THE PROPERTY 1976 THE PROPERTY

ET.

- -

Jeconomy

11

17

This photo was taken using this

5 3 5 3

1 0

ELECTRONICS IN REOPHYSICAL SURVEYS

NEV SERIES CMOS INTRO TO THIS VERSATILE TECHNOLOGY

Dept. 7. 56. Fortis Green Road BUROMASONIC electronics Muswell Hill. London, N10 3HN. telephone: 01-883 3705 I.C. SOCKETS Plices C - MOS LINEAR 1.0.'s SN/6001N (TAA611) £1.82 SN/6003N £3.30 SN/6013N £1.98 SN/6023N £1.98 SN/6023N £1.98 SN/622N(MC1327) £1.89 SN/6237N £1.86 SN/6537N £1.86 100up -33 A)* 1-0212 AY=1-5051 AY=5-1224 AY=5-3500 AY=5-3507 AY=5-4007 LM2111 LM3900 LM3909 MC13031 MC1306P 25-99 £6.93 £1.44 £3.95 1-24 555 (8 pin dio W 555 (10 99 T 550 11.12 555 (10 99 7 81p 556 (14 pin dip) £1.29 CD4000AF 19p 19p 19p 19p 17p · 14p · 17p · 14p · 17p · 14p · 17p · 14p · 17p · 17p · 17p · Pin Sockets, pins in strips of 100, Just snip off when you need. 65p per strip Dupt in line AN AN 703 (RF /IF Amp 709 (8 pin dip) 709 (T0-99) 709 (I4 pin dip) 710 (8 pin dip) 710 (8 pin dip) 710 (10-99) 711 (10-99) 711 (10-99) £6.59 £6.59 £7.94 1.94 85p CD4007AF 680 380 450 390 390 450 Dual in line 8 pin 13p. 14 pin 15p 16 pin 15p ** MC1310P MC1312 MC1314 MC1315 :2.10 £1.86 £1.81 23p £1.75 Use CD4007AE CD4008AE SN76544N 24 pin 760. 105 12 52 £4.34 28 pin 30p. 36 pin 39 p. 5HA0002 \$3.01 \$N76550-7(TAA550)89p \$N76552-? 81p \$N76660N(TBA120) 75p \$N76666N (C.A3065) E1.12 8 pin 31e 10 pin 35p. CD4009AF ±4 85 ±1 48 89p Ute Use 19p 59p £1.75 £1.75 $\begin{array}{c} \text{CD4030}^{\circ}\\ \text{CD4030}^{\circ}\\ \text{17}_{p}^{\circ} \quad \text{14}_{p}^{\circ}\\ \text{50}_{p}^{\circ} \quad \text{26}_{p}^{\circ}\\ \text{50}_{p}^{\circ} \quad \text{26}_{p}^{\circ}\\ \text{51}_{p}^{\circ} \quad \text{26}_{p}^{\circ}\\ \text{51}_{p}^{\circ} \quad \text{26}_{p}^{\circ}\\ \text{51}_{p}^{\circ} \quad \text{51}_{p}^{\circ}\\ \text{52}_{p}^{\circ} \quad \text{52}_{p}^{\circ}\\ \text{52}_{p}^{\circ} \quad \text{52}_{p}^{\circ}\\ \text{52}_{p}^{\circ} \quad \text{52}_{p}^{\circ}\\ \text{51}_{p}^{\circ} \quad \text{51}_{p}^{\circ}\\ \text{52}_{p}^{\circ} \quad \text{51}_{p}^{\circ}\\ \text{52}_{p}^{\circ} \quad \text{51}_{p}^{\circ}\\ \text{52}_{p}^{\circ} \quad \text{52}_{p}^{\circ}\\ \text{52}_{p}^{\circ} \quad \text{52}_{p}^{\circ} \quad \text{52}_{p}^{\circ}\\ \text{52}_{p}^{\circ} \quad \text{52}_{p}^{\circ}\\ \text{52}_{p}^{\circ} \quad \text{52}_{p}^{\circ}\\ \text{52}_{p}$ AC (13)5 £4 85 MC (1327 1 1 48 MC (13307 1 1 48 MC (13307 89 b) MC (1330 68 p) MC (1350 68 p) MC (1351 92 p) MC (1357 £1 60 MC (1357 £1 60 MC (1357 £1 55 MC (1357 £1 55 CA2111 CA3045 CA3046 CA3053 CA3055 CA3075 CA3078 CA3081 CA3081 C1330104 £1.19 £1.69 88p 59p £1.60 £1.64 £1.26 CD4010AE CD4012AE CD4012AE CD4013AF CD4013AF CD4013AF CD4015AF CD4016AE CD4017AE CD4018AE FREE CIRCUITS 440 51p 44p Our 8 Page A4 Audia I.C. Bookler is supplied FRE with purchases of Lineer I.C. is worth E1, or more IOSp. if sold alone) Contains circuits 711(10-99) 712 (14 pin dip) 720 (A.M.Radie) 57. 723 (10-99) 51 723 (14 pin dip 741 (10-99) 741 (10-99) TAA 263 £1.50 76 TAA300 TAA310A £2.16 \$0.11 £1.87 £1.44 550 D5p. if solid alory | Consting circuit and pin connection; 15 Andio Pier Amplifiers; 2 Audio Pier Amplifier; 1 Tope Pier Amplifier; 1 Poner Driver; 1 Intervent Amplifier; 1 Concerd Prepage Mini Amplifier; 1 Concerd Purpage Mini Amplifier; 1 D.C. Controlled Goot Control 1 Minimum and pi 2; 1,2,1; 55p 30p FAA320 FAA350 TAA370 £1.29 £1.89 741 (10-99) 430 741 (10-99) 430 741 (10-99) 430 744 (14 pin dip) 36p 747 (14 pin dip) 51.04 748 (14 pin dip) 42p 748 (14 pin dip) 42p 748 (14 pin dip) 42p 753 (F.M. bit.1.F) \$53 (F.M. bit.1.F) 5% £1.86 £1.86 \$2.43 £1.89 80p £1 97 £1.75 £1.83 £1.26 £1.83 £1.26 £2.27 £1.53 £1.89 £1.89 \$3.45 MC1375 MC1455 (5551) MC1455CG MC1458CP1 MC1488G MC1495E MC1496G MC3302P MC3302P 21 56 65m CD 4019A5 15 15 15 15 15 15 CA3082 TAA550 CD4920A5 1 65n 1 77 89p 2 30 14 48 1 01 1 65 81p CA3089E (TDA1200) CA3097E £1. CA3123E £1. 200: £2.43 £1.67 £1.76 84p CD4021A FAA700 CD4073AF CD4077AF TBA1205 TBA231 TBA281 (723) TBA500Q £1.25 £1.02 £2.59 £3.16 ("A313/1 CA3401L ILM39001 660 CA3600E EI 44 CD4025AF CD4025AF CD4025AE CD4027AL £1.08 75491 PHOTO-DARLINGTON /5492 £1.10 87p 85p -85p -61 01 18A520Q 18A530Q £3.85 100511 (T0.3) 103611 (T0.3) 103711 (T0-3) 1129 (501+3?) CD4078A8 Vero 25 2N5777 Vero 25 V Vero 8 M 11 250 mA Pe 200 mV 41350 £3.27 £3.72 £5.29 £5.29 £1.03 £1.03 £1.03 £1.46 MEC 40008 CD4079AE £1.89 * 71n * £1.75 * E2.01 * £1.49 * £2.15 * 69p * £2.78 * £2.78 * £2.78 * £2.78 * £2.78 * £2.78 * Regulators 100 mA 78105WC (T0-97) £1.46 £1.46 AAFC 1060A TBA 5400 60p CD4030A5 MI 26030A MI 26030A 184550Q 184560CQ 78L12WC (10-97) 78L15WC (10-97) CD4035AE 850 184625A 784625R 784625R 1130 (SOT-32) 1131 (SOT-32) 850 . CD4047AH 850 MM5314 CD4046AH Hie 2500 Regulators 100mA 781 05AWC 118A625A1 90p 781 17AWC 118A625B1 90p 781 15AWC (118A625B1 90p 781 15AWC (118A625C1 90p £4.80 MM5316 \$9.99 LM3011 110-99 65p LM3015 (B pin dipl59p LM301A (ITD-99) 67p LM301A (ITD-99) 67p LM301 X (ITD-99) 57p LM307 S (B pin dipl 57p LM308 I (TD-99) 51,96 LM308 I (TD-99) 51,96 LM308 X (ITD-99) 52,97 CD4049AF CD4050AE CD4051AE CD4057AL CD4056AE CD4060AE CD4066AE CD4066AE LINE-0-LIGHT MVR5V (T0-3) MVR12V (T0-3) MVR15V (T0-3) £1.45 TBA651 £1.87 £2.79 £1.45 18A7200 18A7500 £1.45 Regulators 500mA 78A0511C 78A01211C 78A01211C £2.79 £1.11 TUTUTUTUT T84800 £1.35 £1.35 £1.35 £1.35 NE5401 £1.25 NE5401 NE5464 NE555V NE556 NE5608 NE5628 NE5628 NE563 NE563 NE566V NE566V NE567V TRAE 105 E1 24 \$1.13 940* £1.16 75p 19p 19p 19p 19p 47p 19p 19p 850 1848103 1881045 18881045 188820 1889200 1889900 28p * 21. 20 21. 20 21. 30 21. £1.74 24p* 24p* 24p* 24p* 24p* 24p* 24p* E1.06 * E1.00 * E2.46 * E1.09 * E1.08 * 690 69p £1.29 £5.06 £5.06 £5.06 £2.96 £2.63 CD4069At 78M18HC £1.35 £1.35 14.71 £4.71 CD40/OAH NEW LED Linear Costors each device contains 10 (righ) emitting diades in a 20 pin dual-in-line package - ideal for solid CD40/1A LM308A 5 (8 pin dip166, 90 Regulators 14 7805KC (10-3) 7812KC (10-3) 7815KC (10-3) 7818KC (10-3) 7818KC (10-3) CD4077AE CD4077AE CD4081AE CD4083AE CD4083AE CD4083AE CD4093AE CD4093AE CD4093AF CD4511AE CD4578AE TCA7200 TCA260 TCA8000 TCA8305 £5.24 £7.16 £7.24 £1.04 £2.09 £2.09 £2.09 £2.09 £2.09 £2.09 LA4309 \$2.34 LM339 £2.25 state unalogue meters or dials Type 101 RED £2.26.1 Complete with feaffer. £1.87 <u>من8</u> M3/0N £7.85 \$2.63 £2.85 £2.08 £1.99 £2.99 £2.71 £1.25 £1.85 £1.66 TCA940 52.25 04 LM371 LM372N LM373N LM373N LM380 LM380 LM381 LM382 LM703 SD6000 £1.22 \$1.96 \$1.44 Regulators 1A 2805UC (T0-220) £1.72 7812UC (T0-220) £1.72 7815UC (T0-220) £1.72 IDA 1054 74 TTL £1.50 prices 5L414A £2.09 IDA1200 \$2 43 80p 80p 80p 1.BA. 7.B.A. SL 41 5A SL 437D SL 440 £2.75 £7.50 £2.84 1-71 25-99 100 1DA1412 1DA1412 31/2 DECADE DVM 1.C. 7400 10p 10p 10p 10p 11p 11p 11p 11p /818UC (TD-220) EL 72 10A2010 7824UC (TO-220'E1.72 7402 680 SN7549IN 00 7402 7403 7404 7408 7409 ner 🗌 - 💭 : 💭 LM1820 £1.03 SN75491N \$1.10 IC18030 · \$3.52 0.6 % ' .ed ULN2)114 £1.52 ZN414 Leaflet free with devices (10p alone.) MC1310, 2, 4 5 5 Leaflet free with devices (10p alone) ZN414 £1.26 7410 7413 7417 7417 7420 7427 7430 20p 20p 11p LED DISPLAYS DIGITAL SWITCH Litraniz Double Digit Displays 0.5° Common Anade; 2004 Decimal Points DUZ21 ± 1.9 DUZ27 0.0°0.9 Suitable for Clacks, Meters, Instruments, Chumel Indicators Our price \$4.75° cach E. NEW . This state-of-the-art MOS LSI chip contains all the logic necessary for a 3°_{\circ} decode, dual stope integrating, auromatic polarity detect DVM Supplied with free data and circuit booklet. 4°_{\circ} -5-3507 C.Anode V.H. Dec., pr C.Anode, L./H. Dec., pr C.Anode, 1 C.Canode, 2/H. Dac., P 18p 11p 18p 18p 18p 50p 43p 57p 65p 50p 67p 20p 20p 21p 31p 21p 50p 8/p 21p 50p 8/p 21p 50p 8/p 21p 50p 8CD encoded digital switch Reading 0 to 9. Suitable for digital clock alarm setting DVM input Scaling ere 1 7432 7**43**7 7441 Ï, 7447 7445 7447 7448 7447A 7470 7472 7473 7474 to 9. £1,49 each . G OUR PRICE ONLY 16.59. L (Date and Circuit Booklass alone 20p. Law cost Red GuAsP Mataranta MLED 500 in a TOP2 package U-33 Monsanto MAN 50 /70/80/3500 U-33 Monsanto MAN 50 /70/80/3500 U-34 all £1.82* coch (Red anly) all £1.82* coch (Red anly) all £1.82* coch (Red anly) all £1.49* Each (Red anly) U-33 Monsanto MAN 4000 Series U-34 all £2.42* Each (Red anly) U-35 Litronia DL74* Jumbo* Series U-34 all £2.42* Each (Red anly) U-35 Litronia DL74* Jumbo* Series U-34 all £2.42* Each (Red anly) NOIE MAN 4000 Series pir.ous are 14 pin dil the tame as MAN 50; 70 and 80 teries. The AY-5-1224 tick-tock Ambher marvel from C. J. A. 16 gin 12-24 her. Cleek J. C. with 25 pin coopbility and law external pairs courts. Supplied with manufactures debilded leaflet 53,959 (Inc. VATI (Leaflet alone 20p.) Full Kit (ancluding cost) available towards end of 1975. Phone Cfive for debils. 7475 7476 7481 LIGHT EMITTING DIODES Cont'd GI 7485 £1.30 - £1 37p* £2.92 - £2 49p* 65p* 57p* a la 7486 Free snop-on plastic retainer Our Bulk Buying Power enables a repeat of our Special Offer: 0.43" (L11 /02) 90p. fline. VAT) 0.63 (L11 /02) 90 . fline. VAT) MULLARD MODULES 7489 £? 0.125" 0.2" dia. Lens IMLED 6501 2490 7491 7492 7493 7495 74100 74107 74127 74121 74122 74121 74125 74124 74181 74193 74193 74196 0.16 3 2p 4 5p 3 6p 3 2p 3 2p 2 3p 2 3p 2 3p 3 2p 3 2p 3 2p 3 2p 3 2p 3 2p 4 5p 4 5p 6 7p 6 7p dia .len dia , lens Si Still make the simplest, highly reliable F.M. tuner (T1L209) 1 · 10 10. 100 10 1001 100 -10 45p* OPTO ·ISOLATORS 13p * 22p* 22p* 29p* 6/p* \$1.08 * Red Green Orange Yellow 16p 37p 27p 34p 15p 25p 24p 31p 27p 33p 33p 35p 24p 30p 30p 32p 22p* 27p* 27p* 29p* 18p 30p 30p 35p 16p 2/p 2/p 33p 14p 25p 25p 30p • • • 103 4N25 or 111116 6 pin indistry standard pockoge 2.5KV isolation £1.00.1 350-100 - - A 34p* 47p* 78o* Ne MAINS TRANSFORMERS 78p* 63p 640o* 58p £1.62 * £1.48 £1.00 * 83p £1.06 * 68p £3.70 * £2.50 £1.35 * £1.14 £1.35 * £1.14 £1.35 * £1.34 Seconda 1A 2A £1.95 + £2.77 £2.48 # £4.15 ** 18 # £7.07 ies -4 6-0-6V 9=0-9V 12-0-12V 20-0-20V 24-0-24V 28-0-28V 0-9-1/ V 0-12-15-20-24-30 V 100 mA 100 mA 100 mA 97p. 97p. 97p £4.55 £2.48 \$2.64 * 71p * * * 1 .90 90p 90p 99p £1 PT186 Varactor front end LP1185 1.F. Strip LP1400 Multiplex decorter 0-24-30-40-48-60 V - £5.18 ± £7.07 0 19-25-33-40-50 V £2./0 ± £3.40 ⇐ £4.53 £8 60 16.95 £9 02 I A 500 mA transformers 10% of price min £6.1B 200 VAT INC ms tollowed by a" Overseas Castomers deduct 2/27 from 1 Items. 1/5 from others Data Theet and motocopy service available 10p. pr. may ine. VA1 or 8% all others include 25% Orders for over £6, post-tree Except lumfarmer Advert No. 1A of Series B CALLERS WELCOMED

HHHHHH international

FEBRUARY 1976

VOL 5. No. 2.

Features

CMOS,	
GEOPHYSICAL SURVEY	
DESK-TOP GRAPHICS	
OP-AMPS	
ELECTRONICS – IT'S EASY	

Projects

CMOS TESTER	. 19
TONE BURST GENERATOR	. 25
DYNAMIC NOISE FILTER	. 37
EXPOSURE METER	. 46
BOOSTER AMP	.51

Data Sheets

AY-1-0212 & AY-1-5051, ORGAN GEN/DIVIDER ICs	41
AY-5-3507, A 3½ DIGIT DVM IC	42

News & Information

NEWS DIGEST	6
ETI BINDERS	.36
ETI T-SHIRTS	. 36
MARCH'S ETI	.40
ETI BOOKS	.45
ETF SPECIALS	. 67
ELECTRONICS TOMORROW,	.68
TECH-TIPS	.70
READER SERVICES	. 82

Cover: It's a nice exposure meter we know, but we thought you'd rather see a picture of a pretty girl. Well, we asked Lia to St James's Park and did some photos. This cover shot was taken using 1/125 at F8 measured on our simple meter.

EDITORIAL AND ADVERTISEMENT

OFFICE **36 Ebury Street** London SW1W OLW Telephone: 01-730 8282

HALVOR W. MOORSHEAD Editor

ROBERT C. EVANS Advertisement Manager

STEVE BRAIDWOOD, G3WKE Assistant Editor

LES BELL, G4CFM **Editorial Assistant**

JEAN BELL Production

INTERNATIONAL EDITIONS

COLLYN RIVERS Editorial Director

AUSTRALIA BRIAN CHAPMAN Technical Editor BARRY WILKINSON Engineering Manager Modem Magazine Holdings Ltd Ryrie House, 15 Boundary Street Rushcutters Bay 2011 Sydney, Australia.

FRANCE

DENIS JACOB **Editor in chief** CHRISTIAN DARTEVILLE Editor Electronique Pour Vous International, 17 Rue de Buci Paris, France.

Electronics Today International is normally published on the first Friday of the month prior to the cover date.

PUBLISHERS Modern Magazines (Holdings) Ltd 36 Ebury Street London SW1W OLW.

DISTRIBUTORS Argus Distribution Ltd

PRINTERS QB Newspapers Limited, Colchester

READERS' QUERIES: These can only be answered if they relate to recent articles published in the megazine. Rarely can we supply information in addition to that published. Written queries must be accompanied by a stamped addressed envelope, and telephone queries, must be brief, not before 4pm and can only be answered subject to the availability of technical staff.

BACK NUMBERS: Back numbers of many issues are available for 40p each plus 15p postage.) SUBSCRIPTIONS: Great Britain £5.00 per annum Overseas £5 50.

COPYRIGHT: All material is subject to world wide Copyright protection, All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur, a correction will be published as soon as possible afterwards in the magazine. STILL THE TO ENTER

READER SERVICES See page 82 for details of all ETI Reader Services and other information.

BBAACONSTANTS BERNICONS BERNICONS BEASE & PACKING Nease add 25p. Overseas add extra for airmail. Minimum order 75p.	PAK DUCTORS	P.O. BOX 6 VARE, HERTS	
TA SERIE	S TTUIC'S	TRANSISTORS	VAT ADD 8%
TYPE QUANTITY 1 100 £ p. £ p. 7400 0.08 0.07 7401 0.12 0.09 7402 0.10 0.09 7403 0.12 0.09 7404 0.10 0.09 7405 0.10 0.09 7404 0.10 0.09 7405 0.10 0.09 7405 0.10 0.09 7406 0.28 0.25 7408 0.14 0.10 7410 0.28 0.25 7408 0.14 0.10 7410 0.28 0.25 7411 0.20 0.18 7412 0.20 0.18 7413 0.26 0.24 7420 0.10 0.09 7422 0.25 0.23 7417 0.27 0.24 7426 0.26 0.24 7427 0.26 0.24<	TYPE QUANTITY TYPE QUANTITY 1 100 1 100 £.p. £.p. £.p. £.p. 7448 0.70 0.68 74122 0.42 0.40 7450 0.12 0.10 74123 0.58 0.50 7451 0.12 0.10 74143 0.62 0.60 7453 0.12 0.10 74145 0.70 0.65 7454 0.12 0.10 74151 0.65 0.60 7470 0.26 0.24 74153 0.65 0.60 7470 0.26 0.24 74155 0.65 0.60 7471 0.26 0.22 74156 0.65 0.60 7475 0.44 0.40 74157 0.90 0.80 7476 0.44 0.40 735 74161 0.95 0.85 7480 0.40 0.35 74164 1.20 1.10 7485	TYPE PRICE TYPE PRICE AC128 10p 2N2217 15p AC153K 18p 2N2218 14p AC153K 12p 2N2218 14p AC153K 12p 2N2218 14p AC153K 12p 2N2219A 15p AC153K 12p 2N22219A 15p AC187K 20p 2N2221 14p AC187K 20p 2N2221 14p AC187K 13p 2N22221 14p AC187K 13p 2N22221 14p AC187K 18p 2N22221 14p AC187K/188K 2N22221 14p AC187K/188K 2N22221 14p BC107 6p 2N2369 12p BC108 6p 2N2904 12p BC109 6p 2N2905A 13p BC148 8p 2N2906A 12p BC149 10p 2N2906A 12p	DIDDES TYPE PRICE 0A10 15p 0A47 5p 0A47 5p 0A47 5p 0A47 5p 0A47 5p 0A300/BAX13 5p 0A200/BAX13 5p 0A200/BAX13 5p 1N4144 4p 1N4001 3p 1N4002 4p 1N4003 4p 1N4004 5p 1N4005 5p 1N4006 6p 1N4007 7p SA/50V TO5 15p 1A/400V TO5 25p 5A/400V TO66 40p SA/400V TO66 40p L129 (UA7805) 85p L130 (UA7812) 85p L131 (UA7805) 85p L131 (UA7815) 85p L29, D. LE,D.
BPS8 9p 741P NE555 42p	BPS14 10p BPS16 11p LINEAR IC 8PIN 20p TIMERS DUAL NE556 85p	BFX29 18p 2N4062 9 BFX29 18p 2N5172 9 BFX85 20p 8 9 BFX86 16p 9 BFY50 15p BFY51 15p BFY52 15p BFY53 14p 2N696 10p 2N706 6p 2N706 6p 2N708 7p 2N708 7p 2N1613 15p 2N1711 15p 2N1893 18p 2N1893 18p	PP RED 5 for 50p ON PCOP Sp Sp Sp Sp Sp

news digest

An Ampex BCC-2 portable colour camera was recently carried to the summit of the Dufourspitze, Switzerland's higest peak. The cameraman is also wearing the back-pack, through which this new hand-held camera generates full broadcastquality pictures. Behind him is the dish of the temporary microwave link, and the Ampex VR-3000B portable videotape recorder is in the foreground with a monitor.

'SILVER' CALCULATOR FROM SINCLAIR

This new Sinclair 'Cambridge Memory' pocket calculator, which is finished in 'silver' and matt-black is supplied with a comprehensive instruction booklet and a rigid plastic carrying case, all packaged in an attractive 'silver' gift presentation box.

Featuring the four basic functions $+ - \div x$, the unit also incorporates a percentage key and an accumulating memory, which makes it ideal for all non-scientific applications. It is expected to appeal to a wide cross-section of people ranging from house-wives to business men.

Typical selling price is £14.95 including VAT.

£1 OFF SINCLAIR CALCULATORS

These giant size Daz packs, which feature '£1 refund on any Sinclair Calculator' vouchers are currently being sold into 100,000 retailers nationwide. Millions of 'money-off' packs of Daz will carry this joint Proctor and Gamble and Sinclair Radionics promotion, which is valid until 1st November, 1976. The offer is valid for any Sinclair calculator, regardless of the price paid to the retailer.

Customers must supply the following proof of purchase to Sinclair, who will send a £1 refund by return

- the front of the calculator pack. - ± 1 voucher from the Daz pack.

- the connecting strip from the top of any bottle of Fairy liquid,

and, either, – the end flap from any carton of Fairy household soap – any Head and Shoulders shampoo carton top.

NOVUS BONUS

This is just one of many letters we've received: Dear Sir,

I have just received my Novus 3500 calculator and am delighted with its performance. Those of your readers who have also purchased one of these machines will be pleased to know that it is capable of lower case functions in addition to those of the inverse trig. functions. Prompted by the similarity between the 3500 and the more expensive 4510 I have found that the ARC key can be used in the same way as the F key on the 4510. With x in the display and after touching ARC, the functions shown in the right hand column are performed on touching the corresponding key in the left hand column:

1	x ²
ЛS	M+x ²
-	degrees→rads
(rads→degrees
-	M-
F	M+

The two machines are therefore identical in performance. In correspondence with Novus prior to receiving my 3500 they had explained that the difference between the two was the lack of lower case functions on the 3500 excepting the inverse functions. This bonus greatly enhances the value of an already exceptional offer.

Yours faithfully, G.O.Hayward, Dyfed.

WHAT'S THIS?

Is it a flying saucer, or a contemporary flying pan? A new hovercraft perhaps? In fact, this is the new 3M Scotch 948 "Winchester" magnetic disc data module. The one illustrated has a capacity of 70 million bytes of information.

"SORRY, LADY, WE DAREN'T RISK DEMONSTRATIONS --- WE'RE NOT INSURED AGAINST AVALANCHE!"

TRANSISTEK MODULAR CASES FOR ELECTRONIC INSTRUMENTS

Following their recent launch of the Transistek range of modular electronic instrument cases, Lektrokit Ltd now have available ex-stock a number of models in the WS3 Series. Ideal for housing logic circuitry, remote control units, power supplies, telecommunications equipment and the like, these

low-cost extruded and laminated aluminium cases are suitable for both

production units and prototype or development work.

Four sizes of the functional WS3 instrument case are offered (from 70mm high x 220mm deep x 286mm wide to 128.5 x 260 x 442mm) and each enables most types of electronic or electrical components to be fitted. Several sizes of perforated support trays and extruded aluminium cross sections are available for mounting such components, and the cases can also be supplied with ventilation holes in their lids.

There are eight styles of instrument case in the complete Transistek range, all of which are offered in various colours for production quantities; items from stock are blue and unventilated. Further models will be announced as soon as they are available. Lektrokit Ltd, 3 Trafford Road, Reading RG1 8JR.

HANDBOOK OF DATA COMMUNICATIONS

This 400-page volume has been published by the National Computing Centre for the Post Office, and is aimed at computer people who need to acquire a knowledge of telecommunications. The Post Office holds a range of training causes in data communications for computing staff and have now utilised their expertise in the production of a volume which serves both as an introduction to, and reference on data communications. The text, although easily readable, is also concise and quick to use for reference. Starting with the basics of communications and telephone systems the book progresses through transmission and modulation systems, terminals, error correction, concentrators and multiplexers, to distributed intelligence, message and packing systems and a summary of data transmission services in the UK and abroad. Priced at £8.50, the book can be obtained from technical bookshops or direct from the Post Office at: Data Communications Division (TMk4.3.1), Freepost, London EC2B 2TX.

ELECTROVALUE CATALOGUE

Now available is the latest edition (No.8) of the Electrovalue catalogue. This runs to 144 pages and gives plenty of useful information on transistors and IC's. Virtually all the components and hardware one could want are listed. Included is a 40p voucher refundable on purchases of £5 or over. The catalogue is available for 40p post paid, from Electrovalue Ltd., 28 St. Judes Road, Englefield Green, Egham, Surrey TW20 OHB.

-news digest

LASER GUN -- A lightweight laser gun, weighing only 13 pounds, can be aimed by infantrymen to pinpoint targets for laser-homing missiles and projectiles, or used to designate targets for airborne laser spot trackers. It is built by the Hughes Aircraft Company, which has delivered 12 development units to the US Army Electronics Command. Starting March 1, the US Army will begin a six-month programme to field test the equipment under actual operating conditions against a variety of laser seekers and laser spot trackers.

LOW-PROFILE KEY SWITCHES

The new DC-60 Series switches from Invader Components offers the same desireable features as expensive reed or solid state switches at less cost than menchanical types. Profile of the new switch is a mere 19.558mm (0.7770in) including cap.

High reliability is achieved with a trifurcated gold contact design giving a minimum 10,000,000 operations. Mounting alternatives include snap-in clips, high strength solder terminal mounting and heat stable. bottom locating pins.

Switch housing is in mineral filled nylon for high stability throughout the life of the device.

CMOS PRESETTABLE COUNTERS

Two new presettable up/down counters have been added to the comprehensive CD4000 Series of COS/MOS digital integarted circuits produced. by RCA Solid State-Europe. The RCA-CD4510BE is a presettable binary-coded-decimal up/down counter and the CD4516BE is a presettable binary up/down counter; each device consists of four synchronously clocked gated D-type flip-flops connected as counters. Applications include up/down difference counting, multistage synchronous counting. multistage ripple counting, and synchronous frequency division.

The devices are designed for medium-speed operation (typically 7MHz), and incorporate facilities for resetting and presetting. The counters are cleared by a high level on the 'reset' line, and can be preset to any binary number by a high level on the 'preset' line. The counters can be cascaded in ripple mode by connecting the 'carry-out' to the clock of the next stage. Both devices are supplied in 16-lead dual-in-line plastic packages. RCA Ltd, Sunbury-on-Thames, Middx.

5-FUNCTION LCD WATCH CIRCUIT

AMI Microsystems have announced the development and production of the first 5-function, 4-digit LCD (liquid crystal display) watch with a voltage tripler.

Designated S1424A, it is designed to interface directly with the standard 4-digit LCD and requires only two push buttons for all display and setting functions. In normal operation the S1424A provides a continuous display of hours and minutes. By pressing one button, hours and minutes are replaced with a display of the month and date; a second operation of the same button causes a display of seconds.

Also contained in the circuit is a calendar which automatically compensates for the 28-, 30- and 31-day months during the course of the year, so that the watch needs only to be reset when the batteries have been changed.

An integral voltage doubling or tripling circuit derives either 3V or 4.5V display drive voltage from a single battery at 1.5V, without the need for coils or transformers. This allows the manufacturer a wider choice of liquid crystal displays which, additionally, will present a greater contrast and viewing angle when driven from a 4.5V source.

The S1424A is available in a variety of packages, including a 40-pin DIP (S1427A) for evaluation purposes or clock applications. AMI Microsystems Ltd, 108A Commercial Road, Swindon, Wilts.

METRIC TOOL SETS

Set A – Six instrument screwdrivers from 0.5mm to 3.8mm blade width. The tempered steel blades are mounted in chromium plated brass handles with a freely rotating top. Price £1.32 plus VAT.

Set B – A combination set of nineteen pieces comprising five open ended, five socket spanners, allen screw, cross-head, and plain screw-drivers all of which fit into a collect driving handle. Price £3.28 plus VAT.

All the tool sets are supplied in a rigid plastic case with clear lid. Light soldering Developments Ltd., 97-99 Gloucester Rd, Croydon, Surrey.

Videomaster urge all good electronics enthusiasts to play the game

The best thing about the Videomaster Home T.V. Game Mk. III is that the sheer pleasure of building it is immediately followed by the excitement of playing three fascinating games.

The famous Videomaster is now available for you to make. It plugs into any standard UHF 625 line TV set, and it shouldn't take you longer than a few hours to build. In detail ... The Videomaster Mk. III has eleven integrated circuits ... four transistors ... eleven diodes ... is easy to build ... with no alignment necessary because with ready-built and tested transistorized UHF modulator, is complete with all parts ... including fully drilled and prepared p.c.b. ... handsome plastic box ... control leads ... complete step by step assembly instructions ... Runs on a PP7 9 volt battery ... and has logic and analogue "state of the art" circuitry all with National Semiconductors CMOS devices ... with full specification.

The cost? Only £19.95 (+ VAT)

POST TODAY TO:

Videomaster Ltd

119/120 Chancery Lane, London WC2A 1QU

I enclose my cheque/money order for £ Tick if VHF Modulator required $\Box - \pounds$ 1 extra

NAME

ADDRESS.

ALLOW 14 DAYS FOR DELIVERY

ELECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

ġ

ETI/5

THE FIRST PART OF A NEW SERIES BY T. BAILEY

THE AVAILABILITY OF THE CD4000 series of chips brings CMOS to the forefront of logic technology to rival TTL in many applications. CMOS is far less critical as regards power supplies and possesses high noise immunity as well as capabilities which are not offered by other logic families. In this article we shall give various circuits which illustrate the use of CMOS. We suggest that these circuits can be 'breadboarded' on ETI Utilboard (Nov 75 issue) using DIL sockets, there is nothing like trying it to see. Some of the circuitry, of course, is capable of realisation in a number of different logic families, so that, in these cases, we will merely be introducing equivalents of familiar devices. However, some of the applications we give show the refolutionary possibilities of CMOS.

HANDLING AND USE

Firstly we shall deal with the disadvantages of CMOS and get these behind us before we look more closely at some of the virtues. The first point is that these devices are very susceptible to surges of over-voltage from static electricity and unearthed test equipment. When you come to buy any of the ICs we will discuss you should find them with their leads buried in foam. This foam is conductive and protects the device so do not remove it until the IC is to be put in circuit. If you run out of foam for storing devices then stick them into a piece of soft balsa wood. Whatever else you do, you must not keep them in plastic containers or use ordinary plastic foam which may develop a great deal of static. It is in fact a good rule to keep the devices away from all plastics as much as possible including any nylon clothing. It is sensible to use IC sockets for the more expensive devices and also for any chip you may wish to re-use, but if you do solder them solder the VDD pin first, then Vss and then all the others. The reason for this is that the common ranges of CMOS have internal protection devices which operate fully only when the supply lines are connected. While we are on the subject of soldering, check that your iron and any other instruments you may use (meters, oscilloscopes, etc.) are all properly earthed.

The only other real disadvantages of CMOS compared with TTL are that it is slower (typical gate rise time 25nS) and that a few operating precautions are necessary. Firstly, all unused inputs must go somewhere. The alternatives are tying unused inputs to used inputs, either supply line as appropriate, or to a supply line via a resistor (220k Ω is usually about right). The last solution is particularly helpful for inputs to which off-board connections are to be made. This avoids leaving the input "floating" until it is wired in. The other point is to ensure that the chips do not have signals at their inputs when the power supply is not on.

