ELECTRONICS TODAY MARCH 1976 30p Grnat SOUTH AFRICA 60c CANADA \$1 **Competition Inside** HENRL ET SPECIAL ETI READER 2:48 **OFFFR** 4 F14. looks at **CROPROCESSORS**

CANNIBALS & MISSIONARIES HEADPHONE – ADAPTOR AUDIO LEVEL METER

. CONSTRUCTION . . . DEVELOPMENTS

NEWS

GUROMASI	omig elec	tronics	Dep Mus	ot. 7. – 56, Fortis Gree well Hill, London, telephone: 01–883	N10 3HN.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I.C. SOCKETS Pin Sigkers, pins in strips of 100 Just snip off what γ_{02} need (55 per strip) γ_{03} need (55 per strip) B pin 13p. 24 pin 20p. 105 14 pin 13p. 20 pin 30 p. 8 pin 31p 16 pin 13p. 30 pin 30 p. 8 pin 31p 16 pin 13p. 30 pin 30 p. 8 pin 31p 16 pin 13p. 30 pin 30 p. 8 pin 31p 16 pin 13p. 30 pin 30 p. 8 pin 31p 16 pin 13p. 30 pin 30 p. 8 pin 31p 16 pin 13p. 30 pin 30 p. 8 pin 31p 16 pin 13p. 30 pin 30 p. 8 pin 31p 16 pin 13p. 30 pin 30 p. 8 pin 31p 16 pin 12p. 20 pin 30 p. 8 pin 31p 17 page A4 Audio 1.C. Bowlet 18 Amplifiers 200 W to 20 wats 5 Audio Pre-Amplifier 19 Dere-Amplifier 10 General Purpose Mini Amplifier 10 D.C. Controlled Gain Control 11 D.C. Controlled Gain Control 11 D.C. Controlled Gain Control 14 Instrument Amplifier 10 (2 L.C.'s) PHOTO-DARKUNGTON Veco 25y 2N577 e. Vebo 25y 11 250 mA Pd 200 mW (2 355) He 2000 W (2 355) He 2000 W (2 355) 10 Dight embling diadet in 20 pin duol- in-fine package. Ideal for solid stote analogue meters or didi, Type 101 RED E2 20. C. Complex with leafler. 12 Control 12p. 10p - 7401 14p. 12p. 10p - 7403 15p. 12j.p. 10p - 7404 16p. 13p. 11p - 7405 16p. 13p. 11p - 7407 1	78L15A.WC (TBA625C) 90p * Regulator: 500mA 78M05HC £1.35 * 78M15HC £1.35 * 78M15HC £1.35 * 78M15HC £1.35 * 78M24HC £1.3	LINEAR AY-1-0212 £6.93 AY-1-5051 £1.44 AY-5-122 £3.95 AY-5-300 £6.59 AY-5-300 £7.94 BHA0002 £3.01 CA3045 £1.69 CA3045 £1.69 CA3045 £1.60 CA3053 5% CA3065 £1.60 CA3075 £1.42 CA3080 £1.86 CA3080 £1.86 CA3080 £1.86 CA3080 £1.41 CA31212 £1.67 CA31232 £1.76 CA31401E £1.46 C03611103 £1.46 £103711107-31 £1.46 £103711107-31 £1.46 £103711107-31 £1.46 £103711107-91 <th>L M2111 E1 12 LM3900 60p 4 MC 1303L E1 94 MC 1303L E1 94 MC 1304P 85p MC 1310 2 2 10 MC 1312 2 52 MC 1312 2 52 MC 1312 2 52 MC 1312 1 4 8 MC 1330 89p MC 1330 98p MC 1330 98p MC 1330 68p MC 1351 92p MC 1351 92p MC 1357 1 60 MC 1358 (CA3065) 2 23 MC 1375 1 1 66 MC 1456 CG 1 77 MC 1456 CG 2 1 07 MC 1456 CG 2 2 00 MC 1406 CG 2 00 MC 1407 CG 2 00 MC 1406 CG 2 00 MC 1407 CG 2 00 MC 1406 CG 2 00 MC 1407 CG 2 00</th> <th>digitul switch 9. Suitable for olarm setting</th>	L M2111 E1 12 LM3900 60p 4 MC 1303L E1 94 MC 1303L E1 94 MC 1304P 85p MC 1310 2 2 10 MC 1312 2 52 MC 1312 2 52 MC 1312 2 52 MC 1312 1 4 8 MC 1330 89p MC 1330 98p MC 1330 98p MC 1330 68p MC 1351 92p MC 1351 92p MC 1357 1 60 MC 1358 (CA3065) 2 23 MC 1375 1 1 66 MC 1456 CG 1 77 MC 1456 CG 2 1 07 MC 1456 CG 2 2 00 MC 1406 CG 2 00 MC 1407 CG 2 00 MC 1406 CG 2 00 MC 1407 CG 2 00 MC 1406 CG 2 00 MC 1407 CG 2 00	digitul switch 9. Suitable for olarm setting
booklet. OUR PRICE ONLY £6.59 * Tobto and Circuit Booklets alone 200. The AY-5-1224 Cick-fock Another marvel from G.1. A 10 pin 12-24 hr. Clock J.C. with 25 pin capability and low external ports count. Supplied with manufactures detailed toffer £3.95° finc. VATI (Leofler alone 200.) Full Kit texcluding cost available towards end of 1975. Phone Clive for details. MULLARD MODULES Still make the simplest, highly reliable F.M. tuner LP1186 Varactor front end LP1186 L.F. Strip LF156 Marchard front end LP1185 L.F. Strip LF156 Multiplex decoder LF156 Multiplex decoder LF157 Multiplex decoder LF157 Multiplex decoder LF156 Multiplex decoder LF156 Multiplex decoder LF156 Multiplex decoder LF156 Multiplex decoder LF156 Multiplex decoder LF156 Multiplex decoder LF157	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Suitable for Clocks, Meters, Instruments, Channel Indicators Our price E4.75 * each Low cost Red GuA4P 0.33", Li Motorola MLED 500 0.33", Xe 0.33", Xe 0.43", Ne 0.53", Ve 0.53", Ve 0.54", Ve 0.55",	Atranix DL 707 Series prisaniz MAN 50 70/89(3600 tranix DL 707 Series prisaniz MAN 50 70/89(3600 tranix DL747 'Jumbo' Series INOTE MAN 4000 Series INOTE M	± y y z ± y z ± y z ± y z ± y z ± z ± z	P each * *Red anly) (Red, green, yellow, Orangel Red Green, yellow) Red, Green, Yellow, Orangel Red only) add as Cammon Ande (Red onl me as MAN 50; 70 and 80 serie

VOL 5. No. 3.

Features

MARCH 1976

AMPLIFIER DISTORTION.	10
GEOPHYSICAL SURVEY — PART TWO	47
MICROPROCESSORS	54
CMOS — PART TWO	59
ELECTRONICS IT'S EASY	6 6

Projects

AUDIO LEVEL METER	17
CANNIBALS AND MISSIONARIES Our own version of 'Jaws' to play at home!	24
HEADPHONE ADAPTOR Properly designed circuit improves performance	53
SILENT A-B SWITCH	57
DYNAMIC NOISE FILTER — PART TWO	62

Data Sheet Special

OPERATIONAL AMPLIFIERS				;	ì					
Data sheets										

Index-

APRIL 1972 — MARCH 1976 . Listing of features since ETI's first issue

News & Information

NEWS DIGEST												6
PROJECT BOOK 3												23
PULSAR OFFER REOPENED).							•				23
PREVIEW OF APRIL ETI								•				40
ETI BOOK SERVICE												46
ETI SPECIALS					,							69
ELECTRONICS TOMORROV	V										,	70
TECH-TIPS											•	72

Competition

EII/HENRY'S	RADIO COMPETITION						1	38
Up to £500 to be	won in prizes							
	,							

Special Offer-

EDITORIAL AND ADVERTISEMENT

international

OFFICE 36 Ebury Street Landon SW1W OLW Telephone: 01-730 8282

HALVOR W. MOORSHEAD Editor ROBERT C. EVANS

Advertisement Manager

STEVE BRAIDWOOD, G3WKE Assistant Editor

LES BELL, G4CFM Ecitorial Assistant

JEAN BELL Production

INTERNATIONAL EDITIONS

COLLYN RIVERS Editorial Director

30

41

45

AUSTRALIA BRIAN CHAPMAN Technical Editor BARRY WILKINSON Engineering Manager Modern Magazine Holdings Ltd Ryrie House, 15 Boundary Street Rushcutters Bay 2011 Sydney, Australia.

FRANCE DENIS JACOB Editor in chief CHRISTIAN DARTEVILLE Editor Electronique Pour Vous International, 17 Rue de Buci Paris, France.

Electronics Today International is normally published on the first Friday of the month prior to the cover date.

PUBL/SHERS Modern Magazines (Holdings) Ltd 3€ Ebury Street, London SW1W OLW.

DISTRIBUTORS Argus Distribution Ltd

PRINTERS QB Newspapers Limited. Colchester

READERS' QUERIES: These can only be answered if they relate to recent articles published in the magazine. Rerely can we supply information in addition to that published Written queries must be accompanied by a stamped addressed envelope, and telephone queries must be brief, not before 4pm and can only be answered subject to the availability of technical staff.

BACK NUMBERS Back numbers of many issues are available for 40p each, plus 15p postage) SUBSCRIPTIONS Great Britain £5.00 per annum. Overseas £5.50.

COPYRIGHT All material is subject to world wide Copyright protection All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur, a correction will be published as soon as possible afterwards in the magazine.

READER SERVICES See page 82 for datails of all ETI Reader Services and other information

COMPONENTS

CARBON RESISTOR PAKS Paks contain a range of Carbon tors, assorted into the following

EUV	upe	
Ř.1	5 0	Mixed 100 ohms —
		820 ohms 54th W
R2.	50	Mixed 1K ohms —
		8.2K ohms 54th W
R3.	50	Mixed 10K ohms —
		82K ohms 1/4th W
R4.	50	Mixed 100K ohms —
		820K ohms ¼th W
R 5.	30	Mixed 100 ohms —
		820 ohms ½ W
R6.	30	Mixed 1K ohms —
		8.2K ohms ½ W
R7.	30	Mixed 10K ohms —
		82K ohms ½ W
R8.	30	Mixed 100K ohms —
		820K ohms ½ W
	The	and and such a stable mula as

These are unbeatable prices.
LOW COST CAPACITORS 500 μF 50V Elect 0.09 each 01 μF 400V 9.03 each
REPANCO CHOKES & COILS RF Chokes CHI 2.5mH 0.27
CH3 7.5mH 0.29 CH5 1.5mH 0.26
CH2 5.0mH 0.28 CH4 10mH 0.31
COILS DRX1 Crystal set 0.29
DRR2 Dual range 0.42
CARBON POTENTIOMETERS Log and Lin 4.7K, 10K, 22K, 47K, 100K, 220K, 470K, 1M, 2M.
VC 1 Single Less Switch 0.20
VC 2 Single D.P. Switch 0.60
VC 4 1K Lin Less Switch 0.20 VC 5 100K Log anti-Log 0.60
HORIZONTAL CARBON PRESETS 0.1 Watt 0.09 each
100, 220, 470, 1K, 2.2K, 4.7K, 10K, 22K, 47K, 100K, 221K, 470K, 1M, 2M, 4.7M.
REPANCO TRANSFORMERS *
240V. Primary. Secondary voltages available from selected tappings 4V, 7V, 8V, 10V, 40V, 50V and 25V-0-25V.
Type Amps Price P&P MT50/½ ½ £1.79 0.45
MT50/1 1 £2.24 0.48
MT50/2 2 £3.96 0.60
COIL FORMERS & CORESNORMAN ¼" Cores & Formers%" Cores & Formers0.09p
SWITCHES DP/DT Toggle 0.28p SP/ST Toggle 0.22p
FUSES
20mm, 100mA, 200mA, 250mA, 500mA, 1A, 1.5A, 2A QUICK BLOW
*0.65p each Anti-surge 20mm only *0.8p each
VEROBOARDS*
VB 1
containing approx. 50sq. ins. various sizes all 0.1 matrix *0.60p VB 2
containing approx. 50 sq. ins. various sizes all 0.15 matrix •0.60p
DECON-DALO 33PC Marker* Etch resistant printed circuit marker pen. Full instructions supplied with each pen *0.92p
BATTERY HOLDERS*

Takes 6 H.P. 7's complete with terminal

*0.31p each tip and lead

Please add 8% to all prices marked *. Remainder add 25%, Do NOT add V.A.T. to prices marked †.

INSTRUMENT CASES

ections, Black Vinyl covered top

(In 2) 0.60

No.

- Braided Cable Three Core Mains Cable Twin Oval Mains Cable Speaker Cable 7 8 9 CP CP
- Low Loss Co-Axial ČP 10 PEP

.

C60

Č90

Č120

Con SPI SP2 Postage and Packing add 25p unless otherwise shown. Add extra for airmail. Minimum order £1.00 SP3 SP4 SP SP

SOLDERING IRONS	S221 5
x25, 25 watt	S222 5
Model G. 18 watt *£2.76 CCN 240. 15 watt *£2.90 SK2.Soldering Kit *£3.91	
BITS AND ELEMENTS*	. n S238 2
Bit No. 102 for model CN240 3/32" *42p	le
104 for model CN240 3/16" *42p	3400 3
1100 for model CCN240 3/32" *42p 1101 for model CCN240 3/8" *42p) 32/02
1102 for model CCN240 ¼″ •42p 1020 for model G240 3/32″ •42p	S271 5
1021 for model G240 1/8" *42p	Ĭ
50 for model X25 3/32" *440	32/3 3
51 for model X25 1/8" *44p 52 for model X25 3/16" *44p	2
ELEMENTS +	S318 5 c 2
Model ECN £1.10*	C 404 (
Model EG 240 £1.35* Model ECCN 240 £1.55*	S217 3
Model EX 25 £1.29*	. k
SOLDERING IRON STAND	S219 5
ST3 Suitable for all models *£1.10 Antex heat shunt *10p	
PLUGS PRICE	S600 5
PS 1 D.I.N. 2 Pin (Speaker) 0.10 PS 2 D.I.N. 3 Pin 0.11	1
PS 3 D.1.N. 4 Pin 0.14	S700 5
PS 4 D.I.N. 5 Pin 180° 0.15 PS 5 D.I.N. 5 Pin 240° 0.15	1
PS 6 D.I.N. 6 Pin 0.16 PS 7 D.I.N. 7 Pin 0.17	
PS 7 D.I.N. 7 Pin 0.12 PS 8 Jack 2.5mm Screened 0.17 PS 9 Jack 3.5mm Plastic 0.11	
PS 10 Jack 3.5mm Screened 0.17	(2-way
PS 10 Jack 3.5mm Screened 0.17 PS 11 Jack ¼" Plastic 0.14 PS 12 Jack ¼" Screened 0.24	
PS 13 Jack Stereo Screened 0.33 PS 14 Phono 0.05	
PS 15 Car Aerial 0.14	н н
PS 16 Co-Axial 0.14	H 101
PS 21 D.I.N. 2 Pin (Speaker) 0.13	loudsp Also I
PS 22 D.I.N. 3 Pin 0.19 PS 23 D.I.N. 5 Pin 180° 0.19	
PS 24 D.I.N. 5 Pin 240° 0.19)
PS 25 Jack 2.5mm Plastic 0.15 PS 26 Jack 3.5mm Plastic 0.15	TRAN
PS 27 Jack ¼" Plastic 0.28 PS 28 Jack ¼" Screened 0.33	
PS 29 Jack Stereo Plastic 0.28 PS 30 Jack Stereo Screened 0.35	tion in
PS 31 Phono Screened 0.17	TRAN
PS 32 Car Aerial 0.20 PS 33 Co-Axial 0.20	and ed
SOCKETS	can ar the m
PS 35 D.I.N. 2 Pin (Speaker) 0.07 PS 36 D.I.N. 3 Pin 0.09	
PS 37 D.I.N. 5 Pin 180° 0.05)
PS 39 Jack 2.5mm Switched 0.11	144 F
PS 40 Jack 3.5mm Switched 0.11 PS 41 Jack ¼" Switched 0.11	and Ja
PS 42 Jack Stereo Switched 0.28 PS 43 Phono Single 0.07	tors, T
PS 44 Phono Double 0.09 PS 46 Co-Axial Surface 0.09	MULL
PS 46 CO-Axial Surface 0.03 PS 47 Co-Axial Flush 0.19	
P.C.B. KITS & PENS	tion of Circui
·	Valve
PROFESSIONAL D.I.Y. PRINTED CIRCUIT KIT	are 2
Containing 6 sheets of 6" x 4" single sided laminate, a generous supply of	Compa TTL
sided laminate, a generous supply of etchant powder, etching dish, etchant	compl (7400-1
measure, tweezers, etch resistant marking pen, high quality pump dril with spares, cutting knife with spare	
with spares, cutting knife with spare blades, 6" metal ruler, plus full easy to	
follow instructions. *£7.80 per kit	STATI
Spare container of etchant for above	DX-in
complete with instructions •70p	broadd
P.C.B. MARKING PENS	well as
2 x quality market pens, specifically designed for drawing fine etchant	∕ A ful t availa1
designed for drawing fine etchant resistant circuits on copper laminate Complete with full instructions *£1.53	
per pair	, 3015F

LOW-NOISE CASSETTES *33 0 *44p *56p

SLIDER PAK

nt		ing a range of slider pots.	
L	6	mixed values sliders 0	.60
2	6	47OR Lin. sliders 0	.60
3	6	10K Lin. slider 0	.60
1	6	22K Lin. sliders 0	.60
5		47K Log. sliders 0	
5		47K Lin. sliders 0	

EMICONDUCTORS ANTEX EQUIPMENT CERAMIC PAKS

Containing a range of miniature ceramic capacitors in mixed values, unrepeatable value.

APPROX. 200 PIECES

Assorted fall-out integrated circuits, including: Logic, 74 series, Linear, Audio and D.T.L. Many coded devices

WORLD SCOOP *

JUMBO SEMICONDUCTOR PAK Transistors – Germ. and Silicon. Rectifiers – Diodes – Triacs – Thyristors – 1.C.'s and Zeners. ALL NEW AND CODED.

APPROX. 100 PIECES

Offering the amateur a fantastic bargain PAK and an enormous saving — identification and data sheet in every pak. ONLY £1.85 each

BIB HI-FI ACCESSORIES

 32
 Stylus Balance
 11.20

 33
 Splicing Tape
 38p

 36A
 Record & Stylus Cleaning Kit 32p

 41
 8
 Track Cartridge Head Cleaner

 42/S Roller & Brush for REF 42 & 2000
 200

Auto Changer Groov-Kleen Spirit level Record Dust-Off

48 Record Dust-Off 52A Cassette Tray 53 Hi-Fi Stereo Test Cassette 56 Hi-Fi Hints & Tips Book Model 60 Groov-Kleen 160/S Replacement Brush Velvet Pad and Base Sticker for Model 60 24p 62 Cassette Head Cleaner (Liquid) 48p 71 Record Dust Off (Displays of ten) 68p 690 Cassette Head Cleaner (Liquid) 48p 71 Record Dust Off (Displays of ten) 680 Cassette Head Cleaner (Liquid) 48p 71 Record Dust Off (Displays of ten) 680 Cassette Head Cleaner (Liquid) 48p 71 Record Dust Off (Displays of ten) 680 Cassette Head Cleaner (Liquid) 48p 71 Record Dust Off (Displays of ten) 680 Cassette Head Cleaner (Liquid) 48p 71 Record Dust Off (Displays of ten) 680 Cassette Head Cleaner (Liquid) 48p 71 Record Dust Off (Displays of ten)

 71A Record 'Dust Off' (Bubble Pack)

 70

 75 Indexa Record

Indexa Record ÉL.50 Stylus Cleaner 36p Cassette Fast Hand Winder Cassette Title & Container Labels 36p

UNTESTED LIN PAK

CONTENTS

x x x x x x x

10
7
7

- 5 7

Manufacturers "Fall Outs" which Manufacturers "Fall Outs" which include Functional and part Functional Units. These are classed as 'out-of-spec' from the maker's very rigid specifica-tions, but are ideal for learning about I.C.'s and experimental work.

'D' 2 Hi-Fi Cable & Flex Tidy 'J' Tape Head Cleaning Kit 'P' Hi-Fi Cleaner

'P' Hi-Fi Cleaner
 Model 9 Wire Stripper
 'A' Tape Editing Kit
 'W' Cassette Editing Kit
 Salvage Cassette
 Salvage Cassette
 Salvage Cassette

Record Care Kit

PRICE

34p 72p

30p £1.00

£1.80

£1.80 £1.84 44p £1.28

24p £2.76

98p 72p 26p 54p £2.40

PRICE

709

HERTS

0.60 0.60 0.60 0.60 0.60

but some unmarked -

REF

78 83

(20 & 10)

PAK NO. ULIC709

ULIC710 ULIC741 ULIC747 ULIC748

MAMMOTH I.C. PAK *

unmarked — you to identify. OUR SPECIAL PRICE £1.00

AUDIO LEADS

5 pin DIN plug to 4 phono plugs length 1.5m £1.08 ength 1.5m EL.vo 5 pin DIN plug to 5 pin DIN socket

- pin Din play spin DIN plug to 5 pin DIN plug nirronimage length 1.5m £1.20 2 pin DIN plug to 2 pin DIN socket
- 5 pin DIN plug to 2 phono sockets connected to pins 3 & 5 length 32cm .680
- o pin DIN socket to 2 phono plugs connected to pin 3 & 5 length 23cm
- Coiled stereo headphones exten
- ion cord extends to 7m **£1.40** 8 pin DIN plug to 3 pin DIN plug ength 1.5m **.80**p length 1.5m 5 pin DIN plug to 5 pin DIN plug .80p
- ength 1.5m .80p 3.5mm Jack to 3.5mm Jack length

- onnected to pins 1 & 4 length .800 .9000 .900 .900 .900 .900 .900 .900

OSSOVER NETWORK

1/P Impedance 8 ohms.) Insertion Loss 3dB. v) Ins

Crossover Frequency 3 KHz. PRICE £1.12

3-WAY-STEREO /PHONE JUNCT BOX

12 Enables change-over from peaker to headphone listening. has a centre position for both its. PRICE £1.73

HANDBOOKS

SISTOR DATA BOOK. DTE 2 ages packed with information on ean Transistors. Full specifica-ncluding outlines.


ncluding outlines. Price † 22.95 each NSISTOR EQUIVALENT BOOK 75 256 Pages of cross references equivalents for European, Ameri-and Japanese Transistors. This is most comprehensive equivalents on the market today and has an duction in 13 languages. Price † 22.68 each CEONIDY LENT BOOK DE 24

E EQUIVALENT BOOK DE 74 Pages of cross references and alents for European, American apanese Diodes, Zeners, Thyris-Triacs, Diacs and L.E.D.'s.

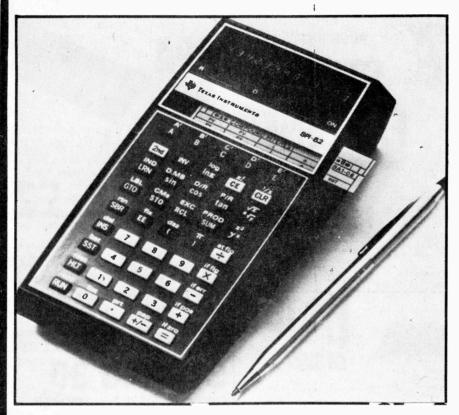
Triacs, Diacs and L.E.D.'s. Price † £1.38 each LARD DATA BOOK 1974/75 3 74 The latest edition of this lar handbook contains informa-on Semiconductors, Integrated its, Television Picture Tubes, capacitors and Resistors. ded in the 161 informative pages 21 pages on Semiconductor parables Price † £0.49 each DATA BOOK DIC 75 Now lete Data book of 74 series TTL -74132). Covering 13 main manu-rers in U.S.A. and Europe, this gives full data as well as 'alents Price † £3.74 WORLD'S BROADCASTING alents Price † 62.74 WORLD'S BROADCASTING TIONS WBS 75 An up-to-the-te guide for those interested in ng. Contains all the world's casters on SW, MW and LW, as as European FM/TV stations. Price † £3.56

range of technical books ble on request.

INDICATORS * 3015F Minitron 7 Segment Indicator *£1.11

PO

BOX 6



WARE

G.P. SWITCHING TRANS

-news digest

MAGNETIC CARD PROGRAMMABLE CALCULATOR

Slough, December 10, 1975..... A handheld magnetic card programmable calculator with a recommended retail price of £250.00 (inc.VAT) has been introduced by Texas Instruments Limited, European Calculator Division.

This new programmable calculator from TI offers 20 memory registers, 10 user-definable keys and has the capability to accept 224 program steps. The algebraic entry combined with 9 levels of parentheses allows problems to be entered exactly as they are written.

The SR-52 is able to store up to 224 program steps and numbers on a single magnetic card. 20 independent addressable memory registers permit addition, subtraction, multiplication and division of any displayed quantity with any memory register without affecting the keyboard calculation in progress.

With the calculator's 23 preprogrammed key functions, trig and log, powers and roots, factorials, reciprocals, three conversions and pi can be directly executed from the keyboard.

Ten different decision instructions and five user-set flags allow the user to program the SR-52 to make repetitive decisions and branch to appropriate program segments automatically without interruption. Other features include 10 userdefined keys and 72 user-defined labels. While any portion of a program may be called by an absolute address number, these keys and labels permit prompt and unique identification and call-out of any pertinent program segment. Indirect addressing, decrement-and-skip on zero, and two levels of subroutines provide additional programming flexibility.

In addition to an operating guide and owner's manual, the SR-52 package includes a Basic Library manual, a card case, a library of pre-recorded programs on magnetic cards, diagnostic programs for testing the SR-52 and head cleaner.

Pre-recorded and diagnostic programs will be available through retail outlets and from Texas Instruments Limited together with other pre-recorded libraries for various professional disciplines.

The Texas Instruments SR-52 carries a one-year limited warranty, from the original purchase date -under normal use and service -against defective materials or workmanship. Any implied warranties are also limited in duration to the oneyear period from the original purchase date.

IMPORTANT WARNING

Readers are asked to note the considerable danger involved in the production of homemade LDRs by cutting open silicon power transistors. as described on page 47 of Tech-Tips Special in the January issue. The danger lies in the fact that many power transistors contain Beryllium Oxide which is EXTREMELY TOXIC. The inhalation of Beryllia dust or fumes on a single exposure lasting mintutes or seconds can cause injury to the skin or mucous membrane severe enough to endanger life or cause serious injury. If particles of Beryllia enter the skin through cuts or grazes chronic ulceration is liable to result. Our thanks go to M. P. Hearne of Campbeltown for calling our attention to this.

SIGNETICS DROP CMOS

Our US correspondent advises us that Signetics have telexed all their US sales staff and distributors advising them that the company will be discontinuing their CMOS logic series.

Signetics' sales of CMOS products fell short of their projected target by a considerable margin. We understand that whilst the 1975 target was US\$ 200 million actual sales are not expected to exceed US\$ 120 million.

SOLAR CELL IS 20% EFFICIENT

A 20% efficient solar cell has been developed by Varian Associates.

According to the firm, its 8mm diameter cell produces 10 watts of electricity directly from a focused sunlight beam. Varian makes the cell from a gallium arsenide material developed by IBM. Although the cells are not yet in commercial production, Varian says it plans eventually to build a system of cells that can generate 1kW.

ELECTRONIC WATCH HAS CONTINUOUS DISPLAY

A challenge to LED and LCD watches has been launch by America's Optel Corporation. Optel have just released details of a prototype unit incorporating an 'electro-chromic' display claimed to be capable of showing a continuous readout without constant battery power.

The prototype unit is a three function device which shows hours and minutes continuously and seconds on demand. The corporation say that there are still 'some problems' with the design but claim a two to five year life for the prototype readout which they say has a 200 millisecond response time.

NEW HEATKITS

The January 1976 Heathkit catelogue is now available (send a 10p stamp for return postage) free from their HQ at Bristol Road, Gloucester, GL2 6EE.

The most interesting new product is a seven-function programmable stop-watch. For \pounds 74.50 you get the following-

(i) Ability to time two events simultaneously.

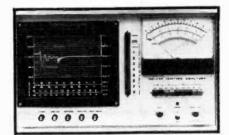
(ii) Timing of two minor events (two lap times, for instance) and displaying these, whilst timing the overall event.

(iii) Accumulation of a series of timings and display of the total; simultaneously the time elapsed from the first to the last timing is measured. Total journey time and total driving time, for example, can be measured.

(iv) Split facility – the display will show the time-so-far at the touch of a button at any instant in the course of timing an event.
(v) Separate timings can be taken for each "leg" of an event and then these can be totalled.

(vi) Alarm or "upcount": counts up to a programmed time and then gives an output pulse. The count can be interrupted at any point.
(vii) "Downcount" - the timer will count down from a programmed number and gives out a pulse at zero. Ideal for launching rockets, etc.

By combining the functions a time can be "learned" by transferring a displayed number to upcount or downcount.


Start/Stop jacks allow external triggering from photoelectric sensors, etc. Measuring range is up to 100hrs.

and programming range up to 10hrs, with a resolution of 1/100th second. Although there is nothing this device can do which can't be done using the ETI Timing Modules (Dec 75 and Jan 76 issues) the Heathkit GB-1201E is packaged nicely in a hand-hold case (5 $1/3'' \times 2 1/6'' \times 2''$).

Other new products in the catalogue are:

A car intrusion Alarm (£18.80). An Electronic Doorbell (£31.50) which allows you to compose your own tune (within 16 beats and 1 octave). The tune can be changed (for a birthday party or for Christmas, etc) behind the front panel door.

A Digital Rev Counter (£31.80) gives a two digit readout.

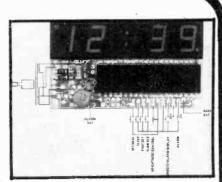
An Ignition Analyser (£280.00) with a 12 inch screen and professional facilities.

An SSB Transceiver (£490) for 80 thru 10m.

A CW Transceiver (£108.00) for 80 thru 15m.

A Synthesised 2 Meter FM Transceiver (£255.00).

A Hand-Held 2 Meter Transceiver (£144.00).


A 30MHz Frequency Counter/ Timer (£78.00).

All prices include VAT and delivery in the UK and all refer to products in kit form.

DIGITAL CLOCK COSTS CUTS

A new clock module subsystem MA1001 requires only a transformer and switches to become a pre-tested electronic digital clock for use in radios, alarms, domestic and timing instrumentation, at approximately 50% of the cost of conventional similar designs.

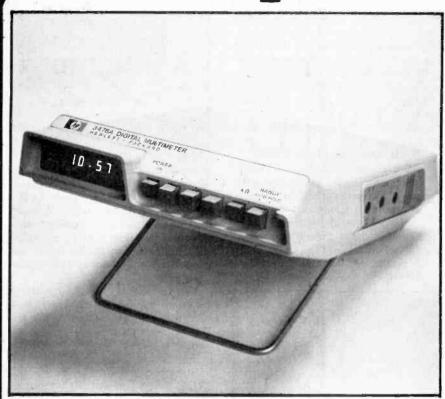
The MA1001 is supplied with timing circuitry and a 4-digit LED display ready mounted on a 1.5" x 3" pcb. The LED's are $\frac{1}{2}$ " characters, and the ready-mounted MM5385N integrated MQS clock circuit (packaged 40-pin DIL) eliminates the need for separate bipolar segment-driver and digit-drive circuits. It also eliminates more than 30 resistors, as well as the RF filter capacitors sometimes required to attenuate RF interference

generated by multiplexed LED (isplays. The clock IC drives LED segments and digits directly, without multiplexing, which suppresses most RFI. The residual is eliminated by using a slow transition time in the output stages -100μ secs as against the usual 1 μ sec.

The time-keeping frequency source can be either 50 or 60Hz, and 12-hour or 24-hour display options are available. Time is set through "Fast" and "Slow" scanning controls.

Features include alarm ON and PM indication, blinking colon, SLEEP and DOZE timers and variable brightness control capability. Alarm clock options include a transistor oscillator circuit for use with a low-cost earphone transducer. National Semiconductor UK Ltd., 19 Goldinton Road, Bedford MK40 3LF.

A SWINGING CALCULATOR (CURSOR?)


Now that West Hyde Developments are supplying a big range of carbon film, wirewound, vitreous wirewound resistors, and polystyrene capacitors, they have designed a 5" plastic Resistor Calculator with a built-in slide rule with which they are introducing these products to their customers. It has a

calculator on one side with a swinging cursor, which efficiently calculates power, current, voltage and resistance — any two known and two unknown, and the 5" slide rule is on the other side.

These are available from West Hyde Developments Ltd., Ryefield Crescent, Northwood, Middlesex, price 61p including P and P and VAT.

news digest

LOW-COST HP DMM

This new 3½ digit, five function, fully autoranging digital multimeter from Hewlett-Packard sells for only £144, and measures voltages from $\pm 0.0001V$ DC and from 0.0003V to 700V rms AC. Resistance is measured from $0.001 k\Omega$ to $1,000 k\Omega$. Current can be measured from 0.0003A to 1.1A AC. Autozero, autopolarity and autoranging are built in.

Typical accuracy for DC voltage measurements is 0.5% DC current accuracy is 1.0%. One AC voltage ranges, frequency is specified to 10kHz, while AC current is to 5kHz. Accuracy of resistance measurements is within 0.6% on the three highest ranges and 0.4% on the two lower ranges. Open circuit voltage is less than 4V.

Input resistance on all voltages is $10M\Omega$ with input capacitance of less than 30pF. The 3476 is protected to 1100V peak on all ranges. The fuse that protects the ohms function is rated 250V rms. The current function is fuse protected to 1.5A. No special fuses are required and they can be quickly replaced without dismantling the instrument.

A range hold feature is included that allows the instrument to be locked to any desired range. This feature is necessary, for example, when measuring diode resistance. It also makes repetitive measurement faster. The LED readout gives all voltage readings in volts, all resistance readings in kilohms and all current readings in amperes.

Model 3476A is AC line powered only; Model 3476B is AC line powered and also includes rechargeable nickel cadmium batteries. Model 3476A weighs 0.71kg and Model 3476B weighs 0.9kg. UK price is £175.00 for the 3476B. Hewlett-Packard Ltd., King Street Lane, Winnersh, Wokingham, Berks RG11 5AR.

HEATHKIT 'SCOPE COMPETITION

We now have the results of the competition in our December issue. FIRST PRIZE of a 10-4540 scope goes to Mr. J. Humberstone,

57 Woodhead Road,

Sheffield 52 4TB.

SECOND PRIZE of a 10-4560 scope goes to Mr. A Eaves.

'Salway', Crowbrook Road, Askett, Aylesbury,

Bucks, HP17 9LS.

THIRD PRIZE of another 10-4560 scope goes to Mr. M.L. Shirtcliffe, 50 Lupton Crescent,

Sheffield S87NA.

WAVEFORMS WAVEFORMS II PROBES PROBES

STILL TIME FOR HELPING HAND

The closing date for this award is March 31st, 1976, so if you haven't sent your ideas in yet there is still time. Details of the problems to be tackled are given in previous issues of ETI – choose any one of three specific problems facing deaf people. By the application of your knowledge of electronics you can help spare deaf people some of the hardships they face; and ETI, in conjunction with the RNID, will help develop your ideas.

If you need more information send a large SAE to ETI HELPING HAND, ETI Magazine, 36 Ebury Street, London SW1W 0LW.

ASTRONOMERS DETECT INDIVIDUAL PHOTONS

A digital television system for astronomy, developed by University of Arizona astronomers, is sensitive enough to detect individual photons of light coming into a telescope and record them for immediate playback.

As a result it is possible to see objects 100 times fainter than previously possible. The system is based on a special television tube - a silicon intensified target tube - that records 64 000 points of light simultaneously. The information then is sent in digital form to a computer, which removes the image's noise. Photographs or a spectrogram can be produced.

BIPOLAR PROMs AND ROMS BOOKLET

Intel have published a 36-page booklet which provides technical information on 13 different ROMs and 24 different PROM types they manufacture. All the devices in the booklet are of Schottky bipolar construction and erasable PROMs are not included.

The booklet incorporates a data sheet for each device, an equivalents chart and gives details of PROM programming equipment.

For every Intel PROM there is a pin and performance compatible PROM, which means that no circuit changes have to be made when a project is finalized and information in PROM is committed to maskprogrammed ROM.

All Intel PROMs employ polysilicon fuses which coat the surrounding area in a aprotective oxide layer when they are 'blown'. With polysilicon fuses there is no danger of a fuse 'growing back' as has happened before with conventional metal fuses.

In this article written specially for Electronics Today International, Gordon King explains transient intermodulation distortion and how it affects amplifier/speaker combinations.

OF RECENT MONTHS I have been endeavouring to establish meaningful correlation between the measured parameters of amplifiers and the listening room sound. This isa very difficult area of research because there are so many inter-related and variable factors involved; also because the net result is obviously a subjective impression rather than a meter reading! Nevertheless, a number of points of interest have emerged which merit discussion.

For starters, it would appear that certain parameters are advanced out of sheer 'specmanship' rather than on a basis of electro-acoustic requirements; in fact, it is sometimes possible to enhance the sound by deliberately *diminishing* a parameter. There would also appear to be a fairly important link between the subjective and the objective at the electrical interface between the amplifier and the loudspeaker. The sound field is certainly affected by the acoustical interface between the loudspeaker and the listening room.

Although this article is concerned primarily with electrical parameters, it is necessary to look at some of the acoustical aspects, too, for after all, it is the resulting sound that we listen to, not electrical signals.

The loudspeaker 'loads' both electrically into the amplifier and acoustically into the listening room; in other words, the amplifier is the electrical source for the loudspeaker and the loudspeaker the acoustical source for the listening room. It is well known of course that the output into or across a load, is influenced by the nature of the source and the load, this being applicable to acoustics as well as electrics. Sound *pressure*, in fact, is the acoustical analogue of voltage.

It is reasonable to conclude, therefore, that just as some

Detailed measurements may place two amplifiers well into the accepted hi-fi category yet, in a common signal source, loudspeaker and listening room situation, one may produce a very fine sound and the other a distinctly fatiguing sound. Fact or fiction? FACT!

Given an amplifier of top-flight-measured parameters and two pairs of similar style but different make, measurement-acclaimed loudspeakers, one pair to a critical ear can be far more acceptable than the other pair, yet if the amplifier is changed the other pair may then be preferred.

Fact or fiction? FACT! The acoustical load presented by a particular listening room may be more acceptable to some loudspeakers than others .

electrical sources are more critical of loading than others, so are some loudspeakers. The acoustical load presented by a particular listening room may be more acceptable to some loudspeakers than others, which is one reason why a pair of loudspeakers which yield acceptable results in one room may audition less favourably in a different room. There is a case, therefore, for the loudspeaker and listening room to be measured in partnership. Although free-field (anechoic) pressure *versus* frequency plots are commonly adopted for optimising the design of loudspeakers, they are far from revealing how different loudspeakers will audition in different rooms.

