eyoryday $y^{\operatorname{mon} n}$ 15p CS

A MEW MAGAZINE BRINGENG A FASCINATNG

 HOBEY TO EVERY ONE PROJECTS EASY TO CONSTRUCT THEORY SIMPLY EXPLAINEQ

TEACH-IN PART 3
 EXPLAINED

ADCOLA Soldering Instruments add to your efficiency

THE NEW 'INVADER'

 ADCOLA L. 646
for Factory Bench Line Assembly

A precision instrument-supplied with standard $3 / 16^{\prime \prime}$ (4.75 mm) diameter, detachable copper chisel-face bit*.
Standard temp. $360^{\circ} \mathrm{C}$ at 23 watts.
Special temps. from $250^{\circ} \mathrm{C}$ $410^{\circ} \mathrm{c}$.

*Additional Stock Bits
 (illustrated) available

COPPER

Don't take chances. We don't. All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they'ro so popular. You get consistent good service. . . reliability ... from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.

PRICE £1.85

of robust construction

Safe, quick and secure it connects 2 -core and 3 -core bare-ended flexible leads to the mains (A.C. only).
The concept was pioneered by Rendar, and introduced to the market 13 years ago.
Safebloc saves time. No need to fit a plug for tests. No danger, as no current can pass with the lid open.
Invaluable for testing and demonstrations in industry and shops, the work bench and the home.

Ask for Safebloc at your local stockist - or you can order it direct from the manufacturer.
If ordering by post, send cash with order.
PRICE £2.60+10p P.\&P. EACH
Special bulk order wholesale and industrial rates on application

Rendar Instruments Ltd., Victoria Road, Burgess Hill, Sussex.Tel. Burgess Hill 2642

FELSTEAD (EE3) ELECTRONICS

LONGLEY LANE, GATLEY, CHEADLE, CHESHIRE SK8 4EE Selection from our list, sent free for stamped addressed envelope. (Free overseas) Cash with Order only - No COD or Caller service. Charges (Min. 6p.) in brackets after all items apply to G.B. \& Eire only. Regret Orders under 25p. plus charges unacceptable. SAE please, for enquiries or cannot be replied to. Overseas Orders welcomed.

 ($7 \frac{1}{2} \mathrm{p}$ on $5^{\prime \prime}$ and $52^{\prime \prime}, 9 p$ on $7^{\prime \prime}$), Other sizes, Cassettes and accessories in list. CARTRIDGES. A1-10; STEREO GP93 £1-40; Stereo Ceramic GP94 \&1- 85 , Comparatives sho GP91/SC with more types incl. Sonotone 9TAHC Goldring se. at lowest prices (6 p) DIAMOND STYLII: Single tip types: Aces GP37 GP59 GP65/G7 GP71. BBR TC9/LP/GT: COLLARD O, P and DC284; GARRARD GC2, GC8, GC/12, GCS10; RONETTE BF40, O P And T. PHIL1PS 3301 ($3060,3066,3302,3304$) $3010(12,13,16$); SONOTONE $19 T / 20 \mathrm{~T}$. ALL AT 40p each (6p). Double-tin turn-over types (78 sap. on other side). For ACOS GP73, GP91 (for cartridges GP93, GP94 \& c.) GP918C (for stereo-compat. types) GP104, BSR ST4 (8T3, ETS^{5}), ST9 (8T8), ST12/14/15, SONOTONE 9TA, 9TA, 9TAHC, PHILIPS 3306 (3310, 3224, 3228/22, GP280) GARRARD GCM 21,22 , GCS23, GKS25 and 26, GCM 1 , and $22 \mathrm{~T}_{\text {, GKM24T, GCS2 }}$ G1, GKS25T \& 26 T GCM 31 , GCS36, GCS35, GCS 38 . KS40A, K841B, etc. ALL AT 75D (6p). DOUBLE DIAMOND STYLII: (Same dia. tip each Bide: no 78) for all types $£ 1.50$ ($6 p$). PICK-UP WIRE: Super thin twin flex gcreened, PHONES: CRYSTAL: LAPEL $1 t^{* \prime}$, clip/hand, lead 3.5 mm jack plug 323 p (6 p) CM20 Cream Plastic hand $52 \nmid \mathrm{D} ;$ CM21 Grey Plastic Hand/Desk 62 t and lead (9 p either). "STICK" 60 \&1-02; CM 70 'PLANET' Metal, tapered, with neck pord adaptor for stands $£ 1.477$; "MIC 91"' hand/desk 81 p : "MIC 45"' Curved metal hand grip £1.00. All with leads (all 9p). MICROPHONE INSERTS Diam. $1.75 \frac{1}{2}$ or $0.9 \frac{1}{\frac{1}{2}}$ either size $27 \frac{1}{2}$ p (Up to 6 for 6 p .) DYNAMIC: 209 Cardioid $\mathrm{Ball}, 50 \mathrm{~K} / 600 \Omega$, built-in volume control, on/off switch, special 20 ft lead, the best value anywhere $\mathbf{\Sigma 6} \mathbf{6} 30$; UD130, uni-dir. mesh ball $50 \mathrm{~K} / 600 \Omega$ jack plug, cable, adaptor, $24 \cdot 80$: DM160, omni-dir. ball mesh, 50 K , cable adaptor, jack plug e3.87t (27£p each). SPEAKERS. Still very popular 12* ROUND, fitted tweeter, SMALL 2% or 8Ω, state which 37 p (6 p). Hore speakers in list. HEADPHONES: 3.5 mm (state which) lack plug MAGN (1, P). EARPIECES with lead and min. 2.5 mm or to 3 for 6 p . m y type). SOLDER parts replaceable, highest quality fully guaranteed $£ 1$-0 11 (101 p). TRANSFOR Sub-min $11 \times 11 \times 12 \mathrm{~mm}$, OUTPUT (3Ω for OC72, 8 c) $14 \mathrm{~m}_{\text {, or }}$ DRIVER 15 p (up to 12 for 6 p). CONNECTING WIRE. Packs of 5 coils, each coil 5 yds. asstd. cols. SOLID CORE 14p. FLEXIBLE or sUPER THIN for transistor wiring dc. either 18D. (Any pack 6p). RETRACTABLE FLEXIBLE LEADS. (CURLIES): With phono plug ea. end 6 fit 23p, 124t 39p. With phono plug/phono socket other end 6 ft 25 p . $12 \mathrm{ft} 42 \frac{1}{2} \mathrm{p}$ (6 p lead any type). Vibrators. $12 V 4$-pin non-synch 121HD4, $2 q^{\circ \prime}$ ex. pins $27^{2} \mathrm{p}$. SAME but $3 t^{\prime \prime}$ ex pins, USA, 20p. 12 V 7 -pin, synch. (12SR7) 2 In $^{\prime \prime}$ ex pins 62lp ($6 \neq \mathrm{p}$ any type). TRANSISTORS dc. AC/126 12 1 p , AF115 20p, AF116 15p, AF117 20p, OĀ̆ 10p, OA10 10p, OA81 10p, OC44 14p, OC45, OC71, OC72, OC75, OC81, OC810, OC820, all at 12 $\ddagger \mathrm{p}$ each, OCl 7020 p , Oc171 12 p, B, Be MANS BATTERY ELIMTHATOR INput 240 V AC Out (pockel teser) 17 p (6 p either). melector On/oft Bwitch pilot lamp Input 240 AC, Output $3,6,7$ and cassette recorders. Suitable for model use: 83.15 (24). OUR CURRENTT LIST (see heading) includes more details of all above plus cartridge replacement table, many unrepeatable Special Offers, and cable, croc. clips, Volume controls, Din plugs, Co-Ax, atandard, miniature, phono plugs, sockets and adaptors, Tape Recording and Record Player accessories, panel and Test meters and equipment, Multimeters, min. motors, test prods, switchesrotary, toggle, slide cabinet, lamp \&c.-electrolytics, terminals, Veroboard, valve holders, extension aerials for cars and portable sets, ind. lamps and bulbs, dials, mikes, telephone amplifiers and pick-ups, dials, drive cord, inter-coms, sub (testing) boxes, stereo beadpbones etc., etc.

To all customers-past, present and futureHome Radio send the Season's Greetings, hoping not only that you have a happy Christmas, but that the fun and satisfaction you get from radio and electronics will continue through the coming years.

Needless to say, we are confident that we can help to ensure the happy fulfilment of all your projects and plans. The service we offer to constructors and enthusiasts has won us a reputation second to none. Our famous catalogue is acknowledged as "the Bible of the components world". Have you an up-to-date copy?

[^0]
YATES ELECTRONIGS

(FLITWICK) LTD

RESISTORS
W Iskra high stability carbon fim-very low noise-capless construction. W Mullard CR2
Erie wire wound.

Quantity price applies for any selection. Ignore fractions on total order.
DEVELOPMENT PACK
0.5 watt 5% Iskra resistors 5 off each value 4.7Ω to $1 \mathrm{M} \Omega$.

E12 pack 325 resistors $E 2 \cdot 40$. E24 pack 650 resistors $£ 4 \cdot 70$.

POTENTIOMETERS

Carbon track $5 \mathrm{k} \Omega$ to $2 \mathrm{M} \Omega$, log or linear (log $\mathrm{t} W$, lin $\mathrm{t} W$).

SKELETON PRESET POTENTIOMETERS
Linear: $100,250,500 \Omega$ and decades to $5 \mathrm{M} \Omega$. Horizontal or vertical P.C. mounting ($0 \cdot 1$ matrix)
Sub-miniature $0.1 \mathrm{~W}, 5 \mathrm{p}$ each. Miniature $0.25 \mathrm{~W}, 6$ p each

BRUSHED ALUMINIUM PANELS
12 in $\times 6$ in $=25 p ; \quad 12 i n \times 2$ in $=10 p$; 9 in $\times 2 i n=7 p$.

DEPT. E.E. ELSTOW STORAGE DEPOT, KEMPSTON HARDWICK, BEDFORD.
C.W.O. PLEASE. POST AND PACKING E ADD 10p TO ORDERS UNDER 62 Catalogue which contains data sheets for most of the components lisred will be sent free on request.
10% DISCOUNT TO ALL CALLERS ON SATURDAYS

MULLARD POLYESTER CAPACITORS C296 SERIES

$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \mathrm{tp}, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$ $0.015 \mu F, 0 \cdot 022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p} \cdot 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0 \cdot 1 \mu \mathrm{~F}, 4 \mathrm{p}, 0 \cdot 15 \mu \mathrm{~F}, 6 \mathrm{p} .0 \cdot 22 \mu \mathrm{~F}, 7 \mathrm{t} \mathrm{p}$. $0.33 \mu \mathrm{~F}, 11 \mathrm{p} .0 .47 \mu \mathrm{~F}, 13 \mathrm{p}$.
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p}, 0.1 \mu \mathrm{~F} 3 \frac{1}{2} \mathrm{p}, 0.15 \mu \mathrm{~F}$

MULLARD POLYESTER CAPACITORS C280 SERIES
250V P.C. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}$. $3 \mathrm{p} .0 .033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.968 \mu \mathrm{~F}$ $3 \frac{1}{2} \mathrm{p} .0 \cdot 1 \mu \mathrm{~F}, 4 \mathrm{p}, 0 \cdot 15 \mu \mathrm{~F}, 0 \cdot 22 \mu \mathrm{~F}, 5 \mathrm{p} \cdot 0 \cdot 33 \mu \mathrm{~F}, 6 \frac{1}{2} \mathrm{p} \cdot 0 \cdot 47 \mu \mathrm{~F}, 8 \frac{4}{2} \mathrm{p} \cdot 0 \cdot 68 \mu \mathrm{~F}, 11 \mathrm{p} \cdot 1 \cdot 0 \mu \mathrm{~F}, 13 \mathrm{p}$
$1 \cdot 5 \mu \mathrm{~F}, 20 \mathrm{p} .2 \cdot 2 \mu \mathrm{~F}, 24 \mathrm{p}$. $1 \cdot 5 \mu$ F. 20p. $2 \cdot 2 \mu$ F, 24 p.

MYLAR FILM CAPACITORS IOOV $0.001 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}$ $2 \frac{1}{2} \mathrm{p} .0 .04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 3 \frac{1}{2} \mathrm{p}$.

CERAMIC DISC CAPACITORS

CAPACITOR DEVELOPMENT PACK
Selection of 100 ceramic and polyester capacitors, 100 pF to $1 \cdot 0 \mu \mathrm{~F}, 62 \cdot 90$,
ELECTROLYTIC CAPACITORS-MULLARO C426 SERIES OP each $(\mu F / V) 10 / 2 \cdot 5,40 / 2 \cdot 5,80 / 2-5,160 / 2 \cdot 5,320 / 2 \cdot 5,500 / 2 \cdot 5,8 / 4,32 / 4,64 / 4,125 / 4,250 / 4$, $400 / 4,6 \cdot 4 / 6 \cdot 4,25 / 6 \cdot 4,50 / 6 \cdot 4,100 / 6 \cdot 4,200 / 6 \cdot 4,320 / 6 \cdot 4,4 / 10,16 / 10,32 / 10,64 / 10$ $25 / 25,50 / 25,80 / 25,1 / 40,4 / 40,8 / 40,16 / 40,32 / 40,50 / 40,0 \cdot 64 / 64,2 \cdot 5 / 64,5 / 64,10 / 64$ 20164, 32/64.