Now we shall consider a few of the advantages of CMOS. Most of these will come out more clearly later and so we shall just mention them briefly here. The principal virtue is the ease of choice of power supply which may be anywhere between three and fifteen volts at low current. The actual power required depends on operating frequency (see fig. 1) being comparable with TTL at ten megahertz but in the region of a few microwatts at sub-kilohertz speeds. Voltage regulation is not required but operating speed and current consumption rise with increasing supply voltage. For most practical purposes CMOS will run off a nine volt battery or the simplest of mains power supplies. Other advantages include high noise immunity and analogue possibilities. Before we proceed with some circuitry a table of operating conditions (table 1) has been given and these should be adhered to rigidly.

Fig. 1. Power dissipation in CMOS as a function of frequency for a) a simple gate and b) an MSJ package.

RECOMMENDED SUPPLY VOLTAGE (V _{DD} -V _{SS}) +3V to +15V							
Unused inputs should be tied to a supply line.	No input should be present						

ELECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

SIMPLE GATES

It is an unpleasant fact that it seems one must always start considering any subject at its least interesting parts and it is hardly surprising that the least interesting logic ICs are the simple gates.

We shall assume that the reader is familiar with the truth tables and terminology of the subject and consequently our discussion will mainly be on the subject of monostable and astable multivibrators. For ease of future reference a list of basic CMOS gates and their pin-outs is given in fig. 2. It is worth remembering that inverters may be realised by trying together all the inputs of a NAND or NOR gate, thus allowing a circuit requiring two NOR gates and two inverters to be constructed for a single type 4001A package.

shown in fig. 3. This could of course be built using any of the packages in fig. 2 with the exceptions of the 4030A and 4050A, indeed, the 4049A could produce three of these circuits simultaneously. The period is approximately 1.4RC (R in ohms, C in farads) and the waveform may have a non-unity markspace ratio due to the voltage at which the inverters switch (called the transfer voltage-V_{tr}) not being exactly half way between VDD and V_{ss} The frequency is also dependent on the supply voltage. In keeping with normal practice, connections of the device to the supply voltage have not been

some of the aberrations of the simple version. The addition in fig. 4 of R_A, which should be at least twice as large as R, makes the frequency almost independent of the supply voltage over a wide range. The frequency of any of the circuits may be made variable by making R a variable resistor.

Duty cycle adjustment may be achieved using the circuit in fig. 5. Altering the duty cycle will affect the frequency and the diode may have to be reversed to achieve the desired result.

11

GATING

A gated multivibrator is shown in fig. 6 where the oscillator only runs when the gate input is low, thus producing "bursts" of output in synchronism with the control signal. Using a NAND gate instead of the NOR would cause the circuit to run when the gate was high instead of low.

One of the huge advantages of CMOS is the exceedingly high input impedence. As a consequence of this the timing resistors can be very large and values in the hundred megohm region with capacitors of several microfarads can be a practical proposition.

Before we leave the astable multivibrator for a time we shall give one more circuit which corrects a tendency of all the preceding ones to "jitter" near the switching point. This requires an extra inverter and a fourth has been added as an output buffer. There are also two inhibit inputs which stop the circuit with the output high or low, depending on which is used. The theoretical diagram is shown in fig. 7. Another feature of this circuit, and indeed virtually all the others, is that the timing resistor may be substituted by one of the networks in fig. 8 to give a variable mark-space ratio. They work because the diodes effectively change the value of the timing resistor depending on whether the capacitor is charging or discharging and it is reported that values as large as 5000 : 1 may be achieved.

MONOSTABLE MULTIVIBRATORS

The basic CMOS monostable is shown in fig. 9. It is triggered by the input pulse's leading edge and produces a positive going output pulse. The period may vary by more than \pm 50% with different devices due to the dependence of the circuit on the transfer voltage of the inverter.

Once again we shall improve on the basic circuit and also give several alternative versions. The circuit in fig. 10 operates in an interesting way. The quiescent state is with the first and second inverter outputs at "0" and "1" respectively. The falling edge of the triggering pulse makes the first inverter go high, C2 charges through the diode up to V_{00} and the second inverter goes low thus initiating the output pulse. C1 recharges through R1 and crosses the transfer voltage of the first inverter which consequently goes

low and is isolated from C2 by the now reverse biased diode. C2 then discharges through R2 and causes the second inverter to revert to its initial state thus completing the output pulse. The advantage of all this is that inverters fabricated on the same chip have similar transfer voltages and if the two time constants (R1C1 and R2C2) are made identical, errors cancel out and the period becomes well defined. It is in fact approximately equal to 1.4R1C1 (=1.4R2C2) and this circuit is capable of being retriggered during the output pulse.

Our last two monostables (figs. 11 & 12) are non-retriggerable and the two time constants should be made the same, as in the previous circuit. Fig. 12 is particularly interesting because the circuit isolates the trigger input during the output pulse as the charge on C2 holds one input to the NOR gate high, thus keeping the output low independently of the state of the trigger unput.

FREQUENCY DOUBLER

The frequency doubler shown in fig. 13 works by differentiating the leading and trailing edges of the waveform and applying the resulting pulses to the two inputs of a NAND gate. This produces a complete output pulse at both the rise and fall of the input signal. The values of the discrete components will depend on the desired frequency of operation.

THE 4007

The next device we are going to consider has no equivalent in other logic systems. It is described as a "dual complementary pair plus inverter" and its type number is 4007. It can perform several different functions and while we are discussing it we shall present a number of useful circuits and have the added advantage of learning a little about the internal operation of CMOS.

In CMOS there are two different types of field effect transistors, namely n-channel and p-channel enhancement mode devices (see fig. 14). What all this means is that when biased in the conventional manner (drain positive in n-channel devices but negative in p-channel devices), the n-type turns on when the gate becomes sufficiently positive with respect to the source and the p-type when it is sufficiently negative. A "turned on" device may be considered to have a resistance of the order of 500-1k-

THREE I/P NOR

between source and drain whereas the equivalent resistance when "off" is about $10^9\Omega$. The resistance at the gate is always very high $(>10^{12}\Omega)$ regardless of the state of the device.

The working of the CMOS inverter (fig. 15) should now be fairly clear. When the input is

(A)

IN

Fig.16. dual c

6. The internal circuitry of complementary pair plus

the 4007 inverter.

THREE I/P NAND

60

"high" the bottom FET is turned on and the top one off. Thus the output voltage is held very low. When the input is low the FETs reverse roles and the output is high. Now look at fig. 16 which shows the internal circuitry of the 4007. You should be able to see how joining a few pins together will allow three separate inverters to be produced. Reference to fig. 17 will reveal how several other gates may be produced and their mode of operation should be relatively easy to discern.

TRANSMISSION GATES

There is another way of connecting two FETS which produces a result unique to CMOS. This is the transmission gate (fig. 18). Here, due to the inverter, both FETS are either on or off simultaneously. When they are on, the path between input and output (they are interchangeable) may be regarded as a resistor of about $500-1k\Omega$ whereas when they are off the equivalent value is about $1000M\Omega$.

Thus the device behaves as a switch capable of passing analogue signals with very little distortion provided that the load resistance is fairly high ($\approx 100 k\Omega$). We shall have more to say about these "bilateral switches" later but while we are dealing with the 4007 fig. 19 shows how to connect one as a single pole-double throw switch which will pass analogue signals in both directions.

Any of the three or less inverter circuits we have mentioned to date may be realised with a 4007, as may several more interesting designs. Fig. 22 shows a linear frequency to voltage converter which works by charging a capacitor up once for every input cycle, the charge to do so being passed by a MOSFET into a summing amplifier. The component values given are based on an approximate five volt output for the given frequency. The resistor R1 should be made a 100k Ω preset if it is required to set a range exactly. The capacitor C2 "smooths" the output and need not be changed from 10µF if fastresponse on the upper ranges is not needed. The linearity achieved on the top range will depend on the particular "741" used and if particular reliable operation is required a higher speed op-amp should be used.

Fig. 21 shows an alternative monostable multivibrator. We have already given a number of multivibrator circuits and so we shall say nothing more about this one except

that it has an extremely small power consumption. This is due to the feedback connection (pins 12-6) which turns off the n-channel MOSFET during the discharge of the time constant. This circuit is also an interesting demonstration of the use of components in the 4007 as discrete transistors.

A WIDE RANGE VCO

The voltage controlled oscillator depicted in fig. 24 uses two inverters as well as a separate transistor as a voltage controlled resistor. The inverters function as an astable multivibrator in the manner of Fig. 4 but the timing resistance is the parallel combination of R_T and

the FET. As V $_{\rm c}$ varies between V $_{\rm PD}$ and V $_{\rm SS}$ so the resistance of the FET varies" between about 1k and 1000M Ω . If the upper value is limited to $10M\Omega$ by making R_T that value, then the circuit will sweep over a 10000 : 1 range in frequency. There would seem to be scope here for experimenting with a pulse frequency modulation communications system. One might produce an analogue system although distortion would probably be high due to mismatching. The transmitter could be the circuit in fig. 22 and the receiver a phase locked loop along similar lines (fig. 23) using some sort of phase comparator and a low-pass R-C filter.

EXCLUSIVE-OR GATES

Exclusive-or gates, for example the 4030 (see fig. 2) will function as phase comparators but they require a unity mark-space ratio to be effective. Perhaps a voltage controlled oscillator might be designed with a narrower range along the lines of fig. 24 for both transmitter and receiver, together with a phase comparator and low pass filter as shown in fig. 24. While we are on the subject of the exclusive-or function we shall consider two more uses of these devices. Fig. 25 shows the exclusive-or truth table and its use as a conditional inverter. This configuration causes the input signal to be inverted when the control input is high but not when it is low.

Liquid crystal displays are undoubtedly the readout devices of the future but they last longer in general if an a.c. drive is used. If then a square wave is applied to one end of a liquid crystal segment and also to the other connection via a conditional inverter (see fig. 26) then the control input will decide whether or not there is a net voltage across the segment.

CMOS and liquid crystal make an ideal combination for ultra-low power logic and display systems and so manufacturers have produced BCD to seven segment decoders and drivers specifically for this application. Their type numbers are 4054/5/6, the variations being due to the addition of latches and other refinements. These devices have too limited an appeal to justify a full description here and it is suggested that if it is intended to experiment with this technology, data sheets should be obtained from a manufacturer* or large distributor.

e.g. RCA, Sunbury-on-Thames, Middlesex, for the 'CD4054/ 5/6A'' range. *Continued next month*....

			-		ETI	P	C	:	B':	S				
TITLE	PROJECT	ISSUE	BOARO NO.	TOTAL	TITLE	PROJECT ND.	ISSUE	BOARD NO.	TOTAL	TITLE	PROJECT NO.	ISSUE	BOARO NO.	TOTAL
IIILE Int. Steres Amp. 25 watts/char. Dual Power Supply Wide Raags Vatureter LC. Power Supply Thermocopie Meter Dast Bean Maptor Impedance Meter Dast Bean Maptor Impedance Meter Dast Bean Maptor Brake Light Warning Automatic Car Thef Narai International Battery Charger Tacho Taking Light Brake Light Warning Automatic Car Thef Narai International Battery Charger Tacho Taking Light Bectronic kgnitton CDI/Tacho Car Aran Arto Amp ET Four Input Nixer Super Steres 100W Guitar Amp Master Mixer The Over LEAN	Int. 25 105 107 111 113 114 116 117 118 213 305 309 311 312 313 314 410 413 414 414 414	15504 0ct. 1975 Aar. 1972 Top Project No. 1 Jan. 1973 Dec 1973 Oct. 1974 June 1975 Oct. 1975 New. 1975 New. 1975 May 1975 Mar. 1975 Mar. 1975 Mar. 1975 Mar. 1975 No. 1 July 1975 Nov. 1973 No. 1 July 1975 Nov. 1973 Nov. 1975 Nov. 1975 Nov. 1973 Nov. 1975 Nov. 1975 Nov. 1975 Nov. 1975 Nov. 1975 Nov. 1975 Nov. 1975 Nov. 1975 Nov. 1975 Nov. 1973 Nov. 1975 Nov. 1975 Nov. 1973 Nov. 1975 Nov. 1975 Nov. 1975 Nov. 1973 Nov. 1975 Nov. 1975 Nov. 1975 Nov. 1975 Nov. 1975 Nov. 1975 Nov.	BuAAD NO. Int. 25 014 022 111 133 117 118 209 311 314 1178 318 314 007 019 309 311 312 313 4140 4140 4140 4140 4140 4140	E4.21 E4.21 E1.48 E1.09 E1.43 E1.57 E1.00 1.01 88p 68p 98p 80p 51.72 67p 51.51 E1.73 E1.51 E1.52 E1.73 E1.52 E1.78 68p 91p	HILE Discrete SQ Decoder Int. 422 Stereo Amp SQ vizitz (Zhan. Plus Two Add on Decoder Amp Spring Reverberztien Unit Stereo Runble Filter Cather Organ Simple Stereo Acap Lime Amp Fluterscent lamp dimmer Photyraphic Timer Tapo Side Synchroniser Digital Stop Watch Low Cost Laser Push Botton Dimmer Digital Display Music Synthesiser	HUE HUE 420e 422 423 424 426 427 428 428 429 430 512 513 520 524 427 529 530 532 533 601	1530E June, 1974 Aug, 1974 Nev. 1974 Dec. 1974 Jan. 1975 Jan. 1975 Jay 1975 Nev. 1972 Aug, 1972 Top Project Jan. 1974 Mar. 1974 Mar. 1974 Mar. 1974 Mar. 1975 Sept. 1975 Scit. 1975 Aug, 1974	buxburg N0. N0. 420E 422 423 424 425 427 428 429 430 011 023 5204 5205 5204 5225 5233 5338 5338 5338 5338 5338 5018 6018 Trass 6012 V.CA. 6012	£1.69 £2.97 91# £1.62 76p 76p 76p 76p 76p 22.05 50p 51.30 95p £2.32 £2.32 £2.32 £2.34 £2.54 £2.54 £2.54 £2.54 £2.54 £2.54 £2.54	Nusic Synthesiser Music Synthesiser Inter Synthesiser Inter Con. Inter Con.	702 751 Tim- tronic	Sept. 1975 Aug. 1974 Sept. 1975 June 1975 Top Project No. 2 Apr. 1975 Sept 1975 June 1975	NO. NO. NO. EDIT SOLT SOLT SOLT SOLT SOLT SOLT SOLT SOL	E1.22 E1.74 E2.36 E2.54 E1.05 97p E3.04 E1.54 E1.13 E2.75 E8p E8p E8p S8p E1.24 E1.24 E1.88 68p
Transistors BC12 AC126 15p BC12 AC126 15p BC12 AC127 16p BC13 AC127 16p BC13 AC128 25p BC23 AC121 16p BC13 AC124 118p BC21	CI CI EC S S S S S S S S S S	RO Dept. TRC BFX BFX BFX	4208 4200 4200 7 7 8 7 7 8 9 7 7 8 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 7 9 7 7 7 9 7 7 7 7 9 7 7 7 9 7 7 9 7 7 7 7 7 9 7 7 7 9 7 7 7 7 7 9 7	E171 E121 E121 E121 E121 E121 E121 E121	NEL olne Road, olne Road, LONDON) L	É Twic TD	DIG DL707 DL707 THY 50 200 600	Ram,	E3.72 ON Midd DISP 99p TORS	Allow 7/18 days for delivery politiched designs at 6p a components also available dx. 01-898 CLAYS & LED's DL747 1-75 DL750 1-75 *8.4 .1A (T092) (T05) (C10 25 25 27 35 30 40 65	3A 66 type) 35 67 70	L Boards also VAT and Pål VAT and Pål D. O Control Contro Control Control Control Contro Control	D ONI ED ONI EAR BA (TO2: 42 45 60 80 80 81-19	(10 - 01)er slocks of slocks of 20) (102 20) (102 47 54 68 98 1-26
AC141K 28p BC21 AC142 18p BC21 AC142 18p BC21 AC142 18p BC21 AC176K 18p BC21 AC177 18p BC21 AC178K 25p BC21 AC178K 25p BC22 AC187 18p BC33 AC187K 25p BC23 AC184K 25p BC33 AD142 50p BC33 AD143 46p BC33 AD144 5p BC33 AD143 45p BC34 AD143 5p BC33 AD143 5p BC33 AD143 5p BC41	11 12 <th12< th=""> 12 12 12<!--</td--><td>BFY: BFY: BFY: BFY: BFY: BFY: BFY: BFY:</td><td>88 22 50 21 11 52 11 11 52 11 12 52 11 12 52 13 14 52 13 14 52 13 14 52 13 14 52 13 14 52 14 52 14 53 14 55 14 55</td><td></td><td>S3-20 Sep 2.11304 S3-20 Sep 2.11304 S3-40 Sep 2.11304 S3-40 Sep 2.11304 S3-50 S59-0 2.11711 S3-60 S59-0 2.11711 S3-60 S59-0 2.11711 S3-60 S59-0 2.11711 S3-60 S59-0 2.11265 S3-10 S90 Sp 2.12264 S130 S90 Sp 2.12265 S500 S.129226 S1 Sp 2.12325 S1 Sp 2.12326 2.13304 12.12 2.13304 S1 Sp 2.12326 2.13304 14.12 2.13304 S1 Sp 2.13304 14.12 2.13304 10.04 2.13702 S1 Sp 2.13304 10.05 2.13304 10.06 2.13304 S1 Sp 2.13304 11.05 2.13304 11.16 Sp 2.13304 11.16</td><td>20p 20p 20p 20p 20p 20p 20p 20p</td><td>TRI 100 V 200 V 600 V 800 V 600 V 800 V 101 V 102 V 102</td><td>ACS Triacs tal trig 14 trig 15p 16p 16p 16p 16p 16p 16p 16p 16</td><td>(PLA (a) 0.6 0.7 0.9 without ger diac ype regu 12p 12p 12p 12p 12p 12p 12p 12p 12p 12p</td><td>STIC TO-220 P 4A 6:5A (b) (a) (b) 0 0:60 0:70 0:73 7 0:73 0:80 0:83 6 0:99 0:87 1:01 internal trigger dlac ar are priced under columi red. prices 00+ 1-24 25 10p 7445 85p 7 10p 7445 85p 7 10p 7447 81p 7 10p 7447 30p 2 11p 7473 30p 2 11p 7476 32p 2 11p 7476 32p 2 11p 7485 £1:30 £1 11p 7485 £1:30 £1 11p 7485 £1:30 £1 11p 7485 £1:30 £1 15p 7485 £</td><td>KGE, 8-5. (a) -73 1-21 -99 100 1-21 -99 100 1-21 -99 100 1-21 -99 100 1-21 -99 100 1-21 -99 100 1-21 -99 100 1-21 -99 100 1-21 -99 100 1-25 -99 100 -99 100 -99 100 -99 100 -99 100 -99 100 -99 100 -99 100 -99 100 -99 100 -99 100 -99 100 -99 100 -99 100 -99 100 -99 20 -99 -20 -55 -99 -20 -55 -99 -20 -55 -4 -55 -4 -55 -4 -55 -55 -</td><td>ISOLA A (b) (a) 6.78 0.8 1.01 1.1 1.26 1.4 1.01 1.1 1.26 1.4 1.01 1.1 1.26 1.4 1.00 7492 5.07 749 5.07 749 5.07 7492 5.07 7492 5.07 749 5.07 7492 5.07 749 5.07 749 5.</td><td>TED 10A (b) 10A (b) 10A (b) 10A (c) 11A (c)</td><td>TAB) 15A (a) 1-91 1-17 1-17 1-17 1-17 1-17 1-17 2-11 2-21 2-</td></th12<>	BFY: BFY: BFY: BFY: BFY: BFY: BFY: BFY:	88 22 50 21 11 52 11 11 52 11 12 52 11 12 52 13 14 52 13 14 52 13 14 52 13 14 52 13 14 52 14 52 14 53 14 55		S3-20 Sep 2.11304 S3-20 Sep 2.11304 S3-40 Sep 2.11304 S3-40 Sep 2.11304 S3-50 S59-0 2.11711 S3-60 S59-0 2.11711 S3-60 S59-0 2.11711 S3-60 S59-0 2.11711 S3-60 S59-0 2.11265 S3-10 S90 Sp 2.12264 S130 S90 Sp 2.12265 S500 S.129226 S1 Sp 2.12325 S1 Sp 2.12326 2.13304 12.12 2.13304 S1 Sp 2.12326 2.13304 14.12 2.13304 S1 Sp 2.13304 14.12 2.13304 10.04 2.13702 S1 Sp 2.13304 10.05 2.13304 10.06 2.13304 S1 Sp 2.13304 11.05 2.13304 11.16 Sp 2.13304 11.16	20p 20p 20p 20p 20p 20p 20p 20p	TRI 100 V 200 V 600 V 800 V 600 V 800 V 101 V 102	ACS Triacs tal trig 14 trig 15p 16p 16p 16p 16p 16p 16p 16p 16	(PLA (a) 0.6 0.7 0.9 without ger diac ype regu 12p 12p 12p 12p 12p 12p 12p 12p 12p 12p	STIC TO-220 P 4A 6:5A (b) (a) (b) 0 0:60 0:70 0:73 7 0:73 0:80 0:83 6 0:99 0:87 1:01 internal trigger dlac ar are priced under columi red. prices 00+ 1-24 25 10p 7445 85p 7 10p 7445 85p 7 10p 7447 81p 7 10p 7447 30p 2 11p 7473 30p 2 11p 7476 32p 2 11p 7476 32p 2 11p 7485 £1:30 £1 11p 7485 £1:30 £1 11p 7485 £1:30 £1 11p 7485 £1:30 £1 15p 7485 £	KGE, 8-5. (a) -73 1-21 -99 100 1-21 -99 100 1-21 -99 100 1-21 -99 100 1-21 -99 100 1-21 -99 100 1-21 -99 100 1-21 -99 100 1-21 -99 100 1-25 -99 100 -99 100 -99 100 -99 100 -99 100 -99 100 -99 100 -99 100 -99 100 -99 100 -99 100 -99 100 -99 100 -99 100 -99 100 -99 20 -99 -20 -55 -99 -20 -55 -99 -20 -55 -4 -55 -4 -55 -4 -55 -55 -	ISOLA A (b) (a) 6.78 0.8 1.01 1.1 1.26 1.4 1.01 1.1 1.26 1.4 1.01 1.1 1.26 1.4 1.00 7492 5.07 749 5.07 749 5.07 7492 5.07 7492 5.07 749 5.07 7492 5.07 749 5.07 749 5.	TED 10A (b) 10A (b) 10A (b) 10A (c) 11A (c)	TAB) 15A (a) 1-91 1-17 1-17 1-17 1-17 1-17 1-17 2-11 2-21 2-

ELECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

The only

6 Function L.E.D. Watch Kit in the world . for only £18.95*

SABCHRON DIGITAL

Probably the only six-function LED watch kit available today, the Sabchron Digital offers more features than many other LED WATCHES. At the touch of a single button you see the exact hour, minute, second, month and day-of-month ... PLUS an automatic date change memory which remembers whether the month contains 28, 30 or 31 days. Also, an AM / PM indicator which lights up while setting hours.

HOURS/MINUTES

MINUTES/SECONDS

AM / PM INDICATOR

123F

SABCHRON

NEW CMOS IC CHIP

Containing the equivalent of over 1,500 transistors, this new IC chip features STATIC-PROTECTED TERMINALS -- this means the IC can be handled safely with bare hands. It contains all the logic, decoding, multiplexing, display drive and counting circuits on a single silicon slice 1/50 square inch.

DATE

QUARTZ CRYSTAL ACCURACY

The heart of the Sabchron Digital is a quartz crystal which provides a basic frequency of 32,768 Hz. This frequency is tuned to ± 2 parts per million via the trimmer capacitor and time to ± 2 and ± 3 by a spectrum of the terms to provide one incredibly accurate pulse every second. This means a timekeeping accuracy to ± 5 seconds per month. Careful timeteeping actuaty to \pm 5 seconds per horitin. Called adjustment of the trimmer can bring this accuracy to within \pm 1 second per month or \pm 12 seconds per year!

*** ORDERING INFORMATION**

All prices shown in British £'s are approximate equivalents of the following U.S. Dollar prices. Complete watch kit (less-case and bracelet) \$38.00; Gold-plated case only \$12.00. Total \$50.00 postpaid via registered airmail to customers in U.K., Eire and Canada. Other countries please add \$3.00 additional for postage/packing. REMITTANCE BY BANK DRAFT or INTERNATIONAL MONEY ORDER IN U.S. DOLLARS (available from all banks and national Giro offices).

Tel. (214) 369-7309 Business hours: GMT 15.00 to GMT 24.00 Hrs.

If you require any additional information please send S.A.E. and 2 International Reply Coupons

AUTOMATIC LED BRIGHTNESS

The Sabchron Digital features a special light sensor circuit which automatically adjusts LED display brightness according to varying light levels, thus conserving battery power. In a bright room the display brightens; in a dim room or darkness the display dims — a feature not found in many other LED watches.

COMPLETE KIT

Contains all the components needed to build this space-age watch module, including solder, batteries and easy to follow assembly manual. If you can use a fine-point soldering iron and follow step-by-step assembly instructions, you can build the Sabchron Digital. If you have any problems, remember we're only or for an every nearest mailbox or telephone. as far as your nearest mailbox or telephone.

PLUS THESE OTHER FEATURES

- * Long-life silver-oxide power cells last up to one full year with normal use
- Shock-protected, anti-magnetic,
- Low component count IC, LED package, Quartz crystal trimmer, photocell and two chip capacitors. Universal module size fits many LED watch cases
- (optional gold plated case available). Easy time and date resetting you can change the time or date without affecting the accuracy of other functions. A very useful feature when crossing time or date lines

OPTIONAL GOLD-PLATED CASE

The above price does include a case or band does not band. A gold-plated case as pictured (without bracelet) is available for £5.95. Note: The case is gold-plated; not "gold-tone", "gold-colour" or plastic. Eleor plastic. Elegantly styled and only slightly larger than a conventional watch, it is shown here actual size. Wear a time computer that looks like a watch, not vice versa.. Cut out this case outline and try the size on your wrist.

COMPARE THE FEATURES OF THE SABCHRON DIGITAL TO OTHER LED WATCHES - THEN ASK YOURSELF WHAT OTHER LED WATCH OFFERS SO MUCH AT SUCH A REASONABLE PRICE. MAIL THE COUPON TODAY.

Sabtronics International, P.O. Box 64683. Dallas. Texas, 75206, U.S.A. Tel. (214) 369-7309.
Please send via Airmail
6-function LED watch kits. Enclosed is a [] Bank draft [] International
Money Order for U.S. \$
NAME
ADDRESS

SIMPLE **CMOS TESTER**

An inexpensive unit for the hobbyist.

NOW THAT the use of CMOS logic is becoming widespread there is an obvious need for a simple CMOS tester suitable for the hobbyist. In last month's issue we described a sophisticated tester for both CMOS and TTL. That particular instrument is very versatile but may be too expensive for many budding experimenters and we have therefore designed this simpler instrument to cater for their needs.

A simple CMOS tester, although being inexpensive, must be capable of performing the majority of tests required for CMOS logic without causing any damage to the ICs under test or being damaged itself. It must also use only those components which are readily available to the average home constructor. The ETI 123 Tester fulfills all these requirements.

The tester circuitry draws very little current except for that drawn by the LEDs. Even the LEDs only draw current whilst a device is actually under test. For this reason we thought that the expense of a mains power supply was unwarranted and chose to use batteries instead. For those who would rather operate the unit from a mains derived supply, one capable of supplying anywhere between 5 and 12 volts at up to 40 milliamps will be suitable. Another major expense, that of providing a large number of programming switches to set up the test conditions, has been alleviated by using flying leads fitted with alligator clips to connect to the IC under test.

Several steps have been taken to prevent damage to the IC by the tester and conversely, damage to the tester by the IC. Firstly each pin of the test

socket is fitted with a static discharge resistor to earth. A current limiting resistor, R 37, is in series with the supply so that the tester is protected against damage due to possible excessive current into an internal short in the test IC. This limiting resistor also ensures that current through the input-protection diodes on the IC does not exceed the specified limit of 10 mA.

Only readily available components are used in the tester and, in fact the ICs used are available from at least four different manufacturers.

To test simple gate functions, eg NAND gates, NOR gates, we need at least four switches and a logic level detector but for the more complex functions, eg multipliers, we need at least six switches and six level detectors. A clock - pulse generator is required for the testing of flip flop and other clocked devices. This pulse generator must be free of the contact bounce that is typically encountered with mechanical switches. For this reason we used a pair of CMOS NAND gates wired as an astable multivibrator to generate a continuous train of pulses. This may be used to increment counters and to shift data in shift registers. As it is a CMOS circuit it is perfectly suited to driving other CMOS devices.

CONSTRUCTION

We recommend that the printed-circuit boards as specified be used as construction is thereby greatly simplified. The printed-circuit boards should be assembled as detailed in the component overlay diagrams. Switches SW1 to SW7 should be mounted by first glueing two strips of printed-circuit board to the front panel (copper side out). The switches may then be soldered to the copper side of the board. This procedure avoids the necessity of having 14 screw heads visible on the front panel.

The test socket is mounted on the non-copper side of board 123b. This board also carries links Lk1 to Lk16 which connect directly to the pins of the test socket. These links are also mounted on the non-copper side of the board and should be of reasonably heavy gauge tinned-copper wire, and should be installed such that sufficient room is under the link to enable test leads to be attached to them by means of aligator clips or Easy-Hooks Resistors R1 to R16 are mounted on the copper side of this board so that they are not visible when the board is bolted to the front panel. The top two screws, nearest to the LEDs, should be 18 to 25 mm long so that board 123a may also be mounted on them later.

On board 123a, mount and solder in position on the component side of the

SIMPLE CMOS TESTER

HOW IT WORKS – ETI 123

The ETI 123 CMOS tester can be described in three separate sections, Firstly there is the test socket for the device under test. The test socket is mounted on a printed circuit board which also holds a 10 megohm static-discharge resistor to protect each pin of the IC. Each IC pin is also connected to a surface mounted link by which connections can be made to the IC.

The next major section of the tester contains detectors which monitor the voltage at each pin of the IC. Each detector consists of a CMOS inverter which drives an LED indicator. When the voltage at the input of the inverter is greater than half- the supply voltage the LED will be alight. Conversely the LED will be off when the voltage at the input to the inverter is below half supply voltage. Resistors R19 to R30 protect IC2 against static charges and from the condition where a detector has no input. Resistors R31 to R36 set the operating currents for the LEDS.

The final section contains switches SW2 to SW7 and a clock oscillator. The output of the switches can be either 0 volts or +9 volts that is, a logic '0' or a logic '1'. These outputs are made available at test leads which may be connected to the IC under test as required. To protect the tester against internal shorts on the IC and incorrect under test. connections, R37 has been inserted in series with the supply rail to limit the current that may be drawn to a level which cannot cause any damage.

IC 1/2 and IC 2/3 are wired as an astable multivibrator where the frequency of oscillation is determined by the time constant of C1 and R17, whilst R18 is used to protect the input of IC 1/3 from any voltage excursions past the supply rails. IC 1/1 is used as an inverting buffer and the output of the circuit is made available at the front panel by means of a lead and alligator clip.

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0.151 312	100	12126	10.00
P/	ARISLIS	$\epsilon = \epsilon \tau$	1123	
R37	Resistor	1k	1/4 Wat	5%
R31-36	**	1.2k	**	
R25-30	11	10k		
R17		1.5M		11
R1-16		10M		**
R19-24	91	10M		
R18	FE .	12M		37
C3 Capac C1 "	itor 0.1µ 0.33	polye 2F	șter	
C2	1046	16 ele	ctrolyti	C
ICI Integi	ated Circ	uit 401	I (CMC	is)
102	1-4-4 m - 4	400	E (CMO	5)
LED 1-6 I	Ight Emi	tting D	ode	
RL 44	84 or sim	itar		
2 posit	tion.	stider sv	witch 2	pole
IC Socke	et 16 pin l	DIL (pr	eferably	1
with 10	C removin	g slide)		
Case 16) x 90 x 5	0 mm p	plastic b	ox
with a	luminium	front p	anel UE	31
Alligator	clips (15)			
Battery 9	/ (6 penli	aht cell	s).	
	10.7			

Fig. 2. Component overlay for the test-socket board ETI-123b, non-copper side.

Fig. 3. Component overlay for the copper side of board ETI-123b.

Fig. 5. Switch interconnection diagram. Note that C3 is mounted across one of the switches.

ELECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

text continued from p 20

board, all components with the exception of the LEDs and capacitor C1. As C1 needs to be a polyester type it may be physically too big to be mounted on the component side without fouling the front panel and should therefore be mounted on the copper side. The LEDs should be inserted in their positions but not yet soldered. Temporarily mount the board in position such that the LEDs protrude through their correct holes in the front panel. Keeping the front panel face down, solder the LEDs into the board. Remove the board and solder 150 mm lengths of hookup wire to the points marked A to F on the overlay and pass these leads through the corresponding holes in the front panel. Do the same for the leads G, H. J. K L M P and Q from switches SW2 to SW7 using a different coloured wire to that used previously. These wires should also be passed through the appropriate holes in the front panel.

Finally solder alligator clips or Easy Hooks to the ends of all these leads and connect supply and earth leads to the 123b board. Check both boards for wiring errors or errors in component insertion before bolting board 123a in position. The battery may then be connected and the unit is ready for use.

Note that if the type UB1 box is used as in our protype the top corners of the 123a board may have to have the corners trimmed off at 45 degrees so that the board will fit in the box

Fig. 6. Printed-circuit board layout - ETI 123a. Full size 88 x 63 mm. Fig. 7. Printed-circuit board layout - ETI 123b. Full size 88 x 71 mm.

without fouling the mounting pillars for the front panel.

OPERATION

Before testing or inserting any IC make sure that the power is switched off. Set up the operating conditions for the IC to be tested either by consulting the manufacturers data or by duplicating the conditions under which the IC will be used in the circuit.

Next insert the IC to be tested into the test socket and connect the power supply leads to the links for appropriate pins of the IC. Double check these connections to make absolutely sure that these connections are correct. Reversed power connections will destroy the IC. Switch on the tester and use the input switches to systematically apply all the possible input conditions to the IC whilst noting that the output conditions of the IC are as they are supposed to be.

Internal view of the tester. Note how the top board is mounted (see text).

