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Harmonized System for Quality Control 

pROGRESS has been made in Great Britain in the past four years in building up a scheme for 
specifying electronic parts of assessed quality through the BS9000 series of specifications—these are 

prepared by Technical Committees of the British Standards Institution, supported by the Ministry 
of Technology. Probably one of the most significant advances of its kind in the electronics industry 
for some decades, the BS9000 concept provides for a single system of specifications in place of a variety 
of civil and military requirements and assured quality control for components graded for fitness-for-
purpose. Over 100 British manufacturers, test houses and stockists have applied for approval under 
this scheme, generic and detailed specifications have been issued and components conforming to the 
requirements are now being put into production. 

It has always been recognized since the inception of the BS9000 scheme that great mutual benefit 
would be gained if something similar could be promoted on a wider basis, multi-national or regional 
if not truly international. The persistence of British quality control engineers has now been justified 
by an agreed statement, issued simultaneously in the E.E.C. and E.F.T.A. countries, to announce the 
Harmonized System for Electronic Components which is being introduced in Western Europe. The 
System is intended to promote trade in electronic components between the participating countries by 
harmonizing their national systems of specifications and quality assurance for electronic components. 
In order to remove technical barriers to trade, the System will provide harmonized specifications which 
will be published individually by each country, but which will meet internationally agreed requirements. 
It will also provide for the multilateral recognition of approvals given by national inspectorates. It 
is important to note that the BS9000 Scheme will be fully compatible with the international Harmonized 
System. 

The Comité Européen de Coordination des Normes Electrotechniques (cENEL) which comprises 
all E.E.C. and E.F.T.A. countries, has accepted overall responsibility for launching the Harmonized 
System for Electronic Components in these countries. CENEL has established a special committee, the 
CENEL Electronic Components Committee (cEcc), which will be responsible for implementing the 
Harmonized System, except for certain quality assurance aspects. The responsibility for the quality 
assurance and inspection aspects of the Harmonized System is to be exercised by an independent 
Committee, known as the Electronic Components Quality Assurance Committee (EcQAc), and the 
second meeting of this Committee was held in London in June under the chairmanship of Mr. H. E. 
Drew, C.B., C.Eng., F.I.E.R.E., Director-General of Quality Assurance in the British Ministry of 
Technology. 

The statement issued on behalf of CENEL envisages eventual widening of the Harmonized System 
to world-wide application as a desirable goal. It is not unduly optimistic to hope that just as the example 
of Great Britain has led to the European developments, so in turn will the International Electrotechnical 
Commission (lEc), who are regarding these with considerable interest, be lead to set up a comparable 
international scheme in due course. 

Assured quality and performance for a given purpose and the simplicity of a single system of 
specifications in place of the numerous civil and military specifications clearly offer great advantages 
to manufacturer and user alike. It is now up to them to seize the opportunities offered. 

F.W.S. 
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INSTITUTION NOTICES 

Institution Premiums and Awards 

The Council of the Institution announces that the 
following awards are to be made for outstanding 
papers published in The Radio and Electronic Engineer 
during 1969. 

CLERK MAXWELL PREMIUM 

'Optimum Transfer Functions for Feedback Control 
Systems with Plant Input Saturation' by D. R. Towill 
(October 1969). 

REDIFFUSION TELEVISION PREMIUM 

'Control of Gamma in C.R.T. Displays using 
Amplifiers with Exponential Negative Feedback' by 
S. L. Cachia (November). 

P. PERRING THOMS PREMIUM 

'Flashover in Picture Tubes and Methods of 
Protection' by A. Ciuciura (March) 

J. LANGHAM THOMPSON PREMIUM 

'Digital Computer Implementation of Bang-bang 
Process Control' by P. Atkinson and R. L. Davey 
(November). 

HEINRICH HERTZ PREMIUM 

'Transistor Abnormalities as Revealed by Current-
Voltage Characteristics' by P. J. Holmes (November). 

A. F. BULGIN PREMIUM 

'A Radiometer for Measurement of the Noise 
Temperature of Low-noise Microwave Amplifiers' by 
J. W. Carter, H. N. Daglish and P. Moore (June). 

LESLIE MCMICHAEL AWARD 

'Global Communications: Current Techniques and 
Future Trends' by R. W. Cannon (May). 

LORD BRABAZON AWARD 

'Radar Polarization Comparisons in Sea-Clutter 
Suppression by Decorrelation and Constant False 
Alarm Rate Receivers' by J. Croney and A. Woroncow 
(October). 

CHARLES BABBAGE AWARD 

'A Stored Microprogram Control Unit using Tunnel 
Diodes' by N. E. Wiseman and P. C. Wright (March). 

MARCONI AWARD 

'A Wideband Amplitude Modulator as a Special 
Silicon Integrated Circuit' by A. Stewart and C. H. 
Jones (September). 

The following Premiums and Awards are being 
withheld as papers published during the year which 
fall within their respective terms of reference were not 
of a sufficiently high standard: 

Vladimir K. Zworykin Premium, Arthur Gay 
Premium, Dr. Norman Partridge Memorial Pre-
mium, Hugh Brennan Premium, Lord Rutherford 
Award. 

The Premiums and Awards will be presented by the 
President of the Institution Mr. H. F. Schwarz, at the 
Annual General Meeting in London on Wednesday, 
25th November, 1970. 
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Dinner of Council and Committees 

A Dinner of the Council, its Committees and repre-
sentatives will be held in the Lincoln and Manhattan 
Rooms, Savoy Hotel, London, on Thursday, 5th 
November, 1970. This will provide a rare occasion 
for all the members who assist the Institution to meet 
together socially and to be accompanied by their ladies 
and personal guests. It will also be an opportunity to 
express thanks to the Immediate Past President, 
Major-General Sir Leonard Atkinson, K.B.E., for his 
work for the Institution. 
The charge for tickets, obtainable from 9 Bedford 

Square, is £4. 5s. each, which will include wines at 
table. 

Thomson Lecture 

This year's Thomson Lecture will be given by 
Sir Frederick Warner, B.Sc., Hon.D.Tech. C.Eng., 
Senior Partner of Cremer & Warner, whose subject 
will be 'Measurements, Models and Men'. The 
Lecture will be held at The Royal Institution of Great 
Britain, 21 Albemarle Street, London, W.1, at 6 p.m. 
on Thursday, 8th October, 1970. 

Admission will be by ticket only and those wishing 
to attend should apply to: 

The Secretary, The Institute of Measurement and 
Control, 20 Peel Street, London, W.8. 

First British Quality and Reliability Convention 

The National Council for Quality & Reliability is 
organising a Q & R Convention in London, 28th-29th 
October 1970, to promote the application of quality and 
reliability techniques by stressing profitability aspects. 
This, the first full-scale convention held by the National 
Council under its own auspices, is expected to play a 
vital role in helping more British products to become 
highly competitive in world markets. The Convention, 
entitled on 'Quality Rewards' is mainly directed at the 
numerically largest section of British industry— 
expanding and progressive companies in the small and 
medium range whose continued growth can be sus-
tained by the use of Q & R measures tailored to their 
overall business situation. 

After plenary opening sessions addressed by Dame 
Elizabeth Ackroyd, Director of the Consumer Council, 
Mr. J. R. F. Moss, Director of Naval Ship Production, 
Ministry of Defence (Navy), and Mr. E. L. G. Robbins, 
Member of the Bolton Committee of Inquiry on 
Small Firms, the Convention will divide up into a 
series of Management Seminars, Specialist Seminars 
for the control of Q & R, case study discussions and 
Q & R Clinics. 

For further administrative details and application 
forms for the Convention and its Clinics, please write 
to: National Council for Quality & Reliability, Vintry 
House, Queen Street Place, London, E.C.4. 
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Adaptive Detection of Distorted Digital Signals 

By 

A. P. CLARK, 

M.A., Ph.D., DIC., C.Eng., M.I.E.R.E.t 

The paper describes a novel approach to the adaptive equalization of a 
channel, leading to an adaptive detector which promises to achieve in 
some applications a better performance over a slowly time-varying 
channel, for a given degree of equipment complexity, than is possible 
with the more conventional transversal-filter adaptive equalizer. 
The transmitted signal contains a serial stream of binary data elements 
which are separated into orthogonal groups. Each group of elements is 
detected in a single detection process. The preferred method of detection 
is an iterative process, which is used first to determine the element binary 
values in the group and then to estimate the channel impulse response. 
By this means the detector is adjusted after each detection process so that 
it follows the variations in the channel transmission characteristics. No 
training signal is required, except at the start of transmission. 

Mathematical Notation 

1x1 magnitude of the real scalar x 

(xi) the set xl, x2, xk, where k is given in the text 

(xi) the row vector whose ith component is xi 

[x ii] the matrix whose component in the ith row and 
jth column is xi; 

X' transpose of the matrix or vector X 

1. Introduction 

Much of the work so far carried out on the adaptive 
equalization of a time-varying channel has assumed 
the use of a transversal filter at the receiver.'" The 
input signal to the filter is a continuous stream of 
baseband data elements with an element rate of 1/T 
bauds. The filter is shown in Fig. 1 and contains a 
delay line tapped at T-second intervals. Each tap is 
connected through an amplifier or attenuator (and 
possibly an inverter) to the analogue adder. The tap 
gains {ci} are adjusted automatically to reduce the 
intersymbol interference in the output data signal. 
Most of the equipment in the adaptive equalizer is 
involved with the arrangements for adjusting the tap 
gains and is not shown in Fig. 1. 

The adaptive equalizer acts essentially as a filter and is 
both simple and effective. However, the arrangement 
has three limitations. Firstly, for certain transmission 
characteristics, the channel cannot be equalized. 
Secondly, only approximate equalization can normally 
be achieved with a finite transversal filter, so that a 
reasonable number of taps, say around 20, is usually 
required. Thirdly, in order that the filter may adapt 
itself to variations in the channel transmission charac-
teristics during the transmission of data, without the 
transmission of special training signals, the sequence 
of data element values must be reasonably random. 

t Plessey Telecommunications Research Limited, Taplow 
Court, Taplow, Maidenhead, Berkshire. 
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This paper describes a different approach to 
adaptive equalization, which leads to an arrangement 
of adaptive detection. The system is only slightly 
more complex than the equivalent transversal equalizer 
but without any of the main disadvantages of the 
latter. The basic principles of the system are first 
described and then four suitable detection processes. 
Finally an outline is given of a particularly simple and 
effective adaptive detector. 

Fig. 1. Transversal filter. 

The paper is aimed at those readers who have no 
previous knowledge of iterative methods and only a 
limited understanding of matrix algebra. The 
emphasis throughout is on basic concepts and practical 
usefulness. Details of the theoretical analysis and 
computer simulation tests, which have been carried 
out on the detection processes, are given in re-
ference 12. 

2. Principles of Detection Process 

2.1. Basic Assumptions 

Consider a synchronous serial data-transmission 
system as shown in Fig. 2. The input signal is a 
series of impulses {zi8(t—iT)} spaced at regular 
intervals of T seconds, where 6(0 is a unit impulse 
at time t = 0. Each impulse is a signal element. The 
elements are binary antipodal and have unit magni-
tude (area), so that for any integer i, zi is 1 or — 1. 
It is assumed that the {z1} are statistically independent 
and equally likely to have either binary value. 
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The input to the modulator contains a low-pass 
filter to produce a baseband signal which is then used 
to modulate the carrier. The modulated-carrier 
signal may be a vestigial-sideband suppressed-carrier 
a.m. signal and the demodulator is a coherent detector 
whose output is a baseband signal. The modulator, 
transmission path and demodulator are assumed to 
be linear. 

When no signal distortion is introduced in the 
transmission path, the nominal bandwidth of the 
baseband signal at the detector input is 1/2T Hz. 
The baseband signal is sampled at regular intervals 
of T seconds in the detector. The detector operates 
entirely on these sample values and its function is to 
obtain the best estimates {xi} of the transmitted {z1). 
The correct sampling instants are determined by a 
timing signal suitably synchronized to the received 
baseband signal. 

citt—t it 

ziy(t-in 
i 

DETECTOR 

MODULATOR 

BASEBAND 
SIGNAL 

DEMODULATOR 

e 
MODULATED 
CARRIER 
SIGNAL 

TRANSMISSION 
PA H 

MODULATED 
Y CARRIER 

SIGNAL 

BASEBAND CHANNEL 

Fig. 2. Data transmission system. 

It may readily be shown that the modulator, 
transmission path and demodulator are equivalent 
to a linear baseband channel. Suppose this has an 
impulse response y(t). Where the transmission path is 
an h.f. radio link, y(t) may vary slowly with time. 
Where it is a switched telephone circuit, y(t) will in 
general differ from one transmission to the next but 
will not usually vary much during any one trans-
mission. The data signal at the detector input is 
clearly 

zi y(t — iT) 

Suppose that additive white Gaussian noise is 
introduced at the output of the transmission path, 
giving the zero-mean Gaussian waveform w(t) added 
to the data signal at the detector input. Although the 
additive noise over telephone circuits is not normally 
Gaussian, the assumption is adequate for our pur-
poses. The sample values of w(t) are taken to be 
statistically independent, which of course places a 
restriction on the overall response of the demodulator 
filters.' 

It is assumed that the various filters in the modulator 
and demodulator are designed so that, when there is 
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no signal distortion in the transmission path, there 
is no intersymbol interference at a sample value of 
the baseband signal in the receiver and the signal/noise 
ratio here is maximized. Reference 1 contains an 
excellent general treatment of this subject, which 
will not be considered further here. 
The object of the present investigation is to deter-

mine the method in which the detector should use 
the sample values of the received baseband signal, 
in order to obtain the best compromise between 
performance and equipment economy, in those 
applications where the transmission path may intro-
duce severe signal distortion. Thus in the arrange-
ment of Fig. 2 we are concerned only with the design 
of the detector. 

2.2. Detection of Orthogonal Groups of Signal 
Elements 

Two groups of signal elements can be considered 
to be orthogonal when each of them produces no 
response in an optimum detection process on the 
other. 
Where the baseband channel introduces negligible 

intersymbol interference in the sample values of the 
signal elements at the detector input, the optimum 
detector determines the binary value of each element 
from the sign of the corresponding sample value. 
Where there is appreciable intersymbol interference, 
such an arrangement is no longer optimum and may 
not even operate correctly in the absence of noise. 
A suitable transversal equalizer may, of course, be 
inserted at the input to the detector, in order to 
reduce the intersymbol interference to an acceptable 
level.' -11 
An alternative approach to the optimum detection 

of the received signal elements is however suggested 
by studies into the optimum design and detection of 
a finite number of signals.'218 This approach 
involves a simple modification to the data-transmission 
system of Fig. 2. 
Suppose that with the most extreme time-dispersion 

of the received signal, a signal element can cause 
interference in the sample values of some or all of 
the p immediately preceding elements and in some 
or all of the q immediately following elements. The 
element stream is then divided into separate groups, 
each containing m consecutive elements which carry 
the transmitted data. Each group of m elements is 
separated from the following group by g elements, 
which are set to zero and act as a time guard band 
between the adjacent groups. Also 

= q  (1) 

Associated with a group of m data elements there are 

n = p+m+q-= m-Fg  (2) 

consecutive sample values which are dependent on 
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the particular group of data elements and independent 
of every other group. These n sample values are used 
for the detection of the in data elements. Clearly no 
data element in any one group can cause interference 
in the detection of an element in any other group, 
so that the different groups are orthogonal. n would 
be typically around 20 and g preferably less than in, 
although in some applications a value as high as -In 
may have to be used. 

A special timing signal must of course now be 
transmitted to indicate to the detector the first 
sample value in each group of n. 

Over any baseband channel likely to be used in 
practice, the impulse response decays sufficiently 
rapidly, away from its central peak, so that no serious 
error is introduced by assuming a finite time-dispersion 
of a received signal-element, even though the time 
dispersion may theoretically be infinite. Where the 
transmission path is an h.f. radio link or a switched 
telephone circuit, a time gap (time guard band) of 
around 3 or 4 ms between adjacent groups of elements, 
should be quite adequate. 

Where the receiver has a fairly accurate prior 
knowledge of the n sample values corresponding to 
each of the two binary values, for every one of the 
m individual elements in a group, the optimum detec-
tion process determines which of the 2' different 
combinations of the in binary values gives a resultant 
set of n sample values with the minimum mean 
square difference from the received n sample values. 
This detection process detects the sum of the m 
binary elements as a multi-level element having 2' 
possible values. The detection process is optimum 
in the sense that it minimizes the probability of error 
(that is, the probability of one or more errors) in the 
detection of the in binary-elements. The disadvantage 
of the arrangement is that either the equipment 
complexity or the detection period is proportional 
to 2'. In addition, for correct operation the detector 
may require a fairly accurate prior knowledge of the 
received signal level.' 

An alternative and preferable approach to the 
detection of the m binary-elements in a group is 
through the solution of the appropriate set of simul-
taneous equations. The m elements are again detected 
simultaneously in a single detection process, and the 
operation of the arrangement can be explained as 
follows. 

If there is no intersymbol interference, the n sample 
values of the first signal-element in a group of m, are 

0...0 0...0 0...0 
where z, is either 1 or — 1 and carries the element 
binary value. yp+i depends upon the channel and 
may vary slowly with time. 

September 1970 

If there is intersymbol interference, the n sample 
values of the first element are 

g+1 m-1 

Z1Y1 Z 1Y2...Z1h1+1 

where yj is the jth sample value of the first element 
when zi = I. Clearly 

g = n— m  (3) 

and 

yj = 0 when g +2 eje., n  (4) 

yj must be non-zero for at least one value of j in 
the range 1 to g+ 1, but it need not of course be 
non-zero for all j in this range. 

The sample values of the ith signal-element in the 
group of m are 

i-1 9+1 m— i 
r A  

04..0 Z13,1 ziy2.. . ziyg.,. 1 0...0 

and the n-component row-vector Yi is now defined 
to be 

i-1 9+1 m— i 

°••• 13 Y1Y2•••Y9+1 0 ... 0 
for i = 1, m, so that the ith signal-element is 
given by zi Yi. zi is of course a scalar and both z 1 
and Yi are real. The binary value of the ith element is 
given by the sign of z, and 

izil = 1 for all i  (5) 

where 14 is the magnitude of zi. 

The sum of the m signal-elements in a group is 

zi = ZY  (6) 
i=1 

where Z is the row-vector (z„ z2, z„,), written (zi), 
and Y is the m x n matrix whose ith row is Y. Clearly 
Yi is the first row Y1 shifted to the right by i — 1 
places, so that any one row of Y is a simple time-
shift of any other. 

