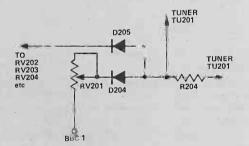


SSN 0142-722



PROJECT: Teletext System

Above: a unit complete except for mounting of the ultrasonic receiver

Next month we conclude the project with component overlays, parts lists and some erudite hints upon getting the best results from this superlative design.

Fig. 5. (Above, left): tuning circuit.

Fig. 6. (Below): Power supply circuitry to produce the three rails needed.

0 12V 0 331 D203 R206 56k NOTE: 4 R210 0 R5 C211 100u ¥ R214 1R0 0203 11 12 10 R209 D201 R211 2k2 1C202 IC203 240V AC 8213 4k7 C217 100u -11 C215 470p 11 C214 470p \$ R208 3 TR1 240-24V R212 5k1 C207 22u C208 22u 0 00

ELECTRONICS TODAY INTERNATIONAL - JULY 1979

ETT

MAGNETIC FIELD AUDIO AMPLIFIERS

Carver Corporation's Model M400 amplifier using the unique 'magnetic cavity' was released in the US a few short months ago. Employing FETs throughout, except for bipolar silicon output transistors, Carver Corp. claims that the M400 has a slew rate around 80 volts per microsecond, hum and noise over 100 dB down, 0.05% distortion and a frequency response from 1 Hz to 250 kHz — all for an expected retail of US\$300!

IT REALLY DOES EXIST. ETI first reported Bob Carver's Magnetic Field Audio amplifier in our Australian issule saying . . . "we hear from normally authoritative sources that Bob Carver founder of Phase Linear — has developed a totally new concept in audio amplifiers which . . . stores energy in a magnetic field rather than in power supply capacitors . . . his new device generates no heat, weighs a mere five kilos for vast numbers of watts and lasts for ever".

It seemed a bit hard to take seriously – even though we were totally award of Bob's previous efforts such as the range of Phase Linear super-amps and the Autocorrelator noise reducer.

But it seems as if this revolutionary concept in audio amplifiers is for real – patent protection has been arranged and preliminary details have been released.

Bob's basic concept is to store energy in a magnetic field rather than very large value electrolytic capacitors – eliminating at the same time the need for a bulky expensive power transformer.

Our circuit drawing shows the essential features. The heart of the circuit is

the magnetic cavity (MC). This is basically similar to the AM detector transformer used in conventional AM radios but constructed on a grand scale. A further and significant difference is that the transformer is arranged such that an output occurs as the primary field collapses rather than builds up.

The secondary winding of the magnetic cavity is centre-tapped and the resultant full-wave output is rectified by a pair of high current diodes — the output waveform is thus a conjugate pair of time-varying audio voltages. Further circuitry, described later in this article, provides a feedback loop to remove commutation noise and reduce distortion.

The primary of the magnetic cavity is energised by an amplitude-modulated current (corresponding to the audio signal voltage). The current signal is produced from the audio input, via the optical isolator and modulation and control logic, to the scanning SCR, the ramp SCR, a pair of scanning and commutating diodes, and L1, L2 and C1.

This current signal energises the

primary of the magnetic cavity. The time taken for this is called the 'ramp period'. The primary energy is then reflected in the secondary windings (and thence to the speaker) during the subsequent 'scan period'.

As our graph shows, the ramp and scan periods are made up of four separate timing intervals. During the period $t_o - t_2$ an incoming audio signal has caused a magnetic field to 'ramp' up in the primary of the magnetic cavity. At t₂ the field has reached its peak and is beginning to collapse. This collapsing field generates an associated decaying current i1 and this decaying current falls to zero when the energy in the primary field falls also to zero (point t₃). During the time period $t_2 - t_3$, the control logic provides a positive signal on the gate of the scanning SCR, however this SCR will not again conduct until sufficient voltage is applied between its anode and cathode.

Throughout the scanning period, energy is of course being transferred from the primary of the magnetic cavity to the secondary – and thence to the speaker load.

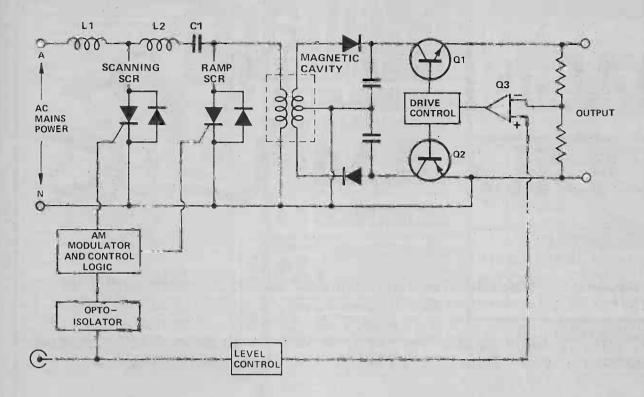


Fig. 1. This schematic shows the major operating components:

At time t_3 the direction of current is reversed – current being no longer maintainable by cavity inductance – and the scanning diode is reverse biased – this causes the scanning SCR to be forward biased and current flows as shown in our sketch.

Summarising then, energy stored in the magnetic cavity is caused to shuttle around the circuit of L1, L2, C1 and the speaker load depending on instructions from the control logic.

Noise and distortion

Components Q1 - Q3 form a feedback loop which reduces the inherently poor bandwidth, noise and distortion to very acceptable levels. Theoretically the circuit has some quite strong objections – at low frequencies Q1 and Q2 will.act much as switches except that the feedback correction voltage developed by Q3 will adequately cancel aberrations – but at higher frequencies, i.e. 10 kHz – 20 kHz the modulator circuit is unable to follow accurately the audio input

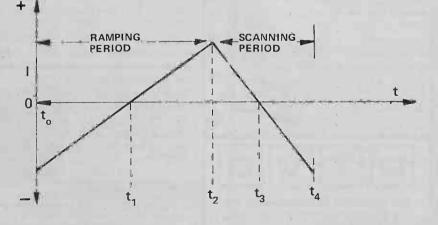


Fig. 2. During the ramping period energy builds up in the primary of the 'magnetic cavity'. Throughout the scanning period energy is transferred from the primary to the secondary of the magnetic cavity and thence to the speaker load via Q1 and Q2.

ELECTRONICS TODAY INTERNATIONAL - JULY 1979

signal. Hence the filtered output from the magnetic cavity is a dc level with a superimposed ac signal and Q1 and Q2 thus operate much as any other conventional amplifier.

Nevertheless as less power is generally required at high audio frequencies than at mid frequency and low frequency, amplifier efficiency is very high if fed with music signals. This situation does not of course apply if the amplifier is fed with a high frequency steady tone.

Bob Carver's radical amplifier will be rated in accordance with FTC rules - the specification is expected to include power output: 200 watts-perchannel into eight ohms from 20 Hz to 20 kHz. Total harmonic distortion is expected to be less than 0.08% across this range.

Signal noise ratio is expected to be 100 dBA below rated maximum output. All-up weight is an incredible 5.5 kg.

As far as we are aware the magnetic field amplifier exists at present solely as a prototype unit but we understand that Bob Carver has very real plans for putting the unit in to production at a presently projected price of US \$300 or so.

It's a fascinating concept, one that will cause amplifier designers and manufacturers world-wide to furiously rethink their design philosophies. It may even herald the coming of a new hifi technology.

POLYPHONIC KEYBOARD CONTROLLER

Tired of playing one note at a time on a boring old monophonic synthesizer? In this design Tim Orr describes how you can build a four octave polyphonic keyboard controller incorporating first note priority.

THE MUSIC synthesizer is probably the most powerful musical instrument of today, and it will most probably form the basis of the next generation of keyboard instruments. However, the synthesizer suffers from one major drawback due to its unique structure. The disadvantage is that it is a monophonic instrument as opposed to traditional keyboard instruments, such as organs and piano's which are polyphonic, or multi-voiced. A brief resumé of synthesizer structure should clarify the reasons behind this.

To start with, the synthesizer is composed of a set of modules or independent circuit packages whose parameters in most cases are voltage controllable. For instance, a voltage controlled oscillator (VCO) has an output frequency (pitch) which is dependant on the magnitude of the input control voltage. These modules can be split up into three distinct groups. Firstly there are Sources, such as:

- 1. Noise
- 2. Voltage controlled oscillators

Secondly there are Modifiers which form by far the largest group:

- 1. Voltage controlled filters (VCF's)
- 2. Voltage controllled amplifiers (VCA's)
- 3. Ring modulators
- 4. Filter banks or graphic equalisers
- 5. Phase shifters
- 6. Reverbration

Thirdly there are control voltage sources:

- 1. Sample and holds
- 2. Sequencers
- 3. Transient generators
- 4. Trigger delays
- 5. Keyboard controllers.

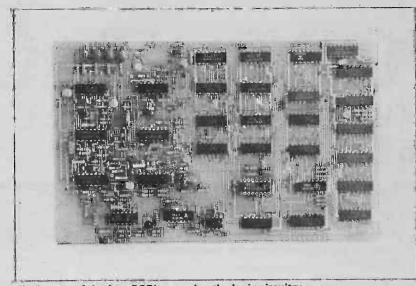
Getting Your Priorities Right

First note priority was adopted for this design, i.e. first note pressed to channel 1, second to channel 2, and so on. If more notes are pressed then the system can cope with, these are locked out. The reason for this, as opposed to last note priority, is that first note priority stops the note jumping that can occur when, momentarily, more notes are pressed than the system caters for.

Binary Notation

When the code (note code) driving the decoder energises a contact which is closed, the output of the OR gate goes high, showing a unique code on the input representing the particular note being pressed. This code, the note code, is arranged such that the lowest note is binary zero, the next note up binary one, the next two and so on up to N. The scanning can also be achieved using a multiplexer.

The size of keyboard decided on was a 4 octave one having 49 notes. Hence this makes the value of N 49 and therefore the size of the note code will be 6 bits (64 possibilities). In fact this is useful in that a 6 bit code will be just big enough to scan a 5 octave keyboard (61 notes) if required. In the case of this design it will simply be a mattter of adding 12 extra diodes since the decoder already had a total of 64 outputs. Incidentally, the scanner will have another output not yet mentioned. This is called 63rd note, (the 63rd output on the decoder) which simply provides a pulse to the decision logic to say that a scan has been completed. The multiplexer method would require decoding of the note code to do this. The scanner simply gives each note a


binary code, but how can this be extracted as a set of control voltages with associated gate signals?

Pumping Caps

The note code is changed to an analogue voltage using a D-A converter, the output of which is switched onto the correct analogue channel and held using a set of sample and holds. The gate signals are dealt with in a similar way using CR circuits. The counter for the note code causes the scanner to increment from the lowest note upwards. If three notes are depressed the scanner reaches the lowest note first and causes the output of the D-A to be stored by channel 1 sample and hold, and channel 1 gate capacitor to be pumped up. On moving on the channel counter is incremented, prepairing the output channels for channel 2 data. When the scanner reaches the second note up the process occurs again only using channel 2 and again for channel 3, with the third note. When the scan has been completed the channel counter is reset and made ready for the next scan.

Dying Charge

If on the next scan the notes are still depressed, the gate capacitor will again be pumped up maintaining the gate output high. When a note is released the time constant is such that the gate capacitor's charge dies away in about one and a half scan

The largest of the four PCB's, carrying the logic circuitry.

times, thus removing the gate signal. By experiment it was found that the scan time needs to be about 4 mS. Even when a key is pressed and released very quickly, it will have been scanned about ten times or more. The NAND gate should be mentioned because it allows two adjacent notes to be played. This is because if two notes right next to each other are depressed, the output of the scanner remains high for the duration of both notes and so only one note would be detected. By NANDing the scanner output with the clock the output is broken up allowing adjacent notes to be detected.

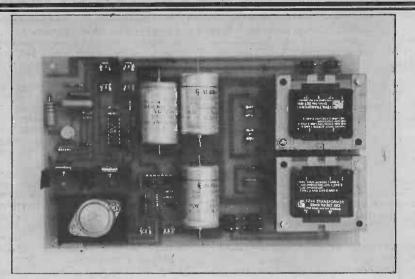
Note Jumping

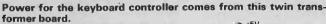
Although this circuit will work, it is far from satisfactory. When notes other than the top note are released, the channels on which the remaining notes appear, above the released note, all jump down one place. This makes the instrument very difficult to play as it must be remembered to release the keys from the upper one downwards, to get a chord that dies away nicely without the note jumping effect.

Special Decision

This means that the simple logic must be replaced by some special decision logic, incorporating a memory of notes already activated in previous scans.

The scheme here is that note codes are gathered into the memory as the scanner sweeps up the keyboard. When the 63rd note is reached, the entire memory is dumped onto the output channels by sequencing the peripheral address lines. It is also necessary to reset all of the gate data bits in preparation for the next scan. This means that while a particular key remains pressed, the gate for that channel will be refreshed on every scan. When the key is released, the gate for that channel will go low when data is again output.


Logical Channels


The effect of the decision logic from the musicians point of view, is that upon playing a chord, say C, E and G the first one depressed normally comes out on channel 1, the second on channel 2 and the third on channel 3 (the difference in time between depresssions need only be milliseconds). There is, however, an exception to this when a note is depressed that is already stored in memory. For instance, if the three note chord described above were depressed such that C was first E second and G third, then it would be expected that C would come out on channel 1, E on channel 2 and G on channel 3. But if a previous chord had been played using the same C which had emerged on channel 2 then the decision logic would cause it to remain on channel 2 and so the E would be placed onto channel 1 and G onto channel 3.

Key Question

Construction of this project will depend almost entirely upon the keyboard it is built around. If you

ELECTRONICS TODAY INTERNATIONAL - JULY 1979

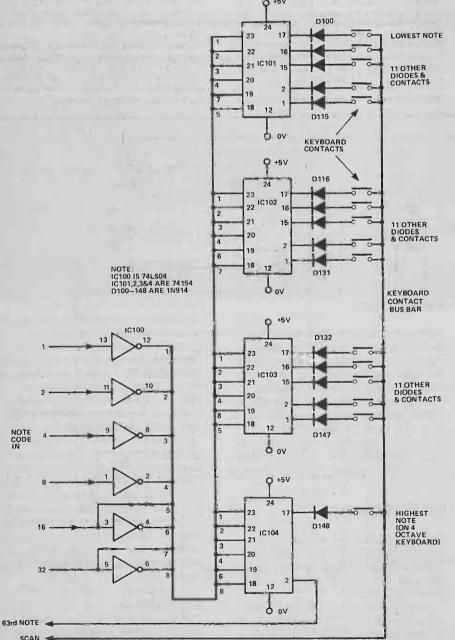


Fig. 1. Circuit diagram of the scanner. The four 74154's are used as a one out of 64 line decoder.

HOW IT WORKS

The Scanner: The IC's used for the scanner itself are 74154, which are one out of 16 line decoders. They are arranged such that one output goes low with the rest remaining high, dependent on the four bit code on the input. These IC's also have a pair of enable inputs both of which must be low. These allow four 74152's to be used as a one out of 64 line decoder, simply by the inclusion of the two inverters on inputs 16 and 32. The 63rd note output is obtained from the 63rd output of the decoder, and the scanner output is taken from the keyboard.contact bus bar, having been ORed using the diodes.

Logic: The reaction of the circuit to a new note that has not been picked up by the scanner before is as follows: the note code counter increments the scanner by one note on alternate falling edges of the clock, until it reaches this particular note. The output of the scanner goes high regis-tering that the contact is closed. This triggers the monostable IC12 pin 2 causing its Q output to go low long enough to set the decision cycle flip flop IC15 input pin 9 The output of this flip flop pin 11, then inhibits further pulses from clocking the note coder by taking pin 1 of IC15 low. At the same time it initiates the first decision cycle by allowing the counters IC9 (address counter) and IC13 (decision counter) to run by taking their clear inputs high. When the output of the decision counter is zero the memory address counter is clocked round, so that the logic can check if the note is already in the memory.

The memory address counter is incremented on the low going edge of the K pulse, which is simply the clock divided by two. Since the decision counter is only 2 bits it was convenient to derive K using the spare single stage counter in the 7493. Note that K is only active during the decision cycles and data block since the counter is cleared down when the scanner is scanning.

When the address counter reaches the number set on the Phonics switch, it is reset, and the decision counter incremented by one via the NAND gates IC18. This starts the second decision cycle where the logic is looking for a spare location to insert the new note. It has been assumed that channel 1 is in use and that the first available channel is channel 2. The circuit stops the data being entered in channel 1 by observing the state of the gate data output from the gate RAM pin 5. If this output is a logical 'O' the channel is in use and must not be corrupted, and so the address counter is incremented so that the next channel can be tested.

In the case of this example the decision logic succeeds in entering its data in channel 2, but if the decision counter is incremented a second time before an empty channel is found, simply because all channels are in use, the decision cycle is ended and the scan continued. This third condition of the decision counter is decoded by the NAND gate IC16 and the invertor IC19, and reset is achieved via the three input NAND gate IC22 and invertor IC20, which reset the decision cycle flip flop restarting the note code counter and clearing down the memory address and decision counters.

The second and subsequent times that the scanner is stopped by the note that was loaded in channel 2, the decision logic will only get as far as its first test 'Is the note already in the RAM', so when the memory

PROJECT: Keyboard Controller

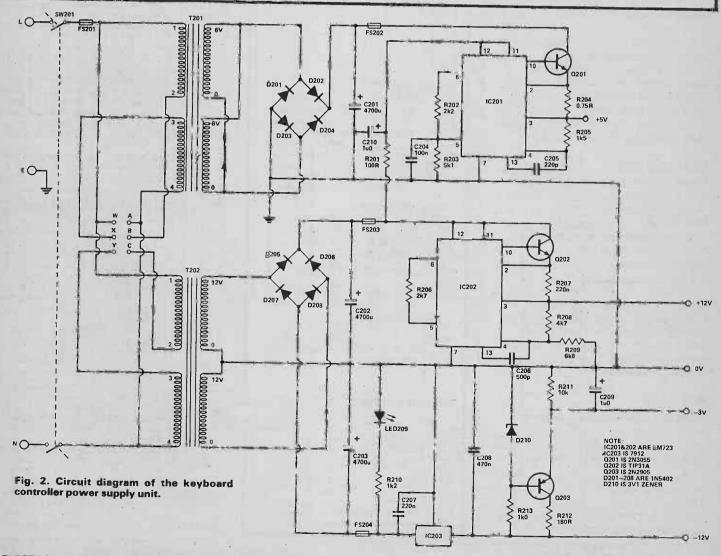
address counter reaches 2 the comparator output goes high acknowledging that the note is already entered. This causes the gate bit to be refreshed (since it is reset during data block) along with the data being re-entered into the note memory, (re-entering the data in the note memory is not necessary but occurs due to circuit architecture) after which the decision flip flop IC15 is again reset and the scanner restarted.

