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Innovation and Industrial Expansion 

To the economist the electronics industry in Great Britain and in other major industrial countries presents a 
paradox. It is, relatively speaking, a labour-intensive sector of manufacturing industry, despite the extension 

of automated production methods, and while most labour-intensive industries should display low overhead 
costs per unit of output, this is not the case in the electronics industry: its problem lies in its high rate of tech-
nological advance and innovation which call for far greater capital and current expenditure on research and 
development. In discussing the implications of this state of affairs the recently published Economic Assessment 
Report of the Electronics EDC* points out that the industry is hampered by the exclusion of R & D expenditure 
from the Government's investment grant scheme. The significance of this may be seen from the EDC's cal-
culation that R & D costs in electronics are approximately five times as important in relation to conventional 
capital investment as the average for manufacturing industry. ' 

The key to prosperity of the electronics industry is seen in the Report to be the encouragement of innovation 
but, in looking forward to the 1970s, concentration of effort over a more limited range of activities is regarded 
as essential. This calls for identification of areas and formulation of policies to assist industry in their develop-
ment, processes which must take place both within firms and between industry and government, and the Report 
recalls some of the ways in which the Ministry of Technology has acted in recent years. 

Computers have been the object of considerable industrial reorganization and this seems to have been success-
ful in promoting central processor production and sales; there is, however, a serious need to expand production 
and sales of peripheral equipment for which the industry still depends heavily on imports. By contrast, while 
British companies have not been laggard in innovations in industrial automation systems, yet the Report is 
forced to point out that the market is at present only a quarter of the size of the computer market and has 
hardly grown in the last three years. Clearly this calls for co-operation between manufacturers, users, trade 
unions and government to build up a home base for what will be a world-wide growth area in the coming decade. 

The EDC's Report finds that in general the telecommunications industry is improving its competitive strength, 
although it is suggested that the well-developed telecommunications network in the U.K. has tended to reduce 
the incentive to the industry to produce the most modern equipment required by those countries now building 
up their own networks. The association with the computer industry through the expansion of data transmission 
services is an important factor in promoting the spread of technological innovation and developments. 

Because electronics is essentially in the role of a service industry to marine technology and depends on decisions 
to innovate and exploit resources that must be taken in other industries, the potentialities of electronic tech-
niques have been realized rather slowly. The Report pays tribute to the stimulation which has been given in 
this direction by professional society activities such as the I.E.R.E. Conference on Electronic Engineering in 
Oceanography in 1966; a second Conference, on Electronic Engineering in Ocean Technology in September of 
this year, will give further support to Governmental efforts such as are provided by the Interdepartmental 
Advisory Committee on Marine Technology and by the National Electronics Council. 

Several other areas for concentration of effort are identified in the Report—for instance integrated circuits 
and medical electronics. The policies for finding financial resources to maintain internationally competitive 
capability in all these sectors are seen to fall into the categories of tax concessions, direct grants and non-
commercial loans, as well as market enlargement based on a large rapidly growing home market. These points 
have recently been made with some feeling by the Electronic Engineering Association. Innovation clearly 
cannot flourish without adequate financial backing—nor, we may add, without adequate manpower 
resources, another thorny subject which the Electronics EDC is investigating and will report on later this year. 

F.W.S. 

* 'Economic Assessment to 1972. Industrial Report by the Electronics EDC. Published by the National Economic 
Development Office, Millbank Tower, London, S.W.1. (Free). 
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INSTITUTION NOTICES 

Appointments to the Indian Council 

The following appointments were made by the 
Indian Council at its meeting in February 1970: 

Professor K. S. Hegde, M.A., B.E. (Fellow), of the 
College of Engineering, Madras, succeeds Professor 
J. N. Bhar as Chairman. Dr. A. N. Daw (Member) 
of the Institute of Radio Physics and Electronics, 
Calcutta, succeeds Mr. C. P. Joshi as Honorary 
Treasurer. Air Vice-Marshal K. Narasimhan, B.A. 
(Member), Director of Signals at Air Headquarters, 
Ministry of Defence, joins the Council. 

Postponement of London Meeting 

The joint meeting of the I.E.R.E. and I.E.E. Com-
puter Groups announced for Wednesday, 27th May 
has been postponed. This Colloquium on Economics 
of Computer Maintenance and Operation will, it is 
hoped, be included in the Programme of Meetings 
for the 1970-71 Session with a slight change of 
emphasis in its theme. Offers to contribute to this 
Colloquium will be welcomed by the Joint Committee 
and should be sent to the Secretary of the Computer 
Group Committee, I.E.R.E., 9 Bedford Square, 
London, WC! B 3RG. 

Cancellation of London Engineering Congress 

The Council of Engineering Institutions has 
announced with regret that LECO 70 (which was to 
have been held from 4th to 7th May next) has been 
cancelled. Whilst interest had seemingly been high 
with a very brisk demand for information, the number 
of registrations received by the end of March was 
judged unlikely to have led to sufficient delegates to 
make the Congress viable as planned. 

Reprints of Journal Papers 

Reprints are prepared of all papers published in 
the Journal and copies may be obtained from the 
Institution, price 5s. Od. each (post free). Requests 
for reprints may be made using the form which is 
included in the end pages of most issues of the 
Journal. It is particularly asked that remittances be 
sent with orders to avoid book-keeping entries and 
thus reduce handling costs. 

Institution Giro Account 

Members are advised that for the convenience of 
those who wish to remit their annual subscriptions 
and other payments through the National Giro, the 
Institution now has a Giro account. The number is 
578 0101 and it may be used in precisely the same 
manner as any other Giro transaction. 
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Conference on Laboratory Automation 

In recent years, automatic techniques have been 
introduced into many laboratories to speed up 
experimental and analytical procedures, and to 
reduce time spent by staff on repetitive work. On-line 
computers have been installed, facilitating the hand-
ling of large quantities of data, with immediate 
processing and presentation to the experimenter. In 
some cases, the computers have been used to control 
the actual experiments, for example the movement of 
a set of detectors to new, accurately controlled 
positions when sufficient data have been accumulated. 
Automatic equipment has been designed for carrying 
out chemical and biochemical analyses on a large 
number of samples simultaneously, such as blood and 
urine in a pathological laboratory. Similar applica-
tions have occurred in other research laboratories. 

A Conference on Laboratory Automation has 
therefore been arranged to bring together workers 
who are already applying automatic techniques in 
their laboratories, or who may be interested in so 
doing, and designers and manufacturers of such 
equipment. 

Organized by the Institution of Electronic and 
Radio Engineers with the association of the Institu-
tion of Electrical Engineers, the Institution of Chemi-
cal Engineers, the Royal Institute of Chemistry, the 
Institute of Physics and the Physical Society and the 
Institute of Measurement and Control, it will be 
held at the Middlesex Hospital Medical School, 
Cleveland Street, London, W.1, from Tuesday, 10th 
November to Thursday, 12th November, 1970. 

The main themes of the Conference will be Auto-
matic Analysis and Computer Controlled Experiments, 
and will include: 

Sensors and measurement techniques 
Automatic tests and calibration 
Data acquisition 
On-line data reduction, presentation and analysis 
Control techniques and instrumentation 
Automatic sample preparation and handling 
Automatic sample processing and dispensing of reagents 

The term 'Laboratory' is intended to cover scientific 
observatories and routine testing laboratories as well 
as research and development laboratories. It is hoped 
to receive papers from workers in many fields, 
including geophysical, agricultural, chemical, bio-
chemical, nuclear, electrical, rubber and building 
laboratories. 

Synopses of proposed contributions are invited 
and should be sent to the I.E.R.E. as soon as possible. 
Further information and registration forms for the 
Conference will be available in due course from the 
Conference Registrar at 9 Bedford Square, London 
WC1B 3RG. 
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The Synthesis of Asynchronous Digital 
Pattern Generators 
By 

M. C. WATERS. B Tech. t 

and 

D. P. BURTON, Ph.D., M.SC.4 

The paper describes a method for designing circuits which generate pre-
determined digital waveforms when triggered by an input. To do this an 
asynchronous sequential machine is caused to move through a number of 
states under its own control. Individual portions of the waveform can 
be adjusted without interfering with the rest of the output sequence. The 
circuit can also be made to give different output sequences for different 
inputs. 

1. Introduction 

Many digital processes require a circuit which 
generates predetermined waveforms when triggered by 
an input signal. This paper considers the flow table 
structure of such devices and gives a general design 
method. The principle used is to introduce a series 
of multiple transitions into an asynchronous sequential 
machine by using delayed feedback from output to 
input. Lewin' has described a method for using the 
transition time of an asynchronous machine to 
produce a delay which is a function of the gate 
propagation time. However, gate delays tend to 
drift and the present system overcomes this problem 
by controlling the transition time with delays external 
to the machine. Figure 1 shows a schematic diagram 
of the pattern generator which is composed of a 
sequential machine and one or more feedback delays. 
The delay can be a simple CR network, a self-
controlled shift register or any other device which 
can effectively delay the rise and fall of a single pulse. 

2. Basic Principles 

Suppose two pulses of known width are to be 
generated from a single poorly defined input pulse as 
shown in Fig. 2(a). Figure 2(b) gives the flow table 
of an asynchronous machine which will perform this 
function; the single output Z is fed back through a 
delay t to the input. 

Let the machine be in stable state 1 with x and Z 
equal to '0' and let x now change to ' 1'. The machine 
will move to state 2 as defined by input column 10. 
For state 2 the output Z is ' 1' and after passing 
through the delay it will arrive at the input. The 
machine now has inputs Z = ' 1' and x = '0' or ' 1' 
and this causes the machine to move to state 3. In 
state 3 the output goes to '0' and after a delay will 
change the machine into state 4. Here again the output 
alters and the device goes to state 5. At this stage the 
machine remains in state 5 until x returns to '0'. If x 
has gone to '0' during the transitions the machine 
transits to state 1 after the output for state 5 has 

t Department of Electronics, University of Southampton. 
Formerly at the University of Birmingham; now with 

Husband & Co., 388 Glossop Road, Sheffield, SIO 2JB. 
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reached the input. Thus each input pulse generates 
two output pulses whose width is primarily governed 
by the feedback delay. 

In effect the machine oscillates through a number 
of states and the oscillating variable, in this case, 
performs the dual purpose of being the output and 
providing the 'clock' pulse for initiating changes of 
state. By varying the delay the pulsç width can be 
adjusted. This type of pulse multiplier flow table can 
be generalized for any number of output pulses. 
Rows 1 and 5 represent the starting and finishing 
rows respectively and appear at the top and bottom 
of every flow table of this type. The remainder of the 
flow table is of conventional binary counter form 
with the sole exception of the 'don't care' state in 
row 2. /t is well to consider how this 'don't care' 
state can be used. If the entry is assigned as a transition 
to state 1 then the input x must be ' 1' at least until 
the machine has entered state 3; this implies a 
minimum input pulse width of (r+S), where (5 is the 
transition time of the sequential machine. But if the 
entry is filled in as a stable state 2 then the next input 
pulse need only be long enough to take the machine 
into state 2, which can be as little as three gate delays. 
Figure 3 shows the general form of a pulse multiplier 
flow table. The number of states in the flow table is 
equal to (2n+ 1) where n is the number of output 
pulses required from the machine. 

3. Extensions of the Method 

So far only tables with one input and one feedback 
delay have been considered. In this Section examples 
are used to show how the procedure can be extended 
to the design of pattern generators which give different 
outputs for different inputs and those which use more 
than one delay. 

Figure 4 shows the flow table for a circuit which 
gives three output pulses if x1 is put to ' 1' and two 
output pulses if x2 is triggered. It is assumed that 
x1 and x2 are mutually exclusive and that a second 
trigger pulse does not occur until the machine has 
completed the transitions in hand. If x is put to ' 1' 
the machine successively moves through states 1 to 7 
generating three output pulses in the process, but if 
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INPUTS 

Fig. 1. System model. xi,x2, 

x2 is put to ' 1' the machine 'jumps' to state 4 before 
beginning its series of transitions. 

More flexible behaviour can be obtained by using 
a number of feedback delays and Fig. 5(a) shows the 
flow table for a pattern generator which uses two 
delays Ti and T2; Z 1 is fed back via t1 and Z2 via 
T2, Z 3 is the pattern output and its theoretical shape 
is shown in Fig. 5(b). If 1.1 is altered only those parts 
of the waveform that depend upon t1 are changed 
and similarly for t2. The circuit is primarily intended 
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Fig. 2. Pulse multiplier. 
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Fig. 3. Generalized pulse multiplier flow table. 
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to function for the case when t2 is greater than t1 
and a series of possible transitions made by the 
machine under these circumstances is shown by the 
arrows in the right-hand half of the flow table. 

Suppose that the machine is stable in state 1 and 
all inputs are at '0'. Now let x go to ' 1' and remain 
so for the rest of the transitions. In this way the 
discussion of the circuit's behaviour is restricted to the 
right-hand half of the flow table although in fact it is 
only necessary for x to be at ' 1' long enough for the 
machine to get into state 2. To continue: the x change 
causes the machine to enter input column 100 where 
it makes a transition to state 2. In state 2 outputs 
Z, and Z 3 go to ' 1'. The machine remains in state 2 
for time r1 until the Z, change reaches the input, 
whereupon it moves to input column 110 and goes to 
state 3 causing Z, to return to '0' and Z2 to change 
to ' I'. For a time neither of these changes will reach 
the machine's input and the circuit will be stable for 
input 110. Eventually the Z, change will arrive 
(assuming T, < T2) and the machine will move to 
column 100 which is also stable for state 3. When the 
Z2 signal gets to the input the machine moves to 
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Fig. 4. Pulse multiplier with two inputs. 
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Fig. 5. Pattern generator using two delays. 
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column 101 and there then follows a series of tran-
sitions through states 4 and 5 to 6 under the control 
of Z2. In state 6 Z2 returns to '0' for the last time and 
Z1 is made to go to ' 1'. Since T1 < T2 the Z1 change 
will reach the input first, giving input 111 and taking 
the machine into state 7. This causes Z1 to go back 
to '0' and the machine comes to rest in column 100 
when Z1 and Z2 have finally returned to '0'. To take 
the machine back to state 1, x must be returned to '0'. 
There are no restrictions on the relative magnitudes 
of the two delays provided r1 4 r2 but if rl > r2 
then they are limited to a maximum ratio of r1 = 3r2, 
as is shown in the next paragraph. 

The arrows in the left-hand half of the flow table 
cover the case when r1 > r2 and to limit the discussion 
to this section of the table it is assumed that x is ' 1' 
just long enough to get the machine into state 2 and 
then it goes back to '0'. In state 2 Z1 is made to go 
to '1' and after time r1 the machine transits to state 3 
where Z1 is returned to '0'. Meanwhile Z2 is put to 
'1' and when this reaches the input it takes the 
machine to state 4. Z2 now changes and eventually 
takes the machine to state 5. State 6 can only be 
reached if the Z2 input is ' 1' and that for Z1 is 13'; that 
is, by the time Z2 has completed three transitions at 
the input, Z1 must have returned to '0'. If r1 is longer 
than 3r2, then the machine will temporarily reside in 
state 5 with input 011. This has no serious effect but 
the portion of the waveform marked 'A' will now be 
of length z 1 —21.2 instead of the desired r2. Should 

April 1970 

INPUT X 

OUTPUT Z3 

it be necessary to accommodate the case when 
> 3T2, then it can be done by using a slightly 

different flow table. 

It is evident that if delays r1 and r2 are made 
variable the simple machine illustrated can generate 
any pulse pattern within the range defined above. 

More sophisticated machines to generate variable 
length patterns consisting of different width pulses, as 
might be used for microprogram control and digital 
equipment testing, can be constructed by using a 
combination of the techniques presented. The design 
of these extended machines is the basis of further 
study. 

4. State Assignment and Derivation of 
Excitation Equations 

From the flow table it is necessary to derive a 
suitable coding from each row of the table. This 
process is known as state assignment and is one of the 
most difficult problems in asynchronous sequential 
machine synthesis. For the present application it is 
required that the output pulse widths shall primarily 
be determined by the delays. Therefore the transitions 
made by the machine should be completed as quickly 
as possible. The problem of designing sequential 
machines so that they respond in minimum time has 
been investigated by Tracey2 and Burton3.4 and it 
is suggested that their procedures be used. The 
derivation of the assignment for the flow table of 
Fig. 5 is given in the Appendix. Having obtained a 
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suitable assignment, the excitation equations have to 
be derived. Probably the best way of rearming an 
asynchronous machine is to use R—S flip-flops since 
these are less susceptible to static hazards; for further 
details on deriving the set and reset equations the 
reader is referred to reference 5. 

The synthesis of the flow tables required to describe 
the larger and more sophisticated versions of the 
proposed machines becomes a very lengthy procedure 
and it is suggested that computer-aided synthesis 
techniques be used, such as those being developed by 
one of the authors.8 

It is possible that essential hazards may be present 
in the output feedback paths of the class of circuits 
under discussion. Unger6 has proved that essential 
hazards cannot be eliminated by logical means and 
reliable operation can only be ensured if all feedback 
paths contain a delay which is greater than the 
maximum path length through the machine. With 
reference to the present work Unger's theorem places 
a lower bound on each delay of (5„,.„, where 45.,.„ is 
the maximum transition time of the machine. In 
practice essential hazards are rarely troublesome and 
for this application it is unlikely that a delay will ever 
be as small as Smax. 

5. Delay Elements 

The above discussion has been in general terms so 
as to permit the use of any type of delay element. 
Ideal delay units, that is ones which exactly reproduce 
the input at their output, are difficult to make and 
expensive. A much easier approach is to use a simple 
CR network with a little reshaping circuitry. If a 
linear relationship is required between pattern width 
and a controlling resistor then it is suggested that the 
network proposed by Clarke' be used. For long 
delays it becomes difficult to ensure stability and the 
principles already described can be used to produce a 
circuit which effectively 'multiplies' a given delay. 

2 

3 

4 

6 

I 

X 21 

00 0 I II 10 21 27 

3 

O 

5 

® 6 

I ® 

2 

O 

4 

O 

Q 

o 

o 

o 

o 

o 

o 

Fig. 6. Delay multip ier. 

INPUT 
ASYNCHRONOUS 

SEQUENT IAL 

MACHINE 

OUTPUT 

ASY NC HRCNOU S 

SEQUENTIAL 

MACHINE 

BASIC 

DELAY 

ELEMENTS 

DELAY MULTIPLIER 

Fig. 7. Pattern generator using delay multiplier. 

Figure 6 gives the flow table for a single delay 
pattern generator which uses Z, as the feedback 
variable and Z2 as the pattern output. Z2 corresponds 
to a delayed form of the input. Suppose the circuit 
is initially in state 1 with both inputs at '0'. Now let 
x go to ' 1' whereupon the machine goes to state 2. 
From state 2 the machine makes a series of transitions, 
under the control of Z1 and the feedback delay, to 
state 4. In state 4 the machine comes to rest and the 
output Z2 goes to ' 1'. State 4 will be held until x 
returns to '0' initiating a series of transitions through 
5 and 6 to state 1 where Z2 goes to '0'. The circuit 
therefore multiplies the feedback delay by two. 

Longer and variable delays can be produced by 
using larger and more sophisticated flow tables. 
Figure 7 shows a system diagram for a pattern 
generator whose delay element is itself an asynchronous 
sequential machine. Clearly the delay multiplier 
could use another multiplier to provide its own delay. 
Consider the case where the delay for one unit is 
furnished by another delay multiplier. Let the first 
stage multiplier multiply by a factor n1 and the 
second by n2. Then the total effective delay is 
n2. [n,(r + 1) + 2] where is the transition time of 
the first machine and 52 that for the second. The 
percentage error is given by 
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Fig. 8. Logic diagram for pattern generator. 
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Thus it becomes more and more important to use 
minimum transition time machines as the number 
cascaded increases. 

