

Kent CT4 7AD Tel (0227) 63218

Name & Address

Signature.

international

17

ublished

a

ANOFT

SEPTEMBER 1976	VOL 5, No. 9
Features	
OPTO-ELECTRONICS. Plastics and their part in electronics	
CAPACITORS: PART TWO	
CMOS-TO MAINS Interfacing mircopower CMOS to high power A C.	
TOSHIBA ST 910 TUNER REVIEWED	50
MIRCOFILE PART SEVEN	
ELECTRONICS IT'S EASY Continuing digital display techniques	64
TECH TIPS	
Projects	

HIHIII

LOW COST VDU - PART TWO	<u>.</u>	10
		4 6
TWO METRE POWER AMP	· ·	19
Boosting outpower to higher levels		
FTL CLOCK MODS		37
Addition of a 'radio alarm'		
100W DISCO LINIT PART ONE		42
Power amps and power supply constructional details		
BREAKDOWN BEACON		52
Could ague you consist and perhaps a life!		-
Could save you repairs, and perilaps a mer		-
RFATTENNUATOR		62
Precision step unit for use to 150 MHz		

Data Sheet

MK 50075/50103/50104 SCIENTIFIC CALCULATOR SET 56 The heart of a very sophisticated machine for you to build around

News-

1 W B 1.58 MA 1.44 H												
NEWS DIGEST			84.		. i		 s., -		4		6	j .
ELECTRONICS	TOMORROW						 37	-		· 5.	70)

Information

SUBSECIPTIONS			- 2				,			D4		 33
BOOK SERVICE											÷	 34
OCTOBER ETI PREVIEW		,					4			14		 36
SPECIALS			4	1			4		į -			 41
ETI CLOCK OFFER						, T		1		4	;	 49
DIGITAL WATCH					. 6	r,						 49
READER SERVICES INFORMATION	۷.											 82
A . I A AA												

Special Offers

DECON PCB KIT 34% off the most convenient way yet to etch PCB's!

	CONTORIAL AND ADVERTISEME ORFICES 36 Ebury Street London SW1W 0EW Telephone: 01-730 8282
	Telex 8811896 HALVOR W. MOORSHEAD Editor
	ROBERT C. EVANS Judvertitement Managor
	LES BELL, GACEM
	JEAN BUTTERWORTH Production
	Editorial-Director
	AUSTRALIA STEVE BRAIDWOOD Assistant Editor
	Modern Magezines (Holdings) Lts Ryrie House: 15 Boundary Street Rushcutters Bay 2011 Sydney, Australie.
	FRANC DENIS-JACOB Evitor in chief OHRISTIAN DARTEVILLE
	Biactroniques Pour Vous International. 17 Rue de Buci Peris, France
5	Electronics Today International is normally p on the first Friday of the month prior to the co
5	PUBLISHED BY Modiflegs Ltd. 36 Eburý Street, London SW1W DLW.
	DISTRIBUTED BY Ar us Distribution Ltd. (British Isles) Gordon & Gotch Lid. (Canada and South Afric
5	PRINTED BY QB Newspapers Limited, Colchester

READERS' QUERIES' These can only be enswered if they relate to recent articles published in the magazine Rarely can we supply information in addition to that published. Written queries must be accompanied by a stamped addressed envelope, and telephone queries must be brief, not before 4pm and can only be answered subject to the availability of technical staff.

BACK NUMBERS: Back numbers of some issues are available for 40p each, plus 15p postage.

SUBSCRIPTIONS: Great Britain £5.00 per annum. Overseas £5.50: Payment in sterling only

35

COP/FIGHT: All material is subject to world wide Copyright-protection "All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETH cannot be held responsible for it legally. Where errors do occur, a correction will be published as soon as pussible afterwards in the magazine.

BI-PAK SEMICONDUCTORS

TRANSISTORS	*74 SERIES T.T.L. I.C's	SUPER UNTESTED PAKS	VOLTAGE
BRAND NEW, FULLY GUARANTEED TYPE PRICE TYPE PRICE TYPE PRICE TYPE PRICE TYPE PRICE AC117K +4.30 BC170 0.09 BF271 +4.31 2N131 =0.18 AC125 +4.18 BC170 0.09 BF271 9.34 2N1312 =0.18 AC125 +4.14 BC173 0.09 BF271 9.64 2N1302 =0.18 AC126 +4.14 BC173 0.09 BF23 9.612 2N1305 +0.18 AC127 +6.15 BC178 +6.16 BFX85 +6.22 2N1306 +0.14 AC137 +6.15 BC178 +6.12 BFX95 +6.12 2N1307 +0.21 AC141 +6.15 BC174 +6.16 BFX95 +6.12 2N1308 +0.14 AC137 +6.16 BC180 +6.25 BFX95 +6.12 2N1308 +0.14 AC147 +6.23 BC204 L09		Pak Nu. Description Price UI 120 Class Sub-min GP. Germ diodes 0.60 U2 50 Mired Germanium transistors AF /RF 0.60 U3 75 Germ gold bonded sub-min like OA17 0.60 U4 30 Germ. transistors like OC81, AC128 0.66 U5 60 200mA sub-min silicon diodes 0.66 U6 30 Sil trans. NPN like BSV95A, 2N705 0.66 U8 50 Sil diodes DO-7 250m A like OA200/202 6.60 U9 20 Mired Voltages I. Watt Zener Diodes 0.66 U10 20 PNP-Sil trans. TO-5 like 2N1132, 2N1204 6.60 U11 30 PNP-NPN Sil trans. TO-5 like 2N132, 2N1204 6.60 U13 30 PNP-NPN Sil trans. TO-5 like 2N1032 6.60 U14 150 Mired Silcon APZ 1.50 6.60 U15 20 Amp Sil, erect. top Ata top 1000 PIV 6.60 U20 12 Amp Sil, erect. top Ata top 1000 PIV 6.60 U21 30 AF Germ. trans. 2C300 series & CCT1 6.60 U21 30 AF Germ. trans. 2C300 series & CCT1 6.60 U21 30 AF Germ. trans. 2C300 series & CCT1 6.60 U221 30 AF Germ. trans. 2C300	VULIAGE REGULATORS TO 3 Plastic Encapsulation WA 7805/L129 5V (equiv. to MVRISV) 1.25 127 (Cquiv. to MVRISV) 1.25 128 (Cquiv. to MVRISV) 1.25 127 (Cquiv. to MVRISV) 1.25 187 (Cquiv. to MVRISV) 1.25 187 (Cquiv. to MVRISV) 1.25 188 (Cquiv. to MVRISV) 1.25 189 (Cquiv. to MVRISV) 1.25 180 (Cquiv. to MVRISV) 1.25 181 (Cquiv. to MVRISV) 1.25 181 (C
AF173 **8.51 BO187 **7.1 (C203 *0.26 2N3646 *0.89 AF179 **0.51 BD188 #0.71 (C204) *0.26 2N3646 *0.89 AF181 **0.51 BD189 *0.77 (C205) *0.38 2N3702 0.99 AF186 *0.51 BD189 *0.77 (C205) *0.38 2N3704 0.89 AF186 *0.51 BD195 *0.37 (C208) *0.41 2N3703 0.09 AF129 *0.38 BD196 *0.77 (C208) *0.41 2N3704 0.88 AL103 *0.37 BD197 *0.92 NSL4931 0.48 2N3706 0.08 ASY27 *0.42 BD197 *0.92 NSL4931 0.48 2N3706 0.08 ASY27 *0.42 BD197 *0.92 NSL4931 0.308 0.86 2N3706 0.08 ASY27 *0.26 BD206 *0.89 ST140 *0.13 2N3711 <t< td=""><td>*THYRISTORS PIV 0.6A 0.8A IA 3A 5A 5A 7A 10A 16A 3DA PIV 0.6A 0.8A IA 3A 5A 5A 7A 10A 16A 3DA PIV 0.6A 0.8A IA 3A 5A 5A 7A 10A 16A 3DA 10 0.13 0.18 -</td><td>V.A.T. All prices EXCLUDE V.A.T. Please add % to all prices marked * Remainder add 12% AVDEL BOND</td><td>FM STEREQ DECODER Comprising 51.C.s like MC1307 and SN76110 ONLY £1.50 per PAK Complete with data BRIDGE RECTIFIERS 2A/50vRMS 6.35 2A/50vRMS 6.46 2A/200xRMS 6.46 2A/400vRMS 0.50 2A/1000vRMS 6.60</td></t<>	*THYRISTORS PIV 0.6A 0.8A IA 3A 5A 5A 7A 10A 16A 3DA PIV 0.6A 0.8A IA 3A 5A 5A 7A 10A 16A 3DA PIV 0.6A 0.8A IA 3A 5A 5A 7A 10A 16A 3DA 10 0.13 0.18 -	V.A.T. All prices EXCLUDE V.A.T. Please add % to all prices marked * Remainder add 12% AVDEL BOND	FM STEREQ DECODER Comprising 51.C.s like MC1307 and SN76110 ONLY £1.50 per PAK Complete with data BRIDGE RECTIFIERS 2A/50vRMS 6.35 2A/50vRMS 6.46 2A/200xRMS 6.46 2A/400vRMS 0.50 2A/1000vRMS 6.60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Type Quantifies Type Quantifies 1 25 100 + 1 25 100 + 72709 0.35 0.44 0.42 1 1.25 100 + 72709 0.33 0.21 0.19 0.4703C 0.26 0.24 0.22 72709 0.19 0.18 0.18 0.17 0.19 0.18 0.17 72710 0.32 0.31 0.28 0.4710C 0.32 0.31 0.28 72741 0.35 0.27 0.24 0.4703C 0.45 0.31 0.42 72741 0.28 0.27 0.24 0.4712C 0.32 0.31 0.40 72741P 0.28 0.27 0.24 0.4712C 0.45 0.43 0.40 72741P 0.28 0.27 0.26 76603 1.33 1.34 1.30 72741P 0.45 0.43 0.37 1.78250 0.45 0.43 0.40 <td< td=""><td>SOLVE THOSE STICKY PROBLEMS! With CYANOACRYLATE C2 ADHESIVE Dur PRICE ONLY 70p+ for 2gm phial</td><td>Postage and packing add 25p. Overseas add extra for airmail. Mini- mum order £1</td></td<>	SOLVE THOSE STICKY PROBLEMS! With CYANOACRYLATE C2 ADHESIVE Dur PRICE ONLY 70p+ for 2gm phial	Postage and packing add 25p. Overseas add extra for airmail. Mini- mum order £1

YOU'RE NEVER ALONE WITH AN MPU

The worlds largest ever ship, the 550,000 ton 'Batillus' is under MPU control! All engine control monitoring and alarm systems are now run from the system shown in the picture. The video monitors are hooked to the MPU 'Alphaprom' units – one per engine – which each have 225 alarm points throughout its system.

The control room has an alpha-

VERY SUBMIN SWITCH

Roxburgh Electronics have a new subminature rotary switch which is sealed in an industry-standard TO-5 can. Designated the Series 30, the switch offers a wide range of configurations, and from 2 to 8 switchpositions.

Nominally rated at 0.5A, 125V AC, the switch contacts are capable of handling up to 3A, and the Series has been designed for direct mounting to PCB's, or for panel-mounting by means of an optional bush.

A thumbwheel switch is also available.

Roxburgh Electronics Limited, 22 Winchelsea Road, Rye, Sussex. numeric printer, which reads out to the operator any deviation in levels considered significant, along with precise time codes. New alarms appear as red type, and faults rectified as black. Naturally a loud acoustic alarm is also provided. After all the controller might be colour-blind!

CSI Bv, P. O. Box 174 Vlaardingen, Holland.

SINGLE-CHIP JFET PREAMPLIFIER

The first monolithic JFET preamplifiers types T100/300 by Siliconix will serve as single-device replacements for the discrete component assemblies generally used to buffer higimpedance signals from piezo-electric and capacitive microphones/transducers. They operate at low power levels from single DC power supplies of 1.3 to 30V. Applications include hearing aids, microphone preamplifiers and general purpose impedance converters. Two versions have been introduced, both in TO-72 metal can packages.

No external components are required for operation with devices such as ceramic electret-condenser, and air-condenser, microphones, or piezo-electric capacitive transducers.

Each chip contains an N-channel depletion-mode, junction field effect transistor (JFET), with a diffused source resistor and back-to-back Schottky diodes. The diodes from the high-impedance, gate-bias resistance. The circuit is self biasing.

Siliconix Limited, 30A High Street, Thatcham, Newbury, Berks RG13 4JG.

TRUTH TABLE DETECTOR CLIP

The 548A Logic Chip from H.P. is designed to clip on to a 16-pin DIPpack IC, when its light-emitting diodes show the logic states of each of the IC's pins simultaneously.

It is automatic for all logic families from 4 to 18V DC. Three volt CMOS is tested by connecting a 4.5V supply to an auxiliary power pin.

With internal, self-seeking logic circuitry, the 548A locates the supply and ground pins automatically; it can be placed on the IC 'upside down' or 'rightside up'. Total current drawn by the clip is less than 40mA with 15 LEDs on. Input current is less than 15mA, assuring virtually no circuit loading. Inputs are protected to 30V DC for 1 minute. Price is £77.

Hewlett-Packard Limited, King Street Lane, Winnersh, Wokingham, Berkshire RG11 5AR.

SHARP PRACTICES IN WATCHES?

One very interesting little snippet caught our eye last month – Gillette, the well known face scraping company, are adverting in the USA for digital watch engineers. Both LCD and LED men are required, as are 1²L logic designers. With their past history Gillette can't fail to carve themselves a good chunk of the market, (literally!).

GAMES FOR HIRE

Later this year Fairchild Semiconductors who have recently taken a hand in digital watches, will be introducing their long awaited TV games chips into Europe. These are based on the F8 microprocessor, and according to Fairchild, can handle teletext as well. In order to assure themselves of a market, the company plans to do a deal with a TV rental company so that games could be hired with the set. The cost to the user would be about £1 extra on top of a colour rental.

TIME BOX

Not for pursuit of Daleks, but ideal for digital clocks, this new case. from West Hyde is moulded in antistatic ABS with 3½mm walls. It has high impact strength, and integral front feet which lift the case to good viewing angle. Two positions for PCB's are provides.

Available in white, red, orange and blue in any quantity, all have 3mm thick red acrylic window panels.

Dimensions: 56mm x 131mm x 71.5mm deep. Prices: 1 off £1.79 – 100 off less 25%.

West Hyde Developments Limited, Ryefield Crescent, Northwood Hills, Middlesex HA6 1NN.

NEW CATALOGUE FROM MARSHALL'S

One of the catalogues which we at ETI refer to most has just been updated: that from Marshall's. The new edition has 160 pages — considerably larger than the previous one. More information of semiconductor lead-outs are included as is a new listing of Japanese equivalents.

For callers the price is 30p but it's also available by post for 40p from A. Marshall, 42 Cricklewood Broadway, London NW2 3ET.

CLOCK MODULE SHRINKS

The interest generated by the MA1001 series of clock module subsystems has encouraged National to introduce a further series, designated MA1002. This new series miniaturises the complete module to a package only 7.5mm x 3.5mm,

Various versions are available for 12/24 hours formats and input frequencies, and further details are available on request from National Semiconductor, 19 Goldington Road, Bedford, MK40 3LF.

HOME ON THE (TEXAS) RANGE

The consumer electronics fields is about to be asked to hear the weight of yet another giant. Texas Instruments are placing their highly digital boots firmly in the earth of the home market, and expect them to take root there, and grow to 93% of their total business in 1978.

Whether or not they achieve the full bloom of this success depends entirely as to whether you and I take to the gifts the giant comes bearing. It almost gives one a feeling of power does it not?

As a starter T.I. have introduced 16 digital watches, 12 of which are in plastic cases. Technology is I²L, not

the ubiquitous MOS - a move to newer pastures, broken by Sinclair. The range is priced from £15.95 to around £32. Yer pays yer money and takes yer choice - of case and strap, the modules are the same in all the watches, and give 5 functions as usual. The styling is certainly carefully thought out, and new types will be dropped onto the public as and when T.I. deem it timely to do so.

A calendar feature is incorporated,

preset to 4 years of correct month length. However since the batteries last you at most a year, and date info is lost on switch-off (battery change) so don't get *too* excited with the idea.

Marketing is to be through anybody and everybody who will sell the watches, so they will be around very quickly. The displays are all LED but Texas are expending many hours of toil in the LCD field, and expect to bring to fruition a watch with this display sometime during 1977.

Calculators are the other channel from which T.I. hopes our money

will flow. In order to speed this flood, they have an extensive new range with several very ingenious machines. At the low cost end we have the TI 1600, a slimline rechargable at £17.95. Especially for the student, the TI 30 possess no less than FIFTEEN levels of parenthesis. It also has full scientific facilities, and will turn off the display if you're wasting battery power.

Price £19.95.

The TI 5050 and 5040 are thermal printing machines, the former portable at £99, and the latter desk-bound for £109. Perhaps the most amazing of all is the SR-60. Defined as a calculator only because it requires no peripherals to work, it has a possible 1920 programme steps and 100 memories! The display is alphanumeric, and can interrogate the user if programmed to!

Well, it prompts him anyway, (It is

to be hoped we *don't* get an SS machine just yet! Ve hav vays of making you compute and all that). The tings the SR 60 won't do are very few indeed, but for circa £1500 perhaps this is not too surprising. Before we are deafened by crys of 'MPU's rule OK' let us add hastily that this is *not* an MPU machine, but is calculator chip based.

The range all use T.I.'s new (?) Arithmetic Operating Logic, said to be truly arithmetic in operation. In practice it looks like an improvement on ordinary arithmetic logic certainly, and any thing is an improvement on RPN!

COLOUR OSCILLOSCOPE

The Scopex 4D25 now includes a special 'Glarecheq' graticule for 'refelection-free' measurement. This does not decrease the brilliance of the trace or increase the spot size but acts to down extraneous reflection.

NOWS CLIQOS

As a 'reaction against drabness in instrumentation', a pleasant shade of blue has been selected for the front panel, and the controls and bezel have been colour matched.

Technically the 4D25 offers 3% accuracy on both time and voltage measurements, and incorporates a 25MHz bandwidth with Y-amplifier signal delay. Apart from which think how well it will match the wallpaper! Price £245.

Scopex Intruments Limited, Pixmore Industrial Estate, Pixmore Avenue, Letchworth, Herts SG6 1JJ.

IN 3 x 10⁶ YEARS TIME, IT WILL BE ONE SECOND SLOW!

RCA are working for the US Navy to determine the feasibility of using hydrogen maser clocks -- precise to one second in three million years -- in Global Positioning Systems (GPS) satellites.

These satellites are part of a triservice programme under Air Force direction. NTS-1 was launched in July 1974 and tested rubidium clocks. NTS-2 will test cesium clocks; NTS-3 will test hydrogen maser clocks.

A planned constellation of 24 GPS satellites will be continusously transmitting time synchronized signals. A ship, airplane or land craft suitably equipped to receive the signals, will be able to determine its exact position anywhere on the glode.

Hydrogen atoms are employed because of an extremely stable fixed frequency generated under certain controlled conditions. The atoms are produced from hydrogen gas molecules by an electrical discharge and beamed intp a special container in a microwave cavity. The hydrogen atoms undergo an energy state change and emit a frequency that can be used to very accurately control the output frequency. Can you just see the thing ticking away merrily on your mantelpiece? The BBC would have to phone you for a time check – about 5976 AD!

£37.286 PER DIGIT!

The Data Precision 175 is a full function, 32 range battery and line operated instrument, whose basic sensitivity is 100mV.

With 5 ranges of DC/AC voltage measurement and 100% overrange capability per range, the 175 measures from 100 μ V to 1000V, protected to ±1000V on any range (including 100mV). Basic instrument accuracy is 0.1%, and this is a 1 year specification over a ±50 temperature range,

Resistance measurements are catered for from $100m\Omega$ to $20M\Omega$ in 6 ranges (basic accuracy of better than 0.1%).

A 'low voltage' mode is provided having the same ranges as the normal resistance measurement, but with only 300mV of open circuit excitation. This enables resistance measurements to be made on circuits while still connected to semiconductor devices.

The £120 the Model 175 costs brings, in addition to the basic instrument, its rechareable battery module, a pair of fuse protected test leads, mains lead with charger, alligator clip adaptors and a complete certificate of traceability.

Farnell International Instruments Limited, Sandbeck Way, Wetherby, West Yorkshire LS22 4DH.

FIRST LIVE 4-CHANNEL BROADCAST

Live quadraphonic broadcasting experiments- have been conducted by Radio Clyde (the commercial station servicing the Glasgow area). Four and a half hours of the "Proms 76" concerts, by the Scottish National Orchestra, were broadcast in fourchannel mode, direct from Kelvin Hall, Glasgow. on June 26 and July 2, using encoded signals. The encoding system used for this experiment was the Sansui QS Matrix. The experiment follows one by Piccadilly Radio – in April – where, apart from certain records already encoded, the Staion's output for two days was synthesized via the QS system into 4-channel. The Independent Broadcasting Authority monitored and transmissions. We can only hope for the experiments to spread, with perhaps good ole Auntie taking a hand (or four!).

NO, THE WHISTLE ISN'T DIGITAL

This hand-held battery-powered stopwatch measure time to 50 minutes, 59.9 seconds in one-tenth second intervals. Controls allow simple start/ stop, Time IN/Time Out, and include safeguard against accidental reset.

Accuracy is controlled by a quartz crystal, and the display LED. Weighing 6oz., the ET105 is approximately $4\frac{1}{2} \times 2\frac{1}{2} \times 1\frac{1}{2}$ ins, and will slip into a jacket pocket.

Price to be announced. Newitt and Company Limited, 81 Goodramgate, York YO1 2LU.

IC IN CAMERA

Contained in a 16 pin DIP the ZNA134 is a complete system, requiring only a single 5V supply. An onchip oscillator (which can be overdriven) externally permits multiple SPG unit usage.

The ZNA134 incorporates such features as synchronising between units, direct reset to horizontal and vertical counters, facailities for adding and subtracting lines, automatic interlacing and a field reference output. Perhaps its most novel feature is its abaility to provide both CCIR and EIA equalisation by changing the voltage on a single pin.

The ZNA134 generates all the horizontal, vertical, mixed blanking and synchronising pulses necessary for raster generation in 625 or 525 line commercial, industrial or military TV systems. It can be supplied to operate over the military temperature ranges.

Ferranti Limited, Electronic Components Division, Gem Mill, Chadderton, Oldham OL9 8NP.

ELECTRONICS TODAY INTERNATIONAL-SEPTEMBER 1976

.9

LAST MONTH WE DESCRIBED the design requirements and system description of a simple VDU; this month we will cover most aspects of construction with modifications and applications next month. The project has been designed with PCBs in order to simplify construction; there is no reason why the circuit should not be built on Veroboard as was the first prototype of the 560 VDU.

INTERFACE TO TV

The TV set used in the prototype is a Heathkit GR-9900 set built from a kit. If you decide to use this kit set which is one of the most attractive portable sets that I have seen then it will be necessary to break the circuit in the set by removing the positive end of C18 from the PCB. On the prototype two video sockets were added at the rear of the set, one connected to the point where C18 was on the PCB (TV video out), and the other connected to the now floating end of C18 (Video in), both sockets using chassis ground. A short link of coax with a plug at each end will connect the two sockets for normal TV programs or the output from the 560 VDU can be connected to the Video in socket.

It may be possible to modify any other portable set in a similar manner but check that there is a transformer in the mains input circuit. Domestic TV sets may be modified to accept a video signal but check with manufacturer first. The alternative is to use a UHF modulator as supplied by Crofton Electronics but this must be correctly set up or else all of the verticals in each character will have a stepped or wobbly look. If a modulator is used then the 560 VDU can be used with any TV set, colour or B/W. NB: These modulators can transmit back down an aerial line even if the normal aerial line is disconnected and if the modulator output line is too near the aerial line then any other set Components for this project are available from Watford Electronics (who supply the metal case, type WE1), Technomatic, Bywood or Catronics.

Fig. 2(a) Board A PCB

connected to that aerial may also pick up this signal. This is more likely to happen in flats, etc, where a common TV aerial is very often built-in.

POWER SUPPLY

The TTL and MOS RAM require a stabilised 5v supply at about 1A current; this is most conveniently supplied by the well-known LM309

voltage regulator which uses the metal case as a heatsink and a groundplane. The MOS ROM (2513 character generator) requires supplies of 5v, GND, -5v and -12v, all at very low current levels; the -5 and -12v supplies are derived from a second winding on the transformer with Vdd as a common ground. The circuit diagram of the power supply shows the

two transformer windings rectified by D1-4 and D5-8 and smoothed by C1 and C2. The output from C1 is used to feed the voltage regulator REG1 which outputs a regulated 5v at up to 1Amp, LED1 and R1 are used as a panel lamp to indicate, 'Power On''. The output from C2 will be in the area of -15v; this is limited by zener D9 to -12v and in turn this -12v is limited to -5v by zener D10. No indicators were used here but an LED could be connected across C2 (with suitable limiting resistor) to give a panel indication that both positive and negative supplies were on.

Note that the transformer must have two separate windings (12-0, 12-0); a 12-0-12 centre-tapped type will not do.

BOARD 'B'

The block diagram of board 'B' is shown in Fig 3. Its function is to generate TV sync signals and character video information and then to mix these two signals with a blanking signal to produce a standard video signal for input to a modified TV set.

The sync generator is formed by two 555 timers in a stable mode both with a mark/space ratio of about 10:1. IC1 runs at 50Hz and IC2 at 15KHz. The outputs from these ICs consist of a short negative pulse from each which are mixed in IC5 to give a mixed sync signal. We will refer to these signals as FS (Frame Sync), LS (Line Sync) and MSYN. IC3 and IC4 are 555 timers in the monostable mode. IC3 uses FS as a trigger input and produces an output called FSD (Frame Sync Delay) which is basically FS inverted but with the length of the short pulse adjustable by VR3. The width of this pulse is used to define the distance from the top of the screen at which the output will start and the signal is used to blank the video and to reset line and row counters. IC4 produces a similar signal (LSD) which defines the distance from the left-hand side of the screen and is used to blank the video and also resets the Master Clock (MCLK) and character counters.

The Master Clock (MCLK) is generated using two gates of IC5 which will oscillate at about 6MHz whenever LSD is low. As LSD always goes low at the same "time" on each TV line MCLK always starts at the same position on each TV line; this is very important to avoid ragged edges or verticals on the characters.

VIDEO GENERATOR

IC15 is a 7421 4-input AND gate (note not a 7420 NAND) which mixes the blanking signals RCLK, FBLK, LBLKI, and BLNK. RCLK occurs on the last two of every ten TV lines after FSD, this thus blanks at the bottom of each character row. FBLK and LBLKI are from the flip-flops IC13-14, the FBLK signal is set by FSD and reset by EOF which is generated when the text row counter exceeds the number of rows (8 at present). LBLKI is formed in a similar manner. To test board 'B'' connect a temporary link from LBLKO to LBLKI. BLNK signal is generated to "flash" the output character, it can be left unconnected at present. IC15 output (BVID) is mixed with the character video (CVID) from the character generator and multiplexer and then mixed with MSYN to emerge from IC16 as something close to a standard video signal. If we mix this signal reduced by about 50% with the full scale MSYN we have a standard video signal with the large negative troughs from MSYN very apparent if seen on a scope.

If you build up board "B" with ICs 1-6 and 13-16 and associated components you should now be able to produce a video picture on the set. Set all presets to midway and turn on, adjust VR1 until picture stops "rolling" and then adjust VR2 until picture stabilises horizontally. It was found that FS and LS sometimes drifted off after warming up and thus VR1 and VR2 may need adjusting during use. You may prefer to use panel-mounted potentiometers in place of or in addition to the board-mounted presets.

Having stabilised the picture you should see a set of horizontal lines produced by RCLK, these should be thick white lines with thin spaces between; each white line will

11

become a character row. Adjust VR3 until the first of these rows is about two inches from the top of the screen and then adjust VR4 until the lines start about one inch from the lefthand side of the screen. If you do not have access to an oscilloscope then the TV screen can now be used to test out each part of construction. DISCONNECT POWER SUPPLY AND CONNEC-TION TO TV BEFORE SOLDERING EACH TIME.

ICS 8-12 can now be mounted and the supply and TV reconnected.

This should now show each white row now split up into white boxes. You may also have white vertical lines the same width as the boxes above the FSD line; do not worry about this at this stage. Count the boxes from the left and adjust VR5 until you have about 34-35 boxes across each row. When the EOF and EOL signals are connected from "'C'' board the boxes will be blanked after number 32 and the rows will be blanked after number 8, thus giving our display "box"

Disconnect, install IC7 with its

power supplies (note MOS handling precautions) and reconnect supply and TV. Assuming that all of the 6 data input lines to IC7 are open circuit each character box will show either an ''at'' sign ''@'' or a question mark ''?'' or a mix of both. The inputs may pick up stray 50Hz radiation and swap between all high (''?'') and all low (''@''). When you have become bored with watching it you can celebrate being about half-way to completion.

12

BOARD 'C'

A block diagram of board "C" is shown as Fig 6; assembly is almost as simple as it looks.

Start by inserting ICs 17-19 and connecting CCLK, RCLK, FSD and LSD from board "B" and EOF and EOL back to board "B". The results on the screen should now be that we have finished defining our display box of 32 characters wide by 8 rows high with flip-flops IC13-14 now working correctly by blanking any video generated outside our box.

ADDRESS COMPARATOR

Any positive true logic address input from switches or other logic input to IC20-21 will be inverted by these ICs if ENABLE is connected to logic "1"; if ENABLE is at logic "0" then this will cause all 8 outputs to go high thus almost effectively disabling the address inputs. The Enable signal is not used in the basic unit and should be connected to a permanent logic "1" or via a 1K resistor to Vss. If we consider output "C" from IC19 and the inverted H input address line we can look at the expected output from the 7486 to which they are connected. A 7486 is an EXCLUSIVE NOR gate and the logic of EX-OR is a logic "1" if either but not both inputs are at logic "1", the output "1" is inverted to logic "0" because this is an EX-NOR gate not EX-OR. Thus we will get a logic "1" whenever either 19C is low and H is high (H low) or if 19C is high and H is low

(H high), or in plain language we get a logic "1" if 19C is the same logic level as input H and a "O" if they are different. Each 7486 output can be checked by leaving A-H inputs high and linking each 7486 output in turn to BLNK input to IC15. The results should be as follows: 19C-H output should be high during text rows 5-8 and low during 1-4. As a low input to BLNK will turn off the display we would expect text rows 1-4 to be turned off, 19C will be the inverse of this and thus the 19C input to the 7486 connected to BLNK will turn off rows 5-8 and the 7486 output will turn off rows 1-4. Similarly, counter output 19B will extinguish rows 3, 4, 7, 8, and 19A will turn off rows 2, 4, 6, 8. The outputs from counters 17-18 will blank columns rather than rows with 18A blanking columns 17-32, 17D blanking 9-16 and 25-32, 17C blanking groups of 4, 17B blanking groups of 2 and 17A blanking every alternate

column. The outputs from the 7486s are the inverse of the above signals and would thus cause the opposite effects.

The output from IC30 will only go low when all inputs are high and this condition only occurs when the counter outputs have the same value as the A-H address inputs, i.e. when both are addressing the same box on the screen. If the output from IC30 is temporarily connected to BLNK then only one box will be blanked off, if the address inputs are still all high then this will be the box in the bottom right corner. Check other settings of A-H input switches to ensure that the box which you think you should be addressing is the one which is then blanked.

ADDING THE RAM

THE MM2112 is a MOS RAM containing 1024 (called 1K) bits. Each bit can be a '1' or a '0' and on turn-on will be mixed randomly; a bit can set to the desired value by

uniquely addressing that bit, setting up the required data (1 or 0) at the data 1/0 pin and putting a low onto the R/W pin, preferably in that sequence. Although our RAM contains 1024 bits they are organised internally as 256 words each of 4 bits in each RAM, we have two RAM chips and thus we have a choice of 512 x 4 or 256 x 8 organisation depending on a serial or parallel connection, we need words with at least 6 bits for ASC11 and thus we have chosen the 256 words of 8 bits organisation.

Ignore the concept of writing to the RAM at present and assume that the random pattern inside the RAM at switch-on is the required

display output. As each display box is addressed by ICs 17-19 so the word is also selected in the RAM and the appropriate data produced at the RAM I/O pins, six bits of this RAM word are the ASC11 code to be passed to the 2513 ROM. Now we come up against one of the problems of working with MOS devices - speed. The RAM takes at least 650nS to find the required word and present it at the 1/0 pins but in the meantime the data from the previously addressed word is still at the I/O pins. If we consider the reaction time of the TTL counters to be about 50nS before the data is available for that box. If we displayed the data straight from

Fig. 8(a) Board C PCB

the HAM then the character would appear to change halfway through each box. First of all we tried to foot the system by starting to display the data during the latter half of each box plus space time by using the upper 5 outputs of the 7442 rather than the lower 5. This would have given us a space 5 units wide and then a character 5 units wide. Unfortunately the RAM data appeared to change at about the 6th or 7th unit and so the first one or two units of our character box were always wrong.

If we latch the RAM outputs at a time when we know that they have settled to their new values then we can use the latched data to pass to

the ROM. In our system we have decided to latch with 7442 output 9 and use 4-8 (or any other group of 5) outputs to generate our character. If we consider the first characters in each text row we can expect that box 1 will start with rubbish and then change to the desired character halfway through. At the end of box 1 the data for the first character will be latched to the ROM and thus box 2 will show the first character correctly, char 2 will be latched at the end of box 2 and displayed in box 3, etc. This means that we will have a rubbish box at the start of each row and that char 32 will be blanked because it is in box 33 and box 33 is blanked by the LSD/EOL flip-flop. If we delay the action of this flip-flop until the end of box 1 and the end of box 33 then box 1 will be enabled. We can use the same latch pulse (7442 output 9) to do this causing 9/10ths of box 1 to be blanked by LSD and the last 1/10th of box 33 to be blanked by EOL; as the last 1/10th of every box is always blank anyway (only 4-8 are used) this will have the effect of moving our complete display area about 1/4 inch to the right. As we are only using 6 or 7 of the bits we thus have a spare latch in one of the 7475's which we can use to latch the flip-flop. Disconnect the temporary link on board 'B' between LBLKO and LBLKI and connect these points to the spare input and output of IC26. We are only using 6 RAM bits and 7 latch bits at present and thus we have at least one spare. It was decided to use this bit to define that the displayed data should flash on and off to thus bring attention to any important parts of the message. A 555 timer - IC28 - is set up to

oscillate at about 1Hz, the output from this is enabled by latched bit 7 and the resulting signal passed to BLNK. If bit 7 is a logical '1' then the appropriate character will be blanked whenever the 555 output is high which is for about half a second every second; if bit 7 is low then the BLNK signal will always be high and thus the character will not flash.

WRITING TO THE VDU

We now have a system which will display any of 128 different characters (64 steady and 64 flashing) in any of 256 possible boxes on our screen. What we need to know is how to write data into the RAM in order to get it displayed on the

screen. As we mentioned earlier a low at the R/W input of the RAMs will cause the data at the 1/0 pins to be placed in the memory location addressed at the same time. Thus if we set up a data word on the input data bus we can write that data into every position of the RAM by holding R/W low for a time in excess of the complete address' cycle time, as a complete cycle takes less than 1/50th second we can connect a push-on release-off switch between R/W and Vdd. If the data set up is ASC11 '100000' our switch will load ASC11 spaces into all positions of the RAM and thus the screen will be cleared of all other characters except spaces, for this reason this switch is called 'CLEAR.' Note that CLEAR will load all positions with the data set up. This data will usually be ASCII space but could be any other (all "" looks very pretty)

Referring to Fig 9 the CLEAR switch can be seen as SW18 connecting writ. (which goes to R/W) to Vdd. This switch also connects a low from Vdd to the common of the data switches (and

	INTEGR	ATED CIRCUIT	S		R	ESISTORS			CA	ACITORS
IC1-4 IC5 IC6 IC7 IC8-9 IC10	555 7400 7490 2513 7403 7404	IC16 IC17-19 IC20-21 IC22-23 IC24-25 IC26-27	7400 7493 7400 7486 2112-2 7475	VR1 100x VR2 22' vi VR3 22xve VR4 10xve VRF 1x2 vi	vertical preset artical preset artical preset artical preset vertical preset				C1 2000µF 25V electrolytic C2 470µF 25V electrolytic C3 0.1 µF C4 2200F C5 0.1 µF C6 2200F	C7-8 150F C9-11 100! 16V electrolytic C12-13 0.47 µF ceramic C14 4.7 µF 16V electrolytic C15 100µF 16V electrolytic C16-17 0.47 µF ceramic.
IC11 IC12 IC13-14 IC15	7442 7490 7400 7421	IC28 IC29 IC30 REG 1	555 7400 7430 LM309	R 1-3 R 4-7 R 8	1 n 4 n 2 20 n 2 2 n	R15 R16 R17 R18	490R 1 k 390R 470R	R	MI	SCELLANY
LEDI TIL20	09 or similar	DIODES		R10 R11	15ĸ 2ĸ	R19 R20	390R 4		PCBs ETI 560A, 560B, 560 CASE Type WE1 (Watford E Transformer T1 0-12y, 0-12	IC lectronics)
09 12V Zer D10 5V Zer D11-18 1N	ner, 400mW ner, 400mW 1914 or similar			R12 R13 R14	33ĸ 3ĸ3 470R	R21 R22 R23-30	22ĸ 33ĸ 1ĸ		FUSE F1 250mA (+holder SW1 Mains toggle switch2S SW17 Miniature push-to-ma	W12 Miniature toggle switch ike

the flash switch if connected). Each switch is diode blocked from its neighbours and held high by a resistor if not connected to the common Vdd by the switch being closed, thus the data bus (6 or 7 lines) will reflect the open or closed position of the switches if the common line is low. If the common line is open circuit then each bit in the data bus will be held high by its resistor but can be pulled low against this resistor if the RAM output for that bit is low, thus the data bus from the switches is effectively Wire-Or'd to the RAM 1/0 pins.