It is neither difficult nor expensive for a hi-fi dealer or audiophile to measure loudspeaker/room combinations, and an inexpensive, though surprisingly accurate, method is based on the reproduction of a third-octave bands of pink noise. A 'linear' sound level meter at the normal listening position is then used to measure the sound pressure level at each band in turn over the range of 20 Hz-20 kHz, leading to the construction of a graph. This simple technique reveals eigentones and absorption effects quite dramatically, thereby indicating the adjustments required for improving the results.

Noise signal has the effect of automatically averaging the

It is neither difficult nor expensive to measure loudspeaker/ room combinations . . .

sound in the listening room. Steady-state sinewave signal cannot be used. Pink noise, which is white noise with -3 dB/octave (or -10 db/decade) weighting, is used because it correlates more closely with the spectral distribution of music than unweighted noise, which is white noise. It is noteworthy that the voltage of white noise is proportional to the square root of the bandwidth, and contains frequency components of constant energy per unit bandwidth. The weighting thus endows pink noise with components of constant energy per octave bandwidth.

Bruel and Kjaer have produced a calibrated record of third-octave pink noise bands (Type QR2011) which, along with a B&K sound level meter, such as Type 2206, makes it possible to 'sweep' the loudspeaker and room. The resulting overall response needs to be interpreted with care, however,

since at the higher frequencies the response fails to correlate to what we hear. This is because we judge a sound more on its starting transient rather than on its overall integrated energy. Nevertheless, low-frequency standing waves are brought to light, and modifications to loudspeaker positions, furniture positions and amplifier tone controls can often improve matters. It is hoped to publish an article in these pages later describing listening room optimisation.

The prime discrepancies between what the meter reads and what the ear discerns are related to non-linear effects both in the amplifier and loudspeaker; also, sometimes, to how the non-linearities interact electrically and acoustically. One problem in obtaining subjective correlation from a meter reading lies in the nature of the signals we are obliged to use for the measurements. Sine and square wave signals are useful, being component parts of music signal, but real music signal is much more complicated than both of these.

If it were possible to feed a loudspeaker with a perfect electrical representation of the originating sound, it is likely that the reproduction would be less palatable than that obtained by first passing the source signal through a distorting amplifier! A non-distorting signal would tend to emphasise the loudspeaker non-linearities in terms of cross modulation of spatial, spectral and temporal co-ordinates. The reproduction would thus be modified by all the practical inadequacies of even the best of loudspeakers. Further modification would result from distortion on the electrical signal, and there is reason to believe that distortion on the signal prior to its application to the loudspeaker can, in certain circumstances, lead to more acceptable reproduction¹. (So much for the straight piece of wire with gain theory – Ed)

The loudspeaker distortion co-ordinates would then themselves be crossmodulated by similar distortion

... a perfect representation of the original sound may be less palatable than by first passing it through a distorting amplifier!

co-ordinates on the signal before the loudspeaker, leading to an acoustical result more closely related to the originating sound as humanly judged, than if the loudspeaker distortion alone were present.

The nature of the distortion produced by both the amplifier and loudspeaker is thus critical, so that different types of distortion would give different subjective impressions, which is not uncommon in a system of units of different distortion types. For example, the distortion from a radio tuner can interact with the distortion of an amplifier to which it is connected in such a way that the instrument-indicated *change* in the net distortion from the partnership, as the FM tuning is adjusted within the passband of a tuned signal, lacks subjective correlation. A test condition can be established where a fall in meter distortion is accompanied by an obvious rise in subjective distortion!

It thus seems to be perfectly feasible that after establishing the most acceptable reproduction by selection

... a fall in measured distortion may be accompanied by a rise in subjective distortion.

of the amplifier and loudspeaker partnership, a detraction in subjective acceptability could well result by changing either the amplifier or loudspeaker. I believe that this is one reason why a hi-fi system whose amplifier parameters

ELECTRONICS TODAY INTERNATIONAL-MARCH 1976

measure in advance of those of another may not necessarily audition any better. Indeed, it could be judged subjectively inferior!

It should be understood that we are now considering hi-fi at the top equipment level, where the amplifier distortion figure is, at least, *one* place to the right of the decimal point. Distortion from this class of amplifier seems to be falling more swiftly than the distortion from comparable class loudspeakers, which is not making it particularly easy to select suitable loudspeakers for the parameters of the amplifiers.

One amplifier from the Pioneer range comes to mind. In the lab this was found to have a very low level of distortion – one of the lowest ever measured – with harmonic components down to the distortion threshold of the measuring oscillator (0.002%) over the whole dynamic range, as measured with a wave analyser to read below the wideband noise power of the simple distortion factor meter. The intermodulation distortion was also correspondingly low and there was no crossover discontinuity; yet, in partnership with acclaimed well known loudspeakers, the amplifier was judged to be less subjectively acceptable than a counterpart of similar power, bandwidth, etc. but of much higher measured distortion.

Clearly, it is becoming more important to audition loudspeakers in partnership with the amplifier with which it is going to be used. The ultimate performance of the Pioneer, just exampled, was eventually realised only after careful loudspeaker selection.

Most of the important parameters of amplifiers are measured into resistive loads, which does not make much sense because no loudspeaker presents a purely resistive load to an amplifier. The load analogue of a loudspeaker is an impedance composed of resistance, capacitance and inductance, but the impedance is not very easily defined since it is affected to some extent by the electrical drive signal and, of course, by the impedance of the separate units and nature of the frequency dividers. Different designs of loudspeakers present different loads to amplifiers, and it is not feasible to construct load analogues corresponding to all loudspeakers for testing amplifiers! Neither is it good for the loudspeakers (nor the neighbours!) to use real loudspeakers at test loads. Thus for testing we are back to R with, perhaps, a dash of C and/or L.

There has been a tendency for designers to optimise in terms of the smallest rise-time into resistive loads, and rise-times as small as 2 μ sec. can be seen in the specs. However, there can be a dramatic change in scene when the load is made reactive by the addition of C.

For example, in Fig. 1(a) the step function applied to the input of an amplifier was around 100 nsec. rise-time. The oscilloscope was set to 5 μ sec./div., giving the display a rise-time, via the amplifier and *resistive* load, of about 2 to 3 μ sec., corresponding to about 140 kHz -3 dB upper-frequency response.

The trace at (b) shows the same signal from the same amplifier, but this time with the load consisting of 8 ohms in parallel with 1 μ F. Rings as bad as this can certainly affect the tonal quality of an amplifier, depending on their amplitude and period. I have suggested² a definition of settling-time as an important parameter of amplifiers when measured into a reactive load arranged either to evoke the worst condition (i.e., by selecting shunt C for the most prolonged ring, when R corresponds to the rated load) or to the load analogue of the loudspeaker which will be used with the amplifier. The definition of settling-time under ref. 2, is the time elapsed from the application of the step-function to the time that the amplifier enters and remains within a ± 5% error band, corresponding to E₀ ± Δ E, where E₀ is the final settling voltage. With the

11

AMPLIFIER DISTORTION

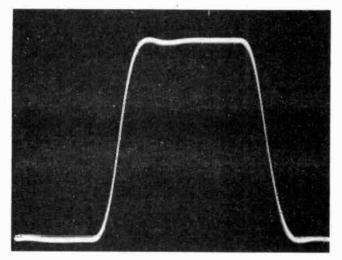


Fig. 1. Amplifier of small rise-time. (a) resistive rise-time about 4µsec.

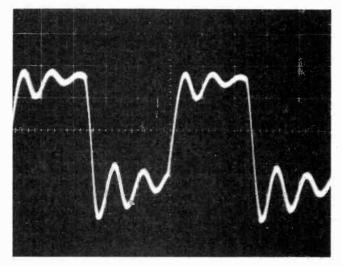


Fig. 1(b). Severe rings into reactance resulting in protracted 50µsec. settling-time.

settling-time referred to $\triangle E/E_0 \times 100$, it is in advance of 50 μ sec. in Fig. 1(b), which is unacceptable for hi-fi.

Too long a settling-time, therefore, appears to be another valid reason why some amplifiers fail to audition as well as might be expected from distortion measurements alone; also another reason why a change in loudspeaker may modify the subjective result (i.e., by changing the electrical transient performance of the amplifier).

The oscillograms in Fig. 2 reveal a more acceptable state of affairs. That at (a) is based on a 3 μ sec./div. sweep and corresponds to the resistive rise-time of a different amplifier of around 7 μ sec. (50 kHz - 3 dB response), (b) shows what happens when the resistive load is shunted by capacitance. There are no rings in this case, just a mild kink at the leading and trailing corners of the squarewave, with the settling-time corresponding to about 10 μ sec. (waveform on 20 μ sec./div. sweep). This shows the worst condition obtained with a shunt capacitance of 0.68 μ F.

There appears to be a definite tendency for amplifiers designed for dramatically small resistive rise-times (some as small as $1.8 \ \mu$ sec. have been measured) to suffer prolonged settling-time as the result of severe rings into reactive loads, and hence tonal impairment when used with loudspeakers

constituting critical load conditions.

The value of designing for very small rise-times and hence for extended small-signal high-frequency response is thus obvious. A rise-time of 1.8 μ sec. implies that the amplifier is responsive well up to 200 kHz (the LW radio band!). Rise-time is related to the upper-frequency response by K/f, where K is a constant defined by the response characteristic of the amplifier or network, and f the upper-frequency where the response is 3 dB below the mid-spectrum response. When the upper-frequency roll-off approaches the so-called gaussian characteristic (i.e., when the -3 dB upper-frequency is approximately half the -12 dB frequency), K is close to 0.35; but it can range between 0.3 and 0.5, depending on the nature of the roll-off.

Of course the upper-frequency response needs to extend beyond audibility to accommodate the transient components of the music signal and thus to preserve the musical attack. However, it is difficult to argue in favour of a response much above 30 kHz, corresponding to around 12 μ sec. rise-time. We have seen that an extended response might encourage rings and increased settling-time. There is also the possibility that it might encourage 'blocking' following fast transient signals. This is called transient intermodulation distortion.

Transient components of music signals rarely exceed about 16 μ sec, owing to the limitations associated with the response and transfer characteristic of their sources. For example, a high quality FM transmission has an

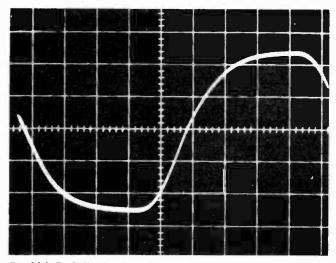


Fig. 2(a). Resistive rise-time about 7µsec.

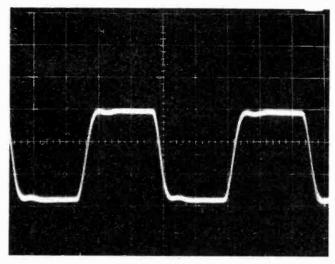


Fig. 2(b). Well controlled overshoot into reactance resulting in settling-time of 10μ sec.

upper-frequency response limit of 15 kHz, with a swift fall into the 19 kHz pilot tone notch, thereby limiting the maximum equivalent rise-time to about 20 μ sec. Few gramophone records carry high energy information much above 18 kHz, and the same applies to tape recordings, so even from sources of this kind the music transients are not likely to be much faster than 17 μ sec. It is thus difficult to commend small-signal responses down to 2 μ sec. or less and up to 200 kHz or more!

Transient components of music signals rarely exceed 16 µsec.

If one regards the source as a network of a given response, then, clearly, further limiting by a relatively slow amplifier response is undesirable. However, it must be remembered that the total rise-time (T_0) of two cascaded networks of rise-times T_1 and T_2 is equal to the vector sum (not to the simple sum), such that $T_0 = \sqrt{T_1^2 + T_2^2}$. Thus the degree of response limiting of the source signal by the amplifier is relatively small — certainly not calling for a rise-time as small as 2 µsec.

Contemporary hi-fi amplifiers rely on negative feedback for extending and flattening the frequency response and for reducing non-linear distortion, particularly of the power amplifier section. The open-loop bandwidth of a power amplifier is dictated by the transistors which are available to drive the required audio power into reactive loudspeaker loads without veering too close to the secondary breakdown characteristic. This generally means that quite a lot of negative feedback must be applied to yield a viable closed-loop power response, and that lead and/or lag networks are necessary to maintain a reasonable stability margin. Unless the ratio of the response of the power amplifier in the open-loop mode to the response of the preamplifier is of unity or greater value, the amplifier is likely to exhibit transient intermodulation distortion — tid, for short.

In other words, the overall frequency response of the hi-fi amplifier should be dictated by the roll-off of the preamplifier section and not by the power amplifier section³. This, then, clearly places a limit on the small-signal response or rise-time of the preamplifier, beyond which it is subjectively imprudent to engineer.

The mechanics of tid can be described in the following way. The total input to a feedback amplifier consists of the sum of two signals, the source signal proper and the error signal fed back antiphase. If the source signal is a very fast transient and the error signal slightly delayed owing to a relatively slow power amplifier response, the input stage of the power amplifier will momentarily receive a signal of greater amplitude than it is designed to accommodate, and severe overloading may ensue. The transient may thus be distorted, and the sudden 'shock' to the input stage may result in this closing down for a brief period, followed by a relatively slow recovery due to the action of circuit time-constants, so that information immediately following the transient is lost.

... overall frequency response should be determined by the roll off of the pre-amplifier ...

A method for the display of tid has been promulgated⁴ and attempts have been made to measure it^5 , but so far there is no accepted standard for the measurement.

ANDROMEDA ELECTRONICS LIMITED 3 Worcester Road, Malvern, Worcestershire tel. 63703

DIGITAL I.C's	LINEAR I.C's	DIODES	RESISTORS							
7400 £ 14p 7401 15p 7402 15p 7403 15p 7404 18p 7405 18p 7406 43p 7407 43p 7408 18p 7409 20p 7410 15p 7420 15p 7430 15p 7440 15p 7440 15p 7440 15p 7440 35p 7443 32p 7470 29p 7472 18p 7473 36p 7493 50p 74121 36p 74123 £11.	741 8 PIN D.I.L. 36p SIGNETICS 555 79p NATIONAL LM380 £1. 35p NATIONAL LM390-OOK 6 6 VOLT/80OMA REGULATOR £1. 30p TRANSISTORS BC107 1p BC108 13p %C109 14p 2N3703 14p 2N3704 15p BC182L 14p BC212L 17p 2N1613 25p RCA 40871 78p 2N3055 78p 2N319 39p TIS43 30p TIC44 43p	1N4148/914 4p 1N4001 10p 1N4004 12p 1N4007 13p G.I. 400vlt/lamp 40p BRIDGE 1.8. 200vlt/5amp 61.50p BRIDGE 1.8. 200vlt/5amp 61.50p MALL VALVES 3.3vlts 14p ALL VALVES 3.3vlts 120p TIL209 L.E.D. 35p TIL211 L.E.D. 39p POTENTIOMETERS AB45TYPE SKA -1MA LOG AND LIN 28p LOG AND LIN 28p LOG AND LIN GANGED 85p PRESETS 100A - 2.2MA (E3SERIES) VERT, HOR, AND MIN 15p	O.5 WATT AND O.25 WATT CARBON FILM E12 SERIES 2p CAPACITORS 10pF - O.1uF (E6 SERIES) CERAMIC OR POLYESTER 5p AUDIO CONNECTORS 2 PIN D.I.N. PLUGS, CHASSIS AND LINE SKTS 10p 5 PIN 180° PLUGS 20p 5 PIN 180° CHASSIS SKTS 13p 5 PIN 180° CHASSIS SKTS 13p 9 PIN 180° LINE SKTS 21p PHONO PLUGS (PLASTIC) 13p							
MINIMUM ORDER 40p PLEASE - FREE CATALOGUE WITH EVERY ORDER ALL ORDERS PROCESSED IN UNDER 24 HOURS - TRADE ENQUIRIES WELCOME ALL PRICES INCLUDE V.A.T. AND POSTAGE-NO HIDDEN EXTRAS										

AMPLIFIER DISTORTION

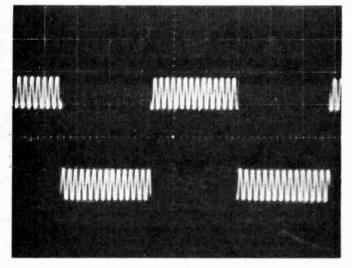


Fig. 3. Transient intermodulation distortion. (a) Test signal of squarewave plus sinewave.

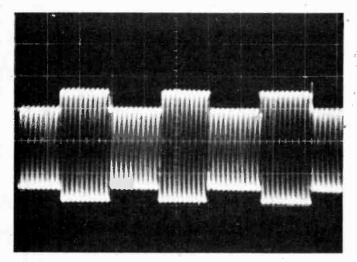


Fig. 3(b). Severe form of tid.

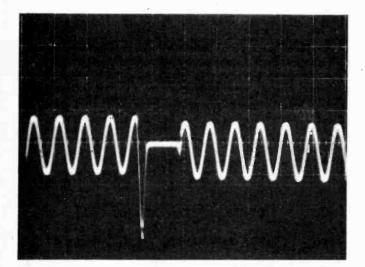


Fig. 3(c). Showing 'blocking' effect.

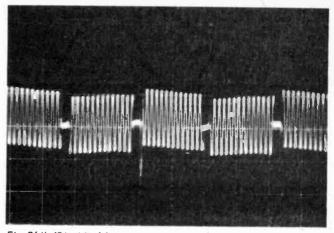


Fig. 3(d). 'Blocking' following each squarewave transient.

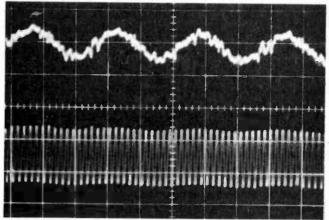


Fig. 3(e). Relative freedom from tid; bottom trace reconstituted sinewave; top trace distortion content of waveform.

The oscillograms in Fig. 3 may be of interest. Display (a) shows a test signal consisting of the addition of sinewave and squarewave signals. This composite signal is applied to the input of the amplifier under test, and at the output the squarewave component is cancelled out so that the sinewave component only is left for oscilloscope analysis. The squarewave is cancelled by applying to a bridge circuit an inverted *replica* of the squarewave component of the composite signal.

Display (b) shows a severe form of tid, giving asymmetrical sinewave components on the positive and negative going squarewave cycles. Display (c) shows the 'blocking' effect following transients. (d) is a similar display but with less expansion. Display (e) shows the sinewave components fairly well fitted together on the bottom trace, thereby indicating minimal tid, and the distortion signal on the top trace, after passing through a distortion factor meter.

Transient intermodulation distortion tends to affect the quality of the reproduction more towards the full power drive of the amplifier, and is emphasised by treble lift. It manifests as stridence and harshness on signal peaks. While there is a real possibility of tid being responsible for lack of objective/subjective correlation (for it does not appear as a parameter in specifications or reviews), it can only occur when the rate of rise of a signal transient at the *power amplifier* input is in advance of the response speed of the power amplifier in open-loop mode. It is thus encouraged by a very small rise-time which is not matched by the response speed of the power amplifier, indicated by a poor or mediocre slew-rate.

It is becoming apparent that an amplifier of very low distortion factor may not necessarily produce better sound than a counterpart which fares objectively less well. In fact, the latter may audition better! Here, then, is still another reason why an amplifier of very low measured distortion may fail to perform subjectively as one might expect.

A clue to this paradox is contained in the oscillograms shown in Fig. 4. A distortion factor meter responds to the average energy in the distortion signal, but the ear is more critical of signal peaks composed of high-order harmonics than lower-order harmonics of higher energy. Display (a) indicates relatively high energy third-harmonic distortion, which would produce a fairly substantial reading on a distortion factor meter compared with display (b), where the energy is small but the amplitude of the peaks large at the crossover points. The distortion factor of (a) was around 0.25% and of (b) a mere 0.05%, yet the amplifier responsible for (a) was more acceptable in the listening room than that responsible for (b), in spite of (a) being the much greater readout!

When comparing amplifiers in terms of distortion factor, it is essential to take account of the *nature* of the distortion, since the figures alone rarely provide adequate comparative information. Alternatively, attention should be directed to the intermodulation distortion, for with suitably high measuring frequencies, such as $f_1 = 5$ kHz and $f_2 = 9$ kHz (1:1 ratio), a relatively high $2f_1 - f_2$ readout is a sure indication that the crossover distortion is not very well tamed, particularly when this order increases as the power of the amplifier is reduced. Crossover distortion is generally more troublesome at low amplifier power, than at high power, the converse of tid.

Another form of bad crossover distortion is shown by display (c), where the energy is also high. This corresponds to about 0.4%, which is barely hi-fi. A commendable result is shown by display (d), the distortion being virtually down to noise threshold with no crossover artifacts; this corresponds to 0.02%.

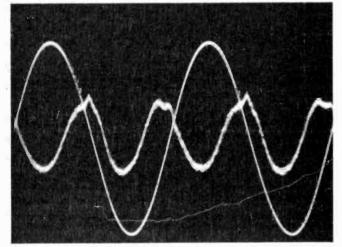


Fig. 4, Distortion factor oscillograms. (a) relatively high energy thirdharmonic distortion.

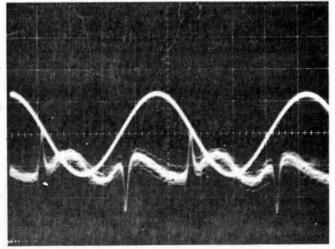


Fig. 4 (b). Low total energy but 'peaky' crossover.

ELECTRONICS TODAY INTERNATIONAL-MARCH 1976

... it is essential to take account of the nature of distortion - figures alone are insufficient.

Other factors responsible for the auditioning differences of amplifiers include asymmetrical overload allied with abnormally long recovery time-constant and changing quiescent current under dynamic conditions. The damping factor, too, has a bearing on the amplifier/loudspeaker partnership, and it is desirable for the amplifier's source impedance to remain at a low value right down to infrabass.

In conclusion, it is hoped that this article has given a few interesting points over which to ponder. We are learning all the time, which is half the fun of hi-fi.

References:

- Richard C. Heyser, Geometrical Considerations of Subjective Audio, *JAES*, Vol. 22, No. 9, Nov. 74.
- 2. Gordon J. King, Settling-Time in Audio Amplifiers, Wireless World, March 75.
- 3. Matti Otala, Circuit Design Modifications for Minimising Transient Intermodulation Distortion in Audio Amplifiers, JAES, June, 72, Vol. 20. No. 5, and Transient Distortion in Transistor Power Amplifiers, *IEE Transactions on Audio and Electroacoustics*, Vol. AU-18, Sept. 1970; also Transient Intermodulation Distortion in Commercial Audio Amplifiers, JAES, May 1974, Vol. 22, No. 4.
- J R Stuart, An Approach to Audio Amplifier Design, Wireless World, Oct. 1973.
- 5. Gordon J. King, *The Audio Handbook*, published by Newnes-Butterworths.

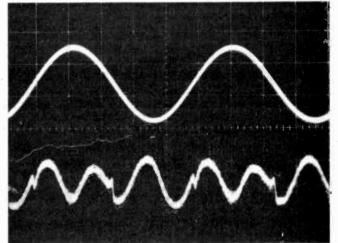


Fig. 4(c). High total energy, including crossover distortion.

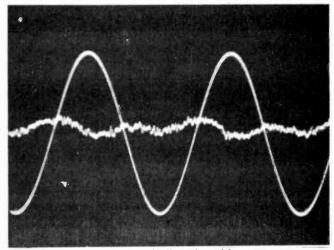
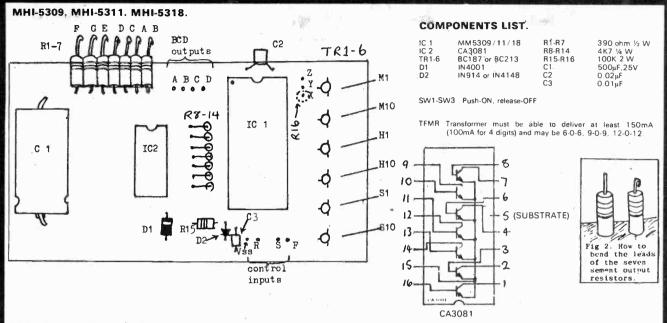
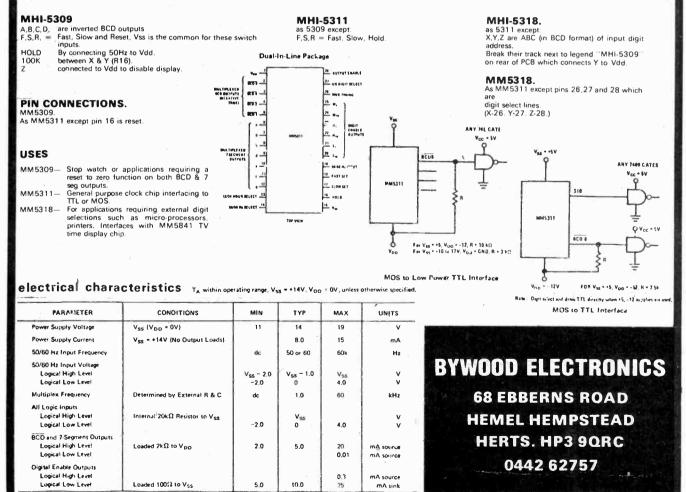
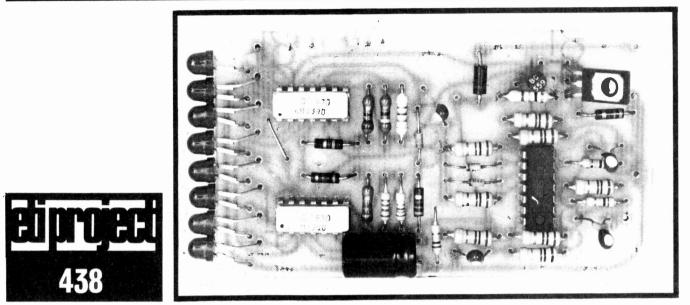



Fig. 4(d). Low energy harmonic distortion without crossover artifacts.


ASSEMBLY INSTRUCTIONS.

Take care when soldering not to bridge any of the fine gaps between adjacent tracks on the PCB. Do not solder pins of ICso transistors for too long or damage from overheating may occur.

Take care when soldering hor to bridge any of the me gaps cancer and the solution of the so


12-18V UC. Disconnect transformer. Insert and solder diode D2. Insert and solder the sixteen resistors and capacitors C2 & C3. Insert socket and solder. Insert the two ICs. D0 NOT SOLDER — check the polarity, then solder. Solder wires on to the tags on the back of the board and lead these to the three push switches and to the transformer outputs (POWER OFF). The main clock board is now complete and ready for wiring to the display board. Only one end of resistors R1-R7 are soldered to the PCB, with the other ends sticking up to form

connecting pins. Cut the resistor leads to about 1/4 inch long and then bend them back as shown in fig. 2. The wires to the display can now be hooked into the resistors and soldered into place.

16

AUDIO LEVEL METER

Peak and average audio levels are indicated by a bar of light.

HIGH-POWER amplifiers usually incorporate meters to indicate the output-power levels in each channel. These meters are often called VU meters but in most cases they resemble proper VU meters only in the way they are scaled.

A professional VU meter is the industry standard for measuring the levels of complex music waveforms. It has a scale marked from -20 to +3 VU (on a steady state signal VU correspond to dB) where '0' VU corresponds to a level of one milliwatt into 600 ohms. The meter has a carefully controlled time constant such that if a reference tone level is applied the pointer of the meter will take 0.3 seconds to reach 99% of the reference level, and will then

overshoot by not more than 1.5% and not less than 1.0%.

The professional VU meter is thus an instrument that has been designed to give a reasonable compromise between indicating the fast peaks and the average levels of a complex music waveform.

In contrast the meters fitted to some amplifiers have scales calibrated in VU but usually relying on the inertia of the meter movement to provide meter averaging. Apart from this the 0 VU point corresponds to the rated power output of the amplifier – not to 1 mW into 600 ohms (equivalent to 75 mW in 8 ohms). Strictly speaking therefore such meters should be called level or power meters, not VU meters.

Even the best of such meters are not

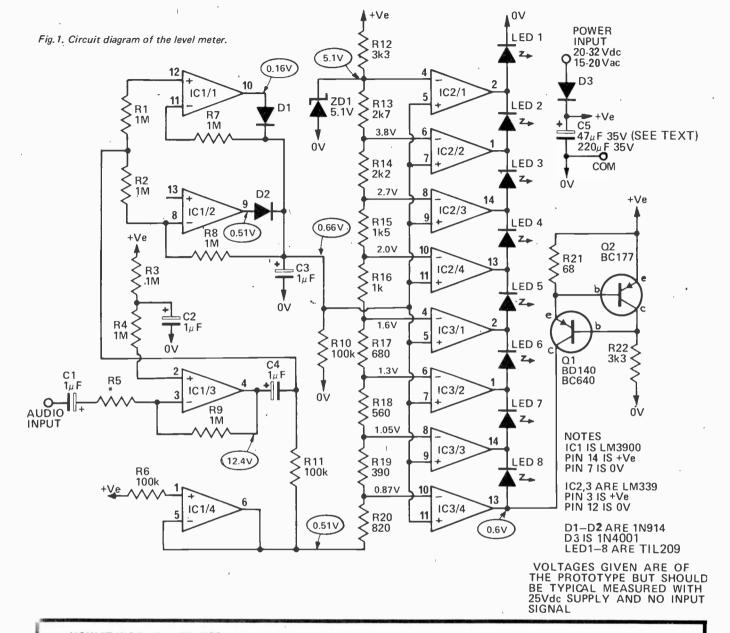
	SPECIFICA	ΓΙΟΝ
	Supply voltage	20 to 32 volts dc 15 to 20 volts dc
	Supply current	16 mA dc approx,
-	Input sensitivity (VU meter)	500 k/v
	Indication	8 LEDs 3 dB apart
	Attack time	1 ms
	Release time	0.5 sec.

fast enough to indicate accurately the peak levels which occur in music and hence are useless for detecting the onset of amplifier clipping. This is vital as at clipping amplifier distortion rises rapidly.

One alternative is to use in addition to the level meter a clipping indicator that detects fast peaks which exceed a preset level. The ETI 417 OVER-LED project (Nov. 73 issue) was such an instrument – it flashed an LED when a music transient exceeded clipping level.

The circuit described in this project is best described as a 'level meter'. It uses an array of LED diodes set to illuminate at successively higher increments in music level. With this type of display an estimate can quite easily be made of channel balance, and all transients, no matter how fast, are detected and indicated.

DESIGN FEATURES


The ETI 438 Level Meter can be arranged to indicate levels either in 'VU meter' format or in output power format. In the 'VU-meter' format the eight diodes light at 3 dB intervals from -18 to +3 VU where 0 VU corresponds to the nominal voltage required. Alternately as a power meter (remember that an amplifier cannot be driven beyond the clipping point) the top LED indicates maximum power and each lower LED indicates half the power of the one above it. The LEDs of the meter, could thus be labelled, for example (for a 100 watt amplifier) 100, 50, 25, 12.5 watts etc.

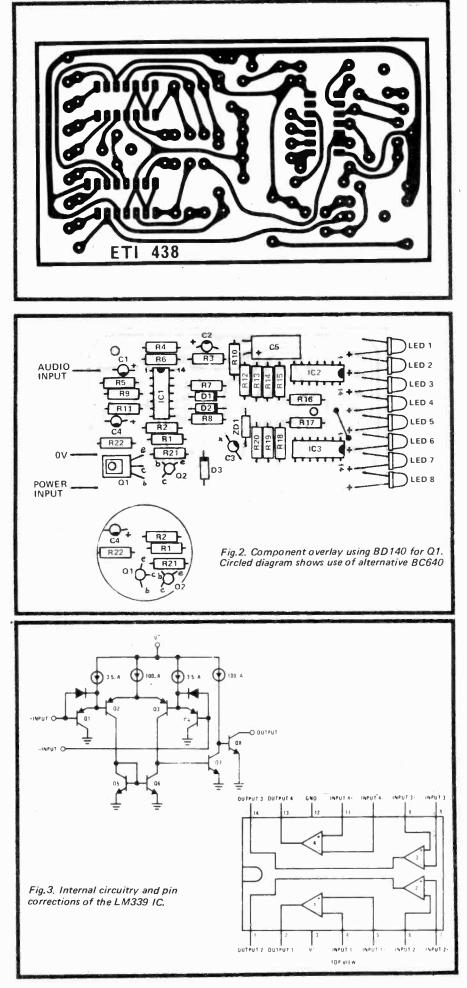
The fast attack time of the meter

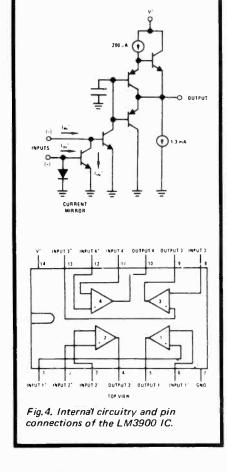
ELECTRONICS TODAY INTERNATIONAL-MARCH 1976

17

HOW IT WORKS - ETI 438

Although the circuitry of the level meter looks complicated the complete instrument only uses three ICs. These are an LM3900 which is a quad amplifier and two LM339s which are quad voltage comparators. The input signal is amplified and buffered by IC1/3 to provide about 2.5 volts out at 0 VU input. The value of R5 is selected to give the sensitivity required for amplifiers of different power outputs. The gain of this amplifier is equal to the ratio of R9/R5.


A positive peak detector, IC1/1, and an inverting negative peak detector, IC1/2, give an output which represents the absolute peak level. Capacitor C3 and resistor R10 provide the peak hold and decay time. IC1/4 provides compensation for the 0.6 volt offsets of the LM3900 inputs.


The eight comparators are connected to a resistor divider chain the top of which is fed from a 5.1 volt supply which is stabilized by a zener. The resistor values are calculated to provide reference voltage steps at 3 dB intervals. The output of the detector is applied to all the non-inverting inputs of the comparators.

The LEDs are all connected in series and supplied with a constant current of 10 mA by the source consisting of Q1 and Q2. The outputs of the comparators are via open collector transistors which are "ON" if the input is lower than the reference voltage at the particular comparator input. With no input signal at all the comparators are all on thus shorting out all the LEDs so that none is on. As the input voltage rises the comparators turn off in sequence allowing the 10 mA to flow through the LEDs. Thus as the voltage increases a bar of light of increasing height is formed by the LEDs. ł

The current drawn from the power supply is about 16 mA and is independent of the number of LEDs which are on. Supply voltage is not critical and may be anywhere between 20 and 32 volts. Providing the supply is between these limits the unit will also be insensitive to supply ripple. When working from a dc supply a 47 microfarad filter capacitor is required but if an ac supply is used then the capacitor should be increased to 220 microfarad to minimize ripple. A single diode is used to both rectify the ac input and to prevent damage due to accidental reversed polarity if a dc supply is used.

PARTS LIST - ETI 438
R21 Resistor 68 ohm 1/2W 5% R19 '' 390 ohm 1/2W 5% R18 '' 560 ohm 1/2W 5% R17 '' 680 ohm 1/2W 5% R20 '' 820 ohm 1/2W 5%
R16 " 1k 4/2W 5% R15 " 1k5 4/2W 5% R14 " 2k2 4/2W 5% R13 " 2k7 4/2W 5% R12,22 " 3k3 4/2W 5%
R6,10,11 Resistor 100k ^{1/2} W 5% R1,2,7,8 '' 1M ^{1/2} W 5% R3,4,9 '' See Table 1 ¹ /2W 5% R5 '' See Table 1 ¹ /2W 5%
C1,2,3,4 Capacitor 1 μF 35∨ *C5A '' 47 μF 35∨ *C5B '' 220μF 35∨
* use 47 μ F for dc operation 220 μ F for ac operation
IC1 Integrated Circuit LM 3900 IC2,3 Integrated Circuit LM 339
D1,2 Diode IN914, BA318 or similar D3 '' IN4001 or similar ZD1 Zener diode 5.1 V 400 mW
Q1 Transistor BD 140, Q2 '' BC177,
LED 1-8 L.E.D. TIL209 or similar
PC board ET1 438

AUDIO LEVEL METER

(less than one millisecond) ensures that even very short transients are detected, whilst the relatively slow release time (0.5 seconds) provides a reasonably-accurate, average – level indication.

In most previous designs for such meters, discrete transistors were used to build level detectors. Temperature effects and variations in gain led to inaccuracies and to calibration difficulties. These problems have largely been overcome in the ETI 438 meter by using the LM339 IC which contains four accurate level detectors in one package. Additionally the LM339 also has an open-collector output stage which enables a constant current supply for the LEDs to be used. Thus the current and LED brightness are the same no matter how many LEDs are alight.

If required the interval between LEDs may be altered by changing the values of R13 to R20. Thus for example, a 6 dB interval could be used. Additionally the display could be extended to 12 or even 16 diodes by adding comparators and LEDs and by substituting another divider chain for R20 (values would have to be calculated for the levels required). The positive inputs of the comparators would also be fed from C3 and R10.

A separate current source would be required as there is insufficient supply voltage available to light 16 LEDs in series. If the bottom LED in such a system indicates a level more than 30 dB down it may also be necessary to use a trimpot as the bottom resistor of the second divider chain to adjust for offsets etc.

The LM3900 is a quad differential amplifier which uses a current balancing technique at the input rather than the voltage balancing that is used with conventional operational amplifiers. Both the inputs "look" like the base-emitter junctions of normal transistors and both are at 0.6 volts with respect to ground. The currents into the two inputs must be equal if the output of the amplifier is to be in the linear region. In the case of IC1/3 the current into the positive input is set at about 12 microamps by R3 and R4. Current into the negative input is provided from the output by R9. If the current into the negative input is too low the output voltage will rise thus increasing the current into the negative input until balance is achieved. This self balancing ensures correct static biasing.

Gain is obtained by feeding a signal into R5 which adds or subtracts current into the negative input. For the amplifier to remain balanced there must be a corresponding shift in output voltage. The voltage gain is the ratio of R9 to R5.

	TABI			
	POWER OUTPUT		VALUE OF R5	
	IN WATTS	4 Ohms	8 Ohms	16 Ohms
	5	150 k	200 k	270 k
	10	200 k	270 k	390 k
	15	240 k	330 k	470 k
	20	270 k	390 k	560 k
	25	330 k	430 k	620 k
·	30	360 k	470 k	680 k
	40	390 k	560 k	820 k
	50	430 k	620 k	910 k
	75	560 k	750 k	1.1 M
	100	620 k	910 k	1.2 M
	150	750 k	1.1 M	1.5 M
	200	910 k	1.2 M	1.8 M
	250	1 M	1.5 M	2 M
			ower in watts beaker impedance	in Ohms.