6. Design Example 

To demonstrate the principle in a practical circuit, 
we return to the flow table of Fig. 5(a). Using Tracey's 
procedure (see Appendix) the following state assign-
ment can be derived: 

Y, TO 

DELAY 

1 

72 TO 
DELAY 

2 

OUTPUT 

State Y1 Y2 Y3 Y4 Y5 
1 0 1 0 1 1 
2 0 0 0 0 1 
3 0 0 1 0 1 
4 1 0 1 0 0 
5 1 0 1 1 
6 0 1 1 1 0 
7 0 1 0 1 0 

and from the assignment the flip-flop set-reset 
equations can be obtained: 

Y set = Y4 • Z2 
Y I reset = Y4 • Z 1 • Z2 
Y2set = Y4 • Z1 • Z2 

Y2reset = x • Y5 • Z2 

Y3set = Y2 • Z I 

Y3reset = Y2 Z1 

Y4set = Y1 Z2 
Y4reset = Y5 • X • Z2 

Y5set = r( • Y3 • Z1 * Z2 

Y 5reset = Z2 

Z 1 = Y2 Y3 ± Y2 • Y3 

Z2 = Y3 • Y5 + Y4. Y2 

Z 3 = Y2 Y3 ± Y2 * Y3 + Y4 • Y5 
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Input x 

Output Z3 

Y1 

Y2 

Y3 

Y4 

Ys 

Fig. 9. Pattern generator waveforms. 
Horizontal scale is 11.1s/div. 

For the procedures involved in making this step the 
reader is again referred to references 2 to 5. Figure 8 
shows a logic diagram for these equations and Fig. 9 
gives sample waveforms obtained from the circuit. 

7. Conclusions 

it has been shown that by introducing multiple 
transitions into an asynchronous sequential machine 
it is possible to produce flexible pattern generators 
which can be triggered from poorly defined input 
pulses. By using suitable state assignments, fast 
economical designs can be obtained which may be 
realized with any type of logic device. A particularly 
useful feature is the ability to generate patterns which 
can be adjusted in sections without interfering with 
the rest of the waveform. In total the paper presents 
a systematic procedure for designing pattern generators 
as opposed to the more usual heuristic methods. 
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10. Appendix: Derivation of State assignment 
for Flow Table of Fig. 5 

Using Tracey's Assignment Method 2 the partition 
pairs of k-sets listed below are derived. 

= {(1, 7); (2)} 7t13 

nia 
ir3 = {(1, 7); (4, 5)1 ni 5 
it4 = {(1, 7); (6)) 7[16 

its = {(2); (3)) 
--= {(2); (4, 5)1 ni 

r = {(2); (6)} nt9 
ir8 = {(3); (4, 5)} 7E20 

7t9 = {(3); (6)1 

nio = ((4, 5); (6)) n22 

= {(3, 4); (5, 6)} /r23 

ni2 = {(3, 4); (7)1 

= {(5, 6); (7)1 
= {(2, 3); (4, 5)1 

{(2, 3); (6, 7)1 
= {(4, 5); (6, 7)} 
= {(3, 4); (5)} 
= {(3, 4); (6, 7)} 
= {(5); (6, 7)} 
= {(1, 2); (3)1 
= {(1, 2); (4, 5)} 
= {(1, 2); (6)1 
= {(1, 2); (7)} 

and the following partition pairs cover all those given 
above 

{(1, 2, 3, 6, 7); (4, 5)1 > eir7r 10, 14, 7r Tt 3, 6, 8, 16, ir21 

{(2, 3, 4, 5); ( 1, 6, 7)} > It 7t ir lt 1> 2, 3, 4, 12, 13, 159 

n16, nis, ni9 
«1, 2, 7); (3, 4, 5, 6)1 > ir ir tit 5, 6, 7, 12, 20, 21, 22 
{(2, 3, 4); (1, 5, 6, 7)1 > 7t 7t 7t it It r 1, 2, 7, 9, 10, 11, ir 12, 

nis, n17, nia 
{(4, 5, 6, 7); (1, 2. 3)} > ir It 7t 6, 7, 8> 9, 14, ir 15, ir2 , 

n23 

Therefore the state assignment is: 

State 
1 
2 
3 
4 
5 
6 
7 

Y2 
1 
o 
o 

Y3 Y4 Y5 
1 1 
0 1 
0 1 
0 0 
1 0 
1 0 
1 0 

For further details of the state assignment procedure 
the reader is referred to reference 2. 

Manuscript first received by the Institution on 4th June 1969 and 
in final form on 9th January 1970. (Paper No. 1313ICC70.) 
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Reprinted from the Proceedings of the LE.R.E. Conference on 'Lasers 
and Opto-Electronics' held at the University of Southampton on 
25th to 28th March 1969. 

Curve sets are presented for the design of collinear travelling-wave light 
modulators using ICDP, KDA, ADP(r63), ADP(r41), LiNb03, LiTa0, 
as electro-optic materials. The transverse dimensions ratio, the charac-
teristic impedance and the bandwidth-length product are plotted versus 
the velocity mismatch. The attenuation of modulating signal is plotted 
versus mismatch for the peak voltage and modulating power for different 
lengths of the electro-optic materials. Examples of the use of these curves 
are reported. 

1. Introduction 

The use of laser generated coherent light with its 
potential applications to communications can be 
fully realized only if the possibility of modulating the 
laser beam with a very broad band sub-carrier can 
be achieved. 

Considering the problems related to electro-optic 
modulators, the most severe limitations are the band-
width and the modulating power. The most interesting 
technique is the travelling-wave modulator. While 

• its non-collinear geometry offers considerable freedom 
in design, it is strictly limited by technical difficulties. 
On the contrary, collinear geometry, in spite of some 
theoretical limitations, is very attractive. 

As it is known, a wideband light modulator has 
to be a structure with little or no dispersion over the 
modulation bandwidth; furthermore the matching of 
the velocity of the modulation to the velocity of the 
light in the crystal is required. 

Several travelling wave modulators have been 
constructed and described already.12'3 Kaminow 
and Liu have shown the possibility of obtaining a 
broadband structure with parallel microwave and 
optical wave vectors by partially filling the cross-
section of a two-conductor line with the electro-

• optic medium and partially with a low-loss material 
(Fig. 1).4 

The purpose of the present paper is to obtain a 
curve set for the most used electro-optic materials 
by which to deduce the principal modulation 
characteristics of a modulator with stated dimensions 
or, alternatively, to design the modulator dimensions 
in order to obtain the requested modulation charac-
teristics. 

t Istituto di Elettrotecnica, Facoltà di Ingegneria, Università 
di Napoli, Italy. 

Formerly at the Istituto di Elettrotecnica; now with 
Pennitalia S.p.A., Fuorni, Salerno, Italy. 
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(a) 

2. General Theory 

Broadband modulation requires the modulating 
structure to have a low optical and microwave 
dispersion, which implies propagation in a TEM or 
TEM-like mode. 

Neglecting the optical dispersion, this requirement 
is: 

Vim = Vim  

which is equivalent to 

avr. 

aw. 

In these equations vim is the microwave group 
velocity, vim the microwave phase velocity and con, the 
angular frequency. 

In addition, to obtain the cumulative interaction 
between the microwave and optical travelling waves, 
the microwave velocities must be equal to the com-
ponent of the optical group velocity, taken along the 
microwave vector.' These requirements can be 
satisfied in a simple structure such as the one studied 
by Kaminow and Liu (Fig. 1). In this structure, 
having relative dielectric constants in the ratio: 

(1) 

—82 > 10 

81 

= 0.  (2) 

and a practical width d of 2 mm, they proved that the 

(b) 

Fig. 1. Light propagation in collinear configuration (a) and the 
waveguide cross-section (b). 
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Table 1. Properties of various dielectric materials''' 

Material no 
VA/ 2 
(kV) 

BI 
E2 tan (5 Z0(S2) (GHz.cm) (GHz) 

KDP 

KDA 

ADP(r63) 

ADP(r41) 

LiNb03 

LiTa03 

GaAs 

ZnTe 

1.51 

1.57 

1.53 

1.53 

2.28 

2.17 

3.42 

2.91 

8.40 

6.50 

16.30 

7.70 

3.15 

2.35 

12.10 

21 0-0075 

19 0.0080 

14 0-0060 

58 0.0070 

28 0.010 

43 0.010 

11 0.0010 

10 

82.3 

86.5 

100.8 

49.5 

71.3 

57.5 

113-8 

119.2 

4-04 

4.45 

5.60 

2.04 

3.75 

2-83 

124 

48.3 

0.269 

0.296 

0.373 

0.136 

0.250 

0.188 

8-26 

3.21 

effective index of refraction for the transmission line 
is practically constant over a bandwidth of some 
gigahertz provided that ir\/(£2)dbl,„ 4 1, this expression 
being proportional to the width of the electro-optic 
medium measured in wavelengths in this medium. In 
these circumstances the field distribution in the 
dielectric material is uniform and TEM-like propaga-
tion occurs. 

The velocity matching is obtained with a proper 
choice of the filling factor: 

d 1 

TV= 
on which depends the refractive index of the line. 

3. Design Considerations 

When C = 1 we have the typical structure with 
uniform field distribution in the modulating medium 
and propagation in the TEM mode. 

However, the different values of the dielectric 
constant at optical frequencies and at microwave 
frequencies cause bandwidth limitations due to the 
transit-time. The highest modulation frequency, 
f„,„„ =---B, is defined as 

2n•fma.1.182 - no1.1 - 1 3  (3) 
2c 

where / is the length of the modulator and c the 
velocity of light in the vacuum. 

Using the values given in Table 1, it will be noticed 
that, for many media, the bandwidth is limited to 
some hundred megahertz, for a modulator length of 
about 15 cm. The characteristic impedance given in 
Table 1 is the intrinsic impedance of the medium 

no 377 
Z0=-=-- ohms = - = - 

Nie2 Ji 

where /0 = 377 ohms is the free space impedance. 

When C > 1 and in the lowest frequency region 

186 

where the line is not dispersive, the refractive index is 
given by: 

N = {-1 [ci(W-d)+82.c/]}.  (4) 

The velocity matching condition is 

N = no 

and from (4) 

W 82 - 1  
 (5) d nt -el' 

If the low-loss dielectric (medium 1) is air, equation 
(5) becomes: 

W ex - 1 

which indicates the ratio of dimensions to obtain the 
matching condition. 

Using KDP and KDA, C'••• 12. 

For d = 2 mm, from the curves of Kaminow and 
Liu, we obtain the frequency at which the line becomes 
dispersive, namely 

fma.D 3 GILL 
In the region below 

impedance is given by: 

flo - W 
Zo = 

fma. D, the 

1 
o Iv 2 1 • d 

± 

(5a) 

characteristic 

- /0. b  (6) 

NW 

po being the permeability of the vacuum. 

In equation (6) we can fix N, and then W, to obtain 
the velocity matching; the distance between the two 
conductors b is chosen to obtain the desired charac-
teristic impedance for the transmission line. 

For example, using KDA, for the matching con-
dition we have C = 12.4 and, if we state 50 ohms for 
the characteristic impedance, b will be 5.2 mm. Such 
a design will be very convenient for bandwidth and 
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for the value of the characteristic impedance, but not 
with respect to the modulating power. 

In fact, in the hypothesis of uniform field in the 
cross-section of the transmission line, the ratio 

d 1 
- 

W 

represents the fraction of the incident power which 
will be in the electro-optic medium. In the above 
example, 1/C = 0.08; this is the price paid to obtain 
an increased phase velocity of the modulating signal. 

Furthermore equation (6) shows that the charac-
teristic impedance Zo increases proportionally to b, 
just as the voltage necessary to obtain a stated 
modulating field increases. 

Keeping in mind the expression of the power, 

 (7) Zo 2Z0 

it means also that the modulating power increases 
proportionally to b. 

Subsequently it is convenient to state the lowest 
value for the dimension b that is compatible with the 
angular width of the optical beam and the technical 
difficulties. 

Moreover, considering the curve set of Kaminow 
and Liu, it is convenient also to have the lowest 
value for the dimension d, for dispersion calculations. 

In practice it is convenient to state that b = d. 
Therefore, once we have stated the parameter 
C = Wld for matching, the characteristic impedance 
is obtained. 

So equation (6) becomes 

lod 
Zo  NW = NC 

In the former example, it gives: 

Zo = 19.5 ohms. 

Therefore considerations of modulating power, 
characteristic impedance and power ratio 1/C, suggest 
the introduction of some mismatch between the 

• velocities. 

• 

(6a) 

4. Design Curves 

Considering several modulators having a mismatch 
X = N -no > 0, with the air as a matching medium 
(el = 1) and b = d = 2 mm, a first set of curves 
giving the following characteristics for five of the 
materials listed in Table 1 are shown in Figs. 2(a)-
7(a) : 

= - =  
d (X + Y)(X + T) 

where K = 82-1, Y = no+1, T = no-1. 

(7a) 

7 no 377 (X+ Y)(X+ T) (ohms)  (7b) 
-0 = NC = K (X +no) 

12.4 
I.B = —x  (GHz. cm)  (7c) 

where / is the length of the modulator and B is the 
transit-time cut-off frequency. 

x? 
(OHz.cm) 

144 

132 

120 

108 

96 

84 

72 

60 

48 

36 

24 

12 

o 

4 
(n) 

54 

48 

42 

36 

30 

24 

18 

12 

6 

o 

P,,, 

(V11) (V) 

54 

48 

42 

36 

30 

24 

18 

12 

6 

o 

60 

48 

36 

24 

12 

• ? = 10 , 
? — 10 

• 

- 12 

14 

12 16 

.._   

18  

14 20 

16 

18 

20 

o 

d 

12 

10 

8 

6 

4 

2 

d 

Bx? 

04 08 12 

(a) 

1 6 X 20 

02 0.4 06 

(b) 

08 x 10 

Fig. 2. Curve set for KDP. 
(a) Dimensions, impedance and bandwidth. 

(b) Modulating power and peak voltage versus velocity 
mismatch X. 
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Equation (7c), as equation (3), comes from the 
general expression of the phase retardation in the 
modulator: 

= r0 eXp 

sin2 + sinh2 °c"1 
Œm .1\  2 2  

2 031\2 am . /\ 

2 

B x1 Zn W 
(GHz.cm) (el) d 

144 

132 

120 

108 

96 

84 

72 

60 

48 

36 

24 

12 

o 

Pro 

(w) 

120 

110 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

o 

88 

80 

72 

64 

56 

48 

40 

32 

24 

16 

8 

o 

vr,„, 
(v) 

100 

80 

60 

40 

20 

P„ 

V, 
..P..__ 

1 = 10 

1 = 10 
12  

14 

12 
- - 18 

20 
14 

16 

18 

20 

o 

8 

7 

6 

5 

4 

3 

2 

o 

(8) 

B x 

04 0-6 12 

(a) 

1 6 X 20 

02 04 0-6 

(b) 

08 x  

Fig. 3. Curve set for ADP(r63). 

(a) Dimensions, impedance and bandwidth. 
(b) Modulating power and peak voltage versus velocity 

mismatch X. 
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where fi = comc (N — no), and 

r Vo 1 
° = 2 " V42 • d 

is the retardation in the matching condition and 

B x Z0 W 

(GHz.cm) (1-1) d 

144 

132 

120 

108 

96 

84 

72 

60 

48 

36 

24 

12 

- 20 

- 18 

16 

14 

12 

- 10 

0-

P„, 

(w) 

120 

110 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

o 

8 

6 

4 

2 

o 

- 36 

32 

28 

v,„, 
(v) 

54 

48 

42 

36 

30 

24 

- 18 

12 

P„ 

V.„ 
......... 

1 = 10  

....... ... ,e = 10 
12  

14  

16 

12   18 
20  

o 

24 

20 

16 

12 

4 

8x1 

0,1 08 12 1 6 X 20 

(a) 

•2 •4 06 
8 X 

(b) 

Fig. 4. Curve set for ADP(r41). 

(a) Dimensions, impedance and bandwidth. 
(b) Modulating power and peak voltage versus velocity 

mismatch X. 
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without microwave attenuation (i.e. a. = 0) In 
such a condition Vp= 

Equation (7e), just as equation (3) for the case 
= 1 (i.e. N = \182), is obtained from equation (8) 

neglecting the attenuation and assuming as transit-
time cut-off frequency that for which is r• = 0.7071-'0. 

xe Z, W 
(GHz.cm) (n) d 

144 

132 

120 

108 

96 

84 

72 

60 

48 

36 

24 

12 

o 

32 

28 

24 

20 

16 

12 

8 

4 

o 

Pr,, 

(w) (V) 

6-20 

5.58 

4.96 

4.34 

3.22 

3.10 

2-48 

1.86 

1.24 

0.62 

o 

18 

15 

12 

9 

6 

3 

P. 

,V.. 
% 
‘ 
• 

....... 

% 

..... 

e-Io 
____ 

e=10 

14_ 

16 

20 14 

16 

18 

20 

o 

10 

8 

6 

4 

2 

o 

Bx1 

04 08 12 

(a) 

16 x 20 

02 04 06 

(b) 

0.8 x Iso 

Fig. 5. Curve set for LiTa03. 

(a) Dimensions, impedance and bandwidth. 
(b) Modulating power and peak voltage versus velocity 

mismatch X. 
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A second set of curves has been calculated giving, 
versus X, the voltage and the power necessary to 
have 0.37 rad phase retardation,t when the light 
wave is polarized along a principal axis of the index 
ellipsoid. 

Bxe Z. W 
(GHz.cm) (a) _ d 

144 

132 

120 

108 

96 

84 

72 

60 

48 

36 

24 

12 

o 

P,, 

(w) 

6.72 

5.76 

54 

48 

42 

36 

30 

24 

- 18 

480 

3-84 

2.88 

1.92 

0.96 

o 

12 

6 

o 

(v) 

22 

20 

16 

12 

8 

6 

5 

4 

3 

d ! 

Bx? 

O 04 0.8 1 2 

(a) 

1 6 20 

P. 

V 
%P. 

% 
\ 

...... 

- .- - - --- - - - - -.-

L=10 
L-10 

S., 
12 

... 14 

16 

..... 
2 

— _ --
18 

— —_ 
14 20 

16 

1 

20 

o 02 04 06 

(b) 

Fig. 6. Curve set for LiNb03. 

(a) Dimensions, impedance and bandwidth. 
(b) Modulating power and peak voltage versus velocity 

mismatch X. 

t The 0-37 rad phase retardation corresponds to a 30% 
intensity modulation depth and 1% third harmonic distortion. 
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The second set of curves (Figs. 2(b)-7(b)) has 
been calculated using the perturbation method in so 
far that the cut-off frequency has been considered to 
be determined only by mismatch and the peak phase 
retardation 1'0 to be reduced by the microwave 
attenuation. 

Bx? 

(GHz.cm) (n) 
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132 

66 

60 

120- 54 

108 48 

96 

84 

72 
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48 

36 

24 
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241-
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24 
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16 
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d 
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• 
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-- _ — 

_ 

  _  12 

 12  
— -- 
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— -- --- — 

14 

16 

18 
— -- 

14 

16 

18 

2 0 

20 

02 0.4 06 

( b) 

0.8 1.0 

20 

Fig. 7. Curve set for KDA. 

(a) Dimensions, impedance and bandwidth. 
(b) Modulating power and peak voltage versus velocity 

mismatch X. 
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Therefore, considering the microwave attenuation, 
to obtain the stated phase retardation, the peak 
voltage Vp must be applied to the modulator: 

where 

vo ..eceria) (9) 

sinh (cc -1-) 
2  

(ci,,,) = exp — Œm .l\  (10) 
2 ci..1  

2 

If the losses of the conductors and medium 1 are 
negligible and tan o is the loss tangent in medium 2, 
the microwave attenuation constant is 

Pd COm E2 tan (5 d 
cc = 

2P 2cN W 

= 10.47f. D (X + Y)(X + T)  (11) 
(X + no) 

where Pd is the power loss per unit length, 

D = 82 tan  (5 
K 

and fr,, is given by equation (7c). 

We have chosen this maximum frequency for a 
better approximation. 

5. Some Examples of the Use of the Curves 

Let a travelling-wave modulator be designed 
using KDA and having the following characteristics: 

frnax ≥ 1 GHz P. = 5 W. 

From Fig. 7(b), the length for an acceptable mismatch 
is / > 16 cm. From that Figure and Fig. 7(a), Table 2 
can be derived where the function is defined as 

Zo B 
M = 

This describes the modulator quality more com-
pletely than the usual ratio B/P. 

Therefore, from Table 2 and considering the 
parameter M, we choose / = 16 cm and then, 
d = 2 mm and W = 8.4 mm. 