If we wish to write to a particular RAM location then we have to set up that location on our address switches and the required data on our data switches. This will have the effect of causing IC30 output (COMP) to go low whenever the comparison between the scanned address and required address shows that the scan has reached the required box. If COMP is now connected to the data switch common then this will go low causing the switch data bus to output lows wherever a switch is closed during the time that comp is low. Similarly, if COMP is connected to WRIT then the RAM will store the data bus whenever COMP is low. Thus whenever SW17 is closed COMP will cause the active data bus to be read into the RAM whenever COMP is low, as this only happens when the required box is scanned then the data for that particular box only is changed. SW17 (WRITE) must be held closed for a minimum of 1/50th second, if it is opened during the time that

comp is low then rubbish could be written into the RAM, but as this does not happen very often and it can be corrected by pressing WRITE again we have not guarded against this occurrence.

MODIFICATIONS

FLASH. Bits 7 and 8 can be used for other purposes than flash, eg colour generation if the TV has video inputs for RGB. Remember that bit 8 will need to be latched as is bit 7. SYNC. External sync may be used if it is split into FS and LS. A switch could be installed to give internal or external sync options. MPUs. If you wish to use the 560 VDU with a microprocessor you will need a socket to connect 8 bit address, 6-8 bit data, COMP and WRIT plus a ground (Vdd) connection. Further details next month.

CONTINUOUS DISPLAY LCD WATCHES

The watch continuously displays HRS. and MINS. with MONTH, DAY and SECONDS on demand. The owner selects the feature where the HRS. and MINS. or MONTH and DAY display alternatively for 2 second intervals until owner resets to normal display. During the alternating cycle seconds are still available on demand.

**Finest American MOS technology

**Quartz accuracy.
**Multi-function: Hrs., Mins., Month, Day, Seconds. Alternating display Back-light. Programmed 28, 30, 31 day months. A.M./P.M. indication for ease of date setting

***All important: UK factory manufacturing and servicing facilities.

Watch Division, Lee Instrumentation Lti Bedwas, Newport, Gwent NP1 8YZ TEL (0222) 885756-7-8. TELEX: 497084 Reg. No. 639437. VAT Reg. No. 133 8154 80 Watch despatched with matching Gold plated bracelet, in presentation box with instruction booklet and guarantee. Model 1113-10 is also available in a stainless-steel bracelet.

Please forward(qty) mode	atat	each	TOTAL: £_
			l enclose
Name		48 23 8 3d	cheq
Address	山をも開催も塗る。	1.3.9 Million 1999 5	postal or
* ※数 文面子まで 第1	taint whet to a	11 · 4 · 4 · 4 · 4 · 4	money or
Signed.			*******
	Barclay	card/Acce	00 225

TTLs by		7483 85	7415	4 130p	OP. AMPS				TRANSIS	۲. ۱	BF1.78	30p.	TIP42C	88p	2N4403	34p	RECTIFIER	BRIDGE	E ·····
TEXAS		7484 1034	7419	95 96 p	301A E.I.	Comp. 8	pin DIL	40p	TORS		BF194	13p	TIP 2955	76p	2N5089	34p	8Y100 31p	RECTIF	LERS
7400 1	20	7485 130	7419	10 1 20p	536T FET	Op Amp TC	199 TA ava Oli	3000	AC125	20p	81195	110.	TIP 3055	80p	285296	16p	BY126 15p	TA 50	V 25p
7402 1		7400 34	7410	0R 214.0	705 ER.	Comp. d/		250	AC120	180	BE107	190	771109	110	2N5401	70-	BY12/ 12p	14 400	JV 270
7403 1		7490 43	7419	19 2200	747 Due	1741 14	nin Dil	700	AC128	160	BF200	400	7×300	160	208247	1760	114001 80	14 600	V 370
7404 2	3.	7491 81			748 Ext	Comp. 6/	14 pin OIL	40p	AC176	18p	BF257	34 p	ZTX500	190	(Comp	to	1N4004 7p	2A 50	V 370
7405 2	Sp	7492 48			776 Pro	g Op Amp. TO	99	160p	AC187	180	BF 258	390	ZTX504	60p	2N30	55)	1N4005 7p	2A 100	V 44p
7406 4	Sp	7493 43	C-M	08 1Ce	1458 Dua	Op Amp. 8	pin DIL	70p	AC187K	25p	BFR39	37p	2N697	22p	40360	43p	1N4007 8p	2A 400)V 68 p
7407 3	Bp	7494 11	4000) 19p	3130 CM	OS Op Amp. 8	Din DIL	108p	AC188	18p	BFR40	37p	2N698	32p	40361	43p		4A 100)V 75p
7408 2	ZP	7495 70	4001	19p	3900 Out	d Op Amp. 14	pin DIL	#0p	ACTUBR	250	BFR/9	37p	2N706	22p	40362	48p	ZENER	6A 50	V 75p.
1409 2	22	7496 84	4002	120	LINEAR LC				AD161	19.	80098	370	2N/08	2Zp	40410	650	2 7 10 33V	6A 100	JV 755pp
7411 2		74100 116	4007	190	CA3028A	Diff, Cascade Amp	T099	1120	40162	36.	BEX30	320	2N930	190	40411	2410	114/ 220	6A 400	
7412 2	70	74104 80	4009	870	CA3046	5 Transistor Array	14 pin DIL	750	AF115	180	BFX84	300	2N1131	200	40594	850		1	
7413 3	80	74105 60	4011	190	CA3048	4 Lo Noise Amp	16 pin DIL	250p	AF116	16p	BFX85	300	2N1132	200	40595	870	TUNNEL	TRIACS	
7414 8	00	74107 32	4012	19p	CA3053	Diff. Caecade Amp.	TO5/DIL	60p	AF117	18p	BFX86	30p	2N1304	38p			AEY11 78p	Amp Vo	its
7416 3	40	74110 55	4013	56p	CA3089E	FM IF System	16 pin DIL	250p	AF139	43p	8FX87	30p	2N1305	36p	FETa			3 400	130p
7417 3	40	74118 90;	4015	90p	CA3D9UAU	FM Stereo Decoder	QIL .	370	AF239	48p	BFXB8	30p	2N1306	43p	8F244	45p	VARICAP	6 400	182p
7420 1	Bp	74121 32	4016	64p	INTERNAL	2 W Audio Amo	14 pin DIL	1150	BC107/B	100	BFY50	18p	2N1613	27p	MPF 102	400	BB105 33p	6 500	184p
7421 4	30	74122 82	4017	1Z3p	IM3R1N	Steren Pre Amn	14 om Dil	1750	80108/8	110	87751	10p	201711	2/p	MPEIOA	400	NOVER	10 400	2000
7422 4	21	74123 734	4020	24/0	M252	Bhythm Generalor	16 pin DIL	10000	BC147	90	BOY30	460	21 22 19	220	MPE105	400	751 1400	1 15 400	110-
7425 1	3.	74132 76	4022	1800	MC1310P	FM Stereo Decoder	14 pin DiL	175p	8C148	80	BSX 19	200	2N2222	220	2N3819	270	200 1400	15 500	3400
7427 4	0	74136 81	4023	180	MC1351P	Lm/Det Aud. Pre an	np	104p	BC149	100	BSX20	20p	2N2369	15p	2N3820	50p		40430	106p
7428 3	80	74141 80	4024	125p	MFC4000B	WW Audio Amp	PCB	75p	BC157	11p	BU105	1750	2N2484	32p	2N3823	54p		40669	105p
7430 1	Sp	74145 75	4025	19p	MFC6040	Electronic Attenuator	-0-	160p	BC158	13p	BU108	312p	2N2904/	A 22p	2N5457	40p			
7432 .3	Op	74148 173	4026	200p	NEDAUL	Aud, Pwr. Uriver	105	1400	8C159	13p	MJE340	49p	2N2905/	A 22p	2N5458	40p		DIAC	
7437 3	20	74150 165	4027	61p	NE556	Dual 555		950	BC169C	160	MJ2955	120p	2N2906	ZZp	2N5459	400		88100	25p
7438 3	20	74151 775	4028	1820	NE5618	PLL with AM Demod	i a più oic	3900	80171	120	MUEROSE	705	2N2026H	G 11	3N140	920			
7441 7		74154 184	4030	590	NE562B	PLL with VCO	16 pin DIL	3900	BC173	130	MPSAGE	400	2N3053	190	3N141	200			
7442 7	80	74155 84	4042	1500	NE585	PLL	14 pin DIL	200p	BC177	200	MPSA12	620	2N3054	54p	40603	63p			
7443 11	50	74156 304	4043	2180	NE566V	PLL Fun. Gen.	8 pin DIL	200p	BC178	17p	MPSU06	78p	2N3055	540	40673	63p			
7444 11	Sp	74160 118	4045	160p	NE567V	PLL Tone Decoder	8 pin DIL	200p	8C179	20p	MPSU56	18p	2N3442	151p					_
7445 🕈	Op	74161 116	4047	168p -	2507	Dual 557	16 pin DIL	4000	BC182	12p	OC28	76p	2N3702	14p	TISAI	400			
7446	00	74162 118	4049	48p	SN 72733	Video Amo	14 pin 01	1500	80183	120	0035	/5p	2N3703	14p	2N2160	950	SCR THYRISTO	88	
7447 8		74103 1100	4050	210-	SN76003N	Aud Pwr Amp, with	int HS	2760	80187	120	TIP2GA	20p.	2N3704	140	2N2646	48p	1A 50V TO5		43p
7451 1	3.	74166 130	4055	2100	SN76013N	Aud, Pwr. Amp. with	Ins HS	1760	BC 212	140	TIP29C	620	2N3706	120	2N4871	40p	1A 100V T05		45p
7453 1	80	74174 131	4056	1450	SN76023N	Aud Per, Amp, with	INL HS	1750	8C213	12p	TIP30A	60p	2N3708	120	PULIT	-	1A 400V TD5		50p
7454 1	∎ip	74175 82	4060	260p	SN76033N	Aud Pwr. Amp with	Int HS	276p	BC214	17p	TIP 30C	72p	2N3709	12p	2N6027	60n	3A 400V STUD	LLC	10
7460 2	Op	74176 131	4069	40p	TAADZIA	Aud, Amp, for IV	QIL	2200	BC478	32p	TIP31A	56p	2N3707	14p			BA 50V Plaste	113	1420
7470 3	2	74177 120	4071	29p	TRACATR	Audio Amp. Lim/Dol	011	1000	BC547	12p	TIP31C	66p	2N3773	270p	DIOOES		12A 400V Plaste		1730
7472 3	201	74180 1200	4072	190	TBABOO	5W Audio Amo	OIL	1000	80337	20-	TIPL	e sp	2N3806	224	SIGNAL		16A 100V Plasta		180p
7474 3		74107 10.	4082	290	TBAB10	7W Audio Amp.	QIL	128p	BCY71	240	TIP33A	970	283905	250	0470	10-	16A 400V Plaste	•	195p
7475 4		74185 144	4510	1420	TBA820	ZW Audio Amp	QIL	100p	BD124	800	TIP33C	1200	2N3906	220	OAR1	150	16A 600V Plastic	:	238p
7476 3	40	74190 165	4611	200p	TDA2020	20W Audio Amp	QIL	375p	BD131	39p	TIP34A	124p	2N4058	19p	0A85	150		CTUD	120-
7480	40	74191 164	4516	140p	XR2240	Prog. Timer / Counter		400p	80132	43p	TIP34C	160p	2N4060	190	0890	7p	C1040 44 400	Plasue	630
7481 10	30	74192 130	4518	108p	614414	INF REGIO RECEIVE!		Trents	80135	64p	TIP 35A	243p	2N4123	22p	0A91	9p	MCR101 %A 15	V TO 92	270
7482 7	eb	74193 130p	4528	130p.	OPTO-ELE	CTRONICS			BD139	790	TIP364	2870	2N4124	220	0495	ab .	2N3825 5A 400	V TO66	17p
VOLTAGE	REGL	LATORS			PHOTO-TR	ANSISTORS	EUS		BD140	87p	TIP36C	3600	2N4126	220	04202	100	2N4444 8A 600	V Plastic	200p
Fixed-Plastic	c 3 Te	minals			OCP70	33p	U 211 Green	120	8F115	24p	TIP41A	70p	2N4371	142p	1N914	40	2N6060 0.8A 3	OV 1092	36p
1 Amp +ve			Ve		206777	430 1	IL 32 Infrared	810	BF167	25p	TIP41C	81p	2N4348	173p	1N916	11p	2NE044 0 84 1	JOV 1092	400
5V 7805		150p	7905	215p	ID8:		.2"		BF173	27p	TIP42A	76p ·	2N4401	34p	1N4148	Ap	ANDVON U.SA 2	204 1045	430
12V 7812		1500	7912	2180	ORP12	80p R	ed	18p	1/AT	Nol	1011/2	DDI		110		-			
181 7814	2	1500	7918	2150	ORP60	750 0	ireen	29p	VALL	NCL	JUNE	PRIC	E2. 4	ad 2	UP P&	۱ — ۱	no other ex	tras	
244 7824	í	1500	7924	2150	ORPEL	75p Y	ellow	32p	MAIL	APA		U V	Minim		rder f	2			
LM309K	5V	1 Amp	TO3	150p	AFVEN OF	GMENT DISDLAVE			MIMIL	UNU	LN UN		A COLUMN	uni c	NUGI I	. -			- 1
LM323K	5V	3 Amp	T03	75Op	3015F	1750 0	1707	1600											
TBA6258	12V	0.5A	T05	106p	D1704	160p 0	L747	250p											
VARIABLE	Anin F			48-	DRIVERS	-	E.							1 1					
123 1	apen L	/IL		44b	75491	54p 7	5492	104p											
LOW PRO	FILE	DIL SKTS	Y TEXAS	5	MEMORY				-	-		10							
Bpin	13	P .	6 pin	15p	2513 Chara	cter Generator		850p	54 Sa	andi	nurst	Hoa	d, Lo	ndo	n NV	V9		1	
14 pin	14	ф	re pin		2112 ON 8	.A.M.		44.96				_	-				-		
							Cas a									-	A CONTRACTOR OF		11

In reply to the question "Do you keep your copies of ETI for more than three months?" a staggering 98% of readers replied "Yes." This is also bome out by the enormous sales of ETI Binders since they were inoduced in December ... our original order for a year's estimated sales were sold out by February!

they were included in December . . . our original order for a year's estimated sales were sold out by February! Our binders are a real top-quality product finished in black leather-look plastic with gold lettering and designed to hold 12 issues. Cost is £2.50 each including VAT and postage.

electronics too

ron

ETI BINDERS, ETI MAGAZINE, 36 EBURY STREET, LONDON SW1W OLW.

INDERS

B

TAKE AN S-DEC No15 Electronic Coin Tosser

David Gibson

This device generates a random sequence of binary digits. It has the advantage over tossing a coin in that there is no possibility of cheating.

When the battery is connected the lamp will glow at half its full brightness. To electronically "toss" a coin, connect a lead between sockets 19 and 51 on your S-DeC when the state of the lamp, ON or OFF, will represent a HEAD or a TAIL.

The n-p-n/p-n-p pair (the two transistors on the right) is connected as a Unijunction transistor which oscillates at a frequency determined by the 1μ F capacitor and the resistor between sockets 48 and 53 on the S-DeC.

Fig. 1 Circuit diagram of Electronic Coin Tosser showing relevant hole numbers of S-DeC.

The output signal from the oscillator is made to switch a binary multivibrator, the two-transistor circuit on the left, and this in turn switches the bulb on and off. When S-DeC sockets 51 and 19 are connected, the oscillator stops and the binary freezes in the state it had immediately before stopping the oscillation.

Building circuits like this is simple if you use an S-DeC (see photograph). Component leads are plugged into the relevant numbered holes (see circuit diagram) and are automatically connected into circuit.

Beneath the holes are special sockets connected together in a pattern which is shown on the upper surface of the S-DeC. When you have finished building the Electronic Coin Tosser, simply unplug your components and use them again.

If you want to keep a circuit permanently wired, then for only a few pence you can buy a Super Solder Board. These printed circuit boards have holes and copper tracks which exactly match those on the S-DeC. To preserve your circuit, simply transfer the components from the S-DeC to exactly the same matching holes on the Super Solder Board and solder a permanent circuit. Holes on both S-DeC and Super Solder Board have the same letter/ number marking. Making mistakes is almost impossible.

When you have built your Electronic Coin Tosser you can build other exciting projects on your S-DeC. Many of the circuits featured in the popular electronics construction journals can be built on your S-DeC. In addition, P.B. Electronics has written a special projects handbook for the S-DeC experimenter. The book contains 48 different projects to build. These include record player amplifiers, emotion meter, radio jammer, electronic tug-of-war, strength meter, radio microphone and dozens of others – and you can build every one on your S-DeC.

The S-DeC costs only £1.98 plus 37p post, packing and VAT. It also includes a booklet giving 9 S-DeC circuits you can build.

Fig. 1. The 45/W, two metre RF power amplifier. The 2N6084 transistor is visible in the centre of the p.c. board. The mice compression trimmers located on the right hand side are for tuning the input, those on the left for tuning the output. The printed inductances are readily visible. The two quarter wave coax lines are visible at the top. They may be colled up as shown or conveniently arranged in some other way. Note that the components are soldered on the copper side of the printed circuit board.

ONE OF THE MOST POPULAR amateur radio activities these days is FM mobile operation on the two-metre band. The use of FM, particularly mobile, has a number of advantages. It reduces the effects of impulse noise interference, mostly generated by car ignition systems and provides clear, largely noisefree communications. But mobile operation has its problems such as flutter caused by surrounding buildings and terrain, and the relatively low gain of mobile antenna systems.

The majority of mobile transceivers, such as those made by lcom, Yaesu, Trio etc, produce about 10W output power. They also have pretty 'hot' receivers, which means that output power and receiver sensitivity are not 'matched' and you can hear higher power stations or repeaters over much greater distances than they can copy you. Simple solution: an RF power amplifier to boost your output power.

When considering the pocket, or how much a suitable power amplifier would cost, a good rule of thumb is 'less than 70p per watt'. Thus, one needs to consider a single transistor. This must have adequate gain and be able to accept an input power in the range of 8 to 12 watts. There are a number of suitable transistors that commence at this level and will produce output powers in the range of 25 to 50 watts or more from a power supply rail of 12V. Those transistors producing output powers over 50 watts from the 10 to 12 watt price level become more expensive on a per-watt basis than those transistors producing output powers below 50 watts. The higher power transistors require a substantially larger heatsink also - increasing size and cost considerations. As most of the popularly used commercial transceivers - and many homebrew ones, are quite small physically, the size of the power amplifier is also a consideration.

Apart from cost, availability of suitable transistors and other components is a necessary consideration. The 2N6084 transistor fits all our requirements very well. The data sheet on this transistor indicates a power input of between 8 watts and 12 watts at a supply voltage of 12.6 volts. The manufacturers claim that the transistor will withstand severe mismatch under operating conditions. A graph of power output versus power input (i.e.: drive power) is given in Fig 2 along with a table of typical, performance and base input collector output impedances.

Having chosen the device, an appropriate circuit, suitable for a kit or simple home construction was necessary. The current ARRL VHF Handbook describes a circuit that works very well, but has a number of drawbacks, local availability of some of the components in particular. It was also felt that the design could be simplified with a consequent reduction in components and

19

Most mobile two metre transceivers are limited to about ten watts output. This RF power amplifier boosts output to 45 watts

2m POWER ANP

Fig. 2. Power output Vs power input for 2N6084.

Fig. 2(b). Input and output impedances vs power for 2N6084.

cost. Another drawback was the problem of an antenna changeover relay. To cope with this level of power and have adequate isolation between the transmitter output and receiver input contacts a coaxial changeover relay is necessary. These items are not on everybody's shelf and generally cost in excess of £10 over the counter. Very off-putting.

DIODE AND COAXIAL LINE SWITCHING

Quarter wave coaxial lines and diodes are now being successfully used for this purpose however and several articles describing the technique have recently been published in amateur radio publications. The method is simple, cheap and very effective. The circuit is shown in Fig 4 and works as follows:

During the receive condition, all the diodes are non-conducting and thus present a high resistance to the signal coming from the antenna. Thus, no signal is dissipated in the amplifier input or output circuits. The two diodes from the centre point present a high impedance across the coax line and thus have no effect on incoming signals from the antenna. Thus the signals travel through the two quarter-wave coax lines to the antenna input of the receiver without loss. When the transmitter is operated, all diodes conduct. The diodes at the centre point of the two quarter-wave lines will conduct and since a quarterwave line shorted at one end presents an open circuit at the other end, each quarter wave line will present a high impedance at the input and output terminals respectively. The diodes between the input terminal and the power amplifier stage input will conduct and pass the driving power. The diodes between the power amplifier and the output terminal will likewise conduct, passing the output of the amplifier to the output terminal. The output power cannot return to the input as the two diodes from the centre point of the coax lines will conduct, shorting the quarter-wave line and presenting a high impedance at the output terminal. Happily, the impedance of the quarter-wave coax lines is immaterial and anything suitable may be used. However, their lengths must be an accurate guarter wavelength electrically taking into account the velocity factor of the cable. In developing this project, some trouble was experienced in this respect so make sure you have the right length. It appears that the velocity factor of ordinary, run-of-the-mill, garden variety RG58/U coax. obtainable from most suppliers varies considerably in its velocity factor, even over relatively short lengths. You can use this type of coax but a lot of pruning and turning will be required. If a cable manufactured to tighter tolerances in velocity factor is used, this problem disappears. It is suggested that cables such as RG59B/U (or C/U) or RG223/U, which are nominally 5 mm diameter be used. Alternatively, a 2.5 mm diameter cable such as RG174/U may be used. All these cables have a velocity factor of 0.665 and have been found to be consistent in practice. They must, however, be accurately cut to the lengths specified, as detailed later.

Some trouble was also experienced with a commonly available 2.5mm diameter cable of unknown type number, so be wary.

THE POWER AMPLIFIER CIRCUIT

The circuit is illustrated in Fig 4. Inductances L1 and L2 are actually rectangular, 5.5 mm wide strips, on the printed circuit board. They are not microstripline sections which would require a double-sided printed circuit board so single-sided p.c. board is used in this project.

Turning capacitors, C4, C5, C6, C7 are all mica compression trim-

mers mounted on a ceramic base and are readily seen in Fig 1.

The dc return for the transistor base circuit is via an RF choke, RFC2, visible just to the right of the transistor in Fig 1. This consists of a number of turns of tinned or enamelled copper wire passed through the holes of a six-hole ferrite bead. This makes a low resistance, high inductance RF choke. Some published circuits specify the use of a low value resistor, or two resistors in parallel, in place of an RF choke in this part of the circuit. However, this is not recommended as the available power output is considerably reduced.

The transistor collector is shunt fed from the supply via RFC3. This is simply five turns of tinned or enamelled copper wire of a suitable heavy gauge, anything between 20SWG and 26SWG is adequate, with a low value resistor mounted inside to dampen it and lower the Q. A resistor value between 47 ohms and 180 ohms is quite satisfactory. The supply end of RFC3 is decoupled for RF by a 1000 pF feedthrough capacitor used as a standoff and tie point.

As the low frequency gain of the 2N6084 is quite high, the supply is also decoupled by several large value electrolytic capacitors, C1 and C2. The latter is a 10uF/35 V

tantalum. The supply input is decoupled by C1 and RFC1. C1 is a 10uF electrolytic. RFC1 is an FX1115 ferrite bead, slipped over a 22 mm length of tinned copper wire. The gauge of wire is largely immaterial. Anything between 22SWG and 26SWG is quite satisfactory.

The diode switching requires a total of ten diodes. These may be 1N914 (1N418) or 1N916 types, although these were found to be only barely adequate for the job. They do get quite hot to the touch after only a few minutes operation. More suitable types would be the Philips type BAX13, or even better still - BAV10. These latter ones are recommended. Despite the heating problem, no failures have been experienced with 1N914 diodes. However, if you have a predeliction for holding long 'overs', then use the recommended types for added safety. Absolute minimum lead length possible must be used when soldering them into position.

The input and output tuned circuits, consisting of L1-C4-C5 and L2-C6-C7 respectively, are designed to match the transistor base input and collector output impedances, at the required input and output power levels, to about 50 ohms. C5-C4 and C7-C6 foform capacitive dividers. From the table included with Fig 1, it is obvious that the transistor impedances vary with power level. Thus the amplifier shoule be tuned up at the power level at which it is intended to be used. There is sufficient range in the tuning capacitors to accommodate a range of input power levels.

The 2N6084 is encased in the MT-72 stripline package, having two emitter leads. The collector lead has one corner removed - see the illustration of the package in Fig 2. The collector lead is also marked by 'a dot on the header as can be seen in Fig 1 & 6. The threaded stud is electrically isolated from the transistor Leads. This sort of package construction reduces lead inductance and allows the stud to be bolted directly in contact with a heatsink for maximum heat transfer. The 2N6084 is manufactured by both Motorola and Solid State Scientific (SSS).

HEATSINK REQUIREMENTS

A heatsink is required to dissipate at least 45 watts of heat with a low temperature rise. As operation is of an intermittent nature, with relatively long intervals between on periods, heatsinks requirements can be relaxed somewhat. A 150 mm length of 100 mm wide heatsink having fins on one side only (fins about 25 mm deep) as can be seen in Fig 1, was found to be quite adequate. A diecast box having dimensions somewhat larger than the pc board could be used but its heatsinking properties would be barely adequate and amplifier on times would have to be kept short. A proper heatsink is recommended. The heatsink illustrated was obtained un-anodised. A black anodised heatsink would certainly do a better job. However, it is good practice to sand off the anodising in the immediate vicinity of the transistor stud, where it contacts the heatsinks.

CONSTRUCTION

The amplifier is constructed on a single-sided printed circuit board, 120 mm long by 58 mm wide, the board layout being given in Fig. 5. The component layout is illustrated in Fig. 6, and one can get a good idea of the component layout also from Fig. 4. Note that all the components are mounted on the *copper side* of the board, contrary to common practice adopted with most other circuits constructed on pc board.

If you have facilities for making your own pc board, construction

Fig. 5. Printed circuit board layout, copper sides

should commence by first making the board. Although the board Is of very simple design, it should preferably be made by one of the etching processes. Do not attempt to make the pc board by cutting away the unrequired copper. This usually results in: (a) a board that looks grotty and (b) a project that either does not work at all or does not work satisfactorily.

Commence by drilling the transistor mounting hole in the pc board using a 9.5 mm ($\frac{3}{10}$ in) drill. File it out slightly with a small round file so that the transistor header is a loose fit through the board. Next drill the two mounting holes, which are positioned diagonally opposite each other either side of the transistor, and the 100pF feedthrough capacitor mounting hole. Use a 3.2 mm ($\frac{1}{10}$ in) diameter drill. A clearance hole of about 4.5 mm to 5 mm diameter ($\frac{3}{10}$ in) will need to be drilled in the heatsink beneath the position of this capacitor.

Now place the pc board centrally over the heatsink to be used and mark the positions of the transistor mounting hole, the feedthrough capacitor clearance hole, nd the two mounting holes. Drill the heatsink using a 4.5 mm drill (3/16in) as this is a good clearance size for the American 4-40 threaded stud on the 2N6084. Then drill clearance holes in the heatsink for the mounting bolts and the feedthrough capacitor.

Once the pc board and heatsink have been drilled and the hole positions checked to see that everything fits correctly without strain, the pc board may be wired.

Commence by mounting the mica compression trimmers, C4, C5, C6, C7. Refer to the layout in Fig. 6. The trimmer capacitors are constructed with large lugs, formed of the capacitor plates, that project more or less straight down from the ceramic body of the component. Carefully bend the end of each lug out at right angles before soldering the capacitor in place. Use a hot soldering iron with a large tip and solder rapidly, making sure that the solder is adequately melted to ensure proper wetting of the joint. It is advantageous to lightly tin the before soldering. lugs Α temperature-controlled iron, such as the Weller, with an appropriate tip, is recommended.

Next slip a 22 mm or 25 mm length of 24 or 26SWG tinned copper wire through the Neosid type 159 x 059 x 375/F8 RF bead, making RFC1, and solder it into place as shown in Fig. 6. Now mount C1, C2 and C3. Cut the lead of the feedthrough capacitor (C3) flush with the body of the component on the back (heatsink) side of the board, as shown in Fig. 7.

When mounting C1 and C2 ensure that the proper polarity is observed. If C2 is connected to reverse it goes up in flames when the power is applied. It may damage C1 as well.

Mount all the switching diodes using an absolute minimum of lead length. Check that they are correctly oriented.

Before mounting the 2N6084, cut the base and collector leads to about 6 mm ($\frac{1}{4}$ '') length. This should be done with care so as not to damage the rather soft leads. A

ELECTRONICS TODAY INTERNATIONAL-SEPTEMBER 1976

pair of sharp, ordinary household scissors is a good tool for the job. On the premises that what people don't know won't hurt them, turn your back when you do this little job or else do it at some suitable hour in the dead of night so that the prime user/owner of the scissors doesn't see what you are doing. It avoids complications such as black eyes and minor stab wounds. Reasoned arguments such as the softness of the metal tend to go unheeded.

Straighten the leads carefully if necessary, so that they run straight out from the transistor header without any kinks. Place the transistor on the board and see that the leads sit flush on the board right up to the transistor header. Orient the transistor as shown in Fig 6. Carefully solder it into position, flowing the solder near to the 2N6084 case. Use a hot iron and ensure that proper wetting of the joints occurs.

Next wind RFC2 and RFC3. RFC2 requires a length of 26 SWG tinned copper wire about 100 mm long. Thread it through the six-hole Philips ferrite head five times. Solder it into position from the base of the transistor to the ground plane as shown in Fig 6. Keep the leads short. RFC3 requires a 100 mm length of 18 or 20 gauge B & S tinned copper (enamelled copper wire is also suitable). Wind five turns around the shank of a 6 mm (1/4") diameter drill or other suitable former and then slip it off. Cut the leads to a suitable length, 5 mm to 7 mm is adequate, and then stretch the coil to a length of about 12 mm. Solder one end to the collector of the 2N6084 and the other end to the top terminal of the feedthrough capacitor, C3. Solder a short link of hookup wire from this terminal to the rectangular pad nearest C3, see Fig 8.

The pc board may now be mounted into position on the heatsink. Apply a little silicone grease or heatconducting compound to the transistor stud where it contacts the heatsink. Bolt the transistor down first. Carefully orient the mounting holes before-

hand. Now slip a suitable-sized nut or fibre washer under the pc board mounting holes. Either should be a close fit between the pc board and the heatsink so that no upward or downward strain is placed on the transistor leads. Any upward strain may cause the cap to pop off - an inconvenience rather than a disaster, as it can be glued back on with a quick-setting glue without any apparent ill effect. Extreme care must be exercised in doing this though. Not a recommended procedure, but possible. Any downward strain can cause the transistor leads to 'tear' at the header. This sort of damage is very difficult to repair.

The quarter-wave coax lines may now be installed. Cut two lenghts to the dimensions shown in Fig 7. Solder the lines into position as illustrated, being careful not to damage the centre conductor or insulation. Use a hot iron and solder quickly. The braid at each end is best tinned beforehand. Alternatively, wrap it with a length of light gauge (say 265 WG) tinned copper wire and tin the lot before attaching the line to the pc board.

The coax lines may be coiled and tied up as shown in Fig 1 or they may be wrapped conveniently in any position around the inside of any cabinet or case the amplifier may be mounted inside.

Finally, the input and output connections can be made via short lengths of coax to convenient coax sockets. As individual constructors will have different requirements in this regard, it is best left as an individual decision. Sockets that are compatible with the existing installation are best used.

The power supply leads will need to be rated to carry currents up to six amps. Any connectors will need to be adequately rated to carry these currents. As the amplifier is completely stable with no drive, and does not draw any current, it is not necessary to switch the 12 volt supply rail, except perhaps as a precaution, and this may be routed via a complete installation supply switch.

ELECTRONICS TODAY INTERNATIONAL-SEPTEMBER 1976

OF COMPLETE KIT COMPONENTS for the 2m power amp is available from **Catronics Ltd, Communica**tions House, 20 Wallington Square, Wallington, Surrey, for £23.10 inc VAT and 20p p&p. They are also able to supply individual components e.g. 2N6084 at £19.40, special coax at 25p/metre, BAV10 diodes at 11p each and the PCB at £1.23, all including VAT and with a standard postage and packing charge of 20p.

TUNE UP

Tune up is quite simple. You will need a dummy load of adequate rating and either an in-line power meter of reasonable accuracy or some power output indicating device. A power supply that can deliver up to six amps at 14 volts (maximum) is necessary. An ammeter that can read up to at least six amps would be handy also.

After carefully checking the construction, apply a supply voltage of between 12 and 14 volts. Check that no current is drawn by the amplifier.

With the dummy load connected and the driving transciever or transmitter, apply a drive of between 5 W and 12 W, preferably the lower power. Tune the input trimmers for a peak in the output power indication. Do not hold the drive on too long with the amplifier in this condition. Next, apply drive again and tune the two output trimmers for a maximum in output indication.

Now, with the maximum drive power to be used, touch up all the trimmers for maximum power output.

Maximum collector dissipation should be kept under 80 watts. Also see that the maximum continuous collector current of six amps is not exceeded.