ELECTROLYTIC CAPACITORS Miniature P.C. mounting
$(\mu F / V): 10 / 12,50 / 12,100 / 12,200 / 12,5 / 25,10 / 25,25 / 25,100 / 25$.
5p each.

Vary the strength f your lighting with a
 Vary the strength of your lighting with a TMWME:MITH

The DIMMASWITCH is an attractive and efficient dimmer unit which fits in place of the normal light switch and is connected up in exactly the same way. The ivory mounting plate of the DIMMASWITCH matches modern electric fittings. Two models are available, with the bright chrome knob controlling up to 300 w or 600 w of all lights except fluorescents at mains voltages from $\mathbf{2 0 0 - 2 5 0 ~ v , ~ 5 0 H z}$. The DIMMASWITCH has buile-in radio interference suppression: 600 Wate - $\mathbf{6 3} \cdot \mathbf{2 0}$. Kit Form $\mathbf{£ 2} \mathbf{- 7 0}$ 300 Watc- 2.70. Kit Form $\mathbf{1 2} 20$ All plus 10p post and packing.
Please send C.W.O. to:-
DEXTER \& COMPANY
5 ULVER HOUSE, 19, KING STREET, CHESTER CH1 2AH Tel: 0244-25883, As supplied to H.M. Government Departments.

VEROBOARD

\qquad
$\begin{array}{r}0 \\ 22 p \\ 24 \\ 24 \\ 28 \\ 75 \\ 100 \\ - \\ - \\ = \\ \hline\end{array}$
Spot face cutter 42p

JACK PLUGS AND SOCKETS
Standard screened $\quad 18 \mathrm{p} \quad \mathbf{2 . 5 m m}$ insulated $\begin{array}{llll}\text { Standard insulated } & 12 \mathrm{p} & \mathbf{3 . 5 m m} \text { insulated } \\ \text { Stam insulated }\end{array}$ $\begin{array}{lll}\text { Stereo screened } & \mathbf{3 5 p} & \mathbf{3 . 5 m m} \text { screened } \\ \text { Standard }\end{array}$ $\begin{array}{lll}\text { Standard socket } & 15 p & 2.5 \mathrm{~mm} \text { socket } \\ \text { Stereo socket } & 18 p & 3.5 \mathrm{~mm} \text { socket }\end{array}$ D.I.N. PLUGS AND SOCKETS 2 pin, 3 pin, 5 pin $180^{\circ}, 5$ pin $240^{\circ}, 6$ pin Plug 12p. Socket 8p.

28 watts，r．m．s． 40 Hz to $40 \mathrm{kHz} \div 3 \mathrm{~dB}$

PRICES SYSTEM
Viscount III RIOI amplifier $\quad £ 22 \cdot 00+90 \mathrm{p}$ p\＆p $2 \times$ Duo Type $\| 1$ speakers，$~ £ 14 \cdot 00+£ 2 p \& p$ Garrard SP25 Mk．III with MAG． cart ridge plinth and cover $£ 23 \cdot 00+£ 1 \cdot 50$

Total
E59．00
Available complete for only $\mathbf{£ 5 2} \cdot 00+£ 3 \cdot 50$
SYSTEM 2
Viscount RIOI amplifier $\quad £ 22 \cdot 00+90 \mathrm{p} p \& \mathrm{p}$ $2 \times$ Duo Type III speakers $£ 32 \cdot 00+£ 3$ p\＆p Garrard SP25 Mk．Ill with MAG．
cartridge，plinth and cover $£ 23 \cdot 00+£ 1 \cdot 50$
Total $\overline{£ 7 \cdot 00}$ P\＆P
Available complete for $\mathbf{6 6 9 + 6 4} \mathrm{p} \& \mathrm{p}$
SYSTEM 3
Viscount III Amplifier R $100 \quad £ 17 \cdot 00+90$ p p\＆p $2 \times$ Duo Type II speakers，pair $£ 14 \cdot 00+£ 2 p \& p$ Garrard SP25 Mk．III with CER．diamond cartridge，plinth and cover $£ 21 \cdot 00+£ 1 \cdot 50$

Total $\quad \underline{52.00}$
Available complete for only $£ 49 \cdot 00+£ 3 \cdot 50$ p\＆

SPEAKERS Duo Type II
Size approx $17^{\prime \prime} \times 10 \frac{3}{4}^{\prime \prime} \times 6 \frac{3^{\prime \prime}}{}{ }^{\prime \prime}$ ．Drive unit $13^{\prime \prime} \times 8^{\prime \prime}$ with parasitic tweeter．Max．power 10 watts． 3 ohms．Simulated Teak cabinet． £14 pair $+£ 2$ p\＆p．
Duo Type III Size approx $23 \frac{1}{2}^{\prime \prime} \times 11 \frac{1}{2}^{\prime \prime} \times 9 \frac{\frac{1}{2}^{\prime \prime}}{}$ ． Drive unit $13 \frac{1^{\prime \prime}}{2} \times 8 \frac{\frac{1}{4}^{\prime \prime}}{}$ with H．F．speaker．Max． power 20 watts at 3 ohms．Freq．range 20 Hz to 20 kHz ．Teak veneer cabinet． $\mathbf{\ell} \mathbf{3 2}$ pair $+£ 3 \mathrm{p} \& \mathrm{p}$ ．

SPECIFICATION RIOI

14 watts per channel into 3 to 4 ohms．Total distortion ＠10W＠ $1 \mathrm{kHz} 0.1 \%$ ．P．U．I（for ceramic cartridges） 150 mV into 3 Meg ．P．U． 2 （for magnetic cartridges） 4 mV ＠ 1 kHz into 47K．equalised within $\pm 1 \mathrm{~dB}$ R．I．A．A．Radio 150 mV into 220 K ．（Sensitivities given at full power）．Tape out facilities；headphone socket， power out 250 mW per channel．Tone controls and filter characteristics．Bass：+12 dB to $-17 \mathrm{~dB} @ 60 \mathrm{~Hz}$ ． Bass filter：6dB per octave cut．Treble control：treble +12 dB to -12 dB ＠ 15 kHz ．Treble filter： 12 dB per octave．Signol to noise ratio：（all controls at max） RIOI－P．U．I and radio－65dB．P．U．2．－58dB． RI00 same，as RIOI but P．U． 2 （for crystal cartridges） 450 mV into 3 Meg ．Cross talk better than -35 dB on all inputs．Overload characteristics better than 26dB on all inputs．Size approx $13 z^{\prime \prime} \times 9^{\prime \prime} \times 3 z^{\prime \prime}$ ．

Sinclair Q16/Micromatic

016 High fidelity loudspeaker

The 016 employs the well proven acoustic principles specially developed by Sinclair in which a special driver assembly is meticulously matched to the characteristics of the uniquely designed cabinet. In reviewing this exclusive Sinclair design. technical journals have justly compared the 016 with much more expensive loudspeakers. Its shape enables the 016 to be positioned and matched to its environment to much better effect than is the case with conventionally styled enclosures. A solid teak surround with a special all-over cellular foam front is used as much for appearance as its ability to pass all audio frequencies without loss.

This elegantly designed shelf mounting speaker brings genuine high fidelity within reach of every music lover.

Specifications:

Construction: Special sealed seamless sound or pressure chamber with internal baffle.
Loading : up to 14 watts RMS.
Input Impedance: 8 ohms.
Frequency response: From 60 to 16.000 Hz . confirmed by independently plotted B and K curve.
Driver unit: Special high compliance unit having massive ceramic magnet of 11,000 gauss, aluminium speech coil and special cone suspension for excellent transient response.
Size and styling: $9 \frac{3}{4}$ in. square on face x $4 \frac{3}{4}$ in. deep with neat pedestal base. Black all over cellular foam front with natural solid teak surround.
Price 88.98 .

Size: $36 \times 33 \times 13 \mathrm{~mm}(1.8 \times 1.3 \times 0.5 \mathrm{in}$.) Weight: including batteries, 28.4 gm

Case: Black plastic with anodised aluminium front panel and spun aluminium

Tuning: medium wave band with bandspread at higher frequencies (550 to

On/off switching: By inserting and
Kit in pack with earpiece, case, instructions
Ready built, tested and guaranteed, with
Two Mallory Mercury batteries type RM675 required from radio shops.

Specifications:

 (1 oz.) dial. $1,600 \mathrm{KHz}$).Earpiece: Magnetic type. withdrawing earpiece plug. and solder $£ \mathbf{2 . 4 8}$. earpiece $£ 2.98$. chemists, etc.

Britain's smallest radio

Considerably smaller than an ordinary box of matches. this is a multi-stage AM receiver brilliantly designed to provide remarkable standards of selectivity, power and quality for its size., Powerful AGC counteracts fading from distant stations: bandspread at higher, frequencies makes reception of Radio 1 easy. The plug-in magnetic earpiece provided, matches the Micromatic's output to give wonderful standards of reproduction. Everything including the special ferrite rod aerial.and batteries is contained within the minute attractively designed case. Whether you build a Micromatic kit or buy this amazing receiver ready built and tested, you will find it as easy to take with you as your wrist watch, and dependable under the severest listening conditions.

Sinclair Radionics Ltd., London Rd. St. Ives Huntingdonshire PE17 4HJ.
Telephone St. Ives (048 06) 4311

For several years now you have been able to assemble your own high fidelity system to world beating standards using Sinclair modules. We have progressively improved these technically but hitherto the method of assembly at your end has remained the same - there has been no alternative to a soldering iron. Now for those who prefer not to solder, there is an alternative - Project 605 .
In one neat package you can now obtain the four basic Project 60 modules plus a fifth completely new one - Masterlink - which contains all the input sockets and output components you previously bought separately. Also in the Project 605 pack are all the inter-connecting leads, cut to length and fitted at each end with plugs which clip straight onto the modules, eliminating soldering completely. The pack contains everything you need to build a complete 36 watt stereo amplifier together with a clear well illustrated Instruction Book. All you have to do is to arrange your modules in the plinth or case of your choice and then clip them together - the work of a few minutes.
Your hi-fi system will, as we said, match the finest in the world and you can add to it at any time to increase power or extend the facilities. For example a superb stereo FM Tuner unit is obtainable for only $£ 25$.
Guarantee $1 f$ within 3 months of purchasing Project 805 directy from us, you are dissatislied with it, we will refund your money at once. Each module is guaraniged to work partectly and should any deiect arise in normal use we will service it at once and without any cost to you whatsoverer provided that it is returned to us withth 2 years of the purchase date. Thera will be a small charge lor senvice theteather. No charge for postage by surface mail, Ail-mail charged at cost.

Sinclair Radionics L.td., London Road. St. Ives, Huntingdanshire PE1 7 4HJ, Telephone : St. Ives (04806) 4311

Specifications

Output-30 watts music power (10 watts per channel R.M.S. into 3Ω).
Inputs-Mag. P.U. - 3mV correct to R.I.A.A. curve 20-25.000 $\mathrm{Hz} \pm 1 \mathrm{~dB}$. Ceramic pick-up -50 mV . Radio -50 to 150 mV . Aux. adjustable between 3 mV . and 3 V .
Signal to noise ratio - Better than 70dB.
Distortion - better than 0.2% under all conditions.
Controls - Press buttons for on-off, P.U.. radio and aux. Treble +15 to -15 dB at 10 kHz . Bass +15 to -15 dB at 100 Hz . Volume. Stereo Balance.
Channel matching within 1 dB .
Front panel - brushed aluminlum with black knobs. Project 605 comprises Stereo 60 pre-amp/control unit. two Z-30 power amplifiers, PZ-5 power supply unit. the unique new Masterlink, leads and instructions manual complete in one pack. Post free

To Sinclair radionics Lid., st. ives, huntingodnshire pei 7 ahJ
Please send Project 605 post free \square Details and list of stockists \square
Name
Address
for which I enclose $£ 29.95$ cheque/money order/cash
E.E. 3 B

CRESCENT man un MAIL ORDER DEPT. No. II MAYESRD. LONDON 11 \& 40 MAYES ROAD. LONOON NR2 GTL 8933206 N 22

258055

POPULAR POWER
TRAN8ISTOR
Now at our Low Price 60p each

Please include 5p P. \& \mathbf{P}

babgain s.c.b. TESTED THYRIBTOF 400 volt. 3 amp.
45p each 5 for $12 \cdot 00$ Please include 5p P. \& P.

TTC

G1105

GIMGLE EARPIECES Crystal or magnetlc plus lead and $3.5 \mathrm{~m} / \mathrm{m}$
or $2.5 \mathrm{~m} / \mathrm{m}$ plug. Pleage or $2 \cdot 5 \mathrm{~m} / \mathrm{m}$ plug. Pleage ed. 19p plus 3p. P \& P

LOW VOLTAGE AMPLIFIER Few only at C
fl. 75
plus 1:p P. \& P
LOUDSPEAKER BARGAIMS E.M.I. 450 set 3. 8.15 ohm e8-50 plus 38p. \mathbf{P}. \& P.
E.M.I. 350 set 8 ohm.
87.50 plue 38 p . P. \& P.