FROM BI-PRE-PAK stirling Sound Prod

BRAND NEW MODULES FROM THE DESIGN-BENCH OF A FOREMOST BRITISH DESIGNER AND EXCLUSIVE TO B-P-P

NAVEOR 1976 THE SS125 HIGH FIDELITY POWER AMPLIFIER

OUTPUT

25 watts R.M.S. Into 8Ω using 50V 22 watts R.M.S. Into 4Ω using 33V (Loud imp. not less than 4Ω)

DISTORTION Less than 0.05% at all power levels (from 10Hz to 10KHz)

FREQUENCY RESPONSE \pm 1dB 15 Hz to 30 KHz [452] \pm 1dB 10Hz to 30 KHz [8 Ω]

HIGH Z INPUT 100 Kohms (40d8 gain/100x)

INPUT SENSITIVITY 150mV for 25W.R.M.D. oul

SIZE linc. 40w. built on heal sink] 4¾ x 3" x ¾" high (120 x 76 x 22 mm)

With easy to follow instructions

into 4ohms

with suitable network

tone control details

TERMS OF BUSINESS:

F.M. TONER UNITS

More Stirling Sound Modules

SS.201 Tuner front end. Ganged, geared variable tuning, 88-108MHz. A.F.C. facility

SS.202 I.F. amp. A metre and/or A.F.C. can be connected (size 3" x 2")

\$5.203 Stereo decoder for use with \$5.201 and 202 or any good F.M. tuner." A LED beacon may be attached (3" x 2")

SS.110 Similar to SS.105 but more powerful giving 10W.

SS.120 20 watt module when used with 34 volts into 4

SS.140 Relivers 40 watts R.M.S. into 4 ohms using a 45V/2A supply such as our SS.345 the power and quality of this unit are superb - two in bridge

\$\$.100 Active tone control, stereo, ±15dB cut and boost

SS.101 Pre-amp for ceramic p.u., radio & tape with passive

5S.102 Stereo pre-amp with R.I.A.A. equalisation, mag., p.u., tape and radio in.

SS.300 Power Supply Stabiliser. Add this to your unstabilised supply to obtain a steady working voltage from 12 to 50V for your audio system, workbench etc. Money saving and very reliable

55.105 5 watt amplifier to run from 12V. (31/2" x 2" x 3/4") £2.25

formation will give 80 watts R.M.S. into 8ohms. Size 4" x 3" x 34"

Not only is this Stirling Sound's best audio amplifier yet; it rightfully qualifies as one of the best of its kind yet made available to constructors. Intended above all for high-fidelity, the characteristics of the SS.125 are such that it can be used in many other applications where dependability is the prime consideration. The SS.125 integrates well with other S.S units as well as those of other manufacturers. Incorporates new circuitry using a complementary long-tailed pair input and full complementary output circuits to give standards of performance

£5.00

£2.65

£3.85

£2.75

£3.00

£3.75*

£1 60

£1.60

And 5 NEW STIRLING SOUNDS POWER SUPPLY UNITS

> Robustly designed units in each of which is a stabilised take-off point to provide for tuner, pre-amp and control stages. Size - 51/4" x 3" x 21/4" high (P/P add 50p any model)

SS. 125

HIGH-FIDELITY Power Amp.

£7.25

SS 312	12V/1A	£3.75'
SS 318	18V/1A	£4.15*
SS 324	24V/1A	£4.60°
SS 334	34V/2A	£5.20°
SS 345	45V/4Å	£6.25'

(all above are at 8% V.A.T.)

A new Stirling Sound C.D.I. Unit for your car.

Even better than the original version, thousands of which are in use saving motorists appreciable time and money for petrol. Very easy to install. The Stirling Sound model incorporates switch for instant change to conventional ignition; instant adaption to pos-or neg, earth return, anti-burglar immobilising switch, pre-set control for rev. limitation. There are no exposed parts, the unit, on p.c.b. being housed in strong enclosed metal box. With

nistructions and leads. Size 7%" x 4%" x 2%" ex. switches (193 x 117 x 54mm) (P/P -- add 50p). BUILT & BUILT &

KIT £7.95 TESTED £10.50

A NEW X-HATCH GENERATOR

A INEXVIA-MATCH GENERATOR For colour and mono TV Plugs into aerial socket of set. Operates without need for transmissions, 4 push-button operation. Runs on 4 self-contained penilite type batteries. Will fit into a large pocket. Strong plastic case. BUILT 227.50° KIT 225°.

A USEFUL CATALOGUE - FREE

Send us a large S A E, with 10p stamp and we will send you the latest Bi-Pre Pack catalogue free by return. Packed with useful lines, its a real money saver.

TO STIRLING SOUND (BI-PRE-PAK LTD) 220/222 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX SSO DDF Please send

				٤,	or	M	hi	h	ī.	~	cl	~	-	
				۰.										

nc VAT.

NAME ADDRESS.

FACTORY - SHOEBURYNESS, ESSEX

•

ELECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

Order your Stirling Sound products from

Co Reg No 820919 222 224 WEST ROAD, WESTCLIFF. ON. SEA, ESSEX SSO 9DF.

TELEPHONE: SOUTHEND (0702) 46344

23

ETIB.2

The *A Complete Kit or fully built. `MISTRAL´ Digital Clock

Kit £12.50 (Incl) Built £18.00.

Pleasant green display
 24 Hour readout

- · Silent Synchronous Accuracy · Fully electronic
- Pulsating colon
 Push button setting
- Building time 1Hr

 Attractive acrylic case
- Easy to follow instructions
 Size 10.5 x 5.7 x 8 cm
- Ready drilled PCB to accept components

Exetron Time Ltd. offer this unique transformerless design at a substantial saving on retail price. The kit is complete less mains lead - all you require is a soldering iron, solder, and screw driver to assemble your own digital clock.

Mistral

EXETRON (Dept ETI) Regal House, Penhill Road, LANCING, Sussex.

Payment : CWO, Cheque, Access, Barclaycard. (Quote Number) TONE BURST testing is a technique which is rapidly gaining acceptance in a wide variety of applications. Typical applications are in testing of hydrophones, signal-to-noise in telephone channels, reverberation chamber testing and in the determination of peak distortion in loudspeakers. With loudspeakers, tone burst testing has the further advantage that the speakers may be tested with their maximum peak power level whilst keeping the average sound output level low enough to not annoy the neighbours - a considerable advantage indeed.

Some time ago our audio consultants, Louis Challis and Associates, asked us to build them a tone-burst generator and the resulting instrument has been used by them ever since with much success.

DESIGN FEATURES

A tone burst must always be an integral number of cycles. If the burst is switched on or off part way through a cycle then undesirable transients will be produced that will mask the test results. Thus the burst must start and end exactly at the zero-crossing point of the sine wave in the burst.

In the original unit, designed for Louis Challis, preset times can be independently selected for the on and off periods of the burst with the exception that the burst time is automatically modified to give an integral number of cycles. The preselected on/off ratio, however, is independant of the burst frequency. To give the required control range, six switched ranges as well as a variable control are provided for both the on and off periods. Other features of the original unit are the ability to start at any point in the cycle as well as the zero crossing point, a phase-inverting switch to select either the positive or the negative half cycle first and an OFF LEVEL control to set a base tone level which is modified when the tone burst occurs. In addition the dc level of the output can be set and a switch is provided to select burst, pure tone or off as required.

When it came to redesigning the unit as a project we decided that many of the features offered by the original design were unnecessary for the user concerned only with testing speakers. Hence the unit has been redesigned in a greatly simplified form.

Instead of using monostables to generate variable on/off times we now divide the input with a counter to obtain times that remain in the same ratio regardless of input frequency. We settled for the ability to select 2, 4, 8 and 16 cycles for the duration of either period, as this compromise

TONE BURST GENERATOR A valuable tool for testing loudspeakers.

MEASURED PERFORMANCE TONE BURST GENERATOR.

On Time Cycles.	2,4,8 or 16
Off Time Cycles	2,4,8 or 16
Frequency Response 3 Hz – 300 kHz	+0 –3 dB
Distortion 3 V input at 1 kHz	<0.02%
Input Level Maximum Nominal range	3 V RMŠ 100 mV to 1 V
 Input Impedânce	47 k
Output Noise Voltage with no input	<25 µ∨
Power Supply Current	4 mA

FLECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

TONE BURST GENERATOR

ELECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

scope if required. A second output is 5 also available from pins 4/i1 of 1C4 Switch SW3 forces the flip flop into either of its two possible states thus continuous tone or no the centre position the normal tone 2 The input signal is also coupled to A trigger output is taken from the which is the reverse of the main input is above +6 mV, and low if the the IC to act as a comparator. The IC3/3 and IC3/4 form an RS flip the flip flop has only two stable states. If the output of IC3/3 is high output from SW1 goes low. This low toggling the flip flop, disabling IC2/l and enabling IC3/2. After the number of cycles, as selected by SW2, have been counted the flip flop is again toggled. IC3/1 and IC3/2 are used to square up the pulses the output buffer, ICS, by the analogue switch IC4/1. When this the output of the buffer will be the is open IC4/2 will be closed and the output will be held at zero. Since these switches are controlled by the the flip flop to synchronize an oscilloą of the comparator will be high if the Resistors R2 and R3 provide the necessary positive feedback to cause If the enable line is high these toggle at the flop where the output must be in IC2/1 is allowed to clock and, after by SW1 have been counted, the is coupled to the flip flop by C2 generated by C2 and C3 respectively. switch is closed (control signal high) same as the input. When switch IC4/I the number of input pulses selected comparator IC1 such that the output input signal is below -6 mV. connected to both clock lines of IC2 either a high or a low state, that output to be selected as required. output of the comparator flip flop the output will be The input signal is squared HOW IT WORKS – ETI 124 Will required tone burst. burst is obtained. counters (IC2) input frequency. aliowing output.

Fig. 2. Component overlay and interconnection diagram. Note that there are six links on the board, including two under IC4, which should be installed first.

Fig. 3. Pin connections of the ICs used in the generator.

27

0 0 OUAD ANALOGUE SWITCH. ON IF CONTROL IS HIGH ON RESISTANCE 4016 TYP 2802 4066 TYP 8022 OUTPUT OUAD 2 INPUT NOR GATE 0 0 • 4016 4066 4520 BUNAR V PC COUNTER BUNAR V PC COUNTER TOGGLE ON POSITIVE FEGABLE IS HIGH AND RESET IS LOW. 0 80 0 4001 INPUTS CONTROL CONTROL 4 ç 4 c 0 14 +Ve 0 0 13 6 0 + Ve 1 + Ve +Ve 2 12 0 11 6 8 CONTROL 6 -Ve 7 Ct OCK N 3 8 < CONTROL 5 2 4 9 8 -Ve

ELECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

TONE BURST GENERATOR

Fig.5 (a) Top trace — the input tone burst of five cycles. (original design). (b) Bottom trace — the response of a low-cost speaker at 1 kHz. Note the reduced amplitude of the first half cycle and that ringing has added another cycle at the end of the burst. The room reflection can be seen on the trace after the burst. will be easy to reproduce.

One of the main problems with speaker testing is that the speaker cannot easily be isolated from its environment. For example, reflections from the walls of a room modify the response, seen by a microphone, no matter where the microphone is placed in the room. If one could eliminate reflections then the situation would be improved considerably, and hence the use of anechoic (echo free) chambers for testing speakers. But such chambers are very expensive to build and consequently not readily accessible to the amateur.

A further problem is in assessing the transient power handling capability of the speaker. Speakers will handle far greater peak transient power than is indicated by their RMS power rating. This is a very important attribute of loudspeakers in handling musical transients. Any attempt to assess this with a sinewave signal may result in the destruction of the speaker due to

Fig. 6. Printed circuit board for the Tone Burst Generator Full size. 142 x 47mm.

greatly simplifies the circuitry. We still have the switch to select tone, tone burst or off, but the OFF LEVEL control has been deleted. The latter control may quite easily be added, however, as shown in Fig. 4. The output dc level control and the starting-point phase change have also been deleted.

Since we only need half of a CMOS 4016 IC, to give the required output, the other half may be used to give an inverse output if required, that is, the reverse output is on when the other is off and vice versa. This output is not buffered or brought out to the front panel. If it is intended to load this output with less than 47 k it is recommended that a 4066 IC be used instead which will handle loads down to 10 k. For loads of lower impedance than this, a buffer such as is on the normal output should be used.

CONSTRUCTION

As with any project construction is greatly simplified if a printed circuit board is used. However the layout of the unit is not critical and any other suitable method, such as Veroboard or Matrix board may be used if desired. We strongly recommend that sockets be used for the CMOS ICs, especially if a printed circuit board is not used, as these devices are quite easily damaged when soldering. The use of IC sockets also facilitates later servicing. Also remember that, unlike TTL, all unused inputs of CMOS must be connected to either the positive or negative supply rail.

The plastic box that we used measured $160 \times 95 \times 50$ mm and is very convenient in that the printed circuit may be held in position by sliding it down behind two of the pillars to which the front panel is screwed. As the amount of lettering required is quite small, this may readily be done directly on the panel by hand or with Letraset.

Shielding of the internal wiring is not required providing that the unit is kept away from strong 50 Hz fields. If operation in the vicinity of strong fields cannot be avoided then the unit should be mounted in a diecast box.

USING THE UNIT

The testing of loudspeakers is very difficult indeed and much effort is still being spent to find test methods which will not only give an accurate understanding of the relative effectiveness of the design, but which thermal failure – apart from also being extremely noisy.

The use of a tone-burst generator minimizes both these problems. How this is achieved is better understood by examination of Fig.5. This shows on the upper trace a five cycle 1000 Hz burst that is fed to a loudspeaker. The second trace shows the same burst as picked up by a microphone in front of the speaker. We notice that the burst has been changed by the speaker and an examination of these changes can tell us a lot about the speaker. For example we notice that the first half cycle has not reached full amplitude and this indicates that the speaker would have some difficulty in reproducing high frequency transients. Next we notice that instead of five cycles there are now at least five and a half. This could mean one of two things. Either there is a speaker/room resonance or, the speaker itself is continuing to vibrate after the original excitation has ceased. Which is it? We can determine this by changing the position of the speaker to see if any change occurs in the shape of the burst, if not it is caused by the speaker itself, and if it does then it is a speaker/room resonance. A speaker that lengthens the burst unduly will sound muddy in that region. Of course, the speaker must be examined over its whole range to gain a thorough assessment of performance.

It is of course possible to eliminate room reflections simply by performing the tests outside. However unless one lives in a very quiet area, background noise will introduce problems – and your neighbours are unlikely to appreciate the noise that you will generate.

By varying the off period we can also select a ratio where the room reflection, the oscillation seen after the cessation of the burst, does not interfere with the first few cycles of the burst and the response versus frequency of the speaker may then be assessed from the amplitude of the first half cycles that are stable in amplitude. Thus it is possible to gain an appreciation of the frequency response, transient performance and quality in terms of ringing of a speaker by careful use of the tone-burst technique.

The transient power handling capability of a speaker may be assessed by selecting a fairly long off to on ratio for the burst and by feeding the burst to the speaker via a high-power amplifier. If for example an off to on

ratio of 8:1 is used then the peak power will be eight times the average power. Thus the speaker may safely be driven to a peak level where a predetermined amount of distortion occurs. Take care that the amplifier is capable of providing the peak power required.

Of course a tone-burst generator may

be used for a wide range of testing. We have mainly concentrated in this article on its application to the testing of loudspeakers.

The circuitry of the tone-burst generator may easily be modified for use as a 'silent switch' for A/B speaker testing. The method of doing this will be described next month.

ETI HELPING HAND CONPETION

The Silver Trophy specially designed for the winners of Helping Hand

This is our open competition to find solutions for problems facing the deaf.

LECTRONCS TO DIVERTIONS. THELPORG LANDS THAND

INENENDER IN

This closing date is March 31st 1976. ETI and the Royal National Institute for the Deaf (RNID) are co-operating fully in the organisation of this competition.

Three problems are shown above. We invite individual readers, clubs, schools, universities, companies, in fact anybody, to develop a practical solution. The rules are as basic as possible and impose virtually no restriction apart from insisting that any Patent Royalties are waived if the idea is produced.

The prizes, three in all, will each be a silver trophy specially designed for ETI. At the close of the competition the magazine will hand over £250 to the RNID to help with development costs. There is a £1.00 entry fee (payable to

THE PROBLEMS

1 A sick person is being looked after by a deaf person. The deaf person has no useful hearing and requires to know whether the sick person is all right and above all needs to know if the sick person is in a state of distress anywhere in the sick room.

2 A hard of hearing person is attending a College of Further Education and has considerable difficulty in understanding what the lecturer says due to his distance from the lecturer and to the background noise in the room. A device is required to enable him to make the best possible use of his hearing.

3 Many deaf people have great difficulty in using the telephone and in fact many of them cannot use the telephone at all. The development of a writing tablet which would allow them to write a message on a small pad and for this to be communicated over the telephone line to a pad at the other end would have many great advantages. In addition the communication should be two way so that the person can receive a message or an indication that the message has been received.

RNID) and this will be added to the $\pounds 250$.

Background information has been prepared to help readers and say what is alreavd known. This is available from ETI on receipt of a large self-addressed envelope. Enquiries should be sent to:

> Helping Hand, ETI Magazine, 36 Ebury Street, London, SW1W OLW.

GEOPHYSICS IS THE study of the physcial characteristics of the earth. In its applied form geophysics is an important tool in the world-wide search for minerals. Diamonds, gold, oil, copper, tin, uranium and many other minerals may be directly or, more often, indirectly located using geophysical methods.

The advantage of airborne geophysics over other prospecting methods is the ability to cover large areas of the earth's surface in a relatively short time. Interpretation of the survey results, combined with prior knowledge of the area's geology and follow-up field investigations, provides a short list of sites which merit intensive investigation. Areas of hundreds of square miles may be surveyed in a period of months rather than the years which would be required using more traditional methods.

The three characteristics studied in modern airborne geophysical surveys are (a) Magnetic (b) Radioactive (c) Thermal.

MAGNETIC EFFECTS

The earth's rocks have become magnetised by two methods; by induction due to their alignment in the earth's magnetic field or by a permanent (remanent) magnetisation which occcured when the rocks were formed. Often remanent magnetisation is completely disorientated with respect to the earth's field due to the fact that the rocks have been twisted and turned since they were cooled. These rocks modify the earth's magnetic fieldin the area and this attracts the interest of the prospector. A device used to measure magnetic flux density is called a magnetometer. There are two types: (a) the static type, which measures the field directly, and (b) the dynamic type, which measures the modification of a signal transmitted into the ground.

In geophysics the field is usually measured in gammas: 10^5 gammas = 1 Gauss = 10^{-4} weber/m.

The magnetic flux density at the surface of the earth is normally between 25,000 and 60,000 gammas.

RADIATION EFFECTS

Radioactive elements are those containing atoms whose nuclei undergo spontaneous disintegration. During the disintegration two types of particle are emitted: (1) \propto (alpha)particles, which are helium nuclei, and (2) β (beta) particles, which are electrons or positrons.

After the emission of particles a nucleus is in an excited energy state and in order to return to its ground state a γ (gamma) quantum is emitted (Not to be confused with a gamma, the unit of magnetic flux density). In the atmosphere alpha and beta particles are quickly attenuated but gamma rays have a much greater range.

The Gamma rays are pure electromagnetic radiation. They do not alter the nuclear charge of the emitter but they are composed of discrete packages of energy (quanta) (the difference between finite energy levels in the atom). Each radioactive substance has a characteristic spectrum of gamma ray emission energies. Gamma ray energy is usually measured in electron Volts (eV), where 1 eV = 1.60210-19 joules. The range of energies of interest to the prospector is about 0.1 to 3.0 Mega-electron Volts (MeV). The following elements occur naturally and are important in geophysical work. They have these useful energy peaks in their spectra:

(a) Uranium 1.12, 1.38, and 1.76 MeV.

(b) Thorium 1.61 and 2.62MeV

(c) Potassium 1.46MeV

Gamma rays are attenuated by surface soil or sand and are usually detected with a Geiger counter or a scintillation counter.

THERMAL EFFECTS

Temperature changes on the surface of the earth are due either to the effects of the sun and atmosphere or to volcanic action. Various types of rock have differing thermal conductivities so that temperature measurements made over a period of time enable differentiation between the types of rock. Sub-surface volcanic heat is also detectable (providing that faults or cracks in the rock, or water rising to the surface, can transfer the heat).

In airborne geophysics temperature measurements are made with an Infrared line scanner. Originally IR radiation comes from the sun or is emitted by the ground — it can be a combination of both. IR is electromagnetic radiation with a wave length range of about 0.000075 to 0.04cm.

Temperature measuring, although useful for additional information, is not as important as radiometric (radiation measuring) or magnetic techniques. IR line scan surveys are very useful, however, for such tasks as checking power station and industrial plant pollution in rivers or the sea.

MAGNETOMETERS

This month we will discuss the instruments used in Magnetic Surveys. Three types of magnetometer will be considered: (a) the proton precession magnetometer, (b) the flux gate magnetometer, and (c) the electro-magnetic (em) magnetometer. Types (a) and (b) are static magnetometers, (c) is a dynamic type.

PROTON PRECESSION MAGNETOMETER

This device uses the principle of nuclear magnetic resonance (NMR) to measure the earth's magnetic field. The NMR principle shows that in a suitable liquid the proton spins are aligned in the earths field.

The detector head of a proton magnetometer consists of a container filled with a proton rich fluid (water or paraffin usually) and a coil either wrapped round the container or immersed in the fluid. The container and coil are often towed behind the survey aircraft in an airfoil known as a 'bird' so that the detector is not affected by the magnetic field of the aircraft.

The essence of the operation of this magnetometer is shown in Fig. 1. A current pulse of several amps is switched from the unit power supplies

Fig. 2 Complete Proton Precession Magnetometer.

Fig. 1 Basic Proton Precession Magnetometer.

Photo 1. Proton magnetometer 'bird'.

down the tow cable and through the detector coil to create the strong magnetic field necessary to disturb the proton spins. As soon as the current pulse ends the protons begin to precess and the precession signal is picked up by the detector coil and passed through the tow cable to a sensitive amplifier in the main unit.

The next stage is to measure the frequency of the precession signal. A resolution of ± 1 gamma in a field of 50,000 gammas requires that the precession frequency be measured within 0.04Hz in about 2kHz. The counter output is scaled so that a digital display may be read directly in gammas.

Fig. 2 shows the more sophisticated system normally used. The bird now contains not only the detector head but also an electronic package consisting of a preamplifier, a filter and a pulse shaper. These circuits improve the signal to noise ratio of the precession signal when it is passed through the tow cable.

Outputs from the counter are taken to the recording systems which are described later. The measurement accuracy of the system is within ±0.5 gammas and is a total field value. The main disadvantage of the proton precession magnetometer is the necessity to switch between energising and detecting from the coil as this means that the fastest sampling rate is about one reading per second which may mean that anomalies are missed. These factors of speed and resolution are important considerations in airborne geophysics as the survey aircraft travels about 200 feet in one second.

Photo 2. Fluxgate magnetometer detector head showing detector coil within the two sets of gimbals.

FLUXGATE MAGNETOMETER

The fluxgate is the detector in this type of magnetometer The permeability of a ferro-magnetic material depends on its intensity of magnetisation. If a coil with a ferro-magnetic core is driven cyclically through saturation by ac, the inductance of the coil is proportional to the slope of its hysteresis curve. A distortion occurs in the voltage output across the coil. (see Fig. 3). If now two coils are connected in series, as shown in Fig, 4, with an external magnetic field in the direction shown the 'kink' in the coil output voltage waveform is shifted in phase and the summed output voltage Vo varies with the external field as shown in Fig. 4.

ELECTRONICS IN

PERRO-MAGNETIC CORE

Fig. 3. Coil Output Voltage Waveform-see Fluxgate Magnetometer.

Fig. 5. Fluxgate Magnetometer.

Fig. 4. Basic Fluxgate and Output Waveforms.

If now an artificial field is produced so that the fluxgate output pulses are always kept at the same amplitude then the artificial field is proportional to the external field. The external field is measured by the amount of current required through the compensation coil to cancel out the field.

In Fig. 4 it can be seen that the fluxgate is highly sensitive to an external field in the direction shown but that a field at right angles to that shown would have little or no effect. This means that the detector element must be orientated so that its sensitive axis is aligned with the total field vector of the earth.

PRACTICAL FLUXGATE MAGNETOMETER

A complete fluxgate magnetometer detector element consists of three fluxgates. Two of these provide orientation signals and the other provides the field measurement and has a compensation coil. Each fluxgate is energised at 410Hz as this avoids any harmonic interference from other supply frequencies used in aircraft. The operation can be seen in Fig. 5,

The current through the compensator coil is directly proportional to the external field and so measurement of the current will be an analogue of the field value. The usual problem of resolution arises as the current must be measured with an acuracy of 1 part in 50,000 (1 gamma in a total field of about 50,000 gammas).

The fluxgate detector is often towed behind a survey aircraft in a bird. Another method is to mount the detector in a 'stinger' which is an

Photo 3. Fluxgate magnetometer 'bird'.

Photo 4. DC-3 aircraft fitted with a 'stinger' suitable for a fluxgate magnetometer detector head.

extended portion of the tail of the aircraft. Using a stinger means that the detector is influenced by the magnetic field of the aircraft and in order to overcome this problem compensation coils are built in. A fluxgate magnetometer bird fitted to a DC-3 aircraft is illustrated in photo 4.

Generally the fluxgate magnetometer has an accuracy of ±1 gamma but values are relative rather than absolute and some instrument drift takes place. The fluxgate magnetometer does, however, provide a continous record.

ELECTRO-MAGNETIC MAGNETOMETER

Electro-magnetic (em) magnetometers differ from those already described in the important respect that they do not measure the earth's magnetic field but rather the conductivity of the ground over which they are flown. There are many types of em magnetometer and they vary in performance, construction and operation. The general principle is illustrated in Fig. 6. Here a signal transmitted from the survey aircraft causes a current to be induced into any conducting body within the transmitted field. This induced current then sets up a secondary field which is detected along with the transmitted (primary) field by a receiving coil.

The vector diagram shows that the resultant, Hr, of the received primary (Hp) and secondary (Hs) fields may be resolved into an in-phase and out-ofphase component of the primary field.

Two important characteristics of em systems are that the separation between the transmit and receive aerials is roughly proportional to the depth penetration capability and that the out-of-phase component is largely independent of the aerial spacing and alignment.

EM systems can be broadly split into two groups, rigid boom systems and towed bird systems. Rigid boom systems measure both in and out-ofphase components usually at a single frequency and with the aerials at fixed positions relative to each other. This is achieved by using a long boom towed by a helicopter or by mounting an aerial on each wing-tip of an aircraft. Towed bird systems measure out-of-phase components usually at two frequencies which give more detailed information about bodies of only moderate conductivity. The transmitting aerial is usually mounted in the survey aircraft while the receiving aerial is towed in a bird.

A serious problem in em magnetometers is the fact that the amplitude of the received primary field compos nent is very much greater than the secondary field component which leads to some difficulties in measurement. A system known as INPUT (INduced PULse Transient) overcomes this problem by using a pulsed transmission and by only receiving the secondary field after the transmitted pulse is over.

INPUT EM MAGNETOMETER

In this system (Fig. 7) the transmitting aerial is a large loop strung between the aircraft wing-tips, nose and tail. The timing of the system is derived from the divided output of a crystal clock. The transmitted pulse has an output power of 2kW and a duration of 1mS at a repetition frequency of about 3kHz. The receiver is gated open when the transmit pulse is over and received signals from the aerial in the towed bird. The received signal is sampled at increasing intervals, usually six times between the transmitted pulses from 150 microseconds after to about 2 milliseconds after. Each sample is displayed as a channel on a chart recorder. A rapidly decaying signal, which indicates a porrly conducting body, only shows a response in early channels while a slowly decaying signal, which indicates a good conductor, has a response in all chan-

Photo 6. DC-3 aircraft fitted with em magnetometer transmitting loops (on top of fusalage) and detector coils in the 'stinger'.

Fig. 7. INPUT EM Magnetometer System.

ELECTRONICS IN

nels. As measurements are made when there is no primary field in the input system it is independant of aerial orientation.

OPERATIONAL TECHNIQUES WITH MAGNETOMETERS

As with the use of most airborne geophysical equipment the two main operational parameters to be decided before the start of the survey are the altitude at which the aircraft is to fly and the line spacing. Line spacing refers to the manner in which survey areas are covered. Obviously the area must be flown in a methodical manner and this is done by covering the area with a series of parallel lines. The spacing of the lines and the altitude chosen are linked, in that the higher the magnetometer is flown, the greater is the area covered and therefore the wider apart the flight lines can be. Usually the line spacing and altitude are chosen to give the best results for

the type of survey. Small ore bodies are best detected flying at fairly low (say 150 meters) with a altitude narrow line spacing (about 400 meters) while general geological surveys are more usually carried out at about 600 meters altitude with a line spacing of 1500 meters. These figures apply to proton and fluxgate magnetometrs only - as em magnetometers will only function at low altitude. In practice the operational height is more limited by the terrain in the survey area and the performance of the aircraft being used.

Generally em magnetometers operated from conventional aircraft cannot be used below 100 meters because of safety considerations. Operation of em magnetometers from helicopters enables the survey height to be reduced to about 50 meters.

The magnetic field at any point on the surface of the earth is not constant but undergoes daily variations and during magnetic 'storms' (often caused by sun-spot activity) the field value

Photo 5. Catalina aircraft with em magnetometer system fitted.

will change radically over a very short period. Compensation for these effects is usually achieved by keeping another magnetometer at a ground base in the survey area. This ground magnetometer (often called a storm monitor) is run continuously and gives a record of daily magnetic variations which may be used to modify the results obtained from the airborne magnetometer and thus provide more accurate results. If the ground magnetometer indicates the presence of a magnetic storm magnetometer, flying is usually stopped as compensation for the large rapidly changing field values is not possible.

Often surveys are carried out with the aircraft carrying more than one type of detection system and the operational parameters must then be a compromise that best suits the characteristics of the various systems.

Next month we will look at the other two techniques used by the geophysicist: Radioactive Surveys and Thermal Surveys.

Special offer for readers of E.T.I. Sinclair Scientific calculator kit. Logs, trig, arithmetic, for only £9.95 (inc vat)

Forget slide rules and four-figure tables!

The Sinclair Scientific is an altogether remakable calculator.

It offers logs, trig, and true scientific notation over a 200-decade range - features normally found only on calculators costing around £20 or more.

Yet as a kit, it's on offer to Electronics Today International readers for the first time at £9.95 including VAT.

With the functions available on the Scientific keyboard, you can handle directly

sin and arcsin, cos and arccos, tan and arctan, automatic squaring and doubling, log10, antilog10, giving quick access to xy (including square and other roots), plus, of course, addition,

subtraction, multiplication, division, and any calculations based on them.

In fact, virtually all complex scientific or mathematical calculations can be handled with ease.

So is the Scientific difficult to assemble?

No. Powerful though it is, the Sinclair Scientific is a model of tidy engineering.

All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our Service Department will back you throughout if you've any queries or problems.

Components for Scientific Kit

(illustrated)1. Coil. 2. LSI chip. 3. Interface chips. 4. Case mouldings, with buttons, windows and light-up display in position. 5. Printed circuit board. 6. Keyboard panel. 7. Electronic components pack (diodes, resistors, capacitors, etc.). 8. Battery assembly and on/off switch. 9. Soft carrying wallet. 10. Comprehensive instructions for use.

Assembly time is about 3 hours.

8.6629-0I

Irad In 10

sinclair

Scientific

Features of the Sinclair Scientific 12 functions on simple keyboard. Basic logs and trig functions (and their inverses) Scientific notation. Display shows 5-digit mantissa, 2-digit exponent, both signable. 200-decade range. 10-99 to 10+99.

Reverse Polish logic. Post-fixed operators allow chain calculations of unlimited length. Genuinely pocketable. 44" x 2" x 11". Weight 4 oz.

57.2958

30259

2.71828

3-14159

Take advantage of this money-back, no-risk offer today

The Sinclair Scientific kit is fully guaranteed. Return kit undamaged within 10 days, and we'll refund your money without question.

All parts are tested and checked before despatch - and we guarantee any correctly-assembled calculator for one year.

Simply fill in the preferential order form below and slip it in the post today.

Price in ki	t form £9.9	Sinc. VA	1.
To:Si FREEF Huntin	nclair Radi POST, St Iv ngdon, Can	onics Ltd es, nbs., PE1	74BR.
Plea Sinc	ase'send me clair Scientif	ic, kit at £9	9.95.
Price in	ncludes 8% V	AT.	
*I encl made c and cro *Pleas account. A	ose a chequ out to Sinclai ossed. e debit my * Account num	e for £ ir Radionic Barclayca bber	s Ltd,
*Delete as	s required.		
Signed	1		
Name			
Addre	\$5		

Please print, FREEPOST - no stamp ET1276 needed

Sinclair Radionics Ltd, FREEPOST, Stlves, Huntingdon, Cambs., PE174BR Reg. No: 699483 England. VAT Reg. No: 213 8170 88.

ELECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

Flexible low-cost noise filter virtually eliminates record surface noise

This two-part article gives you the theory you need to design your own unit . . . plus advice on construction.

DESPITE denials from many record manufacturers, many present day recordings have excessively ioud surface noise -- and this cannot be reduced using conventional tone controls without also losing a substantial amount of the programme content.

Serious collectors of older recordings have an even more serious problem. Most of these records are quite noisy – even by today's standards. For example, 78 rpm commercial discs, even though in mint condition, will have a typical signal-to-noise ratio of only 30 to 35 dB due to the abrasive nature of the record material.

Many collectors dub their best

records onto tape. This way they may be played as often as desired — and conveniently shared with other collectors — while the often irreplaceable originals are safely preserved. Also, the sound can often be improved considerably during the copying process through equalization and filtering.

This article describes a flexible, low-cost noise filter designed for taping records with a maximum "fidelity-to-noise" ratio. It can be duplicated by the serious electronics hobbyist for about £40, or slightly less if certain features or ranges won't be needed. Although not recommended as a beginner's project, the

ELECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

experimenter with some circuit experience should have no difficulty. Minimum equipment requirements are an oscilloscope, sine wave generator, and multimeter.

The heart of this circuit is a dynamic noise suppressor with frequency characteristics and convenience features which are optimized for its intended use. The concept of dynamic noise suppression has existed for many years. Workable circuits were designed by H.H. Scott in 1946, and their performance was improved by Scott and others in 1947 and 1948. Then with the advent of the vinyl microgroove record and the rapidly increasing use of tape, both of which considerable noise offered a improvement over the 78 rpm system, the dynamic noise suppressor was almost forgotten. Recently, R. Burwen has revived this principle and applied it primarily to tape playback. Taking full advantage of modern integrated circuits, Burwen has designed highly sophisticated and flexible systems with specifications. These, impressive however, are too expensive for many hobbyists and do not have frequency characteristics optimized specifically for old, intrinsically band-limited material.

THEORY

Dynamic noise suppression is simple in concept. Record surface noise varies in spectral content, but the higher frequencies (above 1 or 2 kHz) predominate. Low-pass filtering is commonly used to limit noise. But unless used sparingly, this type of filtering band-limits the programme material, making it sound muffled and lifeless. The dynamic filter, however, provides a method by which a signal can be effectively extracted from the noise (at least subjectively) when signal and noise occupy overlapping frequency ranges.