PERFORMANCE

At a supply voltage of close to 13 volts and a drive level of between 7 to 8 watts, a power output of 42 watts was obtained from the prototype. This is a gain of around 7 dB. The manufacturers of the 2N6084 specify a minimum gain of 4.5 dB at 175MHz. However, one could expect a somewhat higher minimum gain at 146 MHz. An efficiency in excess of 55% is readily obtainable.

and the second se	and the second se		
Our new range of clock kits is ba	UN(GUF	
designs hundreds of years old. The kits use wood, stone and iron to re authentic ''olde worlde'' wall clock detail. The kits contain all you including glue, screws, etc., ar comprehensive instructions. This complements our fully electronic clo PRICES (All inclusive) KIT	se clock produce s in full u need nd very range nck kits.		
Gothic Clock Kit—Diam. 6½" Rotating Dial Kit—Diam. 6" Wrought-Iron Kit—Diam. 5½" Knight Clock Kit—Diam. 7½" Cak Foliot Kit—Diam. 7½" (As illustrated) For coloured Brochure please send 15p stam Completed clocks can be seen at our offices ★ Use special offer coupon in August ETI to	£36.50 £32.50 £69.50 £45.25 £62.45 £125.00	Learningenetieng - Zachnung Augustuh Dronny Pan di auanskings	
560 VDU	MM2112	RAM	£4.30 ea
MICRO	2617 RA	N/I	LA UN Pacu
MICRO	2513 RO	M	£9.00 each
MICRO PROCESSORS	2513 RO SC/MP Ir	M htrokit	£9.00 each £54.50 ea
MICRO PROCESSORS	2513 RO SC/MP Ir	ntrokit	£9.00 eacn £54.50 ea ALL PRICES EXCLUDE VAT AT 8% I DISPLAY KITS
MICRO PROCESSORS	2513 RO SC/MP Ir	М htrokit LIST мн мн.707/4 (dign) 0.3**	£9.00 eacn £54.50 ea ALL PRICES EXCLUDE VAT AT 8% 1 DISPLAY KITS 6.60 MHI-727/6 0.5'' <u>12 00'</u> 9.50 MHI-727/4 0.6'' <u>9.80'</u>
MICRO PROCESSORS PROCESSORS P	2513 RO SC/MP Ir RICE	M htrokit LIST мн. 707/4 (dign) 0.3** мн. 707/6 0.3** мн. 727/4 0.5**	£9.00 eacn £54.50 ea ALL PRICES EXCLUDE VAT AT 8% I DISPLAY KITS 6.60 MHI-727/6 0.5" <u>12 00</u> 9.50 MHI-747/4 0.6" <u>9.80</u> 14.70
MICRO PROCESSORS PROCESSORS P MHI CLOCK KITS (Chip, Socket, PCB + Driver MHI-5309 reset zero MHI-5311 BCD	2513 RO SC/MP Ir RICE	M htrokit LIST мн 'мн:-707/4 (dign) 0.3** мн:-707/4 0.5**	£9.00 eacn £54.50 ea ALL PRICES EXCLUDE VAT AT 8% I DISPLAY KITS 6.60 MHI-727/6 0.5" <u>12.00</u> 9.50 MHI-747/4 0.6" <u>9.80</u> 8.50 MHI-747/6 0.6" <u>14.70</u> DISPLAYS 1-9
MICRO PROCESSORS PROCESSORS MHI CLOCK KITS (Chip, Socket, PCB + Driver MHI-5311 BCD MHI-5314 clock MHI-5318 external digit select MHI-5318 external digit select	2513 RO SC/MP Ir RICE () () () () () () () () () () () () ()	M htrokit LIST мні-707/4 (dign) 0.3" мні-707/6 0.3" мні-727/4 0.5" LITRONIX DL707, 704, 701 DL707, 704, 701 DL707, 704, 701	£9.00 eacn £54.50 ea ALL PRICES EXCLUDE VAT AT 8% I DISPLAY KITS 6.60 MHI-727/6 0.5" 9.50 MHI-747/4 0.6" 9.50 MHI-747/6 0.6" 14.70 DISPLAYS 1-9 FUTABA PHOSPHOR DIODES 148 51T01 4 digit MPXD 5.80 3 75 51T02 4 digit MPXD 5.80
MICRO PROCESSORS PROCESSORS PROCESSORS MHI CLOCK KITS (Chip, Socket, PCB + Driver MHI-5319 RCD MHI-5318 external digit select MHI-5318 external digit select MHI-5318 external digit select MHI-5318 external digit select MHI-5318 external digit select MHI-53292 counter series	2513 RO SC/MP Ir RICE () 735 735 735 735 735 735 735 735 735 735	M htrokit LIST мн мн 707/4 (dign) 0.3** мн 707/6 0.3** мн мн 707/6 0.3** мн 1.707/4 0.5** LITRONIX DL707, 704, 701 DL727, 728, 721 DL747, 746, 750	£9.00 eacn £54.50 ea ALL PRICES EXCLUDE VAT AT 8% I DISPLAY KITS 6.60 MHI-727/6 0.5" 9.50 MHI-747/4 0.6" 9.50 MHI-747/6 0.6" 14.70 DISPLAYS 148 5LT01 4 digit MPXD 5.80 3.75 5LT02 4 digit static 5.80 2.45 5LT03 5 digit MPXD 5.80
MICRO PROCESSORS PROCESSORS MHICLOCK KITS (Chip, Socket, PCB + Driver MHI-5309 reset zero MHI-5311 8CD MHI-5314 clock MHI-5318 external digit select MHI-5318 car (crystal + trimmers incl) MHI-50397 counter series MHI-50397 counter series MHI-7001 alarm, calendar	2513 RO SC/MP Ir RICE () 1-9 7 35 7 35 7 35 7 35 6.60 7 35 7 35 15.10 8.35 19 50. 10.00	Mitrokit LIST MHI-707/4 (dign) 0.3" MHI-707/6 0.3" MHI-707/6 0.3" MHI-727/4 0.5" LITRONIX DL707. 728, 721 DL747. 726, 750 LITRONIX CLASS II PROD	£9.00 eacn £54.50 ea ALL PRICES EXCLUDE VAT AT 8% I DISPLAY KITS 6.60 MHI-727/6 0.5" 9.50 MHI-747/4 0.6" 9.50 MHI-747/6 0.6" 14.70 DISPLAYS 1-9 FUTABA PHOSPHOR DIODES 1 48 5LT01 4 digit MPXD 5.80 2.45 5LT03 5 digit MPXD 5.80 0.70 0.49
MICRO PROCESSORS PROCESSORS PROCESSORS P P MHI-5314 Chip, Socket, PCB + Driver MHI-5314 Clock MHI-5314 Clock MHI-5318 external digit select MHI-5318 external digit select MHI-5318 external digit select MHI-5318 external digit select MHI-53250 alarm MHI-50397 counter series MHI-7001 alarm, calendar CLOCK CHIPS	2513 RO SC/MP Ir RICE 735 735 735 735 735 735 735 735 735 735	М trokit LISOT,4 (dign) 0.3" MHI-707/4 (dign) 0.3" MHI-707/6 0.3" MHI-727/4 0.5" LITRONIX DL707, 704, 701 DL707, 728, 721 DL747, 746, 750 LITRONIX CLASS II PROD DL707E, 704E, 701E DL707E, 74E, 750E	£9.00 eacn £54.50 ea ALL PRICES EXCLUDE VAT AT 8% I DISPLAY KITS 6.60 MHI-727/6 0.5" <u>12 00</u> 9.50 MHI-747/4 0.6" <u>9.80</u> 8.50 MHI-747/6 0.6" 14.70 DISPLAYS 1-9 FUTABA PHOSPHOR DIODES 1 48 5LT01 4 digit MPXD 5.80 3.75 5LT02 4 digit static 5.80 2.45 5LT03 5 digit MPXD 5.80 DUCTS 1-9 25-99 0.70 0 48 1.80 1.15 1.50 1.00
MICRO PROCESSORS	2513 RO SC/MP Ir RICE 1.9 7 35 7 35 7 35 7 35 7 35 7 35 7 35 7 35	M htrokit LISOT MHI-707/4 (dign) 0.3" MHI-707/6 0.3" MHI-707/6 0.3" MHI-727/4 0.5" LITRONIX DL707, 704, 701 DL727, 728, 721 DL747, 746, 750 LITRONIX CLASS II PROD DL707E, 704E, 701E DL707E, 704E, 750E VERO A 8" x 5.5" x 3" VERO A 8" x 5.5" x 3"	E9.00 eacn E54.50 ea ALL PRICES EXCLUDE VAT AT 8% I DISPLAY KITS 6.60 MHI-727/6 0.5" 12.00 9.50 MHI-747/4 0.6" 9.80 8.50 MHI-747/6 0.6" 14.70 DISPLAYS 1-9 FUTABA PHOSPHOR DIODES 1.48 5LT01 4 digit MPXD 5.80 3.75 5LT02 4 digit static 5.80 2.45 5LT03 5 digit MPXD 5.80 DUCTS 1-9 25-99 0.70 0 48 1.80 1 15 1.50 J.00 CASES E2.95' + 25p P & P SOCKETS
MICRO PROCESSSORS PROCESSORS PROCESSORS PROCESSORS PROCESSORS PROCESSORS PROCESSORS PROCESSORS PROCESSORS PROCESSORS PROCESSORS PROCESSORS Chip, Socket, PCB + Driver MHI-5318 external digit select MHI-5318 car (crystal + trimmers incl) MHI-5318 car (crystal + trimmers incl) MHI-53397 counter series MHI-7001 alarm, calendar PROCESSOR MM53127 seg + BCD with reset MM53137 seg + BCD with reset MM5316 Non-mpx alarm clock	2513 RO SC/MP Ir RICE () 19 735 735 630 635 15.10 8.35 19 50. 10.00	Mintrokit LIST LIST MHI-707/4 (dign) 0.3" MHI-707/6 0.5" LITRONIX CLASS II PROD DL707E, 704E, 701E DL707E, 704E, 701E DL707E, 704E, 701E DL707E, 704E, 701E DL707E, 704E, 705E VERO A 8" x 5.5" x 3" VERO A 8" x 5.5" x 3" VERO A 8" x 5.5" x 3" NO	£9.00 eacn £54.50 ea ALL PRICES EXCLUDE VAT AT 8% I DISPLAY KITS 6.60 MHI-727/6 0.5" 12 00' 9.50 MHI-747/4 0.6" 9.80' 8.50 MHI-747/6 0.6" 14.70 DISPLAYS 14.70 1.9 FUTABA PHOSPHOR DIODES 1 48 5LT01 4 digit MPXD 5.80 2.45 5LT03 5 digit MPXD 5.80 0.70 0.48 1 80 1.5 1.50 1.00 CASES £2.95' + 25p P & P SOCKETS 50/40 pin 0.740 pin 1.00
MICRO PROCESSORS PROCESSORS PROCESSORS PROCESSORS PROCESSORS PROCESSORS PROCESSORS PROCESSORS PROCESSORS PROCESSOR PROCES	2513 RO SC/MP Ir RICE () 1-9 7 35 7 35 7 35 7 35 7 35 7 35 7 35 7 35	Million LISST LITRONIX DL707.760.3" MHI-707/60.3" DL707.704.701 DL727.728,721 DL707E.704E.701E DL727E.728E.721E (2 dig) DL747E.746E.750E VERO A 8" x 5.5" x 3" VERO B 6" x 3'A" x 2'A" 18 pin 0.60 24.280 MA1002F 12HR 50Hz or MA Suitable Transformer MTX100 *MODULE + TRANSFORMER	£9.00 eacn £54.50 ea ALL PRICES EXCLUDE VAT AT 8% I DISPLAY KITS 6.60 MHI-727/6 0.5" <u>12 00</u> 9.50 MHI-747/4 0.6" <u>9.80</u> 8.50 MHI-747/4 0.6" <u>14.70</u> DISPLAYS 1.9 FUTABA PHOSPHOR DIODES 1.48 5LT01 4 digit MPXD 5.80 3.75 5LT02 4 digit static 5.80 2.45 5LT02 4 digit MPXD 5.80 0.70 0 48 t pack) <u>1.80</u> 1.58 1.50 <u>1.00</u> CASES E2.95' + 25p P & P SOCKETS 01002H 24Hr 50Hz—Alarm £7.97 01 4 VERO CASE £12 50 incl. (VAT + P & P INCL)
MICRO PROCESSORS PROCESSORS PROCESSORS PROCESSORS PROCESSORS PROCESSORS PROCESSORS PROCESSORS PROCESSOR PROCESS	2513 RO SC/MP Ir RICE 1.9 7 35 7 35 7 35 7 35 7 35 7 35 7 35 7 35	Mitrokit LISST LISST MHI-707/4 (dign) 0.3" MHI-707/6 0.3" MHI-707/6 0.3" MHI-707/6 0.3" MHI-707/6 0.3" MHI-707/6 0.3" MHI-727/4 0.5" LITRONIX DL707, 704, 701 DL727, 728, 721 DL747, 746, 750 LITRONIX CLASS II PROD DL707E, 704E, 701E DL727E, 728E, 721E (2 dig) DL747E, 746E, 750E VERO A 8" x 5.5" x 3" VERO B 6" x 3'A" x 2'A" 18 pin 0.60 24, 28 MA1002F 12HR 50Hz or MASunable Transformer MTX100C MODULE + TRANSFORMER PAYMENT TERMS Cash with order, Access, Barc Credit facilities to accredited ac Please send 20p for post and J JULIPHI	£9.00 eacn £54.50 ea ALL PRICES EXCLUDE VAT AT 8% I DISPLAY KITS 6.60 MHI-727/6 0.5" 12 00' 9.50 MHI-747/4 0.6" 9.80' 9.50 MHI-747/4 0.6" 14.70' DISPLAYS 14.70' 1.9 FUTABA PHOSPHOR DIODES 1.48 5LT01 4 digit MPXD 5.80' 3.75 5LT02 4 digit static 5.80' 2.45 5LT03 5 digit MPXD 5.80' 0.70 0.48 1.80' 1.80' 1 pack) 1.80' 1.50' 1.00' CASES £2.95' + 25p P & P SOCKETS 0.90' 01002H 24Hr 50Hz-Alarm £7.97' 0.90' 1 + VERO CASE £12 50 incl. (VAT + P & P INCL) Claycard (simply quote your number and sign) cuart holders, Pro-forma invoices can be issued. packing. CES EXCLUDE VAT AT 8% EX ANDES
MICRO PROCESSORS PROCESSORS PROCESSORS PROCESSORS PROCESSORS PROCESSORS PROCESSORS PROCESSORS PROCESSOR PROCESSOR PROCESSOR PROCESSOR (Chip, Socket, PCB + Driver MHI-5311 BCD MHI-5311 BCD MHI-5318 external digit select MHI-5378 car (crystal + trimmers incl) MHI-5378 car (crystal + trimmers incl) MHI-5378 car (crystal + trimmers incl) MHI-50397 counter series MHI-7001 alarm, calendar PROCESSOR MM5309 7 seg + BCD with reset MM5311 7 seg + BCD MM5312 7 seg + BCD with reset MM5313 7 seg + BCD MM5315 7 seg + BCD with reset MM5315 7 seg + BCD (external digit select) MM5315 7 seg + BCD (external digit select) MM5315 7 seg + BCD (external digit select) MM5315 7 seg + BCD (external digit select) MM5316 Non-mpx alarm clock MM5317 Car clock, crystal controlled, LCD MM5379 Car clock, crystal controlled, LED MM5379 Car clock, crystal controlled, LED MM550395 UP/DOWN Counter – 6 Decade MK50395 UP/DOWN Counter – HHMMSS MK50397 UP/DOWN Counter – HHMMSS MK50397 UP/DOWN Counter – HHMMSS MK50397 UP/DOWN Counter – MMSS.99 CATTEX	2513 RO SC/MP Ir RICE 1.9 7 35 7 35 7 35 7 35 7 35 7 35 7 35 7 35	Mintrokit LITRONIX DL707, 744 (dign) 0.3" MHI-707/4 (dign) 0.3" MHI-707/6 0.3" MHI-707/6 0.3" MHI-727/4 0.5" LITRONIX DL707, 704, 701 DL707, 728, 721 DL747, 746, 750 LITRONIX CLASS II PROD DL707E, 704E, 701E DL727E, 728E, 721E (2 dign DL747E, 746E, 750E VERO A 8" x 5.5" x 3" VERO B 6" x 3'/4" x 2'/4" ALL PRIMENT TERMS	£9.00 eacn £54.50 ea ALL PRICES EXCLUDE VAT AT 8% 1 DISPLAY KITS 6.60 MHI-727/6 0.5" 12 00' 9.50 MHI-747/4 0.6" 9.80' 8.50 MHI-747/6 0.6" 14.70 DISPLAYS 1.48 5LT01 4 digit MPXD 5.80 3.75 5LT02 4 digit static 5.80 2.45 5LT03 5 digit MPXD 5.80 0.70 0 48 1.80 1.15 1.50 1.00 CASES £2.95' + 25p P & P SOCKETS 6.40 pin 1.00 Soldercon strip sockets 0.30 MODULES £12 50 incl. (VAT + P & P INCL) Claycard (simply quote your number and sign) Cicount holders, Pro-forma invoices can be issued packing. CES EXCLUDE VAT AT 8% HANICAL CLOCKS AS ABOVE) 150

BYUD

4 76 5.25

ELECTRONICS TODAY INTERNATIONAL-SEPTEMBER 1976

AX5-1202 4 digit 7 seg. AY5-1230 on-off -- alarm, 7 seg.

5

BYWOOD ELECTRONICS 68 Ebberrs Rrad Hernel Hempsteart Heris HP3 90AC Tel: 0442 62757

With the advent of precision-moulded optical systems the way to practical opto-electronic devices has really opened up.

FOR SOME time now there has been an increasing trend towards integration between optics and electronics. For this there are two main reasons: visible light may well become the carrier medium for the next generation of communications systems, and the greater need for accurate information in all fields has led to a great expansion in the demand for visual displays.

Before visible light can be employed for data transmission, a whole range of components will have to be developed as the optical equivalents of electrical plugs and sockets, jacks, switches and relays, amplifiers, attenuators, filters, tuners and similar units.

Miniaturisation resulting from solid-state technology has drastically reduced the size of electronic equipment. Meters, indicators and display screens, however, cannot be similarly reduced in size, because no one could read them. An important

Fig.1. The aspheric lens (top) gives an undistorted view of at least 20 squares, while the spherical glass lens (below), of the same diameter and power, only shows four reasonably undistorted squares. sector of opto-electronics therefore concerns itself with providing legible data from systems of the smallest possible size. The most common example is probably the light-emitting diode (LED) display.

The layout and arrangement of printed circuit boards and the interchangeable plug-in modules (which presuppose the absence of permanent wiring to the outer case), often create problems of conveying indication from the point most convenient to the circuit designer to the point most convenient to the user. Again, optical components in the form of mirrors, prisms, light guides and lenses (or any combination of them) can solve such problems.

ADVANTAGES OF PLASTICS LENSES

Several clear polymers, such as acrylics, polystyrene, polycarbonate, ABS, cellulose, vinyl, polyester and others, can be used instead of glass to make optical components. The most important technical advantages of plastics optics are freedom of design, greatly reduced assembly costs, greatly reduced weight, and elimination of shattering. On average, optical plastics are about 55-65% lighter than glass. In practical terms the weight saving is usually much greater because most of the metal mounting and retaining parts essential for glass lenses can be dispensed with, since plastics lenses can be moulded with integral spacers and retaining lugs.

The most interesting aspect of plastics lenses is the freedom of optical form conferred by the nature of the material. With moulded plastics optics, human skill is concentrated on the manufacture of the moulds, from which any required number of lenses of uniform quality can be produced, aspheric (non-spherical) lenses can readily be made.

Aspheric lenses are important because they permit aberrational correction of a system without affecting its focal length and magnification. Certain shortcomings of spheric lenses can therefore be eliminated or minimised by 'aspherising' one or several lens surfaces in an optical system. A given amount of correction can be achieved by fewer components if one or more of them are made aspheric. In both cases significant savings result.

The advantage of aspherics is well

Fig.2. Integral array of nine miniature aspheric lenses with a magnification of 3x for an electronic pocket calculator.

combined minicomputer, moving map and electronic display unit (Comed) for aircraft navigation uses a moulded plastics lens of complex aspheric design to give an undistorted. brilliant image of the map.

Fig. 4. This one-piece light

to scan six rows of holes in

a punched card for an

automatic telephone

dialling unit.

guide splits the light from a single bulb into six beams

shown in Fig.1. Both magnifiers have the same size and magnification, but while the aspheric moulded plastics lens in the top unit has a distortion-free field of view of 20 squares, the spherical glass lens of the lower unit has an effective field of view of only four squares. Yet the glass lens is heavier and more expensive.

Aspherics can be also produced at apertures greater than f/1. They are already widely used in portable devices involving high magnification, such as reading aids for sub-normal vision. Aspheric lenses from 3 mm to 180 mm diameter are readily available, while lenses up to 630 mm diameter have been made. In opthalmics, magnifications of 8x are frequently used.

INTEGRAL PLASTICS OPTICS

The freedom of shape conferred by moulding frees designers from the limitations imposed by glass - he can create systems which are functionally superior. Plastics lenses can be moulded with integral lugs, bosses, rims, pivots and similar mounting, swivelling, adjusting and actuating members, in a wide range of shapes, sizes or configurations, as shown for instance in Fig.4. This means that in a well-designed product, the optical system parts snap or slide into the housing without any further assembly operations and, with precision-moulded housings, no subsequent setting or adjustment should be necessary.

TYPICAL APPLICATIONS

A multiple aspheric lens array moulded integrally with its mounting plate is shown in Fig. 2, with the associated nine-digit seven-be circuit board for pocket calculators. The moulding has two pins on the underside which locate through the two holes in the board in two further holes in the calculator casing. Two ledges on the underside of the moulding ensure that it is held at the correct focal distance above the board. Assembly is therefore very simple and the need for any adjustment is eliminated. The lenses have a

magnification of 3x and provide a distortion-free image.

A much larger moulded lens is used on the Ferranti Comed (combined map and electronic display) for aircraft, shown in Fig.3. In addition to alpha-numeric readouts of latitude, longitude, range, bearing and other navigational data, the unit has a screen on to which a moving map or radar picture can be projected from the rear. The lens is a bivex type, the flatter surface having a special form known as a Schmidt corrector plate. This complex aspheric surface is essential to ensure an undistorted image from any position, despite movements of the pilot's head, and a brilliant image even in strong daylight.

Light guides can be of many different basic types, depending on the function they are required to perform. A good example is the Card Callmaker, compact unit which can а automatically dial a telephone number with up to 16 digits when the appropriate punched card is inserted into it. The light guide (see Fig.4), which is moulded accurate to ± 0.012 mm in all dimensions, has six 'fingers', which split the light from a single lamp into six beams. Each finger incorporates a lens at its tip, which focuses the light on to a photocell. The inserted card blocks the light, except where holes are punched in any of the six rows available. This automatic dialling unit could, of course, also work with six lamps and conventional glass lenses, but then failure of any one lamp out of six would result in a wrong number. If the single lamp in the Card Callmaker fails, the unit will simply not operate. This moulded unit is much cheaper/than a light guide made up from bundles of glass fibres.

In addition to lenses, prisms, light guides and similar components, mirrors and reflecting surfaces of almost any shape can also be produced. Aluminium, gold and thorium are most commonly used for coating the reflective surface, which may be the front or rear surface of the component.

Integrally moulded optics will undoubtedly play an increasing part in opto-electronics, including such equipment as self-scanning arrays, low light level vision aids (both active and passive), cathode-ray tubes (for combined optical digitisers), rear-ported cathode-ray tubes (for combined optical and electronic projection), photometers and densitometers, video recording systems, optical character readers, holographic and thermal imaging equipment, laser equipment of all kinds and many others.

ELECTRONICS TODAY INTERNATIONAL-SEPTEMBER 1976

27

THE CHARACTERISTICS AND value of a capacitor may be indicated on the body of the component in one of three ways:-

- (a) The value, tolerance, working voltage and any other characteristic may be stamped or printed on the body of the component. This is usually used on physically large components such as paper capacitors, electrolytics etc. However, it is being increasingly used on smaller capacitors, particularly plastic film types. Figure 1 shows representative markings.
- (b) A sequence of coloured bands or dots is painted on the component body. This is deciphered according to the standard colour code table for the value and tolerance. Additional bands may indicate other characteristics according to a specified table.

(c) The value and other characteristics may be indicated by a 'typographic' code; a sequence of numbers and letters stamped or printed on the component body. There is a variety of these codes. These will be elaborated upon shortly.

The particular marking code used depends largely on the style and type of capacitor, i.e: paper, mica, button mica, plastic film, ceramic, etc, and the code preferred by the manufacturer.

The temperature coefficient of a capacitor may be expressed directly in parts per million per centigrade degree (ppm/oC) or simply the significant figures preceeded by the letter N for a negative coefficient or P for a positive coefficient. Examples are given below:-

=

P100 P30 or P030 NPO N30 or N030 $= +100 \text{ ppm/}^{\circ}\text{C}$ $= +30 \text{ ppm/}^{\circ}\text{C}$ 0 ppm/°C (negative/ positive zero) -30 ppm/°C

= -30 ppm/°C
= -75 ppm/°C
= -470 ppm/°C
= -2200 ppm/oC

Wound foil and metallized capacitors may have a black line marking one end of the component body, as illustrated in. Figure 2. This indicates that the outermost foil is connected to the lead at that end of the body. This is useful in bypassing applications or where the 'hot' terminal may be sensitive to the surrounding environment. This lead is connected to the circuit common, or the 'low' portion of the circuit and shields the 'hot' electrode of the capacitor, reducing stray coupling to or from the external circuit.

Remember that the capacitors are non-polar so that the black line does not indicate polarity or the negative terminal.

Mica Capacitors: The most common method of marking moulded mica capacitors is by an arrangement of coloured dots. The widely used British and American systems are illustrated in Figs 3 and 4. The value and tolerance may be found by referring to Table I. The other characteristics may be obtained from Table 2.

Three, four, five and alternative six-dot codes have been employed from time to time. These are illustrated in Fig. 5. The capacitor's value and other characteristics can be obtained from Table I. The alternative six-dot code is for high-tolerance, high stability capacitors.

Button Mica Capacitors: The characteristics of button mica capacitors are indicated by a system of three, five or six dots on the rim of the component. These are illustrated in Fig 6. The value and characteristics are. obtained from Table I. Note that there are three six-dot codes. Numbers 1 and 2 are for standard tolerance capacitors but number 3 in Fig 6 is for close tolerance, high stability types where the capacitance is specified to three significant figures. Ceramic Capacitors: A variety of

TABLE 2

Voltage

Rating

100

300

500

1000

Operating

Temp. Range

-55 to +70°C

-55 to +85°C

-55 to 125°C

-55 to +150°C

3Ő

TABLE 3
CERAMIC CAPACITOR

			TEMPERATURE COEFFICIENT				
COLOUR	1st & 2nd digits	Multiplier	Tolerance C≪10pF (pF)	C≥10pF (%)	Temperature Coefficient	Integrar	Multiplier
Black Brown Red Orange Yellow Green Blue Violet Grey White Red and Violet	0 1 2 3 4 5 6 7 8 9	1 10 102 103 10 ⁴ 10 ⁻² (0.01) 10 ⁻¹ (0.1)	±2pF ±0.1 ±0.25 ±0.25 ±0.5 ±0.5 ±0.25 ±1.0	± 20 ± 1 ± 2 $\pm 2.5 (or 3)$ ± 5 ± 10 -	NPO N030/N033 N075/N080 N 150 N 220 N 330 N 470 N 750 P 100 P 100	±0 -3 -8 -1.5 -2.2 -3.3 -4.7 -7.5 +3 +1 -	1 10 102 103 10 ⁴ - -

	lotera	Ince	
Letter	≤10 pF	≥10 pF	
B C D E F G H J K M P S W X Z	±0.1.pF ±0.25 pF ±0.5 pF = ±1 pF = = = =	± 25% ± 1% ± 2% ± 2.5% ± 5% ± 10% ± 20% -0 + 100% -20 + 50% -20 + 50% -20 + 40% -20 + 80%	
т	TABLE	5 C. code	
Letter	Tem	p. Coeff.	
A	P10	P100	
С	NPC		
D	N03	3/N030	
E	N04	7/N050	
F	I NO7	5/N080	

N150

N220

N330

N470

N750

N1500

N2200

N3300 N4200

N4700

N5600

G H

J

ĸ

N

Ρ

R S T

Ü

TABLE 4

6-COLOUR SYSTEM

coloured band on top of the capacitor, the characteristic can be obtained from Table 3. Values below 100 pF (In) are generally Low-K, temperature compensating (TC) types. Hi-K types will not have the coloured band. Typical markings and corresponding values for low value capacitors are shown in the table on the right of Fig 9.

Another widely used code is illustrated in Fig 10. Generally, this involves a group of three numbers with a following letter. The first two numbers are the significant figures of capacitance, the third digit denoting the number of following zeros. The value is indicated require a decimal point, the letter R is directly in pF. Values between 100 pF interposed between the two significant and 1000 pF are indicated in pF using figures of capacitance. The value is the multiplier n (= x103). The position followed by a single letter indicating the of the multiplier may indicate the tolerance. The obtained from Table 4. If the tolerance capacitor will be marked n47 for the code is not included, assume a tolerance value, whereas a 1500 pF capacitor will of ±20%. Low-K types will have a be marked In5. Values above 10000 pF colour-coded band on top similar to the are generally marked in uF. miniature plate ceramics, and Table 3 will indicate the value.

A typographic system used commonly the tolerance on capacitors of British and European coefficient or dielectric characteristics manufacture, particular tubular, of the capacitor in this system. The first radial-lead types, is illustrated in Fig 11. letter indicates tolerance, the value

in pF. For values below 10 pF which Values below 100 pF are indicated tolerance can be decimal point. For example, a 470 pF

> A system of two or three letters following the value are used to indicate and temperature

RIMED GAPAGITORS

being obtainable from Table 4. A single letter following the tolerance code indicates that the capacitor is a Low-K TC type, the value of the temperature coefficient can be found from Table 5. If the tolerance code is followed by two letters, this indicates an H-K type and the manufacturer's data should be consulted if the dielectric characteristics are needed.

Some ceramic capacitors of Japanese manufacture may have a voltage rating code, consisting of a number and a letter, or two letters, also stamped on the component. It may precede the value and tolerance code or be placed separately. This code is given in Table 6. A range of Hi-K disc ceramic capacitors are manufactured that have the value printed on the body and a red band painted at the end opposite the leads. They are commonly known as 'redcaps', the red band indicating a Hi-K capacitor with a 25 Vdc working rating. They should not be confused with a range of epoxy-encapsulated ceramic capacitors manufactured by Erie, which have a red coating all over and are also known as redcaps.

Plastic Film Capacitors: By and large, plastic film capacitors have their value, tolerance and voltage rating marked on them directly. Small, low-value polystyrene capacitors are marked thus:- 47/100. The first figure is the value in pF, the latter figure the dc working voltage. Thus, a capacitor marked that way would be 47 pF, 100 Vdc working. Polystyrene capacitors have the lead connected to the outer foil marked by a black band at the end of the body as illustrated in Fig 2.

Often, the tolerance rating is not marked on plastic film capacitors. Except for polystyrene and mylar capacitors, a tolerance of $\pm 20\%$ can be assumed.

Typographic codes used on plastic film capacitors are very similar to that used on Hi-K disc ceramics as illustrated in Fig 10. For example, a capacitor may be marked 102K, which indicates a 1000 pF, \pm 10% capacitor. In addition, a single digit following the tolerance code may be added. This indicates the voltage rating and represents volts x 100. For example, a capacitor marked 272K1 is a 2700 pF, \pm 10% 100 V capacitor.

The common typographic code used

on plastic film capacitors is shown in Fig 12.

Polycarbonate and polyester capacitors are marked with coloured bands around their body indicating their value and characteristics — illustrated in Fig 13. The table gives the values of the bands. The capacitance is indicated in pF. The body colour is usually a light tan.

Paper Capacitors: Paper capacitors are large enough to have the value, tolerance and rating printed directly on them. The flat moulded style, largely superceded, now uses a code of four coloured dots, similar to that used on flat moulded mica capacitors. Figure 14(A) illustrates the code for flat moulded paper capacitors. Note that the body will be dark brown or black in contrast to the light tan bodies used on flat moulded mica capacitors. The capacitance and voltage rating may be obtained from Table 1.

Moulded tubular paper capacitors are sometimes marked with a colour code as illustrated in Fig 14(B). The capacitance and tolerance may be obtained from Table 1. The voltage rating is indicated by one or two coloured bands at the end opposite the value. Add two zeros to the significant figures. A single band indicates a rating under 1000 volts. A gold band indicates a rating of 1000 volts. The value is indicated in pF. Example:-

	1st band = brown 2nd band = red	
Vaļue	3rd band = yellow 4th band = black	120000 pF ± 20%
Voltage	1st band = brown 2nd band = oreen	1500 volts

Electrolytic Capacitors: Most wet electrolytic capacitors have the capacitance, voltage rating and tolerance rating marked on them. Miniature, low voltage types use a kind of shorthand as follows:- 25/25 means 25 uF, 25 V working. The tolerance is not usually marked on them but it may be assumed to be at least -20%, +80%. The positive terminal will be marked with a + symbol or perhaps a red end cap or red dot. The negative terminal may be marked with a - symbol or a black stripe. One terminal may not be marked. In this case it is usually the negative terminal that is not marked. Most electrolytics have the can connected to the negative Some high voltage terminal. electrolytics have the can insulated and the electrodes brought out to separate terminals.

Tantalum Capacitors: These may have the value marked on them or the value

£1.50 + 15p p&p.

t's eas

electro

TABLE 7

COLOUR CODE

35 V

6.3 V

16 V

20 V

25 V

3 V

10 V

35 V

Tens &

2 3

4

5

6 7 8

9

n

TABLE 8

Units

Multiplier

x 10

x 100

x 0.01

x 0.1

x 1

Surge Voltage

8

13

20

25 32

44

63

4 volts

Electronics - It's Easy Volume 2 - the next thirteen parts of our series £1.20 + 15p p&p.

TECHNICAL BOOKS FROMETI

CALCULATORS
99 WAYS TO KNOW AND USE YOUR ELECTRONIC CALCULATOR
L. PRESEN
CALCULATOR Smith E8.25
COMPUTERS AND MICROPROCESSORS-
BEGINNERS' GUIDE TO COMPUTER LOGIC G. Stapleton £1.95
Grasp quickly computer codes, digital logic ops and switching circuits
B. Wells EI. 00 Become arquainted with the various parts of a computer and its technology
COMPUTER TECHNICIANS HANDBOOK
B. Ward E3.25 This grant volume compares to'a 1,000 hour course on computer mechanics
CONTROL ENGINEERING
This is the 2nd edition of a highly successful book, keeping fully abreasi of developments in control engineering
DIGITAL ELECTRONIC CIRCUITS AND SYSTEMS
The ideal book for the enthusiast confused by logic and digital techniques
MICROPROCESSORS E10.80
application MICROPROCESSORS ER 00
D. C. McGlynn Technology Architecture and Applications. This introduction provides a clear estimation of this important only device.
WICROPROCESSORS AND MICROCOMPUTERS £15.90
Describes the application programming and interfacing rechniques common to all microprocessors
ELECTRONICS
ACTIVE FILTER COOKBOOK D. Lancester Everything you need to know to build and use active filters
ELECTRONIC ENGINEERS REFERENCE BOOK — 4IN EDITION L. W. Turner E25.60 A completely new and up-to-date reference book for all engineers and students
BASIC MATHS COURSE FOR ELECTRONICS H. Jacobowitz E1.75 Quick short cul way to learn the language of maths as applied to
BEGINNERS GUIDE TO ELECTRONICS T. L. Squirkee E2.55 Short cut for those wishing to obtain a quick acquaintance with modern
electronics BEGINNERS GUIDE TO TRANSISTORS
J. A. Reddihough E2.55 Covers the basic theory and practice of modern transistors
DESIGNING WITH TTL INTEGRATED CIRCUITS Texas instruments E7.65 Covers the entire family of TTL and plactical applications of circuits in double systems
ELECTRONIC MEASUREMENTS SIMPLIFIED E2.10
ELECTRONICS POCKET BOOK P. McGoldrick EA 15
ELECTRONICS AND PHOTOGRAPHY R. Strown E2.20
ELECTROMICS SELF TAUGHT J Ashe E2.20 Covers basic principles of electronics includes a large number of simple
OFCUIS. ESSENTIAL FORMULAE FOR ELECTRICAL AND ELECTRONIC ENGINEERS
N. M. Marris $$\xi1.20$$ Handy reference book, includes a section on ξ_1 units, resistor colour codes and preferred values.
NOW TO BUILD ELECTRONIC KITS E2.10 Instructs the kill builder on how to check components, how to assemble and how to cure laulis.
FIRE AND THEFT SECURITY SY STEMS E1.90 Selection and installation, home maintenance and business security
DEVICES
From hill Gircuits to complete digital counters in a single package
B Brown ELLER WHITE LINE UN UNAUTAMS EI.85 Everything you need to know from basic circuit components to integrated encuits

