

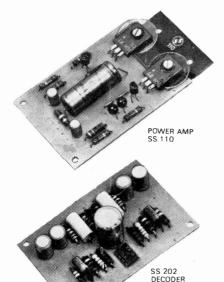
QV†MODULES FOR COST-CONSCIOUS CONSTRUCTORS

STIRLING SOUND QV Modules are our own designs manufactured in our own Essex factory Production standards are carefully controlled and you, the constructor, Production benefit directly from our many years of experience in meeting demand for components as well as by buying direct

Combined pre-amp with active tone-control circuits 200mV output for 50mV in. Runs on 10 to 16V supply treble ± 15dB at 10KHz, bass ±15dB at 30Hz Stereo bal., vol., treble & bass controls £7.80

SS.100

Active tone control, bass & treble


£1.60

SS.102 STEREO PRE-AMP RIAA corrected for mag p/ups, tape,

£2.65

SS.101

Pre-amp for ceramic cartridges, etc., passive tone control circuit shown in data supplied

POWER AMPLIFIERS

SS.103

A 3 watt amplifier using single I C type SL 60745 with built-in short circuit protection

SS.103-3. Stereo version (2 I C.s) of above SS.105
5 watts R M.S into 4 ohms using 12V supply. Ideal for use in-car entertainment Size 89 x 51 x 19mm €2.3

Similar in size and design to SS 105, this QV module delivers 10 watts R.M.S. into 4 ohms using a 24V supply, e.g. SS 324. Of great use in domestic applications £2.75 \$\$.120 Using a 34 volt supply, such as \$\$ 334, this amplifier will

deliver 20 watts into a 4 ohm load. Same dimensions as ab

There are suitable Stirling Sound power supplies for all the above

FM TUNING

FM Front End with geared slow motion tuning and A.F.C. facility 88-108MHZ

SS.202

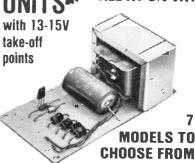
1 F amp A meter and/or A F.C. can be connected (size 3" 2"). For use with SS.201 £2.

SS.203

†THE BUILT-IN QV FACTOR

means Stirling Sound's guarantee of quality and value which gives you today's best buys all round. That's why you'll do better with QV Modules!

A member of the BI-PRE-PAK Group


220-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX SSO 9DF Phone: Southend (0702) 46344. PERSONAL CALLERS WELCOME

Heavy duty power amplifier giving 40 watts R.M.S. into 4 ohms using 45V. With output capaci-

tor. Good for small disco

7

Compare these guaranteed power packs for power and price. Not only do these excellent power packs stand up unflinchingly to hard work, inclusion of a take-off point (except. SS 312) at around 13-15V adds to their usefulness. P/P 50p any model)

SS.312 12V/1A £3.75* **SS.318** 18V/1A £4.15* SS.324 24V/1A £4.60* **SS.334** 34V/2A £5.20* **SS.345** 45V/2A £6.25* **SS.350** 50V/2A £6.75*

SS.300. Add-on power supply stabilising unit Short-circuit protected. Ensures stabilised output variable from 12V/2A to 50V max. at 8A. Ideal for workbench and experimenting. £3.25° (P&P 35p).

SS.310/350 **VARIABLE OUTPUT** STABILISED SUPPLY

With continuous variable output at 2A from 10 to 50 V.D.C. With built-in protection against shorting and fully adequate heat sink Guaranteed. Superb value at £11.95°.

WHEN ORDERING

Add 35p to your order for P&P for mail orders. VAT add 12½% to total value of order unless shown then the rate is 8% Make cheques, etc., payable to BI-PRE-PAK LTD. Every effort is made to ensure correctness of information at time of going to press. Prices subject to change without notice

Electronics today international

FEBRUARY 1977 °	VOL 6	No. 2
Features —		-
COMPUTERS IN SMALL COMPANIES Mini computers in mini firms — big advantages!		11
ULTRASONIC RAILTRACK TESTING Sounding out the rails Britain runs on		25
YAMAHA B-1 REVIEWED Super-amp with a smooth sound		29
'SCOPE TEST YOUR CAR Putting your vehicle to the silver screen		
COMPONENTS PART 7		
MICROFILE REPORT		
ELECTRONICS ITS EASY! PART 36 Series for beginners		
TECH-TIPS		73 ,
Projects		
Projects —		
DISCO MIXER		16
INDUCTION BALANCE METAL LOCATOR The first machine to use this brilliant principle		33
SHORT CIRCUITS: LED DICE		49
TW.O-TONE DOORBELL		50
BENCH AMPLIFIER		. 52
Data Sheet		
TTL PINOUTS All those mysterious pins unmasked at last!		41
All those mysterious pins unmasked at last!		
News —		
NEWS DIGEST		. 6
ELECTRONICS TOMORROW		69
Information —	,	
*1		
SPECIALS		
ETI CLOCK OFFER		
MARCH ETI PREVIEWED		
BOOK SERVICE		
TRANSDUCERS IN MEASUREMENT AND CO		
BINDERS		
READER SERVICES		82

EDITORIAL AND ADVERTISEMENT OFFICES 25-27 Oxford Street London W1R1RF Telephone 01-434 1781/2

HALVOR W. MOORSHEAD Editor

LES BELL, G4CFM RON HARRIS B.Sc Editorial

TONY ALSTON
Project Development

JIM PERRY
Specials Editor

JULIAN ZINOVIEFF Production

SANDRA ZAMMIT-MARMARA Subscriptions

MARGARET HEWITT Administration

DAVID LAKE (Manager) BRENDA GOODWIN Reader Services

ROBERT C. EVANS Advertisement Manager Telephone 01-437 5982

INTERNATIONAL EDITIONS

AUSTRALIA: Collyn Rivers
Editorial Director
Steve Braidwood
Assistant Editor

HOLLAND: Anton Kriegsman
Editor-in-chief

CANADA: Peter Priest
Publisher

FRANCE: Denis Jacob
Editor-in-chief

Electronics Today International is normally published on the first Friday of the month prior to the cover date.

PUBLISHED BY Modmags Ltd. 25-27 Oxford Street, W1R 1RF

DISTRIBUTED BY Argus Distribution Ltd (British Isles) Gordon & Gotch Ltd

PRINTED BY

OB Newspapers Limited, Colchester.

COPYRIGHT: All material is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur, a correction will be published as soon as possible afterwards in the magazine.

BI-PAK

PO BOX 6
WARE HERTS

SEMICONDUCTORS

POSTAGE & PACKING Please add 25p. Overseas add extra for airmail Minimum order £1.00

SECOND GREAT SALE! WINTER SALE!

74 SERIES TTL ICs

Type	0	luantity	Type	C	luantity	Type	C	luantity
	1	10Ó		1	10Ó		1 .	100
	£p			£p			£p	£р
7400	0.09	0.08	7448	0.70		74122	0.45	0.42
7401	0.11	0.10	7450	0.12	0.10	74123	0.65	0.62
7402	0.11	0.10	7451	0.12	0.10	74141	0.68	0.65
7403	0.11	0.10	7453	0.12	0.10	74145	0.75	0.72
7404	0.11	0.10	7454	0.12	0.10	74150	1.10	1.05
7405	0.11	0.10	7460	0.12	0.10	74151	0.65	0.60
7406	0.28	0.25	7470	0.24	0.23	74153	0.70	0.68
7407	0.28	0.25	7472	0.20	0.19	74154	1.20	1.10
7408	0.12	0.11	7473	0.26	0.22	74155	0.70	0.68
7409	0.12	0.11	7474	0.24	0.23	74156	0.70	0.68
7410	0.09	0.08	7475	0.44	0.40	74157	0.70	0.68
7411	0.22	0.20	7476	0.26	0.25	74160	0.95	0.85
7412	0.22	0.20	7480	0.45	0.42	74161	0.95	0.85
7413	0.26	0.25	7481	0.90	0.88	74162	0.95	0.85
7416	0.28	0.25	7482	0.75	0.73	74163	0.95	0.85
7417	0.26	0.25	7483	0.88	0.82	74164	1.20	1.10
7420	0.11	0.10	7484	0.85	0.80	74165	1.20	1.10
7422	0.19	0.18	74B5	1.10	1.00	74166	1.20	1.10
7423	0.21	0.20	7486	0.28	0.26	74174	1.10	1.00
7425	0.25	0.23	7489	2.70	2.50	74175	0.85	0.82
7426	0.25	0.23	7490	0.38	0.32	7.4176	1.10	1.00
7427	0.25	0.23	7491	0.65	0.62	74177	1.10	1.00
7428	0.36	0.34	7492	0.43	0.35	74180	1.10	1.00
7430	0.12	0.10	7493	0.38	0.35	74181	1.90	1.80
7432	0.20	0.19	7494	0.70	0.68	74182	0.80	0.78
7433	0.38	0.36	7495	0.60	0.58	74184	1.50	1.40
7437	0.26	0.25	7496	0.70	0.68	74190	1.40	1.30
7438	0.26	0.25	74100	0.95	0.90	74191	1.40	1.30
7440	0.12	0.10	74104	0.40	0.35	74192	1.10	1.00
7441	0.60	0.57	74105	0.30	0.25	74193	1.05	1.00
7442	0.60	0.52	74107	0.30	0.25	74194	1.05	1.00
7443	0.95	0.90	74110	0.48	0.45	74195	0.80	0.75
7444	0.95	0.90	74111	0.75	0.72	74196	0.90	0.85
7445	0.80	0.75	74118	0.85	0.82	74197	0.90	0.85
7446	0.80	0.75	74119	1.30	1.20	74198	1.90	1.80
7447	0.70	0.68	74121	0.28	0.26	74199	1.80	1.70

Devices may be mixed to qualify for quantity price. Data is available for the above series of I.C.'s in booklet form price 35p

LINEAR ICs

TBA 80	0	.75
	8 pin DIL	'18 _F
72474	14 pin OIL	'36 _F
748P	8 pin DIL	'25p
NE555	Timer .	. 38p
NE556	Dual Timer	780

CAPACITOR PAKS

16201	18	Electrolytics	47	uF-10	uF
16202	1.8	Electrolytics	10	uF-100	υF
16203	18	Electrolytics	100	uF-680	υF

BUY ONE OF EACH Special Price £1.20% the 3

16160 24 Ceramic Caps 22 pf-82pf 16161 24 Ceramic Caps 100pf-390pf 16162 24 Ceramic Caps 470pf-3300pf 16163 21 Ceramic Caps 4700pf-0.047pf

BUY ONE OF EACH

Special Price £1.60* the 4

I.C. SOCKETS

			U	rder No		
				1611	9p	
BPS	14	14	pin	1612	10p	
BPS	16	16	pin	1613	11p	

TRIACS

Order No 2A/400T05 TR12A/400 **50p** 10A/400 Plastic TR110A/400P **80p**

RESISTOR PAKS

16213 1/8th 100 ohm-820 ohm 16214 1/8th 1K-8 2K 16215 1/8th 10K-8 2K 16216 1/8th 100K-1M

BUY ONE OF EACH Special Price £1.60* the 4

TRANSISTORS

AC153K AC176 AC176K AC1876K AC188K AC188K BC108 BC108 BC109 BC1154 BC157 BC157 BC158 BC157 BC158 BC170 BC170 BC177 BC178 BC172 BC177 BC178 BC1824& BC183 BC1824& BC183 BC1824& BC183 BC1824& BC1824& BC1824& BC1824& BC1824&	12p 22p 6p 6p 10p 8p 10p 10p 10p 12p 12p 12p 12p 12p 12p 12p 9p	OC44 OC45 OC71 OC72 OC81 ZTX107 ZTX108 ZTX300 ZTX300 ZTX301 ZTX502 ZTX500 ZTX501 ZTX502 ZN696 2N697 2N706 2N706A 2N708 2N1631 2N1711 2N1893 2N2217 2N2218 2N2219 2N2219 2N2221	122 122 144 146 166 177 187 150 1187 1187 1187 1187 1187 1187 1187 118
BC251 BC327 BC327 BC327 BC337 BC338 BF115 BF115 BF195 BF195 BF197 BF198 BF199 BF198 BF199 BF257 BF257 BF259 BF257 BF259 BF257 BF259 BF257 BF259 BF257 BF259 BF257 BF259 BF257 BF259 BF257 BF259 BF257 BF259 BF257 BF259 BF257 BF259 BF257 BF259	12p 112p 111p 10p 10p 19p 12p 12p 12p 12p 26p 20p 34p 18p 20p 20p 12p 12p	2N3904 * 2N3905 *	16; 12; 14; 15; 14; 15; 14; 12; 13; 14; 13; 14; 16; 17; 11; 11; 11; 11; 11; 11; 11; 11; 11

DIY PRINTED CIRCUIT KIT

CONTAINS 6 pieces copper laminate, box of etchant powder and measure, tweezers, marker pen, high quality pump drill, Stanley knife & blades, 6in metal rule. Full easy-to-follow instructions

£7.80 £5.50

V.A.T.

Add 8% Add 12½% to items marked*

DIODES

OA47	5p	IN4005	6р
0A81	5p	IN4006	7p
OA85	6p	IN4007	8p
OA91	5p	IN5400	11p
DA200/BAX 13	5 p	IN5401	12p
OA202/BAX16	5p	IN5402	13p
N914	4p	IN5403	14p
IN4148	4p	IN5404	15p
IN4001	3p	IN5405	16p
N4002	4p	IN5406	17p
IN4003	5p	IN5407	18p
N4004	6n	IN5408	20n

VOLTAGE REGULATORS

		_				_	_	_	-	-		
MVR 7815												85p
MVR 7812												85p
MVR 7815												85p

OPTOELECTRONICS

L.E.D. DISPLAYS	Order No	Price
DL 707 0.3"	1.510	0.70
DL 747 0 6"	1511	1.50
L.E.D.'s		1
TIL 209 RED 125"	1501	
FLV 117 RED 2"	1504	
5 of either 50p		
PHOTO DEVICES		
ORP 12	1515	38p
OCP 71 Pack of 5	1520	оор

THYRISTORS

	1010110	
T05	Order No	
1A/50 PIV	THY 1A/50	18p
1A/400 PIV	THY 1A/400	
1A/600 PIV	THY 1A/600	
TO66		
5A/50 PIV	THY 5A / 50	25p
5A/400 PIV	THY 5A / 400	
5A/600 PIV	THY 5A / 600	50p
TO48		
16A/50 PIV	THY 16A/50	40p
164 / 400 PIV	THY 164 (400	60n

UNIJUNCTION

UT46/TIS 43

18p

F.E.T.

2N3819

ORDERING

PLEASE WORD YOUR ORDERS EXACTLY AS PRINTED NOT FORGET-TING TO INCLUDE OUR PART NUMBER

High quality modules for stereo, mono and other audio equipment.

PUSH-BUTTON

and

output.

Fitted with Phase Lock-loop Decoder

The 450 Tuner provides instant program selection at the touch of a button ensuring accurate tuning of 4 pre-selected stations, any of which may be altered as often as you choose, by simply changing the settings of the pre-set controls.

Used with your existing audio equipment or with the BI-KITS

STEREO 30 or the MK60 Kit etc. Alternatively the PS12 can be used if no suitable supply is available, together with the Transformer T538.

The S450 is supplied fully built, tested and aligned. The unit is easily installed using the simple instructions supplied

- ★ FET Input Stage★ VARI-CAP diode tuning
- Switched AFC
- Multi turn pre-sets
- **LED Stereo Indicator**

Typical Specification: Sensitivity 3n volts Stereo separation 30db Supply required 20-30v at 90 Ma max.

£13.75

It is provided with a standard DIN input socket for ease of connection. Full instructions supplied

POSTAGE & PACKING

Postage & Packing add 25p unless otherwise shown. Add extra for airmail. Min. £1.00

7+7 WATTS R.M.S

complete The Stereo 30 comprises a pre-amplifier, power amplifiers and power supply. This with only the addition of a transformer or overwind will produce a high quality audio unit suitable for use with a wide range of inputs i.e. high quality ceramic pick-up, stereo tuner, stereo tape deck etc. Simple to install, capable of producing really first class results, this unit is supplied with full instructions, black front panel knobs, main switch, fuse and fuse holder and universal mounting brackets enabling it to be installed in a record plinth, cabinets of your own construction or the cabinet available: Ideal for the beginner or the advanced constructor who requires Hi-Fi performance with a minimum of installation difficulty (can be installed in 30 mins)

TRANSFORMER £2.45 plus 62p p &p TEAK CASE £5.25 plus 62p p & p.

Modules. Features include on/off volume. Belance, Bass and Treble controls. Complete

* Max Heat Sink temp 90C. * Frequency response 20Hz to 100KHz * Distortion better than 0.1 at 1KHz * Supply voltage 15-50v * Thermal Feedback * Latest Design Improvements * Load — 3,4,8, or 16 ohms * Signal to noise ratio 80db * Overall size 63mm, 105mm.

Input voltage 15-20v A.C. Output voltage 22-30v D.C.

Frequency Response 20M2-20M1 (-3dB). Bass and Treble range 12dB. Input Impedence 1 meg ohm. Cansitivity 300mV. Supply Size 152mm

Input Sensitivity 300mV. Supply requirements 24V.5mA. Size 152mm x 84mm x 33mm.

Response 20Hz-20KHz

Power supply for AL20/30. PA12, SA450 etc

Output current 800 mA Max. Size 60mm x 43mm x 26mm. Transformer T538 £2.30

P.O. BOX 6, WARE. HERTS.

OUR PRICE

NEW PA12 Stereo Pre-Amplifier com-pletely redesigned for use with AL for use 20/30

SHOP AT

.18 BALDOCK ST., WARE, HERTS OPEN 9 to 5.30 Mon./Sat. Tel. 61593

STEREO PRE-AMPLIFIER

high and low frequencies, plus tape

MK. 60 AUDIO KIT: Comprising

2 x AL60's, 1 x SPM80, 1 x BTM80, 1 x PA100, 1 front panel and knobs, 1 Kit of parts to include

on/off switch, neon indicator stereo headphone sockets plus instruction booklet. COMPLETE

PRICE £29.55 plus 85p postage.

Comprising: Teak veneered cabinet size $16\sqrt[3]{4}$ x $11\sqrt[3]{2}$ v x $3\sqrt[3]{4}$ other

parts include aluminium chassis heatsink and front panel

TEAK 60 AUDIO KIT:

bracket plus back panel

and appropriate sockets etc. KIT PRICE £10.70

plus 85p

postage

SPECIFICATION:

● Load Impedance 8-16ohm

Frequency Response + 1dB 20Hz 20KHz. Sensitivity of inputs
1. Tape Input 100mV into 100K ohms
2. Radio Tuner 100mV into A top quality stereo pre-amplifier tone control unit. push-button selector switch pro-vides a choice of inputs together with two really effective filters for

100K ohms
Magnetic P.U. 3mV into
50K ohms
J. Input equalises to R1AA curve with

1dB from 20Hz to 20KHz. Supply — 20-35V at 20mA.

Dimensions 299mm x B9mm

AUDIO AMPLIFIER MODULES

The AL20 and AL30 units are similar in their appearance and in their general specification. However, careful selection of the plastic power devices has resulted in a range of output powers from 5 to 10 watts R.M.S. The

versatility of their design makes them ideal for use in record players, tape recorders, stereo amplifiers and cassette and car tridge tape players in the home.

● Harmonic Distortion Po=3 watts f=1KHz 02.5% Size: 75mm x 63mm x 25mm

● Frequency response ±3dB Po=2 watts 50Hz-25Hz
■ Sensitivity for Rated 0/P — Vs=25v. RL=8ohm f=1KHz 75mV.RMS

AL20 5w R.M.S. £2.95 AL30 10w R.M.S. £3.25

25 Watts (RMS)

Especially designed to a strict specification. Only the finest components have been used and the latest solid-state circuitry incorporated in this powerful little amplifier which should satisfy the most critical A.F. enthusiast.

Stabilised Power Supply Type SPM80

SPM80 is especially designed to power 2 of the AL60 Amplifiers, up to 15 watts (R.M.S.) per channel simultaneously. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5A at 35V. Size: 63mm. 105mm, 30mm Incorporating short circuit protection.

Transformer BMT80 £2.60 + 62p postage

-nerve digest

ANONYMOUS WATCH

A new digital watch module that also functions as a stopwatch has been introduced by Hughes Microelectronics. Measuring 1.15 inches in diameter, the new solid-state module utilizes a 6 digit liquid crystal display. It provides five timekeeping functions - month, date, hour, minute, and second - as well as a stopwatch accurate to one hundredth of a second. A light is also built-in for night time reading.

In the stopwatch mode, the counters can be set to zero and will count in minutes, seconds, hundredths of a second, while in this mode the time can be 'called out' without interrupting the operation of the stopwatch. Similarly, split times can be obtained during counting and the internal counter will continue in operation

Hughes, which supplies many namebrand and private-label watch companies with modules, does not market a watch to consumers under its own name, and so when this device gets to the shops, it will be called anything except Hughes!

Hughes Microelectronics Ltd., Berkeley Square House, London, W1X 6ΕΩ.

CALCULATING SINCLAIR'S ERROR!

We have received several letters from readers concerning our recent survey of scientific calculators.

The letter below is a composite, made up from some of these epistles which makes the points our readers made. The comments are perfectly valid, but it is worth remembering that the CBM and Rockwell machines turn in higher accuracies, regardless of the test applied

Dear sir, 7
'Cheap scientific Calculators' 7
Your recent comment on the accuracy of the trig functions of the Sinclair Scientific lead me to check my H.P. 35 which is a ten figure machine.

Following your procedure of taking 450 and then Sin., Cos., Tan., followed by arc Sin., arc Cos., arc Tan., the answer comes out at 45.0020 which for accurate survey work would be a significant error.

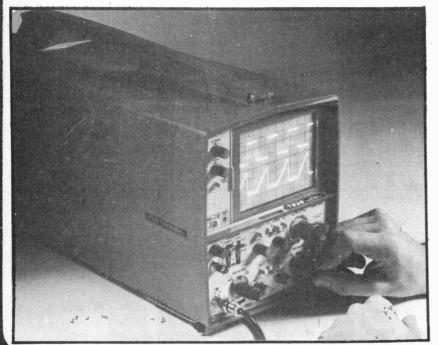
However I do not feel that this result casts doubt on my H.P. 35, but high-lights the problems of working with small angles on the process you adopted involves taking the Cos. of 0.7071060 and then the Tan. of 0.012341960.

With angles of this magnitude the differences are very small and for a high degree of accuracy a very large number of figures has to be used.

What your results show is not the accuracies of the trig. functions of the Sinclair Scientific but the limitations of the restricted number of digits with which the machine computes.

While I have no connection with Sinclairs I feel that you have, to some extent, done them an injustice and in a future edition some word of explanation would not come amiss. Your comments could well have put purchasers off buying a cheap and useful machine.

CEEFAX LEGAL!


The Home Office has recently agreed that approval for the continued transmission of the BBC's CEEFAX service, first authorised in September 1974, should be extended to the end of the current BBC Charter in July 1979, subject to any decisions following the report of the committee on the Future of Broadcasting. At the present time, two separate magazines, each having up to 100 pages, are being transmitted on BBC-1 and BBC-2.

COUNTING LESS IN CMOS

Motorola USA has just hacked 25% off the price of 63 CMOS MSI devices.

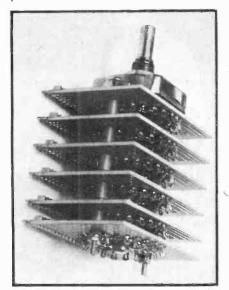
This is to heighten competition with low power Schottky TTL chips, which are at present more than holding thier own against the newer technology.

Simple gate prices are not affected.

PLENTY OF SCOPE

The T900 Series of oscilloscopes, from Tektronix U.K. Ltd., is claimed to be engineered to 'reduce the cost of ownership' i.e. make the things cheaper (presumably). Why people can't say what they mean...

Anyway the range includes five models: the T921 and T922 single and dual-trace 15MHz instruments, the T932 and T935 dual-trace 35MHz with single and dual timebases, and the T912 10MHz dual-trace bistable storage oscilloscope. Prices range from about £500 to £1.000 (plus VAT).


All models have an 8 x 10cm display area, and measure 17.8 x 25.4 x 48.3cm.

The T935 incorporates delayed sweep - signals that reveal insufficient detail on one timebase may be selectively expanded using this feature.

Tektronix U.K. Ltd., Beaverton House, P.O. Box 69, Harpenden, Herts.

SWITCH-OVER

Designed for mounting directly onto the printed circuit board, this compact 24-position rotary switch itself incorporates printed circuit wafers, each containing 24 in-line solder coated pins on 0.1" centres. Switches are

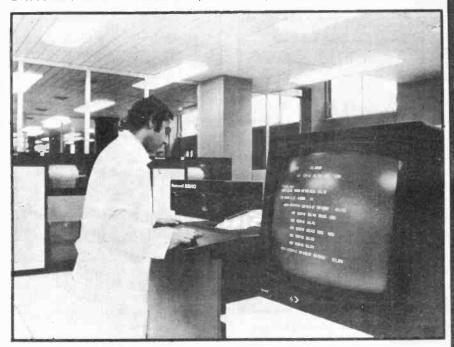
available in break-before-make and make-before-break versions. Contact ratings: 0.5A at 28Vd.c., 0.25A at 110Va.c. The initial control resistance is less than 15 milliohms for all contact types.

Diamond H Controls Ltd., Vulcan Road North, Norwich NR6 6AH.

CHEMICAL COAT

A new dual coating tape from Agfa called the Carat, comes in the unusual - nay unique - size of C48. Fe-Cr tapes do offer improvements in some areas, and aimed for this spooling are:

Noise level: 4.5 dB better than iron oxide.

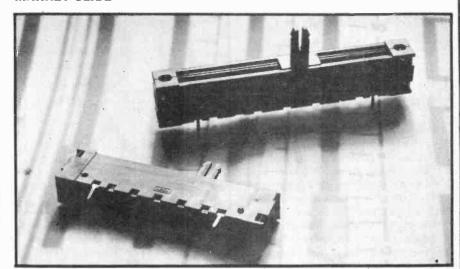

Max. output level: 4 dB better than iron oxide, and 1.5dB better than chromium dioxide.

Dynamic range: 8.5 dB better than iron oxide.

Bias setting should be Fe-Cr really, but in the absence of excellence, record on Fe setting, and replay on CrO₂. Special Mechanics (under licence from you-know-who) are used to aid transport.

Agfa-Gevaert Ltd., 27 Great West Road, Brentford, Middx.

DRIVING THE ITALIANS MAD? (LEGALLY!)


Photograph shows a dual series 60 Level 66 computer (made at Honeywell's Newhouse Lanarkshire factory) which is now in full operation in Rome speeding the issue of driving licences and car registration cards for the Italian Ministry of Transport.

registration cards for the Italian Ministry of Transport.

The computer is a dual Model 66/40 with two Datanet 6600 communications processors for controlling an on-line terminal network between local offices and the central data processing centre in Rome.

Total system value is in excess of £2.5M.

MARKET SLIDE

A comprehensive range of linear - motion slider potentiometers is now available from Distronic Ltd. The Siemart C Series and F Series, including single and tandem slider potentiometers with both 40mm and 58mm travel, and designed for applications in the consumer electronics market, including stereo units, radios, television sets, musical instruments etc..

Metal-screened types are available where the elimination of external interference is important, and tandem types can have earthed metal screening incorporated between the resistive elements to minimise crosstalk between channels. The control spindle is made of insulating material.

Distronic Ltd., 50/51 Burnt Mill, Elizabeth Way, Harlow, Essex.

MOLYS CIIZOST

A MACHINE TO MARK TIME

Lo and behold - we have a new desk top calculator. Either that or someone has VERY big hands. Perhaps it's a hand-held machine designed to Govt. specifications. It could be useful in any event. The somewhat different facilities (for a desk machine) include two memories, hours minutes seconds arithmetic, Casios fraction operating mode, standard deviation, reciprocal and square root.

A slide switch is used to select function. Oh yes, the number is 122-F and it has an RRP of £75 around its digital neck.

ABM Ltd., ABM House, Wyfold Road, London S.W.6 6RZ.

AUDIO PHASER P.C.B. CORRECTIONS

The audio phaser PCB contains two drawing errors. The circuit diagram is correct, and projects built up on Veroboard, or some other method should function perfectly. It appears though that layout is fairly critical on this project, and several readers have had problems in this respect. The errors on the PCB are;

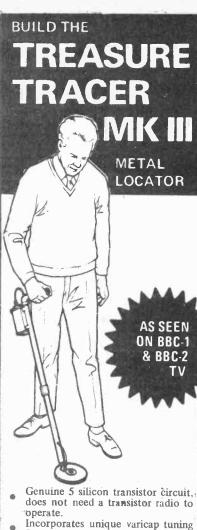
1. One end of RV1 is earthed via a track to IC6. It shouldn't be! Break this track.

2. Top right of the board, the pad which connects R33 to the link has a wire to earth missing.

. . . . AND ONE TO SAVE IT!

The new Oxford Scientific will retail at under £15 plus VAT. In addition to the four normal arithmetic and six trigonometric functions (in degrees and radians), the Oxford Scientific offers logs base_e, logs base₁₀, antilogs, yx, memory, two levels of parentheses. sign change, plus the four slide-rule functions $-x^2$, \sqrt{x} , 1/x, and π .

Accuracy is ± one unit in the eighth significant digit on arithmetic and slide-rule functions, and ±2 units on all other functions. The large green eightdigit display shows results in normal or scientific notation.


Sinclair Radionics Ltd., London Road, Huntingdon, Cambs. PE17 4HU

NATIONAL SELL CELLS!

The NSL-312 Cadmium Selenide and NSL-412 Cadmium Sulphide series of photoconductive cells have a 50mW power rating at 25° C, a choice of 7 photocell resistances, and typical dark capacitance figures of between 1.2pF and 4.0pF. Believed to be the smallest photocells currently on the market, they are available in either a TO18 size hermetically sealed package, or as a moisture resistant plastic encapsulated

National semiconductors Ltd., Stamford House, Stamford New Road, Altrincham, Cheshire, WA 141 DR.

for extra stability.

Search head fitted with Faraday eliminate capacitive to effects.

Loudspeaker or earphone operation

(both supplied).
Britain's best selling metal locator kit. 4,000 already sold.

Kit can be built in two hours using only soldering iron, screwdriver, pliers and side-cutters.

Excellent sensitivity and stability, Kit absolutely complete including drilled, tinned, fibreglass p.c. board with components siting printed

Complete after sales service.

Weighs only 22oz; handle knocks down to 17" for transport.

Send stamped, self-addressed envelope for literature.

Complete kit with pre-built search coil

Plus £1.00 P&P Plus £1.18 VAT (8%)

Built, tested and Guaranteed T.

Plus £1.00 P&P Plus £1.58 VAT (8%)

MINIKITS ELECTRONICS. 6d Cleveland Road, South Woodford, **LONDON E 18 2AN**

(Mail order only)

START THE NEW YEAR WITH A GREAT BARGAIN!

From Metac

BUILD YOUR OWN DIGITAL

BUILD YOUR OWN DIGITAL

CLOCK

COMPLETE KIT OF COMPONENTS

COMPLETE KIT OF FOLLOW

TO FOLLOW

INSTRUCTIONS

189.50 15:15

- SILENT
- ½" DIGITS
- GREEN DISPLAY
- PULSATING COLON
- ATTRACTIVE CASE
 12/24 HOUR READOUT

WE COULDN'T WAIT TO TELL YOU! WE'VE DONE IT AGAIN!

Bringing together FUTABA of Japan and GENERAL INSTRUMENT CORP. of America to produce this attractive digital clock offered to you in easy to build kit form at a new low, low price.

The kit is complete even to the attractive plastic case which is ready drilled, and can be assembled in around one hour using the easy to follow instructions.

How have METAC managed to offer this world-beating high-technology clock at such a low price? Well, if you haven't already guessed, METAC is, of course, part of an established electronics manufacturing company ELECTRONIC SERVICES AND PRODUCTS, who are manufacturers of electronic instrumentation and well-known for the ESP range of electronic capacitance meters.

Our engineers are not only experts in digital instrumentation but have been involved in digital clock design possibly longer than anyone else in the United Kingdom.

STOP PRESS

BRITAIN'S TOP SELLING DIGITAL ELECTRONIC CLOCK NOW AVAILABLE

Recommended Retail Price *17 95

OUR PRICE £13.95

Inc. VAT

In choice of orange planar gas or soft green fluorescent digit displays. Green model has 24-hour readout Orange model has 12-hour readout and AM/PM indicator. Both models have flashing second indicator. 24-hour bleeper alarm. 5-minute repeater mains failure indicator. 5" across x 3½" deep Attractive white case. Thousands sold Please state choice.

This form should also be used for our watch advertisement on page 39 of this issue.

To METAC INTERNATIONAL, 67 High Street, Daventry, Northants. Tel. 03272 76545.

Please supply the following:

I wish to pay by Barclay Card/Access and my number is

Mail Order Customers. Tra

Trade enquiries welcome

Unique full-function 8-digit wrist calculator... available only as a kit.

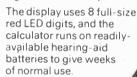
A wrist calculator is the ultimate in common-sense portable calculating power. Even a pocket calculator goes where your pocket goes – take your jacket off, and you're lost!

But a wrist-calculator is only worth having if it offers a genuinely comprehensive range of functions, with a full-size 8-digit display.

This one does. What's more, because it is a kit, supplied direct from the manufacturer, it costs only a very reasonable £9.95 (plus 8% VAT, P&P). And for that, you get not only a high-calibre calculator, but the fascination of building it yourself.

How to make 10 keys do the work of 27

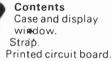
The Sinclair Instrument wrist calculator offers the full range of arithmetic functions. It uses normal algebraic logic ('enter it as you write it'). But in addition, it offers a % key; plus the convenience functions \sqrt{x} , 1/x, x^2 ; plus a full 5-function memory.


All this, from just 10 keys! The secret? An ingenious, simple three-position switch. It works like this.

1. The switch in its normal, central position. With the switch centred, numbers – which make up the vast majority of key-strokes – are tapped in the normal way

2. Hold the switch to the left to use the functions to the left above the keys...

3. and hold it to the right to use the functions to the right above the keys.



KIT ONLY £9.95 PLUS VAT, P&P

Sinclair Instrument Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN. Tel: Cambridge (0223) 311488. Assembling the Sinclair Instrument wrist calculator

The wrist calculator kit comes to you complete and ready for assembly. All you need is a reasonable degree of skill with a fine-point soldering iron. It takes about three hours to assemble. If anything goes wrong, Sinclair Instrument will replace any damaged components free: we want you to enjoy assembling the kit, and to end up with a valuable and useful calculator.

Switches.
Special direct-drive chip
(no interface chip needed).
Display.
Batteries

Everything is packaged in a neat plastic box, and is accompanied by full instructions. The only thing you need is a fine-point soldering iron.

All components are fully guaranteed, and any which are damaged during assembly will be replaced free.

The wrist-calculator kit is available only direct from Sinclair Instrument. Take advantage of this 10-day money-back undertaking.

Send the coupon today.

To: Sinclair Instrument Ltd,	-
6 Kings Parade, Cambridge, Cambs.	. CB2 1SN.

- * Please send me... (qty) Sinclair Instrument wrist-calculator kits at £9.95 plus 80p VAT plus 25p P&P (Total £11).
- * I enclose cheque/PO/money order for £
- * Complete as applicable.

Name

Address

(Please print)

| understand that you will refund my money in full if I return the kit undamaged within 10 days of receipt.

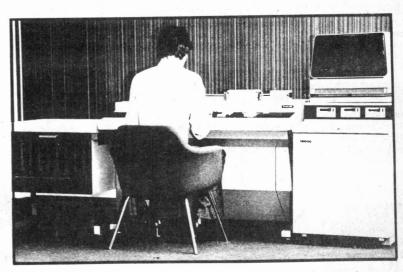
DESPITE the panzer-like march of the MPU, there is still a large market for the small computer, and this demand supports a healthy number of companies whose main output consists of such machines. Going back about four years (maybe before MPUs were more than a glint on someone's slide-rule) there were virtually no computers of any respectable capacity to be found in office and small company usage.

It has been in the last three years that smaller firms have begun to put aside the garlic, and take to the dark path of computerisation. A good number of these initiates into the black art are people either 'upgrading', as it were, from micro-systems or genuine first timers.

ADVANTAGES

If you asked someone who has just installed one of these digital tape chewers why they took the fatal step you'd probably be told how much it speeded things up and how easy it was to use. The biggest benefit 'seems' to lie in the order which such a system can bring to all around it.

If a distribution network is involved in the company, stocks may well be reduced — safely — since information as to demand and level is instantly and accurately available.


FINDING THE CORRECT NEEDLE

Once the potential user has recognised the haystack, i.e. the range of office computers now around, the next problem is one of selection. For smaller affairs, less than 25-30 people, and with a price 'ceiling' of around £25,000 (don't faint there in the back row) there are a large, nay vast, number of possibilities. We took a long look at what was available, bearing in mind that any shortlist had to meet certain criteria.

A first-timer is going to want a system that is easy to use (and understand!), can be provided with good back-up, and has the software (programmes) readily available. Other requirements might well be for some types of analyses to be carried out, and/or some statistics provided to aid and abet decision making.

Systems which fit all these criteria might be: Adler TA1000; Burroughs L5000, L6000 and L8000; IBM 32; NCR 339; Singer 6800; Philips P350; Nixdorf 820/15 and 820/35; GEC 2050—to name just a few thousand.

COMPUTERS IN SMALL COMPANIES

RON HARRIS EXPLAINS WHY COMPUTERISATION HAS A LOT TO OFFER EVEN THE SMALLEST COMPANY.

NEEDLE MATCH

In order to show some of the uses and occasions of such a system, we are going to use what is undoubtedly one of the most versatile systems on the market as an example -- the Adler TA1000. Launched in 1974, this is quite an 'old boy' in the field now, but remains very high on any short-list you care to draw up. It is relatively cheap -- see fig 1 -- for what it can

do, is flexible in doing it and is selling extremely well!

This particular machine has the advantage over the opposition that it has available a larger number of peripherals than does any of its competitors. These include three cassette drives per system, 20 VDUs per system, magnetic ledger cards, 16 chps (characters-per-second) and 140 chps printers, card reader and tape punch, and floppy disc store,

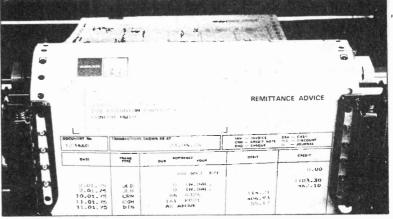
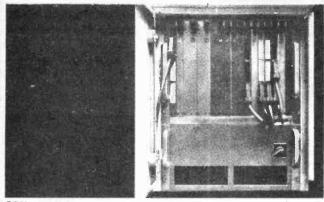
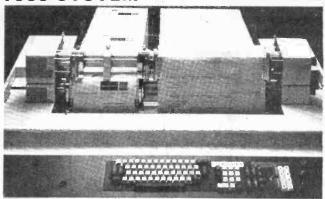
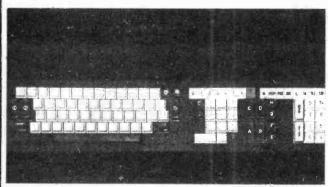
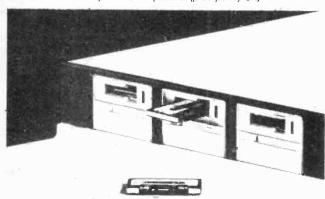
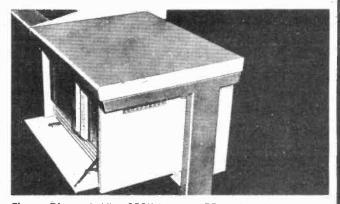




Fig 1. An example of a typical output from a mini-computer line printer. In this case the Alder TA 1000 140chs printer


THE ADLER TA 1000 SYSTEM

CPU:— this is mounted in a standard 10in. rack, and consists of engineers test array an ALU, control memory, user memory. I/O plus power system. The ALU has 16 8-bit (2 byte) index registers, a 16-bit accumulator and uses a 2-byte word length. The CPU is expandable to 64k byte.


Fast Printer:— produced by Triumph-Adler in Germany it possesses a carriage a metre wide, with 276 print positions, and works at 140 chps. It can handle any of a wide range of printing media, from ledger cards to plain ordinary paper. One original and 4 copies are normally provided, although this may be varied.


Keyboard Console:— consists of a 56-key alpha-numeric system—including a repeat key, and four program definable keys, 14 numeric keys (multiple zero) 16 function keys — 8 interrupt and 8 initialising (both program controlled). The maximum input speed is 100 keystrokes per second, and if you can work at better than this speed you don't need a computer in the first place. We have the usual 64 character set and output is 8-bit parallel (plus parity bit).

VDU:— naturally provided with its own memory system, and up to 20 can be hung onto a single CPU. Cursor control is under program control, and can be placed anywhere on the screen amid the 1056 characters in 22 lines that the machine is capable of displaying in an area of 22.5 x 17 cms. It is of the 'flashing' type, indicating the position being addressed.

Cassette Store:— this enables programs and data files to be accessed easily, under the control of the CPU which can handle three of the beasts. Each tape can carry up to 250K bytes at a density of 31.5 bits/mm. Read/write speed is 70 bytes/sec.

Floppy Disc:— holding 250K bytes on 75 tracks with an average access time of 300 millisecs, this unit considerably extends the capabilities of a TA 1000. The discs themselves are protected by a sealed outer covering during handling so anyone can stack the things in and out.

maximum four discs per system.

Software: Programming the TA1000 is accomplished in a language called TRIASS — heaven knows what that stands for — which by now, has established itself as a proven medium. All software is produced in a modular basis to meet specific user requirements, although Adler will do a custom design if required, which it rarely seems to be.

They have a system called APEX (Adler Purchase Expense System) which runs on a set-up of TA1000 plus 16K memory, two floppy discs, printer with two feeds and a VDU. This will output such things as batch listings, transaction analysis, creditor halances, turnover reports, file interrogation printouts, etc, and as such meets all our earlier criteria. Maximum volumes of work would seem to be about 1,350 suppliers!

MAKING AN EXAMPLE

This then is a good all-round small business system. By itself it would just sit there, hum a little perhaps or give the occasional interrogative click. Until someone uses it any system is merely so much metal potential.

So let's consider two case histories where this collection of boxes has been made to earn its watts.

CASE NO. 1 — WILLOWVALE ELECTRONICS

Fig 2. The Willowdale machine in situ. From right to left — floppy discs, keyboard and fast printer and VDU.

A nice little success story lies behind this firm — from a £4,000 overdraft (and a van which only went uphill backwards!) to a £1m turnover business is no tale of disaster by anyone's standards. The owner and founder is a man named Peter Bartlett, and it was he who decided to automate his expanding company.

Willowdale supplies components to TV service engineers, and now has three outlets. It has grown up in 11 years, and used to use a simple accounts-only computer system.

With the installation of a TA1000 system consisting of CPU, VDU, 140 chps printer with keyboard and four 'floppies' (cost circa £20,000) the whole operation became automated.

Only eight people handle the entire stores and order section of the business — and this for 3,000 customers per month and 5,000 products.

When an order is received a check is made to see if that customer has an account — and if so does he have the money to pay

for what he's ordered. This is accomplished via a file interrogation with the result being displayed on the VDU.

If all is well the machine will produce an invoice for that order in such a way that any quantity, or other discounts, are accounted for, and the items are identified with a specific coding to enable the warehousing men to find them easily.

ANY MORE REQUESTS?

When asked to, the system produces stock price list, summary report and stock position together with product analysis. This information provides the means to keep stock levels healthy without being wasteful in terms of cash. Each customer has a file held on them inside the machine, and each transaction is added to this. Statements in each are churned out at specified intervals, so that any black sheep can quickly be detected.

Other reports are made on sales ledgers, individual customer turnover, transaction summary and cash v. area breakdown so that it can be seen how each of the nine reps is faring in his area — even down to how much each product he's selling costs, how well it's doing and the cost to the company to date.

CASE NO. 2 — D. ROSE, WINE RETAILERS

I suppose some of our more cynical readers will find some reasoning behind our choice of component supplier and wine sellers as examples — other than that of being informative cases of computerising a small company. Would it help to deny it?

Be that as it may, our second firm uses a mainly stock control orientated system, comprising CPU printer, VDU and two floppies this time. They have five outlets in London, and the problem for the machine to overcome was one of cash/stock control.

MANAGING THE MANAGERS

Each of the branch managers completes a return form for the day, recording takings, petty cash used, and amount banked. Evidence required to back this are the bank counterfoil and till roll. A list of all deliveries is also produced, coding each brand and product separately.

