

Sinclair Scientific kit

Britain's most original calculator now in kit form

The Sinclair Scientific is an amazing calculator. It offers logs, trig, and true scientific notation over a 200-decade range – features normally found on calculators costing around £50 or more

Yet even ready-built, it costs a mere £21.55 (including VAT)

And as a kit it costs under £15!

Forget slide rules and four-figure tables On the Scientific, you can handle directly all three trig functions, their inverses. log₁₀, antilog₁₀, giving quick access, to xy (including square and other roots).

plus, of course, the four arithmetic functions and any calculation based on them. In fact, virtually all complex scientific or

mathematical calculations can be handled with ease.

8.6629-01

In 10

Sinclair

Scientific

57-2958

2.30259

2.71828

3-14159

3.1415927

Sinclair Cambridge kit

At its new low price, the Sinclair Cambridge kit remains unbeatable value.

The Cambridge is now Britain's most popular pocket calculator. And it's not surprising. Check the features - then ask yourself what other calculator offers such a powerful package at such a reasonable price.

Take advantage of this money-back no-risk offer today

The Sinclair Cambridge and Scientific kits are fully guaranteed. Return either kit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch - and we guarantee any correctly-assembled calculator for a year. This guarantee also applies to calculators supplied in built form. Simply fill in the preferential order form

below and post it - today !

Sinclair Radionics Ltd.

ł	To: Sinclair Radionics Ltd, FREEPOST, St Ives, Huntingdon, Cambs., PE17	4 B R.
	Please send me	

- Scientific kit £14.95 inc. VAT
- Scientific built £21.55 inc. VAT Cambridge kit £9.55 inc. VAT
- Cambridge built £13.99 inc. VAT

*Delete as required

Signed Address

Please print, FREEPOST - no stamp required.

ETI/7/75

London Road, St lves, Huntingdon, Cambs., PE174JH. Tel: St lves (0480) 64646 Reg. no : 699483 England, VAT Reg. no : 213 8170 88

So is the Scientific difficult to assemble?

No. Powerful though it is, the Sinclair Scientific is a model of tidy engineering All parts are supplied - all you need provide is a soldering iron and pair of cutters. Complete step-by-step

instructions are provided, and our Service Department will back you throughout if you've any queries or problems

Of course, we'll happily supply the Scientific or the Cambridge already built, if you prefer-they're still exceptional value. Use the order form.

Features of the Scientific

12 functions on a simple keyboard

- Scientific notation
- 200-decade range
- Reverse Polish logic
- 25-hour battery life
- Genuinely pocketable

Features of the Cambridge

- Only $4\frac{1}{3}$ " $\times 2$ " $\times \frac{11}{16}$ ". Weight $3\frac{1}{2}$ oz.
- Fully-floating decimal point.
- Algebraic logic. Constant on all four functions
- $-\times \frac{\cdot}{\cdot})$ Constant and algebraic logic
- combine to act as limited memory.
- Clear, bright 8-digit display.
 - Operates for weeks on 4 AAA batteries.

I enclose a cheque for.... made out to Sinclair Radionics Ltd, crossed. *Please debit my *Access/Barclaycard account number :

Name

electronics today international

JULY 1975

Vol. 4. No. 7.

38 Eight pages of this very popular feature

Main Features -

VAT AND COMPONENTS	7
THE HOME WORKSHOP	10
THE ART OF SOLDERING	13
TELETEXT TAKE OFF!	18
HIGH VOLTAGE FOR LOW COST	31
HOW AMBISONICS WORKS	35
USING THE LM377N	49
UNDERSTANDING COLOUR TV	58
ELECTRONIC'S IT'S EASY	60

Projects

LINE AMPLIFIER Boost microphone outputs with this low noise amplifier				24
STAGE MIXER 16-line amplifier sub-mixes to eight channels — plus monitor		•		26
ETI 3600 SYNTHESISER	•	٨	i	54

News & Information

NEWS DIGEST			,	÷					6
INPUT GATE							×	÷	47
PREVIEW OF AUGUST'S ET	Ε.,						۰.		47
PROJECT BOOK NO. 2		Ļ		2		I.			48
ELECTRONICS TOMORROW	Ι.	÷							64

ETI PULSAR DIGITAL ALARM CLOCK OFFER. A magnificent product for only £13.95!

Cover: Have you ever seen a tidy electronics workshop? A bit of ETI's lab is shown here: see Project Building Guide on page 10. Teletext receivers will soon be available to the public - page 18 (photo courtesy of Texas Instruments)

3.7

EDITORIAL & ADVERTISEMENT OFFICE 36, Ebury Street, London SW1W OLW. Tel. 01-730 8282.

Editor ROBERT Advertisen STEVE B Assistant I JEAN BEL Production HELEN C Administra VALERIE	ment Manager RAIDWOOD, G3WKE Editor LL 0 OHEN ation
Internation COLLY	nal Editions 'N RIVERS al Director
Technic BARRY Enginee France	CHAPMAN cal Editor Y WILKINSON ering Manager JACOB
olished by:	Modern Magazines (Holdings) Lto 36, Ebury Street, London SW1W 0LW.

Electronics Today International is published on the second Friday in the month prior to the cover date Distributed by: Argus Distribution Ltd.

Ltd

Printed by: Q.B. Newspapers Limited, Colchester.

International Associates:

Pub

46

Australia: Modern Magazines (Holdings) Ltd, Ryrie House, 15 Boundary Street, Rushcutters Bay 2011, Sydney, Australia. France: Electroniques Pour Vous International, 17 Rue de Buci, Paris, France. USA: ACP, Room 401, 1501 Broadway, New York, USA European News Bureau: H. Dvoretsky, Manager, 107 Fleet Street, London EC4.

READER QUERIES: These can only be answered if they relate to recent articles published in the magazine. Rarely can we supply information in addition to that published. Written queries must be accompanied by a stamped, self-addressed envelope, and telephone queries must be brief, not before 4.00 pm and can only be answered subject to the availability of technical staff.

BACK NUMBERS: Back numbers of many issues are available for 30p each plus 10p postage.

are available for 30p each plus 10p postage. SUBSCRIPTIONS: Great Britain, £4.25 per year, Overseas, £4.75 per year. (Air Mall £7.50). COPYRIGHT: All material is subject to World-wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur, a correction will be printed as soon as possible afterwards in the magazine.

The largest selection

BIB HI-FI ACCESSORIES WORLD SCOOP! De Luxe Groov-Kleen **EX-COMPUTER STABILISED** Model 42 £1-95 POWER MODULES complete with circuit diagrams, etc. 99p each 22p p & p. Chrome Finish Model 60 £1-50 JUMBO SEMICONDUCTOR PACK LOW COST CAPACITORS Transistors-Germ and Silicon Ref. B. Stylus and Turntable Cleaning Kit 34p •01 μF 400V 3p each 500 μF 50V Elect. **Rectifiers-Diodes-Triacs-Thyristors** 3p each 10p each Ref. 36A. Record/Stylus Cleaning Kit 33p Ref. 43. Record Care Kit 52-43 Ref. P. Hi-Fi Cleaner \$19 I,C's and Zenners ALL NEW AND CODED Ref. 32A. Stylus Balance #1-37 DECON-DALO 33pC Marker Ref. 31. Cassette Head Cleaner 50 APPROX 100 PIECESI Etch resistant printed circuit marker pen 99p each Ref. J. Tape Head Cleaning Kit 62p Ref. 32. Tape editing Kit \$1.68 Model 9. Wire Stripper/Cutter 93p Ref. 56. Hi-Fi Stereo Hints & Tips 439 Offering the amateur a fantastic bargain Pak and VEROBOARDS ANTEX SOLDERING IRONS PLUGS Packs containing approx., 50sq. ins. various sizes, all 0.1 matric 55p an enormous saving-identification and data sheet X25. 25 watt 42.05 PS 1 D.I.N. 2 Pin (Speaker) PS 2 D.I.N. 3 Pin in every Pak £2 p & p 30p 0.11 OCN 240. 15 watt \$2-48 0.12 **REPANCO CHOKES & COILS** PS 3 D.I.N. 4 Pin PS 4 D.I.N. 5 Pin 180° PS 5 D.I.N. 5 Pin 240° Model G. 18 watt \$2.26 0.15 RF Chokes CH1. 2-5mH 29p CH2. 5-0mH 20p CH3. 7-5mH 31p CH4. 10mH 33p CH5. 1-5mH 28p SK2. Soldering Kit \$2.25 0.16 STANDS: ST1 \$1 0.18 6 D.I.N. 6 Pin PS 6 D.I.N. 6 Pin PS 7 D.I.N. 7 Pin SOLDER: 158WG Multicore 7oz \$1.61 COILS DRX1 Crystal set 31p DRR2 Dual range 45p 0.17 MAMMOTH I.C. PAK 0.18 228WG 7oz \$1.61. 188WG 224 \$1p PS 8 Jack 2-5mm Screened **APPROX. 200 PIECES** 228WG Tube 38p 0.18 COIL FORMERS & CORES P8 9 Jack 3-5mm Plastic 0.15 ANTEX BITS and ELEMENTS Assorted fall-out integrated circuits including: Logic, NORMAN ¿ Cores & Formers 8p ¿ Cores & Formers 10p PS 10 Jack 3.5mm Screened PS 11 Jack ‡" Plastic 0.18 74 Series, Linear, Audio and D.T.L. Many coded 0-15 0-22 Bite No. PS 12 Jack 1' Screened 102 For model CN240 #* devices but some unmarked-you to identify. SWITCHES 421 PS 13 Jack Stereo Screened 0.26 **OUR SPECIAL PRICE** DP/DT Toggle 38p SP/ST Toggle 30p 1100 For model CCN240 PS 14 Phono 0.10 £1.25 including V.A.T. & p. & p. 427 PS 15 Car Aerial PS 16 Co-Axial FUSES 429 0.22 1102 For model OCN240 # SPECIAL PURCHASE by BI-PAK 11' and 20mm, 100mA, 200mA, 250mA, 500mA, 1A, 1.5A, 2A QUICK-BLOW 5p ca. 0.15 421 1020 For model G240 🛔 INLINE SOCKETS 42 2N3055. Silicon Power Transistors NPN 1021 For model (3240 PS 21 D.I.N. 2 Pin (Speaker) PS 22 D.I.N. 3 Pin 42p 0-14 EARPHONES 1022 For model G240 #* 42. Famous manufacturers out-of-spec devices free from Crystal 2-5mm plug 42p Crystal 3-5mm plug 42p 8 ohms 2-5mm plug 22p 8 ohms 3-5mm plug 22p 50 For model X25 0.20 487 PS 23 D.I.N. 5 Pin 180* open and short defects-every one able | 115 watts TO3. 51 For model X25 PS 24 D.I.N. 5 Pin 240* PS 25 Jack 2.5mm Plastic 481 0.20 52 For model X25 #* Metal Case. 0.16 ELEMENTS PS 26 Jack 3.5mm Plastic **OUR SPECIAL PRICE 8 for £1.** ECN 240 \$1-30 PS 27 Jack 1" Plastic PS 28 Jack 1" Screened PS 29 Jack Stereo Plastic DYNAMIC MICROPHONES ECCN 240 41-88 0.80 EG 240 \$1.07 EX 25 \$1-16 0.85 B1223. 200 ohms plus on/off switch and 2.5mm and 3.5mm plugs \$1.85 8-TRACK CART-CASES Holds 14, 13" x 5" x 6" **£1**.95, Holds-24, 13]" x 8" x 5[†] **£3**.70. Both with lock and handle. BOOK BARGAIN ANTEX HEAT SINKS 10p PS 30 Jack Stereo Soreened BUNDLE 0.38 / A T included in all prices. Please add Op P. & P. (U.K. only). Overseas orders-lease add extra for postage. 3-WAY STEREO HEAD PS 31 Phono Screened 0.18 Books comprising: Transistor Equivalent books Radio & Electronic colour code and PHONE JUNCTION BOX 10p P. PS 32 Car Aerial PS 33 Co-Axial 0.22 CASSETTE CASES £1-30 1 Radio & Electronic colour coue mud data chart 1 Radio valve guide PLUS 3 Other constructional books on Receivern, EM Tuners, etc. ALSO 1 General construction book VALUE £3. OUR PRICE 0.22 NEW COMPONENT PAK Holds 12, 10" × 3‡" × 5". Lock & Handle SOCKETS 2-WAY CROSSOVER NETWORK K4007. 80 ohms Imp. Insertion loss 3dB \$1.21 BARGAINS PS 35 D.I.N. 2 Pin (Speaker) SOLVE THOSE STICKY Pack No. Qty. PS 36 D.I.N. 3 Pin PS 37 D.I.N. 5 Pin 180* 0.11 Description Prior PROBLEMS! C1 200 Resistors mixed values approx. count by weight 0.54 0.11 TRANSISTOR EQUIVALENT PS 38 D.I.N. 5 Pin 240° PS 39 Jack 2 5mm Switched PS 40 Jack 3 5mm Switched **BERED** with Capacitors mixed values approx. count by weight 0.54 воок C2 150 0.12 BOOK 9th EDITION 256 pages of cross references and equivalents for European, American and Jäpanese transistors. Approximately 9,000 types with more than 86,000 substitutes have been included. The tables were compiled with the utmost care from manufacturers own specification. The most comprehensive Equivalents Book on the market todayi 0-12 Precision Resistors mixed values 1-2% 0-54 C3 50 PS 41 Jack 1" Switched PS 42 Jack Stereo Switched PS 43 Phono Single Handbook of Radio, T.V. & Industrial Tube & Valve Equiv. 409 Handbook of Tested Tran-sistor Circuita 409 International Handbook of the World's Short Wave Radio Stations and FM/T.V. Listings 55 Handbook of Simple Tran-sistor Circuita 55 Sound and Liederbuics colour codes and Data Charts 159 Sound and Liederbuics colour codes and Data Charts 159 Sound and Liederbuics colour codes and Data Charts 159 Sound and Liederbuics colour codes and Data Charts 159 Sound and Liederbuics colour constructor 359 Modern Crystal and Tran-sistor Set Circuits for beginners 54 Circuits for the Home Control Set Circuits for beginners 55 Fractical Transistor Novelty Circuits for the Sop 0.50 0.30 CYANOACRYLATE C2 ADHESIVE The wonder bond which works in seconds-bond plastic, rubber, transistors, components permanently, immediately! ith W Besistors mixed preferred values 0.54 C4 75 0.18 BPS PS 44 Phone Double 0.10 Cð δ Pieces assorted Ferrite Rods 0.54 PS 46 Co-Axial Surface BP4 2 0-10 C6 C7 Tuning Gange, MW/LW VHFO.54 PS 47 Co-Axial Flush **OUR PRICE ONLY 54p** Pack Wire 50 metres assorted colours ONLY £2-30 LEADS 0.54 for 2gm phial BP6 C8 10 Reed Switches 0-54 LS 1 Speaker lead 2 pin D.I.N. plug to open ends approx. 3 metres long (coded) 0.20 C9 Micro switches INSTRUMENT CASES 0.54 BATTERY HOLDERS BP7 C10 15 Assorted Pots & Pre-Sets 0.54 Assorted Pots & Pre-Bets U-Da Jack Bockets 3 x 3.5m 2 x Standard Switch Type 0.54 Paper Condensers preferred types mixed valued 0.54 Takes 6 h.p. 7s complete with termina clip and lead. 34p each. CABLES BP8 C11 5 CP 1 Single Lapped Screen CP 2 Twin Common Screen 0.07 BP9 C12 30 CARTRIDGES 0.11
 GARI IRIDUED

 AC08 GP2-180 200mV at 1:2cms/sec 41-35

 AC08 GP2-180 200mV at 1:cm/sec 41-35

 AC08 GP2-1100mV at 1:cm/sec 42.30

 TTC J-2005 Crystal/HI Output 51.00

 TTC J-2010 Crystal/HI Output 51.00

 Consol Stand/HI Output 51.00

 AC08 GP2-1000 Crystal/HI Output 51.00
 Stereo Screened CP 8 C13 20 Electrolytics Trans. types 0.54 0.12 BP10 Four Core Common Screen CP 0.23 (Black Vinyl covered) No. Length Width BV1 8" × 5 BV2 11" × 6 C14 1 Pack assorted Hardware-Nuts/Bolts, Grommets etc. 0.54 Four Core Individually Screen CP ō d 0-30 Height Prio Microphone Fully Braided Cable 0-10 BP11 CP 51" 6" 2" £1.35 3" £1.75 C15 6 Mains Slide Switches, 2 Amp 0.54 ×× 7 CP Three Core Mains Cable Mictorist Sop Mictorist Sop Second book of Transistor Equivalents 955 Constructors Manual of Elec-tronic Circuits for the home 500 Universal Gram Motor Speed Indicator 55 How to make FM and T.V. aerials Bands 1/2/3 169 Radio Servicing for Amateur 200 Assorted Tag Strips & Panels 0-54 TTC J-20068 Sizeeo/HI Output TTC J-2105 Ceramic/Med Output TTC J-2203 Magnetic 5mV/5cm/sec, including stylus TTC J-22038 Replacement stylus for above BP12 C16 20 Twin Oval Mains Cable CP 8 0.07 C17 10 Assorted Control Knobs CP 9 Speaker Cable CP 10 Low Loss Co-Axial \$1.75 \$1.95 0.54 ALUMINIUM BOXES BP14 C18 0.05 Rotasy Wave Change Switches 0.54 BA1 51" BA2 4" BA3 4" 28 4" 28 4" 0.15 XXXX 10 10 10 10 20 10 20 20 20 20 20 20 20 49p 49p 58p 49p 49p 49p 42p 85p 1.10 C19 2 Relays 6-24V Operating 0-54 Sheets Copper Laminate approx. 10" × 7" 44.95 BP16 CARBON POTENTIOMETERS C20 1 BA3 4" BA4 51" BA5 4" BA6 3" BA7 7" BA8 8" BA9 6" above \$3.00 TTC AT-55 Audio-technica magnetic cartridge 4mV/5cm/sec \$3.30 0.54 129 24 2* 5* 6* 4* og and Lin 188 4.7K, 10K, 22K, 47K, 100K, 220K, 470K, Please add 10p post and packing on all component packs, plus a further 10p on pack Nos. C1, C2, £1.1. 70p CARBON FILM RESISTORS 1M, 2M VC 1 141 The E12 Range of Carbon Film Resistors. Radio Services Single Less Switch p & p 15p on 0-16 C19, C20 watt available in PAKS of 50 pieces, assorted into the following groups:-----146 VC 2 Single D.P. Switch High Flowers 87p enclosures 87p Transistor Circuits Manual No. 1 15p Coll design and Construction Manual 80p 0-28 PLEASE NOTE: ALL OUR PRICES INCLUDE V.A.T. Tandem Less Switch 1K Lin Less Switch VC 3 50p R1 50 Mixed 100 ohms-820 ohms 156 VC 4 0.15 R2 50 Mixed 1K ohms-8-2K ohms 50p No. 1 160 Coll design and Construction Manual 300 Radio T.V. and Electronic Data book 250 Transistor sub-miniature receivers site Section 180 Manual 05 Transistor Audio Amplifiers 400 A comprehensive Radio Valve Guide-Book 5 300 How to receive foreign T.V. programmes on your set by aimple modifications 183 AP-RF Reactance-Frequency chart for Constructors 159 Handbook of Practical Elec-tronic Musical Novelities 500 Practical Transister resolutions 500 Practical Transister of Transister 500 Practical Transister for 500 Practical AMTRON KITS 160 VC 5 100K Log anti-Log 50 Mixed 10K ohms-82K ohms 0.48 R3 50

 b.
 Price

 Bimple transistor tester
 Price

 Amplifier 1.5W
 25.17%

 Signal Infector
 25.365

 AM/FM Antenna Amplifier
 25.365

 AM/FM Antenna Amplifier
 25.365

 Advertised Radio Control Transmitter
 27.38

 4-channel Radio Control Transmitter
 27.38

 (GCX2' Channel splitting unit 1,500 & 2,000 Hz
 29.77

 'GCX2' Channel splitting unit 1,500 & 2,000 Hz
 29.77

 'GCX2' Channel splitting unit 1,500 & 2,000 Hz
 29.77

 'GCX2' Channel splitting unit 1,500 & 2,000 Hz
 29.77

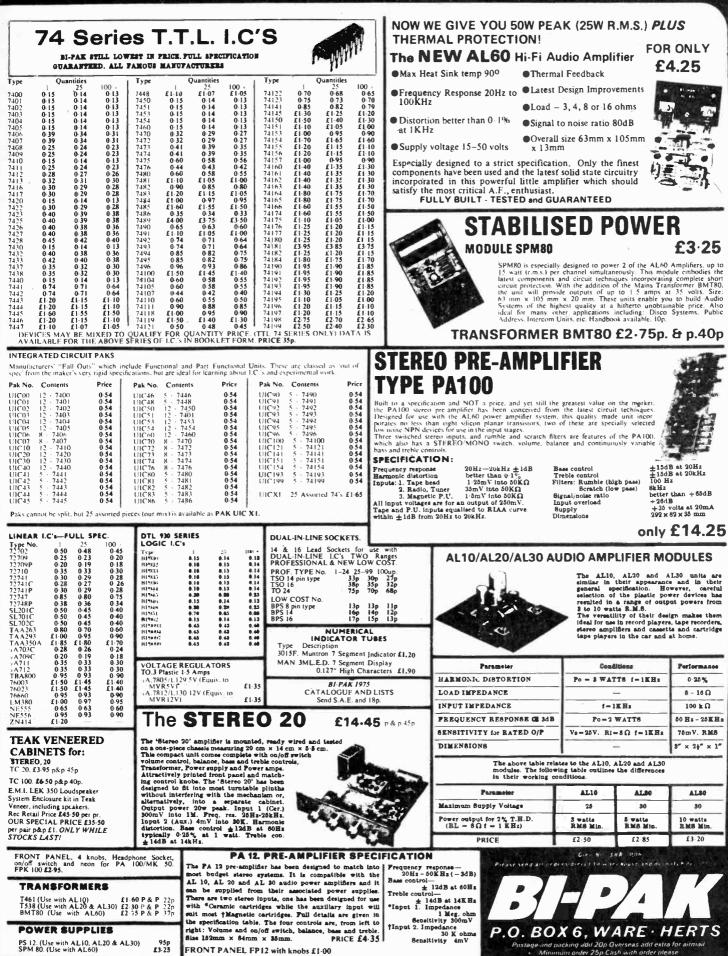
 'GCX2' Channel splitting unit 1,500 & 2,000 Hz
 29.77

 'GCX2' Channel splitting unit 1,500 & 2,000 Hz
 29.77

 'GCX2' Channel splitting unit 1,500 & 2,000 Hz
 29.77

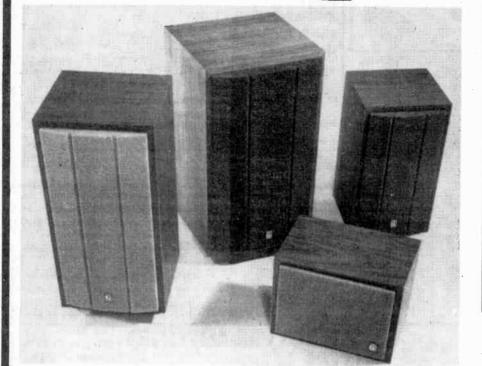
 'Gutar pre-amplifier
 27.33

 'Licetroulor Unit for Metal Detector
 211.96


 'Gutar pre-amplifier
 213.86

 'Gutar pre-amplifier
 213.87

 'Capacitive Discharge Electronic Ignition for Internal Combution Engines 214.47


 Model No. UK65 UK145 UK220 R4 50 Mixed 100K ohms-1 Meg. ohms 50p THESE ARE UNBEATABLE PRICES-161 HORIZONTAL CARBON PRESETS 174 JUST 1p EACH INCL. V.A.T. 0-1 watt 0-06 each 100, 220, 470, 1K, 2-2K, 4-7K, 10K, 22K 47K, 100K, 220K, 470K, 1M, 2M, 4-7M UK230 UK275 UK300 UK310 UK325 175 **BI-PAK SUPERIOR QUALITY** LOW-NOISE CASSETTES 174 SELENIUM BRIDGE C60, 82p C90, 41p C120, 52p 178 RECTIFIERS 18V. 2A. Ideal for those building battery UK330 UK345 SEE OUR COMPLETE RANGE 183 UK525 UK555 IN PRACTICAL ELECTRONICS, chargers. 15p each. 10 for 55p UK710 UK710 UK780 UK885 UK876 196 PRACTICAL ELECTRONICS, PRACTICAL WIRELESS, RADIO CONSTRUCTOR, VERYDAY ELECTRONICS, ELECTRONICS TODAY INTERNATIONAL **REPANCO TRANSFORMERS** 200 240V. Primary. Secondary voltages available from selected tappings 4V. 7V. 8V. 10V. 14V. 15V. 17V. 19V. 21V. 25V. 31V. 33Ve 40V. 50V. and 25V-0-25V. 201 Handbook of Integrated Gircuits Equivalents and Substitutes 75p Resistor Colour Code Disc Calculator 10 VISIT OUR COMPONENT SHOP Туре Amps Prior P \star P 202 OR SEND SP. FOR THE FULL LIST OF ALL BI-PAK PRODUCTS 18 BALDOCK ST., WARE, HERTS. (A10) Open Mon.-Sat. 9-5.30 p.m Tel. 61593 MT50/4 \$1-93 46p MT50/1 48p 60p 42-44 MT50/2 61-20

-the lowest prices!

Guaranteed Satisfaction or Money Back

-news digest

BIC VENTURI LOUDSPEAKERS

These BIC Venturi speakers utilise a new method of reproducing bass frequencies based on the Venturi principle. The acoustic energy output is much higher and a much purer signal results.

Low-velocity air motion in the cabinet is transformed to high velocity air motion in a venturi-coupled path. At very low bass frequencies the amplitude of the signal from the opening of the venturi-coupled path is substantially greater than from the front of the woofer itself. The venturicoupled path functions also as an acoustic low pass filter, removing unwanted harmonic content. All the BIC Venturi speakers feature a continuously variable "Brightness" control on the front panel.

There are four speakers in the

DIGITAL WATCH PRICES TUMBLE

Digital watches may soon be selling for less than £30 - and could be as low as £12 in two years time.

This forecast was made by Victor Kiam of Benrus Corporation during a digital watch seminar held in New York earlier this month. As if to illustrate Kiam's point, Litronix (Cupertino, Califronia) announced a range of five LED readout watches costing from \$50 - \$60 (£20 - £24).

Not all manufacturers are aiming for ultra-low prices however. Intersil for example are about to introduce an LED readout wristwatch range (called Cronus) selling for around $\pounds 80 - \pounds 150$ range. The Venturi Formula 1 will handle up to 50 rms, and will cost approximately £45.00 each (excluding VAT). The Venturi Formula 2 will handle 75 rms watts, and will cost approximately £65.00 each (excluding VAT). The Venturi Formula 4 will handle 100 rms watts and will cost approximately £80.00 each (excluding VAT). The last speaker in the range is the Venturi Formula 6 which gives a response of 20Hz to 23kHz, and can handle 125 rms watts. The price will be approximately £130.00 (excluding VAT).

These speakers carry a three year (parts and labour) guarantee and are available through Belmont A/V Limited Fircroft Way, Edenbridge, Kent.

NEW COMET DISCOVERED

Astronomers in the Crimea have discovered a new comet – provisionally named 1975-E. It is relatively close – not more than 400 million miles away but the size and orbit have not yet been calculated.

SASER?

Professor S. Altshuler of Kazan University, USSR, is developing acoustic generators and amplifiers working on the same principles as the laser. They are the outcome of the university's research into acoustic paramagnetic resonance in solid body physics.

FRANCIS GRAHAM

It is with deep regret that we announce the death of Frank Graham on May 17th at the tragically early age of 27 after a long illness which he bore cheerfully.

Frank was ETI's regular photographer and although rarely credited in the magazine, few issues in the last two years did not carry his work. Although not a staff member, Frank was a regular visitor to ETI's offices and we downed many a pint with him. He was invariably cheerful, helpful and, was a perfectionist in his photography. We shall miss him.

THE REAL PROPERTY AND ADDRESS OF

LASER MISSILE INTERCEPTOR

The US armed forces may soon have a laser missile interceptor. Air Force reports state that prototype deuterium fluoride lasers have been successfully tested at 'very very high' power outputs.

Power output is apparently so high that the laser beam burns straight through heavy gauge stainless nickel steel plate.

SOVIET RADAR BLAMED FOR HIGH HEART DISEASE

A Russian radar tracking station near the Finnish town of Ilomaritsi may be responsible for a sharp increase in heart disease and cancer according to Dr. Milton Zaret, an American microwave expert.

The Finnish border towns have the highest rate of heart disease in the world and cancer has increased inexplicably.

ELECTRONIC CHEQUEBOOK CALCULATOR

A pocket calculator that will hold and display bank cheque account balances for a year or more is shortly to be announced by the US Mostek Corporation.

During the times that the calculator is 'off' data is stored in a static shift register (drawing a mere 100 microamps). This data is then clocked solely when access is required.

The unit is expected to retail for less than £16 and will be built into a plastic chequebook holder. Please mention news digest in any enquiry.

When the Chancellor, Mr. Healey, introduced the higher rate of VAT (25%), this was clearly done to tax 'luxuries'. Amongst other categories of goods qualifying for the higher rate are Radio, TV and Audio equipment; When component suppliers received the new instructions they found in the small print a number of other categories, most of which were obvious candidates - TV aerials etc. - but also listed specifically were transistors, valves, resistors, coils and capacitors suitable for use in these higher rated goods. The position of kits was not covered.

H.M. Customs and Excise, who administer and collect VAT, were asked by ETI what the new rate covered. They have been placed in the unenviable position of having to interpret the new rulings. It became clear that the Customs and Excise were as confused as everyone else! As a result, Halvor Moorshead, Publisher and Editor of ETI, organised a deputation of representatives of the components retailers to meet Customs and Excise to arrive at a workable interpretation. The companies represented were: Marshall's, Ambit, Heathkit, Electrovalue, Henry's Radio, Home Radio, Bi-Pak, Bi-Pre-Pak, Maplin, L.S.T., Bywood, Doram, Chromasonics, Tandy, Crescent Radio and Garland Brothers.

Representation was made to obtain a workable definition, not to protest

ANALOGUE MEMORY

A device to store an analogue waveform, to play it back at a slow speed for oscilloscope or x-y plotter display, has been introduced by Kemo (9 Goodwood Parade, Elmers End, Beckenham, Kent BR3 30Z). The AM1024 digitises a time segment of

ETI/DANAMETER COMPETITION -APRIL 1975 ISSUE-

This competition closed on April 30th and, as usual, it was a great success. The correct answers are shown.

We were slightly apprehensive about setting the level too high but reactions from readers show that generally people prefer something challenging. No. 8 down "Earliest 'air' crossing of

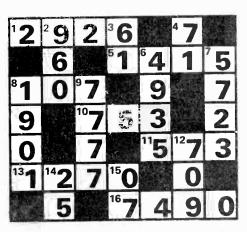
the Atlantic refers to Marconi's radio experiments – we did put 'air' in inverted commas to draw attention to this but quite a lot of people got it wrong.

The first three correct entries drawn after the closing date were from:

- S.D. Boyd of Stubbington, Hants, M.P. Conroy, Wimbledon Chase, London
- SW20. D.M. Weiss, London NW6.

VAT AND COMPONENTS

the rate, as Customs and Excise cannot make such decisions. The outcome was that the following list was proposed by the delegation and accepted as an interim definition by H.M. Customs and Excise.


SUBJECT TO 25% VAT

- 1. Transistors FET's and valves,
- Resistors fixed value types. 2.
- Capacitors including variable 3.
- capacitors.
- Potentiometers and presets. 4. **Diodes and Rectifiers.**
- 5.
- RF Coils, IF transformers cera-6. mic filters.
- 7. Moving coil loudspeakers.
- 8. Microphones and accessories, headphones and earphones.
- Linear IC's inc. Amps, Op. Amps 9. and PLL.
- 10. Radio, TV and audio modules.
- Radio, TV and audio equipment 11. parts and accessories such as aerials preselectors, cabinets, dinplugs, printed circuit board, (for Group 2 items) and ferrite aerials.
- Musical keyboards and access-12. ories, guitar pick-ups, spring-line units.

All other goods are subject to 8% including digital IC's, transformers, test gear etc. Copies of letter received by ETI from H.M. Customs and Excise confirming this are available to

the signal and stores up to 1024x9-bit words.

Sampling interval is controlled either by internal crystal, for the range 3μ S to 300mS, or by an external source, for longer intervals. The store is fed continuously until the memory is instructed to hold the waveform, then this is read out to the display.

bona fide manufacturers and component suppliers from ETI on request.

Kits were also covered. Where the built-up kit would qualify for the higher rate, the VAT will normally be charged at 25%. Where a kit, when built-up, would qualify for 8%, the whole kit will be 8% except when those components which normally fall in the 25% category comprise more than 33 1/3% of the final value. In practice, this means that virtually all kits which would qualify for the 8% rate when built, continue to be at 8%.

This dual rate is causing enormous problems amongst the component suppliers, so bear with them.

It certainly appears that components have been put in the higher rate to avoid loop-holes, not because the Chancellor wanted to tax the electronics enthusiast. This seems very unfair to us and if you agree there is something you can do about it - you don't have to sit back and take it: write to your M.P. If the number of M.P.'s, especially Labour ones, are convinced by your arguement, the Government may change their mind it's not as far-fetched as it appears there are many precedents for corrective Legislation where it is found that the original draft has loop-holes and people are being taxed for something which was included only to prevent loop-holes. Don't complain to your component suppliers, or to us - write to your M.P.

SINCLAIR WIN QUEEN'S AWARD

The Queen's Award to Industry, 1975 has been won by Sinclair both for outstanding export achievement and for technological innovation in scientific calculators: only two company's have won Awards in both categories this year.

In the three years up to March 1974, exports increased 10-fold to £2,232,000 or 56% of turnover.

The Award for technical innovation is for the Sinclair Scientific which will be well-known to ETI readers. Sales topped £1 Million, over half of them exported. Of the UK sales a significant proportion resulted from the ETI/ Sinclair reader offer in October 1974.

Other electronics companies to win the Queen's Award are two divisions of BICC, EMI and Micro Consultants, a company employing only 80. In the latter case the Award was for Technical Innovation for its range of video analogue and digital converters.

3 Martin

news digest

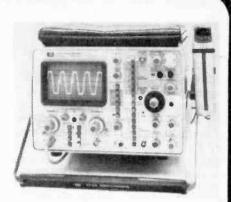
MYSTERY WALKIE TALKIE

London's Fire Brigade are currently evaluating a 'mystery' walkie-talkie system that enables firemen to communicate with each other even inside steel-framed buildings.

The 'mystery' is that no-one – including Plessey, who developed it – totally understands just how it works!

Communication within steel-framed buildings has always been a major problem, UHF and VHF radios are useless in these conditions and cable linked systems are cumbersome and prone to damage.

Plessey, under contract to the Home Office investigated the problem and found that rf energy at 3MHz will penetrate steel-framed buildings. The frequency seems to be fairly critical and, say Plessey there must be some metal structure around for the system to work. 'It works' says a Plessey spokesman, 'but honestly we don't know why'.


Twenty four sets of the new system – known as Figaro – have been supplied to Britain's fire brigades for evaluation. The first real-life test came during the recent Moorgate underground train disaster where it was used to communicate from the disaster site underground up to street level. The system apparently worked extraodinarily well.

TIMER IC

The Ferranti ZN1034E is an IC that will accurately time processes lasting from milliseconds to weeks. The 14-lead DIL package requires only one external resistor and capacitor. It has a drive capability of up to 25mA. It can be powered by battery, from a 5V TTL rail, or from the mains.

Features of the ZN1034E include repetitive and cascade operation, an internal/external calibration facility, mains contact or TTL triggered timing sequence initation, a temperature stability of <0.01%/OC and accurate repetitive timing of typically 0.01%. It provides time intervals up to 7500CR through its 12-stage counter, and gives complementary TTL compatible outputs.

The ZN1034E utilises digital and precision linear functions on the same chip. The frequency of the on-chip oscillator is determined by an externally connected capacitor and resistor. In addition, fine adjustment can be achieved by connections of a calibration timing. Pulses from the oscillator feed through a 12-stage binary divider which times out after 4095 counts. A voltage regulator is incorporated and two modes of operation can be used. The one off price is £2.99 from Edmundson Electronic Components Ltd., 30-50 Ossory Road, London SE1 5AN

OSCILLOSCOPE RESOLVES TIME INTERVALS TO 100 PICOSECONDS

A new 200MHz dual-channel oscilloscope, Model 1712A from Hewlett-Packard, can resolve time-interval measurements to 100 picoseconds. It is easy, with dual delayed sweep, using two markers, to define the interval of interest on the screen with that resolution. A special output delivers a voltage precisely proportional to the selected time interval. With a 41/2digit DVM, digital readout with 100-ps resolution is possible, to make such timing measurements as risetimes, propagation delay, and clock-phasing with ease and precision approaching those attained with the microprocessor-equipped HP 1722A. The price is £1.643.