SPECIFICATION LM3900

Maximum supply 32 V voltage 6 mA typical Supply current 2800 V/V typical Voltage gain Input current $1 \mu A - 1 m A$ range Current balance 0.9 - 1.1 at 200 uА **Bias current** 30 nA typical Output current 18 mA source capability typical. 1.3 mA sink typical

The LM339 is a quad voltage comparator where the output of each is an NPN transistor which has an unterminated collector and its emitter connected to ground.

SPECIFICATION LM339

Maximum supply	
voltage	36 V
Supply current	0.8 mA typical
Voltage gain	200 000 V/V
	typical
Offsett voltage	2 mV typical
Bias current	25 nA typical
Response time	1.3 μ S typical
Output sink current	16 mA typical
Input common-	
mode voltage	
range	0 to (V ⁺ - 2 volts)

CONSTRUCTION

The meter will most likely be mounted in an existing amplifier or piece of equipment and for this reason the board construction only is given. Layout of components is non-critical

but, as with any multiple IC device,

TABLE 1A — VU METER FSD = +3 dB R3, 4 and 9 are 1 megohm							
SENSITIVITY	VALUE OF R5*						
50 mV	22 k						
100 mV	47 k						
250 mV	120 k						
500 mV	220 k						
1 V	470 k						
*Sensitivity equals R5 x 500 000 ohms.							

construction is greatly simplified by using the printed-circuit board specified. The usual precautions with polarities of components, such as capacitors, diodes, ICs and transistors should be observed. Some care must be taken when mounting the LEDs in order to obtain even spacing and good alignment. The long lead of the LED should be inserted in the hole furthest from the edge of the board. Put a slight curvature in the leads so that the LEDs can be aligned against the edge of the board (see photo). Take care not to bend the leads too often or too close to the body of the LED as the leads break very easily.

CALIBRATION

Resistor R5 is selected from Table 1 and this will ensure a result within 10 percent of that required. Greater accuracy may be obtained by using a variable potentiometer, in series with R5. To adjust this potentiometer inject a signal (around 1 kHz) equal to 0 VU (VU meter) or maximum power (E = \sqrt{RP} , e.g. 4 ohms and 100 watts, E = 20 volts) and adjust such that the second top LED (VU meter) or the top LED (power meter) just lights.

The only **6 Function L.E.D.** Watch Kit in the world . . . for only £18.95*

SABCHRON DIGITAL

Probably the only six-function LED watch kit available today, the Sabchron Digital offers more features than many other LED WATCHES. At the touch of a single button you see the exact hour, minute, second, month and day-of-month ... PLUS an automatic date change memory which remembers whether the month contains 28, 30 or 31 days. Also, an AM / PM indicator which lights up while setting hours

HOURS/MINUTES

MINUTES/SECONDS

1236

SABCHRON

12 36

DATE

AM/PM INDICATOR

NEW CMOS IC CHIP

Containing the equivalent of over 1,500 transistors, this new IC chip features STATIC-PROTECTED TERMINALS — this means the IC can be handled safely with bare hands. It contains all the logic, decoding, multiplexing, disclay drive and exunting extint on a single display drive and counting circuits on a single silicon slice 1/50 square inch

QUARTZ CRYSTAL ACCURACY

The heart of the Sabchron Digital is a quartz crystal which provides a basic frequency of 32,768 Hz. This frequency is tuned to ± 2 parts per million via the trimmer capacitor and is divided in half 15 successive times to provide one is divided in that to backets the constrained of the provided in the pulse every second. This means a timekeeping accuracy to \pm 5 seconds per month. Careful adjustment of the trimmer can bring this accuracy to within ± 1 second per month or ± 12 seconds per year!

*** ORDERING INFORMATION**

All prices shown in British £'s are approximate equivalents of the following U.S. Dollar prices. Complete watch kit (less case and pracelet) \$38.00; Gold-plated case only \$12.00. Total \$50.00 postpaid via registered airmail to customers in U.K. Eire and Canada. Other countries please add \$3.00 additional for postage/packing REMITTANCE BY BANK DRAFT or INTERNATIONAL MONEY ORDER IN U.S. DOLLARS (available from all banks and national Giro offices)

International Reply Coupons

AUTOMATIC LED BRIGHTNESS

The Sabchron Digital features a special light sensor circuit which automatically adjusts LED display brightness according to varying light levels, thus conserving battery power. In a bright room the display brightens; in a dim room or darkness the display dims a feature not found in many other LED watches.

COMPLETE KIT

Contains all the components needed to build this space-age watch module, including solder, batteries and easy to follow assembly manual. If you can use a fine-point soldering iron and follow step-by-step assembly instructions, you can build the Sabchron Digital. If you have any problems, remember we're only as far as your nearest mailbox or telephone

PLUS THESE OTHER FEATURES

- Long-life silver-oxide power cells last up to one full year with normal use.
- Shock-protected, anti-magnetic Low component count - IC, LED package, Quartz
- crystal trimmer, photocell and two chip capacitors. Universal module size fits many LED watch cases
- (optional gold plated case available). Easy time and date resetting — you can change the time or date without affecting the accuracy of other functions. A very useful feature when crossing time or date lines.

OPTIONAL GOLD-PLATED CASE

does The above price include a case or band. A gold-plated case as pictured pictured (without bracelet) is available for £5.95. Note: The case is gold-plated; not "gold-tone", "gold-colour" or plastic. Elegantly styled and only slightly larger than a conventional watch, it is shown here actual size. Wear a time computer that looks like a watch, not vice versa. Cut out this case outline and try the size on your wrist

COMPARE THE FEATURES OF THE SABCHRON DIGITAL TO OTHER LED WATCHES — THEN ASK YOURSELF WHAT OTHER LED WATCH OFFERS SO MUCH AT SUCH A REASONABLE PRICE. MAIL THE COUPON TODAY.

Sabtronics International, P.O. Box 64683, Dallas, Texas, 75206, U.S.A. Tel. (214) 369-7309.				
Please send via Airmail				
6-function LED watch kits. Enclosed is a 🗌 Bank draft 📋 International				
Money Order for U.S.\$total.				
NAME				

TELETYPE 28 - NEW SPECIAL PRICE

board. Good condition (can be used as receive only) £32.50

TELETYPE 28 without key- | TELETYPE 28 with housing, keyboard and Power supply £45 ea.

Limited quantities - information in process of being obtained this may not be available when orders are dispatched but we guarantee to forward comprehensive information at the earliest possible time.

Ex BEA

Control Units by Univac.

Consisting of 2 -50way plug/socket; 3 multiway switch assembly; a 2 & 4 decade push button assembly electrical reset; etc. Very good value. £12.50 each.

ALWAYS A LARGE QUANTITY OF TEST EQUIPMENT, **SPECIALISED UNITS, CHASSIS, ETC.**

		CALL A	AND S	EE			
FHACHI RAMP FX21. 24 Volt DC ing saw tooth output. F external capacitor an potentiometer to com range up to 100KHZ electrolytic gives sweet cm per second). In capability. Price £5.7	out for 18 volt Requires only d 100K ohm trol frequency Z (eg 50 mfd ep of approx 1 or out sync	EX-MINISTRY CT436 Dout Beam Oscilloscope DC-6 mey Max Sensitivity 10mv/cm. Sm compact. Size 10 × 10 × 16 Suitable for Colour TV servicir Price £85 each including copy manual.	ole – 1 gs. %" all cent in. 10\ ng. Req of tion	ACHI VCO MODULE F2 OHZ-100KHZ. Size 2 x 1 H. Input 12V to 24V DC (re tapped), 18V input giv (constant amplitude out uires only 1 meg ohm po heter to tune entire range – be swept with a saw to ut. Price £5.75. P.P. 20p.	⅓ x (not ving put. nten- – or	SOLARTRON OSCILLOSCOPE TYPE CT316. $DC - 6 mc/s$. Size $8'2'' \times 11'' \times 20''$. Very fine condition in Ministry transit cases. Complete with copy of manual. £45 each.	
GRATICULES. 12 cm by plastic. 15p each P. & P. 8p. *PANEL mounting lam, hold FIBRE GLASS PRI BOARD. Brand n Double sided. Any sci. in. <u>Postage 22</u> MIGHT EMITTING D Hewlett-Packard. Bran Information 5p. Holders 1 METERS by SIFAM type N emp Scale 25-0-25 gm Index As new £25 de. Pi BLOCK PAPER CAPACITO with requirements *PHOTOCELL equivalent OC 12" CRT MAGNETIC Trace. Yellow Afterglov boxed. £4 each. Carriage ANALY SONZ-5	14 cm. in High Quality prs. Red or green. 9p es. NTED CIRCUIT Sev. Single or y size 12p per yp_per order. 10DES (Red) from d New. 38p es. p. 142.25-0-25 micro a Sign A 22.25-0-25 micro a Sign A 22.25-0-25 micro b C 25 micro a Sign A 22.25-0-25 micro b C 25 micro b	* TELEPHONES MODERN STYLE 706. BLACK TWO-TONE GREY, £3.75 each. P. 45p. HANDSETS — complete win insets and lead, £1.25 each. P. & P. DIALS ONLY, 50p each. P. & P. 25p MODERN STANDARD TELEPHONE GREY OR BLACK WITH A PLACE TO YOUR FINGERS LIKE THE 746. £1 each. P. & P. 45p. RELIANCE P.C.B. mounting, 270 500 ohms: 10K at 35p ea. ALL BRAND H VENNER Hour Meters—5 digt. Wall —sealed case. Standard mains. £3.7 P. & P. 55p. TRANSFORMERS. All standard Gard/Parm/Part 450-400-0400-450 MA. 2 × 6 3 × £3 ea. *STANDARD 2 meg. log pots. Current typ ee. INSTRUMENT 3in. Colvern 5 ohm 31 50K and 100K 50p ea.	ORY B	PACK S & D. Quantity 2 sq. 1 eccs. 500 plus P. & P. 200 AMER PACK, 2 Twin 50 / 200 pf cerr 0/60 pf cerrains; 2 min strips with 4 pf on each; 3 sir spaced preset 30 / 10 c bese. All BRAND NEW 25p the LOT A precision resistors 200K: 400K; 0 1% 27p ee.; 3 - 25K. 54K. 13	H SETS. IN SETS. IN SETS. IN SETS. IN SETS. IN CONTRACTOR C	HIGH-VALUE-PRINTED BOARD PACK. Jundreds of components, transistors, etc. — no wo boards the same — no short-leaded transis- or computer boards £1 75 post paid Large quantity LT, HT, EHT transformers and chokes. #Vast quantity of good quality components — NO PASSING TRADE— so we offer 3 LB, of ELECTRONIC GOODIES for £1.70 post paid #CRYSTALS, Colour 4.43MHz, Brand New, £1.25 e. P.&P. 15p #Brand new. City 1-9 13p ea, P & P 15p; 10-99 10p ea, P & P 25p; 100-999 7p ea, P & P. free HF Crystal Drive Unit 19in, rack mount, Standard 240V input with superb crystal oven by Labgear (no crystals) £5 ea, Carr. £2:00. #A.B. POTENTIONETERS LIN, 100K + ¹ 100K DUAL GANG. 259 each. Discount for	
ASSEMBLY AND INFORMATIO PRICE £27. P Board, module components (e:	DN S.A.E. _&P.75p sand all	40V 25K a for Variet	RNS TRIMPOT POTENTIOME 0: 100: 200: 500 ohms: 1: 2: 2:5 It 35p es. ALL BRAND NEW RELAYS It VP4 plastic covers 4 pole c/o 5:8K—40p es	: 5: 10: 15K—	quentrities. P. & P. extra. ★METER PACKS — 3 different meters for f2. P. & P. 55p. RESETTABLE COUNTERS—4 digit by Stonebridge/Sodeco. 1000ohm coil. €2 ea. P. & P. 35p.		
In four ranges. Wien independent sine and	sweep, width an As above but c P. & P. 35p. Both models ca 50Hz sweeping the exception of 20HZ to 2001 SQUARE WA bridge oscillator t square wave amp	of Receivers, Filters etc. 250K d frequency. Order LX63. Price £ an have extended cover range n be used with any general pu . An external sweep voltage ca the controls (not cased, not calib	Hz to 5 MH 8-50 P. & P. 3 down to 20K rpose oscillos in be used in prated), 5 MHZ to 1 Only 3 cont IF alignmen	55p. Hz by addition of externa cope. Requires 6-3V AC stead. These units are en WIDE RAN(50 MHZ (Useful harmoni rols, preset RF level, swe t, filters; receivers. Can b	on harmo al capacit input. Su icapsulate GE WO ics up to sep width be used v	onics. Three controls—RF level tors. Order LX63E. Price £11.50 upplied connected for automatic ed for additional reliability, with DBBULATOR 1.5 GHZ) up to 15 MHZ sweep width, and frequency. Ideal for 10.7 or TV with any general purpose scope. Full d use within minutes of receiving.	
9 to 12V supply requ £6.85 each. P. & P. 35 TYPE A Input: 12V DC Output: 1 3kV AC 1.5MA Price £3.45	TRAI TYPE B Input: 12V DÇ	P. & P. 35p. Sine Wave only NSISTOR INVERTOR TYPE C Input 12V to 24V DC Output: 1.5kV to 4kV AC 0.5MA Price £6.35	RS Inp Output: 14kV (IVY £6.75. P. & P. 35p. (No TYPE D ut 12V to 24V.0C DC 100 micro amps at 24V Jucing for lower input voltages Price £11	MAKE Y DOUBLE SOLID S 2 HZ to and cont for ONLY	not calibrated.)) OUR SINGLE BEAM SCOPE INTO A E WITH OUR NEW LOW PRICED TATE SWITCH. > 8 MHZ. Hook up a 9 volt battery nect your scope and have two traces (£6.25. P. & P. 25p. VAILABLE our 20 MHZ version at	
	DDED TAX n	Postage & Packing 36p Unless stated — pleas of included in prices comed, Gov./Educational	s—Goods Depts., Au	marked with * 2	l units 25% V		
Bay is with Access 7/9 ARTHU	IR ROAD, RE	ADING, BERKS. (rea		ollege, Kings Road		Reading 582605/65916	
4- 4-				EFFCTRONICS FOR		ENNATIONAL-WARGH 1370	

Coming soon... TOP PROJECTS

Over 100 pages, packed with some of the best projects from ETI. No 1 is now a complete sell-out, No 2 is going like hot cakes. No 3 is due for publication in coincidence with the April issue...look out for details. £1.00+20p postage

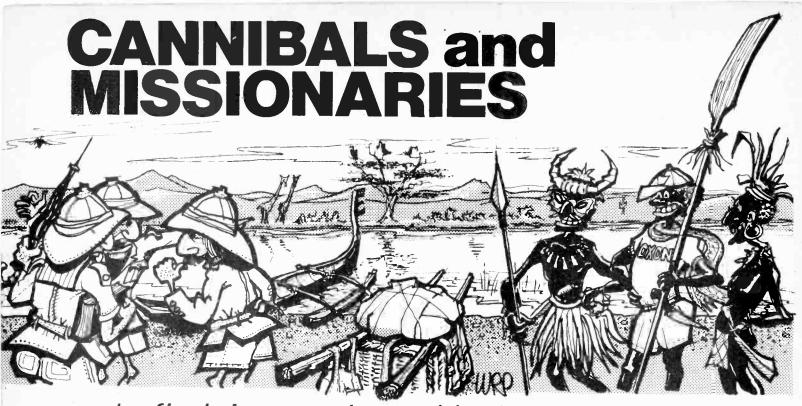
PULSAR, £13.95

WE ARE REPEATING OUR SPECIAL OFFER ON THIS DIGITAL ALARM CLOCK. WHEN WE RAN IT LAST YEAR IT PROVED TO BE ONE OF OUR MOST SUCCESSFUL OFFERS EVER! OUR PRICE INCLUDES VAT AND POST & PACKING.

Full size = 5in across and 3½in deep.

Pulsar shows the time 0.7in high on bright Planar Gas Discharge displays (there is a brightness control on the back). The dot on the left of the display shows AM/PM, and the flashing (1Hz) colon shows that the alarm and clock are working.

A bleeper alarm sounds until the clock is tipped forwards. Then the "snooze" facility can give you 5 minutes sleep before the alarm sounds again, and then another 5 minutes, etc, until you switch the alarm off. The clock also features a mains-failure indicator.


We have a large number of units in stock for this offer but please allow 28 days for delivery.

> PULSAR OFFER ETI MAGAZINE 36 Ebury Street, London SW1W 0LW.

I enclose cheque/P.O. for £13.95 (payable to ETI) for a Pulsar Alarm Clock.

	NAM	ΛE	•	•	•	•	•	•		r		•	•		٠	•	•	•	•	•	•	•
	ADD	R	ES	ss					•			•		•	•			•	•	•	÷	•
1	-	1				1		•	•	•	•											
	۰ ت	• •	•	•	•	•	•	•	1	¥,	•	•	•	•		•	•	•	ł	•	•	•
	- · · ·																					

Those not wishing to cut their magazine may order on their own notepaper.

- the final river crossing problem Designed by A.J. LOWE

HERE'S a particularly perplexing problem provided for people with painstaking propensities. It's an electrical model of the puzzle which goes like this:

Three missionaries and three cannibals come to a river they want to cross. A little boat at the bank will carry only two people. All the missionaries can row, but only one of the cannibals can row — he'd been to Oxford. He also wears a red shirt! If at any time, on either side of the river, cannibals outnumber missionaries then the cannibals will eat the missionaries, which, understandably, the missionaries don't want. Problem: how do they cross safely?

In the model shown in Fig.1 the missionaries are represented by three switches M1, M2 and M3, and the cannibals by three switches C1, C2 and C3. The missionary switches have white levers. Two of the cannibal switches have black levers, but the switch representing the cannibal who wears a shirt and learned to row at Oxford -- C2, has a red lever.

By operating the switches to represent crossings of the people involved — never more than two at a time as that's the limit of the boat, you try to solve the problem. If at any time a situation arises where, on either bank, cannibals outnumber missionaries then an aldrm sounds and you've failed.

The circuitry detects situations where cannibals can satisfy their taste for eating missionaries, but it does not detect cheating – such as putting three people in the boat, or allowing a cannibal who can't row to be in the boat on his own.

CONSTRUCTION

The prototype was assembled in a plastic box 140 mm x 100 mm x 75 mm high with an aluminium front panel. Modern telephone-type key switches were used each having four changeover switches on each side of the switch.

Figure 3 shows the bottom view of one of the switches and how its terminals are laid out. It also shows, by means of the arrow-headed lines, which terminals connect with the moving parts of the switches. The eight changeover switches which comprise one key switch have been lettered a to h for convenience and to tie in with the lettering in Fig.2.

Note carefully that the switches in Fig. 3 are shown making the circuits which they make when the switch lever is in its *central* position. When the switch lever is moved from the central position to the start side of the river it changes over only the switches on the opposite half of the switch — i.e. switched a, b, c, d. When the switch lever is moved from the centre position to the far side of the river it changes over only switches e, f, g, h.

These key switches can be bought with push-on handle covers of various colours. The prototype used white covers for the missionaries, black for two of the cannibals, and red for the cannibal C2 who wore a shirt (and went to Oxford).

Although key switches each containing a total of eight changeover switches were used in the original, actually it is only the missionaries who need all eight switches. The cannibals need only five changeovers, but it was

HOW IT WORKS

The circuit is a switching logic circuit. See Fig. 2. The cell and buzzer are between the outer vertical rails, and if ever a way between these two rails is set up by the switches then the alarm sounds. The circuit shows all the switches in the *stacting* position i.e. all the missionaries ard cannibals are on the near bank. Note that when any person goes over the river *all* switches changeover. The customary dotted lines showing the connections between coupled switches have been omitted for clarity. Thus, if M1 crosses the river, switches M1a, M1b, M1c, M1d, M1c, M1f, M1g and M1h all changeover.

You can work out the circuits for the alarm to sound. Here are three examples. Suppose all three canniba's stay on the start side and M1 goes over. Then the cannibals outnumber the nilssionaries on the start side and so the alarm sounds – through C2b, C3b, C1b, M2d, M2c and M1d which has changed over.

Similarly, if M2 went over alone then the alarm would sound through C2b, C3b, C1b, M3d, M1d, M3b and M2a which has changed over.

And if M3 went over alone the alarm sounds through C2b, C3b, C1b, M1c; M2c, M1d and M3b which has changed over.

You can check all the 'darm should sound' configurations on each bank of the river by visualising an alarming situation – cannibals outnumbering missionaries, and then tracing through the switches to find a circuit. Similarly the 'darm' should no sound' circuits, or tather 'no' circuits can be checked in the same way.

FINISHING SIDE OF RIVER

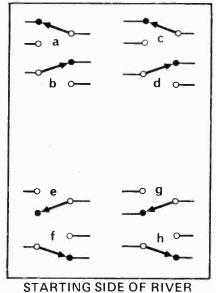


Fig. 3 Terminal layout on standard key switch with four changeover on each half, Contacts shown as being made in this diagram are with the lever in the central position.

thought simpler to buy six identical switches.

Those with access to disposal stores could probably buy enough old style key switches comparatively cheaply, to build up the necessary number of switching functions needed.

The panel aperture dimensions for a standard key switch are shown in Fig.4.

The buzzer alarm and battery holder

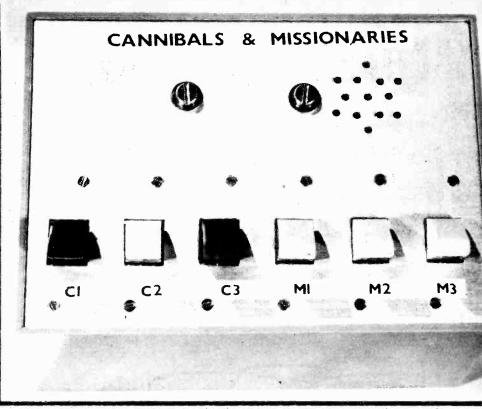


Fig. 1. The finished model. Lettering done with press-on letters on white Contact.

are all one piece - taken from a bicycle horn.

Wiring must be done carefully – very carefully! Bare wire was used in the prototype. Figure 5 shows the wiring diagram for the start side half of the switches and Fig. 6 shows the wiring of the other half. They are shown separately to minimise confusion. As can be seen from Figure 7, the switch wiring needs considerable care. On each of Fig. 5 and Fig. 6 one lead is marked 'To Buzzer' and another 'To battery -ve'. These leads, i.e. both buzzer leads are joined together and to the buzzer; and both battery -ve leads are joined together and run to battery -ve.

When wiring up - work logically. Start with switch M3 which is on the

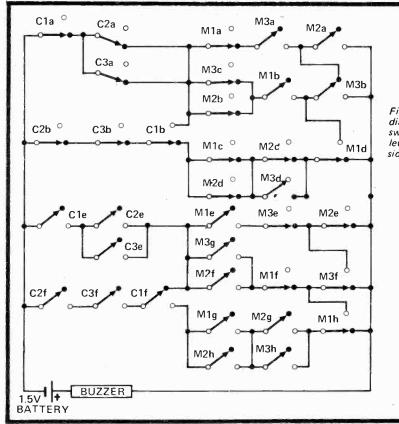


Fig. 2 The circuit diagram with all switches shown with levers on the start side of the river

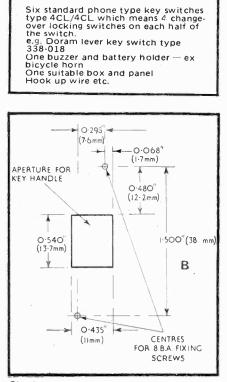
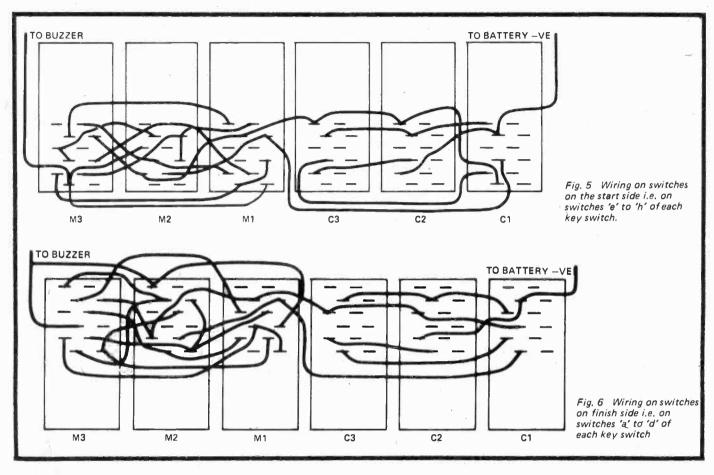



Fig. 4 Dimensions of aperture needed and hole positions for standard key switch.

CANNIBALS and MISSIONARIES

left when the panel is upside down. Start with the top left hand terminal and make all connections to it. Then move down each terminal in turn down the left hand row of terminals. Proceed row by row to the right making and checking connections to each terminal. It's a good idea to cross off with a pencil, each connection shown on the wiring diagrams, as soon as that connection has been made on the switches. Be sure not to miss the

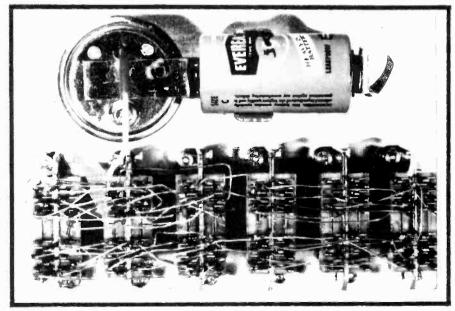


Fig. 7 Underside view of the panel.

short connection between switches M3e and M3f.

If you want to check through the wiring diagrams, the circuit, and the switch diagram — bear in mind that the switch diagram shows connections with the switch lever in the central position, and the circuit diagram shows the connections with the levers in the start side position.

On completion of the wiring and after insertion of the cell, the puzzle should work. Check out all the alarm situations on both banks and see that the alarm sounds when it should. Also check the no-alarm situations — i.e. when cannibals do not outnumber missionaries on either bank of the river.

Fault finding is not as daunting as it may appear at first. A logical working through the circuit diagram should help to pin point any problem.

HAVE A GO

Having built the puzzle – try to solve it. It's far from easy. If all else fails – check the correct answer which is hidden somewhere in this issue.

P.E. CAR CLOCK KIT AVAILABLE Send s.a.e. for details/prices, etc ADVANCED ALARM CLOCK KIT

Complete kit including attractive slim case with perspex panel for 6 digit alarm clock with bleep alarm, snooze and automatic intensity control, high brightness display driving; uses MK50253 IC and Jumbo 0.5in LEDs Kit also includes PCBs, active and passive components, IC skt, min transformer, switches, flat cable, loudspeaker, mains cable and plug. Full instructions. Crystal control/battery back-up and touch switch snooze and £27.31 alarm are optional add-ons

SIMPLE & ATTRACTIVE 4-digit CLOCK KIT

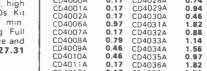
(As featured in January Everyday Electronics). Ideal kit for the less experienced constructor, kit includes IC, pleasing ½" green display with colon, PCB, miniature transformer, slim white case with perspex front panel, and all other components except mains cable and plug. Full £15.69 instructions

CRYSTAL TIMEBASE KIT

All components including PCB (47mm x 59mm) to provide 50cps for clock ICs giving time accurate to a few seconds a month. Kit includes PCB, 32 768 kHz miniature watch crystal, trimmer, 3 CMOS ICs and sockets, Cs, Rs £6.28

STOPWATCH

Complete Kit for Stopwatch (as in December ET1): choose 6 digit range from tens of hours to milliseconds. Contents: Verocase 75/1410J, red perspex front panel. Manganese batteries, clips, transistors, diodes, wiring pins, screws, sockets, pin-header, CMOS, resistors, capacitors, 5 12MHz crystal, trimmer, PCBs, 6 x MAN3M displays With instructions, component layout, etc. £31.80 STOPWATCH WITH ONE LATCH: As above, but kit also includes


facility to repeatedly freeze one set of displays with count continuing on the other set £47.71

ADD VAT at 8 % to all Prices in this advertisement. 15p P&P on orders under L3 Free on orders over L3 Orders sent by 1st Class Post Exports No VAT 35p (Europe) ±1 (Overseas) for Air Mail P&P (any excess refunded) Full Price List and Data with any order or on request (phone or send s.a.e.) Dfficial Orders welcomed, written, phoned or telexed from Univs Polys Nat Inds

Departments Companies, etc. Fastest Delivery for R&D.

SINTEL

53a Aston Street, Oxford Tel. 0865 49791 Telex: 837650, A/B ELECTRONIC OXED

CMOS from the leading manufacturers only

CD4028A

0.17

0.17

CMOS

CD4000A

CD4033A CD4034A CD4035A CD4036A CD4037A CD4038A CD4039A 1.14 1.56 0.97 1.82 0.78 0.88 2.86 CD4060A 0.92 CD4099B 1.50 CD4009A CD4010A CD4011A CD4012A CD4060A CD4061A CD4062A CD4063B CD4066A 16.43 7.33 0.90 0.58 0.98 1.12 1.28 2.56 CD4502B 0.46 0.17 0.17 0.46 CD4502B CD4510B CD4511B CB4514B CD4013A CD4014A 0.83 CD4067B 2.95 CD4515B 2.56 CD4040A CD4041A CD4042A CD4043A CD4015A 0.83 0.88 CD4068B 0.18 CD4516B CD4518B 1.12 CD4015A CD4016A CD4017A CD4018A 0.46 0.83 0.83 0.69 CD4069B 0.18 1.03 CD4070B CD4071B CD4072B CD4073B 0.18 CD4520B 1.30 1.16 0.74 0.83 CD4527B CD4019A 0.46 CD4044A 0.77 0.18 0.18 CD4532B CD4045A CD4046A CD4047A CD4048A CD4020A 0.92 1.15 CD4555B 1.15 1.10 0.74 0.46 0.46 0.46 0.77 0.77 0.74 0.74 2.37 0.86 6.04 4.07 CD4021A CD4022A CD45556B MC14508 MC14528 MC14534 0.83 CD4075B 0.18 1.27 0.18 0.18 0.18 0.18 0.83 0.79 0.17 0.64 CD4076B CD4077B CD40788 CD4023A CD4024A CD4049A CD4024A CD4025A CD4026A CD4027A 0.04 0.17 1.42 0.46 CD4050A CD4081B MC14553 CD4082B MC14566 1 21 CD4052A CD4085B 0.59 MCM14552 8.05

CD4053A

CD4054A CD4055A CD4056A CD4057A

CD4059A

0.74

0.94 0.46 1.82

0.77

0.95

20.35

10.64

CD4086B

CD4089B

CD4089B CD4093B CD4094B CD4095B

CD4096B

0.59

1.27

0.66

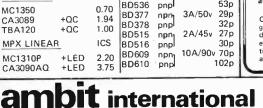
0.86

0.86

RCA 1975 CMOS Databook: 400 pages of data sheets and 200 pages of circuits applications and other useful information £2.67 (Add no VAT-post free)

Motorola McMOS Databook (Volume 5, Series A) **£2.77** (Add no VAT--post free)

CLOCK	ICs	DISPL	AYS	VEROCASES				
MK50253	£5.60	DL704E	85p	75/1410J £2.64				
MK50250	£5.00	FND500	£1.02	(205 x 140 x 40mm)				
MM5314	£4.44	FND5000	95p	75/1411D £2.94				
AY51202	£4.76	MAN3M	48p	(205 x 140 x 75mm) ·				
AY51224	£3.66	5LT01	£5.80	Fiat Cable				
MK5030M	£12.50	LCD	£9.40	20-way £1 per m.				


DISPLAY PCBs (each fits neatly into Verocase J) for clock with 6 x FND500, for clock with 6 x DL704, for counter with up to 8 x FND500, for counter with up to 8 x DL704 these four are £1.35 each, for clock with 4 FND500 90p.

IC SOCKET PINS. Lowest cost sockets for CMOS, TTL. ICs, Displays Strip of 100 pins for 50p, 400 for £2, 1,000 for £4, 3,000 for £10.50.

essex. cm14 4rh

25 high street, brentwood,

Our R&D facilities are available for general consultancy to OEMs: further details on application. Standard project estimation fee, including project evaluation comment data is £15.00 payable in

tel: (0277) 216029

tlx: 995194

Free price list with an SAE, catalogue of modules and parts 40p., including postage and VAT.

3210123

General Terms: CWO please, official bodies and companies please note min. invoice £7.50. PP for CWO orders 22p per order. (UK and Eire). Overseas customers please include sufficient for postage. VAT is not included, and must be added at 25%, In stock orders despatched within 48 hours.

8892 96 100 104

Complete the coupon and we'll send you our complete, new catalogue.

The new Heathkit catalogue is now out. Full as ever with exciting, new models. To make building a Heathkit even more interesting and satisfying.

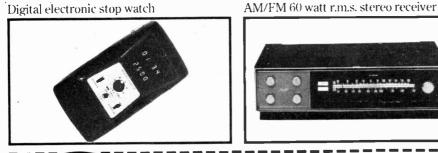
And, naturally, being Heathkit, every kit is absolutely complete, Right down to the last nut and bolt. So you won't find yourself embarrassingly short of a vital component on a Saturday evening-when the shops are shut.

You'll also get a very easy to understand instruction manual that takes you step by step through the assembly.

Clip the coupon now (enclosing a 10p stamp for postage) and we'll send you your copy to browse through.

With the world's largest range of electronic kits to choose from, there really is something for everyone.

Including our full range of test equipment, amateur radio gear, hi-fi equipment and many general interest kits.

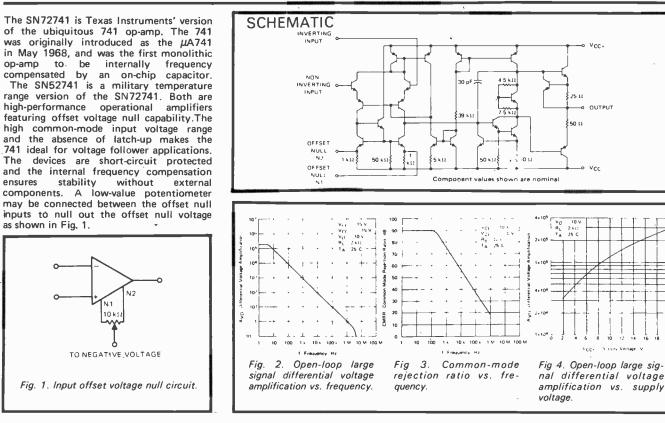

So, when you receive your

catalogue you should have hours of pleasant reading. And, if you happen to be in London or Gloucester, call in and see us. The London Heathkit Centre is at 233 Tottenham Court Road. The Gloucester showroom is next to our factory in Bristol Road.

At either one you'll be able to see for yourself the thing the catalogue can't show you.

Namely, how well a completed Heathkit performs. Heath (Gloucester) Limited, Dept.ETI-36 Bristol Road, Gloucester, GL2 6EE. Tel: Gloucester (0452) 29451.

Digital rev counter

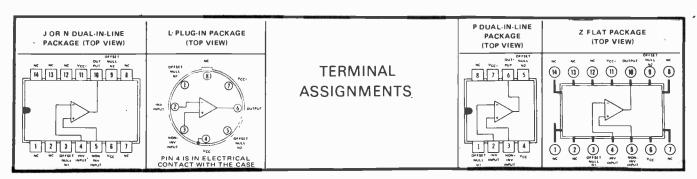


SN72741-741 OP AMP

ensures

TEXAS

ELECTRICAL CHARACTERISTICS


Input Offset Voltage 7.5mV max. Offset Voltage Adjust Range 15mV Input Offset Current 300mA max Input Bias Current 800mA max Input Voltage Range 12V min
Max Pk-Pk Output Voltage Swing
R _L 10k
R _L 2k 20V min
Large Signal Differential Voltage Amplification 15000 min
Large Signal Differential Voltage Amplification 15000 min
Input Resistance
Output Resistance
Input Capacitance 1.4pF
Common-mode Rejection Ratio
Power Supply Sensitivity 150 W// may
Power Supply Sensitivity $150 \mu V/V \text{ max}$
Short-circuit Output Current
Supply Current
Total Power Dissipation 100mW max
Total Power Dissipation

ABSOLUTE MAXIMUM RATINGS

	SN52741	SN72741
Supply Voltage Vcc+	22	V 18V
Supply Voltage Vcc-	-22	2V — 18V
Differential Input Voltage	30	V 30V
Input Voltage	15	V 15V
Voltage between Offset Null		
Terminals (N1/N2) and Vcc-	0.5	V 0.5V
Duration of Output Short-circuit		unlimited
Continuous Total Power Dissipation		500mW

OPERATING CHARACTERISTICS

$V_{CC+}=15V, V_{CC-}=-15V$	*
Rise Time (tr)	0.3µS
Overshoot	
Slew Rate at Unity Gain	

ELECTRONICS TODAY INTERNATIONAL-MARCH 1976

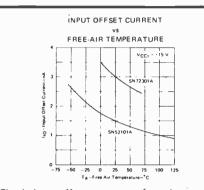
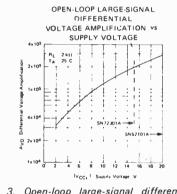
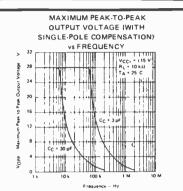
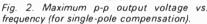
7

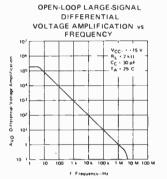
SN72301A-301 OP-AMP

The SN52101A is the Texas equivalent of the LM101A. The LM101 first appeared in 1967 and the LM101A is similar to the features better dc 101 but input characteristics. The SN52101A is a full military temperature range device and so the average constructor is likely to use the SN72301A which is a commercial temperature range device for operation from 0 $^\circ C$ to 70 $^\circ C$.

Both are high-performance operational amplifiers, featuring very low input bias current and input offset voltage and current to improve the accuracy of high-impedance circuits using these devices. The high common-mode input voltage range and the absence of latch-up make these op-amps ideal for voltage-follower applications. The devices are protected to withstand short-circuits at the output. The external The external compensation of the 101A and 301A allows the changing of the frequency response (when the closed-loop gain is greater than unity) for applications requiring wider bandwidth or higher slew rate.

A potentiometer may be connected between the off-set null inputs (N1 & N2) connected as shown in Fig. 5, to null out the offset voltage.


Fig. 1. Input offset current vs. free-air temp.

TEXAS

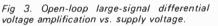
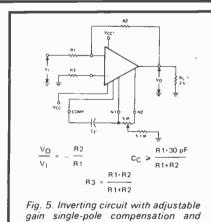
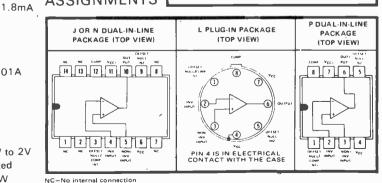



Fig. 4. Open-loop large-signal differential voltage amplification vs. frequency.