It can readily be shown that the m vectors {zi Yil are 
always linearly independent. That is, no one of these 
can be expressed as a linear combination of some or 
all of the others. It can also be shown that ZY has 
a different value for every different combination of 
the m binary values and that the latter can always 
be uniquely determined from ZY, so long as the 
receiver has a prior knowledge of the { but not 
necessarily of the { izil}. 12,13 

The determination of the vector Z from a given 
vector ZY, where the matrix Y is known, involves 
the solution of a set of simultaneous equations and 
these may be expressed in different ways. However, 
where the received signal contains additive Gaussian 
noise, there is one particular formulation of the 
simultaneous equations which minimizes the prob-
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ability of error in a detection process. A detector 
which operates by solving this particular set of 
simultaneous equations will now be described. 

2.3. Detection Process A 

The n sample values of the received baseband 
signal, corresponding to a group of m signal-elements, 
are the n components of the row-vector R = (ri), 
where 

R ZY+W (7) 

W is an n-component row-vector whose components 
are the sample values of the additive noise in the 
baseband signal. It is assumed that the n components 
of W are sample values of statistically independent 
Gaussian random variables with zero mean and 
variance tr2. 

The detector samples the received baseband signal 
at the correct n sampling points for a group of m 
signal-elements and it stores the corresponding 
vector R. Two stores are required, so that while 
one holds R for the detection process, the other is 
receiving the n sample values for the next vector R. 
The m signal-elements of the stored vector R are 
detected in the detection process A, shown in Fig. 3. 

The correlation detector tuned to Yi multiplies each 
component of R by the corresponding component of 
Yi and adds the products to give the output signal 

di= R YiT for all i  (8) 

where e is the transpose of Yi and Re is the inner 

product of R and Y. 

The output signals from the m correlation detectors 
are the m components {di} of the vector D. Thus 

D = RYT = (ZY+W)YT = ZA + WYT (9) 

where 

A = YYT  (10) 

A = [au] is an mxm real symmetric positive-
definite matrix. 

It can be shown that when the receiver knows the 
{ Yi} but has no prior knowledge of the {zi} or 02, 
then the best estimate it can make of the vector Z is 
the vector X = (xi), where 

XA = D  (11) 

H CORRELATION DETECTOR 
TUNED TO Y, 

_0 _1 CORRELATION DETECTOR 
TUNED TO Y2  

H CORRELATION DETECTOR I  
TUNED TO Ym  

Fig. 3. Detection process A. 
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This minimizes the probability of error in a detection 
process, under the assumed conditions.' Since A 
is non-singular, 

X = DA-1  (12) 

Thus to obtain the m estimates {xi} of the received 
signal values {zi}, the output signals of the correlation 
detectors are fed through a network which performs 
the linear transformation A' on these signals, as 
shown in Fig. 3. It can be seen that the detection 
process A operates by solving the m linear simul-
taneous equations given by equation ( 11). 

The wanted component in the output signal di 
from the ith correlation detector in Fig. 3 is 

zi YiT = ziaii  (13) 

The correlation detector maximizes the ratio of the 
power level of this signal to the average power level 
of the noise component We in di. However, di also 

contains m — 1 components 

zi Y.; YiT = ziaji for j i  (14) 

due to the other received signal-elements, so that 
there may be considerable intersymbol interference 
in di. The network A' processes the {di} to eliminate 
all intersymbol interference and suitably adjusts the 
levels of the resultant signals to give the {xi} at its 
output terminals. 

Since the signal elements {z, Yi} are binary anti-
podal, the detection process is not affected by a 
constant attenuation applied to the {x1}. Thus, under 
favourable conditions, each correlation detector can 
be a set of n attenuators, with inverters where neces-
sary, and the network A -1 can be a set of tn2 
attenuators together with arrangements for adding 
and subtracting the m signals at each of the m outputs. 

In the final stage of the detection process, not shown 
in Fig. 3, the receiver examines the signs of the {xi} 
and allocates the appropriate binary values to the 
corresponding {zi Yi}. The detection process of course 
requires no prior knowledge of the received signal 
level. 

The arrangement of Fig. 3 can be simplified to a 
set of m correlation detectors, where the ith detector 
is tuned to a vector whose inner product with Yi is 
unity and whose inner product with Y, for j i, is 
zero. These m vectors span the same m-dimensional 
subspace of the n-dimensional signal-space as is 
spanned by the {Yi}. The output signals from the m 
correlation detectors in the simplified arrangement 
can be shown to be the required {4. 19 Where the 
channel impulse-response does not vary with time 
and is known at the receiver, this is clearly the pre-
ferred arrangement. 
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When the detector has no prior knowledge of the 
impulse response of the channel or when the impulse 
response varies with time, considerable equipment 
complexity may be involved with either of the arrange-
ments just considered. The reason for this is that the 
component values of the network A' in Fig. 3 and 
of the correlation detectors in the simplified arrange-
ment, cannot be derived directly or very simply from 
the received signal. The linear transformation A' 
in Fig. 3 may however be carried out in a basically 
different manner which does not suffer from this 
disadvantage. Four detection processes, each using 
such an arrangement, will now be described. 

3. Detection Processes Suitable for 
Adaptive Working 

3.1. Detection Process B 

The generation of the matrix A' is the essential 
operation involved in the solution of the m linear 
simultaneous equations 

XA = D  (15) 

where A and D are given and X is to be determined. 
Analogue computer techniques provide a simple and 
effective means for solving these equations, where the 
matrix A is real, symmetric and positive definite as 
it is here." The application of such techniques to 
the detection of the m signal-elements, leads to the 
detection process B, shown in Fig. 4. This isin principle 
(but not in practice) the simplest of the four detection 
processes to be described here. 

The output signal-vector from the m correlation 
detectors during a detection process is E = (es), and 
the response of the integrators to the vector E is 
such that 

= kE  (16) 

where k is a positive constant. Both E and X vary 
continuously during a detection process. 

At the start of a detection process the vector X is 
set to zero and the received vector R is fed to the 
input. Thus 

= RYT = D  (17) 

X is now permitted to vary freely, so that 

E =(R—XY)YT = D—XA  (18) 

and, from equation ( 16), 

= k(D—XA)  (19) 

It may be shown' that when A is real, symmetric 
and positive definite, the system is asymptotically 
stable and converges along the path of steepest 
descent with respect to the error function 

(R— XY).(R— X Y)T  (20) 
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towards the single point of equilibrium, where 

x=0 
and 

(21) 

D—XA = 0  (22) 

Thus at the end of the detection process, 

E 0  (23) 
and 

X DA-1  (24) 

Clearly the circuits associated with the correlation 
detectors in Fig. 4 perform the same function as the 
network de' in Fig. 3, so that the tolerance of the 
detection process B to the additive noise and signal 
distortion introduced in the channel should be the 
same as that of the detection process A. 

3.2. Iterative Detection Processes 

In an iterative process the solution vector X of the 
matrix equation 

XA = D  (25) 

is obtained as a result of a sequence of separate 
steps, giving successively closer approximations to 
the required solution vector. 

A large number of different iterative processes are 
described in the published literature, but the majority 
of these require considerable equipment complexity 
and are not therefore suitable for our purposes.' 
There is however one iterative process which is ideally 
suited to the present application. This is the point 
Gauss-Seidel iterative process.20,21,23,24 

The method of operation of this process and of two 
further developments of the process will first be 
described with reference to Fig. 5. In Section 5 it 
is shown how the practical implementation of these 
detection processes may be modified to give a much 
simpler arrangement than the detection process B. 

3.3. Detection Process C 

At the start of the detection process, the vector X 
in Fig. 5 is set to zero and the received vector R is 
fed to the input, so that 

x= 0 

CORRELATION DETECTOR 
TUNED TO Y1 

CORRELATION DETECTOR 
TUNED TO Y2 

CORRELATION DETECTOR 
TUNED TO Ym 

Fig. 4. Detection process B. 

(Inputs to adder are x1 Y1, x2 Y2, • • • xrn 

ADDER 

(26) 
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XY 

and 

R-XY 

CORRELATION DETECTOR 
TUNED TO Yi 

H CORRELATION DETECTOR 
TUNED TO Y2 

CORRELATION DETECTOR 
TUNED TO Yrn 

STORE 

—ir STORE 
2 ri X2 Y2 

STORE 

CONTROL 
UN ,T ADDER 

XYt 

Fig. 5. Detection processes C, D and E. 

E=D  (27) 

x1 is then adjusted so that the output signal from the 
first correlation detector is reduced to zero. This in 
general changes all m output signals {e1} from the 
correlation detectors. x2 is now changed so that the 
output signal from the second correlation detector is 
reduced to zero, and so on sequentially to x„,, which 
completes the first cycle of the iterative process. The 
procedure is then repeated for the second cycle, the 
{x1} being changed sequentially and in the same order 
as before, and so on for as many cycles as required. 

When xi is adjusted to reduce to zero the output 
signal from the ith correlation detector, the change 
in xi is 

e• 
Ax i = -v (28) 

where e, is the output signal from the ith correlation 
detector immediately preceding the change and 

v = YiT = aii for all i  (29) 

Clearly, X and E, instead of varying continuously as 
in process B, now vary in steps. 

The above process can be modified so that the 
change in xi becomes 

Axi = h -v (30) 

where h is a constant and 

0 < h < 2  (31) 

This is known as overrelaxation,' and equation (28) 
is of course a special case of (30). 

It can be shown theoretically that the detection 
process will converge to the required solution-
vector X, so long as the matrix A is real, symmetric 
and positive definite and 0 < h < 2, that is so long 
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then 

as them signal-elements {z1 Y1} are linearly independent 
and 0 < h < 2. 12,24 Thus at the end of the detection 
process 

and 

E 0 

X DA-1 

(32) 

(33) 

just as for the detection process B. To obtain the 
maximum rate of convergence of the iterative process, 
h should normally have a value equal to or a little 
greater than 1. 

3.4. Detection Process D 

A reduction in the equipment complexity of 
process C can be achieved by using a fixed magnitude 
for the change in xi instead of the value given by 
equation (30). This leads to the process D which 
operates as follows, using the arrangement of Fig. 5. 

The sequence of operations is exactly as described 
for process C, except that Axi is no longer given by 
equation (30). If, immediately preceding the change 
Axi in the stored value of x„ 

ell < fv  (34) 

where fis a positive constant such that f 4 1, 

then 

Axi = 0  (35) 

If 

leil fu  (36) 

bai = -± clzil = -± C  (37) 

where c is a positive constant such that f 4 c 4 1. 
The sign taken for Axi is the same as that of ei. 

Since Iz1I = 1, for all i, y is the magnitude of the 
output signal from a correlation detector if only the 
corresponding signal-element is received. fu is a 
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threshold level with which the correlation detector 
output signal is compared, before deciding whether 
or not to make a change in the corresponding xi. 
c is typically less than 0.1 and fis typically 0.01. 

The process D will converge so long as sufficiently 
small changes in xi are used. It has an appreciably 
lower rate of convergence than process C, particularly 
with unfavourable signals requiring very small changes 
in xi. This disadvantage is largely overcome in the 
process E, which avoids the need for very small 
changes in xi to ensure convergence. 

3.5. Detection Process E 

This is a simple modification of the process D. 
As in D the values of the {xi} are changed sequentially 
and in a fixed cycle. 

The change Lx i in the stored value of xi is now 
carried out in two steps. The first of these is exactly 
as for the process D, so that 

ttx = 0 or + c  (38) 

depending on the value of ei immediately preceding 
this change. In the second step, the sign of xi is 
determined and the signal 

± blzii = ± b  (39) 

is added to it, the sign chosen for the added signal 
being the same as that of xi. When xi is zero the 
sign is chosen at random. b is a positive constant 
such that b 4 c. Typical values of f, b and c are 
0.01, 0.01 and 0-1 respectively. Thus, immediately 
after each non-zero or zero change in xi, determined 
as for the process D, the magnitude of xi is slightly 
increased by a fixed amount b. 

3.6. The Constraint on X 

The tolerance to additive noise of the detection 
processes B to E can be improved by applying the 
following constraint to the vector X. The value of 
xi is constrained to satisfy 

'xi' < 1 for all i  (40) 

throughout the detection process, where 

= 1 for all i  (41) 

In an iterative process the constraint overrides and so, 
if necessary, truncates the change in xi dictated by 
the process. 

The detection processes B to E, with and without 
the constraint on X, have been tested by means of 
computer simulation, for values of m up to 10 and 
for a general class of received signals probably less 
favourable to the detection process than the signals 
likely to be obtained here. In each trial of a computer 
simulation test, the m signal-elements (zi Yi) were 
selected at random from the permitted signals, these 
being such as to ensure the linear independence of the 
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signal elements, while allowing the cross-correlation 
coefficient between any two of these to have one of 
the values 

—0.9, — 0•7, — 0.5,..., +0.7, + 0-9. 

Each detection process, with values of m up to 6, 
was tested with and without additive Gaussian noise 
and with independent random variations in the 
individual levels of the m signal-elements over various 
ranges from 0 to about 10 dB. 12 

The results of the tests show that the constraint 
on X, when correctly applied, does not prevent the 
correct convergence of any of the four detection 
processes. Furthermore, each of the detection pro-
cesses B, C and D gains an advantage in tolerance to 
additive Gaussian noise of typically 1 or 2 dB when 
the constraint is applied. All processes with the 
constraint on X have the same tolerance to additive 
Gaussian noise and the same tolerance to inaccuracies 
in the setting of the constraint. In addition, when the 
levels {kill of 6 signal-elements {zi Yi} vary indepen-
dently and at random over a range approaching 0.7 
to 1.3, but with the vector X constrained as in 
equation (40), an advantage is still obtained in the 
average tolerance to additive Gaussian noise, together 
with correct detection in the absence of noise. The 
results clearly suggest that the operation of a detection 
process with the constraint on X is not critically 
dependent on the correct setting of the constraint. 
Further tests suggest that when there is any uncer-
tainty in this setting, it should be adjusted to the 
highest of the range of likely values, say /, so that 

lxil / for all i  (42) 

Under these conditions the constraint on X should 
never prevent the correct convergence of the detection 
process and should always give some improvement in 
tolerance to additive Gaussian noise. 

For correct operation of the process E, the con-
straint on X must be applied. This is to counteract 
the built-in tendency for the magnitudes of the {x,} 
to increase. 

The constraint on X slightly reduces the rate of 
convergence of process B, it does not noticeably 
affect the rate of convergence of process D, and it 
greatly increases the rate of convergence of process C, 
which is now maximum when 1-25 < h < 1.5. 
Except where otherwise stated, it will be assumed 
that the constraint on X as given by equation (40) 
is applied to each of the detection processes B to E 
and that 1-25 < h < 1.5 for the process C. Equation 
(41) is assumed to hold, as before. 

3.7. Assessment of Detection Processes 

The detection processes B to E have been shown to 
operate correctly so long as they use suitable parameter 
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values, and they achieve a better tolerance to additive 
Gaussian noise than the process A. They have, 
however, a more important advantage over the 
process A in that all the stored values used in a 
detection process, that is R and Y, can be derived 
directly and very simply from the received signal, 
which is not so in the process A. Thus, with a time-
varying channel, where the detector must be held 
correctly matched to the channel during the trans-
mission of data, they should involve appreciably less 
complex equipment than an equivalent arrangement 
of the process A. 

The important advantage of processes C, D and E 
over B is that they may be simplified to use only one 
correlation detector instead of the m needed by 
process B. The simplified arrangement of these 
processes is described in Section 5. 

The processes D and E are entirely digital in the 
sense that they require only 'yes/no' decisions in 
determining the changes to the {xi}. They should 
therefore be less complex than C. 

The process E, although slightly more complex 
than D, has better convergence properties. Computer 
simulation tests have shown that with m = 10, 
f = 0.01, b = 0.01 and c = 0.1, the process E will 
converge in less than 50 iterative cycles, even under 
very unfavourable conditions. This is only a little 
slower than the process C under equivalent con-
ditions. 12 

4. Adaptive Detection Techniques 

4.1. Preset Detection 

In Figs. 4 and 5 the m vectors { I'l}, used both in 
the correlation detectors and to multiply the {xi}, 
are the appropriate n-component segments of a 
single stored vector 

m— I g+ I m-1 

L = 0...0 yi y2...y9+1 0...0  (43) 

where the g + 1 potentially non-zero components of 
this vector appear in each of the m vectors {Yi}. 
Clearly the knowledge of any one of these vectors, 
say Y1, completely determines the rest. 

In an arrangement of preset detection, the start of 
a transmission contains a training signal in which 
each group of m elements has 

Z1 = 1 

and 

(44) 

zi = 0 for i = m  (45) 

so that each group contains just the signal-vector Y1. 
To reduce the effects of noise, many vectors Y1 are 
transmitted consecutively and the average of the 
received vectors is used to give the stored value of L. 
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With a knowledge of L the detector of Fig. 4 or 5 
can now detect any received vector R in the following 
data signal. 

Where the impulse response of the channel does not 
vary over any one transmission, the value of L deter-
mined at the start may be used throughout the trans-
mission, giving a simple and effective arrangement of 
preset detection. 

With a time-varying channel, the vectors Y1 of the 
training signal may be interspersed between the data 
signals at regular known intervals and the value of 
L periodically changed so that the {Yil in the detector 
follow the changes in impulse response of the channel. 
This, however, appreciably reduces the data trans-
mission rate. A more effective arrangement for a 
time-varying channel will now be described. 

4.2. Estimation of Yi by means of an Iterative 
Process 

It may be shown that 

ZY= Y'Z'  (46) 

where Y' is the row vector (ya, y2, ..., yo. i) and 
Z' is the (g + 1) x n matrix of rank g + 1, whose ith 
row is 

i-1 m g-1+1 

0...0 zi z2...z„, 0...0 

Thus 

R = Y'Z'+ W  (47) 

Clearly, if Y' is determined, the mxn matrix Y is 
completely defined. 

If the m correlation detectors tuned to the { Yil in 
Fig. 3 are replaced by g + 1 correlation detectors, 
where the ith correlation detector is tuned to Z, the 
ith row of Z', then the (g + 1)-component output 
signal-vector from the correlation detectors is 

C = R(Z')T = Y'B + W(ZIT  (48) 

where 

B = Z'(Z')T  (49) 

The (g + 1) x (g + 1) matrix B is real, symmetric and 
positive definite. 

It can be shown that when the receiver knows the 
{Zil but has no prior knowledge of the {yil or cr2, 
then the best estimate it can make of Y' is the row-
vector U, where 

UB = C  (50) 

U has g + 1 components which are estimates respec-
tively of the first g + 1 components of Y1. From 
equation (50), 

U = CB-1  (51) 

so that U can be determined by feeding the vector C 
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through a linear network B-1 or preferably by per-
forming the equivalent iterative detection process, 
using the g + 1 correlation detectors tuned to the {Z}. 
No constraints are applied here to the components 
of U. Clearly there is a close parallel between equa-
tions (51) and (33). 

4.3. Adaptive Detection 

After the detection process for the {zi}, the receiver 
can be assumed to know the {zi} with only a small 
probability of error, so that it can set up the g+ 1 
correlation detectors tuned to the {Z} with a high 
probability of these being correct. Since the vector R 
is held at the input of the detector, the receiver now 
has all the necessary information to determine U. 
Each detection process for the {zi} is therefore fol-
lowed by a detection process to determine U and so 
to estimate Y1. 

