THE No1 MONTHLY FOR THE ELECTRONICS & MUSIC HOBBYIST

PROJECTS, FEATURES, NEWS & REVIEWS IN ELECTRONICS & ELECTRO~MUSIC

APRIL 1981 65p

NAULOU

E & MM

NRKE

THE SYNTOM DRUM SYNTHESISER AN EXCITING PROJECT AS USED BY ULTRAVOX

ULTRAVOX SPECIAL FEATURE-THEIR ELECTRONICS & MUSIC

PROGRAMMING MICROCOMPUTERS

WORKSHOP POWER SUPPLY CAR IGNITION TIMING STROBE DIRECT INJECT BOX POWER CONTROLLER ADVANCED MUSIC SYNTHESIS

TWO SPECIAL OFFERS !! ULTRAVOX VIENNA LP

CANON PRINTING CALCULATOR

OME * WORKSHOP * VEHICLE · EDUCATION COMPUTERS · ELECTRO-M

puig

LILTRAVOX

VENNA

Here are just a few of our enclosures...

... to find out more...

see our Retail Catalogue, price 40p, for the complete range of Vero Products available to the Electronics Hobbyist.

The Retail Department, Vero Electronics Limited Industrial Estate, Chandler's Ford, Hampshire SO5 3ZR Tel (04215) 62829

April 1981

Editor Mike Beecher Technical Editor Chris Jordan Art Editor Peter Blackmore Editorial Secretary Sue Forster Technical Illustrator John Dudley

Photography Ian James Paul Mellor

Consultants

Projects Robert Penfold Circuit Design Chris Lare **Electro-Music** Vince S. Hill **Microprocessors** Peter Kershaw **Music Synthesis Tim Souster Studio Recording** Mark Andrews Education Steve Leverett Hi-Fi Jeff Macaulay **TV & Video** Andy Emmerson **Stage Equipment** Ben Duncan **Organ Electronics** Ken Lenton-Smith **Guitar Electronics** Adrian Legg **Percussion Electronics** Lloyd Ryan **Electronics News** Mark Space **Book Reviews Nigel Fawcett Microcomputers** Graham Knight Software Graham Daubney **Course Writers** Norman Butler Graham Hall **Technical Lab** Bob Kirsch Dave Goodman **Studio Technician Glenn** Rogers

100 Pages for the Electronics and Music Hobbyist!

Editorial Offices 282 London Road Westcliff-on-Sea Essex SS0 7JG Tel: (0702) 338878

Advertisement Manager Terry Day Classified Manager Dennis Hill

Advertisement Offices Electronics & Music Maker Hillcroft House 16 The Avenue Highams Park London E4 9LD Tel: 01-527 3376

Published by

Maplin Publications 282 London Road Westcliff-on-Sea Essex SS0 7JG Tel: (0702) 338878

Distributed by Cemas Limited 24 Bridge Street St Ives Huntingdon Cambridgeshire PE17 4EG Tel: (0480) 63942

Printed by Eden Fisher (Southend) Limited

Typeset by Quillset Typesetting

Subscriptions Rates for 12 issues: UK & Overseas Surface: £9.90 Europe: £11.64 Airmail: £25.20

Special Offers (Overseas) LP — extra 56p on price Cassette — extra 19p on price

Copyright

All material is subject to world wide Copyright protection, and reproduction or imitation in whole or part is expressly forbidden. All reasonable care is taken to ensure accuracy in preparation of the magazine but Maplin Publications cannot be held legally responsible for its contents. Where errors occur corrections will be published as soon as possible afterwards. All prices and data contained in advertisements are as ascertained to be correct at the time of going to press. Permission to reproduce printed circuit board layouts commercially or marketing of kits must be sought from the Publisher. © Copyright 1981 Maplin Publications.

CONTENTS

ELECTRONICS

	0-
The Syntom Drum Synthesiser	Clive Button 4
Circuit Maker	
The Spectrum Synthesiser	Chris Jordan 10
ICs for Electro-Music	Charles Blakey 13
Workshop Power Supply Unit	Ben Willcocks 18
Car Ignition Timing Strobe /	Michael Maurice 24
Direct Inject Box	Chris Lare 29
Power Controller	. Robert Penfold 32
The Matinée Organ	
Starting Point	. Robert Penfold 42

COMPUTING

Using MicroprocessorsPeter Kershaw	53
Programming Microcomputers Keith Manison	56
Basically BASICGraham Hall	64
Computing News	65
Micro-MusicGraham Knight	66

ELECTRO-MUSIC

Guide to Electronic Music Techniques Vince S. Hill	67
Ultravox	68
Working with VideoAndy Emmerson	72
Organ Talk Ken Lenton-Smith	73
Advanced Music SynthesisChris Jordan	74
Hot Wiring Your GuitarAdrian Legg	76
Instrument Review — PAIA 8700 David Ellis	78
Hi-FiJeff Macaulay	80

NEWS

America Ian Waugh	81
Record Reviews	82
Book Reviews	83
New Products	84
Music Maker Equipment Scene	86
Education Steve Leverett	90
E&MM T-Shirts and Cassettes	92
Next Month	94
Events	94
E&MM Subscriptions	96
Special Offers	96

Page

Studio Supply for the Creative Musician

TEAC Portastudio

At last, affordable multitrack for every musician. TEAC's new Portastudio combines a mixer and multitrack tape recorder in one compact unit. The solenoid, cassette transport runs at twice normal speed and with the built in Dolby system produces remarkable sound fidelity. Precision heads enable four tracks to be recorded with full sel-sync and ping-pong facility. The mixer

and ping-pong facility. The mixer section accepts any signal with bass, treble, echo send and pan on each channel. These are switched from laying tracks to performing mixdown. The simplified monitoring allows you to listen to the mix you are recording, plus the tracks already on tape. Use the powerful internal headphone amplifier or an external speaker / amp system. Track bouncing, signal processing, memory rewind and

.

P

cessi

processing, memory rewind and varispeed are more facilities that put this remarkable unit on par with what you will get from

systems costing many times the price. Just plug in a microphone and a pair of cans and you have your own four track demo setup. You make the music, Portastudio does the rest. Full details on request.

Plugs to 24 tracks, we specialise in professional audio

specialise in professional audio equipment from major manufacturers. Call us with your system requirements. Our business is helping you with yours.

Mighty Auratones

E45.42 E62.10

These innocent looking speakers are used as reference monitors in top studios throughout the world. The volume and quality that they produce is stunning to say the least. Available in teak or the vinyl covered 'Road' version. Road Cubes lock together in pairs and have individual line fuses. – **Ideal for a micro PA system.** Sold only in pairs.

A unique range of add-on signal processors for PA or studio use. As reviewed in this magazine.

Compressor £31.97 Variable threshold and speed give scope for effects Parametric £31.97 Low and high band, tunable equaliser design Booster £33.12 Four way line amplifier solves all matching problems Compander £34.27 Up to 30dB of noise reduction for semi-pro recorders Reverb £33.12 Custom spring and variable EQ ensure a natural sound Power Supply £28.52 Mains operated, will power up to four Accessit units Rackit £19.55 Mounts three Accessit units to standard 19" rack

Send for the new data folder including specification cards, application notes, review reprints and details of the 21 day free trial offer.

A tremendous response for E&MM from our readers!

In this time of recession, many people could rightly argue against the merits of launching a new magazine. Nevertheless, since September last year when the editorial and consultant staff were being appointed, one outstanding factor was evident. That everyone involved in E&MM's plans for the future was overwhelmingly enthusiastic about a magazine that brought together electronics and music, in a way that would appeal to a wide age range of hobbyists at all levels.

One development that was not envisaged was the receipt of a large number of subscriptions even before the first issue was available! We are already on international distribution with a lot of demand for E&MM copies from by Mike Beecher, Editor Electronics & Music Maker.

Australia and even as far away as Norway, Iceland, Poland, Finland and India.

I have personally been very excited about the response to our

cassette as an aural complement to the magazine, for in my years of reviewing electronic instruments I found that a recording of an instrument's sounds always prompted a more objective response to its capabilities. The E&MM cassette is not like a commercial recording, but provides in the best stereo quality we can get a means of assessing for yourself what our electro-music projects sound like. It also helps us maintain our aim of updating our readers in electronic music developments as soon as they are available, and in the past it may have been impossible for many to ever hear the sounds of the most expensive instruments making music

Schools and colleges should

also benefit in the educational and informative presentation of E&MM and a special competition for hobbyists projects is planned. This will also allow musicians to perform their compositions on their own electronic instruments.

So many people today are eager to build projects for the home and now that music making in the home involves computers as well as electronic instruments we have an unique opportunity to promote 3 main areas of leisure interest for the future — electronics, computing and music.

Dear Sirs

Congratulations on a first class, First Issue. The presentation of each article was both clear and concise.

Keep up this standard and you are on a winner.

G. B. Bromage Leicester

Dear Sir,

May I first congratulate you on the launch of your new magazine Electronics & Music Maker which fills a long felt need for people like myself who are electronic hobbyists with a strong interest in musical instruments.

Yours sincerely A. W. Button Corby Dear Sir, Congratulations on a super magazine! Yours faithfully R. J. Teasdale Kings Langley Dear Sir, Thanks for a GREAT! new magazine.

> Yours faithfully L: A. Cowburn Preston

Send to: Reader's Letters, Electronics & Music Maker 282 London Road, Westcliff-on-Sea, Essex SS0 7JG.

Dear Editor,

Many congratulations on the first edition of your new magazine, I haven't been able to put it down. I am interested in the music articles but found all the other articles equally interesting, written in language anyone can understand. All the reviews were excellent, as were the news pages.

Best of all is the idea of having a cassette aural compliment to the magazine. I can't wait to receive my copy.

Thanks again for providing us with a magazine really worth the 65p, with the special offers included its great value.

Looking forward to the next issue. Keep up the good work.

Mr S. Byhurst Caterham

Dear Mr Beecher,

May I first of all congratulate you on such a superb magazine. As a musician interested in electronic music it is like a dream come true to read a magazine such as yours. May I wish you all the success for the future.

Yours sincerely Paul Miller Craigavon

Dear Sirs

Let me congratulate you on the superb new magazine that brings my two main hobbies together under one cover.

I look forward to all subsequent issues of Electronics & Music Maker.

Thanking you in sleepless anticipation,

B. N. Bidgood

London

Dear Editor,

Browsing through the magazine racks in the newsagents I came across the first issue of E&MM. After a quick glance, I thought it justified the 65p.

Having now read it and being interested in electronics and electro-music I can only say this is a superb, well-balanced in content magazine.

The constructional projects are particularly good in all aspects, the technical writing being easy to understand.

Again many thanks, keep up the good work.

Yours sincerely B. I. Hewlett Evesham Dear Editor,

This is certainly the type of publication I have been hoping and waiting for. I am impressed with it and feel it certainly fills a major gap in the field of electronics.

With all good wishes for the success of your new magazine.

Yours sincerely E. Skelton, C.Eng. Stockton-on-Tees

Dear Editor,

Having just received and glanced through the articles in the first issue of Electronics & Music Maker, we have decided to add this to the list of technical journals that we take.

May we wish you every success with your new venture.

The Sphereola Company Ltd Rochester

Dear Sir,

I have just purchased your first edition of Electronics & Music Maker and am most impressed with it.

Yours faithfully A. H. Moore Tavistock

The Syncon DRUM SYNTHESISER

Join Warren Cann in the drum revolution with this unique touch sensitive instrument costing under £15

he Syntom is a very effective drum synthesiser that can produce a variety of fixed and falling pitch effects, triggered either by tapping the unit itself, or by striking an existing drum to which the device is attached.

Four potentiometers give control over different characteristics of the sound, the Volume control being used to switch off the internal battery as well as determining the level of the signal sent to the external amplifier. The Decay pot. governs the time taken for the sound to die away after each strike, from less than 1/10 sec. to several seconds, giving a wide range of envelopes. The frequency of the note is variable over the entire audio range by means of the Pitch control, and the Sweep control introduces a voltage causing the pitch to fall as the amplitude decreases. These controls, when used in combination with each other enable the most popular drum synthesiser effects heard on commercial recordings to be obtained.

Circuit

The Circuit is in three main parts: the envelope generator, the Voltage Controlled Oscillator (VCO), and the Voltage Controlled Amplifier (VCA). IC1 forms the first stage of the envelope generator, detecting the signal produced by the crystal earpiece when the unit or the drum to which it is fitted is struck. The trigger signal charges C1 via D1, and the capacitor is then discharged slowly by RV1 and R3. This envelope voltage is buffered by IC2c and sent to the VCA. It is also fed (via RV2 — the Sweep potentiometer) to IC2d, the VCO control voltage summing amplifier where it is mixed with a voltage from the Pitch control, RV3.

The VCO consists of an integrator formed around IC2a, and a Schmitt trigger (IC2b) driving

by Clive Button

TR1. When the integrator voltage reaches the upper threshold of IC2b, TR1 is turned on shorting the non-inverting input of the integrator to earth, causing it to act in inverting mode. Hence the output voltage falls until the lower threshold is reached, IC2b changes state, turning off TR1, and the output of IC2a starts to rise, as it is once more in noninverting mode. The resultant triangle wave is fed to the VCA section, which consists of a CA3080 transconductance amplifier, IC3. The gain of this amplifier is controlled by the output of the envelope generator, such that as the envelope voltage decays,

Figure 1. The circuit diagram of the Syntom.

ELECTRONICS

the triangle wave is increasingly attenuated until it is reduced to a very low, inaudible level. The output of the CA3080 is fed to RV4, the Volume pot, and then on to the jack socket.

A dual supply is derived from the single 9V battery by a potential divider formed by R14 and R15, providing a 0V supply which is stabilised by C2.

Constructional Details

All resistors, capacitors and semiconductors except R28 are mounted on the printed circuit board in that order, taking care a's always with the orientation of IC's, electrolytic capacitors, diodes, and the transistor. If the suggested case is used, veropins for connection of the pots, jack, battery and earpiece must be mounted from the component side since this side faces away from them and there is no room for the wires to pass around the edge of the board. Otherwise they fit from the track side, or can be left out altogether, the wires being soldered directly to the tracks.

The potentiometers are mounted on the front side (which is the side opposite the removable side if using the case suggested in the parts list), after their spindles have been sawn to a length suiting the knobs. The jack socket is best mounted on the back, where the lead to the external amplifier will be out of the way during use, but take care here since the board, battery and earpiece all fit near the back of the case. The connections to the off-board components can now be made, and the PCB fitted in the special slots on the inside of the case (with the track side facing towards the pots). Note that R28 is connected directly from the wiper of RV4 to the signal terminal of the jack socket.

For use with an existing drum, the Syntom is attached to the drum by a securing bolt and a bracket made from 25mm aluminium channel section which is fixed to the case by two bolts with washers. A simple hexagonalhead bolt could be used, but the handwheel bolt specified in the parts list is much easier to use. and lends a professional appearance to the finished unit. One side of the bracket must be drilled and threaded to accommodate the bolt, and it is a good idea to stick a small piece of rubber on the inner face of the opposite side to prevent scratching of the drum rim. The final constructional stage is to fit the knobs, connect the battery using a PP3 connector, and screw on the back of the case. A piece of foam glued to the inside of the back will hold the battery against the potentio-

PA	RT	S	L	IS
----	----	---	---	----

	Resistors -	all 59	% ¹ ∕₃₩	carbon	uniess	specified	
--	-------------	--------	--------------------	--------	--------	-----------	--

R1	1MO		(M1M0)
R2.3.14			(
15.2	7 10k	5 off	(M10K)
R4	4k7	0 0//	(M4K7)
R5 7 8	447		(11141(7))
0.11	1004	5 off	
D6	2204	0.00	(112001)
P10 12	330K		(MISSUR)
1210	9		
10 20)-)		
20,21	A724	9	(MAATK)
20	478	0 011	(1V147K)
R19	470K		(1/14/UR)
RZI DOG OD	22K	0 11	(MZZK)
R22,23	220R	2 011	(M220R)
R24	220k		(M220K)
R25	8k2		(M8K2)
R26	1k8		(M1K8)
RV1	1M0 log. pot.		(FW28F)
RV2,3	47k log, pot.	2 off	(FW24B)
RV4	47k log. pot. with switch		(FW65V)
Capacit	ors		
C1	2u2 63V axial electrolytic		(FB15R)
C2	47u 10V axial electrolytic		(FB38R)
C3		(WW15R)	
C4	4n7 Mylar Film		(WW17T)
Semico	nductors		
IC1	uA741, 8-pin DIL		(01227)
100			(QLEEI)
IUZ .	3403		(QH51F)
102	3403 CA3080, 8-pin DIL		(QH51F) (YH58N)
IC3 TR1	3403 CA3080, 8-pin DIL BC182L		(QH51F) (YH58N) (QB55K)
IC3 TR1 D1,2	3403 CA3080, 8-pin DIL BC182L 1N914	2 off	(QH51F) (YH58N) (QB55K) (OL71N)
IC3 TR1 D1,2	3403 CA3080, 8-pin DIL BC182L 1N914	2 off	(QH51F) (YH58N) (QB55K) (QL71N)
IC2 IC3 TR1 D1,2 Miscell	3403 CA3080, 8-pin DIL BC182L 1N914 aneous	2 off	(QH51F) (YH58N) (QB55K) (QL71N)
IC2 IC3 TR1 D1,2 Miscell X1	3403 CA3080, 8-pin DIL BC182L 1N914 aneous Crystal earpiece	2 off	(QH51F) (YH58N) (QB55K) (QL71N) (LB25C)
IC2 IC3 TR1 D1,2 Miscell X1 JK1	3403 CA3080, 8-pin DIL BC182L 1N914 aneous Crystal earpiece Mono-jack socket	2 off	(QH51F) (YH58N) (QB55K) (QL71N) (LB25C) (HF91Y)
IC2 IC3 TR1 D1,2 Miscell X1 JK1	3403 CA3080, 8-pin DIL BC182L IN914 aneous Crystal earpiece Mono-jack socket (open type)	2 off	(QH21F) (YH58N) (QB55K) (QL71N) (LB25C) (HF91Y)
IC2 IC3 TR1 D1,2 Miscell X1 JK1	3403 CA3080, 8-pin DIL BC182L IN914 aneous Crystal earpiece Mono-jack socket (open type) Case MB2	2 off	(QH51F) (YH58N) (QB55K) (QL71N) (LB25C) (HF91Y) (LH21X)
IC2 IC3 TR1 D1,2 Miscell X1 JK1	3403 CA3080, 8-pin DIL BC182L 1N914 aneous Crystal earpiece Mono-jack socket (open type) Case MB2 Handwheel bolt	2 off	(QH51F) (YH58N) (QB55K) (QL71N) (LB25C) (HF91Y) (LH21X) (Y123A)
IC2 IC3 TR1 D1,2 Miscell X1 JK1	3403 CA3080, 8-pin DIL BC182L 1N914 aneous Crystal earpiece Mono-jack socket (open type) Case MB2 Handwheel bolt M4 6mm bolts	2 off	(QH51F) (YH58N) (QB55K) (QL71N) (LB25C) (HF91Y) (LH21X) (YL23A) (BE33L)
IC2 IC3 TR1 D1,2 Miscell X1 JK1	3403 CA3080, 8-pin DIL BC182L 1N914 aneous Crystal earpiece Mono-jack socket (open type) Case MB2 Handwheel bolt M4 6mm bolts Printed circuit board	2 off	(QH51F) (YH58N) (QB55K) (QL71N) (LB25C) (HF91Y) (LH21X) (YL23A) (BF33L) (GA05F)
IC2 IC3 TR1 D1,2 Miscell X1 JK1	3403 CA3080, 8-pin DIL BC182L 1N914 aneous Crystal earpiece Mono-jack socket (open type) Case MB2 Handwheel bolt M4 6mm bolts Printed circuit board PP3 connector	2 off	(QH51F) (YH58N) (QB55K) (QL71N) (LB25C) (HF91Y) (LH21X) (YL23A) (BF33L) (GA05F) (HE28F)
IC2 IC3 TR1 D1,2 Miscell X1 JK1 B1	3403 CA3080, 8-pin DIL BC182L 1N914 aneous Crystal earpiece Mono-jack socket (open type) Case MB2 Handwheel bolt M4 6mm bolts Printed circuit board PP3 connector PP3 battery	2 off	(QH51F) (YH58N) (QB55K) (QL71N) (LB25C) (HF91Y) (LH21X) (YL23A) (BF33L) (GA05F) (HF28F)
IC2 IC3 TR1 D1,2 Miscell X1 JK1 B1	3403 CA3080, 8-pin DIL BC182L IN914 aneous Crystal earpiece Mono-jack socket (open type) Case MB2 Handwheel bolt M4 6mm bolts Printed circuit board PP3 connector PP3 battery Ribbon cable (10 way)	2 off	(QH51F) (YH58N) (QB55K) (QL71N) (LB25C) (HF91Y) (LH21X) (YL23A) (BF33L) (GA05F) (HF28F) (XB06G)
IC2 IC3 TR1 D1,2 Miscell X1 JK1 B1	3403 CA3080, 8-pin DIL BC182L IN914 aneous Crystal earpiece Mono-jack socket (open type) Case MB2 Handwheel bolt M4 6mm bolts Printed circuit board PP3 connector PP3 battery Ribbon cable (10 way) Imm Veropins	2 off 1m	(QH51F) (YH58N) (QB55K) (QL71N) (LB25C) (HF91Y) (LH21X) (YL23A) (BF33L) (GA05F) (HF28F) (XR06G) (FL23A)
IC2 IC3 TR1 D1,2 Miscell X1 JK1 B1	3403 CA3080, 8-pin DIL BC182L 1N914 aneous Crystal earpiece Mono-jack socket (open type) Case MB2 Handwheel bolt M4 6mm bolts Printed circuit board PP3 connector PP3 battery Ribbon cable (10 way) 1mm Veropins Knobs	2 off 1 m 4 off	(QH51F) (YH58N) (QB55K) (QL71N) (LB25C) (HF91Y) (LH21X) (YL23A) (BF33L) (GA05F) (HF28F) (XR06G) (FL23A) (YG40T)
IC2 IC3 TR1 D1,2 Miscell X1 JK1 B1	3403 CA3080, 8-pin DIL BC182L 1N914 aneous Crystal earpiece Mono-jack socket (open type) Case MB2 Handwheel bolt M4 6mm bolts Printed circuit board PP3 connector PP3 battery Ribbon cable (10 way) 1mm Veropins Knobs	2 off 1m 4 off	(QH51F) (YH58N) (QB55K) (QL71N) (LB25C) (HF91Y) (LH21X) (YL23A) (BF33L) (GA05F) (HF28F) (XR06G) (FL23A) (YG40T) (YQ40T)
IC2 IC3 TR1 D1,2 Miscell X1 JK1 B1	3403 CA3080, 8-pin DIL BC182L 1N914 aneous Crystal earpiece Mono-jack socket (open type) Case MB2 Handwheel bolt M4 6mm bolts Printed circuit board PP3 connector PP3 battery Ribbon cable (10 way) 1mm Veropins Knobs Blue knob cap Green knob cap	2 off 1m 4 off	(QH51F) (YH58N) (QB55K) (QL71N) (LB25C) (HF91Y) (LH21X) (YL23A) (BF33L) (GA05F) (HF28F) (XR06G) (FL23A) (YG40T) (QY01B)
IC3 TR1 D1,2 Miscell X1 JK1 B1	3403 CA3080, 8-pin DIL BC182L 1N914 aneous Crystal earpiece Mono-jack socket (open type) Case MB2 Handwheel bolt M4 6mm bolts Printed circuit board PP3 connector PP3 battery Ribbon cable (10 way) 1mm Veropins Knobs Blue knob cap Green knob cap	2 off 1 m 4 off	(QH51F) (YH58N) (QB55K) (QL71N) (LB25C) (HF91Y) (LH21X) (YL23A) (BF33L) (GA05F) (HF28F) (XR06G) (FL23A) (YG40T) (QY01B) (QY02C)
IC3 IC3 TR1 D1,2 Miscell X1 JK1 B1	3403 CA3080, 8-pin DIL BC182L IN914 aneous Crystal earpiece Mono-jack socket (open type) Case MB2 Handwheel bolt M4 6mm bolts Printed circuit board PP3 connector PP3 battery Ribbon cable (10 way) Imm Veropins Knobs Blue knob cap Green knob cap Green knob cap Bad knob cap	2 off 1m 4 off	(QH51F) (YH58N) (QB55K) (QL71N) (LB25C) (HF91Y) (LH21X) (YL23A) (BF33L) (GA05F) (HF28F) (XR06G) (FL23A) (YG40T) (QY01B) (QY02C) (QY03D)
IC2 IC3 TR1 D1,2 Miscell X1 JK1 B1	3403 CA3080, 8-pin DIL BC182L 1N914 aneous Crystal earpiece Mono-jack socket (open type) Case MB2 Handwheel bolt M4 6mm bolts Printed circuit board PP3 connector PP3 battery Ribbon cable (10 way) 1mm Veropins Knobs Blue knob cap Green knob cap Green knob cap Red knob cap Front Panel	2 off 1m 4 off	(QH51F) (YH58N) (QB55K) (QL71N) (LB25C) (HF91Y) (LH21X) (YL23A) (BF33L) (GA05F) (HF28F) (XR06G) (FL23A) (YG40T) (QY01B) (QY02C) (QY03D) (QY04E)

Figure 2. The Syntom PCB.

Figure 3. PCB wiring, with the board viewed from the track side.

meters and prevent rattling, which could cause unwanted triggering of the unit.

Testing & Use

Connect the drum synthesiser to an external amplifier, and with all controls at midway position, firmly tap the case. A medium duration falling pitch effect should be heard, and experimentation with the controls will soon reveal the whole range of sounds available. The sensitivity of the unit has been fixed to respond to a direct hit or a hit on the drum to which it is fixed but not to external sounds and vibrations, including those from other drums in the kit. When fixed to a drum, the Syntom can be set off by just hitting the drum rim with the stick, or caused to sound along with the drum if the skin is hit. Since the sound varies with stick impact, particularly interesting effects can be produced by, for example, using a sharply falling pitch with an envelope of similar length to the natural drum sound, and playing single hits and rolls of differing impact force on the drum skin.

Since the drum synthesiser is battery powered, it should be turned off when not in use to conserve power, though a single PP3 will still provide for up to 60 hours of continuous playing.

Read Warren Cann's comments in our Ultravox feature and listen to it on the E&MM cassette. **E&MM**

All these advantages...

Instant all-weather starting
Smoother running
Continual peak performance
Longer battery & plug life
Improved fuel consumption
Improved acceleration/top speed
Extended energy storage

.. in kit form

SPARKRITE X5 is a high performance, top quality inductive discharge electronic ignition system designed for the electronics D.I.Y. world. It has been tried, tested and proven to be utterly reliable. Assembly only takes 1-2 hours and installation proven less due to the patented 'clip on' easy fitting

The superb technical design of the Sparkrite circuit eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current by 95% of the norm

There is also a unique extended dwell circuit/which allows the coil a longer period of time to store its energy before discharging to the plugs. The unit includes built in static timing light, systems function light, and security changeover switch Will work all rev counters.

Fits all 12 v negative-earth vehicles with coil/distributor ignition up to 8 cylinders.

THE KITCOMPRISES EVERYTHING NEEDED Die pressed case -Ready drilled, aluminium extruded base and heat sink, coil mounting clips and accessories. All kit components are guaranteed for a period of 2 years from date of purchase. Fully illustrated assembly and installation instructions are included.

Roger Clark the world famous rally driver says "Sparkrite electronic ignition systems are the best you can buy." **Spankrite** electronic ignition systems are the best you can buy." **Spankrite** electronic ignition systems HIGH PERFORMANCE ELECTRONIC IGNITION Electronics Design Associates, Dept. EMM/2

2 Bath Street, Walsall, WS1 3DE Phone: (0922) 614791 Name

Address __

 Phone your order with Access or Barclaycard
 I enclose chequeiPO's for

 Inc. V.A.T and P.P
 QUANTITY REQTO.

 X5KIT £16.95
 E

 ACCESS OR BARCLAY CARD No.
 Send SAE if brochure only required

Figure 4. Case and bracket construction.

TRANSCENDENT POLYSYNTH

By brilliant design work and the use of high technology components the Polysynth brings to the reach of the home constructor a machine whose versatility and range of sounds is matched only by ready built equipment costing thousands of pounds. Designed by synthesiser expert Tim Orr and being featured in Electronics Today International, this latest addition to the famous Transcendent features in a costance transcendent of the polyspheric of the other section. Transcendent family is a 4 octave (transposable over 7½ octaves) polyphonic synthesiser with internally up to 4 voices making it possible to play simultaneously up to 4 notes. Whereas conventional synthesisers handle only one at a time

The basic instrument is supplied with 1 voice and up to 3 more may be plugged in. A further 4 voices may be added by connecting to an expander unit, the metalwork and woodwork of which is designed for side by side matching with the main instrument. Each voice is a complete synthesiser in itself with 2 VCOs, 2 ADSRS, a VCA and a VCF (requiring only control voltages and a power supply, the voice boards are also suitable for modular systems). One of these voices is automatically allocated to a key as it is operated. There are separate tuning controls for each VCO of each voice. All other controls are common to all the voices for ease of control and to ensure consistency between the voices.

Although very advanced electronics the kit is mechanically very simple with minimal wiring, most of which is with ribbon cable connectors. All controls are PCB mounted and the voice boards fit with PCB mounted plugs and sockets. The kit includes fully finished metalwork, solid teak cabinet, professional quality components (resistors 2%, metal oxide or metal film of 0.5% and 0.1%), nuts, bolts, etc.

EXPANDABLE

POLYPHONIC

COMPLETE KIT

ONLY

SYNTHESISER

(single voice)

Plug in extra Voices — Kit price £52 + VAT (£48 - + VAT if ordered with kit)

Cabinet size 31.1" x 19.6" x 7.6" rear 3.4" front

Kit also available as separate packs

	Pack	Price
	POLY 1	Pair of PCB's for multiplex cct. K.B. contacts£9.50
	POLY 2	IC's IC sockets, Rs, Cs, for multiplex cct £8.20
	POLY 3	Superior quality keyboard£32.25
	POLY 4	Contacts and bus bars
ADSR IC CEM 3310£4.00	POLY 5	Double sided plated through PCB for digital control and pitch/gate generator cct f17.25
NCO 10	POLY 6	Rs. Cs. heat sink for fitting to Pack 5f10.50
CEM 3340 £6.00	POLY 7	IC's IC sockets, diodes for fitting to Pack 5£31.30
	POLY 8	Double sided mother board
ICs and details of all	POLY 9	Rs. Cs. connectors for mother board£14.10
packs in our	POLY 10	IC's IC sockets, Trs, heat sinks for
FREE		mother board£13.10
CATALOGUE	POLY 11	PCB for master controls
	DOLVAD	(left of section marked VOICES)
	POLY 12	master control PCBf9.30
	POLY 13	Pots, Switches for master control board£11.80
	POLY 13	Pots, Switches for master control board £11.80
	POLY 14	PCB for VOICE controls

PRICE STABILITY: Order with confidence. Irrespective of any price changes we will honour all prices in this advertisement until June 30th 1981 if this month's advertisement in Electronics & Music Maker is quoted with your order. Errors and VAT rate changes excluded.

EXPORT ORDERS: No VAT. Postage charged at actual cost plus £1.00 handling and postal documentation

U.K. ORDERS: Subject to 15%* surcharge for VAT. No charge is made for carriage, *or at current rate if changed.

Pack		Price
POLY 15	Pots, switches, diodes, Cs for VOICE PCB	£4.80
POLY 16	PCB for plug in voice	£8.20
POLY 17	Rs, Cs, presets, connectors for one voice	£16.30
POLY 18	IC's, IC skts, diodes for one voice	£27.50
POLY 19	Transformer 0-120-240, 17-0-17, 0-7.7	£6.30
POLY 20	Pitch bend control	£3.90
POLY 21	Misc parts e.g. jack sockets, knobs,	
	mains switch etc.	£13.00
POLY 22	Ribbon cable, ribbon cable connectors,	00.45
	mains cable	28.45
POLY 23	Fully finished metalwork and fixing parts	£25.60
POLY 24	Solid teak cabinet	£25.80
POLY 25	Construction manual	£1.50
Total cost	for individually purchased packs for single	2
	voice instrument	355.15
	connectors	295.00
		233.00

ALL PRICES VAT EXCLUSIVE

OUR CATALOGUE IS FREE! WRITE OR PHONE NOW! POWERTRAN ELECTRONICS PORTWAY INDUSTRIAL ESTATE ANDOVER ANDOVER, HANTS SP10 3WW (STD 0264) 64455

SECURICOR DELIVERY: For this optional service (U.K. mainland only) add £2.50 (VAT inclusive) per kit.

SALES COUNTER: If you prefer to collect your kit from the factory call at Sales Counter Open 9 a.m. — 12 noon, 1—4.30 p.m. Monday-Thursday.

MANY MORE KITS ON PAGES 28 & 31

One of the nice features about a magazine such as this is the way readers can contribute, thus presenting their ideas to a large number of people. Each contribution may be a full feature or constructional article describing some piece of electronic, electro-musical equipment, or more probably, a short piece containing the circuit diagram and a short piece of explanatory text. It is thus our intention to set aside pages in each issue for 'Circuit Maker', a feature dedicated to short ideas, mostly sent in by readers.

Remote Disco Deck Switching

Nearly all disco decks have some form of deck switches on the front console. These are generally mounted away from the actual mixer to avoid hum, since they usually switch the mains supply to the motors directly. It is much more convenient to have the decks controlled from a switch adjacent to the relevant fader, thus allowing full control with one hand and this indicates that a remote switching unit is required. A small relay could be used, but apart from cost, a relay makes a mechanical contact and thus suffers from wear and electrical noise. The design idea presented here is for a very small solid

state switching circuit using one of the fairly new opto-isolated triacs. This can be mounted close to the motor and can be controlled from a variety of switching circuits. A simple push to start and push again to stop system is employed here, with two LEDs to indicate the state of the deck. Obviously, the push switch can be replaced with a simple toggle.

The switch operates the LEDs on the panel, and also the LED in the opto-isolator. The opto-isolator triac will handle 100mA, and should be adequate for most deck motors (an SP25 takes about 25mA), but a 50mA fuse should be included in circuit. A small snubber network across the triac helps to kill any switching spikes, but these will be minimal anyway since the triac is continuously driven.

Maplin Cassette De-Thump

G. Durant, Brayton, N. Yorks

This circuit was designed to remove the irritating thump which occurs as the Maplin cassette deck is switched on, or when the record switch is operated. It is split into two main parts. The first part, a Schmitt trigger built around IC1 a & b, generates a delay at power up. This works by allowing the 470uF capacitor to charge via the resistor until the voltage is sufficient to trip the trigger, which then locks into the high state. The second part is similar, but operated from a spare set of contacts on the 'switch circuit board' record latchswitch. When the record button is pressed or released a two second delay occurs before the output of the trigger changes state. This delay is combined with the original switching signal by an EXclusive-NOR gate. Since an EX-NOR gate gives a low output when the two inputs differ a low output will be present on IC1d for two seconds every time the record switch is operated (either on or off). This record delay and the switch on delay are AND-ed to operate a 4066 quad bilateral switch, which only connects the outputs and the VU meters when the logic drive is high. The thump is thus blanked. The pin numbers on the circuit refer to the Maplin Hi-Fi tape module, but the circuit can be applied to any recorder where this problem exists.

A small reduction in the number of ICs may be obtained by using the more expensive 4093 quad NAND Schmitt trigger instead of the discrete gate versions used in this design.

Headphone Sensitivity

Many cheap mono headphones. particularly those intended for communication use, are specified as high impedance types - typically described as two 250 ohm speakers in series to give a 500 ohm load. The sensitivity of such phones leaves much to be desired, the 500 ohm load implying that high drive voltages should be used to obtain a decent volume. In fact the phones tend to be quiet even when run with 25 volts RMS, the simple reason being that the actual speaker units are standard low impedance types with a series 470 ohm resistor. Naturally the resistor drops most of the applied voltage, and can be much reduced in value if required. The resistor is usually mounted behind the speaker to which the connection wire is attached. Obviously care should be taken to avoid overloading the speakers, and it would seem a good idea to leave at least 47 ohms in series.

ALL equipment where metal panels

also well worth the trouble to mount a

Two LEDs: **One Switch**

Occasionally it is necessary to switch two LEDs in changeover switch is closed, the other when it is fashion from a single pole switch, open. If the switch is closed the generally when the other pole is used transistor is turned off, and a direct for audio. This frequently- occurs path to ground lights the first LED. when designing with switched poten- When the switch is opened the first tiometers.

one of which comes on when the lighting the second LED

LED goes off, but still passes sufficient The circuit below uses two LEDs, current to turn the transistor on, thus

Earth Fault Detector

It is a sad fact that many people, earth voltage becomes very high. It is a some of them musicians, are killed good idea to mount a set of neons on every year through faulty equipment. A common problem is faulty earth- are in continuous use (particularly ing, allowing the case to float live guitar amps and disco decks), and in the event of a second fault (live short make a habit of checking them. It is to case) rather than blowing a fuse.

The status of the earth can be triangle in a 13 amp plug. Miniature cheaply and easily monitored by the neons (complete with internal retriangle of neons. Under normal cir- sistor) are suitable for panel mountcumstances only the two green neons ing, but the 13 amp plug will need the will be lit, but the red one will light if the very small 'bead' neons, together with earth becomes open, or if the neutral- an external resistor.

True Amplifier Clip Indicator Terry Barnaby, S. Glamorgan

Some PA amplifiers use a common power supply for two or more channels, and as such the clipping level of one channel is dependent on the load on the other. For example, a bass guitar in one channel will cause considerable power supply droop, particularly if the supply is only just adequate. In view of this a clipping indicator which monitors the rail voltage with respect to the output is needed to indicate true clipping, and in this case lights a red LED if the output approaches the rail.

The indicator employs a 741 opamp used as a comparator. The audio input is rectified and smoothed to give a voltage, equal to the peak level of the signal. A fairly fast attack time is needed to catch transient peaks. The rectification stage causes some voltage loss, allowing a wide range of amplifier powers to be used without circuit alterations. The peak level is fed to the inverting input of the 741,

whereas the non-inverting input is connected to the rail of the amplifier via a potential divider. The output of the op-amp goes low when the audio peak level exceeds the rail derived voltage and thus lights the LED. A silicon diode is connected across the LED to protect it against reverse voltage greater than 3V. The circuit is calibrated by means of the 100k preset potentiometer which attenuates the signal to the comparator.

If a 15 volt supply is available (from a pre-amp) a separate supply is not required. Otherwise a simple zener based regulator using the main amp rails will suffice. The resistors Rx and Ry should be chosen to pass about 25mA using the formula:

R = Rail volts -15 Current

Ensure that the power rating of the resistor is sufficient.

D-I-Y Printed Circuit Board Hints

Most printed circuit boards prepared in the home are drawn using the blue etch resist pens. These have fairly thick tips and drawing high density tracks (e.g. down the centre of an integrated circuit) can be very hard. To obtain such tracks it is much easier to block in the area of the tracks totally and then draw in the inter-track gaps by scraping off the etch resist with a sharp scribe. The gaps can thus be minimised, and the necessary density can usually be obtained. The copper in the gaps is then etched away as part of the normal process.

It is nearly impossible to remove a small area of etch resist after a mistake has been made. A cottori bud (Qtip or similar) soaked in acetone

soften's the ink which is then drawn up by the cotton tip. The area of removal is limited only by the size of the cotton tip, and it is usually possible to trace one track.

Note the fairly well known fact that a large area thick tipped etch resist pen is made by Pentel and can be purchased at most drawing shops for about 40 pence. Do use a black one though, the other colours do not cover as well.

Finally, removing the etch resist after etching is most easily achieved with the aid of a standard paint stripper, such as Polystripper. This is faster than a rubbing block, and cheaper than solvent. Do take care to keep it off skin, and wash the board very carefully afterwards, preferably using a sponge to force water down any holes previously made.

SPECTRUM SYNTHESISEB

Part 2 of this constructional series describes the keyboard controller

Figure 2 shows the circuit diagram of the keyboard controller. Connections 1 and 2 are the bottom and top respectively of the keyboard divider chain. This is arranged in the feedback loop of IC3a, which drives a current of about 1.8mA through the divider chain. This generates 8.3V across each divider chain resistor, corresponding to a semitone, and 1V across each group of twelve, corresponding to an octave. R58 and R59 drop 1.7V so the range of key voltage is 1.7 (top C) to 5.7V (bottom C). R57 and RV3 determine the current, RV3 allowing it to be trimmed for exactly 1V/ octave.

IC3b generates a signal that is used, after processing, to gate the envelope generators and key voltage sample - and - hold. With no keys depressed, the noninverting input is held low by R60 and since the inverting input is at +0.83V (determined by R58 and R60) IC3b's output is at its negative extreme, almost -15V. When a key is depressed, the voltage at the inverting input rises to between 1.7 and 5.7V since the gate bus-bar is connected to the divider chain by the contact of the depressed key, and the output of IC3b goes high.

TR3 is an FET which acts as a voltage controlled switch in the sample-and-hold circuit around C11. It is normally held off by the negative output voltage of IC3b, via R62 and D14, but upon this going positive it is turned on and C11 charges to the voltage on the S/H bus-bar (connection point 3). Since the contact spring makes with this before the gate bus-bar, the new key voltage is always ready for sampling by the time the FET is turned on, IC5a is an FET input op-amp with a very low input bias current. This ensures that when the key is released and TR3 turns off the charge on C11 is retained with the minimum of droop. With the 50pA worst case input bias current of the buffer amplifier, it takes about 13 minutes for the pitch of the oscillators controlled by the keyboard to drop one semitone.

With the output of IC3b low, C10 is kept charged by D11, but when a key is depressed it is allowed to discharge through R65 and R66. It takes approximately 2mS for the voltage to reach the threshold of the schmitt NANDgate IC6a, the output of which then goes low. Since D11 charges C10 very fast upon the comparator output going low, it must remain high for at least 2mS for the gate signal to be passed on to IC6b. This ensures that the effect of contact bounce upon key depression or release is eliminated and cannot cause false triggering of the envelope generators.

The external gate signal is inverted by TR4 and NAND-ed with the output of IC6a to give the key gate signal which is sent to the EG's.

If a new note is played on the keyboard before the previous one is released, a new CV is generated, but since the key gate signal remains high, the EG's will not restart their envelopes. This can be a problem when percussive envelopes are used, fast keyboard runs giving missed notes. The problem is eliminated by detecting a change in CV at the sample and hold output, and generating a key retrigger signal for the EG's. IC4a is a high-gain differentiator that produces a pulse for each change in the value of the CV. These pulses are rectified and squared up by the comparator IC4b, and lengthened by D16, R75, and C12 to a minimum of 5mS.

Contact bounce produces a very ragged CV change when a note is depressed while one is already down, and this in turn produces a multiple pulse at the output of IC4b. The circuit around IC6c generates a clean 500uS pulse from this signal - most important for external devices such as sequencers which count in response to triggers from the keyboard. When the charge on C12 reaches the threshold of IC6c, the output goes high and C14 charges via D18 and R85. After 500uS, C14 also reaches

by Chris Jordan

forced low, and C14 begins to discharge slowly through R81. For 30mS after each pulse C14 inhibits IC6c so that no more pulses can occur at the output during this period.

Since the sample-and-hold voltage is updated before the key gate starts, a first key depression would cause an unwanted pulse on the key retrigger line. This is eliminated by D17, which holds the input of IC6d high until the gate is received.

The de-bounced gate signal from IC6a is inverted by TR5, which drives the 'key gate out' interface jack. D19 causes the gate out signal to go low in response to the key retrigger

Figure 2. The circuit diagram of the Spectrum keyboard controller.

signal. TR5 is arranged to pull the output to +15V to generate the gate signal — this system allows gates from different sources to be connected together, providing an OR-function that gates the controlled device if any source signal is high.

The output of the sample-andhold circuit (TR3, C11, IC5a) is E&MM APRIL 1981

passed to the glide circuit (R74, RV4, C13, IC5b) which produces sweeps between successive notes. The time taken for a new note voltage to be reached is controllable from almost instantaneous to five seconds for one octave by RV4. IC5b is a low input bias current op-amp, avoiding any voltage drop across RV4 that would cause a perceptable pitch error with maximum glide.

IC7a inverts the output of the glide circuit, and applies an offset so that the middle 'C' of the keyboard generates a key CV of OV. This simplifies interfacing with additional equipment. The 'Tune' pot. (RV5) shifts the pitch up to \pm 2 semitones. R90 limits

the current supplied by IC7a but does not affect the voltage under normal conditions. This is required since the CV is momentarily shorted to earth when the other end of the patch lead from JK2, the 'key CV out' interface jack, is plugged into another piece of equipment.

E&MM

ELECTROMUSIC

SPECIALISED INTEGRATED CIRCUITS

Purpose designed IC's for electronic music and other audio applications. Wide range of voltage controlled oscillators, filters, amplifiers and envelope generators available in standard DIL packages and with versatile and easy to use configurations.

DIGISOUND 80 MODULAR SYNTHESISER

A system for the 1980's. Thirteen modules plus power supply and keyboard controller currently available — more to follow. Advanced features yet simple to construct. A modular system offers great advantages for both advanced user and the beginner. You can decide how the synthesiser is patched and it may be expanded to any size to suit your pocket or specific needs. The beginner can make sure that each module is functioning properly before starting construction of the next. System is compatible with most commercial synthesisers. High quality components, glass fibre and tinned PCB's plus full range of panels and other hardware.

MICROPROCESSOR CONTROL

The DIGISOUND 80 keyboard controller is accurate and completely free from voltage droop which bugs many designs. It is simple to construct and yet may be readily connected to a microprocessor to provide control facilities which are only limited to ones imagination. Those with experience of programming can do their own thing but we will also be providing an expandable system with programmes which will run at the touch of a button. No knowledge of computers required for the latter. The first programmes include polyphonic control plus some keyboard routines which you probably have not dreamed of. Once a microprocessor is installed then it is the cheapest route to sequencing, composing and so on.

All the above is coupled with a fast and personal service which includes technical back-up. Send now for further details and prices.

DIGISOUND LIMITED, 13 THE BROOKLANDS, WREA GREEN, PRESTON, LANCS. PR4 2NQ

Tel: 0772 683138 (MAIL ORDER ONLY)

LB ELECTRONICS

SUPERSALE '81 All full spec. 2114 (450ns) £1.85, p&p 25p. 2708 £2.00 p&p 25p. TEXAS INSTRUMENTS 2716 single rail, full spec. £5.00 CANNON D TYPE plugs & sockets & covers stocked. SHARP LCD talking clock. This superb clock with normal time display, built-in stop watch and timer, chimes on the hour and half hour. A brand new line £39.99 + p&p (RD) £1.00 **BARGAIN 1** PRICE SMASH FND 500 .5in. LED displays, full spec. 50p each, 30p p&p, large quantities POA. **BARGAIN 2** Battery eliminator 6VDC 200MA 240V AC input ideal for calculators, radio, etc., give away price 95p each. Large quantities POA p&p 45p. **BARGAIN 3** 5 digit 7 segment DIL LED .11" displays 4 for £1.50 p&p 30p. **BARGAIN 4** 74LS266 50p. 74LS245 £2.40. 74LS240 £1.00. 74S260 35p. p&p on all above 30p. **BARGAIN 5** 5K multiturn trimpots. PCB mounting, per box of 14 £2.50, p&p 30p LED's (full spec.) TIL209, red 10p 0.2In. red 12p 0.2in. green 28p. 0.2in. yellow 28p. RL54 red Axial lead 15p. P&P on all above 30p AUGAT — low profile 24 way IC Socket. Superbiguality gold pins. Ideal for keeping your "EPROM" In for programming, or using to save breaking off your pins. 40p each. p&p 25p. BURROUGHS keyboard, 96 key station. Onboard crystal and TTL. Brand new and boxed, 500mm x 190mm. At the time of advert no data. No keytops at all. Clare pender. Reed switches. Bargain £12.00 each, p&p £2.00 SURPLUS STOCKS PURCHASED FOR CASH BARCLAYCARD A LB ELECTRONICS VISA 11 HERCIES RDAD, HILLINGDDN, MIDDLESEX UB10 9LS. ENGLAND ALL ENQUIRIES S.A.E. PLEASE TELEPHONE ANSWERING MACHINE SERVICE OUT OF BUSINESS HOURS New retail premises, now open Mon, Tues, Thurs, Fri and Sat, 9.30-6.00. Lunch 1-2.15 weekdays. Closed all day Wednesday. We are situated just off the A40 opposite Master Brewer. ALL PRICES INCLUSIVE OF VAT UXBRIDGE 55399 All components full spec The latest from the U.S.A. HE MICROBE R/C Basic Kit £19.90 (2 PCB's and all PCB components) PINBALL WIZARD * Still available * Featured in Nov. issue of E.T.I. C.B - C.B - C.B Home TV Game - B/W Kit AERIALS AND ACCESSORIES Basic Kit £28.90 Contains everything except box and controls £15.95 £19.96 £14.95 £25.95 £29.95 £39.90 Cutter mount Boot/Roof/Wing mount Traditional Fibreglass Whip AM/FM/CB Retractable Box & Controls £6.50, P.S.U. £3.90 CEH Car Alarm Kit £18.90 Chroma Chima 24 tune door chimes kit £10.75. Built £15.95 SINCLAIR SC1 10 10MHz scope £145.25 PFM 200 Digital Frequency Meter £62.00 3" 5 MHz Oscilloscope £113.85 4" 5 MHz Oscilloscope £139.90 AM/FM/CB Hetractable CB Electric Retractable AM/FM/CB Electric Ret Roof mount 20" Glass Whip SWR/Power/F.S. Meter SWR/Power Meter £19.95 £24.95 £12.95 Splitter Box Linear Amps from 27 MHz Monitor + AM/FM £19.95 £9.95 5 MHz Oscilloscope £139.90 (59.95 5" 10 MHz Oscilloscope £169.90 £18.65 ATARI £138 *These are a few of the items available* **COMPUTERS-HOME ELECTRONIC BUSINESS, ETC** GAMES £63.35 £89.95 £99.00 Pet 8k Pet 16K Pet 32K Star Chess T/V game Database Prog T/V game Chess Challenger 7 Chess Challenger 10 £458.85 £573.85 £573.85 £790.00 £172.45 £228.85 £286.35 £339.25 £339.25 £409.40 £410.00 £271.40 Superboard 11 4K UK101 kit 4K UK101 Built 4K £160.00 Voice Challend £230.00 Voice Challenger Chessmate 8 level Zodiac Astrology Computer Electronic Mastermind. New Mattel Subchase. New Mattel Armor Battle. New Enterprise 4 in 1 Galavy Invadors. New £59.95 £29.95 Superboard/UK101 case Nascom 2 kit TRS80 16K Level II £29.95 £14.90 £21.00 £17.90 £17.90 £22.90 £22.95
 THS80 16K Level II
 2400

 H14 line printer kit
 £411

 5¼ disc drive for TRS80
 £27

 Computer Books
 \$27

 Software-Pet/TRS80/Superboard, etc.
 Exody Sorceror 16/32/48K from
 £271.40 Sae £860.00 £4.00 Renumber prog. 101 Ball Clock as H.E. offer. Kit £24.95, or ready-built £29.95. Free-Advice/Demonstrations/Coffee S.a.e. enquiries. Please allow up to 21 days for delivery. ALL PRICES INCLUSIVE BAHCLAYCARD -----Buy it with Access

UNIT 10, 61 BROAD LANE, LONDON N.15 4DJ Day 01-808 0377; Eve 01-889 9736

ICs FOR ELECTRO-MUSIC

This series looks inside the 'black boxes' of electronics to provide a greater understanding of their function and application. We also hope that it will stimulate readers to experiment with these new products and share their ideas and designs with others interested in the field of electro-music.

PART 2: Curtis Electro music Specialities

Charles Blakey, Digisound Limited

Having looked at the CEM 3340 Voltage Controlled Oscillator last month, let us now proceed to the VCF, VCA and EG.

CEM 3320 Voltage Controlled Filter (VCF)

Filters are used to modify the harmonic content of signals and in a synthesiser one requires a VCF which will track the VCO so that the harmonic content remains constant over the range of the keyboard. Thus if the VCO is set to a 1 volt/octave scale then the VCF must have the same scale and so we are back to the exponential generator.

Figure 1.

The functional block diagram of the CEM 3320 is shown in Figure 1 and pin 12 is labelled the frequency control input to an internal exponential generator which in turn is connected to the four gain cells in the filter. This generator does not have IC1 and associated scaling components shown in Figure 2 (discussed last month). For a dedicated application one might get away with a simple 100k/1k8 resistor network which will produce a nominal 18mV/volt at the resistor junction which is connected to pin 12. The free end of the 1k8 resistor of course goes to ground and we must also provide some means of keeping the control range to the 100k resistor between -1V4 and +8V6, which is the best range of the exponential generator. Another snag with this simple approach is that an increasing positive voltage will decrease the cut-off frequency which is the opposite response to the VCO. The alternative approach is to add IC1, etc. of Figure 2 and suitable values are R1 = 100k, R3 = 91k, R4 = 20k, R5 = 56k and R6 = 1k0 with the junction of

Figure 2. Typical exponential generator using discrete components.

then add other input resistors for coarse control, initial frequency and so on, as discussed for the CEM 3340 VCO. While the gain cells of the CEM 3320 are temperature compensated there is still the temperature sensitive 1/T term for the exponential generator and this could be compensated, if considered necessary, by using a 3500ppm/°C temperature compensating resistor in place of R6. The inputs to the four filter stages are at pins 1, 2, 17 and 18. Normally pin 1 will be made the first stage, for reasons that will be apparent later, but the other stages may be used in any order to suit PCB lay-out. Each filter stage consists of a variable gain cell followed by a high impedance buffer. Note that the buffer outputs are not short circuit protected and care should be exercised so as not to short them to ground or either supply. Because the gain cell is a current-in, current-out device instead of the usual voltage-in, current-out type the circuit configurations may appear unusual. To simplify matters the first two stages of 24dB/octave low pass and high pass filters are both illustrated in Figure 3. The first point to note is that the input to each variable gain cell (shown only for

R5/R6 connected to pin 12. One may | Figure 3. Filter configurations using the CEM 3320.

Stage 1 of the low pass filter) has a forward biased diode to ground and so provides a low impedance summing node of 0V65 above ground. The input current, derived from the input signal, may therefore be obtained with a resistor, or resistors, terminating at this node.

For normal operation each stage is set up with a feedback resistor from the buffer output to the input of the variable gain cell to establish a reference current. In the guiescent state (no signal input) the buffer output will adjust itself to maintain this reference current. For lowest voltage control feedthrough, that is breakthrough of any modulating waveform or 'plop' noises with rapid changes in DC control voltages, and for maximum output signal the quiescent output voltage of each buffer should be equal to 0.46 Vcc which for a +15V positive supply equals 6V9. The internal reference current is a nominal 63uA and thus the feedback resistor may be calculated from 6V9-0V65 (remember the diode!) divided by 63uA, which gives a nominal 100k. Referring to the low pass filter circuit, Stage 1 will normally have a zero DC quiescent voltage and therefore all of the input current, Iin, equal to Iref will be provided by the 100k feedback resistor.

For Stage 2, as well as for Stages 3 and 4 not illustrated, Iin will be made up of 63uA from the feedback resistor plus 70uA from the quiescent voltage of 6V9 across the 91k coupling resistor between stages. We therefore have to sink this excess 70uA and this is done with the 220k bias resistor connected to the -15V supply. For the high pass configuration the input stage and subsequent stages are capacitor coupled, which blocks out the quiescent voltage of the buffer and therefore the required reference current is attained solely with the 100k feedback resistor for all stages.

Hopefully it will now be obvious that if the input signal contains a DC component then the low pass filter should be capacitor coupled at its input to avoid upsetting the desirable current conditions and raising the voltage at the buffer output. A band pass filter is not illustrated since this may be configured simply by using two stages of high pass followed by two stages of low pass, the latter being as Stage 2 of Figure 3a. A capacitor of 270pF will be satisfactory for these circuits.

The signal input should be a maximum consistent with avoiding clipping at output stages and normally 5V p-p will be acceptable with a +15V supply. The input/output structure of any filter is, however, up to the designer so as to suit a particular application. The input signals may be directly connected, as shown in Figure 3, although in this case the signal source should be of low impedance for the high pass filter. Similarly the output may simply have a capacitor in line to block the DC voltage from the buffer stage. An alternative approach is to use op amp inverters for both the input and output of the filter to provide the greatest flexibility in terms of impedance. signal levels and so on. In the latter case the residual DC voltage may be nected from the negative supply and the summing input of the op amp.

The CEM 3320 has a traditional transconductance amplifier, similar in principle to the CA3080, whose output is internally connected to pin 1, which is the input stage of the first filter section. This may be used for voltage control of resonance (0) by feedback of the output to pin 8 via a blocking capacitor and a resistor, the latter being about 50k for the filters outlined above. Voltage control is applied to pin 9 via a resistor whose value is selected according to the control voltage available and is such that oscillation does, or does not occur, according to preference, at maximum control voltage. If using a +15V supply for the control voltage try a 150k resistor to begin with. Remembering that the output of the transconductance amplifier is connected to the first stage, it may also be used as a VCA to control the amplitude of the signal input and in this mode it may be used to prevent clipping of large signals or perhaps even to introduce signal clipping to add colouration.

For negative supply voltages in excess of -4V, a current limiting resistor must be placed between the negative supply and pin 13 whose value is calculated from $(V_{EE}-2.7)/0.008$. For a -15V supply a 1k5 resistor is suitable. Some improvement in control voltage feedthrough may, however, be obtained by using a variable resistor in series with a fixed resistor and by switching back and forth between the extremes of control voltage while adjusting the trimmer to give the same DC voltage at the extremes. A value of 1k0 for the fixed resistor and 1k0 for the trimmer is a practical combination for a -15V supply.

CEM 3330 Dual Voltage Controlled Amplifier (VCA)

Figure 4 illustrates the functional block diagram of the CEM 3330 and some of the features previously discussed are evident. The variable gain cell is a current-in, current-out type and provision is made for both linear and exponential control of gain. Since there are two VCA's in the package we will often have to give two pin numbers during the discussion and the pin numbers for the second VCA are

Figure 4.

given in brackets. Linear inputs, pins 7(12), are accepted as currents, I_{CL} , and the on-chip log converter generates the logarithm of this current while exponential control inputs, V_{CE} at pins 6(14), are transmitted unchanged to the gain cell.

Before discussing selection of component values there are a number of features of the CEM 3330 which should be noted. First, that both the signal inputs, pins 4(13), and the linear control inputs, pins 7(12), are summing nodes which allows any number of signal and linear control voltages to be mixed within the IC. Next that the current output should be converted to a voltage using an op amp configured as a current-tovoltage converter (Figure 5) and use Ohm's Law, V=1xR_F, to calculate the

Figure 5. Current-to-voltage converter.

voltage. The op amp should be a low noise high slew rate type such as LF351 or NE5534. Third, referring to Figure 4 one sees that pin 8 is labelled 'Idle Adjust' and one of the novel

trimmed out using a preset con- Figure 6. Compensation and trimming of the CEM 3330.

to alter the quiescent standby current of the signal carrying resistors and hence the operation of the gain cells between Class A (say, 100uA) and Class B (say, 1uA). The choice depends on the application and in general terms operating at high standby current will increase slew rate, increase available output current and decrease distortion but at the expense of increased noise and control voltage feedthrough. For typical VCA synthesiser application one would compromise and choose an operating point of about Class AB (about 7uA standby current) which would be achieved with a 6k8 resistor between pins 8 and 5. Lastly, for most VCA applications

features of the CEM 3330 is the ability

Lastly, for most VCA applications the main concern is achieving a wide dynamic range which for a properly configured CEM 3330 is a minimum of 100dB for linear control and 120 dB for exponential control. This range must, of course, be consistent with retaining a high signal to noise ratio, low voltage control feedthrough and low distortion.

' As a starting point, with minimum distortion in mind, the signal input resistor, R₁, and the signal output resistor, R_F, should be chosen to give input and output currents of 100uA which for a +10V signal requires 100k resistors. The upper current limits are dictated by the choice of standby current and reference to the data sheet for the Class AB chosen above shows a peak cell current (input plus output), C_p, of about ±600uA. In no case therefore should R₁ or R₅ be chosen to exceed Vmax/1/2Cp where V_{max} is the peak input or output voltage. Another restraint is that the sum of the signal voltages should not exceed ±10V. Now if we look at the equation for the total voltage gain of the CEM 3330 we have:

$$Av = \frac{R_F}{R_1} \cdot \frac{I_{CL}}{I_{REF}} \cdot e^{-(V_{CE}/V_T)}$$

where I_{CL} is the linear input current into pin 7(12), I_{REF} a reference current into pin 2(15), V_{CE} the exponential control voltage to pin 6(14), and V_T which is our old temperature dependent friend and can be taken as 26mV.

Now if we did not require exponential control then pins 6(14) would be grounded and we would only have to juggle with I_{CL} and I_{REF} having already fixed R_1 and R_F . For most synthesiser VCA applications we do, however, require this control for the reason stated in Part 1's introduction and two features of this exponential control input should be kept in mind. First it will be the lowest control voltage which results in maximum gain and secondly, as is the case with other IC's already described, the control voltage will have to be attenuated. As regards the latter we are no longer restricted to an 18mV change at pin 6(14) for each one volt change at the input resistor and it may be scaled to suit, for example, 27mV/volt using a 36k/1k0 divider (the 1k0 being grounded and the resistor junction at pin 6(14)). I_{CL} can be as high as 300uA but is best restricted to 100uA if linear scale accuracy is essential and IREF should be set in the range of 50uA to 200uA.

A practical example follows. Suppose IREF is set to 100uA, the signal input is 10Vp-p and we have 0 to +10V control voltages for both the linear and exponential control inputs. A suitable starting point for a VCA would then be: 150k resistor connected between pin 2(15) and the +15V supply to establish the 100uA reference current; a 100k resistor, R_I, to pins 4(13); a 36k/1k0 divider to pin 6(14) to provide 27mV/volt; a 100k resistor to pin 7(12) to develop a maximum of 100uA for ICL; and an output resistor, R_F, of 51k. It is now relatively simple to find your own starting conditions by substitution, for example, if the signal input is 5V p-p then R, is halved to 51k.

Compensation components for the CEM 3330 are necessary and it may also be desirable, depending on application or the compromises made in design to achieve certain objectives, to provide trimmers to improve distortion and control voltage feedthrough. A summary of these is shown in Figure 6. 6a illustrates compensation for the signal input and the diode (IN4148, etc) is to prevent latch-up. With these component values then pins 9(11) must also have 150pF capacitors to ground. Figure 6b shows the compensation components for the linear control inputs. 6c is an arrangement for allowing distortion to be trimmed to a minimum while 6d allows reduction of control voltage feedthrough. Note that for 6d the compensation components shown in 6a must also be added and that the resistor, R_{CVF}, is calculated from 15V/lidle which for the 7uA example above gives a value of 2M1 and so 1M8 would be satisfactory.

One major benefit of the simultaneous linear and exponential controls provided is that it is possible to configure each VCA for exponential response and then incorporate linear amplitude modulation (tremolo). It will also be apparent that a negative voltage into the linear control input will gate the VCA off. Do not gate the VCA off by applying a negative voltage to the gain pins 2(15).

Finally, if the negative supply is greater than -7V5 then a current limiting resistor should be placed between the negative supply line and pin 5. This is selected by $(V_{EE} -7.2)/I_{EE}$ and in this case I_{EE} depends on the idle current to pin 8, being: 10mA for idle currents less than 10uA; 12mA when the idle current is between 10uA and 50uA; and 14mA for idle currents in the range 50uA to 200uA. For the 7uA idle current example and a negative supply of -15V then the calculated resistor value is 780R and thus a 750R resistor will be suitable.

CEM 3310 Voltage Controlled Envelope Generator

First let us clarify some terminology. As most readers will know, when one of the keys of a synthesiser is pressed there are usually two output voltages generated. One is the control voltage associated with a particular key and primarily used to control the VCO and VCF and this voltage will (or should) remain

Figure 7. Envelope responses to gate and trigger pulses.

constant until a different key is played. The second is a constant voltage change, for example, a step change from 0 to +15V, or from -7V to +7V and so on, and this change is used to initiate the cycle of an envelope generator. This voltage remains at its changed level for the duration the key is held down and determines the sustain period, that is, on releasing the key an ADSR envelope generator will go into its release (R) phase. In many articles this voltage is referred to as a 'TRIGGER' but when discussing purpose designed integrated circuits it is always referred as the 'GATE' voltage.

For the CEM 3310 envelope generator we need two control voltages, namely, the GATE voltage as already defined and a TRIGGER voltage. Normally if only a gate voltage is present at the appropriate input then an AD (attack-decay) envelope will be generated whereas if simultaneous

Figure 8.

gate and trigger pulses are received then an ADSR (attack-decay-sustainrelease) envelope will be produced. Similarly if a second trigger pulse is received while the gate voltage is still present then the generator will recommence the attack cycle and thus allow complex envelopes to be produced. The different envelopes in relation to the status of the gate and trigger pulses is illustrated in Figure 7. Note that while the CEM 3310 may be configured to give the AD envelope with a gate pulse it is somewhat complicated and beyond the scope of this article.

The block diagram for the CEM 3310 is shown in Figure 8. If only a gate voltage is available then the trigger may be derived from it. Typically the gate voltage goes to pin 4 which has a 10k pull-down resistor to ground and also via a 3n3 capacitor to the trigger input at pin 5. These allow any ground referenced gate pulses up to $\pm 18V$ (V_{cc} = $\pm 15V$).

The RC time constants for attack, decay and release are a function of RxCx times the exponential multiplier EXP $(-V_c/V_T)$, where R_x is a resistor taken from the output (pin 2) to Iin at pin 10, C_x is the timing capacitor connected from pin 1 to ground, and V_c is the control voltage. A convenient value for Cx is 33nF and Rx may then be set over a wide range to suit the control voltages. In practice, however, it is desirable to keep Rx low, although above 24k, so as to minimise control voltage feedthrough and other errors. A suitable value for Rx is 27k with the 33nF capacitor. The tracking between different CEM 3310's is typically ±15% and therefore if more accurate tracking between a number of devices is required one can use a fixed resistor plus a trimmer for R_x to compensate for differences between devices

The control scale sensitivity of the CEM 3310 is 60mV/decade (18mV/ octave) and so for a four decade range of, say, 2 milliseconds to 20 seconds, one only requires a -240mV voltage excursion at the A, D and R pins which are numbers 15, 12 and 13 respectively. The impedance at these pins should be kept low to maintain the best accuracy and thus 27k/470R resistive dividers with the junctions at their respective inputs and the other end of the 470R resistor grounded will give slightly more than the four decade control range when the input control voltage is varied from 0 to -15V. The higher the negative voltage the longer the time. For the sustain level control a voltage of 0 to +5V at pin 9 will vary the sustain level from 0 to 100%. Again the sustain voltage may be obtained using a resistive divider connected to the positive supply line via a potentiometer. The control inputs to the CEM 3310 are NPN transistors which allows a single attenuator to drive the same parameter on several devices configured in a multiple chip system, for example, a polyphonic synthesiser. The output voltage of the CEM 3310 is nominally 0 to +5V and the impedance of the driven load should be no lower than 20k. If necessary the output may be buffered using an appropriate FET op-amp. A compensation capacitor of 22nF should be tied to ground from pin 8 in all cases.