HOW TO BUILD PROXIMITY DETECTORS AND METAL LO J. Shields A practical dout-yourself book	CATORS E3.25
HOW TO USE IC CIRCUIT LOGIC ELEMENTS	C3 25
Helps those unfamiliar with digital logic circuits	10.64
IN LEGRATED ELECTRONICS J. Mitman Using an IC approach the text leads the reader step by semiconductor physics to devices, models, circuits and system	£7.15 step from
IC OP-AMP CODKBOOK W. Jung Covers the basic theory of IC up amp5 in great detail, also incl	£8.25
practical circuit applications	
R. Goodman Practical Schematics with concise theory and trouble information	£2.25 eshuating
INTRODUCING ELECTRONIC SYSTEMS I.R. Sinclair Provides a basic insight into what makes electronics inck	£1.75
INSTALLING AND SERVICING ELECTRONIC PROT	ECTIVE 62 10
H Sweeter Lovers installation and servicing of all electronic security system	mis
LINEAR ELECTRONIC CIRCUITS AND SYSTEMS G. Bishop Illustrates the use of the op amp in many different applications	E2.55
LINEAR INTEGRATED CIRCUIT APPLICATIONS G. Clayton A practical approach is emphasised throughout, encouraging if 9 the out devices himself.	E4.90 he reader
LINEAR IC PRINCIPLES EXPERIMENTS AND PROJECTS E. M. Nou An introduction to one of electronics most excision devices	£5.80
110 OPERATIONAL AMPLIFIER PROJECTS FOR THE	NOME
CUMS INDEXIDIN R. M. Marsion Outlines the essential characteristics of up amps and presen projects.	£2.85 Is useful
THE SEMICONDUCTOR PROJECTS FOR THE NOME CONSTOR	STRUC-
R. M. Manaton Introduces the reader to FET's, SCR's and IC's with full consideratis of many useful circuits.	£2,85 Struction
110 COSMOS DIGITAL IC PROJECTS FOR THE CONSTRUCTOR R M. Marsion	HOME
	E3.10
110 INTEGRATED CIRCUIT PROJECTS FOR THE CONSTRUCTOR R. M. Amarion All the projects have been devised, built and fully evaluated author	E3.10 NOME (E2.85 by the
110 INTEGRATED CIRCUIT PROJECTS FOR THE CONSTRUCTOR R. M. Amarson All the projects have been devised, built and fully evaluated author 110 TNYRISTOR PROJECTS USING SCR's R. M. Maaston A comparison to the author's previous books	E3.10 NOME (E2.85 by the E2.85
110 INTEGRATED CIRCUIT PROJECTS FOR THE CONSTRUCTOR R. M. Marton All the projects have been devised, built and fully evaluated author 110 TNYRISTOR PROJECTS USING SCR's R. M. Marton A companion to the author's previous books MOS DIGITAL IC'S	E3.10 NOME (E2.85 by the E2.85
110 INTEGRATED CIRCUIT PROJECTS FOR THE CONSTRUCTOR R. M. Marton All the projects have been davised, built and fully evaluated author 110 THYRISTOR PROJECTS USING SCR's R. M. Marston A companion to the author's previous books MCS DIGITAL IC'S G. Rym This book confutins information about MOS' and CMOS from ponstruction to circuit application	E3.10 NOME (E2.85 by the E2.85 . E4.50 m basic
110 INTEGRATED CIRCUIT PROJECTS FOR THE CONSTRUCTOR R. M. Marston All the projects have been devised, built and fully evaluated author 110 INTRISTOR PROJECTS USING SCR's R. M. Marston A companion to the author's previous books MCS DIGITAL IC'S G. Ryon This book convins information about MOS' and CMOS from generation to incut application DPERATOMAL AMPLIFIERS DESIGN AND APPLICATIONS G. Toose	E3.10 NOME (£2.85 by the E2.85 . £4.50 m basic
10 INTEGRATED CIRCUIT PROJECTS FOR THE CONSTRUCTOR R. M. Marston All the projects have been devised, built and fully evaluated author 110 TNYRISTOR PROJECTS USING SCR's R. M. Marston A companion to the author's previous books MOS DRATAL IC'S G. Fynn This book contains information about MOS and CMOS from ponstruction to encurl application OPERATIONAL AMPLIFIERS DESIGN AND APPLICATIONS B. Today Cowes the entire field of operational amplifiers Company	E3.10 NOME (E2.85 by the E2.85 . E4.50 m basic G (Burr E5.00
10 INTEGRATED CIRCUIT PROJECTS FOR THE CONSTRUCTOR R. M. Marston All the projects have been devised, built and fully evaluated author 110 TNYRISTOR PROJECTS USING SCR's R. M. Marston A companion to the author's previous books MOS DRATAL IC'S G. Fynn Tooks contrins information about MOS' and CMOS from postruction to encut application OPERATIONAL AMPLIFIERS DESIGN AND APPLICATIONS BITOWNI) G. Tobay Covers the entire field of operational amplifiers PIN POINT TRANSISTOR TROUBLES IN 12 MINUTES L. Garner Comparise information on circuit operations. troubleshooting che service procedures	E3.10 NOME (£2.85 by the E2.85 . £4.50 m basic 6 (Burr £5.00 £2.85 vrts and
110 INTEGRATED CIRCUIT PROJECTS FOR THE CONSTRUCTOR M. Marston All the projects have been devised, built and fully evaluated author 110 INTRISTOR PROJECTS USING SCR's R. M. Marston A companion to the author's previous books MOS DIGITAL IC'S G. Flynn This book contrins information about MOS' and CMOS from genstruction to circuit application DPERATIONAL AMPLIFIERS DESIGN AND APPLICATIONS Fromini G. Tobey Covers the entire field of operational amplifiers PIN POINT TRANSISTOR TROUBLES IN 12 MINUTES L. Garner Gomparie information on circuit operations. Iroubleshooting che service procedures PRACTICAL TRIAC/SCR PROJECTS FOR THE EXPERIMENT	E3.10 NOME (E2.85 E2.85 E2.85 E2.85 E2.85 (Burr E5.00 E2.85 E2.85 Contemporation E2.85
10 INTEGRATED CIRCUIT PROJECTS FOR THE CONSTRUCTOR A. Marston All the projects have been devised, built and fully evaluated author ILD INTRISTOR PROJECTS USING SCR's R. M. Marston A companion to the author's previous books MOS DIGITAL IC'S G. Fynn This book contrilins information about MOS' and CMOS from ponstruction to circuit application PERATIONAL AMPLIFIERS DESIGN AND APPLICATIONS Trowing G. Todey Covers the entre field of operational amplifiers PIN POINT TRANSISTOR TROUBLES IN 12 MINUTES L. Garner Gompine information on circuit operations. Incubleshooting che service procedures PRACTICAL TRIAC/SCR PROJECTS FOR THE EXPERIMENT R. Fox Thyristor theory and practical circuits with low cost SCB TRIAD DIACS	E3.10 NOME (E2.85 by Iba E2.85 E2.85 E2.85 (Burr E5.00 E2.85 (Burr E5.00 E2.85 (Burr E5.00 E2.85 Cs and
110 INTEGRATED CIRCUIT PROJECTS FOR THE CONSTRUCTOR R. M. Marston All the projects have been devised, built and fully evaluated author 110 TNYRISTOR PROJECTS USING SCR's R. M. Marston A companion to the author's previous books MCS DIGTAL IC'S G. Fyrm This book contains information about MOS' and CMOS those generation to include applications (G. Fyrm This book contains information about MOS' and CMOS those generation to include applications (G. Fyrm Construction to include applications) BPERATIONAL AMPLIFIERS DESIGN AND APPLICATIONS (G. Tobey Covers the entire field of operational amplifiers PHAPOINT TRANSISTOR TROUBLES IN 12 MINUTES L. Gamer Complete information on circuit operations, troubleshooting che service procedures PRACTICAL TRIAC/SCR PROJECTS FOR THE EXPERIMENT R. For Thyristor theory and practical circuits with low cost SCB TRIA DIACs PRINCIPLES OF TRANSISTOR-CIRCUITS S. Amos	E3.10 NOME (E2.85 by the E2.85 c E4.50 basic c (Burr E5.00 c E2.85 cris and c E2.85 cris and c E2.85 c E4.00
110 INTEGRATED CIRCUIT PROJECTS FOR THE CONSTRUCTOR R. M. Marston All the projects have been devised, built and fully evaluated author I IO INTRISTOR PROJECTS USING SCR's R. M. Marston A companion to the author's previous books MOS DIGTAL IC'S G. Rym. This book conduins information about MOS' and CMOS from generation to include applications (G. Rym. DERATIONAL AMPLIFIERS DESIGN AND APPLICATIONS G. Tobey Covers the entire field of operational amplifiers PREATIONAL AMPLIFIERS DESIGN AND APPLICATIONS (G. Tobey Covers the entire field of operations, troubleshooting che service procedures PRACTICAL TRIAC/SCR PROJECTS FOR THE EXPERIMENT R. For Thyrasor theory and practical circuits with low cost SCB TRIA DIACs PRINCIPLES OF TRANSISTOR-LIRCUITS S. Amos Comments account of the standard textbook on funda principles underlying the design of circuits and using transistors	E3.10 NOME (E2.85 by Iba E2.85 . E4.50 basic 6 (Burr E5.00 E2.85 cris and FER E2.15 Cs and E4.40 (rhental
110 INTEGRATED CIRCUIT PROJECTS FOR THE CONSTRUCTOR R. M. Marston All the projects have been devised, built and fully evaluated author 110 TNYRISTOR PROJECTS USING SCR's R. M. Marston A companion to the author's previous books MCS DIGTAL IC'S G. Fyn This book conduits information about MOS' and CMOS from gostruction to circuit applications (G. Toby) G. Toby Covers the entire field of operational amplifiers PIN POINT TRANSISTOR TROUBLES IN 12 MINUTES L. Garner Comparts information on circuit operations, troubleshooting che service procedures PRACTICAL TRIAC/SCR PROJECTS FOR THE EXPERIMENT R. For Thyristor theory and practical circuits with low cost SCB TRIA DIACS S. Ama Generally accepted as being a standard textbook on funda granciples underlying the design of circuits and using transistors Branciples underlying the design of circuits and using transistors Branciples underlying the design of circuits and using transistors	E3.10 NOME (£2.85 by the E2.85 c £4.50 basic c (Burr E5.00 £2.85 c and E4.40 chental £2.85
IO INTEGRATED CIRCUIT PROJECTS FOR THE CONSTRUCTOR M. Marston All the projects have been devised, built and fully evaluated author IIO INTRISTOR PROJECTS USING SCR's R. M. Marston A comparison to the author's previous books MCS DIGTAL IC'S G. Fyn Conservation to the author's previous books MCS DIGTAL IC'S G. Fyn G. Forder G. Ford	E3.10 NOME (£2.85 by Iba E2.85 E2.85 E2.85 (Burr E5.00 E2.85 (Burr E5.00 E2.85 Cs and E4.40 (thental E2.85 n tape
110 INTEGRATED CIRCUIT PROJECTS FOR THE CONSTRUCTOR R. M. Marston All the projects have been devised, built and fully evaluated author 110 TNYRISTOR PROJECTS USING SCR's R. M. Marston A comparison to the author's previous books MCS DRATAL (CS G. Fyn Construction to the author's previous books MCS DRATAL (CS G. Fyn G. Tokes G. Tokes This book contrilins information about MOS and CMOS from possituation to encut application PERATIONAL AMPLIFIERS DESIGN AND APPLICATIONS Toromania G. Tokes Town the entire field of operational amplifiers PIN POINT TRANSISTOR TROUBLES IN 12 MINUTES L Garrier Gomparts information on circuit operations, troubleshooting che service procedures PRACTICAL TRIAC/SCR PROJECTS FOR THE EXPERIMENT R. For Thy and practical circuits with low cosi SCR TRIA DiACs PRINCIPLES OF TRANSISTOR EQUIPMENT G King A systematic guide to the servicing of transistor radio telewisto auth-6 equipment SEMECONDUCTOR CIRCUIT ELEMENTS T. D. Towers Town and working on projects	E3.10 NOME (52.85 by The E2.85 c E4.50 c E4.50 c E4.50 c E4.40 c E2.85 c E4.40 c E4.50 c E4.5
10 INTEGRATED CIRCUIT PROJECTS FOR THE CONSTRUCTOR R. M. Marston All the projects have been devised, built and fully evaluated author IID INTRISTOR PROJECTS USING SCR's R. M. Marston A comparison to the author's previous books MOS DIGTAL IC'S G. Fyn Construction to the author's previous books MOS DIGTAL IC'S G. Fyn G. Tooley Covers the entre field of operational amplifiers PRACTICAL TRANSISTOR TROUBLES IN 12 MINUTES L Gamer Comparison theory and practical circuits with low cost SCB TRIA Diract TRANSISTOR TROUBLES IN 12 MINUTES L Gamer Comparison theory and practical circuits with low cost SCB TRIA DiaCs PRINCIPLES OF TRANSISTOR LORCUTS S. Ame Goneratily accepted as being a standard textbook, on funda principles underlying the design of circuits and using transistors Reputer SCHOLECT CIRCUIT ELEMENT G. King A systematic guide to the servicing of transistor radio terevisio and he's equipment SEMCCONDUCTOR CIRCUIT ELEMENTS T. D. Towes Goneratic sand covers a general description, circuit of systematic guide to the servicing of transistor radio terevisio and he's equipment SEMCCONDUCTOR CIRCUIT ELEMENTS T. D. Towes Gones and working principles SOLO STATE CIRCUIT GUE BOOK	E3.10 NOME (E2.85 by Ibs E2.85 . E4.50 basic G (Burr E5.00 E2.85 cris and E2.85 cris and E2.85 cris and E4.40 rithental E2.85 n tape E6.00 ercially lagram
110 INTEGRATED CIRCUIT PROJECTS FOR THE CONSTRUCTOR R. M. Marston All the projects have been devised, built and fully evaluated author III OTNYRISTOR PROJECTS USING SCR'S R. M. Marston A companion to the author's previous books MCS DIGTAL IC'S G. Fyn This book convints information about MOS and CMOS from gostruction to circuit applications. OPERATIONAL AMPLIFIERS DESIGN AND APPLICATIONS Brownij G. Tobay Covers the entire field of operational amplifiers PIN POINT TRANSISTOR TROUBLES IN 12 MINUTES L. Garner Comparise information on circuit operations, troubleshooting che service procedures PRACTICAL TRIAC/SCR PROJECTS FOR THE EXPERIMENT R. For Thyristor theory and practical circuits with low cost SCB TRIA Division of the design of circuits and using transistors FINDEDIES OF TRANSISTOR EQUIPMENT G. King A systematic guide to the servicing of transistor radio lielewisto and the degineric SEMECONDUCTOR CIRCUIT ELEMENTS T. D. Towors Generates an account of all semiconductor devices commis- available for each device it covers a general discription. Lincuit of symbols and working principles SOLID STATE CIRCUIT GUIDE BOOK 8. Werd Served Step find transistor to design brouts to your own specifical Served Step by step instructions to design principles to devices to minute symbols and working principles	E3.10 NOME (E2.85 by the E2.85 c E4.50 by the basic c E4.50 c E2.85 c E4.50 c E2.85 c E2.85 c E4.40 c E4.40 c E4.40 c E2.85 c E4.50 c E4.50 c E2.85 c E4.50 c E2.85 c E4.50 c E4.50 c E2.85 c E4.50 c E4.50 c E4.50 c E4.50 c E4.50 c E2.85 c E4.50 c E2.85 c E4.50 c E2.85 c E4.50 c E2.85 c E4.50 c E2.85 c E4.50 c E4.50 c E4.50 c E4.50 c E4.50 c E4.50 c E4.50 c E2.85 c E4.50 c
110 INTEGRATED CIRCUIT PROJECTS FOR THE CONSTRUCTOR R. M. Marston All the projects have been devised, built and fully evaluated author 110 TNYRISTOR PROJECTS USING SCR's R. M. Marston A comparison to the author's previous books MCS DIGTAL IC'S G. Fyn Consent to the author's previous books MCS DIGTAL IC'S G. Fyn Groosy Covers the entite field of operational amplifiers PRACTICAL TRANSISTOR TROUBLES IN 12 MINUTES L Gamer Comparison the origin on circuit operations, troubleshooting che service procedures PRACTICAL TRIAC/SCR PROJECTS FOR THE EXPERIMENT R. Foe Thy theory and practical circuits with low cost SCB TRIA DiaCs PRINCIPLES OF TRANSISTOR FLOUGUES A systematic guide to the servicing of transistor radio. Terevision and he augment SEMCCONDUCTOR CIRCUIT ELEMENTS T. D. Towers SOLO STATE CIRCUIT GUIDE BOOK B. Wead Step by Step instructions to design circuits to your own specifical Transistor devices commanded Step by Step instructions to design circuits to your own specifical Transistor Circuit Design Tavinstor Circuit Design Texas	E3.10 NOME (E2.85 by Iba E2.85 . £4.50 m basic (Burr E5.00 E2.85 (Burr E5.00 E2.85 or basic (Burr E5.00 E2.85 or basic E2.85 Carbon E2.15 Carbon E2.85 Carbon E2.15 Carbon E2.85 Carbon E2.15 Carbon E2.90
110 INTEGRATED CIRCUIT PROJECTS FOR THE CONSTRUCTOR R. M. Marston All the projects have been devised, built and fully evaluated author 110 TNYRISTOR PROJECTS USING SCR's R. M. Marston A comparison to the author's previous books MOS DIGTAL IC'S G. Fym This book combine information about MOS' and CMOS' from postfuction to inclusi applications DPERATIONAL AMPLIFIERS DESIGN AND APPLICATIONS If Tobey Covers the entire field of operational amplifiers PHACTICAL TRIAC/SCR PROJECTS FOR THE EXPERIMENT R. For Thysisor theory and practical circuits with low cost SCB TRIA DIACS PRINCIPLES OF TRANSISTOR FLOUGES FOR THE EXPERIMENT R. For Thyrisor theory and practical circuits with low cost SCB TRIA DIACS Comparison of the design of circuits and using transistors formerly accepted as being a standard textbook, on funds principles underlying the design of circuits and using transistors G. King A systematic guide to the servicing of transistor radio terevisite arth full guide to the servicing of transistor radio terevisite arthole quiprineri SEMECODUCTOR CIRCUIT ELEMENTS T. D. Towers Gives an account of all termiconductor devices commin available for each device of covers a general description, circuid symbols and working principles SOLO STATE CIRCUIT GUIDE BOOK S. Were Support State Circuit DESIGN TEAMSISTOR CIRCUIT DESIGN Texas	E3.10 NOME (E2.85 by the E2.85 c E4.50 b basic c (Burr E5.00 c E2.85 c (Burr E5.00 c E2.85 c E4.40 c E4.40 c E4.40 c E4.40 c E4.40 c E2.85 c E4.40 c E2.85 c E4.40 c E4.40 c E2.85 c E4.40 c E2.85 c E4.40 c E2.85 c E4.40 c E2.85 c E4.40 c E2.85 c E4.40 c E2.85 c E4.50 c

UNDERSTANDING ELECTRONIC CIRCUITS	
R. Sinclair	£4.00
bescripes various circuits encountered today with a strong em fault finding and servicing procedures.	phasis on
UNDERSTANDING ELECTRONIC COMPONENTS	
R. Sinclair Explains about components and bridges the gap between ell extbodis and uniforcachable advanced trastmoor	E4.00 ementary
UNDERSTANDING CMOS INTEGRATED CIRCUITS	
R meen Begins with basic digital IC's, covers semiconductor physic: tabrication lechilology and design	S. CMOS
UNDERSTANDING SOLID STATE CIRCUITS	c 1 00.
Written to service the interests of anyone at sub-engineering if	tr.901 Ivel
ELECTRONIC ORGAN BOOKS	
TRANSISTOR ELECTRONIC ORGANS FOR THE AMATEUR	
A. Dougues Written in a simple style, this gives a complete explanation of e to do with transistorized organs and is profusely illustrated y diagrams.	E4.90 verything with clear
THE ELECTRONIC MUSICAL INSTRUMENT MANUAL	
A Douglas A comprehensive guide to the theory and design of electronic instruments	£8.00 musical
A. Douglas A practical guide to the production of electronic music	£3.10
SEMICONDUCTOR DATA	-
INTERNATIONAL TRANSISTOR SELECTOR	
T' D. Towens If it lakes you looper than one minute to lood out all all out one	£3.75
then you need a copy of this book.	nsisiurs,
POPULAR VALVE/TRANSISTOR SUBSTITUTION GUIDE Substitution data for both valves and transistors in one new vo	E2.15
RADIO VALVE AND SEMICONDUCTOR DATA	
A. M. Self. Characteristics of 1 000 values, carbode ray tubes, immunities	£2.50
rectifiers and optical semi-conductors. This new edition (1975) up to date and over 450,000 copies have been sold	is right
RADIO AND TELEVISION	<u></u>
FOUNDATIONS OF WIRELESS AND ELECTRONICS	
M. 6. Scroggie (New 1975 edition). Coversithe whole basic theory ino previous knowledge is assumed	£4.35 rechnical
SERVICING TRANSISTOR RADIDS	
L. D'Airo Complete guide giving theory analysis and servicitig techniques	E2.30
WORLD RADIO TV HANDBOOK-1976 Complete Directory of international radio and television and t contains. How to listen to the world.	£5.00 this year
TEST EQUIPMENT AND OSCILLOSCOPE	S-
BASIC ELECTRONIC TEST PROCEOURES	
1. M. Gottlieb Shows how to get accurate measurement with VOMs mete oscilloscopes	E2.35 ers and
THE OSCILLOSCOPE	
G_Zwick Starts from the first punciples and takes the reader to an advance	E2-10
PRACTICAL TEST EQUIPMENT YOU CAN BUILD	
For technic ans, radio /TV service operators and sensors experim	£2.15 lenters
RADIO. TV AND AUDIO TEST EQUIPMENT	
G King A practical guide to test instruments and applications concerned with the oscilloscope	£4.95 largely
TEST INSTRUMENTS FOR ELECTRONICS	
M. Clifford	£1.65
book	of this
A Saundera	ci ar
Includes workshop test projects with large size drawings	c1.65
SERVICING WITH THE OSCILLOSCOPE G. Hing	F5 00

Includes a unique series of photographs showing oscilloscope traces to be lound in normal and faulty equipment stereo radio, colour TV Circuits servicing is dealt with

HOW TO ORDER All prices are correct at the time of going to prinst but are subject to alterating without notice. All prices include postage Please priot your rame and address tearly and titte ach title and price separatais. Cheques and postal orders should be made payobia to FTI Bouk Science. Books are sant on stree Rays approval agunts a full cash immitance plus postage book stock is nel hold at ITS London of infices and notes sensible sensitie ETI BOOK SFRIECE P.O. BUX 79, MAIDENHERD, BERKS SUS 256.

-HOW IT WORKS

1. First rub down the board.

3, Lay down the transfer pads.

5, into the bag, and unclip the liquid.

7. When complete, reseal and wash off.

2. Punch through the component positions.

4. Now use the Dalo pen to join up the circuit.

6. Agitate the etchant over the board.

8. Rub off the transfers, and thats It!

The GS System is a complete PCB etching kit for the amateur normally selling at around £9.00. It contains, as shown below, Dalo etch-resist pen, two Polifix blocks for rubbing down and polishing boards, five sheets of etch-resist 'pads' for a neat finish, and of course the 'etching-bag' which is the heart of the system. You need never come into contact with the liquid, the entire process takes place within the thick-walled polythene bag. When the liquid loses its power, (after 10 'Euroboards',) simply mix in the powder supplied and throw the whole thing in the bin! Simplicity itself.

Take the board-dom out of PCB's with this month's offer, and at a price which won't etch out your bank balance!

P.C.B. KIT OFFER ETI MAGAZINE 36 Ebury Street, London SW1W 0LW.
In enclose cheque / P.O. for £5.95 (payeble to ETI)- for a P.C.B. Kit
NAME.
ADDRESS

What to look for in the October issue: on sale Sept 3rd

Build yourself a personal computer

System 68 is a powerful microcomputer which will operate without an expensive teletype or VDU. You can write, debug and run programs simply, using the system keyboard and display, and the ETI 560 VDU can be added to enhance the system I/O capability. Based on the Motorola M6800 microprocessor, System 68 is modular and can be adapted and expanded to suit your requirements and peripherals. Play computer games, solve scientific problems, control your central heating, write computer music — here's a whole new world of electronics.

Another first for ETI — not just a DVM but a DMM with excellent spec. A 3½ digit display takes the AC/DC voltage ranges from 0.1 to 1000V plus AC/DC current from 0.1 μ A to 2A plus resistance readings from 0.1 Ω to 2M Ω . Accuracy varies with range from 0.2% to 1%: it can be either mains or battery

operated.

The spec only should whet your appetite but the constructional design is also superb — so much so that we expect our DMM to become one of the 'standard' circuits for the amateur constructor.

Electronics in Printing

Electronics in general, and the computer in particular, is playing an ever-greater part in the of production newspapers and maga-zines. The newsman's world is fast becoming a world of colour VDUs, optical character recognition, microprocessing typesetters and other high technology products and processes. Read about the computer-controlled ink jet press which will soon be printing your morning paper - in next month's ETI.

POCKET 1-2 HOUR TIMER

Many applications suggest themselves for this but the obvious one is to avoid being caught out with an expensive parking ticket. It's truly pocket-sized and operates from a PP3 battery.

X-HATCH Generator

The winning entry for last year's Doram design competition was a cross-hatch generator. We hope to give you constructional details in next month's issue.

The ETI Digital Alarm Clock now being re-offered in ETI after its successful introduction last year is a very attractive clock, but a useful additional feature would be facility to turn on a radio, instead of the buzzer, at the alarm time. (This is a more gentle way of being awakened!

Two matters which must be considered are (1) the alarm output from the CK 3000 clock chip is a pulsed audio tone, and (2), more importantly, the Pulsar uses a transformerless circuit, (Fig. 1) so that any switching output **must** be totally isolated from the clock circuitry.

As space inside the Pulsar case is limited, a further transformerless circuit has been designed, which offers two operating modes, (a) buzzer alarm, and (b) turn-on with buzzer silenced.

RADIO ALARM CIRCUIT

This consists of three sections, (1) a reed relay and its driver TR4, (2) a flip-flop (bistable) TR2 and TR3, and (3) a trigger transistor TR1. When TR2 is 'off', the high voltage at its collector turns TR4 'on', thus energising the reed relay. In the pre-alarm period, TR2 is 'on' whilst TR3 is 'off'. This state is set by temporarily closing S1a, which grounds TR3 base, turning TR3 off. The bistable is changed over by an AC signal from the buzzer switching transistor collector turning TR1 on momentarily, which grounds TR2's base. The blocking capacitor C1 ensures that the DC conditions of the clock chip are not disturbed.

Switch S1b is used to connect the buzzer to its driver transistor (the wire connecting the buzzer to the clock board must be cut to insert the switch). When S1 is in the 'radio' position, the buzzer is disconnected, and the flip-flop is free to toggle when the alarm output from the clock chip is energised. When S1 is in the 'alarm' position, the flip-flop is anchored in one state, and the buzzer can then operate.

Sufficient power is available from the clock chip power supply (pin 11) to operate the bistable, but not enough to energise the relay. If the relay is driven directly from the clock

power supply, the ensuring voltage drop turns the clock off!

Fig. 2. ETI Clock modified circuit to include radio facility.

CONSTRUCTION

A separate transformerless supply D1, R1 stabilised at 6V with D2, C2 is used for the relay. To reduce the heat dissipation, the dropper resistance R1 was selected to pass 5mA, which is sufficient to hold the relay on. Power to energise the relay is obtained from the storage capacitor C2. The circuit was fabricated on a piece of 0.1'' pitch Veroboard $3'' \times 1\frac{1}{2}''$.

BUZZER

FLIP FLOP

CLOCK BOARD

RÍADIO

"We have previously sold this Digital Clock under the name Pulsar. At the time that this name was chosen by us we were unaware that the name Pulsar had been previously registered, but it has been drawn to our attention that this is the case. We have been asked to point out that our Digital Clock is not associated with Pulsar Watches, Time Computer Inc. or Pulsar S.A."

George Hanslip shows how to interface

THE ADVANTAGES OF CMOS. namely low power consumption, high noise immunity, tolerance of wide power supply voltage variations, and the relatively higher level of integration, i.e. circuit functions per package, make it the obvious choice of logic to use in not only battery powered designs but also mains operated equipment. This is particularly so if power for the circuit is to be derived from the a.c. mains by means of a mains dropper resistor - a much cheaper solution than a mains transformer. With CMOS the total current consumption of the logic will probably be below 5mA as opposed to about 100mA for a comparable TTL design and, therefore, a low power mains dropper resistor will suffice.

Problems will, however, arise when the logic circuit has to interface with a high power a.c. load such as a mains lamp or motor. Here, two solutions are possible: a relay or a triac. The first device, a relay, uses a lot of power and currents of the order of tens of mA are required to keep the relay energised, which defeats the original object and prevents the use of a power mains dropper resistor.

TRIAC TRIGGERING

To investigate the possibilities of using CMOS to drive triacs it would be helpful to state the triggering requirements of these devices. Triacs may be triggered into conduction on both positive and negative mains half cycles, with either polarity of gate current. They are, however, more sensitive (i.e. require less gate current) to negative gate current. Triac triggering requirements are, in fact, normally specified for gate current polarities which are in phase with the main terminal voltage, i.e. main terminal voltage positive with positive gate current and main terminal voltage negative with negative gate current. These and the gate sensitivity for the case of main terminal voltage positive with a negative gate current are equal. Triacs are generally much less sensitive to positive gate current on negative mains half cycles (i.e. main terminal voltage negative) and need to be selected for applications which require this mode of triggering. The gate current may be d.c. or a pulse since the triac will remain on once it has been triggered, until the end of the mains half cycle.

The current required to trigger a

triac will depend on the type of device used as well as the temperature. Higher power devices of 25A or greater rating may require up to 100mA to trigger while low power devices, 4A and less, may need only 10mA or less. Manufacturers generally state the maximum current required to trigger. Thus a triac type TAG250-400, for example, has a maximum gate current of 50mA and this is guaranteed to trigger all devices of this type. There will, of course, be many TAG250 devices which require a good deal less but unless the constructor thas many

The maximum current which can be supplied by CMOS devices is 10mA. Exceeding this limit will probably

such devices and can choose those with lower gate current, for good reliability he should aim to provide a current of 50mA.

Before gate current can flow, a certain voltage, the gate trigger voltage must be exceeded. This for the TAG250-400 is 2.5V maximum. Thus for a worst case device, the trigger circuit must provide a voltage of at least 2.5V plus the voltage required to drive 50mA through any reistance in series with the gate.

CMOS GATES AS DRIVERS

Unfortunately, CMOS gates, such as the 4001 or 4011, cannot provide anything like 50mA output current.

destroy the device. With a 5V supply, the output of a CMOS gate may drive a transistor base directly as the device will limit its output current to below 10mA, but above about 8V a current limiting resistor R will be required (see Figure 1).

If the output of the gate is required to maintain a recognisable logic state when supplying output current, to drive another gate for example, then the current must be limited to below 1mA. Figure 2 shows a circuit for a bistable a.c. switch.

If input "a" is momentarily connected to logic O (negative supply rail) the transistor will turn on

and trigger the triac, which will remain on until input "b" is connected to logic O. Note that a negative supply is used to provide negative gate current for the triac. R2 is chosen to give the required 50mA gate current and R1 to give the required base current. Since gate A must drive both the transistor and present a defined logic level to gate B, the output current of gate A must be less than 1 mA giving R1 a minimum value of 10Kohm with a 10V supply. If the gain of the transistor is greater than 50, R1 may be increased in value, thus reducing further the current taken from the output of gate A.

This type of circuit, however, still draws a large current from the supply when the transistor and hence the triac is on. This current, about 50mA must, of course, come through the mains dropper and defeats the object of low current consumption. We get round this by

PULSE TRIGGERING THE TRIAC

Use can be made of the fact that the triac will latch once it has been

When the circuit is not oscillating it draws very little current, and so stand-by power will be minimal.

In a circuit like this it is desirable that the frequency of the oscillator be at least 5KHz. This ensures that the triac is triggered as early as possible in each half cycle, minimising radio interference.

If isolation of the trigger circuit from the mains is required, then resistor R2 may be replaced by a transformer. This may be wound on a $\frac{3}{4}$ " diameter x 1 $\frac{1}{4}$ " ferrite rod and

triggered. Thus the trigger current of 50mA pulses of short duration, the duty cycle of which may be such that the average current is only a few mA. The supply smoothing capacitor thus supplies the 50mA peak current while the mains dropper replaces the charge over a longer period and, therefore, needs to carry a current of only a few mA.

This is the principle behind the circuit shown in Figure 3. Transistors TR1 and TR2 form a circuit which oscillates at a frequency determined by C and R1 when point X is connected to the negative supply line. This can be done by a CMOS gate. The loading on the gate is minimal; about 10μ A, but the circuit can supply 50mA pulses to the triac gate while keeping the total current consumption below 5mA.

The circuit has been used on a range of supplies from 3 to 15V with success, although, of course, less trigger current will be available with the lower supply voltages. It is, therefore advisable to use a supply voltage of at least 5V. The frequency of oscillation is also slightly dependent on the supply voltage but this is of little consequence.

consists of 10 turns of 28 swg wire for the primary and 10 turns for the secondary, insulated by a layer of PVC insulating tape.

Table 1 lists the supply current (ls) the gate current (lg) and the frequency oscillation (F) for the circuit of Figure 3 supply as measured on a prototype when the supply voltage was varied between -3V and -15V, and no voltage applied to the triac. The two cases are R2=100 ohms and 47 ohms.

The circuit together with the CMOS gates thus forms a useful a.c. power switch as shown in Figure 4. When the ON button is pushed, the triac is turned on a supplies power to the load. Since the circuit latches, the triac will remain on until the OFF button is pushed.

The negative d.c. supply for the circuit is derived from the a.c. mains supply via diode D1 and resistor R4. The zener and capacitor stabilise and smooth the supply. The zener and capacitor stabilise and smooth the supply. The zener may have a breakdown voltage of anywhere between 5V and 15V. Since the current drawn by the circuit is only 1.5mA, R4 need only be a ¼ watt component.

If resistor R2 is replaced by a pulse transformer, then the current drawn by the circuit rises to about 2.5mA and resistor R4 may need to be reduced to 74Kohm.

APPLICATIONS OF THE CIRCUIT

The circuit of Figure 3 forms a low power trigger circuit for triacs and is, therefore, ideal for interfacing between these devices and CMOS digital integrated circuits. The cost of the extra transistor compared to that of Figure 2 is far outweighed by the reduced cost of the mains dropper. The difficulty of synchronising the circuit with the mains makes its use in phase control circuits (such as lamp dimmers) unattractive compared to programunijunction transistor mable (P.U.T.) trigger circuits, but in ON-OFF type switching applications it is superior.

By removing the push buttons and the 100Kohm resistors from the circuit of Figure 4, the load current may be switched on by a negative pulse to the input of gate A and off by a negative going pulse to the input of gate B. By suitably decoding the outputs of a digital clock and

TABLE 1		Vs Volts	is MA	lg MA	Frequency	
	KHz					
	$R2 = 100\Omega$	3	0.15	20	5	
		6	0.32	50	5	
		9	0.45	70	5	
		12	0.6	100	5.2	
		15	0.85	120	6.25	
	$R2 = 47\Omega$	3	0.25	35	5.3	
		6	0.45	80	5.3	
		9	0.6	140	5.3	
		12	0.75	180	5.3	
		15	1.0	200	6.0	

connecting these to gate A and B, the circuit could be used to switch mains and driven equipment such as lamps, tape recorders or central heating systems on and off at certain times. Power for the circuit could be obtained from the clock power supply line, as this would almost certainly be able to supply the small

extra current required. The use of a pulse transformer (as shown in Figure 3b) would isolate the clock and decoding circuitry from mains.

Referring to figure 3, by making TR1 a BC148 (NPN) and TR2 a BC158 (PNP) and connecting the positive supply to the emitter of TR2 and negative to TR1 emitter, the circuit would produce positive going trigger pulses when X is connected to the positive line. The pulses applied to the triac gate could be made negative by correct phasing of the transformer windings. In this way the circuit may be used with a positive or a negative supply depending on which is available.