MIMI LOUDSPEAKERS $25^{\circ} 8 \mathrm{ohm} 38 \mathrm{p} \quad 25^{\circ} 25$ ohm 33p
 speaker.

HIGH QUALITY IMPORTED HEADPHONES 1,000 Ω per pbone 80p 2,000 Ω per phone 88p Flus 10p P. \& P. per pair.

STEREO HEADSET

8 ohm impedance, complete with plug and 5 ft lead. A very comfortable phone set. Listen to stereo without noise interrupting the pleasure. Wonderfui value. $\quad \mathbf{2} .50$ plua 10p P. \&P.

5 transistor amplifier complete with volume control, is sultable Will give about 1W at 8 ohm output.
With high IMP Input thia amplifter will work as a record player, baby alarm, etc. amplifler.

Approz 2 amp rating Approz. 2 amp rating.
Two - pin non - rever. lble midget fex conbector. Approx. slize X in. Ideal for loudspeaker MAINS TRANSFORWER ary 220 V (80 M second\rightarrow 1A.This transiorme
C.R.I_C. MANUFACTURERS REJECT BUT EXPERIMENTERS DELIGHT Try the following Projects:-
. Mobilised Power Supply 8. Motor Speed Control
4. WIndscreen Wiper Control

All possible with this Bcoop I information with every order.

1 C.R.I.C. - 18p 5 C.R.I.C. -50 p
Plesse include 5p P. \& P. up to 5 I.C. 8

ALUILIIU1 CEAS8Is

Made from 18 gauge aluminium 4 mided chasis with corner brackets. All are $2 \eta^{*}$ depth
$6 \times 3-41 p$
$6 \times 4-45 p$
$12 \times 3-53 p$
$8 \times 6-58 \mathrm{p} \quad 12 \times 8-81 \mathrm{p}$
$10 \times 7-68 \mathrm{p} \quad 14 \times 3-80 \mathrm{p}$ $14 \times 9-94 p$
$16 \times 6-86 p$ $16 \times 10=1.08 \mathrm{p}$ Plesse send 10 p per chassis \mathbf{P}. \& \mathbf{P}.

Cint EAPAGITORS

Mini Electrolytica all values ap to 100 MFD @ $15 \mathrm{~V}-7 \mathrm{p}$ each. Small PF Capacitors only in packs of 10 but y

250 MFD @ $25 \mathrm{~V}-15$
250MFD @ $25 \mathrm{~V}-15 \mathrm{p}$
500 MFD ($25 \mathrm{~V}-21 \mathrm{p}$
1000 MFD ($25 \mathrm{~V}-27 \mathrm{p}$
1000 MFD @ $26 \mathrm{~V}-27 \mathrm{D}$
3000 MFD @ $25 \mathrm{~V}-34 \mathrm{D}$
3000 MFD @ $25 \mathrm{~V}-45 \mathrm{p}$
Please inc. 10p. P. \& P. with
ordera under $£ 2$ value.
EA1000 3 WATT AUDIO AMPLIFIER MODULE
An Audio Amplifier deslgned around the
Supply Voltage
Supply Voltage
Epequency
Frequency
Overall Size $\quad \cdots \quad 50 \mathrm{hz}-25 \mathrm{kHz}$
Ideal Ampllfer for radios, $2 \ln \times \sin x$ in
stereo units, etc.
Full technical dats and diagrams with each
module. All guaranteed and a bargain at
PRIHTED OIRCUIT KIT

PRIKTED CIRCUIT BOARD $8 \times 6-10 \mathrm{p} \quad 10 \times 8-15 \mathrm{p}$ Please Inc. 3 p. per board P. \& \mathbf{P}.

COMPONENTS AND HI FI FOR THE HOME CONSTRUCTOR FROM 9 A,M.TO 6 P.M. 6.30 P.M. ON FRIDAY (WE CLOSE ALL DAY THURSDAY) iday 13 SOUTH MALL, EDMONTON, N•9 8031685

YOUPOWN PROFFESSIONAL

 sollo Sthe GLISED $\operatorname{lilicUIT}$ TELENSON CAMERA
ONLY

£70
 INCLUDING LENS \& VIDICON TUBE

Designed by the Mullard Educational Service, and shown on the BBC's 'Tomorrow's World' programme, the Linstead camera provides a composite output comprising sync. pulse and picture information.
Free 78 -page manual We give you a superb, fully illustrated 78-page construction and service manual with this kit. A part from full assembly instructions, a complete description of basic camera principles, vidicon tube operation and circuit diagram, this manual shows all waveforms withln the circuitry. We also supply a copy of the BBC Test Card F.

AERIAL BOOSTERS

We inake tour types of Aerial Boosters. L45 625 U.H.F., L12 V.E.F. TV. Price L46. L12 \& L11 £2.95, L10 £2.45.

VALVE BARGAINS

Any $5=45 \mathrm{p}, 10=70 \mathrm{p}$
ECC82, ECL80, EF80, EF85, EF183. EF184, EBF89, EB91, EY8B, PCX84, POC89, PC97, PCF80, PCF86, PCL82. PCL83, PCL 84, PCL85, PL36, PY83, PY82, PY800, PY801, 30L15, 30C15, 6 -30L2.

S.P.D.T. S

81ZE 1: ins long if wite $13 p_{3 p}^{\text {each }}$

WAFER SWITCEES 1 pole 12 way 2 pole 2 w 8 y
2 pole 3 way 2 pole 4 way 2 pole 4 way
2 pole 6 way 3 pole 4 way
4 pole 3 way 22p each. Pleake inc. 5p P. \& P. Up to 3 owltches.

Everything for producing your own printed circuits. 11.40 p plu: 10 p . P. \& P .
$=56$
POTERTIOMETERS All types 1 and leke dianueter. SINGLES DUAL $5 K$ Log or
10 KK
Lin Less 10 K 20K Lin Less ${ }^{10 \mathrm{~K}}$ Les 100K 17 Pea, 100 K Switch 250 K Double 250 K 45 p. 250 K Double 250 K each

500 K Pole 500 K | 1 M | Sole |
| :--- | :--- |
| 2 M | 1 M | 2 M 25 ea Up to 3 Pots. Plesare add We RESISTORS

We stock all recognised values of resistors all at 10% or closer
tolerance. We regret we can only mail them in lots of ten. You can send for mized values. All Midget typer.
watt lots of 10-130
watt lots of $10-15 \mathrm{p}$
1 watt lots of $10-26 \mathrm{p}$ Please include $\mathbf{3 p}^{2}$ P. \& P. for $£ 2.63$
$+5 p \mathbf{P}, \mathbb{P}$

Three section $33-33-33$ Ohms 9 g.
back guarantee if not completely satigfied

VELCO ELECTRONICS

62B Bridge Street, Ramsbottom, Bury, Lancs.

WILSIC SOUND EFFECTS KITS
 WAH-WAH PEDAL KIT (Illustrated)

Kit comprises a SELECTIVE AMPLIFIER MODULE KIT to convert the FOOT VOLUME CONTROL PEDAL (as photo) to Wah-Wah operation. Amplifier module $£ 1.75$, pedal unit $£ 5 \cdot 13$, COM PLETE KIT $\mathbf{£ 6} 50$ add 38 p for assembly of module, but please note we cannot supply kits fully buitt.
REVERBERATION UNIT KIT. For dimension effect. Connects between sound source, mic., etc., and amplifier. Battery powered. COMPLETE KIT $\mathbf{5 9 . 2 0}$ (excluding case $\mathbf{£ 7 . 5 0}$). Assembled in slimline cabinet $\mathbf{£} \mathbf{1 2 . 5 0}$. VIBRATO UNIT KIT. Foot pedal unit with variable speed and depth controls. COMPLETE KIT $\mathbf{6 5} 25$.
SEND 15p for the WILSIC PLANS BOOK, with full details of these kits; circuits, drawings and price lists.

LATEST CATALOGUE 5p (stamps)
WILSIC ELECTRONICS LTD.
6 COPLEY ROAD, DONCASTER, YORKS.

(2)
FIND BURIED TREASURE WITH THIS READY BUILT \& TESTED Treasure Locator Module

BRAKD NEW YULLY TRANSISTORISED PRINTED CIRCUIT METAL DETECTOR MODULE

 Ready buill and lested-just piug in a PP3 hattery and 'phones and it's working. Put it in a case.gerem a handle on and YOU BAVE A PORTABLE TREASURE LOCATOR EASII WORTH ABOUT \&20: Extremely sensitive-penetrates through earth, sani; rock. wookl dirt. water, etc.-EASILY LOCATES COINS, GOLD, BILVER, WATCHES, JEWELLERY, NOGGETS, METALLIC ORE, HISTORICAL RELICS, BURIED PIPES, KEYS, NAIL-IN-TREES, ETC., ETC. Signals exact locatiou by "beep" pitch increasing as you near buried metallic objects. PRIMTED CIRCUIT SEARCH COIL SO slable and sonsifve wion driee cerlain objects buried SEVERAL FEET BELOW GROUND: GIVES CLEAR SIGNAL ON ONE COIN 1 You could even pay for your holidays soith hioo ar three days eletronie beachconbing-il's aimosi live having a licence to print mmey! Unclaimed treasure now exceeda thr
combined wealth of all natlona. ORDER HOW WHILE PRESENT STOCKS LAST-TREMENDOUS Combined wealth of all nationa, ORDER HOW WHILE PRESENT STOCKS LAST-TREMENDOUS ORDERS DESPATCHED IN STRICT ROTATION. SEND NOW £4. $95+30 \mathrm{p}$ cars. etc. (High quality Danixh Stethoswope healphones $\mathbf{E x} 75$ extra if requirel).

SHORTWAVE TRANSISTOR RADIO
 82

Can be built in one evening

FIND

BURIED TREASURE!

TREASURE LOCATOR TRANSISTORISED

row IT's HERE AT LAST, after experinienting for four and a half nonthe with a multituite of diferent circuits and carrying out actual feld teatk with prototyper. Our dealgn team have come up with this real winner. This fully portable tranujestized metal
locator detects and tracks down buriel metal objects-it signals locator detecta and tracks down buried metal objects-it signals
exact location with lourl audithe sound (no phones uned)-uses esm transistor railio which fits insldeno connect ionr neeied. YNDS GOLD. KEYS, WAR SOUVENIRS, ARCHAEKLOGICAL PIECES, METALLIC ORE, NUGGETS ETC., ETC. Outdonrs or in doors. Extremeiy sonuitive, will sipuol
presence of eerlafo objects buried several presence of certafus objects buried several
feel belonc pround No knowleclge of ralio or electronice required. Con be buit with etare to ome short evening by anubody from nine years of age upwards,
with the wonderfully clear. easy to Fith the wonderfelly clear. easy to instructions it really is as easy as ONLY Valves. Uses standard PP3
 demand expected at Great semarkably low price-
ORDER WHILE PRESENT STOCES LAST. All parts inciuding detector bead cane, nuts,
wcrews, wire.
stnule cerews, wire, stnyple
inatructions etc., etc.
 illustrated 750 extra).
 worth E 15

BUILD 5 RADIO AND

 ELECTRONIC

Makes exciting Christmes present all Transiators, loudphone, knobs, serews, etc. all you need. Presentation Bor 87 p gira as illur. (if required) (extra parts avallable separately)

At last: Ater'trring countless circuits searching for eany build, work firattime ahort waver. Giving advanced world-wide pertormance, we chose thix 'Sky Runa', Anyone fron 9 years up can follow the atep-by-step, easy-as
ABC, fully illustrated instructions. (We built ten prototypea and everyone worked first time) no solderink necessary. 76 stations logged on rod aeria In 30 ming- Buasis, Aftics, USA, Switzerland, etc. Experience thrills of World wide news, sport, music. etc. Eavesdrop on onabual broadcasts. Usee
PP3 battery. Transistorised (no valves
 tremendous demand anticipated price beld to only (2s-2
p. \& p. for all parts incl. Cabinet, screws, inatructionk eto. (Parts avallable p. \& p. or
separately)

SOOTHE YOUR NERVES, RELAX WITH

THIS BEAKATRON

CUTS OUT NOISE POLLUTION SOOTHES YOUR NERVES: DOn't underestimate the uses of this fantantic new dexign-the RELAXATRON in basically a pink noise generator based on a valanche operated transikcors. Bestdes being able to mavk out extraneous unwanted sounds, it hay other very interesting properties. For instance. many people find a
rainstorm mysteriously relaxing, a large part of this feeling of well-belig raingtorm mysteriounly relaxing, a large part of this foeling of well-belng
can be directly traced to the sound of falling raindrops -a well known can be of pink notse. A group of Dentiste have experimented on patients with this pink noise-NO ANESTHETICS WERE USED I The noise ostensibly createl a moxt defniter nervous systems with the results that their pain aystems were blocked. IT YOU WORE IN NOISZ OR DISTRACTIMG SURROUNDDGGS, IF YOU HAVE TROUBLE CONCEATRATIIG, IF YOU FEEL TENSED, UNABLE TO RELAEthen build this fantastic Relaxatron. Once uaed vou will never want to be without it-uge this amazlng pink noise generator whenever you feel uneasy, can't relax or wish to concentrate. TAKE IT ANYWHERE, pocket sized. Uses atandam PP3 batterien (current used mo sniall that battery life is alminet ghelf.life) CAF BE EASHIY BULLT BY ANYONE OVER 12 YEARS OF AGE using our unique, step-by-step. fully Illustrated plans. No soldering necersary. All parts including care. a pair of crystal phonez, Com
(parts availabie separately.)