The cash return and the delivery record is put into the TA1000, and

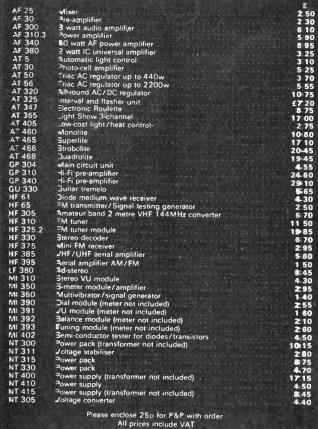
a constant check is kept via the VDU that the correct products are being recorded. The system now produces a batch control file, which is for order and audit purposes, and a record of each branch's activity over an eight-week period.

MASTER AND FILE

The master files are held in product sequences, and the returns in branch sequence, because each is to produce varying reports. Access is no problem with floppies—average time remember to get a file is about half a second. From the master are produced two cash sales analyses, and a cash summary.

For each branch a 'financial performance' is compiled consisting of opening stocks, closing stocks, petty cash usage, cost and selling prices and banked accounts.

D. Rose's main advantage from their system, according to them, is the speed and accuracy of the computer system's control and reporting. A week's entries for any given branch is entered in under an hour, and a report compiled in less than 20 minutes.


AND SO? . .

From these two different usages of the same machine comes the same impression — that of order imposed. Willowvale keep track of 5000 products, while D. Rose keeps tight control of five branches.

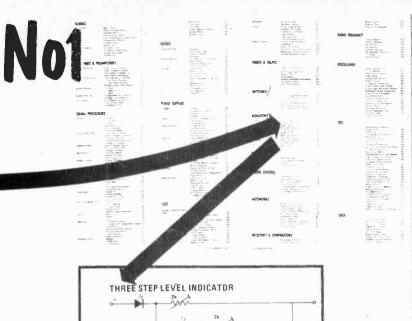
All this talk of 'reports' and 'checks' and performance listings, etc, might give a hint of Orwellian overtones. But this is just not fair. Office computers don't do anything that wouldn't be done whether they were there or not — they just do it a hell of a lot faster and better.

Our conclusion from compiling this article was that a small business has a lot to gain from a computer system, and very little to lose—except perhaps cash flow problems, overstaffing levels and cumbersome accounting procedures—and no company is too small to wish to be rid of those particular gremlins!

Send for Free Catalogue to: JOSTY KIT (UK) LTD., Mail Order Division P.O. Box 68, Middlesbrough. Cleveland TS1 5DQ NAME

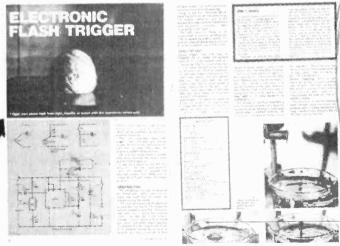
FT2

ETI CIRCUITS


ETI CIRCUITS BOOK: No. 1

A brand new concept from the house of ETI, more than 100 pages packed with a wide range of experimenters circuits. Based on the tremendously popular 'Tech-Tips' section of ETI, Circuits 1 is the first of a series of specials — produced for the enthusiasts who know what they want, but not where to get it! Circuits 1 will also act as a catalyst for further development of ideas, ideal for the experimenter. The collection of more than 200 circuits is complemented by a comprehensive index, making searches for a particular circuit quick and simple. Also similar circuits can be compared easily, due to the logical layout and grouping used throughout. Last and by no means least Circuits 1 has no distracting advertisements in the main section!

28 projects makes Top Projects No 4 our bumper issue. Something for everyone is inside it from an audio millivoltmeter to an electronic one-arm bandit!



This device makes a very compact and robust level indicator where a meter would be impractical due to lack of space, or not justified due to cost.

space, or not justified due to cost.
Resistor values will depend on type of LED used. In the prototype, the LED's were MV50's and the resistors were 2k0. Ywatt. This gave steps of approx 2V and the current drain with all three LED's on was 5mA. The chain can be extended but current drain increases rapidly and the first LED carries all the current drawn from the supply.

ETI CIRCUITS No. 1 - £1.50 + 20p P&P

TOP PROJECTS No. 4 - £1.00 + 20p P&P

HOW TO ORDER

You can order any of these Special issues from your newsagent or direct from ETL Postage and packing is 20p for the first, 15p for each subsequent issue (overseas 25p and 20p respectively). remittance and order to ETI SPECIALS, 25-27 OXFORD STREET, LONDON W1 1RF

All payments must be in sterling

OTHER SPECIALS FROM ETI

TOP PROJECTS No. 2

26 popular projects reprinted from ETI, first published in July 1975 Circuits Include: 50W stereo amp, Spring Line Reverb Unit, Add-on SQ Decoder, FET 4-Channel Mixer, Rumble Fitter, Super-stereo, Audio Wattmeter, Linear IC Tester, Logic Probe, IC Power Supply, Ignition Timing Light, Car Theft Alarm, Battery Charger, High Power Strobe, LM380 Circuits, Temperature Alarm, Tape Slide Synchroniser, Ni-Cad Battery Charger, Digital Stopwatch plus more and several pages of Tech-Tips.

75p + 20p P&P

TOP PROJECTS No. 3
Originally published in March 1976, Top Projects No. 3 contains 27 constructional projects including Graphic Equaliser, International 25W Stereo Amp, Simple Stereo, New Sound for your Guitar, Bass Booster, Line Amplifier, Loudness Control, Electronic Ignition, Tacho Timing Light, Car Alarm, Dual-Beam Adaptor, A.F. Meter, Impedance Meter, Digital Display, Digital Voltmeter, TTL Supertester, Fluorescent Light Dimmer, Radar Intruder Alarm, Light Dimmer, FM Tuner, Colour Organ, Drill Speed Controller plus many more.

£1.00 + 20p P&P

ELECTRONICS - IT'S EASY, Vol. 1

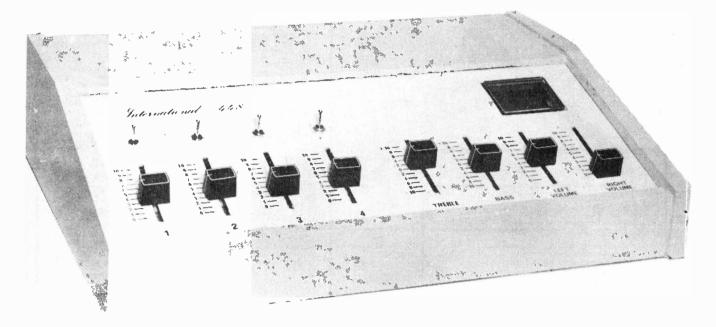
The first thirteen parts of our very successful series produced in a 100 page book form. These take the reader through the introduction to electronics and up to Operational Amplifiers.

£1,20+20p P&P

ELECTRONICS — IT'S EASY. Vol. 2

The "middle-third" of the series introduces the reader to more sophisticated techniques and includes power supplies, waveforms, filters and logic systems.

£1.20 + 20p P&P


ETI 4600 SYNTHESISER

A complete reprint of our superb synthesises design, published with Maplin Electronics (who also supply the parts). This reprint will also be of interest to those not specifically wanting to build the unit as the circuitry is highly original and is in fact patented by

£1.50 + 20p P&P

DISCO MIXER

This is a general-purpose mixer project that can be tailored by the constructor to meet specific needs. Some of the boards used have been published in previous issues of ETI; in this article we introduce four new ones:

Disco mixer board (448) (with stereo mixing and power supply) mono headphone amplifier (448A) for prefade monitor, balanced microphone preamplifier (449) and stereo VU circuit (449A). Also a simple ceramic cartridge preamp is shown — so simple it can be built on the input sockets!

Using the boards listed above virtually any audio sources can be mixed by the operator, to provide a stereo signal suitable for driving power amplifiers directly (such as the ETI 413 100 W amps). The mixed signals can also of course be used to feed tape recorders etc. The inputs from turntables, tape recorders, microphones etc must be correctly matched to the inputs of the mixer board. To do this the correct preamplifiers must be selected and constructed.

Our prototype was constructed for use with twin stereo magnetic cartridges, balanced low impedence microphone and stereo cassette, recorder. However, the permutations are virtually limitless!

Before beginning construction, decide which preamplifiers you will need (tape recorders do not need any and connect direct to the mixer). Decide what type of sockets you want to use and how many channels you want (although shown

SPECIFICATION ETI 448

No. of inputs Nominally 4

No. of outputs 2 main signal outputs

1 headphone amplifier output

Tone controls Overall bass and treble
Output noise 1 mV (mainly hum)

(Mixer stage only)

Maximum output voltage 6 V

as four input the mixer can be expanded by adding extra control pots and mixer resistors).

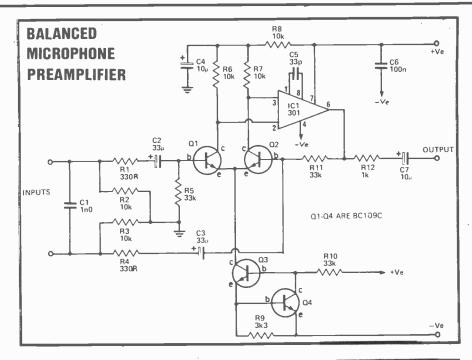
BALANCED MICROPHONE PREAMPLIFIER

The beauty of this circuit is that it eliminates a costly line transformer! Although designed for 600 ohm input and 40dB gain other impedances and gains can be handled R1 = R4 = input impedance divided by two

R5 = R11 = voltage gain times the value of R3.

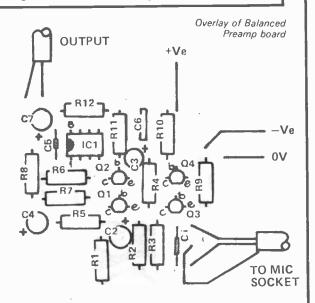
The first equation works for impedances up to about 5k. Above this value R2 + R3 must be included in the calculation.

As most people have only one mouth, the output from this circuit can be used to pan the output from


stereo by using two 10k resistors or a 20k linear pot with. the wiper connected to the output can be used to pan the output from left to right.

If a high impedance microphone is used ETI 446 (December 76) should be used.

If 446 is used R2 values are as follows: 47K microphone R2 = 4k7 (limiting R2 47k) if used with balanced preamp as input for limiting R2 = 15k.


MIXER AND POWER SUPPLY

Because of the high ripple rejection of the integrated circuits, used in the various modules, the power supply requirements are simple. A straightforward bridge rectifier, large smoothing capacitors with a RF bypass capacitor and we have an adequate power source.

Frequency Response 10 Hz - 20 kHz (<5 V output) dB 40 dB Gain $-123 \text{ dB } (0.5 \mu\text{V})$ **Equivalent Input Noise** Distortion 0.05% 300 mV - 5 V output 100 Hz - 10 kHz Max Input Voltage 100 mV Common Mode Rejection Ratio 60 dB Maximum Common Mode Signal 3 V

Connection of Cannon plug for microphones Pin 1 EARTH **BLACK INPUT** Pin 2 connect to R1 Pin 3 **RED INPUT** connect to R4 FOR UNBALANCED **INPUT CONNECT PIN 1** AND 2 TOGETHER ON MICROPHONE PLUG.

PARTS LIS	ST ETI 449		
R1 R2,3 R4 R5	Resistors all 1 W 5% R1 330R R2,3 10k R4 330R R5 33k		1n0 polyester 33µ 10v 10µ 16v 33p ceramic 100n polyester 10µ 16v
R6,7,8 R9 R10,11 R12	10k 3k3 33k 1k	C7 Q1-Q4 IC1 PC Board	Transistors BC 109C LM301A ETI 449

HOW IT WORKS ETI 449 R13 (9R) R4 (1R) INPUT R1 (1R) OUTPUT IDEAL AMPLIFIER R5 (9R) 5

A "balanced" amplifier or differential amplifier has two separate inputs and only the difference between these inputs is amplified. To explain how this works refer to figure, which is a simplied version, which is a circuit. To make the maths easier we will reduce the gain to nine by making R1 = R4 = 1 and R5 =R11 = 9. The actual units are not important, only the ratio.

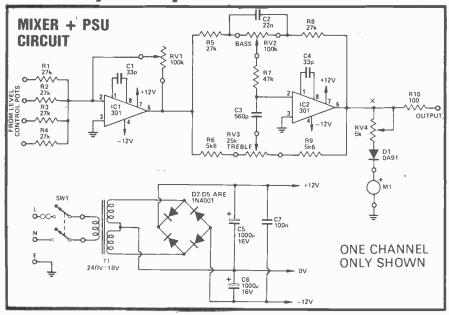
We will start the explanation by looking at the case where point B is at 0V and A is at +100mV. An ideal amplifier does two things — it does not take any current into the input terminals and it adjusts the output to maintain no voltage difference between the input terminals. We therefore must have 100mV across R4 and consequently a voltage of 900mV across R11 (it has 9 times the resistance and the same current as R4). This gives a gain of nine. The output is therefore —900mV.

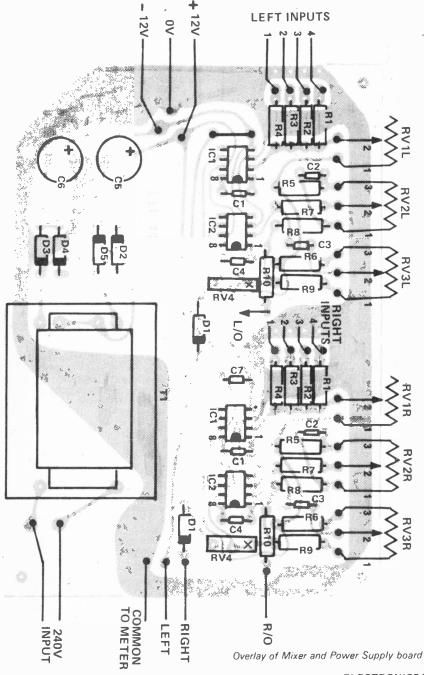
In the case when point A is at 0V and point B is at +100mV, point D will be at

$$(VB \times \frac{R0}{R1 + R9}) = 90 \text{mV}$$

Therefore point C will also be at +90mV. The voltage across R4 will be 90mV and voltage across R1 will be 810mV (9 x 90mV).

This means the output voltage must be +900mV. This is also a gain of nine. Notice, however, that the polarity (or phase) is different.


Now suppose both inputs are at, say, +1V, point D will be at +900mV and so will point C. The voltage across R4 is 100mV and R11 900mV. This gives an output voltage of 0V. The common signal is not amplified in any way. If, however, one input (B) is at 1V and the other (A) is at 1.01V the difference is amplified and the output will be -1V.


Getting back to the actual circuit, we have used an LM301A with two low-noise transistors in the front stage. These transistors are supplied with a constant current by Q3 and Q4. A constant current is needed as this allows the inputs to move up and down without changing the voltage

across R6 or R7

The resistors R2 and R3 refer the inputs to 0V but are high enough not to affect the operation in any way.

DISCO MIXER

HOW IT WORKS ETI 448

The inputs from the turntables, tape recorders microphones, etc, must be amplified, and if necessary equalized, by a preamplifier before any of the controls can handle them. The output of each of these preamps adjustable, by means of a volume control or fader, before being mixed in IC1. The overall gain of the mixer stage is adjusted by means of RVI. If different preamps have widely differing output voltages the value of R1-R4 can be changed to make them match. The output of IC1 goes then to

The output of IC1 goes then to the tone control stage, IC2, which normally has a unity gain when the controls are centered. However, this gain is adjustable, with respect to frequency, if the tone controls are not centered. The output of the tone control stage directly drives the main power amplifiers. This output is also rectified by D1 to drive the meter circuitry.

The mixer gives stereo outputs—this is achieved by duplicating the circuitry for the second channel. The exception is the tone controls which are dual gang potentiometers. Note that the volume controls are individual units.

The power supply is simply a full wave rectified supply with a centre tap giving about ±12VDC.

-PARTS LIST ETI 448-

Resistors al	l ½w 5%
R1-R5	27k
R6	5k6
R7	47k
R8	27k
R9	5k6
R10	100R

Pote	ntiomete	rs				
RV1		100k	log	single	gang	slide
		15	_	_		

5k trim

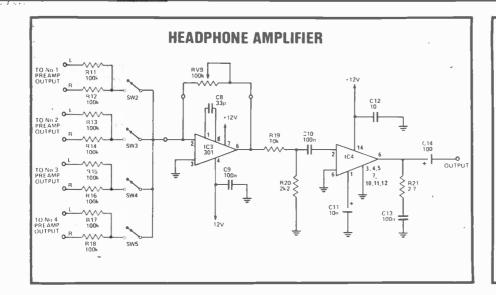
Capacitors

RV4

C1	33p ceramic
C2	22n polyester
C3	560p ceramic
C4	33p ceramic
101.2	L 34204 A

LM301A		
OA91		
VU Meter		

Two of all the above components are required for stereo operation.


RV2	100k lin dual slide
RV3	25k lin dual slide
RV5-RV8	10k log dual slide
C5, 6	100 ± 16V
C7	100n polyester
D2 – D5	IN4001 or similar

Transformer 240V 9-0-9

Transformer 240V 9-0-9 ETI 448
Fuseholder 250mA fuse to match
Switch 2 pole 2 position 240 V

toggle

*See text

HOW IT WORKS ETI 448A =

The resistors bridging Left and Right channel outputs are to provide a composite mono signal, without seriously degrading the main mixer stereo separation. The signal is selected by SW2-SW5 and fed to a buffer with variable gain (IC3). The output is then fed to a LM380 power amplifier which drives the monitor headphones.

As with the mixer the input resistors can be increased, to reduce high signals to the level of the other channels.

PARTS LIST - ETI 448A

Resistors all ½w 5% R11-R18 100k R19 10k R20 2k2 R21 2.7R

Potentiometer

RV9 100k log rotary

Capacitors

C8 33p ceramic C9, 10 100n polyester C11, 12 10µ 16 V C13 100n polyester C14 100µ 16 V LM301A IC3 IC4 LM380 SW2-SW5 single pole toggle

pc board ETI 448A

TO RV9

TO COM OF SW2-5

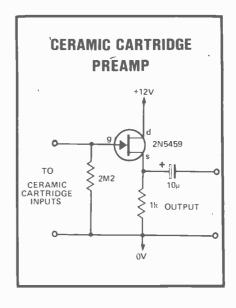
-12V

9V

80

61

C1


C1

C12

C14

OUTPUT

Overlay of Headphone board

The mixer is a conventional summing amplifier with variable feedback (ie: gain), followed by a Baxandall tone control network.

If input levels are not of the same magnitude, the 27k input resistors can be changed to lower the highest signals increase resister value. Don't reduce below 27k as this will reduce overall sensitivity of the mixer.

The VU circuit can be used, but we recommend the alternative VU board (see VU text).

UNIVERSAL PREAMPLIFIER

Response and gain can be selected from the chart by the components list further details were published in November 76.

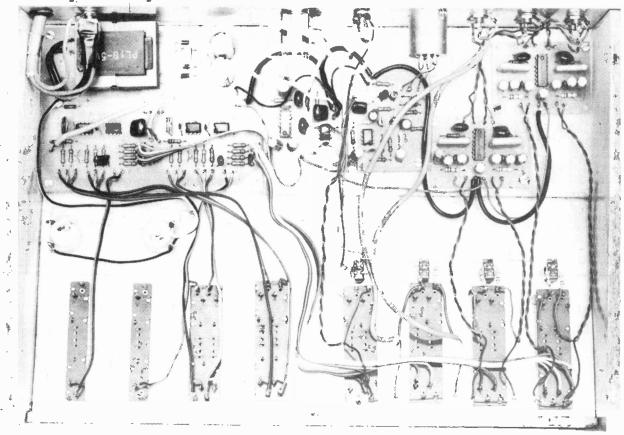
HEADPHONE AMPLIFIER

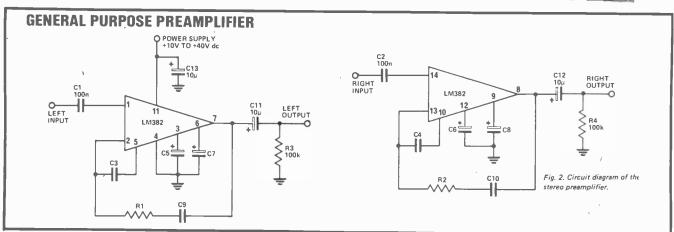
The output from each preamplifier can be switched into this circuit, so that you can cue signals before mixing them into the output. It is

suggested that if headphones only are to be used a 100ohm 1 watt resistor be fitted in series with the output. This is to protect your ears and reduce the power dissipation of the LM 380 — otherwise a small heatsink would be required. The volume control can be mounted on the rear of the mixer as it is not adjusted very often.

VU CIRCUIT

The meter circuit used in the mixer board is very basic — although suitable for some applications — distortion introduced into the output signal is as much as 2% THD.


We strongly recommend the VU board. If used omit RV4 and D1 from the mixer board and connect point X to the input of the VU board. Calibration is by the preset on the VU board, feed a signal through the mixer until the output is just distorting the amplifier, and adjust the preset to indicate +3VU.


CONSTRUCTION

Assemble the boards with the aid of the overlay drawings, for your convenience we have put all the PCB layouts together, on page 22. The photograph on page 21 shows the general layout we used, but this is very flexible, ours was built into a wooden box with metal front and base but a metal box would be more suitable in an electrically noisy environment.

Interboard connections can be worked out from the individual circuits and overlays. All connections should be as short as possible and kept away from the mains wiring. We in fact moved the power switch to the back panel to reduce hum pickup (a metal box, with an aluminium shield around the mains transformer will ensure minimum hum pickup) If this is done unscreened cable can be used internally.

DISCO MIXER

PARTS LIST — ETI 445

Resistors

R1, 2 see table

R3, 4 100k ½watt 5%

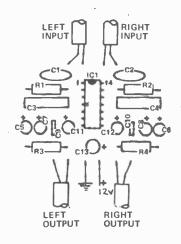
Capacitors

C1, 2 100nF polyester

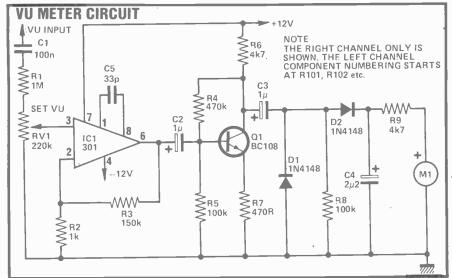
C3 - C10 see table

C11-C13 10µF 25V

IC1 integrated circuit LM382

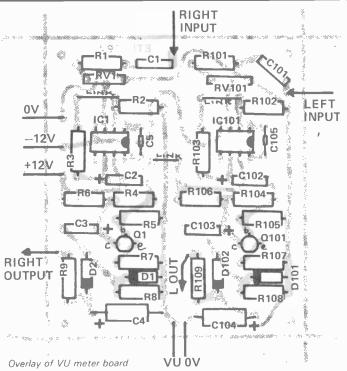

PC board ETI 445

-HOW IT WORKS ETI 445-

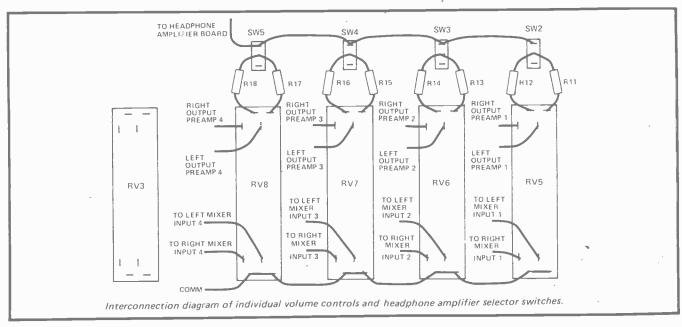

Not much can be said about how the LM382 works as most of the circuitry is contained within the IC. Most of the frequency-determining components are on the chip - only the capacitors are mounted externally.

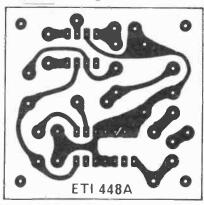
The LM382 has the convenient characteristic of rejecting ripple on the supply line by about 100 dB, thus greatly reducing the quality requirement for the power supply.

				<u>.</u>	
FUNCTION	C3, 4	25, 6	C7, 8	C9, 10	R1, 2
Phono preamp (RIAA)	330n	10uF	10μF	1n5	1k
Tape preamp (NAB)	68n	10·uF	10μF	_	
Flat 40dB gain	_	_	10μF	_	-
Flat 55dB gain	_	10μ F	-	_	_
Flat 80dB gain	_	10μF	10μF	_	

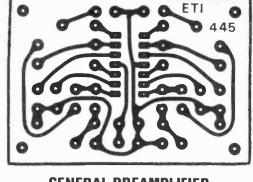


Overlay of General Preamp board

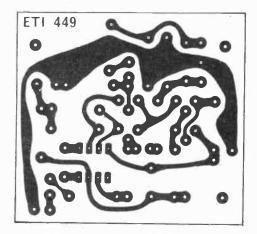


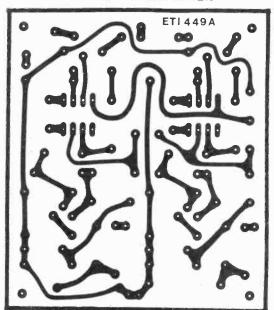

This VU circuit has an

input impedance in the region of 1M and therefore will not load the mixer output by any discernable amount. The IC has a gain of 43dB, the signal is then amplified again by Q1 to get enough level to drive the VU meter. Under no signal conditions the voltage at the junction of D1, D2 falls to OV because of R8. When a negative going signal appears at collector of Q1, C3 will discharge on the negative peak. Difference between negative and positive peaks is transferred through D2 to C4, and hence to the VU meter

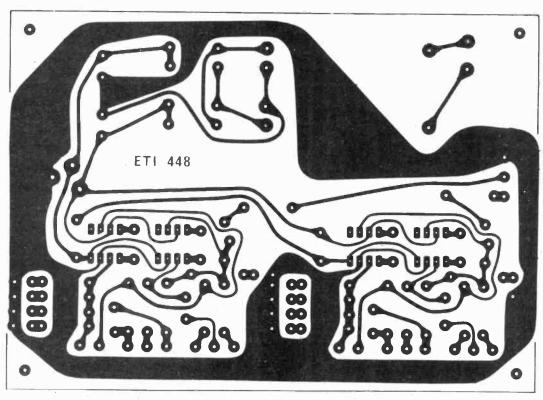


-PARTS LIST — ETI 449A-Resistors all 1/4 w 10% R1 1 M R2 1k R3 150k R4 470k 100k R5,8 R6.9 5k7 R7 470R **Potentiometers** 220k preset RV1 **Capacitors** C1 100n polyester C2,3 $1\mu 16V$ 2µ2 16V C4 C5 33p ceramic 1C1 LM301 BC108 0.1 IN4148 D1,2 VU meter Two of each required for stereo PC Board ETI 449A

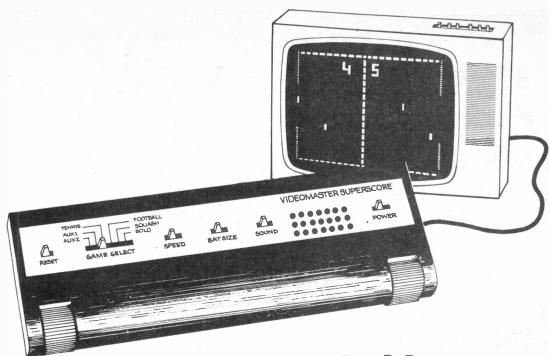



HEADPHONE AMPLIFIER

GENERAL PREAMPLIFIER



BALANCED PREAMPLIFIER



VU METER

COMPONENT OVERLAYS FOR THE DISCO MIXER

MIXER AND POWER SUPPLY

Here's the remarkable new

Superscore Home TV Game Get it together for only £24.95

Available to you in kit form at the same moment as its national launch, the brilliant new Videomaster Superscore contains the latest product of MOS technology: a TV game chip.

The logic contained in it had previously to be generated by 100 TTL devices. Now it is condensed into one 28-pin chip.

This all-new Videomaster plugs into your 625-line UHF TV set (for overseas customers having VHF sets we can supply the necessary VHF modulator) to give you four exciting games (including tennis and football) and two future game options. It features on-screen digital scoring, realistic hit sounds, two bat sizes, two

ball speeds, automatic serving and much more. It runs on six $1\frac{1}{2}$ volt SP11 type batteries (not supplied).

The Videomaster Superscore kit costs only £24.95 including VAT (recommended retail price of the ready built model is over £40.00) and comes complete with ready-tuned UHF or VHF modulator, circuit board with printed legend, all resistors, transistors and diodes, built-in loudspeaker, socket for mains adaptor, and, of course, the TV game chip itself.

Easy to put together the Superscore has full assembly instructions, circuit diagram and circuit description. Don't miss this chance to own the newest electronic game at such low cost.

POST TODAY TO:

Videomoster Ltd 14/20 Headfort Place, London SW1X 7HN

Please send me (insert No. requ'd)......Videomaster Superscore Kits at £24.95 (inc. VAT & P&P in UK) or £23.10+£4.00 for P&P overseas)

I enclose my cheque/money order* for £.....

VHF modulator required YES/NO*

NAME _

ADDRESS _

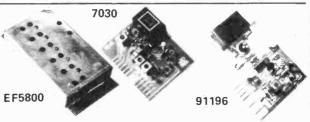
(ET 84)


ALLOW 21 DAYS FOR DELIVERY

* delete as necessary

AMBIT international (dept 85)

The Dynamic Twosome: Signalmaster/Audiomaster After long and thorough deliberation, we are proud to announce a new unit from Larsholt - the Audiomaster. As ever, the instructions are designed to lead the unwaryand the inexperienced-through point-to-point steps that culminate in a professionally styled and finished amplifier to complement the Signalmaster FM tuner. Price £79.00


Power: 25+25W RMS THD: Less than 0.3% Dynamic range: an exceptional 80dB (Signalmaster shown on top of the Audiomaster)

The Signalmaster Mk.8 is equally simple to assemble, and results reflect the superb Scandinavian styling and careful electronic engineering. £85.00.

International Mk.2: A choice of tuners for the more experinced constructors.

A chassis, cabinet and front panel designed to be used with a variety of electronics inside. The standard set, with the Larsholt 7253 varicap FM tunerset, plus all necessary parts to complete costs £65.00. Alternative modules for the signal processing stages are available for the more advanced F.M. radio enthusiast/constructor. (EF5800/7030/91196)

From left to right, the EF5800 6 circuit varicap FM tunerhead. Two MOS RF stages, both with AGC control, and an ultra stable oscillator. Next the 7030 Linear Phase 10.7MHz IF. Distortion 0.08%, muting, AGC, meter, auto stereo switch outputs. Finally the new 91196 mpx decoder and combined birdy filter. Mono THD 0.05%, stereo sep. 55dB at 1kHz, 42dB at 10kHz - the best decoder module yet. EF5800....£14.50 7030....£10.95 91196....£12.99 (Built). Overall performance of the three modules when correctly assembled: 30dB S/N at 0.85uV input. 60dB at 5uV. THD 0.09%. AFC holds THD below 0.2% over 400kHz if required. AGC effective over a 90dB range. Image rejection -90dB. Noise floor -73dB.

Components: Coils, ICs Filters, etc.

Radio ICs: (and modules)
CA3089E/HA1137W FM 1.94 AM IFTS TOKO
CA3080PA mpx 3.75 YRCS/YHCS types(10mm) 0.30
MC1310/KB4400 mpx 2.20 7MCS types (7mm) 0.30
HA1196 mpx 4.20 FM IFTS:HA1197 AM radio 1.40 KACS/KALS types(10mm) 0.33
TBA120AS FM IF 1.00 94A types (10mm) 0.33
TBA651 AM radio 1.81 AM filters:uA720/CA3123E AM rad 1.40 CFT types ceramic (455) 0.55
LM380N 2W Audio 1.00 CFU type ceramic (470) 0.60
TBA810AS 7W Audio 1.09 SFD470 types (470) 0.75
TCA940 10W Audio 1.80 FM filters:UM381N stereo preamp 1.81 SFE6MA (TV sound) 0.80
LM381N stereo preamp 1.81 SFE6MA (TV sound) 0.80
LM381N stereo preamp 1.81 SFE6MA (TV sound) 0.80
LM381N stereo preamp 1.81 SFE6MA (TV sound) 0.80
LM3900 Quad amp 0.68 3132 linear phase 2.25
TAA550B variable reg 0.80* BLR310 7 (4k7 imp) 1.75
TAA550B variable reg 0.80* BLR310 7 (4k7 imp) 1.75
TAS550B varicap reg 32v 0.50* BLR2007 (3k3 imp) 1.75
NE561B PLL IC 3.50 Tunerheads: (& tunersets)
NE565A567V PLL ea:2.50 23 or 36mH chokes 0.33
NE561B PLL IC 3.50 Tunerheads: (& tunersets)
P310k kit for TBA810 amp2.75 EC3302 3 gang varicap 5.50
2020k kit for 2020 amp 9.35 819 (Larsholt) 12.00
2020k kit for 3089 FM IF 6.65
771197 kit for waricap AM radio tuner 7.00
Terms: Vat extra 12.5% unless marked * which is 8% all

Terms: Vat extra, 12.5% unless marked *, which is 8%, all complete tuners require £3.00 for packing and carriage. The standard P&P rate remains at 22p per order. Catalogue 40p. Phone (0277) 216029 (After 3pm please). SAE for free price lists,

Write to: 37a High Street Brentwood, Essex : CM14 4RH

ULTRASONG R

A FEW LINES BY RON AS TO HOW B.R. KEEPS TRACK OF ITS TRACKS!

Up until 1970 British Rail relied mainly on manual testing of the lines which carry Britain's rail traffic. Hand-held probes were used to 'map' the lines, and show any possible faults.

In 1970 a test-car was tried, using five probes per rail, as shown in fig. 1. In addition to the three shown

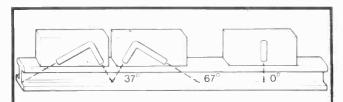


Fig. 1. The layout of the three water-coupled probes on the rail. The air probe is omitted

there, two other probes are 'air-coupled' to the rail from the sides, to detect the fish plate joints holding the rails together

The three perspex encapsulated probes are coupled to the rail by water, which is shot onto the track from above. An ultrasonic pulse, a few cycles wide is fired down into the metal by the ceramic transducers, which

will then record all returning echoes before the next pulse is transmitted. By judious choice of p.r.f. a continuous 'picture' of the rail beneath the train is

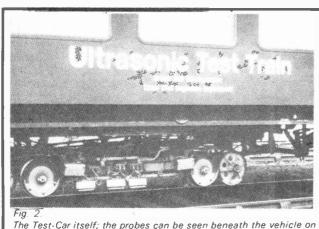
These probes can be clearly seen in fig. 2 fitted to their retractable trolley slung beneath the test vehicle. From 1970 until June 1976, the data from these devices was recorded on film as the vehicle went on its merry way, and was examined later. Since there are some 20,000 miles of track in Britain, and in inspecting 4,000 miles of it this method generated 200 1,000ft reels of film, some sort of speeding of the examination techniques was obviously called for.

AUTOMATIC FILM CRITICS

An automated system appeals as it would allow the film records to be checked at a speed closer to that at which is it generated, and the cost could be more than that of hiring extra people to check film!

At this point the AERE people down at Harwell became involved to develop an automated inspection and examination system. This was delivered to BR in June - hence the change - and it is this system with which we are mainly concerned here.

The recording equipment (film storage) worked thus: the data from the probes is displayed on CRT and is then projected onto a roll of film. A separate CRT is



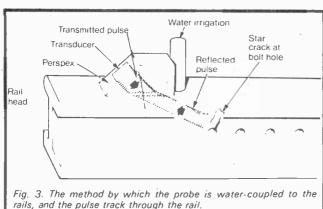
ULTRASONIC RAILTRACK TESTING

the exact position of the test-car itself is determined by pulses added to the film every yard, via the 'air' probe channel

A pattern is thus recorded onto the film, which will have clearly recognisable 'shapes' for a given fault, or given conditions of rail.

The automatic system was designed on the basis

their trolley which is lowered down to the rail when needed

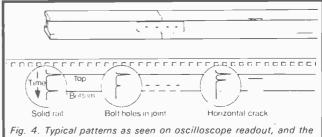

that it had to be able to evaluate film records without any more effort, on the part of the operator at least than that required to load the film into the machine.

CRT DOCTOR

Provision has been made to vary the amount of dialogue between man and computer so that any diagnosis by the machine can be modified or cancelled.

In order to translate the information on the film into a meaningful diagnosis, the machine, controlled by a PDP 11, scans the CRT face on which the image is displayed. A reference signal is obtained (it's all done with mirrors!) from the image, and then the film is converted by rectangular mesh scanning into a binary 'image'

At the same time the reference signal is compared to detect any dirt particles on the CRT face that might produce a false result by being interpreted as a patttern on the film.

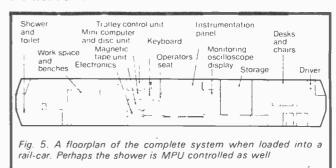

The scan is stepped along the film, and at each step 1.024 points across the film are sampled for transparency. The points in the film of any boundaries

between black and white i.e. positions of pattern, are stored in the memory.

FRAME-UP!

At the end of each frame the data is inspected by the processor, and interpretation takes place within the time interval it takes to advance the film onto the next frame! The routine chosen to analyse any given pattern depends on the outcome of an initial assessment of the data which determines whether one single fault or a complex structure of faults is involved. -

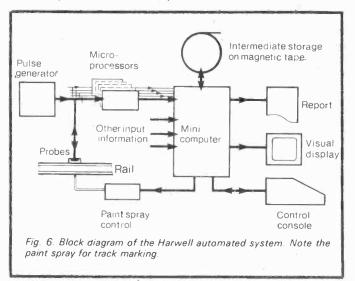
ROUTINE PROCEDURE

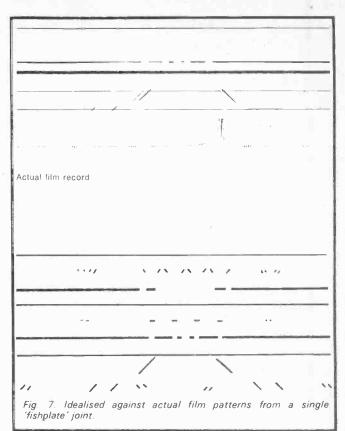

film record. — From the vertical probe

Once this is established, the routine needed is selected, and comparison proceeds. Patterns from fishplate joints, which make up the majority of records, are compared to a standard library of shapes on a flexible basis. It would obviously be impossible to match exactly, since each plate will have been put on in a slightly different manner by the man with the hammer.

All diagnosis is attempted on a positive basis. The conditions are going to be anything but laboratory standard, and so just because the echo vanishes from a frame or so of the film, a fault is not automatically assumed. The absence of an echo from the base of the track is, however, used as substantiating evidence if other factors are present.

ALL ABOARD!


The refinement of this system was to place the computer and associated peripherals actually on board the test train.


This fully automated system (figs 5 and 6) is designed to be film-free, with data storage directly into magnetic tape. This results in a saving of 1 mile of film every 100 mile of track. A schematic is shown in fig. 6.

Microprocessors are employed (what else?) to control the filtering and compression of data before passing it to the PDP 11. All the essential information for defect analysis is stored on tape, alongside identification and calibration (i.e. distance) data.

Analysis is carried out by comparing actual patterns (i.e. fig. 7) with stored standards. If a match is not obtained, the system software will ensure that the fault present is identified to a known classification. A report is then printed out to the operator, and in some cases of

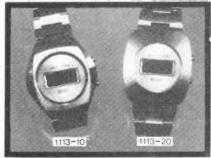
obvious defect the recognition is so rapid that before the train passes the fault (moving at 30 mp.h.) the computer will switch on a paint spray and mark the fault location!

CONTINUOUS DISPLAY LCD WATCHES

UNIQUE ALTERNATING DISPLAY FEATURE

The watch continuously displays HRS. and MINS. with MONTH, DAY and SECONDS on demand. The owner selects the feature where the HRS. and MINS. or MONTH and DAY display alternatively for 2 second intervals until owner resets to normal display. During the alternating cycle seconds are still available on demand.

- **Finest American MOS technology
- **Quartz accuracy.


**Multi-function: Hrs., Mins., Month, Day, Seconds. Alternating display Back-light. Programmed 28, 30, 31 day months. A.M./P.M. indication for ease of date setting

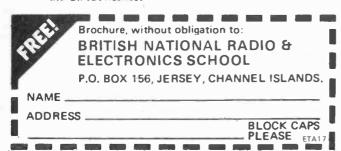
***All important: UK factory manufacturing and servicing facilities.

> CHRISTMAS OFFER VALID TO DECEMBER 31st, 1976 Price £34:50 NOW £27.50 incl. VAT & P&P

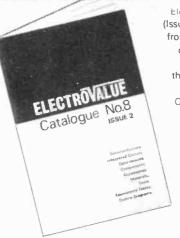
Watch Division, Lee Instrumentation Ltd. Bedwas, Newport, Gwent NP1 8YZ TEL. (0222) 885756-7-8. TELEX: 497084 Reg. No. 639437. YAT Reg. No. 133 8154 80 Watch despatched with matching Gold plated bracelet, in presentation box with instruction booklet and guarantee. Model 1113-10 is also available in a stainless-steel bracelet.

	THE RESERVE AND PERSONS ASSESSED.				
To: Leetronic, Lee Instrumentation Ltd., Newport, Gwent NP1 8YZ Print FREEPOST no stamp required.					
Please forward(qty) model	ateach				
	· I enclose $\sqrt{}$				
Name	cheque				
Address	postal order				
	money order				
Signed					
Bar	claycard/Access no				
Buy it with Access					

Learn to <u>understand</u> electronics for your hobbies


1. Lerna-Kit course

Step by step, we take you through all the fundamentals of electronics and show you how easily the subject can be mastered.


- (1) BUILD AN OSCILLOSCOPE.
- (2) READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS.
- (3) CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK

2. Become a Radio-Amateur

Learn how to become a radio-amateur in contact with the wide world. We give skilled preparation for the G.P.O. licence.

THE OPEN DOOR TO QUALITY

Electrovalue Catalogue No. 8 (Issue 2, up-dated) offers items from advanced opto-electronic components to humble (but essential) washers. Many things listed are very difficult to obtain elsewhere. The Company's own computer is programmed to expedite delivery and maintain customer satisfaction. Attractive discounts are allowed on many purchases; Access and Barclaycard orders are accepted

PLUS FREE POSTAGE

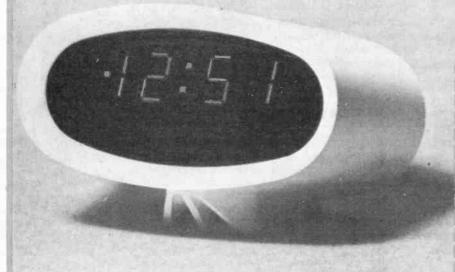
on all C.W.O. mail orders in U.K. over £2.00 list value fexcluding VAT). It under, add 15p handling charge.

With Prices stabilised to Dec. 31st.

144 pages, 40p

UP-DATED 2nd EDITION

Post paid, inc. refund voucher for 40p


ELECTROVALUE LTD

please to Head Office. Egham address. Dept. ETI.1

28 ST, JUDES ROAD, ENGLEFIELO GREEN, EGHAM, SURREY TW20 0HB. Tel. Egham 3603 Telex 264475, Shop 9-5.30, 9-1 pm Sats. NORTHERN BRANCH: 680 Burnage Lane, Burnage, Manchester M19 1NA. Tel. (061) 432 94945. Shop 9-5.30 pm, 1 pm Sats.

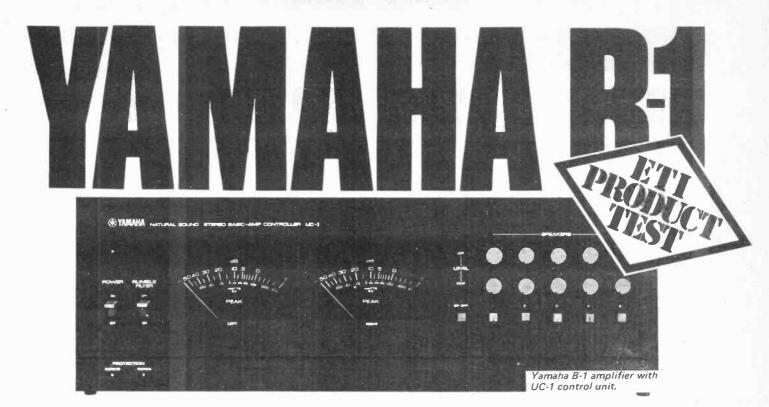
ETI GLOCKE 13.95

THE LONG-RUNNING OFFER ON A DIGITAL ALARM CLOCK HAS BEEN ONE OF OUR MOST SUCCESSFUL EVERLOUR PRICE INCLUDES VAT AND POST & PACKING

Our clock shows the time 0.7in, high on bright Planar Gas Discharge displays (there is a brightness control on the back). The dot on the left of the display shows AM/PM, and the flashing (1Hz) colon shows that the alarm and clock are working.