All the time a note remains depressed the decision logic will refresh the gate bit associated with the channel in which the note has been placed. At the end of a scan the gate bits are reset immediately after they have been placed on the output channels meaning that if the note is not still depressed on the next scan the gate signal on the output channel will go low in the next data block period.

During a scan the data valid signal is high, it only toggles in data block. Simply enabling the gate RAM during the decision cycle loads it with a '1', since data valid is the input. Note that loading these Ram's with a '1' results in the output going to a '0' as they invert. This is the reason for the invertors on the outputs of the note RAM's, which are also tri-state for the computer interface.

The Clock for the system is an NE555 timer wired in the astable mode. The Output Channels

There are two outputs per channel which


are multiplexed out by the data block period. These are the gate outputs and the control voltage outputs. The gates are obtained from the CD4099 addressable latch (note that these outputs may need buffering depending on the impedance they are driving as the CD4099 is CMOS). The address lines of the latch are attached to the memory address counter and the input is connected to the gate data line (IC10 pin 2). The enable input of the latch is connected to the data strobe line so that as the data is output from the memory the correct gate state (1 or 0) is stored on the relevant channel.

The data sample pulses are for loading the sample and holds on the analogue channels. They are derived from the 1 of 8 decoder and the clock. To interface between the TTL logic and the analogue switches comparators are used so that the analogue signals can be between -3 volts and +12 volts. All the comparator outputs are disabled when the clock is high by using the two resistors R65 and R53 to feed the reference input to the comparators, the clock signal being attached to R65. The binary codes representing the notes are converted into analogue voltages using the D-A convertor IC14.

As the memory address counter is incremented in data block the data in the note memory is converted into an analogue voltage and passed onto the correct analogue channel by the comparator and analogue switch. The D-A convertor has a current output such that when the resistor R82 is added to convert it into a voltage, the output goes more negative with increasing binary codes. The op-amp IC29 (pins 12, 13 and 14) corrects this by inverting the output of the D-A. It also allows the scaling or volts per octave of the keyboard to be adjusted, by varying the resistor in the feedback loop. Another function that the op-amp allows is the summing of voltages that have to appear on all the output channels at once.

There are three sources of voltage that are summed at this point, the tune voltage, the vibrato voltage, and the pitch bender voltage. The tune voltage is derived from a potentiometer which draws its current from the voltage reference circuit. The vibrato voltage is generated by a standard triangle wave generator comprising a regenerative comparator IC29 pins 8, 9 and 10 and an integrator IC29 pins 5, 6 and 7. The output is coupled to the summing amplifier via a pair of back to back electrolytics to remove any DC offset and a pair of resistors that allow their centre point to be connected to earth via an external vibrato depth potentiometer.

Offsets around the circuit are trimmed out using the trimmer RV1 which obtains its reference from the diode D1. Since the offsets are predominantly in one direction due to Q2 the offset control only works in the negative voltage direction.

employ the ARAK kit, no problems should arise at all. The PCBs are designed to fit their keys and comprehensive instructions are included with the kit.

We have not attempted to go into any detail with any other unit, simply because there is such a great diversity available on the market.

Setting Up

Once the components are all mounted on their boards, each section has to be set up. Let's start with the

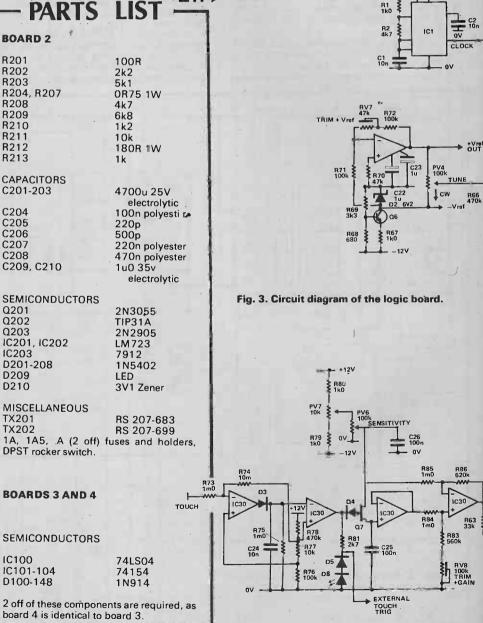
PSU

Before the mains is connected to the PSU it should be thoroughly checked for shorts. The three low voltage fuses FS202, FS203 and FS204 should then be removed and the mains turned on. Now check the voltages across the smoothing capacitors C201, C202 and Č203 which should be around +8V, +17V and -17V respectively. If this is the case the +12V regulator can be tested by replacing FS203. If this works the +5V regulator can be tested by replacing FS202. As the +5V regulator is supplied from the +12V supply via R201 they must be tested in this order. Finally the -12V and -- 3V supplies can be tested by inserting FS204. It should be noted that the fuse holders may need bending to give correct contact to the fuses as they are very simple pressed steel pieces for PC mounting.

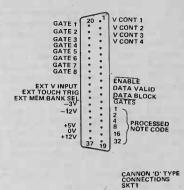
The Logic Board

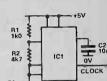
Check the logic board thoroughly for shorts on supplies. It is also wise to 'buzz out' every connection on the board to test for continuity which may well save a lot of fault finding time, but note that it will not quarantee correct operation as it does not test for shorts.

When these preliminary tests have been carried out and the power supply unit is functioning correctly power can be applied to the logic board. Firstly only apply the +5V supply until the TTL is known to be working correctly.

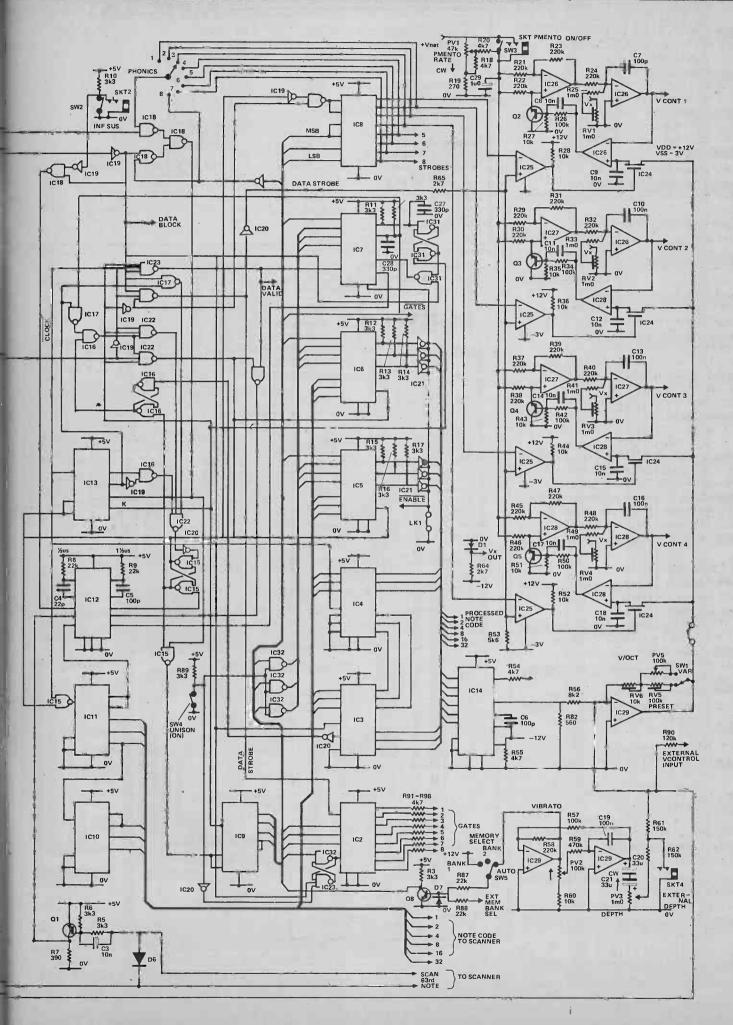

And a Log

Once the logic is working the analogue section can be tested. This time some setting up can also be done:


First check the positive reference is sitting at about 6V2 above earth. This level can be increased using the trimmer RV7 if a higher reference is required for any reason.


If the touch circuit is not to be used R63 should be removed as it will probably cause the output of IC29 pin 14 to saturate against one of the supplies as the output of the touch circuit is indeterminate.

R19 sets the maximum glide rate. The smaller it is the longer the maximum glide rate will be However, it is unwise to make it any smaller as the maximum range is set by the V on SAT of the switching transistor, this only creating an offset when it is turned on and not when it is turned off. It may be necessary to increase the value of R19 although problems will probably occur on one channel only and will most likely be remedied by replacing the switching transistor for one with a lower V cE SAT. ETI >



ELECTRONICS TODAY INTERNATIONAL - JULY 1979

PROJECT: Keyboard Controller

41

electronies torky Constants Constants	PLACE NO 7	Ĩ	ICS today
POLIPHONO REVIDENTE	FE.	ΑΤι	JRES
	NEWS DIGEST AUDIO MAGNETIC AMPLIFIERS PARIS IN SPRINGTIME 40 CMOS CIRCUITS AUDIOPHILE LIFE OUT THERE DESIGNERS NOTEBOOK MICROFILE TECH TIPS	9 26 44 53 62 72 87 95 99	All that's worth knowing. Have a field day ETI goes Continental. Here beginneth the lesson Ron Harris makes a show of himself. Is there any ETI beyond ETI. Ray Marston delves into his jottings again. Seen any good computer shows lately? Son of readers circuits.
	PF	ROJ	ECTS
Text for tellies p.20	TELETEXT POLYPHONIC KEYBOARD MOTOR SPEED CONTROLLER SOIL MOISTURE INDICATOR TUNER AMP 2 BATTERY INDICATOR	20 36 47 67 79 92	A quick newsflash on your telly. Multi-note organs to you. Gear down your movements. Wet or dry ETI gives you it straight. The final part of System 8000. State of charge flashed for your convenience.
	INFO	RM	ATION
Finitian Blant pampers p.67	SUBSCRIPTIONS BINDERS HOBBY ELECTRONICS ETI PRINTS SPECIALS MARKET PLACE ETI AUGUST BOOK SERVICE	15 17 19 32 35 64 71	Getting it regularly? Put a hard cover on it. Next month in HE Fancy a rubdown PCB? Top Projects and others for you. Bargains galore. Next month in ETI for you.
25-2 INTERNATIONAL EDITIONS	7 Oxford Street, London W1R 1RF Ro Ian	F. Tele on Har Grah	RTISEMENT OFFICE ephone 01-434 1781/2. Telex 8811896 ris, B.Sc Editor am B.Sc. Editorial Assistant

AUSTRALIA Collyn Rivers Publisher Roger Harrison Acting Editor

HOLLAND Anton Kriegsman Editor-in-Chief

CANADA Graham Wideman Assistant Editor

GERMANY Udo Wittig Editor

ABC

Diego M. Rincon Art Director Gayle Armbrust, Pete Howells Production Paul Edwards, Tony Strakas Technical Illustrators Ray Marston Project Editor John Fitzgerald Project Engineer

Steve Ramsahadeo

FUBLISHED BY

PRINTED BY

DISTRIBUTED BY

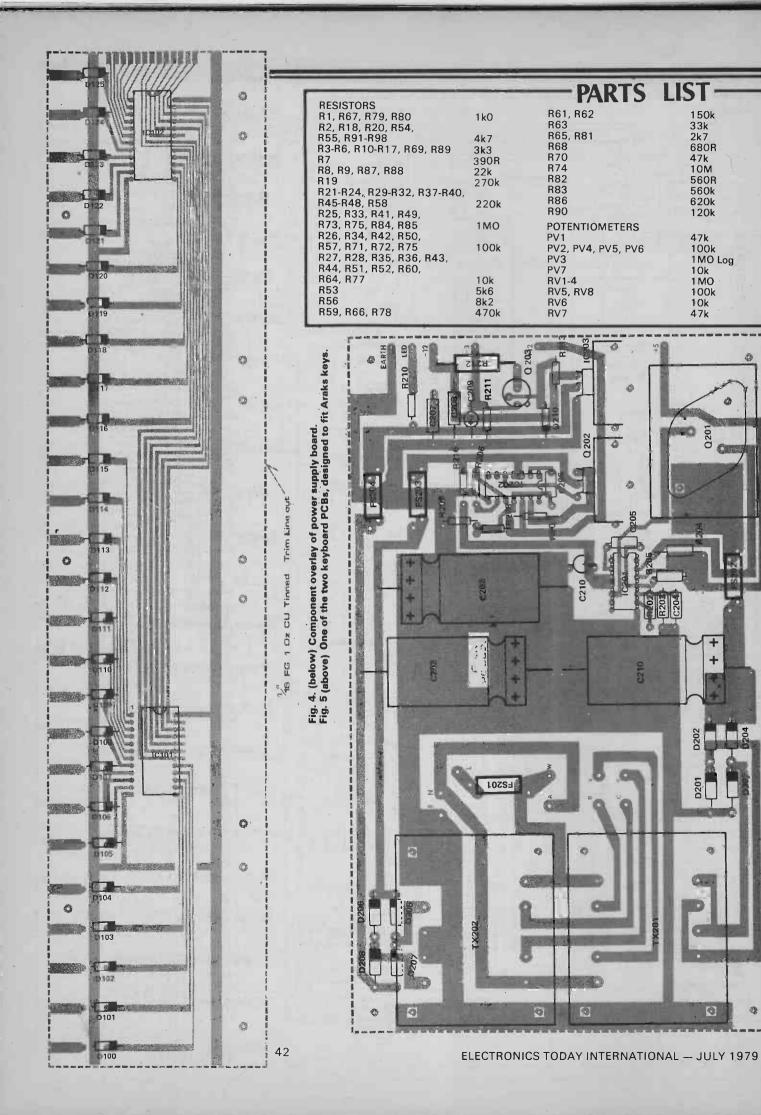
Margaret Hewitt Alan Carlton (Manager)

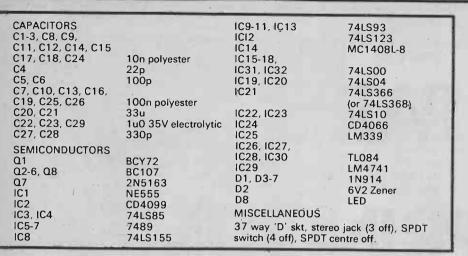
Christopher Surgenor (Manager).

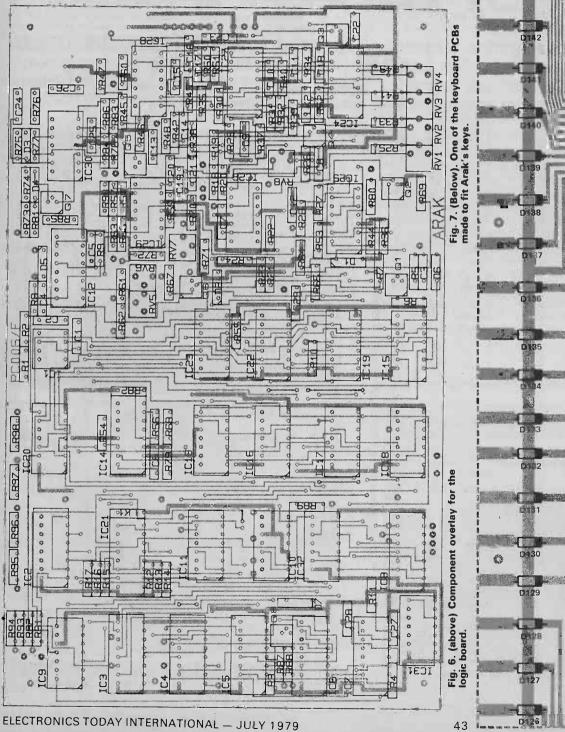
Halvor Moorshead Editorial Director

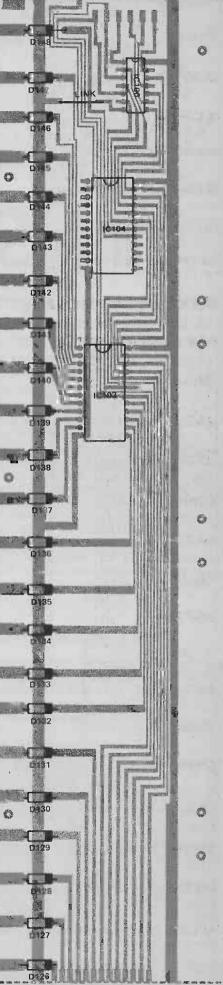
Modmags Ltd., 25-27 Oxford Street, Argus Distribution Ltd. (British Isles) Gordon & Gotch Ltd. (Overseas) QB Limited, Colchester

Project Development

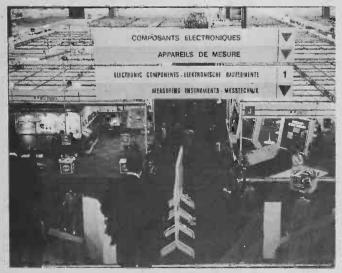

Administration


Advertising


Reader Services

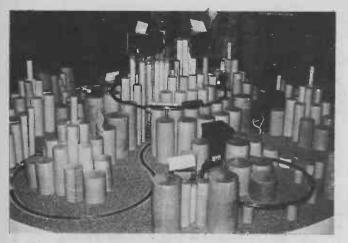

Electronics Today International is normally published on the first Friday of the month prior to the cover date

All material is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur a correction will be published as soon as possible afterwards.


As a London-based magazine, we tend to concentrate our interest on exhibitions and electronics shows in the London area. Lest we become too parochial in our outlook, we decided to see what our fellow Europeans have to offer. We sent our roving reporter, Ian Graham, to Paris to see how the other half live.

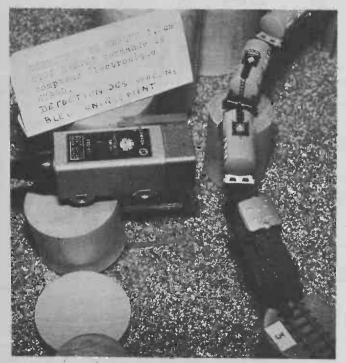
I PROBABLY RECEIVE a couple of hundred Press releases every day. Most, concerning orders for electronic equipment won by companies or appointments to the top management of larger corporations or annual accounts, end up in the waste paper bin. Our reports on the cream of the rest appear monthly in our news pages. Occasionally I am invited to attend Press receptions. Again, few are interesting enough to prise us out of our armchairs. However, I did sit up and take notice when I was invited to attend an electronic components exhibition 'sur le continent'. The occasion was the Salon International des Composants Electroniques 79, held in Paris from the 2nd to 7th of April. Well, I thought about it, for several seconds at least, and decided that I had indeed been neglecting our European brothers.