ELECTRICAL CHARACTERISTICS


Input offset voltage	SN72301A
Average temperature coefficient of input offset voltage	2mV
Input offset current	6µV/°C
Average temperature coefficient of input offset current	3nA
Input bias current	0.02nA/°C
Input voltage range	7QnA
Maximum pk-pk output voltage saving	±12V min
(VCC = ± 15 V, RL = 10K)	28V
(VCC = ± 15 V, RL = 2K)	26V
Large signal differential voltage amplification	200,000
Input resistance	2MΩ
Common-mode rejection ratio	90dB
Power supply rejection ratio	96dB

ASSIGNMENTS

TERMINAL

offset adjustment.

ABSOLUTE MAXIMUM RATINGS

Supply current

	SN52101A	SN72301A		
Supply voltage VCC +	22V	18V		
Supply voltage VCC—	-22V	—18V		
Different input voltage	±30V	±30V		
Input voltage	±15V	±15V		
Voltage between N1/N2 (either offset null				
terminal) and VCC	0.5V to 2V	-0.5V to 2V		
Duration of output short circuit	unlimited	unlimited		
Continuous total output power	500mW	500mW		

ELECTRONICS TODAY INTERNATIONAL-MARCH 1976

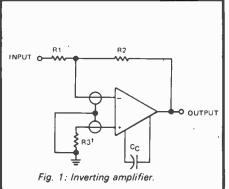
31

SN52108A, SN72308A OP-AMPS

SCHEMATIC

The 108A and 308A are designed for applications requiring extremely low input bias and offset currents and offset voltages. The SN52108A has a typical input offset voltage of 300μ V and typical input offset current of 50pA at25 °C. Input bias current is 3nA maximum over the full temperature range. The output is protected against damage from shorting to ground or either supply and the input stage is dio deprotected against excessive differential input External compensation permits signals. optimization of the frequency response for each application. The compensation circuit shown in Fig.3 can be used to make the amplifier particularly insensitive to supply noise.

APPLICATION DATA


Extra care must be taken in the assembly or printed circuit boards to take full advantage of the low input currents of these amplifiers.

Even with properly cleaned and coated boards, leakage currents may cause trouble at 125°C, particularly in the L plug-in package (TO-99) where the input pins are adjacent to pins that are at supply potentials. This leakage can be reduced by surrounding the input terminals with a conductive guard ring. The guard ring is connected to a low-impedance point that is at approximately the same voltage as the inputs. As shown in Figure 4, input guarding of the 8-lead L package may be accomplished by using a 10-lead pin circle, with leads of the device formed so that the holes adjacent to the inputs, are empty when it is inserted in the board. The conductive guard ring should be used on both sides of the board. The pin configurations of both the

The pin configurations of both the dual-in-line and flat packages are designed to facilitate guarding, since the pins adjacent to the inputs are not internally connected to the chip. Pin connections in these packages are different from the standard pin connections used in other operational amplifiers such as the SN52741/SN72741.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Vcc+ Supply Voltage Vcc-Input Voltage Differential Input Current Duration of Output Short-circuit Continuous Total Power Dissipation (below 35° C).

NON MITH SVH Component values shown are nominal. TERMINAL ASSIGNMENTS. SN72308AP SN72308P P DUAL IN LINE PACKAGE ALL TYPES JOR N DUAL-IN-LINE PACKAGE (TOP VIEW) ALL TYPES L PLUG-IN PACKAGE (TOP VIEW) (TOP VIEW) NC NC 2 VCC, PUT NC NC 14 13 12 11 18 9 9 2 1 3 1 6 7 PIN 4 IS IN ELECTRICA CONTACT WITH THE CAS ELECTRICAL CHARACTERISTICS: (values typical except where specified) SN 72308A SN 72308 Input Offset Voltage 0.3mV 2mV Av. Temp. coefficient of Input Offset Voltage 6µV/°C 1µV/°C Input Offset Current 0.2nA 0.2nA Av. Temp. coefficient of Input Offset Current Input Bias Current Input Voltage Range Max. Pk-Pk Output Voltage Swing Large-signal Differential Voltage Amplification Current 2pA/°C 2pA/°C 1.5nA 1.5nA ±14V min ±14V min 28V 28V 300,000 300,000 Input Resistance 40M ohm 40M ohm Common-mode Rejection Ratio 110dB 100dB Supply Voltage Rejection Ratio 110dB 96dB 0.3mA 0.3mA SN 52108A SN 72308A SN 72308 SN 52108 R2 20V 18V -18V -20V ±15V ±15V ±10mA ±10mA unlimited 83 ٧p $R_1 \ge 10 k\Omega$ 500mW 500mW COMF COM Vcc COMP 2 COMF Fig. 2. Standard compensation circuit. VCC+ OUTPUT GUAF R

·ELECTRONICS TODAY INTERNATIONAL-MARCH 1976

COMP 1 (DPEN)

C_C = 100

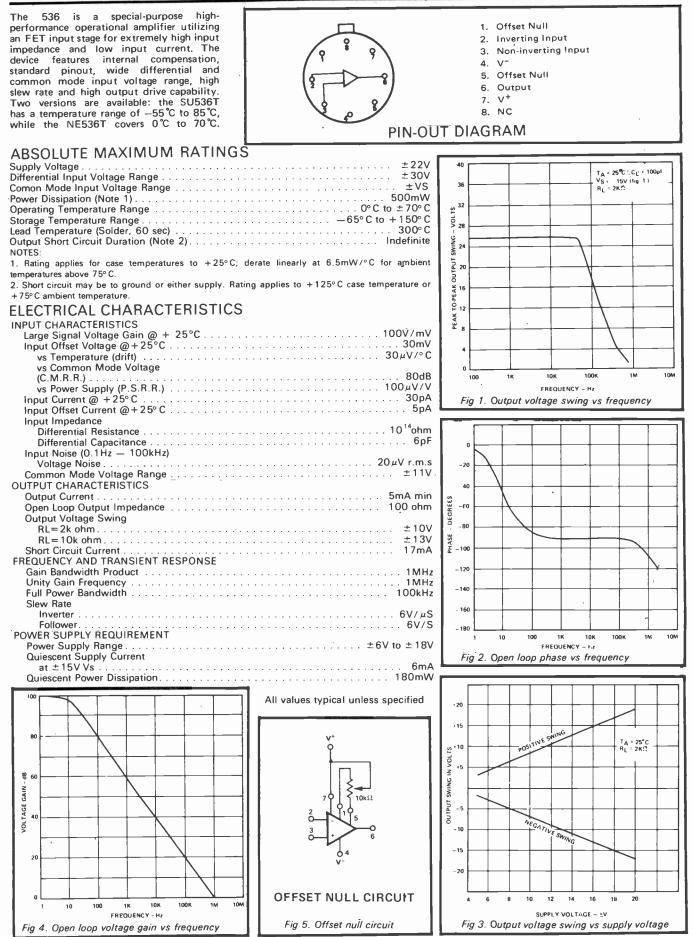
0

Fig. 3. Alternate compensation circuit.

vcc-

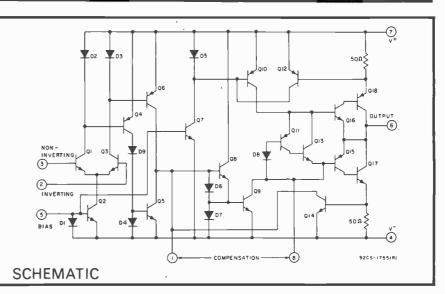
CC

Fig. 4. Top view of board layout for L


plug-in package.

TEXAS

536 FET-INPUT OP-AMP


SIGNETICS

CA3078T, CA3078AT MICROPOWER OP-AMPS

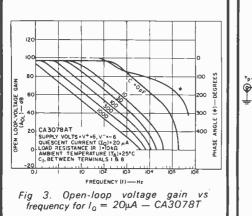
The RCA CA3078T and CA3078AT are high-gain monolithic op-amps which can deliver milliamps of current yet only consume microwatts of standby power. Their operating points are externally adjustable and frequency compensation may be accomplished with one external capacitor. They provide the designer with the opportunity to tailor the frequency response and improve the slew rate without sacrificing power. Operation with a single 1.5V battery is a practical reality with these

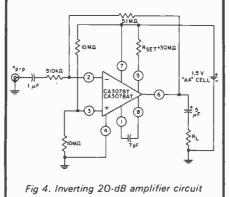
devices. The CA3078T has a minimum supply voltage of ±0.75V and a maximum supply voltage of $\pm 15V$, with an operating temperature range of -55°C to 125°C. The CA3078T has the same lower supply voltage limit but the upper limit is $\pm 6V$ and the temperature range is 0°C to 70°C.

ELECTRICAL CHARACTERISTICS

All values typical unless specified.

	CA3078AT	CA3078
Input Offset Voltage	0.70mV	1.3mV
Input Offset Current	0.50nA	6nA
Input Bias Current	7nA	60nA
Open-Loop Diff Voltage Gain	100dB	92dB
Total Quiescent Current	20μΑ	100µA
Device Dissipation	240µW	1 200μ \
Maximum Output Voltage	±5.3V	±5.3∨
Common-Mode Input Voltage Range	-5.5 to $\pm 5.8V$	-5.5 to
Common-Mode Rejection Ratio	115dB	110dB
Maximum Output Current	12mA	12mA
Input Offset Voltage Sensitivity	105µV/V	93 µ V / V
•	Absolute values at T_A	=25°C,


ABSOLUTE MAXIMUM RATINGS


DC Supply Voltage (between	
V ⁺ and V [∽] terminal)	
Differential Input Voltage	
DC Input Voltage	
Input Signal Current `	
Output Short Circuit Duration*	
Device Dissipation	

34

CA3078AT 36V ±6V V^+ to V^- 0.1mA No Limitation 250mW (up to 125°C)

*Short circuit may be applied to ground or to either supply

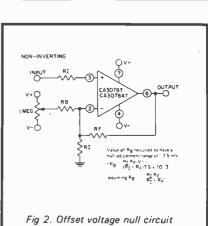
CA3078T

1200µW ±5.3V _5.5 to ±5.8∨ 110dB 12mA 93 µV / V

CA3078T

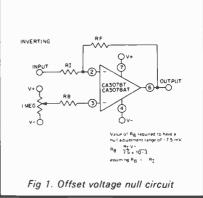
 V^+ to V^-

No Limitation


(up to 70° C)

14V

 $\pm 6V$


0.1mA

500mW

ELECTRONICS TODAY INTERNATIONAL-MARCH 1976

FUNCTIONAL DIAGRAM COMPENSAT ENSATION SET INV G NON-IN INPUT (4) NOTE PIN & IS INDICATED BY THE CASE INDEX TAB 92C5-17552R1

RC/

DEFINITION OF OP-AMP TERMS

Input Offset Voltage (V₁₀) The d-c voltage which must be applied between the input terminals to force the quiescent d-c output voltage to zero. The input offset voltage may also Le defined for the case where two equal resistances (R₂) are inserted in series with the input leads.

Average Temperature Coefficient of Input Offset Voltage (α_{V10}) The ratio of the change in input offset voltage to the change in free-air temperature. This is an average value for the specified temperature range.

$$\alpha_{V10} = \begin{array}{|c|c|} \hline (V_{10} @ T_{A(1)} - (V_{10} @ T_{A(2)}) \\ \hline T_{A(1)} - T_{A(2)} \\ \hline \end{array} \\ & \text{where } T_{A(1)} \text{ and } T_{A(2)} \text{ are the specified temperature extremes.} \end{array}$$

Input Offset Current (1₁₀) The difference between the currents into the two input terminals with the output at zero volts.

Average Temperature Coefficient Of Input Offset Current (α_{110}) The ratio of the change in input offset current to the change in free-air temperature. This is an average value for the specified temperature range.

$$\alpha_{110} = \begin{array}{|c|c|} \hline (I_{10} @ T_{A(1)}) - (I_{10} @ T_{A(2)}) \\ \hline T_{A(1)} - T_{A(2)} \\ \hline \end{array} \\ \begin{array}{|c|c|} \text{where } T_{A(1)} \text{ and } T_{A(2)} \text{are the specified temperature extremes.} \end{array}$$

Input Bias Current (I_{1B}) The average of the currents into the two input terminals with the output at zero volts.

Input Voltage Range (V $_1$) The range of voltage which if exceeded at either input terminal will cause the amplifier to cease functioning properly.

Maximum Peak-to-Peak Output Voltage Swing. (V_{OPP}) The maximum peak-to-peak output voltage which can be obtained without waveform clipping when the quiescent d-c output voltage is zero.

Large-Signal Differential Voltage Amplification (A_{VO}) The ratio of the peak-to-peak output voltage swing to the change in differential input voltage required to drive the output.

Input Resistance (r) The resistance between the input terminals with either input grounded.

Output Resistance (r.) The resistance between the output terminal and ground.

Common-Mode Rejection Ratio (CMRR) The ratio of differential voltage amplification to common-mode voltage amplification. This is measured by determining the ratio of a change in input common-mode voltage to the resulting change in input offset voltage. Power Supply Sensitivity $(\Delta V_{10}/\Delta V_{cc})$ The ratio of the change in input offset voltage to the change in supply voltages producing it. For these devices, both supply voltages are varied symmetrically.

Total Power Dissipation (P_p) The total d-c power supplied to the device less any power delivered from the device to a load. At no load: $P_{p} = V_{cc+} \cdot 1_{cc+} + V_{cc-} \cdot 1_{cc-}$

Rise Time (t') The time required for an output voltage step to change from 10% to 90% of its final value.

Overshoot The quoteint of: (1) the largest deviation of the output signal value from its steady-state value after a step-function change of the input signal, and (2) the difference between the output signal values in the steady state before and after the step-function change of the input signal.

Slew Rate (SR) The average time of change of the closed-loop amplifier output voltage for a step-signal input. Slew rate is measured between specified output levels (0 and 10 volts for this device) with feedback adjusted for unity gain.

ETI HELPING HAND COMPETITION

This is our open competition to find solutions for problems facing the deaf.

This closing date is March 31st 1976. ETI and the Royal National Institute for the Deaf (RNID) are co-operating fully in the organisation of this competition.

Three problems are shown above. We invite individual readers, clubs, schools, universities, companies, in fact anybody, to develop a practical solution. The rules are as basic as possible and impose virtually no restriction apart from insisting that any Patent Royalties are waived if the idea is produced.

TIME

ENTER

31 MARCH

1976

CLOSING DATE

The prizes, three in all, will each be a silver trophy specially designed for ETI. At the close of the competition the magazine will hand over $\pounds 250$ to the RNID to help with development costs. There is a $\pounds 1.00$ entry fee (payable to

THE PROBLEMS

1 A sick person is being looked after by a deaf person. The deaf person has no useful hearing and requires to know whether the sick person is all right and above all needs to know if the sick person is in a state of distress anywhere in the sick room.

2 A hard of hearing person is attending a College of Further Education and has considerable difficulty in understanding what the lecturer says due to his distance from the lecturer and to the background noise in the room. A device is required to enable him to make the best possible use of his hearing.

3 Many deaf people have great difficulty in using the telephone and in fact many of them cannot use the telephone at all. The development of a writing tablet which would allow them to write a message on a small pad and for this to be communicated over the telephone line to a pad at the other end would have many great advantages. In addition the communication should be two way so that the person can receive a message or an indication that the message has been received.

RNID) and this will be added to the $\pounds 250$.

Background information has been prepared to help readers and say what is alreayd known. This is available from ETI on receipt of a large self-addressed envelope. Enquiries should be sent to:

> Helping Hand, ETI Magazine, 36 Ebury Street, London, SW1W OLW.

Now...the most exciting Sinclair kit ever

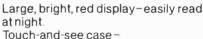
The Black Watch kit At £14.95, it's

9

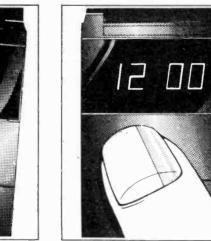
35

* practical – easily built by anyone in an evening's straightforward assembly.

*** complete** – right down to strap and batteries.


* guaranteed. A correctlyassembled watch is guaranteed for a year. It works as soon as you put the batteries in. On a built watch we guarantee an accuracy within a second a day-but building it yourself you may be able to adjust the trimmer to achieve an accuracy within a second a week. The Black Watch by Sinclair is unique. Controlled by a quartz crystal... powered by two hearing aid batteries...using bright red LEDs to show hours and minutes and minutes and seconds...it's also styled in the cool prestige Sinclair fashion: no knobs, no buttons, no flash.

The Black Watch kit is unique, too. It's rational-Sinclair have reduced the separate components to just four.


It's simple – anybody who can use a soldering iron can assemble a Black Watch without difficulty. From opening the kit to wearing the watch is a couple of hours' work.

The special features of The Black Watch

Smooth, chunky, matt-black case, with black strap. (Black stainlesssteel bracelet available as extrasee order form.)

no unprofessional buttons.

Runs on two hearing-aid batteries (supplied). Change your batteries yourself - no expensive jeweller's service.

The Black Watch-using the unique Sinclair-designed state-of-the-art IC.

The chip...

The heart of the Black Watch is a unique IC designed by Sinclair and custom-built for them using state-of-the-art technologyintegrated injection logic

This chip of silicon measures only 3 mm x 3 mm and contains over 2000 transistors. The circuit includes

- a) reference oscillator b) divider chain
- c) decoder circuits
- d) display inhibit circuits

e) display driving circuits.

The chip is totally designed and manufactured in the UK, and is the first design to incorporate all circuitry for a digital watch on a single chip.

...and how it works

A crystal-controlled reference is used to drive a chain of 15 binary dividers which reduce the frequency from 32,768 Hz to 1 Hz. This accurate signal is then counted into units of seconds, minutes, and hours, and on request the stored information is processed by the decoders and display drivers to feed the four 7-segment LED displays. When the display is not in operation, special power-saving circuits on the chip reduce current consumption to only a few microamps.

LED display

The kit contains

- printed circuit board
- unique Sinclair-designed IC 2.
- encapsulated quartz crystal 3.
- trimmer 4.
- 5. capacitor
- 6. LED display
- 7. 2-part case with window in position
- batteries 8
- 9. battery-clip
- 10. black strap (black stainlesssteel bracelet optional extrasee order form)
- 11. full instructions for building and use.

All-the tools you need are a fine soldering iron and a pair of cutters. If you've any queries or problems in building, ring or write to Sinclair service department for help.

Quartz crystal

Batteries

Take advantage of this no-risks, money-back offer today!

The Sinclair Black Watch is fully guaranteed. Return your kit in original condition within 10 days and we'll refund your money without question. All parts are tested and checked before despatch-and correctly-assembled watches are guaranteed for one year. Simply fill in the FREEPOST order form and post it-today!

Price in kit form: £14.95 (inc. black strap, VAT, p&p).

sinclair
Sinclair Radionics Ltd,
London Road, St Ives,
Huntingdon, Cambs., PE174HJ.
Tel: St Ives (0480) 64646.
Reg. no: 699483 England. VAT Reg. no: 213 8170 88.

2000-ti	ansistor silic	on integra	ated circu	it

To: Sinclair Radionics Ltd, FREEPOST, St Ives, Huntingdon, Cambs., PE174BR.

Please send me

Total £

(qty) Sinclair Black Watch kit(s) at £14.95 (inc. black strap, VAT, p&p).

Trimmer

(qty) black stainless-steel bracelet(s) at £2.00 (inc. VAT, p&p).

* I enclose cheque for £. made out to Sinclair Radionics Ltd and crossed. * Please debit my *Barclaycard/Access/ American Express account number

Name

Address

Please print. FREEPOST-no stamp required.

ETI/3

*Delete as required

"I used to read 'comics'....until I discovered ETI."

"Now I get it regularly!"

There are only two ways to ensure a regular copy of ETI — place a regular order with your newsagent ot take out a subscription. If you don't believe us — take a look at the recent issues no longer available listed with the Index!

Help us to help you: please write your name and address on the back of your cheques.

To: SUBS ETI M 36 El Lond	N.		G y	A S	Z	1 10	V	E, t,				A	F	1		N	E	N	τ	•											
I enclose except Ca ETI.																															
Name · ·		1.			•							ł					•							•	•		•	×	•		
Address	•	•		•	•	•	•	•		×.	•	•	•							•		•	•		•	•	t	•		•	
		•		•	•	•	•	ŝ				•		•	2				•	•	•				•			•	ł	.*	t
		-	5				4	•	×.	ł							•	•			•		N	la	r	ch	Ľ	1 :	9	7	6

TI-HENRYS COMPETITI

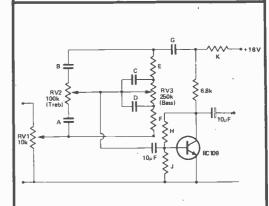
To ce Centre arranged a

celebrate the recent opening of Henry's Self-Service Electronics re at 404 Edgware Road, London W2, ETI and Henry's have iged an easy-to-enter competition with prizes of at least £250 and

arranged an easy-to-enter competition with prizes of at least £250 and up to £500 worth of goods. First prize is £12.50 plus a 90% discount on goods purchased with this sum — or equivalent to £250 worth of goods if you affix to your entry coupon the price circle from the current Henry's catalogue. Additionally there are 10 other prizes of £12.50 worth of goods, again worth double with proof of purchase of the catalogue. Henry's have perhaps the best selection of components in the country and their new Self-Service Centre — the first of its kind in Britain — makes browsing and selection more enjoyable than it ever has been.

RULES

RULES The competition is open to readers in the United Kingdom and Northern Ireland except employees of Electronics Today International and the Henry's Group of companies and their agents. There Is no entry fee but all entries must be made on the coupon cut from the magazine. No other correspondence should accompany the entry. If you wish to show proof of purchase of the latest Henry's catalogue, entitling you to double the value in prizes follow the instructions given below. The prizes will be awarded to the first eleven correct entries drawn after the closing date of March 31st, 1976. The first prize, entitling the winner to a 90% discount will be awarded to the first correct entry selected. A method of draw will be used which gives no preference one way or the other to those entrants opting for 'Double-your-Money'. The prize value includes VAT. Readers may submit as many entries as they wish but each must be accompanied by an original coupon. It is a condition of entry that the judge's decision is regarded as final.


DOUBLE YOUR PRIZE V

If you stick or staple the '50p' price circle from the top right hand corner of the current Henry's Radio Components Catalogue to your entry coupon, the value of your prize will be doubled! The ten basic prizes will then be £25 worth of components and the first prize the same but still qualifying for 90% discount - making the first prize worth £250!

How to enter

The circuit shown below is of a fairly standard tone control. Many of the component values are missed out and replaced by the letters A-K. A list of the correct component values is listed.

Use your skill and judgement to allocate the components next to the letters on the entry coupon. The electrolytic in the circuit is deliberately shown as a non-polarised capacitor. Components should be allocated for the best conventional performance.

Capacitors	Resistors
2,7nF	3.3k Ω
2.7nF	15kΩ
15nF	22k Ω
15nF	22k Ω
10µF electrolyt	ic 100kΩ

ų,

D 4 F To: ETI/HENRY'S COMPETITION Paste Paste cat. price circle here if you try fo Double-Your-ETI MAGAZINE, 36 EBURY STREET, LONDON SW1W OLW. 12

G.

I NAME.....

ADDRESS.....

SPECIAL OFFE

HIS WILL BE RUN ON LINES SIMILAR TO SEGMENT DISPLAYS. ETC. TTL. CMOS.

CONVERT YOUR CALCULATOR **INTO A** STOPWATCH OR IF YOU WANT TO BUILD A CHEAP STOP-WATCH BUY A CHEAP CALCULATOR AND A COUPLE OF CMOS ICS THEN FOLLOW OUR DESIGN. THE INSTRU-MENT WE BUILT GAVE ±0.2% ACCURACY AND MEASURED UP TO 9999.99 SECONDS (OVER 21/2 HRS).

SWITCHING REGULATOR TTL POWER SUPPLY FIVE VOLTS AT TEN AMPS FROM THIS SIMPLE PROJECT. SWITCHING REGU-LATION GIVES MUCH MORE EFFICIENCY THAN SERIES REGU-LATION SO THE DEMANDS ON THE TRANSFORMER ARE THE LOWER.

MICROFILE KEEPS YOU IN TOUCH WITH THE MOST EXCITING NEWS IN ELECTRONICS. NEXT MONTH FIND OUT HOW ONE SMALL CHIP HANDLES PROBLEMS WHICH WERE PREVIOUSLY TACKLED ONLY BY ENORMOUS COMPUTERS!

TECH-TIPS has now been running for four years. With our index you will be able to find creative circuitry, in almost any application, without having to search for hours.

TECH-TIPS & DATA SHEET

The space capsule has to provide the astronaut with a comfortable environment despite the hostile temperatures, radiation, pressure, meteors, etc

SUEO RCH 5TH SA ΜΑ E internationa

NOTHER FABULOUS ETI OF 1

The Exelar. Never heard of it? You certainly haven't heard of any digital electronic watch at this price.

Exelar is a new name for the Digital Watch products of National Semiconductor; in fact N.S. make all the electronics themselves for this new range and Exelar is a name that you'll probably get to know pretty well.

This offer is a prelude to the launch of this watch and ETI once again has been able to arrange an enormous discount for readers. Response to offers in the past has shown that ETI readers are very quick to appreciate new technologies and the resulting products and this enables us to come up with the really good deals for which we are known.

The NW1-WS is a three-function watch: Hours, Minutes and Seconds with a typical accuracy of 5 seconds per month. The bright, easy-to-read LED display is one of the few in the industry which takes advantage of the crisp clarity of monolithic digits. The bezel is chrome plated, the back is stainless steel and the strap is leather.

The recommended retail price of the Exelar is over £20, itself setting a new record low for a built watch but using the coupon you pay just £14.95 including VAT and postage. Don't delay - an enormous response is expected.

AVAILABILITY

ETI Offers in the past have successful that initial estimates of have sometimes proved to be in Several thousand units are being but if orders exceed this, de result.

If you have not received yo before publication of the April that month's News Digest situation.

Although orders will be desp

soon as possible after receipt, ple 35 days for delivery. For security reasons, no stoc Exelar are being held at ETI of callers.

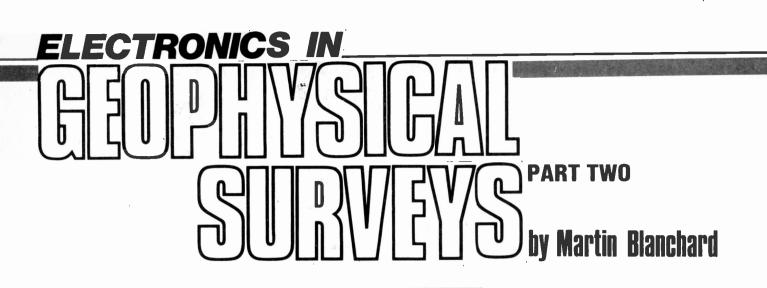
IMPORTANT: Please write clearly your name and address on the your cheque and *all* P.O's. This w us to sort out any problems quick

ELECTRONICS TODAY INTERNATIONAL-MARCH 1976

For operation of the Exelar, press the button and the hours and minutes are displayed. Keeping the button depressed will display flashing seconds. The display stays on for 1½ seconds after touching the button. Time setting is accomplished by pressing a recessed push switch in conjunction with the display button.

- CUT COMPLETE COUPON- -----

:4


exela

H

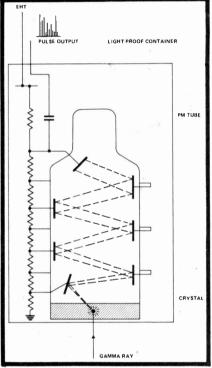
been so quantity dequate. stocked ays may ur watch issue, see for the	To: EXELAR WATCH OFFER ETI Magazine, 36 Ebury Street, London SW1W 0LW. Please find enclosed my cheque/P.O. for £14.95 payable to Electronics Today International (Exelar Offer), IMPORTANT: Please write your name and address on the back of your cheque and P.O's.	This coupon will be used to dispatch your Exelar digital watch. The offer is strictly limited to one watch per coupon. Orders will be dispatched as soon as possible but please allow 35 days for delivery and read note on availability. OFFER CLOSES MARCH 31st 1976
atched as ase allow		
ks of the ffices for	ADDRESS	ADDRESS
y and put back of ill enable	PLEAS	BLOCK

m 11/11/11

A BAR	ASIC ELECTRONICS PROBLEMS SOLVED	HAM-TAB
B4 Hothy P The O	PELECTRONICS HOBBY PROJECTS IC Projects for Annateur A Experimentary Martine IC Projects for Annateur A Experimentary Martine Routs and Projects for Annateur A Experimentary Martine Routs for Home & Car BROWNELEFIER PROJECTS MARSTON Routs for Home & Car BROWNELEFIER PROJECTS MARSTON Routs for Home & Car BROWNELEFIER Routs Routs Routs for Home & Car BROWNELEFIER Routs Ro	8
WORK Description BEGINNERS' GUIDE TO ELECTRONICS T. L. Squites A short cut for those wishing to obtain a quick acquaintance with mode electronics I.C. OP-AMP COOKBOOK	ternational Transistor Selector TV SERVICING HANDBOOK	N. Crowhurst £2.05 This book looks at the fascinating subject of electronic music from almost every angle.
W. J. Jung £8.15 Covers the basic theory of IC OP.Amp in great detail, also includes 25 practical circuit applications liberally illustrated. TTL COOKBOOK 0. Lancaster Complete and detailed guide to TTL, how it works, how to use it an practical applications. T10 OPERATIONAL AMPLIFIER PROJECTS FOR THE HOME	A practical handbook, dealing with all modern receivers.	EXPERIMENTING WITH ELECTRONIC MUSIC R. Brown and M. Olsen Practical Experiments offer scope for originality and research: BASIC MATHS COURSE FOR ELECTRONICS H. Jacobowitz £1.70
CONSTRUCTOR R. M. Marston 22.85 20times the essential characteristics of the OP AMP and presents 111 useful projects 110 SEMICONDUCTOR PROJECTS FOR THE HOME CONSTRUCTOR R. M. Marston C2.85 CONSTRUCTOR C2.85 CONSTRUCTOR C2.85 CONSTRUCTOR C2.85 CONSTRUCTOR C2.85 CONSTRUCTOR C2.85 CONSTRUCTOR C2.85 CONSTRUCTOR C2.85 CONSTRUCTOR C2.85 CONSTRUCTOR C2.85 CONSTRUCTOR C2.85 CONSTRUCTOR C2.85 CONSTRUCTOR C2.85 CONSTRUCTOR C2.85 CONSTRUCTOR C2.85 CONSTRUCTOR C2.85 CONSTRUCTOR C2.85 CONSTRUCTOR C2.85 CONSTRUCTOR C2.85 CONSTRUCTOR C3.85 CONSTRUCTOR C3.85 CONSTRUCTOR C3.85 CONSTRUCTOR C3.85 CONSTRUCTOR C3.85 CONSTRUCTOR C3.85 CONSTRUCTOR C3.85 CONSTRUCTOR C3.85 CONSTRUCTOR C3.85 CONSTRUCTOR C3.85 CONSTRUCTOR C3.85 CONSTRUCTOR C3.85 CONSTRUCTOR C3.85 CONSTRUCTOR C3.85 CONSTRUCTOR C3.85 CONSTRUCTOR C3.85 CONSTRUCTOR C3.85	HOW TO USE VECTORSCOPES OSCILLOSCOPES AND SWEEP SIGNAL GENERATORS S. Prentiss It goes into the whole subject deeply, in 250 heavy illustrated pages. 99 WAYS TO USE YOUR	Unims Law and all maths for electronics written in an easy, understandable way. ELECTRONICS UNRAVELLED J. Kyle £2.20 A new commonsense approach to the basic principles of electronics DIGITAL ELECTRONIC CIRCUITS AND SYSTEMS
This book introduces the reader to useful new devices such as the FET SCR and IC. with full constructional details of many useful circuits UNDERSTANDING CMOS INTEGRATED CIRCUITS 8. Molen Begins with basic digital ICs. covers semiconductor physics. CMOS fabrication technology and design. INTEGRATED ELECTRONICS	A. Saunders £1.80 Describes how to solve practical problems using a scope WORKING WITH THE OSCILLOSCOPE	N. M. Morris £2.60 The rideal book for the enthusiast confused by logic and digital techniques. INDUSTRIAL ELECTRONICS N. M. Morris £3.20 The book concentrates mainly on semiconductor devices and circuits solutions to the many numerical problems are given. S.1 units are used throughout.
J. Miliman £5,00 Using an integrated circuits approach this text leads the reader step by step from semiconductor physics to devices. models, circuits and systems. LINEAR IC PRINCIPLES EXPERIMENTS AND PROJECTS E. M. Noil An introduction to one of electronic's most exciting devices.	AND OSCILLOSCOPE M. Clifford This book aims to give you knowledge and help you perform a wide variety of essential tests on many different kinds of sets, appliances and equipment.	HOW TO BUILD ELECTRONIC KITS V. Capei £2.10 Instructs the reader on how to theck components, how to assemble and how to cure faults. FOUNDATIONS OF WIRELESS AND ELECTRONICS
DESIGNING WITH TTL INTEGRATED CIRCUITS £5.55 overs the entire family of TTL and practical applications of the circuits in overs the entire family of TTL and practical applications of the circuits in	EXPERIMENTS AND PROJECTS J. Ashe £2.20 Covers basic principles of electronics. Projects include a large number of smple circuits	MN. G. Scroggie £4.25 Ninth edition of this ever-popular basic theory book which starts from scratch. RADIO, VALVE & SEMI-CONDUCTOR DATA
DPERATIONAL AMPLIFIERS DESIGN ND APPLICATION Tobey (Burr Brown) ampletely up to date, this work covers the entire field of operational notifiers.	LOGIC CIRCUITS N. M. Morris £3.10 Aids the understanding of logical problems, discusses circuit principles including integrated circuits INTRODUCING AMATEUR ELECTRONICS	A. M. Ball £2.50 Tenth edition. gives data on 1,000 valves and CRTs. 9,800 transistors. diodes, rectifiers and optical devices ELECTRONICS CIRCUIT DESIGN HANDBOOK By the Editors of EEE Magazine
BEGINNERS' GUIDE TO RANSISTORS A. Reddihough overs the basic theory and practice of modern transistors. COLOUR TV THEORY F. Hutton AL systems, principles and receiver circuitry for engineers. to students.	I. R. Sinclair £1.60 The book for the complete novice of any age, as no previous knowledge is assumed TEST INSTRUMENTS FOR ELECTRONICS M. Clifford £2.05 How to build and use test instruments. Elector	Fiease list titles (with price) separately Cheques, etc.: to be payable to Electronics Today International and sent to ETI BUOK SERVICE, 25 Court Close Bray, Maidenhead, Berks. All prices Include Postage and Packing.

THE THREE CHARACTERISTICS studied in modern airborne surveys are (a) Magnetic, (b) Radioactive and (c) Thermal. Last month we looked at the techniques and equipment used in magnetic surveys; this second part of the article covers the other two methods.

RADIATION DETECTORS


Gamma rays are detected by the ionisation effect that they have on some materials. Early radiometric work was done using Geiger tubes but these have now been superseded by scintillation type detectors (in airborne geophysical work). The basic detector consists of a crystal (usually sodium iodide) which gives a flash of light (usually in the blue to UV region) caused by a gamma ray being absorbed and giving up its energy.

The scintillation crystal is superior to Geiger tube for two reasons: (a) it is a denser medium so detection efficiency is improved, and (b) its 'recovery time' is short. This second factor is important because several gamma rays may arrive at the detector within a short interval.

The scintillations are amplified in a photo-multiplier (PM) tube which is in direct contact with the crystal. This assembly is then mounted in a light proof container. The process of amplification begins when photons emitted during a scintillation strike the photo-cathode and displace a quantity of electrons. Due to the voltage arrangement of the PM tube plates these electrons are drawn to the next cathode in the tube where they displace a greater number of electrons. In turn these strike the next cathode and so on up the cathode chain until the output appears as a voltage pulse at the anode. The combination of crystal and PM tube is termed a detector head and is shown in Fig. 1.

SCINTILLOMETERS

A scintillometer consists of a detector head, a power supply and a pulse counting circuit. PM tubes require

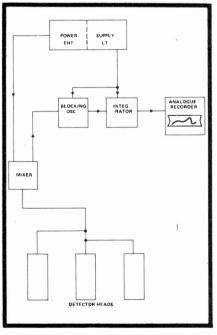


Fig. 2. Scintillometer.

an EHT supply of about 1.5kV but do not draw much current. Fig. 2 shows an early scintillometer which uses three detector heads. The heads are connected to a mixer circuit where the incoming pulses are chanelled on to one signal line. The incoming pulses trigger a blocking oscillator which gives constant amplitude and width pulses to feed an integrating circuit. The integrator output is displayed on an analogue recorder. Other scintillometers use a ratemeter (for counting the pulse rate) and a digital read-out. The scintillometer counts one pulse regardless of the energy of a detected gamma ray and is therefore often called a total count detector.

SPECTROMETERS

A spectrometer is a scintillation counter with a facility for discriminating between the various energy levels of the gamma rays being absorbed by the crystal. The intensity of each scintillation is directly proportional to the energy of the gamma ray causing it.

Each part of the radiation spectrum which is counted is termed a 'channel'. Four channels are commonly used with the channel limits set as follows:

- Channel 1: 0.9 to 2.9MeV
- Channel 2: 1.36 to 1.56MeV
- Channel 3: 1.66 to 1.86MeV
- Channel 4: 2.3 to 2.9MeV

Channel 1 is usually called the total channel and the other channels are often named after the radioactive element that has a major energy peak (or peaks) between the various limits: Channel 2, Potassium; Channel 3, Uranium; Channel 4, Thorium.

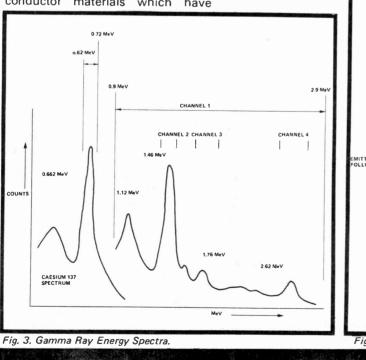
A complete spectrometer is shown in Fig. 4. This has a common detection system comprising three units each of which contains three separate detector heads. The total number of detector heads is therefore nine, each with a 6 by 4 inch crystal. This arrangement provides a good sensitivity combined

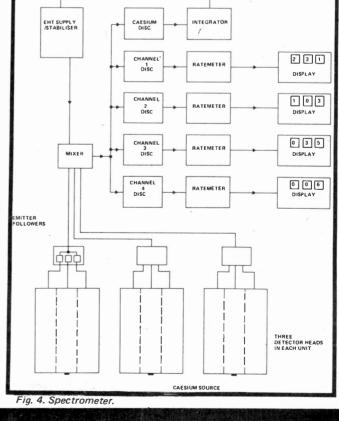
with a relatively small space requirement.

