be dumped
straight into another register, so that the general purpose file
registers can be used as pseudo accumulators. The PIC
processors have some ability to do this.

The status register is another very important register.

Conventionally this is not part of the memory map, but it is
only fair to point out that with the PIC processors it is actually
one of the memory mapped registers. Either way, it is used in

23

much the same manner. The status register is used by the
processor to store snippets of information which your programs
can act on. Each piece of information is indicated by what is
termed a 'status flag'. The most basic of these flags is the 'Z'
(zero) flag, and this indicates whether or not the result of
certain instructions is zero. This is commonly used in a loop
which must complete a certain number of loops before the
program moves on. Suppose that the program must loop 10
times. A value of 10 could be placed in the accumulator, and the
loop routine could be made to subtract one from this value on
each loop of the program. The status register is mainly used in
conjunction with decision making instructions, and in this case
such an instruction would be used to move out of the loop when
the value in the accumulator reached zero, and the zero flag was
set. This would, of course, occur after ten loops.

The Stack is used by the processor as a temporary store, and
it is not necessarily directly accessible. In fact it is not directly
accessible in the PIC processors, and you have to rely on the
processors to use it correctly. Conventionally the Stack is a
section of RAM that is used to store addresses and other data
when the processor goes into some form of subroutine. As we
have already seen, this is where the program breaks out of its
normal flow and goes into what is normally a small program
that is largely or totally separate from the main program.
Having completed this subroutine, the processor goes back to
where it left off, and continues from there as if nothing had
happened. The information stored in the Stack enables the
processor to be set with the same set of conditions that
prevailed before the subroutine was performed.
A subroutine can be instigated by a program instruction, or

via a piece of hardware driving an input of the microprocessor.
This second method is known as an ' interrupt', and with a
complex microprocessor system such as a PC there is a
constant stream of interrupts. Practically every piece of
hardware generates interrupts to indicate to the processor that it
needs urgent attention. There is usually a hierarchy which
ensures that more important devices take precedence over less
important ones. In a PC the peripheral devices such as the
mouse, keyboard, printer and serial ports, etc., all generate
interrupts, and a fair percentage of the processor's time can be

24

taken up servicing them all. By making these devices interrupt
driven there is no risk of input from them being overlooked,
with keyboard characters being missed for example.
Microcontrollers generally make less use of subroutines and
interrupts, and in the case of the PIC processors their
capabilities are quite limited in this respect. In fact the more
simple PIC processors do not implement interrupts at all. Hence
a relatively simple Stack suffices.

If you have managed to follow things this far you should be
starting to get the idea of the basic way in which a system based
on a microcontroller functions. When the system is switched on
it starts running the program instructions stored in ROM. Under
the direction of the program, the processor reads data from
input ports, provides any necessary processing, and places data
on its outputs. This may seem a bit basic and of limited
practical value, but this is the basic function of practically all
logic circuits, whether they are based on a microprocessor, a
microcontroller, or ordinary logic chips.

Microcontrollers are not suitable for all applications, but
they are well suiied to most logic oriented applications.

Points to Remember
A microcontroller is a complete computer contained in a single
chip. It has built-in memory circuits for the program, and
input/output ports to communicate with the outside world.

The basic function of a microcontroller is to take in data on
its inputs, process it in some way, and place new data on its
outputs.
A microcontroller, like any logic circuit, only deals with

signals at logic levels. Logic 0 (low) is represented by a voltage
of about two volts or less; logic 1 (high) is represented by a
higher voltage that is usually about three to five volts.

The inputs and outputs of a microcontroller can be used in
isolation to monitor switches, control lamps and relays, etc., or
they can be used together as a bus. With suitable coding the
signals carried by a bus can represent numbers, letters of the
alphabet, or just about anything else.

The microcontroller uses buses to carry data, instructions,
etc., internally. Data is carried on the bi-directional data bus,
and the memory addresses are handled by the address bus.

25

The program is stored in ROM, and the ROM contents can
not be altered by the program when it is running. The contents
of ROM are retained when the unit is switched off.

Microcontrollers have only small amounts of RAM, but
RAM is not needed for storing programs. The RAM effectively
becomes a set of general purpose data or file registers that can
be used as temporary data stores.

The accumulator is the register at the heart of the processor,
and it works in conjunction with the ALU (arithmetic logic
unit). Virtually all instructions use the ALU and the
accumulator.

Program instructions are normally carried out in sequence,
working through the ROM from a standard start address.
Special instructions enable the program to jump out of the
normal sequence.

Some of these jump instructions are conditional, and jump to
one address or another depending on the state of a certain bit of
a register.

This register is often the status register, which contains flags
that are set if certain conditions are met after a mathematical
operation.
A clock oscillator controls the rate at which instructions are

executed, and PIC processors can operate over a very wide
range of clock frequencies.

Microcontrollers are suitable for most applications that are
apposite to a logic circuit.

26

Chapter 2

NUMBE:RING SYSTEMS AND CODES

When you start learning about logic circuits they can seem to be
singularly useless! What distinguishes a logic circuit from an
analogue type is that it only deals with two signal levels. As
explained in Chapter 1, these are called logic 0 and logic I, and
they are respectively represented by a low voltage (typically
about 0 to 2 volts) and a higher voltage that is normally about 3
to 5 volts. While this may appear to give such circuits very
limited practical application, in reality they can be applied to
almost any need. You only need to look around you in the
modern world to see a vast range of applications which now
utilise digital circuits. Not only are logic circuits used
extensively, but they have totally revolutionised many aspects of
modern electronics.

Applied Logic
Some applications are well suited to digital control and it does
not take much imagination to see how logic circuits can be put
to use in these. As an example, suppose that a circuit must
control a row of lights and produce a moving lights display.
Each light is either on or off, and this type of control obviously
suits the logic way of doing things with just two signal levels.
Each light can be switched on by a logic 1 level and switched
off by a logic 0 level. It is just a matter of producing a circuit
that will produce the right sequence of Os and Is at its outputs,
and keep repeating this sequence at the required rate.

Most ' real world' applications do not require straightforward
on/off switching, but instead deal with quantities of something.
For example, a weighing scale does not operate on the basis of
something being heavy or not, but deals in actual weights.
Digital systems can handle quantities quite easily, and it is just
a matter of using a number of digital lines, together with a
suitable method of coding. Letters of the alphabet, punctuation
marks, etc., are usually represented by ASCII codes, and these
use seven lines to carry the codes. Each set of seven Is and Os
represents a different character. For instance, the code 1010101

27

represents the upper-case letter `U'.
Numeric values of any magnitude can be represented by a

digital circuit, but it requires a large number of digits to
represent quite modest values. Even so, with the current
technology this still represents by far the easiest way of using
electronic circuits to handle numbers. Although the
mathematics are being handled in what could be regarded as a
rather clumsy fashion, the speed of electronic circuits is such
that number-crunching is carried out at very high speeds. Also,
the fact that a digital system is operating using Is and Os is not
normally apparent to the user. There is usually hardware at the
input and output of a digital circuit which enables the user to
feed in data and extract it using the ordinary decimal
numbering system. The user is also protected from raw ASCII
codes in much the same way. The user enters letters via a
typewriter style keyboard, and the appropriate characters
appear on the screen of the monitor or a liquid crystal display.
The system gives no hint as to how it is handling the data.

Representing a single quantity using logic signals is clearly
quite easy, but how does a digital system handle something like
an audio signal that is constantly changing? A digital system
can handle varying quantities using a system known as
sampling. Although this word is now synonymous with digital
audio recording, it is in fact a general term that is applicable to
any digital system that deals with what is essentially analogue
data. It basically just entails taking a series of readings so that
the system tracks the rises and falls in the amplitude of the
audio signal, temperature, or whatever.

Strictly speaking, a digital system can not fully
accommodate analogue signals since it can never have infinite
resolution. With analogue signals that are constantly varying,
the input signal is converted into a series of fixed values. No
matter how frequently samples are taken, there will always be
a jump from one sample value to the next (Fig.2.1). However,
provided the resolution of the system is good enough, and
samples are taken at a high enough rate, for all practical
purposes a digital system will be as good as an analogue
equivalent. The jumps from one sample to the next will be of
no consequence. In fact, in many areas of electronics it is now
true to say that the best digital systems outperform the best

28

Sampling Intervals

Sampled Wavwform

Fig.2.1 An analogue waveform can be stored as
a series of digital samples

analogue types. Whether a digital system is dealing with
individual pieces of data, or a series of samples, the resolution
is crucial. In other words, is the jump from one level to the next
small enough to enable any value to be depicted with good
accuracy? The minimum acceptable resolution varies
considerably from one application to another.

Although users of digital electronic devices do not normally
get involved with all those Is and Os, and with ASCII codes,

29

etc., designers of logic circuits can not normally avoid
operating at this sort of level. PIC circuit and software design
certainly involves a lot of work at this very basic level, and
requires a knowledge of the way in which logic systems handle
numbers. Therefore, before we consider PIC software and
hardware design we will take a fairly detailed look at the basics
of numbering systems, and related topics. This type of thing is
perhaps not the most stimulating aspect of PIC design, but
without a good understanding of the fundamentals it is not
possible to undertake PIC hardware or software design.

Bits and Bytes
The numbering system we use in everyday life is, of course, the
decimal system, or 'denary' system as it is alternatively known.
This method of numbering is based on the number 10, but it is
quite possible to have a system based on any number. There is
normally no point in doing so, and the old imperial measures
which were based on a variety of numbers (12 in the case of
feet and inches for example) have now been largely phased out
in favour of the metric system.

I suppose that binary could reasonably be regarded as the
simplest possible method of numbering. It is based on the
number two. In the decimal numbering system the single digit
numbers are from 0 to 9, but in binary they are only from 0 to I.
In other words, the only valid numbers for each digit are 0 and 1,
and absolutely nothing else is allowed! As already pointed out,
representing just two numbers by an electrical signal is very easy.
A low voltage it is used to represent a 0, and a higher voltage
represents a I. In the case of ports and other external signals
these levels are often called ' low' and 'high' respectively, but
these terms are not usually applied to internal signals of a
processor. When dealing with internal signals the alternatives of
clear (logic 0) and set (logic 1) are often encountered.

Although convenient for the hardware producers, this simple
logic system has its limitations and drawbacks. There have been
suggestions over the years that circuits which can work directly
in decimal will be a practical proposition for widespread use
before too long, but there seems to be little real prospect of such
a development in the near future. For the time being circuits
which work in binary are the only practical ones for general use.

30

Binary is easier to understand if you first analyse what an
ordinary decimal number represents. If we consider the decimal
number 238 for instance, the eight represents eight units (10 to
the power of 0), the 3 represents three tens (10 to the power of
1), and the 2 represents two hundreds (10 to the power of 2).
Things are similar with a binary number such as 1101. Working
from right to left again, the columns of numbers respectively
represent the units (2 to the power of 0), the 2s (2 to the power
of 1), the 4s (2 to the power of 2), the 8s (2 to the power of 3),
and so on. 1101 in binary is therefore equivalent to 13 in
decimal (1 + 0 + 4 + 8 = 13).

It takes a lot of binary digits to represent numbers of quite
modest magnitude, but this is the price that has to be paid for
the convenience of simple binary hardware. A binary digit is
normally contracted to the term ' bit'. One bit on its own is of
limited value, and bits are normally used in groups of eight, or
multiples of eight. A group of eight bits is normally termed a
'byte'. A byte can only handle numbers from 0 to 255
(decimal). This is adequate for some purposes, but often larger
values must be handled. A 16-bit binary number is usually
termed a ' word', and this gives a range of 0 to 65535 (decimal).
32 bits gives a range of 0 to something over four thousand
million, which should be adequate for most purposes. A 32-bit
number is sometimes termed a ' long word'.

As far as data is concerned, PIC processors deal in 8-bit
bytes, and in this respect they are rather crude compared to the
microprocessors in the average PC which operate with 32-bit
words of data. On the other hand, PIC processors are mainly
used in applications where 8-bit operation is adequate. It is
possible to use an 8-bit processor to handle 16 or 32-bit words,
but the words can only be manipulated 8 bits at a time. This
clearly slows things down and complicates matters. PIC
processors are not really designed for advanced mathematics on
16 or 32-bit chunks of data, although with suitable software
routines they can actually do so. PIC processors use 10, 12, or
14-bit memory addresses, and the convention is that these 10 to
14-bit values are called ' words', even though they fall short of
normal 16-bit words. The term 'word' is not well defined, and
it can be used to describe any binary value that is more than
byte sized.

3 I

You can not do much computing without coming across the
term 'K'. This is the abbreviation for 'kilobyte', which is a
thousand bytes. In fact, to be precise, it is 1024 bytes. This may
seem to be an odd number to choose, but a 10-bit binary number
covers a range of 0 to 1023, or 1024 different values in other
words. The extra 24 on each K is often of no great significance,
but it is interesting to note that a computer with a 'megabyte' of
memory has 1048576 bytes of memory. Not a million bytes, and
some 47K to 48K above the million byte mark. A 'megabyte',
which is often abbreviated to just 'M' or `Mb", is the usual unit
of measurement for large amounts of data, RAM, or whatever.

This table shows the number represented by bits in 16-bit
numbers, and this might help to clarify the way in which the
binary system operates. The numbers in the table are the ones
that the bits represent when a 1 is present in that column of the
binary number. If there is a 0 in a column, then that column
always contributes 0 to the value of the number. We are using
the convention of calling the units column bit 0, running
through to bit 15 for the left-most column (not bits 1 to 16). The
units column is often called the 'least significant bit', or ISB'
for short. Bit 31 (or the left-most column that is actually used)
is termed the 'most significant bit' or just `MSB'.

Bit Decimal Value
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384
15 32768

32

Counting Up
Addition of two binary numbers is a straightforward process
which is really more simple than decimal addition. Here is a
simple example of binary addition.

First number 240 11110000

Second number 85 01010101

Answer 325 101000101

As with decimal addition, start with the units column and work
towards the final column on the left. In this case there is a 1 and
a 0 in the units column, giving a 1 ii the units column of the
answer. In the next column two Os give a 0 in the answer, and
the next two columns are equally straightforward. In the fifth
column there are two Is to be added, giving a total of 2. Of
course, in binary the figure 2 does not exist, and this should
really be thought of as 10 (one 2 and no units), and it is treated
in the same way as 10 in decimal addition. The 0 is placed in
the answer, and the 1 is carried forward. In the seventh column
this gives a total of 3 in decimal, but in this binary calculation
it must be thought of as the binary number 11 (one 2 and one
unit). Therefore, 1 is placed in the answer and 1 is carried
forward. In the eighth column this gives an answer of 10, and
as there are no further columns to be added, both digits are
placed in the answer.

Signed Binary
The binary system described so far, which is often called 'direct
binary', is inadequate for many practical purposes. It is
certainly all that is needed when designing many PIC based
projects, but it will not always be sufficient. The main
drawback of direct binary is that it can not handle negative
numbers. Obviously you can simply add a minus sign ahead of
a binary number to indicate that it is a negative number, but you
have to bear in mind that for computer applications this is not
valid. There is logic 0 and logic 1, but no logic — level!

The normal way around the problem is to use 'signed
binary'. With a signed binary number the first bit is used to

33

denote whether the number is positive or negative. The
convention is for the first bit to be a 0 for positive numbers and
a 1 for negative numbers. With this system the normal 8-bit
range of 0 to 255 is replaced with a range of —127 to + 127
(11111111 to 01111111). The problem is solved at the expense
of decreased maximum magnitude for a given number of bits.
Note though, that where two or more bytes (or words or long
words) are used together to form a large number, only the most
significant bit of the most significant byte needs to be used to
indicate the sign of the number. It is not necessary to sacrifice
the most significant bit of each byte to this task.

Obviously a certain amount of care needs to be exercised
when dealing with binary numbers, and you must know whether
you are dealing with direct or signed binary numbers. For
instance, 10000001 could be 129 (direct binary) or — 1 (signed
binary). I have encountered computers which have a binary to
decimal conversion facility, and which seem to get confused in
this way. Results were as expected for answers up to 32767, but
things went completely wrong with higher numbers. This
happens where the computer operates with binary numbers of up
to 16 bits in length, and it interprets any values it is fed as signed
binary. This works fine if you know that it is working with
signed binary. It also works fine if it is fed with binary values of
15 bits in length or less. The leading zeros then inform the
computer that the number is a positive one, and the right answer
is obtained. For numbers of more than 32767 the most
significant bit is a 1, telling the computer that it is a negative
number, even if you require a direct binary conversion.

In this basic form the signed binary system has its
limitations. The problem is that although it can represent a wide
range of positive and negative values perfectly adequately,
calculations on simple signed binary numbers do not give the
correct result. This is of only academic importance to users of
high level applications programs and applications software.
You give the computer such numeric data, positive, negative, or
a mixture of the two, and everything is sorted out for you. It is
something that is of greater importance to the low level
(assembly language or machine code) programmer. Confusing
results can be obtained unless you understand just how the
microprocessor is handling things.

34

Ones Complement
The simple calculation shown below illustrates the problem
that occurs using simple signed binary.

First number 16 00010000

Second number —5 10000101

Answer —21 10010101

Adding 16 and —5 should obviously give an answer of 11 and
not —21. What is happening is that the negative sign of the —5 is
being added to the answer so that the answer must always be
negative if one of the numbers being added is a negative type.
This is clearly incorrect, as in this example. The main bodies of
the numbers are simply added together, and their signs are
ignored. Negative values therefore increment the figure in the
answer rather than decrementing it.
An alternative and related method of handling binary

numbers is the 'ones complement system. Here a negative
number is the complement of its positive equivalent. For
example, 16 is 00010000 in binary, and so — 16 is 11101111 in
ones complement binary. In other words, the Os are simply
changed to is and the is are changed to Os. This gives much
better results when used in calculations, as demonstrated by the
example given below.

First number 16 00010000

Second number —5 11111010

Answer 266 100001010

I suppose that on the face of it this answer is even further from
the right answer than when simple signed binary was used. The
margin of error is certainly much greater, but the usefulness of
this system depends on how the answer is interpreted. The first
point to note is that the positive number starts with a 0 while the
negative number has a 1 as the first digit. Provided sufficient
digits are used this will always be the case, and in this respect

35

the ones complement system is the same as straightforward
signed binary. The answer is completely wrong of course, but if
the carry is ignored the answer is much closer to the right one.
The answer is then 1010 in binary, or ten if converted to
decimal. This is just one away from the right answer. So what
happens if we try another example and ignore the carry.

First number 32 00100000

Second number -4 11111011

Answer 27 00011011

As before, the answer is wrong but it is just one less than the
right answer (which is of course 28 in this case).

Twos Complement
Clearly this system can be made to operate correctly, and it is
just a matter of finding some way of correcting the minor error
in the answer. The standard method used with most
microprocessors (including the PIC processors) is called twos
complement'. This differs from ones complement in that once
the complement of a number has been produced, one is added
to it. Therefore, rather than -5 being represented as 11111010,
it becomes 11111011 in twos complement. If we now apply this
to one of the examples given earlier we obtain the following
result.

First number 16 00010000

Second number -5 11111011

Answer 11 00001011

This time, provided we ignore the carry, we do indeed obtain
the correct answer of 11. This is a convenient way of handling
subtraction (for microprocessors if not for humans), since
subtraction can be carried out by the same circuit that handles
addition. To handle a calculation such as 45 - 25 the value of
25 is converted to twos complement and then added to 45. In

36

other words, instead of handling this calculation in the form 45
—25 it is undertaken in the form 45 + (-25), and either way the
answer is 20.

The table given below shows some sample numbers in twos
complement form, and this should help to clarify the system for
you. Note that, like ordinary signed binary, the first digit is used
to indicate whether the number is positive or negative.

Number Positive Negative

0 00000000 00000000
1 000000011 11111111
2 00000010 11111110
3 00000011 11111101
4 00000100 11111100
32 00100000 11100000
126 01111110 10000010
127 01111111 10000001
128 01000000 10000000

Note that with 8-bit twos complement numbers the range is
from — 127 to + 128 (not — 127 to * 127 as with simple signed
binary).

So far we have only considered calculations where the
answer is a positive quantity, but the twos complement system
works equally well if the answer is negative. This point is
demonstrated by the example provided below.

First number 16 00010000

Second number —31 11100001

Answer —15 11110001

The two complement system also functions properly when the
two numbers being added are both negative, as in this example:

First number —4 11111100

Second number —8 11111000

Answer —12 11110100

37

Binary Coded Decimal
Several microprocessors can operate using another form of
binary called ' binary coded decimal', or just 'BCD'. This is a
somewhat less compact and efficient form of binary, it is
generally somewhat slower, and it is not used in most
applications. It does have its advantages though, and the main
one is that it can be used to provide a very high degree of
precision. The PIC processors do not have any instructions
which use BCD, but you may wish to drive displays or other
devices using BCD.
BCD uses four binary bits (often termed a 'nibble') to

represent each decimal digit. The system operates in the
manner shown below.

Decimal Number Binary Code

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

The binary number is in fact just the ordinary binary bit code
for the number concerned, and it is only for numbers of more
than 9 that the system is different. The binary codes from 1010
to 1111 are unused, and all two digit decimal numbers require
8-bit BCD codes. For instance, the decimal number 64 would
be represented by the 8-bit BCD code 01100100. The first four
bits (0110) represent the six, and the second four bits (0100)
represent the four. Each byte can therefore represent any two
digit decimal number from 0 to 99, which compares to a range
of 0 to 255 for an ordinary 8-bit binary number. This helps to
contribute to the relative inefficiency of the BCD system. Of
course, when a nibble is incremented by I from a value of 1001
(9 in decimal) it does not go to 1010 (which is an illegal code

38

in BCD), but cycles back to 0000. A carry forward of 1 should
then be taken to the next BCD nibble. Since the PIC processors
do not operate directly in BCD, you must provide the
conversion from direct binary to BCD using suitable software
routines. Look-up tables are the normal method for handling
this type of thing.

