
eld 
BaiDani Electronics Books 

optv An Introduction 
to PIC 
Microcontrollers 

Audio and acoustics 

Circuits and projects 

Data and reference IM 

Music and MIDI 

Tesit equipment 

SW radio and communications 

R. A. Penfold 





AN INTRODUCTION TO PIC 
MICROCONTROLLERS 



Other Titles of Interest 

BP385 Easy PC Interfacing 

BP444 Practical PIC Microcontroller Projects 



AN INTRODUCTION TO PIC 
MICROCONTROLLERS 

by 

R. A. PENFOLD 

BERNARD BABANI (publishing) LTD 
THE GRAMPIANS 

SHEPHERDS BUSH ROAD 
LONDON W6 7NF 

ENGLAND 



Please Note 

Although every care has been taken with the production of this 
book to ensure that any projects, designs, modifications and/or 
programs, etc., contained herewith, operate in a correct and safe 
manner and also that any components specified are normally 
available in Great Britain, the Publishers do not accept respon-
sibility in any way for the failure, including fault in design, of 
any project, design, modification or program to work correctly 
or to cause damage to any other equipment that it may be 
connected to or used in conjunction with, or in respect of any 
other damage or injury that may be so caused, or do the 
Publishers accept responsibility in any way for the failure to 
obtain specified components. 

Notice is also given that if equipment that is still under 
warranty is modified in any way or used or connected with 
home-built equipment then that warranty may be void. 

0 1997 BERNARD BABANI (publishing) LTD 

First Published — October 1997 
Reprinted — April 2000 

British Library Cataloguing in Publication Data 

A catalogue record for this book is available from the British Library 

ISBN 0 85934 394 4 

Cover designed by George Arthur 

Printed and bound in Great Britain by Cox & Wyman Ltd, Reading 



Preface 

You could be forgiven for thinking that the microcontroller was 
a very recent invention, but they have in fact been in existence 
for many years now. However, it is only relatively recently that 
microcontrollers have become available at very low prices. This 
makes them suitable for many applications where they would 
have previously represented an expensive solution, and has 
resulted in an explosion in their popularity. The early micro-
controllers were basically just slightly stripped down versions 
of the eight-bit microprocessors of the period, with some built-
in ROM, RAM, and input/output ports. Modern micro-
controllers are mostly designed as such from scratch, or have 
evolved so far from their origins that they are effectively 
purpose designed chips. This makes it relatively easy to write 
the software, especially with the microcontrollers of the RISC 
(reduced instruction set computer) variety. 

The PIC series of microcontrollers seem to be the most 
popular at present, and they have proven their ability to perform 
well in a wide range of applications. They are quite inexpen-
sive, which means that they often have a cost advantage over 
circuits based on conventional logic integrated circuits. PIC 
based projects lend themselves to miniaturisation as in most 
cases very little discrete circuitry is required. PIC microcon-
trollers are constructed using CMOS technology and they have 
the low levels of power consumption associated with CMOS 
logic devices. Consequently, they can be used in applications 
where small battery powered equipment is required. 

Although PIC microcontrollers are reasonably straight-
forward to use, designing a project based on a microcontroller 
is obviously very different to designing a conventional equiva-
lent Even if you have some experience of computer program-
ming and electronic circuit design, producing projects based on 
PIC processors could prove to be difficult at first. The main 
difficulty is that the programming is done at a very low level 
using assembly language. In order to undertake programming at 
this level you need to have a reasonable knowledge of what the 
processor does, and the registers it contains. Fortunately, the 



PIC register and instruction sets are both quite simple, and 
armed with a knowledge of both, plus some basic micro-
controller techniques, it is not too difficult to start producing 
simple PIC based gadgets. 

This book guides you through the basics of PIC program-
ming, including details of the register set, numbering systems, 
the PIC instruction set, using the analogue to digital converter, 
etc. The final chapter provides some simple demonstration 
programs and circuits that you can experiment with. No 
previous experience of microcontrollers or programming is 
assumed, but you will, of course, need some electronics know-
how in order to design PIC based systems. 

R. A. Penfold 
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Chapter 1 

MICROPROCESSOR BASICS 

A PIC microcontroller is virtually a complete computer on a 
single chip. Admittedly it is a fairly basic computer in 
comparison to the average PC, but for many purposes, such as 
measurement and control applications, the power of even a 
fairly modest PC is slightly 'over the top'. Although a PIC 
microcontroller has limited computing power by normal 
standards, it is more than adequate for a vast range of useful 
applications. It is easy to underestimate the computing power of 
a PIC processor, and it has to be borne in mind that all the chips 
in the PIC series are RISC (reduced instruction set computer) 
processors. Basically all this means is that they have a very 
limited range of instructions (about 35 in the case of PIC 
processors), but each instruction is completed very efficiently. 
In fact a RISC processor normally completes most instructions 
in just one clock cycle. As some PIC processors can handle 20 
million clock pulses a second, this obviously enables tasks to be 
carried out at a very high rate. In fact it is often necessary to 
slow down the processor by using a reduced clock frequency or 
by adding timing loops into the program. Operating speed is 
also aided by having instructions that are well matched to the 
likely applications of PIC processors. There are no instructions 
for floating point calculations, but a PIC processor is not 
intended for applications that involve any advanced 
mathematics. The PIC devices are simple but streamlined 
processors that are specifically intended for general control and 
measurement applications, and they work very well when used 
for suitable tasks. 

The Microprocessor 
Although a computer is extremely complex, its basic function 
is fairly simple. The block diagram of Figure 1.1 shows the 
basic arrangement used in a computer. Regardless of its 
function, a computer does nothing more than take in data on its 
inputs, process the data in some way, and then send the data to 
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its outputs. As a simple example, a word processor takes data 
typed into the keyboard, and stores it in memory. In this 
example the computer is not doing any mathematical 
processing of the data, but it does enable the data to be edited 
via further input from a keyboard. This can be in the form of 
material added into the existing data, material being deleted, or 
practically any required change. It is just a matter of having the 
system alter the data in memory to give the required change to 
the material. The data entered into the system is output to a 
monitor so that the user can check that everything is as 
required, and once a piece has been perfected it is sent to the 
printer via another set of outputs. 

The microprocessor is at the centre of the computer, and in a 
sense it controls everything else. However, the microprocessor 
itself is actually controlled via a program which is stored in the 
computer's memory. This memory is in the form of random 
access memory (RAM) and read only memory (ROM). The 
difference between the two is that ROM retains its contents 
when the computer is switched off, whereas RAM only retains 
its contents while the computer is turned on. Although the 
names suggest that the data in RAM can be accessed randomly 
whereas the data in ROM can not, with both types it is possible 
to access any memory location whenever required. In a normal 
computer system the ROM stores a simple program that gets 
the system under way when it is switched on. The application 
program (word processor, spreadsheet, or whatever) is then 
loaded into RAM and run. Some of the RAM is set aside for use 
by the program to store data entered by the user, or whenever 
large amounts of data must be put into temporary storage. 
A PIC processor does not handle things in quite the same 

way, and the program that gets the computer under way and the 
main program are one and the same. The program is therefore 
stored in ROM, and the RAM is only used for temporary data 
storage. One reason for this method of working is that the 
amount of RAM contained in the processor is strictly limited. 
Loading large and complex programs into RAM is simply not 
an option. However, the main reason is that PIC systems are 
dedicated to a single function, and they do not operate on the 
basis of having a general hardware which is made to perform 
the required function by loading suitable software. If you 
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require three different functions it is necessary to have a 
separate PIC based system to handle each one. 

This may seem to be a bit extravagant, but it has to be 
remembered that each PIC based system is quite inexpensive. 
Also, in typical PIC applications you require easy to use items 
of equipment that you simply switch on and they start to 
operate immediately. You do not really want the bother of 
loading programs from disc, or the added size, weight, and cost 
that would result from adding a disc drive to the system. With 
microcontroller based systems it is not usually apparent to the 
user that they are dealing with a form of computer based 
equipment. By normal computing standards the amount of 
storage space for your programs is tiny, but NC processors are 
not normally used to perform highly complex tasks. Even so, it 
is sometimes necessary to write efficient software if it is to fit 
into the ROM. 

The microprocessor communicates with the memory circuits 
via the data bus, which has eight wires in the case of PIC 
processors. A collection of connecting wires is known as a bus, 
and PIC processors have an eight bit bus. The data bus is bi-
directional, which simply means that it is used both when the 
microprocessor is writing data to the memory circuits and when 
it is reading data from them. This bus is also used when reading 
data from or writing it to external hardware via the input and 
output ports. The required memory location or input/output port 
is selected via another bus which is called the address bus. In 
the case of PIC processors this bus is 9 to 12 wires (bits) wide, 
depending on the amount of memory the chip contains. The 
address bus is not bi-directional, and it is a set of outputs on the 
microprocessor, and inputs on the memory and input/output 
circuits. 

The program in ROM controls the microprocessor, but it is 
the microprocessor itself that generates the signals which 
control the rest of the hardware and ensure everything happens 
in the right order. The necessary signals are carried via a 
collection of wires that are called the control bus, but this is not 
really a bus in the same sense as the address and data buses. The 
control bus carries what are really individual signals and not a 
set of signals that operate together in quite the same way as 
those in the address and data buses. The main function of the 
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control bus is to ensure that the memory and input/output 
circuits read from and place data onto the data bus at the correct 
times. Having a bi-directional data bus simplifies the circuit in 
many ways, but the timing of read and write operations is 
obviously critical. The system will crash if the microprocessor 
and a peripheral circuit try to place data on to the data bus 
simultaneously, and it is also possible that the hardware could 
be damaged. Having the microprocessor in control of this 
function ensures that conflicts on the data bus should never 
occur. The control bus is not included in Figure 1.1 for the sake 
of clarity, but it is clearly an essential part of the system. An 
advantage of using a microcontroller is that the buses are an 
internal part of the device, and are not externally accessible. 
Therefore, this is an aspect of the hardware that PIC system 
designers do not have to bother about. 

The microprocessor flows from one instruction to the next at 
a rate which is controlled by the clock oscillator, which is often 
referred to simply as the 'clock'. All this circuit does is to 
provide a regular stream of electrical pulses at a rate that is 
normally a few million pulses per second. One of the 
peculiarities of PIC processors is that they can operate with a 
very wide range of clock frequencies. With a normal 
microprocessors it is only possible to use a fairly restricted 
range of clock rates as anything outside this range does not 
provide suitable bus timing. There can also be problems with 
the memory getting a severe case of amnesia. The acceptable 
range of clock frequencies varies from one PIC processor to 
another, but in some cases there is no lower limit. Although 
there seems to be a never ending quest for higher and higher 
clock rates in the world of computing, not all applications 
require a very high operating speed. With a normal 
microprocessor it is often necessary to slow things down by 
inserting lots of timing loops in the software to provide delays. 
In some cases PIC processors offer the simple alternative of 
using a very low clock frequency. However, note that this 
method is only practical in applications where the processor 
never needs to operate at high speed. In theory it is possible to 
stop the clock and start it again without crashing the system! 
When I tried this with a simple PIC based circuit the short rest 
when the clock was stopped did not prevent the unit from 
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functioning properly when the clock was restarted. This is 
certainly not possible with most other microprocessors. 

Seeing the Light 
So how would a microprocessor based system handle a simple 
task such as controlling an automatic three-colour signal for a 
model railway? Figure 1.2 shows a general scheme of things, 
with three tracks sensors in addition to the signal. The basic 
idea is for the signal to change to red when the train passes 
sensor one, which is positioned right next to the signal. When 
the train passes sensor two, which is positioned further down 
the track, the signal changes to amber. Finally, when the train 
passes sensor three the signal is sent back to green once again. 
This is basically the same system that is used on 'the real 
thing', and it ensures that there is always a reasonable distance 
from one train to the next. 

In our model train example the signal would contain three 
LEDs or miniature bulbs that would be controlled by three outputs 
of the microcontroller. The three sensors would be something 
fairly basic such as micro-switches or reed switches that would 
close momentarily as the model train passed by. For the sake of 
this example we will assume that sensors one, two, and three are 
read by input lines one, two, and three of the microcontroller. 
Similarly, we will assume that the green, red, and amber signal 
lights are controlled by outputs one to three respectively. 

Logic outputs only have two valid states which are logic 0 
('low') and logic 1 ('high'), and logic inputs only recognise 
these two states. The two logic levels are respectively 
represented by a low voltage of around two volts or less, and a 
higher voltage of about three to five volts. It is from this that 
their alternative low' and 'high' names are derived. The 
program in the microcontroller would initially set the signal to 
green by placing output one high, and the other two inputs low. 
Actually, the hardware could be designed to operate the other 
way round with a low logic level switching on a light, but it is 
generally better if things are done the obvious way, which in 
this case means having a high level to switch on a light. 

The program would then monitor the three sensor switches 
at a high rate so that there would be no risk of a change in state 
being missed. Eventually the train would reach and operate 
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sensor one. Again, the hardware could be designed to provide 
either a high or a low logic level when a sensor switch is 
operated. Doing things the obvious way makes life easier, and it 
would therefore be sensible to have each switch generate a high 
logic state when it is activated. The program would therefore 
keep testing the sensor switches until it receives a high logic state 
from one of them. If everything goes according to plan it will be 
sensor one that is activated first. The program then sets output 
one low to switch off the green light, and sets output two high to 
turn on the red light. The testing of the sensor switches then 
continues until sensor two is activated. The program then 
switches off the red light by setting output two low, and the 
amber light would be activated by setting output three high. The 
testing process would then continue again until a signal from 
sensor three was detected. The green light would then be turned 
on by setting output one high, and the amber light would be 
switched off by setting output three low. This takes the system 
back to its initial state, and it would then repeat this whole 
process indefinitely as the train went around the track. 
A simple set-up of this type is really under-utilizing the 

capabilities of a microcontroller, but it demonstrates the basic 
way in which a microcontroller can be applied to a practical 
application. A signalling system based on a microcontroller 
would be quite capable of controlling several signals, together 
with added complications such as direction sensors and four-
state signals. The limits are often those of the designer's 
imagination and programming skills rather than those of the 
microcontroller. 

Keeping Count 
When a microcontroller is first switched on it goes through a 
resetting and initialisation process that ensures everything is set 
up and working correctly before the first instruction is fetched 
from memory and run. A certain address is used for the start of 
the program, and the address bus is initially set to the 
appropriate pattern of logic levels for this particular memory 
location. The first instruction is then fetched from memory and 
executed. The next clock pulse increments a counter within the 
microprocessor (the program counter or PC), and this moves 
the address bus on to the next memory location. 
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The next instruction is then fetched from this memory 
location, and performed. The program could just continue in 
this fashion, going sequentially through all the instructions one 
by one until they had all been completed. This is a bit limiting 
though, and is not the way things operate in practice. One 
problem is that the processor would rapidly run out of 
instructions and grind to a halt. Practical applications require 
the system to go on functioning indefinitely. 

Practical programs make use of loops, jumps, and branches, 
which take the program out of its normal straightforward 
sequential scheme of things. The most simple form of loop is 
where the program simply goes back to the beginning once the 
final instruction has been performed. This is a feature of most 
programs, and is the most simple means of keeping the system 
running indefinitely. Loops, branches, etc., are considered in 
more detail later on. 

In the Flow 
When working out even the most simple of programs it is 
generally a good idea to start with a simple chart or diagram 
which goes through the program step-by-step. A diagram of this 
type is called a flow chart, and there is a standard set of 
symbols for this type of chart (Figure 1.3). Few programmers 
seem to adopt standard flow charts, and most seem to use charts 
of their own style. In fact many programmers seem to use what 
would be more accurately described as a flow list or flow table 
rather than a chart. My own preference is for a list of program 
steps with lines to show how the program branches in and out 
of the main flow. The precise form of the chart, list, or table is 
not really that important. Provided it enables you to get 
everything clear in your mind so that it is easy to write the 'real 
thing', the chart (or whatever) will have served its purpose. 

When working out a flow chart it is not necessary to get too 
technical, since its purpose is simply to provide you with a 
logical sequence of events that will provide the desired result. 
In our example of an automatic model train signal, it would not 
be necessary to deal in terms of actual input/output ports and 
the lines of these ports that would be used. Instead, it would just 
be a matter of working on the basis of what each program step 
would actually achieve. For instance, the first program step 
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Fig. 1.3 The standard set of flowchart symbols 

would set the signal at green, and the first symbol in the chart 
would be marked accordingly. It would not be labelled 
something along the lines of set line three of port A high'. 
Once the initial chart has been completed you may wish to 
work out a more detailed version before writing the program 
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code. It would certainly be necessary to at least make a few 
notes detailing the function of each input and output port, and 
where appropriate the function of each line of each port. Once 
again, programmers generally work out their own way of 
working, and the best method for one person is not necessarily 
well suited to anyone else. 

Figure 1.4 shows a suggested flow chart for the automatic 
model train signal. Most programs start with some initial 
conditions being set and in this case the only thing to set at the 
outset is the state of the signal which is set to green. The next 
step is to read the sensor switches to determine whether or not 
any have been activated. The program then has to make a 
decision which is dependent on the results of reading the sensor 
switches. If a switch has not been activated the program must 
read the switches again and continue reading them until one has 
been operated. This is achieved by simply looping the program 
back to the instruction where the sensors are read. The program 
therefore loops around these two program instructions until a 
switch has been activated. It then breaks out of the loop and 
moves on to the next section. This looping process is an 
essential part of practically every program ever written, and 
even quite simple programs usually feature several loops. The 
same is true of decision making instructions of the ' if this 
condition is met then do this, else do that' variety. You need to 
be careful when writing loop routines as it only requires a 
minor oversight to get the program into a loop from which it 
can never break out! 

Once a switch has been activated, the program moves on to 
the next section where it must make the appropriate alteration 
to the signal. This requires more decision making instructions, 
and there is more than one way of handling this sort of thing. In 
this case there are only three possible actions that the program 
can take, which are to set the signal to red, amber, or green. The 
most simple solution is probably to use a series of three 
decision making instructions, one for each possible outcome. 
The first of these instructions tests to see if sensor one was 
activated, and sets the signal to green if it was. The next two 
instructions are similar, but test sensors two and three, and set 
the signal to amber and green respectively if they detect that the 
switch has been activated. Once these three instructions have 
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Fig.1.4 The initial flowchart for the automatic signal 



been completed the signal must be at the correct state, and it is 
then a matter of looping back to the part of the program where 
the sensor switches are read. The program then continues to 
loop around these instructions once again until a sensor is 
activated. This whole process repeats for as long as power is 
applied to the system. 

Refining 
Once you have worked out a general form for a program it is 
necessary to make a detailed investigation to see whether you 
have overlooked or over simplified anything. In this example 
there are one or two questions to answer, and potential flaws 
that must be addressed. One question is where do the series of 
three decision making instructions obtain their data? One 
possibility is for each of these sections of the program to read 
the sensor switches, or to read the relevant sensor switch 
anyway. This is probably a viable way of handling the program 
in this case, but is not the usual way of handling things. The 
only thing that might prevent the program from working 
properly using this method would be if the sensor switch was 
only activated for a very short time. It would then be possible 
for the program to break out of the small loop, but for the series 
of three decision making instructions to leave the signal 
unaltered because the switch would have returned to its standby 
state before the program reached them. This is unlikely in 
practice because the program would execute very rapidly 
provided a high clock frequency was used. However, this 
possibility can be avoided by placing the data initially read 
from the switches in RAM. The series of three decision making 
instructions can then operate on this data rather than reading the 
sensor switches again. This ensures that the signal must be set 
to the correct state even if the sensor switch has returned to the 
standby state. 
A more likely cause of problems is the program executing 

too rapidly so that the active sensor switch is still active when 
the program loops back to the point where the switches are read 
again. In this particular case the program should still function 
properly if this should happen because it does not matter if the 
program keeps executing the three decision making 
instructions. It would simply result in the signal being 
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repeatedly set to the new state, which would mean in practice 
that it would remain in the correct state. In some applications 
though, this sort of unscheduled looping would cause problems 
and would have to be avoided. In this example it could be 
eliminated by including a time delay between the final decision 
making instruction and the loop back to where the sensors are 
read. Short delays are easily added using dummy instructions 
that do not actually achieve anything other than wasting time. 
Longer delays can be produced using a form of loop routine. 

With many types of programming, the faster the program 
runs the better. The same is not always true of the software for 
control and measurement applications. It is often essential that 
the program operates in unison with hardware in the outside 
world. Sometimes this is achieved via signals passed to-and-fro 
between the processor and the external hardware, which is a 
system known as handshaking'. On other occasions the 
synchronisation is achieved by using delaying routines as and 
where necessary. This second method is more easily 
implemented, but it will not always provide adequate timing 
accuracy. Handshaking is generally the more reliable method. 
In applications where timing is critical it is essential to know 
how long certain sections of the program take to execute. 
Fortunately, this is easily calculated provided the duration of 
each clock cycle is known. It is just a matter of adding the total 
number of clock cycles that a routine will take, and then 
multiplying this by the duration of one clock cycle. Where 
good timing accuracy is essential it is normally necessary to 
use a crystal controlled clock oscillator. 

One Step at a Time 
When writing computer software you have to bear in mind that 
the microprocessor operates in what are really very simple 
steps. This is especially the case with a RISC processor such as 
a PIC type. When producing an initial flow chart it does not 
matter too much if each section of the chart actually involves 
more than one processor instruction. You may also have to 
modify the way in which the program operates in order to suit 
the instructions that are available. At some stage though, things 
have to be worked out in greater detail, and in a fashion that can 
actually be implemented by the processor. You may prefer to 
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leave this until you start writing the program code, or you may 
like to produce a more detailed flow chart first. In our model 
signal example the series of three decision making instructions 
would almost certainly have to consist of more than three 
processor instructions. The flow chart of Figure 1.5 shows one 
possible way of handling the decision making process. 

The first instruction determines whether or not sensor one 
was activated. If it was, the program sets the signal to red, and 
then jumps forward to the end of the routine. Programs usually 
contain numerous jump instructions which enable parts of the 
program to be bypassed. A loop uses a form of jump instruction 
to move backwards and repeat an action, but in this case the 
jump is forwards to avoid actions we do not require. This type 
of instruction is called a 'skip'. If sensor one was not activated, 
the program moves on to a second decision making stage where 
sensor two is tested. If sensor two is set, the signal is set to 
amber, but if it was not activated it must have been sensor three 
that was set. In this case the signal is set to green. In either 
event, once the signal has been set the program jumps to the 
end of this routine. 

Even with this new improved decision making routine it 
is possible that five stages in the flow chart would translate 
into more than five processor instructions. This does not 
really matter though, and the purpose of the flow chart is to 
provide the programmer with a sensible basis for the program 
rather than to provide a sort of pseudo programming code. 
Provided the general scheme of things in the flow chart is 
workable, there should be no difficulty in converting it into a 
working program. 
On the other hand, do not expect to get everything right first 

time when you start programming. The first thing you learn 
when you begin programming is that microprocessors are very 
unforgiving. You have to get everything just right or the 
program will not run properly. Programs for measurement and 
control applications are often quite simple, but they also tend to 
be rather pernickety. You often need to have to consider what is 
happening almost literally from one nanosecond to the next. 
However, provided you proceed carefully and thoughtfully 
programs can be perfected with a minimum of ' fine-tuning'. 

Although the system outlined in Figure 1.5 is in many ways 
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sound, it has one major flaw. This is simply that it does not 
translate easily into PIC instructions. It is generally better to 
rework ideas to suit the instructions that are available rather 
than trying to put together convoluted routines that follow your 
initial scheme of things. The systems outlined in Figures 1.6 
and 1.7 match up better with the actual instructions available. 
The method used in Figure 1.6 is to test to see if a particular 
switch has been set, and then jump one instruction ahead if it 
has not. The next instruction will set the signal to the 
appropriate state if the switch has been activated, but it will 
simply be skipped if it has not. The saine basic procedure is 
repeated for all three switches. This method is delightfully 
simple, but in practice it only operates properly if the signal can 
be set to the desired state in a single instruction. With 
something as simple as controlling some LEDs there should be 
no problem in this single instruction limit, but in many 
applications this may be too limiting. 

The alternative method of Figure 1.7 overcomes the single 
instruction limit. Again the sensor switches are tested one by 
one, but this time the program goes to a subroutine if a switch 
has been activated. There is a separate subroutine for each 
switch, and each subroutine sets the signal to the appropriate 
state for the switch that controls it. A subroutine is effectively a 
small program in its own right, and they are sometimes referred 
to as subprograms. Within the memory limits of the processor, 
the subroutines can be as long as you like, and they can 
undertake quite complex tasks if necessary. Subroutines form a 
major part of most software. 

Software or Hardware 
When designing a system based on a microcontroller there are 
often decisions to be made about how much of the task is 
handled by the processor and its program, and how much is 
tackled by external hardware. For example, if the system must 
drive seven segment displays, should these be controlled via 
external display decoders or direct from outputs of the 
microcontroller. The advantage of using external decoders is 
that it simplifies the software, and it also requires fewer output 
lines on the microcontroller. Using the microcontroller to 
provide the decoding simplifies the hardware and reduces cost, 
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but it greatly increases the time needed to write the software. 
Also, remember that a microcontroller has limited storage 
space available for the program and does not have a vast 
number of input/output lines. 

In some cases there may be no choice but to augment the 
microcontroller with some fairly sophisticated hardware. In 
fact a microcontroller is sometimes only a fairly minor part of 
the hardware, but it could still greatly reduce the overall cost 
and complexity of the system. Each case has to be considered 
on its own merits, and it often depends on how much time you 
are prepared to spend writing the software. As far as reasonably 
possible, it clearly makes sense to use the microcontroller to 
handle as much of the work as possible as this produces a 
neater and cheaper finished product. 