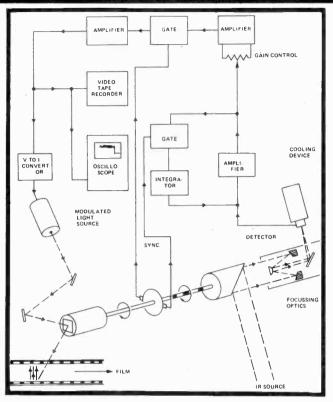
OPERATIONAL TECHNIQUES WITH SPECTROMETERS

Because of the attenutation of gamma rays in the atmosphere and in surface material the altitude at which spectrometers may usefully be operated is limited to about 200 metres and in general the best results are obtained at the lowest possible altitude. All the spectrometer equipment is carried inside the aircraft, including the detector heads. These must be carefully sited so that there is a minimum of scattering and absorbtion of gamma rays by the aircraft structure. Background radiation from the aircraft (for example from luminous instruments) must also be kept to a minimum. Survey areas to be covered using a spectrometer are flown in parallel lines like magnetometer surveys. The low altitude means that a narrow line spacing must be used.

INFRA-RED SCANNERS


IR line scanners are electro-optical devices which reflect radiation from the ground on to an IR detector. Much of the IR radiation spectrum is absorbed in the atmosphere but there are two windows at wavelengths of between 0.0003 and 0.0005cm and 0.0008 to 0.0014cm. The detectors used are manufactured from various semiconductor materials which have different responses in parts of the IR spectrum. The materials most frequently used are, for the 0.0003 to 0.0005cm region, Indium Antiimonide (InSb) and for the 0.0008 to 0.0014cm region, doped Germanium. In order to reduce their internal thermal noise these detecitors are cooled to low temperatures - Indium Antimonide to 77°K (-196°C) and doped Germanium to less than 10°K (-263°C). This icooling is achieved by the use of gases such as nitrogen and helium in their liquid state.


The detector output is usually recorded on a video tape recorder and on ordinary black and white film. The film is exposed to a light source that is modulated by the detector signal so that the density variations in the film are proportional to the IR radiation. The video tape recorder however, produces the detector output much more exactly.


Fig. 5 illustrates a practical line scanner. The actual scanning mechanism is rotated by a motor at about 100rps and has three main parts: the main mirror, the synchronizing device and the film scan motor. The main mirror is angled at 45° and reflects radiation from the ground into a focusing device which concentrates the radiation on to the detector. The radiation can only enter the scanner through a slot, representing a scan angle of about 120°, so the detector only

receives a signal for one-third of a rotation cycle. The detector is cooled from an insulated flask containing liquid gas and the detector output is taken to a pre-amplifier stage. The pre-amplifier output goes to a gain control and the main amplifier and is also sampled by a gate controlled with a synchronizing pulse from a lamp and photo-electric device mounted on the scanner shaft. This device is triggered when the scanning mirror is 'looking' at the inside of the scanner housing so that the gate passes a sample of the pre-amplifier output when it is theoretically zero and any undesired signal which does occur, due to dc drift or changes in detector response, is integrated and fed back to the pre-amplifier input to adjust the no signal output to zero. After the gain control and main amplifier the signal is fed to another gate which is also controlled from a photo-electric device on the scanner shaft. This gate is 'opened' only during the 120° of scan rotation when a signal is present.

The final amplifier stage provides outputs to the monitoring oscilloscope, the video tape recorder and a voltage-to-current converter which modulates the film light source. The modulated beam from the light source is reflected on to the film by a mirror mounted on the scan shaft so that each scan builds up an image on the film. The oscilloscope display is

viewed by the scanner operator to monitor the equipment performance and any necessary adjustment of the system gain.

OPERATIONAL TECHNIQUES WITH IR LINE SCANNERS

The height at which IR line scanners are operated is determined by the resolution required. The lower the altitude the better the resolution, although, of course, at low altitude a smaller area is covered in each scan. The minimum operating altitude is limited for any particular aircraft speed by the scan speed if complete coverage is to be maintained. Normally temperatures differences of about 0.5° C can be detected from a height of 500 metres.

The time of day when IR line scan surveys are flown is important, due to the different temperature effects occuring through a day. During the night temperature differences are often accentuated but any mist and fog tends to absorb radiation. Often a survey area is flown at two or more times of the day to provide more information for interpretation. Operation is usually stopped during high winds as these tend to 'smear' the temperature profiles.

NAVIGATION TECHNIQUES

The problem of navigating in survey areas is a critical one. Obviously geophysical results are not very useful if the location in which they were obtained is not known exactly.

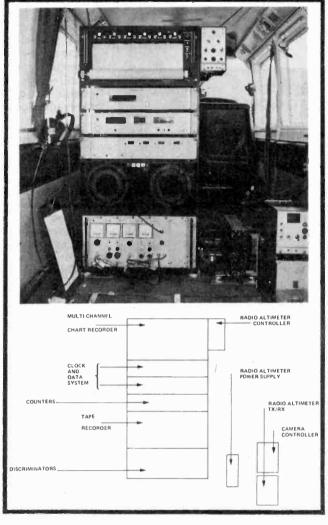

Fig. 5. above. IR Line Scanner.

Fig. 6. Equipment used in a Spectrometer Survey.

Often there are no accurate maps of a survey area and navigation must be carried out on mosaics of survey photographs (the accuracy of which is sometimes doubtful). A frequently used navigation aid is the Doppler navigator, which has the important characteristic that it requires no beacons or other external equipment. The Doppler navigator works by measuring the Doppler 'shift' of radio-frequency transmissions from the aircraft which are received back as reflections from the ground. Information derived from the frequency shifts and from the compass is used to guide the aircraft along a straight course.

The main navigation aid for checking where an aircraft has flown is the tracking camera which is run continuously while the aircraft is on a flight line and after a flight the processed film allows the flight path to be plotted on maps or photo mosaics.

All the geophysical instruments described here are flown so that a constant ground clearance is maintained. However, over rough terrain this is not possible using barometric

altimeters so radio altimeters are used. A radio altimeter transmits a swept range of RF towards the ground and then receives the reflections. The transmitted and received frequencies are mixed to produce an audio frequency signal which is the difference between the frequency transmitted at a particular instant and the frequency being transmitted when that signal returns. This frequency difference is proportional to time (i.e. to the sweep speed) and therefore to the altitude of the aircraft. The audio frequency is converted to dc to drive a pilot s indicator and provide outputs for the recording devices. Radio altimeters have accuracies of better than ± 1 meter in 150 metres.

DATA SYSTEMS

In recent years it has become the practice to record all information from the navigational and geophysical equipment on magnetic tape. The instrument outputs are sampled at a fixed interval, the timing being controlled from a master clock which also registers on the tracking camera film to ensure correct orietation of

ELECTRONICS IN

Rack of geophysical electronic equipment-Top shelf-Spectrometer console and mixer box. Centre shelf-Magnetometer console and various flight recorders. Background-Two spectrometer detector heads

the survey data with the flight path plot. The taped data can only be read out if special facilities are available so the survey data is also recorded in analogue form on multi-channel chart recorders. This procedure also guards against un-noticed faults in the magnetic recording.

GENERAL OPERATIONAL TECHNIQUES

Generally the need for an airborne survey is decided upon by the possibility of a specific mineral appearing in a particular area. The geophysical instrument to be used is selected for its efficiency in detecting that mineral

Once the basic instrument has been selected a second instrument is often chosen to provide additional information to aid in interpretation. Fig. 6 illustrates some of the equipment required for a spectrometer survey. The detector heads are not shown. The type of geophysical equipment selected governs the survey operating parameters. If a spectrometer is in use the maximum operating altitude is determined by the spectrometer detection sensitivity and the minimum operating altitude by safety considerations

Frequently, spectrometer surveys flown are at an altitude of 150 metres but this means that to maintain adequate ground coverage the flight lines must be fairly close together, say at about 400 metre spacing. The flight lines are marked on to navigational maps or photo mosaics and are flown progressively with the aid of navigational equipment. Lines that are flown in the wrong place or are subject to an equipment failure are usually reflown at the end of the survey

When all the survey area is satisfactorily covered the geophysical information is plotted on to the grid of flight lines and contour maps are drawn. Computerised data may be printed out in the form of contour maps. Depending on the type of survey the contour lines are of equal magnetic field or equal radiometric count rate and the maps are interpreted by geophysicists and geologists to predict the location of possible mineral deposits.

Field investigation of selected sites can begin immediately and so it is that airborne geophysical surveys enable 'the few commercially viable sites in a very large unexplored area to be located in a relatively short time.

6-Digit Digital Clock Kits

12/24 HOUR 50/60 HERTZ BRIGHT DISPLAYS SLOW TIME SET FAST TIME SET

TIME HOLD

The response to our advert in the December issue was phenomenal. We are therefore extending this special offer so that you can get a second chance to purchase this fantastic bargain in case you missed the first offer. If you've been considering building a digital clock but were discouraged at the high prices, we have just removed your last excuse

KIT COMPRISES:

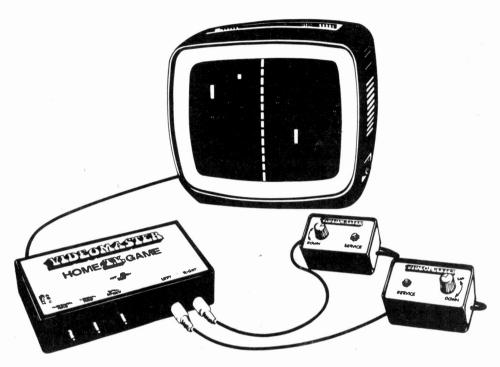
- National MM5314 Clock Chip, 12/24 hour, 50/60 Hz option.
 Bright red common cathode displays, 0.27" character height.
- 6
- 7 NPN Segment driver transistors
- 6 PNP Cathode driver transistors
- 9 Carbon resistors
- 5 Diodes
- 2 Disc caps
- 1 Eléctrolytic filter can
- 3 Switches for time setting functions 2 - Etched, drilled and plated p.c. boards
- Illustrated assembly instructions manual

All you provide is a 9-12v ac/200 m/a Transformer and case of your choice

OPTIONAL JUMBO DISPLAYS

You can have 6 - 0.5" Jumbo displays with a suitable board instead of the 0.27" types. Clock kit with 6 jumbo displays £10.95* + 90p airmail p&p

*** ORDERING INFORMATION**


The above prices shown in British $\pounds s$ are approximate equivalents of the following U.S. Dollar prices and should be used as a guide only:

Clock kit with 6 - 0.27'' displays: U.S. \$16.50 post paid. Clock kit with 6 – 0.50" displays 0.5. \$10.50 post paid. Remittance by BANK DRAFTS or INTERNATIONAL MONEY ORDERS IN U.S. FUNDS. SENT ANYWHERE IN THE WORLD.

NO ELECTRONICS KNOWLEDGE REQUIRED TO BUILD THESE KITS

P.O. Box 64683, Dallas, Texas 75206, U.S.A.

Videomaster urge all good electronics enthusiasts to play the game

The best thing about the Videomaster Home T.V. Game Mk. III is that the sheer pleasure of building it is immediately followed by the excitement of playing three fascinating games.

The famous Videomaster is now available for you to make. It plugs into any standard UHF 625 line TV set, and it shouldn't take you longer than a few hours to build. In detail ... The Videomaster Mk. III has eleven integrated circuits ... four transistors ... eleven diodes ... is easy to build ... with no alignment necessary because with ready-built and tested transistorized UHF modulator, is complete with all parts ... including fully drilled and prepared p.c.b. ... handsome plastic box ... control leads ... complete step by step assembly instructions ... Runs on a PP7 9 volt battery ... and has logic and analogue "state of the art" circuitry all with National Semiconductors CMOS devices ... with full specification.

The cost? Only **£19.95** (+ VAT)

POST TODAY TO:

Videomaster Ltd

119/120 Chancery Lane, London WC2A 1QU

Please send me (insert no.) Videomaster Mk. III kits at £21.55 ea. inc. VAT. P & P

I enclose my cheque/money order for \pounds Tick if VHF Modulator required $\Box -\pounds$ 1 extra

NAME

ADDRESS

ALLOW 14 DAYS FOR DELIVERY

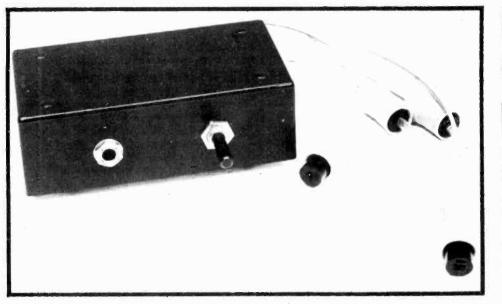
ETI/6

TTL + hu	TEVAC			OP. AM	29							T	DANC	ISTORS	*2N412318p	.0A90	
TTLs by		C-MOS L	OGIC	1458 Dua	al Op Amp	Int Con		In DIL	70p	AC126	12p	BF1B2	33p	2N697 13p	2N4126 18p	'0A90	
400 13p 401 14p	7483 80p 7484 95p	10.11		301A Ext 3130 005	Comp SMOS / B+Pe	olar MosEs	н <u>Кр</u>	in DIL	36p 100p	AC127 AC128	12p 11p	BF184	220	2N698 30p	2N4289 20p	OA95	
1402 140	7485 120p	I.Cs NE	.w	3900 Qua	ad Op Am	np	14	pin DIL	70p	AC128	18p	BF185	220	2N706 12p	2N4347130p	'0A200	
403 16p	7486 30p	LOW PR	ICES		Op Amp		TO-		275p	AC141	18p	'BF194	100	2N708 18p	2N4348160p	·0A202	
404 16p	7489 270p	LUWFN	IUES		Comp			4 pin DIL	30p 25p	AC142	11p	BF195	9p	2N918 40p	'2N4401 30p	IN914	
405 16p 406 38p	7490 40p 7491 75p	CD4000AE	19p		Comp 1 741			pin DIL	22p	AC170	130	BF196	14p	2N928 20p	2N4403 30p	'IN4148	8
407 36p	7492 450	CD4001AE	19p		Comp			In DIL	360	AC188	12p	'BF197	150	2N930 18p	40360 40p		
408 14p	7493 40p	CD4002AE	19p		grammable	Op Am			1400	AD149	43p	BF200	32p	2N1131 18p	40361 38p		
409 20p	7494 75p	CD4009AE	67p	LINEAR	ICs.					AD161	36p	BF257	32p	2N1132 18p	40362 40p	RECTIF	
410 13 p	7495 65p 7496 78p	CD4011AE	19p	CA3028		cade Amp	. то	6	90p	AD162	36p	BFR39	300	2N1304 21p	40364 120p	'BY100	
112 23p 113 32p	7496 78p 74107 30p	C04012AE CD4013AE	19p 55p	CA3046		stor Array	14	pin DIL	50p	AP114	18p	BFR40	30p	2N1305 21p	40409 55p	'BY126	
414 60p	74121 30p	CD4016AE	50p	CA3048		ow Noise		pin DIL	200p	AF115	180	BFR79	30p	2N1306 28p	40410 55p	'BY127	
116 33 p	74122 46p	CD4017AE	120p	CA3089E	FM IF S			pin DIL	200p	AF116	180	BFR80	30p	2N1307 28p	40411 225p	BYZ10	
20 14p	74123 68p	CD4018AE	175p	*CA3090E		eo Mułti.		pin DIL	160p	AF117	180	BFR88	30p	2N1308 28p	40594 75p	BYZ11	1
122 18p	74141 65p	CD4020AE	250p	ICL8038CC *LM 380	VCO Fur 2W Aud			pin DIL pin DIL	275p 90p	AF139	33p	BFX30	30p	2N1309 28p	40595 85p	'BYZ12	
23 34p 25 30p	74151 72p 74153 85p	CD4022AE CD4023AE	170p 19p	'LM 381	Stereo P		14	pin DIL	160p	AF239	38p	BFX84	26p	2N1613 20p	CCT.	. 'BYZ13	
25 30p 27 37p	74153 .05p 74154 150p	CD4024AE	120p	·M252		Generator		pin DIL	900p	BC107	9p	BFX85	25p	2N1711 20p	FETS	IN400	
30 140	74155 76p	CD4025AE	19p	'MC1310P	FM Ster			pin DIL	175p	BC108	9p	BFX86	25p	2N1893 30p	BF244 25		
32 25p	74156 76p	CD4026AE	196p	MC1312	1					BC108	9p 10p	BFX87	20p	2N2218 21p	MPF102 30		17
37 25p	74160 99p	CD4027AE	75p	-MC1314	> SQ Qua	d Dec	14	pin DIL	1100p	BC109		BFX88	240	2N2219 20p	MPF103 30		
40 14 p	74161 99p	CD4028AE	140p	MC1315 MC1495	Multipli	ier	16	pin DIL	300p			BFY50	24p	2N2220 19p	MPF104 30		
41 65p 42 60p	74162 99p 74163 99p	CD4029AE CD4030AE	175p 55p	MC1495		d/Demod		pin DIL	100p	BC147	7p	BFY51	15p	2N2220 19p 2N22221 20p	'MPF105 30		
42 60p 47 75p	74163 99p 74164 120p	CD4030AE	137p	MEC40008		Audio Am			60p	BC148	7p	BFY52	16p	2N2222 20p	2N3819 22		
48 700	74166 126p	CD4043AE	2020	MFC6040	Electron	nic Attenu			900	BC149C		BRY39	34p	2N2369 14p	2N3820 50		N
50 15p	74174 120p	CD4046AE	140p,	NE555	Timer			pin DIL	40p		11p	BSX20	18p	2N2484 30p	2N3823 50		
51 16p	74175 85p	CD4047AE	154p	NE 556	Dual 55			pin DIL	100p	BC158	10p	BU105			2N5457 30	x	
53 16p	7418D 100p	CD4049AE	63p	INE561		h AM Den		pin DIL	325p	BC159	11p	BU108		2N2904 20p	2N5458 30		
54 16p 60 15p	74181 298p 74182 82p	CD4054AE CD4055AE	196p 196p	INE562	PLL with			pin DIL	325p 300p	'BC169C		MJE34		2N2905 20p	2N5459 30	TUNN	
60 15p 70 27p	74182 82p 74185 135p	CD4056AE	135p	NE563 NE565	PLLEM	/IF Demo		pin DIL	200p	BC177	18p			.2N2906 20p	MOSFETS	AEY11	
72 250	74190 144p	CD4060AE	229p	NE566	PLL Fun	Geo		pin DIL	150p	BC178	17p	MJE29		2N2926R 7p		- 1	
173 30 p	74191 144p	CD4069AE	37p	NE567	PLL Ton			pin DH	150p	BC179	18p	MJE30		2N2926B 7p	3N128 85 3N140 85		AD
474 3 0p	74192 120p	CD4071AE	27p	2567	Dual 56			pin DIL	370p	'BC182	10p	MPSA0		2N29260 8p			
475 45p	74193 120p 74194 108p	CD4081AE CD4082AE	19p 27p	SN72733	Video A			pin DIL	120p	BC183	10p	MPSA1		'2N2926Y 9p	3N141 85		i i
476 30p 480 50p	74194 106p 74195 75p	CD4510AE	130p	TBA800		dio Amp. dio Amp	011		90p 100p	BC184	11p			'2N2926G 9p	3N187 1.60		
481 950	74198 198p	CD4511AE	200p	TBA820	2W Auc		OII		80p	BC187	30p	MPSU0		2N3053 18p	3N202 120p		
82 70p	74199 180p	CD4528AE	120p	, XB2240		mer / Cour	nter 16	pin DIL	3700	'BC212	11p	MPSU5		2N3054 45p	40603 58		
				ZN414	TRF Rac	dio Recen	rer TÖ	-18	110p	'BC213	10p	OC28	65p	2N3055 50p	40673 58	• Z5J	1
LTAGE REGI	JLATORS FIXED			TRIACS	-			OTHER	1.	'8C214	14p	OC35	55p	2N3439 67p	UJTs	1	
mp +Ve	Ve	200mA	(105)	INIAGO		400V	500V	40430	9 9 p	BC478	30p	OC36	60p	2N3442140p	'TIS43 27	BRIDE	GE
v 7805 140p v 7812 140p			990	3 Amp		120p		40436	99p	BCY70	18p	·0C41/2		2N3702 11p	2N2160 80		ICIE
7815 1400			99p	6 Amp	88p	150p	180p	40669	95p	BCY71	22p	'0C45	15p	'2N2703 11p	2N2646 38	nE011	HUC
7818 140p			_	10 Amp	109p	180p	195p	BR 100		BD123		'0C71	20p	2N3704 11p	2N4871 30	25A 1	000
7824 140p			-	15 Amp	145p	210p	250p	Diac	21p	BD124	65p	TIP29A		2N3705 11p		1A 50	
RIABLE	Da	ta sheets on	reas	000 -	IV DIGT	0.00	BT106	-		BD131	36p	TIP30A		2N3706 10p	PUJT	14 100	
3 14 PIN DI		Op each +		SCH-TI	HYRIST	UNS	1A 700V	Stod	140p	BD132	40p	TIP31A		2N3707 11p	2N6027 48	1A 400	
		op cach T	3.0.0.	1	***		C106D			'BD135	43p	TIP32A		'2N3708 9p	OIODES	1A 600	
TO-ELECTR	ONICS			1A 50V 1A100V	TO5 TO5	40p 42p	4A/400₩ MCR101	Plastic	55p	'BD139	63p	TIP33A		2N3709 9p	SIGNAL	2A 50	
P70 30p	SEVEN SE	GMENT DISPL	AYS	1A400V	105	42p 52p	D 5A/15V	TO 92	25p	'BD140	70p	TIP34A		2N3773	'OA47 7		
P71 120p	3015F 0.3	n DIL	t20p	1A600V	ro5	70p	2N3525	10.32	* sb	BF115	22p	TIP35A		220p	'OA70 9		
P12 50p	MAN3M 0		110p	3A100V	Stud	49p	5A/400¥	10-66	90p	BF167	23p	TIP36A		2N3866 90p	OA81 8		
P60 75p	DL704 0 3 m		135p	3A400V	Stud	75p	2N4444			BF170	23p	TIP41A		2N3903 18p	OA85 10		
P61 85p 5777 40p	DL707 03 in DL747 06 in		135p	7A100V	T05+HS		8A 600V	Plastic	185p	BF173	25p	TIP42A		2N3904 20p	10		
			225p	7A400V 8A 50V	TO5+HS Plastic	90p 130p	2N 5060 0 8A/30V	10-92	34p	BF177	26p	T1P295		2N3905 18p	VAT RATES		
	9 Red 14p; TIL			12A400V	Plastic	160p	2N5062	10-92	эчр	BF178	28p	ZTX10		2N3906 20p	ALL ITEMS		XC
LOW PROF	ILE DIL SOCKE	TS BY TEX	AS	16A100V	Plastic	160p	0 8A/100	v 10-92	37p	BF179	33p	'ZTX30		2N4058 15p	where marked		
	4 pin 14p, 16 pin			16A400V	Plastic	180p	2N 5064			BF180	33p	ZTX50		2N4059 10p	0.000	winch al	16 19
	Mica + 2 Buthes for			16A600V	Plastic	220p	0 8A/200	V TO-92	40p	BF181	33p	ZTX502	2 18p.	2N4060 13p	at 25%		-
ALC: NOT THE OWNER	COLOR DA						Carlo Laboration	All firm	i orado d	auioae				TECHNI	OBAAT	CIT	
Fully brande	d devices by T	exas, RCA			n Order £	-2			i grade d	oinitment,	walcas	10			OMATI	C LI	Ľ
				P&P 20p										54 SANDHUR		DON, NV	N9
	itional, iviuliard																
Motorola. Na	monal, iviuliard	. etc.		Please a	dd VAT	to tota	31	Govt.	Colleges	etc orde	rs acce	pted .		Fel: 01-204 43	33	and the second second	

Electronic Ignition

Sound Operated Flash PW Tele Tennis Game U.H.F. Modulator Bench Power Supply Wobbulator All ETI Top Projects Many of the Elektor Projects NOTE: PC.B's for most published projects available to order. CROFTON ELECTRONICS LTD

TITLE	PROJECT NO.	ISSUE	BOARO	TOTAL INCL	TITLE	PROJECT NO.	ISSUE	BOARD NO.	TO
ini. Siereo Amp 25 watis/chan	int. 25	Oct. 1975	Int. 25	£4.21	Tape Slide Synchroniser	513	Top Project No. 2	026	
Dual Power Supply	105	Apr. 1972	014	£1.48	Digitial Stop Watch	520	Jan. 1974	52DA	£
Wide Range	107	Top Project	022	£1.09	D. Salar	529		520B	1
Voltmeter		No. 1			Electronic One Arm Bandii	529	Sept. 1975	529A	Î
I.C. Power Supply	111	Jan. 1973	111	£1.43	Temp, Controller	530	Mar. 1975	5290 530	1
Thermocouple Meter	113	Dec. 1973	113	£1.57	Photo Timer	532	Sept. 1975	530	
Dual Seam Adaptor	114	Oct. 1974	114	£1.00	Digital Display	533	Oct. 1975	5334	L i
Impedance Meter	116	June 1975	116	£1.01	nidtrat picket	333	061. 1975	5338	
Digital	117	Oct. 1975	117A	68p	-Radar Intruder Alarm	702	June 1975	5338	1
Volimeter		Nov. 1975	1178	68p	Light Dimmer	102	Apr. 1975	702	
Simple Freq. counter	118	Top Project	118	68p	Intruder Alarm		Sept. 1973		
The Revealer	213	No. 1	213	68 p	Digital Alarm	Tim			£
Bardia Links Manufact	000	BcL 1972	0.07	c 0-	Diack	Ironic	1	5017	ŧ -
Brake Light Warning Automatic Car	303 305	Aug. 1972	007	68p 99p	Ubliboard	1. onio	Nov. 1975	AA/68	E
Theft Alarm	302	Mug. 1572	019	aab					1
international Ballery	309	Nov. 1973	309	98p					
Charter	303		303	2 oop					
Electronic Ignition	312	May 1975	312	E1.72					
DI/Tacho	510		0.10	E (1) C					
Auto Amo	314	May 1975	314	75p					
ET Four Input Mixer	401	Top Preject	005A	670					
		No. 2							
Super Stereo	410	Top Project	025	£1.51					
		No. 2			1				
100W Guitar Amp	413	Feb. 1973	413	£1.73					
Masler Mixer	414	Top Project	414A	£1.14	At the tir	ne of	aoint 1	to pre	ess
		No. 1	414B	£1.52	we have				
1.1	.		4140	£1.52					
Slage Mixer	414	July 1975	414D	£1.89	above b	oards	. Allow	17/	10
			414E	£1.78	1 (-1.1			
Mixer Pre Amp	419	Dec. 1973	419	91p	days for				
International 420 Four Channel	420	Apr. 1974	420A 420B	76p £1.11	Boards	also	availa	ble t	for
Amo		1	4206	£1.21					
Amp			4200	£1.21	other put	blisne	a aesigi	ns at	οp
					a so, inc	h +	VAT an	nd P&	ιР.
Discrets SQ Decoder	42DE	June 1974	420E	£1.69					
Int. 422 Stereo Amp	422	Aug. 1974	422	£2.97	Large sto		or com	poner	nts
50 watts/Chan Plus Two Add on		Nov. 1974	423	91 p	also avail	able			
Decoder Ama	423	107. 131,4	42.5	arb					
Stereo Rumble Filter	426	Jan, 1975	426	760					
Simple Stereo Amp.	426	Mar. 1975	420	760					
Line Amp	429	July 1975	429	76p					
Photographic Timer	512	Aug. 1972	430	760					


ETI PCB's

Dept C 124 Colne Road, Twickenham, Middx. 01 898 1569

CROFTON ELECTRONICS LTD. Dept. C, 124 Colne Road, Twickenham, Middx. 01-898 1569

ELECTRONICS TODAY INTERNATIONAL-MARCH 1976

PARTS LIST - ETI 238 100 ohm 1 watt resistor 10 ohm ½ watt resistors 4-way screw type speaker connectors 100 ohm linear potentiometer Two Two Two One stereo headphone socket with double-pole break contacts box (as required) 2-pin DIN plugs (if required) 2-pin DIN line sockets One Two (If required)

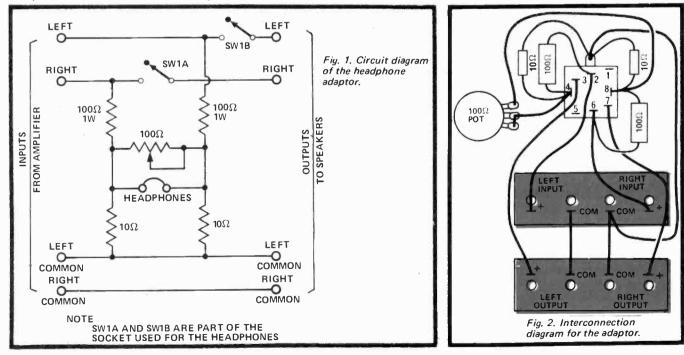
HEADPHONE ADAPTOR

Unit restores damping and natural stereo separation.

HEADPHONES have impedances which range from 8 ohms to 2 k ohms or more and handle a typical maximum power of 500 mW. To limit the power that may be delivered into the 8 ohm types, commercial amplifiers generally supply the headphones from the amplifier output via series resistors of around 220 ohms.

Although this technique allows the use of practically any type of headphones without fear of damage

the series resistor drastically reduces the amount of damping the amplifier can apply to the phones.


A further problem with headphone listening is that the stereo separation is unnatural in that there is little right channel information fed to the left ear and vice versa.

This simple little adaptor is inserted between the amplifier and the leads to the speakers. It restores damping, by supplying the phones from a 10 ohm source, and has a blend control by which the separation between channels can be varied to obtain a more natural sound.

CONSTRUCTION

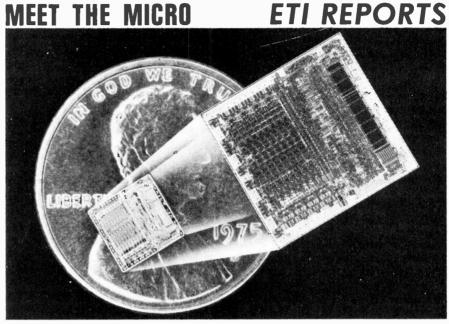
We mounted the two four-way terminal strips onto the lid of a small box and the headphone socket and potentiometer through one side. The stereo-headphone socket should be the type which incorporates double-pole break contacts. This type is generally of sealed construction and has 8 pins on the back. Such a socket is necessary so that normal speaker operation is obtained until the headphones are plugged in whereupon the speakers are automatically disconnected.

Wire the unit as shown in the interconnection diagram, and, if the amplifier has DIN connectors, attach short leads, with DIN plugs and sockets, to the unit as shown in the main photograph.

eti microfile

NO, YOU CAN'T USE IT FOR YOUR HOMEWORK I'M LOADING IN TOMORROW'S RUNNERS AT KEMPTON!

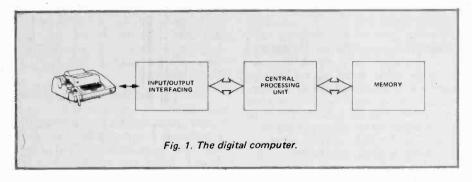
IN THE FIRST OF several articles under the title ETI Microfile, we'd like to introduce you to our star performer who is currently enjoying fantastic reviews in the States. We refer, of course, to the multi-talented microprocessor.


This device has been getting mentions in ETI for the past few months, (N.D., Desk Top Graphics), but we've never really said what it is, what it does, or how it does it. In fact, nobody really seems to have thought of passing on microprocessor information to the interested experimenter in a comprehensive way. Micros are rapidly coming down in price and up in applications — make no mistake, the micro is here to stay, very soon many electronics enthusiasts will be using one.

"But what will they be using it for?" we hear you ask. Here's a short list of potential applications:

- Programmable calculator Electronic games TV games Microcomputer Controlling heating systems
 - Controlling measurement
 - systems etc.

Many more applications will suggest themselves with a little thought. A fairly typical system might be built around a micro to control an electric cooker in a sophisticated way so a to permit programming of complete menus with the micro automatically controlling oven settings and timing the applications are limited only by the imagination.


The main area which we will discuss is the microcomputer, as this is the ideal way to learn about microprocessors, and is a) interesting b) educational and c) useful. It is interesting to look at American activity in this area. Magazines such as Popular Electronics carry full page adverts from companies supplying complete computer kits, and programs to run on them. These computers, although small and cheap, are nonetheless very powerful - in fact on many of them it is possible to use BASIC language, which makes programming quick, easy and fun. Obviously, we'll have a lot more to say on the amateur microcomputer later.

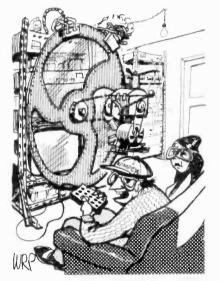
FINE, BUT WHAT IS IT?

We still haven't said what a microprocessor actually is, so here goes. Please bear with us while we explain a bit about computer design. The micro has been described as an 'LSI computer on a chip'. This is a slight misnomer, and may lead you to expect more from a micro than it can reasonably give. It is perhaps more accurate to say that a microprocessor is the arithmetic, logic and control circuits of a computer implemented in LSI form. The definition given by one major microprocessor manufacturer is 'A Microprocessor is a very large scale integrated circuit which by the action of a sequence of instructions, externally programmable, can fulfil a wide variety of different electrical functions'. None of these definitions is particularly revealing, so let's take a closer look at what's actually in a computer and, by analogy, what's in a microprocessor unit (MPU).

The modern stored-program digital computer (Fig. 1) consists of three main units – the central processing unit (CPU), the memory and the interfacing. input/output The sequence of instructions (program) which the computer is to execute is passed through the input interfacing into the memory along with the data to be operated on, and step by step, the machine works through these instructions. Depending on the results of calculations, the machine can jump forward to the next step of the program; otherwise it may go back to the beginning with a new set of numbers.

The instructions are fed, one by one, into the central processing unit which decodes them and 'decides' what they mean. The instructions are then executed by the arithmetic and logic unit of the CPU and the results may be tested to decide what to do next, or retained for use in the next calculation, or stored away in memory. (End of slight diversion into computers.)

This, believe it or not, is precisely what a microprocessor system does the microprocessor itself (MPU) corresponds to the CPU, and normally has associated memory containing a program for it to execute. The important point to note here, is that to change the application of an MPU, one does not usually have to change any components, but only the program; this usually costs little or nothing and programming is actually fun — we know our readers will take to it like ducks to water.


HOW DOES IT DO THIS?

From this point on, we have to assume

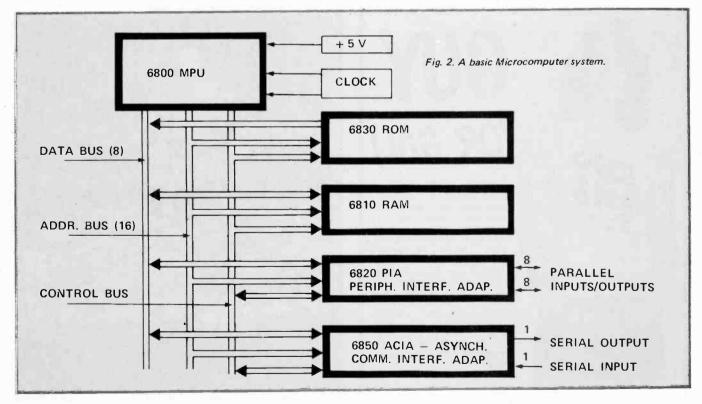
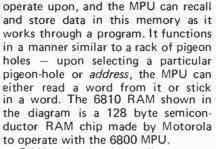

that you, the reader, know a bit about digital logic, which you will, if you've been reading ETI for long. If you're not too sure, please, please find out now - it's definitely the coming thing - and we advertise some good books. We also have had to make a decision to work with one particular MPU, the reason being simply that if everyone works with different types, there will be a lot of duplicated and wasted effort, as really good and interesting programs worked out for one device won't work on a different type. After considerable spadework and deep thought we have opted for the Motorola M6800 family of devices, for a variety of reasons. Please note. however, that a lot of what we say applies to MPU's in general and not just the M6800.

Figure 2 shows a block diagram of a basic M6800 microprocessor system. The most noticeable thing on this diagram is the way all the devices are connected together by three buses the control bus, the address bus and the data bus. The control bus has several lines carrying clock signals, read/write, halt, reset and other signals for the control of the system. The address bus has 16 lines in total $A_0 - A_{15}$, which means that the MPU can access up to 2¹⁶, i.e. 65 536 bytes, (8 bit words) of memory directly. This amount of memory is equivalent, roughly, to 13 completely printed pages of ETI with all kinds of special characters, typefaces and colour specified in a none-too-efficient code. So you can see there is sufficient memory potentential for most applications.

The data bus has only 8 lines and will enable the MPU to input or out-

NOW I'VE GOT ALL THE INTERNAL CONTROL FUNCTIONS PRE-PROGRAMMED I CAN RUN IT UP FROM COLD IN WELL UNDER HALF AN HOUR!



Motorola's 'MPU in a suitcase'

put any 1 of 256 different bit patterns. This will be covered in more detail when we discuss number systems. Both buses are bi-directional, so that the MPU can send or receive on either, with the added facility of disconnecting itself for special applications (Direct Memory Access, for those in the know).

THANKS FOR THE MEMORY

Let's now look at the two blocks below the MPU – the ones labelled ROM and RAM. We'll start with RAM, or Random Access Memory. This is the memory that holds both the program and the data it will

RAM chips have one disadvantage – when the power is turned off, the contents are lost. This means that any programs which have to be permanently resident in the computer have to be in a different form of memory – this is usually Read Only Memory. This is programmed either during manufacture or before insertion into the circuit and cannot normally then be altered by the micro, which can only read information from it. Again, the 6830 is a Motorola part designed for the 6800 – many other parts are suitable, however.

INPUT, OUTPUT

Referring back to Fig. 2, the two, blocks at the bottom constitute the bulk of the input/output (I/O) interfacing mentioned earlier. The 6820 Peripheral Interface Adaptor has two eight-bit parallel buses each line of which can function as an input or an output, while the 6850 Asynchronous Communications Interface Adapter is a serial I/O device. Both these devices will be dealt with in greater detail later.

With the addition of a few devices such as a clock oscillator and a power supply, these devices can be made into a complete microcomputer. However you also need some kind of input/ output device e.g. teletype or video display unit and also a monitor and debug program which will enable you to load programs into memory, run them and alter them. We'll have more to say on this when we discuss programming. The final (optional) piece of hardware is a low speed modem which converts digital signals into audio tones so that programs can be saved on a cassette tape via a cheap tape recorder. This means that programs do not have to be typed in each time the computer is switched on, and is probably the computer experimenter's best value-for-money labour saving device.

Well, that rounds off this general, and very simple, introduction to microprocessors. If you're already using one, and have any interesting thoughts, we'd like to hear from you. If you're just thinking about it watch for the Microfile heading that's where you'll find the facts.