GET A GOOD NIGHT'S SLEEP-EVERY NIGHT! INGENIOUS ELECTRONIC SLEEP INDUCER Ideal $\underset{\text { Gift }}{\text { Xinas }}$
only
Gift $22: 75$

CAN'T SLEEP AT HIGBTSP DO YOU WAKE UP IN THE KIGHT AND CAN'T GET OFF TO SLEEP AGADMP WOULD YOU LLKE TO BE GENTLY SOOTHED OFP TO SATISFYIMG SLEEP EVERY MIGKTP Then build this ingenious electronic sleep inducer. It even stops by itsolf so youd don't have to worry about it being on all night The loudspeaker produce. soothing audio-frequency sounds, continuously repeated - but as time goes on the sounds gradually becone leas and leen -until they eventually ceake altogether, the effecd il has on peopie is amazingly very similar to hypnosis. A control is provided for adjusting the length of times etc., all trannistor, can be built by anyone over 12 years of age in about two bours. included. No soldering necesary. Works of atandard batteries-extremely, economical gize only $3^{*} \times 41^{-1} \times 11^{-}-$take
 DEMAND FOR THIS UNIQUE NEW DESIGN-SEMSD NOW $\mathbf{~} 2.75+25 \mathrm{p}$ p. \& p . (parts Available separately).

ELECTRONIC ORGAN

Don't confure with ordinary electric argans that simply blow air over moush-organ sype reeds elc. Eight months were spent In creating and teating tisis superb, revolutionary electronic loadspeaker. Fifteen separate keys span troo full netaves-inlay the "Yellow Rose of Texas'", play "Sitent Nigh"", play "Auld the "Yellow Rose of Texas" play sient Nighe, play Auld Lang Syne; play ioss and Als of simitar tunes on this real certainly no tiny thing, it measures $13!\times 10 \times 2 \xi^{\circ}$. You have the thrill and exciternent of bullding it together with the pleasure of playing a real, live, throbbing electronic organ. Take it anywhere play it anywhere, NO PREVIOUS ETOWLEDGE OF ELECTRONICS NEEGOED-NONE WHATEVER. No
soldering necessary. It really is as simple as a.b.c. to make. Anyone from nine geare upwards can baild it easily in one short evening following the fully illustrated.
 case, londspeaker, transistors, condensera, renistorn, knobs, transformer, volume control, wire, nuts, screws, simpie (but fall) instructions, etc., etc. Uses standard battery (parts avaltable separately). Have all the pleaure of making it youreelf, finish with an exciting Christmas gift for eomeone.

EXAMINE AT HOME FQR 7 DAYS. YOUR MONEY REFUNDED IN FULL IF NOT 100% DELIGHTED.

ANIIX the soldering appliance specialists

CN.240/2 Miniature soldering iron 15 watt 240 volts, fitted with nickel plated 3/32"' bit and packed in transparent display box. Also available for 220 volts. Price $£ 1.70$
CN. 240 Miniature soldering iron 15 watt 240 volts, fitted with iron coated 3/32" bit. Up to 18 interchangeable spare bits obtainable. This iron can also be supplied for 220 , 110,50 or 24 volts. Price $£ 1.70$ (Supplied in standard pack)
G. 240 Miniature soldering iron 18 watt 240 volts extensively used by H.M. Forces. Sultable for high speed soldering and fitted with Iron coated 3/32"' bit. Also available for 220 volts. Spare bits $1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$ and $14^{\prime \prime}$ are obtainable. Price $£ 1.83$ (Supplied in standard pack)

CCN. 240 New model 15 watt 240 valts miniature soldering iron with ceramic shaft to ensure perfect insulation (4,000 v A.C.). Will solder live transistors in perfect safety, fitted with $3 / 32^{\prime \prime}$ iron coated bit. Spare bits $1 / 8^{\prime \prime}$. $3 / 16^{\prime \prime}$ and $14^{\prime \prime}$ available. Can also be supplied for 220 volts. Price $£ 1.80$
CCN. 240/7 The same soldering iron fitted with our new 7 -star high efficiency bit for very high speed soldering. The bits are iron coated, nickel and chromium plated. Price £1.95
E. 240
 with $1 / 4^{\prime \prime}$ iron coated bit. Spare bits $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}$ and $3 / 16^{\prime \prime}$ available. Can also be supplied for 220 and 110 volts. Price $£ 1.80$.
ES. 24025 watt 240 volts soldering iron fitted with $1 / 8^{\circ}$ iron coated bit and packed in a transparent display box. Spare bits $3 / 32^{\prime \prime}, 3 / 16^{\prime \prime}$ and $1 / 2^{\prime \prime}$ available. Can also be supplied for 220 and 110 volts. Price £1.83

SK. 2
 SOLDERING KIT

This kit contains a 15 watt 240 volts soldering iron fitted with a $3 / 16^{\prime \prime}$ bit, nickel plated spare bits of $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, a reel of solder. Heat Sink 1 amp fuse and booklet

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, LOW COST QUICK DELIVERY OYER 200 RANGES IN STOCK QUICK DELIVERY OTH TO ORDER

NEW	"SEW"	' DESIGNS!	
CLEAR		BAKELIT	
	METERS	METERS	
	TYPESW. 100	TYPE S-80	
	$0 \times 80 \mathrm{~mm}$	are fronts	
		(ex	
		(1000-100 $4 \times 8.10{ }^{10}$	
		1ma	

'SEW'" CLEAR PLASTIC METERS

Type MR.85P. $4 \frac{1}{4} \mathrm{in} . \times 4 \frac{1}{4} \mathrm{im}$. Ironts.

$50 \mu \mathrm{~A} . \mathrm{C}$. $50-0-60 \mu \mathrm{~A}$ $100 \mu \mathrm{~A}$ $00 \mu \mathrm{~A}$ $300 \mu \mathrm{~A}$ 00-0-500 μ $\underset{1-0-1 \mathrm{~min}}{1 \mathrm{~mA}}$ ${ }^{5 \mathrm{~mA}} 10 \mathrm{~mA}$.

Tjpe Mr.5eP. 2ting mquare front.		
$50 \mu \mathrm{~A}$	¢3.10	10V.D.C. . . 82.00
$50-0-50 \mu \mathrm{~A}$	89.8n	20V. D.C. . . 12 -00
$100 \mu \mathrm{La}$		50 V. D.C. . . 22-00
100-0-100 12		300 V. D.C. $£ 2$-00
$500 \mu \mathrm{~A}$. ${ }^{\text {a }}$	22.30	15V. A.C. .. $\mathbf{8 2}$-10
1 mA	12.00	300 V. A.C. $£ 2.10$
Bma	22.00	S Meter lmA 22-10
10 miA	22.00	VU Meter .-. $\mathbf{8 3 - 2 0}$
50 mA	12-00	1 amp A.C.* 2200
100 ms .	£2.00	5 amp . A.C.* 22*00
500 mA .	£2.00	10 amp A.C. $2 \mathrm{tz} \cdot 00$
1 amp.	22.00	20 amp A.C. $* 2.00$
5 amp .	£2.00	30 amp A.C. -28.00
Type MR.65P. 3 ifin. \times 31in. Ironts.		
$00^{1 / 2}$	¢3.87	10V. D.C. . . 58.20
$50-0-50 \mu \mathrm{~A}$	22.75	20V. D.C. . . 22.20
$100 \mu \mathrm{~A}$. ${ }^{\text {a }}$.	22.75	50 V. D.C. . . 22.20
100- $0-100 \mu$.	12.65	150V.D.C.. . $82 \cdot 20$
200μ A \cdots	22.65	300V. D.C. 82.20
$500 \mu \mathrm{~A}$	22.40	15V. A.C. . . 28.80
$500-0-600 \mu \mathrm{~A}$	£2.20	50 V . A.C.. . $22-30$
1 mA	£2.20	150 V . A.C. $22 \cdot 80$
5 mA	22. 20	300V. A.C. 82.30
10 mA	22.20	500V. A.C. $£ 2 \cdot 80$
50 mA	£2.20	S Meter lnis $12 \cdot 3$ \%
100 mA .	£2-20	VU Meter. . 83.87
500ma	£2.20	50 mA A.C. 28.20
$1 \mathrm{amp} . .$.	22-20	100mA A.C.* $22-20$
5 amp.		$200 \mathrm{~mA} \mathrm{A.C.*} 28.20$
10 amp	22.20	$500 \mathrm{~mA} \mathrm{A.C.*22-20}$
$15 \mathrm{nmp} . .$.	22-20	1 amp A.C.* 82.20
20 mmp . . .	22.20	5 mmp. A.C.* $22-20$
30 amp . \cdot.	$52 \cdot 30$	10 amp A.C. ${ }^{\text {\% }}$ 22-20
30 amp. .	£2-60	20 mmp A.C. ${ }^{\text {c } 22-20}$
5V. D.C.	42-20	$30 \mathrm{mmp} . \mathrm{A} . \mathrm{C} . *$ ¢2. 20

\section*{*MOVING IRONALLOTHERS MOVING COIL Please add postage
 SEW EDUCATIONAL METERS
 Type ED. 107 . Size overall 100 mm 0mm $\times 108 \mathrm{~mm}$. Auality moverg instruments moving coil for school exper ments and other bench applications $3^{\prime \prime}$ mirror scale. The

easily accesilble to neter movement ts easily accessible to iemonstrate internal
 | 50山A 55.00 | 20 V d.c. |
| :---: | :---: |
| 100 1 A $\mathbf{5 4 . 6 5}$ | 50 V d.c. |
| 1 ma 84.40 | 300V d.c. . . . 44 |
| $50-0-50 \mu$ A . . . 84.65 | |
| 1-0.1mA..... 84.40 | Dual range |
| 1Ad.c. $\$ 4.40$ | $500 \mathrm{~mA} / 5 \mathrm{Ad.c} 24 \cdot$ |
| 5A d.c. 24.40 | $5 \mathrm{~V} / 50 \mathrm{~V}$ d.c. . . \& 4.6 |
| 10V d.c. $\mathbf{4 4} 40$ | |

 , 10 amp . Resistance: $2 \mathrm{~K}, 10 \mathrm{~K}$ +85 dB. $212 \cdot 50$. P. 171
TMK MODEL TW-20CB FEATURES RE SETTABLE OVERLOAD BUT TON. बensitivity: $20 \mathrm{~K} \Omega /$ Volt D.C. D.C Volt A.C
.C. Volts: $0-0.5,2 \cdot 5,10,50,250$, $250,1,000 \mathrm{~V}$. D.C. Currents: 0.0 .05 , $5,5.50,500 \mathrm{~mA} .10 \mathrm{amp}$ Registance: $0.5 \mathrm{~K}, 50 \mathrm{~K}, 0.500 \mathrm{~K}$ 11.50. P. \& P. $\mathbf{1 7 1 \mathrm { p }} \mathbf{2 0}$ to +52 bB

ROUND SCALE TYPE PENCIL TESTER MODEL TS. 68

Completely portable, simple to use pociret sized tester.
Ranges $0 / 3 / 30 / 300 \mathrm{~V}$ Ranges $0 / 3 / 30 / 300 \mathrm{~V}$ AC Resistance $0-20 \mathrm{~K}$ ohmis. ONLY 21.97 P. d P. 13p TME MODEL 117 F.E.T. ELECTRONIC attery operated Battery
11
megers
input, 26 rangeg. Large 417 mirror seale. Size
 1200V. AC VOLTS $3-300$ V RMS. $800-$ 800V P-P. DC CURRENT - $12-12 \mathrm{MA}$. Kenistance 51 db Complete with leads/iustructions. £17.50, P. \& P. 20p.

TE-40 HIGH SENSITIVITY A.C. VOLTMETER

10 meg. input 10 ranges:
$01 / \cdot 003 / 1 / 3 / 1 / 3 / 10 / 30 / 100 /$ $01 / \cdot 003 / \cdot 1 / \cdot 3 / 1 / 3 / 10 / 30 / 100 /$
300 V. R.M.8. $4 \mathrm{eps} .-1-2 \mathrm{Mc/s}$. Deeibels -40 to +50 dB . Supplied brand new complete Operation 230 V. A.C. 217.50 . Carr. 25p.
TE22 SINE SQUARE WAVE AUDIO GENERATORS

Sine: 20 cps to 200 sc/s on 4 bands. square: 20cps to
$30 \mathrm{kc} / \mathrm{s}$. Out put impedance 5,000 obms, $200 / 250 \mathrm{~V}$. Supplied brand gew and guaranon manual and leads. 217-50. Carr. 37ip. TE-20RF SIGNAL GENERATOR ing $120 \mathrm{kc} / \mathrm{s} \cdot 260$ Mc/s on 6 bands .
Direct Directly calibrated variable R.F. at$200 / 240 \mathrm{~V}$ Aperation 200/240V A.C. Brand new with in
truction. P. \& P. 37tp. 8.A.E P. \& P. 37 ip. 8.A.E. TRANSISTORISED L.C.R, A.C. MEASURING BRIDGE

bridge oftering excellent range and cost. Ranges: R. $1 \Omega-11 \cdot 1$ meg Ω
6 Ranges $\pm 1 \%$ $1.1 \mu \mathrm{H}=112$ HENRTS 6 Ranges? $=\%$ O 10 pF t 1110 mF 6 Ranges $\pm 2 \%$. TURNS RATIO $1: 1 / 1000$ $1: 11100$. 6 Ranges $\pm 1 \%$. Bridge voltage at Meter indication, Attractlve 2 tone meta case. Size $71 \times 5 \times 2 \mathrm{in} . £ 20$, P. \& P. 25p

EDGWISE METERS

Type PE.70, 3 17/82in. $\times 1$ 16/3kin.