Architecture 
Microprocessors vary considerably in the way that they handle 
data, and in their internal arrangements (their 'architecture' as 
it is generally termed). The original microcontrollers were 
really just modified versions of the microprocessors of the day, 
and were far from ideal for many applications. They included 
facilities that were 'over the top' for most applications, and 
lacked some that would have been very useful. They were also 
very expensive in comparison to most of today's micro-
controllers. Because of their expense and complexity, the early 
microcontrollers were really only suitable for the more 
advanced applications. For anything more straightforward it 
was usually cheaper and easier to use conventional logic 
circuits. Many of the more modern microcontrollers (including 
the PIC processors) are relatively simple and are a practical 
choice for anything but the most basic of applications. 
Internally they are either very basic or very streamlined, 
depending on your viewpoint. Although the streamlined 
approach may ultimately be a bit limiting, it does make it much 
easier to get started with your own simple microcontroller 
projects. 
We will not consider the precise internal arrangements and 

functioning of PIC processors as this is something that you do 
not really need to understand in order to use them. On the other 
hand, when programming PIC processors you will not 
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normally be using a high level language that almost totally 
shields you from the internal workings of the processor. You 
normally have to deal with the processor using a low level 
language that requires you to have some knowledge of how the 
processor handles instructions and data. Fortunately, a 
superficial knowledge of the internal goings on is all that is 
needed. At this stage we will settle for a brief look at the 
general way in which microcontrollers operate, but more 
specific information about PIC processors is provided in a later 
chapter. 
A microcontroller contains a lot of complex logic circuitry 

which provides mathematical functions, and generally ensures 
that everything happens correctly. Although this circuitry is 
essential to the operation of the microcontroller, it is 
'transparent' to the user. You program the processor with a 
series of instructions, and it carries them out. The exact way in 
which it decodes and executes the ilstructions is largely of 
academic importance, and the complexity of the internal 
circuits of microprocessors is such that this is probably just as 
well. All you really need is a basic knowledge of the parts of the 
processor that actually handle your data, and simply take for 
granted the circuits that operate in the background and perform 
the instructions. 

The parts of the processor that you deal with first-hand are 
the registers. These store information, and the information that 
they contain can be overwritten and altered as frequently as 
required. In this respect the registers are much like RAM, and 
some of the registers in a microcontroller are effectively its 
RAM. Some of the registers have specific functions though, 
and are not simply used as general purpose data stores. Figure 
1.8 shows the architecture for a simple microcontroller which 
demonstrates some of the fundamentals of microcontroller 
operation. The registers break down into two basic types, which 
are those in the memory map, and those which are an integral 
part of the microprocessor. With a conventional microprocessor 
there is a clear cut distinction between the two types, because 
the registers in the memory map are external to the 
microprocessor. These registers are accessed via an address 
placed on the address bus, and they are the RAM, ROM, and 
the input/output ports. Things are much the same with a 
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microcontroller, but the RAM, ROM, and ports are integral 
rather than discrete. As already pointed out, the RAM is not 
used for program storage; the program is stored in the ROM. 
The RAM is used for general purpose data storage. 
Microprocessors have built-in registers that can be used as 
temporary data stores, but with microcontrollers the general 
purpose registers in the RAM are effectively merged. In a 
microcontroller context, the RAM is generally called the data 
registers, file registers, or something similar. The accepted term 
for PIC processors is file register (or register file, as you prefer). 

With some microprocessor; the input/output ports are placed 
in a separate map (the input/output map), and are accessed 
using a separate set of instructions. Most microcontrollers 
operate on the basis of having the ports in the memory map, and 
they are accessed using the same instructions that are used for 
memory accesses. This method is easier for the programmer, 
since it is only necessary to learn one type of instruction. On the 
other hand, you do have to keep in mind the addresses of the 
ports so that you do not inadvertently try to use them as 
ordinary registers. 

Although there may appear to be no way of utilizing the 
registers that are not in the memory map, there are special 
instructions which enable them to be used. The most important 
of the extra registers is the accumulator, although it is not 
necessarily referred to by this name these days. The 
accumulator operates in conjunction with the arithmetic logic 
unit (ALU), which is the circuit that provides mathematical 
calculations such as addition and subtraction. The accumulator 
is very much at the centre of things, with virtually all data 
entering the accumulator at some stage. This can produce 
something of a bottleneck, and some microprocessors have two 
accumulators. Another approach is to enable the results of 
calculations or other processing of the data to be dumped 
straight into another register, so that the general purpose file 
registers can be used as pseudo accumulators. The PIC 
processors have some ability to do this. 

The status register is another very important register. 

Conventionally this is not part of the memory map, but it is 
only fair to point out that with the PIC processors it is actually 
one of the memory mapped registers. Either way, it is used in 
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much the same manner. The status register is used by the 
processor to store snippets of information which your programs 
can act on. Each piece of information is indicated by what is 
termed a 'status flag'. The most basic of these flags is the 'Z' 
(zero) flag, and this indicates whether or not the result of 
certain instructions is zero. This is commonly used in a loop 
which must complete a certain number of loops before the 
program moves on. Suppose that the program must loop 10 
times. A value of 10 could be placed in the accumulator, and the 
loop routine could be made to subtract one from this value on 
each loop of the program. The status register is mainly used in 
conjunction with decision making instructions, and in this case 
such an instruction would be used to move out of the loop when 
the value in the accumulator reached zero, and the zero flag was 
set. This would, of course, occur after ten loops. 

The Stack is used by the processor as a temporary store, and 
it is not necessarily directly accessible. In fact it is not directly 
accessible in the PIC processors, and you have to rely on the 
processors to use it correctly. Conventionally the Stack is a 
section of RAM that is used to store addresses and other data 
when the processor goes into some form of subroutine. As we 
have already seen, this is where the program breaks out of its 
normal flow and goes into what is normally a small program 
that is largely or totally separate from the main program. 
Having completed this subroutine, the processor goes back to 
where it left off, and continues from there as if nothing had 
happened. The information stored in the Stack enables the 
processor to be set with the same set of conditions that 
prevailed before the subroutine was performed. 
A subroutine can be instigated by a program instruction, or 

via a piece of hardware driving an input of the microprocessor. 
This second method is known as an ' interrupt', and with a 
complex microprocessor system such as a PC there is a 
constant stream of interrupts. Practically every piece of 
hardware generates interrupts to indicate to the processor that it 
needs urgent attention. There is usually a hierarchy which 
ensures that more important devices take precedence over less 
important ones. In a PC the peripheral devices such as the 
mouse, keyboard, printer and serial ports, etc., all generate 
interrupts, and a fair percentage of the processor's time can be 
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taken up servicing them all. By making these devices interrupt 
driven there is no risk of input from them being overlooked, 
with keyboard characters being missed for example. 
Microcontrollers generally make less use of subroutines and 
interrupts, and in the case of the PIC processors their 
capabilities are quite limited in this respect. In fact the more 
simple PIC processors do not implement interrupts at all. Hence 
a relatively simple Stack suffices. 

If you have managed to follow things this far you should be 
starting to get the idea of the basic way in which a system based 
on a microcontroller functions. When the system is switched on 
it starts running the program instructions stored in ROM. Under 
the direction of the program, the processor reads data from 
input ports, provides any necessary processing, and places data 
on its outputs. This may seem a bit basic and of limited 
practical value, but this is the basic function of practically all 
logic circuits, whether they are based on a microprocessor, a 
microcontroller, or ordinary logic chips. 

Microcontrollers are not suitable for all applications, but 
they are well suiied to most logic oriented applications. 

Points to Remember 
A microcontroller is a complete computer contained in a single 
chip. It has built-in memory circuits for the program, and 
input/output ports to communicate with the outside world. 

The basic function of a microcontroller is to take in data on 
its inputs, process it in some way, and place new data on its 
outputs. 
A microcontroller, like any logic circuit, only deals with 

signals at logic levels. Logic 0 (low) is represented by a voltage 
of about two volts or less; logic 1 (high) is represented by a 
higher voltage that is usually about three to five volts. 

The inputs and outputs of a microcontroller can be used in 
isolation to monitor switches, control lamps and relays, etc., or 
they can be used together as a bus. With suitable coding the 
signals carried by a bus can represent numbers, letters of the 
alphabet, or just about anything else. 

The microcontroller uses buses to carry data, instructions, 
etc., internally. Data is carried on the bi-directional data bus, 
and the memory addresses are handled by the address bus. 
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The program is stored in ROM, and the ROM contents can 
not be altered by the program when it is running. The contents 
of ROM are retained when the unit is switched off. 

Microcontrollers have only small amounts of RAM, but 
RAM is not needed for storing programs. The RAM effectively 
becomes a set of general purpose data or file registers that can 
be used as temporary data stores. 

The accumulator is the register at the heart of the processor, 
and it works in conjunction with the ALU (arithmetic logic 
unit). Virtually all instructions use the ALU and the 
accumulator. 

Program instructions are normally carried out in sequence, 
working through the ROM from a standard start address. 
Special instructions enable the program to jump out of the 
normal sequence. 

Some of these jump instructions are conditional, and jump to 
one address or another depending on the state of a certain bit of 
a register. 

This register is often the status register, which contains flags 
that are set if certain conditions are met after a mathematical 
operation. 
A clock oscillator controls the rate at which instructions are 

executed, and PIC processors can operate over a very wide 
range of clock frequencies. 

Microcontrollers are suitable for most applications that are 
apposite to a logic circuit. 
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Chapter 2 

NUMBE:RING SYSTEMS AND CODES 

When you start learning about logic circuits they can seem to be 
singularly useless! What distinguishes a logic circuit from an 
analogue type is that it only deals with two signal levels. As 
explained in Chapter 1, these are called logic 0 and logic I, and 
they are respectively represented by a low voltage (typically 
about 0 to 2 volts) and a higher voltage that is normally about 3 
to 5 volts. While this may appear to give such circuits very 
limited practical application, in reality they can be applied to 
almost any need. You only need to look around you in the 
modern world to see a vast range of applications which now 
utilise digital circuits. Not only are logic circuits used 
extensively, but they have totally revolutionised many aspects of 
modern electronics. 

Applied Logic 
Some applications are well suited to digital control and it does 
not take much imagination to see how logic circuits can be put 
to use in these. As an example, suppose that a circuit must 
control a row of lights and produce a moving lights display. 
Each light is either on or off, and this type of control obviously 
suits the logic way of doing things with just two signal levels. 
Each light can be switched on by a logic 1 level and switched 
off by a logic 0 level. It is just a matter of producing a circuit 
that will produce the right sequence of Os and Is at its outputs, 
and keep repeating this sequence at the required rate. 

Most ' real world' applications do not require straightforward 
on/off switching, but instead deal with quantities of something. 
For example, a weighing scale does not operate on the basis of 
something being heavy or not, but deals in actual weights. 
Digital systems can handle quantities quite easily, and it is just 
a matter of using a number of digital lines, together with a 
suitable method of coding. Letters of the alphabet, punctuation 
marks, etc., are usually represented by ASCII codes, and these 
use seven lines to carry the codes. Each set of seven Is and Os 
represents a different character. For instance, the code 1010101 
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represents the upper-case letter `U'. 
Numeric values of any magnitude can be represented by a 

digital circuit, but it requires a large number of digits to 
represent quite modest values. Even so, with the current 
technology this still represents by far the easiest way of using 
electronic circuits to handle numbers. Although the 
mathematics are being handled in what could be regarded as a 
rather clumsy fashion, the speed of electronic circuits is such 
that number-crunching is carried out at very high speeds. Also, 
the fact that a digital system is operating using Is and Os is not 
normally apparent to the user. There is usually hardware at the 
input and output of a digital circuit which enables the user to 
feed in data and extract it using the ordinary decimal 
numbering system. The user is also protected from raw ASCII 
codes in much the same way. The user enters letters via a 
typewriter style keyboard, and the appropriate characters 
appear on the screen of the monitor or a liquid crystal display. 
The system gives no hint as to how it is handling the data. 

Representing a single quantity using logic signals is clearly 
quite easy, but how does a digital system handle something like 
an audio signal that is constantly changing? A digital system 
can handle varying quantities using a system known as 
sampling. Although this word is now synonymous with digital 
audio recording, it is in fact a general term that is applicable to 
any digital system that deals with what is essentially analogue 
data. It basically just entails taking a series of readings so that 
the system tracks the rises and falls in the amplitude of the 
audio signal, temperature, or whatever. 

Strictly speaking, a digital system can not fully 
accommodate analogue signals since it can never have infinite 
resolution. With analogue signals that are constantly varying, 
the input signal is converted into a series of fixed values. No 
matter how frequently samples are taken, there will always be 
a jump from one sample value to the next (Fig.2.1). However, 
provided the resolution of the system is good enough, and 
samples are taken at a high enough rate, for all practical 
purposes a digital system will be as good as an analogue 
equivalent. The jumps from one sample to the next will be of 
no consequence. In fact, in many areas of electronics it is now 
true to say that the best digital systems outperform the best 
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Sampling Intervals 

Sampled Wavwform 

Fig.2.1 An analogue waveform can be stored as 
a series of digital samples 

analogue types. Whether a digital system is dealing with 
individual pieces of data, or a series of samples, the resolution 
is crucial. In other words, is the jump from one level to the next 
small enough to enable any value to be depicted with good 
accuracy? The minimum acceptable resolution varies 
considerably from one application to another. 

Although users of digital electronic devices do not normally 
get involved with all those Is and Os, and with ASCII codes, 
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etc., designers of logic circuits can not normally avoid 
operating at this sort of level. PIC circuit and software design 
certainly involves a lot of work at this very basic level, and 
requires a knowledge of the way in which logic systems handle 
numbers. Therefore, before we consider PIC software and 
hardware design we will take a fairly detailed look at the basics 
of numbering systems, and related topics. This type of thing is 
perhaps not the most stimulating aspect of PIC design, but 
without a good understanding of the fundamentals it is not 
possible to undertake PIC hardware or software design. 

Bits and Bytes 
The numbering system we use in everyday life is, of course, the 
decimal system, or 'denary' system as it is alternatively known. 
This method of numbering is based on the number 10, but it is 
quite possible to have a system based on any number. There is 
normally no point in doing so, and the old imperial measures 
which were based on a variety of numbers ( 12 in the case of 
feet and inches for example) have now been largely phased out 
in favour of the metric system. 

I suppose that binary could reasonably be regarded as the 
simplest possible method of numbering. It is based on the 
number two. In the decimal numbering system the single digit 
numbers are from 0 to 9, but in binary they are only from 0 to I. 
In other words, the only valid numbers for each digit are 0 and 1, 
and absolutely nothing else is allowed! As already pointed out, 
representing just two numbers by an electrical signal is very easy. 
A low voltage it is used to represent a 0, and a higher voltage 
represents a I. In the case of ports and other external signals 
these levels are often called ' low' and 'high' respectively, but 
these terms are not usually applied to internal signals of a 
processor. When dealing with internal signals the alternatives of 
clear (logic 0) and set (logic 1) are often encountered. 

Although convenient for the hardware producers, this simple 
logic system has its limitations and drawbacks. There have been 
suggestions over the years that circuits which can work directly 
in decimal will be a practical proposition for widespread use 
before too long, but there seems to be little real prospect of such 
a development in the near future. For the time being circuits 
which work in binary are the only practical ones for general use. 
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Binary is easier to understand if you first analyse what an 
ordinary decimal number represents. If we consider the decimal 
number 238 for instance, the eight represents eight units ( 10 to 
the power of 0), the 3 represents three tens ( 10 to the power of 
1), and the 2 represents two hundreds ( 10 to the power of 2). 
Things are similar with a binary number such as 1101. Working 
from right to left again, the columns of numbers respectively 
represent the units (2 to the power of 0), the 2s (2 to the power 
of 1), the 4s (2 to the power of 2), the 8s (2 to the power of 3), 
and so on. 1101 in binary is therefore equivalent to 13 in 
decimal ( 1 + 0 + 4 + 8 = 13). 

It takes a lot of binary digits to represent numbers of quite 
modest magnitude, but this is the price that has to be paid for 
the convenience of simple binary hardware. A binary digit is 
normally contracted to the term ' bit'. One bit on its own is of 
limited value, and bits are normally used in groups of eight, or 
multiples of eight. A group of eight bits is normally termed a 
'byte'. A byte can only handle numbers from 0 to 255 
(decimal). This is adequate for some purposes, but often larger 
values must be handled. A 16-bit binary number is usually 
termed a ' word', and this gives a range of 0 to 65535 (decimal). 
32 bits gives a range of 0 to something over four thousand 
million, which should be adequate for most purposes. A 32-bit 
number is sometimes termed a ' long word'. 

As far as data is concerned, PIC processors deal in 8-bit 
bytes, and in this respect they are rather crude compared to the 
microprocessors in the average PC which operate with 32-bit 
words of data. On the other hand, PIC processors are mainly 
used in applications where 8-bit operation is adequate. It is 
possible to use an 8-bit processor to handle 16 or 32-bit words, 
but the words can only be manipulated 8 bits at a time. This 
clearly slows things down and complicates matters. PIC 
processors are not really designed for advanced mathematics on 
16 or 32-bit chunks of data, although with suitable software 
routines they can actually do so. PIC processors use 10, 12, or 
14-bit memory addresses, and the convention is that these 10 to 
14-bit values are called ' words', even though they fall short of 
normal 16-bit words. The term 'word' is not well defined, and 
it can be used to describe any binary value that is more than 
byte sized. 
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You can not do much computing without coming across the 
term 'K'. This is the abbreviation for 'kilobyte', which is a 
thousand bytes. In fact, to be precise, it is 1024 bytes. This may 
seem to be an odd number to choose, but a 10-bit binary number 
covers a range of 0 to 1023, or 1024 different values in other 
words. The extra 24 on each K is often of no great significance, 
but it is interesting to note that a computer with a 'megabyte' of 
memory has 1048576 bytes of memory. Not a million bytes, and 
some 47K to 48K above the million byte mark. A 'megabyte', 
which is often abbreviated to just 'M' or `Mb", is the usual unit 
of measurement for large amounts of data, RAM, or whatever. 

This table shows the number represented by bits in 16-bit 
numbers, and this might help to clarify the way in which the 
binary system operates. The numbers in the table are the ones 
that the bits represent when a 1 is present in that column of the 
binary number. If there is a 0 in a column, then that column 
always contributes 0 to the value of the number. We are using 
the convention of calling the units column bit 0, running 
through to bit 15 for the left-most column (not bits 1 to 16). The 
units column is often called the 'least significant bit', or ISB' 
for short. Bit 31 (or the left-most column that is actually used) 
is termed the 'most significant bit' or just `MSB'. 

Bit Decimal Value 
0 1 
1 2 
2 4 
3 8 
4 16 
5 32 
6 64 
7 128 
8 256 
9 512 
10 1024 
11 2048 
12 4096 
13 8192 
14 16384 
15 32768 
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Counting Up 
Addition of two binary numbers is a straightforward process 
which is really more simple than decimal addition. Here is a 
simple example of binary addition. 

First number 240 11110000 

Second number 85 01010101 

Answer 325 101000101 

As with decimal addition, start with the units column and work 
towards the final column on the left. In this case there is a 1 and 
a 0 in the units column, giving a 1 ii the units column of the 
answer. In the next column two Os give a 0 in the answer, and 
the next two columns are equally straightforward. In the fifth 
column there are two Is to be added, giving a total of 2. Of 
course, in binary the figure 2 does not exist, and this should 
really be thought of as 10 (one 2 and no units), and it is treated 
in the same way as 10 in decimal addition. The 0 is placed in 
the answer, and the 1 is carried forward. In the seventh column 
this gives a total of 3 in decimal, but in this binary calculation 
it must be thought of as the binary number 11 (one 2 and one 
unit). Therefore, 1 is placed in the answer and 1 is carried 
forward. In the eighth column this gives an answer of 10, and 
as there are no further columns to be added, both digits are 
placed in the answer. 

Signed Binary 
The binary system described so far, which is often called 'direct 
binary', is inadequate for many practical purposes. It is 
certainly all that is needed when designing many PIC based 
projects, but it will not always be sufficient. The main 
drawback of direct binary is that it can not handle negative 
numbers. Obviously you can simply add a minus sign ahead of 
a binary number to indicate that it is a negative number, but you 
have to bear in mind that for computer applications this is not 
valid. There is logic 0 and logic 1, but no logic — level! 

The normal way around the problem is to use 'signed 
binary'. With a signed binary number the first bit is used to 
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denote whether the number is positive or negative. The 
convention is for the first bit to be a 0 for positive numbers and 
a 1 for negative numbers. With this system the normal 8-bit 
range of 0 to 255 is replaced with a range of —127 to + 127 
( 11111111 to 01111111). The problem is solved at the expense 
of decreased maximum magnitude for a given number of bits. 
Note though, that where two or more bytes (or words or long 
words) are used together to form a large number, only the most 
significant bit of the most significant byte needs to be used to 
indicate the sign of the number. It is not necessary to sacrifice 
the most significant bit of each byte to this task. 

Obviously a certain amount of care needs to be exercised 
when dealing with binary numbers, and you must know whether 
you are dealing with direct or signed binary numbers. For 
instance, 10000001 could be 129 (direct binary) or — 1 (signed 
binary). I have encountered computers which have a binary to 
decimal conversion facility, and which seem to get confused in 
this way. Results were as expected for answers up to 32767, but 
things went completely wrong with higher numbers. This 
happens where the computer operates with binary numbers of up 
to 16 bits in length, and it interprets any values it is fed as signed 
binary. This works fine if you know that it is working with 
signed binary. It also works fine if it is fed with binary values of 
15 bits in length or less. The leading zeros then inform the 
computer that the number is a positive one, and the right answer 
is obtained. For numbers of more than 32767 the most 
significant bit is a 1, telling the computer that it is a negative 
number, even if you require a direct binary conversion. 

In this basic form the signed binary system has its 
limitations. The problem is that although it can represent a wide 
range of positive and negative values perfectly adequately, 
calculations on simple signed binary numbers do not give the 
correct result. This is of only academic importance to users of 
high level applications programs and applications software. 
You give the computer such numeric data, positive, negative, or 
a mixture of the two, and everything is sorted out for you. It is 
something that is of greater importance to the low level 
(assembly language or machine code) programmer. Confusing 
results can be obtained unless you understand just how the 
microprocessor is handling things. 
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Ones Complement 
The simple calculation shown below illustrates the problem 
that occurs using simple signed binary. 

First number 16 00010000 

Second number —5 10000101 

Answer —21 10010101 

Adding 16 and —5 should obviously give an answer of 11 and 
not —21. What is happening is that the negative sign of the —5 is 
being added to the answer so that the answer must always be 
negative if one of the numbers being added is a negative type. 
This is clearly incorrect, as in this example. The main bodies of 
the numbers are simply added together, and their signs are 
ignored. Negative values therefore increment the figure in the 
answer rather than decrementing it. 
An alternative and related method of handling binary 

numbers is the 'ones complement system. Here a negative 
number is the complement of its positive equivalent. For 
example, 16 is 00010000 in binary, and so — 16 is 11101111 in 
ones complement binary. In other words, the Os are simply 
changed to is and the is are changed to Os. This gives much 
better results when used in calculations, as demonstrated by the 
example given below. 

First number 16 00010000 

Second number —5 11111010 

Answer 266 100001010 

I suppose that on the face of it this answer is even further from 
the right answer than when simple signed binary was used. The 
margin of error is certainly much greater, but the usefulness of 
this system depends on how the answer is interpreted. The first 
point to note is that the positive number starts with a 0 while the 
negative number has a 1 as the first digit. Provided sufficient 
digits are used this will always be the case, and in this respect 
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the ones complement system is the same as straightforward 
signed binary. The answer is completely wrong of course, but if 
the carry is ignored the answer is much closer to the right one. 
The answer is then 1010 in binary, or ten if converted to 
decimal. This is just one away from the right answer. So what 
happens if we try another example and ignore the carry. 

First number 32 00100000 

Second number -4 11111011 

Answer 27 00011011 

As before, the answer is wrong but it is just one less than the 
right answer (which is of course 28 in this case). 

Twos Complement 
Clearly this system can be made to operate correctly, and it is 
just a matter of finding some way of correcting the minor error 
in the answer. The standard method used with most 
microprocessors (including the PIC processors) is called twos 
complement'. This differs from ones complement in that once 
the complement of a number has been produced, one is added 
to it. Therefore, rather than -5 being represented as 11111010, 
it becomes 11111011 in twos complement. If we now apply this 
to one of the examples given earlier we obtain the following 
result. 

First number 16 00010000 

Second number -5 11111011 

Answer 11 00001011 

This time, provided we ignore the carry, we do indeed obtain 
the correct answer of 11. This is a convenient way of handling 
subtraction (for microprocessors if not for humans), since 
subtraction can be carried out by the same circuit that handles 
addition. To handle a calculation such as 45 - 25 the value of 
25 is converted to twos complement and then added to 45. In 

36 



other words, instead of handling this calculation in the form 45 
—25 it is undertaken in the form 45 + (-25), and either way the 
answer is 20. 

The table given below shows some sample numbers in twos 
complement form, and this should help to clarify the system for 
you. Note that, like ordinary signed binary, the first digit is used 
to indicate whether the number is positive or negative. 

Number Positive Negative 

0 00000000 00000000 
1 000000011 11111111 
2 00000010 11111110 
3 00000011 11111101 
4 00000100 11111100 
32 00100000 11100000 
126 01111110 10000010 
127 01111111 10000001 
128 01000000 10000000 

Note that with 8-bit twos complement numbers the range is 
from — 127 to + 128 (not — 127 to * 127 as with simple signed 
binary). 

So far we have only considered calculations where the 
answer is a positive quantity, but the twos complement system 
works equally well if the answer is negative. This point is 
demonstrated by the example provided below. 