<text><image><text>

SILENT A-B SWITCH

Speakers may be A-B tested using this simple modification to our tone-burst generator

WHEN evaluating speaker systems in A-B listening tests, the first few seconds of listening convey the truest impression of sound quality. Listening for longer than a few seconds not only fails to give further information, but may well give a false indication. For this reason it is usual to switch rapidly between the reference speaker and the speaker under test. This is generally done by using the amplifier's A/B

HOW IT WORKS - ETI 124 AB

As this unit is based on the operation of the tone-burst generator ETI 124 described last month, that article should be thoroughly read first. Only the changes necessary to that unit are detailed in this article. Whilst an A-B switch would be a little simpler if designed specifically for that purpose, the modifications required to the tone-burst generator are so simple that we thought it not worth while to design a special circuit.

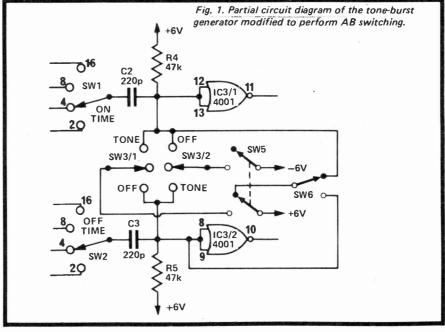
To make the generator act as an A-B switch it is necessary to disable the existing mode switch. We do this by plugging in an external control switch, SW6, via a stereo phone socket. The phone socket has two change-over contacts fitted which are used to disconnect the plus and minus six volts supplies from SW3 when the jack is inserted. One of the phono contacts also disconnects the plus six volts from the common of the socket when the jack is removed. As the common of the socket is required to be at plus six volts the phono socket must be insulated from the front panel which is at 0 volts.

The control switch, SW6, effectively shorts either R4 or R5 thus stopping the pulses from C2 or C3 triggering the flip-flop. When the switch is actuated there is a delay until the number of cycles as set by the front panel switch have occurred and then, at the next zero crossing, the change-over occurs. The delay is necessary to ensure that any contact bounce of the SW6 contacts does not cause unwanted switching of the circuit.

speaker selector switch, or by wiring a change-over relay in the speaker wiring.

Whilst such switching methods are simple and reliable they have one major drawback. That is that switching may take place at any point in the waveform and as a consequence switching transients may be introduced which tend to mask the subtle differences for which one is listening. Hence a method of switching at zero-crossing points would be of great value.

When the ETI Tone-Burst Generator was constructed it was realised that it contained all the circuitry needed to performance this switching task and that it could be modified to do so very simply.

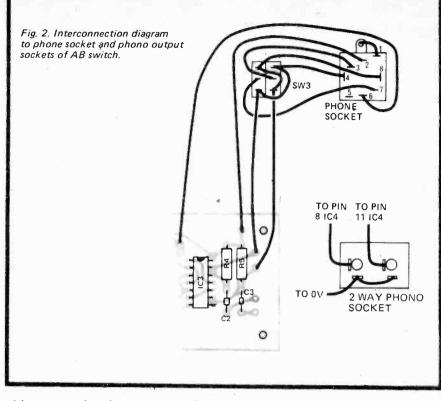

The switching must be done at low level and hence the unit is used at the input of a stereo power amplifier. The reference speaker and the speaker under test are each connected to one channel of the amplifier and the silent switch switches the input to the amplifiers as required. Thus the arrangement is mono only but this is all that is required to assess the transient response and performance of a speaker in comparison to a reference speaker.

CONSTRUCTION

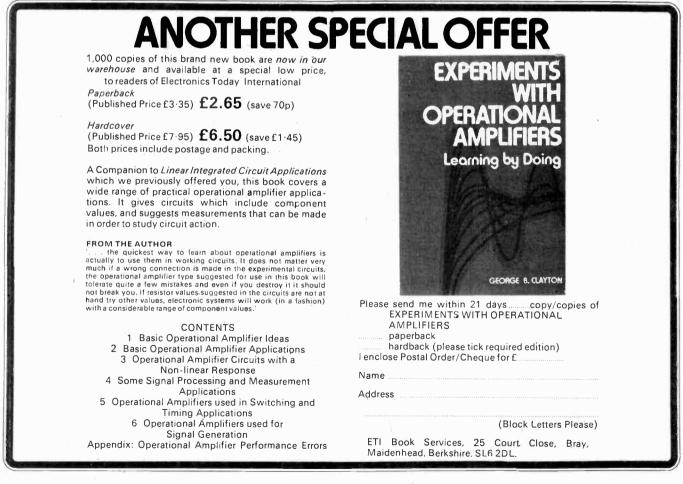
The ETI 124 Tone-burst Generator should first be constructed, as detailed last month, except that the wiring to SW3 is changed as detailed in Fig. 1 and 2 of this article. The dual phono socket and the phone socket are then mounted on one side of the box. If a metal box is used make sure that the phono socket is insulated from the case of the box as it is at a potential of six volts. The switch, SW6, should be mounted in a small pill container or: similar housing and fitted with a three-core cable that is terminated at the other end by a stereo phone jack. Note that the common of the switch should be connected to the common of the jack but that the other wires may be wired to either of the remaining contacts.

USING THE SWITCH.

The audio switch requires a reasonably high level of signal to ensure correct zero-crossing switching. There are two suitable points in a conventional amplifier. The first position is between the tape-in and tape-out sockets but the second and preferable position is between the pre and main amplifiers provided that the main amplifier has a volume control that is independent of the preamplifier.



SILENT A-B SWITCH


To connect the unit for AB testing apply a single input, from the preamplifier (switched to mono), to the normal input socket of the generator. The normal output socket of the generator is not used but the two phono output sockets are connected back to the left and right channel inputs of the main amplifier. When SW6 is operated the mono input will be silently switched between right and left channel speakers.

If using the tape sockets the monitor switch should be in the 'monitor' position and the balance control should be adjusted so that the levels from the two speakers are apparently the same. Make sure that the tone controls are in the flat position, as they can cause phase shifts which prevent the switching occuring at the zero-crossing point.

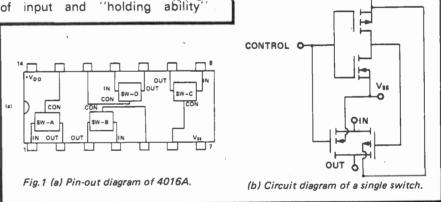
If the pre and main amplifier terminals are used the preamplifier volume should be adjusted to about half way and separate volume controls used to balance for the difference in efficiencies of the two speakers. If the main amplifier does not have separate volume controls then external ones must be added if balance is to be achieved. In this case the tone controls may be used if required

without upsetting the crossover point. Change over may be effected by using either a toggle switch or a push button. The tone-burst generator controls should be set for eight cycles on and off as this position will effectively remove any contact bounce.

THE 4016A

THE NEXT DEVICE we are going to look at has already made a considerable impact on amateur electronics. The 4016A guad bilateral switch consists of four transmission gates of the type discussed in the last part, each with its own control input. Each switch also has a signal input and output (although these are interchangeable). When the control input is held high the input to output path behaves like a pure resistance of about 300Ω but when it is low the equivalent value is of the order of $10^{9}\Omega$ at low frequency, even with fairly low supply voltages. It is impossible to give all the data which might be necessary for diverse applications here and data sheets from a manufacturer may be required by the more adventurous experimenters. In any case the pinout diagram in fig. 1 should now be self explanatory.

It should be appreciated that the output impedance of the switch is fairly high and so for low signal distortion, a load greater than $10k\Omega$ is necessary. Using a high supply voltage (10-15V) also helps to achieve this end. The gates will pass signals above the 10MHz mark but as the frequency becomes higher, crosstalk between the switches and distortion will inevitably increase. It should be fairly clear how complicated switching systems may be realised but fig. 2 has been included to guide constructors along the right lines.

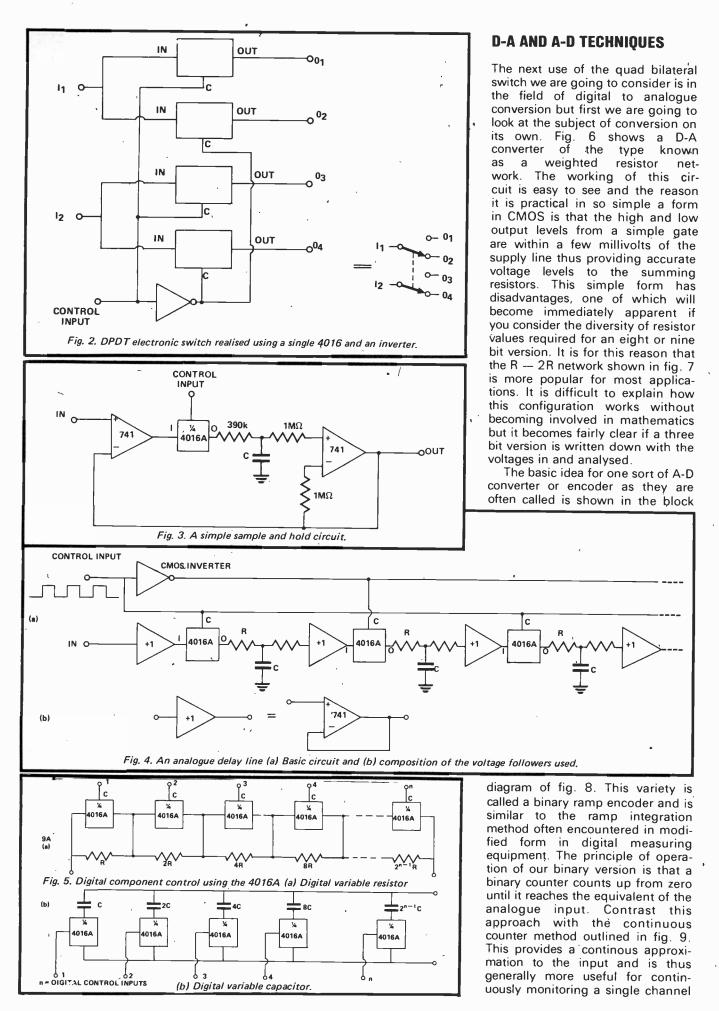

ANALOGUE APPLICATIONS

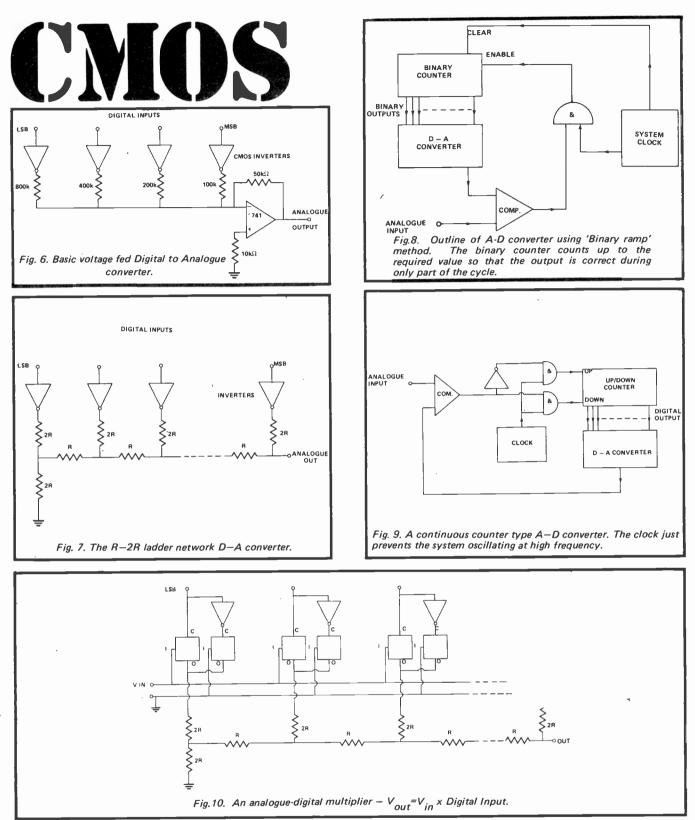
Many uses of this device in audio equipment have already appeared in constructional articles in this magazine and so it is to two slightly less obvious applications that we shall turn now. Fig. 3 shows a sample and hold unit; when the control input is high the output tracks the input but when it goes low the output remains frozen at the value it was at the instant of transition. The operation of the circuit is generally self evident and it may be regarded as two voltage followers, one consisting of two op-amps with the output following the input, the other is just the second op-amp which "follows" the voltage stored on the capacitor. It is advisable to take care with the layout as with all op-amp circuits due to the huge open loop gain of these devices. The value chosen for C is a compromise between "slewing rate," that is the rate at which the circuit tracks a sudden change of input and "holding ability"

DIGITAL COMPONENT SELECTION

There are a few fairly straight-forward uses of the 4016A in digital component selection which we will mention here because, in certain fields, they are very useful. Fig. 6 shows how to produce digitally controlled resistance and capacitance networks which will vary the magnitude of the quanity in ques-

VDD




which is the length of time the circuit will hold a signal without unreasonable decay. To give some sort of guide, for a 10kHz square wave to the control input, a 0.01μ F capacitor seems to optimise the performance. The value of the resistors is also worth experimenting with.

An extension of the sample and hold concept is the analogue delay line which is shown in its basic form in fig. 4. The sequence of amplifiers and gates can be extended to any desired length to achieve a longer delay, the only limitation being that in extreme cases the control lines may need to be buffered. It should be observed that alternate stages of the circuit are driven by an identical clock waveform and so the circuit works by shifting the voltage on alternate capacitors during alternate clock phases. The value of the passive components and the clock frequency will have to be optimised for specific applications, low frequencies give long delays but high distortion.

tion from its basic value up to 2^n-1 times that amount, where "n" is the number of gates and binary control bits. The resistor network can be used to produce a digitally gain controlled amplifier by placing it in the feedback loop of an op-amp and this can be used as a staircase generator as well as to produce more interesting waveforms. One application of the digital capacitor is to produce a digitally controlled sweep generator by using it as the capacitor in one of the multivibrators we discussed in the last part.

Clearly, any type of component may be switched in and out of circuit by the 4016A. One possibility that is useful in some circumstances is to use the information on filter design in "Electronics — it's easy" to produce digital filters of different descriptions. The main thing to remember when using all these ideas is that the impedance of the component that is being switched must, at the desired frequency of operation, be large compared to the 300Ω of the 4016A gates.

of information. It would be an advantage in many cases to have the counters working in BCD for ease of readout but this leads to complications which can not be gone into here. Finally on, this subject it should be pointed out that these are circuits for experimentation and are unlikely to be directly applicable to any given situation. They have been included because of the ease with which they may be realised in CMOS compared, say, to TTL.

A-D MULTIPLIER

As far as digital to analogue conversion is concerned, using the 4016A we can take the idea a little further. What in fact we do (fig. 10) is to use an arbitary analogue voltage to feed the resistor ladder and so we multiply this input by the digital input and produce an analogue result. This "hybrid multiplier" is an interesting circuit, particularly because the analogue input voltage may be ac. thus producing several interesting waveforms and, on a more serious note, it may find application in hybrid computing experiments. We shall now leave the 4016A having, it is hoped, suggested some of the slightly less obvious uses of this versatile IC.

Continued next month . . .

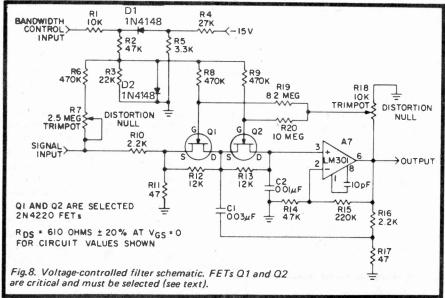
THE FILTER output is coupled to the detector via a small capacitor to make the low-frequency rolloff even steeper below 1.6 kHz. The precision full-wave detector uses diodes in the feedback circuit of an op-amp to effectively produce ideal rectification characteristics down to the millivolt region. The output amplifier doubles as a post-detection filter. Resistor R determines the gain, and capacitor C makes this stage behave as an operational integrator with time constant RC. A switch is provided for increasing the time constant by paralleling capacitor C1; this is helpful with sources having sharp impulse noise The output of the detector/filter circuit controls the bandwidth of the dynamic suppression filter according to the curve of Fig. 9.

Early experiments showed that it is undesirable to make the no-signal cutoff lower than absolutely necessary to substantially reduce noise with a particular signal source. When the cutoff is made lower than actually needed, weak signals are unnecessarily band-limited and the dynamic filter produces such a level-dependent bandwidth contrast that its action is much more likely to be audible. Hence BASE CUTOFF (not "BASS а CUTOFF") control was found to be desirable. This control is simply a pot which offsets the detector output at zero signal level by applying a variable reference voltage to the op amp

non-inverting inputs. This voltage, variable from about -1 volt to -6 volts, establishes a "starting point" or base cutoff frequency which can be set just low enough to virtually eliminate no-signal noise.

15

13

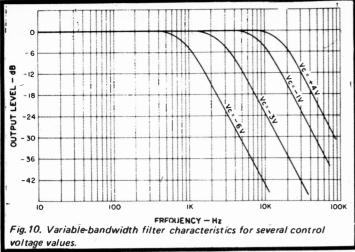

12

0

VARIABLE-CUTOFF FILTER

The variable-cutoff filter, Fig. 8, is the very heart of the system. Since there is some part selection and adjustment necessary, it must be checked out separately. The basic configuration is similar to that of the pre-filter. except the latter's switch-selected resistors have been replaced by field-effect transistors (FETs). FET channel resistance R_{DS} changes as a function of gate voltage VGS as shown in Fig. 11, thus varying cutoff frequency. A resistor across each FET establishes a solid lower cutoff limit and smooths the control characteristic as the FETs approach their "off" state. The gate circuit network, consisting of diode D1 and resistors R1 through R5, is used to empirically shape the control curve (Fig. 9) for best audible results. Diode D1 prevents excessive positive gate drive, maintaining isolation between the gate and signal circuits.

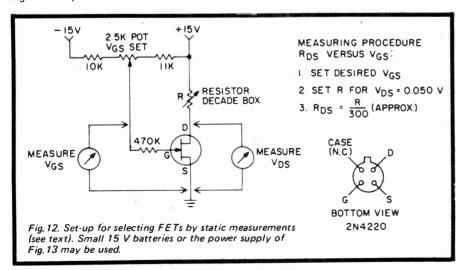
An input attenuator (R10 and R11) limits the signal amplitude presented to the FETs to about 0.1 volt p-p at 0 VU to ensure low distortion. Output amplifier A7 makes up exactly for this

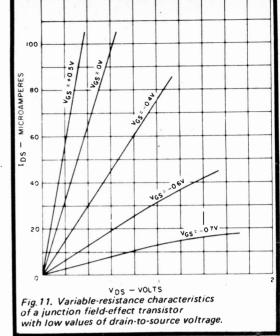


• 2 - 2 +3 VOLTS Vc -Fig.9. Variable-bandwidth filter cutoff frequency vs. control voltage. loss. An op amp having external frequency compensation was used here so that this relatively high-gain stage could be tailored for flat response to 15 kHz (a µa741 could be used, but would roll off slightly above 10 kHz). Resistors R16 and R17 attenuate the output signal by an amount equal to the gain, so that this amplifier doubles as the unity-gain buffer required for filter operation. The highest cutoff frequency is dictated by minimum FET resistance and capacitors C1 and C2. The latter should have values in a ratio of about 3:1 to produce the desired Butterworth response. Figure 10 shows the measured response of the complete filter for four values of

control voltage.

Unfortunately, FETs vary widely in characteristics, even between units of the same type, so these devices must be selected. The two FETs must be reasonably well matched over at 15:1 R_{DS} range for a 15:1 range in cutoff frequency (15 kHz to 1 kHz). (Dual matched FETs are available, but are more expensive and not necessarily matched for the parameter of interest here.) A transistor curve tracer is most convenient for this purpose and permits selection for best linearity as well as matching. I used N-channel 2N4220s on hand (60p each) and selected the best matched pair out of a group of six units. Figure 11 shows the VI characteristics of one of these. There are many other inexpensive FETs which should work as well, such as the 2N5484, 2N5716, and 2N5717. fact, any In general-purpose, depletion-type FET with fairly low zero-bias current (I_{DSS}) and pinch-off voltage (Vp) should be usable P-channel units would require reversing diodes D1 and D2 and the polarity of the control voltage.


If a curve tracer is not available, the



setup of Fig. 12 can be used. A socket will facilitate transistor changing FETs. A good procedure is to first measure R_{DS} at V_{GS} = 0. Then V_{GS} (negatively for increase N-channel FETs) until R_{DS} is about three times the zero-bias value; this corresponds to a mid-range cutoff frequency where matching is the most critical. With this VGs setting try different FETs until a 10 percent or better match is found. If R_{DS} values seem to cluster higher or lower, try another, unit as a reference and try matching to it. When matched units are found, check the match at minimum R_{DS} (V_{GS} = + 0.5V) and at 10 times this value of R_{DS} . A 20 percent mismatch can be tolerated at these extremes. My 2N4220s measure 610 ohms at zero bias, 360 ohms at $V_{GS} = +$ 0.5V., and about 8 kilohms at $V_{GS} = -0.7$ V. R11 and R12 are chosen for a cutoff of between 800 Hz and 1 kHz with the control voltage at its maximum negative value of about -6 volts. Circuit cutoff at zero FET bias should be roughly 12 kHz (see Fig. 9). A slight forward bias, limited to about +0.5 volt at the FET gates by diode D2, then boosts the cutoff to at least 15 kHz with maximum positive output from the precision detector.

Resistors R6, R7, R18, R19, and R20 reduce harmonic distortion significantly. R6 and R7 feed some signal to the FET gate circuit so that signal voltage does not appear between source and gate, which would make R_{DS} vary slightly with instantaneous low-frequency signal amplitude and polarity. R18, R19, and R20 feed back some output signal to the gates to further reduce distortion (this is a cancellation effect, not true negative feedback).

Distortion settings are best made in the vicinity of cutoff, where FET linearity is the most critical. Connect a variable-voltage d.c. source (the slider of a 5 k pot temporarily connected between - 15 V and ground will suffice) to the bandwidth control input and set it for a cutoff frequency of 2 kHz. Then, with a 2 kHz sinusoidal input at about 0 VU (2.2 V p-p), set trimpots R7 and R18 for lowest harmonic distortion at the output. It should be possible to sharply null the total harmonic content, which consists primarily of the 2nd and 3rd harmonics, to at least 60 dB below 0 VU. Then vary the cutoff frequency and make sure distortion is low for all settings. Of course, the filter itself will reduce harmonic distortion appreciably at its lower cutoff values. Lacking a distortion meter or wave analyzer, these adjustments can be made quite well by driving the input at 7 volts p-p (10 dB above 0 VU) to accentuate the

distortion and setting very carefully for a symmetrical output waveform as monitored by a 'scope. Fixed resistors, determined by two decade boxes (the settings interact somewhat), could replace the pots. These adjustments, once made, are permanent unless the FETs are changed.

Figure 13 shows the distortion of the complete noise filter measured at two fixed values of bandwidth control voltage. At normal levels, distortion is so low that it is largely a measurement of the harmonic distortion of the test oscillator. The large margin above 0 VU passes the highest programme peaks ever likely to be encountered without clipping.

The simple power supply of Fig. 14 easily supplies the power requirement of \pm 15 volts at about 10 mA.

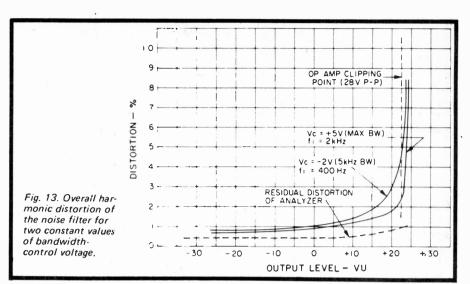
CONSTRUCTION

The entire filter can be duplicated for about £40 with new parts. Very few components are critical and substitutes can be used in most cases. Quarter-watt, 5 percent composition resistors are suitable. Layout is not critical, since signal levels are high and impedances are relatively low. I strongly recommend that each of the functional blocks of Fig.2 be built and checked for reasonable conformance with the curves before integration into the system. This makes troubleshooting for errors and occasional bad components much easier, practically ensuring success. My unit (Fig. 1 and lead photo) is a "breadboard in a box." The circuit is still undergoing occasional changes, even though it is a third-generation model. Parts are mounted on terminal boards which were on hand. A neater approach would be to use the

commercially-available matrix-board with snap-in terminals.

OPERATION

After checking the wiring, apply power to the unit and check for proper power supply voltages. Positive and negative supplies should both be between 14 and 16 volts with respect to ground. Much lower values would indicate a short circuit or bad op amp. Current drain should be on the order of 10 mA.


The noise filter can be conveniently connected to your audio system by means of the *Tape In* and *Tape Out* jacks included on most preamplifiers. An advantage to this connection is that the processed signal passes through the pre-amp tone controls, which can be set for the most pleasing final balance. For taping, the recorder input is paralleled with the output which drives the power amplifier.

For intial set-up experience, a record having a good frequency range and moderate, steady surface hiss is desirable. (A slightly noisy FM station can also be used, but results will not be quite as good because of the latter's flatter noise spectrum.) Initial control settings should be:

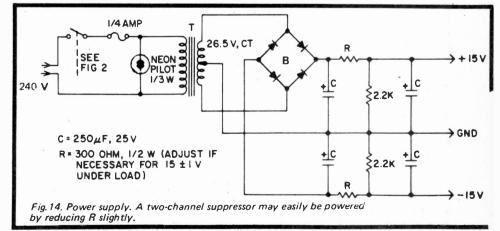
Pre-Filter: Off Rumble Filter: Off Time Const.: Off Peak Rej. Freq.: 5 kHz Base Cutoff: CCW Suppr. Gain: CCW Dyn. Suppr.: Off Sig. Compare: Input

The signal should now pass through the unit unaffected, except the *Level Set* control will vary the gain from zero to 3.2 (10 dB). Set the level for 0 VU on signal peaks as you would set a recording level. Whenever the source is changed, the signal level should be reset as necessary.

Now switch the Sig. Compare switch to "output". The signal is now passing through the rumble filter (if used) and pre-filter, but bypassing the dynamic filter. Lowering the Pre-Filter cutoff setting should progressively cut off the highs. At the lower settings, which are primarily for acoustic records, the signal will sound severely band-limited. The best setting is the lowest cutoff which does not significantly affect the recorded bandwidth. I have found that with vocal music, the unfiltered sibilant sounds provide a means of judging bandwidth. If sibilants are quite strong and natural, a 7 kHz or higher cutoff is indicated. If they are

weak or have a slight "whistling" sound, the upper limit is about 5 kHz. If sibilants are lacking, a 4 kHz or lower setting is best. Of course, the presence of high-frequency distortion may dictate a compromise setting a notch or two lower than indicated above. The filtered and unfiltered sounds may be compared at any time by means of the *Sig. Compare* switch.

The optional rumble filter is used for the occasional records which have warpage or bumps or low-frequency noise in the recording. For *acoustic* records it can be routinely left at 150 Hz, as nothing is recorded below about 200 Hz.


Next flip the Dyn Suppr switch to "on", putting the dynamic suppressor in the circuit. The sound should become very dull and lifeless; as the high-frequency cutoff is now 1 kHz or less. Increase the Base Cutoff setting until record noise just begins to be audible. The signal will probably still be quite lacking in high-frequency content (if it is not, only the pre-filter may be needed for this particular source). Now turn up the Suppr Gain This should "magically" slowly. restore the highs without increasing the noise level. The highest possible setting which does not noticeably

increase the noise is normally best.

At this point it is edifying to monitor the bandwidth control input signal to the variable-bandwidth filter with a d.c.-coupled oscilloscope. The instantaneous voltage here is a measure of high-frequency programme amplitude dynamic and filter bandwidth (see Fig. 9). It should follow transients rapidly and may reach saturation (about + 14 volts) on musical passages having high harmonic content and on strong voice sibilants.

The Peak Rej. Freq. switch selects the frequency of peak rejection by choosing the appropriate filter curve (Fig. 7) for separating the bandwidth-control voltage from the input signal. The 5 kHz position is used for most electrical 78 rpm records. For acoustic records or very noisy electrical 78s where the pre-filter is set for 4 kHz or less, the 3.5 kHz position gives better results. Here the Time Const. switch can be set for 15 mS. The longer time constant also helps to attenuate sharp clicks and pops occuring in quiet passages, as it prevents the bandwidth from increasing rapidly enough to follow their steep wavefronts. The 7.5 kHz position is used for wideband recordings and tape.

With a little practice, you will be able

to set the controls quickly for optimum performance. It is often best to set the *Base Cutoff* for a significant improvement, rather than to try to eliminate the noise completely. This will minimize low-level band limiting, and the suppressor will be less likely tobetray its presence with obvious bandwidth changes.

PERFORMANCE

Figures 5 and 10 indicate the bandwidth ranges available. The pre-filter and dynamic filter (slope is 24 dB/octave above both cutoffs) can together provide well over 60 dB of noise attenuation at 10 kHz and over 40 dB at 5 kHz. The overall improvement in signal-to-noise ratio is strongly determined by the character and spectrum of the noise, which varies greatly with records. With the steady hiss typical of new electrical. recordings on shellac, an average improvement of 8 dB (unweighted) is realized from the dynamic filter alone. Including the effects of the rumble filter and pre-filter on band-limited material. S/N improvement can be more than 12 dB. The apparent improvement is even greater, since the ear heavily weights the higher frequencies where record noise is concentrated.

The effect of the noise filter is surprisingly great on records which were originally thought to be quiet without filtering. It is a little weird at first to hear a familiar old record with realistic strings and brass and clear voice sibilants, but with the background suddenly rendered deadly quiet. I have spent many hours listening to the records and tapes in my collection and enjoying them anew.

The noise filter works very well on tape noise, providing at least 8 dB total S/N improvement. A stereo version built for tape only could be simplified considerably, as only the *Level Set, Base Cutoff, Suppr. Gain,* and Sig. Compare controls would be needed. The power supply as shown can easily handle two channels.

The noise level of the filter itself depends mostly on output amplifier A7. Of several units I tried, the noise level ranged from 62 to 68 dB below 0 VU.

A few tips on the mechanical aspects of copying records are in order here. The importance of good tracking cannot be overemphasized. More can be gained here than with any amount of electronic processing. Groove radius, depth, and angle were not standardized on early discs, and experimentation with tracking force and stylus size, if possible, may yield a considerable improvement in both noise and distortion. The playback stylus should, of course, ride on the sides of the groove. If it is too small it may ride the bottom of the groove and skate from side to side in a partially uncontrolled manner, creating severe distortion. If too large, it will ride high in the groove where it is more sensitive to surface blemishes. Also, larger styli cannot follow high-frequency modulation as well, especially on the inner record grooves. Elliptical styli are helpful on relatively wide-range 78s if the latter have not been damaged by previous playings.

Acoustic records (1925 and earlier) tend to have a larger groove, since with acoustic playback the mechanically-imparted stylus motion had to supply all the sound power. For these, a stylus of 4-mil (.004") radius may produce better results than the standard 3-mil size. Custom-made styli with a "truncated" tip (really a smooth transition from a 2- or 3-mil radius to about a 4-mil radius at the very tip) have been used to track the groove sides of 78s properly while avoiding contact with the bottom. (Truncated and other special styli are available from the International Observatory Instruments, 5401 Wakefield Drive, Nashville, Tenn 37220). Although not a cure-all, these can give dramatic results on selected discs. A 2.5 mil stylus is best for most post-1946 transcriptions. Obviously, the pickup should have adequate lateral compliance and should produce no output for vertical motion. Incidentally, electrical recordings made before the mid-1940s are mostly recorded flat, that is, they have no high-frequency pre-emphasis, while later records have pre-emphasis of as much as 16 dB at 10 kHz.

Edison cylinders (160 rpm) and discs (80 rpm), some Pathe discs, and some early wax transcriptions are vertically modulated. Here the stylus does ride on the groove bottom, and the pickup should have only vertical response. This can be obtained (as can lateral-only response) from a suitably-phased stereo cartridge. Stylus radii of 4 to 10 mils are typical here; as always, experimentation is in order.

FUTURE DEVELOPMENT

The experimenter may want to try to: improve the performance of the circuit described. Of course, additional types of processing can be added, such as more effective click suppression at the input or multi-channel filter equalization at the output. These would be electrically independent of the noise filter, and beyond the scope of this article. However, there are some possibilities for improving the noise filter itself. Many of these, unfortunately, would require an

incongruous increase in complexity and cost.

Sharper filter cutoffs give a marginal improvement on very noisy material, but setup adjustments become more critical. Dynamic high-pass (low-cut) filtering using a simple 6 dB/octave slope might be a reasonable addition. Since the noise-rejection frequency band of the low-pass dynamic filter the noise should complement spectrum of the signal, a statistical study of record and tape noise spectra might lead to a better shape for the bandwidth-control-signal separation filter of Fig. 7. The separation filter selector could be ganged with the pre-filter cutoff switch to eliminate one control knob. Perhaps a noticeable improvement could be realized by experimenting with the shape of the bandwidth control characteristic, Fig. 9. The attack time constant could be shortened by using a more elaborate filter at the precision detector output; this would improve the response to occasionally encountered wide-band transients.

An obviously desirable change would be to replace the FET bandwidth-control filter with one of the voltage-controlled state-variable types. This would eliminate the need for FET selection, but would increase the cost severalfold. It therefore appears that the original goal of high performance per dollar has been achieved, yielding a practical design which is within reach of the hobbyist.

References

1. Burwen, R.S., "A Dynamic Noise Filter," J. Audio Eng. Soc. 19, PP. 115-120, Feb., 1971. "Designing 2. Mori, T., 'Designin Low-Frequency Active Filters, Electro-Technology, P.72, Jan. 1968. 3. Langford-Smith, F., Ed., "Reproduction From Records' Radiotron Designer's Handbook (Wireless Press, 1953), PP. 701-774. 4. Scott, H.H., "Dynamic Noise Suppressor," Electronics, PP. 96-1001, Dec., 1947. 5. Fletcher, H., "Loudness, Masking,

5. Fletcher, H., "Loudness, Masking, and Their Relation to the Hearing Process and the Problem of Noise Measurement," *J. Acoust. Soc. Am.* 9, PP. 275-293, Apr., 1938.

Maplin Electronic Supplies have told us that they plan to market a kit of this project. Interested readers should contact them directly.

This article has been reprinted by permission from Audio, June 1975. Some copy and drawing changes have been made to suit European conditions.

ELECTRONICS PART 25 —it's easy! The algebra of logic.

MATHEMATICS is a kind of shorthand language which enables us to present a physical process, on paper, with symbols which may be manipulated in order to gain a better understanding of the process. It is thus a tool which aids understanding.

The familiar kind of algebra which relates two variables, x and y, in combinations such as x+y, x-y, x.y, x/y, x^y and others is a linear process because the two variables can hold any value. It is this kind of algebra that is performed by analogue operational amplifiers.

. However, if x and y can only have two possible states, such as a voltage which is there or not there, we can ignore the actual value of the voltage (or whatever) and regard the variables as behaving according to a two-state or binary number system. Just what the two states are is of no importance whatsoever — they can be high or low, positive or negative, there or not there and even true or false.

A mathematical algebra has been developed to cope with such binary systems. It is known as Boolean algebra – the algebra of logic, and it's rules are somewhat different to those of linear algebra. Before delving into the operation of Boolean algebra, it is worth tracing it's historical development.

HISTORY OF SWITCHING MATHEMATICS

Philosophers, those people who apply special skills to resolving paradoxes by the use of logic, have existed since the earliest civilisations. The Ancient Greeks were so impressed with logic that they wrote plays around Aristotle's formally arranged rules of logical deduction. The rules for this process of reasoning were handed down, largely by word of mouth, through the Dark Ages, with little, if any, recognition of their value for logic in computation. It was not until the early 19th century that the use of logical rules in calculation was established. This work was very much the result of George Boole's 1854 work (see Fig. 1) entitled "An Investigation of the Laws of Thought on which are Founded the Mathematical Theories of Logic and Probabilities", Augustus de a contemporary, Morgan, also contributed to the first systematic arrangement of Aristotle's logic.

Boole took the concepts further than the Ancients by substituting

66

mathematical symbols in place of the basic logical situations. This symbolic logic became known as Boolean algebra.

Little was achieved with Boole's work for the next few decades. The first machine to utilize his algebra to solve logic problems, faster than by hand, was William Jevons' logical piano of 1869. Boole's contribution, however, had to wait until the early 20th Century to find extensive application. One by one, logicians advanced the techniques of logical algebra: Pierce, Venn, Dodgson, Marquand, Pastore, Bollee. The "Principia Mathematica" of Whitehead and Russell (1910-1913) and the Hilbert and Ackermann work "Mathematical Logic" (1928) were further

Fig.1. In 1854 George Boole, an English logician, showed how ordinary algebra could be applied to logic situations.

milestones in digital computer realisation.

Shannon's 1938 paper "A Symbolic Analysis of Relay and Switching Circuits" was a paper of very practical relevance for it described how to put Boole's rather abstract logical albegra to work in engineering and computer design. But this was not the first recorded use of electrical logic circuits. In a letter Charles S. Peirce wrote to his former student, Marquand, around 1890 he expressed, in the words and circuit diagrams shown in Fig. 2, that logical algebra could be performed with three switches in parallel or in series, also stating that he felt electricity to be one of the best ways to implement logical equipment.

Later theoretical studies concentrated on ways to ensure that switching networks contained no more switch contacts than were absolutely necessary. Unnecessary contacts can easily be unwittingly designed into complex switching networks — the "spares" are called redundant switches. Shannon, in his M.Sc. thesis (Fig. 3) prepared at the famous Massachusetts Institute of Technology, realised ways to systematically set about analysing a given switching networth in order to reduce the contact requirements to a minimum. Thus it was realized in the early 1940's that really powerful digital computers could be built using entirely electronic components.

Later in the course we will be dealing specifically with computer systems. They are, however, but a part of the total use of digital electronic methods – digital electronics finds use in an ever increasing number of instruments and devices.

BASIC LOGIC GATES

A quite satisfactory way to begin to comprehend basic switching algebra is to think in terms of mechanical switch contacts arranged in various different configurations. That we draw them and consider them as mechanical contacts that are either open or closed, does not imply that the contacts necessarily need to be mechanical – they are, today, more often than not the solid-state switches we discussed in the last part.

Groups of switches combining digital signal levels are known as gates. We begin by considering the simplest possibilities where there are just two. contacts to build with.

They can be placed in series or in parallel, as shown in Fig.4. In each case different conditions exist between the transmission made through them for the two positions of each of the switches. We denote the switch inputs as A and as B (and C,D, etc., if more are involved) and the transmission as Z, thus using mathematical symbols to represent a physical situation. Imagine that the switches are wired in series with a lamp: when a circuit is made the lamp lights.

In the series case we need switch A and switch B to be made to obtain a transmission function Z. In the parallel case either switch A or switch B will. provide transmission.