Table 2 

I X BI B C Zo 
[cm] [GHz.cm] [GHz] [f2] [aGHz W -1] 

16 0.73 16.98 

18 0.42 29.52 

20 0.22 56.36 

1.06 4.20 38-07 

1.64 6.08 31.15 

2.82 8.17 25-80 

1.86 

1.68 

1.76 
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As reference, with the same length and bandwidth 
using other materials, we have the following values 
for M 

KDP M = 0-74 

ADP(r41) M = 0-05 

This leads to the conclusion that KDA is the best 
available material for this kind of modulator in the 
potassium dihydrogen arsenate family. The lithium 
compound family is, however, preferable, due to the 
low half-wave voltage. 

For example, using LiNb03, stating / = 10 cm, 
for X = 1, we obtain from Figs. 6(a) and (b): 

B = 1-24 GHz 

• = 2-77 

Zo = 41-54 ohms 

P = 286W 

and therefore M = 6-50 (S2GHz W -1 ). 

6. Conclusions 

Curve sets for the evaluation of the main modulation 
characteristics of modulators using various electro-
optic materials have been computed. It has been 
shown that for the best compromise in the various 
modulation characteristics, it is useful to introduce a 

• certain amount of mismatch between the velocities 
of the modulating and the optical signals. 

This consideration indicates, clearly, that the 
most suitable electro-optic media for wideband 
applications should have very close values of dielectric 
constant at microwaves and optical wavelengths. 

From this point of view, cubic materials like ZnTe 
and GaAs seem to be very promising. In particular 
a GaAs modulator will have always C = 1, because 
no > 

With the most used electro-optic materials it is 
possible to modulate to bandwidths in the gigahertz 
range using a few watts of modulating power. 

• 

April 1970 

Naturally, practical modulators will be restricted 
by some other factors as mechanical and thermal 
strains and optical losses; all these factors are strictly 
connected with the fabrication of the components and 
have not been taken into account in this general 
discussion. 
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An Intermodulation Phenomenon 
in the Ring Modulator 

• 

• 

By 

J. G. GARDINER, 

Ph.D., B.Sc.(Graduate) ; 

Analysis of intermodulation distortion effects in diode modulators by 
'modulating function' techniques has, for some time, been recognized to 
be applicable where the diodes can be represented by a bi-linear d.c. 
characteristic in which the change of state from blocking to conduction 
takes place at zero bias. Experiments on ring modulators have shown, 
however, that predictions based on this diode model give unduly pessi-
mistic results under some conditions. It is shown that the use of a modified 
diode model incorporating a suitable offset voltage in the d.c. characteristic 
permits prediction of the hitherto anomalous results with greatly improved 
accuracy. 

1. Introduction 

The development of Schottky barrier diodes has 
made possible the use of switching diode modulators 
in h.f. communications applications where low inter-
modulation distortion is a major criterion of design. 
As a result there has been a considerable revival of 
interest in distortion analysis of these circuits, the 
'ring' mixer in particular, using the switching or 
'modulating' function analysis developed many years 
ago by Belevitcht and Tucker.' 

This analysis assumes the diode to be a bi-linear 
device changing from high impedance to low at zero 
bias; distortion is generated as a result of interaction 
between the input signals and the applied local-
oscillator at the point of transition from high im-
pedance to low, the input signals influencing the time 
of switching. 

A difficulty arises when it is required to take account 
of the finite curvature of the diode forward characteris-
tic and analytical techniques have recently been 
proposed by Savin3 which can treat a discontinuous 
characteristic for the diode, namely a high linear 
impedance under reverse bias and an exponential 
characteristic under forward bias. However, the 
mathematical procedures tend to be somewhat 
involved and it has been demonstrated by the present 

• author' that the simple bi-linear approach can produce 
acceptable predictions of some aspects of distortion 
performance in Schottky barrier ring modulators, 
notably the relationship between intermodulation and 
cross-modulation distortion. However, experimental 
investigations into intermodulation distortion in the 
ring circuit indicate that the bi-linear diode model as 
proposed by Tucker does not contain sufficient 
information about the nature of the diode forward 
characteristic. A simple modification to include the 
'offset' voltage in the diode d.c. characteristic is 

t Postgraduate School of Electrical and Electronic Engineer-
ing, University of Bradford. 
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sufficient to permit greatly improved accuracy of 
predicting distortion levels under conditions of low 
distortion product output. 

2. Distortion Levels in the Ring Modulator 

The details of the theoretical work involved are set 
out fully in References 2 and 4, and only the relevant 
results will be quoted here. 

Consider the ring modulator of Fig. 1(a) and the 
equivalent local-oscillator circuit of Fig. 1(b). Suppose 
the local-oscillator generator to have a source 
resistance Ro and an e.m.f. Vo. Then, using the bi-
linear model of Tucker shown in Fig. 2, it is seen 
that in the absence of any input signal to the modu-
lator, two diodes are always conducting in parallel 
with two diodes turned off. Thus if the forward 
resistance of one diode is rf the voltage appearing 
across the local-oscillator input port to the mixer 
(Va is 

rf/2  
Vo' = Ro + rf/2 Vo  (I) 

It is shown by Belevitchl that this situation is sub-
stantially maintained when an input signal is present 
and interferes with the diode switching. No condition 
can arise where less than two diodes are conducting 
at any one time. Therefore, we may say that the 
local-oscillator voltage appearing across any one 
diode is given by 1/(; cos coo t while the signal voltage 
across any 'off' diode is Vs cos cost (as defined in 
Fig. 1). Distortion occurs when the input signal 
voltage across an 'off' diode exceeds the instantaneous 
value of Vé, and is of opposite polarity. (Subsequent 
overload conditions are relatively unimportant. 1) 
Consider now a practical two-tone intermodulation 
test with frequencies as indicated in Fig. 3. The 
voltage across the diode may be assumed to take the 
form 
Vd = COS (.00 t+ Vs COS COsi t+ Vs2 COS 042  (2) 

A wide spectrum of significant output products results 
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1:n 
yl) n:1 

Vocos 

( a ) 

(a) Ring modulator terminated for minimum loss. 

RO 

(b) 

(b) Diode circuit as seen by local oscillator. 
Fig. 1. 

but only two are of major importance in assessing 
the modulator performance by this type of test. These 
are the products coo + 2cosi - co.2 and coo +2(0.2- co.1 
for an upper-sideband modulator and coo - 2(0.1 + (0.2 
and coo - 2(0.2+ cos for lower-sideband conversion. 
As is demonstrated in Reference 4 the relative magni-
tude of these distortion products and the large-signal 
sideband outputs at coo +o),1, cos2 is given by 

vi k2 

v0±11 
where vi is the intermodulation product voltage at the 

modulator output, 

Vo ± 1is the large-signal sideband product voltage and 

k = k1 = k2 

where 
17.1 1 k1 = — 

Vs 2 k 2 = — 
ic') 

(3) 

 (4) 

3. Incorporating the Diode Offset Voltage 

Consider now the diode characteristics indicated 
in Fig. 4. In this case it has been assumed that 
conduction does not commence until a certain value 
of forward bias has been attained. In silicon p-n 
junction devices this voltage may be of the order of 
0.5-0.7 V, in Schottky barrier diodes 0.25-0.35 V. 
The effect of this offset voltage on the voltage at the 
local-oscillator input port is shown; a very brief 
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Diode 
L current 

Diodes 2 and 3 \ odes land 4 

Forward resistance 
of each diode 

Reverse resistance 
of each diode 

(dot 

Fig. 2. Bi-linear diode model of Tucker.' 

interval exists twice per local-oscillator cycle when all 
the diodes are turned off and the voltage at the port 
changes at the same rate as the local-oscillator e.m.f. 
(assuming that, as would almost invariably be the 
case, the diode 'off' resistance is very large in com-
parison with the local-oscillator source resistance Ro). 

Returning to the mechanism by which distortion is 
generated, it is seen that a comparison can be made 
between the effective shift in switching time which is 
produced by a given V.1 Va in the modulator using 
the diodes of Fig. 4 on the one hand and those of 
Fig. 2 on the other. It is apparent that in the modulator 
using the diodes of Fig. 4 two distinct situations can 
be described. 

(1) V.1 and Va are sufficiently small for their sum 
to be always smaller than the diode offset voltage. 
This means that even when V.1 and Va are interfering 
with the diode switching to the maximum extent, the 
shift produced in the time of switching is small; this 
overload condition always arises during the interval 
when all the diodes are turned off and the local-
oscillator voltage at the diode is undergoing rapid 
transition in polarity, i.e. the level of distortion 

vs •52 

Vo 

us -' s2 w. 
 >co 

Fig. 3. Two-tone intermodulation test, relevant frequencies. 
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INTERMODULATION IN RING MODULATOR 

Diode 
current 

Diodes 1 and 4 

V 
wot 

 b. 

Fig. 4. Diode model incorporating diode offset voltage. 

produced is determined not by 1/,:; but by Vo. Thus 

k,= 
V , 1 

Vo 
(5) 

Vs2 k2 = — 
Vo 

(2) Once the combined peak amplitude of Vs1 and 
V,2 has exceeded the diode offset voltage, the effect of 
the input signals on the diode switching time becomes 
increasingly marked, since, as indicated by the 
diagram, a small further increase in signal level results 
in a large change in the switching time. Ultimately, 
for very large input-signal levels the existence of the 
offset voltage becomes masked by these effects and the 
performance of the modulator tends to that predicted 
by the simple model of Fig. 2. 

It is apparent that the diode model of Fig. 4 
permits, in principle, other overload conditions to 
exist than are possible in the simple model; for 
instance, since all the diodes are turned off for a short 
interval it is possible that as local-oscillator current 
falls to zero in an 'on' diode the signal current flowing 
in this element may turn it off prematurely and so 
produce a larger change in the switching time of the 
diode than the mechanism described so far. However, 
it is demonstrated in Reference 1 that using the model 
of Fig. 2 a very much larger signal level is required to 
produce a similar change in switching time by turning 
'on' diodes off as by turning 'off' diodes on. For the 
diode model of Fig. 4 this means that for current 
overload to occur, the local-oscillator current in 'on' 
diodes must be restricted to a small value so that the 
ratio of signal current to local-oscillator current in 
these diodes approaches the ratio of signal voltage to 
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Fig. 5. Ring modulator with biased diodes. 

local-oscillator voltage across 'off' diodes. This implies 
either low-level drive or drive from a very high 
resistance local-oscillator supply, both situations being 
readily avoided if intermodulation distortion is a 
significant criterion of design. In the experiments 
described in the next Section a local-oscillator supply 
of 4 V open circuit from a 50 S/ source was used and 
results predicted on the assumption that only voltage 
overload effects contributed. Whilst small departures 
from predicted results were observed these were not 
sufficient to suggest that any mechanism other than-
voltage overload need be taken into account with 
currently available diodes except possibly under some 
conditions of artificially enhanced offset voltage. 

It will be seen from the experimental results of the 
next Section that it may, under some circumstances, 
be desirable artificially to increase the diode offset 
voltage. Tucker suggests some possible techniques 
for achieving this', and in practice a simple solution 
consists in including a bias network in series with 
each diode as indicated in Fig. 5. However this has 
the effect of restricting the forward current through 
the diode for a given local-oscillator drive voltage. 

A modulator using this modification was tested 
with the local-oscillator supply described above but 
again predictions of distortion based on voltage over-
load proved adequate over the range of levels investi-
gated. 

4. Discussion (xi. Experimental Results 

To illustrate the arguments of the previous Section, 
suppose that a two-tone intermodulation test is carried 
out over a wide range of input-signal levels. At low 
signal levels distortion product outputs will be deter-
mined by equations (3) and (5), and at high signal 
levels by equations (3) and (4), with a region of signal 
levels over which a transition can be expected. The 
beginning of this transition will occur when the com-
bined peak input signal levels equal twice the diode 
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Vs2 ( 51 .64MHZ) 

Low 
distortion 
amplifier 

Modulator 
6dB under 
min test 

6dB 
min 

Local oscillator 

V.(50MHz) 
4V open circuit 

50f1 source impedance 

Crystal 50f1:7511 Receiver 
filter 

1.6 MHz ± 7kHz 

Fig. 6. Measuring set for intermodulation measurement. 

offset voltage, since this is the voltage which must 
be developed across an 'off' diode to turn it on. 

Three modulators were examined: ( 1) a conventional 
ring as in Fig. 1 with gallium arsenide diodes type 
CAY 11; (2) as ( 1) but with typical silicon Schottky-
barrier diodes; and (3) a modulator as in Fig. 5 using 
the Schottky barrier diodes of (2). The measuring set 
is shown in Fig. 6. 

Figure 7 shows a comparison between the modu-
lators ( 1) and (2). The predicted results for the first 
phase of distortion are obtained from equations (3) and 
(5) and for distortion under high-level input conditions 
from (3) and (4). The diode offset voltages were 
550 mV for the gallium arsenide devices and 250 mV 

30r 
dB 

o 

o 
t • 40 

o 

50 

o 

n so 
xi 

70 
o 

• 80 -
a 
-o 
o 
E 
• 90 - 

100 
10 

196 

Predicted maximum level • 

for phase 1 distortion I 

(Schottky%) 

Level predicted 

from equations (3) and (4) ' 

x—x Modulator using 
Schottky barrier diodes 

o—o Modulator using 
gallium arsenide diodes 

for the Schottky-barrier types. These values result in 
maximum input levels for phase 1 distortion as shown 
in Fig. 7, i.e. 195 mV for the gallium arsenide, 88 mV 
for the Schottky barrier. 

Figure 8 shows a comparison between the modu-
lators (2) and (3) to illustrate the effect of bias on the 
maximum input-signal level for phase 1 distortion. 
The measuring set output level to the modulator was 
limited to 0 dBm (220 mV in 50 (1) so that the nature 
of overload ultimately occurring in the modulator 
using biased diodes could not be determined. How-
ever, it is apparent that a useful extension of phase 1 
distortion is possible by this technique. The bias 
elements used were 100 i2 and 10 000 pF. 

II  
100 

R.M.S. signal level 

//-
e Predicted maximum level 

for phase 1 distortion 

(gallium arsenide) 

Leve i predicted 

from equations ( 3) and ( 5) 

mV in 5011 

Fig. 7. Comparison of diodes with differing offset voltages. 
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from equations ( 3) and (4) 
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e e 

\ 

Level predicted 

e r. from equations ( 3) and ( 5) 

Bias network in series 
with each diode 

100 

R.M.S. signal level mV in 50(1. 

Fig. 8. Artificial enhancement of diode offset voltage. 

5. Conclusions 

It has been demonstrated that the offset voltage 
in the diode d.c. characteristic is an important 
parameter in the prediction of distortion levels in the 
ring modulator. The existence of the offset voltage 
results in the modulator achieving a condition, twice 
per local-oscillator cycle, in which all the diodes are 
turned off. If interfering signals generate voltages 
across the diodes during this period less than twice 
the value of the offset, then switching interference is 
reduced since the rate of change of the local-oscillator 
voltage across any diode in the ring is increased to 
substantially that of the open circuit local-oscillator 
source voltage. 

A knowledge of this effect facilitates choice of diodes 
for the low distortion operation of modulators 
subjected to known signal levels and also indicates the 
value of 'self-bias' associated with each diode in the 

• ring. 

Experiments indicate good agreement between the 
predicted maximum signal level at which full benefit 
is obtained from the offset and that measured for 
practical ring circuits using a variety of diodes, both 
conventional and Schottky barrier. It has also been 
demonstrated that self-bias gives a useful improvement 
in distortion performance under large input signal 
conditions and that this is maintained at switching 
frequencies up to at least 50 MHz. 

I III 
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The Radiation Field of 
the Short Backfire Antenna 
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S. C. LOH, B.Sc., Ph.D., A.Inst.P., 
C.Eng., M.I.E.E., M.I.E.R.E.t 

and 

W. S. LEUNG, B.Sc. ( Hons.)t 

The mathematical expressions for the far-field radiation pattern are 
derived for a short backfire antenna. By assuming that the plane conductors 
in the antenna are infinite in extent, a multiple image system is established 
as a first approximation in the derivation. Some calculated patterns are 
presented to illustrate the derived results and compare with the experimen-
tal E- and H- patterns given by Ehrenspeck in his work. 

1. Introduction 

The short backfire antenna studied experimentally 
by Ehrenspeck' consists simply of two plane reflectors 
spaced half wavelength apart and a half-wave dipole 
feed placed between them. Figure 1 shows a sketch 
of the short backfire antenna; L marks the larger, 
S the smaller of the two plane reflectors that are 
arranged parallel to each other and transverse to the 
longitudinal antenna axis. Although the basic 
structure of this antenna is still recognizably that of 
the backfire, the present antenna differs greatly with 
other earlier backfire antennas investigated by 
Ehrenspeck and others earlier.' 

In the present paper, the approximate expressions 
for the radiation field of the short backfire antenna 
have been derived and the calculated patterns agree 
reasonably well with the measured patterns. 

2. Theory of Multiple Images 

The short backfire antenna shown in Fig. 1 consists 
essentially of a dipole feed Ao placed midway between 
a large reflector L and a small reflector S, the distance 
of the dipole feed from L and S being D. As a first 
approximation, we assume that the two plane reflectors 
L and S are infinite in extent, in order to formulate 
the problem in terms of multiple images produced by 
multiple reflexions between two conducting planes. 

By means of the method of images, the two con-
ducting planes, assuming infinite, may be replaced by 
two infinite series of images, one on each side of the 
dipole feed Ao. The system of images A1, A2, A3, . . . 
An... and Ai, A'2, A'3,...A... is shown in Fig. 2. 
In practice, however, the presence of the large 
reflector L will prevent radiation behind it, whereas 
the small reflector S allows radiation beyond it due to 
its comparatively small size. Since almost all the 
radiation is confined to the region in front of the large 
reflector L, we therefore only take those images, 
A1, A2,.. . A,... behind L into consideration and 

t Physics and Electronics Department, United College, The 
Chinese University of Hong Kong. 
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Fig. 1. Short backfire antenna structure. 

discard all the other images Ai, A'2, in our 
analysis. 

The far- field radiation of the system of images 
together with the dipole feed Ao may readily be 
obtained by simply considering them as a linear array 
of dipoles and applying the principle of superposition. 

e, 

An A3 IA2 IA1 AOsel k3  

Fig. 2. Images of dipole feed placed between two infinite 
conducting planes. 

3. The Radiation Field of a Short Backfire 
Antenna 

The electric field intensity at a large distance from a 
dipole shown in Fig. 3 is given by 

jZo in, exp (—jkr) [cos (11cL cos 0)— cos lkLi 
E0 — 

2nr sin 0 
(1) 
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where 

Zo = intrinsic impedance of the free space 

I,„ = maximum current amplitude at the dipole 

k = wave number 

L = length of dipole. 

Since each element in the linear array (equivalent 
to the short backfire antenna) is simply an image of 
the dipole Ao, with the appropriate direction of 
current-flow, the electric field intensity in the far 
field due to the nth radiating image A. can be written 
as 

Eno = 21 „, „ jZo exp ( — jkr)„ 
27tr„ 

[cos (1kL cos 0„) — cos akl 

sin 0„ 
(2) 

where 

A„ = a exp (mnct), the reflexion coefficient 

(r„, 0„, On) is the position of the far-field point p in 
spherical coordinates with respect to A„. 

Since r„ is very large, the far-field approximation may 
be used and this gives 

r„ r — I(t p„)I 

0„ 0  (3) 

1/r„ 1/r 

where P is the unit vector in the direction of r 

p„ is the position of the nth image with respect 
to the dipole feed Ao, i.e. Ip„I = 2nD. 

Substituting (3) into (2) we get 

jZo /,„ exp ( —jkr) 
Eno = ii X 

2rcr 

[  sin 0 
cos (1kL cos 0) — cos ( kL)] 

exp (+jt/i„) ...(4) 

where 

qt. = k(t  (5) 
Then, by the principle of superposition, the field of 

the linear array of N + 1 elements is 
N 

ENO = E E,,0 
n= 0 

jZo /,„ exp ( — jkr) 

2irr 

[cos (-IkL cos 0) — cos (4-kL1 

sin 0 

X A„ exp  (6) 
n = 

The number of images used for the calculation of 
radiation pattern from the above derived expression 
is largely dependent upon a number of factors, such 
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Fig. 3. Dipole antenna. 