Two other features of the CEM 3310 may be useful for some applications. First that pin 16 outputs a voltage of between -0V4 to -1V2 only during the attack phase and this may be used to generate a logic signal to indicate the attack phase. Secondly, if the sustain voltage were to exceed the maximum attack voltage of the CEM 3310 then at the end of the attack curve the output voltage will ramp up to the sustain voltage. This feature can be taken care of by trimming the maximum sustain voltage so that it equals the maximum peak attack voltage but another technique is to use the envelope peak output available from pin 3. For the latter a precision rectifier must be connected which will then automatically limit the sustain voltage.

Details are shown on the relevant data sheet and it should be realised that many op amps have protective diodes at their inputs and so cannot be used in the precision rectifier mode.

As usual we have to place a current limiting resistor between pin 6 and the negative supply if the latter exceeds a certain value, which for the CEM 3310 is -7V5. This resistor is calculated from (V_{EE}-7.2)/0.010 and for a -15V supply gives a calculated value of 780R and a practical value of 750R. While the other CEM devices described will operate with positive voltages down to +9V (+10V for the CEM 3340) the specified limit for the CEM 3310 is +12V5. Thus to simplify power supply design +15V is a good choice for a full complement of CEM devices although +15V, the -15V for external op amps, and a -5V supply has many merits.

This concludes the review of just four of the specialised integrated circuits available for electro-music applications. If at first reading you find it a bit difficult to follow then don't despair since their internal circuitry is probably far more complicated than the overall circuit in which they are used. On the other hand if some readers find it too simple then data sheets are available but it should be stressed that these are for the relatively experienced designer. One thing is certain, such devices will play an increasingly important role in synthesiser and related designs.

REFERENCES: Data sheets for CEM 3310, CEM 3320, CEM 3330/3335 and CEM 3340/3345 prepared by Curtis Electromusic Specialties.

Some day all power amps will be made this way

THE POWERFET AMPLIFIER

We sell electronic components to 0. at unbeatable prices. send SAE for lists.

IT GROWS!

PFA 80 (100W plus into 8Ω)

Elegant Simplicity Advances in high technology should make life simpler. A cluttered power amplifier board may well perform superbly, but its busy elaboration is an indication that its design is pushing the limit of its component technology.

There are now many first class bipolar power amps on the market. All of them are complex and consequently expensive. Any additional improvements in the areas where they are weak (e.g. H.F. distortion) can only be obtained with yet further complexity and cost.

Only a new technology can provide the sort of "quantum jump" in component performance necessary to reduce the clutter on the board, reduce the cost and make the highest fi once more affordable.

Powerfets So far 29 semiconductor manufacturers have invested in this new technology. Clearly powerfets are something special.

Their enormous power gains eliminate conventional drive circuitry in power amps, permitting delightfully simple de-signs. Their freedom from secondary breakdown and their tendency to shutdown when thermally overstressed, result in inherently stable and destruction-proof output stages, not needing protection circuitry. And perhaps best of all, their lack of charge storage make them fast and responsive, producing amplifiers of wide bandwidth and low distortion even at high frequencies.

THE POWERFET **SPECIALISTS**

PFA80/120

The PFA is perhaps the perfect realisation of the classic powerfet amp design. The superb P.C.B. allows the use of either one or two pairs of output services, providing easy expandability for those starting with the smaller system. (The extra cutput pair of the PFA120 results in lower distortion and improved efficiency, particularly into low impedance loads).

The components used in the PFA have been chosen with extreme care. The lowest noise input devices and lowest distortion gain stage devices were selected regardless of cost. 140V powerfets were cosen against the more usual 120V to give improved safety margins.

Specification Bandwith Output Power BMS into 89	PFA80 10hz	PFA120 100KHz± 1dB 120W (Vs=± 55V)
THD	₹0.008%	≤0.005%
(ZOHz—ZOKHz) (KHz at rated output)	0.004% typ.	0.002% typ.
SNR Slew Rate Gain	120dB >20V/µS x22	
Rin Vs max	30K ±70V	
Cost		
(built) (kit)	£15.95 £13.95	£22.85 £20.85

"VAT inc. prices. P&P 40p or 75p with PFA. Power supply components available."

J. W. RIMMER

PFA 120

(150W plus into 8Ω . 300W INTO 4Ω)

Pre-amp PAN 20 The design is unique. Equalisation is applied after a flat pain stage, resulting in one of the best noise performances available. Superb overload figures are ensured by a front end incorporating a special gain/attenuator control (volume control to you!). The inputs are uncommitted and can be used with any combination of signal sources in the 1mV to 10V range. RIAA equalisation is provided for mag PUs and space on the board is available for different equalisations. Specification. Specification

)	0.003% type
ated o/p	0.000 /0 (ypc.
	85dB (ref. 5mV RIAA)
	105dB (ref. 100mV flat)
	± 20V
put	1V (clips at + 20dB)
t have a	CA 75 0
controls)	14.75 2 needed for stereo
ver Amp PAN 1397	
high quality 20W now	er amp board based on the HA1397
ilv modified for bridge	e operation, providing high powers
n low supply voltages.	t the second the second reads be second
cification	
put power RMS	20W into 80 at ± 22V
	20W into 4 12 at ± 19V.
1	(1())% at 1KHz 1\// to 12\//

90dB

100mV into 50K £5.80

тно SNR Input Cost (Built)

THE

at ra SNF

Vs Out Cos (bui less Pov A Eas from Spe Out

Mail order only to -Technical enquiries

148 QUARRY STREET, LIVERPOOL L25 6HQ. Tel; 051 428 2651 367 Green Lanes, London N4 1DY 01-800 6667

vers

If you're about to start on a new project, you're no doubt looking for the right enclosure. With around 1,000 different cases and 250,000 case parts currently in stock, we must be your number one choice. Why not send for our free catalogue.

Specify West Hydeve a good case for it! West Hyde Developments Limited Unit 9, Park Street Industrial Estate, Aylesbury, Bucks. Telephone: (0296) 20441. Telex: 83570 W HYDE G.

ELECTRONICS AND MUSIC MAKER

Project **Digital Rev Counter** Noise Reduction Unit Case **BOC 706** TEK A22L

6

Written or telephone orders accepted from Access and Barclaycard holders.

New from Casio, world leaders in creative technology combined with high quality and reliability

CLASSIC IN IT'S TIME

You don't have to be a highbrow to appreciate the beauty of this clock. Battery powered, it is ideal for office, lounge, bedroom, caravan or boat.

MA-1 ALARM CLOCK

Large blue LCD display of full digital time. Symphonic alarm or buzzer, with snooze facility. Hourly time signal. Integral loudspeaker and amplifier with 3 position volume control. Built-in night time illumination. Alarm: "Symphonie Nr. 40 G moll" (W. A. Mozart, K.550) for about 30 seconds, or buzzer for 60 seconds. Three AA size batteries last approx. 15 months. Quartz accuracy. Dims: 43 x 115 x 76mm (134 x 41/2 x 3 inches).

JOIN THE KEYBOARD REVOLUTION

By closely analysing the natural sound variations in the waves and pitches of different instruments, Casio have been able to trace the characteristics peculiar to each traditional instrument. Pitch, timbre and harmonics have been measured, digitalised and stored in electronic chip memory for faithful and exciting reproduction of the clarity and beauty of the originals.

CASIOTONE 401

RRP £345.00 ONLY £295.00

Full polyphonic. 8-note playing of 14 instruments and sounds over 4 octaves

Rhythm accompaniment. 16 different rhythms with full-in auto-rhythm. Casio Auto Chord. Allows one finger accompaniment. Just press one, two or three keys and play major, minor and seventh chords, with bass accompaniment, automatically. Combines with auto-rhythm for professional sounds.

Vibrato, delayed vibrato, sustain and hold are incorporated in the at-aglance, simple to use operational panel. Pitch control makes group tuning easy.

Compact. 45% x 31% x 12% inches with integral amplifier and speaker. The lightweight (28.2lb) allows playing anywhere there is an AC socket. Stand £39

CASIOTONE 301

The same size and basic specification as the 401 above, the 301 does not have Casio Auto Chord or built-in sustain and hold facilities. There are 8 rhythm voices with a variation on each. Weight 27lbs. $\pounds 245$.

CASIOTONE MT-30

RRP £115 ONLY £95

IN DAY I PUS

Full polyphonic playing of 22 instruments and sounds over 3 octaves. 4-position sound memory lets you switch between pre-selected sounds without pause. Built-in vibrato and sustain functions greatly enhance the overall musical effect. Compact 23% x 2234 x 61/2 inches, with built-in amplifier and loudspeaker. Battery/mains power source and light weight (6lb) allows playing anywhere.

CASIOTONE 201 & M-10

Please telephone for availability. 201 — Mains version of the MT-30. 29 instruments over 4 octaves. M-10 — Four instruments over 21/2 octaves. Battery/mains.

CASIO CALCULATORS

BQ-1100 — Biolator calculator with calendar, two alarms; countdown alarm, stopwatch, time memory, three date memories (£17.95) £14.95. MG-880 Digital space invader game and calculator £10.95.

Send 20p (postage) for our illustrated catalogue of Casio watches and calculators and selected Seiko watches.

Price includes VAT and P&P. Send your company order, cheque, P.O. or phone your ACCESS or BARCLAY CARD number to

KEEP A DATE WITH CASIO

You always wanted a musical calculator with date memories and date/time alarms - HERE IT IS! **UC-365 UNIVERSAL CALENDAR**

Clock, universal calendar, date memories, daily alarm, 2 daily or date/time alarms, hourly chimes, stopwatch, countdown alarm, time memory, calculator.

Clock display: Hours, minutes, seconds, am/pm, or hours, minutes, full calendar

Calendar: Pre-programmed from 1901 to 2099. Full month display. Date memories: Any day or days pre-settable within 12 month period (birthdays etc.)

Alarms: Alarm 1 - Daily alarm. Alarm 2 & 3 - Daily alarms or time alarms on pre-set dates (pre-programmed melodies or electronic buzzer). Stopwatch: 1/10 second to 24 hours; net, lap and first and second place. Or:

Time memory: 24 hour system. The time of any other zone can be stored. Calculator: Optional musical keys, full memory and percentage. Two silver oxide batteries last approx 1 year. RRP £22.95 £19.95. 1/4 x 41/2 x 21/2 inches. Leatherette wallet with window.

UC-360 Card sized version of above. 7/32 x 3% x 2%" £19.95. UC-3000 Office desk version. Angled display. 1% x 4 x 6%" £27.95.

CASIO'S AMAZING NEW FX-3500P

Programmable. Non-volatile memories and stores. Statistical regression and integrals. 38 functional (non-volatile) steps. 2 pro-

gramme storage capability. Unconditional and conditional jumps. 7 (non-volatile) memories; one independent, 6 constant memories. 18 pairs of parentheses, nestable in 6 levels.

Hyperbolics, sexagesimal and co-ordinates conversions. 10 digit mantissa or 10 + 2 exponent. Two silver oxide batteries give approximately 1,000 hours continuous use with power-saving automatic cut-off, with data and memory protection. Dims: 9/32 x 2% x 5¼ inches. Supplied with

leatherette wallet

ALL THIS FOR ONLY £22.95

FX180P. Hand held version without hyperbolics. 2 x AA batteries, ³/₄ x 3 x 5% £19.95

FX-2700P. As FX3500P but 8 + 2; without integrals, regression, 1 program £19.95

FX-8100 scientific with clock, calendar, alarm, chimes, stopwatch etc. £24.95

CASIO'S BEST SELLING WATCHES

LCD ANALOGUE/DIGITAL ALARM CHRONOGRAPH with countdown alarm AA-81 chrome, s/s bracelet £29.95. AA-81G Gold plated £49.95. AA-82 All stainless steel £39.95.

12 MELODY ALARM CHRONOGRAPHS with countdown alarm. M-12 resin case/strap £24.95. M-1200 all stainless steel £29.95. 100 METRE WATER RESISTANT Alarm chronographs with countdown alarm. W-100. Resin/case strap £19.95. W-150C Stainless steel case/resin strap £25.95. W-150B Stainless steel case/bracelet £32.50.

NEW! F-500 sports chronograph. Resin case/strap £9.95.

Dept. E&MM 2, FREEPOST, 164-167 East Road, Cambridge CB1 1DB. Tel: 0223 312866.

by Ben Willcocks

fter the sad demise of my first power supply unit, I searched in vain for a design that in my opinion overcame shortcomings that most power supplies suffer from. The search proved fruitless and I ended up designing my own unit, which has overcome those problems, and at a reasonable cost. Now, for an outlay of approximately forty five pounds, one can build a sophisticated and virtually foolproof variable power supply unit for general workshop use.

The features considered necessary to be included were as follows:

- 1. A maximum voltage of at least 25 volts at a current of up to 2.5 amps to make the unit versatile.
- 2. The full voltage should be available, properly regulated, at the maximum output current.
- 3. The voltage and current limit controls should operate down to virtually zero.
- The unit should have adequate heatsinking and should be protected against excessiveheatsink temperatures.
- 5. The voltage/limiting current should remain stable with temperature changes.
- 6. The unit should not be prone to oscillation.
- 7. An indication of current limit mode should be provided.
- 8. Wiring should be kept to a minimum.

The first two criteria were met by the use of a high rating transformer and smoothing capacitors. The third criterion proved more difficult since many dedicated I.C's will not operate below about 3 volts, nor will they provide reliable current limiting over the range required. To overcome these problems, the use of opamps was adopted. The voltage and limiting current are referenced solely to the 78M12 regulator which generate the +12V for the majority of the unit's control circuits. Thermal drift is therefore determined by the thermal stability of the 12V regulator and is negligible. Wiring has been kept to a minimum by mounting the majority of the front panel controls and associated components on a PCB.

The resulting unit is compact and easy to build despite its complexity, yet difficult to damage by misuse.

Circuit Description

Figure 1 shows a simplified block diagram of the PSU and Figure 2 shows the overall circuit diagram. The 35V from the bridge rectifier and smoothing components (D1-4, C1-4) is fed directly to the output stage (TR1, 3 R14-16) which is an effective high gain series regulator. It is also fed to the regulator ICI but has to be preregulated by TR2, 4, D7, and R13 since the maximum input voltage for 78 series regulators is 30V. The pre-regulation improves the overall regulation of the unit as it reduces the error at the 78M12 output, due to voltage fluctuation, with load of the nominal 35V supply. This voltage dropped to about 27V at full output current on the prototype. The regulator provides the +12V supply for the control circuits of the PSU.

Voltage control is achieved by IC4 and associated components. The IC acts as a comparator, comparing the output voltage (divided by R17, R18) with the voltage set by the voltage control pot, RV6. IC4 drives TR6 which in turn drives the output stage. TR5, D8, R11 provide a 5V reference for TR6. This is necessary because most op-amp outputs cannot swing below about +2V, which would be more than enough to switch on TR6 if it was referenced to OV. With a 5V reference, TR6 base voltage has to exceed 5.4V before the output stage is biased on at all

Current limiting is controlled by IC5. The PSU has effectively two 0V rails, which will be referred to as "0V pre" and "0V post" for description purposes. "0V post" is the 0V rail on the D7 side of R1, the sensing resistor. "0V pre" is the 0V line prior to R1. "0V post" becomes slightly more positive than "0V pre" when the unit is on load, due to the voltage drop across R1. IC5 compares the "0V post" with a reference set by the current limit control RV7.

When the "OV post" rail be-

comes more positive than the reference voltage, the PSU goes into the current limit mode. In this state, the output of IC5 goes low, reducing the voltage at the base of TR6. This action stabilises at the limit current setting chosen.

Thermal protection is provided by IC2. This compares the voltage set by the shutdown threshold preset, RV1, with the voltage derived from a potential divider consisting of R27, R10. When increasing temperature causes the resistance of the thermistor to decrease, the potential rises above that set by RV1, and the output of IC2 goes low, switching off the output stage by reducing the base voltage of TR6, in the same way as the current limit IC. R3 introduces a certain amount of hysteresis and prevents continual switching of the thermal limit system.

The sole function of IC3 is to sense when current limiting is operative. The current limit IC drives the base of TR6 via R7; by sensing the voltage across R7, sensing of current limiting can be achieved. The original design had the current limiting LED directly in the IC5-TR6 circuit but it was found to be impractical to use sufficient currents to achieve full brightness. Also, a current was sinked by the current limit IC before a current limit situation had been reached, which resulted in a vague, premature indication by the LED. With an extra IC to control the LED, indication is definite and full LED brightness can be obtained.

CA3130T's are specified for the voltage and current limit control circuits because it is required to have a comparator action operating down to OV, which these IC's can achieve. The capacitors between pins 1 & 8 of the CA3130T's provide frequency compensation, i.e. they reduce the gain at high frequencies and so prevent the unit from becoming the latest thing in high output oscillators. If oscillation becomes a problem with your unit, try increasing the values of C6/C7, or C8/C9, depending on whether the unit oscillates in the set voltage or current limit mode. The prototype did not suffer these problems.

FS1 is connected in series with the transformer secondary, protecting the transformer in the vent of rectifier/output transistor failure. FS3 is the mains input fuse.

Some confusion could be caused over the switching arrangements around SW1. The

Figure 1. Block diagram of PSU.

Figure 2. PSU circuit diagram.

13 FS1

15

D11

R4

470F

R3

10 M

IC2

D5 1

90

PIN VIEW IC4,5 CA 3130T

RV:

10k

R 24 120R

R27

R10 2 k 2

D1-4 1N 5401 D9

1N5400

100

R 26

1501

105

C8

-11

C9 150pF

R23 10k

D6 4

D12

IC2,3

82 pl

FS3

TB4

TD 2

OUT ICI

R2 R2K

RV1

1001

R 9 L

OMM

D7

OV POS

OV PRE

CONNECTOR ON MAIN PCB

R1 OR 22

PIN NUMBERS

ON CONTROL

D5,6,10 1N4 148 k a D5,6,10 IN4148 D11,12,13 RED D14 VELLOW BZY88C5V1

PL1

E

+ 35V

R13 10k

METER

ov

-0

O1-9

R

DADTE LICT

FARIS	LIJI			D9	1N5400		(OL81C)	Cliplite, yellow
Posistors	all 5% IAW carbon unless sn	ecified		D11.12.13	0.2in, LED, red	3 off	(WL27E)	Wafercon plug 12-
nesisions -	An 5% /3W carbon uness sp	/14	00000	D14	0.2in. LED, yellow		(WL30H)	Wafercon plug 3-w
KI DO F	026	2011 (1)	ABOK)	TR1	2N3055		(BL45Y)	Wafercon socket 1.
RZ,3	1014	2011 (1	11011	TR2	TIP41A		(OL17T)	Wafercon socket 3
R3	4700	(IV	A470P)	TR3	BD140		(OF08J)	Wafercon terminal
nc 12 10 22	104	A off (N	11080	TR4	BC548		(OB730)	6BA ½in. Bolts
no,10,10,20	2200	2011 (1)	1000	TR5	BC179		(OB54J)	6BA 1/sin. C/S scre
R/,21	220N	3 off (N	1680R)	TR6	BC107B		(OB31J)	4BA ½in. Bolt
R0,20,20	1004	JOH (N	(100K)					8BA ½in. C/S scre
D10 14 10	2008	Roff (N	1200N)	ICI	uA78M12UC		(QL29G)	6BA Nuts
011 12 15	110	3 off (N	11KO)	IC2,3	uA741C, 8-Pin DIL	2 off	(QL22Y)	8BA Nuts
RII,12,10	170	3011 (IV	44781	IC4,5	CA3130T	2 off	(QH28F)	4BA ½in. threaded
017	4/10	(N)	14/10					Systoflex, 1mm, re
D22	226	(N)	122K)	Miscellaneo	NUS			Systoflex, 4mm red
024	1200	(N	A1 20 P)	FS1	Quick blow fuse, 5A, 20mm	1	(WR07H)	Heavy duty wire, b
026	1504	(N	1150K)	FS2	Quick blow fuse, 3A, 20mm	1	(WR06G)	Heavy duty wire, b
027	Thermistor KR152CW	(F	X8711)	FS3	Anti-surge fuse, 1A, 20mm		(WR19V)	Heavy duty wire, w
RV15	100k Hor sub-min preset	2 off (M	VR61R)	S1	Sub-min toggle type E		(FH04E)	Connection wire
R\/2	2k2 Hor sub-min preset	(14	VR56L)	S2	DP rocket neon		(YR69A)	Spirawrap 6mm
RV3	1k Hor sub-min preset	(M	VR55K)	ME1	2in. Panel meter, 1mA fsd		(RW94C)	Spirawrap 3mm
RVA	10k Hor sub-min preset	(M	(R58N)	т1	I.L.P. Toroidal transformer			Cabinet feet
RV6 7	10k pot lin	2 off (F	W02C)		(0-25v, 0.25v, 1.6A Sec.)		I.L.P. Code	6BA Shakeproof
100,7	Tok pot. int.	2.011 (1					WSP 1*	Printed circuit boa
Capacitors					Case Centurion EX1-H		(XQ11M)	Printed circuit boa
C1 2 3 4	2 200uE 40V axial elect	4 off (F	B91Y)		Heatsink 2E	2 off	(HQ70M)	Heatsink bracket
C5	68pF ceramic	(V)	VX54J)		Meter illuminating kit		(RX55K)	Thermpath, small
C6	560pF ceramic	(V	VX65V)		Mounting kit, TO3		(WR24B)	6BA tag
C7	1500pF ceramic	(M	VX70M)		Mounting kit, TO126		(WR26D)	Line Eurosocket
C8	82pF ceramic	(W	VX55K)		Mounting kit, (P) PLAS	2 off	(WR23A)	Mains cable, 6A, 3
C9	150pF ceramic	(N)	VX58N)		Chassis fuseholder 20mm		(RX49D)	Chassis Europlug
C10	100uF 25V, PC elect.	(F	F11M)		Fuse clip	4 off	(WH49D)	*The I.L.P. 32016 tr
		`			Push-on receptacles		(HF10L)	Price £8.00 incl. V
Semiconduc	tors				Push-on receptacle covers		(HF12N)	LL P Transform
D1,2,3,4	1N5401	4 off (Q	(L82D)		Low cost knob	2 off	(YG40T)	Freepost T2 Gr
05,6,10	1N4148	3 off (Q	L80B)		Knobcap, red		(QY04E)	Roper Close Co
D7	Zener diode, 20V, 400mW	(Q	H21X)		Knobcap, yellow		(QY06G)	Tel: (0702) 547
								(U. (U, UL) 347

IC1 7812

TR2 TIP 41A

Now consider the switch in the "amps" mode. The anode of D14 is no longer held low, so the LED lights. The cathode of the red LED (D13) is no longer earthed, so it is extinguished. The -ve end of the meter is taken to "0V pre." The +ve end of the meter is taken to "OV post" via R21-RV3. Thus the meter is in effect an ammeter with a shunt (R1). R24 is included to provide a slight bias to the current limit control, since without it, the current limiting will operate when no current is being drawn at the output. Using the specified value of R24, a minimum current limit of about 20mA occurs, which is convenient for Printed circuit boards are used since they reduce the construction to a reasonably straightforward task. Details of the two boards are shown in figures 3 and 4. Figures 5 and 6 show wiring

Cliplite, red Cliplite, yello Wafercon plu Wafercon plu Wafercon soc	w 1g 12-way 1g 3-way :ket 12-way	3 off	(YH56L) (YH57M) (HL08J) (HL04E) (HL13P)
Wafercon soc Wafercon ter 6BA ½in. Bol 6BA ½in. C/3 4BA ½in. Bol 8BA ½in. C/3	ket 3∙way minal ts S screws tt	13 off	(HL09K) (HL14Q) (BF06G) (BF12N) (BF03D)
6BA Nuts 6BA Nuts 8BA Nuts 4BA ½in. thr Systoflex, 1m	eaded spacers	1.00	(BF18U) (BF19V) (LR71N) (BH03D)
Heavy duty v Heavy duty v Heavy duty v Connection v	vire, brown vire, blue vire, white vire	1m 1m 1m	(XR34M) (XR33L) (XR37S) (BL07H)
Spirawrap 6r Spirawrap 3r Cabinet feet 6BA Shakepr Printed circu	nm. nm oof	1m 1m 4 off	(BL58N) (BL57M) (FW19V) (BF26D) (GA20W)
Printed circu Heatsink bra Thermpath, s 6BA tag	it board, control cket small		(GA21X) (HQ00A) (BF29G)
Line Eurosoc Mains cable, Chassis Euro	ket 6A, 3-core plug	2m	(HL16S) (XR04E) (HL15R)
*The I.L.P. 32 Price £8.00 i I.L.P. Tran	2016 transformer (con ncl. VAT and P&P is sformers,	de WSP1) available	from:

aham Bell House, Interbury CT2 7EP

APRIL 1981 F&MM

Figure 3. Main printed circuit board.

and heatsink fixing details respectively.

Start by assembling the main PCB. First mount all resistors. Note R1 is a 3W wirewound type. It dissipates a fair amount of heat and it is advisable to leave a gap of about 1/8 in. between it and the PCB to aid dissipation. Next, mount RV1, D5, D8, IC2, IC3, TR4, TR6 and D14. Then attach the heatsink bracket to the PCB with 4 x 6BA, ½in. bolts. Preferably use shakeproof washers as well. Now mount ICI, TR1 as shown in the diagram, noting that the plastic bushes supplied in the TO-3 insulating kit are not used, the bolts provide the connection to the PCB

Slide a suitable length of systoflex over the fixing bolts to ensure that the bolt is insulated from the heatsink.

It now remains to fit the two wafercon plugs, the fuse clips and C1-4. These have been left until last to avoid obstruction of the board during assembly.

You now have a complete and (hopefully) operational PCB. Next, assemble the control PCB.

Again, begin by mounting the resistors, followed by C6,-9, RV2,-5, D9, D10. Now fit the sockets for IC4, IC5 and the fuse clips. Mount the toggle switch on the copper side of the PCB. Now, insert (but do not solder), the LED's, again from the copper side, taking care to observe correct polarity. Take the front panel and fit the two terminal posts to it (black on the left, red on the right). Also insert the four cliplites (LED clips). The yellow cliplite should be fitted below the toggle switch. Tighten the nuts holding the terminal posts securely and fit the 4BA ½in. spacers to them. Now offer the PCB up to the front panel securing it in place by means of the nut on the toggle switch and two screws through the PCB into the threaded spacers. The LED's on the PCB should now be manoeuvered into the cliplites. A small amount of twisting of the cliplites aids insertion of the LED's. Use a small soldering iron to temporarily solder the LED's into place; final soldering can be achieved with the board removed from the front panel again. It is only necessary to fix the LED positions so that the spacing of the PCB is correct. Remove the board from the front panel, fix and solder RV6, RV7 and mount C10. Now make the wiring connections to the PCB holes numbered 1 to 9 on the main PCB. Fit two wires to holes 10 & 11 but keep them separate from the rest of the wires, which should be cut to a length of approximately 8 inches and grouped using 6mm spirawrap.

Figure 5. PSU wiring details.

Figure 6. Heatsink fixing details.

TABLE 1. PSU WIRING CHART

FROM	ТО	WIRE TYPE	FUNCTION
*A1 A2 A3 A4 A5 A6 A7 A8 A10 A11 A12 B10 *B11 A13 A15	Meter Illumination B6 B1 B8 B7 B5 B9 Meter Illumination B4 B2 B3 Meter -Ve Meter +Ve Trans. Secondary Trans. Secondary	702 702 702 702 702 702 702 3202 3202 32	Meter Illumination +12V Thermal Shutdown LED Current Limit LED Current Drive Voltage Drive "OV PRE" Meter Illumination "OV POST" OUTPUT +V O/P Return Metering Metering AC Supply IN AC Supply IN
Europlug Earth Rear Panel Front Panel Europlug Pin L	Earth Tag Earth Tag Earth Tag Fuse Holder	3202 3202 3202 3202	Earth Earth Earth AC Live (L)
Fuse Holder	DP SW L	3202	AC Live
Pin N DPSW OUT S AC in Earth	DP SW N Trans. Primary Farth Tag on	3202 Trans. lead	AC Neutral (N)
lead	rubber foot	3202	Main Unit Earth
NOTES 1 *	A ref <mark>ers</mark> to main PCB, WIRE TYPE refers to c	*B refers to contrable type, e.g. 702	ol PCB. 2 means cable comprising

WIRE TYPE refers to cable type, e.g. 702 means cable comprising 7 strands of 0.2mm diameter wire (commercial 3 amp. cable)

E&MM APRIL 1981

Fit the 12-way wafercon socket to the end of this wiring loom, connecting it as shown in Figure 5 and Table 1. The two wires from pins 1 & 8 of the wafercon socket provide the 12V supply for the meter illumination. The wires to holes 10 & 11 of the main PCB are the meter coil connections.

If the 3-pin wafercon socket is now fitted to the transformer secondary wires, and the mains connected temporarily to the primary, a check of the PCB's can be crried out. Plug the transformer to the main board. Switch on and check that pin 1 of the 12-way wafercon plug is +12V with re-spect to pin 10, and that the voltage at the input terminal of IC1 is approximately +20V. If the results of these checks are satisfactory, you are unlikely to have any faults serious enough to damage the other PCB, so plug it in and test the unit with a voltmeter across the output to ensure correct operation. If all is well, switch off and proceed with the rest of the construction.

Fit the four rubber feet and mount the transformer to the base panel of the case. Fit the Europlug to the rear panel with two 6BA ½in. countersunk head screws, and a 6BA tag, to provide rear panel earthing.

Fit the meter to the front panel and snap the mains DP rocker switch into place. Fix a 6BA tag under one of the meter fixing screws to provide front panel earthing. Terminate the front and rear earthing wires with 6BA tags and secure them to one of the foot fixing screws, using a second nut to ensure a secure contact. Also attach a tag to this screw, and wire it to the earth terminal of the Europlug.

Take the heatsink bracket of the PCB and smear the rear face thinly with thermpath. Apply the bracket to the rear panel, and insert the 8BA mounting screws, putting the nuts on the ends. These nuts should have two opposite sides filed slightly, so they fit the heatsink mounting plots. Smear thermpath thinly onto the rear faces of the heatsinks; then slide the heatsinks onto the nuts,

and tighten the screws firmly.

Wire the meter movement to the wires from the control PCB. Pin 10 should be connected to the -ve terminal, pin 11 to the +ve terminal. Wire the meter illumination terminals (the small ones) to the two wires from the 12-way wafercon socket.

Finally, attach the control PCB to the front panel again, assemble the case, make up the mains lead, and check the unit for correct operation.

Setting Up

Assuming you now have a functioning power supply, it only remains to set up the maximum output voltage, maximum current limit, thermal shutdown temperature, and meter calibration control circuits.

See Figure 4 for RV2 and RV5 locations. RV1 is located on the main printed circuit board. To avoid confusion, it is recommended that you adopt the following setting-up procedure.

1. Connect a voltmeter across the PSU output. Rotate RV2 fully counter-clockwise. Set the voltage control (RV6) fully clockwise and adjust RV2 until the voltmeter indicates 25V.

2. Leaving the voltage control at maximum, but with the current limit control (RV7) and the preset, RV5, fully counter-clockwise, connect an ammeter with a fsd of at least 2.5A across the PSU output. Set RV7 to maximum, and adjust RV5 until a reading of 2.5A is obtained on the external ammeter.

3. Disconnect the external meters, set the monitor switch to VOLTS, set the voltage control to maximum, and adjust RV4 until the internal meter reads 25V.

4. Set the monitor switch to AMPS, short the output terminals, set the current limit control to maximum and adjust RV3 until the internal meter indicates 2.5A. 5. Keep the output shorted, and the voltage and current limit controls set to maximum (fully up). Rotate RV1 clockwise until the thermal shutdown lamp lights. Keep backing off the control in small steps, waiting in each case for the temperature to "catch up." When the heatsink temperature is approximately 80 degrees centigrade, or if a thermometer is not available, when the temperature feels to be as high as is advisable, rotate RV5 clockwise until thermal shutdown occurs. With the specified resistor values and thermistor, 80 degrees centigrade is the limit temperature when RV1 is set fully counter-clockwise. Setting up is now complete. E&MM

\$ — CLEF KITS MASTER RHYTHM As published in Practical Electronics FULLY PROGRAMMABLE TWENTY-FOUR PATTERNS EIGHT PARALLEL TRACKS TWELVE INSTRUMENTS SEQUENCE OPERATION Kit includes all components to build this comprehensive User Program-mable Rhythm Generator in an attractive metal case with finished KIT: £79 BUILT: £114 case, hardware and wire. Specialists since 1972 STRINGS £169 PIANOS Stage and Domestic Types Versatile String Synthesiser with split keyboard facility and impressive voices, The most advanced 49 note organ diode keyswitch plus twoform of Touch Sensiphase Chorus. tive action simulat-**ROTOR-CHORUS** £89 ing piano keyinertia Two-speed Rotor simulation plus Three Phase Chorus on a single 8" x 5" PCB. Mains PSU included. by patented technique. Four mixable voices for serious tone **KEYBOARDS** variation plus elec-Square Front with two hole actuator tronic chorus and easily cut. flanger effects See lists for Cabi-49 NOTE-£25; 73 NOTE-£39 Six Octaves £207 nets, P.A. & Manu-88 NOTE-£47 71/4 Octaves £232 facture. **OUR PRICES INCLUDE VAT, CARRIAGE & INSURANCE** Please send s.a.e. for complete lists or use our telephone BARCLAYCARD service Very competitive EXPORT rates - in Australia please contact JAYCAR in Sydney ALL INSTRUMENTS MAY BE SEEN IN OUR SHOWROOM CLEF PRODUCTS (Electronics) LTD., Dept. M., EMM/2 44A BRAMHALL LANE SOUTH, BRAMHALL, STOCKPORT, CHESHIRE SK7 1AH. - TEL: 061-439 3297 **VOLTAGE REGULATORS** MINI LEDs TRANSFORMERS versions. 78L series 100mA pos. 79L series 100mA neg. 78 series 1A pos. -Red Green Yellow Red Green Yellow LM317T adjustable 1.2V-37V 1.5A 0.1 0.1 0.2 0.2 0.2 0.2 TRANSISTORS RECTIFIERS NA001 (A-50V 4p NA001 (A-400V 6p NA004 (A-400V 6p 1N4004 (A-400V 6p 1N5404 (A-400V 6p 1A 50V Bridge 19p 1A 50V Bridge 19p 1A 400V Bridge 2p 3A 50V Bridge 48p 3A 400V Bridge rectifiers are miniature FCB mounting types) 8p 8p 9p BC182 BC182L Standard mains primaries 240V a.c 00mA seconda 6-0-6V 9-0-9V 0.2" rellow 12 0.2" clips 3 Rect. Red 16 Rect. Green 16 Rect. Yellow 16 Flat Race Rect. Triangular, Arrow-head. Square Red 17 BC212L BC337 BFY50 TIP31A TIP32A 2N3055 2N3442 9p 16p 20p 40p 40p 40p 20p 20p 80p 85p 90p 12-0-12V 17p 20p 20p Red RESISTORS 2N3819 Green Rec. Yellow 1/4W 10 ohm-10M E12 series CMOS ZENER DIODES 19p 19p 18p 1000 42p 22p 17p 18p Pack of 10 (one value) 10 Packs 4023 400mW3 3V-30V 8p 1 3W/5-27V 15p 10p 18p 17p 19p 17p 38p 75p 35p 70p 21p £1.30 26p 20p 54p 24p 4007 4026 4077 80p 1.30 40p 50p 80p 38p 40p £1.08 (10 values) 4011 4027 4028 4081 4012 4013 4015 4093 4501 4511 4514 4516 DISPLAYS 4040 4049 4050 4060 DL304 Red 0.3" c.c. pin compatible with DL704 **75p** DL307 Red 0.3" c.a. pin compatible with DL707 **75p** DL727 Dual 0.5" c.a. Red **£1.50** MP463 0.5" Red 4-digit c.c. multiplexed **£2.20** 90p £1.80 £1.80 4016 4017 D.I.L. I.C. SOCKETS 8 pir 14 pin 16 pin 18 pin
 24 pin
 20p

 28 pin
 25p

 40 pin
 36p

 con Pins
 50p/100
 Solder TRIACS BOXES V Plastic Case (Texas) 3A TIC206D 8A TIC226D 12A TIC236D 16A TIC236D 16A TIC246D 25A TIC263D Moulded in high impact ABS. Supplied with lids and screws. 8lack. 49p 58p 80p 95p 190p B1 75 x 56 x 35 B2 95 x 71 x 35mm B3 115 x 95 x 37mm 65p 85p 95p 80p 65p 18p 6A with trigger Q4006LT 8A isolated tab TXAL226B VMOS POWER FETS VN10KM 0.5A/60V (T092) VN66AF 2A/60V (T0220) 52p 88p MOC3020 0.6A/400V opto Isolated £1.10

ALL COMPONENTS ARE BRAND NEW AND TO SPECIFICATION ADD 50p P&P and 15% VAT TO TOTAL. OVERSEAS CUSTOMERS ADD £1 50 (Europe) £4 (elsewhere) for P&P Send s.a.e for price list and with all enquiries Callers welcome 9 30 5 00 (Mon-Fri) 10 00-4 00 (Sat)

TK Electronics

(EM) 11 Boston Road, London V7 3SJ. TEL. 01-579 9794/2842

E&MM

CAR IGNITION TIMING STROBE

by Michael Maurice

An ideal unit for improving your car's engine performance

n order to gain the maximum efficiency, economy and performance from a petrol engine, the ignition must be set to fire at a certain point in the firing sequence; this is normally just before the piston reaches the top of the compression stroke (known as top dead centre). A few degrees out and the fuel consumption and performance will suffer with possible damage to the engine. An engine in which the ignition is retarded will suffer from lack of power and possibly overheat, while an engine in which ignition

is advanced will give off a metallic knocking sound (PINKING). There will also be undue strain put on the pistons and crankshaft bearings, which could eventually lead to expensive engine damage.

One way of setting the ignition timing is to rotate the engine either by hand or on the starter, until the timing marks on the crankshaft pulley or the engine flywheel line up with the corresponding marks on the engine; then rotate the distributor body until the points just open. This is not an accurate method, although useful for initially setting the timing. A more accurate setting can be obtained using the unit described.

The unit has three leads — two connect to the battery and one to the spark plug which is to be used for setting the timing. The strobe emits a flash of light when the spark plug fires and this is used as a basis on which to check and set the timing. Commercial units

24

are available which perform the same function, but they either work off the mains or utilise a neon lamp whose light output is

expensive. Circuit

The unit described is a Xenon tube strobe which runs off the car's 12 volt battery. Figure 1 shows the complete circuit diagram.

sometimes insufficient. Com-

mercial units which utilise a

Xenon strobe tend to be

The heart of the circuit is an inverter, this is designed to step up the 12 volts DC from the car battery to approximately 400-500 volts. TR2, TR3, R3, R4, R5, R6, C2 and C3 form a simple multivibrator oscillating at approximately 800Hz. The waveform at the junction of TR2, R3, R2, C2, is 180° out of phase with that at the junction of TR3, R6, R7, C3. TR1 and TR4 are power transistors used in common emitter configuration. The outputs are fed through a 6-0-6V miniature mains transformer wired in reverse. The output from the 240 volt winding is rectified by D3-D6, smoothed by C4, and fed to the Xenon tube. The Xenon tube fires

on receiving the spark plug pulse. D1 is used to protect against accidental reverse connection of the supply. D2 is an LED and indicates correct connection to the battery. R8 is used so that in the event of arcing of the HT supply to some other component, the HT to the engine is not interrupted as this would cause the engine to severely misfire and run unevenly.

Construction

The Ignition Timing Strobe is built into two veroboxes bolted together. Each verobox has its own PCB. The first box, the bigger of the two, is where the cables enter the unit. The PCB holds the oscillator, power stage and transformer; the second PCB in the smaller box holds the bridge rectifier, the smoothing capacitor, R8, and the Xenon tube. The Xenon tube is mounted within the remains of a flashcube, this is to help in reflecting the light. You are strongly advised to follow the constructional details, in particular using the plastic boxes; the use of

e

HT BRD.

C

STROBE

UN

T BOARD

E&MM

-**`**₽

MN N≥∞

metal cases may lead to arcing to the case and electric shocks may occur. Begin by building up the PCB's as shown in Figure 2.

To mount the Xenon tube cut open a used flashcube and cut away one of the four sections of the reflective plastic after removing it from the flashcube base. Cut a hole through the top of the reflective section (where the top of the bulb would have been) to fit the tube. With the bulb removed, mix up some filler as in the manufacturer's instructions. Car body filler was used in the prototype to mount the reflective section securely on the PCB. Allow the filler to dry before proceeding to build up the board. The Xenon tube is mounted as shown in Figure 3; use an insulated wire on the trigger lead and remember to observe polarity.

Cut or drill the holes for the cables, LED, fuseholder and PCB's, and those for bolting the boxes together. Observe the fact that the mounting holes for the

Figure 4. 'T'-piece construction.

PCB are spaced at different distances at each end of the box in both boxes and cut the holes in the end faces accordingly. Now bolt the two boxes together using ½ in. 4 BA bolts and nuts. Assemble the fuse holder and LED to the large case and then mount the PCB's in the boxes. Wire the unit as in Figure 2. If it is desired, the two units can be left separated; just extend the cable from the transformer. You will find it more convenient, however, to build the project up in one unit.

The next constructional step is. to build the take-off point for the spark plug. This is essentially a 'T' piece of HT wire with one end made up of spacers, a 1½ in. screw and the cap of a spare spark plug. The other end is fixed on to a spark plug cap and the third end goes to the unit. Solder the wires at the T-junction and cover with insulation tape. One layer is not enough - if necessary use a whole reel. During operation there is 20,000 volts at this point. The assembly diagram is shown in Figure 4.

The final part of construction is to cut the hole in the top of the smaller box for the strobe. When cut cover with a piece of clear acetate or plastic.

Using the unit

Setting the ignition timing on most cars is quite straightforward, but the details vary from one make and model of a car to another. Referring to the manufacturer's handbook, locate the following:—

1. The cylinder plug which is used to determine the timing setting. 2. The appropriate ignition timing marks.

3. The adjustment on the distributor.

Before setting the timing it is recommended to take the distributor cap off the distributor and with a set of feeler gauges check the gap in the points as in the manufacturer's specification. If the points have not been changed for some while then it is always wise to replace them, cost approximately £1. Replace the cap of the distributor in the correct position and see that it is held down tight.

Figure 3. Timing strobe wiring diagram.

With the engine stopped and ignition off, remove the appropriate HT lead from the spark plug and connect the timing strobes HT lead in its place. Connect the unit to the battery. If all is well, the red LED will come on. A faint whistling noise may be heard from the unit.

Following the manufacturer's instruction start the engine and run it at the recommended speed. Also on some cars it may be necessary to remove the vacuum advance pipe, again this information should be given in the handbook.

Flashes of light should be given out by the strobe, if the engine is running at high revs, the light will appear to be continuous. Shine the light at the timing marks, which should appear to be aligned. Again the timing marks

PARTS LIST

Resistors - all 5% ½W carbon

R1,2,3,6,7 R4,5 R8	1k0 10k 4k7	5 off 2 off	(S1K0) (S10K) (S4K7)
Capacitors C1 C2,3 C4	100uF 40V axial elect. 68nF polyester 100nF 600V mixed dielectric	2 off	(FB50E) (BX75S) (BX67X)
Semiconduc TR1,4 TR2,3 D1 D2 D3-6 LP1	tors MJE3055 BC107 IN5400 0.2in. LED, red IN4007 Xenon tube	2 off 2 off 4 off	(QH56L) (QB31J) (QL81C) (WL27E) (QL79L) (YQ62S)
Miscellaneo	us Verobox 102		(LH01B)
T1	Verobox 106 Transformer 240v Prim. 0-6, 0-6v Sec. 6VA Basel fuse bolder, 1Kin	2	(LL03D) (WB06G) (RX97E)
FS1	Fuse, 1A, 1/kin, O.2in, LED clip 4BA ½in, Bolts 4BA 1/kin, Bolts 6BA ¼in, Bolt 4BA Nuts 4BA Solder tags 4BA ½in, spacers Mains cable, 3A, 2-core		(WR11M) (YY40T) (BF03D) (LR52G) (BF05F) (BF17T) (BF28F) (FW32K) (XR47B)
	Used flashcube Spark plug cap Alligator clip, red Alligator clip, black Main PCB HT PCB		* (HF24B) (HF23A) (GA22Y) (GA23A)

*Obtainable from most motorist's shops

and their location will vary from car to car. On some cars there is a steel ball in the flywheel and this should line up with a recess in the timing aperture. If the timing marks are aligned, the timing is correct and no further adjustment is necessary. If, however, they are not aligned, slacken the nut on the distributor and turn the distributor in the required position until the timing marks are aligned. Switch off the engine, remove the HT leads and replace the HT lead from the distributor on to the spark plug. Disconnect the strobe supply from the battery. Do not remove these leads while the engine is running or you may receive an electric shock.

CAUTION:

The fan may appear to be stationary or revolving slowly when viewed in the light from the timing strobe — this, however, is not the case and injury may result if you put your hand in the vicinity of the fan or fan belt whilst the engine is running.

£8.75

EVERYTHING IN STOCK FOR THE SPEAKER CONSTRUCTOR! BAF, LONG FIBRE WOOL. FOAM, CROSSOVERS, FELT PANELS, COMPONENTS, SPEAKER STANDS & BRACKETS ETC. LARGE SELECTION OF GRILLE FABRICS (send 22p in stamps for fabric samples).

HI-FI DRIVE UNITS

AUDAX HD12 9025

A00AN 11012.0020	. 20.70
AUDAX HD11P25EBC	£7.50
AUDAX HD20825H4	£14.95
AUDAX HD13D34H	£12.95
AUDAX HD24S45C	£21.95
AUDAX WER15S	£23.95
CHARTWELL CEA205 pair	£61 25
COLES 4001	£7 65
COLES 3000	67.65
COLES 3100	£7.95
COLES CE2000 6'	£14.95
CELESTION HE1300 II	612.50
CELESTION HF2000	£12.50
DALESFORD D10-tweeter	.£8.45
DALESEORD D10 ferrofluid	£8.95
DALESEORD D30/110	611 25
DALESEORD D50/153	612 25
DALESCORD DE0/200	612.25
DALESFORD D100/250	630.05
DALESFORD DIOU 250	125.33 125.75
DALESFORD DOO	1.30.70
DECCA London Horn	179.95
ELAC 6NC204 61/2"	£7.50
ELAC 8NC298 8"	£8.95
EMI type 350, 13" x 8", 4 ohm	£9.45
EMI 14A /770, 14" x-9", 8 ohm	£19.50
ISOPHON KKR R	68.15
ISOPHON KK10 8	68.45
	120.405
JORDAN WATTS Module	124.95
JORDAN WATTS Module Mk III	128.50
JORDAN WATTS HE kit	£10.50
JORDAN 50mm unit	£33.50
JORDAN crossover pair	£34.00
KEF T27	£9.45
KEF B110	£12.25
KEF 8200	£13.50
KEF B139	£27 75
KEF DN12	£9.40
KEF DN13	£6.75
LOW/THER PMAG	682.00
LOWTHER PINO	667 76
LOWTHER FIND WIKT	10/ /3
LOWINER PINIZ	199.00
PEERLESS KO10DT	£10.95
PEERLESS DT10HFC	£10.50
PEERLESS KO40MRF	£13.60
RICHARD ALLAN CG8T	£13.50
RICHARD ALLAN CG12T Super	£29.50
RICHARD ALLAN HP8B	£20.75
RICHARDALLAN LP88	£14.50
RICHARDALLAN HP128	£33.50
RICHARDALLAN DT20	£9.95
RICHARDALLAN DT30	£10 75
SEAS H107	£9.95
SEAS H211 ferrofluid	£10.95
SHACKMAN ES word	126.00
SHACKMAN ES units pair	6170
or Advision All Co units with Cabs. pair	1110