First number 16 00010000 

Second number —31 11100001 

Answer —15 11110001 

The two complement system also functions properly when the 
two numbers being added are both negative, as in this example: 

First number —4 11111100 

Second number —8 11111000 

Answer —12 11110100 
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Binary Coded Decimal 
Several microprocessors can operate using another form of 
binary called ' binary coded decimal', or just 'BCD'. This is a 
somewhat less compact and efficient form of binary, it is 
generally somewhat slower, and it is not used in most 
applications. It does have its advantages though, and the main 
one is that it can be used to provide a very high degree of 
precision. The PIC processors do not have any instructions 
which use BCD, but you may wish to drive displays or other 
devices using BCD. 
BCD uses four binary bits (often termed a 'nibble') to 

represent each decimal digit. The system operates in the 
manner shown below. 

Decimal Number Binary Code 

0 0000 
1 0001 
2 0010 
3 0011 
4 0100 
5 0101 
6 0110 
7 0111 
8 1000 
9 1001 

The binary number is in fact just the ordinary binary bit code 
for the number concerned, and it is only for numbers of more 
than 9 that the system is different. The binary codes from 1010 
to 1111 are unused, and all two digit decimal numbers require 
8-bit BCD codes. For instance, the decimal number 64 would 
be represented by the 8-bit BCD code 01100100. The first four 
bits (0110) represent the six, and the second four bits (0100) 
represent the four. Each byte can therefore represent any two 
digit decimal number from 0 to 99, which compares to a range 
of 0 to 255 for an ordinary 8-bit binary number. This helps to 
contribute to the relative inefficiency of the BCD system. Of 
course, when a nibble is incremented by I from a value of 1001 
(9 in decimal) it does not go to 1010 (which is an illegal code 
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in BCD), but cycles back to 0000. A carry forward of 1 should 
then be taken to the next BCD nibble. Since the PIC processors 
do not operate directly in BCD, you must provide the 
conversion from direct binary to BCD using suitable software 
routines. Look-up tables are the normal method for handling 
this type of thing. 

With BCD there is no difficulty in handling large numbers, 
and it is just a matter of using several bytes in order to 
accommodate the required number of digits. Negative numbers 
and decimal points can also be handled with ease by this 
system, but this requires several additional bits. This 
information is usually carried in the most significant bits ( i.e. 
the left hand end of the number), but you can design the 
software and hardware to handle this type of thing in any way 
that you see fit. 

Hexadecimal 
Hexadecimal is a numbering system that you are almost certain 
to use a great deal when undertaking PIC programming. In fact 
it will be the main numbering system that you use. The 
hexadecimal name is usually abbreviated to just hex'. A 
problem with binary numbers is that they tend to have many 
digits with each one being a 0 or a 1, which makes them rather 
difficult to deal with in many circumstances. For instance, 
dealing with 10 or 12 bit addresses in their binary form would 
probably be beyond most people's ability, as would dealing 
with eight-bit data values. On the other hand, binary numbers 
give a graphic representation of each bit in the register of a 
microprocessor, control register of a peripheral chip, output 
terminals of a PIC port, or whatever. This is something that is 
often important, but is especially so when dealing with a 
microcontroller and its ports. Decimal numbers are much easier 

to deal with in that they are much shorter and are in a more 
familiar form. Unfortunately, a decimal number does not give 
much idea of the state of each bit in its binary equivalent. 
Converting a decimal number to its binary equivalent is not a 
particularly quick or easy process (without the aid of some 
computerised help anyway). Decimal numbers are 
consequently rather inconvenient when things must be 
visualised on a bit by bit basis. 
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The hexadecimal system gives the best of both worlds in that 
it takes just a few digits to represent even quite large numbers, 
and it is in fact slightly better than the decimal numbering system 
in this respect. On the other hand, it is quite easy to convert 
hexadecimal numbers to their binary equivalents when the state 
of each bit must be known. The conversion process is quite 
simple even with very large numbers. The hexadecimal system is 
based on the number 16, and there are sixteen single digit 
numbers. Obviously the numbers we normally use in the decimal 
system are inadequate for hexadecimal as there are six too few of 
them. This problem is overcome by augmenting them with the 
first six digits of the alphabet (A to F). It is from this that the 
system derives its name. The table given on page 41 helps to 
explain the way in which the hexadecimal system operates. 

What makes hexadecimal so convenient is the ease with 
which multi-digit numbers can be converted into binary 
equivalents. The reason for this is that each hexadecimal digit 
represents four binary bits. Take the hexadecimal number A3 in 
the table for example — digit A represents 1010 in binary, and 
the digit 3 converts to 0011. A3 therefore represents 10100011 
in binary. You may find that you can memorise each of the 
sixteen 4-bit binary codes represented by hexadecimal digits, 
but a little mental arithmetic is all that is needed in order to 
make the conversion if you can not. 

The digits in a hexadecimal number represent, working from 
right to left, the number of units, 16s, 256s, 4096s, 65536s, 
1048576s, and 268435450s (approx.). In general computing 
you are unlikely to use hexadecimal numbers of more than 
eight digits in length, and mostly you will probably only deal 
with hexadecimal numbers having four digits or less. When 
dealing with PIC processors you should not need to use 
hexadecimal numbers having more than three digits, and in 
most cases you will use only one or two digit numbers. 

Decimal Hexadecimal Binary 

0 0 0000 
1 1 0001 
2 2 0010 
3 3 0011 
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4 4 0100 
5 5 0101 
6 6 0110 
7 7 0111 
8 8 1000 
9 9 1001 
10 A 1010 
11 B 1011 
12 C 1100 
13 D 1101 
14 E 1110 
15 F 1111 
16 10 10000 
17 11 10001 
18 12 10010 
163 A3 10100011 

Octal 
Although the octal numbering system was much used in 
computer circles at one time, it seems to have fallen from 
favour. Hexadecimal now seems to have superseded it. As its 
name suggests, it is based on the number 8. The columns of 
figures therefore represent the units, 8s. 64s, 512s, 4096s, 
32768s, etc. Only the first eight digits (0 to 7) of the decimal 
numbering system are utilised by the octal system, and so 
neither 8 nor 9 are legal characters in octal. 

In common with hexadecimal, octal keeps the number of 
digits in large numbers down to reasonable proportions, but it 
can easily be converted into binary if the state of each bit must 
be known. Whereas each hexadecimal digit represents a four bit 
binary code, each octal digit represents just three binary bits. 
With modern computing being based on 8-bit bytes, or 
multiples of eight bits, the 3-bit octal codes are less than totally 
convenient. It is probably this factor that has led to its decline 
in favour of the hexadecimal system. Here is a list of octal 
digits and the three bit binary codes that they represent: 
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Octal Digit Binary Code 

0 000 
1 001 
2 010 
3 011 
4 100 
5 101 
6 110 
7 Ill 
8 001000 

As with hexadecimal digits, the binary codes they represent are 
just the standard codes for the numbers concerned. It is 
probably not worthwhile taking the time to familiarise yourself 
with the octal numbering system as it is rarely, if ever, 
encountered in practice these days, and you are unlikely to use 
it in conjunction with PIC processors. 

Conversions 
Conversion from hexadecimal to binary is, as we have already 
seen, fairly straightforward. With a little experience a little 
mental arithmetic is all that is needed to make this type of 
conversion. Conversion in the opposite direction is equally 
simple. It is just a matter of breaking down the binary number 
into four-bit groups and then converting each group to its 
corresponding hexadecimal digit. 

Conversions that involve decimal numbers are a little more 
difficult to deal with. The easy way of handling the problem is 
to use a computer to make the conversion (or possibly a 
scientific calculator). Most BASICs can provide a hexadecimal 
to decimal conversion. If the computer accepts hexadecimal 
numbers with (say) an 8cH' prefix to indicate that they are in 
hexadecimal, then giving the instruction: 

PRINT &H)00{X RETURN 

where `XXXX' is the hexadecimal number to be converted, 
should result in the decimal equivalent being printed on the 
screen. A conversion in the opposite direct might also be 
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possible, and this. is most commonly found in the form of a 
FŒX$ function. You may even find that decimal to octal 
cpnversion is possible using an OM function (as in Amiga 
BASIC for instance„ although these days such a function 
would seem to be of largely academic interest. 

Eitwise Operations 

h computing, numbers are not only manipulated using the 
normal mathematical functions. There are also the ` bitwise' 
cperations called 'AND', 'OR', and 'XOR'. These compare 

two binary numbers (literally) bit-by-bit, and the answer 
produced depends on the combinat on of Os and Is present in 
each column. ANDing produces a 1 in the answer only if there 
is a 1 in that column of both the numbers being ANDed. In 
other words, if a bit is set to I in the first number and the 
second, a 1 is placed in that bit of the answer. Hence the 'AND' 
name of this logic operation. Here is a simple ANDing 
example: 

First number 15 00001111 

Second number 243 11110011 

Answer 3 0000001 I 

The answers obtained from bitwise operations can tend to 
took a bit random unless you cons,der what is happening on a 
oit by bit basis. A ccmmon use of the bitwise AND function is 
when less than all eight bits of a byte must be read. For 
instance, assume that we wish to know the state of bit 3 of a 
register or input port. Most computer systems do not provide 
any means of reading just one bit of a port or register, although 
the PIC processors do actually include some bit oriented 
instructions. Anyway, one way around the problem is to use a 
bitwise AND operation to mask off the unwanted bits. In this 
case bit 3 represents eight when it is set to logic 1, and so the 
masking number to use is eight (00000100 in binary). In the 
answer all the bits except bit 3 must be set to zero, as there is 
no way they can be set to 1 in both numbers. The situation is 
different for bit 3, where both bits could be at logic 1 if the 
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second number also has this bit set to 1. The answer therefore 
reflects the state of bit 3 in the second number, and is eight if 
this bit is at logic 1, or zero if it is at logic 0. The ANDing 
provides the desired function with, in effect, only the required 
bit being read. 

It is possible to read more than one bit if desired, and in a 
PIC processor context this is the way that bitwise ANDing 
would normally be used. Just set any bits which must be read 
to logic 1 in the masking number — set any bits which must be 
masked off to logic 0 in the masking number. As a couple of 
examples, to read the least significant nibble a masking number 
of 15 (00001111 in binary) would be used, and to read the most 
significant nibble the masking number would be 240 ( 11110000 
in binary). 

Bitwise ORing is a similar process to ANDing, but a 1 is 
placed in a bit of the answer if there is a 1 in that bit of the first 
number, or the second number, or both. X0Ring (exclusive 
ORing) differs from normal (inclusive) ORing in that it will 
place a 1 in a bit of the answer if there is a 1 in that bit of the 
first number or the second, but not if there is a 1 in both bits of 
these numbers. This could reasonably be regarded as the true 
OR function, but it has been designated the XOR function. The 
following example shows how these two types of bitwise 
operation can produce different answers. 

First Number 15 00001111 

Second Number 85 01010101 

ORed Result 95 01011111 

First Number 15 00001111 

Second Number 85 01010101 

X0Red Result 90 01011010 

The main use of the bitwise OR function is to permit some 
bits of a register to be altered without changing the states of the 
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other bits. Suppose that you wish to set bits 0 to 3 of a register 
to I. You could simply write a value of 15 (00001111) to the 
register, but if any of bits 4 to 7 were originally set to 1, this 
would result in them being changed to zero. The PIC processors 
have bit oriented instructions, and using one of these it would 
be possible to set each bit to 1, but it would require a separate 
instruction for each bit. This might still be your preferred way 

of doing things. The alternative is to read the register, and 
bitwise OR the result with a suitable value. Determining this 
value is quite straightforward. A one is used in the bits that must 
be set to one, and a zero is used in the other bits. In our example 
it is bits 0 to 3 that must be set to one, and bits 3 to 7 that must 
be left unchanged. This gives a masking number of 15. If you 
look at the bitwise OR example shown previously, where a 
value of 85 (01010101 in binary) is ORed with 15, you will 
note that the lower four bits in the answer are all set to one, but 
the upper four bits remain unchanged. This gives the desired 
result using just a single instruction. 

If you needed to set the lower nibble to zero rather one, it is 
a bitwise AND operation that would be used. Use a one in any 
bits that must be left unaltered, and a zero in bits that must be 
zero. A value of 240 ( 11110000) would therefore be used to set 
the four least significant bits to zero, as shown in this example. 

Number In Register 85 01010101 

Masking Number 240 11110000 

Answer 80 01010000 

The bitwise XOR function perhaps has fewer practical uses 
than the AND and OR functions, but it can occasionally prove 
to be useful. It is possible to complement the bits in a byte 
(change the is to Os and vice versa) by X0Ring the byte with 
255 ( 11111111 in binary). However, the PIC processors have a 
complement instruction that provides this function. 

Rotate and Shift 

Microprocessors normally have shift and (or) rotate 
instructions, and the PIC microcontrollers have rotate left and 
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rotate right instructions. In a basic rotate left instruction the bits 
in the byte are all moved one place to the left, and the leftmost 
bit (bit 7) is moved into the space left vacant by bit 0. A right 
rotation is the opposite of this, with all the bits being moved 
one place to the right, and bit 0 being moved into the space left 
vacant by shifted bit 7. Figure 2.2 shows 'before and after' 
examples for both types of rotation. Shift instructions, 
incidentally, are the same except that any bits which are moved 
out of the register are simply discarded, rather than being 
moved round to the other end of the register. 

The PIC processors provide slightly more complex rotate 
instructions that involve an extra bit called the carry flag. The 
rotations are through the carry flag, which simply means that 
the digit which is displaced from one end of the byte is placed 
into the carry flag rather than being moved to the other end of 
the byte. This is not the sole function of the carry flag, and it is 
used whenever there is a spare bit. For example, if 255 and 2 
are added together, in binary it gives this result: 

255 

2 

Total (257) 

11111111 

00000010 

1 00000001 

This calculation gives a nine-bit answer, which is clearly one 
bit too many for an eight bit register. The one in the most 
significant bit is therefore stored in the carry bit, or carry flag 
as it is generally called. The eight bit data registers of a PIC 
processor can not accommodate the carry, but conditional 
instructions can provide one function or an alternative 
depending on the state of the carry flag. With suitable software 
the ' lost' bit can be rescued. 

Returning to the rotation instructions, you really have to 
consider the carry flag to be part of the register which is being 
'rotated'. If the carry bit is set to one when the rotation 
instruction is carried out, this one will be placed in the bit of 
the register that has just been emptied. Further rotation 
instructions in the same direction result in the bit in the carry 
flag being stored in one end of the data register, while the bit 
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7 6 5 4 3 2 1 0 

0 0 1 1 0 1 

Rotate Right 

all 

1  Fm I 
II  

7 6 5 4 3 2 1 0 

1 1 0 0 1 1 0 1 

7 6 5 4 3 2 1 0 

1 0 0 1 1 0 1 1 

Rotate Left 

P. 

7 6 5 4 3 2 1 n 

0 0 1 1 0 1 1 1 

Fig.2.2 Example rotate right and rotate left instructions 



ousted at the other end of the register goes into the carry flag. 
Figures 2.3 and 2.4 show the result of three rotate right and 
three rotate left instructions respectively. These should help to 
clarify both processes. Looking at things in numerical terms, a 
shift to the left provides a multiplication by two, and a shift to 
the right gives a division by two. These two examples 
demonstrate this point. 

Fig.2.3 Example rotate instructions using the carry 
flag 
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Fig.2.4 This example shows the result of three rotate 
left instructions 

Original Value 

Shifted Left 

Original Value 

Shifted Right 

14 00001110 

28 00011100 

14 00001110 

7 00000111 
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ASCII Codes 
Virtually all modern computers use a character set that is 
closely based on the ASCII (American Standard Code for 
Information Interchange) set. They are also used when driving 
liquid crystal displays (LCDs) that have the ability to display 
alphanumeric characters. These are seven bit codes, giving a 
maximum of 128 different characters. Many computers and 
liquid crystal displays use the eighth bit for additional, non-
standard codes (i.e. code numbers from 128 to 255 are often 
used for non-standard graphics characters, etc.). This table 
provides details of the standard ASCII codes. 

Decimal Hex Binary Character 

o oo 0000000 NULL 
1 01 0001 SOH 
2 02 0010 STX 
3 03 0011 ETX 
4 04 0100 EOT 
5 05 0101 ENQ 
6 06 0110 ACK 
7 07 0111 BEL 
8 08 1000 BS 
9 09 1001 HT 

I 0 OA 1010 LF 
11 OB 1011 VT 
12 OC 1100 FF 
13 OD 1101 CR 
14 OE 1110 SO 
15 OF 1111 SI 
16 10 0010000 DLE 
17 11 0001 DC1 
18 12 0010 DC2 
19 13 0011 DC3 
20 14 0100 DC4 
21 15 0101 NAK 
22 16 0110 SYN 
23 17 0111 ETB 
24 18 1000 CAN 
25 19 1001 EM 
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Decimal Hex Binary Character 

26 IA 1010 SUB 
27 1B 1011 ESC 
28 IC 1100 FS 
29 ID 1101 GS 
30 1E 1110 RS 
31 IF 1111 US 
32 20 0100000 [SPACE] 
33 21 0001 l 
34 22 0010 ,.. 
35 23 0011 [HASH] 
36 24 0100 $ 
37 25 0101 % 
38 26 0110 & 
39 27 0111 
40 28 1000 ( 
41 29 1001 ) 
42 2A 1010 
43 2B 1011 + 
44 2C 1100 
45 2D 1101 
46 2E 1110 . 
47 2F 1111 / 
48 30 0110000 0 
49 31 0001 I 
50 32 0010 2 
51 33 0011 3 
52 34 0100 4 
53 35 0101 5 
54 36 0110 6 
55 37 0111 7 
56 38 1000 8 
57 39 1001 9 
58 3A 1010 
59 3B 1011 , 
60 3C 1100 < 
61 3D 1101 = 
62 3E 1110 > 
63 3F 1111 ? 
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Decimal Hex Binary Character 

64 40 1000000 @ 
65 41 0001 A 
66 42 0010 B 
67 43 0011 C 
68 44 0100 D 
69 45 0101 E 
70 46 0110 F 
71 47 0111 G 
72 48 1000 H 
73 49 1001 I 
74 4A 1010 J 
75 413 1011 K 
76 4C 1100 L 
77 4D 1101 M 
78 4E 1110 N 
79 4F 1111 0 
80 50 1010000 P 
81 51 0001 Q 
82 52 0010 R 
83 53 0011 S 
84 54 0100 T 
85 55 0101 U 
86 56 0110 V 
87 57 0111 W 
88 58 1000 X 
89 59 1001 Y 
90 5A 1010 Z 
91 5B 1011 [ 
92 5C 1100 \ 
93 5D 1101 1 
94 5E 1110 ^ 
95 5F 1111 
96 60 1100000 7 

97 61 0001 a 
98 62 0010 b 
99 63 0011 c 
100 64 0100 d 
101 65 0101 e 
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Decimal Hex Binary Character 

102 66 0110 f 
103 67 0111 g 
104 68 1000 h 
105 69 1001 i 
106 6A 1010 j 
107 6B 1011 k 
108 6C 1100 1 
109 6D 1101 m 
110 6E 1110 n 
Ill 6F 1111 o 
112 70 1110000 P 
113 71 0001 cl 
114 72 0010 r 
115 73 0011 s 
116 74 0100 t 
117 75 0101 u 
118 76 0110 y 
119 77 0111 w 
120 78 1000 x 
121 79 1001 Y 
122 7A 1010 z 
123 7B 1011 { 
124 7C 1100 I 
125 7D 1101 1 
126 7E 1110 - 
127 7F 1111 DEL 

Finally 
For some initial and fairly basic PIC programming you can get 
by with an understandirg of direct binary and the hexadecimal 
numbering system, so you should at the very least make sure 
that you are reasonably familiar with both of these topics. 
Without a working knowledge of direct binary and hexadecimal 
it is not possible to set up the input and output ports, read the 
ports, etc. You can 'brush up' on bitwise operations, rotation 
instructions, etc., as and when you need them. The ASCII codes 
are not something yot need to learn, and the ASCII table 
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provided previously should be useful for reference purposes if 
you produce a system that writes information to an 
alphanumeric liquid crystal display. 
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Chapter 3 

SPECIFICS 

So far we have only considered the subject of microcontrollers 
in fairly broad terms. In this chapter we will take a more 
detailed look at things, and in particular we will look at the 
internal workings of the PIC series of microcontrollers. The 
basic function of any microprocessor is to move data around 
and to process it, and the microprocessor at the heart of a PIC 
processor is certainly no exception to this. Although there are 
similarities in the internal arrangements of various 
microprocessors, and also similarities in the instructions that 
they perform, there are also large differences from one 
microprocessor to another. If you are familiar with 
microprocessors such as the Z80 and 68000 series you should 
not find it too difficult to adjust to using PIC processors. On the 
other hand, it is only fair to point out that the PIC series of chips 
are very simple in comparison with most other microprocessors 
and you will need to adjust to their more simple way of doing 
things. Also, there are one or two fundamental differences 
between PIC processors and devices such as the Z80 and 
68000, and these also necessitate a certain amount of 
adjustment. 

ROM Types 
As pointed out in Chapter 1, the program for a PIC chip is 
stored in its ROM (read only memory). There is more than one 
type of ROM, and most of the PIC chips are equipped with 
what is called EPROM (erasable programmable read only 
memory). Your program is placed in the EPROM using a 
system that is normally in the form of a PC equipped with 
appropriate software and some fairly simple hardware. This is 
not a process we will consider here, but it is not difficult to 
program PIC chips using the systems that are now readily 
available. Because the contents of EPROM are erasable, once a 
chip has been programmed it is possible to re-use it by erasing 
the contents of the EPROM and re-programming the chip. The 
EPROM is erased by subjecting it to short wavelength ultra-
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violet ' light' for about 20 minutes, and suitable erasure units are 
readily available. An EPROM eraser is basically just a light-
tight box having a pad of conductive foam for the chips at the 
bottom, and the ultra-violet tube at the top. 

Some of the PIC processors are available without the 
necessary window to enable the ultra-violet ' light' to reach the 
silicon chip, and their EPROM is therefore not erasable. 
Consequently, once one of these chips has been programmed it 
can not be re-programmed and re-used in a different 
application. Perhaps of more importance, these non-erasable 
chips are not suitable for developing PIC based systems. The 
general idea is to use an erasable chip when developing new 
systems, with the chip being erased and re-programmed as 
many times as is necessary to perfect the software. The finished 
product is then built using a non-erasable PIC chip. These are 
very much cheaper than the erasable versions. As well as a 
programmer and an erasure unit you therefore need at least one 
or two erasable PIC chips in order to develop PIC based 
systems. All the PIC processors are avai lable in true EPROM 
and non-erasable versions. 

The non-erasable chips are sometimes called OTP (one-
time programmable) chips incidentally. Do not be tempted to 
use one-time programmable chips for development purposes as 
this will almost certainly be a false economy. You are likely to 
gain little from the experience but a bin full of wasted PIC 
processors! The erasable PIC chips have a life of over 10,000 
programming and erasure cycles, which in theory means that 
they should never wear out. In reality they should last for a 
great many years unless you are careless and 'zap' one from 
time to time. Physical wear on the pins is probably the limiting 
factor rather than the number of erasure and programming 
cycles they can withstand. 

A few PIC processors are equipped with EEROM 
(electronically erasable read only memory). These chips differ 
from the true EPROM type in that they can be erased 
electronically, and can not be 'wiped' using an ultra-violet light 
box. The EEROM chips are more convenient to use because 
they can be erased more quickly, but as yet there is a limited 
choice of EEROM chips, and you obviously need a compatible 
programmer/eraser system before you can use them. 
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Take Your PIC 
There are currently several versions of the PIC processor that 
are generally available, and although these are basically the 
same 'at heart', there are still important differences from one 
PIC chip to another. The main differences are in the number and 
type of ports that they offer, and in the amount of RAM and 
ROM that they contain. Here we will restrict ourselves to the 
mainstream PIC devices, since these provide the best starting 
point. I would recommend that you become familiar with these 
before trying the more exotic types, or the ultra-simple eight-
pin devices that have recently been introduced. 

The most basic of the mainstream PIC chips are contained 
in ordinary I 8-pin d.i.l. plastic encapsulations, and have two 
input/output ports. These consist of one 4-bit port and one 8-bit 
port ( i.e. a total of 12 input/output lines), and they are 
respectively designated port A and port B. Just 12 input/output 
lines is obviously something of a limitation, but it is perfectly 
adequate for many practical applications. The versatility of the 
ports is increased by having each line individually 
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programmable to operate as an input or an output. If you need 
(say) 10 input lines and two outputs, the two ports of a simple 
PIC processor are able to oblige. The 16C54 and 16C56 are two 
basic PIC processors which have two ports, and the pin-out 
diagram for these is provided in Figure 3.1. The only difference 
between these two chips is that the 16C54 has 512 bytes of 
ROM whereas the 16C56 has 1024 bytes ( 1K). 

Next up the scale in terms of complexity are the 16C71 and 
16C84 which respectively have 1024 bytes of EPROM and 
EEROM. In addition to the differences in their ROMs, the 
16C71 has a four channel analogue to digital converter in place 
of its four bit input port (port A). Port A can still be used as a 
digital type if preferred, or it can even be configured to operate 
in mixed digital/analogue modes. The analogue capability is 
clearly a very useful facility that can be utilised in numerous 
control and measurement applicables. Pin-out details for both 
these chips are provided in Figure 3.2. 

The 16C55 and 16C57 can be used in applications that 
require larger numbers of digital input and output lines. These 
two devices respectively have 512 bytes and 2048 bytes of 
EPROM, and are housed in a 28-pin DIL encapsulation. They 
have the same pin-out configuration (Fig.3.3). You will notice 
from this that they have three ports, which are two 8-bit ports 
and one 4-bit type. This gives some 20 input/output lines, 
which is more than enough for the vast majority of applications. 
However, the 17C42 has even more input/output ports giving 
no less than 33 input/output lines. Probably few practical 
applications require anything like this number of inputs and 
outputs, but this chip is there if you should have an application 
that does. 