On a sunny April morning I made my way from Charles de


Row upon row of stands full of goodies – paradise for the exhibition addict.

The tops of stands stretch into the distance, in the biggest of the three exhibition halls.

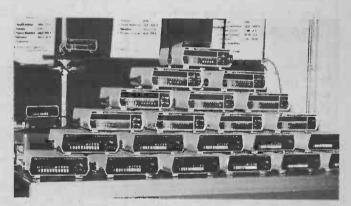
Gaulle airport to the exhibition site at the Parc des Expositions in the Place de La Porte de Versailles. My first impression as I emerged from the Metro station was of the unexpected size of the exhibition, which stretched over a staggering 63,000 square metres, split up into four sections. It would have taken several days to see everything on display, certainly more than the single day I had allowed myself.


Although it was essentially a trade show, the atmosphere inside was more akin to that of our own Ideal Home Exhibition. However, great expectations of an entertaining exhibition were not borne out by my admittedly swift tour of the stands.

A fun way of counting trains with photocounters. This stand attracted a great deal of interest from people who had probably never seen a photocounter before. This simple display illustrated the principle of the unit admirably for the layman.

Dry Stuff?

Unfortunately, few exhibitors showed any imagination in the presentation of their wares. Sound to light units and TV games naturally lend themselves to entertaining stands, but what about more mundane electronic components? General Instrument Microelectronics (a British firm, I'm happy to say) managed to make microprocessors a crowd puller (I wouldn't have thought it possible) by using one to control a noise generator. Pretty dry stuff, you might say. However, the generator was producing car engine, gear change, skid and crash noises for a model racetrack. Visitors could control the cars with conventional pistol grips. Well, perhaps a model race track has little to do with microprocessors and vice


A closer look at the electronic 'train' spotter above. One colour of wagon, in this case blue, can be counted, ignoring the train and all the other wagons.

ELECTRONICS TODAY INTERNATIONAL - JULY 1979

versa, but it did attract interested visitors. Isn't that what it's all about?

Eyecatching Pyramids

Another firm displayed photocounters by using them to count wagons on a pyramid of model railway layouts. Talking about pyramids, yet another firm (American) presented a striking display, a pyramid of multimeters. They might uncharitably be called gimmicks, but they *were* eyecatching. Too many exhibitors relied on a glass case full of components accompanied by row upon row of standard black and white exhibition photos, none of which deserved or got a second look. Still, there were plenty of product demonstrations to keep me busy, as I made my way through the maze of stands. There were also lectures. How do you fancy soaking up 'Monolithic Memories' at half nine in the morning? No, neither did I.

Keithley's pyramid of multimeters. We strongly suggest that you don't try this with your Avo. 8's, or if you do, don't blame us if there are disastrous consequences.

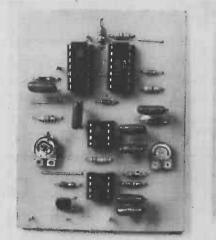
Light Entertainment to Heavy Machinery

Although I found plenty to criticise at the Paris show, it put some of our own electronics shows to shame. Whatever you are interested in, from hi-fi to heavy machinery, there's plenty of it at the Salon, with some 1300 firms exhibiting. Hi-fi enthusiasts could spend a day or two wandering round the stands devoted to the love of their life, That goes equally well for every field of interest represented and there wasn't much that was not represented.

See You Next Year

My brief visit to the show was very enjoyable. There was plenty of food and drink to be had from seemingly numerous bars. The French exhibition staff were so good to me that I'm thinking of doing it again next year. If you feel like joining me, the Salon International des Composants Electroniques 80 will be held from March 27 to the 2nd of April. If you feel like nipping across the pond to pay your visit on Sunday, March 30th, don't.....they're closed.

MOTOR SPEED CONTROLLER


A sophisticated unit that allows control of model electric motor speed and direction via a single radio control channel. The unit can supply peak currents up to 10 amps.

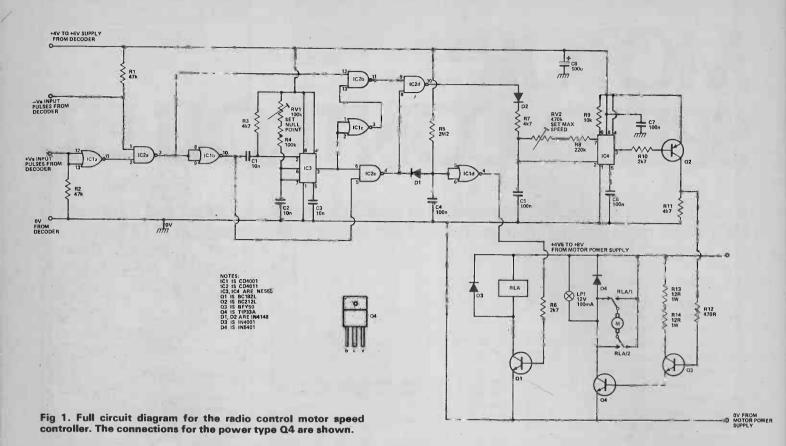
THIS DEVICE lets you use a single channel of your radio control system to control both the speed and direction of an electric model motor. The unit has been designed specifically to control the drive motor of our 1/16th scale Tamiya Leopard tank, but can in fact be used to control any 4V5 to 8V DC electric motor that draws peak current below 10 amps. The unit is ideal for use in model boats and large-scale land vehicles, and costs only a fraction of the price of equivalent commercial units.

The unit derives it's control signals from one of the output channels of a radio control decoder. It accepts standard positive or negative decoder pulses, which have widths variable over the 1 mS to 2 mS range, and is designed to work with systems having fixed frame (or frame repeat) periods of approximately 20 mS. The Strato 4 + 2 system, published in the May and June editions of ETI, can be used with the controller.

The controller circuit incorporates only two pre-set pots. One of these is a 'set null point' control, and can be used to set the motor speed to zero in any desired position of the transmitter joystick control. The other pre-set is used to set the maximum speed of the motor.

The two pre-sets can be used to give a variety of operating modes. If they are adjusted so that the null point occurs at the centre of the joy stick travel, the motor will have identical maximum speeds in forward and reverse. If the null is set to occur towards the 'low' end of the joy stick travel, the motor will have a high maximum forward speed and a low maximum reverse speed.

Construction And Use


The unit is assembled on two PCB's. Board 1 holds all the logic, timing components, and the two pre-set pots, and board 2 holds the power driver transistors and the relay. Construction of board 1 should present few problems: note, however, that no provision is made on the PCB for decoupling capacitor C8, since we hooked this component into the wiring harness on our prototype unit.

 Note when constructing board 2 that power transistor Q4 can either be mounted directly on the board in low- to medium-power applications, or can be mounted externally on a suitable heat sink (such as a vehicle chassis, etc) in high power applications. The relay used on this board is a 6 volt two pole changeover type with a coil resistance of 70R (see Buylines). When construction is complete, the two boards can be mounted in the model, preferably as far away from interference-generating motors and servos as possible. Board 1 is powered from the radio control decoder supply lines. The signals from the selected output channel of the decoder are fed to either the positive pulses or negative pulses input leads of board 1, depending on the pulse polarity of the particular decoder that is used.

Board 2 is powered from the motor supply leads. Note that the OV line of the motor supply must be made common with the OV line of the decoder. Also note that one lead must be connected between R6 on board 2 and pin 4 of IC1 on board 1, and another lead must be connected between R12 on board 2 and Q1 collector on board 1.

ELECTRONICS TODAY INTERNATIONAL - JULY 1979

47

HOW IT WORKS

The input pulses from one channel of the decoder, which have widths that are variable between 1mS and 2mS, are fed to either pin 1 or IC2a (negative input pulses) or to pins 12 and 13 of IC1a (positive input pulses), and appear in positive-going form at the output of IC2a. This positive-going pulse is fed directly to pin 12 ot IC2b, and is fed in inverted form to pin 5 of IC2c: the inverted pulse is also used to trigger reference-pulse generator IC3 via C1. This reference pulse has a nominal width of 1.5mS, which equals the mid-band width of the input pulses from the decoder.

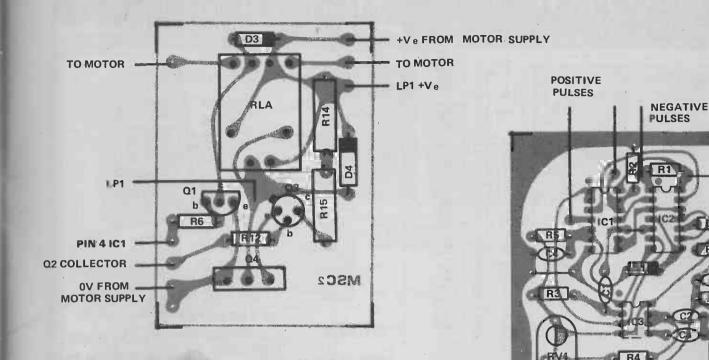
The positive-going reference pulse is fed directly to pin 6 of IC2c, where it is compared with the negative-going version of the input pulse on pin 5. The action of IC2c is such that its output is normally high, but switches low for a period equal to the difference between the reference and input pulse widths only when the input pulse duration is less than that of the 1.5mS reference pulse. This negative-going output pulse, which has a width that is variable between zero and a nominal 0.5mS, is used to rapidly discharge C4 via D1 and thus cause the output of ICld to switch high and drive relay RLA on via Q1 and R6. This relay, which dictates the direction (forward or reverse) of the motor that is being controlled, is thus off when the input

pulses are greater than 1.5mS (nominal), and on when the input

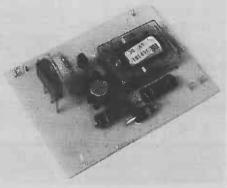
The 1.5mS reference pulse of IC3 is inverted by IC1c and fed to pin 13 of IC2b, where it is compared with the positive-going version of the input pulse from the decoder. The action of IC2b is such that it's output is normally high, but switches low for a period equal to the difference between the reference and input pulse widths only when the input pulse duration is greater than that of the 1.5mS reference pulse. This negative-going pulse, which also has a width that is variable between zero and a nominal 0.5mS, is fed to pin 9 of IC2d

Thus, a negative-going pulse appears on pin 9 of IC2d if the decoder pulse is greater than 1.5mS, or on pin 8 of IC2d if the decoder pulse is less than 1.5mS. Consequently, IC2d generates a positive-going output pulse that has a width that varies from zero on a 1.5mS decoder input pulse to 0.5mS on a 1mS or 2mS input pulse.

This pulse is fed, via D2, to a pulse-expander circuit designed around IC4, which expands the pulse width by a factor of about 40. The resulting expanded pulse is passed on to the external motor via transistors Q2 to Q4 and the contacts of the relay, and is used to give pulse-width or variable


mark/space-ratio control of the motor. speed. Diode D4 is used to damp motor back-EMF, and lamp LP1 is used to minimise the effects of

interference-generating current surges. In practice, RV1 is used to adjust the width of the reference pulse (nominally 1.5mS) so that the motor speed is zero when the transmitter joy-stick control is in its central or null position, and RV2 is used to adjust the expansion factor of the pulse expander circuit and thus pre-set the maximum speed of the motor when the transmitter control is in its 'maximum' position.


BUYLINES

The relay is the only component that calls for comment here. It is a 6 Volt 2-pole changeover type with a coil resistance of 70R, and is available from Greenweld, 443 Millbrook Road, Southampton, SO1 OHX. The price is £3.30, including postage and the usual extras.

PROJECT: Speed Controller

Above left and almost absolutely right are the component overlays for the speed controller.

And this is how the boards should look once you've built them up. Check very carefully before switching on.

PARTS	LIST		
RESISTORS (all 1/4	w 5%)	SEMICONDUC	4001
R1, 2 R3, 7, 11	47k 4k7	IC2 IC3, 4	4011 555
R4 R5 R6, 10 R8 R9	100k 2M2 2k7 220k 10k	Q1 Q2 Q3 Q4	BC182L BC212L BFY50 TIP33A
R12 R13, 14	470R 12R 1W	D1, 2 D3 D4	IN4148 4001 IN5401
CAPACITORS C1, 2, 3 C4, 5, 6, 7 C8	10n polyester 100n polyester 100u 25V electrolytic	Relay = 6V, 1	2-pole changeover type. Coil
		resistance 70R.	

ELECTRONICS TODAY INTERNATIONAL - JULY 1979

What A Turn On

BIN

R12

0V

When installation is complete, turn on all power switches, check that the unit functions correctly, and then adjust pre-set pots RV1 and RV2 for the required operation. To set RV1, move the transmitter joy stick to the required 'null' position, and then adjust RV1 for zero motor speed: under this condition the relay should be on the verge of switching between the on and off states. Next, move the transmitter joy stick fully forward, and adjust RV2 for the desired maximum motor speed. The setting up procedure is then complete.

R9

F667

+Ve FROM DECODER

MSC1

Finally, note that the operation of the motor speed controller can be adversely affected by electrical interference from motors, etc. All motors in the model must therefore be adequately suppressed. A 100n disc ceramic connected directly across the motor terminals works pretty well in most cases.

FEATUR

CMOS CLOCKS

There are many ways of using the CD4001 and CD4011 CMOS ICs to make bistable, astable and monostable multivibrator circuits. Ray Marston presents the definitive work on the subject, with 40 practical circuits.

THE AMATEUR AND PROFESSIONAL circuit designer often finds himself in the situation where he needs to use a minimum-cost CD4001 or CD4011 CMOS pulse or clock generator circuit, or where he needs to use a few spare CMOS NAND or NOR gates from an existing circuit to make up a multivibrator that will meet his specific design needs. In either case, the designer will find a concise guide to practical NAND- and NOR-gate CMOS multivibrator circuits of inestimable value.

This article is just such a guide. It presents some forty different ways of using the low-cost CD4001 and CD4011 quad 2-input gate CMOS integrated circuits in bistable, astable and monostable multivibrator applications. All of the circuits shown can be operated over the full five volts to fifteen volts supply range when used with 'B' series CMOS.

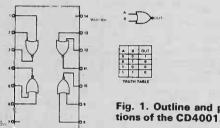
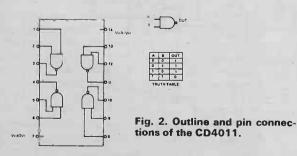
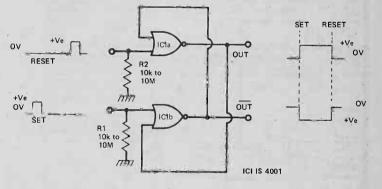



Fig. 1. Outline and pin connec-

THE CD4001 and CD4011 ICs

Figures 1 and 2 show the outlines and pin connections of the CD4001 and CD4011 integrated circuits. These two ICs are quad 2-input gates. The CD4001 provides NOR gate functions and the CD4011 provides NAND gate functions. Fig. 1 shows the truth table of each of the four NOR gates of the CD4001. Note that the output is high if both inputs are low, but goes low if either or both inputs go high. Fig. 2 shows the truth table of each of the four NAND gates of the CD4011. The output is normally high and goes low only if both inputs are high.



ELECTRONICS TODAY INTERNATIONAL - JULY 1979

The CD4001 and CD4011 are very inexpensive ICs. They typically retail at about 16 pence each in one-off. quantities (allowing for some variation between suppliers), which works out at about 4 pence per gate. They can be used in a wide variety of very useful two-gate multivibrator applications and are thus highly costeffective devices.

Bistable Multivibrator Circuits

The CD4001 and CD4011 can both be used in two-gate R-S (Reset-Set) bistable multivibrator circuits, but have quite different input triggering requirements. Fig. 3 shows the practical circuit and waveforms of a pulsetriggered NOR version of the bistable. The circuit has two outputs, a normal output from IC1a and an inverted output from IC1b. When a positive-going trigger pulse which switches between roughly zero and full supply is applied to the IC1b input, the normal output sets high and locks in this state irrespective of any further signals at the input of 'IC1b. The output can only be reset low again by applying a positive-going pulse to the input of IC1a, at which point the output goes low and is then immune to any subsequent trigger pulses at the input of IC1a.

Fig. 3. Practical circuit of a pulse-triggered NOR bistable.

Note that the input terminals of IC1a and IC1b are tied to ground (the zero-volts line) via R1 and R2: these resistors can have any convenient values in the range 10k to 10M. If inputs to IC1a and IC1b are directcoupled from preceding logic networks, however, R1 and R2 can be omitted from the circuit.

Manual NOR Gate

Fig. 4 shows a manually-triggered version of the Fig. 3 NOR gate circuit. This type of circuit is often referred to as a 'noiseless' switch, since its output is unaffected by the contact bounce, etc., of its two control switches.

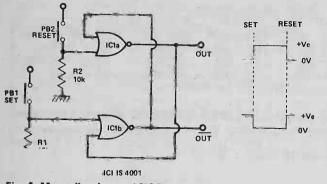


Fig. 4. Manually triggered NOR bistable.

NAND Bistable

Fig. 5 shows the CD411 NAND gate version of the bistable circuit. This circuit is almost identical with that of Fig. 3, except for the positioning of R1 and R2. Note, however, that the NOR gate circuit needs positive-going trigger pulses, while the NAND circuit needs negative-going pulses, and that the set pulse is applied to IC1b in the NOR circuit, but to IC1a in the NAND circuit.

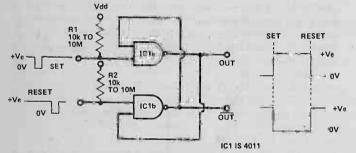


Fig. 5. A CD4011 NAND bistable, pulse triggered.

Manual NAND Bistable

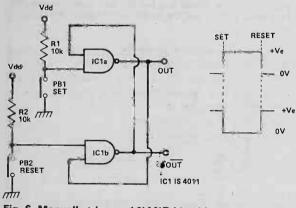


Fig. 6. Manually triggered NAND bistable.

Fig. 6 shows the manually-triggered version of the NAND-type bistable. Note here that although R1 and R2 are shown as having values of 10k, they can in fact have any resistance values from a few thousand ohms up to about 10M, depending on the precise details of the specific application. This versatility leads to the deverlopment of the touch-triggered NAND bistable circuit of Fig. 7, in which R1 and R2 have values of 10M, and the circuit can be triggered by placing any resistance that is + significantly less than 10M (such as finger resistance) ov across the touch contacts. R3 and R4 are used in this circuit to protect the inputs of the two gates.