It is obviously desirable that the same type of 
detection process should be used for both the {z1} 
and U, so that the maximum quantity of equipment 
may be shared between the two processes, thus 
reducing the total equipment complexity. 

The vector U, determined at the end of each detec-
tion process, is used to adjust the stored value of L 
(equation (43)), so that the { Yi} in the detector follow 
the variations in the impulse response of the channel. 
Under normal conditions the variation of the impulse 
response should be slow enough to enable the mth 
to nth components of L to be given by the correspond-
ing components of the running average of U over a 
number of these vectors, so that the { Yi} in the detector 
are only slightly affected by the additive noise in R. 
Since the element error rate is normally less than 
say 1 in I e, errors in the detection of the {zi} should 
not be important. The effect of such errors may be 
reduced by limiting the maximum change between 
successive values of each component of U, or even 
by neglecting any U which shows an excessive change. 
An excessive change in U may also be used to indicate 
a probable error in the detection of one or more of 
the {zi). 
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The arrangement just described enables any of the 
detection processes B to E to be used in a fully 
adaptive system. The training signal is still required 
at the start of a transmission. The {zi} are here given 
a set of non-zero values (1 or — 1) which are known 
at the receiver, and Y1 is estimated in each detection 
process without first having to detect the {z1}. When 
the detector has determined Y1, it is ready to receive 
data and is held correctly matched to the slowly 
time-varying channel during the following trans-
mission. Any sequence of binary element values may 
be transmitted in the data signal without adversely 
affecting the operation of the adaptive detector. 

4.4. Estimation of Yi by means of a Feedback 
Shift-Register 

An alternative detection process, which may be 
used to estimate Y1, is shown in Fig. 6. A square here 
represents an element of a shift register. When 
triggered, an element transfers the signal at its input 
to its output, in the direction shown. The signal may 
be in analogue or digital form. A circle marked zi 
represents a switched inverter, whose output signal 
is zi times the input signal, where zi may be 1, — 1 
or O. It is assumed that g < m. 

Before the start of a detection process, all signal 
voltages and all {zi} in Fig. 6 are set to zero and the 
vector R is fed into the feedback shift-register, to the 
position shown. The detection process for the {zi} 
is now carried out on R, after which the (z1} in Fig. 6 
are set to their detected values (1 or — 1). The two 
shift-registers are then triggered simultaneously g + 1 
times. It may be shown that if there is no noise in R 
and the {zil have been correctly detected, the output 
shift-register will now hold the vector Y', that is the 
first g + 1 components of Y1. 

The arrangement of Fig. 6 provides a very simple 
means of estimating Y1 from R. It does however tend 
to accentuate the effects of additive noise in R and 
can be seriously affected when there is an error in 
the setting of one or more of the {zil. It would not 
therefore in general operate as well as an equivalent 
iterative detection process, over a noisy time-varying 
channel. 

FEEDBACK SHIFT REGISTER ( n ELEMENTS) 

Fig. 6. Estimation of Y1 from R. 

OUTPUT SHIFT REGISTER 
(g.1 ELEMENTS) 

115 



A. P. CLARK 

4.5. Automatic Gain Control 

The length of the vector Y1 is held approximately 
constant at a nominal value of unity, as follows. The 
components of U, obtained after each detection pro-
cess, are squared and added to give an estimate of the 
squared length of Y1. The running average of this 
estimate or of its square root, taken over several 
successive vectors U, is then used to control the gain 
of the a.g.c. amplifier at the input of the demodulator 
(Fig. 2). The latter is of course a part of the baseband 
channel. 

Where the attenuation of the transmission path 
varies over a range of 40 or 50 dB, an efficient a.g.c. 
system should hold the length of Y1, and therefore the 
length of each Yi, to within 1 or 2 dB of unity. This 
not only avoids the risk of overloading in the receiver 
but, by greatly reducing the variations in the channel 
impulse-response, it improves the operation of the 
adaptive detector. Under these conditions it is 
reasonable to assume (as has been done here) that 
the m vectors { Yi}, used in the detector, are the same 
as the corresponding vectors which make up the 
received vector R. 

5. Simplified Adaptive Detector 

5.1. Description of System 

The simplified arrangement of the detection pro-
cesses C, D and E is shown in Fig. 7. Each of the three 
shift registers stores a set of values in digital form, 
each value being represented by a binary number of 
7 or more bits. 

After the reception of the training signal, the vector 
Y1 is stored in the shift-register F, as shown in Fig. 7. 
The detector is now ready to receive data and the 
vector R corresponding to the first group of m data-
elements is fed into the shift-register G, to the position 
shown. 

The {M, for i = g + 2, ..., n, are always held at 
zero. The vector S, stored in the n summing circuits, 
is initially set to zero and so is the vector X, stored in 
the shift-register H. The output signal from the 
correction generator is also initially set to zero. 

Each component of S is now subtracted from the 
corresponding component of R, and each component 
of the resultant vector R—S is multiplied by the 
corresponding component of Y1. The n products 
are then added to give the correlation detector output 
signal 

ei= (R— S)Yjr  (52) 

where of course S = 0. The appropriate change Axl 
in x1 is now determined and held at the output of 
the correction generator. The value of Ax1 is deter-
mined according to whichever of the detection 
processes C, D or E is being used. 
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Axi is added to x1 in the shift-register H, to give 
the signal xl+Axi at the input to the following 
element. Ax1 is also used to multiply each component 
of the vector Y1, and the product Axi Y1 is added to S. 
At this stage 

and 

xi = 0 for all i  (53) 

SHIFT 
REGISTER 

SAMPLED 
DATA 

yrt r,-,- 3,1 

sn 

S = Axi Yi  (54) 

y, 

rtri 

SHIFT 
REGISTER 

G 

y„ Ax, 

Ax, 

52 

Ofcs, 
,y24 x1 

yl IF, '.52) y1 - 51) 

ADDER 
e, 

SHIFT 
REGISTER '"'4 

CORRELATION   
DETECTOR 

OUTPUT SIGNAL 

CORRECTION 
GENERATOR 

Fig. 7. Simplified iterative detector. 

The shift-registers F and H are now triggered 
simultaneously so that each of the values stored in 
these shift registers is shifted one place in the direction 
shown. The shift-register F thus holds the vector Y2 
and the signal x2 is fed to the correction generator. 
The output signal from the correlation detector now 
becomes 

e2 = (R— S)Yj  (55) 

where 

S = Axl Yi  (56) 

The change Ax2 in x2 is determined and held at the 
output of the correction generator. Ax2 is added to 
x2 in the shift-register H and the vector Ax2 Y2 is 
added to S. At this stage 

xi = AX1 (57) 

xi = 0 for i = 2, ..., m  (58) 
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and 

Clearly 
S = AX1 ±AX2 Y2  (59) 

S = X Y (60) 

where the m components of X here are the input 
signals to the corresponding elements of the shift-
register H. 

The shift-registers F and H are now triggered again 
and the process continues exactly as described, until 
a change has been made to the stored value of each xi 
and the first cycle of the iterative process has therefore 
been completed. At the start of the next iterative 
cycle, the signals stored in the shift-register H are 
automatically in the correct positions as in Fig. 7, 
but the signals in shift-register F require to be reset 
to the positions shown. 

After the completion of a given number of iterative 
cycles, the receiver examines the signs of the {,c1} 
stored in the shift-register H, and allocates the 
. appropriate binary values to the corresponding 
signal-elements. 

Having determined the {zi} the detector is now 
ready to estimate Y1. In the shift-register F, yi is 
replaced by the detected value of zi (1 or — 1), for 
i = 1, m, and the remaining signals are set to 
zero. The shift-register G holds the vector R, as 
before. In the shift-register H, xi is replaced by 
ui, for i = 1, g + 1, and the remaining signals are 
held at zero. It is'assumed that g < m. At the start 
of this process the {ui} are set to the currently esti-
mated values of the components of Y' and S to its 
corresponding value UZ'. The change Au, in ui is 
determined either according to the detection process 
C, with h = I, or else according to the detection 
process D, with c = 0.01 and f = 0.005. No con-
straints are applied to the {ui}. With a slowly time-
varying channel, where no ui changes by more than 
say 5 % from one detection process to the next, an 
adequate rate of convergence should be obtained 
with either arrangement. 

Since the same piece of equipment is used first to 
detect the {zi} and then to estimate Y1, only a small 
increase in equipment complexity is involved in 
estimating the channel impulse response. 

The arrangement of Fig. 7 uses only one correlation 
detector. It is therefore considerably less complex 
than the equivalent arrangement of Fig. 5. Where the 
circuits can handle an appreciable increase in speed 
of operation, the complexity of the system can again 
be greatly reduced by arranging the individual opera-
tions of multiplication and addition in the correlation 
detector to take place sequentially, instead of simul-
taneously as in Fig. 7. The resultant system should 
not be significantly more complex than the equivalent 
adaptive transversal equalizer. 
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5.2. Comparison with Transversal Equalizer 
An adaptive detector overcomes the three main 

weaknesses of an adaptive transversal equalizer, 
mentioned in Section 1, and achieves the following 
advantages. Firstly, so long as adequate time-gaps 
are inserted between adjacent groups of signal 
elements, correct operation with near-optimum detec-
tion can be obtained over any channel likely to be 
used in practice, except of course when the channel 
introduces excessive attenuation. Secondly, a near-
optimum detection process is used to estimate the 
channel impulse-response. Thus, the detector should 
be capable of following accurately any likely variation 
in the channel impulse-response which takes place 
over a time interval as short as 50nT seconds or 
typically 1000T seconds. This compares favourably 
with the equivalent adaptive transversal equalizer. 
Thirdly, the detector can adapt itself correctly to 
variations in the channel impulse-response, for any 
received sequence of data element values. Finally, 
only binary-coded elements need be used, even when 
the bandwidth of the baseband channel is appreciably 
less than I/2T Hz,"" so that the equipment complexity 
involved with multi-level signals can be avoided. 
Where required, of course, multi-level elements may 
be used. 

The adaptive detector has two main disadvantages. 
It is basically a little more complex than the adaptive 
transversal equalizer and it requires the signal elements 
to be separated into groups, which results in some 
reduction in tolerance to additive noise for a given 
transmission rate. However, this reduction is at least 
partly offset by the advantage in tolerance to additive 
noise gained through the constraint on X. A further 
disadvantage of the adaptive detector is the fact that 
when the channel introduces signal distortion, the 
received groups of elements will normally only become 
accurately orthogonal as g oo. Thus the value of 
g should be kept as large as conveniently possible. If 
it is required to keep g 4 n and so achieve the maxi-
mum tolerance to additive noise when the signal 
distortion is low, it may be necessary to accept 
significant intersymbol interference between adjacent 
groups of elements, when the signal distortion is high, 
with the result that the tolerance to additive noise 
will now be inferior to that obtained with a larger 
value of g. 
The above considerations suggest that in some 

applications an adaptive detector should tolerate more 
severe and more rapidly time-varying signal-distortion 
than that tolerated by an adaptive transversal 
equalizer of similar complexity. 

To avoid undue changes in the signal values stored 
in the shift-registers F and H in Fig. 7, during long 
iterative processes, all signals in the iterative detector 
must be stored in digital form. At the present time 
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this involves more complex equipment than if they 
were stored in analogue form, as in a typical trans-
versal-equalizer. However, in a few years time it will 
probably be cheaper to handle the signals in digital 
rather than analogue form, so that the adaptive 
detector should then be at no disadvantage on 
account of its restriction to digital signals. 

The adaptive detector appears likely to achieve the 
greatest advantage over the adaptive transversal 
equalizer in those applications where a received 
signal-element introduces severe intersymbol inter-
ference in the neighbouring elements but only over 
the two or three immediately adjacent elements on 
each side. It is unlikely to achieve any useful advan-
tage in those applications where the intersymbol 
interference is spread over a large number of the 
neighbouring elements. 

The adaptive detector does not, of course, equalize 
the channel but instead it accepts the distorted signals 
as they are and performs a near-optimum detection 
process on each group of m signal-elements, using the 
whole of each element in this process. 

6. Conclusions 

A relatively simple and most effective arrangement 
for an adaptive detector is obtained as follows. 

The transmitted serial stream of binary data-
elements is separated into groups, with adequate 
time-gaps between adjacent groups in order to elimi-
nate intersymbol interference between the different 
groups in the received signal. Since the m received 
baseband data-elements in a group are linearly 
independent, they can be detected correctly in the 
absence of noise, for any channel impulse-response 
which does not introduce excessive attenuation. 

The m elements are detected simultaneously in a 
single detection process. With a time-invariant 
channel this can be carried out by means of a set of 
m correlation detectors, each tuned to a different one 
of the received elements in a group, followed by a 
linear network which eliminates the intersymbol 
interference in the output signals from the correlation 
detectors. The system may be further simplified to 
only m correlation detectors which give the required 
output signals directly. With a time-varying channel, 
however, considerable equipment complexity is 
involved with either of these arrangements. The 
detection of the m signal-elements is now best carried 
out with the linear network in the original detector 
replaced by an iterative process which performs 
essentially the same function. The iterative process 
adjusts the estimates {xi} of the m element-values {z1}, 
sequentially and in a fixed cycle, until no further 
significant changes in the {xil are obtained. This not 
only leads to a much simpler system but it also 
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permits the introduction of constraints on the {xi}, 
giving a useful increase in tolerance to additive noise. 

Immediately following each iterative detection 
process, a second iterative process is used to obtain 
an estimate of the channel impulse-response and to 
adjust the detector appropriately, so that the detector 
follows the changes in the channel transmission-
characteristics. No training signal is required, except 
at the start of transmission. 

The arrangement promises to achieve in some 
applications a better performance over a time-varying 
channel, for a given degree of equipment complexity, 
than is possible with the more conventional transversal-
filter adaptive equalizer. 
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Analysis 
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Conference on ' Laboratory Automation' 
Middlesex Hospital Medical School, London W.1, 10th to 12th November, 1970 

This Conference is organized by The Institution of 
Electronic and Radio Engineers with the association 
of The Institution of Electrical Engineers, The 
Institute of Physics and The Physical Society, The 
Royal Institute of Chemistry, and The Institute of 
Measurement and Control. 

In recent years, automatic techniques have been 
introduced into many laboratories to speed up experi-
mental and analytical procedures, and to reduce time 
spent by staff on repetitive work. On-line computers 
have been installed, facilitating the handling of large 
quantities of data, with immediate processing and 
presentation to the experimenter. In some cases, the 
computers have been used to control the actual 
experiments, for example the movement of a set of 
detectors to new, accurately controlled positions when 
sufficient data have been accumulated. Automatic 
equipment has been designed for carrying out chemi-
cal and biological analysis on a large number of 

samples simultaneously, such as blood and urine in 
a pathological laboratory. Similar applications have 
occurred in other research laboratories. 

The aim of the Conference will be to bring together 
workers who are already applying automatic tech-
niques in their laboratories, or who may be interested 
in so doing, and designers and manufacturers of such 
equipment. 

The term 'Laboratory' is intended to cover scien-
tific observatories and routine testing laboratories as 
well as research and development laboratories. Papers 
are being contributed by workers in many fields, as 
will be seen from the provisional programme below. 

Further information and registration forms for the 
Conference will be available in due course from the 
I.E.R.E., 9 Bedford Square, London, WC1B 3RG. 
Telephone: 01-637 2771 (Ext. 8). 

PROVISIONAL PROGRAMME 

Productivity in the Analytical Laboratory—A Rational 
Approach to Automation 

Interface Equipment for the Simultaneous Control of 
Three Neutron Experiments by a Small Computer 

Control and Monitoring of Neutron Beam Experiments 
Using Data Processors 

The Development of Automatic Analysis Equipment at 
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Fields 
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Computer Control of Optical Telescopes 

Acquisition and Reduction of Acoustic Noise Data 

The Radio and Electronic Engineer, Vol. 40, No. 3 



U.D.(. ( 21.372.542.029.4)4 

Transmission Factors of Microwave Filters with 
Prescribed Attenuation and Group Delay 
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Synthesis procedure is presented for determining transmission factors of a 
broad class of microwave filters using commensurate line lengths which 
satisfy prescribed attenuation and group delay characteristics. This 
technique, which lends itself to automatic programming, derives its origin 
from a previously described method of increasing selectivity in linear phase 
microwave filters and depends on the introduction of a second frequency 
transformation which is well known in the theory of lumped element 
filters. The organization of the computer program is discussed and a few 
numerical examples are worked out to facilitate the comparison of the 
results with those previously obtained. 

1. Introduction 

It is well established that Richards' frequency 
transformation' enables many problems of micro-
wave networks using commensurate line lengths to be 
solved by methods developed for lumped element 
networks. Quite a number of studies have been 
reported involving `low-pass' and 'band-pass' con-
figuration which can be synthesized to yield Butter-
worth and Chebyshev type of magnitude response 
without need for new approximating methods. By 
contrast, although several papers have more recently 
appeared'', the corresponding problem of obtaining 
constant delay approximation in microwave networks 
has not been solved to the same extent. This may be 
attributed to the fact that, due to the nonlinear trans-
formation, this technique cannot be directly applied to 
an approximation of the delay characteristic. 

The procedure proposed by Carlin and Zysman2 is 
based on the approximation of magnitude and not the 
delay characteristic about a) = 0 so that the accuracy 
of delay response cannot be readily determined 
beforehand. In addition, the resulting magnitude 
response is not particularly suitable for filter applica-
tions. Scanlan and Rhodes' have presented the 
method of synthesis of a class of microwave functions 
which provides a constant delay at all frequencies. 
However, these functions cannot be realized as 
interdigital or cascaded transmission line filters but 
require the use of C- and D-sections. Besides, the 
narrow-band filter cannot be constructed with these 
functions unless a large number of elements is used.' 

An exact solution for the maximally-flat type of 
approximation of delay response in microwave filters 
has first been obtained by Abele' from the use of 
finite convergents of the continued fraction expansion 

1' Faculty of Electrical Engineering, University of Belgrade, 
Yugoslavia. 
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for tan (arctan .(2). It has been demonstrated' that the 
same result can be obtained by direct application of a 
method of synthesis of low-pass phase equalizers.7 
These transmission factors can be realized as a trans-
mission line or conventional interdigital network, but, 
since the resulting magnitude deviates considerably 
from that of an ideal filter they have limited use in the 
synthesis of band-pass filters. 