LYNX	ELECT	RONIC	S (LONDO	ON) LTD	DL704 000 DL747 1.75 2 RED LED ONLY 130 DL707 990 DL750 1.75 GREEN CLEAR 95
Transistors AC126 15p AC127 16p AC128 13p AC128K 25p AC141 18p	BC183 10p* BC183L 10p* BC184L 11p* BC184L 11p* BC2078 12p* BC212 11p*	8F337 32p BFW60 17p BFX29 25p BFX30 39p BFX84 23p BFX85 25p	CRS1-10 25p CRS1-20 35p CRS1-40 40p CRS1-60 65p CRS3-05 34p CRS3-10 45p	2N697 12p 2N706 10p 2N929 14p 2N930 14p 2N1131 15p 2N1132 10p 2N1132 10p	THYRISTORS ·8A 1A 3A 6A 8A 10A 10020 (TO92) (TO5) (C106 type) (TO220) (TO220) (TO220) 50 20 25 35 41 42 47 100 25 25 44 47 48 54 200 27 35 45 50 66 68 400 39 45 54 87 58 60 68 600 65 76 1.09 1.19 1.28
AC141K 28p AC142K 28p AC142K 28p AC176K 28p AC176K 25p AC187 18p AC187 18p AC188 18p AC188K 25p AC188 58p	BC212L 11p BC213L 12p BC213L 12p BC214L 14p BC214L 14p BC237 16p BC238 16p BC238 16p BC301 32p BC323 60p	BFY50 20p BFY51 18p BFY52 19p BFY64 35p BFY90 65p BFY90 65p BR100 20p BRY39 40p BSX19 16p BSX20 18p	CRS3-20 90p CRS3-40 90p CRS3-60 85p MJ480 80p MJ481 £1-05 MJ490 90p MJ491 £1-15 MJE340 40p* MJE371 60p MJE371 60p	2N1305 20p 2N1305 20p 2N1711 18p 2N2102 44p 2N2369 14p 2N2369 14p 2N2484 18p 2N2646 50p 2N2905 18p 2N2905 22p	TRIACS (PLASTIC TO-220 PKGE, ISOLATED TAB) 4A 6:5A 8:5A 16A 15A (a) (b) (a) (b) (a) (b) (a) (b) 100 V 6:54 9:76 0:78 6:78 0:83 1:33 1:41 1:61 200 V 0:44 9:78 0:78 0:78 0:78 0:83 1:33 1:41 1:17 200 V 0:44 9:75 0:78 0:78 0:78 0:83 0:83 1:31 1:41 1:17 1:1
AD142 58p AD143 46p AD149 45p AD161 35p AD162 35p AL102 95p AL103 93p AF114 20p AF115 20p	BC327 18p* BC328 16p* BC337 17p* BC338 17p* BCY70 12p BCY70 12p BCY71 18p BCY72 12p BD115 55p BD131 36p	BSX21 20p BSY95A 12p BT106 £1 40 BT107 £1 40 BT108 £1 40 BT109 £1 40 BT118 £1 40 BU105 £1 40* BU105 £1 40*	MJE521 55p OA5 54p* OA90 8p OC41 15p OC42 15p OC42 15p OC44 19p OC45 19p OC70 19p	2N2926R 10p* 2N29260 9p* 2N2926G 10p* 2N3053 15p 2N3054 40p 2N3055 50p 2N3440 56p 2N3442 £1.20	clearly the type required. 74 TTL mixed prices 1-24 25-99 100+ 1-24 25-99 100+ 7400 14p 12p 19p 7445 85p 71p 57p 7492 85p 44p 32p 7401 14p 12p 19p 7447 81p 75p 65p 7493 45p 45p 45p 45p 740p 32p 7401 14p 12p 19p 7447 81p 75p 65p 7493 45p 45p 45p 7402 14p 12p 19p 7447 81p 75p 62p 50p 7495 81p 72p 7403 15p 12p 19p 7470 35p 82p 72p 7400 81p 72p 7403 15p 12p 11p 7470 35p 25p 22p 22p 22p 22p 22p 22p 22p
AF116 20p AF117 20p AF138 50p AF139 33p AF239 37p BC107 14p BC107 14p BC108 13p BC109 14p	BD132 49p BD135 36p BD136 39p BD137 48p BD138 48p BD181 86p BD181 86p BD181 86p BD182 92p BD183 97p	02 £1.90 BU126 £1.90 BY205 15p BY207 28p BYX36-300 12p BYX36-600 15p BYX36-900	OC71 19p OC72 22p DC84 14p SC40A 73p SC40B 81p SC40B 98p SC40F 65p SC41A 65p SC41B 70m	2N3702 10p* 2N3703 10p* 2N3703 10p* 2N3705 10p* 2N3705 10p* 2N3705 10p* 2N3705 10p* 2N3707 10p* 2N3717 £1+05 2N3715 £1+15	7403 16 p 13 p 11 p 7472 25 p 21 p 17 p 7412 14 p 22 p 23 p 7409 16 p 13 p 11 p 7473 38 p 25 p 20 p 7412 47 p 30 p 31 p 7410 16 p 13 p 11 p 7473 32 p 26 p 21 p 7414 76 35 p 35 p 7413 22 p 24 p 20 p 7475 47 p 35 p 31 p 7414 76 p 55 p 45 p 7417 27 p 22 p 26 p 7475 47 p 35 p 21 p 7415 61 62 p 55 p 45 p 742 16 p 13 p 11 p 742 75 p 62 p 56 p 7415 61 62 p 16 p 75 p 742 71 p 22 p 16 p 745 61 3
BC109C 16p BC117 19p* BC125 18p* BC125 20p* BC141 25p BC142 25p BC143 23p BC143 34p BC144 34p BC144 9p*	BD232 60p* BD233 48p* BD233 66p* BD238 60p* BD144 £1-2* BDY20 8*p BDY20 8*p BDY50 6*p	180* BYX38-1200 210* BYX38- 300 58p BYX38- 600 55p BYX38- 900 68p	SC41D 85p SC41F 80p ST2 20p TIP29A 44p TIP30A 52p TIP31A 54p TIP32A 84p TIP32A 84p	2N3716 £1-25 2N3771 £1-80 2N3772 £1-60 2N3773 £2-16 2N3819 28p* 2N3904 16p* 2N3906 16p* 2N4124 14p= 2N4920 12p=	7437 27p 22p 13p 7488 22*88 22*10 74192 21*136 21*14 90p 7441 75p 82p 50p 7490 40p 44p 32p 74192 21*136 21*14 90p 7441 75p 82p 43p 7490 40p 44p 32p 74193 £1*136 £1*14 90p 7441 15p 55p 43p 7491 65p 45p 74196 £1*14 90p 7442 15p 54p 43p 7491 65p 45p 74196 £1*14 90p 7442 15p 7491 65p 55p 45p 74196 £1*14 90p 100 23s 3400 14 10 11 35* 360 14 10 11 25* 566 8 10 11 £1*48* 307 340 14 10 11 25* 566 8<
BC144 Bp* BC144 Bp* BC152 25p* BC153 18p* BC153 8p* BC153 9p* BC159 9p* BC160 32p	BDY61 65p BDY62 55p BF178 28p BF179 30p BF194 10p* BF195 10p* BF196 12p* BF196 12p* BF197 12p*	BYX38- 1200 65p BZX61 series zenets 20p BZX83 or BZX83 or BZX83 series zenets 11p* C106A 40p C106A 40p	TIP41A 85p TIP42A 72p IN2069 14p IN2070 15p* IN4001 4p* IN4002 5p* IN4003 5p* IN4003 5p* IN4005 5p*	2N4346 £1 · 20 2N4870 35p 2N4870 35p 2N4919 70p 2N4920 56p 2N4922 58p 2N4923 84p 2N5060 20p 2N5060 20p	380 14 pin DiL 1.60° 748 pin DiL 36 381 14 pin DiL 1.60° 555 8 pin DiL 45 CA3046 14 pin DiL 50° Matching charge 20p per pair. P 4 P 20p-Overseas 50p. CA3045 85° NATIONAL CLOCK CHIPS MM 5316 £5.25 (Basic clock chip giving '6 digit display) (Sophisticated device including alarm, similar to CT 7001)
BC166B 9p* BC182 11p* BC182L 11p*	BF244 170* BF257 300 BF258 350	C106D 50p C106F 35p CRS1-05 25p	IN4006 9p* IN4007 10p* 2N696 14p	2N5062 27p* 2N5064 30p* 2N5496 86p	HIGHAM MEAD. CHESHAM, BUCKS. Tel. (02405) 75151 VAT-Please add 8% except items marked * which are 25%

THE DISCO UNIT to be described here reaches professional standards at a very moderate price, only about £130 for the electronics, plus whatever decks, cartridges, etc, you should choose to add. It is designed for the home constructor, and gives many of the features found on professional equipment.

DESIGN CONSIDERATIONS

It was decided to work as closely as possible to the following basic design parameters: the disco must be robust and simple to operate giving the deejay as much freedom as possible, whilst at the same time retaining full control. It should reach generally accepted high fidelity standards and be capable of stereophonic reproduction, to take advantage of the excellence and

range of modern recording techniques.

The unit should be capable of producing continuous high sound levels to the loudspeakers, without distress to the power amplifiers. 100W per channel should be more than sufficient in any hall in which a portable disco is likely to be used, and thus meets this condition.

Designs of good quality 100W power amplifiers are infrequently found, but rather than start from scratch it was decided to use a tried and tested design. Our own design (originally published in February 1973) was employed, but the recommended power supply was modified slightly so that the amplifiers could deliver 100W continuous rms power with both channels driven simultaneously.

Output power:	4 Ω load both channels di	riven 100W RMS
Frequency respon	se: +0.25d +0.25d	B—1dB 30Hz to 20kHz B—3dB 15Hz to 37kHz
Total harmonic dis	itortion at 100W:	<0.2% at 1kHz
Stereo separation:		50dB
Damping factor:		80
Sensitivity: (ref: 10	DOW into 4Ω)	
	Ceramic PU Tape Aux Mic	:88mV (>2MΩ) 100mV (50K) 100mV (50K) 75mV (50K)
Pickup overload th	reshold: 1.3V	
Outputs:		Tape: 1.7v into 10K Pre-amp: 1V
Tone controls:		Bass \pm 19dB at 65Hz Treble \pm 20dB at 10kHz

ETI 458 DISCO: PROTOTYPE SPECIFICATION

COMPREHENSIVE UNIT WITH BUILT IN SHOW IIGHT 458

VOICE-OVER

In order to allow the deejay his freedom it was considered that an automatic voice operated fader was essential. The deejay does not have. to be continually adjusting the microphone level, and provided that a uni-directional microphone is used. he will only have to set up the microphone level at the beginning of the evening. The mic will only pick up sounds made within a few inches of it, and when the deejay speaks the volume of music from any other source will be automatically reduced to an adjustable preset level. As soon as the announcement is completed the music level is automatically restored to its previous level.

The microphone should be a uni-directional (cardioid) type in order to minimise acoustic feedback, it should be hard-wearing, resistant to damage and distortion when shouted at, whilst capable of faithfully reproducing soft sounds. After careful consideration it was decided that the microphone which best met these conditions (at a reasonable price) was the electret microphone. The input on the disco was specifically designed with this type of microphone in mind therefore

DECISIONS DECISIONS

A decision had to be made over whether to design the disc inputs for magnetic or ceramic cartridges. After considering the advantages and limitations of both types it was

decided to design for ceramic cartridges since for the purposes of a disco they have several advantages over their rivals and their limitations can be largely overcome, by careful design of the preamplifier.

Heavy stamping on the floor near the disco could cause light tracking cartridges to join in the fun and dance across the disc whilst the heavier tracking type will remain (hopefully) in the groove. The ceramic cartridge is more robust and replacement styli for them are considerably cheaper than magnetic, with the result that they are more likely to be regularly changed leading to less significant record wear despite the heavier tracking weight.

Many ceramic cartridge inputs on amplifiers do not provide the correct loading, resulting in woolly-sounding bass and coarse hissy treble. After experimenting with various types of equalisation an input using a field effect transistor was eventually adopted. The FET gives an input impedance in excess of $2M\Omega$ and the difference this pre-amp made was spectacular. Listening tests, comparing the sound with that of magnetic cartridges and pre-amps showed that the ceramic cartridge coupled with its FET input sounded at least as good to the designer as many medium priced magnetic pickups and better than a lot of cheap ones. The bass is firm and tight and the treble clean and extended.

PARTS LIST FOR POWER SUPPLY 150R 150R R, Rj 22K All ''STD RES'' ½₩ carbon film C1, C2, C1 1,000 F @25V axial electrolytic 150//F @25V axial electrolytic 10,000//F @100V can type elect C₄, C₅ C₆, C, VR, Horizontal subminiature preset 22K D₁, D₂, D₅, D₆ IN400 2 D₃, D₄ 3A 50 PI BR₁ Bridge 1 **3A 50 PIV rectifier** Bridge 10A 200 PIV BZX61.C.15V ZD, ZD, 32-0-32 volts at 6 1/2 amps 12-0-12 volts 1 1/2 amps Fuse 20 mm 3A Fuse 20 mm 3A with

20 mm chassis holder Square neon DPDT rocker switch Disco power supply p.c.b. Mains Skt SA1862 Mains plug SA2190

LP1 SVV1 PCB

> (5A 3 pin mains connectors)

How it works

The power supply for the power amps is a simple, unstabilised, circuit which provides all that is required a more sophisticated circuit would make no appreciable difference to the overall result due to the symmetrical nature of the power amp output stages.

nature of the power amp output stages. The lower voltage supply is rectilied by the bridge formed by D1, 2, 5 and 6 and stabilised by ZD1 and 2 to

give the $\pm 15V$ and -15V supplies required by the pre-amps, monitor circuits and lader. A special negative supply for the FET's in the fader is derived from VR1 and R3. The power to the headphone amp is derived from a separate pair of rectifiers 03 and 4 in order to isolate the effect of its widely varying current requirements from the circuits requiring a stabilised supply.

100W STEREO DISCO

Fig 3 Component Overlay for power supply

CUE FOR A SONG

In order to give a really professional show, the deejay must have available ways of cueing the records accurately. The monitor facilities on this disco are quite extensive, providing a headphone output which may be switched between either turntable and peak reading VU meters which can monitor the signal on the input level controls of either deck or the signal level present at the input to the power amp. Thus the level controls and master volume control can easily be set for optimum performance.

The output of the pre-amplifier can also be monitored by the headphones so that an impression of what the music sounds like in front of the speakers can be obtained by the deejay for more accurate setting of the stereo balance and tone controls.

There are various ways of cueing records - the simplest being to lower the cartridge onto the record on one deck when the record already playing on the other deck is just about to end. With the VU meters switched to show the level from the new disc, when the pick-up reaches the start of the music the meters will be deflected and the cross-fade control can be pushed over. It is a rather hit and miss method, but any overlaps or gaps in the music when crossfading could be covered up by simply speaking into the microphone when the music will automatically be faded into the background.

A better method of cueing

records with dramatic beginnings is to place the pick-up on the record being cued and revolve the turntable until the music starts (as heard on the headphones or seen on the VU meters). Turn the turntable back until the sound ceases, and then back a further one revolution. When the music on the other turntable ends push over the cross-fade and make any necessary announcement. About two seconds before you stop speaking flick on the power to the turntable motor which will pick up speed in the blank groove util reaching virtually full speed before the music begins. Switches for the turntable motors can be fitted at each end of the cross-fade control so that starting the new record can be accompanied with one hand.

TAPE MEASURES

The deejay may wish to use a jingle machine and/or tape recordings of hard-to-get discs so the disco is equipped with tape and auxilliary inputs. These are full stereo inputs (i.e. a mono signal applied to any one input will not reduce the stereo separation of the signal on any other input). Each has its own level control and feeds into an input mixer where the various inputs are combined.

Slider controls are used on the discomainly for the reason that they can be adjusted accurately without looking at them. With rotary controls the deejay has to be continually looking down, and quickly loses the audience's attention. An output socket is provided so that the deejay could tape recordthe evening's performance if he wished. It is unaffected by the settings of the master volume or tone controls.

Light work

Most professional discothèques employ a light show and it was decided to include a light show with this unit. A three channel circuit is used, each driving one 100W bulb in the rear of the console. The unit itself is capable of driving over 1.2kW (or 750W with spot bulbs) on each channel, but in this event it must be fed from a separate mains supply. It is not recommended that it be used to drive more than 250W per channel (including the 100W bulbs in the disco) if its mains is fed through the recommended plug and socket on the disco front panel, since this load added to the requirements of the amplifiers approaches the maximum current carrying capability of the plug and socket.

It is designed so that one channel lights when the music contains very low frequency signals, that is the light flashes in unison with the bass drum or bass guitar, one channel operates in the voice range and flashes in unison with the singer whilst the third channel flashes with the high frequencies - violins, etc. Sensitivity controls are provided on the front panel so that the on and off time of the lights can be adjusted. Three LED's are provided on the front panel and they flash in unison with the lamps so that the deejay can see immediately whether the sensitivity controls need adjustment.

Work light

When the music slows down and the lights get low, light will be needed so that the operator can still see what he's doing. Two lights on goosenecks are provided which can be swung round as required. They have adjustable hoods so that a narrow or wide area can be illuminated. (The VU meter faces are also illuminated.)

TURNING POINT

The choice of a turntable was governed by the consideration that it should be cheap, since two are required but should have some form of simple cueing facility with reasonable rumble and wow and flutter. With this in mind the BSR McDonald BDS80 was chosen as being the all round best buy.

Construction of Power Amps

The circuit of one channel is shown in Fig. 6. Fit the components to the pcb as shown in Fig. 4. Note that clip-on heatsinks are required for Q3, 4 and 5 and a special heatsink is required for Q6 and 7.

Note that Q6, 7, 8, 9, 10 and 11 must be mounted using mica washers and silicone grease. The pcb is fixed to the heatsink using three 19mm stand-offs. These slot neatly into the vanes of the heatsink so that it is not necessary to drill the heatsink to fit the board The connections to the collectors of Q8, 10 and 9 and 11, are made by means of solder tags mounted under the nuts. The solder tags are then linked in pairs and the two wires taken through the 8mm hole in the centre of the transistors. The connections between the output transistors and the pcb should be as short as possible and use 32/02 wire. By mounting the pcb as shown in the photographs the wires can be kept very short.

The heatsink should be bent to fit the board and screwed down. A type 6W-1 heatsink is required for the four output transistors

HOW IT WORKS

The amplifier is of conventional design using a quasi-complementary symmetry output stage and a differential input stage.

Output transistors are paralleled for greater output capacity — and transistors Q6 and Q7 connected in a Darhugton configuration provide current gain.

Q3 is a current regulator supplying approximately 10 mA. This controlled current passes through Q4, thus setting the bias for the output stage, and Q5. The voltage at the collector of Q5 is set by its own base-emitter voltage. Since this transistor is working with an almost constant current in its collector it has a very high voltage gain. This gain is attenuated at high frequencies by C7.

Transistor Q5 is controlled by the differential pair Q1 and Q2. Due to this negative feedback via R7 & R9, the action of Q1 and Q2 is that of an error amplifier. Thus it tries to keep the voltage at its two inputs (the bases of Q1 and Q2) constant. Because of the action, the output voltage is held equal to the input voltage multiplied by (R9+R7)/R7. This gives the amplifier a voltage gain of approxi-mately 22. This gain may be changed by varying the value of R7 An appropriate change must then also be made to C6 as R7 / C6 detenning the lower 3dB point. The value of R9 should not be altered.

The output bias current — which is nindessary to prevent cross-over distortion — is set by RV/I.

Fig 4 100W AMP Circuit

	PARTS LI 100W	ST FOR	
R.	3K9	C.	47uE 50V printed circuit
R	820R	C.	0.1uF Poivester
Baas	220R	D	IN4005
R.	1K5	20.	8Zx61 C15V
R.	470R	0	BFX30
R.	4K7	0	BFY 50
R	2K2	Q ^{4,5}	BD139
R.,	68R	2	BD140
R.,	100R	d	2N3055
R.,	33R	0.10	MJ2955
Bar	47R		
10,10		MISC	
AII "STD	res" 1/2 W carbon film resistors		
B	0.27R wirewound minia-	Some Ver	poins type 2141
ture 3W		P.C. board	100W amplifier p.c.b.
RV1 Hori	zontal subminiature preset	1x Jack S	KT mono (plastic moulded)
470	R	Fune 20 m	m 3A
C. 4.7.	F @63V printed circuit		
dec	trolytic	Chassis fu	ne holder 20 mm
C. 390	OpF ceramic	3 "stand o	offs'' 19 mm
-		3 "heat si	nk clip on" for TO5 case
C, 150	OpF Polystyrene (ceramic)	1 heatsink	6W-1
	. ,	1 heat sin	k type DR2 (see drawing)
C4.8 220	µF 16V printed circuit elec-	4 mountin some h	g kits TO3 est conducting grease
C.	39pF miniature ceramic	2 mountin	g kits P Plas
C,	33pF miniature ceramic	Double all	quantities for storeo pair

Fig 5 100W Amplifier complete and mounted

Fig 7 Component overlay for 100W Amplifier

Setting up the Power Amps

Remove the fuse FS2 (FS3 on other channel) and connect a milliammeter in its place. Adjust RV1 so that the wiper is nearest C7 (i.e. maximum resistance). Switch the unit on and adjust RV1 until a reading of 65mA is obtained. Allow the amplifier to warm up for about five minutes and then readjust the output current for between 70 and 80mA. (Note - the current will increase as the unit warms up.) Switch the unit off and re-insert FS2 (FS3). Switch the multimeter to the volts range and check the voltage between the outputs and OV. It should be within 200mV of zero (either polarity). If both measurements are correct the power amplifiers are working correctly.

Construction of Power Supply

The mains transformer which must be capable of delivering a full 32-0-32 volts at 61/2 amps should be bolted to the base of the console using two plates to spread the load. The circuit of the power supply is shown in Fig. 5. Fit the components to the pcb as shown in Fig. 6. Although there are two points marked OV on the transformer these points must NOT be connected together in the power supply. The centre of C6 and C7 is the main OV earth point for the power amps and five wires are connected here. They should all be 32/02 wire except the transformer wire. The centre tap of the 32-0-32 tapping is connected here (regarded as one wire), a wire to each power amp OV and the

return from each loudspeaker is returned to this point **NOT** to the power amp.

Fuseholders for fuses F2, 3, 4 and 5 are fixed to the baseboard close to the power supply pcb. These are separate fuses, one for each supply of each power amp. The power for the operating lights and VU meter lights is taken directly from the 12V AC supply on the transformer.

Before connecting the power supply to the power amps check the output voltages as follows. The voltage at

	ago ar	
pin 1	should be	+15V DC
pin 3		-15V DC
pin	4	+17 to +19V

Continued next month with pre-amp and light show

The easy way to a PCB...

... the Seno 33 system!

CALD

0

0

1

-

0

Ċ

0

0

0

0

0

0

0

0

0

0

0

1

0

-

...

Polifix - a unique bonded abrasive block for the clean, simple, totally effective cleaning and polishing of copper laminated boards. Degreases, removes tarnish, and 'keys' the copper surface perfectly to accept etch resist. Pack of 2 blocks £1.50, 6 £4.20, 12 £7.70.

car

The original fine-line etch resist marker. Simply draw the planned tracks onto copper-clad board - new Quick-Dri inks ready for etching in minutes. Valve controlled ink dispensing for longer life. £1.50 for 1, £5.00 for 6, £9.40 for 12.

Augole Seno etch resist transfer sence eccil resist ra symbols for a truly professional finishi

adhesive-backed symbols in easy-to-use strip form, adhere direct to copper laminate and offer total etch resistance. and other total etclinesisterios, Presented in packs of 10 strips, each of different symbol. £2.00 per pack, £17.50 per 10 packs.

A revolutionary solution to the problems of etching PCBs! Unique sealed system minimises the risk, inconvenience, storage and disposal problems associated with the use of acid etchants a complete kit designed to etch up to eight boards rapidly, visibly, effectively and SAFELY! E4.00 for a complete kit, £3.45 per kit in packs of 6.

<u>Seno33 –</u> The Laboratory in a box

From your usual component supplier or direct from:

DECON LABORATORIES LTD. Ellen Steet, Portslade, Brighton BN4 1EQ Telephone: (0273) 414371 Telex : IDACON BRIGHTON 87443

All prices post & VAT inclusive. Data sheets free of chatge

..... • 12 • •

是我们是她不可能的。"这种说道,我们的问题。

THE LONG RUNNING OFFER ON A DIGITAL ALARM CLOCK HAS BEEN ONE OF OUR MOST SUCCESSFUL EVERIOUR PRICE INCLUDES VAT AND POST & PACKING 1 20.18

Our cattle shows the time D 7th high on bright Planer Ges Discharge displays (there is a brightness control on the back). The dot on the left of the display shows AM/PM, and

the left of the display shows AM/PM, and the flashing (1Hz) colon shows that the alarm and clock are working. A biseper alarm sounds until the clock is tipped forwards. Then the "snooze" facility, can give you 5 minutes sleep before the alarm sounds again, and then another 5 minutes, etc. until you switch the alarm off. The block elso features a mains-failure indicator, and is 12tr — the alarm being 24 hour

we a large number of units in a offer lang players allow 25 d Via tr L Starting

AN

CLOCK OFFER 18.

The state and P.O. for **BIN**

> S. 1973 to cut their i 22.

19

1 1. 18.30

intend weten Pu

	l en
A five function digital watch for under £19 is our new offer	ETI)
to readers. A gold plated, LED display 5 function watch at	NAN
the VERY special price of £18.95 inclusive of VAT, postage and packing (normal price £23.75).	ADD

As well as hours/minutes (with AM/PM indicator), day/date and seconds, you also get a guarantee which in this case is no small addition!

- Two years cover repairer replacement on any watch developing a fault within two years of purchase.
- years.

- CUT -WATCH OFFER ETI MAGAZINE 36 Ebury Street, London SW1W OLW.

close cheque/P.O. for £18.95 (payable to for a Digital Watch.

NAME.		•		4	5		 9		fer c	90		rę.	2	2	ć	į,	et.	1911	(#*		<u>196</u> .,		2%		4	A	ł,	•
ADDRESS	•	•.	•		ŝ	lą.	\$ b	~	16	*	÷	*	8	•.	•	¥	-		Sec.	4	b	•	ιψ.	R	•	98	4	÷

. Free calibration check at the end of each of the first 3 Those not wishing to cut their magazine may order on their own notepaper.

TOSHIBA ST-910

The Toshiba ST910 is quite unlike any other piece of hi-fi equipment that we have previously seen. To start with there's not a single visible control apart from an ON/OFF switch. All other control functions are effected via capacitive touch switches, the positions for which are marked on the rear of the front glass panel forming most of the unit's front face.

The glass panel itself is divided into six sections which are from left to right; a signal level-indicating section consisting of six LED's, the top three being red LED's indicating signal level at +20 dB, +40 dB and +60 dB re $1 \,\mu$ V; whilst the lower three LED's (which are green in colour) indicate the muting level that has been selected as the threshold level for the receiver to respond to. These are activated by touching the capacitive switches indicated below them. To the right of this section is a four digit display of FM frequency. This uses 7-segment LED displays for showing the frequency to which the receiver is tuned. The first three digits indicate the frequency in MHz, whilst the last digit indicates the frequency in 100 kHz increments.

Immediately below the digital display are two capacitive touch switches which enable the frequency to be increased up or down by 1 MHz steps. Two further capacitive touch

switches allow the frequency to be increased up or down by 0.1 MHz steps. Immediately to the right of these is a memory switch which allows subsequently required stations to be preset by a series of IC devices. When this switch is touched the green indicator lamp is turned on. It is also necessary to touch one of the adjacent sensor panel capacitive switches, whose indicating LED is turned on by the process. Thereafter, all that is necessary to recall the memorised frequency is to touch one of the seven selected sensor channels switches. We found however that the memory would only 'hold' preselected stations for about two days.

To the right of the sensor channel switch positions is the auto-tuning section. This has a down-start capacitive selector switch, an up-start capacitive selector switch, and stereo-only capacitive selector switch. **DOWN START**

The down-start starts the receiver searching down in frequency till it finds a signal the level of which is above the muting level (or sensitivity level) which has been pre-set. The up-start button does the same, but in the reverse direction. The stereo-only selector accepts only those stations having a 38 kHz or 19 kHz sub-carrier signal in their format.

At the extreme right hand end of the escutcheon is the stereo/monophonic indicator. When the capacitive touch switch is activated the green, monophonic light comes on, the red stereo light is extinguished and the

		er sone		le provid s The state	soni 2					- 1		A
- and the s	Z., 9.19., 24	5 an 14 5 7 13		, 600.43(0 0.4								Ð
		SENE	OF CHÁ	NNEL	· · · ·							
34-1 1	CH-5	CH-3	CH-4	œ⊷ e	Ъна	di-> 2	COUN STEAT	-		Die		Ŧ
appenditure	- and the second	mat Bissofie	-		approximately in a	- and				14 ²	an di	
é						•	•		6		NER.	
R	B	T	A	A	E.	1	a	ħ.	T	(inter		

Toshibas £535 super-tuner under the microscope

tuner looks for monophonic stations only.

The back panel is a little different from other FM receivers in that as well as input terminals for either 300 Ω feeder cable or 75 Ω co-axial cable, it provides output terminals for left and right channels; a multiplex output terminal to facilitate four channel reception in the unlikely event that somebody proposes introducing it; a remote control DIN plug to facilitate the use of special remote control offered as an optional extra; an output level control which allows the setting of the audio line output levels; and a scanning speed control knob which allows the automatic tuning operation to vary between approximately 0.05 MHz/sec. to approximately 3 MHz/sec. scanning rate.

Another most interesting facility are two terminals which can be respectively connected to the horizontal and vertical axes of an oscilloscope to measure and minimise multi-path reception and thereby optimise signal quality. The handbook describes very simply yet practically, how this should be carried out.

DIGITAL FREQUENCY SYNTHESIZER

The heart of the ST910 is a digital frequency synthesizer based on a guartz crystal oscillator. This provides accurate and stable frequencies, replacing the normal variable frequency oscillator, to provide extremely accurate signal tuning. When used in conjunction with the phase locked loop, this provides an extremely precise and stable frequency tuning section. The great advantage of such a combined system is that the tuner receive frequency is extremely accurate (without the need for automatic frequency control) and nearly equal to the precision provided by the quartz crystal oscillator used in the original transmitting station.

Frequency stability claimed for the synthesizer section is better than 50 parts per 1,000,000 - subject to the period of operation and thermal conditions in which the receiver is used.

The inside of the receiver is more reminiscent of communication receiver construction and design than a piece of consumer electronics. Firstly, it makes use of a 300 mm x 240 mm mother card which is connected by plug-in sockets to the front circuit board on which are located the digital frequency display, the LED's and the capacitive touch switches. On the main section of the mother board are additional vertically mounted plug-in cards comprising the power supply, the digital memory sections, the frequency synthesizer and its crystal ovens and three cards on which are mounted the very high quality FM receiver.

An input pre-filter reduces the effect of unwanted high level AM signals on the following electronic circuitry.

PERFORMANCE CREDITS

Toshiba claim a frequency response of 20 Hz to 15 kHz \pm 0.5 dB. And that is exactly what we found in our testing.

Image rejection ratios and IF rejection ratios of 100 dB are also claimed, we couldn't confirm that these were 100 dB but they were certainly better than 80 dB. Toshiba claim a capture ratio of 1.5 dB, we found it to be slightly better than this. They also claim a FM stereo separation of 40 dB in the range of 100 Hz to 8 kHz – we certainly measured better than 30 dB, and if allowance is made for the performance of our signal generator the claim of 40 dB separation would be very near the mark.

The calibrated sensitivity signal level LED's which are supposedly 20 dB, 40 dB and 60 dB re 1 μ V are spot on at the 20 dB and 40 dB levels, and 57 dB for the 50 dB indicator. The major sensitivity on monophonic signals was 1.5 μ V which is better than the manufacturers' claim. Total harmonic distortion was (delightfully) less than 0.3% which is as good as one could ask for.

After all this one might well ask how does the unit perform. Its listening performance is Grade A. We could in no way fault it, except for the minor possible criticisms that with digital frequencies set at 0.1 MHz intervals, one could possibly find oneself in a situation where the receiver was not tuned *exactly* to the station one was looking for and that on our review unit at least the preset tuning was effective for only a day or so before it needed to be reset.

We listened to all the available programme content we could find, the performance was in all respects almost perfect.

Is it really worth £535? This is for you to decide - but you'll buy nothing approaching it for less.

AN ESSENTIAL DEVICE FOR ANY CAR OWNER.....

BREA

BEAC

THE BREAKDOWN BEACON IS A dual purpose device. It can be used atop a disabled motor vehicle as a flashing warning to other traffic – a highly desirable safety device. Alternatively it can be used as a nonflashing trouble light for finding and fixing faults at night. Its three rubbersucker feet will hold it to the roof of a car, to the underside of a bonnet, or to any other convenient flat surface.

The circuit operates from the vehicle's battery and, as all electrical parts are isolated from the metal case, the same circuit can be used for cars with either negative or positive earth wiring systems. The beacon is fed from a plug pushed into the cigarette lighter socket — however as this plug is polarised, a beacon with a plug for negative earth cannot be used in a car with opposite polarity unless the plug connections are reversed. Alternatively it could be powered from the car battery.

CONSTRUCTION

The nicest thing about the construction of this project is that first you have to eat half a pound of jam, in order to get the empty glass jar for the lamp housing. Other, jars about 70mm dia. and 70mm high with a twist off cap would do. You'll need also a round tobacco tin about 75–80mm dia. and 30mm high with a twist off cap. These two parts make up the case.

First solder the lids of the jar and the tin together, concentrically – outside to outside. Then before fitting the batten lamp holder fit the lamp to it and check that it will fit inside the jar when the jar is screwed into its lid. If it will, then mount the lamp holder by three bolts through both lids. Two of these bolts should be longer than the third as they will carry a piece of Veroboard. If the jar is slightly too short to accept the lamp holder and lamp – as was the case in the prototype — then cut a hole for the lamp holder through both lids, and fit the lamp holder so that its flange finishes up inside the tabacco tin. Spacing washers may be added if necessary. Again the lamp holder is secured to the lids with one short and two long bolts.

The electronic part of the beacon is constructed on 0.1 inch matrix Veroboard 45mm x 36mm. Only one break needs to be cut in the copper strips — between the two leads of capacitor C. Only the outer legs of RV1, are passed through the Veroboard. The centre leg is connected to either outer leg above the board and the excess cut off. Note that all resistors except R5 are vertically mounted. The upper end of R4 is soldered straight on to the base terminal of Q2, and the upper end of R3 is soldered straight on to the collector. A wire is also run from the collector terminal of Q2 through the board to the strip below it. Another wire is run from the emitter terminal of Q2 to the negative rail which is the copper strip just below.

own

The Veroboard is mounted into the case below the lamp holder, using two of the lamp holder mounting bolts.

The switch SW1 is mounted on the bottom of the tobacco tin where it is out of the weather. The switch must be positioned such that it does not clash with the components on the Veroboard when the tobacco tin is screwed

Inside view of the completed unit. Note the plastic disc used to replace the normal airtight seal of the jar.

PARTS LIST - ETI 239

Rt	Resistor	4k7	¼ watt	
R2	**	47k	**	
R3	**	4k7	**	
R4	**	68R	11	
R5	"	1k		
RV1	Preset pot	50k		
С	Electrolytic	capacit	tor 10 μF at	
Q1	Transistor P	NP BC	178 or similar	
Q2	Transistor N	IPN TI	P33A or similar	
SW1	small on/off	f slider	witch, single	
	pole			1

Lamp 12 volt automotive lamp 15 candlepower double contact cap.
Lampholder – to suit lamp, batten mounting, double contact bayonet catch type. (This is an electricians line not an automotive line. They are used for pilot lamps).
Tobacco tin, jam jar, or similar. Nuts and bolts, hook up wire.
Lead to battery – 7 m speaker extension lead.
Cigarette-lighter plug.

together.

The long twin-lead to the battery is run through the bottom of the tin (to prevent moisture entering) and connected to a cigarette-lighter plug taking care to wire with a polarity to suit the car system (positive or negative earth). Speaker extension lead is good for this purpose as it has polarity marking. Veroboard layout for the beacon circuit. The copper strips run from left to right across the board.Only one break is required, and this is at **B7**

It is likely tha the operation of soldering the two lids together will have destroyed the air-tight seals in the jar and tin; they should be replaced with a disc in the tin and a ring in the jar cut from fairly heavy plastic sheeting.

TESTING

Before connecting up make sure that switch SW1 is open — otherwise the unit will not flash.

Connect the unit to the battery by inserting the plug into the cigarette lighter socket. It may now be found that RV1 needs some adjustment to HOW IT WORKS

The circuit is an oscillator of a not very common type. It is not a multivibrator is both transistors conduct at the same time, rather than alternately as in a multivibrator, Most explanations of this type of circuit state that the circuit oscillates by a regenerative action drum Q2 to Q1. This doesn't really explain how it works, so perhaps the following is adittle clearer.

The setting of the pot RVI is such that, when power is first applied Q1 is turned on slightly. By verying RVI, the circuit, can be made to lock with the lamp on or off. In between these extremes the throut oscillates. The setting of RVI is not critical.

As said abrive, when power is aprilied Of turns on slightly. Current through Of feeds into the base of Q2 and turns it on. Cenacitor C charges, through R1, R3 and Q2. This increases the current through R1 and so lowers the voltage at the base of Q1 thus turning it on harder — hard enough to turn Q2 full on and light the litter.

As C charges, the voltage at the base of OI Trises and so tends to in OI off thus reducing the base current in OZ and hence the current through the lamp. This increases the woltage across O2 quite rapidly. As the voltage across O2 quite rapidly, As the voltage across O2 the capacitor cannot be changed rapidly, the increase of voltage across O2. The the voltage change at the collector of O2, is anstarted through the capacitor to the base of O1 - so turning it off. This turns O2 hard off. The voltage at the collector of O2 then rises rapidly to 12 volts, so the voltage at the base of O1 is forced up encough capacitor. C^{*} turning O1 hard off. Capacitor C then discharges nound R1.

Capacitor C-then discharges round R1, the lamp, and R3 until, when fully discharged, Q1 turns on slightly and the cycle is repeated.*

The switch SW1 (connected across Q1) is used to disable Q1 and so give a steady light when SW1 is closed.

make the circuit operate correctly, so don't be disappointed if the lamp does not light at first or alternatively, stays on all the time. The flashing rate may be altered by changing either C or R3 if thought necessary. About 70 to 100 flashes per minute is right.

The value of R4 shown in the circuit was selected to suit the transistor Q2 used in our prototype. If the lamp lights at less than full brilliance then R4 may be reduced until Q2 saturates and the lamp is turned on fully.

USE

The illustration shows the prototype with a clear glass 'lens'. This is ideal when the beacon is used as a trouble light — turned permanently on. However, if it is thought desirable to have a amber or red colour when the beacon is flashing, then it is a simple matter to make a sleeve of suitable coloured material to be dropped inside the jar.

If catalogue ordered (priced 60p) you will receive a refund voucher of 25p.

If catalogue and kit brochure ordered together, price 70p plus 2 x 25p refund vouchers.

DORAM ELECTRONICS LTD.	
P.O. Box TR8,	
Leeds, LS12 2UF.	

I enclose Please send me by return my new catalogue and/or kit brochure. (Over seas orders except for N. Ireland please add 30p for post and packing surface only.

	ETI - 9/76
PLEASE PRINT BL	OCK CAPITALS
NAME:	
ADDRESS:	
	••••••
	POST CODE

An Electrocomponents Group Company

DATA

LM 3909 IC OSCILLATOR/FLASHER

NATIONAL

Most linear integrated circuits are designed to operate with power supplies of 4.5 to 40 V. Practically no battery/portable equipment is provided with indicator lights due to unacceptable power drain. Even LEDs (solid state lamps) won't light from a 1.5 V battery, and drain the common 9 V radio battery in a few hours.