Having so many versions of the PIC microcontroller can be 
a bit confusing at first, but Table 1 should help to clarify 
matters. This provides some basic information about the 
amount of ROM and RAM, the input/output ports, etc., for a 
range of PIC processors. This information should make it easier 
to select a suitable chip for a given application. Some of the 
information given in this table might not make much sense at 
present, but all will be revealed later. 
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Table 1 

I6C54 I6C55 16C56 I6C57 16C71 I6C84 

EPROM 512 512 IK 2K IK IK 

RAM 32 32 32 80 36 36 

Digital I/O 4+8 4+8+8 4+8 4+8+8 5+8 5+8 

Analogue 

Inputs o o o o 4 o 
Instructions 33 33 33 33 35 35 

Instruction Bits 12 12 12 12 14 14 

Stack Size 2 2 2 2 8 8 

Pins 18 28 18 28 18 18 

Interrupts No No No No Yes Yes 

PU Timer No No No No Yes Yes 
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Programming 
While I do not intend to give a detailed account of 
programming and erasing PIC chips, it would probably be as 
well to take a quick look at what is required in order to 
undertake PIC project development. It is definitely advisable to 
start with one of the PIC development systems that are now 
readily available. These provide you with everything you will 
need to program PIC processors, with the obvious exception of 
the PC. In theory it is not essential to have a PC in order to 
undertake PIC programming, but in practice you will find the 
going very tough unless you have access to a PC. Fortunately, 
many of the PIC development systems are supplied with 
software that will run on practically any PC. Therefore, you do 
not need the last word in PC technology in order to program 
chips. A PIC development system normally consists of three 
main components. These are: 

I. An assembler program which runs on the PC, and 
assembles your program into machine code that can be run by 
the PIC processor. The processor deals with binary values, and 
it is not just the data it handles that is in binary. The instructions 
are also in this form, but it is obviously awkward and 
inconvenient for the programmer to work directly in binary. 
The standard way around this is for the programmer to write the 
programs in assembly language, which uses a mnemonic for 
each program instruction. A mnemonic is simply a short name 
which is much easier to remember than the binary code number, 
and is quicker to use than the full name of the instruction. As an 
example, the no operation instruction has the mnemonic 
IsIOP'. The assembler takes the assembly language source code 
and converts it into corresponding binary object code that the 
PIC processor can run. In fact all practical assemblers provide 
more help than simply converting mnemonics into the 
corresponding binary numbers, but they do not provide 
anything like as much help as a high level language such as 
BASIC or Pascal. Although the PIC processors all use the same 
basic instruction set, unfortunately they do not all use the same 
object code. Consequently, you must ensure that you obtain an 
assembler that can handle the object code for the particular PIC 
processor or processors that you will be using. 
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2. The programmer that is used to ' blow' your programs into 
the PIC chips. In most cases this is something pretty basic, and 
it usually seems to be nothing more than a small printed circuit 
board that connects to one of the computer's ports via a ribbon 
cable. Serial and parallel port programmers are available, and it 
probably makes little difference which type you use. In theory 
a parallel port can handle data transfers at a higher rate than a 
serial port, but this is unlikely to be of any significance in the 
present context. The PIC chips come in a variety of shapes and 
sizes, and you obviously need to make sure that the 
programmer can handle the particular chips you intend to use. 
The system will include matching software that takes the data 
from the assembler and loads it into the PIC chips via the 
programmer hardware. 

3. Finally, most systems include a PIC simulator which 
enables you to test your programs without actually 'blowing' 
them into a PIC chip and trying them for real. Testing a PIC 
chip in an actual circuit and erasing its EPROM if it does not 
work properly is a time consuming process and a good 
simulator can save a great deal of time. PIC chips normally 
operate at very high speeds, but the simulator runs the program 
at a greatly reduced rate so that you can see exactly what is 
happening. Alternatively, the simulator may run at high speed 
but you will be able to select points in the program where the 
simulation stops so that you can examine the contents of the 
chip's registers. The up-marked alternative to a simulator is an 
emulator. A simulation is normally achieved solely in software, 
but an emulator includes hardware, and it tries to accurately 
mimic the selected PIC chip. 

In addition to some PICs and the development system you 
will need an EPROM eraser. This is basically just a small metal 
box which contains an ultra-violet tube and some conductive 
foam into which the PIC chips are placed. The conductive foam 
ensures that the chips are safe while they are in the eraser, and 
that they will not be 'zapped' by static electricity. 
Unfortunately, EPROM erasers are quite expensive, and one 
reason for this is that the special ultra-violet tubes are not 
exactly cheap. Ordinary ultra-violet tubes of the type used in 
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'sun-ray' lamps are not suitable for this application as they do 
not provide the short wavelength ultra-violet radiation needed 
to erase EPROMs. The same is true of ultra-violet light-boxes 
that are intended for exposing photosensitive copper laminate 
boards. Note that short wavelength ultra-violet ' light' is 
dangerous, and can easily damage your eyesight. Always use a 
proper eraser, and use it in strict accordance with the 
manufacturer's instructions. When developing PIC projects you 
only need to erase one or two chips at a time, and a very basic 
eraser should therefore be perfectly adequate. 

Reset 
At switch-on a microprocessor system always goes through a 
reset routine which ensures that all the registers are in the 
correct states before the first program instruction is performed. 
There are two methods of resetting PIC processors, and one of 
these relies on an external C-R circuit to provide a negative 
pulse to the 'master clear' input of the processor. Figure 3.4 
shows the recommended C-R reset circuit. R2 is needed to 
ensure that an excessive current can not flow into the 'master 
clear' input of the processor, and its value should be between 
100 ohms and 1 kilohm. DI simply ensures that C 1 rapidly 
discharges when the circuit is switched off, so that the reset 
circuit operates normally next time the unit is switched on. The 
values of R 1 and Cl are selected to give the required reset pulse 

duration, but note that the value of RI must be less than 40 
kilohms. If a higher value is used there is a danger that the 
voltage drop across RI will be so high that the circuit will be 
held in the reset state. 

In most cases an external reset circuit of this type is not 
required. It is only needed where the power supply has a low 
rise-time, or where a low frequency crystal controlled clock 
oscillator is used. A long reset pulse of around 100 milliseconds 
or more is then needed to ensure that everything has settled 
down properly by the time the processor performs the first 
instruction of the program. 

The alternative is to use the internal reset circuit, and in 
order to do this it is merely necessary to connect the 'master 
clear' input to the +5 volt supply rail. The PIC processors have 
a built in starter-up timer which ensures that the clock oscillator 
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has time to settle down and operate normally before it starts 
clocking the processor. The internal reset circuit makes use of 
this timer to provide a switch-on delay for the entire chip, and 
to provide the necessary reset signals to the various stages of 
the chip that require them. This reset circuit is suitable for most 
situations, but the power supply must reach its full potential 
within 18 milliseconds of switch-on. This means that the supply 
only has to rise by about 50 millivolts per millisecond, and 
most supplies will easily exceed this rate. An external reset 
circuit is normally only required when a low frequency crystal 
controlled clock oscillator is used. 
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Clocking On 
The PIC processors can be used with two basic types of clock 
circuit, but there are four PIC clock oscillator modes. With 
some PIC processors you have to make sure you obtain a 
suitable version of the processor for the type of clock circuit 
you wish to use. Where high precision is needed a crystal 
controlled clock oscillator should be utilised. The circuit for a 
crystal clock oscillator appears in Figure 3.5 The active 
circuitry is an integral part of the PIC processor, and the only 
discrete components required are the crystal itself plus one 
resistor. and two capacitors. The resistor will not always be 
required, and it is only needed where the oscillator is otherwise 
slightly too lively. This overdriving of the oscillator can result 

X1 R1 

330R 

c C2 

GND 

PIC 
OSC2 PROC. 

Fig.3.5 The circuit for a crystal clock oscillator R1 is 
normally only needed for high clock 
frequencies 
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in an incorrect output frequency, with the oscillator usually 
operating at about half its intended output frequency. 

Three of the PIC modes are crystal controlled types, and the 
normal crystal clock mode is called the AT' mode. This mode 
operates with crystals from 100 kilohertz to four megahertz. 
The PIC clock oscillator circuit is intended for use with parallel 
resonant crystals and not the series resonant type. Ceramic 
resonators should also give satisfactory results, but the 
frequency stability of resonators is inferior to that of crystals. 
Cl and C2 are normally equal in value, and this value must be 
chosen to suit the clock frequency used. A capacitance of about 
22 to 33 picofarads is about right for clock frequencies in the 
range 1 megahertz to 4 megahertz. Lower frequencies require a 
higher capacitance, and the value of about 68 picofarads is 
suitable for a clock frequency of 500 kilohertz. Crystals seem 
to vary slightly from one make to another, and it might be 
necessary to do a little 'tweaking' in order to get things just 
right. On the other hand, reliable results are usually provided 
with a fairly broad range of capacitance values, and it is only if 
you use a ' fussy' crystal that any 'tweaking' is likely to be 
necessary. Note that ceramic resonators usually require a 
slightly higher capacitance value than a crystal operating at the 
same frequency. 

The other two crystal oscillator modes are HS (high speed) 
and LP (low power). High speed means a clock frequency in 
the range eight to 20 megahertz. The clock circuit is the same 
as the one for standard (XT) operation, but Cl and C2 must 
have a lower value of around 15 to 22 picofarads. The low 
power mode also uses the same oscillator circuit, but with 
higher values for C 1 and C2 (typically around 100 to 220 
picofarads). This mode is used with low frequency crystals, and 
these have operating frequencies of around 30 to 200 kilohertz. 
As the three types of crystal controlled chips all use the same 
basic clock circuit, there may seem to be no differences 
between them. There may be some internal differences in the 
clock circuits, but the main differences are the maximum clock 
frequencies. LP devices only function up to 200kHz. XT 
devices will function at up to 4MHz, and HS chips will operate 
at up to 20MHz. With some PIC devices (including the re-
programmable types) the required type of clock circuit is 
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selected when programming the device, and operation at up to 
20MHz is supported. With most other members of the PIC 
family there is a different chip for each of the four clock types. 

It is possible to use an external clock oscillator with any PIC 
processor that is intended for use with a crystal clock circuit 
(i.e. chips that are designed for XT, HS, or LP clocks). The 
clock signal must be at logic levels that are compatible with 
PIC processors, and the clock frequency must obviously be 
within the normal operating range of the type of processor you 
are using. The clock signal is applied to the CLKIN terminal of 
the processor. In most cases there is no point in using an 
external clock circuit, but I suppose it could be useful to do so 
if you want to use a series resonant crystal in the clock circuit. 
Do not try to use an external clock circuit with a processor that 
is not designed for use with a crystal clock oscillator. 

The fourth type of clock oscillator is a simple C-R type 
which uses the circuit of Figure 3.6. This is really just a simple 
relaxation oscillator, which repeatedly charges and discharges 
Cl via R 1 . This type of oscillator is delightfully simple, and 
avoids the cost of a crystal or ceramic resonator. However, it 
does have one or two major drawbacks, and one of these is that 
it is only suitable for use at frequencies of up to four megahertz. 
In practice this is sufficient for most applications, but there is a 
further problem which is simply the lack of good frequency 
stability and predictability. The output frequency changes 
significantly with variations in the supply voltage, and simple 
oscillator circuits of this type usually have poor temperature 
stability. 

The lack of temperature stability is largely caused by the 
temperature characteristic of the timing capacitor. Using a high 
quality component here minimises the problem, but a simple 
C-R oscillator never achieves anything approaching the 
frequency stability of a crystal oscillator. The lack of 
predictability is due in part to the tolerances of the resistor and 
capacitor which are far larger than those for a crystal or ceramic 
resonator. It is also due to stray capacitance in the clock circuit 
of the PIC processor itself, plus other factors governed by the 
internal circuit. Although the stray capacitance is quite small, it 
can be comparable to the value of Cl when the circuit is used 
at high output frequencies. In fact Cl can be omitted if the 
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circuit is running at a frequency in the megahertz range, and the 
stray capacitance then provides all the timing capacitance. This 
is not recommended by the manufacturer though, because 
results become very unpredictable. Also, temperature stability 
would be very poor indeed. 

RI should not have a value of less than 2k2 as this could 
result in the circuit failing to oscillate. Values of more than 1 
megohm are not recommended as they leave the circuit 
vulnerable to problems with electrical noise and humidity. The 
recommended range of values for RI is three kilohms to 100 
kilohms. It is recommended that Cl should have a value of no 
less than 20 picofarads, and there is no upper limit on its value. 
I suppose that it would be possible to use an electrolytic 
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capacitor (or another polarised type such as a tantalum bead 
capacitor) if the positive terminal is connected to RI and the 
negative terminal is connected to the 0 volt supply rail. On the 
face of it there is no need to use a very high timing capacitance, 
but it should be borne in mind that there is no lower limit on the 
clock frequency when using a C-R clock oscillator. In some 
applications it is easier to use a very low clock frequency rather 
than the alternative of a high clock rate and numerous delaying 
loops in the software. The PIC processors that are intended for 
use with crystal clock circuits can also operate at very low 
frequencies provided they are used with an external clock 
generator circuit. 

The PIC processors that have a window to permit erasure 
can be used with any of the four types of clock oscillator. The 
appropriate clock mode must be selected when the device is 
being programmed, and the programming software should 
make it easy to select the required mode. What the program is 
actually doing is programming a 4-bit register in the processor. 
This table shows the 4-bit binary code for each clock oscillator 
mode. 

FOSCI FOSC2 Oscillator mode 

0 0 LP (low power crystal oscillator) 
0 1 XT (Normal crystal or ceramic 

resonator) 
1 0 HS (high speed crystal or resonator) 
1 1 RC (C-R clock oscillator) 

When using certain PIC processors that do not have the 
erasure window, it is essential to obtain the appropriate version 
for the type of clock oscillator that the system will utilise. The 
16C54, 16C55, 16C56, and 16C57 all fall into this category. 
These processors have the oscillator bits pre-programmed at the 
factory, and can only be used with one type of clock oscillator 
circuit. The basic part number is the same for all versions, but 
a short suffix indicates the type of clock oscillator that each 
device requires. The table on page 70 should help to clarify 
matters. 

69 



Suffix EMin EMax Notes 

JW DC 20MHz Windowed device 
XT 100kHz 4MHz XT mode device 
RC DC 4MHz RC mode device 
LP 5kHz 100kHz LP mode device 
04 DC 4MHz Any mode except HS 
10 DC 10MHz Any mode 
20 DC 20M Hz Any mode 

The 16C71 and 16C84 are not available in XT, RC, or LP 
versions, but are instead available in versions that can be 
programmed for operation in any mode. However, the suffix 
number indicates the maximum clock frequency in megahertz, 
and a 4MHz (`04') version is obviously unsuitable for 
operation in the HS mode. 

Sleep Mode 
One of the more unusual features of the PIC processors is the 
sleep mode. The processor is set into this mode using the 
special sleep instruction, and the device then largely shuts 
down. The point of doing this is that the processor consumes 
very little power when it is in the sleep mode, making it 
possible to use battery power even if the system will be left 
running for long periods. Obviously some means of breaking 
out of the sleep mode is required, and one way of achieving this 
is to pulse the MCLR input low. This resets the device, and it 
then starts running the program in EPROM in the normal way. 
With this method the processor remains in the standby mode 
until some external hardware detects that it is time for the 
system to start operating. This hardware then provides a reset 
pulse to MCLR, the processor runs its program and performs 
the necessary functions, and then goes into the sleep mode 
again. In this way the processor is only powered-up when there 
is something for it to do, and a very low average current 
consumption is obtained. 

The processor can also be brought out of the sleep mode 
using a built-in timer called the watchdog timer. The general 
idea is to have the processor go into the sleep mode, and then 
after a period determined by the watchdog timer it wakes up 
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and operates normally for a short time. Having done whatever 
needed to be done, or having discovered that there was nothing 
to do, the processor then goes back into the standby mode 
again. It continues in this fashion, and because it is in the sleep 
mode for a large percentage of the time it has a very low 
average current consumption. Of course, the processor does not 
totally shut down when it goes into the sleep mode, even 
though the clock oscillator stops. The watchdog timer has its 
own C-R oscillator so that it can continue to operate when the 
rest of the processor has shut down. 

Another function of the watchdog timer is to periodically 
reset the processor. This facility is mainly used in applications 
where the system will be used in 'noisy' environments. Modern 
electronic circuits are very vulnerable to problems caused by the 
stray pickup of electrical noise and microprocessor based 
systems are more vulnerable than most. If an instruction, or 
possibly even if a piece of data, becomes corrupted, a 
microprocessor based system is almost certain to crash. Although 
the watchdog timer is set to periodically reset the system, the idea 
is that it should never actually reset the circuit in normal use. In 
the normal scheme of things the watchdog timer is always 
cleared before it has a chance to reset the system. The circuit 
therefore operates normally unless a crash occurs. Once the 
system has crashed, it is unlikely that the watchdog timer would 
be cleared, and before too long the watchdog timer would reset 
the system. While the system would not exactly carry on from 
where it left off, it would at least start from the beginning and 
would to some extent recover from the crash. 

The watchdog timer consists of an 8-bit counter which is 
fed from a C-R oscillator, and it resets the processor after 256 
input cycles. The watchdog timer can be used in conjunction 
with a prescaler, which is a divider circuit that can reduce the 
input frequency to the timer by factors of 2, 4, 8, 16, 32, 64, or 
128. Without the prescaler a timeout occurs after about 18 
milliseconds, but with the prescaler set for a division rate of 
128 a timeout occurs after approximately 2.3 seconds. 

Count On It 
The PIC processors includes another timer, and this is also an 
8-bit counter. It is possible to produce delays quite accurately 
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without the aid of a timer, but a timer provides what is usually 
a much easier way of handling things. This second timer is 
'TMRO', and unlike the watchdog timer its input is fed from 
the system clock. However, it counts instruction cycles rather 
than clock cycles, and this means that the clock signal is 
divided by four prior to being fed to TMRO. If the processor 
has (say) a 4MHz clock, TMRO is incremented at I MHz. This 
timer can also be used with the prescaler, which enables the 
input frequency to be reduced to as little as Xi2th of the clock 
frequency. Although the prescaler can be used with TMRO or 
the watchdog timer, note that it can not be used with both of 
them at the same time. 

Basically all the timer does is to start at zero, and increment 
by one each time an input pulse is received. Having reached a 
value of 255 (FF in hexadecimal) it cycles back to zero, and 
continues counting from there. It is up to the program to 
monitor the timer and take suitable action when the appropriate 
value is reached. In addition to counting clock cycles, the timer 
can also be set to count the pulses from an external circuit. 

Protection 
Unlike a straightforward EPROM, reading the contents of a PIC 
processor's EPROM is far from easy, and it probably requires 
some fairly advanced equipment to read the program contained 
in the EPROM. It can be done though. The PIC processors have 
a built-in ' fuse' which can be 'blown' during programming, and 
this renders the contents of the EPROM unreadable. The idea of 
this is to prevent anyone cloning one of your designs without 
your permission. Copying the hardware is easy enough, but 
without details of the program stored within the processor the 
gadget will do nothing at all. If you work long and hard on the 
software for a PIC project it makes sense to invoke the copy 
protection facility, unless you really do not care if others help 
themselves to your work. Of course, no copy protection device 
can ever provide 100 per cent reliable protection against 
copying, but this facility does at least make it extremely difficult 
for anyone to copy a program from a PIC device. 

The Registers 
The PIC processors use Harvard architecture, which means that 
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they have separate buses for data and instructions. The bus for 
data is an eight-bit type, but the bus for instructions is some 12 
or 14 bits wide (depending on the complexity of the processor). 
Most processors have a common bus for fetching instructions 
and handling data, which is eight bits wide for the older 
processors, and 16 or 32 bits wide for the more recent offerings. 
This is known as Von Neumann architecture. There are definite 
benefits to Harvard architecture, and one of the main 
advantages is that one instruction can be executed while the 
next one is fetched. This internal ' multitasking' allied to some 
clever design enables most PIC instructions to be performed in 
a single clock cycle. In the Von Neumann architecture one 
instruction has to be performed before the next one can be 
fetched. 

Although PIC processors have an instruction bus which is 
12 or 14 bits wide, the data bus is only an eight-bit type, and 
these are therefore eight bit processors. As such they are not 
very powerful in some respects, but they are well suited to 
numerous everyday applications. The larger instruction bus 
does bring some advantage, since it enables all instructions to 
be coded into a single 12 or 14-bit word. With conventional 
eight-bit processors some instructions are two or even three 
bytes long, which tends to slow things down. Although PIC 
processors are in some ways quite simple, they are highly 
streamlined and operate at high speed. 

In order to design PIC based systems you do not really need 
an in-depth understanding of the internal workings of the 
various PIC chips, but you do need to be familiar with the 
register set. The PIC register set is shown in Figure 3.7. The 
column of registers on the left are the ones in the data memory 
map, while those on the right are outside the memory map. If 
you are used to processors which have a combined data and 
instruction bus, you have to bear in mind here that these are the 
eight-bit registers which handle data. The 12 or 14 bit EPROM 
which contains the program instructions is entirely separate. 
The W register is the working register, and this is the PIC 
version of the accumulator. Most of the instructions make use 
of the W register, although in many cases there is the option of 
placing processed data somewhere other than in this register. 

The bottom eight registers in the memory map have special 

73 



functions, while those at higher addresses are general purpose 
file registers. The file registers are the RAM, and there can be 
anything from 25 to 232 of these. This is a list of the special 
function registers. I will adhere to the convention of using 
hexadecimal values for file register addresses. Note that some 
of the more upmarket PIC processors have additional special 

purpose registers. 

Register Function 

00 Indirect Addressing 
01 RTCC (real-time clock counter) 
02 Program Counter 
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03 Status Register 
04 Indirect Addressing 
05 Port A 
06 Port B 
07 Port C (not implemented in all PIC processors) 

It is necessary to have a good understanding of the way in 
which these registers operate, and we will therefore take a 
detailed look at each of them, starting with the ports. The ports 
are all bi-directional, with each line individually programmable 
as an input or an output. Ports A to C are respectively controlled 
by registers TRISA, TRISB, and TRISC. Of course, the 18 pin 
PIC processors do not have Port C, and therefore lack the 
TRISC register as well. Note that these registers are used to 
control the function of the port lines, and data for the ports is 
not written to these registers. The ports themselves are at file 
registers 05 to 07. The pins of Port A are named RAO to RA3, 
and these correspond to bits 0 to 3 of file register 05. If Port A 
is used as outputs, and the binary value 00001100 is written to 
register 05, RAO and RAI are set low, while RA2 and RA3 are 
set high. Similarly, if Port A is used as four inputs, and RAO 
plus RAI are set low, and RA2 plus RA3 are set high, the 
binary value read from the port would be 00001100. The upper 
nibble of this register is unused, and the value written to these 
four bits has no affect on RAO to RA3. When reading Port A, 
the upper four bits always return a value of zero. 

Bits 0 to 3 of the TRISA register correspond to input/output 
terminals RAO to RA3. Setting a bit at 1 results in the 
corresponding terminal of the chip acting as an input — setting 
a bit to 0 designates the corresponding terminal as an output. 
This 1 for Input and 0 for Output relationship is nice and easy 
to remember. At switch-on the lines of all ports are set as inputs. 
This is a standard safety measure with bi-directional computer 
ports, and it ensures that the system can not start off with two 
sets of outputs connected together (i.e. the computer port and 
the circuit which drives it). As a simple example of how TRISA 
is used, suppose that you wish to have RAO as an input, and 
RAI to RA3 as outputs. The binary code 00000001 ( 1 in 
hexadecimal or decimal) would be written to the TRISA 
register. The value written to the upper nibble is not important, 
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but it is advisable to keep things simple and simply set these 
four bits at zero. 

Port B is controlled in essentially the same manner, but via 
TRISB. All eight bits of this port are implemented. Data is 
written to or read from Port B via file register 6, and each bit of 
this register corresponds to one of the Port B input/output lines 
(RBO to RB7). As before, setting a bit of the control register at 
0 sets the corresponding line of the port as an output, setting a 
bit to 1 designed the line as an input. For example, to set the 
upper nibble as outputs and the lower nibble as inputs a binary 
value of 00001111 ( 15 in decimal, F in hexadecimal) would be 
written as TRISB. TRISC controls Port C (terminals RCO to 
RC7) in exactly the same way. Data is written to or read from 
Port C via file register 7. 

Status Symbols 
As already explained, microprocessors have a status register 
which can supply useful snippets of information to your 
programs, and which are instrumental in most decision making 
instructions. File register 3 acts as the PIC status register, but 
only five bits operate as status flags. The three least significant 
bits are controlled by the arithmetic logic unit, and the next two 
bits provide reset information. Figure 3.8 shows the function of 
each bit in the status register, but this really requires some 
amplification. 

Bit 0 is the standard carry/not borrow flag which is used by 
instructions that perform addition or subtraction, and by 
rotation instructions. Bit 1 is the digital carry flag (also known 
as an auxiliary carry flag), and this indicates if there is a carry 
from the low nibble of the arithmetic logic unit. The Z (zero) 
flag is at bit 2, and this is set to one when the result of an 
appropriate type of instruction is zero. The next two bits (3 and 
4) are the PD (power down) and TO (time-out) flags. By testing 
these bits it is possible to determine whether a reset control has 
been produced by a watchdog timer timeout, a normal power-
up, a wake-up from the Sleep mode by the watchdog timer, or 
a reset pulse on the MCLR terminal. Both of these flags are set 
to 1 when the chip is powered-up. The next table shows the 
affect of various types of reset on these two flags. 
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STATUS REGISTER 

(7) (6) (5) ( 4) ( 3) (2) ( 1) (0) 

Unused ( Reserved) 

Page Select ( 1 6057) 

Time Out 

PA2 PA1 PAO TO PD DC C 

Fig.3.8 Details of the 16C5* series status register 

Carry/Borrow 

Digit Carry/Borrow 

Zero 

Power Down 



TO PD Cause of Reset 

0 0 Watchdog timer wake-up from Sleep mode 
0 1 Watchdog timer timeout (not during Sleep mode) 
1 0 Pulse on MCLR to wake-up from Sleep mode 
1 1 Power-up 
Unchanged Reset pulse on MCLR input 

In the more simple PIC processors such as the 16C54 bits 5 
to 7 of the status register are general purpose read/write bits, 
but it is probably as well to simply leave them unused. This 
should ensure that your programs have upwards compatibility 
with the more advanced PIC processors. These bits do have 
functions on the more advanced PIC processors, and the 16C7 1 
for example, uses bits 5 to 7 as page select bits. 