Hewlett-Packard Ltd., King Street Lane, Winnersh, Wokingham, Berks. RG11 5AR.

SINGLE CHIP MICROCOMPUTER

The TMS 1000 is a complete self-contained microcomputer system on one P-Channel MOS Chip. It contains an 8192 bit ROM for programming, a 256 bit RAM for data storage, and a 4-bit binary ALU. In addition the chip has 13 control outputs set under program control, 1 4-bit parallel input port and a separate 8-bit parallel output port. An incoming binary word of up to 64 bits is read in in 4-bit hexadecimal digits and operated on by the ALU in digit sequence.

There are two mask programmable areas on the chip in addition to the program ROM. The instruction decoding PLA can be mask programmed to provide variations of, and mergings of, the base set of 43 instructions, and the 8-bit output formatting logic is mask programmable to allow the user to specify any 8-bit output code including BCD, 7-segment and ASC II.

The TMS 1000 has an on-chip oscillator, activated by an external resistor and capacitor, or an external clock can be connected. At the nominal clock frequency of 500kHz the instruction cycle time (for assembly instructions) is 12 microseconds.

Applications of the TMS 1000 are envisaged in terminal controllers, fuel-metering, credit card verifiers, printer controllers, vending machines, weighing machines, in fact all types of industrial control systems requiring in excess of 5000 parts per yesr, where the use of a microprocessor chip set would be unnecessarily complex and expensive.

Texas Instruments Limited, Manton Lane, Bedford.

Texas Instruments Lin

WELL FRANK, --- WE SEEM TO BE GETTING A BETTER CLASS OF ANTI-GRAVITY MACHINE THESE DAYS; EH?!

Continued on page 66.

NEW CHIP PRICES as from 1st May 75 DIGITAL CLOCK CHIPS **CLOCK CHIPS:** £ 1.70 Common-Anode 0.3" LED display 1 70

£37.50

£16.60

£ 6.60

£10.00

£ 9.35

£11.00

£ 7.60

£15.15

£10.25

£14.50

	0011111011		
DL704	Common	Cathode DL707	£ 1.70
DL701	Common-	Anode 0.3'' ±1	£ 1.70
DL747	Common-	Anode 0.6" LED display	£ ⁻ 2,45
DL750	Common-	Cathode DL747	£ 2.45
DL746	Common-	Anode 0.6'' ±1	£ 2.45
3015F	Minitron	filament 12,5mm	£ 1.25
3017F	Minitron	filament 17.5mm	£ 2.00
RDS1	Itoka filar	ment 2.5"	£ 8.00
RDM2	Itoka filar	ment 5.0''	£24.80
DG12	Phos-diod	le 12.5mm	£ 1.20
5LT01	Phos-diod	le 4 digit clock display	£ 5.80
DIGIT	AL C	LOCKS	
DIGITRON	IC 116	Six digit clock	£31.00
DIGITRON	IC 117	With 1/10th seconds	£34.00
DIGITRON	10110	6 digit Quartz clock	£43.50
DIGITRON	IC IIS	Mains Stopwatch Clock	£54.00

DIGITRONIC IIS Mains Stopwatch Clock DIGITRONIC III Time/Date/Alarm Clock CHANTICLEER 4 digit alarm clock

(For Common-anode | FDs)

MHI-5314	5314 chip, driver & PCB				
MH1-7001	7001 chip, driver & PCB				
MHI-5025	5025 chip, driver & PCB				
MHI-D707/6	6 DL707 LEDs plus PCB				
MHI-D707/4	4 DL707 displays plus PCB				
MHI-D747/6	6 DL747 displays plus PCB				
MHI-D747/4	4 D1747 displays plus PCB				
MHI-D727/6	6 Digit 0.5" units plus PCB				

Basic 12/24Hr, 6 digit, 50/60Hz chip. £ 4,44* MM5314 7 seg outputs. Very popular, simple chip As MM5314 but with additional BCD £ 5.18 MM5311 outputs. MK50250 6 digit alarm chip with alarm tone out-£ 5.60* put, Standard basic alarm facilities. £ 7.30* Time, Date & Alarm on one 6 digit CT7001 chip. The Alarm can be used in 3 modes including a time switch. Clock-Radio & Snooze features. 7 seg outputs, 50/60Hz or 100.8kHz input frequency. As CT7001 but with BCD outputs not £ 7.30 CT7002 7 seq. £10.50 Stopwatch chip, most reqd. stopwatch TMS3952 functions 6 digits (hhmmss or mmssss), 300kHz input. 7 seg output. Special price 8 digit (HhMmSsss), stop/start/reset, £ 8.50 HEEC2 50Hz/60Hz/100kHz input, BCD output hard-wired alarm with repeat (snooze). Can also be used as 8 digit decade counter CMOS chip for Liquid crystal displays, £15.00 12Hr, 1Hz colon, input 32768Hz or CT6002 65536Hz. Runs on 1.5V hearing aid battery for a year. £9.25 4 digit non-mplxd alarm chip, will MM5316 direct drive I-c or phosphor-diode displays. * Available in a MHI kit. We advise the use of sockets for all ICs, 24/28/40 pin £1.00. BYWOOD ELECTRONICS, 181 Ebberns Road, Hemel Hempstead,

All prices on this advert exclude VAT

charge, electronic ignition system. Sparkrite completely eliminates pro-blems of the contact breaker. Misfires due to contact breaker bounce is electronically eliminated, contact breaker burn is eliminated, the condition of the contacts is not relevant to the performance of the ignition, and the system is no longer dependent on the dwell period for recharg-

ing. SPARKRITE WILL GIVE YOU:

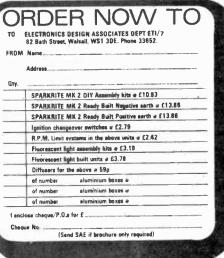
or ANAMIE WILL DIVE TOU. Up to 20% before fuel consumption, instant all weather starting, cleaner plugs they last up to 5 times longer without attention, faster acceler-ation, higher top Seed, longer coil and battery file, efficient toub buming and less air polution, smoother running, continual peak performance.

THE KIT COMPRISES EVERYTHING NEEDED Ready drilled passed steel case coated in matt black epoxy resin, ready drilled base and heatsink, top quality 5 year guaranteed transformer and components, cables, coil connectors, printed circuit board, note, bolts, silicon grease, full instructions to make the kit negative or positive earth, and 10 ness install-lino gettime integet.

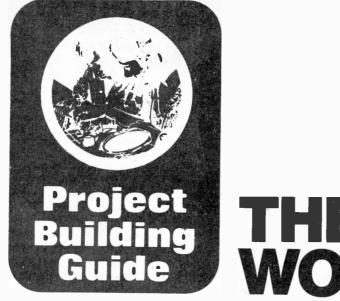
and 10 page installation instructions. WE SAY IT IS THE BEST SYSTEM AT ANY PRICE.

Voted best of 8 ignition systems tested by Popular Motoring

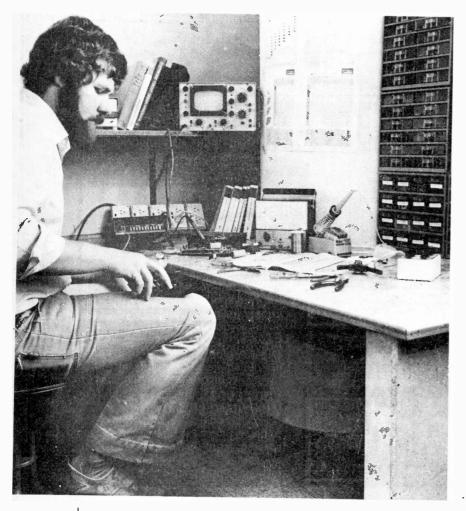
MK2


PRICES

PRICES D1Y assembly kit £10.93 incl. V.A.T. post and packing Ready built unit 1'13 86 incl. V.A.T. post and packing (Both to fit all vehicles with collidistributor ignition up to 80 cylinders.) Switch for instant changeover from "Sparkrite" ignition to conventional ignition £2.79 incl. V.A.T. post and packing (Fitted in case on ready built unit, dashbadd mominion phil.") dashbaard mounting on kit.) We can supply units for any petrol-angined vahicle (boat, motorcycle,


etc.) with coll/contact breaker ignition. Details on request CALL IN AND SEE US FOR A DEMONSTRATION.

ELECTRONICS TODAY INTERNATIONAL-JULY 1975



Herts. HP3 9RD. Tel: 0442-62757

THE HOME WORKSHOP

Space, light, power, components, tools - save time and money with ETI's home workshop guide.

Even an awk ward corner like this can be utilized effectively. Note particularly the equipment shelf, storage bins, array of power points and linoleum on top of bench.

WORKSHOP KIT

The following list of tools and basic components has been carefully compiled to assist the novice constructor setting up a home workshop from scratch. Virtually nothing on the list is redundant.

Test gear has not been included as this will form the basis of a further feature article to to be published shortly.

Very roughly, all the items listed above should cost somewhere between ± 50 and ± 75 – naturally though prices will vary from supplier to supplier, and to some minor extent with the quality of the tools offered.

TOOLS

Soldering Iron – approx 20 watt 240 volt Iron rest & wipe pad Side cutters Long nose pliers Neon indicator screwdriver Wire strippers 3 x screwdrivers including one medium 'Philips' head

HARDWARE

500 grams tinned copper wire 22 Swg (0.711mm) 'Savbit' solder
Solder wick
500 grams tinned copper wire 22 Swg
2 x 100 metre reels hook-up wire (one 7/0076 and one 10/010 different colours)
Assorted spaghetti (not plastic)
50 x ½'' x 1/8'' bolts
50 x 1'' x 1/8'' bolts

NOT all of us are blessed with space in which to build a workshop and many experimenters must be satisfied with the kitchen table or invade a small corner of the "sewing" room. For those who can find a suitable

space the requirements of a good workshop may be summarized under the headings of location, benches, light, power, storage and tools.

THE LOCATION

As much space as possible is required if one is to undertake electronics as a serious hobby, anything from 2×2 metres upwards is needed. Electronic equipment (and the experimenter) is adversely affected by extremes of temperature. The area must also be dry as damp floors or walls will rapidly corrode contacts and cause rapid general deterioration of valuable equipment. A location should therefore be chosen that is clean and

dry and not subject to temperature extremes.

BENCHES

The work bench should be strong and rigid as heavy equipment may be used on the bench.

Pine board or similar material makes an excellent bench top but, whether pine board, floor boards or ordinary other materials are used, it is advisable to surface the top with linoleum, tiles or sheet to provide a good stainproof and continuous surface.

A well-braced frame work should be constructed from 75 x 50 mm timber or, alternatively a steel frame may be constructed using Dexion angle or box section tube.

An equipment shelf should be provided along the rear of the bench at least 300 mm wide and 300 mm above the bench. Such a shelf allows the working space to be kept free of test equipment.

LIGHT

The rule is as much light as possible. A good general illumination should be provided and, in addition, a desk lamp capable of swivelling to illuminate the interiors of equipment should be provided. If fluorescent general illumination is used purchase a twin lamp fitting that has lead/lag ballasts. Flicker is much reduced with this system and, although a little more expensive, you will save much eyestrain.

POWER

Whilst in general very little mains power is required in an electronics workshop many pieces of equipment must be powered simultaneously and hence a multitude of power points is required.

Here we must emphasise that such power points must be properly wired - you seldom get a second chance with mains power. Make sure your

100 hex nuts (1/8")

50 x ¼" 'self tappers'

50 x ½" 'self tappers'

50 x 1" 'self tappers'

 $2 \times 6''$ square 0.2" pitch matrix board $2 \times 6'' \times 9$ holes/0.15 pitch matrix board

- 1 x 3.75" x 3.12" and 1 x 3.75" x 8.12"/0.1
- pitch Veroboard

1 x resistor mounting strip (48 lugs per side)

3 x 3 lug tag strips

2 x 5 lug tag strips

1 x 10 lug tag strips

- 1 x 12 way screw terminal strip
- 12 x assorted grommets

COMPONENTS

Resistors ½ watt 5% tolerance

- 5 x all standard values from 10 to 820 ohms
- 15 x all standard values from 1k to 82k ohms
- 5 x all standard values from 100k to 8.2 M ohms
- plus 20 x 1k Ω , 4.7k Ω , and 10k Ω
 - (660 resistors)

Capacitors

3 x all standard values from 10pF to 820pF (Miniature Philips or similar) 3 x all standard values from $0.001 \mu F$ to $0.47 \mu F$ plus 5 x 0.1 μ F and 0.01 μ F

 $3 \times 1 \mu F$ capacitors

2 x all following electrolytics (25 Vdc) microfarads (1,2.2,3.3,4.7, 10, 16, 25, 47, 100, 200, 330, 470, 640, 1000)

Trimpots

1 x 500Ω, 1kΩ, 2.5kΩ, 5kΩ, 10kΩ, 25kΩ, $50k\Omega$, $100k\Omega$, $250k\Omega$, $500k\Omega$ ' $1M\Omega$ (LIN)

Potentiometers

1 x 2.5k Ω , 10k Ω , 25k Ω , 50k Ω , 100k Ω , 500kΩ (LIN) $1 \times 50 k\Omega$ (LOG)

Relays and Switches

1 x 6-17 Volt (200 ohm) relay double pole C/O 2 x DPDT 3A toggle switches 1 x SP miniature push button (push-on)

Semiconductors

6 x BC108 or equivalent transistors 2 x BC178 or equivalent transistors 1 x BFR80 transistor 1 x BFR40 transistor 1 x BC328 transistor 1 x BC338 transistor 1 x 2N3055 transistor 1 x 2N2646 UJT 1 x 2N6027 (D13T1) PUT 1 x 2N5459 PUT 6 x 1N914 silicon signal diodes or similar 6 x 1N4004 silicon power diodes or similar 1 x LED 1 x OA90 germanium diode (or similar) 1 x 400mW 4.7V zener diode 1 x 1.5W 5.6V zener diode 1 x 1.5W 6.8V zener diode 1 x 1.5W 10V zener diode 1 x 1.5W 12V zener diode 1 x 1.5W 15V zener diode 1 x ORP 12 light sensitive resistor

Integrated circuits

1 x NE555 timer IC $1 \times \mu A$ 741 operational amplifier

2 x LM301 operational amplifier

THE HOME WORKSHOP

power installation is correctly wired and safe - after all it's your life. It is illegal to modify household power distribution yourself but it is legal to wire a bench so that it may be plugged into an existing power point. Although the bench power lead may be plugged into a single 13 amp power outlet such outlets only have a single pole switch. Hence for safety a two-pole switch, which breaks both active and neutral to the bench circuit, together with a neon indicator and fuse should be fitted such that the bench circuits can be completely isolated even though still plugged into the outlet.

To wire the bench use 23/0076 three-core flex if the current drain does not exceed seven amps and 40/.0076 if the current does not exceed 10 amps. Choose the ratings of fuse and double-pole switch to suit. Make particularly sure that the earth is *solidly* connected to each power point and wire the power points according to Fig. 1.

Plugs should be wired to correspond. This is VERY important as a reversal of live and neutral can be dangerous, for, if a single pole switch is used to switch off equipment and you fail to pull out the plug – there could still be a live voltage present if the plugs etc. are incorrectly wired. It is essential to check that the outlet socket (into which the bench sockets are plugged) also be wired correspondingly.

The only way to be sure is to actually measure the AC voltage between the pin that *should* be neutral, and the earth pin (with power switched on of course).

It is quite normal to have the odd volt or two between neutral and earth – but if there's 240 volts or so there (and little between live and earth) then the outlet socket has been 'incorrectly' wired by the installation electricians. Have it corrected by a suitably qualified person.

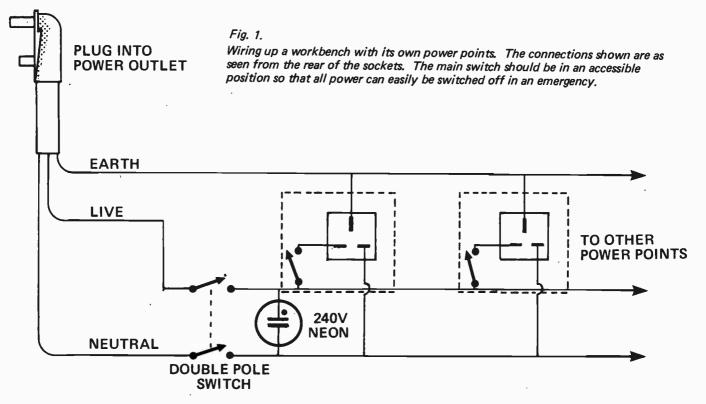
If you don't have a meter available check by connecting a 240 volt bulb between neutral and earth — and live and earth. It should be energized, when it is between live and earth.

STORAGE

An electronics workshop needs tons of storage capable of efficiently storing everything from small components through tools to electronic equipment so that they can be located with a minimum of fuss.

For small components the small moulded-plastic drawer cabinets are ideal. For tools and other medium sized gear a $^{/}$ set of conventional

drawers is required, whilst for storing equipment, tins of lacquer etc, a cupboard with several shelves is ideal. Storage is expensive, but, if properly implemented, it can save many frustrating hours of searching.


TOOLS

Very few tools are required for basic electronic work – soldering iron, set of screw drivers and side cutting and long nose pliers will do to get started.

As_one progresses other things will become essential. Typical second line purchases will be a set of files, a vice, an electric drill, and set of drill bits, nibbling tool, tin snips, steel rule and scriber.

All tools purchased should always be of the best quality that you can afford, cheap tools are *never* cheap in the long run, they do not perform satisfactorily and they wear out quickly. Purchase *only* those tools that you actually require to do a specific task and only add to your collection when it becomes obvious that you cannot do without a specific tool. It is all too easy to spend a lot of money on a collection of fancy tools which seldom, if ever, get used.

Choose your tools carefully, take care of them, and they will last for years.

How to make sound solder joints

THE ART OF SOLDERING

SOLDERING is an art – an art that is essential to the successful building of fault-free electronic circuits. Suppliers of kits tell us that about 90% of all problems with kits are due to faulty solder joints. Hence the beginner (if he wishes to avoid much frustration and, possibly expensive service charges) must learn to solder correctly.

In essence, soldering is a method of making joints having low electrical resistance. It is not primarily used to give mechanical strength. If mechanical strength is required the component must be separately supported.

SOLDER

A good solder should have a low melting point, low electrical resistance, should go very quickly from liquid to solid state (and vice-versa) and should be capable of rapidly fusing to the metal surfaces being soldered.

Solder, for electrical connections, is an alloy of tin and lead. Pure tin melts at 327°C and is plastic over the range 1830 to 3270C, whilst pure lead melts at 232°C and is plastic over the range 1830 to 2320. Either metal, used alone, is unsuitable as any movement whatsoever whilst the soldering metal is in its plastic state will result in a faulty joint. However when lead and tin are mixed it is found that the melting temperature of the mixture is lower than for either metal alone, and the plastic temperature range is decreased. When the composition is 63% tin and 37% lead the mixture has no plastic region and goes from solid to liquid at precisely 183°C. However, in practice it is found that a very small region of plasticity is desirable in a solder for electronics, and the usual proportions are 60 percent tin and 40 percent lead. Other alloys are made for special purposes, but only 60/40

composition should be used for electronic purposes as this provides optimum-strength with lowestresistance of electrical joints combined with the most desirable plastic range of about 5°C.

THE NEED FOR FLUX

All metals (even when freshly cleaned), are covered with a non-metallic film of oxide which prevents solder fusing to the metal. The oxide has a surface tension which effectively *isolates* the solder from the metal. For a reliable, low-resistance joint this oxide *must* be removed during the soldering process, and this is performed by the use of a flux.

The flux used for electrical soldering is a high grade of wood or gum resin together with a small quantity of activator. The molten resin effectively wets both solder and metal, whilst the activator dissolves the oxides on the surface, allowing the solder to flow freely and form a molecular bond with the metal.

In order to dispense automatically the correct amount of flux, modern solders have the flux contained within cores in the solder itself. Five cores are generally used, throughout the entire length of the solder — so no additional flux is needed. Any excess flux hardens on the surface of the joint but it is completely non-corrosive.

Fluxes are also made for non-electronic uses. These are generally acidic and must *never* be used on electronic equipment as component leads and printed circuit board tracks will be corroded. Additionally the use of such a flux will completely void any warranty on a kit or electronic equipment on which it is used.

SAVBIT SOLDER

If the soldering iron has a copper bit the copper will gradually be dissolved in the molten solder. Thus the tip wears away quickly and requires constant filing and retinning. To overcome this problem some soldering iron tips have a copper core with an outer skin of iron. Another solution to the problem is to add a small amount of copper to the solder alloy. This prevents the absorption of further copper and greatly extends tip life. Such solder is known by the trade name of 'Savbit' The use of the Savbit solder can extend the life of ordinary copper tips up to ten times.

SOLDERING IRONS

There are many types of soldering iron on the market and those most commonly used in electronics may be grouped into three main categories.

- (1) Quick heat irons.
- (2) Continuous heat irons.
- (3) Temperature controlled irons.

QUICK HEAT IRONS

Irons of this type generally work from a transformer which supplies a low voltage at very high current. The two main types are solder guns and low-voltage irons.

The solder gun passes a current of about 50 amps at 0.5 volts through a short length of copper wire, thus heating it quickly to very high temperatures. These irons usually include a reel of solder which is automatically fed to the tip each time a trigger is pressed.

The low-voltage irons have a copper tip against the rear of which a carbon contact is made. A current of around 30 amps at 3 volts is passed via this contact whenever the sleeve switch is actuated.

Both these types of iron are ideal for

Project Building Guide THE ART OF SOLDERING

intermittent handyman use. However some irons of this type do not have an electrostatic screen on the transformer (which means delicate ICs and transistors could be damaged by leakage currents) and, if used improperly, are prone to overheat components and possibly damage them, and/or, the printed circuit board upon which the components are mounted. Such irons, (i.e. those without electrostatic shields) should therefore only be used for general electrical work for soldering to chassis and other tasks where large reserves of heating power are required. They are not recommended for printed circuit board assembly or general electronic service work. So before buying an iron of this type do make sure it has an electrostatic screen between the primary and secondary windings of the associated transformer.

CONTINUOUS HEAT IRONS

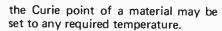
The most universally used irons are those of the continuous heat type. These irons are heated by an element of resistance wire wound around (but insulated from) the rear end of the copper tip. They are manufactured in wattages from about 6 to 250 watts but, for average electronic work, those most commonly used are rated between 15 and 30 watts.

These irons are slow to heat and hence are usually left running continuously. Such operation, although adequate, causes problems with oxidation of the tip. The tips therefore require constant attention and fairly frequent replacement.

Many workers find that these inexpensive irons are entirely adequate

How not to do it!

So much heat has been applied to this board, that in places the tracks have been damaged. In other places insufficient heat, or improper fluxing, has caused the surfaces to be not wetted properly. So much solder has been applied that one does not know where the tracks really are, or whether the joints are good or not! A kit supplier would be quite justified in refusing to accept responsibility for a project, built this way and not working.


despite the drawbacks of continuous operation. They are light, cheap and well insulated.

HEAT CONTROLLED IRONS

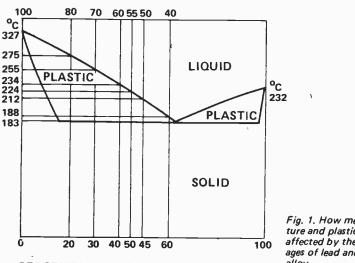
For continuous use on a production line or in an electronics laboratory a temperature controlled iron is often used. Those irons are relatively expensive but are unsurpassed, for accurate soldering and for minimizing damage to components and printed circuit boards due to overheating.

A typical temperature controlled iron, (manufactured by Weller), uses a switch operated by a magnet and spring assembly (within the barrel of the iron) to control temperature.

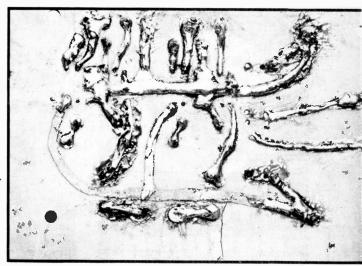
When a ferromagnetic material is heated it is found that at a certain temperature, which depends on the material, all magnetic properties are lost. This temperature is known as the Curie point and is typically 1000°K for iron, 633°K for nickel and 1393°K for cobalt. Thus by alloying these or other ferromagnetic materials

On the Weller iron the tip has a small piece of material at the rear, called the sensor. This is designed to have a specific Curie point. When the tip is cold the sensor attracts the magnet and hence the switch closes heating the iron. When the tip reaches the Curie temperature the sensor pad is unable to hold the magnet which is then forced back by the spring. The switch therefore opens, removing power to the iron. It can be seen therefore that the iron will switch on and off automatically to maintain the desired temperature.

These irons operate from a 24 V transformer within the stand and are supplied with a variety of tips of different shape and operating temperature. The temperature is stamped on the base of each tip. Thus, one can pick the operating temperature most suited to the class of work.


Where 60/40 solder is being used for new soldering, a bit temperature of 250°C (500°F) will be adequate. This allows adequate margin over the melting point of 215°C to allow for heat conducted away by the component or terminal etc. Savbit No 1 solder melts at a slightly higher temperature, and for this a temperature of at least 275°C (550°F) is required.

For unsoldering, a higher temperature is needed again. This is because the surface of the solder becomes oxidized and heat flow is impeded. Hence for general service work we recommend a tip temperature of at least 315°C (600°F) and perhaps even 370°C (700°F) for large connections etc.


The tips for temperature controlled irons are all iron plated and should never be filed. The tips are cleaned during use by wiping on the small sponge supplied. This should be kept

LIQUID PLASTIC °C 232 PLASTIC SOLID Fig. 1. How melting temperature and plastic range are affected by the relative percent-30 40 50 45 60 20 100 ages of lead and tin in a solder alloy. PERCENTAGE OF TIN

ELECTRONICS TODAY INTERNATIONAL-JULY 1975

PERCENTAGE OF LEAD

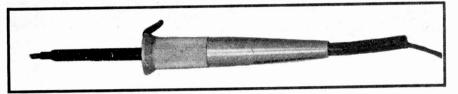


Fig.2. An ideal type of continuous heat iron — this one is from Adcola and is rated at 19 watts.

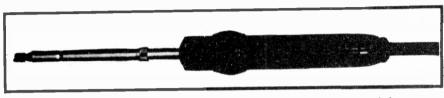


Fig.3. The Scope iron is of the quick heat type, it has enormous heating power. It heats within six seconds and is therefore switched on each time a joint is to be soldered by the sleeve switch on the handle.

damp. If really dirty, steel wool or fine emery paper may be used.

If you can afford it this type of iron is by far the best available. The plated tips will last ten times as long as plain copper types, the irons heat in 30 to 40 seconds and have heating power equivalent to a 100 watt continuous type.

TINNING THE IRON

To make sound solder joints it is necessary to keep the tip of the iron clean and well tinned.

Iron-clad tips only need to be

cleaned occasionally with fine emery cloth whereas copper tips will need to be dressed with a file and retinned at regular intervals.

Whenever a plain copper tip becomes pitted, and oxidation scale builds up between the heating element and the tip, the efficiency of the iron will drop considerably. To recondition the tip, clean off the oxide scale and, while the tip is cold, dress it with a file to remove the pitted surface on the end of the tip.

Heat the iron and apply solder at the lowest iron temperature which will

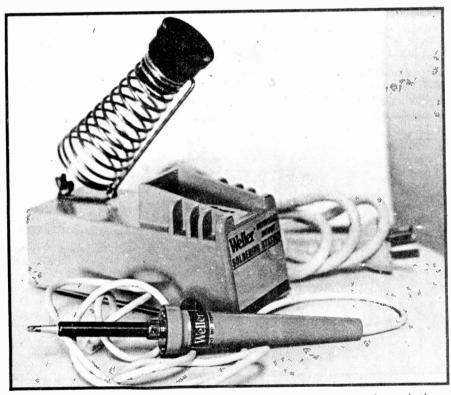


Fig.4. The Weller temperature controlled iron. The stand incorporates a transformer in the base. The operating temperature is selected simply by changing the tip.

melt it. Wipe the iron on a damp cloth or sponge until the whole tip is covered with a bright coating of solder. The iron is now ready for use.

PREPARING COMPONENTS AND LEADS

Most components have plated or pre-tinned leads which will accept solder without any special preparation. However, if the components are old, or the leads tarnished or oxidized, the leads to be soldered should be cleaned and tinned before attempting to solder them in position. To do this apply the iron and the solder to the lead until a uniform coating of solder is obtained. If the lead is unusually dirty, and will not take solder, pull it through a piece of doubled over emery paper.

Stranded hook-up wire should be prepared by stripping away about 7 mm of insulation from each end. The strands should then be twisted together and tinned, and as detailed above, before the wire is attached.

MECHANICAL ASSEMBLY

When assembling components to printed circuit boards the component leads should be fitted through the correct holes and spread slightly, as shown in Fig. 8 so that the component is held firmly in position. Always mount the component such that its value, if printed on it, is visible. This facilitates later servicing. Components are inserted from the non-copper side of the board, as shown in various pictures throughout this article, (this may seem totally obvious to experienced enthusiasts but it's surprising how often we and kit suppliers come across boards on which the components have been mounted on the copper side!).

When fitting components to terminals or tag strips turn the lead half way around the lug or tag so that the component is mechanically secure. This prevents component movement (and resulting faulty joints) whilst the solder is cooling. Do *not* make a full turn, or more, around the lug as this will make it very difficult to remove the component in later servicing.

SOLDERING

The iron must be fully up to working temperature and the tip clean and coated with 'wet' solder. It should actually look 'wet' and shiny. If it doesn't, touch it briefly with the solder and wipe off surplus onto a damp sponge.

Now press the tip against the terminal (or printed circuit board track) and the end of the component lead. Preheat like this for two to three seconds.

Still keeping the iron in position, apply solder to the joint - never to

Project Building Guide THE ART OF SOLDERING

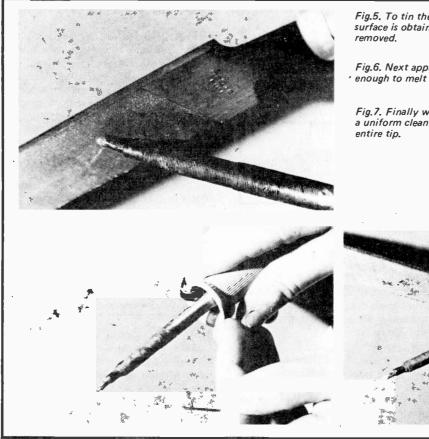


Fig.5. To tin the iron first file the tip so that a clean copper surface is obtained. Any pitting of the tip should be completely removed.

Fig.6. Next apply solder with the iron - just hot enough to melt the solder.

Fig.7. Finally wipe the tip with a damp cloth to obtain a uniform clean and shiny coating of solder over the entire tip.

the iron. Continue to apply solder only long enough for the solder to flow evenly over the joint. After removing the iron you must let the joint harden before moving either the component or the PC board. Then snip off any excess lead.

A correctly soldered joint should be bright and smooth. Poor joints look crystalline and grainy or, the solder tends to be in blobs (that is solder has not wetted the surface properly).

Take care not to apply too much solder as it is difficult, then, to see if the joint is a good one. Solder bridges may also be formed.

REMOVING COMPONENTS

If it is necessary to remove a component from a printed circuit board the solder should be removed from the joint by 'wicking'. To do this remove about half an inch of insulation from a piece of stranded hook up wire, dip the prepared end into liquid resin and lay it on top of the solder joint. Then apply the flat tip of the iron above the wire and joint until the solder melts and is sucked up by the wire. Repeat the procedure if necessary to remove all excess solder from the joint. Alternatively a proprietry product such as 'Solderwick' (braid that is pre-fluxed) may be used.

After all excess solder is removed, it

is a simple matter to pry the component loose. Removing components by means of vacuum solder suckers (although effective) must be done very carefully indeed as there is a tendency for the devices to lift the copper tracks from PC boards. Although, as we have said, the method is very effective we don't really recommend it for amateur use.

Solder bridges, if they occur, should be removed by wicking and resoldering, or by heating the bridged area with the iron and wiping quickly with a soft cloth or with a brush to remove excess solder. Resolder the cleaned joints using less solder.

SOLDERING SEMICONDUCTORS

Most semiconductors will be damaged if subjected to too much heat. Hence transistors and ICs, etc, should be soldered quickly and cleanly. If you doubt your ability to do this – use a heat shunt (eg pair of long nose pliers), between the end of the lead being soldered and the

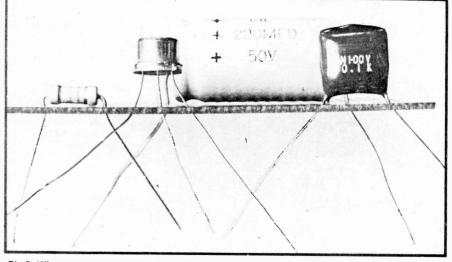
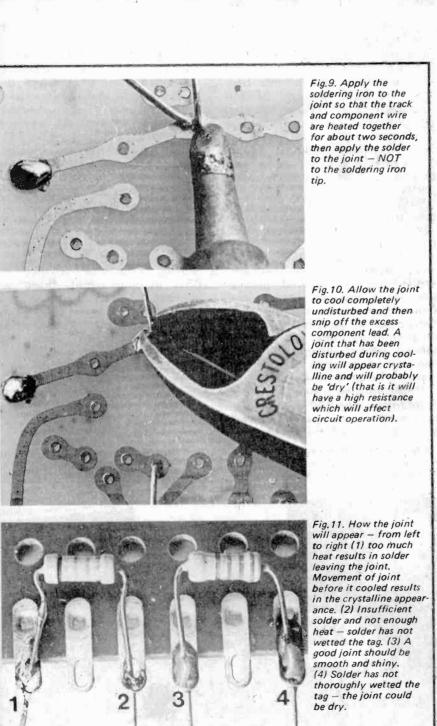



Fig.8. When components are fitted to a board the leads should be splayed, as shown, to keep them in position prior to soldering. Position components so that values and voltage ratings may be seen. This facilitates later servicing.

transistor body, to divert heat from the device.

Integrated circuits based on MOS or CMOS technologies are particularly prone to damage during soldering not only due to heat, but also by electrostatic charges or leakage currents. These devices should be left with their pins inserted in the black conductive foam (in which they are usually supplied) until they are to be used. Avoid touching the pins of the IC as even static discharges from the body can possibly cause damage.

MOS and CMOS ICs should be the last components to be fitted to the board. They should be inserted quickly and cleanly, and the power supply pins should be soldered first. This activates the built-in protective circuitry and the remaining pins may then be soldered without fear of damage. Beginners may well find that it is safer to use an IC socket for MOS and CMOS ICs as soldering directly to the IC is not then required.

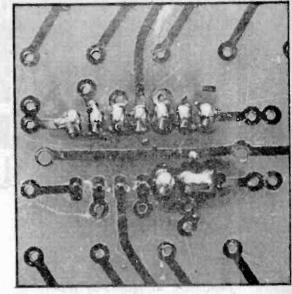


Fig. 12. Too much solder may cause solder bridges. The top row of joints to this IC are fine but on the bottom row too much solder has resulted in a solder bridge (bottom right).

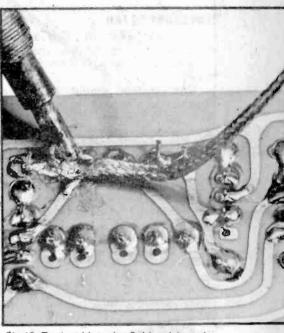
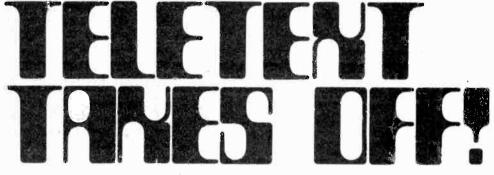



Fig. 13. To de-solder using Solderwick apply the braid over the joint and place the iron on top of the braid until the solder is sucked up.

Fig. 14. In a 'dry' joint the solder has not properly bonded to either or both metal surfaces, or the joint has been moved during the plastic region of the molten solder. Such joints have a high electrical resistance and low mechanical strength. Here this resistor lead 'dry-jointed' to a potentiometer may be pulled away quite easily.

ON MAY 6TH A TECHNICALLY BRILLIANT CURIOSITY BECOME A PRACTICAL PROPOSITION:

CEEFAX, ORACLE, TELEDATA, TELETEXT — names being tossed around right now that have caused enormous confusion to many people, tending to disguise what is perhaps the third most important landmark in television history to date (the other two being high-definition pictures in the mid-30's and NTSC colour in the late 40's and early 50's).

THE STORY SO FAR

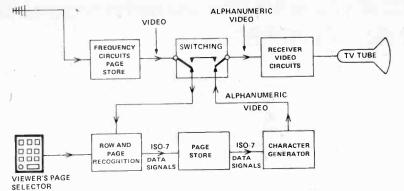
In October 1972, BBC Engineering announced a completely new TV development which they named CEEFAX.