Subsequently, an interesting method has been 
developed by Rhodes' for simultaneous approxima-
tion of both group delay and magnitude responses of 
the filter in a maximally-flat sense about band centre. 
In order to obtain a maximally-flat delay the poles of 
the transmission factor are chosen to be the zeros of 
the symmetrical Jacobi polynomials and then the 
zeros of an odd polynomial in the numerator of the 
transmission factor are selected so that the maximally-
flat magnitude criteria are met. This procedure, which 
is reminiscent of the technique used by Allemandou" 
in lumped element network synthesis, yields an 
improved passband magnitude response when com-
pared to that of the Abele's solution. Unfortunately, 
the stopband attenuation is deteriorated so that the 
overall magnitude performance is rather unsatis-
factory. The realization of these transmission factors 
in the form of a generalized interdigital networks has 
also been given.6' 9 

More recently, a method has been presented' to 
find transmission factors of a general class of trans-
mission line filters which yield an increased stopband 
attenuation of the filter while still retaining an excel-
lent delay characteristic in the passband. These 
transmission factors are derived from the maximally-
flat type of approximation of the delay response by 
reducing the number of flatness conditions by one and 
using the remaining parameter to adjust the magnitude 
response. 

121 



B. D. RAKOVICH and A. D. JOVANOVICH 

As with the previous paper', the main purpose of 
the work described herein is to present a new method 
of determining transmission factors of linear phase 
transmission line filters which leads to further con-
siderable improvement of the stopband performance 
of the magnitude response. On the other side, any 
particular set of passband specifications can be met 
so that these transmission factors may be regarded as 
approximating a constant delay and a constant 
magnitude simultaneously. They are capable of being 
realized by a transmission line or conventional inter-
digital network and are equally suitable for narrow-
band and wide-band filters. Although the following 
discussion will be focused for the most part on band-
pass filter functions, this method can also be employed 
in the synthesis of low-pass configurations. 

The paper is organized as follows. In the first part 
the new transmission factor is derived from the results 
obtained for the maximally-flat type of approximation 
of delay response using a frequency transformation 
which is well-known in the synthesis of lumped 
element networks. Two variable parameters are then 
introduced and their influence on the magnitude and 
group delay characteristics is discussed. The second 
part is mainly concerned with the organization of a 
digital computer program for automatic computation 
of a transmission factor of minimum complexity that 
will satisfy the prescribed filter specifications. Numerical 
examples are worked out and the results are compared 
with those for other known methods. 

2. Theoretical Background 

2.1. Approximation Problem 

Networks considered here consist of a finite number 
of series and shunt transmission line lossless elements 
having the same phase constant O = Tow and the 
characteristic impedances which may be different but 
are neither zero nor infinite. The generator and load 
impedances, between which the network is operated, 
are both positive real and need not be of equal value. 

Let 

. ona) 
S12(J ) = S 12(itow), 2c o  

where i o is the one-way delay of the line element and 
coo is the radian frequency for which the line is a 
quarter-wavelength, 

be a scattering transmission factor such that under 
the transformation 

Q = tan to  (1) 

or 
Q = — cot Toco  (1') 

the magnitude squared function is rational, then 

1S12(.I0 )12 must be of the form 
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I Q2'"(k1 +WY  2 * 
S 12(A)12 = Q(Q2) () 

0 5_ IS 126Q)12 ≤ 1 for — oc ≤ Q≤ + oc  (3) 

where Q„(02) is a real polynomial of degree n in .Q 2 

and m = 0, 1, 2... and r = 0, 1, 2,... are constants 
depending on filter structure. 

For band-pass filters the transformation ( 1') is 
pertinent and the function Si2(p), as determined from 
(2), is 

p m(p 2 ly/2 

St 2(P) =   (4) 
Hn(P) 

where p = E+A is the complex frequency variable in 
the transformed plane. If, on the other hand, the 
passband of the filter is located around Toco = 0, 
+n...(low-pass filters) the transformation ( 1) is more 
appropriate and S12(p) becomes 

p  mo p 2y/ 2 

S1 2(P) —    (5) 
H(p) 

In the following analysis we shall assume in = 
which corresponds to most practical cases under 
consideration. This does not represent a real restric-
tion on the generality of the method since the numerator 
in Si2(p), being an even or odd polynomial in p, does 
not contribute to the phase. 

The approximation problem to be solved can now 
be stated in the following form: Subject to the con-
straint (3) determine an expression for H(p) which 
must be a Hurwitz polynomial so that the scattering 
transmission factor (4), when evaluated in the original 
frequency plane s = + jco, approximates to the pre-
scribed magnitude and group delay characteristics of 
the filter. 

2.2. Determination of Hn(p) 

It has been shown' that starting with the ideal 
delay function ll 

1  
Sk(P)= (1+ pe  (6) 

where k is a positive real number and not necessarily 
an integer, the following recurrence formula can be 
derived for determining the polynomial H(p) in the 
denominator of (5) corresponding to the maximally-
flat type of delay approximation 

k2p2 
H(p) = Hn-i(P)+   H_ 2(p)  (7) 

an-2 an- 1 

where Ho(p) = 1, Hap) = l+kp and 

i even: 

a i — 

(21+1) ¡II [1c2 —(2v— 1)2] 
v=1 

8/2 

[k2 (2v)2] 
, 

(8) 
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odd: 

a; = 

(1— 1)/2 

(2i + 1) n [k2 —(2v)2] 
v=o 

(1+ 1)/2 

1-1 [k2 — (2v — 1)2] 
v = 1 

(9) 

The realizability conditions restrict the lower limit 
of the parameter k to k ≥ n-1. It. has also been 
found' that by substituting a new variable parameter 

lying in the range n ≤ ≤ a._ „ for a„_ 1 in (7) the 
selectivity of the magnitude response of the filter can 
be considerably increased while a very good delay 
characteristic is still retained. 

These results will now be used to derive new trans-
mission factors by means of some mapping properties 
of the function 

p = ( z—  z-
Qc 1) 

where £?c is the useful frequency band in the p domain. 
It is well known from the synthesis of lumped element 
networks that by this mapping function a maximally-
flat type of approximation can be converted into a 
nearly equal-ripple type of approximation in the 
p plane.' 2 

With this in mind we shall map the function Sk(p) 
(equation (6)) in the z-plane retaining only those zi 
which fall outside the unit circle 

Sk(z) =  1  
(z + zo)k  (11) 

where 

zo= Ll + 1 

Q. "V Se 

(10) 

or introducing a new variable y = z/zo 

1  
Sk(Y) = zok(1 +y)k  (12) 

Since the function retains the same form after trans-
formation, equations (7)-(9) can be directly applied 
to find the auxiliary approximating polynomial 
Ha, z) in the z-plane. When this is accomplished, 
and the auxiliary polynomial solved for its roots, the 
mapping function (10) is used again to convert the 
results back into the p-plane. A similar technique was 
employed in the synthesis of lumped element networks 
leading to the so-called quasi-Chebyshev-type of delay 
response. 3-16 

This procedure is straightforward but some impor-
tant points must be taken into account before applying 
this method. Since, by means of the function ( 10), the 
left half of the z-plane outside the unit circle maps on 
the entire left half of the p-plane, the moduli of all 
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zeros of the auxiliary polynomial must be greater than 
unity; otherwise its p-plane transformation will not be 
a Hurwitz polynomial. Moreover, none of these 
zeros must be close to the unit circle if a satisfactory 
delay approximation is to be obtained in the original 
frequency plane. For any particular n and .Q. (i.e., the 
fractional bandwidth of the filter w = (f2 —fi)/fo) this 
imposes the upper limit of k since increasing k 
decreases the moduli of the z-plane zeros. For 
example, it has been found by numerical computation 
that for n = 5, = and for large fractional 
bandwidth w = 1, corresponding to 3 : 1 band-
width filter, one of the z-plane zeros lies inside the unit 
circle if k = 9 is chosen. On the other hand, for 
moderate values of the bandwidth factor, say w = 0-5 
or less, higher values of k may be used. 

The magnitude response of the filters is greatly 
affected by the values of k, which is very approxi-
mately equal to the normalized midband delay. As 
may be inferred from (6) the stopband performance 
is improved for higher values of k. However, increas-
ing k increases the passband attenuation so that a 
higher-order network must be used than would 
otherwise be necessary from the point of view of the 
requirements imposed on delay response. This 
situation is similar to that encountered with the 
maximally-flat type of approximation, but simple 
means of improving the passband magnitude response, 
particularly in wideband cases have been found. 

Suppose we know the required values of n and k 
and let for the moment = 1, corresponding to 
the maximally flat type of approximation in the 
z-plane. If all z-plane zeros of Ha, z) are multiplied 
by a positive real factor A > 1, the type of approxima-
tion remains unchanged but the passband and stop-
band attenuation are both decreased because of the 
frequency scaling. The zero frequency delay in the 
p-plane is decreased by the same factor and the 
general shape of the delay characteristic of the filter 
tends towards that of the maximally-flat type. If, 
on the other hand, the z-plane zeros and the para-
meter k are multiplied by A simultaneously, the stop-
band attenuation increases very slowly, while the 
passband attenuation is decreased at the expense of 
an increased delay distortion. These results are 
illustrated in Figs. 1-3 for the third, fourth and fifth 
order approximating functions with r = n-1, 
= 0.414 (the fractional bandwidth w = 0.5) and 

the stopband beginning at £2, = 1. As may be seen 
from Fig. 1, the passband attenuation decreases very 
slowly for higher values of the product la. so that 
little can be gained from increasing LI above, say, 
(n + 1)2, where n is the order of the network. Since in 
the design of the filters with small fractional band-
width, w = (f2 —fi)/f0 = 0.1 or less, a large value of 
k may be required to meet the stopband specifications, 
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Fig. 1. Variation of passband attenuation with kl for n =-- 3 to 5, 
w = 0.5, r n-1, k 

this technique becomes less efficient in these cases and, 
hence, 2 = 1 should be chosen. It is fortunate, 
however, that in narrow-band filters the usual pass-
band specifications can be easily fulfilled in almost all 
practical situations due to the fact that the useful band 
is narrow. 

The diagrams shown in Figs. 1-3 have been obtained 
first by converting the z-plane zeros of ime, z) into 
the p-plane to form the approximating polynomial 

h5(p) = iîoBi pi  (13) 

which has been normalized so that 

h.(0) = 1  (14) 

(15) 

Then, 

S 2(P) = 

from which it follows for r = n-1 

IS t2GQ)12 + Q2)n-1 
I, 

1=0 

(p 2 iy/2 

where 

19.5 

19 

a 
18 

20'• 17.5 

n. 5 

I lllllllll t t I t It 

10 15 20 25 
k X 

Fig. 2. Variation of stopband attenuation wit:1 n=3 to 5, 
w = 05, r = n-1, k = n+1. 

2.3. Further Restrictions on 
The parameter e plays an important role in adjusting 

the shape of the magnitude response of the filter. 
Suppose first that the maximum number of flatness 
conditions is imposed on the delay response in the 
z-plane, i.e., = a5_1, leading to a quasi-Chebyshev 
type of delay approximation in the p-plane. In this 
case the magnitude response of the filter is found to be 
a monotonic function of frequency provided that 
k ≥ n-1 for r s n and that all zeros of Ha, z) are 
in the left half or the z-plane outside the unit circle. 
The magnitude performance is superior when com-
pared with that of the maximally-flat type of delay 
approximation studied by Abele but the general 
shape of the magnitude response remains the same. 
Since 1.5120S2)1,... = S12(0) the realizability condition 
(3) is automatically fulfilled. 

Now, if, for any particular n, is decreased below 
the value t = a5_1, while k and 2 remain unchanged, 
the monotonic character of the magnitude response 

 (16) tends to be lost and a minimum appears in the 
attenuation characteristic just beyond the useful 

E col = 
I o 

Denoting by «co) the group delay responses in the 
original s-plane, we find 

di2 d 
«co) = -r0(-170 [arg Si2(A)]  (17) 

from which the normalized delay TA) is obtained 

d 
n(Q)= (a1 +i22) — [ rg Si2(jf2)]  (18) 

df2 

The curves on Figs. 1-3 have been plotted by assum-
ing e= a._ 1 but the same general relationships are 
preserved for other values of e. 
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Fig. 3. Variation of normalized relative delay with icA for 
n = 3 to 5, w = 0-5, r = n-1, k = n-1-1. 
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frequency band. The negative peak corresponding 
to this minimum increases and becomes sharper with 
decreasing e, as shown in Fig. 4. Since S12(p) must 
be bounded by unity on Re(p) = 0, the transmission 
factor must be multiplied by a constant C < 1, so that 
we have 

C(p2 — 1)r/2  
S12(P)  (19) 

hn(p) 

In order to find the upper limit of the constant C the 
frequency at which the attenuation minimum occurs 
should first be determined. Equating to zero the 
derivative d/d.Q1S12(j12)I we get after some manipula-
tion 

P±[(r — OCI— (1+1)Ci+i]f221 = 
i=0 

where, as before, 

E com. h„(p)h(—p)lp,_in 
i= o 

(20) 

Positive real zeros of (20) represent the frequencies 
at which analytical maxima and minima of the 
attenuation response occur. These zeros may be 
simple or multiple and the largest one always cor-
responds to a minimum. Moreover, it has been found 
that for r ≤ n-1, the equation (20) has only two 
positive real zeros, if any, corresponding to the 
maximum and minimum of the attenuation character-
istic. On the other hand, for r = n and lower values 
of e the number of positive real zeros of (20) may 
become larger than two which depend on the specific 
values of the other two variable parameters k and A. 
But again, with increasing e the attenuation' response 
takes the same shape as for r < n and it seems that 
these types of attenuation responses (Fig. 4) provide 
the best compromise between the magnitude and 
group-delay characteristics in all practical cases. 

The upper limit for C in (19) is equal to unity only if 
Kp2 _1y/21 

lin(P) IP=Anin 

g, > g2> g,> g 

s 1  (21) 

Fig. 4. Typical attenuation characteristics for different values of e. 
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In some cases, depending on filter specifications 
nmax < Oc, where .Qc is the limit of the passband 
meaning that the maximum passband attenuation of 
the filter need not be at Q. This point will be referred 
again in the following section where the organization 
of the computer program is described. 

3. Computer Program 
A computer program has been written enabling the 

automatic computation of the transmission factor 
described in this paper. The program has been 
organized to accept the following set of filter speci-
fications: 

midband frequency .1'0 in MHz 

fractional bandwidth w = (f2 —MU() 
maximum passband attenuation A, in dB 
stopband in MHz 
minimum stopband attenuation A„ in dB 

maximum passband delay distortion A ro in ns 

values of the constants r and C (equation (19)) 

starting values for n (the order of the approxi-
mating function), and k. 

If for given filter specifications, the required order 
of the polynomial Ha, p) cannot readily be estimated 
beforehand, the computation may start with n = 3. 
The realizability conditions imply that k ≥ n-1, but 
in order to save the computational time a much larger 
initial value of k should be chosen, say k = 3n — 4n 
if the fractional bandwidth of the filter is small 
(w = 0.1, or less). 

A simplified flow chart is shown in Fig. 5. The 
main steps of the design procedure are as follows: 

(i) Using equation (1) compute 

1 
To = — 

4fo 

and the p-plane frequencies Dc and (2, cor-
responding to the limits of the passband and the 
stopband of the filter in the original plane 
respectively. 

(ii) Compute the coefficients al, a2...a„_ i from (8) 
and (9). Since the proper sign for the increment 
,U is automatically adjusted during the computa-
tion the starting value of e may be conveniently 
chosen as = 

(iii) Compute the coefficients of 

k2 y2 
Y)= Ha- i(Y)+ Hn- 2(Y)  (23) a._ 2 

by using the recurrence relation (7), solve 
H„(e, y) for its roots y, = a, +jb,(v = 1, 2...), 
compute z, = z0 y, = zo(a,+ jb,) and then trans-
form the z-plane zeros into the p-plane to form 
the polynomial h„(p) equation (13). 

(22) 
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X = ?t+A 

A DJUST 

à A 

(iv) Compute the minimum stopband attenuation 
A, = — 20 logi o IS12(p)I, where S12(p) is defined 
by (15). If for .Q„ A, < A„, increase k and 
repeat computation until the required attenua-
tion A, is met. 

(v) Find the attenuation A c at the limit of the pass-
band. If Ac > Atc multiply k, obtained in step 
(iv), by 1 > 1, evaluate the z-plane zeros and 
multiply them by the same factor 1. Convert the 
results into the p-plane and find the attenuation 
A c at the limit of the passband. This operation 
is repeated until AC < A„ or la = (n+1)2 is 
reached. If Ac > Atc for kl = (n+ 1)2, decrease 
e and repeat computation. 

(vi) Solve (20) for its positive real roots ama, and 
Dmin and check whether the condition (21) is 
fulfilled. If not, the instruction is given to 
increase and repeat the computation. If for 
D. Dmin the attenuation is positive and 
emax < ex, meaning that the maximum passband 
attenuation is not at S2c, adjust k and I in fine 
steps to meet the required specifications. 

(vii) For any n, the passband attenuation is minimum 
if the parameter e is adjusted so that the 
attenuation is equal to zero at D = Dmin (Fig. 4). 
Therefore, if the specified passband attenuation 
is not met in steps (y) and (vi), this value of 
should first be determined before directions are 
given to increase the order of the function. This 
value of can be obtained first by determining 
two values of i which correspond to positive 
and negative attenuations at D = Dmin res-
pectively and then using a simple interpolation 
formula. 

(viii) Compute the delay response in the passband 
using (17) and, if necessary, decrease and 
repeat computation to fulfil delay requirements. 
If the passband delay requirements are not met 
and the parameter was adjusted in the pre-
ceding step to give zero attenuation at D = 
instructions are given to increase the order of the 
network and to repeat the computation. 
Otherwise, the value of corresponding to zero 
attenuation at Dmin should be determined and 
the passband delay response checked again 
before instructions are given to increase n. 

In this connection one additional remark seems to 
be appropriate. It might seem, at first glance, that if 
the delay specification is not met in step (viii), instead 
of decreasing this parameter should be increased 
since with increasing towards = a„_,, the auxiliary 
polynomial approaches the maximally-flat type of 
delay approximation in the z-plane. While it is 
generally true that for fixed k and A, the passband 

Fig. 5. Simplified flow chart for the program organization, delay distortion decreases with increasing the delay 
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response is much more affected by the parameter 2. 
For a specified maximum passband attenuation the 
necessary value of 2. decreases with decreasing and 
the passband delay characteristic is improved (see 
Fig. 4). Only in those instances where the passband 
attenuation requirements are met with 2 = 1, the 
delay response is improved with increasing e. Hence, 
an instruction is introduced in step (viii) to change the 
sign of .0 if2 = 1. 

4. Numerical Examples and Comparison with 
Other Design Methods 

The program just described was employed to find 
transmission factors of transmission line filters 
satisfying various specifications both for narrow-band 
and wide-band filters. It has been found that, for any 
prescribed maximum delay distortion and maximum 
attenuation in the useful band, these transmission 
factors provide a considerable improvement in the 
stopband performance of the filter when compared 
with the results obtained by any other method so far 
described. On the other hand, if the minimum stop-
band attenuation is also given, the transmission 
factor determined by the present method has a lower 
degree and hence the resulting filter is of smaller 
complexity than in any other comparable case. This 
will be illustrated by several examples which were 
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deliberately chosen to facilitate the comparison of the 
proposed procedure with the methods previously 
reported. 