Clocking On 
The RTCC register (file register I) is the real-time clock 
counter, which was described briefly earlier in this chapter. 
This register operates in conjunction with the OPTION register, 
which controls the prescaler. Only bits 0 to 5 of the OPTION 
register are implemented, and their functions are outlined in 
Figure 3.9. The names of some of these bits have changed in 
recent PIC data, so both names are provided in Figure 3.9. Most 
assemblers will accept either the old names or the new ones, or 
they can be accessed via their bit numbers. 

The RTCC register can count either external pulses on the 
RTCC pin, or the clock signal after a division by four. Bit 5 of 
the OPTION register is used to select the required signal source 
for the RTCC register. If bit 5 is set to 0, the divided by four 
clock signal is used to increment the RTCC register. Setting bit 
5 to 1 selects the RTCC pin as the input for the counter. Note 
that the RTCC pin must not be left ' floating' if it is unused. It 
must be tied to one or other of the supply rails. 

Whichever source is used for the RTCC register, the input 
pulses will be fed through the prescaler. However, the prescaler 
can effectively be removed by setting it to a division rate of 
one. Bits 0 to 2 of the OPTION register control the prescaler, 
giving a choice of eight division rates. The next table shows the 
division rates available, and the bit settings which provide each 
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OPTION REGISTER 

(7) ( 6) (5) ( 4) (3) (2) ( 1) (0) 

Unused ( Reserved) 

PTCC Signal Source 

RTCC Signal Edge 

R TS RTE PSA PS2 PS I PSO 

Fig.3.9 The assignment of the bits in the OPTION register 

Prescaler Division Rate 

Prescaler Assignment 



one. As show in this table, the division rate for the real-time 
counter is double that for the watchdog timer with any of the 
8-bit settings. 

Option RTCC Watchdog 
Register Division Timer 

Bit 2 Bit 1 Bit 0 Division 

0 0 0 2 1 
0 0 1 4 2 
0 1 0 8 4 
0 1 1 16 8 
1 0 0 32 16 
1 0 1 64 32 
1 1 0 128 64 
1 1 1 256 128 

Bit 4 of the OPTION register is only of significance when using 
the RTCC with an external signal. If it is set to 0 the counter 
increments on the rising edges (negative to positive transitions) 
of the input signal, but if it is set to 1 the counter increments on 
the falling edges of the input pulses. In many applications it 
will not matter which edge is used to increment the counter. 

As pointed out previously, the prescaler can be used with 
the real-time counter or the watchdog timer, but not both at 
once. Bit 3 of the OPTION register determines whether the 
prescaler will be used with the RTCC register or the watchdog 
timer. Set bit 3 to 0 to direct its output to the RTCC register, or 
to 1 to direct its output to the watchdog timer. 

Properly Addressed 
Registers 0 and 4 are used for indirect addressing. It would 
perhaps be as well to explain what is meant by direct addressing 
before proceeding to the indirect variety. Direct addressing is 
where the program instruction specifically mentions the file 
register to be used. For example, if you needed to add the 
contents of register 12 to the value in the W register, with direct 
addressing the instruction would simply run along the lines of 
add W to register 12. Register 12 is directly addressed, and I 
suppose that in a sense the W register has also been selected by 
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a form of direct addressing. The W register is a special case 
though, and its use is implicit in most instructions. 

Indirect addressing operates in a manner that is almost as 
simple as direct addressing. The address of the file to be used is 
placed in file register 4, which is called the file select register 
(FSR). The data for the selected register is written to register 0, 
the indirect address register. For example, if a value of 15 is 
placed in register 4, and a value of 11 is then written to register 
0, the value of 11 will actually be placed in register 15 ( i.e. the 
register pointed to by the address in register 4). Register 0 does 
not actually exist, but using indirect addressing the value of 11 
can still be read back from register O. However, it is really 
register 15 that is being read and not register O. Things would 
go awry if a value of zero was written to the FSR, setting 
register 0 as the one selected for indirect addressing. Data 
written to register 0 would go nowhere, and any data read back 
from register 0 would always be zero. Indirect addressing may 
seem to be of limited value, but it can be useful in conjunction 
with a program loop. The value in the FSR can be incremented 
or decremented on each loop, so that data can be quickly 
written to a block of registers. 

PC and Stack 
The program counter (register 2) is a 9-bit type on the 16C54, 
and it generates addresses for the program store (the EPROM 
or EEPROM). Once again, you have to bear in mind that the 
program instructions and the data are carried on separate buses, 
and be careful not to confuse program addresses and register 
file addresses. As the program counter is a 9-bit type, it gives 
an address range of 000 to 1FF in hexadecimal, or 0 to 511 in 
decimal numbering. On power-up or after a reset the program 
counter is set at 1FF (hexadecimal), and it is then automatically 
incremented during the execution of each program instruction 
unless that instruction changes the counter. It is possible to 
change the program counter by writing data to it, but only the 
lower eight bits can be controlled in this way. Writing data to 
the program counter results in the most significant bit being set 
to O. Directly controlling the program counter is strictly for 
those who know exactly what they are doing. 
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There are other instructions that will alter the program 
counter's contents, and break it out of its normal incremental 
mode. A GOTO instruction permits all nine bits of the counter 
to be loaded with the required address. With a CALL 
instruction the lower eight bits are loaded directly, and the most 
significant bit is cleared (set to 0). CALLed subroutines are 
therefore limited to the lower half of the address range. The 
return from subroutine instruction (RETLW) causes the 
program counter to be loaded from the top of the Stack, which 
is where the contents of the program counter were stored when 
the CALL instruction invoked the subroutine. This instruction 
also returns a value which is placed in the W register. Some PIC 
processors (but not the 16C5* series) have a RETURN 
instruction, which is essentially the same as the RETLW 
instruction, but it does not return a value. 

Some PIC devices (but again, not the 16C5* series) 
implement interrupts, and have a return from interrupt 
instruction. This is the RETFIE instruction, and it operates in a 
similar manner to RETLW and RETURN. The interrupt causes 
the contents of the program counter to be stored on the top of 
the Stack, and sets the Global Interrupt Enable bit to prevent 
further interrupts until the current one has been completed. The 
return from interrupt instruction resets the Global Interrupt 
Enable bit and loads the program counter from the top of the 
Stack. 

Exceptions 
This description of the PIC processors has necessarily been 
rather generalised. Some PIC devices are more sophisticated 
than others, and the descriptions provided here have been 
largely based on the simpler processors which are easier to 
understand, and represent the best starting point. It is well 
worth taking a quick look at one of the more recent PIC 
processors, and the 16C71 represents one of the more 
interesting of these. This device has 1K x 14 bits of EPROM, 
and 36 bytes of RAM. The most obvious way in which this 
differs from the more simple devices such as the 16C54 is that 
it has a built-in 8-bit analogue to digital converter, plus a 
multiplexer which provides four analogue inputs. Due to the 
inclusion of the analogue converter, and because there are other 
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01 
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04 
05 
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OE 
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Fig.3.10 The 16C71 register file map 

aspects of the chip which differ from the 16C5* series, it has 
the modified register file map of Figure 3.10. 

There is clearly a major change here in that there are two 
pages of registers, and bit 5 of the status register permits 
switching between the two. This is set to 0 to select page 0, or 
to 1 to select page 1. The 12 lowest registers are special purpose 
types, and some have the same function in both pages. These 
can therefore be accessed with either page 0 or page 1 selected, 
as can the 36 general purpose registers. Some of the special 
function registers have different functions in the two pages, 

83 



such as the input/output port registers. In page 0 these registers 
give direct access to the input/output pins in the normal way, 
but with page 1 selected the port direction control registers 
(TRISA and TRISB) are available instead. This gives access to 
the port control registers without having to use special 
instructions. Instead, page 1 is selected and data is written to 
these register files in the normal way. 

A/D Conversion 
Special purpose registers ADCONO and ADCON I provide a 
number of control and status bits associated with the analogue 
to digital converter. Before considering the 16C71's analogue 
converter in detail, it would perhaps be as well to cover some 
basics of analogue to digital conversion. Computers work with 
Is and Os, but in the real world anything measurable can have 
an infinite range of values. With something like an analogue 
test meter there might be a voltage range which covers 
potentials in the range 0 to 10 volts, and in theory the meter 
would be able to measure any voltage in that range. It would 
certainly produce a reading for any voltage in the range 0 to 10 
volts, but how accurate would that meter reading actually be? 
No matter how accurately the unit was built and set up, there 
would still be a limit on the resolution of the readings. This is 
simply because the pointer of the meter can not be infinitely 
narrow, and there can not be an infinite number of scale 
markings. If an input voltage of 4.123456789 volts was applied 
to the meter, the user would at best be able to interpret this as a 
reading of a little over 4.1 volts. Although there is an infinite 
number of possible input voltages, and even minute changes in 
the measured voltage will produce some change in the position 
of the pointer, there are practical limits on the accuracy of an 
analogue measuring system. 

A digital measuring system can only distinguish between a 
certain number of input levels, and on the face of it a digital 
system is less precise than an analogue system. In reality a 
digital system often offers better accuracy than an analogue 
equivalent. If we return to our voltmeter example, an equivalent 
digital multimeter would typically have a three and a half digit 
display with a measuring range of 0 to 19.99 volts. This gives 
a basic resolution of 0.01 volts ( 10 millivolts). If the actual 
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input voltage was 5.007 volts, the meter's display would read 
5.01 volts, which is as near to the true voltage as its display 
permits. This reading is clearly an approximation of the true 
input voltage, but provided the resolution of the system is high 
enough, this does not matter. The readings obtained will be 
close enough to the true input levels, and the system will tell the 
user what he or she needs to know. In this example the input 
voltage can be read to the nearest 0.01 volts, which actually 
represents about 10 times the effective resolution of most 
analogue meters! 

The built-in analogue to digital converter of the 16C71 is 
successive approximation type which offers 8-bit resolution. 
Returned values will therefore be in the range 0 to 255. This 
gives slightly better resolution than a two and a half digit 
display, and in this respect the resolution is somewhat inferior 
to those of a typical digital display. However, the accuracy of 
readings is at least equal to those obtained from a good 
analogue display, and they are perfectly adequate for many 
applications. The converter is a linear type, which means that if 
a reading of (say) 250 was obtained with an input potential of 
5 volts, readings of 100 and 50 would be obtained at input 
voltages of two volts and one volt. 

Figure 3.11 outlines the functions of the bits in the 
ADCONO and ADCON1 registers, but note that only two bits 
of ADCON1 are actually used. These are the two least 
significant bits, which are designated PCFO and PCF1. These 
control inputs RAO to RA3, and determine whether they 
function as normal digital inputs or as analogue inputs. There 
are four operations, as follows: 

PCFG I PC FGO RA 0/i RA2 RA3 

Analogue Analogue Analogue 
o 1 Analogue Analogue Ref. Input 
1O Analogue Digital Digital 
1 1 Digital Digital Digital 

This arrangement permits the device to operate with four 
analogue inputs, four digital inputs, or two of each type. 
Normally the full scale sensitivity of the analogue converter is 
equal to the positive supply rail (VDD), but there is the option 
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Fig.3.11 Bit assignments for the AID control registers 
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of having RAO to RA2 as analogue inputs, and the full scale 
sensitivity equal to a potential applied to RA3. 

Apart from bit 5, all the bits of ADCONO have functions. 
The converter is switched on and off using bit O. Setting this bit 
at 0 switches on the converter, and setting it to 1 switches it on. 
When switched off it is not merely disconnected from the input 
pins, but it is totally shut down and consumes no significant 
power. Bit I is the conversion completed interrupt flag. This is 
set to 1 when a conversion has been completed, and is cleared 
by the software. To start a conversion bit 2 is set to 1, and it is 
automatically reset by the hardware when the conversion has 
been completed. The required analogue channel is selected 
using bits 3 and 4, and this operates in the manner shown in this 
table. 

CHSI CHSO Channel Selected 

0 0 0 
0 1 1 
1 0 2 
1 1 3 

Bits 6 and 7 are used to select the clock source for the analogue 
to digital converter, and there are four choices. The system 
clock can be used with division rates of 2, 8, or 32, or an 
internal C-R clock oscillator can be selected. This table shows 
how to select the required clock source. 

ADCSI ADCSO Clock Source 

A' System Clock 
O 1 ÀI System Clock 
1 '42 System Clock 
1 1 Internal C-R Oscillator 

The clock period for the converter must not be less than two 
microseconds, which means that the clock frequency must be 
no more than 500kHz. Each conversion takes 10 clock cycles, 
which gives a minimum conversion time of 20 microseconds. 
This equates to a maximum of 50,000 conversions per second. 
In practice it would probably not be possible to quite achieve 
:his rate, but the conversion rate is more than adequate for most 
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purposes. The internal C-R clock provides a clock period of 
between two and six microseconds (typically four 
microseconds), and this can be useful if a high conversion rate 
is needed but the system clock frequency is relatively low. Note 
that the internal clock oscillator is not very stable, and its 
frequency varies considerably with changes in supply voltage 
and temperature. 

In order to take a reading from the analogue to digital 
converter, ADCON I must first be set to give the desired input 
configuration. Then ADCONO must be set up correctly, which 
requires three parameters to be set. Select the required clock 
source, select the desired channel, and turn on the analogue to 
digital converter. If converter generated interrupts are going to 
be used, the appropriate bits should be set up next, but in most 
cases the converter will probably not be used in conjunction 
with interrupts. The chip is then ready for a reading to be taken. 
To take a conversion the GO/DONE bit is set to 1, and the 
converter can then be read after a suitable delay. This delay can 
be provided by a timing loop or by using a loop to monitor an 
appropriate status flag. 

The 16C71 has other differences to the 16C54, such as an 
eight-deep Stack rather than a two-deep type. This gives more 
scope for using sub-routines, and also for using interrupts that 
are supported by the 16C71 but not the 16C54. For beginners 
the most simple of the PIC processors, such as the 16C54, 
represent the best starting point. Before too long you will 
probably want to try the more sophisticated devices, which 
open up new possibilities. You will certainly need to obtain 
either some data sheets for the PIC processors, or (preferably) 
the full Microchip Data Book. 

Points to Remember 
The PIC microcontrollers use Harvard architecture, which 
means that they have separate buses for data and instructions. 
The ROM holds instructions, and the RAM is used for data. 

PIC software is normally written in assembly language. You 
are still programming the chip using its instruction set, but the 
assembler program works out the binary codes for you and 
provides other help. 
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In order to program PIC chips you need a suitable 
development or programming system that should include an 
assembler, the programming software and hardware, plus 
(rrobably) some form of PIC simulator or emulator. 

Make sure that you obtain a development or programmer 
system that supports the PIC devices you intend to use. The 
more devices the system supports the more use it is likely to be. 

The re-programmable chips are mostly erased using a 
special ultra-violet light-box which must have the right type of 
fluorescent tube. The 16C84 has EEROM which can be erased 
electronically. 

You must be careful to use the version of a processor that 
supports the type of clock circuit you will be using. Where 
appropriate, you must program the chip to use the right type of 
clock circuit. 

Use a crystal controlled clock where either very fast 
operation (over 4MHz) or good timing accuracy is required. 

There is no lower limit on the clock frequency if a C-R 
clock oscillator or an external type is used. 

Each line of a PIC port can be set as an input or an output 
via the appropriate control register (TRISA for Port A, TRISB 
for Port B, etc.). 

The built-in timer (RTCC) can be used to count external 
pulses or the divided by four system clock. 

The Status register contains flag bits that indicate the result 
of some instructions (e.g. carry and zero bits), and these can be 
used in conditional instructions. 

The watchdog timer can be used to reset the processor or 
wake it up from SLEEP mode. Both timers can be used in 
conjunction with a programmable prescaler (divider) circuit. 

The OPTION register is a control register that is outside the 
data memory map. It is mainly used to control the timers and 
the prescaler. 

The Stack is loaded with the address of the last instruction 
when the program goes into a subroutine. Once the subroutine 
t.as been completed the address in the Stack is incremented by 
one and loaded into the program counter. This enables the 
program to carry on where it left off. You do not control the 
Stack — the processor handles the loading and unloading of the 
Stack automatically. 
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The program counter can be read and altered by the 
program, but it is not normally necessary to do so. 

Start with the more basic PIC chips such as the 16C54, and 
progress to the more interesting devices such as the 16C71 
when you have gained some experience with the simple 
processors. 
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Chapter 4 

THE INSTRUCTION SET 

A PIC processor, in common with all microprocessors, requires 
instructions that are in the form of binary numbers. While it is 
not impossible to work out a program in this machine code as 
it is called, it is very time consuming to look up all the codes 
ard put together a complete program. Also, with most programs 
it is necessary to loop back or jump forward to specific points 
in the program. You could keep a list of the addresses of the 
points in the program that you need to loop or jump to, but this 
can get very confusing as it is difficult to remember which 
address is which. Programs for PIC based systems are normally 
written in assembly language, and this is very much easier than 
writing programs in pure machine code. Assembly language is 
not a high level language such as BASIC where you write 
programs using what is virtually plain English. Neither does 
assembly language take a single program instruction and then 
convert it into several machine code instructions. With a high 
level language it is quite normal for each program instruction to 
eid up as dozens of instructions at the microprocessor. With 
assembly language you take things one step at a time, and each 
instruction that you give the assembler is converted into a 
s7ngle machine code instruction. 

So just what does an assembler do? By using mnemonics for 
machine code instructions it becomes much easier to write 
programs. In order to clear the contents of the working register 
for example, the mnemonic CLRW would be used. This is much 
easier to remember than a binary number some 12 or 14 digits 
long. At first it might be necessary to keep looking up the 
nnemonics for the instructions you require, but you soon find 
that you have learned them all. Life is made much easier for PIC 
programmers by the relatively small number of instructions that 
are implemented. Committing the full instruction set to memory 
only involves learning about three dozen instructions. 

An important feature of assemblers is their support for 
'labels'. A label is simply a name that can be used at any point 
in a program, and then used to return to that point using the 
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label rather than the address it represents. There may be a limit 
of eight characters in the label (some assemblers allow long 
names though), but even eight characters is sufficient to enable 
meaningful names to be used. For example, if a section of the 
program is used to flash a LED indicator on and off, the first 
address in the routine could be called `LEDFLASH'. 

When writing an assembly language program you do not 
produce one long string of text. The assembler requires the 
program in the form of one line of text per instruction. Each 
line of text has to be set out in the correct fashion, which means 
organizing the instructions in fields. There are usually four 
fields, which basically just means that the instructions are laid 
out in four columns. The first column contains the label, but 
this field is blank for many instructions as labels are only used 
where they are really needed. The next column contains the 
mnemonics for the instructions, and the third field contains any 
additional data needed in the instruction. Finally, the fourth 
field is used for any comments the programmer may wish to 
include. These comments are purely optional, and the fourth 
column can be left totally blank if desired. However, bear in 
mind that assembly language is not easy to follow even if you 
are an expert programmer. While every step of the program 
may be clear in your mind at the time you write the code, the 
function of each program line might be far less obvious a week 
later. After a month or two you might have largely forgotten 
what the program does, and could have no idea how it actually 
does it. A short comment for each instruction can make the 
program much easier to follow if you return to it at a later date. 

The example instructions shown on page 93 show how 
things are organized. 

The first four program lines set up Port B as eight inputs, 
and Port A as four outputs. Any setting up of this type is 
normally done at the beginning of the program rather than 
waiting until the last possible moment. Having everything of 
this type at the beginning makes it easy to troubleshoot on a 
faulty program, and to modify an existing program to suit a new 
application. Also, it is generally better to get this type of thing 
out of the way before getting into the main program where the 
time taken to set things up could be unhelpful. The MOVLW 
instruction moves the operand (255 decimal — 11111111 in 
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binary) into the W register. The next instruction moves the 
ccntents of the W register into TRISB, and this sets all the Port 
B lines as inputs. Next the W register is cleared (all bits are set 
to zero), and this value is transferred to TRISA to set all the 
lines of Port A as outputs. The beghnning of this routine has 
been given the label 'START', but this is actually superfluous 
as the program never branches back to this point. On the other 
hand, the label will not impair the operation of the assembler or 
the assembled program in any way. 

Field 1 Field 2 Field 3 Field 4 

Label Mnemonic Operand Comment 

START MOVLW 255 Loads 255 into W register 

TRIS B Sets Pott B as inputs 

CLRW W register set to zero 

TRIS A Sets Port A as outputs 

MOVLW 100 Number of loops 

MOVWF 12 Register 12 keeps count 

LOOP DECFSZ 12,1 Decrement register 12, 

jump if 0 

GOTO LOOP Loop until register 12 = 

LOOP2 NOP 

GOTO LOOP2 Loop indefinitely 

END 

The next four program lines form a simple loop, and the 
idea is for the program to loop 100 times before the program 
continues. First a value of 100 is placed in the W register, and 
then this value is transferred to register file 12. The next 
instruction decrements the contents of register 12 (i.e. reduces 
it from 100 to 99), and the next instruction simply loops the 
program back one instruction. This makes use of the 'LOOP' 
label to define the loop point. The program keeps looping 
around these two lines until the value in register file 12 equals 
zero. The DECFSZ instruction then detects that the result of the 
calculation is zero, and jumps over the next instruction. This 
breaks the program out of the loop. An 'empty' loop of this type 
does not actually do anything, but it can still be useful where a 
delay is required. The loop can be made to perform one or more 
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actions the required number of times by adding suitable 
instructions between the beginning and the end of the loop. 
When using loops make sure that you loop the program back to 
the correct instruction. In this case the MOVLW instruction is 
at the beginning of the loop routine, but the program must not 
be looped back to there. This would keep resetting the value in 
file register 12 to 100. This would prevent it from ever reaching 
zero, and the program would loop indefinitely. 

An indefinite loop is the action provided by the final two 
lines of the program. In most applications the program will 
perform various loops, and will never come to an end. It is 
unusual to have an application where the system is switched on, 
it performs some function or other, and then needs to do 
nothing more until it is turned off and then switched on again. 
However, if you do design a system for an application of this 
type, you should not simply let the processor run out of 
instructions, as this could give unpredictable results. There are 
various ways of bringing things to a predictable end, and the 
most simple is to put the program into an endless loop, as in this 
example. Another option is to use some hardware and suitable 
software to make the system switch itself off. The program 
finishes with an END instruction, which simply indicates to the 
assembler that the end of the program has been reached. 
Without an END instruction the assembler will probably 
produce an error message, but it would probably assemble the 
program correctly anyway. 

Although this example program does not actually do 
anything worthwhile, it does demonstrate the basics of 
assembly language programming. You will note that most 
instructions have an operand in field three (i.e. data of some 
kind or a data address that the instruction requires), but not all 
instructions do so. In this program the CLRW instruction does 
not require an operand, since it only operates on the W register, 
and can only set it to one value (zero). A number of instructions 
require two operands. On the face of it only one operand is 
needed, and this is the address of the register file which must be 
decremented. However, the DECFSZ instruction, and many 
others, can place the result in either a register file or in the W 
register. The second operand is either 0 or 1, and these 
respectively direct the result of the instruction to the W register 

94 



or the file register. The second operand is really just a simple 
switch that selects one of two possible destinations for the 
result. 

A few instructions require two 'proper' operands, and this is 
where the instruction must include bolt the address of a register 
file and a value to be operated on. This is an example of such 
an instruction: 

BSF 15,2 

This instruction sets the specified bit of a register to I. In this 
example the register is register tile 15, and it is bit 2 that is set 
to 1. 

The Instruction Set 
Although the PIC processors are of the RISC variety, they still 
have some 35 or more instructions with which budding 
programmers have to be familiar. Unless you have a 
particularly good memory it is probably not worthwhile trying 
to memorise all of the instructions before you start writing 
some initial exercise programs. On the other hand, you need to 
be reasonably familiar with the basic capabilities of the PIC 
processors, and as a bare minimum you need to read through 
the following description of the instruction set at least two or 
three times. You will soon become more familiar with the 
available instructions once you start writing programs. Initially 
you must expect to get stuck occasionally, and have to refer to 
the list of instructions to find one that will provide the function 
you require. With any microprocessor, but particularly with 
RISC types, you must bear in mind that each instruction is quite 
basic and that many simple tasks will require a short series of 
instructions. 

This description of the instruction set has been kept as brief 
ad simple as possible. Information such as the binary code for 
each instruction has not been included as it is not the sort of 
thing that is normally needed when designing PIC based 
systems. The assembler produces the binary codes and it is the 
mnemonics that the programmer must be familiar with. The 
PIC processor databook contains all the binary codes for the 
instructions if you should need them for some reason. As 
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pointed out previously, the instruction sets vary slightly from 
one PIC processor to another. Rather than try to give all the 
instructions for all the processors, which would tend to be 
confusing, the full instruction set for one processor is 
described. This processor is the 16C71, which has basically the 
same instruction set (but different binary coding) as the I6C5* 
series of microcontrollers. However, the 16C5* series lack the 
ADDLW, SUBLW, RETURN, and RETFIE instructions. 
Obviously the 16C5* series and the 16C71 are largely 
compatible, and if you can write assembly language programs 
for one there should be no difficulty in writing software for the 
other. 