CELESTION G12/80CE L24.50 CELESTION G12/125CE f42.00 CELESTION G15/100CE f37.95 CELESTION G15/100CE f38.50 CELESTION G18/200 f64.75 CELESTION POWERCEL 12/150 f88.00 FANE CLASSIC 45.12" f13.95 FANE CLASSIC 55.12" f13.95 FANE CLASSIC 55.12" f13.95 FANE CLASSIC 55.15" f26.00 FANE CLASSIC 150.15" f24.00 FANE CLASSIC 150.15" f24.00 FANE CLASSIC 150.15" f24.50 FANE CLASSIC 150.15" f24.50 FANE CLASSIC 150.15" f24.50 FANE CLASSIC 150.15" f24.50 FANE GUITAR 800.12" f26.75 FANE BASS 100.15" f39.00 FANE CRESCENDO 12E 12" f57.50 FANE CRESCENDO 12E 15" f44.70 FANE COLOSUS 18E 15" f99.95 FANE COLOSUS 18E 15" f99.95 FANE COLOSUS 18E 15" f39.90 FANE J105 f23.90 GAUSS 3181A 10" 150 watts f115.00 GAUSS 4281	CELESTION G12/50TC	9.50
CELESTION G12/125CE £23.73 CELESTION G15/100CE £37.95 CELESTION G15/100CE £37.95 CELESTION G15/100TC £88.00 CELESTION G18/200 £64.75 CELESTION POWERCEL 12/150 £66.00 CANE CLASSIC 55 12" £13.95 FANE CLASSIC 55 12" £13.95 FANE CLASSIC 55 15" £26.00 FANE CLASSIC 150 15" £37.95 FANE CLASSIC 150 15" £37.95 FANE CLASSIC 150 15" £37.95 FANE CLASSIC 150 15" £47.95 FANE CLASSIC 150 12" £26.25 FANE GUITAR 80L 12" £28.75 FANE GUITAR 80B/2 12" £27.55 FANE BASS 100 15" £39.00 FANE CRESCENDO 12E 12" £75.50 FANE CRESCENDO 12E 15" £49.95 FANE CRESCENDO 18E 18" £107.00 FANE CLOSSUS 18E 15" £99.95 FANE COLOSSUS 18E 15" £99.95 FANE COLOSSUS 18E 15" £99.95 FANE COLOSSUS 18E 15" £99.95 FANE CLASSIC 100 12" £25.00	CELESTION G12/80CE	4.50
CELESTION G15/100CE £73.95 CELESTION G15/100CE £37.95 CELESTION G15/100CE £38.50 CELESTION POWERCEL 12/150 £66.00 CELESTION POWERCEL 15/250 £88.00 FANE CLASSIC 45 12" £13.95 FANE CLASSIC 55 12" £15.50 FANE CLASSIC 25 12" £15.50 FANE CLASSIC 125 18" £43.95 FANE CLASSIC 175 18" £43.95 FANE CLASSIC 175 18" £43.95 FANE CLASSIC 175 18" £43.95 FANE GUITAR 80B/2 12" £26.25 FANE GUITAR 80B/2 12" £26.75 FANE BOUTAR 80B/2 12" £26.75 FANE BASS 100 15" £39.00 FANE CRESCENDO 12E 12" £27.50 FANE CRESCENDO 18E 18" £107.00 FANE COLOSSUS 15E 15" £99.95 FANE J73 £10.90 FANE J74 £16.00 GAUSS 3181A 10" 150 watts £146.00 GAUSS 4881 15" 300 watts £146.00 GAUSS 4882 18" 400 watts £120.00 GOODMANS 8PA £50.50 GOOD	CELESTION G12/1001C	2.00
CELESTION G15/100TC £38 50 CELESTION G18/200 £64.75 CELESTION POWERCEL 15/250 £88.00 FANE CLASSIC 45 12" £13.95 FANE CLASSIC 55 12" £13.95 FANE CLASSIC 45 12" £13.95 FANE CLASSIC 55 12" £13.95 FANE CLASSIC 150 15" £37.95 FANE CLASSIC 150 15" £43.95 FANE CLASSIC 175 18" £47.95 FANE CLASSIC 175 18" £47.95 FANE CLASSIC 175 18" £47.95 FANE CLASSIC 100 12" £28.75 FANE DISCO 100 12" £28.75 FANE CRESCENDO 15E 15" £99.95 FANE CRESCENDO 15E 15" £99.95 FANE CRESCENDO 18E 18" £107.00 FANE CRESCENDO 18E 18" £107.00 FANE J73 £10.90 FANE J04 £15.95 FANE CLOSUS 18E 18" £107.00 FANE J73 £10.90 GAUSS 4281 12" 300 watts	CELESTION G15/100CE	7 95
CELESTION G18/200 £64.75 CELESTION POWERCEL 12/150 £68.00 CELESTION POWERCEL 15/250 £88.00 FANE CLASSIC 45 12" £13.95 FANE CLASSIC 55 12" £115.50 FANE CLASSIC 55 12" £19.75 FANE CLASSIC 150 15" £26.00 FANE CLASSIC 150 15" £26.00 FANE CLASSIC 150 15" £47.95 FANE CLASSIC 150 15" £27.25 FANE GUITAR 80L 12" £28.75 FANE GUITAR 80B/2 12" £27.25 FANE BASS 100 15" £39.00 FANE CRESCENDO 12E 12" £57.50 FANE CRESCENDO 15E 15" £94.75 FANE COLOSUS 18E 18" £107.00 FANE COLOSUS 18E 15" £99.95 FANE COLOSUS 18E 15" £99.95 FANE COLOSUS 18E 15" £15.00 GAUSS 3181A 10" 150 watts £146.00 GAUSS 4281 12" 300 watts £146.00 GAUSS 4881 15" 300 watts £162.00 GAUSS 4881 15" 300 watts £162.00 GAUSS 4881 15" 300 watts £162.00 GAUSS 4882 18" 400 watts £220	CELESTION G15/100TC £3	8 50
CELESTION POWERCEL 12/150 £66.00 CELESTION POWERCEL 15/250 £88.00 FANE CLASSIC 45 12" £13.95 FANE CLASSIC 55 12" £15.50 FANE CLASSIC 80 12" £13.95 FANE CLASSIC 55 12" £16.00 FANE CLASSIC 150 15" £26.00 FANE CLASSIC 125 18" £43.95 FANE CLASSIC 175 18" £47.95 FANE GUITAR 80B/2 12" £26.25 FANE GUITAR 80B/2 12" £27.25 FANE GUITAR 80B/2 12" £27.55 FANE BASS 100 12" £28.75 FANE BASS 100 12" £28.75 FANE BASS 100 15" £39.00 FANE CRESCENDO 12E 12" £57.50 FANE CRESCENDO 12E 15" £99.95 FANE COLOSSUS 18E 18" £107.00 FANE J104 £15.95 FANE J104 £15.95 FANE J104 £15.95 GAUSS 3181A 10" 150 waits £162.00 GAUSS 4581 15" 300 waits £162.00 GAUSS 4882 18" 400 waits £162.00 GAUSS 4882 18" 400 waits £162.00 GOOD	CELESTION G18/200 £6	4.75
CELESTION POWERCEL 15/250 £88.00 FANE CLASSIC 45 12" [13.95 FANE CLASSIC 50 12" £15.50 FANE CLASSIC 80 12" £19.75 FANE CLASSIC 125 18" £43.95 FANE CLASSIC 125 18" £43.95 FANE CLASSIC 175 18" £47.95 FANE CLASSIC 175 18" £47.95 FANE CLASSIC 175 18" £26.25 FANE GUITAR 80B/2 12" £27.25 FANE DISCO 100 12" £28.75 FANE BASS 100 15" £39.00 FANE CRESCENDO 12E 12" £27.45 FANE CRESCENDO 15E 15" £74.50 FANE CRESCENDO 15E 15" £74.50 FANE COLOSSUS 15E 15" £99.95 FANE J04 £10.90 FANE J104 £15.95 FANE J104 £15.95 FANE J104 £15.95 GAUSS 4581 15" 300 watts £146.00 GAUSS 4581 15" 300 watts £146.00 GAUSS 4581 15" 300 watts £162.00 GOODMANS 8PA £5.05 GOODMANS 8PA £5.05 GOODMANS 18P £24.95	CELESTION POWERCEL 12/150 £6	6.00
FANE CLASSIC 45 12" f13.95 FANE CLASSIC 55 12" f15.50 FANE CLASSIC 85 15" f26.00 FANE CLASSIC 150 15" f37.95 FANE CLASSIC 175 18" f43.95 FANE GUITAR 808/2 12" f26.25 FANE DISCO 100 12" f28.75 FANE BASS 100 15" f39.00 FANE CRESCENDO 12E 12" f57.50 FANE CRESCENDO 15E 15" f74.50 FANE CRESCENDO 18E 18" f10.700 FANE J44 f6.90 FANE J104 f15.95 FANE J104 f15.95 FANE J105 f23.95 GAUSS 3181A 10" 150 watts f116.00 GAUSS 4581 15" 300 watts f162.00 GAUSS 4581 15" 300 watts f162.00 GAUSS 4581 15" 300 watts f162.00 GODMANS PP12 f22.50 GOODMANS 8PA f5.05 GOODMANS 118" 400 watts <td< td=""><td>CELESTION POWERCEL 15/250 . £8</td><td>8.00</td></td<>	CELESTION POWERCEL 15/250 . £8	8.00
FANE CLASSIC 55 12" f15.50 FANE CLASSIC 80 12" f19.75 FANE CLASSIC 150 15" f26.00 FANE CLASSIC 150 15" f26.00 FANE CLASSIC 150 15" f26.00 FANE CLASSIC 150 18" f43.95 FANE CLASSIC 175 18" f47.95 FANE GUITAR 80L 12" f26.25 FANE DISCO 100 12" f28.75 FANE BASS 100 15" f39.00 FANE CRESCENDO 12E 12" f57.50 FANE CRESCENDO 18E 15" f74.50 FANE CRESCENDO 18E 18" f94.75 FANE COLOSSUS 15E 15" f99.95 FANE COLOSSUS 15E 15" f99.95 FANE COLOSSUS 15E 15" f99.95 FANE J103 f10.90 FANE J103 f10.90 FANE J104 f15.90 GAUSS 3181A 10" 150 watts f115.00 GAUSS 4881 12" 300 watts f146.00 GAUSS 4882 18" 400 w	FANE CLASSIC 45 12"	3.95
FANE CLASSIC 80 12" [19,79] FANE CLASSIC 150 15" [26,00] FANE CLASSIC 150 15" [43,95] FANE CLASSIC 125 18" [443,95] FANE CLASSIC 125 18" [47,95] FANE GUITAR 80L 12" [26,25] FANE GUITAR 80B/2 12" [26,25] FANE GUITAR 80B/2 12" [26,75] FANE BASS 100 12" [27,25] FANE BASS 100 12" [27,57] FANE BASS 100 15" [74,50] FANE CRESCENDO 12E 12" [57,50] FANE CRESCENDO 15E 15" [74,50] FANE COLOSSUS 18E 18" [107,00] FANE J33 [10,90] FANE J44 [16,90] FANE J105 [23,95] GAUSS 3181A 10" 150 waits [115,00] GAUSS 4581 15" 300 waits [162,00] GAUSS 4581 12" 300 waits [162,00] GAUSS 4581 12" 300 waits [162,00]	FANE CLASSIC 55 12"	5.50
FANE CLASSIC 185 15 £28.00 FANE CLASSIC 125 18" £43.95 FANE CLASSIC 125 18" £43.95 FANE CLASSIC 125 18" £43.95 FANE GUITAR 80L 12" £26.25 FANE GUITAR 80B/2 12" £27.25 FANE GUITAR 80B/2 12" £26.75 FANE BASS 100 15" £39.00 FANE CRESCENDO 12E 12" £57.50 FANE CRESCENDO 15E 15" £74.50 FANE CRESCENDO 18E 18" £107.00 FANE COLOSSUS 18E 18" £107.00 FANE J44 £6.90 FANE J104 £115.95 FANE J104 £115.95 FANE J104 £15.95 GAUSS 3181A 10" 150 watts £162.00 GAUSS 4581 15" 300 watts £162.00 GAUSS 4583 15" 400 watts £162.00 GAUSS 4583 15" 400 watts £162.00 GOODMANS 8PA £5.05 GOODMANS B112 £22.0.00 GOODMANS B112 £24.95 GOODMANS B112 £24.95 GOODMANS B112 £24.95 GOODMANS HIFAX 50HX £21.85	FANE CLASSIC 80 12"	9.75
FANE CLASSIC 125 18" £43 95 FANE CLASSIC 175 18" £43 95 FANE CLASSIC 175 18" £47 95 FANE GUITAR 80B/2 12" £27.25 FANE DISCO 100 12" £28.75 FANE BASS 100 15" £39.00 FANE FASS 12" £26 75 FANE PASS 100 15" £39.00 FANE FASS 12" £26 75 FANE CRESCENDO 12E 12" £7.450 FANE CRESCENDO 15E 15" £79.95 FANE COLOSSUS 15E 15" £99.95 FANE J104 £15.95 FANE J104 £15.95 FANE J105 £23.95 GAUSS 3181A 10" 150 watts £115.00 GAUSS 4581 15" 300 watts £162.00 GAUSS 4581 15" 300 watts £162.00 GAUSS 4581 15" 300 watts £162.00 GOODMANS BP12 £22.50 GOODMANS P12 £22.50 GOODMANS BP12 £24.95	FANE CLASSIC 05 15	7 95
FANE CLASSIC 175 18" £47.95 FANE GUITAR 80L 12" £26.25 FANE DISCO 100 12" £28.75 FANE DISCO 100 12" £28.75 FANE BASS 100 15" £39.00 FANE CRESCENDO 12E 12" £57.50 FANE CRESCENDO 12E 15" £74.50 FANE CRESCENDO 18E 18" £94.75 FANE COLOSSUS 15E 15" £99.95 FANE COLOSSUS 15E 15" £99.95 FANE COLOSSUS 15E 15" £99.95 FANE COLOSSUS 15E 15" £107.00 FANE J104 £15.95 FANE J105 £23.95 FANE J105 £23.95 GAUSS 4581 12" 300 watts £1162.00 GAUSS 4583 15" 400 watts £162.00 GAUSS 4583 15" 400 watts £220.00 GOODMANS BPA £5.05 GOODMANS BPA £5.05 GOODMANS GR12 £24.55 GOODMANS HIFAX 50HX £21.85 GOODMANS HIFAX 100HX £24.45 McKENZIE C12100GP £4.45 McKENZIE C12100GP £4.45	FANE CLASSIC 125 18"	3.95
FANE GUITAR 80L 12" f26.25 FANE GUITAR 80B/2 12" f27.25 FANE DISCO 100 12" f28.75 FANE BASS 100 15" f29.05 f28.75 FANE BASS 100 15" f29.05 f28.75 FANE CRESCENDO 12E 12" f57.50 FANE CRESCENDO 15E 15" f74.50 FANE CRESCENDO 18E 18" f94.75 FANE COLOSSUS 18E 15" f99.95 FANE COLOSSUS 18E 15" f99.95 FANE COLOSSUS 18E 15" f107.00 FANE J13 f10.90 FANE J104 f15.95 FANE J105 f23.95 GAUSS 4281 12" 300 watts f162.00 GAUSS 4581 15" 300 watts f162.00 GAUSS 4581 15" 300 watts f162.00 GAUSS 4581 15" 400 watts f22.50 GOODMANS BPA f5.05 GOODMANS DI12 f22.50 GOODMANS CR12 f24.95 GOODMANS HIFAX 100HX f24.45 McKENZIE C12100TC f24.45 McKENZIE C12100TC f24.45 McKENZIE C12100TC	FANE CLASSIC 175 18"	7.95
FANE GUITAR 808/2 12" £27.25 FANE DISCO 100 12" £28.75 FANE PA85 12" £26 75 FANE BASS 100 15" £39.00 FANE CRESCENDO 12E 12" £57.50 FANE CRESCENDO 15E 15" £74.50 FANE CRESCENDO 18E 18" £94.75 FANE CRESCENDO 18E 18" £107.00 FANE CALCOSSUS 15E 15" £79.95 FANE COLOSSUS 18E 18" £107.00 FANE J44 £6.90 FANE J104 £115.95 FANE J104 £115.95 FANE J105 £23.95 GAUSS 4381 12" 300 watts £146.00 GAUSS 4581 15" 300 watts £162.00 GAUSS 4882 18" 400 watts £162.00 GAUSS 4882 18" 400 watts £1220.00 GOODMANS 8PA £5.55 GOODMANS 8PA £5.55 GOODMANS 18P £24.95 GOODMANS HIFAX 50HX £24.45 MCKENZIE C12100GP £24.45 MCKENZIE C12100GP £24.45 MCKENZIE C12100GP £24.45 MCKE	FANE GUITAR 80L 12"	6.25
FANE DISCO 100 12" £28.75 FANE BASS 100 15" £39.00 FANE BASS 100 15" £39.00 FANE BASS 100 15" £39.00 FANE CRESCENDO 12E 12" £75.50 FANE CRESCENDO 12E 15" £74.50 FANE CRESCENDO 18E 18" £107.00 FANE CALOSSUS 15E 15" £99.95 FANE COLOSSUS 18E 18" £1107.00 FANE JA4 £6.90 FANE J104 £115.00 GAUSS 3181A 10" 150 watts £115.00 GAUSS 4281 12" 300 watts £116.00 GAUSS 4383A 15" 400 watts £120.00 GAUSS 4882A 18" 400 watts £220.00 GOODMANS PP12 £22.50 GOODMANS D112 £25.50 GOODMANS D112 £25.50 GOODMANS BP12 £24.55 GOODMANS HIFAX 50HX £21.85 GOODMANS HIFAX 50HX £21.85 GOODMANS HIFAX 100HX £24.45 McKENZIE C12100GP £24.45 McKENZIE C12100GP £24.45	FANE GUITAR 808/2 12"	7.25
FANE PA85 12"	FANE DISCO 100 12"	8.75
FANE BASS 100 15" £39.00 FANE CRESCENDO 12E 12" £57.50 FANE CRESCENDO 15E 15" £74.50 FANE CRESCENDO 18E 18" £94.75 FANE COLOSSUS 15E 15" £99.95 FANE COLOSSUS 15E 18" £107.00 FANE COLOSSUS 18E 18" £107.00 FANE JA4 £6.90 FANE J04 £15.95 FANE J104 £15.95 FANE J105 £23.95 GAUSS 3181A 10" 150 watts £146.00 GAUSS 4581 15" 300 watts £162.00 GAUSS 4583 15" 400 watts £122.00 GOODMANS 8PA £5.05 GOODMANS BP12 £225.00 GOODMANS GR12 £24.95 GOODMANS GR12 £24.95 GOODMANS HIFAX 50HX £24.45 McKENZIE C12100GP £24.45 McKENZIE C12100GP £24.45 McKENZIE C12100GP £24.45 McKENZIE C12125C £39.95 McKENZIE C12100GP £24.45 McKENZIE C12100TC £24.45 McKENZIE C12125C £39.10	FANE PA85 12"	6 75
FANE CRESCENDO 12E 12" 157.50 FANE CRESCENDO 18E 15" 174.50 FANE CRESCENDO 18E 18" 194.75 FANE COLOSSUS 15E 15" 199.95 FANE COLOSSUS 18E 18" 107.00 FANE LOLOSSUS 18E 18" 107.00 FANE J44	FANE BASS 100 15" £3	9.00
FANE CRESCENDO 15E 15 174-50 FANE CRESCENDO 18E 18" 194.75 FANE COLOSSUS 15E 15" 199.95 FANE COLOSSUS 18E 18" 1107.00 FANE JA4 £6.90 FANE JA4 £6.90 FANE J104 £15.95 GAUSS 3181A 10" 150 watts £115.00 GAUSS 4281 12" 300 watts £146.00 GAUSS 4281 12" 300 watts £162.00 GAUSS 4883A 15" 400 watts £220.00 GOODMANS PP12 £225.50 GOODMANS PP12 £25.50 GOODMANS D112 £25.50 GOODMANS BP12 £24.95 GOODMANS HIFAX 50HX £21.85 GOODMANS HIFAX 50HX £21.85 GOODMANS HIFAX 100HX £24.45 McKENZIE C12100GP £24.45 McKENZIE C12100GP £24.45 McKENZIE C12100TC £24.45 McKENZIE C12100TC £24.45 McKENZIE C12125C £39.95 McKENZIE C12125C £39.95 McKENZIE C12125C £39.95 McKENZIE C12125C £35.10	FANE CRESCENDO 12E 12"	7.50
FANE COLOSSUS 18E 15" £94.75 FANE COLOSSUS 18E 15" £99.95 FANE COLOSSUS 18E 18" £107.00 FANE J44 £6.90 FANE J73 £10.90 FANE J104 £15.95 FANE J105 £23.95 GAUSS 3181A 10" 150 watts £146.00 GAUSS 4281 12" 300 watts £146.00 GAUSS 481 15" 300 watts £162.00 GAUSS 4821 18" 400 watts £22.00 GOODMANS 8PA £5.05 GOODMANS BP12 £22.50 GOODMANS GR12 £24.95 GOODMANS HIFAX 50HX £21.85 GOODMANS HIFAX 100HX £24.45 McKENZIE C12100GP £24.45 McKENZIE C12100TC £24.45 McKENZIE C12100TC £24.45 McKENZIE C12100TC £24.45 McKENZIE C12100TC £24.45 McKENZIE C12125TC £39.95 McKENZIE C12125TC £39.10 McKENZIE C12125TC £39.10 McKENZIE C120 HORN 2"x 6" £12.25 RICHARD ALLAN HD8T £20.25 <tr< td=""><td>FANE CRESCENDO 15E 15"</td><td>4.50</td></tr<>	FANE CRESCENDO 15E 15"	4.50
FANE COLOSSUS 13E 13 135.35 FANE COLOSSUS 13E 13 135.35 FANE J44 £6.90 FANE J104 £15.95 FANE J104 £15.95 FANE J104 £15.95 FANE J105 £23.95 GAUSS 3181A 10" 150 watts £146.00 GAUSS 4581 15" 300 watts £146.00 GAUSS 4583A 15" 400 watts £162.00 GAUSS 4582 18" 400 watts £220.00 GOODMANS 8PA £5.05 GOODMANS P12 £225.50 GOODMANS BP12 £24.95 GOODMANS BR12 £24.95 GOODMANS BR12 £24.95 GOODMANS HFAX 50HX £21.85 GOODMANS HFAX 100HX £24.50 McKENZIE C12100TC £24.45 McKENZIE C12125TC £39.95 McKENZIE C12125TC £39.95 McKENZIE	FANE CRESCENDO ISE 18	0 05
FANE J44 .f6.90 FANE J43 .f6.90 FANE J73 .f10.90 FANE J104 .f15.95 FANE J105 .f23.95 GAUSS 3181A 10" 150 watts .f162.00 GAUSS 4581 15" 300 watts .f162.00 GAUSS 4581 15" 300 watts .f162.00 GAUSS 4583A 15" 400 watts .f220.00 GOODMANS PP12 .f225.50 GOODMANS DI12 .f25.50 GOODMANS RP12 .f24.95 GOODMANS HIFAX 50HX .f21.85 GOODMANS HIFAX 100HX .f24.45 McKENZIE C12100GP .f24.45 McKENZIE C12100 BASS .f24.45 McKENZIE C12100 BASS .f24.45 McKENZIE C12100 BASS .f39.95 McKENZIE C12100 BASS .f39.10 McKENZIE C12100 BASS .f35.10 McKENZIE G12100 CC .f4.45 McKENZIE G12100 CC .f4.95 McKENZIE G12100 CC .f39.95 McKENZIE G12100 CC .f39.95 McKENZIE G125 .f35.10 McKENZIE G125 .f35.10 <td>FANE COLOSSUS 19E 13</td> <td>7 00</td>	FANE COLOSSUS 19E 13	7 00
FARE J73 £10.90 FARE J104 £15.95 FARE J105 £23.95 FARE J105 £23.95 GAUSS 3181A 10" 150 watts £115.00 GAUSS 4281 12" 300 watts £146.00 GAUSS 4583 15" 400 watts £162.00 GAUSS 4882 18" 400 watts £220.00 GOODMANS PP12 £225.50 GOODMANS D112 £25.50 GOODMANS GR12 £24.95 GOODMANS HIFAX 50HX £21.85 GOODMANS HIFAX 100HX £24.45 McKENZIE C12100GP £24.45 McKENZIE C12100GP £24.45 McKENZIE C12100BASS £24.45 McKENZIE C12100BASS £24.45 McKENZIE C12100BASS £24.45 McKENZIE C12100TC £24.45 McKENZIE C12125GP £39.95 McKENZIE G125 £35.10 McKENZIE G125 £35.10 McK	FANE 144	6.90
FANE J104 £15.95 FANE J105 £23.95 GAUSS 3181A 10" 150 waits £115.00 GAUSS 3181A 10" 150 waits £146.00 GAUSS 4281 12" 300 waits £146.00 GAUSS 4581 15" 300 waits £162.00 GAUSS 4582 18" 400 waits £220.00 GOODMANS 8PA £5.05 GOODMANS BP12 £22.50 GOODMANS GOODMANS 18" GOODMANS BR12 £24.95 GOODMANS HFAX 50HX GOODMANS HFAX 100HX GAUSK EQUDOT £24.45 McKENZIE C12100TC £24.45	FANE J73 £1	0.90
FANE J105 £23.95 GAUSS 3181A 10" 150 watts £115.00 GAUSS 4281 12" 300 watts £146.00 GAUSS 4581 15" 300 watts £162.00 GAUSS 4883A 15" 400 watts £162.00 GAUSS 4883A 15" 400 watts £120.00 GODDMANS 8PA £5.05 GODDMANS 8PA £225.00 GODDMANS RP12 £24.95 GODDMANS RP12 £24.95 GODDMANS HFAX 50HX £21.85 GODDMANS HFAX 100HX £24.45 GODDMANS HIFAX 100HX £24.45 GODDMANS HFAX 100HX £24.45 McKENZIE C12100GP £24.45 McKENZIE C12100TC £24.45 McKENZIE C12100TC £39.95 McKENZIE C12125GP £39.10 McKENZIE C12125GP £39.10 McKENZIE C12125TC £39.510 McKENZIE GP15 £35.10 McKENZIE GP20 HORN 2" x 6" £12.25 RICHARD ALLAN HD8T £20.25 RICHARD ALLAN HD10T £21.75 RICHARD ALLAN HD12T £29.75 RICHARD ALLAN HD12T	FANE J104	5.95
GAUSS 3181A 10" 150 waits f115.00 GAUSS 4281 12" 300 waits f146.00 GAUSS 4581 15" 300 waits f162.00 GAUSS 4583A 15' 400 waits f162.00 GAUSS 4882 18" 400 waits f220.00 GODDMANS PP12 f220.00 GOODMANS PP12 f225.00 GOODMANS P12 f22.50 GOODMANS P12 f22.50 GOODMANS DI12 f25.50 GOODMANS RP1 f24.95 GOODMANS HIFAX 50HX f21.85 GOODMANS HIFAX 100HX f24.45 McKENZIE C12100GP f24.45 McKENZIE C12100 BASS f24.45 McKENZIE C12100 BASS f24.45 McKENZIE C12100 BASS f39.95 McKENZIE C1215C f39.95 McKENZIE C15 f35.10 McKENZIE C15 f35.10 McKENZIE T15 f35.10 McKENZIE T15 f35.10 McKENZIE G15 f35.10 McKENZIE T15 f35.10 McKENZIE T25 HORN 2"< f850	FANE J105	3.95
GAUSS 4281 12" 300 watts £146.00 GAUSS 4583A 15" 400 watts £162.00 GAUSS 4583A 15" 400 watts £162.00 GAUSS 4882 18" 400 watts £220.00 GOODMANS 8PA £5.05 GOODMANS PP12 £22.50 GOODMANS D112 £25.50 GOODMANS 0R12 £24.95 GOODMANS HIFAX 50HX £21.85 GOODMANS HIFAX 100HX £24.45 McKENZIE C12100GP £24.45 McKENZIE C12100 BASS £24.45 McKENZIE C12125GP £39.95 McKENZIE C12125GP £39.95 McKENZIE C12125GP £39.95 McKENZIE C15 BASS £59.60 MOTOROLA PIEZO HORN 3%" £8.50 MOTOROLA PIEZO HORN 2"x 6" £12.25 RICHARD ALLAN HD8T £20.25 RICHARD ALLAN HD15 £27.75 RICHARD ALLAN HD15 £52.75 RICHARD ALLAN HD15 £27.75 RICHARD ALLAN HD15 £27	GAUSS 3181A 10" 150 watts £11	5 .0 0
GAUSS 4581 15" 300 watts	GAUSS 4281 12" 300 watts £14	6.00
GAUSS 4583A 15 400 watts 1162.00 GAUSS 4583A 15 400 watts 1220.00 GOODMANS 8PA 15.05 GOODMANS PP12 1220.00 GOODMANS PP12 1225.50 GOODMANS GR12 124.55 GOODMANS GR12 124.95 GOODMANS GR12 124.95 GOODMANS HIFAX 50HX 121.85 GOODMANS HIFAX 100HX 124.50 McKENZIE C12100GP 124.45 McKENZIE C12100TC 124.45 McKENZIE C12100TC 124.45 McKENZIE C12125GP 139.95 McKENZIE GP15 135.10 MCKENZIE TC15 129.7	GAUSS 4581 15" 300 watts	2.00
GOODMANS 482 18 400 waits 1220.00 GOODMANS 8PA f5.05 GOODMANS PP12 f22.50 GOODMANS PP12 f22.50 GOODMANS GR12 f24.95 GOODMANS HIFAX 50HX f21.85 GOODMANS HIFAX 100HX f24.45 McKENZIE C12100GP f24.45 McKENZIE C12100TC f24.45 McKENZIE C12125GP f39.95 McKENZIE C12125GP f39.95 McKENZIE C12125TC f39.95 McKENZIE C15 f35.10 McKENZIE C15 f35.10 McKENZIE C15 MASS f59.60 MOTOROLA PIEZO HORN 3½" f8.50 MOTOROLA PIEZO HORN 2" x 6" f12.25 RICHARD ALLAN HD8T f20.25 RICHARD ALLAN HD15 f22.75	GAUSS 4583A 15" 400 watts £16	2.00
GOODMANS RPA f5.05 GOODMANS PT2 f5.05 GOODMANS DI12 f5.05 GOODMANS DI12 f5.05 GOODMANS DI12 f5.05 GOODMANS DI12 f5.05 GOODMANS BIF2 f5.05 GOODMANS HIFAX 50HX f21.85 GOODMANS HIFAX 100HX f24.50 McKENZIE C12100GP f24.45 McKENZIE C12100DTC f24.45 McKENZIE C12125GP f39.95 McKENZIE C12125GP f39.95 McKENZIE C12125GP f39.95 McKENZIE C1215 f35.10 McKENZIE C15 f35.10 McKENZIE T15	GAUSS 4882 18 400 watts	0.00
GOODMANS D112 £22.50 GOODMANS D112 £25.50 GOODMANS GR12 £24.95 GOODMANS GR12 £24.95 GOODMANS HIFAX 50HX £21.85 GOODMANS HIFAX 50HX £21.85 GOODMANS HIFAX 100HX £24.45 McKENZIE C12100GP £24.45 McKENZIE C12100TC £24.45 McKENZIE C12100TC £24.45 McKENZIE C12125GP £39.95 McKENZIE C12125GP £39.95 McKENZIE G1215 £35.10 McKENZIE G15 £35.10 McKENZIE G15 BASS £96.00 MOTOROLA PIEZO HORN 3%" £8.50 MOTOROLA PIEZO HORN 2" x 6" £12.25 RICHARD ALLAN HD8T £20.25 RICHARD ALLAN HD17 £21.75 RICHARD ALLAN HD12T £29.75 RICHARD ALLAN HD15 £52.75 RICHARD ALLAN HD15 £22.75 RICHARD ALLAN HD15 £22.75 RICHARD ALLAN HD15 £27.75 RICHARD ALLAN HD15 £27.75 RICHARD ALLAN HD15 £27.76	GOODMANS 8PA	5.05
GOODMANS GR12 £24,95 GOODMANS GR12 £24,95 GOODMANS HIFAX 50HX £21,85 GOODMANS HIFAX 100HX £24,95 GOODMANS HIFAX 100HX £24,50 McKENZIE C12100GP £24,45 McKENZIE C12100TC £24,45 McKENZIE C12100BASS £24,45 McKENZIE C12125GP £39,95 McKENZIE GP15 £35,10 McKENZIE GP15 £35,10 McKENZIE GC15 HASS £24,55 MOTOROLA PIEZO HORN 3½" £8,50 MOTOROLA PIEZO HORN 2" x 6" £12,25 RICHARD ALLAN HD10T £21,75 RICHARD ALLAN HD12T £29,75 RICHARD ALLAN HD15 £52,75 RICHARD ALLAN HD15P £22,75 RICHARD ALLAN HD15P £22,75 RICHARD ALLAN HD15P £22,75 RICHARD ALLAN HD15P £22,75 RICHARD ALLAN HD15P £27,70	GOODMANS PP12 L2	2.30
GOODMANS 18P £24.35 GOODMANS 18P £48.45 GOODMANS 18P £48.45 GOODMANS HIFAX 50HX £21.85 GOODMANS HIFAX 100HX £24.45 McKENZIE C12100GP £24.45 McKENZIE C12100BASS £24.45 McKENZIE C12100BASS £24.45 McKENZIE C12105C £39.95 McKENZIE C12125GP £39.95 McKENZIE C12125TC £39.95 McKENZIE C1520 HORN 3½" £8.50 MOTOROLA PIEZO HORN 3½" £8.50 MOTOROLA PIEZO HORN 2" x 6" £12.25 RICHARD ALLAN HD8T £20.25 RICHARD ALLAN HD10T £21.75 RICHARD ALLAN HD12T £29.75 RICHARD ALLAN HD15 £52.75 RICHARD ALLAN HD15P £27.75 RICHARD ALLAN HD15P £27.70	GOODMANS GR12	1 95
GOODMANS HIFAX 50HX £21.85 GOODMANS HIFAX 100HX £24.50 McKENZIE C12100GP £24.45 McKENZIE C12100TC £24.45 McKENZIE C12100BASS £24.45 McKENZIE C12125GP £39.95 McKENZIE C12125TC £39.95 McKENZIE C12125TC £39.95 McKENZIE C15 £35.10 McKENZIE C15 BASS £59.60 MOTOROLA PIEZO HORN 3½" £8.50 MOTOROLA PIEZO HORN 2″ x 6″ £12.25 RICHARD ALLAN HD8T £20.25 RICHARD ALLAN HD15T £23.75 RICHARD ALLAN HD15 £52.75 RICHARD ALLAN HD15F £22.75 RICHARD ALLAN HD15F £22.75 RICHARD ALLAN HD15F £22.75 RICHARD ALLAN HD15F £27.75 RICHARD ALLAN HD15F £27.75 RICHARD ALLAN HD15F £27.75 RICHARD ALLAN HD15F £27.75 RICHARD ALLAN HZAS 15″ £77.00	GOODMANS 18P	8.45
GOODMANS HIFAX 100HX £24.50 McKENZIE C12100GP £24.45 McKENZIE C12100TC £24.45 McKENZIE C12100TC £24.45 McKENZIE C12100BASS £24.45 McKENZIE C12125GP £39.95 McKENZIE C12125TC £39.95 McKENZIE GP15 £35.10 McKENZIE TC15 £35.10 McKENZIE TC15 £45.00 MOTOROLA PIEZO HORN 3½" £8.50 MOTOROLA PIEZO HORN 2" x 6" £12.25 RICHARD ALLAN HD8T £20.25 RICHARD ALLAN HD17 £21.75 RICHARD ALLAN HD12T £29.75 RICHARD ALLAN HD15 £52.75 RICHARD ALLAN HD15 £22.75 RICHARD ALLAN HD15 £27.75 RICHARD ALLAN HZAS 15" £77.00	GOODMANS HIFAX 50HX	1.85
McKENZIE C12100GP £24.45 McKENZIE C12100TC £24.45 McKENZIE C12100TC £24.45 McKENZIE C12100TC £39.95 McKENZIE C12125GP £39.95 McKENZIE G12125TC £39.95 McKENZIE G12125TC £35.10 McKENZIE C15 £35.10 McKENZIE C15 BASS £59.60 MOTOROLA PIEZO HORN 3½" £8.50 MOTOROLA PIEZO HORN 2" × 6" £12.25 RICHARD ALLAN HD10T £21.75 RICHARD ALLAN HD12T £29.75 RICHARD ALLAN HD15 £52.75 RICHARD ALLAN HD15P £22.75 RICHARD ALLAN HD15P £27.75 RICHARD ALLAN HD15P £27.75 RICHARD ALLAN HD15P £27.75 RICHARD ALLAN HD15P £27.75	GOODMANS HIFAX 100HX	4.50
McKENZIE C12100TC £24.45 McKENZIE C12105GP £39.95 McKENZIE C12125GP £39.95 McKENZIE C12125TC £39.95 McKENZIE GR12125TC £39.95 McKENZIE GR15 £35.10 McKENZIE C15 £35.10 McKENZIE C120 HORN 2" x 6" £12.25 RICHARD ALLAN HD15T £20.25 £12.25 RICHARD ALLAN HD12T £20.75 £12.45 RICHARD ALLAN HD15T £22.75 £27.75 RICHARD ALLAN HD15P £22.75 £12.45 RICHARD ALLAN HLAS 15" £77.00	McKENZIE C12100GP	4.45
McKENZIE C12100 BASS £24.45 McKENZIE C12125GP £39.95 McKENZIE C12125TC £39.95 McKENZIE C12125TC £39.95 McKENZIE GP15 £35.10 McKENZIE C15 BASS £59.60 MOTOROLA PIEZO HORN 3½" £8.50 MOTOROLA PIEZO HORN 2″ x 6″ £12.25 RICHARD ALLAN HD8T £20.25 RICHARD ALLAN HD10T £21.75 RICHARD ALLAN HD12T £29.75 RICHARD ALLAN HD15 £52.75 RICHARD ALLAN HD15 £27.75 RICHARD ALLAN HD15 £27.75 RICHARD ALLAN HD15 £27.75 RICHARD ALLAN HD15 £77.00	McKENZIE C12100TC	4.45
MOKENZIE C12125GC 139.95 MCKENZIE C12125TC 139.95 MCTOROLA PIEZO HORN 3½" 18.50 MOTOROLA PIEZO HORN 2″ x 6″ 12.25 RICHARD ALLAN HD8T 120.25 RICHARD ALLAN HD17 121.75 RICHARD ALLAN HD12T 129.75 RICHARD ALLAN HD15 152.75 RICHARD ALLAN HD15P 152.75 RICHARD ALLAN HD15P 152.75 RICHARD ALLAN HD15P 152.75	McKENZIE C12100 BASS	4.45
McKENZIE GP15 £35 35 McKENZIE GP15 £35 10 McKENZIE TC15 £35 10 McKENZIE TC15 BASS £59.60 MOTOROLA PIEZO HORN 3%" £8 50 MOTOROLA PIEZO HORN 2" x 6" £12.25 RICHARD ALLAN HD8T £20.25 RICHARD ALLAN HD17 £21.75 RICHARD ALLAN HD12T £29.75 RICHARD ALLAN HD15 £52.75 RICHARD ALLAN HD15P £27.75 RICHARD ALLAN HD15P £27.75 RICHARD ALLAN HD15P £77.00	MCKENZIE C12125GP	9.95
MCKENZIE TC15 £35 10 MCKENZIE TC15 £35 10 MCKENZIE C15 BASS £59.60 MOTOROLA PIEZO HORN 3%" £8 50 MOTOROLA PIEZO HORN 3%" £12.25 RICHARD ALLAN HD8T £20.25 RICHARD ALLAN HD10T £21.75 RICHARD ALLAN HD10T £21.75 RICHARD ALLAN HD15 £52.75 RICHARD ALLAN HD15P £25.75 RICHARD ALLAN HD15P £27.75 RICHARD ALLAN HD15P £27.75 RICHARD ALLAN HD15P £77.700	McKENZIE GP15	5 10
McKENZIE C15 BASS £59.60 MOTOROLA PIEZO HORN 3½" £8.50 MOTOROLA PIEZO HORN 2" x 6" £12.25 RICHARD ALLAN HD8T £20.25 RICHARD ALLAN HD10T £21.75 RICHARD ALLAN HD12T £29.75 RICHARD ALLAN HD15 £52.75 RICHARD ALLAN HD15 £27.75 RICHARD ALLAN HD15P £27.75 RICHARD ALLAN HD15P £77.00	McKENZIE TC15	5.10
MOTOROLA PIEZO HORN 3½" £8.50 MOTOROLA PIEZO HORN 2" x 6" £12.25 RICHARD ALLAN HD8T £20.25 RICHARD ALLAN HD10T £21.75 RICHARD ALLAN HD12T £29.75 RICHARD ALLAN HD15 £52.75 RICHARD ALLAN HD15P £27.75 RICHARD ALLAN HD15P £27.75 RICHARD ALLAN HD15P £77.00	McKENZIE C15 BASS	9.60
MOTOROLA PIEZO HORN 2" x 6" £12.25 RICHARD ALLAN HD8T £20.25 RICHARD ALLAN HD10T £21.75 RICHARD ALLAN HD12T £29.75 RICHARD ALLAN HD15 £52.75 RICHARD ALLAN HD15 £27.75 RICHARD ALLAN HD15 £27.75 RICHARD ALLAN HD15P £27.75 RICHARD ALLAN HD15P £77.00	MOTOROLA PIEZO HORN 3%"	8.50
RICHARDALLAN HD8T £20.25 RICHARDALLAN HD10T £21.75 RICHARDALLAN HD12T £29.75 RICHARDALLAN HD15 £52.75 RICHARDALLAN HD15P £22.75 RICHARDALLAN HD15P £27.75 RICHARDALLAN HD15P £77.00	MOTOROLA PIEZO HORN 2" x 6" £1	2.25
RICHARD ALLAN HD10T £21 75 RICHARD ALLAN HD12T £29.75 RICHARD ALLAN HD15 £52.75 RICHARD ALLAN HD15P £52.75 RICHARD ALLAN HD15P £52.75 RICHARD ALLAN HD15P £52.75 RICHARD ALLAN ATLAS 15" £77.00	RICHARDALLAN HD8T	0.25
HICHARD ALLAN HD 121 £29.75 RICHARD ALLAN HD 15 £52.75 RICHARD ALLAN HD 15P £52.75 RICHARD ALLAN HD 15P £52.75 RICHARD ALLAN ATLAS 15" £77.00	RICHARDALLAN HD10T £2	1.75
RICHARD ALLAN HD15	RICHARD ALLAN HD121	3.75
RICHARDALLAN ATLAS 15"	PICHARD ALLAN HD15	2.75
		7.00
RICHARDALLAN ATLAS 18" £96.00	BULDADUALLAN AILAS IS	

KITS FOR MAGAZINE DESIGNS etc.
Kits include drive units, crossovers, BAF/long fibre wool etc. for a pair of
speakers Carriage £3.95
unless otherwise stated
Practical Hi-Fi & Audio PR09-TL
level controls
carriage £5.00
Hi-Fi Answers Monitor£146.00
Hi-Fi News State of the Art £189.00
Hi-Fi News Midiline
Hi-Fi News Miniline
Hi-Fi News Tabor with J4 bass units £66.00
Hi-Fi News Tabor with H4 bass units £70.00
Hi-Fi for Pleasure Compact Monitor £116.00
Hi-Fi for Pleasure E.C.M.
Including felt panels, foam etc£77.50 carriage £5.00
Popular Hi-Fi Jordan System 1 £125.00
Popular Hi-Fi Mini Monitor £77.00
including complete cabinet kit£74.00
Practical Hi-Fi & Audio BSC3£65.00
Practical Hi-Fi & Audio Monitor£180.00
Practical Hi-Fi & Audio Triangle£120.00
Practical Hi-Fi & Audio DBS4£85.00 carriage £5.00
Everyday Electronics EE20£29.50
Everyday Electronics EE70f150.00 carriage £5.00
Wireless World T.L. KEF
Wireless World T.L. RADFORD

SPEAKER **KITS**

SPEAKER KITS Prices Per Pair Carriage £3.95

unless otherwise	state	¢
COLES NIMBUS KIT mounted on baffi	e £69.0	0
DALESFORD SYSTEM 1	£54.0	C
DALESFORD SYSTEM 2	£57.0	C
DALESFORD SYSTEM 3	£104.0	C
DALESFORD SYSTEM 4	£110.0	C
DALESFORD SYSTEM 5	£142.0	C
DALESFORD SYSTEM 6	195.0	0
KEE Palaranaa 104aP kit	61220	0
nlus f5	carriag	E
KEF Cantata kit £199.00 plus £5	carriag	e
LS3 Micro Monitor kit	£76.0	С
LOWTHER PM6 kit	£132.7	5
LOWTHER PM6 MK I kit	£139.9	5
LOWTHER PM7 kit	£199.0	С
RADFORD Studio 90	£181.0	С
RADFORD Monitor 180	£243.0	С
RADFORD Studio 270	£309.0	C
RADFORD Studio 360	£450.0	С
RICHARD ALLAN Tango Twin	£55.5	C
RICHARDALLAN Maramba	£77.5	0
RICHARD ALLAN Charisma	£111.0	0
RICHARD ALLAN Super Strahand	£102.5	6
RICHARD ALLAN BAS kit	F62 7	5
RICHARD ALLAN BA82 kit	£98.7	5
RICHARD ALLAN RA82L kit	£108.0	0
SEAS 223	£42.5	C
SEAS 253	.£67.0	0
SEAS 403	£79.9	5
SEAS 603	£134.9	5
WHARFEDALE DENTON XP2 kit	.£31.4	5
WHARFEDALE SHELTON XP2 kit	£40.4	0
WHARFEDALE LINTON XP2 kit	.£56.2	D
WHARFEDALE LOO kit	.152.5	J
WHAREEDALE LOO KIL	£97.0	0
WHARFEDALE E50 kit	£129 O	0
WHARFEDALE E70 kit	£160.0	n
WHARFEDALE E90 kit	£249.5	C
WILMSLOW AUDIO BA1 sub bass		

amplifier. 'crossover kit £37.95 plus £1 carriage

CARRIAGE & INSURANCI
Tweeters/Crossovers70p eac
Speakers:
4" to 61/2"
8" to 10" £1.10 eac
12", 13" x 8", 14" x 9"£2.00 eac
15" £3.00 eac
18"£5.00 eac
Speaker Kits£3.95 pai
Mag. Design Kits£3.95 pai
unless otherwise stated

ALL PRICES INCLUDE VAT AT 15% AND ARE CORRECT AT 12/2/81

Export catalogue £1 or \$3 U.S. Tel: 0625-529599 for speaker drive units, kits, PA equipment, mail order

SEND 50P FOR 56-PAGE CATALOGUE 'CHOOSING A SPEAKER' (or price list only free of charge)

enquiries, and all export enquiries Tel: 0625-526213 for Hi-Fi equipment and complete speaker enquiries

Lightning service on telephoned credit card orders!

Wilmslow, Cheshire

TRANSCENDENT 2000 SINGLE BOARD SYNTHESISER

Designed by consultant Tim Orr (formerly synthesiser designer for EMS Ltd.) and featured as a constructional article in ETI, this live performance synthesiser is a 3 octave instrument transposable 2 octaves up or down giving sweep control, a noise generator and an ADSR envelope shaper. There is also a slow oscillator, a new pitch detector, ADSR repeat, sample and hold, and special circuitry with precision components to ensure tuning stability amongst its many features. The ki includes fully finished metalwork, fully assembled solid teak cabinet, filter sweep pedal, professional quality components (all resistors either 2% metal oxide or ½% metal film), and it really is complete — right down to the last nut and bolt and last piece of wirel There is even a 13A plug in the kit — you need buy absolutely no more parts before plugging in and making great music! Virtually all the component locations. All the controls mount directly on the main board, all connections to the board are made with connector plugs and construction is so simple it can be built in a few evenings by almost anyone capable of neat soldering! When finished you will possess a many times the price.

many times the price. Comprehensive handbook supplied with all complete kits! This fully describes construction and tells you how to set up your synthesiser with nothing more elaborate than a multi-meter and a pair of ears!

COMPLETE KIT ONLY £168.50 + VAT!

Cabinet size 24.6" x 15.7" x 4.8" (rear) 3.4" (front)

1024 NOTE SEQUENCER/COMPOSER — see our advert on Page 56

ETI VOCODER

COMPLETE KIT ONLY £195 + VAT!

Panel size 19.0" x 5.25". Depth 12.2"

Featured as a construction article in Electronics Today International this design enables a vocoder of great versatility and high intelligibility to be built for an amazingly low price. 14 channels are used to achieve its high intelligibility, each channel having its own level control. There are two input amplifiers, one for speech either from microphone or a high level source e.g. mixer or cassette deck and one for external excitation (the substitution signal) from either high or low level sources. Each amplifier has its own level control and a rather special type of tone control giving varying degrees of bass boost with treble cut or treble boost with bass cut. The level of the speech and excitation signals are monitored by LED PPM meters with 10 lights — 7 green and 3 red which indicate the level at 3dB steps. There are three internal sources of excitation — a noise generator and two pulse generators of variable frequency and pulse width. Any of the internal sources and the external source can be mixed together. There is a voiced/unvoiced detector which substitutes noise for the excitation signal at the points in speech where the vocal chord derived sounds of the speaker are substituted for by the unvoiced sounds of sibilants, etc. There is a slew rate control which smooths out the changes in spectral balance and amplitude enabling a change of the speech into signing or chanting and other special effects. A foot switch is no periate freeze in spectral balance and amplitude whenever required. An LED on this indicates when the freeze is in operation. An output mixer allows mixing of the speech, external excitation and vocoder output. The majority of the components fit into the large analysis/synthesis board with the rest on 8 much smaller boards with the controls and sockets mounted on them for ease of construction. Connectors are used for the small amount of wirking the boards. wining between the boards. The kit includes fully finished metalwork, professional quality components (all resistors 2% metal oxide), nuts, bolts, etc. — even a 13A plug!

TRANSCENDENT DPX MULTI VOICE SYNTHESISER

Another superb design by synthesiser expert Tim Orr published in **Electronics Today International**

> COMPLETE KIT ONLY £299 + VAT!

Cabinet size 36.3" x 15.0" x 5.0" (rear) 3.3" (front)

The Transcendent DPX is a really versatile 5 octave keyboard instrument. These are two audio outputs which can be used simultaneously. On the first there is a beautiful harpsichord or reed sound — fully polyphonic, i.e. you can play chords with as many notes as you like. On the second output there is a wide range of different voices, still fully polyphonic. It can be a straightforward piano as a honky tonk piano or even a mixture of the two! Alternatively you can play strings over different voices, still fully polyphonic. It can be a straightforward piano as a honky tonk piano or even a mixture of the two! Alternatively you can play strings over the whole range of the keyboard or brass over the whole range of the keyboard or should you prefer — strings on the top of the keyboard and brass as the lower end (the keyboard is electronically split after the first two octaves) or vice-versa or even a combination of strings and brass sounds simultaneously. And on all voices you can switch in circuitry to make the keyboard touch sensitive! The harder you press down a key the louder it sounds — just like an acoustic piano. The digitally controlled multiplexed system makes practical touch sensitivity with the complex dynamics law necessary for a high degree of realism. There is a master volume and tone control, a separate control for the brass sounds and also a vibrato circuit with variable depth control together with a variable delay control so that the vibrator comes in only after waiting a short time after the note is a chorus/ensmble unit which is a complex phasing system using CCD (charge coupled device) analogue delay lines. The overall effect of this is similar to that of several acoustic instruments playing the same piece of music. The ensemble circuitry can be aswitched in with either strong or mid effects. As the system is based on digital circuitry digital data can be easily taken to and from a computer (for storing and playing back accompaniments with to inthe or key change, computer composing, etc., etc.).

Playing back accompaniments with or without pitch or key change, computer composing, etc., etc.). Although the DPX is an advanced design using a very large amount of circuitry, much of it very sophisticated, the kit is mechanically extremely simple with excellent access to all the circuit boards which interconnect with multiway connectors, just four of which are removed to separate the keyboard circuitry and the panel circuitry from the main circuitry in the cabinet.

The kit includes fully finished metalwork, solid teak cabinet, professional quality components (all resistors 2% metal oxide), nuts, bolts, etc., even a 13A plugt

MANY MORE KITS ON PAGE 31 - MORE KITS AND **ORDERING INFORMATION ON PAGE 7**

All projects on this page can be purchased as separate packs, e.g. PCBs, components sets, hardware sets, etc. See our free catalogue for full details and prices

by Chris Lare

The Direct Inject Box (D.I. Box) allows the signal from an amplified instrument to be fed directly into a balanced line mixing desk, and as such is invaluable on stage, and in the home or professional recording studio avoiding many of the disadvantages of using a microphone. It is much cheaper to build the D.I. Box than to buy a good microphone, and it eliminates acoustic feedback and 'spill-over' of other sounds into the instrument channel.

The Circuit

The D.I. Box takes its input from the instrument amplifier and converts it to a balanced line output at microphone level. Figure 1 shows the circuit employed. The input signal is fed via a switchable attenuator to the 47k potentiometer. This means that the box has an input impedance of about 47k when used as a low level (line) input and over 700k in the speaker level mode. As shown the input is dc coupled and if a dc offset appears on the input the potentiometer will be noisy as it is moved. If this occurs a 470nF polyster capacitor should be connected in series with the input

Two J-FET op-amps, chosen mainly for their very low power consumption, form the phase and antiphase generator. The first opamp inverts the signal and divides its level by 4, whereas the second op-amp merely re-inverts the output from the first. The two outputs are thus of the same level but exactly out of phase and can be used directly. A 100R resistor is included in each output as a protection against short circuits, and a capacitor is obviously required to block the dc level. The op-amps are biased to half rail by R10 and R11 which hold the non inverting inputs at 4.5 volts and R3 which provides a dc offset for the input signal. Diodes D1 and D2 protect the op-amp in the event of severe

overload, and play no part in the normal operation of the circuit.

A single 9 volt battery is used to power the circuit. This is switched in the usual way by using a stereo jack socket on the input.

Construction

A printed circuit board holds all the resistors, capacitors and semiconductors except R1 and RV1. Mount and solder the components and Veropins on the PCB, with IC1 left to last. Bolt the PCB to the lid of the box and the connectors, pot, and switch to the base. If a box other than the one recommended is used, check that it is deep enough to take the chassis Cannon plug. Solder R1 and the battery connector in position, and wire up the connections to the PCB using screened cable:

The prototype used a small piece of polystyrene foam glued to the lid above the battery position to hold the battery in place. Finishing consisted of lettering and varnishing the front, and sticking four rubber feet on the bottom.

Operation

Use a jack-to-jack to connect the D.I. Box to the extension speaker socket on the amplifier or speaker cabinet, or the amplifier slave out jack, remembering to set the high/low switch accordingly. If an additional speaker output jack is not available, a jack-to-two-jack splitter lead can be used to connect the D.I. Box input in parallel with the speaker cabinet. RV1 should be adjusted for a convenient signal level to the desk.

Unlike direct injection of the instrument output or pre amplified signal, the D.I. Box passes the full sound of the amplified instrument, including the effects of tone controls, signal processors, and amplifier distortion (the latter is often an important part of guitar sound) from the speaker outputs to the mixing desk for recording or amplification by the group P.A. Alternatively, the unit can be connected to the 'Slave Out' or 'Link' jack socket of the amplifier avoiding the distortion of the output stage. This is particularly useful for amplifiers which are also used as sub-mixers e.g. with keyboards, since output stage distortion is especially noticeable on a mix of different signals.

It is important to note that the D.I. Box design that follows is intended for mixers with balanced line inputs. If the mixer in question does not have such inputs it is debatable if the D.I. Box is worth using; a simple wire connection being the easiest. If hum problems do occur, or particularly long connections are required, better results will be obtained with the E&MM Line Driver/Receiver presented in last month's issue. The Balanced Line System, although designed for microphone use, will handle signal levels of up to 400mV without any trouble.

Obviously some instruments cannot be D.I.'ed — the most notable example being an organ with a Leslie cabinet. The D.I. is also a matter for personal opinion, indeed many claim that the sound produced is too dry. Additionally, problems will occur if tonal adjustments are made before the D.I. connection to compensate for a poor speaker cabinet. It is, however, a much under-rated technique, offering several advantages — cheaply. **E&MM**

Figure 2. Internal Wiring of the D.I. Box.

Figure 3. The D.I. Box PCB.

Figure 4. XLR Cannon-to-jack lead connections.

PAR	TS	L	S 1
-----	----	---	------------

Resistors - all 5%1/3W carbon unless specified

R1 R2 R3 R4,5,6 R7,8 R9,10 RV1	680k 1M0 220k 56k 100R 100k 47k log. pot.	3 off 2 off 2 off	(M680K) (M1M0) (M220K) (M56K) (M100R) (M100K) (FW24B)
Capacito C1 C2,3,4,5	ors 100n carbonate 22u 16V tantalum	4 off	(WW41U) (WW 7 2P)
Semicor IC1 D1,2	ductors LF353 1N4148	2 off	(WQ31J) (QL80B)
Miscella PL1 S1 JK1 B1	neous XLR chassis plug, 3-pin Sub-min toggle 'A' Jack socket, stereo PP3 battery Printed circuit board Case PB1 (or alternative) Veropins, 1mm PP3 connector Kapb P52		(BW92A) (FH00A) (HF92A) (GA00A) (LF01B) (FL24B) (HF28F) (HF28F)
	(or alternative) Twin screened cable	lm	(XR21X)

Internal view of the D.I. box.

CHROMATHEQUE 5000 5 CHANNEL LIGHTING EFFECTS SYSTEM

Panel size 19.0" x 3.5"

COMPLETE KIT ONLY **f 49**, 50 + VAT!

Depth 7.3"

This versatile system featured as a constructional article in ELECTRONICS TODAY INTERNATIONAL has 5 frequency channels with individual level controls on each channel. Control of the lights is comprehensive to say the least. You can run the unit as a straightforward sound-to-light or have it strobe all the lights at a speed dependent upon music level or front panel control or use the internal digital circuitry which produces some superb random and sequencing effects. Each channel handles up to 500W and as the kit is a single board design wiring is minimal and construction very straightforward.

Kit includes fully finished metalwork, fibreglass PCB controls, wire, etc. - Complete right down to the last nut and bolt!

MATCHES THE

PERFECTLY Panel size 19.0" x 3.5" Depth 7.3".

MPA 200 100 WATT (rms into 8 ohm) MIXER/AMPLIFIER

CHROMATHEQUE 5000 ONLY £49.90 + VAT!

COMPLETE KIT

All kits also available as separate packs (e.g. PCB, component sets, hardware sets, etc.) Prices in our FREE CATALOGUE.

Featured as a constructional article in ETI, the MPA 200 is an exceptionally low priced - but professionally finished - general purpose high power amplifier. It features an adaptable input mixer which accepts a wide range of sources such as a microphone, guitar, etc. There are wide range tone controls and a master volume control. Mechanically the MPA 200 is simplicity itself with minimal wiring needed making construction very straightforward.

The kit includes fully finished metalwork, fibreglass PCBs, controls, wire, etc. - complete down to the last nut and bolt

SP2-200 2-CHANNEL 100 WATT AMPLIFIER

Panel size 19.0" x 3.5" Depth 7.3"

The power amplifier section of the MPA 200 has proved not only very economical but very rugged and reliable too. This new design uses 2 of these amplifier sections powered by separate power supplies fed from a common toroidal transformer. Input sensitivity is 775mV. Power output is 100 rms into 8 ohm from both channels simultaneously

The kit includes fully finished metalwork, fibreglass PCBs, controls, wire, etc. - complete down to the last nut and bolt!

Many more Kits on Page 29. More Kits and ordering

information on Page 4

1024

1024 COMPOSER

f89.50 + VAT! **READ ALL ABOUT IT!** IN ELECTRONICS TODAY INTERNATIONAL

Programmed from a synthesiser, our latest design to be featured in Electronics Today International, the 1024 COMPOSER controls the synth, with a sequence of up to 1024 notes or a large number of shorter sequences e.g. 64 of 16 notes all with programmable note length. In addition a rest or series of rests can be entered. It is mains powered but an automatically trickle charged Nickel-Cadmium battery, supplying the memory, preserves the program after switch off.

The kit includes fully finished metalwork, fibreglass PCB, controls, wire etc. - complete down to the last nut and bolt!

BLACK HOLE CHORALIZER

The BLACK HOLE designed by Tim Orr, is a powerful new musical effects device for processing both natural and electronic instruments, offering genuine VIBRATO (pitch modulation) and a CHORUS mode which gives a "spacey" feel to the sound achieved by delaying the input signal and mixing it back with the original. Notches (HOLES), introduced in the frequency response, move up and down as the time delay is modulated by the chorus sweep generator. An optional double chorus mode allows exciting antiphase effects to be added. The device is floor standing with foot switch controls. LED effect selection indicators, has variable sensitivity, has high signal/noise ratio obtained by an audio compander and is mains powered - no batteries to changel Like all our kits everything is provided including a highly superior, rugged steel, beautifully finished enclosure.

COMPLETE KIT ONLY £49.80 + VAT (single delay line system)

De Luxe version (dual delay line system) also available for £59.80 + VAT

Cabinet size 10.0" x 8.5" x 2.5" (rear) 1.8" (front)

COMPLETE KIT ONLY

£64.90 + VAT!

COMPLETE KIT ONLY

POWER CONTROLLER

by R. A. Penfold

* Dual Purpose

- * Smooth Action Lighting Control
- * Useful for Electric Drills and Soldering Irons
- Neon Indicator

This versatile power controller is suitable for use as a lamp dimmer with a standard or table lamp, and can also be used as a drill speed controller. It can handle loads of up to 720 watts, and this is more than sufficient for any normal domestic lamp or electric drill. The controller is easy and convenient to use since there is a mains outlet on top of the unit and the controlled equipment is merely plugged into this.

It is possible to use other items of equipment with the unit, and it could be used as a soldering iron temperature controller for example. It is quite common for soldering irons to have a short bit life due to an excessive operating temperature, and this can be corrected by slightly reducing the power fed to the iron. This gives a bit temperature that is still adequate for efficient soldering, and substantially fewer replacement bits are needed.

An unusual feature of the unit is the precise control it provides at low output power levels. When an ordinary power controller is advanced from zero it tends to give no output until the power control has been advanced some way, and then suddenly operates normally. This controller has additional circuitry which eliminates this effect.

Fluorescent lamps require a

special type of dimmer circuit incidentally, and cannot be used with normal power controllers such as the one described here.

Operating Principle

A power controller can simply consist of a high power variable resistor (rheostat) connected in series with the supply, but this results in a lot of wasted power in the resistor which is converted into unwanted heat. A more efficient method is to use a switching circuit where the power fed to the load is controlled by pulsing it full on for a certain proportion of the time.

This method is illustrated by the output waveforms of Figure 2. The waveform shown in Figure 2a is that obtained with the controller set for maximum power. Here power is applied to the load almost at the beginning of each

Figure 1. The Circuit Diagram of the Power Controller

mains half cycle, and is maintained practically until the end of each half cycle. While there is obviously a small loss of power because the very beginning of each mains half cycle has been cut off, this loss is far too small to be of practical significance. In order to reduce power the

mains is not switched through to the load until later in each half cycle. In the waveform of Figure 2b only the second half of each mains pulse is applied to the load, thus giving half power. In the waveform of Figure 2c only the final part of each half cycle is present at the output, giving practically zero output power.

The Circuit

The circuit diagram of the controller is shown in Figure 1 and the circuit is basically a conventional triac-diac type.

The triac (CSR2) is connected in series with the supply to the output, and this device will normally be switched off. It can be made to conduct between the MT1 and MT2 terminals by applying a brief trigger current of around 30mA to the gate terminal, and it will continue to conduct until the end of the mains half cycle when the current through the device falls to zero, and it switches off. CSR1 is a diac connected in the gate circuit of the triac. A diac has similar characteristics to a triac, but it has no gate terminal, and triggers automatically if it is subjected to a potential of more than about 32 volts.

With RV1 set for minimum resistance C2 will charge rapidly via R3 at the beginning of each half cycle, and the voltage across C2 will be virtually equal to the mains voltage. When the charge voltage on C2 reaches the trigger potential of the diac the latter 'fires' and discharges C2 into the triac's gate. This triggers the triac very early in each half cycle, giving virtually full power at the output. Once triggered, the triac short circuits R3, RV1, and C2 so that C2 remains uncharged until the end of the half cycle, and is ready to start from the beginning at the start of the subsequent one.

If RV1 is set for a higher resistance this increases the lag between the charge on C2 and the mains voltage so that the circuit triggers later in each half cycle and gives reduced output power. The circuit will not trigger at all with RV1 at maximum resistance, and it is therefore possible to vary the output power from zero to maximum by means of RV1.

If the resistance of RV1 is such that the diac does not trigger. there is a residual charge left on C2 at the end of the mains half cycle. C2 is subjected to a charge of opposite polarity on the next half cycle, and the residual charge on C2 obviously counteracts the new charge to some extent. It is this that would give poor control when RV1 is advanced from zero power, with RV1 needing to give a fairly low resistance in order to overcome the reverse charge on C2 and charge the latter to the trigger voltage of the diac. Once this happens, C2 is uncharged at the end of each half cycle, and the unit functions normally.

In this circuit the problem is overcome by the inclusion of R2, D1, and D2. On half cycles where the MT2 terminal of CSR2 is negative of its MT1 terminal the additional components have no real effect. A small current will flow through R2 and D2, but this is not sufficient to have any significant affect. About 0.6 volts is produced at the junction of R2, D1, and D2, and the charge on C2 reverse biases D1 so that this has no effect either.

When the supply is of the opposite polarity D2 is reverse biased, and so is D1 initially since the voltage on C2 lags behind the mains voltage. The situation is different towards the end of the half cycle when the mains voltage drops towards zero. C2 then rapidly discharges through D1 and R2 so that the unwanted residual charge is lost. The circuit therefore functions normally on the subsequent half cycle, and the diac will trigger if RV1 has a suitable setting.

Circuits of this type inevitably generate some radio frequency interference due to the rapid rise in the output voltage when the triac triggers. R1, C1, and L1 are included to minimise this interference.

LP1 is a neon indicator lamp with integral resistor which varies in brightness according to the power level fed to the load, and is useful when the unit is used with something like a soldering iron which gives no obvious or immediate indication of the power level it is receiving. Fuse FS1 protects the unit if the output is loaded excessively.

(b)	at	half	pow	er	
(c)	at	virtu	ally	minimum	powe

PARTS	S LIST	
Resistors R1 R2 R3 RV1	 all ½W 5% unless specified 100R 22k 3W W/W min. 22k 1M0 lin. pot. 	(S100R) (W22K) (S22K) (FW08J)
Capacitors C1 C2	47n polyester 100n carbonate	(BX74R) (WW41U)
Semicond CSR1 CSR2 D1,2	uctors ST2 Diac SC146D Triac 1N4004 2 off	(QL08J) (QL05F) (QL76H)
Miscellane L1	ous 6uH 3 Amp suppression choke 3 AMP 20mm quick-blow fuse Plastic case with aluminium panel Printed circuit board Square panel neon (red) Unswitched mains socket Knob M2 20mm panel fuseholder Mains cable, 6A, 2m Vaned heatsink, plastic power	(HW06G) (WR06G) (WY02C) (GA25C) (RX81C) (HL68Y) (RW89W) (RX96E) (XR04E) (FL58N)

Construction

A suitable case for the unit is the Metal Panel Box (type M4005) which has outside dimensions of 161 x 96 x 59mm, but any case of about the same size should be satisfactory. RV1 and LP1 are mounted on the right hand side of the top panel, with the mains outlet on the left. A large cutout is required for the outlet, and this can be made by drilling a string of very closely spaced holes around the inside of the perimeter of the cutout. A miniature round file can then be used to join the holes and complete the cutout. The outlet is bolted in place using M4 fixings. The right hand side of the case is drilled to take the mains input lead and the fuseholder.

All the other components are fitted onto a small printed circuit which is detailed in Figure 3. This diagram also shows the other wiring of the unit. The printed circuit is completed in the normal way, and is bolted to the base panel of the case, beneath RV1 once it has been wired to the rest of the unit. Note that the triac must be fitted with a small finned heatsink or the unit will only be able to safely handle loads of up to about 300 watts.

In the interest of safety it is essential that the metal front panel is earthed, and the connection is made by the earth connector and one of the mounting bolts of the mains outlet. The case must be a type that bolts together, and should not be one that could simply be unclipped to reveal mains wiring. RV1 should be a type having a plastic spindle and it should be fitted with a plastic control knob. Do not touch any of the wiring while the unit is plugged into the mains supply.

Figure 3. The Power Controller Printed Circuit Board

If the unit is working correctly LP1 will light up at full brightness when the unit is connected to the mains supply (due to the current it receives via R3 and D2), and it will vary in brightness in sympathy with the setting of RV1 when a load is connected to the unit. It may be found that due to component tolerances zero power is achieved some way before RV1 is fully backed-off. If necessary, this can be remedied by adding a 2.7 megohm ¹/₃ watt resistor in parallel with RV1.

E&MM

THE CATINES ORGAN

A complete electronic organ to build at low cost

PART 2: Construction of the keyboards and of all the upper manual circuits described

To successfully make the Matinee organ you do not need any knowledge of electronics, though you will undoubtedly learn some as you go along. The only vital requirement is the ability to be able to solder correctly and neatly. Good soldering is a skill that is learnt by practice and it is most important that you learn this skill before starting this project.

How to solder

The main point to remember is that both parts of the joint to be made must be at the same high temperature. The solder will flow evenly and make a good electrical and mechanical joint only if both parts are at an equal high temperature. In this organ almost all the solder joints to be made are between a component wire and a printed circuit track, so in this case both the wire and the track must be at the same high temperature before the solder is applied. Before attempting this project practise soldering using a piece of Veroboard and some resistors or scrap components.

The first thing you'll need is a good soldering iron. There are plenty to choose from such as the Antex X25 or Litesold LC18 which both have a fairly high wattage to help the heat flow quickly into the joint so that the heat need be applied for only a short time. When the iron is hot apply some solder to the flattened working area at the end of the bit and wipe it with a piece of cardboard or damp cloth so that the solder forms a thin film on the bit. Always use a good quality solder such as Ersin multicore. A standard 60% tin, 40% lead alloy solder with cores of non-corrosive flux will be found the easiest to use

If the wires of the component to be fitted are parallel to one

am another on the same side of the component (radial) they should fit directly into the PCB without bending, but if the leads come out of opposite sides of the component (axial) they should first be bent at right angles close to the body of the component. Push the leads through the PCB from the non-coppered side and splay out the ends of the leads a little on the coppered side so that the component does not fall out when the board is turned over and so that the wire touches the edge of the copper track.

Now melt a little more solder on to the tip of the soldering iron and put the tip so that it contacts both the copper track and the component wire. It is the molten solder on the tip of the iron that allows the heat to flow quickly from the iron into both parts of the joint. If the iron has the right amount of solder on it and is positioned correctly, the two parts to be joined will reach the solder's melting temperature in about half a second. Now apply the solder to the point at which the copper track, component wire and soldering iron are all touching one another. The solder will melt immediately and flow around all the parts that are at or over the melting point temperature. It should be possible to take the iron away within one and a half seconds of first touching the iron to the joint. Make sure that the lead and PCB do not move after the soldering iron is removed until the solder is completely hard. This should happen within five to ten seconds. If one of the

components moves during this cooling period the joint may be seriously weakened.

The hard cold solder on a properly made joint will have a smooth shiny appearance, and if

Completed keyboard PCB, showing bus-bars, spacer blocks and contact springs in position.
the component is cut off and the wire from the joint pulled as hard as possible the wire should not pull out of the joint. It should be possible to pull the copper track up off the Veroboard by pulling on the wire. In a properly made joint the solder will bond the wire to the copper track very strongly indeed. It is also important to use the right amount of solder, both on the iron and on the joint. Too little solder on the iron will result in poor heat transfer to the joint, too much and you will suffer from the solder forming strings as the iron is removed, causing splashes and bridges to other tracks. Too little solder applied to the joint will give the joints a half-finished appearance: a good bond where the soldering iron was, and no solder at all on the other side of the joint. Too much solder applied to the joint will cause bridging when adjacent points are soldered.

Now, with all this in mind, make and test solder joints over and over again on a piece of Veroboard until you are making good solid joints every time. Remember it is much, much more difficult to correct a poorly made joint without damaging something, than it is to make the joint properly in the first place. Anyone can learn to solder properly, it just takes practice.

Keyboard Construction

When you are quite sure that you have mastered the art of soldering you are ready to start the construction of the Matinée. The first parts to be put together are the two keyboards. They are supplied already fixed into a frame so you do not have to worry about getting them set at the right height and offset with respect to one another; the manufacturers have done this for you. Another advantage with the frame is that each keyboard can be hinged up individually on the frame to make construction and servicing really easy

There are two identical printed circuit boards; one for each manual. Forty-nine diodes, one for each key, are mounted on each PCB. Place the diodes in the positions marked on the PCB taking the wires through the holes, but do not cut off any of the leads yet. Long white lines are marked close to one edge of the PCB and this is the bus-bar edge. The bodies of the diodes should be positioned close to this edge of the PCB and not centrally between the holes for the diode's leads.

One end of each diode has a ring printed around it. This end is the cathode and corresponds to the thickened end in the drawing on the PCB. All the diodes must be placed the right way round, that is with the cathode farthest from the bus-bar edge of the PCB. Now take the wire from the other end of the diode (the anode) and push it back up through the next nearest hole on the PCB as shown in Figure 3. Make sure there is at least 1cm now sticking up above the PCB. Now solder all the cathodes and cut off the excess wire. Pull the lead from the anode fairly tight so that the loop under the PCB is as small as possible and then cut each wire so that it protrudes above the surface by about 1cm.

Take one of the contact springs and place it on one of the diode wires. Slide the wire in from the belled out end of the spring. Bend the wire and spring forward a little, towards the bus-bar side of the PCB and solder the wire to the spring. Place the iron on the bell of the spring for two or three seconds then touch the iron to the diode wire as well and apply the solder at the same time. The solder should run up the wire and fill the bell in the spring. Repeat this for all forty-nine diodes on both boards then bend them all forwards across the bus-bar lines

Figure 3. Assembly of Keyboard PCB.

on the PCB so that they lay flat on the PCB. Finally solder the loops on the coppered side of the PCB on each of the diodes.

Nine bus-bars are required, each about 18cm long. On eight of them slide two bus-bar support blocks. The bars should pass through the hole farthest from the mounting lug on the block. Now bend the bars as shown in Figure 4. Push the ends of the bars into the PCB at the same time pushing the lug on the bus-bar support blocks through the hole drilled out for them on the PCB. Melt over the ends of the lugs with a hot clean soldering iron, then clean the iron and solder the bus-bars ends to the PCB. Cut the ninth bus-bar to make the contact loop required for the forty-ninth note on each keyboard and bend it as shown in Figure 4 and solder to the PCB, keeping it at the same height from the PCB as the others. Note that the springs should all now be under the bus-bars.

There are two seventeen-way PCB-mounting plugs and one must be soldered to each PCB. The PCB destined to be fitted under the upper manual should have its plug fitted in the position marked 'solo' on the PCB and the PCB to be fitted under the lower manual should have its plug fitted in the position marked 'accompaniment' on the PCB. Make sure that you fit the plug the right way round so that the locking lugs are on the same side as the lugs printed on the PCB. This will ensure that when the ready-made connecting cable is plugged in, it can only be the right way round. The other end of this cable will be plugged onto the main PCB. We shall describe construction of the main PCB in Part 3.

Press fit the five spacers to each keyboard PCB and mount the PCB under the appropriate keyboard using self-tappers (No. 4 x ½in.) through the spacers into the pre-drilled holes in the plastic frame of the keyboard. Carefully take the loose end of each spring and push it through the hole in each plunger under the keys. Finally check that when the keys are at rest none of the springs are touching the bus-bars and that each contact spring touches the bus-bar as each key is pressed. This completes the construction of the keyboards.

Keyboard Operation

The seventeen wires to the keyboard are connected in a 5 x 12 matrix. All five C's on the

Figure 4. Template for Octave Bars.

Picture 2. Keyboard PCB fixed to keyboard using keyboard spacers. Note the end of the frame has been removed to show detail clearly.

keyboard are linked together, all four D's are connected together and so on for the twelve notes. Each of the five separate bus-bars are connected with the other twelve wires to the M108 matrix inputs. Thus the M108 detects which keys are pressed because each key makes a unique connection between one of the twelve key wires and one of the five octave wires. However, if two C's for example were pressed simultaneously the two octave bars involved would be shorted together and if any other key in these two octaves were played the M108 would not be able to tell which of the two octaves the key was in. Therefore a diode is connected in series with each key contact so that the octave bars cannot be shorted together. In addition the inputs to the M108 for the octave bars require pull-up resistors and these are found on the main circuit board.

The M108 is capable of being switched to operate in one of two modes called the 'single' mode and the 'split' mode. In order to produce a fairly sophisticated instrument, in the Matinée both keyboards have their own M108 although the IC was designed originally as a single-chip organ. In the Matinée, on the lower manual it performs its dual function, but on the upper manual, which we shall look at first, it is locked permanently into the 'single' mode.

The M108 sends a signal to the twelve key lines in turn (pins 21 to 32) and looks on the five octave lines (pins 33 to 37) to see if any of the signals are returned. If one or more keys are played on the keyboard then a signal on that key line will be detected on the appropriate octave line and the internal keyboard decoder will allow the appropriate set of three frequencies to be switched to the three octave related outputs (pins 4, 5 and 6 for the lowest octave and pins 16, 17 and 18 for any other note).

The matrix scanning frequency is set by the frequency connected to pin 40 on the IC whilst the output frequencies are determined by the frequency connected to pin 39 on the IC. In the Matinée these pins are connected together and the same master frequency used for both. This is divided down to provide the output frequencies and the chip can generate 85 different notes (all at once as well if you could stand the noise!). When any key is pressed three output frequencies appear, one on pin 6 or 16, one on pin 5 or 17 exactly one octave higher and one on pin 4 or 18 exactly one octave higher than that.

Since the octave bar input to pin 33 on the M108 only ever has top C (from matrix output pin 32) connected to it, eight of the other eleven possibilities (pins 21 to 31) are used to allow various options. The options on pins 24, 27, 28, 30 and 31 are inoperative if the IC is permanently locked in the 'single' mode as is the case with the upper manual, and pins 21 to 23 have no function when linked to pin 33. Each of the eight possibilities has one function when not connected and another function when linked. There must be a diode in the link as they work in the same way as the key contacts.

On the upper manual pin 25 is not connected and this enables an anti-bounce circuit that stops noise and switching transients

Table	3. M108 Pin Functions	20.	+6V
1.	-6V	21.	В
2.	Power-on reset	22.	A#
3.	8th/7th	23.	A
4.	4 foot/5th	24.	G#
5.	8 foot/3rd	25.	G
6.	16 foot/root	26.	F#
7.	Bass output	27.	F
8.	ROMA	28.	E
9.	ROM B	29.	D#
10.	ROM C	30.	D
11.	NPA (pitch present in	31.	C#
	accompaniment outputs)	32.	С
12.	TDB (trigger decay bass)	33.	Octave bar 6
13.	TDS (trigger decay solo)	34.	Octave bar 5
14.	KPA (key pressed	35.	Octave bar 4
	accompaniment)	36.	Octave bar 3
15.	KPS (key pressed solo)	37.	Octave bar 2
16.	16 foot	38.	Octave bar 1
17.	8 foot	39.	Master frequency input
18.	4 foot	40.	Matrix scanning frequency
19.	+6V		input

from the key contacts triggering the IC for a few milliseconds after any key is pressed. Pin 26 is not connected and this locks the IC into the 'single' mode. Finally pin 29 is connected via D143 to pin 33. This connection switches a sustain function on. If it were not connected then after playing, when the last key was released. the frequency outputs from the M108 would cease immediately. Since we are generating our own decay envelopes, we require the frequency outputs from the M108 to remain on. If this pin is connected, the frequency outputs

Figure 6. M108 (viewed from above).

noise and switching transients Keyboard PCB in position showing contact springs in key plungers.

Figure 5. Keyboard Circuit.

KEYBOARD PARTS LIST

Semiconductors D1-49	1N4148	98 off	(QL80B)
Miscellaneous PLA, PLB	Minicon latch plug, 17-Way Spacer Block Keyboard Spacer Palladium Bar Contact Spring Twin Keyboard & Frame Self-Tapper No. 4 x ½in. Contact printed circuit board	2 off 16 off 9 off 98 off 1 off 10 off 2 off	(BH61R) (BH62S) (BH63T) (XB04E) (QY07H) (XY92A) (BF66W). (XY88V)

present just prior to all keys being released, remain on until a new key or keys are pressed.

Most of the remainder of the functions of the M108 (on pins 3, 7, 8, 9, 10, 11, 12 and 14) are concerned with the 'split' mode of operation and will be described when we look at the lower manual in Part 4. This leaves six pins. Pin 1 is connected to -6V and pin 20 is connected to +6V. Pin 19 is used by the manufacturer during testing, but in use it has no function and must be linked to pin 20. Pin 15 provides a continuous low (-6V) DC level all the time any key or keys are played and a continuous high (+6V) DC level when no keys are played. This signal is called KPS (key pressed solo). Pin 13 (TDS) provides a trigger pulse whenever a key is pressed, but this facility is not used in the Matinée. Finally pin 2 is used to reset the logic in the IC when power is first applied. A short positive going pulse is required here and it is provided by C212 and R379.

Organ Voice Circuits

The two 4 foot outputs are

Figure 8. Preset Volces Circuit.

UPPER MANUAL CIRCUIT P	PARTS LIST		Capacitors	3n3 polycarbonate		(WW25C)
Resistors - all 5% ¼W carbon unless spe	cified		C142.150.165	22nF polycarbonate	3 off	(WW33L)
R379 461 464 484 488			C143, 149,155	68nF polycarbonate	3 off	(WW39N)
491 492 496 498 499 100)k 10 off	(M100K)	C144	15nF polycarbonate		(WW31J)
R427 428 434 435 441			C145,151,157	330pF ceramic	3 off	(WX62S)
442 454 463 471 33k	9 off	(M33K)	C146,152,158,160,			
R429.436.443.444.448.			162,208	1uF 63V axial elect.	6 off	(FB12N)
451,458,462,468,473 47k	< 10 off	(M47K)	C147,148,153,154	10nF polycarbonate	4 off	(WW29G)
R430,437,476,486,494 27k	5 off	(M27K)	C156	47nF polycarbonate		(WW37S)
R431,438,445,485,493 470	0k 5 off	(M470K)	C159,163	InF polycarbonate	2 off	(WW22Y)
R432,439,446,449,450,			C161	1n5 polycarbonate		(WW23A)
452,455-457,459,			C164	100nF polycarbonate		(WW41U)
465-467,469,472,			C166	22uF 10V axial elect		(FB29G)
474,490,506,517 10k	k 19 off	(M10K)				
R433,447 220	Ok 2 off	(M220K)	Semiconductors			
R440 330	0k	(M330K)	D143 to 149	1N4148	7 off	(QL80B)
R453,460,470 390	Ok 3 off	(M390K)	TR45	BC212L		(QB60Q)
R475 2k7	7	(M2K7)	IC40	3403		(QH51F)
R477 to 483 22k	k 7 off	(M22K)	IC41,42	1458C	2 off	(QH46A)
R487,489,495,497 150	OR 4 off	(M150R)	IC43	LM13600		(YH64U)
R500,502 2k2	2 2 off	(M2K2)	IC44	M108		(YY90X)
R501,503 8k2	2 2 off	(M8K2)				
R504,505 100	OR 2 off	(M100R)	Miscellaneous			(1)100 4 51
R507 1k		(M1K)	L4	500mH 40R choke		(HX24B)
RV35 Hor	r S-min preset 10k	(WR58N)	L5	1H 55R choke		(HX25C)
RV36 Hor	S-min preset 100k	(WR61R)	PL/	Minicon plug 1/-way		(BH64U)
RV37-43 Dra	iwbar, white, 22k lin. / off	(BR42V)		40-pin DIL SOCKET	1	(HU38R)
RV44 Dra	iwbar, blue, 22k lin.	(BK98G)		veropin 2145	4 011	(FL24D)

All parts will be available as a complete kit from Maplin Electronic Supplies Ltd., in mid April when Part 3 is published.