A bleeper alarm sounds until the clock is tipped forwards. Then the "snooze" facility can give you 5 minutes sleep before the alarm sounds again, and then another 5 minutes, etc., until you switch the alarm off. The clock also features a mains-failure indicator, and is 1 2hr. — the alarm being 24 hour.

We have a large number of units in stock for this offer but please allow 28 days for delivery.


> CLOCK OFFER ETI MAGAZINE 25-27 OXFORD STREET LONDON W1R 1RF

I enclose cheque/P.O. for £13.95 (payable to ETI) for an Alarm Clock. Please write your name and address on the back of your cheque to speed processing of your order.

Name

Those not wishing to cut their magazine may order on their own notepaper.

Full size = 5in across and 31/2 in deep

VERTICAL FET POWER AMPLIFIER

PRODUCES OVER 200W PER CHANNEL — AND IT'S CLEANER SOUNDING THAN VALVES

CONVENTIONAL POWER OUTPUT transistors produce a fairly high level of distortion as a result the non-linearity of their transfer characteristics. In fact transistor manufacturers have been searching for many years for a solid state device which would have characteristics more nearly equivalent to the hitherto ubiquitous valve.

Professor J. Nishizawa's development of the field effect transistor provided the break-through that had long been sought. The characteristics of these FETs, when compared with the conventional bipolar transistor, are firstly the elimination of carrier storage effects, reducing switching or notch distortion when used in Class AB or B power stages, and extremely rapid rise and decay times. High order harmonic distortion is dramatically reduced because of the squareness of the transfer characteristics and the power drive requirements are extremely low.

Unlike bipolar transistors, when the temperature rises the quiescent current decreases and so the big bugbear of bipolar transistors, thermal runaway, is very conveniently avoided. When placed in a power output stage of a power amp-

lifier this provides the opportunity to develop extremely low open loop distortion and, in theory, almost the ultimate in power amplification characteristics.

The B-1 Power Amplifier is a braggart's delight! It's bigger, heavier, more powerful (within limits) and has better performance than any other power amplifier in its class that we have ever tested. It also has many most valuable features that are not commonly encountered.

The B-1 unit is a big ventilated black box on which are mounted a power ON/OFF switch, two speaker level controls and three LEDs indicating the operation of the overload protection, the state of the thermal overlaod protection and power ON/OFF.

These controls are set in an anodised aluminium panel which is readily removeable to enable it to be interchanged with a Basic Amp Controller UC-1 which includes two large peak level meters with the unusually wide dynamic range of -50 dB to +5 dB. These are also calibrated in terms of watts into an 8 ohm load; i.e., a range of up to 0.01 W to 300 W. This unit allows the connection of any one or more of up to five pairs of stereo speakers each with its own pair of individual pre-set level controls, the load terminals for which already exist on the rear panel of the main amplifier.

PROTECTION RACKET

Main amplifier features include completely separate power supplies for left and right channels and a third power supply for the relay control functions.

These are activated via a relay from the front panel power switch such that when the power is switched on the speaker protection muting circuit operates to disconnect the speaker loads until the amplifier voltage conditions have stabilised.

There are two separate protection circuits whose operation is indicated on the front panel. These are, firstly, thermal protection - designed to cut off the power supply if there is any danger in any circuit elements rising to a temperature exceeding 100°C: simultaneously, the speaker protection circuit will be activated cutting off the sound. This circuit is self re-setting when the internal temperature returns to a safe level. A second protection circuit operates on overloads resulting from three distinct conditions. Firstly, the speakers are disconnected if a dc level exceeding ±2 volts is detected at the out output terminals. Secondly, the muting circuit already mentioned is activated immediately following power turn-on to eliminate loudspeaker thumps and thirdly, the power supply is disconnected whenever an abnormal voltage or current is detected in the output

YAMAHA B1 VERTICAL FET POWER AMPLIFIER

circuitry. This provides amongst other things protection against short circuits on the output or loads of less than 4 ohm impedance. This feature may preclude the amplifier being used with some 4 ohm speakers — the impedance of which falls to well below 4 ohms at some frequencies.

A rumble filter with a 12 dB per octave filter (below 10 Hz) protects the loudspeakers from low frequency transients. The control switch for this filter is at the back of the unit.

MEASURED PERFORMANCE

Our past experience with Yamaha products has been that the manufacturer's specification is generally bettered. The Yamaha B-1 was no exception. It has a frequency response which was +0 -0.4 dB from 10 Hz to 122 kHz, a straight line on a level recorder. The manufacturer's power ratings were easily exceeded, both with 8 ohm and 4 ohm loads, being 210 watts into an 8 ohm and 220 watts into 4 ohm with both channels driven. The power bandwidth was 5 Hz to 50 kHz — precisely as stated by the manufacturer.

Distortion is very low indeed — over most of the frequency and power output range the unit introduced no

MEASURED PERFORMANCE OF YAMAHA B-1 POWER AMPLIFIER – SERIAL NO. 2869

Frequency Response: -0.4 dB at 10 Hz and 122 kHz

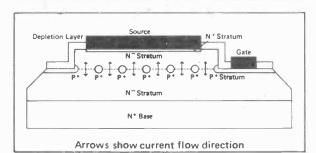
-3.0 dB at 2.3 Hz and 122 kHz*

Power at Clipping Point: 210 watts (8 Ω 1 kHz) (Both channels driven) 222 watts (4 Ω 1 kHz)

Power Bandwidth: 5 Hz: 144 W 8 Ω 0.13% THD 50 kHz: 105 W 8 Ω 0.3% THD

Total Harmonic Distortion: 100 Hz 0.03% (Both channels driven) 100 W 8 Ω 1 kHz <<0.01% 6.3 kHz 0.07%

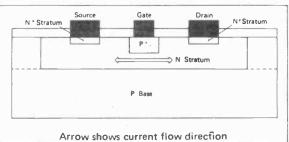
1 W 8 Ω 100 Hz <0.03% 1 kHz <0.03% 6.3 kHz 0.04%

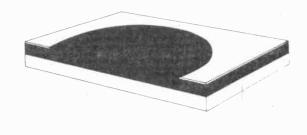

Noise: -99 dB re max. power i.e. 0.46 mV

-106 dB (A) " " "
Hum -126 dB " "

Sensitivity: $60 \text{ mV input gives 1 watt } (8\Omega)$

 $\begin{array}{lll} \mbox{Input Impedance:} & 92 \ k\Omega & \mbox{at 1 kHz} \\ \mbox{Output Impedance:} & 0.08 \ \Omega & \mbox{at 1 kHz} \end{array}$


YAMAHA VERTICAL FET CONSTRUCTION


As the vertical FET illustration below shows, the source, gate and drain are aligned vertically, permitting much higher power capacity. Each element of the mesh is, in effect, equivalent to an independent FET; a single Yamaha vertical FET contains tens of thousands of such elements.

The mesh itself measures $5 \cdot 10\mu$ across. To assure highest possible drain-source and drain-gate breakdown voltage, impurity concentration is reduced to a level far below any previous semiconductors, through a special epitaxial layer formation method.

Conventional FET Construction

Yamaha Vertical FET Mesh Configuration

^{*}Max measurable frequency with test gear used.

increase in distortion beyond the inherent distortion of our measuring system

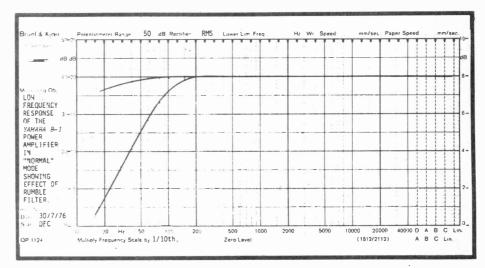
Yamaha conservatively state that at one watt output, the distortion at 1 kHz is 0.03%—and 0.04% at 20 kHz. Our findings indicated that under those conditions the distortion was respectively less than 0.02% and less than 0.03% respectively. At 100 W output the distortion was very much less than 0.01% (being typically less than 0.005%) and at 6.3 kHz it was a precise 0.07%.

Until recently it was generally believed that ultra-low distortion levels were irrelevant.

Nevertheless there is increasing evidence that basic design improvements such as those incorporated in the Yamaha B-1 amplifier result in audible improvements — even though these improvements are not necessarily measurable by standard steady-state test methods.

Noise was found to be $-99\,\mathrm{dB}$ with respect to maximum output or, if you prefer it, less than half a millivolt at the output terminals. Hum was an extraordinarily low $-126\,\mathrm{dB}$ with respect to maximum power output.

SUMMARY


As hard as we tried we could in no way fault the performance of this unit, except lamely to say that when we picked it up we found it too heavy!

Currently research shows that amplifiers offering higher linearity with lower levels of inverse feedback offer very good transient performance.

We think, but cannot prove, that the subjective performance of this unit is

better than other amplifiers using conventional bipolar transistors but must honestly say that we have not positively proven it so, on the basis of instrumental measurements.

Let it suffice to say that our subjective evaluation leads us to believe that the performance that this amplifier produced was the cleanest that we believe we have ever heard up to this time.

DOLBY 6 'B' NOISE REDUCTION KIT

Trademark of Dolby Laboratories Inc.

Build your own Dolby system using this exclusive approved kit.

Featuring

- switching for both encoding (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter
- provision for decoding Dolby f m. radio transmissions.
- no equipment needed for alignment.
- suitability for both open-reel and cassette tape machines.
- check tape switch for encoded monitoring in three-head machines.

The kit includes:

- complete set of components for stereo processor.
- regulated power supply components.
- board-mounted DIN sockets and push-button switches
- fibreglass board designed for minimum wiring.
- solid mahogany cabinet, chassis, twin meters, front panel, knobs, mounting screws and nuts.

Typical performance

Noise reduction: better than 9dB weighted.

Clipping level: 16.5dB above Dolby level (measured at 1% third harmonic content).

Harmonic distortion 0.1% at Dolby level typically 0.05% over most of band, rising to a maximum of 0.12%. Signal-to-noise ratio: 75dB (20Hz to 20kHz, signal at Dolby level) at Monitor output.

Dynamic Range > 90dB. 30mV sensitivity.

PRICE: £37.90 + VAT

Dolby level cal. tapes are available for open-reel use and for cassette (specify which) Price £2.00+VAT*

Please add VAT at 12½% unless marked thus, when 8% applies We guarantee full after-sales technical and servicing facilities on all our kits

High performance Tuner-Amp and Tuners available

INTEGREX LTD.

Please send SAE for complete lists and specifications
Portwood Industrial Estate, Church Gresley
Burton-on-Trent, Staffs. DE11 9PT
Burton-on-Trent (0283) 215432. Telex 377106

ZARTRON

Mail order: 115 LION LANE **HASLEMERE SURREY GU27 1JL**

EXCLUSIVE OFFER!

PRICE inclusive of VAT post and packing

KIT CONSISTS OF:

- Circuit Board
- Wire Distribution Strips
- Spare Spool I.C. Leg Deformer
- Comprehensive Instructions

HIGH PACKING DENSITY DIL BREADBOARD:

BREADBOARD:
Designed specifically for Wire Distribution
System, may be used as general purpose
breadboard. Single sided with two voltage
planes; 20 14-pin or 16 16-pin. I.C. locations,
or various combinations of 4-40 pin I.C.s; 28
contact fingers with 2-54mm pitch. Dimension 6.2mm x 67mm (3" x 5").

WIRE DISTRIBUTION STRIPS (Pat. Pending): The 'Strips' are designed to press-fit into the board between the leads of the integrated occupied to present into the board overer that each of the integrated circuits. They are designed to * retain large capacity of wires * protect wires from breakage * aid fast wiring (i.e. no posts to impede wiring and modification techniques * make packing density non-restrictive; and * be each to larget people.

cut to length easily.

LEAD DEFORMATION TUBE: Is placed between the legs of the IC and used to deform the pins - thus securing the IC

Please send Money Order / Cheque with order or S A E for further cotals
TRADE & OVERSEAS ENQUIRIES WELCOME

★ High accuracy, spec as in project

* Silk screened panel with all

★ Test leads, prods, etc., supplied.

★ Asssembly instructions included

* All parts available separately.

WIRE DISTRIBUTION PENCIL:

A well balanced, easy to handle wire dispensi Design features include

- A unique threading /tensioning system plus Long life steel tip for high-speed wiring Supplied with full bobbin of wire, threaded ready for use

SPARE BOBBIN:

Wound with 36 swg solderable synthetic enamel wire with polyurethane base.

The solution to economic quality I.C. Prototyping

ETI DIGITAL MULTIMETER KIT DMKI

This kit has been specially made available to ETI readers, and comes complete, down to the last screw. All you need is a few spare hours and some tools. The result will be a superb piece of test equipment that will be of invaluable use to the serious constructor or test lab.

Special Note:

32

This kit has been produced in conjunction with the designer and author of the project in the October issue of ETI as several parts are not normally available, or specially manufactured.

Please allow 21 days for delivery

* A demonstration model can be seen working at our electronics centre. Full list and specifications. Send s.a.e. please.

PRICE

ORDER FORM TO B H COMPONENT FACTORS LTD. 59 NORTH ST., LEIGHTON BUZZARD, BEDS.

* Designer approved kit.

Please supply 1 DMK1 kit Name

text.

lettering

I enclose cheque/PO for £

Access of B/card No.

B H COMPONENT FACTORS LTD.

LEIGHTON ELECTRONICS CENTRE 59 NORTH ST., LEIGHTON BUZZARD, BEDS. LU7 7EG TEL: 2316 (STD 05253)

GOVERNMENT & EDUCATIONAL ORDERS ACCEPTED GIRO NO. 331 7056 - ACCESS & BARCLAYCARDS ACCEPTED

INDUCTION BALANCE METAL DETECTOR

A really sensistive design operating on a different principle from that of other published circuits. This Induction Balance circuit will really sniff out those buried coins and other items of interest at great depths depending on the size of the object.

"ANOTHER METAL LOCATOR," some of you will say. Yes and no. Several designs have been published in the hobby electronics magazines; some good, some downright lousy but they have invariably been Beat Frequency Oscillator (BFO) types. There's nothing wrong with this principle — they are at least easy to build and simple to set up. The design described here works on a very different principle, that of induction balance (IB). This is also known as the TR principle (Transmit-Receive).

All metal locators have to work within a certain frequency band to comply with regulations and a licence is necessary to operate them. This costs £1.20 for five years and is available from the Ministry of Posts and Telecommunications, Waterloo Bridge House, Waterloo Road, London S.E.1.

First a word of warning. The electronic circuitry of this project is straightforward and should present no difficulty even to the beginner. However, successful operation depends almost entirely upon the construction of the search head and its coils. This part accounts for three-quarters of the effort. Great care, neatness and patience is necessary and a sensitive 'scope, though not absolutely essential, is very useful. It has to be stated categorically that sloppy construction of the coil will (not may) invalidate the entire operation.

IB VERSUS BFO

The usual circuit for a metal locator is shown in Fig. 2a. A search coil, usually 6in or so in diameter is connected in the circuit to oscillate at

between 100-150kHz. A second internal oscillator operating on the same frequency is included and a tiny part of each signal is taken to a mixer and a beat note is produced. When the search coil is brought near metal, the inductance of the coil is

changed slightly, altering the frequency and thus the tone of the note. A note is produced continually and metal is identified by a frequency change in the audio note.

The IB principal uses two coils arranged in such a way that there is virtually no inductive pick-up between the two. A modulated signal is fed into one. When metal is brought near, the electromagnetic field is disturbed and the receiver coil picks up an appreciably higher signal.

However, it is impractical for there to be no pickup — the two coils are after all laid on top of each other. Also our ears are poor at identifying changes in audio level. The circuit is therefore arranged so that the signal is gated and is set up so that only the minutest part of the signal is heard when no metal is present. When the coil is near metal, only a minute change in level becomes an enormous change in volume.

BFO detectors are not as sensitive at IB types and have to be fitted with a Faraday screen (beware of those which aren't — they're practically useless) to reduce capacitive effects on the coil. They are however, slightly better than IB types when it comes to indentifying exactly where the metal is buried — they can pin-point more easily.

Our detector is extremely sensitive — in fact a bit too sensitive for some applications! For this reason we've included a high-low sensitivity switch. You may ask why low sensitivity is useful. As a crude example, take a coin lying on wooden floor: on maximum sensitivity the detector will pick up the nails, etc., and give the same

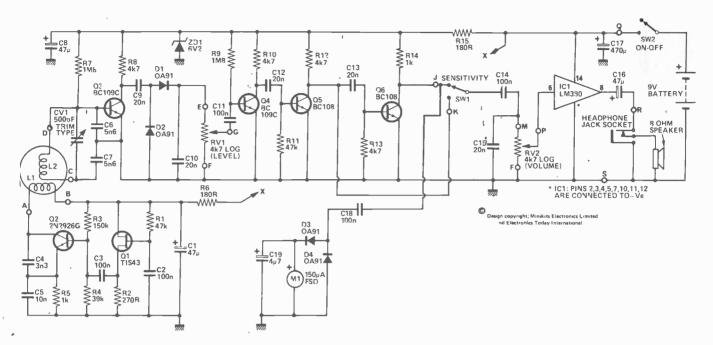
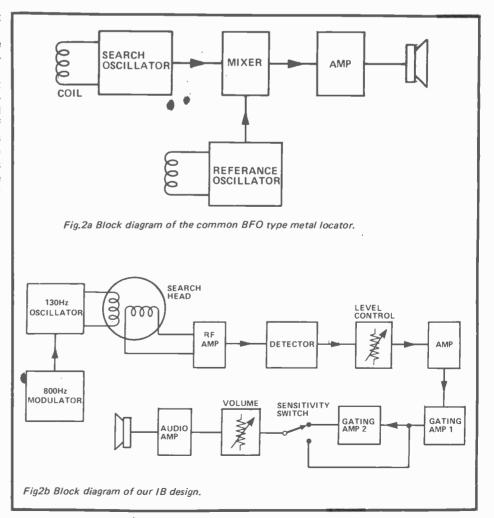


Fig.1 Complete circuit of the metal locator. Note that though the electronics is simple using very common parts, the whole operation depends on the coils Li and L2 which must be arranged so that

there is minimal inductive coupling between the two. Note also that the leads from the circuit board to the search head must be individually screened and earthed at PCB.


readings as for the coin, making it difficult to find.

Treasure hunting is an art and the dual sensitivity may only be appreciated after trials.

Table 1 gives the distances at which various objects can be detected. These are static, readings and only give an indication of range. If you are unimpressed with this performance you should bear two things in mind: first compare this with any other claims (ours are excellent and honest) and secondly bear in mind how difficult it is to dig a hole over 1ft of ground every time you get a reading. Try it — it's hard work!

COMPONENT CHOICE

The injunction Q1 is not the normal 2N2646; we found several examples of these erratic in their level - we are talking about tiniest fractions of one per cent which would normally not matter, but it does in this circuit. Even some examples of the TIS43 did not work well -- see the note in How it Works. Secondly Q2 is deliberately a plastic type. Metal canned transistors usually have the collector connected to the case and due to the nature of the circuit we noted a very small change in signal level due to capacitive effects when metal can types were used.

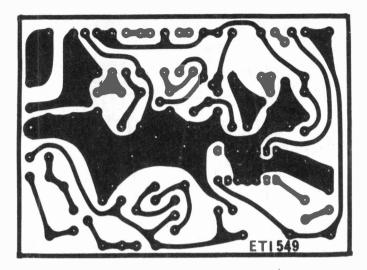


Fig.3 The PCB pattern. Most components other than the meter circuitry is built on this.

HOW IT WORKS -- ETI 549

Q1, Q2 and associated components form the transmitter section of the circuit. Q1 is a unijunction which operates as a relaxation oscillator, the audio note produced being determined by R1 and C1. The specified components give a tone of roughly 800Hz. R1 can lie in the range 33k to 100k if a different audio frequency is desired.

Q2 is connected as a Colpitt's oscillator working at a nominal 130kHz; this signal is heavily modulated by C3 feeding to the base of Q2. In fact the oscillator produces bursts of r.f. at 800Hz. L1 in the search head is the

transmitter coil.

L2 is arranged in the search head in such a way that the minimum possible signal from L1 is induced into it (but see notes on setting up). On all the prototypes we made we reduced this to about 20mV peak-to-peak in L2. L2 is tuned by C6 and C7 and peaked by CV1 and feeds to the base of Q3, a high gain amplifier. This signal (which is still modulated r.f.) is detected by D1, D2 providing the bias for D1. The r.f. is eliminated by C10 and connects to the level control RV1.

The signal is further amplified by Q4 which has no d.c. bias connected to the base. In no-signal conditions this will be turned off totally and will only conduct when the peaks of the 800Hz exceed about 0.6V across R11. Only the signal above this level is amplified.

On low sensitivity these peaks are connected to the volume control RV2 (any stray r.f. or very sharp peaks being smoothed by C15) and fed to the IC amplifier and so to the speaker.

The high sensitivity stage Q6 is connected at all times and introduces another gating stage serving the same purpose as the earlier stage of Q5. This emphasises the change in level in L2 even more dramatically. Note that RVI has to be set differently for high and low

sensitivity settings of SW1.

Whichever setting is chosen for SW1, RV1 is set so that a signal can just be heard. In practice it will be found that between no-signal and moderate-signal there is a setting for RV1 where a 'crackle' can be heard. Odd peaks of the 800Hz find their way through but they do not come through as a tone. This is the correct setting for RV1.

The stage Q6 also feeds the meter circuit. Due to the nature of the pulses this need only be very simple.

Since we are detecting really minute changes in level it is important that the supply voltage in the early stages of the receiver are stabilised, for this reason ZD1 is included to hold the supply steady independent of battery voltage (which will fall on high output due to the current drawn by ICI).

It is also important that the supply voltage to Q1 and Q2 does not feed any signal through to the receiver. If trouble is experienced (we didn't get any) a separate 9V battery could be used to supply this stage.

IC1 is being well underused so a

heatsink is unnecessary.

Battery consumption is fairly high on signal conditions — between 60mA and 80mA on various prototypes but this will only be for very short periods and is thus acceptable. A more modest 20mA or so is normal at the 'crackling' setting.

Stereo headphones are used and are connected in series to present 16 ohms to IC1 reducing current consumption.

Selection of Q1 and Q2

We found that QI and to a lesser extent Q2 required careful selection. QI should be chosen for the minimum possible 'crackle' — so that the transition from no-signal to hearing the 800Hz is as definite as possible. Some transistors for QI and Q2 can produce higher odds peaks than others.

We have specified Q3 and Q4 types as BC109C (highest gain group) for although lower gain transistors worked for us, they left little reserve of level on RV1 and really low gain types may not work at all.

RV1 is the critical control and should be a high quality type — it will be found that if has to be set very carefully for proper operation.

The choice of an LM380 may seem surprising as only a small part of its power can be utilised with battery operation. It is however inexpensive and widely available unlike the alternatives (note it does not require d.c. blocking at the input).

Output is connected for an 80hm speaker and to headphones. Stereo types are the most common and the wiring of the jack socket is such that the two sections are connected in series presenting a 160hm load (this reduces current consumption from the battery).

CONSTRUCTION: CONTROL BOX

The majority of the components are mounted on the PCB shown in Fig. 3. Component overlay and the additional wiring is shown in Fig. 4.

Exceptional care should be taken to mount all components firmly to the board. The trimmer capacitor CVI is mounted at right-angles to the board, its tags being bent over and soldered firmly to the copper pads. This enables it to be trimmed with the box closed. A plastic trimming tool should be used if possible. Poor connections or dubious solder joints may be acceptable in some circuits — not in this one. Take care to mount the transistors, diodes and electrolytic capacitors the right way around.

The PCB is fitted into the control box by means of long screws and pillars. The control box has to be drilled to take the speaker, the pots, switches, headphone jack and the cable from the search head.

THE HANDLE ASSEMBLY

The handle is made totally from standard parts. The general construction can be seen in Fig. 5. This is made from Marley 22mm cold water plumbing available from many plumbing shops. The hand grip is that for a bicycle — also easily available and a perfect fit onto the plastic pipe. A right-angled elbow and two sleeve connectors are specified. The elbow should be glued firmly and one end of each of the connectors should be glued also.

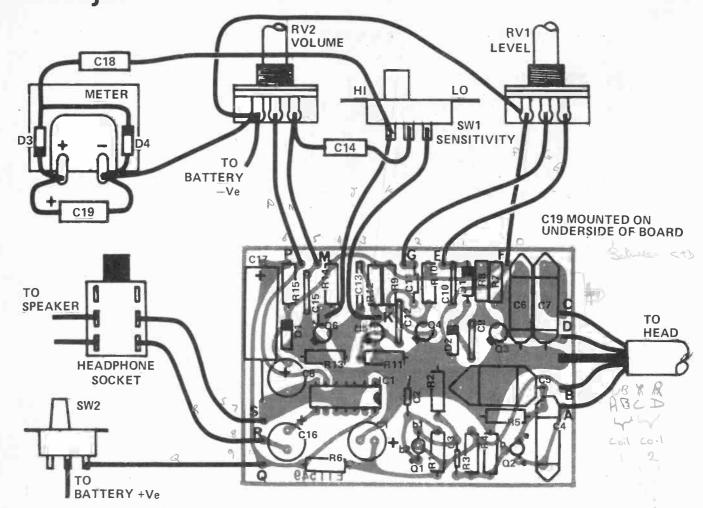


Fig. 4. The component overlay and wiring diagram to other parts of the circuit not on the PCB.

PARTS LIST ETI 549						
Resistors R1 R2 R3 R4 R5, 14 R6, 15 R7, 9 R8, 10,11,12,13	47k 270R 150k 39k 1k 180R 1M8 4k7	1/4W, 5% 1/4W, 5% 1/4W, 5% 1/4W, 5% 1/4W, 5% 1/4W, 5% 1/4W, 5% 1/4W, 5%	Semiconductor -Q1 Q2 X • Q3, 4 Q5, Q6 X • IC1 D1, 2, 3, 4 ZD1	TIS43 Unijunction 2N2926 — see text BC109C BC108 LM380 14 pin DIL OA91 6.2 volt 400m W Zener diode		
Potentiometers RV1 RV2 Capacitors C1,8,16 C2,3,111(4,18) -C4 -C5 -C6,7 -C9,10,12,13,15 -C17 -CV1 -C19	dk7 log rotary log rot		MISCELLANEOUS SW1 SW2, 2 pole, 2 way slide switches Stereo jack socket Miniature (21/4 in etc) 8 ohm loudspeaker L1, L2 — See text and drawings Vero box (65-2520J) PCB Board, ETI 549 4 core, individually screened cable, 1.5 metres Battery clip (PP6) Battery, PP6 Wood and laminate for search head 2 Control knobs, 2BA Nylon Nut Bolt M1 Signal level meter, 150µA movement Marley 22mm Cold Water Plumbing (see text) Bicycle Grip			

The reason for the connector near the base is to facilitate easy removal of the head and the control box for testing and initial setting up.

The control box is held to the handle by means of two pipe clips — again available from plumber's merchants.

The connection to the search head is by means of a 4½ in length of tubing which has to be modified. Put 1½ in of this tube into boiling water for about half a minute to soften the plastic, take it out and quickly clamp it into a vice to flatten half the length,

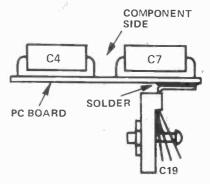
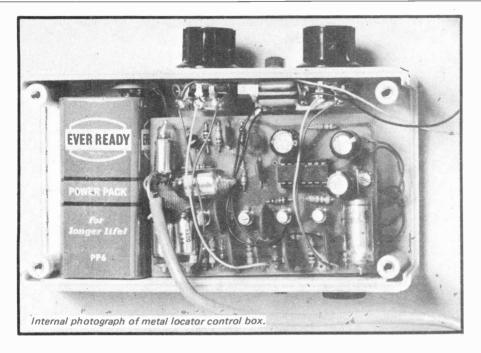
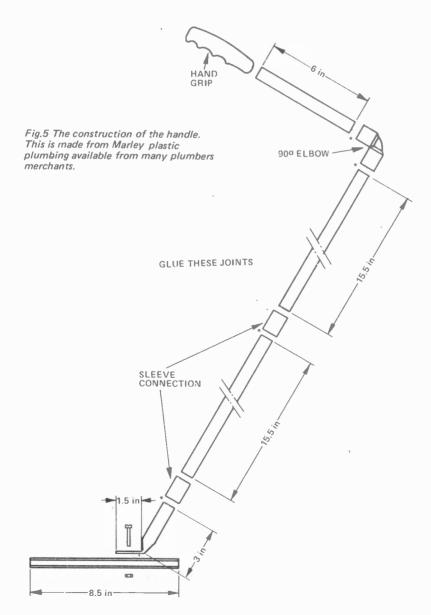




Diagram showing C19 mounted on copper side of P C Board

880

at the same time bending the flat to about 45° This will now lie across the top of the search head and is glued into position and held by a single 2BA nylon nut and bolt through the top of the search head.

THE COIL

Remember this is the key to the whole operation. The casing of the coil is not so critical but the layout is.

It is best first to make the 6mm plywood circle to the dimensions shown in Fig. 5. A circle of thinner plywood or hardboard is then firmly clued onto this — it's fairly easy to cut this after glueing. Use good quality ply and a modern wood glue to make this.

This now forms a dish into which the coils are fitted. The plastic connector to the handle should be fitted at this stage.

You'll now have to find something cylindrical with a diameter of near enough 140mm (5½in). A coil will then have to be made of 40 turns of 32 s.w.g. enamelled copper wire. The wire should be wound close together and kept well bunched and taped to keep it together when removed from the former. Two such coils are required: both are identical.

One of the coils is then fitted into the 'dish' and spot clued in six or eight places 'using quick setting epoxy resin: see photogaraph, of the approximate shape.

L2 is then fitted into place, again spot gluing it *not* in the area that it overlaps L1. The cable connecting the coil to the circuit is then fed through a hole drilled in the dish and connected to the four ends. These should be directly wired and glued in place, obviously taking care that they don't short. The cable must be a four-wire type with individual screens — the screens are left unconnected at the search head.

You will now need the built up control box and preferrably a 'scope. The transmit circuit is connected to L1. The signal induced into L2 is monitored; at first this may be very high but by manipulating L2, bending it in shape, etc., the level will be seen to fall to a very low level. When a very low level is reached, spot glue L2 until only a small part is left for bending.

Ensure that when you are doing this that you are as far away from any metal as possible but that any metal used to mount the handle to the head is in place. Small amounts of metal are acceptable as long as they are taken into account whilst setting up.

ETI Project 549

Now connect up the remainder of the circuit and set RV1 so that it is *just* passing through a signal to the speaker. Bring a piece of metal near the coil and the signal should rise. If it falls in level (i.e. the crackling disappears) the coil has to be adjusted until metal brings about a rise with no initial falling. CVI should be adjusted for maximum signal, this has to be done in conjunction with RV1.

Monitoring this on a scope may mean that the induced signal is not at its absolute minimum: this doesn't matter too much. Now add more spot gluing points to L2.

You should now try the metal locator in operation, If RV1 is being operated entirely at the lower end of its track, making setting difficult, you can select a lower gain transistor such as a BC108 for Q4.

When you are quite certain that no more manipulation of the coils will improve the performance, mix up plenty of epoxy resin and smother both coils, making certain that you don't move them relative to each other.

The base plate can then be fitted to enclose the coil, this should be glued in place.

USING THE METAL LOCATOR

You will find that finding buried metal is rather too easy. 95% will be junk — silver paper being a curse. The search head should be panned slowly over the surface taking care to overlap each sweep: the sensitive area is somewhat less than the diameter of the coil.

This type of locator will also pick up some materials which are not metal — especially coke and it is also not at its best in wet grass.

Think very carefully about where you want to search: this is more important than actually looking. The area you can cover thoroughly is very, very small, but is far more successful than nipping all over the place. As an example of how much better a thorough search is, we thoroughly tried on 25 square feet of common ground (5ft x 5ft); we found over 120 items but a quick search initially had revealed only two!

Treasure hunting is growing in popularity and those who do it seriously have adopted a code; essentially this asks you to respect other people's property, to fill in the holes you dig and to report any interesting finds to museums. And do get a licence — it must be the best bargain available at 25p a year (rather £1,20 for five years).

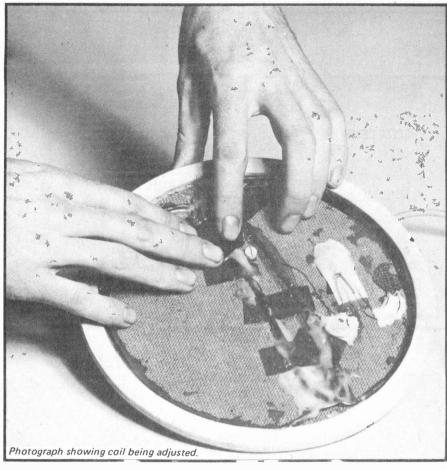


TABLE 1

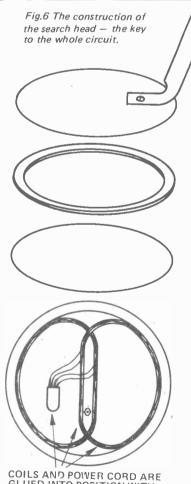

HIGH SENS	LOW SENS
8"	6"
17" 、	14"
22"	16"
12"	9"
8"	6"
	8" 17" 22"

Table showing sensitivity of the metal locator in free air. (Buried objects can usually be detected at greater depths.)

METER CIRCUIT

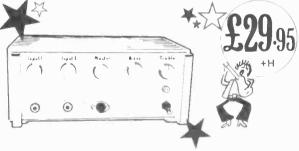
Since the circuit is basically sensing a change in audio level, a meter circuit can be incorporated. For the very first indication from the 'crackle' (see later) to heavy crackle your ears are likely to be more sensitive than the meter but thereafter it will come into its own.

This part of the circuit is optional and the components are not included on the board.

GLUED INTO POSITION WITH FIVE MINUTE EPOXY

ETI PCB's PROJECT TITLE Int. 25W Stereo Amp. Disal Power Supply Wide Range Voltmeter LC. Power Supply Thermocouple Meter Dual Beam Adaptor Impedance Meter Digital Voltmeter £2.30 £2.30 £1.48 £3.80 £1.48 £1.09 £1.43 105 107 111 113 114 116 117 82p £3.36 £1,11 £1.58 £2.14 £2.30 97p 89p £2.75 £1.40 £1.13 £2.49 68p 68p 68p 94p £1.24 £1.64 601E 601F 6016 601H 601J 601M 601P 601R 702 751 114 116 117A 117B 118 213 007 019 309 311 312 313 £1.01 68p 68p 68p 68p Simple Freq Counte 118 213 303 305 309 311 312 313 314 481 410 413 Simple Freq. Counter The Revealer Brake Light Warning Auto. Car Theft Alarm Int. Battery Charger Tacho Timing Light Bect. Ign. COI/Tacho Car Alarm 58p 99p 98p 80p £1.72 Radar Int. Alarm Mt. F.M. Tuner 702 751 HM. F.M. Tuner Light Dinner Print Timer Inter Com. Intruder Alarm Digital Alarm Clock Utiliboard Bicycle Speedometer 67p 69p Auto Amp, Four Input Mixer Super Steren 100W Guitar Amp, Master Mixer 67p £1.37 £1.73 £1.14 £1.52 £1.52 £1.89 £1.78 68p 83p 70p 97p £1.40 €1.10 5017 NEW ROARDS Stage Mixer 414 Logic Probe 120 121 122 123A 1238 124 128 130 433A 433B The Over L.E.D. Mixer Pre-Amp. Int. 420 Four C/Amp. 417 Logic Pulser Logic Tester Cros Tester £1.01 £2.05 419 89p 89p £1.19 £1.97 £1.00 £1.18 £1.18 Tone Burst Generator Audio Mini Voltmeter Temperature Meter Active Crossover 124 Discrete SO Decoder £1.54 £2.69 422 Stereo Amp. 50W Plus 2 Add on Decoder Spr. Reverb. Unit Stereo Rumble Filter Graphic Equalizer 422 423 424 426 427 428 429 430 Active Crossover Sen. Purpose Power Supply Audio Level Meter A util Evel Meter Compressor Sweet 18 Cacivator Stop Watch Audio Moize Generator Touch Switch Marker Generator Crossover Amp. 83p £1.62 £1.19 £1.08 131 438 Colour Organ Simple Stereo Amp. Line Amp. 443 457 534 441 539 706 15538 £3.94 £2.16 £1.00 £1.00 £1.00 £1.00 £2.30 89p £2.16 £2.97 £1.01 £2.02 £1.04 £2.45 £2.94 70p 70p Line Amp. Ruorezcent Lamp Dimmer Photographic Timer Tape Slide Synchroniser Digital Stop Watch 44 t 539 706 011 023 026 520A 5208 Low Diff. Thermostat Exposure Meter 951 Switching Regulator Digital Stopwatch Low Cost Laser Push Button Dimmer Elec. One Arm Bandil 524 527 529A 529B 530 532 533A 533B 527 529 960 62.32 62.32 Guitar Attack Base Booster Optical Communications [Both PCB's] 018 emp. Controller 85p 87p 68a Photo Timer Digital Display

Orders of less than £5.00 Postal Orders only, Delivery time approximately 3 weeks Large quantity orders — discount by negotiation. All P.C.B.'s prices include P&P and VAT Majority of orders despatched within a week


CROFTON ELECTRONICS LTD.

35 Grosvenor Road, Twickenham, Middlesex Tel. 01-891 1923

DOIAM kits

DORAM KITS CONTAIN EVERYTHING DOWN TO THE LAST NUT!

50W PA/GuitarAMP

Especially designed for general purpose use with guitars, PA systems etc. This amp will provide 50 Watts RMS into 8 ohms with harmonic distortion level as low as 0.15%. Robust case and load fault protection contribute to the rugged design, which incorporates an 1C mixer pre-amp (giving 2 separate inputs) and a thermally compensated power amplifier. Overall freq. response (—3dB) is 15Hz to 100KHz with sensitivity 30mV for full output and 52dB sig. to noise ratio.

£29.95 +H VAT (Order 997-011)

O'seas orders -- add 15% for P+P. All items offered for sale subject to the Terms of Business set out in Doram Edition 3 catalogue, price 60p. The Doram Kit brochure is also available, price 25p. Combined price only 70p which also entitles you to 2 x 25p vouchers, each one usable on any order placed to the value of £5.00 or more (ex. VAT)

DORAM ELECTRONICS LTD., P.O. BOX TR8 WELLINGTON ROAD INDUSTRIAL ESTATE, LEEDS LS12 2UF

An Electrocomponents Group Company

Metac Digital Watches

NEW TO METAC

THE GRUEN EXECUTIVE

Continuous display of hours, minutes and seconds. Press a button and display the date. Back light for night time viewing. Quality stainless steel case. A superb man's watch.

£54.00 2-year guarantee

NEW TO METAC

LADY'S WATCH

Small, graceful lady's watch. LED display. Hours, mins., secs., day, month, day of week. Gold or silver finish metal case. THE GIFT FOR

SOMEONE SPECIAL. Price

£33.00

2-year quarantee

TLC₆ B LIQUID CRYSTAL **ELECTRONIC** WATCH

Continuous display with hacklight.

Hours, mins, secs, date, month, Automatic 28. 30, 31 day calendar. Metal bracelet in choice of gold or rhodium. Slimline case

£33.95 No more to pay 2-year guarantee

TLESEA QUARTZ CRYSTAL ELECTRONIC WATCH

8 separate functions Hours/minutes/day/date/ a.m./p.m. indicators/Auto-Fade, Available in 18ct. Gold/Rhodium plated. Slimline Case.

No more to pay £18.95 2-year guarantee

THIS IS LAST MONTH'S BEST SELLING MAGAZINE SPECIAL WATCH OFFER.

REMEMBER with every WATCH you get METAC SUPER COVER. Full 2 years' guarantee. Two year replace or repair if faulty. Free Calibration check 1st, 2nd and 3rd year. Free Technical advice.

To METAC INTERNATIONAL, 67 High Street, Daventry, Northants. Tel. 03272 76545. Please fill in the coupon on page 9

Showroom open 9-6 daily

Get a great deal from

A. MARSHALL (LONDON) LTD. DEPT. E.T.I. LONDON — 40-42 Cricklewood Broadway, NW2 3ET Tel. 01-452 0161. Telex 21492

GLASGOW — 85 West Regent Street, G2 2QD Tel. 041-332 4133

BRISTOL — 1 Straits Parade, Fishponds Rd., BS16 2LX Tel. 0272 654201

Call in and see us 9-5.30 Mon-Fri 9-5.00 Sat

Trade and export enquiries welcome. Catalogue price 55p post paid, 40p to callers.