With BCD there is no difficulty in handling large numbers,
and it is just a matter of using several bytes in order to
accommodate the required number of digits. Negative numbers
and decimal points can also be handled with ease by this
system, but this requires several additional bits. This
information is usually carried in the most significant bits (i.e.
the left hand end of the number), but you can design the
software and hardware to handle this type of thing in any way
that you see fit.

Hexadecimal
Hexadecimal is a numbering system that you are almost certain
to use a great deal when undertaking PIC programming. In fact
it will be the main numbering system that you use. The
hexadecimal name is usually abbreviated to just hex'. A
problem with binary numbers is that they tend to have many
digits with each one being a 0 or a 1, which makes them rather
difficult to deal with in many circumstances. For instance,
dealing with 10 or 12 bit addresses in their binary form would
probably be beyond most people's ability, as would dealing
with eight-bit data values. On the other hand, binary numbers
give a graphic representation of each bit in the register of a
microprocessor, control register of a peripheral chip, output
terminals of a PIC port, or whatever. This is something that is
often important, but is especially so when dealing with a
microcontroller and its ports. Decimal numbers are much easier

to deal with in that they are much shorter and are in a more
familiar form. Unfortunately, a decimal number does not give
much idea of the state of each bit in its binary equivalent.
Converting a decimal number to its binary equivalent is not a
particularly quick or easy process (without the aid of some
computerised help anyway). Decimal numbers are
consequently rather inconvenient when things must be
visualised on a bit by bit basis.

39

The hexadecimal system gives the best of both worlds in that
it takes just a few digits to represent even quite large numbers,
and it is in fact slightly better than the decimal numbering system
in this respect. On the other hand, it is quite easy to convert
hexadecimal numbers to their binary equivalents when the state
of each bit must be known. The conversion process is quite
simple even with very large numbers. The hexadecimal system is
based on the number 16, and there are sixteen single digit
numbers. Obviously the numbers we normally use in the decimal
system are inadequate for hexadecimal as there are six too few of
them. This problem is overcome by augmenting them with the
first six digits of the alphabet (A to F). It is from this that the
system derives its name. The table given on page 41 helps to
explain the way in which the hexadecimal system operates.

What makes hexadecimal so convenient is the ease with
which multi-digit numbers can be converted into binary
equivalents. The reason for this is that each hexadecimal digit
represents four binary bits. Take the hexadecimal number A3 in
the table for example — digit A represents 1010 in binary, and
the digit 3 converts to 0011. A3 therefore represents 10100011
in binary. You may find that you can memorise each of the
sixteen 4-bit binary codes represented by hexadecimal digits,
but a little mental arithmetic is all that is needed in order to
make the conversion if you can not.

The digits in a hexadecimal number represent, working from
right to left, the number of units, 16s, 256s, 4096s, 65536s,
1048576s, and 268435450s (approx.). In general computing
you are unlikely to use hexadecimal numbers of more than
eight digits in length, and mostly you will probably only deal
with hexadecimal numbers having four digits or less. When
dealing with PIC processors you should not need to use
hexadecimal numbers having more than three digits, and in
most cases you will use only one or two digit numbers.

Decimal Hexadecimal Binary

0 0 0000
1 1 0001
2 2 0010
3 3 0011

40

4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111
16 10 10000
17 11 10001
18 12 10010
163 A3 10100011

Octal
Although the octal numbering system was much used in
computer circles at one time, it seems to have fallen from
favour. Hexadecimal now seems to have superseded it. As its
name suggests, it is based on the number 8. The columns of
figures therefore represent the units, 8s. 64s, 512s, 4096s,
32768s, etc. Only the first eight digits (0 to 7) of the decimal
numbering system are utilised by the octal system, and so
neither 8 nor 9 are legal characters in octal.

In common with hexadecimal, octal keeps the number of
digits in large numbers down to reasonable proportions, but it
can easily be converted into binary if the state of each bit must
be known. Whereas each hexadecimal digit represents a four bit
binary code, each octal digit represents just three binary bits.
With modern computing being based on 8-bit bytes, or
multiples of eight bits, the 3-bit octal codes are less than totally
convenient. It is probably this factor that has led to its decline
in favour of the hexadecimal system. Here is a list of octal
digits and the three bit binary codes that they represent:

41

Octal Digit Binary Code

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 Ill
8 001000

As with hexadecimal digits, the binary codes they represent are
just the standard codes for the numbers concerned. It is
probably not worthwhile taking the time to familiarise yourself
with the octal numbering system as it is rarely, if ever,
encountered in practice these days, and you are unlikely to use
it in conjunction with PIC processors.

Conversions
Conversion from hexadecimal to binary is, as we have already
seen, fairly straightforward. With a little experience a little
mental arithmetic is all that is needed to make this type of
conversion. Conversion in the opposite direction is equally
simple. It is just a matter of breaking down the binary number
into four-bit groups and then converting each group to its
corresponding hexadecimal digit.

Conversions that involve decimal numbers are a little more
difficult to deal with. The easy way of handling the problem is
to use a computer to make the conversion (or possibly a
scientific calculator). Most BASICs can provide a hexadecimal
to decimal conversion. If the computer accepts hexadecimal
numbers with (say) an 8cH' prefix to indicate that they are in
hexadecimal, then giving the instruction:

PRINT &H)00{X RETURN

where `XXXX' is the hexadecimal number to be converted,
should result in the decimal equivalent being printed on the
screen. A conversion in the opposite direct might also be

42

possible, and this. is most commonly found in the form of a
FŒX$ function. You may even find that decimal to octal
cpnversion is possible using an OM function (as in Amiga
BASIC for instance„ although these days such a function
would seem to be of largely academic interest.

Eitwise Operations

h computing, numbers are not only manipulated using the
normal mathematical functions. There are also the ` bitwise'
cperations called 'AND', 'OR', and 'XOR'. These compare

two binary numbers (literally) bit-by-bit, and the answer
produced depends on the combinat on of Os and Is present in
each column. ANDing produces a 1 in the answer only if there
is a 1 in that column of both the numbers being ANDed. In
other words, if a bit is set to I in the first number and the
second, a 1 is placed in that bit of the answer. Hence the 'AND'
name of this logic operation. Here is a simple ANDing
example:

First number 15 00001111

Second number 243 11110011

Answer 3 0000001 I

The answers obtained from bitwise operations can tend to
took a bit random unless you cons,der what is happening on a
oit by bit basis. A ccmmon use of the bitwise AND function is
when less than all eight bits of a byte must be read. For
instance, assume that we wish to know the state of bit 3 of a
register or input port. Most computer systems do not provide
any means of reading just one bit of a port or register, although
the PIC processors do actually include some bit oriented
instructions. Anyway, one way around the problem is to use a
bitwise AND operation to mask off the unwanted bits. In this
case bit 3 represents eight when it is set to logic 1, and so the
masking number to use is eight (00000100 in binary). In the
answer all the bits except bit 3 must be set to zero, as there is
no way they can be set to 1 in both numbers. The situation is
different for bit 3, where both bits could be at logic 1 if the

43

second number also has this bit set to 1. The answer therefore
reflects the state of bit 3 in the second number, and is eight if
this bit is at logic 1, or zero if it is at logic 0. The ANDing
provides the desired function with, in effect, only the required
bit being read.

It is possible to read more than one bit if desired, and in a
PIC processor context this is the way that bitwise ANDing
would normally be used. Just set any bits which must be read
to logic 1 in the masking number — set any bits which must be
masked off to logic 0 in the masking number. As a couple of
examples, to read the least significant nibble a masking number
of 15 (00001111 in binary) would be used, and to read the most
significant nibble the masking number would be 240 (11110000
in binary).

Bitwise ORing is a similar process to ANDing, but a 1 is
placed in a bit of the answer if there is a 1 in that bit of the first
number, or the second number, or both. X0Ring (exclusive
ORing) differs from normal (inclusive) ORing in that it will
place a 1 in a bit of the answer if there is a 1 in that bit of the
first number or the second, but not if there is a 1 in both bits of
these numbers. This could reasonably be regarded as the true
OR function, but it has been designated the XOR function. The
following example shows how these two types of bitwise
operation can produce different answers.

First Number 15 00001111

Second Number 85 01010101

ORed Result 95 01011111

First Number 15 00001111

Second Number 85 01010101

X0Red Result 90 01011010

The main use of the bitwise OR function is to permit some
bits of a register to be altered without changing the states of the

44

other bits. Suppose that you wish to set bits 0 to 3 of a register
to I. You could simply write a value of 15 (00001111) to the
register, but if any of bits 4 to 7 were originally set to 1, this
would result in them being changed to zero. The PIC processors
have bit oriented instructions, and using one of these it would
be possible to set each bit to 1, but it would require a separate
instruction for each bit. This might still be your preferred way

of doing things. The alternative is to read the register, and
bitwise OR the result with a suitable value. Determining this
value is quite straightforward. A one is used in the bits that must
be set to one, and a zero is used in the other bits. In our example
it is bits 0 to 3 that must be set to one, and bits 3 to 7 that must
be left unchanged. This gives a masking number of 15. If you
look at the bitwise OR example shown previously, where a
value of 85 (01010101 in binary) is ORed with 15, you will
note that the lower four bits in the answer are all set to one, but
the upper four bits remain unchanged. This gives the desired
result using just a single instruction.

If you needed to set the lower nibble to zero rather one, it is
a bitwise AND operation that would be used. Use a one in any
bits that must be left unaltered, and a zero in bits that must be
zero. A value of 240 (11110000) would therefore be used to set
the four least significant bits to zero, as shown in this example.

Number In Register 85 01010101

Masking Number 240 11110000

Answer 80 01010000

The bitwise XOR function perhaps has fewer practical uses
than the AND and OR functions, but it can occasionally prove
to be useful. It is possible to complement the bits in a byte
(change the is to Os and vice versa) by X0Ring the byte with
255 (11111111 in binary). However, the PIC processors have a
complement instruction that provides this function.

Rotate and Shift

Microprocessors normally have shift and (or) rotate
instructions, and the PIC microcontrollers have rotate left and

45

rotate right instructions. In a basic rotate left instruction the bits
in the byte are all moved one place to the left, and the leftmost
bit (bit 7) is moved into the space left vacant by bit 0. A right
rotation is the opposite of this, with all the bits being moved
one place to the right, and bit 0 being moved into the space left
vacant by shifted bit 7. Figure 2.2 shows 'before and after'
examples for both types of rotation. Shift instructions,
incidentally, are the same except that any bits which are moved
out of the register are simply discarded, rather than being
moved round to the other end of the register.

The PIC processors provide slightly more complex rotate
instructions that involve an extra bit called the carry flag. The
rotations are through the carry flag, which simply means that
the digit which is displaced from one end of the byte is placed
into the carry flag rather than being moved to the other end of
the byte. This is not the sole function of the carry flag, and it is
used whenever there is a spare bit. For example, if 255 and 2
are added together, in binary it gives this result:

255

2

Total (257)

11111111

00000010

1 00000001

This calculation gives a nine-bit answer, which is clearly one
bit too many for an eight bit register. The one in the most
significant bit is therefore stored in the carry bit, or carry flag
as it is generally called. The eight bit data registers of a PIC
processor can not accommodate the carry, but conditional
instructions can provide one function or an alternative
depending on the state of the carry flag. With suitable software
the ' lost' bit can be rescued.

Returning to the rotation instructions, you really have to
consider the carry flag to be part of the register which is being
'rotated'. If the carry bit is set to one when the rotation
instruction is carried out, this one will be placed in the bit of
the register that has just been emptied. Further rotation
instructions in the same direction result in the bit in the carry
flag being stored in one end of the data register, while the bit

46

r
L

7 6 5 4 3 2 1 0

0 0 1 1 0 1

Rotate Right

all

1 Fm I
II

7 6 5 4 3 2 1 0

1 1 0 0 1 1 0 1

7 6 5 4 3 2 1 0

1 0 0 1 1 0 1 1

Rotate Left

P.

7 6 5 4 3 2 1 n

0 0 1 1 0 1 1 1

Fig.2.2 Example rotate right and rotate left instructions

ousted at the other end of the register goes into the carry flag.
Figures 2.3 and 2.4 show the result of three rotate right and
three rotate left instructions respectively. These should help to
clarify both processes. Looking at things in numerical terms, a
shift to the left provides a multiplication by two, and a shift to
the right gives a division by two. These two examples
demonstrate this point.

Fig.2.3 Example rotate instructions using the carry
flag

48

Fig.2.4 This example shows the result of three rotate
left instructions

Original Value

Shifted Left

Original Value

Shifted Right

14 00001110

28 00011100

14 00001110

7 00000111

49

ASCII Codes
Virtually all modern computers use a character set that is
closely based on the ASCII (American Standard Code for
Information Interchange) set. They are also used when driving
liquid crystal displays (LCDs) that have the ability to display
alphanumeric characters. These are seven bit codes, giving a
maximum of 128 different characters. Many computers and
liquid crystal displays use the eighth bit for additional, non-
standard codes (i.e. code numbers from 128 to 255 are often
used for non-standard graphics characters, etc.). This table
provides details of the standard ASCII codes.

Decimal Hex Binary Character

o oo 0000000 NULL
1 01 0001 SOH
2 02 0010 STX
3 03 0011 ETX
4 04 0100 EOT
5 05 0101 ENQ
6 06 0110 ACK
7 07 0111 BEL
8 08 1000 BS
9 09 1001 HT

I 0 OA 1010 LF
11 OB 1011 VT
12 OC 1100 FF
13 OD 1101 CR
14 OE 1110 SO
15 OF 1111 SI
16 10 0010000 DLE
17 11 0001 DC1
18 12 0010 DC2
19 13 0011 DC3
20 14 0100 DC4
21 15 0101 NAK
22 16 0110 SYN
23 17 0111 ETB
24 18 1000 CAN
25 19 1001 EM

50

Decimal Hex Binary Character

26 IA 1010 SUB
27 1B 1011 ESC
28 IC 1100 FS
29 ID 1101 GS
30 1E 1110 RS
31 IF 1111 US
32 20 0100000 [SPACE]
33 21 0001 l
34 22 0010 ,..
35 23 0011 [HASH]
36 24 0100 $
37 25 0101 %
38 26 0110 &
39 27 0111
40 28 1000 (
41 29 1001)
42 2A 1010
43 2B 1011 +
44 2C 1100
45 2D 1101
46 2E 1110 .
47 2F 1111 /
48 30 0110000 0
49 31 0001 I
50 32 0010 2
51 33 0011 3
52 34 0100 4
53 35 0101 5
54 36 0110 6
55 37 0111 7
56 38 1000 8
57 39 1001 9
58 3A 1010
59 3B 1011 ,
60 3C 1100 <
61 3D 1101 =
62 3E 1110 >
63 3F 1111 ?

51

Decimal Hex Binary Character

64 40 1000000 @
65 41 0001 A
66 42 0010 B
67 43 0011 C
68 44 0100 D
69 45 0101 E
70 46 0110 F
71 47 0111 G
72 48 1000 H
73 49 1001 I
74 4A 1010 J
75 413 1011 K
76 4C 1100 L
77 4D 1101 M
78 4E 1110 N
79 4F 1111 0
80 50 1010000 P
81 51 0001 Q
82 52 0010 R
83 53 0011 S
84 54 0100 T
85 55 0101 U
86 56 0110 V
87 57 0111 W
88 58 1000 X
89 59 1001 Y
90 5A 1010 Z
91 5B 1011 [
92 5C 1100 \
93 5D 1101 1
94 5E 1110 ^
95 5F 1111
96 60 1100000 7

97 61 0001 a
98 62 0010 b
99 63 0011 c
100 64 0100 d
101 65 0101 e

52

Decimal Hex Binary Character

102 66 0110 f
103 67 0111 g
104 68 1000 h
105 69 1001 i
106 6A 1010 j
107 6B 1011 k
108 6C 1100 1
109 6D 1101 m
110 6E 1110 n
Ill 6F 1111 o
112 70 1110000 P
113 71 0001 cl
114 72 0010 r
115 73 0011 s
116 74 0100 t
117 75 0101 u
118 76 0110 y
119 77 0111 w
120 78 1000 x
121 79 1001 Y
122 7A 1010 z
123 7B 1011 {
124 7C 1100 I
125 7D 1101 1
126 7E 1110 -
127 7F 1111 DEL

Finally
For some initial and fairly basic PIC programming you can get
by with an understandirg of direct binary and the hexadecimal
numbering system, so you should at the very least make sure
that you are reasonably familiar with both of these topics.
Without a working knowledge of direct binary and hexadecimal
it is not possible to set up the input and output ports, read the
ports, etc. You can 'brush up' on bitwise operations, rotation
instructions, etc., as and when you need them. The ASCII codes
are not something yot need to learn, and the ASCII table

53

provided previously should be useful for reference purposes if
you produce a system that writes information to an
alphanumeric liquid crystal display.

54

Chapter 3

SPECIFICS

So far we have only considered the subject of microcontrollers
in fairly broad terms. In this chapter we will take a more
detailed look at things, and in particular we will look at the
internal workings of the PIC series of microcontrollers. The
basic function of any microprocessor is to move data around
and to process it, and the microprocessor at the heart of a PIC
processor is certainly no exception to this. Although there are
similarities in the internal arrangements of various
microprocessors, and also similarities in the instructions that
they perform, there are also large differences from one
microprocessor to another. If you are familiar with
microprocessors such as the Z80 and 68000 series you should
not find it too difficult to adjust to using PIC processors. On the
other hand, it is only fair to point out that the PIC series of chips
are very simple in comparison with most other microprocessors
and you will need to adjust to their more simple way of doing
things. Also, there are one or two fundamental differences
between PIC processors and devices such as the Z80 and
68000, and these also necessitate a certain amount of
adjustment.

ROM Types
As pointed out in Chapter 1, the program for a PIC chip is
stored in its ROM (read only memory). There is more than one
type of ROM, and most of the PIC chips are equipped with
what is called EPROM (erasable programmable read only
memory). Your program is placed in the EPROM using a
system that is normally in the form of a PC equipped with
appropriate software and some fairly simple hardware. This is
not a process we will consider here, but it is not difficult to
program PIC chips using the systems that are now readily
available. Because the contents of EPROM are erasable, once a
chip has been programmed it is possible to re-use it by erasing
the contents of the EPROM and re-programming the chip. The
EPROM is erased by subjecting it to short wavelength ultra-

55

violet ' light' for about 20 minutes, and suitable erasure units are
readily available. An EPROM eraser is basically just a light-
tight box having a pad of conductive foam for the chips at the
bottom, and the ultra-violet tube at the top.

Some of the PIC processors are available without the
necessary window to enable the ultra-violet ' light' to reach the
silicon chip, and their EPROM is therefore not erasable.
Consequently, once one of these chips has been programmed it
can not be re-programmed and re-used in a different
application. Perhaps of more importance, these non-erasable
chips are not suitable for developing PIC based systems. The
general idea is to use an erasable chip when developing new
systems, with the chip being erased and re-programmed as
many times as is necessary to perfect the software. The finished
product is then built using a non-erasable PIC chip. These are
very much cheaper than the erasable versions. As well as a
programmer and an erasure unit you therefore need at least one
or two erasable PIC chips in order to develop PIC based
systems. All the PIC processors are avai lable in true EPROM
and non-erasable versions.

The non-erasable chips are sometimes called OTP (one-
time programmable) chips incidentally. Do not be tempted to
use one-time programmable chips for development purposes as
this will almost certainly be a false economy. You are likely to
gain little from the experience but a bin full of wasted PIC
processors! The erasable PIC chips have a life of over 10,000
programming and erasure cycles, which in theory means that
they should never wear out. In reality they should last for a
great many years unless you are careless and 'zap' one from
time to time. Physical wear on the pins is probably the limiting
factor rather than the number of erasure and programming
cycles they can withstand.

A few PIC processors are equipped with EEROM
(electronically erasable read only memory). These chips differ
from the true EPROM type in that they can be erased
electronically, and can not be 'wiped' using an ultra-violet light
box. The EEROM chips are more convenient to use because
they can be erased more quickly, but as yet there is a limited
choice of EEROM chips, and you obviously need a compatible
programmer/eraser system before you can use them.

56

Take Your PIC
There are currently several versions of the PIC processor that
are generally available, and although these are basically the
same 'at heart', there are still important differences from one
PIC chip to another. The main differences are in the number and
type of ports that they offer, and in the amount of RAM and
ROM that they contain. Here we will restrict ourselves to the
mainstream PIC devices, since these provide the best starting
point. I would recommend that you become familiar with these
before trying the more exotic types, or the ultra-simple eight-
pin devices that have recently been introduced.

The most basic of the mainstream PIC chips are contained
in ordinary I 8-pin d.i.l. plastic encapsulations, and have two
input/output ports. These consist of one 4-bit port and one 8-bit
port (i.e. a total of 12 input/output lines), and they are
respectively designated port A and port B. Just 12 input/output
lines is obviously something of a limitation, but it is perfectly
adequate for many practical applications. The versatility of the
ports is increased by having each line individually

18

RA2 RA1

RA3 RAO

RTCC OSC I

LR OSC2/CLOCK OUT

GND v+

RBO RB7

RBI RB6

RB2 RB5

RB3 R84

9 10

Fig.3.1 Pin-out details for the 16C54 and 16C56

57

00

16C71

18

RA2/AIN2 RAI/AM RA2

RA3/AIN3/V.Ref RAO/ANO RA3

RA4/TOCK1 U L OSCl/CLOCK N RA4/TOCK1

WIP/Vpp OSC2/CLOCK OUT

GND v GND

RBO/INT RB7 RBO

RBI RB6 RB1

RB2 RB5 RB2

RB3 RB4 R83

9 10 9

1 6C84

18

RAI

RAO

OSCl/CLOCK IN

OSC2/CLOCK OUT

V

RB7

RB6

RB5

RB4

10

Fig.3.2 Pin-out details for the 16C71 and 16C84

programmable to operate as an input or an output. If you need
(say) 10 input lines and two outputs, the two ports of a simple
PIC processor are able to oblige. The 16C54 and 16C56 are two
basic PIC processors which have two ports, and the pin-out
diagram for these is provided in Figure 3.1. The only difference
between these two chips is that the 16C54 has 512 bytes of
ROM whereas the 16C56 has 1024 bytes (1K).