The LM3909 changes all this. Obtaining Jong life from a single 1.5 V cell, it opens a whole new area of applications for linear integrated circuits. Sufficient voltage for flashing a light emitting diode is generated with cell voltage down to 1.1 V. In such low duty cycle applications batteries will last for months to years of continuous operation. Such flasher circuits then become practical for marking location of flashlights, emergency equipment, and boat mooring floats in the dark

With 1.5 V supplies, certain problems can occur to stop oscillation or flashing. Due to the way gain is achieved and the type of feedback, too heavy a load may stop an LM3909 from oscillating. 20 Ω of pure resistive load will sometimes do it. Strangely, enough, lamp filaments, probably because of some inductance, don't seem to follow this rule. Also in flasher circuits, an, LED with leakage or conductivity between 0.9 and 1.2 V will stop the LM3909. Maybe 1% of LEDs will have this defect because they are not often tested for it.

Great frequency stability was not one of the design aims of the LM3909. In LED flasher circuits it is better than might be expected because the negative temperature coefficient of the LED partially compensates

Scope Calibrator

useful electronic lab device is a precision square wave generator/calibrator. If the output is held at a few tenths percent of 1 V, peak-to-peak, it is useful in calibrating oscilloscopes and adjusting 'scope probes. Many lower cost or battery-portable oscilloscopes do not have this feature built in. Also it is useful in checking gain and transient response of various amplifiers including 'hi-fi'' power amplifiers. Output is a clean rectangular wave which,

can be adjusted to exactly a 1 V amplitude. A

rectangular wave of approximately 1.5 ms "on" and 5.5 ms "off" was chosen for circuit simplicity and low battery drain. Waveform clipping is virtually flat due to complete turnoff of the current switch Ω_2 and the typical "on" impedance of $0.2~\Omega$ provided by the LM113. The 0.01%temperature coefficient of the LM113 at room temperature allows negligible drift of the waveform amplitude under laboratory conditions. Loading by a 'scope probe will also be insignificant.

the IC.

374

"Buzz Box" Continuity and Coll Checker

MK 50075 MK 50103 MK 50104 EXPANDABLE SCIENTIFIC CALCULATOR CHIP SET

The MK 50075, ALU circuit, combined with the MK 50103, 50104 ROM circuits forms a powerful twelve digit scientific calculator. The display format can be fixed point (user programmed) or floating point in either business or scientific notation. The calculator has four rotatable stack registers plus nine addressable memory registers. All entries use the reverse polish notation.

Effective combination of key functions on this calculator make it possible to offer fifty-five functions with thirty keys. Multifunction keys are accomplished by utilising the SHFT/DSP, INV/STO, and HYP/RCL are control keys. SHFT (Function) enables the upper case key function while INV (Function) enables the inverse of a function. The HYP key is used in conjunction with hyperbolic functions while COS, SIN, and, TAN have hyperbolic, upper case, and inverse functions. The order in which the control keys are entered will have no effect on the function. For example, both the key sequence SFHT, \rightarrow F and INV, SHFT, C \rightarrow F will INV, C convert degrees Fahnrenheit into degrees Celsius.

The calculator can work trignonometric functions in either degrees, grads, or radians. When in the radian mode an indicator is turned on. Switching between grads and degrees is achieved by a slide switch while switching from grads to radians or degrees to radians is a key function. The calculator can do the following transcendental functions: sinx, arcsinkx, coskx, arccosk, tankx, arctank, ex, inx, 10^a, and logx.

Besides transcendentals, it calculates the single variable functions of XI, 1/X, \sqrt{X} , and x^2 and the two variable functions of y^{*}, \sqrt{Y} , %, and Δ %. It has ten preprogrammed conversions which automatically change the contents of the display register into the desired unit calculates mean and standard deviation using the unbiased method.

KEYBOARD CLR SHFT HYPRCLO INVSTOR CLX RAD - RAD X,S LOG ---- POL ≨ + cos TAN LN SIN 1/x V T * Δ Χ X I EE YI X=Y CHS ī C-F 8 9 ÷ 7 - GAL LTR 6 5 × 4 CM-+IN 2 3 1 -+LB LST X 1 SCI ĸG ENT 0 +

The chip set is available from Mostek U.K. Ltd, 240 Upper Street, London N.1. The price, inclusive of V.A.T. and p&p is £27.

A comprehensive data booklet is included with each set.

	DADAMETER		XAN
	PARAMETER	MK 50075	MK 50100
Vpo	Supply Voltage	-18.0	-18.0
V	Input Voltage, Logic "1"	V _{SS}	V _{SS}
VIL	Input Voltage, Logic "O"	$V_{SS} - 6$	V _{SS} - 6
фсс	Clock Period	10	10

Functions available: Clear Clear display Add, subtract, multiply, divide Scientific display format; 10-digit mantissa, 2-digit exponent, floating decimal Mode set to radians Fix decimal point (0-9) in display Sine Cosine Tangent Hyperbolic sine Hyperbolic cosine Hyperbolic tangent Memory store, 9 registers Memory recall, 9 registers Memory exchange, 9 registers X ↔ Y exchange Common Log Natural log 4-stack register Rotate stack Recall last X **Business display** format; 12-digits, floating decimal point Arc sine Arc cosine Arc tangent Arc hyperbolic sine Arc hyperbolic cosine Arc hyperbolic tangent Xth root of Y Gross profit margin percentage Summation minus for vector subtraction Y to the X power Reciprocal for all values exponent range from +99 through -- 100 ΡI Change sign Square root Factorials Summation plus (adds X and Y to memory for vector addition, recalls sum of X and sum of Y) Percentage Percentage difference (Δ %) Mean Standard deviation Centigrade to fahrenheit Litres to gallons Centimeters to inches Kilograms to pounds Degrees to radians Set radian mode for Irigonometric functions Trigonometric rectangular to polar Hyperbolic rectangular to polar

Anti log, natural (e^x) for all values from x= +230 through --230

Anti log, common (10^x), for all values from x= +99.9 through -99.9

Trigonometric polar to rectangular Hyperbolic polar to rectangular

Set degree mode for trigonometric functions

Fahrenheit to centrigade Gallons to litres Inches to centimetres Pounds to kilograms.

57

Part 7 Bits & Bats

A MONTH OF VARIETY, this month as we take the opportunity to cover one or two subjects and fill in a fewgaps. Firstly

I/O HARDWARE

On the input side, keyboards such as the Clare Pendar types are available from firms like Computer Sales and Services, 49-53 Pancras Road, London, NW1 2QB. These keyboards usually have a ROM mounted on them to generate a parallel ASCII output, but some use a diode matrix for code generation. This can be an advantage, since diodes are more robust electrically than MOS devices and additionally offer you the facility of, changing the coding if you wish. These keyboards are ideal for connection to one half of a PIA to make a simple interface, or can be used with a UART chip for serial I/O.

On the other half of the PIA you could hang a Burroughs Self-Scan display as shown in fig. 1. This is an alphanumeric gas discharge display available in 16, 32, and 80 character sizes and will display a single line of text. Further details from Walmore Electronics Ltd., 11-16 Betterton St., Drury Lane, London WC2.

A cheaper alternative to display up to 8 lines of 32 characters is to build yourself the ETI 560 VDU. A suggested interface is given in this month's article, but M6800 users (and perhaps users of other micros) will probably find that the simplest interface for their system is to use a PIA with one half outputting the address on the screen of the character and the other half handling the data. In use this is fairly simple from both the hardware and software points of view. You simply output data to the PIA 'B' half and then increment the 'A' side so that it is ready for another character. Handshaking can be done automatically by the PIA control lines.

If you require hard copy output from a serial interface, you could do worse than the Teletype 35RO available from *Chiltmead* who advertise in the mag. This is a heavy duty machine which should operate reliably if noisily. If you have a serial interface, but want blissful silence, then a VDU such as Computer Workshop's CT1024 is a good bet. Their address (which we forgot in the last issue!) is174 Ifield Road, London, SW10 9AG. Alternatively, you could stick the other side of that UART (Universal Asynchronous Receiver Transmitter) chip we mentioned earlier onto your 560 VDU. peripherals and modems through 3 control lines. On receive, it will perform the required serial to parallel conversion, and in addition, can check the parity bit of each byte, and flag an error if the parity is wrong, or if there is an overrun or framing error. Since this chip is intended for

asynchronous communication, it

As we have said, there are lower cost approaches to I/O such as hex keyboards and displays, or even switches and LEDs. The great advantage of this approach is that you can cheaply have a development system up and running, and then purchase or otherwise obtain whatever peripherals become available to you, since you can easily write the routines to run them.

THE ACIA

Although we have very briefly looked at the MC6820 PIA, we have only mentioned the ACIA (Asynchronous Communications Interface Adapter). This is another example of the move by manufacturers towards 'intelligent' peripheral adaptors/controllers, and in all probability, this chip is very nearly as complex as the MPU chip itself.

The ACIA (MC6850) is a very smart chip indeed, and can perform an amazing repertoire of functions. Its primary function is the conversion of parallel data addressed to it into serial data, but in addition it can generate a parity bit, either even or odd, for error detection and can also control the most sophisticated sticks a start bit, '0', in front of the byte it is outputting, and tags on 1 or 2 ones as stop bits at the rear. The ACIA can operate at any speed up to 500 kbps, so it is plenty fast enough to drive a teletype!

CASSETTE TAPE

Interesting application number 1 for the ACIA is to do with cassette tape. If you can't see the link, here it is.

If you are using a system based on switches and LEDs, or a hex keyboard - in fact no matter what you are using to get your program into the micro's memory, you will soon find it tedious loading programs by hand. You now have a choice of leaving your program permanently in memory with the power on (like the HP25C), or outputting it onto punched paper tape or magnetic tape or even onto a magnetic card (like the HP67). Which is where cassette tape comes in. Almost everyone has a cassette tape recorder these days, and you can put it to better use than recording Top of the Pops by using it to record, and later, reload the programs you have written on your micro. This is done by the (simple?) expedient of converting the digital data to audio tones which can be directly recorded. In fact, a new standard has now been largely agreed between the computer manufacturers in the States for this low-cost method of data recording.

Known as CUTS (Computer Users Tape Standard) the system works by converting a digital '0' to 1200Hz and a '1' to 2400Hz, and recording these tones at 300 bits/second. However, as this is an asynchronous system, i.e. it does not require synchronisation with the micro system clock, it records the start bit and two stop bits, as shown in fig.2.

This, obviously, is where the ACIA comes in, as it can do this job almost entirely on its own. One neat trick lies in the fact that the chip which normally generates the ACIA's clock frequency, the MC14411 bit rate generator, is really just a crystal oscillator and a divider chain. Now two of the frequencies which are produced by this chain are: yes, you've guessed it, 1200 and 2400Hz. It doesn't take much thought to come up then with the set-up shown in fig.3. As can be seen the two signals are simply gated, rounded off by the LPF. and fed to the mic. input of your cassette recorder. To get the signals out again, possibly the easiest technique is to use a phase locked loop. This would feed straight into the Received Data input of the ACIA. Whilst this circuit is not tried and

tested, we can't see why it shouldn't be persuaded to work, and we intend to have a bash at it.

MORE MICROS

Whilst we have used Motorola's M6800 microprocessor as an example thus far in order to make the series consistent (and it may also have something to do with the fact that we're using 6800 in our own System 68!) we feel that it would be rather unfair not to wander off at some point and see what else is about in the microcosm{?}.

Firstly, there's the company who really started it all, Intel. They produce a range of 4 and 8 bit MPUs, as well as the 3000 series bit slices, which are like TTL fast chunks of MPU. The 3002 is a 2-bit slice, so if you stick 8 of them in parallel with some other parts you get a 16-bit processor. But the best known of Intel's products is the 8080, which is an 8-bit MPU similar to 6800, and is the other 'ind-ustry standard'. The 8080 is comparable to 6800, it has, perhaps, some 'nicer' instructions, but some of its pins carry multiplexed signals, and so it requires a handful of external logic to make it go. You pays your money and you takes your choice.

Also of interest is the 8008, the forerunner of the 8080, which is slower

and has only a subset of the 8080's instruction set, but is cheaper.

Fairchild, and their second source, Mostek, are going strong with their F-8 chip set, which is an 8 bit MPU, in two sections, the 3850 CPU and the 3851 Program Storage Unit, which carries the Program Counter, two 8 bit I/O ports, and 1k of ROM. Sounds great, but the snag is the ROM is mask programmed, which rules it out for the home constructor. But you will hear more of this device, as it forms the basis of Fairchild's new TV games, and has also been built into an electronic chess set.

I - START BIT 2 - 0 - ASCH DATA BITS 9 - OARTY BIT 2 - 0 - ASCH DATA BITS 10.11 - STOP BITS Fig. 2. Asynchronous Recording Format used in CUTS A device which will almost certainly appear in educational environments is *Intersil's* IM6100. This chip is of interest on two counts; firstly it is a CMOS chip, and secondly, it obeys the instruction set of the well known, if not ubiquitous, PDP-8/E minicomputer, sothat programs written for the PDP-8/E will run on the IM6100. This means that there is a vast library of software available for this MPU, which makes it very attractive indeed. Like the 8/E, it has a 12-bit word length. *National Semiconductor* are responsible for SC/MP, which they claim is

sible for SC/MP, which they claim is 'enough to make any machine think'. A stroke of brilliance on the part of NS, who when other semiconductor manufacturers were falling over themselves to produce a really 'smart' MPU, came up with what most people really wanted: a stupid but cheap one. Don't be fooled, it's slow and it's got a small instruction set, but it can do things. Also from NS is PACE, which is a

READER CONTROL

SE CONTROL

Fig.3. A possible tape interface using an ACIA

SC/MP shows the sort of layout in MPUs.

microfile

16-bit device with some nice features such as 4 levels of interrupt. It has it's nasties like every other MPU, e.g. the address and data busses are common, and the address has to be latched externally.

RCA are offering their CDP 1802 device which is a CMOS 8 bit micro. Despite RCA's attempts at the mating game, Synertek have been a bit coy, leaving Hughes holding the baby as sole second-source. Quite a nice device, this though a bit weak on decimal arithmetic, but nice from the point of view of power supply and clock requirements.

The PPS-8 from *Rockwell* has special I/O chips for just about every kind of peripheral. The power supply is a bit odd, being a single -17V, and the stack pointer is only 5 bits allowing for only 32 values on the stack.But without having used it, it's impossible to say what its good and bad points are.

That well known little company in Bedford, *Texas Instruments*, have a couple of nice products. The first is the SBP0400, which is a 4-bit bipolar bit slice built using IIL.

This is an interesting device that one doesn't hear too much of; somebody somewhere must be using, or planning to use, the SBP0400, but they're not saying anything. Not really suitable for the amateur, unless you want to get involved in microprogramming!

TI's other front-line device is the TMS9900, which is a 16-bit n-MOS machine with a very nice architecture and a big plus in the form of hardware multiply and divide. If the price comes down sufficiently this could be a very nice device for the amateur — but wait and see.

Finally, a device which a lot of people have been waiting with baited breath — the Zilog Z-80. This is basically a super 8080 in concept, with a much improved instruction set, and an extra turn of speed. Not yet readily available in this country, but when it is....

MICRO DATA

Getting hold of manufacturer's data sheets on MPUs isn't very easy for the home constructor who only wants to buy 1 micro, but fortunately many readers of this column will already have the data sheets on 6800. The trouble is that MPUs are complex devices and the data sheets are only the beginning of the story. If you want to 'read' further you have two options; you can play about with System 68 (next months ETI), or if you are in a hurry, buy the 3%Ib 'M6800 Appli-

cations Manual' which gives complete design details of a number of systems, including an absurdly complex Point of Sale terminal. A boring book to read, but good meaty stuff. It is available from The Modern Book Company, 19-21 Praed Street, LONDON W2 1NP, or from Cramer Electronics, 16 Uxbridge Road, Ealing, LONDON W5 2BP, who charge £7.50 + 50p p&p.

MICRO NEWS ALPHA LED DISPLAY

Litronix have introduced a new lowcost alphanumeric display which contains four 16-segment LED characters. The DL-416 common-cathode display has integral magnifying lenses mounted on an an edge-connected, end stackable PCB. Intended for use in portable and hand-held equipment, the DL-416 offers high contrast daylight viewing and high legibility at distances up to 5ft. Typical operating characteristics are a forward voltage of 1.65V at 10mA, reverse current of 100uA at 3.5V, and a luninous intensity of 0.5mcd at 10mA. This looks like a pretty useful device for the MPU builder.

MORE ALTAIR IN UK

Altair's UK agents have released further details of their 680b microcomputer kit. This machine is based on the M6800 and comes complete with 1k of RAM, 1k of ROM (256 bytes pre-programmed with a monitor and loader), as well as an ACIA for teletype or VDU interface. The 680b with turnkey front panel (i.e. without the switches and lamps often found on more conventional minicomputers) is priced at £290. Also available is a 16k memory card, priced at £496. Free with this card is a copy of Altair's new BASIC compiler for the 680b. In addition, the system will run an assembler and text editor for 6800 Assembly Language.

Altairs other microcomputer system is the 8800, which is based on the Intel 8080. A very wide range of software is available for this system, including business and scientific programs, as well as games programs and even routines to play music. Also available is a wide range of peripherals, including a floppy disc memory

system and a line printer. Compelec Electronics, Ltd., 310

Kilburn High Road, LONDON NW6.

SERT SYMPOSIUM

The Society of Electronic and Radio Technicians are holding a residential symposium at Sussex University on 26th to 29th September on the subject of 'Microprocessors at Work'. The technical programme will consist of 25 contributions spread over 5 sessions which will cover: Devices; Evaluation, Testing and Diagnosis; Programming and Software; and two sessions on Applications. Each contribution will be followed by a discussion period.

The registration fee is £98 per delegate, unless you are an SERT member, in which case it is only(?) £82. This includes full board and conference documentation, as well as participation in all extra-curricular activities.

Associated with this symposium is a competition to find a working application of an MPU by a home constructor which is simple, economic, original, and useful or entertaining.

Further details on both these items are available from *The Microprocessor Secretary, SERT, Faraday House, 8-10 Charing Cross Road, LONDON WC2H OHP.* First prize of the competition is £150, but you'll have to be quick, as the closing date is 19th September.

HP ADVANCE

Since many Microfile Readers are interested in, or own, programmable calculators, here is some news of the latest developments in this field from Hewlett Packard. HP have released 3 new machines, the HP25C, the HP67, and the HP97. The 25C is simply an HP25 which retains both program and data stored in it, even while switched off, thus saving the repeated entry of often-used programs. The HP67, however, represents a considerable advance on the HP65, in that it has around 3 times the program storage and 3 times the data storage. In addition, it has 20 user definable functions, 3 levels of subroutines, label, indirect and relative addressing, and 14 conditional execution functions. One important key is the Write Data key, which outputs the data register contents onto a magnetic card. The card reader is 'smart' in being able to detect whether a card carries program or data. If there is information remaining on the other side of the card to be read, it will prompt the user by displaying 'CRD'. Also included are pause and automatic register review instructions. The HP97 is a printing portable version of the hand-held HP67. Prices: HP25C; £155, HP67; £349, HP97; £590. The price of the HP21 has been reduced to £56.

KITS - CMOS - DISPLAYS - MEMORIES - BOOKS - MODULES

Components from leading manufacturers only

ATTRACTIVE 6-DIGIT ALARM CLOCK KIT

With optional CRYSTAL CONTROL for high accuracy and battery back-up (see below). Complete kit including attractive slim case with deep red panel for 6-digit alarm clock with bleep alarm, snooze, automatic intensity control and high brightness display driving. Uses MK5D253 IC and Jumbo 0.5" red LEDs. 12 or 24-hour format (easy to add a switch to switch between them). Optional "touch switch" for snooze (extra). Order as "ACK" £28.80

Complete kit as above, plus CRYSTAL CONTROL and BATTERY BACK-UP. If mains power is disconnected (through a power cut, accidental switching off or moving clock) the clock will keep perfect time. Accuracy to within a few seconds a month. The extra components, with two PP3 batteries, all fit in the same case. While on beck-up, the displays are off to conserve bettery life but the alarm remains fully operational. Order as "ACK + XTK + BBK".

SLIM GREEN CLOCK

Complete kit for this attractive 4-digit Mantlepiece Clock with bright 0.5" GREEN display. While constructing, select 12 or 24 hour format, flashing or fixed colon. Kit includes miniature transformer. Housed in a new ell-white slim case with green perspex front panel. Easy to build. Order as "GCK" £12.90 Kit as above, but less case and perspex. Order as 'GMK' £11.14

CRYSTAL CONTROL and BATTERY BACK-UP can be incorporated in this clock too. No need to reset your clock each time power is disconnected. For the complete kit including this feature, order as "GCK + XTK + GBKK" <u>£18.65</u> £18.65

Crystal Controlled 6-Digit CAR CLOCK Kit With Independent Journey Timer

Runs off 12V (car) battery — protected against low voltage drop-out — display comes on with ignition — internal battery back-up allows temporary disconnection, 6 digit timer times journeys up to 24 hours in hours, minutes and seconds — automatic intensity control (essential for car use) — uses 0.5" red LED digits. Samé diternal appearance as our ACK but with 8 push-buttons for setting time, starting, stopping and resetting timer, selecting display to show "time" or "journey. Ime" — all control buttons functional irrespective of display mode selected, Complete kit including case. Order as "CCK" <u>E39.50</u> repeatedly freeze the displays with count continuing <u>£39.50</u>

CMOS	Смо	S from the	10p manu	ufacturers	nearly a	II RCA and N	Aotorola
CD4000	0.15	CD4033	1.21	CD4066	0.61	CD4520	1.08
CD4001	0.15	CD4034	1.65	CD4067	3.12	C04527	1.37
CD4002	0.15	CD4035	1.02	CD406B	0.18	CD4532	1.25
CD4006	1.02	CD4036	2.23	CD4069	0.18	CD4555	0.78
CD4007	0.16	CD4037	0.83	CD4070	0.48	CD4556	0.78
CD4008	0.83	CD4038	0.93	CD4071	0.18	MC14528	1.01
CD4009	0.48	CD4039	2.23	CD4072	0.18	MC14553	4.07*
CD4010	0.48	CD4040	0.92	CD4073	0.18	MC14566	1.21
CD4011	0.16	CD4041	0,73	CD4075	0.18	MCM1455	2 8.05
CD4012	0.16	CD4042	0.73	CD4076	1.34		
CD4013	0.48	C04043	0.87	CD4077	0.48	Clock Chip	
CD4014	0.87	C04044	0.81	CD407B	0.18	AY51202	2.89
CO4015	0.87	CD4045	1.22	CD4081	0.18	AY51224	3.50
CD4016	0.48	CD4046	1.18	CD4082	0.18	MK50250	5.00
CD4017	0.87	CD4D47	0.78	CD4085	0.62	MK50253	5.60
GD4018	0.87	CD4048	0.48	CD4086	0.62	MM5314	4.44
CD4019	0.48	CD4049	0.48	CO4089	1.34		
CD4020	0.97	CD4050	0.48	CD4093	0.69	Flat Cable	
C04021	0.87	CO4051	0.81	CD4094	1.82	20-w 1m.	1.00
CD4022	0.83	CD4052	0.81	CD4095	0.91	tom. for	8.00
C04D23	0.16	CD4053	0.81	CD4096	0.91		
CD4D24	0.67	CD4054	1.01	CD4097	3.12	Other ICs	
CD4025	0.16	CD4055	1.14	CD4099	1.59	CA3130	0.88
CD4026	1.50	CD4056	1.14	CD45D2	1.07	75491	0.96,
CD4027	0.48	CD4057	21.56	CD4510	1.18	75492	1.22
CD4028	0.78	CD4059	4.77	CO4511	1.36	3CA741	
CD4029	0.99	CD4060	0.97	CD4514	2.72	Mini-DIP	
CD4030	0.48	CD4061	18.92	CD4515	2.72	4 to	1.16
004031	1.92	C04062	7.77	CD4516	1.18		
CD4032	0.92	CD4063	0.95	CD4518	1.08		

50Hz. CRYSTAL TIMEBASE KIT: provides an extremely, stable output of one pulse every 20msec. Uses. May he added to all types of digital clocks to improve accuracy to within a few seconds a month © If used with battery backtup also makes clocks power-out or switch-oll © Replacing 50 Hz signat on battery powered equipment. © Providing tim synchronisation © Monitoring or improving turntable speed Complete kil. Orders as "XTK" E6.28

32.768 kMs Min, Watch Quarry Crystel 64.50, 512 MHz Crystel 8-wey 8055 Switch: 8 ultra-min angle switchen 16-pm Dil Ministrue Transformers (Both Hr in all Voroctass below Cock transformer, 60-67300mA, Order as "SLTRE" For St101, 12:0, 12/100mA, 15:0-15/50mA, Order as "SLTRE" VEROCASES, Neat John with PCR multice and Michael and SLTRE	£3.60 £2.60 £1.80 £1.80	DISPL ather C C d have different types (DL 70	AYS All our isplay (0L704, DI) if pri-outs). Similar 7, DL747, RS/Dor	umbo LEO Common C 50. MAN3 iy our Comr am 586/65	displays take no more c athode (C.C.) digits can be 640, etc.) as they are all elec non Anode digits may be used 19, etc.).	arrent than to used in pl trically identic in place of an	0.3" types lace of an cal (but may by other C.A
perguas for some cases, making them ideal for circle or dear sommitting 7512 (Red) 28p. PX-GJ-12 (Red) 28p. For 7514 (10J PX-R), 14 (Red) 30p. PX-GJ- For 7514 (10 PX-R)-14 (Red) 40p. The cases are as used in our ACK & 6CK 751410 (205s 140-40) E2.64 751237J (154x85x40) 7514110 (205s 140-40) E2.64 751237J (154x85x40) 7514110 (205s 140-75) E3.04 751238D (154x85x60) We have many other Verocesses and Vero products in 310ck - see our Price 1ist	47J. PX.R.J.12 14 (Green) 30p. £1.72 £2.15	E	7			the second	
BOOKS and Detashwata (do not add any VAT) New 1976 RCA CMOS and Linear (C.Combinad Databook New 1976 RCA "Ower and Microwase" Databook 1976 National Semiconductor 7400 series TTL Databook ic. 200 pagas TTL Pin Our Card Indea: Set of cards with pin outs (top and bottom views) of 7	£4.95 £4.95 £3.46 .t. TTL range			Carport State		·./_	1
Intel Mamory Design Handbook, e. 280 pages	£2.95 £4.75	FND	500	TIL32	1. TIL322	A MARA TH	-
Intel 8080 Microcomputer Systems Users' Manual, c. 220 nages	64.85	D				ANGTZ, XA	NIGE4
Motorola M6800 Microcompressor Applications Manual, c. 650 pages	£12.45	Part No.	Manufacturer	Colour	Туре	9	Price
Motorola M6800 Programming Manual, ¢ 200 pages	£6.85	FN0500	Fairchild	Red	Common Cathode LED	0.5"	£1.02
Motorola Bookiet introducing Microprocessors	£1.50	TIL 321	Texas Instr.	Red	Common Anode LED	0.5"	£1.30
National SCAMP 8-bit 60.75 Jateral 6100 12 by CMOS	£0.75	TIL322	Texas Instr.	Red	Common Cathode LEO	0.5"	£1.20
	10.73	VANGEA	Xetton	Green	Common Anode LED	0.6"	£1.78
PULSE GENERATOR MODILIES		MAN24	Monsanto	Breen	Common Cathode LEU	0.6"	£1.78
	and a strength of the	51 101	Futeba	Gaper	Rhosphar Diada	0.13	480
surrent consumption (3 mA typical) 50 HZ Moduler Many uses (see by 50 Hz Kit) Order as "671-50" 100 Ha Moduler: For any system counting in 17 100th scc. Order as "821-100" Dither Crystal Timebase modules are available with the following outputs 10 Hr, 1 Hz, 1 putser/min, 1 putser/min, 1 putser/min, 2 mod prices prior application	£9.80 £12.70	Display Pri arrays, all a D500-4 (fo D500-8 (fo	CBe (each fits n Re suitable for F r 4 digit clock) S	eatly into ND500, T Op: D500	Verocase 751410J). At 11.321, T11.322 D-6 (for 6 digit clock)	l are for ini	ultiplexed
MEMDRY IC. Intel P2102A-6 (new version of 2102-2) 16 pm (C. TTL compatible, single -9 650msec - 1024 a 1 bit Static NMOS RAM Intel P2112-2 650nsec. 256 a 4 bit Static NMOS RAM Intersel-IM6508CPE CMOS 1024 a 1 bit Static RAM	5V supply. £3.35 £4.76 £805	USING DISP	LAYS WITH CMOS	Display-ho our LED d CMOS Co details (free OR TTE? S	ding PCBs are evailable for mills. PCBs also available for unt/Latch/Decoder drivers. S on request — send sae end see, asking for free applie	multi-plexed a displays wit de our catalog	TTL and ue for more
ADD VAT at 8%, 25p P&P on all orders. Price List sum with briders, or lee on request Access and Barclavead welcome, by post or phone, Export orders very welcome. No VAT but add 10%, [Europel, 15% (Overseast for Air Mail P&P, If or export postage rates on books, contact us first.)		Solderco CMOS, U and snap	COST Pins are the Displays, ICs. Sil off the connection pocket you may	deal low inply cut of ing carrier	CONTENTS COST method of praviding off the lengths you need A single purchase of So	sockets to solder into Idercon Pins	board s gives
SINIEL Jaa Aston Street, Oxford	1	Cheaper £10.50	in quantity. 50	p per stri	p of 100 pins, 1,000 f	or £4, 3,00	or /p, 00 for

O to 31 dB attenuation in 32 steps of 1 dB – useable to more than 200 MHz.

EVERYONE experimenting with RF circuitry will sooner or later need an RF attenuator. Some of the typical uses of such attenuators are listed below.

- Checking intermodulation on HF, FM, and TV receivers.
- Checking if incoming signals are high enough to allow splitting – to feed more than one receiver.
- Changing signal levels when checking the performance of receivers.
- Evaluation of filters, RF amplifiers, and other electronic devices.
- To find the loss in coaxial cable by the substitution method (as well as the gain of amplifiers). This method is convenient as a calibrated detector is not required: merely one that will give the same reading for two successive inputs of the same level.

DESIGN FEATURES

An RF attenuator should have a useable frequency range of dc to 200 MHz. It is also necessary for the attenuator to be adequately shielded so that signals may only enter or leave via the coaxial connectors. For this latter reason a diecast box has been used to house the attenuator.

To obtain the wide frequency response required it is necessary to use resistors that have low inductance and capacitance $-\frac{1}{4}$ to $\frac{1}{2}$ watt carbon types are the most suitable. If higher power handling is required one or two watt carbon types may be used but with these accuracy will start to fall off at around 100 MHz.

The switches should also have low inductance and capacitance but specially designed switches are prohibitively expensive. Many Japanese slide switches were evaluated and initially gave good results. However the ingress of dust and dirt was found to cause faulty operation after a time.

CONSTRUCTION

Construction is simple and straight forward but to obtain optimum results we suggest that you follow our method as closely as possible.

Examine the photographs carefully, the method of construction may readily be seen from them. The unit is housed in an Eddystone diecast box having dimensions of 110 by 62 by 31 mm. The switches are mounted flush onto the bottom of the box. Those at either end of the box are mounted so that the centre pin of the

HOW IT WORKS - ETI 709

The ETI 709 attenuator works by switching into the signal path a selected network or group of networks that reduces the signal strength by known amounts. The networks are specially designed so that they do not disturb the characteristic impedance of the line. That is, they appear to both the source and the load as a single parallel resistor equal in value to the respective source or load impedance. In our case the networks have been calculated to provide matching to 75 ohm impedance.

As can be seen from the circuit diagram each section of the attenuator has a characteristic shape that has led to the use of the name 'pi network' for this attenuator section.

The steps of attenuation are expressed in decibels. The voltage attenuation in decibels is equal to

 $20 \log \frac{V_1}{V_2}$ Where V₁ equals the

input voltage and V_2 equals the output voltage. Thus if the output is

half the input voltage then $\frac{V_2}{V_1}$ equals

0.5 and $20 \log 0.5$ equals -6.02 dB. (the minus sign indicating attenuation).

The use of decibels is very convenient as it allows the combined value of two or more attenuators to be found by simply adding their separate values rather than by multiplying the separate attenuation ratios.

Each succeeding attenuator is chosen to be twice that of the one previous. This binary form allows us to obtain a range of 0 to 31 dB in 32 steps with only five switches. Thus for example if we require 5 dB we depress SW1 and SW3 to give us 1+4=5 dB.

switch is in contact with the centre pin of the socket. This allows the connection to be made without the

Fig. 1. Circuit diagram of the 75 ohm attenuator.

use of hookup wire. Evenly space the remaining three switches between the two outer ones. Note that a thin strip of tin plate is run the full length of the box and is held in place by the lugs and screws at one end of each switch. To this strip are soldered the ends of the resistors which go to ground. The

resistors are held in such a position by their leads that the metal body of the switch acts as a shield between the resistors mounted on either side of it.

The centre poles of the switches are interconnected by first bending the centre lugs of the switch outward towards the next switch and then by

R2	Resistor	8.2Ω	1/4 W	5%
R12		82		+ 2
R14.16	77	100		
R11,13	11	180	.54	η i
R15	ч	220	45	**
R7,10	23	330	34	
R4,6	**	680		
R1	(* F	1k2		• <i>E</i>
R3		1k5	19	**
SW1-5	Slide Swi	tch min	DTC	P

TABLE 1						
ATTENUATION	R* ACCURATE		ACCURATE	CLOBERT		
	VALUES		VALUES	PREFERRED		
	75 OHM		50 OHM	VALUE SO OHM		
1 d6	R1	1304	889.5	820		
	92	8.6	5.8	5.6		
	93	1304	869.5	820		
2 08	R4	854	436	470		
	R5	17,4	11.6	12		
	R8	854	436	470		
4 18	R7	331.6	221	220		
	R8	35.8	23.9	12 + 12		
	R9	0	0	0		
	R10	331.6	221	220		
8 49	A11	174.2	118	120		
	A12	79.3	62.8	27 + 27		
	A13	174.2	116	120		
16 dB	R14	103.2	88.5	68		
	R18	230.7	164	180		
	R18	103.2	66.8	88		

* All values in ohms

soldering lengths of 3 mm wide tinplate between them as shown in the photos.

be Displays which generate characters in the 7 x 5 dot matrix or seven-segment formats require decoding logic which energises the correct dots or segments. If each character has its own decoder

STROBING OR SCANNING

Concluding counting and

D/A conversion

If each character has its own decoder we would need 7 lines for each digit of a seven-segment display. And 35 lines for each digit of a 7 x 5 dot-matrix display!

PART 31

Obviously a method is needed to reduce the number of lines and circuitry required for multi-digit displays.

One such method is called strobing where lines of dots or segments are illuminated sequentially. The 7 x 5 array can be either strobed as lines horizontally or as rows vertically as illustrated in Fig. 2. Each row is selected one by one in sequence and the appropriate diodes in the row energised. Provided each row is returned to at no greater than 10 ms intervals the characters will be flicker free. A diagrammatic illustration of how

A diagrammatic mustration of how specific diodes are selected in a row is given in Fig. 3. The row switches are scanned in turn to cause a vertical scan. Simultaneous excitation of the other switch sets decides which diodes in the row are to be illuminated.

When brightness is to be tailored to particular ambient light conditions an appropriate kind of display can be selected that provides the desired luminance level. This however, does not always lead to a satisfactory choice when other considerations are taken into account.

ELECTRONICS

-it's easy!

Intensity of any display, however, can be controlled in a digital manner (that most desirable in digital systems) by turning the display on and off with an appropriate duty cycle (ratio on to off period). This is called pulse-duration intensity modulation. Provided the repetition rate exceeds 100 Hz the eye cannot detect that the radiation source is being modulated. Modulation may be achieved with any of the blanking methods given above. The schematic of Fig. 1 includes an intensity modulation facility.

With LED displays, intensity modulation can actually increase the apparent brightness. The human eye has a characteristic response to radiation that has greater sensitivity to the peak value of modulated light, rather the average or rms power. LEDs can be pulsed at high frequency with high peak currents because of their nanosecond response time. The net result is apparently higher brightness for a given amount of power.

BLANKING

In normal writing practice we do not write the '0's that appear at either end of a number, for example, 0001357.0 as could be held in an eight digit display, is better presented as 1357 or as 1357.0. A facility is sometimes provided in display-counter systems that blanks unnecessary zeros. Leading zero suppression is performed within the decoder stages of Fairchild seven-segment decoders by connection of the ripple blank output RBO (ripple because each stage connects to the next) of the decoder stage to the ripple blank input RBI of the next lower decoder stage. Blanking of least-significant zeros is not usually included. The actual arrangement for blanking control varies from maker to maker. Fig. 1 shows a method using ripple blanking.

The blanking facility can also serve other purposes. It can, in certain applications, be used to blank-out illegal display values resulting from incorrect codes. The RBO output also provides a detection output indicating when the decoder stage is at the BCD zero state.

INTENSITY CONTROL

Displays are usually manufactured to supply one value of output brightness.