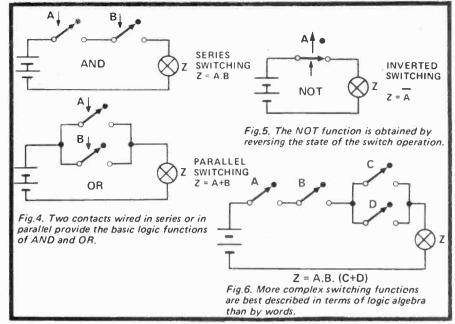
The AND and OR are basic logical functions. They need not necessarily be used only to describe electrical circuitry. They did, in fact, as we have seen, arise originally from philosophical study of truths and falsities.

Note that switch contacts are always shown in their non-actuated condition and this brings us to another basic gate function which can be realised using only one switch. If, as shown in Fig. 5, the switch A is actuated, Z is NOT enabled. If A is not actuated Z is enabled. A single switch,

1

The protien especially as it is no minus hoperes " exchtomake a machine for very difficult mathetina probleme. Bat for mul tial here & process step by step. I think electricaling mould be the best thing Balles Alilit 41.1.1 te 70 . "14 L Set A, B, C the there Keys or atten printi where The circuit may be opinior closed . do in Figl, There is a current only of all are close by in for 2 There is a circuit if any me ... clove is. The is like multiperson Tion a a Station in logic . Junn failt full, C. Sterrer

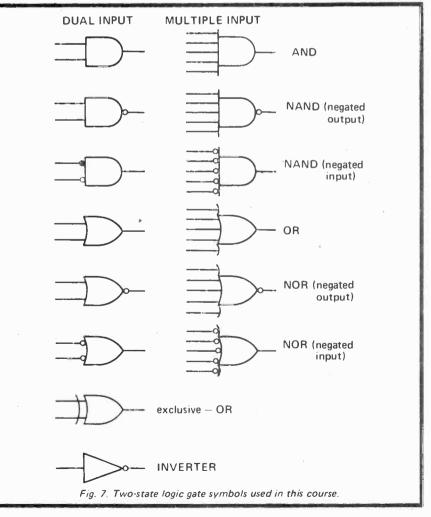
Fig.2. The first known description of electrical switching carrying out logic is in this letter of C.S. Peirce written around 1880.


Fig.3. Claude Shannon published details of "modern" digital computing design in 1937.

therefore, can provide a NOT function if its contacts are closed in the non-actuated state.

Attempts to explain switching circuit action in words, as above, only applies for the simplest of situations. The descriptive method becomes prohibitive when, say, we have two switches in series, in series with two switches in parallel, as shown in Fig. 6. Describing the action of all possible switch combinations on the lamp Z using words, is an inadequate way with which to communicate the idea. And few digital systems are that easy: many contain literally thousands of AND, OR and NOT gates.

We designate an OR function by means of the '+' symbol. This does *not* mean the same as our normal understanding of addition. When applied to decimal numbers it means addition as we normally understand it. With binary numbers, however, it has a different meaning and still another meaning when designating an OR function. For example:-


In decimal addition	1+1=2
binary addition	1+1=1
OR addition	1+1=1

In Boolean algebra the OR meaning of addition is the one that applies. Thus A+B=Z means that A OR B switch closed will produce a transmission Z.

We designate an AND function with a dot. The dot means logical multiplication and is not to be confused with normal multiplication. However the truth tables for AND multiplication and normal multiplication are the same. Thus when we give the Boolean equation A.B=Z we mean that if switch A and switch B are both closed there will be a transmission Z,

The NOT function is designated as a line over the switches algebraic symbol giving $Z = \overline{A}$ to mean Z is NOT transmitted when A is actuated.

ELECTRONICS TODAY INTERNATIONAL-MARCH 1976

0

ELECTRONICS -it's easy!

Each of these functions have a symbolic representation as black-boxes with inputs that act in certain ways to give the output. The shape of the box (or the designation within a square box) tells the viewer the function of the box.

Unfortunately there still exists more than one conventional way to draw these symbols. For this course we will use those given in Fig. 7, which are also those used in projects in Electronics Today.

The NOT function bar can be applied to any function to signify that it is negated. For instance, an OR such as A+B=Z becomes A+B which is called a NOR function. Similarly so A.B is a NAND function.

The OR, AND, NOR and NAND functions can each have more than two inputs, for example, A+B+C+D=Z. When a function is negated its graphical symbol is also altered in some way to signify this. The convention used is the convention of the addition of a small round circle. If the circle is at the output the output is negated; if at the input the inputs are negated. The inverter (that provides negation) is basically an amplifier providing 180° phase shift so its symbol is that of an amplifier with the circle added.

TRUTH TABLES

Before we discuss more complex gate networks by studying their inter-connection, we need to understand the concept of a truth table. This is a simply drawn table that lists the output state for the various combinations of input states.

Rather than write on and off, or high and low, true or false, it is simpler to express the two states merely as '0' and '1'. The positive logic convention considers a high-voltage level as a '1' and the low level as a '0'. Fortunately, today, just about all logic circuits used are now in integrated circuit form and they nearly all work between just two levels - which are the same for any devices from a particular logic family. This provides a compatible arrangement whereby gates and other logic system boxes (that are yet to be introduced) can each be intercoupled without having to worry about matching voltage and impedance levels. However, when transferring logic signals between devices from different logic families translator circuits will be needed to make voltage levels compatible.

Occasionally, but not commonly, it is more convenient to reverse the levels calling a 1 the lower voltage and an 0 the higher. This is denoted *negative* logic. Such a system is however seldom used in modern integrated-circuit logic families.

Consider then the series contacts of Fig. 4. Assuming we use the positive logic convention where 0 represents an open contact and 1 a closed contact; it is easy to draw up columns as given in Fig. 8.

When A and B are both 0 then so also is Z, for no contacts are made. Similarly, if either A or B are open. When both A and B are closed, that is a 1 each, then Z is made. This is called a truth table.

Fig. 9 is the truth table for the parallel contacts of Fig. 4. In this case Z is 1 when A or B are 1.

An interesting property of the AND and OR functions is their dual nature when negated. For example, if we negate the inputs of the OR gate the truth table becomes that of Fig. 10,

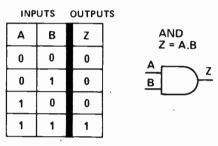
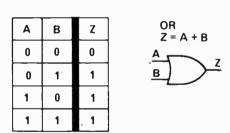
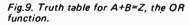




Fig.8. Truth table for A.B.=Z, the AND function.

	NAND AND
POSITIVE	I (IN POSITIVE

A	В	Ā	Ē	z	z
0	0	1	1	1	0
0	1	1	0	1	0
1	0.	0	1	1	0
1	1	0	0	0	1

Fig.10. Truth table showing that negative logic (or negated positive logic) input to an OR gate provides NAND output.

the output of which is the NAND function. Hence a negated input OR gate is a NAND gate. Also, by similar reasoning, a negated input AND is a NOR. Put another way, in negative logic an OR becomes an AND and vice versa.

UNIVERSAL GATES

Using the basic gates, AND, OR and NOT, we can build a logic circuit for any given Boolean expression. Where there is a plus sign (+) we use an OR gate, where there is a dot we use an AND gate and we use an NOT gate for those functions that are negated.

However it is interesting that the NAND gate can be used to obtain any desired function. It can be used to build AND, OR or NOT gates. In other words it is a universal building block, as is the NOR gate also.

Thus the majority of gates used in modern logic systems are NAND gates with the occasional use being made of NOR gates and inverters (NOT) to minimize complexity. The use of one major form of gate simplifies manufacture and reduces costs.

FAN OUT

There exists a finite number of circuits that can be safely connected to the input, or the output, of logic elements. This number is called the fan-in and fan-out respectively, and gives the number of standard loads that can be accommodated. Fanouts of 10 and 30 are typical load factors.

EXCLUSIVE OR

One other important gate is a special class of the OR – the exclusive OR. The logic action of this gate is seen by studying its truth table which

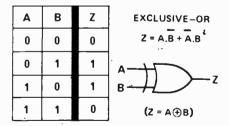
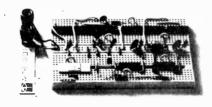


Fig.11. Truth table for two input exclusive - OR gate.

is given in Fig. 11. In this variation of the basic OR gate the output is 1 for either A or B but not when both are 1 simultaneously. Written in Boolean algebra symbols this gate performs $A.\overline{B}+\overline{A}.B=Z$. (Symbols written as AB imply that a dot exists between them; it is common practice to omit the AND dot).

ELECTRONICS TOMORROW by John Miller-Kirkpatrick

I had found several interesting snippets about new products that I had hoped to relate to you in full this month but I have suffered from the great Post Office holdup. Information which was sent to me from Bedford had not arrived over a week later and so we will devote most of this month's column to a new American product; the data arrived from Ohio within three days of my enquiry. The new product is only a new approach to the age old problem of breadboarding circuits before setting them permanently onto Veroboard or PCBs.


The version I have, is called an ACE board made by AP products Inc. of Ohio, but a similar unit is called a PROTOBOARD and is advertised regularly in the American amateur magazines. The idea is similar to the S-Dec and T-Decs that have been on sale for several years except that the new boards are built on a 0.1 inch matrix with sockets that are good enough to take ICs of any size. The board that I received is called an ACE-201K and comes in a kit form containing three plastic mouldings, aluminium base with self-adhesive area, 195 terminal strips, rubber feet and two binding posts. The unit took me less than 30 minutes to assemble and it went to work almost immediately with a new clock circuit on it. Of the three mouldings one is 48 holes long by two holes wide and contains a continuous strip of sprung metal connecting all 48 holes in one channel with a similar strip connecting all the holes in the other channel, this acts as a distribution bus for ground and supply voltage. The aluminium base is connected to the ground supply to give a good backplane for circuits that require it. The other two mouldings sit one on either side of the distribution bus and each contains two lots of 5 by 48 holes with the metal strips connecting each set of 5 holes.

Thus you end up with four lots of 48 five connector terminal strips with the distribution strip running down the centre.

This board has the capability of handling up to twelve 14 pin ICs where each pin of each IC can have up to four leads connected to it, it will handle a couple of 28 or 40 pin ICs plus transistors, capacitors, resistors, etc with plenty of tiepoints left over. The two binding posts are intended to connect out to your power supply although I believe that one of the Protoboard range has a 5v 1A supply built into the unit to give a complete TTL or CMOS test bed.

PROTOTYPER

Something that I built for my own lab a few years ago could be of interest to readers who do a lot of TTL development work and could be built using one of the above boards. I used an S-Dec as the basis of my prototyping unit and built it into the top of a smallish instrument case. The idea if the unit is to use the S-Dec sockets as inputs and outputs to standard TTL units which are built on veroboard inside the case. To build a simple unit you might require a couple of 7400s, 7402, 7404, 7406, 7410, 7420, 7490s, 7493s, etc, in fact whichever gates you usually use. You have to open up the S-Dec and remove the copper connecting strips. Each strip is then cut up into individual socket units and a wire soldered onto the back of it before carefully gluing it back into the body of the S-Dec. This is a very tedious job but you end up with about 100 individual sockets each connected to a short length of wire. these wires can then be connected to the inputs and outputs of the TTL

gates which are powered separately. If you are not too worried about propagation delays you can connect the gate outputs to invert gates so that a 7400 could behave like a 7400 or a 7408. When the unit is completed you can have a row of five holes connected to each two input gate such as - INPA, INPB, OUT, OUT, INV-OUT. By simply pushing 22swg wires into these holes you can lead off a complete 7400 gate function to the bradboard that you are presently working on without having to place a 7400 on that breadboard. The second stage of the prototyping unit is to include counters, seven-segment displays, LED lamps, BCD switches, etc and then to include a Protoboard or ACE kit on the same layout. This gives you the capability of building just about any circuit you like as a prototype without much additional cost, having proved the circuit you can then strip it down and build something completely different. One further advantage of this type of unit is that you can use up all of your 7400s with one gate blown or 7490s with no A input, etc as these can now be hidden away inside the unit. A word of warning - if you decide to build a prototyping unit make sure that all of the internal ICs are in sockets for easy replacement or to be extra sure buffer each input and output by connecting a 7407 between the wire socket and the IC in use. This means that if you do overload a gate it will be the cheap 7407 which goes not the 7490 or whatever, in this case make all of the 7407s easily accessible for replacement. Perhaps we might have an ETI Prototyper in a future issue.

If you would like to buy an ACE-201K breadboard kit you can try to contact a company called GDS in Slough but you will probably meet the unhelpful buck-passing that I did; they do sell AP products but have never heard of ACE boards. You can definitely get one from AP Products Inc, Box 110, 72 Corwin Drive, Painesville, Ohio 44077 if you send them about 27 dollars (24.95 plus postage) — this is a worthwhile investment in any lab whatever its size.

DISPLAYS TIME AND FREQUENCY

I have previously mentioned the Futaba fluorescent (Phosphor-diode) display type 5-LT-01 for use in digital clocks and the 5-LT-03 display for use with counters especially for use with the GI digital FM tuner chip. For those of you who

want to build a digital readout for your tuner and want to use the same display for a digital clock wait for a new display from Futaba. This has the same four digits, colon and AM/PM as the 5-LT-01 but has also got an extra digit '1' on the left, MHZ/KHZ on the right and a complete set of decimal points. Thus it can display time with colon and AM or PM or can display tuned frequency from 1.9999 to 19999 with the choice of MHZ or KHZ. The type number and price have not yet been announced but I suspect that it will cost about £7 and be available about April. At the same time Futaba have also announced a display for a digital car clock to interface with the MM5378 (the higher voltage version MM5379 might be better), the display size is about 0.25in and contains four digits plus colon. The drive voltage for the display is about 30-35 volts at about 15mA, this could easily be derived from the car voltage through a simple inverter circuit.

CLOCK CHIPS

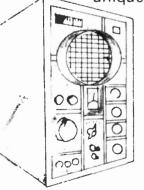
One clock chip that flared into light a few years ago and then almost disappeared was Nationals MM5316. This is a non-multiplexed chip with four digit output which will show hours and minutes, minutes and seconds, alarm time or 'Sleep' time, two outputs provide switching of radio or alarm with the 'Sleep' timer allowing you to go to sleep with the radio turned on. This chip was quite expensive but would drive Dynamic Liquid-Crystals or Fluorescent displays directly or LEDs via thirty transistors, the total cost of a clock using these was in the area of £50. National used the same logic on some other chips (MM5371, MM5370) but these also died in this country. Now several other manufacturers have second-sourced this chip (S1998, uPD5316, KM5139, etc) and also National have brought out some LED drive versions (I can't remember the numbers) and whichever chip you use the price is now a lot lower.

Futaba have now made the 5316 clock a little bit simpler and cheaper with the introduction of the 5-LT-02. This fluorescent display is externally very similar to the 5-LT-01 the only difference being that the display is non-multiplexed, 'Great', I hear you say, 'a non-multiplexed display for a non-multiplexed clock chip'. Futaba have been just a bit cleverer than that by making the 5-LT02 almost pin compatible with the 5316, wiring up on veroboard would be a cinch, hand drawing a PCB would be even simpler, and at a price of about £7 it is cheaper per digit than LCD or LED. As the additional components for the clock cost less than £1 (plus a small transformer) this could work out to a very cheap DIY alarm clock. The 5-LT-02 displays should be available within a month or may well be in the UK by the time this article appears.

'In case you have never heard of fluorescent displays they are very bright, green, low current (1 or 2 mA per segment), the disadvantages are a heater (5V 50mA) and a drive voltage of about 35V.

References: Futaba Displays and National Clock chips — Bywood Electronics, 68 Ebberns Rd, Hemel Hempstead, HP3 9QRC.

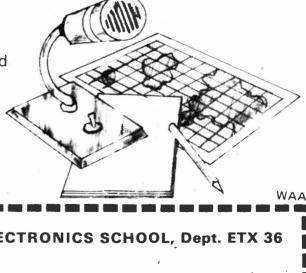
NEC (uPD5316) and Futaba — Walter Scott, Imp House, Ashford Rd, Ashford, Middx.


Toko (KM5139) — Ambit International, 37a High St, Brentwood, Essex.

ACE-201K — GDS Sales, ??? Bath Rd, Slough. Tel Slough 30211. PROTOBOARDS — Ancrona Corp, Box 2208, Culver City, California 90230.

I.Understand electronics.

Step by step, we take you through all the fundamentals of electronics and show you how easily the sub-


ject can be mastered using our unique Lerna-Kit course.

- (1) Build an oscilloscope.
- (2) Read, draw and understand circuit diagrams.
- (3) Carry out over 40 experiments on basic electronic circuits and see how they work.

2. Become a radio amateur.

Learn how to become a radioamateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure, without obligation to BRITISH NATIONAL RADIO & ELECTRONICS SCHOOL, Dept. ETX 36 P.O. Box 156, Jersey, Channel Islands. NAME _____

ADDRESS_

Block caps please

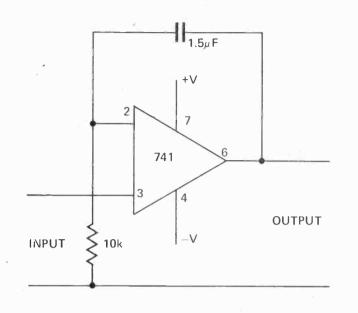
LOW FREQUENCY EXTENDER

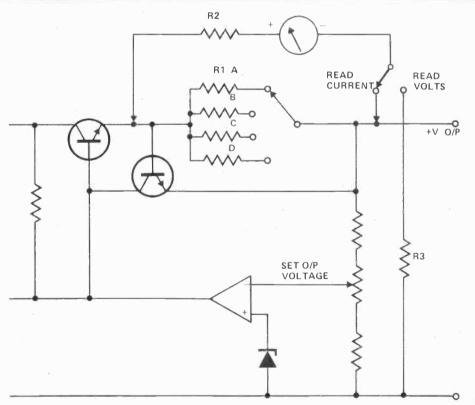
In circuits which have a variable frequency input, e.g. optical tachometers, vibration measuring equipment etc., the low frequency response can leave a lot to be desired. The circuit shown brought the lower 3dB point of a measuring instrument down to 0.5Hz when placed in circuit between the transducer and the instrument.

Being of small size, the circuit may be fixed inside the case of the instrument it is to serve.

The gain of the circuit may be altered by means of the feedback capacitor to give a level response compatible with the instrument to which it is connected, i.e. a higher value will give a lower gain and vice-versa.

The 741 IC will operate at voltages between ± 5 and $\pm 15V$.


METERING A STABILISED POWER SUPPLY

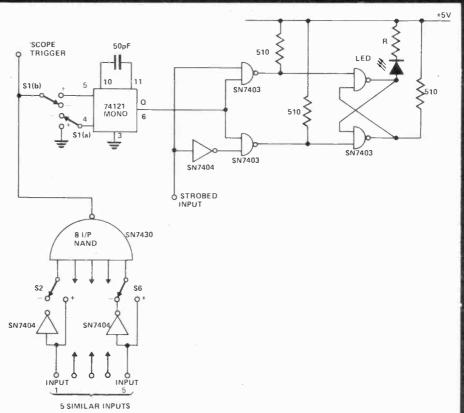

It is not easy for the home constructor to make shunts of the correct value for a meter when wishing to alter its current range.

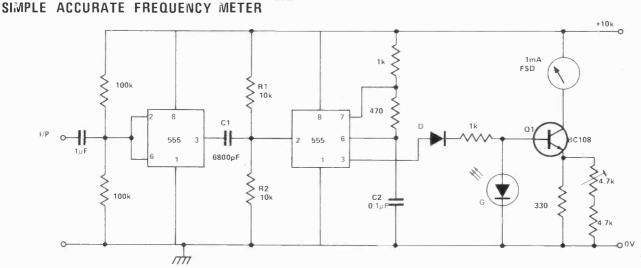
One way to monitor the current supplied by a current limited power supply is simply to measure the voltage drop across the current limiting resistor. This is usually of the order of .65V, and if the series meter (R2) is calculated to give fsd when .65V is applied, will indicate the limiting current at fsd no matter what the value of R1 may be. In effect, the limiting resistor becomes the meter shunt.

For a basic 1mA meter, the series resistor R2 will need to be about 560Ω , for a 50μ A meter it will be about $12k\Omega$, for a 5mA meter about 120Ω and so on.

Unless individual adjustment of resistors and calibration of range is undertaken, this method cannot be absolutely accurate, but it will show whether a circuit is drawing something like its expected current. The method does have the advantage however, of the meter being within the feedback loop, and will therefore not add to the power supply output impedance, which can be important in some applications.

The addition of a single pole C/O switch as indicated will enable the meter to be used to set up the desired output voltage also, though it must be remembered that this will include the voltage drop across R1 if any current is being drawn, which could lead to a difference of .5V or so between indicated and actual output voltage. R3 should be chosen to give fsd at maximum output voltage and the meter scaled accordingly. Tech-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these items.

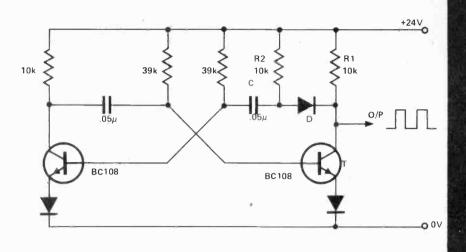

ETI is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for. Drawings should be as clear as possible and the text should preferably be typed. Circuits must not be subject to copyright. Items for consideration should be sent to the Editor, Electronics Today International, 36 Ebury Street, London SW1W 0LW.


LOGIC ANALYSER

This circuit has been found useful for in-situ testing of TTL logic elements and general circuit development. An LED is used to indicate the state of the strobed input a short time (about 100nS) after the output of the 8 I/P NAND gate changes. Switch S1 is used to control whether the strobe occurs on the leading or trailing edge of the NAND gate.

The five control inputs and associated switches S2 to S6 determine when the strobe occurs relative to logic states in the circuit under test. In use, one or more of the inputs would be connected to appropriate points in the circuit, with switches S2 to S6 as described. For example, the state of a particular circuit point can be strobed each time a selected set of five other circuit points have the logic level 1,0,1,1,0 by setting the switches to +,-,+,+,-, respectively.

An output to trigger an oscilloscope is provided to overcome a common problem in logic circuit testing of finding suitable trigger points in the circuit.

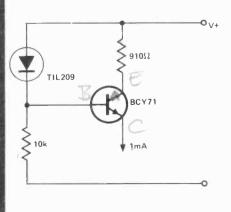

This circuit provides a meter deflection that is strictly proportional to the frequency of the input signal over the range 10Hz–300Hz. The first 555 timer IC is used as a Schmitt trigger, to convert the I/P signal to a fast-edge square wave. This is differentiated by the network C1, R1 and R2, and the resulting spikes used to trigger the second 555, which operates as a monostable, generating constant width pulses. These are used to turn on the constant-current source Q1, so that the average current in the meter movement is proportional to the number of pulses arriving per second. A green LED is used to bias the current source as this gives nearperfect temperature compensation; the 4k7 preset pot gives a fine adjustment for calibration purposes. When the 1mA meter shown is used, fsd is given by 100Hz. To extend the range, reducing C2 to .01 μ F gives an fsd of 1kHz.

tech-tips

IMPROVED MULTIVIBRATOR

Conventional astable multivibrators suffer from the disadvantage that they do not produce a good square-wave output; the leading edge of the wave₁ form has a very slow rise since the collector resistor R1 is tied to a slowly charging capacitor C when the transistor T turns off.

This circuit prevents this effect and thus generates a clean square-wave with 400nS rise-times and 100nS fulltimes. This is because diode D turns off when the output begins to rise in voltage, and a fast rise is then possible. C is charged by a separate resistor R2, and apart from this multivibrator action is normal. The components shown give an operating frequency of about 700Hz.



CARTRIDGE EQ AND RUMBLE FILTER

TEMPERATURE-STABLE CURRENT SOURCE

This current source is very temperature-stable; the output current varies by less then 1% over the temperature range -55° C to $+100^{\circ}$ C. This is possible because the transistor is biased by an LED, whose forward voltage drop has a temperature coefficient of $-2mV/^{\circ}$ C, the same as the base-emitter voltage of a silicon transistor. Hence near-perfect temperature compensation is possible, a great improvement over conventional methods of biasing with zener diodes.

The circuit values shown give an output current of about 1mA, though wide variation is possible by altering the value of emitter resistance. They are good for supply voltages in the range 25V to 5V.

+4-15V R2 33k R3 390k C3 C4 2112 10N C1 Ş **R**4 560 R1 40Hz 20Hz 476 C1 82n 150n C2 C2 6.8µF 15*u* F ov 0 _4._15V

In this circuit a 741 op amp is used to provide standard RIAA equalisation for a magnetic pickup cartridge. The input signal is coupled via C1 into the non-inverting input of the IC. R1 damps the inherently high impedance at this point and provides the correct load for the cartridge. Feedback from the output, pin 6, is taken through the equalisation network R2, C3, R3 and C4 to the inverting input.

The ratio of R2 to R4 sets the midband gain at 65, 35dB. C1 and C2 together form a steep cut rumble filter whose cut off point can be set at 20 or 40Hz by selecting the appropriate component values in the table.

C2 also reduces the dc gain of the circuit to unity so that the output offset voltage will be $\pm 5mV$ with reference to OV.

One of the major disadvantages of discrete equalisers is overload distortion. Although the output of a magnetic cartridge may be only about 5mV normally á musical peak may well force the cartridge output to 100mV. Clearly unless a large signal swing is possible the sound emmanating from the speaker is not going to be Hi-Fi.

This circuit, operating from a $\pm 15V$ supply, has an overload factor of $\pm 35dB$ refered to a nominal input of 5mV, equivalent to a maximum input of 325mV!

MAINS TRANSFORMERS
Pri. 240v. sec. 27/0/27v at 800 m/a,
£2.25. P.P. 50p.
Pri. 110/240v sec. 50v at 10amps,
£10.00. P.P. £1.50.
Pri. 110/240v sec. 20/21/22v at 8 amp,
£6.00. P.P. £1.50.
Pri. 110/240v sec. 23/24/25v at 10 amp,
£7.00. P.P. £1.50.
Pri. 110/240v sec. 24/40v at 11/2 amp,
£1.90. P.P. 60p.
Pri. 240v sec. 20/40/60v at 2 amp,
£3.00. P.P. 70p.
Pri. 240v sec. 20v at 21/2 amp, £2.00. P.P.
50p.
Pri. 240v sec. 18v at 1.5 amp and 12v at 1
amp, £2.25. P.P. 50p.
Pri. 240v sec. 18v at 1 amp, £1.00. P.P.
30p.

"TOROIDAL" Pri. 240v sec. 30v at ½ amp, £1.65. P.P. 30p.

SIEMENS MINIATURE RELAYS

6v 4c/o with base, **65p** ea. 24v 2c/o with base, **50p** ea.

MAINS RELAY 240v

ij.

3c/o 10 amp contacts, **80p** with base. P.P. 20p.

GARRARD PLINTH & COVER

For Zero-100, etc. Finished in brushed aluminium and black, with hinged smoke grey perspex lid, £11.00.

BLUE P.C.B. INK

Etch resist, use with any pen, much cheaper than ready-loaded pens 50ccs. Price **55p.** P.P. 10p.

PRINTED CIRCUIT KIT No frills, alt. value kit containing 4 pieces 8" x 7" formica laminate, 1 pce. 6" x 6" fibre-glass laminate, 1 lb. etching crystals, 50 ccs resist-ink with instructions. £2.30. P.P. 50p. CIRCUIT BOARD

P.C.B. 1/16. 1 oz. COPPER **FORMICA** Dim. 8.4 x 7.7 in 3 pcs., **75p.** Dim. 9.4 x 8.1 in 3 pcs., **90p.** Dim. 10.1 x 7.9 in 3 pcs., **£1.00** Dim. 13.1 x 9.4 in 3 pcs., **£1.20.** Dim. 17.0 x 9.0 in 2 pcs., **£1.20.** Post & Packing 30p each pack.

BARGAIN PACK

10 pcs. 10.1 x 7.9 in. Plus free 1/2 lb etching Xtals, **£2.80.** P.P. 45p.

FIBRE GLASS P.C.B. Dim. 6 x 6 in, **35p** each. Dim. 12 x 6 in, **60p** each. Dim. 12 x 12 in, **£1.00** each. Equals less than 1p sq. in. Post & Packing 5p per sheet.

RESIST COATED P.C.B. FORMICA .10.1 x 7.9 in, **55p** ea. 13.1 x 9.4 in, **70p** ea. **RESIST COATED P.C.B. FIBRE GLASS** 6 x 6 in, **50p** ea.

12 x 6 in, **90p** ea. 12 x 12 in, **£1.50** ea. Post & Packing 10p per sheet.

FERRIC CHLORIDE ETCHING XTALS 1 lb --- 1 litre pack, 60p. P.P. 15p. 5 lb --- 5 litre pack, £1.95. P.P. 55p.

S-DECS AND T-DECS

S-DEC **£1.90.** Post & Packing 20p. T-DEC **£3.60.** Post & Packing 30p. U-DEC A **£4.20.** Post & Packing 20p. U-DEC B **£6.90.** Post & Packing 40p.

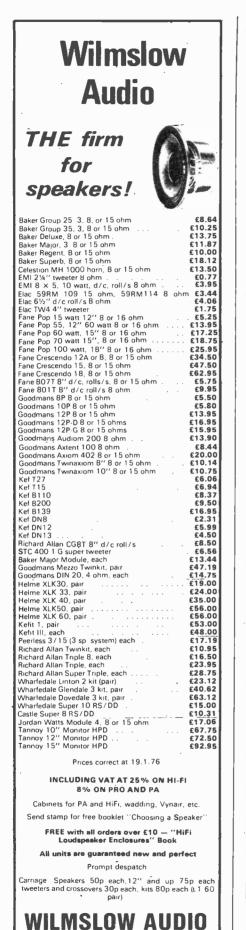
OVERLOAD CUT-OUTS

Panel mounting 800 M/A. 1.8 amp. 10 amp. 55p ea.

HIGH CAPACITY ELECTROLYTICS 250mfd/63 volt. 20p. P.P. 8p. 1000mfd/100 volt, 70p. P.P. 25p. 2200mfd/100 volt, 90p. P.P. 25p. 4700mfd/25 volt, 65p. P.P. 20p. 6800mfd/16 volt. 50p. P.P. 15p. 10,000mfd/16 volt, 51.25. P.P. 30p. 47,000mfd/40 volt, £1.25. P.P. 30p. 100,000mfd/10 volt, £1.50. P.P. 50p. 160,000mfd/10 volt, £2.00. P.P. 50p.

10.7 M.H.Z. CANNED I.F.S Size 1 x ½ x ½ in, **65p.** P.P. 10p. **3 Gang Tuning Capacitor,** 8.5pf to 320pf, **80p.** P.P. 20p.


MINIATURE METERS


500 micro-amp (level-stereo beacon, etc.), scaled half black / half red. Size 1 x 1 in, ${\bf 65p.}$ P.P. 15p.

RIBBON CABLE

8 way. 8 colours. Bonded flat side by side. 10 Metres, **£1.90.** 100 Metres, **£12.50.**

KINNIE COMPONENTS MAIL ORDER ONLY. PERSONAL CALLERS BY APPOINTMENT

Dept. ETI

Swan Works, Bank Square, Wilmslow, Cheshire SK9 1 HF. Tel. Wilmslow 29599 (Discount HiFi, PA and Radio at

10 Swan Street, Wilmslow)

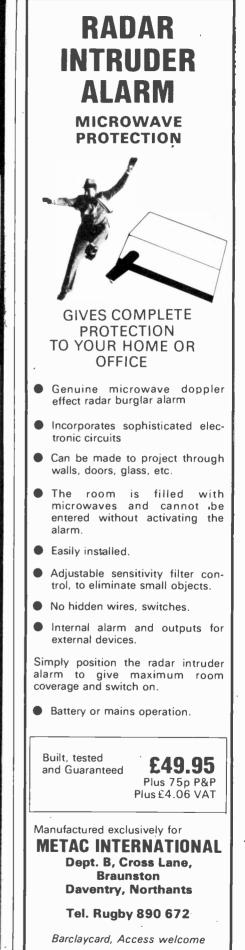
BUILD THE REASURE ACER MKII METAL LOCATOR 2 1 AS SEEN **ON BBC-1** & **BBC-2** TV 200 Genuine 5 silicon transistor circuit. does not need a transistor radio to operate. Incorporates unique varicap tuning for extra stability. Search head fitted with Faraday screen to eliminate capacitive effects. Loudspeaker or earphone operation . (both supplied). Britain's best selling metal locator kit. 4,000 already sold. Kit can be built in two hours using only soldering iron, screwdriver, bliers and side-cutters. Excellent sensitivity and stability. Kit absolutely complete including drilled, tinned, fibreglass p.c. board with components siting printed on. Complete after sales service. Weighs only 22oz; handle knocks down to 17" for transport. Send stamped, self-addressed envelope for literature. Complete kit £12.50 with pre-built search coil Plus 85p P & P

Plus £1.00 VAT (8%)

Plus £1.40 VAT (8%)

t, |

Plus 85p P & P


MINIKITS ELECTRONICS.

6d Cleveland Road, South Woodford

LONDON E18 2AN

(Mail order only)

Built, tested and Guaranteed

r		E Carrol Andre Sal Taken (1995)			
		DONIC	C /1 0110		DIGITAL DISPLAYS & LED'S DL704 99p DL747 1 75 2 RED LED ONLY 13p
LINA	ELEVI	RONIC	J (LUNDO	\mathcal{N}) LI \mathcal{U}	DL707 99p DL750 1 75 GREEN CLEAR 15p
					THYRISTORS BA 1A 3A 6A 8A 10A
Transistors	BC183 10p*	BF337 32p	CRS1-10 25p	2N697 12p	(1092) (105) (C106 type) (10220) (10220) (10220)
AC126 15p	BC183L 10p*	BFW60 17p*	CRS1-20 35p	2N706 10p 2N929 14p	50 20 25 35 41 42 47 100 25 25 40 47 48 54
AC127 16p	BC184 11p* BC184L 11p*	BFX29 26p BFX30 30p	CRS1-40 40p CRS1-60 65p	2N930 14p	100 25 25 40 47 48 54 200 27 35 45 58 60 68
AC128 13p AC128K 25p	BC184L 11p* BC207B 12p*	BFX84 23p	CRS3-05 34p	2N1131 15p	400 30 40 50 87 88 98
AC141 180	BC212 11p*	BFX85 25p	CRS3-10 45p	2N1132 16p	<u>600</u> 65 70 1·09 1·19 1·26
AC141K 28p	BC212L 11p*	BFX88 20p	CRS3-20 50p	2N1304 20p 2N1305 20p	TRIACS (PLASTIC TO-220 PKGE, ISOLATED TAB)
AC142 18p AC142K 28p	BC213 12p* BC213L 12p*	BFY50 20p BFY51 18p	CRS3-40 60p CRS3-60 85p	2N1711 18p	4A 6 5A 8 5A 10A 15A
AC176 16p	BC214 14p*	BFY52 19p	MJ480 80p	2N2102 44p	(a) (b) (a) (b) (a) (b) (a) (b) (a) (b)
AC176K 25p	BC214L 14p*	BFY64 35p	MJ481 £1 05	2N2369 14p	
AC187 18p	BC237 16p*	BFY90 65p BR100 20p	MJ490 90p MJ491 £1-15	2N2369A 14p 2N2484 16p	200 V 0.64 0.64 0.75 0.75 0.87 0.87 0.87 0.87 1.17 1.17 400 V 0.77 0.78 0.80 0.83 0.97 1.01 1.13 1.19 1.70 1.74
AC187K 25p AC188 18p	BC238 16p* BC300 34p	BRY39 400	MJE340 40p*	2N2646 50p	600 V 0 96 0 99 0 87 1 01 1 21 1 26 1 42 1 50 2 11 2 17
AC188K 25p	BC301 32p	BSX19 16p	MJE371 60p	2N2905 18p	N.B. Triacs without internal trigger diac are priced under column (a). Triacs with
AD140 50p	BC323 60p	BSX20 18p	MJE520 45p	2N2905A 22p 2N2926R 10p*	internal trigger diac are priced under column (b). When ordering please indicate
AD142 50p AD143 46p	BC327 18p* BC328 16p*	BSX21 20p BSY95A 12p	MJE521 55p OA5 50p*	2N29260 9p*	clearly the type required.
AD149 45p	BC337 17p*	BT106 £1.00	0A90 8p	2N2926Y 9p*	74 TTL mixed prices
AD161 35p	BC338 17p*	BT107 £1 60	OA91 8p	2N2926G 10p*	1-24 25-99 100+ 1-24 25-99 100+ . 1-24 25-99 100+
AD162 35p	BCY70 12p	BT108 £1.60 BT109 £1.00	OC41 15p	2N3053 15p 2N3054 40p	7400 14p 12p 10p 7445 85p 71p 57p 7492 57p 46p 36p 7401 14p 12p 10p 7447 81p 75p 65p 7493 45p 40p 32p
AL102 95p AL103 93p	BCY71 18p BCY72 12p	BT116 £1.00	OC42 15p OC44 12p	2N3055 50p	7402 14p 12p 10p 7448 75p 62p 50p 7495 67p 55p 45p
AF114 20p	BD115 550	BU105 £1-80*	OC45 10p	2N3440 56p	7403 15p 121p 10p 7447A 95p 83p 67p 74100 £1-08 89p 72p
AF115 20p	BD131 36p	BU105/	OC70 10p	2N3442 £1 · 20	7404 16p 13p 11p 7470 30p 25p 20p 74107 35p 28p 22p
AF116 20p AF117 20p	BD132 40p BD135 36p	02 £1.90* BU126 £1.60*	OC71 10p OC72 22p	2N3570 80p 2N3702 10p*	7493 16p 13p 11p 7472 25p 21p 17p 74121 34p 28p 23p 7409 16p 13p 11p 7473 30p 25p 20p 74122 47p 39p 31p
AF117 200 AF118 500	BD135 39p	BY206 15p*	OC84 14p	2N3703 10p*	7410 16p 13p 11p 7474 32p 26p 21p 74141. 78p 63p 53p
AF139 33p	BD137 40p	BY207 20p*	SC40A 730	2N3704 10p*	7413 29p 24p 20p 7475 47p 39p 31p 74145 68p 58p 48p
AF239 37p	BD138 48p	BYX36-300	SC40B 81p	2N3705 10p* 2N3706 10p*	7417 27p 22±p 20p 7476 32p 26p 21p 74154 £1 62 £1 48 86p 7420 16p 13p 11p 7482 75p 62p 50p 74174 £1 00 83p 67p
BC107 14p BC107B 16p	BD139 8p BD181 86p	12p* BY X36-600	SC40D 98p SC40F 85-	2N3707 10p*	7420 16p 13p 11p 7482 75p 62p 50p 74174 £1.00 83p 67p 7427 27p 221p 18p 7485 £1.30 £1.09 87p 74180 £1.06 88p 71p
BC108 13p	BD182 92p	15p*	SC40F 65p SC41A 65p	2N3714 £1 05	7430 16p 13p 11p 7486 32p 26p 21p 74181 £3.26 £2.56 £1.90
BC109 14p	BD183 97p	BY X36-900	SC418 705	2N3715 £1-15 2N3716 £1-25	7432 27p 221p 18p 7/00 Co on co on co to 7/100 Cd 25 Cd 14
BC109C 16p BC117 19p*	BD232 60p* BD233 48p*	18p* BYX36-1200	SC41D 85p SC41F 85p	2N3771 £1.60	7437 27p 22±p 18p 7489 £2.92 £2.40 £2.10 74192 £1.35 £1.14 90p 7441 75p 62p 50p 7490 49p 46p 32p 74193 £1.35 £1.14 90p
BC125 18p*	BD233 48p BD237 55p	21p*	60p	2N3772 £1 . 60	7442 65p 55p 43p 7491 65p 55p 45p 74196 £1 64 £1 34 99p
BC126 20p*	BD238 60p	BYX38-	ST2 20p	2N3773 £2-10	and take data share the second s
BC141 28p	BD184 £1 20	300 56p BYX38-	TIP29A 44p TIP30A 52p	2N3819 28p* 2N3904 16p*	LINEAR LC'S 301 Å 8 pin DIL 35* 3900 14 pin DIL 70* 565 14 pin DIL £2:00*
BC142 23p BC143 23p	BDY20 80p BDY38 60p	600 55p	TIP31A 54p	2N3906 16p*	307 55* 709 8/14 pin DIL 35* 566 8 pin DIL £1 50*
BC144 30p	BDY38 60p - BDY60 66p	BYX38-	TIP32A 64p	2N4124 14p+	309K 1-60 741 8/14 pin DIL 28* 557 pin DIL 2.04*
BC147 9p*	BDY61 65p	900 60p	TIP34 £1.05 TIP41A 680	2N4290 12p.+ 2N4348 £1·20	300 14 pm Dit 30" 746 6 pm Dit 30"
BC148 9p* BC149 9p*	BDY62 55p	BYX38- 1200 65p	TIP42A 72p	2N4348 £1.20 2N4870 35p*	
BC152 25p*	BF178 28p BF179 30p	BZX61 series	IN2069 14p	2N4871 35p*	Matching charge 20p per pair. P & P 20p-Overseas 80p. CA3045 85*
BC153 18p*	BF194 10p*	zeners 20p	IN2070 16p*	2N4919 70p*	NATIONAL CLOCK CHIPS
BC157 9p* BC158 9p*	BF195 10p*	BZX83 or BZX88 series	IN4001 4p* IN4002 5p*	2N4920 58p* 2N4922 58p*	
BC159 9p*	BF196 12p* BF197 12p*	zeners 11p*	IN4003 6p*	2N4923 64p*	(Basic clock chip giving 6 digit display) (Sophisticated device including
BC160 32p	BF224J 18p*	C106A 40p	IN4004 7p*	2N5060 20p*	alarm, similar to CT 7001)
BC161 38p	BF244 17p*	C106B 45p	IN4005 8p* IN4006 9p*	2N5061 25p* 2N5062 27p*	
BC168B 9p* BC182 11p*	BF257 30p	C106D 50p C106F 35p	IN4007 10p*	2N5064 30p*	HIGHAM MEAD, CHESHAM, BUCKS. Tel. (02405) 75151
BC182L 11p*	BF258 35p	CRS1-05 25p	2N696 14p	2N5496 65p	VAT-Please add 8% except items marked * which are 25%
					1449 44 A 44 49 48

WALL CHART—DESIGN DATA TABLES SAVE TIRESOME CALCULATIONS

The Design Data Tables list both capacitive and inductive reactances at radio and audio frequencies. Also given are the resistance and capacitor values required in symmetric multivibrators running at audio frequencies, sinusoidal a.c. peak, average and r.m.s. values, decibel ratios up to 100dB, maximum potentiometer currents and information on copper wire gauges.