Next up the scale in terms of complexity are the 16C71 and
16C84 which respectively have 1024 bytes of EPROM and
EEROM. In addition to the differences in their ROMs, the
16C71 has a four channel analogue to digital converter in place
of its four bit input port (port A). Port A can still be used as a
digital type if preferred, or it can even be configured to operate
in mixed digital/analogue modes. The analogue capability is
clearly a very useful facility that can be utilised in numerous
control and measurement applicables. Pin-out details for both
these chips are provided in Figure 3.2.

The 16C55 and 16C57 can be used in applications that
require larger numbers of digital input and output lines. These
two devices respectively have 512 bytes and 2048 bytes of
EPROM, and are housed in a 28-pin DIL encapsulation. They
have the same pin-out configuration (Fig.3.3). You will notice
from this that they have three ports, which are two 8-bit ports
and one 4-bit type. This gives some 20 input/output lines,
which is more than enough for the vast majority of applications.
However, the 17C42 has even more input/output ports giving
no less than 33 input/output lines. Probably few practical
applications require anything like this number of inputs and
outputs, but this chip is there if you should have an application
that does.

Having so many versions of the PIC microcontroller can be
a bit confusing at first, but Table 1 should help to clarify
matters. This provides some basic information about the
amount of ROM and RAM, the input/output ports, etc., for a
range of PIC processors. This information should make it easier
to select a suitable chip for a given application. Some of the
information given in this table might not make much sense at
present, but all will be revealed later.

59

1

RTCC

V+ 11

N.C.

GND Ct

N.C.

RAO

RAI Cr

RA2 ct

RA3 a'

RBO

RBI a

RB2

RB3

RB4 ICE

1 4

28

• MCLR

• osc

OSC2/CLOCK OUT

• RC7

• RC6

• RCS

• RC4

• RC3

• RC2

• RC1

• RCO

• RB7

• RB6

• RB5

15

Fig.3.3 Pin-out details for the 16C55 and 16C57

Table 1

I6C54 I6C55 16C56 I6C57 16C71 I6C84

EPROM 512 512 IK 2K IK IK

RAM 32 32 32 80 36 36

Digital I/O 4+8 4+8+8 4+8 4+8+8 5+8 5+8

Analogue

Inputs o o o o 4 o
Instructions 33 33 33 33 35 35

Instruction Bits 12 12 12 12 14 14

Stack Size 2 2 2 2 8 8

Pins 18 28 18 28 18 18

Interrupts No No No No Yes Yes

PU Timer No No No No Yes Yes

60

Programming
While I do not intend to give a detailed account of
programming and erasing PIC chips, it would probably be as
well to take a quick look at what is required in order to
undertake PIC project development. It is definitely advisable to
start with one of the PIC development systems that are now
readily available. These provide you with everything you will
need to program PIC processors, with the obvious exception of
the PC. In theory it is not essential to have a PC in order to
undertake PIC programming, but in practice you will find the
going very tough unless you have access to a PC. Fortunately,
many of the PIC development systems are supplied with
software that will run on practically any PC. Therefore, you do
not need the last word in PC technology in order to program
chips. A PIC development system normally consists of three
main components. These are:

I. An assembler program which runs on the PC, and
assembles your program into machine code that can be run by
the PIC processor. The processor deals with binary values, and
it is not just the data it handles that is in binary. The instructions
are also in this form, but it is obviously awkward and
inconvenient for the programmer to work directly in binary.
The standard way around this is for the programmer to write the
programs in assembly language, which uses a mnemonic for
each program instruction. A mnemonic is simply a short name
which is much easier to remember than the binary code number,
and is quicker to use than the full name of the instruction. As an
example, the no operation instruction has the mnemonic
IsIOP'. The assembler takes the assembly language source code
and converts it into corresponding binary object code that the
PIC processor can run. In fact all practical assemblers provide
more help than simply converting mnemonics into the
corresponding binary numbers, but they do not provide
anything like as much help as a high level language such as
BASIC or Pascal. Although the PIC processors all use the same
basic instruction set, unfortunately they do not all use the same
object code. Consequently, you must ensure that you obtain an
assembler that can handle the object code for the particular PIC
processor or processors that you will be using.

61

2. The programmer that is used to ' blow' your programs into
the PIC chips. In most cases this is something pretty basic, and
it usually seems to be nothing more than a small printed circuit
board that connects to one of the computer's ports via a ribbon
cable. Serial and parallel port programmers are available, and it
probably makes little difference which type you use. In theory
a parallel port can handle data transfers at a higher rate than a
serial port, but this is unlikely to be of any significance in the
present context. The PIC chips come in a variety of shapes and
sizes, and you obviously need to make sure that the
programmer can handle the particular chips you intend to use.
The system will include matching software that takes the data
from the assembler and loads it into the PIC chips via the
programmer hardware.

3. Finally, most systems include a PIC simulator which
enables you to test your programs without actually 'blowing'
them into a PIC chip and trying them for real. Testing a PIC
chip in an actual circuit and erasing its EPROM if it does not
work properly is a time consuming process and a good
simulator can save a great deal of time. PIC chips normally
operate at very high speeds, but the simulator runs the program
at a greatly reduced rate so that you can see exactly what is
happening. Alternatively, the simulator may run at high speed
but you will be able to select points in the program where the
simulation stops so that you can examine the contents of the
chip's registers. The up-marked alternative to a simulator is an
emulator. A simulation is normally achieved solely in software,
but an emulator includes hardware, and it tries to accurately
mimic the selected PIC chip.

In addition to some PICs and the development system you
will need an EPROM eraser. This is basically just a small metal
box which contains an ultra-violet tube and some conductive
foam into which the PIC chips are placed. The conductive foam
ensures that the chips are safe while they are in the eraser, and
that they will not be 'zapped' by static electricity.
Unfortunately, EPROM erasers are quite expensive, and one
reason for this is that the special ultra-violet tubes are not
exactly cheap. Ordinary ultra-violet tubes of the type used in

62

'sun-ray' lamps are not suitable for this application as they do
not provide the short wavelength ultra-violet radiation needed
to erase EPROMs. The same is true of ultra-violet light-boxes
that are intended for exposing photosensitive copper laminate
boards. Note that short wavelength ultra-violet ' light' is
dangerous, and can easily damage your eyesight. Always use a
proper eraser, and use it in strict accordance with the
manufacturer's instructions. When developing PIC projects you
only need to erase one or two chips at a time, and a very basic
eraser should therefore be perfectly adequate.

Reset
At switch-on a microprocessor system always goes through a
reset routine which ensures that all the registers are in the
correct states before the first program instruction is performed.
There are two methods of resetting PIC processors, and one of
these relies on an external C-R circuit to provide a negative
pulse to the 'master clear' input of the processor. Figure 3.4
shows the recommended C-R reset circuit. R2 is needed to
ensure that an excessive current can not flow into the 'master
clear' input of the processor, and its value should be between
100 ohms and 1 kilohm. DI simply ensures that C 1 rapidly
discharges when the circuit is switched off, so that the reset
circuit operates normally next time the unit is switched on. The
values of R 1 and Cl are selected to give the required reset pulse

duration, but note that the value of RI must be less than 40
kilohms. If a higher value is used there is a danger that the
voltage drop across RI will be so high that the circuit will be
held in the reset state.

In most cases an external reset circuit of this type is not
required. It is only needed where the power supply has a low
rise-time, or where a low frequency crystal controlled clock
oscillator is used. A long reset pulse of around 100 milliseconds
or more is then needed to ensure that everything has settled
down properly by the time the processor performs the first
instruction of the program.

The alternative is to use the internal reset circuit, and in
order to do this it is merely necessary to connect the 'master
clear' input to the +5 volt supply rail. The PIC processors have
a built in starter-up timer which ensures that the clock oscillator

63

V+

D1 1 N 4 1 48 AL OR'
R2 MCLR

•- •- l___}

1 GND

PIC PROC.

Fig.3.4 Using a PIC processor with an external reset
circuit

has time to settle down and operate normally before it starts
clocking the processor. The internal reset circuit makes use of
this timer to provide a switch-on delay for the entire chip, and
to provide the necessary reset signals to the various stages of
the chip that require them. This reset circuit is suitable for most
situations, but the power supply must reach its full potential
within 18 milliseconds of switch-on. This means that the supply
only has to rise by about 50 millivolts per millisecond, and
most supplies will easily exceed this rate. An external reset
circuit is normally only required when a low frequency crystal
controlled clock oscillator is used.

64

Clocking On
The PIC processors can be used with two basic types of clock
circuit, but there are four PIC clock oscillator modes. With
some PIC processors you have to make sure you obtain a
suitable version of the processor for the type of clock circuit
you wish to use. Where high precision is needed a crystal
controlled clock oscillator should be utilised. The circuit for a
crystal clock oscillator appears in Figure 3.5 The active
circuitry is an integral part of the PIC processor, and the only
discrete components required are the crystal itself plus one
resistor. and two capacitors. The resistor will not always be
required, and it is only needed where the oscillator is otherwise
slightly too lively. This overdriving of the oscillator can result

X1 R1

330R

c C2

GND

PIC
OSC2 PROC.

Fig.3.5 The circuit for a crystal clock oscillator R1 is
normally only needed for high clock
frequencies

65

in an incorrect output frequency, with the oscillator usually
operating at about half its intended output frequency.

Three of the PIC modes are crystal controlled types, and the
normal crystal clock mode is called the AT' mode. This mode
operates with crystals from 100 kilohertz to four megahertz.
The PIC clock oscillator circuit is intended for use with parallel
resonant crystals and not the series resonant type. Ceramic
resonators should also give satisfactory results, but the
frequency stability of resonators is inferior to that of crystals.
Cl and C2 are normally equal in value, and this value must be
chosen to suit the clock frequency used. A capacitance of about
22 to 33 picofarads is about right for clock frequencies in the
range 1 megahertz to 4 megahertz. Lower frequencies require a
higher capacitance, and the value of about 68 picofarads is
suitable for a clock frequency of 500 kilohertz. Crystals seem
to vary slightly from one make to another, and it might be
necessary to do a little 'tweaking' in order to get things just
right. On the other hand, reliable results are usually provided
with a fairly broad range of capacitance values, and it is only if
you use a ' fussy' crystal that any 'tweaking' is likely to be
necessary. Note that ceramic resonators usually require a
slightly higher capacitance value than a crystal operating at the
same frequency.

The other two crystal oscillator modes are HS (high speed)
and LP (low power). High speed means a clock frequency in
the range eight to 20 megahertz. The clock circuit is the same
as the one for standard (XT) operation, but Cl and C2 must
have a lower value of around 15 to 22 picofarads. The low
power mode also uses the same oscillator circuit, but with
higher values for C 1 and C2 (typically around 100 to 220
picofarads). This mode is used with low frequency crystals, and
these have operating frequencies of around 30 to 200 kilohertz.
As the three types of crystal controlled chips all use the same
basic clock circuit, there may seem to be no differences
between them. There may be some internal differences in the
clock circuits, but the main differences are the maximum clock
frequencies. LP devices only function up to 200kHz. XT
devices will function at up to 4MHz, and HS chips will operate
at up to 20MHz. With some PIC devices (including the re-
programmable types) the required type of clock circuit is

66

selected when programming the device, and operation at up to
20MHz is supported. With most other members of the PIC
family there is a different chip for each of the four clock types.

It is possible to use an external clock oscillator with any PIC
processor that is intended for use with a crystal clock circuit
(i.e. chips that are designed for XT, HS, or LP clocks). The
clock signal must be at logic levels that are compatible with
PIC processors, and the clock frequency must obviously be
within the normal operating range of the type of processor you
are using. The clock signal is applied to the CLKIN terminal of
the processor. In most cases there is no point in using an
external clock circuit, but I suppose it could be useful to do so
if you want to use a series resonant crystal in the clock circuit.
Do not try to use an external clock circuit with a processor that
is not designed for use with a crystal clock oscillator.

The fourth type of clock oscillator is a simple C-R type
which uses the circuit of Figure 3.6. This is really just a simple
relaxation oscillator, which repeatedly charges and discharges
Cl via R 1 . This type of oscillator is delightfully simple, and
avoids the cost of a crystal or ceramic resonator. However, it
does have one or two major drawbacks, and one of these is that
it is only suitable for use at frequencies of up to four megahertz.
In practice this is sufficient for most applications, but there is a
further problem which is simply the lack of good frequency
stability and predictability. The output frequency changes
significantly with variations in the supply voltage, and simple
oscillator circuits of this type usually have poor temperature
stability.

The lack of temperature stability is largely caused by the
temperature characteristic of the timing capacitor. Using a high
quality component here minimises the problem, but a simple
C-R oscillator never achieves anything approaching the
frequency stability of a crystal oscillator. The lack of
predictability is due in part to the tolerances of the resistor and
capacitor which are far larger than those for a crystal or ceramic
resonator. It is also due to stray capacitance in the clock circuit
of the PIC processor itself, plus other factors governed by the
internal circuit. Although the stray capacitance is quite small, it
can be comparable to the value of Cl when the circuit is used
at high output frequencies. In fact Cl can be omitted if the

67

V+

9R1

OSC1

'Cl

GND

OSC OUT

PIC
PROC.

Fig.3.6 The C-R clock circuit. The signal from
OSC OUT is at one-quarter of the
clock frequency

circuit is running at a frequency in the megahertz range, and the
stray capacitance then provides all the timing capacitance. This
is not recommended by the manufacturer though, because
results become very unpredictable. Also, temperature stability
would be very poor indeed.

RI should not have a value of less than 2k2 as this could
result in the circuit failing to oscillate. Values of more than 1
megohm are not recommended as they leave the circuit
vulnerable to problems with electrical noise and humidity. The
recommended range of values for RI is three kilohms to 100
kilohms. It is recommended that Cl should have a value of no
less than 20 picofarads, and there is no upper limit on its value.
I suppose that it would be possible to use an electrolytic

68

capacitor (or another polarised type such as a tantalum bead
capacitor) if the positive terminal is connected to RI and the
negative terminal is connected to the 0 volt supply rail. On the
face of it there is no need to use a very high timing capacitance,
but it should be borne in mind that there is no lower limit on the
clock frequency when using a C-R clock oscillator. In some
applications it is easier to use a very low clock frequency rather
than the alternative of a high clock rate and numerous delaying
loops in the software. The PIC processors that are intended for
use with crystal clock circuits can also operate at very low
frequencies provided they are used with an external clock
generator circuit.

The PIC processors that have a window to permit erasure
can be used with any of the four types of clock oscillator. The
appropriate clock mode must be selected when the device is
being programmed, and the programming software should
make it easy to select the required mode. What the program is
actually doing is programming a 4-bit register in the processor.
This table shows the 4-bit binary code for each clock oscillator
mode.

FOSCI FOSC2 Oscillator mode

0 0 LP (low power crystal oscillator)
0 1 XT (Normal crystal or ceramic

resonator)
1 0 HS (high speed crystal or resonator)
1 1 RC (C-R clock oscillator)

When using certain PIC processors that do not have the
erasure window, it is essential to obtain the appropriate version
for the type of clock oscillator that the system will utilise. The
16C54, 16C55, 16C56, and 16C57 all fall into this category.
These processors have the oscillator bits pre-programmed at the
factory, and can only be used with one type of clock oscillator
circuit. The basic part number is the same for all versions, but
a short suffix indicates the type of clock oscillator that each
device requires. The table on page 70 should help to clarify
matters.

69

Suffix EMin EMax Notes

JW DC 20MHz Windowed device
XT 100kHz 4MHz XT mode device
RC DC 4MHz RC mode device
LP 5kHz 100kHz LP mode device
04 DC 4MHz Any mode except HS
10 DC 10MHz Any mode
20 DC 20M Hz Any mode

The 16C71 and 16C84 are not available in XT, RC, or LP
versions, but are instead available in versions that can be
programmed for operation in any mode. However, the suffix
number indicates the maximum clock frequency in megahertz,
and a 4MHz (`04') version is obviously unsuitable for
operation in the HS mode.

Sleep Mode
One of the more unusual features of the PIC processors is the
sleep mode. The processor is set into this mode using the
special sleep instruction, and the device then largely shuts
down. The point of doing this is that the processor consumes
very little power when it is in the sleep mode, making it
possible to use battery power even if the system will be left
running for long periods. Obviously some means of breaking
out of the sleep mode is required, and one way of achieving this
is to pulse the MCLR input low. This resets the device, and it
then starts running the program in EPROM in the normal way.
With this method the processor remains in the standby mode
until some external hardware detects that it is time for the
system to start operating. This hardware then provides a reset
pulse to MCLR, the processor runs its program and performs
the necessary functions, and then goes into the sleep mode
again. In this way the processor is only powered-up when there
is something for it to do, and a very low average current
consumption is obtained.

The processor can also be brought out of the sleep mode
using a built-in timer called the watchdog timer. The general
idea is to have the processor go into the sleep mode, and then
after a period determined by the watchdog timer it wakes up

70

and operates normally for a short time. Having done whatever
needed to be done, or having discovered that there was nothing
to do, the processor then goes back into the standby mode
again. It continues in this fashion, and because it is in the sleep
mode for a large percentage of the time it has a very low
average current consumption. Of course, the processor does not
totally shut down when it goes into the sleep mode, even
though the clock oscillator stops. The watchdog timer has its
own C-R oscillator so that it can continue to operate when the
rest of the processor has shut down.

Another function of the watchdog timer is to periodically
reset the processor. This facility is mainly used in applications
where the system will be used in 'noisy' environments. Modern
electronic circuits are very vulnerable to problems caused by the
stray pickup of electrical noise and microprocessor based
systems are more vulnerable than most. If an instruction, or
possibly even if a piece of data, becomes corrupted, a
microprocessor based system is almost certain to crash. Although
the watchdog timer is set to periodically reset the system, the idea
is that it should never actually reset the circuit in normal use. In
the normal scheme of things the watchdog timer is always
cleared before it has a chance to reset the system. The circuit
therefore operates normally unless a crash occurs. Once the
system has crashed, it is unlikely that the watchdog timer would
be cleared, and before too long the watchdog timer would reset
the system. While the system would not exactly carry on from
where it left off, it would at least start from the beginning and
would to some extent recover from the crash.

The watchdog timer consists of an 8-bit counter which is
fed from a C-R oscillator, and it resets the processor after 256
input cycles. The watchdog timer can be used in conjunction
with a prescaler, which is a divider circuit that can reduce the
input frequency to the timer by factors of 2, 4, 8, 16, 32, 64, or
128. Without the prescaler a timeout occurs after about 18
milliseconds, but with the prescaler set for a division rate of
128 a timeout occurs after approximately 2.3 seconds.

Count On It
The PIC processors includes another timer, and this is also an
8-bit counter. It is possible to produce delays quite accurately

71

without the aid of a timer, but a timer provides what is usually
a much easier way of handling things. This second timer is
'TMRO', and unlike the watchdog timer its input is fed from
the system clock. However, it counts instruction cycles rather
than clock cycles, and this means that the clock signal is
divided by four prior to being fed to TMRO. If the processor
has (say) a 4MHz clock, TMRO is incremented at I MHz. This
timer can also be used with the prescaler, which enables the
input frequency to be reduced to as little as Xi2th of the clock
frequency. Although the prescaler can be used with TMRO or
the watchdog timer, note that it can not be used with both of
them at the same time.

Basically all the timer does is to start at zero, and increment
by one each time an input pulse is received. Having reached a
value of 255 (FF in hexadecimal) it cycles back to zero, and
continues counting from there. It is up to the program to
monitor the timer and take suitable action when the appropriate
value is reached. In addition to counting clock cycles, the timer
can also be set to count the pulses from an external circuit.

Protection
Unlike a straightforward EPROM, reading the contents of a PIC
processor's EPROM is far from easy, and it probably requires
some fairly advanced equipment to read the program contained
in the EPROM. It can be done though. The PIC processors have
a built-in ' fuse' which can be 'blown' during programming, and
this renders the contents of the EPROM unreadable. The idea of
this is to prevent anyone cloning one of your designs without
your permission. Copying the hardware is easy enough, but
without details of the program stored within the processor the
gadget will do nothing at all. If you work long and hard on the
software for a PIC project it makes sense to invoke the copy
protection facility, unless you really do not care if others help
themselves to your work. Of course, no copy protection device
can ever provide 100 per cent reliable protection against
copying, but this facility does at least make it extremely difficult
for anyone to copy a program from a PIC device.

The Registers
The PIC processors use Harvard architecture, which means that

72

they have separate buses for data and instructions. The bus for
data is an eight-bit type, but the bus for instructions is some 12
or 14 bits wide (depending on the complexity of the processor).
Most processors have a common bus for fetching instructions
and handling data, which is eight bits wide for the older
processors, and 16 or 32 bits wide for the more recent offerings.
This is known as Von Neumann architecture. There are definite
benefits to Harvard architecture, and one of the main
advantages is that one instruction can be executed while the
next one is fetched. This internal ' multitasking' allied to some
clever design enables most PIC instructions to be performed in
a single clock cycle. In the Von Neumann architecture one
instruction has to be performed before the next one can be
fetched.

Although PIC processors have an instruction bus which is
12 or 14 bits wide, the data bus is only an eight-bit type, and
these are therefore eight bit processors. As such they are not
very powerful in some respects, but they are well suited to
numerous everyday applications. The larger instruction bus
does bring some advantage, since it enables all instructions to
be coded into a single 12 or 14-bit word. With conventional
eight-bit processors some instructions are two or even three
bytes long, which tends to slow things down. Although PIC
processors are in some ways quite simple, they are highly
streamlined and operate at high speed.