DYNA MIC NOISE FILTER

of the dynamic noise Operation suppressor depends upon characteristic of the human auditory apparatus. If two signals occupying well-separated frequency ranges are present simultaneously, they are clearly perceived as individual entities. (This effect is often used to advantage in public address systems for noisy environments. If considerable high-frequency boost is used, voice announcements will seem to cut ambient through noise of predominately lower frequency

drops in frequency and/or amplitude, bandwidth contracts. The idea is that when high-frequency signal components are present, they will tend to mask the accompanying noise. When highs are not present, the wide bandwidth is not needed. Admittedly, the recovered signal is not as faithful as a noise-free original would be. For example, high-frequency content in low-level passages may be lost. Of some help here is the fact that many musical instruments tend to have less harmonic content at low acoustic levels. In spite of this compromise, the processed signal is usually far more pleasing to the ear than the noisy input signal.

The bandwidth control signal is derived by separating the high-frequency programme components from the signal-plus-noise.

without having to be excessively loud.) This is the case, at least for a large portion of the time, for a typical recorded signal with attendant surface noise; hence, the annoyance of the noise. However, if two simultaneous signals occupy substantially the same frequency ranges, the ear will tend to hear only the louder signal and ignore the weaker one. A level difference of only a few dB is sufficient for one signal to effectively override, or mask, the other. Operation of the dynamic noise suppressor depends upon this masking effect.

CHARACTERISTICS

The dynamic filter has a fairly steep low-pass characteristic which, in the absence of signal, starts cutting off at about 1 kHz. This very effectively rejects the noise spectrum. When a signal having high-frequency components at sufficient amplitude comes along, the filter is made to "open up"; that is, its cutoff frequency is quickly raised. As the high-frequency programme content Unless the signal level is consistently higher than the noise to begin with, this becomes impossible. Thus, there is a minimum signal-to-noise requirement below which no improvement is possible. As the original S/N improves, the dynamic suppressor's performance improves also.

Ideally, the signal frequency range to which bandwidth is most sensitive should correspond to the frequency range of maximum noise. The optimum filter characteristic for separating the bandwidth-control signal from the noisy input thus varies widely with the characteristics of the noise with which we are dealing. Bandwidth control sensitivity (or gain) must be set properly for the incoming signal level and noise properties. Bandwidth should respond rapidly to signal changes to avoid loss of transients and to prevent audible "swishing" sounds which can be produced by delayed bandwidth contraction.

DESIGN APPROACH

I have tried to implement the basic requirements outlined above as completely as possible in an easy-to-use, low-cost unit. A dynamic high-pass filter stage was considered but later dropped, as high-frequency noise predominates on most older records. Low-frequency noise can usually be handled adequately with a simple manually-set rumble filter.

Figure 2 shows an overall block diagram of the noise filter. Operational amplifier A1 is connected as a non-inverting amplifier with a voltage gain of 3.2 (10 dB), enabling the system to be driven to 0 VU with an input level of 0.25 volt. This amplifier also serves as a buffer, providing an input impedance of 100 kilohms for compatibility with virtually any signal source.

Amplifier A1 drives the rumble filter, which could be omitted if one is available in the associated external equipment. Following this is the pre-filter, which is simply a low-pass filter with a manually set cutoff. This filter is important for several reasons. First, it removes noise which is above the frequency range of the recorded signal. Many recordings have no signal content above 4 or 5 kHz (even lower for acoustic records), and no programme content is lost by cutting off the upper range. Thus, the total noise voltage is lowered, often appreciably, permitting the use of higher suppression gain settings as will be seen later. Another reason for this filter is that the dynamic filter can do nothing to reduce the annoyance of high-frequency distortion. Furthermore, since а limited-bandwidth signal cannot effectively mask higher-frequency noise; removal of the latter helps to eliminate audible evidence of the continually changing bandwidth.

From the pre-filter output the signal passes to the voltage-controlled

38

low-pass filter and, via the suppression gain control, to the high-pass filter/precision detector whose function is to derive the bandwidth control signal. This point additionally goes to a switch which permits the dynamic filter to be by-passed at will so that its effect with various control settings may be easily judged. Another switch permits the output to be compared with the "raw" input signal.

All of the filters used in this system, including the voltage-controlled filter, are of the 2-pole active type, giving a 12 dB/octave rolloff slope. The damping factor is chosen (with one exception) for a Butterworth response, which produces the steepest possible. slope beyond cutoff with no peaking in the passband, (High-pass filters with 3 dB peaking were tried, but these produced a slightly rough, "grainy" sound compared to the flat-passband version.) The design approaches are widely published and need no further discussion here. The rumble filter (Fig. 3) and the pre-filter (Fig.4) are of this type; their response curves are shown in Fig.5. The rumble filter is not proper essential to suppressor operation, but is convenient in case an effective low-cut filter is not included with the associated preamplifier in the copying setup. The design shown here has rather high settings intended primarily for acoustic records.

BANDWIDTH

The bandwidth control signal is derived with the circuit of Fig. 6, which consists of a high-pass filter followed by a precision detector. The filter damping factor is made low in order to produce a pronounced peak and more rapid low-frequency rolloff (Fig. 7). Three selectable cutoffs produce peaks at 3.5, 5, and 7.5 kHz; these were empirically determined to best accommodate a wide range of noise characteristics and recorded bandwidths.

The knowledgeable enthusiast could readily modify the cut-off points to suit his own particular application.

The filter output is coupled to a detector and an integrator. The operation of these circuits and discussion of the variable-cutoff filter and construction follows next month in the final part to the article.

We're usually pretty brash about the way we announce what is planned for the next issue. The March issue is something special so we decided to tell you about it in a different way: quietly.

First we've got a rather special competition which we are running in conjunction with Henry's Radio. It is a sort of 'Sale of the Century' for the winners —something like a 99% discount (up to a certain limit) for goods in the Henry's catalogue....and quite a lot is being given away at that. It won't be an easy competition to enter, we get excellent responses to our competitions mainly because they are challenging and don't insult the readers intelligence.

Second, there is a pretty good reader offer. Now, we can't tell you too much about it at this stage, when you see it you will understand why. We are not being mysterious to hide a mediocre offer. We can say that it is for a highly popular product, especially of interest to the technically minded and at a price which is about 40% cheaper than the current cheapest price for any product in this field. As someone put it to us the other day, ETI brings you today's products at tomorrow's prices. In our field that could be taken as a compliment.

Next we have a Data Sheet Special: on Op-Amps. This will cover various types and should be something you will want to keep for future reference. It also forms a nice wrap-up to our series which finishes in this issue.

We've also got an Index for you, covering every issue of ETI to date that's four year's next month. In the March issue we are dealing with all subjects except Tech Tips and Data Sheet; these will be done in April.

Then there is an excellent article by Gordon King on Distortion. Did you know that in certain cases distortion can actually help the sound quality? This is an article which we feel will be of interest to everyone.

There are plenty of projects of course.

A 5V Switching Regulator Power Supply. An unusual design operating on very different principles to the regular stabilised PSU. Next is an Audio Level Meter using a 'bar' of LEDs instead of a moving coil meter. Even if you have no interest in this subject, the technique may be of interest. There is also an article describing how to modify the Tone-Burst Generator for silent A-B switching. Cannibals and Missionaries - sounds ridiculous, but it's a great party game. Another simple project is a headphone adaptor with adjustable stereo separation — it also restores natural damping, giving a better quality sound.

Well, if you have read this we hope your appetite has been whetted. We have to add the rider that circumstances can affect the final contents but everything we mentioned is at an advanced state of preparation. The March issue will be published on Friday, February 6th.

AY-1-0212 & AY-1-5051 ORGAN DIVIDER IC's

GIM

The General Instruments Master Tone Generator is a digital tone generator which produces from a single input frequency, a full octave of twelve frequencies on twelve separate output terminals. The MTG consists of twelve divider circuits which divide the input by an exact integer to produce a chromatic scale of twelve notes. When used in conjunction with an oscillator and frequency dividers, a system may be configured which generates all the frequencies required by an electronic music synthesiser. The AY-1-0212 operates at input frequencies up to 1.5MHz. TypIcal advertised price is £7.

The AY-1-5051 is a 4 stage divide-by-two frequency divider which will operate up to 1MHz on either sine or square wave input. The outputs change state on the negative going edge of the clock. Other divider configurations are avail-able:

able able: AY-1-6721/5 5 stage divider 10 lead CAN AY-1-6721/6 6 stage divider 12 lead CAN AY-1-5050 7 stage divider 14 pin DIL AY-1-6722 8 stage divider 16 pin DIL. The typical advertised price of the AY-1-5051 is £1.50.

ELECTRICAL CHARACTERISTICS

VGG Power consumption VDD Power consumption Input frequency VGG VDD

Input Logic Levels

Output Logic Levels

"O" Level

"1" Level

"O" Level

"1" Level

(1)

PIN DIAGRAM

0

9

(F

ELECTRICAL

CHARACTERISTICS

-2V max.

-10V min.

-1V max.

-11V max.

TOP VIEW

16mA 20mA 0.25-1.5MHz -26V approx. 14V approx.

4 STAGE AY-1-5051 FUNCTION PIN OUT A 1 OUT A 2 B IN 3 OUT B 4 GND 5 . C IN 6 . OUT C 7 VGG 8. Vpo 9 IN

		O	
TYPICAL A		FREQ. NOTE	
	 	→ 4184.1Hz C	8 > FREQ. DIVIDERS Co
		→ 3952.6Hz B	7 > FREQ. DIVIDERS Bo
		→ 3731.3Hz A	*6> FREQ. DIVIDERS A*6, A*0
	+ 253 + 268 + 301	3521.1Hz A 3322.3Hz G 3134.8Hz G	$\begin{array}{c} FREQ. DIVIDERS \longrightarrow A_{6}, A_{0} \\ \hline & & \\ & &$
IMHz OSC.	÷ 426 ÷ 379 ÷ 379	2958.6Hz 2793.3Hz 2638.5Hz 2487.6Hz 2347.4Hz 2347.4Hz 2347.4Hz 2347.4Hz	$F_{7}^{*} \xrightarrow{\text{FREQ. DIVIDERS}} F_{6}^{*} \xrightarrow{\text{Freq. DIV}} F_{6}^{*} \text{Freq. D$

ELECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

AY-5-3507 3½ DECADE DVM

AY-5-3507 3% DECADE DVM The AY-5-3507 is a MOS LSI chip contain-ing all the logic necessary for a 3% Decade Digital Voltmeter utilising Dual Ramp incorporated, as is automatic overrange onto a 7 segment highway allowing easy interface to LED and similar displays whist keeping the pin count to 18. Typical advertised priced is £6.50. OPERATION The operation of the circuit is as follows: intaily the signal and reference outputs are in the logic '0' state. The counter continuously and at the 1999 to 0000 switch. The integrator generates a mp. the amplitude and polarity of which depend on the amplitude and polarity of which is state of the comparator output in a D you filp flop (the signal enters is the signal switch. The integrator generates a the input signal. After a further 2000 clock pulses the ~ 2 is toggled driving the signal switch. The integrator output in a D you filp flop (the signal enters is the sign of the input signal. The appropriate the input signal. The appropriate the state of the comparator output is a bolarity of the input signal. The appropriate the input signal is be so large that so the enumber in the counter is transferred so the overrange flip flop will be set to 0000 and the number in the counter. During over-sing the main display will be set to 0000 and the output is used. The display store output (including _ 0'I and overrange) agated sequentially a decade at a time onto a common 7 line output is mand.

INPUT AND OUTPUT SIGNALS COMPARATOR INPUT

CLOCK INPUT REFERENCE SWITCH OUTPUTS

SIGNAL SWITCH OUTPUT DISPLAY MULTIPLEX OUTPUTS

SEGMENT OUTPUTS

CHARACTERISTICS
CLOCK & COMPARATOR INPUTS Logic '0' level between6V &18V Logic '1' level between +0.3V & -1V Clock frequency between DC and 20kHz
DISPLAY MULTIPLEX OUTPUTS Logic '1' sink current 2mA typical Logic '0' leakage current less than 10µA
SWITCH OUTPUTS Logic '1' sink current 0.8mA typical Logic '0' leakage current less than 10µA
SEGMENT OUTPUTS Logic '1' sink current 7mA typical Lohic '0' leakage current less than 10µA

ELECTRICAL

A logic '0' level corresponds to a negative input signal. A logic '1' level corresponds to a positive input signal.

This signal should be supplied from an external oscillator giving a square wave signal.

These outputs drive analogue switches which connect the Reference Voltages to the Integrator. A logic '0' at the Comparator Input will be followed by a logic '1' at the Positive Reference Switch Output. A logic '1' at the Comparator Input will be followed by a logic '1' at the Negative Reference Switch Output.

This output will be at 'logic' during the time that the signal is connected to the Integrator. These outputs will be at logic '1' to display. The outputs selected will be as follows:

MX1 0/1, ±, Over range MX3 Decade 2 (10¹)

MX2 Decade 3 (102)

MX4 Decade 1 (10º) The outputs of the 3 decade counters are presented sequentially on the outputs A, B, C, D, E, F, G. In the first multiplex position 1 is indicated by segments B and C, - is indicated by segment G, overrange by the flashing of segments A and D. 0, + and underrange are not indicated.

ELECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

EXTERNAL CIRCUITRY TO BUILD A

We give here circuitry required to build a 3½ digit Dual Ramp Integrating DVM which will run from a 6V battery and has an FSD of ± 2V. The circuits described here are an integrator, a comparator, a voltage reference, a clock oscillator and a displav. ANALOGUE CIRCUITRY (Fig. 1) This consists of an LM308 Integrator followed by an LM301A comparator. The input and reference signals are switched onto the integrator by an MEM 780 quad n-channel MOS FET switch. Zero setting is achieved by injecting a small current into the input, sufficient to balance out the bias current of the LM380 and the leakage current of the MEM 780. Full scale setting is achieved by adjust-ing the Positive and Negative references. The LM301A negative supply is decoupled with 220 0hms and 150µF, this is only when the ITT 7120 power supply is used.

VOLTAGE REFERENCE (Fig. 2) A BZV10 temperature compensated Zener diode is used to provide a basic 6.5V reference. An LM301A operational

amplifier is used to generate a +3.25V and a -3.25V reference from the Zener voltage. Four outputs are provided, the Positive and Negative references (± 2 Volt nominal) a -3.25V substrate bias for the MEM 780 analogue switch and a zero set control for the integrator. DISPLAY INTEFACE (Fig.3) The high output current capability of the AY 5-3507 allows direct driving of LED segments. With a 6V supply, the output drive to the digit select transistors be 5mA and the peak segment current will be typ-ically 16mA, giving an average segment current of 3.2mA. The segment output is high enough to give outdoor visibility on 0.11" displays such as the 7HP 5082-7414 and 7232. Larger displays can be driven if indoor use is intended. POWER SUPPLY AND CLOCK OSCILLATOR (Fig. 4) The circuit is designed to be run from a 6V battery, an ITT 7120 calculator power supply is used to generate a -14V supply. This results in supplies of 46V for the DVM. The 7120 also contains a clock oscillator, this runs at 10KHz giving a reading rate of 2.5 per second.

V_{SS} +6V -

MEM 4016 or equivalent

Typical power consumption for the circuit, excluding the display, is 50mA at 6V. The display as shown takes on average a further 50mA. Alternative power supplies may be used, the restriction being that each supply must lie within the range 4.5 to 10.5V and the sum of the supply voltages must be in the range 12 to 18V. If it is desired with a positive supply greater than +6.5V, limiting resistors will be required in the-segment and multiplex outputs. OVERALL PERFORMANCE

Full scale range Accuracy	± 1.999V ± 0.1% reading ± 1
Input Resistance Operating Temperature	digit 220k 0°C to +70°C
Zero stability	1 digit change 0°C to 70°C supply 5
FSD stability	0.004% per ^O C 0.16% per volt
Reading rate	2.5 per second
Power supply	4.5 to 6.5V. 6V nominal at 100mA

ELECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

GIM

43

A. Marshall (London) Ltd Dept:ETI 42 Cricklewood Broadway London NW2 3ET Tel: 01-452 0161/2 Telex: 21492 8 85 West Regent St Glasgow G2 20D Tel: 041-332 4133 & 1 Straits Parade Fishponds Bristol BS16 2LX Tel: 0272 654201/2 & 27 Rue Danton Issy Les Moulineaux Paris 92 Tel: 644_2356

Catalogue price 25p

Trade and export enquiries welcome

a largest range in the UK

27/29234 0.20 2N5191 0.36 AF106 0.40 8C184 0.13 6F157 0.35 CA308/F 1.96 NE551 4.48 Z1X507 0.13 2N2926 0.20 2N5192 1.24 AF109 0.40 8C184 0.13 6F157 0.20 CA308/F 1.96 NE555A 4.48 Z1X507 0.13 2N3053 0.26 2N5195 1.46 AF114 0.36 BC187 0.25 R5153 0.25 LM301A 0.48 Z1X507 0.13 2N3054 0.60 2N5254 0.47 BC187 0.27 R5154 0.25 LM308 2.50 0C28 0.76 Z1X507 0.23 2N3055 0.75 2N5294 0.48 C187 0.27 R5154 0.27 R5154 0.27 R5154 0.27 R5154 0.16 LM308 2.50 0C28 0.76 Z1X630 0.23 Copper Ptain 2N3055 0.75 2N5294	Top 5(2N456 2N456 2N457 2N457 2N457 2N457 2N459 2N459 2N459 2N598 2N706 2N706 2N706 2N706 2N706 2N706 2N706 2N707 2N718 2N7218 2N7218 2N7218 2N7218 2N7222 2N7222 2N7222 2N7222 2N72222 2N7222 2N72	00 Semicond 0.80 2N3391 1.20 2N3391 5.20 2N3403 0.16 2N3417 0.12 2N3403 0.16 2N3417 0.12 2N3403 0.12 2N3403 0.22 2N3638 0.23 2N3638 0.23 2N3638 0.23 2N3638 0.23 2N3638 0.23 2N3639 0.24 2N3703 0.24 2N3703 0.24 2N3703 0.24 2N3703 0.26 2N3703 0.26 2N3703 0.26 2N3703 0.26 2N3703 0.47 2N3711 0.30 2N3711 0.30 2N3711 0.30 2N3711 0.47 2N3713 0.47 2N3723 0.47 2N3723 0.47 2N3723 0.47 2N3723 0.47 2N3723 0.47	Auctors From 0.45 2N5295 0.28 7N5295 0.29 2N5296 0.31 2N5459 0.35 2N5459 0.35 2N5459 0.35 2N5459 0.31 2N5459 0.32 2N5494 0.24 2N5494 0.29 3N128 0.29 3N138 0.45 3N494 0.29 3N138 0.47 40361 0.17 40361 0.15 40407 0.15 40408 0.15 40408 0.15 40408 0.15 40408 0.15 40408 0.15 40408 0.15 40408 0.15 40408 0.15 40408 0.15 40408 0.15 40408 0.15 40408 0.15 40408 0.15 40408	the largest ra 0.48 AF115 0.48 AF115 0.48 AF115 0.49 AF115 0.49 AF125 0.49 AF125 0.58 AF125 0.58 AF125 0.58 AF125 0.58 AF125 0.58 AF126 0.45 AF120 0.45 BF110 0.58 BF110 0.58 BF110 0.52 BF110 0.53 BF110 0.53 BF110 0.53 BF110 0.54 BF110 0.55 BF1100 0.55 BF1100 0.55 BF1100 0.55 BF1100 0.55 BF110	nge in the 0.36 BC207 0.36 BC212k 0.36 BC212k 0.30 BC237 0.30 BC237 0.30 BC237 0.30 BC237 0.30 BC237 0.30 BC237 0.22 BC237 0.45 BC247 0.06 BC261 1.00 BC300 0.14 BC301 0.15 BC306A 0.17 BC306A 0.17 BC306A 0.17 BC306A 0.17 BC306A 0.17 BC306A 0.17 BC337 0.18 BC306A 0.17 BC337	UL2/ 85160 0.11 85165 0.16 87165 0.16 87167 0.16 87177 0.15 87177 0.15 87177 0.25 87178 0.25 87178 0.25 87178 0.25 87180 0.25 87195 0.25 87195 0.25 87194 0.25 87195 0.25 87195 0.25 87196 0.38 87255 0.20 87244 0.20 87245 0.20 87245 0.20 87255 0.20 87257 0.20 87257 0.20 87257 0.26 8739 1.00 875218 0.39 87528 0.35 87528 0.35 87529 0.57 8753 0.40 87521 0.30 87521 0.30 87521 0.30 87521 0.30 87521 0.30 8752 0.35 8738 0.40 8752 0.55 8738 0.41 8752 0.55 8738 0.55 8738 0.55 8738 0.55 8738 0.55 673875 0.55 6.3052 0.55 6.	0.23, LM309K 1.88, 0.32 LM3511 1.50 0.40 LM351 1.50 0.26 LM351 1.50 0.27 LM351 2.50 0.27 LM709T099 0.45 0.35 80L 0.44 0.35 LM709T099 0.45 0.35 LM709T099 0.45 0.35 LM7310 0.40 0.35 LM7310 0.40 0.35 LM7411099 0.40 0.35 LM7411099 0.40 0.35 LM747 1.00 0.35 LM747 1.00 0.35 LM747 1.00 0.30 80L 0.33 0.40 LM747 1.00 0.31 LM7805 2.00 0.31 LM7805 2.00 0.32 LM7815 2.50 0.45 MC1303 1.50 0.45 MC1303 2.50 0.45 MC1303 2.50 0.45 MC1300 0.90 0.19 MC1352P 0.80 0.47 MC1466 3.50 0.42 ME0404 0.13 0.44 ME0412 0.18 0.42 ME0404 0.35 0.22 MJ481 1.20 0.30 MJ490 1.05 0.23 MJ480 0.45 0.23 MJ480 0.45 0.55 M74505 0.50 MJ480 0.55 MJ480 0.55 MJ480 0.55 MJ480 0.55 MJ	OC35 0.6 OC42 0.5 OC42 0.1 OC71 0.1 OC63 0.2 OC81 0.2 OC83 0.2 ORP12 0.5 SK53 1.8 SL410C 1.7 SL511C 1.7 SL521C 2.6 SL523 4.5 SN75031N 1.9 SN75033N 2.9 SN75033N 2.9 SN75033N 2.9 ST2 0.2 TAA300 1.1 TAA510 0.6 TAA6512 2.0 TAA6513 2.2 TAA6514 2.2 TAA6512 2.0 TAA620 2.1 <	PW TELETENNIS KIT As featured on BBC Nationwide and in the damly. No need to modify your TV set, just pluge in to avrial tockat. Parts list as follows: A Resistor Pack £1.00 p & P 20p; B Cetariometer Pack £1.20 p & p 20p; D Semi-conductor Pack £3.10 p & p 20p; D Semi-conductor Pack £3.10 p & p 20p; D Semi-conductor Pack £3.10 p & p 20p; E IC Sockets £4.00 p & p 20p; F Transformer £1.15 p & p 22p; C P CES £7.50 p & p 20p. H Switches £1.30 p & p 20p; D Semi-conductor Pack £1.45 p & p 20p; D Semi-conductor Pack £1.45 p & p 20p; C P CES £7.50 p & p 20p. H Switches £1.50 p & p 20p; D Semi-conductor Pack £1.45 p & p 20p; D Semi-conductor Pack £1.45 p & p 20p; D Semi-conductor Pack £1.45 p & p 20p; C P CES £7.50 p & p 30p. Assembly instructions, with complete kit or 75p on request. P.C. Marker Pen Datc 33PC 0.87p Zeners 400HW. Tip; IW - 17p IC Sockets 50H 10p; 140H 12p; 160H 13p; Scorpia Car 19p; 10w - 12p; Scorpia Car 10p; 10w; 10w; 10w; 10w; Scorpia Car 10p; 10w; 10w; 10w; 10w; 10w
2 5-22/- 22 22 27	2N2907 2N2907A 2N2924 2N2926 2N3053 2N3054 2N3055	0.22 2N5190 0.24 2N5190 0.20 2N5191 0.20 2N5192 0.25 2N5192 0.60 2N5245 0.75 2N5294	0.92. AD151 0.96 AD152 0.96 AF106 1.24 AF109R 1.46 AF114 0.47 0.48	0.40 BC183L 0.40 BC184 0.40 BC184 0.36 BC186 BC187	0.12 8F123 0.13 8F125 0.13 8F157 0.25 8F153 0.27 8F154 RF159	0.35 CA3048 0.35 CA30896 0.20 CA3090Q 0.25 LM301A 0.16 LM308 0.27	2.11 NE560 4.48 1.96 NE561 4.48 4.23 NE565A 4.48 0.48 0C23 1.35 2.50 0C28 0.76	ZTX302 0.1 ZTX500 0. ZTX501 0. ZTX502 0. ZTX530 0.1	Veroboard 0 0 0 0 0 0 0 0 0 0 0 0 0
ren ange er opperter inochter ere									catalogue for details Presens Horizontal or Vertical W 8p .3W 10p

LONDON - GLASGOW - PARIS AND NOW

1 STRAITS PARADE FISHPONDS BRISTOL BS16 2LX TEL: BRISTOL 654201/2

IT'S OUR SERVICE THAT MAKES US GROW

BRISTOL!

ELECTRONICS TUDAY INTERNATIONAL-FEBRUARY 1976

Construction Kits

Aerial Amps Transmitter Receiver for above Electronics dice Electro Dice + Sen

TRY OUR GLASGOW SHOP

VAT all prices exclusive P&P 25p Mail Order

F2 04

£6.53 £7.79

AV7 UHS70 MUE7 EW18 EW20

RADIO, VALVE & SEMI-CONDUCTOR DATA

NEW SCROGGIE!

FOUNDATIONS OF WIRELESS

ELECTRICAL CIRCUIT DESIGN HANDBOOK BY THE EDITORS OF EEE MAGAZINE £5.20

Tenth edition, gives data on 1,000 valves and CRTs, 9,800 transistors, diodes, rectifiers and optical devices. A. M. BALL £2.50

E2.10 Capel Structs the reader on how to components, how to as-mble and how to cure faults. E2.10 Structs the reader on how to components, how to as-mode and how to cure faults. Structs the reader on how to components, how to as-mode and how to cure faults. Structs the reader on how to components, how to as-mode and how to cure faults. Structs the reader on how to components, how to as-mode and how to cure faults. Structs the reader on how to components, how to as-mode and how to cure faults. Structs the reader on how to components, how to as-structs the reader on how to components, how to as-structs the reader on how to components, how to as-structs the reader on how to components, how to as-structs the reader on how to components, how to as-theory book which starts from scratch. -ow to build Electronic Kits semble and how to cure faults.

ELECTRONICS SELF-TAUGHT WITH EXPERIMENTS AND PROJECTS J. Ashe E2 Cover basic principles of electronics. Projects include a large nur simple circuits. TEST INSTRUMENTS FOR £2.20 ELECTRONICS M. Clifford How to build and use test instruments £2.05 ELECTRONIC MUSICAL INSTRUMENTS N. Crowhurst £2.05 This book looks as the fascinating subject of electronic music from simost every angle. EXPERIMENTING WITH ELECTRONIC MUSIC R. Brown and M. Oisen £1.85 Practical Experiments offer scope for originality and research. BASIC MATHS COURSE FOR **ELECTRONICS** H, Jacobowitz £1.70 Ohms Law and all maths for electronics written in an sasy, understandship way ELECTRONICS UNRAVELLED J. Kyle £2.20 nonsense approach to the basic principles of ele DIGITAL ELECTRONIC CIRCUITS AND **SYSTEMS** N. M. Morris £2.60 The ideal book for the enthusiast confused by logic and digital INDUSTRIAL ELECTRONICS N. M. Morris £3.1 The book concentrates mainly on semiconductor devices and circuit solutions to the many numerical problems are given, S.1. unitsiare used throughbod. £3.20 LOGIC CIRCUITS N. M, Morris £3.10 Aids the understanding of logical problems, discusses circuit principles including integrated circuits. INTRODUCING AMATEUR ELECTRONICS

I. R. Sinclair £1.60 The book for the complete novice of any age, as no previous knowledge is assumed.

ope

BEGINNERS GUIDE TO ELECTRONICS
T. L. Squires £2.55 A short cut for those wishing to obtain a quick acquaintance with modern electronic.
I.C. OP-AMP COOKBOOK
W. G. Jung £8:15 Covers the basic theory of IC OP-Amp in great detail@also includes 280, practical circuit applications liberally illustrated.
Complete and detailed guide to TTL, how it works, how to use it and?
110 OPERATIONAL AMPLIFIER
PROJECTS FOR THE HOME
CONSTRUCTOR
R. M. Marston £2.85
useful projects
110 SEMICONDUCTOR PROJECTS
FOR THE HOME CONSTRUCTOR
R. M. Marston £2.85 This book introduces the reader to useful new devices such as the
FET. SCR and IC, with full constructional details of many useful
UNDERSTANDING CMOS
INTEGRATED CIRCUITS
R. Melen £3.25
Begins with basic digital IC's, covers semiconductor physics, CMOS, fabrication technology and design.
INTEGRATED ELECTRONICS
J. Millman £5.00
step from semiconductor physics to devices, models, circuits and
EXPERIMENTS AND PROJECTS
E. M. Noll £5.80
An intro to one of electronic's most exciting devices.
CIRCINITS
Texas instruments 65.65
Covers the entire family of TTL and practical applications of the circuits . In divital systems
OPERATIONAL AMPLIFIERS DESIGN
AND APPLICATION
G. Tobey (Burr-Brown) £4.70
completely up to date, this work covers the entire field of operational amplifiers.

Please list titles (with price) separately. Cheques, etc., to be payable to Electronics Today International and sent to:

ETI BOOK SERVICE, 25 Court Close, Bray, Maidenhead, Berks. All prices include Postage and Packing,

BEGINNERS' GUIDE TO	
TRANSISTORS	
J. A. Reddihough £2.	55
Covers the basic theory and practice of modern transistors.	
COLOUR IV THEORY	
PAL Systems, principles and receiver circuitry for engineers, techni	Ciant
and students.	
TV SERVICING MANDBOOK	-
G. King 20. Thoroughly practical handbook, deals in detail with modarn receiv	UUU
COLOUR TELEVISION SERVICING	
Q. King £5.	90
A practical handbook, deating with all modern receivers.	
MAZDA BOOK OF PAL RECEIV	ER
SERVICING	
D. Seal £5.	30
2 Twitte 52	10
Starts from the first principles and takes the reader to an advanced i	leval,
HOW TO USE VECTORSCOPES,	-
OSCILLOSCOPES AND SWEEP	
SIGNAL GENERATORS	
8. Prentiss £1.	95
OO WAVE TO LICE VOLD	Q##.,
OSCILLOSCOPE	
A. Saundara f1	80
Describes how to solve practical problems using a scope.	
WORKING WITH THE OSCILLOSCO	PÉ
A. Saunders £1.	85
A book devoted to circuits and illustrations of waveforms that shoul present.	id be
HOW TO USE YOUR YOM YTYM	
AND OSCILLOSCOPE	
M. Clifford £1	80
This book sims to give you knowledge and help you perform a	wide
variety of essential tests on many different kinds of sets, appliances	and

ORKING WITH THE

Transistor Selector IN AMPLIFIERS How to Use ectorscopes, scilloscopes & weep. S anol enerators

Towers' International

ELECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

Pul Receiver Servicing

CUNSTRUCTOR

MICS

The prototype unit as seen on the front cover. The case is a Kodak 20-exposures transparency case.

The Mark II meter is built into a Vero box.

IT IS COMMON for amateur photographers to find three or four useless prints in the wallet picked up from the chemists, and usually there are a couple of shots lost because the exposure was so way-out that there is no image on the negs. For a few quid, however, you can build this simple instrument and ensure that all your shots are correctly exposed.

The exposure meter uses an LDR (Light Dependent Resistor) to measure the amount of light falling on a translucent window. The position of the potentiometer control when the meter is set is directly related to this quantity. Setting up simply involves adjustment of the knob until the two LEDs glow with equal brightness.

The prototype is built in a 20exposures transparency case and uses a slider control. The control is calibrated in units which are 1 stop (representing a doubling in quantity of light) apart; we call these LV (Light Value) units. Having found the LV number, the camera setting can be found using the circular calculator on the underside of the meter.

After building the first prototype we found that we needed to build a second one (there were two of us at ETI who wanted the meter, so to save arguments we built another). The mark II shows some of the possible alternative methods of construction – we used a small Vero box and a conventional pot. Now the rotation of the control automatically sets the calculator without the need for LV numbers, The circuit was the same in each case.

As it stands the meter is ideal for measuring light levels normally found indoors — but it cannot cope with highly illuminated sets or outdoor work. To give an additional range to the meter we use an optical attenuator, a mechanical filter placed in front of the LDR window. Now the instrument can cope with all the lighting conditions met by the amateur photographer.

Fig. 2. The pcb design.

The reward! This is the kind of picture you can take with this meter (shown in action on the front cover).

CONSTRUCTION

The pcb holds all the electronics except the pot, the batteries, the switch and the LDR. The transistors must be mounted as low as possible on the board so that it can be fitted under the pot. The positioning of the LEDs can be finalised only when the board is mounted in its case.

We will give details of construction in the slide case. Fig. 4 shows how slots are cut to enable the mechanical filter to be fitted. The LDR window is marked out, according to Fig. 5, and made into a diffuser by rubbing with wirewool. Then the transparent top is painted (except for the window) with a couple of coats of matt black paint.

Fig. 6. shows the construction of the LDR holder. The dimensions here are important — they decide how much of the light falling into the window will be measured by the LDR. The holder must be a light-tight box use matt-black paint and glue to achieve this.

The battery holder is located at the other end of the box top, and is made from perspex; see. Fig. 7. A useful source of copper contacts is raw printed circuit board – glue pads at each end of the holder and solder leads to these.

The photographs show how the slider pot and on-off switch are

mounted. Fig. 8 gives details of calibration for the pot. The pcb is mounted by one bolt through the centre – this bolt also acts as the centre of the calculator. The prototype calibrations, Fig. 9, will work if the meter is constructed exactly like

8 9 10 11 12 13 14 15

LV

73

the prototype. Check the meter against a known accurate instrument, then if adjustment is required this only needs to be done by moving the scale of LV numbers a little (the time and aperture scales ought to be ok).

The prototype was held together by

10

BRIGHT

Fig. 8. The scales for calibrating the slider pot.

The top of the transparency box is painted black inside. Then the Battery Holder (left) and LDR Holder (right) are built into opposite ends.

ELECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

EXPOSURE METER

a 6BA bolt (Fig. 10), but less crude methods can be used if you can think, of them.

The mechanical filter is constructed from 18swg aluminium. The necessary information is given in Fig. 11. Twelve holes are drilled, in three columns of four. Vertical separation is 4mm, horizontal 9mm. The size of the holes is 1.16mm diameter. Check that all the holes are over the window (the format of the matrix is not critical, but should be symmetrical).

Inside the Mark II. The pcb is mounted on the back of the pot.

Construction in the Vero box can be seen from the photographs. The LDR holder and battery holder are the same as before. We used a push-on miniature switch — this will keep the drain on the mercury cells down to a minimum. The pcb is mounted on the back of the pot. It is held by the connecting wires. The body of the pot is covered in pvc tape to prevent shorting.