 ›. X 

as the size of the plane reflectors, particularly the large 
reflector L, the structure of the antenna, etc. 

The short backfire antenna studied experimentally 
by Ehrenspeck is essentially a half-wave dipole feed 
placed midway between two plane reflectors separated 
by a distance of 0.52. If we choose a coordinate 
system such that Ao is located at the origin and along 
the z-axis shown in Fig. 2 with plane reflectors L and S 
parallel to the Y—Z plane, then we have 

=  (7) 

Substituting (7) into (5), we get 

= —2nkD sin 0 cos 0  (8) 

Furthermore, 

a„ = (a).  (9) 

Substituting (8) and (9) into (6), we then obtain the 
approximate expression for the electric field intensity 
in the far field of the short backfire antenna. 

jZ0/„, exp ( — jkr) 
ENO = 

[ cos au a cos 0) — cos l 
x   x 

sin 0 

x {1 exp [— j(N+ 1)(2kD sin 0 cos 0 +a)1} 

1 — a exp [ —j(2kD sin 0 cos 0 + a)] 

 (10) 

Putting L ----- 2/2, D = 2/4, we have 

, jZo /,„ exp (— jkr) rcos (in cos 01 
E,NO — x 

r [ sin e 

X {1 — (a)" 1 exp [— j(N+ 1)(n sin 0 cos 0 + oc)]} 

1— a exp [ — j(rr sin 0 cos 0 +a)] 

 (11) 

4. Conclusions 

The E-plane and H-plane patterns of the short 
backfire antenna are shown in Fig. 4 and Fig. 5 to 
illustrate the result obtained in ( 11). The experimental 
data are extracted from Ehrenspeck's work on short 
backfire antennae. With suitable choice of a and N, 
the theoretical and experimental results agree quite 
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Fig. 4. E plane pattern of short backfire antenna. 

well up to 5 dB below the maximum; however, the 
theoretical expression gives a larger number of side-
lobes. Nevertheless, the experimental curve appears 
to be the envelope of the theoretical one. This 
suggests that the side-lobes may be obscured due to 
the finite dimension of the reflectors. 

Various modifications can be made in (11) to iron 
out these discrepancies. A probable means is to vary 
the distance between the object antenna and the image 
antennas in equation (7) or to introduce a varying 
phase in the object antennas. 

5. Acknowledgments 
The authors wish to thank the Director, Institute 

of Science and Technology, The Chinese University 
of Hong Kong, for his support and the permission for 
the publication. The authors would also like to 
express their gratitude to Mr. M. N. Lam for his 
assistance in writing the computing programs. 

The Authors 

Mr. W. S. Leung gained an 
honours degree in physics at 
Hong Kong University in 
1966, and then spent three 
years in the Physics and 
Electronics Department, 
United College, The Chinese 
University of Hong Kong; 
during this time he was in-
volved in backfire antenna 
analysis and research into other 
frequency independent an-
tennas. He is now a systems 

analyst with the EDP Department of the Hong Kong & 
Shanghai Banking Corporation. 

200 

— MEASURED H PATTERN 
AT 3000 MHz 

--- CALCULATED 
H PATTERN 
(N.50,4 . 0.85) 

CALCULATED 
H PATTERN 
(N.14, 4.0.911) 

r, g g , g 

g gg g g ig ig gig 1g 

di 
-4 

-6 

-8 

-10 

-12 

-14 

-16 

-18 

-20 

-22 

-24 II 
II I 

; 
ig 

I A  •,_ 

I g. 
II, 1, 

- 90° -60° -30° 0° 30° 60° 90° 

Fig. 5. H plane pattern of short backfire antenna. 

6. References 

1. Ehrenspeck, H. W., 'The short backfire antenna', Proc. 
LE.E.E., 53, pp. 1138-40, August 1965. (Letters). 

2. Ehrenspeck, H. W., 'The backfire antenna, a new type of 
directional line source', Proc. LR.E., 48, pp. 109-10, January 
1960. (Letters). 

3. Storm, J. A. and Ehrenspeck, H. W., 'Backfire Antennas for 
SHF, UHF and VHF Bands', AFCRL-63-114 AF Cam-
bridge Research Lab., Bedford, Mass. April 1963. 

4. Ehrenspeck, H. W., 'The backfire antenna: new results', 
Proc. LE.E.E., 53, pp. 639-41, June 1965. (Letters). 

5. Zucker, F. J., 'The backfire antenna: a qualitative approach 
to its design', Proc. LE.E.E., 53, pp. 746-7, July 1965. 
(Letters). 

Manuscript received by the Institution on 4th August 1969. 
(Short contribution No. 131/Corn. 27.) 

C The Institution of Electronic and Radio Engineers, 1970 

Dr. S. C. Loh (M. 1960) read 
electrical engineering at Leeds 
University, obtaining a first 
class honours B.Sc. degree in 
1955 and a Ph.D. in 1957. 
From 1957 to 1959 he held a 
Postdoctoral Fellowship with 
the National Research Council 
of Canada. He was then 
appointed a lecturer in electri-
cal engineering at the Uni-
versity of Hong Kong, a 
position he held until 1966, 

when he was for a year a Guest Professor in the Laboratory 

of Electromagnetic Theory at the Technical University of 
Denmark. Since 1968 he has held joint appointments as 

Director of Computing Centre and Head of Department 
of Physics and Electronics at The Chinese University of 

Hong Kong. 

The Radio and Electronic Engineer, Vol. 39, No. 4 
• 



U.D.C. 526.92 : 535.312/3 

Influence of Reflecting Surface Characteristics 
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Reprinted from the Proceedings of the LE.R.E. Conference on 'Lasers 
and Opto-Electronics' held at the University of Southampton on 25th 
to 28th March 1969. 

The laser rangefinder can enable the distance of remote objects, such as 
satellites, to be determined with an accuracy of 1.5 m up to a distance 
of 3000 km. This performance level accrues from three main factors: 
(i) the directivity of the laser light, which allows the emitted power to be 
concentrated in a very narrow cone; (ii) the high detection capability 
of up-to-date photomultipliers, which can generate a signal even in 
response to a mere hundred or so photons received; (iii) the directive 
reflexion properties of the retroreflective systems located on the object 
observed. 
The present paper investigates this last factor. It outlines the reflective 

photometric characteristics of various scattering and reflecting surfaces 
for comparison with those of retroreflectors, and describes several 
retroreflective systems. The comparison is made with a practical example, 
which corresponds to a rangefinder used for satellites. It is thereby 
demonstrated that a single 2 cm diameter retroreflector ensures a range 29 
times that obtained on a 1 m2 diffusing surface and 6.7 times that achieved 
on a 1 in2 surface covered with glass balls. 

1. Introduction 

• A laser range-finder measures the time it takes for 
a short luminous pulse to travel between the instant 
of its emission and the instant it reaches, after being 
reflected from an object, the receiver located near the 
source. With the velocity of light in the medium 
known, the distance of the source-cum-receiver from 
the object is derived. 

The equipment shown in Fig. 11-3 which has been 
designed for measuring the distance from satellites 
has enabled distances of over 3000 km to be measured 
to within an accuracy of some 1.5 m, corresponding 
to a relative accuracy of 5 x 10-7. 

Ranges of this magnitude can only be achieved by 
mounting on the object panels made up of retro-
reflective elements, which possess the capacity to turn 

• a light beam back on itself, whatever the angle of 
incidence. 

The purpose of this paper is to demonstrate the 
increase in the range of a laser rangefinder obtainable 
by various retroreflective systems. 

2. Range of a Laser Rangefinder, 

The light is supplied by a Q-switch laser emitting 
short pulses characterized by their peak power, the 
half-amplitude pulse duration and the angle of the 
cone inside which that power is distributed. The laser 

t Office National d'Etudes et de Recherches Aérospatiales 
(oNERA), 92 Châtillon, France. 
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forms, in conjunction with an afocal telescope, a 
transmitter unit equivalent to a light source of 
L' surface and of I(œ) intensity (Fig. 2), at its maximum 
along the axis of the emitted beam, and progressively 
decreasing on either side of that axis. The divergence 
of this source is defined as the vertex angle °cm of the 
cone centred on the beam axis and comprising 90% 
of the emitted power. 

The average luminance L, which can be derived from 

Fig. I. ONERA laser rangefinder used for satellites. 
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the two quantities I and 1, is given by: 

L.  (1) 

The source illuminates an object of apparent surface 
S situated at distance x (Fig. 3). For the purposes of 
this paper, this distance is assumed to be very great 
by comparison with the source and the receiver, and 
the surface area S of the object to be small in relation 
to the cross-section of the beam at its particular 
distance. 

The object so lit reflects all or part of the light it 
intercepts. 

The receiver, located near the transmitter, is at 
distance x from the object, and receives along its plane 
an illuminance E', which is a function of this distance. 

For the equipment to be operative, illuminance E' 
must be at least equal to a minimum c value dependent 
on the characteristics (surface, transmission factor) 
of the optical receiving system, and on the sensitivity 
of the photoelectric detector it incorporates. 

The maximum range X is the longest distance x for 
which the illuminance of the receiver equals the 
minimum detectable illuminance a. 
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Fig. 2. Relative intensity of light emitted by a ruby laser. 

source. Illuminance E received at distance x from the 
source is defined by 

E = —2.  (2) 

The total flux impinging on apparent surface S is 
accordingly 

F = ES.  (3) 

If the coating is non-absorptive, the whole of the 
intercepted flux is re-emitted and the object becomes a 
secondary source whose luminance according to 
Lambert's law of perfect scattering, is given by 

E 
= —ir. 

Intensity I' in the direction of the receiver will now 
be 

I' = 

and illuminance E' in the receiver plane: 

' 
E'  

X2. 

With relationships (2), (4), (5) and (6) borne in 
mind, the range X, may be derived from the expression 

4 IS 
1 X — • ne 

(4) 

EMITTED BEAM 

Since what is proposed here is merely a comparison 
of ranges for various reflecting surfaces of the object, 
used under identical conditions, atmospheric absorp-
tion will be disregarded. 

3. Comparison of Various Reflecting Surfaces 

3.1. Perfectly Scattering Surface 

3.1.1. Object of any optical shape 

The entire surface of the object is coated with a 
paint that perfectly scatters the light from the light 
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RECEIVER 

REFLECTED BEAM 

(5) 

(6) 

(7) 

REFLECTING 
OBJECT 

Fig. 3. Optical scheme from source to object and back to 
receiver. 

3.1.2. Scattering sphere 

Equation (7) applies to objects of any shape what-
ever. In the particular case of a sphere, the apparent 
surface S can be expressed as a function of radius R, 
whence 

4 IR2 
X 2 = — 

e • 

For any shape other than spherical, apparent surface 
S depends on the relative position of the object to the 
direction of observation. 

(8) 
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Fig. 4. Image given by a reflecting sphere. 

SC = R radius of the sphere. 

SF = R/2 focal length of the spherical mirror. 

3.2. Specular Reflecting Surface 

3.2.1. Reflecting sphere 

A sphere of radius R acts as convex spherical mirror 
of a focal distance equal to half the radius (Fig. 4). 
The mirror forms, in the proximity of its focus, an 
image of the source which has the same luminance L 
as the source itself; the surface area c of this image is 
given by the formula 

ER2 
= — 

4X2 (9) 

and, with ( 1) taken into account, the intensity by 

/' = -LER2 IR2 
4x2 - 4  (x10)2' 

Illuminance along the receiver plane is therefore 

I' IR2 
E' =- Jc = —  (11) 

2 4x4 

and the range X3 is 

4 /R2 
X3 z> • 

Fig. 5. Image given by a plane mirror. 
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 (12) 

SOURCE 

In the case of both scattering and reflecting spheres, 
the range is independent of the object position relative 
to the direction of observation. 

This is not the case with objects of any other shape. 
Let two specific cases be examined, namely that of a 
plane mirror and that of a concave spherical mirror 
whose radius of curvature equals distance x. 

3.2.2. Plane mirror 

In geometrical terms, the mirror forms an image of 
the source which is symmetrical with its plane and of 
the same intensity as the source itself (Fig. 5). 

The image of the source is not, however, visible 
from the receiver unless the normal to the mirror plane 
is appropriately directed. In this case, then, the 
illuminance received will be 

E' = — if S - 
4x2 4 

or 

IS 
E' =- -Ex2 if 

Hence the range values are 

n= for 

IS S 
X12 = — = L-4 E8 for 

(13a) 

S <-4'  (13b) 

(14a) 

(14b) 

S -4-

S < - 
4 

Since distance xis very great by comparison with the 
size of the source and the object, the distribution of 
illuminance near the receiver is altered by the diffrac-
tion due to the contour of the object. 

Given a circular mirror of d diameter, with /1. as the 
wavelength of the light source, an 87% proportion of 
the luminous flux F intercepted by the mirror is 
concentrated within a cone whose vertex angle O is 

O = 2.44-. 
d 

(15) 

IMAGE OF THE SOURCE 
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The rest of the flux is distributed in successive rings 
of diminishing intensity. With the distribution of 
intensities inside the cone of angle 0 borne in mind, 
the value of maximum intensity in the direction of the 
cone axis can be shown to be 

I = k 
02 

From (2), (3), (15) and (16), we derive 

- k'ISe Kids 
r  

it2x 2 Â2x2 

Hence the illuminance of the receiver is 

E' — KIc14 

and the range is 

•••2 4 
A X 

K/d4 
= 

.1.2e 

K = 0.66. 

from it. For small angular aberrations it will be 
assured that all these rays are evenly distributed 
inside a cone having a vertex angle /3. 

If angle /3 is smaller than the diffraction cone angle 0 
the range is defined by equation ( 19). 

Where angle fl exceeds 0, the effect of diffraction 
 (16) becomes of secondary importance. The flux inter-

cepted by surface S is distributed within the cone of 
angle fl, the range being given by 

(17) 

(18) 

4/ 
Xt = S  .028 (21) 

3.3. Retroreflective Systems 

While the image formed of an object by a plane 
mirror is symmetrical with a plane, a retrorellecting 

 (19) system gives an image that is symmetrical with a point 
(Fig. 6). 

3.2.3. Concave spherical mirror 

Let a spherical mirror be concave, with its radius 
of curvature equalling distance x. At a well-defined 
direction, it forms the geometrical image of the source 
on the receiver. Since this image is smaller than the 
entrance pupil of the receiver, it is fully contained 
within the pupil. 

Flux F' entering the receiver is therefore indepen-
dent of the entrance surface, and has the value 

F' = Ico = —IS  (20) 
x2 

where co is the solid angle at which the mirror is seen 
from the receiver. 

Diffraction caused by the mirror edge, however, 
acts by spreading the light around this image. 

Flux F', which equals that impinging on the mirror, 
is thus distributed inside a cone of angle 0, so that 
the maximum intensity along the cone axis is defined 
by equation ( 16). 

It will be found that the illuminance received E' 
and range X are given by the same equations (18) 
and (19) as for the plane mirror. 

3.2.4. Aberrant optical system 

Let the object be considered imperfectly spherical 
or plane in shape. The light rays do not stay concen-
trated around the direction of reflexion, but diverge 

Fig. 6. Image given by a retroreflector. 
0 is centre of symmetry for the image. 
Each reflected ray is parallel to the 
corresponding incident ray. 
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Thus for each incident ray there is, in the case of 
the plane mirror, a corresponding emergent ray which 
is symmetrical with the normal to the point of inci-
dence, so that the angle between the two rays is 21, 
varying with the angle of incidence j. In the case of 
the retroreflector, the reflected ray is symmetrical 
with the incident ray relative to an axis passing 
through the centre of symmetry and parallel to the 
incident ray. The reflector ray is therefore invariably 
parallel to the incident ray, whatever the angle of 
incidence. 

This geometrical property might lead to the con-
clusion that all light emitted by a source returns to it 
after being reflected from a retroreflector. This 
holds true where the size of the retroreflector is 
roughly equal to its distance from the transmitter. 
In such a case back-reflected light can only be made 
visible with the aid of a semi-transparent plate placed 
in the path of the rays. But the light so collected is at 
most a quarter of the incident light. 

In the particular case covered, the retroreflector is 
very small in size compared with its distance from the 
transmitter. Accordingly, as shown in Section 3.2.2 
with regard to a mirror, the edge of the retroreflector 
diffracts the light, which will remain contained within 
a cone whose axis is that of the incident beam and 
whose vertex angle 0 is given by equation (15). A 
receiver arranged in the closest possible proximity to 
the transmitter will thus receive a part of the back-
reflected light. 

SOURCE   

— ve-e  

IMAGE OF 
THE SOURCE 
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Illuminance E' and range X for zero incidence are 
defined by the same relations (18) and (19) as apply to 
a mirror. Variation with incidence is here far slighter 
and is only due, near zero incidence, to the variation 
of the retroreflector useful apparent surface. The 
total effective field depends on the shape and design 
features of the retroreflector. 

4. Various Retroreflective Systems 
4.1. Ti/rectangular Trihedral 

The trirectangular trihedral is a figure formed by 
three mutually perpendicular planes. The edge formed 
by the intersection of two of them is perpendicular to 
the third, and the three edges intersect in a single 

• point, namely the apex 0 of the trihedral (Fig. 7). 

• 

• 

• 

OPTICAL AXIS 

Fig. 7. Trihedral with a triangular equilateral section. 

If the three planes are the surfaces of three mirrors, 
every incident ray is successively reflected from each 
of them, and the emergent ray is parallel to it. The 
centre of symmetry of the geometrical imagery is the 
apex 0 of the trihedral. 

The section of a trihedral by a plane that does not 
pass through apex 0 is a triangle, which becomes 
equilateral on side a if the three edge segments, 
contained between apex and plane section, are equal. 
These segments accordingly have a common length 
of a/\/.2. The value of the distance from apex 0 to the 
equilateral sectional triangle is a/,./6. 

Let us determine the effective surface as a function 
of incidence versus the normal to the entrance section. 
By symmetry with apex 0, an incident light beam 
appears to be coming from the direction symmetrical 
with 0 and to impinge on an entrance contour C' 
that is symmetrical with the real contour C versus 0 
(Fig. 8). This beam will reach the real contour, and 
the effective surface will be determined by the pro-

Fig. 8. Path of rays in a trihedral. 

April 1970 

Fig. 9. Useful contour of a trihedral. 
(a) with normal incidence; 
(b) with incidence i given by: tan i = 8/2 OA. 

jection, parallel to the rays of the beam, of contour 
C' on contour C. 

In normal incidence, this surface is a part common 
to two equilateral triangles, one of which is rotated 
relative to the other by 180° around their common 
centre of gravity (Fig. 9). The useful surface is 
therefore delimited by a regular hexagon having a 
side a/3 and a surface area equal to 2/3 of that of the 
triangle. 

When incidence i varies the two triangles are 
mutually shifted by (5 whose value is given by 

= 215—A tan i = 3 tan i.  (22) 

The variation in apparent surface area is not 
identical in every direction for a same value of 
incidence angle j. The curves in Fig. 10 show the 
variation as a function of i for two given directions. 

60 50 40 30 20 10 10 20 30 40 50 60 deg.. 
12 le. 

I 111111- 1111111 

70 60 50 40 30 20 10 0 10 20 30 40 50 60 70 deg. 

Fig. 10. Relative apparent area variation versus incidence angle, 
for two rotation directions. 

Scale : hollow trihedral. 

Scale 12 : glass trihedral with index n =--- 1.5. 
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Fig. 11. A panel with hollow trihedral made by ONERA. 

The maximum angle of incidence, of retroreflective 
effect, corresponds to a shift ô equalling ,./2, i.e. an 
angle of approximately 55°. 

The trihedral can be made either hollow, as illus-
trated by the panel in Fig. 11, or of transparent 
material, from the section corner of a glass or silica 
cube. Owing to the plane entrance diopter, the centre 
of symmetry no longer merges with the trihedral 
apex, but corresponds to the image of that apex in 
the diopter. Accordingly, it is at a distance of aln,16 
from the entrance surface, where n is the refractive 
index of the material used. 