SEMI-CONDUCTORS/VALVES

ALL DEVICES ERAND NEWAND FULLYGUARANTEED

RECORD DECKS

B.S.R.

Mini Monot $£ 4.87$ Cl29
MP60 MP6
610 10.75
$\mathbf{~} 144.65$ 210 810 MP60 T.P.D. 2 810 T P D. 516.85 10 T PDI 218.75 -10 Package* H.T. 70 E15.55 H.T. 70 Package TEORENS
TD125 TD125AB TBl50AII 88.70 TD150ABII $834 \cdot 50$ Als other models less Cartridge All other models less Cartridge

RECORD DECK

RECORD D

Decks suppllet
ready wired in
plinth and cover
atted with cart-
ridge. Garrard

2025 T/C with Sonotone GTA IICD farrard SP25 Sonotone 9TAHCD Garrard SP25III Goldring G80 farrard AP76 Goldring G800 Goldring GL69/2 Goldring G800 Goldring GL75 Goldring G800 Goidring GLi5 Gohlring G800E

213.85
115.05
218.95
289.95
221.00
237.5
248.5
248.8

SPECIAL

PURCHASE

Brand new 18" 100 watt peakers. Made by Celeation 5 cps hass resonance Limited stock only.
$£ 13.95_{\text {catr }}^{\text {cation }}$

SINCLAIR EQUIPMENT Project 60. Package offers

0 全

- $₹ \mathbf{Z 3 0}$ a mplitter, steren 60 pre-amp, PZ5 power nupply. $£ 16.75$ Carr. 37 力p. Or with
 ampliffer, stereo 60 pre-amp, PZ8 puwer upply. 20025 . Carr, 37 fp .
Transforiner for PZ8. es.97 extra.
Add to any of the above $84-87$ t for actwe Alter to say 813.90 ior pir of 016 spenkers. Alter unit and 213.80 for pair of Q 16 speakers. roject pill 2000 Amp 828.75 Carr. 37 kp ; 3000 Ainp £31.50 Carr. 37tp.: Neoteric Amp $£ 43.95$ EW PROJFCT $605-£ 20$ Car. 37 IC10/IC1 $£ 2.50$

LATEST CATALOGUE

Our new 6th edition gives full detaits of a comprehenalve range of HENT COMPONRNTE, TEST FQUIPHENT AD COMMUNICATIONS EOUIP MENT ald CO\&MUNICATION\& EQUPP
MENT. FREE DTGCODNT COUPONS
VALUE 50p

TO. 3 PORTABLE OSCILLOSCOPE 3in. tube. Y amp. Sensitlv-
ity $0 \cdot 1 \mathrm{v}$ p-p/CM. Band-

RPE14 REGULATED POWER SUPPLY
1 amp. Dual scale meter to monitor volt
width 1.5 cps- 1.5 MHz X aput imp. 2 maeg Ω sensitivity 0.9 v . d -p/CM. Bandwidth 1.5 cps -800 KHz . Input Imp. 2 meg $\Omega 20 \mathrm{pF}$. Time base ranges 10 cps- 300 KHz shehronization. Interna external. Illuminated scale $140 \times 210 \times 33$ mm . Weight 15 lb . $220 / 240$ V. A.C. Supplied and new with handbook. 237-50. Carr. 50
RUSSIAN C1-16 DOUBLE BEAM OSCILLOSCOPES 5. MHz Pass Band. Separate Y1, Y2 ampliflers. Calibrated triggered sweep from - 2 sec to 100 milli sec/cm. Supplied complete witb all
instructions $£ 87$. Carr. paid.

BELCO AF-5A SOLID STATE SINE SQUARE WAVE C.R. OSCILLATOR Sine $18-200,000 \mathrm{~Hz}$: Square $18-50,000 \mathrm{~Hz}$

TE15 TRANSISTORISED

Six ranges. $440 \mathrm{Kc} / \mathrm{s} .-280$ Mc/a. Operater on 9v. battery, P. \& P. 173 p .

TEIII. DECADE RESISTANCE ATTENUATOR Variable range 0-

Unbalsnced T and
 PS. 1000 B REGULATED POWER SUPPLY

or 12 volt DC up 6, or 12 Volt DC up to 3 current. Input $220 / 240 \mathrm{~B}$ AC. Bize $4^{\prime \prime} \times 3 f^{\prime \prime} \times{ }^{8}$
111.97. P. d P. 25 p .

UFR-30 RECEIVER

- Bands covering $550 \mathrm{kt} / \mathrm{s}-30 \mathrm{mc} / \mathrm{s}$. B.F.O. uilh instuctions f15-75. A.C. 3r LAFAYETTE RA.600 SOKD STATE RECEIVER
eneral corerage $150-400 \mathrm{kc} / \mathrm{s}$, 35 n $\mathrm{kc} / \mathrm{s}-30 \mathrm{mc} / \mathrm{s}$. FET ront end. 2 mech. detector, product ter, 8. Meter, Bandapread. RF Gain. $15^{*} \mathrm{I}$ ter, 8 . Meter, Bandapread. RF Gain. 15^{*} I
$98^{\circ} \times 8^{2-}, 18$ lbs. $220 / 240 \mathrm{v}, \mathrm{A} . \mathrm{C}$. or 12 v. D.C 9\%
Brand new with instructions. ©45. Cart. 801 y

CRYSTAL CALIBRATORS NO. 10

Small port controlled wavemeter
 (6) F . $\mathrm{Kc} / \mathrm{s}-10 \mathrm{Mc} / \mathrm{s}$ (up to Me/s on hatmonies). Calibrated dial. Power requirements 300 V . D.C 15 mA and 12V D.C. 0.3A. Excellent condi tion. 24.472. Carr. 37ip.
HELICAL POTENTIOMETERS ITT MCPMIS 10 TURN $2 \frac{1}{2}$ WATTS A vailable $500 \mathrm{obm}, 1 \mathrm{~K}, 5 \mathrm{~K} \mathrm{obm}$. $81 \cdot 25$ each P. \& P. 15 p
B.C. 221 FREQUENCY METERS latest release $125 \mathrm{KHz}-20 \mathrm{MHz}$. Excellent condition. Fully tested and ehecked and complete with callbrator charts.
$287-50$ each. Carr. 50 p.
SOLID STATE VARIABLE A.C. VOLTAGE REGULATORS Compact and pane
 ounting. Tieal for con rol of lamps, drills Input 230/240w. A.C Output continuoualy variable from $20 \mathrm{v}-230 \mathrm{v}$ Hodel MR 2305 5 amp Hodel MR 231010 amp 90 I 68 y 60 min E11.974. Postage 121p.

AUTO TRANSFORMERS
$0 / 115 / 230 \mathrm{~V}$. Step up or step down. Fully

POWER RHEOSTATS

High quallty ceramic construction. Windings embedded in vitreous enamel. Heavy duty brush wiper. Continuous rating. Wide range x-stock. Single hole fxing, in, dia. shats. 50 WATT. 10/25/50/100/250/500/1000/2500 or $\$ 000$ ohnis, $£ 1$ - 05 P. \& P. 71 p. 100 WATT, $1 / 5 / 10 / 25 / 50 / 100 / 250 / 600 / 1000$ or 2500 obms, $£ 1$-371 P. \& P. 7 \&
"YAMABISHI" VARIABLE VOLTAGE TRANSFORMERS

$\begin{array}{r}8-280 \mathrm{~B} \text { Panel Mounting } \\ 1 \mathrm{Amp} \\ 8.00 \\ \hline \mathrm{Amp}\end{array}$ Amp $\quad 18.0$ Please add postage INPUT 230 VOLTA,
OUTPUT VARIABLE
Bpecial discounts for quantlit THEORY.

CONTACT MADE

First, we wish to thank all who have written and commented on our new publication. The friendly and congratulatory remarks will encourage all those concerned with the production of Everyday Electronics to ensure it fulfills our declared intentions. The various suggestions and advice offered, and yes the critical (yet generally pertinent) comments, will all be given consideration. Some will undoubtedly make their mark on our pages in the course of time.
There is just one little point to emphasise at this stage. There is a limit to what we can fit into any single issue, so have patience please if your particular special requirement has not appeared so far. Everyday Electronics is, after all, still very young: although (we admit with some pleasure) the warm and familiar manner already adopted by many of our correspondents tends to belie this fact.

fULL CYCLE

One of our readers remarks that electronics appears to have turned a complete cycle, since we are back again to dry batteries. One could, in fact, look back a stage further and recall that radio or "wireless" reception relied on the solid state crystal. So, strange as it may seem to some, there is in a sense a similarity between the primitive equipment used in those far off days and the highly developed devices employed in the advanced technology of today.
Back once more to batteries; the possibility of operating transistors and other semiconductor
"crystal" devices from low voltage supplies is of course one of the reasons why modern electronics has acquired a wide popular appeal as a constructive pastime.

GROWTH AREA

While thinking figuratively of turning full cycle, the vast growth in coverage and influence that has taken place over the years must not be overlooked.
The current situation is vastly different to those ancestral days when radio was the one and only useful function performed by electronics, outside the physicist's laboratory. Nowadays, the area embraced by electronics is tremendous in extent-practically boundless in fact-and is conveniently divided into a number of fields of specialised activity. It is our intention to explore in time as many of these different fields as possible-bearing in mind, of course, the limits we have set ourselves in terms of technical complexity and material cost.

CHEERS!

Finally, we take this opportunity to wish all our readers-young or old, novice or old hand, including bottle reared types now undergoing conversion to solid state-a Merry Christmas and a happy and constructive 1972.

M. KENWARD

- B. W. TERRELL B.Sc.

ADVERTISEMENT MANAGER D. W. B. TILLEARD

[^1]
EASY TO CONSTRUCT SIMPLY EXPLAINED

VOL. I NO. 3

JANUARY 1972

CONSTRUCTIONAL PROJECTS

TEMPERATURE COMPARATOR For measuring temperature changes in liquids by D. Bollen 134
TRANSISTOR-MICROPHONE Crystal type with "long lead" by T. A. White 140
ASTRON RECEIVER A simple transistor radio in unusual case by M. A. Rambout 152
ELECTRO LAUGH Have "fun" with this ingenious device by Gerry Brown 158
GENERAL FEATURES
EDITORIAL 132
RUMINATIONS by Sensor 138
SHOP TALK This month's constructionals by Mike Kenward 139
ELECTRONICS AND THE MUSIC SCENE by B. W. Terrell 144
TEACH-IN Part 3: Resistance and colour code by Mike Hughes 148
MEMORY STORE Retrieval by John Watt 161
READERS' LETTERS 162
COMPONENT BUYING AND SUPPLYING Port 3: The Contributor by A. Sproxton 166

We welcome your views and suggestions concerning Everyday Electronics, and this month we publish a selection of readers' letters. If you write to us for advice please note you must include a s.a.e.
Unfortunately we cannot prepare special designs, circuits or wiring diagrams, nor can we answer technical queries over the telephone, or queries concerning commercial equipment or subjects or designs not discussed in our pages.

VERY small fluctuations of temperature, such as occur in fish tanks, in photographic solutions, and in thermostatically controlled rooms, are quite difficult to observe with an ordinary thermometer. The concern here is not so much with accuracy as sensitivity.
A highly accurate mercury thermometer covering 0 to 40 degrees Centigrade would be incapable of measuring increments of, say, $0 \cdot 1$ degrees C unless it had a stem several feet long and even then would suffer from an appreciable thermal lag.

The electronic expanded scale thermometer described here was designed to offer a high sensitivity at low cost, and can measure shortterm temperature changes as 0.01 degree C. Deviations from any pre-selected temperature

Fig. 1. Shows the basic theoretical circuit diagram of the comparator

between $0-40$ degrees C are displayed on a centre zero meter, with three switched ranges covering $0 \cdot 1-0-0 \cdot 1$ degrees $C, 1-0-1$ degrees C, and $10-0-10$ degrees C. The coarse range is useful for quick checks of relatively large temperature differences, in a glasshouse for example.

THERMISTOR SENSOR

In the basic circuit of the thermometer, Fig. 1, a thermistor sensor (RTH1) and a variable resistor VR1 form a voltage divider across the battery supply rails. Over a limited range of temperature, and for differing settings of VR1, the voltage across the thermistor will vary linearly, and inversely with temperature at a rate of approximately 100 mV per degree C.