PRESET VOICES CIRCUI	T PARTS LIST		
Resistors - all 5% KW carbon uple	es specified		
R409,509,520,526,528,535 R410,547 R411 R424,512,536,546	1k 2k2 47R 27k	6 off 2 off 4 off	(M1K) (M2K2) (M47R) (M27K)
R425,426,540,548,550,551	100k	6 off	(M100K)
R508,510,518,523,527,530,531 R508,510,518,523,527,530,531, S38,539,545 R511 R513 R514,516,519,534,555 R521 R522 R524 R522 R524 R529 R532 R533 R537 R541 R542 R543 R544 R549 R553 R554 RV17 PV65	10k 330k 470k 47k 39k 82R 3k9 470R 82k 15k 560R 12k 3k3 820R 120R 150R 120R 150R 122R 150R 122k 4k7 Drawbar, green, 22k lin.	10 off 5 off	(M10K) (M330K) (M470K) (M470K) (M39K) (M39K) (M470R) (M470R) (M470R) (M15K) (M15K) (M15K) (M12CR) (M120R) (M120R) (M150R) (M150R) (M150R) (M22K) (M4K7) (BR99H)
11145	nor ommi preset took		(1110211)
Capacitors C56,209 C138,179,181 C139 C167,171,174,180 C168 C169 C170 C172 C173,177 C175 C176,178	2n2 polycarbonate 1uF 35V tantalum 22uF 10V axial elect. 470uF 16V axial elect. 33nF polycarbonate 22nF polycarbonate 680pF ceramic 10nF polycarbonate 100nF polycarbonate 68nF polyester 4n7 ceramic	2 off 3 off 4 off 2 off	(WW24B) (WW60Q) (FB29G) (FB72P) (WW35Q) (WW35Q) (WW29G) (WW29G) (WW41U) (BX75S) (WX76H)
Semiconductors D75-77,80-82,89-94,140-142 TR44,47-49 TR46 TR50 IC45 Miscellaneous	1N4148 BC212L BC548 BC108C LM13600	15 off 4 off	(QL80B) (QB60Q) (QB73Q) (QB32K) (YH64U)
S27-30,32,33	Latchswitch 2-pole	6 off	(FH67X)
nected to each of the voicin	g the M108 with t	ne ou	touts of 1

CO filters. On the flute filter the lower octave output passes through a different part of the filter from the rest of the keyboard in order to maintain the quality of the flute sound, but on the other voices the two outputs are simply mixed together and fed through the one filter. The same applies to the 8 foot and 16 foot pairs of outputs. At the inputs to the filters the square wave from the M108 is present, though of course this will be a complex waveform if more than one key is pressed. The square waves are perfectly symmetrical about OV referenced by 1k resistors.

The flute filters convert the square waves to sine waves which are very much like the waves produced by a real flute. The string filters, after the original square waves have first been amplified by an op-amp, produce short pulses that are rich in harmonics, like the waves produced by a bowed string. The characteristic clarinet sound is produced by a resonant circuit in the clarinet filter. Finally, the cello sound is produced by mixing and filtering the 16 foot output from the M108 with the outputs of the op-amps in the 4 foot and 8 foot strings before filtering.

The output of each filter is connected to its drawbar which acts as a volume control. The sliders of the flutes and clarinet are resistively mixed, pass through L4 for final voice improvement and then go to IC42a; the flute mixer. The sliders of the strings and cello are resistively mixed and go to IC42b; the string mixer. The output of IC42a goes to IC43b whilst the output of IC42b goes to IC43a. IC43 is a dual transconductance op-amp connected here to operate as two independent voltage controlled amplifiers.

The percussion is simply a 4 foot flute voice and the banjo envelope (TR44) is used again as it produces a very fast attack and decay to produce a 'plink'.

The harpsichord voice is obtained by mixing and filtering 4 foot string and 8 foot string. The envelope (TR47) has a fast attack and a very fast initial decay, but when the voltage on the capacitor C171 falls below the point at which D82 conducts (set by R523 and R524) the decay continues at

Completed upper manual.

a much slower rate under the control of the normal discharge path R521 and D80. If KPS returns high due to all the keys being released during the normal discharge time, a very fast decay is initiated via R539 when TR50 turns on as described in the piano below.

The piano voice is obtained by mixing and filtering 4 foot string, 8 foot string and cello. The envelope (TR49) has a fast attack and like the harpsichord has an initial fast decay until D93 ceases to conduct (at the point set by R543 and R544), then the decay continues via the normal discharge path R536 and D91. If KPS returns high due to all the keys being released during the normal discharge time, a very fast decay is initiated via R538, due to TR50 turning on when KPS went high. The action of TR50 is inhibited by the 'loud pedal' (S36) - this is the glide switch except when the piano stop is pressed - such that the note sustains for a long time when the switch is operated whether the keys are released or not

The harpsichord, banjo, piano and percussion voices are capacitively coupled to KPS so that only the negative transitions on KPS are detected and the continuous level on KPS does not override the envelope. On all other stops including accordion, KPS is DC coupled and the note sounds continuously as long as the key is pressed.

A negative voltage occurs on pin 15 (KPS) of the M108 when any key or keys are pressed, and TR46, an emitter follower prevents loading of the KPS signal. However, one output is taken directly from KPS and applied to TR45. When KPS goes negative, TR45 switches on and C166 charges via D19 and R505. The value of R505 sets the attack time and the voltage across C166 is the control voltage applied to the control inputs of the two upper manual voltage controlled amplifiers (VCA). When the last key is released TR45 ceases to conduct and C166 discharges via the sustain drawbar RV44, and R504, D148 and R507 which shuts the VCA down slowly depending on the setting of RV44.

Preset Voice Circuits

When any preset voice switch is selected, the output from the envelope shaper is inhibited by connecting an earth to the control voltage line. But if the 'drawbar add' switch is operated, the earth is removed and the organ voices sound again.

The five preset voices (piano, harpsichord, accordion, banjo and percussion) have their own voltage controlled amplifier and each voice has its own individual envelope shaper to control the VCA. The voicing of the preset stops is achieved by simply mixing and further filtering the basic string and flute voices already described.

The envelope shaper with each preset voice is triggered by the KPS signal from the same emitter follower as the other voices and operates in the same way as the flutes and strings envelope shaper. However, there are slight variations in each one to produce the characteristic attack and decay of the instrument concerned.

The accordion voice is achieved by mixing and filtering cello, clarinet and 8 foot string. The envelope (TR48) is designed to give a very slow attack and a fast decay. The slow attack results from having a high value charging resistor: R530.

The banjo voice is produced by mixing and filtering 4 foot flute and 8 foot string and the envelope (TR44) gives a very fast attack. The decay characteristic, however, has two stages; an initial decay that is very fast and a later decay that is much slower. Because there are two series diodes in the discharge path, when the charge on C139 falls to the voltage at which the diodes cease to conduct (about 1.5V for two series diodes), the discharge is considerably slowed giving a final low-level ring to the voice.

The outputs of each of the five preset voices are taken through double-pole double-throw (DPDT) latch switches. One pole switches the tone to the signal input of the effects VCA (IC45a) and one pole switches the output of the envelope shaper to the control input of the effects VCA. The switches are interlocked so that only one preset voice can sound at any one time.

In part 3 we shall describe the remainder of the electronic construction: making the main PCB and making the power unit. We shall also look at the interwiring and describe how the power unit and the pedalboard works. **E&MM**

ELECTADNI·KIT

Introducing our new

CHIP SHOP KITS

Each CHIP SHOP KIT is complete in every way and contains all the components necessary to build and operate the project described. All you need is a Soldering Iron (see Kit No. 2) and a 9v battery. Each kit includes step-by-step instructions on construction and detailed educational notes about the individual circuit, together with advice about soldering techniques.

Kit No. 2 - SOLDERING IRON - contains a high quality British soldering iron, a 1Amp fuse and solder together with straightforward instructions upon how to handle your soldering iron and the best techniques for its use and maintenance.

Kit No. 3 - ELECTRONICS TOOLS - contains a selection of useful tools for anyone starting in electronics, together with instructions about the use and care of your equipment.

SOLDER is included with every kit.

Kit No.	Price
1(a) Morning Call plus	£5.00
1(b) Transistor Tester	45.00
2 Soldering Iron	£5.00
3 Electronics Tools	£4.50
4 Electronic Organ	£3.50
. 5 Morse Code Trainer and	
Siren Oscillator	£4.00
6 Light Operated Burglar Alarm	£4.00
7 Buzzer-Aircraft	£3.00
8 Light and Sound Alarm	£3.00
9 Lie Detector	£3.00
10(a) Lamp Flasher plus	\$4.50
10(b) Sleep Inducer	14.00
11(a) Cat Sound plus	£4.50
11(b) Night Light Reminder	14.00
12(a) Bicycle Horn plus	65.00
12(b) Electronic Shocker	20.00
13(a) Light Sensitive Alarm plus	65.00
13(b) Electronic Lamp	15.00
14 2-Transistor Radio	£4.00
15 Morning Alarm	£4.00
16 American Police Siren	£4.00
17 Flashing Dual-tone Horn	£3.50
18 Two-Way Interphone	£5.00
19 4-Transistor Radio	£5.00
20 Clicker-Helicopter Oscillator	£3.00

All kits packed individually in attractive boxes.

Loudspeakers are included with each kit (except nos. 2, 3, 14 where they are not required).

Kit nos. 1, 10, 11, 12, 13 contain two separate projects.

These kits are becoming available in Hobby and Electronics Stores all over the country – look out for the CHIP SHOP DISPLAY in your local store.

If you cannot locate a stockist please order direct from Electron-Kit Ltd. Please add 50p per kit for postage and packaging.

Trade and Educational Enquiries welcomed Cheque/P.O./Access/Barclaycard (or 23p for full-colour illustrated literature) to DEPT. EMM CS

ELECTRONI-KIT LTD. RECTORY COURT, CHALVINGTON, E.SUSSEX, BN27 3TD (032 183 579)

FREE BURGLAR ALARM BOOKLET

Our new FREE booklet entitled, 'Planning, Installing and Maintaining Home Intruder Alarm Systems', gives advice on how to do just that.

At Linton Electronics we do not assume that because you are concerned about Home Security you are automatically a leading authority on the subject of Intruder Detection Equipment and Systems.

Our new FREE booklet takes you step by step through the maze of all the different equipments available, explains their various functions, advantages and disadvantages, and does it all in language you can understand.

Our new FREE booklet also gives pointers as to how an intruder in your home might operate, so indicating how your Intruder Alarm System can not only be effective, but cost effective too.

In short, our new FREE booklet has been written to give <u>you</u> confidence in the system <u>you</u> install. As a mail order supplier of Intruder Alarm Equipment we feel that that is important.

Write, or telephone our answering service NOW for your free booklet. We will send your copy by return of post.

4 HELSTON CLOSE, LINTON, BURTON ON TRENT, STAFFS. DE12 6PN

PHONE: BURTON (0283) 761877 24 Hour Phone Answering Service

ACCESS ORDERS WELCOME

If your Advertising Agency thinks a CMOS RAM comes from Amos' brother's flock.....

How often have you briefed your agency and known they haven't understood a word you've said? Once is enough to know it's time for a change. From one-off ads to a complete advertising, marketing and sales promotion service, we know your market and your products. Call Martin Morris

or circle the enquiry number.

Specialists in your business, experts in our own.

Pendrell Morris Advertising Advertising, Marketing and Sales Promotion

7Albemarle Street, London W1X 3HF. Telephone: 01-491 2829 Telex: 298438

Create One Yourself!

FRANZ LAMBERT

The World's most Entertaining Organist TOURS BRITAIN SPRING '81 Dates as follows:— 21.4.81. — CROYDON — Fairfield Halls 23.4.81. — POOLE — Arts Centre 24.4.81. — SLOUGH — Fulcrum Centre 26.4.81. — BRISTOL — Colston Hall 27.4.81. — BRISTOL — Colston Hall 30.4.81. — BIRMINGHAM — Town Hall 30.4.81. — SHEFFIELD — City Hall 1.5.81. — NEWCASTLE — City Hall 2.5.81. — PRESTON — Guild Hall 4.5.81. — PRESTON — Guild Hall All Concerts start at 7.30 p.m. Tickets £1.50, £2.50 and £3.50. Tickets available from the halls or Wersi Agents.

Aura and **UEREI** Show You How

Create one of Wersi's electronic organs by building it yourself from an easy to build kit. Create a perfect match in decor by picking a spinet or console in contemporary or traditional styling. Create your own personalized instrument by picking just those features that fit your playing style.

Create your own custom electronic organ by having WERSI build it for you. Create the keyboard instrument that exactly fits your needs in styling and features. Create a lifetime investment with WERSI's unique updating system which allows you to ADD new features in the future.

Want to know more about WERSI? AURA SOUNDS are the first company to successfully market WERSI Organs and kits in the U.K. Our technical telephone support service is second to none. There's a friendly welcome and free demonstration at our three showrooms. Fill in the coupon and enclose a cheque/P.O. for §1.00 payable to AURA SOUNDS LTD. FOR IMMEDIATE ACTION TELEPHONE 01-668 9733 24 HOUR ANSWERING SERVICE, QUOTING ACCESS/BARCLAYCARD NUMBER.

AURA SOUNDS LTD. 14-15 Royal Oak Centre, Brighton Road, Purley, Surrey. Tel: 01-668 9733

17 Upper Charter Arcade, Barnsley, Yorkshire. Tel: (0226) 5248 1729 Coventry Road, Sheldon, Birmingham. Tel: 021-707 8244

Please send me the full colour WERSI Catalogue. I enclose cheque/P.O. for £1.

NAME _

ADDRESS

Send to Aura Sounds Ltd., 14/15 Royal Oak Centre, Brighton Road, Purley, Surrey.

EMM/2

MITCHIN AND AURA SOUNDS — THE WINNING COMBINATION

BASS PATTERN

arting Point by Robert Penfold

s it is hoped this series will show, it is within the capabilities of practically anyone to gain a good basic understanding of electronics. For those whose main interest is electronics construction, design, or servicing, it is probably best to concentrate mainly on the characteristics of the various components and the way in which they are employed in practical designs, rather than on the detailed theory of their operation. This approach is used in this series, and it should enable even absolute beginners to quickly and easily grasp an understanding of electronic circuits. Each subsequent part of the series will be accompanied by a simple constructional project which will demonstrate the practical application of the theory that has been covered, as well as being a useful and worthwhile piece of equipment in its own right.

Part 2

So far we have considered some basic theory relating to voltage, current, and resistance. We will now see how this can be put to use in a practical project a high resistance voltmeter. First though, we will examine just what this piece of test equipment does.

Voltmeters

In an ordinary voltmeter circuit the test voltage is applied direct to a meter circuit employing a moving coil meter. This device makes use of the fact that a magnetic field is produced around a conductor while it is passing a current, and the strength of the field is, up to a point, proportional to the level of current flow. This magnetic force is used to drive a pointer, and the deflection of the pointer is proportional to the current flow. A scale calibrated in terms of current flow is marked behind the arc covered by the tip of the pointer.

Of course, the current flowing through the meter depends on the applied voltage, and the meter could be calibrated in terms of voltage if required. Furthermore, the voltage needed to give full scale deflection (f.s.d.) of the meter can be increased if necessary by adding a resistor in series with the meter. For instance, a 1mA meter could be given a full scale value of 10 volts by the addition of a series resistor to give a total circuit resistance of 10k. (R = V/C = 10/0.001 = 10,000 ohms or 10k), as we can see by applying Ohm's Law. In fact a 1mA meter needs a total circuit resistance of 1k per full scale volt, and it is common for test meters to be quoted as a so many ohms per volt type (20k/V is typical). The significance of this figure will become apparent shortly

This simple form of voltmeter works very well much of the time, but it can sometimes give misleadingly low readings. This is due to the meter affecting the circuit under test. Consider the example shown in Figure 1; there is a potential of 4.5 volts at the junction of R1 and R2. However, when the voltmeter circuit is connected across R2 it "shunts" this resistor as it is connected in parallel with R2. From the parallel resistor theory we know that this effectively reduces R2 to 50k, and as a result the voltage at the junction of R1 and R2 drops to 3 volts. This is the reading obtained on the meter, and it is erroneous in that this voltage is only present while the meter is connected to the circuit!

Figure 1. A circuit which demonstrates the loading effect of a voltmeter.

Range switch: location of range resistors

In order to minimise this loading of the circuit under test the meter circuit should have the highest possible resistance. Thus a 20k/V meter circuit is better in this respect than say a 1k/V type. It is difficult to make rugged and accurate moving coil meters having an f.s.d. value of less than about 50uA, which limits the maximum sensitivity to about 20k/V (which is the sensitivity of most good quality test meters). A higher sensitivity can be achieved by adding a current amplifier ahead of the voltmeter circuit so as to boost the resistance through the circuit. This type of voltmeter is known as a high resistance voltmeter, and circuits of this type usually have an input resistance of about 10 or 11 megohms.

General view of voltmeter.

Making a Voltmeter

The instrument described here has an input resistance of 10M and has five measuring ranges of 1, 5, 10, 50, and 100 volts f.s.d. This gives a sensitivity of 100k/V on the 100 volt range to some 10M/V on the 1 volt range. In practice this should always be sufficient to ensure accurate readings.

Figure 2 is the complete circuit diagram of the instrument. This includes three components which have not been discussed so far, and these will be considered briefly before we proceed further.

Figure 2. The circuit diagram of the High Resistance Voltmeter.

The most simple of these components is switch S2 which is an ordinary on/off switch. This is shown in the "off" position (as is the convention), and in this state it provides an almost infinite resistance between its two terminals. Therefore no significant power flows from battery B1 to the main circuitry. When in the "on" position the switch has virtually zero resistance between its two terminals, and the battery is connected straight through to the main circuit.

S1 is a little more complicated, and this is a five position rotary switch. This is used to select the desired measuring range, and the central (pole) terminal of the switch can be connected to just one of the arc of five contacts. If it is switched to the "1V" range R4 is connected into circuit, and R5 to R9 are effectively cut out of the circuit. When it is set to the 5 volt range the series combination of R5 and R6 are switched into circuit, while R4 plus R7 to R9 are disconnected, and so on. Incidentally, two 1M resistors connected in series are used on the 5 volt range because a resistor having the required value of 2M is not readily available.

Component IC1 is an integrated circuit, operational amplifier, and is quite a complex device. However, its action in this circuit is quite simple, and this device need not be considered in great detail here. This device merely adjusts the voltage at its output (pin 6) to a level that maintains the same voltage at its inverting input (pin 2) as appears at its non-inverting input (pin 3). The necessary "feedback" to achieve this is provided through S1 and whichever of the range resistors is selected.

Capacitor C1 is the third type of component we have not yet covered, and this is needed to prevent the circuit from becoming unstable. It is a supply decoupling capacitor, and this will be covered in detail in the next article which is devoted to capacitance.

Circuit Operation

If we first consider the circuit switched to the 1V range and with no input signal applied, R2 and R3 form a simple potential divider which bias the non-inverting input of IC1 to half the supply voltage. In order to bring the inverting input of IC1 to this potential it is merely necessary for the output to also assume half the supply potential. In fact the output must assume a fractionally higher voltage as some current does flow from the output of IC1 and into the inverting input. However, IC1 is a special device that requires an extremely small input current indeed, and so despite the high value of R4, the voltage drop through this component is far too small to be of significance.

R10, RV2 and R11 form another voltage divider across the supply lines, and in practice RV2 is adjusted for a wiper voltage that exactly matches that present at the output of IC1. RV1 and ME1 form a simple voltmeter circuit, and RV1 is adjusted for a full scale sensitivity of 1 volt. Of course, under quiescent conditions the meter circuit is connected between two points at equal potentials (this is a form of bridge circuit) and it registers zero voltage.

If we consider the unit switched to the 1 volt range and a potential of 1 volt connected to the input with the correct polarity, this input signal obviously tries to take the inverting input positive of the non-inverting input (R2 and R3 effectively clamping the latter at half the supply voltage). The output swings negative by an amount that maintains the inverting input at its original level by a potential divider action across R1 and R4. Since these two components have the same value, the output goes negative by an amount equal to the input voltage, or 1 volt in this case. This gives the required full scale deflection of ME1. Lower input voltages give correspondingly lower output voltages and meter readings. Due to the high value of R1 only a very small current is drawn from the circuit under test (0.1uA maximum on the 1 volt range).

The circuit operates in the same basic fashion on the other ranges, but the resistance switched in by S1 is lower so that for a given input voltage a smaller output voltage swing is sufficient to maintain the voltage at IC's inverting input. The values of R5 to R9 are chosen to give additional full scale values of 5, 10, 50, and 100 volts. These range resistors are all close tolerance types so that there are only small discrepancies between the various ranges.

Veroboard: component assembly.

Construction

A number of the components are fitted onto a 0.1 in. pitch Veroboard which measures 15 copper strips by 17 holes. Veroboard is not sold in this particular size, and so the panel must be cut from a larger piece using a hacksaw. Figure 3 gives details of the wiring of the unit. There are five breaks to be made in the copper strips and there is a special "spot face cutter" tool for doing this. A simple alternative is to use a hand held twist drill about 3.5 to 4.5mm, in diameter. The two mounting holes can be 3.3mm, in diameter, and these will then accept either M3 or 6BA fixings.

The components are fitted one by one onto the top side of the board and then soldered to the copper strips on the underside after trimming the leadout wires using wire clippers where necessary. Note that there are also two link wires to be fitted onto the board.

Figure 3. Constructional details of the High Resistance Voltmeter.

The prototype is fitted into a sloping front (Console) case type M1005, with the meter, controls, and input sockets mounted on the top panel. This is all quite straightforward except for the meter which requires a large (38mm, diameter) main mounting hole. This can be cut using a fretsaw, coping saw, miniature round file, or by drilling a ring of small closely spaced holes and then punching out the part of the panel within the ring. A large, half round file can then be used to tidy up the cutout. The positions of the four smaller mounting holes can be located using the meter as a sort of template.

Unit wiring details.

PARTS LIST

Resistors -	all 5%	1/2W un	less s	pecified
-------------	--------	---------	--------	----------

R1,4 R2,3,10,11 R5,6,7 R8 R9 RV1 RV2	10M 3k3 1M0 ½W 2% 200k ½W 2% 100k ½W 2% 10k S-min, horizontal preset 470R S-min, horizontal preset	4 off 3 off	(S10M) (S3K3) (X1M0) (X200K) (X100K) (WR58N) (WR54J)
Capacitors C1	100nF polyester		(BX76H)
Semiconducto IC1	ors LF351 op-amp (8-pin DIL)		(WQ30H)
Meter ME1	100uA fsd panel meter		(RW92A)
Switches S1 S2	6-way 2-pole rotary SPST Sub-miniature toggle		(FF74R) (FH00A)
Miscellaneous B1	ABS console M1005 Verobaard 0.1 in. matrix 17 holes × 15 strips Knob K7B PP3 battery PP3 connector Wander socket, red Wander socket, black Wander plug, red Wander plug, black Probe clips, pair		(LH63T) (FL07H) (YX02C) (HF28F) (HF59P) (HF56L) (HF50E) (HF50E) (HF21X)
	Connecting wire		(BLU/H)

R4 to R9 are mounted direct onto the tags of S1, and both the ends of the leadout wires and the tags of S1 should be generously tinned with solder before fitting the resistors into place. There should then be no difficulty in producing strong joints. The soldering iron should only be applied to the leadouts of the resistors for a second or two at a time so that the resistors do not become overheated and lose their accuracy. Then the battery clip is wired in and the seven insulated connecting wires are added. Finally, the component board is mounted on the rear panel of the case.

Adjustment

As with any newly constructed project, check all the wiring very carefully before switching on. In this case it is also necessary to check that the meter is mechanically zeroed so adjust the screw on the front of the meter if necessary. Also, adjust RV1 and RV2 fully clockwise. When the unit is switched on there should be a small forward deflection of the meter (switch off at once and recheck the wiring if there is not), and the meter is zeroed by adjusting RV2.

One way of giving RV1 the correct setting is to take a 9 volt battery and measure its precise voltage using a multimeter. Switch S1 to the 10 volt position and connect the battery to the input of the unit with the correct polarity. RV1 is then adjusted for the appropriate reading on the meter. If a multimeter is not available, use a fresh 9 volt battery, which will have an actual voltage of almost exactly 9.5 volts, and adjust RV1 accordingly.

The meter can be given an additional 0 to 5 scale using rub-on transfers, but the meter movement is very delicate and great care must be taken when the front cover of the meter is unclipped. It is by no means essential to add this scale since it is quite easy to convert meter readings to their corresponding voltages on the 5 and 50 volt ranges. E&MM

BI-PAK NEW EXTENDED 1981 RANGE

TRA	VSI	STOR	s				1 A 4											
AC107 AC125 AC126 AC127 AC128 AC128 AC128 AC128 AC128 AC128 AC132 AC141 AC141 AC142 AC142 AC142 AC142 AC176 AC176 AC187 AC187 AC188 AC176 AC187 AC188 AC176 AC187 AC187 AC188 AC170 AC187 AC188 AC170 AC187 AC188 AC199 AC200 AC140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD141 AC116 AC117 AC187 AC188 AC199 AC200 AC200 AC200 AC200 AC101 AC187 AC188 AC176 AC187 AC188 AC176 AC187 AC188 AC176 AC187 AC188 AC199 AC200 AC200 AC100 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140 AD140	25 300 222 200 262 266 266 266 266 2	BC116 BC116A BC117 BC118 BC120 BC125 BC126 BC132 BC136 BC137 BC136 BC137 BC138 BC140 BC141 BC142 BC143 BC144 BC145 BC144 BC145 BC147 BC148 BC149 BC150 BC151 BC152 BC153 BC154 BC157 BC158 BC157 BC158 BC159 BC160 BC161 BC157 BC168 BC169C BC167 BC168 BC169C BC177 BC168 BC169C BC177 BC188 BC180 BC177 BC188 BC189C BC177 BC188 BC189C BC177 BC188 BC189C BC177 BC188 BC189C BC187 BC180 BC181 BC182 BC180 BC181 BC182 BC183 BC182 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC183 BC18	$\begin{array}{c} 19\\ 20\\ 17\\ 29\\ 5\\ 25\\ 30\\ 8\\ 18\\ 8\\ 20\\ 22\\ 25\\ 25\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 5\\ 22\\ 22$	BC225 BC226 BC237 BC238 BC237 BC238 BC251 BC251A BC261 BC300 BC301 BC302 BC301 BC302 BC303 BC304 BC307 BC327 BC328 BC337 BC338 BC337 BC338 BC340 BC440 BC441 BC0 BC441 BC477 BC478 BC477 BC478 BC477 BC548 BC546 BC546 BC547 BC558 BC557 BC558 BC557 BC558 BC557 BC558 BC557 BC558 BC557 BC558 BC557 BC558 BC557 BC558 BC557 BC558 BC557 BC558 BC557 BC558 BC557 BC558 BC557 BC558 BC557 BC558 BC557 BC558 BC557 BC558 BC557 BC558 BC557 BC558 BC557 BC558 BC557 BC558 BC730 BC731 BC722 BC731 BC72 BC731 BC723 BC731 BC72 BC731 BC72 BC731 BC72 BC731 BC72 BC731 BC72 BC731 BC72 BC731 BC72 BC731 BC72 BC731 BC72 BC731 BC72 BC731 BC72 BC731 BC72 BC731 BC72 BC731 BC72 BC731 BC72 BC731 BC72 BC731 BC72 BC731 BC72 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC731 BC732 BC731 BC731 BC732 BC731 BC732 BC731 BC732 BC731 BC732 BC731 BC732 BC731 BC732 BC731 BC732 BC731 BC732 BC731 BC732 BC731 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC732 BC	26 363 14 15 16 180 229 228 12 229 228 12 229 228 229 229 229 229 229 229 229 22	BD175 6 BD176 6 BD177 6 BD178 7 BD180 7 BD180 7 BD180 7 BD180 7 BD180 7 BD180 7 BD190 7 BD195 9 BD196 9 BD196 9 BD196 9 BD197 9 BD198 9 BD198 9 BD199 9 BD202 8 BD202 8 BD202 8 BD202 8 BD202 8 BD202 8 BD203 204 8 BD203 8 BD203 8 BD204 8 BD205 8 BD225 4 BD236 5 BD236 5 BD236 5 BD237 6 BD238 6 BD239A 5 BD236 5 BD237 6 BD238 6 BD239 5 BD236 5 BD237 6 BD238 6 BD239 5 BD236 5 BD237 6 BD238 6 BD239 5 BD236 5 BD237 6 BD238 6 BD239 5 BD236 5 BD239 5 BD236 5 BD237 6 BD238 6 BD239 5 BD236 5 BD239 6 BD238 6 BD239 5 BD236 5 BD237 6 BD238 6 BD239 5 BD236 5 BD237 6 BD238 6 BD239 5 BD236 5 BD239 6 BD236 5 BD239 6 BD236 5 BD239 6 BD236 5 BD237 6 BD237 6 BD236 5 BD239 6 BD236 5 BD237 6 BD236 5 BD239 6 BD236 5 BD237 6 BD236 5 BD239 6 BD236 5 BD237 6 BD236 5 BD237 6 BD236 5 BD237 6 BD236 5 BD237 6 BD236 5 BD237 6 BD237 6 BD236 5 BD237 6 BD236 5 BD237 6 BD236 5 BD237 6 BD236 5 BD236 5 BD237 6 BD236 5 BD237 6 BD236 5 BD237 6 BD236 5 BD237 6 BD236 5 BD236 5 BD237 6 BD237 6 BD236 5 BD237 6 BD237 6 BD237 6 BD237 6 BD236 5 BD237 6 BD236 5 BD237 6 BD237 6 BD236 5 BD237 6 BD236 5 BD236 5 BD237 6 BD236 5 BD237 6 BD236 5 BD237 6 BD236 5 BD237 6 BD236 5 BD236 5 B	0 8F157 0 8F157 0 8F158 8 8F158 8 8F158 8 8F158 8 8F162 5 8F163 8 8F164 8 8F165 8 8F167 5 8F163 8 8F177 0 8F178 9 8F187 0 8F188 9 8F180 9 8F183 0 8F184 0 8F187 0 8F186 0 8F187 0 8F187 0 8F187 0 8F187 0 8F187 0 8F187 0 8F187 0 8F187 0 8F187 0 8F197 8F222 7 8F224 8 8F257 8 8F271 0 8F273 8 8F337 0 8F459 0 8F594 5 8F880 0 8F795 8 8F596 8 8F879 8 8F8596 8 8F879 8 8F830 8 8F8596 8 8F879 8 8F8596 8 8F879 8 8F830 8 8F8596 8 8F879 8 8F830 8 8F8596 8 8F879 8 8F830 8 8F8596 8 8F8596 8 8F879 8 8F8596 8	288 288 284 264 300 504 464 250 300 300 222 262 222 222 222 222 222 222 222 2	BFX84 BFX85 BFX86 BFX87 BFX87 BFX87 BFX87 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50 BFY50	24 226 226 220 200 80 80 30 200 200 200 80 80 30 200 200 200 80 80 30 200 200 200 80 80 30 200 200 200 200 200 80 80 80 90 200 200 200 80 80 80 90 200 200 80 80 80 90 555 200 200 200 80 80 80 90 555 200 200 80 80 80 90 555 200 200 80 80 80 90 555 200 200 80 80 80 90 555 200 200 80 80 80 90 555 200 200 80 80 80 90 555 200 200 80 80 80 90 555 200 200 80 80 80 80 90 555 200 200 80 80 80 80 90 555 200 200 80 80 80 80 80 90 555 200 200 80 80 80 80 80 80 80 80 80 80 80 80 8	OC45 OC70 OC71 OC72 OC74 OC75 TC76 OC77 OC79 OC81 OC81D OC82 OC82D OC83 OC84 QC139 OC140 OC140 OC169 OC170 OC171 OC202 OC203 OC204 OC202 OC203 OC204 OC205 R2008B R2010B TIC44 TIP29A TIP29A TIP29A TIP29A TIP30A TIP30B TIP30C TIP31 TIP31A TIP31B TIP32A TIP32B TIP32C TIP31 TIP32A TIP32B TIP32C TIP31 TIP32B TIP32C TIP31 TIP32B TIP32C TIP31 TIP32B TIP32C TIP31 TIP32B TIP32C TIP41A TIP32B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP30C TIP31 TIP32B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP41B TIP32C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TIP43C TI	204 215 260 204 204 204 205 204 205 204 205 205 205 205 205 205 205 205	ZTX 304 ZTX 300 ZTX500 ZTX500 ZTX501 ZTX503 ZTX503 ZTX504 ZTX550 2N388 2N388A 2N404 2N404A 2N524 2N599 2N696 2N697 2N698 2N696 2N697 2N698 2N696 2N706 2N706 2N706 2N706 2N706 2N707 2N708 2N706 2N707 2N708 2N706 2N707 2N708 2N706 2N707 2N708 2N706 2N707 2N708 2N706 2N706 2N706 2N706 2N707 2N708 2N706 2N706 2N706 2N706 2N706 2N707 2N708 2N706 2N706 2N707 2N708 2N706 2N706 2N706 2N706 2N706 2N706 2N706 2N706 2N706 2N706 2N706 2N706 2N706 2N706 2N706 2N707 2N708 2N708 2N706 2N707 2N708 2N708 2N706 2N707 2N708 2N706 2N706 2N707 2N708 2N706 2N706 2N707 2N708 2N708 2N706 2N706 2N707 2N708 2N706 2N707 2N708 2N706 2N707 2N708 2N706 2N707 2N708 2N706 2N707 2N708 2N706 2N707 2N708 2N706 2N707 2N708 2N706 2N707 2N708 2N706 2N707 2N708 2N706 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N706 2N707 2N708 2N706 2N707 2N708 2N706 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N707 2N708 2N709 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N109 2N100 2N109 2N109 2N109 2N109 2N100 2N100 2N100 2N100 2N100 2N100	20 15 3 12 12 25 56 0 24 400 464 44 302 12 25 56 0 24 400 464 44 302 50 9 20 20 20 20 20 20 20 20 20 20	2N221A 2N222A 2N222A 2N2269A 2N2369A 2N2411 2N2412 2N2646 2N2711 2N2712 2N2714 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N2905A 2N3055 2N3055 2N30707 2N3704 2N3707 2N3708A 2N3707 2N3707 2N3708A 2N3707 2N3707 2N3707 2N3707 2N3707 2N3707 2N3707 2N3707 2N3707 2N3707 2N3707 2N3707 2N3707 2N3707 2N3703 2N3707 2N3703 2N3707 2N3707 2N3707 2N3707 2N3707 2N3703 2N3707 2N3703 2N3707 2N3703 2N3707 2N3703 2N3707 2N3703 2N3707 2N3703 2N3707 2N3703 2N3707 2N3703 2N3707 2N3703 2N3703 2N3707 2N3703 2N3820 (FET) 2N3820 (FET) 2N3820 2N3707 2N3820 2N3707 2N3820 2N3707 2N3820 2N3707 2N3820 2N3707 2N3820 2N3707 2N3820 2N3707 2N3820 2N3707 2N3820 2N3707 2N3820 2N3707 2N3820 2N3707 2N3820 2N3707 2N3820 2N3707 2N3703 2N380 2N3707 2N3703 2N3707 2N3702 2N3707 2N3707 2N3707 2N3707 2N	22 20 18 14 25 25 25 22 24 26 26 20 22 22 24 26 26 20 20 215 15 10 09 09 09 09 09 09 09 09 09 0	2N3903 2N3904 2N3905 2N3906 2N4059 2N4059 2N4060 2N4059 2N4062 2N4220 (FET) 2N4284 2N4285 2N4285 2N4287 2N4288 2N4290 2N4290 2N4290 2N4290 2N4291 2N4293 2N4293 2N4293 2N4293 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5135 2N5294 2N5459 2N5459 2N5459 2N5459 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2N54551 2	121222144122 3588888888888888888888888888888888888
AA119 AA120 AA129 AAY30 AAZ13 AAZ17 BA100 BA102	08 09 09 15 15 10 20	BA144 BA148 BA154 BA155 BA156 BA156 BA173 BA248 BB104	09 15 12 14 14 15 16 30	BAX13 BAX16 BY100 BY101 BY105 BY114 BY124 BY126	07 08 22 22 22 22 22 22 22 11	BY127 1: BY128 1: BY130 1: BY133 2: BY156 0: BY156 0: BY164 5: BY176 7: BY206 3:	2 BY210/ 6 600 7 BYZ10 8 BYZ11 8 BYZ12 1 BYZ13 5 BYZ16 0 BYZ17	09 45 45 40 40 41 36	BYZ18 BYZ19 OA5 OA10 OA47 OA70 OA79 OA81	36 36 60 35 08 10 10	OA85 OA90 OA91 OA95 OA182 OA200 OA202 SD10	10 07 07 13 08 08 06	SD 19 IN 34 IN 34A IN 60 IN 914 IN 916 IN 41 48 IS 44	06 07 35 06 04 05 04 05		18	PAG	4
	3			2	1	K	P.O. E	BOX Vare	6, WAF	RΕ,	HERT	S.		201	LOL	01		

SEMICONDUCTORS

Telex: 817861.

COS

74 LS S.E	RIES	TTL		74 SERIES TTL	SILICON RECTIFIERS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7450 7451 7453 7454 7460 7470 7472 7473 7474 7475 7476 7476 7476 7480 7480 7481 7483 7484 7483 7484 7483 7484 7483 7484 7480 7490 7491 7493 7494 7493 7494 7495 7490 74100 74100 74100 74100 74107 74107 74104 74107 74110 74111 74122 74123	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65 60 2.50 80 1.00 65 1.00 70 70 90 90 90 90 90 1.00 1.00 1.00 2.30 90 80 85 85 1.35 1.00 1.00 90 90 90 90 90 90 90 90 90	$74LS00$ 13 $74LS109$ 70 $74LS2431.60$ $74LS01$ 13 $74LS112$ 38 $74LS2441.50$ $74LS02$ 15 $74LS113$ 68 $74LS2471.20$ $74LS03$ 15 $74LS124$ 68 $74LS2471.20$ $74LS04$ 15 $74LS123$ 60 $74LS2471.20$ $74LS05$ 22 $74LS123$ 60 $74LS2511.20$ $74LS08$ 21 $74LS126$ 45 $74LS253$ $74LS102$ 20 $74LS126$ 45 $74LS257$ $74LS102$ 20 $74LS126$ 45 $74LS2581.10$ $74LS1122$ 26 $74LS136$ 50 $74LS260$ $74LS13$ 34 $74LS138$ 60 $74LS266$ $74LS13$ 34 $74LS138$ 60 $74LS2614.00$ $74LS14$ 50 $74LS1472.00^{-}$ $74LS2631.60^{-}$ $74LS12$ 26 $74LS1472.00^{-}$ $74LS2731.66^{-}$ $74LS20$ 18 $74LS155$ 65 $74LS2802.40^{-}$ $74LS26$ 38 $74LS1556$ 65 $74LS2802.40^{-}$ $74LS26$ 38 $74LS1576^{-}$ 74LS2931.00^{-} $74LS30$ 18 $74LS157^{-}$ 74LS2931.50^{-} $74LS33$ 34 $74LS168.80^{-}$ $74LS2293.50^{-}$ $74LS42$ 25 $74LS163.90^{-}$ $74LS325.3.00^{-}$ $74LS42$ 25 $74LS164.90^{-}$ $74LS325.3.00^{-}$ $74LS48$ 80 $74LS164.10^{-}$ $74LS325.3.00^{-}$ $74LS42$ 25 $74LS164.90^{-}$ $74LS325.3.50^{-}$ $74LS42$ <	200mA 6 Amp IS920 50v 06 IS921 100v 07 IS922 150v 08 IS922 150v 09 BYX38-300 45 IS922 150v 09 IS923 200v 09 BYX38-300R 600 IS924 300v 10 IAmp IS10/50 50v 30 IN4001 50v 04½ IS10/100 100v 35 IN4002 100v 05 IS10/200 200v 40 IN4005 600v 07 IS10/400 400v 50 IN4007 1000v 08 IS10/1200 1200v 95 IS021 00v 11 IS30/50 50v 56 IS022 100v 11 IS30/200 200v 93 IS021 200v 11 IS30/200 200v 93 IS021 200v 11 IS30/200 200v 93 IS021 200v 14 IS30/400 400v 1.20 IS021 100v 15 IS30/1000 100v 2.88 JS021 100v 15 IS30/1000 100v <
LINEAR CA270BE CA280Q CA3011 CA3014 CA3014 CA3014 CA3018 CA3020 CA3028 CA3035 CA3036 CA3042 CA3046 CA3042 CA3046 CA3052 CA3046 CA3054 CA3046 CA3055 CA3080 CA3075 CA3080 CA3085 CA3085 CA3085 CA3085 CA30890 CA3123E CA3140E LF351N LF353N LF356N LF356N LF356N LF356N LH0042CH LM308 LM308 LM308 LM309K	.C.'s 95 98 1.75 65 1.75 65 1.75 65 1.75 65 1.75 65 1.75 80 2.30 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.6	MC1304 MC1310P MC1312 MC1350 MC1352 MC1496 NE555 NE566 NE566 NE566 NE566 NE566 NE566 72702 UA703C UA703C UA703C UA710C 72710 UA711C 72711 UA711C 72711 UA723C 72723 UA741C 72741 741P UA748 749P	1.90 1.45 1.70 1.20 1.40 2.70 90 20 55 3.80 4.00 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1	74L583 68 74L5192 95 74L5378 1.20 74L585 75 74L5193 95 74L5378 1.20 74L586 38 74L5194 95 74L5395 74L5395 74L586 38 74L5194 95 74L5395 2.00 74L591 1.10 74L5195 85 74L53995 2.00 74L592 68 74L5197 85 74L53992 2.00 74L593 58 74L5241 1.60 74L5399 1.40 74L596 1.10 74L5241 1.60 74L5670 2.50 74L5107 40 74L5241 1.60 74L5670 2.50 74L5107 40 74L5241 1.60 74L5670 2.50 74L506 1.10 74L5241 1.60 74L5670 2.50 74L506 1.00 74L5399 2.50 74L5670 2.50 74L506 1.00 74L5670 2.50 74L5670 2.50 74L506 1.20 CD4006 2 CD4007 25 CD40	BR1/200v 22 BR10/100v 1.50 BR1/400v 25 BR10/400v 1.90 BR2/200v 35 BR2/50v 1.85 BR2/200v 40 BR25/50v 1.85 BR2/200v 44 BR25/200v 2.90 BR2/200v 65 BR25/400v 2.90 BR6/50v 75 BR6/100v 80 BR6/200v 88 BR6/400v 95 TR12A/200v 95 DIACS 20 TR12A/200v 42 TR100 20 TR14A/400v 50 BR100 20 TR14A/400v 50 S Amp - TO220 TR140/100v 55 TR16A/200v 64 TR110A/400v 90 10 Amp - TO220 TR16A/200v 52 TR10A/400v 64 12 Amp - TO220 TR16A/200v 52
LM318H LM320/5v LM320/12v LM320/15v LM320/24v LM324N LM337T LM339N LM348N LM380 LM381 LM380 LM381 LM382N LM384 LM1458 LM3900 LM3909N LM3911N LM3914N LM3915N COMPU	1.95 95 95 95 95 95 95 95 95 95 95 95 95 9	SN 76013N SN 76023N SN 76110 SN 76115AN SN 76660N TAA550B TAA621 TAA661B TAD100 TBA120B TBA540 TBA540 TBA641A TBA800 TBA810S TBA820 TBA8200 TCA270S ZN414 ZTK33B	1.60 1.65 1.50 1.90 90 35 2.00 1.50 1.50 1.40 2.20 85 95 70 2.50 1.40 90 15	CD4026 1.50 CD4026 1.50 VOLTAGE REGULATORS MVR7805 58 78L18 28 MVR7812 58 78L24 28 MVR7815 58 79L12 55 MVR7812 58 79L12 55 MVR7812 63 79L12 55 MVR7905 63 79L18 55 MVR7912 63 79L24 55 MVR7915 63 LM304H 1.60 LM337T 1.35 MVR7918 63 LM309K 1.25 LM337T 1.35 MVR7918 63 LM309K 1.25 LM320/24V MVR7918 63 LM304H 1.60 LM3207 MVR7918 63 LM304H 1.60 LM320/24V MVR7918 63 LM304H 1.60 LM3207 MVR7918 63 LM309K 1.25 LM327T 1.35 MUR7918 63 LM317H 2.50 UA723C 45 78L15 28 2.50 2.50	16v, 18v, 20v, 22v, 24v, 27v, 30v, 33v, 39v. O/NO: Z4/Voltage 1.3W Voltages available:— 1.3v, 2.2v, 2.7v, 3.3v, 3.9v, 4.3v, 4.7v, 5.1v, 5.6v 62v, 6.8v, 7.5v, 8.2v, 9.1v, 10v, 11v, 12v, 13v, 15v 16v, 18v, 20v, 22v, 24v, 27v, 30v, 33v, 43v, 47v, 51v 60v, 18v, 20v, 22v, 24v, 27v, 30v, 33v, 43v, 47v, 51v 68v, 72v, 75v, 82v, 91v, 100v. O/NO: Z13/Voltage 15g 10W Stud Type Voltages available:— 1.3v, 2.2v, 2.7v, 3.3v, 3.9v, 4.3v, 4.7v, 5.1v, 5.6v 6.2v, 6.8v, 7.5v, 8.2v, 9.1v, 10v, 11v, 12v, 13v, 15v 16v, 18v, 20v, 22v, 24v, 27v, 30v, 33v, 43v, 47v, 51v 68v, 72v, 75v, 82v, 91v, 10v, 11v, 12v, 13v, 15v 16v, 18v, 20v, 22v, 24v, 27v, 30v, 33v, 43v, 47v, 51v 68v, 72v, 75v, 82v, 91v, 100v. 0/NO: Z10/Voltage 35g INSTRUMENT CASES 155 8"x 5½" x 2"
2114L-3 2708	2.40 3.50	2516/2716-5v 4116	4.90 2.25	303 Low Cost C120 0.05 304 30 Min Letter Tape 0.38 305 Empty Library Case 0.12	157 6" x 43" x 13" 2.63 157 6" x 43" x 13" 1.64 158 9" x 5%" x 2%" 2.26

	-	_	-
THYRIST	ORS		
600mA -		5 Amp - T066	
THY600/10v	15	THY5A/50V THY5A/100V	36
THY600/20V	16	THY5A/200v	50
THY600/50v	22	THY5A/400V	57 60
THY600/100v	25	THY5A/800v	75
THY600/400v	44	BTX30/50L	40
800mA -		BTX30/400L	70
THY800/10v	16	C106D	38
THY800/20v	17	BTY79/400R	95
THY800/50v	24	5 Amp - 10220 PLASTIC)
THY800/100v	28	THY5A/50vP	35
1 Amp -	32	THY5A/100VP	45
TO39 CASE		THY5A/400VP	50
THY1A/50V	34	THY5A/600VP	70
THY1A/200v	42	10 Amp - TO48	3
THY1A/600V	65	THY10A/50V	45
THY1A/800V	78	THY10A/200v	55
BT102/500R	80	THY10A/400v THY10A/600v	60 80
BT106	1.25	THY10A/800v	1.10
BT108	98	16 Amp - TO48	65
2N3228	70	THY16A/100v	80
3 Amp — T066 THY3A/50v	35	THY16A/200V	90
THY3A/100v	37	THY16A/600v	1.50
THY3A/200v THY3A/400v	40 50	THY16A/800v	2.00
THY3A/600v	60	30 Amp - 1049 THY30A/50v	1.30
THY3A/800v	/5	THY30A/100v	1.50
THY5A/50v	36	THY30A/2000	4.00
THY5A/100V	45	THY30A/600v	4.20
THY5A/400v	57		
THY5A/600v THY5A/800v	60 75		
KNORS	10	The second second second	
1101 Black/Silv	er Knob		0.28
1101 Black/Silv 1102 Large Cali	er Knob brated K	nob	0.28
1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru	er Knob brated K O Knob Ished All	nob i Knob 15mm	0.28 0.30 0.46 0.32
1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1105 Heavy Bru	er Knob brated K O Knob ished All shed All	nob i Knob 15mm i Knob 22mm	0.28 0.30 0.46 0.32 0.40
1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1105 Heavy Bru 1106 Heavy Bru 1107 Matt Blac	ver Knob brated K O Knob Ished All Ished All Ished All Knob 1	nob i Knob 15mm i Knob 22mm i Knob 28mm 7mm	0.28 0.30 0.46 0.32 0.40 0.52 0.40
1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1105 Heavy Bru 1106 Heavy Bru 1107 Matt Black 1108 Matt Black	ver Knob brated K O Knob ished All ished All ished All ished All ished All ished All ished All ished All	nob i Knob 15mm i Knob 22mm i Knob 28mm 7mm 4m m	0.28 0.30 0.46 0.32 0.40 0.52 0.40 0.46
1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1105 Heavy Bru 1106 Heavy Bru 1107 Matt Black 1108 Matt Black 1109 Matt Black 1100 Alli Peta	ver Knob brated K O Knob Ished All Ished All Knob 1 Knob 2 Knob 2 Serated	nob i Knob 15mm i Knob 22mm i Knob 28mm 7mm 4m m 8mm Edge Knob 15mm	0.28 0.30 0.46 0.32 0.40 0.52 0.40 0.46 0.56 0.34
1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1105 Heavy Bru 1106 Heavy Bru 1107 Matt Black 1108 Matt Black 1109 Matt Black 1109 Matt Black 1100 All Metal 1111 All Metal	ver Knob brated K O Knob Ished All shed All shed All Knob 1 Knob 2 Serated Serated	nob i Knob 15mm i Knob 22mm i Knob 28mm 7mm 4mm 8mm Edge Knob 15mm Edge Knob 15mm Edge Knob 20mm	0.28 0.30 0.46 0.32 0.40 0.52 0.40 0.46 0.56 0.34 0.48
1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1105 Heavy Bru 1106 Heavy Bru 1107 Matt Black 1108 Matt Black 1109 Matt Black 1109 Matt Black 1109 Matt Black 1100 Matt Black 1100 Matt Black 1110 All Metal 1111 All Metal 1112 All Metal 1113 Black Plas	ver Knob brated K O Knob ished All ished All ished All k Knob 1 k Knob 2 k Knob 2 Serated Serated Serated Serated	nob i Knob 15mm i Knob 22mm i Knob 28mm 7mm 4mm 8mm Edge Knob 15mm Edge Knob 15mm Edge Knob 30mm I Skirt	0.28 0.30 0.46 0.32 0.40 0.52 0.40 0.46 0.56 0.34 0.48 0.60 0.24
1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1105 Heavy Bru 1106 Heavy Bru 1106 Heavy Bru 1107 Matt Black 1108 Matt Black 1109 Matt Black 1110 All Metal 1111 All Metal 1112 All Metal 1113 Black Plas 1114 Black Poir 1115 Black / Plas	ver Knob brated K 0 Knob ished All shed All shed All shed All (Knob 1 (Knob 2 Serated Serated Serated tic Meta tic Meta hter Knob	nob i Knob 15mm i Knob 22mm 7mm 4mm 8mm Edge Knob 15mm Edge Knob 15mm Edge Knob 24mm Edge Knob 30mm I Skirt	0.28 0.30 0.46 0.32 0.40 0.52 0.40 0.52 0.40 0.54 0.56 0.34 0.48 0.60 0.24 0.22
1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1105 Heavy Bru 1106 Heavy Bru 1107 Matt Black 1108 Matt Black 1109 Matt Black 1100 Matt Black 1110 All Metal 1111 All Metal 1112 All Metal 1113 Black Plas 1114 Black Plas 1115 Black/Lohn 1116 Alli Push	ver Knob brated K O Knob Ished All Ished Ishe Ished All Ished All Ished All Ished All Ished All Ished All Ished All Ished All Ished All Ished Ishe Ished All Ished All Ished All Ished All Ished All Ished All Ished All Ished All Ished Ished	nob i Knob 15mm i Knob 22mm i Knob 28mm 7mm 4mm 8mm Edge Knob 15mm Edge Knob 15mm Edge Knob 30mm I Skirt 5 rument Knob 22mm nob 11mm	0.28 0.30 0.46 0.32 0.40 0.52 0.40 0.52 0.40 0.52 0.40 0.52 0.34 0.48 0.60 0.22 0.14
1101Black/Silv1102Large Cali1103Alli PA 101104Heavy Bru1105Heavy Bru1106Heavy Bru1107Matt Blacl1108Matt Blacl1109Matt Blacl1109Matt Blacl1109Matt Blacl1109Matt Blacl1110All Metal1112All Metal1113Black Plas1114Black Plas1115Black/Chr1116Alli Push1117Black Plas1118Chrome S	ver Knob brated K O Knob Ished All Ished Ished	nob i Knob 15mm i Knob 22mm i Knob 28mm 7mm 4mm Edge Knob 15mm Edge Knob 15mm Edge Knob 24mm Edge Knob 24mm I Skirt or rument Knob 22mn nob 11mm r Knob ob	0.28 0.30 0.46 0.32 0.40 0.52 0.40 0.40 0.44 0.35 0.34 0.22 0.14 0.12 0.12
1101Black/Silv1102Large Cali1103Alli PA 101104Heavy Bru1105Heavy Bru1106Heavy Bru1107Matt Blacl1108Matt Blacl1109Matt Blacl1109Matt Blacl1100All Metal1112All Metal1113Black Plas1114Black Plas1115Black/Chr1116Alli Push1117Black Plas1118Chrome S1119Chrome/E	er Knob brated K O Knob Ished All shed All shed All shed All (Knob 1 (Knob 2 Serated S	nob i Knob 15mm i Knob 22mm i Knob 28mm 7mm 4mm Edge Knob 15mm Edge Knob 15mm Edge Knob 24mm Edge Knob 24mm I Skirt or Unment Knob 22mn rob 11mm r Knob bb	0.28 0.30 0.46 0.32 0.40 0.52 0.40 0.52 0.40 0.52 0.40 0.24 0.34 0.22 0.14 0.22 0.14 0.22
1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1105 Heavy Bru 1106 Heavy Bru 1106 Heavy Bru 1107 Matt Blact 1108 Matt Blact 1109 Matt Blact 1110 All Metal 1112 All Metal 1113 Black Plas 1114 Black /Plas 1115 Black/Chr 1116 Alli Push 1117 Black Plas 1118 Chrome S 1119 Chrome/E	ver Knob brated K 0 Knob ished All ished All ished All ished All (Knob 1 (Knob 2 Serated Serated Serated Serated Serated itic Meta tic Slide lider Kno Batton K itic Slide	nob i Knob 15mm i Knob 22mm i Knob 28mm 7mm 8mm Edge Knob 15mm Edge Knob 24mm Edge Knob 24mm Edge Knob 24mm I Skirt or rument Knob 22mm rob 11mm r Knob bb BES etc	0.28 0.30 0.46 0.32 0.40 0.52 0.40 0.52 0.40 0.52 0.34 0.22 0.14 0.22 0.14 0.22
1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1105 Heavy Bru 1106 Heavy Bru 1106 Heavy Bru 1107 Matt Blact 1108 Matt Blact 1109 Matt Blact 1110 All Metal 1112 All Metal 1113 Black Plas 1114 Matt Blact 1115 Black/Chr 1116 Alli Push 1117 Black Plas 1118 Chrome X 1119 Chrome X MICCROP 1325	er Knob brated K 0 Knob Ished All shed All shed All shed All (Knob 1 (Knob 2 Serated Serated Serated tic Meta tic Meta tic Meta lider Kno Button K tic Slide lider Kno Black Slid HON	nob i Knob 15mm i Knob 22mm i Knob 28mm 7mm 8mm Edge Knob 15mm Edge Knob 24mm Edge Knob 24mm Edge Knob 24mm Edge Knob 24mm t Skirt 5 rument Knob 22mm rob 11mm r Knob bb ES etc	0.28 0.30 0.46 0.32 0.40 0.52 0.46 0.56 0.34 0.46 0.24 0.24 0.22 0.14 0.22 0.14 0.22
1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1105 Heavy Bru 1106 Heavy Bru 1106 Heavy Bru 1107 Matt Black 1108 Matt Black 1109 Matt Black 1110 All Metal 1112 All Metal 1113 Black Plass 1114 Black Plass 1115 Black/Chr 1116 Alli Push 1117 Black Plass 1118 Chrome X 1119 Chrome X 1123 Crystal De 1326 Cassette M	ver Knob brated K 0 Knob Ished All shed All shed All shed All shed All (Knob 1 (Knob 2 Serated Serated Serated Serated tic Meta tic Meta lider Knob Button K tic Slide HON usk Mike 2asette	nob i Knob 15mm i Knob 22mm i Knob 28mm 7mm 4mm 8mm Edge Knob 15mm Edge Knob 24mm Edge Knob 24mm Edge Knob 24mm i Skirt 5 rument Knob 22mm nob 11mm r Knob bb Ber Knob ES etc mm + 3.5mm Plugs	0.28 0.30 0.46 0.32 0.40 0.52 0.46 0.56 0.34 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22
1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1105 Heavy Bru 1106 Heavy Bru 1106 Heavy Bru 1107 Matt Black 1108 Matt Black 1109 Matt Black 1110 All Metal 1112 All Metal 1113 Black Plas 1114 Black Plas 1115 Black/Chr 1116 Alli Push 1117 Black Plas 1118 Chrome S 1119 Chrome / E MICCROPI 1325 1327 Dynamic C 1328 Dual Imp	ver Knob brated K O Knob Ished All shed All shed All shed All shed All (Knob 1 (Knob 2 Serated Serated Serated tic Meta tic Meta lider Kno Button K tic Slide lider Kno Black Slid HON isk Mike diasette Dynamic	nob i Knob 15mm i Knob 22mm i Knob 28mm 7mm 4mm 8mm Edge Knob 15mm Edge Knob 24mm Edge Knob 24mm Edge Knob 24mm I Skirt 5 rument Knob 22mm nob 11mm r Knob bb ES etc mm + 3.5mm Plugs Mike Mike	0.28 0.30 0.46 0.32 0.40 0.52 0.46 0.56 0.34 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22
1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1105 Heavy Bru 1106 Heavy Bru 1106 Matt Black 1108 Matt Black 1109 Matt Black 1109 Matt Black 1109 Matt Black 1109 Matt Black 1110 All Metal 1112 All Metal 1113 Black Plas 1114 Black Plas 1115 Black /Chr 1115 Black /Chr 1115 Black /Chr 1116 Alli Push 1117 Black /Chr 1118 Chrome S 1119 Chrome /E MICROPI 1325 Crystal De 1326 Cassette M 1327 Dynamic C 1328 Dual Imp 1329 Dual Imp	ver Knob brated K O Knob Ished All shed Shed Shed Shed Shed Shed Shed Shed Shed Shed Shed Shed Shed Shed Shed Shed Shed Shed Shed Shed	nob i Knob 15mm i Knob 22mm i Knob 28mm 7mm 4mm 8mm Edge Knob 15mm Edge Knob 24mm Edge Knob 24mm Edge Knob 24mm Edge Knob 24mm I Skirt 5 rument Knob 22mn nob 11mm r Knob b b ES etc mm + 3.5mm Plugs Mike er Mike	0.28 0.30 0.46 0.32 0.40 0.52 0.46 0.56 0.34 0.48 0.60 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.46 0.24 0.46 0.56 0.24 0.46 0.56 0.24 0.46 0.56 0.24 0.46 0.56 0.24 0.46 0.56 0.24 0.46 0.56 0.24 0.46 0.56 0.24 0.46 0.56 0.24 0.46 0.56 0.22 0.46 0.22 0.14 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.2
1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1105 Heavy Bru 1106 Heavy Bru 1106 Heavy Bru 1107 Matt Black 1108 Matt Black 1109 Matt Black 1111 All Metal 1112 All Metal 1113 Black Plas 1114 Black Plas 1115 Black/Chr 1116 Alli Push 1117 Black Plas 1118 Chrome S 1119 Chrome /€ MICCROPI 1325 1325 Crystal De 1326 Cassetter M 1329 Dual Imp 1330 Plastic Mi 1331 Windshiel	ver Knob brated K O Knob Ished All shed All shed All shed All shed All (Knob 2 (Knob 2 Serated Serated Serated tic Meta tic Meta lider Kno Button K tic Slide lider Kno Black Slid HON isk Mike diase the Dynamic Condens ke Holde d Mediu	nob i Knob 15mm i Knob 22mm i Knob 28mm 7mm 4mm 8mm Edge Knob 15mm Edge Knob 24mm Edge Knob 24mm Edge Knob 24mm Edge Knob 24mm i Skirt 5 rument Knob 22mm nob 11mm r Knob 25 ES etc mm + 3.5mm Plugs Mike er Mike r m (Pair)	0.28 0.30 0.46 0.32 0.40 0.52 0.46 0.56 0.34 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.50 1.86 1.86 1.86 1.86 1.850 1.320 0.650 0.46 0.551 0.555 0.551 0.5
1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1105 Heavy Bru 1106 Heavy Bru 1106 Heavy Bru 1107 Matt Black 1108 Matt Black 1109 Matt Black 1109 Matt Black 1100 All Metal 1111 All Metal 1112 All Metal 1113 Black Plas 1114 Black Poir 1115 Black /Chr 1115 Black /Chr 1116 Alli Push 1117 Black Plas 1118 Chrome S 1119 Chrome/E MICROPI 1325 Crystal De 1326 Cassette M 1327 Dynamic C 1328 Dual Imp 1330 Plastic Mi 1331 Windshiel 1332 Goosenec	ver Knob brated K O Knob Ished All shed All seated Serated Serated Serated Serated tic Meta Button K tic Slide Button K tic Slide Button K Mike 2.4 Cassette Dynamic Condens ke Holde d Mediu d Large k 320m	nob i Knob 15mm i Knob 22mm i Knob 28mm 7mm 4mm 8mm Edge Knob 15mm Edge Knob 24mm Edge Knob 24mm Edge Knob 24mm i Skirt b trument Knob 22mn nob 11mm r Knob D ES etc mm + 3.5mm Plugs Mike er Mike r m (Pair) (Pair) (Pair) n (Chrome)	0.28 0.30 0.46 0.32 0.40 0.52 0.46 0.56 0.348 0.60 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.12 0.12 0.12 0.12 0.12 0.12 0.12
1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1105 Heavy Bru 1106 Heavy Bru 1106 Heavy Bru 1107 Matt Black 1108 Matt Black 1109 Matt Black 1109 Matt Black 1100 All Metal 1111 All Metal 1112 All Metal 1113 Black Plas 1114 Black Chri 1115 Black Chas 1118 Chrome S 1119 Chrome/E MICROPI 1325 Crystal De 1326 Cassette M 1327 Dynamic C 1328 Dual Imp 1330 Plastic Mi 1331 Windshiel 1332 Goosenec 1334 Goosenec	ver Knob brated K O Knob Ished All shed All shed All shed All (Knob 1 (Knob 2 Serated Serated Serated Serated tic Meta Button K tic Slide Button K tic Slide Button K MON Isk Mike Qassette Dynamic Condens ke Holde d Mediu d Large k 320mn	nob i Knob 15mm i Knob 22mm i Knob 28mm 7mm 4mm 8mm Edge Knob 15mm Edge Knob 24mm Edge Knob 24mm Edge Knob 24mm i Skirt b trument Knob 22mn nob 11mm r Knob ES etc mm + 3.5mm Plugs Mike er Mike r m (Pair) (Pair) n (Chrome)	0.28 0.30 0.46 0.32 0.40 0.52 0.46 0.56 0.348 0.60 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.12 0.12 0.12 0.12 0.12 0.12 0.12
1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1105 Heavy Bru 1106 Heavy Bru 1106 Heavy Bru 1107 Matt Black 1108 Matt Black 1109 Matt Black 1109 Matt Black 1109 Matt Black 1110 All Metal 1111 All Metal 1112 All Metal 1113 Black Plas 1114 Black Chri 1115 Black/Chr 1116 Alli Push 1117 Black Plas 1118 Chrome S 1119 Chrome/E MICROPI 1325 Crystal De 1326 Cassette M 1327 Dynamic C 1328 Dual Imp 1330 Plastic Mi 1331 Windshiel 1332 Windshiel 1333 Gossenec 1334 Gossenec 1336 Cassette Floot 1336 Cassette Floot 1346 Cassette Floot	ver Knob brated K O Knob shed All shed All seated Serated tic Meta Serated tic Meta Serated tic Meta Button K tic Slide lider Knob Button K tic Slide lider Knob Button K Mike 2.4 Condens ke Holde d Mediu d Large k 320mm k 515mm r Stand Deck Mike	nob i Knob 15mm i Knob 22mm i Knob 28mm 7mm 4mm 8mm Edge Knob 15mm Edge Knob 15mm Edge Knob 24mm Edge Knob 24mm Edge Knob 24mm i Skirt b trument Knob 22mn nob 11mm r Knob ES etc mm + 3.5mm Plugs Mike er Mike r m (Pair) (Pair) n (Chrome) n (Chrome) e 5K ohm	0.28 0.30 0.46 0.32 0.40 0.52 0.46 0.56 0.34 0.66 0.34 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.12 0.12 0.12 0.12 0.12 0.12 0.12
1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1105 Heavy Bru 1106 Heavy Bru 1106 Heavy Bru 1107 Matt Black 1108 Matt Black 1109 Matt Black 1109 Matt Black 1100 Matt Black 1110 All Metal 1111 All Metal 1112 All Metal 1113 Black Plas 1118 Black Plas 1118 Chrome S 1119 Chrome/E MICROPI 1325 Crystal De 1326 Cassette M 1327 Dynamic C 1328 Dual Imp 1330 Plastic Mi 1331 Windshiel 1332 Windshiel 1333 Gossenec 1334 Gossenec 1336 Cassette Floot 1336 Cassette Floot 1337 Mike Boor	ver Knob brated K O Knob Ished All shed	nob i Knob 15mm i Knob 22mm i Knob 28mm 7mm 4mm 8mm Edge Knob 15mm Edge Knob 15mm Edge Knob 24mm Edge Knob 24mm Edge Knob 30mm I Skirt b trument Knob 22mn nob 11mm r Knob ES etc mm + 3.5mm Plugs Mike er Mike r m (Pair) (Pair) n (Chrome) n (Chrome) e. 5K ohm	0.28 0.30 0.46 0.32 0.40 0.52 0.46 0.56 0.348 0.60 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.12 0.12 0.12 0.12 0.12 0.12 0.12
 1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1106 Heavy Bru 1106 Heavy Bru 1106 Heavy Bru 1107 Matt Black 1108 Matt Black 1109 Matt Black 1110 All Metal 1111 All Metal 1112 All Metal 1113 Black Plas 114 Black Poir 1115 Black/Chr 1116 Alli Push 1117 Black Plas 118 Chrome S 119 Chrome/E MICROPI 1325 Crystal De 1326 Cassette M 1327 Dynamic C 1328 Dual Imp 1330 Plastic Mi 1331 Windshiel 1332 Gosenec 1334 Gosenec 1335 Mike Floo 1336 Crystal Mi 1339 Two-Stati Mi 	ver Knob brated K O Knob Ished All shed All shed All shed All shed All shed All shed All shed Serated Serated Serated Serated tic Meta Batton K tic Slide lider Knob Batton K Stuton K MON State Mon State All Serated	nob i Knob 15mm i Knob 22mm i Knob 28mm 7mm 4mm 8mm Edge Knob 15mm Edge Knob 24mm Edge Knob 24mm Edge Knob 24mm i Skirt b trument Knob 22mn nob 11mm r Knob ES etc mm + 3.5mm Plugs Mike er Mike r m (Pair) (Pair) n (Chrome) n (Chrome) e. 5K ohm t om	0.28 0.30 0.46 0.32 0.40 0.52 0.46 0.56 0.348 0.60 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.14 0.22 0.12 0.12 0.12 0.12 0.12 0.12 0.12
1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1105 Heavy Bru 1106 Heavy Bru 1106 Heavy Bru 1107 Matt Black 1108 Matt Black 1109 Matt Black 1109 Matt Black 1100 Matt Black 1110 All Metal 1111 All Metal 1112 All Metal 1113 Black Plas 1114 Black Chri 1115 Black/Chr 1116 Alli Push 1117 Black Plas 1118 Chrome S 1119 Chrome/E MICROPI 1325 Crystal De 1326 Cassette D 1327 Dynamic C 1328 Dual Imp 1330 Plastic Mi 1331 Windshiel 1332 Gossenec 1334 Gossenec 1335 Crystal Mike Boor 1336 Cassette D 1337 Mike Boor 1339 Two-Static 1340 Mobile or 1341 Mobile or 13	rer Knob brated K O Knob Ished All shed All shed All shed All shed All shed All shed All shed Serated Serated Serated Serated tic Meta Batton K tic Slide lider Kno Batton K Statton K Button K Statton K Button K Statton K Statton Batton K Statton	nob i Knob 15mm i Knob 22mm i Knob 28mm 7mm 4mm 8mm Edge Knob 15mm Edge Knob 15mm Edge Knob 24mm Edge Knob 24mm Edge Knob 30mm I Skirt b trument Knob 22mn nob 11mm r Knob ES etc mm + 3.5mm Plugs Mike er Mike r m (Pair) (Pair) n (Chrome) n (Chrome) e 5K ohm t om 250 ohms	0.28 0.30 0.46 0.32 0.40 0.52 0.46 0.54 0.34 0.22 0.14 0.55 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.05 0.05 0.05 0.05 0.05 0.05 0.05
1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1105 Heavy Bru 1106 Heavy Bru 1106 Heavy Bru 1107 Matt Black 1108 Matt Black 1109 Matt Black 1109 Matt Black 1100 Matt Black 1111 All Metal 1111 All Metal 1112 All Metal 1113 Black Plas 1118 Chrome S 1119 Chrome/E 1205 Crystal De 1326 Cassette D 1327 Dynamic C 1328 Dual Imp 1329 Dual Imp 1329 Dual Imp 1320 Plastic Mi 1331 Windshiel 1332 Gossenec 1334 Gossenec 1335 Crystal Mike Boor 1336 Cassette D 1337 Mike Boor 1339 Two-Static 1340 Mobile or 1341 Mobile or 1341 Mobile or	ver Knob brated K O Knob Ished All shed All shed All shed All shed All shed All shed All shed Serated Serated Serated tic Meta Serated tic Meta Batton K tic Slide lider Kno Batton K Button K Statton K Button K Mike 2.4 Cassea Dynamic Condens ke Holde d Large k 320mm k 515mr r Stand Deck Mike n Arm ke Inser	nob i Knob 15mm i Knob 22mm i Knob 28mm 7mm 4mm 8mm Edge Knob 15mm Edge Knob 15mm Edge Knob 24mm Edge Knob 24mm Edge Knob 30mm I Skirt 5 rument Knob 22mn nob 11mm r Knob ES etc mm + 3.5mm Plugs Mike er Mike r m (Pair) (Pair) (Pair) n (Chrome) n (Chrome) e 5K ohm t om e 500 ohms	0.28 0.30 0.46 0.32 0.40 0.52 0.46 0.54 0.32 0.46 0.22 0.14 0.55 0.05 0.05 0.05 0.05 0.05 0.05 0.0
1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1105 Heavy Bru 1106 Heavy Bru 1106 Heavy Bru 1107 Matt Black 1108 Matt Black 1109 Matt Black 1109 Matt Black 1100 Matt Black 1110 All Metal 1111 All Metal 1112 All Metal 1113 Black Plas 1118 Black Plas 1118 Chrome S 1119 Chrome/E 1226 Crystal De 1325 Crystal De 1326 Cassette D 1327 Dynamic C 1328 Dual Imp 1329 Dual Imp 1329 Dual Imp 1330 Plastic Mi 1331 Windshiel 1332 Windshiel 1333 Gossenec 1334 Gossenec 1335 Mike Floor 1336 Cassette D 1337 Mike Boor 1338 Crystal Mi 1339 Two-Static 1340 Mobile or 141 Mobile or AERIALS	ver Knob brated K O Knob Ished All shed All shed All shed All shed All shed All shed All shed Serated Serated Serated tic Meta batton K tic Slide lider Knob Batton K tic Slide lider Knob Batton K Button K HON Sk Mike Vike 2.4 Cassate Dynamic Condens k 200mr sk Holde d Large k 320mr k 515mr r Stand Deck Mike n Arm ke Inser	nob i Knob 15mm i Knob 22mm i Knob 28mm 7mm 4mm 8mm Edge Knob 15mm Edge Knob 24mm Edge Knob 24mm Edge Knob 30mm I Skirt 5 rument Knob 22mn nob 11mm r Knob ES etc mm + 3.5mm Plugs Mike er Mike r m (Pair) (Pair) (Pair) n (Chrome) n (Chrome) e 5K ohm t om 600 ohms 250 ohms	0.28 0.30 0.46 0.32 0.40 0.52 0.46 0.54 0.32 0.14 0.22 0.14 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.5
 Black/Silv Large Cali Alli PA 10 Alli PA 10 Alli PA 10 Heavy Bru Heavy Bru Heavy Bru Heavy Bru Heavy Bru Heavy Bru Matt Black Matt Black Matt Black Alli Pash Black Plas Black Plas Black Plas Black Plas Black Plas Black Plas Crystal De Crystal De Cassette D Cass	rer Knob brated K O Knob Ished All shed All shed All shed All shed All shed All shed All shed All shed Serated Serated Serated tic Meta batton K tic Slide lider Knob Batton K Button K tic Slide lider Knob Batton K Button K HON Isk Mike d Mage k 320mmic Condens k 320mmic Ske Holde d Argee k 320mmic CB Mike CB Mike CB Mike CB Mike	nob i Knob 15mm i Knob 22mm i Knob 28mm 7mm 4mm 8mm Edge Knob 15mm Edge Knob 24mm Edge Knob 24mm Edge Knob 24mm i Skirt b trument Knob 22mn nob 11mm r Knob ES etc mm + 3.5mm Plugs Mike er Mike r m (Pair) (Pair) (Pair) n (Chrome) n (Chrome) e 5K ohm t om 600 ohms 250 ohms	0.28 0.30 0.46 0.30 0.46 0.52 0.40 0.52 0.46 0.54 0.22 0.14 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.5
 Black/Silv Large Cali Alli PA 10 Alli PA 10 Heavy Bru Matt Black Matt Black Matt Black Alli Pash Black Plas Black Plas Black Plas Black Plas Crystal De Crystal De Cassette D Crystal De Cassette C Cassette C Cassette C Crystal De Cassette C Casse	rer Knob brated K O Knob Ished All shed All shed All shed All shed All shed All shed All shed All shed Serated Serated tic Meta Back Slide lider Knob Batton K tic Slide lider Knob Batton K Batton K Batton K HON Sk Mike d Large k 320mr k 515mr r Stand Deck Mike a Condens k 515mr r Stand Deck Mike CB Mike CB Mike CB Mike CB Mike CB Mike	nob i Knob 15mm i Knob 22mm i Knob 28mm 7mm 4mm 8mm Edge Knob 15mm Edge Knob 24mm Edge Knob 24mm Edge Knob 24mm i Skirt b trument Knob 22mn nob 11mm r Knob ES etc mm + 3.5mm Plugs Mike er Mike r m (Pair) (Pair) (Pair) n (Chrome) n (Chrome) n (Chrome) e 550 ohms i 250 ohms utter Mount a erial	0.28 0.30 0.46 0.30 0.46 0.52 0.40 0.52 0.46 0.54 0.22 0.14 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.5
1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1105 Heavy Bru 1105 Heavy Bru 1106 Heavy Bru 1107 Matt Black 1108 Matt Black 1109 Matt Black 1109 Matt Black 1110 All Metal 1111 All Metal 1112 All Metal 1113 Black Plass 1114 Black Chri 1115 Black/Chr 1115 Black Plass 1118 Chrome S 1119 Chrome/E MICROPI 1325 Crystal De 1326 Cassette D 1327 Dynamic O 1328 Dual Imp 1330 Plastic Mi 1331 Windshiel 1332 Gossenec 1334 Gossenec 1335 Crystal Mike Boor 1336 Cassette D 1337 Mike Boor 1338 Crystal Mi 1339 Two-Static 1341 Mobile or 1341 Mobile or 1341 Mobile or 1341 Mobile or 1341 Mobile or 1341 Mobile or 1341 Allored Allored Allored Allored Allored Allored 135 Adjustable 106 C.B. Mobile 107 FM Indoor f 108 4 Section C 109 4 Section C	rer Knob brated K O Knob Ished All shed All shed All shed All shed All shed All shed All shed All shed Serated tic Meta Serated tic Meta Batton K tic Slide lider Kno Batton K tic Slide lider Kno Batton K Batton K Statton HON Sk Mike d Large k 320mr k 515mr r Stand Deck Mike d Large K 320mr k 515mr r Stand Deck Mike CB Mike CB Mike CB Mike CB Mike CB Mike CB Mike Aerial G Antenna Ratena Artana	nob i Knob 15mm i Knob 22mm i Knob 22mm i Knob 28mm 7mm 4mm 8mm Edge Knob 15mm Edge Knob 24mm Edge Knob 24mm Edge Knob 24mm i Skirt b trument Knob 22mn nob 11mm r Knob ES etc mm + 3.5mm Plugs Mike er Mike r m (Pair) (Pair) (Pair) n (Chrome) n (Chrome) e 550 ohms i 250 ohms utter Mount a erial (Stainless) (Chrome)	0.28 0.30 0.46 0.32 0.40 0.52 0.40 0.52 0.46 0.54 0.22 0.14 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5
1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1105 Heavy Bru 1106 Heavy Bru 1106 Heavy Bru 1107 Matt Black 1108 Matt Black 1109 Matt Black 1109 Matt Black 1110 All Metal 1111 All Metal 1112 All Metal 1113 Black Plas 1118 Chrome S 1119 Chrome/E MICROPI 1325 Crystal De 1326 Cassette D 1327 Dynamic O 1328 Dual Imp 1330 Plastic Mi 1331 Windshiel 1332 Gossenec 1334 Gossenec 1335 Crystal De 1336 Cassette D 1330 Plastic Mi 1331 Windshiel 1333 Gossenec 1334 Gossenec 1335 Crystal Mike Boor 1336 Cassette D 1337 Mike Boor 1338 Crystal Mi 1339 Two-Static 1341 Mobile or 1341 Alloche Alloche Alloche Alloche 135 Adjustable 106 Algustable 107 FM Indoor f 108 4 Section C 108 4 Section C 108 Section 1	rer Knob brated K O Knob Ished All shed All shed All shed All shed All shed All shed All shed All shed Serated Serated tic Meta Back Slide lider Knob Batton K tic Slide lider Knob Batton K Batton K Bat	nob i Knob 15mm i Knob 22mm i Knob 22mm i Knob 28mm 7mm 4mm 8mm Edge Knob 15mm Edge Knob 24mm Edge Knob 24mm Edge Knob 24mm i Skirt b trument Knob 22mn nob 11mm r Knob ES etc mm + 3.5mm Plugs Mike er Mike r m (Pair) (Pair) (Pair) n (Chrome) n (Chrome) e 550 ohms i 250 ohms i 250 ohms i 250 ohms	0.28 0.30 0.46 0.32 0.40 0.52 0.46 0.54 0.32 0.46 0.54 0.22 0.14 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5
Inon Black/Silv 1101 Black/Silv 1102 Large Cali 1103 Alli PA 10 1104 Heavy Bru 1105 Heavy Bru 1106 Heavy Bru 1107 Matt Black 1108 Matt Black 1110 Matt Black 1111 All Metal 1112 All Metal 1113 Black Plas 1114 Black Plas 1115 Black/Chr 1116 Alli Push 1117 Black Plas 1118 Chrome S 1119 Chrome S 1120 Dynamic G 1220 Crystal De 1232 Crystal De 1232 Dual Imp 1233 Gosenec 1334 Gossenec 1335 Tilae Boor 1336 Cassette D 1337 Mike Boor 1338 Crystal Mil 1339 Two-Static	rer Knob brated K O Knob Ished All shed All shed All shed All shed All shed All shed All shed All shed Serated Serated tic Meta Back Slide lider Knob Batton K tic Slide lider Knob Batton K Batton K Bat	nob i Knob 15mm i Knob 22mm i Knob 22mm i Knob 28mm 7mm 4mm 8mm Edge Knob 15mm Edge Knob 24mm Edge Knob 24mm Edge Knob 24mm i Skirt b trument Knob 22mn nob 11mm r Knob ES etc mm + 3.5mm Plugs Mike er Mike r m (Pair) (Pair) (Pair) n (Chrome) n (Chrome) e 5K ohm t om e 500 ohms b 250 ohms utter Mount a erial I (Stainless) I (Chrome) Telescopic Aerial elescopic Aerial	0.28 0.30 0.46 0.30 0.46 0.52 0.40 0.52 0.46 0.54 0.22 0.14 0.50 0.05 0.05 0.05 0.05 0.05 0.05 0.0