The calculator was made from two discs cut from plastic board. Perhaps the best way to calibrate the MkII is to use an accurate meter (borrow one). We found that we needed to divide the circle into 13 segments. The useful range of the pot's rotation has nine stops (nine of these segments). The aperture settings found on your camera can be marked on the outer disc (in the sequence 1, 1.4, 2, 2.8, 4, 5.6, 8, 11, 16, 22, etc).

Beneath the outer disc we glued a pointer (a plastic arrowhead) which runs in a slot cut into the thick perspex block beside the calculator. This holds the outer disc firm while the inner is rotated and allows the Fig. 11. The machines much for the same but the supports need re-designing to fit the case.

outer disc to be turned for setting film speed.

In the middle of the perspex block we marked a speed of 80 ASA. (the full sequence was 20, 40, 80, 120, 320; with extra markings for 25, 50, 100, and 200 ASA). With the pointer at 80 ASA we found that with the control set mid-range an aperture of f5.6 would require an exposure of 1 second. So we calibrated the inner scale 1/15, 1/8, 1/4, 1/2, 1, 2, 4, 8, 16; to give times for all apertures marked on our meter. To extend the range for other film speeds we marked two more stops each way.

The mechanical filter is of the same basic design as before but needs remodelling to fit around this box. The inner scale of the calculator is in fact cut into 26 sequents so that the second range (with the mechanical filter) could be incorporated. On this range we got an exposure of 1/250 sec at f5.6, ASA 100, with the pot mid-range.

All that remains now is to find some black leather, a 5" zip, and some obliging lady to make you a case!

HOW IT WORKS

The resistance of the LDR varies from 300Ω to $10M\Omega$, from bright sunlight to darkness. When the meter is set up the ratio of LDR resistance to R1 is the same as the ratio of resistances on the pot, so the position of the wiper contact varies with the light being measured.

In equilibrium Q1 and Q4 are both turned off (Q2 and Q3 sense this condition and the LEDs light up). Setting up equilibrium is made critical by the common emitter resistor, R3. When one transistor is conducting the potential on the emitter rises and helps turn off the other transistor.

WHERE TO GET THE COMPONENTS
The slider pot is available from
Electrovalue (Type PG58) for 38p. (plus
15p small-order surcharge) inc VAT.
The batteries are type 675 from boots,
but these aren't critical.
The PCB can be obtained from advert-
isers in this magazine (Ramar or Crotton).
The Vero boxes are available from
Vero only in 10-off quantities. Your local
components shop is likely to sell them for
about 30p, plus VAT, each.
North America Radio Shack supply the
following components for this project -
Cadmium Sulphide photocell (LDR); Gen-
eral purpose NPN transistors=2N3904 etc:
General purpose PNP transistors=2N3906
etc: Resistors, pot, switches, LEDS, all OK.
South Africa Hamrad can supply the com-
nonents for this project. The MK7251
Cadmium Sulphide photocell will do for
the LOR but the calibration might have to
be done again.
Do dono apenn

AMT	RON KITS	MACK'S ELECTRONICS FOR	
UK 302	Radio Control Transmitter 4 channel £17.50	MOTOROLAMCMOS	FAIRCHILD 723
UK 105/C	FM Microtransmitter	MC14001CP Quad 2 Input NOR	FAIRCHILD 741
UK 325	R/C 'Gxc2' Channel Split- ting Unit 1000 ∝ 2000Hz	MC14002CP Dual 4 Input NOR	8 Pin Dil Op Amp 30p SIGNETICS NE555v
UK 330	£8.34 'Gxc2' Channel Splitter	MC14015CP Dual 4 Bit Static Shift Register £1.25 MC14017CP Decade Counter £1.22 MC14021CP 8 Bit Static Shift Register £1.26	8 Pin Dil Timer 60p FERRANTI ZN 414
LIK 220	Unit 1500 ∝ 2500 Hz £8.34 Signal injector £3.52	MC14023CP Triple Three Input NAND 20p MC14027CP Dual J-K Flip Flop	Radio Chip £1.25 MOTOROLA MC 1310P
UK 345/A	Superhet R/C Receiver	MC14048CP Phase Locked Loop £1.85 MC14510CP BCD Up-Down Counter £1.40 MC14611CP BCD 7 Segment Latch Decoder Driver	14 Pin Dil Coiless Stereo Decoder £2.10 MOTOROLA MFC4000B
UK 555	R/C 27mHz Field Strength Meter F9.65	MC14528CP Dual Monostable	1/4-Watt Audio Amp 75p
UK 780	Electronic Metal Detector £11.65	ALL PRICES INCLUDE V.A.T. Please allow 20n to cover P and P	LM380
UK 875	Capacitive Discharge Elec- tronic Ignition Unit Neg. Earth £17.33	The revolutionary	14 Pin Dil 2 Watt Audio Amp £1.20 NATIONAL SEMICONDUCTOR
UK 230	AM/FM Antennea Ampli- fier £4.16	outstanding features:	8 Pin Dil 1 Watt Audio Amp £1.05
UK 285	DHF/UHF Antennea Am- plifier £8.87	20.000 ohm per volt sensitivity Fally scroonsd agalant external magnetic fields	NATIONAL SEMICONDUCTOR LM1303
LITRON DL7	VIX DISPLAYS	Cable wrdth and small case immaiors (152 x 55 x 22mm) Accentery and stability (1% in O.C. 2% in A.C.) of indicated rading	14 Pin Uil Stereo Pre-Amp £1.65 NATIONAL SEMICONDUCTOR LM3900
(See ETI Digital F £1.80 C	requency Meter in this issue)	Gampierty and ease of use and readability Fell ranges of accessories 1000 times everland on the memotric ranges only	14 Pin DII Quad Amp 69p NATIONAL SEMICONDUCTOR MM5314
£1.80 ea	ach 6 for £10	£19.95	24 Pin Dil Clock Chip £4.35
			283 EDGWARE BOAD

WIACK'S ELECTRONICS

LONDON W2 1BB TEL: 01-262 8614 Callers welcome Open 9.30-6.00, Mon.-Sat.

I. Understand electronics.

Step by step, we take you through all the fundamentals of electronics and show you how easily the sub-

ject can be mastered using our unique Lerna-Kit course.

- (1) Build an oscilloscope.
- (2) Read, draw and understand circuit diagrams.
- (3) Carry out over 40 experiments on basic electronic circuits and see how they work.

2. Become a radio amateur.

Learn how to become a radioamateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure, without obligation to:

ELECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

NAME _ ADDRESS

Block caps please

PRICE LI	ST ALL PRICES EXC	CLUDE VAT AT 8%			
CLOCK CHIP NATIONAL MM5309 7 sec + BCD with reset	1-9 5-69	and the second second	DISPL	AYS	264
MM5311 7 seg + BCD with reset MM5312 7 seg + BCD. 4 digit only MM5313 7 seg + BCD MM5313 7 seg + BCD MM5314 7 segment MM5315 7 seg + BCD with reset MM5316 Non-mpx alarm clock MM5318 7 seg + BCD (external digit select)	5.69 5.69 4.88 5.69 4.88 5.69 10.17 3.36	LITRONIX DL707, 704, 701 DL727, 728, 721 DL747, 746, 750	1-9 1.48 3.75 2.45	FUTABA PHOSPHOR DIO 5LT01 5LT03 FILAMENTARY DISPLAY: Minitron 3017F Itoka 2.5"	DES 5.80 5.80 S 2.00 8.00 24.80
MM5371 Alarm clock 50Hz MM5377 Car clock, crystal controlled, LCD MM5378 Car clock, crystal controlled, LED MM5379 Car clock, crystal controlled, Gas disc M05176 Alarm clock (12Hz+60Hz/24Hz+5		DL707E, 704E DL727E, 728E DL747E, 750E	0.70 1.80 1.50	LIQUID CRYSTAL Swarovski 3½ digit watch dît	sp10.00
MK502263 Alarm clock (12H+50H2/24H+56 MK50204 Stopwatch/Calculator MK50395 UP/DOWN Counter—6 Decade MK50396 UP/DOWN Counter—HHMMSS MK50397 UP/DOWN Counter—HHMMSS	11.19 14.50 14.50	M	IHI DISPL	AY KITS	
CALTEX CT7001 Alarm/calender. 7 segment CT7002 Alarm/calender BCD CT7003 Alarm/calender 7 seg. Gas discharge CT7004 Alarm/calender 7 seg	7.30 7.30 7.30 7.30 7.30 7.30	MHI-707/4 (digit) 0.3" MHI-707/6 0.3" MHI-727/4 0.5"	6.60 M 9.50 M 8.50 M	ині-727/6 0.5" ині-747/4 0.6" ині-747/6 0.6"	12.00 9.80 14.70
CT6002 LCD/CMOS. Clock/watch chip	15.00	PAYMENT TERMS Cash with order, Access. E Credit facilities to accredited issued.	Barclaycard (sin I account holde	nply quote your number a rs. Pro-forma invoices can b	nd sign). e issued.
MHI CLOCK KI 1-9 MHI- MHI-5309 7.35 MHI- MHI-5311 7.35 MHI-	TS 50396 19.50 50397 19.50 7001 10.00	Please send 20p for post an ALL PRICES EXCLUDE VAT	id packing. AT 8%	00.0	
MHI-5314 6.60 MHI MHI-5318 7.35 + pad MHI-5378 15.10 + pad MHI-50250 8.35 SOCI MHI-50253 8.35 18 pin MHI-50204 14.00 24, 2 MHI-50395 19.50 Solder	CASE Please include 25p post tking) 2.95 KETS n 0.60 8 or 40 pin 1.00 rcon strip sockets 0.30	BYPP		BYWOOD ELFCF 68 Ebber Hemel Her Herts HP	RONICS ns Road npstead 3 90762
TTLs by TEXAS C-MOS LOGIC 7400 13p [7483 80p	OP. AMPS 1458 Dual Op Amp Int Comp 8 pm 301A Est Comp 8 pm	DIL TOP AC126 12P AC127 12P	TRANSI BF182 33p	STORS ZIX502 18p. 2M4289 20p	'0A90 '0A91
7401 14p 7484 95p I.Cs NEW 7402 14p 7485 12pp I.Cs NEW 7403 15p 7485 30p LOW PRICES 7404 16p 7495 270p LOW PRICES 7405 15p 7490 40p C04000AE 19p 7405 36p 7493 40p C04000AE 19p 7408 14p 7493 40p C04000AE 19p 7405 20p 7494 75p C04000AE 19p 7409 20p 7494 75p C04000AE 19p 7401 13p 7495 55p CD4011AE 19p 7410 13p 7495 75p CD4001AE 19p 7410 13p 7495 75p CD4001AE 19p 7410 13p 7495 75p CD4001AE 19p 7410 13p 7495 75p CD401AE 13p <	31g0 COS/MOS/6-Post-MesFet 8 pm 3900 Chaido Op Amp 14 p 3380 Chaido Op Amp 709 3709 Ext Comp. 8/14 741 Int Comp. 8/14 747 Dual 741 14 p 748 Ext Comp. 8 pm 776 Programmable Op Amp TOS UINEAR I.C.S CA3028 Diff. Cascofe Amp 705	OIL 100p Im DIL AC128 11p AC142 18p AC141 18p AC142 18p AC	BF184 22p BF185 22p 'BF194 10p 'BF195 9p 'BF196 14p 'BF197 15p 'BF197 15p 'BF200 32p BF257 32p 'BFR39 30p 'BF840 30p	2N697 13p 2N434160p 2N698 30p 2N4348160p 2N706 12p 40360 40p 2N708 18p 40361 38p 2N918 40p 40362 40p 2N928 20p 40364 120p 2N930 18p 40409 85p 2N1131 18p 40411 25p 2N132 18p 40411 25p 2N132 12p 40594 75p	OA95 OA200 OA202 1 IN914 IN4148 RECTIFIER BY100 2 BY126 1
A13 SLP J+107 SUP CO-013AE SOP JA14 SOP 74121 SOP CO-013AE SOP JA15 SOP 74121 SOP CO-013AE SOP JA15 SOP 74122 48p CO-013AE SOP JA16 SOP 74123 SSP CO-013AE SOP JA20 IAP 74123 SSP CO-013AE IZOP JA23 AP 74151 ZSP CO-0202AE IZOP JA27 SOP 74153 SSP CO-022AE IZOP JA27 SOP 74153 SSP CO-022AE I2OP JA27 SOP 74153 SSP CO-022AE I2OP JA20 IAP 74155 76P CO-022AE I2OP JA23 ZSP 74155 76P CO-022AE ISP JA32 ZSP 74156 SP CO-022AE ISP	CA304B Dued Low Note Amp. 16 p CA3089E FM IF System 16 p CA3080E FM Stereo Multi Dec. 16 p CA3080Z VCO Fun Gen. 14 p VLM380 Stereo Preamp 14 p VLM252 Rhythm Generator 16 p MC1312 FM Stereo Dec. 14 p VM21314 SQ Quad Dec 14 p	in OIL 200p AF115 18p in DIL 200p AF115 18p in DIL 160p AF116 18p in DIL 260p AF117 18p in DIL 25p AF139 33p in DIL 160p AF239 33p in DL 160p BC107 9p xin DIL 175p BC108 9p ain DIL 1100p BC109 10p	BFR79 30p BFR80 30p BFR88 30p BFX30 30p BFX85 25p BFX85 25p BFX86 25p BFX87 20p BFX87 20p	2N1305 21p 40595 85p 2N1305 28p 552 552 552 2N1307 28p 552 552 552 552 2N1307 28p 552 <td< td=""><td>BY127 1 BY210 4 BY211 4 BY212 4 BY212 4 BY213 4 IN4001 IN4004 IN4007</td></td<>	BY127 1 BY210 4 BY211 4 BY212 4 BY212 4 BY213 4 IN4001 IN4004 IN4007
7440 14p 74161 95p CD4028AE 140p 7441 65p 74162 95p CD4028AE 175p 7442 60p 74163 95p CD4023AE 175p 7442 75p 74164 120p CD4023AE 137p 7448 70p 74166 125p CD4042AE 132p 7450 15p 74174 120p CD4043AE 202p 7451 16p 74174 120p CD4043AE 140p 7450 15p 74174 120p CD4043AE 140p 7450 15p 74174 120p CD4043AE 140p 7453 15p 74180 100p CD4043AE 140p 7453 15p 74180 100p CD4043AE 63p 7450 15p 74181 200p CD4043AE 196p 7453 15p 74180 200p CD4054AE 196p	MCISTO 1/4W Audio Amp. PCB MCC0040 Electronic Attenuator PCB NE555 Timer 8 p NE555 Dual 555 14 p NE556 PLL with AM 0emod. 16 p NE555 PLL WITh VCO 16 p NE555 PLL FM/1F Demod 16 p NE555 PLL FM/1F Demod 16 p	70p 'BC147 7p 90p 'BC148 7p 1BC148 7p 1BC148 7p 1BC149C 8p 1BC149C 8p 1BC157 11p 1BC157 11p 1BC158 10p 1BC159 11p 1BC159 11p 1BC159 11p 1BC159 12p	BFY50 16p BFY51 15p BFY52 16p BFY39 34p BSX19 16p BSX20 18p BSX20 18p	2N2219 20p 2N3819 22p 2N2220 19p 2N3820 57p 2N2220 19p 2N3823 50p 2N2221 20p 2N5457 30p 2N2369 14p 2N5458 30p 2N2369 14p 2N5459 30p 2N2484 30p 2N5459 30p	2ENER 3.3V to 33V '400mW '1W
7480 13p 74162 32p CD40534E 1960 7470 27p 74185 135p C04056AE 135p 7472 25p 74190 144p CD4056AE 135p 7473 30p 74191 144p CD4056AE 228p 7473 30p 74192 120p CD40571AE 37p 7475 45p 74193 120p CD4051AE 132p 7475 30p 74193 120p CD4054AE 132p 7476 30p 74193 120p CD4081AE 132p 7480 80p 74194 188p CD4511AE 130p 7480 80p 74198 189p CD4511AE 200p	NE557 PLL Tone Dec. B p 2567 Dual 557 14 p 5517 2567 Dual 557 178,8100 SW Audio Amp 14 p 178,8200 SW Audio Amp 0L 178,8202 2W Audio Amp 0L 178,8202 2W Audio Amp 0L 178,8204 2W Audio Amp 0L 78,8205 2WA dubio Amp 0L 78,8104 7005 Timer/Counter 72,8414 TRF Foddio Receiver 100 apt/5	Sim Dil: 150p 100 Ol. BC177 18p 100 Ol. BC177 18p 100 Dil. 120p 100 Dil. BC179 18p 180 Dil. 120p 180 Di	MJE34045p MJE295599p MJE305565p MPSA06 30p MPSA12 50p MPSA12 50p MPSA56 32p	2N2905 20p 3N128 85p 2N2906 20p 3N140 85p 2N29268 7p 3N140 85p 2N29268 7p 40603 58p 2N29268 p 40603 58p 2N29266 9p 40673 58p 2N29266 9p UJTs	VARICAP BB105 2
Proc. Prop Pricity Teop CD4528AE 120p COLT AGE, REGULATORS, FIXED PLASTIC	TRIACS 100V 400V 50UV 100V 400V 50UV 50UV 3 4mp 85p 120p 150p 6 Amp 88p 150p 180p 10 Amp 103p 180p 195p 15 Amp 145p 210p 250p	BC213 10p BC213 10p BC213 10p BC214 14p BC430 99p BC470 18p BC499 95p BC770 18p BC470 18p BC5213 100p BC5213 100p BC5210 80p BC5210 80p BC70 18p BC123 100p Drac 21p BD124 65p	MPSU56 78p 0C28 65p 0C35 55p 0C36 60p 0C41/2 15p 0C45 15p 0C71 20p	2N3054 45p 2N3055 50p 2N3439 67p 2N3439 67p 2N3442140p 2N3442140p 2N3442140p 2N3702 11p 2N3702 11p 2N3704 11p 2N3704 11p 2N6027 48p	ZIJ 10 BRIDGE RECTIFIEJ 25A 100V2 1A 50V 2
ARIABLE Data sheets on regs at 10p each + s.a.e. DPTO-ELECTRONICS at 10p each + s.a.e. DCP70 30p SEVEN SEGMENT DISPLAYS DCP71 90p 3015F 0.3 m Dil 120p DRP12 SOp MAN3M 0.127 m PCB 110p DRP50 SOp DUTAD 0.2 m PCB 110p	SCR-THYRISTORS BT106 1A /700V C106D 1A 50V 705 40p 4A/400V 1060V 705 42p MCR101 1A400V 105 52p 0.5A/15V 1A600V 705 72p 2N3525 3A100V Study 49p 5A/100V	BD131 36p Stud 140p BD132 40p BD135 43p BD135 43p Plastic 55p 76D139 63p T0-92 25p BF115 22p T0-66 90p BF167 23p	TIP29A 40p TIP30A 48p TIP31A 52p TIP32A 58p TIP32A 58p TIP33A 90p TIP35A 115p TIP35A 225p	2N3706 10p 2N3706 10p 2N3707 11p 2N3708 9p 2N3709 9p 2N3709 9p 2N3773 'QA47 7p 2N3769 9p 20047 7p 2N3866 9p 200881 8p	1A 100V 2 1A 400V 2 1A 600V 3 2A 50V 3 2A 100V 3 2A 400V 4 6A 50V 6
Broot Bup DL/04 0 3 in Dil. 135p Brési 60p DL/07 0 3 in Dil. 135p DL707 0 3 in Dil. 135p 225p LEDS: Til209 Red 14p; Til211 Green 30p EDW PROFILE DIL SOCKETS BY TEXAS 8 pin 13p. 14 pin 14p. 16 pin 15p. 24 pin 50p. NSULATORS: Mica? Bunds for 103 & 1063 5 5p. 103 & 1063 5 5p. 103 & 1063 5 5p.	Jacubury Stud 75p 208444 7A1000* T055+HS 490 824/600v 7A4000* T055+HS 90p 284/500v 8A 502V Plastic 130p 12A400V Plastic 160p 284/30V 12A400V Plastic 160p 284/100V 16A100V Plastic 160p 0.84/100V 16A400V Plastic 120p 0.84/200V 16A600V Plastic 20p 0.84/200V	BF170 23p Plastic 185p BF177 25p T0-92 34p BF177 26p 10-92 37p BF178 33p 10-92 40p BF180 33p	TIP36A 270p TIP41A 65p TIP42A 70p TIP2955 70p "2TX108 10p "2TX300 13p "2TX500 15p	2N3000 30p OA85 10p 2N3903 18p OA85 10p 2N3903 18p VAT RATES 2N3905 18p ALL ITEMS 2N4058 15p CEPT when 2N4059 10p which are rate	AT 8% E e marked ed at 25%.
Fully branded devices by Texas, RCA Motorola, National, Mullard, etc.	Minimum Order £2 P&P 20p	All first grade devices Visitors, by appointment, welco Gover Colleges, etc. orders accurate	me. 5	ECHNOMATI	C LTD.

ELECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

All sectors

BOOSTER AMPLIFIER

The booster amplifier (cover removed).

Increase the output from your existing amplifier to 50 watts per channel.

			-
POWER OUTPUT			
Both channels of	driven	Ē0	M. DMC
	1	50 VC	HIS HINS
FREQUENCY RESP	ONSE.		
20 Hz – 20 kH	Z	± 0,5	dB
CHANNEL SEPARA	TION		
at rated output	and 1 kHz	80 dB	
HUM AND NOISE			
With respect to	rated output	t -100 dB	
SENSITIVITY			
For 50 watts ou	atput	500 m	٦V
DISTORTION	100 Hz	1 kHz	6.3 kH;
1 watt	0.14%	0.11%	0.12%
5 watts	0.17%	0.13%	0.15%
10 watts	0.16%	0.11%	0.13%
50 watte	0 27%	0 38%	0.60%

ELECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

AFTER many years of faithful service you have finally decided to update your old Hi-Fi system with a new pair of speakers. Upon evaluation however, you find that the modern speakers you

you find that the modern speakers you have chosen are much less efficient than those you presently have. This means that not only do you have to get new speakers, but you also have to replace an otherwise perfectly good amplifier because its five-to-fifteen watts output is no longer anywhere near enough. A pity, because there may be nothing wrong with the preamplifier and you may have to pay out £60 or more just to get that additional power.

An obvious solution is to retain your existing amplifier, which has all the facilities that you require, and obtain the extra power required by means of a booster amplifier. Unfortunately commercial booster amplifiers are very rare, if available at all. The ETI 422B is designed to fulfill this need and thus save the person updating his system a considerable amount of money that need not be spent in replacing the preamplifier.

The ETI 422B is designed to be used as a main amplifier, driven from the existing preamplifier, or as a booster amplifier driven directly from the speaker output of the existing power

amplifier. It provides an output of up to 50 watts into 8 ohm speakers with a distortion that is typically around 0.2%.

It must be noted however that the distortion and noise cannot be less than that available from the existing amplifier and you must ensure that this amplifier is of good quality if this add-on technique is to be successful.

HOW IT WORKS

The amplifier is constructed around the power module from the ETI 422 first described in the August 1974 issue of ETI and subsequently reprinted in Project Book 2. The only additional circuitry required is that for the input attenuator or for a direct input depending on whether a booster or main amplifier approach is being used. We have used 33 ohm resistors in the earthy side of each input to prevent the damage which may occur to some amplifiers if the leads to the booster amplifier are' inadvertantly connected the wrong way around.

CONSTRUCTION

Assemble the main amplifier printed-circuit board and the heatsink assemblies in accordance with the component overlays and drawings for the 422.

Any conveniently sized box would be suitable as a housing. To minimize hum pickup the transformer was mounted centrally to keep it as far away from the input circuits as posible. If a larger box is used put the transformers as far away as is possible from both inputs. Chassis mounting fuses were used as they are less expensive than the rear-panel mounting types, and only need to be changed on the very rare occasions when the speakers leads are accidently shorted.

A power outlet socket was fitted to the amplifier so that the existing amplifier may be powered from it if required. The individual constructor may include or omit this socket as required. The interwiring details (except for the heatsinks) are given in Fig. 1. For the values of resistors required in the divider networks reference should be made to Table 1 as these will vary depending on the power output of the existing amplifier. If required these may be made adjustable by substituting a potentiometer (10 k) for the series resistor.

Most modern amplifiers can work into a high impedance without trouble. However some older types, especially those with an output transformer need to be terminated into the correct load. The resistors shown across the inputs are for this purpose and should be made equal in value to the nominal output impedance of the existing amplifier. The rating of these resistors should be about two watts.

			-	- 4
а	к	ь –		

AMPLIFIER	VALUE OF
POWER (8 ohms)	SERIES RESISTOR

2W	2.7 k
5W	4.7 k
10W	6.8 k
15W	8.2 k
20W	10 k

FOR NEW READERS

The circuit and full constuctional details of this extremely popular 50W audio module are still available in Project Book 2, copies of which may be obtained by sending 90p (inc. postage) to: Top Projects No. 2.

ETI Magazine, 36 Ebury Street. London SW1W 0LW.

FOR CANADIAN READERS

Copies of Top Projects No. 2 will be sent to Canada surface mail for \$2.00 (2-3 weeks) or Air Mail \$3.00. Transistor equivalents to those shown:

BC177 may be replaced by Radio Shack's RS 2022. BD139 and BD140 may be replaced by 2N4921 and 2N4918 (Archer-Pak #276-117). MJE2955 is complimentary of 2N3055.

PARTS LIST ETI 4228

All components as per 422 parts list Chassis and cover as required. 4 Input terminals 2 speaker sockets Power outlet socket (if required) Power switch (2 pole) Necn indicator (if required) Nuts, bolts, spacers etc.

THE KIT COMPRISES EVERYTHING NEEDED

Roady drilled pressed steel case coated in matt black epoxy resin, ready drilled base and heatsink, top quality 5 year

DIY assembly kit £10.93 incl V.A.T post and packing Ready built unit £13.86 incl. V.A.T. post and packing (Both to fit all vehicles with coil/distributor ignition up to 8 cylinders.)

Switch fin instant changeover fruin "Sparkrite, ignition to conventional ignifion [2:79 incl. VA.T. post and packing R.P.M. limiting control [2:42 incl. VA.T. post and packing lifited in case on ready built unit, dashboard mounting

CALLERS WELCOME

ELECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

R.P.M. Limit systems in the above units @ £2.42

(Send SAE if brochure only required)

a cheque/P.D.s for E.

Che

n No.

DESK-TOP GRAPHICS

AT THE END of November, Tektronix revealed for the first time in Europe a new development in the microcomputer field. Their new 4051 desktop micro-computer offers a facility never seen before in the most sophisticated of progammable calculators graphics ability.

It has long been obvious that the human half of the man-machine interface can become punch-drunk when confronted with too many columns of figures on a print-out; and since time immemorial information has been presented in the forms of Programmable calculators have been getting smaller in size (to pocket size now) and more powerful, to minicomputer standards virtually, until now we have the Tektronix 4051- which is a megalomaniac's dream. This microcomputer is programmable in BASIC, a very wellknown, simple, yet powerful language, through a keyboard similar to that of a typewriter so that anyone who knows BASIC will be able to walk up to the 4051, switch on, and commence solving problems. The basic BASIC (?) language has been supplemented by One important benefit of the graphics screen is that one can see up to 35 lines of program at once; when used with the editing keys, one can delete and alter lines at will, so that correcting programs is very simple. But the main benefit of the screen is the display of graphs, drawings and histograms.

ETI watched the 4051 plot sin x from 0° to 360° in a few seconds, then add the first harmonic to this curve. Adding up the first 10 odd harmonics we were able to see a fair approximation to a square wave — what would Fourier have done with a machine like the 4051?

WHAT MAKES IT TICK?

The electronics inside are based on the Motorola M6800 microprocessor with 8k of RAM supplied as standard – this is expandable to 32k.

Microprocessor enthusiasts will be interested to know that all the standard routines and the BASIC language interprets are squeezed into 32k of readonly memory. The RAM strorage is backed up by a magnetic tape cartridge unit which offers another 256k characters of storage.

The Tektronix 4051 computer on a desk-top

graphs, charts and histograms on paper. How often has a scientist, statistician or businessman processed all his figures in a few moments and then spent a few hours plotting the results on graph paper, only at the end, to discover he'd made a mistake and had to repeat the process? Only the lucky few who had access to a graphics computer terminal which was coupled to a full-scale, expensive and underworked computer, probably could delegate the boring plotting to a machine, and gain the full benefits of interactively with the working machine.

some special instructions which are easy to learn – for instance, typing SET DEG will put the unit in degrees mode for trigometric calculations.

NO NEED TO PROGRAM

One very reassuring feature is that one needn't write programs to solve simple calculations. For example, we tried "2+2, carriage return" and the 4051 responded with "4". The extra calculator keyboard beside the main one is very useful when using this "immediate" mode.

By pushing the 'TUTOR' tape and pressing the 'AUTO LOAD' button, a completely inexperienced user can be taught to use the 4051, by the 4051. The program asks questions which are answered YES/NO, and the machine then proceeds to a new question, or explains fully the last point more fully if a mistake was made. Obviously, the principle can be expanded to enable the 4051 to 'teach' other subjects, such as statistics, electrical engineering, as well as solving problems in these fields. And at the price of about £4,500 it's probable that the 4051 will appear in schools and offices - it won't be long before you meet one.

Now...the most exciting Sinclair kit ever

The Black Watch kit At £17.95, it's

q

35

* practical – easily built by anyone in an evening's straightforward assembly.

*** complete** – right down to strap and batteries.

*guaranteed. A correctlyassembled watch is guaranteed for a year. It works as soon as you put the batteries in. On a built watch we guarantee an accuracy within a second a day-but building it yourself you may be able to adjust the trimmer to achieve an accuracy within a second a week. The Black Watch by Sinclair is unique.

Controlled by a quartz crystal... powered by two hearing aid batteries...using bright red LEDs to show hours and minutes and minutes and seconds...it's also styled in the cool prestige Sinclair fashion: no knobs, no buttons, no flash.

The Black Watch kit is unique, too. It's rational – Sinclair have reduced the separate components to just four.

It's simple-anybody who can use a soldering iron can assemble a Black Watch without difficulty. From opening the kit to wearing the watch is a couple of hours' work.

The special features of The Black Watch

Smooth, chunky, matt-black case, with black strap. (Black stainlesssteel bracelet available as extrasee order form.)

Large, bright, red display-easily*read at night. Touch-and-see caseno unprofessional buttons.

Runs on two hearing-aid batteries (supplied). Change your batteries yourself-no expensive jeweller's service.

The Black Watch-using the unique Sinclair-designed state-of-the-art IC.

The chip...

The heart of the Black Watch is a unique IC designed by Sinclair and custom-built for them using state-of-the-art technologyintegrated injection logic.

This chip of silicon measures only 3mm x 3mm and contains over 2000 transistors. The circuit includes

- a) reference oscillator b) divider chain
- c) decoder circuits d) display inhibit circuits
- e) display driving circuits.

The chip is totally designed and manufactured in the UK, and is the first design to incorporate all circuitry for a digital watch on a single chip.

... and how it works

A crystal-controlled reference is used to drive a chain of 15 binary dividers which reduce the frequency from 32,768 Hz to 1 Hz. This accurate signal is then counted into units of seconds, minutes, and hours, and on request the stored information is processed by the decoders and display drivers to feed the four 7-segment LED displays. When the display is not in operation, special power-saving circuits on the chip reduce current consumption to only a few microamps.

Complete kit The kit contains

1. printed circuit board

- 2. unique Sinclair-designed IC
- 3. encapsulated quartz crystal
- 4. trimmer
- 5. capacitor
- 6. LED display
- 7. 2-part case with window in position
- 8. batteries
- 9. battery-clip
- 10. black strap (black stainlesssteel bracelet optional extrasee order form)
- 11. full instructions for building and use.

All you provide is a fine soldering iron and a pair of cutters. If you've any queries or problems in building, ring or write to the Sinclair service department for help.

Trimmer

Batteries

Take advantage of this no-risks, money-back offer today!

The Sinclair Black Watch is fully guaranteed. Return your kit 10 days and we'll refund you without question. All parts a and checked before despa and correctly-assembled w are guaranteed for one year Simply fill in the FREEPOST form and post it-today!

Price in kit form: £17.95 (i strap, VAT, p&p).

=im-lair	Name /
Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs, PE174H.I	
Tel: St Ives (0480) 64646. Reg. no: 699483 England. VAT Reg. no: 213 8170 88.	Please print. FREEPOST-no stamp required.

2000-transistor silicon integrated circuit

Quartz crystal

To: Sinclair Radionics Ltd, FREEPOST, St Ives, Huntingdon, Cambs., PE174BR.

ur money	Please send me	Total £	
tch- vatches	(qty) Sinclair Black Watch kit(s) at £17.95 (inc. black strap, VAT, p&p).		* I enclose cheque for £ made out to Sinclair Radionics Ltd and crossed.
order	(qty) black stainless-steel bracelet(s) at £2.00 (inc. VAT, p&p).		* Please debit my *Barclaycard/Access/ American Express account number
	Name		
	Address		
74HJ.			ET1 2
no: 213 8170 88.	Please print. FREEPOST-no sta	mprequir	ed. *Delete as required

THE SINE WAVE oscillator described in the previous article was an example (albeit an extreme one) of how frequency selective feedback is used with operational amplifiers. We shall now go on to consider an amplifier employing non frequency-selective feedback and then amplifiers using feedback of such a nature as to produce two particular forms of frequency response. Then to conclude, there is a description of the use of an op. amp., as a dc amplifier, to increase the sensitivity of a moving coil meter - in this case the frequency is required to be limited to dc up to a few Hz only.

Figure 1 gives the circuit of a high input-impedance amplifier with a nominal voltage gain of 48 and a bandwidth of from 10 Hz to at least 50 kHz. In the prototype the measured value of input impedance was 10M Ω at 1 kHz. This value will vary slightly with frequency and with the particular layout employed, but in any case is likely to be as high as will normally be required for most applications.

As an ac connection, via a capacitor, is provided at the non-inverting input there would be no dc return for bias current, at that input, if R_3 were not present. The value of R_3 is 47 k however, bootstrapping is used to raise the apparent value of R_3 to the value of 10 megohm as quoted, in the following manner.

Due to the extremely high gain of the op. amp, and to the feedback between the output and the inverting input pin 2, there is very little difference in the signal levels at the twe and --ve inputs, and, since C1 has a negligible reactance, there is similarly very little difference in signal voltage at either end of R_3 . Accordingly, very little signal current can flow into R_3 from the signal input, thus R_3 appears, to the input signal, to be many times its actual value.

With the op. amp. arranged in the non-inverting configuration, the voltage gain is:

$$Av = \frac{R_1 + R_2}{R_1} = 48$$

This amplifier set-up is most likely

to be used in the design of a pre-amplifier for an oscilloscope or millivoltmeter, where the high value of input impedance is necessary in order to load the circuit under test as little as possible.

In audio applications, a 'tailored' frequency response is often called for; for example, the output of a tape replay head should be fed to a stage with a gain rising at 6dB per octave below about 2.5 kHz, and a flat response above that frequency. (The actual value of the break frequency depends on the tape speed and the particular replay characteristic employed). Such a response is readily arrived at by replacing R_2 of Fig. 1 with the network shown in Fig. 2a.