The effective surface is the same, at zero incidence, 
as for the hollow trihedral, but the variation with the 
angle of incidence is different, because the distance 
between the contour and its image is divided by n. 
The shift ô as a function of the angle of incidence i is 
given by 

= —3n tan i.  (23) 

The effective surface being equal, the tangent to the 
angle of incidence is multiplied by n; the useful field 
is thus n times as large as that of a hollow trihedral 
of the same size. For example, for a refraction index 
of 1.5, the maximum angle of incidence is up to 65°. 
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When using trihedrals, it is often an advantage to 
prepare panels made up of m small elements rather 
than using a single larger trihedral. For the same 
effective surface, the dimensions of the larger unit 
would exceed by those of each of the small 
component trihedrals. Thus the set of m panel 
elements is .,/tn times as light in weight as the one large 
trihedral. 

To ensure minimum weight, the sizes of the elements 
must ultimately be determined, according to ( 15), by 
the value chosen for the angle O of the retroflective 
cone formed by diffraction. 

4.2. Glass Balls 

A glass sphere of a refractive index n is metal-plated 
over part of its surface. 

A ray incident at point I (Fig. 12) is refracted, then 
reflected from point M, finally emerging at point l', 
where it is refracted once again. The incident and 
emergent rays make an angle of 2a. Angle e is defined, 
as a function of the angle of incidence and index n 
by the formula 

e = i — 2r 

sin i = n sin r  (24) 

The angle a becomes zero for the value of the re-
fractive index given by 

n = + cos i). 

The curve in Fig. 13 shows the variation with the 
angle of incidence of the deviation a for four values 
of index n. 

For an incident beam of parallel rays, and an index 
n of 1.88, 50% of the energy intercepted by the 
sphere corresponds to all rays whose incidence i 
ranges between 0 and 45°. The corresponding 
reflected light is contained within a cone with a 
vertex angle 4e of 4°. 

It is demonstrable, consistently with (15), that the 
angle O of the diffraction cone is less than 4° if the 
glass ball is at least 24 pm in diameter. For any ball 
of a larger diameter, the angle /3 of the reflection 
cone is independent of the diameter, and the range 
is defined by equation (21). 

Retroreflective surfaces are made by bonding balls 
with diameters of the order of 100 pm to a thin 
reflecting substrate. 

Fig. 12. Light ray in a sphere with index n. 
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I 

Fig. 13. Angular spherical aberration of the retroreflecting 
sphere versus incidence angle i for different values of the 

refractive index n. 

4.3. Other Retroreflector Systems 

There are other optical systems capable of retro-
reflexion. Possible forms include the following: 

(a) Combination of a lens and a spherical mirror 
placed in its focal plane, with the centre of curvature 
of the mirror on the lens (Fig. 14). 

LENS SPHERICAL 
MIRROR 

Fig. 14. Retroreflector with a lens and a spherical mirror. 

(b) Combination of two spherical mirrors, one 
placed in the focal plane of the other. Figure 15 
shows such a system derived from the Schmidt 
telescope. The common centre of curvature of the 
two mirrors lies at the centre of the stop aperture. 

In the case of all these systems, as also in that of the 
glass ball, the geometric aberrations determine the 
angle of cone of retroreflexion provided their angular 
value exceeds that of the diffraction cone produced by 
the edge contour. 

5. Results 

To sum up the results of this study, let us take the 
example of a rangefinder suitable for measuring the 
distance of satellites. 

• April 1970 

The light source is a Q-switch ruby laser. The ruby 
is 9-5 mm in diameter and 76 mm in length. It emits, 
on the 694-3 nm wavelength, pulses of a peak power 
of 30 MW, a half-amplitude duration of 30 ns and 
an angle of divergence of 30 minutes. By means of 
an associated telescope of 1/10 magnification, this 
divergence is reduced to 3 minutes. Maximum 
intensity along the beam axis, as determined by 
reference to the distribution inside the emission cone, 
is 1.7 x 10' W/sterad. 

The receiving telescope has a diameter of 60 cm. 
Allowing for losses by transmission and by occultation 
of the secondary mirror, its useful surface area is 
2500 cm2. The detector placed in its focal plane is a 
photomultiplier Type FW 130 I.T.T. with an S 20 
photocathode. Followed up by an electronic circuit 
with a time resolution of the order of 10 ns, its 
minimum detectable flux is 1-9 x 10-9 W. Thus the 
minimum detectable illuminance e of the receiving 
set is 7.6 x 10' W/cm2 in the absence of parasitic 
light. 

In these conditions, the range for a diffusing object 
of 1 m2 apparent surface or a sphere of 56 cm radius 
is defined by (7) and (8) as 

= X2 = 290 km. 

For a reflecting sphere of the same 56 cm radius, 
the range, according to ( 12), is 

X 
X3 = 2 = 206 km. 

Let us now place on the object an aberration-free 
retroreflector of 2 cm diameter. The range as given 
by ( 19) is: 

X 5 = 8350 km. 

Accordingly, a 2 cm diameter retroreflector has a 
range 29 times as long as a scattering object of 1 m2 
apparent area. It would take a scattering surface of 
7x 105 m2 area or a scattering sphere of 940 m 
diameter to obtain the same range. 

Using panels of multiple retroreflectors of equal 
size, the range can be increased proportionally to the 
fourth root of the number of constituent elements. 

SECONDARY 
MIRROR 

STOP 
APERTURE 

PRIMARY 
MIRROR 

Fig. 15. Retroreflector with two mirrors. 
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For such panels, the angle of the diffraction cone 
of reflected light is the same as for a single element. 
In accordance with (15), this angle is 17 seconds for 
a 2 cm diameter, corresponding to a 250 m illuminated 
zone at a distance of 3000 km. 

Glass ball reflectors constitute an intermediate 
solution between the scattering surface and the retro-
reflectors. Angular aberration, which is very con-
siderable in relation to diffraction, distributes re-
flected light in a 4° cone. With due allowance made 
for the piece-to-piece pattern of the balls and for the 
presence of merely a part of 50% of the light inside 
the 4° cone, the useful surface is at most something 
like 40% of the total surface. Hence, upon the 
example discussed above, the range for 1 m2 scattering 
surface is found to be, according to (21), as 

X6 = 1240 km. 

In other words, the range is 4-3 times as long as in 
the case of a scattering surface of equal dimensions, 
but a single retroreflector of 2 cm carries another 
6-7 times as far. To obtain the range of the retro-
reflector would require a total surface of about 
2 x 103 m2, which is 340 times as small as that of a 
diffuser. 

Table 1 sums up the relative range data obtained 
by various reflecting surfaces. 

These values offer a basis of comparison between 
the respective efficiencies of various reflecting surfaces, 
but do not allow for atmospheric transmission losses. 
The range is proportional to the square root of the 
atmospheric transmission factor between the trans-
mitter-receiver and the object. 
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Table 1 

Relative range for different .-reflective 
surfaces, all of the same effective apparent area. 

Reflective surface Relative range 

Perfect scattering 

Reflecting sphere 

Glass balls 

Retroreflector panel 
2 cm diameter each 

1 

0.7 

4.3 

220 
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On the Linearity of a Thermistor Thermometer 

By 

M. J. BOWMAN, 

M.Sc., P.Eng. 

A general approach to linearizing a thermistor thermometer over limited 
temperature ranges is developed. Theoretical and experimental results 
are presented for various typical operating modes. Effects of detector 
resistance, probe cable resistance and off-balance calibration on the 
linearity and sensitivity of the device are investigated. 

1. Introduction 

In recent years the thermistor has been widely used 
as a method of measuring the temperatures of fluids 
and solids. Its large temperature coefficient of resis-

• tance, coupled with small physical size, has led to its 
wide-spread application in all branches of research 
and engineering. 

Various workers (e.g. Beakley,' Godin,2-3 Lôv-
borg,4 and Boël and Erickson') have investigated 
methods of linearizing the response of thermistor 
thermometers in special cases over limited ranges of 
ambient temperatures. 

The purpose of this paper is to develop a general 
method of deriving the design parameters involved in 
linearizing the thermometer in various typical 
operating modes. Detector resistance, finite thermistor 
probe cable resistance and off-balance calibration each 
affect the sensitivity and linearity of the thermometer, 
and for intelligent design these characteristics need to 
be investigated. 

2. Theory of Thermistor Bridge 

The resistance R of a thermistor at absolute tempera-
ture T can be expressed in terms of its resistance So 
at absolute temperature To, by 

R = So ez, where z = BIT — BIT°  (1) 

and B is a constant. Let 0 = TIB, where 0 will hence-
forth be denoted as the normalized temperature. 
One of the most useful ways of employing the ther-
mistor as a temperature sensor is to mount it in one 
arm of a d.c. Wheatstone bridge. With reference to 
Fig. 1, let Q, So and G be fixed resistances and let 
So be equal to the resistance of the thermistor at the 
bridge balance temperature To. 

Normally the detector resistance G will be decided 
by other circuit considerations; thus G will be treated 
as an independent variable, and the analysis confined 
to solving for Q as the dependent variable. 

By Kirchhoff's Law: 
vbq(r — 1) 

IG — q2(r + 1)-F 2qr + g(q + r)(q + 1) 

t College of Engineering, University of Saskatchewan, 
Saskatoon, Canada. 
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where vb = VIA» q = Q/So, g = GIS°, r = RIS0= ez 

x(ez — 1) 
i.e. /G — 

1+yez 
where 

and 

Therefore 

and 

G B2 _ 02/ x(1 + y) ez r  1 — y e'  ± 21. 
0 T2 03(1+y e)2 L0(1 + y e') j 

The inflexion temperature is given by: 

32/G 

vb  

q + g(q + 1) 

q(q+2)+g(q+ 1) 
Y — 2/ q (g+1)-Fgq 

B DIG — x ez(1+ y) 

ÔT 02 (1 + y ez)2 

DT2 = 

1 + 20 
when y ez = 1 — 20  (6) 

which is the linearity condition. Note that (6) is 
independent of x and hence depends on bridge 
components only through y. 

The solution for the linearizing resistance Q from 
equations (4) and (6) now depends on the mode of 
operation. 

If a centre zero detector is not available, then the 
bridge may have to be linearized off-balance. 

vbÍ 

Fig. 1. Thermistor d.c. bridge circuit. 
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Table 1 

Equations Ti (j, k) for linearizing resistance g (or g') for various operating modes 

Operating mode G finite 
k = 1 

G = 
k = 2 

G = oo 
k = 3 

Bridge linearized 
on balance at T0 
R' = 0 j = 1 

q — 48, + g(1 +20a 
(as obtained by Godie 

(1-200) — 2g00 + [(1 —200)2 + gl* 1 —200 1-200 
— 200 — 1+200 

Bridge linearized 
off balance at T, 
R' = 0 1 = 2 

— 2a 

a = y(1 +g)-1, b = g( y-1)-2, c = —g 
(1+20,) 

Y — 1-20, e - 21 

—b + (62 —4ac)* 2e21(1-20,)  

— (1 —ezi) + 20,(ezi+1) 
ezi(1-20,) 

q 1+20, 
(as obtained by 
Beakleyi and Godie 

Bridge linearized 
on balance at T0 
R' 0 = 3 

, —b + (62 —4ac)' 
— 2a 

a = y(1 +g+2r')-1 
b = (1 + r')(2r'y+gy —2) + g(yr' — 1) 
c = g(1 + r')(yr' — 1) 

(1+200) 

Y 1-200 

(1 + r')[1 — 200 — r'(1+ 200)] 1-20.D  
(/ — 200 + r'(1+200) — 1+200 r' 

Bridge linearized 
off balance at T, 
R' 0 j = 4 

, —b+(b2-4ac)* 
— 2a 

a = y(1 +g +211-1 
b = (1 + r')(2ey+gy —2)+g(yr' 1) 
c = g(1 + r')(yr' — 1) 

(1+20,) 
y= e- z I - - --

1-20, 

, 2(1 +r')[eni(1 —20,)—e(1+20,)] , eei(1-20,) r, 
— — (1+201)(1+2K)— eat(1 —201) 1+20, 

Thus if the thermometer is linearized at temperature 
7-1 # T0, then, from equations ( 1), (4) and (6), 

q(q + 2)+ g(q + 1) = ex' — (-1 — —1 x 
q2(g 1 .)+gq 01 00 

1 + 201: 
0i # 00.  (7) 

The right-hand side reduces to: 

1 + 20, 

1 — 20, 

Tabulations of g for the cases: 

(i) bridge linearized on balance, and 
(ii) bridge linearized off-balance, 

are given in Table 1 for various values of detector 
resistance, G. 

if 01 = 00. 

3. Effect of Finite Probe Cable Resistance 

If the thermistor probe is required to be mounted 
at a remote point from the bridge, such as may be 
the case in bore hole temperature and bathythermo-
graph measurements, then the sensor probe cable 
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may have a significant electrical resistance. This 
resistance R', say, can have a large influence on the 
value of Q, and the sensitivity of the device. 

Let a balancing resistor equal to R' be placed in 
series with S0 in the adjacent arm of the bridge, as 
shown in Fig. 2. Similarly /6 can be expressed as 

x'(ez — 1) 
1G — 

where 

X' — 
q'2(2r' + 1)+ 2g'e(r' + 1)+ g(g' + r')(q' + r' + 1) 

 (9) 

1 + y' ez 

vbq' 

(8) 

y' = 
q'2+2qi(r' +1)+ g(q' + r' + 1) 

g'2(2e + 1)+2q1e(r' + 1)+g(q' + r'Xq' + r' + 1) 
 (10) 

r' = R'/S0, and q' = Q'/S0. 

Comparing equations (8) and (2), it can be seen that 
the linearity condition is again 

, 1+ 20: a 
Yi ez —  (11 

1 —20 
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Fig. 2. Thermistor d.c. bridge circuit with probe resistance 
included. 

Note that since the right-hand sides of equations (6) 
and (11) are independent of bridge parameters, 

y4 = 3';  (12) 

Table 1 again gives values of q' solved from equations 
(10) and (11) for the various operating modes described 
above. 

4. Thermometer Sensitivity for the Various 
Operating Modes 

The sensitivity may be defined as the current 
gradient at the linearizing temperature, and, for the 
case R' = 0, is given from equations (5) and (6) by 

B DI G(Ti) xi(1+ y  4e— 1 
 (13) 

DT yi 40î 

The voltage sensitivity is given by 

(3VG/DT = GDIGIDT. 

If an open-circuit detector is required, i.e. a situation 
where G —> oo, then an open-circuit sensitivity DVIDT 
may be defined by 

(3 V ,i . 3/G 
— = im 
DT G— DT 

From eqns. (3), (4), (13) and (14), 

40? 
B OV(Ti) 4q — 1 

= V b   (15) a T  
then the sensitivities are similarly If R' 0, 

defined by 

and 

.94m, R') x;(1+ y;) 40?- 1 
B — , 

(3T yi 

avdT,, R') G DIG (r, R,) 

aT ÔT 

avm R') 40î — 1 ,    q'  

" OT b 40? q' + r' 

Note as G —> oo, the right arms of the bridges in 
Figs. 1 and 2 provide only a 'backing off', or a 

(14) 

(16) 

April 1970 

(17) 

balancing voltage, and hence do not enter into the 
linearity conditions. Also, from Table 1, column 3, 
q' + r' q, i.e. the total resistance in series with the 
thermistor is the same in both cases, which of course 
for linearity must be the case. 

A sensitivity ratio, y, may be defined from equations 
(12), ( 13) and (16) by: 

=• DVG(T,, R')/DT R')/DT  (18) 
Y 

(3VG(Ti)laT • DIG(T)IDT - xi 

The effect of finite cable resistance on sensitivity may 
therefore be related to the zero cable resistance case. 

For any particular configuration, xi and x; must be 
calculated from equations (3) and (9), using the relevant 
values of q or q' from Table 1. Manually this is a very 
tedious calculation, and some sample computations 
are shown in Fig. 3. 

2.0 

61,.00 0 • 0 0 

0.4 

0 01 0.02 0.04 0.17 0.1 

A'so 

Fig. 3. Graph of sensitivity ratio y, versus re° for various 
values of normalized detector resistance G/So. 

It is surprising to note that in some cases the 
sensitivity ratio actually increases, which is due to a 
small change in R' dictating a relatively large change 
in Q', altering the sensitivity considerably. It is well 
known from Wheatstone bridge theory that the bridge 
becomes most sensitive to a small change in R when 
its lower and upper arms become equal, which can be 
shown to be the case at the various maxima on the 
graph, namely S0+ R' = Q'. 

The many possible variations in operating modes 
prevent tabulations of all the results, but it will suffice 
to say that whether the sensitivity ratio increases or 
not depends on several factors such as the values of 
G/S0, 0, and whether 00 0. 
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5. Departure from Linearity of the 
Thermometer 

The reader is now referred to the paper by Boa and 
Erickson,' where the special case of an open-circuit 
detector arrangement is considered. Their equation 
[7], where Aei is denoted as the open-circuit output 
voltage ratio, should be compared with equations (2) 
and (8) in the present paper. 

Functionally the three equations are the same since 
a, x, y, x' and y' are constants of differentiation. 

i.e. (a + 1)Ael (y1x)IG -e- (y' Ix')IG. 

Their subsequent analysis to find the departure from 
linearity may therefore be carried over to the more 
general case considered here. 

From their equations [16] and [17], we find 

Aer, 3I GO' I) MGM) — B 2 
 (19) 

a3 T I aT 27;4 

(This result was also derived by Beakley.1) 

The appropriate Taylor Series approximation for 
equation (2) about the linearizing temperature T, is 
given by 

I G(T) = G(T1) + (T T1) 491G(Ti) + o + 
aT 

(T— T1)3 331G(Ti) 

3! a3T + 

aiG(7;) 
= IG(Ti) + aT 

x [(T — Ti) B2(T— T1)31 
12Ti4 j + 

The departure from linearity is then 

e(T) = /32(T — B(0-01)3 

12714  - 1261 

and is completely independent of any particular bridge 
configuration. This interesting result is due to the 
functional peculiarities of equation (2), or, even more 
fundamentally, to the exponential form of the ther-
mistor equation (1). 

Let 0„, be the highest (or lowest) ambient normalized 
temperature consistent with a departure from linearity 
of w%. 

e(T.)113 
i.e. w1100. 

01 

Combining (20) and (21) gives 

2 O = ( 12/0 
—  

i • 100 i 

For an error of 1 %, 01 ±0.30î 

For an error of 5%, 0m 0I +0.80? 
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6. Experimental 

To verify the equations derived, the following 
experimental arrangement was constructed. 

A factory-calibrated small-bead thermistor, (YS1 
Components Division type 44030), was pressed into 
a small hole in an aluminium block surrounded by an 
oil bath whose temperature could be kept constant 
to within 0.1 degC over an ambient range of 0°C 
to 100°C as monitored by a mercury-in-glass thermo-
meter calibrated in units of 0.1 degC. 

The factory calibration was checked and found to 
be accurate to + 0.2 degC over the range 0 to 100°C. 
From equation (1) a value of B = 3898°K was obtained 
by fitting a least-squares straight line to values of 
logeR versus 1/T, for temperatures between 0°C and 
100°C. The value of R at 25°C was equal to 3000Q. 

The dissipation constant D is given by 

DM' = W 

where AT is the internal temperature rise above the 
ambient temperature for power W dissipated in the 
thermistor. D was measured by soldering a 5000 
high precision resistor in series with the bead and 
connecting both across a laboratory power supply. 
Two electronic voltmeters were wired in circuit, one 
across the sensor to give the thermistor voltage and 
the other across the fixed resistor to measure the 
current. Hence the power W dissipated and the 
resistance R of the thermistor could easily be 
determined. For given power levels reference to the 
R versus T calibration curve yielded the internal 
temperatures and hence the rises above ambient. As 
shown in Fig. 4, measurements were performed at 

10 

01 

e 

0.01 

 (21) "O6 

(22) 
1.0 10 100 

T, DEG C 

Fig. 4. Graph of power dissipation W versus internal tempera-
(24) turc rise AT for thermistor YS1 No. 44030 mounted in Al block. 

(23) 
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three ambient temperatures to give an average value 
of 6.00 mW/degC for D. Care must be taken at low 
values of W since small fluctuations in the ambient 
temperature create large errors in the measured value 
of AT. 