	JDIO LEADS	
114	5 pin — 3.5mm 3 & 5 connected 5 pin — 3.5mm 1 & 4 connected	0.65
116 117	Car Aerial Ext Lead Mains Cassette Lead	1.00 0.48
119 120	2 x 2 pin Plug in In Line Stereo Jack Soch Universal Car Adaptor Plug	0.52
123 125	20ft Coiled Guitar Lead 5 pin to 5 pin DIN	1.50
126	5 pin to DIN to open ends 5 pin to DIN to 4 Phono Plugs	0.65
128	5 pin Plug to 5 pin socket 5 pin to 5 pin Plug (Mirror image)	0.75
130	2 pin Plug to 2 pin Line Socket 5 mtrs 2 pin Plug to 2 pin Line Socket 10 mtr	0.55 rs 0.85
136	Headphone ext lead 7 mtrs	1.50
Α.	B.S. PLASTIC BOXES	
141	4" x 1" x 2" 4.4" x 1.22" x 2.44"	1.08
143	4.75 x 1.50 x 2.50 6.00" x 2.00" x 3.15" 7.5" x 2.39" x 4.33"	1.50
146	2.8" x 4.37" x 1.63" 3 78" x 6 33" x 2.06"	1.40
148	5.63" x 4.14" x 2.19" 5.63" x 6.7" x 2.19"	2.14
150 151	6.65" x 4.98" x 2.76" 9.57" x 7.36" x 4.06"	3.84 5.82
то	OLS CROC CLIPS etc	:
2001	Insulated croc clips (Red) Insulated croc clips (Black)	0.06
2003 2004	11/2 insulated croc clips (Red) 1% insulated croc clips (Black)	0.07
2005 2006	30 Amp croc clips 100mm per pair Test Leads	0.74
2007	Test Lead Kit 4mm Test Lead Set	1.70
2009	4mm Test Prods Set Pincer Action Prod Set	0.52
2012	Pliers Cross clip test set	5.50
2013	Resistance sub box	3.30
2016	Neon Mains Tester/Screwdriver	0.52
AL		0.83
AL 159 160	UM BOXES 5¼" x 2¼" x 1½" 4" x 4" x 1½" 4" x 2¼" x 1½"	0.83 0.83 0.83
AL 159 160 161 162 163	UM BOXES 5¼" x 2¼" x 1½" 4" x 4" x 1½" 4" x 2¼" x 1½" 5¼" x 4" x 1½" 5¼" x 4" x 1½"	0.83 0.83 0.83 0.93 0.93 0.83
AL 159 160 161 162 163 164 165	UM BOXES 5¼" x 2¼" x 1½" 4" x 4" x 1½" 4" x 2¼" x 1½" 5¼" x 4" x 1½" 4" x 2½" x 2" 3" x 2" x 1" 7" x 5" x 2½"	0.83 0.83 0.83 0.93 0.83 0.57 1.30
AL 159 160 161 162 163 164 165 166 167	UM BOXES 5¼" x 2¼" x 1½" 4" x 4" x 1½" 5¼" x 4" x 1½" 5¼" x 4" x 1½" 4" x 2½" x 2." 3" x 2" x 1" 7" x 5" x 2½" 8" x 6" x 3" 6" x 4" x 2"	0.83 0.83 0.83 0.93 0.83 0.57 1.30 1.68 1.12
AL 159 160 161 162 163 164 165 166 167 168 169	UM BOXES 5¼" x 2¼" x 1½" 4" x 2¼" x 1½" 4" x 2¼" x 1½" 5¼" x 4" x 1½" 5¼" x 4" x 1½" 4" x 2½" x 2" 3" x 2" x 1" 7" x 5" x 2½" 8" x 6" x 3" 6" x 4" x 2" Sloping Box — Large Sloping Box — Small	0.83 0.83 0.93 0.83 0.57 1.30 1.68 1.12 6.97 4.63
AL 159 160 161 162 163 164 165 166 167 168 169 VE	UM BOXES 5¼" x 2¼" x 1½" 4" x 4" x 1½" 5¼" x 4" x 1½" 5¼" x 4" x 1½" 4" x 2½" x 2." 3" x 2" x 1" 7" x 5" x 2½" 8" x 6" x 3" 6" x 4" x 2" Sloping Box — Large Sloping Box — Small RO CASES	0.83 0.83 0.93 0.83 0.57 1.30 1.68 1.12 6.97 4.63
AL 159 160 161 162 163 164 165 166 167 168 169 VE 152 153	UM BOXES 5¼" x 2¼" x 1½" 4" x 4" x 1½" 5¼" x 4" x 1½" 5¼" x 4" x 1½" 5¼" x 4" x 1½" 4" x 2½" x 2" 5¼" x 4" x 1½" 4" x 2½" x 2" 5" x 4" x 2" 50 ping Box — Large Sloping Box — Large Sloping Box — Small RO CASES 23/16" x 2" x 1" Black 23/16" x 2" x 1" White	0.83 0.83 0.93 0.57 1.30 1.68 1.12 6.97 4.63
AL 159 160 161 162 163 164 165 166 167 168 169 VE 152 153 154	UM BOXES 5¼" x 2¼" x 1½" 4" x 4" x 1½" 5¼" x 4" x 1½" 5¼" x 4" x 1½" 4" x 2½" x 2" 3" x 2" x 1" 3" x 2" x 2" 3" x 2" x 1" 50 ping Box — Large Sloping Box — Small RO CASES 23/16" x 2" x 1" Black 23/16" x 2" x 1" White Vero plastic case box	0.83 0.83 0.93 0.83 0.57 1.30 1.68 1.12 6.97 4.63 0.47 0.47 4.82
AL 159 160 161 162 163 164 165 166 167 168 169 VE 152 153 154 CA	UM BOXES 5¼" x 2¼" x 1½" 4" x 4" x 1½" 5¼" x 4" x 1½" 5¼" x 4" x 1½" 5¼" x 4" x 1½" 4" x 2½" x 2" 5¼" x 4" x 1½" 4" x 2½" x 2" 5" x 4" x 2" Sloping Box — Large Sloping Box — Large Sloping Box — Small END CASES 23/16" x 2" x 1" Black 23/16" x 2" x 1" White Vero plastic case box BLE	0.83 0.83 0.93 0.93 0.57 1.30 1.68 1.12 6.97 4.63 0.47 4.63
AL 159 160 161 162 163 164 165 166 167 168 VE 153 154 CA 390 391	UM BOXES 5¼" x 2¼" x 1½" 4" x 4" x 1½" 5¼" x 4" x 1½" 5¼" x 4" x 1½" 4" x 2½" x 2" 5¼" x 4" x 1½" 4" x 2½" x 2" 51 yr 6" x 4" x 2" Sloping Box — Large Sloping Box — Small CASES 23/16" x 2" x 1" Black 23/16" x 2" x 1" Black 23/16" x 2" x 1" White Vero plastic case box BLE Light Mic Cable Twin Mic Cable	0.83 0.83 0.93 0.83 0.57 1.30 1.68 1.12 6.97 4.63 0.47 0.47 4.82 0.47 0.47 4.82
AL 159 160 161 162 163 164 165 166 167 168 169 VE 152 153 154 CA 390 391 392 393	UM BOXES 5¼" x 2¼" x 1½" 4" x 4" x 1½" 5¼" x 4" x 1½" 5¼" x 4" x 1½" 5¼" x 4" x 1½" 4" x 2½" x 2" 5¼" x 4" x 1½" 4" x 2½" x 2" 51 Start and a	0.83 0.83 0.93 0.93 0.57 1.30 1.68 1.12 6.97 4.63 0.47 4.63 0.47 4.82 0.47 4.82
AL 159 160 161 162 163 164 165 166 167 168 169 VE 152 153 154 CA 390 391 392 393 393 394 395	UM BOXES 5¼" x 2¼" x 1½" 4" x 4" x 1½" 5¼" x 4" x 1½" 5¼" x 4" x 1½" 4" x 2½" x 2" 5¼" x 2" x 1" 7" x 5" x 2½" 8" x 6" x 3" 6" x 4" x 2" Sloping Box — Large Sloping Box — Large Sloping Box — Small RO CASES 23/16" x 2" x 1" Black 23/16" x 2" x 1" White Vero plastic case box BLE Light Mic Cable Fig. 8 Stereo Cable 4 Way SCR Cable 4 Way SCR Cable 4 Way CRC Cable 4 Way CR	0.83 0.83 0.93 0.93 0.57 1.30 1.68 1.12 6.97 4.63 0.47 4.63 0.47 4.82 0.47 4.82 0.47 0.47 4.82 0.15 0.12 0.15 0.12 0.35 0.18 0.25
AL 159 161 162 163 164 165 166 167 168 VE 153 154 CA 390 391 393 394 395 397 397 397	UM BOXES 5¼" x 2¼" x 1½" 4" x 4" x 1½" 4" x 2¼" x 1½" 5¼" x 4" x 1½" 5½" x 4" x 1½" 7" x 5" x 2½" 8" x 6" x 3" 6" x 4" x 2" Sloping Box — Large Sloping Box — Small RO CASES 23/16" x 2" x 1" White Vero plastic case box BLE Light Mic Cable Twin Mic Cable Fig. 8 Stereo Cable 4 Way SCR Cable 4 Way SCR Cable 4 Way Ind. Screened Cable Heavy Mic Cable 3 Amp 3 Core Mains Cable Twin Oval Mains Fig. 8 Stereo Cable	0.83 0.83 0.93 0.93 0.57 1.30 1.68 1.12 6.97 4.63 0.47 0.47 4.63 0.47 0.47 4.82 0.47 0.47 4.82 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.12 0.35 0.12 0.35 0.12 0.035 0.12 0.035 0.12 0.035 0.12 0.035 0.12 0.047 0.12 0.057 0.12 0.047 0.12 0.047 0.12 0.057 0.12 0.047 0.12 0.047 0.12 0.047 0.12 0.057 0.12 0.047 0.12 0.047 0.12 0.047 0.12 0.047 0.12 0.057 0.12 0.047 0.12 0.057 0.12 0.047 0.12 0.057 0.12 0.047 0.12 0.057 0.12 0.047 0.12 0.057 0.12 0.047 0.12 0.057 0.12 0.047 0.12 0.057 0.12 0.047 0.12 0.057 0.12 0.057 0.047 0.12 0.057 0.12 0.0570000000000
AL 159 161 162 163 164 165 167 168 167 168 VE 152 153 154 CA 390 391 392 393 394 395 396 397 398 399	UM BOXES 5%" x 2%" x 1%" 4" x 4" x 1%" 5%" x 4" x 1%" 5%" x 4" x 1%" 4" x 2%" x 2" 5%" x 4" x 1%" 4" x 2%" x 2" 5% 5" x 2%" 8" x 6" x 3" 6" x 4" x 2" Sloping Box — Large Sloping Box — Large Sloping Box — Small FRO CASES 23/16" x 2" x 1" Black 23/16" x 2" x 1" Black 23/16" x 2" x 1" White Vero plastic case box BLE Light Mic Cable Fig. 8 Stereo Cable 4 Way ICA Cable 4 Way SCR Cable 4 Way SCR Cable 4 Way ICA Cable Heavy Mic Cable 5 Amp 3 Core Mains Cable Twin Oval Mains Fig. 8 Speaker Cable Low Loss Coax. 750 ohms Uniradio 76-50 ohms coax.	0.83 0.83 0.93 0.93 0.57 1.30 1.68 1.12 6.97 4.63 0.47 4.63 0.47 4.82 0.47 4.82 0.47 4.82 0.47 0.47 4.82 0.15 0.15 0.15 0.12 0.35 0.16 0.07 0.25 0.16 0.07 0.25
AL 159 161 162 163 164 165 166 167 168 VE 153 154 CA 390 391 392 393 393 393 394 395 398 399 400 EL	UM BOXES 5%" x 2%" x 1½" 4" x 4" x 1½" 4" x 4" x 1½" 5%" x 4" x 1½" 5%" x 4" x 1½" 5%" x 4" x 1½" 5% x 4" x 1½" 5% x 4" x 1½" 5% x 4" x 1½" 7" x 5" x 2½" 8" x 6" x 3" 6" x 4" x 2" Sloping Box — Large Sloping Box — Small RO CASES 23/16" x 2" x 1" Black 23/16" x 2" x 1" White Vero plastic case box BLE Light Mic Cable Fig. 8 Streeo Cable 4 Way SCR Cable 4 Way SCR Cable 4 Way Ind. Screened Cable Heavy Mic Cable 3 Amp 3 Core Mains Cable Twin Oval Mains Fig. 8 Streeo Cable 4 Way Ind. Screened Cable Heavy Mic Cable 3 Amp 3 Core Mains Cable Twin Oval Mains Fig. 8 Speaker Cable Low Loss Coax. 750 ohms Uniradio 76-50 ohms coax.	0.83 0.83 0.93 0.83 0.57 1.30 1.68 1.12 6.97 4.63 0.47 0.47 4.82 0.47 0.47 4.82 0.47 0.47 4.82 0.47 0.47 0.47 4.82 0.47 0.47 0.47 0.47 0.47 0.55 0.12 0.35 0.12 0.35 0.12 0.030
AL 159 161 162 163 164 165 167 168 169 VE 152 153 154 CA 390 391 392 393 394 395 396 397 398 399 ELL	UM BOXES 5%" x 2%" x 1%" 4" x 4" x 1½" 4" x 4" x 1½" 4" x 2½" x 1½" 4" x 2½" x 2" 3" x 2" x 1" 7" x 5" x 2½" 8" x 6" x 3" 6" x 4" x 2" Sloping Box Large Sloping Box Small RO CASES 23/16" x 2" x 1" Black 23/16" x 2" x 1" White Vero plastic case box BLE Light Mic Cable Fig. 8 Stereo Cable 4 Way Ind. Screened Cable Heavy Mic Cable Ywin Oval Mains Fig. 8 Speaker Cable Low Loss Coax. 750 ohms Uniradio 76-50 ohms coax.	0.83 0.83 0.93 0.57 1.30 1.68 1.12 6.97 4.63 0.47 4.63 0.47 4.82 0.47 4.82 0.47 4.82 0.47 0.15 0.12 0.15 0.12 0.35 0.16 0.07 0.20 0.30
AL 159 161 162 163 164 165 166 167 168 VE 153 154 CA 390 391 392 393 393 393 394 400 ELL CA 430	UM BOXES 5%" x 2%" x 1%" 4" x 4" x 1%" 4" x 2%" x 1%" 5%" x 4" x 1%" 5%" x 4" x 1%" 4" x 2%" x 1%" 5%" x 4" x 1%" 4" x 2%" x 2" 3" x 2" x 1" 7" x 5" x 2%" 8" x 6" x 3" 6" x 4" x 2" Sloping Box - Large Sloping Box - Small RO CASES 23/16" x 2" x 1" Black 23/16" x 2" x 1" White Vero plastic case box BLE Light Mic Cable Twin Mic Cable Fig. 8 Stereo Cable 4 Way SCR Cable 4 Way SCR Cable 4 Way Ind. Screened Cable Heavy Mic Cable Twin Oval Mains Fig. 8 Stereo Cable Low Loss Coax. 750 ohms Uniradio 76-50 ohms coax. ECTROLYTIC PACITORS 4700F 50v	0.83 0.83 0.93 0.93 0.57 1.30 1.68 1.12 6.97 4.63 0.47 0.47 4.63 0.47 0.47 4.82 0.47 0.47 4.82 0.47 0.47 0.47 4.82 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47
AL 159 161 162 163 164 165 167 168 169 VE 152 153 154 CA 390 391 392 393 394 395 396 397 398 399 400 ELL CA	UM BOXES 5%" x 2%" x 1%" 4" x 4" x 1%" 4" x 4" x 1%" 5%" x 4" x 1%" 5%" x 4" x 1%" 4" x 2%" x 2" 5%" x 4" x 1" 7" x 5" x 2%" 8" x 6" x 3" 6" x 4" x 2" Sloping Box — Large Sloping Box — Large Sloping Box — Large Sloping Box — Small RO CASES 23/16" x 2" x 1" Black 23/16" x 2" x 1" Black 23/16" x 2" x 1" Black 23/16" x 2" x 1" White Vero plastic case box BLE Light Mic Cable Fig. 8 Stereo Cable 4 Way Ind. Screened Cable Heavy Mic Cable 3 Amp 3 Core Mains Cable Twin Oval Mains Fig. 8 Speaker Cable Low Loss Coax. 750 ohms Uniradio 76-50 ohms coax. ECTROLYTIC PACITORS 470uF 50v 1000uF 63v 1000uF 63v	0.83 0.83 0.93 0.93 0.57 1.30 1.68 1.12 6.97 4.63 0.47 4.63 0.47 4.82 0.47 4.82 0.47 4.82 0.47 0.47 4.82 0.47 0.47 4.82 0.10 0.15 0.12 0.15 0.12 0.15 0.12 0.15 0.12 0.15 0.12 0.15 0.12 0.15 0.12 0.15 0.12 0.15 0.12 0.15 0.12 0.15 0.12 0.15 0.12 0.15 0.12 0.15 0.12 0.15 0.12 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
AL 159 161 162 163 164 165 167 168 169 VE 153 153 153 154 CA 390 391 392 393 393 393 394 395 397 398 400 ELL CA 430 432 435 435	UM BOXES 5%" x 2%" x 1%" 4" x 4" x 1%" 4" x 4" x 1%" 5%" x 4" x 1%" 4" x 2%" x 2" 5%" x 4" x 2" 5%" x 4" x 2" Sloping Box — Large Sloping Box — Large Sloping Box — Small RO CASES 23/16" x 2" x 1" Black 23/16" x 2" x 1" Black 23/16" x 2" x 1" Vhite Vero plastic case box BLE Light Mic Cable Twin Mic Cable Twin Mic Cable Fig. 8 Stereo Cable 4 Way Ind. Screened Cable Heavy Mic Cable 5 Amp 3 Core Mains Cable Twin Oval Mains Fig. 8 Speaker Cable A Way Core Job Tomous Coax. 50 ohms Uniradio 76-50 ohms coax. ECTROLYTIC PACITORS 470uF 50v 1000uF 25v 1000uF 100v 2200uF 40v	0.83 0.83 0.83 0.93 0.57 1.30 1.68 1.12 6.97 4.63 0.47 0.47 4.63 0.47 0.47 4.82 0.47 0.47 4.82 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47
AL 159 161 162 163 164 165 167 168 169 VE 152 153 154 CA 390 391 392 393 394 395 396 397 398 399 400 ELL CA 432 433 435 436	UM BOXES 5%" x 2%" x 1%" 4" x 4" x 1%" 4" x 2%" x 1%" 5%" x 4" x 1%" 4" x 2%" x 1%" 4" x 2%" x 2" 5%" x 4" x 1%" 4" x 2%" x 2" 8" x 6" x 3" 6" x 4" x 2" Sloping Box — Large Sloping Box — Large Sloping Box — Large Sloping Box — Small FRO CASES 23/16" x 2" x 1" Black 23/16" x 2" x 1" Black 23/16" x 2" x 1" White Vero plastic case box BLE Light Mic Cable Twin Mic Cable Fig. 8 Stereo Cable 4 Way Ind. Screened Cable Heavy Mic Cable Twin Oval Mains Fig. 8 Speaker Cable Low Loss Coax. 750 ohms Uniradio 76-50 ohms coax. ECTROLYTIC PACITORS 470uF 50V 1000uF 25v 1000uF 25v 2200uF 25v 2200uF 40v 2200uF 25v 2200uF 40v 2200uF 100v	0.83 0.83 0.93 0.93 0.93 0.57 1.30 1.62 6.97 4.63 0.47 0.47 4.63 0.47 0.47 4.82 0.47 0.47 4.82 0.47 0.47 4.82 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47

CA 327 328 329 330 331 332 333 334 335 336 337 338 339 340 359 361 362 361 362 364 EN	PS, CHOKES, TRIMME Jackson Slow Motion Drive Jackson Slow Motion Drive Jackson 300PF Dilecon Jackson 500PF Dilecon Jackson 01-365PF Jackson 804 10PF Jackson 804 25PF Jackson 804 25PF Jackson 804 25PF Jackson 804 100PF Trimmer Cap 450PF Trimmer Cap 450PF Trimmer Cap 450PF Trimmer Cap 450PF Trimmer Cap 450PF Trimmer Cap 450PF Trimmer Cap 50PF Repanco CH1 2.5MH Repanco CH2 5.0MH. Repanco CH3 7.5MH Repanco CH5 1.5MH Repanco CH5 1.5MH Repanco DR1 Coil Repanco DR2 Coil	RS 0.74 1.38 2.64 3.10 2.86 4.34 2.82 2.88 2.88 3.42 0.20 0.25 0.30 0.34 0.50 0.50 0.50 0.50 0.56 0.44 0.38 0.60 1.00
365 366 367 368 369 370 371 372 373 374 375 376 377 378 TIN 379	40 swg 38 swg 36 swg 32 swg 30 swg 28 swg 24 swg 22 swg 20 swg 18 swg 16 swg 14 swg INED COPPER WIRE	202 1.00 0.88 0.90 0.82 0.80 0.74 0.66 0.62 0.60 0.60 0.60 0.52 0.52 0.52 40z 0.94
3780 380 381 382 HACF 839 840 842 843 844 845 846 847 8449 850 8512 853 8555 8557 8559 8601	22 swg 20 swg 18 swg 16 swg RDWARE IN PACKS 25 OBA 1" Bolt OBA ½" Bolt 2BA ½" Bolt 2BA ½" Bolt 2BA ½" Bolt 2BA ½" Bolt 4BA ½" Bolt 6BA ½" Bolt 0BA Solder Tags 6BA Solder Ta	0.83 0.86 0.90 0.78 0.78 0.70 0.40 0.35 0.30 0.32 0.28 0.20 0.18 0.20 0.14 0.12 0.42 0.26 0.18 0.12 0.26 0.18 0.12 0.26 0.18 0.12 0.26 0.18
862 ET(1611 1611 1612	6BA Washer CHANT AND PENS Dalo Etch Resist Pen Ferric Chloride Vilb pack Pentel Etch Resist Pen 0.65	BAC BAC

CHOOSE FROM OVER **20 TOP OUALITY** MODULES

AL20A-30A AUDIO AMPLIFIER **MODULES**

BI-PAK Audio Modules are famous for their variety, guality of design and ruggedness. For over 10 years BI-PAK have been suppliers to manufacturers of high quality audio equipment throughout the world - to date, well over 100,000 modules have been sold - this is why discerning amateur enthusiasts insist on using BI-PAK modules in their equipment. They know that every item is designed and tested to do the job for which it is intended before it leaves the factory. Whatever you are building, there is a kit or module

> in the BI-PAK range to suit your every need from 5 watts to 125 watts to 125 watts, from amplifiers to equalisers AND if you cannot see what you require in this advertisement, just write or phone us — we are waiting to help you!

AL60 AUDIO AMPLIFIER MODULE 25 Watts RMS

PA12 STEREO PRE-AMPLIFIER

AL120 AUDIO AMPLIFIER 50W R.M.S.

AL80

AMPLIFIER

35 Watts RMS

MODULE

AUDIO

With integral heat sink and shortcircuit protection

AL250 POWER AMPLIFIER

PA100 & PA200 **STEREO PRE-AMPLIFIER**

LATEST ADDITION: MM100G suitable for guitar pre-amp mixer **GE100** M **10 CHANNEL**

MONOGRAPHI

Stereo 30 COMPLETE **AUDIO**

MM100 suitable for disco mixer

£12.43 each

AL250. 125 watt Audio Amplifier Module £19.60 50-80v supply.

STEREO PRE-AMPLIFIERS

PA12. Supply voltage 22-32v input sensitivity £8.55 300mv. Suit: AL10/AL20/AL30. PA100 Supply voltage 24-36v inputs. Tape Tuner Mag P.U. Suit AL60/AL80 £17.65 PA200. Supply voltage 35-50v inputs. Tape Tuner Mag P.U. Suit AL80/AL120/AL250 £18.24

E&MM APRIL 1981

49

FUSE HOLD	ERS	
506 20mm Chassis F 507 1¼" Chassis Fus	use Holder e Holder	0.14
508 1¼" Car in line I 509 20mm Panel Fuse 510 1¼" Panel Fuse	e Holder Holder	0.12
FUSES		0.32
Quick Blow 20mm:	626 1.6 Amp	0.07
612 250MA 0.0	6 627 2 Amp 6 628 2.5 Amp	0.07
614 800MA 0.0	629 3.15 Am 630 5.0 Amp	p 0.07 0.07
616 1.5 Amp 0.0	Quick Blow: 1	1/4"
618 2.5 Amp 0.0 619 3.0 Amp 0.0	6 632 500MA	0.06
620 3.15 Amp 0.0 621 5.0 Amp 0.0	7 635 1 Amp	0.06
Semi Delay: 20mm	637 2.0 Amp	0.06
623 250MA 0.0	7 639 3 Amp	0.06
625 1 Amp 0.0	7 642 5 Amp	0.06
EARPIECES	AND BUZ	LEKS £0.75
501 Crystal Earpiece 502 8 ohm Earpiece	2.5mm Plug	£0.42 £0.18
503 8 onm Earpiece 505 200 ohm Earpiece	3.5mm Plug ce 3.5mm,Plug	£0.18 £0.44
MAINS PLU	GS & SOCI	KETS
1618 13 Amp Rubber 1619 13 Amp Plastic	Plug Plug	0.52
1620 13 Amp Free So 1621 13 Amp 2 way	ocket Free Socket	0.50 1.50
1622 13 Amp 4 way 2019 2 Amp Termina	Free Socket Block 12 way	4.20
	BIOCK	0.24
1925 12 volt solderin		5.46
1927 Multicore solder 1928 Multicore solder	22 swg tube	1.00
1929 Multicore solder 1930 Desolder braid	18 swg reel	3.50 0.75
1931 X25 Soldering I 1932 X25 1/8" replace	ment Bit	4.20
1933 X25 3/16" repl 1934 X25 3/32" repl	acement Bit	0.50
1935 X25 Replaceme 1936 Desolder Pump	nt/Element	1.80
1937 Desolder Pump 1938 SK1 Soldering H	Cit	7.00
1940 Horizontal IC Des	esoldering Bit	1.95
1942 Antex Heat Shu	nt	0.15
1944 CCN240 3/32" 1945 CCN240 3/32"	Replacement Bit	0.50
1946 CCN240 3/16" 1947 CCN240 Beplac	Replacement Bit	0.50
1948 C240 Soldering 1949 C240 3/32" Re	Iron placement Bit	4.20
1950 C240 1/6" Replace 1951 C240 3/16" Re	cement Bit placement Bit	0.50
1952 C240 Replacem 1953 G Soldering Irol	ent Element	1.70 4.20
1954 Model G 3/32" 1955 Model G 1/6" Re	Replacement Bit placement Bit	0.50 0.50
1956 Model G 3/16" 1957 Model G Replac	Replacement Bit ement Element	0.50 1.90
METERS		
1305 2" Meter 2 Am 1307 2" Meter 50UA	ps	2.88
1308 2" Meter 1000 1309 2" Meter 5000	A A	2.88
1310 2" Meter 1MA 1311 2" Meter 50 vo	Its	2.88 2.88
1312 SWR and FS M 1313 SWR and Powe	eter r Meter	9.50 11.90
1315 Test Meter 20,0 1316 Multi Tester RE	185M	24.75
1317 Double VU Met 1319 100-0-100 UA	er Meter 45mm	3.25
1320 Min Level Meter 1321 VU Meter 40mi	n OBV	0.95
1323 Test Meter 100 1323 Test Meter 20,0	DOD OPV	11.40

SIM	ITCHES	-	
1958	Min SPST Togola Sw	ritch	0.70
1959	Min SPDT Toggle Sv	vitch	0.75
1960	Min DPDT Toggle Sv	vitch	0.80
1961	Push Button SPST	TSwitch	0.95
1963	Push Button SPDT		0.95
1964	Push Button DPDT 1P 12W Rotary Swit	ch	0.98
1966	2P 6W Rotary Switch	h	0.60
1967	3P 4W Rotary Switch	h	0.60
1968	Min DPDT Slide Switch	n tch	0.60
1974	Std Slide Switch		0.16
1975	SPST Toggle Switch		0.33
1977	Rotary On-Off Switch	h	0.56
1978	Push to Make Switch	1	0.15
1981	SPST Rocker Switch	(Black)	0.19
1982	SPST Rocker Switch	(White)	0.32
1983	SPST Rocker Switch	(Blue)	0.32
1985	SPST Rocker Switch	(Luminous)	0.32
1986	Sub min SPST Toggl	e Switch	0.54
1988	Sub min DPDT Toggl	e Switch	0.62
1989	Keyboard 24 way		1.50
1990	Keyboard 40 way		1.60
1992	Push to Make Switch	n (metal body)	0.32
MIN	N PRESETS	9p EAC	CH.
1801	100 ohm		Horizontal
1802	220 ohm		Horizontal
1803	470 onm 1K		Horizontal
1805	2K2		Horizontal
1806	4K7		Horizontal
1808	22K		Horizontal
1809	47K		Horizontal
1810	1 00K		Horizontal
1812	470K		Horizontal
1813	1M		Horizontal
1815	4M7		Horizontal
1816	100 ohm		Vertical
1817	470 ohm		Vertical
1819	1K		Vertical
1820	2K2		Vertical
1822	10K		Vertical
1823	22K		Vertical
1825	100K		Vertical
1826	220K		Vertical
1827	470K		Vertical
1829	2M2		Vertical
1830	4M7	-	Vertical
TR/	ANSFORME	RS	
2021	6-0-6v 100mA		0.90
2022	9-0-9v 75mA		0.90
2023	0-6v 0-6v 280mA		1.60
2025	0-12v 0-12v 150mA		1.60
2026	6-0-6v 1 Amp		2.40
2028	12-0-12v 1 Amp		2.50
2029	15-0-15v 1 Amp		2.75
2030	Multi tap 1/2 Amp		3.40
2032	Multi tap 1 Amp		4.80
2033	O-35v 1 7 Amp		6.40
2035	0-55v 2 Amp		6.65
2036	0-17v 750mA		2.85
2038	Min audio driver		0.25
2039	0-20v 1 Amp		3.50
2040	0-45-55V 1.5 Amps		6.45
2042	0-25v 2 Amps		4.50
2043	15-0-15 150mA		2.40
2017	Pick-up for Acoustic	Guitar	5.50
170	Quick Test Block 'Ke	vnector'	6.50
1617	TO3 Transistor Socke	et	0.00
Mains	Fuses 13A Plug Typ	e	
644	2A 0.12		
645	3A 0.12		
647 1	3A 0.12		

_		
SE	MICONDUCTOR	
ЦЛ	RDWARE	
867	10220	0.20
868	T03	0.20
870	TO66 in packs of 5	0.20
871	T064	0.20
873	TO3 Single Heat Sink	0.20
874	T03 Double Heat Sink	1.35
876	T05/39 Heat Sink	0.15
877	T018 Heat Sink T01 Heat Sink	0.15
879	T0220 Heat Sink	0.15
880 881	T066 Transistor Cover T03 Transistor Cover	0.14
RA	TTERV HOLDERS	
200	Batt Holder 2 x HP7 short	0.18
201	Batt Holder 4 x HP7 short	0.19
202	Batt Holder 6 x HP7 short Batt Holder 4 x HP7 long	0.20
204	PP3 Battery Clips	0.07
205	Batt Holder 4 x HP11 long	0.25
207	Batt Holder 4 x HP11 short Batt Holder 4 x HP2 long	0.25
1831	1K Lin Single Pots	. 29
1832	2K2 Lin Single Pots	29
1833	4K7 Lin Single Pots 10K Lin Single Pots	29
1835	22K Lin Single Pots	29
1830	100K Lin Single Pots	29
1838	220K Lin Single Pots	29
1840	1M Lin Single Pots	29
1841	2M2 Lin Single Pots	29
1843	10K Log Single Pots	29
1844	22K Log Single Pots 47K Log Single Pots	29
1846	100K Log Single Pots	29
1847	470K Log Single Pots	29
1849	1M Log Single Pots	29
1851	4K7 Lin Dual Pots	88
1852	10K Lin Dual Pots	88
1854	47K Lin Dual Pots	88
1855	220K Lin Dual Pots	88
1857	470K Lin Dual Pots	88
1859	2M2 Lin Dual Pots	88
1860	4K7 Log Dual Pots	88
1862	22K Log Dual Pots	88
1863	47K Log Dual Pots 100K Log Dual Pots	88
1865	220K Log Dual Pots	88
1867	1M Log Dual Pots	88
1868	2M2 Log Dual Pots	88
1870	4K7 Lin switched pots	68
1871	10K Lin switched pots	68
1873	47K Lin switched pots	68
1874	220K Lin switched pots	68
1876	470K Lin switched pots	68
1878	2M2 Lin switched pots	68
1879	4K7 Log switched pots	68
1881	22K Log switched pots	68
1882	100K Log switched pots	68
1884	220K Log switched pots	68
1886	1M Log switched pots	68
1887	2M2 Log switched pots 100K Log-Anti Log Dual Pot	68 68
1889	5K Log pot 16mm switched	36
1890	10 ohm wire wound pots	48
1892	22 ohm wire wound pots	85
1893	100 ohm wire wound pots	85
1895	220 ohm wire wound pots	85
1897	1K ohm wire wound pots	85
1898 1899	2K ohm wire wound pots 4K7 ohm wire wound pots	85 85

ΫI

Coil Design and Construction Manual £1.2 Handbook of Integrated Circuits (IC's) Equivalents & Substitutes £1.4 First Book of Hi-Fi Loudspeaker Enclosures £0.9 BP160 BP202 £1.45 BP205 Enclosures £0.95 Practical Electronic Science Projects £0.75 BP207 Practical Electronic Science Projects £0.75 Practical Stereo and Quadrophony Handbook £0.75 First Book of Diode Characteristics Equivalents and Substitutes £1.25. Electronic Circuits for Model Railways £1.00 Audio Enthusiasts Handbook £0.85 Build Your Own Electronic Experimenters Laboratory £0.85 Build Your Own Solid State Hi-Fi and Audio Accessories £0.85 28 Tested Transistor Projects £1.25 Solid State Short Wave Receivers for Beginners £1.25 BP 208 BP211 BP213 BP214 BP218 BP219 BP220 BP221 BP222 Solid State Graft £1.25 Beginners £1.25 50 Projects Using IC CA3130 £1.25 50 CMOS IC Projects £1.25 A Practical Introduction to Digital IC's £1.25 How to Build Advanced Short Wave Beceivers £1.20 BP223 BP224 BP225 BP226 How to Build Automatic Effective Section 2015 Beginners Guide to Building Electronics Projects fr Essential Theory for the Electronics BP227 £1.25 **BP228** Hobbyist Engineers and Machinists Reference Tables £1.25 BP6 £0.70 Tables £0.70 Radio and Electronic Colour Codes and Data Chart and Data Chart £0.35 Second Book of Transistor Equivalents and Substitutes and Substitutes £1.10 BP7 **BP14** and Substitutes First Book of Practical Electronic Projects 52 Projects Using IC741 Giant Chart of Radio Electronic Semi-conductor and Logic Symbols Resistor Selection Handbook (International Edition) Major Solid State Audio Hijeti BP23 £0.75 £0.95 8P24 8P27 £0.80 **BP28** (International Edition) f0.80 Major Solid State Audio Hi-Fi Construction Projects f0.85 How to Build Your Own Metal and Treasured Locators f1.35 Electronic Calculator Users Handbook f1.25 Practical Repair and Renovation of Colour TV2 f1.25 Handbook of IC Audio Preamplifier & Power Amplifier Construction f1.25 50 Circuits Using Germanium, Silicon and Zener Diodes f0.75 50 Projects Using Relays, SCR's and TRIACS f1.25 Fun and Games with Your Electronic Calculator f0.75 £0.80 BP29 **BP32** 8P33 8P34 **BP35** 8P36 **BP37 BP38** Calculator 50 (FET) Field Effect Transistor Projects Digital IC Equivalents and Pin Connections Linear IC Equivalents and Pin £0.75 **BP39** £1.50 **BP40** £2.50 BP41 Linear IC Equivalents and Pin Connections 50 Simple LED Circuits How to Make Walkie-Talkies IC555 Projects Projects in Opto-Electronics Radio Circuits Using IC's Mobile Discotheque Handbook Electronic Projects for Beginners Popular Electronic Projects IC LM3900 Projects Electronic Music and Creative Tape Recording Long Distance Television Reception £2.75 **BP42** £0.95 £1.50 BP43 BP44 BP45 BP46 £1.75 £1.25 £1.35 BP47 BP48 BP49 £1.35 £1.35 £1.45 **BP50** £1.35 BP51 £1.25 (TV-DX) for the Enthusiast £1.95 Practical Electronic Calculations and **BP52 BP53** £2.25 Formulae Your Electronic Calculator and Your Money Radio Stations Guide BP54 £1.35 £1.75 Radio Stations Guide £1.75 Badio Stations Guide £1.75 Electronic Security Devices £1.75 How to Build Your Own Solid State 0scilloscope 50 Circuits Using 7400 Series IC's £1.50 50 Circuits Using 7400 Series IC's £1.35 Second Book of CMOS IC Projects £1.50 Practical Construction of Pre-amps, Tone Controls, Filters & Attn. Beginners Guide to Digital £0.95 Elements of Electronics—Book 1 £2.25 Elements of Electronics—Book 2 £2.25 Beginners Guide to Microprocessors and Computing Single IC Projects £1.75 Counter, Driver and Numeral Display £1.75 Projects £1.75 Choosing and Using Your Hi-Fi £1.65 BP55 BP56 BP57 **BP58 BP59** BP60 BP61 BP62 BP63 BP64 BP65 BP66 **BP67** £1.75 £1.65 £1.70 Projects f1.75 Choosing and Using Your Hi-Fi f1.65 Electronic Games f1.70 Transistor Radio Fault-Finding Chart £0.50 Electronic Household Projects A Microprocessor Primer f1.75 Remote Control Projects f1.95 Electronic Music Projects f1.95 Electronic Test Equipment construction Construction f1.75 BP68 BP69 BP70 BP71 BP72 BP73 BP74 BP75

BABANI BOOKS

B

BBB

P76 P77	Power Supply Projects Elements of Electronics-Book 4	£1.75 £2.95
P78 P79	Practical Computer Experiments Radio Control for Beginners	£1.75 £1.75
P80	Popular Electronic Circuits—Book 1	£1.95
	IGS AND SUCKETS	60.16
626	2mm Plug BLACK	£0.16
628	2mm Socket BLACK	£0.16
634 637	4mm Plug BLACK 4mm Plug RED	£0.16 £0.16
640	4mm Socket BLACK	£0.16
652	2 Pin DIN Chassis Socket	£0.08
654 655	5 Pin 180° DIN Chassis Socket 5 Pin 240° DIN Chassis Socket	£0.12 £0.12
656 657	2.5mm Chassis Socket	£0.10 £0.10
658	Metal Std. Jack Chassis Socket (Mono)	£0.18
660	Single Phono Socket	£0.09
661 662	Double Phono Socket	£0.12 £0.22
663	Coax Flush Socket	£0.22
665	Plastic Std. Jack Socket (Stereo)	10.20
666	for headphones Car Aerial Chassis Socket	£0.32 £0.18
667	AC Chassis Socket	£0.16
669	Plastic Std. Jack Chassis Socket	20.22
670	AC switched non rev. Socket	£0.32 £0.32
672	2 Pin DIN Line Socket	£0.10
675	5 Pin 240° DIN Line Socket	£0.20
676	3.5mm Plastic Line Socket	£0.12 £0.12
678	Std. Jack Plastic Line Socket (Mono)	£0.17 £0.30
680	Std. Jack Plastic Line Socket (Stereo)	£0.22
681	Phono Lin Line Metal Socket (Stereo)	£0.16
684 685	Coax Line Socket	£0.34 £0.14
686	AC Line Socket (2 pin USA Type)	£0.18
688	Phono Back-Back Socket	£0.20
689 692	2 Pin DIN Plug 5 Pin 180° DIN Plug	£0.10 £0.14
693	5 Pin 240° DIN Plug	£0.14
697	3.5mm Plug (Plastic)	£0.12
698 699	Std. Plastic Jack Plug (Mono)	£0.16 £0.16
700	Std. Metal Jack Plug (Mono)	£0.30 £0.35
702	Plastic Phono Plug	£0.11
703	Coax TV Plug	£0.24 £0.22
705	Right Angle Jack Plug (Mono)	£0.20 £0.12
707	Std. Plastic Jack Plug (Stereo)	£0.22
708	2.1mm DC Plug	£0.12
1710	2.5mm DN Plug AC Plug (2 pin USA Type)	£0.12 £0.16
712	AM Aerial Plug	£0.17
1714	FM Aerial Plug	£0.13
1715	PL 259 Plug SO239 Socket 4-hole fixing	£0.40 £0.38
1717	SO239 Socket single-hole fixing	£0.40
1719	NC555 Reducer for PL259 (Small)	£0.16
1720	M359 Right Angle Coupler PL259	10.10
1722	SO239 M358 T Connector	£0.75
1700	Female-Male-Female	£0.85
1724	BNC15 50 obm Standard Plug	£0.64
1725	BNC1502 Chassis Mounting Socket BNC1503 Chassis Mounting Socket	£0.75
1707	single-hole fixing	£0.70
1728	BNC1521 BNC Female to PL259 Male	£0.85
1729 1730	Low Loss Splitter	£0.80 £1.00
co	OD QUALITY STERE	
HE	ADPHONES	ddad
Double	e padded headband, Circular vented pa arpieces, Black and aluminium finish	added
1m 20	pedance 8 ohms, Frequence response 0-19.000 HZ, Weight 350gms	£8.25

SUPERIOR QUALIT

£1.75

STEREO HEADPHONES

Wide black padded headband with padded matt aluminium earcups. Impedance 8 ohms, Frequency response 15-25,000 HZ. Weight 290gms £15

£15.85

COMPONENT PAKS 300 Pre-formed Carbon Resistors, mixed, 1.00 C26 C27 50 2-10 watt Wire Wound Resistors, 50 2-10 watt Wire Wound Resistors, mixed fl.00 300 approx Resistors, mixed values (count by weight) fl.00 200 approx Capacitors, mixed values and types (count by weight) fl.00 60 Precision Resistors 1-5% to 1 fl.00 100 approx ½ watt min. Resistors, mixed values fl.00 60 meters Single strand wire, assorted colours fl.00 15 Reed Switches, glass type fl.00 5 Micro Switches, assorted types including min. fl.00 6 Assorted Audio Jack Sockets and Plugs fl.00 100 Disc Ceramic Caps, mixed values fl.00 20 Assorted Pots fl.00 mixed £1.00 C28 C29 C31 C32 C33 C34 C35 C36 C37 £1.00 £1.00 £1.00 £1.00 100 Disc Ceramic Caps, mixed values 20 Assorted Pots 40 C280 type Capacitors, metal foil 60 Electrolytics, assorted 50 Assorted Polyestor/Polystyrene 60 Low voltage Electrolytics, mixed values up to 10v 15 Assorted Slider Pots 10 Dual Gang Pots. Log, and Lin. assorted C38 C39 C40 C41 C42 £1.00 £1.00 £1.00 C43 C44 10 Dual Gang Pots. Log. and Lin. assorted 1 Pack assorted Hardware, nuts/bolts, etc. 10 Assorted Switches, slide/rocker/ £1.00 C45 £1.00 C46 mains 3 Relays 24v coil 20 Assorted Knobs, push, screw and £1.00 £1.00 C48 20 Assorted Types 20 Assorted Tag Strips and Panels 4 Wave Change Switches, rotary 1 Pack of assorted PVC Sleeving and £1.00 £1.00 £1.00 C49 C50 C51

 1 Pack of assorted PVC Sleeving and Markers
 f1.00

 100 ½ watt Resistors, mixed values
 f1.00

 35 Presets, assorted type and values
 f1.00

 40 Meters, stranded wire, assorted colours
 f1.00

 10 Assorted DIN/sockets/Coax/ speakers/phone
 f1.00

 10 Assorted Plugs, DIN/Coax/ speakers/etc.
 f1.00

 10 meters assorted cable. Mains/ speaker/Coax/microphone
 f1.00

 10 osg. in. Clopper-clad board, single-sided paper
 f1.00

 15 assorted IC Sockets, 8, 14, 16 pin f1.00
 f1.00

 C52 C53 C54 C55 C56 C57 C58 C59 C60 VEROBOARD 2.5" × 5" 1 copper 3.5" × 3.75" .1 copper 2.5" × 17" .1 copper 3.75" × 5" .1 copper 3.75" × 5" .1 copper 3.75" × 17" .1 copper 4.75" × 17.9" .1 copper 4.75" × 17.9" .1 copper 2.5" × 1" 5 in pack 3.75" × 2.5" .1 Plain 5.0" × 3.75" .1 Plain Vero Pins Double-sided .040mm .1" (in 100's) Vero Pins Single-sided .040mm .1" (in 100's) 2201 2202 £0.76 £0.66 2203 £2.28 £0.86 £0.76 2204 2205 2206 2207 £2.96 £3.90 £0.92 £1.92 2208 2209 2210 £0.48 £0.72 2212 £0.52 2213 Vero Pins Single-sided .040mm (in 100's) DIP Breadboard Vero Cutter Insertion Tool .1 PCB Transfers PCB Transfers 12 volt mini drill Right Angle Bracket 134" x %" Right Angle Bracket 54" x %" £0.52 £3.26 £1.06 2214 2215 2216 2217 2217 2217 2218 £1.46 £1.46 £7.00 £0.07 £0.06 2219 BUDGET STEREO HEADPHONES Black with padded earcups: Impedance 8 ohms. Frequency response 30-18,000 HZ. Weight 300gms £4.20

Construction

THE BI-PAK OPTO SHOW

1	LEL	JS	
	1501 1502 1503 1504 1505 1506 1507 1522 1532 1524 1525	£0.10 £0.16 £0.16 £0.16 £0.16 £0.16 £0.16 £0.80 £0.12 £0.12 £0.05 £0.75	TiL209 Red LED .125" TiL211 Green LED .125" TiL213 Villow LED .125" FLV117 Red LED .2" FLV310 Green LED .2" FLV410 Yellow LED .2" 2nd Grand LED pack, 10 assorted MIL32 Clear Illuminating Red LED .125" FLV111 Clear Illuminating Red LED .2" CQX21 Red Flashing LED CQX95 Two Colour LED
1	OP'	TO-IS	OLATORS
	1515 1516 1517	£0.55 £1.16 £2.10	Opto-Isolator IL74 Single Opto-Isolator ILD74 Dual Opto-Isolator ILQ74 Quad
1	7 0	EGNAL	ENTIED DICDLAVC
l	13	CONT	
	1508 1509 1510 1511 1512	£0.30 £1.80 £0.98 £1.75 £1.90	BDL307 7 segment LED display. 3" BDL527 Dual 7 segment LED display. 5" BDL707 7 segment LED display. 3" BLD747 7 segment LED display. 6" BDL727 Dual 7 segment LED display. 5"
	1508 1509 1510 1511 1512 MIS	f0.30 f1.80 f0.98 f1.75 f1.90	BDL307 7 segment LED display .3" BDL527 Dual 7 segment LED display .5" BDL707 7 segment LED display .3" BLD747 7 segment LED display .6" BDL727 Dual 7 segment LED display .5" ANEOUS
	1508 1509 1510 1511 1512 MIS 1514 1518 1519 1520 1526 1527	f0.30 f1.80 f0.98 f1.75 f1.90 CELL f0.60 f0.60 f0.26 f0.26 f0.26 f0.40 f0.38 f0.38	BDL307 7 segment LED display .3" BDL527 Dual 7 segment LED display .3" BDL707 7 segment LED display .5" BDL707 7 segment LED display .6" BDL727 Dual 7 segment LED display .6" BDL727 Dual 7 segment LED display .5" ANEOUS ORP12 Light Dependent Resistor Photo Transistor P20 NPN Photo Transistor OCP71 PNP Photo Transistor OCP71 PNP FPE100 Infra Red Emitter CQY89 Infra Red LED
	1508 1509 1510 1511 1512 MIS 1514 1518 1519 1520 1526 1527 BE(f0.30 f1.80 f0.98 f1.75 f1.90 CELL f0.60 f0.60 f0.60 f0.26 f0.40 f0.38 f0.38 GINNE	BDL307 7 segment LED display .3" BDL527 Dual 7 segment LED display .3" BDL707 7 segment LED display .5" BDL707 7 segment LED display .6" BDL727 Dual 7 segment LED display .6" BDL727 Dual 7 segment LED display .5" ANEOUS ORP12 Light Dependent Resistor Photo Transistor P20 NPN Photo Transistor OCP71 PNP Photo Transistor OCP71 PNP FPE100 Infra Red Emitter CQY89 Infra Red LED ERS PAK

projects. A must for beginners (and very useful to experienced constructors tool

C
PN
NP
NP
PN
NP
PN
NP
PN
ND
NO
NP
NP
PN
NP
PN
NP

100 TOTAL

ALL devices — brand new and full spec, as per device coding Data and lead out details included in Pak. Normal Retail Value £23.00 Our Special Offer Price £15.00

B	GINNERS F	PAK
No.	2 - 100 RECTIFIER	S, SCR's TRIACS, DIODES
20	IN4001-IN4007	1 Amp Silicon Rectifier
20	IN5401-IN5407	3 Amp Sillcon Rectifier
20	IN4148	Fast Switch Diodes, Silicon
10	OA200 BAX13-13	General Purpose Diode, Silicon
4	C106D	Thyristor 400v, TO202 Case
2	10 Amp Triacs 400v	TO220 Case, Isolated Tab
2	4 Amp Triacs 400v	TO220 Case, Non-Isolated Tab
10	Assorted 3 Amp	Thyristors 50-600 volts,
		TO64-TO66 Case
5	Assorted 1 Amp	Thyristors 50-600 volts,
		TO39 Case
6	OA31-91	General Purpose Germanium
		Diodes

100 TOTAL

All devices brand new and full spec. Data and lead out details included.