At high frequencies C_5 has a reactance low compared to R_6 and hence it can be ignored. Thus the gain is determined by R_6 alone (although R_5 is in parallel its value is large enough to be disregarded). As the frequency is lowered, the reactance of C_5 rises and consequently the frequency response shown in Fig. 3a. Resistor R_5 provides a dc connection for the negative input of the op. amp.

and limits the gain at very low frequencies.

The voltage gain of this circuit at high frequencies is about 16 times; this will make the tape head output comparable to that from a magnetic pick-up. If more gain is called for, this is best done by increasing the value of R_6 and reducing the value of C_5 in proportion.

What if a response suitable for pre-amplification of the output of magnetic pick-up is required? In this case the network of Fig. 2b is a suitable replacement for R_2 in the original circuit; the overall response of the stage is now as given in Fig. 3b.

Similar reasoning to that given for the tape head amplifier applies here also — the gain rises at lower frequencies as C_6 reactance becomes larger, falling at the higher frequencies as the reactance of C_6 and C_7 both fall. As before, R_7 sets the low-frequency gain.

These two latter configurations are good examples of the shaping of a frequency response to suit a particular need - as indeed was the audio oscillator of Part 2. Note that the response and the overall gain can be

58

Fig. 3. Responses of the three different amplifiers. adjusted independently.

All the circuits given so far in Part 3 are intended to make use of type 709 op. amps., although a 741 or an LM301 could be used with the appropriate equalizing network changes as detailed last month.

The amplifier configuration described is an inherently stable one and almost any convenient layout can be employed. A small piece of Veroboard was used in the prototypes, with a dual-in-line IC holder soldered in place and the remaining components placed around it.

For convenience, it is best to build the whole amplifier in a small metal box, either mounting this in existing equipment or leaving it as a separate unit for greater flexibility. The box must be earthed to give a measure of screening to reduce hum pick-up. This is especially necessary if the feedback networks of Figs. 2a or 2b are employed as both of these provide considerable bass boost thus aggravating the hum problem.

METER AMPLIFIER

Now for the dc meter amplifier which uses a 741 type IC. The circuit is given in Fig. 4. The values shown give full scale deflection on a 1 mA meter with only 10µA flowing into the

input.

Circuit function depends on there being negligible difference between the voltages at the two inputs of an op. amp, when arranged in a negative feedback configuration. Accordingly, whatever voltage is applied to the non-inverting terminal, that is, across R1, will appear at the inverting terminal, that is, across R3. However, R₃ is only 1/100th of the value of R₁, so that the current through R3 must be 100 times larger than that through R1. It is, of course, the current through R3 that flows through the meter, and it is worth noting that the value of this current is not affected by resistor R₂ in series with the meter provided of course that R2 is not too large to allow the required meter current to flow. The value of R2 is chosen here to limit meter current to about twice the FSD current, so providing a useful safety device should an unexpectedly high voltage be applied to the non-inverting terminal. Thus we have a circuit in-corporating a meter of 1 mA basic

sensitivity but which appears to be a meter of 100 times that sensitivity. Resistor R₄ is included to improve

the performance with regard to drift, of the meter reading, as temperature

ELECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

PARTS LIST
Flat response amplifier IC1 Integrated Circuit 709 8 pin DIL R1 Resistor 1k ¼ watt 5% R2 " 47k " 5% R3 " 47k " 5% R4 " 1.5k " 5%
C1 Capacitor 120 µF 6V electro. C2 " 0.22 µF polyester C3 " 100 pF ceramic C4 " 33 pF ceramic
Tape head network plus all of Fig. 1 R5 Resistor 1MΩ ¼ watt 5% R8 "15k "5% C5 Capacitor 3,300 pF polyester
Pick-up network plus all of Fig. 1 R7 Resistor 270k ¹ / ₄ watt 5% R8 "22k 5% C6 Capacitor 0.01 μF polyester C7 "3,300 pF polyester
Meter amplifier IC1 Integrated Circuit 741 8 pln DIL RI Resistor 1k ¹ / ₄ watt 5% R2 ["] 6.8k ¹ / ₄ watt 5% R3 ["] 33 ¹ / ₄ watt 5% R4 ["] 1k ¹ / ₄ watt 5% R5 ["] 10k ¹ / ₄ watt 5% R6 ["] 10k ¹ / ₄ watt 5% R7 [*] 10k ¹ / ₄ watt 5%

changes cause changes in the op. amp. bias currents. It is best selected by experiment, although the value given was found to be satisfactory with three individual 741's.

The voltage at the slider of RV, is fed via R7 to the inverting input to provide a means of setting the meter zero. It can, if desired, be used to give a centre zero, so producing a 5 μ A-0-5 μ A meter. The capacitor а C1 ensures that the gain falls at high frequencies.

With a basic sensitivity of $10 \,\mu$ A., this amplifier enables a dc voltmeter of 100 kohm per volt to be constructed. by connecting the appropriate resistor in series with the input. The value of the resistor is given by: R = 100 V kilohms

where V is the input voltage. required to give FSD

Note that the basic meter of 1mA is a type of movement that is much more robust, and yet cheaper, than others of greater sensitivity.

The actual method of construction can be adapted to suit individual requirements. If a 1 mA meter is bought for the job, almost any housing capable of containing it will have room for the 741 and the few other components required, whilst only three short lengths of wire are required for connection to the power supply. The test-meter used in the prototype had a 1 mA range, so a small aluminium box was used for the circuitry, with two output terminals for the test-meter connections, and, again, three leads for the power supply.

As with the audio amplifier, it is best to use a small piece of Veroboard to mount the IC holder and components, and to bolt the board to the box with insulated spacers if required.

STANDARD CANNON, STAN-DARD DIN

With reference to the article in your News Digest column (October issue) refering to the correct wiring standard for Cannon (or XLR) connectors, I am afraid you may have been misled as to the 'common' standard. As you may have noticed, DIN plug wiring is not always as standard as it should be (ie - right channel either 1 or 5 both - there are two "standard" ways of wiring a stereo DIN plug, both commonly appearing on domestic and foreign equipment and not interchangeable). As to saying that most manufacturers work to DIN standard, I can assure you that this is the exception. | know of two manufacturers of audio mixers that use male cannons on inputs and female cannons on outputs.

As to the correct wiring sequence, you were more correct in your original statement as Cannon plugs are wired in numerically ascending order ie: 1- Earth, 2-Low, 3- High (for balanced inputs) with 1 and 2 tied to Earth and 3-Hot (for unbalanced inputs). This system is easy to remember and suits the common name for these plugs in America, XLR, (earth, left, right); Cannons are mainly a US device. This system of wiring is common to all American radio and recording studios, and issued in all PA systems.

My band runs all of their equipment at 600 ohms: instruments, microphones, and amplifiers (customized by a US PA company). In the past 22 months we have never had to alter any wiring for feeds to any recording, radio. or T.V. studio nor PA company. This includes, recently, BBC radio, Capital radio, EMI Abbey Road studio, AIR London studio and The Music Centre, Wembley (DeLane Lea studio) as well as various radio and television studios in Europe and America. I believe this speaks for itself regarding 'standardization.'

Hoping I have been of assistance.

Wm. T. Penman, Equipment Manager "Renaissance"

IR BURGLAR ALARM

Having constructed the infra-red burglar alarm (July 1972) and overcome one or two minor problems, I tried to obtain the sealed beam lamp recommended in the parts list without success. I contacted one of the largest importers of General Electric lamps, who said he did not have that model and that it was not worthwhile to import just one anyway. Other readers must have met the same problem and solved it, if so I should be grateful for information that would enable me to replace the bulb and reflector that I have at present with a sealed beam lamp giving a parallel beam.

A. P. N. Beaumont-White, Putney.

AMBISONIC SEPARATION

Using ambisonics the separation between the front pair of speakers is only 3dB whereas that between the diagonal pairs is (in theory) infinite. With most programme material the majority of the 'action' takes place in the front part of the sound stage. It would therefore seem better if the greater separation was between the front (and rear) pairs of speakers. Using the notion used in ETI Vol. 4 No. 7 and taking LF as the reference direction the 'A' channel could be changed from

(keeping the 'O' channel the same).

This is the same as changing over the RF and RB microphones and speakers and means that the diagonals become the front and rear pairs when encoded. By extending this idea the front to rear separation could be made the greatest which might be useful for dramatic stage effects. If height were encoded as well then music could at the flick of a switch be turned upside down which is useful if you happen to be a sleeping bat.

C. P. Isbell, Hants.

6d Cleveland Road, South Woodford, LONDON E18 2AN (Mail order only)

New Course in Digital Design

Understand the latest developments in calculators, computers, watches, telephones,

television, automotive instrumentation

Each of the 6 volumes of this self-instruction course measures 11%" x 8%" and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

After completing this course you will have broadened your career prospects and considerably increased your fundamental understanding of the changing technological world around you.

Also available – a more elementary course assuming no prior knowledge except simple arithmetic. In 4 volumes:

- 1. Basic Computer Logic
- Logical Circuit Elements
 Designing Circuits to
- Carry Out Logical Functions 4. Flip flops and Registers

Offer. Order this together with Design of Digital Systems for the bargain price of £9.25, plus 50p p&p.

Design of Digital Systems contains over twice as much information in each volume as the simpler course. Digital Computer Logic and Electronics. All the information in the simpler course is covered as part of the first volumes of Design of Digital Systems which, as you can see from its contents, also covers many more advanced topics.

Designer Manager Enthusiast Scientist Engineer Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

A Self-Instruction Course in 6 Volumes

Computer Arithmetic.
 Boolean Logic
 Arithmetic Circuits
 Memories & Counters
 Calculator Design
 Computer Architecture

plus 50p packing and surface post anywhere in the world (VAT zero rated). Payments may be made in foreign currencies. Quantity discounts are available on request.

To: Cambridge Learning Enterprises, FREEPOST, St. Ives, Huntingdon, Cambs PE17 4BR "Please send me set(s) of Design of Digital Systems at £6.45 each, p&p included
for set(s) of Digital Computer Logic and Electronics at £4.45 each, p&p included
*or combined set(s) at £9.75 each, p&p included Name
Address
*delete as applicable. ETI z No need to use a stamp—just print FREEPOST on the envelope.

ELECTRONICS PART 24 —it's easy! Introducing Digital Systems

WE BEGAN this course with a discussion of electronic systems in general; what they do, how they do it and how we can progressively break down a complex system into fundamental building blocks. The example chosen then, a TV system, uses, in the main, analogue signals. These we know from other parts of the series are those signals that contain information in the form of many continuously changing levels of an electrical voltage (or current).

Although we have already introduced the concept of the on-off, or digital kind of signal, the course so far has concentrated almost entirely on the linear, analogue circuits used in electronic systems. The time has now come to study an alternative philosophy and practice, by which tasks can be accomplished in another manner — the digital electronic approach.

DIGITAL OR ANALOGUE SIGNAL APPROACH?

By itself a purely electronic system has no real value until it is applied to the real world we exist in. At the input of a system physical variables are measured by sensors that convert the information, from the original form of energy, into an electrical signal. This electrical-input signal is then conveyed, through the system being modified, and converted in different ways as required. The output signal from the system is fed to actuators which convert this signal back to real-world variables at the output. It is the differences between two basic means of transmitting and converting information that we are concerned with now.

We have seen in the earlier part dealing with information that both analogue and digital signals can convey the same information between two points. It is a matter of how the information is coded on the signal. It is not possible to state categorically that one signal form is better than the other. Each has its advantages depending upon the application. Analogue systems can process the same information using far less components, than their digital counterparts, but they are unable to provide anywhere near the same ultimate accuracy, precision and long-term stability. In some uses, such as precise mathematical computation. digital techniques are a must. The same holds true for measuring equipment needing better than around 1 percent, or perhaps 0.1 percent, accuracy.

Other factors that decide the choice of signal form are the cost of components needed, the size of equipment and power supply demands. Today, the enormously large-volume production of digital circuits, especially when marketed as large-scale integrated systems, coupled with the tremendous effort that has been expended on digital techniques for computing markets, has now tipped the balance heavily in favour of using digital methods. This is now true even for what have traditionally been analogue applications. It may well now be cheaper to use a mass-produced digital assembly for a more unusual analogue requirement, even when analogue circuits could easily supply the need.

Take, for example, the choice confronted when purchasing a good quality multimeter. The traditional multimeter can be represented as a resistive network driving a display meter - see Fig. 1. The signal level can be ascertained by the degree of pointer deflection seen on the meter. High input impedance units incorporate a linear amplifier to buffer the signal source against a relatively lowimpedance meter movement. Apart from the selector switch which has discrete settings, all components work with analogue signals and this means they must be linear in operation and adequately stable with time. Some components --- the ballast and shunt resistors, for instance - must be made to tolerances that require expensive hand-made manufacture. We can summarize the situation as one where only a few components are needed but they are inherently expensive.

The alternative is to use a special circuit that we will discuss in detail in a later part. This is called an analogue-to-digital converter (or just A-to-D converter). As represented in the schematic of a digital multimeter given in Fig. 2, it converts the analogue input level into a digital signal form that is then used to drive a digital readout display. These units display the output value as a decimal number rather than as the position of a pointer as is used in totally analogue systems. We will see, as we delve more deeply into how such a system works, that the digital alternative uses literally dozens of active elements and many

to allow considerable lattitude in the open and closed contact positions, thus ensuring reliability. Electro-mechanical switches come in many shapes and sizes.

many more passive components than an analogue type of multimeter. Yet, today, there is little difference in the cost of either alternative for the same accuracy. The digital scheme, however, can be made considerably smaller, may be made more accurate, uses no more power and may even have circuitry that automatically selects the most appropriate range for itself.

example is found in Another We have seen how computing. operational amplifiers - those that perform linear arithmetic inherently can be used to solve equations and do complicated arithmetical operations in what are called analogue computers. These can provide extremely powerful solutions of mathematical problems for quite small outlays. But only if the problem does not require highaccuracy - then digital computation is needed. Another instance where digital method is a must is when the problem involves logical type operations where yes-no decisions are needed. Digital computers can sort information into groups and decide which way to proceed at a decision junction. This will become clearer when we discuss the mathematics of logic which is quite unlike normal algebra.

As with the multimeter example, digital computers also involve many more components than the analogue units that would perform similar tasks. Yet, somewhat strangely, they can be far less expensive, much more accurate and more reliable. Undoubtedly the trend in electronic systems is toward more use of digital solutions – but this does not mean that analogue systems have no place in electronics.

One dominant reason why digital systems can be so reliable and positive to design is that the signal operations involve switching rather than continuous-mode action. We, therefore, begin our study of digital systems by looking at the design merits of various switching devices, starting with the mechanical kind.

MECHANICAL SWITCHES

The ON-OFF switch has only to define two states of circuit operation and hence the tolerances associated with each state can be very wide. Consider the basic mechanical switch having two contacts as shown in Fig. 3. When the contacts are disengaged it matters little how much further the designer separates them; the further they separate the less the chance of a spurious make-condition occurring. Conversely, when closed the spring action will ensure contact over a wide range of relative positions. The harder the two contacts are pressed together the better the reliability, but there will be negligible electrical change in the circuit-made state.

Continuing with the mechanical switch example we can also easily see that a switch with heavily over-travelled contact pressure or excessive opened distances will be slow

ELECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

to change to the opposite mode because greater force, or more travel, is needed to effect the change.

Another feature of the two-state. switching circuit is that the switch's power rating can be very small compared with the load power being controlled. This arises because in each of the two states the switch has only to dissipate very small power losses. When open, see Fig. 4(a), the voltage across the switch is maximum but the current minimum. The power rating needed of the switch (neglecting arcing effects in this case) whilst open is, therefore, the product Vs.Is, and this is always very small, for only leakage currents flow when the switch is open. When closed, the situation is reversed; the current is now of the maximum value but the voltage drop is merely that due to resistive losses in the made contact (which can be very small). In practice the change of state from one condition to the other is so rapid that we can consider the switch as only ever being in the fully-off or fully-on case. This low-loss feature is used to effect in power-supply switching regulators where the "made" to "not-made" times of a vibrating contact are varied to pass the required amount of average power.

SOLID-STATE SWITCHES

Originally digital circuits did indeed use electro-mechanical switches; the relay as we know it. These are still used in some circumstances today but their size, cost, slowness of switching and possible unreliability now make them a poor choice, for logic applications, compared with solid-state switching alternatives.

A switch by definition, is a device that provides either a satisfactorily high or low resistance between two points, with the state being rapidly reversed by an external control input. It can be used in series or shunt to effect control. The degree of isolation provided is decided by the open-state resistance; the power rating is decided depending upon the impedances of the circuit elements connected to the switch. A perfect switch provides infinite open-circuit resistance and zero closed-circuit resistance. Typical resistances encountered in a small relay are from many megohms (contacts open) down to mere milliohms (contacts closed) thus giving excellent switching characteristics. Solid-state switches normally do not provide such large resistance ratios (some special devices come close) giving around a megohm to a hundred ohms change which is adequate for most logical tasks performed by digital systems. Another disadvantage of most solid-state switches is that, as we will see below, the circuit connected to the switching part of the solid-state switch is not completely isolated from the

by the made-state switch resistance.

What is high or low is purely relative,

circuit actuating the switch mechan-

the development of workable solid-state switching systems has been influenced by the need to make-do with this shortcoming. A relatively recent newcomer to the solid-state switch, which overcomes the last disadvantage, is the solid-state opto-electronic isolator, shown in Fig. 6. This uses the actuating input to energise a solid-state light-emitting diode (LED); this, in turn, deduces the resistance of a light sensitive detector that acts as the 'contact'. This device is used in a minority of switching operations involved in digital circuitry where extremely high isolation is required between the switching and the switched circuits.

The two most commonly used solid-state switching techniques are those using two-terminal diode designs and three-terminal active element designs based on devices such as the transistor and other solid-state amplifying devices.

SWITCHING WITH DIODES

Let us first look at a diode wired to provide a switching function. In Fig. 7 a diode is connected to a bias supply V and to the input as shown. When the input voltage Vin is more negative that the bias voltage V the diode is forward-biased providing a quite low resistance path between the input and the output terminals. In this state Vout will be closely equal to Vin. If the bias voltage (or the input voltage) are changed to make Vin more positive than V the diode becomes reverse-biased placing a highresistance between input and output. Thus, by changing V from positive to negative we have produced a switching action between input and output terminals.

A similar action is provided if the diode is wired in shunt across the line rather than in series as shown in Fig. 8.. The state of V decides whether the diode shunts the line (when forward biased) or not (when reverse-biased).

In either design it is important that the diode resistances in the two states, the output impedance (R_S) of the preceding stage connected to the input, the load impedance (R_L) connected to the output and the

ELECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

bias-resistor value (R) are all chosen to have the right ratios in the two switching states. Adequate switching action will not result if the bias input is allowed to dominate the values being switched.

It is important that the bias voltage actually developed across the diode is sufficient to produce a diode forward-current greater than a value around the knee of the IF against VF characteristic - see Fig. 9. For a silicon diode this requires at least 700mV, a germanium diode at least 350mV: these values vary little with make or shape of particular device, being а parameter of the semiconductor material itself. Note how a quite large change in forward current hardly changes the dynamic resistance once the knee is passed. (Dynamic resistance is the slope of the characteristic which is reasonably constant beyond the knee). This reliable and constant loss switching (but not zero-loss) results over a very wide range of bias current conditions.

In its reverse-biased state the diode provides a larger resistance. Fig. 9 shows that germanium diodes do not provide as high an 'open' resistance as do silicon diodes - this is because the slope of the germanium characteristic is not as horizontal as that of silicon. Nevertheless both slopes represent higher resistance than in the forward-biased case, proving that resistance of the diode changes markedly. Again, we see that both reverse-biased curves are closely linear meaning constant resistance or, in other words, constant "open circuit" switch resistance,

When selecting the value of switching bias to apply it can be seen from Fig. 9 that too high a value for silicon devices will cause breakdown at the zener point, providing instead, a condition that could cause total failure of the device. The speed at which diodes can switch is a function of circuit values and the characteristics of the diode. It is routine practice with diodes to switch at tens of megahertz rates or higher. Mechanical switches are limited to less than 1 kHz at the very best.

Later in the course we will see how these basic diode switches can be used to perform logical operations by connecting more than one diode to the same bias source. Such connections are called gates.

SWITCHING TRANSISTORS

Now to the use of three-terminal devices, transistors for instance, as switches rather than as linear amplifiers. This can be explained using the IC versus EC characteristics of a typical transistor, as is given in Fig. 10. The two switching states occur when Ib is either large or small. A chosen collector resistance value (in common emitter configuration) establishes the load-line on the characteristic. In a switching-mode the transistor operates around points A or B. At A, Ib is large; the transistor is, therefore, switched on with VCE being very close to zero

volts. At B IB is small (practical circuits may apply a reverse polarity to ensure this); the transistor is switched off with VCE being virtually at the supply voltage. In the on-stage the transistor provides a low-resistance path between its collector and emitter: when off, a high-resistance path.

The transistor switch, unlike non-amplifying diodes and mechanical contacts, does not directly pass the input signal but instead replicates a signal current in its base by providing an equivalent change in collector current or voltage. In reality a large proportion of digital circuits regenerate in this way with the output signal change closely following that of the input.

At either of the circuit operating points A or B the transistor is operated well within its allowable power dissipation. As we should expect, a given transistor used in a switching mode can handle a greater power than if operated as a linear amplifier. A little thought will also show that the load line can, in switching use, intercept the maximum dissipation curve, the reason being that the transistor does not dwell long enough in states other than A or B to produce deleterious heating. It is vital, however, in such designs to ensure that the switching action is rapid between states, and that the device never dwells on the way through. A ramp input signal may well destroy a stage designed to switch!

The above explanation is most basic – reality requires other criteria to be recognised to obtain more ideal switching. Like the over-travelled mechanical switch, a transistor switch with too much reverse-bias base current (off-state) or too much on state base current will be slower to operate than one not driven so hard. This is because the charge associated with the base current must be removed to alter the state and the more the charge there is to move, the slower will

ELECTRONICS -it's easy!

ñv

be the switching time. Solid-state switches operated very positively by use of large drive currents are said to be working in a saturated state.

· Certain circuit devices can be added to the basic solid-state switch to speed up the response. The first is to supply a much larger input signal than would be needed to just turn it on. This speeds up the charge movement but would take the device into deep saturation unless clamps are added that hold the circuit nodes at given values. Diodes acting as switches are often used to hold a point at a given voltage. A second circuit addition is the speed-up capacitor. This is a small value capacitor placed across the resistor feeding the input of the switching stage. When fast switching signals occur the capacitor provides a low impedance path around the resistor which must be of a reasonably high value to supply correct dc signal level requirements. Yet another technique is to use feedback between the collector and the base to speed up the switching transition yet hold the stage in a non-saturated state once switched. Fig. 11 is a non-saturating switch circuit - one of many possibilities. It shows how the basic transistor needs the addition of more

components to realise fast switching in discrete designs.

The integrated-circuit revolution has provided us with inexpensive, ready-made digital circuits of great sophistication. These are extremely basic yet super fast — see Fig. 12. Rarely does one now have to consider the in-depth design of switching circuits. The task is usually one of devising a system using a few basic, digital system building blocks which have been so developed as to facilitate their ease of connection into systems.

The reliability of the switching state of an electronic circuit is one reason for the widespread use of digital techniques. There is another equally important reason for the use of digital signals and that is that philosophers and mathematicians of the past have developed powerful ways to process logical information by way of special-algebra and techniques. This is employed to design complicated switching circuits and other digital systems with the simplest possible circuitry. In the next part we lock at these philosophical concepts in readiness to return to a discussion of the basic, digital-system Suilding blocks.

Wilmslow		
Audio		
Auuio		
THE firm	-	
for		
speakers!	3	
Baker Group 35, 3, 8 or 15 ohm Baker Deluxe, 8 or 15 ohm Baker Deluxe, 8 or 15 ohm Baker Regeni, 8 or 15 ohm Baker Superb, 8 or 15 ohm Celestion PSTB (for Unilex). Celestion MH 1000 horn, 8 or 15 ohm EMI 13 x 8 350, 8 or 15 ohm EMI 13 x 8 350, 8 or 15 ohm EMI 13 x 25 watt bass EMI 24" tweeter 8 ohm EMI 8 x 5, 10 watt, d/c, roll/s 8 ohm Elac 5V4" d/c roll/s 8 ohm Elac 5V4" d/c roll/s 8 ohm Elac 5V4" d/c roll/s 8 ohm Fane Pop 15 watt 12" Fane Pop 25 12" 60 watt 8 ohm Fane Pop 55, 12" 60 watt 8 ohm Fane Pop 55, 12" 60 watt 8 ohm Fane Crescendo 15, 8 or 15 ohm Fane Crescendo 12 A or 8, 8 or 15 ohm Fane Crescendo 18, 8 or 15 ohm Fane Crescendo 18, 8 or 15 ohm Fane 801T 8" d/c roll/s 8 ohm Goodmans 12P 8 or 15 ohm. Goodmans 12P 8 or 15 ohm. Goodmans 12P 08 or 15 ohm. Goodmans Atient 100 8 orts ohm Goodmans Atient 100 8 orts ohm. Goodmans Atient 100 8 orts ohm. Goodmans Twinaxiom 10" 8 or 15 ohm. Goodmans Twinaxiom 10" 8 o	410.25 £13.77 £10.02 £13.87 £13.87 £13.80 £2.94 £9.00 £0.77 £3.44 £4.50 £1.75 £1.475 £7.50 £2.85 £3.450 £47.50 £2.85 £3.450 £47.50 £2.85 £1.95 £2.11 £5.95 £1.650 £2.312 £2.312 £4.050 £2.315 £2.312 £4.050 £2.315 £4.050 £2.315 £4.050 £2.315 £4.050 £2.315 £4.050 £2.315 £4.050 £2.315 £4.050 £2.315 £4.050 £3.95 £3.12 £4.050 £3.95 £3.12 £4.050 £3.95 £3.12 £4.050 £3.95 £3.12 £4.050 £3.95 £3.12 £4.050 £3.95 £3.12 £4.050 £3.95 £3.12 £4.050 £3.95 £3.12 £4.050 £3.95 £3.12 £4.050 £3.95 £3.12 £4.050 £3.95 £4.050 £4.050 £4.050 £4.050 £4.050 £4.050 £4.050 £4.050 £4.050 £4.050 £4.050 £5.050 £5.050 £5.050 £5.050 £5.050 £5.050 £5.050 £5.050 £5.0	
Wharfedale Dovedale 3 kit, pair. Wharfedale Super 10 RS / DD Castle Super 8 RS / DO	£63.12 £15.00 £10.31	
Prices correct at 14.10.75 INCLUDING VAT AT 25% ON HI-FI 8% ON PRO AND PA		
Cabinets for PA and HiFi, wadding, Vynair,	etc.	

Send stamp for free booklet "Choosing a Speaker"

FREE with all orders over £7 - "HiFi Loudspeaker Enclosures" Book

All units are guaranteed new and perfect Promot desoatch

Carriage: Speakers 50p each, 12" and up 75p each, tweeters and crossovers 30p each, kirs 80p each (£1,60 pair).

TOP PROJECTS BOOK ONE	(75p)	ELECTRONICS-ITS-EASY	¢.1.20)
TOP PROJECTS BOOK TWO	(75p)	INTERNATIONAL 4600	(£1.50)
POSTAGE AND PACKING is 15p for the first. 10p for subsequent	(overseas 20p and 1	5p).	
Please send me the issues indicated above; I enclose	which includes	; postage.	
NAME			
ADDRESS			

Electronics by John Miller-Hirkpatrick

EARLIER THIS WEEK a small parcel insinuated itself through our letterbox; inside was a beautifully packaged Black Watch kit from Sinclair. As usual with Sinclair kits, all of the parts were laid out in a plastic tray and the whole kit is presented in a neat plastic case; first impressions - very good. Open up the case and find the instructions plus any of the usual addendas and read thoroughly to get a general idea of the construction sequence. The only addenda mentioned a plastic-backed copper shield which has to be bent eventually to surround the completed module in order to protect the module from large static build-up which the plastic case would not ground back to the skin.

First step -- identify all of the components from the list and check that all of the components are there and that none are duplicated in any way. Most of the components listed are obvious but some could be identified better by drawings or by further description. For instance, the kit contains an ampule of grease and a small tube of varnish (these are mentioned as grease and varnish); if you open the grease in mistake for the varnish you could get into a very sticky mess. Now we will follow Sinclair's instructions through with any problems that I found or any comments that I feel are worth making.

ASSEMBLY

PREPARE PCB. "The 1. component side of the board should be thinly coated with some of the varnish supplied. Do not get varnish on the rear of the board and do not varnish the lower row of contacts. Allow the varnish to set for 2-4 hours before proceeding. The varnish can be applied with a small piece of scrap paper but I suppose that a small paintbrush would be better - add this to your list of tools required. As you can see the kit is not to be completed within a couple of hours, in fact it will take you about 3-4 hours' construction time spaced over as many days.

2. PREPARE TRIMMER. "The arms of the trimmer should be

68

carefully removed with side-cutters. Take care as the body of the trimmer is easily cracked. A small file will be useful to remove burr from the legs. The trimmer is now inserted in the board ensuring the base is flush with the board; it is then soldered in place. Do not use too much solder on the large . cut off the leads within lead . . 1/2mm of the rear of the board." The trimmer supplied has two legs, one fat, one thin; each has a small projection about halfway up which has to be removed in order to get the trimmer sitting correctly on the PCB. All of the components have to be as close to the PCB as possible and the leads and soldering on the back of the PCB have to be as short as possible in order for the completed module to fit into the case. The ruination of your kit could start here if this major rule is not adhered

3. CAPACITOR. "The capacitor should be soldered in place with the white dot facing toward the integrated circuit." Apart from the obvious and unfair comment that the integrated circuit is still in the box, the leads on this capacitor have to lie across tracks on the PCB. These tracks should have varnish on them and thus be insulated but ensure that the capacitor leads are not touching the tracks during soldering as I suspect that the heat could melt the varnish and cause a short.

4. QUARTZ CRYSTAL. No problem with this component, yet again Sinclair mention components being flush with the board.

5. DISPLAY. Once you have identified pin 1 with the help of a drawing this major component should cause no problems.

6. INTEGRATED CIRCUIT. The instructions on handling the IC and soldering it into place are very clear and this component should cause no problems.

7. FLEXIBLE PCB. This PCB carries the switch contacts and the battery contacts; if you have one or two dummy runs at the instructions you will probably get it right. There is a drawing of the folding of the PCB but it is not quite clear enough

at first. Be very careful with this PCB as it can be melted or torn quite easily; one of the problems with this type of PCB is that the track can break from continuous folding and this break can be very difficult to find and correct.

The basic module is now complete and we come to the crunch, the Sinclair testing procedure. If you follow the instructions correctly you stand a good chance of cracking the flexi or flattening one of two expensive batteries.

TESTING. "Place the batteries on the battery contacts in the correct positions and use the Bulldog clip to hold them in place as shown. The metal clip acts as a series connection between the batteries. When the contact pads are touched with a metal object the display should light up. If this does not happen check that you have assembled the board correctly and that the batteries are connected in the correct polarities. The clip must be making a good series contact. If a single bright digit appears, momentarily interrupt the battery supply. The watch should then appear blank until one of the contact pads on top of the IC is touched." I used a Bulldog clip as prescribed and immediately shorted one of the batteries; if the Bulldog clip is too large then the clip not only connects the negative of battery A to the positive of B but. also can connect it to the positive of battery A -- result no battery A. Use a small clip and insulate one side with tape; it is also a good idea to scrape the other side to ensure a good contact. The same flattened battery can result if the two battery cases touch, which cannot happen when the module is cased but can

easily happen at this point; use a small piece of tape or card to separate the two. Flat batteries can cause a lot of trouble and upset at this point so, if in doubt, check that the total voltage is 2.7 volts — on load as well as off Ibad. Pin 18 of the IC is positive and pin 10 negative; if you can connect a meter to these points and then test the display you can check the condition of the batteries.

THE LONG HAUL STARTS

Now that your module works you have only to varnish the back of the PCBs, trim the timing with the trimmer and case the watch - this should take you three days. The instructions on varnishing and adjusting are very good and quite understandable but the final assembly into the case would be helped if an exploded diagram was given. It is reasonably obvious where everything goes but it might take you several tries to get everything in the right place, the right way round at the right time; a drawing could make it clearer. It is at this point that you find out how well you managed to get your components close to the board and how good your soldering and lead trimming was; if the back of the case does not fit don't try to force it, find out why it won't fit.

SUMMARY

The Sinclair Black Watch is a brilliant piece of design both inside and outside. If you want one I would suggest to most people that they should buy the completed watch from Sinclair at £24.95 plus VAT - they should be available from January 1st. If you really want to build one make sure that you have the right tools and the patience and the experience. Remember that this is probably the most intricate and the most compact kit that you have ever built. I would not recommend it for beginners or even for people with some experience; it is much more complicated and fiddly than a Cambridge or Scientific kit. On the other hand, a completed Black Watch kit will give a lot of pleasure and pride; not only do you own one of the first digital watches that looks like a digital watch, but you built it!

Editor's Note: We have not altered the author's comments on the Sinclair Watch but the Editor has also built one of these and considers some comments a trifle harsh. It is not a beginner's kit and we did have a few problems, largely due to our impatience to get it working. Nevertheless we consider these minor and do not detract, in the long run, from an excellent product. Our watch is incredibly accurate, gaining less than a second a week!

After my recent comments on digital watches I received a lot of letters asking for advice. I have not had time to answer these letters individually and my apologies to those people. I would not advise the purchase of a complex watch until after the Basle Fair later this year as there might be some surprises being saved up for then. If you want to buy a watch with four or more functions, see it before you buy it and make sure that it is what you want. If you buy one from a mail-order company make certain that the company knows watches and can supply batteries, etc. You can usually tell at a glance from the advertisement; if they show a LCD, watch and call it LED, if they use words like "unique" too much, if they sell plastic toys in the same ad, especially if they say ''scoop purchase,'' ie the original manufacturer has gone bust:

My personal recommendations are either of the Black Watches (from Sinclair or Metac), the TLC4 from Metac or the Novus range of multi-function watches. Tesco's watch is supposed to be very good and I haven't heard anything bad about it, but I haven't seen one to comment on. The two Black Watches offer similar functions at similar prices and the choice is really in the case style. I like the Sinclair but my wife hates it (check with yours before you buy). My favourite is the TLC4 which has hours, minutes and seconds plus a date readout; this is a LCD watch with the additional facility of a back-lit display for night viewing surely this is much more logical than normal LCD or LED displays.