The descriptions of some instructions are a bit sketchy, but 
this is due to the fact that detailed descriptions of what is 
happening are provided elsewhere in this book. For instance, 
detailed descriptions of bitwise processes and rotations are not 
described in detail here, as they are described in detail in 
Chapter 2. The purpose of this chapter is to act as a handy 
reference source which provides brief but concise information 
on the full 16C71 instruction set. The basic format is the same 
for each instruction, with a description of the basic function 
provided, followed by details of the assembly language syntax, 
the status flags that are affected, the number of cycles the 
instruction takes, and the number of words. Finally, one or two 
examples are used to show the precise function of the 
instruction. 

These conventions are used in the syntax examples: 

Letter Meaning 

b Bit number in file (0 to 7) 
d Direction flag (0 = result in W register, 

1 = result in file) 
f File register address 
k 8-bit constant 
kk 9-bit constant 

ADDLW 
The value in the W register is added to the literal k (i.e. the 
value in the W register is added to the value contained in the 
instruction in k). The result is stored in the W register. 
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Syntax ADDLW k 
Status C,DC,Z 
Cycles 1 
Words 1 

Example ADDLW 12 
_ 12 is added to the contents of the W register. 

If W = 14 initially, after the instruction it will equal 
26. 

ADVVF 
This instruction adds the contents of the W register to the file 
register F. The latter can be a numbered or a named file. The 
result is stored in the W register if d is 0, or in register F if d is 
1. 

Syntax ADDWF f,d 
Status C,DC,Z 
Cycles 1 
Words 1 

Example 1 ADDWF 18,0 
The contents of the W register are added to file 18 
and the result is stored in the W register. 
If W = 23 and file 18 = 11, after the instruction 
W = 34 and file 18 = 11. 

Example 2 ADDWF 18,1 
The contents of the W register are added to file 18 
and the result is stored in file 18. 
If W = 23 and file 18 = 11, after the instruction 
W = 23 and file 18 = 34. 

ANDLW 
The contents of the W register are bitwise ANDed with the 8-
bit literal value k ( i.e. the value included in the instruction). The 
result is stored in the W register. 

Syntax ANDLW k 
Status Z 
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Cycles 1 
Words 1 

Example ANDLW 10101010 
The contents of the W register are bitwise ANDed 
with the 8-bit value 10101010, and the returned 
value is placed back in the W register. 
If the W register initially contains the binary value 
11110000, after the instruction it will contain 
10100000. 

ANDWF 
The contents of the W register are bitwise ANDed with the 
value stored in file F. If d =. 0 the returned value is placed in the 
W register. The result is placed in register file F if d = I. 

Syntax ANDWF Ld 
Status 
Cycles 1 
Words 1 

Example I ANDWF 18,0 
The contents of the W register are bitwise ANDed 
with the value in file register 18, and the result is 
stored in the W register. 
If the W register contains 10101010 and file 
register 18 contains 11110000, after the instruction 
the W register is set to 10100000 and file register 
18 remains at 11110000. 

Example 2 ANDWF 18,1 
The same as example 1, but the W register is not 
changed by this instruction, and the result is placed 
in file register 18. 

BCF 
This instruction simply clears (sets to zero) the specified bit (b) 
of the specified register ( f). 

98 



Syntax BFCF f,b 
Status 
Cycles 1 
Words 1 

Example BCF 11,2 
If file register 11 is initially at a value of 00001111, 
after this instruction it will contain 00001011. 

BSF 
This instruction sets (to 1) the specified bit of the specified 
register. 

Syntax BSF f,b 
Status 
Cycles 1 
Words 1 

Example BSF 11,2 
If file register 11 is initially at a value of 11110000, 
after this instruction it will contain 11110100. 

BTFC 

If the specified bit (b) of the specified register file (f) is clear 
(set at 0), the next instruction is skipped. Strictly speaking the 
program does not skip straight over the next instruction, but 
instead replaces it with a NOP (no operation) instruction. This 
gives a delay of one clock cycle before the next instruction is 
reached. 

Syntax BTFC f,b 
Status 
Cycles 1 (or 2 if skip performed) 
Words 1 

Example BTFC 15,1 
If bit 1 of file register 15 is clear (0), the next 
instruction is replaced with a NOP instruction. 
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If bit 1 of file register 8 is set ( 1), the next 
instruction is performed normally. 

BTFSS 
If the specified bit (b) of the specified register file ( f) is set ( 1), 
the next instruction is replaced with a NOP instruction. This 
effectively skips the next instruction, but note that the NOP 
instruction it is replaced by takes one clock cycle. 

Syntax BTFSS f,b 
Status 
Cycles 1 (or 2 if skip performed) 
Words 1 

Example BTFSS 15,1 
If bit 1 of file register 15 is set ( 1), the next 
instruction is replaced with a NOP instruction. 
If bit 1 of file register 15 is clear (0), the program 
continues normally. 

CALL 
This instruction is used to call a subroutine. The current address 
in the program counter is incremented by one and pushed onto 
the Stack, and the program counter is then loaded with address 
'K'. The program then continues executing from address ' K'. 
The limit on address K' is eight bits, which means that the 
subroutine must start within the first 256 bytes of code. 

Syntax CALL K 
Status 
Cycles 2 
Words 1 

Example CALL SENSORS 
The program jumps to the address assigned to 
'SENSORS' and starts executing from there. 
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CLRF 
The specified file register is cleared (i.e. all bits are set to 0) and 
the Z flag is set. 

Syntax CLRF f 
Status Z 
Cycles 1 
Words I 

Example CLRF 12 
All the bits in file register 12 are set to O. 

CLRW 
Clears all the bits of the W register to zero and sets the Z flag 
tO 

Syntax CLRW 
Status Z 
Cycles 1 
Words 1 

Example CLRW 
Sets all the bits of the W register to 0 regardless of 
their previous state, and sets the Z flag to 1. 

CLRWDT 
This instruction clears the watchdog timer and prescaler of the 
watchdog timer. It also sets status bits TO and PD. 

Syntax CLRWDT 
Status TO, PD 
Cycles 1 
Words 1 

Example CLRWDT 
All bits of the watchdog timer and prescaler are at 
0 after this instruction has been completed. The 
TO and PD status bits are set. 
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COMF 
The contents of the specified register are complemented (i.e. Is 
are set to 0, and Os are set to I). The result is placed in the 
specified register if d = 1, or in the W register if d = O. 

Syntax COMF f,d 
Status Z 
Cycles I 
Words 1 

Example I COMF 12,1 
The contents of tile register 12 are complemented. 
If register 12 contained 11110000 before the 
instruction, it would contain 00001111 afterwards. 

Example 2 COME 12,0 
The value in file register 12 is complemented and 
stored in the W register. If file register 12 contained 
11110000 before the instruction, it would still con-
tain this value afterwards, but a value of 00001111 
would be placed in the W register. 

DECF 
The specified register is decremented by one. If d = I the result 
is placed in the specified register, or it is placed in the W 
register if d = 0. 

Syntax DECF f,d 
Status Z 
Cycles 1 
Words 1 

Example 1 DECF 14,1 
The contents of file register 14 are decremented by 
one and the result is placed back in register 14. If 
the value in register 14 was originally 11110001, 
after the instruction it will be 11110000. 

Example 2 DECF 14,0 
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The contents of register 14 are decremented by one, 
and the result is placed in the W register. If register 
14 contained the value 11110001 before the instruc-
tion, it would still contain this value afterwards. The 
W register would be set at 11110000. 

DECFSZ 
Like the DDECF instruction, the specified register is 
decremented by one. If d = 1 the result is placed in the specified 
register, or it is placed in the W register if d = 0. Additionally, 
if the result is 0 the next instruction is replaced with a NOP (no 
operation) instruction. 

Syntax DECF f,d 
Status Z 
Cycles 1 
Words 1 (2 if skip performed) 

Example 1 DECF 14,1 
The contents of file register 14 are decremented by 
one and the result is placed back in register 14. If 
the value in register 14 was originally 11110001, 
after the instruction it will be 11110000. The next 
instruction is performed normally. 

Example 2 DECF 14,0 
The contents of register 14 are decremented by one, 
and the result is placed in the W register. If register 
14 contained the value 00000001 before the instruc-
tion, it would still contain this value afterwards. The 
W register would be set at 00000000. The next 
instruction would then be replaced by a NOP 
instruction, effectively skipping over it. 

GOTO 
This is the unconditional branch instruction. The program goes 
to the specified address and continues to operate from there. 
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Syntax GOTO k 
Status 
Cycles 2 
Words 1 

Example GOTO PROG2 
The program goes to the address assigned to label 
`PROG2', and continues at this address. 

INCF 
The contents of the specified register are incremented by one, 
and the result is placed back in that register if d = 1, or in the 
W register if d = 0. 

Syntax INCF f,d 
Status Z 
Cycles 1 
Words 1 

Example 1 INCF 12,0 
The value in file register 12 is incremented by one 
and placed in the W register. The contents of 
register 12 are not altered by this instruction. If 
file register 12 contained a value of 15, after this 
instruction it would still contain a value of 15, but 
the W register would be set to 16.. 

Example 2 INCF 12,1 
The value in file register 12 is incremented by one 
and stored back in that register. The W register is 
unaffected by this instruction. 

INCFSZ 
The specified file register is incremented by one and the result 
is placed in that register if d = 1, or in the W register if d = 0. 
Additionally, if the result equals 0 the next instruction is 
replaced with a NOP instruction, and is effectively skipped. 
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Syntax INCFSZ f,d 
Status 
Cycles 1 (or 2 if skip performed) 
Words 1 

Example I INCFSZ 14,1 
The contents of file register 14 are incremented by 
one, and the result is placed back in that register. 
If register 14 originally contained a value of 27, it 
would contain 28 after this instruction. The next 
instruction would not be skipped. 

Example 2 INCFSZ 14,0 
The contents of file register 14 are incremented by 
one, and the result is placed in the W register. If 
register 14 contained a value of 11111111, this 
would be incremented to 00000000 and loaded into 
the W register. Register 14 would still be set at 
11111111. As the result of this instruction is zero, 
the next instruction would be replaced by a NOP 
instruction. 

IORLW 
Tie contents of the W register are bitwise ORed with the 8-bit 
lir.eral ' lc' ( i.e. the 8-bit value contained in me instruction). The 
result of this instruction is placed in the W register. 

Syntax IORLW k 
Status Z 
Cycles 1 
Words 1 

Example IORLW 15 
If the W register contains the binary value 

C1010101 
before this instruction is performed, it will contain 
the binary code 01011111 afterwards ( i.e. the result 
of bitwise ORing 00001111 and 01010101). 
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IORWF 

The contents of the W register are bitwise ORed with the 
contents of the specified register. If d = 0 the result is stored in 
the W register, but if d = 1 the result is stored back in the 
specified register. 

Syntax IORWF f,d 
Status Z 
Cycles 1 
Words 1 

Example 1 IORWF 15,0 
The contents of the W register are bitwise ORed 
with the value in file register 15. If the W register 
and file register 15 respectively contain 01010101 
and 00001111, the result of 01011111 will be 
stored in the W register. The contents of register 15 
would be unaffected by this instruction. 

Example 2 IORWF 15,1 
The same as example 1, but the result is stored in 
register 15 and the contents of the W register are 
unaffected. 

MOVLW 
This instruction moves the 8-bit literal ` le ( i.e. the value 
provided within the instruction) into the W register. 

Syntax MOVLW k 
Status — 
Cycles 1 
Words 1 

Example MOVLW 56 
A value of 56 is loaded into the W register. 

MOVF 
The contents of the specified register are moved to either the W 
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register (if d = 0) or back to the specified register (d = 1). 
Although, on the face of it, using this instruction with d = 1 has 
no affect, it can be useful to test the contents of a register, with 
the Z flag indicating the result. 

Syntax MOVF f,d 
Status Z 
Cycles 1 
Words 1 

Example MOVF 15,0 
The contents of file register 15 are loaded into the 
W register. The value in register 15 remains 
unaltered. 

MOVWF 
This instruction moves the contents of the W register to the 
specified register. 

Syntax MOVWF f 
Status 
Cycles 1 
Words 1 

Example MOVWF 49 
Moves the value stored in the W register to file 
register 49. The value in the W register is not 
altered by this instruction — it is simply copied to 
register 49. 

NOP 
This is the no operation instruction, which does absolutely 
nothing. It simply provides a delay of one clock cycle. 

Syntax NOP 
Status 
Cycles 1 
Words 1 
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Example NOP 
Has no effect on any registers. 

RETFIE 

This is the return from interrupt instruction. The Stack is 
popped and the top of Stack (TOS) is loaded into the program 
counter. Interrupts must be enabled by setting the global 
interrupt enable (GIE) bit. 

Syntax RETFIE 
Status — 
Cycles 2 
Words 1 

Example RETFIE 

RETLW 
This is a form of the return from sub routine instruction. The 
literal value 'k' (the value contained within the instruction) is 
loaded into the W register. The program counter is loaded with 
the value at the top of the Stack, which is the subroutine 
address. 

Syntax RETLW k 
Status — 
Cycles 2 
Words I 

Example RETLW 12 
A value of 12 is loaded into the W register. The 
program counter is loaded from the top of the Stack, 
and the program continues from where it left off. 

RETURN 
This is the standard form of the return from subroutine 
instruction. The Stack is popped and then the top of the Stack 
(TOS) is loaded into the program counter. 
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Syntax RETURN 
Status 
Cycles 2 
Words I 

Example RETURN 

RLF 
This is the rotate left with carry instruction. The contents of the 
specified register are rotated one bit to the left through the carry 
flag. The result is left in the file register if d = 1, or placed in 
the W register if d = 0. 

Syntax RLF f,d 
S:atus C 
Cycles 1 
Words 1 

Example RLF 18,0 
The value in file register 18 is rotated one bit to the 
left through the carry flag, and the result is placed 
in the W register. The contents of register 18 are 
unaffected. If register 18 contained the binary value 
10101110, it would still do so after this instruction 
had been executed, but the W register would con-
tain the value 01010110, and the carry flag would 
be set. 

RRF 
This is the rotate right through the carry flag The contents of the 
specified register are rotated on bit to the right through the 
carry flag. The result is placed in the W register if d = 0, or back 
in the file register if d = 1. 

Syntax RRF f,d 
Status 
Cycles 1 
Words 
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Example RRF 14,1 
The value in file register 14 is rotated one bit to the 
right through the carry flag, and the result is placed 
in register 14. For instance, if register 14 contained 
the binary value 10101110 before the instruction 
was executed, it would contain the value 01010111 
afterwards. The carry flag would not be set. 

SLEEP 
This instruction puts the processor in the sleep mode. This 
facility is described in detail elsewhere in this publication. 

Syntax SLEEP 
Status TO, PD 
Cycles 1 
Words 1 

Example SLEEP 

SUBLW 
The 2s complement method is used to subtract the contents of 
the W register from the 8-bit literal 'k' (the value contained 
within the instruction). The result is stored in the W register. 

Syntax SUBLW k 
Status C, DC, Z 
Cycles 1 
Words 1 

Example SUBLW 17 
The contents of the W register are subtracted from 
17, and the result is placed in the W register. If the 
W register contained 4 prior to this instruction, it 
would contain 13 afterwards. 

SUBWF 
The 2s complement method is used to subtract the contents of 
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the W register from the specified file register. If d = 1 the result 
is placed in the file register, or if d = () it is placed in the W 
register. 

Syntax SUBWF f,d 
Status C, DC, Z 
Cycles 1 
Words 1 

Example 1 SUBWF 12, 0 
The value in the W register is subtracted from file 
register 12, and the answer is placed in the W 
register. If register 12 contains 78, and the W 
register contains 6, register 12 will still be set at 
78 and the W register will be set at 72 after this 
instruction has executed. 

Example 2 SUBWF 12,1 
The value in the W register is subtracted from the 
value in register 12, and the result is placed in 
register 12. If register 12 contains 78 and the W 
register contains 6, after the instruction has 
executed these registers will respectively contain 
72 and 6. 

SWAPF 
The upper and lower nibbles of the specified register are 
swapped over (i.e. bits 0 to 3 and bits 4 to 7 are swapped). The 
result is placed in the W register if d = 0, or in the file register 
if d = 1. 

Syntax SWAPF f,d 
Status 
Cycles 1 
Words 1 

Example 1 SWAPF 15,0 

The two nibbles in file register 15 are swapped over, 
and the result is placed in the W register. For 
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instance, if register 15 contained the binary value 
00111100, it would still do so after this instruction, 
but the W register would contain the binary value 
11000011. 

Example 2 SWAPF 15,1 
The two nibbles in file register 15 are swapped over, 
and the result is placed in register 15. If register 15 
originally contained the binary value 00111100, 
after this instruction it would contain 11000011. 

XORLW 
The value in the W register is exclusive ORed (X0Red) with 
the 8-bit literal 'IC (i.e. the value contained within the 
instruction). The result is stored in the W register. 

Syntax XORLW k 
Status Z 
Cycles 1 
Words 1 

Example XORLW 2 
The value in the W register is exclusive ORed with 
a value of 2 (00000010 in binary). If the W register 
contained a value of 00001111, after this instruc-
tion the W register would contain 00000010. 

XORVVF 
The contents of the specified register are exclusive ORed with 
the contents of the W register. If d = 0 the result is placed in the 
W register, but if d = 1 the result is placed in the specified 
register. 

Syntax XORFW f,d 
Status Z 
Cycles 1 
Words 1 
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Example 1 XORFW 12,0 
The contents or register 12 are exclusive ORed with 
the value in the W register, and the result is stored 

ir 
the W register. If the W register and register 12 
respectively contain Ill 10000 and 01100110, after 
this instruction the W register would contain 
01100000 and register 12 would still contain 
01100110. 

Example 2 XORFW 12,1 
The contents of register 12 are exclusive ORed with 
the contents of the W register, and the result is 
stored in register 12. If the W register and register 
12 respectively contain 11110000 and 01100110, 
after this instruction register 12 would contain 
01100000 and the W register would still contain 
11110000. 

The 16C71 also has OPTION and TRIS instructions. 
However, in order to maintain upward compatibility, the 
manufacturers recommend that these instructions should not be 
used with the 16C71. With the 16C54, etc., there is no 
alternative as these instructions represent the only way of 
writing data to the OPTION and TRIS registers. Details of the 
OPTION and TRIS instructions are therefore provided here. 

OPTION 
Copies the contents of the W register to the OPTION register. 

Syntax OPTION 
Status 
Cycles 1 
Words 1 

Example OPTION 

Copies the value in the W register to the OPTION 
register. Obviously the appropriate value must be 
loaded into the W register before this instruction is 
issued. 
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TRIS 
Copies the contents of the W register to the specified TRIS 
register. 

Syntax TRIS f 
Status — 
Cycles 1 
Words 1 

Example TRIS 5 
Copies the value in the W register to TRIS register 
5. TRIS registers 5, 6, and 7 correspond to TRISA, 
TRISB, and TRISC respectively. Obviously the 
appropriate value must be loaded in the W register 
before this instruction is issued. 

The following table lists the 16C71 instruction set, and is 
useful as a memory aid when you start writing PIC software. 

Mnemonic Basic Function Cycles 

ADDLW Add k to W 1 
ADDWF Add W to f 1 
ANDLW Bitwise AND W with k 1 
ANDWF Bitwise AND W with f 1 
BCF Bit clear f 1 
BSF Bit set f 1 
BTFSC Bit test — skip if clear 1 or 2 
BTFSS Bit test — skip if set 1 or 2 
CALL Call subroutine 2 
CLRF Clear f 1 
CLRW Clear W I 
CLRWDT Clear watchdog timer 1 
COMF Complement f 1 
DECF Decrement f 1 
DECFSZ Decrement f and skip if 0 1 or 2 
GOTO Unconditional branch 2 
INCF Increment f 1 
INCFSZ Increment f and skip if 0 1 or 2 
IORLW Bitwise OR k with W 1 
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IORWF 
MOVLW 
MOVF 
MOVWF 
NOP 
OPTION 
RETFIE 
RETLW 
RETURN 
RLF 
RRF 
SLEEP 
SUBLW 
SUBWF 
SWAPF 
TRIS 
XORLW 
XORWF 

Bitwise OR W with f 
Move k to W 
Move f 
Move W to f 
No operation 
Load option register 
Return from interrupt 
Return, k to W 
Return from subroutine 
Rotate left through carry 
Rotate right through carry 
Enter sleep mode 
Subtract W from k 
Subtract W from f 
Swap f 
Load TRIS register 
Bitwise XOR k with W 
XOR W with f 

1 
1 

1 

2 
2 
2 
1 
1 
1 
1 
1 
1 
1 
1 

The following lists place the instructions into three 
categories, which might make it easier to find a mnemonic or 
instruction when you initially start writing PIC software. 

Operations on 
ADDWF 
ANDWF 

CLRF 
CLRW 
COMF 
DEC 
DECFSZ 
2•ICF 
:NCFSZ 
IORWF 
MOVF 
MOVWF 
RLF 
RRF 
SUBWF 

File Register Bytes 
Add W to f 
Bitwise AND W with f 
Clear f 
Clear W 
Complement f 
Decrement f 
Decrement f, skip if zero 
Increment f 
Increment f, skip if zero 
Bitwise OR W with f 
Move f 
Move contents of W to f 
Rotate left through carry 
Rotate right through carry 
Subtract W from f 
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SWAPF Swap W with f 
XORWF Bitwise exclusive OR W with f 

Operations on File Register Bits 
BCF Bit clear f 
BSF Bit set f 
BTFSC Bit test f and skip if clear 
BTFSS Bit test f and skip if set 

Operations, Literal and Control 
ADDLW 
ANDLW 
CALL 
CLRWDT 
GOTO 
IORLW 
MOVLW 
NOP 
RETFIE 
RETLW 
SLEEP 
SUBLW 
XORLW 

Add literal to W 
Bitwise AND literal and W 
Call subroutine 
Clear watchdog timer 
Go to instruction address 
Bitwise OR literal with W 
Move literal to W 
No operation 
Return from interrupt 
Return and put literal in W 
Go into SLEEP (standby) mode 
Subtract literal from W 
Exclusive OR literal with W 

Points to Remember 
When writing assembly language programs use mnemonics for 
the instructions. The assembler converts these into their 
corresponding binary values. 

Assembly language programs contain four fields (labels, 
mnemonics for instructions, operands, and comments). 

You do not have to bother about keeping track of instruction 
addresses. You just assign labels to any points in the program, 
and the assembler assigns suitable addresses to them. This 
makes it easy to program loops and subroutines. 

With many PIC instructions the result of an operation can 
be stored in the W register (d = 0) or in the appropriate file 
register (d = 1). 
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There are only about three dozen PIC instructions and they 
are mostly quite simple, so try to learn them all before you get 
into serious PIC programming. 

The 16C5* series processors need the OPTION and TRIS 
instructions to load the OPTION and TRIS registers, but the 
later processors such as the I6C71 can access them using other 
instructions. 
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Chapter 5 

GETTING IT TOGETHER 

:n the previous chapters various aspects of PIC 
microcontrollers have been covered, and in this chapter we will 
look at how these aspects are combined to produce some simple 
PIC based devices. The hardware and software have been kept 
very simple as their purpose is to provide an introduction to 
practical PIC design, rather than to act as genuinely useful 
projects. When first undertaking PIC design work it is 
definitely a good idea to keep things simple, and work on the 
premise that it is 'better to learn to walk before you try to run'. 

Four Aspect Signal 
The first design example is a simple signal for a model train-
set. Rather than a simple three-aspect (red — amber — green) 
signal, this one is based on the 'real thing' used on the suburban 
railway which passes near to where I live. The signals on this 
railway use four-aspect signals which go to red as a train 
passes, to amber and amber when the train has moved a certain 
distance from the signal, then to single amber when it has 
moved further along the line, and finally back to green when 
the train has moved still further along the line. This basic 

design does not respond to the model train, but simply cycles 
the signal through its four states. 

When designing a PIC system you must start with the 
hardware, because the software has to be designed to suit the 
hardware set-up selected. In this case we simply need to drive 
four LEDs from outputs of the processor. No other inputs or 
outputs are needed, so the most simple of PIC devices can 
handle the task. We will therefore base the unit on a I6C54, 
which has one S-bit port (Port B) and one 4-bit type (Port A). 
In this case we only need four outputs, and either port could be 
used. It really does not matter which port is used, and my 
selection of RBO to RB3 (i.e. the lower nibble of Port B) is a 
purely arbitrary one. 

The other main decision to make is the type of clock 
oscillator to be used, and the clock frequency. At first sight this 
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might look like a prime candidate for a very low clock 
frequency, since we require a gap of several seconds from one 
change in the signal to the next. Using a very low clock 
frequency would enable the software to be very simple indeed, 
with no delay loops. In practice there would be a drawback to 
using a very low clock frequency, which is simply that the 
signal would be non-operational for some time after switch-on 
while the processor performed the initial instructions to set up 
Port B. It would therefore be better to use a higher clock 
frequency and delay loops to hold the signal at each state for the 
required length of time. There is no need to use a clock 
frequency of more than a few hertz, as this is sufficient to keep 
the initial setting up period suitably short. A higher clock 
frequency would complicate matters by requiring relatively 
long and complex program loops to hold the signal at each state 
for an adequate period. In an undemanding application such as 
this a C-R clock oscillator is perfectly adequate. 

It did not take too long to arrive at the circuit of Figure 5.1. 
A PIC port can source a high enough current to drive LEDs, but 
the usual current limiting resistors (R2 to R5) are needed to 
protect the port outputs from excessive loading. The built-in 
reset circuit can be used, and MCLR (pin 4) is therefore 
connected to the +5 volt supply rail. The RTCC pin is not used 
in this application, but it must not be left ' floating'. It is 
therefore tied to the +5 volt supply rail as well. 