Top 600 Semiconductors from the largest range in the UK - all devices manufacturers' branded stock from RCA, TEXAS, MULLARD, MOTOROLA, NATIONAL, SIEMENS, ITT, THOMSON, CSF, SGS, SSDI, FERRANTI, etc.

i i	4		1		15			•				- "		, 000.
	35 2N3704		40362	0.48	BC161	0.50	BD135	0.37	BFX89	1.25	IN	TEG	RATED C	IRCUITS
	30 2N3705		40363	1.20	BC167	0.12	BD136	0.37	BFY50	0.34			LM3301N 0.8	
	62 2N3706		40406	0.58	BC168	0.12	BD137	0.38	BFY51	0.38	CA3020A		LM3302N 1.4	
2N699 0.			40407	0.45	BC169	0.12	BD138	0.38	BFY52	0.36	CA3028A		LM3401 0.7	
2N706 0.			40408	0.65	BC170	0.16	BD139	0.40	BFY53	0.34	CA3028B		LM3900 0.7	
2N706A 0.			40409	0.65	BC171	0.14	B0140	0.40	BFY90	1.37	CA3030	1.24	LM3905 1.6	
2N708 0.			40410	0.65	BC172	0.12	BD239	0.40	BRY39	0.50	CA3030A	1.89	LM3909 0.6	
2N709 0.			40411	2.85	BC177	0.20	BD 240 BD 241	0.45	BSX20	0.31	CA3045	1.40	MC1035 1.7	
2N718 0. 2N718A 0.			40594	0.75	BC178 BC179	0.20	BD242	0.45	BSX21	0.32	CA3046	0.89	MC1303 1.4	7 TBA500 2.21
2N718A 0. 2N720A 0.			40595	0.85	BC182	0.23	BD243	0.60	BU105 BU205	1.50	CA3048	2.23	MC1304 1.8	
2N914 0.			40673 AC126	0.73	BC182L	0.14	BD244	0.62	ME0402	2.20 0.20	CA3049	1.66	MC1305 1.8	
2N916 0.			AC126	0.37	BC183	0.11	BD245	0.65	ME0404	0.15	CA3052	1.62	MC1306 1.0	
2N918 0.			AC128	0.37	BC183L	0.14	BD246	0.66	ME0412	0.10	CA3053	0.60	MC1310 1.9	
2N929 0.			AC151V	0.35	BC184	0.12	BD529	0.42	ME4102	0.10	CA3080	0.68	MC1312 1.9	
2N930 0.		2.90	AC152V	0.50	BC184L	0.14	BD530	0.47	ME4104	0.10	CA3080A CA3086	0.51	MC1327 1.5 MC1330 0.9	
2N1131 0.			AC153	0.49	BC207	0.12	BDY20	1.13	MJ480	1.35	CA3086	1.59.	MC1350 0.7	
2N1132 0.	80 2N3790	3.10	AC153K	0.55	BC208	0.11	BF115	0.38	MJ481	1.55	CA3089	2.52	MC1351 1.2	1000000 2021
2N1613 0.			AC176	0.40	BC212	0.14	BF117	0.70	MJ490	1.35		3.80	MC1352 0.9	
2N1711 0.			AC176K	0.60	BC212L	0.17	BF121	0.55	MJ491	1.85	CA3130	0.94	MC1357 1.4	
2N1893 0.:			AC187K	0.55	BC213	0.14	BF123	0.55	MJ2955	1.25	LM3D1A	0.65	MC1458 0.9	
2N2102 0.1			AC188K	0.55	BC218L	0.16	BF152	0.25	MJE340	0.58		0.44	NE555 0.5	
2N2218 0.:			AD161	0.85	BC214	0.16	BF153 BF154	0.25	MJE370	0.58	LM304	2.45	NE556 1.0	
2N2218A 0.:			AD162	0.85	BC214L	0.17	BF 154	0.25	MJE371	0.60		0.65	NE565 1.20	
2N2219 0.: 2N2219A 0.:		0.21	AF106 AF109	0.55	BC237 BC238	0.14	BF160	0.35	MJE520 MJE521	0.45	LM308C	1.82	NE566 1.6	
2N2229A 0		0.22	AF124	0.75	BC239	0.12	BF161	0.60	MJE2955		LM308N	1.17	NE567 1.86	
2N2221 0.3		0.55	AF124	0.65	8C251	0.15	BF166	0.40	MJE3055			2.10	SASS60 2.50	
2N2221A 0.2		0.20	AF126	0.65	BC253	0.22	BF167	0.38	MP8111			3.00	SAS570 2.50	
2N2222 0.3		0.20	AF127	0.65	BC257A	0.17	BF173	0.38	MP8112	0.40		2.25	76001N 1.5	
2N2222A 0.2	5 2N4060	0.20	AF139	0.69	BC258A	0.17	BF 1:77	0.30	MP8113	0.45		6.40	76003N 2.59 76008K 2.59	
2N2368 0.2	5 2N4061	0.17	AF186	0.50	BC259B	0.18	BF178	0.35	MPF 102	0.30		1.75	76013N 1.70	
2N2369 0.2		0.18	AF200	0.70	8C261A	0.21	BF179	0.35	MPSA05	0.23		2.75	76013ND 1.5	
2N2369A 012		0.17	AF239	0.74	BC262B	0.19	BF180	0.40	MPSA06			3.00	76018K 2.50	
2N2646 0.7		0.20	AF240	0.98	BC263C	0.24	BF181	0.40	MPSA12			2.25	76023ND 1.5	
2N2647 1.4		0.65	AF279	0.80	BC300	0.45	BF182 BF183	0.45	MPSA55			2.15	76033N 2.59	
2N2904 0.3 2N2904A 0.3		0.70	AF280	0.85	BC301 BC303	0.45	BF183	0.45	MPSA56	0.24	LM373N	2.25	76110N 1.40	
2N2905 0.3		0.50	BC107	0.15	BC307	0.20	BF185	0.35	MPSU05 MPSU06			2.25	76114N 1.87	
2N2905A 0.3		0.55	BC108 BC109	0.15	BC308	0.18	BF194	0.14	MPSU55	0.55		1.75	76116N 2.06	
2N2906 0.2		0.60	BC113	0.15	BC309C	0.25	BF195	0.13	MPSU56	0.60		2.25	76131N 1.30	
2N2906A 0.2		0.70	BC115	0.19	8C317	0.14	BF196	0.14	TIP29A	0.45		3.95	76226N 1.94	
2N2907 0.2	1 2N5192	0.75	BC116	0.19	BC318	0.12	BF197	0.17	TIP30A	0.49	LM380-8 LM380N	0.90	76227N 1.51 76228N 1.71	
2N2907A 0.2	2 2N5195	0.90	BC116A	0.20	BC327	0.20	BF198	0.18	TIP31A	0.50		2.45	76228N 1.79	
2N2924 0.1		0.35	BC117	0.22	8C328	0.19	BF200	0.35	TIP32A	0.50		1.60	76532N 0.91	
2N2926 0.1		0.40	BC118	0.16	BC337	0.19	BF 225J	0.25	TIP33A	0.80		1.25	76533N 1.30	
2N3019 0.5		0.40	BC119	0.30	BC338	0.21	BF244	0.35	TIP34A	0.90		1.45	76544N 1.44	
2N3053 0.3		0.40	BC121	0.45	BC547	0.12	BF245	0.34	TIP35A	2.50	LM386N	0.80	76545N 2.09	
2N3054 0.6		0.40	BC132	0.30	BC548	0.12	BF246 BF254	0.75	TIP36A	3.35		1.05	76546N 1.44	
2N3055 0.7 2N3390 0.2		0.15	BC134	0.15	BC549	0.13	8F 255	0.24	TIP41A TIP42A	0.70		1.00	76550N 0.41	
2N3390 0.2		0.19	BC135 BC136	0.15	BCY30 BCY31	1.03	BF 257	0.24	TIP29c	0.80		1.00	76552N 0.65	
2N3391A 0.2		0.19	BC136	0.19	BCY32	1.70	BF 258	0.45	TIP30c	0.65		0.75	76570N 2.08	
2N3392 0.1		0.33	BC140	0.40	BCY33	1,00	BF259	0.49	TIP31c	0.66		0.65	76620N 1.10	
2N3393 0.1		0.29	BC 14 1	0.45	BCY34	1.20	BF459	0.45	TIP32c	0.75		0.45	76650N 1.10	
2N3394 0.1	5 2N5484	0.34	BC142	0.30	BCY38	2.00	BFR39	0.28	TIP33c	1.10		0.60	7666DN 0.60 76666N 0.92	
2N3439 0.8		0.38	BC143	0.30	BCY42	0.60	BFS21A	2.60	TIP34c	1.20		0.85	TAA301A 1.50	
2N3440 0.6		0.53	BC147	0.12	BCY58	0.25	BFS28	1.04	TIP41c	0.85		0.65	TAA320A 1.15	
2N3441 0.8		0.65		0.12	BCY59	0.25	BFS61	0.30	TIP42c	0.95		0.65	TAA350A 2.48	
2N3442 1.3		0.42		0.13	BCY70	0.25	BFS98	0.27		0.65		0.50	TAA521 1.00	
2N3638 0.1		0.42		0.27	BCY71	0.26	BFX29	0.38		0.55		0.40	TAA522 1.90	
2N3638A 0.1		0.38		0.27	BCY72	0.24	BFX30	0.40	TIS43	0.30		0.90	TAA550 0.60	
2N3639 0.3 2N3641 0.2		0.41		0.12	BD115 BD116	1.20	BFX84 BFX85	0.40			LM 748-8		TAA560 1.60	
2N3641 0.2 2N3702 0.1		0.43		0.11	BD131	0.51	BFX87	0.41				0.50	TAA570 2.30	
2N3703 0.1		0.45		0.50	BD132	0.54	BFX88	0.40				1.76	TAA6118 1.85	
	70301	0.40	50100	0.50	00.02	3.54	STAGO	0.40				1.92	TAA621 2.15	
	_									- 1	LM 1828	1.75	TAA661A 1.32	

CLOCK MODULES

Built and tested — requires only switches and transformer to complete 12 or 24 hr alarm modules MA1002F 12hr 5" display 11.90 MA1002F 12hr 64" display 11.90 MA1010E 12hr 84" display 17.00 MA1010E 24hr 84" display 17.00 MA1010G 24hr 84" display 17.00 Transformers £1.50

CAR CLOCK MODULE

Built Tested 12v supply "MA1004 d-digit module Data Sheet 5p + SAE

THE PARTY OF	TRIACS 4 amp 6 amp 8 amp	Plastic pa 0.70 0.75 0.80	10 amp 12 amp 16 amp	0.90 1.10 1.60
	THYRIS 5 amp 100V 5 amp 200V 5 amp 400V	0.35	Plastic C106 8 amp 100V 8 amp 200V 8 amp 400V	0.43 0.49 0.62
N. C. A. S.	BRIDGE W005 W01 W02 W04 W06	0.30 0.32 0.34 0.40 0.50	BY164 B40C1500 B40C3200 B80C1500 B80C3200	0.57 0.48 1.10 0.75 1.15

SEE MARSHALL'S FOR CMOS

0.24	CD4018	1.15		0.96
			CD4043	1.15
0.24	CD4020	1.27	CD4044	1.06
1.34	CD4021	1.15	CD4045	1.59
0.24	CD4022	1,10	CD4046	1.52
1.10	CD4023	0.24	CD4047	1.15
0.64	CD4024	0.84	CD4049	0.64
0.64	CD4025	0.24	C04050	0.64
0.24	CD4027	0.64	C04510	1.56
0.24	CD4028	1.02	C04511	1.79
0.64	CD4029	1.30	CD4516	1.56
1.15	CD4030	0.64	CD4518	1.43
1.15	CD4031	2.53	CD4520	1.43
0.64.	CD4037	1.60		
1.15	CD4041	0.96		1
	0.24 0.24 1.34 0.24 1.10 0.64 0.24 0.24 0.64 1.15 1.15	0.24 CD4019 0.24 CD4021 0.24 CD4022 1.10 CD4022 0.64 CD4026 0.64 CD4026 0.24 CD4026 0.24 CD4027 0.24 CD4028 0.64 CD4028 1.15 CD4031 0.64 CD4031	0.24 CD4019 1.15 0.24 CD4020 1.27 1.34 CD4021 1.15 0.24 CD4022 1.10 1.10 CD4023 0.24 0.64 CD4024 0.84 0.64 CD4025 0.24 0.24 CD4028 1.02 0.64 CD4029 1.30 1.15 CD4030 0.64 1.15 CD4031 2.53 0.64 CD4037 1.60	0.24 CD4019 1.15 CD4043 0.24 CD4020 1.27 CD4004 1.34 CD4021 1.15 CD4045 0.24 CD4022 1.10 CD4046 1.10 CD4023 0.24 CD4047 0.64 CD4024 0.24 CD4040 0.24 CD4025 0.24 CD4050 0.24 CD4027 0.24 CD4510 0.64 CD4028 1.02 CD451 0.64 CD4028 1.30 CD4516 1.15 CD4031 0.64 CD451 1.15 CD4031 2.53 CD4520 0.64 CD4027 1.60

EXTENDED RANGE NOW IN STOCK

MARSHALL'S QUALITY FOR TTL

III. Integra	ted Circuits	— Quality &	Prices yo	u can't beat -	- Top manufa	cturers only		
\$N7400 0.21 \$N7401 0.21 \$N7402 0.21 \$N7403 0.21 \$N7403 0.21 \$N7404 0.26 \$N7406 0.74 \$N7406 0.74 \$N7408 0.29 \$N7409 0.29 \$N7410 0.21	\$N7413 0.51 \$N7416 0.61 \$N7417 0.61 \$N7420 0.21 \$N7423 0.39 \$N7425 0.39 \$N7427 0.39 \$N7432 0.31	\$N7441 J.03 \$N7442 0.78 \$N7446 1.23 \$N7447 1.17 \$N7448 1.17 \$N7450 0.27 \$N7451 0.21 \$N7453 0.21	SN7470 0 SN7472 0 SN7473 0 SN7474 0 SN7475 0 SN7476 0 SN7480 0 SN7481 1 SN7482 0	0.45 SN7494 0.74 0.10 SN7495 0.75 0.67 SN7496 1.00	5 SN74118 0.99 SN74119 1.80 SN74121 0.49 SN74122 0.45	\$N74157 0.98 \$N74160 1.41 \$N74161 1.41 \$N74162 1.41 \$N74163 1.41 \$N74164 1.23 \$N74165 1.23 \$N74167 3.70 \$N74167 1.52	SN74181 SN74190 SN74191 SN74192 SN74193 SN74196 SN74197 SN74198	1.23 1.77 3.70 1.91 1.62 1.62 1.17 1.17 2.93 2.93

RAMS

4.14 2111-2 **2.90** 2112-2

DATA PACK £1.50

MM5204 MM5214

KEYBOARD KIT

LOW **POWER SCHOTTKY** 8.00 10.80 ALL PRODUCTS FULLY GUARANTEED TO MANUFACTURER'S SPECIFICATIONS

VOLIAGE REGUI	LATURS
Available in 5V 12V 15V	V 24 Volt
100mA TO92 Positive	0.45
100mA TO5 Positive	0.92
500mA TO 202 Positive	1.10
500mA TO202 Negative	1.05
1 Amp TO220 Positive	1.35
1 Amp TO220 Negative	2.85
1 Amp TO3 Positive	1.75

LM3D9K £2.10LM317K £3.00LM323K £6.40

OPTO, ELECTRONICS

3mm Red 0.18 G 0.25 Yel 0.25
5mm Red 0.20 G 0.26 Yel 0.26
TIL209 0.24

DISPLA		egment	
DL740 DL707 DL747 DL750	2.00 2.00 2.50 2.50	3.00 3.00 3.40 3.40	Display 3" Red 3" Red 5" Red 5" Red

NEW 1977 CATALOGUE
WITH 500 NEW LINES —
CRAMMED WITH NEW PRODUCTS,
FECHNICAL INFORMATION AND
ALL BACKED BY THE USUAL
SUPERLATIVE MARSHALL'S SERVICE — FOR ONLY 55p POST PAID.
Please add VAT to your order.
Postage and packing 30p.

40

Scope test your car

AUTOMOBILE ENGINE TUNING IS A grossly misused and misunderstood operation. To many it implies some esoteric knowledge or ability — of listening to an engine and somehow deducing that the ignition must be advanced — or the mixture strength richened a bit on the front carburettor.

In reality it consists almost entirely of ensuring that ignition and carburetion is adjusted to the vehicle manufacturer's specifications.

No more - no less.

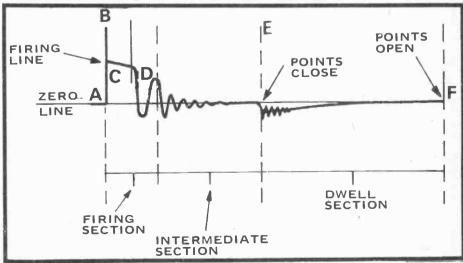
But to do this it is virtually essential to use at least some basic instrumentation; a dwell meter, a tachometer, a good exhaust gas analyser — and preferably an ignition analyser.

Many car enthusiasts have at least a tacho/dwell meter — but few have access to an ignition analyser for such devices are costly indeed. Nevertheless if a few limitations are accepted virtually any standard oscilloscope can be used as an ignition analyser simply by making a couple of very simple capacitive probes — which can be as simple as clothes pegs and a few square inches of aluminium foil.

An ignition analyser displays waveforms from the primary or secondary side of the vehicle's ignition system. Surprisingly perhaps, this waveform provides information not only about the ignition system in general but also about carburetion, and a number of mechanical conditions.

The analyser can do this because the voltage required to fire a petrol/air mixture in an engine is affected by many different variables including air/fuel ratio, cylinder compression, ignition timing, ignition polarity, spark plug gap and condition etc, etc.

THE SECONDARY WAVEFORM

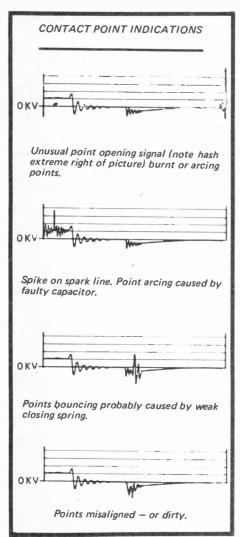

The simple waveform shown at the beginning of this article is a typical secondary waveform that is derived from the secondary (or high voltage) side of the ignition system. This waveform is the one most commonly used since phenomena occuring in the primary side of the system will be reflected through the coil windings and appear in the secondary pattern.

Point A: is the instant at which the contact points open thus causing the magnetic field to collapse through the coil's primary winding. A very high voltage is thus generated in the secondary winding and this continues to rise—until a spark jumps across the distributor rotor gap and the spark plug gap (point B). The voltage at which this occurs is known as the 'ionization' or the 'firing' voltage and may be anywhere between 5 kV and 15 kV depending on the factors outlined above.

Points C-D: after a very short time the

voltage drops substantially but the arc is maintained (point C). The subsequent section from point C to point D is known as the spark line and when viewed on a 'scope the amount by which this line slopes away from the horizontal is directly related to resistance in the plug and coil ht leads (ignition suppression). A slope of 30° or so is OK - if it's more than that then it's worth checking lead resistance with an ohmeter. The total resistance between the centre terminal of the coil and the centre electrode of the plug should not exceed about 20 k assuming the rotor gap is shorted out of course! Actual resistance is not critical but anything more than 30 k may cause problems. Resistance over 50 k almost certainly will.

Point D: the section immediately following the end of the spark line (point D) should be a series of diminishing oscillations. These should appear as our illustration. If there are no oscil-



'Scope test yourcar

lations - or just or or two - then it's a safe bet-that there's a shorted turn in the coil. It may not have broken down completely yet but it's a safe bet it shortly will. (See also below).

Point E: is where the contact breaker points close. It is essential that there is a gap between the last oscillation of the preceding section and point E for otherwise the diminishing coil energy will be fed into the now closed points thus preventing the coil re-building its magnetic field for the next cycle of ignition.

A great deal may be learnt by studying point E carefully, point misalignment, point bounce, burnt points etc may be spotted at this part of the waveform. The correct waveform at point E should be a short downward line followed by six or so diminishing oscillations.

Point F: magnetic energy will now build up in the coil until Point F. This is in effect the same point as our previous point A but in the next firing sequence. The section from points E to F is known as the dwell section and should occupy roughly the proportion of the total, waveform as shown in our main drawing. Dwell is adjusted by varying the contact breaker gap and should be set using a dwell meter.

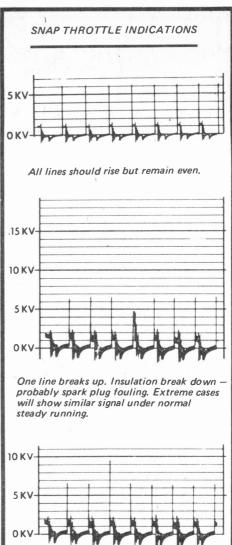
SPECIFIC INDICATIONS

Firing waveforms should be observed with the engine warm and running at about 1000 rpm - that is about 400 rpm higher than normal tickover speed.

Check each section of each firing sequence slowly and carefully. The various figures shown in this article indicate how specific faults will show

FIRING LINE

All firing lines should be of roughly equal height. If any plug is 10-15% or more higher than the rest, connect a jumper lead to earth and short out at the plug terminal. If the firing line now decreases the fault lies within that cylinder - either a faulty plug or unusually weak mixture (probably caused by a leaking inlet manifold gasket). If the firing line does not decrease there is a partial open circuit in the associated plug lead or that lead is not making firm contact with the connector within the distributor


If the firing lines are unequal on a multi-carburettored engine check to see if the lines which are higher correspond to those cylinders fed by one common carburettor. If so it is probable that the mixture from the carburettors is unbalanced. A further but less common fault that may be spotted this way is an eccentric distributor cap - the gap between rotor and distributor contacts being wider on one side than the other.

At some time during the check 'snap' the throttle wide open momentarily, meanwhile watching the firing lines. They should all rise by about the same amount. If one or more lines rise substantially higher than the others then there is an open circuit plug lead or resistor, a wide plug gap or badly deteriorated plug electrode.

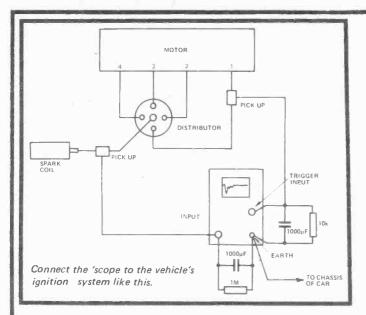
One or more lines staying lower than normal indicates spark plug breakdown or insulation breakdown in the circuit concerned.

COIL OUTPUT AND **INSULATION TEST**

While the engine is running disconnect a plug lead and observe the firing pattern for that cylinder. The firing line should rise to about two to three times its previous level (to about 20 kV) and

One line rises above rest. Wide plug gap, partial break in suppression resistor, plug lead etc.

should extend below the base line by about half the upward distance.


If the firing line is short or intermittent - or if the lower section does not appear - then there is an insulation breakdown in the distributor cap, plug leads, rotor or coil.

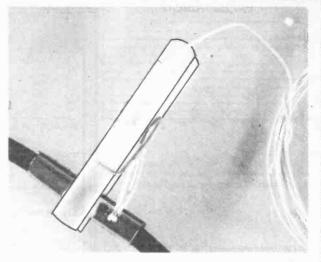
COIL AND CAPACITOR

A series of diminishing oscillations should be observed at point D in the waveform. If these do not appear, or are truncated, there is either a shorted or crossed turn in the coil - or the capacitor is breaking down.

BREAKER POINTS

Point E on the main waveform. The drawings accompanying this article show various fault indications. Note however that faulty point action may also show up at the point opening position (A). Check breaker point action with the engine running at all speeds. Weak or incorrect breaker

A motor vehicle's ignition system produces output voltages varying from 3kV to 20kV or more. These high voltages must be reduced to a workable level before coupling into an oscilloscope.


The simplest way of doing this is via a resistive voltage divider however a capacitive divider will work equally well (we are dealing with ac signals) and is simpler to connect.

We can make one of the capacitors by wrapping a piece of Alfoil - about 50mm long - around the required lead and connecting this foil to the scope. A more professional approach is to glue a short length of split tube to a clothes-peg - as shown in the accompanying photograph. This will have a capacitance of about 1pF - not much but ample for the massive signals we are sampling.

A second capacitor of about 1000pF should be connected as shown. The capacitive divider thus formed divides the input signal by about 1000:1 thus reducing the input signal to a workable 3 - 20 volts. A 1M resistor should be connected across the 1000pF capacitor to provide a dc load.

The technique in use: Place the 1pF capacitor over the main lead from the coil to the distributor and connect it to the 'Y' input of the scope.

If the scope has a trigger input, this may be used to lock in the ignition signal. Just make up a second capacitive pick-up and place this around number 1 plug lead. Once again use a 1000pF capacitor as a divider but bridge this capacitor with a 10k resistor - not 1M as previously.

A simple pick-off can be made by glueing short lengths of split metal tube to a clothes peg.

Start the motor and adjust the 'Y' gain and timebase frequency to give four (or six or eight) complete firing sequences across the screen. The first complete pattern will be number 1 cylinder and the rest will follow in the engine firing order.

All waveforms may be superimposed by expanding the trace and triggering via the X input.

If the scope does not have a trigger input, synchronization is slightly harder to achieve. Number 1 cylinder may be identified simply by shorting out that cylinder momentarily.

When the scope is connected as described above, the ignition waveform will appear inverted relative to that seen on a commercially produced ignition analyser - and the waveforms shown in this article. It is surprisingly easy to adapt to an inverted picture, however, if this is found to be a problem, it can be remedied simply by coupling the signals into the scope via a simple 1:1 transformer. Details will vary from one scope to another but all that is basically needed is two coils of wire taped together. It may be necessary to reduce the 1000pF capacitor/s to 470pF. Just connect the secondary to give the correct picture.

If possible, arrange to calibrate the scope's vertical axis so that the magnitude of the signals may be measured. This is best done simply by taking average indications from several vehicles and 'calibrating' by transferring data from the graphs in this article. The result may not be accurate, but only a rough guide is required.

springs will cause the points to bounce — and this is readily seen on the scope pattern.

COIL

With very few exceptions — notably on some Citroens — the high voltage side of a vehicle's ignition system is designed to have positive earth — regardless of overall vehicle battery polarity.

The reason for this is that electrons are emitted more readily from a hot surface than a cold one so as a spark plug centre electrode always runs hundreds of degrees hotter than the side electrode the ignition system is devised so that a negative potential is applied to the centre electrode.

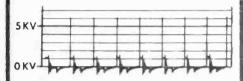
If this polarity is reversed, the plug will require an extra 5 kV or more to fire it — and that voltage may not be available from the coil under heavy load — or when running at light throttle at high speed (remember a weak mixture needs a higher voltage to ignite it than a rich one).

If you are checking polarity on a specialist ignition analyser then the polarity is correct if the pattern is as shown in the illustrations in this article. If you are checking it with a standard scope (with no inverting device) then the pattern should be upside down if polarity is correct. (See inset for full explanation).

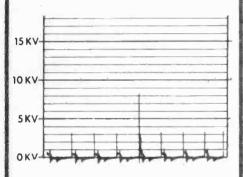
Polarity is corrected simply by reversing the coil terminals. (Incorrect polarity is usually caused by a mechanic replacing a coil intended for a negative earth vehicle with a coil meant for a positive earth vehicle — or vice-versa. It may also, but less probably, be caused by an incorrectly manufactured coil, or less likely, by the vehicle's polarity being accidentally reversed by the battery being connected the wrong way round).

MIXTURE STRENGTH

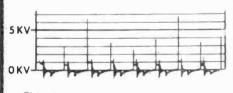
This section is intended for the lucky man who has access to an exhaust gas analyser and tachometer as well as a scope. If cylinder compression pressures are identical, plugs in good order and evenly gapped, and plug leads and distributor in good order — then any significant difference in firing line heights will almost certainly be caused by differing mixture strength from one cylinder to another.


The voltage required to fire a rich mixture is substantially less than for a weak mixture: for instance a 12:1 ratio may need 3 to 4 kV — whilst a 15:1 ratio may need 7 to 9 kV (typically). Thus even quite small differences in mixture strengths will be reflected quite dramatically in firing line height.

The only accurate way to adjust mixture strength is as follows:


Connect a tachometer to the engine and adjust slow running to 1000 rpm. Without looking at the gas analyser adjust mixture strengths so as to produce the highest tickover speed whilst maintaining the firing lines at an even height. If necessary reduce the tickover speed to keep it around 1000

5 KV 5 - 3 - 6 - 2 - 4 - 1 O KV


Normal pattern: Note that the firing line for cyl. 1 appears at the extreme end of the trace. The remaining cylinders then appear in engine firing sequence.

Firing lines even but high: Excess plug gaps, rotor gap, break in coil ht lead, mixture too lean ignition retarded.

Firing line high on ONE cylinder: Break in plug lead, broken electrode in spark plug. To test short plug — if line drops, problem is within cylinder.

Firing lines uneven: Break in plug leads, worn plugs, burnt distributor cap contacts, uneven air/fuel mixture.

rpm. Finally richen the mixture a shade until tickover speed drops by about 50 rpm.

Then and only then — look at the gas analyser. You should now have a reading somewhere between 14:1 and 15:1. If you haven't then there's something wrong with the carburetion system — an air leak in the induction manifold: incorrect float chamber level: blocked slow running jet or something.

Semiconductors from LYNX ELECTRONICS

THY	RISTO	RS All	ratings	RMS	
PIV	0 BA	1A	3A	4A	6A
	(TO92)	(3TO5)	(C106)	(TO 220)	(TO220

	(TO92)	(3TO5)	(C106)	(TO 220)	(TO220)	(TO220)	(TO220)	(TO220)	(TO6.4)
50	0.20	0.25	0.35	0.32	0.41	0.42	0.42	0.47	0.96
100	0.25	0.25	0.40	0.37	0.47	0.48	0.48	0.54	1.02
200	0.27	0.35	0.45	0.40	0.58	0.60	0.60	0.68	1.14
400	0.30	0.40	0.50	0.45	0.87	0.88	0.88	0.98	1.40
500		0.65	0.70		1.09	1.19	1.19	1.26	1.80

TRIACS (PLASTIC TO-220 PKGE ISOLATED TAB)

	4.	A	6.5	iA.	8	.5A	10)A	15	5A
110V 200V 400V 600V	0.60 0.64 0.77 0.96	(b) 0.60 0.64 0.78 0.99	(a) 0.70 0.75 0.80 0.87	(b) 0.70 0.75 0.83 1.01	(a) 0.78 0:87 0.97 1.21	(b) 0.78 0.87 1.01 1.26	(a) 0.83 0.87 1.13 1.42	(b) 0.83 0.87 1.19 1.50	(a) 1.01 1.17 1.70 2.11	(b) 1.01 1.17 1.74 2.17

N.B. Triacs without internal trigger diac are priced under column (a). Triacs with internal trigger diac are priced under column (b). When ordering please indicate clearly the type required.

LINEAR ICS 307 380 14 Pin Dil 0.55' 8 Pin Dil 0.45

380 555 565 566 567 709 741 3900 CA3046 CA3046 CA3130 MC1304 MC1304 MC1307P MC1458P SN75451 SN75451 SN75451 SN75451 TAA310 TAA310 TAA310 TAA310 TAA311812 TBA530	14 Pin Dii 8 Pin Dii 14 Pin Dii 8 Pin Dii 8 Pin Dii 8 Pin Dii 8 /14 Pin Dii 8 /14 Pin Dii 14 Pin Dii	0.90' 0.45' 2.00' 1.50' 2.00' 0.35' 0.28' 0.70' 0.85' 0.50' 1.56' 1.77' 0.77' 2.55' 0.89' 1.61' 1.38'
--	--	---

TO-3 NPN POWER TRANSISTORS FULLY TESTED BUT UNMARKED

SIMILAR TO 2N3055 except BVCEO>50V HFE>20 @ 3 AMP

5 for £1.00

10 for £1.80

20 for £3.40

50 for £7 50

100 for £13.00

1/4W 5% Resistors E-24 0.015 1/2W 5% Resistors E-24 0.02 747 1.80 750 1.80 ITT BRANDED TO—18

OPTOELECTRONICS

Special Offer Red LED TIL209

10p

0.20

TRANSISTORS
Type BSY65. Med. Voltage High Gain, Sim. to

5 pcs. 0,3 25 pcs. 1,2 100 pcs. 3,5

SPECIAL OFFER — LM309K

REGULATORS 723 0.45

723 1 amp Plastic 7805 7812	0.45 1.50 1.50	7818 LM340-5 LM340-12 LM340-15	1.50 1.35 1.35 1.35
7815	1.50	LM340-18	1,35

IC SOCKETS 8 Pin 0.16 24 Pin 0

BT109

TTL 74 SERIES PLASTIC

7400	0.16	7484	0.85
7401	0.16	7485	1.25
7402	0.16	7486	0.32
7403	0.16	7489	2.92
7404	0.18	7490	0.45
7405	0.18	7491	0.68
7406	0.51	7492	0.57
7407	0.18	7493	0.45
7408	0.18	7494	0.85
7409	0.18	7495	0.67
7410	0.16	7496	0.78
7412	0.25	7497	4.32
7413	0.25	74100	1.15
7414	0.72	74107	0.35
7416	-0.43	74118	1.16
7417	0.43	74119	1.92
7420	0.16	74121	0.34
7422	0.38	74122	0.47
7423	0.40	74123	0.40
7425	0.30	74125	0.79
7427	0.48	74141	0.75
7428	0.53	74145	0.74
7430	0.16	74150	1.20
7432	0.37	74151	0.77
7433	0.49	74153	1.09
7437	0.35	74154	1.62
7438	0.35	74155	1.32
7440	0.16	74157	0.78
7441	0.76	74160	1.20
7442	0.65	74161	1.20
7445	1.50	74162	1.20
7446	2.56	74163	1.20
7447	0.81	74164	0.93
7448	0.81	74165	0.93
7450	0.85	74167	3.70
7451	0.16	74174	1.06
7453	0.18	74175	0.94
7454	0.18	74176	0.86
7460	0.18	74180	1.23
7470	0.32	74181	3.20
7472	0.26	74190	1.33
7473	0.30	74191	1.33
7474	0.32	74192	1.39
7475	0.47	74193	1.39

TO3 HARDWARE INC

1 Mica-2 washers Solder TA6 2 Nuts / Bolts Washers 50 for 65p

2N2484 0.16

TRANSISTORS, DIODES, RECTIFIERS AC126 0.15 BC153 0.18 BD183 0.9

AC120	0.13	DC - 433	0.16	00.00	0.57	01103	1.00	0/130	0.00	2142404	
AC127	0.16	BC157	0.091	BD232	0.60	BT116	1.00	OA91	0.08	2N2646	0.50
AC128	0.13	BC158	0.09	B0233.	0.48	BU105	1.80	OC41	0.15	2N2905	0.18
AC128K	0.25	BC159	0.09	BD237	0.55	BU105/02	1.901	OC42	0.15	2N2905A	
AC141	0.18	BC160	0.32	BD238	0.60*		1.60	OC44	0.32	2N2926R	
AC141K	0.28	BC161	0.38	BD184	1.20	BU204	1.60	QC45	0.32	2N29260	
AC142	0.18	BC168B	0.09	BDY20	0.80	BU208	2.60	OC70	0.30	2N2926Y	
AC142K		BC182	0.09	BDY38		BY 206		0071			
	0.28						0.15	0071	0.35	2N2926G	
AC176	0.16	BC182L	0.11"	BDY60	1.70	BY207	0.20'	OC72	0.22	2N3053	0.15
AC176K	0.25	BC183	0.101	BDY61		BYX36—		OC84	0.40	2N3054	
AC187	0.18	BC183L	0.10	BDY62	1.15	300	0.12	SC40A	0.73	2N3055	0.50
AC187K	0.25	BC184	0.11	BDY93		600	0.15	SC40B	0.81	2N3440	0.56
AC188	0.18	BC184L	0.11	BDY94	2.14	900	0.181	SC40D	0.98	2N3442	1.20
AC188K	0.25	BC207B	0.12	BDY95	2.14	1200	0.211	SC40F	0.65	2N3525	0.50
AD140	0.50	8C212	0.11	BDY95 BDY96	4.68	BYX38-		SC41A	0.65	2N3570	0.80
AD142	0.50	BC213	0.12	BDV97	3.93	300	0.50	SC41B	0.70	2N3702	0.10
AD143	0.46	BC213L		BDY97 BDY98	3.56	600		SC41D	0.85	2N3703	0.10
AD149	0.45	BC214	0.12	BF178	3.50	900	0.60	SC41F	0.60		
		BC214L				1200	0.60	ST2		2N3704	0.10
AD161	0.35		0.14	BF179-	0.30	1200			0.20	2N3705	0.10
AD162	0.35	BC237	0.16	BF194		BZX61	Series	TIP29A	0.44	2N3706	0.10
AL102	0.95	BC238	0.16	BF195	0.10		0.20	TIP30A	0.52	2N3707	0.10
AL103	0.93	BC300	0.34	BF196	0.12	BZX83 or		TIP31A	0.54	2N3714	1.05
AF114	0.20	BC301	0.32	BF197	0.121	BZX88 Serie	25	TIP32A	0.64	2N3715	1.15
AF115	0.20	BC323	0.60	BF224J	0.18"	BZX83 or BZX88 Serie Zeners	0.11	TIP34	1.05	2N3716	1.25
AF116	0.20	BC327	0.18	BF244 8F257	0.171	C106A	0.40	TIP41A	0.68	2N3771	1.60
AF117	0.20	BC328	0.16	8F257	0.30	C106B	0.45	TIP42A	0.72	2N3772	1.60
AF11B	0.50	BC337	0.17	BF258	0.35	C106D	0.50	IN2069	0.14	2N3773	2.10
AF139	0.35	BC338	0.17	BF337	0.32	C106F	0.35	IN207D	0.16	2N3819	0.28
AF239	0.33	BCY30	0.55	BF337 BFW60	0.17	CRS1 05	0.25		0.04	2N3904	0.16
AU103	1.30	8CY31	0.55	BFX29	0.26	CRS1 10	0.25	IN4002	0.05	2N3906	
AU103	1.70	BCY32	0.55	BFX30	0.30	CRS1 20	0.25	IN4002	0.06	2N3906 2N4124	0.11
		BCY32			0.30	CRS1 40		N4004	0.08		
AU113	1.60	BCY33	0.55	BFX84	0.23		0.40			2N4290	0.12
BC107	0.09	BCY34	0.55	BFX85		CRS1 60	0.65	IN4005	0.08	2N4348	1.20
BC107B	0.09	8CA3B	0.50	BFX88		CRS3 05	0.34	IN4006	0.09	2N4870	0.35
BC108	0.09	BCY39	1.15	BFY50	0.20			IN4007	0.10	2N4871	0.35
BC109	0.09	BCY70	0.12	BFY51	0.18	CRS3 10	0.45	2N696	0.14	2N4919	0.70
BC109C	0.12	BCY71	0.18	BFY52	0.19	CRS3 20	0.50	2N697	0.12	2N4920	0.50
BC117	0.191	BCY72	0.12	BFY64	0.35	CRS3 40	0.60	2N706	0.10	2N4922	0.58
BC125	0.18	BD115	0.55	BFY90	0.65	CRS3 60	0.85	2N929	0.14	2N4923	0.46
BC126	0.20	BD131	0.36	BR100	0.20	MJ480	0.80	2N930	0.14	2N5060	0.20
BC141	0.28	BD132	0.40	BFY39	0.40	MJ481	1.05	2N1131	0.15	2N5061	0.25
BC142	0.23	BD135	0.36	BSX19	0.16	MJ490	0.90	2N1132	0.16	2N5062	0.27
BC143	0.23	BD136	0.39	BSX20	0.18	MJ491	1.15	2N1304	0.45	2N5064	0.30
BC144	0.23	BD137		BSX21		MJE340	0.40	2N1305	0.40		
			0.40	BSY95A				2N1305		2N5496	0.65
BC147	0.091	BD138	0.48		0.12	MJE371	0.60		0.18		
BC148	0.09*	BD139	0.58	BT106		MJE520	0.45	2N2102	0.44		
BC149	0.09"	BD181	0.86	BT107	1.60	MJE521	0.55	2N2369	0.14		
BC152	0.25	8D182	0.92	8T108	1.60	OA5	0.50*	2N2369A	0.14		
					-						

P. & P. 20p per order — overseas 80p. Matching 20p per pair VAT 8% EXCEPT FOR ITEM* WHICH ARE 12½%. NO VAT ON OVERSEAS ACCESS & BARCLAYCARD WELCOME

LYNX ELECTRONICS (LONDON) LTD

Higham Mead, Chesham, Bucks Telephone (02405) 75154. Telex 837571

SHORT STATE OF CIRCUITS

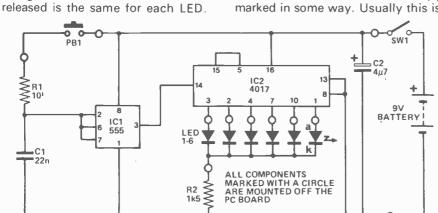
This new series will describe straightforward projects but they are not necessarily simple in their operation or aimed at the beginner. We plan to carry between two and four such projects each month.

LED DICE

THIS SIMPLE DICE PROJECT IS based on a CMOS (Complementary Metal-Oxide Semiconductor) integrated circuit counter which is stepped by the output of a 555 timer integrated circuit connected to run as an oscillator at approximately 6500 Hz

When the button on the unit is pressed the 555 oscillates and the kHz 6.51 pulses which it generates at pin 3 are fed to the input of IC2 (pin 14). The integrated circuit, IC2 is a decade counter in which each of the count states (0 to 9) are brought out to separate pins. By connecting the seventh count output (pin 5) back to the reset input (pin 15) the counter is made to reset after every sixth count. The six count states of the IC which are used are each connected to a light-emitting diode (LED). As the IC counts it will switch on each of the six light emitting diodes in turn. Whilst the button is pressed the LEDs will be switched at a rate of 6.5 kHz and thus all LEDs will appear to be on due to the limited frequency response of the human

When the button is released the oscillator stops counting leaving one only of the LEDs alight. As the IC cycles through its six states the LEDs will each be on for the same interval. Thus the probability of being on when the button in released is the same for each LED.


The LEDs may therfore be numbered from one to six and the device can then be used as a dice.

CONSTRUCTION

Whilst CMOS devices are fairly rugged in-circuit they are liable to be damaged by static discharges when handled out of circuit. For this reason they are supplied in either conducive foam, aluminium foil or specially-coated plastic containers which short all the pins together for protection. The CMOS should only be removed from its protective packing when you are ready to insert the device into the board. All other components should be mounted to the board first and the CMOS inserted last of all. Handle the pins of the device as little as possible and solder in place quickly and cleanly with a light-weight soldering iron.

The integrated circuits are marked by a small notch or dot at one end of the body. When inserting the IC make sure that this mark is aligned with the orientation mark provided on the component overlay. Make sure also that the electrolytic capacitor C2 in inserted with the correct polarity.

The light-emitting diodes will have their cathode terminals (k) marked in some way. Usually this is

ELECTRONICS TODAY INTERNATIONAL - FEBRUARY 1977

How it works-

The output of IC1 is connected to the clock input of IC2 and every time there is a pulse from IC1 the output of IC2 which was high, will go low and the next output will go high (providing that the reset input is low). Thus the "high" shifts through the ten outputs of IC2 in sequence at the same rate as the input pulses from IC1. The sequence of ten outputs recycles whilst there are input pulses.

However a dice has only six surfaces so we require IC2 to count to six, rather than to ten. This is easily performed by 'connecting the seventh output of the IC back to the reset input. Now when the counter is clocked from output six to output seven, seven goes high and resets the counter. Once the counter resets the high is removed from output seven and the counter, back at output one, is free to count again. The time taken to do this is only about 100 nanoseconds (0.000 000 1 sec).

The outputs one to six of IC2 are each connected to the anode of an LED. The cathodes of the LEDs are all connected in parallel, via a common current-limiting resistor, to 0 volts.

For checking purposes the action may be slowed down by putting a high value resistor across the terminals of the push button (even just the finger across the terminals will do). This will cause the oscillator to run at a low speed so that the changing of the LEDs can be seen.

Short Circuits

by means of a small flat on the plastic body of the component adjacent to the cathode lead or the cathode lead many be shorter than the other. Make sure that the leds are inserted the correct polarity — if any LED fails to light when the button is pressed it is most likely that it is the wrong way round.

The dice project may be assembled using the Veroboard layout as given or using the printed-circuit board alternative. If Veroboard is used the tracks must be cut in the positions indicated with a small drill bit. The components are then assembled to the respective board with the appropriate overlay.

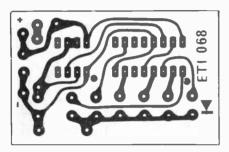


Fig. 2. Printed-circuit board layout for the LED dice. Full size 55mm x

-Parts List—

RESISTORS R1 10K R2 1K5 All %W 5%		CAPAC C1 C2	OITORS 22n 4u7	ceramic or similar 16V electrolytic
A11 /244 5/6		SWITC	Н	
SEMICONDUCTORS IC1 555 resistors IC2 4017 CMOS		P.B.1 SW1	=	push to make type single pole / Off-On rocker
LED 1,2,3,4,5,6	TIL 209 or similar	0.4.05		T
		CASE ABS	M2	Doram
MISCELLANEOUS PP3 battery				

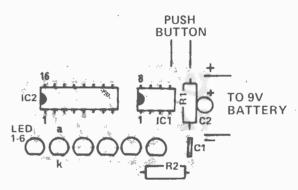


Fig. 3. How the components are mounted to the printed-circuit board.

TWO-TONE DOORBELL

PP3 battery clip

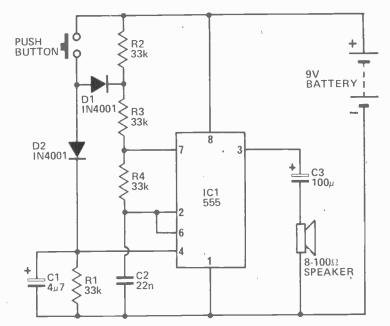
Nuts, bolts, etc.

Board spacers

THIS ELECTRONIC DOORBELL IS based on the 555 integrated circuit. The device is widely used in many types of timers and as a simple oscillator. In this project both operations are used. When the button is pressed the 555 oscillates at one frequency (tone), when the button is released the tone changes and the IC continues to produce this second tone for a predetermined period. Thus by pressing the control button once a two-tone doorbell sound is produced by the speaker driven directly from the integrated circuit.

CONSTRUCTION

Assemble the components 'as shown in the component overlay diagram. Note that in this diagram the copper tracks are shown dotted as they are on the opposite side of the board from the components and therefore cannot be seen.


The integrated circuit, diodes, and the electrolytic capacitors, must be mounted the correct way round. The overlay shows the distinguishing marks on each component, and the component must be placed so that the marks on the component are the same way as on the overlay diagram.

How it works

Operation of the doorbell may be described as follows: The capacitor C2 initially charges towards plus nine volts via resistors R2, 3 and 4. However, the top of the capacitor is connected to both pin 2 and pin 6 of the 555 timer IC. Hence when the voltage on the capacitor reaches 6 volts both comparators will be above threshold and the output of the 555 at pin 3 will go low and the internal transistor will switch on, shorting pin 7 to ground. However pin 7 is connected to the junction of R3 and R4 and C2 will therefore now be discharged via R4. When the voltage on C2 falls below 3 volts the output will go high again, the transistor will turn off, and C2 will commence charging again via R2, 3 and 4. This sequence continues thus producing a triangular waveform across C2 and a pulse train at pin 3. The pulse train output from pin 3 is coupled to the loudspeaker via C3 which prevents the dc component of the voltage from reaching the speaker.

The triangular waveform is produced by C2 charging from 3 to 6 volts and then discharging from 6V to 3V.

If a different pitch tone is required R2, 3, 4 or C2 may be altered in value.

Circuit diagram of the two-tone doorbell.

Parts List-

CAPA	ACITORS	
C1	4u7	16V electrolytic
C2	22 n	ceramic or similar
C3	100u	16V electrolytic
C4	1000u	16V electrolytic
05	470u	10V electrolytic

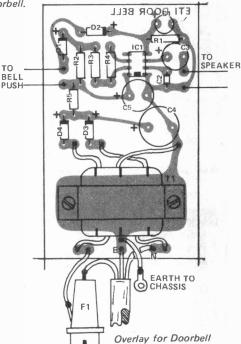
SWITCH P.B.1 Bell push type

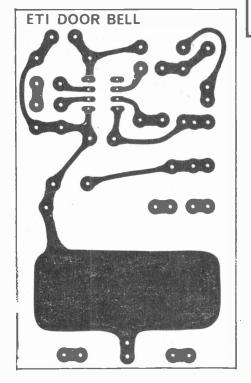
CASE Samos S2

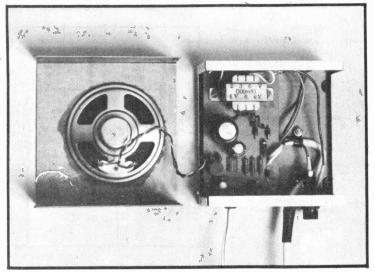
Doram

SPEAKER LS1 2½" 8Ω type.