AN AUTOMATIC HEADLAMP DIPPER UNIT

The circuit follows an automatic parking light circuit in that when light from an external source falls upon the light dependent resistance LDR causing it to go low, the transistors in the circuit are not triggered, but when the external light fades, the resistance of the LDR goes high, allowing Q1 base to go positive and conducting so that Q1 emitter and Q2 base also go positive. Q2 collector current rises, energising the relay L1, this being 'normally open' contact arrangement, the contacts close and energise relay L12 which livens up the headlamp bright filaments. When approaching rays from street lamps or oncoming cars, the relay L1 drops out and disconnects L2 which drops out and energises the dipped filaments. RV1 controls the sensitivity.

The change over switch when switched to manual allows the dip switch to be used in a normal manner.

The unit can be placed under the forward edge of the dash. Then the

headlamp wire is removed from the headlamp switch and taken to **the** unit and another is run back to the vacated terminal. The LDR should be

mounted in a bicycle rear light housing (torpedo shape) and mounted at bumper height on the offside of the car.

HALF CHARGE RATE FOR CAR BATTERIES

Many simple fixed rate battery chargers have a circuit as shown in Fig. 1. When the battery is very low, excessive current may be taken, but a half-charge rate switch would prevent this. A resistor switched into the positive lead would do, but this would need to have a very high wattage. An alternative is to switch in a single diode in the low voltage A.C. feed to the bridge as shown in Fig. 2. This turns the full wave charge into half wave, thus cutting down the current.

If a bridge is used, the addition of a switch in the link between the negative plates will cut out half of the bridge, and half charge is obtained without the additional diode, as shown in Fig.3. Tech-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these items.

ETI is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for. Drawings should be as clear as possible and the text should preferably be typed. Circuits must not be subject to copyright. Items for consideration should be sent to the Editor, Electronics Today International, 36 Ebury Street, London SW1W 0LW.

LOW FREQUENCY STROBE

The circuit will flash the bulb at a rate between 0 and 10 Hz. Points to note are:

 (i) Because all components are connected directly to the mains, do not touch whilst the unit is on.

(ii) Use a television type 25k pot with insulated spindle.

(iii) Mount in an insulated box with ventilation holes.

(iv) The 5k resistor gets hot, hence the wattage rating.

(v) The 27k may be altered to obtain as full range of control by the pot.

There is a risk of inducing convulsive seizures in people suffering from epilepsy if this unit is operated in their presence. Such people should

TEST TRANSISTOR CURRENT GAIN

A reasonable estimate of current gain can be obtained from the above circuit. Before the button is pressed, the meter should give negligible deflection. Closing the contacts gives approximately $10\mu A$ to the base of the transistor, so every mA indicated by the meter has to be multiplied by 100 to obtain the current gain. The resistors and diodes are to protect the meter in the event of a short circuit transistor being tested.

For NPN transistors, A & B should be + & - whilst for PNP, A & B

SIREN CIRCUITS FOR CHILDRENS TOYS

This circuit was originally designed to produce the sound of a police siren for my son's pedal car. It uses two 555 timers connected as oscillators (see Fig. a). The first oscillator IC1 is set for a period of 6 secs, 3 on and 3 off. Diode D1 is included to give equal mark-space ratio. This oscillator determines the rise and fall time of the siren.

The square wave output on pin 3 is turned into an exponential rise and fall by R3 and C3. This is reproduced at a low impedance by the emitter

avoid areas where strobe lights are used. A rate of nine flashes per second

is considered the most dangerous and most people will find this unpleasant.

should be - & +. The meter also needs to be reversed with the change of polarity.

The changeover for both meter and battery could be carried out with a two-way, four pole switch.

follower TR1 at pin 5 of IC2. The 555 timer has the facility for its timing period to be controlled externally by means of a control voltage applied to pin 5. IC2 is set for a nominal frequency of oscillators of about 1kHz, but this is pulled above and below the set frequency by the exponential waveform on pin 5. The output wave form starts at a low frequency, rises over 3 secs to a high frequency, falls over 3 secs to a low frequency and so on.

The loudspeaker used was a 75 ohm ex mobile radio handset speaker. This gave more than adequate volume off a 9V battery. Any loudspeaker can be used, provided a resistor is put in series with it to keep the total impedance above 45 ohms (for a 9V supply).

As originally designed the circuit gives an American-type police siren. It can easily be changed to give other types of siren: If R3, C3, TR1, R4 are omitted, and IC1 pin 3 is linked to IC2 pin 5 by R7 as shown in Fig. 1b, the "De-Dah" sound used by the British police is given.

If the values of R1, R2 are changed and D2 is added as shown in Fig. 1c we get the Star Trek "Red Alert". The values of R1 and R2 give a highly unsymetrical output from IC1. C3 now continued on next page

tech-tip

continued from previous page

gets a rapid charge via D2 during the short positive output from IC1, but discharges through R3 during the long low output time. The wave form at IC2 pin 5 thus approximates to a saw tooth, and the resulting output starts

at a low frequency rises up to a high frequency over a period of 3 secs then falls abruptly to the low frequency again, and so on.

The circuits were originally built with 555 timers because I had a box

ELECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

capacitor.

frequency. The RFC could be replaced

by a resistor for wideband use. The sensitivity depends on the value of C1

and the resistor used if the RFC is

replaced. For high power transmitters, C1 could be a small 'gimmick''

This 76 page FREE book shows how! YOURSELF FOR A ETTER JOB I MORE PA

Do you want promotion, a better job, higher pay? "New opportunities" shows you how to get them through a low-cost, Home Study Course. There are no books to buy and you can pay as you learn.

This easy to follow GUIDE TO SUCCESS should be read by every ambitious engineer. Send for this helpful 76-page free book NOW! No obligation, nobody will call on you. It could be the best thing you ever did.

CHOOSE A BRAND NEW FUTURE HERE

CUT	OUT THIS C	OUP	ON E	
Tick or state subje	ct of interest. P	ost to	address below	N.
ELECTRICAL &	AUTO & AERO		MECHNICAL	
ELECTRONICS Practical Radio & Electronics (with Kit)	Motor Mechanics		A.M.S.E. (Mech.) General Mech. Eng.	
Electronic Engineering Certificate General Elect. Eng.Certificate C & G Elect Installations Elect Install & Work	Mechnics General Auto Engineering A.M.I.M.I. Air Registration Boa Certs.		Inst. Engineers & Technicians Maintenance Engineering Welding	
C & G Elect. Technicians	MAA/IMI Dip.		MANAGEMENT PRODUCTION	&
RADIO AND TELE- COMMUNICATIONS Colour TV Servicing C & G Telecoms	CONSTRUCTION Heating Ventilating Air Conditioning	AL &	Computer Programming Inst. of Cost & Management Accts.	
Technican's Cert. C & G Radio, TV & Electronics Mech. Certificate Radio & TV Engineering Course Radio, Servicing & Radio Amateur's Exam.	Architectural Draughtmanship & Design L.I.O.B. Carpentry & Joinery Plumbing Technolog General Building Painting & Decorating		DRAUGHTSMAI SHIP & DESIGN General Draughtsmanship A.M.I.E.D. Electrical Draughtmanship	¥-
POSAT	-58 'O' & '/ -over 10,00	G.C. A' Le 00 Gi	E. vel Subject roup Passes	:s s!
I Aldern	naston	C	ollege	
Dept. also at our London Moorgate, Lo	TET.11, Readin Advisory Office Indon EC2Y 5EJ	ng RG ,4 For Tel. (7 4PF re Street Aven 01-628 2721.	ue,
NAME (Block Capitals)				
ADDRESS			••••)_	
1			Postcode	
Other subjects of interest			Age	~ ~
Accredited by C.A.C.C.			Wember of A.B.	6.6

news digest

NEW CONSUMER PRODUCTS ANNOUNCED BY AMI

Under the name of OM:EX, AMI have introduced two new watches with back-lit liquid crystal displays, and a range of executive desk-top products. These include a calendar holder, notebook and 3-ring binder, each incorporating a 5-function calculator with an 8-digit electrofluorescent

display, floating decimal and automatic constant. Additional to this range is a memo pad holder with a built-in solid-state clock.

INSTRUMENT CASES

A new range of plastic instrument cases has been released by Mentor Electronics Ltd. of Northwood. The BOCON is a two-tone high-impact plastic case with interlocking tongue and groove seal. The smallest box (E410) is 25 x 50 x 100mm with the largest (E450) 60 x 110 x 188mm; this largest box will carry a Eurocard 160 x 100mm pcb. Brass inserts and screws are supplied and the screw head recesses are square for sealing compound. The lower section has inserts for mounting components or pcbs and there are key-hole lnockouts for wall fixing. Prices start just over a pound for the E410. Mentor Electronics Ltd., Ryefield Crescent, Northwood, Middlesex HA6 1NN.

CMOS PRESETTABLE COUNTERS

Two new presettable up/down counters have been added to the comprehensive CD4000 Series of COS/MOS digital integarted circuits produced by RCA Solid State-Europe. The RCA-CD4510BE is a presettable binary-coded-decimal up/down counter and the CD4516BE is a presettable binary up/down counter; each device consists of four synchronously clocked gated D-type flip-flops connected as counters. Applications include up/down difference counting, multistage synchronous counting, multistage ripple counting, and synchronous frequency division,

The devices are designed for medium-speed operation (typically 7MHz), and incorporate facilities for resetting and presetting. The counters are cleared by a high level on the 'feset' line, and can be preset to any binary number by a high level on the 'preset' line. The counters can be

cascaded in ripple mode by connecting the 'carry-out' to the clock of the next stage. Both devices are supplied in 16-lead dual-in-line plastic packages. RCA Ltd, Sunbury-on-Thames, Middx.

TRANSISTOR SELECTION AND CROSS REFERENCE

Motorola Semiconductors have just published a free 24-page booklet entitled "Small-Signal Multiple Transistor Selection Guide and Cross Reference". This features full details of over 200 quad, dual and Darlington transistors. It also includes a most useful equivalents or replacement table for over 640 EIA devices.

. A useful insight into transistors and transistor type numbers is given. This explains how the multitude of different types is derived from a smaller number of prime devices, each designed with specific parameters in mind.

Device selection is made easy by tables headed with major applications categories. In each table the first delineation is by NPN/PNP device types. Under these classifications are highlighted the prime devices, the basic (discrete) chip from which these are formed, the basic design parameters, and a list of derivatives.

WESTINGHOUSE POWER TRANSISTORS

Westinghouse have introduced two new NPN silicon power transistors designed for switching, amplication and regulation in industrial, commercial, and military applications. The new JEDEC types 2N6254 and 2N6262 transistors are particularly useful in power supplies, amplifiers, voltage regulators and ultrasonic cleaners.

Rated at 15A and 150W, the new devices have large for forward and reverse safe operating areas for switching inductive loads. The 2N6254 transistor is rated at 8V and the 2N6262 device at 150V.

A 200°C temperature range permits reliable operation in high ambients, and a hermetically sealed case insures high reliability and long life. Both devices are 100% power tested at full rated load and carry the Westinghouse Lifetime Guarantee.

The extra gain of the 2N6254 transistor permits its use in circuits where the 2N3055 device is marginal. The extra voltage rating of the 2N6262 transistor allows replacement of the popular 2N3234 or 2N3442 devices to provide a greater margin of safety.

amhit

01111011			
Linear ICs (H	RF)	Discretes con	td.
CA3123E	1.40	BD51510w	0.27
CA3089E	1.94	BD516	0.30
CA3090AQ	3.75	BD165 20w	0.50
MC1310P	2.00	BD166	0.54
HA1137W	2.25	BD609 90w	0.70
MC1350	0.70	BD610	1.02
uA753	0.99	1N4001	0.09
TBA651	1.70	1N4004	0.10
TBA120AS	1.00	Varicap diod	es
SN76660N	0.75	MVAM1	2 75
MC1496	1.02	MVAM2	1.05
(Audio)		MV104	0.45
LM380N	1.00	BA102	0.30
LM381N	1.85	BA121	0.30
TBA810AS	1.30	TOKO coils	s etc.
LM3900	0.68	BI 83107	1 70
TDA2020	2.99	BL B2007	1 70
MC1312	1.60	3132a 6 pole	1.70
(Power suppl	lies)*	IF filter (FM	12.25
7805KC	1.75	CFS10.7 FM	
7805UC	1.55	ceramic filter	0.40
7812/15/18	J1.55	455/470kHz	
78M12/20/2	41.20	IFT set of 3	0.60
78L12	0.45	(10 or 7mm)	types)
uA723	0.80	CFT455C	0.60
NE55UA	0.80	CF1455B	0.60
(Misc.)		CFU050	0.70
NE560/1/2	3.19		1.00
NE565/7	2.75	EM ifte	0.30
NE555	0.70	AM ifts	0.30
CT7001 *	6.80	MW osc	0.27
ICT8038CC	*3.10	MW RF	0.27
uA/41	0.40	23/36mH	0.30
Discrete devi	ces	EF5600	10.00
MEM615	0.38	EF5603	9:05
MEM616	0.50	EC3302	5.00
BF256	0.34	NT3302	5.20
BC182/3/4	0.14	266+266pF	0.70
BC212/3/4	0.14	many more t	Vpes
BC147/209	0.12	are available	SAE
BFZZ4	0.22	TOT HSTS DIEAS	е.

Modules & kits 7252 fm tunerset b £24 7253 fm tunerset b £24 MC720 varicap am mw tuner kit 8.00 tuner kit 8.00 93090 - the best stereo decoder kit 7.05 91310 - stereo decoder less audio preamps 5.10 91200 - FM IF strip with 0.1% distortion 6.20 FM1185 - FM IF strip with ceramic filter 4.35 Elektrik FM Wireless A complete FM tuner kit with superb cabinet, chassis and all components inc. 3 meters, presets etc inc. 3 meters, presets etc kit price £50 Case and chassis available Case and chassis available separately £10 8319 tunerhead b £9.00 20202 - 15W rms per channel DC coupled amp kit. Inc. heatsink £8.50 9840 - 40W RMS PA mod-ule. SC proof, no adjust-ments. kit £8.00 Tuner accessories £3.00 £3.40 WS150 long pot. WS150 rong pot. E3.00 9932 preset unit £3.40 Meters for centre zero, sig level, frequency £2.50ea 4 way switch unit £1.75 Mains on/off £1.20 (All above are included in the complete FM tuner kit) 40p Catalogue CWO please - pp 22p, & VAT 25% except where marked *, which is 8%

Ambit's range of wireless, and now audio, project kits and components are designed to offer a complete range of levels of sophistication. Now supplied with a new 'data system' leaflet covering design criteria and applications information.

The Elektrik FM wireless. A restyled version of the International FM tuner - with wrap around teak finish sleeve. Fully prepared chassis. kit:£40.00 (pp £2.50)

U66 25+25W amp/tuner. Kit with superb styling, and easy construction with top quality throughout. £76 (pp £2.50).

The 93090 stereo decoder with MPX filter. Still the best value of any kit available. £7.60.

The 9720 AM varicap tuned MW radio receiver module. Three stage tuning. A uniquely versatile AM radio unit. kit £8.00, built and aligned £9.95

8001 MPX BIRDY FILTER, £1 75. 8011 6-channel plus scanning electronic varicap controller, £14.99.

ambit international **25 High Street** BRENTWOOD Essex

Postcode CM14 4RH; tel:216029, telex:995194

ELECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

MHI-5039 (UNIVERSAL COUNTER) Uses a new counter chip from MOSTEK (MK50395) and will count up or down at speeds of up to 1MHz with a total system speed of 400kHz. Count and compare, registers can be loaded from logic ICs or BCD switches, features count inhibit, display latch, display decode. Outputs: 6 digit drives, BCD and 7-segment, count = compare, count = zero, etc. Applications include: very fast stop watch, sequence timers, auto-cue for tele-cine, batch counters, repeatable "pill" counters, etc. Interfaces with any six digit MHI display kit £19.50 + VAT

MHI-5378 (DIGITAL CAR CLOCK KIT)

Uses the new National MM5378 Auto-Clock chip. The Chip has full car/boat clock facilities with a voltage range of 9-20 v with no-loss-of-time down to 5v. Timing source is a 2.097152 MHz Quartz Crystal which is driven and divided by the chip. Facilities include: () display on/off switching with ignition leaving the clock running at all times (draws about 5mA). (i) display brightness control. MM5738 kit skt CA3081, 2MH7 Xtal and Trimmers, P.C.B. £15.10 + VAT (Interfaces with MHI four-digit display kits.)

MHI-5314 (BASIC CLOCK) Uses National MM5314 chip to give a four or six digit clock with 12/24 hour readout from 50/60Hz supply. This kit and chip are so simple that no previous electronics experience is really necessary to have an electronic clock working within a couple of hours. £5.60 x VAT.

MHI-5025 (ALARM CLOCK)

For a digital bedroom clock with accurate alarm time, snooze facility and display brightness control. Six digit output in 50Hz, 24-hour format. Alarm tone oscillator is on-chip and will drive small loudspeaker with single transistor interface. Very simple to assemble: £9.35 + VAT. MHI-5023 as MHI-5025 but with 12/24 hour option: £9.35 + VAT

MHI-7001 (ALARM/DATE/TIMER)

A six digit clock with optional display of date. Has switched alarm output and a switched timer (clock /radio, "sleep") output, Apart from being a very unusual clock this kit can be used for remote switching of tape recorders, etc. We advise the use of a six digit readout with this kit £10.00 + VAT.

Terms. C.W.O., Access, Barclaycard (Simply quote your number and sign). Credit facilities to Accredited Account Holders.

All prices on this advert exclude VAT at 8%

68 Ebberns Road Hemel Hempstead Herts HP3 9QRC Tel 0442 62757

The good components service

In relatively few years, Electrovalue has risen to a position of pre-eminence as mail-order (and industrial) suppliers of semi-conductors, components, accessories. etc. There are wide ranges and large stocks to choose from as well as many worthwhile advantages to enjoy when you order from Electrovalue.

CATALOGUE 8 NOW READY

Enlarged to 144 pages. New items, Opto-electronics, Diagram of components, applications, I.C. circuits, etc. Better than even No. 7, Post free 40p, including voucher for 40p for use on order over 55 fist value.

DISCOUNTS On all C.W.O, mail orders, except for some items marke NETT.

5% on orders list value 10% on orders list value 10% £15 or more

FREE POST & PACKING On all C.W.O, mail orders in U.K. over £2 list value. If under, add 10p handling charge.

PRICE STABILIZATION POLICY

Prices are held and then reviewed over minimum periods of 3 months — With effect from Jan. 1st.

QUALITY GUARANTEE On everything in our Catalogue - N seconds or sub-standards merchandise. - No manufacturer's rejects.

ELECTROVALUE LTD

All communications to Section 7/2, 28 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TW20 OHB. Telephone Eghem 3603. Telex 284475. Shop hours 9-5.30 p.m. daily, 9-1 p.m. Sets. NORTHERN BRANCH: 680 Burnage Lane, Burnage, Manchester M19 1NA. Telephone (061) 432 4945. Shop hours daily 9-5.30 p.m.; 9-1 p.m. Sets

MINIATURE SCOPE

DC-9 4S LC YO XSO DC YO AS LC YO XSO LC YO AS LC YO XSO LC Y

The B1010 miniature battery-mains oscilloscope is a development of the original A1010 announced in 1974 but with additional facilities with the same small dimensions.

It is the smallest 10MHz batterymains oscilloscope available to meet the growing need for more sophisticated portable test equipment. The Y amplifier sensitivity ranges from 10mV/Div to 50V/Div with time base speeds from 1mS - 1 second/div. With the choice of free running or triggered time base and positive or negative slope selection the 'micro-Scope' is equally effective for display of complex waveforms as found in colour TV or for pulses with a large mark space ratio as found in radar systems. A decibel scale on the graticule gives direct reading of bandwidth response and modulation depths in communication applications. The rechargeable nickel badmium cells gives up to 3 hours operating time and it can also operate and recharge from 240V, 100 AC and 12V DC. The Z modulation display facility is retained and an internal Y amplifier calibrator has been added giving even greater overall facilities without increasing the small case size. Complete with the rigid carrying case the B1010 costs £198 Lawtronics Ltd, 139 High Street, Edenbridge, Kent TN8 5AX.

SILICONIX SHORT-FORM

76

The new Siliconix general short-form covers latchproof CMOS, A/D converters, multiplexers, driver-gates

(NMOS, PMOS and CMOS), op amps, N and P-channel junction FET's, CR's and low leakage diodes. All major parameters are listed for device comparison, and circuit configuration are provided for the multiple-switch assemblies. Siliconix Limited, Morriston, Swansea SA6 6NE.

THE ENTERTAINING ELECTRON

The Faraday Lecture is now touring the country: presented by IBA engineers, and entitled 'The Entertaining Electron', it gives the inside story on modern TV techniques. Don't miss it if you can possibly go, Venues and dates are:

- Birmingham Town Hall 26-27 January 1976 E MAE;
- New London Theatre 3, 4, 5, 6 February 1976 E MAE ME MA;
- The Great Hall, Exeter University 26 February 1976 AE;
- St. George's Hall, Bradford 9 March 1976 AE;
- The Albert Hall, Nottingham 11 March 1976 AE;
- Liverpool Philharmonic Hall 19 March 1976 AE;
- Manchester Free Trade Hall 22-23 March 1976 E AE;
- The Kelvin Hall, Glasgow 21 April 1976 E;
- The Usher Hall, Edinburgh 23 April 1976 AE;
- The Newcastle City Hall 27 April 1976 AE;
- Portsmouth Guildhall 4 May 1976 AE; Tickets available from Local IEE offices M=Morning, A=Afternoon, E= Evening.

MARANTZ 112 AM/FM STEREO TUNER

Designed to match the newly-introduced 1040 and 1070 integrated stereo amplifiers, the Marantz 112 AM/FM stereo tuner is now available in this country through sole UK distributors of Marantz audio equipment, Pyser Limited. The 112 has an FM sensitivity (IHF) of 2.2μ V with selectivity (IHF) of 65dB, and features Phase Lock Loop circuitry equipped with a separate automatic stereo/mono switching circuit.

In addition, this new model incorporates an FM muting circuit, to eliminate interstation noise and cut out the unit's side slope spurious response, a four-channel output jack, a Dolby FM switch and of course the now-famous Marantz gyro-touch combination fly-wheel and tuning control.

The Marantz 112 tuner will retail, under the new Marantz pricing policy, at between £150.00 and £181.25 (including VAT). The usual three year (parts and labour) guarantee will apply to the 112.

BRIEF SPECIFICATIONS	
Capture Ratio	1,5dB
Total Harmonic Distortion	
Mono 0.30%	
Stereo 0.50%	
AM Suppression	50dB
Stereo Separation	
1kHz	40dB
10kHz	28dB
AM Sensitivity	20µV
Spurious Rejection	65dB
Signal-to-Noise Ratio	50dB
Freq. Response (-3dB) 50-30)00Hz
Total Harmonic Distortion	0.7%

ERRATA

Review of Scientific Calculators, January 1976 issue page 26.

The CBM SR990 is now replaced by the CBM SR9120, which has the same features for the same price but calculates to 12 (not 9) digits. The machine is available only through Boots.

The Decimo machines are to be replaced by the Vatman Scientific – an 8, 8+2 calculator. The Decimo 2001E has a 10, 10+2 display, not the 8 digit one stated. ★ 6 Jumbo LEDs for £5.10! (incl.). See Jan. ET1 for details and coupon for this Special Offer which runs until 31st Jan. Unlimited supply available.

ADVANCED ALARM CLOCK KIT

Complete kit including attractive slim case with perspex panel for 6 digit Loopiete kit including attractive simil case with perspect parter to bright alarm clock with bleep alarm, snooze and automatic intensity control, high brightness display driving; uses MK50253 IC and Jumbo 0.5in. LEDs. Kit also includes PCBs, active and passive components. IC skt., min. transformer, switches, flat cable, loudspeaker, mains cable and plug. Full instructions. Crystal control/battery back-up and touch switch snooze and alarm are optional add-ons £27.31

SIMPLE & ATTRACTIVE 4-digit CLOCK KIT

(As featured in January Everyday Electronics). Ideal kit for the less experienced constructor; kit includes IC, pleasing '4" green display with colon, PCB, miniature transformer, slim white case with perspex front panel, and all other components including mains cable and plug. Full perturbing £16.20 instructions .

CRYSTAL TIMEBASE KIT

All components including PCB (47mm x 59mm) to provide 50cps for clock ICs giving time accurate to a few seconds a month. Kit includes PCB, 32.768 kHz miniature watch crystal, trimmer. 3 CMOS ICs and sockets, Cs, Rs £6 28

STOPWATCH

Complete Kit for Stopwatch (as in December ET1); choose 6 digit range from tens of hours to milliseconds. Contents: Verocase 75/1410J, red perspex front panel, Manganese batterics, clips, transistors, diodes, wiring pins, screws, sockets, pin-header, CMOS, resistors, capacitors, 5.12MHz crystal, trimmer, PCBs, 6 x MAN3M displays. With instructions, component layout, etc. **£31.80** STOPWATCH WITH ONE LATCH: As above, but kit also includes

facility to repeatedly freeze one set of displays with count continuing on the there set £47.71

ADD VAT at 8% to all Prices in this advertisement. 15p P&P on orders under £3. Free on orders over £3. Orders sent by 1st Class Post. Exports No VAT. 35p (Europe). £1 (Overseas) for Air Mail P&P (any excess refunded). Full Price List and Data with any order, or on request (phone or send s.a.e.). Official Orders welcomed, written, phoned or telexed, Irom Univs., Polys., Nat. Inds., Govt. Departments, Companies, etc. Fastest Delivery for R&D.

53a Aston Street, Oxford Tel. 0865 43203 SINTEL Telex: 837650. A/B ELECTRONIC OXFD

THE POW SC60 ADVANCED SC44 SCIENTIFIC SCIENTIFIC • 8 DIGIT MANTISSA plus sign and 2 digit exponent plus sign The SC60 is the most advanced Algebraic logic and exponential funcscientific and statistical calculator in tions its price range. • 2 Parenthesis levels [[)] ☐ 3 memories Tngonometric functions + inverse tri functions Sin, COS, Tan
Log, Antilog e^x, 10^x ŏ 50 functions 66 keyboard commands Exchange operation **BASIC FUNCTIONS** • Factorial h w. Pi, 1/x, x2, Vx There are so many we can list only some • Tng and inverse trig in either radiaus or degrees of them: 10 digits, 2 exponents. algebraic logic, with two parenthesis levels. Sin, Cos, Tan (plus inverse), lux, Log 10 $\stackrel{x=x}{e}$ pi, xy, \sqrt{x} , $\stackrel{2}{x}$ 1/x, x—y and x= m exchange, sign change, factorial: Charges in 5 hours and cuts off to prevent Works to 10 digits, Rounds to 8. Full chain calculation with any function sequence. 1 Addressable memory with sum to memory key. overcharging min Takes only 3 seconds on long calculations. ADVANCED FUNCTIONS Combinatorial functions and binomial coefficients, combinations permutations, normal probability functions. Pr(Z), Gamma function r(n), normal distribution function, statistical functions, anthmetic mean, standard deviation, variance, sq. rl. of sum of squares IIXII 1 YEAR WARRANTY inc ACCESSORIES INCLUDE: Nicol rechargeable batteries, A/C adaptor/charger, leatherette carry case, instructions, 1 year gaurantee, weight 330 grams. £54 inc. VAT & p.p. MEMORY three addressable memories which can also be used automatically for statistical functions, with sum memory, sum of squares memory and index memory plus index register SC60 - £54 inc. VAT, p.&p Please send me or SC60.10 - £64.95 in. VAT, p.&p. ACCESSORIES as for SC44 SCIENTIFIC. SC44 -£34.56 inc. VAT. p.&p. or NAME SC60.10 MEMORY Also available is the SC60.10 -which has 10 operator accessible ADDRESS memories with protected group memory which includes sum-memory, Orders to: KRAMER & CO., 9 October Place, Holders Hill Road, London NW4 1EJ. Tel: 01-203 2473. Telex 888941 attention KRAMER. Registered No. 1797716. Export orders invited. sum of squares memory, and index memory. inc. VAT £64.95 p.&p.

CIVIOS ITOIN	uie leagis	ig manulaciai	rers uniy.					
CD4000A	0.17	CD4028A	0.74	CD4053A	0.77	CD40868	0.59	
CD4001A	0.17	CD4029A	0.94	CD4054A	0.95	CD40898	1.27	
CD4002A	0.17	CD4030A	0.46	CD4055A	1.08	CD40938	0.66	
CD4006A	0.97	CD4031A	1.82	·CD4056A	1.08	CD40948	1.53	
CD4007A	0.17	CD4032A	0.88	C04057A	20.35	CD40958	0.86	
C04008A	0.79	CD4033A	1.14	CD4059A	10.64	CD40968	0.86	
CD4009A	0.46	CD4034A	1.56	CD4060A	0.92	CD4099B	1.50	
CD4010A	0.46	CD4035A	0.97	CD4061A	16.43	CD4502B	0.98	
CD4011A	0.17	CD4036A	1.82	CD4062A	7.33	CD45108	1.12	
C04012A	0.17	CD4037A	0.78	CD4063B	0.90	CD4511B	1.28	
CD4013A	0.46	CD4038A	0.88	C04066A	0.58	CB4514B	2.56	
CD4014A	0.83	CD4039A	2.86	CD4067B	2.95	CD4515B	2.56	
CD4015A	0.83	CD4040A	0.88	CD4068B	0.18	CD45168	1.12	
CD4016A	0.46	CD4041A	0.69	CD4069B	0.18	CD45188	1.03	
CD4017A	0.83	CD4042A	0.69	CD4070B	0.18	CD45208	1.03	
CD4018A	0.83	CD4043A	0.83	CD4071B	0.18	CD45278	1.30	
CD4019A	0.46	CD4044A	0.77	CD4072B	0.18	CD4532B	1.16	
CD4020A	0.92	CD4045A	1.15	CD4073B	0.18	CD45558	0.74	
CD4021A	0.83	CD4046A	1.10	CD4075B	0.18	CD4556B	0.74	
CD4022A	0.79	CD4047A	0.74	CD4076B	1.27	MC14508	2.37	
CD4023A	0.17	CD4048A	0.46	CD40778	0.18	MC14528	0.86	
CD4024A	0.64	CD4049A	0.46	CD40788	0.18	MC14534	6.04	
CD4025A	0.17	CD4050A	0.46	CD4081B	0.18	MC14553	4.07	
CD4026A	1.42	CD4051A	0.77	CD4082B	0.18	MC14566	1.21	
CD4027A	0.46	CD40524	0 77	CD4085B	0.59	MCM14552	8.05	

CMOS

RCA 1975 CMOS Databook: 400 pages of data sheets and 200 pages of circuits, applications and other useful information $\pounds 2.67$ (Add no VAT-post free) VAT-post free) Motorola McMOS Databook (Volume 5. Series A) £2.77 (Add no VAT-post*free)

CLOCK	ICs	DISPL	AYS	VERO	CASES
MK50253	£5.60	DL704E	85p	75/1410	£2.64
MK50250	£5.00	FND500	£1.50	(205 x 140) x 40mm)
MM5314	£4.44	FND5000	95p	75/14110	£2.94
AY51202	£4.76	MAN3M	480	(205 x 140) x 75mm)
AY51224	£3.66	5LTD1	£5.80	Flat Cable	
MK5030M	£12.50	L.C.D.	£9.40	2D-way	£1 per m.

DISPLAY PCBs (each fits neatly into Verocase J): for clock with 6 x FND500, for clock with 6 x DL704, for counter with up to 8 x FND500, for counter with up to 8 x DL704: these four are £1.35 each; for clock with 4

x FND500: 90p. IC SOCKET PINS. Lowest cost sockets for CMOS, TTL, ICs, Displays. Strip of 100 pins for 50p, 400 for £2, 1,000 for £4, 3,000 for £10.50.

TELETYPE 28 - NEW SPECIAL PRICE

TELETYPE 28 without keyboard. Good condition (can beused as receive only) £32.50

TELETYPE 28 with housing, keyboard and Power supply £45 ea.

Limited quantities - information in process of being obtained this may not be available when orders are dispatched but we guarantee to forward comprehensive information at the earliest possible time.

Ex BEA

Control Units by Univac.

Consisting of 2 -50way plug/socket; 3 multiway switch assembly; a 2 & 4 decade push button assembly electrical reset; etc. Very good value. £12.50 each.

ALWAYS A LARGE QUANTITY OF TEST EQUIPMENT, SPECIALISED UNITS, CHASSIS, ETC.

CALL AND SEE

FHACHI RAMP MODULE FX21. 24 Volt DC input for 18 volt saw tooth output. Requires only external capacitor and 100K ohm potentiometer to control frequency range up to 100KHZ (eg 50 mfd electrolytic gives sweep of approx 1, cm per second). In or out sync capability. Price £5.75. P.&P. 20p.

GRATICULES. 12 cm. by 14 cm. in High Quality plastic. 15p each. P. & P. 8p.

*PANEL mounting lamp holders. Red or green Sp es, FIBRE GLASS PRINTED CIRCUIT BOARD. Brand new. Single or Double sided. Any size 11p per sa. In. Postage 20p per order.

HIGHT EMITTING DIODES (Red) from Hewlett-Packard. Brand New. 38p ea. Information 5p. Holders 1p.

METERS by SIFAM type M 42, 25-0-25 micre amo Scaled 25-0-25 green; 250-0-250 red; hincar, As new, 62.95 oz. P & P, 37p. BLOCK PAPER CAPACITORS AVAILABLE, S.A.E.

*PHOTOCELL equivalent OCP 71. 13p ea 12" CRT MAGNETIC DEFLECTION. Blue. Trace, Yellow Afterglow (P7), Brand new, boxed, £4 each, Carriage £2.

LOW FREQUENCY ANALYSER 50H2-50kHz ASSEMBLY AND INSTRUCTION INFORMATION S.A.E. PRICE £27. P. & P. 75p Board, modules and all

components (excluding P.U.).

EX-MINISTRY CT436 Double Beam Oscilloscope DC-6 megs. Max Sensitivity 10mv/cm. Small compact. Size 10 x 10 x 16 in. Suitable for Colour TV servicing. Price £85 each including copy of manual.

*** TELEPHONES**

MODERN STYLE 706. BLACK OR TWO-TONE GREY. \$3.75 each. P. & P. 45p. HANDSETS — complete with 2 insets and lead, \$1.25 each. P. & P. 37p. DIALS ONLY, 50p each. P. & P. 25p.

MODERN STANDARD TELEPHONES IN GREY OR BLACK WITH A PLACE TO PUT YOUR FINGERS UKE THE 746. £3.00 each. P. & P. 45p.

RELIANCE P.C.B. mounting 270: 470: 500 ohms: 10K at 35p ea. ALL BRAND NEW.

500 ohms: 10K at 35p ea. ALL BRAND NEW. VENNER Hour Meters—5 digit, wall mount --sealed case. Standard mains. £3-75 ea.

Venetic case. Stanson - sealed case. Stanson P. 8. P. 55p. TRANSFORMERS. All standard inputs Gard/Parm/Part. 450-400-0-400-450, 180 MA 2 x 6.3v. 23 ea. MA 2 x 6.3v. 23 ea.

INSTRUMENT 3in. Colvern 5 ohm 35p ea.; 50K and 100K 50p ea.