BASIC CIRCUIT

The basic circuit diagram shown in Fig. 1 operates as follows: at a selected temperature VRl is first adjusted to make the voltage present at the base of TR1 equal to that of TR2, and thus gives zero volts between the collectors of the two transistors. Subsequently, any small change of thermistor temperature will produce a voltage change at the base of TR1, which will be amplified by TR1 and TR2 and displayed by the meter. Circuit amplification is determined by R1, hence this resistor can be selected for the required full scale temperature reading.

thermometer circuit

The complete circuit diagram of the thermo-

Fig. 2. The complete circuit diagram of the comparator with plug-in probe.

Shows the component board mounted on the back of meter.
meter is shown in Fig. 2. VR1 and VR2 provide fine and coarse adjustment of the initial voltage across thermistor RTH1, and circuit parameters are arranged to yield an input resistance of approximately 10 kilohm at the base of TR1. Hence, switched values of 100 kilohm and 1 Megohm, for R1 and R2 respectively, will offer decadal gain steps. Although this method of range switching is not particularly accurate, it is at least simple and does allow the instrument
to be calibrated on its 10 degree C range against an ordinary thermometer.

Meter MEl in Fig. 2. is protected against severe overloads when the circuit is unbalanced by the limiting diodes D1 and D2. Variable resistor VR3 in series with the meter is used to calibrate the thermometer.

CONSTRUCTION AND WIRING

To keep construction as simple as possible, the circuit panel used is a piece of plain, $0 \cdot 1$ inch matrix perforated s.r.b.p. (synthetic resin bonded paper), measuring $2.2 \times 2 \cdot 5$ inches, with terminal pins, and all components and interconnecting wiring links are on one side only, see Fig. 3.

Cut the panel to size and drill two holes to fit the meter terminals, then insert all terminal pins and solder resistors, VR3, links, and panel leads in position. When the panel has had a few minutes to cool down, solder the two transistors and the pair of diodes to their terminal pins, taking care not to overheat them.

Front panel drilling details are given in Fig. 4. After drilling and lettering the panel, mount S1, S2, VR1, VR2, SK1, and meter ME1. Bolt the circuit panel to the back of the meter complete with solder tags.

Commence wiring by soldering the appropriate leads from the circuit panel to the meter terminal solder tags. A general wiring diagram is given in Fig. 5. Ensure that the wires to potentiometers VR1 and VR2 are connected as shown, so as to give the correct rotational "sense" when zeroing the meter.

Components....

Resistors

R1 $100 \mathrm{k} \Omega \frac{1}{2}$ watt metal oxide $\pm 2 \%$
R2 $1 \mathrm{M} \Omega \frac{1}{2}$ watt metal oxide $\pm 2 \%$
R3 $4 \cdot 7 \mathrm{k} \Omega$
R4 $22 \mathrm{k} \Omega$
R5 $1 \mathrm{k} \Omega$
R6 $4 \cdot 7 \mathrm{k} \Omega$
R7 $3.3 \mathrm{k} \Omega$
R8 $1 \mathrm{k} \Omega$
All $\frac{1}{2}$ watt carbon $\pm 10 \%$ unless otherwise stated

Transistors
TR1 BC108 Silicon npn
TR2 BC108 Silicon npn
Diodes
D1 OA200
D2 OA200

Thermistor

RTH1 VA 1005 (or R.S. Components Ltd., TH2A)

Potentiometers

VR1 470Ω carbon linear
VR2 $50 \mathrm{k} \Omega$ wirewound
VR3 $10 \mathrm{k} \Omega$ skeleton preset

Miscellaneous

ME1 $100-0-100 \mu \mathrm{~A} 1 \mathrm{k} \Omega$ internal resistance meter
S1 Single pole three-way wafer
S2 Single pole on-off toggle
BY1, BY2 PP1 (2 off, 6V each)
SK1 Two-way socket with plug
Piece of s.r.b.p. $2 \cdot 2 \times 2 \cdot 5$ inches

Fig. 4. (left) The dimensions of the front panel which can be made from aluminium sheet or formica.

Fig. 5. (bottom left) The wiring and components on the rear of the front panel. Note the wiring to potentiometers VR1 and VR2

The assembled remote temperature comparator in case complete with probe.

As a preliminary check that the circuit is functioning, insert the thermistor wires into SK1 and connect the battery leads to a 12 V supply. It should be possible to zero the meter with VR1 and VR2 at each of the three settings of S1. The meter pointer should rise when the thermistor is warmed by the fingers.

THERMISTOR PROBE

Details of a thermally insulated probe are given in Fig. 6, where the thermistor is mounted at one end of a length of glass tubing which is in turn retained in a hand grip made of expanded polystyrene. Both glass and expanded polystyrene are very poor conductors of heat.
If the probe is to be used for measuring temperature changes in liquids, the thermistor should be given a liberal coating of polystyrene cement to render it completely impervious.

CALIBRATION

Allow time for soldering heat to be dissipated before attempting to calibrate the thermometer. Set VR1 and VR3 to mid-track, and Sl in the 10 degree C position. Place the thermistor probe close to the bulb of a centigrade thermometer on a table and zero ME1 by means of VR2.

A convenient source of heat for calibration purposes is an adjustable reading lamp fitted with a 60 or 100 watt bulb. Position the lamp about two feet above the thermometers and leave it switched on until the standard thermometer indicates a rise of 10 degrees C. Allow a minute or so for readings to settle down, then adjust VR3 for full scale deflection of ME1. If necessary, switch the lamp on again to maintain the 10 degree C rise above ambient.

Ruminations By Sensor

Speedy Fido

My homeward route takes me through an area where terraces of small nineteenth century cottages, each with its yard wide strip of garden, crowd to the edge of the road.
As I drove southwards, one evening, the sun was setting behind the cottages and I became aware that a car approaching from the opposite direction was being driven by a large yellow dog. My feelings of astonishment and fear were soon allayed when I saw that the car, although travelling fast, was well under control. The dog sat erect and alert in his seat, swaying gently as the car followed the bends in the road.

Reassured, although .. still curious, I watched the dog-driven car and as our vehicles passed each other I saw that the car was a left-hand drive model with a
human driver at the wheel. I had not seen him earlier because the right hand side of the road was in shadow, although the dog, sitting up in the right hand seat, was clearly visible.

Well, I thought, "Why shouldn't dogs drive cars?" They can be taught to lead the blind and to herd and pen sheep, perhaps they could be taught to drive! A dog's intelligence is somewhat limited, but then, we have all met human drivers who appear to suffer from the same disability.

Dogs appear to be less aggressive, less competitive, less arrogant and therefore potentially safer drivers than men. It might be argued that a driving dog whose attention is distracted by the scent of a bitch could cause a very dangerous traffic situation -this is true; but men in similar situations are equally dangerous to other road users!

Master and Slave

I read recently that a system has been devised which will prevent the starting of a vehicle to which it is fitted, if the seat belts of the driver and front seat
passenger are not worn correctly. Contacts beneath the front seats and in the buckles of the belts, together with an ultra sonic transmitter and receiver, ensure that the ignition cannot be switched on, when the seats are occupied, until the belts have been fastened correctly. The ultrasonic transmitter is positioned within the belt such that the receiver is only activated when the seat belt is in its correct position. Provision is made for manœuvering, at slow speeds, without seat belts, and a delay mechanism prevents the ignition switching off immediately should the belts be unbuckled whilst the car is moving.
The idea fills me with dismay. 1 normally wear my safety belt, I find it comfortable and comforting. My seat belt is the "automatic" type which allows the wearer to move freely and only locks when the car is accelerated or decelerated rapidly.
I wouldn't mind an electronic "watchdog" reminding me to fasten the belt (I do forget sometimes) but I rather resent the role of slave to an inanimate

Transistors

W E have received some enquiries about the coding of 2 N 2926 transistors. There are three types Green (G), Orange (0), and Yellow (Y) and the prices can vary by relatively large amounts, some suppliers sell all three types at one price while others charge more for Green types. The only difference between them is the gain, the Green are the best, then Orange and lastly Yellow. In applications such as the Snap Sequence Indicator (November 1971 issue) any type can be used, in some applications the Green type must be used. If we do not give a specific type buy the cheapest-or Green if they are all the same price. If we quote Orange then Green or Orange will suit but Yellow may not work.
Having said something about component buying in general, let us now get down to specific problems arising from this issue.

Astron

After looking through all the adverts, and all the catalogues that we have been sent we can only find one supplier of the tuning capacitor for the Astron and that is Home Radio. The price is rather high and if you find another supplier you may be able to undercut our approximate cost.

Diodes for the Astron may also prove difficult, Davian Electronics, P.O. Box 38, Oldham, Lancs., can supply at a very competitive price. One other buying problem could be the loudspeaker, however you do not have to use that

specified, any 35 ohm loudspeaker will do provided it is not bigger than the one given.
Perspex buying may be difficult in some areas, we managed to buy ours from a small sign making firm. They cut the pieces to size and sold us a small bottle of chloroform to glue it all up with. You will just have to hunt around for your nearest supplier or buy the kit from Kaspex, 16 Seymour Road, Tilbury, Essex.

Remote Temperature Comparator

Few buying problems with the P.emote Temperature Comparalor, the glass tube will probably be more difficult to get than any of the components. We get Biro pen refills in glass tubes and these would be good for the job if the closed end were carefully cut off. If you cannot find a source of tube then a chemist may be able to help. As a last resort thin Paxolin tube could be used.

Electro Laugh

Unusual though the Electro Laugh is the components are all readily available. Main point to watch on this one is the price of the transistors, because there are a number of them in the circuit any slightly high priced will push up the cost of the project beyond reason. We have given no case details as the unit could be incorporated in other equipment (as an alarm) or encased in any way required.

Transistor-Microphone

The only problem we can forsee with the Transistor-Microphone is not concerned with the electronic component buying but with obtaining the Paxolin tube used for the handle. If you cannot find a supplier write to Home Radio. You could also use Paxolin tube for the insert and preamp housing -the 1^{3} g inch size should be suitable.

It is important to use a miniature horizontal type skeleton pre-
set for the microphone as this fits on the board and is clear for adjustment-vertical types are not easy to adjust due to other components getting in the way.

New Products

Three new products that may interest you have appeared in the office this month, first, a GrooveKleen from Bib (shown above). This record cleaner is chrome finished, has a pre-set balance weight and a self adhesive stand. Complete with a brush for cleaning the dust roller, the cleaner costs $£ 1 \cdot 99$.

Also from Bib is a 36-page booklet entitled $\mathrm{Hi}-\mathrm{Fi}$ Stereo Hints and Tips by John Borwick, B.Sc. (technical editor of The Gramophone). This booklet deals with the installation, care and use of hi-fi equipment and costs 25 p, available from audio dealers and newsagents.
Having mentioned an iron stand last month and shown it with an Adcola Products Invader soldering iron we have now been sent information on a stand specially made for the Invader iron. Shown below, the stand has a nonslip rubber base and integral bit wiping sponge. Price for this portable stand that can also be used with other irons is $£ 1 \cdot 49$.

Crystal and high impedance dynamic microphones cannot usually be used with long leads unless a transformer of some description is inserted, since hum and noise pickup is high. A miniature transformer, however, is expensive, especially when high fidelity is required.

This article describes a method whereby such a microphone may be used at long distances from equipment with which it is to be employed. A microphone pre-amplifier is fitted at the microphone end which acts as an impedance transformer (high to low), whilst also providing useful voltage gain.

This circuit is unusual in that the power for the pre-amplifier is obtained from the main equipment and is fed along the same coaxial
lead as used for transmitting the signal from the microphone to the main amplifier.

PRE-AMP SUPPLY

The principle of operation is shown in Fig. 1. First let us consider the d.c. power supply to the pre-amplifier; this is derived from the main amplifier power supply, through the centre conductor to the positive terminal of the preamplifier. Resistors R_{a} and R_{b} determine the voltage supplied to the pre-amplifier.

Therefore, if the pre-amplifier takes a current $I \mathrm{amps}$, then the voltage reaching the pre-amplifier is given by :-

$$
\begin{equation*}
V_{\text {pre-amp }}=V_{\mathrm{s}}-I\left(R_{\mathrm{a}}+R_{\mathrm{b}}\right) \tag{1}
\end{equation*}
$$

where V_{s} is the supply voltage.
The pre-amplifier described here was designed to operate with a 10 V supply. The current required is 2 mA .

If the voltage tapping on the main amplifier is V_{s} and we make R_{a} equal to R_{b}, equation (1) reduces to:-

$$
R_{\mathrm{a}}=R_{\mathrm{b}}=250\left(V_{\mathrm{s}}-10\right) \mathrm{ohms}
$$

It must be stressed at this point that this particular method of obtaining the power supply from the main amplifier should only be used with low voltage transistor amplifiers with a maximum voltage tapping of 50 V .
The prototype was designed for use with a Baily amplifier which has a 20 V tapping. Any transistor amplifier with a similar supply may be used.
Therefore, with a 20 V supply, $R_{\mathrm{a}}=R_{\mathrm{b}}=2.5$ kilohm
Since the supply to the pre-amplifier is not critical $2 \cdot 2$ kilohm was used for R_{a} and R_{b}.