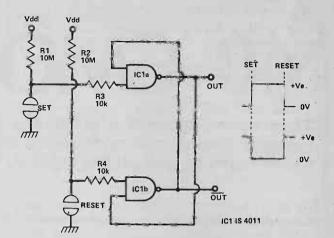
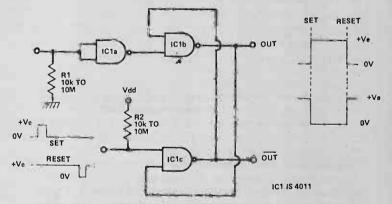
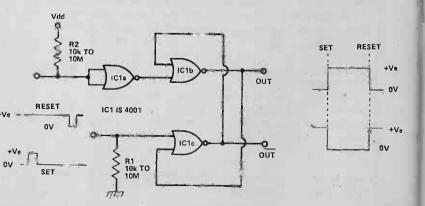




Fig. 7. Touch-triggered NAND bistable.

The bistable circuits that we have looked at so far all use same-polarity (either both positive or both negative) trigger signals. In some applications, however, it is necessary or convenient to use opposite-polarity signals to trigger the bistable, and this type of action can be obtained by placing an inverter stage in series with one or other of the normal bistable input terminals. Figs. 8 and 9 show two alternative circuits of this type.

Using opposite-polarity signals to trigger a 4011 bistable, Fig. 8 (above), and a 4001 bistable, Fig. 9 (below).

ELECTRONICS TODAY INTERNATIONAL - JULY 1979

Fig. 10 shows alternative ways of connecting a 2-input NAND or NOR gate so that it acts as a simple pulse inverter stage. These circuits are useful in a multitude of applications.

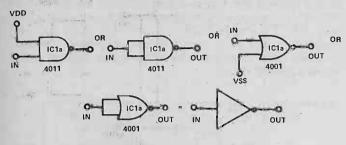
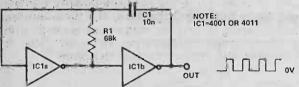



Fig. 10. Using a 2-input NAND or NOR gate as an inverter.

Basic 2-Gate Astable Circuits

The CD4001 and CD4011 can both be used in a variety of basic 2-gate astable multivibrator circuits. In these circuits the gates are connected as simple inverters, so the two types of IC give identical performances.

CMOS Astable

Fig. 11. Circuit of the basic 2-gate CMOS astable.

The most basic and useful 2-gate CMOS astable circuit is shown in Fig. 11. This circuit generates a decent square wave output, has excellent thermal stability and operates at about 1 kHz with the comfort values shown. The frequency is inversely proportional to the C-R time constant, so the frequency can be raised by lowering the values of either C1 or R1. In practice, C1 must be a non-polarized capacitor, and can have any value from a few tens of picofarads to a few micro-farads. R1 can have any value from about 4k7 to 10M. For variable frequency operation, wire a fixed and a variable resistor in series in the R1 position.

The output of the Fig. 11 astable circuit switches (when lightly loaded) almost fully between the zero and positive supply voltage levels, but the junction of R1 and C1 is prevented from swinging below zero or above the positive rail levels by the built-in clamping diodes at the input of IC1a. This characteristic causes the operating frequency of the circuit to be somewhat dependent on supply rail voltages. As a rough rule of thumb, the frequency falls by about 0.08% for each 1% rise in supply voltage. Typically, if the frequency of this astable is normalised with a 10 volt supply, the frequency will fall by 4% at 15 volts, or rise by 8% at 5 volts.

Also, the operating frequency of the Fig. 11 circuit depends somewhat on the transfer voltage value of the individual gate that is used and can be expected to vary by as much as 10% between individual ICs. The output symmetry of the waveform is also dependent on the transfer voltage value of the IC and, in most cases, the circuit will give a non-symmetrical output. In the vast majority of 'hobby' and other non-precision applications, these deficiencies of the basic astable circuit are of little practical consequence.

ELECTRONICS TODAY INTERNATIONAL - JULY 1979

Some can be minimised by using the 'compensated' astable circuit of Fig.12, in which resistor R2 is wired in series with the input of IC1a. This resistor can have any value between two and ten times that of R1, and its main purpose is to allow the R1-C1 junction to swing freely below the zero and above the positive supply rail voltages during the switching action and thus reduce the dependance of the circuit operating frequency on the supply voltage. Typically, when R2 is given a value ten times greater than R1, the frequency varies by only about 0.5% when the supply voltage is varied between 5 and 15 volts.

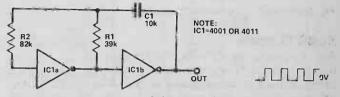
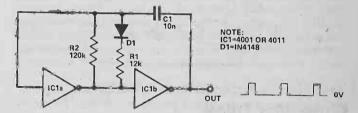



Fig. 12. A compensated astable circuit.

The basic and compensated astable circuits of figs. 11 and 12 can be built with a good number of detail variations. Some of these are shown in Figs. 13 to 18. In the basic astable circuit, for example, C1 alternately charges and discharges via R1. Figs. 13 to 15 show how the basic circuit can be modified to give alternate C1 charge and discharge paths.

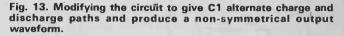


Fig. 13 shows one way of modifying the stable so that it gives a non-symmetrical output waveform. Here, C1 charges in one direction via R1 and R2 in parallel, to give a high output, but discharges in the reverse direction via R2 only, to give a low output.

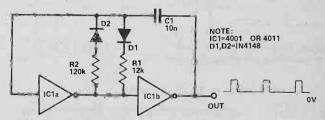


Fig. 14. Controlling the astable's on and off time.

On/Off Control

Fig. 14 shows how the circuit can be further modified by also wiring a diode in series with R2, so that the ON time of the output is controlled only by R1, and the OFF time is controlled only by R2. These two circuits can be made to give variable outputs by replacing either or both of their timing resistors with a fixed and a variable resistor in series.

news digest.

CARRY-PACKS FROM JVC

A new range of equipment from JVC brings their VHS domestic video system into the portable market.

Leading the range is the HR4100 colour portable video vassette recorder, with a price tage of £799.92 including VAT' it is fully compatible with all VHS recorders and weighs only 9.3 kg, complete with cassette, battery pack and RF converter. The new GC4100 colour video camera is a self-contained unit

The new GC4100 colour vide camera is a self-contained unit with the camera control unit built into the camera head. Two-tube design uses a new colour strife filter to improve colour reproduction, with an aperture correction circuit to give excellent resolution. Recording is possible with illumination as low as 100 lux. Retail price will be £934.20p. JVC have also launched the

JVC have also launched the TV41 tuner/timer, which, when connected to the HR4100, provides all the usual record/ playback facilities of a decktype recorder, the HR 3330, is a development of the previous successful model, but also includes extra refinements such as eight day timer, remotecontrol pause switch and audio dubbing facilities.

For further information on this new video range, contact JVC (UK) Ltd., Eldonwall Trading Estate, Staples Corner, 6-8 Priestley Way, London NW2 7AF. to give

OPTO FETS

A new trio of opto-coupled FETs, available from Jermyn-Mogul Distribution, feature a minimum isolation resistance of 100 gigohms between input and output.

These new GE opto-couplers consist of a gallium arsenide infra-red emitting diode coupled to a symmetrical bilateral silicon photo detector. The detector is electrically isolated from the input and performs like an ideal isolated FET designed for distortion - free control of low level AC and DC analogue signals. They do this by varying in resistance from between 100 ohms to 300 megohms, the change in resistance being controlled by the amount of current flowing through the infra-red emitting diode. Applications include isolated

Applications include isolated variable attenuators, 70 db automatic gain control, remote band switching, sample and hold circuits, optically isolated multiflexers and reed relay replacement. The H11F family come in the popular six pin DIL package.

For products and application sheets contact Jermyn-Mogul Distribution of Vestry Estate, Sevenoaks, Kent. ELECTRONICS TODAY INTERNATIONAL - JULY 1979

Variable Symmetry

Fig. 15 shows how the astable can be modified to give a variable symmetry or M/S-ratio output, while maintaining a near-constant frequency. C1 in this circuit charges on one direction via D1-R2 and one half of RV1, and in the other direction via D2-R1 and the other half of RV1. The M/S-ratio can be varied over the range 1:10 to 10:1 via RV1.

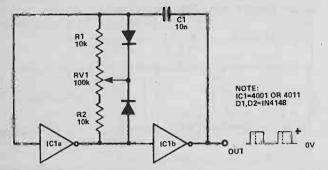


Fig. 15. Controlling the mark/space ratio.

Fig. 16 shows the circuit of a multi-tone push-button activated astable. Normally, when all push-button switches are open, R5 holds the input of IC1a (and thus the output of IC1b) low. Resistors R1 to R4 all have values that are low relative to R5, so the circuit acts as a normal astable when any one of the push-button switches is closed. This circuit can be used in multi-tone musical instruments and gadgets, etc. and has the major advantage that it draws negligible current when in the standby mode. There is no limit to the number of push-button switches that can be used with the circuit.

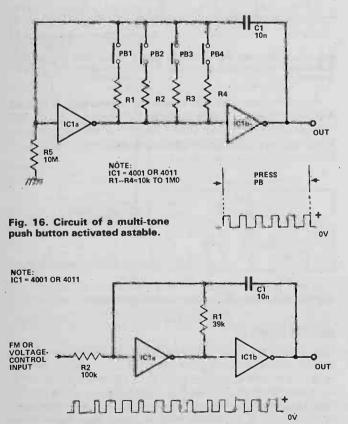


Fig. 17. Frequency modulation of an astable.

Frequency Modulation

Fig. 17 shows how the astable can be subjected to frequency modulation or voltage control of frequency by simply feeding the FM or voltage-control signal to the input of IC1a via a resistance that is much larger than R1 and Fig. 18 shows how the circuit can be further modified to act as a special-effect voltage-controlled oscillator that shuts off when the input voltage falls below a pre-set value.

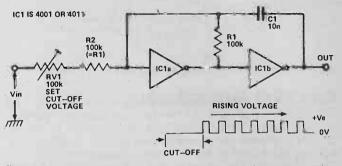
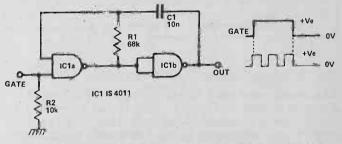



Fig. 18. Using an astable as a voltage-controlled oscillator with an output cut-off.

Gated 2-Gate Astable Circuits

Fig. 19. A NAND astable with a normally-low output, gated by a high input signal.

All of the astable circuits of Figs. 11 to 15 can be modified for gated operation, so that they can be turned on and off via an external signal, by simply using a 2-input NAND or NOR gate in place of the inverter in the IC1a position and applying the input control signal to one of the gate input terminals. The CD4001 and CD4011 ICs can both be used in this type of application, but give quite different types of gate control and output operation. Figs. 19 and 20 show the two basic versions of the gated astable circuit.

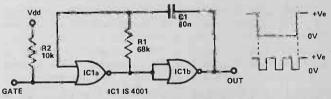


Fig. 20. A NOR astable with a normally-high output, gated by a low input signal.

Note that the Fig. 19 NAND astable circuit has a normally-low output and is gated by a high input signal, while the fig. 20 NOR astable has a normally-high output and is gated by a low input signal. Also note that, although R2 is shown in the diagram as having a value of 10k, R2 can in fact have any value in the range 10k to 10M and can be omitted altogether if the gate signal is applied from a preceeding logic state.

FEATURE: 40 CMOS CLOCKS

Note in the Fig. 19 and 20 circuits that the output signal terminates immediately the input gate signal is removed. Consequently, any noise present at the gate terminals of these circuits also appears at their outputs.

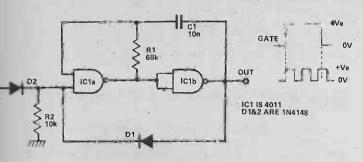
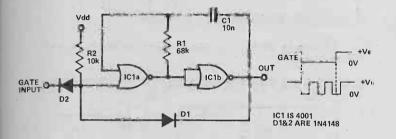



Fig. 21 (above) and Fig. 22 (below) overcome the problem of noise appearing at the gate terminals.

Figs. 21 and 22 show how the circuits can be modified to overcome this defect. Here, the gate signal of IC1a is derived from both the outside world and from the output of IC1b via diode OR gate D1-D2-R2. As soon as the circuit is gated from the outside world via D2 the output of IC1b reinforces the gating via D1 for the duration of one half astable cycle, thus eliminating any effects of a noisy outside world signal. The outputs of the circuits are complete numbers of half cycles. Note that R2 is an essential part of these circuits.

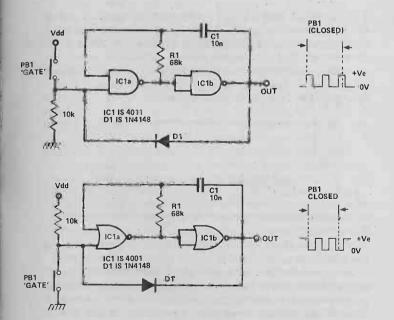


Fig. 23 (top) and Fig. 24 (above) show manually-triggered astables with noise-elimination networks.

ELECTRONICS TODAY INTERNATIONAL - JULY 1979

Figs. 23 and 24 show manually-triggered versions of the Fig. 21 and 22 circuits. These circuits are of particular value when they are used as low speed clock generators, operating at about 5 Hz: when PB1 is briefly stabbed, the generate a single clean clock pulse: when PB1 is held down, they generate five clean clock pulses per second.

Clock Generator Circuits

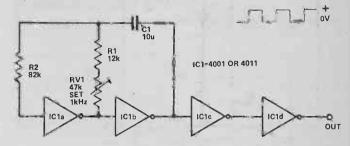


Fig. 25. Speeding up the rise and fall times of the astable output to produce clean clock signals.

The 2-gate astable circuit is generally not suitable for direct use as a clock generator with fast-acting counting and dividing circuits. Such circuits require the use of clean clock signals, with fast rise and / or fall times. The problem is that 2-gate astables designed around 'A' series or non-buffered CMOS produce clock outputs with rather slow rise and fall times, whereas 2-gate astables designed around buffered-output 'B' series CMOS produce outputs with good rise and fall times, but tend to produce 'dirty' clocking if there is the slightest trace of noice on their power supply lines.

Fortunately, these problems can easily be overcome by wiring a couple of inverter-connected gate stages in series with the output of the astable circuit, as shown in the example of Fig. 25. These inverter stages speed up the rise and fall times of the astable output waveform and also produce effective level shifting between the output of the astable and the clock input terminal of any external device, thereby reducing or eliminating the effects of noise on the clock circuit.

The Ring-of-Three Astable Circuit

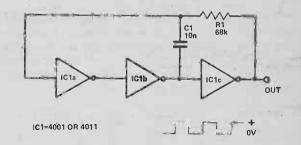


Fig. 26. The 'ring of three' astable circuit produced a very clean output waveform.

An alternative way of making a clock generator is to use the 'ring-of-three' astable circuit of Fig. 26. This circuit is similar to the basic circuit of Fig. 11, except that the positions of R1 and C1 are transposed, and the inverting input stage (IC1a) of the Fig. 11 circuit is effectively replaced by an ultra-high-gain non-inverting stage (comprising IC1a and IC1b in series) in the Fig. 26. circuit. Because of the very high gain of its composite input stage, the Fig. 26 'ring-of-three' circuit produces a very clean output waveform, with excellent rise and fall times, and is directly suitable for use as a clock generator.

The 'ring-of-three' astable circuit can be subjected to all of the basic design variations shown for the 2-gate astable. For example, C1 alternatively charges and discharges via R1 in the same way as in the Fig. 11 circuit, so the circuit can be subjected to all of the variations shown in Figs. 13 to 15. It can be designed in either basic or 'compensated' versions, etc.

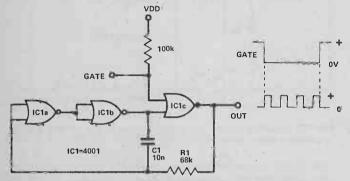


Fig. 27. A gated NOR 'ring of three' circuit with a normally low output, gated by a low input.

The 'ring-of-three' circuit offers interesting possibilities when it is used in the gated mode, because it can be gated on and off via either its IC1b or IC1c. stages. Figures 27 to 30 show four variations on this, theme.

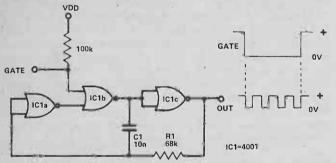
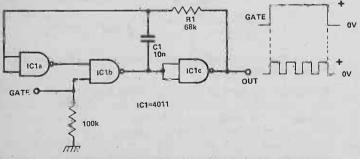
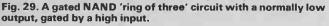
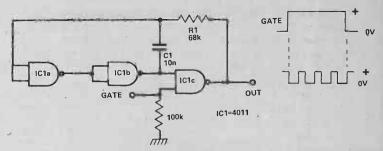





Fig. 28. A gated NOR 'ring of three' circuit with a normally high output, gated by a low input.

Figs. 27 and 28 show alternative versions of the gated NOR-type 'ring-of-three' circuit. Both circuits' need a 'low' signal to gate the astable on. Note that the output of the circuit is normally-low if the gate signal is applied to IC1c, or is normally-high if the gate signal is applied to IC1b.

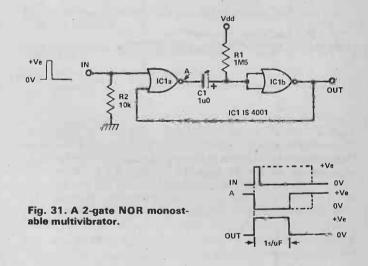
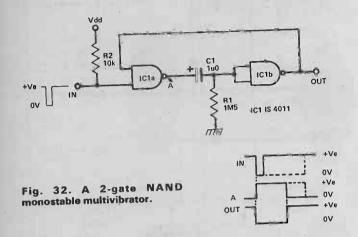


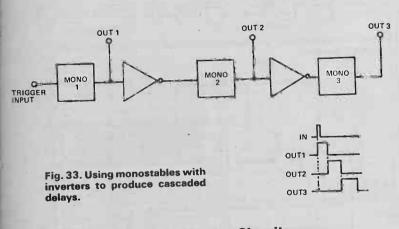
Fig. 30. A gated NAND 'ring of three' circuit with a normally high output, gated by a high input.

Similar variations are found in the NAND version of the gated 'ring-of-three' circuit, as shown in Figs. 29 and 30. These circuit need a 'high' signal to gate them on, and have a normally-low output if the gate signal is fed to IC1b, or a normally-high output if the gate signal is fed to IC1c.