RESISTORS R1, R2, R3, R4, 33K R5 22R All at ½W 5%


All at 72VV 37


SEMICONDUCTORS IC1 555 timer D1, D2, D3, D4 IN4001


TRANSFORMER T1 240V - 6/0/6 100mA

MISCELLANEOUS F1 fuse holder 250mA fuse 3-core mains flex

2-core bell flex Panel gromet 4 board spacers Nuts, bolts, etc.

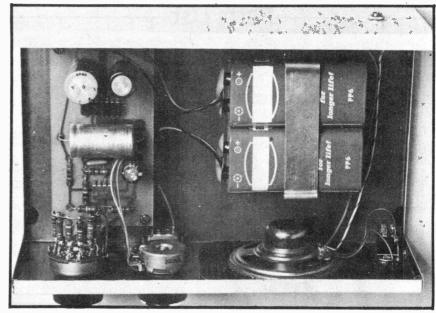
Internació, num of Doorbell

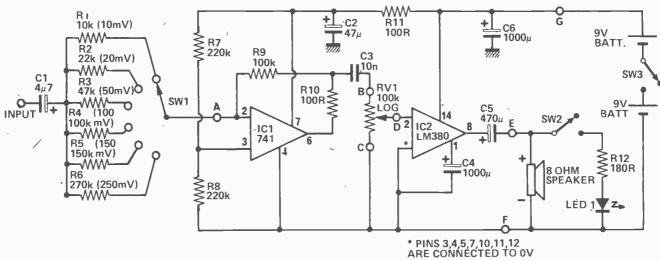
THE AMPLIFIER TO BE described here differs in one major respect to most others - it can be used as an accurate millivoltmeter! One of the most awkward things to measure in a lab is an audio signal of less than a volt. Specialist meters are expensive, and rarely justifiable for an amateur: hence this project. This provides at least an 'order of magnitude' reading, and in most cases an accurate value can be assigned to the signal.

The circuit is basically an audio preand power amplifier combination, with switchable preamp gain. Depending on which sensitivity is selected, the gain of the 741 is so adjusted as to produce the specified input to drive the LM380 to the point of clipping. This voltage in turn is just sufficient to cause the LED to light.

To measure an A.C. signal, turn the volume control to maximum, and apply the input to the socket and work down from the lowest sensitivity until LED just comes on. The value of the input is now indicated by the switch. We tried several 380s and

several dozen LEDs to see if our results were repeatable: they were. In all cases we were within 10% of the value of the signal!


-How it works-

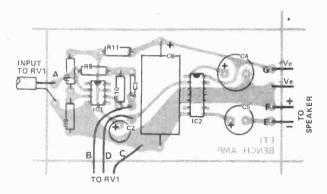

The gain of IC1 is set by the ratio R9/R1 - 6 Resistors R1 - 6 vary this from ≈20 to ≈0.5. Thus to produce 100mV across RV1, inputs from 5mV to 200mV are required. R7 and R8 bias the non-inverting input to 4.5V and R10 is included to protect the chip. Since D.C. gain of the circuit is unity, the output will set at +4.5V D.C., providing maximum swing capability. To minimize output offset due to bias current, the value of R7 and R8 in parallel should be approxinately the same value at R9. Bear this in mind if you intend to alter the supply voltage.

to alter the supply Voltage.

R11 and C2 provide decoupling for the 741 rail, as C6 does for the LM380. This capacitor can be increased in value to advantage with a supply not entirely stable. If another value of impedance speaker is employed, R12 will have to be altered to

maintain the conditions.

Circuit diagram of the Bench Amp


Construction is not critical, but a metal box is a good idea to help screen the amplifier from extraneous radiations etc. Ours came from Doram, and very nice they were too. Battery power was chosen so as to leave as much bench supply free as possible.

Further sensitivities can be easily added by using a larger switch with more poles, and adding the appropriate resistors. The quality of the circuit is good enough to feed an external loudspeaker, and a socket is provided to enable this to be accomplished.

Parts list

101	- C	136	
RESISTORS R1 10K		olts, etc. jack sock	et
R2 22K R3 47K R4,9 100K R5 150K R6 270K R7,8 220K R10,11 100R R12 180R	C1 C2 C3 C4 C5 C6	4u7 47u 10n 1000u 470u 1000u	16V electrolytic 16V electrolytic ceramic or similar 16V electrolytic 16V electrolytic 25V electrolytic
POTENTIOMETER RV1 100K Log rotary	SWITC SW1 SW2	1 pole 6- single po	way rotary le / Off-On toggle
SEMICONDUCTORS IC1 741 op-amp IC2 LM380 power amp LED1 0.2" type	SW3 CASE Samos		le / Off-On rocker
MISCELLANEOUS Phono socket	SPEAK LS1	ER 2¼"	8Ω type

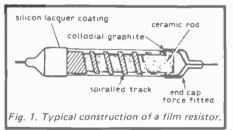
Component overlay for the Bench Amp

SUBSCRIPTIONS

Well, Mr. Quigley & Son may have got THEIR Scanning Electron Printer working but we are not YET sending ETI out on the Viewdata Link!

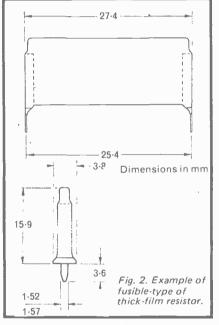
So if you can't get it from your newsagent, fill in the form below to ensure a regular copy - by post.

			lease write your name as ur cheques:	nd				
To: SUBSCRIPTIONS DEPARTMENT ETI MAGAZINE 25-27 Oxford Street London W1R 1RF								
ALL PAYMENTS MUST BE IN STERLING								
			O overseas) for the ne					
twelve is:	ues o							
	ues o							
Name	ues o	f ETI sta						


FILM RESISTORS

PART 7

Previous articles in our Components Series have dealt with resistors and capacitors. This article looks at carbon-film resistors and their properties in circuit


FILM RESISTORS ARE MANUfactured by forming a deposit of an appropriate resistive material, usually carbon, carbon-boron or some metallic oxide, on a ceramic former, usually a tube or rod. A helical groove is then cut in the film coating. The groove forms the resistive coating into a long continuous path resulting in a compact resistor that can have a value up to 100 megohms. Terminations are made in a variety of ways. Metal end caps may be forced over the ends of the ceramic rod, contacting the deposited film. Leads are attached to the caps by soldering or spot-welding. In some types, the ends of the coated ceramic rod are metallized and leads are wrapped around the metallized portions and soldered. The component is then coated in a suitable lacquer for protection.

Typical construction of a film resistor is illustrated in Figure 1.

Thick-film resistors are a special type of film resistor. They are generally constructed by depositing the resistive material on a ceramic or aluminium-oxide substrate. A portion of the film coating is then removed, according to a predetermined pattern, to provide a long resistive path between the resistor

terminals. Typical construction of one style of thick-film resistor is illustrated in Figure 2. This style is obtainable as a 'fusible' resistor. When overloaded, the substrate cracks, ensuring an open circuit which reduces the possibility of further circuit damage, physical or electronic. These thick-film resistors occupy a minimum of space on a

printed circuit board and can dissipate considerable power owing to their large surface area and high hot-spot temperature (150°C).

Thick film resistors are also made in appropriate groupings on a small substrate and encapsulated in a standard

DIL IC package. Certain values of resistance are standard in digital circuitry and this style is used in such applications (for example, as the 'weighting' resistor network in a digital-to-analogue converter). Another application is for 'pull-up' resistors for open-collector logic gates.

Thin film resistors are constructed in a similar fashion but on a considerably smaller scale. They are primarily used in IC manufacture. Some thin film resistor networks are available in standard DIL integrated circuit packages and these find application in digital circuitry.

There are four basic types of film resistor:—

- (a) Carbon Film
- (b) Metal Film
- (c) Metal Oxide Film
- (d) Metal Glaze (Cermet)

CARBON FILM RESISTORS

These resistors are manufactured by a 'cracking' or pyrolytic process where a hydrocarbon vapour at high temperature is decomposed onto a special ceramic rod, producing a thin carbon film on the surface. These are sometimes referred to as 'deposited-carbon' film resistors. Some types use a boroncarbon film; a boron containing gas is introduced during the cracking process. This results in a resistor that has a superior temperature coefficient over a limited range of values than the plain carbon film type.

Terminations may consist of metal end-caps forced over the ends of the element, and then axial or radial leads are attached. Some manufacturers metallize the ends of the element and solder leads to them. Sometimes a combination of the two techniques is used to improve reliability.

Protection for the element is provided in a number of ways. Numerous layers of varnish may be applied followed by a final paint coating. Some modern types are completely sealed in a silicone resin base which is impervious to moisture as well as providing excellent mechanical and thermal protection.

Rated		Max. Worki	na	Max. Op	aratina		Critical		Uninsula	tad	Insulate	d
Wattage @ @		Voltage	(= hot-	spot)		Resistance	e	Турея		Types	Typical Resistance	
40°C	70°C	Commercial	Mil.	Commer		l. Cor	nmercial	Mil. Le	ngth D	ameter Len	igth Dia	imeter Range
0.5 0.75 1 2	0.125 0.25 0.35 0.5 1	500 700 1000 1000 1000	150 250 - 350 500 500	107 107 107 107	150 130 130 130 130 130	2 M 3M9 2M7 1M8 1 M 470 k	250 k	6.4 mm 10.8 mm 10 mm 18 mm 29.8 mm	3.5 mm 6 mm	3 7 mm 9.5 mm 9 5 mm 11 7 mm 19 1 mm 35 mm	2.4 mm 4.8 mm 5.8 mm 6.4 mm	$4.7 \Omega - 1 M$ $2.2 \Omega - 10 M$ $10 \Omega - 4M7$ $2.2 \Omega - 100 M$ $10 \Omega - 1 M$ $10 \Omega - 1 M$
(1) (2) (3)	Rated Max. V Max. C be diss coinma	Wattage assun Jorking Volta Operating Tem	nes vol ge assu iperatu isistor il carbo	tage limit imes watta ire is that o if the amb in composi	not exci ge ratin due to a lent tem tion res	eeded g not ex mbient iperatur	cceeded. temperat e equals t	ure plus te he hot-spo	mp rise d	lue to power	dissipatii	on. No power can mperature for

Other types may be encased in a plastic moulding or sealed in a ceramic or glass tube. The varnished types afford the least protection against mechanical damage (through handling etc) and moisture.

The voltage coefficient of carbon film resistors is very much less than that of carbon composition types, being usually less than 100 ppm/V and this rarely needs to be considered.

GETTING HEATED

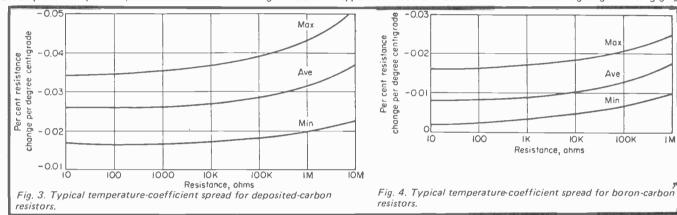
Carbon film resistors exhibit temperature characteristics which are superior to composition resistors, but not as. good as metal film or wirewound types. Nevertheless, the temperature coefficient of carbon film resistors is quite acceptable for a wide variety of applications. Only those applications requiring a very good temperature characteristic warrant the use of the other, usually more expensive, film resistors.

'-400 ppm/OC for values over 100k. The variation of TC with resistance value and the spread that might be expected is illustrated in Figure 4.

The TC of carbon film resistors is also dependant on the wattage rating due to the thickness of the carbon film used in its construction.

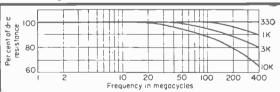
GROWING OLD

All resistors change their value permanently with age and use. Carbon composition resistors are the worst in this regard and may be expected to change as much as 20% Film and wirewound resistors are considerably better. Carbon film resistors have a stability of better than 1% which is usually more than adequate for all but the most stringent applications.


The high frequency characteristic of carbon film resistors is one of its advantages. Coated types are somewhat

NOISES

The noise generated by carbon film resistors is a function of the applied voltage, the thickness of the film and the length of the spiral track. Consequently, the lower value, higher wattage units generate the least noise. For values below 10k it is typically between .08 and .5 μ V/V, and for values between 10k and 100k it may be as low as $0.2 \,\mu\text{V/V}$ and up to $1.0 \,\mu\text{V/V}$. For values above 100k, the noise ranges from 0.5 μ V/V to 1.5 μ V/V.


DERATE, DERATE

There are several power derating curves for carbon film resistors. dependant on size and construction. Miniature coated types have a hot-spot temperature of 120-125°C and are derated from 40°C to half their wattage rating, at 70°C, then derated to zero dissipation at the hot-spot temperature. This results in a 'dogs-leg' derating graph

As mentioned just previously, the temperature coefficient of boron-carbon film resistors is somewhat better than the deposited-carbon types. The latter may have a temperature coefficient between +350 and -550 ppm/OC for values under 100k, and between +350 and -800 ppm/°C for values under 100k. Generally though, the TC will be negative. The variation of TC with resistance value and the sort of 'spread' that can be expected for a particular batch of components is illustrated in Figure 3 for deposited carbon resistors. The temperature coefficient of boroncarbon resistors is typically between +100 and -200 ppm/ $^{\circ}$ C for values under 100k, and between -50 and

better than equivalent moulded or encased units. Generally speaking, the apparent value of the resistor decreases at high frequencies. Values below 1k will maintain their resistive value well beyond 500 MHz. Even relatively high values will not show a decrease of more than 10% until well into the VHF region. This is illustrated for typical coated ½W deposited-carbon film resistors in Figure 5.

as shown in Figure 6. This mainly applies to the miniature 0.25W and 0.33W types which have body dimensions typically 6-7mm long and about 2.5mm diameter. Moulded style units are usually derated from 70°C and have a hot-spot temperature of 130°C, according to the derating curve shown in Figure 7. Some types have a much higher hot-spot temperature, being constructed on a special ceramic rod

> Fig. 5. Approximate frequency characteristics for 1/2-watt deposited-carbon resistor.

I	TABLE 2. General Characteristics of Carbon Film Resistors											
	Rated Wattage	Max. Working	Max. Operating	Critical Resistance	,,	al Sizes	Typical Resist Deposited					
ı	@ 70°C	Voltage	Temp.		Length	Diameter	Carbon	Boron-Carbon				
П	0.125	250 V	130/165°C	250 k	7 mm	2.3 mm	10 S2 - 1 M	50 \2 − 100 k				
ı	0.250	300 V	130/165°C	360 k	10 mm	2.3 mm	$10 \Omega - 2 M$	$20 \Omega - 100 k$				
ı	0.33 (0.5 @ 40°)	300 V	125°€	360 k	9 mm	3 mm	$2.2 \Omega - 5M1$					
ı	0.5	350 V	130°C	250 k	12 mm	4 mm	$4.7 \Omega - 5M1$	10 Ω $-$ 100 k				
ł	0.5	350 V	165°C	250 k	15 mm	4 mm	10 Ω $-$ 7M5					
ı	0.75	350 V	,165°C	160 k	14 mm	6 mm	10 Ω $-$ 7M5					
п	1.0	500 V	130°C	250 k	14 mm	4.8 mm	$2.2~\Omega - 10~M$	$20^{\circ}\Omega$ $-$ 240 k				
ı	1.0	500 V	165°C	250 k	24.6 mm	7.2 mm	10 Ω $-$ 15 M					
ı	1.25	600 V	165°C	270 k	22 mm	9 mm	10 Ω $-$ 15 M					
1	2.0	750 V	130°C	270 k	55 mm	7.5 mm	$10~\Omega$ $ 20~M$	30 Ω – 1 M				
ı	2.0	750 V	165°C	270 k	32 mm	9 mm	$10 \Omega - 15 M$					

- Rated Wattage assumes voltage limit not exceeded.
- Max. Working Voltage assumes wattage rating not exceeded. (2)
 - Max. Operating Temperature is equal to hot-spot temperature
- Sizes given are body sizes for axial-lead types
 - Coated types and silicone resin coated types only considered.

and coated with a silicone resin compound which have superior heat dissipating properties. These types have a hot-spot temperature of around 165°C and are derated from 70°C, as illustrated in Figure 8. It is best to check the manufacturer's literature if the power derating characteristics are needed. Special 'carbon-alloy' types have a hot-spot temperature of 200°C but are not commonly used.

Carbon film resistors are available in ratings from 0.1W to 2W and in values that range from 10 ohms to 15M for

IM

FILM RESISTORS

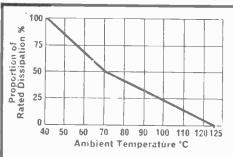


Fig. 6. Derating curve for miniature moulded carbon-film resistors.

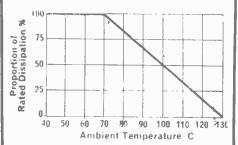


Fig. 7. Derating curve for coated carbon-film resistors.

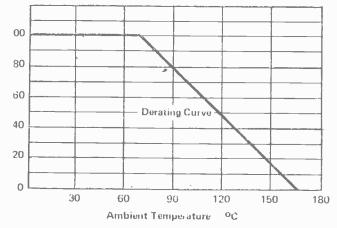


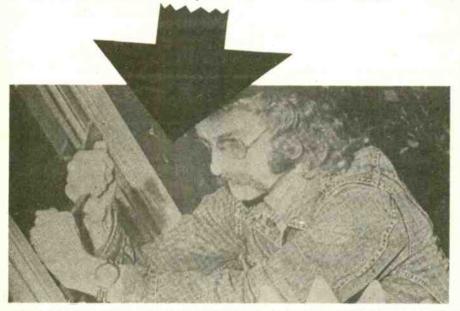
Fig. 8. Power derating curve for specially constructed carbon film resistors.

commonly available units and up to 100M on special order. They are manufactured to tolerances of \pm 0.5% (E192 series), \pm 1% (E96 series), \pm 2% (E48 series) and \pm 5% (E 24 series).

Carbon film resistors will withstand a short-term overload of twice to 2.5 times the rated maximum working voltage. Failure is more common in the high value resistors. Irregularities in the spiral track and extremely thin film contribute to the failure of the component. The resistor may burst into

flame when it fails due to a prolonged overload.

HIGH PRAISE INDEED


The execellent stability and low cost of carbon film resistors, along with other desirable features such as low noise, small TC and good high frequency characteristics have contributed to their increasing use in a wide range of electronic applications. The general characteristics of carbon film resistors is given in Table 2.

TTLs by	TEXAS	7485 130	T ac	74191	156p	OP. AMPS		_		TRANSIS	s.	BF178	30p	TIP42C	88p	2N5089	34p	T	
7400	16p		Bp	74192	130p	301A Ext 0	Comp	8 pin DH	40p		,,-	BF 194	13p	TIP2955	85p	2N5296	65p	RECTIFIER BY100 31p	BRIDGE RECTIFIERS
7401	18p	7489 344		74193			Op Amp	TO 99	300p		20p	BF195	11p	TIP3055	70p	2N5401	62p	BY100 31p BY126 12p	1A 50V 2
7402	18p			74194			Comp	8 14 pin DIL	36p	AC126	20p	BF196	17p	TIS93	30p	2N6107	70p	BY127 12p	- 1A 100V 2
7403	18p	7491 8		74195		741 Int (8 14 pin DN	25p		20p	BF197	19p	ZTX108	11p	2N6247	175p	1N4001 6p'	1A 400V 3
7404	25p	7492 59		74196		747 Dual		14 pin DIL	70p		18p	BF200	40p	ZX300	16p	(Comp		1N4002 6p	14 600V 3
7405 7406	25p	7493 4 3		74197			Comp	8 14 pin DIL	40p		20p	BF257	34p	ZTX500	19p	2N30		1N4004 7p	24 50V 3
7406	45p 45p	7494 81 7495 76		74198			Op Amp Op Amp	TO 99	160p		20p	8F258	39p	ZTX504	60p	2N6254	140p	1N4005 7p	24 100V 4
7408	25p	7496 84		C-MOS			S Op Amp	8 pin DIL 8 pin DIL	70p		25p 20p	BFR39 BFR40	34p 34p	2N697 2N698	25p	2N6292 40360	70p	1N4007 8p	24 400V 5
7409	27p	7497 341		4000	21p		DS FET input	8 pm DIL	108p 108p		25p	BFR79	34p	2N898 #	45p	40360	43p 43p		3A 200V 7
7410	18p	74100 110		4001	21p		Op Amp	14 pin DIL	70p		54p	BFR80	34p	2N708	22p 22p	40362	45p		3A 600V 7
7411	26p	74104 60		4002	21p			14 pin bit	700	AD161	39p	BFR88	37p	2N918	43p	40410	75p		
7412	27p	74105 60		4D06	120p	LINEAR I.C.				AD162	39p	BFX30	36p	2N930	19p	40409	75p	ZENER	64 50V 7
7413	38p	74107 32	Σp /	4007	21p	AY-1-0212	Tone Generato			AF115	22p	BFX84	30p	2N1131	20p	40411	325p	2.7 to 33V	64 100V 7 64 200V 8
7414	96p	74109 96	Sp	4009	67p	CA3028A CA3046	Diff Cascade A 5 Transistor Ar		112p	*AF116	22p	BFX85	30p	2N1132	20p	40594	90p	400mW 11p	6A 400V 9
7416	34p	74110 5!		4011	21p	CA3048	4 Lo Noise Am		DIL 85p	AF117	22p	BFX86	30p	2N1304	45p	40595	97p	1W 22p	115 4000 3
7417	40p	74116 21 6		4012	19p	CA3053	Diff Cascade A		DIL 250p DIL 70p	AF139	43p	8FX87	30p	2N1305	45p	ł			TRIACS
7420	18p	74118 90		4013	55p	CA3080	Op Transcond		70p	AF239	48p	BFX88	30p	2N1306	48p	FETs			Amp Volts
7421	43p	74120 130		4015	90p	CA3089E	FM IF System	16 pir		BC107 B		BFY50	18p	2N1613	27p	BF 244	36p		3 400 13
7422	24p	74121 32		4016	54p	CA3090AQ	FM Stereo Dec	nder QIL	500p	BC108 B		BFY51	16p	2N1711	27p	MPF102	40p		6 400 16
7423 7425	40p	74122 5 2 74123 7 3		4017 4018	110p	ICL8038CC	VCO Fun Gen			BC109 C		BFY52	18p	2N1893	32p	MPF103	40p	NOISE	6 500 19
7425	33p 40p	74123 7 3 74126 7 8		4018	247p	LM380N	2W Audio Amp			BC147	9p	BRY39	45p	2N2219	25p	MPF104	40p	75J 140p	10 400 20
7427	39p	74120 75		4020	140p 180p	LM381N	Stereo Pre Amp	14 pir		BC148	9p	BSX19	20p	2N7222	25p	MPF105	40p		10 500 27
7430	18p	74136 81		4022	19p	fW389N	Aud Amp +3	Trs Array 18 pir		BC149	10p	BSX20 BU105	20p	2N2369	15p	2N3819	27p		15 400 310
7432	37p	74141 80			100p	M252	Rhythm Genera	tor 16 pir		BC157 BC158	11p	BU108	175p 312p	2N2484	32p	2N3820	50p		15 500 340
7437	37p	74142 300		4025	19p	MC1310P	FM Steren Den		DIL 190p	BC159	13p 13p	MJE340			A 25p	2N3823	54p	DIAC	40430 108
7438	37p	74145 75			200p	MC1351P	Lim Det Aud		DIL 104p	BC169C	15p	MJ2955		2N2905	25p	2N5457 2N5458	40p	BR100 30p	40669 10
7440	18p	74148 173		4027	81p	MC3340P	Electronic Atter	(1)		BC171	12p	MJE295		2N2026R	2 5p	2N5458 2N5459	40p 40p		
7441	85p	74150 155	6 4	4028	152p	MFC4000B	'4W Audio Am		90p	BC172	12p	MJE305		2N29260		3N128	95p	MEMORY	
7442	75p	74151 77			130p	NE540L	Aud Pwr Drive		140p	BC173	13p	MPSA06		2N3053	20p	3N140	95p	2102 RAM	62.70
7443	116p	74153 92		4030	59p	NE555V	Tirner	8 pin		BC177	20p	MPSA12		2N3054	54p	3N141 *	95p	2107 RAM	£2.70 £10.80
7444	116p	74154 164			150p	NE556 NE561B	Dual 555 PLL with AM D	14 pir		BC178	17p	MPSA56		2N3055	54p	40603	63p	2112 RAM	£10.80
7445	90p	74155 96			216p		PLI with VCO			BC179	20p	MPSU06			151p	40673	70p	2513 RAM	€8.50
7446	90p	74156 96		4046	150p	NE562B NE565	PLL WITH VCO	16 pir		BC182	12p	MPSU56		2N3702	14p			2313 HANN	£0.5U
7447	90p	74157 97			110p	NE566V	PLL Fun Gen	14 pir 8 pin l		BC183	12p	OC28	90p	2N3703	14p	UJTS			
7448	85p	74160 116		4049	68p	NE567V	PLI Tone Deco	der 8 pm i		BC184	14p	OC35	90p	2N3704	14p	TIS43	40p		
7451	20p	74161 116		4050	50p	2567	Dual 567	16 pin		BC187	32p	OC71	25p	2N3705	14p	2N2160	95p	SCR THYRISTO	RS
7453	20p	74162 116			130p	SG3402N	Ring Modulator			BC5.5	14p	TIP29A	50p	2N3706	14p	2N2646	48p	14 50V TOS	43
7454	20p	74163 116			140p	SN72710	Diff Comparate			BC213	12p	TIP29C	62p	2N3708	14p	2N4871	40p	1A 100V T05	45
7460	20p	74164 130			145p	SN72733	Video Amp	14 pin		BC214	17p	TIP30A	60p	2N3709	14p			14 400V TO5	50
747D 7472	32p 30p	74166 136 74167 370		4069	130p 30p	SN76003N	Aud Pwr Amp	with HS 16 pin		BC478	32p	TIP30C	72p	2N3707	14p	PUJT		3A 400V STUD	81
7477	34p	74174 131		1071	29p	SN76008	10W Amp in 8	ahms 5 pin l		BC547 BC557	12p	TIP314	56p		270p	2N6027	60p	8A 50V Plastic 12A 400V Plastic	142
7474	36p	74175 92		4072	29p	SN76013N	Aud Pwr Anna	with HS 16 pin	DII 175p	BCY70	12p	TIP31C	68p	2N3866	97p			16A 100V Plastic	173
7475	48p	74176 131		1081	21p	SN76023N	Aud Pwr Amp		DIL 175p	BCY71	22p	TIP32A	63p	2N3904 2N3905	22p	DIODES		16A 400V Plastic	180
7476	34p	74177 120		4082	29p	SN76033N	Aud Pwr Amp			BD124	24p 140p	TIP32C TIP33A	85p 97p	2N3906	25p 22p	SIGNAL	40-	16A 600V Plastic	220 270
7480	54p	74180 120			142p	TAA621A	Aud Amp for		270p	BD131	39p	TIP33A	120p	204058	19p	O447 O481	10p	- 50 0000 - 0000	270
	103p	74181 322		4511	200p	TAA6618	FM IF Amp Li		150p	BD132	43p	TIP34A	124p	2N4060	19p	OA85	15p	BT106 1A 700V	STUD 130
7482	75p	74182 89		4516	140p	TBA641B	Audio Amp	Gif	300p	80135	54o	TIP34C	160p	2N4123	22p	0490	15p 7p	C106D 4A 400V	
7483	99p	74185 146		1518	140p	TBA800 TBA810	5W Audio Amn		100p	BD136	55p	TIP35A	243p	2N4124	22p	OA91	/p 9p	MCR101 1, A 151	
7484	103p	74190 155	p 4	4528	130p	TBA820	7W Audio Amp 2W Audio Amp		125p 100p	BD139	54p	TIP35C	290p	294125	22p	0495	9p	2N3525 5A 400\	/ TO66 97
OLTAG	E REGI	JLATORS				TDA2020	20W Audio Amp		375p	BD140	60p	TIP36A	297p	2N4126	22p	QA200	8p	2N4444 84 600\	
Fixed Pla						XR2240	Prog Timer Co				225p	TIP36C	360p	2N4401	34p	OA202	10p	2N5060 0 84 30	
1 Amp			-ve	p		ZN414	TRF Radio Rece		140p	BF115	24p	TIP41A	70p	2N4403	34p	1N914	4p	2N5062 0 8A 10	
5V 78		150p	790		215p			DRIVERS:		BF167	25p	TIP41C	81p	214427	97p	1N916	11p	2N5064 () 8A 20	NV TO 92 43
12V 78		150p	791		215p	OPTO-ELEC		75491	94-	BF173	27p	TIP424	76p			1N4148	4р		
15V 78		150p	791		215p	PHOTO TRAI	NSISTORS	75491	84p										
8V 78		150p	791		215p	OCP70	40p		104p	VATII	VCL	JSIVE	PRI(ES. /	Add .	20p P8	ևP –	- no other e	extras
74V 78	24	150p	/92		215p	OCP71	120p	LEDS		BAALL	OPP	ED C	MI W	COM		NIFO	FC 6	DEDO	
M309K	5V	1 Amp	T()		150p	2N5777	50p	TIL209 Red	16p	INIMIL	UKU	ER UI	WLY.	GUV	i. C(JLLEG	F2 (RDERS W	ELCOME
M309H	5V	100mA	TO)5	97p	LDRs		TIL211 Gree						$\overline{}$	_				
BA625B		0.54	TO		106p	ORP12	70p	TIL 32 Infrare	d 81p						V/				
ARIABI					- 1	ORP60	75p	0.2							W .				
723	14pin D	HL			45p	ORP61	75p	Red	18p									C L	
OW PR	DEILE D	IL SKTS BY	/ TEV	ra'e		CELIERI OTT		Green Yellow	29p						T /				
8 pm 12		16 pin 14p	157				MENT DISPLAY	3	32p	E/ C-	mad L		Dan	al I a -	عامه	BIA.		Tel. 01-204	4333
		24 pin 54p			n 60p	3015F DL704	175p 160p	D 7/1 '	160p	54 Sa	mur	iurst	noa	u, LOI	100	n IVVV	9 4	Telex 92280	
4 pin 13								DL 74.7	250p										

electronics today international

What to look for in the Febuary issue: on sale Jan 7th

DON'T BE DONE!

The modern home has on average about £5,000 worth of removable valuables - colour TV, stereo system, carpets, money - you name it, a burglar will steal it. Not only is the financial risk high, the emotional disturbance can be tragic. No home is exempt from petty or even major theft. We can't promise to turn your home into Fort Knox — but a strong castle is a very good English tradition! Lots of articles have been published with alarm circuits - but we will tell you how to work out what you need - and just as importantly how to install a system properly. Also non-electronic security has its role - we will cover this as well. Remember hundreds of people every day have it happen to them — it can't happen to you though - or can it?

This project is based on a brand new Ferranti IC which does away with the need for separate $A{\rightarrow}D$ and $D{\rightarrow}A$ convertors in an instrument of this type.

Emphasis has been placed on ease of construction and on setting up, so that this threeand-a-half digit DUM is quickly built and aligned. Basic range is $\pm 2V$, and a simple switched attenuator extends this as you like. Resolution is 1mV when correctly set up.

This project is a good way to upgrade your workbench at a cost of around £30!

SHORT CIRCUITS:

BIOFEEDBACK

Biofeedback is the art of controlling your body by knowing exactly what it's doing! Put like that it sounds simple. But it isn't. Your brain generates several sets of 'waves', all at different frequency, and all with totally different meanings and functions. Yoga may be an old-fashioned idea — but biofeedback is a modern method achieving those aims — instantly! Or so its advocates claim. Make up your own mind in next month's ETI.

Temperature Alarm:— an ingeniously simple circuit to sound an audible warning (or trip a relay) when a preset temperature is exceeded or fallen below. Will work superbly as a deep-freeze alarm, process temperature controller, etc., etc.

Drill Speed Controller:— makes those tricky jobs seem easy, and extends the usage of *any* power drill

Function Injector:— we refuse to call this a 'signal' injector, simply because these are usually sine or square wave only. Well ours does both and triangular functions as well, and is packed in a compact hand-held box to make life easier when you're crawling around inside that amplifier you've been meaning to fix for ages.

TECHNICAL BOOKS FROM ETI

CALCULATORS —	110 OPERATIONAL AMPLIFIER PROJECTS FOR THE HOME CONSTRUCTOR	UNDERSTANDING ELECTRONIC CIRCUITS R. Sinclair E4.00
99 WAYS TO KNOW AND USE YOUR ELECTRONIC CALCULATOR L. Frenzel £4.50	R. M. Marston E2.85 Outlines the essential characteristics of op amps and presents useful projects	Describes various circuits encountered today with a strong eniphasis on lault finding and servicing procedures
SCIENTIFIC ANALYSIS ON YOUR POCKET CALCULATOR Smith E8.25	110 SEMICONOUCTOR PROJECTS FOR THE HOME CONSTRUCTOR R. M. Marston Littoduces the reader to FET's. SCR's and IC's with full construction	UNDERSTANDING ELECTRONIC COMPONENTS R. Sinclair £4.00 Explains about components and bridges the gap between elementary
	details of many useful circuits	extbooks and unapproachable advanced treatments UNDERSTANDING CMOS INTEGRATED CIRCUITS
COMPUTERS AND MICROPROCESSORS— COMPUTER CIRCUITS AND HOW THEY WORK 8. Wells E1.80	110 COSMOS DIGITAL IC PROJECTS FOR THE HOME CONSTRUCTOR R. M. Marston £3.10	R. Melen £3,50 Begins with basic digital IC s. covers semiconductor physics. CMOS fabrication technology and design
Become acquainted with the various parts of a computer and its technology	110 INTEGRATED CIRCUIT PROJECTS FOR THE HOME CONSTRUCTOR R. M. Marston All the projects have been devised, built and fully evaluated by the	UNDERSTANDING SOLID STATE CIRCUITS N. Crowhurst £1.90
COMPUTER TECHNICIANS NANDBOOK 8. Ward £3.25 This giant volume compares to a 1,000 hour course on computer mechanics	author 110 THYRISTOR PROJECTS USING SCR's R, M. Marston £2.85	Written to service the interests of anyone at sub-engineering level
	A companion to the author's previous gooks	
DIGITAL ELECTRONIC CIRCUITS AND SYSTEMS N. M. Morris E2.60 The ideal book for the enthusiast confused by logic and digital techniques	MOS DIGITAL IC'S G. Flynn This book contains information about MOS and CMOS from basic construction to circuit application	ELECTRONIC ORGAN BOOKS TRANSISTOR ELECTRONIC ORGANS FOR THE AMATEUR A. Douglas £4,50
MICROPROCESSORS L. Altman Gives a general overview of the technology design ideas and practical	OPERATIONAL AMPLIFIERS DESIGN AND APPLICATIONS (Burr Brown) G. Tobey £7.30	Written in a simple style, this gives a complete explanation of everything to do with transistorized organs and is profusely illustrated with clear diagrams.
application MICROPROCESSORS D. C. McGlynn	Covers the entire field of operational amplifiers PIN POINT TRANSISTOR TROUBLES IN 12 MINUTES	THE ELECTRONIC MUSICAL INSTRUMENT MANUAL A. Douglas A comprehensive guide to the theory and design of electronic musical
Technology Archifecture and Applications. This introduction provides a clear explanation of this important new device.	Garner £2.85 Complete information on circuit operations, troubleshooting charts and service procedures.	instruক্রভগার
MICROPROCESSORS AND MICROCOMPUTERS £15.90 B. Soucek Describes the application programming and inferfacing techniques		
Describes the application programming and interacting techniques common to all microprocessors	LATEST EDITIONS THE OSCILLOSCOPE IN USE	SEMICONDUCTOR DATA
	In Sinclair E3.00 A practical handbook aimed at the more advanced enthusiast.	POPULAR VALVE/TRANSISTOR SUBSTITUTION GUIDE £2,15 Substitution data for both valves and transistors in one new volume
ELECTRONICS	110 ELECTRONIC ALARM PROJECTS R. M. Marston £3,35	RADIO VALVE AND SEMICONDUCTOR DATA
ACTIVE FILTER COOKBOOK D. Lancaster Everything you need to know to build and use active filters	The latest in this popular series. MASTER HI-FI INSTALLATION	A. M. Ball £2.50 Characteristics of 1,000 valves callhode ray tubes transistors diodes rectifiers and optical semi-conductors. This new edition (1975) is right
ELECTRONIC ENGINEERS REFERENCE BOOK — 4th EDITION L. W. Turner £25.60	Gordon J. King £3.00 All you need to know about setting up your audio system.	up to date and over 450 000 copies have been sold.
A completely new and up-to-date reference book for all engineers and students	TY TYPEWRITER COOKBOOK Don Lancaster £7.00 All the circuity and explanations for making your own VDU.	
BASIC MATHS COURSE FOR ELECTRONICS H. Jacobowitz £1.75	PRACTICAL ELECTRONIC CIRCUIT BUILDING Ainalie and Colwell £2.35	RADIO AND TELEVISION—————
Quick short cut way to learn the language of maths as applied to electronics DESIGNING WITH TTL INTEGRATED CIRCUITS	A concise introduction to some of the modern methods of project building.	FOUNDATIONS OF WIRELESS AND ELECTRONICS M. G. Scroggie (New 1975 edition) Covers the whole basic theory, no previous technical
Texas Instruments Covers the entire family of TTL and practical applications of circuits in digital systems.	PRINTED CIRCUIT ASSEMBLY Hughes and Colwell Abundant information on making and assembling PCBs.	knowledge is assumed SERVICING TRANSISTOR RADIOS
ELECTRONIC MEASUREMENTS SIMPLIFIED C. Hallmark Covers just about every conceivable test or measurement you will need	ELECTRONIC DIAGRAMS M. A. Colwell Comprehensive information on circuit symbols and diagrams	L. D'Airo Complete guide giving theory analysis and servicing techniques
P. McGoldrick £4.15	ELECTRONIC COMPONENTS M. A. Colwell E2.35	
ELECTRONICS AND PHOTOGRAPHY R. Brown £2.20	Information on the different types of components and their selection.	TEST EQUIPMENT AND OSCILLOSCOPES—
Practical circuit projects devoted to photography ESSENTIAL FORMULAE FOR ELECTRICAL AND ELECTRONIC	PROJECT PLANNING AND BUILDING M. A. Colwell How to convert an idea into a practical model.	BASIC ELECTRONIC TEST PROCEDURES 1. M. Gottlieb Shows how to get accurate measurement with VOMs meters and oscilloscopes
ENGINEERS N. M. Morria £1.20 Handy reference book, includes a section on S1 units, resistor colour codes and preferred values	SIMPLE CIRCUIT BUILDING M. A. Colwell How to build projects without taking the theoretical approach.	THE OSCILLOSCOPE G. Zwick £2.10
FIRE AND THEFT SECURITY SYSTEMS B. Wels E1.90	PRACTICAL TRIAC/SCR PROJECTS FOR THE EXPERIMENTER	Starts from the first principles and takes the reader to an advanced level
Selection and installation, home maintenance and business security devices	R. Fox Thyristor theory and practical circuits with low cost SCR TRIACs and DIACs	PRACTICAL TEST EQUIPMENT YOU CAN BUILD W. Green £2.15 For technicians radio TV service operators and serious experimenters
HOW TO READ ELECTRONIC CIRCUIT DIAGRAMS 8. Brown £1.85 Everything you need to know from basic circuit components to	PRINCIPLES OF TRANSISTOR-CIRCUITS S. Amos £4.40	TEST INSTRUMENTS FOR ELECTRONICS
Integrated circuits HOW TO BUILD PROXIMITY DETECTORS AND METAL LOCATORS	Generally accepted as being a standard textbook on fundamental principles underlying the design of circuits and using trensistors	M. Clifford £1.65 Easy modifications to your VOM VTVM and scope with the aid of this
J. Shields £3.25 A practical do-it-yourself book	RAPIO SERVICING OF TRANSISTOR EQUIPMENT G. King F2.85	book
HOW TO USE IC CIRCUIT LOGIC ELEMENTS J. Streater £3,25	G. King £2.85 A systematic guide to the servicing of transistor radio television tape and hi-fi equipment	WORKING WITH THE OSCILLOSCOPE A. Saunders Includes workshop test projects with large size drawings
Helps those unlaminar with digital logic circuits INTEGRATED ELECTRONICS	SEMICONDUCTOR CIRCUIT ELEMENTS	
J. Millman E7.60 Using an IC approach the text leads the reader step by step from	T. D. Towers E6.00 Gives readers an account of all semiconductor devices commercially	SERVICING WITH THE OSCILLOSCOPE G. King £5.00

SOLID STATE CIRCUIT GUIDE BOOK

TRANSISTOR CIRCUIT DESIGN

£1.85

HOW TO ORDER

All prices are correct at the time of going to press but are subject to alteration without notice. All prices include postage. Please print your name and address clearly and list each title and price separately. Cheques and postal orders should be made payable to ETI Book Service. Books are sent on seven days' approval against a full cash ramitlance, plus postage. Book stock is not held at ETI's London offices and orders should be sent to: ETI BOOK SERVICE. P.O. BOX 79. MAIOENHEAO, BERKS SL6 2EG.

LINEAR INTEGRATED CIRCUIT APPLICATIONS

LINEAR IC PRINCIPLES EXPERIMENTS AND PROJECTS
E. M. Noll
An introduction to one of electronics most exciting devices

MULTI **PROCESSOR**

A CHANGE IN STYLE THIS MONTH - A REPORT FROM OUR AUSTRALIAN EDITION ON AN INTERESTING USE OF THE MPU IN THEIR PART OF THE WORLD.

What advantages of the dual processor?

1. Speed due to one processor being

optimised for dealing with the outside

2. Programs are simpler because inter-

rupts (servicing the outside world) which

normally divert the processor tempor-

arily can be handled by one processor

optimised for this task, enabling the

other to be expert at number-crunching,

The second processor is more organised

because it doesn't have to worry about

things coming in from the outside

world. Its data is pre-processed by the

first processor and arranged in an

optimal way for the second processor.

The two processors are more than twice

as good as one (it is something like four

times as fast as a single processor for

3. Debugging and testing. Testing of a

program can be made quite simple

because you can make the program go

round and round without doing any

output. You don't have to worry about

output routines because you can use the

debugging firmware package in the

second processor to read the data tables

Normally (with a single processor) if you are trying a program and nothing

that the first one uses.

world.

some jobs).

Put simply there are three advantages:

THE LATEST DEVELOPMENTS IN microprocessor systems are in using two or more processors with shared memory. We know of one American microcomputer manufacturer offering a 'shared memory' board but surprisingly we discovered a couple of people working with dual processors over in Australia. Information Electronics in Canberra sell a terminal using two processors (one to handle the screen and keyboard and one to handle the line) and in Sydney we discovered a guy who has developed a general-purpose dualprocessor computer soon to be available from Fairlight Instruments Ltd. This computer was designed by one of Australia's leading microcomputer consultants, Tony Furse, and we went out to visit him to see what his system could do.

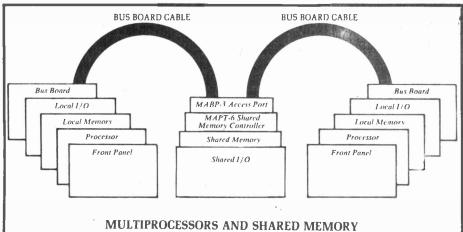
The world's best music synthesiser?

The dual-processor computer was originally developed to control an electronic music synthesiser. But surely one microprocessor would be enough, especially when current synthesisers don't have any sort of digital control?

synthesis of the waveform you hear the sound out of the speakers). Obis pretty complicated - too complicated a live performance.

No, even in a simple application (capable of single-processor control) there are advantages offered by the dual-

But wait 'til you hear what the machine can do - there's a polyphonic keyboard, eight 'instruments' can be synthesised at one time, there's a VDU screen which can be used to graphically display all sorts of information to the operator, there's up to eight terminals which can be used to synthesise sounds using programs in the firmware of the machine (for example, key in 80 80 80 80 80 80 . . . and watch the VDU display. You get a sine wave of amplitude 80 (I've no idea what units) followed by its 1st harmonic at the same amplitude. then the 2nd, 3rd, 4th ... at the prescribed amplitudes. As you watch the viously it would take a complete articleto describe the system but you can see it for one microprocessor to handle with the response demanded by musicians in


> comes out you don't know if it's your output routine or what. With a dual-processor system you can use the second processor to change the numbers in the program being run by the first processor. Then you can see the effect immediately.

Would the advantages of using two processors be similar to the advantages of using a 16-bit processor rather than an 8-bit type?