To understand how the signal gets through to the power amplifier we must take a look at Fig. 2. Since both R_{a} and R_{b} are decoupled, they appear as extra loads on the pre-amplifier output. In other words, instead of just R_{L} (the input resistance of the main amplifier) loading the pre-amplifier, R_{a} and R_{b} also appear, in parallel.

It is obvious that these must not load heavily; in other words each resistor (R_{a} and R_{b}) must not be less than 2 kilohm. The signal voltage developed at the output of the pre-amplifier still appears at the input of the main amplifier, merely by travelling along the centre conductor as usual.

CIRCUIT

The pre-amplifier circuit is shown in Fig. 3.

Approximate cost of components

$\left\{\begin{array}{l}\text { 강 } 1.70 \text { inclusive }\end{array}\right.$

Components....

Resistors

R1	$100 \mathrm{k} \Omega$
R2	$100 \mathrm{k} \Omega$
R3	$1 \cdot 5 \mathrm{M} \Omega$
R4	$15 \mathrm{k} \Omega$
R5	100Ω
R6	$1 \mathrm{k} \Omega$
R7	$1 \mathrm{k} \Omega$
R8	470Ω

$\mathbf{R}_{\mathbf{a}}, \mathbf{R}_{\mathrm{b}}$ See text
All $\frac{1}{4}$ watt $\pm 10 \%$ carbon

Capacitors

C1	$0.05 \mu \mathrm{~F}$ ceramic
C2	$100 \mu \mathrm{~F}$ elect. 6 V
C 3	$100 \mu \mathrm{~F}$ elect. 6 V
C 4	$25 \mu \mathrm{~F}$ elect. 12 V
C 5	$160 \mu \mathrm{~F}$ elect. 12 V
C6	$160 \mu \mathrm{~F}$ elect. 50 V (See text)

Transistors
TR1 2N2926 (G) silicon npn
TR2 2N3702 silicon pnp
Potentiometers
VR1 $1 \mathrm{k} \Omega$ horizontal skeleton preset

Miscellaneous

MIC 1 Microphone insert (Acos), 0.1 inch matrix Veroboard (10×14 holes), $\frac{3}{4}$ inch diameter Paxolin tube, screened cable, sheet aluminium

It is simply a high impedance input two-stage amplifier having a variable voltage gain, from 1.5 to 10 ; this is varied by VRI and is useful where the sensitivity of the microphone may vary. As drawn, the circuit is suitable for crystal microphones or ceramic cartridges.

If the pre-amplifier is to be used for matching magnetic pick-ups, tape heads or dynamic microphones the input must be modified as shown in Fig. 4.

If to be used with an amplifier which has a stabilised supply as the prototype was, C6 is not required. However, for unstabilised supplies this will be necessary.

COMPONENT ASSEMBLY

The complete circuit is built on a piece of

Fig. 1. Shows how the power supply for the preamplifier is obtained from the main amplifier.

Fig. 2. Schematic diagram indicating additional loads on the pre-amplifier output.

Fig. 3. The circuit diagram of the pre-amplifier. Also shown are the base connections of TR1 and TR2.

TRANSISTOR MICROPHONE

Fig. 5. (left) The layout on the top side of the Veroboard with (below) regions of copper strip to be removed.

Fig. 6. (above) The cylindrical microphone head with "unrolled" dimensions.

Fig. 7. Cross sectional view of the complete transistor microphone.

Fig. 4. Circuit diagram of the modification to be made at the input for matching to magnetic pick-up, tape head or dynamic microphone.
$0 \cdot 1$ inch matrix Veroboard (10×14 holes). The layout of the components is shown in Fig. 5. Note that most of the components are mounted on their ends; this has been done to limit the overall size of the board so that the microphone head is as small as possible.

All components should be soldered in position on the top side of the Veroboard as shown. The transistors should be the last components to be mounted and a heat shunt should be used on the leads when soldering them in position. Before soldering TR1 and TR2, refer to the lead connections given in Fig. 3. to check that they are correctly mounted.

Also, be careful when soldering the leads to the crystal insert as too much heat may damage the crystal.

It is important to use screened cable for the output from the pre-amplifier, otherwise a lot of interference will be picked up.

CASE

The transistor-microphone is shown in Fig. 7 in cross-section. The top cylindrical part is made from a piece of 1_{16} inch aluminium sheet, dimensions $5 \times{ }^{15}$ g inches which is bent as shown in Fig. 6. and glued in position. The Paxolin tube is then pushed through the hole and held in position with Araldite as is the small metal washer at the other end of this tube.

ASSEMBLY

Begin to assemble by threading the screened cable through the Paxolin tube and then fill the tube with small pieces of foam rubber. Next line the inside of the cylinder and base with insulating tape and place the component board in position as shown in Fig. 7. Fill with more foam rubber.

The insert should then be placed in position and secured with glue. The transistor microphone is now complete and ready for connection to main amplifier.

Finally the circuit may also be used for high impedance transducers, the response of the pre-amplifier going well beyond the audio spectrum.

Invaluable to the motorway driver-prevents "dozing" at the wheel.

Waa-Waa Pedal

Add excitement and sound variation to your music-simply built with CIR-KIT.

Another popular method of circuit construction fully explained in

Stick Down
 All in the February Issue
 5

ELECTRIC GUITAR

The application of electronics to "pop" music-musical instruments and special effects devices

How many people, when they are listening to a piece of music either on the radio, record player, tape recorder, or live performances, realise the extent to which electronics plays in bringing this music to them.

Without electronics, modern-day "pop" music would not exist, for it is from basic electronic principles that these "new" sounds are derived.

Musical sounds relying almost entirely on electronic principles and theory really only started in a big way back in the "mid-fifties", with the introduction of the solid "electric" guitar. The sound produced by this instrument caught on immediately and was an overnight success with the younger generation of this time-and still is with present-day teenagers although the overall sound has become more sophisticated with the addition of special effect devices to be described in this article.

It is true to say that electronics and its application to the musical field has played a major role in shaping the music we hear today. It is fair to say that electronics has revolutionised modern-day music, and in the future will play an even bigger part both in existing sounds and creating totally new ones.

Without doubt the "electric" guitar has become one of the most (if not the most) popular musical instruments. Although tuned in the same way as an ordinary acoustic guitar, having similar string length and fretting arrangement, the sound produced is vastly differenta much smoother and at the same time, harder, more solid, sound is produced with a wide range of tone.

Now all electric guitars have situated below the strings a magnetic pick-up which consists of a central magnet located under each string with copper wire (many turns) wound around this magnet. When the steel strings are plucked and caused to vibrate, the steel, being magnetic, affects the magnetic field around the string causing a current to flow in the copper coil (conductor). This current (signal) as then passed to an amplifier where it is made more power-ful-powerful enough to drive a loudspeaker.
Interposed between the pick-up and amplifier there is usually a tone and volume unit, the volume being nothing more complicated than a potential divider, while the tone control is a little more involved. A typical tone circuit merely provides a control over the amount of bass and treble that is required. A full tone circuit usually has both treble boost/cut and bass boost/cut.

For convenience, these controls are located on the guitar itself, and are separate and additional to those incorporated in the main ampli-

AMPLIFIERS

All electric guitars and other electronic musical instruments need an amplifier of one sort or another to enable them to be heard.

The amplifier is the most used piece of electronic circuitry in the modern music field. Without it hardly anybody would be able to hear what is being played. It is an absolutely essential piece of equipment when playing to an audience, whether for amplifying an "electronic" sound, or amplifying conventional musical instruments such as acoustic guitar, violin, piano or trumpet via a microphone.

A typical amplifier in use on the "pop" scene today. It can deliver up to 100 watts. There are six independent inputs with individual treble/ bass controls and two of these inputs have built-in "reverb" units.

TREMOLO/VIBRATO

The tremolo and vibrato units were of the very first "special effects" devices to be devised, and they are often confused with one another because they produce very similar sounds. Nowadays they are nearly always incorporated in power amplifiers designed for "pop" work.

The electronic principle evident in both of these devices is that of modulation, that is to say, the signal produced by the musical instrument is mixed with the output from a lowfrequency oscillator whose amplitude (vibrato) or frequency (tremolo), can be varied. The sound produced in both cases is a low frequency regular pulsating effect superimposed on the signal, which is both pleasant and melodious.

Most tremolo units also incorporate the vibrato effect as well, and the two controls found on this unit are marked "depth" and "speed" and can be used in any combination to provide the desired effect. The depth control varies the amplitude of the oscillator output, while the speed control alters the frequency.

ECHO CHAMBER

Another "effectual" box that falls into the same general category as the above is the echochamber. This electro-mechanical instrument had its heyday with the music played by such groups as the "Shadows" and at the time was
extremely popular. It sounds novel, and as its name implies, produces an echo (or echoes) a short time after the original signal has been played, each successive echo being attenuated.

The idea is fairly simple, but its design and operation are quite involved. Its operation relies on the technology of the tape recording industry since in effect it is a small magnetic tape recorder but with a difference-the tape used takes the form of a small loop about 1 foot in circumference and there are several playback heads set specific distances apart. Basically what happens is that the input signal is recorded on to the tape by the record head of the machine, and then played back at each of the playback heads in turn, thus producing an echoing sound.

A completely electronic portable echo and reverberation unit combined. Can be used with both electronic musical instruments and microphone.

REVERBERATION UNIT

A similar device to the "echo-chamber" is the reverberation unit-more commonly referred to as a "reverb".

The effect on the musical instrument input signal is to make it sound "ghostly" rather like the sound produced when singing, talking, or playing an instrument in an empty room or hall.
This effect called reverberation is produced naturally in such enclosures because the hard surfaces, walls, ceiling and floor, cause the sounds to be bounced back and forth across the room or hall, gradually being attenuated
and eventually dying away.
This effect can be simulated electronically by applying a theory of electricity which says that the velocity of sound through materials such as air, water and metals is considerably slower than when it is passed as electronic signals through circuitry. The input signal firstly passes into a pre-amplifier and is then split into two channels. One half passes straight through to the output whilst the other half is transmitted as sound pressure waves through a "delay" spring line via an electromagnetic unit, and then picked up at the other end by a similar device which reconverts the acoustic signal to an electrical one again.

The two split signals are then mixed and passed to the main amplifier. The output sound is composed of two distinct effects, a short-term echo and the reverberation sound which continues for some time.

FUZZ BOX

Perhaps the most popular special effect so far devised is the fuzz sound which has only really been made possible by the introduction, and relative cheapness, of the transistor. It is very rarely incorporated "inside" any other equipment and is usually found in a small box and operated by a footswitch when desired.

The fuzz unit, or as it is sometimes calledtone bender-can be used with any musical instrument but is found usually in use by "heavy pop" groups on lead guitar and here again is limited in most cases to solos. The effect is quite dramatic.

The circuitry of the fuzz box is quite simplea two-stage transistor amplifier with the second stage in an overdriven state so that the input waveform is clipped and distorted.

> A combined fuzz and waa-pedal for use with guitar and electronic organ.

WAA-WAA

In recent years a new sound emerged which has been given the name waa-waa and whose
sound bears little resemblance to the input signal.

The waa-waa effect used chiefly in the pop music field by inputting a guitar or other electronic musical instrument to a band-pass filter whose resonant frequency can be varied. When this is done rapidly, the so called waa-waa effect is obtained.

This instrument again is entirely dependent on transistors and in this case, on their "noiseless" switching properties.

The heart of this device is the band-pass filter whose resonant frequency is able to be continually changed from a position in the bass spectrum to one in the treble spectrum, in a smooth but fast operation. This can quite easily be done by switching the capacitors in the filter mechanically, but then loud clicks will be heard and these are unwanted.

The noiseless switching is accomplished by using the output from a transistor multivibrator to suitably bias the other transistors "loaded" with the capacitors so that they can be switched in and out of the filter network.

ELECTRONIC ORGAN

Although the electronic organ has been in existence for quite a considerable time its presence was not felt to any great extent until comparatively recently when the transistor appeared on the scene of commercial musical products.

Previous to this, electronic organs were constructed using valves, and since many valves are required in their circuitry they were extremely heavy and bulky and not easily transportable.

The transistor, because of its size and low weight, solved the problem of transportation and overall size, and now that transistors are considerably cheaper (and have been for sometime) than their valve equivalents, people have been able to afford to buy themselves an electronic organ and keep it in their own homes. Thus electronic technology has made possible an extremely popular and versatile musical instrument for use by many.

On inspecting the "workings" of a modern transistorised organ one may think the circuitry is extremely complicated due to the many hundreds of components and wires to be seen, but when it is broken down into sections it is seen to consist of quite basic circuits and principles.

Essentially, the electronic organ is a bank of oscillators, in general, twelve very stable and accurate oscillators each made to oscillate at each of the frequencies of the twelve notes in the musical scale in a high pitch region above soprano.

These oscillators, generally with outputs of the square and sawtooth variety to ensure the presence of harmonics, are then stepped down
by successive frequency-dividers to give a wide range of musical notes extending over many octaves.

Depressing the keys on the keyboard merely "completes the circuit" of the oscillator and produces an audible sound.

There are many "stops" on the larger type of organ which when placed in circuit by pushing down bring in wave shaping circuits to produce sounds of similar pitch and character to other musical instruments-in fact nearly all musical instruments in use. Also a lot of organs have the built-in special effects, discussed above. such as fuzz, waa-waa, tremolo, echo, reverberation and many others.