Monostable Multivibrator Circuits


The CD4001 and CD4011 can both be used to make an exceptionally useful type of 2-gate monostable multivibrator or pulse generator circuit. The two basic versions of this circuit are shown in Figs. 31 and 32. In these circuits the duration of the output pulse is determined by the values of R1 and C1, and approximate one second per microfarad of C1 value when R1 has a value of 1M5. In practice, C1 can have any value from roughly 100 p to a few thousand u, and R1 can have any value from about 4k7 to 10M.

One outstanding feature of these circuits is that the input trigger pulse or signal can be direct coupled and has no appreciable effect on the length of the circuit's output pulse: the trigger pulse can be shorter or longer than the output pulse. The NOR version of the circuit has a normally-low output, and is triggered by a positivegoing input pulse, while the NAND version of the circuit has a normally-high output and is triggered by a negative-going input pulse.


A signal feature of these circuits is that the pulse signal appearing at point "A" has a length that is equal to that of either the output pulse or the input trigger pulse, depending on which is the greater of the two. This feature is of value when making pulse-length comparators and over-speed alarms, etc.

FEATURE: 40 CMOS CLOCKS

The Fig. 31 and 32 circuits have only two significant defects. One of these is that the pulse length depends somewhat on the transfer voltage value of the individual IC that is used in the circuit. The other is that the pulse length also depends somewhat on the supply voltage value that is used with the circuit, just as the operating frequency of the basic 2-gate CMOS astable varies slightly with the supply voltage value. These defects are of little consequence in most practical applications, however.

If a number of the Fig. 31 and 32 circuits are to be interconnected to give cascaded delays (as in a delayed-pulse generator, for example), an inverter stage must be interposed between the outputs and inputs of successive monostables, to give correct-polarity trigger signals. Figure 33 shows the basic system.

Alarm Call Sound Generator Circuits

A single CD4001 or CD4011 IC and one or more transistors can readily be used to make a variety of types of very useful alarm call sound generator circuits. Figs. 34 to 41 show some practical circuits of this type. In all cases, the circuits can be powered from any supply in the range 5V to 15V and can be used with any speaker in the range 3R to 100R. Output powers range from tens to hundreds of milliwatts, depending on speaker impedances and supply rail voltages used, but can readily be boosted to tens of watts by using additional transistor power-boosting stages.

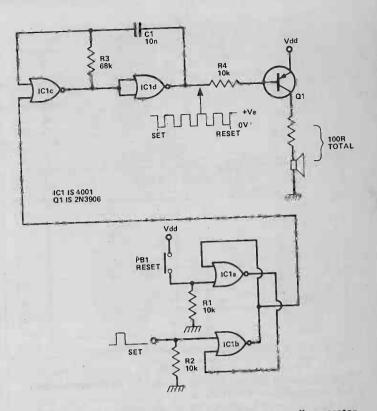


Fig. 34. Circuit of a NOR latching monotone alarm call generator.

Figs. 34 and 35 show two versions of a latching monotone alarm call generator. IC1a and IC1b are wired is applied to the circuit the IC1a-IC1b bistable selflatches and switches on the IC1c-IC1d-1kHz astable tone generator. The circuit can be reset to the OFF state by momentarily closing PB1.

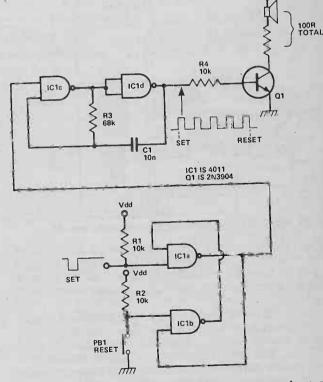


Fig. 35. Circuit of a NAND latching monotone alarm call generator.

FEATURE: 40 CMOS CLOCKS

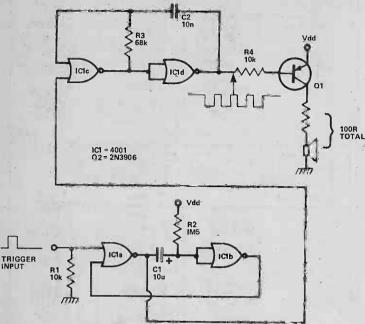
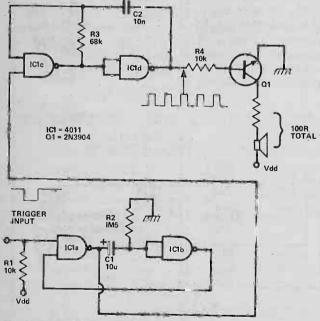
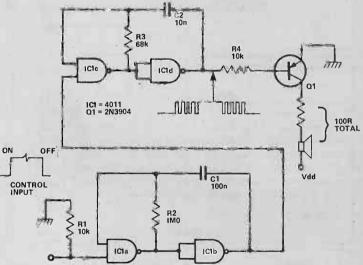
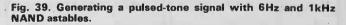


Fig. 36. A NOR alarm call generator with auto turn-off.

Figs. 36 and 37 show versions of an auto-turn-off monotone alarn call generator. IC1a and IC1b are wired as a monostable multivibrator, which turns on the IC1c-IC1d astable for about 10 seconds each time that it is triggered.




Fig. 37. A NAND alarm call generator with auto turn-off.


The Fig. 38 and 39 circuits generate a pulsed-tone signal, in which a 1 kHz astable (IC1c and IC1d) is gated on and off by a 6 Hz astable (IC1a and IC1b) when a suitable control signal is applied to the input terminal of IC1a.

Finally, Fig. 40 shows a warble-tone generator, which switches through a 2-tone cycle once per second when a suitable control signal is applied to the inputs of IC1a and IC1c, and which generates a sound similar to a British police car siren. The depth of frequency variation of the circuit is determined by R3, which can have any value in the approximate range 120k to 1M0.

Fig. 38. Generating a pulsed-tone signal with 6Hz and 1kHz NOR astables.

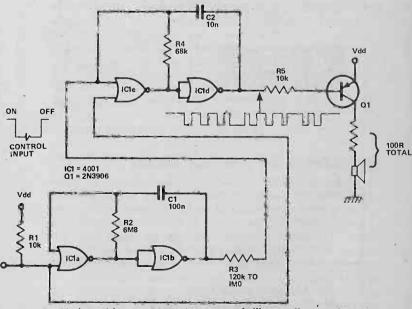


Fig. 40. A warble-tone generator — sounds like a police car siren.

audiophile ...

Hi-fi 79 at the Cunard Hotel attracted Ron Harris this month, as did a new record cleaner. Also a good chance to show how witty you are and win a free subscription.

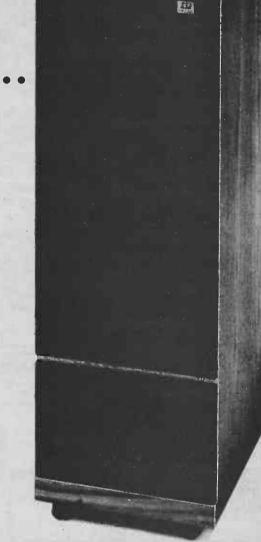
A TALE OF MANY speakers is what the 1979 Spring hi-fi show turned into. Wandering the halls of the Cunard in search of the sonic grail you get buffeted from side to side by the alternate blasts of sound emanating from the demo rooms. After about two hours of solid listening I start to get ear fatigue and thingd son't seem the same somehow.

In consequence things get done in bursts of two hours at a time punctuated with clincking of refreshments. On the first pass this year it became apparent that it was to be the Year of the Cone.

MA24U

Monitor Audio first. The MA2 is a 'domestic reference' design and stands some 850mm high. (About 33in in English height). It will handle around 100W of programme power, and produces a very nice sound indeed. At about £300 the pair they are going to give the competition a tough time.

Wharfedale have extended their 'E' series upwards into an E90 design which is twice the size of the E70 nearly and more than twice as imposing. We've got no photographs of the beast simply because Wharfedale hadn't got any and haven't kept their promise to send us any since! So there. Its still a nice speaker anyway.


KEFs contribution to the herd was a small one. Tiny in fact. I'd go so far as to say it was so small I almost missed it. The Reference 101 is a bookshelf speaker that just might fit into a bookshelf. This was the real surprise of the show, however, as upon first encounter the almost universal reaction was to hunt the 105s that were not hiding behind the curtains.

The sound was open and spacious with good imaging and a convincing bass response. Very nice one Kef.

Celestions Follies

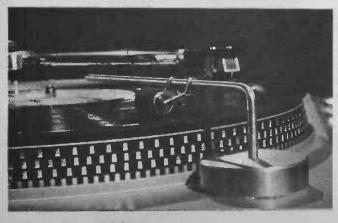
The Celestion stand was dominated by two huge double boxes which, when energised, did a quick 'room empty' job. The efficiency is somewhat high you see, and the amplifier somewhat powerful.

I think they're designed for PA and studio usage but they are finished in wood veneer and more than likely quite a few dozen will end up in living rooms. Big living rooms I hope. At their price and size they come up against things like the JBLs and for sound quality I personally prefer the P1s (that's what they're called by the way). Well worth the listen if you're in that market.

Above: the Monitor Audio MA2 loudspeaker. A highly recommended domestic design.

Below: the Celestion PI. It sounds as imposing as it looks.

62


Below: KEF's 101 reference model. If your living room (or preference) favours small enclosures then don't miss 'em out.

Below: Celestions new Dittons. In the centre is the new 662, which is their new version of our reference-the faithful ole 66. It remains to be compared whether it is *that* much better!

Below: No this wasn't at the show but it's worth the look anyway. A new record cleaner called a TANTRACK. Two arms are provided to cope with any turntable height, and the finish is a very posh steel and chrome. Available from Dorking Systems Ltd, 23 South Street, Dorking, Surrey. Price £6.25 plus VAT.

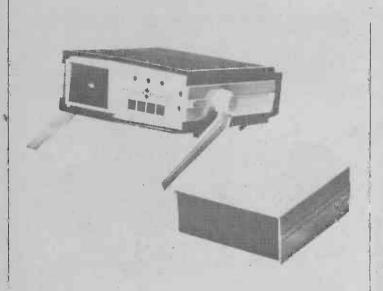
Left: JVCs KDA8 computerised cassette deck. It fixes up its own own bias and equalisation levels, and can cope with metal tape.

> Right: Goldring headphones! Superex classic CL1s, a good smooth sound at a decent price No, I'm not gonna tell you how much, find out yourselves!

Head Man

New for heads from Goldring is the Suprex headphone range. Amongst the four models they decided to import the Classic C1 — the middle of the group caught my attention most. They possess a nice smoothness to them that could be lived with. And they're comfortable. Koss take note please. Speaking as someone stuck with the habitual earache engendered by ESP10s the Suprex could be very attractive if for no other reason than that.

On Your Metal


Scotch and JVC between them made an exhibition of the new metal tape formulations and the JVC KDA8 machine to use them. The KDA8 is quite a story in itself really. It sets up for each type offered to it by recording a test tone and optimising bias, sensitivity and equalisation automatically — it even rewinds to the beginning again and all in 25secs. The demonstration was most impressive — as they usually are — and we hope to do more with the machine in the near future.

Before anyone asks I could find no possible reason to include the beautiful Felicity Kendal in this months Audiophile. She was not at the exhibition nor has she anything to do with any of the products featured here. That being the case I have no reason to mention the lovely lady and therefore I shall refrain.

This here picture advertises Marantz. But we couldn't find the Marantz stand!! Now with a picture like this, there just HAS to be a brilliant, witty, superb caption. But we can't find THAT either, so its open to you lot. The best wins a years subscription. Closing date June 30th. Mark envelopes 'Audiophile Caption.'

.....news digest.....

BARGAIN BOXES

A new service from OK Machine & Tool can save up to 65% on the cost of cases for some commercially produced items. If you need more than 1000 units, OK can incorporate your special requirements into their latest range of Pac Tec moulded enclosures, available in over 25 sizes.

As an example of the success of their new cost-cutting service, OK have been able to produce 2,500 alarm unit housings for \$3.92 each, compared to \$5.52for sheet metal units. Taking the total assembly time into account, the saving rose to 65%. Customised front and rear panels can be supplied.

For further information, contact OK Machine & Tool (UK) Ltd, 48a The Avenue, Southampton, Hants SO1 2SY.

ELECTRONIC TACHO

Orbit Controls are now producing a four decade electronic tachometer for measuring speed, rate, flowrate and frequency.

The 74A 430 has a four decade, solid state, digital readout and a pre-wired timebase, controlled by a high precision 1MHz crystal oscillator.

Flexibility of construction allows pre-wiring to any interval from 1mS to 10S. The unit features high noise immunity and freedom from false triggering counts.

The frequency range extends from 0.5Hz to 10kHz with an input sensitivity of 100mV (adjustable). Input, positive pulse or sinewave, is fully protected to 240V rms. Power may be from 100 - 110V or 210 - 260V 50/60Hz, or from 12V DC.

Further details from Orbit Controls Ltd, Lansdown Industrial Estate, Gloucester Road, Cheltenham, Gloucestershire GL51 & PL

New IC test clips from Lektrokit offer a simple means of accessing any IC pin or lead. The new aid clips over the IC

The new aid clips over the IC bringing its individual pin connections out to a set of contacts at the opposite end of the clip. There are test clips available to match 8, 14 and 16 pin DIL packages. The gold-plated, phosphor

The gold-plated, phosphor bronze spring contacts have been designed to achieve a wiping/cleaning action, making for high reliability. The TC-14 which, as its name

The TC-14 which, as its name suggests, clips over a 14 pin DIP, costs £2.95. Further details from Lektrokit Ltd., Sutton Industrial Park, London Road, Earley, Reading, Berkshire RG6 1AZ,

LOW KEY

A new range of enclosures designed for housing a variety of keyboards has recently been introduced by Boss Industrial Mouldings.

ustrial Mouldings. Bimconsoles are all-aluminium cases with a textured black base which contrasts with either the semi-gloss sand or charcoal grey top panels.

The top panels slope at about 20 to provide a relaxed keyboard operating position. Vibration is reduced to a minimum by the use of a gasket assembly between top and bottom panels.

Bimconsoles are available in three sizes and are suitable for both prototype and OEM type applications. Further details

from Boss Industrial Mouldings Ltd, Higgs Industrial Estate, 2 Herne Hill Road, London SE24 OAU.

COOLING OFF

Got any hot-spots in your cabinets? You can get the air circulating round your equipment with the Vero Electronics Fan Tray (AB 087). Two versions (1U and 2U) are available for either 115V or 230V (50/60 Hz) input. Each is supplied with four 119mm square axial fans, but additional fans can be fitted as required.

The 2U version has a polyurethane foam filter covering the air intake. If your living room or office isn't a smokeless zone, never fear, the filter is cleanable. Both versions operate at low noise levels.

If you need cooling off, contact Vero Electronics Ltd, Industrial Estate, Chandler's Ford, Hampshire SO5 3ZR.

WATFORD ELECTRONICS

ILP MODULES 15-240 WATTS

We are now stockists for these world famous fully guaranteed (2 years guarantee on all modules) Pre amps, Amplifiers & Power Supplies.