No. Two eight-bit, processors don't provide a simple substitute for a 16-bit processor if it's 16-bit arithmetic or logic you want, provided of course that your choice of 16-bit processor is such that it does a 16-bit operation in the same time as an 8-bit processor does a similar 8-bit operation. It turns out however that many 16-bit microprocessors are quite a bit slower than the 6800, in fact this difference can

So dual processors take over where single processors leave off?

processor

The IMSAI multiprocessor system uses a different concept to that of the Qasar system described in the text, it is a method of interconnecting two or more of the IMSAI 8080 computers so that they share memory. Not only do you have two processors but you have two of everything else, plus the extra boards in the centre of the diagram. Each 8080 processor has its own memory, which may be anything up to 64K minus the amount of shared memory. The Shared Memory Access Port and Shared Memory Controller boards available can link up to six computers.

MULTIPROCESSOR

be such that one 6800 even though it must execute upwards of twice as many instructions for a given 16-bit function still produces the 16-bit result faster.

One other problem one encounters regularly is a need for 24-bit arithmetic. To give the one part in a million precision needed in these applications to the 8-bit processor this problem is merely a matter of triple precision arithmetic, but to the 16-bit processor one would usually be tempted to go to 32-bit precision to avoid programming complication. However this may be very wasteful of memory space if arrays of 32-bit data must be maintained. Once again this 8-bit processor tends to win against the current 16-bit opposition, this time on two counts: speed for a given operation and memory efficiency.

One other interesting aspect of the 8-bit versus 16-bit debate is the fact that generally a large part of all information to or from the outside world is in 8-bit bytes. Some 16-bit microprocessors are quite ugly when it comes to processing bytes and text and unfortunately byte processing constitutes something like 60% to 80% of the programme of human engineered interactive systems.

Can the two processors communicate?

On the computer there is an interface which enables the two processors to interrupt each other, but this doesn't happen often: only when there is a whole table of new data.

The processors have a second way of talking to each other — through memory locations. Periodically they can look up certain "mailbox" locations to see if any flags have been left there by the other processor.

Another advantage is that you can run an editor and an assembler simultaneously. Two completely independent programs can be run simultaneously.

Interface

Having the second processor means you can have peripheral interfaces that are a lot less sophisticated.

One could use most of the resources or the second processor in avoiding complicated hardware to interface to various peripheral devices, this technique, often termed "bit banging", uses the processor to control various individual input and output bit patterns normally controlled by external gates, flip flops, one shots etc. For example, a floppy disk normally needs around 60 to 150 TTL ICs for its microcomputer interface using up 50% of the processing resources of the second

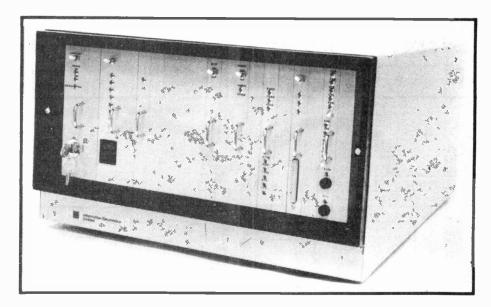
processor and providing a serial synchronous communications adaptor chip and several other TTL MSI chips. One gains a floppy disk interface which is controlled by software operating the second processor. The cost in hardware terms is possibly as little as 25% of the cost of the alternative, not to mention the extra flexibility gained.

If you take out the second processor chip, you have a port capable of gulping information out of the memory at a million bytes a second. And this has continuous access.

How do you keep the processors from colliding?

They are never operating at the same instant, they run out of phase. The memory is twice as fast as either of them needs: one processor does its cycle and before it gets round to doing the next the other processor has been in. With the 6800 all the activity occurs within half of the cycle so these devices are particularly suited to interleaving.

Is the dual processor only for people who know about microprocessors already, or does it offer advantages to the beginner?


The advantage for the guy who doesn't know so much about microprocessors is that he doesn't have to diddle about with input-output routines to try out programs. Once he knows the two processors behave identically he can load his program under the control of one with the other switched off, then he can start it running which immediate-

ly takes all the time of that first processor. Then he can use the second processor to get at the program while it is running. He can change numbers and things and see the immediate effects.

Quite often normal single processor debugging techniques make it very difficult to debug programs in which time critical closed loop control of some device or peripheral is a feature; in such programs data is read from the device processed and new control information is then output in order to keep the device under control. Use of program breakpoints or instruction tracing results in interference with the integrity or the control loop and of course under such circumstances the data gained in this manner may at best be misleading.

Use of the second processor in such applications allows inspection and modification of data without any interference to the loop integrity and of course allows far more effective debugging since loop overload recovery and other exotic s may be simply tested.

In practice, if you're handling a lot of peripherals, you use one processor to deal with the outside world (8 terminals, a graphics display, disc storage, etc in the case of the synthesiser). This is then the peripheral controller processor. It queues up work for itself to do and then does it. The other processor is free to get on with the business of crunching numbers and handling its very high-priority tasks.

The IE 180 microprocessor system from Information Electronics is aimed at the data communications and process control markets. It is based on the Intel 8080 processor but can incorporate two other processors, one for fast functions like moving memory blocks and one for doing complex scientific calculations.

The company also uses the multiprocessor concept in a Visual Display Unit, the IE 139. Two Intel 8080s are used as follows: One microprocessor is dedicated to line handling and communication, permitting line data rates up to 9600 baud. The second microprocessor controls the display functions and manipulation of data within the unit. The microprocessors have access to a common central dual port memory and interprocessor buffer thus making their actions time-independent. In addition, each microprocessor can address up to 4K of Read Only Memory for the firmware control program.

MEMORY IC's

 Intel 2102A-6 (new version of 2102-2).
 16 pin IC, TTL compatible, Single

 +5V supply, 650nsec.
 1024 x 1 bit Static NMOS RAM
 £3.61

 Intel 2112A-4 650nsec.
 256 x 4 bit Static NMOS RAM
 £4.76
 Intersil IM6508C CMOS 1024 x 1 bit Static RAM €8.05

CMOS/TTL COUNTERS

DB2 Complete kit one on small PC8 for two digit CMOS counter with lach. Includes 2 x FNDS00 or TIL322, 3 CMOS IC's. Sockets, R.s. PC8. Instructions. Order as DB2 kit £8.60 ePC8 + layout etc. available sen. Order as 912.950 epc. PC8 PC8 + layout etc. available sen. Order as 912.950 epc. PC8 Set for 6 DIGIT TTL COUNTER with lach. All you need are 6 x TIL321 6 each of 7447 7475 7490 + R's (Kit not yet available). Counter PC8 + display PC8 876.001 layout etc. Order as 610.950 £5.50

KITS

12 00 'AUT-CK'

CAR CLOCK The SINTEL Cer Clock Four digits White mini case Large 0.5" red LED displays High frequency quartz crystal timebackup Full instructions. Suitable for all 12v negative earth cars. 154mm x 48mm x 40mm

For Car Clock Kit complete less battery — Order as Also available less case —Order as AUT-MODULE KIT AUT-CK

50Hz CRYSTAL TIMEBASE KIT: provides an extremely stable output of one pulse every 20msec. Uses. May be added to all types of digital clocks to improve accuracy, to within a few seconds a month ● If used with battery back-up also makes clocks power-out or switch-off proof ● Replacing 50Hz signat on battery-powered equipment ● Providing film synchronisation ● Monitoring or improving turntable speed. Complete kit. Order as "XTK"

DIGITAL CLOCK KITS WITH CRYSTAL CONTROL AND BATTERY BACK-UP

ACK+ BBK+ XTK

These two kits incorporate our Crystal Timebase Kit (XTK), together with components for battery, back-up. All components, plus a PP3-type battery, fit neatly in the clock cases. Accurate to within a few seconds a month. If mains power is disconnected (through a power cut, accidental switching off or moving clock) the clocks will still keep perfect time. While on back-up, the displays are off to conserve battery life.

ATTRACTIVE 6-DIGIT ALARM CLOCK: Uses Red 0.5" displays. Features bleep alarm "Touch switch" snooze control and automatic intensity control. Alarm remains fully operational while clock is on back-up. Complete kit including case less mains cable and plug Order as "ACK" KTK+ BBK". 633.58
Kit also available less crystal control and back-up. Order as "ACK" £26.80

MINI GREEN CLOCK, Attractive 4-digit Mantelpiece Clock with bright 0.5" Green display Complete kit including case less mains cable and plug. Order as "GCK + XTK + GBBK"

Kit also available less crystal control and back-up. Order as "GCK"

DATABOOKS and Datasheets

·	
New 1976 RCA CMOS and Linear IC Combined Databook	£6.70
New 1976 RCA 'Power and Microwave' Databook	£7.30
1976 National Selniconductor 7400 series TTL Databook, c. 200 pages	£3.45
TTL Pin-Out Card Index. Set of cards with pin-outs (top and bottom views) of	,
T.I. TTL range and many other T.I. IC's	€2.95
Intel Memory Design Handbook, c. 280 pages	£5.20
Intel 8080 Microcomputer Systems Users Manual, c. 220 pages	£5.25
Motorola McMOS Databook (Vol. 5 Series B), c. 500 pages	£3.50
Motorola M6800 Microprocessor Applications Manual, c. 650 pages	£12.95
Motorola M6800 Programming Manual, c. 200 pages	£5.35
Motorola Booklet introducing Microprocessors	£1.80
2650 Microprocessor Manual 220 pp	€24.50
National SC/MP Introkit Users Manual	£0.75
National SC/MP Programming and Assembly Manual	£6.30
National SC/MP Technical Description	£1.95

DATASHEETS on Microprocessors: (usually Xerox Copies)

Intersil IM6100 12 bit CMOS	£0.75	RCA CDP1802 8 bit CMOS	£0.75
National SC/MP B bit, Low cost	£0.75	Zilog Z80 (enhanced 8080)	£0.75
Signetics 2650 8 bit, Low cost .	£0.75	Motorola MC 6800	€0.75
TMS 8080	£0.75	TMS 5501 for 8080	€0.75

microprocessors

Please: Microprocessors should only be bought by experienced constructors. Sorry, we cannot answer technical queries or supply data other than from our selection

IM6100CCDL 8080A (2 LS) 6800	£45.36 £32.25 £33.87	S.ndl	ISPA/100 (SC/MP) £18.75 2650 £27.00
------------------------------------	----------------------------	-------	--

MICROPROCESSOR MANUFACTURERS' DEVELOPMENT KITS

MEK6800D1 — with the 6800 MPU	
ISP8K/200E — SC/MP Intro Kit	
MCS-80 Kit C — with 8080A (no PCB)	176.65

Send for FREE CATALOGUE giving details of our complete range of Clock kits, LED displays, Cases and other components.

CASES and other COMPONENTS

 2.788 kHz Min. Watch Outre Crystal
 £3.60.5 12 MHz Crystal
 £3.60

 8-way BOSS Switch: 8-ultra-min. toggle switches in 16-pin DIL
 £2.60

 Miniature Transformers (Both It in all Verocases below)
 £1.95

 Clock transformer 8-Oe-9 300mA. Order as LED-TRF
 £1.95

 For 5101 12-0-12/100mA. 1.5-0-1.5750mA. Order as 5L-TRF
 £1.95

 VEROCASES. Neat cases with PCB guides, etc. front and rear aluminium panels. We have precut perspex for some cases, making them ideal for clocks or instruments. For 751247 J PX-R-J-12 (Red) 28p, PX-G-J-12 (Green) 28p, For 751410.0 PX-R-J-14 (Red) 30p, PX-G-J-14 (Green) 30p. For 751410.0 PX-R-D-14 (Red) 40p. The cases are as used in our ACK & GCK.

£ 3.36 751237J (154x85x40) £ 3.77 751238D (154x85x60) We have many other Verocases and Vero products in stock — see our Price List

FAST SERVICE

We guarantee that Telephone Orders for goods in Stock, received by 4.15 p.m. (Mon.-Fr.) will be despatched the same day. 1st Class Post (Books and Kits by parcel post), and our Stocking is good. Private customers should telephone and pay by giving their Access or Barclaycard number, with a minimum or value of £5. Official order, no minimum.

CMOS COMPONENTS CD4034 CD4073 CD4075

CD4000	0.17	004000	1.05	004070	4.64	CLOCK CHIPS
CD4000	0.17	CD4036	3.65	CD4076	1.61	AY51202 2.89
CD4001	0.18	CD4037	1.09	CD4077	0.60	AY51224 3.50
CD4002	1.35	CD4038	1.24	CD4078	0.24	MK50253 5.60
CD4000	0.18	CD4039	3.55	CD4081	0.24	
		CD4040	1.23	CD4082	0.24	
CD4008	1.11	CD4041	0.96	CD4085	0.82	
CD4009	0.64	CD4042	0.96	CD4086	0.82	
CD4010	0.64	CD4043	1.16	CD4089	1.78	VEROCASES
CD4011	0.20	CD4044	1.07	CD4093	0.92	751410J 3.36
CD4012	0.19	CD4045	1.61	CD4094	2.15	751411D 3.77
CD4013	0.64	CD4046	1.53	CD4095	1.20	751237J 2.15
CD4014	1.16	CD4047	1.04	CD4096	1.20	751238D 3.00
CD4015	1.16	CD4048	0.64	CD4097	4.28	751239K 3.58
CD4016	0.64	CD4049	0.64	CD4098	1.26	
CD4017	1.16	CD4050	0.64	CD4099	2.11	
CD4018	1.16	CD4051	1.07	CD4502	1.43	
CD4019	0.64	CD4052	1.07	CD4510	1.57	SOLDERCON
CD4020	1.28	CD4053	1.07	CD4511	1.80	I.C. PINS
CD4021	1.16	CD4054	1.33	CD4514	3.15	
CD4022	1.11	CD4055	1.51	CD4515	3.60	
CD4023	0.24	CD4056	1.51	CD4516	1.56	1.000 4.00
CD4024	0.89	CD4059	5.48	CD4518	1.25	10.000 34.00
CD4025	0.24	CD4060	1.28	CD4520	1.43	
CD4026	1.98	CD4063	1.26	CD4527	1.82	
CD4027	0.64	CD4066	0.71	CD4532	1.65	SUNDRY `
CD4028	1.03	CD4067	4.28	CD4555	1.04	CA3130 1.14
CD4029	1.31	CD406B	0.24	CD4556	1.04	uA741 0.35
CD4030	0.64	CD4069	0.24	MC14528	1.22	(RCA 8 DIL)
CD4031	2.55	CD4070	0.67	MC14553	4.68	(5 510)
CD4032	1 23	CD4070	0.07	IMEEOR	9.05	7911204/0 0 77

ADD 8% VAT + 25p P&P on all orders. Phone orders see "Fast Service" for details. Export orders very welcome. No VAT but add 10% (Europe), 15% (Overseas) for Air Mail p&p. (For export postage rates on books — contact us first).

CD4071

1.23

8.05

78L12WC 0.77

SINTEL Sales, PO Box 75A, Oxford Tel: 0865 49791

0.24

IM6508

LOW COST IC SOCKETS

Soldercon Pins are the ideal low cost method of providing sockets for TTL CMOS, Displays, ICs. Simply cut off the lengths you need, solder into board and snap off the connecting carrier. A single purchase of Soldercon Pins gives you any socket you may need, and at low prices. 50p per strip of 100 pins, 1,000 for £4,3,000 for £10.50.

DISPLAYS These Jumbo LED displays take no more current than D.3" types other C.C. display (0.1704. D/1750. MAN3640, etc.) as they are all electrically identical (but may have different pin-outs). Similarly our Common Anode digits may be used in place of any other C.A. types (D.1707. D.1747. RS. Oram 5867/699, etc.)

END500

TIL 321, TIL 322 XAN652, XAN654 GREEN

D500-6

Part No	Manufacturer	Colour	Туре	Size	Price
FND500	Fairchild	Red	Common Cathode LED	0.5"	£1.02
TIL321	Texas Instr.	Red	Common Anode LED	0.5"	€1.30
TIL322	Texas Instr.	Red	Common Cathode LED	0.5"	£1.20
XAN652	Xciten	Green	Common Anode LED	0.6"	€2.45
XAN654	Xciton	Green	Common Cathode LED	0.6"	€2.45
5LT01	Futaba	Green	Phosphor Diode	0.5"	€5.80

Display PCBs (each fits neatly into Verocase 751410J) All are for multiplexed arrays all are suitable for FND500, TIL321, TIL322
D500-4 (for 4 digit clock) 90p; D500-6 (for 6 digit clock)

£1.35
D500-8 (for counter, up to 8 digits) 876-001 flor counter up to 6 digits -non-multiplexed)

USING DISPLAYS WITH CMOS OR TTL2 Send sae asking for free application note, SN1, which citizes simple circuits with component value.

Official Orders Welcomed. For our complete range send for free catalogue and price list.

ELECTRONICS -it's easy!

Digital computer systems - peripherals, stores and microprocessors.

PART 36

ALL COMPUTING SYSTEMS HAVE a Central Processing Unit, (discussed previously) and a number of pieces of external equipment associated with them. Such additional units, known as peripherals are necessary to handle the flow of information between the Central outside world and the Processing Unit (CPU).

The range of peripherals available today is extensive. Basically the design aims are to provide interfaces between the human or automatic plant user and the computing system which are the easiest to use, the cheapest to implement and which have the means to transfer data as fast as is desired.

At present - though this will undoubtedly change in the future - we are unable to communicate with the computer by the same means that we communicate with each other - that is by direct speech and vision. Peripherals, are by necessity of our technological and economic limitations still very much compromises to the ideal, except in applications where the computer interfaces to hardware plant, such as in control, when interface problems are easier to solve as such systems communicate by the same signal formats.

CARD AND TAPE PUNCHES AND READERS

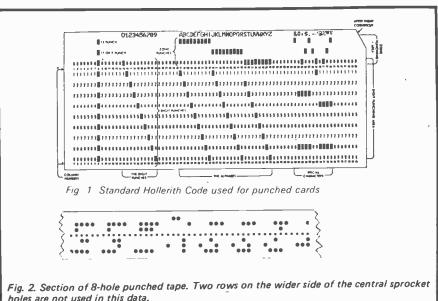
In order to make good use of the high speed of electronic computing circuits, the input and output functions should ideally be capable of transferring the data at a comparable speed. Rarely has this ideal been realised. The throughput rate of peripherals has been speeded up enormously since the first EDP system but, similarly, the rate of computation has been increased.

Because of this shortcoming, data (in human operator use) is first prepared by hand onto a medium that can feed into the EDP system at rates far exceeding the operator's ability. It is then stored in the machine ready for access when the CPU needs it.

The earliest form of input/output medium used punched holes made in a

pile of paper cards or a continuous tape. We inherited these from a 17th century weaving machine via the Hollerith census sorter. Figure 1 shows the used Hollerith punched card. The holes are punched out in a code that represents the alphanumeric symbols shown above each row. Figure 2 is a section of punched tape: these are available with 5,6,7 and 8 hole positions across the tape width. (The smaller hole is for the timing drive sprocket). Tape readers are built to read code from a specific width tape: that is, a 5-hole tape could not be used on an 8-hole system. Tapes and cards which are to be used extensively can be made in more durable materials such as oiled paper, Mylar and aluminium-Mylar.

The holes in cards are produced by mechanical punches. These comprise a punching head by which the appropriate holes are made for each character in typewriter response to а keyboard-input. Keyboard layouts are based on the familiar office typewriter. Extra keys are added for computer applications to enable a greater range of control by the operator. Such additions vary widely.


Tape can be punched automatically whilst the teleprinter type of terminal, is used as a typewriter. Where the tape is

generated as part of an automatic process - as in a data logger, a smaller punch unit is used which incorporates punch drivers activated by control signals - no keyboard is needed.

Card and tape readers consist of a transport mechanism that passes the reading medium across heads. Recognition of a code represented by holes is accomplished by mechanical fingers making direct electrical contact (in the slower readers) or by solid-state optical sensing using LED lamps and photo-diode arrays set to sense the passage of light through a hole position. Some method of synchronising the code position with the data values is essential.

Cards can be punched by an operator at rates between 250-500 per hour. They are often checked on a verifier machine that determines if the card is punched in the same way as the check operator keys the code a second time. They can, by contrast, be machine read or sorted, at 200-1000 cards per minute depending upon the complexity of the task.

Tape punching is confined to similarly slow rates of production at the operator stage of preparation. When the punch is machine operated, punching rates can rise to 150 characters per second. The speed at which punched tapes can be read varies from very slow, using

holes are not used in this data.

mechanical sensing up to 600 characters second or more high-performance optical equipment.

A considerable amount of electronic logic and drive circuitry is needed to operate a punch unit. Figure 3 is the block diagram of a reader using brushes to sense the presence of holes. Input commands to the punch would emanate from the control unit of the EDP system.

MAGNETIC TAPE INPUT/OUTPUT UNITS

Cards and paper tape store information about commands to the EDP system programme) and hold numerical data to be manipulated. They are, therefore, a form of permanent data storage. They suffice (in the form described above) as a data store when the data quantity is not great. A recent trend, which has speeded up data transfer and reduced the bulk needed to store the programme and data, makes use of magnetic tape in cassette form. The compact unit shown in Fig.4 can transfer data at 6000 bits per second at a density of 30 bits per millimetre of tape. (Total capacity on a cassette five million bits). These can also be used as additional memory in the system.

PRINTERS

Teletype units are able to provide hard copy printout but due to the slow printout resulting from letter by letter operation they are not used as the main alpha-numeric output of an extensive EDP system. They can printout at only 10 characters per second or so.

The line printer was evolved to speed up this form of output. It prints all the characters of а complete line simultaneously. Line lenaths are typically 132 characters and the faster models can print lines at rates exceeding 1000 lines per minute. (For which an outlay of £25,000 is required!)

Printing mechanism vary considerably, ranging from development of the fundamental typewriter method, to

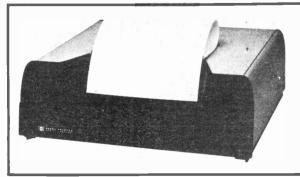


Fig.5. This Hewlett Packard 2607A desk-top line printer provides hard copy output (with 6 copies) at 200 lines per minute.

devices that print each character from a made typewriter size units, are in common use (Fig.5)

Printers can be programmed via the extra equipment to EDP system to provide any format compatible). required - periodic reports, invoices, records, data lists, software record. A crude form of graphical display can also be produced using the position in a line as one ordinate and the lines as the other.

computers are used for When automatic pagination the printer can be one that produces print-type direct.

GRAPHIC DISPLAY – PLOTTERS

Many computational tasks ideally require a graphical display of output information, not a long list of numbers. Plotters may be of x-y type or y-t type.

The x-y type of plotter is arranged so that the graph paper is held stationary and the pen is capable of being driven both vertically (y axis) and horizontally (x axis).

The v-t plotter has a roll of graph paper which is driven at a constant (and usually adjustable- speed; the pen can be driven in one axis only (y axis). Hence the y-t plotter basically plots a

specifically for computer 5 x 7 matrix of dots. Line printers were operation will be provided with the originally bulky units. Today desktop, interface facility that enables direct connection to the EDP system. (Normal plotters require an extensive amount of make

> Computer controlled plotting of x-v format has the ability to be scaled on demand and to generate alpha-numeric legends on the plot. It is an easy matter to replicate the plot - the programme is run again.

> Plotters may be of the analogue drive kind (a later part discusses plotters in detail) but due to the nature of digital processing the result may still have a quantized appearance if the resolution is not sufficiently small. Alternatively the axes may be driven with stepping motors - such machines are called incremental plotters.

> Flat-bed style of x-v plotters are available-which can handle paper of all sizes - from a few centimetres square to size of a wall. A medium-size computer controlled flat-bed plotter is shown in Fig.6

Line drawing rates are limited by inherent electro-mechanical response to around 0.4 m/s in small plotters. The very large machines, when under tight control, are usually capable of around single variable against time. Plotters 0.1 m/s translation rates when working

Fig.4 Cassette form of magnetic tape is finding greater application as a standard EDP and computing caculator peripheral.

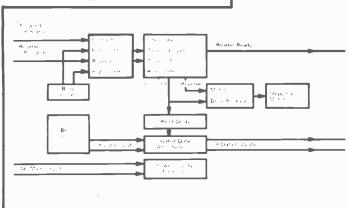
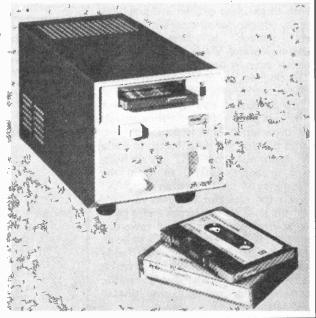



Fig.3 Block diagram of early model Data Dynamics low-speed tape reader (30 c.p.s.).

ELECTRONICS—it's easy!

to precisions of 25 μ m.

plotters v-t incorporate bi-directional drive for the t axis (the paper drive) enabling very long lengths of paper to be driven back and forth along the roll in order to produce an x-y form of plot from a y-t format machine.

GRAPHIC DISPLAY -**VISUAL MONITORS**

Many applications require rapid call-up of data that is presented in a way that can be easily read by the operator. It may be quite unimportant to receive it as hardcopy. The cathode ray tube (television) type of display was an obvious choice. Such displays are known as visual display units, VDU for

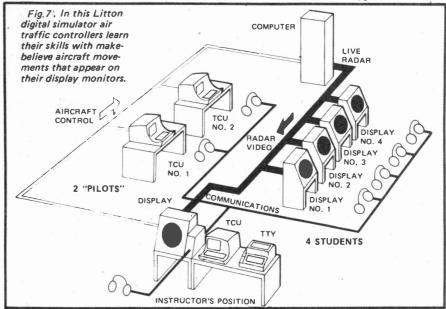
Originally, visual display units were very limited because of the need for a considerable amount of storage with which to generate written and graphical display forms. However solid-state mass storage is now relatively inexpensive and VDUs in one form or another are now standard peripherals.

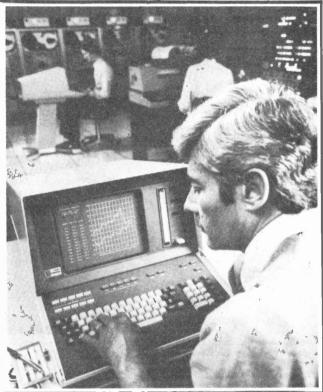
The simplest use of VDUs is to display alpha-numeric information — a section of the software programme, a readout of process plant variables, airline arrivals and departures. This is achieved using digital control and data storage to cause the beam of the CRT to deflect, blanking appropriately, to form the appearance of a static written page.

When the operator becomes involved. with the data on the screen and is given the ability to manipulate it toward a desired task the terminal is said to be an interactive graphic terminal. An'early example of this is given in Fig.7 which depicts a system whereby air traffic controllers are trained using display

Once it had been realised how the

VDU could be used to produce line drawings designers sought ways to 'draw' on the screen. The result was the 'light-pen'. The operator holds a special stylus on the screen of the CRT. Closed loop controls cause the spot to lock onto movements of the stylus. If the into a particular area using a joystick trace path is to be retained, the x, y and control expanding the spatial scale as intensity coordinates values are fed into the search becomes concentrated. Other the digital memory. Once a line is drawn control includes enabling the colours to this way. Other operations enable the complimented... operator to automatically erase sections of line, straighten lines and smooth curves by computer processing. The INSTRUMENTATION INTERFACES complete drawing can then be permanently recorded as hard copy on a When the digital computer has to plotter or as a data set. Interactive methods have saved an enormous data from analogue processes, the amount of time in tasks such as deciding system must be provided with the the extremes of a motor-car wheel appropriate A to D and D to A convertmovement during the combinations of springing and steering which forms the data logger.


positions within the wheel arch.


Today's graphic terminals versatile. Completely ex tremely self-contained units which incorporate a built-in processor are in common use. A recent release is shown in Fig.8

Improvements in the storage-tubes used to hold the displays of a CRT system have been coupled with the power of modern computing to provide display terminals that have half-tone photographic quality presentation. Figure 9 shows the quality (after our recopying) obtainable. The images shown are entirely reconstructed on the VDU from digital, not analogue data. Colour displays are also coming into use adding yet more dimensions to the interaction available to the operator.

A recent project of the Australian National University gives some idea of the use of the interactive VDU. In the Department of Engineering Physics a team of research workers developed a colour display terminal that can call-up the data recorded by the ERTS satellite. The computing system has in its memory file copies of the original ERTS data. Using the graphic terminal the operator can select which form of photograph - IR, false colour, etc., to study. He can then rapidly zoom it can be retained and regenerated in be digitized into level zones and to be

manipulate measurement and control many ers, and the multiplexing arrangement

graphic units often now incorporate their own processing and memory to form an off-line self-contained unit 4051 Tektronix BASIC graphic computing system.

Fig.8 . Interactive

MODEMS AND OTHER LINKS

When computer data has to be transmitted over considerable distances it becomes expedient to use telephone lines to be devised in an endeavour to overor microwave links. Units interfacing computers over telephone lines have become known as MODEMS (a word built by combining Modulator and Demodulator)

MISCELLANEOUS PERIPHERALS

New methods for communicating with the power of an EDP system continue come the interface difficulty humans have with electronic machines. We are still a long way from the stage where we need only casually to talk to the machine. Steps are, however, in progress

Fig.9 This multiple image presentation is photographed from the screen of DICOMED digital image display unit.

toward this aim with research into spoken word and written word recognition. Neural research into brain waves may one day be coupled with electronic hard ware to provide direct thought links. Work at Warwick University has resulted in computer - controlled production of braille maps for the blind. Automatic mapping and language translation are other areas where positive progress is

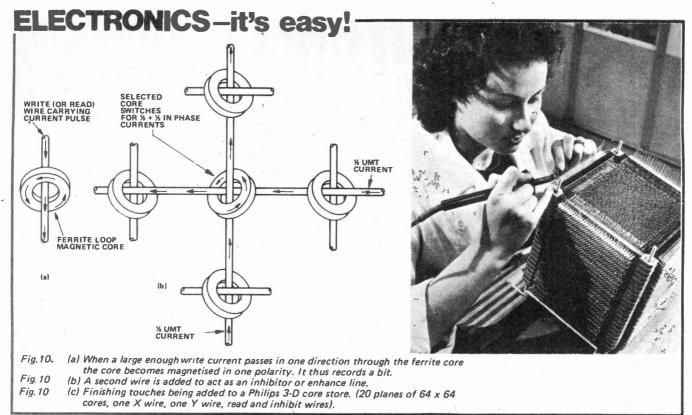
being made into very complex human

communication processes.

STORAGE

Inside a CPU and external to it will be found a memory of some kind. This is used to store the vast quantities of coded data needed to perform the various tasks.

Memory within the characterised by the need for high speed access to any data bit needed. The requirement on capacity is less stringent. Memory external to the CPU will, by the necessity of machine organisation, be a little slower to access but it will usually need much greater storage capacity.


CPU MEMORY

Core - storage is needed in the CPU to hold important programme instructions and to act as a temporary home for data generated in the course of a manipulation

There are many options open to the designer but the storage method that has emerged as the optimum for CPU storage is magnetic core storage known simply as the core store. (This situation will, however, soon change, the preference going to solid-state methods). Magnetic core storage makes use of the fact that magnetically hard materials, such as ferrite, will swing remanent magnetism polarity from one state to the other with the passage of a quite widely toleranced current through a wire passed through the core - see Fig. 10a To make a practical core store it is necessary that any chosen core can be switched on demand. If a second wire is passed through the loop this can be used to prevent or enhance the magnetic switching action by the passage of the current.

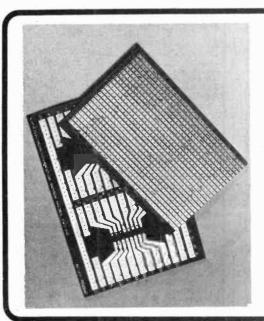
A core store comprises a plane of ferrites arranged in a grid as shown in Fig. 10b Two half-current units appearing in the same direction in a core will switch that core but no other. Thus two lines will select a unique core in the plane as the place to store or readout one bit.

To read out the values it is necessary to interrogate, the selected core using input signals in the write wires that will, if switching takes place, induce currents in an additional readout wire. As this process can destroy the data on the core

a test means may be provided to rewrite it again ready for reuse. Figure 10c shows a stacked core-plane. Ferrite cores are typically 0.1 mm overall. Planes are either stacked one on the other or mounted flat on a printed circuit board to provide a memory unit. The capacity of core storage varies from thousands to millions of bits. Core-store is more usually quoted in word capacity, words being of 32-60 bit length. The terminology is to refer to capacity as, for example, 32 k of 16 bit words. (This is often incorrectly written as 32 K - the lower case k should always be used as this is the only correct abbreviation for '1000'). Core storage can be cycled in 100 ns (typically) with some systems taking only 10 ns. The disadvantages of core are the relatively high cost resulting from the labour intensive production method and the comparatively large space needed.

DELAY LINES

Another reasonably fast storage system makes use of the delay-line concept. It is the property of materials, such as mercury, to pass only waves of acoustic energy at a given rate of propagation. Early computers used mercury delay lines in which the acoustic equivalent of a binary word was sent down a tube of mercury to emerge at a later time at the other end. Whilst in transit the word was in storage. The method (if used at all in a computer today) would now be implemented using solid wires or clocked - on registers. It has the severe shortcomings of low storage capacity.

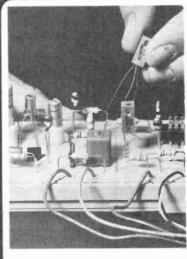

SOLID-STATE

Although core storage still forms part of many computer installations the current trend is clearly toward the use of a solid state circuitry which stores bits in register style flip-flop systems. Read only memories (ROM), content addressable memories (CAM), random access memories (RAM), and Programmable ROM memories (CAM), random access memories (RAM), and Programmable ROM as 65 536, 16-bit word capacity.

devices (PROM) are available as IC chips with typical arrays downward from 512 eight bit words - that is 4096 bits on a single IC chip. Figure 11 shows just one of a huge range of alternatives -1024-bit read-only memory. Memories such as this exhibit a typical delay from address to output of 36 ns. Chips such as these are also available ready mounted as memory cards with as much

PB NEW! For home To the PB NEW! Constructor Now stocked by all good components suppliers

OB BOARDS


Circuit diagram to circuit board in minutes. Layout circuit plan on .1" graph paper. Select Blob Board, lay components out with leads on copper strip. Blob of solder onto lead and your circuit is complete. Blob Boards normally half price of competitive boards. Roller tinned to solder components directly. No drilling or mounting. Modifications in seconds. Blob Board is re-usable.

Blob Boards are circuit boards designed exclusively for the home constructor and prototype engineer and are normally half the price of competitive boards. Blob Boards are roller tinned for ease of soldering, most require no cutting or breaking of contact rails. HALF PRICE AND RE-USABLE. That is NEW!

Blob Board .1" or .15"	1 off	3 off	Dip Blob Boards	1 off	3 off
All approx, inch sizes					
ZB1V 2.5 x 5	£0.30	£0.75	ZB11C 4.5. x 3	£0.36	£0.90
ZB2V, 2,5 x 3,75	£0.23	£0.57	ZB21C 4.8. x 3.2	£0.40	£0.96
ZB3V 3.75 x 5	£0.46	£1,14	ZB41C 4.75 x 7.5	£0.85	£2.13
ZB4V 10 x 6	£1.51	£3.78	ZB81C 9.5 x 7.5	£1.70	£4.26
			Sample pack: 1 off ZB1	V + 1 off ZI	B8D +
Discrete Blob Board	1 off	3 off	1 off ZB21C normally £		
ZB5D 3.6 x 2.4	£0,20	£0.51	free Blob Board.	2	
ZB6D 2.4. x 7.3	£0.42	£1.05	Many other sizes and par	tterns availa	ble add
ZB7D 4.9 x 7.3	£0.69	£1.75	30p post + 8% VAT to a		
ZB8D 9 x 7.5	£1.62	£4.05			1 9

Take an S-DeC, take a small stock of components. Plug components into S-DeC, no soldering, make a radio receiver, light operated switch, 3 stage amplifier. When circuit is made unplug components and use them again to make a morse practice oscillator, LC oscillator, binary counter and any other discrete circuitry. See Practical Wireless for new series of S-DeC projects. S-DeC + step by step instructions to build above projects and 3 more + which components to use + free control panel for mounting switches, lamps etc. + free Blob Board. S-DeC only £1.98 + 37p (VAT + post) send only £2.35.

If you are using IC's to build circuits use T-DeC for 1 chip circuits and U-DeC A for 2 chip circuits. Draw circuit on graph paper, plug IC into Adaptor and plug into DeC. No soldering, no bent leads, no wasted IC chip. Lines on DeC show contact rails, plug discrete components in. Cross overs, connections are made using different coloured leads. Circuit completed and working unplug components and use for next circuit. No soldering, no damage to components. Use your DeC and small stock of components over and over again. T-DeC send £4.30. U-DeC "A" send £4.60. Adaptor send £2.30.

DRILL-SAW GRIND-BURR Brush-Polish

PB announce a precision British built drill for the home constructor. Works better than most bigger drills and can be used for fine detailed work. Drills through any circuit board, need to break copper strip simply grind it off.

9000 RPM Drill + 20 Assorted tools £11.20 (+VAT + post)

Send £13.00.

9000 RPM Drill only £5.22 + post + VAT send £6.00. Multi-purpose Drill stand £10.60 + Post + VAT send £12.00.

POT LUCK

Off cuts of fibre glass circuit board 5 sq. ft. Double sided fibre glass p.c.b. 5 sq. ft. Ferric chloride 5 litre mix Negative developer 1 litre

Add £0.75p. to all above for

Post + VAT.

£1.50 £2.00.

Banbridge. Esperantial Data Las Sulf The Hard Street of the see

PB Electronics Scotland Ltd. 57 High Street, Saffron Walden, Essex. CB10 1AA. For leaflets and further information please send stamped addressed envelope.

PRINTED CIRCUIT KIT £4.25*

Make your own printed circuits. Contains etching dish 100 sq. ins. of pc board, 1lb. ferric chloride, dalo pen. drill bit, laminate cutter

JC12 AMPLIFIER

6W IC audio amp with free data and printed circuit £2 25°

DELUXE KIT FOR JC12

Contains extra parts except JC12 needed to complete the amp including balance volume bass and treble controls Mono £2.33 Stereo £4.95

JC12 POWER KIT Supplies 25V 1 Amp £3 75

JC12 PREAMP KITS

Type 1 for magnetic pickups mics and tuners. Mono £1.50. Stereo £3.00. Type 2 for ceramic or cyrstal pickups. Mono 88p. Stereo £1.76.

SINCLAIR IC20

IC20 10W+10W stereo integrated circuit amplifier kit with free printed circuit + data £4.95
PZ20 Power supply kit for above £3.95
VP20 Volume tone-control and preamp kit £7.95

JC40 AMPLIFIER

New integrated circuit 20W amplifier kit complete with chip, printed circuit and data ${\rm f}\,4.45$

FERRANTI ZN414

IC radio chip i 1 44 Extra parts and pcb for radio i 3 85 Case i 1 Send sae for free data

BATTERY ELIMINATOR BARGAINS

MILLENIA KITS 5 Transistor highly stabilized power units. Switched 1 to 30V in 0.1V steps. Send sae for free leaflet. 1 Amp kit. 112.45. 2 Amp kit.£14.95. Case £2.95 extra. RADIO MODELS.

50mA with press-stud battery connectors 9V f 3 45 6V f 3 45 9V + 9V £ 5 45 6V + 6V £ 5 45 4½V + 4½V

CASSETTE MAINS UNITS
7/V with 5 pin din plug 150mAr 3 95
3-WAY MODELS

3-Wat Models
With switched output and 4-way multi-jack connector
Type 1 3/4½/6V at 100mA f3 20 Type 2
6/7½/9V at 150mA f3 30

FULLY STABILIZED MODEL £5.45

Switched output of $3/6/7\frac{v_2}{9}$ stabilized at 400mA CAR CONVERTORS £5.10

Input 12V DC Output 6/7½/9V DC 1Amp stabilized

BATTERY ELIMINATOR KITS

SATERT ELIMINATION RTIS
Send sae for free leaflet on range
100mA radio types with press-stud battery terminals
4½ ν/2 10 6 0/2 10 9 0/2 10 4½ ν/4 4½ ν/2 80
60ν+6 ν/2 80 9 ν+9 ν/2 80
100mA cassette type 7½ ν with 5 pin din plug t² 2 10
Transistor stabilized 8-way type for low hum
3/4½/6/7½/9/12/15/18V 100 mA ±3 50
1Amp t 6 50
Heavy duty 13-way types 4½/6/7½
Heavy duty 13-way types 4½/6/7½

Heavy duty 13-way types 4½/6/7/8½/11/13/14/17/21/25/28/34/42V. 1 Amp model £4 95 2 Amp model £7 95 Car convertor kit. Input 12V DC Putput 6/7½/9V DC 1A transistor stabilized £1 95

MAINS TRANSFORMERS

6-0-6V 100mA+1 9-0-9V 75mA+1 18V 1A+1 95 0 12/15/20/24/30V 1A+4 30 12-0-12V 50mA

0/12/15/20/24/30V 2A£5 95 20V 2½A£2 95 6-0-6V 1½A 🗭 85 9-0-9V 1A+2 55 12-0-12V 1.

12 95 15-0-15V 1A £3 20 30-0-30V 1A £4 10

S-DECS AND T-DECS*

S-DeC : 2 24 T-DeC : 4 05 u-DeCA : 4 45 u-DeCB : 7 85 16 dil £2 05 10T05 £1 95

SINCLAIR CALCULATORS AND **WATCHES***

Cambridge memory £5.95. Cambridge Scientific £8.95. Oxford sci £13.30. Programmable Scientific with free mains unit £19.95. Mains adaptors for other models (state type) £3.20. Assembled Grey Watch with free stainless steel bracelet £16.45. White watch £14.

SINCLAIR PROJECT 80 AUDIO **MODULES**

PZ5+4 95 PZ6+8 70 Z40+5 75 Pro 805Q+18 95 BI-PAK AUDIO MODULES

S450 funer £20 95 AL60 £4 60 PA100 £13 95 MK60 audio kit £30 60 Teak 60 £13 95 Stereo 30 £16 95 SPM80 £4 25 BMT80 £3 50 Send sae for free data

ree data **SAXON ENTERTAINMENTS MODULES** SA1208+20-50-SA1204+19-SA608±13-SA604 +12-PM1201/8±12-PM1202/8±19-PM1201/4 +12-PM1202/4/F19-PM601/8±12-PM601/4

SWANLEY ELECTRONICS

Dept. ETI, PO Box 68, Swanley, Kent Send sae for free leaflets on all kits. Post 30p on orders under £2.23 otherwise free. Prices include VAT Overseas customers deduct 7% on items marked *, otherwise 11%. Official orders welcome

Greenbank

TIME BOX. Digital Clock Case 56 x 131 x 71 5 mm with red acrylic window. Choice of case colour, white red orange, blue £2.25.

" LED DISPLAYS. Class II devices but fully guaranteed by us

not satisfied			-
DL-704 0 3in	70p	DL-727E 2 x 0 5in	£1.80
DI -707F 0 3:n	70p	DL-750E 0 6in	£1.50
DI - 728F 2 x 0 5m	€1.80	Dt -747E O 6in	€1.50
DL-728E 2 x 0 5in	£1.80	Dt -747E O 6in	€1.