Maximum heat is dissipated in the bead when the 
effective resistance in series with the thermistor 
becomes equal to its own resistance. This implied 
that the bridge voltage needed to be kept less than 
1 or 2 V, depending partly on the ambient temperature, 
to ensure that the maximum temperature rise in the 
device was always less than 0-1 degC. 

The bridge was constructed with precision four-
decade resistance boxes, and fed from a high stability 
laboratory voltage supply. The output current was 
measured using an electronic voltmeter across the 
detector resistance G. 

Three different operating modes, considered typical, 
were established in order to verify the theoretical 
predictions. Table 2 gives the values of the important 
parameters in each case. Values of So and Q (or Q') 
shown were found by programming equations (1), and 
Ti (j, k), in Fortran on a DEC PDP-8 computer. 

Table 2 

Operating parameters for the three illustrative modes 
of a linearized thermistor thermometer 

Mode 1 Mode 2 Mode 3 

Ti (°C) 80 

To (°t) 80 

B (°IC) 3898 

G(f) 

R' (SI) 

So (n) 376.9 

20 

20 

3898 

co 

o 
3748 

47 

27 

3898 

1000 

150 

2750 

17b (V) 1'0 1'0 1'0 

(2 (or O(û) 1704 2768 1197 

sensitivity —0.752 x 10 -5 —0111 x10 -1 —0367x 10 -5 
A/degC V/degC A/degC 

Theoretical current and voltage sensitivities were 
also computed from equations (13), ( 15) and (16), and 
are shown superimposed as tangents in Figs. 5 and 6 
The solid curves are the theoretical responses of the 
thermometer as given in equations (2) and (8) with the 
appropriate values of xi and yi (or e4 and y) inserted. 

The validity of the universal departure from linearity 
equation (20) was determined for each mode by 
computing the theoretical and experimental departures 
from linearity, and the results plotted in Fig. 7. 

To illustrate the correctness of the sensitivity ratio 
equation (18) the following procedure was adopted. 

April 1970 

0-2 

0.1 

00 

-0.2 

-0.3 

-40 -30 -10 0 10 20 30 
(T- Ti) DEG C 

300 eV ( 30°C). -7.5 FA/deg C To= Ti 80°C. 
or 

(MODE 1) 

1.1.1 
0 100 0 
2 

a 0 

O 

-1001-

-200-

-300-

-30 -10 0 10 20 30 40 
(T- T)DEG C 

(47°C). -3.7mAileg C 
or 
To. 27°C (moDE 3) 
Tj 47°C 

150 

100,, 

50 

o 

-50 

-100 

-150 

Fig. 5. Theoretical and experimental plots of thermistor 
thermometer output current versus temperature for operating 

modes (1) and (3). 

Tabulations of Q' for various values of G and R' 
were computed from eqn. Ti (3, 1) for the arbitrary 
operating mode Vb = 1•0 V and Ti = To = 39°C. 
(0i = 00 = 0.08). The temperature-controlled bath 
was set to (Ti + 5)°C, and values of /G(Ti + 5) measured 
for the above selected values of R' and G, using the 
relevant value of Q' in each case. 

The bath was then reset to (Ti — 5)°C and the above 
procedure repeated. Interpolation between corre-
sponding values of /0(T1 5)°C gave estimates of the 
current derivatives and thus, finally, y. Experimental 
points are shown plotted in Fig. 3. 

7. Calibration 

In practice, a thermometer may be calibrated in 
several ways. For large temperature ranges an 
experimental calibration with two water baths at 
temperatures Tmax and Tmin is probably the easiest 
method, interpolating to give the scale graduations. 
For example, from equations (23) and (24), at 

0-3 rh, ( 20°C). - 111 mVicleg C 
dT 
T =T 20°C 
o 
(MODE 2) 

Fig. 6. Theoretical and experimental plot of thermistor 
thermometer output voltage versus temperature for operating 

mode (2). 
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0-2 

0.1 

0.2 

I t  

MODE 1 

MODE 2 

MODE 3 

-28 - 24 - 20 -16 - 12 - 8 - 4 0 4 8 12 16 20 24 28 

( T - 7-1) DEG C 

= 50°C, B = 3898 °K, and an error of 1 %, 

= 59-28°C, Tinin = 40-72°max C 

and for w = 5 %, 

T= 70-75°C T = 29-25° max , ." C 

For a highly sensitive thermometer designed for 
measuring very small temperature changes a theoretical 
calibration is best. The thermistor is replaced by a 
decade resistance box set to the resistance R of the 
thermistor at the linear point. Its resistance is changed 
by a few ohms 6R, and the detector deflexion noted. 
Since OR/DT = — BR/T2, a small change SR is 
equivalent to a temperature change of ST = 
—T2SRIBR. 

8. Conclusions 

Long term instability, in the past one of the major 
disadvantages of the thermistor, has now been largely 
overcome. With the appearance of high-gain, high-
stability operational amplifiers, the possibility of 
constructing a very sensitive thermometer in a d.c. 
Wheatstone bridge configuration has demanded 
investigations into the possibility of linearizing such 
a thermometer. In this paper, it has been shown that 
detector and thermistor probe cable resistances, and 
off-balance calibration each affect the linearity and 
sensitivity of the instrument. These effects, if ignored, 
will lead to large deviations from the expected 
operating conditions. It has also been pointed out that, 
when properly constructed, the departure from 
linearity is completely independent of any particular 
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Fig. 7. Comparison of 
theoretical and experimental 
departures from linearity versus 
departure from inflexion 
temperature for the three 
illustrative modes (1), (2) and (3). 

bridge configuration and depends only on the ther-
mistor characteristics and the ambient temperature. 
It should be stressed that the analysis contained in 
this paper is relevant only if the self-heating of the 
thermistor is negligible. Although the sensitivity of 
the device increases with bridge voltage, the derived 
linearizing equations become void. If the thermometer 
is immersed in a moving fluid, then the instrument 
may also respond to velocity, as well as temperature 
fluctuations." 
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Determination of the Parameters of an 
Electrodynamic Transducer 
By 

R. YORKE, 

B.Eng., B.Sc.(Eng.), Ph.D., 
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One of the most interesting areas of contact between the studies of electrical 
and mechanical systems is that exemplified by the electrodynamic trans-
ducer. In such a device the electrical and mechanical aspects profoundly 
influence one another, so that in problems of performance and design it 
is frequently necessary to measure the parameters of the system. 

The electrodynamic transducer, whose mechanical system consists of 
mass, compliance and damping having a single degree of freedom and 
whose coil has inductance and resistance, is first treated in detail via its 
equivalent circuit. This therefore consists, over the working frequency 
range of the transducer, of five elements and it is to the measurement of 
these, and a sixth, the constant of transduction, that the bulk of the paper 
is devoted. 

Several methods of measurement of each of the mechanical parameters 
are described allowing the principle of intercomparisons of different 
determinations to be used. The methods described for measuring the 
electrical parameters, believed to be original, readily accommodate the 
frequency dependence, which due to eddy-current effects sometimes 
occurs in practice. Brief mention is made of some of the experimental 
techniques which have been successfully used for the measurements and 
some consideration is given to the factors which limit the accuracies 
attainable in practice. 

List of Symbols 

complex frequency 

ai radian frequency 

U, u velocity 

F,f mechanical force 

E, e voltage 

i current 

Z. electrical impedance 

Z. mechanical impedance 

Y. mechanical admittance 

G.m mechanical-to-electrical transduction 
constant 

G.. electrical-to-mechanical transduction 
constant 

Zm motional impedance 

Ym motional admittance 

M, m mass 

compliance 

mechanical resistance 

Qo, (Do resonant frequency 

co' lower half-power-point frequency 

co" upper half-power-point frequency 

electrical equivalent of the resistance of 
the mechanical system 

inductance equivalent to the compliance 
of the mechanical system 

capacitance equivalent to the mass of the 
mechanical system 

resistance of the electrical circuit 

inductance of the electrical circuit 

transducer terminal impedance 

al, a. first and nth deflexions of exponentially 
decaying vibrations 

Y (colcoo — coda» 
a co/coo 

R' equivalent series resistance of parallel L, 
C, R circuit 

X' equivalent series reactance of parallel L, 
C, R circuit 

equivalent series capacitance of parallel 
L, C, R circuit 

a 100K/r 

L„ L;, electrical inductance added in series with 
the transducer to change the resonant 
frequency 

C„ C, C electrical capacitance added in series with 
the transducer to change the resonant 
frequency 

modified resonant frequencies 

C' 

t Department of Electrical Engineering, University of 
Southampton, Southampton SO9 5NH. (01, (02 

The Radio and Electronic Engineer, Vol. 39, No. 4, April 1970 215 



R. YORKE 

1. Introduction 

One aspect of the science of electroacoustics is the 
phenomenon of transduction between coupled electri-
cal and mechanical systems. In a manner analogous 
to the interaction between two transformer-coupled 
electrical circuits, the mechanical and electrical 
systems interact with one another uniquely. 

The coupling element, or transducer, may be 
presented in four-terminal network form, enabling 
the familiar techniques of circuit analysis to be 
applied. The dynamics of such a system can therefore 
be expressed in two equations, one relating to the 
electrical circuit but involving a term expressing the 
displacement—or its time derivative—of the mechani-
cal system, the other relating to the mechanical system, 
which likewise must include a term expressing the 
voltage or current in the electrical circuit. 

One such system, to a consideration of which this 
paper is confined, is the common electrodynamic 
transducer, in which a coil is constrained to move 
linearly through a uniform magnetic field (or, in some 
cases, to rotate about a fixed axis in a radially uniform 
magnetic field). Movement of the coil through the 
field gives rise to an e.m.f. proportional to the velocity 
component perpendicular to the field, this e.m.f. 
causing a current to flow in any electrical circuit con-
nected to the coil terminals. In turn, the current 
reacts with the magnetic field, producing a force (or 
torque) in the mechanical system. The latter often 
comprises mass (or moment of inertia) and compliance 
(linear or rotational) with damping, and thus forms a 
resonant circuit having a finite Q-factor. 

It is therefore clear that conditions in the mechanical 
system are affected by the impedance of the electrical 
circuit connected to the coil terminals and, similarly, 
that the mechanical system has a profound effect on 
the electrical impedance presented at the coil terminals. 
It is well known, for example, that it is possible to 
alter the degree of damping of the mechanical system 
by altering the total resistance of the electrical circuit, 
and conversely, that the electrical impedance due to 
motion of the mechanical system—hence termed 
motional impedance—frequently forms by far the 
larger contribution to the total impedance. 

Applications of these basic principles are exemplified 
by the electrodynamic vibration transducer, the 
moving coil loudspeaker and microphone, the d.c. 
motor and a whole class of moving-coil instruments 
and galvanometers. 

2. The Transducer Principle 

2.1. Fundamentals 

The schematic of Fig. 1 represents the electro-
mechanical transducer with its separate electrical and 
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ELECTRICAL 
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E (s) 
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e,$) 

G me — 3›. 

TRANSDUCING 
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uts) 

Fis) 
Zm 

Fig. 1. Schematic representation of the electromechanical 
transducer. 

mechanical circuits coupled together by the trans-
ducing element. 

If the current in the electrical circuit is i(s), the 
characteristic of the transducing element is such that 
the force applied in the mechanical circuit is 

f(s) = Gme (s)i(s). 

Conversely, if the velocity of the mechanical system 
is u(s), the e.m.f. generated in the electrical circuit is 

e(s) = — Gem (s)u(s). 

Hence, if a voltage E(s) and force F(s) are applied 
to the system, as shown in Fig. 1, the equations 
relating voltage, current and force are: 

E(s)+e(s)= i(s)Ze(s) 

and 

F(s)+f(s)= u(s)Z,n(s) 

where Ze(s) and Z.(5) are the impedance functions of, 
respectively, the electrical and mechanical systems. 

For steady-state sinusoidal variations of i and u 
with respect to time, these equations written in phasor 
notation reduce to: 

E — Ge.0 = IZe 

and 

Thus, 

giving 

F + Grne I = UZ. 

U  = F+G I 

E = IZe + FG em +G em G me I 

The driving point impedance at ab may be found 
by letting F = 0 and calculating the complex ratio 
E/I; thus, 

or 

or 

E = IZe + I Ge. G.. 
Z. 

E =  Z = Ze + Ge. Grne 
Z. 

Z = Ze +  (1) 
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where Y. is the admittance of the mechanical system. 
The term GmeGemYm is termed the motional im-
pedance, denoted by Zm. 

Huntt has shown how the reciprocity theorem may 
be used to derive the bilateral properties of electro-
mechanical transducers, that is: 

Gm. = Ge„, G, say) 

and that although G is, in general, complex, very 
little error is committed if in the case of electro-
dynamic transducers it is assumed to be real. 

Thus, ZMZm = G2 so that Zm and Z. are dual 
impedances. 

For cases in which the mechanical system consists 
simply of mass, M, compliance, k, and mechanical 
resistance, p (or their rotational equivalents) with one 
degree of freedom, the mechanical impedance, Z. is 
given by: 

1  Zm = P-Fi(c)M — —)  
cok 

and its frequency locus in the complex plane is a 
straight line parallel to the imaginary axis and at a 
distance +p from it, as shown in Fig. 2. Points on 
the locus in the first quadrant represent frequencies 
above resonance whilst fourth quadrant points 
represent frequencies below resonance. When the 
phase angle of Z. is + n/4 the line representing Z. 
in Fig. 2 cuts the locus in co' and co", the two half-
power point frequencies. 

IMAGINARY 
AXIS 

7- PLANE 

LOCUS OF Zm 

M- c7:k) 

REAL AXIS 

. 

Zrn .e 

" 

Fig. 2. Mechanical impedance locus of simple second-order 
system. 

t Itunt, F. V., Tlectroacoustics' (Wiley, New York, 1954). 
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Z -PLANE 
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Fig. 3. Motional impedance locus of the system of Fig. 2, 
coupled electrodynamically. 

Since Zm is the dual of Z., its frequency locus is 
the inversion, about the origin, of the straight line 
locus of Fig. 2, that is, a circle positioned as shown in 
Fig. 3. The frequency range on this circle now 
extends from zero to infinity and the two half-power 
point frequencies (sometimes referred to as the 
quadrantal frequencies when shown on the circular 
locus), co' and co", occur at opposite ends of the 
diameter perpendicular to the real axis. 

The resonant frequency COo occurs, of course, on 
the real axis, and at this point: 

G 2 G 2 
Zm =  

— cool k) 

and since G and p are both real, Zm is itself real and 
equivalent to pure resistance, R, where 

G 2 
R — (2) 

2.2. The Equivalent Circuit 

In general, however, 

Zm — 
1 

p+j(coM — 
cok 

1 

G 2 

p i( M 1 ) 
a) G2 coG2k 

Following the pattern of equation (2), if we define 
L and C such that 

L = G2k and C = — 
G2 (3) 
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then 

or 

Zm = 1 

(wc - 
1 

1 1 )R coL 

which is recognized as the admittance operator of an 
electrical circuit consisting of R, L and C, all in 
parallel. Hence, such a circuit may be considered to 
be the electrical circuit realization of the motional 
impedance. 

Clearly, the largest value of Zm occurs when 

1 
co C — — 

i.e. at 

(4) 

and hence the diameter of the circle is equal to R. 

The Q-factor in this case, since we are considering 
a parallel circuit, is 

and this also is equal to 

ELECTRICAL 
TERMINALS 

(5) 

(6) 

Fig. 4. Equivalent circuit, over the working frequency range, 
of the electrodynamic transducer. 

Returning to equation (1), the other component of 
the driving-point impedance, Z., may, over the working 
frequency range of the transducer, be assumed to 
consist only of resistance and inductance. Hence, 
viewed from the electrical terminals, the equivalent 
circuit of the electrodynamic transducer is as shown in 
Fig. 4, in which r and / represent, respectively, the 
resistance and inductance of the electrical circuit. 

Hence, 

Ze= r+jcol 
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and the terminal impedance, Z, as given by equation 
(1) can now be written 

Z =  (7) 
r+iwi 1 ±; (0)c 1 ) 

R 

The frequency locus of Z may therefore be found 
by adding the locus of Ze, which is a straight line in 
the first quadrant similar to one half of the locus of 
Fig. 2, to the circular locus of Fig. 3. The circle is 
first shifted to the right along the real axis by an 
amount corresponding to the real part of Z. and then 
progressively deflected in the positive imaginary 
direction (as the frequency increases) by the term jco/. 
We arrive in this way at the looped locus of Fig. 5. 

Since the locus crosses the real axis at two points 
there are two resonant frequencies. The lower cor-
responds very closely to coo, the fundamental resonant 
frequency given by equation (4), whilst the higher 
occurs when the inductance / forms a series resonant 
circuit with the equivalent capacitance of the parallel 
circuit above its resonant frequency. This is termed 
the electromechanical resonance. 

By combining the ideas and relationships derived 
in this section, methods may be developed for 
measuring the various parameters. 

3. Measurement of the Parameters 

Corresponding to the two aspects of the transducer 
—the electrical and the mechanical—measurements 
may be made in electrical and mechanical terms. 
Although, of the six parameters to be measured, three 
are purely mechanical (M, k and p) and two purely 
electrical (r and /), it is not necessary always to measure 
these quantities only in their respective media, for, as 
equations (2) and (3) show, M, p and k may be 
calculated from electrical measurements provided that 
G is known. Indeed, caution dictates that each 
parameter should be measured in as many independent 
ways as possible in order to provide cross-checks on 
the accuracy of the various methods. In addition, the 
type of transducer being investigated may severely 
restrict the range of choice, and it is occasionally 
necessary to rely heavily on the basic interrelationships 
developed in Section 2. 

3.1. Measurement of Mechanical Parameters 

Perhaps the simplest of the parameters to measure 
directly is G. This may be accomplished, in the case 
of mechanically robust systems having rectilinear 
displacements, by passing direct current through the 
coil and cancelling the deflexion thereby produced 
with a known force. For a moving-coil loudspeaker 
or a vibration transducer, the unit may be mounted 
with its axis vertical and known weights added in order 
to apply the force. Normal experimental method 
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Fig. 5. Terminal impedance locus of the system represented 
in Fig. 4. 

demands that a range of currents and corresponding 
weights be used. 

If the system is such that displacements of the 
moving system may be measured easily, the method 
may be extended to measure k merely by dispensing 
with the current through the coil. For a known 
applied force, the deflexion is measured, but care 
must be taken to ensure that deflexion amplitudes 
are restricted to the linear range. 

The relationship between k and G may then be 
measured, to compare with their calculated ratio, 
by observing the deflexion of the moving system for 
a known current passing through the coil. 

The mass of the moving system may be measured 
directly by what is known as the 'added mass' method. 

The resonant frequency co0 is first measured by any 
convenient method; for example by observing the 
frequency for maximum amplitude when fed from a 
current source, or by shock-exciting the system and 
observing the frequency of decay oscillations. A 
known mass (or moment of inertia in the case of 
rotational systems) is added and the new resonant 
frequency measured. Let this be Q0. 

Thus, 

Mk and Q () —2 — (M + m)k 

where m is the added mass. 

Hence, 
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1 2 

in 
1(1 1) 
- k —2— —2 Q0 ca0 

co2m (_1 1) 

° f2¿, co.; 

1 

giving 

mf2,3  
M — 

By analogy with the well-known method for 
measuring the self-capacitance of an inductor, a 
graph of m against 1/S2, may be plotted, the slope of 
which will be 1/k and the intercept on the axis of 
m will be M. Since k = 11Mco,î, its value may now 
be determined to serve as a check on the directly 
measured value of k. 

The mechanical resistance must be determined in 
terms of the Q-factor of the mechanical system. If 
the Q-factor exceeds about 8 it may be measured 
directly in mechanical terms by shock-exciting the 
system and observing or recording the decaying 
oscillations. If al and a„ are the first and nth deflec-
tions, respectively, of the exponential decay, then it 
may be shown that the Q-factor is given by: 

n (n-1) 
Q = 2 ln a ila„ 

Hence, p may be calculated from 

P= 

If, on the other hand, the Q-factor is less than 8, 
it is easier and more accurate to measure it in electrical 
terms, as described below. 

ro0M 

3.2. Measurement of Electrical Parameters 

3.2.1. The measurement of L, C, R and Q 

In addition to the purely electrical quantities r and 
I, the magnitudes of M, k and p may be determined 
by the correct interpretation of terminal impedance 
measurements. 