The system would enable a number of "pages" of text to be selected by anyone with a suitably equipped TV receiver for display on the screen. At the time, this received considerable publicity not unnaturally most of it from the BBC itself — but we are today bombarded with so many ingenious gimmicks and curiosities that it has only dawned slowly what enormous potential it has and how soon it is likely to be part of our everyday lives.

Competition is always healthy and the IBA were not far behind with their own system: ORACLE. This was essentially the same but included some improvements. Sensibly the BBC, IBA and BREMA (representing the TV set industry) got together in a working committee to establish a single standard. This committee announced in March 1974 that a unified system had been agreed. This not only incorporated the best of CEEFAX and ORACLE but built on them --- the resulting standard being a significant advance on the original specification.

The BBC, who have shown enormous faith in this development, applied for, and received, permission for a two-year experimental transmission period; this started in September 1974. Since that date, for eight hours a day, a regular, live service (albeit experimental) has been carried on BBC-1 UHF transmitters throughout the country.

The confusior over terminology is enormous. The BBC, who after all can claim to have been the inventors and driving force, continue to BBC's CEEFAX is already operating a regular, live service; trouble is that practically no one has been able to decode it — until now.


call the system (as well as the service) CEEFAX; the IBA are sticking to ORACLE for their service. Outside well-wishers dubbed the combined systems TELEDATA, until it was pointed out that this was a registered name for something completely different! As previously reported in ETI, the name TELE-TEXT has been adopted, though it has not yet caught on. We've opted for it in our title for we believe it will eventually become the standard for the system, though CEEFAX and ORACLE will remain in use for the respective services.

All very well — a new service, available now to anyone with a receiver — but where are they? The BBC estimate that there are between 80 and 100 receivers in the country — mostly built by the set makers for testing; the rest are owned by the BBC itself with perhaps half-a-dozen built by enthusiasts.

(With typical modesty the BBC tell us that until very recently, if anything went wrong with transmissions they would 'phone up their viewers to tell them!)

The BBC CEEFAX service as it was until very recently. Even now the entire equipment including two input consoles, the computer, monitors etc is contained in about 400 square feet. CEEFAX is put out from the 7th floor of the BBC Television Centre. In the picture Sub-Editor Ian Irving is preparing a News bulletin while Research Assistant Adrian Robson is operating the controls, and has summoned-up a Weather map of Britain.

An ultra-simple block diagram of a Teletext receiver.

Why the apparent lack of interest outside the BBC and IBA?

The problem arises over the enormous complexity of the equipment necessary to decode and display Teletext. The system is operating at the forefront of current technology: bank upon bank of TTL and memory chips have, until now, been necessary and the cost of parts alone is in the order of £400. Complete circuits are *not* available — at least none that we know of. We have not even been able to get permission to publish a meaningful block diagram! However, things are beginning to move

THE BREAKTHROUGH

Despite the apparent lack of interest, at least one semiconductor company, Texas, have been investigating Teletext seriously. At a major launch on May 6th, Texas disclosed that they have completed development work on a Teletext module, to be known as TIFAX, that preproduction samples will be available in about four months with production quantities available in early 1976. If all goes as planned, the first receivers available to the public will be on sale in about a year.

The extra cost of a Teletext receiver can only be estimated. The first sets are expected to be about £125 dearer, but by 1978, Texas estimate the market at 1,000,000 sets a year with £25-£50 being the extra cost. There is no technical

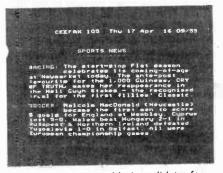
iec .		Thu 17 Apr 16 06/58
NEWS Headlines Home Soreign Sport Travel Charivari FT INDEK Buziness	102 103 104 105 106 107 106 109 109	Concentration Descrittation index repeat Exchange retext Education index transition index repeat Education index repeat Education index repeat Education index repeat Education index repeat Education index repeat Education index repeat Education index repeat index repeat ind
R full segaring uill be PAGES of channel	100	FARM NEWS 121 Yest card "A" 122 Test card "B" 123 BBC NENS 124 Pages are regularly

The index page of CEEFAX used until recently. This is transmitted more frequently than the other pages to give faster access (one in every 10 pages). reason preventing Teletext being incorporated with monochrome sets but it will probably only be available as an option on colour sets.

HOW DOES IT WORK?

When the specification for the 625-line TV standard was drawn up, the state-of-the-art was far behind that of today. To tell the electron beam that it had reached the end of its frame, and to give it time to reach the top again, a sync pulse followed by 25 blank lines are transmitted. Current techniques need nothing like this number of lines.

Teletext is transmitted on two lines: 17 and 18 (330 and 331 on the interlace). Anyone in Britain who hasn't yet seen Teletext encoded lines has only to reduce the height control and view the top of the picture — it's impossible to miss them.


On these lines, data in binary form is pushed out at 6.9375 Mbits/s. This information however, is meaningless by itself — it bears no relation to the normal analogue picture: this has led to a misunderstanding amongst even well informed engineers. The binary coded signal only gives instructions to equipment at the receiver end about what to display — it does not provide the display.

Let us take a close analogy to explain the point (though not actually part of Teletext). Most stations use at some time or other a simple clock display. This is a standard pattern which remains unaltered except for the seconds hand.

To display this on a screen for one second requires on a conventional display some 6×10^6 bits of information to be broadcast (625-line frequency bandwidth is 6MHz). If the shape of the clock was generated in the set itself it would require only *one* bit per second to display the same shape — that item of information being a signal for the seconds hand to move on: this

A major attraction of Teletext is likely to be the Newsflash. Receivers will probably be designed to enable the viewer to choose for Newsflashes to be superimposed on a regular programme either in a box as shown or in white.

Racing results etc are ideal candidates for Teletext and it is this area that the BBC intend to expand in the near future.

On this display only 17 lines are used but each page can be up to 24 lines (including the header) and 40 characters across.

As many 'pages', including this one, are not full, it takes less than 0.24 seconds to build-up. Blank lines are not represented by a period with no display but by coding. This reduces the access time considerably.

The caption on the screen hardly needs repeating. In practice, experiments using sub-titles are by no means complete as the update time on a page is too long.

Teletext could of course make a major difference to the deaf by providing subtitles for many programmes at a very low cost at the transmitting end.

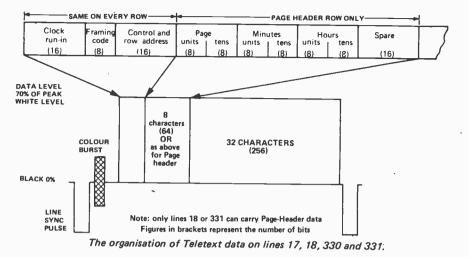
Simple graphics such as maps are an integral part of Teletext.

TELETENT TRIVES OFF

would represent an enormous saving in data transmission. It is by making good use of this technique that an enormous amount of information can be transmitted using Teletext in only two lines.

The specification of Teletext allows for 100 "pages" of information to be transmitted, each comprising 24 lines of 40 characters each. These characters can be in six colours and white and can be used to display simple graphics.

As the coded information is transmitted for only a tiny fraction of the time that it is displayed, the coded signals have to be stored in a memory.


Every page starts off with a special row called the ''page header''. This shows the page number, the date and the time (updated every second). Special codings are incorporated at the beginning of the page header so that the receiver knows that a page is beginning and which page it is. When these signals match those selected by the viewer, the receiver starts to display the header row followed by the rest of that page.

Each TV line (17, 18 and their interlace) carries one line of Teletext data and as each page is made up from 24 lines, it will take 0.24 seconds to build up a complete page. This delay only occurs when the page is first displayed for the information is held in the memory and can be accessed immediately. When a Teletext page is updated, it takes nearly a ¼-second to complete the corrected page.

Apart from updating, pages can of course be cycled. On a particular page number, a series of different displays can be transmitted in sequence, but the viewer will not have the choice of starting on, say, the first page (like dialling the weather on the 'phone).

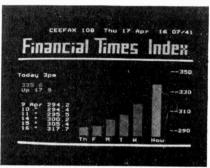
VIEWER CONTROLS

Receivers will have an additional control panel — most companies seem to favour something not unlike a calculator keyboard. The function keys will be labelled *Picture* (for normal TV reception), *Teletext* and *Picture and Teletext* (the latter superimposed on the former). Other keys can be "Update" — bring up newsflashes automatically when something new happens. "Time" for selecting a particular page for display at a preselected time, etc.

For Teletext the calculator keyboard must be used. If you know the page number you want, this is punched up and the information stored. When the lines are broadcast with the same coding that you have selected, the Teletext data is fed into the memory and on the next frame the memory takes over the screen and plays out its coded messages to the character generator. The first line will always comprise the page number, title and the time.

The remaining 23 Jines, each capable of 40 characters, is then displayed.

THE NEXT STEPS


At least one TV manufacturer has not touched Teletext yet: building a receiver using TTL, etc, would only be for curiosity they claim and the development cost would be enormous. However, with complete modules soon to be available things can start to move. Texas say that their TIFAX module is designed for absolute minimum connections inside the receiver. This could mean that connections are limited to the keyboard -- output from the TV's video, power supply, leads to three interface transistors at the drive stage of the tube and a feed from the line timebase.

COLOUR

The Teletext characters can be displayed in white, the three primary colours and their complementaries. The first reaction is that this is a gimmick of unnecessary luxury: in fact, as Teletext is connected to the receiver at the c.r.t. drive stage, colour is very simple — it is estimated that it adds perhaps only 10% to the total cost, a small price to pay for the additional readability.

ACCESS TIME

With the 50 pages currently being

A good example of what can be done with Teletext — and is actually being transmitted by BBC's CEEFAX. The words Financial Times Index are made up from the graphics part of the alpha-numeric generator rather than the straight-forward alphabet.

At the top is shown the service (CEEFAX), the page number, the day and date with the time - correct to the second - on the right.

This page could well be cycled with other related data such as major share price movements, gold and commodity prices and the current value of the pound. These would be on sub-pages which would repeat every 15 seconds or so.

The enormous technical complexity of Teletext can be judged by the necessary circuitry in the background. This is now replaced by Texas Instruments' TIFAX module which will be similar in appearance and outward simplicity to the module being held.

broadcast by the BBC it can take up to 15 seconds to get your required page — when the full capacity of 100 pages is broadcast this will double. This access time is considered unacceptable by many who are familiar with the system. It is quite possible to incorporate a memory for each page, but this would add enormously to the cost. *Continued on page 22.*

SS140

3

Beautifully designed. Will give up to 40w R.M.S. into 4Ω . Excellent S.N.R. and transient response. Fine for P.A., disco use, etc. Operates from 45V DC. Two in bridge formation will give 80w R.M.S. into 80. £3.60

Carefully checked before despatch. SS203 Stereo Decoder. Designed essentially for use with SS201 and SS202, this excellent decoder can also make a stereo tuner of almost any single channel FM tuner. Supplied ready aligned. A L.E.D. can easily be fitted. **£5.62**

SAVE £5 ON THE S/S TUNER

UT SELECTION

UT1 50 PNP's Germanium, AF & RF.

UT2 150 Germanium diodes. min.

100 Silicon diodes, min similar to IN914, IN916.

40 250mW Zener dio'des OAZ24 range; average 50%

30 Silicon rectifiers 750mA, mixed voltages, Top Hats, etc.

40 NPN Silicon planers. Similar

to 2N3707-11 range. Low noise amps.

UT12 25 2N3702/3 Transistors, PNP Silicon, Plastic to 92.

glass

good.

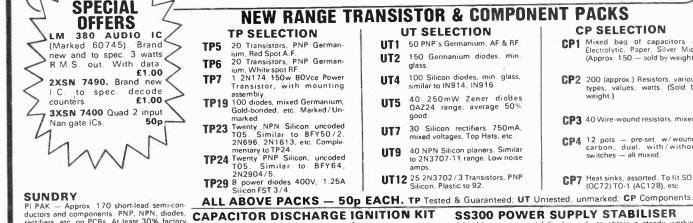
UT4

UT5

UT7

UT9

Four-pattern selector switch 3" x 51/4" x 3"


Ready-built

and tested

In kit form

By buying Units SS.201, SS.202 and SS.203 together, the price is $\pounds12.12$ – a genuine saving of $\pounds5$ on this very efficient tuner £12.12

min. glass.

SUNDRY PI PAK — Approx. 170 short-lead semi-con-ductors and components. PNP, NPN, diodes, rectifiers, etc. on PCBs. At least 30% factory marked. Some data supplied. 50p. UHF 625 line tuner, rotary. 62.50. Rev Counter (for cars) (8%). 61.00. Books by Bernard's Publications, Newnes-Putroworth e, etc. Butterworth's, etc.

7p stamp if we have to post it to you.

In kit form Please add 30p for postage and packing. Is invaluable to industrial and home user alike. Improved circuitry assures reliability and still better accuracy. Very compact; self-contained. Robustly built. Widely used by TV rental and other engineers. With reinforced fibreglass case, instructions, but less batteries. (Three U2 type required.) **TV SIGNAL STRENGTH METER** Complexe this or described in 'Tradivision'' 519 50 plus 40p for P&P

Complete kit as described in plus VAT at current rate. TERMS OF BUSINESS: VAT at current rate. VAT at 25% must be added to total value of order including postage and packing charges, except for items marked * or (8%), when VAT is to be added at 8%, No VAT on overseas orders. POST & PACKING Add 20p for UK orders. Minimum mail order acceptable — £1. Overseas orders, add £1 for postage. Any difference will be credited or charged, PRICES Subject to alteration without notice. A VAIL ABILITY All items available at time of going to press when every effort is mode to anyoe acceptates of distance and anyoe.

...

FOUNDED	IN 1959	
QUINDED	110 1305	

CP3 40 Wire-wound resistors, mixed. CP4 12 pots - pre-set, w/wound, carbon, duat, with/without switches - all mixed.

CP SELECTION

CP1 Mixed bag of capacitors — Electrolytic, Paper, Silver Mica (Approx. 150 — sold by weight).

CP2 200 (approx.) Resistors, various types, values, watts. (Sold, by weight.)

CP7 Heat sinks, assorted. To fit SO-Z (0C72) TO-1 (AC128), etc.

SS300 POWER SUPPLY STABILISER

Simple to assemble and fit. Improves car performance, £7.50 saves on fuel. P/P 30p. BI-PRE-PAK X-HATCH GENERATOR MK. 2 Add this to your unstabilised supply to obtain a steady working voltage from 16 to 60V for your audio system, workbench, etc. Money saving and very reliable. £3.25 PLASTIC POWER TRANSISTORS

40 WATT SILICON Polarity NPN NPN PNP Price Туре 40N1 40N2 Gain VCE £9.93 20p 30p 20p 30p 15 40 15 40 15 40 15 40 £7.93 40P1 40P2 PNP 90 WATT SILICON Gain VCE Price Polarity Type 90N1 25p 35p NPN 15 40 15 40 90N1 90N2 90P1 90P2 NPN PNP 15 25p 'Television'' £19.50 plus 40p for P&P PNP 40 40 350

If you prefer not to cut coupon out, please mention ETIP2 when writing To BI-PRE-PAK, 222-224 WEST ROAD WESTCLIFF-ON-SEA, ESSEX

Please send for which I enclose NAME ADDRESS

Inc. VAT

TELETENT TRIVES DEF!

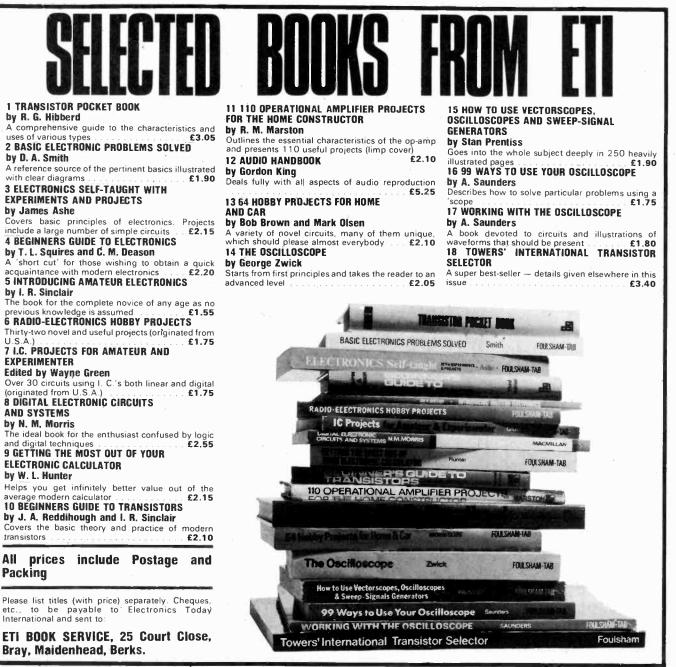
Continued from page 20.

What may well happen is that decoders will have four or five memories which will hold those pages likely to be used most frequently. The Texas TIFAX module has only the basic memory.

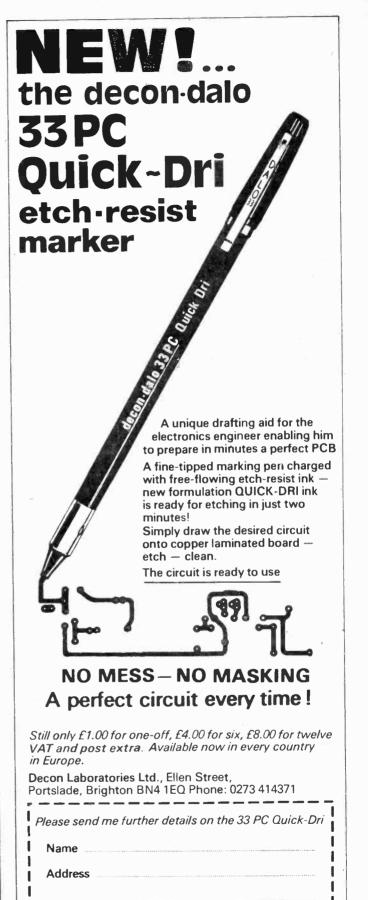
ADD-ON MODULES

Can existing sets be modified? In theory, yes, but a large market is not envisaged. An add-on module will be considerably more complex if it is simply to plug into the aerial socket — and a colour facility is very

unlikely.

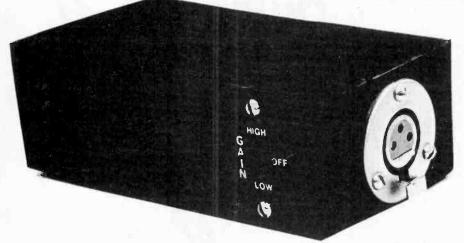

If modules become available to the hobby market, a competent engineer should be able to connect it into the set quite easily — there are few enough connections to make. We shall have to wait and see what happens in this field.

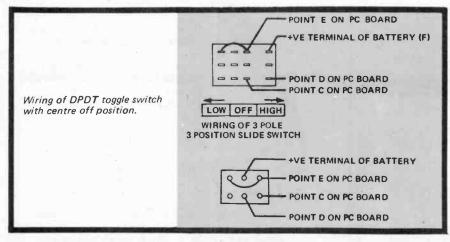
THE FUTURE


The success of Teletext depends entirely on the public's willingness to pay the extra cost for the receiver. One of the surprising features is the tiny cost to the broadcasting authorities in providing the service. The BBC's experimental CEEFAX service is believed to be costing under £30,000 a year — less than the cost of one major TV programme. Even when operating with a full staff, a nationwide service will cost only about as much as a local radio station!

The capacity of Teletext is enormous. Only two lines are being used at present, but 16 are available: this would give an 800 page capacity per channel or 2400 on the three networks! The potential is enormous.

It is natural that electronic engineers drool over such an ingenious and interesting development — like children with a new toy — but it is the non-technical public who will determine the success of Teletext, and the public's interest will depend on the extra cost of the equipment. A start has been made by Texas in developing a moderately-priced module and it is now up to the TV set manufacturers to make the sets available.

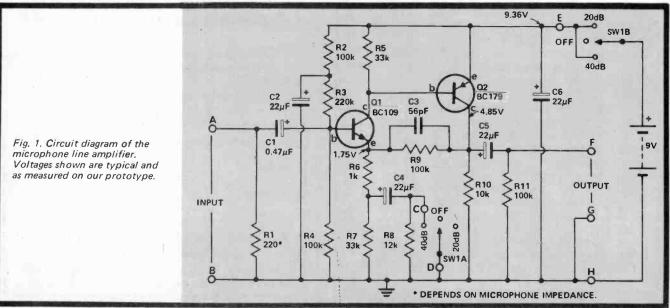

42 0 & 83 Ev Ca Tra Our ran Top 20 CA3028A CA3028A CA3028A CA3028C CA3046 CA3052 CA4060 CU4000	Bit Chicklewood E 6 West Regent erything y talogue. A de and export ge covers ov 00 IC's TTL, 85p CD4043 f1:80 CD4044 f1:80 CD4044 f1:37 C04045 f1:32 CD4043 f1:35 LM301A f2:41 CD4043 f1:52 CD4045 f1:54 LM301A f4:23 LM305 36p LM351	DIFS n (London) Lint roadway Lond Street Glasgow ou need is i vailable nov tenquiries wel rer 7,000 item CH80 %E1414 f1:80 %E414 f2:85 %E1611C f1:80 %E414 f2:85 %E1611C f1:80 %E625 f5 %E1612C 8 %E170 8 %E170	Son NW2 3H G2 2QD Te G2 2QD Te n our ne w price 2 come hs. The large f1.80 SN74 f1.70 SN74 f2.60 SN74 f1.70 SN74 f2.60 SN74 f2.60 SN74 f3.10 SN74 15p SN74	40 Ter: 01-4 1:041-332 41 w 1975 25p 36 gest select 48 48 90p 5 50 16p 5 51 16p 5 53 16p 5 60 16p 3 7/3 36p 173 7/4 36p 176 7/6 35p 180 80 50p 126	33
TRY C	OUR GLASC	40p SN7405 47p SN7406 90p SN7407 40p SN7408 73p SN7408 73p SN7410 73p SN7410 740 SN7417 750 SN7418 700 SN7425 61:50 SN7438 61:50 SN7438 62:75 SN74416 70p SN7438 61:30 SN7438 61:30 SN7445 61:48 SN7445 64:48 SN7445 60W SHOP 60W SHOP 60W SHOP </th <th>19 5 SN74 45 p SN74 45 p SN74 13 p SN74 13 p SN74 14 p SN74 15 p SN74 16 p SN74 50 + VA1 50 + VA1 50 + VA1 50 p B01 50 p B01 50 p B1 50 p B1</th> <th>833 95p 844 95p 885 f1.25 8185 f1.25 910 45p 931 45p 932 45p 933 45p 949 82p 933 45p 949 82p 940 72p 940 71p 4107 36p 4119 f1.92 4121 37p 4122 50p 4143 85p 4151 85p 4153 85p 4154 61-50 T Reprint 139 71p 140 87p 15 36p</th> <th>NY4192 £1-15 NY4193 £1-15 NY4193 £1-15 NY4193 £1-58 NY4193 £2-25 NY4193 £2-25 NY4193 £2-25 NY4193 £2-25 NY6023N £2-92 NY6023N £1-60 NY6023N £2-92 NY6033N £2-92 NY6033N £2-92 NY6023N £2-92 TAA550 60p TAA611C £2-03 TAA616 £1-20 TAA616 £1-40 TBA800 £1-40 TBA810 £1-40 TBA820 £4-00 75p 15 MPSA56 31p 0C23 76p</th>	19 5 SN74 45 p SN74 45 p SN74 13 p SN74 13 p SN74 14 p SN74 15 p SN74 16 p SN74 50 + VA1 50 + VA1 50 + VA1 50 p B01 50 p B01 50 p B1 50 p B1	833 95p 844 95p 885 f1.25 8185 f1.25 910 45p 931 45p 932 45p 933 45p 949 82p 933 45p 949 82p 940 72p 940 71p 4107 36p 4119 f1.92 4121 37p 4122 50p 4143 85p 4151 85p 4153 85p 4154 61-50 T Reprint 139 71p 140 87p 15 36p	NY4192 £1-15 NY4193 £1-15 NY4193 £1-15 NY4193 £1-58 NY4193 £2-25 NY4193 £2-25 NY4193 £2-25 NY4193 £2-25 NY6023N £2-92 NY6023N £1-60 NY6023N £2-92 NY6033N £2-92 NY6033N £2-92 NY6023N £2-92 TAA550 60p TAA611C £2-03 TAA616 £1-20 TAA616 £1-40 TBA800 £1-40 TBA810 £1-40 TBA820 £4-00 75p 15 MPSA56 31p 0C23 76p
2N698 2N906 2N906 2N916 2N918 2N1302 2N1302 2N1304 2N1302 2N1304 2N1302 2N1304 2N1302 2N248 2N24	82p 244035 55p 244035 14p 244055 14p 244055 17p 244055 12p 244055 12p 244265 25p 24428 24p 24458 45p 2456 60p 24545 60p 24545 61p 24545 62p 24545 62p 24545 62p 24545 62p 24545 62p 24545 62p 24428 62p 244040 22p 40311 22p 40401 23p 40411 24p 40420 22p 40421 23p 40426	i 67p AF240 i 18p AF279 i 15p AF279 i 15p AF280 i 14p AF280 i 14p AF280 i 14p BC108 i 14p BC108 i 47p BC147B i 44p BC148B i 44p BC168B i 45p BC182B i 42p BC188B i 400 BC182I 400 BC182I 400 BC182I 400 BC182I 52p BC184 45p BC184B i 42p BC18B i 42p BC	900 bfil 700 bfil 700 bfil 700 bfil 140 bfil 140 bfil 140 bfil 140 bfil 140 bfil 150 bf	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0C35 60p 0C42 50p 0C43 32p 1/P23A 43p 1/P33A 61-01 1/P33A 61-01 1/P33A 62-01 1/P33A 61-01 1/P33A 62-01 1/P34A 50p 1/P34A 28p 2/TX500 13p 2/TX501 13p 2/TX502 13p 2/TX502 13p 1/N4148 7p 1/N5408 30p AA119 8p B10438

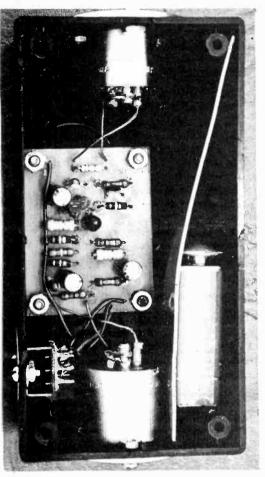

Post to: DECON LABORATORIES LTD. FREEPOST PORTSLADE, BRIGHTON, ENGLAND (No Stamp Needed) Phone 0273 414371

LINE AMPLIFIER

Boost microphone output with this low noise amplifier.

The completed line amplifier. Note the use of Cannon plugs and the gain switch on the side.


PROJECT 430


MODERN high quality microphones are low impedance units having a very low output voltage. To minimize noise, picked up on long leads, it is usually necessary to use special balanced and screened leads together with balancing transformers. An alternative approach is to use a low noise amplifier to boost the signal *before* passing it down the cable. The ETI 430 line amplifier, described here, is intended for this purpose.

Such a unit, when used with the ETI Master Mixer (described in April, May, June and July 1973) provides either 20 or 40 dB of gain prior to the mixer. This allows the mixer to be used on the low-sensitivity range. Thus the larger signal now available, effectively over-rides the inherent noise of the first amplifier in the mixer.

The overall effect of using such an amplifier is to vastly improve the signal-to-noise ratio of the particular microphone channel and to eliminate the need for an expensive balanced and screened cable and balancing transformer.

To reduce the possibility of mains – hum pickup we have used a small nine volt battery to power the unit. Since the current drawn is a mere 0.5 mA, the battery should last about three to

Internal layout of the line amplifier.

four hundred hours before replacement is required.

The ETI line amplifier can of course be used to great advantage with any recording equipment where low noise operation is necessary. When used with the Master Mixer the low impedance input should be used but the terminating resistor (fitted across the mixer input socket) should be removed so that a 4.7 k input impedance is obtained.

CONSTRUCTION

The circuit is not critical in any way hence, practically any construction method may be used. However, the use of the printed circuit board specified will considerably simplify construction.

We used an unbreakable plastic box (polycarbonate) to house our unit but if the unit is to be used in the proximity of power cables etc it would be advisable to mount the unit in a metal box (diecast or similar). This is especially so if an input impedance above 1 k is to be used as the higher the impedance the more likely is hum pickup.

If Cannon plugs are used, as in our prototype, pins 1 and 2 should be linked and used as the earth line. Pin 3 is then used as the active line.

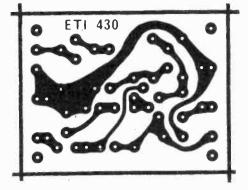


Fig.2. Printed circuit board layout for the amplifier. Full size 55 x 42 mm.

Fig.3. Artwork for the gain switch label. (Shown full size).

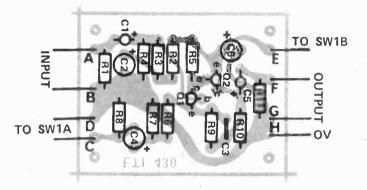


Fig.3. Component overlay. Note particularly the orientation of the transistors and electrolytic capacitors.

MEASURED PERFORMANCE

IMPEDANCE Input Output	selectable up to 68k max \approx 1.5k
GAIN High Low	40 dB 20 dB
OUTPUT VOLTAGE	3 volts
INPUT VOLTAGE Maximum (high range) Maximum (low range)	30 mV 300 mV
FREQUENCY RESPONSE 10 Hz – 30 kHz	+0 — 3 dB
EQUIVALENT INPUT NOISE (referred to 1 mW into 600Ω) High Range Low Range	–110 dBm – 102 dBm
DISTORTION 100 Hz 1 kHz 300 mV <0.1%	<0.1% 0.17% 0.5%

LINE AMPLIFIER

HOW IT WORKS -ETI 430

The line amplifier is basically a two transistor amplifier having a selectable gain of either 20 dB (x10) or 40 dB (x 100).

The input impedance of the amplifier (referring to Fig. 1) is determined by the combined values of R1, R3 and R4 – all in parallel. The parallel impedance of R3 and R4 is 68 k and this is therefore the upper limit of input impedance ($R = \infty$).

For impedances less than 5 k the values of R3 and R4 may be ignored and R1 is set to the same value as the desired input impedance. Hence the circuit as shown matches microphones having 200 ohm output impedance.

Resistor R2, in conjunction with R3 and R4 determines the dc bias for transistor Q3 whilst capacitor C2 decouples the input bias network from any supply rail noise. The output of Q2 is fed back to the emitter of Q1 thus providing negative feedback which as well as supplying a dc bias, sets the ac gain of the stage.

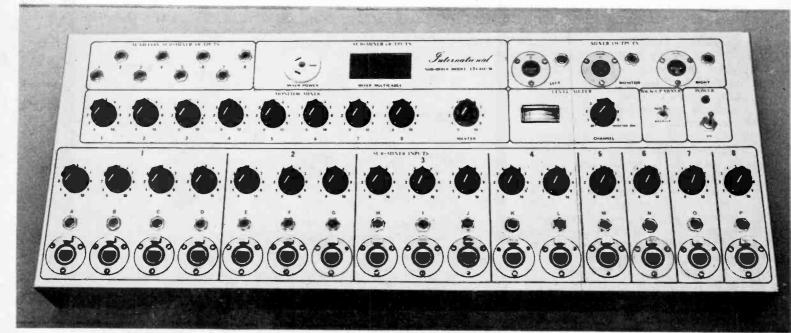
The gain of the amplifier may be calculated using the following formula (assuming ideal transistors).

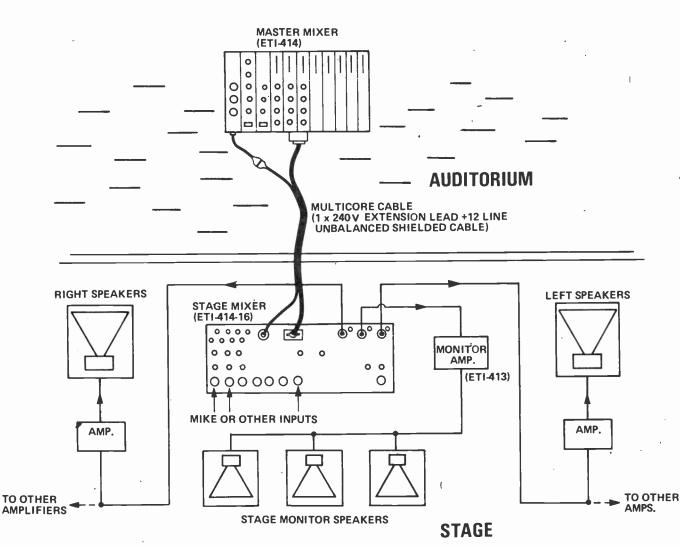
Gain = $\frac{R9 + R6 + (R7//R8)}{R6 + (R7//R8)}$

Thus for R8 = 12 k the gain is 11.2 or 21 dB. For R8 = 0 the gain is 101 or 40 dB. The actual gain obtained is slightly lower than this due to the finite betas of the transistors used.

The value of capacitor C3 determines the upper 3 dB point of 30 kHz whilst capacitors C1, C4 and C5 all give individual break points at the low end of 5 Hz, 7 Hz and 1.5 Hz respectively.

	PARTS LIST – ETI 430											
	R1 resistor selected to suit input impedance R2.4, 9,11 100 k ¼W 5% R3 220 k " " R5,R7 33 k " " R6 " 1 k " "											
	R6 " 1 k " " R8 " 12 k " " R10 " 10 k " "											
	$ \begin{array}{cccc} C1 & Capacitor & 0.47 \mu F \ 25 \lor \ TAG \\ C2,4,5,6 & & 22 \mu F \ 16 \lor \\ c3 & & electrolytic \\ C3 & & 56 p F \ ceramic \\ \end{array} $											
	Q1 Transistor BC109 etc. Q2 "BC179 etc.											
	SW1 Switch 2 pole 3 position slide or 2 pole centre off toggle											
ł	PC board ET1-430											
	Cannon sockets (male and female)											
	Cord plugs (male and female)											
	Box to suit (preferable metal), 9 V battery and clip input and output sockets etc.											




PROJECT 414

Sixteen amplifiers sub-mixed to eight channels – plus monitor

STAGE MIXER

SEVERAL hundred of our Master Mixers (described April, May, June and July of 1973) have been built and are in use by groups and recording studios throughout Britain. Whilst this mixer has been enormously successful, there are several areas in which improvements can be made which will still further improve the flexibility and usefulness of this instrument especially for on-stage performances.

This is the way that the ETI Stage Mixer would be used for a live performance.

LONG-LINE WORKING

For most live performances the master mixer is best located in the listening area so that the mix can be continuously monitored, and controlled, for best effect. Whilst such operation is possible with the ETI Master Mixer, the inputs are not designed for long line work, especially with low-output, or unbalanced high impedance microphones. This deficiency may be overcome by using a line amplifier for each input.

Y

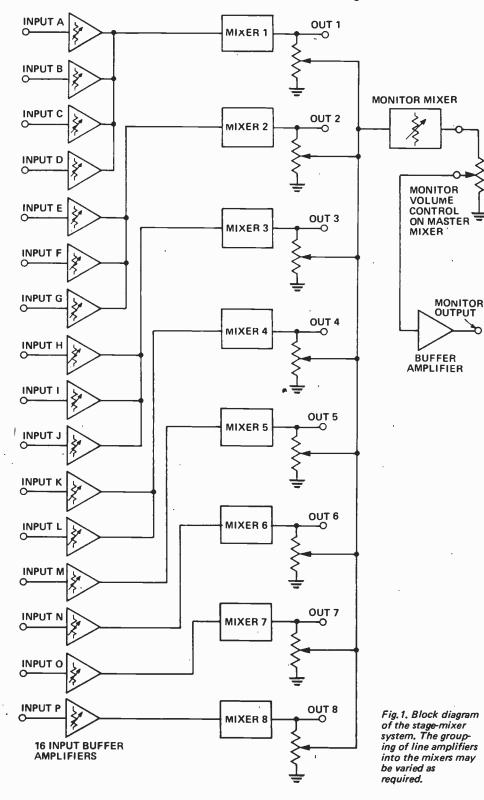
THE NEED FOR SUB MIXERS

The next obvious deficiency in stage applications is that several microphones are often needed to mike

SPECIFICATION		MAXIMUM INPUT on maximum gain	30 mV			
NO OF INPUTS	16	on minimum gain	1 V			
NO OF OUTPUTS	8 normal + 1 monitor	GAIN maximum variation possible	50 dB 36 dB			
NOMINAL INPUT maximum gain	10 mV	Any number of inputs can be connected to any submixer. However no input may be connected to more than one sub-mixer. The VU metering is switchable to any one output channel.				
NOMINAL OUTPUT maximum nominal	8 volts 3 volts					
INPUT IMPEDANCE selectable	< 68 k	TABLE 1 Selection value of R11 (or	(or 21, 31 etc) R11			
SIGNAL TO NOISE re 10 mV single channel input	74 dB	200Ω 600Ω 47 k	220Ω 680Ω 150 k			

1

ELECTRONICS TODAY INTERNATIONAL-JULY 1975


27

STAGE MIXER

the drums, or the several speakers of an organ etc. This requires the use of separate mixers, in front of the main mixer, to avoid wasting the 8-channel master mixer's capability. To overcome both these disadvantages we have incorporated 16 line amplifiers and eight sub-mixers into a common unit such that the 16 channels may be grouped in any desired combination to the eight master mixer channels. The grouping shown for our prototype stage mixer (in the block diagram Fig. 1) is 4,3,3,2 plus 4 individual channels. This may of course be varied to suit individual requirements.