In order to design PIC based systems you do not really need
an in-depth understanding of the internal workings of the
various PIC chips, but you do need to be familiar with the
register set. The PIC register set is shown in Figure 3.7. The
column of registers on the left are the ones in the data memory
map, while those on the right are outside the memory map. If
you are used to processors which have a combined data and
instruction bus, you have to bear in mind here that these are the
eight-bit registers which handle data. The 12 or 14 bit EPROM
which contains the program instructions is entirely separate.
The W register is the working register, and this is the PIC
version of the accumulator. Most of the instructions make use
of the W register, although in many cases there is the option of
placing processed data somewhere other than in this register.

The bottom eight registers in the memory map have special

73

functions, while those at higher addresses are general purpose
file registers. The file registers are the RAM, and there can be
anything from 25 to 232 of these. This is a list of the special
function registers. I will adhere to the convention of using
hexadecimal values for file register addresses. Note that some
of the more upmarket PIC processors have additional special

purpose registers.

Register Function

00 Indirect Addressing
01 RTCC (real-time clock counter)
02 Program Counter

74

03 Status Register
04 Indirect Addressing
05 Port A
06 Port B
07 Port C (not implemented in all PIC processors)

It is necessary to have a good understanding of the way in
which these registers operate, and we will therefore take a
detailed look at each of them, starting with the ports. The ports
are all bi-directional, with each line individually programmable
as an input or an output. Ports A to C are respectively controlled
by registers TRISA, TRISB, and TRISC. Of course, the 18 pin
PIC processors do not have Port C, and therefore lack the
TRISC register as well. Note that these registers are used to
control the function of the port lines, and data for the ports is
not written to these registers. The ports themselves are at file
registers 05 to 07. The pins of Port A are named RAO to RA3,
and these correspond to bits 0 to 3 of file register 05. If Port A
is used as outputs, and the binary value 00001100 is written to
register 05, RAO and RAI are set low, while RA2 and RA3 are
set high. Similarly, if Port A is used as four inputs, and RAO
plus RAI are set low, and RA2 plus RA3 are set high, the
binary value read from the port would be 00001100. The upper
nibble of this register is unused, and the value written to these
four bits has no affect on RAO to RA3. When reading Port A,
the upper four bits always return a value of zero.

Bits 0 to 3 of the TRISA register correspond to input/output
terminals RAO to RA3. Setting a bit at 1 results in the
corresponding terminal of the chip acting as an input — setting
a bit to 0 designates the corresponding terminal as an output.
This 1 for Input and 0 for Output relationship is nice and easy
to remember. At switch-on the lines of all ports are set as inputs.
This is a standard safety measure with bi-directional computer
ports, and it ensures that the system can not start off with two
sets of outputs connected together (i.e. the computer port and
the circuit which drives it). As a simple example of how TRISA
is used, suppose that you wish to have RAO as an input, and
RAI to RA3 as outputs. The binary code 00000001 (1 in
hexadecimal or decimal) would be written to the TRISA
register. The value written to the upper nibble is not important,

75

but it is advisable to keep things simple and simply set these
four bits at zero.

Port B is controlled in essentially the same manner, but via
TRISB. All eight bits of this port are implemented. Data is
written to or read from Port B via file register 6, and each bit of
this register corresponds to one of the Port B input/output lines
(RBO to RB7). As before, setting a bit of the control register at
0 sets the corresponding line of the port as an output, setting a
bit to 1 designed the line as an input. For example, to set the
upper nibble as outputs and the lower nibble as inputs a binary
value of 00001111 (15 in decimal, F in hexadecimal) would be
written as TRISB. TRISC controls Port C (terminals RCO to
RC7) in exactly the same way. Data is written to or read from
Port C via file register 7.

Status Symbols
As already explained, microprocessors have a status register
which can supply useful snippets of information to your
programs, and which are instrumental in most decision making
instructions. File register 3 acts as the PIC status register, but
only five bits operate as status flags. The three least significant
bits are controlled by the arithmetic logic unit, and the next two
bits provide reset information. Figure 3.8 shows the function of
each bit in the status register, but this really requires some
amplification.

Bit 0 is the standard carry/not borrow flag which is used by
instructions that perform addition or subtraction, and by
rotation instructions. Bit 1 is the digital carry flag (also known
as an auxiliary carry flag), and this indicates if there is a carry
from the low nibble of the arithmetic logic unit. The Z (zero)
flag is at bit 2, and this is set to one when the result of an
appropriate type of instruction is zero. The next two bits (3 and
4) are the PD (power down) and TO (time-out) flags. By testing
these bits it is possible to determine whether a reset control has
been produced by a watchdog timer timeout, a normal power-
up, a wake-up from the Sleep mode by the watchdog timer, or
a reset pulse on the MCLR terminal. Both of these flags are set
to 1 when the chip is powered-up. The next table shows the
affect of various types of reset on these two flags.

76

STATUS REGISTER

(7) (6) (5) (4) (3) (2) (1) (0)

Unused (Reserved)

Page Select (1 6057)

Time Out

PA2 PA1 PAO TO PD DC C

Fig.3.8 Details of the 16C5* series status register

Carry/Borrow

Digit Carry/Borrow

Zero

Power Down

TO PD Cause of Reset

0 0 Watchdog timer wake-up from Sleep mode
0 1 Watchdog timer timeout (not during Sleep mode)
1 0 Pulse on MCLR to wake-up from Sleep mode
1 1 Power-up
Unchanged Reset pulse on MCLR input

In the more simple PIC processors such as the 16C54 bits 5
to 7 of the status register are general purpose read/write bits,
but it is probably as well to simply leave them unused. This
should ensure that your programs have upwards compatibility
with the more advanced PIC processors. These bits do have
functions on the more advanced PIC processors, and the 16C7 1
for example, uses bits 5 to 7 as page select bits.

Clocking On
The RTCC register (file register I) is the real-time clock
counter, which was described briefly earlier in this chapter.
This register operates in conjunction with the OPTION register,
which controls the prescaler. Only bits 0 to 5 of the OPTION
register are implemented, and their functions are outlined in
Figure 3.9. The names of some of these bits have changed in
recent PIC data, so both names are provided in Figure 3.9. Most
assemblers will accept either the old names or the new ones, or
they can be accessed via their bit numbers.

The RTCC register can count either external pulses on the
RTCC pin, or the clock signal after a division by four. Bit 5 of
the OPTION register is used to select the required signal source
for the RTCC register. If bit 5 is set to 0, the divided by four
clock signal is used to increment the RTCC register. Setting bit
5 to 1 selects the RTCC pin as the input for the counter. Note
that the RTCC pin must not be left ' floating' if it is unused. It
must be tied to one or other of the supply rails.

Whichever source is used for the RTCC register, the input
pulses will be fed through the prescaler. However, the prescaler
can effectively be removed by setting it to a division rate of
one. Bits 0 to 2 of the OPTION register control the prescaler,
giving a choice of eight division rates. The next table shows the
division rates available, and the bit settings which provide each

78

OPTION REGISTER

(7) (6) (5) (4) (3) (2) (1) (0)

Unused (Reserved)

PTCC Signal Source

RTCC Signal Edge

R TS RTE PSA PS2 PS I PSO

Fig.3.9 The assignment of the bits in the OPTION register

Prescaler Division Rate

Prescaler Assignment

one. As show in this table, the division rate for the real-time
counter is double that for the watchdog timer with any of the
8-bit settings.

Option RTCC Watchdog
Register Division Timer

Bit 2 Bit 1 Bit 0 Division

0 0 0 2 1
0 0 1 4 2
0 1 0 8 4
0 1 1 16 8
1 0 0 32 16
1 0 1 64 32
1 1 0 128 64
1 1 1 256 128

Bit 4 of the OPTION register is only of significance when using
the RTCC with an external signal. If it is set to 0 the counter
increments on the rising edges (negative to positive transitions)
of the input signal, but if it is set to 1 the counter increments on
the falling edges of the input pulses. In many applications it
will not matter which edge is used to increment the counter.

As pointed out previously, the prescaler can be used with
the real-time counter or the watchdog timer, but not both at
once. Bit 3 of the OPTION register determines whether the
prescaler will be used with the RTCC register or the watchdog
timer. Set bit 3 to 0 to direct its output to the RTCC register, or
to 1 to direct its output to the watchdog timer.

Properly Addressed
Registers 0 and 4 are used for indirect addressing. It would
perhaps be as well to explain what is meant by direct addressing
before proceeding to the indirect variety. Direct addressing is
where the program instruction specifically mentions the file
register to be used. For example, if you needed to add the
contents of register 12 to the value in the W register, with direct
addressing the instruction would simply run along the lines of
add W to register 12. Register 12 is directly addressed, and I
suppose that in a sense the W register has also been selected by

80

a form of direct addressing. The W register is a special case
though, and its use is implicit in most instructions.

Indirect addressing operates in a manner that is almost as
simple as direct addressing. The address of the file to be used is
placed in file register 4, which is called the file select register
(FSR). The data for the selected register is written to register 0,
the indirect address register. For example, if a value of 15 is
placed in register 4, and a value of 11 is then written to register
0, the value of 11 will actually be placed in register 15 (i.e. the
register pointed to by the address in register 4). Register 0 does
not actually exist, but using indirect addressing the value of 11
can still be read back from register O. However, it is really
register 15 that is being read and not register O. Things would
go awry if a value of zero was written to the FSR, setting
register 0 as the one selected for indirect addressing. Data
written to register 0 would go nowhere, and any data read back
from register 0 would always be zero. Indirect addressing may
seem to be of limited value, but it can be useful in conjunction
with a program loop. The value in the FSR can be incremented
or decremented on each loop, so that data can be quickly
written to a block of registers.

PC and Stack
The program counter (register 2) is a 9-bit type on the 16C54,
and it generates addresses for the program store (the EPROM
or EEPROM). Once again, you have to bear in mind that the
program instructions and the data are carried on separate buses,
and be careful not to confuse program addresses and register
file addresses. As the program counter is a 9-bit type, it gives
an address range of 000 to 1FF in hexadecimal, or 0 to 511 in
decimal numbering. On power-up or after a reset the program
counter is set at 1FF (hexadecimal), and it is then automatically
incremented during the execution of each program instruction
unless that instruction changes the counter. It is possible to
change the program counter by writing data to it, but only the
lower eight bits can be controlled in this way. Writing data to
the program counter results in the most significant bit being set
to O. Directly controlling the program counter is strictly for
those who know exactly what they are doing.

81

There are other instructions that will alter the program
counter's contents, and break it out of its normal incremental
mode. A GOTO instruction permits all nine bits of the counter
to be loaded with the required address. With a CALL
instruction the lower eight bits are loaded directly, and the most
significant bit is cleared (set to 0). CALLed subroutines are
therefore limited to the lower half of the address range. The
return from subroutine instruction (RETLW) causes the
program counter to be loaded from the top of the Stack, which
is where the contents of the program counter were stored when
the CALL instruction invoked the subroutine. This instruction
also returns a value which is placed in the W register. Some PIC
processors (but not the 16C5* series) have a RETURN
instruction, which is essentially the same as the RETLW
instruction, but it does not return a value.

Some PIC devices (but again, not the 16C5* series)
implement interrupts, and have a return from interrupt
instruction. This is the RETFIE instruction, and it operates in a
similar manner to RETLW and RETURN. The interrupt causes
the contents of the program counter to be stored on the top of
the Stack, and sets the Global Interrupt Enable bit to prevent
further interrupts until the current one has been completed. The
return from interrupt instruction resets the Global Interrupt
Enable bit and loads the program counter from the top of the
Stack.

Exceptions
This description of the PIC processors has necessarily been
rather generalised. Some PIC devices are more sophisticated
than others, and the descriptions provided here have been
largely based on the simpler processors which are easier to
understand, and represent the best starting point. It is well
worth taking a quick look at one of the more recent PIC
processors, and the 16C71 represents one of the more
interesting of these. This device has 1K x 14 bits of EPROM,
and 36 bytes of RAM. The most obvious way in which this
differs from the more simple devices such as the 16C54 is that
it has a built-in 8-bit analogue to digital converter, plus a
multiplexer which provides four analogue inputs. Due to the
inclusion of the analogue converter, and because there are other

82

00
01
02
03
04
05
06
07
08
09
OA
OB
DC

OE
OF
10

2A
28
2C
20
2E
2F

INDIRECT ADDRESS

MVIEMAIHMIX:11111

PORT A
PORT B

IMMITOR

la.1:11M1111111
Iii.10101111M

.10ala :Mein II

11.1«.10ffl :I anti .M
1.1Q1eLIMIalki101.1M
in WI 1123.M3:101.1M
• 3G1.1ffli:0121011M

1101«.1ffla... 2.111101«
IBM *MI Ma an«
IDDIGI:1231111.1:4011.•
tel.1.1.103•101:1:1.1.1.M

XE Xffl11110,111e14
11.1.121e1:12.11MUL0411

80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E

90

AA
AB
AC
AD
AE
AF

INDIRECT ADDRESS
OPTION
PCL

STATUS REGISTER

ti1;11MIIIMM
TRISB

zumanec

now
11.1.111«111:181 ell
gel .IMIXIM0114101111M
11.1.1.1.1:73.11101:1:16:1.111

t1113181114:111

IL.I.M12111110111•141M

[(Mifflin:MUM:1M
MUUMUU :Mel .M
Ite.C1.101.111.1:1101.1.•
11.1.1M.M.M.1:1 .M
in MUM« :124:1 la

.1.1.111.11.1MIN Mind 11

Fig.3.10 The 16C71 register file map

aspects of the chip which differ from the 16C5* series, it has
the modified register file map of Figure 3.10.

There is clearly a major change here in that there are two
pages of registers, and bit 5 of the status register permits
switching between the two. This is set to 0 to select page 0, or
to 1 to select page 1. The 12 lowest registers are special purpose
types, and some have the same function in both pages. These
can therefore be accessed with either page 0 or page 1 selected,
as can the 36 general purpose registers. Some of the special
function registers have different functions in the two pages,

83

such as the input/output port registers. In page 0 these registers
give direct access to the input/output pins in the normal way,
but with page 1 selected the port direction control registers
(TRISA and TRISB) are available instead. This gives access to
the port control registers without having to use special
instructions. Instead, page 1 is selected and data is written to
these register files in the normal way.

A/D Conversion
Special purpose registers ADCONO and ADCON I provide a
number of control and status bits associated with the analogue
to digital converter. Before considering the 16C71's analogue
converter in detail, it would perhaps be as well to cover some
basics of analogue to digital conversion. Computers work with
Is and Os, but in the real world anything measurable can have
an infinite range of values. With something like an analogue
test meter there might be a voltage range which covers
potentials in the range 0 to 10 volts, and in theory the meter
would be able to measure any voltage in that range. It would
certainly produce a reading for any voltage in the range 0 to 10
volts, but how accurate would that meter reading actually be?
No matter how accurately the unit was built and set up, there
would still be a limit on the resolution of the readings. This is
simply because the pointer of the meter can not be infinitely
narrow, and there can not be an infinite number of scale
markings. If an input voltage of 4.123456789 volts was applied
to the meter, the user would at best be able to interpret this as a
reading of a little over 4.1 volts. Although there is an infinite
number of possible input voltages, and even minute changes in
the measured voltage will produce some change in the position
of the pointer, there are practical limits on the accuracy of an
analogue measuring system.

A digital measuring system can only distinguish between a
certain number of input levels, and on the face of it a digital
system is less precise than an analogue system. In reality a
digital system often offers better accuracy than an analogue
equivalent. If we return to our voltmeter example, an equivalent
digital multimeter would typically have a three and a half digit
display with a measuring range of 0 to 19.99 volts. This gives
a basic resolution of 0.01 volts (10 millivolts). If the actual

84

input voltage was 5.007 volts, the meter's display would read
5.01 volts, which is as near to the true voltage as its display
permits. This reading is clearly an approximation of the true
input voltage, but provided the resolution of the system is high
enough, this does not matter. The readings obtained will be
close enough to the true input levels, and the system will tell the
user what he or she needs to know. In this example the input
voltage can be read to the nearest 0.01 volts, which actually
represents about 10 times the effective resolution of most
analogue meters!

The built-in analogue to digital converter of the 16C71 is
successive approximation type which offers 8-bit resolution.
Returned values will therefore be in the range 0 to 255. This
gives slightly better resolution than a two and a half digit
display, and in this respect the resolution is somewhat inferior
to those of a typical digital display. However, the accuracy of
readings is at least equal to those obtained from a good
analogue display, and they are perfectly adequate for many
applications. The converter is a linear type, which means that if
a reading of (say) 250 was obtained with an input potential of
5 volts, readings of 100 and 50 would be obtained at input
voltages of two volts and one volt.

Figure 3.11 outlines the functions of the bits in the
ADCONO and ADCON1 registers, but note that only two bits
of ADCON1 are actually used. These are the two least
significant bits, which are designated PCFO and PCF1. These
control inputs RAO to RA3, and determine whether they
function as normal digital inputs or as analogue inputs. There
are four operations, as follows:

PCFG I PC FGO RA 0/i RA2 RA3

Analogue Analogue Analogue
o 1 Analogue Analogue Ref. Input
1O Analogue Digital Digital
1 1 Digital Digital Digital

This arrangement permits the device to operate with four
analogue inputs, four digital inputs, or two of each type.
Normally the full scale sensitivity of the analogue converter is
equal to the positive supply rail (VDD), but there is the option

85

00
CT

ADCONO -
ADCS1 ADCS1 Resvd CHS1 CHSO GO/DONE ADIF ADON

7

ADCON 1

0

Unused Unused Unused Unused Unused
-
Unused

-
PCFG1 PCFGO

7

Fig.3.11 Bit assignments for the AID control registers

0

of having RAO to RA2 as analogue inputs, and the full scale
sensitivity equal to a potential applied to RA3.

Apart from bit 5, all the bits of ADCONO have functions.
The converter is switched on and off using bit O. Setting this bit
at 0 switches on the converter, and setting it to 1 switches it on.
When switched off it is not merely disconnected from the input
pins, but it is totally shut down and consumes no significant
power. Bit I is the conversion completed interrupt flag. This is
set to 1 when a conversion has been completed, and is cleared
by the software. To start a conversion bit 2 is set to 1, and it is
automatically reset by the hardware when the conversion has
been completed. The required analogue channel is selected
using bits 3 and 4, and this operates in the manner shown in this
table.

CHSI CHSO Channel Selected

0 0 0
0 1 1
1 0 2
1 1 3

Bits 6 and 7 are used to select the clock source for the analogue
to digital converter, and there are four choices. The system
clock can be used with division rates of 2, 8, or 32, or an
internal C-R clock oscillator can be selected. This table shows
how to select the required clock source.

ADCSI ADCSO Clock Source

A' System Clock
O 1 ÀI System Clock
1 '42 System Clock
1 1 Internal C-R Oscillator

The clock period for the converter must not be less than two
microseconds, which means that the clock frequency must be
no more than 500kHz. Each conversion takes 10 clock cycles,
which gives a minimum conversion time of 20 microseconds.
This equates to a maximum of 50,000 conversions per second.
In practice it would probably not be possible to quite achieve
:his rate, but the conversion rate is more than adequate for most

87

purposes. The internal C-R clock provides a clock period of
between two and six microseconds (typically four
microseconds), and this can be useful if a high conversion rate
is needed but the system clock frequency is relatively low. Note
that the internal clock oscillator is not very stable, and its
frequency varies considerably with changes in supply voltage
and temperature.

In order to take a reading from the analogue to digital
converter, ADCON I must first be set to give the desired input
configuration. Then ADCONO must be set up correctly, which
requires three parameters to be set. Select the required clock
source, select the desired channel, and turn on the analogue to
digital converter. If converter generated interrupts are going to
be used, the appropriate bits should be set up next, but in most
cases the converter will probably not be used in conjunction
with interrupts. The chip is then ready for a reading to be taken.
To take a conversion the GO/DONE bit is set to 1, and the
converter can then be read after a suitable delay. This delay can
be provided by a timing loop or by using a loop to monitor an
appropriate status flag.

The 16C71 has other differences to the 16C54, such as an
eight-deep Stack rather than a two-deep type. This gives more
scope for using sub-routines, and also for using interrupts that
are supported by the 16C71 but not the 16C54. For beginners
the most simple of the PIC processors, such as the 16C54,
represent the best starting point. Before too long you will
probably want to try the more sophisticated devices, which
open up new possibilities. You will certainly need to obtain
either some data sheets for the PIC processors, or (preferably)
the full Microchip Data Book.

Points to Remember
The PIC microcontrollers use Harvard architecture, which
means that they have separate buses for data and instructions.
The ROM holds instructions, and the RAM is used for data.

PIC software is normally written in assembly language. You
are still programming the chip using its instruction set, but the
assembler program works out the binary codes for you and
provides other help.

88

In order to program PIC chips you need a suitable
development or programming system that should include an
assembler, the programming software and hardware, plus
(rrobably) some form of PIC simulator or emulator.

Make sure that you obtain a development or programmer
system that supports the PIC devices you intend to use. The
more devices the system supports the more use it is likely to be.

The re-programmable chips are mostly erased using a
special ultra-violet light-box which must have the right type of
fluorescent tube. The 16C84 has EEROM which can be erased
electronically.

You must be careful to use the version of a processor that
supports the type of clock circuit you will be using. Where
appropriate, you must program the chip to use the right type of
clock circuit.

Use a crystal controlled clock where either very fast
operation (over 4MHz) or good timing accuracy is required.

There is no lower limit on the clock frequency if a C-R
clock oscillator or an external type is used.

Each line of a PIC port can be set as an input or an output
via the appropriate control register (TRISA for Port A, TRISB
for Port B, etc.).

The built-in timer (RTCC) can be used to count external
pulses or the divided by four system clock.

The Status register contains flag bits that indicate the result
of some instructions (e.g. carry and zero bits), and these can be
used in conditional instructions.

The watchdog timer can be used to reset the processor or
wake it up from SLEEP mode. Both timers can be used in
conjunction with a programmable prescaler (divider) circuit.

The OPTION register is a control register that is outside the
data memory map. It is mainly used to control the timers and
the prescaler.