64

2

procedure to sequence the scanning action and a method of setting the selection switches that corresponds to the characters needed. The whole is controlled by a clock and timing generator. Storage buffers are also required to store the sequentially generated information. The task of creating the appropriate character timing codes is performed by a read-only-memory ROM. Clearly this method adds up to a complex system ... really beyond this course's purpose. A schematic block diagram of vertically-strobed five-digit LED а display is geven in Fig. 4. Although of apparently great complication this method is less expensive to employ than direct actuation through fixed gates. (Considerably more detail is to be found in the suggested reading list).

Another scanning method scans the matrix as a raster – across a row, one by one, and then to the next row. Strobing obtains its advantages by time-sharing common elements in a time-multiplexed manner.

MULTIPLEXING

When the input data to be displayed appears in serial form or when large numbers of displays (over four digits) are involved, multiplexing (selection of complete digits sequentially) becomes advantageous for driving seven segment and one-of-ten displays. The basic multiplexing system requires the main system units shown in Fig. 5. An upper limit to the number of digits is around 12 and higher for LEDs. There are disadvantages; namely, a higher voltage is required in the

display to achieve the same brightness (LEDs are not so critical as other forms of display); the scan frequency must be at least 100 Hz to prevent flicker; transients must be carefully decoupled; and a clock failure (which stops the scan) may produce partial display failure because of excessive dissipation brought about by the increased voltage applied. (It is usual to include a failsafe protection circuit).

Again, the complexity appears great but in practice the multiplexed system is simpler to build. For example, a multiplexed, seven-segment display, with storage for eight digits, involves around 10 dual-in-line packages and a few discretes which compares with about 16 ICs for a non-time shared system.

To further reduce the connections that must be made upon assembly, manufacturers offer multi-digitdisplays in which the anodes and cathodes of the LEDs are internally connected ready for multiplexed operation.

OTHER CONVERTERS

Apart from digital-code converters other converters are required in instrumentation: for example, when interfacing different systems of logic, eg TTL to CMOS, it is necessary to alter the dc levels of signals so that the output of one system provides the logic levels required by that following. This may require amplification or attenuation or shifting of a level. However specific ICs are marketed to suit various interfacing requirements." Other converters are needed for sending digital signals through standard transmission lines in communication links, for receiving signals from lines, for increasing the logic level differences to increase noise immunity (again for transmission), and units that drive peripheral devices such as relays and indicators. Signal inversion may also be necessary - we

ELECTRONICS –it's eas

have already dealt with the inverter block earlier in the course.

Another class of converter is needed for converting digital signals to analogue voltages (D to A) and analogue voltages (and currents) into digital form (A to D). Such converters will be dealt with in the next section.

D TO A AND A TO D

In order to control or modify the physical world around us we must first measure what is happening. The measurement data is almost always in analogue form, as is the actuation required for control. Between measurement and control some kind of electronic system is needed to amplify and shape the data.

We have seen that electronic systems may be of either analogue or digital form and it would seem best to use an analogue system between inputs and outputs that are both of analogue form. But not necessarily so analogue systems are plagued with problems such as noise, dynamic range limitations, accuracy and linearity. Digital systems, as well as offering improved performance in the above areas, offer more economical processing of data, the ability to store data as long as needed, and more readable displays of data held within the system.

Thus there is much to be said for converting primary analogue signals into equivalent digital forms that are processed and stored etc until conversion back to analogue form becomes a necessity. Electronic subsystems that perform these conversions are called Digital-to-Analogue Converters (DAC's or D/A converters) and Analogue-to-Digital Converters (A/D converters).

We will see that these are quite complicated systems in themselves their design a skilled task. Nevertheless, many such sub systems are now marketed as single, largish circuit blocks that are wired into the total system in the same way as other complicated system building-blocks we have already encountered. It is, however, important to understand the basic techniques used if not so much the refinement of actual practice.

By use of certain input combinations DAC's can also be used as multiplier/dividers of two signals and as summing/subtraction units. It is also

Fig. 6. Typical A/D converters.

relevant in this part to deal with multiplexers in a little more detail and with the so-called sample-and-hold circuit. These are often used in conjunction with DAC's.

Figure 7 illustrates the basic requirements of a typical data-acquisition system in which a number of physical variables are measured and processed to provide digital signals for storage. It uses multiplexer, sample-and-hold, and A/D converter sub-systems to form the whole.

Also pertinent, because similar techniques are involved, is the method for converting an analogue voltage to a signal of proportional frequency (which is a form of digital signal) the Voltage-to²Frequency or VF converter.

The uses for A/D and D/A converters are limitless. Their application is ever-increasing as the unit cost falls to undreamed-of prices. Extreme complication using digital techniques often costs far less than simpler but less accurate analogue alternatives. Hence D/A and A/D converters will be found in digital panel meters, digital multimeters and data acquisition systems. They are also found in industrial plant; in process control of chemical and other manufacturing plant; in telemetry systems and other data transmission applications; in the interfaces (units matching the output signal requirements of one system with

the input requirements of another) found between sensors and computing units; between stages of hybrid computers; and the like. Although highly accurate DAC's may cost as much as £1000 the great universal demand has resulted in lower performance units being available for as little as £5.

DIGITAL-TO-ANALOGUE CONVERSION

We begin with Digital-to-Analogue converters because they are the simplest in concept and use only one basic technique.

You will remember that each digit position of a binary number (held in a register, counter or other form of storage) has a weighting factor, eg 1:2:4:8 etc. An analogue signal equivalent to the binary number can be obtained by using each digital digit position to switch an amount of current (proportional to the position weighting) to a common summing junction. This system concept is shown in Fig. 8. When voltage output is needed the currents feed an op-amp The detail of a precision ladder network is shown in Fig. 9 - it is set to convert the input digital number 11010001 by appropriate positioning of the digit position switches. When at O input the inputs to the summing op-amp are held to ground; when at 1 to an appropriate stabilized voltage.

The simplest form of ladder is used in the circuit of Fig. 9. It arises from the use of a binary weighted resistor sequence shown in Fig. 10. The actual values of resistors are selected to obtain adequately sized lowest and largest values, for at either end the op-amp loses accuracy due to imperfections of resistance ratios. It can be seen from the circuit of Fig. 9

that resistors, even in a smallish capacity 8 bit converter, can extend to extreme values. The least significant bit must be clearly resolved when its switch operates, implying that all other resistors must have precision of absolute value and constancy with time that rises very rapidly with the number of bits required.

In practice this simple form of ladder is not used beyond about 8 bits conversion due to the cost of the precision resistors required.

The disadvantages of the simple ladder method are mostly overcome by the use of the R-2R ladder network shown in Fig.10. The through leg of the chain is permanently grounded, each spur is switched as needed to a reference stabilised voltage level. The features of this method are that only two values of resistors are needed (an easier practical problem) and that the absolute range seen by the op-amp varies much less than the above method for a similar bit capacity – it presents a virtually constant impedance regardless of the binary code sequence switched in. With the R-2R ladder it is routine to provide 12 bit conversion.

It is probably obvious that other forms of digital-coding conversion can be handled by the use of appropriate resistor weightings. For example it is often necessary to chart-plot the output of a digital instrument. Thus a BCD to analogue converter is required for such applications. Figure 12 shows the weighting sequences for the simple and the R-2R ladder DAC's needed to convert BCD inputs to an analogue

output.

Resolution and accuracy - DAC's rarely go beyond 12 binary bits (or 3 digit BCD) because the output analogue signal for greater bit-ranges must be of high stability. A 16 binary bit (or a 4 digit BCD) unit could provide ± 0.005% full scale linearity and accuracy, a performance requirement that is best avoided where possible because of the high cost of the DAC. By contrast 8 bit DAC's can be obtained with accuracies ranging from $\pm 0.2\%$ full scale to $\pm 0.01\%$ full scale. It is important, however, to realise that whereas analogue resolution, see Fig. 13, is a function of the number of bits that are equivalent to full scale, the accuracy and linearity of DAC's depend upon the tolerances and stability of resistors used in the conversion networks, for these decide the value of the slope and straightness of the slope - Figs. 14a, 14b. It is, therefore, possible to have an highly accurate converter that has guite coarse resolution - in which case the resultant analogue output signal will consist of very large step changes. This step form of signal defect is called quantum or quantization noise. In practice resolution and accuracy are tied together keeping quantum noise. to an acceptable level.

Conversion and settling times - As both D/A and A/D conversion are dynamic processes, a finite amount of time is required for each conversion point to reach its final value. In DAC's the switching and settling times of the op-amp largely dictate the time for a bit change to finally appear as a steady-state analogue signal level, Early DAC systems using mechanical switches were slow indeed - today output settling times range from a slow 25µs for very-low power consumption units to ultra-fast 25ns units.

Temperature coefficient – Each subsystem of a DAC has a temperature coefficient; resistances alter with temperature and the op-amp characteristics deviate. Both the overall conversion gain and the dc zero will be affected.

Gain will be affected due to the temperature coefficient of resistors which is typically from 50 to 100

ELECTRONICS –it's easy!

PPM/OC (100 parts per million, PPM, is equivalent to 0.001% change per degree Celsius). The main op-amp characteristic which affects performance is offset-voltage drift typically 30 microvolts per degree Celsius.

For each particular type of DAC it is necessary to consult the makers' specification sheets, for no general rules apply for these parameters.

DAC's are available as either current or voltage output systems. Typical outputs deliver around 3 mA and 10-20 V swings.

Further explanation of terms used is to be found in the articles listed in the further reading section.

Glitches – Certain digital input states, whilst in a transient state, can cause the output to produce noticeable transients to the smooth, stepwise analogue – signal progression. These are known as glitches; examples are shown in Fig. 15. If the output is only to be observed after the system has settled, these matter little. In

dynamic use of DAC's however, they may well excite unwanted behaviour in the system they are driving.

Deglitching in DAC's is not feasible with a low-pass filter on the output, for glitches vary widely in nature. The best solution is to use adequately fast and matched switching coupled with special deglitching, (sample-and-hold) circuits, that hold the output fixed during unwanted switching – transient conditions. Glitching states are, however, known states and are quite unlike random noise which defies prediction.

Can anyone beat the Altair System?

We doubt it.

When it comes to microcomputers, Altair from MITS is the leader in the field.

The Altair 8800 is now backed by a complete selection of plug-in compatible boards. Included are a variety of the most advanced memory and interface boards. PROM board, vector interrupt, real time clock, and prototype board.

Altair 8800 peripherals include a revolutionary low-cost floppy disk system. Teletype,^w line printer, and soon-to-be-announced CRT terminal.

Software for the Altair 8800 includes an assembler, text editor, monitor, debug, BASIC, Extended BASIC, and a Disk Operating System. And this software is not just icing on the cake – it has received industry wide acclaim for its efficiency and revolutionary features.

But MITS hasn't stopped with the Altair 8800. There is also the Altair 680-complete with memory and selectable interface-built around the new 6800 microprocessor chip. And soon-to be-announced are the Altair 8800a and the Altair 8800b. MITS doesn't stop with just supplying hardware and software, either. Every Altair owner is automatically a member of the Altair Users Group through which he has access to the substantial Altair software library. Every Altair owner is informed of up-to-date developments via a free subscription to Computer Notes. Every Altair owner is assured that he is dealing with a company that stands firmly behind its products.

WE HAVE EXPLAINED THE 8800 SYSTEM: TO OBTAIN INFORMATION ON THE 8800 KIT PLEASE SEND 50p NAME ADDRESS Compelec Electronics Ltc

310 Kilburn High Road, London NW6. Tel:01-328 1124

LAST MONTH I, very foolishly, announced that the SC/MP Introkit was priced at £50 (which it isn't!). It is REALLY £54.50 plus 8%. The WORST thing that I did was to mention the pseudo-TTY unit called the Telekit which was also supposed' to be about £50. It isn't. The prices being quoted for it are in the range £160-£200 and you can build your own for less than that!

One of the main problems with all of the instant MPU kits on the market is that they all require a TTY teletype in order to communicate with the KITBUG or BUGBUG program supplied with the kit. These programs are supplied in PROM form and thus it is rather difficult for the average user to reprogram the kit, especially as you have not been able to practise programming because you cannot communicate with the MPU (except through a TTY which costs nearly £1,000). National Semiconductor came up with an answer to this problem for their own use, teaching people to use SC/MP in their educational courses.

As each course might have 50-100 people, the cost in normal teletypes would be enormous and so the brains at NS in Germany modified a calculator to a very simple TTY compatible unit to talk to the Introkit. Apparently they made about 25 of these units, considered production, then (in the USA) pulled the calculator which they had used out of production. Disheartened, it seems that they gave up for the time being as nobody can quote a delivery date or price for the unit although NS distributors have taken orders for it.

SECRET REVEALED

Now we tell you the secret -- you. can make one for yourself! If SC/MP is intelligent enough to be able to talk to a TTY then conversely SC/MP is intelligent enough to BE a TTY. So you buy two Introkits and reprogram one of them to be a very simple TTY device. I know I mentioned earlier that it was difficult to program when you have not been able to practise, but the point is that NS already have a TELEKIT program and if they want to sell SC/MP units they MIGHT make this program available.

It only needs one person to have a suitable program, and anybody else can have a copy of the PROM with the program in it.

N.B. If you send PROMs through the post, especially abroad, put a big notice on the outside of the packet about X-raying as this can be a good cheap way to clear U-V erasable PROMs.

KIT INTROS

Fig 1 shows the components used in addition to an Introkit, Flag 0 and Sense B are used for the I/O, buffered through a pair of opto-isolators. The PROM is programmed to put one "1" and seven "0's" out on the SOUT line and to shift the one bit across the keyboard matrix using another Flag as a clock. Any key pressed will connect the bit in the DM8546 shift register to an input on the 74C175 register.

This register is eventually read back into the CPU chip, and can be used to decode which of the keys was pressed. The code generated by the key is used to look up a table in the PROM to decode it into an alpha-numeric character displayed on the seven segment calculator display (NS have worked out a 40 character set which can be displayed using 7-seg plus a DP). This character is now output to the character register which will eventually direct it onto the display.

PROGRAMME TIMERS

The other half of the program

accepts any keyboard entry and outputs it with all stop bits etc. to FLAG O, and eventually to the pseudo-TTY output pins. Similarly, any input at the TTY pins is detected by SENSE B, decoded and checked internally then output to the display.

The 9 digit output is enough for most programming applications, but is not so good for normal I/O requirements. However, if you are using SC/MP for a complex timer, such as a traffic light controller or similar, this does not need to communicate with people via the alphabet, and thus Telekit is great for programming this application.

So off you go to buy two Introkits and reprogram one of the PROMs -- can't afford two plus a calculator, etc? Well, how about programming into RAM instead of PROM? Introkit comes complete with a KITBUG PROM and very thoughtfully a listing of KITBUG, the listing can be used to study programming by working out what the KITBUG program is doing. The PROM comes complete with socket so it can be removed and replaced with RAM chips in a PROM simulator.

SIMULATOR PLUG

This can be simple to build and requires four MM2112 256x4 RAMS plus a MM74COO (CMOS 7400) to replace the 512x8 bit PROM plus about 20 switches and buttons and some LED lamps. The Simulator is made to plug into the 24-pin socket normally used by the PROM and looks like a PROM to the CPU chip.

The difference is that this 'PROM' can be programmed by 9 address toggle switches, 8 data switches and a 'program' button connected to the R/W pins. Power for the unit is derived from the socket, but it may be an idea to include a large storage capacitor to allow for temporary disconnection without loss of memory.

If you really want low power you can use some of the new CMOS RAMs available which will store the memory for several days from a small battery or for a couple of hours from a large capacitor. Cost of such a simulator would be about £20 for MOS 2112 RAMs, or £50 for CMOS RAMs. This plus an Introkit allows you to program your own MPU for less than £100.

DO IT WITH YOUR MPU!

We now have an MPU kit which can be programmed to your own

requirements (you could even copy most of the KITBUG program if you so wished) so now what can you do with it?

How about using the ETI 560 VDU to enable you to play games on your own TV set? Total cost is in the area of £150 we know, but for this you have a unit MUCH more sophisticated than any other TV game. You could play Draughts, Nim, Scrabble, Chess, Go, Backgammon, Monopoly etc with the CPU generating the dice.

Invent NEW MPU games --- after all **you** are the programmer.

If you come up with any programs, or with a TELEKIT program for SC/MP or 6800 let us know at ETI -- then we can pass this information onto other readers, in MICROFILE perhaps.

Sparking mk2 Capacitive discharge

electronic ignition kits

VOTED BEST OF & SYSTEMS TESTED BY POPULAR MOTORING MAGAZINE

- * Smoother running
- * Instant all-weather starting
- * Continual peak performance
- * Longer coil/battery/plug life
- * Improved acceleration/top speeds
- * Up to 20% better fuel consumption

Sparkrite MK. 2 is a high performance, high quality capacitive discharge, electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in 15/30 mins.

Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about 1/50th of the norm. It will perform equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system. Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). All kits fit vehicles with coil/distributor ignition up to 8 cylinders.

THE KIT COMPRISES EVERYTHING NEEDED

Ready drilled pressed steel case coated in matt black epoxy resin, ready drilled base and heat-sink, top quality 5 year guaranteed transformer and components, cables, coll connectors, printed circuit board, nuts, bolts, silicon grease, full instructions to make the kit negative or positive earth, and 10 page installation instructions.

OPTIONAL EXTRAS

Electronic/conventional ignition switch. Gives instant changeover from "Sparkrite," ignition to conventional ignition for performance comparisons, static timing etc., and will also switch the ignition off completely as a security device, includes: switch connectors, mounting bracket and instructions. Cables excluded. Also available RPM limiting control for dashboard mounting (fitted in case on ready built unit).

CALLERS WELCOME. For Crypton tuning and fitting service phone (0922) 33008.

PRICES INCLUDE VAT, POST AND PACKING.

Improve performance & economy NOW

This is a very effective self-adjusting positive and negative peak noise limiter. The detector diode is part of the usual detector arrangement in a receiver and provides a negative bias which varies with the average signal strength (bias provided by D1 and D2). When a noise spike appears on the positive swing of the demodulated audio wave form, D1 conducts flattening out the spike. Similarly when a noise spike appears on negative swing of the audio, D2 conducts flattening out the spike.

The circuit causes considerable reduction in audio output when in circuit and cuts the high frequency response.

VOLTAGE CONTROLLED CURRENT SOURCE

The voltage follower IC1, buffered by TR1 provides a current at the collector proportional to the input voltage due to R1. This current is applied to R2 which means that the voltage across it **R2** will be Vin R1.

IC2 forces the voltage across R3 to equal that across R2. The zener prevents IC2's inputs from operating at the supply rail.

In this circuit the input voltage is generated relative to the OV rail. For maximum output voltage capability the voltage across R2 and R3 at the maximum proposed output current should be kept small. However offsets in the IC's have more effect on the linearity as the max resistance of VR2 becomes smaller - these should be nulled out.

CHEAPO VCF!

Readers intending to build the dynamic noise limiter may be interested in the following circuit.

The circuit consists of two RC low pass filters connected by a unity gain buffer (inverting).

The n-channel MOSFETs are used as voltage controlled resistors to vary the cut-off frequency of the two filters which are controlled by a voltage entered at points X - The additional resistors limit the variation to limits of 5 and 50kHz.

NOTES

- 1. The control voltage should be positive-going, not negative-going as in the original.
- 2. Signal input should be resticted to 50mV, when distortion will be low.
- 3. The cut-off is less sharp than the

DNF VCF so less trouble can be expected from changes in bandwidth, as such changes will be less obvious.

4. A high impedance buffer is required at the output.
Tech-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these items. ETI is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for. Drawings should be as clear as possible and the text should preferably be typed. Circuits must not be subject to copyright. Items for consideration should be sent to ETI TECH4TIPG. Electronics Today International. 36 Ebury Street, London SW1W OLW.

SELF-CLEAR

The network consists of two resistors R2 and VR1 arranged as a potential divider, the latter being shunted with a non linear load Q1 whose value depends on the voltage developed across R1. This is related to the charge of the capacitor C1. The resistor VR1 was made variable to make the design less critical.

As soon as S is closed, C1 starts charging; at the same time the baseemitter junction is being forward biased and Q1 conducts, bypassing VR1. Voltage at point A is "low" and a set pulse is produced, therefore.

When the charge on C1 reaches a given value, Q1 stops conducting and voltage at point A rises to a stabilized value which is approx. 4.5 VR1/(R2 + VR1).

Component values are not critical although R1 and R2 must be close to

the indicated values.

Any NPN silicon transistor will work the prototype being assembled with the BC171

VR1 adjustment depends, amongst other things, on the number of flipflops and must be adjusted in each particular case to give best results.

FM modulated TTL crystal oscillator

This TTL crystal oscillator is useful for checking FM receivers or to drive multipliers-amplifiers for an FM transmitter. It will accept crystals between 1 and 18 MHz. Output level is quite high and rich in harmonics. Audio can be provided at a low level from an audio oscillator or a microphone amplifier,

SIMPLE AND CHEAP LIGHT DIMMER

More than one lamp may be "dimmed", but the total wattage ratings should not be exceeded. The current ratings in the table are minimum values.

With SW1, the normal mains switch, "On" and SW2 closed, the lamp operates normally. But with SW1 "On" and SW2 "open", only half the mains waveform is allowd to energise the lamp, the other half being blocked by D1. This is the "Half-on" mode. Orientation of D1 does not matter.

tech-tips

MULTIPURPOSE AUDIO TESTER

The instrument is designed primarily to provide a cheap and reliable method of testing for wiring faults in projects. As a secondary use it may be used as a capacitor checker. Additionally the apparatus may be used as a ready made siren. The output from this instrument may also be fed to an external source, such as an amplifier.

Each circuit can be made to oscillate at audio frequencies using simply a capacitor connected from input to ground and an resistor connected between input and output. The output is detected using a crystal earpiece. Thus, simply completing the resistive arm of the circuit via the "R" sockets, causes oscillation to commence, at a frequency governed by the resistance between the sockets. Similary, by completing the other circuit by means of connecting a suitable capacitor across the "C" sockets, the other circuit is set into operation at a frequency dependent on the unknown capacitance. Thus we have an instru- PERSPEX ment which provides a "go/no go" SHEET indication of a circuit or a component. In addition a rough order of value of the component may be obtained from the frequency of oscillation.

For use as a continuity tester, probes are simply inserted into the "R" sockets and the instrument used as a conventional "ohmmeter". The maximum detectable resistance would be of the order of 1k. Similarly, these sockets may be used to check diodes and transistors.

Using the "C" sockets for checking capacitors, observe polarity when using electrolytics. The range of checkable capacitors is large varying from .22 μ F to 5000 μ F.

DANCING LIGHTS

This device will produce a shifting light display in time to the signal from a loudspeaker. Setting will vary according to the volume at which the

The bulbs used can be any number at 25V each and the total should not be more than 100W. A heatsink should be used for the power transistor.

Do you want promotion, a better job, higher pay? "New opportunities" shows you how to get them through a low-cost, Home Study Course. There are no books to buy and you can pay as you learn.

This easy to follow GUIDE TO SUCCESS should be read by every ambitious engineer. Send for this helpful 44-pagefreebook NOW! No obligation, nobody will call on you. It could be the best thing you ever did.

CHOOSE A BRAND NEW FUTURE HERE

Practical Radio & Motor Mechanics AMS.E. (Mech.) Carneral Mech. Eng. Electronics (with Kit) Card Gotor V Inst. Engineering Inst. Engineering Inst. Engineering General Elect. Card Gotor V Inst. Engineering Maintenance Engineering Card General Auto Engineering AMLIA.I. Weiding Weiding Card General Auto Engineering AMLIA.I. Weiding Weiding Card General Auto Engineering AMLIA.I. Weiding Weiding Card General Auto Card General Auto Maintenance Engineering Maintenance Installations Card General Auto Maintenance Engineering Maintenance Installations Card General Auto Maintenance Engineering Maintenance Installations Card General Auto Maintenance Engineering Maintenance Card General Multions Constructions Computer ProDUCTION Computer Card Gradio TV & Card General Auto Inst. of Cost & Management Accts. Management Accts. Card General Course Carigentry & Joinery Draughtma	ELECTRICAL &	AUTO & AERO		MECHNICAL
MAA/IMI Dp. MAAAGEMENT & Radio AND TELE- COMMUNICATIONS MANAGEMENT & Colour TV Servicing CONSTRUCTIONAL Colour TV Servicing CONSTRUCTIONAL Có & G Télécons. Architectural Technican's Cert. Architectural Cat G Radio, TV & Draughtmanship & Electronics Mech. L1OB. Radio & TV Carpentry & Joinery Plumbing Technology AM.I.E.D. Radio A TV Carpentry & Joinery Radio A TV Carpentry & Joinery Radio A more course General more course Radio A more course General coure course	Practical Radio & Electronics (with Kit) Electronic Engineering Certificate General Elect. Eng.Certificate C & G Elect Installations Elect. Install. & Work	Motor Mechanics C & G Motor V Mechnics General Auto Engineering À.M.1.M.1. Air Registration Bor Certs.		A.M.S.E. (Mech.) [General Mech. Eng. [Inst. Engineers & Technicians [Maintenance Engineering [Welding [
Constructional inst of Cost & Management Accts. [Colour TV Servicing C & G Telecons. Technican's Cert. C & G Radio, TV & Electronics Mech. Certificate LI.OB. Radio & TV Engineering Course Radio A TV Radio A TV Radio A TV Radio A multicle Radio A multicle	C & G Élect. Technicians			MANAGEMENT & PRODUCTION Computer Programming
G.C.E. -58 'O' & 'A' Level Subjects -over 10,000 Group Passes! Aldermaston College Dept. TET 18, Reading RG7 4PF also at our London Advisory Office, 4 Fore Street Avenue Moorgate, London EC2Y 5EJ. Tel. 01-628 2721. NAME (Block Capitals). ADDRESS.	Colour TV Servicing Colour TV Servicing C & G Telecoms. Technican's Cert. C & G Radio. TV & Electronics Mech. Certificate Certificate Radio & TV Engineering Course Radio. Servicing & Radio Amurcui s Exam. Carta Course C	Heating Ventilating Air Conditioning Architectural Draughtmanship & Design L1.0.B. Carpentry & Joiner Plumbing Technolo General Ruilding Panting & Decorating		Inst. of Cost & Management Accts. DRAUGHTSMAN- SHIP & DESIGN General Draughtsmanship A.M.I.E.D. Electrical Draughtmanship
Dept. TET 18, Reading RG7 4PF also at our London Advisory Office, 4 Fore Street Avenue Moorgate, London EC2Y 5EJ. Tel. 01-628 2721, NAME (Block Capitals).			G.C	.E.
	Aldern	-58 '0' & ' -over 10,0	A' Li 00 G	evel Subjects Group Passes!

HOME OF BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

Other subjects of interest

Accredited by C.A.C.C.

Age

Member of A.B.C.C

New Course in Digital Design

Understand the latest developments in calculators, computers, watches, telephones,

television, automotive instrumentation....

Each of the 6 volumes of this self-instruction course measures $11\frac{3}{4}$ " x $8\frac{3}{4}$ " and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

After completing this course you will have broadened your career prospects and considerably increased your fundamental understanding of the changing technological world around you.

Also available — a more elementary course assuming no prior knowledge except simple arithmetic.

- In 4 volumes:
- 1. Basic Computer Logic 2. Logical Circuit
- Elements 3. Designing Circuits to
- Carry Out Logical Functions 4 Elio floot and Begiste
- 4. Flip flops and Registers

Offer. Order this together with Design of Digital Systems for the bargain price of £9.70, plus 80p p&p.

Design of Digital Systems contains over twice as much information in each volume as the simpler course, Digital Computer Logic and Electronics. All the information in the simpler course is covered as part of the first volumes of Design of Digital Systems which, as you can see from its contents, also covers many more advanced topics.

Designer
ManagerThese courses were written so that you could teach
yourself the theory and application of digital logic.
Learning by self-instruction has the advantages of
being quicker and more thorough than classroom
learning. You work at your own speed and must
respond by answering questions on each new piece
of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

Design of Digital Systems

A Self-Instruction Course in 6 Volumes

Computer Arithmetic
 Boolean Logic
 Arithmetic Circuits
 Memories & Counters
 Calculator Design
 Computer Architecture

£6.20

plus 80p packing and surface post anywhere in the world (VAT zero rated). Payments may be made in foreign currencies. Quantity discounts are available on request.

To: Cambridge Learning Enterprise	s, Dept. Dig.,
FREEPOST, St. Ives, Huntingdon, (Cambs PE17 4BR
Please send meset(s) of Des Systems at £7.00 each, p&p include	ign of Digital ded
or	Logic and uded
or combined set(s at £10.50	each, p&p included
Name	
Address	
*delete as applicable.	ETI 9

TELETYPE 35R0 ASC11 CODE HEAVY DUTY CONTINUOUS OPERATION

With 240 Volt Power Supply and Paper Feed. Circuits, Diagrams. Information supplied with all purchases.

A MUST AT £50 each

To all purchasers of the Teletype 35R0 a REBUILDABLE Keyboard can be purchased for £10 only Attractive cast alloy front panel, vertical mount, size $16\frac{1}{2} \times 15 \times 5\frac{1}{2}$ " containing 72 push buttons with manual or electrical reset (28V) with provision for labelling with your code; 65 illuminated symbols or functions (complete with 28V lamps) which again you can change; 15 bit front panel microswitch assembly to enable your coded cards to be read (sample supplied) and host of other electronic parts. Complete with circuit diagrams. Now only £10 each.

HOW ONLY ETC BACH.		P			
ROYAL INVERTE Manufactured USA. 28V DC inj 115V AC 400HZ up to 2KVA. Crated.	INVERTERS A. 28V DC input. Output up to 2KVA. Brand new.		DEL MARCONI R TF855A/1 vering 25HZ to 12MHZ and 50HZ to 150KHZ output 31.6V. Meter s.	MILL 1.5MV ranges. conditio	SOLARTRON AC IVOLT METER VF252 to 150V full-scale in 10 6" meter ±1%, Good on.
AVO RF SIGNA GENERATOR AM Modulation. Freq. range 2 to 240V operation. Suitcase style. S 15" wide x 10" high x 6" deep.	250MHŻ. ize approx.	ALL ITEMS £ SPECIAL OFFER items of £ Carriage £2.50	22.50 each - pick 3 different the 5 for 60 each or £5 for 3	The Swide x	AVO VALVE ESTED CT160 uitcase''. Size approx. 15" 10" high x 11" deep.
TRANSFORMERS - All 240V 50HZ inpute Type A 17-0-17V 250 MA; 7.5-0-7.5V; 250MA 0-20V 5Amps; 0-4V 5 Amps; 0-1-1.5V 5 Amps; 62 as, P&P 1.25.	Type GEC 924F 3½" dia. (Replacement for Telequipment D33 & Solartron 1016 scopes) £30 ee. P&P £1.50.		+SPECIAL OFFER Guaranteed Iuli spec. der facturers markings. BC 204 & BC 207A 4p ea. F	vices. Manu- P&P extra.	LARGE RANGE ELECTROSTATIC VOLT. METERS. from 0-300V 2" £3; to 250KV Max. General guide 5KV 3½" £5; thereafter £1 per KV P&P 75p.
Type B 17.0-17V 250MA; B-0-8V 250 MA; 0-12.5-13.5V 5 Amps: 0-1.5-2V 5 Amps; £1.50 ea. P&P £1. Type C 19-0-19V 250MA; B-0-BV 250MA; 0-7.5V 5 Amps; 0-1.4V 5 Amps; £1.25 ea. P&P £1.25. Type D 34V 4 Amps; 19V 4 Amps; 17V 4 Amps; £3 ea. P&P £1.25 Type E 3V 1 Amp. 25p ea. P&P 50p, Type F 17V 1 Amp. 25p ea. P&P 50p, Type F 17V 1 Amp. 25p ea. P&P 50p, Type G 20-020V 200 MA; 0-6V 100MA;	SEMICONDU extra. Guara Manufacturer BC147; BC1 BC327; 2N BC251B; BC: 2N3055RCA 2N5B79 with Comp. pair £2 #Linear amp	ICTORS — All at 8p eax. P&P niecd all full spec. devices. 's markings. 58; 2N3707; BC107; BF197; 4403; BC1728; BC2618; 3488; BC171A/8. 50p ea. P&P Bp. 2N5881 Motorola 150 Watt: 2 pr. P&P 15p. 709 25p ea. P&P 8p	★TELEPHONES Post Office Style 746. Black Grey £6.50 ea. Modern Style 706 Black or 1 £4.50 ea. Modern Standard Style in C with a place to put your fir 746.£3 ea. As above but dis only £7. ea. All tababase.	k or two-tone iwo-tone Grey Grey or Black agers like the coloured Grey	MARCONI TF1101 Audio Oscillator. 20c/s to 200kc/s. Low distortion. 60db step attenuator £65 each. MUFFIN Fans. 115Volt. Size 5 x 5 x 1½". Superbly quiet and reliable. Exeq. but tested. £1.50 ea. P&P 75p. IBM CLOCKS - SLAVES. 11½". £3 ea.
76p ea. P&P 75p. Atlantic series. All Brand New. (APT surplus types A. B. C & D: Honeywall surplus type E: Recordacall surplus type F; Parmeko Atlantic series type G).	VARIACS 240 8 Amp E18 extra.	OV input 0-270V output. ea. 20 Amp £30 ea. Carr	standard dial and bells. P&P all styles 75p ea. Handsets, complete with 2 inserts and lead £1.75 ea. P&P 65p.		CT et., 17% ES ea., PUS Carr., 23% CT es., PUS Carr., ITR CLOCKS SLAVES 7%" ES ea. P&P 75p. Meter PACKS - 3 different meters £2 P&P 61 OON'T FORGET YOUR MANUALS. S.A.E
ONLY £10 EACH Stabilised Power Supply. 240V 50HZ Input. Outputs – 15V @ 10A; + 15V @ 4A;4.5V @ 12A; -21.5V @ 15A Size 16 x 20 x 9". Auto overload trips on each voltage rail with pushbutton resets. MANY OTHER POWER SUPPLIES – Call and see	Type GEC 924 Solartron 101	BNC Plug lead assembled 55 ea. P&P 20p. Socket 15p. BNC Plug 20p. Socket 30p pair. P&P 15p. 4E 31/3" dia. (Replacement for 5 scope) £20 ea. P&P £1.50.	NEW — UPGRADED CONTI LESS MONEY #31b Electronic Goodies £1.6 #frigh Value Printed Board Pa of components, transistors, et the board transistors £1.65 p	ENTS — FOR 0 post paid. ck — hundred c. — no flat to ost paid.	winn requirements GRATICULES 12 x 14 cm high quality plastic 15p ea. P&P 10p. *CAPACITOR Pack. 50 Brand New components. only 50p. P&P 48p *TRIMMER PACK. All Brand New, 2 Twin 50/200pf ceramic; 2 Twin 10/60pf ceramic; 2 min. strips with 4 presst 5/20pf
#POT PACK. All Brand New Modern. Single and Ganged, our choice. 7 for 25p. P&P 48p.	Magnetic Definition 120P7 12" attenglow. E1 And for the VC M3B-111GH Green Trace. S	ection round. Blue with yellow e DU BUILDERS. Rectangular 30 x 20cm. Superb value £12 ea.	VERY SPECIAL PRICES +1000f Feed thru Capacitors 10 fo P&P 15p.		on each: 3 air spaced preset 30/100pt on ceramic base 25p the lot, P&P 15p. RESETTABLE COUNTERS: 4 digit by Stonebridge/Sodeco 1000ohm coil £2 ea. P&P 35p
TUBES – All Brand New, Boxed, Electrostatic Deflection, Type 40BA 1½" dia., 7½" long, Blue Trace £2.50 ea. P&P 75p, Type CV1526 (3EG1) 3" dia. £4 ea. P&P	CRYSTALS. H 2MHZ £2.20	ype CME1220 24 x 18cm. E9 ea. igh quality B7G, etc. ea.	*BEEHIVE TRIMMERS 3/30 NEW. 10 Off 40p, P&P 15p, 100 off 75p: 500 off £15, P&P £1.2 £25, P&P £1.50.	Dpf. BRAND £3.50, P&P 5; 1,000 off	*POTENTIOMETERS All Sp each. P&P extra. Metal bodied AB Linear. PC8 mount. Brand new. 10K single; 100K Ganged; 250K Ganged; 100K Ganged concentric shafts.
E1. Type 087/36 3" dia. (Replacement for Telequipment S31) £15 ea. P&P £1,50. Type 58VP1 5" dia. POA, X, Y Low Capacitance Side Pins. Green Trace £5 ea. P&P £1,50.	100KHZ £2.75 100KHZ £2.5 50KHZ £3 ea. 20KHZ £4.50 P&P all 50p. +4.43MHZ CE	ea. 9 crystal at 25p eo. P&P 15p.	HIVAC Miniature NEONS App 60V Brand New. 10 off P&P extra.	20pi	FIBREGLASS BOARO PACK. More board — lessmoney Largerpieces Not lessthan 2.5 sq. 1t. for 95p, P&P 65p. Double or single sided cut to any size. New Lower Price 1p per sq. in. P&P extra.
20HZ to : SINE AND SQUARE & In four ranges. Wien bridge oscilla independent sine and square wave as max square outputs. Completely asser 12V supply required, £8.85 each. P& P&P 35p.	200KH2 WAVE GENE Nor thermisto mplitude cont nbled P.C. Bo P 35p. Sine W	RATOR r stabilised. Separate rols, 3V max sine, 6V ard, ready to use. 9 to Vave only £6.85 each.	WID 5MHZ to 150MHZ (usefu width, Only 3 controls pro 10.7 or TV IF alignment purpose scope. Full instru- minutes of receiving. All calibrated).	E RANGE V ul harmonics eset RF level filters, recei actions suppli this for only	VOBBULATOR up to 1.5GHZ) up to 15MHZ sweep sweep width and frequency. Ideal for vers. Can be used with any general ed. Connect 6.3V AC and use within y £6.75. P&P 35p (Not cased, not
VALUE ADDED TAX Official Orders Welco	Minimu Unless st not includ omed. Gov	um Mail Order £2. ated — please add ded in prices — God Jed ucational Dep Open 9 a.m. to 5.30	Excess postage refu £2.50 carriage to a ods marked with * ts., Authorities, etc p.m., Mon. to Sat	nded III units 12½% otherw	VAT, otherwise 8% ise Cash with Order
7/9 ARTHUR ROAD,	READING	G, BERKS. (rear Te	ch. College, King's	Road). T	el. Reading 582605

If you're looking for ex-stock, competitively priced solid-state devices, look no further! Because at Erie, we are offering the comprehensive Toshiba range. It includes signal and power transistors, FETs, diodes, ICs, and LEDs (single and 7segment).