THE STAGE MIXER

Thus the unit described here is a 16 channel to eight channel sub-mixer

which is specifically designed for use on stage. It accepts high or low impedance microphone inputs, which may be balanced or unbalanced. The unit provides eight high-level outputs for transmission to the master mixer.

The inputs may be made by either Cannon connectors or by standard tip-and-sleeve jacks. We strongly recommend that Cannon connectors be used for on-stage work because of their ruggedness. The input impedance of each channel may be tailored to suit the individual microphone (or other source) by selecting one resistor.

The gain of each line amplifier is adjustable from unity to 63 (36 dB) and the sub-mixer adds a further (14 dB), that is, a total of 50 dB gain is available.

The output level of each channel (even from a low output microphone) will be of the order of 1 volt and may be as high as 22 volts peak-to-peak without overload distortion occuring. Thus an extremely wide dynamic range may be accommodated by this mixer and the same dynamic range will also be accommodated by the Master Mixer. The Master Mixer, when used with the stage mixer may be used switched to the low sensitivity input position and such operation greatly improves the signal-to-noise ratio.

MONITOR FACILITIES

The original Master Mixer does not incorporate any monitor facilities. It is possible to use the echo-mix channel for monitoring but the level controls for each channel will also affect the monitor output. This is undesirable as if a louder level is required in the auditorium the monitor will also become louder – introducing a danger of acoustic feedback occuring.

Within the stage mixer we have incorporated a special monitor mixer which has its own level control followed by a buffer amplifier. A second 'Master' monitor volume control is physically located on the main mixer so that it can be adjusted should acoustic feedback occur.

BACK UP MONITOR

Facilities are provided such that should the Master Mixer fail, or the cables between the two mixers be damaged etc, the stage mixer may be switched to provide an output direct to the PA system.

In this mode a 'Back up' switch takes the output from the monitor mixer and transmits it direct to both channels of the PA system. The monitor signal is still transmitted to the monitor amplifier when the mixer is in this mode. In normal use the 'back up' switch must be at 'normal'. When the stage mixer is in 'back up' mode the master monitor level control, located on the Master Mixer, is by-passed (full volume) regardless of whether the Master Mixer is connected or not.

FINAL OUTPUTS

The Master Mixer outputs (i.e. left and right stereo plus monitor mix) are returned to the stage as part of the multicore cable and terminated on the 'stage mixer' with both 'Cannon' and standard 'Jack' type connectors.

METERING

A VU meter is provided on the stage mixer which can be used to monitor the output of any of the eight (sub) mixers or the stage monitor output. This meter will be useful for initial level settings on each sub-mixer.

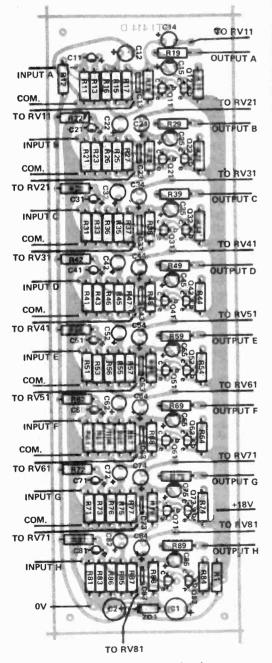


Fig.2. Component overlay for the preamplifier board.

POWER OUTLET

A switched, 240 volt power outlet is provided on the stage mixer. This is intended to provide power for the Master Mixer via an extension cable. Thus the power cable and the multicore cable are the only ones required between the two mixers.

HOW IT WORKS - ETI 414

LINE AMPLIFIER

The line amplifier used is similar to the ETI 430 line amplifier except that the gain is variable from unity to 40 dB (actually 36 dB in a practical circuit).

The input impedance of the amplifier (referring to Fig. 2) is determined by the combined value of R11, R12 and R13 – all in parallel. The parallel impedance of R12 and R13 is 68 k and this is therefore the upper limit of input impedance ($R = \alpha$).

For impedances less than 5 k the values of R12 and R13 may be ignored and R11 is set to the same value as the desired input impedance. Hence the circuit as shown matches microphones having 200 ohm output impedance.

The output of Q12 is fed back to the emitter of Q11. This path via R17 in parallel with RV11 and C14 provides negative feedback as well as supplying a dc bias which sets the overall gain of the stage.

The gain of the amplifier may be calculated using the following formula (assuming ideal transistors).

Gain

$$= \frac{(R17//RV11) + R15}{R15}$$

When the gain control is at maximum the gain is 102 or 40 dB (in practice 36 dB), and when the gain control is at minimum R17//RV11 is zero and the gain is therefore unity.

The signals from any number of line amplifiers may be summed by one of the sub mixers (eight per board IC1-IC8) the output from each mixer is taken directly to output socket to the Master Mixer, and via a 22k level. control to the monitor mixer, IC9.

The output of the monitor mixer is taken to the master-monitor, level control on the Master Mixer and then returned to a buffer amplifier in the stage mixer, IC10.

In an emergency (main mixer faulty) SW2 disconnects the outputs from the Master Mixer and connects the output of the monitor amplifier to the PA channels.

Power for the Stage mixer is provided by a conventional supply which provides plus and minus 15 volts for the mixer amplifiers and plus 19.6 volts for the line amplifiers.

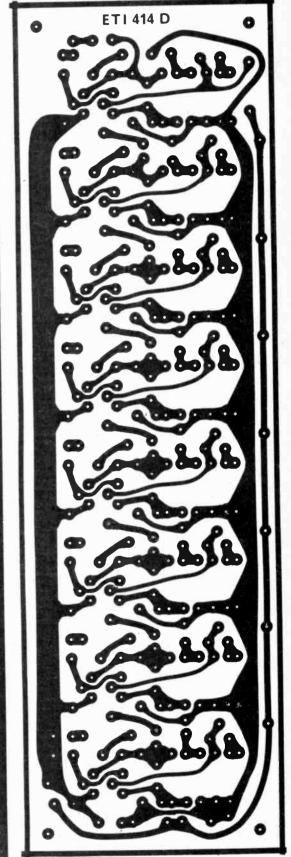
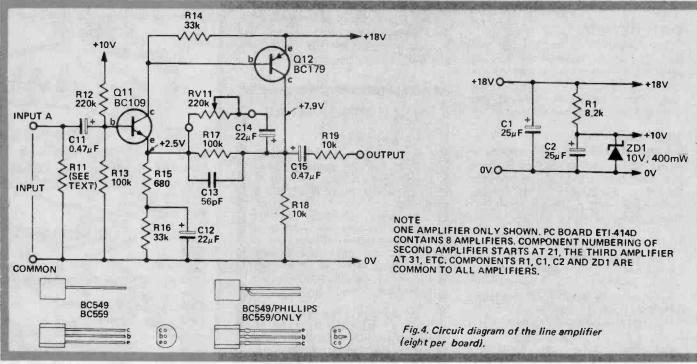
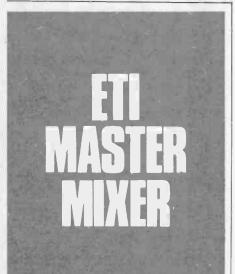




Fig.3. Printed circuit board layout for the preamplifiers (two required for 16 channels). Full size 223 x 63 mm.

STAGE MIXER

This article is closely associated with the ETI Master Mixer pro-ject carried in the April, May, June and July 1973 issues. Back numbers are not available of the complete set but the Master Mixer project has been reprinted in the ETI Project Book 1. This is available to readers for

75p + 10p postage. Orders should be sent to: ETI Top Projects (No.1). Electronics Today International 36 Ebury Street London SW1W OLW.

CONSTRUCTION

Full constructional details will be provided next month. In the meantime the mixer as described may be partially built by assembling two line amplifier boards (eight channels each), as described in this article. Of course the unit could be extended by adding an additional line amplifier board without other modification (i.e. 24 channels

mixed down to eight) however further amplifier boards may not be added without modification, but a second mixer board may be used if further extension is required.

assembling When boards take particular care with orientation of ICs, transistors diodes and electrolytic capacitors.

To be continued next month

STAGE MIXER PARTS LIST

Escutcheon 16 Cannon sockets 3 Cannon plugs 27 Phone jacks - mono- 6.4mm 1 LED and panel holder 1 11 position 1 pole rotary switch 1 VU meter 1 240V power outlet similar 1 21 pin socket 16 Knobs 2 1" spacers uts, bo" PARTS LIST GENERAL

	Chassis
8	Box

```
12 1" spacers
nuts, bolts, 3 core flex & plug etc.
```

SUB-MIXERS, POWER SUPPLY

	R2,5	.8.	11 r	esistor	100 Q.4	w 5	%	
	R14,	17	,20	**	10032	1/4 W	5%	
-22	R23,			**	1000		8.5	
0.0	R29,	30	,31		39052			
- 12	R1,4	.7.	10		47 k	44W		
12	R13.	16	19.	22 "	47 k		19	
51	R3.6	.9.	12	**	100 k			
	R15.	18	21	**	100 k		91	
23	R24,	26	27	99	100 k		19	
						100		
					ometer a			
					iometer 2			109
	KV9	po	ten	tiomet	er 470k i	ptai	y log	
	0.4.0	~						
	C4,5	0	capa	icitor (.1μF pol 70μF 25	yesi	er	
	C1,2	,3 (capa	icitor 4	10µ= 25	ve	ectroi	ytic
	101.1	CI	0 in	tonrato	d circuit	110	1410	
	1014	- 1	Aini	dip or	TOS	m	410	
				urp or	.05			

D1-D4 diode 1N4001 or similar ZD1.2 Zener diode 15V,400mW

T1 transformer 240V/15-0-15V PC Board ETI-414E SW1 switch DPDT toggle 240V rated SW2 switch 4PDT toggle

INPUT AMPLIFIERS

16 off are required for all components below

- R11 resistor see text R15 resistor 68012 4w 5% R18, 19 resistor 10k 4w 5% R14,16 resistor 33k 4w 5% R13 resistor 100k 4w 5% R12 resistor 220k 4w 5%

RV11 potentiometer 220 k rotary log.

Č13 capacitor 56pF ceramic C11, 15 capacitor 0.47μF TAG Tantalum C12 capacitor 22μF 16V electrolytic

Q11 transistor BC549 or similar Q12 transistor BC559 or similar

2 off are required for all components below —

R1 resistor 8k2 4w 5%

C1, 2 capacitor 25µF 25V electrolytic

ZD1 Zener diode 10V,400mW

PC Board ETI-414D

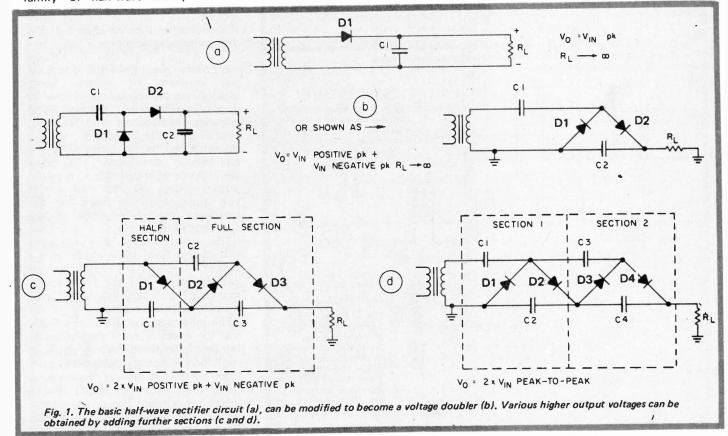
HIGH VOLTAGE FOR LOW COST

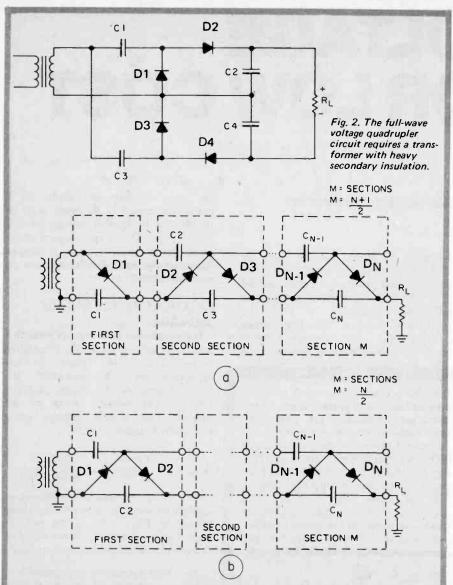
Simple diode-capacitor networks can be cascaded to deliver any desired voltage.

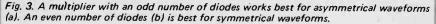
IF YOU NEED a power supply for a high-voltage low-current application, your best bet is probably the voltage multiplier circuit. It's inexpensive. It's simple. And you can get any voltage you want by cascading multiplier stages. The voltage is limited only by the ratings of the components you use.

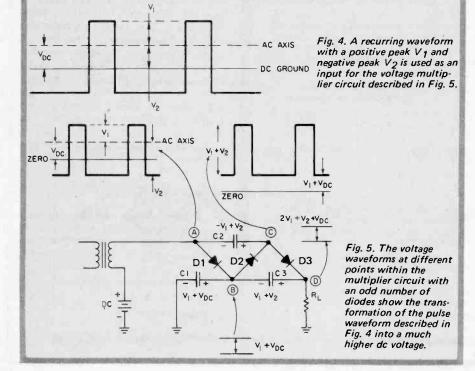
A voltage-multiplier circuit contains diodes and capacitors, with the devices connected to develop a dc output that is a multiple of the peak or peak-to-peak input voltage. There are two major variations of the circuit: multipliers that use an even number of diodes and those that use an odd number of diodes.

The basic rectifier circuits in Fig. 1. (equations assume perfect diodes and capacitors, loads are considered light) can be combined to form a complete family of half-wave multipliers. A full-wave multiplier can be made by combining two half-wave multiplier sections, one positive and one negative (Fig. 2), The major disadvantage of a full-wave multiplier is that the secondary side of the transformer nearest the core requires heavy insulation to withstand one-half the output voltage. Therefore inductive coupling is worse and efficiency lower than for a transformer used with the equivalent half-wave type. Thus half-wave multipliers are better for most high-voltage power supplies.


Figure 3 shows the two variations of half-wave multipliers. Each of these circuits consists of identical sections cascaded, except for the first stage in Fig. 3a. The first section of a multiplier with an odd number of diodes is a simple half-wave rectifier. This first section of a multiplier with an even number of diodes is a half-wave doubler. A basic rule of thumb for multiplier designs is: For waveforms that are symmetrical about zero, use an even number of diodes; for asymmetrical waveforms, use an odd number.


CALCULATING THE OUTPUT VOLTAGE


The regulation of a multiplier with a load is a function of the input's source impedance, the values of the capacitors in the multiplier, the forward drop of the diodes and the turn-on and turn-off times of the diodes. The output voltage of a multiplier is approximately

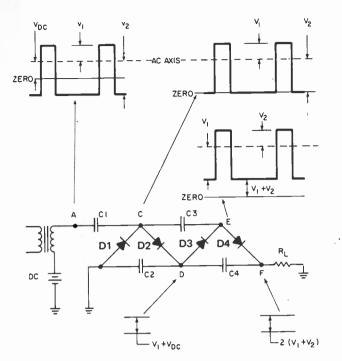

$$V_{out} = N \frac{(V_1 + V_2)}{2} - \frac{N^3}{12Cf} \cdot I_{out}$$

Here N is the number of diodes or capacitors used for circuits like those shown in Fig. 3; V_1 is the positive peak input voltage; V_2 is the negative

HIGH VOLTAGE FOR LOW COST

peak input voltage; C is the capacitance in farads; f is the frequency of the input, and lout is the current in amperes. This equation assumes a sufficiently large load capacitance, equal value capacitors, and ideal diodes. It will produce sufficiently accurate results for all practical purposes.

WATCH DIODE SWITCHING CHARACTERISTICS


The turn-on and turn-off times of the diodes are important if high frequencies are involved. Both turn-on and turn-off must be kept fast, if regulation and efficiency are to be maintained.

The forward drop of the diodes is usually not a significant factor. For example, a typical multiplier, rated for 25 kV at 2 mA, has six diodes – each with a forward voltage drop of approximately 15 V at 10 mA. Thus this multiplier has less than a 100-V drop when operating.

The output regulation of voltage multipliers ranges from 100 V to 5 kV per milliamp of current. Some applications use regulation schemes to control power-supply output. Some common methods are shunt dc load, rectified pulse feedback and a saturable reactor in series with the high-voltage transformer. In other applications, it is desirable to have the output voltage sag with load – with very poor regulation built into the multiplier through selection of the capacitor's value.

The output voltage of a multiplier will always have some ripple in the output. Ripple is a function of load capacitance, input frequency, multiplier impedance and input-to-output coupling.

The load capacitance acts as a filter, and the effective series impedance of the multiplier limits voltage ripple. If regulation is not a consideration or if load current is almost constant, a series resistor can be added to the multiplier output. The series resistor will act with the load capacitance as an RC filter.

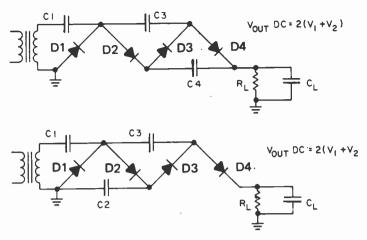


Fig. 7. To reduce component cost and count if the load is capacitive remove one of the doubling capacitors.

Fig. 6. The multiplier circuit with an even number of diodes and the same input as described in Fig. 4 produces an even larger dc output voltage than the circuit of Fig. 5.

HOW MULTIPLIERS WORK

The multiplier circuit can handle any waveform, but the three most common for multiplication are sine, pulse (or square) and trapezoidal wave. The only waveform restrictions are that the rise and fall times of the input signal be slower than the diode switching time.

In the signal in Fig. 4, V_{in} is a recurring waveform composed of the positive peak V_1 , the negative peak V_2 and an ac axis that can be displaced from dc zero by voltage Vdc.

Figure 5 shows the voltages at each point of a 1.5-section multiplier. The half-wave, 1.5-section multiplier (three diode) operates as follows: During the positive peak of V_{in} , diode D_1 conducts to charge C_1 to a voltage equal to V_1 + V_{dc} . Capacitor C₂ acts as a coupling capacitor to couple V_{in} to point C. Diode D₂ conducts on the negative voltage peak at point C when the voltage tries to become more negative than the anode of D_2 (the anode voltage of D_2 is V_1 + V_{dc}). Diode D₃ conducts on the positive peak at point C and charges D₃ to V₁ + V₂. The output, V_{out}, is the sum of the voltages on C₁ and C₃:

$$V_{out} = V_1 + V_{dc} + V_1 + V_2 = 2V_1 + V_2 + V_{dc}.$$

Only dc voltages are applied to C_1 and C_3 ; these capacitors are therefore dubbed "dc capacitors." An ac voltage is applied to C2, which is called an "ac capacitor" If the input voltage is symmetrical about the zero axis, the multiplier output will be three times (either) peak voltage, $V_{out} = 3 V_1$. This circuit is called a tripler. If, however, the waveform is such that V_2 is much greater than V_2 , the output voltage is approximately twice V1. The circuit could be called a doubler. For clarity, we can use the diode count to define multiplier capability.

The operation of the four-diode multiplier - a two-section, half-wave unit - is similar to that of the three-diode multiplier (Fig. 6). Capacitor C1 blocks the dc bias from the remainder of the multiplier and acts as a coupling capacitor to couple V_{in} to point C. Diode D_1 conducts when the negative voltage at point C becomes more negative than the anode of D_1 (the anode of D_1 is at 0 V). This causes C_1 to charge to a voltage equal to $V_2 - V_{dc}$ and simultaneously causes the

positive peak at point C to reach $V_1 + V_2$. The positive voltage at point C turns on D₂ and charges C₂ to V₁ + V₂. Capacitor C₃ acts as a coupling capacitor to couple the input waveform at point C to point E. Diode D3 conducts when the cathode voltage becomes more negative than the anode voltage (the voltage at point D). The positive peak will be at a voltage equal to the charge on C₃ plus the peak voltage at point C. This positive voltage will cause D_1 to conduct and charge capacitor C₄ to $V_1 + V_2$. The vortage will cause D_1 to conduct and charge capacitor C_4 to $v_1 + v_2$. The output, V_{out} , is the sum of the voltage on C_2 and C_4 : $V_{out} = (V_1 + V_2) + (V_1 + V_2) = 2 V_1 + 2 V_2$. Both C_2 and C_4 are dc capacitors. Points D and F are "dc points", and C_1 and

C3 are ac capacitors. In both the odd-diode and even-diode circuits, the diode peak-inverse voltage (PIV) ratings should be at least $V_1 + V_2$. In the even-diode multiplier, C_1 should have a voltage rating of at least $V_1 + V_{dc}$. All the other multiplier, C_1 should have a voltage rating of at least $V_1 + V_{dc}$. All the other capacitors should have a voltage rating of at least $V_1 + V_2$. Negative output voltages can be obtained if the diode polarities are reversed.

The high-frequency components of the input voltage are the most easily coupled into the output. But the higher frequencies are also easier to filter at the multiplier output when necessary. The most unpredictable ripple component, though, is generated by stray capacitive coupling . of the input to the output terminal. This coupling is difficult to control. The mechanical layout of the multiplier can reduce it, and if more ripple reduction is required, an electrostatic shield can be used to isolate the output area further from the input.

VARIATIONS FOR SPECIAL APPLICATIONS

For applications with a very high load capacitance, any one of the dc capacitors can be omitted in the multiplier and it will still function (Fig. 7).

While this appears to be a good way to reduce component costs and package size, consider what happens when the output terminal is arced to ground: the distribution of voltages on the diodes becomes unequal, which causes more stress on some diodes

HIGH VOLTAGE FOR LOW COST

than others. The uneven distribution can cause a diode's peak inverse rating to be exceeded and a malfunction to occur. For better transient protection, leave all the capacitors in the circuit.

Many applications require a second voltage that is proportional to the output voltage. A tap at any dc point of the multiplier can be used. The ratio of the voltages can be determined if you examine the circuit up to the tap as a complete unit and the total multiplier as another.

Consider carefully the maximum average current. The multiplier current ratings are intended to keep the components cool enough to perform reliably. It will help, of course, if the high-voltage drive source has some

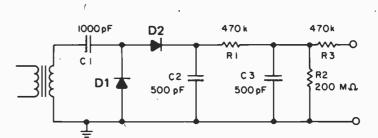


Fig. 8. A voltage doubler can be combined with a filter to provide very low ripple outputs. (The example shown gives a 30 kHz, 10 kV, 50 μ A output)

maximum-load protection that reduces the input voltage if too much current is demanded.

The multiplier must withstand all arcing, including that between the output lead and ground. and also direct shorts of the output lead to ground. The multiplier must sustain the peak current drawn by the arc or short as the internal capacitors discharge.

A resistor in series with the output lead serves two functions: (1) It reduces the Q of the oscillator circuit that is established during arcing, thus reducing considerably the stress on the diodes, and (2), it limits the peak current to a value that the diodes can handle safely. The value of this resistance must be high enough to do the limiting job but not so high as to promote arcing around or through the resistor body or overheating at maximum current drain when the output arcs to ground.

CONSIDER THE MECHANICAL LAYOUT

The mechanical design, mounting method and location of the multiplier can all affect current capability.

Remember that very high voltages may be involved so pay particular attention to component layout and insulation — also ensure that there are no sharp edges that might otherwise initiate corona discharge.

Now Available From ETI ...

Towers' International Transistor Selector

When we saw 'Towers International Transistor Selector' we were so impressed that we have made arrangements with Technical Book Services to supply readers directly.

This 142-page book gives comprehensive details of over 10,000 British, US, European and Japanese transistors including electronic and mechanical specifications, manufacturers and available substitutes.

ALL FOR

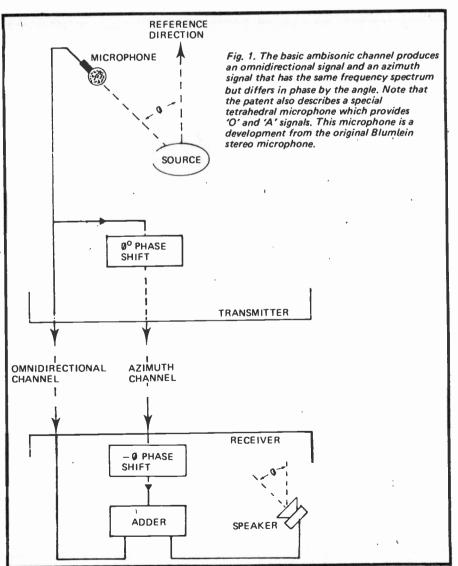
INCLUDING POSTAGE

HOW THE INFORMATION IS GIVEN (SHOWN HERE REDUCED SCALE)

TRANSISTOR NUMBER	PM OA LT	PACK- AGE	LEAD INFO	VCB MAX	VCE MAX	VEB	L C MAX	T J MAX	P TOT		OB MAX	M FE	H FE BIAS	USE	MFR	EURO EQVT.	USA EQVT.	IS
2N438	NG	105	LOA	304	250	254	300#A	850	15C##F	1500×	250	20 PN	50×4	R PS	CBS	ASY29	2N130.4	0
214384	NG	105	L04	25¥		25V	300#A	85C	150MWF	1 50 0 K	25 P	20 MN	50MA	RMS	085	ASY29	241304	0
28439	NG	105	LC4	25¥		25 V	300MA	850	100PHF	3 M	18P	30MN	50 M A	RHS	085	ASY29	2N1304	0
2N439A	NG	105	L04	25V		25V	300MA	850	150M #F	3 M	180	30 MN	50#A	RMS	085	ASY29	2N1304	0
28440	NG	105	L04	30V	150	25V	300×A	8 5C	150MHF	5 M	15P	40MN	50 MA	RHS	08 5	A 5 Y 2 9	2N1304	0
214404	NG	105	1.04	25 V	1	25V	300MA	85C	150*#F	4.0	18 P	40 PN	50#A	RHS	OPS	A5729	2N1304	0
2N441	PG	1036	L13	40V	254	201	4A	950	50WC			20/40	5A	AHG	₩08	ADZ12	2N1100	0
28442	PG	1036	L13	50 V	30V	30V	4.4	950	SOWC			20/40	54	AHG	NOB	ADZ12	2N1100	0
2N443	PG	103 e	113	60V	45V	4 C V		9 5C	SONC		- 1	20/40	54	AHG	MOB	S130A	2N1100	0
24444	NG	105	L04	154		104	25H A	85C	150MwF	4004	30P	15TP	LMA	ALG	08 S	AC176	2N24 30	0
284444	NG	105	L04	40%		104	2544	1000	ISCHNE	400K	28P	20/40	2044	AL G	085	AC176	2N2 430	1
21445	NG	105	L04	154		10 4	25#4	85C	150MWF	LH	32P	357P	LMA	RHS	085	ASY29	2N1304	0
284454	NG	105	LC4	301	1	10v	50#A	1000	150MWF	2 H		40/160	20#4	RMS	085	ASY29	2N1304	0
28446		105	LOA	151		104	7 EM +		15 OHUF	4 14	30 P	601 P	1 **	RHS	085	ASY29	2N1 30	1 -
2N4464	MA								1.1.1	8 1	28P	60	20.0	-	ORS	ASY29	2	

TO: TOWERS INTERNATIONAL TRANSISTOR SELECTOR ETI Book Service 25 Court Close, Bray, Maidenhead, Berks. Please find enclosed cheque/P.O. for £3.40 (payable to ETI) NAME ADDRESS

(


HOW AMBISONICS WORKS

DURING the past year or so Electronics Today, together with several overseas publications have described, as far as we have been able, the so-called Ambisonic surround-sound system.

These articles attracted very considerable interest, but had perforce to be limited to the *philosophy* of the proposed new system as no specific details could be obtained.

However a search through the British Patent files resulted in our finding Patent No 1369 813 dated October 1974 'Improvements in or Relating to Reproduction of Sound'. The Patent is in the name of Britain's National Research Development Corporation — and the inventor is named as Peter Berners Fellget.

Working from the information contained within this Patent — and from previously released information — Brian Chapman has prepared this article setting out for the first time just how Ambisonics actually works.

ELECTRONICS TODAY INTERNATIONAL-JULY 1975

IN THE continuing quest to obtain more realistic audio reproduction we have seen stereo replace mono, and various attempts made to extend conventional stereo's two channels to four – the so-called quadraphonic systems.

The sound images created by current systems seem artificial in that they appear to be distributed along the walls of the room. Furthermore the actual source of many sounds appears to shift position at times. This can sometimes be very disconcerting. We know of one record in which a contralto instantaneously moves from the front to the back of the room everytime she sings above C^3 .

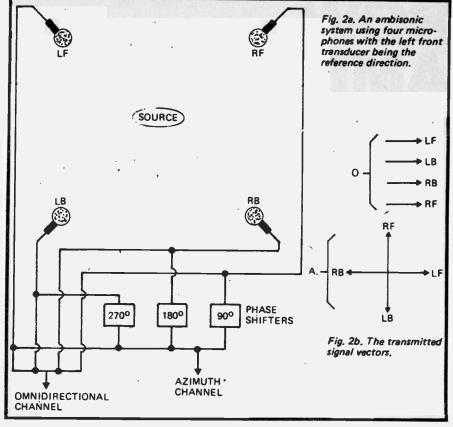
What is required for realism is that the ambience information, normally experienced in a live performance, also be reproduced more realistically than it is at present, and that a listener should be able to determine the direction from which the original sound was produced — and that that direction be stable.

The Ambisonic system attempts to surround the listener with the direct and the reverberant sound, from all directions, such that the original sound field is reproduced as accurately as possible.

Whilst it is certainly *possible* to encode height as well as full azimuth information with this system, such periphonic systems will probably not be commercially used for some time. This discussion is therefore limited to systems which reproduce the sound field in the horizontal plane only, that is, pantaphonic systems.

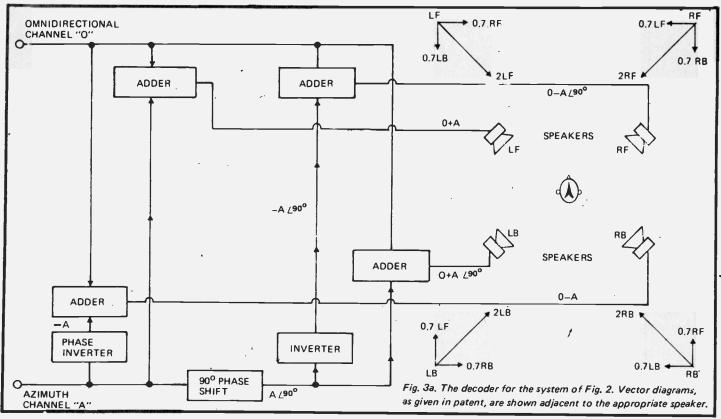
To do this a totally different concept of recording is required which nevertheless can be encoded on to two transmission channels in a similar manner to conventional stereo discs and tapes.

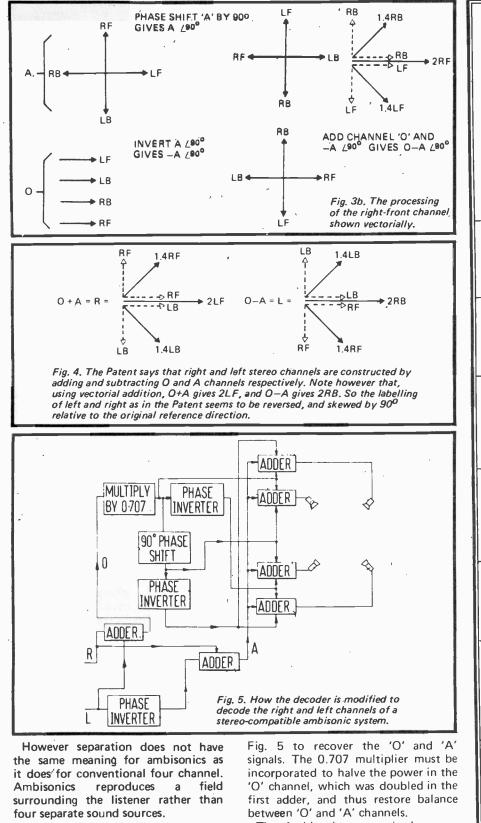
The Ambisonic system adopts a completely different approach that does not exhibit the directional ambiguities common to existing systems. When recording, a number of microphones are used each of which provides an omnidirectional, 'O', signal and an 'azimuth' 'A' signal which is phase shifted by the angle between the individual microphone and a reference direction. This process is shown in Fig. 1.


In an actual system, at least three microphone setups must be used in order to obtain full directional coverage. All the omnidirectional signals are simply added into one channel and all the azimuth signals into another. Such a system of four microphones is shown in Fig. 2. Here the left front microphone is taken as the reference direction and hence its signals are passed direct to both transmission channels. The other three microphones are summed directly into the 'O' channel and via appropriate phase-shift networks to the 'A' channel.

It should be noted at this point that the phase-shift networks in an actual system are of the 'all-pass' filter type. Hence the phase of both 'O' and 'A' channels may be shifted together; the apparent phase-shift to the 'A' channel being the difference in phase between the two.

Thus the content of each channel is a continuum of signals rather than a set of discrete signals. That is the two channels of information are representative of the sound-field surrounding the source. This means that although a system such as the transmitter of Fig. 2a, and the receiver of Fig. 3a may be used, a speaker at any azimuth orientation may be added simply by feeding it with appropriately phase shifted signals.


A system in which four microphones at 90° spacing are used, will transmit the signals as shown vectorially in Fig. 2b. To correctly decode this, at the receiver, a decoder, as shown in Fig. 3a, is required. Vector diagrams, adjacent to each speaker, show the signal fed to that particular speaker.


To better understand the decoding process let us trace the decoding to the right-front speaker as detailed in the vector diagrams on Fig. 3b. This shows the azimuth channel being firstly shifted by 90° and then inverted (phase-shift of 180°). When the azimuth and ommidirectional channel are subsequently added we find that the left back signal is completely cancelled, a twice amplitude right

front signal is obtained and right back and left front signals of 1.4 times amplitude are also obtained at phase angles of plus and minus 45°.

Thus the diagonal separation is infinite but that between pairs on one side is only 3 dB. (This figure of 3 dB is in conflict with the Patent — there Professor Felgett shows the side channels – vectorially – as having 0.707 amplitude, equivalent to 9 dB down on the main signal. We have asked three suitably qualified people to check our figures – and all agree that the correct result is 3 dB. Thus unless there is some factor not described in the Patent we cannot see how 9 dB separation can be obtained).

ł

The Ambisonic system is thus very flexible in the number of speakers which may be used. It gives unambiguous directional information and has infinite separation diagonally and 3 dB (or 9dB!) separation between adjacent speakers. Finally it may readily be made compatible with conventional stereo systems and offers the ultimate capability of height, as well as horizontal transmission.

To buy these issues of ETI: Testing Speakers with Random Noise **Bass Booster** Inverter for Fluorescent Lighting Electronic Decision Maker in March 1973 Digital Logic Improving Bridge Measurements Protecting Reed Relays New Sound for your Guitar in June 1973 Solid Electrolyte Devices Tracking Weight & Record Wear Cryogenics and Superconductivity Simple UHF Preamplifier Car-Buyer's Metal Detector in August 1973 Electronic Calculators, how to repair them NASA the First 15 Years Anti-Theft Auto Alarm **Digital Stopwatch** in January 1974 **Directory of Hand-Held Calculators** Digital Clock Kits Review 50W Stereo Amp Temperature Meter in August 1974 Handling CMOS Temperature Alarm Light Sensitive Switch Linear IC Tester Printimer Add-On Amp (for Quad) in November 1974 How TV Cameras Work Tacho-Timing Light LM380 Record Player LM380 Intercom Spring Line Reverb Unit in December 1974 Articles in BOLD are PROJECTS Articles in BOLD are PROJECTS These articles are just a selection from the many printed in these issues. Many other back issues can be supplied. For a complete listing of articles before May 1974, see the Index in that month's fusue. To order send 30p for each issue plus P&P (10p for one: 15p for more than one) to Back Numbers Dept., ETI Magazine, 36 Ebury Street, London SWIW 0LW, clearly stating the issues you require. We cannot supply the following: April, May and November 1972, February and November 1973, March and September 1974.