Normal Retail Value £17.00 Our Special Offer Price £11.00

UNTESTED SEMICONDUCTOR PAKS 150 germ Gold Bonded Diodes OA47 150 germ Point Contact Diodes OA81 150 Silicon G.P. 200mA Diodes 0A200 150 Silicon Fast Switch Diodes IN4148 U1 U2 U3 U4 £1.00 £1.00 £1.00 £1.00

U5	25 Stud type Silicon Rectifier	rs up to 10A	£1.00
Ú6	10 SCR's 5 Amp, TO66		£1.00
U7	40Sil Trans NPN, TO18 Case	BC107/8/9	£1.00
U8	40 Sil Trans PNP, TO18 Case	BC177/8/9	£1.00
U9	40 Sil Trans NPN, TO 18 Case	2N706/8	£1.00
U10	40 Sil Trans NPN, TO5/39	2N697/2N1711	£1.00
U11	40 Sil Trans PNP, TO5/39	2N2905/1132	£1.00
U12	30 Sil Trans NPN, TO39	BFY51-BC141	£1.00
U13	30Sil Trans PNP, TO39	BC160-161, etc	£1.00
U14	10 Sil Trans NPN, TO3	2N3055	£1.00
U15	10 Sil Trans NPN, TO220	TIP29-31-33	£1.00
U16	10 Sil Trans PNP, TO220	TIP30-32-34	£1.00
Ú17	30 Sil Trans NPN, TO39	High Volts	
		BF258/115	£1.00
U18	40 Sil Trans, TO92	BC237/8	£1.00
U19	40 Sil Trans, TO92	BC251	£1.00
U20	40 Sil Trans NPN, TO92	BC183-4	£1.00
U21	40 Sil Trans PNP, TO92	BC257BC212L	£1.00
Code	No's mentioned above are given	as a quide to the	type of
device	in the Pak. The devices th	emselves are no	ormally
unma	rked.		
EIF	CTROLVTIC DAK	'C	
ELI	ECTRULTING PAR	3	
A ran	ge of Paks each containing 25 ture electrolytics.	first quality, mixe	d value
EC1	Values from .47mFD-10mFD		£1.00
EC2	Values from 10m FD-100mFD		£1.00
EC 3	Values from 100mFD-1000mF	D	£1.00
200			

NE	W SH	APE LEDs		
				C
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572	f0.26 f0.26 f0.26 f0.26 f0.26 f0.26 f0.26 f0.26 f0.28 f0.28 f0.28 f0.28	3mm Cylindrical 3mm Square 3mm Triangular 5mm Rectangular 5mm Cylindrical 5mm Square 5mm Triangular 3mm Square 3mm Triangular 5mm Rectangular 5mm Revindrical	LED Red LED Red LED Red LED Red LED Red LED Red LED Green LED Green LED Green LED Green	
1573 1574 1575 1575 1576 1577 1578 1579 1580	f0.28 f0.28 f0.28 f0.28 f0.28 f0.28 f0.28 f0.28 f0.28 f0.28	5mm Square 5mm Triangular 3mm Cylindrical 3mm Square 3mm Triangular 5mm Rectangular 5mm Cylindrical 5mm Square 5mm Triangular	LED Green LED Green LED Yellow LED Yellow LED Yellow LED Yellow LED Yellow	

CERAMIC PAKS

- Containing a range of first quality miniature ceramic capacitors. MC1 40 miniature ceramic capacitors: 5 of each value: 22pf, 27pf, 33pf, 39pf, 47pf, 56pf, 68pf, 82pf £1.00
- MC2 40 minlature ceramic capacitors: 5 of each value: 100pf, 120pf, 150pf, 180pf, 220pf, 270pf, 330pf, 390pf £1.00
- MC3 40 mIniature ceramic capacitors: 5 of each value: 470pf, 560pf, 680pf, 820pf, 1000pf, 1500pf, 2200pf, 3300pf £1.00
- MC4 35 miniature ceramic capacitors: 5 or each value: 4700pf, 6800pf, .01uf, 0.15uf, .022uf, .033uf, .047uf £1.00

SPEAKERS AND CROSSOVERS

1901	Dome Tweeter 31/2", 8 ohms 50w	£3.20
1902	Dome Tweeter 3", 8 ohms, 20w	£2.60
1903	Flared Horn Tweeter, 8 ohms, 30w	£3.80
1904	2-way Crossover, 15w, 8 ohms	£1.24
1905	2-way Crossover 40w 8 ohms	£2 70
1906	3-way Crossover 60w 8 ohms	63.50
1907	Piezo Tweeter	£5 20
1914	70mm 80 ohm Speaker	£1.20
1915	70mm 8 ohm Speaker	£0.95
1916	56mm 8 ohm Speaker	£0.65
1917	21/2" 8 ohm Sneaker	£0.75
1918	21/2" 64 ohm Speaker	£0.82
1919	51/2" Wheefer 4 ohms, 10w	£3.90
1920	51/2" Whoofer, 8 ohms 10w	£3.90
1921	5¼" Dual Cone, wide tange, 8 ohms	£5.80
1922	8" Dual Cone, long throw 8 ohms, 15w	£4.84
1923	8" Whoofer, dual 4 + 8 ohms rubber edge, 20w	£7.80

DIL SOCKETS

1601 8 Pin 1602 14 Pin 1603 16 Pin 1604 18 Pin	£0.09 £0.11 £0.12 £0.1B	1605 1606 1607 1608 1609	20 Pln 22 Pin 24 Pin 28 Pin 40 Pin	£0.20 £0.24 £0.28 £0.32 £0.36
---	----------------------------------	--------------------------------------	--	---

LATE	ADD	ITION	S		
HIGH CU	RRENT	MPS AN	D SWITCH	IES	
BFT32 BFT33	£0.60 £0.62	VCEO 60 80	VCBO 80 100	I.C. Max. 3A 3A	
BFT37 RPY76A	£0.95 Infra Rec	100 d Detector	120	3A 3A	£0.65

LED) CLIF	S ANC	HOUSI	NGS
4.	5	#- 1	-	46
A		В	С	D
•		1 year		
E		F	G	Н
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557	£0.15 £0.18 £0.26 £0.22 £0.37 £0.31 £0.34 £0.28 £0.44 £0.36	LED Plastic LED Plastic LED Housin LED Housin LED Housin LED Housin LED Housin LED Housin LED Housin LED Housin	Clips .125" Clips .2" (nickel plated) (nickel plated) (nickel plated) (matt black) (nickel plated) (nickel plated) (matt black) (matt black)	.125" A .125" B .125" C .125" C .2" E .2" F .2" G .2" H
BUI	BS A	ND NE	ONS	
1534 1535 1536 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547	f0.24 f0.24 f0.24 f0.20 f0.20 f0.20 f0.20 f0.20 f0.34 f0.34 f0.34 f0.34 f0.34	LES Bulb 6 LES Bulb 6 LES Bulb 1 MES Bulb, MES Bulb, MES Bulb, MES Bulb, Neon Rec, Neon Red, Neon Orang Neon Green MES Batter	v 0.36w .5v 1w 4v 0.75w Round, 6v .04A Round, 6.5v .19 Round, 12.0v 1 Round, 12.0v 2 Round, 240v Rectangular, 24 ge, Rectangular, 1 n, Rectangular, 1 n Holder	5A A .2w .2 40v 240v
CA	RBON	FILM	RESISTO	R PAKS
These assorte 81 800 R2 800 R3 800 R4 800 R5 600 R6 600 R7 600 R8 600	Paks con d into the Mixed 1/4 Mixed 1/4 Mixed 1/4 Mixed 1/4 Mixed 1/2 Mixed 1/2 Mixed 1/2 Mixed 1/2 Mixed 1/2 Mixed 1/2	ntain a rang following gr w 100 ohm w 1K ohms w 10K ohm w 100K oh w 100 ohm w 1K ohms w 10K ohm w 100K oh	ge of Carbon oups: 1s-820 ohms -8.2K ohms 1s-82K ohms 1s-82K ohms 1s-820 ohms 1s-82K ohms 1s-82K ohms 1s-1M	Film Resistors. £1.00 £1.00 £1.00 £1.00 £1.00 £1.00 £1.00 £1.00 £1.00
TAN	ITALL	IM BEA	D CAPA	CITORS
402 403 404 405 406 407 408 409 410 411 412 413	0.22uF 1 0.33uF 1 0.47uF 1 0.68uF 1 1.0uF 1 2.2uF 1 3.3uF 1 4.7uF 1 6.8uF 1 10.0uF 1 2.2uF 1 3.3uF 1 4.7uF 1 6.8uF 1 10.0uF 1	6v £0.11 6v £0.12 6v £0.12 6v £0.14 6v £0.15 6v £0.28 6v £0.28 6v £0.50	415 100.00 F 416 100.00 F 417 .22 uF 418 .33 uF 419 .47 uF 420 .68 uF 421 1.0 uF 422 2.2 uF 423 .3.3 uF 424 4.7 uF 425 6.8 uF 826 10.0 uF	10v f0.55 35v f0.12 35v f0.12 35v f0.12 35v f0.12 35v f0.12 35v f0.12 35v f0.12 35v f0.13 35v f0.13 35v f0.13 35v f0.18 35v f0.30 35v f0.38
	nonii	U/UA	nelivo i C	

TYPE Pol	VCEO	VC80	1.C.	HFE	CASE	£ p	
2N6052 PNP	-100v	-100v	12A	750-18	(TO3	1.50	
2N6282 NPN	60v	60v	20A	750-18	CT03	1.25	
MJ3000 NPN	60v	60v	10A	1KMN	TO3	1.00	
SE9300 NPN	60v	60v	10A	1000	T0220	0.90	
SE9031 NPN	80v	80v	10A	1000	TO220	0.95	
SE9304 NPN	80v	80v	10A	1000	TO3	0.95	
SE9305 NPN	100v	100v	10A	1000	TO3	1.00	
SE9401 PNP	-80v	-80v	10A	1000	T0220	1.10	
TIP115 PNP	60v	-60v	2A	1K	TO220	0.40	
TIP117 PNP	-100v	-100v	2A	1K	TO2 20	0.50	
TIP120 NPN	60v	60v	5A	1K	TO220	0.60	
TIP121 NPN	80v	80v	5A	1K	TO220	0.65	
TIP122 NPN	100v	100v	5A	1K	TO220	0.08	
TIP126 PNP	-80v	-80v	5A	1K	T0220	0.70	
TIP127 PNP	-100v	-100v	5A	1K	TO220	0.72	
-	_	_	-	_	_	_	
POWER	R SU	PPL	FS				L
- OTTE	100				_		
137 AC-DC	Adapto	r 6, 7½,	9 &	12 volts		£3.50	2
138 DC-DC	C Adapto	r 6, 75,	9 volt	S		£2.70)
Long and	-	_	_	_	_	_	÷.
CABIN	ETS_						Ł
	-		_	_	_	_	
139 Teak 3	30 Case					\$7.0	0
140 Teak 6	60 Case					£9.5	Ď

Access and Barclaycards accepted - just telephone our Orderline - Ware (STD 0920) 3182. All prices exclude VAT, add 50p postage per order. Terms: C.W.O., cheques, Postal Orders payable to Bi-Pak at address below.

VIII

USING SUSING SUS SUSING SUSING SUSING SUSING SUSING SUSING SUSING SUSING SUSING

This series of articles is to teach by example the basic principles of microprocessor hardware and software to the level at which the reader will be able to understand, modify and even design microprocessor-based projects.

More about Microprocessors

In Part 1 we saw that a microprocessor requires external memory which holds programs and data, and interfaces for communication with the "outside world". If, as in Figure 1, Part 1, we have a separate output for each device attached, the number of outputs from the processor may need to be very high. Furthermore, for increased speed the data is sent in parallel along 8 data lines. Thus a whole byte appears on the 8 inputs/ outputs simultaneously. If 8 separate connections were required for each interface, the processor would require a vast number of pins.

To simplify matters therefore, a bus structure is adopted, as shown in Figure 2. The data bus is bidirectional (i.e. data may travel to or from the processor). Notice the notation used to denote the width of the bus. Similar bus structures are adopted for addresses and control signals. Whilst any number of devices may read the data bus simultaneously, it is essential that only one device tries to place data on the bus at one time. If two devices try to pull a bus line in opposite directions, at best the result will be indeterminate; at worst the devices will be damaged. The data outputs must therefore be capable of being electrically disconnected from the bus. Such outputs are generally known as 'tri-state' as they may be in one of three states - high (1), low (0) or disconnected (off).

The management of the data bus is controlled from the microprocessor. If, for example, it is required to read a memory location in a ROM the procedure below is followed (also see Figure 3):

Step 1

The control signals are organised such that all device outputs are disconnected from the bus.

Step 2

The address of the ROM location to be read is placed on the address bus. The most significant address bits are decoded externally to the processor to select the device required; the last significant bits select the exact location within the device.

Step 3

The control bus signals tell the ROM when to place its data on the data bus.

Figure 3. Timing diagram of a Memory Read Operation

Step 4

After a delay in order to let the voltage levels on the bus settle, the microprocessor assumes that the data is now valid and reads the data bus.

Step 5

The control bus signals are removed and the ROM disconnects its outputs from the data bus. Similar procedures are used to write to memory and to communicate with other peripheral devices. This will be shown in more detail in a later article.

The internal structure of the Z80

microprocessor is shown in Figure 4. This is a fairly popular 8-bit processor made by Zilog and Mostek. As mentioned earlier, there are many different microprocessors available and they differ in many, respects. However, the basic ideas are always the same and if you understand the Z80 you should have little trouble in adapting to other processors. The main parts of the CPU are: 1. REGISTERS — These are memory locations which are internal to the processor and may therefore be accessed much more quickly than external memory. They are used as the source and destination of data and as 'pointers' to memory locations. They are not addressed as external memory but are implied as part of an instruction. The registers are analysed in more detail below.

2. ARITHMETIC AND LOGICAL UNIT (ALU) — This performs the 8-bit arithmetic and logical operations required in the execution of programs, such as ADD, SUBTRACT, logical AND, COM-PARE, etc. The source of the data ('operands') may be registers or external memory.

3. INSTRUCTION DECODE AND CON-TROL — When an instruction is read in from memory, it is placed in the instruction register and decoded. The control section then provides the control signals for the registers, ALU and external devices to perform the required function.

The Z80 Registers

The set of Z80 registers accessible to the programmer is shown in Table 2. The 8-bit general-purpose registers are duplicated in an alternate register set. For now, however, we will consider only the main register set.

Accumulator, A — This holds the results of 8-bit arithmetic or logical operations.

Flags, F — Each bit of the flag register indicates some characteristic of the result of the preceding operation. For example, if the result of an operation is zero, the zero bit of the flag will be set. The complete flag register is as follows:

Bit 0 — Carry Flag (C) — Indicates a carry from the most significant bit after an addition, or a borrow from a subtraction.

Bit 1 — Add/Subtract Flag (N) — Set or reset after an addition or subtraction. Used for decimal arithmetic.

Bit 2 — Parity/Overflow Flag (P/V) — After an arithmetic operation, indicates a 2's-complement overflow. After a logical operation, indicates the parity of the result (whether the number of 1's in the bit pattern is odd or even).

Bit 4 — Half carry Flag (H) — Indicates a carry or borrow from the lower halfbyte to the upper. Used for decimal arithmetic.

Bit 6 — Zero Flag (Z) — Set if the result of an operation is zero.

Bit 7 — Sign Flag (S) — Set if the most significant bit (MSB) of a result is 1.

Bits 3 and 5 of the Flag Register are unused. Most Z80 instructions affect some of the flag bits. The flags are used for arithmetic operations (e.g. Add with Carry) and to change the order of program execution (e.g. Jump if Negative).

General purpose registers — The 8-bit, registers B, C, D, E, H and L may be used as separate registers for data manipulation. They may also be used

Figure 4. Internal Structure of the Z80 Central Processing Unit (CPU).

as 16-bit registers BC, DE and HL. In particular, HL is used as a 16-bit address pointer. For example, the accumulator may be loaded with the data from the memory location pointed to by HL. Also, BC is often used as a counter.

Program counter, PC — This points to the next instructions to be executed in memory. The program counter is automatically incremented whilst an instruction is being read. If a program jump occurs, the program counter is overwritten with the new instruction address.

Stack pointer, SP — This points to a special area of memory used for temporary storage of data and addresses. The stack facilitates the use of subroutines and modular programming. This will be discussed in detail when it is first used.

Index registers, IX & IY — These two independent 16-bit registers may be loaded with base addresses for indexed addressing. An extra byte appended to indexed instructions gives a displacement from this address. It would therefore be possible, for example, to load the accumulator from the address in register

MAIN REGISTER SET	ALTERNATE REGISTER SET	SPECIAL PURPOSE REGISTERS			
Accumulator, A Flags, F	Accumulator, A' Flags, F'	Program Counter, PC	16-bit		
B C Ger pur	neral B' pose C'	Index Register, IX Index Register, IY	addres		
D 8/1 E regi	6 bit D' sters E'	Interrupt Vector, I	8-bit		
H Add L poi	Iress H' Inter L'	Memory Refresh, R	7-bit		

Table 2. The Z80 CPU Internal Registers

IX plus 25. The displacement is in 2's-

complement form so it may be posi-

tive or negative. Indexed addressing

is particularly useful for manipulation

Memory refresh register (R) - This

7-bit register is almost never used by

the programmer, but makes the use of

dynamic memories much easier than

with most other processors. We will

look at this in more detail when we

examine some hardware implemen-

of tables of data

tations.

The two complementary sets of general purpose registers may be exchanged by a single instruction and together with register I this facilitates very 'fast response to an external event. This is interrupt response, which will be discussed in a later article.

Next month, we will further extend the discussion of binary data and look at some Z80 instructions. **É&MM**

S

by Keith Manison, T.Eng. (CEI) AFSERT

Electronics Engineer, Faculty of Natural Sciences, University of the West Indies

The repertoire of tasks attributed to computers seems to be virtually endless. Apart from the purely numerical tasks that were performed by the first generation machines, computers soon showed capabilities in fields as diverse as code breaking, data storage and analysis, control of specially modified machinery, etc. However, the sheer physical size of the early generation machines limited the applications for which they could be used.

The low cost and high volume production of processor elements as single components enables computing power superior to that of the early IBM giants to be available in miniature form. This has opened up a wide range of new applications. Microprocessors are now found in devices as common as a television game or as devastating as a cruise missile. It could well be the same processor being used in both.

So, granting that the microcomputer probably has the ability to accomplish the particular task that we have in mind for it, the question still remains, 'How do I get it to do what I want it to do?' The simple answer is that 'You program it'. However, even though the answer is simple, producing the program may not be.

What is a Program?

First, the term 'program' must be defined. A program is a sequence of simple instructions which, when followed, will complete a more complex task. Let us consider an example in human terms. A person driving a car from one location to another can be considered as executing a complex task. A program to accomplish this task could consist of a set of simple directions stating which turnings to take.

SINGLE ROUTE PROGRAM

START FIRST LEFT FIRST RIGHT THIRD RIGHT SECOND LEFT

SECOND RIGHT FIRST LEFT STOP

By starting from the correct location and following the list of directions the driver will eventually reach his destination. Each program step is very simple to understand and carry out. The actual journey may be very long and complex.

A computer program is very similar in concept to the above example. Simple logical and arithmetic steps are performed in sequence to accomplish a task that may be as extensive as computing the payroll of a large firm or calculating the course of a plane on a trans-Atlantic flight. However, as well as following the list of instructions, the microcomputer also has the ability to test current conditions or the results from previous operations. It can then skip instructions or execute a different set of instructions depending upon the outcome of the test. To return to our analogy of the car driver. There may be two routes to the required location, one is direct but becomes congested during peak periods. The other is longer but subject to fewer traffic delays in the rush hour. Therefore, the list of directions could have a 'conditional branch' built in. When the driver had progressed so far he would have to make a choice based on a test of current road conditions. For example, the branch instruction may be, 'If the traffic is light, drive straight on and follow the second set of directions'.

The Algorithm

To write successful and efficient programs, an ordered and systematic approach is required. Firstly, an algorithm must be developed. This is a series of procedural steps for the solution of a specific problem, a generalized procedure for accomplishing the type of task in hand. To continue with the car driving example: the list of instructions presented above is only good for a journey between two fixed locations, say, from home to the town centre. But if we want to drive from our office to the pub, an entirely new program will have to be written, even though the type of task, driving a car, is identical.

However, we can write an algorithm, a general purpose set of instructions, and present it with data to drive between any two given locations. In this case, the data would be a list of street names to be travelled. The algorithm would then be a set of instructions directing the driver to look at each turning he passes, see if it matches with a street name on his data list, and if it does, to turn on to it.

UNIVERSAL PROGRAM

Label	Instruction
	START
FETCH	GET NAME FROM LIST
СОМР	COMPARE WITH ROAD NAME IF NOT EQUAL JUMP TO COMP TURN ON TO ROAD
	CHECK FOR MORE ROAD NAMES IF MORE JUMP TO FETCH STOP

With this algorithm, any journey can be executed with the same program or list of instructions. All that is required is for the correct data to be presented to the program or algorithm.

Flow Charts

It is essential to be able to write down the procedural steps required, the algorithm, in a form that is easily understood and that will reveal the logical flow of operations. For a very simple problem it may be that a written description of each step is adequate. However, increasingly complex tasks have many branches and loops. It soon becomes impossible to follow the sequence of operations and mistakes are easily made. Some errors (called 'bugs' in the programmers vocabulary) would be difficult to detect. Such a bug could be a loop or a supplementary set of instructions re-entering the main program at an incorrect place, or perhaps not re-entering at all!

Therefore an instantly comprehensible diagramatic form of presentation is required, and the Flow Chart is used for this. Each step is described and enclosed in a box, the shape of which indicates the nature of the operation.

Accelerate to 20 mph:

Change into third gear;

Accelerate to 30 mph;

Change into top gear.

Each step or box is joined to its logical successor by arrowed lines which quickly illustrate the flow of operations and reveal loops, branches and any discontinuities that may have originally been overlooked. A flow chart for the car driving algorithm would appear as follows:

Once the algorithm has been generated, documented in the form of a flow chart, logically checked for errors and corrected it can then be assumed that any computer, human or electronic, capable of carrying out the steps specified, will be able to reach the desired solution in time.

The algorithm and its attendant flow chart are the prerequisites of successful programming and are discarded at the programmer's peril. True it may appear quicker to jump right on to the machine and enter instructions, but the time taken to debug (correct) the illogical mess produced would have been better spent in these first vital stages of formally presenting the solution to the task in hand

First we must define our solutions to the problem by means of a flow chart and then the program may be developed from it. In descriptive terms, our algorithms would be:

Fetch the BCD temperature data, convert it to seven segment code and output it. Compare the BCD with the temperature set point and if lower, turn on the heater, if equal or higher, turn off the heater. Compare the BCD data with the alarm set point and if higher, sound the alarm. Loop to fetch new BCD data.

The above algorithm depicted as a flow chart would appear as:

- Brake until speed is 20 mph;
- 2 Change into second gear;
- 3. Brake until speed is 10 mph;
- 4 Turn steering wheel to the left; 5

Straighten steering wheel;

Here we have nine machine instructions to carry out our single high level instruction 'turn left'. The conversion from high level to machine level is carried out automatically by a set of instructions or procedural steps resident in the driver's head. In other words, the driver is already programmed to drive the car. The high level program provides directions which are interpreted by the driver and used to control hand and foot movements at the machine level.

6

8

9

Therefore, at the bottom of the scale of programming languages we have 'Machine Code' which corresponds to the 'accelerator', 'brake' instructions of our car. This is the series of binary bit patterns which are recognised by the microprocessor as instructions or information.

Each microprocessor has its own unique 'instruction set' or repertoire of fundamental operations that it uses to manipulate it's registers and associated memory. Each instruction, and there are usually between 100-200 in an average microprocessor instruction set, is identified by a binary code or bit pattern. Each bit pattern can be expressed as a number to base 16, 10, or 8. The preferred bases are usually 16 and 8 as the conversion becomes particularly easy.

For example, a section of a program may in fact look like:

10001101
01100000
00111101
11100100
01101010
10110101

It can be seen that it is not easy to quickly identify the binary patterns, therefore mistakes are not easily detected and it is very tedious to write. However, an 8-bit binary number can be represented easily by either a two digit hexadecimal number (base 16) or a 3 digit octal number (base 8).

HE	EX			OCTA	L	
1000	1101		10	001	101	
8	D		2	1	5	

Rewriting the above section of program in either of the two bases would yield:

OCTAL
215
140
075
344
152
365

This is somewhat easier to write and check as fewer digits are involved and the appearances is not quite so eye boggling.

The problem with machine code is that only the microcomputer can instantaneously recall the meaning of a particular number. Hence the need for some kind of aide-memoir for the human programmer. This is the 'Assembly Language' or 'Assembly Code' in which each instruction is allocated an easy to remember mnemonic. For example, in one microprocessor the machine code to clear the accumulator is 01001111, or 4F in hexadecimal. The assembler code, however, is CLRA which is easily recognizable as CLeaR Accumulator. So now the programmer can write a program using a psuedo English code which is much easier to remember than a string of numbers, and which indicate the function being carried out.

Below can be seen a small integer multiplication routine showing the comparison between binary and hex machine codes and assembly mnemonics. It is written for the MOTOROLA M6800 microprocessor.

Label	Binary	Hex	Interpretation
START	11010110	D6	LDAB MULP
	00101000	28	
	10010110	96	LDAA MUIT
	00101001	29	LEVITINGE
CALC	00110111	37	PLISH B
UALO	10000101	85	BIT A OI
	10000101	01	DITAUI
	00000001	07	DEO NEVE
	00100111	21	BED NEXT
	00000100	04	
	11011011	DB	ADDB STOSUN
	00110000	30	
	11010111	D7	STAB STOSUM
	00110000	30	
NEXT	00110011	33	PULB
	01011000	58	ASLB
	01000100	44	LSRA
	01001101	4D	TSTA
	00100110	26	BNE CALC
	11110001	E1	DITE ONLO
	11110001	11	

The problem is that the computer can still only understand the numbers. Two courses are open for the programmer. One is to go through a code book and convert from the assembly mnemonics to machine code. Of course, that would cancel many of the advantages of writing in assembly language. The other course is to have the computer itself do the conversion. This requires that a program be written which will cause the microcomputer to accept the assembly code and convert it into machine language. This type of program is called an Assembler, and is a basic requirement for anyone who plans to write complex programs at the machine level. A good Assembler does more than just convert from mnemonics to machine code. It will load the assembled program in memory, make copies of the assembly language program (called the source code) and the machine language program (called the object code) on whatever storage medium you have, such as magnetic tape or disk. The Assembler will allow you to label memory locations with English type words, and it will also alert you to any errors you may have made. In conjunction with another program, called an Editor, those mistakes can easily be corrected

However, even though communication with the computer is made easier by the use of Assembly Language and an Assembler program, we are still programming at the very basic machine instruction level. To be able to program at a higher level more than an Assembler is required.

When asking the machine to do some arithmetic for example, it would be nice to be able to write program instructions which look like the arithmetic function we wish to perform. For example, if we need to calculate the area of a circle, the program statement could be:

The asterisk (*) is used to replace the more familiar (×) for multiplication. This is done to avoid the confusion which could arise when multiplying by ×.

We are now programming in a high level language because the instructions are written much as we would write or state them in English. To set the computer to understand the statement and recognize it as a series of instructions to be executed requires yet another program. This program has to examine each line or statement of the high level program and interpret it into machine executable code which is then carried out. Not surprisingly, a program which does this is called an Interpreter.

Interpreters have their limitations. Human communications via an interpreter takes time. You speak, the interpreter translates, you wait for the other person to speak and then the interpreter re-translates to you. So, too, with the interpreter program. Each line or statement of high level program is translated and then executed before the next line is looked at. Even if it is to be executed repeatedly, it has to be translated into machine code each time. Therefore, the program will run much slower. The advantage, of course, is that two-way dialogue is possible with each party responding to the other. So for languages that feature interaction between man and machine, the interpreter program is often used. One such high level language is BASIC or 'Beginners All-Purpose Symbolic Instruction Code' which was developed at Dartmouth College, U.S.A. in the early 1960's. One of the objectives was to produce a language that would be easy to learn and use but would still be powerful enough to solve small and medium scale problems in a wide range of applications.

At present, BASIC is the most popular high level language for use on microcomputer systems. Many books and tutorial programs are available for those that wish to learn BASIC, so little more will be said about it here. However, an example of a BASIC program is shown below. The users input is shown underlined.

BASIC Program

LIST	(RETURN)
10 INPUT R	
20 LET A = R*R*3.14	
30 PRINT 'AREA EOUALS', A	
40 STOP	
READY	
RUN	(RETURN)
? 2	(RETURN)
AREA EQUALS 12.56	
STOP AT LINE 40	
READY	
RUN	(RETURN)
? 3.5	(RETURN)
AREA EQUALS 38.48	
STOP AT LINE 40	
READY	

The obvious way to overcome the speed problem of the Interpreter is to convert the whole high level program into machine code at one time and then execute the machine language program. Machine language programs generated this way are more efficient than interpreter produced code, and once the machine language has been produced, it can be stored and run repeatedly with no further time required for conversion either before or during its execution. The program which performs this conversion from high level to machine code, is called a compiler. Languages, such as FORTRAN, are compiler based. FORTRAN, developed in 1950 by IBM, stands for Formula Translation and has undergone many improvements and modifications since its inception. An example of a FORTRAN Program is shown here:

FORTRAN Program

- C THIS PROGRAM CALCULATES THE AREA OF 5 CIRCLES
- C GIVEN THEIR RESPECTIVE RADII DIMENSION R(5), A(5) READ (1,5) R DO 4N = 1,5 A(N) = 3.14 * (R (N) ** 2)

WRITE (3,10) N,A(N) 4 CONTINUE

- 5 FORMAT (5F 4.2)
- 10 FORMAT (1H, 11, 4X, F3.2) STOP END DATA

These high level languages make any detailed knowledge of the computer organization unnecessary for the programmer. Once the language has been learnt, programs may be written and run on any machine which has the requisite compiler or interpreter. These advantages plus that of being able to program at a high concept level make high level programming languages extremely popular and indeed vital for many applications. So why bother with the seemingly more cumbersome and, certainly, more difficult to use assembly and machine codes?

The answer to this depends upon the application. Most high level languages are designed around a given set of applications. For example, FORTRAN is a scientifically biased language and is used mainly for Science and Engineering. ALGOL (Algorithmic Language) is a direct competitor with FORTRAN. COBOL (COmmon Business Orientated Language) is business orientated and works most efficiently with that type of problem. PILOT is designed for text handling and Computer Aided Instruction. LISP is excellent for handling strings of data and arrays.

However, none of the high level languages easily lend themselves to applications such as process control or real time analysis of signals, for example. This is where the assembly language comes into its own. Another problem with high level languages on small systems is the amount of memory occupied by the interpreter or compiler alone. Memory is still one of the most significant costs in computer systems. To have an interpreter taking up 8K of memory (i.e. 8,000 locations) to run programs that only occupy 2K could mean that the cost of the machine is 3010 higher than if assembly language programs only were used. Also, the machine code produced by an interpreter is not as efficient as that produced by a good programmer. Assembly language programs, therefore, will often run faster and this gives them the advantage in closed loop control applications. On the other hand, assembly language or machine code is machine dependent, i.e. it will only run on the computer for which it written. Its instruction set comprises the complete list of basic functions capable of being performed by the machine. There are no limitations as to the type of application that may be approached, as long as the machine has the capability, e.g. speed and memory capacity.

So while many high level languages can be, and are, used with microcomputers, the majority of specialized application use the assembly code. Indeed it is vital for anyone planning to use microprocessors to be familiar with this type of programming as in reality, it is the only way to set the thing to work. Even if a high level language is to be used, many machine code routines are often required for specialized tasks.

Assembly Language Programming

So far we have shown that a program is built up from a series of simple instructions. These instructions are carried out sequentially to complete a larger task. We also saw how these instructions could be written at various levels, or in different programming languages. Now let us look closely at ASSEMBLY LANGUAGE programming, the language used at the processor level.

Unlike the high level languages, there is no single programming language called ASSEMBLY, as there is BASIC or FORTRAN. Rather, for each microprocessor on the market, there is a list of the simple logic and arithmetic functions which it can perform. This is often called the 'Instruction Set' and, as the name implies, is the complete set of instructions which the processor can recognize and execute.

The implication of this, of course, is that an assembly language program written for the Z80 will not run on a M6800. For the most part this is true. The exceptions to this occur when one microprocessor has a similar architecture to another and the instruction reflects this similarity. Examples of this are the Z80 and 8080, and the M6809 and M6800, where, in both cases the latter's instruction set is a subset of the former's. Even in such cases the similarity is often only at the assembly language level. Down at the machine code level the binary numbers that the microprocessor recognizes are probably different. An example of this is the 'No Operation' instruction in the M6800 and M6809, which in assembly code is NOP for both processors. However, this will assemble to 00 (in HEX) for the M6800, and 12 (in HEX) for the M6809.

Therefore, to program in assembly language it is vital to know each instruction available for the processor being used. However, that is only half of the story. As well as the instruction set, the logical organisation of the computer system must also be known. To print a character, for example, it is necessary to send it's code to the printer. So, you must know which output port the printer is attached to before you can start writing the output routine. Therefore, to program in assembly language two essential basics are required:

- 1. A program model of the microcomputer system;
- 2. The instruction set of the microcomputer, i.e. the intrinsic functions which it can perform.

One of the easiest microprocessors to understand and program is the Motorola M6800. The programming model is simple — two accumulators, an index register, program counter and stack pointer.

The M6800 has 72 executable instructions in the source or assembly language, some of which require two or three bytes of machine code. Although that seems to be a large number of instructions to remember, they can be grouped under general headings such as LOAD instructions, STORE instructions, BRANCH instructions and so on. So, it soon becomes easy to remember instructions at the assembly language level. The programming model is of great assistance as it shows what is available for use by the instruction.

In a familiarization article, such as this, it is clearly impossible to describe in any detail the workings of all the instructions. Even to mention all of them would just cause confusion. However, to illustrate programming techniques at the assembly language level, we shall develop a program to accomplish a closed loop control system and explain the instructions we encounter on the way. It will be seen that every operation has to be thought out in terms of basic steps.

Programming Exercise

The Problem To control the temperature of an immersion heater, display the current temperature and raise an alarm condition if the temperature exceeds a safety value.

The Solution To achieve a solution with a microcomputer system, it will first be necessary to interface or couple the computer to the process.

For this problem let us assume the following: Temperature data from the process is presented to the computer as two binary coded decimal digits on 8 data lines. Therefore, the temperature data in, can be from 0 degrees C to 99 degrees C. The control output is a simple ON/OFF signal to an immersion heater element. The display to the operator is in the form of a two-digit seven segment display. There is also a signal out to operate the alarm.

The system model can be shown as below and it can be seen that it is a busoriented system.

However, before we can begin to write a program, it is necessary to develop a programming model. This will incorporate the programming model of the microprocessor and include the memory and I/O's (input/output interface). Such a model would appear as shown:

PROGRAMMING MODEL

Once we have decided what generalized set of instructions our microcomputer must follow, we have to present it with those instructions in a format that it will understand. This brings us to the subject of Programming Languages.

Programming Languages

Basically, any digital computer from the biggest IBM to the smallest micro, responds only to two state voltage patterns called HI and LO or 'one' and 'zero'. Every instruction has to be presented to the processor in this format. However, humans do not think in terms of digital 'ones' and 'zeros'. Therefore, interpretation is necessary for two-way communications between man and the microcomputer. There has to be some give and take on both sides. The computer can only go part way towards understanding English; therefore, we have to go the rest of the way. The method by which this is achieved is to use an intermediate language understandable to both man and machine.

Of course, man, as the designer of the digital computer, can and does understand what has been called 'Machine Language', that is the patterns of ones and zeros which the computer recognizes. As the computer becomes more complex, it is possible to program it to 'understand' a more human type language. Thus, we have a hierarchy of languages based on the criteria of understandability from the human standpoint. Programming languages closer to the human language are called 'high level' and that of the computer is called a 'low level' language or just 'machine language'. This puts the computer in its place!

We can stick to the car driving analogy to illustrate the concept of programming at different language levels. The instructions so far have been of a high level in concept. The car, like a computer, can only respond to a fixed instruction set, which in reality would be the drivers control movements. There are no controls on a car which correspond to our 'turn left', 'turn right' instructions. True, the steering wheel will move the front wheels but the car will only turn a corner if it is already moving. To make the car take a corner several 'machine level' instructions are required. So the high level instruction 'turn left' in reality needs a more complete set of instructions like this.

From the above flow chart, we can start to develop a program utilizing the resources available to us in the programming model and the instruction set of the M6800 Microprocessor. Each step of the flow chart may require several steps of program or even a complete subroutine, but by working through step by step, mistakes are kept to a minimum.

The first step is to fetch the temperature data from the I/O port. The instruction would be:

LDAA 8014 - Load Accumulator A with data from 8014.

The second step is more difficult to code. It requires splitting the 8-bit code in the A Accumulator into 2, 4-bit BCD parts, converting each part and outputting the correct 7-segment code to the display I/O ports. First, we must save the combined BCD data for later comparisons. That can be done by the instruction:

TAB — copy A Accumulator into B Accumulator.

The best way to convert from BCD to seven-segment code is to use a look-up table as shown below. The BCD number is then used to address the memory location containing the required 7-segment code.

	TRUTH TABLE										OUTPUT WORD		
B	CDC	CODE		5	SEVE	EN-SE	GMI	ENT	COD	E	DISPLAY	(MEX)	
	c	b	8	A'	₿.	C.	D.	E.	F.	G			
0	0	0	0	0	0	0	0	0	0	1	0	· 01	
0	0	0	Ý.	1	0	0	1	1	1	4	1	4F	
0	0	1	0	0	0	í	0	0	T	0	5	12	
0	0	1	1	0	0	0	0	1	1	0	3	06	
0	1	0	0	1	0	0	1	1	0	0	1	4C	
0	1	0	1	0	1	0	0		0	0	5	24	
0	1	1	0	1	1	0	0	0	0	0	6	60	
0		7	1	0	0	0	1	1	. 1	1	7	OF	
1	0	0	0	0	0	0	0	0	0	0	8	00	
1	0	0	1	0	0	0	1	1	0	0	9	0C	

This look-up table can be loaded into the bottom of our available memory and a base pointer loaded at location 0112. The memory would now be as shown in the second programming model that follows.

SECOND PROGRAM MODEL

PROGRAMMING MODEL

MEMORY	
	0120
	012B
	012A
	0129
	0128
	0127
	0126
	0125
	0124
	0123
	0122
	0121
	0126
	0116
	0110
	011C
	0118
	011A
	0119
	0118
	0117
	0116
	0115
	0114
	0113
0000001	0112
	0111
	0110
	OTOP
	0100
	0100
	010B
	010A
00001100	0109
00000000	0108
0.0.0.01111	0107
01,1000,00	0106
00100100	0105
01001100	0104
0,0,0,0,0,1,1,0	0103
00010010	0102
000000000	0101
0,0,0,0,0,0,0,0	0100

The list of instructions to convert the BCD data would first clear the four most significant bits in the accumulator to zero and store the contents of the accumulator in 0113. The index register is then loaded with the data in 0112 and 0113 (it is 16-bits long, remember) and then the A accumulator is loaded with contents of the memory location whose address is now in the index register. This will be the correct seven-segment code for the LSD (Least Significant Digit) of the temperature and so it can be output to I/O port 8016. You may have to go over this sequence a couple of times to see exactly what is happening. It is important to understand this 'look-up' method of data conversion as it is used in many programs. The use of the Index register to access data is also a common procedure.

Now, the second digit has to be converted in a similar manner. The contents of the A accumulator are restored from accumulator B and shifted to the right, 4 places to position the second BCD code ready for conversion. This shifting loses the 4 least significant bits, that is, the code we have already converted. The same conversion process will have to be carried out for this second BCD digit. To save writing the same set of instructions again, the conversion instructions can be written as a subroutine which is called by the main program.

The complete instruction sequence would then be:

ANDA	#OF	_	Mask left 4 bits
CTAA	2016	_	Store Accumulator A in 1/0 8016
TDA	8010	_	Conv B Accumulator into A Accumulator
IDA			Copy B Accumulator into A Accumulator
LORA			
LSRA		_	Shift right 4 places
LSRA			
BRS	CON		Branch to subroutine con
STAA	8017		Store Accumulator A in I/O port 8017
Where s	ubroutine	CON is:	
STAA	0113	-	Store Accumulator A in memory
			location 0112
LDX	0112	-	Load index register from memory
			location 0112 & 0113
LDAA	0,X	-	Load Accumulator A from memory addressed
DTC			Dy A Register
112			Return to main program

It will be noticed that we have also accomplished the fourth function of our flow chart, that is, outputting the temperature. Therefore, we can now progress to the comparisons. To do this, it is required that the set points for temperature and alarm be placed in memory. Let's assume the temperature set point is in 0110 and alarm in 0111. The compare and branch set of instructions is then:

CMPB	0110	-	Compare B Accumulator with contents of 0110;
BHI	ATEST		If higher branch to alarm test;
LDAA	#01	_	Load Accumulator with 01;
STAA	8015	_	Store A Accumulator in I/O port 8015;
BRA	INPUT	_	Branch to fetch next data.

Again, we have also accomplished the task of turning the heater on for a low temperature reading by storing 01 in the control I/O port.

A similar set of instructions is used to compare the temperature against the alarm set point.

ATEST	CLR CMPB	8015 0111	_	Set I/O port 8015 to all zeros; Compare B Accumulator with contents of 0111:
	BHI BRA	ALARM	_	If higher branch to turn on alarm; Branch to fetch next data:
ALARM	LDAA STAA	#02 8015		Load A Accumulator with 02 Store Accumulator in 1/0 port 8015.

The complete program is shown below.

PROGRAM	NAME:	CONDIS		SUBROUTIN	NE:	001
INPUT	LDAA TAB ANDA BRS STAA TBA LSRA LSRA LSRA LSRA BRS STAA CMPB BHI LDAA STAA CMPB	8014 #OF CON 8016 CON 8017 0110 ATEST #01 8015 INPUT 8015	CON	STAA LDX LDAA RTS	01 01 X,0	13 12 0
	CMPB	0111				

	BHI	ALARN
	BRA	INPUT
ALARM	LDAA	#02
	STAA	8015
	BRA	INPUT

It can be seen from this simple example how very elementary program steps can be put together to accomplish a complex task. The program just developed would occupy 62 bytes of memory and execute in approximately 75 m/sec. That means more than 10,000 temperature measurements would be made each second. For most purposes, once a second is probably adequate, so the rest of the time could be spent checking on other areas and controlling added functions.

Many points have been omitted in this simple example. Questions that may come to mind now are: How do you get the Set Points into memory? Or How is the program loaded? etc. Each of these tasks can be thought out, written as an algorithm and then converted to assembly code. Then the computer can be made to load its own program, or accept different temperature values for the system. The only thing to do is to write more program.

Conclusion

It is hoped that this brief article on programming microcomputers will have allayed any fears that programming is some sort of black art known only to those interested in its secrets. True, good and efficient programming is a skill, but like any other skill, it is sharpened with practice and use. If the basic steps are followed, that is, systematically thinking through a problem, developing an algorithm to solve it, presenting the algorithm as a flow chart and then using the flow chart as a basis for coding a program, few mistakes will be made and successful programs will be the result.

Many questions have been left unanswered. It is impossible to unravel all the mysteries and wonders encountered when programming microcomputers. However, the purpose has been to show that it is not above the average enthusiast's ability. The only way to learn programming is to do it at the machine level to become familiar with the intrinsic functions and capabilities of the processor being used, and with a high level language for those business and engineering problems that have to be solved. There is no reason why we should not be adding our own special applications to the growing list of tasks performed by the microcomputer. E&MM

MUSICAL MICRO

Give your friends a warm welcome. Yes, think how delighted and amazed they will be to hear the

The Chroma-Chime uses a microcomputer to play

24 well-known tunes. The kit is simplicity itself for

Plays 24 well-known tunes including:

Colonel Bogey, Oh come all ye faithful,

INE DOOR BE

BUILD THE WORLD FAMOUS CHROMA-CHIME

musical Chroma-Chime play when they press your button!

SPECIAL PARTS FOR PROJECTS

IN THIS MAGAZINE

The following parts shown in parts lists in this issue of Electronics and Music Maker are not listed in the current Maplin Catalogue, but are available from Maplin Electronic Supplies Ltd at the following prices:-

151F	Tablet rocker red
160Q	Syntom front panel£1.10
161 R	Minicon latch plug 17-way . 50p
162 S	Spacer block4p
16 3T	Keyboard spacer2p
1 6 4U	Minicon plug 17-way 46p
199H	Drawbar green£1.35
A00A	Direct Inject PCB 90p
\05F	Syntom PCB
120W	Workshop PSU PCB£3.50
121X	Workshop control PCB£1.75
122Y	Car Timing strobe main PCB £1.80
23A	Car Timing strobe HT PCB 96p
125C	Power controller PCB 89p
′07H	Contact springs8p
V88	Matinee contact PCB£6.90
92A	Twin keyboard and frame* £49.90

*Delivery by carrier

All available from:-

Bł

Bł BH

BH

Bŀ Bł

BF G٨

G,

G,

G/ G/ G/

G,

Q١

XY

X

Maplin Electronic Supplies Ltd., P.O. Box 3, Rayleigh, Essex.

MARDLIN

High quality colour television receiver NEW INFRA-RED FULL FEATURE REMOTE CONTROL TELETEXT

* Pin diode tuner

BUILD ND LEARN

AND

- ★ Glass epoxy printed circuit panels
- Full technical
- construction manual
- * Hi-Bri tube
- * Eleven integrated circuits
- Ready built and aligned IF module saw type

THE ULTIMATE in large screen 22" and 26" television receiver kits. Deluxe full spec. Teletext, 7 channel + VCR. Also video and audio in/out. 6 models in the 500 range.

Buy as you build. All Forgestone Kits are for the constructor of today, sections of the Kit are available separately. Please send stamp for further details of these quality products.

Telephone or Mail Orders accepted on Access/Barclaycard EMM/2 * High quality components

- * Modern cabinets
- * All solid state
- * Fully isolated and protected power supply
- * Diode split L.O.P.T.
- * Low consumption
- * Also ideal as a FULLY isolated COLOUR MONITOR for Home Computer Systems. R.G.B. or PAL Encoded Video Inputs, with remote switching.

forgestone colour developments limited

Ketteringham, Wymondham, Norfolk NR18 9RY Telephone: Norwich (0603) 810453

Anril E.MM 4.81

- * All programming retained is on chip ROM
- **★** Fully guaranteed

is supplied.

* Ideal present any time

Star Spangled Banner,

Greensleeves, Rule Britannia,

plus many other popular tunes.

William Tell Overture,

ALL CHROMATRONICS PRODUCTS SUPPLIED WITH MONEY BACK GUARANTEE PLEASE ALLOW 7-21 DAYS FOR DELIVERY

_ _ _ _ _ _ _ _ Please send me TO: CHROMATRONICS, RIVER WAY, HARLOW, ESSEX. Telephone (0279) 418611

NAME

ADDRESS. Lenclose cheque/PO value £ or debit my ACCESS/BARCLAYCARD account no Signature

CHROMATRONICS

The un-beatable features of Microtan 65 and Tanex have been brought together to give you Micron, a ready built and tested computer of outstanding value. Fully supported by comprehensive documentation, Micron represents an ideal starting point in personal computing. We've taken a full O.E.M. licence for Microsoft Basic, which means that you'll have the support of the most popular Basic available, (as used on PET, APPLE, TANDY etc.). If you want to expand Micron there's no problem, just move into the system rack and choose from the range of Microtan modules. Read the information, study what the magazines have to say about us and compare what we have to offer with other systems, then we feel sure that you'll be convinced that we've produced an excellent product.

FULLY BUILT, TESTED AND CASED.
6502 BASED MICROCOMPUTER.
VDU ALPHA NUMERIC DISPLAY.
8K RAM.
32 PARALLEL I/O LINES.
2 TTL SERIAL I/O LINES.
1 SERIAL I/O PORT WITH RS232/20mA LOOP, AND 16 PROGRAMMABLE BAUD RATES.
300 / 2400 BAUD FILENAMED CASS. INTERFACE.
DATA BUS BUFFERING.
MEMORY MAPPING CONTROL.
71 KEY ASCII KEYBOARD, INCLUDING NUMERIC KEYPAD.
POWER SUPPLY INCLUDED.

COMPUTER SYSTEMS LIMITED

Forehill Works

Forehill Ely Cambs England Tel: (0353)3633

incl.VAT& P&P

SOFTWARE

micron

- 10K EXTENDED MICROSOFT BASIC.
- ALL THE USUAL BASIC COMMANDS.
- INTEGER AND REAL NUMBERS.
- INTEGER AND REAL ARRAYS.
- INTRINSIC FUNCTIONS: ABS, INT, RND SGN, SIN, SQR, TAB, USR, ATN, COS, EXP, LOG, TAN.
- USER DEFINED FUNCTIONS.
- READ AND DATA STATEMENTS.
- DUMP AND LOAD PROGRAMS.
- PROGRAM EDITING COMMAND.
- STRING FUNCTION FOR TEXT I/O.
- BASIC CAN CALL MACHINE CODE SUB-ROUTINE.
- USER MACHINE CODE INTERRUPT HAND-LER INTERFACES WITH BASIC.
- XBUG.
- DATA CASSETTE FILE HANDLING IN BASIC

The Microtan system is rapidly becoming accepted as the ultimate approach to personal computing. Start with Microtan 65, a 6502 based single board computer, and expand to a powerful system in simple and in-expensive stages. The Microtan system is a concept and not an afterthought, this means expansion is easy and very efficient! Unlike many other systems, you'll find it difficult to outgrow Microtan, and you won't be wasting your money on a product that will only last you a few months! When you are ready to expand. Ianex is waiting. The features offered by Ianex are tremendous, and you can start into them for just £49.45! Cassette interface, 16 I/O lines, two 16 bit counter timers, data bus buffering, memory mapping and a further 1K of RAM are standard. From thereon expansion is simple, just plug in extra integrated circuits to get yourself 8K of RAM, a further 16 I/O lines and two more counter timers a serial I/O line with RS232/20mA lcop and full modem control, XBUG - a firmware package containing cassette file handling routines, plus a line-by-line assembler (translator) and dis-assembler, PLUS 10K EXTENDED MICROSOFT BASIC, a suped-up version of the Basic as used by major manufacturers such as Apple, Tandy and Nascom, NO OTHER LOW COST MICROCOMPUTER OFFERS YOU THIS SUPERB PACKAGE. O.K. so you want more memory, try Tanram for size! Upto 40K bytes on one board starting for as little as £50.60. RAM freaks will be pleased to hear that our system mother board offers page memory logic which will support 277K Bytes, satisfied? To house these beautiful modules you can choose between our mini-rack (as used on Micron), which accepts Microtan and Tanex, or our system rack pictured above. The system rack will support 12 modules. What are these extra modules? Well for starters there's a couple of I/O modules, parallel and serial offering upto 128 I/O lines organised as 16 8 bit ports and 8 serial I/O ports respectively. Shortly we'll be introducing high definition (256x256) colour graphics, A to D and D to A modules, IEEE 488 Bus interface, a PROM programmer, disc controller and TANDOS - a 5502 CPM system. So there's plenty to keep you busy. Send for more details, and find out how you can get started ALL PRICES QUOTED INCLUDE V.A.T. for just £79.35!

AIM 65, KIM 1, SIM 1 USERS- READ ON!

We have produced a T.V. interface module which simply connects to the expansion socket of your computer and produces a display of 16 rows by 40 characters! Of even more interest will be our Buffer module, which allows you to expand into our system rack, giving you access to the full range of Microtan modules.

Please underline the information r	equired.
AIM T.V. INTERFACE, MICROTAN S	YSTEM.
NAME:	
ADDRESS:	
and the second	E&MM/2

PLEASE ENCLOSE 12p STAMP. THANK YOU.

This regular series will attempt to teach BASIC to those who would like to use it for any home, business, scientific or musical application, but have no previous programming experience.

Graham Hall

ast month we looked at how a flow diagram could be used to represent information in a clear concise way. This month we shall use a flow diagram to show diagrammatically the steps that must be followed in order to solve a problem.

Variables

A variable can be thought of as a 'pigeon-hole' in which a numerical value can be stored. In more technical terms it is a location in the computer's storage area. The number stored in this location can be manipulated during the operation of a program. A computer program will often need to use more than one variable so variables are each given a unique name. In BASIC the name of a variable may be any single letter of the alphabet (A to Z) or a single letter immediately followed by one digit (and one digit only!), e.g.:

A, A1, B1, B2, Z, P3 are all permissible names for variables. Some examples of names which are NOT allowed are as follows: FRED, AA, AB, 27, A66, A.2

Soon we will introduce a statement from the BASIC language (the 'LET' statement) which will define a variable by giving it a unique name, and assign to this variable a particular numerical value.

Now let us consider a simple problem which uses three variables and can be solved by devising an algorithm which can be translated into a computer program written in BASIC.

Example problem:

Calculate the average of the counting numbers from 1 to 10 inclusive.

To find the average of a group of numbers we first add them together to give their sum. This sum is then divided by however many figures were added together. e.g. To find the average of the three numbers 2, 5 and 8

First find the sum: Sum = 2 + 5 + 8 = 15There are three numbers so we must divide the sum by three to give the average:

Average = $15 \div 3 = 5$.

The Algorithm

By carefully thinking about the problem and using what we have learnt about variables, you should be able to devise an algorithm to solve the problem. (Devising an algorithm to solve a problem means finding a method of giving a complete, correct solution in a certain number of well defined steps.)

We will need three variables: one to store the value of the sum, one to store

the value of the 'count' and one to store the final result of dividing the sum by the total count to give the average. (Note: the 'count' will tell us how many numbers have been added together). We will name the variables as follows:

- C Count (Counting variable)
- S Summing variable
- A Answer variable

Initially S must be given its first value and is set to 0. Similarly C must be set to 1. Now we increase C in steps of one at a time. Every time C is increased by 1 the new value of C is added on to the number stored in S. The result replaces the previous value of S. In other words, S will store the sum of all the values which C has taken up to the point when you stop changing C, (i.e. 1 + 2 + 3. +10)When the value of C reaches 10 (and S will then be the sum of the numbers 1 to 10), S is divided by C. The result of this is the answer to the problem and can be stored in variable A

In the above algorithm a number commonly encountered techof niques have been introduced. Throughout this series we will introduce new computing terms and definitions in a shaded box.

As can be seen above, when an algorithm is actually written down it appears unnecessarily complicated. It can be made much easier to follow by representing it with a flow diagram. As you become more familiar with the technique of representing information by a flow diagram you will find them an extremely useful tool for program development.

Figure 1 shows a flow diagram which represents the algorithm to calculate the average of the counting numbers from 1 to 10. There are a couple of new features which need to be explained. First, if you carefully study the flow diagram you will see that the diamond box contains a question. A decision is made at this point and the appropriate exit taken

INITIALISATION -The process of giving to a variable its first

value (e.g. in the above algorithm S is initialised to 0 and C is initialised to 1).

INCREMENTATION - The process of increasing the value of a variable by a fixed amount (e.g. in the above algorithm variable C is repeatedly incremented by 1).

Figure 1. Flow diagram for averaging the counting numbers from 1 to 10 inclusive.

from the diamond. If the answer to the question 'does C = 10?' is 'NO' the path followed is backwards so that C is incremented by 1 and then added to S. The question is then asked again. This is called a 'loop'. The loop is

finished when the answer to the question 'does C = 10' is 'YES'. A downward path is then taken to finish the calculation.

LOOP/LOOPING — to perform a set of one of several instructions (statements) repeatedly is called looping. On a flow diagram this will be represented by a loop.

There is a statement from the BASIC language (the 'FOR' statement) which allows loops to be written in a BASIC program.

Writing a BASIC program

Now we have devised an algorithm to give a solution to the problem the next step is to translate the algorithm into a short BASIC program so that a computer can be used to give us the answer. However, before the program can be written we need to explain, and know how to use, some of the statements which appear in the BASIC language.

The LET Statement

Every programming language (with a few special exceptions) has a way of declaring and assigning values to variables which are to be used in a program. In BASIC the simplest way

of defining a variable is to use the LET statement.

As we saw earlier a variable can be any single alphabetic character so a variable called 'S' can be defined and initialised to 0 by the BASIC statement:

10 LET S = 0

A couple of things to note here. First, the '=' symbol used in this context means 'to be replaced by the value of'. Secondly, the LET statement is preceded by a number, in this case '10'. Every BASIC program statement has to be preceded by a unique line number. It is conventional to use intervals of 10 for the numbers of adjacent lines in a program. This is because any modification in the program must also have unique line numbers - the in-between numbers can be used for that purpose. The line numbers do not have to be typed in order - the computer will follow numerical order when the program is executed.

Now we can write a three line BASIC program:

10	LET S=0
20	PRINT S
30	END

We have introduced another two BASIC statements in this program. Line 20 is a PRINT statement which is used to output results from the computer in an easily understandable form. Later in this series we will examine the use of the PRINT statement more closely.

The highest numbered line in a BASIC program is always the END statement (although the END statement is optional in some computer systems).

If you have a personal computer system with a BASIC interpreter or compiler try typing in the above On proper instruction program. (which depends on the computer you are using) the computer will execute the program and then stop. The result will be a 0 displayed on the terminal you are using. It is impossible to describe how to make each different computer execute a BASIC program because there are so many different versions, each with their own peculiarities. You should be able to find out how to execute a BASIC program by reading the user guide of the computer which you are using.

Next month we shall finish. describing the LET statement and continue to explain some more simple BASIC statements.

If you are fortunate enough to have a personal computer system then type in the following program and see what results it gives. If you have not, try to think out the problem in your head:

10	LET	S	= 0	
20	LET	C	= 1	
30	LET	S	= S	+ (
40	LET	C:	= C	+]
50	PRIN	Т	S	
60	PRIN	Т	С	
70	END			

If you are familiar with BASIC try converting the algorithm we devised this month into a BASIC program. (HINT: some of the statements of the above program, together with some other statements, one of which will be an 'IF' statement, could be used).

ATARI IN APRIL

It's nearly here, Ingersoll, the importer and distributor of this machine say they should be available in 'late April'. It now seems that the Atari 400 will be provided with 16K of user RAM and will retail at around £395 including VAT, the 800 will sell at £695 inc. VAT. At this time prices for disc drives, printers and other peripherals are not available and as yet no firm dealership arrangements have been set up.

News from America is that after a slow start the machines are now beginning to take off, most sales going to enthusiasts and also to the consumer market. It seems that the average American citizen is getting fed up with just games and is taking up the option offered by Atari of superb games combined with real

computing power and it will be interesting to see how the British public reacts to this machine as it could be the first move towards 'man in the street' computing.

Visicalc, currently available for the Apple and Pet microcomputer systems, has now been re-written for Atari's 800 system.

VIC

Reports are coming in that VIC from Commodore is now available in Japan, information so far says that it has plug-in memory and cartridge facilities interface for joysticks, games, riddles and the like, is expandable to 32K, has RS-232 capability, and special function keys, some of which are programmable. It displays 22 characters on 23 lines, and has graphics resolution of 176 by 184. No price as yet but it looks very promising. We will keep you posted.

TAKE OVER

The official distributors of Apple microcomputers in this country, Microsense Computers, have sold out to Apple Computers of California, thus becoming a subsidiary of this everexpanding company. Microsense first took over the Apple dealership in mid-1979 and has been largely responsible for the growing popularity of the machine.

Whilst on the subject of Apple, it's nice to see a manufacturing base being developed on our doorstep in Cork, Ireland, where machines for the European market will be produced along with its many add-ons.

European sales are also strengthened with a distribution and marketing centre being set up in. Holland — it seems that from little pips mighty Apple trees grow!

GRAPHICS TABLET

A new peripheral in the form of a high resolution graphics tablet has been developed for UK Apple users. Its best attribute is its cost at only £149 plus VAT and it must be high on any Apple owners shopping list.

To use the device, you place your drawing underneath an acetate sheet, then trace the details using a drawing arm: the outline is followed and reproduced on a VDU. Commands available with the softwave provided include P - Point cursor, which moves the cursor and displays the X, Y coordinates. S - Scale of drawing, gives control over size in both X and Y axes. The M - command enables you to create and store shape tables of items that you wish to draw repeatedly, i.e. architectural symbols, component conventions etc. The Z command can be used for shading areas in colour (or is it color!) of which there are 106 choices.

Other facilities offered include adding text to your graphics in five sizes, four directions and in any colour.

Further details from Micro Management, Ipswich, Suffolk.

Programming Music on the Sharp MZ-80K

Graham Knight

The last issue of E&MM detailed the special dialect of BASIC used on the Sharp MZ-80K microcomputer which allows the user to program music. Ten different note and rest durations can be programmed and the computer will play music over a three octave range at any one of seven tempos. Users are soon able to write musical programs transcribing sheet music to a computer program — an early attempt will look something like the listing for the tune "Two Lovely Black Eyes" (program 1).

It will be seen that the Sharp BASIC is guite clever and that the notes can be sharpened by prefixing with a # symbol. Suffixes are also used and these are numbers which define the note and rest durations between a demi-semi quaver (Ø) and a semibreve (9). After a few hours' experimentation with the music lines it will become apparent that even this relatively short program can be simplified. When a series of notes have the same duration the numbered suffix need only be added to the first note. Each succeeding note will repeat the first duration until a new suffix is added. Thus the program for the tune "Two Lovely Black Eyes" becomes even easier (program 2).

With a little practice it soon becomes easy to remember the BASIC notation and programs like the Bach Musette (program 3) can be written quickly. Line 300 sets the tempo for the whole piece and the music in lines 310-340 is played only once. The music in lines 360-430 is played twice and this double play is defined in line 350. The ability of the computer to return and play the same music over again is a most useful facility and it is used in the next example tune — the

Frank Mills composition "Music Box Dancer" (program 4). Here the music plays three times and increases in tempo each time. Line 44 defines the tempo as variable T which is set to vary between 4 and 6 in line 43. The net result of these two lines is that the program runs playing the music in lines 45-56 at a slow tempo then returns to the start and plays it again at a medium tempo before again returning to the beginning and playing the tune for the last time at a fast tempo. Without this return and tempo stepping facility the program would be three times as long and the tempo would have to be defined on three separate lines.

Last month I showed how to POKE machine code routines from BASIC to give a large variety of sound effects and it should be noted that the Sharp BASIC only covers three octaves. Using machine code it is possible to program notes from as high as 4kHz to as low as 40Hz. Spectacular cosmic sounds can be programmed in this way and POKEing machine code notes from BASIC will be detailed in next month's edition. It is fairly easy to see that a machine code program can

 1
 PRINT"TWO LOVELY BLACK EYES"
 1
 1
 PRINT"TWO LOVELY BLACK EYES"

 2
 TEMPO 6
 2
 TEMPO 6
 2
 TEMPO 6

 3
 MUSIC"B365B5A845R5R57D5B57D5";
 3
 MUSIC"B565B5A845R5R57D5B57D5";
 4
 MUSIC"B565B5A845R57D5B57D5";
 4
 MUSIC"B565B5A845R57D5B57D5";
 5
 MUSIC"B565B5A845R57D5B57D5";
 5
 MUSIC"B565B5A845R57D5B57D5";
 5
 MUSIC"B565B5A845R57D5B57D5";
 5
 MUSIC"B565B5A845R57D5B57D5";
 5
 MUSIC"B565B63B57B485F85D5";
 5
 MUSIC"B565B63B57B485F85D5";
 5
 MUSIC"B565B63B638577D5857D5";
 5
 MUSIC"B565B63B63857837D5";
 5
 MUSIC"B565B56885763725";
 5
 MUSIC"#5161A363345353735";
 5
 MUSIC"#5161A36334535335";
 3
 8
 MUSIC"#5161A363345353505";
 3
 8
 MUSIC"#5161A363345353505";
 3
 8
 8
 8
 8
 MUSIC"#5161A363345353505";
 3
 8
 8
 8
 8
 8

keys on the MZ-80K to be defined as certain notes. It is possible to write a routine to define the keys CDEFGA and B so that they respond by playing a scale. A keyboard scan routine checks if a key is pressed and the appropriate note is then played for as long as the note is depressed. However, the keyboard on the Sharp is laid out in QWERTY typewriter style and this is obviously not the best type of keyboard for a musician. Victor Kusin has taken one of our machine code routines and rewritten it to run from BASIC using data statements. The program defines the keys in two of the rows as per the conventional piano layout and the program illustrates this on the screen. As keys are depressed

be written which will allow some of the

the appropriate notes are played and the Sharp BASIC notation is displayed. This enables musicians who play by ear to play on the Sharp keyboard and then see the tune in Sharp BASIC notation on the screen. It is then a simple matter to note the lines of program and to incorporate them in later programming.

This program is particularly popular with children and is used a great deal in various school music departments. With a little ingenuity and some programming experience it will soon become apparent that the Sharp music facilities are very important. The music greatly enhances the games - Space Invaders without sound would be unthinkable - and is very useful as an error indicator in business or computer assisted learning programs. It is very easy to program a friendly pip if you have made a correct entry and it is just as simple to program a low note to indicate the operator is trying to enter wrong information.

The "Computer Piano" program makes use of the special POKEs which are only used for music — the next issue of "Electronics and Music Maker" will examine memory locations 4514 and 4513 in greater detail and describe the use of strings in music programming. **E&MM**

42	PRINT"MUSIC BOX DANCER
43	FUR T=4 TO 6 STEP 1
45	
46	MUSIC ""B"A"GER1"
47	MUSIC" G2 F DBGB D F E C A G G G "
48	MUSIC"R1"
49	MUSIC " TC2R0TC2GTCT ETCTETGTCT#B"
51	
52	
53	MUSIC "R"5 FTDBGBTD FTETCTBTGTG
54	MUSIC"RR"
55	MUSIC" #BTATFTCATCTFTATGTCTATGTG"
56	MUSIC"RRR G F DBGB DB CG E C C CRR "
58	PETIIPN Program 4
1.00	RE FORM
10	
19	DIM(255). F(255). P\$(255): I MIT24552
20	DATA205, 27, 0, 50, 240, 95, 201, 0
21	DATA 117,3,245, B, 115,4,49, #A,212,4,113, A,218,4,180, #G
22	DATA 215, 4, 252, TG, 236, 5, 72, "#F, 226, 5, 152, "F, 227, 5, 237, TE
23	DATA229, 6, 71, T#D, 251, 6, 167, TD, 61, 7, 12, T#C, 59, 7, 119, TC, 76, 7, 234, B
24	UHIH(7)57787887841773787226781773771847861747797248765785718714478F
26	DATAGR, 14, 238, C, 83, 15, 210, E, 07, 12, 142, 140, 10, 10, 10, 10, 10, 12, 14, 24, #C
27	FORA=24553T024560: READB: POKEA, B: NEXT
28	FORA=1T028:READK,C(K),F(K),P\$(K):NEXT
29	PRINT"E COMPUTER PIANO
30	PRINT"B The keys in the QWERTY and ASDFGH rows
31	PRINT" are your plano keyboard as shown below PRINT" lise CR and DEL keys to separate lines
33	PRINT II
34	F0RJ=1T03
35	PRINT" PRINT PRINT
36	F0RJ=1103
37	PRINT IIIIIIIIIIIIIIIII
39	IISR(24553):0=PEEK(24560)
40	IFA=0THENX=A:USR(71):GOT039
41	POKE4514, C(A): POKE4513, F(A): USR(68)
42	IFX=ATHEN39
43	IFH=IUZIHENPRINI" "PRINT"3%3"; IEO-OCTUENDO NUTUR AU:
45	
10	Program 5
-	

Program 3

Guide to Electronic Music Techniques

ast month we took a look at understanding the synthesiser and the way in which sound is produced. The next technique involved in Electronic Music is to understand the modules of the synthesiser, being able to know exactly what sound you are trying to obtain and what modules are used to create various sound effects.

The terminology used on synthesisers today does vary from manufacturer to manufacturer, from old design synths to new and from analogue to digital. I shall try to explain all.

Voltage Controlled Oscillator (VCO)

The VCO or Signal Generator (SG) commonly found on most music synthesisers consists of a exponential amplifier, a resettable integrator, and waveshaping circuitry. 'Voltage Controlled Oscillator' means an oscillator whose operating frequency or pitch can be controlled by an external control voltage.

As seen previously the VCO is responsible for the pitch and the basic timbre. On most VCO modules you will find a waveform selector that selects tone colours (sine, triangle, sawtooth, square and pulsewave). If within the waveform selector there is a facility of Pulse Width Modulation (PWM) then there will be a control which adjusts the intensity of PWM (ie. the amount of variation in the pulse width from a square wave to a narrow pulse wave). Some synthesisers also combine a square wave and pulse wave together with a separate control voltage adjusting the pulse width. The VCO will also contain an octave selector which in most cases is marked in 'feet', akin to the footages of an organ.

The graphic notation of a VCO is shown in Figure 1(a).

Voltage Controlled Filter (VCF)

The VCF module receives an audio signal from the VCO and also accepts CV signals from other modules. The Voltage Controlled Filter is a filter whose cut-off frequency can be controlled by an external control voltage. The filter processes the waveform from the VCOs and Noise Generator. If on your synthesiser there is only one filter, in most cases it will be Low-Pass, ie. the harmonic elements of the waveform which are higher than the cut-off will be removed, producing a rounder tone. Remember a filter takes away harmonics. The VCF module will contain a cut-off frequency (Fc) control, and usually a 'resonance' control which emphasises harmonics at the cut-off point. On some synthesisers there is a 'keyboard follower' control which adjusts the Fc over the scale of the keyboard, preserving the same timbre for different pitches.

There are various types of filters available as you go further into sound synthesis. A Band-Pass filter allows one frequency band to pass, a Band Vince S. Hill

Figure 1. Graphic notation of synthesiser modules discussed.

Reject Filter or Notch stops a particular band passing. High-Pass filters allow high frequencies through and cut out low frequencies. Low-Pass filters cut out high frequencies and allow low frequencies to pervade. This can be shown in graphic notation (see Figure 1(b)).