The Stack is loaded with the address of the last instruction
when the program goes into a subroutine. Once the subroutine
t.as been completed the address in the Stack is incremented by
one and loaded into the program counter. This enables the
program to carry on where it left off. You do not control the
Stack — the processor handles the loading and unloading of the
Stack automatically.

89

The program counter can be read and altered by the
program, but it is not normally necessary to do so.

Start with the more basic PIC chips such as the 16C54, and
progress to the more interesting devices such as the 16C71
when you have gained some experience with the simple
processors.

90

Chapter 4

THE INSTRUCTION SET

A PIC processor, in common with all microprocessors, requires
instructions that are in the form of binary numbers. While it is
not impossible to work out a program in this machine code as
it is called, it is very time consuming to look up all the codes
ard put together a complete program. Also, with most programs
it is necessary to loop back or jump forward to specific points
in the program. You could keep a list of the addresses of the
points in the program that you need to loop or jump to, but this
can get very confusing as it is difficult to remember which
address is which. Programs for PIC based systems are normally
written in assembly language, and this is very much easier than
writing programs in pure machine code. Assembly language is
not a high level language such as BASIC where you write
programs using what is virtually plain English. Neither does
assembly language take a single program instruction and then
convert it into several machine code instructions. With a high
level language it is quite normal for each program instruction to
eid up as dozens of instructions at the microprocessor. With
assembly language you take things one step at a time, and each
instruction that you give the assembler is converted into a
s7ngle machine code instruction.

So just what does an assembler do? By using mnemonics for
machine code instructions it becomes much easier to write
programs. In order to clear the contents of the working register
for example, the mnemonic CLRW would be used. This is much
easier to remember than a binary number some 12 or 14 digits
long. At first it might be necessary to keep looking up the
nnemonics for the instructions you require, but you soon find
that you have learned them all. Life is made much easier for PIC
programmers by the relatively small number of instructions that
are implemented. Committing the full instruction set to memory
only involves learning about three dozen instructions.

An important feature of assemblers is their support for
'labels'. A label is simply a name that can be used at any point
in a program, and then used to return to that point using the

91

label rather than the address it represents. There may be a limit
of eight characters in the label (some assemblers allow long
names though), but even eight characters is sufficient to enable
meaningful names to be used. For example, if a section of the
program is used to flash a LED indicator on and off, the first
address in the routine could be called `LEDFLASH'.

When writing an assembly language program you do not
produce one long string of text. The assembler requires the
program in the form of one line of text per instruction. Each
line of text has to be set out in the correct fashion, which means
organizing the instructions in fields. There are usually four
fields, which basically just means that the instructions are laid
out in four columns. The first column contains the label, but
this field is blank for many instructions as labels are only used
where they are really needed. The next column contains the
mnemonics for the instructions, and the third field contains any
additional data needed in the instruction. Finally, the fourth
field is used for any comments the programmer may wish to
include. These comments are purely optional, and the fourth
column can be left totally blank if desired. However, bear in
mind that assembly language is not easy to follow even if you
are an expert programmer. While every step of the program
may be clear in your mind at the time you write the code, the
function of each program line might be far less obvious a week
later. After a month or two you might have largely forgotten
what the program does, and could have no idea how it actually
does it. A short comment for each instruction can make the
program much easier to follow if you return to it at a later date.

The example instructions shown on page 93 show how
things are organized.

The first four program lines set up Port B as eight inputs,
and Port A as four outputs. Any setting up of this type is
normally done at the beginning of the program rather than
waiting until the last possible moment. Having everything of
this type at the beginning makes it easy to troubleshoot on a
faulty program, and to modify an existing program to suit a new
application. Also, it is generally better to get this type of thing
out of the way before getting into the main program where the
time taken to set things up could be unhelpful. The MOVLW
instruction moves the operand (255 decimal — 11111111 in

92

binary) into the W register. The next instruction moves the
ccntents of the W register into TRISB, and this sets all the Port
B lines as inputs. Next the W register is cleared (all bits are set
to zero), and this value is transferred to TRISA to set all the
lines of Port A as outputs. The beghnning of this routine has
been given the label 'START', but this is actually superfluous
as the program never branches back to this point. On the other
hand, the label will not impair the operation of the assembler or
the assembled program in any way.

Field 1 Field 2 Field 3 Field 4

Label Mnemonic Operand Comment

START MOVLW 255 Loads 255 into W register

TRIS B Sets Pott B as inputs

CLRW W register set to zero

TRIS A Sets Port A as outputs

MOVLW 100 Number of loops

MOVWF 12 Register 12 keeps count

LOOP DECFSZ 12,1 Decrement register 12,

jump if 0

GOTO LOOP Loop until register 12 =

LOOP2 NOP

GOTO LOOP2 Loop indefinitely

END

The next four program lines form a simple loop, and the
idea is for the program to loop 100 times before the program
continues. First a value of 100 is placed in the W register, and
then this value is transferred to register file 12. The next
instruction decrements the contents of register 12 (i.e. reduces
it from 100 to 99), and the next instruction simply loops the
program back one instruction. This makes use of the 'LOOP'
label to define the loop point. The program keeps looping
around these two lines until the value in register file 12 equals
zero. The DECFSZ instruction then detects that the result of the
calculation is zero, and jumps over the next instruction. This
breaks the program out of the loop. An 'empty' loop of this type
does not actually do anything, but it can still be useful where a
delay is required. The loop can be made to perform one or more

93

actions the required number of times by adding suitable
instructions between the beginning and the end of the loop.
When using loops make sure that you loop the program back to
the correct instruction. In this case the MOVLW instruction is
at the beginning of the loop routine, but the program must not
be looped back to there. This would keep resetting the value in
file register 12 to 100. This would prevent it from ever reaching
zero, and the program would loop indefinitely.

An indefinite loop is the action provided by the final two
lines of the program. In most applications the program will
perform various loops, and will never come to an end. It is
unusual to have an application where the system is switched on,
it performs some function or other, and then needs to do
nothing more until it is turned off and then switched on again.
However, if you do design a system for an application of this
type, you should not simply let the processor run out of
instructions, as this could give unpredictable results. There are
various ways of bringing things to a predictable end, and the
most simple is to put the program into an endless loop, as in this
example. Another option is to use some hardware and suitable
software to make the system switch itself off. The program
finishes with an END instruction, which simply indicates to the
assembler that the end of the program has been reached.
Without an END instruction the assembler will probably
produce an error message, but it would probably assemble the
program correctly anyway.

Although this example program does not actually do
anything worthwhile, it does demonstrate the basics of
assembly language programming. You will note that most
instructions have an operand in field three (i.e. data of some
kind or a data address that the instruction requires), but not all
instructions do so. In this program the CLRW instruction does
not require an operand, since it only operates on the W register,
and can only set it to one value (zero). A number of instructions
require two operands. On the face of it only one operand is
needed, and this is the address of the register file which must be
decremented. However, the DECFSZ instruction, and many
others, can place the result in either a register file or in the W
register. The second operand is either 0 or 1, and these
respectively direct the result of the instruction to the W register

94

or the file register. The second operand is really just a simple
switch that selects one of two possible destinations for the
result.

A few instructions require two 'proper' operands, and this is
where the instruction must include bolt the address of a register
file and a value to be operated on. This is an example of such
an instruction:

BSF 15,2

This instruction sets the specified bit of a register to I. In this
example the register is register tile 15, and it is bit 2 that is set
to 1.

The Instruction Set
Although the PIC processors are of the RISC variety, they still
have some 35 or more instructions with which budding
programmers have to be familiar. Unless you have a
particularly good memory it is probably not worthwhile trying
to memorise all of the instructions before you start writing
some initial exercise programs. On the other hand, you need to
be reasonably familiar with the basic capabilities of the PIC
processors, and as a bare minimum you need to read through
the following description of the instruction set at least two or
three times. You will soon become more familiar with the
available instructions once you start writing programs. Initially
you must expect to get stuck occasionally, and have to refer to
the list of instructions to find one that will provide the function
you require. With any microprocessor, but particularly with
RISC types, you must bear in mind that each instruction is quite
basic and that many simple tasks will require a short series of
instructions.

This description of the instruction set has been kept as brief
ad simple as possible. Information such as the binary code for
each instruction has not been included as it is not the sort of
thing that is normally needed when designing PIC based
systems. The assembler produces the binary codes and it is the
mnemonics that the programmer must be familiar with. The
PIC processor databook contains all the binary codes for the
instructions if you should need them for some reason. As

95

pointed out previously, the instruction sets vary slightly from
one PIC processor to another. Rather than try to give all the
instructions for all the processors, which would tend to be
confusing, the full instruction set for one processor is
described. This processor is the 16C71, which has basically the
same instruction set (but different binary coding) as the I6C5*
series of microcontrollers. However, the 16C5* series lack the
ADDLW, SUBLW, RETURN, and RETFIE instructions.
Obviously the 16C5* series and the 16C71 are largely
compatible, and if you can write assembly language programs
for one there should be no difficulty in writing software for the
other.

The descriptions of some instructions are a bit sketchy, but
this is due to the fact that detailed descriptions of what is
happening are provided elsewhere in this book. For instance,
detailed descriptions of bitwise processes and rotations are not
described in detail here, as they are described in detail in
Chapter 2. The purpose of this chapter is to act as a handy
reference source which provides brief but concise information
on the full 16C71 instruction set. The basic format is the same
for each instruction, with a description of the basic function
provided, followed by details of the assembly language syntax,
the status flags that are affected, the number of cycles the
instruction takes, and the number of words. Finally, one or two
examples are used to show the precise function of the
instruction.

These conventions are used in the syntax examples:

Letter Meaning

b Bit number in file (0 to 7)
d Direction flag (0 = result in W register,

1 = result in file)
f File register address
k 8-bit constant
kk 9-bit constant

ADDLW
The value in the W register is added to the literal k (i.e. the
value in the W register is added to the value contained in the
instruction in k). The result is stored in the W register.

96

Syntax ADDLW k
Status C,DC,Z
Cycles 1
Words 1

Example ADDLW 12
_ 12 is added to the contents of the W register.

If W = 14 initially, after the instruction it will equal
26.

ADVVF
This instruction adds the contents of the W register to the file
register F. The latter can be a numbered or a named file. The
result is stored in the W register if d is 0, or in register F if d is
1.

Syntax ADDWF f,d
Status C,DC,Z
Cycles 1
Words 1

Example 1 ADDWF 18,0
The contents of the W register are added to file 18
and the result is stored in the W register.
If W = 23 and file 18 = 11, after the instruction
W = 34 and file 18 = 11.

Example 2 ADDWF 18,1
The contents of the W register are added to file 18
and the result is stored in file 18.
If W = 23 and file 18 = 11, after the instruction
W = 23 and file 18 = 34.

ANDLW
The contents of the W register are bitwise ANDed with the 8-
bit literal value k (i.e. the value included in the instruction). The
result is stored in the W register.

Syntax ANDLW k
Status Z

97

Cycles 1
Words 1

Example ANDLW 10101010
The contents of the W register are bitwise ANDed
with the 8-bit value 10101010, and the returned
value is placed back in the W register.
If the W register initially contains the binary value
11110000, after the instruction it will contain
10100000.

ANDWF
The contents of the W register are bitwise ANDed with the
value stored in file F. If d =. 0 the returned value is placed in the
W register. The result is placed in register file F if d = I.

Syntax ANDWF Ld
Status
Cycles 1
Words 1

Example I ANDWF 18,0
The contents of the W register are bitwise ANDed
with the value in file register 18, and the result is
stored in the W register.
If the W register contains 10101010 and file
register 18 contains 11110000, after the instruction
the W register is set to 10100000 and file register
18 remains at 11110000.

Example 2 ANDWF 18,1
The same as example 1, but the W register is not
changed by this instruction, and the result is placed
in file register 18.

BCF
This instruction simply clears (sets to zero) the specified bit (b)
of the specified register (f).

98

Syntax BFCF f,b
Status
Cycles 1
Words 1

Example BCF 11,2
If file register 11 is initially at a value of 00001111,
after this instruction it will contain 00001011.

BSF
This instruction sets (to 1) the specified bit of the specified
register.

Syntax BSF f,b
Status
Cycles 1
Words 1

Example BSF 11,2
If file register 11 is initially at a value of 11110000,
after this instruction it will contain 11110100.

BTFC

If the specified bit (b) of the specified register file (f) is clear
(set at 0), the next instruction is skipped. Strictly speaking the
program does not skip straight over the next instruction, but
instead replaces it with a NOP (no operation) instruction. This
gives a delay of one clock cycle before the next instruction is
reached.

Syntax BTFC f,b
Status
Cycles 1 (or 2 if skip performed)
Words 1

Example BTFC 15,1
If bit 1 of file register 15 is clear (0), the next
instruction is replaced with a NOP instruction.

99

If bit 1 of file register 8 is set (1), the next
instruction is performed normally.

BTFSS
If the specified bit (b) of the specified register file (f) is set (1),
the next instruction is replaced with a NOP instruction. This
effectively skips the next instruction, but note that the NOP
instruction it is replaced by takes one clock cycle.

Syntax BTFSS f,b
Status
Cycles 1 (or 2 if skip performed)
Words 1

Example BTFSS 15,1
If bit 1 of file register 15 is set (1), the next
instruction is replaced with a NOP instruction.
If bit 1 of file register 15 is clear (0), the program
continues normally.

CALL
This instruction is used to call a subroutine. The current address
in the program counter is incremented by one and pushed onto
the Stack, and the program counter is then loaded with address
'K'. The program then continues executing from address ' K'.
The limit on address K' is eight bits, which means that the
subroutine must start within the first 256 bytes of code.

Syntax CALL K
Status
Cycles 2
Words 1

Example CALL SENSORS
The program jumps to the address assigned to
'SENSORS' and starts executing from there.

100

CLRF
The specified file register is cleared (i.e. all bits are set to 0) and
the Z flag is set.

Syntax CLRF f
Status Z
Cycles 1
Words I

Example CLRF 12
All the bits in file register 12 are set to O.

CLRW
Clears all the bits of the W register to zero and sets the Z flag
tO

Syntax CLRW
Status Z
Cycles 1
Words 1

Example CLRW
Sets all the bits of the W register to 0 regardless of
their previous state, and sets the Z flag to 1.

CLRWDT
This instruction clears the watchdog timer and prescaler of the
watchdog timer. It also sets status bits TO and PD.

Syntax CLRWDT
Status TO, PD
Cycles 1
Words 1

Example CLRWDT
All bits of the watchdog timer and prescaler are at
0 after this instruction has been completed. The
TO and PD status bits are set.

101

COMF
The contents of the specified register are complemented (i.e. Is
are set to 0, and Os are set to I). The result is placed in the
specified register if d = 1, or in the W register if d = O.

Syntax COMF f,d
Status Z
Cycles I
Words 1

Example I COMF 12,1
The contents of tile register 12 are complemented.
If register 12 contained 11110000 before the
instruction, it would contain 00001111 afterwards.

Example 2 COME 12,0
The value in file register 12 is complemented and
stored in the W register. If file register 12 contained
11110000 before the instruction, it would still con-
tain this value afterwards, but a value of 00001111
would be placed in the W register.

DECF
The specified register is decremented by one. If d = I the result
is placed in the specified register, or it is placed in the W
register if d = 0.

Syntax DECF f,d
Status Z
Cycles 1
Words 1

Example 1 DECF 14,1
The contents of file register 14 are decremented by
one and the result is placed back in register 14. If
the value in register 14 was originally 11110001,
after the instruction it will be 11110000.

Example 2 DECF 14,0

102

The contents of register 14 are decremented by one,
and the result is placed in the W register. If register
14 contained the value 11110001 before the instruc-
tion, it would still contain this value afterwards. The
W register would be set at 11110000.

DECFSZ
Like the DDECF instruction, the specified register is
decremented by one. If d = 1 the result is placed in the specified
register, or it is placed in the W register if d = 0. Additionally,
if the result is 0 the next instruction is replaced with a NOP (no
operation) instruction.

Syntax DECF f,d
Status Z
Cycles 1
Words 1 (2 if skip performed)

Example 1 DECF 14,1
The contents of file register 14 are decremented by
one and the result is placed back in register 14. If
the value in register 14 was originally 11110001,
after the instruction it will be 11110000. The next
instruction is performed normally.

Example 2 DECF 14,0
The contents of register 14 are decremented by one,
and the result is placed in the W register. If register
14 contained the value 00000001 before the instruc-
tion, it would still contain this value afterwards. The
W register would be set at 00000000. The next
instruction would then be replaced by a NOP
instruction, effectively skipping over it.

GOTO
This is the unconditional branch instruction. The program goes
to the specified address and continues to operate from there.

103

Syntax GOTO k
Status
Cycles 2
Words 1

Example GOTO PROG2
The program goes to the address assigned to label
`PROG2', and continues at this address.

INCF
The contents of the specified register are incremented by one,
and the result is placed back in that register if d = 1, or in the
W register if d = 0.

Syntax INCF f,d
Status Z
Cycles 1
Words 1

Example 1 INCF 12,0
The value in file register 12 is incremented by one
and placed in the W register. The contents of
register 12 are not altered by this instruction. If
file register 12 contained a value of 15, after this
instruction it would still contain a value of 15, but
the W register would be set to 16..

Example 2 INCF 12,1
The value in file register 12 is incremented by one
and stored back in that register. The W register is
unaffected by this instruction.

INCFSZ
The specified file register is incremented by one and the result
is placed in that register if d = 1, or in the W register if d = 0.
Additionally, if the result equals 0 the next instruction is
replaced with a NOP instruction, and is effectively skipped.

104

Syntax INCFSZ f,d
Status
Cycles 1 (or 2 if skip performed)
Words 1

Example I INCFSZ 14,1
The contents of file register 14 are incremented by
one, and the result is placed back in that register.
If register 14 originally contained a value of 27, it
would contain 28 after this instruction. The next
instruction would not be skipped.

Example 2 INCFSZ 14,0
The contents of file register 14 are incremented by
one, and the result is placed in the W register. If
register 14 contained a value of 11111111, this
would be incremented to 00000000 and loaded into
the W register. Register 14 would still be set at
11111111. As the result of this instruction is zero,
the next instruction would be replaced by a NOP
instruction.

IORLW
Tie contents of the W register are bitwise ORed with the 8-bit
lir.eral ' lc' (i.e. the 8-bit value contained in me instruction). The
result of this instruction is placed in the W register.

Syntax IORLW k
Status Z
Cycles 1
Words 1

Example IORLW 15
If the W register contains the binary value

C1010101
before this instruction is performed, it will contain
the binary code 01011111 afterwards (i.e. the result
of bitwise ORing 00001111 and 01010101).

105

IORWF

The contents of the W register are bitwise ORed with the
contents of the specified register. If d = 0 the result is stored in
the W register, but if d = 1 the result is stored back in the
specified register.

Syntax IORWF f,d
Status Z
Cycles 1
Words 1

Example 1 IORWF 15,0
The contents of the W register are bitwise ORed
with the value in file register 15. If the W register
and file register 15 respectively contain 01010101
and 00001111, the result of 01011111 will be
stored in the W register. The contents of register 15
would be unaffected by this instruction.

Example 2 IORWF 15,1
The same as example 1, but the result is stored in
register 15 and the contents of the W register are
unaffected.

MOVLW
This instruction moves the 8-bit literal ` le (i.e. the value
provided within the instruction) into the W register.

Syntax MOVLW k
Status —
Cycles 1
Words 1

Example MOVLW 56
A value of 56 is loaded into the W register.

MOVF
The contents of the specified register are moved to either the W

106

register (if d = 0) or back to the specified register (d = 1).
Although, on the face of it, using this instruction with d = 1 has
no affect, it can be useful to test the contents of a register, with
the Z flag indicating the result.

Syntax MOVF f,d
Status Z
Cycles 1
Words 1

Example MOVF 15,0
The contents of file register 15 are loaded into the
W register. The value in register 15 remains
unaltered.

MOVWF
This instruction moves the contents of the W register to the
specified register.

Syntax MOVWF f
Status
Cycles 1
Words 1

Example MOVWF 49
Moves the value stored in the W register to file
register 49. The value in the W register is not
altered by this instruction — it is simply copied to
register 49.

NOP
This is the no operation instruction, which does absolutely
nothing. It simply provides a delay of one clock cycle.

Syntax NOP
Status
Cycles 1
Words 1

107

Example NOP
Has no effect on any registers.

RETFIE

This is the return from interrupt instruction. The Stack is
popped and the top of Stack (TOS) is loaded into the program
counter. Interrupts must be enabled by setting the global
interrupt enable (GIE) bit.

Syntax RETFIE
Status —
Cycles 2
Words 1

Example RETFIE

RETLW
This is a form of the return from sub routine instruction. The
literal value 'k' (the value contained within the instruction) is
loaded into the W register. The program counter is loaded with
the value at the top of the Stack, which is the subroutine
address.

Syntax RETLW k
Status —
Cycles 2
Words I

Example RETLW 12
A value of 12 is loaded into the W register. The
program counter is loaded from the top of the Stack,
and the program continues from where it left off.

RETURN
This is the standard form of the return from subroutine
instruction. The Stack is popped and then the top of the Stack
(TOS) is loaded into the program counter.

108

Syntax RETURN
Status
Cycles 2
Words I

Example RETURN

RLF
This is the rotate left with carry instruction. The contents of the
specified register are rotated one bit to the left through the carry
flag. The result is left in the file register if d = 1, or placed in
the W register if d = 0.

Syntax RLF f,d
S:atus C
Cycles 1
Words 1

Example RLF 18,0
The value in file register 18 is rotated one bit to the
left through the carry flag, and the result is placed
in the W register. The contents of register 18 are
unaffected. If register 18 contained the binary value
10101110, it would still do so after this instruction
had been executed, but the W register would con-
tain the value 01010110, and the carry flag would
be set.

RRF
This is the rotate right through the carry flag The contents of the
specified register are rotated on bit to the right through the
carry flag. The result is placed in the W register if d = 0, or back
in the file register if d = 1.