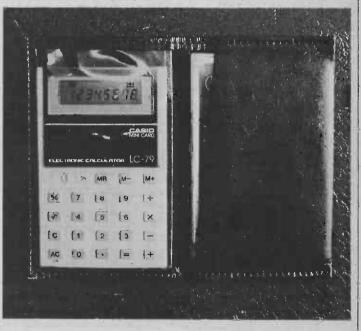
Max Pressengiliter. Insput. magnetic pickup 3m, V. estamit: 30m.V. Uutput: Mains 500m.V. Press. E.8.27, 3m, 3m, 3m, 3m, 3m, 3m, 3m, 3m, 3m, 3m	modules) Pre amps, Amplifiers & Power Supplies.								
HY30 Amplifier Mc1. 15 Watts into 80, externely easy to construct. Unput 15W RMS. Distortion 0.04% at 15W Freq. 10Ha (5KHz Supply 218). E 6. 27 HY30 Hi-Fi Amplifier Module. 25 Watts 80. Input sens. 500m V. Output 25W RMS. Distortion 0.04% at 25W. Freq. 10Ha (5KHz Supply 218). Price: E18.98 HY20 Amplifier Module. 60 Watts 80. Input sens. 500m V. Output 25W RMS. Distortion 0.04% at 25W. Freq. 10Hz (5KHz Power Supply 218). Price: E18.98 HY20 Hi-Fi / Dace Amplifier Module. 210 Watts 80. Input sens. 500m V. Output 25W RMS. Freq. 10Hz (45KHz Power Supply 248). Price: E18.98 HY300 (Big datd) Amplifier Module. 210 Watts 80. Input sens. Distortion 0.1%. Price: E18.98 HY400 (Big datd) Amplifier Module. 210 Watts 80. Input sens. Distortion 0.1%. Price: E18.98 HY400 (Big datd) Amplifier Module. 210 Watts 80. Input sens. Distortion 0.1%. Price: E18.98 FV000 (Big datd) Amplifier Module. 210 Watts 80.00 For W	HY5 Preamplif				, cerami	c 30mV	. Outpu	t: Mains	500mV
Hist.Amplifer Module 25 Watts B0. Input Sensitivity 500mV. Output 25W RMS. Distortion 0.04% at 25W. req. 1014:45K14: Supply 2.5W Proc. En.35. Distortion 0.04% at 25W. req. 1014:45K14: Supply 2.5W HY20 Hist.Proc. Amplifer Module - 12 Watts B0. Input sens. 500mV. Output 25W RMS. Treq. 1012:45K14: Power Supply 2.4W. Size 114 A. 102 Watts B0. Output 240 Watts RMS 40.114.x 100 x 85mm. Distortion 0.1%. Proc. En.8.84 Proc. 28.064 HY20 Hist.Proc. Amplifer Module - 210 Watts B0. Input sens. 500mV. Output 25W RMS. Treq. 1012:45K14: Power Supply 2.4W. Size 114 A. 102 wasts B0. Output 240 Watts RMS 40.114.x 100 x 85mm. Distortion 0.1%. Proc. En.8.84 Proc. 28.064 W100 (if) double - 100 Watts B0. Input sens. Distortion 0.1%. Proc. En.8.84 Proc. 28.064 W100 (if) double - 100 Watts B0.100 x 85mm. Distortion 0.1%. Proc. 28.064 Proc. 28.064 W100 En.016 En.8.84 Proc. 28.064 Proc. 28.064 W100 En.016 En.8.84 Proc. 28.064 Proc. 28.078 Proc. 28.064 W100 En.016 En.016 En.016 En.016 Strenge B0 Proc. 28.078 Proc. 28.078 En.016 En.016 W100 Proc. 28.078 Proc. 28.078 Proc. 28.078 Proc. 28.078 Proc. 28.078 W100 Proc. 28.078 Proc. 28.078	HY30 Amplifier	HY30 Amplifier Kit. 15 Watts into 8Ω, extremely easy to construct. Output 15W RMS, Distortion 0.1% at 15W Freq. 10Hz-16KHz. Supply ± 18V							
HY120 Amplifier Module — 120 Watts 80. Input sens. 500mV. Output 80V RMS. Text. 104-45 KHz. Power Suppl * 35V. Suppl * 35	HY50 Hi-Fi Amp							tput 25\ ± 25V	NRMS.
HY200 H-FL/2 bace Apulifier Module – 120 Watts 90. Input sens. 500mV 120W RMS. Decimal sense in 0.1% A. Durput 240 Watts 80X 40 114 x 100 x 88mm Benerics 0.1% A. Durput 240 Watts 80X 40 114 x 100 x 88mm Benerics 0.1% A. Durput 240 Watts 80X 40 114 x 100 x 88mm Benerics 0.1% A. Durput 240 Watts 80X 40 114 x 100 x 88mm Benerics 0.1% A. Durput 240 Watts 80X 40 114 x 100 x 88mm Benerics 0.1% A. Durput 240 Watts 80X 40 114 x 100 x 88mm Benerics 0.1% A. Durput 240 Watts 80X 40 114 x 100 x 88mm Benerics 0.1% A. Durput 240 Watts 80X 40 114 x 100 x 88mm Benerics 0.1% A. Durput 240 Watts 80X 40 114 x 100 x 88mm Benerics 0.1% A. Durput 240 Watts 80X 40 114 x 100 x 88mm Benerics 0.1% A. Durput 240 Watts 80X 40 114 x 100 x 88mm Benerics 0.1% A. Durput 240 Watts 80X 40 114 x 100 x 88mm Benerics 0.1% A. Durput 240 Watts 80X 40 114 x 100 x 88mm Benerics 0.1% A. Durput 240 Watts 80X 40 114 x 100 x 88mm Benerics 0.1% A. Durput 240 Watts 80X 40 114 x 100 x 88mm Benerics 0.1% A. Durput 240 Watts 80X 40 114 x 100 x 88mm Benerics 0.1% A. Durput 240 Watts 80X 40 114 x 100 x 88mm Benerics 0.1% A. Durput 240 Watts 80X 40 High Benerics 0.1%	HY120 Amplifier						upply ±	put 60V 35V	RMS.
HY400 (Big Daddy) Amplifier Module - 240 Watts AB. dol. Idealfor High Power Discor P A.	HY200 Hi-Fi/Dis	co Amplifie Freq. 10H	r Module — Z-45KHz. Po	120 Wat ower Supp	ts 8 Ω . In ply ± 45	nput ser V. Size	ns. 500r 114 x 1	nV 120V 00 x 85i	WRMS. mm
	HY400 (Big Dado						High Pov n. Distor	ver Disco tion 0.1	o or P.A. %
Chi		11	-	POWE	R SUPP			-rice: E	
PSU90 cm eH Y200 C1:1:1:0* 1.0.CK P LUG3 0.0.CKETs		1		PSU50) — Dri	ves 2 x	HY50s		£8.18
Jack Ploug Jack Pl			-	_ PSU90	one HY	200 .		4	£15.10*
Screenel Piste Open Mondadie In Image OPST Step IA DPDT Step 2.5 mm 136 106 10 10 20 10 </td <td>JACK PLUGS</td> <td></td> <td>SOCKET</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td>/:</td>	JACK PLUGS		SOCKET	5					/:
2 110 100 80 246 110 100 80 246 2.5mm 326 170 180 246 226 26 26	Screened Plas	stic open		in line couplers	SPST	2: 2A, 25	28p. 1/ 34p 1/	A DPDT c/	over 15p
MONO 25p 17p 12p 24p 12p 12p <td>2 5mm 1 130 1</td> <td>Op 8p Op 8p</td> <td>contacts</td> <td>11p 12p</td> <td>DPDT</td> <td>n/off</td> <td>38p 4 54p P</td> <td>USH BUT</td> <td>TON</td>	2 5mm 1 130 1	Op 8p Op 8p	contacts	11p 12p	DPDT	n/off	38p 4 54p P	USH BUT	TON
Dir PLUss P	MONO 1 250 1	40 130	20p 24p		SP chan	geover		PST on/off	-60p
2 Pri Loudgenister 10p					SPST bi	ased	85p	PDT 6 Tag	85p
Co-AXIAL (TV) T4p 14p 14p 14p 14p 14p 14p PHONE clours 10p 50 single 12p 12p </td <td></td> <td></td> <td></td> <td>20p 20p</td> <td>·DPDT or</td> <td>entre off</td> <td>79p N 150 P</td> <td>on Lockin ush to Mak</td> <td>g e 15p</td>				20p 20p	·DPDT or	entre off	79p N 150 P	on Lockin ush to Mak	g e 15p
Top Top <td>CO-AXIAL (TV)</td> <td>14p</td> <td>14p</td> <td>14p</td> <td>ROTA</td> <td>RY: Mak</td> <td>s your own</td> <td>multiway</td> <td>Switch.</td>	CO-AXIAL (TV)	14p	14p	14p	ROTA	RY: Mak	s your own	multiway	Switch.
Bradk Name Dir Dir <thdir< th=""> Dir <thdir< th=""> <thdir< td=""><td>assorted colours</td><td></td><td>8p double</td><td>-</td><td>modate</td><td>e up to 6</td><td>Wafers</td><td>essembly.</td><td>75p</td></thdir<></thdir<></thdir<>	assorted colours		8p double	-	modate	e up to 6	Wafers	essembly.	75p
Timm Top Top <td>A.</td> <td></td> <td></td> <td>20p</td> <td>Break</td> <td>Before Ma</td> <td>ake Wafers</td> <td>s. 1 pole/ /3 way. 6p</td> <td>12 way. /2 way</td>	A.			20p	Break	Before Ma	ake Wafers	s. 1 pole/ /3 way. 6p	12 way. /2 way
DC type 15p	2mm	10p	10p	=	Space	and Scre	ien	econ)	50
DM 900 3ty Digit LCD Multimeter with Capacitance Mater Transfrömmeters (Mann Pim, 220:240 V) Sty 49:0-99 (120:120 (120) (1	WANDER 3 mm DC Type AC 2-pin American	15p	20p		Dole / 2	to 4 way	4. 4 pole / 2	to 3 way	41p
Borgert Die Burgerteiner Mehrenzeiner (Eff Aug. 78) Borgert Die Burgerteiner (Brit Aug. 78) Borgert Bergerteiner (Brit Aug. 78) Borgert Bergerteiner (Brit Aug. 78) Borgert Bergerteiner (Brit Aug. 78) Borgert Bergerteiner (Brit Aug. 78) Borgerteiner (Brit A	and the second se	TRANSFO	RMERS* (Mai	ns Prim. 22	0-240V)	A	100 C		the second se
Capacitance Meter 12V: 4.5V-1.3A.4.5V-1.2A.6V-1.2A 322.11 45 35.86 35.87.8 (E11 Aug. 78) Complete National State National Nating National National National Nating National Natio	31/2 DIGIT LCD	8VA: 6V5	A 6V5A; 9V	.4A 9V4/	A; 12V3	AB	OXES	* ME	TERS*
Complete Kit 24/V.: 6V 1. 5A 6V.1.5A; 9V.1.3A, 9V.1.3A, 9V.1.3A, 9V.1.3A, 9V.1.3A, 9V.1.3A, 9V.1.3A, 20V.1.2V.1.3V.1.5V.1.5V.2A, 15V.2A, 12V.2A, 15V.1.5A, 20V.1.2 20V.1.2V.2A, 15V.1.5A, 20V.1.2 20V.1.3 20V.2.5A, 12V.2.5A, 12V.2.5A, 12V.2.5A, 12V.2.5A, 12V.2.5A, 12V.2.5A, 12V.2.5A, 12V.2.5A, 12V.1.5A, 9V.1.5A, 9V.1.5A, 9V.1.5A, 20V.1.2 20V.1	 Capacitance 	12V: 4.5V- 12V5A 12	1 34 4 5V-1.3	A 6V-1 2	A 6V-1 24	A la	2×1''	48 60	46x
E54.50*only (pAp B00) 12V-1A 12V-1A; 15V-BA 15V-BA; 20V-6A 12V-2A 15V-1A 16V-1A 15V-1A 16V-1A 16V-1A <td>(ETI Aug. 78) Complete Kit</td> <td>24VA: 6V-</td> <td>1.5A 6V-1.5/</td> <td>A; 9V-1.3A</td> <td>9V-1.34</td> <td>A: 4x</td> <td>4x11/2" 23/4x11/2"</td> <td>68 0-5</td> <td>ΟμΑ</td>	(ETI Aug. 78) Complete Kit	24VA: 6V-	1.5A 6V-1.5/	A; 9V-1.3A	9V-1.34	A: 4x	4x11/2" 23/4x11/2"	68 0-5	ΟμΑ
CRYSTALS# 100KH 292/24 150/16A 150/16A 200/16A 200/17A	£54.50 * only	12V-1A 12 20V6A	2V-1A; 15V8	A 15V84 290p	∖; 20V6 (45p.p&u	A 4x	5¼×1½*″ 2½×2″	88 0-5 64 0-1	00µA mA
ODKH2 385 100 val. 12 val. A 12 val. 12 val. 15 va	CRYSTALS*	12V-2A; 1	5V-1.5A 15V-	1.5A; 20V-	1.2A 201	V- 5x	4x2" 4x2"	92 0-5 88 0-1	OmA
10000BM 100 20V-2.5A 20V-2.5A 20V-2.5A 20V-2.5A 20V-2.5A 20V-2.5A 20V-2.5A 20V-2.5A 20V-2.5A 100	455KHz 385	350p (50p p&p) 7x5x2½" 129 0-30MA 100VA: 12V-4A 12V-4A: 15V-3A 15V-3A 8x6x3" 168 0-100MA			00mA				
4.332MHriz 232 600 p800). (N.8. p8p charge to be added above 12.48.3" 280 0.25V 4.333B 256 VOLTAGE REGULATORS + COMPUTER 0.300V AC 0.300V AC 10.7MHz 233 276 145 7905 220p 100 99 2102 100 99 2102 100 99 2102 100 90 2102 100 90 2100, AL 90 2100, AL 90 2102 100 90 2100, AL 90 2111 70 2100, AL 90 2111 70 2100, AL 90 2111 70 7	1.0008M 395 3.2768M 323	20V-2.5A 40V-1.25A	20V-2.5A; 3 40V-1.25A; 5	0V-1.5A	30V-1.5A V-1A 650	A; 10	x4¼x3″ x5x3″	162 0-1 190 0-2	A A
B COMP Current Stress Stres <tre>Stres <thstres< th=""></thstres<></tre>	4.032MHz 323 4.433619M 135	(60p p&p). our normal	(N.8. p&p cha postal charge.)	rge to be a	dded abov	12	x8x3"	260 0-2	5V 0V AC ·
10 10 14 100 14 100 14 100 14 100 14 100 14 100 14 100 14 100 14 100	8.08333M 275							"S'	
20.0MHz 223 15V 7815 145p - 21078 490 4423/k112" 48.0MHz 323 15V 7815 145p - 21078 490 - - 050/A 050/A	10.7MHz 323	5V 7805 12V 7812	145p 145p	7905	220p 2	101	99	478	ip each
48.0MHz 323 1A TO220 Plastic Casing 2111 175 D-000µA FTI Projects: Prats available 57805 80p 7905 90p 2114 785 595 For Click 120 7812 80p 7915 90p 2516 529.50 120 7818 85p 7918 90p 27108 775 B1037 128 40724 7824 85p 7915 90p 27108 775 B1LS97 128 120 7818 30p 79105 659 3064 TBA MC14411 958 50 78162 30p - 4047 750 TMS4035 240 12V 78115 30p 74175 TMS4035 240 14300H 170p 14357 74455 2875 TMS4032 240 12V 78112 30p 74455 2875 TMS4045 760 1309 1325	20.0MHz 323 27.648M 323	15V 7815 18V 7818	145p 145p		- 2	102-2 107B	170	0-5	OuA I
ETI Projects: Parts available 15V 7815 500 7915 500 2313 2393 Parts available 16V 7815 500 7915 500 27108 7715 810597 125 Parts available 16W 7818 500 7715 810597 125 Ambush, Gui- tar Effect Unit. 5007 78105 65p 74175 1085 2407 2500 65p 74175 1082532 4600 2407 250 1085 2407 250 1082532 4600 1082532 4600 1082532 4600 1082532 4600 1082532 4600 1082532 4600 1082532 4600 1082532 4600 1082532 4600 1082532 4600 1082532 4600 1082532 44003 129 74155 1082532 1083 108303 2400 108259 108303 2400 108259 108303 2400 108259 108303 2400 1083033 2400 1083033	48.0MHz 323	5V 7805	5 80p	7905	90p 2	111 114	175 785	0-5	Αμ00
Tor: Click Eliminator 24V 7824 85p 7924 90p 2710a 1095 9900 235 Ambush, Gui- tar Effect Unit. 5V 78105 30p 79105 65p 3064 TBA MC14411 958 Send SAE plus 5V 78105 30p - 4027 750 MC14411 958 ULTRASONIC TRANS- DUCERS 12V 78115 30p - 4047 750 TMS4032 240 M305H 135p TM305H 140723 439 74518 165 TMS4042 240 LM305H 1409 MVR12 150 74130 165 TMS4042 240 LM305H 1409 MVR12 150 74547 325 TMS4042 240 LM305H 1409 MVR12 150 74547 325 TMS4042 240 M317K 3350 TAA5250 50p 745475 325 TMS9900 3500 395 216		15V 7815	5 80p	7915	90p 2	516	£29.50	- been	and in case of the local division of the loc
Armbursh, Gui- tar Effect Unit. 5v 78105 30p 79105 65p 3064 TBA MC1411 958 4027 Send SAE plus 5p for list. 5v 78105 30p - 4027 250 MC14411 958 4007 ULTRASONIC TRANS- DUCERS 15v 78115 30p 79112 65p 74137 770 79112 65p 744175 TMS4039 240 M300H 170p LM327 270 7915 65p 744175 TMS4039 240 M300H 170p LM327 270 74518 74528 875 TMS4045 760 M305K 1140p LM323K 25p TAA550 50p 744518 325 TMS4045 760 M305K 1140p LM322K 25p TAA550 50p 745475 825 TMS900 3500 JUCERS LM328K 240p TBA6258 95p 811595 99 280 1195 395 215 4020 94 4046 4093 85 4400F 485 4089 150 4452 99 90 1195 398 216 4021 91 4049 44 4094 44 4004 25 TV-CRT controller chip SF.99364.16 line by 64. 150 157 296 215 74098 150 150<	for: Click	24V 7824	l 85p	7924 sing	90p 2	7L08 716	1095 1650	9900 CP1610	930
Send SAE plus 12V 78112 30p 79115 65p 744.75 TMS4035 240 ULTRASONIC 15V 78115 30p 79115 65p 744.75 TMS4035 240 ULTRASONIC 14305H 1400 1472 270p 74518 657 TMS4035 240 ULTRASONIC 14305H 1400 1472 430 74526 325 TMS8013 226 DUCERS 1437K 350p TVN12 180p 7445287 325 TMS900 390 1325 333 210 4018 87 TA4550 50p 744450 295 99 280 1198 333 216 4018 87 4046 128 4086 74 4450 295 99 280 1198 333 216 4018 84 4089 150 4450 295 99 280 1198 398 218 4018 404	Ambush, Gui-	5V 78L0 6V 78L0	05 30p 62 30p	79L05	65p 3	064 027	TBA 250	MC1441 MC1441	1 958 2 1050
ULTRASONIC LM305k 1400 LM3223 135 745287 745287 325 TMS4045 760 DUCERS LM305k 1356 MVR12 1600 745287 325 TMS6045 760 DUCERS LM305k 1356 KVR12 1600 745287 325 TMS5001 325 450p + per pair LM325k 2469 TAA550 500 745475 325 TMS9001 3500 395 218 4019 43 4047 87 4085 73 4451 266 395 216 4021 91 4049 44 4093 85 4490 265 399 230 4022 88 4056 44093 85 4490 265 FF96364 16 1665 172 4096 173 4750 170 Correst yave TV ircs a YDU by using the new Thomson-CST YU-RT correst yave TV ircs a YDU by using the new Thomson-CST 174 4096 155 170 275 </td <td>Send SAE plus</td> <td>12V 78L1</td> <td>2 30p</td> <td></td> <td>65p 7</td> <td>4L30</td> <td>750</td> <td>TMS403</td> <td>5 240</td>	Send SAE plus	12V 78L1	2 30p		65p 7	4L30	750	TMS403	5 240
ULTRASONIC Lix300k 1355 MVR5 1806 745207 325 TMS5011 325 DUCERS Lix37x 350 MVR5 1806 745470 325 TMS5011 325 450p * per pair Lix32x 225p TAA550 50p 745475 825 TMS900 390 319 333 230 4018 87 4046 122 4085 74 4450 295 99 1195 395 216 4018 87 4046 56 4089 150 4451 295 99 1195 395 216 4029 94 4046 56 4089 150 4451 295 WDU Chip and 395 216 4022 94 4046 56 4050 505 119 57 74450 295 WUC Chip and 200 106 106 106 106 106 106 106 106 106 106		LM 300H	170p LM3	327	270p 7	4S188 4S262	875	TMS404 TMS404	5 760
LUCERS LM325N 265p TAA550 50p 743475 825 Im33500 1939 393 230 4018 87 4046 128 4086 73 4451 295 7811535 99 280 11139 395 218 4018 87 4046 128 4086 73 4451 295 VDU Chip and 396 218 4019 4046 64 4086 73 44451 295 399 230 99 4056 4086 108 4450 295 399 230 99 4053 4086 108 4490 285 4451 100 4022 4051 124 4086 1250 1250 170 Comest your Vinito a VDU by using the new Thompson-CSF 75.75.95.95.95.95.95.95.95.95.95.95.95.95.95	TRANS-	LM309K LM317K	135p MVI 350p MVI	R5 R12	180p 7 180p 7	4S287 4S470	325 325	TMS990	0 3500
1 LM3260 2400 1000		LM323K LM325N	625p TAA 240p TBA	625B	95n I 8	1LS95	99		
398 215 4039 4038 23 4431 403 4038 23 4431 403 4038 23 4431 403 4038 23 4431 403 4038 23 4431 403 4039 150 4430 4030 4162 109 4500 4030 4030 4030 4162 109 <	393 230 4018	87 404	6 128 4	085 7	44 50	295	VDU C	hip and	
445 150 0.023 20 4051 72 4096 751 4501 19 TV-CRT controller chip 447 144 0024 66 4052 72 4098 110 4503 26 67 726 575 7502 120 490 180 4025 19 4053 72 4098 110 4503 66 66 66 72 4098 110 4503 66 66 616 116 4503 66 616 617 24 699 145 4505 51 67 724 4098 110 4507 55 management, Cursor m	396 215 4020	48 404 99 404	8 58 4	089 15	4452		MODU	LE for 1	rv I
447 144 0224 66 4052 72 4097 372 4507 372 4508 120 557.95364. 16 line by 64 669 182 4026 180 4054 110 4098 110 4508 110 4508 110 4508 110 4508 110 4508 110 4508 110 4508 110 4508 110 4508 110 4508 110 4508 110 4508 110 4508 208 erasing. Compatible with any computing system. CMOS ★ 4030 99 4059 480 4161 109 4511 208 AV-5-1013UART 45.60 4001 15 4033 16 4066 58 4175 99 4511 208 AV-5-1013UART 6.50.64 417.5103UART 40.511 208 AV-5-1013UART 6.50.64 40.11.75.8 40.75.1013UART 6.50.64 40.75.1013UART 6.50.64 40.75.1013UART 6.50.64 40.75.1013U	399 230 4022 445 150 4023	88 405 20 405	0 48 4	094 19 096 10	0 4490\ 5 4501	V 525	TV-CRT	controll	er chip
669 182 0277 45 4055 128 4160 109 4507 55 management on screen, Line erasing, Compatible with any computing system. CMOS★ 4029 99 4059 480 4182 109 4510 99 computing system. 4000 15 4031 205 4063 115 4163 109 4510 99 4000 15 4031 205 4063 116 4163 109 4511 150 4001 15 4033 100 4066 114 4174 110 4512 208 AY3-1013UAET 45.00+ 4002 15 4033 145 4067 380 4194 108 4514 205 71301AMET 45.00+ 4006 18 4036 224 4049 720 4516 120 745163 208 57580102 RAM 22.04 118 4067 380 4174 120 150.4517 392	447 144 4024 490 180 4025	66 405 19 405	2 72 4 3 72 4	097 37 098 11	2 4502 0 4503	120	character	s text re	freshment,
CMOS+ 4029 99 4059 4152 109 4510 99 computing system. 4000 15 4031 205 4063 115 4182 109 4511 159 4000 15 4031 205 4063 110 4174 110 4511 158 KF 598364E 611.754 KY 3-1015 E5.60+ 4001 15 4033 145 4067 380 4194 108 4514 265 71301B KY 3-1013UART 45.0+ 4002 15 4033 146 4067 380 4194 108 4514 265 71301B KX 3-1013UART 45.0+ 4006 18 4194 108 4714 210 4751013UART 45.0+ 71301B KX 3-1013UART 45.0+ 713014 41.2+	66B 182 4026 180 4054 110 4099 145 4506 51 Cursor management, Cursor 669 182 4027 45 4055 128 4160 109 4507 55 management on screen, Line								
4000 15 4031 205 4063 110 4174 110 4512 38 AY3-1015 ES:60+ 4001 15 4033 145 4067 380 4194 108 4513 206 AY3-1015 ES:60+ 4001 15 4033 145 4067 380 4194 108 4514 265 713010M RE.20+ 4006 18 4035 114 4068 22 4408 720 4516 205 713010M RE.20+ 4007 18 4035 114 4068 22 4409 720 4516 209 7415163 61 118 4008 82 4037 100 4071 21 4412F 1350 4518 50 SN75450 C1.20+ 4019 24 1519 55 SN75451 70p+ 4013 32 4073 21 4415F 795 4520 108 SN75454 22.25+ 70	Chaog + 4029	99 405 58 406	9 480 4 0 115 4	162 10	9 4510	99 150	computin	g system.	
4002 15 4033 145 4067 380 4194 108 4514 265 71301 ROM £8.20+ 4006 #33 4034 116 4068 22 4409 720 4515 299 57580102 RAM £2.0+ 4007 18 4035 111 4069 20 4409 720 4516 120 74L5163 €1.18+ 4008 82 4036 325 4070 32 4410 720 4517 332 SN75450 €1.20+ 4009 38 4037 100 4071 21 4412F 1350 4518 102 SN75451 70p+ 4010 38 4037 100 4072 21 4412F 1350 4518 102 SN75451 70p+ 4011 16 4039 320 4073 21 4415F 795 4520 108 SN75454 £2.25+ 4012 18 4040<	4000 15 4031 4001 15 4032	205 406	3 110 4 6 58 4	174 1 1 175 §	0 4512 9 4513	98 206	AY-3-10 AY-5-10	15 13UART	£5.60* £4.50*
4009 32 4070 32 4410 720 4517 382 SN75450 £1.20+ 4009 38 4038 100 4071 21 4412F 1350 4518 102 SN75451 70p+ 4010 38 4038 108 4072 21 4412F 1350 4518 102 SN75451 70p+ 4010 38 4038 108 4072 21 4412F 1350 4518 102 SN754512 70p+ 4011 16 4039 320 4073 21 4415F 795 4520 108 SN75454 £2.25+ 4012 18 4040 05 4075 23 4415V 795 4520 108 SN75454 £2.50+ 4013 4041 80 4076 85 4419 280 4527 162 102 Wide Bandwidth Modulator £2.50+ 4014 80 4078 21	4002 15 4033 4006 3 4034	116, 406	8 22 4	408 72	4515	299	71301 R SFS8010	OM D2 RAM	£8.20* £2.05*
4010 38 4038 108 4072 21 4412V 1050 4519 55 SN75452 70p* 4011 16 4039 320 4073 21 44157 795 4520 108 SN75452 70p* 4011 16 4039 320 4073 21 44157 795 4520 108 SN75454 62.25+ 4012 18 4040 105 4075 23 44157 795 4521 108 SN75454 62.25+ 4013 80 4076 85 4419 280 4522 149 Wide Bandwidth Modulatori 4014 80 4042 75 4077 40 4422 545 108 for Computers £4.70+ 4014 80 4048 20 1433 995 4529 145 68364-1-1 VDU Bard 4015 82 4043 484 4078 20 1433 995 4529 <td>4008 82 4036</td> <td>325 407</td> <td>0 32 4</td> <td>410 72</td> <td>4517</td> <td>382</td> <td>SN7545</td> <td>0</td> <td>£1.20*</td>	4008 82 4036	325 407	0 32 4	410 72	4517	382	SN7545	0	£1.20*
4012 18 4040 106 4075 23 4415V 795 4521 228 UHF Modulator €2.50 + 4013 42 4041 80 4076 85 4419 280 4521 149 Wide Bandwidth Modulator 64.014 4014 80 4076 85 4419 280 4521 162 for Computers 64.704 4015 82 4043 84 4078 21 4433 995 4528 182 Thompson-CSF SFKEX 4016 82 4043 84 4078 21 4433 995 4528 145 68364-1-1 VDU Board	4010 38 4038 4011 16 4039		2 21 4	412V 105	4519	55	SN7545	2	70p*
4014 80 4042 /5 4078 21 4433 995 4528 99 Thompson-CSF SFKEX		320 407		4151 /5					12.237
4115 4 1 7044 6 700. 20 7733 023 70-3 145 08304-1-1 VUU Board	4013 42 4041	320 407 105 407 80 407	5 23 4 6 85 4	415V 79 419 28	5 4521 4522	228	UHF Mod Wide Ba	dulator andwidth	€2.50★ Modulator
4016 44 4044 35 4081 20 4735 825 4529 145 68364.1-1 VDU Board 4017 22 4045 1+5 4082 21 4440 1275 4530 85 £69.00+	4013 42 4041 4014 80 4042 4015 82 4043	320 407 105 407 80 407 75 407 94 407	5 23 4 6 85 4 7 40 4	415V 79 419 28 422 54	4521 4522 5 4527 5 4528	228 149 162 99	UHF More Wide Bar for Comp Thompson	dulator andwidth outers on-CSF	£2.50* Modulator £4.70* SFKEX