As a first example, the narrow-band case is con-
sidered and we propose to determine the transmission 
factor of an interdigital filter with short circuited 
input lines with the following specification: 

midband frequency fo = 1980 MHz; passband 
20 MHz (the fractional bandwidth factor w 0.01); 
maximum passband attenuation 0-15 dB; mini-
mum stopband attenuation of 45 dB at fo + 4f0 
= 1980±140 MHz; maximum passband delay 
distortion ha° = 0.2 ns. 

It is known'. 17 that in order for the transmission 
factor to be realizable as the aforementioned network 
it must be of the form 

(p 2 1)(n-1)/2 

Si2(P)    (24) 
h(p) 

Hence, r = (n — 1)/2 and we find that the third-order 
network with k = 105-12, 2 = 1, = 2.34, yields the 
maximum passband delay distortion Aro = 0.19 ns, 
the maximum passband attenuation Ac = 0.15 dB and 
the minimum stopband attenuation As = 47 dB. All 
specifications are fulfilled and hence the third-order 
network can be chosen. The attenuation and group 
delay of the filter are shown in Fig. 6. 

Now, using the method described by Rhodes6, the 

18 third-order function, realizable as a generalized inter-
digital network, with a = 150 (a is the notation in 
Rhodes' paper for the normalized midband delay) 

16 satisfies the same passband requirements but provides 
only 20.7 dB attenuation at the limits of the stopband. 

14 For comparison the attenuation and delay character-
istics of this filter are also shown in Fig. 6. 

12 

10 >-

-à 

80 
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2 

o 
2080 2120 

Fig. 6. Attenuation and group delay characteristics of the third-
order narrow-band filters: (a) Rhodes' solution (cc = 150); 
(b) described system (k = 105-12, À = 1, e = 2-34. 
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fractional bandwidth w = 0.11; maximum 
passband attenuation 2 dB, minimum stopband 
attenuation of 45 dB at fo +1'0.155 fo ; maximum 
passband delay distortion Azo = 0.15 ns. 

Using the proposed method and choosing the 
transmission factor of the form (24) we find that the 
sixth-order network with k = 39-86, 2 = 8 and 
e= 3-25 provides maximum passband attenuation 
1-9 dB, minimum stopband attenuation 45.3 dB and 
maximum passband delay distortion 0.11 ns. Thus, 
n = 6 is necessary to meet all requirements. This 
represents a significant improvement over the twelfth-
order transitional maximally-flat linear phase filter 
which is required to fulfil the same specifications.' 
The latter was designed to have two transmission 
zeros at p = +1, three flatness constraints on the 
passband magnitude response and the normalized 
midband delay a = 100. 

The wide-band case will be illustrated by the follow-
ing example from Abele's paper. The transmission 
factor of an interdigital filter with short-circuited input 
lines is to, be determined with the following specifica-
tions: 

midband frequency f 0 = 1000 MHz; passband 
850-1150 MHz (the fractional bandwidth factor 
w = 0.3); maximum passband attenuation 1.1 dB; 
minimum stopband attenuation 15 dB; maximum 
passband delay distortion Ato = 0.1 ns. 

As has been shown by Abele, the fifth-order 
network of the maximally-flat type is needed to meet 
these specifications. If the method described in 
reference 10 is applied, the same specifications are 
fulfilled with the third-order network. On the other 
side, if the procedure described in the present paper 
is used all passband requirements are met with the 
third-order network (k = 6.37; 1 = 1; t = 3.30) but 
the stopband attenuation is increased to 22 dB. 

If the comparison is made on the basis of equal n, 
then the fifth-order network of the present type 
(k = 11-47, --- 1.21, e= 3-21), satisfying all passband 
requirements yields the minimum stopband attenua-
tion of 42 dB, which is to be compared with 29 dB and 
15.3 dB for the method described in Reference 10 and 
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Fig. 7. Attenuation and group delay characteristics of the fifth-
order wide-band filter (w = 0.3): (a) Abele's solution; (b) 
function described in Reference 10; (c) described system 

(k = 11.47; I = 1.21; e = 3.21). 

the maximally-flat type of approximation respectively 
(Fig. 7). The results of comparison are summarized 
in Table 1. 

As a further illustration of the superiority of the pro-
posed procedure, we shall assume that the useful band 
of the filter is increased to 500 MHz (750-1250 MHz) 
corresponding to the fractional bandwidth factor 
w = 0-5, while all other requirements are left un-
changed as in the last example. Now, we find that the 
fifth-order network with k = 7.63, A = 1.09, = 3.64, 
yields the maximum passband attenuation 1.09 dB, 
the minimum stopband attenuation 20.2 dB and the 
maximum passband delay distortion bao = 0.08 ns so 
that all requirements are met. On the other hand, the 
fifth-order network determined by the method 
described in Reference 10 which satisfies the passband 

Table 1. Comparison of bandpass filters with fractional bandwidth w = 0.3 

n = 5 n = 3 
Maximally Reference 

flat 10 

n = 5 
Reference 

10 

n = 3 
Described 
system 

n = 5 
Described 
system 

Maximum passband attenuation (dB) 1-15 0-49 0-71 1-07 1 -07 

Minimum stopband attenuation (dB) 15/9 15-04 29 -03 22-08 42-46 

Maximum passband delay distortions (ns) 0-000 0-097 0.057 0.092 0.086 
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delay specification provides the minimum stopband 
attenuation of 18.66 dB, but the maximum passband 
attenuation is increased to 3 dB. If, for the sake of 
comparison, the maximum passband attenuation that 
can be tolerated is increased to 3 dB, we find by 
applying the present technique that the transmission 
factor with k = 9.04, A = 1 and = 4.23 satisfies all 
passband specifications but provides a minimum stop-
band attenuation at f, = 1000 ± 250 MHz of 28.02 dB. 
This represents an improvement of almost 10 dB over 
the comparable figure for the method described in 
Reference 10, and an improvement of 15.5 dB when 
compared with the maximally-flat type of delay 
approximation. The results of this comparison are 
presented in Table 2. 

As the last example of bandpass filters, we shall 
consider the case where more stringent requirements 
are imposed on the passband magnitude response. 
Suppose a bandpass filter is required with the following 
specifications: 

midband frequency fo = 2500 MHz; passband 
2000-3000 MHz (fractional bandwidth factor 
w = 0.4), maximum passband attenuation 0.15 dB ; 
minimum stopband attenuation at 1000 and 
4000 MHz 20 dB; maximum passband delay 
distortion &to = 0.05 ns. 

Using (24) and retaining the same filter structure as 
before, i.e. r = (n-1)/2, we find that the third-order 
function satisfying all passband requirements cannot 
provide more than 15 dB attenuation at the limits of 
the stopband which is inadequate. On the other hand, 
the fourth-order solution with k = 5.58, 2 = 1.92, 
e = 3.80 yields the maximum passband delay distor-
tion = 0.049 ns, the maximum passband attenua-
tion 0-14 dB and the minimum stopband attenuation 
20-5 dB. Hence, all specifications are fulfilled and 
n = 4 can be chosen. The attenuation and delay 
characteristic of the filter are shown in Fig. 8. It is 
interesting to note that these specifications cannot be 
met either by the maximally-flat type of delay approxi-
mation or by the method described in Reference 10 
even if n = 12 is chosen. 

In the case of low-pass filter functions the frequency 
corresponding to the end of the useful range should be 
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substituted for f 0. Suppose a low-pass filter which 
consists of a cascade of n lines is required with the 
following specifications2: 

passband 0-900 MHz; maximum passband 
attenuation 3 dB; maximum passband delay 
distortion 0.015 ns; minimum attenuation of 
30 dB at f, = 2400 MHz; the end of the useful 
range 3000 MHz. 

Now, we choose fo = 2000 MHz, the fractional 
bandwidth w = (2 x 900)/3000 = 0.6 and r = n, since 
for lowpass filters with cascaded lines S12(p) must be 
of the form 

Si2(P) — 
h„(p) 

(1—p2) 12 
(25) 

It has been found that the above specifications are 
fulfilled with n = 5, k = 7-79, 2 = 1, = 6-15 while, 
if the Bernstein approximation discussed by Carlin 
and Zysman2 is used, the number of cascaded lines 
must be n > 10 to meet the same specifications. 

A more economical solution with regard to the total 
number of transmission line elements can be obtained 
if the filter is realized as a cascade of transmission 
lines with shunt open-circuited stubs which introduce 
a zero of transmission at the quarter-wavelength 
frequency. In this case the generic function of Su(p) 
must be of the fosm 

(1 p2(n - q )12 

S12(p) =    (26) 
h(p) 

where q is the order of transmission zero at the ir/2 
point. Now, using the same passband specifications 
as in the above example we find that a fourth-order 
network consisting of three cascaded lines and one 
stub (q = 1) with k = 5.93, 2 = 1 and = 5.92 yields 
minimum stopband attenuation A. = 31 dB. This 
represents a marked improvement over 24 dB mini-
mum stopband attenuation obtained with same filter 
structure when the method of determining the trans-
mission factor described by Carlin and Zysman2 is 
used. 

Another important but clearly distinct aspect of 
filter synthesis is the realization of the transmission 
factor once the pole positions have been calculated. 

Table 2. Comparison of bandpass filters with fractional bandwidth w = 0.5 

n = 5 n = 5 
Maximally Reference 

flat 10 

n = 5 n = 5 
Described Described 
system system 

Maximum passband attenuation (dB) 3.00 3.01 2.93 1.09 

Minimum stopband attenuation (dB) 12-56 18.66 28.02 20.2 

Maximum passband delay distortion (ns) 0.007 0.094 0.095 0.092 
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The realization of these transmission factors in the 
form of interdigital networks and various other trans-
mission line structures including cascaded trans-
mission lines with or without shunt and/or series stubs, 
,1,/4 transformers, etc. has been covered adequately in 
the literature together with the examples' 7-23 and 
will not be considered in this paper. 

5. Conclusion 
A technique for determining transmission factors of 

a general class of microwave filters satisfying the 
prescribed attenuation and group delay characteristics 
has been presented. The method is based on the 
conformal mapping of a class of network functions, 
previously introduced by one of the present authors, 
by means of a function known from the theory of 
lumped element networks. A comparison of the 
results with those obtained by any previous method of 
which the authors are aware has revealed that the 
procedure reported here leads to a considerable 
improvement of the magnitude response of the filter 
while an excellent delay characteristic in the passband 
is still retained. Hence, using these new transmission 
factors, practical filters can be constructed in more 
compact form without need for separate delay 
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order wide-band filter 

(w = 0.4). 

equalization which otherwise may require a rather 
complicated equalizer unit particularly if stringent 
requirements on phase linearity are prescribed. 

The approximation problem, as an important part 
of network synthesis, is often sophisticated and based 
on rather complicated mathematical procedures with 
which the practising filter designers might not be well 
acquainted. Another advantage of the method 
described stems from the fact that it requires no formal 
training in approximation theory since its application 
has been shown in the development of a program for 
automatic computation of transmission factors of 
minimum complexity that will match the prescribed 
filter specifications. 
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Circuits of a random noise source and a pseudo-random noise source, 
both using digital techniques, are described and an account is given of 
their auto-correlation functions and power spectra. Their value as 
standard signal sources in noise power measurements is discussed and 
conclusions are reached about their relative merits. 

1. Introduction 
Within the general field of electronic instrumenta-

tion there is a trend towards the replacement of 
analogue circuits by their more precise digital ver-
sions, and the provision of precise noise sources is no 
exception. Especially at low frequencies the con-
struction of a random noise source of known spectral 
intensity can be achieved more effectively by employ-
ing digital techniques than by attempting to exploit 
physical effects such as thermionic shot noise. In 
Section 2 of this paper a standard random low-
frequency noise source based on digital techniques is 
described and in Section 3 a rather similar circuit 
employing pseudo-random sequences is discussed 
briefly. A comparison of the performances of these 
two circuits, together with some comments on 
experimental techniques concerning the measurement 
of noise spectra, appears in Section 4. 

2. A Random Low-frequency Standard 
Noise Source 
Of all the qualities needed of a standard noise 

source the accuracy of its spectral intensity is the 
most important. The distribution of amplitude is 
of little significance for measurements of noise spectra, 
since filtering action during the measurements has 
the effect of producing a normal distribution. This 
statement is justified by considering the response of 
a frequency selective filter in the time domain when 
the input function is wide-band in the frequency 
domain. The filter output at any instant may be 
regarded as the sum of a large number of independent 
effects, a situation typical of the normal distribution. 

It is appropriate, therefore, to use as a basis for 
the noise source a random waveform which can be 
generated by precise processes, and the random 
telegraph signal is a natural choice. This waveform 

t Department of Electrical Engineering, University of 
Salford, Salford M5 4WT. 
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was described in the early literature on random 
fluctuations, possibly because the ease of deducing 
its auto-correlation function makes it a good example 
for demonstrating the Wiener-Khintchine theorem.' 
This theorem is given in equations (1) and (2) in its 
practical form, that is for real sinusoids of positive 
frequency: 

v(t)v(t — = R(r) 

=J G(f) cos 2irtf..df volts2  (1) 

G(f) = ci 4R(t) cos 2ntf dt volte/Hz  (2) 

s 

PULSE TRAIN 

Fig. 1. Random telegraph signal. 

The random telegraph wave vr(t) is shown in Fig. 1, 
together with a train of clock pulses with which it is 
associated. On the arrival of a clock pulse at inter-
vals T. a random choice is imposed on vt(t), whether 
to acquire the value + V or — V for the duration of 
the next interval Ts. The autocorrelation function 
R(r) of vr(t) is derived by simple reasoning and is 
shown in Fig. 2 together with the corresponding 
spectral intensity Gr(f) derived from equation (2). 
For frequencies small compared with f, = iii; the 
value of Gr(f) is 2V2 7. In this expression V is the 
amplitude of vr(t) and can be defined with great 
precision by simple circuits. T. is also precise since 
it is simply the period of a regular pulse train. The 
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yrs f 

Fig. 2. Auto-correlation function of V(t) and its spectral 
intensity. 

remaining feature open to question in the system 
is the method of realizing the random choice + V at 
the pulse instant. The method favoured by the authors 
is illustrated in Fig. 3. 

In Fig. 3 the inclusion of bistable C ensures that 
y3 has equal probability of '1 or 0'. The broadband 
h.f. waveform y1 ensures that there is no correlation 
in waveform y3 between adjacent pulse intervals. 
Thus if the minimum setting of 7; is 100 its, the 
bandwidth of y1 is adequately large if it is in the 
region of 1 MHz. An exact analysis of this aspect of 
the design presents difficulties and would provide an 
interesting problem for theorists. 

3. A Pseudo-random Noise Source 

In recent years there has been an abundance of 
publications on the subject of pseudo-random 
binary signals generated as `m-sequences' or maximum 
length sequences.' The conventional method of 
generating these is shown in Fig. 4. 

fl- STAGE SHIFT REGISTER CLOCK TRAIN, PERIOD Ts 

V;.(t) 

LIMITED!: V 

MODULO-2 

Fig. 4. Generation of p.r.b.s. as maximum length sequences. 

Circuits of this type include the following features 
among their properties. The output waveform v(t) 
often has a similar appearance, when viewed on an 
oscilloscope, to the random waveform ye) described 
in the previous Section. The difference is that wave-
form 4(t) is periodic and is repeated for every (r — 1) 
intervals between clock pulses. This number is called 
the sequence length L, thus if the clock pulse interval 
is 7;, the fundamental period of v(t) is 7; x L or 
Txr — 1). The auto-correlation function of v(t) is 
shown in Fig. 5, together with the power spectrum 
Gp(f). It is interesting to note that if L is large, then 
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WIDEBAND SCHMITT 
H.F. NOISE TRIGGER 
SOURCE 

BISTABLE 
CIRCUIT 

BISTABLE 
CIRCUIT 

Fig. 3. Block diagram of circuit for generating random voltages. 
y1 wideband h.f. noise 
vs h.f. random pulse train 
vs h.f. random square wave 
vs pulse train of interval T. 
V5 output (becomes v(t) after clipping) 

G p(f) approximates closely to a continuous power 
spectrum Sp(f) such that: 

S 
[sin It f 2 

p(f) = 2V2T,    volts'/Hz 
it Ts 

This expression is similar to that of Gr(f) in the 
previous section. 

Instruments embodying these two types of noise 
source have been constructed and used extensively 
in noise spectrum investigations by the authors. 
Comments on the performance of the two types will 
be made in the next Section. 

4. Application to Noise Spectrum 
Measurement 

The first part of this paper described the different 
properties of true random and pseudo-random pulse 
trains. Let us now consider the different behaviour 
of the two types of waveform in 1.f. noise spectra 
measurement. For a complete understanding of their 
application in this field it is perhaps useful to describe 
briefly a typical system used for measuring 1.f. noise 
spectra. For the greatest accuracy it is preferable to 
compare the unknown source of noise with a cali-
brated noise generator. The block diagram of Fig. 6 
illustrates such a system. The noise to be measured 
is amplified, filtered and detected. The change in 

G ( 

tO 
- + 

DELTA FUNCTIONS OF AREA: 

2.4 Ts sin Trf T, 2 

TL 
+t-

\ 

etc. \ 

Trf Ts 

WHERE A = VZ (1 + 2E1 

/ 

o f 

Fig. 5. Auto-correlation function of v(t) and its power 
spectrum. 
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ATTEN-
UATOR 

SYSTEM 
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rJ 
ATTEN-
UATOR 

— DETECTOR 

Fig. 6. Noise measurement system. 

the detector reading when a known amount of addi-
tional noise is fed into the system then gives the value 
of the unknown noise. The detector may be a true 
r.m.s. meter but distinct advantages are gained if a 
transit-counting detector3 is used instead. The main 
advantages of this type of detector are that the period 
of integration may be set to an arbitrary length and 
that the reading is immune from drift in the datum 
level of the signal. However, this type of detector 
gives a reading which is proportional to the mean 
magnitude of the signal. For noise which has a 
Gaussian amplitude probability density function 
there is a constant relationship between mean magni-
tude and r.m.s. values. For almost all types of noise 
found in practice the amplitude probability density 
function approximates closely to Gaussian after 
band-pass filtering so that this is not a serious 
restriction. A further advantage of this type of 
detector is that the output is in digital form and hence 
the accuracy of the reading can be high. The factors 
governing the use of the two types of digital noise 
generators for narrowband noise spectra will now be 
considered. 

If a true random generator is used for calibrating 
the system then the detector output must be integrated 
over a period of time which satisfies the usual standard 
deviation law 

41 

where 
+ 

In this expression B is the bandwidth of signal, T is 
the time of observation and a is the fractional standard 
deviation of the observed noise power. For example, 
if a measurement were being made to an accuracy 
of 10% over a bandwidth of 0.1 Hz centred at 1 Hz, 
the observation time would be 1000 seconds. 