ELECTRONICS TODAY INTERNATIONAL-JULY 1975

COMPATABILITY WITH STEREO

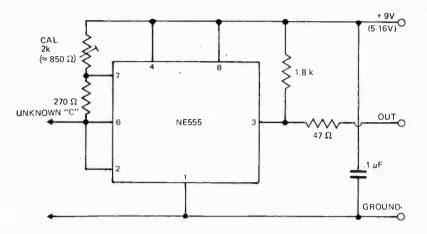
The system described in Fig. 2 and 3

is not compatible with existing stereo

systems but may readily be processed to be so. To generate right and left signals the 'O' and 'A' channels are

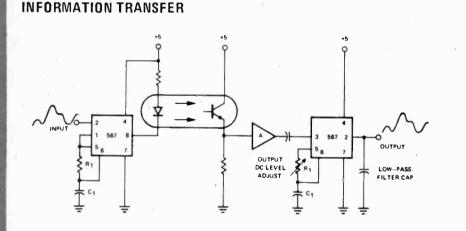
added and subtracted respectively at

the transmitter. At the receiver the decoder must be modified as shown in


SIMPLE DIGITAL CAPACITANCE PROBE FOR COUNTER

This simple adaptor enables a digital counter to be used to measure capacitance.

Various ICs may be used but the 555 series is the most practical and readily available.


Probe output is coupled to the digital counter via coax. The counter is switched to the 'period' ranges with seconds read as μ F, milliseconds as nF and microseconds as pF.

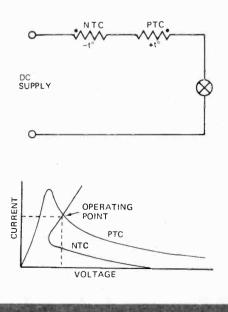
Accuracy depends on the accuracy of the calibration capacitors and of the power supply regulation. A calibration chart could of course be used if great accuracy or small capacitance value is required.

The prototype unit accurately measured a 50 000 μ F capacitor and a 2 μ F could still be measured

accurately with a 47 k resistor paralleled across it. Lowest measurable value was about 500 pF.

SOMETIMES it is necessary to transfer an analogue signal from one system to another without making any electrical connections.

This can be done with two phase-locked-loops in an fm system using light as the transmission medium. Because of the high degree of electrical isolation obtained, low level signals can be transmitted without interference, even if there is a large potential difference between the sending and receiving circuits.

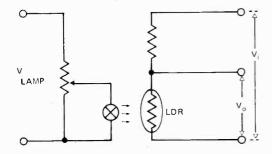

The circuit is shown above right.

Transmitter is an NE 567 phase-locked-loop IC operating as a voltage controlled oscillator which drives the LED section of an opto-coupler. The LED will flash at the operating frequency of the oscillator which is in turn dependent on the input signal level and the values of R, and C.

The output signal from the opto-coupler drives an amplifier which provides an output of sufficient amptitude (50 to 200 mV) to drive the receiving NE 567 phase-locked-loop. The receiver operates as an fm detector which demodulates the output of the opto-coupler to provide the original input signal. The inherent non-linearity of the transfer function in the two phase-locked-loops cancel one another out to give an extremely linear information transfer.

THERMISTOR OSCILLATOR

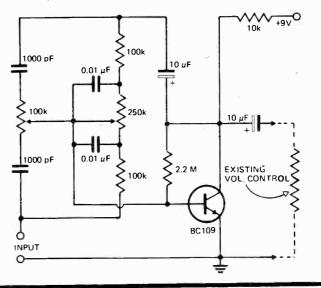
А simple very low frequency oscillator can be made by interconnecting one positive temperature co-efficient and one negative temperature co-efficient thermistor in series. For conditions of oscillation the characteristics of the two devices have to be chosen carefully. The operating point is determined by the intersection of the two curves.

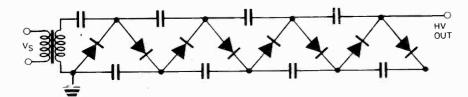


CRACKLE-FREE POTENTIOMETER OPTO-ISOLATOR

The resistance of a light dependent resistor (LDR) varies as the light falling upon it varies – hence its name! When wired into a divider network it forms an excellent crackle-free potentiometer.

It also provides excellent electrical isolation of the manual control — often a valuable feature where high voltage circuits must be isolated from low voltage circuits.




VOLTAGE MULTIPLIER

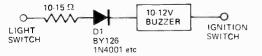
TONE CONTROL CIRCUIT

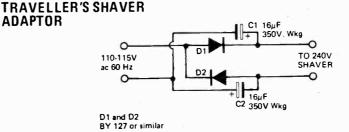
This simple single-transistor circuit will give approximately 15 dB boost or cut at 100 Hz and 15 kHz respectively. A low noise audio type transistor is used, and the output can be fed directly into any existing amplifier volume control to which the tone control is to be fitted.

The gain of the circuit is near unity when controls are set in the "flat" position.

Sometimes a very high voltage is required for applications such as for ionisers or a CRT supply.

secondary of an ordinary power transformer can have its output voltage multiplied any number of With this circuit the high voltage times determined by the number of stages "cascaded".

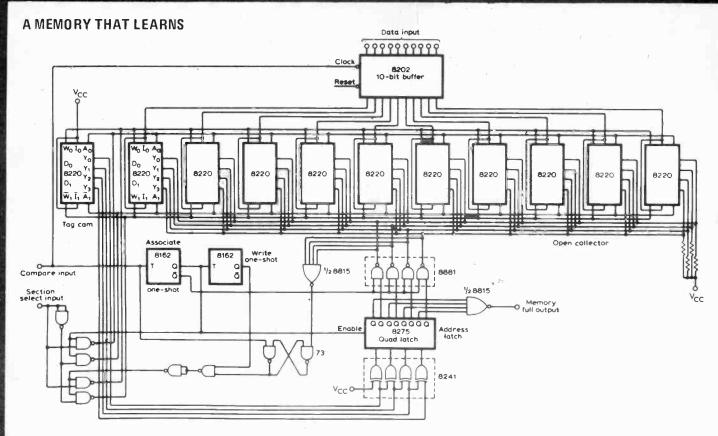

It is important to note that the rating of individual diodes and capacitors should be twice the transformer output voltage V_s .


The capacitor value and diode rating are determined by the required output current.

AUTOMOBILE LIGHT REMINDER

This circuit ensures that car lights are switched off when the ignition is turned off.

Any low power silicon rectifier diode will be satisfactory together with a suitable 12 V buzzer or bell. Only two connections are required. The alarm will sound if you leave the lights on after cutting the ignition.


Many overseas countries have 115 volts mains supplies. This can be a problem if your electric shaver is designed for 220/240 volts only.

This simple rectifier voltage doubler enables motor driven 240 volt shavers to be operated at full speed from a 115 volt supply.

As the output voltage is dc the circuit can only be used to drive small ac/dc motors. It cannot be used, for example, to operate vibrator-type shavers, or radio sets unless the latter are ac/dc operated.

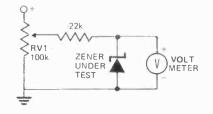
39

tech-tips

There is currently a great deal of interest in Content Addressable Memories (CAMs) and they are finding use in more and more applications. However, it is probably true to 'say that the novel characteristics of the CAM have not yet been fully realised.

The CAM is simply a memory with the ability to make a comparison between data already stored and data which is presented to the input. When several CAMs are connected in an array it is possible to apply feedback in such a way as to make a word which has just been read from the memory the next address. Circuits such as these can be made to generate or recognise sequences of digital words.

In the recognition mode, for instance, a CAM array with associated external logic could recognise a dangerous sequence of events in a process control system and could be made to take the appropriate action or altert staff to the impending danger.


Here is a memory constructed from Signetics 8220 CAMs, which has the ability to reject or accept new data depending on what is already in the memory. Once the memory has learned a data word, it will not accept another identical word. In addition, the memory automatically decides at what address new acceptable data is to be stored and ensures that new information is not written into locations which are already occupied.

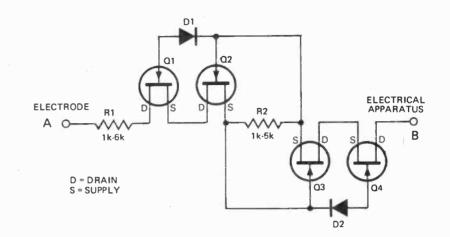
Each 8220 is a CAM capable of storing four words of two-bits and the memory as a whole can store eight 10-bit words. Although the storage capacity of the memory is 80-bits (8 x 10), eleven CAMs are employed which together have a capacity of 88-bits (11 x 2 x 4). The eleventh CAM has been called the tag CAM because it keeps track of the locations within the memory which are occupied, and allocates a new address for acceptable information.

The memory is sub-divided into the two sections of equal capacity and either of the two sections can be selected using the "section select input". Input data is presented to the 10-bit buffer and the "compare input" is activated. This clocks the data into the buffer and initiates a comparison process in which each word already stored within the memory is compared with the data in the buffer. If a location within the memory is found to carry data identical to that within the buffer, one of the 8220's Y outputs will go 'high' and the write command will be inhibited. If no accurate match is found, the data in the buffer is written into the address specified the 'tag' CAM. by

Exclusive-OR gates connected to the Y outputs of the tag CAM specify the next available address and ensure that memory locations are filled successively. The address at the outputs of the exclusive-OR gates is latched into the quadlatch before the 'write' command is available to the CAM array. Thus the Y lines of unavailable memory locations are forced to logic '0'.

ZENER DIODE CHECK

Unmarked Zener diodes may be tested using this simple circuit.

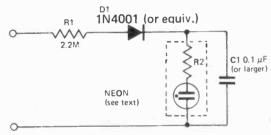

An external power supply giving a voltage higher than the highest expected rating of the Zener diodes to be tested is required.

Potentiometer RV1 is adjusted until the meter reading stabilizes. This reading is the Zener diode's breakdown voltage.

CURRENT LIMITING CIRCUIT

Danger of accidental shock exists during the use of electrocardiographs and other electrical apparatus that are connected directly to the patient. As part of the Skylab program, a circuit was developed to prevent accidental shock through electrodes to the test subjects.

The circuit allows undistorted signal voltage transfer, as long as the current remains low. If a high current begins to flow from the electrode terminal A toward apparatus terminal B, it will produce a potential difference across resistor R2 (left side of R2 will be at a higher potential than the right side). This potential biases the gate the field-effect electrodes of transistors, Q3 and Q4, to produce an extremely high impedance. Similarly, a current flow in the opposite direction is cut off by a bias on the gates of Q1

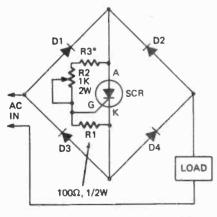

and Q2.

This circuit effectively protects the patient from dangerous shock that could be caused by a failure in the electrical apparatus. When a 1000 Hz signal at 141 Vac (rms) is applied to

the terminals of the network, the current is limited to approximately $87\mu A$.

This circuit can also be used to protect sensitive electrical measuring instruments.

NEON FLASHER WARNING



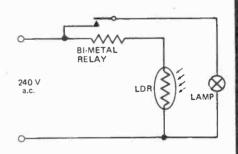
This neon flasher could be used for triggering a triac etc. having the

advantage of showing when the device is being triggered and being an economic, reliable triggering device. Average current drawn by the neon is around 25 micro-amps and the triac etc. would need an appropriate trigger current. This circuit is ultra-reliable but not very stable as regards to its flashing rate.

A flashing pilot light is likely to be more attention-getting than a pilot light which is continually on. This circuit will cause a neon to flash at a rate determined by the value of the capacitor placed in series between the diode and mains, neutral line. The neon may be used on its own or with a 270 k resistor in series with it as used in ready assembled 240 V pilot lamps. However, the value of R2, if used at all, is dependent on the flashing rate and effect desired by the individual constructor. All voltage ratings on components have been deliberately increased to protect the components from overload. R1 should be left as 2.2 Meg., the flashing rate being determined by the values of C1 and R2.

FULL-WAVE SCR CONTROL

This circuit enables a single SCR to provide fullwave control of resistive loads.


Resistor R3 should be chosen so that when potentiometer R2 is at its minimum setting, the current in the load is at the required minimum level. Diodes should have same current and voltage rating as the SCR.

AUTOMATIC TWILIGHT

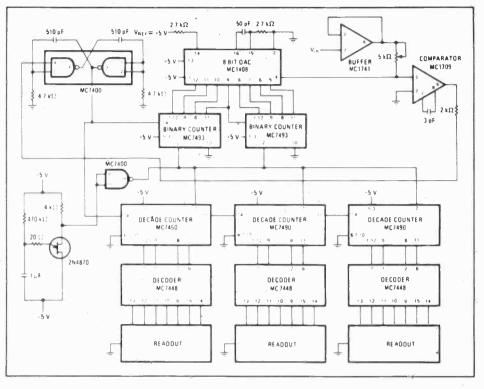
Here is a circuit which will automatically light your porch light or activate any other device when the ambient light drops below a certain level.

A light dependent resistor is used in series with a relay.

The resistor has a value in excess of 1 megohm when illuminated, this drops to below 110 ohms when dark.

It is important that the LDR be positioned in such a place as not to receive any spurious illumination as this will cause the relay to drop out intermittently.

A bimetallic strip type relay will give sufficient delay to ensure that incident light flashes have no influence.

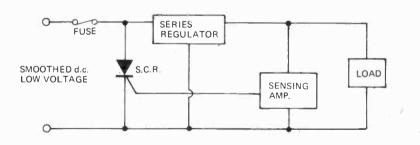

tech-tips

SIMPLE DIGITAL VOLTMETER

This meter, is a closed-loop system that uses a clocked binary counter feeding a digital-to-analogue converter to produce a staircase ramp. The output of the converter is compared to the unknown input signal, and the clock pulses are terminated when the input signal level and the staircase function level are equal. The number of clock pulses occurring during the comparison process are therefore proportional to the voltage of the unknown input signal.

Clock pulses are generated by two cross-coupled TTL NAND gates at a frequency of 330 kHz so that 256 pulses can be counted in less than a millisecond. Such a high-speed clock has two main advantages: counting can be done without causing display flicker and the need to have latches to store the previous total count while the system is sampling is obviated. The clock pulses are applied to two sets of counters - a binary counter chain in the feedback loop that controls the converter, and a binary-coded-decimal counter chain that provides an easy interface with the seven-segment digital readouts.

The D/A (MC1408) converter generates an output sink current that is proportional to the value of the applied digital word. The maximum full-scale value of this current, which is typically 2 mA, is set by a reference voltage and a reference resistor. The convertor's output current is compared with the current from an



input buffer amplifier which, in addition to giving the meter a high input impedance, supplies an output current of up to 2 mA for comparison with the output of the converter.

A second amplifier acts as a high-gain comparator to stop the clock when the current ramp from the converter exceeds the current from the input buffer amplifier. A unijunctiontransistor oscillator is used to reset both sets of counters so that the unknown voltage is resampled about every 0.5 seconds, and BCD-to-seven-segment decoders convert the outputs of the BCD counters to the proper format for the seven-segment light-emitting-diode displays.

For the components used here, the meter can measure up to 2.55 V (to within \pm millivolts) in 10 mV steps. Different full-scale values can be obtained by using suitable input voltage dividers or by providing the appropriate fixed-gain, rather than the unity-gain, input buffer shown.

IMPROVED SCR CROWBAR PROTECTION

Conventional SCR crowbar power supply overvoltage protection circuits have some drawbacks.

In the conventional circuit the SCR is connected directly across the output of the power supply. For normal operation the negative gate bias on the

SCR is such that it remains in the non-conducting condition.

In the event of an overvoltage at the load terminal the sense amplifier applies a positive voltage to the gate, causing the SCR to conduct and effectively short circuit the output so protecting components in the load circuit.

Provided that the series regulator has a current-limiting circuit and that it has not failed, the SCR should maintain its protection until the mains input has been disconnected. In fact unless the overvoltage is caused by a fault in the power supply unit itself, interruption of the mains input is all that is necessary to reset the system. However, the protection should be fully effective even in the event of a failure in the power supply, as it is potentially the most hazardous in

terms of damage to the load. Internal power supply faults must be considered because they are usually of a sustained nature. In addition to component failure, faults can arise from external causes such as the ingress of swarf or moisture when the equipment is unattended, so that the SCR in a conventional arrangement may have to carry a significant overload for a fairly long period.

It must also be remembered that a fault in a power supply may prevent the current-limit circuit functioning, but the current drawn may not be sufficient to blow the fuse.

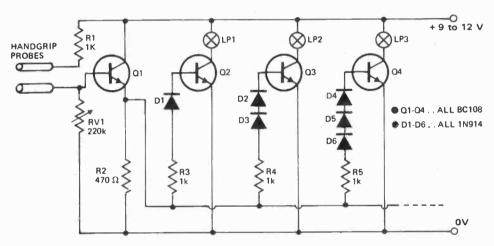
By transferring the SCR from the output to the input of the series full protection against regulator, power supply faults is obtained. In the event of an overvoltage the SCR will pass the full short-circuit unregulated current, so that the fuse will blow every time.

In addition the heavy current is only

heat sinking is not required.

This arrangement also gives complete protection against damage due to mains voltage surges, not only to the load circuit but to the power supply as well. However, this arrangement provides only minimal protection against incorrect connection of a separate high voltage source.

Some protection is afforded when a momentary high voltage is applied via a fairly high source impedance because the series regulator emitter-follower would be subjected to a reverse voltage when the SCR went into conduction and would act as a moderately low impedance diode.


Virtually no protection is provided against the application of sustained

passed momentarily so that complex 'spurious voltage but even with the conventional arrangement little protection would be provided against a fault of this kind.

> For instance, the load and the sensing amplifier are likely to be damaged before the SCR operates, or if it does operate and the incorrect voltage is not removed quickly it would probably be destroyed.

> In the light of experience the engineers at Weir Electronics claim that the modified configuration provides better protection than the conventional method. Some degree of compromise is inevitable, but the fact that a positive fuse replacement action is required to restore the supply every time with the second method is in itself a safety factor.

STRENGTH TESTER

Here is a circuit that will quickly tell you and your friends whether it is safe to go onto the beach with no chance of someone kicking sand into your face or conversely that a session with the Charles Atlas academy is advisable!

The idea is to grip the two handgrips which are made out of 25 mm wood dowling (broom handle) covered with aluminium foil.

The stronger the grip, the better the electrical contact made and depending on the strength of grip one two or more lamps will light up.

The circuit operates on the principle that skin contact resistance can be determined to some extent by the amount of pressure applied between the palms and the probes.

The greater the pressure, the lower the resistance and hence the higher the voltage output of the emitter of Q1.

Bases Q2, Q3... are connected to the emitter follower via progressively series diodes (D1, more D2...D6...). Each lamp in the collector circuit will require a progressively higher voltage output from Q1 emitter to ignite. (i.e. a stronger grip).

The number of lamps can be increased as much as one likes, with each stage input having a larger number of series diodes. In the further stages it is not necessary to stack all those diodes since a single Zener will do just as well. For more than four stages reduce the value of R2 to 220 ohms.

RV1 adjusts the sensitivity: Reducing its value lowers the sensitivity.

SOLDERING IC's

As it is no longer an economic proposition to use IC sockets for the cheaper IC's on the market, a method of soldering them without damage can be extremely useful. Cheap commercial soldering heatsinks do not appear to be available, but sprung letter clips could have been made for the job. These are available from most stationers.

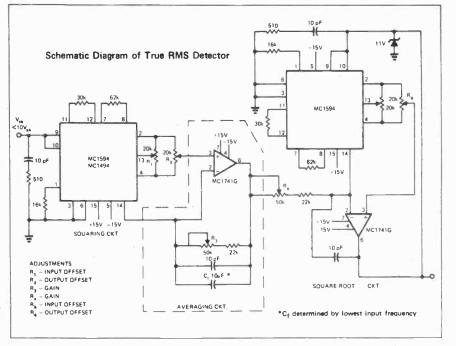
These are almost an exact fit for a 14-pin DIL IC. They clamp tightly over the tops of the IC pins, ensuring that heat is rapidly dissipated and that the pins are all at the same potential (preventing damage to CMOS IC's).

These clips could save a small fortune in IC's, they also enable IC's to be unsoldered without damage providing care is taken.

IDENTIFYING 74 SERIES SUPPLY PINS

When unmarked IC's are suspected of belonging to the 74 series a simple method of finding the supply pins is possible. If the resistance is checked between any two pins using a multimeter set on the 1 ohm range, all pins with the exception of the supply pins will give readings as open circuit or as a diode. When the supply pins are checked a reading is obtained both ways, the lower reading will be obtained when the positive lead from the multimeter is connected to Vcc.

tech-tips

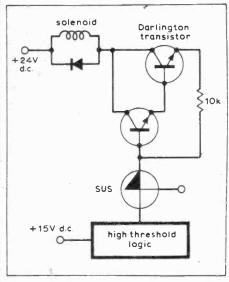

MULTIPLIER/OP AMP CIRCUIT DETECTS TRUE RMS

To get an RMS value when you can't afford the time it takes to heat an element, try this technique. It may not be feasible for a multimeter but how about a sampling voltmeter good up to 600 kHz?

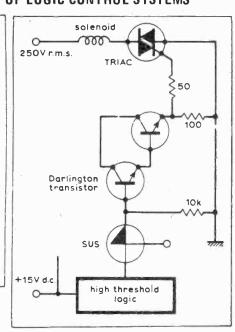
Mathematically, the RMS value of a function is obtained by squaring the function, averaging it over a time period Γ and then taking the square root:

$$V_{\rm RMS} = \sqrt{\frac{1}{T} \int_{0}^{t} v^2_{\rm dt}}$$

In a practical sense this same technique can also be used to find the RMS value of a waveform. Using two multipliers and a pair of op amps, an RMS detector can be constructed. The first multiplier is used to square the input waveform. Since the output of the multiplier is a current, an op amp is customarily used to convert this output to a voltage. The same op amp may also be used to perform the averaging function by placing a capacitor in the feedback path. The



second op amp is used with a multiplier as the feedback element to produce the square root configuration.


This method eliminates the thermal-response time that is prevalent in most RMS measuring circuits.

The input-voltage range for this circuit is from 2 to 10 Vpk. For other ranges, input scaling can be used. Since the input is dc coupled, the output voltage includes the dc components of the input waveform.

INCREASING THE NOISE IMMUNITY OF LOGIC CONTROL SYSTEMS

In many industrial control systems, the output from logic circuitry is used for simple on/off control of a solenoid. However, the situation is often complicated by the presence of high levels of electrical noise. Although a high input noise immunity of the logic circuitry can be obtained with the use of high threshold logic ICs, such as Motorola

Semi-conductors' MHTL range, the power amplifier feeding the output logic signal to the solenoid must be specially designed for maximum noise immunity in both the on and off conditions.

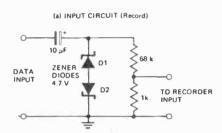
An extremely simple and low-cost

solution involving the use of a silicon unilateral switch (SUS) has been proposed by Motorola Semiconductors.

The SUS is connected between the logic circuitry and the output amplifier as shown in Fig. 1 for a dc solenoid, and for an ac solenoid the connection is shown in Fig. 2. With an SUS with a V_s of 8 V and a V_f of 1.3 V, positive-going noise pulses with the solenoid switched off would have to exceed 8 V for a spurious energisation of the solenoid; negative-going noise pulses occurring while the solenoid is on would have to reduce the input to the output amplifier to below 2 V, from between 12.5 and 15 V, for a spurious de-energisation.

An additional advantage is that the regenerative portion of the SUS switching waveform effectively boosts the drive to the inductive load of the solenoid, speeding up the response to control signals.

High-threshold logic, operating from a 15-V supply, produces a logic '0' output of 0 to 1.5 V and logic '1' output of 12.5 to 15 V. Noise amplitudes which increase the '0' level to 6.5 V and reduce the '1' level to 8.5 V can be tolerated.


SCREW STARTER

Useful holders for 'starting' small screws can be made from the inside plastic ink tube of empty ball point pens.

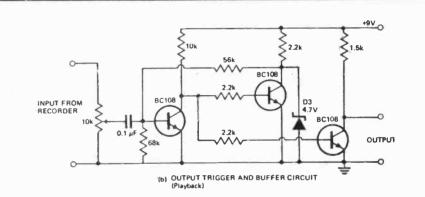
Remove the plastic ink tube, clean it if necessary, and cut a V notch in one end. Pass a loop of linen thread

DIGITAL TAPE RECORDER ADAPTOR

The two circuits shown allow digital data to be recorded and replayed on an ordinary domestic recorder.

The input circuitry differentiates the

through the tube, (a length of fuse wire as a 'pull through' helps in this) and you have your holder. See Fig. 1. In use a screw is simply inserted in the loop and the loop pulled up tight — Fig. 2. The screw can now be manipulated into awkward places with


Toch-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these items.

ETI is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for. Drawings should be as clear as possible and the text should preferably be typed. Circuits must not be subject to copyright. Items for consideration should be sent to the Editor, Electronics Today International, 36 Ebury Street, London SWIW OLW.

> ease. For holding screws, from which the loop may be lifted once they're started, it's a good idea to have a few knots in the double thread inside the tube. This increases the friction inside the tube, and there's then no need to maintain tension on the thread.

1

For holding spacer sleeves, between a pc board and chassis for example, the thread must not be knotted, as the thread could not then be removed. In this case, once the sleeve is positioned and the securing screw started, simply pull one end of the thread and the holder comes free. You then rethread the holder.

digital pulses which are then recorded. On playback the recorded pulses are fed into a Schmitt trigger whose output is then amplified restoring the required binary data waveform.

The potentiometer RV 1 is adjusted so that on playback only the peaks will actuate the trigger.

RESISTORS IN PARALLEL

	R2 R2														
R2 R	1 ₁₀	12	15	18	22	27	33	39	47	56	68	82	100		
R2 10 12 15 18 22 27 33 39 47 56 68 82 100 120 120 120 180	5.00 5.45 6.00 6.43 6.88 7.30 7.67 7.96 8.25 8.48 8.72 8.91 9.09 9.23 9.23 9.38 9.47	5.45 6.00 6.67 7.20 7.76 8.31 8.80 9.18 9.56 9.88 10.20 10.47 10.71 10.91 11.11 11.25	6.00 6.67 7.50 8.18 8.92 9.64 10.31 10.83 11.37 11.83 12.29 12.68 13.04 13.33 13.64 13.85	6.43 7.20 8.18 9.00 9.90 10.80 11.65 12.32 13.62 13.62 14.23 14.76 15.25 15.65 15.65 16.07 16.36	6.88 7.76 8.92 9.90 11.00 12.12 13.20 14.07 14.99 15.79 16.62 17.35 18.03 18.59 19.19 19.60	7.30 8.31 9.64 10.80 12.12 13.50 14.85 15.95 17.15 18.22 19.33 20.31 21.26 22.04 22.88 23.48	7.67 8.80 10.31 11.65 13.20 14.85 16.50 17.88 19.39 20.76 22.22 23.53 24.81 25.88 27.05 27.89	7.96 9.18 10.83 12.32 14.07 15.95 17.88 19.50 21.31 22.99 24.79 26.43 28.06 29.43 30.95 32.05	8.25 9.56 11.37 13.02 14.99 17.15 19.39 21.31 23.50 25.55 27.79 29.88 31.97 33.77 35.79 37.27	8.48 9.88 11.83 13.62 15.79 18.22 20.76 22.99 25.55 28.00 30.71 33.28 35.90 38.18 40.78 42.71	8.72 10.20 12.29 14.23 16.62 19.33 22.22 24.79 27.79 30.71 34.00 37.17 40.48 43.40 46.79 49.35	8.91 10.47 12.68 14.76 17.35 20.31 23.53 26.43 33.28 33.28 37.17 41.00 45.05 48.71 53.02 56.34	9.09 10.71 13.04 15.25 18.03 21.26 24.81 28.06 31.97 35.90 40.48 45.05 50.00 54.55 60.00 64.29		
220 270 330 390 470 560 680 820 1000	9.47 9.57 9.64 9.71 9.75 9.79 9.82 9.86 9.88 9.88 9.90	11.25 11.38 11.49 11.58 11.64 11.70 11.75 11.79 11.83 11.86	14.04 14.21 14.35 14.44 14.54 14.61 14.68 14.73 14.78	16.36 16.64 16.88 17.07 17.21 17.34 17.44 17.54 17.61 17.68	20.00 20.34 20.63 20.83 21.02 21.17 21.31 21.43 21.53	23.46 24.05 24.55 24.96 25.25 25.53 25.76 25.97 26.14 26.29	27.89 28.70 29.41 30.00 30.43 30.83 31.16 31.47 31.72 31.95	32.05 33.13 34.08 34.88 35.45 36.01 36.46 36.88 37.23 37.54	37.27 38.73 40.03 41.14 41.95 42.73 43.36 43.96 44.45 44.89	42.71 44.64 46.38 47.88 48.97 50.04 50.91 51.74 52.42 53.03	49.35 51.94 54.32 56.38 57.90 59.41 60.64 61.82 62.79 63_67	59.34 59.74 62.90 65.68 67.75 69.82 71.53 73.18 74.55 75.79	64.29 68.75 72.97 76.74 79.59 82.46 84.85 87.18 89.13 90.91		

EXCLUSIVE TO ETI READERS Digital Alarm Clock

Pulsar

When we first came across this inexpensive, superbly designed digital clock we knew that ETI readers would share our enthusiasm. So we have arranged a special consignment carrying ETI's own brand name: Pulsar. Not only that, but the price of only £13.95 (including postage and 8% VAT) is far less than you will pay for this clock elsewhere.

Pulsar is of course fully built, tested and guaranteed — and is completely electronic. The display is Planar Gas Discharge giving very bright 0.7in high characters — so bright in fact that there is a control on the back panel for reducing it! There is a full alarm facility: using a small switch on the back displays the alarm time for setting. There is also a 'snooze' facility. You want five minutes more sleep? Just tip Pulsar forward, the 'bleeper' alarms cuts off but will start again after five minutes.

The photograph shows ETI's Pulsar as close to full size as possible. The colon dividing the hours and minutes flashes once a second while on the left the small square indicates p.m.

Available only to U.K. and Eire readers at £13.95. Demand is expected to be enormous, there is no limit, but please allow 28 days for delivery.

TO:	PUL ELE	SAR CTR		FFE	ER, S TO	DD	AY.	INT	TER	N/	TI	ON	AL,	36	Ebı	ıry	Stre	eet,	Lo	ndc	n S	W1	W 0	LW	1.
	Please find enclosed my cheque/P.O. (payable to Electronics Today International) for £13.95 for a Pulsar Alarm Clock. NAME																								
NAM	Ε.				1.0				p.				4									-7	×		
	RESS		•	•				×	*				÷	٣	ę.			-		•	1			4	
																					*	•		•	
Read	ers not	wis	shin	g to	o cu	t th	eir	cop	уп	nay	ord	ler o	on t	heir	01	'n n	ote	pap	ber.						

UR READERS

AN EARLY COLOUR-ORGAN

The cover of your February issue rang a very loud bell with me, as you will readily understand from a glance at the enclosed press-cuttings. These-dated August, 1928, nearly fifty years ago--gave a fair but somewhat overglamorised account of a colour organ which I had recently constructed.

201 Gaic

This instrument enabled the 'player' to flood a screen with light of any desired hue, saturation and luminosity within the ranges obtainable at that time, and to vary one or more of these 'dimensions' easily and swiftly, using one hand only; so that if desired a second projector could be added (for the other hand) to produce the enhanced effects of simultaneous contrast.

I used three light sources, with gelatine media approximating as nearly as possible to the primaries red, green and blue. (For more about these primaries see 'Understanding Colour TV-Part I', also by happy chance in your February issue). Careful balance of wattage ensured that when all three lamps were fully on they mixed an acceptable 'white'.

The control device was an upright lever about 20" long, pivotted universally ('joy-stick' fashion) at its lower end; the upper end being limited in its swing by a triangular gate, the 10" sides of which were in fact not straight buts arcs struck from the opposite corners. The top of the lever carried a twist-grip which the operator held.

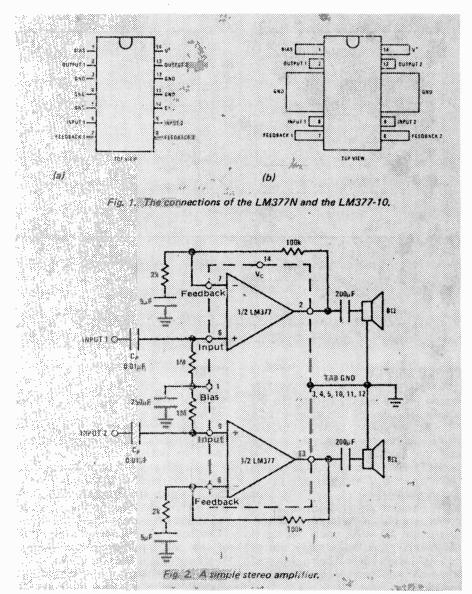
Attached to the lever just below the level of the gate were three trackerwires, which were taken through eyes at the corners of the gate to three dimmers, one for each primary colour. With the lever resting in any one of the corners, the lamp associated with that corner was fully lit, and remained so until the lever had been moved away from the corner to a little more than half-way across the gate (in any direction). If the lever was then moved still further across, the lamp was dimmed progressively, going out completely as the lever reached the opposite side.


So, as the lever was moved about in the gate the projected colour was varied, from pure hues along the sides to neutral in the centre. In other words, the dimensions of hue and saturation were controlled by simple movements of the lever. The third requirement, control of **luminosity**, was met by rotating the twist-grip referred to above, which was geared via a shaft inside the main lever to a device somewhat similar in effect to an iris-diaphragm. This permitted change of **luminosity** without affecting **hue** or saturation, and solved a problem (one of several) over which I was thankful to have the technical help of my firend Bill Debenham, who was then with the GEC.

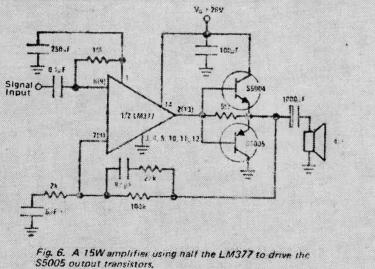
To conclude: it was clearly desirable to be able to keep a record of any colour-sequences which seemed especially pleasing (or the reverse!), and this was done by using musical notation for luminosity and duration (the fourth dimension!) together with little triangles each containing a dot for hue and a figure (1-5) for saturation (distance of the lever from the centre of the gate).

If any of your readers would like further details of this museum-piece, I should be happy to oblige!

 Conrad Volk, 11 Granville Road, Sevenoaks, Kent.


A NEW INTEGRATED CIRCUIT containing two 2-watt audio amplifiers in a single encapsulation has recently been introduced by the National Semiconductor Company. This device is particularly attractive, since it incorporates internal stabilisation and circuits which protect it both from overheating and from excessive current due to accidental shorting of the output. In addition, the output stages are automatically 'centred' by the correct bias.


This circuit is mainly intended for use in stereo radio receivers, stereo record players, etc. where the power required is not very high. It has the advantage that a minimum number of external components are needed. However, it can also be used as a stereo driver circuit to feed power transistors when more output power is required. It is also suitable for use in intercom amplifiers, as a dual servo amplifier, etc. The high input impedance of 3 megohms greatly increases the versatility of the device.


ENCAPSULATION

The LM377N is a 14 pin dual-in-line device with the connections shown in Fig. 1(a). An electrically equivalent device, the LM377N-10 is available with metal tab connections, as shown in Fig. 1(b).

The bias voltage from pin 1 is used to provide the bias required by the inputs to both amplifiers (pins 6 and 9). Feedback is applied from the output of each amplifier to the 'feedback' inputs. These feedback inputs are the inverting inputs of the amplifiers concerned. By Brian Dance.

POWER SUPPLY

The power supply to the LM377N should not be less than 10 V, but the absolute maximum upper limit is 26 V. The maximum power output is related to the power supply voltage and the loudspeaker impedance, the peak-to-peak output voltage swing being about 6 V less than the power supply voltage.

The current taken from a 20 V power supply is typically 15 mA (maximum 50 mA) under no signal conditions, rising to a maximum of 500 mA when 1.5 W is being delivered to each of two loudspeakers of impedance 8 ohms.

CIRCUIT

The circuit of a very simple stereo amplifier using the LM377N is shown in Fig. 2.

The inputs are fed through capacitors to the device so that the bias does not reach the previous circuit. The input pins 6 and 9 are each returned through 1 megohm resistors to the bias source (pin 1) which is decoupled by C_4 . The bias current required by the inputs is about 500 nA each.

Feedback is applied from the output of the one amplifier (pin 2) to the 'feedback' input (pin 7) of the same amplifier. Similarly, in the other channel, feedback is taken from pin 13 through R6 to pin 8.

The voltage gain of each circuit is equal to $R_5/R_1 = R_6/R_4 - 50$ (or 34 dB). The gain may be altered by changing the ratio of these resistors, but distortion increases with gain as shown in Fig. 3 for 8 ohm speakers with an 18 V supply and 16 ohm speakers with a 24 V supply, both at 0.5 W.

The outputs at pins 2 and 13 are superimposed on a steady potential of about half the supply voltage. Electrolytic capacitors (C_6 and C_7) must therefore be employed in series with the speakers so that only alternating currents can pass.