Comparison of Figs. 3 and 5 shows that the circular 
locus of Zm may be obtained from terminal impedance 
measurements provided that / and r are known. 
Methods for measuring these parameters are described 
below, and although a knowledge of L, C and Q is 
needed for their accurate determination, values of 
these latter quantities, obtained from M, k, G and p, 
may be used to evaluate, provisionally, r and I. It 
transpires that small errors in the values of r and / 
thus found have only a very small effect on the 
circular locus determination. 

Indeed, for all but the lowest Q-factors (5 or less) 
the terminal impedance locus is so nearly circular 
that an accurate estimate of the true circular locus 
may be made by inspection. 

For Q-factors less than 5 it is necessary to make a 
point by point determination of the circular locus by 
deducting the impedance, r+jcol, from the terminal 
impedance at each frequency. 
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Fig. 6. Equivalent series resistance, R', expressed as a fraction 
of R of the parallel circuit in Fig. 4, as a function of y 

(= w/coo — cookii) for various Q-factors. 

As the result of Section 2 shows, the diameter of the 
resulting circle gives R and the Q-factor may be 
obtained from the quadrantal or half-power fre-
quencies using equation (6). Hence L may be found 
from equation (5) and, knowing coo, use of equation 
(4) will yield C. 

The Q-factor measured from the circular locus 
should, of course, be identical with that measured 
mechanically, as described in Section 3.1, since the 
two values arise merely from two aspects of the same 
resonant system. 

3.2.2. The measurement of r 

It is axiomatic that the motional impedance could 
be eliminated entirely by inhibiting movement of the 
mechanical system. Where this is possible a simple 
bridge measurement of both r and / yields all the 
information required, but in many cases it is not 
possible to lock the coil completely. In a loudspeaker 
or microphone, for example, permanent damage 
might result from any such attempt. Any alternative 
should take into account the change of r with frequency 
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300 due to eddy-current effects in the iron surrounding 
the coil. 

Referring to the equivalent circuit of Fig. 4, the 
admittance function Y(jw) of the parallel circuit is: 

Let 

y = coo), 

coo co 

Then 

Therefore 

1 j 1 
wC + 

jcoL 

1 
Q = — and 

L LC 

co2 
jcoL + R ( coo)1 — 

Clo0 — jcoLR 

1 . 
= (1+JYQ) 

  R(1—iYQ) 
Z(j(0) — 1+ jyQ — 1 + y2Q2 

so that the equivalent resistance, 

R' — 1+ y2Q2 

and the equivalent reactance, 

RyQ  
X' =  (8) 

1+ y2Q2 

X' is capacitive when y is positive, (i.e. co > coo) and 
inductive when y is negative, (co < coo). 

If the combined reactance (ad+ X') is tuned against 
an added series reactance (inductance or capacitance 
as the case requires) the terminal impedance will then 
be purely resistive, and equal to the series combination 
of r and R'. By adjusting the added reactance in a 
suitable manner, the resonant condition may be 
brought about over the range of frequencies for which 
r is required. 

It remains to examine the relative magnitudes of r 
and the equivalent resistance R' to enable a measure-
ment of the terminal resistance to be interpreted in 
terms of r to sufficient accuracy. 

The graphs of Fig. 6 show the variation of R' 
(expressed as a fraction of R) as a function of y for 
various values of Q. It can be seen that for all but 
the lowest Q-factors the value of R' falls very rapidly 
above the resonant frequency. An octave above 
resonance, except for Q values of 1 and 2, R' is only 
4%, or less, of R. Whether or not this is negligible 
compared with r obviously depends on the ratio rIR. 
It is possible, however, to determine from the graphs 
of Fig. 6 values of y for which R' is not more than a 
given percentage of r. Hence, at these frequencies 
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(defined by the value of y) the measured terminal 
resistance will be within the same percentage of the 
required value of r, due allowance having been made 
for the resistance of the inductor or capacitor used to 
bring the circuit into resonance. 

Thus, suppose we wish the terminal resistance 
(R'+r) to be within a % of r, then 

R  a 
R' = 1+ y2Q2* Foo . r 

Thus, the lowest permissible value of (rIR) which 
makes R' come within a % of r is given by: 

r 100 

R = a(l+y2Q2) 

Graphs could be plotted from this equation, for 
different values of a, between (rIR) and y from which 
the lowest permissible value of y may be determined 
for an error of a %. 

However, if a is chosen to be unity, i.e. R' is 1% 
of r, the values of rIR for any value of y are just 100 
times the ordinates of the curves of Fig. 6, and 
consequently Fig. 6 may be used to determine the 
desired value of y. A 1000 : 1 range of values of 
rIR is marked on the graph. It can be seen that the 
value of y for a particular value of rIR is not very 
sensitive to the precise value of rIR, and a sufficiently 
close approximation to rIR for this purpose may be 
obtained by taking the zero-frequency value of r. It 
is assumed that R has already been determined 
approximately. 

In illustration, the method was applied to an 
electrodynamic vibrator with a fundamental resonance 
frequency of 121 Hz. The Q-factor was 3.8 and the 
coil zero-frequency resistance was 2.2n. R was 
0.8 0, hence rIR = 2.75, and estimation from Fig. 6 
gives y as 1.5. Thus, (co/coo — coo/co) = 1-5, giving 
(Woo = 2 (disregarding the solution for which co is 
negative). Hence, co = 2o), = 242 Hz, and from this 
frequency • upward the terminal resistance is within 
1 % of the true coil resistance. 

A second example is that of a moving coil, direct-
radiator loudspeaker which had a resonant frequency 
of 94 Hz and an R of 370 sz under vacuum con-
ditions. The zero-frequency resistance of the coil 
was 9-3 û and the Q-factor of the fundamental 
resonance was 48. Thus rIR was 0.025, and the 
appropriate curve on Fig. 6 gives y = 1.37. Solving 
(co/coo — coo/co) = 1.37 gives co/coo = 1.9 (again 
ignoring the negative solution). Hence, co = 1.9% = 
179 Hz, and above this frequency the terminal resis-
tance is within 1 % of r. 

3.2.3. The measurement of I 

From what has been said, it will be clear that it is 
possible to calculate / at the frequency of electro-
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mechanical resonance, since it is then in resonance 
with the equivalent capacitance of the parallel 
circuit (it is assumed that L, C and Q are known). 
However, in some cases, due to eddy-current effects, 
1 is not independent of frequency and it is then neces-
sary to measure / over a range of frequencies. 

By a similar technique to that described for the 
measurement of r it is possible to raise or lower the 
frequency of electromechanical resonance, artificially 
as it were, by adding, respectively, capacitance or 
inductance in series with the coil. By calculation, or 
graphically, / may then be determined. 

Dealing with the inductance case first, we may 
denote the added inductance by Li and the equivalent 
capacitance of the parallel circuit by C'. If the circuit 
resonates at a frequency co, then 

or 

1 
(Li + ,n — (02c, 

1 
L1= co2c — l (9) 

Equation (8) may be used to determine the equiva-
lent capacitance of the parallel circuit, C', in terms of 
C, since 

1 
X' 

coC' 

Hence, from equation (8), 

c 1+ y2Q2 ' — 
RQcoy 

and since 

1 
c = 

cotL 

C' = C Fee "2122)1 L RQcoy j 

. c [1+ y2Q2] Q20£3, where a = 

= c r
2+0t2y2Q2] 
ce2Q2ciy 

and substituting ay ---= (a2 — 1) 
ut2+Q2(OE2_ 1)2] 

C' = C ce2Q2(a2_ 1)  (10) 

co - 
o), 

Thus, 
. 1 { 2 2Q2(a2- 1) } . 

L 1 — c (02u2 ± Q2 (ce2 _ 1)1 i 

1 {  Q2(a2— 1) ) 1 
c 4[2 + n ce _ 1)1Í 
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If / is independent of frequency a graph of LI against 
Q2(0c2. _ 1) 

coace2 Q2(Œ2 1)1 

is a straight line, of slope 1/C, having an intercept of / 
on the Lr axis. However, when the graph has a 
slight curvature,, adjacent arcs of the curve may be 
used to provide different intercepts on the L1-axis. 
The accuracy of the method is poor, however, and it 
is better to use equation (9) to calculate /. By choosing 
pairs of neighbouring frequencies, pairs of simul-
taneous equations may be set up from equation (9) 
on the assumption that / does not change between the 
two frequencies. 

' Thus, if co, and co2 are the two resonant frequencies 
when and LÏ, respectively, are connected in series 
with the coil, 

and 

—  21 , 1  (11) 

1 
= 2 1  (12) 

co2Cí 

where CI and CI are the equivalent capacitances of 
the parallel circuit at frequencies a), and co2. CI and 
C; may be calculated from equation (10) and substi-
tuted into (11) and (12) from which a mean value of 
/ may be found. This may be regarded as correspond-
ing to a frequency -f(a)„ + a)2). Various values of / 
may be determined in this way over the whole 
frequency range for which values of L, have been 
obtained, i.e. for the range between the fundamental 
and electromechanical resonance frequencies. 

It is, however, inadvisable to approach too closely 
the fundamental resonant frequency since the curves 
of Fig. 7 show that the equivalent capacitance, C', 
becomes very sensitive to the value of Œ. 

Figure 7 also shows that for Q-factors and a each 
greater than 3 the curves approach to within 1% 
of one another, so that a simplified form of equation 
(10) may be used. 

Equation (10) may be written: 
Q2(0c2 _ 1)2 

ce2Q2(ce2 _ 1) 

which simplifies, when Q is large, to 

C' co2—coî, 
co2 

so that in many cases this expression may be used 
instead of equation (10) or the value C'/C may be 
derived from the graph of Fig. 7. 

Above the electromechanical resonance frequency, 
capacitance must be added in series. 
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Fig. 7. Equivalent series capacitance, C', expressed as a 
fraction of C of the parallel circuit in Fig. 4, as a function of a 

(= (0/0)0) for various Q-factors. 

If the added capacitance is denoted by C1, then 

1 1 = co2i 
C, C' 

where co is the new resonant frequency and the other 
symbols are as before. 

Unless C is required it is not necessary to substitute 
equation ( 10) for C', and a graph of 1/C1 against co2 
yields a line whose slope is 1. The same reservations 
as before apply, however, and a slightly curved line 
can be used to give different values of / over the 
frequency range. Also as before, an alternative 
method is to calculate / from pairs of equations such 
as ( 13) when two neighbouring frequencies are chosen. 

(13) 

4. Principles of the Measurement Techniques 

Although it is not the purpose here to give details 
of the laboratory procedures adopted in the foregoing 
measurements, it was felt that a brief reference to the 
principles of the methods would be helpful, particu-
larly with regard to the accuracies obtainable. 

For the resistance measurements, a straightforward 
resistive Wheatstone bridge is suitable. With the 
series-connected capacitor or inductor the transducer 
is resistive at only one frequency, so the bridge will 
not balance unless fed from a source at the correct 
frequency. The sensitivity of the method is adequate 
to respond to changes in resistance or frequency of 
0.2 % so that the accuracy obtainable in the measure-
ments is determined by the stability of the transducer 
itself. 

If the capacitors used in the measurements are of 
good quality and paper insulated, their equivalent 
series resistance is usually small enough to be neglected. 
Inductors should, of course, be air-cored and their 
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resistance is usually frequency-independent over the 
frequency range likely to be encountered. Hence a 
measurement at zero-frequency is adequate for all 
other frequencies. 

For the measurement of inductance (Section 3.2.3) 
where it is necessary only to adjust for resonance, an 
X—Y oscilloscope has been found satisfactory. The 
voltage across the transducer and its series-connected 
reactor is applied to one deflexion system and that 
across a series resistor to the other deflection system. 
The frequency is then adjusted until the phase ellipse 
display contracts to a straight line. When a suitable 
oscilloscope, having negligible phase distortion in the 
amplifiers, is used, the method is sensitive enough to 
allow frequency adjustment to 0.2%. 

A set of inductance measurements was made in this 
way on a transducer whose coil could be locked, so 
that comparative bridge measurements were possible. 
Graphical construction as described in Section 3.2.3, 
produced results within 5% of those obtained by the 
bridge method; and by calculation, the values of 
inductance were within 2% of the bridge measure-
ments. 

5. Conclusions 

It can be stated that, although it has been found 
impossible to make precision measurements on any of 

The Author 

the transducers tried, principally because of non-
linearity of compliance of the coil support, and of 
variations in permeability and eddy-current effects in 
the iron surrounding the coil, agreement to within a 
few percent has been obtained between different 
methods of measuring the same quantities. 

The non-linearity effects may be minimized by 
performing all the measurements at a constant 
vibration amplitude. However, the exciting current 
required is then a function of frequency and the eddy-
current and permeability changes are increased. 

Conversely, if the exciting current is maintained 
constant, the changes of permeability and eddy-current 
effects are reduced—though not eliminated—but the 
vibration amplitude falls rapidly with increasing 
frequency and the undesirable effects of non-linearity 
of support compliance are aggravated. 

These effects, however, are negligible in the case of 
very low frequency systems, such as galvanometers 
and indicating instruments, and it is with such 
systems that the best accuracies are achieved. 
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Potential Integral Theory for a Log- periodic 
Dipole Array of N, Parallel, Non-staggered Elements 

By 

B. G. EVANS, 
B.Sc., Ph.D.t 

A new and more accurate theory for the log-periodic dipole array is 
presented which takes account of all mutual interaction effects between the 
elements of the array. The new theory is used to compute the performance 
of a 10-element log-periodic dipole array, which together with conventional 
theory is compared with experimental results for the array. The advantages 
of the new theory over the conventional analysis are discussed in detail. 

1. Introduction 

The log-periodic dipole array (I.p.d.a.) resulted 
from an extension of the log-periodic principle,1 to 
curtain arrays of non-staggered thin-wire dipoles 
driven from a two-wire transmission line.' The 
1.p.d.a. (Fig. 1) differs from conventional linear arrays 
in that it consists of elements that are not all identical, 
but all differ from each other in length, radius and 
inter-element spacing. A theoretical investigation into 
the properties of such an array was made by Carrel3 
in which the problem was greatly simplified by 
assuming that each element current distribution, 
regardless of length, radius or relative position in the 
array could be approximated by, 

 ( /z(z) = /zi(0) sin 13(1i— iz ii) 1) 
sin fi/i 

where l is the half-length of the ith element and 
= 2n/el.. The solution also assumes that the mutual 

impedance between any pair of elements is indepen-
dent of the presence of all other elements, since the 
assumed distribution of currents is by definition un-
affected by their presence. Evidently the validity of 
this conventional array approach depends crucially 
on the degree with which these postulates are fulfilled 
in actual arrays. Conventional array formula for 
far-field, mutual and self-impedances lose their 
validity except when the elements are very thin and 
all are either resonant or electrically short. Obviously 
in an array of log-periodic elements which encompasses 
a wide range of element lengths, radii and spacings 
the foregoing assumptions cannot be accurate. How-
ever it happens that due to the log-periodic geometry 
the powers in the elements that are much longer or 
shorter than half-wavelength are relatively small and 
their contributions to the overall characteristics are 
not critical. Under these conditions even large errors 
in the theory do not affect the overall results too much 
and for this reason the results obtained by Carrel3 are 
essentially of the correct order. 

In order to provide a more satisfactory theory for 
1.p.d.a.s it is necessary to determine the distributions 
of current along all elements of the array in the 
presence of all coupling effects from the other array 
elements. The amount by which the distributions are 
modified by the coupling effects obviously depends 
upon their position in the array. A new approach to 
the problem of array analysis was first introduced by 
King' and includes interaction effects as well as self 
distributions of current for equi-element linear arrays. 
By investigating the distributions of current on the 
array elements it will be shown how King's approach 
may be extended to include unequal element lengths 
and spacings and thus be applicable to the 1.p.d.a. 

2. Formulation of the Array Integral Equations 

In the following formulation of the array problem 
it will be assumed that, (i) all elements of the array 
as shown in Fig. 1 are parallel, so that only axial 

1 
— i I—  — 1 —I — — 

------Li 11 1 1212in 12 1 

--,1-dn-i Rn 

(a) 

( b) 

t Department of Electrical Engineering Science, University Fig. 1. Log-periodic dipole array. (a) Lengths and spacings. 
of Essex, Wivenhoe Park, Colchester, Essex. (b) Method of feeding. 
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Fig. 2. Elements of integration on a log-periodic array. 

components of potential need be considered, (ii) each 
element is symmetrically fed so that /z( — z) = lz(z) 
and Az(— z) -= Az(z), and (iii) that a switched 180° 
feed transmission line is used whose effects are totally 
confined to the circuit part of the problem given by 
Carrel.' 
The vector potential upon each element of the array 

satisfies the same wave equation as when the element 
is isolated, that is, for the kth element, 

3221zk(z) + /32Azk(z) = 0.  (2) 
oz2 

It is readily shown that a solution to (2) is given by 

Azk(z) = [Ck cos I3z + 1170k sin /31z1]  (3) 
vo 

where vo is the velocity of a free space wave and Ck 
is a constant of integration, Vol, being the scalar 
potential across the feed-points of the kth element. 
The vector potential at a point z on the surface of 

a discrete element k is given by 

Azk(z) = —no f /zk(z') exp (— jfiRk) dz'  (4) 
4n Rk 

—1k 

where 

Rk = 

and no is the primary magnetic constant. The primed 
coordinates locate elements of integration on the axis 
of the array element and the unprimed on the element 
surface. 
When the kth element is placed in the array com-

plex, the vector potential on its surface has com-
ponents due to coupling with all other elements in 

Apd11970 

Azk(z) =- 2 E  

4n i= 

where 

the array as well as its self-contribution, as illustrated 
in Fig. 2. The overall vector potential on the kth 
element will be the sum of all such N-coupled terms 
given by 

N 

f Izi(z1) exp ( —ifiRk) dz'  (5) 

Rki 

Rki — (Zk— Z)2 dkk = ak  (6) 

dki being the axis-to-axis spacing of the k and i 
elements in the array and ak the radius of the kth 
element. 

Equating (5) and (3) we have 

E 
1=1 

f/zi(z') exp dz' =   X 
Rki 

x [Ck cos I3z i-e0k sin filzi] 

for k = 1, 2, 3, ..., N  (7) 

where Co is the free space impedance. For k taking 
values between 1 and N the N simultaneous integral 
equations for the N currents in the N coupled elements 
of the array are obtained. 

3. Solution of the Array Integral Equations 

The form of the array integral equation (7) differs 
from conventional linear arrays in that the integrals 
cannot be removed from the summation due to the 
unequal element lengths, so that each integral cannot 
be made independent of the kth. Only when the 
elements of a linear array are placed at the vertices 
of a regular polygon of order N, and the element 
current distributions all related to the kth, is there an 
exact solution to an integral equation of the form (7). 
For the case of log-periodic geometry no formal 
independence of the integrals is possible and thus the 
vector potential contributions on each of the elements 
must be investigated further to obtain an approxima-
tion which will allow separation. 

3.1. Boundary Conditions 

In order to be able to obtain the constants Ck from 
(7) a boundary condition must be applied on each of 
the separate k elements. The boundary condition to 
be satisfied is that the vector potential is discontinuous 
across the ends of the elements. 

Considering the physical operation of the array and 
the distribution of potential on the kth element, it 
can be seen that except for very closely spaced coupled 
elements the contributions to Azk(z) by the coupled 
elements will be approximately constant. Hence the 
vector potential may be considered to be made up of 
a constant part plus a varying part. The constant part 
may be removed from the right-hand side of (7) by 
introducing the vector potential difference, defined for 
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the kth element as 

Wzk(z) = Azk(z)-Azk(/k).  (8) 

Thus the boundary condition requires the variable part 
of the vector potential to vanish at the element ends, 
i.e. 