ELECTRONICS TODAY INTERNATIONAL - JULY 1979

news digest

LATEST CASIO MINIS

Casio have managed to reduce their successful LC-78G calculator in three ways.


First of all - price. The RRP of the LC-78G is down by $\pounds 3.00$ to $\pounds 16.95$.

Second is the new Casio LC-7 which has the same display and functions except that the fully independent memory is replaced by a simple automatic accumulating memory and a square root function. The LC-78S has a RRP of only £13.95. Thirdly, thickness has been cut down from four to two millimetes Casio's new Mini

Thirdly, thickness has been cut down from four to two millimetres. Casio's new Mini Card LC-79 remains credit card size, but in upright format. It keeps eight digits capacity and LCD, four functions and independent memory plus perfect percent and function indicator. Also featured is a responsive, 'feather touch' keyboard, so light that it can be operated inside its protective wallet. A battery-conserving circuit automatically switches off nine minutes after the last key depression. The Casio LC-79 will retail at £19.95 (or less, if you're lucky). If you prefer something a bit

If you prefer something a bit beefier, try the LC-841, another new one from Casio. With the same technical features as Mini Cards (including independent memory), the LC-841 is 62×110 mm, but still only 3.9 mm thick, with digits 6 mm high, and will retail at about £15.95.

For enquiries, get in touch with Casio Electronics Co Ltd, 28 Scrutton Street, London EC2A 4TY.

MILITARY FLASHER

Need a tough twinkler? Oxley are now producing a solid state indicator lamp, type PS/LH/8, in a military style rugged mounting.

The mounting incorporates the latest high brightness, high reliability LEDs. The lamp is fitted with a sealed glass lens and black shroud to optimise the visual effect and afford emitter protection. Standard colours are available, red, yellow and green, and light output is calibrated to photometric standards to ensure consistent performance. The aluminium alloy body is compatible with standard chassis and provides electromagnetic shielding for military applications. Further details from Oxley Developments Co Ltd, Ulverston, Cumbria LA12 9Qg.

13

microfile.

Henry Budgett wandered across the States in the name of Microfile. This is his report, and other small world shattering items that happened to crop up while he was away.

Pets In Business

THE LONG AWAITED PET add-on's have arrived at last, honest! Launched at a Cafe Royal press conference was a new PET based business system with a price tag of £2,500 excluding software. Utilizing the new, largekeyboard 32K machine with Commodores own dual disk drive and tractor-fed printer it forms the cheapest small business system yet available. The software is being written by a new division of ACT, Petsoft's parent company, called PETACT and will cost between £225 for a single package to about £800 for a complete suite of programs. It will be available in either disk or cassette format and is the first business software for a micro to be written by a professional software house. The software price also includes a day's training for an employee.

We rather thought that the printer was never going to arrive as it was trapped at Heathrow in customs but it surfaced during the Champagne and Orange cocktails and appeared to be of high quality. The second reason for the Press reception was to announce the forming of an "endorsement" scheme for non-Commodore produced PET add-on's, the PETACT software being the first product to be launched under the scheme.

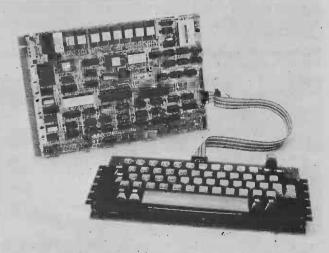
Deliveries of the new style PET's have started and should be available in most areas now, the disks and printers will start to appear in mid-May at some of the 100 dealers and will hopefully be generally available within a couple of months. Chuck Peddle the father of the PET and KIM was at the reception and gave a strong indication that new and exciting things were on the way in connection with both machines, memory expansion being one possibility.

On a final note the sales of the UK machine were around 3000 during 1978 and this figure had been reached by the end of April of this year, the market is still growing.

NASCOM With Added Plus

After the phenomenal success of the NASCOM I (150,000 sales worldwide) the company have announced a new single board machine called NASCOM II.

Although it is physically the same size as the 'l' and uses the same bus structure it is not intended as a simple upgrade but rather as a new starting point in the home computing market. Based on the Z80A it offers a 75% increase in processing speed along with an 8K Microsoft BASIC in ROM. Several new features are included on the machine, a new 2K monitor with many improvements over the T4, A CUTS cassette interface, 8K of user RAM and a new extended keyboard. The interfaces supplied include an on-board UART for the RS232 or the cassette interface, capable of running at 300 or 1200 Baud, and an uncommitted P10 for two 8 bit ports. The video is run from a 1KA RAM with a 2K character generator, an optional socket is supplied for another 2K graphics ROM which is software selectable.


ELECTRONICS TODAY INTERNATIONAL - JULY 1979

Above and below: the new bits for PET.

Below: the new more powerful NASCOM.

NEWS: Microfile

Both the new monitor and the BASIC can be used with the 'l' and all the peripherals for the 'l' can be used with the 'll' making it the basis of a very nice OEM system. The circuit board is of the usual superb quality and the kit will be available from June at £295 ex VAT. We hope to get our hands on one to review soon and this will be published in CT as close to the release date as possible.

Clubbing Together

A couple of new clubs have sent us details of themselves this month. The first is the Sorcerer Programme Exchange Club, SPEC, which has been formed to promote the Exidy Sorcerer. Rather than having an actual club they are aiming to become an information exchange on useful, hints and programs for the machine and would be most grateful for anyone who has some to send them in. The people to contact are Mr G. F. Counsell and Mr M. P. Hannaby at 65 Trafalgar Road, Birkdale, Southport, Merseyside.

The second club is the South Yorkshire Personal Computing Group, SYPCG, who are appealing to people in the area interested in do-it-yourselr computing. They hope to meet on the second Wednesday of each month with a variety of topics under discussion. Membership is £3 for 1979 and the meetings will be held at 7.00pm in the University of Sheffield. For further information you should contact the Secretary, Mr Tony Rycroft, at 88 Spinneyfield, Moorgate, Rotherham, S. Yorkshire.

Showing It Off USA Style

I spent a pleasant weekend in Orlando, Florida, last month at a micro-show. It really was a micro-show, dealing with the machines and also being very small. However this was really an advantage as it allowed free and personal access to the exhibitors rather than the situation which arises at some of the UK exhibitions. The variety of machines was impressive, ranging from an IAM65 to an LSI 11, but there were no PET's, KIM's or Superboards which was rather surprising. The only new machine there was an Z80 based S100 system called Informer which also used an SC/MP for keyboard and video control. Supplied either with or without an integral floppy it looked impressive but is unlikely to appear on this side of the Atlantic.

The show also featured a siminar programme, again on a very informal and personal level which resulted in a most entertaining question and answer forum. The whole show was most professionally run and I only wish that some of the UK shows could adopt a similar attitude and become smaller and more personal instead of bigger and unhelpful.

The biggest business system at the show, an LSI II with dual floppies being used for stock control.

The familiar Apple II with a speech recognition board installed. It worked remarkably well and 'echoed' back your word through a synthesizer.

New TRS 80 printer. Will it reach us, we wonder.

A Texas system with dual floppies and integral thermal printer as well as a Centronics 702 on-line. It played a mean game of Star Trek!

TELETEXT SYSTEM

A complete ultrasonic controlled Teletext design employing the newly released Mullard chip set. Design by GMT Electronics for ETI. Facilities include double size characters and video superimpose.

THIS PROJECT is designed to allow the home constructor to produce himself a full spec Teletext unit at around half the cost of comparable commercial units. The design requires no hard wiring into the set, as it contains its own modulator and works into the aerial socket. Definition usually suffers utilising this method, but here great attention has been paid to overcoming this problem.

As with all decent designs remote control is ultrasonic, and gives both full and half page displays. The keyboard arrives already fitted to the PCB, and only needs the decoder chip and transducer soldering in to produce a complete unit.

A complete kit is available from GMT electronics, which includes plated—through hole PCBs, full metalwork and the hand controller. See Buylines for final details.

Construct-a-Text

Despite the complexity of this project construction is amazingly straightforward, all that is required is to assemble the four boards CAREFULLY following the overlays, and fit these into the chassis. Interwiring between the PCBs is dealt with by following the list given here, and referring to the wire nos. shown on the overlays. Don't be tempted to change this, best results — indeed any results — will only be obtained by strict adherence!

Once you're satisfied that all is as it should be, fit the ICs into their sockets and move on to the setting up.

	FACILITIES
	Keyboard Commands
RESET	The screen is cleared and the converter is ready for channel change (timed page is cancelled).
STATUS	Television station identification appears top left of screen.
HOLD	Displayed page is held.
ТОР	Large (2x) top half of display.
BOTTOM	Large (2x) bottom half of display.
MIX PAGE	Cancels both above displays channel video and teletex together.
TIMED PAGE	On: — The selected time for the page selected can be inserted and is displayed in the top right of screen (4 Digits). Off: — Above cancelled.
REVEAL TEXT	Displays hidden characters. Calls up teletext. Page 100 selected automatically (currently for BBC 2 Ceefax key in 200).
CANCEL	Cancels text.
DATA	Used for external data (not used in current design).
TVON	Not used in current design. Last two facilities available for further expansions.

_Calculator Special

Mine SweeperLOCCODEKEYE. A. Johnson00043RCL040The object of the game is to locate and
destroy a moving minesweeper. The ship
moves along a set course, but, to avoid
destruction it can deviate slightly from
the course and alter its speed.04001Playing the game33XThe game is started by entering a
number (in the range 0 to 1) into
register E to set the initial position01004050

number (in the range U to 1) into register E, to set the initial position of the minesweeper through a random number generator. A shot is made by entering the xy co-ordinates (into the A and B registers respectively) of the square where the ship is believed to be. The calculator determines the position of the ship and displays the distance by which the shot missed. If the shot is within five units of the ship, damage occurs which slows the ship down in proportion to the nearness of the shot. When the ship is destroyed the display flashes.

After the ship has been destroyed, the number of shots used can be displayed by pressing 'C', and a new game can be started by pressing 'D'.

Method of calculation

The initial value of Θ , which determines the ship's position is determined using the calculator's random number package. The ship's co-ordinates are then calculated by the following equations:

 $x = (50 + 45 \cos 3\Theta) + RNUMX$

 $y = (50 + 45 \sin 2\Theta) + RNUMY$ where RNUMX and RNUMY are random numbers (in the range of -3to +3) to give the ship its avoiding action.

The distance of the shot from the ship is calculated using pythagoras and displayed in integer mode.

The next value of Θ is then given by $\Theta = \Theta + \Theta INCR$

where Θ INCR is originally set to 5, the calculator then determines the new co-ordinates of the ship.

When the distance of the shot from the ship is less than five units, the value of Θ INCR is reduced to slow the ship down. The new value is given by Θ INCR = Θ INCR - (5 ÷ distance).