If a pseudo-random generator is used for cali-
brating the system there may be a saving in calibration 
time depending on the number of discrete lines 
required in the frequency spectrum of the system. 
The spacing of the lines depends on the sampling 
frequency and the length of the sequence of pulses. 
To avoid errors due to the shape of envelope of the 
power spectrum of the generator, the sampling 
frequency should be set to about 20 times the fre-
quency of the noise measurement so that for a fixed 
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frequency of measurement the lower limit of sampling 
frequency is fixed. This, therefore, means that the 
time for one sequence is inversely proportional to 
the spacing of the lines in the power spectrum and 
since the calibration time need be only one sequence 
period it follows that it also is inversely proportional 
to the line spacing. 

There will thus be a saving of time if the line spacing 
can be increased, but this raises the question of the 
effect on the apparent power spectral density of 
reducing the number of discrete lines. This effect 
will depend on the shape of the frequency response of 
band-pass filters. Consider the ideal rectangular 
band-pass response as shown in Fig. 7(a), then if 
the centre frequency is varied slightly a serious error 
could be introduced in calculating the power in the 
bandwidth. Whereas, if a filter with a less sharp 
cut-off characteristic as in Fig. 7(b) were used, there 
would be no abrupt changes in the power contained 
in the bandwidth. Figure 7(b) is perhaps more typical, 
since it is usual in 1.f. noise spectra measurements to 
use only two single-tuned circuits in cascade for the 
filter. 

(a) b 

Fig. 7. Possible situations in bandpass systems. 

A further question needs to be considered, namely 
the errors introduced by the departure of the ampli-
tude probability density function from Gaussian 
when the number of lines in the spectrum is small. 
This will conceivably introduce errors if a transit 
counting or other mean magnitude method is used. 
It is also of interest to discover whether errors intro-
duced in this manner are more serious than those 
that would be obtained from the effect described in the 
previous paragraph even if a true r.m.s. meter were 
used. 

It has not yet been possible to find a satisfactory 
analytical solution to the problem. To obtain a 
measurement of the likely errors involved the follow-
ing experiments were carried out using a true random 
noise generator and a pseudo-random generator of 
equal power spectral density as calculated from the 
sampling frequency and amplitude of the pulses. 
The two generators were compared by feeding them 
into a Bruel and Kjaer audio frequency analyser type 
2107 and measuring the output with a transit counting 
detector. In the first experiment the setting of the 
analyser was kept constant at 500 Hz centre frequency 
and 21 % bandwidth and the sampling frequency of 
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the noise generators was kept constant at 10 kHz. 
The sequence length of the pseudo-random generator 
was varied to give from 2-5 lines to 80 lines in this 
bandwidth. The reading of the detector was taken 
over one sequence period for the pseudo-random 
generator and for the random generator the reading 
was averaged over a length of time, such that the 
fractional standard deviation was less than 0-01. The 
readings agreed to within 2% for number of lines as 
low as 5. 

In the second experiment the frequency of the 
analyser was varied gradually to + 10% of the initial 
value and also the bandwidth was varied from 21 % 
to 12%. The response of the detector was plotted 
for the pseudo-random generator set to give 2-5 to 
90 lines in the bandwidth. The graph of Fig. 8 illus-
trates the results obtained for 5 lines in 3 dB band-
widths of 21% and 12%. Also on this graph is the 
response of the detector for true random noise. 

NORMALIZED 
DETECTOR 
READING 

1-2 

11 

0.8 0.9 14 

04 
x•"' 

04 

NORMALIZED 
1.2 FILTER 

FREQUENCY 

o TRUE RANDOM GENERATOR 

• PSEUDO-RANDOM 5.7 LINES IN 12% B.W. 
( I DENOTES READING WHICH FLUCTUATES FROM SEQUENCE 

TO SEQUENCE ) 

PSEUDO-RANDOM 5.0 LINES IN 21°/e B.W. 

Fig. 8. Variation in detector reading for ± 10% variation in 
filter frequency. 

Considering the results for the pseudo-random 
generator it is seen that there are sharp fluctuations 
in the detector reading for quite small changes in 
frequency. Another thing to note is that when using 
narrow bandwidth and few lines one can encounter 
certain conditions under which the reading varies 
between sequences. This last result is rather unex-
pected since all input sequences are identical. A 
possible explanation of the result is that when there 
are only a few lines in the signal spectrum their phase 
relation is critical. If there were any slight changes 
in the phase response of the filter with time the reading 
might be affected. 

Curves such as those in Fig. 8 were plotted for each 
value of bandwidth and for numbers of lines between 
2-5 and 90. To obtain a comparison between the 
results the response of the detector to true random 
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noise was taken as a reference. The greatest deviation 
in the detector response encountered in the + 10% 
frequency range was then measured for each value of 
the number of lines. In Fig. 9 this deviation, expressed 
in noise power, is plotted as a function of the number 
of lines for the two values of bandwidth used. Also 
shown in this figure are experimental points obtained 
using a true r.m.s. meter. 

It is seen from Fig. 9 that firstly there is little 
difference between the r.m.s. meter and the transit-
counting detector for numbers of lines greater 
than 10. Secondly that for numbers of lines above 20 
the deviation between the pseudo- and true-random 
generators is small. For a maximum deviation of 
1% the number of lines required appears to be 
about 100. 

For a 10% measurement 10 lines would be adequate. 
In this case the time taken for one sequence, assuming 
the bandwidth is 10% and the sampling frequency is 
20 times the frequency of the measurement, is 

T = 100/fo 
where 

fo = centre frequency 

For example, in a measurement over a bandwidth 
of 0-1 Hz the calibration time would be reduced 
from the previous 1000 s to 100 s. 

12 

8 
z 
o ° 

lij 
ci 

Do IL 
tri 
54 x z 
z 
8 

12 

• 21°/e BANDWIDTH 
012°/e } 

USING TRANSIT COUNTING DETECTOR 

X 12% USING TRUE R.M.S. DETECTOR 

10 
No.OF LINES 
100 

Fig. 9. Deviation between pseudo- and true-random generators 
for ± 10% change in filter frequency. 

Although the reduction in calibration time appears 
to be a big advantage for 1.f. measurements there is 
one point to bear in mind if a pseudo-random 
generator is used. To obtain this reduction in cali-
bration time the level of the pseudo-random signal 
fed into the system must be much larger than the 
inherent noise in it. This means that one must be 
careful to ensure that the signal at all points in the 
system is within the linear range of the constituent 
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parts of the system. This restriction does not apply 
when a true random signal is used since this can be fed 
into the system at the same level as the inherent noise. 

In conclusion, the discussion has shown that the 
pseudo-random noise source has theoretical advan-
tages, in that the time of calibration of systems may 
be reduced. This advantage is partly offset by the 
added complexity of the experimental procedures. 
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STANDARD FREQUENCY TRANSMISSIONS-August 1970 
(Communication from the National Physical Laboratory) 

August 
1970 

Deviation from nominal frequency 
in paru in 10" 

(24-hour mean centred on 0300 UT) 

Relative phase readings 
in microseconds 
N.P.L.-Station 

(Readings at 1500 UT ) 
August 
1970 

Deviation from nominal frequency 
in paru in 10" 

(24-hour mean centred on 0300 UT) 

Relative phase readings 
in microseconds 
N.P.L.-Station 

(Readings at 1500 UT) 

GBR MSF Droitwich •GBR tMSF GBR MSF Droitwich •GBR tMSF 
16 kHz 60 kHz 200 kHz 16 kHz 60 kHz 16 kHz 60 kHz 200 kHz 16 kHz 60 kHz 

I - 300.0 + 0.1 + 0. 629 615.5 17 - 300.1 - 0.2 0 641 627.2 
2 - 300.0 0 + 0. 629 615.4 18 - 299.9 + 0.1 0 640 625.3 
3 - 300.0 0 + 0. 629 615-0 19 - 300.0 + 0.1 0 640 624.8 
4 - 300.0 0 ± 0- 629 6 I 4.8 20 - 300.0 - 0.1 0 640 625.6 
S - 300.4 0 + 0. 630 614.9 21 - 300.0 0 0 639 625.8 
6 - 300.0 0 ± 0. 630 615.0 22 - 299.9 0 0 638 625.5 
7 - 300.0 0 + 0. 630 615.1 23 - 299.9 0 -I- 0. 637 625.1 
8 - 300.0 - 0. ± 0. 630 616 - 1 24 - 299.9 + 0.1 + 0. 636 624.6 
9 - 300.1 - 0. ± 0. 631 617.1 25 - 299.9 + 0.1 + 0. 635 623-8 
I 0 - 300•I - 0. ± 0. 632 617.8 26 - 299.9 0 + 0. 634 623.6 
II - 300.1 - 0. + 0. 633 619.0 27 - 300.1 ± 0.1 + 0. 635 623.0 
12 - 300.1 - 0. + 0. 634 620.4 28 - 300.1 0 ± 0. 636 623.0 
13 - 300.1 - 0- + 0. 635 621.1 29 - 300.0 0 0 636 623.4 
14 - 300.2 - 0. ± 0. 637 622.0 30 - 300.0 - 0.1 + 0. 636 624.4 
IS - 300.1 - 0. ± 0. 638 673.4 31 - 300.1 0 ± 0. 637 624.5 
16 - 300.2 - 02 0 640 625.4 

All measurements in terms of H.P. Caesium Standard No. 334, which agrees with the N.P.L. Caesium Standard to 1 part in 10". 

• Relative to UTC Scale; (UTCm ., - Station) = + 500 at 1500 UT 31st December 1968. 

tRelative to AT Scale; (ATNpL - Station) =. + 468-6 at 1500 UT 31st December 1968. 

CHANGES TO THE MSF MODULATION SCHEDULE 

The following changes to the MSF modulation schedule will be made during September 1970. 

I. The A2 modulation at present carried by the 60 kHz trans-

mission between 1430 and 1530 GMT will be abandoned, and the 

Al pulse modulation extended to 24 hours a day. 

2. The MSF station identification will be emitted twice only at 

ten-minute intervals on the h.f. transmissions and during the 

five seconds preceding every hour on the 60 kHz transmission. 
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Pulse Counting and Encoding Systems used on a 
Rocket- borne Spectrophotometer 
By 

D. H. BEATTIE, Graduatet 

and 

C. H. PATERSON, B Sc.t. 

Problems encountered making photoelectric observations of stars from 
spinning rockets have been solved by using photon pulse counting. The 
counter states were suitably encoded so as to permit the transmission of all 
useful data within the limits of two analogue telemetry channels of 
restricted bandwidth. The logic system is described and resulting data 
shown. 

1. Introduction 

The middle and far ultra-violet radiation from stars, 
which is absorbed by the Earth's high atmosphere, is 
of considerable interest to astronomers. The Space 
Research Division of the Royal Observatory, Edin-
burgh, has therefore been engaged for some years in 
the construction and flight of rocket-borne instru-
ments to make observations in this wavelength region. 
The instruments have been carried on Skylark rockets 
which, for technical reasons, are uncontrolled in their 
motion while above the atmosphere, except that a 
predetermined spin rate can .be obtained by means of 
a gas jet unit. During the flight, telescopes looking 
sideways from the rocket therefore make a series of 
scans across the sky as the rocket spins and precesses, 
and stars can be observed photoelectrically as they 
drift across the fields of view. 

The system described in this paper was devised as 
part of an instrument' in which the starlight collected 
by the primary telescope mirror during a scan is 
reflected off a plane diffraction grating, so that in the 
focal plane each star is imaged as a spectrum as well as 
a 'white light' point image (zero spectral order). When 
a photomultiplier is mounted behind a slit which is in 
this focal plane, the spectrum can be measured 
photoelectrically because the spin of the rocket 
causes these images to be swept across the slit. The 
entire section of spectrum to be observed (150 nm to 
300 nm) takes about 85 ms to cross the slit and the 
faintness of even bright stars, combined with the 
requirement to observe a reasonable number in each 
flight, means that the spectral resolution provided by 
the slit must be quite low, some 20 nm in this case. 
Nevertheless, the sampling frequency needed to 
transmit, and to enable full reconstruction of the 
spectrum in wavelength and intensity at this resolution, 
proves to be quite high, about 360 s-1. 

Most detection systems flown by the Division have 
used electrometer amplifiers with large value feedback 

t Space Research Division, Royal Observatory, Edinburgh. 
Formerly at the Royal Observatory, Edinburgh; now at 

Electrical Engineering Department, University of Edinburgh. 

resistors to measure the small currents (typically 
10-9 A) available at the anodes of the photomulti-
pliers. However, the dynamic range required to 
observe a substantial number of stars with tolerable 
accuracy is in the order of 1000: 1. This can in 
principle be achieved by logarithmic and quasi-
logarithmic feedback elements, but difficulties in 
resolution are then introduced owing to the compres-
sion of the data into the 2 V full scale of the telemetry 
channel, the absolute resolution of the received signal 
being some 2 % of full scale. The problem of obtaining 
a wide frequency response at high sensitivity is also 
substantial, while the necessity of running the photo-
cathode at high potential can cause spurious noise. 

The system described in this paper overcomes these 
problems by detecting the pulses produced at the 
anode of the photomultiplier corresponding to the 
arrival of photons.' Due to restrictions in the band-
width of the telemetry channels available it is not 
possible to transmit the count in raw digital form. An 
encoding system was therefore developed which 
enabled these two channels to transmit all of the 
necessary experiment output in an analogue coded 
form in which a logarithmic type of characteristic 
arises naturally. (Such a pulse counting mode also 
gives a very valuable increase3 in the information 
content compared with the direct current mode of 
measurement.) 

2. System Description 

Figure 1 shows a block diagram of the main 
components of the system. The photon-generated 
pulses from the photomultiplier (an E.M.I. type D.104, 
having a Cs-Te photocathode with quartz window), 
pass through the pre-amplifier to the amplifier and 
threshold discriminator. Pulses satisfying the thres-
hold conditions are allowed into the counter during 
the cnunting interval and gated out during the sample-

§ The telemetry used was I.R.I.G. f.m./f.m. Two sub-
carrier channels were available for the experiment, channel 16 
which has a bandwidth of 600 Hz and channel 15 which has a 
bandwidth of 450 Hz. 
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and-reset interval. The condition of the counter is 
represented by a 12-bit binary number which is 
presented to the encoder and converted to the form 
described later. The encoder outputs are fed to the 
sample-and-hold amplifiers whose outputs then pass 
to telemetry channels 15 and 16. 

2.1 Pre-amplifier, Amplifier and Threshold 
Discriminator 

The pre-amplifier, Fig. 2(a), is a White follower and 
uses a dual n-p-n transistor. It is mounted next to the 
photomultiplier and drives the length of cable neces-
sary to connect to the amplifier, Fig. 2(b), which is a 
commercial integrated circuit video amplifier used 
without external feedback in the inverting mode. The 
threshold discriminator, Fig. 2(c), is an i.c. voltage 
comparator connected as a Schmitt trigger. The 
threshold level is variable between 0-5 V and the 
strobe terminal of the i.c. is used to gate the input to 
the counter. 

2.2 The Counter 

The 4-bit i.c. binary counters, Fig. 3, are cascaded 
to form a 12-bit binary counter. The relationship 
between the capacity of the counter, the sampling 
frequency (see introduction), and the resolution of the 
counter was chosen so that stars of apparent visual 
magnitudes from zero to 6, (a range of 250 : 1) could 
be observed without substantial loss of accuracy when 
compared with the stochastic variation (see Sect. 3). 
The expected photon counts were taken from 
Houziaux.4 When the counter is full, a carry pulse 
from the last stage latches flip-flop 1 which causes 
channel 15 to show an overload level. 

PHOTO-

MULTIPLIER pREAmp. AMP. THRESHOLD DISCRIM. 

STROBE LINE 

HOVERFLOW COUNTER 

1  

SAMPLE LINE 

ENCODER 

D.A.C. 1 & 2 

TIMING 

CIRCUITRY 

TELE 

CH 'A' 16 

TELE CH Ee 15 

RESET LINE 

Id  Y 
S.H. 2 

Fig. 1. Block diagram of system. 
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(a) Preamplifier. 

IN 

IN 

+ V 

0 V 

7510L VIDEO AMPLIFIER 

OUT 

(b) Amplifier. 

(c) Threshold discriminator. 

Fig. 2. 

518K COMPARATOR 

OUT 

2.3 The Encoder 

Only the ten most significant bits of the counter are 
used by the encoder and are shown as Pl to P10 
(Fig. 3). The functions of the encoder are: 

(i) to select the five most significant bits from the 
10-bit number represented by PI to P10; 

(ii) to indicate the position of the five bits within 
the 10-bit number; 

(iii) to form analogue voltages corresponding to (i) 
and (ii) in the form shown in Fig. 5. Functions 
(i) and (ii) are illustrated in Table 1 and Table 2. 

In Table 1 the six 5-bit words corresponding to the 
possible conditions of the upper 10-bits of the counter 
are shown. It is convenient to generate six quantities 
Q I to Q6, which characterize each of the six possible 
words. Table 1 is a truth table forming Q1 to Q6 as 
functions of PI to P10. Table 2 giving Q1 to Q6 in 
mintern form is written down and the combinational 
logic corresponding to these terms is carried out by 
gates 1 to 6 of Fig. 3. Gates 13 to 42 form the Boolean 
products of the components of the required 5-bit 
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Fig. 3. Logic diagram. The inverting stages between counters and gates are not 
shown. Signetics 8000 series logic was used throughout. 

Table 1 

P2 P3 P4 P5 P6 P7 P8 P9 P10 

XXX X X1 
XXX X X1 0 

XXX X X1 0 0 
XXX X X1 0 0 0 

XXX XX 1 0 0 0 0 
XXX XX 0 0 0 0 0 

words with the quantities Q1 to Q6, so that the points, 
a, b, c, d and e, for example, indicate the first word 
only when Q1 is high, and are at logical 1 otherwise. 
Gates 43 to 47 combine the five words serially. 

Figure 4(a) shows the digital-to-analogue converter 
(D.A.C.1). The basis of the converter is a ladder 
networks with two resistor values, 10k and 20k which 
converts the 5-bit binary number formed by the 
outputs of gates 43 to 47 to an analogue form available 
at the point X in Fig. 1. A second digital-to-analogue 
converter (D.A.C.2), Fig. 4(b), generates voltages 
which identify each of the quantities QI to Q6 and 
these voltages are available at point Y in Fig. 1. The 
points X and Y form the outputs of the encoder and 
the relationship between the voltages at these points 
and the count accrued during a sample period is 
shown in Fig. 5. The output level of the ioverflow flip-
flop in Fig. 1 overrides inputs Q1 to Q6 to produce 
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Q6 Q5 Q4 Q3 Q2 QI 

100000 
O 10000 
O 01000 
O 00100 
O 00010 
O 00001 

Table 2 

Q1 = P6. W. P8. P9. 
Q2 = P6. P7. P8. P9. 

Q3 = P7. 

Q4 = P8. P9. 

Q5= P9. 
Q6 = 

the overload indication shown as range 7 in output Y 
of Fig. 5. 