The input signal required to drive an 8 ohm speaker at various power levels is shown in Fig. 4 at various values of amplification. The separation between the channels can be as great as 75 dB.

BRIDGE AMPLIFIER

An amplifier employing both sections of a LM377N is a 'bridge' or 'push-pull' circuit is shown in Fig. 5.

When the potential at pin 2 becomes more positive, that at pin 13 becomes more negative and vice-versa. Thus the power to the loudspeaker is increased. The average potential at pins 2 and 13 is the same, so no capacitor is required in series with the loudspeaker.

The bias from pin 1 is decoupled by C_2 and is used to supply both the non-inverting inputs at pins 6 and 9. The input signal is applied through C_1R_1 to the feedback or inverting input of one amplifier (pin 7) and through C_3 to the non-inverting input of the other amplifier (pin 9). Thus the outputs from the two amplifiers are out of phase, as already discussed. The gain of each section is equal to he atio of the feedback resistors, namely 50 in the circuit shown.

This bridge circuit can provide outputs up to 4 W. Two separate LM377N devices would be required if this circuit were used in a stereo system.

HIGHER OUTPUT POWER

Each half of a LM377N can be used to drive a complementary pair of power output transistors using the circuit of Fig. 6. A power output level of 15 W per channel can be obtained from this type of circuit. The input, output and feedback connections shown on this circuit are for the amplifier 1; pins 9, 13 and 8 of amplifier 2 can be connected to a similar way for the other channel.

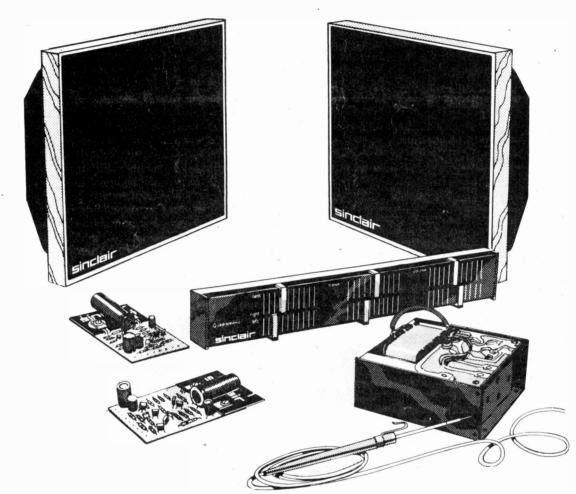
Overall feedback is used in this circuit from the output to the inverting input of the LM377. The values shown provide an overall voltage gain of 50.

Ex BEA CONTROL UNITS by UNIVAC

A FREE STANDING, MODERN STYLE DIECAST CASE CONSISTING OF:

2-50way gold plated plug & sockets; sub assembly with 3 multiway switch assemblies; 4 decade push button assembly with electrical reset; 2 decade push button assembly with electrical reset; single bank 8 push button assembly; 1 decade lamp assembly; 1-2 decade lamp assembly; 1-12 \times 3 lamp assembly; 4 decade thumb wheel assembly; 16 bit inline card code assembly; 6-15way plug & sockets.

Limited stocks at £12 50 each. Plus £2 00 carriage.


Also modern style typewriter keyboard with 21 separate function keys. Housed in slimline diecast case. Transistorised. No information but a 'BUY' at £15.00 each plus £2.00 carriage.

A. B. POTENTIOMETERS LIN 100K + 100K DUAL GANG. 25p each. Discount for quantities. P & P extra

HARTLEY 13A Double Beam Os- cilloscope TB 2c/s-750kc/s. Band width 5.5 mc/s. Sensitivity 33Mv/cm. Calibration markers 100kc/s and 1Mc/s. £30 ea.	EX-MINISTRY CT436. Dou Beam Oscilloscope DC-6 me Max Sensitivity 10mv/cm. Sr compact. Size 10 x 10 x 16 Suitable for Colour TV servici Price £85 each including copy manual.	egs. 12" CRT Ma nall Trace Yellow in. mation and ing. with all purch	ignetic Deflection. Blue v Afterglow (P7). Infor- recommended circuits nases. Brand new boxed. riage £2.	ternal graticule – 6cm × 10cm rec- tangular. Y sensitivity 3V per cm. X						
GRATICULES. 12 cm. by 14 cm. in High Quality plastic. 15p each. P. & P. Bp. PANEL mounting lamp holders. Red or green. 9p ea. Miniature. BECKMAN MULTITURN DIAL Model RB. Brand new. £1.90. P. & P. 15p. FIBRE GLASS PRINTED CIRCUIT BOARD. Brand new. Single or Double sided. Any size 11p per sq. in. Postage 20p per order. LIGHT EMITTING DIODES (Red) from Hewlett-Packard. Brand New. 38p ea Information 5p. Holders 1p. METERS by SIFAM type M 42, 25-0-25 micro amp. Scaled 25-0-25 green; 250-0- 250 red: linear. As new. £295 ea. P. & P. 37p. BLOCK PAPER CAPACITORS AVAIL- ABLE. S.A.E. with requirements. PHOTOCELL equivalent 0CP 71, 13p ea. MULLARD OCP70 10p ea. STANDARD 2 meg. log pots. Current type 15p ea. INSTRUMENT 3in. Colvern 5 ohm 35p ea.;	TELEPHONES MODERN STYLE 706 BL/ OR TWO-TONE GREY E: each. P.&P. 45p. STYLE 7 TWO-TONE GREEN and G £3.75 each. P.&P. 45p. HA. SETS—complete with 2 in: and lead 75p each. P.&P. 5 DIALS ONLY 75p each. P.&P. 25p. MODERN STANDARD TE PHONES IN GREY OR GRI WITH A PLACE TO PUT YC FINGERS LIKE THE 746. E: each. P.&P. 45p. RELIANCE P.C.B. mounting. 270 500 ohms: 10K at 35p ea. ALL BRAND 1 VENNER Hour Meters—5 digit. wall —sealed case. Standard mains. £3: P & P. 55p. TRANSFORMERS. All standard Gerd/Parm/Part. 450-400-040-450 MA.2 x 6.3v. £3 ea.	ACK nents only 50p. 3.75 7006 REY Screwdriver adjust ND- Just 10, 5 and 25K, 6 Spe 8P. 1000pf FEED Sold in packs of EEN RECTANGULA American Except 470: REW. FORMER PACK 470: REW. FORMER PACK 1000pf PEED Sold in packs of DELIVERED 1 Electronic Scra Rebbish, FOR C P.C.B. PACK 1000pf on cest 30/100 pf on cest 3	SKELETON PRE-SETS. ust 10, 5 and 2.5M @ 2p ea. 2a, Finger ad: and 2bX (a: 4p ea. Finger ad: 2b, (a: 5p, (a:	HIGH-VALUEPRINTEDBOARDPACK, Hundreds of components, transistors, etcno two boards the sameno short-leaded transis- tor computer boards £1 75 nost naid Large quantity LT, HT, EHT transformers and chokes. Vasi quantity of good quality components NO PASSING TRADEso we offer 3 LB. of ELECTRONIC GOODIES for £1.70 past paid CRYSTALS. Colour 4.43MHz. Brand New. £1.25 ea. P. & P. 15p. Beehive Trimmer 3/30 pf. Brand new. Gty 1-9 13p ea. P. & P. 15p. 10-99 10p ea. P. & P. 25p; 100-999 7p ea. P. & P. free. MF Crystal Drive Unit. 19in. rack mount. Standard 240V input with superb crystal oven by Labgear (no crystals) £5 ea. Carr. £2-00. ROTARY SWITCH PACK_6 Brand New switches 50p P. & P. 27p.						
50K and 100K 50p ea. BOURNS TRIMPOT POTENTIOMETERS 20: 50: 100: 200; 500 ohms: 1: 2: 2:5: 5: 10: 25K at 35p ea. ALL BRAND NEW.	Miniature Transformer. Standard 2 input. 3Volt 1 amp output Brand 1 65p each P. & P. 20p, Discount quantity.	240V New.	RELAYS tic covers 4 pole c/o 15K	METER PACKS—3 different meters for f2, P.&P. 55p. RESETTABLE COUNTERS—4 digit by Stonebridge/Sodeco. 1000ohm coil. f2 ea. P.&P. 35p.						
YOUR MANUALS S.A.E. WITH REQUIREMENTS SOHz sweeping the exception of	of Receivers, Filters etc. 250K Id frequency. Order LX63. Price £ can have extended cover range an be used with any general pu An external sweep voltage ca the controls (not cased, not calib	Hz to 5 MHz, effecti 8-50 P. & P. 35p. down to 20KHz by a rpose oscilloscope. Re in be used instead. Th	ddition of external capa	monics. Three controls—RF level icitors. Order LX63E. Price 11-50 Supplied connected for automatic ated for additional reliability, with						
20HZ to 2001		WIDE RANGE WOBBULATOR								
SINE AND SQUARE WA In four ranges. Wien bridge oscillator t independent sine and square wave amp 6V max square outputs. Completely assen 9 to 12V supply required. £8-85 each. £6-85 each. P. & P. 25p.	hermistor stabilised. Separate blitude controls. 3V max sine, i nbled P.C. Board, ready to use.	Only 3 controls, pres IF alignment, filters, instructions supplied	set RF level, sweep wid receivers. Can be used	o 1.5 GHZ) up to 15 MHZ sweep width. Ith and frequency. Ideal for 10.7 or TV with any general purpose scope. Full and use within minutes of receiving. d. not calibrated.)						
TRAI	NSISTOR INVERTOR	S TYPE I		YOUR SINGLE BEAM SCOPE INTO A						
ТҮРЕ А ТҮРЕ В	TYPEC	Input 12V to 2		LE WITH OUR NEW LOW PRICED STATE SWITCH.						
Input: 12V DC Input: 12V DC Output: 1 3kV AC 1.5MA Output: 1.3kV DC 1.5k Price £3.45 Price £4.70		Output: 14kV DC 100 m Progressively reducing for I Price £1	icro amps at 24V 2 HZ ower input voltages and co for ON STILL	NHZ. Hook up a 9 volt battery nnect your scope and have two traces LY £6.25. P. & P. 25p. AVAILABLE our 20 MHZ version at P. & P. 25p.						
		se add £2.00 carriag	e to all units.							
VALUE ADDED TAX not included in prices—please add 8%										
Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order										
Buy is with Access 7/9 ARTHUR ROAD, REA	Open 9am t	5.30pm Mor	to Sat.							
ELECTRONICS TODAY INTERNA				51						

Go quad for around £50

(including the speakers!)

Sinclair Project 80 hi-fi modules

If you've thought of switching to quad, you've probably found it an expensive process. Do you part with your existing stereo amp – which probably cost you a lot in the first place – and replace it with an even more costly quad amp? Or do you buy an expensive add-on kit – often costing as much as £90 even without the extra speakers?

With Sinclair Project 80 hi-fi modules, you can keep your existing amplifier... add a quad decoder, two power amps and a power supply unit... a couple of Sinclair O16 speakers and you've got a high-quality, true quad system which will have cost you only £50 or so to convert!

How does Sinclair Project 80 work?

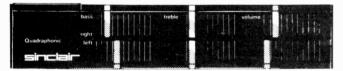
Project 80 is a comprehensive set of hi-fi modules or sub-assemblies. Amps... pre-amps... FM tuner... quad decoder... control units... everything you need to assemble hi-fi units. They're all designed to look alike and are all completely compatible with each other. Simply decide on the specification of the unit (stereo or quad) you want to build... buy the necessary modules... connect them up and house them.

You can even build a quad amp entirely from Project 80 modules. Two power amplifiers, a control unit and a power

supply give you a stereo amp for as little as £31.80 plus VAT. The necessary add-on quad modules cost only £36.80 + VAT. Together, they make up a true hi-fi quad amp for only £68.60 + VAT!

And whenever you choose, you can add extra Project 80 refinements. An FM tuner ... a scratch/rumble filter ... higher-output power amps – Project 80 is an enjoyable way to develop your own hi-fi system!

Is it difficult to build?


Not at all. All Project 80 module circuitry is complete in itself – all you have to do is connect the external wiring to numbered solder points.

And if you're not so hot with a soldering iron? Use Project 805 kits. Project 805 uses Project 80 modules, but provides special clip-on tagged-wire connections – positively no soldering! There are two Project 805 kits – the basic 805 stereo amplifier kit, and the 8050 quad conversion kit.

805Q can be used to convert a Project 80 or 805 stereo system, or your existing stereo system.

You'll find more details and some system suggestions opposite.

Project 80 hi-fi modules the easy way to true quadraphonics.

Project 80 SQ quadraphonic decoder

Combines with and exactly matches Project 80 control unit for true quadraphonics. This unit is based on the CBS SQ system and is a complete guadraphonic decoder, rear channel pre-amp and control unit

Specification (91/2 in x 2 in x 3/4 in.) Connects with tape socket on Project 80

Project 80 power amplifiers

Two different amplifiers designed to be used separately or combined, with Project 80 modules or as add-ons to existing equipment. Protected against short circuits and damage from mis-use

Z40 Specification (21/4 in x 3 in x 3/4 in.) 8 transistors Input sensitivity: 100 mV Output: 12 W RMS continuous into 8 Ω (35 V). Frequency response: 30 Hz - 100 kHz + 3 dB S/N ratio: 64 dB Distortion: 0 1% at 10 Winto 8 Ω at 1 kHz Voltage requirements: 12 V - 35 VLoad imp: $4\Omega - 15\Omega$, safe on open circuit Protected against short circuit

Price: £5.95 + VAT

Project 80 power supply units

Range of power supply units to match desired specification of **final system**

PZ5 Specification Unstabilised, 30 Voutput. Including mains transformer.

Price: £5.95 + VAT

PZ6 Specification Stabilised. 35 Voutput. Including mains transformer.

Price: £8.95 + VAT

Project 8050 quadraphonic add-on kit

Converts your existing stereo hi-fi system to quad using solderless connections

Contains following Project 80 units

Project 80 \$Q quad decoder/rear channel pre-amp and controls unit

Sinclair 016 speaker

. .

Original and uniquely designed speaker of outstanding quality

Specification (103/n in square x 414 in deep) Pedestal base. All-over black front Teak surround. Balanced control unit or similar facility on any stereo amplifier: Separate slider controls on each channel for treble, bass and volume. Frequency response: 15 Hz to 25 kHz · 3 dB Distortion: 0.1% S/N ratio: 58 dB Rated output: 100 mV Phase shift network: 90±10, 100 Hz to 10 kHz Operating voltage: 22 V-35 V.

Price £18 95 + VAT

Z60 Specification

(21/4 In x 31/4 In x 1/4 In.) 12 transistors Input sensitivity: 100 mV - 250 mV Output: 25 W RMS continuous into 8 Q (50 V). Frequency response: 10 Hz to more than 200 kHz + 3 dB. \$/N ratio: better than 70 dB Distortion: less than 0 1% at 12 W into 4 Ω at 1 kHz voltage requirements: 12 V - 50 V. Load imp: 4Ω min, max safe on open circuit. Protected against short circuit

Price £7.45 + VAT

Quad system suggestions **from Sinclair**

1. Add-on guad to existing system: 12 W per rear channel RMS

Quadraphonic decoder + 2 x Z40 amps + 1 x PZ6 power $supply + (existing stereo amplifier) + 2 \times Q16 speakers +$ (2 existing speakers) + (turntable). Total Project 80 cost: £57.70 + VAT.

2. Add-on guad to existing system: 25 W per rear channel RMS

Quadraphonic decoder + 2 x Z60 amps + 1 x PZ8 power supply + (mains transformer) + (existing stereo amplifier) + $(2 \times \text{equivalent speakers}) + (2 \times \text{existing})$ speakers) + (turntable). Total Project 80 cost: £42.30 + VAT.

3. Ouadraphonic system built from scratch: 12 W per channel RMS

Pre-amp/control unit + quadraphonic decoder + 4 x Z40 $amps + 2 \times PZ6$ power supply + 4 x Q16 speakers + (turntable), Total Project 80 cost; £110.40 + VAT.

What more can we tell you?

All Project 80 modules are backed by the remarkable no-quibble Sinclair guarantee. Should any defect arise from normal use within a year, we'll service the modules free of charge, And our Consumer Advisory Service is always available if you run into any problems. You'll find Project 80 at stores like Laskys and Henry's - but before you look, why not get really detailed information? Clip the FREEPOST coupon for the fully-illustrated Project 80 folder - today!

Sinclair Radionics Ltd.

Sinclair Project 80

anewconceptin

expandablehifi

London Road, St Ives, Huntingdon, Cambs., PE17 4HJ. Telephone: St Ives (0480) 64646.

No solder

Stereo deco

ect 80

Q16

Sn

ELSAT.

PZ8 Specification Stabilised Output adjustable from 20 V to 60 V approx Re-entrant current limiting makes damage from overload or even shorting virtually impossible. Witnout mains transformer. Price £8.45 + VAT

2 x Z40 power amps

instruction manual.

Price £44 95 + VAT

Impedance: 8 Ω

Price: £8.95 + VAT

Masterlink unit

On/off switch

PZ5 power supply unit

plus pre-cut wiring loom

with clip-on tagged wire connections, nuts and bolts

sealed sound chamber. Special

Power handling: up to 14 W RMS

driver assembly. Frequency

response: 60 Hz to 16 kHz

To: Sinclair Radionics Ltd, FREEPOST, Stives, Huntingdon, Cambs., PE17 4BR.

Please send me, by return post, a copy of the fullyillustrated Project 80 folder.

Name

Address

ETI 7 75

Sinclai

COme

Please print FREEPOST - no stamp needed

NTERNATIONAL **3600 SYNTHESIZER**

Building the voltage controlled filter

VOLTAGE CONTROLLED THE FILTER used in the model 3600 synthesizer has been designed in the light of experience gained in using the larger 4600 unit.

It was found that the bandpass and high-pass filters were seldom used and that extra presence was required in the lowpass filter. To this end it was decided to redesign the filter to provide a 'resonance' control which allowed the filter to be peaked, as required, just before the cut-off point. The filter now has a more 'commercial' sound (and may readily be fitted to the larger unit if desired).

If the filter is peaked too much it will oscillate. This is an advantage as it effectively provides a useful sinewave oscillator if required.

CONSTRUCTION

The method of assembly is similar to that used for most of the other modules. A small aluminium bracket is used to hold the printed circuit board associated and switches and potentiometers.

When assembling the components to the printed circuit board the usual care must be taken with the orientation of polarized components. Assemble the to the board in accordance with the overlay Fig. 2 using sockets for the CMOS ICs at least. Note that IC2 MUST be a

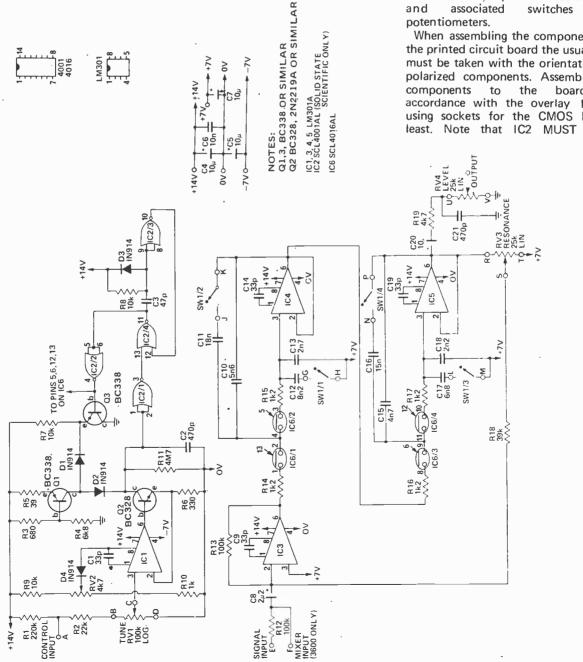


Fig. 1. Circuit diagram of filter module.

SCL4001AL as made by Solid State Scientific. Although this component is made under the same number by other companies, the Solid State Scientific version is much faster and has a much narrower linear region. If another brand is substituted the oscillator may work over a restricted range, or worse still may not work at all.

Two ways of wiring external components are shown, in Figs. 3 and 4. The second drawing (Fig. 3) applies to the larger 4600 synthesizer only.

SETTING UP

The only adjustment necessary is to set the trim potentiometer RV2. This is done as follows. Connect the control input to +14V, turn the resonance control to maximum, such that the filter acts as an oscillator, and set the range control to low. It will be found that as the tune control is advanced the frequency will increase, drop slightly and then cease. When in this state (ceased) adjust RV2 until the oscillation starts again and is at maximum frequency.

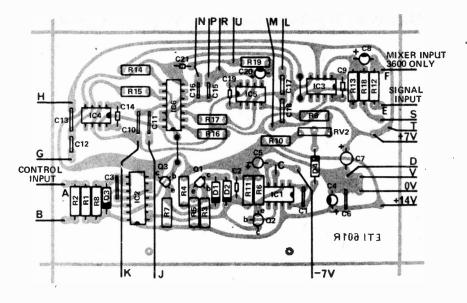


Fig. 2. Component overlay

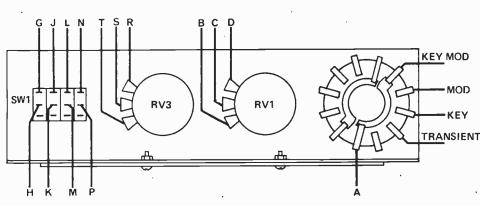


Fig. 3. Potentiometer and switch wiring for 3600 unit.

HOW IT WORKS

The voltage controlled filter consist of three main sections: -

- 1. The buffer amplifier mixer.
- 2. A low-pass filter.
- 3. A voltage controlled filter.

The buffer amplifier IC3 is used to give a level shift to the input signal and to provide a constant 100 k input impedance. A second input direct to the input of IC3 is used, in the 3600 synthesizer, for additional mixing.

The 4016 CMOS IC is a four section analogue switch which when 'on' has a resistance of about 200 ohms and when 'off' a resistance of about 10^{12} ohms. Each section has its own control input but in our case all the control inputs are connected together. We may consider the switches on the filter as a normal four pole active low pass filter (two 2 pole in series). The filter has a gain of unity (output of IC3 to output of IC5), below the cut-off frequency and an ultimate slope of 24dB octave above the cut-off frequency.

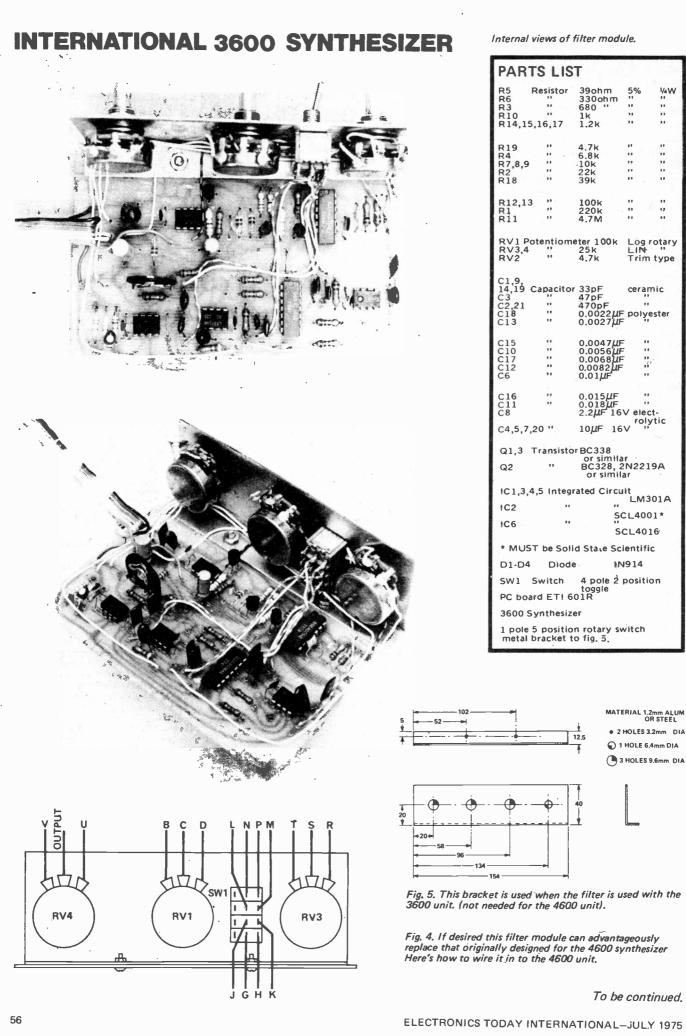
As well as an amplitude change with frequency there is also a change in phase relationship. Initially the output of the filter is 1800 out of phase with the input (point E), and in phase when 6 dB down. It eventually moves 180° out of phase again as the increases. The frequency potentiometer RV3 and resistor R18 takes part of the output signal and feeds it back into the input of IC3. Below the cut-off frequency this causes the output to be attenuated, at the cut-off frequency, the signal is boosted and above the cut-off it again starts to attenuate. This causes the output to peak in the region of the cut-off frequency and then drop suddenly above that frequency. The height of the peak is adjustable. If adjusted too high the filter will oscillate.

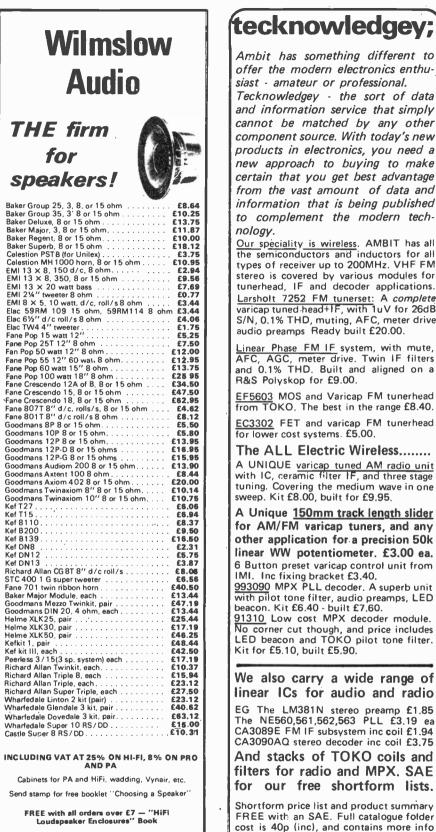
To vary the cut-off frequency we must vary the four capacitors or the four resistors in the areas of the filter.

1

To obtain the two ranges we switch capacitors in or out and, to give the continuously variable range, we vary the resistors by switching them in and out at a fast rate but with a mark-space ratio which is variable.

By such switching the effective value of a resistor becomes: -


R x total time


time on

and since on time is always shorter than total time the resistance can vary from 'R' upwards. We obtain a variable mark-space ratio by using a monostable of about 200 n sec triggered by a voltage controlled oscillator which is variable from 5 kHz to about 3 MHz. We therefore keep the on-time constant and vary the off-time.

The VCO is virtually identical to that shown in the February 74 issue and reference should be made to this for how it works. The only changes made is an addition to prevent the oscillator stopping either on overvoltage (RV2) or negative input voltage (R11).

55

audio preamps Ready built £20.00.

All units are guaranteed new and perfect

than ever.

trom

Ambit international 37 High Street

Brentwood, Essex.

Tel: 216029 Tix: 995194 VAT EXTRA: P&P 20p

CM14 4RH

Prompt despatch

Carriage: Speakers 38p each, 12" and up 50p each, tweeters and crossovers 25p each, kits 75p each (£1.50 pair).

WILMSLOW AUDIO Dept. ETI

an Works, Bank Square, Wilmslow, shire SK9 1 HF. Tel. Wilmslow 29599 (Discount HiFi, PA and Radio at 10 Swan Street, Wilmslow)

UNDERSTANDING COLOUR TV by Caleb Bradley BSc.

Line and field synchronization

PULSES LINE SYNC occur at the start of every scanning line and are used to time the line scan circuit. This consists of a line frequency (15 625 'Hz) oscillator which drives magnetic deflection coils mounted on the display tube. The line deflection waveform, provided by a high power output stage, is sawtooth shaped i.e. a smoothly increasing current to sweep the scanning spot from left to right followed by a rapid return to the starting value to cause an almost instantaneous right-to-left flyback to the start of the next scanning line.

١

How do the line sync. pulses control the line scan? Although it is possible to apply them as trigger pulses to the line oscillator (the same way the timebase oscillator in an oscilloscope is triggered), a flywheel sync. circuit is more usually used to obtain better results from weak or interferenceprone signals. The basic arrangement is shown in Fig. 36.

The line oscillator is a tuned circuit type containing a voltage controlled reactive element to allow control of phase. The idea is similar to the voltage controlled oscillator in the decoder (last month) except that since the working frequency is too low for varicap diodes to be useful the voltage controlled element is usually a transistor whose conduction during each cycle is arranged to simulate an inductor.

The 'flywheel discriminator' is really a simple driven clamp. A sample of the line scan waveform is applied to it via C1. Also applied are the line sync. pulses which are differentiated by C2. The leading edge of each pulse causes both D1 and D2 to conduct. This clamps the instantaneous value of the waveform from C1 to 0 V. The waveform is fully integrated by R1/C3 to give a dc voltage which controls the phase of the line oscillator. Clearly the value of this voltage depends on which part of the feedback waveform is clamped to 0 V.

When the line scan is synchronised correctly, the clamp operates at A in Fig.36. Should the scan begin *later* than required, point B is clamped instead. Since more of the waveform is now above 0 V the voltage on C3 moves positive. If the reactance control is arranged so that this increasing voltage *advances* the line phase the error will be rapidly corrected and the clamp point return to A. Conversely, leading scan phase (clamp at C) is corrected by decreased voltage on C3.

This simple arrangement achieves excellent performance because the steep flyback slope C-A-B gives very high phase-correction gain. The integrator R1/C3 gives the circuit its phase inertia or 'flywheel' property. For example the line scan is unaffected if an occasional sync, pulse is lost or distorted due to interference.

Since the line oscillator is tuned close to the correct, frequency by a stable L-C circuit the pull-in range of the flywheel sync. circuit can be made small. In terms of phase gain, this means a high gain at dc with the first low-pass pole at a low frequency, obtained by giving R1/C3 a long time constant. This gives relative immunity to any interference which may get through the sync. separator. In colour the accuracy of the line scan is vital because of the several timed functions derived from it.

FIELD SYNCHRONISATION

The field scan requires a sawtooth shaped current drive to the field (vertical) deflection coil on the display tube. This causes the scanning spot to be deflected from top to bottom of the screen at a comparatively slow rate (taking 20 milliseconds during which there are 312½ line scans) followed by a fairly quick flyback to the top for the next scan.

Since the field sync. pulse is obtained by integration in the sync. separator it is less susceptible to noise than the line pulses and this allows simple

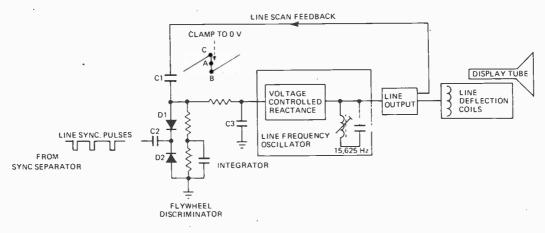
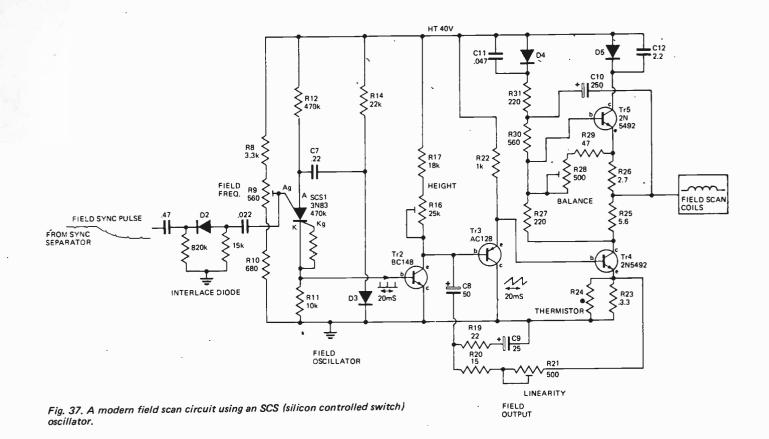



Fig. 36. Basic 'fly wheel' line scan circuit.

synchronisation by direct trigger of the field oscillator. This drives the field output stage which provides the sawtooth waveform for the field scan coil. Various well known oscillator circuits are used such as multivibrators, blocking oscillators, etc. Recently a simple circuit using a silicon controlled switch (SCS) has become popular. This is a four-layer diode device with internal regeneration which resembles a thyristor (SCR) but has an extra electrode ('anode gate') which gives new means of triggering. Like the thyristor it has two states: 'off' state i.e. no conduction, followed after the trigger condition is met by the 'on' state where anode to cathode current flows. A modern field circuit is shown in Fig. 37.

CIRCUIT OPERATION

In Fig.37 the trigger condition for SCS1 occurs when the anode voltage exceeds the anode gate voltage. Regard the anode gate voltage as fixed by the divider R8/R9/R10. At the start of the scan SCS1 is off. Current from R14 keeps D3 conducting so the right hand side of C7 is held near 0 V. The anode voltage of SCS1 rises as current from R12 charges C7. After 20mS this voltage reaches the anode gate voltage and SCS1 is triggered on. It now discharges C7, current having to flow through R11 and R14 (since D3 blocks). When the discharge current decays below the holding current for SCS1 it turns off and the next cycle begins. Thus the scan period is set by the time constant R12/C7 and the flyback period is set by the shorter time constant R14/C7.

Synchronisation is achieved by applying negative-going field sync. pulses to the anode gate. The anode voltage required to trigger SCS1 is thereby much reduced so each flyback is initiated by a sync. pulse. The preset R9 is only needed to set the free-running frequency in the absence of a signal. The diode D2 stabilises the triggering point and thereby ensures accurate interlace of successive fields.

FIELD OUTPUT

The field scan sawtooth is produced by C8 charging via R16/R17. The field-rate pulses developed across R11 in the oscillator briefly turn on Tr2 which rapidly discharges C8. The resulting sawtooth at Tr2 collector is fed via emitter follower Tr3 to the output transistors. These operate despite first impressions - in Class A. At the start of the scan Tr3 is bottomed with its emitter near 0 V. Hence Tr4 is off and no current flows in R23. About half h.t. voltage is present at the junction of R25 and R26. The values of R27, R28, R29 are chosen so Tr5 is conducting when Tr4 is off. During the scan Tr4 draws increasing current and the voltage developed across R25 progressively reduces the conduction of Tr5. When the flyback begins, Tr4 is cut off by Tr2/Tr3 clamping its base to 0 V. The energy stored as current in the scan coil causes the emitter and base

voltage of Tr5 to rise; when they reach h.t. the diode D5 cuts off and the scan coil 'rings' with C12 to produce a large positive half-sinewave. The voltage across the coil then gradually decreases into the next scan as Tr4 conducts again.

The bootstrap capacitor C10 provides correct base drive for Tr5 and prevents unwanted direct currents in the scan coil.

Without correction the waveform at Tr2 collector would be exponential rather than linear and this would result in compression of the lower parts of the picture. Correction is achieved by feedback from the output stage emitter resistor R23 via parabolashaping network R19-R21/C9 placed in series with the 0 V return of C8. Many sets have a second field linearity control which affects the very top of the picture only. (This acts by differentiating the scan sawtooth by a small amount).

The thermistor R24 is a simple means of stabilising the picture height against temperature and supply voltage changes.

NEXT MONTH:

the shadowmask tube and how to drive it.

ELECTRONICS -it's easy!

PART 17

SUPPLIES built permanently into equipment as fixed parameter units usually operate within reasonably well-defined operating limits. Fault conditions are, therefore, less likely to occur on the supply output, but are still a reality.

By contrast, general-purpose supplies designed to provide variable output for device testing, circuit development and multi-purpose use are prone to a number of fault conditions which could destroy components.

With the reduction in cost of power supply circuits, it is now practicable (and wise) to always employ protective devices that sense external or internal fault conditions and apply protective measures to the supply which prevent damage to both the supply and, possibly, the load being driven.

A wide variety of faults can occur. The supply itself may be damaged by excessive input overvoltage which may occur either as a steady-state overload or as a brief excitation transient. Protective measures include using a simple wire-fuse or magneticallyoperated circuit breakers that can break the circuit with greater reliability and speed than fuses. The same transients may destroy the bridge-rectifier diodes, these cannot

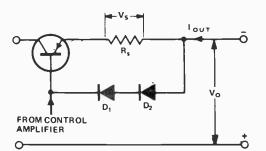


Fig. 1. Automatic current limiting is obtained with a series sensing resistor. This method of control is often used in series-pass voltage regulators.

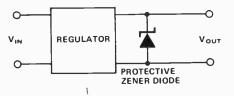


Fig.2. A Zener diode across the output provides "crowbar" protection against overvoltage.

effectively be protected by fuses or breakers. One technique to overcome this is to use diodes that are much heavier than really needed; another is to supplement these with an RC network across the output of the transformer — to provide a reduced impedance path for voltage transients.