SPECIAL FEATURE 4-CHANNEL STEREO MIXER

A comprehensive design 'which allows four separate stereo signals to be combined at any required micing level.

ON SALE NOW

PRICE 35p

Payment : CWO, Cheque, Access, Barclaycard. (Quote Number)

clock.

assemble your own digital

New Course in Digital Design

Understand the latest developments in calculators, computers, watches, telephones,

television, automotive instrumentation

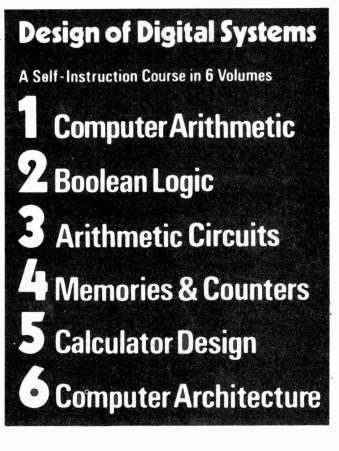
Each of the 6 volumes of this self-instruction course measures $11\%'' \times 8\%''$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

After completing this course you will have broadened your career prospects and considerably increased your fundamental understanding of the changing technological world around you.

Also available – a more elementary course assuming no prior knowledge except simple arithmetic.

- In 4 volumes: 1 Basic Compute
- 1. Basic Computer Logic 2. Logical Circuit Elements
- Designing Circuits to Carry Out Logical Functions
- 4. Flip flops and Registers

Offer. Order this together with Design of Digital Systems for the bargain price of £9.25, plus 50p, p&p.


Design of Digital Systems contains over twice as much information in each volume as the simpler course, Digital Computer Logic and Electronics. All the information in the simpler course is covered as part of the first volumes of Design of Digital Systems which, as you can see from its contents, also covers many more advanced topics.

Designer Manager Enthusiast Scientist Engineer Student These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

Design of Digital Systems Book 1 mmm 1 9 3 8 4

£5.95

plus 50p packing and surface post anywhere in the world (VAT zero rated). Payments may be made in foreign currencies. Quantity discounts are available on request.

To: Cambridge Learning Enterprises, FREEPOST, St. Ives, Huntingdon, Cambs PE17 4BR *Please send meset(s) of Design of Digital Systems at£6.45 each, p&p included
*or set(s) of Digital Computer Logic and Electronics at £4.45 each, p&p included
*or combined set(s) at £9.75 each, p&p included Name
Address
*delete as applicable. No need to use a stamp—just print FREEPOST on the envelope.

PRECISION SI ALTONA **mài voir**

rui	LYCARBUNATE CAPACITURS	
140V	All High Stability - Extremely Low Leakage	
RANGE:	DIMENSIONS	

VALUE	,(ma	n) '	PRICE.			±	±	-
(°F) .	L	D		[33V	Rang	e 1%	2%	5%
0.1µF	27	12.7	ិ៍ទ <u>ា</u> ឆ្	0.47;	۰F	67p	5 8 p	43p
0.22µF	33	16	64 p	1.0μÌ	ŕ.	82p	62p	52p
0.25µF	33	16	67p	2.2µ1	F	96p	75p	61p
0.47µF	33	19	80p	,4.7µ1	F	£1.62	£1.13	94p
0.5µF	33	19	87p	i6.8μ1	F	£1.96	£1.38	£1.13
0.68µF	50.8	19	93p	10µF		£2.40	£1.95	£1.64
1.0µF	50.8	19	£1.03	'15µF		£3.22	£2.79	£2.24
2.0µF 5	0.8 2	5.4	£1.44	-22µF		£4.28	£3.68	63.06
*TAN	FALUN	I BEA	D CAPAG	TORS	— Va	lues ava	ulable:	0.1.
0.22, 0.	47, 1.0.	2.2. 4.8	3, 6.iµF at	15V/25	V or 35	V: 10 .F	at 16V	201
or 25V	; 22.0µI	Fat 6V	or 16V; 33	3.0uF at	6V or I	0V: 47.0	uFat3	Vor
6V; 10	0.0µF a	t 3V. A	LL at 10p	each. 1) for 95	p. 50 for	£4.	
TRAN	SISTO	RS & L	C.'s					
AC12	8	14p	BC268	A/384*	100 1	OC71		12p
AC17	6	16p	*BC547		20	*2N292	6G	12p
AD14	9	40p	BCY72		120	*2N292	60	llp
AF17	8	30p	BD131.		39p	*2N292	6Y	Hp
AF23	9	380	BF115/	167 3	22p	2N305	4	65p
BC10	7/8/9	9p	BF173		24p	2N305	5	50p
*BC114	1	12p .	BF178		260	2N370	2/	•
*BC14		10p	BF184		22p	3704		llp

*BC153/154	120	*BF194/195*	12p	*T1P30A	52p
*BC157/8/9	12p	*BF196/197*	12p	TIP31A	55p
BC177	180	BF200	27p	TIP32A	64p
*BC182/183L	11p	*BF262/263*	60 p	TIP3055	55p
*BC183/183L	llp	BFY50/51/52	20p	*MPU131	49p
*BC184/184L	12p	BFX84/86/88	20p	NE555	6lp
*BC212/212L	14p	BFX85	26p	741C	32p
*BC213/213L	11p	BR101	41p		£1.15
*BC214/214L	Hp .	GET872	250	SN76013ND	
00007	10	OCHUOCHE	14-		£1 50

for Z/p0, 12 107 49p; 114001 47p; void 4p; void

SLILCON PLASTIC RECITIFIESS—12 amp. brand new wire ended DO27: 100 P.I. V. 7p (4 for 26p), 400 P.I. V. 8p (4 for 36p). BRIDGE RECITIFIERS—22 amp. 200V 46p, 300V 45p, 600V 45p, SUBMINATURE VERTICAL PRESENTS—0.1W only 42b, 600V 45p, 10(x), 15(x), 12(x), 47(x), 68(x), 100), 25(x), 4.7(x), 6.8(x), 100), 25(x), 50(x), 100), 22(x), 47(x), 68(x), 100), 25(x), 25(x), 4.7(x), 6.8(x), 100), 25(x), 50(x), 20(x), 47(x), 68(x), 100), 25(x), 50(x), 100), 25(x), 50(x), 20(x), 47(x), 68(x), 100), 25(x), 50(x), 100), 25(x), 50(x), 20(x), 47(x), 68(x), 100), 25(x), 50(x), 100), 25(x), 50(x), 20(x), 47(x), 68(x), 100), 25(x), 50(x), 100), 25(x), 50(x), 100), 25(x), 47(x), 100), 25(x), 100),

MALL. PLEASE ADD 8% VAT to all items except those marked with * which are 25%. Send S.A.E. for lists of additional ex-stock items Wholesale price lists available to bona fide companies

MARCO TRADING (Dept. D3)

The Old School, Edstaston, Nr. Wem, Shropshire Tel. Whixall (Shropshire) (STD 094872) 464/5 (Proprs: Minicost Trading Ltd.)

Epoxy-GI	ass PCB
Typical prices INCL	
i ypical prices moc	Dalar of Art a post.
50+50w Power Module	
Active Crossover 2 way Active Crossover 3 way	
4-Channel Stereo Preamp	
3600 Synthesizer Aux Board	ETI 601P June 75 1200
3600 Synthesizer V.C. Filter	
CMDS Tester	
CMOS Tester	
Plus Two Amplilier Plus Two Power Supply	ETI 423 T P.2 80 p
Send 10p for Iuli Lists of PCBs	
many other published Project F	
NEW BURGLAR ALARM KIT	complete with Case and Five
Sensors KIT Price £16:00	Assembled
TTL 740011p	3434 38
7401 11	747428p 749337P
7410 11p	
7416 <u>20</u> p	LINEARS
7420 11 p	CA3046
7430	NE555 50p
7440110	µA 74127p BC107,108,1099p
	BC107, 100, 109
SPECIAL OFFERS	
Miniature glass encapsulated	
Solid TANTALUM BEAD Capaci	
Glass-Tin Oxide ½w Resistors Bulk offer 33K only50 —	22K,33K,39K 2p
Mail Order Only-CWO-P&P1	· · · · · ·
RFEQUIPME	ENT SPARES Ltd
3.Lacv Close WI	MBORNE Dorset

GLASS FIBRE P.C.B.s. Send 1.1 master and 30p per board plus 7p per square inch tinned or plus 9p per square inch drilled and tinned. Discount for quantity. PROTO DESIGN, 4 Highcliffe Way, Wickford, Essex

BARGAIN PRICE COMPONENTS No extras 10 BC183L Туре Т092**75р** МЈЕ 3055, прп 10 BC213L Туре-Сл414 IC Radio MJE 3055, npn 70p ZN414 IC Radio, ea. £1.36 Foncien IC £6.85 TTL, 7400/1/2/3/4 17p IN4001 50V 1A ea. 6p IN4002 100V1A ea 13p IN4006 800V1A ea. 13p IN4048 Signal Dinde E-

 Iob Sci 21 Type
 Type Satisfaction guaranteed, s a e. for lists All enquiries welcome--Overseas deduct 8% VAT RELTRAN LTD. (Dept. ETI) P.O. Box 18, Camberley, Surrey

RESPONSIBLE ELECTRONICS ENTHU-SIAST urgently wanted for trouble-shooting and help with production .- Space-Age Electronics 203 1132.

SCOOP! 10 mfd/12V 10/20p. 100/£1. 10mfd/70V 22/mfd/50V 10/25p. 100/£1.25. 100mfd/16V 1000mfd/6V 10/30p. 100/£1.50. 1N4002/4p. 10/30p. 100/£1.50. 1N4002/4p. 1N4004/5p. 1N4007/6p. 1N914/4p. 1N4148/4p. BRIDGES 1A/200V 2/50p. 2A/200V 2/65p. TRANSISTORS, Plastic BC107/8/9 10p. ZTX300/500 14p. ZTX304/504 22p. TIP3055/45p. TIP2955/64p. METAL CAN BC107/8/9 ZN3055/73p. LEDs W/Clips 12p. TIL209/Red 16p. Green, Orange, Yellow, 21p. I.C.s 8 pin/741 25p. 555/49p. P&P/20p. AUDIO-OPTICS, 19 Middleway, Chinnor, Oxon.

LOW-COST I.C. MOUNTING for any size DIL package. 100 Soldercon sockets 60p. 7 and 8 hole plastic supports **5p** pair. Quantity rates. SAE details and sample. Trial pack **60p.** (P.&P. 10p/order). **P.K.G. ELEC-TRONICS, Oak Lodge, Tansley, Derby**shire DE4 5FE.

PRINTED CIRCUITS

Readily available supplies of Constructors' hardware, Aluminium sheet and sections, Printed circuit boards, top quality for individual designs.

Popular E.T.I. boards always in stock, Prompt service.

Send 15p for catalogue.

RAMAR CONSTRUCTOR SERVICES MASONS ROAD STRATFORD-ON-AVON WARWICKS. Tel. 4879

FOR DETAILS ON ADVERTISING IN MINIADS, OR ELSEWHERE IN ETI, CONTACT BOB EVANS. 01-730 8282

	_	_		
	0 1 2 5	0.2	INFRA RED	
LEU RED	15p	19p	550µW Axial lead 49p	
panel G/Y	27p	33p	1 5mW £1.10 6mW £1.55	
clip 1p OR	· 27p	33p	6mW £1.55 ORP12 55p	
4350 2.5kV 5MH Osta free with all OI AC125/6/7/815p AD161/162 40p	kHz £1 z £2.25 202926(G 202926(G 203053		50V 1D0V 400V 25p 27p 46p 4 27p 35p 50p 05 2A 400V 60p VOLTAGE REGS. 5V 7805 Plastic	
AF117 20p AF124/5/6 7 34p BC/107/8/9 9p BC109C 12p BC147/8/9 10p	2N3054 2N3055 2N3702/ 2N3903/	45p 41p 3/412p 1/5/6 16p	12V 7812 1 Amp 15V 7815 all 18V 7818 £1.50 723 DIP14 50p	
BC147/8/9 10p BC157 8 9 11p BC167/8/9 11p BC169C 12p, BC177/8/9 17p BC182/3/4/L11p	2N2646 MPF102 2N3819 2N3823 BR100 D	35p 40p 25p 30p	BRIDGE RECTS. 2A 50V 30p 2A 100V 36p 2A 200V 41p 2A 400V 46p	
BC186/7 30p BC212/3/4L 12p BCY70/71/7213p	IN914 IN4001 IN40027	3p 5p 3 6p	ZENERS BZY88 2 7-33V 9p	
BF194/5 12p BF196/7 14p / BFY50/51 16p BFX29 30p BFX84 24p BSX19/20 16p	IN 4004/ IN4006/ IN4148 OA47 OA70 OA OA81 OA	7 8p 4p 6p 79 8p 90 7p	NE555V 60p NE556 £1.10 LM380 £1.00 ZN414 £1.10 7400 16p	
OC71 10p 2N706 10p 2N1711 20p 2N2219 20p	0A91 0A 0A200 0A202	95 6p 6p 7p	0.1.L. SOCKETS 8-pin 12p 14-pin 13p	
2N2219 20p 2N2904/5/6/7 16p 2N2904/5/6A18p 2N2926(R) 7p	OP. AMF 709 all 741 8-pir 748 D I L	25p	16-pin 14p Mica + bushes TO3 TO66 5p Dalo Pen 70p	

ISLAND DEVICES, P.O. Box 11, Margate, Kent

P.C.B.s FOR E.T.I. PROJECTS

Active Crossover ET1 433A	86p
Active Crossover ETI 433B	86p
Logic Probe ETI 120	35p
Logic Pulser ETI 121	35p
Logic Tester ETI 122	£1.85
50+50w Power Module ETI 422	£3.00
Simple CMOS Tester ETI 123a .	
Simple CMOS Tester ETI 123b	78p
Tone Burst Generator ETI 124	83p
Exposure Meter ETI 951	35p

All boards made in 1/16" Fibre Glass An object made in 1710 Fible Class. Price includes drilling, timing and postage. New projects available at $\pounds1.25$ per sq. cm. for single sided or $\pounds1.5$ per sq. cm. double sided

(min. 35p) Prototype boards made to your requirements. Send s.a.e. for quote or full list of boards available

HARDWARE PACK . . 6BA x 1/2" (RH) bolts, nuts, washers, 10p off each . . . 20p inc. postage. COMPONENT PACKS for above p.c.b.s Send s a.e. for list

Mail orders to D.B.M. Products, Unit 14, Southern Road, Aylesbury, Bucks.

UFO CHARTS' Wave Prediction 56p; Daily Flight Pattern 50p; TV Detection 66p; Propulsion Theory 57p; "Anti-Gravity" 57p; Map 52p; Circuits; 7-10 Digit Programmable Clock; Crystal Radiation Counter £1; Sighting Recorder 55p; 22-Range Multimeter Digital £1.05. R. & E. Highlands, Needham Market, Suffolk

CABINET FITTINGS

for Stage Loudspeakers and Amplifier Cabs Fretcloths, Coverings, Recess Handles, Strap Handles, Feet, Castors, Locks and Hinges, Corners, Trim, Speaker Bolts, etc., etc. Send 2 x 8½p Stamps for samples and list

ADAM HALL (E.T. SUPPLIES) Unit Q, Starline Works, Grainger Road Southend-on-Sea, Essex

INDEX TO ADVERTISERS

Auchta a 20
Ambit
Andromeda Electronics p.13
B.H. Components Miniads
B.I.E.T
Bi-Pak pp.4 & 5
Bi-Pre-Pak
B.N.R.S
Bywood
Cambridge Learning p.79
C.D.I Miniads
Chiltmead p.22
Chromasonics p.2
Crofton Electronics
E.D.A
Electrovalue p.28
Exetron
Greenbank Miniads
Heathkit
Henry's Radio
nemy a nadio

"HEDDON VALLEY ELECTRONICS" free catalogue and order forms now available. Many popular semiconductors, resistors, condensers, etc., all at competitive prices. Prompt attention on all orders regardless of sizes, all components guaranteed. A must for the home constructor, for the price of a s.a.e. HEDDON VALLEY ELECTRONICS, Bumpsley Mill, Parracombe, Barnstaple, North Devon.

Imtech Products p.28
Island Devices Miniads
Kinnie Components p.75
Kramer & Co
Lynx Electronics p.77
Maplin Electronics p.84
Marco Trading Miniads
Marshall'sp.44
Metac
Minikits p.76
Radio Constructorp.77
Ramar Miniads
R.F. Equipment Miniads
Sabtronics p.21 & p.50
Sinclair p.36 & p.37
Sintel
Technomatic p.52
Technomatic p.52 Videomaster p.51
Technomatic p.52

~~

LOOKING FOR AN ANSWER? Here's the solution, for those who are still struggling with the Cannibals and Missionaries problem – C means either of the non-rowing cannibals, C2 means the cannibal who can row, M means any missionary. 8. M & C come back
9. M & M go over
10. C2 comes back
11. C & C2 go over
12. C2 comes back
13. C & C2 go over

1. C & C2 go over 2. C2 comes back C & C2 go over C2 comes back M & M go over 3.4 M & C come back M & C2 go over 6

SYSTEM I

Professional photoelectric ignition using L.E.D. light source and reflective disc. This machined aluminium disc gives a timing accuracy far superior to other methods and is simple to fit. Unit housed in discast box $4\%' \times 3\%'' \times 2\%''$ Price £18.80 (Kit £16.80) State car/model/measurement across cam lobes.

SYSTEM II

Contact breaker model as above less sensor. Price £12.80 (Kit £10.80) M/C Twin unit Price £15.00. S.A.E. for descriptive leaflet – ALL UNITS IN STOCK. Mail orders to CDI Electronic Systems Ltd, 275 Vale Road, Ash Vale, Aldershot, Hants. Demonstration/Callers to Hillside Motors, 292 Carshalton Road, Carshalton, Surrey. telephone 01-642 9973

ELECTRONICS TODAY INTERNATIONAL-MARCH 1976

FIRST-1 CLASS VIDEO **ENGINEER**

Experienced in VCRs, Umatics, 2" machines and colour monitors.

Bench work.

For initial interview phone 01-580 2283.

THE SCIENTIFIC WIRE CO.

Copper - Nickel Chrome - Eureka - Manganin Wires Enamelled - Silk - Cotton - Tinned Coverings

No minimum charges or quantities Trade and Export enquiries welcome S.A.E. Brings List

P.O. BOX 30, LONDON, E4 9BW

CJL LTD. P.O. BOX 34, CANTERBURY, CT1 1YT CJL

ALL PRICES	INCLU	DE P&P AND V.A.T.	
ANTEX SOLDERING IRONS (with slide on & off bits)		ST3 Stands-for all models SOLDER in Bib dispenser	£1.10 £0.45
15W 'C' miniature irons	£2.30	WIRE STRIPPER& CUTTER	£0.85
3/32", 1/8", 3/16"bits-each 'C' Elements	£0.45 £1.10	HAND DRILLS Leytool prec compact, 5/16" chuck	£3,99
18W 1G1 miniature irons	£2.50	AERIALS Extend 15-120cm	£1.50
3/32", 1/8", 3/16" bits-each	£0.45 £1.35	CASSETTE 'Head Demagne Shaped pole-saves time	£3,65
15W ¹ CCN ¹ Low leakage irons	£2.70 £0.45	EARPHONES Stethoscope MICROPHONES Dynamic	£1.25 £2.15
3/32", 1/8", 3/16"bits-each 'CCN' Elements	£1.50	PRINTED CIRCUIT KITS-A	11
25W'X25'Low leakage irons 3/32", 1/8", 3/16"bits-each	£2.30	items for producing p.c's SIGNAL INJECTOR-Audio t	£3,99 hrough
1X251 Elements	£1.15	video signals, self contained	£4.25
'SK1', 'SK2',Soldering Kits	£3.85	SPEAKERS-75mm dia.8A	£1.00

Greenbank Electronics

FREE!

Data and suggested circuits for AY-5-1224 and MK 50253 clock chips, details of PCB's and component kits for AY-5-1224, data sheets for LED 0.3" and 0.6" displays.

NEW!
PCB TO SUIT AY-5-1224 clock chip
4 DIGIT KITS
Kit includes: PCB, AY-5-1224 chip, 4 LED digits, transistors, diodes, resistors, capacitors, solder pins (success guaranteed), with $0.3''$ digits £9.95 (0.6" high digit version also available).
CLOCK CHIPS
AY-5-1224 4 digit 12/24 hour£3.66
MK 50253 4/6 digit alarm clock£5.50
LED DISPLAYS (ECONOMY TYPES)
DL-704E 0.3" common cathode
DL-747E 0.6'' common anode
Add 8% VAT to all prices, post, etc. 10p + VAT per order
GREENBANK ELECTRONICS (Dept. T12E) 94 New Chester Road, New Ferry Wirral, Merseyside L62 5AG Tel: 051-645 3391

Do you want promotion, a better job, higher pay? "New opportunities" shows you how to get them through a low-cost, Home Study Course. There are no books to buy and you can pay as you learn.

This easy to follow GUIDE TO SUCCESS should be read by every ambitious engineer. Send for this helpful 76-page free book NOW! No obligation, nobody will call on you. It could be the best thing you ever did.

CHOOSE A BRAND NEW FUTURE HERE

🖿 CUT OUT THIS COUPON 📖 🖬

Tick or state subject of interest. Post to address below.

ELECTRICAL & ELECTRONICS Practical Radio & Electronics (with Kit) Electronic Engineering Certificate General Elect. Eng.Certificate C & G Elect Installations Elect. Install. & Work C & G Elect. Technicians RADIO AND TELE-COMMUNICATIONS	AUTO & AERO Motor Mechanics C & G Motor V Mechnics General Auto Engineering A.M.I.M.I. Air Registration Board Certs. MAA/IMI Dip. CONSTRUCTIONAL	MECHNICAL A.M.S.E. (Mech.) General Mech. Eng. Inst. Engineers & Technicians Maintenance Engineering Welding Welding MANAGEMENT & Programming Inst. of Cost &			
Colour TV Servicing C & G Telecoms. Technican's Cert. C & G Radlo, TV & Electronics Mech. Certificate Radio & TV Engineering Course Radio, Servicing & Repairs Radio Amateur's Exam.	Heating Ventilating & Air Conditioning Architectural Draughtmanship & Design L.I.O.B. Carpentry & Joinery Demonstry Joinery Plumbing Technology General Building Painting & Decorating G.C -58 'O' & 'A' L				
-over 10,000 Group Passes! Aldermaston College Dept. TET 12 Reading RG7 4PF also at our London Advisory Office, 4 Fore Street Avenue, Moorgate, London EC2Y 5EJ. Tei. 01-628 2721. NAME (Block Capitals) ADDRESS					
ADUKESS		· · · · ·			
		Postcode			

HOME OF BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

Member of A B C C

electronics today reader services

SUBSCRIPTIONS

The annual subscription to ETI for UK readers is £5.00. The current rate for readers overseas is £5.50. Canadian subscription rate is \$10 per year. Send orders to ETI SUBS Dept. . . .

BACK ISSUES

The cost of a back issue is 40p. Postage and packing costs an additional 15p for the first and 10p for each subsequent copy. Send orders to ETI BACK ISSUES Dept... We cannot supply certain back issues (April, May, June, July, November and December 1972; January, February and November 1973; March, September and November 1974; January, June, August, September and November 1975).

SPECIAL ISSUES

At present we have three Special Issues available: Top Projects 2, Electronics it's Easy (Parts 1 to 13), and International 4600 Synthesiser (published by Maplin). The prices are 75p, £1.20 and £1.50 respectively; postage and packing is an additional 15p per issue. Top Projects J Isnow sold out. Send orders to ETI SPECIALS Dept ...

BINDERS

Binders, for up to 13 issues, are available for £2.00 including VAT and carriage. Send orders to ETI BINDERS DEPT \ldots

BOOKS

ETI Book Service sells books to our readers by mail order. The prices advertised in the magazine include postage and packing. Send orders to ETI Book Service, 25 Court Close, Bray, Maldenhead, Berks.

SPECIAL OFFERS

Normally special offers are open from the date of publication to the end of the month on the cover of the issue. Usually the filing of orders and the despatch of goods is handled by the company supplying the products. In this case queries should be addressed to the company and not to ETI.

T-SHIRTS

ETI T-shirts are available in Large, Medium, or Small sizes. They are yellow cotton with black printing and cost £1.50 each. Send orders to ETI T-SHIRTS Dept . . .

PCBs

PCBs are available for our projects from companies advertising in the magazine, such as Ramar and Crötton, who do an excellent service.

EDITORIAL QUERIES

Written queries can only be answered when accompanied by an SAE, and the reply can take up to three weeks. These must relate to recent articles and not involve ETI staff in any research. Mark your letter ETI QUERY ... Telephone queries can only be answered when technical staff are free, and never before 4 pm.

NON-FUNCTIONING PROJECTS

We cannot solve the problems faced by individual readers building our projects unless they are concerning interpretation of our articles. When we know of any error we print a correction as soon as possible at the end of News Digest. Any useful addenda to a project will be similarly dealt with. We cannot advise readers on modifications to our projects.

CONTRIBUTIONS

Before submitting any material for publication contact the Editor who will advise on suitability (except for letters, news & Tech-Tips).

NEWS DIGEST

We receive 20 times more news than we have space for. If you have an interesting item we will be pleased to consider it along with the rest. The statement must be brief and preferably accompanied by a large photograph.

TECH-TIPS

We pay for items printed in this section: send ideas for submission to ETI TECH-TIPS... Drawings must be as clear as possible and the text should be typed or clearly written on alternate lines. Circuits must not have been previously published and must not be subject to copyright. We cannot answer queries on published Tech-Tips.

LETTERS FOR PUBLICATION

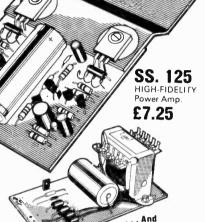
We do not pay for letters published and we only print them if they are very interesting or important. They should be addressed to the Editor.

MINI-ADS & CLASSIFIEDS This is a pre-payment service — rates on application to ADVERTISING Dept., or phone Bob Evans on 01-730-7319.

ADDRESS FOR ETI DEPARTMENTS-36 EBURY ST, LONDON SWIW OLW PLEASE MARK REVERSE OF EACH CHEQUE WITH NAME & ADDRESS AND ITEMS REQUIRED. ALLOW 10 TO 14 DAYS FOR DELIVERY

Accredited by C.A.C.C.

BRAND NEW MODULES FROM THE DESIGN-BENCH OF A FOREMOST BRITISH DESIGNER AND EXCLUSIVE TO B-P-P


BUILT FOR QUA THE SS125 HIGH FIDELITY POWER AMPLIFIER

OUTPUT

25 watts R.M.S. into 8Ω using 50V 22 watts R.M.S. into 4Ω using 33V (Low imp. not less than 4Ω)

DISTORTION from 10Hz to 10KHz) FREQUENCY RESPONSE \pm 1dB 15 Hz to 30 KHz (4 Ω) \pm 1dB 10Hz to 30 KHz (8 Ω) HIGH Z INPUT 100 Kohms (40dB gain/100x) INPUT SENSITIVITY 150mV for 25W.R.M.D. out HEAT SINK

Not only is this Stirling Sound's best audio amplifier yet; Less than 0.05% at all power levels it rightfully qualifies as one of the best of its kind yet made available to constructors. Intended above all for high-fidelity, the characteristics of the SS.125 are such that it can be used in many other applications where dependability is the prime consideration. The SS.125 integrates well with other S.S units as well as those of other manufacturers. Incorporates new circuitry using a complementary long-tailed pair input and full complementary output circuits to give standards of performance.

5 NEW STIRLING

SOUNDS POWER SUPPLY UNITS

(Inc. 40w. built on heat sink) 4¾ x 3" x ¼" high (120 x 76 x 22 mm) * A masterpiece of value and reliability

MORE STIRLING SOUND MODULES easy to follow instructions

F.M. TÜNER UNITS

Heavy duty type. built on SIZE

SS.201	Tuner front end. Ganged, geared variable tuning, 88-108MHz, A.F.C. facility	£5.00
	,	

- SS.202 1 F amp A meter and/or A.F.C. can be connected (size 3" x 2") £2.85 \$5.203 Stereo decoder for use with SS 201 and 202 or
- any good F.M. tuner. A LED beacon may be attached $(3'' \times 2'')$ £3.85 SS.105 5 watt amplifier to run from 12V (31/21" x 21" x 3/4") £2.25
- \$5.110 Similar to SS.105 but more powerful giving 10W £2.75
- into 4ohms SS.120 20 watt module when used with 34 volts into 4 £3.00
- SS.140 Delivers 40 watts R.M.S. into 4 ohms using a 45V/2A supply such as our SS.345 the power and quality of this unit are superb — two in bridge formation will give 80 watts R.M.S. into 8ohms. Size $4'' \times 3'' \times 3''$ £3.75
- SS.100 Active tone control, stereo, ±15dB cut and boost with suitable network £1.60
- SS.101 Pre-amp for ceramic p.u., radio & tape with passive £1.60 tone control details
- SS.102 Stereo pre-amp with R.I.A.A. equalisation, mag., £2.25 p.u., tape and radio in.
- SS.300 Power Supply Stabiliser. Add this to your unstabilised supply to obtain a steady working voltage from 12 to 50V for your audio system, workbench etc. Money saving and very reliable £3.25'

TERMS OF BUSINESS:

VAT at 25% must be added to total value of order except for items marked ' or (8%), when VAT is to be added at 8%. No VAT on overseas orders. POST & PACKING add 22p for UK orders unlass marked otherwise. Minimum mail order acceptable — £1. Overseas orders, add 21 for postage. Any difference will be credited or charged. PRICES subject to alteration without notice. AVAILABILITY All items available at time of going to press when every effort is made to ensure correctness of information.

take-off point to provide for tuner, pre-amp and control stages. Size $-5\frac{1}{4}$ x 3" x 2%" high (P/P add 50p any model) SS 312 121//14 £3 75° SS

Robustly designed units in each of which is a stabilised

33 314	12V/IA	23.73
SS 318	18V/1A	£4.15°
SS 324	24V/1A	£4.60°
SS 334	- 34V/2A	£5.20*
SS 345	45V/4A	£6.25°
ormers for	SS334 and SS345	are supplied

Transforme transformers separate from PCBs. Add 50p for P / P any model

A new Stirling Sound C.D.I. Unit for your car.

Even better than the original version, thousands of which are in use saving motorists appreciable time and money for petrol. Very use saving motorists appreciable time and money for petrol. Very easy to install. The Stirling Sound model incorporates switch for instant change to conventional ignition, instant adaption to pos or neg earth return: anti-burglar immobilising switch, pre-set control for rev. limitation. There are no exposed parts, the unit, on p.c.b. being housed in strong enclosed metal box. With instructions and leads. Size $7\%'' \times 4\%'' \times 2\%''$ ex. switches (193 x 117 x 54mm) (P/P – add 50p)

BUILT &

KIT £7.95 TESTED £10.50

A NEW X-HATCH GENERATOR Operates at R.F. level.

Uperates at K.F. level. For colour and mono TV. Plugs into aerial socket of set. Operates without need for transmissions, 4 push-button operation. Runs on 4 self-contained penite type batteries. Will fit into a large pocket. Strong plastic case. BUILT £27.50* KIT £25-

A USEFUL CATALOGUE — FREE

Send us a large S.A.E. with 10p stamp and we will send you the latest Bi-Pre Pack catalogue free by return. Packed with useful lines, its a real money saver.

TO STIRLING SOUND (BI-PRE-PAK) LTD, 222 WEST ROAD, WESTCLIFF-ON- SEA, ESSEX SSO DDF
Please send
for which I enclose ${\tt f}$
inc. V.A.T.
NAME
ADDRESS

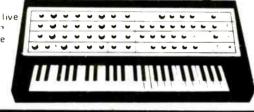
Bo home

More than just a catalogue! PROJECTS FOR YOU TO BUILD

4-digit clock, 6-digit clock, 10W high quality power amp., High quality stereo pre-amp., Stereo Tuner, F.M. Stereo decoder, etc., etc.

CIRCUITS ... Frequency Doublers, Oscillators, Timers, Voltmeters, Power Supplies, Amplifiers, Capacitance Multiplier, etc., etc....

Full details and pictures of our wide range of components, e.g. capacitors, cases, knobs, veroboards, edge connectors, plugs and sockets, lamps and lampholders, audio leads, adaptor plugs, rotary and slide potentiometers, presets, relays, resistors (even 1% types!), switches, interlocking pushbutton switches, pot cores, transformers, cable and wire, panel meters, nuts and bolts, tools, organ components, keyboards, L.E.D.'s, 7-segment displays, heatsinks, transistors, diodes, integrated circuits, etc., etc., etc.


Really good value for money at just 40p.

The 3600 SYNTHESISER

The 3600 synthesiser includes the most popular features of the 4600 model, but is simpler. Faster to operate, it has a switch patching system rather than the matrix patchboard of the larger

unit and is particularly suitable for live performance and portable use.

Please send S.A.E. for our price list

GRAPHIC EQUALIZER

A really superior high quality stereo graphic equaliser as described in Jan. 1975 issue of ETI. We stock all parts (except woodwork) including all the metal work drilled and printed as required to suit our components and PCB's

S.A.E. for price list or complete reprint of article - price 15p

NO MORE DOUBTS ABOUT PRICES

The 4600 SYNTHESISER

We stock all the parts for this brilliantly designed synthesiser, including all the PCBs, metalwork and a drilled and printed front panel, giving a superb professional finish. Opinions of authority agree the ETI International Synthesiser is technically superior to most of today's models. Complete construction details in our booklet available now, price £1.50, or S.A.E. please for specification.

MAPLIN

FRON

FAST , COMPONENTS

ELECTRONIC ORGAN

Build yourself an exciting Electronic Organ. Our leaflet MES51, price 15p, deals with the basic theory of electronic organs and describes the construction of a simple 49-note instrument with a single keyboard and a limited number of stops. Leaflet MES52, price 15p, describes the extension of the organ to two keyboards each with five voices and the extension by an octave of the organ's range.

Solid-state switching and new footages along with a pedal board and a further extension of the organ's range are shown in leaflet MES53 priced at 35p. (pre-publication price 15p.)

Now our prices are GUARANTEED (changes in VAT excluded) for two month periods. We'll tell you about price changes in advance for just 30p a year (refunded on purchases). If you already have our catalogue send us an s.a.e. and we'll send you our latest list of GUARANTEED prices. Send us 30p and we'll put you on our mailing list – you'll receive immediately our latest price list then every two months from the starting date shown on that list you'll receive details of our prices for the next GUARANTEED period before the prices are implemented! – plus details of any new lines, special offers, interesting projects – and coupons to spend on components to prepay your 30p

NOTE: The price list is based on the Order Codes shown in our catalogue so an investment in our super catalogue is an essential first step.	I enclose Cheque/P.O. valueETI For copy/copies of your Catalogue
Call in at our shop, 284 London Road, Westcliff-on-Sea, Essex. Please address all mail to	Name
MAPLIN ELECTRONIC	Address
SUPPLIES	0.0. Pay 2 Paulaish
P.O. Box 3 Rayleigh Essex SS6 8LR.	MAPLIN ELECTRONIC SUPPLIES P.O. Box 3 Rayleigh