Wzk(1k) = 0.  (9) 

It will further be found convenient to define a constant 
Uk, proportional to the constant part of the vector 
potential, as 

Ho)  Uk = — A rawfi/a 

1, 
—iCo - 4ir iz2.1 f /zi(z').K(/k, z').dz' 

where 

K(1,, z') = exp ( -.•0;1 
(11) 

rki = 

Substituting (10) into (7) and solving boundary 
conditions to eliminate Ck gives 

N 

E 

Id 

f/zi(z')KD(z, z')dz' - j4n 

Co cos /3/k 
-Id 

x {U kROS PZ -cos tild+ 1V0k• sin Ali, - Izi» 

for k = 1, 2, 3, . . .N  (12) 

which represents the set of vector potential difference 
equations characterizing the log-periodic array, where 
the difference kernel is given by 

KD(z, z') = exp ( Hid/Zia) exp (-j/3/eki)  (13) 
Rki lekd 

3.2. Functional Variation of Vector Potential 
Components 

The difference kernel (13) may be separated as 
follows, 

KD(z, z') = KDR(z, z')+jKDI(z,z') 

where 

KDR(z, z') = KR(z, z')-KR(1k, z') 

KDI(z, z') = - Kl(z, z')+KI(1k, z') 

It will be seen that the right-hand side of (12) is 
expressed in terms of two source functions Vok and 
Uk, the former of which is a potential difference 
localized at zk = 0 and the latter a field of constant 
amplitude distributed over the entire length of each 
element. Thus the current distribution /z(z') in each 
element may be regarded as the sum of two com-
ponents of which one is generated directly by Vok, 
as if the antenna were isolated, and the other is 
induced by Uk as in a receiving antenna placed in a 
uniform field. The leading term in the part of the 
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current maintained by Uk is (cos '1z- cos /3/k) and the 
leading term in that maintained directly by Vok is 
sin 13(1k - lz1). Whence it is reasonable to assume 
that the current may be written as the sum of two 
parts, depending on the source functions; thus 

/zi(z') = /vi(z1)+/ui(zi)  (15) 

which adding functional dependence becomes, 

/zi(z1)=Aisin13(11-1z11)+Bi(cosfiz' -cosfi/i)  (16) 

where Ai and Bi are in general complex amplitude 
constants. The vector potential difference on the left-
hand side of ( 12) may now be written as 

N 
(10) Wek(z)+ Wuk(z) = f [/vi(z1)+/ui(zi)] x 

-1, 
x[KDR(z, z')+jKDI(z, z')] dz'  (17) 

The two groups Wyk(z) and Wuk(z) are the vector 
potential difference distributions on an element k in 
the array due to the distribution from all other 
elements i = 1, 2, 3, . . .N, with a source distribution 
proportional to sin fl(1 Iz' I) and (cos I3z' - cos 131i) 
respectively on them. 

In order to separate the integrals of (17) further it 
is necessary to investigate the dependence of the vector 
potential difference components Wvki(z) and Wuki(z) 

Table 1 

Function variation table for 0 < I. < 

Potential 
component 

dki range Functional variation 

Re( Wvka 

dk, 
e. 0.25 sin M/k—ízl) 

n dk, n + 2 
— < (- 1)(n+ i)12 (COS I3z —cos flik) 
4 4 

ini(WVk 

(14) 

dki 
— < 0-5 —(cos flz —cos filk) 

n dk, n + 1 
— < — 2 (— le+ 3)12 (COS flZ — COS NO 
2 A.  

Re(Wuki) 

dk, 
— 0-25 (cos /3r — cos /E) 

n d n + 2 
< e. 4 (- iy"±i)/2 (cos /3r-cos /i/k) 

4 et  

Im( Mika 

o 0-5 — (cos fir —cos filk) 

n dki n + 1  
2 2 (- 1)(n+ 3)12 (COS /iz —cos filk) 
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Fig. 3 (b) Variation of coupling potential 
function Wuk, for 1, = 2/4. 
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Fig. 3. (a) Variation of coupling potential 
function Wyk, for 1,= 2/4. 

1 2 
Re (Wu ki) --e. 

for a wide range of values of dki and /I. This was 
performed by programming them on a digital computer 
and varying the parameters dki and I, over a wide 
range. A sample set of curves for /I = 2/4 are shown 
in Fig. 3 from which it will be seen that a well-ordered 
variation of Nivki and Wuki with functions sin fl(/k — 1z1) 
and (cos fiz— cos /3/k) exists. The variations for the 
complete ranges of!, and dki are summarized in Table 1. 
There is good functional dependence for all dk and 

April 1970 

3 

A 
05 I I/ 

0-75 
0 4 I 

I /... 0-25 

II , 0.125 /Z  
I// ' li / 
iÉt ...t—dki/A 

°. /1—K(cosi5Z cosPlk)—  

02 

0-1 

o 
0 2 
in1(Wukii 

for 1, ‘, 2/2. For lengths 11 > 2/2 the well-ordered 
functional variation deteriorates rapidly. 

3.3. Potential Integral Solution for a Al4 Mode 
L.P.D.A. 

The linear dipole has resonance points given by 
= n2/4 (n ---- 1, 2, 3, ...). Each value of n cor-

responds to a different mode of operation of the dipole. 
Most conventional antenna arrays, for reasons of 
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impedance matching and maximum radiation, operate 
in the n = 1, or 2/4 mode. For this reason we shall 
restrict the analysis of the 1.p.d.a. operating in the 
2/4 mode in which each element is in the centre of the 
active region when l = 2/4. For this restriction the 
functional dependences shown in Table 1 are accurate 
and will be applicable for the majority of practical 
arrays. For multi-mode arrays, i.e. those operating 
in more than one mode, the theory can still be applied 
with slight modifications on the current distributions.' 
In general the distances between the regions of different 
resonances are considerable, which makes the contri-
butions upon each resonant element by the next very 
small. 

The functional variations of Table 1 suggest the 
further separation of the integrals in (17) as 
N Is 
E S Uvi(z').KDR*(z, z')+Ivi(z1).KDR'(z, z')+ 
1=1 —Id 

±iI11/(Z').KDI(z, z1+ Iui(z').KDR(z, z')+ 

+jIui(f),KDI(z, z')] dz'  (18) 

where the real part of the difference kernel is split up 
as follows: 

KDR(z, z') = KDR*(z, z')+KDR1(z, z')  (19) 

the starred component being for dki 2/4 and the 
primed for all other dia. 

Each integral component of (18) can be considered 
separately and the component of current correspond-
ing to the functional variation given in Fig. 4 extracted 
as follows: 

(i) 

Is Is 

LL COUPLED CONTRIBUTION 
FROM ELEMENT i 

SUM POTENTIAL Wk 

REAL I Wk1-0.- 

1 

lol'h8 
7 I6I 5 Ill  

1 30 2 

ARRAY 

Fig. 4. Contributions from coupled elements on the 5th resonant 
element of a 10-element 1.p.d.a. 

A I sin POE izii) KDR*(z, z') dz' f Ivi(z1KDR*(z, z').dz' ivk(z) f (A) sin fluk — lzi) 

-1, 
A i 

= Ivk(z). (--).V/DR. ki. 
Ak 

g 

f KDR1(z, z') dz' = luk(z) j f fAi\  sin /3(I— Iz'l)  KDR'(z, z') dz' 
V3k) (cos fiz — cos /3/k) 

-18 -Is 

= lUk(Z)(41n, ) 11/ dVkl• 

l/ It 

(iii) j f Ivi(z').KDI(z, z') dz' = Fuk(z) f (441\  sin Izil) KDI(z, z') dz' 
j U kf (cos flz— cos fl/k) 

(iv) 
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-Is -Is 

= ilUk(Z)(i)iir 

Is Is 

13, (cos 13z' — cos fili) KDR(z, z')dz' f KDR(z, z') dz' = he) (z) 
(Bk) (cos pz —cos pik) 

—Is -E, 
Bi 

= duki. 
nk 
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(v) 

Fig. 5. Comparison of experimental 
and theoretical input v.s.w.r. of a 
10-element, 2: 1 bandwidth 1.p.d.a. 
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Bi (cos —cos fil,) KDI(z, z') dz' 
j f /ui(z').KDI(z, z') dz' = yuk(z) J . (Bk) (cos flz — cos filk) 

Bi 
= jluk(z)(—D )e Chaki. 

Dk 

500 

The various 'Ji functions are defined and given in the Appendix. The 1.h.s. of the integral equation may now 
be written as 

{sin /3(/k — izi){1//DRki . (cos fiz— cos 131k). Rik dvk, +jifr dIki). duki +j' du/k,).  (20) 
i =1 

Equating (20) with the r.h.s. of ( 12) and separating 
variables according to the two source functions gives 

N j2uVok  
E tisDRki. Ai =  i= 1 Co cos filk 

(DP dvki +Mt akj .A,+ 
i= 1 

 (21) 

jzinUk  
±[IP dllika.B1) — 

C°S fil,, 

for k = 1, 2, 3,...N  (22) 

where 

Uk =[IIIVLkIAi+ tliULki .Bi]  (23) 

= I sin fi(li-14)K(1k, z') dz'. 
-1, 

tif ULki = 1 (cos fiz' — cos fil).K(1k, z') dz'. 
-1, 

Equations (21) and (22) represent two simultaneous 
matrix equations which may be solved to give the 
constants A and B and from (16) the element current 
distributions. 

Fig. 6. Comparison of radiation patterns for a 10-element, 
200-400 MHz, 1.p.d.a. at 300 MHz. 
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4. Radiation Patterns and Impedance of the 
L.P. D.A. 

4.1. Formulae 

It will be noticed that the constants Ak and Bk are 
expressible in terms of the element driving voltages 
Vok. Hence the array driving currents are given as 

/zk(0) = (ak . sin filk + bk . ( 1 — cos /3/k)). Vok 

for k = 1, 2, 3, ... N  (24) 

where 

Ak = ak • Vim 

Bk = bk•VOk• 

This defines the radiation admittance matrix [YR] as 
the bracketed term of (24). Hence the input impedance 
of the array as given by Carrel' is, 

Zin = {[YR] -1 . [U+ [YF] . [ Y/21 - 1] I}  (25) 
1st term 

where U is a unitary matrix, [YF] is the feeder matrix 
given by Carrel' and I is the driving current vector 
also given by Carrel.' 

The radiation fields are given by 

E0(0, 4)) = jam4°7rR 0 exp ( P(0, 0) 
sin  

H440, 4)) = fi EO .(0, 4)) 
(œlo 

where P(0, 4)) is the pattern factor given in terms of 
the constants A and B as 

...(26) 

E-PLANE H - PLANE 

10 (a) 400MHz PATTERNS 10 

180° 

90° 

(b) 200MHz PATTERNS lo 

—0-0-- EXPERIMENTAL 
CONVENTIONAL THEORY 

-- ---POTENTIAL INTEGRAL THEORY 

Fig. 7. Comparison of band-edge radiation patterns of a 
200-400 MHz 10-element 1.p.d.a. 

P(0, 4)) = 5 [Ai. sin fl(li— I z'l)+ Bi. (cos flz' — cos /3//)].exp (j/3z' cos 0) dz'. 
i= 1 —1g 

which, evaluated, becomes 

IP(00 = 
where 

[Ai. F i(0, 1311)+Bi.ai(0, 131i)] exp (jf3Di cos 4) sin 0) 
i= 1 

Fi(0, 134) — cos (/3/1. cos 0)— cos fi/i 
sin' 0 

sin 131i.cos (1311 cos 0). cos 0 — cos 131, sin (A cos 0)  
a.(0, 131i) — 

sin' 0 . cos 0 

and Di is the distance of the ith element from the apex 
of the array. F1(0, 131i) is a field factor, characteristic 
of each individual element, which is derived from the 
sinusoidal part of the current distribution and is the 
only term appearing in conventional theories. ai(0,1311) 
is an array factor and results from the improved 
current distributions of the coupled elements in the 
array. 

4.2. General Performance 

A comparison of the potential integral theory with 
conventional theory and experimental results has been 
made for a 10-element, 2: 1 bandwidth 1.p.d.a., 
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(27) 

(28) 

some results of which appear in Figs. 5-7. The 
good general agreement between theory and experi-
mental will be noticed. The v.s.w.r., and hence im-
pedances, vary more than the radiation patterns which 
only differ in minor lobes and in beamwidth. This 
suggests that, whilst the amplitudes of the currents 
may be well defined, the phases may differ. The 
director action of the small elements of the array 
depends critically upon the phases of the element 
currents, as does the element driving point impedances, 
thus producing the small differences noticeable 
particularly in the conventional theory. 
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The conventional theory employs only first-order 
approximations to the element current distributions 
and although this gives good agreement for the iso-
lated, and two coupled antennas, for arrays with 
more elements the effects of coupling are represented 
entirely in the higher-order terms which have been 
neglected. Thus, although reasonable agreement is 
obtained within the design band, for elements with 
/31, e n/2 and fiai > 1, the theory cannot be expected 
to agree, as is shown by band-edge performances. 

The radiation patterns are in good agreement for 
both theories (Fig. 6) as for PR 1 the E and H 
field vectors differ only by a constant (since EO = 
c.14). Moreover both depend directly upon the 
integral 

/zi(z') exp (jfizi cos 0) sin O. dz'  (29) 

which is insensitive to the details of the distribution 
of current and is independent of the charges on the 
element. Hence the far-field patterns of the actual 
currents would be expected to agree reasonably with 
the conventional theory currents as is shown in Fig. 5. 

In the case of the extreme length elements, specifi-
cally at the band-edges (see Fig. 7), the pattern 
involves minor maxima and minima that depend on 
rather precise relationships between the phases and 
amplitudes of the currents along the elements, so that 
the observed greater divergencies between experimen-
tal and conventional theory are obtained at band-edge 
positions. The radiated field of the array is in fact 
determined by the currents in the individual elements 
and the minor (or back) lobe is particularly sensitive to 
the relative phases of these currents and to the phase 
distribution along each element. In the conventional 
theory the latter is assumed constant for both real and 
imaginary parts of the currents and this results in the 
unsatisfactory back-lobe prediction. The parasitic 
nature of the elements in the radiated field of the array 
also contributes considerably to this back-lobe, and 
to the beamwidth, of the main beam. This is evident 
from the improvement in both for the potential integral 
theory which takes full account of all mutual inter-
actions in determining the current distribution. 

The v.s.w.r. and impedance of the array as com-
puted by the potential integral theory show marked 
improvement over the conventional theory when 
compared with experimental results (Fig. 5). The 
array input impedance and v.s.w.r. depend upon the 
driving-point impedances of the individual elements 
which in turn depend critically upon both the electric 
and magnetic fields at the surface of the elements. 
Since the conventional theory provides only a fair 
approximation of the magnetic field but not of the 
electric field, good agreement would not be expected. 
As with the patterns, the new theory gives much better 
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agreement with experiment at the band-edges, thus 
indicating its validity for a wider range of element 
lepgths and diameters. The potential integral theory 
as given takes full account of element diameter 
variations in accordance with the log-periodic pro-
gression, but assumes the fixing of the transposed 
dipole halves on to a conventional parallel two-wire 
feeder. The effects of the latter assumption are dealt 
with in a separate paper by the author:7 Several 
arrays have been built and tested with bandwidths up 
to 10: 1 between 200 MHz and 10 GHz and satis-
factory agreement with the theory obtained. 

5. Conclusions 

In conclusion it must be stated that the conventional 
theory may be used as a fair engineering approxima-
tion to the 1.p.d.a. problem, as it gives the general 
properties of the array within, but not too near, the 
ends of the design band. However a complete 
quantitative analysis of the array over a wide band of 
operating conditions, which will be the subject of a 
future paper, can only be obtained by applying the 
potential integral theory. 
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8. Appendix: The Potential Integral Functions 

The vector potential functions occurring in the 
solution of the integral equations are: 

Sb(/, z) = z)+jSbi(/, z ) 

=f sin filzil 
exp (—j/3R") dz ,. 

Rki 
-1 
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Cb(i, z) = Cb,(1, z)+jCbi(i, z) where 

= cos f3::' exp (-ifiRia) dz'. 
R ki 

Eb(1, = Ebr(i, z) 

f exp ( - jfiRk.) 
dz. 

Rki 

R ki = - Z')2 b2, b = 

The above have been tabulated for ranges of 
1, z and b by Mack' and numerical integration 
techniques for use in computer programs are given 
by Evans.' 

The t/i functions are expressible in terms of the 
above functions as follows: 

ki/DRki = cosec 1z1)(sin fl/i[Cb,(4, z)- Ca/i, /k)] - cos /31i[Sbr(ii, z) - Sbr(ii, 1k)]} 

tif dvki = (cos 13z - cos fl/k)-1 (sin /3/i[Caii, z) - Cbr(ii, 43] - cos fili[Saii, z) - Sbr(li, 4)])   

d/ki = (cos fiz - cos fl/k)-1{sin /31i[Ca/i, z) - Cbi(ii, lk)] - cos fl/i[Sbi(ii, z)-Sbi(ii, 1k)]) 

tfr du ki = (cos 13z -cos 13Ik)- tCb,(3 z)- - cos fili[Ehr(li, z) - Ebr(ii, 1k)]) 

tit dul a = (cos 13z - cos 131k) {Cal i, z) - Cbi(li, 1k)- cos 131,[Ebi(li, z) - Ebi(li, ¡k)]) 

VLki = [sin . 1k)- cos pli.sb,.(1i, 1k)] +j[sin 1,)- cos 1k)] 

tit u Lki = [Cali, 1k)- cos fili.Eb,(1i, ik)1+.1.[Cbi(li, 1)- cos i61 i.E1,;(1 i, 1k)] 

Manuscript first received by the Institution on 25th August 1969 and in final form on 27th October 1969. 
(Paper No. 1319/Corn. 28). 
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(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

STANDARD FREQUENCY TRANSMISSIONS-March 1970 
(Communication from the National Physical Laboratory) 

Relative phase readings Relative phase readings Deviation from nominal frequency Deviation from nominal frequency 
in microseconds in microseconds in parts in 10" in parts in 10. 
N.P.L.-Station N.P.L.-Station March (24-hour mean centred on 0300 UT) March (24-hour mean centred on 0300 UT) 

1970 (Readings at 1500 UT ) 1970 (Readings at 1500 UT) 

GBR MSF Droitwich •GBR i tINSF GBR MSF Droitwich •GBR tMSF 
16 kHz 60 kHz 200 kHz 16 kHz . 60 kHz 16 kHz 60 kHz 200 kHz 16 kHz 60 kHz 

I - 300.0 + 0.1 + 01 643 545.6 17 - 299.8 0 ± 01 624 543.1 
2 - 299.9 0 + 01 642 545.4 18 - 300•1 - 0•I 0 625 550.6 
3 - 299.7 0 + 0'l 639 545.0 19 - 300.0 0 + 0'l 625 551.0 
4 - 299.6 0 0 635 545.3 20 - 300.0 0 4- 0- 625 5507 
5 - 300.0 - 0.1 0 635 545.8 21 - 300.0 - 01 + 0. 625 552.2 
6 - 299.9 0 + 0'I 634 545.6 22 - 299.9 0 + 0- 624 552.6 
7 - 299.9 0 0 633 545-6 23 - 300-0 0 ± 0. 624 552.2 
8 - 299.9 0 0 632 545.8 24 - 300•0 0 + 0. 624 552.4 
9 - 299.9 0 ± 01 631 546.0 25 - 300• I - 0.1 ± 0- 623 553.6 
10 - 300-0 0 ± 01 631 545.6 26 - 299-9 0 -1- 0. 624 553.8 
11 - 299-9 0 ± 0I 630 545.2 27 - 299-9 - 0-1 + 0. 623 554.4 
12 - 299.8 0 0 628 545.0 28 - 300.0 - 0.1 + 0- 623 555.2 
13 - 300-0 + 0.1 4- 0-I 628 544.1 29 - 299•9 0 -1- 0. 623 555.6 
I 4 - 299-9 -{- 0.1 -F 0'I 627 543 -6 30 - 300.1 - 0.1 0 623 556.6 
15 - 300.2 0 ± 0-I 629 543.4 31 - 300.1 - 0.1 0 624 557-2 
16 - 299.7 ± 0.1 -1- 01 626 542.9 

All measurements in terms of H.P. Caesium Standard No. 334, which agrees with the N.P.L. Caesium Standard to 1 part in 10". 

• Relative to UTC Scale; (UTCNN., - Station) = -I- 500 at 1500 UT 31st December 1968. 

tRelative to AT Scale; (ATNpi, - Station) = 468-6 at 1500 UT 31st December 1968. 
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