Voltage Controlled Amplifier (VCA)

The VCA determines the volume of signal passing through it in accordance with the total control voltage from the envelope generator (EG) and from any external controller connected. A Voltage Controlled Amplifier is an amplifier whose gain can be controlled by an external control voltage. The VCA module might contain a gain control which allows any signal passing through the other modules to reach the output of the synthesiser, the other control will be a selector switch which tells the VCA which type of envelope is controlling it. On some synthesisers you will find extra facilities, including a VCA CV 'Intensity' which adjusts the VCA's input sensitivity to the control signal being used and an 'Initial Level' Control which allows the sound through when the EG is 'off'

Envelope Generator (EG)

The envelope shaper consists of a combination of VCA and EG. The VCA varies the volume of the sound in accordance with the envelope signal. The envelope signal is initiated by a gate signal whenever a key is depressed. As in the VCF there are different forms that the envelope can take. The most typical are ADSR and AR. A = Attack, D = Decay, S = Sustain, R = Release. This may seem complicated but if we remember what we said regarding sound and its change in volume over time you will obtain a clearer picture.

In an ADSR envelope module you will find four controls. The attack time adjusts the rate of rise of the envelope to the peak value. The decay time controls the time for the volume to fall from its peak to its sustain level. The sustain level adjusts the level at which the volume will be sustained from the end of the decay time until the end of the gate signal (when the key is released) and the release time will denote how long the sound will take to fade away after the end of the gate signal. If your synthesiser has a hold switch or control this will extend the trigger signal by a variable specified amount of time.

When you find a synthesiser with more than one EG, the second will most probably be an AR or AD envelope. This envelope is used mainly for VCF control.

Understand the effects you are trying to obtain when using two EGs: the ADSR will shape your sound and AR will then control what happens within that sound by introducing another modifier.

Low Frequency Oscillator (LFO)

The LFO module allows a control voltage in the shape of a waveform to effect and change the characteristics of the audio signal. It is basically an oscillator which is designed to generate a cyclic voltage signal at subaudio frequencies. The oscillator can normally produce many waveshapes that can be used specifically for modulation purposes. On most synthesisers the LFO section is situated near or with the particular module that will be affected. The LFO module will contain a waveform selector and a frequency control. Whether you will be modulating the VCO, VCF or amplitude these controls will be the basic system, there will also be a control which allows the intensity of the effect to be altered. Modulation of the VCO will allow vibrato, trills and siren type effects and when modulating the VCF you will obtain cut-off frequency modulation (FcM), for growling sounds.

There are synthesisers on the market which include an additional VCA: this is usually controlled by the LFO but will have a specific control of the intensity of amplitude modulation. The extra VCA is a very useful addition to the synthesiser, allowing effects from tremolo through to ring modulation.

If your synthesiser has two or more LFO's then the capability is greatly enhanced. In some cases the LFO can be directed through to the filters allowing timbre modulation of the audio signal independent of other modulations.

There are of course many more modifiers in a synthesiser. In synthesising any sound you use two types of voltage. An audio signal voltage is the first type which provides the fundamental base for the sound that you will hear. Whether it be a square wave or sine wave, the audio signal is the raw material. And secondly, when creating synthesised sounds you will be using control voltages. Control voltages are not heard although you will hear their effect on the audio signal, eg. vibrato, trills etc.

Most synthesisers work in the same way to produce sounds. To delve further into electronic music and sound synthesis you must be aware of what your synthesiser is capable of, and this is a technique in itself. **E&MM**

Warren Cann talks about the electronics and the music techniques he uses as their drummer

'Most musicians are going to need at some point a lot more background in Electronics because it's the way instruments in this day and age are going'....

'There's a real kind of revolution [happening in the drumming world,' says Warren, 'that was taking place in the 50's with bass guitar and electric guitar and in the 70's with keyboards. Hollow logs covered with animal skins aren't all that far removed from drum kits and they've been taken almost as far as they can go - there's been quite a few developments made in recent years, with different heads and funnel shaped designs for projecting sound out to an audience. But refinements are becoming increasingly smaller so, for example, you're not going to get much better cymbals than Zildjian make now.

Warren Cann is undoubtedly a special kind of electro-musician and this has contributed a great deal to the commercial sound that has brought Ultravox such great success in this country recently. Warren is 27 and comes from

Warren is 27 and comes from Vancouver, Canada. His parents are English and emigrated there before he was born. He is entirely self-taught as a musician. His fascination for the electronic side of percussion came from his study of electronics for four years.

Drums and Electronics

Warren's percussion equipment is built up around a simple but effective old Ludwig acoustic kit that he acquired in 1968, although its finish has only been on general sale last year. It's a four drum kit because he thinks that big drum kits are a 'load of waffle.' 'It's a challenge, if you can play on that you can play on anything!'

To his left when seated at the kit there is a rack of electronic equipment. Starting from bottom up this contains: A Yamaha Stereo Power Amp (P2100) and an RSD 12 into 2 mixer which has sufficient EQ over 3 bands plus foldback and echo sends. Usually 9 channels are enough for mixing all the drum electronics, and there are 2 Yamaha PA columns (S0410H) to the left and right behind Warren for monitoring, each containing 4 x 10's and top horn, which in practice are used upside down because the top horns are so efficient.

There is a considerably modified Roland TR77, which Warren has used for a long time. Snare Drum, Hi-Hat and Bass Drum are available on separate outputs and the Snare Drum voicing is pot controlled to alter its noise content. Bass Drum attack can, also be varied by damping the oscillation and the circuitry has been modified to give a stronger initial peak. A 'thud' control changes the Bass Drum oscillation pitch.

Above the TR77 is the Roland CR78 drum unit. Both these machines have had fine tuning controls added - the original pots as supplied were too coarse. They are never run at the same time because of the problems in synchronising the two together. A very small tempo change in Warren's drumming can quite drastically alter the feel and temperament of a song; 'the psychological aspects of tempo when you're working with drum machines, either playing along with them using acoustic drums like I do on some songs, or just using drum machines entirely on their own, is interesting because it used to be that everyone would tell me the tempo was too fast. But often this was because we were tired, that's all. The 'fine tune' can be used to make adjustments without the rest of the group being aware of any change occuring.

'In Vienna the first section speeds up, then there's a ritardando in the middle section, and then it goes back to a different tempo. So we don't let the machines dictate to us and in a song where the tempo would be the same throughout, I occasionally 'tweak' the tempo up a little bit.'

An interesting extra for the CR78 is a 'decay' adjustment for the Bass Drum. Normally it sounds okay at low volume levels — playing at 10 or 15 thousand watts you don't get 'thunk' you get 'boing!' The snare drum can also become horrendously loud.

In Ultravox's music the electronic drum complements the acoustic drum so well that the listener might often find it hard to discern one from the other (try listening to "Mr. X" before looking at the music and see if you can tell the difference). A further example is in 'Astradyne,' where the metallic cymbal sound comes from the CR78's 'metallic beat.'

It is often quite difficult in performance to maintain a correct tempo. A responsive audience can increase the excitement of a piece

and upset correct perception of a steady pulse, so that the music sounds too slow. To help get over this, Warren has an LED 3-digit readout of the tempo set (measuring frequency period) that has been designed by his engineer and is mounted in a general effects box next to the CR78. This also contains an Electro-Harmonix distortion unit which can be used to boost or totally distort sounds. Below this there's various MXR devices: a phaser 100, three noise gates and a flanger. The latter has had its standard on/off switch replaced with a 'press to make' switch so that Warren can flange a specific beat during a rhythm.

Above these effects is a Roland DC30 Echo and a Dave Simmonds 'Clap-Trap.' Electronic clap boxes are not much used by American groups (even though Electro-Harmonix in America also do a good one). Warren uses it in all 3 modes and has a trigger footswitch for it situated just next to the hi-hat, so that his left toe stays on the hi-hat plate while his heel swivels on to the Clap-Trap switch. One of its main uses is to give that multi-overdubbed hand clap heard on so many R&B and Soul records on the 'off' beats. Actual audience clapping can only be achieved to some extent by triggering it from an LFO. Its sound

is improved by using it through a chorus box and it can also be triggered by the drum-synth trigger or from a pick-up on the snare drum.

Having recently travelled all over America with this set-up, dust and humid conditions become quite a problem although this would be accentuated if sliders and knobs were left in the same settings and Warren in fact uses the controls frequently as he plays. Some drum machines effects are rarely used, e.g. on the CR78, he does not like the 'fill-ins,' preferring the A/B alternating rhythms every 2,4,8,12,16 bars and the 'break' setting that gives a silence bar at the end of these bar groups. He also uses the 'Write' pad of the CR78 in 'play' mode without actually 'storing' it in the memory

'Incidentally,' says Warren, 'I'd found that the drum machine track or click track that was first put down as a guide to recording other instrument overdubs sometimes required changing - and this was impossible. This was also true if I wanted to overdub another drum machine track.' So Warren suggested a possible design to overcome this to his engineer. Although he does not have time to do this himself, he majored in electronics as a student and so has a good understanding of what can be or can't be done without actually knowing how to wire up the finished product.

And Warren is sure that a lot more musicians are going to need at some point a lot more background in electronics because it's the way instruments in this day and age are going.

'I'm not knocking acoustic instruments, there are going to be separate instruments — just as there are grand pianos and electric pianos. It is a great help if you know what's available new technology helps you get more from your music and if you can build the electronics yourself or know what to suggest to someone who can build equipment for you, then you have a big advantage.'

Coming back to the click track problem, the unit used by Warren to help with this is named the 'Trigger Recorder Sequencer.' Basically the unit can put down a click track on specific beats out of a maximum 16, and on separate tracks if necessary where it may become part of the final sound mix, with different EQ's and treatments. Then afterwards portions or all of it can be erased and new material added. Always in sync too, Warren claims, despite mains fluctuation and problems of linking old material to new tracks! A line of toggle switches selects the click pulses to trigger the drum machines, clap trap or even keyboard synthesisers used by Chris. The biggest advantage it provides is to allow numerous drum and additional sequencer tracks to be built up in synchronisation with everything. It was used on Vienna which was made very quickly, with the basic recording taking 2 weeks and the mixing about 10 days over in Germany. 'Vienna' and 'Western Promise' both needed extra treatment with the unit. While touring in America Ultravox did some recording at Criterion Studios in Miami, where the Bee Gees, Eagles and other notable groups record and the engineer there

was totally impressed with the sophisticated drum electronics pointing out that very few U.S. bands were using these techniques with percussion.

The whole set up is modular so that Warren can frequently update his equipment and several units have been housed in clear perspex, which although fragile looks good. Numerous LED's provide control status signals while others simply enhance the visual effect. At the rear of the rack most signals and power lines are fed via cannon connectors. All of Ultravox's keyboard and drum frames are metal with castors to facilitate transport.

Writing and performing the music

Ultravox are unusual in that they don't have one central writer — all four of the group compose the material.

When performing, Warren has to carefully monitor the bass part played by Chris because a lot of the time he plays synthesiser instead of guitar and his sequencer pulses have to fit exactly with the drums. Headphones are not used by the group for stage monitoring on a gig and in Warren's case he has tried various amplification set-ups, from small on-stage monitor wedges to huge 500 watt side-fills. He's found a big PA side-fill will beloud and powerful but it colours the sound too much.

'The answer for me because I'm using electronic drum machines' comments Warren, 'is plenty of quite small speakers - 2 x 15's and a folded horn isn't the answer. Headphones give a totally different sensation - it's a lot more complex because you've got to start mixing everyone in.' So the two Yamaha PA columns are the best situation given the space limitations of the drum platform and the locations that the group performs at, which in the States can be from the huge Santa Monica Civic at Los Angeles to a small club at Tulsa, Oklahoma.

Other Drum Parts

Warren uses two 'Synare 3' drums which have a good filter sound and are ideal if you're on a tight budget. They're right next to the hi-hat because it's easier to get off the hi-hat and on to the Synare drums. They add definite electronic sounds to the percussion in contrast with the acoustic kit.

Over by the Ludwig tom-tom drum are two very narrow Premier drums that have the same kind of effect as the Synare 3 electronic drums. These were early versions of Dave Simmons drum synthesisers that utilised real drum heads and small drum rims, with tuning lugs and wood shells, but actually having no acoustic sound. The rubber pad used on the Synare 3 is also ideal as the 'skin' for electronic drums and gives sufficient bounce for the sticks. When Warren is playing a ride cymbal pattern on the floor tomtom, it's very easy for him to lift his stick a couple of inches and catch the Synares for interjecting accents. Placing of these extra electronic drums is important as is the position of microphones over the drum kit. He

deplores the drum kit set-up that has a forest of chrome stands for mikes as well as cymbals, which can cause trouble from vibrations rotating a mike off-position and requires someone to come on stage during a number to put it right.

All Warren's drums are miked up with individual mikes used for snare drum (top and underneath), hi-hat, rack-tom, bass drum, and floor-tom. A 'Dead-ringer' (circular band of highly adhesive foam) is used between the drum rim and the skin to deaden the sound. Next to the hi-hat footplate is, on the one side, the clap-trap switch already mentioned and a start/stop switch for the TR77 on the other side. This is essential for Warren, as the touch-plate of the TR77 may not always trigger (or sometimes double triggers) when playing in hot humid conditions. Hum can be a problem with all the electronics - and the MXR gates help overcome this.

The Simmons SDS3 drum synthesiser control box is located to the right of the mixer and PA mikes can go directly through it as well, thus eliminating having to put pick-ups all over the acoustic drums, yet still giving the choice of electronic treatment of the whole kit if desired. Sometimes recorded material is put through the SDS3 and triggered from the drum pads.

The Syntom

'I think the Syntom is an excellent way of getting your feet wet when you know nothing about electronics, you're a drummer and you want to start familiarising yourself with what can happen. It's very simple to use - and at its price it's excellent,' states Warren enthusiastically. 'I found that if you have just one Syntom, you can do some pretty marvellous things with your bass drum, because if you have difficulty getting a real solid heavy sound, then by attaching it to the hoop and adjusting the sensitivity you'll make a big improvement. In order to fit it on the bass drum I removed the piece of rubber from the mounting clip. The Syntom increases the drum's scope and gives special effects for some songs. I don't like to use it too much for the typical high sounds that swoop down in pitch. because they've been done to death recently on disco records - just like a lot of records had wha-wha and fuzz tones for a time. So the high pitched effects from the Syntom are fine once in a while but its main purpose for the serious musician - and it can be used by any member of the band, attached to a convenient place or simple held in one hand and hit with a finger of the other hand - is for providing new electronic sounds to vour music

Warren likes it on the snare drum rim: 'By playing with a little bit of "decay" and "sweep" and adjusting your "pitch" you can definitely expand the effects from your snare, either by using it all the time fairly subtly or by suddenly whacking up your sweep control or decay. Of course, the controls inter-relate with each other, you can't adjust the sweep without affecting the pitch — it takes a little bit of experimenting with, especially if you're not conditioned to turning | Warren adjusts the controls of the Syntom.

knobs whilst drumming.' Warren found that he did not have any feed back problems at all and is currently using it with his kit. 'By the way, if a drummer thinks, "Well great, I'd like to have one of these very much," the chances are he's going to have to borrow a spare amp from someone in the band. And don't forget that when you use the Syntom or any other type of electronic percussion you hit, you're probably only hearing a fraction of the quality the unit can put out because most people won't have a sophisticated enough amplification set-up to actually get it!"

'If you have one on the snare drum then it really is a good idea to add a second Syntom to the tom-tom to balance up the drum output.

The Future

'The player activated type of percussion - the Syntom, the Synares, the Syndrums, the Simmons equipment: All that type of thing is initially the easiest sort of gear for a drummer

The electronics from the rear.

Warren plays on his set-up for our cassette.

to make the leap into electronics with, because it's something that he hits and plays like a drum. He does have the controls and modifiers to contend with but it's going to become a lot more popular and it's going to be integrated a lot more into bands in general.

It's usually the synthesiser player on stage who has quite a lot of setting up to do, but Warren is the same and rarely has a spare second - often making adjustments during the music. A different approach to playing exists for him - he has to be totally alert the whole time during a 1¼ hour show with only a couple of minutes relaxation

Warren comments further: 'Personally, and some people might not agree with me, I think the real future of electronic percussion isn't so much in player programmable percussion. I think that drum machines that enable you to pre-program an assortment of beats will definitely be the ones that open things up - that's really what a drummer does in the first place! In his mind he might have (not considering jazz and other esoteric types of music) as many as a dozen Rock and Roll rhythms upon which to base his playing and maybe it will be possible to do all of this in advance of a performance, with drum machines programmed with these possibilities. Then instead of just using the acoustic kit you would also consider the use of your own original creative electronic drum programs!'

In Ultravox's latest album 'Vienna' (which is on special offer this month), the group made a decision on this particular album to under-play the use of electronics. 'The only thing to expect from Ultravox is change,' says Warren emphatically, 'that's why "Vienna" surprised a lot of people who thought we'd become more esoteric, and it should make the album enjoyable for a much wider audience.'

Warren finished by adding: 'The next album is going to be different again. One of our trade marks is our duality - total opposites being blended together and we're going to try for something that's a lot more 'off the wall' but at the same time is still easy to listen to and fun to dance to a lot more electronics will be evident too!

Mike Beecher

ello again, and welcome back to our continuing examination of what's going on in video and how it affects you, minus the hype and drivel you get in the video comics. In fact, one of the aims of this column is to take an 'alternative' look at video and give you some insights you probably won't read elsewhere. Unlike some of the 'straight' video magazines, we can truthfully claim to be totally unbiased in our approach and in our reporting. We don't rely on block advertising bookings from prime video manufacturers and we can say what we think about equipment without fear or favour. That's enough of the sermon, let's get down to business.

One of the questions asked most frequently is whether the time is yet right to get into video and if so, which make or system to get. After all you are probably talking about spending £400 or £500 if you intend to buy your machine, and you don't want to make any mistake when you spend that sort of money. So where do you go for this sort of advice? Your High Street photo/hi-fi store? The discount warehouse just outside town? Or that upmarket video and hi-fi rather studio' twenty miles away that advertises in all the magazines? Chances are, if you go and ask in each place you'll get a different answer in each. And will any of the answers be right? Will they accord with the idea you had already got from seeing the advertisements on TV? Bewildering isn't it?!

In theory, any shop which claims to be a specialist in this sort of thing ought to be a good source of friendly advice, but I sometimes wonder. It never fails to amaze me how some of the most video-orientated stores, even in London's Tottenham Court Road, can demonstrate such badly adjusted TV sets. Ghosty pictures. over-saturated colours, noisy signals, well you may know what I mean wouldn't buy a set in a shop where they clearly couldn't be bothered (or don't even know how) to put on a decent display. And when they demonstrate video recorders on one of these poorly adjusted receivers it's no wonder you'll see some pretty misleading results. I suppose it's fair game to display recordings on a 13' Trinitron (any picture looks sharper and brighter on a small screen) but when you hear salesmen say one manufacturer's VHS machine gives much clearer pictures than a rival VHS machine it makes you wonder, as they say. Many salesmen are on commission (it keeps them on their toes) and it stands to reason that they'll try and sell you a more expensive machine if they sense a big credit card burning in your pocket. Fortunately not all shops are like this!

But what's the real truth? How do the various makes and systems compare? What follows now is an honest and unbiased opinion. It's only an opinion and I respect the fact that you are entitled to your own opinion, even if, say, you are in fact mistaken. Straightaway I will repeat something I said before - on the video marketplace now there are no 'cowboy' makes. If you buy any current production home video system you cannot really go wrong. You may spend too much or miss out on some features you could have had for the same price on another model, but you won't buy rubbish. Shops cannot afford to sell rogue makes: they don't want custom-

Andrew Emmerson

ers coming back to the shop making a scene and demanding £500 back nor in fact do they want to see the machine back for an expensive service job until at least a month after the free maintenance guarantee has run out. In terms of quality, then, no manufacturer stands out as a rogue nor, for that matter, as spotless. I repeat, there is no rubbish on the market. Mind you, some manufacturers, e.g. Philips, get top marks for supporting their products with a good spares backup for a long time after they are obsolete, and some of the Japanese manufacturers have acquired a nasty reputation for spare parts which are either pricey or totally unavailable for months. Do, however, avoid buying cheap obsolete or professional systems which appear to be a bargain.

So your choice is down to the machine's styling, features and price, and also its 'format'. The first three of these I leave to your judgement, but you may need a bit of guidance on the format or system, which is quite important really. There are three formats or types of machine currently in production. All of them use tape which is 1/2" wide but the way in which they record picture and sound signals on the tape differs fundamentally, so that a tape recorded in one format will not play back on a machine belonging to another format group. This is what will play in your home cassette recorder, whatever its make, there is not the same sort of interchangeability with video cassettes. No format is the exclusive province of a single manufacturer: the manufacturers line up into opposing camps depending on which format they have signed up with, and the originators of each format are delighted to admit new members to their 'club', knowing that they could never achieve total market saturation alone. These three formats are VHS, Beta

and Video 2000. VHS or Video Home System can, through its penetration of

the rental market, claim 70% of the British home video market and no. 1 in the world status. These figures do rather speak for themselves. For instance, blank and recorded tapes are plentiful and competitively priced, and if you want to swap tapes with people at work you had better go for VHS as the chances are that this is the one they have got. Picture quality ranges from acceptable to pretty good but never as good as broadcast TV. If you look closely at the screen of a TV set replaying a VHS tape you will see a noticeable fuzziness or lack of very fine detail and the picture is covered with countless tiny specks of random colours known technically as colour noise. From normal viewing distances you won't notice these defects and the pictures are subjectively very good. You can record up to four hours on a single tape with VHS now.

VHS was developed by JVC and is supported by many manufacturers. Not among them is Sony, since Sony originated the main rival system. This is called Beta. Technically Beta and VHS share many similarities, so you would expect results to be more or less equal. They are, although the best VHS pictures I have seen had a slight edge on the best Beta results. Tape costs are comparable and you can record up to 3¹/₄ hours on one tape. The number of manufacturers making Beta format recorders is smaller and thus you will have less choice, though no shortage of features. Prices are very competitive.

VHS and the Beta format both originated in Japan; the third is the European alternative. It was developed jointly by Philips and Grundig to keep a segment of the European market for European suppliers. Some people say it has arrived too late to do this, but it does stand a very good chance of success in continental Europe, where they tend to be more European-minded, if not the UK. Unlike both of the systems mentioned previously it uses a tape cassette which you can flip over when you come to the end and the total recording time per tape is up to eight hours. No wonder they call it the Video Compact Cassette or VCC. For all the technical wizardry built into their machines (and there's a lot of very clever stuff in them) they are not cheap and they don't have some of the features the Japanese manufacturers offer. And what's more, the picture is no better.

Given the foregoing I can see no reason for buying anything other than VHS — it has the widest choice of machines and prerecorded tapes, and its overwhelming popularity means they won't ditch the format overnight. If you're a bit short of the ready cash you may point out that Sanyo make their basic Beta machine quite a bit cheaper than any VHS. This is true but if you want video on a budget why not try the radical alternative? Do what everyone warns you against, go out and deliberately buy a secondhand machine of an obsolete format! In point of fact this can make a lot of sense as long as you don't spend much money on the experience. And experience is what you'll be buying. For £100 or £150 you can have a lot of fun and learn a lot about video. You may well get a whole load of tapes thrown in with the machine, after all, if the owner is changing system he will no longer need the old tapes. You'll probably keep the machine for about nine months and then resell it for not much less than you paid for it. In the process you will have learned what you can get out of video and you will definitely know which new machine to go for. So avoid the temptation to buy the first new machine you see and ... buy secondhand, folks!

Where do you find secondhand machines you can trust? The best source is trade-ins from dealers. No, you don't see them in the shop windows, and they won't even offer you one unless you ask because they have no wish to lose the chance of selling a new machine: But if you explain you're starting on a budget you will probably get quite a good machine, with three months' guarantee to boot, which is better than nothing and indicates a certain degree of confidence. If a few phone calls to local dealers do not work you could take a look in the local paper or in "Exchange and Mart", but you cannot get a meaningful guarantee from a private seller and you might just be paying for the privilege of taking over someone else's troubles. Whatever you do, refuse to pay more than £150. The machine you will end up with will be either a Philips 1500 or 1700. Both models are obsolete now but were good machines in their day. The picture quality on them is better than any current production model and the few complaints of tape breaking levelled at these old machines are almost entirely due to user error. Putting a cold tape in a warm machine is a guarantee for disaster! The biggest snag is the tape cost (try and get secondhand tapes) and the 1500 had a maximum record time of 65 minutes, so it's no good for feature films

These old (only a few years) machines can be an ideal way of getting into video painlessly and on a budget. Think on it if you are not quite sure what you really want out of video. In future articles we'll discuss some of the more creative things you can do with a video recorder. See you next time! E&MM

Although the principle of using the Doppler Effect by means of a rotating baffle next to a speaker was Don Leslie's original idea, it has been copied by a number of manufacturers. Imitation is a very good form of flattery, of course, but perhaps speaker systems working on this principle should be referred to as 'Doppler Speakers' as they may not necessarily be genuine Leslie products.

The constructor may be assured of one fact - that making a doppler speaker from scratch is not easy. The professional product may be thought to be fairly expensive, but there is considerable technical know-how required to make such a speaker mechanically silent enough to be useful. The rotor and/or horn unit impart sound modulation at about 7Hz and thus must rotate at some 450 revs per minute. The motors employed have to be powerful enough to get the mechanism moving at full speed in a fairly short time and so vibration, mechanical hum and wind noise are factors that have to be considered in the design. Four or more motors are not unusual and these are resiliently mounted in large rubber grommets and the rotor and horn bearings also have forms of rubber suspension

The addition of a Doppler Speaker enhances the sound of most electronic keyboard instruments. Indeed, once it has been fitted to an organ, that instrument loses its aural identity — which might even be an advantage! The rather special sound the Doppler Speaker imparts makes it difficult to tell which make of instrument is being played: without it, the expert would be able to identify many makes of organ, especially with their own electronic vibrato in operation.

There are many ways in which vibrato (and tremolo) can be applied to sounds electronically. Perhaps one of the best methods devised was the scanner-phase vibrato used in Hammond tone-wheel organs (now defunct), where the audio signal was passed down a relay line which was scanned back and forth to produce phase shift vibrato that was near perfect. Even so, you will note, Hammond also provided means for fitting a Leslie speaker: this would seem to underline my comment on sound enhancement!

Vibrato

The string player 'wobbles' his finger on the stopped point, making the string fractionally longer and shorter cyclicly. In electronic terms, this is frequency modulation and is usually achieved by injecting a low frequency sine wave into the master oscillator of the generator system. In practice, a set of stable generators that will stay in tune does not like to be modulated and in certain cases it can be difficult to obtain sufficient modulation. Occasionally one hears electronic vibrato which is noticeably lopsided — where the frequency swing is not equal either side of centre. Even when electronic perfection has been achieved, the result is often only mildly interesting.

Tremolo

Also called Tremulant, this is amplitude modulation of the audio signal. Arranging this effect is fairly simple compared with vibrato, as an opto-isolator (or its equivalent) and a square wave oscillator will serve admirably. Tremulant is often used in serious music, rather than vibrato, and again is only of mild interest.

Doppler Speakers

In my view, what makes Leslie speakers and their imitators more interesting is that these combine both vibrato and tremolo by the nature of their operation. unit is turned on its side compared with cabinet models, the sound emerging through slots at the side of the console. The drive from the synchronous motor is by means of pulleys and a cotton covered belt.

Larger Leslie units have heavier wooden rotors which reflect more sound than the polystyrene types. The belt drive system is similar except that a more powerful motor has to be employed. The wooden rotor is shrouded in cloth for aerodynamic reasons and thus produces less wind noise. Figure 2 shows the typical arrangement.

The speaker over the rotor may be up to 15" in diameter and is mounted either in a form of infinite baffle or with acoustic wadding behind it in the console. In either case, the sound is directed into the rotor with its opening constantly approaching and receding from the listener, so giving

The Doppler Effect is caused when a sound source is moving relative to the listener. The pitch of a police car's siren falls as it passes the listener because the frequency is travelling at the speed of sound plus the speed of the car as it approaches and at the speed of sound less the car's speed as it recedes. So the eardrum receives more pulses per second on approach than after the car has passed.

The same effect can be obtained by mounting a speaker on a large rotating baffle board and at least one manufacturer has used this method in the past for obtaining chorale. This proved to be both large and cumbersome and Don Leslie circumvented these problems by using a stationary speaker and rotor next to it, as shown in Figure 1.

Small Leslie units employ a polystyrene foam rotor, which is light enough for a relatively small motor to drive it. If built into a small organ, the frequency modulation. In addition, the volume of sound alters as the rotor's aperture passes, so amplitude modulation occurs.

Some cabinet models also employ treble horn units. In this case, a crossover network feeds the lower frequencies to the rotor speaker and the higher ones to a treble driver unit. Above the driver is a pair of horns, one being a dummy for balance only, driven by separate motors, pulleys and belt.

The treble horn unit makes a great difference to the doppler speaker sound: the bass rotor alone works reasonably well but is not sufficient on its own. I would strongly recommend purchasing a treble horn unit if the doppler speaker system is at present limited to bass rotor only. This can be built into a box to sit on top of the existing cabinet.

It is usual to have two motors so that the rotor/horns can be driven at

'fast' (about 7.5Hz) or 'chorale' (about 0.5Hz) speeds according to the switching. A combination of a straight speaker signal and sound from the doppler speaker on 'chorale' gives a very full and pleasant sound to any sort of music. It takes that hard electronic edge off the instrument and, because of the slow meandering of sound, adds a cathedral-like effect to the instrument. The Leslie motors are shown in Figure 3.

Practical Aspects

It is not a good idea to feed reverberated signals through the doppler speaker as these sound rather unpleasant. If possible, a separate speaker should handle reverberation which in itself will probably give some chorale effect with the slowly turning rotor or horns.

I have already underlined the importance of the treble horn unit to give the true 'Leslie' sound. The horns should be fitted with sound diffusers, for without them the effect will tend more towards tremolo than vibrato. These are simply small 'dishes' placed about one inch from the mouth of the horn which allow the sound to be heard after the mouth of the horn has passed. If these are absent, for any reason, they can be added without too much trouble. Figure 4 shows the horns and diffusers.

The diffusers can be made by cutting out a disc of card about ¹/₄" greater in diameter than the horn mouth. Mark out and remove a 30 degree slice and join the card with tape to make a shallow cone. Treat this card with a releasing agent and build up about half a dozen layers of fibreglass tissue on it with polyester resin. When the resin has hardened thoroughly peel off the card and trim the diffuser's edges. Drill at 3 points (120 degrees apart) and fit 1" from mouth of horns with thin dowel and Araldite.

Unless the reader happens to be a mechanical expert, it is probably best to buy complete doppler speaker units, preferably both bass and treble. As mentioned earlier, it might appear to be fairly simple to make everything from scratch, but mechanical noise will undoubtedly prove to be a major problem.

Switching, both for speakers and rotor/horn speeds should be available at the keyboard. This should allow the choice of main speaker, doppler speaker or both, whilst a further two-position switch is provided for fast and slow speeds.

The only disadvantage with doppler systems is that they are acoustic, which means that their effect is lost when using headphones for practice purposes or when making direct recordings. Those who demand these facilities plus good electronic vibrato will have to settle for bucket brigade systems. E&MM

n the 1950's Karlheinz Stockhausen generated new, complex timbres by splicing small sections of tape containing sine waves recorded at different frequencies into a single loop, and replaying it at high speed, while Pierre Schaeffer used-the sounds of natural instruments and transformed them by separating out different portions of their envelopes, again by tape splicing. Hence the old concept of synthesis was born, recognising two distinct approaches: additive synthesis, where separate elements are assembled to give a complex result; and subtractive synthesis, where components of the original are removed, yielding new elements. When applied to timbre generation using electronics, additive synthesis becomes the mixing of separate tones at different frequencies to generate sounds with new overtone series, and more specifically, adding sine waves to build up a timbre harmonic by harmonic. Subtractive synthesis becomes filtering of waveforms, generating new timbres by eliminating unwanted harmonics, and processes that generate new components from an input signal correspond to the early techniques of Intermodulation, whereby the timbre, amplitude or pitch of one sound transforms similar properties of another.

Clearly in many ways this concept is out-of-date in the context of the modern analogue synthesiser. For example, the commonest modern application of multiple oscillators controlled as a group with their outputs mixed is to produce rich sounds by tuning them in unisons and/or octaves, rather than successive harmonic intervals for the synthesis of new harmonic structures. In 'classical' additive synthesis, the oscillators must either be very stable or have some method of locking their frequencies together, since where one harmonic is made up of components from more than one oscillator, a slightly changing phase difference will destroy the integrity of the resultant harmonic series. Sine waves or other low harmonic content waveforms were used, giving independent control over the amplitude of each harmonic, and also minimising the effect of frequency drifts. By contrast, the modern unisons-and-octaves technique relies upon beating between oscillators for the richness, and without a high harmonic content the sweeping cancellations that are the most useful effect of beats would not be heard

Additive synthesis for timbre generation was practical in the early classical electronic music studios where the only pieces of equipment built specifically for music synthesis were custom mixers, modulators etc. Like some of the theory, most items were borrowed from radio: banks of sinewave oscillators (not voltage-controllable) provided the best method of synthesising arbitrary timbres. Pulse generators and octave filter banks gave an alternative but something like a rampwave oscillator was considered a luxury, the commonest substitute being a sine wave oscillator driving one or more valve amps to overload Nowadays, synthesisers use multiple oscillators to create new timbres by various kinds of modulation, for example frequency and amplitude modulation for non-harmonic tones and waveform shape modulation, including sync. and self-modulation, for harmonic tones. Hence it is possible to design a small, low-cost synthesiser which is more powerful than a complete classical electronic music synthesis system, while larger synthesisers can incorporate features to take full advantage of the voltage-

Figure 1. Timbre Synthesis.

controllability of the oscillators and other modules. These two approaches to timbre generation, classical using parallel organisation and contemporary using series organization, are illustrated in Figure 1. For the purposes of this comparison, doubling up of tones to thicken the sound is not considered a basic part of timbre generation since it does not fundamentally affect the partials of the sound and is usually achieved by simple duplication of the oscillator part of the patch. Nevertheless, like reverb and echo it is still an important factor in determining overall tone quality

Returning to the concept of synthesis and the need for an update to include integrated electronic systems, I propose that the various toneforming techniques of synthesis, both analogue and digital, be divided into four groups, according to their effects on the time domain (waveform) and frequency domain (spectrum) representations of the signal. These four groups are:

1. Frequency domain additions.

All that produce new components not necessarily harmonically related to those of the original eg. frequency and amplitude modulation, frequency shifting.

2. Time domain transformations. All that introduce new harmonically related components or alter the amplitudes of existing ones by nonlinear processing of the original eg. waveform shape, clipping.

3. Frequency domain transformations. All that alter the amplitude of existing components according to their frequencies, eg. filters.

4. Time domain additions.

All that reintroduce the original signal after a time delay eg. reverb, echo.

Where one device can perform in different ways depending upon the input, it falls into more than one group. For example rectification can be used for waveform shape modulation, as it is on many analogue synthesisers where a variable triangle-toramp waveform is available; or for amplitude modulation where one of the signals is a square or pulse wave. Chorusing can be considered a member of Group 3, since phase cancellation alters the strength of harmonics, or Group 4, because a distinct separate image may be heard.

The techniques of Group 2 are best described as waveform shape modulation — the shape of the waveform is controlled directly, and independently of the frequency. This latter point is a useful property of this type of timbre generation and makes it different from filtration (Group 4) where the effect is purely based on frequency so that a given waveform gives different results at different frequencies when processed by a fixed filter. Another important difference is that shape modulation has a more general effect on the harmonics of the waveform. Unlike a simple filter which has a single cutoff or centre frequency which relates directly to the frequencies of the harmonics affected, altering the shape of a waveform effects the strengths of many simultaneously. harmonics This means that it cannot be used to specifically control certain bands of harmonics, and the nearest it comes to a filter's functionality in these terms is with synchronisation, which can increase the energy near the natural frequency of the slave oscillator. This makes shape modulation no less powerful: filters cannot produce many of the shape modulation effects, for example gradual introduction of even harmonics in a square wave, but are still invaluable. (In fact seemingly ultimate digital synthesis systems which allow each harmonic its own key-gated ADSR for amplitude are unable to produce the sound of a lowpass filter sweeping the spectrum, since this requires sequential control of each harmonic.) Hence waveform shape modulation and filtering are excellent complementary timbreforming techniques, and together provide easy and versatile static and dynamic control of the timbres of harmonic sounds.

Pulse Waves and Pulse Width Modulation (PWM)

The commonest type of waveform shape modulation (WSM) is pulse width modulation, which potentially provides any pulse width between 0 and 100%. Since a pulse wave with a width greater than 50% is merely the corresponding wave with a width less than 50% but inverted, the range from infinitesimally thin (delta wave) to equal mark/space ratio (square contains all the different wave) timbres. However, in the same way that a mix two unison ramp waves of the same sense sounds very different from that with one inverted, the effect of inverting a pulse wave can be important when it is heard with other waveforms. Also its control properties are different, and the effect of sweeping a pulse width through 50% could not be easily duplicated if only one half of the range was available, so it is useful to have access to the complete

0-100% range. The spectra of a l square wave and two different pulse waves are shown in Figure 2. Note that the pulse wave spectra show periodic dips - these occur where the harmonic number is a multiple of n, where n is 100/width (%). In the case of the square wave they occur at every second harmonic, eliminating all the even ones. The odd-looking sharpness of these dips is a result of the fact that alternate inter-dip groups of components are of opposite phase relative to the fundamental, hence the envelope of a pulse wave's spectrum can be thought of as a decaying sine wave where below-the-axis components have reversed phase. This makes the difference between a square wave and a triangle wave, which also has odd harmonics only, more than just a matter of harmonic strength since the square waves components alternate in phase, and this has a more important effect when considering waveform shape modulation by linear self-modulation in frequency domain terms.

The complex nature of pulse wave spectra makes PWM unique among common WSM techniques, none of the others having nulls at related harmonics. This has little consequence whem PWM is used as a source of different static timbres where the most important feature is the increasing amplitude of harmonics, odd and even, in relationship to that of the fundamental, as the width is made more extreme. But when the pulse width is varied dynamically the nulls sweep the frequency spectrum. giving a marked phasing effect that is virtually impossible to obtain by other means not incorporating time delays. It is hence very useful in creating multiple oscillator sounds with just one, and is the basis of most chorus features on preset monophonic synthesisers. In fact periodic shallow PWM at about 5Hz is the easiest and sometimes the only way of getting a sustained tone that is pleasing to the ear on many cheap commercial single VC0 instruments.

The reason why PWM with a low frequency oscillator waveform sounds like phasing is that it very nearly is phasing, of a sort, since mixing a rising rampwave and a falling rampwave of the same pitch and amplitudes produces a pulse wave since the slopes cancel and the resets produce respective rising and falling edges. As the phase relationship changes due to a slight pitch difference, the pulse width becomes more extreme until perfect cancellation occurs, then the advancing phase produces a thin pulse of the opposite sense. This process is illustrated in Figure 3.

So, the dips in a pulse wave's spectrum correspond to cancellations of harmonics of two rampwaves with the particular phase difference required for that pulse width.

The major reason why sweeping doesn't sound exactly like phasing is because of the way it is used - the reversal of the modulating waveform before 0 to 100% is reached gives it away as not being the real thing. It is used like this because a cutoff of the sound at each extreme is often undesirable, and anyway difficult to

arrange precisely. What is really required is the sound of two identical signals with a changing delay, without one inverted. Since a pulse wave is the difference we only have to add twice as much of one of the imaginary original ramps to get a more realistic phasing effect.

The resultant waveform is indistinguishable from a mix of two rampwave oscillators, and remember so far we have only used one oscillator, with PWM.

In just about all analogue synthesisers, the variable width pulse wave is derived from another waveform using a comparator, a device which has two inputs, and an output which is at one of two values depending upon which of the inputs is most positive at any instant. A ramp or triangle wave is compared with a control voltage, and a pulse wave is generated with a width according to the proportion of time the waveform spends above the value of the control voltage. Herice by sweeping the control voltage to the comparator, which will usually be the sum of a voltage

Figure 5. Multiple PWM patch.

from the pulse width control and an external CV, between the limits of the waveform, the width can be varied between 0 and 100%. This is shown in Figure 4. Note that the limits of the resultant pulse waves are independent of their widths, so for values other than 50% there is a DC offset equal in magnitude but opposite in sign to the control voltage (assuming that the input waveform has no offset). The pulse waves in Figure 2 are shown with no offset and since the ramp waves of Figure 3 are symmetrical about OV, the resultant waveform has no offset, so the peak levels slope up or down, to be returned to zero when the pulse wave 'turns over'. Offset that varies with shape is a feature of most kinds of waveform shape modulation, and can cause problems when the output is used as a CV, e.g. for FM

As Figure 4 shows, there are important differences between triangleand ramp-derived pulse waves. One edge of a ramp-derived pulse will coincide with the reset of the ramp, so there is a phase difference which is proportional to pulse width. This is most obvious when the PW is modulated by an LFO signal, since the phase modulation can become great enough to be perceived as vibrato (the frequency shift equals the differential of the phase shift). Since no phase error occurs if a triangle wave is used as the basis of the pulse wave, this is more suitable for chorus effects, where a sine wave of around 5Hz is used to modulate the pulse width over a small range. Considering the pulse wave as the sum of two ramps again, ramp-derived PWM gives vibrato to one of the ramps only, whereas triangle-derived PWM modulates the frequencies by the same amount but in opposite phase, retaining a constant 'average pitch'. The vibrato effect of the former is very obvious with a fast LFO and large depth, rendering the tone unusable for melodic playing, and since the frequency shift is constant with changing pitch it is more noticeable at low frequencies, where even a envelope sweep of width can cause an audible 'wow

LFO's that are equipped with PWM are particularly useful for audio since apart from the sense (inverted or non-inverted) of the output, the comparator is symmetrical in its response to the waveform and CV. Hence we can just as easily modulate an LFO by a ramp or triangle wave from a VCO to generate a pulse wave with swept width, appearing at the LFO output. Using more than one LFO in this way gives pulse waves with independently varying widths, producing some beautiful multiple chorus/phase sounds, depending on the LFO rates. Unlike more conventional techniques, this requires only one VCO. Also, the basic waveform is accessible, so the rampwave could be mixed in as previously described. However, a triangle wave gives best results since all components are then of independent phase, whereas in the case of the ramp, the resultant pulse waves have simultaneous falling edges and therefore degenerate components. A basic patch demonstrating multiple PWM is shown in Figure 5.

ast month we considered the basic electronics of a single pickup guitar, with various equivalent ways of connecting the tone pot. and capacitor. Two-pickup guitars follow the same plan, with the circuitry duplicated up to the jack socket, where a pickup selector switch connects one or both of the volume pot. wipers to the single output jack. This arrangement is shown in Figure 1.

When the pickup selector switch is in either the up (neck pickup) or down (bridge pickup) position, the appropriate volume control wiper is connected directly to the live of the jack socket and the other is left isolated. When the switch is in the centre position, the two wipers and the jack socket live are connected together and if neither volume control is at zero, a mix of the two pickup signals is fed to the socket. The 'mixing' of the two signals is very crude and if either control is at zero there will be no output regardless of the setting of the other, since the jack socket live is grounded. This can be an advantage since it allows the output signal to be shut off completely by turning either volume control to zero but is undesirable if you want to be able to turn off one pickup without changing the selector switch. gradually. For example, Figure 2 shows how to rewire the volume controls for independent operation.

To avoid one control shutting off the signal from the other, the input (lefthand tag viewed from the back with the tags facing you) and wiper (centre tag) connections should be reversed for each pot. The circuit now appears as in Figure 2, with the tone and pickup part of the circuit remaining the same. Now at maximum volume setting the pickup is still connected directly to the selector switch (with the full track resistance to earth), but at the minimum setting the pickup is earthed and the track resistance lies between the earth and the selector switch, so the other signal is not shorted to ground. It is impossible to damage either pickup by shorting its ends together, and this occurs anyway with an unmodified two-pickup circuit when one volume is at 10 and the other at 0.

If the modification is done on just one volume pot, the other can be used as a 'master', shutting the signal off when at zero, with the ability to bring in the other pickup signal independently.

At this point, I will just explain about two different types of pot. available, for those beginners who don't know already. These are logarithmic ('audio') and linear, which are manufactured to give differently tapered responses. A linear pot. gives a constant change in signal amplitude (when used as a volume control) as the control is turned. But the ear hears this as a nonlinear change in volume. Audio pots. have a response that gives subjectively linear control of volume, and consequently are more useful as volume controls. Fitting a linear pot. instead of an audio pot. will give a large increase in volume over the first third with little else happening for the rest of the travel. Note that the two ends of an audio pot's track are not equivalent and reversing the track connections will give an even more extreme response, in addition to changing the direction of control

Another modification I want to deal with is probably the simplest, cheapest, and in my opinion, the most effective of any. Leo Fender used it on the Telecaster and it is a major reason why that guitar sounds the way it does. It was also used by Travis Bean on humbuckers on the Standard and Artist models.

Quite simply, it is a 1nF capacitor across the 'in' and 'out' tags of the volume pot. As the volume is decreased slightly, treble frequencies bypass the resistance and proportionately increase the amount of treble in the sound. The increase is particularly noticeable with single coil pick-ups or tapped humbuckers, less obvious as an increase with straight humbuckers. Most guitars on the market now use audio pots, and the effect of the capacitor is most noticeable on these. A linear pot gives a barely noticeable effect as there is in my experience, less treble loss in the first place. Cheaper audio pots will

give an immediate effect at a volume setting around nine, as the treble loss tends to occur very suddenly just under full volume. While linear pots give less treble loss, they can be less effective than audio immediately in front of a pre-amp. I've found that in that situation, I got virtually no change in level until I got down to around two, when the sound packed up altogether. Fitting audio pots cured the problem. So, although the 1nF capacitor bypass evolved primarily as a crude means of combating treble loss, these days it is very useful as a definite effect. Simple fitting should be as in Figure 3 but it is possible that you will find this a help in some circumstances, and a hindrance in others. For example, the softening effect of winding down an audio pot on a front pick-up can help in getting a warmer, jazzier sound without actually cutting treble on the usual passive tone pot, which can sometimes be difficult to set accurately, quickly. In this case, the answer is to make the capacitor switchable. An interesting side effect of using the capacitor is that passive tone controls will sound more effective, as, at lower volume settings, there is more treble left for them to cut than on an unmodified guitar, where the top end has already been rolled off by the volume pot. E&MM

Figure 1. Electronics of a two-pickup guitar.

Figure 3. Capacitor fitted for treble boost. APRIL 1981 E&MM

OLUME

OUTPUT

CW

FROM PICKUP

AND

TONE

VOLUME

S-2020TA STEREO **TUNER/AMPLIFIER** KIT

NEW HIGH PERFORMANCE TUNER

A high-quality push-button FM Varicap Stereo Tuner with pilot cancel decoder combined with a 24W r.m.s. per channel Stereo Amplifier, using Bifet op. amps.

Brief Spec. Amplifier Low field Toroidal transformer, Mag. input. Tape In / Out facility (for noise reduction unit, etc.) THD less than 0-1% at 20W into 8 ohms. High Slew Rate. Low noise op. amps used throughout. Power on / off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses UM 1181 FET module requiring no RF alignment, ceramic IF INTERSTATION MUTE, and phase-locked IC pilot cancel, stereo decoder, LED tuning and stereo indicators. Tuning range 88-108MHz 30dB mono S/N @ 0.7 µV. THD 0.3%. no RF alignment, ceramic PRICE: £69.95 + VAT

NELSON-JONES Mk. 2 STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer ready built front end, triple gang varicap tuning, linear phase I.F. and 3 state MPX decoder.

PRICE: £74.95 + VAT

UHJ

DECODER

The first ever kit specially produced by Integrex for this British NRDC backed surround sound system which is the result of 7 years' research by the Ambisonic team. W.W. July, Aug., '77. The unit is designed to decode not only UHJ but virually all other 'quadrophonic' systems (Not CD4), including the new BBC HJ. 10 input selections. The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 2 input signals and 4 or 6 output softwats are orovided in this most versatile unit Complete with mains power supply, wooden cabinet, panel, knobs, etc.

S5050A STEREO AMP Verv high performance kit 50 watts rms-channel. 0.015% THD. S/N 90 dB, Mags/n 80 dB. Output device Tone cancel switch. 2 tape monitor switches. Metal case — comprehensive K

Complete kit only £69.95 + VAT

(Also available our 20w/ch BIFET S2020 Amp)

INTRUDER 1 Mk. 2 RADAR ALARM With Home Office Type approval

The original "Wireless World" published Intruder 1 has been re-designed by Integrex to incorporate several new features, along with improved performance. The kit is even easier to build. The internal audible alarm turns off after approximately 40 seconds and the unit re-arms, 240V ac mains or 12V battery operated. Disguised as a hard-backed book. Detection range up to 45 feet. Internal mains rated voltage free contacts for external bells

Complete kit £52.50 plus VAT, or ready built and tested £68.50 plus VAT

Wireless World Dolby noise reducer

Trademark of Dolby Laboratories Inc

mplete Kit PRICE: £49.95 + VAT (3 head model available) Also available ready built and tested

Calibration tapes are available for open-reel use and for cassette (specify which)

FREX II

Single channel plug-in Dolby (TM) PROCESSOR BOARDS (92 x 87mm) with gold plated contacts and all components

Noise reduction better than 9dB weighted. Clipping level 16.5dB above Dolby level (measured at 1% third harmonic content)

Harmonic distortion 0.1% at Dolby level typically 0.05% over most of band, rising to a maximum of 0.12%Signal-to-noise ratio: 75dB (20Hz to 20kHz, signal at Dolby level) at Monitor output

Dynamic range >90dB

30mV sensitivity

| Price £67.60 + VA1 Price £2.75 + VAT

Price £10.50 + VAT

We guarantee full after-sales technical and servicing facilities on all our kits, have you checked that these services are available from other suppliers?

All kits are carriage free

Please send SAE for complete lists and specifications Portwood Industrial Estate, Church Gresley, Burton-on-Trent, Staffs DE11 9PT Burton-on-Trent (0283) 215432 Telex 377106

Each month we review the latest Electro-Music Equipment —from synthesisers to sound reproduction and effects!

E&MM's special in-depth reviews look at what's new in the world of commercial music — a vital updating for both electronics designers and musicians.

PAIA 8700 Computer/Controller

PAIA are a small company in Oklahoma City, USA, producing a wide range of music synthesis equipment, and the 8700 Computer/ Controller represents the main product that really distinguishes them from other synthesiser manufacturers. The guiding force behind PAIA is John Simonton and it is his design philosophy that makes PAIA so interesting.

Basically, this is to make available a comprehensive range of synthesiser modules with all the necessary interfacing hardware for the minimum possible price, and to provide computer control over all voltage-controllable functions. A complete system (the 4700/J) in kit form, consisting of 3 VCOs, 2 ADSRs, 2 VCFs, 2 VCAs, control oscillator/noise source, various interface units, a digitally-encoded keyboard and the computer/ controller, sells in the USA for around \$800. This system is capable of various modes of polyphonic operation (though obviously the number of voices is limited to the number of available VCOs) and, to a certain

AUDIBLE

ASSETTE

extent, offers multi-track capability, the 'recorded' music then being dumped onto tape.

The individual modules range in price from \$35 for a kit VCO to \$26 for an ADSR and display a no-frills attitude to design. The modules show considerable design ingenuity, but I do feel that more modern circuits based on, say, Curtis Electromusic Specialties chips could perhaps improve some performance parameters and certainly offer additional facilities. For some reason apparent to only themselves, PAIA have opted for linear response modules (like Yamaha) rather than the linearlycontrolled exponential modules common to ARP, Moog and Oberheim. So, real problems arise if one starts interfacing PAIA modules with the linearlycontrolled systems common in this country. Linear to exponential converters are one expensive solution, but a preferable alternative is to use the interesting part of the system, the 8700 computer/controller, with one's own favourite linearly-controlled modules.

Computer/Controller Functions

The block diagram set out below should illustrate how the Computer/ Controller is interfaced between a keyboard and synthesiser modules (Figure 1). The 6503 CPU (same software compatability as the standard 6502 but with fewer address lines) is used as what might be described as a 'fairly dedicated' processor (less dedicated than those in some washing machines, more dedicated than the average home computer), i.e., solely for making music rather than indulg ing in pan-galactic fantasies or working out how much you'll be putting into the Chancellor's pocket!

Pitch information is derived from an encoder that scans a 7 x 7 matrixed keyboard for depressed keys. The beauty of this type of encoder, in comparison to the customary 'bruteforce' diode encoder, is that polyphonic information is also encoded.

Program entry is accomplished by loading from tape, operating a touchtriggered keypad, or by accessing a PROM. The cassette interface provides visual (LED and display) and auditory (bleep tone) indication of successful loading and dumping, and unusually also offers the facility of motion control. Software for the cassette interface is derived from firmware, a PROM located on the main 8700 board. This format appears gratifyingly tolerant of speed variations and/or distortion, and caused no problems other than those derived from user error. The keypad didn't get quite such high marks, however, for though a 'bleep' provides feedback of data entry, the passive action of a capacitively-operated touch switch makes for easy mistakes when entering a long program, or when aiming a finger at a crucial control function during the middle of a bit of demonic keyboard work. On the plus side, though, this type of keypad doesn't wear out, and, as with PAIA's Programmable Drum Set, there's no doubt that you do digitally adapt to it.

Moving to the other side of the CPU, the data output, PAIA protocols use 6 bits of an 8-bit word to specify an analogue parameter (control voltage) while the other 2 bits are flags (flag 1 is used as a 'trigger', and flag 2 as a general-purpose control bit which the Quad Addressable Sample-and-Hold recognises as a glide control bit).

One digital to analogue conversion later, the newly-generated control voltage is applied to another peripheral, the QuASH (Quad Addressable Sample and Hold), which via some address lines from the CPU turns one CV (Figure 2) into multiple control parameters for multiple VCOs, VCFs, or whatever (Figure 3). The other half of the 4052 multiplexes Flag 1 giving us four triggers as well as the four CVs from each QuASH. With two QuASH's we have a system reminiscent of the Roland MC8 Micro Composer (which offers microprocessor control of eight analogue voices), but at a fraction of the cost. However, to get the maximum benefit of all this, we do need a couple of VCOs (to give a 'fat' sound) for each voice, not to mention sundry ADSRs, VCFs and VCAs.

Undoubtably the answer to this alarming escalation of expense is to

SEVEN E EEDBA(INTERFACE SEGMENT SPLA GATES CVS QUASH 1 OPTIONAL 1K BYTES D-A FLAG ADDRESSABLE - 3 EXPANSION RAM ONVERTER SAMPLE AND HOLD EL AG 2 6503 CPU K BYTE QUASH 2 ROM - 6 KEYPAD KEYPOAR IEX SET SCANNER 8 CONTROL

WIN

Figure 1. Block diagram of the PAIA 8700 Computer/Controller.

interface the 8700 directly with a bank of digital VCOs. In theory, digital VCOs should make VCFs and VCAs redundant since a waveform's harmonic structure and overall amplitude can be controlled in real time. As practice is inclined to be eons away from initial theory, General Instruments' AY-3-8910 may be a sensible interim step towards a super-amazing waveform generator.

Software Options

Meanwhile, and returning to things nearer home, i.e., standard analogue synthesiser modules, it's time to look at PAIA's software options for the 8700. Over the three years since the 8700 was introduced, PAIA have produced a variety of software ranging from the sublime to the less than amazing. Table 1 gives the current options with PAIA's selling points and my 'test comments'.

To construct a program, PAIA start by running a LOOK sub-routine which, by scanning the keyboard, generates KTABLE, a list of notes held down. Another sub-routine, NOTEOUT, takes care of note output by reading the sequential entries from NTABLE, a list of notes to be outputted, and causing the D/A converter to turn key data into CVs which are assigned to the first, second, third or fourth S/H sections of the QuASH.

In between KTABLE and NTABLE comes a middle program which determines the actual personality of the program. Two straightforward possibilities for a middle program are shown in Figure 4.

Let's examine two of the software options to see what it is about the middle program that makes the 8700 more than just a pretty face. Firstly, MUS-1.0: this consists of POLY 1.0, a polyphonic allocation algorithm that assigns up to 16 depressed notes to respective channels of QuASH; INIT, an initialization routine that serves to set variables and buffer areas; and TRGN, a routine that serves as a software transient generator, a cunning substitute for the old analogue ADSR. TRGN responds to a note that has just been triggered by producing an ADSR voltage transient that is assigned to even number QuASH channels, whilst pitch setting voltages (CVs) are assigned to odd number QuASH channels. The value of this software transient generator is more apparent if we examine an ADSR transient like the following:

This sort of transient starts out as a non-percussive kind of swell with a percussive 'kick' added at the last instant before the transition to the Decay and Sustain cycles. It's also possible to defeat portions of the ADSR cycle by, for instance, going from the middle of the Attack period to the Release state without including

PROGRAM	FEATURES	COMMENTS
MUS-1.0	16-voice polyphonic synth with software transient generators.	An excellent allocation program and the software transient generators are a real plus.
POLY SPLIT	Splits the keyboard into two polyphonic synths with up to 8 voices each.	An extension of MUS-1.0, but, as only 4 voices were available at the time of testing, its potential was only partially realized. Even so, it was very useful for separating a bass line from upper parts.
SEGUE 1.0	A general purpose monotonic sequencer.	Very flexible, both in studio and on stage; lacks back-space editing but does provide click-track sync, real-time and event scoring, as well as a variety of manual and automatic transposition options.
POLY SEGUÉ	A 4-voice sequencer.	Not yet available.
ORGASMATRONIC GLIDE	A fast programming sequencer that plays keys held down (up to 8) in sequence up or down.	Whilst this program might get some Americans hot under the collar, it's a rather hackneyed effect, useful for getting those ultra-fast arpeggios and nice scrunchy clusters.
PINK TUNES	Composes 4-part harmonies.	Instant pentatonic Nirvana! Actually, it's a lot more adaptable than that as the program chooses notes from an updatable 16-note stack entered by the operator.
PINK FREUD	Composes 4-part canons.	Round and round
SHAZAM	Multiple keyboard split and chorusing.	Isn't that useful unless you have multiple synth modules, but chorusing feature is nice.
ECHO	Like tape echo, but can be with different voices.	Very useful and an effect that's pretty difficult to produce any other way.

Table 1. Software options.

ÇV

IN

HOLD SAMPLE

the intermediate Decay and Sustain cycles. This exciting type of flexibility just isn't feasible with traditional ADSR's and gives you that characteristic super-sharp digital sound much in favour with rock producers.

The second program I'm particularly enthusiastic about is SEGUE 1.0. PAIA's aim is to introduce an entire family of sequencer software, ranging from a humble monophonic program to an ultra-sophisticated system capable of complex multi-tracking. At present, only SEGUE 1.0, the 'universal monotonic sequencer', is available, although the 4-channel version, POLY SEGUE, is in the proverbial b

SEGUE 1.0 seems to stand way above the rest of the monophonic digital sequencer crowd. The Electronic Dream Plant 'Spider' and Roland's CSQ100 have a reasonable note capacity (126 and 168 notes, respectively), but the options available for adjusting sequences (or, as some would say, for 'musicalizing' a sequencer), either in terms of note length or key, are nowhere near as good as with SEGUE 1.0. In the case of the 'Spider', transpositions can be effected during playback of a sequence by touching pads marked '2nd', '3rd', '4th' or '5th', which transposes the sequence downwards accordingly. This is adequate in some situations, but for instance to transpose by a 7th, it's necessary to touch the '5th' and '2nd' pads together, and this doesn't exactly make for easy operation! It's interesting to note that this is exactly the same principle as

Figure 4. Two keyboard programs: (a) Split keyboard (b) Multi-tracking.

> that used in EMS's Synthi DK1 keyboard, and that's almost ten years old.

With SEGUE 1.0, once a line has been played into the memory, the sequence can be transposed by depressing any note on the keyboard and, if necessary, this information can be entered into the memory as a separate transposition sequence. What's more, the entire note and transposition sequences can be dumped onto tape and recalled ad lib. With 1K RAM, the sequence length isn't exactly limitless, and, if the POLY SEGUE program were available, you'd be lucky to squash a 4-part jingle into the available memory space.

You can hear some music using this system on the E&MM demonstration cassette No. 1.

If PAIA could amalgmate a polyphonic version of SEGUE 1.0 with a routine offering software transient generators, expand memory space so that multitracking is really feasible, and add digital waveform generators, then they'd definitely be on to a winning system! Dr. David Ellis E&MM Some interesting things have come my way this month including the new Rega R100 cartridge and some super cut records.

First the super cuts. A word of explanation is required here for those who have yet to come in contact with these products.

A 'super cut' is a Hi-Fi version of a record that is already on release. The difference is that the super cut is half speed mastered and generally of the same standard of quality as the master tape.

In addition they are normally cut on so-called 'super vinyl' which is harder and a lot quieter than the normal material. The full dynamics and frequency range of the master tape is maintained throughout the production process.

This is where the half speed cutting comes in. If the master lacquer is cut at half the normal speed, four times the energy can be put onto the disc during transients.

So much for the technicalities how do they sound? The simple answer is terrific! On a good system one becomes aware that the source material that is normally encountered is lousy. For example, the surface noise is lower than the noise generated by the amplifier so that the quite passages are really quiet.

A most illuminating experience is to compare the normal cut with the super cut version. When this is done the former invariably sounds as if it were recorded in a dynamic vice! The differences in intensity between the loud and soft passages seem, in comparison, very small.

Lovers of rock music, like myself, will be gratified to learn that more of our type of music is being issued in this format. In particular lovers of Supertramp and Pink Floyd read on. First, some comment on three Supertramp albums released by A&M records (A&M of course are Supertramp's normal record label): 'Crime of the Century', 'Even in the Quietest Moments' and 'Breakfast in America'.

Chronologically 'Even in the Quietest Moments' was the first of this trio to be released. The original recording dates from 1977. Artistically though 1 personally rate this as the least worthy. The standard of musicianship is superb but the compositions lack, the panache of the other two albums.

Two of the best tracks are 'Fools Overture' and the title track. If you love the normal recording though you'll go overboard for the supercut. Crime of the Century is an exceptional album, even by super cut standards. Not only is the recording superb, but almost every track is musically satisfying. In particular the drum kit in 'School' is the most accurate I've ever heard on any recording, direct cuts included. The sheer power of the instrumental has to be experienced to be believed.

The last of this trio, 'Breakfast in America', is the band's last but one offering and offers the same high technical standards. The track that stands out, in the musical sense on this album is 'Child of Vision'. The piano solo on this track is exceptional.

If you only can afford or obtain one of these albums then 'Crime of the Century' is the one to choose.

Jeff Macaulay

Rega Planar II Record Deck.

Ortofon VMS20E II.

Mobile Fidelity is a name that is rapidly becoming synonomous with super cut records and provides another interesting recording — the legendary 'Dark Side of the Moon', Pink Floyd album. This rock classic, in supercut, is now being imported into this country. At £12.50 though I must admit that my initial impression on listening to it was one of disappointment.

Compared to the Supertramp albums the differences between the normal and supercut versions was not so evident. After a few plays though the difference became clearer. Vocals on the supercut were more easily understood and the subtle nuances in the instrumentals were more apparent. Bass on 'Any Colour You Like' is definitely cut at a higher level and is felt more than heard.

All in all it is difficult to fault the album in a technical sense, although £12.50 is a lot of money. On a value for money basis the Supertramp albums are a better deal.

Supercut Records

Rega R100 Cartridge

The testing of pickup cartridges is fraught with hidden difficulties. Apart from the inevitable slight differences in sound that occur due to the turntable employed there is always the chance that the sample reviewed is not representative of the stock item.

Although the measured parameters of a cartridge are interesting and occasionally revealing these do not indicate what it sounds like.

In order to write a sensible review of a product there must be some yardstick against which it is to be measured. This yardstick furthermore must be readily available. It's nonsense to compare all cartridges against a £500 Koetso, which 99.9% of readers will never hear. Similarly comparison against a G800 is equally useless.

For this reason, in future cartridge reviews the chosen reference is the VMS20E II mounted in a Rega arm. The reasoning behind this choice is simply that the cartridge is both a good performer and representative of what is actually used. The Rega arm is a high quality design that is capable of taking almost all of the cartridges currently available. It is used on the Rega planar turntable which is one of the best and is often mated with the Linn.

Having defined the reference we can get down to the nitty gritty and present a review. A new cartridge that recently appeared is the Rega R100. This moving magnet design was apparently designed completely on subjective factors. The story goes that Rega sent back the samples that the cartridge manufacturer provided, with notes suggesting improvements until a suitable sound was forthcoming. The cartridge is supplied without the usual data on compliance and output voltage.

Setting the cartridge up in the arm presented no problems. The optimum tracking force is 1.5gm and this was indeed found to be the best for tracking loud complex passages or direct cuts and digital discs.

First impressions of the sound were mixed. There was no lack of detail but compared to the reference the sound was very dry. There was, however, one area in which the cartridge really excelled and that was in presenting the stereo image. Compared to the Ortofon the sound had real depth.

Where the recording technique permitted, it was possible to determine the precise position of the instruments in space. A considerable achievement for a £37 cartridge. It should be noted, however, that obtaining this information requires that the speakers are mounted away from the walls to prevent diffraction effects.

The bass region was also better defined than on the 20E. Bass guitar notes had more of a plucked sound and bass drum sounded more natural.

The midrange was detailed and neutral but subtly different to the midrange presented by the reference. The high frequency notes lacked the sheen of the Ortofon but were equally detailed. Violins for example sounded more harsh, especially on close miked material.

All in all a cartridge that lacks the immediate attack of the Ortofon but which, on closer acquaintance performs considerably better on most counts. Prospective buyers are recommended to listen to both the Ortofon and R100, if possible, before buying. I feel that for most people the choice between the two will depend on their temperament.

Finally this month a few words on record deck support. Most people are aware that it is not a good idea to place a record deck where it is possible to pick up direct or airborne vibrations from the speakers. In extreme cases it is possible for the whole system to 'burst into oscillation'.

The problem is that the record deck and speakers couple mechanical energy to each other. The result is that the sound becomes coloured. One sure way to avoid the direct transmission of this energy is to mount the deck on a solid base. A marble slab from an undertaker's is ideal! Airborne energy can be reduced by playing records with the perspex lid down. **E&MM**

those of you who have been working very hard since last month and find yourselves with \$69,200.00 stashed under the mattress, I shall explain how you can rid yourself of this burden in one fell swoop. Place in a brown paper bag and leave under the third bench from the right in Central Park. Alternatively, you could invest in the AUDITY polyphonic synthesiser system from E-mu Systems. This is available with up to 16 computer-controlled voice cards (more to special order) and as the central computer has independent control over each voice, different sounds can be simultaneously assigned to different channels. The sounds are stored on floppy discs and can be edited without loss of the original sound. It boasts a 16 channel digital memory sequencer which allows the storage of up to 6,000 notes of multi-track composition. The system works on a 1 volt/octave control system and the user can assign different controllers to the various channels so 16 musicians could play the AUDITY at the same time. An extensive range of specialfunction software is available to extend its capabilities even further

Electro-Harmonix have now available a new percussive instrument controller called the CLOCKWORKS CONTROLLER.