Syntax RRF f,d
Status
Cycles 1
Words

109

Example RRF 14,1
The value in file register 14 is rotated one bit to the
right through the carry flag, and the result is placed
in register 14. For instance, if register 14 contained
the binary value 10101110 before the instruction
was executed, it would contain the value 01010111
afterwards. The carry flag would not be set.

SLEEP
This instruction puts the processor in the sleep mode. This
facility is described in detail elsewhere in this publication.

Syntax SLEEP
Status TO, PD
Cycles 1
Words 1

Example SLEEP

SUBLW
The 2s complement method is used to subtract the contents of
the W register from the 8-bit literal 'k' (the value contained
within the instruction). The result is stored in the W register.

Syntax SUBLW k
Status C, DC, Z
Cycles 1
Words 1

Example SUBLW 17
The contents of the W register are subtracted from
17, and the result is placed in the W register. If the
W register contained 4 prior to this instruction, it
would contain 13 afterwards.

SUBWF
The 2s complement method is used to subtract the contents of

110

the W register from the specified file register. If d = 1 the result
is placed in the file register, or if d = () it is placed in the W
register.

Syntax SUBWF f,d
Status C, DC, Z
Cycles 1
Words 1

Example 1 SUBWF 12, 0
The value in the W register is subtracted from file
register 12, and the answer is placed in the W
register. If register 12 contains 78, and the W
register contains 6, register 12 will still be set at
78 and the W register will be set at 72 after this
instruction has executed.

Example 2 SUBWF 12,1
The value in the W register is subtracted from the
value in register 12, and the result is placed in
register 12. If register 12 contains 78 and the W
register contains 6, after the instruction has
executed these registers will respectively contain
72 and 6.

SWAPF
The upper and lower nibbles of the specified register are
swapped over (i.e. bits 0 to 3 and bits 4 to 7 are swapped). The
result is placed in the W register if d = 0, or in the file register
if d = 1.

Syntax SWAPF f,d
Status
Cycles 1
Words 1

Example 1 SWAPF 15,0

The two nibbles in file register 15 are swapped over,
and the result is placed in the W register. For

111

instance, if register 15 contained the binary value
00111100, it would still do so after this instruction,
but the W register would contain the binary value
11000011.

Example 2 SWAPF 15,1
The two nibbles in file register 15 are swapped over,
and the result is placed in register 15. If register 15
originally contained the binary value 00111100,
after this instruction it would contain 11000011.

XORLW
The value in the W register is exclusive ORed (X0Red) with
the 8-bit literal 'IC (i.e. the value contained within the
instruction). The result is stored in the W register.

Syntax XORLW k
Status Z
Cycles 1
Words 1

Example XORLW 2
The value in the W register is exclusive ORed with
a value of 2 (00000010 in binary). If the W register
contained a value of 00001111, after this instruc-
tion the W register would contain 00000010.

XORVVF
The contents of the specified register are exclusive ORed with
the contents of the W register. If d = 0 the result is placed in the
W register, but if d = 1 the result is placed in the specified
register.

Syntax XORFW f,d
Status Z
Cycles 1
Words 1

112

Example 1 XORFW 12,0
The contents or register 12 are exclusive ORed with
the value in the W register, and the result is stored

ir
the W register. If the W register and register 12
respectively contain Ill 10000 and 01100110, after
this instruction the W register would contain
01100000 and register 12 would still contain
01100110.

Example 2 XORFW 12,1
The contents of register 12 are exclusive ORed with
the contents of the W register, and the result is
stored in register 12. If the W register and register
12 respectively contain 11110000 and 01100110,
after this instruction register 12 would contain
01100000 and the W register would still contain
11110000.

The 16C71 also has OPTION and TRIS instructions.
However, in order to maintain upward compatibility, the
manufacturers recommend that these instructions should not be
used with the 16C71. With the 16C54, etc., there is no
alternative as these instructions represent the only way of
writing data to the OPTION and TRIS registers. Details of the
OPTION and TRIS instructions are therefore provided here.

OPTION
Copies the contents of the W register to the OPTION register.

Syntax OPTION
Status
Cycles 1
Words 1

Example OPTION

Copies the value in the W register to the OPTION
register. Obviously the appropriate value must be
loaded into the W register before this instruction is
issued.

113

TRIS
Copies the contents of the W register to the specified TRIS
register.

Syntax TRIS f
Status —
Cycles 1
Words 1

Example TRIS 5
Copies the value in the W register to TRIS register
5. TRIS registers 5, 6, and 7 correspond to TRISA,
TRISB, and TRISC respectively. Obviously the
appropriate value must be loaded in the W register
before this instruction is issued.

The following table lists the 16C71 instruction set, and is
useful as a memory aid when you start writing PIC software.

Mnemonic Basic Function Cycles

ADDLW Add k to W 1
ADDWF Add W to f 1
ANDLW Bitwise AND W with k 1
ANDWF Bitwise AND W with f 1
BCF Bit clear f 1
BSF Bit set f 1
BTFSC Bit test — skip if clear 1 or 2
BTFSS Bit test — skip if set 1 or 2
CALL Call subroutine 2
CLRF Clear f 1
CLRW Clear W I
CLRWDT Clear watchdog timer 1
COMF Complement f 1
DECF Decrement f 1
DECFSZ Decrement f and skip if 0 1 or 2
GOTO Unconditional branch 2
INCF Increment f 1
INCFSZ Increment f and skip if 0 1 or 2
IORLW Bitwise OR k with W 1

114

IORWF
MOVLW
MOVF
MOVWF
NOP
OPTION
RETFIE
RETLW
RETURN
RLF
RRF
SLEEP
SUBLW
SUBWF
SWAPF
TRIS
XORLW
XORWF

Bitwise OR W with f
Move k to W
Move f
Move W to f
No operation
Load option register
Return from interrupt
Return, k to W
Return from subroutine
Rotate left through carry
Rotate right through carry
Enter sleep mode
Subtract W from k
Subtract W from f
Swap f
Load TRIS register
Bitwise XOR k with W
XOR W with f

1
1

1

2
2
2
1
1
1
1
1
1
1
1

The following lists place the instructions into three
categories, which might make it easier to find a mnemonic or
instruction when you initially start writing PIC software.

Operations on
ADDWF
ANDWF

CLRF
CLRW
COMF
DEC
DECFSZ
2•ICF
:NCFSZ
IORWF
MOVF
MOVWF
RLF
RRF
SUBWF

File Register Bytes
Add W to f
Bitwise AND W with f
Clear f
Clear W
Complement f
Decrement f
Decrement f, skip if zero
Increment f
Increment f, skip if zero
Bitwise OR W with f
Move f
Move contents of W to f
Rotate left through carry
Rotate right through carry
Subtract W from f

115

SWAPF Swap W with f
XORWF Bitwise exclusive OR W with f

Operations on File Register Bits
BCF Bit clear f
BSF Bit set f
BTFSC Bit test f and skip if clear
BTFSS Bit test f and skip if set

Operations, Literal and Control
ADDLW
ANDLW
CALL
CLRWDT
GOTO
IORLW
MOVLW
NOP
RETFIE
RETLW
SLEEP
SUBLW
XORLW

Add literal to W
Bitwise AND literal and W
Call subroutine
Clear watchdog timer
Go to instruction address
Bitwise OR literal with W
Move literal to W
No operation
Return from interrupt
Return and put literal in W
Go into SLEEP (standby) mode
Subtract literal from W
Exclusive OR literal with W

Points to Remember
When writing assembly language programs use mnemonics for
the instructions. The assembler converts these into their
corresponding binary values.

Assembly language programs contain four fields (labels,
mnemonics for instructions, operands, and comments).

You do not have to bother about keeping track of instruction
addresses. You just assign labels to any points in the program,
and the assembler assigns suitable addresses to them. This
makes it easy to program loops and subroutines.

With many PIC instructions the result of an operation can
be stored in the W register (d = 0) or in the appropriate file
register (d = 1).

116

There are only about three dozen PIC instructions and they
are mostly quite simple, so try to learn them all before you get
into serious PIC programming.

The 16C5* series processors need the OPTION and TRIS
instructions to load the OPTION and TRIS registers, but the
later processors such as the I6C71 can access them using other
instructions.

117

Chapter 5

GETTING IT TOGETHER

:n the previous chapters various aspects of PIC
microcontrollers have been covered, and in this chapter we will
look at how these aspects are combined to produce some simple
PIC based devices. The hardware and software have been kept
very simple as their purpose is to provide an introduction to
practical PIC design, rather than to act as genuinely useful
projects. When first undertaking PIC design work it is
definitely a good idea to keep things simple, and work on the
premise that it is 'better to learn to walk before you try to run'.

Four Aspect Signal
The first design example is a simple signal for a model train-
set. Rather than a simple three-aspect (red — amber — green)
signal, this one is based on the 'real thing' used on the suburban
railway which passes near to where I live. The signals on this
railway use four-aspect signals which go to red as a train
passes, to amber and amber when the train has moved a certain
distance from the signal, then to single amber when it has
moved further along the line, and finally back to green when
the train has moved still further along the line. This basic

design does not respond to the model train, but simply cycles
the signal through its four states.

When designing a PIC system you must start with the
hardware, because the software has to be designed to suit the
hardware set-up selected. In this case we simply need to drive
four LEDs from outputs of the processor. No other inputs or
outputs are needed, so the most simple of PIC devices can
handle the task. We will therefore base the unit on a I6C54,
which has one S-bit port (Port B) and one 4-bit type (Port A).
In this case we only need four outputs, and either port could be
used. It really does not matter which port is used, and my
selection of RBO to RB3 (i.e. the lower nibble of Port B) is a
purely arbitrary one.

The other main decision to make is the type of clock
oscillator to be used, and the clock frequency. At first sight this

119

might look like a prime candidate for a very low clock
frequency, since we require a gap of several seconds from one
change in the signal to the next. Using a very low clock
frequency would enable the software to be very simple indeed,
with no delay loops. In practice there would be a drawback to
using a very low clock frequency, which is simply that the
signal would be non-operational for some time after switch-on
while the processor performed the initial instructions to set up
Port B. It would therefore be better to use a higher clock
frequency and delay loops to hold the signal at each state for the
required length of time. There is no need to use a clock
frequency of more than a few hertz, as this is sufficient to keep
the initial setting up period suitably short. A higher clock
frequency would complicate matters by requiring relatively
long and complex program loops to hold the signal at each state
for an adequate period. In an undemanding application such as
this a C-R clock oscillator is perfectly adequate.

It did not take too long to arrive at the circuit of Figure 5.1.
A PIC port can source a high enough current to drive LEDs, but
the usual current limiting resistors (R2 to R5) are needed to
protect the port outputs from excessive loading. The built-in
reset circuit can be used, and MCLR (pin 4) is therefore
connected to the +5 volt supply rail. The RTCC pin is not used
in this application, but it must not be left ' floating'. It is
therefore tied to the +5 volt supply rail as well.

R1 and C2 are the timing components in the C-R clock
oscillator. The clock circuit is a very simple relaxation
oscillator which uses the arrangement shown in Figure 5.2. The
capacitor (C2) charges by way of RI until the charge potential
is high enough to send the output of the trigger circuit high. The
N channel MOSFET then switches on and discharges C2 until
the charge voltage is low enough to set the output of the trigger
circuit low again. C2 then starts to charge once more, and the
circuit oscillates indefinitely in this manner, producing a
sawtooth waveform across C2 and a roughly squarewave
output signal from the trigger circuit. It is the squarewave that
is used as the clock signal for the microcontroller. Operation of
this type of oscillator relies on the hysteresis of the trigger
circuit. In other words, its reluctance to change back to its
previous state once it has been triggered. The input voltage

120

h) -

Cl
1"100n

[R1
100k

16

14

T 220n

IC1

16C54

3

4
—

7

R,
33OR

8

R4
330R
 1

01 = Red LED
02,3 = Yellow LED
D4 = Green LED

9
R3

330R

5

RS
330R

 r--1

I/D1 Z D2 eD3

Fig.5.1 The circuit diagram for the simple four-aspect signal

/
/04

 o + 5V

• 0 OV

i

R1

Trigger

D

G
S

TR1

OV

Fig.5.2 The basic arrangement used in a PIC C-R
clock circuit

which causes the output to trigger to the high state is much
higher than the one which causes it to revert to the low state.

This type of oscillator is a good choice for a general purpose
but inexact clock oscillator. It can operate over a very wide
frequency range of well under one hertz to a maximum of a few

122

megahertz. The drawback is that a circuit of this type lacks
frequency accuracy and stability. Changes in temperature can
affect the values of the timing components, and produce
significant frequency drift. The tolerance of these components
also limits the accuracy with which the clock frequency can be
set. The main problem is the trigger circuit though. The
operating frequency is dependent on the two trigger voltages,
and these vary considerably from one device to another. Also,
as a percentage of the supply voltage, they change with
fluctuations in the supply voltage. This type of clock circuit is
therefore unsuitable where the clock frequency must be set
accurately, and (or) it must be highly stable.

Practical tests suggest that with the timing resistance at
around 100k, a low clock frequency, and a 5 volt supply, the
clock frequency is approximately equal to:

1/(C1 x RI)

Calculating the output frequency is easier if the values of the
timing components are expressed in megohms and microfarads
rather than ohms and farads. The values used in the circuit of
Figure 5.1 (100k and 220n) produce an approximate clock
frequency of 60Hz, and the measured output frequency from
the clock output pin was 14.8Hz. The clock output signal is at
one-quarter of the clock frequency though, and 14.8Hz is
therefore quite close to the expected figure of 15Hz. Using the
software I eventually devised for this project, it takes a little
under two minutes for the circuit to go through one complete
cycle of the signal lights, but the speed of the circuit is easily
changed by altering the value of C2. For example, a value of
120n would almost double the clock frequency, and reduce the
time for one complete cycle of the lights to about one minute.
In some cases you may not be able to select the final clock
frequency until the software has been completed, but you
should at least be able to get reasonably close with your initial

estimate.
The following table should prove helpful when selecting

values for timing components in the clock oscillator. It simply
gives suggested values for a range of clock frequencies.

123

Frequency

1Hz 10p 100k
2Hz 4j7 100k
5Hz 2p 2 110k
10Hz 1p 100k
20Hz 470n 100k
50Hz 150n 120k
100Hz 68n 100k
200Hz 33n 82k
500Hz 15n 47k
IkHz 47n 12k
2kHz 100n 10k
5kHz 22n 22k
10kHz 4n7 12k
20kHz 2n2 15k
50kHz 2n2 8k2
100kHz 2n2 3k9
200kHz 1 n 3k9
500kHz 470p 3k3
1MHz 150p 4k7
2MHz 82p 4k3
4MHz 33p 3k9

These values take into account the input capacitance of the
processor chip itself, and loading by the trigger circuit. Thus,
although there may seem to be some discrepancies, they are
actually correct. Note that these values will only give
something close to the specified frequencies, and that errors of
10 per cent or more can occur even if close tolerance
components are used. Operation at frequencies of more than
4MHz using a C-R oscillator is not recommended, although it
is possible with the faster chips if you are prepared to 'turn a
blind eye' to the manufacturer's recommendations.

Software
No doubt there are endless ways of obtaining the desired action
from this circuit, and the listing shown here is just one
possibility.

124

;Basic Signal Program

MOVLW 00

TRIS 06 ;Sets Port B bits 0 to 3 as outputs

LOOP MOVLW 01

MOVWF 06 ;Sets signal to green

BCF 03,2 ;Resets zer3 flag

MOVLW 7F ;Number o' loops

MOVWF OC

DELAY I DECFSZ OC,1

GOTO DELAY I ;Sets green signal time

MOVLW 08

MOVWF 06 :Sets signal to red

BCF 03,2 ;Resets zero flag

MOVLW 50 ;Number of loops

MOVWF OC

CELAY2 DECFSZ OC,I

GOTO DELAY2 ;Sets red signal time

MOVLW 06

MOVWF 06 ;Sets signal to twin amber

BCF 03,2 ;Resets zero flag

MOVLW 50

MOVWF OC

DELAY3 DECFSZ OC,1

GOTO DELAY3

MOVLW 02

MOVWF 06 ;Sets signal to amber

BCF 03,2 ;Resets zero flag

MOVLW 50 ;Number of loops

MOVWF OC

DELAY4 DECFSZ OC1,

GOTO DELAY4

GOTO LOOP

END

It has to be pointed out that different assemblers do things
in slightly different ways, and you therefore need to read the
'fine print' to determine the exact formal that your assembler

125

requires. Some require a ' tab' character or several spaces
between fields, while others will settle for a single space
character. Some need a colon (:) at the end of the labels in the
labels field (to ensure that labels are not confused with
mnemonics), while others do not. The need for a semicolon (;)
character at the beginning of comments seems to be needed
with all assemblers. As you will see from this listing, the use of
comments is not restricted to added notes at the end of
instructions. The assembler ignores anything that follows a
semicolon and is on the same line. You can therefore add as
many lines of notes as you like at the beginning of a listing
provided each one starts with a semicolon. This facility can be
used to give a listing, a title, provide basic details of the
hardware configuration, or to include any information that
might be useful to you if you return to the program at some later
date. This information can also be useful to anyone who makes
use of your programs.

The listings in this chapter are in a form that is suitable for
the 'MPALC' or 'MPASM' assemblers produced by Microchip
Technologies Incorporated (the PIC chip manufacturers). Other
assemblers might need the listing to be ' fine tuned' in order to
get it to assemble correctly. Assemblers usually give you the
option of using decimal numbers, but use hexadecimal by
default. The programs in this chapter all use hexadecimal
numbers, and there is probably no point in using decimal even
if it is available as an option. Hexadecimal is much more
convenient for this sort of low-level programming.

The first step is to set up RBO to RB3 as outputs, and this is
the purpose of the first two lines of the program. The first line
moves a value of zero into the W register, and the second line
loads this into TRISB. This actually sets all eight lines of Port
B as outputs, but it does not matter whether RA4 to RA7 are
inputs or outputs. The next two lines write a value of 1 to Port
B, which sets RBO high and switches on D4 (the green LED).
The program must then loop a number of times in order to hold
the signal at green for a suitable period. First the zero flag in the
status register must be reset, as it is this bit being set that brings
thé loop to an end. Before using a status bit you should always
ensure that it is at the appropriate starting state by setting it at
that state. If you just assume that it is at the correct state it is

126

reasonable to expect a fair proportion of your programs to fail!
A value of 7F is then moved into the W register, and from here
it is copied to register OC, which is used as the counter. The
next two lines form the actual loop, and a DECFSZ instruction
is used to decrement register OC. A GOTO instruction keeps
looping the program back to this instruction, but only until the
value in register OC reaches zero. The zero flag in the status
register is then set, and the DECFSZ instruction jumps over the
GOTO instruction.

This breaks the program out of the loop, but it then goes into
a virtually identical routine that sets the signal to red and
provides another delay. This is followed by similar routines that
set the signal to amber and amber, and then single amber, again
with a delay being provided in each routine. The number of
loops used while the signal is at red, amber — amber, and amber
is lower than number used while it is green. This has been done
to set the signal to green for longer than it is set to the other
colours, but there is clearly no difficulty in altering the four
delay times to suit individual requirements. It is just a matter of
changing the number of loops used in the routine for each
signal. This sort of versatility is one of the main attractions of
using microcontrollers. A basic design can be ' fine tuned' to
suit individual requirements by changing the software, with
changes in the hardware often being unnecessary.

Once the signal has been at amber for the appropriate time
the program loops back to almost the beginning, and goes
through the sequence once again. There is obviously no point in
performing the first two instructions on each loop of the
program, as it is only necessary to set up Port B once. The
'END' instruction does not actually produce any code for the
processor, and this simply indicates to the assembler that it has
reached the end of the program listing.

Refinements

With a simple program such as this there is no difficulty in
keeping track of the functions assigned to the general purpose
file registers, since only one of them is actually utilized (file
OC). Life obviously gets more difficult when you start to write
programs that use a few dozen of these registers. It would
obviously be more convenient if the registers could be referred

127

to by a meaningful name, and there would also be less risk of
errors occurring when writing the code. It would also be easier
if the status register and its flags could simply be referred to by
name. Some assemblers do actually permit the status register
and the flags to be specified by name rather than by register and
bit numbers, but this is by no means a universal feature.

Any PIC assembler should support symbols, and these
enable registers, etc., to be specified using a name rather than a
number. It is really just a matter of adding a list at the beginning
of each program, declaring the symbols and the values each one
represents. This is done using the EQU (equals) command. In
the signal program register OC is used as a counter, and it could
therefore be called something like 'COUNTER' or 'CNTR'. It
is up to the programmer to select suitable names, but note that
there might be a restriction on the number of characters
allowed, and some characters may not be permissible. Symbols
usually have to start with a letter of the alphabet rather than a
number. The assembler may differentiate between upper and
lower case letters, or there may be the option to enable you to
switch case sensitivity on and off. Once again, it is a matter of
going through the manual and reading the ' fine print'. It is
advisable to keep symbols precise and to the point even if long
names are permitted.

This version of the signal program shows how symbols can
be used. The symbol called 'CNTR' is assigned to a value of
OC, 'STATUS' is assigned a value of '03', and Z is assigned a
value of 2. These symbols can then be used in the program
instead of the values they represent (e.g. BCF STATUS,Z
instead of BCF 03,2). The program 'blown' into the PIC chip
is exactly the same for both versions of the program. Symbols
make it easier for the programmer to write programs and to
avoid errors, but have no affect on the final program. Many
programmers have a standard set of symbols that they use at the
start of every program. Obviously some customising will
normally be required in order to make the standard set of
symbols suit each new program, but some customising is
usually a lot quicker than 'starting from scratch' each time you
write a program.