2.4 Sample and Hold Systems 

S.H.1 and S.H.2 are identical; Fig. 6 shows the 
circuit details. In the flight instrument a sampling 
frequency of 360 per second was used. During the 
hold phase the f.e.t. switch is held off by the — 12.5 V 
gate potential. The sample voltage is maintained 
across the capacitor by the operational amplifier until 
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(a) Digital-to-analogue converter I. 

(b) Digital-to-analogue converter 2. 

Ti A 

180k 

140 

+5V 

+5V 

560 D. 
*DETAIL 
SU 'A' 

OVERFLOW RANGE 7 

+5V 

TI A 

T19 180k 

TI A /8 MD7000 

OV 

•1 •• 
DETAIL &WEI' 

TI B 

0 V 

Fig. 4. 

VOLTAGE 
AT X AT 
END OF 
SAMPLE 
PERIOD 

VOLTAGE 
AT V AT 
END OF 
SAMPLE 
PERIOD 

-1•5V 

R2 
 NVVY  

II-

SAMPLE 
LINE 

Fig. 6. Sample and hold system. 

TELEMETRY 

the end of the hold phase at which time the sampling 
line rises to near zero and switches on the f.e.t. In the 
sample phase the system operates as an inverting 
amplifier with a gain set primarily by RI and R2. 
Positive or negative excursions are made possible by 
adjusting the centre tap of RV1. To ensure com-
patibility with the telemetry system, the output was 
adjusted to occupy the range 0 to +2 V. The sampling 
interval occupies about 6% of the total cycle. 

2.5 Timing Circuitry 
Three functions are required by the system: 

(i) to obtain the sample rate; 

(ii) to isolate the counter input during the sample 
and reset period; 

(iii) to reset the counter. 

.1- 7 --I. 

-4-- 4 
3 «a-

••• 2 
-s 1 COUNTS/SAMPLE PERIOD 

6 
RANGE 1 0-127 COUNTS 

2: 128-255 
3 : 256-511 
4 512 - 1023 
5 1024-2047 
6: 2048-4095 
7: >4095 (OVERFLOW) 

Fig. 5. Voltages at points X and Y at end of sample period. 
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Fig. 7. Timing circuitry using two Signetics t.t.l. flip-flops 
(LU. 320K). 

The circuit details are shown in Fig. 7. The basic 
timing pulse is obtained from a unijunction transistor 
which drives two cascaded t.t.l. flip-flops connected as 
monostables. The output pulse widths of the mono-
stables are fixed by CT and RT. The width of the 
'sample' pulse is 200 its, and that of the reset pulse 
is 10 µs. 

40 ,- 

10 

3. Accuracy and Performance 

Any discussion of accuracy in a photon counting 
system should consider the effect of photon statistics 
which set an intrinsic upper limit to what is possible. 

If N photons with a Poissonian distribution are 
counted, the probable standard deviation of the mean 
count is N*. Therefore the proportional statistical 
error for a count of N photons is, 

100/N+%  (1) 

A total of 90 spectra, corresponding to some 75 
stars, has been obtained from the records. Of these 
nearly half have sufficient signal strength and are 
otherwise suitable to be of scientific value.' Of the 
useful spectra, 22 (those of the brightest and hottest 
stars) are rated as good or very good, having r.m.s. 
deviation due to the photon statistics at each recorded 
spectral wavelength, of less than 10%, i.e. more than 
100 stellar photons were counted during the integra-
tion period. In order that such recorded data are not 
appreciably degraded, the resolution of the counting 
system must be appreciably (two or three times) 
better than this. Such resolution is then better than is 
necessary for the fainter and cooler stars. 

3.1 Encoder Accuracy 

Single step voltage changes at the input of S.H.1 
(Fig. 1) only occur for every n counts when n = 4, 4, 8, 
16... according to the range. Therefore there is an 
uncertainty in the exact number of counts correspond-
ing to a given level L. Following the procedure of 
Cliff' we may minimize the error arising from this by 
assigning a nominal count value e to this level such 
that the possible uncertainty in the count is sym-
metrical about C. We have then two expressions for 
C: on range 1, equation (2) applies, while on ranges 2 
to 6 we use equation (3). 

C = 2 x (2L— 1)— 1  (2) 

C = 2R x (L+32 —1)-1  (3) 
where C = nominal count value 

R = range 
L = level number (from 1 to 32). 

The actual count C in range 1 and ranges 2 to 6 can 
differ from the nominal count within the limits shown 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 
LEVEL NUMBER 
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in (4) and (5) respectively. 

2R x (2L— 2) < C < 2R x (2L)— 1 

2R x (L+ 31) < C < 2R x (L+32)— 1   

Accuracy: Range 1: 

From (4) it can be seen that the count on any level 
L in range 1 can vary by ± 11 counts and that the 
possible uncertainty will be 

11 x 100 

± 2 x (2L— 1)— 1% 

In Fig. 8 these uncertainties are plotted as a function 
of level number at A. The percentage photon statistical 
accuracy as obtained by substituting in ( 1) the value 
N = 2 x (2L — 1)—f is plotted on the same graph at B. 

Accuracy: Ranges 2 to 6: 

In ranges 2 to 6 using (3) the nominal count is 

C = x (L+ 32 — 1)— 

From (5) the actual count can differ from the 
nominal by at most ± 1(2R — 1), so that the percentage 
uncertainty on any step is at most: 

1 x (2R — 1) x 100 

— 21' x (L+ 32 —1)— 1 

P
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(6) 

which simplifies to 
(2R — 1) x 100 
2R x (2L+ 63) — 1  (7) 

In Fig. 9 the percentage uncertainties are plotted as 
functions of level and range number. The photon 
statistical accuracy is plotted on the same graph. 

3.2 Channel Utilization 

The coding system of Fig. 5 defines an alphabet of 
32 x6 characters, so that each character represents 
log2 ( 192) = 7.59 bits of information. For a sample 
rate of 360 per second, the information output is a 
constant 2732 bit/s. If the two channels are considered 
separately, the information is divided: 

Channel 16 : 1800 bit/s 
Channel 15 : 932 bit/s 

The cost of rocket astronomy is considerable, and 
the experimental environment is severe. It is common 
therefore for generous redundancy to be allowed when 
matching telemetry channels to experiments. Final 
pre-flight checks may be made more confidently and 
the effects of certain minor system failures during the 
flight minimized, if the information output is 
deliberately limited to a value appreciably below the 
theorerical channel maximum. Thus the spacing of 
steps in channel 16 was set at 50 mV at the input to the 
telemetry sender, although the specified telemetry 
resolution implies the possibility of steps spaced by 
only 25 mV. Ten per cent of the 2 V telemetry scale 
was reserved on each channel for a 'channel live' 
indication, so that the maximum number of steps 
possible was 1.8/0.0250 = 72 levels. Each level would 
have a value of 6.18 bits compared with the 5 bits per 
level value for channel 16 in the flight instrument. 

Similar considerations apply in the selection of a 
sample rate. The maximum possible rate is set by the 
bandwidth of channel 15. In practice a considerably 
lower rate was chosen, which allowed the shape of the 
output histograms to be resolved easily. 

2047. 4091 

R - 2 —a-4— R - 3 —a- R - 4 - R - 5 R - 6.—.. t  

1 8 16 24 32 LEVEL NUMBER RANGE 

Fig. 9. Percentage 
uncertainties of count-
ing system (A) and 
photon statistical 
accuracy (B) on Ranges 

2 to 6. 
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Fig. 10. Photograph of part of the telemetry record sho‘‘ ing t)pical stellar spectrum. 

3.3-Flight Performance 

A Skylark rocket containing the system described 
in this paper was successfully flown from the Salto di 
Quirra range in Sardinia on 3rd December, 1968. The 
initial spin rate generated by the roll control unit was 
just over 15° per second, decaying to nearly 14° per 
second by re-entry and giving a dispersion of 1.75 nm 
per ms. Figure 10 is a photograph of part of the 
telemetry record showing a typical stellar spectrum 
(the star is Beta Cephei). Trace C shows the range 
indication channel whilst trace D is the count rate 
channel. Traces A and B show the same spectrum as 
obtained from d.c. amplifiers which were used on a 
separate spectrophotometer mounted on the same 
payload. 

Reading from left to right on Fig. 10, all traces A, 
B, and D show initially the 'zero order' followed by 
the star's spectrum. Comparison of trace C with D 
shows that the zero order did not exceed the capacity 
of the first range (i.e. 127 counts maximum) whilst 
the spectrum gave counts up to the third range (i.e. 
511 counts). 

In addition to providing good spectral data, the 
low dark count of the Cs-Te photomultiplier enabled 
absolutely quantified and reliable data to be obtained 
between the stellar signals. These data have been 
valuable in estimating zodiacal and galactic fluxes and 
brightness distributions near 240 nm.7 
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The signals from transducers having non-linear frequency output have to 
be linearized by a signal converter. The paper describes first some accepted 
linearizing method and afterwards the digital linearizer developed in the 
Central Measurement Research Laboratory, Hungary, will be discussed. 
The DENsrroN electronic units connected to the frequency output 
density transducer correct digitally the error curve by pulse-rate modula-
tion of clock-pulses. The system design of the instrument built up of 
integrated circuits is outlined, and various problems regarding the settings 
of the linearizer discussed. 

1. Introduction 

The output signal of analogue industrial trans-
ducers generally has a linear relation to the primary 
quantity to be measured. Linearity has been of prime 
importance with the development of transducers to 
apply simple signal processing unit. The growing use 
of digital data loggers and process control computers 
has drawn attention to non-coded digital output 
transducers.' The repeatability and long term 
stability of these frequency output transducers (e.g. 
vibrating wires, beams, cylinders and quartz crystal 
oscillators) is very good, but the output signal is not 
linear. The linearity, however, need not be a prime 
factor in the future when designing transducers, and 
that fact makes possible the application of physical 
principles where higher repeatability of frequency 
output or other benefits may be ensured. 

Figure 1 represents some possibilities of the system 
engineering to accomplish the linearization. Analogue 
linearizers of various solutions are well known, most 
of them perform the required straight-line approxima-
tion by using diodes. Their common disadvantage is 
that the elimination of temperature dependence is 
rather difficult and the practical accuracy limited. 

The economics and reliability of new electronic 
components—first of all integrated circuits—make 
possible the building of a high accuracy digital 
linearizer of non-linear functions at moderate price. 
Digital linearizer may be used advantageously with 
the solutions shown on the last two rows of Fig. 1. 

A digital linearizer called the DENSITON has been 
developed, which reduces the non-linearity of quanti-
ties represented either by frequency or by pulse 
number, to about 1 : 100. The task of the research 
team was to develop an electronic unit having analogue 

t Central Measurement Research Laboratory, Budapest, 
Hungary. 
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Fig. 1. Some possible methods of linearization. 

and/or digital output for a vibrating tube gas or liquid 
density transducer. The last row of Fig. 1 represents 
that solution. 

2. Survey of Various Solutions 

The relation between the output frequency of the 
transducer and the density measured may be expressed 
with the following equation: 

NI  
f = f0 i+dido (1) 

where f = output frequency of the transducer, 

fo = output frequency of the transducer at 
density d = 0, 

do = dimensional constant, 

d = density to be measured. 

The f and fo frequencies are of kilohertz order, the 
measurable maximum density is 120 mg/cm3 with 
gases, and 1.5 g/cm3 with liquids. The tolerance of 
do and fo constants may be as high as + 10%. The 
electronic unit connected to the frequency output 
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transducer must be set between d2 —d, span in the 
light of tolerance of do and fo. 
With the digital linearization, the function to be 

linearized is usually approximated by straight lines. 
Conforming to the slope of the individual straight 
segments, pulses are inhibited from or added to the 
input quantity represented by the pulse number. 

Three different methods may be used for digital 
linearization: 

(1) Application of a special function generator, 
which inverts the function to be linearized by 
digital method. In that case there is a necessity 
for a square generator. That solution is applied 
in the mass flow computer of Electronic Flo-
Meters Ltd.' The method is suitable only for 
linearizing of special functions, and it is rela-
tively expensive to achieve a given accuracy. 

(2) Linearization of the characteristics. The curve 
to be linearized is approximated by straight 
segments and the corrections necessary to 
obtain the different slopes of the segments are 
realized by binary multipliers. Programming is 
easy but the method does not result in a very 
exact linearization.' 

Linearization of the error curve. The error 
curve, i.e. the difference between the non-linear 
characteristics and the desired linear correlation 
is approximated by straight segments, and the 
correction necessary for the segments having 
different slopes is computed.' The method 
results in a very high accuracy, but it is relatively 
hard to program. The necessary hardware may 
be decreased and the programming may be 
simplified if the error curve has an axis of 
symmetry. It is often advisable to write the 
general error function into a Taylor sequence up 
to the term of the second order. The resulting 
approximating esror function will be sym-
metrical, and the above advantages may be 
realized. 

(3) 

3. Description of the DENSITON Instrument 

3.1. System Engineering and Operation 

The block diagram of DENSITON electronics is 
shown on Fig. 2. The amplified and squared signal 
from the transducer is fed to the PRI binary counter. 
The clock generator consists of a high-stability quartz 
oscillator. During the first cycle of the measurement 
the PR3 counter operates as a preset counter, during 
the second cycle it serves for counting the linearized 
result-pulses and also controls the linearizer. 

All counters are reset at the beginning of the measure-
ment and the signal of the clock generator is inhibited. 
On receiving the first pulse from the transducer the 
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Fig. 2. Block diagram of DENSITON instrument. 

control unit feeds clock pulses to the PR3 preset 
counter. This counter generates the zero offset 
conforming to the T1 periodic time appropriate to the 
lower limit of the d2 — d1 span. During that measuring 
cycle the linearizer is inhibited. When the PR3 
counter arrives at the adjusted preset value, a change 
takes place in the output of the decoding gate. The 
control unit then resets the PR3 counter, opens the 
linearizer and gates the clock pulses. During the 
second cycle the clock pulses are fed through the 
linearizer to the PR3 counter. At certain intervals a 
pulse is inhibited from or added to the clock pulses 
depending on the slope of the straight line polygon 
approximating the error curve. The measurement 
comes to an end when the PRI preset counter arrives 
at the adjusted value. Now the control unit writes the 
result from the PR3 counter into the stores and resets 
all the counters. The contents of the stores are fed into 
a decoder and/or digital-to-analogue converter. The 
measurement is repeated automatically. 

The requirements of the linearizer are the following: 

(1) The accuracy of the linearization should be of a 
given value, in this case 0.1 %. 

(2) Error of control settings should be minimum. 

(3) The electronic unit should make allowance for 
the tolerance of parameters. 

(4) The programming should be as simple as 
possible. With respect to easy-to-set hardware, 
the question of built-in redundancy must arise 
in the interest of the instrument. 

(5) The value measured must appear in engineering 
units (g/cm', mg/cm3), in code form. 
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Fig. 3. Characteristic of sensor for determining the error curve. 

It is the task of the system engineer to achieve a 
compromise between the above requirements. Before 
outlining the construction and operation of the 
linearizer, we will deal briefly with the determination 
of the error curve, and the mathematical description 
of the polygon approximating the error curve. 

3.2. Determination of Error Curve and the Amount of 
Maximum Error 

(1) Expressed as the periodic time, becomes equation 

d 
T= T0\11+ — 

d0 
(2) 

The lower limit of the density span to be measured is 
d1 and the related periodic time is T1; the upper limit 
of the density is d2 and the related periodic time is T2. 
Plot the equation (2) to be the d1 density and T1 
periodic time in the origin of the coordinates (Fig. 3). 
Without any linearization the measurement of periodic 
time would take place along the straight line con-
necting the two end-points of the curve. The error 
curve is equal to the difference between the non-linear 
function and the straight line. 

On the output of the digital linearizer a code 
proportional to the density measured appears for 
which there is a pulse number proportional to the 
density. It is necessary to scale these to give engineer-
ing units. Suppose 0 pulse represents d1 density and 
N pulses the d2 density. Multiply the non-linear 
function of equation (2) by a constant to give a 
physical dimension which is also a density and/or 
pulse number. Regarding the extreme values of the 
function, the constant value will be 

d2—d1 

T2 — 

The equations of the non-linear curve and 
straight line in the plotted coordinate system are: 

7; = + T2 —  (d—d1) 
d2— di 

d 
Tc = T0\11+ 
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 (3) 

the 

 (4) 

 (5) 

The following relation may be established for deter-
mining the error curve: 

d 
e(d) T— T= T0 \I 1 + T, T2 —  T1 d2di (d di) 

do —  
 (6) 

which may be converted to the following equation: 

N d 
E(d) — T0\11+ -7 — T1)— n  (7) 

T2 — ( do  

where n is the number of pulses conforming to a 
density of d. When determining the error curve the 
error was referred to the result impulse. It is possible 
to refer the error to the clock pulses, and in that case 
the inverse function must be derived from equation (2), 
and the equation of the e(T) error curve must be 
determined by the method described above. 

d0 
e(T) = T—j [T2 — ( T, + T2). T+ T2]  (8) 

Note that the error curve resulting from the first 
method comprises a square root member, and there-
fore it is not geometrically symmetrical. The mathe-
matical formula of the error curve when referred to 
the clock pulses is a curve of the second order, which 
is always symmetrical. The maximum value of the 
relative error is 

2 — 
h.— 25 T 

T2+ Ti %   (9) 

The tolerance of Tc, and do transducer parameters is 
+10 %. The effect of tolerance shows in the amount 
of maximum error. It may be proved that the maxi-
mum value of error is independent of the tolerance of 
To, and the tolerance of do parameters alters the 
relative value of maximum error: 

àh„,.. 1 àdo 
 (10) 

h.. ,11+dild0..\11+d2Id0 do 

After determining the equation of the error curve and 
the place and amount of maximum error, the sym-
metrical error curve according to equation (8) is 
plotted in a new coordinate system. Both coordinates 
must be related to the pulse dimension. The equip-
ment approximates the error curve with a straight 
line polygon. The desired straight line characteristic 
to ensure the desired difference must be traced in 
the symmetrical error curve (Fig. 4). 

The straight lines are characterized by their slopes. 
Pulses must be inhibited from the incoming clock 
pulses in the segment, where the slope is negative. At 
the segments where the slope is zero, the clock fre-
quency has not to be corrected. At the segments 
which have a positive slope, pulses must be added to 
the clock pulses. The slopes of the straight lines are 
characterized by an expression represented by a 
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Fig. 4. Straight line approximation. 

Density sensor curve is plotted then segmented. 

fractional number, in which the numerators of the 
numbers representing the segments having negative 
slope determine the number of pulses to be inhibited 
in the given segment. The denominator represents the 
number of clock pulses, i.e. the sum of the result-
pulses and inhibited pulses. 

Thus 

111 1 +e1 

where el = error pulses in m1 segment (inhibited 
pulses), 

and m1 = length of the first segment (the number of 
the corrected result-pulses). 

The numerator of the fractional number repre-
senting segments having positive slope determines the 
number of pulses to be added to the clock pulses and 
the denominator represents the number of clock 
pulses, i.e. the difference between the result-pulses and 
added pulses. 