R1 and C2 are the timing components in the C-R clock 
oscillator. The clock circuit is a very simple relaxation 
oscillator which uses the arrangement shown in Figure 5.2. The 
capacitor (C2) charges by way of RI until the charge potential 
is high enough to send the output of the trigger circuit high. The 
N channel MOSFET then switches on and discharges C2 until 
the charge voltage is low enough to set the output of the trigger 
circuit low again. C2 then starts to charge once more, and the 
circuit oscillates indefinitely in this manner, producing a 
sawtooth waveform across C2 and a roughly squarewave 
output signal from the trigger circuit. It is the squarewave that 
is used as the clock signal for the microcontroller. Operation of 
this type of oscillator relies on the hysteresis of the trigger 
circuit. In other words, its reluctance to change back to its 
previous state once it has been triggered. The input voltage 
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Fig.5.2 The basic arrangement used in a PIC C-R 
clock circuit 

which causes the output to trigger to the high state is much 
higher than the one which causes it to revert to the low state. 

This type of oscillator is a good choice for a general purpose 
but inexact clock oscillator. It can operate over a very wide 
frequency range of well under one hertz to a maximum of a few 
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megahertz. The drawback is that a circuit of this type lacks 
frequency accuracy and stability. Changes in temperature can 
affect the values of the timing components, and produce 
significant frequency drift. The tolerance of these components 
also limits the accuracy with which the clock frequency can be 
set. The main problem is the trigger circuit though. The 
operating frequency is dependent on the two trigger voltages, 
and these vary considerably from one device to another. Also, 
as a percentage of the supply voltage, they change with 
fluctuations in the supply voltage. This type of clock circuit is 
therefore unsuitable where the clock frequency must be set 
accurately, and (or) it must be highly stable. 

Practical tests suggest that with the timing resistance at 
around 100k, a low clock frequency, and a 5 volt supply, the 
clock frequency is approximately equal to: 

1/(C1 x RI) 

Calculating the output frequency is easier if the values of the 
timing components are expressed in megohms and microfarads 
rather than ohms and farads. The values used in the circuit of 
Figure 5.1 ( 100k and 220n) produce an approximate clock 
frequency of 60Hz, and the measured output frequency from 
the clock output pin was 14.8Hz. The clock output signal is at 
one-quarter of the clock frequency though, and 14.8Hz is 
therefore quite close to the expected figure of 15Hz. Using the 
software I eventually devised for this project, it takes a little 
under two minutes for the circuit to go through one complete 
cycle of the signal lights, but the speed of the circuit is easily 
changed by altering the value of C2. For example, a value of 
120n would almost double the clock frequency, and reduce the 
time for one complete cycle of the lights to about one minute. 
In some cases you may not be able to select the final clock 
frequency until the software has been completed, but you 
should at least be able to get reasonably close with your initial 

estimate. 
The following table should prove helpful when selecting 

values for timing components in the clock oscillator. It simply 
gives suggested values for a range of clock frequencies. 
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Frequency 

1Hz 10p 100k 
2Hz 4j7 100k 
5Hz 2p 2 110k 
10Hz 1p 100k 
20Hz 470n 100k 
50Hz 150n 120k 
100Hz 68n 100k 
200Hz 33n 82k 
500Hz 15n 47k 
IkHz 47n 12k 
2kHz 100n 10k 
5kHz 22n 22k 
10kHz 4n7 12k 
20kHz 2n2 15k 
50kHz 2n2 8k2 
100kHz 2n2 3k9 
200kHz 1 n 3k9 
500kHz 470p 3k3 
1MHz 150p 4k7 
2MHz 82p 4k3 
4MHz 33p 3k9 

These values take into account the input capacitance of the 
processor chip itself, and loading by the trigger circuit. Thus, 
although there may seem to be some discrepancies, they are 
actually correct. Note that these values will only give 
something close to the specified frequencies, and that errors of 
10 per cent or more can occur even if close tolerance 
components are used. Operation at frequencies of more than 
4MHz using a C-R oscillator is not recommended, although it 
is possible with the faster chips if you are prepared to 'turn a 
blind eye' to the manufacturer's recommendations. 

Software 
No doubt there are endless ways of obtaining the desired action 
from this circuit, and the listing shown here is just one 
possibility. 
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;Basic Signal Program 

MOVLW 00 

TRIS 06 ;Sets Port B bits 0 to 3 as outputs 

LOOP MOVLW 01 

MOVWF 06 ;Sets signal to green 

BCF 03,2 ;Resets zer3 flag 

MOVLW 7F ;Number o' loops 

MOVWF OC 

DELAY I DECFSZ OC,1 

GOTO DELAY I ;Sets green signal time 

MOVLW 08 

MOVWF 06 :Sets signal to red 

BCF 03,2 ;Resets zero flag 

MOVLW 50 ;Number of loops 

MOVWF OC 

CELAY2 DECFSZ OC,I 

GOTO DELAY2 ;Sets red signal time 

MOVLW 06 

MOVWF 06 ;Sets signal to twin amber 

BCF 03,2 ;Resets zero flag 

MOVLW 50 

MOVWF OC 

DELAY3 DECFSZ OC,1 

GOTO DELAY3 

MOVLW 02 

MOVWF 06 ;Sets signal to amber 

BCF 03,2 ;Resets zero flag 

MOVLW 50 ;Number of loops 

MOVWF OC 

DELAY4 DECFSZ OC1, 

GOTO DELAY4 

GOTO LOOP 

END 

It has to be pointed out that different assemblers do things 
in slightly different ways, and you therefore need to read the 
'fine print' to determine the exact formal that your assembler 
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requires. Some require a ' tab' character or several spaces 
between fields, while others will settle for a single space 
character. Some need a colon (:) at the end of the labels in the 
labels field (to ensure that labels are not confused with 
mnemonics), while others do not. The need for a semicolon (;) 
character at the beginning of comments seems to be needed 
with all assemblers. As you will see from this listing, the use of 
comments is not restricted to added notes at the end of 
instructions. The assembler ignores anything that follows a 
semicolon and is on the same line. You can therefore add as 
many lines of notes as you like at the beginning of a listing 
provided each one starts with a semicolon. This facility can be 
used to give a listing, a title, provide basic details of the 
hardware configuration, or to include any information that 
might be useful to you if you return to the program at some later 
date. This information can also be useful to anyone who makes 
use of your programs. 

The listings in this chapter are in a form that is suitable for 
the 'MPALC' or 'MPASM' assemblers produced by Microchip 
Technologies Incorporated (the PIC chip manufacturers). Other 
assemblers might need the listing to be ' fine tuned' in order to 
get it to assemble correctly. Assemblers usually give you the 
option of using decimal numbers, but use hexadecimal by 
default. The programs in this chapter all use hexadecimal 
numbers, and there is probably no point in using decimal even 
if it is available as an option. Hexadecimal is much more 
convenient for this sort of low-level programming. 

The first step is to set up RBO to RB3 as outputs, and this is 
the purpose of the first two lines of the program. The first line 
moves a value of zero into the W register, and the second line 
loads this into TRISB. This actually sets all eight lines of Port 
B as outputs, but it does not matter whether RA4 to RA7 are 
inputs or outputs. The next two lines write a value of 1 to Port 
B, which sets RBO high and switches on D4 (the green LED). 
The program must then loop a number of times in order to hold 
the signal at green for a suitable period. First the zero flag in the 
status register must be reset, as it is this bit being set that brings 
thé loop to an end. Before using a status bit you should always 
ensure that it is at the appropriate starting state by setting it at 
that state. If you just assume that it is at the correct state it is 
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reasonable to expect a fair proportion of your programs to fail! 
A value of 7F is then moved into the W register, and from here 
it is copied to register OC, which is used as the counter. The 
next two lines form the actual loop, and a DECFSZ instruction 
is used to decrement register OC. A GOTO instruction keeps 
looping the program back to this instruction, but only until the 
value in register OC reaches zero. The zero flag in the status 
register is then set, and the DECFSZ instruction jumps over the 
GOTO instruction. 

This breaks the program out of the loop, but it then goes into 
a virtually identical routine that sets the signal to red and 
provides another delay. This is followed by similar routines that 
set the signal to amber and amber, and then single amber, again 
with a delay being provided in each routine. The number of 
loops used while the signal is at red, amber — amber, and amber 
is lower than number used while it is green. This has been done 
to set the signal to green for longer than it is set to the other 
colours, but there is clearly no difficulty in altering the four 
delay times to suit individual requirements. It is just a matter of 
changing the number of loops used in the routine for each 
signal. This sort of versatility is one of the main attractions of 
using microcontrollers. A basic design can be ' fine tuned' to 
suit individual requirements by changing the software, with 
changes in the hardware often being unnecessary. 

Once the signal has been at amber for the appropriate time 
the program loops back to almost the beginning, and goes 
through the sequence once again. There is obviously no point in 
performing the first two instructions on each loop of the 
program, as it is only necessary to set up Port B once. The 
'END' instruction does not actually produce any code for the 
processor, and this simply indicates to the assembler that it has 
reached the end of the program listing. 

Refinements 

With a simple program such as this there is no difficulty in 
keeping track of the functions assigned to the general purpose 
file registers, since only one of them is actually utilized (file 
OC). Life obviously gets more difficult when you start to write 
programs that use a few dozen of these registers. It would 
obviously be more convenient if the registers could be referred 
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to by a meaningful name, and there would also be less risk of 
errors occurring when writing the code. It would also be easier 
if the status register and its flags could simply be referred to by 
name. Some assemblers do actually permit the status register 
and the flags to be specified by name rather than by register and 
bit numbers, but this is by no means a universal feature. 

Any PIC assembler should support symbols, and these 
enable registers, etc., to be specified using a name rather than a 
number. It is really just a matter of adding a list at the beginning 
of each program, declaring the symbols and the values each one 
represents. This is done using the EQU (equals) command. In 
the signal program register OC is used as a counter, and it could 
therefore be called something like 'COUNTER' or 'CNTR'. It 
is up to the programmer to select suitable names, but note that 
there might be a restriction on the number of characters 
allowed, and some characters may not be permissible. Symbols 
usually have to start with a letter of the alphabet rather than a 
number. The assembler may differentiate between upper and 
lower case letters, or there may be the option to enable you to 
switch case sensitivity on and off. Once again, it is a matter of 
going through the manual and reading the ' fine print'. It is 
advisable to keep symbols precise and to the point even if long 
names are permitted. 

This version of the signal program shows how symbols can 
be used. The symbol called 'CNTR' is assigned to a value of 
OC, 'STATUS' is assigned a value of '03', and Z is assigned a 
value of 2. These symbols can then be used in the program 
instead of the values they represent (e.g. BCF STATUS,Z 
instead of BCF 03,2). The program 'blown' into the PIC chip 
is exactly the same for both versions of the program. Symbols 
make it easier for the programmer to write programs and to 
avoid errors, but have no affect on the final program. Many 
programmers have a standard set of symbols that they use at the 
start of every program. Obviously some customising will 
normally be required in order to make the standard set of 
symbols suit each new program, but some customising is 
usually a lot quicker than 'starting from scratch' each time you 
write a program. 
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;Signal Program Using Symbols 
•************************************************* 

CNTR EQU OC ;Sets counter as file OC 

STATUS EQU 03 

EQU 2 

MOVLW 00 

TRIS 06 ;Sets Pott B bits 0 to 3 as outputs 
LOOP MOVLW 01 

MOVWF 06 ;Sets signal to green 

BCF STATUS.Z ;Rzsets zero flag 

MOVLW 7F ;Number of loops 

MOVWF CNTR 

DELAY I DECFSZ CNTR, I 

GOTO DELAY1 ;Sets green signal time 

MOVLW 08 

MOVWF 06 ;Sets signal to red 

BCF STATUS,Z ;Resets zero flag 

MOVLW 50 ;Number of loops 

MOVWF CNTR 

DELAY2 DECFSZ CNTR,1 

GOTO DELAY2 ;Sets red signal time 
MOVLW 06 

MOVWF 06 ;Sets signal to twin amber 

BCF STATUS,Z Resets zero flag 

MOVLW 50 ;Number of loops 

MOVWF CNTR 

DELAY3 DECFSZ CNTR, I 

GOTO DELAY3 ;Sets twin amber signal time 
MOVLW 02 

MOVWF 06 ;Sets signal to amber 

BCF STATUS,Z Resets zero flag 

MOVLW 50 ;Number of loops 

MOVWF CNTR 

EELAY4 DECFSZ CNTR,I 

GOTO DELAY4 

GOTO LOOP 

END 
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Chip Programming 

The exact procedure for ' blowing' the program into the PIC 
processor depends on the particular programming or develop-
ment system that you are using. Typically you would first run 
the assembler, selecting the source file, processor type, output 
file format, etc., before getting it to produce a file containing 
the object code for the programmer. When you are developing 
your own programs you will probably wish to run some sort of 
simulator before 'blowing' the program into the chip. If you are 
simply copying a tried and tested program this stage is not 
necessary, provided you are confident that your copy of the 
program is accurate. Before 'blowing' a program into a one-
time programmable chip you obviously need to be reasonably 
sure that the program is correct, since even the most simple of 
errors will result in a programmed chip that is completely 
useless. 

Having successfully produced the object code for the chip it 
is then a matter of running the software for the programmer, 
and then selecting the appropriate options for your project. For 
example, you must select whether or not you require the code 
protection flag to be set, and where appropriate you must also 
select the appropriate clock type. Of course, with many of the 
one-time programmable chips you do not have to select the 
clock type as the chip will only support one type. When you are 
sure that everything is set up correctly, the program is ' blown' 
into the chip. However, if the processor is a type which can be 
re-programmed you should always check that it has been 
properly erased before re-programming it. Any programming 
system should have a facility to check that the device has been 
properly erased. Having 'blown' the program into the chip the 
contents are usually verified by the programming software, but 
you may have to invoke this routine manually. If the program 
in the chip does not match the object code there is almost 
certainly a hardware fault, and the most likely cause of the 
problem is that the PIC processor itself is faulty. 

If you try the simple signal project it can easily be built on 
a solderless breadboard, but as PIC processors are static-
sensitive remember to observe the usual handling precautions. 
Presumably the program would be 'blown' into a re-

programmable chip, and these are not exactly cheap. This 
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makes it all the more important to observe the normal anti-
static handling precautions. When experimenting with PIC 
processors I would certainly recommend using an earthed mat 
on the workbench, and it is also a good idea to wear an earthed 
wrist-band so that you are not in any danger of 'zapping' a PIC 
chip every time you handle one. 

Automatic Signal 
We will now take our model train signal example a stage 
further, and produce an automatic version which is operated by 
the train via reed or micro-switches on the track. This is much 
the same as the example system that was described in Chapter 
1, but with the same form of four-aspect signalling that is used 
in the simple signal described in the previous section of this 
chapter. In fact the output side of the signal can be left 
unchanged, and it is just a matter of monitoring the switches by 
way of four inputs on the processor. RB4 to RB7 and RAO to 
RA3 are available for this purpose, and we will keep things 
straightforward by using separate ports for the input and output 
lines. Therefore, RAO to RA3 are used to monitor the sensor 
switches, and it does not really matter which input monitors 
which switch, since the software can be written to suit any set-
up. We will use the arrangement outlined in Figure 5.3. 

When writing software for an application such as this it is 
more than a little helpful if the basic action of the system is 
defined first. In fact it is probably easier to start with a simple 
list that relates input and output states to their corresponding 
'real world' events. All that is needed is a simple list of the type 
that follows. 

Red signal Write 8 to Port B 
Amber x2 signal Write 6 to Port B 
Amber signal Write 2 to Port B 
Green signal Write 1 to Port B 
Switch 1 activated Port A bit 0 set 
Switch 2 activated Port A bit 1 set 
Switch 3 activated Port A bit 2 set 
Switch 4 activated Port A bit 3 set 

In order to produce a single amber signal either 2 or 4 can 
be written to Port B, since switching on either of the yellow 
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Fig.5.3 The method of position sensing used in the automatic signal 



LEDs will provide the desired result. The decision to use a 
value of 2 is an arbitrary one. Having written down the basic 
port information in a way that is easy to follow, keep it handy 
for reference purposes, and proceed to produce either a flow 
chart or a list to define the steps that the program must take. 
This is my suggested list of program steps. 

I. Set Port B as outputs (Port A defaults to inputs). 
2. Set signal at green. 
3. Read Port A and store result. 
4 Check if bit 0 of result is high, set signal to red if it is. 
5 Check if bit 1 of result is high, set signal to amber x2 if it 

is. 

6 Check if bit 2 of result is high, set signal to amber if it is. 
7. Check if bit 3 of result is high, set signal to green if it is. 
8. Loop to line 3 and read Port A, etc. again. 
9. End. 

This list converts quite easily into an actual program, and this 
is the listing for the automatic signal program. 

;Automatic Model Train Signal Program 
;Red on RB3, amber on RB1/2, green on RBO 
;S1 to S4 on RAO to RA3 respectively 

• 

INPUT EQU 05 

OUTPUT EQU 06 

STORE EQU OC 

MOVLW 00 

TRIS 6 ;Port B as outputs 
MOVLW 01 

MOVWF OUTPUT ;Set signal to green initially 

LOOP MOVF 1NPUT,W ;Read Port A 

MOVWF STORE ;Store reading 
MOVLW 08 

BTFSC STORE,0 ;If RAO high 

MOVWF OUTPUT ;Set signal to red 

MOVLW 06 
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BTFSC STORE,1 ;If RAI high 

MOVWF OUTPUT ;Set signal to twin amber 

MOVLW 02 

BTFSC STORE,2 ;If RA2 high 

MOVWF OUTPUT ;Set signal to amber 

MOVLW 01 

BTFSC STORE,3 ; If RA3 high 

MOVWF OUTPUT ;Set signal to green 

GOTO LOOP 

END 

The first three lines of the program define symbols for the 
input port (INPUT), the output port (OUTPUT), and the 
register used to store the values read from Port A (STORE). It 
would be possible to use further symbols, such as a value of 01 
for GREEN and 08 for RED, but with such a simple program 
this would not really be worthwhile. The program continues by 
setting Port B as an output port, but there is no need to set Port 
A as an input port as this is the default condition. The next two 
lines of the program set the signal to its initial state of green. 
After this initial setting up the program enters the main loop 
section, and this starts with Port A being read and the returned 
value is then transferred to STORE (file register OC). 

In order to obtain the desired action the program must test 
bits 0 to 3 of STORE, one-by-one, and set the signal to the 
appropriate state if one of these bits is set. This requires a 
conditional instruction that acts on the state of a particular bit 
in the specified file. The I6C54 instruction set has only one 
instruction which fits our requirements, and this is BTFSC. 
This instruction carries on to the next instruction if the bit that 
is tested is set to one, but it skips the next instruction if it is set 
to zero. The first BTFSC instruction tests to see if bit 0 (RAO) 
is set to one. If it is, SI has been activated and the signal must 
be set to red. This is accomplished by the next instruction, but 
if bit 0 is zero, this instruction is skipped. A further three pairs 
of instructions test bits 1 to 3 and provide the appropriate action 
if one of these bits is set to one. In every case, setting the signal 
to the correct state must be accomplished in a single instruction, 
as only one instruction can be skipped over if a bit is not set to 
one. The appropriate value is therefore moved into the W 
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register before each bit is tested. If the bit is set to one, it then 
only takes a single instruction to transfer the value from the W 
register to Port B. 

Once the full set of 4-bit tests have been completed the 
program is looped back to the point where Port A is read, and 
this whole process repeats indefinitely. The sensor switches 
may only close very briefly as the model train passes, and a 
reasonably high clock frequency is therefore needed in order to 
ensure that the circuit always responds properly. The circuit 
could be made to loop every one or two microseconds by using 
a very high clock frequency, but this is not necessary as the 
mechanical characteristics of the switches mean that they must 
close for at least a few milliseconds. A clock frequency of about 
1MHz is therefore more than adequate to ensure that the circuit 
operates reliably. Each time a switch is activated, the unit will 
set the signal to the appropriate state over and over again. For 
as long as the sensor switch is closed, the signal will be set to 
the appropriate state. Repeated looping of this type is not 
acceptable in some applications, but it is of no consequence in 
this case. Setting the signal to its existing state simply has no 
effect, and will not cause a malfunction. 

The circuit diagram for the automatic signal appears in 
Figure 5.4. The output side of the circuit is identical to the basic 
signal circuit described previously. On the input side there is a 
pull-down resistor for each input, plus a sensor switch that pulls 
the input high when it is activated. The values of R5 and C2 set 
the clock frequency at about 4MHz, but the circuit should work 
equally well using a much lower clock frequency. This is 
obviously another circuit that could be tested quite easily by 
building it on a solderless breadboard. SI to S4 could simply be 
pushbutton switches in the test circuit. 

Subroutines 
With this simple application it is possible to avoid the use of 
subroutines because the signal can be set to the required state in 
a single instruction. With many applications a single instruction 
will not be adequate, and a subroutine then becomes the only 
way of handling things. Subroutines are very easy to use, and it 
is just a matter of using the CALL instruction to enter the 
subroutine, and some form of RETURN instruction to jump 
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back into the main program once the routine has been 
completed. This listing provides the automatic signal function 
using subroutines. 

•m********************************************** 

:AUTOMATIC TRAIN SIGNAL PROGRAM USING 
SUBROUTINES 
;*Ic*********************************************** 

INPUT EQU 05 

OUTPUT EQU 06 

STORE EQU OC 

MOVLW 00 

TRIS 6 ;Port B as outputs 

MOVLW 01 

MOVWF OUTPUT ;Set signal to green initially 

LOOP MOVF INPUT,W ;Read Port A 

MOVWF STORE ;Store reading 

BTFSC STORE,0 ;If RAO high 

CALL RED ;Call red routine 

BTFSC STORE,I ;If RAI high 

CALL AMBR2 ;Call twin amber routine 

BTFSC STORE,2 ;If RA2 high 

CALL AMBER ;Call amber routine 

BTFSC STORE,3 ;If RA3 high 

CALL GREEN rail green routine 

GOTO LOOP 

RED MOVLW 08 ;Set signal to red 

MOVWF OUTPUT 

RETLW 00 

AMBR2 MOVLW 06 ;Set signal to twin amber 

MOVWF OUTPUT 

RETLW 00 

AMBER MOVLW 02 ;Set signal to amber 

MOVWF OUTPUT 

RETLW 00 

GF.EEN MOVLW 01 ;Set signal to green 

MOVWF OUTPUT 

RETLW 00 

END 
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The initial part of the program is exactly the same as in the 
original version, with the symbols being defined, Port B being 
set as an output port, and the signal being set to green. The 
decision making process is similar to that in the original 
program, but the appropriate value is not loaded into the W 
register before the bit testing is carried out. Also, if a bit is set 
to one, the program proceeds to the next instruction where a 
suitable subroutine is CALLed. The subroutines are defined at 
the end of the program. 

Using subroutines is very simple with the 16C54 since you 
do not have to bother about the Stack. The processor 
automatically stores the appropriate address on the Stack, and 
loads it into the program counter at the end of the routine. In 
order to enter a subroutine you simply use a CALL instruction 
with a label indicating the start address of the routine (such as 
'GREEN' or `AMBER' in this program). A RETURN 
instruction at the end of the routine takes things back to the 
instruction that follows the one which CALLed the subroutine. 
The 16C54 does not have a straightforward RETURN 
instruction, but it does have RETLW. This places the literal 
number (i.e. the number specified within the instruction) in the 
W register when the program returns from the subroutine. This 
loading of the W register is of no help in the current application, 
and a `dummy' value of zero is therefore used in each RETLW 
instruction. 

The label used when calling a subroutine represents an 
instruction address, not a data register address. There is no risk 
of getting the two confused since you do not need to deal with 
instruction addresses in number form. You simply assign a label 
to a subroutine, and the assembler allocates a suitable 
instruction address to that label. Unless you look at the 
assembled code to find out, you never know what address is 
assigned to each label, and do not need to know. 

Subroutines are an important part of any programming, and 
it is quite normal for a program to consist of a main loop which 
calls up numerous subroutines. The subroutines will normally 
be more complex than the ones used in this program, but the 
general format of this program is one that is applicable to many 
practical applications. An advantage of this approach is that it 
is easy to modify the software to support new features. In most 
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cases a small addition to the main loop plus an extra subroutine 
will be sufficient to add the new feature. 

Looking Up 
On the face of it there is no way that the ROM can be used to 
store data, as it is strictly for storing instructions. Closer 
examination of the instruction set reveals that there are 
instructions that load literal values (values contained within the 
instructions) into the W register. Data can therefore be stored in 
these instructions, and called up when required. This is fine for 
the odd byte of data here and there, but how can a block of ROM 
be used to store numerous bytes of data? Practical applications 
often require blocks of data for use as lookup tables. As a simple 
but practical example, suppose that we require a circuit that takes 
a 4-bit binary code and displays its decimal equivalent via a 
7-segment LED display. In other words, a basic binary coded 
decimal decoder for a 7-segment display. 

Fig.5.5 The method used to identify the segments of 
a 7-segment LED display 
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The segments of a 7-segment display are identified by the 
letters of the alphabet from 'A' to `G', as shown in Figure 5.5. 
All real-world displays seem to have an eighth segment in the 
form of the decimal point ('DP') LED, but this is of no 
importance in the present context. We simply require a circuit 
that will take the 4-bit binary input signal and convert it to a 
7-bit code that will produce the appropriate decimal numbers 
on the display. There are two types of LED display, which are 
the common cathode and common anode varieties. We will use 
the common cathode type, which require a high (logic 1) output 
level to switch on a segment. 

There are probably several ways of using a PIC processor to 
handle this form of decoding, but the most common approach 
is to use a lookup table. This table contains the values that must 
be sent to the output port in order to produce each of the 
numbers from 0 to 9. We will assume here that the segments 
from A to G are driven from RBO to RB6 of the PIC processor, 
and that the 4-bit input codes are read via RAO to RA3. The first 
task is to work out the binary code needed to produce each of 
the ten possible numbers, and then convert the 7-bit binary 
codes into their hexadecimal equivalents. This gives the 
following result. 