128

;Signal Program Using Symbols
•***

CNTR EQU OC ;Sets counter as file OC

STATUS EQU 03

EQU 2

MOVLW 00

TRIS 06 ;Sets Pott B bits 0 to 3 as outputs
LOOP MOVLW 01

MOVWF 06 ;Sets signal to green

BCF STATUS.Z ;Rzsets zero flag

MOVLW 7F ;Number of loops

MOVWF CNTR

DELAY I DECFSZ CNTR, I

GOTO DELAY1 ;Sets green signal time

MOVLW 08

MOVWF 06 ;Sets signal to red

BCF STATUS,Z ;Resets zero flag

MOVLW 50 ;Number of loops

MOVWF CNTR

DELAY2 DECFSZ CNTR,1

GOTO DELAY2 ;Sets red signal time
MOVLW 06

MOVWF 06 ;Sets signal to twin amber

BCF STATUS,Z Resets zero flag

MOVLW 50 ;Number of loops

MOVWF CNTR

DELAY3 DECFSZ CNTR, I

GOTO DELAY3 ;Sets twin amber signal time
MOVLW 02

MOVWF 06 ;Sets signal to amber

BCF STATUS,Z Resets zero flag

MOVLW 50 ;Number of loops

MOVWF CNTR

EELAY4 DECFSZ CNTR,I

GOTO DELAY4

GOTO LOOP

END

129

Chip Programming

The exact procedure for ' blowing' the program into the PIC
processor depends on the particular programming or develop-
ment system that you are using. Typically you would first run
the assembler, selecting the source file, processor type, output
file format, etc., before getting it to produce a file containing
the object code for the programmer. When you are developing
your own programs you will probably wish to run some sort of
simulator before 'blowing' the program into the chip. If you are
simply copying a tried and tested program this stage is not
necessary, provided you are confident that your copy of the
program is accurate. Before 'blowing' a program into a one-
time programmable chip you obviously need to be reasonably
sure that the program is correct, since even the most simple of
errors will result in a programmed chip that is completely
useless.

Having successfully produced the object code for the chip it
is then a matter of running the software for the programmer,
and then selecting the appropriate options for your project. For
example, you must select whether or not you require the code
protection flag to be set, and where appropriate you must also
select the appropriate clock type. Of course, with many of the
one-time programmable chips you do not have to select the
clock type as the chip will only support one type. When you are
sure that everything is set up correctly, the program is ' blown'
into the chip. However, if the processor is a type which can be
re-programmed you should always check that it has been
properly erased before re-programming it. Any programming
system should have a facility to check that the device has been
properly erased. Having 'blown' the program into the chip the
contents are usually verified by the programming software, but
you may have to invoke this routine manually. If the program
in the chip does not match the object code there is almost
certainly a hardware fault, and the most likely cause of the
problem is that the PIC processor itself is faulty.

If you try the simple signal project it can easily be built on
a solderless breadboard, but as PIC processors are static-
sensitive remember to observe the usual handling precautions.
Presumably the program would be 'blown' into a re-

programmable chip, and these are not exactly cheap. This

130

makes it all the more important to observe the normal anti-
static handling precautions. When experimenting with PIC
processors I would certainly recommend using an earthed mat
on the workbench, and it is also a good idea to wear an earthed
wrist-band so that you are not in any danger of 'zapping' a PIC
chip every time you handle one.

Automatic Signal
We will now take our model train signal example a stage
further, and produce an automatic version which is operated by
the train via reed or micro-switches on the track. This is much
the same as the example system that was described in Chapter
1, but with the same form of four-aspect signalling that is used
in the simple signal described in the previous section of this
chapter. In fact the output side of the signal can be left
unchanged, and it is just a matter of monitoring the switches by
way of four inputs on the processor. RB4 to RB7 and RAO to
RA3 are available for this purpose, and we will keep things
straightforward by using separate ports for the input and output
lines. Therefore, RAO to RA3 are used to monitor the sensor
switches, and it does not really matter which input monitors
which switch, since the software can be written to suit any set-
up. We will use the arrangement outlined in Figure 5.3.

When writing software for an application such as this it is
more than a little helpful if the basic action of the system is
defined first. In fact it is probably easier to start with a simple
list that relates input and output states to their corresponding
'real world' events. All that is needed is a simple list of the type
that follows.

Red signal Write 8 to Port B
Amber x2 signal Write 6 to Port B
Amber signal Write 2 to Port B
Green signal Write 1 to Port B
Switch 1 activated Port A bit 0 set
Switch 2 activated Port A bit 1 set
Switch 3 activated Port A bit 2 set
Switch 4 activated Port A bit 3 set

In order to produce a single amber signal either 2 or 4 can
be written to Port B, since switching on either of the yellow

131

Switch 3 Switch 4
(RA2) (RA3)

Switch 2
(RAI)

Switch 1
(RAO)

Fig.5.3 The method of position sensing used in the automatic signal

LEDs will provide the desired result. The decision to use a
value of 2 is an arbitrary one. Having written down the basic
port information in a way that is easy to follow, keep it handy
for reference purposes, and proceed to produce either a flow
chart or a list to define the steps that the program must take.
This is my suggested list of program steps.

I. Set Port B as outputs (Port A defaults to inputs).
2. Set signal at green.
3. Read Port A and store result.
4 Check if bit 0 of result is high, set signal to red if it is.
5 Check if bit 1 of result is high, set signal to amber x2 if it

is.

6 Check if bit 2 of result is high, set signal to amber if it is.
7. Check if bit 3 of result is high, set signal to green if it is.
8. Loop to line 3 and read Port A, etc. again.
9. End.

This list converts quite easily into an actual program, and this
is the listing for the automatic signal program.

;Automatic Model Train Signal Program
;Red on RB3, amber on RB1/2, green on RBO
;S1 to S4 on RAO to RA3 respectively

•

INPUT EQU 05

OUTPUT EQU 06

STORE EQU OC

MOVLW 00

TRIS 6 ;Port B as outputs
MOVLW 01

MOVWF OUTPUT ;Set signal to green initially

LOOP MOVF 1NPUT,W ;Read Port A

MOVWF STORE ;Store reading
MOVLW 08

BTFSC STORE,0 ;If RAO high

MOVWF OUTPUT ;Set signal to red

MOVLW 06

133

BTFSC STORE,1 ;If RAI high

MOVWF OUTPUT ;Set signal to twin amber

MOVLW 02

BTFSC STORE,2 ;If RA2 high

MOVWF OUTPUT ;Set signal to amber

MOVLW 01

BTFSC STORE,3 ; If RA3 high

MOVWF OUTPUT ;Set signal to green

GOTO LOOP

END

The first three lines of the program define symbols for the
input port (INPUT), the output port (OUTPUT), and the
register used to store the values read from Port A (STORE). It
would be possible to use further symbols, such as a value of 01
for GREEN and 08 for RED, but with such a simple program
this would not really be worthwhile. The program continues by
setting Port B as an output port, but there is no need to set Port
A as an input port as this is the default condition. The next two
lines of the program set the signal to its initial state of green.
After this initial setting up the program enters the main loop
section, and this starts with Port A being read and the returned
value is then transferred to STORE (file register OC).

In order to obtain the desired action the program must test
bits 0 to 3 of STORE, one-by-one, and set the signal to the
appropriate state if one of these bits is set. This requires a
conditional instruction that acts on the state of a particular bit
in the specified file. The I6C54 instruction set has only one
instruction which fits our requirements, and this is BTFSC.
This instruction carries on to the next instruction if the bit that
is tested is set to one, but it skips the next instruction if it is set
to zero. The first BTFSC instruction tests to see if bit 0 (RAO)
is set to one. If it is, SI has been activated and the signal must
be set to red. This is accomplished by the next instruction, but
if bit 0 is zero, this instruction is skipped. A further three pairs
of instructions test bits 1 to 3 and provide the appropriate action
if one of these bits is set to one. In every case, setting the signal
to the correct state must be accomplished in a single instruction,
as only one instruction can be skipped over if a bit is not set to
one. The appropriate value is therefore moved into the W

134

register before each bit is tested. If the bit is set to one, it then
only takes a single instruction to transfer the value from the W
register to Port B.

Once the full set of 4-bit tests have been completed the
program is looped back to the point where Port A is read, and
this whole process repeats indefinitely. The sensor switches
may only close very briefly as the model train passes, and a
reasonably high clock frequency is therefore needed in order to
ensure that the circuit always responds properly. The circuit
could be made to loop every one or two microseconds by using
a very high clock frequency, but this is not necessary as the
mechanical characteristics of the switches mean that they must
close for at least a few milliseconds. A clock frequency of about
1MHz is therefore more than adequate to ensure that the circuit
operates reliably. Each time a switch is activated, the unit will
set the signal to the appropriate state over and over again. For
as long as the sensor switch is closed, the signal will be set to
the appropriate state. Repeated looping of this type is not
acceptable in some applications, but it is of no consequence in
this case. Setting the signal to its existing state simply has no
effect, and will not cause a malfunction.

The circuit diagram for the automatic signal appears in
Figure 5.4. The output side of the circuit is identical to the basic
signal circuit described previously. On the input side there is a
pull-down resistor for each input, plus a sensor switch that pulls
the input high when it is activated. The values of R5 and C2 set
the clock frequency at about 4MHz, but the circuit should work
equally well using a much lower clock frequency. This is
obviously another circuit that could be tested quite easily by
building it on a solderless breadboard. SI to S4 could simply be
pushbutton switches in the test circuit.

Subroutines
With this simple application it is possible to avoid the use of
subroutines because the signal can be set to the required state in
a single instruction. With many applications a single instruction
will not be adequate, and a subroutine then becomes the only
way of handling things. Subroutines are very easy to use, and it
is just a matter of using the CALL instruction to enter the
subroutine, and some form of RETURN instruction to jump

135

 o +5V

SI

mi. C I
100n

S2 S3 54
R5 n
3k9 U

14

16

2

18

17

n R1
U 2k2

ICI

16C54

3

4

6

R8
330R

R2 r R3 r R4 C2 T2k2 L 2k2 L 2k2 33p

5

R6

7 33OR

DI = Red LED
D2,3 = Yellow LED
D4 = Green LED

R9

8 33OR

R7

9 33OR

Z01 I/D2 e lD3 1/D4

Fig.5.4 The circuit diagram for the automatic model train signal

• 0 OV

back into the main program once the routine has been
completed. This listing provides the automatic signal function
using subroutines.

•m**

:AUTOMATIC TRAIN SIGNAL PROGRAM USING
SUBROUTINES
;*Ic***

INPUT EQU 05

OUTPUT EQU 06

STORE EQU OC

MOVLW 00

TRIS 6 ;Port B as outputs

MOVLW 01

MOVWF OUTPUT ;Set signal to green initially

LOOP MOVF INPUT,W ;Read Port A

MOVWF STORE ;Store reading

BTFSC STORE,0 ;If RAO high

CALL RED ;Call red routine

BTFSC STORE,I ;If RAI high

CALL AMBR2 ;Call twin amber routine

BTFSC STORE,2 ;If RA2 high

CALL AMBER ;Call amber routine

BTFSC STORE,3 ;If RA3 high

CALL GREEN rail green routine

GOTO LOOP

RED MOVLW 08 ;Set signal to red

MOVWF OUTPUT

RETLW 00

AMBR2 MOVLW 06 ;Set signal to twin amber

MOVWF OUTPUT

RETLW 00

AMBER MOVLW 02 ;Set signal to amber

MOVWF OUTPUT

RETLW 00

GF.EEN MOVLW 01 ;Set signal to green

MOVWF OUTPUT

RETLW 00

END

137

The initial part of the program is exactly the same as in the
original version, with the symbols being defined, Port B being
set as an output port, and the signal being set to green. The
decision making process is similar to that in the original
program, but the appropriate value is not loaded into the W
register before the bit testing is carried out. Also, if a bit is set
to one, the program proceeds to the next instruction where a
suitable subroutine is CALLed. The subroutines are defined at
the end of the program.

Using subroutines is very simple with the 16C54 since you
do not have to bother about the Stack. The processor
automatically stores the appropriate address on the Stack, and
loads it into the program counter at the end of the routine. In
order to enter a subroutine you simply use a CALL instruction
with a label indicating the start address of the routine (such as
'GREEN' or `AMBER' in this program). A RETURN
instruction at the end of the routine takes things back to the
instruction that follows the one which CALLed the subroutine.
The 16C54 does not have a straightforward RETURN
instruction, but it does have RETLW. This places the literal
number (i.e. the number specified within the instruction) in the
W register when the program returns from the subroutine. This
loading of the W register is of no help in the current application,
and a `dummy' value of zero is therefore used in each RETLW
instruction.

The label used when calling a subroutine represents an
instruction address, not a data register address. There is no risk
of getting the two confused since you do not need to deal with
instruction addresses in number form. You simply assign a label
to a subroutine, and the assembler allocates a suitable
instruction address to that label. Unless you look at the
assembled code to find out, you never know what address is
assigned to each label, and do not need to know.

Subroutines are an important part of any programming, and
it is quite normal for a program to consist of a main loop which
calls up numerous subroutines. The subroutines will normally
be more complex than the ones used in this program, but the
general format of this program is one that is applicable to many
practical applications. An advantage of this approach is that it
is easy to modify the software to support new features. In most

138

cases a small addition to the main loop plus an extra subroutine
will be sufficient to add the new feature.

Looking Up
On the face of it there is no way that the ROM can be used to
store data, as it is strictly for storing instructions. Closer
examination of the instruction set reveals that there are
instructions that load literal values (values contained within the
instructions) into the W register. Data can therefore be stored in
these instructions, and called up when required. This is fine for
the odd byte of data here and there, but how can a block of ROM
be used to store numerous bytes of data? Practical applications
often require blocks of data for use as lookup tables. As a simple
but practical example, suppose that we require a circuit that takes
a 4-bit binary code and displays its decimal equivalent via a
7-segment LED display. In other words, a basic binary coded
decimal decoder for a 7-segment display.

Fig.5.5 The method used to identify the segments of
a 7-segment LED display

139

The segments of a 7-segment display are identified by the
letters of the alphabet from 'A' to `G', as shown in Figure 5.5.
All real-world displays seem to have an eighth segment in the
form of the decimal point ('DP') LED, but this is of no
importance in the present context. We simply require a circuit
that will take the 4-bit binary input signal and convert it to a
7-bit code that will produce the appropriate decimal numbers
on the display. There are two types of LED display, which are
the common cathode and common anode varieties. We will use
the common cathode type, which require a high (logic 1) output
level to switch on a segment.

There are probably several ways of using a PIC processor to
handle this form of decoding, but the most common approach
is to use a lookup table. This table contains the values that must
be sent to the output port in order to produce each of the
numbers from 0 to 9. We will assume here that the segments
from A to G are driven from RBO to RB6 of the PIC processor,
and that the 4-bit input codes are read via RAO to RA3. The first
task is to work out the binary code needed to produce each of
the ten possible numbers, and then convert the 7-bit binary
codes into their hexadecimal equivalents. This gives the
following result.

Number Hex Value

o 3F
1 06
2 5B
3 4F
4 66
5 6D
6 7D
7 07
8 7F
9 6F

The lookup table contains these ten hexadecimal values in this
order, and the value read from Port A is used as an offset to
select the appropriate value. With the PIC processors you are
not exactly `spoilt for choice' when it comes to branch and

140

jump instructions, and in order to implement a lookup table it
is necessary to directly control the program counter at file
register 02. This 7-segment decoder program illustrates how
this is done.

;Binary to 7-segment display decoder program

CLRW

TRIS 06 ;Set B as outputs. A as inputs

START MOVF 05,W ;Load W from Part A

CALL TABLE ;Load W from lookup table

MOVWF 06 ;Output data to Pon B

GOTO START ;End of loop

TABLE ADDWF 02,1 ;Lookup table

RETLW 3F

RETLW 06 ;1

RETLW 5B ;2

RETLW 4F ;3

RETLW 66

RETLW 6D ;5

RETLW 7D ;6

RETLW 07 ;7

RETLW 7F ;8

RETLW 6F ;9

END

The first two instructions simply set Port B as an output
port. Port A requires no setting up as it defaults).to an input port.
The next four lines form a loop which reads Port A, gets the
corresponding value from the lookup table, and then outputs
this value to Port B. The lookup table is contained in a
subroutine called 'TABLE', and this consists of an ADDWF
instruction followed by ten RETLW instructions. The ADDWF
instruction takes the value in file register 05 (the Port B file
register) and adds it to the program counter (file register 02). If
the value read from Port A is zero, the program counter is not
incremented, and the next instruction is performed in the usual
way. This is a RETLW instruction, which returns the program

141

+5V

17
In 0 o

18
In 10

1
In 2

2
In 3 o

OV o

3 4 1

'Cl
I 6C54

1 6

5

1 6 1 7 1 8 1 9 110 11 112
R1 R2 R3 R4 R5 R6 R7

330R 33OR 330R 33OR 33OR 33OR 33OR
Ta Tb Tc Td Te Tf Tg

Common Cathode
Seven Segment Display

P8
1 Ok

C2
100n 'I

Fig.5.6 The circuit diagram for the BCD to 7-segment decoder

from the subroutine and places a value of 3F in the W register.
This is the hexadecimal code required to produce '0' on the
display. If the value returned from Port A is 1, the program
counter would be incremented by one, and the program would
jump to the second RETLW instruction. This instruction returns
the program from the subroutine and places a value of 06 in the
W register (the value added to produce ' 1' on the display).

It should be apparent that the value read from Port A will
always branch the subroutine to the appropriate RETLW
instruction, so that the correct value is loaded into the W
register and written to Port B. If you would like to try out this
program, it can be used in conjunction with the circuit diagram
of Figure 5.6. The 7-segment display can be any common-
cathode type, but a high brightness display is preferable as the
drive current for each segment is not very high. The program
does not include error trapping to handle input values of more
than nine, but out of range input values do not seem to cause the
system to crash. However, in a 'real' project things like this
should not be left to chance, and where necessary
comprehensive error trapping must be included.

A/D Conversion
As pointed out in Chapter 4, the 16C71 has a built-in four
channel analogue to digital converter which enables it to
function in a variety of control and measurement applications
with a minimal amount of additional hardware. The converter
is quite easy to use, but it is a good idea to try out one or two
simple test circuits before trying to do anything too clever with
this device. This simple program, together with the circuit of
Figure 5.7, provides a basic analogue to digital converter
function. The input signal is provided by VR1, and the outputs
of the converter are monitored by eight LEDs. D1 is driven by
the least significant bit, running through to D8 which is driven
by the most significant bit. By adjusting VR1 is should be
possible to obtain any 8-bit binary pattern on the LEDs, from
all the LEDs switched off with the wiper of VR1 at the 0 volt
end of the track, to all LEDs switched on with the wiper at the
+5 volt end.

143

+5V o

VR1 n
22k U

D1 To D8
Are

Red LEDs

OV o

17
3 4 1

18

1

2

IC1
16C71

16

6 7 8 9 10 11 12 13

D3R0 33 1R1 R0 0R 2RE 3R3 0R 30 3R3 30 30
4E 3R5RO 3R6 R1R370R0 3R380R

D2 I D4 Z if D6 3E ff D8

1I/ D3 Z/ D5 V%.; D7 lir%il

R9
10k

C2 ...
100n "I"

Fig.5.7 The analogue to digital converter based on a 16C71

• *** ******** ************ ***** *********************

,A/D Converter program

STATUS EQU 03

BDIR EQU 06

ADCON EQU 08

PORTB EQU 06

ADRF-S EQU 09

BSF STATUS,5 -Select page I

CLRW

MOVWF BDIR Sets Port B is outputs

CLRF ADCON ;Sets RA0-3 as A/D inputs

BCF STATUS,5 ;Select page 0

MOVLW OxC I

MOVWF ADCON ;Select ChO/Int clock

LOOP BSF ADCON,2 ;Start conversion

NOP ;Wait

MOVF ADRES,0 ;Place conversion in W

MOVWF PORTB ;Output conversion to Port B

GOTO LOOP ;Loop indefinitely

END

The first five lines of the program assign values to labels,
and then the first line of code selects page 1 of the data map.
Remember that, unlike the 16C5‘C the 16C71 has two pages of
registers, with the required page being selected via bit 5 of the
Status register. This is set to 0 if page 0 is required, and to 1 if
page 1 is needed. The manufacturer's data has page 0 mapped
from 00 to 7F, and page 1 from 80 to FF, but this is perhaps a
bit misleading. You can not read from and write to the page 1
registers at addresses from 80 to FF. Instead, bit 5 of the Status
register is set to 1, and the page 1 registers are accessed via
addresses from 00 to 7E They occupy the same part of the data
map as the page 0 registers, and you use bit 5 of the Status
register to switch from one to the other. In this case we are
selecting page 1 so that the data direction register for Port B
(TRISB) can be cleared, which sets all the Port B lines as
outputs. The 16C71 does have the TRIS instruction, but the
manufacturer's data recommends that in order to maintain

145

'upward compatibility' it should not be used. Instead, page 1 is
selected, and TRISB is accessed at address 06.

A CLRF instruction then sets all bits of the ADCON1
register to zero, and this sets all four lines of Port A as inputs.
In this case we only require RAO as an analogue input, and will
not be using the other lines of Port A at all. Therefore, the value
written to ADCON I is not of great significance, since any value
will set RAO as an analogue input!

Next a BCF instruction is used to clear bit 5 of the Status
register so that page 0 is selected. The next two lines then load
a value of CI into ADCONO, but this value appears as OxCI in
the program listing. This is simply because some assemblers
require the first digit in a hexadecimal value to be a number and
not a letter, so that there is no risk of hexadecimal numbers
being confused with labels or instructions. The 'sure fire'
method of avoiding confusion when using the MPALC
assembler is to use 'Ox' ahead of the hexadecimal digits. The
value of C 1 (11000001 in binary) written to ADCONO performs
three tasks. Firstly, by setting bit 0 to 1 the analogue to digital
converter is switched on. Secondly, channel 0 is selected by
setting bits 3 and 4 low. Finally, setting bits 6 and 7 high selects
the internal C-R oscillator as the clock for the converter.