SOLOERCON PINS DIL SOCKETS 15p

CMOS WITH DISCOUNTS! Any mix 10% for 25+ 25% for 100+ 33½% for 1000+

	74000	Series	
74C00 0.25	74C85 1.96	74C1651.31	74C907 0.72
74C02 0.25	74C86 0.69	74C1731.21	74C908 2.63
74C04 0.25	74C89 4.65	74C1741.21	74C9091.74
74C08 0.25	74C90 0.90	74C1751.21	74C910 7.18
74C10 0.25	74C93 0.90	74C1921.48	74C914 1.51
74C14 1.51	74C95 1.31	74C193 1.48	74C918 2.89
74C20 02.5	74C1071.29	74C1951.31	74C9258.28
74C30 0.25	74C1512.63	74C200 7.19	74C926 8.28
74C32 0.25	74C1543.92	74C221 1.49	74C9278.28
74C42 1.93	74C1572.35	74C9010.72	74C9288.28
74C48 2.37	74C1601.48	74C9020.72	80C95 0.73
74C73 0.70	74C1611.48	74C9030.72	80C97 0.72
74C74 0.63	74C1621.48	74C904 0.72	88C29 4.13
74C76 0.70	74C1631.48	74C905 7.70	88C30 4.13
74083 1.96	74C1641.31	74C9060.72	

4000	0.20	4027	0.60	4051	1.04	4081	0.24
4001	0.20	4028	1.00	4052	1.04	4082	0.24
4002	0.20	4029	1.27	4053	1.04	4085	0.80
4006	1.31	4030	0.60	4054	1.29	4086	0.80
4007	0.20	4031	2.46	4055	1.46	4089	1.74
4008	1.07	4032	1.19	4056	1.46	4093	0.89
4009	0.60	4033	1.55	4057	29.81	4094	2.08
4010	0.60	4034	2.11	4059	6.20	4095	1.16
4011	0.20	4035	1.31	4060	1.24	4096	1.16
4012	02.0	4036	3.09	4061	25.60	4097	4.13
4013	0.60	4037	1.06	4062	10.10	4098	1.22
4014	1.12	4038	1.20	4063	1.22	4099	2.03
4015	1.12	4039	3.09	4066	0.69	40101	1.76
4016	0.60	4040	1.19	4067	4.13	40102	2.16
4017	1.12	4041	0.93	4068	0.24	40103	2.16
4018	1.12	4042	0.93	4069	0.24	40104	2.26
4019	0.60	4043	1.12	4070	0.65	40107	0.66
4020	1.24	4044	1.04	4071	0.24	40108	6.18
4021	1.12	4045	1.56	4072	0.24	40109	2.21
4022	1.07	4046	1.48	4073	0.24	40181	4.30
4023	0.20	4047	1.01	4075	0.24	40182	1.73
4024	0.87	4048	0.60	4076	1.71	40194	2.26
4025	0.20	4049	0.60	4077	0.65	40257	2.26
4026	1.92	4050	0.60	4078	0.24		

14100 and 14400 Series

14160	1.18	14175 1.	04 144	15 7.35	14450	2.67
14161	1.18	14194 1.	17 144	19 2.67	14451	2.67
14162	1.18	14410 5.	70 144	22 4.98	14490	6.51
14163	1.18	14411 9.	54 144	35 7.93		
14174	1.08	1441217	07 144	4011.58		

14501	0.20	14518	1.39	1453713.17	14561	0.70
14502	1.38	14519	0.57	14539 1.24	14562	5.59
14503	0.75	14520	1.39	14541 1.62	14566	1.67
14505	4.38	14521	2.77	14543 1.82	14568	3.15
14506	0.57	14522	2.15	14549 4.10	14569	3.72
14507	0.60	14526	2.15	1455210.50	14572	0.27
14508	3.08	14527	1.76	14553 4.66	14580	8.35
14510	1.51	14528	1.22	14554 1.67	14581	4.30
44511	1.74	14529	1.72	14555 1.01	14582	1.64
14512	1.03	14530	0.95	14556 1.01	14583	0.84
14514	3.47	14531	1.74	14557 4.65	14584	0.71
14515	3.47	14532	1.39	14558 1,25	14585	1.10
14516	1.51	14634	8 15	1.1550 A 10		

14517 4.02	14536 4.00	14560 2.17	
'VEROBOARD'			
0.1" Pitch with i	copper strips	0.1" Plain board	ino stripsi
21/2" x 1" (pack	of 5: 61p	3 'a'' x 2 'b''	28p
212" x 314"	42p	314" x 5"	450
2 %" x 5"	50p	3 " x 17 9"	€1.28
215" x 17"	£1.54	Terminal pins	
31/4" x 31/4"	50p		
3 14" x 5"	56p	DIP breadboard	£2.44
31a" x 17"	€1.98	Spot face cutter	74p
4 7" x 17 9"	€2.55	Pin insertion tool	£1.00
CLOCK CHIPS		LEDs (red only)	
AV-5-1224A	3.50	0.11" dia	15
MK 50253	€5.50	0.2" dia	15

OP-AMPS
CA 3130 (COS MOS) £1.00
CA 3140 (BI MOS) 95p
741 Minidip 25p

QUARTZ CRYSTALS 32.768 kHz 100 kHz 1 MHz 2.097152 MHz 3.2768 MHz 4.194304 MHz All types same price TIMER IC 45 p MHz All t each £3.75

CATALOGUE. Free on request Terms: CWO: Aid VAT to all prices at 8 %.

Post: etc:: UK: 25p (+2p = 27p) per order: Export aid: 75p

(Europei: +250 elsewhere no VAT.

Polys universities regd: Cos. etc.: can telephone their orders for

GREENBANK ELECTRONICS (Dept. T2E)

Wilmslow **Audio**

THE firm speakers!

Baker Group 25 3 8 or 15 ohm Baker Group 35 3 8 or 15 ohm Baker Deluxe 8 or 15 ohm Baker Major 3 8 or 15 ohm Baker Regent 8 or 15 ohm Baker Superb, 8 or 15 ohm Celestion MH 1000 horn 8 or 15 ohm Celestion J. G. super Needer £9.00 £10.25 £13.38 £10.69 £9.00 Baker Superb, 8 or 15 ohm
Celestion MH 1000 horn 8 or 15 ohm
Coles 400 1 G super tweeter
Coles 400 1 K super tweeter
EMI 14" 9" bass 14A 700 8 ohm
EMI 8 × 5 10 wait d/c roll/s 8 ohm
Elac 59RM 109 15 ohm, 59RM114 8 ohm
Elac 59RM 109 15 ohm, 59RM114 8 ohm
Elac 6\%" d/c roll/s 8 ohm
Elac 10" 10RM239 8 ohm
Elac 10" 10RM239 8 ohm
Fane Pop 15 wait 12"
Fane Pop 55 12" 60 wait
Fane Pop 50 wait 15"
Fane Pop 70 wait 15"
Fane Pop 70 wait 15"
Fane Pop 100 wait, 18"
Fane Crescendo 12A or 8 8 or 15 ohm
Fane Crescendo 15 8 or 15 ohm
Fane Crescendo 18, 8 or 15 ohm
Goodmans 12P 8 or 15 ohm
Goodmans Awiom 402 8 or 15 ohm
Goodmans Tuyriaxiom 8" 8 or 15 ohm
Goodmans Tuyriaxiom 8" 8 or 15 ohm £5.90 £5.90 £11.92 £3.75 £3.38 £3.95 €3.95 £5.50 £16.75 £19.95 £21.75 £33.95 £42.95 £54.95 €75.95 £8.96 £6.50 £6.45 £16.50 £18.75 £14.95 £8.50 £22.00 Goodmans Twinaxiom 8" 8 or 15 ohm Goodmans Twinaxiom 10" 8 or 15 ohm Kef T27 £10.60 £10.95 £5.75 £10.75 €7.95 Kef B110 Kef B200 Kef B139 Kef DNB €9.25 £17.95 £2.50 £6.95 £4.95 Kef DN12 Kef DN13 Baker Major Module each Goodmans Mezzo Twinkit pair Goodmans DIN 20 4 ohm each £13.28 £51.95 £15.75 £21.95 Helme XLK30 pair Helme XLK35 pair Helme XLK40 pair Kefkit I pair Kefkit III each £26.75 £38.50 £51.00 £46.00 £39.50 Peerless 20-50 pair Peerless 20 60 pair Richard Allan Twinkit each Richard Allan Triple 8, each Richard Allan Triple 12 each £53.00 £13.95 £20.75 £25.95 £29.50 Richard Allan Triple 12 each Richard Allan Super Triple each Richard Allan Super Triple each Richard Allan CG8T 8" d/c roll/s Wharfedale Linton 2 kit pair Wharfedale Glendale 3 XP kit, pair Wharfedale Dovedale 3 kit pair Wharfedale Super 10RS/DD Castle Super 8 RS/DD Jordan Watts Module 4 8 or 15 ohm Tannoy 10" Monitor HPD Tannoy 12" Monitor HPD Tannoy 15" Monitor H €7.95 £21.50 £47.50 £59.40 £13.50 £9.28 £15.38 £78.00 £99.95

Prices correct at 3 / 12 / 76-ALL PRICES INCLUDE VAT

Cabinets wadding Vynair crossovers etc

Send stamp for free 38 page booklet "Choosing a Speaker

FREE with all orders over £10 "HiFi Loudspeaker Enclosures" Book

All units are guaranteed new and perfect

Prompt despatch

Carriage Speakers up to 12" 60p 12" 01 15" 1 75 18" 12 50 Kits 1 each (2 per pair) Tweeters and Crossovers 33p each

WILMSLOW AUDIO

Dept. ETI

Swan Works, Bank Square, Wilmslow, Cheshire SK9 1HF. Tel. Wilmslow 29599 (Discount HiFi, PA and Radio at 10 Swan Street, Wilmslow)

Access and Barclay Card orders accepted by

THE Computer User's Tape System (CUTS) has long been proposed as the ideal system for recording digital data on cassette tape units for the amateur using standard cassettes. CUTS you may remember relies on two different tone transmissions to differentiate between logical 'I's and logical 'O's, the two tones being 2400Hz and 1200Hz. The encoding and decoding circuits are built around the requirement for 4 cycles of 1200Hz to define logical 'O' or 8 cycles of 2400Hz to define logical 'I', thus setting bit transfer, rate at 300Hz. With 11 data bits per byte (8 data, 1 start and two stop bits) the character transfer rate comes down to under 30 characters per second. Quite a few encoding and decoding circuits have been proposed, but these have the problem that your decoding circuit may have to decode data encoded by completely different circuits if cassette interchange of programs, etc is to be done using this system. CUTS is not a self-clocking system and thus needs the same master oscillator frequency to be used by both encoder and decoder. The decoder has to allow for tape errors such as dropout and wow and flutter and phase correction has to be included.

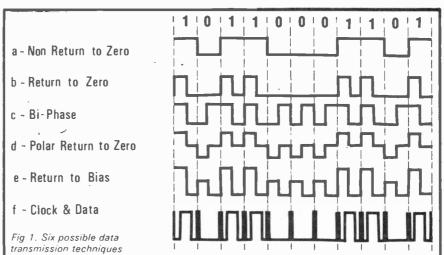
TONING UP

This can be a tone decoder set at approximately the master oscillator frequency or a multiple of it (say 4800Hz) and phase locked by a derivation of the incoming tone. An alternative with a fast MPU is to serially read the 2400 or 1200Hz directly into the MPU and to cycle round a sampling loop during each input phase change. The number of times through the loop is counted and an average worked out for a 2400Hz phase change. This average can then be compared to each

actual count and used to define whether the current phase change is about the same as the average (thus 2400Hz) or about double the average (thus 1200Hz).

The average for a logical '1' is used both because it is the faster of the two and also because CUTS defines that logical '1's must be transmitted between each block of data and that the start bit is therefore a logical 'O'.

This type of system for decoding CUTS can be used at any input speed because the MPU will automatically compensate for minor or major changes in input frequency. This system is thus self-clocking because it can extract a sampling period from the incoming data frequency without knowing what that frequency is supposed to be. There are many other forms of self-clocking system which could be used for tape (or audio phone) data


Possibly the simplest system available at low cost is to use a stereo tape unit and to record data on one track and the sampling pulse on the other track. Wow and flutter errors will be low, because the fault

will be common to both tracks but the system cannot be used for single line date transmission unless you want to try using stereo encoders and decoders.

TEXT ON TELLIES

Teletext uses a bit rate of 6MHz to transmit a 40 character data line during each of its two television lines. The data is encoded as Non Return to Zero (NRZ), which means that the data is transmitted as true high or low levels. This is decoded by generating a clock from a set of 101010 transitions, and relying on a reverberating oscillator which is 'kicked' into oscillation by the incoming data pulses.

This works until the oscillator dies away or gets out of phase because of lack of transitions if a long string of '1's or '0's is transmitted (as few as 10 bits without change can cause trouble). The next logical step is to use a phase change to indicate a data bit. Looking at the NRZ-Mark system each logical '1' will cause a change in the signal phase and a logical '0' will leave the signal unchanged —

these are reversed for the NRZ-Space system. Again this system can quickly end up with errors if bit changes are not frequent enough.

HALF A CLOCK

Using a bit transmission time of half of the clock period means that each clock period will contain a signal transition. This is shown most easily by the RZ system where the first half of each clock period is sampled for the data and the second part of the clock is always logical O'. This system will only give errors if a string of 'O's is transmitted. With the Bi-Phase systems the change in phase is used as the clock generator and as the data identifier, a HIGH to LOW level change identifies a bit '1' and a low to high as a bit 'O'. The clock period must be set or calculated by examining a string of '1's as with CUTS and extracting a clock period, one transition change per clock period indicates a change in bit data but two transitions indicate no change. '

ONE WIRE OR TWO?

All of the above systems require that one wire in a two wire connector is at a common ground, in a lot of cases this will not be possible because of an intermediate audio conversion. Thus we should consider decoding from an unbalanced pair of wires where there is no common reference level between transmitter and receiver.

An alternative approach is to use a bias level of signal and recognise variations from this bias as data bits. Two variations are shown one using positive and negative changes from the bias voltage and the other showing two levels of positive voltage from a common ground.

A further technique puts out a regular short clock pulse followed by a wider data pulse for logic '1' or no pulse for logic 'O'. This last system is suggested by National Semiconductors on an application note for interfacing SC/MP to a cassette recorder. For a copy of this application note (AN163) contact N.S. at 19 Goldington Rd, Bedford.

POSSIBILITIES

Having considered all of the above possibilities we are left with the problems that could be caused by spikes causing spurious data transitions at the transmitter, at the receiver or in between. In a self clocking system these can be overcome by filtering either with a C/R or a digital monostable, but if the system is to work at any rate then the C/R or monostable would have to be modified for different data rates and this requires a feedback averaging system. This in turn could be done by an MPU using mathematical averaging and sampling with much more efficient results than any form of C/R averaging. Whichever of the transmission techniques is used we have to extract probable data and probable clock pulses and feed these into our MPU as two bits in parallel via some form of latch or input port. Any transitions in the data are compared with a calculated average and thus transitions much shorter than the average can be ignored as noise.

SLOW SCAMPERING

As SC/MP is one of the slower MPUs any system used by SC/MP could be easily used by a faster MPU. SC/MP performs one machine cycle in 2uS with each instruction taking about 10 cycles to complete. Thus instructions are performed at about 50KHz (1MHz being the MPU crystal frequency). If we assume a maximum transmission frequency of about 2500Hz to be available on audio cassettes (or the telephone- then our MPU can perform about 20 instructions between each input data cycle. Without trying it I would guess that 20 instructions is about the minimum required to sample several times and calculate an average clock period. Without stop and start bits a 2500Hz bit rate ends up as about 300 bytes per second data transfer rate, ie about 10 times faster than CUTS.

BLOCK WRITING

Regardless of the transmission format or rate the data must be finally used and we have tied up our MPU so that it is continuously sampling the input but never being able to do anything with the data. It is for this reason that data is usually transmitted in blocks with an inter-record gap during which the processor can process the data. With tape I/O a block might be 1K bytes which would take about 30 seconds to read or write using CUTS. The MPU can now be instructed to read or write 1024 bytes at a time using a 1K byte RAM as intermediate storage. The data in the RAM can be read or written by the MPU at leisure

during an inter-record gap, if necessary the tape transport can be stopped during this gap but allowing a space for the tape to reach recording speed and if necessary rephase the clock at each restart of the machine.

Typically an inter-record gap on cassette would be a couple of seconds (CUTS specifies 5 seconds) and thus a record of less than a few seconds would cause tape wastage in a lot of inter-record gaps. Alternatively we might specify that every block must be 1024 bytes and not allow for shorter records physically but test the RAM for an end of record marker. This means that tape could now be wasted by 'filler' data that is not to be processed, somewhere between these two alternatives is the compromise standardisation of blocking factors which can be used by any MPU or even by non-MPU systems.

CUTS IN STANDARDS

American amateurs (mainly with 8080 systems it seems) have evolved CUTS as a standard interchange system. In this country there is no standard because of the relatively small number of amateur users, the British Amateur Computer Club have about 500 members of which about 50 have MPU systems and about 20 have large mainframe systems. With the advent of non-TTY MPU systems (such as ETI's SYSTEM 68 and Bywood's SCRUMPI) the low cost MPU is now a feasible proposition for more people with the result that program and data interchange is going to happen more often.

Now is the time that a UK standard for amateur data interchange has to be set up and that standard must take all of the points in this article and others into consideration. To my knowledge the BACC is the only body in existence in the UK attempting to unite amateur computer and MPU users but they have no definite views on the use of CUTS or any other recording system nor any views on block sizes, etc. If you have any ideas or opinions on these subjects or if you know of any other user groups why not contact us at ETI or write to the BACC.

Membership of the BACC costs £1 per April to April year, you get a good newsletter as well as organised talks and visits, a worthwhile investment as an addition to any MPU system. For further details send a SAE to Mike Lord, 7 Dordells, Basildon, Essex.

ROTEX **Emmen Holland**

RX-6

2 METER RECEIVER 144-146 Mc/s

Order no. 02.003 With VFO tuning, so that you can listen to all 2 meter transmissions.

| 10.7 | 10.7 | 10.8 | 0,8 u∨ 15 kHz

MINI 2 METER RECEIVER 144-146 Mc/s

Order no. 02.006

This receiver has the same electronic modules built-in as its bigger brother. The mini, however, has its loudspeaker in the base of the set. Indispensable for those who want to pass the examination to get a license.

In both RX-6 Receivers there is enough space to build-in the RZB-6, the ROTEX 2 meter 6 channels transmitter module with built-in FM modulator, crystal controlled oscillator, 48..... Mc/s, FM modulation, output approx. 0,5 Watt, output imped. 50-70 Ohm. Completely built module, dim. 15x7 cm, exclusive X-tals. Order no. 06.308.

FREQUENCY

COUNTERS REC-30 AND REC-250

A professional frequency counter with up to 4 measuring ranges to resp. 30 and 250 Mc/s. Indication by 6 clear 8 mm cipher LEDS. Count- and overflowindication by 9 green and red indicator LED. Max. input voltage 200Vrms, input sensitivity till 10Mc/s better than 250mV. Crystal time base 1 Mc/s. Accuracy ± 1 digit ± time-base stability. Power supply 220V 50c/s. Dimensions: bxhxd 16x8x25cm Weight: 1,2 kg. Double side plated through epoxy print has been used.
This real quality with 12 months guaranty at the best price possible. A special designed cabinet which can stand upright and with a very handy solution to get rid of the cable when not in use. THE BEST VALUE FOR MONEY NOT ONLY FOR AMATEURS, BUT ALSO FOR INDUSTRY - SCHOOLS ETC.

RFC-30 £ 85.36

RFC-250 £ 111.07

Terms of Business

Prices are excl. VAT. C.W.O. Post and packing, add £4.00 per order. Any difference will be credited or charged. Prices are subject to alteration without notice.

All these articles are available at time of going to press. Send your cheque or money order to ROTEX

P.O. Box 260, Emmen, Holland Telef. 0031-5910-16810 Telex 53910

£ 51.08

METALDETECTOR

RMZ-7 Order no. 25.057

Order no. 25.057

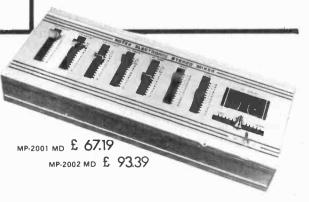
A simple, reliable water proof, shock proof, well balanced and very light weight treasure finder. Operating according to BFO (Beat Frequency Oscillation) system. With tone signal, built-in loudspeaker and connection for an earphone, which is supplied. Operates on a simple 9 Volt battery.

RMZ-8 as the RMZ-7, but with both sensitive signal intensity meter and signal indication.

STEREO MIXERS

MP-2001 MD STEREO MIXER

Order no. 15.068


Your house-sound-studio with the semi-professional ROTEX stereo-mixer. 4 stereo-inputs for pick-up, microphone, tuner, taperecorder etc.
Separate volume control
Level indication by means of illuminated stereo VU-meter

- stereo VU-meter
 Separate controls for treble and bass
 Built-in 220V/50c/s mains supply
 Freq. range 20c/s 20kc/s + 1,5 dB
 Output level 0 dB, 600mV, Output
 2,5 k Ohms
 Size & weight: 60x160x405mm, 1,7 kg

This type of mixer is at 2 channels, namely channel 1 and 2, supplied with a compensating-amplifier for MD (Magneto Dynamic) pick-up elements. The third input is suitable for connection of a dynamic or capacitor (electret) microphone. The fourth input is suitable for a tuner, tapepart or crystal p.u. with an output level of 0,1-1V.

MP-2002 MD STEREO MIXER

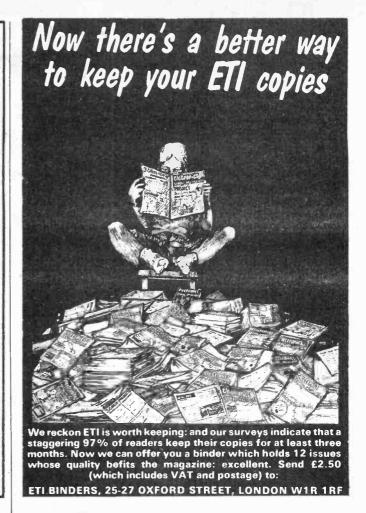
MP-2002 MD STEREO MIXER
Order no. 15.134
A second type from the ROTEX mixer series like the MP-2001, but incl. adapted microphone with swan-neck, fadingside control and front monitor. Connection for headphone, of which the volume can be separately adjusted by means of slide control.

TRANSDUCERS IN MEASUREMENT AND CONTROL

TRANSDUCERS IN MEASUREMENT AND CONTROL

by PETER H BYDERHAM

9 -----


This book is rather an unusual reprint from the pages of ETI. The series appeared a couple of years ago in the magazine, and was so highly thought of by the University of New England that they have re-published the series splendidly for use as a standard textbook.

Written by Peter Sydenham, M.E., Ph.D., M.Inst.M.C., F.I.I.C.A., this publication covers practically every type of transducer and deals with equipment and techniques not covered in any other book.

ETI-UK has obtained a quantity of this fine book, and it is available at present only from us. Send to: Transducers in Measurement and Control, ETI Specials, Electronics Today International, 25-27 Oxford Street, London W1.

£2.75 inc. postage

Enquiries from educational authorities, universities and colleges for bulk supply of this publication are welcomed. These should be addressed to H. W. Moorshead, Editor.

At last you can enjoy the benefit of high quality TV sound. This unit offers a high fidelity alternative to the audio stage of a TV set and is completely independent. The 4-channel push-button Varicap tuner picks up a UHF signal direct from the aerial, the output being suitable for feeding through most hi-fi systems.

SPEC: INPUT: 10µV Typ. for 26dB quieting OUTPUT: 100mV. Frequency meter.

£36.95+H VAT (Order code 991-928)

Subject to availability

O'seas orders—add 15% for P+P. All items offered for sale subject to the Terms of Business set out in Doram Edition 3 catalogue, price 60p. The Doram Kit brochure is also available, price 25p. Combined price only 70p which also entitles you to 2 x 25p. vouchers, each one usable on any order placed to the value of £5.00 or more (ex. VAT).

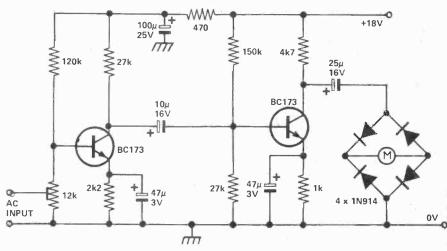
DORAM ELECTRONICS LTD., P.O.BOX TR8, WELLINGTON ROAD INDUSTRIAL ESTATE, LEEDS LS12 2UF.

An Electrocomponents Group Company

PHILIPS

YOU & PHILIPS HI-FI KITS

The top sellers for home assembly in Europe – now available in the U.K.


Now – read all about the Philips range of quality kits for home assembly – mixers, amplifiers, speakers, etc, etc. Send today to S.S.T. Distributors (Electronic Components) Ltd., West Road. Tottenham, London N17 ORN

Name			
Address			
PHILIPS	-	Postcode	
FOR THE FIRST TIME IN	No. of Street, or other Persons	Maa	SEND
PHILITRON	Mest	W33	TODA

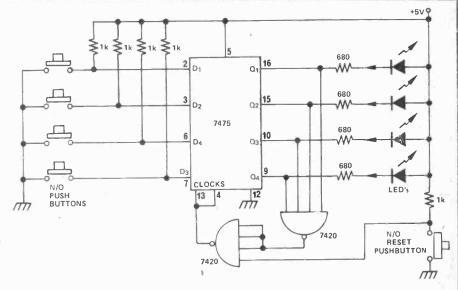
tech-tips

RECORDING LEVEL METER

The circuit shows a two-stage voltage amplifier driving a recording level meter. The AC signal input is amplified, rectified, and the resultant DC voltage shown on the meter. The circuit can be used with a taperecorder or audio mixer and should be fed from a point early in the pre-amp. Current consumption in a no-signal state is 2.8mA. The 12K preset gives a variation in sensitivity. The meter can be any general purpose type.

D LEFT INPUTS 2 0 13 CLOCK % 4013 LEFT 4016 8 IC1a 11 lō 12 13 CLOCK 5 RIGHT %4013 4016 8 IC1d 11 13 13 RIGHT INPUTS

SINGLE POINT STEREO INPUT SELECTOR


Four different inputs can be switched through by the continual pressing of SW1.

IC1 is a dual 'D' type flip flop. The Q outputs are connected to the D inputs so that the clock inputs are divided by two. The two flip flops are connected in series, giving a two-stage binary counter.

IC2 is a quad AND gate. This is used to decode the four states of the counter. The outputs are used to control the quad switches at IC3 and IC4 (4016AE).

WINDICATOR

With two TTL ICs and a handful of other components, a circuit can be constructed that will indicate which of four buttons was pressed first, as well as lock out all other entries. It is thus suitable for quizzes, games of Snap and the like. The appearance of a logic 0 at one of the Q outputs, lights the appropriate LED and locks out other entries by taking the clock input low. The TTL outputs are capable of sinking 10 TTL loads or 16mA. Running the LEDs at 5mA leaves adequate margin to sink the 1 load of the 7420 gate.

MPU BITS

SC/MP Introkit: 256 bytes RAM, 512 byté PROM with KITBUG debugging program, needs TTY device for £92.50 SC/MP SCRUMPI: 256 byte RAM, 16 switches, LEDs, and interface chips on 5½" x 6" PCB. Requires simple power supply or batteries ... £64.81 SC/MP Chip: with data sheet £18.50 ME6800 Kit: Uses 6800 MPU. Requires TTY £135.00 FS Kit: Mostek F8 MPU, requires TTY. £165.00 £4.30 MM2112 256 x 4 bit RAM 2513 Character Generator, u/c ASCII £9.00

HARDWARE

Power Supply: P197 gives 5v at 2A, -5, -12v, suitable for many MPU systems, P197 Kit £15.50
Keyboard Kit: 55 keys, upper/lower case options, KDP 5 Kit £42.00
Printer: 40 column dot matrix printer with interface for parallel ASCII input. PR-40 kit £225.00
Floppy: SA800 or SA801 floppy disk drive, disks and interface, built, not kit £625.00
Minifloppy: SA400 mini disk drive, disks and interface, delivery end of year £495.00

BOOKS, DATA

SCRUMPI Data	5p°
SC/MP Technical Description £1.5	35 °
SC/MP Programmers Guide £6.3	30
6800 Data (Xerox)	5p°
F8 Data (Xerox)	ōp"
('Free with appropriate kits)	

CONSULTANCY

Bywood would be pleased to quote for hardware/ software solutions to your design problems

+ packing)

SOCKETS

18 pin 24, 28 or 40 pin

Soldercon strip sockets

MHI CASE Please include 25p post

6 60

7 35

8 3 5

8.35

14.00

GET HUNG UP!

Our new range of clock kits is based on designs hundreds of years old. These clock kits use wood, stone and iron to reproduce authentic worlde" wall clocks in full detail. The kits contain all you need including glue, screws, etc.; and very comprehensive instructions. This range complements our fully electronic clock kits.

PRICES (All inclusive)	KIT	BUILT
Gothic Clock Kit—Diam. 6½" Rotating Dial Kit—Diam. 6" Wrought-Iron Kit—Diam. 5½" Wooden Wheel Kit—Diam. 6½" Knight Clock Kit—Diam. 7½" Oak Foliot Kit—Diam. 14" [As illustrated]	£23.95 £19.95 £46.35 £31.50 £39.50 £89.50	£36.50 £32.50 £69.50 £45.25 £62.45 £125.00

For coloured Brochure please send 15p stamps. Completed clocks can be seen at our offices.

SCRUMPI

Bywood's evaluation kit for SC/MP. Kit contains MPU chip, 256 x 8 bit RAM, 2 4-bit I/O latches, 24 LED lamps and drivers, 16 data and control switches, all sockets, all associated components, PCB and cable. The switches allow you to program the 256 x 8-bit RAM and then execute the program in that RAM, several operating modes allow for ease of programming and testing. SCRUMPI can be extended to address up to 64K bytes and can easily be interfaced to other RAM, PROMEAROM, Keyboard, VDU, Printer, etc. Requires +5, —7v at 200mA. £64.81

BYWOOD ELECTRONICS 68 Ebberns Road Hemel Hempstead Herts HP3 9QRC Tel 0442 62757

PRICE INCREASES!!

Some prices have already risen, buy now at these old prices before increases due early in 1977.

Joine prices have direddy fisen	, bay now at thes	o ora prioco porere ii	,0,000	3 440 5411, 11 1077	
CLOCK CHIPS	ALL PRICES EXCLUD	E VAT AT 8%			- 1
NATIONAL	1-9		DIS	PLAYS	
MM5309 7 seg + BCD with reset	5.69		1-9		
MM5311 7 seg + BCD	5 69	LITRONIX	1-9	OLOOK MODILL	- 0
MM5312 7 seg + BCD. 4 digit only	, 4.88	DL707, 704, 701	1.48	CLOCK MODULI	: 5
MM5313 7 seg + BCD	5.69	DL727, 728, 721		MA1002F (12 hr) or MA	1002H (24
MM5314 7 segment	4.88	DL747, 746, 750		hr) with Alarm and Clk/R	
MM5315 7 seg + BCD with reset	5.69	DE747, 740, 730	2.43	,	£7.95
MM5316 Non-mpx alarm clock	10.17			Module only	£0.90
MM5318 7 seg + BCD (external digit select)	3.36			MXT101 Transformer	
MM5371 Alarm clock 50Hz	8.14	LITRONIX CLASS 11 PRO	DUCTS	Vero Case	£3.00
MM5377 Car clock, crystal controlled, LCD	7 2 1	DL707E, 704E	0.70	Mod + Tfmr + Case	£11.75
MM5378 Car clock, crystal controlled, LED	6 73	DL727E, 728E	1.80	Complete Kit	£13.00
MM5379 Car clock, crystal controlled. Gas discharge	6 73	DL747E, 750E	1.50		
MOSTEK					
MK50250 Alarm clock (12Hr+60Hz/24Hr+50Hz)	5 60				
MK50253 Alarm clock (12Hr+50Hz 24Hr+50Hz)	5.60	CASES (WITH PERSPEX SC	REEN)		
MK50204 Stopwatch/Calculator	11 19	VERO 1 8" x 51/2"x3"	}	£2.95 + 25p P&P	
MK50395 UP/DOWN Counter—6 Decade	14 50	VERO 2 6"x3"4"x2"4"	,		
MK50396 UP/DOWN Counter—HHMMSS	14.50				
MK50397 UP/DOWN Counter—MMSS.99	14 50	BAL	al Dien	LAY KITS	
CALTEX	14 30	1917	יוו טואר	LATRIIS	
CT7001 Alarm/calender 7 segment	9.00		1-9	14111 303 (C.O.E!!	12.00
CT7002 Alarm /calender BCD	9.00	MHI-707/4 (digit) 0.3"	6.60	MHI-727/6 0.5"	12.00
CT7003 Alarm/calender 7 seg. Gas discharge	9.00	MHI-707/4 (digit) 0.3	9.50	MHI-747/4 0.6"	9.80
CT7004 Alarm / calender 7 seg	9.00	MHI-727/4 0.5"	8.50	MHI-747/6 0.6"	14.70
GENERAL INSTRUMENTS	0.00	WITH-72774 0.3	0.50		· i
		PAYMENT TERMS			
AX5-1202 4 digit 7 seg	4 76	Cash with order, Access, Ba	rclavcard	(simply quote your number	r and sidn).
AY5-1230 on-off — alarm, 7 seg	5 25	Credit facilities to accredited a			
MHI CLOCK KITS					
WILL CLOCK KILS		Please send 20p for post and	packing		
1-9 MHI-50396	19.50	ALL DD	ICEC EVO	LIDE WAT AT ON	
MHI:5309 7 35 MHI:50397	19.50	ALL PR	ICES EXCI	LUDE VAT AT 8%	
MHI-5311 7 35 MHI-7001	13.00	(EXCEPT ME	CHANICAI	L CLOCKS AS ABOVE)	

0.60

BYWOOD ELECTRONICS 68 Ebberns Road Hemel Hempstead Herts HP3 9QRC Tel. 0442 62757

MHI-5311 MHI-5314

MHI-5318

MHI-5378 MHI-50250

MHI-50253

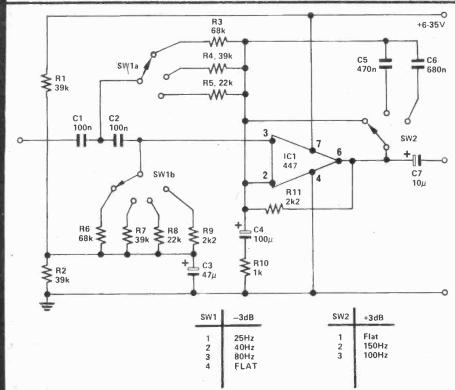

MHI-50204

MHI-50395

tech-tips

Tech-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these items.

ETI is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for. Drawings should be as clear as possible and the text should preferably be typed. Circuits must not be subject to copyright. Items for consideration should be sent to ETI TECH—TIPS Electronics Today International, 36 Ebury Street, London SW1W OLW.


NOVEL INDICATORS

Since a bicycle has no effective width, normal indicator lamps placed on each side do not give a clear indication of direction when seen from a distance,

especially at night.

The circuit shown is a four stage ring counter which sequentially drives four yellow lamps giving an impression of movement i.e. towards the left or right. Lamp sequencing rate can be altered by changing C1 and C2. (50uF

was found to be about right). Oscillator pulses are shaped by schmitt trigger IC1b. The decoding and output gating are performed by ICs 3, 4, and 5. Driver transistors Q1 to Q8 can be any low current, medium gain NPN silicon.

SWITCHABLE RUMBLE FILTER

The circuit shown provides a cut-off at 25, 40, or 80Hz. C1 and C2 in conjunction with R3 - 9, form second order Butterworth filters with 12db/octave roll-off below the turnover frequency.

Unlike most designs, the feedback is taken from the inverting input. In practise this works well once the signal at this point follows exactly that at the non-inverting input.

A useful feature is the deep bass boost provided by the feedback loop proper.

S2 in position 3 gives a +3db point at 100Hz whilst position 2 provides a +3db point at 150Hz. A supply 6-35V DC at 10mA is required.

__240 Watts!

HY5

Preamplifier

The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (mag Cartridge, tuner, etc.) are catered for internally, the desired function is achieved either by a multi-way switch or direct connection to the appropriate pins. The internal volume and tone circuits merely require connecting to external potentioneters (not included). The HY5 is compatible with all L.P. power amplifiers and power supplies. To ease construction and mounting a P.C. connector is supplied with each pre-amplifier in single pack — Multi-function equalization — Low noise — Low distortion — High overload — two simply combined for stereo APPLICATIONS: HIF: — Mixers — Disco — Guitar and Organ — Public address. SPECIFICATIONS:

SPECIFICATIONS:
INPUTS Magnetic Pick-up 3mV Ceramic Pick-up 30mV Tuner 100mV Microphone 10mV Auxiliary 3-100mV; input impedance 47k;) at 1kHz
OUTPUTS Tape 100mV; Main output 500mV R M S

ACTIVE TONE CONTROLS Treble ± 12dB at 10kHz; Bass ± at 100Hz DISTORTION 0.1% at 1kHz; Signal/Noise Ratio 68dB

OVERLOAD 38dB on Magnetic Pick-up, SUPPLY VOLTAGE ± 16 50V

Price £4.75 + 59p VAT P&P free

HY30

15 Watts into 8Ω

The HY30 is an exciting New kit from I.L.P. it features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of I.C., heatsink, P.C. board, 4 resistors, 6 capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up-to-date technology available FEATURES: Complete kit.—Low Distortion.—Short. Open and Thermal Protection.—Easy to Build APPLICATIONS: Updating audio equipment.—Guitar practice amplifier.—Test amplifier.—Audio

SPECIFICATIONS

SPECIFICATIONS:
OUTPUT POWER 15W R M S. Into 8Q DISTORTION 0.1% at 15W
INPUT SENSITIVITY 500mV FREQUENCY RESPONSE 10Hz-16kHz - 3dB
SUPPLY VOLTAGE ± 18V
Price £4.75 + 59p VAT P&P Free.

HY50

25 Watts into 80

HY50 leads I t.P is total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World

FEATURES: Low Distortion — Integral Heatsink — Only five connections — 7 Amp output transistors — No external components

APPLICATIONS: Medium Power Hi-Fi systems — Low power disco — Guitar amplifier

SPECIFICATIONS: INPUT SENSITIVITY 500mV

OUTPUT POWER 25W RMS in 8Ω LOAD IMPEDANCE 4-16Ω DISTORTION 0.04% at 25W at 1kHz

IRNZ SIGNAL/NOISE RATIO 7.5dB FREQUENCY RESPONSE 10Hz-45kHz -- 3dB SUPPLY VOLTAGE ± 25V SIZE 105 50 25mm Price £6.20 + 77p VAT P&P free.

HY120

60 Watts into 80

The HY120 is the baby of LLP's new high power range, designed to meet the most exactive requirements including load line and thermal protection, this amplifier sets a new standard in moduling the sets of the control of of the contr FEATURES: Very low distortion -- Integral Heatsink -- Load line protection -- Thermal protection

Five connections — No external components

APPLICATIONS: Hi-Fi — High quality disco — Public address — Monitor amplifier — Guitar and

organ SPECIFICATIONS:

INPUT SENSITIVITY 500mV OUTPUT POWER 60W RMS into 8(). LOAD IMPEDANCE 4-16() DISTORTION 0.04% at 60W at

SIGNAL/NOISE RATIO 90dB FREQUENCY RESPONSE 10Hz-45kHz -- 3 dB SUPPLY VOLTAGE 35V SIZE 114x50x85mm Price £14.40 + £1.16 VAT P&P free.

HY200

120 Watts into 80

The HY200, now improved to give an output of 120 Watts, has been designed to stand the most rugged conditions, such as disco or group while still retaining true Hi-Fi performance FEATURES: Thermal shutdown — very low distortion — Load-line protection — Integral Heatsink —

No external components
*APPLICATIONS: Hi-Fi -- Discot -- Monitor -- Power Slave -- Industrial -- Public address

SPECIFICATIONS:
INPUT SENSITIVITY 500mV
OUTPUT POWER 120W RMS into 8Ω LOAD IMPEDANCE 4-16Ω DISTORTION 0.05% at 100W at

SIGNAL/NOISE RATIO 96dB FREQUENCY RESPONSE 10Hz-45kHz - 3dB. SUPPLY VOLTAGE #45V

SIZE 114 100 85mm Price £21.20 + £1.70 VAT P&P free.

HY400

240 Watts into 40

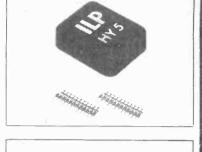
The JY400 is LLP is "Big Daddy" of the range producing 240W into 4:)! It has been designed for high power disco or public address applications. If the amplifier is to be used at continuous high power levels a cooling fan is recommended. The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module.

FEATURES: Thermal shutdown.— Very low distormion.— Load line protection.— No external

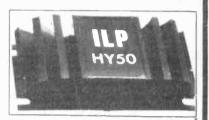
components

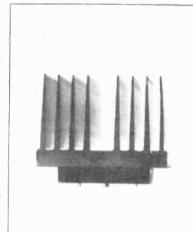
APPLICATIONS: Public address — Disco — Power slave — Industrial

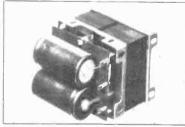
SPECIFICATIONS:


OUTPUT POWER 240W RMS into 40 LOAD IMPEDANCE 4-160 DISTORTION 0.1% at 240W at

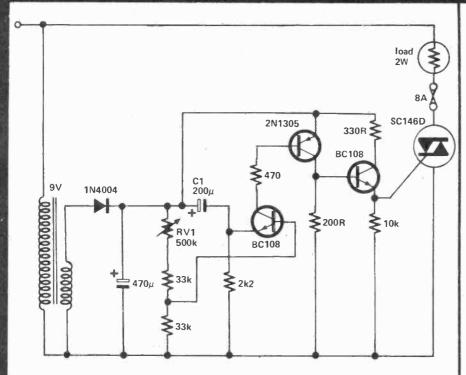
SIGNAL/NOISE RATIO 94dB FREQUENCY RESPONSE 10Hz-45kHz - 3dB SUPPLY VOLTAGE


+45V INPUT SENSITIVITY 500mV SIZE 114 x 100 x 85mm Price £29.25 + £2.34 VAT P&P free.


POWER SUPPLIES


PSU35 suitable for two HY30's **£6.20** plus 59p VAT P P free PSU50 suitable for two HY50's **£6.20** plus 77p VAT P P free PSU70 suitable for two HY120's **£12.50** plus 17p 00 VAT P P free PSU90 suitable for one HY500 **£11.50** plus 92p VAT P P Free PSU90 suitable for one HY500 **£11.50** plus 92p VAT P P Free PSU180 suitable for two HY200's or one HY400 **£21.00** plus 168 VAT P P free

We apologise sincerely to ETI readers for recent problems and delays affecting the supply of HY30. All outstanding orders have now been dealt with and we are confident we can maintain our usual standard of service.

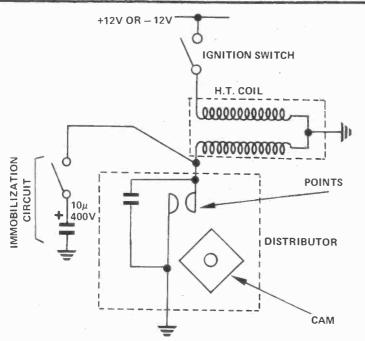


TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS

J.L.P. Electronics Ltd. **Crossland House** Nackington, Canterbury Kent CT4 7AD Tel (0227) 63218

Please Supply	
Total Purchase Price	
I Enclose Cheque □ Postal Orders □ Money Order □	
Please debit my Access account ☐ Barclaycard account ☐	
Account number	
Name & Address	
Signature	

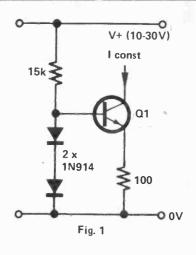
tech-tips

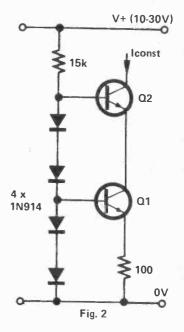


TRIAC LAMP FLASHER

The circuit is a relatively simple triac lamp flasher, probably of most interest to those in the disco business. The flasher will handle a load of up to 2kW with a variable flash rate of about 20/200 flashes per minute, achieved by

altering the value of RV1.


C1, the timing capacitor, can be experimented with to obtain the most satisfactory results. Even though little power is dissipated in the triac (15W on full load), it should be mounted on a heatsink.



AUTOMOBILE IMMOBILIZATION

In order to discourage theft of an automobile, many people incorporate a 'secret' switch to break the ignition circuit (usually in series with the key switch). This system is very easily bypassed using 'jumper' leads.

A more effective method of immobilisation is shown in Fig.1, also using a 'secret' switch. A 10uF/400V capacitor is switched across the points preventing the ignition being started; at the same time this prevents the use of 'jumper' leads.

DRIFT FREE CURRENT SOURCE

The conventional type of constant-current source, as shown in Fig.1, will drift in output current immediately after switch-on. This is because of the voltage drop across Q1, causing a significant amount of power to be dissipated in the transistor, heating it and its Vbe. Hence the output current slowly increases after switch-on, typically reaching a stable value about two minutes later. In tests the current increased by about 4% for a small signal transistor dissipating 100mW.

This effect is greatly reduced by the configuration shown in Fig.2, which fixes the voltage across Q1 at a very low level by virtue of the commonbase transistor Q2. The main voltage drop occurs across Q2, leaving about 600mV across Q1, this being set up by the two extra diodes in the bias chain, (D1, D2) which fix the emitter potential of Q2.

Hi-Fi Systems that GROW

At last someone has come up with a flexible approach to quality hi-fi that doesn't become obsolete as you become more discerning

Take an initial standard 20W r.m.s. + 20W r.m.s. stereo and with simple modifications this can be expanded to give a powerful 40W + 40W stereo system together with additional multi frequency rumble, hiss and stereo image width controls.