This instrument is capable of generating rich and complex rhythms with many variations. It is used to control several different Electro-Harmonix electronic drums and effects with variable electronic pulses from its five independent outputs. These controllable pulses from the 'Clockworks' trigger the various drum modules in the same manner as drum sticks do when they strike the pads.

The pulses from the Clockworks can vary automatically, or the player can manipulate its ten slide controls to synthesise rhythmic patterns in real time.

Modulations from the 'Super Space Drum', bursts of pink noise from the 'Crash Pad', handclapping mixtures from the 'Clap Track' can be mixed with note sequences to produce creative exciting effects.

Also their Ambitron, available in America for some time now, is heading for England. This takes a single mono output and splits and 'broadens' it to a stereo image. It will probably be selling for around £79.

An interesting device from Lenny Pogan Productions is the Pitchfinder which replaces the 'stop' tailpiece on certain guitars. It enables you to retune all six strings simultaneously over a range of 100 cents (one semitone). Aimed at guitarists who play along with records and radio, it could be useful.

Ampersand have developed a Link system which can be added to Sequential Circuits' Prophet 5. It allows for separate control and gating of the Prophet's 5 voices. The Link consists of ¼ inch jacks for each of the

Lenny Pogan Pitchfinder

Multivox Big Jam Effects.

voices' gate and control voltage inputs and outputs. Unison gate and control voltage inputs and outputs are also available and five switches select the voices to be controlled by the Link. The system will interface with the Roland Microcomposer and similar units. Guitar synthesisers and other instruments using a 1 volt/octave control system can also be used. Price is \$990.00 installed by Ampersand.

The XL-210 Master Room reverb system from Micmix Audio is a selfcontained 31/2 inch rack mounted unit containing two independent stereo channels that are switchable to mono. The unit can be fed by either balanced or unbalanced lines and the unbalanced outputs will drive a 600 ohm load. Both channels include active equalization and chamber isolation techniques that enable the unit to be used near loudspeakers without feedback. The unit has been designed for road use and operates on 120 or 240 volts. Cost is \$950.00.

Multivox have a new series of 10 effect units called Big Jam. They incorporate FET switching and LED operation indicators. All are batterypowered and have battery-check switches but an AC adapter is also available. The units comprise a graphic equaliser, an envelope-controlled filter, a compressor, a distortion unit, an octave follower, two phasers (one being a dual phaser), an analogue echo and two flangers (one is a flanger/overdriver combination).

Loft Modular Devices introduce a Series 450 Delay Line/Flanger capable of producing doppler, choral and delay effects. The unit is rack mountable and AC powered. Delays available are from 4 to 160 milliseconds for echos and 5 to 20 milliseconds for flanging. LEDs show operating mode and signal level and external control of the unit is possible by control voltage inputs and outputs. Total harmonic distortion over a range of 20Hz to 20kHz is reckoned to be 0.5%. Output noise is quoted as -78dB.

If you are one of those musicians who cannot keep their hands still and are continually playing scales up and down table-tops, over your jam sandwiches and up and down your legs or your girlfriend's - (I hope you wipe your hands first), then Sports Health have just the answer (assuming you want to kick the habit). It comes in the form of a hand-developing putty, a rubbery/silicone material designed for twisting, pulling, stretching, punching and other grisly operations. It is intended to develop manual strength and dexterity and thus be an aid to musicians' digits. The putty is a blue colour and comes in a silvercoloured case shaped like a fist. An illustrated exercise booklet is included and the whole costs \$6.50. I seem to recall seeing some 'heavies' kneading something similar as they lounged languidly in seedy doorways. You know, this could be dangerous in the wrong hands. (Sorry!)

Companies and manufacturers mentioned:

E-mu Systems Inc., 417 Broadway, Santa Cruz, CA 95060.

Electro Harmonix, 27 West 23rd Street, New York, NY 10010.

Lenny Pogan Productions, Inc., Cathedral Station, Box 353A, New York, NY 10025.

Ampersand, 9548 E. Zayante Road, Felton, CA 95018;

Micmix Audio Products, 2995 Ladybird Ln., Dallas, TX 75220.

Multivox, 370 Motor Parkway, Hauppauge, NY 11787. Loft Modular Devices, 91 Elm Street,

Manchester, CT 06060.

Sports Health Products, 527 West Windsor Road, Glendale, CA 91204. E&MM

Telekon by Gary Numan ATCO SD 32-103

G ary Numan's latest LP (a Beggars Banquet recording) is a mediocre collection of ten tracks each immediately identifiable as a Gary Numan product.

Musically the album lacks imagination — hardly any use is made of dynamics except to fade out at the end of a track. The synthesised percussion guarantees a constant tempo and the main theme is invariably played on a synthesiser with screaming frequency modulated oscillators and swishing phasing. Technically the album deserves a little more merit. It contains some interesting sounds synthesised by several types of synthesisers (Polymoog, Minimoog, A.R.P. Pro-Soloist and Prophet 5) and also strings and piano.

Gary Numan's voice penetrates through the complex waveforms but to help decipher his unique pronunciation the lyrics are printed on the inner sleeve of the album. I will

Flash Gordon by Queen EMI EMC 3351

ere we have it: on a single LP a remixed and abridged version of the soundtrack of Flash Gordon, the remake that masterfully combines spoof with tribute to the original 1930's 'Flash Gordon Conquers the Universe', on which its plot (if one can call it such) is loosely based.

The story has been given a 1980's presentation, including a typical American Boy ('Just a man, with a man's courage') and Girl ('Look, water is leaking from her eyes!'), and the features of the now very dated original which have been retained, including Professor Zarkov's minimalist rocket 'capsule' with a fire button and a decelerator pedal as the only controls, give the film a very tongue-in-cheek quality which demands that it be taken less than seriously for maximum enjoyment.

Unfortunately the same must be said of Queen's soundtrack music which, with a few exceptions, is particularly uninspiring, especially on record without the film to back it up. This seems often to be so with the latest wave of films having pretensions to Science Fiction (witness the Black Hole and Star Trek - The Movie), but since so much noise has been made about the band's involvement, we could have expected some music of more original value. The Oueen multitracked vocal sound that first got their LP's noticed (have another listen to the grand opera section of Bohemian Rhapsody) and drew accusations of Sweet-plagiarism at the time is little in evidence except for in the opening track 'Flash's Theme', released as a single. Brian May's much sought after 'muffled fuzz' guitar sound is also largely leave the interpretation of the lyrics to Gary Numan fans since, like the song titles, their meanings to me are ambiguous.

A Gary Numan fanatic will not be disappointed with this record but if you are just extending your record collection to include electronic music, I would advise you listen to a copy of this album before you considered buying it. Graham Hall.

lacking. In fact most of the music is

incidental, a mixture of simplistic

synthesiser playing (probably Ober-

heim homogenous poly's) and

expressed their childish contempt of

synthesisers in general with the

appendage to the credits 'and nobody

played synthesisers' (to which Larry

Fast responded 'and nobody played

guitars' on the sleeve of his 'Electronic

Realisations for Rock Orchestra') but

now it appears we have a policy

U-turn, perhaps an attempt by the

band to drag themselves up-to-date.

EMI's publicity blurb for 'Flash

Gordon' reveals that though all mem-

On their early albums the band

orchestral arrangements.

Possible Musics Jon Hassell/Brian Eno Polydor EGED 7

Over the past centuries, since music has evolved from pure emotion through to purist appreciation there has always been various slots for music to be in i.e. Classical, Jazz, avant-garde etc., etc. When a composer has fused several ideas or forms together it can still be

bers of the band use synthesisers on the LP, they only started playing them last June. Presumably this is for the benefit of those who have not yet heard the music; after seeing the film and listening to the record it certainly comes as no surprise to me. Most playing consists of phase and cycling filter type sounds used as atmospheric mood-setters, accompaniment, or occasionally lead. Laser fire and other effects sounds abound, the former based on intense pitch modulations at around 10Hz and extreme labelled as a type, however listening to Possible Musics is an experience in itself, there is no tag.

Possible Musics exudes emotion, from the sensual down to the depressive state.

The instruments used are mainly trumpet, bass, congas and electronic treatments with subtle synthesiser usage and the range of sound is quite astounding because the electronic processing adds a new dimension to basic instrumentation in such a way that you cannot discern between reality and dimension.

Hassell's use of a trumpet with harmonizer works very well, allowing what most composers want to do with electronics, to add textures and control previously unknown.

Possible Musics is a total concept, a combination of ethnic and traditional stretching to the most diverse and cunning usage of electronics. I would recommend to anyone who is composing or recording live electronic music to broaden their horizons by listening to Possible Musics. Vince S. Hill.

envelope sweeps, in fact just what one would expect from an inexperienced and unimaginative player who starts with everything turned up and then 'mucks about' until he finds something he likes.

The possibilities offered for experimentation in a score for a film such as this are vast, so perhaps Queen have found the medium that suits their approach to synthesis certainly it will give them a chance to get the practice they need in order to catch up with everyone else.

The album sleeve lists no less than eighteen separately titled tracks, though the boundaries are often obscure and the total playing time is only about 35 minutes. The best of these are undoubtedly 'Flash's Theme', though its multiple reprises soon become tiring, 'Vultan's Theme', and 'Football Fight'. The latter is rocky instrumental featuring guitar and synthesisers, and is punctuated by repeated 'klonk' sounds, which will no doubt get many of you who have not seen the film wondering. However, I think this is definitely an LP for fans of the film rather than Queen fans, containing carefully chosen sections of the film script that appear between and over the music. These keep the storyline going so that the listener knows what is going on in the scene that uses each piece of music, and include hilarious snippets such as unpredicted solar eclipse no ' (Newscaster), cause for alarm . 'Forget it, Ming. Dale's with me!' (Flash), and the much reported 'Flash, Flash, I love you, but we only have fourteen hours to save the Earth!' (Dale). They turn what would have been a pretty boring 'music-from-thefilm' LP into a REAL soundtrack album, which is an excellent memento of the film and of course, great fun! Chris Jordan.

Introduction to Computer Music by Wayne Bateman Published by J. Wiley & Sons Price £15.20

At last, a book that gives an accurate and readable introduction to the subject of computers in music. Unlike many books with that word in their titles, this really is an introduction, dealing with all relevant aspects of computer science and musical acoustics.

The preface says that it is primarily intended for the musician, and although no prior knowledge of computer science or electronics is required, the book is involved enough to interest the more technicallyminded reader. The sections on musical acoustics in particular are superb and better than those in most electronic music books. The discussion of frequency domain analysis is particularly excellent, and deals with the meaning of the analyses of non-periodic signals such as isolated instruments tones; a subject which is difficult for musicians and engineers alike to grasp and one which regrettably I have never seen covered in a book of this type before.

A non-technical introduction to the operation of a computer preceeds discussion of programming, including algorithms, flow charts, and high and low-level languages. This is then applied to simple methods of tonegeneration by computer, complex tone synthesis, and the organisation of the hardware and software components of a computer music synthesis system to allow communication with the composer/programmer in the most useful terms without sacrificing versatility. The increas-ingly important field of computer processing of natural sounds is given an up-to-date treatment, and the simulation and reproduction of natural sounds is covered separately from original synthesis. The book ends with a chapter on computer composition of music, and a thoughtprovoking discussion of the meaning of machine and human creativity, a particularly tricky subject to write upon

The book is illustrated throughout with excellent diagrams, mostly computer-drawn, the accuracy of which is very important for explanations of waveform analyses etc. There's not a semicircular 'sine' wave, or 'square' wave with rounded corners, all too common in less authoritative electronic music books, to be found anywhere here.

Introduction to Computer Music should appeal to all musically minded engineers and technically minded musicians who want to find out about the musical applications of computers. It could even be useful to analogue synthesists who require more advanced information on toneforming techniques than available from electronic music books. Chris Jordan.

Electronic Music Projects by R. A. Penfold Published by B. Babani Ltd Price £1.75

Mr Penfold's name is already familiar to many constructors and in this book he presents twenty-three original music related projects aimed at the hobbyist who already has some experience of building electronic circuits. They are presented in the categories Guitar Effects Units, General Effects Units, Sound Generator Projects, and Accessories, and though most are fairly basic they include a reverb unit, guitar practice amplifier and 3 channel sound-tolight unit.

The function and circuit operation of each project is explained with reference to large, clear circuit diagrams and sometimes graphs and other diagrams. The designs cover a wide range with some appearing as complete units and others as modules for use with other circuitry. The latter is particularly the case with the sound generators — the tone and noise sources could be used with some of the modulating and effects circuits to form a simple experimental electronic music system for the beginner.

The function of the major components in the circuits are explained well, and since various different design techniques are used, all projects should prove instructive to the reader who only intends to build a few. For example, in the designs which involve electronic control of gain such as the Sustain Unit, Amplitude Modulator and Voice Operated Fader, alternative approaches using a discrete opto-coupler, an FET, and a voltage controlled attenuator IC are used with the properties of each device explained.

There is a good balance between discrete and IC circuits with the commonest types of IC, including oplamps, power amps, timers, and logic well represented. All components used are easily obtainable and all but one project are powered by 9V batteries.

Board layouts and constructional details are not given, except for short notes for the few projects where the layout is likely to affect operation. Hence the book is not suitable for the total beginner, but includes more projects than would otherwise be possible for those hobbyists who can work out the construction for themselves.

Chris Jordan.

Practical Electronics Handbook by Ian Sinclair

Published by Newnes Technical Books

Price £4.05

Ever wished you had a book which contained all the necessary information to design your own projects, to your own specification, without having to refer to a daunting pile of literature, concerned only with their own specific type of component?

Books like that are rare and authors capable of producing such a book, with less than two-hundred pages of essential information, are normally only found on Betelguese. It does not come as a surprise then, that the book I have just read was written by lan Sinclair, for nowadays his name, in modern electronics is synonymous with Shockley or Voltaire.

Briefly, the contents are divided into the following sections: Passive components, Active discreet components, Discreet component circuits, Linear ICs, and Digital ICs.

A nice bonus is the addition of pin out details for TTL and CMOS ICs appended to the chapter on digital ICs.

If you have ever had difficulty in understanding the part that a passive component plays within a circuit, or have been unsure of the results expected, when its value is changed, then this is the book for your — however with all the equations it contains you had better keep it on the work bench, preferably somewhere near your calculator.

The book's best quality, is that having once explained the theory, you are given the opportunity to try your own practical working models, with the circuit examples shown, and hence, draw your own conclusions.

As a final point, I should mention, that this book is not aimed at the absolute beginner, it is more for the enthusiast who has become fed up with simply building projects, without really understanding how they work. Nigel Fawcett.

Newnes Book of Video Edited by K. G. Jackson Published by Newnes Technical Books Price £5.95

The Newnes Book of Video, is a compilation of manuscripts, submitted by various experts in their field.

The book does not really leave one with the feeling of greater knowledge, or insight into the subject. It tends more to confirm what was already suspected, only slightly improving one's foreknowledge.

Each section of the book covers a different sphere in the science of video-technics. Unfortunately, the layout is not dissimilar to a spaceship. relaying information about a subject. that only orbits around the topic in question, never actually landing, to take a closer look. This technique, is the same as that used in the correlation of encyclopaedia's, that is; each entry stating the minimum of facts required to purvey a fair picture of the article described. This approach is fine for those who know nothing of the subject, but is not for those whose appetite has already been whetted, and are not satisfied with the basic facts

An interesting little deviation, from standard, technical journal layout, is the friendly opening to each section, by introducing the particular contributor on a personal note, with a photograph, and a few words about his technical background.

Do not get me wrong. The book is well written and easy to read, it is just that I did not find it absorbing, due to lack of fresh data. Nigel Fawcett.

HITACHI VIDEO RECORDER

New from Hitachi comes a redesigned portable VHS video recorder. Styled in the current inscrutable satin look, the system comprises lightweight recorder, tuner/timer, power adaptor and a new 'low cost' camera. The new line is known as the 7000 series and combines the desirable freedom of a lightweight portable recorder with all the user features previously found only on the big domestic machines, such as full remote control, still frame and slow motion.

A colleague was so impressed that he bought one before we even had a review sample — it does all it claims and even provides clean 'crash' edits. Highly recommended — the total suggested price is over $\pounds1,000$ but we suggest you check around the discount stores.

Also new from Hitachi are the VT-8000 and VT-8500 mains video recorders. The VT-8500 is the more sophisticated unit featuring visual search, pre-programming and cord-less remote-control for 12 functions. Other interesting facilities include speed control, picture sharpness adjustment, automatic tape indexing in rewind or fast-forward, and auto channel lock during recording.

ANTENNA TRAINER

A new product from Feedback Instruments for the educational field is a system designated the ASD512 Antenna Systems Demonstrator.

Designed to introduce students to the basic concepts of most types of antenna in common use, the ASD512 consists of an R.F. Generator unit which has variable output power and an R.F. Wattmeter which can be switched to display power output from the generator and also power reflected by the antenna.

It has a collection of nickel plated brass tubes with which the various antenna types are built up and a number of connections with integral bulbs such that bulbs are connected in series with the antenna elements and give a clear visual indication of the current standing wave on the elements. The system also includes two hand-held detectors. One is a current and voltage 'field' probe giving a linear LED display and the other is a receiving dipole which is used to show the field strength of the radiated signal at various polarisations (both detectors being powered by Ni-Cad batteries which are re-charged from the generator unit).

Feedback Instruments Ltd, Park Rd, Crowborough, Sussex TN6 2QR.

DUAL BEAM OSCILLOSCOPE

A new low cost oscilloscope has been introduced by Scopex Instruments. Designated the 14D-10, this dualbeam instrument has a 14cm rectangular tube (10 x 8cm display graticule) a verticle sensitivity on both channels of 2mV/cm to 10V/cm in 12 steps and a timebase which ranges from 100ms/cm to 1us/cm with a x5 expansion option to give 200 ns/cm.

Bandwidth is claimed to be DC to 10MHz (-3dB) and the trigger control has been modified from the standard Scopex range such that positive and negative edge triggering is achieved by a polarity selection switch rather than adjustment of a pot.

Add and invert facilities are provided, as is push-button X-Y (ideal for Lissajou figures and logic analysis). The power supply is of the switched mode type, thus reducing weight and increasing reliability. Price for the 14D-10 is £230 + VAT. Scopex Instruments Ltd, Pixmore Industrial Estate, Pixmore Avenue, Letchworth, Herts SG 6 1JJ.

SYSTEM 700

Ideal for the electro-music enthusiast is the Sharp System 700.

The heart of the system is the SC-700X stereo receiver/double cassette deck. The SC-700X has two cassette mechanisms, both with Dolby, one with Sharp's unique APSS and both with 'one-touch start'. The receiver section covers AM medium wave (510-1620kHz) and FM (87.6-108MHz) with an output power of 25W RMS into 4 ohms at 0.5% THD with both channels driven.

A bonus is the ability to use metal tapes with both cassette mechanisms. Editing, dubbing and mic-mixrecording are all made simple by comprehensive controls.

The finishing touches to the System 700 are a belt-drive turntable and a rack to house the cassiever and turntable. Sharp Electronics (U.K.) Ltd., Thorp Road, Newton Heath, Manchester M10 9BE.

CARD FRAMES AND CUTTERS

West Hyde Developments Limited has introduced a range of high quality, low cost 19" card-frames.

Their Swiss-made frames are available in two depths, 210mm or 270mm with heights of 133.35mm (5¹/₄") and 266.7mm (10¹/₂") as standard or 400mm (15³/₄") to special order.

The frames are suitable for three connector types, Mil-C-21097, DIN 41612 and DIN 41617. Prices start from £18.23 + VAT for one-off with the usual generous discount for quantity orders.

Also from West Hyde, two new hand reamers with integral Tommybars. The smaller of the two covers the range from 3.2mm to 12.7mm and the larger manages anything between 9.7mm and 25.4mm. Both card frames and reamers are available from: West Hyde Developments Ltd., Unit 9, Part Street Industrial Estate, Aylesbury, Bucks HP20 1ET. Tel: Aylesbury (0296) 20441/5.

FREE WITH EVERY elkasong ONE HAND - ONE FOOT

Making music with **ELKASONG** is so easy and lots of fun. With each **ELKASONG** capsule are eight pieces of music. Simply select your choice and place the music you are playing on the Music Desk. Press **ELKASONG** and the world of music is open to you.

Why? because **ELKASONG** provides the perfect professional backing to the melody and gives the flexibility to the player to be the arranger, changing tempo and rhythms, instrumentation, even to change the key. All this with just a single finger melody!

Never before has there been such an exciting feature on a Home-style organ. With the freedom of **ELKASONG** you can make more music.

ELKA-CORLA (U.K.) LTD 3/5 Fourth Avenue, Bluebridge Industrial Estate, Halstead, Essex Tel: 078-745325. Telex: 987713

ann

N N H

ITE

Album

- PLAY TODAY NOT TOMORROW THE MUSIC OF THE FUTURE!

MUSIC MAKER EQUIPMENT SCENE

Frankfurt Music Fair is widely known as one of the most prestigious music fairs, and manufacturers and distributors from all over the world filled three halls of the huge exhibition centre from February 7th to 11th to show their latest musical equipment.

This year's fair was certainly one of the biggest with over 600 exhibitors, including more than 90 UK companies. A visit to all the stands can take a couple of days and if all the demos are attended and instruments tried, then a lot more time is needed.

On the electro-music side, new synthesisers and organs have benefited from computer technology at both ends of the price scale with rhythm boxes improving as well. Disco gear now appears in rackmounted control boxes that give further variations of strobe, sequence, ropelight and laser effects, plus touch plates to 'play' lights. Sound mixers were orientated towards the home studio and effects boxes at

last have electronic switching. Electronic drums are here to stay and electric guitars in two-tone colours, different body shapes and active tone controls are now available.

NEWS

Here are just a few photos of the electronic instruments from the exciting stand displays. We'll be taking a closer look at some of these in forthcoming issues.

The new Yamaha Grand 'Synthesiser' GS-1 has 8 factory preset sounds for both left and right halves of the keyboard and an incredible touch response — listen to our cassette!

Firstman Programmable Synthesiser FS-10C. Equipped with magnetic cards for recording and playback of up to 8 channels. It also has no knobs but uses printed panel switches that you press, with up/down digital control.

The D.H.M. 89B2 is a stereo audio computer which allows dual digital delay, pitch shifting, automatic arpeggio, reversed sound. It can repeat a memorised sound indefinitely. Electronics hold a 16-bit A/D converter with 95dB dynamic range and 210k bits memory.

The 'Variophon' has an electronic keyboard that reproduces the sound of acoustic wind instruments. Played through a recorder type mouthpiece for dynamic and tone modulation through breath control, and with plug-in modules for individual brass and woodwind Instruments.

The 'Treble' upright piano actually has a complete synthesiser sounding from its keys as well as a drum rhythm box for accompaniment.

Three 61-note manuals, a 25-note pedal board, a 37-note solo synthesiser plus a vast rhythm accompaniment section. Chorus 'ah', 'uh' voices, saxophone, chimes, sitar, thunder and bird affects, clap, siren, timpani, etc., etc! — the Kawai T-30.

Here's the latest electronic drum kit from Dave Simmons called the SDSV. Each drum has 1 preset and 3 programmable memories stored in a 19" rack. Bass drum, snare, tom tom and hi-hat are now available, with cymbals, cowbells and special effects to follow.

The Morley De-Luxe Phaser is the newest effects unit from this American company. Other effects available are Super Distortion, Compressor, De-Luxe Flanger and Noise Gate/Line Driver.

Wersi's Galaxis organ W4SKT is their top of the range instrument that you can build. An Industry Profile on this German company will appear soon.

An 8-Voice Polyphonic Synthesiser from Korg called the Trident. Up to 16 different polysynth tone colour program settings can be memorised with additional piano sounds also available. It also features a brass/synth section, string ensemble, keyboard split and flanger.

> The 'Kaleidophon' has 4 dynamic and pitch sensitive 'strings' which are electronically tuned and adjustable for left hand guitar, bass, violin and other string instrument playing, whilst the right hand controls many extra effects.

Here's part of Amptown distributors range of rack mounting lighting controllers - notice the chrome touch plates for 'playing' lights. This company from Hamburg, Germany has a vast range of effects controllers including 'Fog' generators, pulsars, rainbow strobe and chasers.

Not a sound mixer but a light controller! It comes from Artick in Italy. It has facilities for multi-scene dimming, flashing and cassette storage of memory positions.

Next month's Industry Profile looks at the development of UK's new synthesiser factory, the Electronic Dream Plant. Their latest instrument, the Wasp DeLuxe has a proper keyboard to replace the earlier Wasp's touch sensitive version.

MUSICAL APPLICATIONS OF MICROPROCESSORS by H. ChamberlainPrice: £16.00p ELECTRONIC MUSIC SYNTHESIZERS by D. T. Horn Price: £4.25p VIDEOCASSÈTTE RECORDERS THEORY & SERVICING by G. P. McGinty Price: £9.00p BEGINNERS GUIDE TO DIGITAL ELECTRONICS by I. R. Sinclair Price: £3.75p PRACTICAL ELECTRONICS H/B by I. Sinclair Price: £4.70p MODERN RECORDING TECHNIQUES by R. E. Runstein Price: £7.85p **ELECTRONIC PROJECTS IN** MUSIC by A. J. Flint Price: £3.00p **ELECTRONICS BUILD &** LEARN by R. A. Penfold Price: £3.30p ELECTRONIC PROJECTS IN AUDIO by R. A. Penfold Price: £3.00p UNDERSTANDING MICRO-PROCESSORS Price: £4.75p by Texas YOUR FIRST COMPUTER by R. Zaks Price: £6.95p *All prices include postage* THE MODERN BOOK CO. BRITAIN'S LARGEST STOCKIST British and American Technical Books 15-21 Praed Street, London W2 1NP Phone 01-402 9176 Closed Saturday 1 p.m

		TR	A	VS	FC	R	ΛE	RS			
Pa	nel M lultim	eters, l eters -	Bridg Sem	je R i Co	ectif ndu	iers, l ctors	Pow - Tin	er Sup ners -	Safeblo	ts C	
Minimum	& Sub	Miniature		-	1	50	VOLT	(Pri: 220	-240V)	-	1
		Milli-	Ref.	Price		Sec	: 0-19	-25-33-4	0-50V		
		amps	No.	£	P&P	A		Het.	Price	0	
Volta		200			70	Am O	5	102	3 60	90	
3-0-3		200	238	2.60	. 70	1.0	0	103	4.60	1.05	
0.0, 0.0		100	12	3.00	.75	2.0	õ	104	7.30	1.20	
0.9 0.9		330 330	235	2.30	.70	3.0	0	105	8.60	1.20	
0-8-9.0-8-	.9	500 500	207	2.75	.75	4.0	С	106	10.85	1.30	
0-8-9, 0-8-	.9	1A 1A	208	3.85	.75	6.0	2	107	15.10	1.50	
0-15, 0-15	5	200 200	236	2.15	.70	8.0	2	118	20.20	1.70	
0-20, 0-20)	300 300	214	2.75	.90	10.0	1	119	24.10	2.20	
20-12-0-1	2-20	700(DC)	221	3.50	1.05	Sec	0.24	30.40.41	-240) B-60		
0.15.27 0	15.27	500 500	200	4.00	85	Joc.	0-2	Ref	Price		
0-15-27.0	-15-27	1A 1A	204	6.10	1.05	Am	06	No.	£	P& P	
12 AND /	08 24 1	OIT				0.	5	124	3.85	.90	
Pri: 220.2	AO Volte	VULI				1.	0	126	5.60	1.05	
111, 220-2		2	Deine			2.	0	127	7.55	1.20	
17.	24V	Ref	FIICE	PI	LP	3.	0	120	12.25	1.30	
0.5	0.25	111	2.30		75		0	40	14.15	1.60	
1.0	0.5	213	2.75		90	6.	õ	120	17.60	1.60	
2	1	71	3.25		90	AU	TOTE	ANSFO	RMERS		
4	2	18	4.05	· .	85	Inp	ut/Our	tput Tapp	ed 0-115-2	10-240V	
6	3	/0	5.60		95	VA		Ref.	Price		
10	5	72	8 25	1	20	(W)	atts)	No.	£	P&P	
12	6	116	8.85	1.	20	20)	113	2.65	.90	
16	8	17	10.85	1.	30	7	5	64	4.10	.90	
20	10	115	13.85	1.	50	150) 14/01	4 etroiet Tar	5.60	1.05	
30	15	187	16.85	1.	50	0-1	15-21	0.220-24	IOV		
60	30	220	33.35		80	300)	53	10.10	1.20	
30 VOLT	T (Pri: 22	20-240V)				500)	67	10.85	1.50	
Sec: 0-12	2-15-20	-24-30V				100)0	84	18.60	1.60	
	Ref.	Pric	0			Also	1500	501 ATU	3000VA	Taxand 8	
Amps	No.	£		P&	P	IVI /4	un s j	JULAIN	ad (centre	Tahban d	
0.5	112	2.0	50	.9	0	Pric	120/	240V	Sec: 1	20/240	
2.0	3	5.6	ю	1.0	5	VA		Ref.	Price		
3.0	20	6.3	0	1.2	õ	(Wi	rtts)	No.	£	P& P	
4.0	21	6.6	60	1.2	0	100		149	7 60	1.05	
5.0	51	9.6	ю	1.2	0	200		151	11.10	1.30	
6.0	117	11.1	10	1.2	0	250		152	13.30	1.50	
10.0	80	16.6	6	1.5	ő	350)	153	16.30	1.60	
10.0	03					100	0	156	37.10	3.20	l
	Please	add VAT a	15%						7b Willia	m Stree	t
Ban	claycard	and Acces	ss faci	lities.		R	ΠV	nic	Herne E	ay, Kent	
-		available						DIG	Herne F	av 6458	6
Tra	ade and	Education	Welco	me							Ĩ

ETCH RESIST TRANSFER KIT SIZE 1:1

E&MM

Complete kit 13 sheets 6in x 41/2in **f**3.00 with all symbols for direct application to PC board. Individual sheets 30p each. (1) Mixed Sym-bols (2) Lines 0.05 (3) Pads (4) Fish Plates and Connectors (5) 4 Lead and 3 Lead and Pads (6) DILS (7) Bends 90° and 130° (8) 8 – 10 – 12 T.O.5. Cans (9) Edge Connec-tors 0.15 (10) Edge Connectors 0.1 (11) Lines 0.02 (12) Bends 0.02

FRONT & REAR PANEL TRANSFER SIGNS

(13) Quad in Line

All standard symbols and wording. Over 250 symbols, signs and words. Also available in reverse for perspex, etc. Choice of colours, red, blue, black, or white. Size of sheet 12in x 9in. Price £1.20.

GRAPHIC TRANSFERS WITH SPACER ACCESSORIES

Available also in reverse lettering, colours red, blue, black or white. Each sheet 12in x 9in contains capitals, lower case and numerals Vein kit or Vin kit. £1.20 complete. State size.

All orders dispatched promptly All post paid

Shop and Trade enquiries welcome Special Transfers made to order

E. R. NICHOLLS P.C.B. TRANSFERS 46 LOWFIELD ROAD STOCKPORT, CHESHIRE. 061-480 2179

> F&MM APRIL 1981

PORTABLE RADIO CASE

approx. Made from ply wood, pleasingly cover uitable for any normation actio circuit. Has stude mounting 5" speak the front is drilled to take a runing condenthe centre and normal controls either ade, £2.30 + £1.50 post

LAST MONTH'S SNIP -- STILL AVAILABLE LAST MONTH'S SNIP -- STILL AVAILABLE And it still carries a free gift of a desoldering pump, which we are currently selling at £6.350. The snip is perhaps the most useful brea down parcel we have ever offered. It is a parcel of 50 nearly all different computer panels containing parts which must have cost at least £500. On these hoards you will find over 300 1C's. Over 300 (hodks, over 200 transistors and several thousand other parts, resist-ors, concleasors, multi-run pots, recifiers, SCR, etc. etc. If you act promptly, you can have this parcel for only £8.50, which when yo derfluct the value of the desoldering pump, works out to just a little over 40 per panel. Surely this is a barcain you should not miss! over 4p per panel. Surely this is a bargain you should not miss! When ordering please add £2.50 post and £1.27 VAT

MAINS MOTORS Precision made as used in record players, blow heaters, etc. Speed usually 1,400. All have ample spindle length for coupling fan blade, pulley, etc. Power depends on stack size stack £2.00; %" stack £2.50; 7/8 stack £2.00; 1" stack £2.00; 7/8" stack £3.00; 1" stack £3.50; 1%" stack £4.50: Add 25% to motor cost to cover pos-tage, and then add 15% VAT.

RELAY

YOUR LAST CHANCE FOR THIS BARGAIN 100 twist drills, regular tool shop price over £50, yours for only £11.50. With these you will be able to drill metal, wood, plastic, from the trinest holes in P.C.B. right up to about ¼". Don't miss this snip send your order today.

MAGNETIC LATCH Low voltage (4 - 8 volt AC/DC operation). Only £1.50 each.

PUNCHED TAPE EQUIPMENT

ontrolling machine tools, etc, motorised 8 bit punch with matching tape reader. Ex-computers, believed ingood working order, any not so would be exchanded. £17.50/pair. Post £3.00.

STEREO HEADPHONES

Japanese made so very gooil quality. B ohm impedance, padded, term-inating with standard %" jack-plug. £2.99 Post 60p.

BRIDGE RECIFIER 0 1 amp 400v 30p each. 10 for £2.50, 100 for £20.00

SOLENOID WITH PLUNGER Mains operated £1.99 10 12 volts DC operated £1.50.

MOTORISED DISCO SWITCH

PANEL METERS

PAINEL INFERS Japanese made, full vision front, size 2%" $x 2^{4''}$, 0 - 100 uA £2.85. Similar but size 2" x 1%" 100 uA, scaled Vu. Ditto, but scaled-0 - 100, fnote, front covers easily removable if you want to rescale these £2.30 each Ditto but size 1.%" x 1%", scal-ed Vu, sensitivity 100 uA, £1.50.

MINI-MULTI TESTER Deluxe pocket size precision moving collcoil instrument, jewelled bearing. 2000 p.v. mir 11 instruint range measures: DC volts 10, 50, 250, 1000 AC volts 10, 50, 250, 1000 DC amps 0 100 mA. rorect scale

Acret

Service Providence

m

Continuity and resistance 0 - 1 meg ohms in two ranges. Complete with test prods and instruction book showing how to measure capacity and inductance as well. Unbelievable value at only £6.75 + 50p post and insurance. FREE Amps range kit to enble you to read

C Amps range kit to enble you to read. DC current from 0 - 10 amps, directly on the 0 - 10 scale. It's free if you purchase (purckly, but of you already own a Mini-Tester and would like one, send £2.50.

BULL (Electrical) Ltd. (DEPT. EMM2), 34-36 AMERICA LANE, HAYWARDS HEATH, SUSSEX, RH16 3QU

3 wave band radio with stereo amplifier. Made for incorporation in a high-class radiogram,

this has a quality of out put which can only be

described as superb. It truly hi-fi. The chastis size is approx. 14". Push but-toons select long, medium, short and gram. Controls are balance, vol-ume, treble and bass. Mains power supply. The output is 6 + 6 watts, Brand new and in perfect working order, offered at less than value of stereo amp alone, namely £6.90. Post £2.50. MULLARD UNIL FY

A mains operated 4 + 4 stereo system. Rated one of the finest performers in the stereo field this would make a wonderful gift for

1

12

BARGAIN

make a wonderiu gift for anmost anyone. In easy to assemble modular form this should sell at about £30 — but due to a special bolk buy and as an in-centive for you to buy this month we offer the sys-tem complete at only £16.75 including VAT and post. FREE GIFT — buy this month and you will receive a pair of Goodman's eliptical 8"x 5" speakers to match this amplifier.

VENNER TIME SWITCH

switch but you can have it for only £2.95 These are new but without case, but without case can supply plastic cases (base and cover) £1:75 or metal case with window £2.95. 1.1.75 or metal case with window £2.95. Also available is adaptor kit to convert this into a normal 24hr, time switch but, with the added advantage of up to 12 on/ offs per 24hrs. This makes an ideal con-troller for the immersion heater, Price of adaptor kit is £2.30.

DELAY SWITCH

AN T

10

ins operated – delay can be accurately with pointers knob for periods of up 2%brs. 2 contacts suitable to switch 10 amps second contact opens utes after 1st contact. £1.95. ens a few min-

> LEVEL METER Size approximately %" square, scaled signal and power but cover easily removable for rescaling. Sensitivity 200 u.A. **75**p.

A high-note bleeper, push latching switch, plastic case and battery connector. Will scare away any villain and bring help, £2.50 comce will

HUMIDITY SWITCH American made by Honeywell. The action of this device depends upon the dampness causing a membrane to stretch and trigger a sensitive microswitch. Very sensitive breathing on it for instance v switch it on, Micro 3 amp at 250V a.c. Only £1.15. EXTRACTOR FANS - Mains Voltage Ex-Computer, made by Woods of Colchester, ideal also as blower; central heating systems (ume extraction etc. Fax, fixing systems, fume extraction etc. Easy fixing through panel, very powerful 2,500 rpm but but quiet running. Choice of 2 sizes, 5" £5.50. 6" £6.50. post £1 per fan

uses include general purpose amp, cueing amp, etc. An absolute bargain at only £1.85. Suitable 800hm earpiece 69p.

bargain at only £1.85. Suitable 800hm earpiece 69p. 3 CHANNEL SOUND TO LIGHT KIT Complete kit of parts for a three-channel sound to light unit con-trolling over 2,000 watts of lighting. Use this at home If you wish, but it is more than rugged enough for Disco work. The unit is hous-ed in an attractive two-tone metal case and has controls for each channel, and a master on/off. The audio input and output are by X² sockets and three panel mounting fuse holders provide thyristor protection. A four-pin plug and socket facilitate ease of connecting lamps, Price £14.95, complete kit and case.

lamps. Price £14.90, compression 2. 8 POWERFUL BATTERY MOTORS For models. Meccanos, drills, remote control planes, boats etc. £2.50.

60 ohms per yard, this is a heating element wound on a fibre glass coil and then covered with p.v.c. Dozens of uses – around water pipes, under grow boxes in gloves and socks. 23p per metre,

COMPONENT BOARD Ref. W0998 This is a modern fibreglass board which contains a multitude of very useful parts, most important of which are: 35 assorted diodes and rectifiers including 4 3amp 400v types (made up in a bridge) 8 transistors type BC 107 and 2 type BFV 51 electrolytic condensers. SCR ref 2N 5062, 25 Out 100v DC and 100ut 25v DC and over 100 other parts including variable, fixed and wire wound resistors, electrolytic and other condensers. A real snip at £1.15. ERUIT MACHINE HEART 4 wheels with all fruits motorised and

FRUIT MACHINE HEART, 4 wheels with all fruits, motorised and

Ideal for removing components from computer boards as well as for service work generally. Price £6.35.

4-CORE FLEX CABLE White pvc for telephone extensions, disco lights, etc. 10 metres £2, 100 metres £15. Other multicore cable in stock.

with solenoids for stopping the wheels with a little in

defy your friends getting the "jackpot". £9.95. + £4 carriage

WATERPROOF HEATING WIRE

COMPONENT BOARD Ref. W0998

DESOLDERING PUMP

MUGGER DETERRENT

olete kit HUMIDITY SWITCH

atts per

the shelf in the

TIME SWITCH BARGAIN Large clear mains frequency controlled clock, which will always show you the correct time + start and stop switch-es with dials. Complete with knobs. es with £2.50.

J. BULL (Electrical) Ltd - Established 25 years, MAIL ORDER TERMS: Cash with order - please add 60p to all orders under £10, to offset packing, etc. ACCESS & BARCLAYCARD WELCOMED. Our shop is open to callers. BULK ENQUIRIES INVITED. Telephone: Haywards Heath (0444) 54563.

Since the acceptance of calculators in education for the teaching of mathematics, who would have guessed that the follow-up to this would be a calculator that plays music!

The calculator functions are still there and yet, packed into Casio's latest product, the VL-Tone, is a com-

Electronics & Music Maker looks to the future by choosing projects that use up-to-date technology and features that inform its readers of the latest developments in electronics and electro-music.

Education in its broadest sense is therefore one of the key aspects of this magazine

It is also exciting that it will be read by teachers and pupils alike through its wide circulation in this country and many subscriptions abroad.

plete 29-note synthesiser that records and plays back. The range of the keyboard is, in fact, almost 5 octaves and there is a built-in speaker for adequate classroom playback level. A special numerical display shows pitch including sharps and programming information. Melody can be recorded one 'key' at a time or done all in one

go. On playback, new tempos can be set and there's a choice of sounds: Piano, Fantasy, Violin, Flute, Guitar, and ADSR. To complete the music melodies are 10 preset 'drum' rhythms. It's great fun to use and is ideal for plenty of creative music making in the music lesson

Finally, I must mention how im-

pressed I was at Frankfurt with Frank Chastenier's playing (see photo). His performance on the flagship of the Hammond organs, the new Elegante, was remarkable and at the age of 14. he undoubtedly inspired a lot of musicians.

E&MM

Can we program a computer to be clever?

Very often we hear people say something like, 'a computer is just a dumb slave'. Perhaps what they are really trying to say is that computers are dependent upon human beings to program them. Is it possible to program a computer to be clever, then?

If we are going to use a computer to help us solve problems we must first think about the ways in which we might program a computer to reach solutions. Perhaps the 'dumbest' way might be to say, 'look at all the possibilities and then find the best.

What would happen if we tried this approach with the game of chess? It has been estimated that the theoretical maximum of the number of possible chess games is approximately 1015790. Even if we considered all games that lasted forty moves we will still have as many as 10120 - both values are literally astronomical! It would be impossible for a computer to consider all possibilities. So we must find methods that might discover a solution other than through 'dumbly' looking at all possibilities. Part of the idea of discovery is learning. There is not much point of discovering something if we cannot learn from it; we will want to be able to program a computer to discover things and learn from those discoveries.

Let us look for example at how we might program a computer to discover a path through a maze. Figure 1

shows a simple maze. How can we represent this for the computer? We shall pick out the number of paths and draw them in the form of a tree graph (Figure 2). The tree graph may be represented as in Table 1. We have numbered the points in the graph where paths join, and in the Table a '1' shows that the points are joined and

START

ΕΧΙΤ

Figure 2. Tree graph representation.

2

an '0' means that they are not. Table 1 may now be fed into a computer with the use of a two-dimensional array or matrix

Now, this is how we might find a path through a maze:

Step 1: Enter maze until we come across a junction where paths part.

			E١	١D	0	FF	PA	ГН			
JUNCTION NUMBERS		1	2	3	4	5	6	7	8	9	
	1	0	1	1	1	0	0	0	0	0	
	2	1	0	0	0	0	0	0	0	0	
BEGINNING	3	1	0	0	0	1	1	0	0	0	
OF	4	1	0	0	0	0	0	0	0	0	
PATH	5	0	0	1	0	0	0	0	0	0	
	6	0	0	1	0	0	0	1	1	0	
	7	0	0	0	0	0	1	0	0	0	
	8	0	0	0	0	0	1	0	0	1	
	9	0	0	0	0	0	0	0	1	0	
			_								T

Table 1. Path table from tree graph.

Take all paths in clockwise order. Step 2: Is there a path from this junction to look at that we have not looked at yet? If answer is YES, go to Step 3; if answer is NO, go back along path to the previous point, then start Step 2 again.

Step 3: Does this path bring us directly to the EXIT? If YES, then STOP; if NO then go to Step 2.

Work through this method with the maze in Figure 1. Let us now adapt this method so that it may be used with the data in Table 1, and this we shall do by the flow-chart in Figure 3.

From the flow-chart a computer program can be written - although we shall find that the flow-chart does not give all the answers! For example, how do we know that we have or have not been along a particular path? Will this method work for any maze? How can we program a computer to remember the paths it has taken? - and so on

Steve Leverett.

Figure 3. Flow Chart for maze solving.

Self Instruction Courses from Cambridge Learning

They're faster and more thorough than classroom learning: you pace yourself and answer questions on each new aspect as you go. This gives rare satisfaction — you know that you are learning and without mindless drudgery. With a good self-instruction course you become the world's best teacher.

MICROCOMPUTERS ARE COMING-DE THE WAVE! LEARN TO PROGRAM! MILLIONS OF JOBS ARE THREATENED, BUT MILLIONS MORE WILL BE CREATED

LEARN BASIC

The language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program, debugging, clear documentation. Harder problems are provided with a series of hints so you never sit glassy-eyed with your mind a blank. You

soon learn to tackle really tough tasks such as programs for graphs, cost estimates, compound interest, and computer games.

COMPUTER PROGRAMMING IN BASIC (CPB) 4 Vols. £10.00

Book 1 Computers and what they do well: READ, DATA, PRINT, powers, brackets, variable names; LET; errors; coding simple programs. Book 2 High-and low-level languages; flowcharting; functions; REM and documentation; INPUT, IF....THEN, GO TO; limitations of computers, problem definition. Book3 Compilers and interpreters; loops, FOR....NEXT, RESTORE; debugging; arrays; bubble sorting; TAB.

Book 4 Advanced BASIC: subroutines: string variables; files; complex programming;

examples; glossary.

THE BASIC HANDBOOK (BHB) £11.50

This best-selling American title usefully supplements our BASIC course with an alphabetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC dialects in use today mean programmers often need to translate instructions so that they can be RUN on their system. The BASIC Handbook is clear, easy to use and should save hours of your time and computer time. A must for all users of BASIC throughout the world.

A.N.S. COBOL (ANS) £5.90

The indispensable guide to the world's No. 1 business language. After 25 hours with this course, one beginner took a consulting job, documenting oil company programs and did invaluable work from the first day. Need we say more

Flow Charts and Algorithms

are the essential logical procedures used in all computer programming and mastering them is the key to success here, as well as being a priceless tool in all administrative areas - presenting safety regulations, government legislation, office procedures etc.

THE ALGORITHM WRITER'S GUIDE (AWG) £4.00

explains how to define questions, put them in the best order and draw the flow chart, with numerous examples.

ALRE JOIN THE DIG nn ha DESIGN OF DIGITAL SYSTEMS.

Book 1

Design of Digital Systems

12 3,4 5

(DDS) 6 Vols. £13.50

Written for the student or ent' usiast, this course is packed with information, diagrams, and questions designed to lead you step-bystep through number systems and Boolean algebra to memories, counters, and simple arithmetic circuits; and finally to an understanding of the design and operation of calculators and computers

BOOK 1 Decimal, Octal, hexadecimal, and binary number systems and conver sion betwee BOOK 1 Decimal, Octal, hexadecimal, and binary number systems and conversion between number systems: negative numbers; complementary systems. BOOK 2 OR and AND functions: multiple-input gates; truth tables: De Morgan's Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic. BOOK 3 Helf, full, serial, and parallel adders; subtraction; processors and ALU's; multiplication and division. BOOK 4 Hip flops; shift registers; asynchronous, synchronous, ring. Johnson, and exclusive-OR feedback counters; ROMS and RAMS. BOOK 5 Structure of calculators; keyboard encoding; decoding display-data: register systems; control unit; PROM; address de-coding. BOOK 6 CPU; memory organisation; character representation; program storage; address modes; input/ output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems. executive programs; operating systems.

Digital calculators and watches came in during the 1970's. Soon you will see digital cash cards, telephones, car instruments, and TV messages from your friends

Diale off all a

iic and

Electronics

0

gital Computer uter ter

DIGITAL COMPUTER LOGIC AND ELECTRONICS (DCL) 4 Vols. £7.50

A course covering the material in italics on the left, but at a slower pace, (4 vols)

GUARANTEE - No risk to you. If you are not completely satisfied your money will be refunded without question, on return of the books in good condition within 28 days. Our free booklist is sent with each order.

Order Co	To: Cambridge Learning Ltd., Unit 00, River	mill Site, Freepost, St. Ives, Huntingdon, Cambs. PE17 4BR	FOUR WAYS TO PAY:
טוטצו רט			order (Not Eire)
PLEASE SEND: Quantity		Name	 A bank draft, in sterling on a London bank (available at any major bank)
CPB (£10.00)	THESE PRICES COVER THE COST OF SURFACE MAIL WORLDWIDE.	Address	3) Please charge my Access/ American Express Barclaycard/
BHB (£11.50)	AIRMAIL: Europe, North Africa, Middle East, add ½ to price of books. Japan.		Diners Vi sa /Mastercharge/Trustcard
AWG (£4.00)	Australia, New Zealand, Pacific Islands		Card No
DDS (£13.50)			Expiry Date
DCL (£7.50)	50p per course for 1 st class post.)		Or phone us with these credit card details on 0480 67446 (24 hour
		EIVIIVIA	2 apacters comment

Fitzroy House, Market Place, Swaffham, Norfolk, PE37 7QH.

TEL: (0760) 21627 TELEX: 817912 VAT Reg: 324 5604 75

ELECTRONICS & MUSIC PROJECTS

Vocoder (80068)

£162.50

The first Vocoder designed for the home constructor. It has 10 channels and 8 band pass filters. Wiring is kept to a minimum by a plug-in bus board system. Rack and panels available as extras plus new module for voiced/unvoiced inputs. Send for full details.

Chorosynth (80060)

£57.90

This is an inexpensive 'touch' keyboard synthesiser that anyone can play. The range covers 2½ Octaves and has 10 register effects. In addition 4 Chorus effects are possible together with vibrato and glissando. The range can be switched to cover 6 Octaves. Single PCB construction.

Mini Mixer (81068)

£37.50

£38.45

Small package, high performance mixer with 5 stereo inputs, treble and bass controls. Power supply included. Slider controls for inputs. Frequency response 20Hz-25kHz.

Sound Pressure Meter (81072) £11.35

This includes an electret microphone input and meter output. Can measure sound levels from 50dBA to 110dBA.

Analogue Reverberation Unit (9973)

Uses a 1024 'bucket brigade' memory type SAD1024 to delay up to 100mS. Reverberation varied by changing the speed of the clock pulse from 5kHz-500kHz. Signal/Noise ratio 60dB.

Our Project Packs include the electronic components, the PCB, sockets and solder together with assembly instructions. Cases, knobs etc can be supplied as extra items if required. This is only part of our wide range of projects. See our catalogue for details of other projects that we can supply. You, can also ring our number between 12.30 p.m. and 1.30 p.m. any weekday for a recorded announcement of any new items we have available.

To order send cheque or postal order + 40p P&P to DORAM ELECTRONICS LTD All prices include VAT — Telephone: (0760) 21627 Telex: 817912 a de boer company

Electronics & Music Maker was officially launched on the 10th February with a reception held at the British Film and TV Academy, Piccadilly, London.

The magazine was given an enthusiastic send-off by Dr Magnus Pyke, with a lively 'off-the-cuff' speech to an audience with representatives from Press and broadcasting and the electronics and electro-music industries.

Dr Pyke has always believed that the new developments of science that have taken place are of enormous interest and part of our lives. That's why he was interested and excited when he heard about E&MM.

He remembers, way back in the 1920's, making an instrument of the new technology of that time — the Crystal Set!

Now we've got all this new technology, he thinks this is so exciting and that people want to learn and find it pleasurable to do so.

He also pointed out that Elizabethan England to the present day has always been a musical land — in modern times the Beatles established a new style in music, which could not have been done without electronics.

He feels that E&MM will appeal to what some people say are two cultures of people — the dry technological scientists like him, and on the other side, you have the humane people the musical people — who want to sing and make music. Now E&MM is joining them together — and this is very important because in a sense you

have pleasure, and you have leisure which is going to be a great thing! If musicians know a sound that they want, then they in turn want to learn about the electronics to get it. And this continues with the learning of mathematics for working with the electronics.

E&MM in a way will be increasing the enlightenment of the current generation and so will not only be providing information for readers of all ages who want to know but also educating the teachers.

So people in education should also benefit from the magazine and, said Dr Pyke, 'it should contribute to the enrichment of the life of the community and I hope that thereby it will also contribute to the enrichment of E&MM's authors and editorial staff for bringing it out.' **E&MM**

SUBSCRIBE!

to ELECTRONICS & MUSIC MAKER the No.1 Monthly for the Electronics and Music Hobbyist

For 12 issues:

UK	and	overseas	surface	 £9	.90
Eur	ope			 £11	.64

Airmail (excluding Europe) £25.20

Subscriptions normally commence from the current issue of E&MM. Back copies can be obtained from E&MM. For further information write to:—

E&MM Subscriptions Dept., Maplin Publications 282 London Road, Westcliff-on-Sea, Essex SS0 7JG

E&MM Subscriptions Dept., Maplin Publications, 282 London Road, Westcliff-on-Sea, Essex SS0 7JG.

Please send me the next 12 issues of Electronics & Music Maker. I enclose a cheque/postal order* for £9.90/£11.64/£25.20* made payable to Electronics & Music Maker. *DELETE AS APPROPRIATE

_ ___ ___ ___

PLEASE PRINT

Name

Address

EVENTS Mar 12th-16th 'HOME VIDEO SHOW', Cunard International Hotel, London. COMPUTERMARKET, Albany Hotel, Glasgow. Mar 17th-19th Aimed at senior management, executives and directors of organisations using or considering the use of computers. Mar 23rd-27th COMPUTER EXHIBITION, DATAKRAFT, Malmo, Mar 24th-26th COMPUTERMARKET, New Centry Hotel, Manchester. INTERNATIONAL COMPUTING EXHIBITION, 'COMPUTEX', Dublin. Mar 24th-27th ELECTRONIC TEST & MEASURING INST. EXHIBITION, Mar 31st Wythenshaw, Forum, Manchester. Mar 31st COMPUTERMARKET, Albany Hotel, Birmingham. Apr 3rd-5th HOBBY & LEISURE, Dornbirn, Austria. Apr 7th-9th COMPUTERMARKET, West Centre Hotel, London. Apr 7th-10th AUDIO VISUAL EXHIBITION, Wembley Conference Centre, London. Apr 7th-11th INTERNATIONAL EXHIBITION OF ELECTRONIC COMPONENTS, Paris, Apr 8th-15th AUDIO VISUAL COMMUNICATION EXHIBITION. Jaarbeursplein, Mediavisie, Holland. LONDON COMPUTER FAIR, North London Polytechnic Apr 14th-16th (opposite Holloway Road tube station). Exhibits include Hobbyists, Club Stands, Work Shops, Seminars. Apr 29th MICRO SHOW, New Century Hall, Manchester,

Aimed at industry although the hobbyist would find it interesting. We shall be pleased to publish news of forthcoming electronic and electro-music exhibitions, clubs

- also special electronic music concerts.

E&MM 4/81

NEXT MONTH — May Issue

on sale at your newsagent from April 12th

EIGHT COMPLETE PROJECTS!

NOISE REDUCTION UNIT

A superb 4-channel compander project for the budget-conscious home studio.

6-in-1 VERO PROJECTS

Six ideal electro-music projects for musicians to use plus a free Veroboard to make up your first choice.

DIGITAL REV COUNTER

This simple-to-build car accessory has an accurate LED readout and really smart appearance.

MATINEE ORGAN SPECTRUM SYNTHESISER

Continuing these exciting electro-music projects.

SOUND ON STAGE

A new feature series dealing with the electro-music of live performance

Plus all our regular articles covering Electronics, Computing and Electro-Music.

APRIL ISSUE SPECIAL OFFERS

Each-month, Electronics & Music Maker will be giving special offers to its readers that represent a substantial saving on normal retail prices. Items will be selected that are useful in our specialist area - electro-music.

ULTRAVOX 'Vienna' LP Record

This latest LP release from this chart-busting group is likely to be one of our most popular offers judging by its huge record sales in the UK

Our Price is hard to beat at £3.49

Normally £4.99!

The record contains plenty of listening material for our enthusiastic electro-music readers besides the title music "Vienna' In particular, E&MM publishes for the first time a unique electro-musical analysis for you to follow and play of another album track: "Mr X".

Canon P7-D Calculator

Unlike many others, this printing calculator uses inexpensive plain paper rolls and the printout is in bold, solid characters. The calculator is rechargeable and comes complete with batteries, charger, wallet and three rolls of paper.

Price £24.95

Save pounds! Complete this Order Form for either

or both of our Special Offers. Please allow 28 days for delivery

> Send this coupon and cheque/P.O. to: ELECTRONICS & MUSIC MAKER (Special Offers) 282 London Road, Westcliff-on-Sea, Essex SS0 7JG.

Please send me-

Quantity	Item	Item Price £	Total £				
	Canon P7-D Printing Calculator		à.				
	Ultravox Vienna LP (CHR 1296)	3.49					
l enclos Electron PLEASE P	se a cheque/P.O. payable to: nics & Music Maker for: RINT Mr/Mrs/Miss	ТОТАL £	£				
Addres	s	•••••••	EP.MM 4/91				
All	All prices shown include VAT, postage and packing.						

100

1254789636

000 000

--

* TEACH-IN FOR THE 80's * ELECTRONICS CONSTRUCTION KITS

Electronics assembly is fast becoming the most fascinating and educational hobby for beginners of all ages. Monthly constructional projects, appear in most of the magazines in the hobbiest electronics field, with basic technical principles and symbols explained in great detail.

The sheer simplicity of these projects are a must for all beginners. Start with a hobby that could become a worthwhile career.

Our kits come complete with all parts as specified.

*ALL PROJECT KITS ARE SUPPLIED WITH CASES

(except items marked *).

All kits come complete with items; plus Texas IC sockets where required, also Veroboard connecting wire, etc.

Listed below is a selection of the many projects available. Reprints are available at 40p extra.

Audio Effects Unit	ZB122	Oct. 80 ⁻	£12.25
Phone Call Charge Jogger	7B121	Oct 80	£6 90
Darkroom Controller	7B123	Oct 80	£17 25
Bicycle Alarm	7B124	Oct. 80	£9.25
Provision Parking Pad	7872	Sont 80	\$2.50
Lighta Epilura Manitar	7077	Sept. 80	\$2.75
TTL Bower Supply Heit	7070	Sept. 80	£0.E0
Due Desi Timer	20/0	Sept. 80	19.50
*TTL Lasis Basks	20/3	Sept. 80	10.50
Didaida Didia	2070	Sept. 80	13.25
Bedside Radio	ZB74	Sept. 80	14.25
Auto Lighting-Up Warning	ZB/1	Aug. 80	£5.65
Audio Millivoltmeter	ZB 70	Aug. 80	£17.75
Weather Centre (Electronics only)	ZB72	Aug. 80	£47.50
Brakesate Monitor	ZB68	Aug. 80	£7.50
Cricket Game	ZB69	Aug. 80	£14.95
Zener Diode Tester	ZB79	July 80	£5.00
Signal Tracer	ZB80	July 80	£5.00
General Purpose Amplifier	ZB81	July 80	£6.00
Voltage Converter	ZB82	July 80	£4.75
Autowaa	ZB83	July 80	£19.25
A.F. Signal Generator	ZB84	July 80	£20.00
Courtesy Light Delay	ZB85	July 80	£5.25
Auto Phase	ZB86	July 80	£19.25
Battery Voltage Monitor	7B64	May 80	£4 80
Lights Warning System	ZB63	May 80	£3.60
Autofade	ZB66	May 80	£10.25
*Dual Line Game	ZB65	May 80	£25.00
Audio Tone Generator	ZB67	May 80	£3.50
*Pre-tuned 4-Station Badio	ZB62	May 80	£14.00
Gas Sentinel	7B61	April 80	£27.00
Automatic Level Control	ZB60	April 80	£8.00
Cycle Direction Elasher	7859	April 80	£14 50
Cable and Pine Locator	7854	March 90	£2 7E
Storeg Handphone Amplifier	7857	March 80	£15.75
Deerbell Persister	7050	March 90	£10.20
Eive Range Current Limiter	2000	March 90	13.00
Kitaban Timar	2003	March 80	14.50
Tauch Switch	2000	March 80	£12.75
Touch Switch	2000	Warch 80	19.00
NICO NUSIC BOX	2045	Feb. 80	£17.00
Simple Short wave Receiver	ZB44	Feb. 80	£18.00
Morse Practice Uscillator	ZB43	Feb. 80	£6.00
Slide/ Lape Synchroniser	ZB42	Feb. 80	£11.50
Spring-Line Reverb Unit	ZB49	Jan. 80	£22.50
Mains on/off Limer	ZB48	Jan. 80	£30.00
Power Supply 3-9V	ZB47	Jan. 80	£4.50
Loft Alert	ZB46	Jan. 80	£33.00
Lightcall	ZB103	Dec. 79	£6.25
Burglar Alarm	ZB51	Dec. 79	£5.00
Baby Alarm	ZB40	Nov. 79	£8.50
Opto Alarm	ZB41	Nov. 79	£5.00
Radio Tuner MW/LW	ZB108	Nov. 79	£14.75
3-Function Generator	ZB52	Nov. 79	£25.00
One Armed Bandit	ZB33	Oct. 79	£21.00
Lights-on Reminder	7B34	Oct 79	£4 60

Signal Level Indicator	ZB36	Oct. 79	£4.50
High Impedance Voltmeter	ZB35	Oct. 79	£14.50
Universal Oscillator	ZB37	Oct. 79	£3.50
Chaser Light	ZB4	Sept. 79	£17.50
Lower Power Audio Amplifier	ZB3	Sept. 79	£3.75
Simple Transistor Tester	ZB2	Sept. 79	£5.50
Varicap MW Radio	ZB1	Sept. 79	£8.50
Quiz Referee	ZB12	Aug. 79	£4.75
Touch-on Pilot Light	ZB10	Aug 79	£2.00
Trailer Flasher	ZB9	Aug. 79	£3.00
Swanee Whistler	ZB8	Aug. 79	£3.50
Electronic Tuning Fork	ZB7	Aug. 79	£3.90
Power Supply 9V	ZB6	Aug. 79	£3.25
Warbling Timer	ZB5	Aug. 79	£5.80
Water Level Indicator	ZB111	July 79	£4.50
Dolls House Lights Economiser	ZB107	July 79	£4.50
Darkroom Timer	ZB17	July 79	£2.50
Soldering Iron Bit Saver	ZB13	July 79	£9.25
Voltage Splitter	ZB15	July 79	£3.25
Conference Timer	ZB14	July 79	£38.00
Electronic Canary	ZB19	June 79	£4.50
Tremolo Unit	ZB18	June 79	£10.00
Meter Amplifier	ZB21	June 79	£3.50
Quad Simulator	7822	June 79	£8.00
Short Wave Converter	ZB25	May 79	£13.75
Electronic Dice	ZB24	May 79	£13.50
Intruder Alarm	ZB23	May 79	£23.00
Shaver Inverter	ZB26	April 79	£8.00
Touch Bleeper	ZB27	April 79	£3.25
Choke Warning Device	ZB28	April 79	£7.50
Transistor Tester	ZB100	April 79	£4.00
One Transistor Radio MW/LW	ZB104	March 79	£7.25
Time Delay Indicator	ZB98	March 79	£4.00
Micro Chime	ZB96	Feb. 79	£12.00
Lights Reminder for Car	ZB32	Jan. 79	£4.50
Headphone Enhancer	ZB101	Jan. 79	£4.00
Solid-State Roulette	ZB95	Jan. 79	£18.25
I'm First	ZB105	Jan. 79	£3.70
Continuity Tester	ZB115	Jan. 79	£4.30
Fuzz Box	ZB106	Dec. 78	£5.00
Vehicle Immobiliser	ZB110	Dec. 78	£5.00
Audio Effects Oscillator	ZB109	Nov. 78	£3.50
Tele-Tel	ZB94	Nov. 78	£17.80
Radio NIVV/LVV	ZB116	Oct. 78	£7.00
Sound to Light	ZB112	Sept. 78	£7.00
R.F. Signal Generator	ZB93	Sept. 78	£20.50
Guitar Tone Booster	2011/	Sept. 78	15.00
A.F. Signal Generator	ZB119	Aug. 78	£10.00
Quagmire Tala Pall	ZB120	July /8	19.50
Neid Sound Efforts Constant	20110	June 78	112.25
Catch a Light	ZB113 7P103	March 78	13.50
Chapper Light Dieplay	7807	Ech 79	10.00
Car System Alarm	7892	Feb. 78	£4.50
Cal Systell Ald III	LDJL	100.70	1.10.1317

PERSONAL CALLERS PLEASE RING TO CHECK AVAILABILITY OF KITS ALL PRICES INCLUDE POST PACKING AND 15% V.A.T.

MINI I.C. RADIO OCTOBER '80 ZB126	10.35
DUSK/DAWN RELAY OCTOBER '80 ZB125	£7.45
SOUND TO LIGHT ZB127 NOV. '80 £	19.00
GUITAR PRACTICE AMPLIFIER ZB128 NOV. '80 £	16.85
REACTION TESTER ZB129 NOV. '80 £	10.25
PRECISION TIMER ZB130 NOV. '80 £	21.00
TRANSISTOR TESTER ZB131 NOV. '80	£8.00
SOIL MOISTURE MONITOR ZB132 NOV, '80	£5.00
OTHER THAN STATED, PRICES ON APPLICATIO	N

SHOP HOURS: Mon-Fri 9:00-5.30 p.m. Sat. 9.00-4.30 p.m.

Make it for a Song!

The New Maplin Matinée Amazing Value For Only £299.95 + £99.50 for cabinet if required.

Easy to build. Latest technology - means less cost, less components and 80% less wiring. Comparable with organs selling for up to £1,000.00. Two 49-note manuals. 13-note pedalboard. All organ voices on drawbars. Preset voices: Banjo, Accordion, Harpsichord, Piano, Percussion. Piano sustain Sustain on both manuals, and pedalboard Electronic rotor, fast and slow. Vibrato Delayed vibrato. Reverb. and Auto-Wah. Glide Manual and (Hawaiian Guitar Sound). Single finger chording plus memory. 30 Rhythms! 8-instrument voicing Major, Minor and Seventh chords

Unique walking bass lines with each rhythm. Unique countermelody line with each rhythm. Truly amazing value for money. Full construction details start in this issue

of Electronics & Music Maker.

The complete buyers' guide to electronic components. With over 300 pages, it's a comprehensive guide to electronic components with thousands of photographs and illustrations and page after page of invaluable data. Get a copy now — it's the one catalogue you can't afford to be without.

Post this coupon now for your copy of our 1981 catalogue price £1. Please send me a copy of your 320 page catalogue. I enclose £1 (Plus 25p p&p). If I am not completely satisfied I may return the catalogue to you and have my money refunded. If you live outside the UK send £1.68 or 12 International Reply Coupons. I enclose £1.25.

Name		
Address		
	1	
	1986 - 1986 - 1	

MARDIIN

Maplin Electronic Supplies Ltd. All mail to: P.O. Box 3, Rayleigh, Essex SS6 8LR Telephone: Southend (0702) 554155. Sales (0702) 552911

Shops: 159-161 King Street, Hammersmith, London W6. Telephone: (01) 748 0926. 284 London Road, Westcliff-on-Sea, Essex. Telephone: Southend (0702) 554000. Both shops closed Mondays.

LLLIIIL

Catalogue now on sale in all branches of WHSMITH Price £1.00