FANTASTIC VALUE Miniature Transformer, Standard 240V input, 3Volt 1 amp output, Brand New, 65p each P, & P. 20p. Discount for quantity.

FHACHI VCO MODULE FX11, - 10HZ-100KHZ. Size 2 x 1% x %" H. Input 12V to 24V DC (not centre tapped), 18V input giving 10V constant amplitude output. Requires only 1 meg ohm potentiometer to tune entire range — or can be swept with a saw tooth input. Price $\pounds 5.75$. P.P. 20p.

*CAPACITOR PACK 50 Brand new components only Sop. P.&P. 27p.

wicoopf FEED THRU CAPACITORS. Only solid in packs of 10-30p P & P 150 American Ex-equ. Size 42 X 42 X 11. 115 Volt. Very quiet £3 ea: P.&P. 47p.

DELIVERED TO YOUR DOOR 1 cwt. of Electronic Scrap chassis, boards, etc. No Rubbish, FOR ONLY £4.50. N. Ireland £2

P.C.B. PACK S & O. Quantity 2 sq. ft -- no tiny pieces. 50p plus P. & P. 20p.

*TRIMMER PACK, 2 Twin 50/200 pf ceramic: 2 Twin 10/60 pf ceramic: 2 min strips with 4 preset 5/20 pf on each, 3 air spaced preset 30/100 pf on ceramic base. All BRAND NEW 25p the LOT. P.&P. 115p.

ALMA precision resistors 200K: 400K: 497K: 998K: 0-1% 27p es.; 3-25K, 5-6K, 13K-0-1% 20p es.

BOURNS TRIMPOT POTENTIOMETERS. 20: 50: 100: 200: 500 ohms: 1: 2: 2-5: 5: 10: 25K at 35p ea. ALL BRAND NEW.

RELAYS Varley VP4 plastic covers 4 pole c/o 15K-

SOLARTRON OSCILLOSCOPE TYPE CT316. DC – 6 mc/s. Size 81/2" x 11" x 20". Very fine condition in Ministry transit cases. Complete with copy of manual. £45 each.

HIGH-VALUE—PRINTED BOARD PACK. Hundreds of components, transistors, etc.—no two boards the same—no short-leaded transis-tor computer boards £1 75 nost paid

Large quantity LT, HT, EHT transformers and chokes.

*Vest quentry of good quelity components --NO PASSING TRADE--so we offer 3 LB. of ELECTRONIC GOODIES for £1.70 post paid

CRYSTALS. Colour 4.43MHz. Brand New. £1.25 m. P.&P. 15p.

*Beehive Trimmer 3/30 pt Brand new. Qty 1-9 13p ea. P. & P. 15p: 10-99 10p ea. P. & P. 25p: 100-999 7p ea. P. & P. free.

MF Crystal Drive Unit, 19in, rack mount, Standard 240V input with superb crystal oven by Labgear (no crystals) £5 ea, Carr, £2-00. A.B. POTENTIOMETER'S LIN. 100K +¹ 100K DUAL GANG. 25p each. Discount for quantities P. & P. extra.

*METERPACKS-3different meters for £2: P.&P. 55p.

RESETTABLE COUNTERS-4 digit by Stonebridge/Sodeco, 1000ohm

		and the state of t	33p: 5-8K-40p ea,	coil. 12 ea. P.&P. 35p.
DON'T FORGET YOUR MANUALS S.A.E. WITH REQUIREMENTS	For alignment of sweep, width and fi As above but can P. & P. 35p. Both models can t 50Hz sweeping. A the exception of the	LOW Receivers, Filters etc. 250K requency. Order LX63. Price £ have extended cover range be used with any general put n external sweep voltage ca controls (not cased, not calib controls (not cased, not calib	FREQUENCY WOBBULA (Hz to 5 MHz, effective to 30 MHz (8-50 P. & P. 35p.) down to 20KHz by addition of extern prose oscilloscope. Requires 6-3V AC in be used instead. These units are e prated).	ATOR on harmonics. Three controlsRF level nal capacitors. Order LX63E. Price £11.50 c input. Supplied connected for automatic ncapsulated for-additional reliability, with
SINE ANI In four ranges. Wien independent sine and 6V max square output 9 to 12V. supply req 66:85 each. P. & P. 3	20HZ to 200KH D SQUARE WAVI bridge oscillator there square wave amplitu s. Completely assemble uired. £8-85 each. P. 5p.	Z GENERATOR mistor stabilised. Separate de controls. 3V max sine, ad P.C. Board, ready to use. & P. 35p. Sine Wave only	WIDE RAN 5 MHZ to 150 MHZ (Useful harmor Only 3 controls, preset RF level, sw IF alignment, filters; *eceivers. Can instructions supplied. Connect 6-3 All this for only £6.75. P. & P. 35p. (N	IGE WOBBULATOR hics up to 1.5 GHZ) up to 15 MHZ sweep width. eep width and frequency. Ideal for 10.7 or TV be used with any general purpose scope. Full V AC and use within minutes of receiving. Not cased. not calibrated.)1
TYPE A Input: 12V DC Output: 1 3kV AC 1.5MA Price £3.45	TRANS TYPE B Input: 12V DC Output: 1.3kV DC 1.5MA Price £4.70 P	TYPEC Input 12V to 24V DC Butput: 1.5kV to 4kV AC 0.5MA Price £6.35 ostage & Packing 36p	IS TYPED Input 12V to 24V DC Output: 14kV DC 100 micro amps at 24V Progressively reducing for lower input voltages Price £11	MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH. 2 HZ to 8 MHZ. Hook up a 9 volt battery and connect your scope and have two traces for ONLY £6.25. P. & P. 25p. STILL AVAILABLE our 20 MHZ version at £9.75. P. & P. 25p.
VALUE		less stated - pleas	se add £2.50 carriage to a	ll units 25% VAT otherwise 8%

Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order

MAINS TRANSFORMERS
Pri. 240v. sec. 27/0/27v at 800 m/a, £2.25. P.P. 50p.
Pri. 110/240v sec. 50v at 10amps, £10.00. P.P. £1.50.
Pri. 110/240v sec. 20/21/22v at 8 amp, £6.00. P.P. £1.50.
Pri. 110/240v sec. 23/24/25v at 10 amp, £7.00. P.P. £1.50.
Pri. 110/240v sec. 24/40v at 1½ amp. £1.90. P.P. 60p.
Pri. 240v sec. 20/40/60v at 2 amp, £3.00. P.P. 70p.
Pri. 240v sec. 20v at 2½ amp. £2.00. P.P. 50p.
Pri. 240v sec. 18v at 1.5 amp and 12v at 1 amp, £2.25. P.P. 50p.
Pri. 240v sec. 18v at 1 amp, £1.00. P.P. 30p.
"TOROIDAL" Pri. 240v sec. 30v at ½ amp. £1.65. P.P. 30p.
SIEMENS MINIATURE RELAYS
6v 4c/o with base, 65p ea. 24v 2c/o with base, 50p ea.

MAINS RELAY 240v 3c/o 10 amp contacts, 80p with base. P.P. 20p.

GARRARD PLINTH & COVER For Zero-100, etc. Finished in brushed aluminium and black, with hinged smoke grey perspex lid, £11.00. CIRCUIT BOARD P.C.B. 1/16. 1 oz. COPPER

FORMICA

Dim. 8.4×7.7 in 3 pcs., **75p**. Dim. 9.4×8.1 in 3 pcs., **90p**. Dim. 10.1×7.9 in 3 pcs., **£1.00** Dim. 13.1×9.4 in 3 pcs., **£1.20**. Dim. 17.0×9.0 in 2 pcs., **£1.20**. Post & Packing 30p each pack.

BARGAIN PACK

10 pcs. 10.1 x 7.9 in. Plus free 1/2 lb etching Xtals, **£2.80.** P.P. 45p.

FIBRE GLASS P.C.B.

Dim. 6 x 6 in, **35p** each. Dim. 12 x 6 in, **60p** each. Dim. 12 x 12 in, **£1.00** each. Equals less than 1p sq. in: Post & Packing 5p per sheet.

RESIST COATED P.C.B. FORMICA 10.1 x 7.9 in. **55p** ea. 13.1 x 9.4 in. **70p** ea.

RESIST COATED P.C.B. FIBRE GLASS 6 x 6 in, **50**p ea. 12 x 6 in, **90**p ea. 12 x 12 in, **£1.50** ea. Post & Packing 10p per sheet.

FERRIC CHLORIDE ETCHING XTALS 1 lb — 1 litre pack, 60p. P.P. 15p. 5 lb — 5 litre pack, £1.95. P.P. 55p. **S-DECS AND T-DECS**

S-DEC £1.90. Post & Packing 20p. T-DEC £3.60. Post & Packing 30p. U-DEC A £4.20. Post & Packing 20p. U-DEC B £6.90. Post & Packing 40p.

OVERLOAD CUT-OUTS

Panel mounting 800 M/A. 1.8 amp. 10 amp. 55p ea.

HIGH CAPACITY ELECTROLYTICS 1000mfd/100 volt, 70p. P.P. 25p. 2200mfd/100 volt, 90p. P.P. 25p. 4700mfd/25 volt, 65p. P.P. 20p. 6800mfd/16 volt, 50p. P.P. 15p. 10,000mfd/25 volt, 75p. P.P. 25p. 25.000mfd/40 volt, £1.25. P.P. 30p. 47,000mfd/40 volt, £2.00. P.P. 50p. 100,000mfd/10 volt, £1.50. P.P. 50p. 160,000mfd/10 volt, £2.00. P.P. 50p.

10.7 M.H.Z. CANNED I.F.s Size 1 x ½ x ½ in, **65p.** P.P. 10p. **3 Gang Tuning Capacitor,** 8.5pf to 320pf, **80p.** P.P. 20p.

MINIATURE METERS 500 micro-amp (level-stereo beacon, etc.), scaled half black / half red. Size 1 x 1 in, 65p. P.P. 15p.

RIBBON CABLE 8 way. 8 colours. Bonded flat side by side. 10 Metres, £1.90. 100 Metres, £12.50.

KINNIE COMPONENTS MAIL ORDER ONLY. PERSONAL CALLERS BY APPOINTMENT

In the past year, ETI's print run has increased by 30%. This is an amazing growth but has led to problems of availability. We are now getting our first queries on where to get a copy, on the Tuesday following Friday's

publication — and remember we're monthly, not weekly!

There are only two ways to ensure a copy. Place an order with your newsagent or take out a subscription.

MINI-ADS

Readily available supplies of Constructors' hardware, Aluminium sheet and sections, Printed circuit boards, top quality for individual designs.

Popular E.T.I. boards always in stock. Prompt service.

Send 15p for catalogue.

RAMAR CONSTRUCTOR SERVICES MASONS ROAD STRATFORD-ON-AVON WARWICKS. Tel. 4879

DOLVOA	PRE	CISION	DACIT	nné
PULYLA	KRON	ALE	APALII	nkż
NGE: DEMENS	INS	- Extremely	LOW Leakage	
LUE (mm)	PRICI	l'ant p.	-	25. 5%
[F] L LoF 27 1	2.7 510	0.47uF	67p 3	00 43p
22µF 33 1	6 64p	1.0µF	82p (52p 52p
25µF 33 1	6 67p	2.2µF	96p	75p 6lp
47#F 33 1	9 80p	4.7µF	£1.62 L	15 £1.13
684F 50.8 1	9 93p	IOuF	. £2.40 E	.95 £1.64
0 F 50.8 1	9 £1.03	15µF	£3.22 £2	.79 .2.24
0µF 50.8 25.	4 £1.44	1-22uF	E4.28 E3	.65 £3.08
022.047.1.0.2	2 4.8 6.iuF	t 15V/25V o	35V: 10nF at 1	6V/20V
or 25V: 22.0 F	t 6V or 16V;	33.0µF at 6V	or 10V; 47.0µF	at 3V or
6V: 100.0µF at 3	IV ALL at H	p each, 10 fo	r 95p, 50 for £4.	
TRANSISTORS	ALC.'s		1 0071	170
AC128	14p BC20	7/558A 12n	*2N2926G	120
AD149	40p BCY	72 L2p	'2N2926O	11p
AF178	30p BDI	1/132 39p	2N2926Y	llp
AFZ39 P(107/8/9	38p 8F1	5/16/ 22p	2303055	500
*BC114	12n BFI	8 260	2N3702/	
"BC147/8/9	10p BF11	4 22p	3704	llp
BC153/154	12p BF19	H/195 12p	TIP30A	52p
BC15/78/8	BR BE2	n 27n	TIP32A	64n
·BC182/183L	IIp BF2	2/263* 60p	TIP3055	Sop
"BC 183/183L	IIp BFY	50/51/52 20p	*MPU131	499
*BC184/184L	L2p BFX	84/86/88 200	NE555	61p
"BC212/212L	HP BFX	85 <u>16</u> p	ZN414	£1.15
*BC214/214L	Ile GET	872 23p	SN76013	ND
BC267	120 OC4	1/0C45 14p	1	¢1.50
POPULAR DIO	DDES-IN91	4 6p, 8 for 45p	. 18 for 90p: 1N	1916 8p. 6
for 45p, 14 for:	90p; 1544 3p.	11'lor 50p. 2-	101 E1.00; 1144	148 pp, 6
007 8500		auth our sh'	nos estis ove ut	, noo ay,
LOW PRICE	ZENER DIC	DES-400M	W. ToL ± 5%	at 5mA
Values availat	ole: 3V, 3,3V	, 3.6V, 4.7V,	5.2V, 5.6V, 6.	2V. 6.8V.
22V. 24V. 27V.	30V. All at 7	each: 5 for 3	3p: 10 for 65p. 5	PECIAL
OFFER: 100 Ze	eners for £6.0	0.		
*RESISTORS	-High stabil	ty, low noise	carbon film 5	6. 12W at
40°C, 1sW at /	10 of any on	es only-from	or 100 of any 0	ne value
SPECIAL PAC	K. 10 of cac	1 value 2.2:21	to 2.2M () (730 1	resistors)
£5.				
SILICON PLA	STIC RECT	IFIERS-1.5	amp. brand f	lew wire
BRIDGE REC	TIFIERS 24	amp. 200V	0p. 350V 45p.	500V 55p.
-SUBMINIAT	URE VERTI	CAL PRESE	TS-0.1W only	ALL at
5p each; 50:2, 1	100.2. 220.2. 4	700, 65012, 11	(1), 2.2k(), 4.7k	17. 6.8kg.
25MD 5MD	(2KQ, 47KQ,	OOK!1. 10011	ASURUL ONOR	52, 1M1./.
PLEASE ADD	15p POST	AND PACKI	NG ON ALL	ORDERS
BELOW ES. AL	LL EXPORT	ORDERS AL	DD COST OF S	SEA/AIR
MAIL	PR MAT	Il itame area	or those much	ad with *
PLEASE ADD	wh	ich are 25%	in mose mark	co with
Send S	A.E. for lists	of additiona	I ex-stock item	15
Wholesale	e price lists a	vailable to be	ona fide compa	nies
MAA	RCÓ	TRA	DING	
IAT's			1)	
	(De	ept. U	1)	
his Old Cab	and Tridat	anton' N.		

The Old School, Edstaston, Nr., Wem Shropshire Tel. Whixall (Shropshire) (STD 094872) 464/5. (Propret Minicost Trading Ltd.) THE UNIVERSITY OF MANCHESTER MEDI-CAL SCHOOL. ELECTRONICS TECHNICIAN GRADE 5. Applications are invited for the above post in the Department of Physiology. Applicants should have a good general electronics background, being qualified to at least ONC standard, and have a minimum of 7 years' practical experience. Duties of the post are concerned with the design, construction, modification and maintenance of a variety of electronic devices used in teaching and research. Salary scale 22,751±3,207 p.a. Applications, with full details of career to date, and the names of two referees, should be sent to the Departmental Superintendent, Department of Physiology, University of Manchester, Stopford Building, Manchester M13 9PT.

GLASS FIBRE P.C.B.s. Send 1 * 1 master and 30p per board plus 7p per square inch tinned or plus 9p per square inch drilled and tinned. Discount for quantity. PROTO DESIGN, 4 Highcliffe Way, Wickford. Essex.

CABINET FITTINGS

FOR Stage Loudspeakers and Amplifier Cabs Fretcloths, Coverings, Recess Handles, Strap Handles, Feet, Castors, Locks and Hinges, Cornors, Trim. Speaker Bolts, ect., etc. Send 2 x 84p Stamps for samples and list. ADAM HALL (E.T. SUPPLIES) Unit Q, Starline Works, Grainger Road Southend-on-Sea, Essex.

The Proprietors of British Patent No. 1161222. for "Electrical Insulators resistant to creeping currents and arcs" desire to negotiate for the sale of the patent, or for the grant of licences thereunder. Further particulars from Marks & Clerk, 57-60 Lincoln's Inn Fields, London WC2A 3LS.

THE SCIENTIFIC WIRE CO.

Copper - Nickel Chrome - Eureka - Manganin Wires

Enamelled - Silk - Cotton • Tinned Coverings No minimum charges or quantities Trade and Export enquiries welcome S.A.E. Brings List

P.O. BOX 30, LONDON, E4 9BW

SUPERB INSTRUMENT CASES by Bazelli, manufactured from heavy duty PVC faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range, competitive prices start at a low 75p. Over 400 Models to choose from. Prompt despatch. Free literature (stamp would be appreciated). Bazelli, Department No. 27, St. Wilfreds, Foundry Lane, Halton, Lancaster, LA2 6LT.

SCOOPI 10mfd/12V10/20p. 100/€1. 10mfd/70V 22 mfd/50V 10/25p. 100/€1.25. 100mfd/16V. 1000mfd/6V 10/30p. 100/€1.55. 1N4002/4P. 1N4004/5p. 1N4007/6p. 1N914/4p. 1N4148/4p. BRIDGES 1A/200V 2/50p. 2A/200V 2/65p. TRANSISTORS. Plastic. BC107/8/9 10p. 27X300/500 14p. 27X304/504 22p. TIP3055/45p. TIP2955/64p. METAL CAN. BC107/8/9 12p. 2N3055/73p. LEDs W/Clips. TIL209/Red 16p. Green. Orange. Yellow. 21p. I.C.s 8-pin/741 25p. 555/49p. P. & P. 20p. AUDIO-OPTICS 19 Middleway, Chinner, Oxen

FOR DETAILS ON ADVERTISING IN MINIADS, OR ELSEWHERE IN ETI, CONTACT BOB EVANS, 01-730 8282

M.SC. COURSE IN ELECTRICAL ENGINEERING

with specialisation in any one of the following:

Electrical Machines Communication Systems

Electronic Instrumentation

Control Engineering and Digital Electronic Systems

Design of Pulse and Digital Circuits and Systems

The Course which commences in October 1976, may be taken on a Full Time, Part Time, Sandwich or Block Release basis, and is open to applicants who will have graduated in Science or engineering. or who will hold equivalent qualifications, by that date. The Science Research Council has accepted the Course as suitable for the tenure of its Advanced Course Studentships.

A Diploma Course, in some of the above topics or in Power Systems, is also open to applicants with the above, or slightly lower qualifications.

Research in Electrical Engineering

Applications are also invited from similarly qualified persons who wish to pursue a course of research leading to the Degree of M.Phil. or Ph.D. in any of the above topics.

Application forms and further particulars from the Head of the Department of Electrical Engineering (Ref. M.Sc. 6), The University of Aston in Birmingham, Birmingham B4 7PB.

ω,	TH	E UNIVERSITY
<u>.</u>	OF	ASTON
	IN	BIRMINGHAM

	-	10.000	1 0.0	1 101 01 000
I EN S		0.125	0.2	550-W
LLU	RED	15p	19p	Axial lead 49p
* parvel	G/Y	270	33p	1 5mW £1.10
chp 1p	OR	270	330	0mW £1.55
	Un	Lip	oop	I UNFIZ SAP
OPTO-ISC	LATOR	S	SCRs	50V 100V 400V
1L4 1.5kV. 150kH		Hz £1	TOSIA	25p 27p 46p
4350 2.5k	V 5MHz	£2.25	T066 3A	2/p 350 50p
Data free w	Ith all OP	TO	TRIAC TO	J3 2A 4004 600
AC125/6/7	/815p	2N2926(G)	120	VOLTAGE REGS.
AD161/162	2 40p	2N3053	150	5V 7805 Plastic
AF117	20p	2N3054	450	12V 7812 1 Amp
AF124/5/6	7	2N3055	41p	15V 7815 all
	340	2N3702-3	/432p	18V 7818 £1.50
BC/10/ 8/	9 9p	2N3903.4	15/6	723 DIP14 500-
BC147/8/9	100	2112646	10p	PRIDGE RECTS
BC157/8-9	110	MPE102	400	24 50V 300
BC167/8/9	110	2N3819	250	2A 100V 36m
BC169C	72p	2N3823	300	2A 200V 410
BC177/8/9	17p			2A 400V 480
BC182/3/4	/L11p	BR100 Dia	c 21p	
BC186//	30p	IN914	30	ZENERS BZY88
BC212/3/4	7212	114007/2	50	2.7-33V 9p
85104/5	120	IN 4004 /	The Te	
BE196/7	140	104005/7	80	NE555V 60p
BEY50/51	160	IN4148	40	NE556 £1.10
BFX29	300	0A47	50	LM380 E1.00
BFX84	24p	0A70 0A7	9 80	7400 46-
B\$X19/20	16p	OA81 0A9	0 7p	7400 100
0071	10p	0A91 0A9	5 6p	DIL SOCKETE
2N706	100	0A200	6p	Part Sourcera
2N1711	20p	04202	7p 1	14-pm 13p
2N2219	20p	09 4840		16.00 140
212904/5/	160	700 all	75-	Mica - bushes
2N2904/5	6A180	741 8.00	290	103 T066 5p
2N2926(R)	7p	748 DIL	36p	Dalo Pen 70p
	PUPES IN	THISINE +	150 P & P	(ter class)
	Angela IN		apr or.	(a cross)
53.0				
ISLAN	ID DEVIC	ES, P.O. B	ox II. M	argate. Kent

INDEX TO ADVERTISERS

Ambit
S.H. Components Miniads
B.I.E.T
Bi-Pak 4&5
Bi-Pre-Pak 23
B.N.R.S 49
Bywood 50, 75, 82
Cambridge Learning 61
CDI Electronic Systems Miniads
Chiltmead 78
Chromasonics
C.J.L. Ltd Miniads
Crofton Electronics 17, 53
Electronic Design Associates 53
Electro Value 75
Elvins
Exetron
Green Bank Electronics Miniads
Henry's 73, 83

"HEDDON VALLEY ELECTRONICS" free catalogue and order forms now available. Many popular semiconductors, resistors, condensers, etc., all at competitive prices. Prompt attention on all orders regardless of sizes, all components guaranteed. A must for the home constructor, for the price of a s.a.e. HEDDON VALLEY ELECTRONICS. Bumpsley Mill, Parracombe, Barnstaple, North Devon. Telephone: Parracombe 298.

Island Devices . Kramer & Co Kinnie Components 77 79 17 Lynx Electronics 49 Macks Electronics 84 Maplin Marco Trading Marshall's... 44 Metac..... 55 Minikits 60 Plessey..... 53 77 50 69 Vero Videomaster Q 66 Wilmslow Audio

TTL. SN7400 13p, SN7410 13p, SN7474 32p, SN7490 40p, SN7493 39p, SN74121 32p, SN74141 65p. CMOS 4001 26p, 4011 26p, 4016 77p, 4029 122p, 4049 77p, MM5314 £3.00. Red Led 0.125" 10p, Yellow or Green Led 0.125" 19p. Special offer — send this advertisement with your order and deduct 20% from the total cost. Please add 8% VAT. Mail order only to: G. NEWMAN, 12 Francis Avenue, St. Albans AL3 6BX. S.A.E. for TTL and CMOS list.

X-BAND GUNN OSCILLATOR MUL-LARD CL8630. 8mW solid state 10.7 GHz source. 46 x 42mm, flange to match WG16 waveguide. Applications include miniature radar - distance and speed, intrudar alarms, remote control and radio link. As these are new excess stock, they are offered to experimenters, with data at £5.00 + 20p P.P. A. Mukerjee, Box 26.

E	poxy-Glass PCBs
Typical p	rices INCLUSIVE of VAT & Post
50 + 50w Power Mod Active Crossover Logic Tester 3600 Synth Ast. V.C. 1	Interm ETI 422 Jan 76 270p ETI 433A Dec 75 90p ETI 433B Dec 75 90p ETI 433B Dec 75 90p ETI 433B Dec 75 90p ETI 122 Jan 76 150p June 75 120p June 75 120p Board ETI 601P Joily 75 120p
Send 10p for Init lists o Projects at Down-to-Ea	of PCBs & Kits for all ETI & many other published with price levels.
CMEANS GA 3846 ME 555 μA 741 BC 107 BC 108 BC 109 BC 109	11.1. 50p 7400 11p 50p 7401 11p 27p 7410 11p 27p 7416 20p 9p 7420 11p 9p 7430 11p
SPECIAL OFFERS	7440 11p 7474 28p ass 7493 37p

C280 Capacitors 160v. All values. 2p. 100 our mix, 125p. We'll pay the VAT. you pay P.&P. 15p & C.W.O.

Happy New Year to all from

R.F. EQUIPMENT SPARES LTD.

ST3 Stands-for all models £1.10

WIRE STRIPPER& CUTTER £0.85 HAND DRILLS Leytool precision, compact, 5/16" chuck £3.95

AERIALS Extend 15-120cm £1.50 CASSETTE 'Head Demagnetisers'

Shaped pole-saves time £3.65 EARPHONES Stethoscope £1.25

MICROPHONES Dynamic E2.15 PRINTED CIRCUIT KITS-All

items for producing p.c's £3.99 SIGNAL INJECTOR-Audio through

Discharge

MAXIMUM PERFORMANCE

ION

£0.45

£3.99

SOLDER in Blb dispense

Capacitor

EASY COLD START

GNI

£1.10

£1.35

DISC

3 Lacy Close, WIMBOCRNE, Dorset

★ ELECTRONIC PIANO KIT ★ SYNTHESISER KIT

★ ELECTRONIC ORGAN KITS

There are five superb Electronic Organ kits specially designed for the D-I-Y enthusiast. With the extreme fexibility allowed in design.

you can build an organ to your requirements. which will compare with an organ commercially built costing double the price.

*Portable organ with 4 octave keyboard, £145-29. \pm Console organ with 5 octave keyboard, £250.95 \pm Console organ with 2 x 4 octave keyboards and 13 note pedal board. £470-65. \pm Console organ with 2 x 5 octave keyboards and 32 note pedal board. £680. \pm Console organ with 3 x 5 octave keyboards and 32 note pedal board. £960. \pm W/W Sound Synthesiser Kit. £130. \pm W/W Touch Sensitive Electronic Piano. £100.

All components can be purchased separately, i.e., semiconductor devices. M.O.S. master oscillators, coils, keyboards, pedal boards, stop tabs, draw bars, key-contacts, etc. Send 50p for catalogue which includes 5 x 10p vouchers or send your own parts list, enclosing S.A.E. for guotation.

ELVINS

ELECTRONIC MUSICAL INSTRUMENTS Designers and component suppliers to the musical industry 12 Brett Road, Hackney, London, E8 1JP. Tel. 01-986 8455

YUDDD

BYWOOD ELECTRONICS 68 Ebberns Road Hemei Hempstead HP3 9RD Tel 0442 82757

To show it may concern,

Please note that as from mid-November we are able to offer Litronix Class II displays in addition to our range of Litronix full-spec devices. With the Class II displays all segments are guaranteed to work but have no guaranteed match in output spec. Device availability and prices are -

FULL SPEC DI	SPLAYS	CLASS II D	ISPLAYS	
DL701/4/7	148p	DL707E	. 70p	Exclude VAT!
DL721/7/8	375p	DLT27E	180p	
D1746/7/750	245p	DL747E	150p	Care and

Quantity prices for either type are available upon request.

We are also able to offer the full range of National Semiconductors Clock chips, most Mostek and Calter clock chips, Mostek MK5039 series counter/timer chips, our MHI modular kit system, Pluorescent and other technology displays.

We accept Access and Barclay cards or CWO or accounts to accredited customers. A SAE sent to us will be returned with our latest catalogue and price list enclosed.

As we are the experts in our field why bother to contact anybody else? Call us today on 0442-62757.

SUBSCRIPTIONS

The annual subscription to ETI for UK readers is E5.00. The current rate for readers overseas is E5.50. Canadian subscription rate is \$10 per year. Send orders to ETI SUBS Dept. . . .

BACK ISSUES

The cost of a back issue is 40p. Postage and packing costs an additional 15p for the first and 10p for each subsequent copy. Send orders to ETI BACK ISSUES Dept... We cannot supply cartain back issues (April, May and November 1972; February and November 1973; March and September 1974; January and September 1975).

SPECIAL ISSUES

At present we have four Special Issues: Top Projects 1, Top-Projects 2, Bectronics, It's Easy [Parts 1 to 13], and International 4600 Synthesiser (published by Maplin). The prices are 75p. 75p. E1.20 and E1.50 respectively; postage and packing is an additional 15p per issue. Send orders to ETI SPECIALS Dept...

BINDERS

Binders, for up to 13 issues, are available for E2.00 including VAT and carriage. Send orders to ETI BINDERS DEPT \dots

BOOKS

ETI Book Service sells books to our readers by mail order. The prices advertised in the magazine include postage and packing. Send orders to ETI Book Service, 25 Court Glose, Bray, Maidenhead, Berks.

SPECIAL OFFERS

SPECIAL OFFENS Normally special offers are open from the date of publication to the end of the month on the cover of the issue. Usually the filing of orders and the despatch of goods is handled by the company supplying the products. In this case queries should be addressed to the company and not to ETI.

T-SHIRTS

ETI T-shirts are available in Large. Medium, or Small sizes. They are yellow cotton with black printing and cost $\pounds1.50$ each. Send orders to ETI T-SHIRTS Dept...

PCBs

PCBs are available for our projects from companies advertising in the magazine, such as Ramar and Crofton, who do an excellent service.

EDITORIAL QUERIES

Written queries can only be answered when accompanied by an SAE, and the reply can take up to three weeks. These must relate to recent articles and not involve ETI staff in any research. Mark your lefter ETI QUERY ... Telephone queries can only be answered when technical staff are free, and never before 4 pm.

NON-FUNCTIONING PROJECTS

We cannot solve the problems faced by individual readers building our projects unless they are concerning interpretation of our articles. When we know of any error we print a correction as soon as possible at the end of News Digest. Any useful addenda to a project will be similarly dealt with. We cannot advise readers on modifications to our projects.

CONTRIBUTIONS

Before submitting any material for publication contact the Editor who will advise on suitability (except for letters, news & Tech-Tips).

NEWS DIGEST

We receive 20 times more news than we have space for. If you have an interesting item we will be pleased to consider it along with the rest. The statement must be brief and preferably accompanied by a large photograph.

TECH-TIPS

We pay for items printed in this section: send ideas for submission to ETI TECH-TIPS... Drawings must be as clear as possible and the text should be typed or clearly written on alternate lines. Circuits must not have been previously published and must not be subject to copyright. We cannot answer queries on published Tech-Tips.

LETTERS FOR PUBLICATION

We do not pay for letters published and we only print them it they are very interesting or important. They should be addressed to the Editor.

MINI-ADS & CLASSIFIEDS

This is a pre-payment service — rates on application to ADVERTISING Dept., or phone Bob Evans on 01-730-7319.

> ADDRESS FOR ETI DEPARTMENTS-36 EBURY ST, LONDON SWIW OLW

More than just a catalogue! PROJECTS FOR YOU TO BUILD

4-digit clock, 6-digit clock, 10W high quality power amp., High quality stereo pre-amp., Stereo Tuner, F.M. Stereo decoder, etc., etc.

CIRCUITS . . . Frequency Doublers, Oscillators, Timers, Voltmeters, Power Supplies, Amplifiers, Capacitance Multiplier, etc., etc. . . .

Full details and pictures of our wide range of components, e.g. capacitors, cases, knobs, veroboards, edge connectors, plugs and sockets, lamps and lampholders, audio leads, adaptor plugs, rotary and slide potentiometers, presets, relays, resistors (even 1% types!), switches, interlocking pushbutton switches, pot cores, transformers, cable and wire, panel meters, nuts and bolts, tools, organ components, **L** keyboards, L.E.D.'s, 7-segment displays, heatsinks, transistors, diodes, integrated circuits, etc., etc., etc., etc.

Really good value for money at just 40p.

The 3600 SYNTHESISER

The 3600 synthesiser includes the most popular features of the 4600 model, but is simpler. Faster to operate, it has a switch patching system rather than the matrix patchboard of the larger unit and is

particularly suitable for live performance

and portable use. Please send

S.A.E. for our price list.

GRAPHIC EQUALIZER

A really superior high quality stereo graphic equaliser as described in Jan, 1975 issue of ETI. We stock all parts (except woodwork) including all the metal work drilled and printed as required to suit our components and PCB's.

S.A.E. for price list or complete reprint of article – price 15p.

NO MORE DOUBTS ABOUT PRICES

The 4600 SYNTHESISER

We stock all the parts for this brilliantly designed synthesiser, including all the PCBs, metalwork and a drilled and printed front panel, giving a superb professional finish. Opinions of authority agree the ETI International Synthesiser is technically superior to most of today's models. Complete construction details in our booklet available now, price £1.50, or S.A.E. please for specification.

MARKIN

ALITY COMPONENTS

ELECTRONIC ORGAN

Build yourself an exciting Electronic Organ. Our leaflet MES51, price 15p, deals with the basic theory of electronic organs and describes the construction of a simple 49-note instrument with a single keyboard and a limited number of stops. Leaflet MES52, price 15p, describes the extension of the organ to two keyboards each with five voices and the extension by an octave of the organ's range.

Solid-state switching and new footages along with a pedal board and a further extension of the organ's range are shown in leaflet MES53 priced at 35p. (pre-publication price 15p.)

Now our prices are GUARANTEED (changes in VAT excluded) for two month periods. We'll tell you about price changes in advance for just 30p a year (refunded on purchases). If you already have our catalogue send us an s.a.e. and we'll send you our latest list of GUARANTEED prices. Send us 30p and we'll put you on our mailing list — you'll receive immediately our latest price list then every two months from the starting date shown on that list you'll receive details of our prices for the next GUARANTEED period before the prices are implemented! — plus details of any new lines, soecial offers, interesting projects — and coupons to spend on components to repay your 30p

NOTE: The price list is based on the Order Codes shown in our catalogue so an investment in our super catalogue is an essential first step.

Call in at our shop, 284 London Road, Westcliff-on-Sea, Essex. Please address all mail to

MAPLIN ELECTRONIC SUPPLIES P.O. Box 3 Rayleigh Essex SS6 8LR.

HP.

I end	lose Cheque/P.O. value	ŀ
For	copy/copies of your Catalogue	h
Nam Add)	Ī
		Ľ
MAPL	N ELECTRONIC SUPPLIES P.O. Box 3 Rayleigh	5