Currently available from stock:-Stereo Pre-Amp Module CP-P1

- * 2 channel pre-amplifier
- * Ideal for use with record player, tape, microphone, tuner inputs etc.
- * No external components required other than potentiometers for bass, treble, balance; volume controls and input selector switch.
- The CP-P1 is internally protected against accidental reverse power connection

PRICE **£13.30**

+£1.66 VAT

Specification

Input	Sensitivity	Signal/Noise	Impedance
Magnetic	3mV	>70dB	47kΩ
Tuner	100mV	>70dB	10kΩ
Tape	100mV	>70dB	10kΩ
Auxiliary	1-100mV	60dB-70dB	200kΩ

Magnetic i/p overload: 33dB; magnetic up overload: 3305, Distortion: 0.04% at $1\,\mathrm{kHz}$; Output: $1\,\mathrm{V}\,\mathrm{r.m.s.}$ into $10\,\mathrm{k}\Omega$; Supply voltage: $\pm 1\,\mathrm{BV}$ nominal; Tone controls: Bass $\pm 12\,\mathrm{dB}$ at $100\,\mathrm{Hz}$, Treble $\pm 12\,\mathrm{dB}$ at $10\,\mathrm{kHz}$.

Stereo Amplifier Module CP2-15-20

- * The CP2 -15-20 is designed to give either a 20W + 20W stereo amplifier or alternatively a 40W single channel amplifier.

 * No external components required.
- * Safety features include built-in protection against accidental reverse power connection and thermal shut down facility to prevent over dissipation

Specification:

PRICE £12.85 + £1.61 VAT

Power output: 40W r.m.s. into 8Ω , 1 channel; or 30W r.m.s. into 15Ω , 1 channel; or 20W r.m.s. $+\ 20W$ r.m.s. into 4Ω , 2

15W r.m.s. + 15W r.m.s. into 8Ω , 2

cnannel.
Input sensitivity: 1V r.m.s.; Frequency
response: 20Hz-20kHz, at —3dB; Distortion: 0·04% at 15W; Supply Voltage:
±18V nominal; Size: 5·1 x 4 x 1·25in. (130 x 102 x 32mm)

Also available: -

Audio Function Module CP-FG1

For those requiring a wider range of facilities this module provides:-

- Bass and treble filter controls including switchable cut-off frequencies for rumble and hiss reduction
- Stereo separation control.

* Complete except for switches and potentiometers.

PRICE £11.75 +£147 VAT

Power supply: Module CP-PS 18/2D

Suitable for one 20W + 20W complete system. A 40W + 40W system can be produced using 2 power supplies. PRICE **£5.75** +72p VAT

These products carry a 2-year guarantee

Hease rush me the dead of the crossed and made have the to lendose a themseld of the control of

13 HAZELBURY CRESCENT LUTÓN, BEDS. LU1 1DF

Prices include full application data, post and packaging.

endose a thequelosia cu blesse lush we

complete

DIGITAL CLOCK KITS **TEAK CASES**

NON ALARM £10.65 + £0.85

ALARM

£13.43 + £1.07 including P&P

DELTA

GENUINE TEAK OR PERSPEX CASE

DELTA DATA: 4 Radiant Red 1/2 inch high LEDs. 12 hr display with AM/PM indication. Beautiful Burma Teak Case or Pretty Perspex in White, Black, Blue, Red, Green. Power failure is indicated by flashing display

MODULES: Kits can be bought without case .

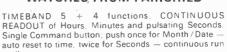
Non Alarm £9.00 Alarm £12.50 incl

READY BUILT: Buy a working tested module and fit your own case. Non Alarm £9.50. Alarm £13.00. Or put it with our case parts @ £4.32 and save on complete clock price. Complete Clock ready built. 2 yr. guarantee. Non Alarm £13.50.

ALARM FEATURES: Pulsed tone. Tilt operated 10 minute 'Snooze' period. Single switch setting. Optional extra mercury switch (45p) allows Alarm reset by tilting clock. Digit brightness is automatically controlled to suit lighting level.

"ALPHA" CHRISTMAS OFFER 14 Glowing Green 1/2" High Digits 12 or 24 hr. Non Alarm Perspex Case 11.00 incl.

Send payment with order. S.a.e. for complete range of clocks, calculators &


PULSE ELECTRONICS

DEPT. E3, 202 SHEFFORD ROAD CLIFTON, SHEFFORD, BEDS. Telephone: Hitchin (0462) 814477

FROM AMERICA

LIQUID CRYSTAL DISPLAY WATCHES FROM FAIRCHILD

* PLUS automatic 28, 30, 31 day calendar. Backlight for night-time. Optional continuously alternating Time/Date display. AM/PM setting indicator.

High contrast LCD display visible in bright sunlight. The best looking watches we have seen under £100, Fairchild LCDs sell in jewellers' shops for up £80. TC 411 Base Metal/Stainless Steel £2 £29.50

TC 410 Gold Plated On Leather Strap

£32.50

TC 413 Base Metal / Stainless Steel TC 412 Gold Plated Matghing adjustable bracelet

€34.50 €37.50

We now stock the superb CASIO Casiotron LCD watches. Arguably the best watch in the world. Prices from £44.95 to £99.95.

We also stock the full range of IBICO LCDs. Prices from £44.50 and OPTIM quality jeweller's L.E.D. watches. Send for details. Large s.a.e. or stamp appreciated

No moving parts to wear out, clean or oil. Accuracy to a very few secs/month. We believe our prices are the lowest anywhere and INCLUDE VAT at 8% and P. & P. Free battery/s. No quibble one year guarantee. Offers subject to availability.

Send cheque/money order to

Talk of the Town 21 Fitzroy Street, Cambridge Telephone: Cambridge (0223)

312866 A LOT OF TIME FOR THE MONEY

CREED 5 LEVEL COMBINED PRINTER AND PERFORATOR **NEW CRATED £35 each**

CREED 5 LEVEL PAPER TAPE READER £25 each

CREED 7B **TELEPRINTER CRATED** £40 each

£5 discount on any pair plus FREE carriage. Otherwise £2.50 carriage each item

MARCONI TF675F WIDE RANGE PULSE GENERATOR

+/- variable outputs up to 50V. Optional delay. Small compact unit.

£22.50 each

COMPRESSOR/ **VACUUM PUMP**

Twin Cylinder opposed with Integral ½H.P. 220/110V 50HZ Single Phase Motor. Tested

> Now only £17.50 each

MARCONI NOISE GENERATOR TF987/1

4 ranges 0-5, 0-10 0-15, 0-30

ONLY £17.50 each

PRECISION SIGNAL GENERATOR

95-160 mHZ

Recommended £15 each

HAPPY NEW YEAR TO ALL OUR CUSTOMERS

and to help you on your way we give you a 10% discount on all orders over £25 until Jan. 31st. 1977

TRANSFORMERS - All 240V 50HZ

THANSFORMERS — All 240V 50HZ inputs
Type A. 170-17V 250 MA; 7.5-0-7.5V 250MA; 0-20V 5 Amps; 0-4V 5 Amps; 0-1-1.5V, 5 Amps; 22 each. P&P £1.25. Type B 17-0-17V 250MA; B-0-BV 250MA; 0-12.5-13.5V 5 Amps; 0-1.5-2V 5 Amps £1.50 ea P&P £1 Type C 19-0-19V 250MA; B-0-8V 250MA; 0-7.5V 5 Amps; 0-1.4V 5 Amps; £1.25 ea. P&P £1.25.

Type E 3V 1 Amp. 25p ea. P&P 50p. Type G 20-0-20V 200MA, 0-6V 100MA. 75p ea. P&P 75p. Atlantic series.

All Brand New (APT surplus types A. B. C. Honeywell surplus type E. Recordacall surplus type F; Parmeko Atlantic Series type

ONLY £10 EACH
Stabilised Power Supply, 240V 50HZ input.
Outputs — 15V @ 10A, +15V @ 4A — 4.5V
@ 12A — 21.5V @ 15A. Size 16 x 20 x 9"
Auto overload trips on each voltage rail with
push button resets. Many OTHER POWER
SUPPLIES — call and see.

*POT PACK. All Brand New Modern. Single and Ganged, our choice. 7 for 25p. P&P 48p.

SEMICONDUCTORS — All at 8p ea.*. P&P extra. Guaranteed all full spec. devices. Manufacturer's markings. BC147: BC15B: 2N3707: BC107: BF197: BC327: 2N4403. BC172B: BC261B: BC351B: BC34BB, BC171A/B; 2N3055RCA

50p ea. P&P Bp. 2N5879 with 2N5881 Motorola 150 Watt. Comp. pair €2 pr. P&P 15p. ★Linear Amp 709 25p ea. P&P 8p.

VARIACS 240V input 0-270V output. B Amp £18 ea. 20 Amp £30 ea. Carr. extra

BNC Plug to BNC Plug lead, assembled ready to use 75p ea. P&P 20p. Ex-eq. BNC Socket 15p. BNC Plug 20p. BNC Plug & Socket 30p pair. P&P 15p.

TUBES. All Brand New Boxed

TUBES. All Brand New Boxed Electrostatic deflection.
Type 40BA 1 ½" dia., 7½" long, Blue Trace £2.50 ea. P&P 75p.
Type CV1526 (3EG1) 3" dia. £3. P&P£1
Type D87/36, 3" dia. (Replacement for Telequipment S31) £12 ea. P&P £1.50.
Type 5BVP1 5" dia. PDA. X. Y Low Capacitance Side Pins. Green Trace £5 ea. P&P£1.50.
Type GEC 924F 3½" dia. (Replacement for Telequipment D33 & Solartron 1016 scopes)

Telequipment D33 & Solartron 1016 scopes) £30 ea. P&P£1.50.
Type GEC 924E 3½" dia. (Replacement for Solartron 1015 scope) £20 ea. P&P£1.50.

UPGRADED CONTENTS -- FOR

*3/b Electronic Goodies £1.60 post paid *High Value Printed Board Pack — hundreds of components, transistors, etc. — no flat to the board transistors £1.65 post paid.

VERY SPECIAL PRICES 1000f Feed thru Capacitors 10 for 30p. P&P 15o.

*BEEHIVE TRIMMERS 3/30pf. BRAND

NEW. 10 off **40p** P&P 15p; 100 off **£3.50** P&P 75p; 500 off **£15** P&P£1.25; 1,000 off **£25** P&P£1.50.

MARCONI TF142F DISTORTION FACTOR METER giving percentage distortion on a directly calibrated dial and includes all spurious components up to 30KHZ £37.50 ea. AVO TRANSISTOR ANALYSER CT446 £30 ea. MARCONI PORTABLE FREQUENCY METER TF1026/11. 100 to 160MHZ. Very

now £27.50 ea

DECCA NAVIGATOR DISPLAY UNIT. Very impressive. £12.50 ea

App 60V. Brand New, 10 off 20p. P&P extra.

HIVAC Miniature NEONS

DON'T FORGET YOUR MANUALS, S.A.E.

to 200kc/s. Low distortion. 60dB step attenuator £50 each.

GRATICULES 12 × 14 cm high quality plastic 15p ea. P&P 10p.

**CAPACITOR Pack. 50 Brand New components, only 50p. P&P 4Bp.

**TRIMMER PACK. All Brand New. 2 Twin 50/200pt ceramic; 2 Twin 10/60pt ceramic; 2 min. strips with 4 preset 5/20pf on each; 3 air spaced preset 30/100pf on ceramic base 25p the lot, P&P 15p.

**RESETTABLE COUNTERS. 4 digit by Stonebridge/Sodeco 1000ohm coil £2 ea.

TELEPHONES

Stonebridge/Sodeco 1000ohm coil £2 ea. P&P 350

***POTENTIOMETERS** — All **5p** ea. P&P extra. Metal bodied AB Linear. PCB Mount. Brand New. 10K single: 100K ganged; 250K ganged; 100K ganged. concentric shafts.

FIBREGLASS BOARD PACK. More board less money. Larger pieces. Not less than 2.5 sq. ft. for 95p, P&P 65p. Double or single sided cut to any size. New Lower Price 1p per sq. in. P&P extra.

LARGE RANGE ELECTROSTATIC VOLTMETERS, from 0-300V 2" £3; to #Meter PACKS -- 3 different meters £2, P&P (V. P&P 75p.)

10 Volume Feb., 10 in 0-300 V 2 E5, to 250 KV Max.

4 Meter PACKS -- 3 different meters £2, P&P General guide 5KV 3½" £5; thereafter £1 per KV. P&P 75p.

MARCONI TF1101 Audio Oscillator, 20c/s

to 200kc/s. Low distortion. 60dB step attenuator £50 each.

*TELEPHONES Post Office Style 746. Black or two-tone Grey

£6.50 ea. Modern Style 706 Black or two-tone Grey

Modern Style 706
£4.60 ea.
Older BLACK Style £1.50 ea.
All telephones complete with standard dial and bells. P&P all styles 75p ea. Handsets. complete with 2 inserts and lead £1.75 ea.

ROYAL INVERTORS manufactured USA, 2BV DC input, Output 115V AC 400HZ up to 2KVA, Brand new, Crated £12.50 each.

HONEYWELL MAGNETIC TAPE UNITS

Self-contained, complete with heads, magnetic tape, leads, etc. Tested. Carriage paid £65 each

NOW AVAILABLE

Various punches, tape reader, low voltage power supplies, card frame, modular cases, etc. Lists available

Minimum Mail Order £2. Excess postage refunded

Unless stated — please add £2.50 carriage to all units

VALUE ADDED TAX not included in prices — Goods marked with ★ 12 1/2 % VAT, otherwise 8 % Official Orders Welcomed. Gov./Educational Depts., Authorities, etc., otherwise Cash with Order

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, King's Road). Tel. Reading 582605

FOR THE VDU BUILDER. New stock of Large Rectangular Screen 30 x 20cm tube Type M3B at the ridiculous price of £4 ea. And also still available the CME1220, 24 y

CLASSIFIED

THIS SECTION IS A PRE-PAYMENT SERVICE ONLY MINIADS: 3 1/4" x 2 1/8" (1-3) £26 (4-11) £23 (12 or more) £22 per insertion. CLASSIFIED DISPLAY: £3.50 per single column centimetre. SEMI-DISPLAY: £2.70 per single column centimetre. LINEAGE: 75p per line average six words, minimum 3 lines. BOX NO.: allow 60p extra.

Contact: BOB EVANS (01-437 5982), 25-27 Oxford

Street, London W1R 1RF.

VALVES

Radio — TV — Industrial — Transmitting
We dispatch Valves to all parts of the world by return of post, air or sea mail. 2700 Types in stock, 1930 in 1976. Obsolete types a speciality list 20p. Quotation S.A.E. Open to callers Monday to Saturday 9.30 to 5.00 Closed Wednesday 1.00 We wish to purchase all types of new and boxed Valves
Cox Radio (Sussex) Ltd., Dept. E.T.I., The Parade, East Wittering, Sussex PO20 8BN. West Wittering 2023 (STD Code 024366).

FREE TV **CIRCUIT DIAGRAMS**

All main British TV sets (plus many foreign) comprehensively covered in our easy-to-follow TV Repair Manuals — 4 mono and 3 colour.

Just send Model No., if colour (mfrs. chassis type helps) with \$4.50 and receive the manual covering your set — plus yur set's circuit diagram on request free. Set of 7 only £27.50.

British TV Circuit Diagram Manuals — the main mono (over 37 series) for £9.90 and virtually every colour for £17.50.

Full details of these and other publications from:

T.V. TECHNIC (ETI)

76 Church Street, Larkhall, Lanarks, ML9 1HE Tel. (0698) 883334

PRECISION **POLYCARBONATE** CAPACITORS

All High Stability - Extremely Low Leakage

LIO A LIC									
RANGE: I	IMENSI	ONS							
VALUE	(mm)		PRICE		±	±	+		
(μF)	L	D	EACH		Range I''s	2%	3"v		
0.1μF	27	12.7	68p	0.4701	£1.32	77p	älp		
0.22µF	33	16	86p	1 Out	£1.56	91p			
0.25µF	33	16	92p	2 2"F	£1.98	£1.32	75p		
0.47μF	33	19	61.10	4.70F	£2.82	£1.88	£1.23		
0.5μF	33	19	£1.16	6 8nF	£3.48	€2.32	£1.47		
0.68μF	50.8	19	£1.25	10aF	£4.98	£3.32	£2.01		
1.0µF	50.8	19	£1.37	150F	£7.14	€4.76	€2.88		
2.0μF	50.8	25.4	£1.95	22 <i>n</i> F	£9.66	£6.44	£3.90		
TANTALUM BEAD CAPACIFORS - Values available 0.1, 0.22,									
		E	1711 9511	2517 1	6 F + 101/	2015 /	9537		

0.47, 1.0, 22, 4.8, 6, in Fat 15V, 25V or 35V, 10 in Fat 16V, 20V or 25V, 22.0 in at 8V or 16V, 33.0 in at 6V or 10V, 47 0 in Fat 13V or 6V, 100.0 in Fat 3V ALL at 12p each, 10 for £1.19, 50 for £5.00, 100 for £9.00. TRANSISTOR & U.S. 8C.267 120, (V.3.4, V.3.5, 20.6)

TRANSISTOR	& IC's	BC 267	120	OC44 OC45	20p		
AC128	14p	BC268A	10p	OC71 72	20p		
AC176	16p	BC547 558A	12p	2N2926G	12p		
AD149	40p	BCY72	15p	2N2926Y	Hp		
AF178	40p	BD131 /132	39p	*2N2926O	Hp		
AF239	38p	BF115/167	22p	2N3054	50p,		
BC107 8 9	9p	BF173	24p	2N3055	30p		
BC114	12p	BF178	26p	2N3702	.		
BC147-879	lūp	BF184	22p	3704	110		
BC153	16p	BF194 195	12p	TIP30A	52p		
BC157 8 9	12p	BF196/197	13p	TIP31A	35p		
BC177	l Np	BF200	27p	T1P32A	610		
BC182 182L	11p	BF262 263	60p	T1P3055	65p		
BC183 183L	Hp	BFY50 51 52	20p	MPU131	49p		
BC184 1841.	12p	BFX84 '86 88	20p	NE555	61p		
BC212 212L	12p	BFX85	25p	741 8 pm	32p		
BC213/213L	Hp	BR101	416	ZN414	£1.13		
BC214/214L	Hp	GET872	25p	SN76013ND	E1.50		
POPULAR DIODES IN914 6p. 8 for 45p. 18 for 90p; IN916 8p. 6 for							
45p. 14 for 90p; 1S44 5p. 11 for 50p. 26 for £1.00; 1N4148 5p. 6 for 27p.							
12 for 48p; 1N4001 512p; 002 6p; 003 612p; 004 7p; 006 8p; 007 812p,							
LOW PRICE ZENER DIODES-400mW. Tol. ± 5% at 5mA. Values							
		5V. 47V. 5.IV. 5					
0.137 1/62 1137	1237 13	V 125W 15V 16	SV 1R4	7 2017 2217 24	V 27V		

available: 3V, 33V, 34V, 47V, 51V, 56V, 62V, 63V, 63V, 73V, 82V, 91V, 10V, 11V, 12V, 13V, 13V, 15V, 15V, 18V, 20V, 22V, 24V, 27V, 20V, All at 7p each; 5 for 33p; 10 for 85p. SPECIAL OFFER 100 Zeners for £50.

RESISTORS—High stability, low noise carbon film 5%; 14V, at 40 C, 13V, at 70 C, E12-series only—from 23t; 10 2 28V, ALL at 1p each, 3p for 10 of any one value, 70p for 100 of any one value SPECIAL PACK, 10 of each value 2 22t; 0 2 28W; 7(30 resistors) £3, SILICON PLASTIC RECTIFIERS—1.5 sump brand new wire ended 0027, 100 PLV, 7p (4 for 26p), 400 PLV, 3p (4 for 36p), BRIDGE RECTIFIERS—2°s amp, 200V 40p, 350V 43p, 600V 35p, VL BMINAT (TREVER) 6 SUM, 12 SUM, 1

MARCO TRADING

(Dept. P3)

The Old School, Edstaston, Wem, Shropshire Tel. Whixall (Shropshire) (STD D94872) 464/5

(Proprs, Minicost Trading Ltd.)

M.A. 1001B DIGITAL CLOCK

MODULE SIZE 3.0" x 1.75" C/W 15v + 4.5-0-4.5v TRANSFORMER Requires only switches and case, DATA SUPPLIED.

only switches and case. DATA SUPPLIED.

OUR PRICE ONLY £9.74

Features Bright 0 5" Display 12 hr Format with 24 hr alarm capability. Flashing Colon. Power Failure Indication, P.M. Indicator, Alarm Set Indicator, Hrs. and Mins., or Mins and Secs Display. Output Drives from Alarm and Sleep Timers. 9 Min. Snooze Timer and 59 Alarm and Seep Timer
All Items Ex Stock

CAR. BOAT OR CARAVAN **CLOCK MODULE**

M.A. 1001B Includes all features listed above plus Data for Conversion to 12v D C. plus Crystal Time Base for accuracy to a few secs per month. OUR PRICE ONLY £13.88

CRYSTAL TIME BASE SUITABLE FOR C.MOS DIGITAL CLOCKS. (Built and Tested.) Size approx. 1" x 1.5" x 0.5". Can be adjusted to \pm a few seconds/month

OUR PRICE ONLY £5.25 ALL PRICES INCLUDE VAT AND POST & PACKING
Terms Cash with Order — Mail Order Only

ORDERS TO: F.E.K. SUPPLIES
18 STARRING LANE
LITTLEBOROUGH, LANCS.

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING & CO., P.O. Box 5, Frome, Somerset. Immediate

PLEASE MENTION ETI WHEN REPLYING TO ADVERTISEMENTS

DRILLED AND TINNED PCB's FOR ETI **PROJECTS** ETI 543a 65p ETI 543b 65p ETI 544 73p ETI 602 £5.40 ETI 702 95p ETI 710 85p ETI 441 41n FTI 043 ETI 443 £3.00 ETI 444 £1.50 ETI 445 40p

ETI 144 89p ETI 116 88p EYI 117a 35p ETI 117p 35p 95p 85p 50p ETI 446 ETI 447 80p 63p ETI 131 94p ETI 241 85p ETI 252 40p ETI 422 £3.00 ETI 514B 400 ETI 706 ETI 533a 42p ETI 533b 35p ETI 541 73p ETI 951 ETI 438 75₀

Send large sae for full list of over 80 ETI boards COMPONENTS

Commonern's WW 5% carbon (E12) 1 2p ea Capacitors ceramic plate 27pf-0 047uf 3 5p Tantalum bead 0 1-6 8uf 35v 15p ea Diodes IN4001 5p, 002 5p 003 7p, 004 8p IN914

5p Zeners 400mW 2 7-33v 12p ea DIL sockets 8w 12p, 14w 16p, 16w 17p, 24w 70p LED's 0 125" Red 15p, Green 25p yellow 25p Clips

Relay min 12 v suitable for ETI 540 £1 75

BC107.8.9 9p uA703 30p BC177.8.9 20p uA723 51p BC147.8.9 11p BD139 55p BC32B 15p BD140 60p BC338 14p BFY50 18p LM339 £1.84 LM380 £1.05 LM382 £1.50 TIP3055 65p NE556 £1.00 NE555 2N3055 53p 2N3704 14p 2N5459 40p MC1468L E4.00 2N2219 25p 2N2646 59p

All prices include VAT, please add 20p postage (overseas post at cost) PCB's POST FREE Mail orders please to: B.B.M. PRODUCTS Unit 14, Southern Road, Aylesbury, Bucks

ARROLU ELECTRONICS LTD. 🗇

Reg. Office: LEADER HOUSE, COPTFOLD ROAD BRENTWOOD, ESSEX CM14 4BN Tel: BRENTWOOD 219435

Genuine fastest service in the UK Most Modern Components shop in Fast Anglia

Best Semiconductor Selection in the South Fast

15 years in Mail-Order Electronics Over 2000 sq. ft. of Warehousing

OUR NEW "CAT" NOW AVAILABLE PRICE 40p

POR 40p 11 Name: Address PLEASE PRINT CLEARLY

Mullard Components

ectrolytic	Capacit	ors. 015/0	16 Series		
25V	25V	63V	63V	63V	63V-
10	47	1.0	4 7	15	47
22	100	2.2	10	22	
4 1/2P	5p	4 1/2 p	4 1/2 p	5p	6p

Polyester Capacitors. C280 Series 250V PC mounting 0.01 0.015 0.022 0.033 0.047 0.068 0.1 3½p; 0.15 0.22 4½p; 0.33 6½p; 0.47 7½p; 0.68 10p; 1.0 12p; 1.5 18p; 2.2 JF 21p.

Carbon Film Resistors. 0 33W 5% Hi-stability E12 4.7Ω-1M. Your selection. 1p each, 0.9p 10++ 0.85p 10D+

C.N. Stevenson (ETI), 304 Avery Hill Road, London SE9
2JN. (FIA 2

300W TOUCHSWITCH KITS

TS300K Contains Triac, IC, Diodes, Resistors, Frontplate, PCB, etc. Replaces conventional lightswitch with NO REWIRING. TOUCH one insulated plate for ON, another for OFF. Complete with instructions. ONLY £3.67.

ONLY £3.67.
ALSO TSA300K AUTOMATIC, as above, but with only ONE TOUCHPLATE TOUCH for ON and light stays on for a preset time. Ideal for stairs and hall. Complete with instructions. ONLY £3.67.
300W LIGHTDIMMER KIT replaces conventional lightswitch £2.45.

SPECIAL OFFER OCKER SWITCHES, white SPST 10A/250V snap fixing. £1.20. 10 ROCKER

	CMOS	Motorola	TRIACS 400V TO220	BC148	9p.
	4000	20p	ISOLATED TAB	BC158	11p*
	4001	20p		2N3055	36p
	4002	20p	6 5A 80 p	2N6027	
	4007	20p	85A 85 p	PUT	34p
	4011	20p	Diac 20p		5р
	4013	57p	NE555 8 pin DtL 44p	1N4148	4p*
	4015	105p	7418 pin DIL 24p		
	4016	57p	RESISTORS '.W 5 x F1:	2 22:1	10M-)
	4017	105p	Mullard		Zp.
	4040	105p	LDR 1/4" dia 400;) to 1 M;)	high) to dar	
	4049	57p	NEON wire ended		7p
	4050	57p	Choke 11/2 Amp		20p
	4501	20p	Fernte Rod 11/4" x 3/4" diam	eter	12p
	4510	135p	Rocker Switch white SPST	10A 250	
	4516	135p	MINI MAINS TRANSFO	RMERS 1	00mA
	4566	155p	606V		85p
ı			12-0-12V		95a

ADD 8's VAT (*12'C'V) PLUS 25p P&F Mail Order Only to.

T.K. ELECTRONICS (ETI) 106 Studley Grange Road, London W7 2LX

I PDS				25	0.		INFRA 550µW	
ILED ^s	REC		1	5р	19	p_	Axial lea	ad 49p
panel	G/	Υ	2	7p	33	р	6mW €	1.55 lata free
clip 1p	OR		2	7р	33	P.	ORP 12	
	ORS 150kHz 5MHz		£1 2.25	SCR 105		0V 5p	100V 400 27p 46 35p 50	p BR100
AVDEL BOND	2gm.		65p				2A 60p 10	
AC126/6/7/8 AD161/162 AF117 AF124/5/6/7 BC/107/8/9 BC109C	15p 40p 20p 34p 9p 12p	21 21 21 21	N3053 N3054 N3055 N3702 N3903 N2646	/3/4	15p 45p 41p 12p 616p 45p	1 1	70LTAGE 5V 7805 F 2V 7812 5 5V 7815 8V 7818	Plastic
BC147/8/9 BC157/8/9 BC167/8/9 BC169/C BC177/8/9 BC182/3/4L	10p 11p 11p 12p 17p	1 N 2 2	S43U MPF103 N3819 N3823	UT 2	25p 40p 25p 30p	B 2 2 2 2	A 100V A 200V A 400V	-
BC186/7 BC212/3/4L BCY70/71/72 BF194/5	30p 12p 13p 12p	IN IN	4001 4002 4004 4006	/5 /7	5p 6p 7p 8p 4p	z	ENERS 2. ZYBB or sir	7-33V
BF196/7 BFY50/51 BFX29 BFX84 BSX19/20	14p 16p 30p 24p 16p	8 0	14148 4100 7127 A47 A70 C	A79	9p 16p 6p 8p	5 L	555 Timer 556.2x555 M380 7400	
OC71 2N706 2N1711 2N2219	10p 10p 20p 20p	000	A81 C A91 C A200 A202	A95	7p 6p 6p 7p	8	J.L. SÓC I-pin 4-pin	12p 13p 14p
2N2904/5/6/ 2N2904/5/6A 2N2926(R) 2N2926(G)	18p 7p 12p	70	P. AN 09 all 41 8-p 48 D.I	in .L.	25p 29p 36p	N T D	6-pin Aica + bu O3 TO66 Jalo Pen	
ISLAND DI	CES IN	_	-	_		_	_	Kent

SHOP FROM HOME with our catalogue Fully illustrated and covering over 3,000 components, audio and disco accessories, tools and test meters. Reviewed as one of the best catalogues available. Send 30p now for your copy (issue No 5). Access, Giro, Barclaycard, Government and educational orders accepted. (Giro No 331-7056).

B. H. COMPONENT FACTORS LTD. **Leighton Electronics Centre** 59 North St., Leighton Buzzard, Beds Tel: 2316 (0286) Shop hours: 9-12.30, 1.30-5 p.m. Closed Wednesday

GLASS FIBRE P.C.B.s

GLASS FIBRE P.C.B.s
From your own tape, litim or rink master.
Send SAE for quotation
End SAE for for quotation
End SAE for for quotation
GP Power Supply ETI 131
High Power Beacon ETI 240
100 Guitar Amplifier ETI 413
Mixer Pre Amplifier ETI 413
Mixer Pre Amplifier ETI 413
Sweet Sixteen Amplifier ETI 458
Power Supply 100w Disco Amplifier ETI 458a
100w Disco Amplifier ETI 458b
Disco Text Geramic P.U. ETI 458c
Disco Tone Control Pre Amplifier ETI 458d
Disco Para Maprifier ETI 458e
Disco Para Maprifier ETI 458e
Disco Para Maprifier ETI 458e
Disco Para ETI 458h
Sound Light Flash Trigger ETI 514b
2m Power Amplifier ETI 1514b
2m Power Amplifier ETI 710
PROTO DESIGN, 4-Hispholiffe Way, Wickford, Essel 96p 52p £1.40 60p 75p £1.92 92p £1.19 £1.19 55p 85p £1.14 £2.10 84p 49p 85p PROTO DESIGN, 4-Highcliffe Way, Wickford, Essex SS11 BLA

SUPPLIERS OF ELECTRONIC COMPONENTS TO INDUSTRY & ENTHUSIASTS

COMPREHENSIVE STOCKS OF ELECTRONIC COMPONENTS AVAILABLE TO THE ENTHUSIAST AT COMPETITIVE PRICES.

SEMICONDUCTORS INTEGRATED CIRCUITS CAPACITORS RESISTORS PRE SETS BE RAD TANTS HEATS SINKS MINIATURE TRANSFORMERS VERO BOARD. TRANSISTOR HARDWARE DUAL IN LINE SOCKETS R F CHOKES FUSE HOLDERS LED S. INDICATOR LIGHTS KNOBS.

FUSES, LED S. INDICATOR LIGHTS KNOBS.

FUSE HOLD	ERS, ETI	C. ETC. ALSO VA	RYINGI	RANGES					
OF REJECT	BOARDS	FOR COMPONE	NT REC	CLAIMING					
		ILL ALTER MON	THEY	AONTH)					
AC+26	35 p	8C547	16p	213702/3/4	18p				
AC127	40p	BC558	18p	2N709	44p				
AC128	35p	BCY70 /71 /72	25p	2N741	37p				
AC175	35p	80 131/132	55p	2N748	46p				
AF239	60p	B0135/6	45p	2N555	55p				
BC107/8/9	15p	BD139	54p	2N556	£1.30				
BC114	16p	BFY50/51/52	32p	LM300	£3.30				
8C147/8/9	16p	BR101	40p	LNI380	£1.10				
BC157 18 9	16p	2N706	15p	LM381	£2.10				
BC168	16p	2N70B	23p	LM3900	65p				
BC178	25p	2N1711	25p	SN76013N0	£1.75				
BC182/3/4	16p	2N2546	68p	SN 75023N	£2.10				
BC212 3 4	18p	2N2926	15p						
Part built Doiby U	Part built Dolby Units, with cabinets £4.50								
Anca Light Dimme	re 300 w	211			63.50				

Part own Annual Demons 300 wall
Meter. Metal Defectors
Meter. Metal Defectors
Acros Swin Copper Clad Print Board (Ddf. sizes)
Acros Swin Copper Clad Print Board (Ddf. sizes)
Call and see us, our shop is 3 mins, from Chelmstord Station, or phone Allan Green
reprice and delivery. We are here to serve you, 9,30 to 6 weekdays. 10 to
3 Salviday. We give a fast (24 hour Mail Order Service on ex-stock items Prices
inc. VAT 46d 25p for PSP on orders under 600, Trade liquities me Yelex
No. 995377. Send now for full product (1st. Price 15o Dept. ETI.
DO COME TO SEE US ETTHER TO BUT ON BROWSE

Comprehensive range Constructors' Hardware and accessories

Sheet aluminium cut to size Aluminium lightweight sections.
Selected range of popular components. Full range of ETI printed circuit boards, normally ex-stock, same day despatch at competitive prices.

P.C. Boards to individual designs Resist-coated epoxy glass laminate for the d.i.y. man with full processing instructions (no unusual chemicals required)

Send 15p for catalogue.

RAMAR CONSTRUCTOR **SERVICES**

MASONS ROAD STRATFORD-ON-AVON WARWICKS. Tel. 4879

Treasure Locator Kits by

DETECTOR PRODUCTS

Suppliers to the UK & Abroad

Circuits & Instructions £12 Complete Kit Total £14 incl. VAT p&p

Solid aluminium frame with an efficient Faraday screen. For enquiries please send s.a.e. to

DETECTOR PRODUCTS 58a King Street, Blackburn, Lancs Tel. 62561 or 54105

Glass Fibre P.C.B.s for ETI projects, supplied tinned and drilled

adplanta min			
ETI446	98p	ET1445	54p
ET1447	124p	ETI152a	71p
ET1544	90p	ETI152b	174p
ET1543a	81p	ETI252	38p
ETI543b	84p	ETI241	114p
ETI541	68p	ET1710	76p
ET1560 (a b	& c)	ETI514b	52p
	424p	Sorry. No E	TI602s

All prices shown include VAT. Add 20p post & packing

P.C.B.s also available for this month's ETI projects. Send SAE for full list of available boards

Also a comprehensive or part service from Artwork and layout design to assembled P.C.B. for batch quantities or one-off prototypes -- Contact:

TAMTRONIK LIMITED
217 TOLL END ROAD, TIPTON,
WEST MIDLANDS DY4 0HW Telephone 021-557 9144

ITT 58705T Nixi 0-9 + Data 50p. MM5314 + Data £3.25. TIL 209 (red) 10p. Fenwal
Thermistors, pair encapsulated 20p. Submin
Toggle 5p. Change over 38p. P&P 10p. LB
43 Westacott, Hayes, Middx. UB4 8AH.

PRESETTABLE 240V. 5 DIGIT COUNTERS

Auto/Man. reset. Auto zero S/W. £4.00 (inc). Power Amps 20w. 0.02% dist. 9 trans. P.C.B. + 30v. WKG. £4.00 (inc.) KLIFCO ELECTRONICS. 1 REGENT ROAD, ILK-LEY, W. YORKS.

Vero Electronics Ltd, manufacture cases to give your projects a professional finish. Cases are available in plastic, extruded aluminium and PVC coated steel. A new catalogue describing these cases, Veroboard, pins, tools, card frame etc. is available (price 10p + S.A.E. 7" x 9")

Vero Electronics Limited, Retail Dept., Industrial Estate, Chandler's Ford, Hants., SO5 3ZR Telephone: Chandler's Ford 2956 (STD 04215)

ctronics today reader services

BACK NUMBERS

These cost 40p each. Postage and packing costs 15p for the first, and 10p for each subsequent issue. Orders to ETI BACK ISSUES Dept. please.

We cannot supply the following: All 1972; Jan, Feb, April, Aug, Oct, Nov 1973; Jan, March, Sept, Oct. Nov. Dec 1974; Jan, June. July, Aug, Sept, Oct, Nov. Dec 1975; Jan, Feb, March 1976.

PHOTOCOPYING SERVICE

Due to the steady pressure on our back numbers department, and the dwindling number of issues available, we have set up a photocopying service. This involves our staff in considerable time consuming endeavour, so we hope our readers understand our decision to apply a flat charge of 50p inclusive. This covers any article, regardless of the number of pages involved, from any DNE issue of ETI.

Address envelope to 'ETI Photocopy

EDITORIAL QUERIES

Written queries can only be answered when accompanied by an SAE, and the reply can take up to three weeks. These must relate to recent articles and not involve ETI staff in any research. Mark your letter ETI QUERY . . . Telephone queries can only be answered when technical staff are free, and NEVER before 4 pm.

BINDERS

Binders, for up to 13 issues, are available for £2.50 including VAT and carriage. Send orders to ETI BINDERS DEPT. . . .

SPECIAL ISSUES

Presently we produce eight specials. See our ads on pages 14, 15 and 70.

T-SHIRTS

ETI T-shirts are available in Large, Medium, or Small sizes. They are yellow cotton with black printing and cost £1.50 each. Send orders to ETI T-SHIRTS Dept. .

ETI Book Service sells books to our readers by mail order. The prices advertised in the magazine include postage and packing. Send orders to ETI Book Service, P.D. Box 79, Maidenhead, Berks.

NON-FUNCTIONING PROJECTS

We cannot solve the problems faced by individual readers building our projects unless they are concerning interpretation of our articles. When we know of any error we print a correction as soon as possible at the end of News Digest. Any useful addenda to a project will be similarly dealt with. We cannot advise readers on modifications to our projects.

SUBSCRIPTIONS

The annual subscription to ETI for UK readers is £6. The current rate for readers overseas is £7. Send orders to ETI SUBS Dept. PAYMENT IN STERLING DNLY PLEASE

PCBs are available for our projects from companies advertising in the magazine.

NEW ADDRESS FOR ALL DEPARTMENTS: 25-27 OXFORD STREET, LONDON, W1R 1RF PLEASE MARK REVERSE OF EACH CHEQUE WITH NAME & ADDRESS AND ITEMS REQUIRED.

ALLOW 10 TO 14 DAYS FOR DELIVERY

AD. INDEX

AMBIT	p24	MAPLIN	p84
ARROW ELECTRONICS	Miniads	MARCO TRADING	Miniads
B.H. COMPONENTS	p32	MARSHALL'S	p40
BI-PAK LTD.	pp4 & 5	METAC	p9/89
B.N.R.S.	p28	MINIKITS	. p8
BYWOOD	p74	P.B. ELECTRONICS	p67
CAMBRIDGE LEARNING	p83	PULSE ELECTRONICS	£78
CHILTMEAD	p79	RADIO ROTOR	p71
CLIFFPALM	p78	RAMAR	Miniads
CROFTON	p39	R.F. EQUIPMENT SPARI	ES p82
D.B.M. PRODUCTS	Miniads	SINCLAIR	p13
DORAM	p39/72	SINTEL	p61
ELECTRONIC DESIGN	ASSOCS.	S.S.T. DISTRIBUTORS	p72
	p24	STERLING SOUND	p2
ELECTROVALVE	p28	SWANLEY	p68
GREENBANK ELECTRON	IICS p68	TAMTRONIK	Miniads
I.L.P.	p76	TECHNOMATIC	p56
INTEGREX	p31	TEMPUS	p72
ISLAND DEVICES	Miniads	VERO	p81
JOSTYKIT LTD	p14	VIDEOMASTER	p23
LEE INSTRUMENTS	p27	WILMSLOW AUDIO	p68
LYNX ELECTRONICS	p48	ZARTRONIX	p32

ETI 560 VDU (Corr ETI 458 100 watt (Set of 8 I ETI 458 Remote St ETI 458 Light Mod ETI 543A STD Time ETI 543B Timing D ETI 544 See this i ETI 620 Touch Org ALL OTHER	Stereo Disco Boards A, B, C, art Board fullator Board er Display Board er Display Board ssue gan (SRBP) PREVIOUSLY AD	30 Soards 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	45p 50p 70p 00p 85p 85p 75p	
BOAR	DS STILL AVAIL	ABLÉ		
SEMI-CONDUCTO	RS			
BC107 BC107A BC108 BC109 BC114 BC116 BC478 BCY32 400mW Zeners	9p BD520 8p BD609 8p UC734 10p ZTX109 17p 2N545 25p 2N625 20p D1300/	(90 watts) E 7 (FET) 9 (200 watts) A Signal Diode V 2C2012 (12v)	50p 70p 20p 10p 35p 80p 5p	
RESISTORS 1/4 watt H.S. Carbon Fi 1/2 watt H.S. Carbon Fi				
ELECTROLYTICS				
470mF, 63v 30p 500mF, 10v 10p 10mF, 12v . 5p	4700mF, 50v 60p 220 üF, 10v . 8p 330mF, 25v 10p	640mF, 16v 100mF, 10v 100mF, 25v	14p 6p 8p	
CA3052 Stereo Pre-Amplifier I.C. 16-pin D.I.L 100p				
All Data supplied. Provision for Equalisation and Tone.				

Prices VAT inclusive. List 10. P&P 20p

R.F. EOUIPMENT SPARES LTD. 3 LACY CLOSE, WIMBORNE, DORSET

New Course in Digital Design

Understand the latest developments in calculators, computers, watches, telephones,

television, automotive instrumentation....

Each of the 6 volumes of this self-instruction course measures 11¾" x 8¾" and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

After completing this course you will have broadened your career prospects and considerably increased your fundamental understanding of the changing technological world around you.

Also available — a more elementary course assuming no prior knowledge except simple arithmetic.

In 4 volumes:

- Basic Computer Logic
 Logical Circuit
- Elements
 3. Designing Circuits to Carry Out Logical
- 4. Flip flops and Registers

Offer. Order this together with Design of Digital Systems for the bargain price of £9.70, plus 80p p&p.

Design of Digital Systems contains over twice as much information in each volume as the simpler course, Digital Computer Logic and Electronics. All the information in the simpler course is covered as part of the first volumes of Design of Digital Systems which, as you can see from its contents, also covers many more advanced topics.

Designer Manager Enthusiast Scientist Engineer Student These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

Design of Digital Systems A Self-Instruction Course in 6 Volumes Computer Arithmetic Boolean Logic Arithmetic Circuits Memories & Counters Calculator Design Computer Architecture

£6.20

plus 80p packing and surface post anywhere in the world (VAT zero rated). Payments may be made in toreign currencies. Quantity discounts are available on request.

To: Cambridge Learning Enterprises, Dept. Dig., FREEPOST, St. Ives, Huntingdon, Cambs PE17 4BR 'Please send meset(s) of Design of Digital Systems at £7.00 each, p&p included
*or set(s) of Digital Computer Logic and Electronics at £5.00 each, p&p included
*or combined set(s at £10.50 each, p&p included Name
*delete as applicable.

The new Maplin Catalogue is no ordinary catalogue...

radio I.C.'s, op amps, voltage regulators, mono and stereo power amp I.C.'s, etc

components: hundreds of different capacitors; resistors; transistors; I.C.'s; diodes; wires and cables; discotheque equipment; organ components; musical effects units; microphones; turntables; cartridges; styli; test equipment; boxes and instrument cases; knobs, plugs and sockets; audio leads; switches; loudspeakers; books; tools -AND MANY MANY MORE

Our bi-monthly newsletter keeps you up to date with latest guaranteed prices - our latest special offers (they save you pounds) - details of new projects and new lines. Send 30p for the next six issues (5p discount voucher with each copy).

ELECTRONIC SUPPLIES P.O. BOX 3, RAYLEIGH, ESSEX SS6 8LR

Shop: 284, London Road, Westcliff-on-Sea, Essex (Closed on Monday) Telephone: Southend (0702) 44101

SEND THIS COUPON FOR YOUR COPY OF OUR CATALOGUE ON APPROVAL! Price 50p - SEND NO MONEY NOW. Please rush me a copy of your brand new 1977/78 catalogue the increase it is published. Only if a monadatable or increase it is published. instant it is published. Only if I am completely satisfied that it is published. Only if I am completely satisfied that it is published. Only if I am completely satisfied that it is published. Only if I am completely satisfied that it is published. instant it is published. Unity if I am completely satisfied that it is worth every penny, will I send 50p within 14 days of receipt. If I am ent satisfied I may satisfied be satisfied. not satisfied, I may return the catalogue to you within 14 days not satisfied, (may return the catalogue to you within 14 of without obligation.) understand that I need not purchase without congetion, i under stand that heed not purchase anything from your catalogue should I choose to keep it.

Maplin Electronic Supplies P.O. Box 3, Rayleigh, Essex, SS6 BLR Owing to delay in completion of larger

warehouse, catalogue will be

delayed by up to four weeks - so there's still

time to order before publication and get your pack of ten super special offer coupons, giving big discounts on ten different popular items. YOU COULD SAVE POUNDS! - SO DON'T DELAY FILL IN AND POST COUPON NOW!