Number Hex Value 

o 3F 
1 06 
2 5B 
3 4F 
4 66 
5 6D 
6 7D 
7 07 
8 7F 
9 6F 

The lookup table contains these ten hexadecimal values in this 
order, and the value read from Port A is used as an offset to 
select the appropriate value. With the PIC processors you are 
not exactly `spoilt for choice' when it comes to branch and 
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jump instructions, and in order to implement a lookup table it 
is necessary to directly control the program counter at file 
register 02. This 7-segment decoder program illustrates how 
this is done. 

;Binary to 7-segment display decoder program 

CLRW 

TRIS 06 ;Set B as outputs. A as inputs 

START MOVF 05,W ;Load W from Part A 

CALL TABLE ;Load W from lookup table 

MOVWF 06 ;Output data to Pon B 

GOTO START ;End of loop 

TABLE ADDWF 02,1 ;Lookup table 

RETLW 3F 

RETLW 06 ;1 

RETLW 5B ;2 

RETLW 4F ;3 

RETLW 66 

RETLW 6D ;5 

RETLW 7D ;6 

RETLW 07 ;7 

RETLW 7F ;8 

RETLW 6F ;9 

END 

The first two instructions simply set Port B as an output 
port. Port A requires no setting up as it defaults ).to an input port. 
The next four lines form a loop which reads Port A, gets the 
corresponding value from the lookup table, and then outputs 
this value to Port B. The lookup table is contained in a 
subroutine called 'TABLE', and this consists of an ADDWF 
instruction followed by ten RETLW instructions. The ADDWF 
instruction takes the value in file register 05 (the Port B file 
register) and adds it to the program counter (file register 02). If 
the value read from Port A is zero, the program counter is not 
incremented, and the next instruction is performed in the usual 
way. This is a RETLW instruction, which returns the program 
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from the subroutine and places a value of 3F in the W register. 
This is the hexadecimal code required to produce '0' on the 
display. If the value returned from Port A is 1, the program 
counter would be incremented by one, and the program would 
jump to the second RETLW instruction. This instruction returns 
the program from the subroutine and places a value of 06 in the 
W register (the value added to produce ' 1' on the display). 

It should be apparent that the value read from Port A will 
always branch the subroutine to the appropriate RETLW 
instruction, so that the correct value is loaded into the W 
register and written to Port B. If you would like to try out this 
program, it can be used in conjunction with the circuit diagram 
of Figure 5.6. The 7-segment display can be any common-
cathode type, but a high brightness display is preferable as the 
drive current for each segment is not very high. The program 
does not include error trapping to handle input values of more 
than nine, but out of range input values do not seem to cause the 
system to crash. However, in a 'real' project things like this 
should not be left to chance, and where necessary 
comprehensive error trapping must be included. 

A/D Conversion 
As pointed out in Chapter 4, the 16C71 has a built-in four 
channel analogue to digital converter which enables it to 
function in a variety of control and measurement applications 
with a minimal amount of additional hardware. The converter 
is quite easy to use, but it is a good idea to try out one or two 
simple test circuits before trying to do anything too clever with 
this device. This simple program, together with the circuit of 
Figure 5.7, provides a basic analogue to digital converter 
function. The input signal is provided by VR1, and the outputs 
of the converter are monitored by eight LEDs. D1 is driven by 
the least significant bit, running through to D8 which is driven 
by the most significant bit. By adjusting VR1 is should be 
possible to obtain any 8-bit binary pattern on the LEDs, from 
all the LEDs switched off with the wiper of VR1 at the 0 volt 
end of the track, to all LEDs switched on with the wiper at the 
+5 volt end. 
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• *** ******** ************ ***** ********************* 

,A/D Converter program 

STATUS EQU 03 

BDIR EQU 06 

ADCON EQU 08 

PORTB EQU 06 

ADRF-S EQU 09 

BSF STATUS,5 -Select page I 

CLRW 

MOVWF BDIR Sets Port B is outputs 

CLRF ADCON ;Sets RA0-3 as A/D inputs 

BCF STATUS,5 ;Select page 0 

MOVLW OxC I 

MOVWF ADCON ;Select ChO/Int clock 

LOOP BSF ADCON,2 ;Start conversion 

NOP ;Wait 

MOVF ADRES,0 ;Place conversion in W 

MOVWF PORTB ;Output conversion to Port B 

GOTO LOOP ;Loop indefinitely 

END 

The first five lines of the program assign values to labels, 
and then the first line of code selects page 1 of the data map. 
Remember that, unlike the 16C5‘C the 16C71 has two pages of 
registers, with the required page being selected via bit 5 of the 
Status register. This is set to 0 if page 0 is required, and to 1 if 
page 1 is needed. The manufacturer's data has page 0 mapped 
from 00 to 7F, and page 1 from 80 to FF, but this is perhaps a 
bit misleading. You can not read from and write to the page 1 
registers at addresses from 80 to FF. Instead, bit 5 of the Status 
register is set to 1, and the page 1 registers are accessed via 
addresses from 00 to 7E They occupy the same part of the data 
map as the page 0 registers, and you use bit 5 of the Status 
register to switch from one to the other. In this case we are 
selecting page 1 so that the data direction register for Port B 
(TRISB) can be cleared, which sets all the Port B lines as 
outputs. The 16C71 does have the TRIS instruction, but the 
manufacturer's data recommends that in order to maintain 
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'upward compatibility' it should not be used. Instead, page 1 is 
selected, and TRISB is accessed at address 06. 

A CLRF instruction then sets all bits of the ADCON1 
register to zero, and this sets all four lines of Port A as inputs. 
In this case we only require RAO as an analogue input, and will 
not be using the other lines of Port A at all. Therefore, the value 
written to ADCON I is not of great significance, since any value 
will set RAO as an analogue input! 

Next a BCF instruction is used to clear bit 5 of the Status 
register so that page 0 is selected. The next two lines then load 
a value of CI into ADCONO, but this value appears as OxCI in 
the program listing. This is simply because some assemblers 
require the first digit in a hexadecimal value to be a number and 
not a letter, so that there is no risk of hexadecimal numbers 
being confused with labels or instructions. The 'sure fire' 
method of avoiding confusion when using the MPALC 
assembler is to use 'Ox' ahead of the hexadecimal digits. The 
value of C 1 ( 11000001 in binary) written to ADCONO performs 
three tasks. Firstly, by setting bit 0 to 1 the analogue to digital 
converter is switched on. Secondly, channel 0 is selected by 
setting bits 3 and 4 low. Finally, setting bits 6 and 7 high selects 
the internal C-R oscillator as the clock for the converter. 

After this initial setting up the program moves into the loop 
that reads the converter and outputs the returned values on Port 
B. The BSF instruction sets bit 2 of ADCONO, and this starts 
the conversion. Note that this must always be done by a 
separate instruction, and not the one that is used to switch on 
the converter. The NOP instruction simply introduces a short 
delay to provide time for the conversion to be completed, but it 
might not be necessary in this case as the system clock is at a 
relatively low frequency in comparison to the converter's 
clock. The next two lines move the result of the conservation 
from the ADRES register to the W register, and then output the 
result to Port B. The program then loops back to the point 
where a conversion is initiated, and it keeps looping 
indefinitely, with readings being taken and written to Port B. 

Basic Voltmeter 
The next listing, together with the circuit diagram of Figure 5.8, 
uses the 16C71 to provide a basic digital voltmeter action. This 
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program is really a combination of the previous two, with the 
values read from the analogue to digital converter being altered 
via a lookup table, and then used to drive a 7-segment display. 

******************************************* 

;Basic Digital Voltmeter program 

PC EQU 02 

STATUS EQU 03 

BDIR EQU 06 

ADCON EQU 08 

PORTB EQU 06 

ADRES EQU 09 

STORE EQU Ox0C 

BSF STATUS,5 ;Select page I 

CLRW 

MOVWF BDIR ;Sets Port B as outputs 

CLRF ADCON ;Sets RAO-RA3 as AID inputs 

BCF STATUS,5 ;Select page 0 

MOVLW OxC I 

MOVWF ADCON ;Select ChO/Int clock 

LOOP BSF ADCON,2 ;Start conversion 

NOP ;Wait 

MOVF ADRES,0 ;Place conversion in W 

MOVWF STORE ;Place conversion in STORE 

RRF STORE, I 

RRF STORE, I 

RRF STOR E,1 

RRF STORE,0 ;Move high nibble into low nibble 

ANDLW OF ;Set high nibble to zero 

CALL TABLE 

MOVWF PORTB ;Output conversion to Port B 

GOTO LOOP 

TABLE A DDWF PC, I 

RETLW 3F 

RETLW 06 

RETLW 5B 

RETLW 4F 

RETLW 66 
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RETLW 6D 

RETLW 7D 

RETLW 07 

RETLW 7F 

RETLW 6F 

RETLW 77 

RETLW 7C 

RETLW 39 

RETLW 5E 

RETLW 79 

RETLW 71 

END 

The initial part of the program is essentially the same as the 
beginning of the analogue to digital converter program, with 
the converter being set up for use with the internal C-R clock, 
and RAO as the analogue input. Also as before, a conversion is 
started, the program waits briefly, and then the reading from the 
converter is started, the program waits briefly, and then the 
reading from the converter is placed in the W register. The 
reading is then moved to a file register which acts as a 
temporary store, and a series of four rotate right (RRF) 
instn-ctions are performed. The display can only handle 4-bit 
numbers, but the converter is producing 8-bit values. The most 
significant nibble could simply be masked off, with the least 
significant nibble being used to drive the display. However, 
accuracy is usually better if the most significant bits are used 
and the least significant bits are removed. The rotate right 
instructions shift the most significant nibble into bits 0 to 3 of 
the register, and the last of the four puts the result into the W 
register. The next instruction bitwise ANDs the contents of the 
W register with a masking number of OF, which ensures that the 
most significant nibble is zero. 

The lookup table subroutine is then called, and the 
appropriate value to drive the display is placed in the W 
register. This routine is much the saine as the one used in the 
BCD to 7-segment decoder program described previously, but 
there are six more entries at the end of the lookup table. These 
produce the hexadecimal digits from A' to 'F', and the display 

therefore goes through the sixteen hexadecimal digits, from '0' 
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with VR I set for minimum voltage, to 'F' with it set for 
maximum voltage. A 7-segment display is not designed to 
display letters of the alphabet, and a little artistic licence has to 
be used in order to get it to produce letters from 'A' to 'F'. The 
betters 'b' and 'd' are in lower case while the others are in upper 
case, but apart from this quite reasonable representations of the 
letters are produced. 

Interrupts 
The next program listing demonstrates the use of interrupts, and 
in conjunction with the circuit of Figure 5.9 it provides a basic 
counter action. The display starts at zero, but each time the 
pushbutton switch (SI) is operated the number on the display is 
incremented by one. The display is a hexadecimal type, and 
after the count reaches 'F' it cycles back to zero, and the 
counting process continues from there. Note that not all the PIC 
processors implement interrupts, and this feature is absent on 
the I6C54 for example. 

;Interrupt demonstration program 

• 

PC EQU 02 

STATUS EQU 03 

BDIR EQU 06 

PORTB EQU 06 

CNTR EQU OC 

STORE EQU OD 

I NTCN EQU OB 

GOTO START ;Jump over interrupt routine 

ORG 04 ;Set interrupt start address 

BCF INTCN,I ;Clear interrupt flag 

INCF CNTR. I ;Increment count 

RETFIE ;Return from interrupt 

START CLRF CNTR ;Clear counter 

MOVLW 90 

MOVWF INTCN ;Enable interrupts on RBO 
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BSF STATUS,5 ;Select page I 

MOVLW 01 

MOVWF BDIR ;Set RBI to RB7 as outputs 

BCF STATUS,5 ;Select page 0 

LOOP MOVF CNTR,0 ;Load count into W register 

ANDLW OF ;Mask off top nibble 

CALL TABLE ;Convert 4 bit value to 7 bit code 

MOVWF STORE ;Move conversion into temporary 

store 

RLF STORE,0 ;Shift conversion left and place in 

MOVWF PORTB ;Output data to Port B 

GOTO LOOP 

TABLE ADDWF PC,I ;Lookup table 

RETLW 3F 

RETLW 06 

RETLW 5B 

RETLW 4F 

RETLW 66 

RETLW 6D 

RETLW 7D 

RETLW 07 

RETLW 7F 

RETLW 6F 

RETLW 77 

RETLW 7C 

RETLW 39 

RETLW 5E 

RETLW 79 

RETLW 71 

END 

The initial part of the listing assigns values to symbols, and 
then the program starts with a GOTO instruction. This may 
seem like an odd way to start the program, but it is jumping 
over the interrupt routine which is placed at the beginning of 
the program. The ORG instruction is not one in the PIC 
instruction set, as it is an assembler instruction, like EQU. It is 
the origin instruction, and it is telling the assembler to place the 
next instruction at address 04. The interrupt routine must 
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therefore start at this address. All the interrupt routine does is to 
first reset the appropriate interrupt flag, and then increment the 
value stored in the register file used as the counter. The 
program then returns from the interrupt routine, the program 
counter is loaded from the Stack, and the program continues 
where it left off. Interrupts are automatically disabled while the 
interrupt routine is being performed, and they are automatically 
enabled by the RETFIE instruction when the program is 
returned to normal operation. 

The section of the program from the 'START' label to the 
'LOOP' label clears the register used as the counter, and then 
sets two bits in the interrupt control register (Figure 5.10). 
These are bits 7 and 4, which respectively enable global 
interrupts and interrupts on the INT pin (RBO becomes the INT 
pin when interrupts are used). Note that interrupts are totally 
disabled when the global interrupt bit is at 0, and that just 
setting the interrupt bit for the type of interrupt you want to use 
is not sufficient. The global interrupt bit must be set, together 
with the bit or bits for the types of interrupts you wish to use. 
The rest of the START routine simply sets RBI to RB7 as 
outputs, and these are used to drive the 7-segment display. It is 
not possible to drive the display from RBO to RB6, as in the 
previous circuits that have used a 7-segment display, because 
RBO is used as the interrupt input. 

Once into the loop section, the program repeatedly loads the 
counter into the W register, gets the 4- to 7-bit conversion from 
the TABLE routine, and then outputs this value to the display. 
There is a minor complication here in that the display is not 
driven from the Port B lines used in our earlier examples, and 
the values needed to produce each digit are therefore different 
to those needed previously. A new set of lookup values could be 
calculated, but the easier option is to simply use the old values 
and shift the 7-bit codes one place to the left before outputting 
them to the display. This is the method used in this program. 

In this simple demonstration program the main loop section 
of the program is not doing anything very worthwhile, and it is 
really just looping aimlessly waiting for an interrupt. In a real-
world application the main loop would be doing something 
more worthwhile, and the interrupt routine would handle a task 
that needed instant attention when some external event 
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occurred. Whenever using interrupts you need to make sure that 
the interrupt routine does not disturb the main program in any 
way. In this example the interrupt routine does not alter any 
registers that are used by the main program. In practical 
applications this will often occur though, and the interrupt 
routine must then store the data in any affected registers at the 
start of the routine, and restore the data to these registers just 
before returning from the interrupt. In most cases at least the W 
register will need to be saved and restored in this way. 

When using external interrupts on the INT pin it is 
important to bear in mind that this input, in common with most 
interrupt inputs, is not tolerant of noise on the input signal, or 
slowly changing input levels. The result in either case is likely 
to be multiple operations of the interrupt routine. Mechanical 
switches are notorious for spurious output signals caused by so-
called contact bounce, and this circuit therefore includes 
de-bouncing components (RI, R2, and Cl) plus a trigger circuit 
based on ICI. This should give a `clean' output signal that 
switches rapidly, which should in turn ensure that the count on 
the display only advances by one each time SI is operated. 

Note that the active transition on the INT input can be on 
the rising or falling edge of the input signal, depending on the 
setting of bit 6 in the OPTION register. Interrupts occur on the 
falling edge if this bit is set to 0, or the rising edge if it is set to 
I. Bit 7 of the OPTION register also has a function in the 
16C71. With this bit set to 0, the internal pull-up resistors on 
Port B are enabled, but they are disabled if this bit is set to I. 
Figure 5.11 provides details of the 16C71 OPTION register. 

The 16C71 supports three other sources of interrupts, which 
are TMRO, the analogue to digital converter, and Port B. TMRO 
can generate an interrupt when it overflows, and the analogue 
to digital converter can produce one when it completes a 
conversion. An interrupt can also be generated by a change in 
the logic level on RB4 to RB7. The interrupt control register 
has bits which enable the four types of interrupt to be 
individually enabled or disabled, and in each case a bit is set to 
1 to enable interrupts, and to 0 to disable them. There are also 
separate flags for each type of interrupt, and the appropriate 
flag must be cleared by the interrupt routine. The interrupt flag 
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for the analogue to digital converter is bit 1 of ADCONO, and 
it is not in the interrupt control register. 

Using the RTCC 
The circuit of Figure 5.12, in conjunction with the program 
provided here, acts as a simple seconds counter that utilizes the 
real-time clock counter (RTCC). 

;Seconds counter program using RTCC 
;************************************************* 

• 

PORTB EQU 06 

CNTR EQU OA 

RTCC EQU 01 

STATUS EQU 03 

EQU 02 

CLRW 

TRIS 06 :Sets B as outputs 

MOVLW 07 

OPTION ;Selects system clock with /256 

MOVLW 3F 

MOVWF PORTB Sets display at zero initially 

CLRF CNTR ;Sets counter at zero 

START CLRF RTCC ;Sets RTCC at zero 

BCF STATUS,Z ;Clear zero flag 

LOOP MOVLW OxFF ;LoadWwith 11111111 

XORWF RTCC,0 ;Checks to see if RTCC at max 

WIFSS STATUS,Z ;Loops until it is 

COTO LOOP 

INCF CNTR,1 ;Inclement counter 

MOVF CNTR,0 ;Load W from counter 

CALL TABLE ;Load W from lookup table 

MOVWF PORTB ;Output number to Port B 

COTO START 

MOVWF PORTB ;Output data to Port B 

COTO START 

TABLE ADDWF 02,1 ;Lookup table 

RETLW 3F 

RETLW 06 
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RETLW 5B 

RETLW 4F 

RETLW 66 

RETLW 6D 

RETLW 7D 

RETLW 07 

RETLW 7F 

RETLW 6F 

RETLW 77 

RETLW 7C 

RETLW 39 

RETLW SE 

RETLW 79 

RETLW 71 

END 

Much of the program follows along the same lines as 
previous examples, and we will therefore concentrate on the 
sections that deal with the real-time clock. The counter can use 
ihe divided by four system clock or external pulses on the 
RTCC pin as its signal source. In this case we require the 
system clock as the pulse source, and bit 5 of the OPTION 
register must be set to 0. We will be using the prescaler with a 
division rate of 256, which requires bits 0 to 2 of the OPTION 
register to be set to I. A value of 07 is therefore written to the 
OPTION register. the RTCC register is cleared, the zero flag is 
also cleared, and a value of FF ( 11111111 in binary) is loaded 
into the W register. The value in the RTCC register is then 
bitwise X0Red with the value in the W register, and the result 
is placed in the W register. This provides the complement of the 
value in RTCC, which will be zero only once the maximum 
count has been reached. The zero flag is tested, and the program 
loops until this flag has been set ( i.e. it loops until the RTCC 
register reaches its maximum count). The register containing 
the number to be displayed is then incremented, the appropriate 
7-bit value is obtained from the lookup table, and so on. 

The specified values in the C-R clock circuit result in the 
count incrementing at approximately one second intervals. In 
order to obtain precise counting it would be necessary to use a 
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crystal clock circuit and to experiment a little with the delay 
loop in order to optimise results. 

Two Digits 
This program, together with the circuit of Figure 5.13, acts as a 
simple 2-digit seconds counter. It requires a 16C55 so that the 
least significant digit can be driven from Port B, and the most 
significant digit can be driven from Port C. 

•************************************************* 

TWO DIGIT COUNTER PROGRAM 
;LEAST SIGNIFICANT DIGIT ON RBO TO RB6 
;MOST SIGNIFICANT DIGIT ON RCO TO RC6 

STATUS EQU 03 

EQU 02 

LNIBL EQU OA 

HNIBL EQU OB 

CNTR EQU OE 

PORTB EQU 06 

PORTC EQU 07 

PC EQU 02 

MOVLW OxFF 

MOVWF CNTR ;Load FF in delay counter 

CLRW 

TRIS 06 ;Set Port B as outputs 

TRIS 07 ;Set Port C as outputs 

START CLRF LNIBL 

CLRF HNIBL 

LOOP MOVF LNIBL,W 

BCF STATUS,Z 

XORLW OA 

BTFSC STATUS,Z ;Check if low nibble reached 10 

CALL PLUSH ;Zero and INC high nibble if it is 

MOVF LNIBL,W 

CALL TABLE 

MOVWF PORTB 

MOV HNIBL,W 

BCF STATUS,Z 
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XORLW OA 

BTFSC STATUS,Z ;Check if high nibble reached 10 

CLRF HNIBL ;Reset nibble if it has 

MOVF HNIBL,W 

CALL TABLE ;Load W with display data 

MOVWF PORTC ;Output data to Port C 

INCF LNIBL,1 ;Increment counter 

DELAY DECFSZ CNTR 

GOTO DELAY ;Delay before looping 

GOTO LOOP 

PLUSH INCF HNIBL 

CLRF LNIBL 

TABLE ADDWF PC, I 

RETLW 3F 

RETLW 06 

RETLW 5B 

RETLW 4F 

RETLW 66 

RETLW 6D 

RETLW 7D 

RETLW 07 

RETLW 7F 

RETLW 6F 

END 

There is a slight problem when producing a 2-digit counter, 
which is simply that the display is really a type of BCD circuit, 
and it requires its raw data in BCD form. This data is then 
converted into 7-bit codes that can be used to drive the displays 
with the right numbers. Either a direct binary count must be 
converted into an equivalent BCD type, or the program must 
keep the count in BCD form so that no conversion is necessary. 
Where possible, it is better to work in BCD form right from the 
start so that complex conversions are avoided. This is the 
method used here, with the counts for the two digits being held 
in LND3L (low nibble) and HNIBL (high nibble). 

The low nibble is incremented by one on each loop of the 
program, but a check is made to see if the count has reached 10 
(decimal), since 9 is the highest count that can be 
accommodated by one BCD digit, and by each 7-segment 
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display. The low nibble is X0Red with a hexadecimal value of 
OA (equivalent to 10 in decimal), and this gives a result of zero 
only if the count is at OA. If a value of OA is detected, the low 
nibble is reset to zero and the high nibble is incremented. A 
check has to be kept on the value in the high nibble as well, 
because this must not exceed 9 either. This is achieved using 
basically the same routine, and when a value of OA is detected 
the high nibble is reset to zero. There is no third digit, and once 
the count has reached '99' the count and the display go back to 
'00' and start counting up once again. 

It would be possible to extend the count to more digits, but 
it would be necessary to use multiplexing techniques. This is 
the only way to provide enough outputs to drive more than two 
digits. Even with just a 2-digit display, a 16C55 is needed to 
provide the fourteen outputs that are needed. Another file 
register would be allocated to the value for the third digit, and 
this would be incremented each time the second digit was reset 
to zero. The third digit would, like the other two, have to be 
reset to zero when the count reached OA. If the second digit was 
reset when a count of six was reached, the display would count 
in minutes and seconds. One of the main advantages of using 
microcontrollers is that the system is easily adapted to handle 
this type of thing. It is often possible to find software solutions 
rather than having to add extra hardware. 

Finally 
Before trying to produce 'proper' PIC projects it is a good idea 
to make some experiments with simple programs. Try writing 
routines to drive 7-segment displays, detect when the analogue 
input is between certain voltages, and things of this type. This 
will build up valuable experience which will help you to write 
the software for real world applications. You will also build up 
a library of useful routines that can be modified for use in 'real' 
programs. 
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Appendix 1 

ELECTRICAL RATINGS 

These are the supply voltage ranges for PIC microcontrollers. 

Device Type Min Supply V Max Supply V 

XT 3.25 6.25 
RC 3.25 6.25 
HS 4.5 5.5 
LP 2.5 6.25 

Note that in the LP, RC, and XT modes the 16C71 should be 
used with a supply potential in the range 4.0 to 6.0 volts. 

Provided a 5 volt supply is used, the digital inputs and 
cutputs of the PIC processors are compatible with TTL devices, 
and they also seem to interface with CMOS logic devices 
reliably. It is possible for an output to source currents of up to 
20 milliamps, and sink currents of up to 25 milliamps. 
However, the maximum source and sink currents per port are 
40 and 50 milliamps respectively, and this would normally be 
tie limiting factor. 

The supply current depends on the type of device and its 
operating frequency. For XT and RC devices operating with a 
clock frequency of 4MHz, the typical current consumption is 
jast 1.8 milliamps (3.3 milliamps maximum). The consumption 
for an HS device operating at 20MHz is 9.0 milliamps (20 
milliamps maximum). Operation at lower frequencies gives 
reduced operating current, and the typical current consumption 
at 100kHz is a little under 100 microamps. An LP device 
operating with a 32kHz clock typically consumes just 15 
microamps (32 microamps maximum). Bear in mind that these 
figures are for the current consumption of the chip itself, and do 
not take into account any output currents to displays, relay 
drivers, etc. If the chip is used to drive three or four 7-segment 
displays the current consumption will obviously be many times 
higher. When a device is in the SLEEP mode the current 
consumption is typically just 4 microamps with the watchdog 
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timer enabled, or 0.6 microamps (9 microamps maximum) with 
it switched off. The analogue to digital converter of the 16C71 
consumes about 90 microamps when enabled, and does not 
significantly increase the supply current when it is switched off. 
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