(11) 

L4 e4 

K4 m4— e4 
(12) 

where e4 = error pulses in m4 segment (added pulses), 

and m4 = length of the fourth segment in pulses (the 
number of the corrected result—pulses). 

The number of segments has to be determined when 
plotting the straight lines. If the number of segments 
is reduced, the deviation from the straight lines 
becomes greater, but the control is easier. It is easy 
to take the individual characteristics which are due to 
the parameter tolerance into consideration. 

By increasing the number of segments a linearization 
of any desired accuracy may be achieved, but in that 
case the control is complicated and the cost of the 
instrument increases. From 5 to 7 segments are 
regarded as practical value, and enable the non-
linearity of about 10% to be reduced to 0.1 %. It is 
expedient to introduce a segment of zero slope in the 
middle part of the error curve, since that is the 
cheapest segment and does not complicate the control. 
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3.3. Linearizer (Fig. 5) 

During the second cycle of the measurement the 
PR3 counter is reset again after adding the offset, and 
the clock pulses are fed to the linearizer. 

The addition and subtraction depending on the 
slope of the given straight line is controlled by the 
content of the result counter through the segment-
limit decoding and storing circuits. 

Suppose the binary counter to be k bits. The 4,1K„ 
fractional number determined from the error curve is 
reduced to the form of 

L„ P„ 

K„ Q„ 

The length of the binary counter determines the 
maximum of the denominator in the fractional 
number representing the slope of the segment. 
Theoretically defined fractional numbers must be 
realized for the error curve in a way that the fraction 
is selected which is nearest to the calculated value. If 
the numerator is short, the denominator is a small 
number, therefore individual fractions are hard to 
approximate. The authors' experiences proved that a 
numerator of 6-7 bits gives a satisfactory result. 

The combinational network connected to the out-
puts of the binary counter realizes the P,,/Q,, fractional 
numbers. In the nth segment the cycle length of the 
binary counter is Q„, and during that time coincidence 
appears P,, times on the outputs of the combinational 
network. P„ must be selected from Q„ state of the 
counter, so that the location of the decoded positions 
will be equalized on the Karnaugh map. Often 
P„ = 1, and in those cases the binary counter is 
reduced for Q„ period to be preset counter, which 
modifies the number of clock pulses producing one 
pulse for every Q„. 

Generally the combinational network may be 
simply constructed by using the Karnaugh diagram. 

OFFSET BITS 
o  

ADD 
AND 

STOP 
GA E', 

where Q„ 21 — 1. 

PR 3 RESULT COUNTER 

1 1 1  
SEGMENTS DECODER 

ADO LINE I 

STOP LINE CONTROL LINE 

COMBINATIONAL NETWORK H 

ttftt 

CLOCK PULSES  1117ET 

Fig. 5. Block diagram of linearizer. 
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DIGITAL LINEARIZATION OF TRANSDUCERS 

Table 1 

The main characteristics of the linearizer for various density ranges 

da—d1 
h. 
0/0 

Number of Calculation of 
Number of 

fractional fractional 
segments 

numbers numbers 

Gas sensor 

To = 260 its±10% 

10 mg/cm3 0.85 

20 mg/cms 
40 mg/cm3 

1.52 
2.75 

do = 60 mg/cm3±10% 80 mg/cm3 4.5 

3 

3 
5 

7 

1 Closed equation 

1 Closed equation 
2 Closed equation 

3 1 or plotted error 
curve 

Liquid sensor 0.1 g/cm3 

To = 180 its±10% 0.2 g/cm3 
0.4 g/cm3 

do = 210 rng/cm3±10% 0.8 g/cm3 

0.91 

/ -56 
2 -90 

4.5 

3 1 Closed equation 

3 1 Closed equation 
5 

7 

2 Closed equation 

3 1 or plotted error 
curve 

Suppose P0/Q0 = 4/17, and the four states pre-
scribed by the counter to be 3, 7, I 1 and 15, which may 
be decoded by a single, two-input NAND gate. 

The 17th state may be decoded by another two-
input NAND gate, and the counter may be reset from 
the output of that gate. When approximating seg-
ments, there is a possibility for using the same decoding 
gates for generating straight lines with different 
slopes. 

On starting the linearization the segment-limit 
decoder and storage units enable the stop line and the 
gates realizing the P1/Q1 = L1/K1 fractional number. 

During a segment of zero slope an inhibiting signal 
is fed to the stop and add lines, and the pulse-rate is 
not changing. When generating straight lines of 
positive slope the segment-limit decoder feeds an open 
signal to the add line. 

Application of equations (1) and (8) of the trans-
ducer provide an opportunity to receive symmetrical 
error curve. In a polygon giving a symmetrical error 
curve, every straight line having positive slope has its 
counterpart of negative slope, therefore the number of 
fractional numbers to be realized decreases by half. 
The designer must decide how many pulses correspond 
to the full scale deviation. That decision needs a 
careful calculation. 

The 0.1 % accuracy required gives the minimum 
number of pulses (N,„ in) and conforms to the full 
scale deviation of 100 pulses. The maximum permis-
sible frequency of the clock generator, and the 
maximum average time of the input signal determines 
the value of 141„,.. The requirement for engineering 
units determines the possible N values between N„,„x 
and Armin. 

September 1970 

One may select the integral multiple of these 
values. The predetermined count of preset counter 1, 
which forms the average periodic time, and the length 
of the counter is influenced by N. With the increasing 
of N, the setting of the value of the preset counter will 
be more accurate. According to the authors' 
experiences it is not advisable to select a pulse number 
less than N = 4000 for an accuracy of 01 %. 

The maximum clock frequency limits the decrease 
of measuring period at a given error of linearity. The 
maximum frequency of the clock is determined by the 
dynamic performance of the applied integrated 
circuits. When using a high clock frequency the noise 
problems of the system are pronounced. 

The authors' examinations regarding the stability of 
clock frequency proved that 100 parts in 106 stability 
causes only a negligible error. 

3.4. Setting 

The calculations of the preset values of the PR! and 
PR3 counters are performed according to the methods 
applied with average periodic time meters. The pro-
gramming of the linearizer is performed so that after 
determining the segment limits the gates consisting 
of the individual fractional numbers are connected. 

Table 1 represents the maximum error as the 
function of span, the number of segments and the 
number of fractional numbers to be realized as well as 
the method of calculation of the fractional numbers 
with regard to the parameters of the density to be 
measured. The tolerance of do parameters of the 
transducer involves the modification of the preset 
values of PR! and PR3 counters, and the change of 
hmax. The tolerance of the To parameter modifies only 
the preset of PR 1 and PR3 counters. 
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When do parameter alters, the value of PIQ„ alters 
too according to h..„. Our calculations and measure-
ments have shown that the influence of do tolerance 
exerted on the fractional numbers is quite negligible, 
there is no need for modifying the fractional numbers. 

3.5. Main Characteristics of the DENS/TON 
Instrument 

Input signal: 1 Vp.p.-10 Vp.p., sinusoid or square 
signal. 

Density range (depending on types): 0-120 mg/cm3 
and 0-5-1.5 g/cm3 

LIQUIDS GASES TYPE 

0.1 g/cm3 10 mg/cm3 AR-102-1 or DR 104-1 

0.2 g/cm3 20 mg/cm3 AR-102-1 or DR 104-1 

0.4 g/cm3 40 mg/cm3 AR-102-2 or DR 104-2 

Output signal: AR-102 analogue current 4-20 mA 

0-10 mA 

0- 5 mA 

10-50 mA 

DR-104 digital display, 4 digits b.c.d. code 
b.c.d. code output 
impulse number output 

Accuracy: 0.2% (+ 1 digit with Type DR-104) for 
span. 

Construction: SN74N integrated circuits 
silicon transistors. 

Weight: 4.5 kg. 

Consumption: 20 VA. 

4. Conclusions 

The following conclusions can be stated: 

(i) Linearization is accomplished according to the 
error curve of the output signal of the sensor. 
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(ii) The error curve is approximated with a 
straight line polygon. 

(iii) The straight lines are accomplished by inhibit-
ing pulses from or adding pulses to the clock 
signal. 

(iv) A symmetrical error curve has to be used to 
decrease the cost of components of the 
linearizer. 

(v) The 10% non-linearity can be decreased to 
0.1 % using the linearizer based on the principle 
described. 
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A Laguerre Series Approximation to the Ideal 
Gaussian Filter 
By 

N. B. JONES, 

B.Sc., M.Eng., D.Phil.t 

It is shown that the ideal Gaussian frequency response can be more 
accurately approximated by using a Laguerre series approach instead of a 
Taylor series approach involving the same number of components. The 
resulting filters are physically realizable and their responses compare 
favourably with those of the conventional approximations to Gaussian 
filters. 

1. Introduction 

If the modulus response of a filter can be con-
strained to have a true Gaussian shape as shown in 
Fig. 1, then the impulse response also has a Gaussian 
shape as shown in Fig. 2. 

The Gaussian filter is unique in that the shape is 
preserved on transformation from the frequency 
domain to the time domain. Such filters are of 
considerable theoretical interest, for example, in the 
calculation of correlation functions' and physically 
realizable approximations to them have practical 
application. It is, for example, desirable that in pulse 
circuits the step response be rapid but have small or 
non-existent overshoots and Gaussian approximants 
have these properties. 
Attempts to synthesize Gaussian filters started when 

it was shown2 that a set of equal lags in series (a 
binomial filter) tends to have a Gaussian amplitude 
characteristic as the number of stages becomes large. 
Unfortunately, the convergence to the ideal is slow 
and the delay becomes excessive when the filter is of 
high order. 

MODULUS RESPONSE 

Fig. 1. Ideal modulus response as a function of angular 
frequency. 

t Applied Sciences Laboratory, University of Sussex, Falmer, 
Brighton BN I 9QT. 
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IMPULSE RESPONSE 

-3 -2 1 2 
TIME 

3 

Fig. 2. Ideal impulse response as a function of time. 

In 1959 Dishal3 approximated to the inverse square 
of the modulus function of the ideal by means of a 
truncated Taylor series. In this paper, however, the 
error weighting is not concentrated at the origin as 
with a Taylor series, but is more evenly distributed in 
the frequency range of interest. It is shown that both 
the frequency response and step response are in fact 
nearer to the ideal for the same number of components 
when a truncated Laguerre series is used as the 
alternative to the Taylor series. In this paper the 
Taylor and Laguerre types of filters are compared. 

2. The Ideal Gaussian Characteristics 

The ideal frequency response is taken to be 
exp (—w2) and is shown plotted in Fig. 1 where co is 
the normalized angular frequency. This function is 
unrealizable because there is no phase shift to any real 
frequency. 

By transforming it can be shown (Appendix 1) that 
the normalized impulse response is 

= exp { — 0.721(w 3 dB )2} 
which is shown plotted in Fig. 2. Here 
bandwidth and r is the time. 

Integration of the above impulses response gives a 
normalized step response of { + erf (0.8491(03 dBT)). 

CO3 dg is the 
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3. Approximation to the Ideal 

The approximation to the squared modulus curve 
[exp (- (02)12 for the low-pass case is to be of the 
form 1/P(w2) where P„ is a polynomial of degree n. 
Once the coefficients of P„(co2) have been found, the 
transfer function, 11G„(s), is available by taking factors 
of the form 

1 1 1 
Pn(&) Gn(jw). G„( -jco). 

Here Ga(s) is again a polynomial of degree n, but with 
the restriction that all the roots lie in the left half of 
the s-plane. 

3.1. Taylor Series Approximants 

In this case P(w2) is taken to be a truncation of the 
Taylor series expansion of [exp (co2)]2 after n + 1 
terms, so that, for example, if n = 4 and a) 2 is replaced 
by x, 

22 23 2' 
P4(x) = 1+ 2x+ D x2 + X3 + X4. 

By putting -s2 = x and factorizing, the roots of 
G„(s), which are also the poles of the transfer function, 
have been computed to give the following list: 

Order (n) 

2 

3 

Pole position 

-0.777 +j0•322 

-0-893 
-0.813±j0.556 

4 - 0.958 +j0.232 
- 0-835 +j0.750 

5 -1.045 
- 1 -002 + j0 .423 
-0.851 +j0.919 

These filters are obviously all physically realizable. 

3.2. Laguerre Series Approximants 

In this case, in order to produce a more evenly 
distributed error, [exp ( 2)]2 is approximated by a 
finite series of Laguerre polynomials, namely 

exp (2x) fy. E a„,L„,(ca)  (1) 
m = 0 

where a is a scaling factor which is to be chosen and 
L,,, is the mth order Laguerre polynomial.' 

For uniform absolute convergence' 
CO 

exp ( - ax) [exp (2x)]2 dx < a) 
o 

i.e. ce > 4. 

By taking a = 7 it can be demonstrated that the 
terms of the series decrease by more than a factor of 
two at each step and the coefficient integral,' given by 
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am = L„,(x) exp (- 5x /7) dx 

are simple to evaluate. The derivation of this coefficient 
formula is given in Appendix 2. 

The first six coefficients calculated thus are, 

ao = 1.4 

= -0.56 

a2 = 0.244 

a3 = - 0.0896 

a4 = 0.03584 

a5 = -0.014336 

Alternatively these coefficients could have been 
evaluated from the formula 1-4 x (- 0.4)'" which 
results from Head's equation.6 

a - -- Ye+ wi.th = -:4 and fi = 1. 
(cc +/3r 

Hence the inverse modulus squared polynomials can 
be constructed from the series ( 1) and are as follows: 

IQ 2 (X) = 1-064+0.784x+ 5.488x2 

Q3(x) = 0-9745 + 2.6635x - 1 .09025x2 + 5.1164x3 

Q4(x) = 101034+ 1.66x+ 4.178x2- 3.076x3+ 
+3.587x4 

Q5(x) = 0.996+2-16174x+0.666x2+5-116x3-
-3.586x4+2.0078x5 

These give the following set of poles for the transfer 
functions when factorized as before; 

Order (n) Pole position 

2 -0.5058+ j0.4295 

3 -0.5356 
- 0.5315 +j0.7297 

4 - 0.5687 +j0.3174 
-0.5475 +j0.9756 

5 -0.5989 
-0.5959 + j0 . 5720 
-O5588± j1•1885 

These filters are also realizable. 

3.3. Comparison of the two Approximants 

Figures 3 and 4 show respectively the modulus 
responses and the step responses of the two sets of 
filters. In each case the existing Taylor approximant is 
marked T and the new Laguerre equivalent is marked L. 

For the modulus curves of Fig. 3, the ideal Gaussian 
response is marked G and it is obvious that in all 
cases the Laguerre approximant to it is considerably 
superior to the Taylor approximant at all frequencies. 
It is also evident that the ideal curve does not go to 
zero modulus asymptotically whereas all real responses 
must do. 
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Fig. 3. The ideal modulus response compared with those of the approximants for various orders. 
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Fig. 4. The ideal step responses compared with those of the approximants for various orders. 
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FREQUENCY 

1 2 

Fig. 5. The phase responses of the approximants. 

The step responses of Fig. 4 are marked slightly 
differently in that the ideal response (shown dotted) 
has been matched at the asymptotes and at the half-way 
point on the responses of both the Taylor and Laguerre 
approximants. This is in order to facilitate the com-
parison of the shapes without consideration of the 
delay. 

Here again the Laguerre—Gaussian filters are an 
improvement on the Taylor—Gaussian filters, although 
it is not as obvious as in the frequency domain. 

It was stated by Dishal3 that the phase response of 
the original approximants to the ideal Gaussian 
filter were almost linear, that is the group delays 

3rd ORDER 

IMAGINARY 
PART 

4th ORDER 

X 

REAL le X 
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X 
-1 

• TAYLOR 
X LAGUERRE 

I P. I.P. 

RP 
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5th ORDER 

X 

RP 

X 

Fig. 6. The pole distribution of the approximants. 

154 

 ̂

approximate to constants. Comparison of the phase 
responses are shown in Fig. 5 and it can be seen that 
the new Laguerre approximants are also accurately 
constant group delay filters in the pass bands. 

This is not an altogether surprising result when the 
pole distribution is considered since the Laguerre— 
Gaussian filters have poles which are almost equally 
spaced and in a line parallel to the imaginary axis. 
Filters with equally-spaced poles in a line parallel to 
the imaginary axis are well known approximants to a 
pure group delay.' The pole distributions are shown 
in Fig. 6. 
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5. Appendix 1: To find the impulse and step 
responses of the ideal Gaussian low-pass 
filter of bandwidth co3 dB 

If the modulus function is taken as exp (— (02), the 
bandwidth can be shown to be (4 log 2)* and so the 
filter of bandwidth co3 dB has a modulus function of 

exp [ 2 0.3466] 
e° 3 dB 

Therefore the impulse response is given by 

1 e 2 

exp [—(—) 0.34661 exp (jc0r) dco 
.%/2/r - 00 (2) 3 dB 

= 1'201(03 dB exp ( - 0.721(04,113'02) 

The step response therefore is given by 

1:201W3 dEt S exp [ — 0.721(04 d0)2] dr 
— co 

= 2.5076{1 +1 erf (0.8491(03 dBT)}. 

When normalized so that the maximum value in 
both cases is taken to be unity then: 

impulse response = f(r) 

= exp [ — 0.721(w3 de)2] 

step response = g(r) 

= 1{1 + erf (0.8491(03de)}. 

6. Appendix 2: Evaluation of the coefficients 
of the Laguerre series 

The ideal frequency response is taken to be 
exp (—(02) and hence, for the low-pass case, it is 
necessary to find a polynomial approximation in (02 
to exp (2(02). 

Let exp (2(02) = exp (2x) 

= E a ,,,L,,fax)+ E(x) 
m= 0 

The term E(x) is now minimized in a weighted mean 
square sense, taking as the weighting function 
exp (— ax). 

Thus, 

[E(x)]2exp ( —ax) 
2 

= [ exp (2x) — E a„,L„,(ax)] exp ( — ax) 
m-- o 

= exp [(4 — Œ)x] —2 exp [(2 — a)x] E a mL„,(ax) + 
m = 0 

2 

E amLmoix)) exp (ax). 
m=0 

Let 

[E(x)] 2 exp (— ax) d(ax) = 

Therefore 

= —2 f exp [(2—x)x]Lk(ax)d(ax)+ 
oak o 

oo 

+2 bfexp(—ca)Lk(ax) E Lm(ax) d(ax) 
m= o 

= — 2f exp [(2 — a)x] Lk (otx)d(ocx)+ 2 ak 
O 

Since 

J exp (— ax)Lm(ax)Lk(ax) d(ax) = (5" 
o 

Therefore 

(Snit, is the Kroneker delta) 

ê 2 E 

= 2. 
êaî 

Hence a minimum value of Ê is achieved when 
OD 

a k = f exp [(2— a)x]Lk(ax) dax. 

Choosing a = 7 gives 

a k = exp Lk(x) dx. 
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