On the output of the supply, protection is needed to prevent too a load impedance drawing low excessive current. We know that a constant current supply uses a series monitoring resistor to produce a control voltage. The same method can be used to limit output current. A simple method often used in series regulators is illustrated in Fig. 1. The diodes D1 and D2 do not conduct until the voltage drop across the small series resistor reaches the forward voltage of the diodes (0.4 for germanium, 0.7 for silicon). If the output of the supply is short circuited the diodes will conduct and limit the output current to a value

$$I = \frac{V_{D1} + V_{D2}}{R_s}$$

Thus if germanium diodes were used and R_s was one ohm the supply would limit at

$$\frac{0.4 + 0.4}{1} = 800 \text{ mA}$$

Another serious condition that can occur is for the supply to produce (if only momentarily) *overvoltage* at the output. Protection against this is essential, for excessive voltage can destroy semiconductor loads connected to the supply. The technique used is very rapidly to sense when overvoltage occurs and immediately connect a very low resistance shunt across the output terminals. For obvious reasons this device is known as "crowbar" protection!

A well-designed "crowbar" takes into account operating times (microseconds is quite feasible), recovery time after triggering; triggering sensitivity and many other features.

The simplest crowbar arrangement is to place a suitably rated (and voltage value) Zener diode across the output, as depicted in Fig. 2. If the voltage exceeds the Zener voltage the Zener conducts, clamping the output to a point just above the normal maximum voltage available from the supply. Excessive current is controlled by the current limiting protective arrangement presumably built into the supply.

More sophisticated methods compare the output voltage to a reference source and use any sudden difference to trigger (see Fig. 3) a siliconcontrolled-rectifier which shorts the output thus either blowing the supply fuse or putting the supply into current limit.

TRACKING SUPPLIES

Many circuits, IC op-amps for instance, require dual voltages – that is, positive and negative values referred to a common zero voltage. Some circuits require that both supplies provide exactly the same value of voltage, regardless of differences in load currents or fault conditions which may affect one output only. Another

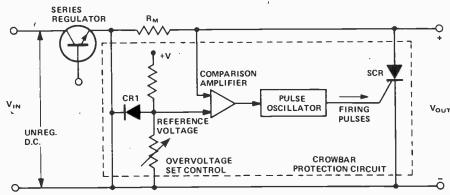


Fig.3. Active control can provide more effective crowbar protection. This circuit uses a silicon-controlled rectifier to short the output should overvoltage occur. The supply of course must be able to withstand such a short.

need for uniform supply outputs is where a number of slave supplies are required to follow a master unit. Supplies that have this inbuilt facility to follow external voltage are said to possess auto-tracking capability.

Auto-tracking is provided by comparing the two (or more) outputs using any (negative or positive) resultant error signal to control the regulator of one supply. One arrangement is shown in Fig.4.

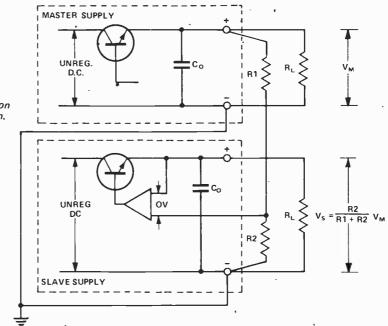
Auto-series operation is also available in some proprietary units. This enables a number of units to be connected in series in order to provide increased voltage. Sensing circuitry ensures that the voltage is shared evenly across each unit.

HEAVY-DUTY SUPPLIES

The series pass regulator transistor is capable of medium-demand currents. Several transistors may be paralleled to increase the total capacity. However, the method becomes wasteful at high power levels as considerable power must be dissipated in the series pass elements.

A common way to provide greater power is to use the mechanicallydriven variable transformer arrangement.

Another method uses special transformer designs that provide a reasonably wide degree of self-regulation, by varying magnetic leakage between primary and secondary windings or, by resonating the transformer windings with a tuning capacitor (transformer core saturates at a constant level).


If a switch were to be incorporated, instead of the series-pass transistor, it could be operated with an on/off ratio such that the average power allowed to pass is controlled. This chopped waveform may then be filtered to provide smooth Switching dc. regulation, as this kind of operation is known, is one of the most efficient forms of regulator design because very little power is wasted. The output voltage is compared with a reference value, as before, and the resulting error signal is converted into an equivalent variable-rate, on-off digital signal. This, in turn, is used to control the on-off ratio of the series transistor switch. Where power loss must be minimized, switching regulators are essential.

SILICON CONTROLLED RECTIFIERS

Another kind of switching regulator uses the silicon-controlled rectifier SCR diode (see Fig. 5).

Silicon controlled rectifiers, unlike ordinary silicon diodes, have four semiconductor layers and three terminals (anode, cathode and gate). tracking of two supplies can be achieved by using feedback to sense the error between them apply correction to one of them.

Fig.4. Auto-

Like a normal diode the SCR will conduct when the anode is positive with respect to the cathode. But, unless the gate is also positive, the SCR will not conduct at all! The SCR may be switched on at any point in the positive cycle by a positive voltage on its gate. Once the SCR is switched into conduction the gate loses control

until the anode-to-cathode potent.al falls to zero. Thus in operation a single positive pulse will switch the SCR on at any desired time within the positive half cycle and, by varying the time at which this pulse occurs we may control the average power passed by the SCR.

To pass both positive and negative

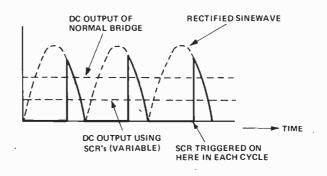
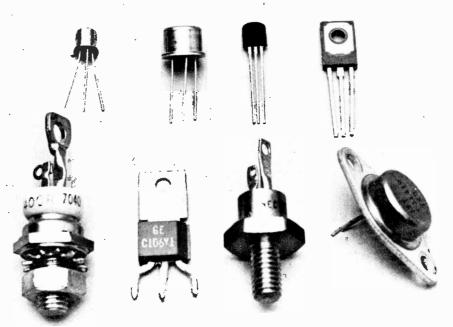
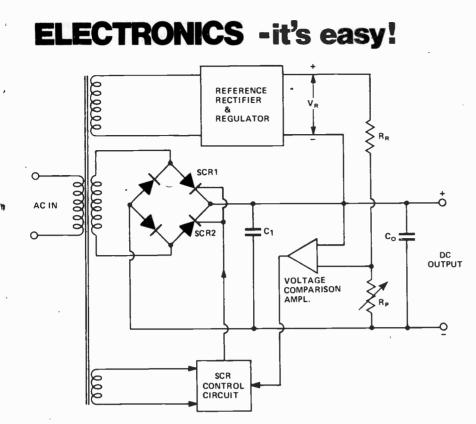
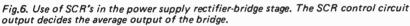





Fig.5. A range of silicon-controlled rectifier SCR's. The waveforms show how only a portion of each half cycle of the rectified sine-wave is switched through thus reducing the effective output voltage.

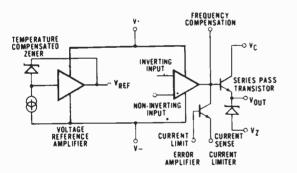
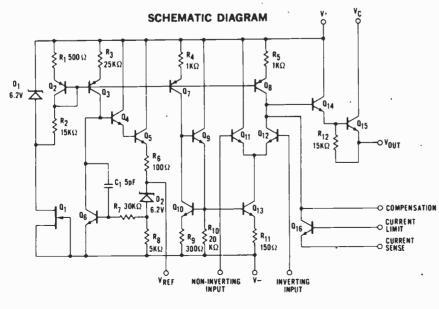



Fig. 7. Circuit diagram and system schematic of uA723 I.C. regulator chip. An external seriespass power transistor stage is needed to complete the regulator.

half cycles we must use two SCRs connected appropriately or use a special device – called a TRIAC – which can be switched on for either polarity.

붉

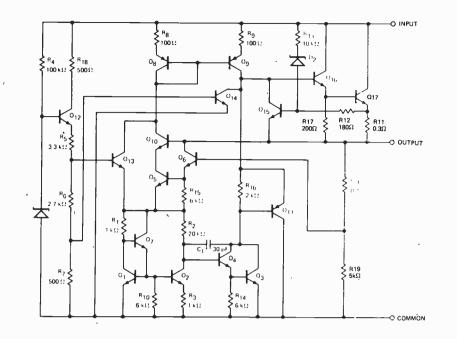
The schematic of a regulated supply using SCR power control is shown in Fig. 6. The power handling limits of SCR devices range to thousands of amps. As their main feature is control of power by switching, not by dissipation of unused energy, they do not need the same degree of cooling for a given load as would the series-pass transistor method.

INTEGRATED CIRCUIT REGULATORS

In recent years, special purpose IC components have become available that include a reference voltage supply, a comparator and a drive circuit for controlling an external series-pass regulator transistor all in one-small device.

One such chip is the μ A723 shown schematically in Fig. 7. From the internal circuit diagram it is clear that these units are capable of providing excellent regulation. The output voltage is adjustable on demand by altering the proportion of the output voltage which is compared to the reference voltage by an error amplifier. Ancillary built-in circuitry provides current limiting and crowbar action if needed.

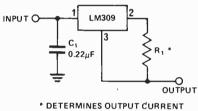
Also available are regulator IC's which have the series-pass power stage formed on single silicon chips. The LM109 and LM309 are such regulators (circuit shown in Fig. 8) and provide 5 V with output load in excess of 1 ampere. The LM309 has internal thermal overload protection, internal current limiting and is virtually blow-out proof. As is shown in Fig. 8, nothing could be simpler to use if a fixed voltage is needed. The cost is just about £1.50 thereby, ---powerfully demonstrating that today's electronic discipline is a matter of system rather than component design.


Further Reading

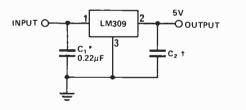
References given in the article before last are most relevant to the design of regulators. On the more specific aspects of design and use, the following are worth considering for purchase:

"Zener diode handbook" Motorola, 1967.

"Thyristor projects using SCRs and Triacs" R.M. Marston – Butterworths, 1974.


"Silicon rectifier handbook" Motorola, 1966.

CURRENT REGULATOR


ž

3

DETERMINES OUTPUT CORRENT

FIXED 5V REGULATOR

* REQUIRED IF REGULATOR IS LOCATED AN APPRECIABLE DISTANCE FROM POWER SUPPLY FILTER.

† ALTHOUGH NO OUTPUT CAPACITOR IS NEEDED FOR STABILITY, IT DOES IMPROVE TRANSIENT RESPONSE.

ADJUSTABLE OUTPUT REGULATOR

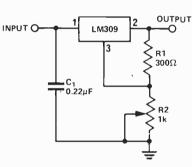
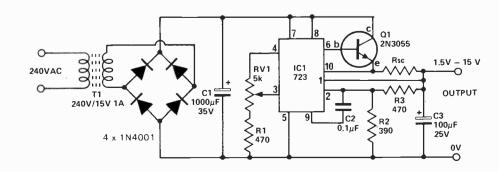


Fig.8. The LM309 I.C. regulator has the seriespass transistor (Q17) formed on the same chip. The circuitry is most sophisticated. Several different applications are shown schematically.

Simple regulated supply provides 1.5 to 15 volts at up to 1 ampere.

Earlier in this course details were given of an unregulated power supply that provides a dc output varying from 18 V at no load, dropping to 10 V at maximum load.

This unit can be extended by the addition of a series-pass regulator that employs an IC regulator chip and a power transistor. It incorporates current limiting and the output can be preset to provide any voltage between 1.5 and 15 V with a load current as high as 1 amp.


The circuit diagram for the complete regulated supply is shown in Fig. 9. By studying this, in conjunction with Fig. 8, it can be seen that adjusting RV1 provides the comparator error amplifier with a reference voltage up to the full 7.15 V produced by the built-in Zener reference circuit. Resistors R_2 and R_3 provide a divider chain that is tapped to enable the actual output voltage to be attenuated by a factor of 2.2. Thus the output is controlled so that it is 2.2 times the reference voltage provided by RV1.

The capacitor connected between pin 9 and pin 2 provides frequency compensation; improved feedback control performance is obtained by appropriate selection.

Resistor R_{sc} , in series with the output, is a current-sensing resistance. Its value, and hence the voltage developed across it, (at pin 1) determines the current limit point. Pin 10 clamps the emitter of Q1 if V_{Rsc} exceeds 0.6 V.

The maximum output voltage and current obtained from the unit is a function of components used. Using a 15 V centre-tapped transformer with 1 A capacity it provides 1 A at 10 V and 0.5 A at 15 V. Output voltage can be changed by altering the ratio of R_2 and R_3 with smooth manual control being obtained with RV1.

Maximum output must not exceed 25 volts.

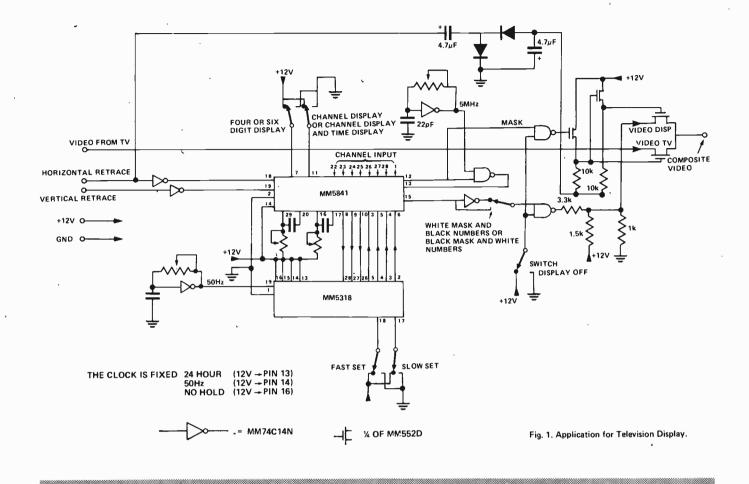
j

ELECTRONICS – in practice

Fig.9. This regulated supply, based on a µA723 IC, provides an output adjustable between 1.5 and 15 volts.

Electronics by John Miller-Hirkpatrick

TWO of the country's largest Television Rental companies (they are both the largest according to their sales blurb) will not under any circumstances allow any internal modification to their sets, either by their own or by any other qualified TV service engineers. That's not strictly true because l' rent my set from one of these companies and they did fit an extension speaker socket to my set, but unofficially and after a lot of persuation. The other company did offer to rent me a set with some of the modifications that I required but it was a set designed for schools and was large, cumbersome and much more expensive. I have offered to pay for the modification and subsequent de-modification of the set, I have all of the circuit diagrams with the required modifications - all to no avail, they refuse to allow any internal modification to the set. What is this massive internal reorganisation that I want? Simply the provision of Video input and output sockets and line and frame sync signals. The total cost of components is about £3, conversion time about 1/2 an hour, and it is all safe from the user's point of view and from the companies'.


For those of you that do not know what I am going on about it is like putting a 'TAPE' input/output socket on a Hi-Fi system or adding an oil pressure gauge to a car. With add-on systems like CEEFAX/ORACLE and Video Cassette Recorders becoming popular the customer is left with the choice of an expensive external mod, buying your own TV and getting an internal mod or simply going without. If you rent a TV set enquire now about modifications for these systems it could help for the future.

Having got that off my chest I will tell you what started it all. Two months ago I mentioned that I was waiting for data on a TV clock chip from National, well by twisting a few arms I received the data and the chips. I thought it would be a good idea to get the chips working before writing about them and that was the problem. The time is presented on top of the programme that you are watching and thus has to be added to the programme video signal inside the set. To do this you need to interrupt the programme signal, combine it with the time signal and then continue with the combined signal. That is why I needed the Video input/output socket. In order for the time signal to be readable it must be told where to position itself on the screen relative to the top of the screen (frame sync) and relative from the left hand side of the screen (line sync). If the system is not given these reference points the result will tend to look like 'snow' on the top of the programme signal. As you may have gathered by now I have not yet been able to get the system working but I will still tell you what it is supposed to do as it may well be a standard feature on most TVs in the near future.

It all starts with the American idea of having several TV stations available to the average city viewer. With the advent of varicap tuners for UHF and VHF the roatry tuning shaft with a dial readout of channel number has started to disappear. An alternative method of showing channel number was required and as most of the American varicap tuner systems have a BCD readout of channel number the choice comes down to what sort of digits do you want and where do you want them? National Semiconductors came up with the idea of superimposing the data on top of the programme being watched so that every time you change channels the channel number is displayed in one corner of the screen for a few seconds. Why stop there, if you are going to all the bother of putting two digits on top of the programme why not put eight digits up and have the time displayed as well? In such a way was born the MM5841 encoder and the MM5318 clock chip. In this country we only have BBC1, BBC2 and ITV and thus in theory we do not need a channel number readout and thus the two digits that started it all can be ignored or used for showing the temperature or humidity or the scores on a TV game. The system is split into two parts the first of which is the clock chip MM5318 which is basically our old friend the MM5311 with a few changes. The TV clock system works in a mulitplexed mode but the multiplexing must be relative to the line and frame sync signals and so the MM5318 is a multiplex 'on demand' system. This means that instead of the chip giving BCD and/or seven segment data for one digit at a time and a digit strobe line to indicate the digit data being shown, the chip gives you the data for the digit you request. If the clock chip was free running then when the system wanted digit 1 the clock chip might be strobing digit 4, to ensure compatability the clock chip still multiplexes the data but under the control of the encoder chip. The MM5318 still has multiplexed seven segment lines and six digit lines and so can be used both as a clock for readout on the screen as described and with LEDs.

The second part of the TV clock system is the MM5841 encoder chip. This is a CMOS chip designed to accept BCD time and channel data, sync reference data and display on/off signals and to produce a video output signal. The video signal can be used alone but is intended to be combined with a programme video signal for eventual display on a TV screen. The numbers displayed can be white on a black background or vice-versa, if the TV is a colour set then the numbers can be virtually any colour like green, purple or pink. The options available are channel only or channel and 4 digit time or channel and 6 digit time. The channel is displayed above the data and is leading zero suppressed; perhaps if no channel data is put in (channel 00) the data does not appear at all. The time data is presented as hours, colon, minutes, colon and seconds, all about 1 inch high on a 23" screen.

A circuit diagram of the system is shown in Fig. 1. For data and prices

contact National Semiconductors (UK) Ltd, The Precinct, Broxbourne, Herts.

THIS CALCULATOR MUST BE THE CHEAPEST!

Another new National product is the MM5780 calculator chip. It is understood that a calculator using this chip will soon be available from NOVUS National's consumer manufacturing division, it will surely be one of the cheapest calculators on the market. For any of you who might be interested in building one of these calculators for yourself we are pleased to announce the complete parts list –

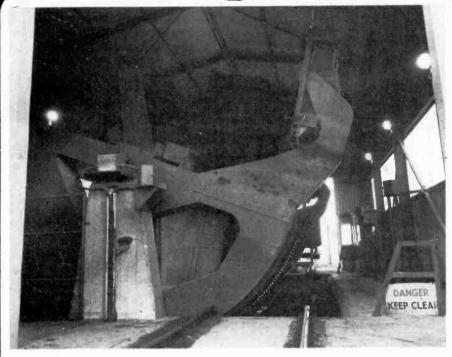
Case-Plastic or any other material as required or available. Keyboard-Simple 18 key layout, simple push switches can be used. SW 1-On/Off switch spst. Battery-9V PP3 or equivalent. IC 1--MM5780 Calculator chip. LED 1-Single LED lamp (Red). LED 2-Single LED lamp (green).

Other-Asstd screws, nuts, bolts, glue, chewing gum, etc.

You will have notice that there are no

display drivers required for this calculator, this new saving in components and cost has been arranged by use of a revolutionary new display technology called TIO. TIO is a display system which uses no display interface drivers because the display is of the nonexistant type, There Isn't One (TIO). This new calculator is designed to aid in the teaching of children, the idea is to enter a simple (or otherwise) mathematical problem into the keyboard together with the solution and then to press the 'TEST' key to check the answer. If the green 'Correct' light comes up then the answer was right, if the red light comes up lose one house point. The problem is entered in the usual format as you might find in a text book, e.g. -

	4 + 3 = 7 T (green)
or	4 x 3 = 9 T (red)
or	$6 + 2 - 10 \times 3 = -6 T$ (green).


The internal logic is relatively simple, if you can find an algebraic calculator try this idea. Enter $6 + 2 - 10 \times 3 -$

-6 =, the display should show 6, 8, -2, --6, 0. In other words instead of pressing the equals key and getting the correct answer subtract what you think is the correct answer and the result should be zero. If the correct answer should be negative as in our example then you have to subtract a negative number i.e. add the positive number. The inside of the 5780 has a test for zero check when the 'TEST' key is pressed, if the sum was correct then the display would contain zero and thus the green light comes on, if the result was not zero then the red lamp comes on.

The chip is not limited to simple problems, if the diameter of a circle is 5" is its area 24.674126 sq. ins? Try 5 + 2 x 3.1416 x 3.1416 = 24.674126 T.

This is not a belated April fool article, the device really does exist. The chip is soon to be available from National's distributors and the calculator may be in the shops soon. The rumour that the MKII will be without the green and red lamps and will dispense Smarties for correct and 1kV shocks for wrong is believed to be unfounded.

news digest

ELECTRONICS FOR AUTOMATIC TIPPLER WEIGHBRIDGE

A new tippler in action at the coke crushing plant at BSC Appleby-Frodingham. The integral weighbridge is an electronic (load-cell) machine supplied by Henry Pooley & Son. Of 50 tonnes capacity, it works on a fully automatic cycle interlocked with the tippler to ensure that tippling cannot take place until after gross weighing and that another wagon cannot be hauled onto the weigh platform while the preceding wagon is being weighed. Gross and tare weights are indicated digitally and printed out by tabulator together with a calculator net weight and wagon number.

BRITISH-MADE RECORDING HEADS

An agreement between Wolfgang Bogen GmbH of West Germany and Magnetic Components Limited (a UK company) will result in the development and production of a new range of quality cassette and cartridge heads, to be marketed under the trade name Bogen-MCL. At present Bogen make high quality expensive heads, whereas MCL go for high volume, low price products. The new

ALUMINIUM WAVEGUIDE

Siemens are now developing semirigid aluminium waveguides which can be bent and twisted and exhibit a very low reflection coefficient and low attentuation. Siemens expect these to be used in radio relay routes. Radio relay systems operate in the microwave range above 3 GHz. Repeater section lengths of about 5 km are normal for these frequencies. Previously the laying of the connecting lines between radio equipment and antenna has presented difficulties in adapting the rigid rectangular waveguide to meet local conditions. heads are to be midway between the present products, and the companies hope for a large slice of the Japanese dominated market. At least 90% of the production will be based in Penryn, Cornwall, where wage rates are more economical than in West Germany (thought to be only one third of the German rates).

An annual growth rate of 20% is expected in the cassette market and Bogen-MCL are aiming to take 5% of the world market and 50% or more in Europe.

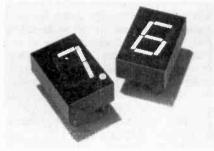
TELDEC VIDEO PLAYER ON SALE AT LAST

Telefunken-Teldec's video-disc playback system is finally on sale.

At present distribution is limited to West Germany, but the unit is now readily available there through most audio shops and major department stores. Cost is approximately £250. The programme discs sell for around £1.50. Each disc carries a 10 minute colour programme.

At present some 50 titles are available but about 400 titles should however be available by the end of the year.

Continued from page 8.


IC REMOVER

A new automated de-soldering instrument specifically designed for the removal of DLL ICs from printed circuit boards has been introduced by Adcola Products Ltd. Known as the Removic, the unit de-solders and removes 14 and 16 pin IC's in seconds from both through-hole-plated and standard PCBs.

The unit consists of an operating 'gun' supplied through a variable temperature control box. The 'gun' is designed for ease of operation and precise positioning control. Twin spacers on either side of the pre-tinned heating blocks protect the PCB from any chance of direct contact and prevent discolouration or delamination.

In operation the 'gun' is placed over the IC to be removed from the PCB and an activator handle is pressed with the heel of the hand which positions the extractor claws and brings the heater blocks into contact with the IC leads. As the solder melts, the IC is extracted by hand pressure. The price is £138. Further details of the Removic may be obtained from Adcola Products Ltd., Adcola House, Gauden Road, London SW4.

MOS-INTERFACING LED

A new, common cathode LED display interfaces directly with MOS clock circuits. The price of the Hewlett-Packard Model 5082-7760 is £2.60 from Celdis Ltd., 37-39 Loverock Road, Reading, Berkshire RG3 1ED. or from GDS Sales Ltd., Michaelmas House, Salt Hill, Bath Road, Slough, Berkshire SL1 3UZ.

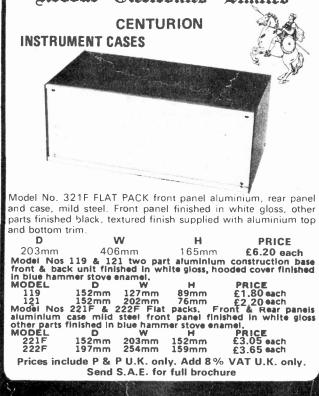
CLOCK KITS a MK/704-4 MK/704-6 MK50250N AY-5-1224	4 digit Alarm Clock Kit (complete less case, transformer, switches, L	£14.95 S) £16.85 £5.60 £4.75
DISPLAYS DL704 (Econ) DL707 DL747 FND5000 FND500 NSN33 MAN3M SP352 5 LT01	 .3" Red Common Cathode LED display .3" Red Common Anode LED display .6" Red Common Anode LED display .25" Red Fairchild Superdigit C.C. .5" Red Fairchild C.C. .12" Red 3 digits in DIP C.C. .12" Red Common Cathode LED display .55" Orange Beckman 2 digit module .55" Green 4 dig Phos-diode Clock 	95p £1.70 £2.45 £1.15 £2.20 £1.65 48p £4.00 £5.80
SUPPORTING 32kHz 50 cps 75492 75491 7447 7448 8704-6 MK-PCB	ICs, PCBs, HARDWARE, etc. High accuracy/stability crystal from ITT 32 kHz Xtal plus CMOS to provide 50 cps Hex Digit Driver IC—MOS to C. Cathode LED Quad Seg Driver IC—MOS to C. Cathode LEI BCD to 7 seg decoder driver (C. Anode) BCD to 7 seg decoder driver (C. Cathode) PCB for clock display with 4 or 6 DL704 PCBs, IC socket, cable, stand-offs for MK50250N with common Cathode displays	£3.60 £5.84 £1.02 81p £1.05 85p £1.35 £2.45
 Low cost sockets Nylon support sa 10w-C 10-way 	for TTL, CMOS, displays, ICs. 1000+ 40 imples with any pin order 3000+ 35 Colour Coded Flat Cable 60p pe	0p/100 0p/100 op/100 r metre r 50cm
MODULES LG110K FX1100 SINTEL SOUND ET13600. All Se	Logarithmic Voltage Controlled Oscillator Low Frequency Function Generator LAB K1T· LG110K plus FX1100 emiconductors are being stocked for this proje	£5.25 £4.95 £9.95
write. Data, and circui available separate	ICs, etc., available — phone (9.30 a.m7 p its where appropriate, supplied with all or ely (send sae). /AT at 8% — 10p P&P on orders under £2	
Arbour	Electronics Limited	
 	CENTURION	à

L

CMOS From the 2 leading manufacturers only, RCA and Motorola: At the new manufacturers' prices

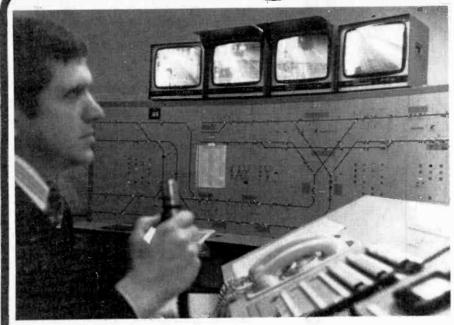
瘛				
	Device	£	Description	Man
볞	CD4000AE	0.21	Dual 3-Input NOR gate plus inverter	RCA
	CD4001AE	0.21	Quad 2-Input NOR gate	RCA
B	CD4002AE	0.21	Dual 4-Input NOR gate	RCA
	CD4006AE	1.47	18-Stage Static Shift Register	RCA
	CD4007AE	0.21	Dual Complementary Pair Plus Inverter	RCA
	CD4011AE	0.21	Quad 2-Input NAND gate	RCA
	CD4012AE	0.21	Dual 4-Input NAND gate	RCA
	CD4013AE	0.63	Dual "D" Flip-Flop with Set-Reset	RCA
	CD4016AE	0.62	Quad Bilateral Switch	RCA
	CD4017AE	1.63		RCA
	CD4019AE	0.73		RCA
46	CD4020AE		14-Stage Binary Ripple Counter	RCA
	CD4022AE	1.69	Divide-by-8 Counter/Divider	RCA
	CD4023AE	0.21	Triple 3-Input NAND Gate	RCA
	CD4025AE	0.21	Triple 3-Input NOR Gate	RCA
	CD4027AE	0.91		RCA
ł.	CD4029AE	1.96		RCA
Ξġ	CD4030AE		Quad Exclusive-Or Gate	RCA
	CD4047AE	1.37	Monostable/Astable Multivibrator	RCA
	CD4049AE	0.62		RCA
	CD4050AE	0.62		RCA
5	CD4068BE	0.26	8-Input NAND Gate	RCA
猿	CD4069BE	0.26	Hex Inverter	RCA
	CD4071BE		Quad 2-Input OR Gate	RCA
	CD4073BE	0.26	Triple 3-Input AND Gate	RCA
	MC14501CP	0.32	Triple Gate	MOT
	MC14510CP	1.77		MOT
	MC14511CP	1.95	BCD to 7 Seg Latch / Decoder / Driver	MOT
	MC14553CP	4.07	3-Digit Counter	MOT

We also have smaller stocks of most of the rest of the CMOS range - sae or phone for stock/price list.


RCA 1975 CMOS Databook (645 pages) £2.30 (No VAT) plus 37p P&P. Pin-outs, Data, CMOS use, Application notes and circuits.

ADD VAT at 8% - 10p P&P on orders under £2

SINTEL


53a Aston Street, Oxford Tel. 0865 43203

ARBOUR ELECTRONICS LIMITED Unit 13 East Hanningfield Industrial Estate, Nr. Chelmsford, Essex. CM3 5BG, Tel: Chelmsford (0245) 400700. Sheet metal work wiring assembly service available.

-news digest

COMPUTER ON THE UNDERGROUND

The world's first computer-controlled train guidance system for an underground train was recently placed in service for the Cologne Public Transport Dept. The system, planned and supplied by Siemens, is built around two Type 320 process-control computers and controls all underground railway operations in an area extending to seven stations. With four radially converging lines, the Ebertsplatz underground station is a particularly important junction; up to 120 trains per hour pass through it.

NEW CONTROL SYSTEM FOR SLR CAMERAS

Electronic shutter speed and exposure controls can now be built into single lens reflex cameras without mechanically modifying the camera bodies or lenses.

A new control system, developed by Matsushita Electrical Industrial Corporation, measures the light at a preset aperture (in less than two

RADIOPAGING - LONDON 1976

The GPO will operate a radiopaging service over 900 square miles of the London area. The boundaries will be Potters Bar, in the north, Caterham, in the south, Heathrow, in the west, and Dartford, in the east. Twenty thousand users will be catered for initially, with a maximum capacity of a hundred thousand.

For the last two years an experimental service has been running in the

CALCULATOR CHIPS NOW LESS THAN £1

Calculator chips prices continue their inexorable fall in price. Latest prices in the USA for four function eight digit MOS chips are now as low as 40p milliseconds) and then sets exposure time accordingly. Control range varies from 0.0005 seconds to four seconds – dependent upon lens aperture and film speed.

Prior to the Matsushita development, it was necessary to have a light measuring device accommodated behind the main lens – calculating light intensity with the lens held wide open.

Thames Valley. Now the GPO is looking at the possibility of a national paging service.

A call to a pager can be made from any telephone by dialling a tendigit number. The first four digits are a common STD code to route the call to the computer terminal equipment. The GPO is thinking of having some pagers with two tones — so the user will know which of two contact numbers to phone.

to 80p. Even the complex scientific calculator chips are down to £6 or less compared to £20 this time last year.

MOS Technology Corporation for instance are selling a single chip scientific unit for £7.

Continued from page 66.

OPTICAL AUTO-PILOT

Unlike electrical signals, light pulses don't get scrambled by static caused by lightning or other electrical interference. The Hughes Aircraft Corp., has developed a guidance system using optical waveguides to carry light pulses.

In conventional automatic pilot systems, each aspect of the plane's flight is constantly monitored by sensors which send continuous streams of information to a main flight control computer.

Switching to the optical waveguide system means going from continuous monitoring to systematic sampling. The computer calls up each sensor at regular intervals – from 25 to 400 times per second.

Pilots involved in tests said they noticed no difference between standard control systems and the new one operating at sampling rates of 100 per second or faster. Sampling rates of less than 100 per second resulted in flight corrections that were noticeable by the crew. This is undesirable because it indicates that unnecessary stresses are being placed on the aircraft.

The waveguides were supplied by the Corning Glass Works, NY, USA.

VIDEOPLAYER USES STANDARD AUDIO CASSETTE

A video-tape system based on the standard Philips-type audio tape cassette has been developed by Japan's Matsushita Electric Corporation.

The system is currently being demonstrated in Tokyo using apparently standard Memorex cassettes.

At present the system appears to be designed for play-back only, competing with videodisc systems such as Teldec, Philips/MCA and RCA.

No further details of the Matsushita system were available at the time of closing for press.

A further videoplayer development is that BASF are believed to be developing a video version of their Unisette audio cassette. The latest version uses the standard Unisette cassette housing (which accepts ¼" width chromium dioxide tape).

ERRATA

Car Alarm, March ETI, page 24. The circuit diagram does not show pin 4 connected to the positive supply. The pcb, however, is correct.

Some readers have had problems with the alarm triggering too easily. Increasing the value of R4 should cure this (up to 2M if necessary).

With some relays the IC will oscillate at RF unless pin 3 is decoupled with a capacitor of 6 to 10μ F.

Join the Digital Revolution **Teach yourself the** Computer latest techniques of digital electronics Self-instructional Course C P Gane MA (Cantab) A W Unwin BA (Cantab

NUMBER OF STREET

Computers and calculators are only the beginning of the digital revolution in electronics. Telephones, wristwatches, TV, automobile instrumentation - these will be just some of the application areas in the next few years.

Are you prepared to cope with these developments?

This four volume course - each volume measuring $11\frac{3}{4}$ " x $8\frac{1}{4}$ " and containing 40 pages – guides you step-by-step with hundreds of diagrams and questions through number systems, Boolean algebra, truth tables, de Morgan's theorem, flipflops, registers, counters and adders. All from first principles. The only initial ability assumed is simple arithmetic.

At the end of the course you will have broadened your horizons, career prospects and your fundamental understanding of the changing world around you.

.95

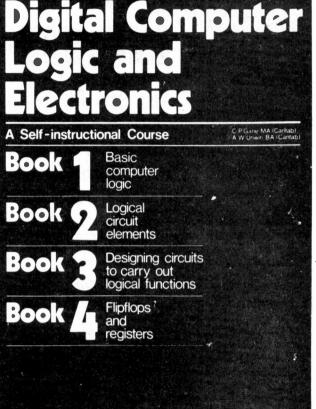
Also available – a more advanced course in 6 volumes:

- 1. Computer Arithmetic
- 2. Boolean Logic
- 3. Arithmetic Circuits
- 4. Memories & Counters
- 5. Calculator Design
- 6. Computer Architecture

Offer.Order this together with Digital Computer Logic & Electronics for the bargain plus 50p. price of £9.25, plus 50p p&p.

Design of Digital Systems contains over twice as much information in each volume as the simpler course. Digital Computer Logic and Electronics, All the information in the simpler course is covered as part of the first volumes of Design of Digital Systems which, as you can see from its contents, also covers many more advanced topics.

p&p

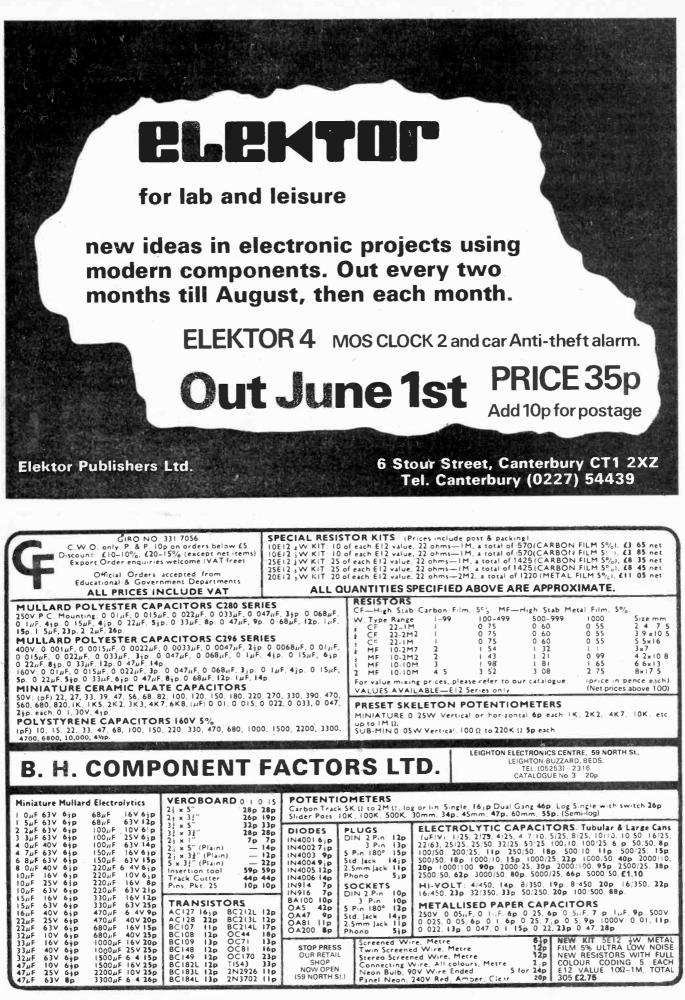

Designer Manager Enthusiast Scientist Engineer Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being guicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee - no risk to you

If you are not entirely satisfied with Digital Computer Logic and Electronics or Design of Digital Systems, you may return them to us and your money will be refunded in full, no questions asked.