After this initial setting up the program moves into the loop
that reads the converter and outputs the returned values on Port
B. The BSF instruction sets bit 2 of ADCONO, and this starts
the conversion. Note that this must always be done by a
separate instruction, and not the one that is used to switch on
the converter. The NOP instruction simply introduces a short
delay to provide time for the conversion to be completed, but it
might not be necessary in this case as the system clock is at a
relatively low frequency in comparison to the converter's
clock. The next two lines move the result of the conservation
from the ADRES register to the W register, and then output the
result to Port B. The program then loops back to the point
where a conversion is initiated, and it keeps looping
indefinitely, with readings being taken and written to Port B.

Basic Voltmeter
The next listing, together with the circuit diagram of Figure 5.8,
uses the 16C71 to provide a basic digital voltmeter action. This

146

+5V 0

VR1 r
22k L

OV 0

1
3 4 14

II-

2
4b-
18

17

'Cl
16C71

i R8
10k

16

C 1
" 1 1 n

16 I7 8 1 9 ho 11 112
R1 R2 R3 R4 R5 R6 R7

330R 330R 330R 330R 330R 33OR 33OR
e Tf Tg Ta b Tc Td

Common Cathode
Seven Segment Display

C2 im,
100n

Fig.5.8 The circuit diagram for the basic digital voltmeter

program is really a combination of the previous two, with the
values read from the analogue to digital converter being altered
via a lookup table, and then used to drive a 7-segment display.

;Basic Digital Voltmeter program

PC EQU 02

STATUS EQU 03

BDIR EQU 06

ADCON EQU 08

PORTB EQU 06

ADRES EQU 09

STORE EQU Ox0C

BSF STATUS,5 ;Select page I

CLRW

MOVWF BDIR ;Sets Port B as outputs

CLRF ADCON ;Sets RAO-RA3 as AID inputs

BCF STATUS,5 ;Select page 0

MOVLW OxC I

MOVWF ADCON ;Select ChO/Int clock

LOOP BSF ADCON,2 ;Start conversion

NOP ;Wait

MOVF ADRES,0 ;Place conversion in W

MOVWF STORE ;Place conversion in STORE

RRF STORE, I

RRF STORE, I

RRF STOR E,1

RRF STORE,0 ;Move high nibble into low nibble

ANDLW OF ;Set high nibble to zero

CALL TABLE

MOVWF PORTB ;Output conversion to Port B

GOTO LOOP

TABLE A DDWF PC, I

RETLW 3F

RETLW 06

RETLW 5B

RETLW 4F

RETLW 66

148

RETLW 6D

RETLW 7D

RETLW 07

RETLW 7F

RETLW 6F

RETLW 77

RETLW 7C

RETLW 39

RETLW 5E

RETLW 79

RETLW 71

END

The initial part of the program is essentially the same as the
beginning of the analogue to digital converter program, with
the converter being set up for use with the internal C-R clock,
and RAO as the analogue input. Also as before, a conversion is
started, the program waits briefly, and then the reading from the
converter is started, the program waits briefly, and then the
reading from the converter is placed in the W register. The
reading is then moved to a file register which acts as a
temporary store, and a series of four rotate right (RRF)
instn-ctions are performed. The display can only handle 4-bit
numbers, but the converter is producing 8-bit values. The most
significant nibble could simply be masked off, with the least
significant nibble being used to drive the display. However,
accuracy is usually better if the most significant bits are used
and the least significant bits are removed. The rotate right
instructions shift the most significant nibble into bits 0 to 3 of
the register, and the last of the four puts the result into the W
register. The next instruction bitwise ANDs the contents of the
W register with a masking number of OF, which ensures that the
most significant nibble is zero.

The lookup table subroutine is then called, and the
appropriate value to drive the display is placed in the W
register. This routine is much the saine as the one used in the
BCD to 7-segment decoder program described previously, but
there are six more entries at the end of the lookup table. These
produce the hexadecimal digits from A' to 'F', and the display

therefore goes through the sixteen hexadecimal digits, from '0'

149

-a
o

+5V 0

C I
220n

R2
3k3

R1 n R4
1M U 2k2

2 7

R3
4k7 3

ICi = CA3130E

3 4 14

R14 n
10k U

6
IC2

16C71

R6 R7
8k2 33OR

n R5
U 2k2

7

R8
33OR
a

8 9 10 11 12 1

R9 R10 R11 R12 R13

33OR 33OR 330R 330R b330R Tc Td e Tf 9

Common Cathode
Seven Segment Display

16

5

.1. C2
1n

C3
100n

Fig.5.9 The circuit diagram for the interrupt driven counter

with VR I set for minimum voltage, to 'F' with it set for
maximum voltage. A 7-segment display is not designed to
display letters of the alphabet, and a little artistic licence has to
be used in order to get it to produce letters from 'A' to 'F'. The
betters 'b' and 'd' are in lower case while the others are in upper
case, but apart from this quite reasonable representations of the
letters are produced.

Interrupts
The next program listing demonstrates the use of interrupts, and
in conjunction with the circuit of Figure 5.9 it provides a basic
counter action. The display starts at zero, but each time the
pushbutton switch (SI) is operated the number on the display is
incremented by one. The display is a hexadecimal type, and
after the count reaches 'F' it cycles back to zero, and the
counting process continues from there. Note that not all the PIC
processors implement interrupts, and this feature is absent on
the I6C54 for example.

;Interrupt demonstration program

•

PC EQU 02

STATUS EQU 03

BDIR EQU 06

PORTB EQU 06

CNTR EQU OC

STORE EQU OD

I NTCN EQU OB

GOTO START ;Jump over interrupt routine

ORG 04 ;Set interrupt start address

BCF INTCN,I ;Clear interrupt flag

INCF CNTR. I ;Increment count

RETFIE ;Return from interrupt

START CLRF CNTR ;Clear counter

MOVLW 90

MOVWF INTCN ;Enable interrupts on RBO

151

BSF STATUS,5 ;Select page I

MOVLW 01

MOVWF BDIR ;Set RBI to RB7 as outputs

BCF STATUS,5 ;Select page 0

LOOP MOVF CNTR,0 ;Load count into W register

ANDLW OF ;Mask off top nibble

CALL TABLE ;Convert 4 bit value to 7 bit code

MOVWF STORE ;Move conversion into temporary

store

RLF STORE,0 ;Shift conversion left and place in

MOVWF PORTB ;Output data to Port B

GOTO LOOP

TABLE ADDWF PC,I ;Lookup table

RETLW 3F

RETLW 06

RETLW 5B

RETLW 4F

RETLW 66

RETLW 6D

RETLW 7D

RETLW 07

RETLW 7F

RETLW 6F

RETLW 77

RETLW 7C

RETLW 39

RETLW 5E

RETLW 79

RETLW 71

END

The initial part of the listing assigns values to symbols, and
then the program starts with a GOTO instruction. This may
seem like an odd way to start the program, but it is jumping
over the interrupt routine which is placed at the beginning of
the program. The ORG instruction is not one in the PIC
instruction set, as it is an assembler instruction, like EQU. It is
the origin instruction, and it is telling the assembler to place the
next instruction at address 04. The interrupt routine must

152

therefore start at this address. All the interrupt routine does is to
first reset the appropriate interrupt flag, and then increment the
value stored in the register file used as the counter. The
program then returns from the interrupt routine, the program
counter is loaded from the Stack, and the program continues
where it left off. Interrupts are automatically disabled while the
interrupt routine is being performed, and they are automatically
enabled by the RETFIE instruction when the program is
returned to normal operation.

The section of the program from the 'START' label to the
'LOOP' label clears the register used as the counter, and then
sets two bits in the interrupt control register (Figure 5.10).
These are bits 7 and 4, which respectively enable global
interrupts and interrupts on the INT pin (RBO becomes the INT
pin when interrupts are used). Note that interrupts are totally
disabled when the global interrupt bit is at 0, and that just
setting the interrupt bit for the type of interrupt you want to use
is not sufficient. The global interrupt bit must be set, together
with the bit or bits for the types of interrupts you wish to use.
The rest of the START routine simply sets RBI to RB7 as
outputs, and these are used to drive the 7-segment display. It is
not possible to drive the display from RBO to RB6, as in the
previous circuits that have used a 7-segment display, because
RBO is used as the interrupt input.

Once into the loop section, the program repeatedly loads the
counter into the W register, gets the 4- to 7-bit conversion from
the TABLE routine, and then outputs this value to the display.
There is a minor complication here in that the display is not
driven from the Port B lines used in our earlier examples, and
the values needed to produce each digit are therefore different
to those needed previously. A new set of lookup values could be
calculated, but the easier option is to simply use the old values
and shift the 7-bit codes one place to the left before outputting
them to the display. This is the method used in this program.

In this simple demonstration program the main loop section
of the program is not doing anything very worthwhile, and it is
really just looping aimlessly waiting for an interrupt. In a real-
world application the main loop would be doing something
more worthwhile, and the interrupt routine would handle a task
that needed instant attention when some external event

153

INTCON REGISTER

(7) (6) (5) (4) (3) (2) (1) (o)
_

GIE ADIE INTE RTE RB1E TO IF INTF RBIF

Port B Interrupt Flag

INT (RBO) Interrupt Flag

TMRO Overflow Interrupt Flag

Port B Interrupt Enable Bit

INT (RBO) Interrupt Enable Bit

TMRO Interrupt Enable Bit

A/D Converter Interrupt Enable Bit

Global Interrupt Enable Bit

Fig.5.10 Details of the interrupt control (INTCON) register

occurred. Whenever using interrupts you need to make sure that
the interrupt routine does not disturb the main program in any
way. In this example the interrupt routine does not alter any
registers that are used by the main program. In practical
applications this will often occur though, and the interrupt
routine must then store the data in any affected registers at the
start of the routine, and restore the data to these registers just
before returning from the interrupt. In most cases at least the W
register will need to be saved and restored in this way.

When using external interrupts on the INT pin it is
important to bear in mind that this input, in common with most
interrupt inputs, is not tolerant of noise on the input signal, or
slowly changing input levels. The result in either case is likely
to be multiple operations of the interrupt routine. Mechanical
switches are notorious for spurious output signals caused by so-
called contact bounce, and this circuit therefore includes
de-bouncing components (RI, R2, and Cl) plus a trigger circuit
based on ICI. This should give a `clean' output signal that
switches rapidly, which should in turn ensure that the count on
the display only advances by one each time SI is operated.

Note that the active transition on the INT input can be on
the rising or falling edge of the input signal, depending on the
setting of bit 6 in the OPTION register. Interrupts occur on the
falling edge if this bit is set to 0, or the rising edge if it is set to
I. Bit 7 of the OPTION register also has a function in the
16C71. With this bit set to 0, the internal pull-up resistors on
Port B are enabled, but they are disabled if this bit is set to I.
Figure 5.11 provides details of the 16C71 OPTION register.

The 16C71 supports three other sources of interrupts, which
are TMRO, the analogue to digital converter, and Port B. TMRO
can generate an interrupt when it overflows, and the analogue
to digital converter can produce one when it completes a
conversion. An interrupt can also be generated by a change in
the logic level on RB4 to RB7. The interrupt control register
has bits which enable the four types of interrupt to be
individually enabled or disabled, and in each case a bit is set to
1 to enable interrupts, and to 0 to disable them. There are also
separate flags for each type of interrupt, and the appropriate
flag must be cleared by the interrupt routine. The interrupt flag

155

OPTION REGISTER

(7) (6) (5) (4) (3) (2) (1) (0)

Port B Pull Up

INT Signal Edge

RTOC Signal Source

RTCC Signal Edge

- RTS RTE PSA PS2 PS1 PSO

Fig.5.11 Details of the 16C71 OPTION register

Prescaler Division Rate

Prescaler Assignment

for the analogue to digital converter is bit 1 of ADCONO, and
it is not in the interrupt control register.

Using the RTCC
The circuit of Figure 5.12, in conjunction with the program
provided here, acts as a simple seconds counter that utilizes the
real-time clock counter (RTCC).

;Seconds counter program using RTCC
;***

•

PORTB EQU 06

CNTR EQU OA

RTCC EQU 01

STATUS EQU 03

EQU 02

CLRW

TRIS 06 :Sets B as outputs

MOVLW 07

OPTION ;Selects system clock with /256

MOVLW 3F

MOVWF PORTB Sets display at zero initially

CLRF CNTR ;Sets counter at zero

START CLRF RTCC ;Sets RTCC at zero

BCF STATUS,Z ;Clear zero flag

LOOP MOVLW OxFF ;LoadWwith 11111111

XORWF RTCC,0 ;Checks to see if RTCC at max

WIFSS STATUS,Z ;Loops until it is

COTO LOOP

INCF CNTR,1 ;Inclement counter

MOVF CNTR,0 ;Load W from counter

CALL TABLE ;Load W from lookup table

MOVWF PORTB ;Output number to Port B

COTO START

MOVWF PORTB ;Output data to Port B

COTO START

TABLE ADDWF 02,1 ;Lookup table

RETLW 3F

RETLW 06

157

+5v

OV 0

3 4 14

'Cl
16C54

16

5

16 17 8 9 110

R1 R2 R3 R4 R5
330R 330R 33OR 33OR 330R Ta b Tc Td Te

11 112
R6 R7

33OR 33OR
f

Common Cathode
Seven Segment Display

R8
3k9

1 n

C2 ma
100n "I"

Fig.5.12 The circuit diagram for the simple seconds counter

RETLW 5B

RETLW 4F

RETLW 66

RETLW 6D

RETLW 7D

RETLW 07

RETLW 7F

RETLW 6F

RETLW 77

RETLW 7C

RETLW 39

RETLW SE

RETLW 79

RETLW 71

END

Much of the program follows along the same lines as
previous examples, and we will therefore concentrate on the
sections that deal with the real-time clock. The counter can use
ihe divided by four system clock or external pulses on the
RTCC pin as its signal source. In this case we require the
system clock as the pulse source, and bit 5 of the OPTION
register must be set to 0. We will be using the prescaler with a
division rate of 256, which requires bits 0 to 2 of the OPTION
register to be set to I. A value of 07 is therefore written to the
OPTION register. the RTCC register is cleared, the zero flag is
also cleared, and a value of FF (11111111 in binary) is loaded
into the W register. The value in the RTCC register is then
bitwise X0Red with the value in the W register, and the result
is placed in the W register. This provides the complement of the
value in RTCC, which will be zero only once the maximum
count has been reached. The zero flag is tested, and the program
loops until this flag has been set (i.e. it loops until the RTCC
register reaches its maximum count). The register containing
the number to be displayed is then incremented, the appropriate
7-bit value is obtained from the lookup table, and so on.

The specified values in the C-R clock circuit result in the
count incrementing at approximately one second intervals. In
order to obtain precise counting it would be necessary to use a

159

crystal clock circuit and to experiment a little with the delay
loop in order to optimise results.

Two Digits
This program, together with the circuit of Figure 5.13, acts as a
simple 2-digit seconds counter. It requires a 16C55 so that the
least significant digit can be driven from Port B, and the most
significant digit can be driven from Port C.

•***

TWO DIGIT COUNTER PROGRAM
;LEAST SIGNIFICANT DIGIT ON RBO TO RB6
;MOST SIGNIFICANT DIGIT ON RCO TO RC6

STATUS EQU 03

EQU 02

LNIBL EQU OA

HNIBL EQU OB

CNTR EQU OE

PORTB EQU 06

PORTC EQU 07

PC EQU 02

MOVLW OxFF

MOVWF CNTR ;Load FF in delay counter

CLRW

TRIS 06 ;Set Port B as outputs

TRIS 07 ;Set Port C as outputs

START CLRF LNIBL

CLRF HNIBL

LOOP MOVF LNIBL,W

BCF STATUS,Z

XORLW OA

BTFSC STATUS,Z ;Check if low nibble reached 10

CALL PLUSH ;Zero and INC high nibble if it is

MOVF LNIBL,W

CALL TABLE

MOVWF PORTB

MOV HNIBL,W

BCF STATUS,Z

160

a;

+5V o
12 28 R1 to R14 = 47OR

'Cl

16C55

i R15
33k

7
Cl

'1On 4 .---•
118 119 120 121 122 123 124 110 ill 112 113 14 15 116

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 12IR13 R14
Ta Tb Tc Id Te Tf Tg Ta Tb Tc Td e f Tg

Common Cathode
Seven Segment Display

OV o 1 k

Common Cathode
Seven Segment Display

Fig.5.13 The circuit diagram for the 2-digit counter

•
k

C2 am
T 100n

XORLW OA

BTFSC STATUS,Z ;Check if high nibble reached 10

CLRF HNIBL ;Reset nibble if it has

MOVF HNIBL,W

CALL TABLE ;Load W with display data

MOVWF PORTC ;Output data to Port C

INCF LNIBL,1 ;Increment counter

DELAY DECFSZ CNTR

GOTO DELAY ;Delay before looping

GOTO LOOP

PLUSH INCF HNIBL

CLRF LNIBL

TABLE ADDWF PC, I

RETLW 3F

RETLW 06

RETLW 5B

RETLW 4F

RETLW 66

RETLW 6D

RETLW 7D

RETLW 07

RETLW 7F

RETLW 6F

END

There is a slight problem when producing a 2-digit counter,
which is simply that the display is really a type of BCD circuit,
and it requires its raw data in BCD form. This data is then
converted into 7-bit codes that can be used to drive the displays
with the right numbers. Either a direct binary count must be
converted into an equivalent BCD type, or the program must
keep the count in BCD form so that no conversion is necessary.
Where possible, it is better to work in BCD form right from the
start so that complex conversions are avoided. This is the
method used here, with the counts for the two digits being held
in LND3L (low nibble) and HNIBL (high nibble).

The low nibble is incremented by one on each loop of the
program, but a check is made to see if the count has reached 10
(decimal), since 9 is the highest count that can be
accommodated by one BCD digit, and by each 7-segment

162

display. The low nibble is X0Red with a hexadecimal value of
OA (equivalent to 10 in decimal), and this gives a result of zero
only if the count is at OA. If a value of OA is detected, the low
nibble is reset to zero and the high nibble is incremented. A
check has to be kept on the value in the high nibble as well,
because this must not exceed 9 either. This is achieved using
basically the same routine, and when a value of OA is detected
the high nibble is reset to zero. There is no third digit, and once
the count has reached '99' the count and the display go back to
'00' and start counting up once again.

It would be possible to extend the count to more digits, but
it would be necessary to use multiplexing techniques. This is
the only way to provide enough outputs to drive more than two
digits. Even with just a 2-digit display, a 16C55 is needed to
provide the fourteen outputs that are needed. Another file
register would be allocated to the value for the third digit, and
this would be incremented each time the second digit was reset
to zero. The third digit would, like the other two, have to be
reset to zero when the count reached OA. If the second digit was
reset when a count of six was reached, the display would count
in minutes and seconds. One of the main advantages of using
microcontrollers is that the system is easily adapted to handle
this type of thing. It is often possible to find software solutions
rather than having to add extra hardware.

Finally
Before trying to produce 'proper' PIC projects it is a good idea
to make some experiments with simple programs. Try writing
routines to drive 7-segment displays, detect when the analogue
input is between certain voltages, and things of this type. This
will build up valuable experience which will help you to write
the software for real world applications. You will also build up
a library of useful routines that can be modified for use in 'real'
programs.

163

•

Appendix 1

ELECTRICAL RATINGS

These are the supply voltage ranges for PIC microcontrollers.

Device Type Min Supply V Max Supply V

XT 3.25 6.25
RC 3.25 6.25
HS 4.5 5.5
LP 2.5 6.25

Note that in the LP, RC, and XT modes the 16C71 should be
used with a supply potential in the range 4.0 to 6.0 volts.

Provided a 5 volt supply is used, the digital inputs and
cutputs of the PIC processors are compatible with TTL devices,
and they also seem to interface with CMOS logic devices
reliably. It is possible for an output to source currents of up to
20 milliamps, and sink currents of up to 25 milliamps.
However, the maximum source and sink currents per port are
40 and 50 milliamps respectively, and this would normally be
tie limiting factor.

The supply current depends on the type of device and its
operating frequency. For XT and RC devices operating with a
clock frequency of 4MHz, the typical current consumption is
jast 1.8 milliamps (3.3 milliamps maximum). The consumption
for an HS device operating at 20MHz is 9.0 milliamps (20
milliamps maximum). Operation at lower frequencies gives
reduced operating current, and the typical current consumption
at 100kHz is a little under 100 microamps. An LP device
operating with a 32kHz clock typically consumes just 15
microamps (32 microamps maximum). Bear in mind that these
figures are for the current consumption of the chip itself, and do
not take into account any output currents to displays, relay
drivers, etc. If the chip is used to drive three or four 7-segment
displays the current consumption will obviously be many times
higher. When a device is in the SLEEP mode the current
consumption is typically just 4 microamps with the watchdog

165

timer enabled, or 0.6 microamps (9 microamps maximum) with
it switched off. The analogue to digital converter of the 16C71
consumes about 90 microamps when enabled, and does not
significantly increase the supply current when it is switched off.

166

fri
Babani Electronics Books

An Introduction to PIC Microcontrollers
One of the major developments in electronics recently has
been the explosion in the popularity of microcontrollers. In
particular the PIC series of processors. A microcontroller
is effectively a simple computer on a single chip, complete
with microprocessor, input/output ports, RAM and ROM
to contain the program. A single 18 or 28 pin PIC proces-
sor can often replace a dozen or more conventional logic
devices, with a substantial saving in cost, size and weight.
Also, the versatility of a microprocessor based design
means that it is often possible to incorporate useful
'extras' in the design that would be difficult or impossible
using conventional logic circuitry.

Designing your own PIC based projects may seem a
daunting task, but it is really not too difficult provided you
have some previous experience of electronics. The PIC
processors have plenty of useful features, but they are still
reasonably simple and straightforward to use. This book
should contain everything you need to know.

Topics covered in this book include:-

The PIC register set.
Numbering systems.
Bitwise operations and rotation.
The PIC instruction set.
Using interrupts.
Using the analogue to digital converter.
Clock circuits.
Using the real time clock counter (RTCC).
Using subroutines.
Driving seven segment displays.

BP 39*

I 9

ISBN 0-85934-394-4

10
78085 9 3 43947

0 0 5 9 9>