Here's a selection of Toshiba devices, with prices for quantities from 1 to 24 inclusive.

15% discount applies to all orders for quantities of 25 to 99-If you want 100 or more of any one item, special prices apply send for price list direct from Erie, or complete the reader service card.

Data sheets for devices ordered are supplied free on request, but if you want data sheets only, please send 10p for each set of device data, to cover costs.

P & P of 30p is applicable on all orders up to 100 devices (any mix of types).

VAT Please add 121% for VAT to all prices, except those marked with an asterisk (*) which are rated at 8% VAT.

		. BD 120	NPN	400
Small Signal		BD 140	PNP	440
(2-58)		(TO-2)	20AB)	446
25A 561 PNP	13n	25A 473	PNP	400
2SA 562	120	254 480		750
254 493	170	1.250 700	NPN	50 50
254 495	120	250 117	2	25.5
25C 372 NPN	0.5-	1-250 144	3	50.54
260 372 1111	9.5p	230 144	**	50.01
250 373	9 50	ZN 5290	14	pab
250 382	26p	Metal Po	ower	
250 383 -	24.50	(10-6	5)	
25C 388A 18	22.5p	2SC 515	A NPN	48.5p
2SC 733 ,	6p	2SC 782		£1.08
2SC 734	11.5p	(10-3))	
2SC 735 m	11p	2SC 643	A a	£2.05
2SC 1000	16p	2SC 143	4	£14.30
2SC 1681 "	16p	2SC 157	6	£2.43
(TO-92)		2SC 161	7	£1.29
BC 451 NPN	110	2N 3055		£0.86
BC 452	110	S 2530A		£3.48
BC 453	110	S 1299	14	64.09
BC 454 PNP	11.50	Interret	ad Circuit	14.03
BC 455	11.50	TA TOOOC	ou chedits	61 40
80 456	11.50	TA 71004	P	£1.43
Plantin Pourai	ri.op	TA 7447		62.36
12 7)		TA 70055		L2.30
(2-/)		TA /205P		11.55
51234 NPN	33.5p	F.E.T.		
(10-126)		(2-5J)		
BD 135 NPN	33.5p	*25K12		£1.04
BD 137	36.5p	25K30A		27p
BD 138 PNP	40p	* 3\$K35		£1.45
DIODES				
Zener	Vari Cap		Light En	nitting
05Z5.6 14p	1\$1658	25p	Diodes	
05Z6.2 12p			TLR 102	21.5p
05Z6.8 13p	Switchin	9	TLR 103	21.5p
05Z7.5 13p	1\$1554	4p	TLR 104	21.5p
0528.5 130			TLB 105	21.5n
05791 130	Pulse Red	ctifier	TLB 106	21.50
05710 130	1\$2756	23:5p	TIR 114	300
06711 12-			TIC 103	36.5-
05211 130	Diac		TLC 102	30.50
05212 130	1\$2093	25p	TLG 103	35.5P
05213 13p			11.6 105	35.5p
05Z15 13p	Thyristor	s		
General Purposa	SEOR 284	1 52 50	Seven S	egments
\$5089A 7.5p	510112.04	. 02.0p	TLR 301	£1.08
(IN4001)	Triac		TLR 302	£2.22
\$5089B 8n	'SM6C14	61 61	TLR 306	£3.08
(IN4002)	0100014	11.01	TLR 307	£3.08
S5089F 110	Uni lune	tion		
obcost tip	*16411	57.		
(1N/4006)	23121	57p	r -	

ELECTRONICS TODAY INTERNATIONAL-SEPTEMBER 1976

FOR DETAILS ON ADVERTISING IN MINIADS, OR ELSEWHERE IN ETI, CONTACT BOB EVANS, 01-730 8282

RANG

CMOS WITH DISCOUNTS!

Any	Mia: 309	6 254, 25%	100+.	33%% 100 4	
4000/14000	9.20	4060/ -	1.24	14174/ -	1.06
4001/14001	0.20	40017 -	73.66	14175/ -	E BA
4882/14802	0.20	AME? /	10.10	LARMAY -	1.17
4008/14006	1.91	ADET /	1.00	145017	
4000714000	1.01	400.3/ -	1.44	143017 -	0.20
44877144457		4089/1406	0.69	4562/4502	1.34
4005/14006	1.87	4067/ -	4.13	14563/ -	9.75
4089/16009	0,80	4058/14058	0.24	14565/ -	4.38
4010/14010	0.60	4058/14069	0 24	145087 -	0.57
4011/14011	6 20	4878/14070	0.65	14507 4830	0.00
4019 (14919	0.00	4071 41 4071		14001740000	0.00
4012/14012	0.20	4671714871	0.24	14308/4508	3.00
4013/14013	0.60	4072/14072	0.24	14510/4510	1.51
4014/14014	1.12	4073/14073.	0,24	14511/4511	1,74
4815/14015	1.12	4075/14075	8.24	14512/ -	1.03
4015/14815	0.80	4076/14075	1.71	14514/4514	3 47
4017/14017	1.12	4077/14071	0.65	14515/4515	3 47
4018/14018		4878/14878	8 24	14518 /4818	
1010/1410	0.00	4001/14001		14518/4419	1.51
4019/14319	0.00	4461714661	0.29	14317/ -	4.0Z
4020/14020	1.24	4082/14082	0.24	14518/4518	1.39
4021/14021	1.12	4005/ -	8.80	14519/4010	0.57
4022/14022	1.07	4005/ -	8.80	14528/4528	1.39
4023/14623	0.20	4089/	1.74	14521/ -	277
4074/14024	6.87	4093/14093	0.8%	14599/ _	215
4075/14075	0.20	4004 /	2.00	TAE SA	213
406.07 1406.0	1.00	ATTRACT (14964/ -	8/2
99420/ -	1.92	40407 -	1.10	14520/ -	2.15
44627/14627	9.90	4096/ -	1.78	145Z7/45Z7	1.76
4028/14028	1.00	4017/	4.13	14528/4098	1.22
4029/ -	1.27	4098/14528	1.22	14529/ -	1.72
4030/14501	0.60	4099/ -	2.03	14530/ -	1.95
4831/ -	2.46	451817 -	1.78	14531/	1 74
4032/14832	1.15	40102/ -	2 18	14532/4532	1.90
4033/ -	1 55	40103/ -	216	14524/	8 18
ARTA (14074	7 51	40104/	5.10	14536	6,13
4005 (14034			2.20	140,00/	4.00
4043/14033	1.31	401077 -		145377 -	13.17
4030/ -	3.09	40108/14588	6.18	14539/ -	1.24
40377 -	1.00	40109/	2.21	145417 -	1.62
4838/14038	1.20	40181/14581	4.30	14543/ -	1.82
4839/ -	3.09	60182/14582	1.73	14549/ -	4 10
4040/14040	1.10	40154/	2 26	14559/ -	10.50
4541/	0 83	40257/ -	2 76	14553/	4.00
4047/14047		4780/ -	1 75	145547	1.4.7
4041/14041	1.53	7061	4.96	LATER AFER	1.07
4040714040		144104	4.23	14000/4000	1.01
	1.04	- 107	p.76	14000/4000	1.01
4045/ -	1.56	14011Z	5.54	140077 -	4.65
4846/14045	1.44	14412/ -	17.07	14558/ -	1.25
4847/ -	1.01	14415/ -	7.35	14559/ -	4.10
4848/ -	8.60	14419/ -	2.87	14548/ -	2.17
4849/14849	0.64	144771 -	4.000	145617 -	0 70
4050 /14050		HAANE /	7.83	LAKES /	
4050/14000	0.00	14466/	1.83	14362/	3.39
4001/14031	1.04	100007 -	11.30	14360/ -	1,87
4052/14052	1,04	14450/ -	2.87	14568/ -	3.15
4051/14053	1.04	144517 -	2.87	14589/ -	3.72
4054/ -	1.29	14495/ -	0.51	14572/ -	8.27
1055/ -	1.44	14180/ -	1.1.8	14580/40108	8 15
1254/ -	1 48	14181/ -	1.12	[458]/401PI	4 10
4.06.7		14169/		14597740181	4.30
4050	20.01	14169/	1.10	28100 (48691	1.64
4038/ -	B. 2U	14103/ -	1,18	16065/ -	0.84
Free on reque	st: Osta en nelud circul E. If mokes t	AV-5-1224 and I I, quarte erystal Mingo e Attic vo	III 50253 (timetaaa, stor for aa och C3,9	clock chips, 4 an and L.E.D. displa- d- D. NK 50253 4	t. IN ad 5 digit ya jif you
CLUCK CHUPS A	+ 1224A 4				
CAR SHEET IN SAL CLOCK CHIP'S A Martin/unders Cl	14-1224A 4				
CAN SHOT IN S.A. CLUCK CHIP'S A' Marin/annere Cl Economy Neis I	ED DISPLAY	B (Cinta il' ga	ality, but	suarration by	na mile
can sond un S.A. CLUCX. CHIPS A Harm./monse Cl Economy Reis I reformable II and	ED DISPLAY	B (Cines il' qu	uilly, but	gearanted by	es. toily
can pood on B.A. CLOCK CHUPS A Martin/underse CD Economy NEB I reformable II and BL-7076/01-700	ED DIEPLAY	78 (Cinta II' qu	nilly, but 11 7285 19	generatived by	us. hely
can send un S.A. CLUCK. Crupts Av Murus/uninger CE Economie MES L returnative Nami N7072/CE705 21.300. CE-74752	ED DIEPLAY	78 (Cinta II' en 7880. BL-7276/6	willy, but N.720E 12	guaranised by Tam (0.57) Doub	us. toily b/e Digit
CAN DON'T DO SAU CLOCK, CHIP'S A Horus/andrey ICS ECONODIY NE'S L Futura.idde N Sol DL-707E/DL-702 E1.J00, DL-747E/	ED DIEPLAY	78 (Cinta A' 44 789: 81-7276/6 88 (8.6*) \$2.50	ulilly, but N.728E 12	perselved by	us, taily b/e Digit
can sond un S.J. CLICX. Cruffs A Norm/animize Cl Economy RED I Economy RED I Schrubbe II and DL-787E/CL-FRE E1.JBD. CL-747E/ PF-ANIPS CA 313	F-1224A 4 LIM. ED DIEMAN State (1.3-7) DL-750E 100 D FET-Mpol	78 ("Cinta A" qa 788p. BL-7276/6 Mm (0.611) £1.50 M-CH103 £1.00	willy, but N.7288 12	guaraniand by Tam (0.5") <i>Cou</i> l (0.5") FET-Bipolar B	us. toily b/e Digit Sp. 741
can sond un S.J. CLDCX. CHUPS A Martin/undesen CE Economity neis I relarizable II and II./1978/201. Fue ET.JUD. CL-7476/ SP-ANUPS CA 313 Numethy 25p.	P.S. 1224A 4 LINE. ED DIEPLAY Statistical Die (0.3-7) Di-750E 100 D FET-Mask	78 ("Cinta A" qu 788p. BL-7276/6 MB (8.8") £1.50 M-C2003 £1.00	willy, but NL728E 12). CA 3140	gearantised by Tam (0.517) <i>Court</i>) PEY—Bipoter B	us. toily b/e Digit Sp. 741
CAN SHOT IN SUC CLOCK COUPS A ANTHE/MOREE CO ECONOMY REB L CONTONY REB L CONTONY REB L BL-1072/OL-1985 E1.000. CL-7472/ DANNE CL 313 Nonchip 250- Curve: C.W.O. An	ED DISPLAY	78 ("Cinta A" qu 780p. 017276/6 um (8.8") £1.50 ur—C2023 £1.00	willy, but NL.728E 12 I. CA 3146 Past stc. 1	guaranised by tam (0.57) <i>Court</i>) FET—Bipoter B IK 750 per prime	us, toily b/e Digit Sp. 741
can soud to S.J. CLOCK CHUPS A Alexa-connect CE Economy nets connony nets connony nets connony nets connony nets conneco	F + 1224A 4 LDD. ED DISPLAY substand. Data (L.37) DL-750E 100 D FET-Nyah H VAT to all d orders are	78 (Class II' es 78p. 017276/6 nn (0.6") 01.50 nr-C2003 E1.00 I prices et 0%. (inility, but NL 728E 12 . CA 3140 Post alc., 1	guaranticad by Imm (0.577 <i>Dour</i> D FET—Bipolar O JK 250 per order	na. toily b/e Olyti Sp. 741

GREENBANK ELECTRONICS (Dept. T9E) 94 New Chester Road, New Ferry, Wirrat, Merseyside L62 5AG, England, Tel; 051-645 3391

Same Day Despatch Glass-Fibre PCBs
G.P. Power Supply ETI 131 90p Sweet Sinteen ETI 457 180p Wee Wee Unif ETI 455 240p Touch Switch ETI 539 75p Audie Level Meter ETI 438 85p Legic Tester ETI 122 150p IN1.25 Storeso Amp 375p 375p OTHER PROJECTS AVAILABLE Ex STOCK 2000 2000
ET1 022
THIS MONTHS SNIPS CA 3046 400 4741 250 7474 250 K 555 400 7470 70 70 7493 400 Ministure Glass Reed Switches 10 tar 500
All prices include VAT. Add 20p P.8 P. List 10p.
R.F.EQUIPMENT SPARES Ltd

PRINTED CIRCUITS and HARDWARE Readily available supplies of Constructors' hardware, Aluminium sheet and sections, Printed circuit boards, top quality for individual designs. Full range of E.T.I. boards always in

stock. Prompt service.

Send 15p for catalogue.

RAMAR CONSTRUCTOR SERVICES MASONS ROAD STRATFORD-ON-AVON WARWICKS. Tel. 4879

This Month MORE SPECIAL OFFERS while stocks
last, of BRAND NEW DEVICES
These are not economy (silegis
4 off FHO 500 0.5" Cam. Cath. 7 sen. LEO Disotar 53 95
4 all FND 357 0.375" Cam. Eath. 7-see 150 Dientau 62 15
S of Ry 117 0.2" Red LED with Cite POw
Panar Pack Mn 1. Caelains 7 att TIP2055 7 OH THE2055 A MIL
1111
Preser Park the P. Contains 5 all 184002 5 all 184002 5 all
114774
Preser Pack Mr. 2. Contains 9 at 18 (1000) Build
Bilden
AUDIO RACY Mr. 1. Destation & Transferrer 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Another was to compare a transisions + curcan for 10% 8 pam
E1.75
Handle Frank Ne. 2: Courcies & Franktstors + circuit for 20W 8 shm
E2.25
Project Pack Ru. 1; Gestains 2 aff of each 8C107/8/9, 8FY50/51/52.
27GUG5 [14 Devices lotal]
Die Pack No. 1: Centeins I off each red, prees, yellew, orange, 0.125"
LED with Clips
LOUD, YES, OWE THOUSAND 10mfd/12V Axiat Load Capacitors [16mm x
7mm Dia.]
VAT INCL ALL ORDERS, 200 PAP
AUDIO-OPTICS, 19 MIDDLEWAY

CHINNOR, OXON. Tel. 0844 52683

GLASS FIBRE P.C.B.'s

Send 1:1 master and 7p per square inch tinned or 10p per square inch drilled and tinned PLUS 40p per board. Discount for quantity E.T.I. boards glass fibre drilled and tinned. 100w guitar amplifier E.T.I. 413 ... £1.40

Mixer pre amplifier E.T.I. 419. 60p Audio 1 level meter E.T.I. 438 75p G.P. Power Supply ETI 131 ... 96p Sweet Sixteen Amp ETI 457 £1.92 High Power Beacon ETI 240 52p Sound Light Flash Trigger ETI 514B 49p

PROTO DESIGN 4 Highcliffe Way, Wickford, Essex SS11 8LA

PRECISION
POLYCARBONATE
CAPACITORS
440V AC
Il High Stability - Extremely Low Leakage
E: DIMENSIONS

VALUE	(mn	n)	PRICE		4		+
(JIF)	i.	D	EACH	631° DC	Range It.	24	54.
FLAT	27	12.7	\$8p	0.47nF	EL.32	270	110
0 22µF	33	16	860	1.0 gF	£1.56	91.0	600
0 25nF	33	16	920	22.5	F1 98	£1 12	750
0.47µF	33	19	£1.10	47aF	6.5 11.5	SI NN	11 22
0.5µF	33	19	£1.16	6 Suf	62.18	57 84	C1 2.3
0 68 aF	50.8	19	£1.25	IDaF	11 UM	C1 12	19.44
1.0nF	50.8	19	£1.37	15.5	67.14	63.32	CZ 01
2.0 aF	50.8	25.4	E1.95	22.F	13.66	16.14	E3.90
"LANTAL	CM BEA	DCA	ACITO	HS - VA	ines availab	ter fi f	11.22
0.47.1.0.2	2. 18.6	wF at 1	5V/25V	or 15V I	DuF at ISV	2011 1	251
22.0-F at 6	V or 16V	33.0.6	at 6V o	10V-17	OF M War	6V-10	0.0.5
HI JV. ALL	at 12p e	ach, 10	for £1.1	0. 50 for 1	E3.00. 100 to	ES.00	o our
ERASSIST		-	1.007	10			
AC1120	the de la	1 104	201	12	P OC44-D	C45	20p

		card make	140		200
AC128	1 lp	BC 268 A	100	()('71/72	200
AC176	16p	BC 547 / 558A	120	* 2N/202671	12-
AD149	40p	BCY72	13n	24/20261	112
AF178	480	BD131/132	390	121/20200	110
AF239	380	BE115/167	220	3342064	110
BC107 /8 /9	10	BE173	2.10	211,30,74	aup
BC114	120	BE178	260	201000	Sab
BC 147 /8/9	100	RETRA	72-	2.5.4702	
RC151	160	DIE MAL CITIE -	120	1114	1 lp
RC157/8/0	120	DF 104 (107)	120	TIP30A	52p
DC 1.71 0-3	120	Br 190/197	Lap	TIP3IA	σīσ
00.111	lap	RF SOB	27p	11P32A	640
BC18271021.	11p	"BF262 '263"	60p	T1P3055	6.10
BC183+183L	LIP	BFY50-51-52	200	STREET RE	190
BC 184 - 184L	120	BEX84/86/88	200	NE 553	610
HC212/212L	120	BFX85	250	211 5 010	7.4-
BC213/2131	IIn	BR 101	41.0	Philippin	340
91.214/2141	110	C.C. T. 077		114414	LI'I'
THE THE PART	T LP	ALC: N/2	430	SN76017N11	41 70

MARCO TRADING

(Dept. P3) The Old School, Edstaston, Wem, Shropshire Tel. Whixall (Shropshire) (STD 094872) 464/5 (Proprs: Minicost Trading Ltd.)

the second s	_	
P.C.B.s FOR E.T.I.	PROJEC	TS
G.P. Power Supply	ETI 131	940
Sweet Sixteen Amp	ETI 457	£1.94
Waa-Waa	ETI 455	£2.65
Touch Switch	ETI 539	580
Marker Generator	ETI 706	50p
Audio Expander-Compressor	ETI 443	£ 3.00
Temperature Meter	ETI 130	50p
Calculator Stopwatch	ETI 534	42p
Audio Noise Generator	ETI 441	41p
Audio Millivolimeter	ETI 128	£1.85
Audio Level Meter	ETI 438	75p
Active Crossover	ETI 433A	86p
Active Crossover	ETI 433B	86p
Logic Probe	ETI 120	35p
Logic Pulser	ETI 121	35p
Logic Tester	ETI 122	£1.85
Tone Burst Generator	ETI 124	83p
Graphic Equalizer	ETI 4271	£ 1.96
International 25 Amplifler		£4.22
F.M. Tuner	ETI 751	£2.23
Line Amplifier	ETI 430	35p
Electronic Ignition	ETI 312	£1.86
Impedance Meter	ETI 116	88p
Digital Display	ETI 533a	420
Digital Display	ETI 533b	350
Digital Voltmeter	ETI 117a	35p
Digital Voltmeter	ETI 1176	35p
New projects and others in TOP PROJECT	RAGE Tavailat	la al 1 25a
per an can for single sided or 1.5p per m 35pl. NOTE: All boards are fibre-glass a Tubense.	i cm. for double ad price inc. Of	sided Jmin. FLLING AND
Senii s.a.e. for full list of boards and com cases, panois and burduners, etc.	ponents svalishi	e including
Mail orders, please, to: D.B Unit 14 Southern Road, Ay	M. PRODU	CTS cks.

TRANSISTORS + ICs AC127 169 LMD01A TD99 52p AC28 169 LMT05 TD99 41p AD161 44p LMT05 TD99 41p AD162 44p LMT04 TD99 52p BC10278 11p 7400 TTL 16p BC102128 12p 7401 16p BC1021182 12p 7402 16p BC1031183 12p 7402 16p BC104/1821 13p 7402 16p BC103/183 12p 7402 16p BC182/182 12p 7402 16p BC182/183 13p 7401 16p BC183/183 12p 7410 16p BFY50 21p 7413 35p BY52 20p 7420 16p B0131 43p 7441 85p B131 43p 7447 35p B132 44p 7447 35p B1	OVER 2,000 ELECTRONIC COMPONENTS IN A BIG NEW FREE IOO PAGE CATALOGUE TANDY Netionwide supermarkee of sound!
283055 559 CIO60 SCR 70p 283055 559 CIO60 SCR 70p 283702 129 S-DEC 0C4 229 Breathaard £2.15 0C45 229 T-DEC 0C71 229 Breathaard £3.93 74109. Imp 209 Prices VAT inclusive + 20p P&P 1.500 types of Diodes, Transistors, + ICs, SCRs. Triacs. in stock plus; Full range of passive components. List 10p + SAE AITKEN BROS. & CO. 35 HIGH BRIDGE NEWCASTLE-ON-TYNE NE1 1EW Your Electronic Component Centre for North East.	Please send me the 100 page Tandy catalogue NameAddress Tandy Corporation (Branch UR), Bilston Road, Wednesbury, W. Mullands, WSID 7IN. ET
SHOP FROM HOME with our catalogue. Fully illustrated and covering over 3,000 components, audio and disco accessories, tools and test meters. Reviewed as one of the best catalogues available. Send 30p now for your copy (issue No 5). Access, Giro, Barclaycard, Government and educational orders accepted. (Giro No 331-7056). B. H. COMPONENT FACTORS LTD. Leighton Electronics Centre 59 North St., Leighton Buzzard, Beds Tel: 2316 (0286) Shop hours: 9-12.30, 1.30-5 p.m. Closed Wednesday	Treasure Locator Kits by DETECTOR PRODUCTS Suppliers to the UK & Abroad Circuits & Instructions Complete Kit Complete Kit Total £14 incl. VAT p&p Solid aluminium frame with an efficient Faraday screen. For enquiries please send S.a.e. to: DETECTOR PRODUCTS S8a King Street, Blackburn, Lancs Tel. 62561 or 54105 WANTED: ETI Jan, Feb, Nov 1973. Jan, March, Sept, Nov 1974. Jan, June, Aug, Set Leonards House Ashtreet
 TURN YOUR SURPLUS capacitors, transitors, etc., into cash. Contact COLES-HARDING & CO., P.O. Box 5, Frome, Somerset. Immediate settlement. MM5316 sophisticated alarm clock chip, £4.99. 5-LT-02 matched full alarm clock display, £5.60. 10% off over £10. Post 25p. Pinewood Electronics E3 Harmoth Back December 10 	Close, Worlingham, Suffolk. MANN Best choice for used TV Worldwide exporters of colour and mono TV. Unlimited supplies. Midland TV Trade & Betail Services, Worcester Road, Kidderminster, England. Tel: Kidderminster 61907 or 67390.
37 W DODODINE BUZN LINESONSING	
BOY MULINI NUAL, DUI LIIESIBI Dorsel MOTOROLA M6800 MICROPROCESSORS DO YOU NEED ASSISTANCE? HARDWARE AND SOFTWARE EXPERTISE IS AVAILABLE MEK kits & components supplied. Send SAE to: FRASER-MANNING LTD. 26 Hervey Street, Ipawich, Suffolk	100 POLYESTER CAPACITORS 12.15 100 fully guaranteed electrically tested polyester canacitors. No floor sweepings, An Jamous makes, ITT, MULLARD, ERIE, erc Mixed pack or YOUR CHOICE trum the following values – mainty 250 V Promp despatch 014F 047 MF 22 MF 015 .068 33 022 1 47 033 15 Mait Order Only £2.25 includes P&P MALLOY, W.O.M. ELECTRDNICS (E.T.I.) 66 Woodvelle Avenue, Belfast BT13 JEX, N. Ireland INDEX TO ADD

AVDEL TOTED 200 AC125/6/7/8 150 AC125/6/7/8 150 AC125/6/7/8 150 AC125/6/7/8 200 AC125/6/7/8 200	HZ E1 T05 1A z E2.228 T056 3A A 400V TRI 2N3053 16 2N3055 419	24p 27p 44p 6411 27p 36p 60p 21p ACS 2A 90p 10A ET.E VOLTAGE AEG8 5V 7805 Phonic 12V 7812 1 Amp
AF124/5/6/7 34p BC/107/8/9 3p BC108C 12p BC108C 12p BC157/8/9 10p BC157/8/9 11p BC169C 12p BC169C 12p BC177/8/9 12p	2N3702/3/4 12p 2N3903/4/5/81Np 2N2646 30p MFF102 40p 2N3819 20p 2N3823 30p 8A100 hp	15V 7815 sl 18V 7818 £1.60 723 DIP 14 50p BRIDGE RECTE. 2A 50V 30p 2A 100V 30p 2A 200V 41p
BC182/3/44, 11p BC186/7 30p BC212/3/44, 13p BCY70/71/72 13p BF194/5 12p BF196/7 14p BF196/7 14p BF50/51 14p BF50/51 14p	N914 3p IN4001 6p IN4001 6p IN4001 6p IN4001 6p IN4005/3 6p IN4006/3 6p IN4148 4p BA100 6p OA47 6p	2A 400V 48p 2ENERS 2.7-33V - B2Y88 or sim 8p 555 Timer 80p 556.2±555 £1.10 UM380 £1.00 70.414 £1 + 1
urks4 34p BSX19/20 16p 0C71 10p 2N/206 10p 2N1711 20p 2N12219 20p 2N2204/5/6/16p 2N2904/5/6A	OA70 OA79 Bp OA81 OA90 7p OA81 OA95 6p OA91 OA95 6p OA200 6p OA202 7p OP. AMPS 709 mil - 28p	Chain 81.10 - 7400 18p D.J.L. SOCKETS B pin 12p 14-pin 13p 18-pin 14p Mice + subles
lete. List 20 export serv types of n saler's Deal COX RAU Parade, Ed Wittering	Dp. S.A.E. for quice. We wish to ew and boxed er's, etc., stocks DIO (SUSSEX ast Wittering, 1 2923	iotation. Postal o purchase all valves. Whole- purchased.) LTD., The Bussex, West
LED \ Hour, min., set 20.00 each i Vat Campbell Gyro	Dp. S.A.E. for qu rice. We wish to ev and boxed er's, etĉ., stocks DHO (SUSSEX BAT Wittering, 1 2923 WATCH C. date, day, month including postage uplanes Ltd.	Notation. Postal o purchase all valves. Whole- purchased. } LTD., The Bussex, West

RF Sig. Gen. TF 144G – £15; Home-Built Score, dual trace – £20; Avo 7 – £10; Sinclair Scientific – £6. – Phone Maiden Newton 525 (Dorset).

		and the second second
X TO AL	OVERTISERS	
p24	Island Devices Miniade	
Minipda	Les Instruments	
p75	Lynx Electronics p40	
p4 & 5	Maplin	
p83	Marco Trading Miniada	
p24	Marshells	
p25	Metac	
p76	Minikita	
p63	P.B. Electronics p18	-
p78	Polytechnic of N. London	
p69	Pronto Electronica	
p77	Pulse Electronice	
p47	Radio Rotor	
p54	Ramer, Miniada	
p71	R.F. Equipment Spares Miniada	
075	Sintel	
079	Tandy Corporation Mininde	
Miniada	Technometic	
p2	Wilmslow Audio p82	

1

Wilmslow Audio

THE firm for speakers

Prices correct at 19.7.76

ALL PRICES INCLUDE VAT

Cabinets. wadding, Vynair, crossovers etc.

Send stamp for free booklet "Choosing a Speaker

FREE with all orders over £10 - "HIFI Loudspeaker Enclosures" Book

All units are guaranteed new and perfect

Prompt despatch

Carriage: Speakers 55p each, 12" and up 85p each, tweaters and crossovers 33p each, kits £1 each (£2 DBir)

WILMSLOW AUDIO Dept. ETi

Swan Works, Bank Square, Wilmslow, Cheshire SK9 1HF. Tel. Wilmslow 26599 (Discount HiFi, PA and Radio at 10 Swan Street, Wilmslow)

- does not need a transistor radio to operate.
- Incorporates unique varicap tuning, ۲ for extra stability.
- Search head fitted with Faraday . to eliminate capacitive screen effects.
- Loudspeaker or earphone operation, (both supplied).
- Britain's best selling metal locator; kit. 4,000 already sold. .
- Kit can be built in two hours using; . only soldering iron, screwdriver, pliers and side-cutters. Excellent sensitivity and stability.
- .
- Kit absolutely complete including drilled, tinned, fibreglass p.c. board . with components siting printed on.
- Complete after sales service. . ò.
- Weighs only 220z; handle knocks down to 17" for transport.

Send stamped, self-addressed envelope for literature.

(Mail order only)

reader services **BACK ISSUES**

These cost 40p each. Postage and packing costs 15p for the first, and 10p for each subsequent issue. Orders to ETI BACK (SSUES Dept, please, We CANNOT supply the following issues:- All 1972; January, February and November 1973; January, March, September, October, November and December 1974; January, June, July, §ugust, September, November and December 1975; January, March 1976; April, August, Geinher 1973 October 1973.

electronics todav

SUBSCRIPTIONS

The annual subscription to ETI for UK readers is E5.00. The current rate for readers overseas is E5.50. Send orders to ETI SUBS Dept. PAYMENT IN STERLING ONLY PLEASE.

BINDERS

Binders, for up to 13 Issues, are available for E2.50 Including VAT and Carriage, Send orders to ETI BINDERS DEPT....

EDITORIAL OUERIES

Written queries can only be answered when accompanied by an SAE, and the reply can take up to three weeks. These must relate to recent articles and not involve ETI staff in any research. Mark your letter ETI QUERY ... Telephone queries can only be answered when technical staff are free, and never before 4 pm.

MINI-ADS & CLASSIFIEDS

This is a pro-payment service - rates on application to ADVERTISING.

SPECIAL ISSUES

Presently we produce five speciels -- Top Project 2 and 3. Electronics It's Easy (parts 1-13 and Parts 14-24) and 4600 Synthesiser (published by Maplin). Prices are 75p. £1, £1.20 and £1.50 respectively. Post and packing 13p per copy. Orders to ETI SPECIALS Dept. please.

ROOKS

ETI Book Service sells books to our readers by mail order. The prices advertised in the magazine Include postage and packing. Send orders to ETF Book Service, P.G. Box 79, Maldanhead, Berks.

NON-FUNCTIONING PROJECTS

We cannot solve the problems faced by Individual readers building our projects unless they are concerning interpretation of our articles. When we know of any error we print a correction as soon as possible at the end of News Digest. Any useful addends to a project will be similarly dealt with. We cannot advise readers on modifications to our projects.

PCBs

PCBs are available for our projects from companies advertising in the magazine, such as Ramar and Crofton, who do en excellent service.

T-SHIRTS

ETI T-shirts are evallable in Large, Medium, or Small sizes. They are yellow cotton with black arinting and cost £1.50 each. Send orders to ETI T-SHIRTS Dept...

ADDRESS FOR ETI DEPARTMENTS-36 EBURY ST. LONDON SWIW OLW

PLEASE MARK REVERSE OF EACH CHEQUE WITH NAME & ADDRESS AND ITEMS REQUIRED. ALLOW 10 TO 14 DAYS FOR DELIVERY

BUILD IT YOURSELF...

Fully controllable attack and delay

controls (normally found only on the

most expensive organs], up to seven

footages on each keyboard, up to 70

controls including drawbars, and a 13

note pedalboard, make up the additions

described in the step-by-step 32 page instruction leaflet MES 53. Price 35p:

IN STAGES

IFITRONIC

Get started with a 49 note instrument features tremulant and reverberation.

Ideal to learn on, Leaflet MES 51. Price

15p gives full details to build this

Extend the range of MES 51" by adding

another keyboard and several new tone

colours, Leaflet MES 52, Price 15p also shows how to use 61 note keyboards.

Automatic voice operated fader,

Full details in Sept. (Oct. editions of this magazine

Belt drive turntables

complete instrument.

We stock all the parts for this brilliantly designed synthesiser, including all the PCB's, metalwork and a drilled and

printed front panel, giving a superb professional finish. Opinions of authority agree the ETI International Synthesiser is technically superior to most of today's models. Complete construction details in our booklet new available price £1.50, or send SAE for specification.

A really superior high quality stereo graphic equalizer featuring 9 octaves per channel. We stock all the parts (except woodwork) including the metatwork drilled and printed. 15p brings you a reprint of the article.

This is a fully constructed and lested electronic clock module as illustrated. Data sheet supplied. Simple to connect to alarm and your battery/mains radio. Smart case available shortly. Data sheet available separately. Please send SAE.

*

*

- Bright 4 Digit 0.5" Display Flashing Colon (1Hz) Switch for Display Seconds Alarm Set Indicator

- P.M. Indicator
- **Power Failure Indicator**
- SIMPLE ALARM KIT E9.38 ALARM CLOCK KIT ALARM CLOCK & RADIO CONTOLLER KIT £11.51 SMART PLASTIC CASE with fully punched chassis £2.49 Plesse send SAE for our Clock data sheet ALARM CLOCK KIT - £10.99

Get our FABULOUS NEW 1977/78 CATALOGUE PUBLICATION DATE DCT. 28. 1976 ON APPROVAL All new Completely re-written Chundreds of new lines.

Lots of exciting new projects to build — PRICE-50p SEND NO MONEY NOW Overseas send 8 International reply coupons

Monitor facilities (Headphones and VU meter) Sound operated light show — plus many other advantages.

Send for our leaflet MES 41, giving full details for construction. Price 20p Soon you'll be the Deejay everyone wants at their party.

JOIN OUR MAILING LIST NOW! Published every two months our Newsletter gives full details of our latest guaranteed prices. Send just 30p towards cost of postage and we'll send you the next six issues as they are oublished. (A 5n voucher is sent with each newsletter which may be used on purchases.)

SAVE SE'S ON SPECIAL OFFERS! DETAILS OF NEW PROJECTS AND NEW LINES

MAPLIN ELECTRONIC SUPPLIES All mail to P.O. Box 3, Rayleigh, Essue SS5 BLR Shop: 284 London Road, Westchift-on-Sea, Essex (Closed on Monday), Tel: Southend (0702) 44101 Please rush me a copy of your brand new 1977/78 catalogue the instant It is printed (Oct. 28th, 1976). Only if I am completely satisfied that it is worth every penny will I send 50p within 14 days of receipt. If I am not satisfied I may return the catalogue to you within 14 days without obligation. Lunderstand that I need not purchase anything from your catalogue should I choose to keep it.

Sleep Timer Snooze Timer

Time can be set accurately to

within one second Leading Zero Blanking

NAME

AORESS		61	- NE	325*

If you do not wish to cut magazine, write your request for catalogue on seeprate sheet 1975/75 GREEN COVER CATALDGUE STILL AVAILABLE. PRICE 40p