ELECTRONICS TODAY INTERNATIONAL-JULY 1975


plus 50p packing and surface mail anywhere in the world.

Quantity discounts available on request.

Payment may be made in foreign currencies.

VAT zero rated.

To: Cambridge Learning Enterprises, FREEPOST, St. Ives, Huntingdon, Ca PE17 4BR.	mbs.
*Please send me set(s) of Digital Computer & Electronics at £4.45 each, p&p included *or set(s) of Design of Digital Systems at each, p&p included *or combined set(s) at £9.75 each, p&p inc	£6.45 ,
Name	
Address	
'delete as applicable No need to use a stamp — just print FREEPOST on the en	velope.

70

TTL 74 SERIES	C-MOS LOGIC	FIXED VOLTAGE REGULATORS	MAIL ORDER ONLY	Govt., Colleges, etc.	
TTL 74 SERIES 7400 13p 7470 27p 7401 14p 7472 25p 7402 14p 7473 30p 7403 16p 7474 30p 7404 16p 7476 30p 7405 16p 7476 30p 7406 38p 7480 50p 7406 33p 7483 90p 7413 32p 7483 90p 7414 60p, 7485 120p 7420 14p 7483 90p 7413 32p 7486 30p 7420 14p 7485 120p 7420 14p 7483 90p 7432 25p 7496 30p 7432 25p 7493 40p 7432 25p 7493 40p 7432 25p 7495 78p 7440 16p 74107 30p <	C-MOS LOGIC I.Cs NEW LOW PRICES CD4000AE 19p CD4002AE 19p CD4002AE 19p CD4002AE 19p CD4002AE 19p CD4012AE 19p CD4012AE 19p CD4012AE 19p CD4013AE 55p CD4017AE 120p CD4017AE 120p CD4017AE 19p CD402AE 19p CD404AE 202p	PLASTIC - 3 Terminals 1 Amp + Ve -Ve 200mA (T05) 12V 7805 140p 7905 250p 7812 30p 12V 7812 140p 7912 250p 7812 30p 15V 7815 140p 7912 250p 7815 30p 15V 7815 140p - - - - 24V 7824 140p - - - - VARIABLE VOLTAGE REGULATORS LM305 T05 120p Data sheets on all regulators at 10p each + s.a.e. TBA625B T039 130p Sa.e. Sa.e. TIL 209 0CPT0-ELECTRONICS LEDS DS 77 40p Green / Yell 35p Soven Segment Reed Outs 3015F Filament DL 120p MAN-3M All LD 127 in PCB 120p 120p MAN-3M All LD 127 in DL 130p 120p MAN-3M All LD 127 in DL 130p 130p	AC128 11p BF115 22p C AC127 11p BF167 23p C AC128 11p BF177 25p C AC128 11p BF177 25p C AC141 11p BF177 25p C AC142 11p BF177 25p C AC142 15p BF178 23p C AC176 11p BF178 23p C AC176 11p BF178 23p C AC187 12p BF180 33p C AD149 45p BF182 33p C AD162 35p BF185 22p 1 AD162 36p BF185 22p 1 AF113 3p BF195 10p 2 AF114 3p BF195 10p 2 AF115 3p BF195 3p 3p AF113	Orders Welcome STORS 2C71 11p 2N3442 140p 2C72 11p 2N3702/3 11p 2C73 50p 2N3702/3 11p 2C74 30p 2N3704/5 11p 2C81 12p 2N3705/6 10p 2C82 12p 2N3705/6 10p 0C84 18p 2N3708/9 11p 0C201 50p 2N3708/9 9p 1P41A 65p 2N3771 180p 1P4255 70p 2N3305/6 10p 1P3255 70p 2N3305/6 15p NN068 30p 2N4305/6 13p NN0708 18p 2N4058 13p NN132 18p 2N4348 160p NN132 18p 2N4348 160p	DIODES SIGNAL* BAX13 5p BAX16 6p OA47 7p OA70 9p OA70 9p OA85 10p OA85 10p OA85 7p OA202 10p OA202 10p OA202 10p INS14 4p RECTIFIER BY100 15p BY213 55p IN4001 5p IN4007 7p
OP. AMPS 301 8 Pin DiL 36p 709 8/14 Pin DiL 28p 710 14 Pin DiL 35p 741 8/14 Pin DiL 25p 747 14 Pin DiL 25p 748 8 Pin DiL 38p	CD4055AE 196p CD4055AE 196p CD4060AE 229p CD4071AE 27p CD4081AE 27p CD4093AE 144p CD4510AE 180p CD4516AE 180p CD4516AE 145p CD4516AE 120p	TRIACS 100v 400v 500v OTHER 3 Amp 85p 99p 120p 40430 99p 6 Amp 88p 120p 150p 40486 99p 10 Amp 109p 154p 165p 40669 95p 16 Amp 145p 180p 200p 40669 95p BR100 Silicon Bi-Directional Trigger Device for use in Triac and Thristor Trigger Circuits 21p	AF239 38p BFX88 24p BC107 9p BY50 16p 3 BC108 9p BY51 16p 3 BC109 9p BY52 16p 3 BC109 0p BY52 16p 3 BC115 20p BR93 34p 3 BC147 7p BSX19 16p 3 BC149 7p BSX20 16p 3 BC149 6p BSX21 22p 34p BC149 6p BSX20 16p BC149 6p BSX21 22p BC157 10p MJE340 45p BC158 8p MJE370 72p	2N1302/3 40361 40p 17p 40362 45p 1404 45p 40409 55p 21p 40410 55p 40411 225p 21p 4054 4009 55p 20p 80p 21p 40410 25p 40595 95p 20p 80p 80p	ZENER 3.3V to 33V 400mW 9p 1.3W 18p OTHER BA145 15p BA145 13p TUNNEL AEY11 50p
LINEAR I.C.S CA3046 MC1307 Stereo Preamp 14 PIN D MC1310 Colless Stereo Decoder 1 MC1312 4 channel SQ Decoder 14 MC1458 Dual 02. Amp. Int. Comp MFC8040 Electronic Attentuator MFC8070 Zero Voltage Switch 	IL	SCR - THYRISTORS OTHER SCRs 50V 100V 400V 600V 1 Amp 40p 42p 52p 70p 3 Amp 43p 49p 75p - 3/4/00V 45p 7 Amp - 80p 84p - - 3/4/00V 45p 7 Amp - 80p 98p - MCR101 TO-92 0.5A/15V 25p 16 Amp - 82p 98p - 0.5A/15V 25p 8RIDGE RECTIFIERS 50V 100V 400V 600V 2N3525 TO66 2N444 Plastic 8A/60V 185p 2N5060 T092 2N5060 T092 2N5060 T092 2N5062 T092 2N5062 T092 2N5062 T092 2N5064 200V485p	BC169C 12p MJE520 68p BC171 12p MJE521 80p BC171 12p MJE5251 80p BC171 12p MJE2555 85p BC178 17p MJE3055 65p BC179 18p MPSA05 32p BC181 10p MPSA06 30p BC183 10p MPSA06 32p BC184 11p MPSU66 22p BC184 10p MPSA06 40p BC212 11p MPSU56 78p BC213 10p OC28 58p BCY70 18p OC35 48p BCY71 12p OC36 58p BD124 65p OC42 15p BD132 40p OC45 11p	2N2218 21p MPF104 30p NN2219 20p MPF105 30p NN220 19p 2N3819 22p NN2221 20p 2N3823 50p NN2222 20p 2N3823 50p NN2222 20p 2N5458 30p NN2305 14p 2N5458 30p NN2904 20p 2N5458 30p NN2905 18p MOBFET 75p NN2906 20p 3N140 85p 2N29260 3p 1140 75p 2N29267 40603 58p 2N053 15g 2N3053 15p 11543 26p 2N3054 40p 2N2160 80p 2N3055 50p 2N2160 80p 2N3055 50p 2N2160 80p 2N3055 50p 2N2160 30p 2N341 30p 2N347 30p	Varicap B8105 25p Low Noise ZU 75p LED TiL209 16p INSULATOR Mics + 2 Bushes-for T03 & T066
TBA570 AM / FM Radio Receiver TBA800 5 Watt Audio Amp TBA810 7 Watt Audio Amp TBA812 2 Watt Audio Amp ZN414 TRF Radio Receiver T011 ICL8038 VCO Function Gen 14 P Data sheets on above I.C s 1	16 PIN DIL	8 pin 12p, 14 pin 13p, 16 pin 14p CA3130 8 pin DIL COS-MOS OP. AMP With MOSFET input Ideal for single supply applications Date 20p + s.a.e.	Minimum Order £2 P&P 20p For VAT please see page 7 of this issue for details	FECHNOMAT 54 SANDHURST ROAD, LC Tel: 01-204 433	NDON, NW9
T		WIN 58/0	DSOR, BERKS. 50 GROVE RD; c.w.o. add vat to all pri	MONEY BACK IF NOT S LARGE STOCKS, LOW P ALL BRAND NEW TOP C SPEC DEVICES, CALLEN CATALOGUE/LIST FREE BARCLAYCARD & ACCES ICES IN U.K.P&P 15p, EX	RICES, HADE FULL S WELCOME, SEND SAE, S x POST,
LEISTON ON THE CLIP GREENE CANADA CONTRACT OF CLIP CALL CALLED STATE OF CLIP CALLED STATE CALLED STATE OF CLIP CALLED STATE STATE OF CLIP CALLED STATE OF CLIP CALLED STATE STATE OF CLIP CALLED STATE OF CLIP STATE STATE OF CLIP STATE OF CLIP STATE OF CLIP STATE STATE OF CLIP STATE OF		CIRCUITS Price each Act27 & 2000 (2000) Price Price Act20 (2000) Price Pr	128 16p $T3S,BUSH SET10p$ 188 19p $T3S,BUSH SET10p$ 188 19p $T1P,41$ 70p 139 $T1P,42$ 88p 10p $T1P,3055$ 50p 10p $T1P,3055$ 50p 10p $T1P,3055$ 55p 10p $T1P,3055$ 55p 10p $T1P,3055$ 55p 12p $TX109&301$ 13p 12p $TX109&301$ 14p 144&10 $X109$ 85p 14p 144&10 $X109$ 8014 4p 144&10 $X109$ 805 1150 23p 2X29264 8.5 20p 23p 2X3904 8.5 20p 23p 2X3904 8.5 10p 215p 2X3704 8.5 10p 216p 2X3706 8.9 9p 216p 2X3706 8.9 10p 32 69p 2X3706 8.9 10p 32 69p 2X3706	COPPER CLAD VEROBOARE 24"x5" 29p 24x3 " 26p 31"x5" 31p 31x 17" (1 DIL IC'S BOARDS 5x44" 24 way edge connector 36 way 90p. PLAIN 31" FACE CUTTER 45p.PEC E DOM TOP DOM PACE CUTTER 45p.PEC E DOM TOP DOM PECN VESS ETCH PA DECON VESS EVENTIONE CERANIC 22pf to 0.14 POTENTIOMETERS (PDIS DIN PLUGS ALL 12P. SI ALL CASES ABB/ABT 36 TEXAS GOLD LOW PROFILE ea 8, 14, 16 PIN 13p SOLDERCON STRIPS DOL SECON VESS EVENTIONES	.3,x3;"31p, .50 c1.50 60p, x17" c1. TCH PAK 50p KIT c1.69 KIT c1.69 KIT c1.69 KIT c1.69 KIT c1.69 cKIT c1.69 c

/

ELECTRONICS TODAY INTERNATIONAL-JULY 1975

.

71

,

TTL AT LOWER PRICES! (Fast delivery. All prices include VAT)

	(,				.,
	1/24.	25/99		1/24	25/99
7400	14p	13p	7473	33p	31p
7401	14p	13p	7474	330	31p
7402	14p	13p	7475	45p	44p
7403	14p	13p	7476	34p	31p
7404	16p	15p	7480	47p	42p
7405	16p	15p	7483	89p	80p
7408	16p	15p	7486	30p	26p
7410	14p	13p	7489	£2.99	£2.80
7412	16p	15p	7490	46p	44p
7413	32p	31p	7491 -	74p	69p
7417	30p	29p	7492	48p	45p
7420	14p	13p	7493	46p	44p
7427	27p	25p	7495	61p	58p
7430	14p	13p	7496	77p	69p
7432	27p	25p	74107	34p	31p
7437	29p	26p	74121	34p	31p
7440	14p	13p	74123	65p	61p
7442	69p	63p	74141	71p	69p
7445	89p	82p	74145	86p	78p
7447	81p	79p	74151	91p	88p
7450	14p	13p	74154	£1.60	£1.55
7451	14p	13p	74153	76p	72p
7453	14p	13p	74157	87p	79p
7454	14p	13p		99p	90p
7460	14p	13p	74175	99p	90p
7472	28p	25p	741B1	£2.09	£1.95
		1N4001 1N4004			
		-	- ·	•	
		l spec. b			
		xed for 2			
		rders und			
and 2		on TTL in			prices.
		C. JONE			
46	Burstella	Mail Or	es, Hunt der only)	s. PE17	4XX

4 x 741 (8 DIL) £1

13 x BC108 equiv. in plastic case (BC148) £1 30 x 1N4148 £1. Full spec. devices. Prices include 25% VAT P & P 20p on orders under £3.

SCOTT ELECTRONICS (Dept. ETI)

P.O. Box 42, Wembley, Middx. HELP—please. urgently need the very first issue (April 1972) of ETI. Your price + expenses paid. TFCD, 1064A London Rd., Thornton Heath, Surrey. (01-689 471).

TRIACS (Plastic) 10A/400V 67p (3+ 64p) DIAC 19p Plastic Frontplate for Light-dimmer 22p. Add VAT. P&P 15p. CWO. T.K. ELECTRONICS 106 Studley Grange Road, LONDON, W7 2LX.

VALVES RADIO TV TRANSMITTING 1930 to 1975 many obsolete, 200 types stocked. List 20p. We wish to purchase new and boxed valves. Cox Radio Sussex Ltd., The Parade, East Wittering, Sussex. Tel: West Wittering 2023.

INFLATION? 7 watts 200 watts 7 watt ICTBA 810AS with P.C.B. + Data £1.45 (15p) 7 watt IC Kit. P.C.B. and all components £2.25 (25p) 7+7 watt IC Kit and Power Supply Kit £6.50 (40p) 7 watt IC Ready Built Modules £2.50 each (25p)15 watt IC BHA 0002 with Data Two for £3.99 (25p) Audio-Sound Systems or Hi-Fi Amplifier Transistor + Component Kits with Juicy 1.3% Heatsinks. 50/70 watts £6.25 (35p) 75/100 watts £7.50 (40p) 150/200 watts £9.95 (55p) Post in brackets send to: WATSON C/o 131 Buxton Street, London, E.1

TAMAR ELECTRONICS LOW PRICES **BARGAIN UNTESTED PACKS:**

80 Transistors 54p, 200 Diodes 54p, 50 400mW zeners 54p, 40 2W zeners 54p, 50 mixed IC's 54p, 200 mixed semiconductors including SCR's-IC's-zeners-transisors, etc.

54p. SPECIAL OFFER 1

One each of the above six packs £2.90

40 1N914 diodes 54p, 40 0A200 type diodes 54p, 20 unijunction transistors, 54p, 20 1N4000 series diodes 54p, 40 Silicon Alloy transistors 54p.

SPÉCIAL OFFER 2

One each of the above five packs for £2.40

20 polyester capacitors 40p, 30 disc ceramics 30p, 25 electrolytics 54p, 8 branded AC128 transistors 54p.

SPECIAL OFFER 3 One each of the above four packs for £1.60

Sibs weight of computer panels £1.50, DL704 seven segment LED displays, with data 90p, small red LED's 13p, Five mixed LED's 60p, 741 op-amp (8 DIL) 28p each or four for £1, 2N3819E Fet's 25p, MFC6040 IC £1.05, 1lb bag of ferric chloride 80p, 1000uF 30v electrolytics 25p, 2000uF electrolytics 25p, BC107, 8 & 9 transistors 10p each 10p each.

All prices include VAT: Please enclose 15p p&p per order. For latest list send SAE or 10p stamp.

TAMAR ELECTRONICS P.O. Box 17, Plymouth, Devon

PL1 1YJ

LED	3	0.12	5	0.2	-	INFRA	9ED
	RED	15p		19p)	550µW Axial le	ad 480
with Data	GRE	27p		33 p)	1-5mW	
clip 1p	YEL	27p		33)	TO46 £1	• 10
OPTO-ISOLA					SOV	100V	400V
IL74 1-5					25p	27p	46p
4350 2-5					27p	35p	50p
Data free	with all	OPTO	10)5	2A 400V	60p
		2N2926(G)	12p	V		REGS.
AC127/8 AF117		2N3053		15p 41p		05 Plasti	
BC107		2N3055 2N3702/3	37.4		1-	5A	£1.50
BC108		TIS43	3/ 4	25p		29 Plast	
BC109C		MPF 102		40p	60	0mA	£1+40
BC147/8/9/		2N3819		25p	-		
BC157/8.9/	11p	2N3823		30p	B	AIDGE R	ECTS.
BC167/8/9	11p				24	50V	30p
BC169C	12p	IN914		3p		100V	36p
BC177/8/9/		IN4001		5p		200V	41p
BC182 3 4/ BC212/3/4L		IN4002		6p	24	400V	48p
BCY70	48-1	IN 4004/5		7p			-
BCY71		IN4148		4p 6p		ENERS 7-33V	BZY88 9p
BCY72	40-1	OA47 OA81		7p	12.	1-334	*12
BFY50/51		OA91		50		E555V	60p
BFX29	30p	0A95		5p		414	£1.10
BFX84	24p	OA200		6p		00	16p
BSX19	16p	OA202		7p		to Pen	70p
BSX20	16p				-		
OC71 2N706	10p					I.L. SOC	
2N1711	200	OP. AM	pe			pin	12p
2N2904'6	16p	709 all	- 0	25p		-pin -pin	13p 14p
2N2904/6A	18p	741 8-Di	n	290			ushes
2N2926(R)	70	748 D.I.	L.	36p		03 TO	
PRICES		ISIVE	+ 1	ISn P		(1st cl	(928
			÷.,				
ISLAND	DEAIC	ES, P.O	. 8	iox 11, i	ма	rgate, K	ent

NATIONAL MM5314 digital clock I.C. f3.78, 0.3" common anode displays, pin compatible with DL707, etc. f1 each, 6 for f5. 5v plastic volfage regulators f1.99; LM380 f1.22, LM381 f1.85, NA741 31p, LM301A 54p, BC108 10p, IN4148 4p, IN914 5p. Prices include VAT at current rates — postage free. VAT at current rates — postage free. S.a.e. for lists. Mail order only to: G. Newman, 12 Francis Avenue, St. Albans, AL3 6BX.

FOR FURTHER INFORMATION PHONE: BOB EVANS 01-730-8282

PRECISION POLYC		E CAPAC	ITORS
440¥ AC $(\pm 10\%)$ 0.1 μ F (1 1/8*15/8") 50 0.22 μ F (1 3/8*15/8") 52 0.47 μ F (1 3/8*15/8") 52 0.47 μ F (1 3/8*15/8") 52 0.5 μ F (1 3/8*15/8") 52 0.5 μ F (1 3/8*15/8") 53 1.0 μ F (2*15") 51 0.5 μ F (2*15") 51 0.5 μ F (2*15") 51 0.5 μ F (2*15") 51 0.5 μ F (2*1	1.0 μF 2.2 μF 4.7 μF 4.7 μF 5.8 μF 10.0 μF 15.0 μF 22.0 μF ACITORS - 2, 4.7, 68 OV or 25V; 2 or 10V; 47	$\pm 1\% \pm 2$ 56p 44 66p 51 80p 62 £1.30 £1. £2.00 £1. £2.00 £1. £2.75 £2. £3.50 £2. - Values a $U\mu F$ at 15V $22.0\mu F$ at 3 $0\mu F$ at 3 $0\mu F$ at 3	Sp 46p 5p 55p 05 85p 29 £1.09 60 £1.40 15 £1.90 90 £2.55 vailable: /25V or 60V/10V or 6V/;
BC183/183L 11p BF19 BC184/184L 12p AF17 POPULAR DIODES: All I 6p; 8 for 45p; 18 for 90 90p, 1S44 5p; 11 for 5 6 for 27p; 12 for 48p 400mW/ Tol + 56 m 55	prand new år p; 1N916 8 0p; 24 for £ . LOW PRIC	p 2N305 p 2N370 nd marked p; 6 for 45 1.00. 1N4 E ZENER	2/4 11p : 1N914 p; 14 for 148 5p; DIODES
220Ω, 470Ω, 680Ωm 15k, 22k, 47k, 68k, 10	y, from 2.20 any one valu al Pack: 1 30 resistors 1.5A. Brand P (4/26p). CTIFIERS: 2 55 SUB-M	200 at 40° (2 to 2.2M ie; 70p for 0 of eac 5) £5.00 d new wir 400 P. 21/2A 200 INIATURE	C. All at 100 of h value SILICON e ended I.VBP V-40p. VERTL
5M. Please add 15p Post below £5.00. All e Sae/Airmail. Please a SAE for lists of a Wholesale price list companies. MARC Dept. T6, The Old Sci Saloo, Tel. WIXHALL	and Packi xport orde dd 25% VA dditional ts availabl COTRADIN hool, Edstas	ing on all ors add NT to orde ex-stock le to bo G ton, Near V STD (094	orders cost of rs.Send items. na fide VEM.
PLEASE MEN REPL ADVER	YING	ТО	
4 FN	D U C T S ELEMENT A STEREO VAT & 350	0 + VAT(10 EL + VAT (EMENT NLY 2.00 3 35p P/P EMENT 1.75 3 35p P/P

SAVE MONEY

IT'S EASY ''' WHEN YOU FIT YOUR OWN AERIAL. NEW DESIGN SUPERIOR QUALITY FOR COLOUR BLACK & WHITE & FM STEREO INCLUDES MOUNTING BRACKET AND COMPLETE FITTING INSTRUCTIONS AND ADVICE ON OBTAINING SUPERB RECEPTION. Zener Diodes 3.3 33V. 400mW - 9p 1W - 15p

BC147 9p BC148 9p 8C149 10p BFY51 15p 2N3055 45p

12p 12p 9p 9p 10p

AC127

BC107 BC108 BC113

BC109 BZYB8C15

_ __ __ __ __ __

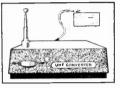
E.T.I. GRAPHIC EOUALIZER 10p 9p

ADD VAT + 10p IN THE E P&P UN URDENS BELOW ES

MAIL ORDER ONLY C.W.O. AXIAL PRODUCTS LTD., DEPT. 16 23 AVERY AVENUE HIGH WYCOMBE, BUCKS.

1N4148 4p 1N4004 6p BZYB8C5V6 9p

741 op amp 28p


37p 20p

LM301 L.E.D. inc. clip

The smallest transmitter available in the U.K. Only 2in. x 1in. Fits in the palm of your hand. Can pick up and transmit voices and minute sound. Range 500 yards at least. Can be worn round the neck, held in the hand or operated in a drawer Works almost anywhere. Uses PP3 battery (very long life). Simply switch on, no other connectors. Completely self contained. Transistorised, printed circuit. Used the world over. Many applications. Fully guaranteed. Latest model now despatched.

Transmitter £15.50. If required suitable radio for receiving transmitter £14.25.

UHF - VHF CONVERTER

As most high level transmissions are now moving to UHF this unit enables their reception without the necessity of an expensive receiver.

The unit will receive frequencies in the range 420-470 MHz or to customers' requirements and allows any VHF radio to receive UHF transmissions.

To operate: Connect crocodile clip to any VHF radio aerial, in the down position, switch connector on, tune VHF radio to 100-108 MH on dial and receive UHF communications band.

The converter is of rigid metal construction and housed in a strong plastic case. The circuitry uses tuned lines in oscillator and RF circuits facilities are made for peaking I.F. output between 100-108 Mc/s. Power supply is from an internal 9-volt battery.

Unit dimensions: App. 6" x 3" x 1"; aerial 6".

An interesting feature is that the converter can be used to feed several VHF radios enabling a number of UHF channels to be received simultaneously.

> CONVERTER, ready to use – £25.50 Mail order and C.O.D. welcome. P&P 45p MULHALL ELECTRONICS (ET1)

Ardglass, Co. Down, UK 8730 7SF. Tel. 039 684 461 Licence not available in the U.K.

Greenbank Electronics

FREE!

Data and circuit diagram for Digital Clock Chip AY-5-1224, Digital Alarm Clock Chip MK 50253, also data sheet for DL-747, DL-750 LED displays. (A stamped addressed envelope with enquiries would be a great help to us, but is not essential.)

CLOCK CHIPS

AY-5-1224, 4 digit, 12/24 hr., 50/60 Hz, TTL compatible, zero reset, easy display interface, 16 pin package. £3.66

MK 50253, 4/6 digit alarm clock chip, 50 Hz, 12/24 hr., AM/PM and activity indication, 'snooze' feature, intensity control, simple time setting, 28 pin package. £5.50

L.E.D. DISPLAYS

DL-747 0.6" (15mm) high, common anode **£2.04** DL-750 0.6" (15mm) high, common cathode . **£2.25**

Add VAT to all prices, post, etc. 10p + VAT per order.

GREENBANK ELECTRONICS (Dept. T6E) 94 New Chester Road New Ferry, Wirral, Merseyside L62 5AG Tel. 051-645 3391

1974-1975 TRANSISTOR COMPARISON TABLES

A true pocket book (5%"x4") which gives equivalents of over 2,500 types – several alternatives are given for each. Originally a German publication, this book gives the information in English, French, German and Italian. 24 pages are devoted to transistor lead connections and over 130 to the equivalents section giving basic construction, lead details and manufacturers:

Send a cheque or P.O. for $\pounds1.25$ (includes postage) to ETI to receive 1 this truly up-to-date reference book.

			ψu	1-					-	- I			
TO: TRANSISTOR COMPARISON TABLES ETI, 36 Ebury Street, London SW1W 0LW.													
Please find enclosed my cheque/P.O. for £1.25.													
NAME .										i			
ADDRESS			•			•		•		1	•		
	•	•	·	·	•	•	•	•	•	1			
										-			
		_				_				٦			

HARDWARE

Screws, nuts, washers, etc. Sheet aluminium cut to size or in standard packs, plain or punched / drilled to spec. Printed circuit boards for published designs or individual requirements, one-off or small runs. Fascia panels, dials, nameplates, etc., in etched aluminium. 6p for details.

> Ramar Constructor Services 29 Shelbourne Road Stratford on Avon, Warwicks.

QUARTZ CHRONOMETER KITS

The proven range of EST chronometers is now available to home and professional constructors. Write or telephone for full details: 049481 - (Penn) - 4661

Prices: 401-6 (Hours, minutes, seconds) £35 401-6 (Hours, minutes) £31 401-6-R (As 401-6 with Nicad battery pack) £46 401-4-R (As 401-4 with Nicad battery pack) £42 Ready-built units add £7 plus 8% VAT. U.K. only 0verseas — Add 10% extra for Air-parcel Post, no VAT							
ADVANTAGES OF THIS SUPERB MODERN CHRONOMETER: * One second per month accuracy at room temperature * 3MHz quartz crystal used for best temperature stability Rugged mechanical design ensures reliability for mobile use * All components supplied including wire, screws and case * Large, easy to read LED display * 220/240V mains or external battery operation * Attractive polycarbonate case, brushed aluminium panel * One pulse per second and external display outputs available if required * Optional self-contained Nicad battery for portable use * No-cost extras include precision-engineered black anodised adjustable stand and power unit/battery charger * 12-month guarantee for correctly assembled kits and ready-built							
TO: ELECTRO SYSTEMS AND TIMING CO 48 Robinson Road, Loudwater, High Wycombe, Bucks HP13 7BJ, ENGLAND							
PLEASE SUPPLY: (UK residents add 8% VAT) 401-6 kit(s) at £35 401-6-R kit(s) at £46 Ready-built unit(s) 401-4 kit(s) at £31 401-4-R kit(s) at £42 (specify code number)							
NAME ADDRESS							
I ENCLOSE CHEQUE/PO FOR £							

which will compare with an organ commercially built costing double the price.

★Portable organ with 4 octave keyboard, £145-29. ★ Console *Portable organ with 4 octave keyboard, £145'29. * Console organ with 5 octave keyboard, £250.95* Console organ with 2 x 4 octave keyboards and 13 note pedal board. £470'65, * Console organ with 2 x 5 octave keyboards and 32 note pedal board. £680.* Console organ with 3 x 5 octave keyboards and 32 note pedal board. £960.* W/W Sound Synthesiser Kit. £130. * W/W Touch Sensitive Electronic Piano. £100.

All components can be purchased separately, i.e., semi-conductor devices. M.O.S. master oscillators, coils, keyboards, pedal boards, stop tabs, draw bars, key-contacts, etc. Send 50p for catalogue which includes 5 x 10p vouchers or send your own parts list, enclosing S.A.E. for quotation.

ELVINS

ELECTRONIC MUSICAL INSTRUMENTS Designers and component suppliers to the musical industry 12 Brett Road, Hackney, London, E8 1JP. Tel. 01-986 8455

INDEX TO ADVERTISERS

Ambit					
Arbour	 		 1.1		
Axial Products	 	1	 		
B.H. Components	 		 		. 70
BIET	 		 		. 75
Bi-Pak	 		 		4&5
Bi-Pre-Pak					. 21
Bywood	 		 		9
Cambridge Learning Enterprise					
Chiltmead					
Decon					
EDA					
Electro Systems & Timing					
Elektor					
Elvins	 		 		. 74
Greenbank Electronics	 		 		. 72
Henry's Radio	 		 		. 67
Maplin Electronic Supplies					
Marco Trading					
A. Marshall & Sons					
Minikits					
Mulhall Electronics					. 73
Sinclair (Calculators)					front
Sinclair (Project 80)	 		 	53	2&53
Sintel					. 67
Tamar Electronics					
Technomatic					
Trampus					. 71
Wilmslow Audio					. 57

PLEASE MENTION ETI WHEN REPLYING

TO ADVERTISEMENTS

You might have seen some of these before :

Chances are you won't have seen them all

There is only one sure way to get every copy of ETI when it is published;

Make friends with Valerie Fuller; send her £4.25 (payable to ETI).

Then she'll get a copy for you when they come in from the printers and will send it to your home. Every month for a year.

To Valerie Fuller Subs. Department, ETI Magazine 36 Ebury Street, London SW1W OLW.								
I enclose £4.25 (£4. next twelve copies of	75 overseas) which inclue ETL	des postage, for the						
Name								
Address								
6/75	1							
0//0								

find out how in just 2 minutes

That's how long it will take you to fill in the coupon. Mail it today and we'll send you full details and a free book. We have successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A lowcost home study course gets results fast - makes learning easier and something to look forward to. There are no books to buy and you can pay-as-you-learn.

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). No obligation and nobody will call on you ..., but it could be the best thing you ever did.

Others have done it, so can you

"Yesterday I received a letter from the institution informing that my application for Associate Membership had been approved. I can honestly say that this has been the best value for money I have ever obtained, a view echoed by two colleagues who recently commenced the course". - Student D.I.B., Yorks.

"Completing your course, meant going from a job I detested to a job that I love, with unlimited prospects". – Student J.A.O. Dublin. "My training quickly changed my earning capacity and, in the next few years,

my training quickly changed my earning capacity and, in the next few years, my earnings increased fourfold". – Student C.C.P., Bucks.

FIND OUT FOR YOURSELF

F

These letters, and there are many more on file at Aldermaston College, speak of the rewards that come to the man who has given himself the specialised knowhow employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you. Write to Aldermaston College, Dept. TETO2, Reading RG7 4PF,, Home of B.I.E.T. Practical Radio & Electronics Certificate course includes a learn while you build **3 transistor radio kit.**

Everything you need to know

about **Radio & Electronics** maintenance and repairs for a **spare time income** and a **career** for a better future.

Tick or state subject of interest. Post to address below.

ELECTRICAL ENGINEERING City & Guilds Wiring and Installations C. G. Electrical Tech – Primary

Gen. Electrical Tech – Primar Gen. Electrical Eng. AERONAUTICAL ENG.

Air Registration Board Certificates

Gen. Aero Engineering

AUTO ENGINEERING City & Guilds Auto

Engineering Practice Inst. Motor Industry M.A.A./I.M.I. Management

Diploma Gen. Auto Engineering Auto Diesel Maintenance

Auto Diesel Maintenance Motor Mechanics Service Station and

Garage Management

TELECOMMUNICATIONS City & Guilds

Telecommunications

Gen. Radio and TV Eng. Radio Servicing, Maintenance and Repairs

Practical Radio & Electronics (with self-build kit) Radio Amateurs' Exam

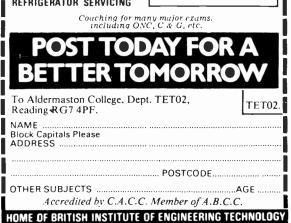
ELECTRONIC ENGINEERING Gen. Electronic Eng. Practical Electronics (with kit)

, AGRICULTURAL ENG.

REFRIGERATOR SERVICING

ress below. MECHANICAL ENGINEERING Society of Engineers Inst. Engineers and

Inst. Engineers and Technicians General Mechanical Eng. Welding Maintenance Eng. General Diesel Eng.


DRAUGHTSMANSHIP Institute of Engineering Draughtsmen & Designers General Draughtsmanship Architectural Draughtsmanship

Technical Drawing

CONSTRUCTION & BUILDING Institute of Building Construction Surveyor's Inst. Clerk of Works Diploma C. & G. Building Quantities General Building General Civil Eng. Heating, Ventilating & Air Conditioning Carpentry & Joinery Painting & Decorating Plymbing

C.E.I. (Part 1) Inst. Cost & Management Accountants Works management etc. etc.

G.C.E. – 58 °O' & 'A' Level Subjects † over 10,000 Group Passes !

3 GREAT PROJECTS FOR YOU TO BUILD

* AN EXCITING ELECTRONIC ORGAN

BUILD AN ORGAN TO YOUR OWN SPECIFICATION!

Full construction details in our leaflets

Leaflet MES 51 price 15p, de-scribes a fully polyphonic basic organ which can be used later as the basis of a large sophisticated instrument.

Further leaflets issued at approx. monthly intervals describing; 3 3 monthly intervals describing; more footages, solid state switch-ing, foot pedal board, many more stops, special effects, rhythm sec-tion, "Leslie" speaker etc.

At every stage in this organ we shall be using the very latest technology, to give you a really high quality instrument, that is not only on a par with, but probably in advance of most commercially available organs.

REDUCED COSTS!

Eventually you could be the owner of a highly sophisticated instrument, and parts of it will still be using the original components you bought for the basic organ. Of course this means greatly reduced costs and the satisfaction of having "built it yourself."

We stock all the parts for this brilliantly designed synthesiser, including all the PCB's, metalwork and a drilled and printed front panel, giving a superb professional finish. Opinions of authority agree the ETI Inter-national Synthesiser is technically superior to most of today's models. Complete construction details available shortly in our booklet. S.a.e. please for specification and price lists. * We shall be stocking all parts for the International 3600 Synthe

siser, to be published shortly.

GET A SUPERSONIC SAME-DAY-SERVICE WITH QUALITY COMPONENTS - FAST!

Our fantastic 1975 Catalogue is much more than just a stock list. Inside its attractive glossy cover it is packed with; CIRCUITS YOU CAN BUILD 10 w stereo tuner-amp, a MW/LW radio, a high quality pre-amp, a 10w stereo power amp, a digital clock. Application circuits for our I.C's (e.g. a frequency doubler, audio amps and pre-amps, flipflops power supplies, notch filter etc. etc. Detailed data on all our semiconductors. A comprehensive transistor equivalents list. Full data and hundreds of pictures of the thousands of lines we stock, including hundreds of new ones!

00

P.O. Box 3 · RAYLEIGH · ESSEX Telephone: Southend-on-Sea (0702) 44101 VAT. Please add