The above procedure continues until Θ INCR ≤ 0 when the ship is destroyed.

A new game, if required, is started by automatically generating a new random initial value of Θ .

LOC	CODE	KEY		03	3		00 65	0 x
000	43 01 44 00 43 02 91 76 33 65	RCL SUM 0 RCL 2 R/S LbI X x 4	040	58 00 36 15 71 88 65 03 06 00 95	Fix 0 Pgm 15 SBR D.MS X 3 6 0 =	080	02 54 38 71 33 85 05 32 95 34	$2 \\ \text{som} \\ \text{SBR} \\ x \\ + \\ 5 \\ x \\ t \\ = \\ \sqrt{x} $
010	04 05 85 05 00 85 36 15 71 88	4 5 + 5 0 + Pgm 51 SBR D.MS	050	42 00 25 91 76 11 69 23 75 53	STO 0 CLR R/S LbI A Op 23 	090	42 02 77 00 55 32 95 35 22	STO 2 x≥t 0 00 ÷ x►t = 1/x INV
020	65 06 75 03 95 33 92 76 15 42	x 6 3 = X INV SBR Lbl E STO	060	53 43 00 65 03 54 39 71 33 32	(RCL 0 x 3) cos SBR X x►t	100	44 01 29 43 01 77 00 00 25 35 22	SUM 1 CP RCL 1 x≫t 0 00 CLR 1/x INV
030	09 76 14 05 42 01 00 42	9 Lbl 5 STO 01 0 STO	070	00 91 76 12 75 53 53 43	0 R/S Lbi B - ((RCL	110	22 58 91 76 13 25 43 03 91	Fix R/S Lbl C CLR RCL 3 R/S

MINESWEEPER PROGRAM FOR TI 58 & 59

Example Game						
Comment	Enter	Display				
Enter a number between 0 & 1	0.258 E	0				
Enter guess for x co-ordinate	50 A	0				
Enter guess for y co-ordinate	11 B	65 (Distance)				
x co-ordinate	84 A	0				
y co-ordinate	70 B	62				
	40 A	0				
У	85 B	7				
x	43 A	0				
Y III	87 B	3				
x	51 A	0				
У	89 B	3				
x	54 A	0				
У	90 A	9.9999999 99 (Flashing)				
To display number of shots	C	6				
To start a new game	D	0				
x co-ordinate	50 A	0				
y co-ordinate ETC.	11 B	42				

Tech-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these items. ETI is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for. Drawings should be as clear as possible and the text should preferably be typed. Circuits must not be subject to copyright. Items for consideration should be sent to ETI TECH-TIPS, Electronics Today International, 25-27 Oxford St., London W1R 1RF.

Calculator Special

Lunar Landing

Sarah J. Owen.

Sarah J. Owen.						
This program was devised for use on the	SPEED		BURN			
Commodore PR.100 calculator, but is						
easily adapted for use on any other	5		1.6	180		5.2
programmable ones. Imagine you are	7		1.9	200		5.3
the Astronaut controlling the final	10 15		2.3	220		5.4
descent of a lunar module, at regular	20		2.7	250		5.5
intervals the speed of descent is	30		3.0 3.4	270		5.6
displayed, the period of burn of the	40		3.4	300		5.7
retro-rocket has to be calculated, after	50		3.9	330 365		5.8
allowing for the reducing weight of the	60		4.1	400		5.9
fuel on board Five speed	70		4.2	450		6.0 6.1
corrections are allowed, after which the	80		4.4	500		6.2
final impact velocity is displayed. If an error is made and all fuel is used, there	90		4.5	550		6.3
is just time to transmit an urgent S.O.S.	100		4.6	600		6.4
message before destruction on the lunar	110		4.7	660		6.5
surface Due to the lack of	120 130		4.8	730		6.6
program space, the method of selecting	150		4.9 5.0	800		6.7
the initial random speed is unusual, but	160		5.1	900		6.8
ranges between 20 and 100 m.p.h.			.0.1	1000		6.9
				Memory 1	- Seconda	of fuel left
A Contract of the second secon				Memory 0	 Accurate 	descent speed
The state of the second st	PROGRAM					for weight of
and the second	1.00	0005	14534	fuel, allow	1 m.p.h. for e	ach Second of
Result of impact speed:-	LOC	CODE	KEY		ing (approx)	
Result of impact speed:-	00	21	F	36	85	
	01	63	S	37	52	MR
0 – 5 m.p.h. PERFECT LANDING	02	21	F	38	81	1
6 – 10 m.p.h. SLIGHT DAMAGE,	03	51	FRAC	39	85	-
LIFT OFF DELAYED.	04	74	Х	40	52	MR
11 – 15 m.p.h. STRUCTURAL DAMAGE	05	81	1	41	91	0
LIFT-OFF DOUBTFUL	06	91	0	42	74	X
16° – 25 m.p.h. SEVERE DAMAGE & INJURY – USE	07	95	=	43	95	=
SUICIDE PILL.	08	51	М	44 45	35 51	X
ABOVE	09 10	91 53	0	46	91	M O
25 m.p.h. MODULE & ALL	11	82	Xn 2	47	52	MR
LIFE DESTROYED	12	91	Ô	48	81	1
Alley the second s	13	51	M	49	94	+/_
	14	81	1	50	15	SKIP
	15	71	4	51	14	GOTO
	16	51	M	52	73	6
	17	82	2	53 54	63 52	9
SET UP:-	18 19	52	MR	55	52 82	MR
F-CA-F-FP-8-GOTO-00	20	91 74	0 X	56	85	2
Mode switch to load – enter program –	21	62	8	57	81	1
mode switch to run – goto – 00 enter	22	84	+	58	95	
any two or more numbers (date etc.)	23	52	MR	59	15	SKIP
Each followed by Xn key. Press R/S -	24	81	1	60	14	GOTO
speed of descent displayed.	25	95	=	61	81	1.
Allow for weight of fuel remaining,	26	51	M	62	73	6
enter period (in seconds) of rocket burn	27	91	0	63 64	52	MR
to reduce speed, press R/S – new rate of descent displayed, correct as before.	28	21	F	65	91 13	0
After five speed corrections, impact	29 30	52 13	INT D/S	66	13	R/S GOTO
speed will be displayed. If fuel in	31	21	R/S F	67	91	0
excess of 20 seconds is used, module	32	85	M-	68	91	0
transmits an urgent message before	33	81	1	69	72	5
destructing.	34	21	F	70	91	0
Press R/S to re - start.	35	32	e×	71	72	5

Recommended periods for Retro-rocket firing

ELECTRONICS TODAY INTERNATIONAL - JULY 1979

101

Calculator Special

Mastermind

P. R. Kemble B.Sc.	STEP	INSTRUCTION	STEP	INSTRUCTION
This program enables the popular game Mastermind to be played on a Hewlett- Packard HP29C calculator. A five digit number (no two digits the same) is set by one player, and then the second player must deduce what it is. There are 30,240 possibilities. After each guess the calculator indicates how many digits in the guess were correct and in the right position,	01	gLBL1 fFIX1 STO.5 1 4 CHS GSBO gLBL9 0	50	STO i fLAST x gFRAC 1 0 x gISZ GTO 2
and how many were correct but in the wrong position. To play: Player A enters a 5 figure number and	10	STO7 STO8 R R/S (Enter guess)		RTN gLBL 4 1 4 STO 9
then presses GSB 1. Player B enters his guess and presses R/S. After several seconds calculation the display shows a number such as 1.2 which means 1 digit in the right place and 2 more correct figures but in the wrong position.		5 CHS GSBO 1 STOO gLBL5	60	gLBL6 RCL 9 STO 0 RCL i STO 6 5
Player B then enters another guess and presses R/S, etc. until he achieves a score 5.0. For cheats (!) or if the number set has been forgotten, it is held in STO .5.	20	RCLi 9 STO+0 x≷y RCLi	70	STO 0 gLBL 7 RCL i RCL 6
		gx = 0? GSB3 8 STO-0		g x = 0? GSB 0 gDSZ GTO 7 1
The use made of the calculators stores is shown below. If the number set was ABCDE, and the guess is FGHIJ, then:	30	RCL0 6 fx = y? GT04		STO-9 RCL 9 9 f x ≠ y?
STO 0 Used 1 J 2 I 3 H 4 G 5 F 6 Used		GTO5 gLBL3 1 STO+7 RTN gLBL0	80	GTO 6 RCL 7 STO8 1 0 STO÷8 x ≷ y
7 Used 8 Used 9 Used .0 E	40	STO 0 x ≷ y EEX 4 ÷		RCL 8 + GTO 9
.1 D .2 C .3 B .4 A .5 ABCDE	45	gLBL2 fINT	90	gLBL 0 1 STO+8 RTN

PROJECT

Set up!

- Disconnect encoder video O/P from the modulator board.
- 2) Disconnect blanking and picture on (PO) outputs from main board.
- Connect UHF O/P to set, and UHF aerial to converter.
- 4) Select spare channel on T/V set.
- 5) Tune T/V for blank screen (ie. no
- noise). 6) Switch off.
- 7) Link P.O. input of UHF and mixer board to 12V.
- 8) Switch on.
- 9) Tune RV 201 (front panel to obtain best picture on BBC1.
- 10) Re-adjust set for best colour picture, modulator RV 401 may need adjustment.
- 11) Repeat 7 and 8 as required.
- 12) Switch off.
- Reconnect steps 1 and 2 remove link step 6.
- 14) Switch on.
- 15) Set RV 100 to midpoint.
- 16) Connect pin 1 1C103(VIP) to 12V.
- 17) Connect pin 7 via 5M6 to 12V.
- 18) With transmitter switch to mix mode.
- 19) Adjust CV101 until characters lock with picture.
- 20) Switch off.
- 21) Remove steps 14 and 15.
- 22) Switch on.
- 23) Adjust L101 to obtain page header and time clock stepping (note this setting is sharply defined). L101 should not need adjustment (ignore any colour flicker).
- 24) Switch off.
- 25) Link pin 10 1C103 to 12V rail.26) Switch on. Note CV102 and
- L101 interactive repeat 20 and 24 as necessary.27) Adjust CV102 for best display
- (approx ¼ closed).
- 28) Switch off.
- 29) Remove step 22.
- 30) Switch on.
- 31) Switch to text mode.
- 32) Adjust CV301 for best colour.
 33) Other channels can now be tuned (hit reset followed by channel No 1=BBC1; 2=ITV; 3=BBC2).

ELECTRONICS TODAY INTERNATIONAL - JULY 1979

703 ORACLE	342 Thu	3 May ITV 1850, 89
		ALL PROPERTY.
	▋▋╏┫╏	C. FITU
		ULLE SEX
		The second second second second
ITN MAIN INDE HEADLINES: NE		LONDON INDEX 102 ITV REGIONS 300
SPO	RT. 202	KIDS' PAGES 600
BUSINE NEWSFLASH	SS. 203	LEISURE INDEX. 700 Your Stars 715
THE POUND	228	TECHNICAL "
FT INDEX		FOR THE DEAF740
79 IN2EX.	: 201	CALENDAR
WEATHER MAP	401	ADVERTISING INDEX500
WEATHER/TRAVE ROADS LATEST.	L 400	
FULL INDEX A-	E 130	INSTANT ELECTION
· · · · · · · · · · · · · · · · · · ·	L 131	RESULTS 274
S-	Z 1.33	

Above and below, two typical screen displays from the ITV_F Oracle service. Now do you see what you're missing out on?

Ultrasonic Receiver And Transmitter

In the transmitter the keyboard, commands are encoded by the SAA 5000 which switches the HEF 4069 transmitter IC in the correct code sequence.

This pulse coded 40Hz transmission is received by the TDB 1033 which provides 90dB of gain in AGC system and a carrier filter. The output is fed to the decoder section.

The Decoder

This design is based on the Mullard L.S.I. design and uses four main IC's and a memory section of seven 2102's. The signal from the TDB 1033 is fed to the SAA 5010 receiver decoder and

checked for error content and then produces various outputs.

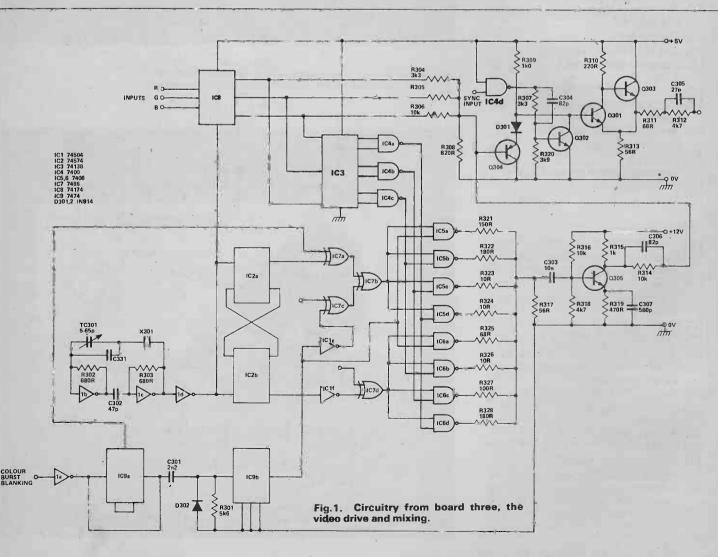
- Analogue Controls Not used in this design.
- Station Selector Drive Output Used via an HEF 4011 inverter to step 2 an HEF 4017 station selector.
- Message Received Output Used to drive an LED and audible indicator. Control Signals for the SAA 5040 3
- 4. TAC.

HOW IT WORKS

SAA 5030 VIP Video Input Processor

The data retrieval section of IC, slices the incoming data signal by means of an automatic adaptive data slicer circuit. This circuit sets the threshold level for slicing at half the data amplitude, regardless of the amplitude of the incoming signal, and provides some compensation for distortion such as co-channel interference; the performance of the system under noisy conditions is thus improved. A clock signal is generate from the sliced data by using an external 6M9375Hz tuned circuit, and this signal is used to clock the data into the TAC integrated circuit

A 6MHz display system clock is also included in the VIP, the output of which is divided in the TIC to produce a clock pulse every 64us. This signal is passed back to the VIP where it is compared with the incoming line sync signals. By this means, the timing system of the teletext display is phase-locked with the incoming televicion picture signal.


A 'signal quality' detector circuit is also included. When a signal with a high noise content is being received, or in the,

absence of an incoming signal, the signal quality detector cuts off the teletext data to the TAC and allows the display system to free-run. Thus the detector prevents the data stored in the memory from being corrupted by noise. This facility, combined with the local display clock, allows a stable display even in the absence of an incoming television signal. Both are essential for after-hours display. The IC also contains an adaptive sync senarator which extracts the sume

separator which extracts the sync signals from the incoming video signal and also provides a sync output signal for the timebases of the television receiver. When a full page of text is displayed, the sync output signal is derived from the SAA 5020 TIC.

SAA 5040 TAC Teletext Data

Acquisition And Control The principal function of the data acquisition section of the TAC inte-grated circuit is to process the teletext data so that it can be written into the memory. The control section processes the information from the remote control

PROJECT: Teletext System

system, and uses this information to operate the various display functions of the teletext decoder system such as selection of television, teletext, or viewdata modes; page hold, time dis-play, or timed page select.

The data acquisition section, divides the data from the VIP into its com-ponent parts. The Hamming-coded ad-dress words are checked, and words having a single wrong bit are corrected. Address words having two wrongs bits are rejected. The row address of the incoming data line (one of twenty four) incoming data line (one of twenty-four) is fed by this section to the 5-bit row address bus, and the character date is fed through the data to the memory as a sequence of forty 7-bit parallel words.

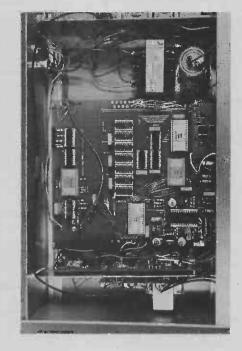
A signal denoted as WOK (Write O.K.) indicates to the memory when valid data is to be written in, and a WACK (Write Address Clock) signal causes the address counters 74LS161 to step on after each character.

The IC also contains circuits for the implementation of the control bits for the page header.

SAA 5020 TIC Timing Chain The divider stages in the TIC integrated circuit sub-divide the 6MHz clock signal from the VIP down to 25Hz, the television frame rate, and generate all the timing signals for the teletext display. During the display period, a 1MHz clock signal RACK (Read Address Clock) takes over from WACK to step the character addresses. The address counters 74LS161 are cleared at the end of every line and reset to the first position. After every ten lines during the display, the TIC steps the row address on by one to access the next row of characters in the memory.

In addition to providing all the timing signals for the display, the IC also generates a complete composite sync signal. This signal can be used to drive the timebases of the television receiver without the need for the transmitted sync signal. (This form of operation is also termed 'after-hours' operation.)

Memory Blcok


The memory block consists of seven lk x l static RAMs.

SAA 5050 TROM Teletext **Read-Only Memory**

The read-only memory of the TROM converts the 7-bit character data from the memory into a dot matrix pattern. This matrix is in a 7-by-5 dot form for each character. It also contains a 'character rounding' facility which effec-tively increases this matrix to 14-by-10 dots, giving improved definition to the displayed characters.

Additional circuits enable various control functions to be performed. These functions are determined by control characters received from the memory. Examples of these control functions are the selection of graphics or alphanumerics, 'flashing' words, or newsflashes and subtitles displayed in

boxes within television pictures. A 'concealed display' function is also provided which can be operated by the user.

BUYLINES

The designers of this project GMT - have a complete kit of parts available. This includes all metalwork, PCBs and hardware. A manual is also included. Cost is £155 plus VAT (total £178 inc p&p).

As an alternative the teletext decoder board and control system is available separately at £125 for those who wish to wire into their own television

PCBs and chip sets are available separately also - but are PoA.

See advert on page 6 for address.

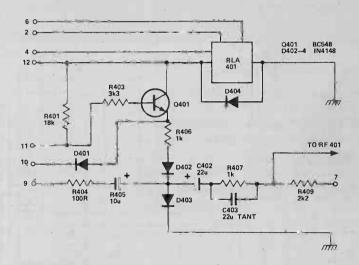


Fig. 2. Relay switching circuit (board four).

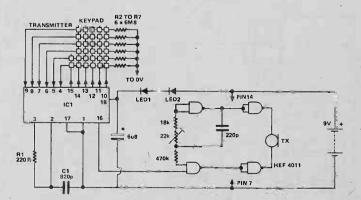


Fig. 3. Hand controller circuitry. Note that no overlay is shown for this, as no constructional work is needed using the kit. IC1 is a SAA5000 for those wishing to go it alone.

ELECTRONICS TODAY INTERNATIONAL - JULY 1979