A ten-channel audio mixing unit with built-in "reverb". Each channel has its own tone controls and slider volume control. (above) The electronics within-its size and compactness is due to the use of semiconductors.

The Ring Modulator-a new addition to the special effects field producing music with a decidedly "electronic" character-for use with musical instrument and microphone.

OTHER DEVICES

Other "electronic-music-boxes" on the market include the electronic piano, electronic drumbeats, ring modulator, the music sythesiser, and the latest device-a completely electronic drum kit.

The present trend in designing these devices is firstly to completely analyse the waveform of the audio signal produced by musical instruments, with the aid of an oscilloscope and filter networks, and then devise wave shaping circuits to shape the output from various kinds of oscillators, to produce a similar, if not exact sound.

The Moog synthesiser was the first commercial instrument of this kind but the EMS Synthi100 is perhaps the ultimate in present electronic music and is an extremely complex piece of equipment which can produce almost any sound desired. The main use of the electronic synthesiser is in the professional recording studio using multitrack recording systems, and really falls outside the scope of this article-but, however, deserves a mention.

Yes, electronics really has played a leading part in recent years in changing the musical sound, especially on the pop scene. Many of the effects devices mentioned in this article are easy to construct and full theoretical and construction details of some of these will be published in later issues of Everyday Electronics. A fuzz box was described in the December 1971 edition, and there will be a waa-waa in the February 1972 issue.

AST month, we implied that there was a relationship between electrical current, voltage and resistance. This month we shall show what this relationship is but first of all let us see the effect of controlling an electric current with a resistor, and then talk a little about resistors themselves.

To do this we shall have to be a little in advance of our knowledge of the workings of an electronic component called a potentiometer. This does not matter provided one realises that it is only a device for controlling the electrical resistance of a circuit. We have built four such potentiometers into the Demo Deck; now is the time to start making use of this piece of equipment.

EXPERIMENT
We shall start by controlling the brightness of a bulb using a potentiometer. This is a technique that most people understand in practice but may not fully understand in principle. First connect up the simple circuit shown in Fig. 1. This uses the battery B1, the potentiometer VR1 (which has a value of 100 ohms) and the lamp LP1. Ensure that the battery is 9 V (i.e. two 4.5 volt batteries connected in series) and that the lamp is a 6 volt 0.06 amp type.

No soldering is needed at this stage. Simply cut some insulated wires to length, strip off about a quarter of an inch of insulation from each end and interconnect the terminals of the Demo Deck. Before making the final connection make sure that the knob of VR1 is turned fully anticlockwise.

When this connection is made the lamp should light up, but only dimly. If the knob of VR1 is now turned clockwise the lamp will brighten. By turning the knob we are in fact reducing the resistance of VRl. The lamp needs an electric current of 0.06 amp to flow to light up to its brightest level. The lamp itself has a resistance to the flow of current and is so designed that when it is connected across a battery of 6 volts this is the current that flows.

Fig. 1. Circuit diagram for illustrating the current flow through a bulb. VR1 controls the brightness of the bulb.

By introducing VR1 into the circuit we are increasing the total resistance and even though we are operating from a higher voltage, i.e. 9 V than the bulb should be run from, we are not allowing the necessary 0.06 amp to flow. As we reduce the value of VR1 we allow more and more current to flow, until the resistance of VR1 becomes zero. At this point maximum current will flow, which, incidentally, will be greater than that which should be allowed to flow
through the lamp because we are operating from 9 V instead of 6 V . If the bulb is allowed to run at this full current for too long it will "blow". You are therefore advised to carry out the experiment with some discretion.

UNITS OF RESISTANCE

Electrical resistance is measured in units called ohms. Because of the wide range of currents we come across in electronics from amperes to millionths of an ampere, it should, even at this stage seem reasonable to expect that resistance values range from ohms to millions of ohms. This is indeed the case. Because we shall frequently be referring to resistance value in diagrams, we use the symbol Ω (omega) to represent "Ohm" and to save writing large numbers of zeros (which could lead to errors) we use abbreviations to denote thousands and millions of ohms. One thousand ohms would be written $1 \mathrm{k} \Omega$ (k standing for kilo). When speaking we say "one kay"; $120,000 \mathrm{ohms}$ would be 120 kilohm. The abbreviation for a million is M (mega); 2,200,000 ohms would be written $2 \cdot 2 \mathrm{Megohm}$ and would be stated as "two point two meg".

Fig. 2. A carbon composition type resistor showing international colour coding used to identify the values of such resistors.

COLOUR CODE

Due to the small size of ${ }_{1}$ watt and smaller carbon resistors, it is impracticable to print values on the body. To indicate the ohmic value and tolerance of a resistor a colour code, known as the international colour code, has been devised and is given in Table 1. Due to its versatility it is used on all carbon resistors.

Usually there are four coloured bands on the resistor body, the first three indicating the ohmic value and the fourth band giving the tolerance limit. The code should be read starting with the band nearest to the end of the resistor body (usually the other end has a metallic, gold or silver, band).

The first band gives the value of the first digit, the second band gives the second digit whilst the third band gives the multiplying constant, or more simply, the number of zeros to place after the first two digits. The fourth band indicates the tolerance, see Fig. 2.

Table 1: RESISTOR COLOUR CODE

	Digit Colour (1st 2 bands)	Multiplying Factor (3rd band)	Tolerance (per cent (4th band)
Black	0	1	-
Brown	1	10	1
Red	2	100	2
Orange	3	1000	3
Yellow	4	10,000	4
Green	5	100,000	-
Blue	6	$1,000,000$	-
Violet	7	$10,000,000$	-
Grey	8	$100,000,000$	-
White	9	$1,000,000,000$	-
Gold	-	$0 \cdot 1$	5
Silver	-	$0 \cdot 01$	10
No fourtil band indicates a tolerance of ± 20			
per cent			

If the third band is a metallic one, i.e.; gold or silver, then the multiplying factor is less than unity, 0.1 and 0.01 respectively. Therefore. when the third band is gold, divide the first two digits by $\mathbf{1 0}$. If it is silver divide by 100 .

Various types of resistor: (A) high stability (B) low value (C) and (E) carbon composition types (D) high wattage wire wound.

PREFERRED VALUES

Because of the wide range of possible values of resistors, an international standard of "preferred values" has become universally accepted. These values are based on the following grid of numbers:

$1 \cdot 0$	$1 \cdot 5$	$2 \cdot 2$	$3 \cdot 3$	$4 \cdot 7$	$6 \cdot 8$
$1 \cdot 1$	$1 \cdot 6$	$2 \cdot 4$	$3 \cdot 6$	$5 \cdot 1$	$7 \cdot 5$
$1 \cdot 2$	$1 \cdot 8$	$2 \cdot 7$	$3 \cdot 9$	$5 \cdot 6$	$8 \cdot 2$
$1 \cdot 3$	$2 \cdot 0$	$3 \cdot 0$	$4 \cdot 3$	$6 \cdot 2$	$9 \cdot 1$

The values may be the above numbers expressed directly as ohms or as any multiples of ten of these numbers.
It is very difficult to make a resistor having exactly one of these values and so all resistors have a tolerance to their actual value. Usual tolerances are $\pm 20, \pm 10$ and ± 5 per cent ($\%$).

VARIABLE RESISTORS

We have already experienced the use of a variable resistor-in actual fact we used a device which in electronics is more commonly called a potentiometer. The difference between a variable resistor and a potentiometer is that the former has only two connections, one to the end of a resistive strip and the second to a wiper that is made to traverse the resistive strip, usually in a circular path. The potentiometer has three terminals one to each end of the resistive strip and the third to the wiper. Fig. 3 shows the circuit symbol for potentiometers.

One can come across a range of values of potentiometer very similar to fixed resistors and again, power dissipation has to be specified. Usually 1_{2} watt devices are used and these are certainly the least expensive but power ratings can go as high as 5 watts in quite everyday circuits.

Tolerance does not usually matter a great deal with variable components, but an important feature of a potentiometer is its "Law". A linear

(b)

(c)

Fig. 3. Circuit symbols for (a) spindle type (b) preset potentiometers. Diagram (c) is what should really be termed a "variable resistor".
law potentiometer (usually referred to as a "Linear pot") has a resistance that changes in exact proportion to the degree of rotation of the shaft; a logarithmic device ("Log pot") has a resistance that increases logarithmically with the degree of shaft rotation. This type of potentiometer is most usually encountered when used as a volume control, because there is a logarithmic relationship between the sensitivity of the ear and electrical signal that produces the power in the loudspeaker.

There are two physical types of potentiometer; one is a manually controlled device for use with a knob, and the other is a preset device which is usually set up with a screwdriver.
In some circuits, particularly experimental ones, it may be found that a fixed resistor is called for, but the exact value cannot be accurately specified. In this case the designer may call upon a "skeleton preset" potentiometer. This is identical to a conventional preset potentiometer except that it is usually smaller and as the name suggests has no enclosure.

For the next stage you will be needing three fixed resistors, so see if you can work out the colour codes for the values and identify them. We need 1 kilohm, 10 kilohm and 22 kilohm.

Different kinds of potentiometers: (A) ganged (B) and (C) general carbon types (D) ganged with on/off switch (E) T.V. type preset (F) skeleton preset (G) general wire wound.

OHM'S LAW

We shall now carry out a simple experiment to verify Ohm's Law. This is the fundamental relationship on which all electronics is based. While we promised the bare minimum of mathematics this is one simple piece which ought to be fully understood. We have already encountered Ohm's Law without realising it. It simply states that the magnitude of an electric current flowing through a resistor is directly proportional to the e.m.f. across the resistor. In mathematical terms I is proportional to V or V $=I \times R$ where R is the proportionality constant and is called the resistance.

Therefore by knowing two values, say V and R we can calculate I. Knowing I and V we can calculate R. The triangle below is a simple way of remembering Ohm's Law.

$$
\begin{aligned}
& R=\mathbf{V} \\
& I \\
& V=\mathbf{I R} \\
& I=\frac{\mathbf{V}}{\mathbf{R}}
\end{aligned}
$$

V is measured in volts I is measured in amperes
R is measured in ohms
These units must be used otherwise you will obtain wrong answers from your calculations.

VERIFICATION OF OHM'S LAW

Let us show that the current flowing through a resistor is exactly inversely proportional to the value of resistance for a given voltage. Ensure

Fig. 4 (a). The circuit used to verify Ohm's Law.
that B1 of the Demo Deck is set for 9 volts and connect a 10 kilohm resistor between two terminal lugs by careful soldering (only solder the resistor by the ends of the wires so that it may be re-used later). Now connect the resistor, battery and meter in series according to the circuit diagram of Fig. 4(a). Note that we have now introduced a symbol ME for the meter. For the purpose of this experiment we can ignore the fact that the meter has a resistance of its own. Use a meter with a full scale deflection of 1 mA .

Provided that you have connected the meter the correct way round (the positive terminal connected to the leg of the circuit which is closest to the positive terminal of the battery), the meter should show a reading. The meter should read approximately 0.9 mA (1 mA is 0.001 amperes and is referred to as 1 milli-amp). Remember that all components have a tolerance and that the output voltage of a new battery is always nominally high therefore do not expect to get an exactly similar reading. Therefore we can say that an e.m.f. of 9 volts across a 10 kilohm resistor will force a current of 0.9 mA through the resistor: we could have calculated this by Ohm's Law,

$$
\begin{aligned}
& I=\frac{V}{R} \\
& I=\frac{9}{10,000}
\end{aligned}
$$

$$
=0.0009 \text { amperes or } 0.9 \mathrm{~mA}
$$

We can now carry out a simple but very significant experiment by working the equation backwards thus finding out the value of unknown resistors.

RESISTORS IN SERIES AND PARALLEL

Connect a 10 kilohm and 22 kilohm resistor in series and measure the current when they are placed in the circuit shown in Fig. 4b. The current measured should be approximately 0.28 mA . Using Ohm's Law, calculate the effective resistance of both resistors in series.

Obviously it is

$$
R=\frac{9}{\mathbf{0} \cdot 00028}
$$

$=32,000$ ohms or 32 kilohm .

We could have arrived at this result simply by adding the values of the two resistors together. The rule for calculating the total resistance of any number of resistors in series is

$$
R_{\text {total }}=R 1+R 2+R 3+\text { etc. }
$$

Leaving the 10 kilohm and 22 kilohm resistors in series, now connect a third resistor of 22 kilohm in parallel across both as shown in the circuit of Fig. 4 c . Now what is the total resistance of the three resistors? First of all measure it experimentally: the current should be approximately 0.69 mA giving, using Ohm's Law, a resistance of 13 kilohm. Obviously the relationship is not quite so simple as it was with series resistors, nevertheless it is fairly straightforward. The rule for calculating the total effect of resistors in parallel is

$$
\frac{1}{R_{\text {total }}}=\frac{1}{R 1}+\frac{1}{R 2}+\frac{1}{R 3}+\text { etc. }
$$

For the simple case of two resistors in parallel this simplifies to

$$
R_{\text {total }}=\frac{R 1 \times R 2}{\overline{R 1+R 2}}
$$

In our case the resistance of the two resistors in series is 32 kilohm therefore (if we work in thousands of ohms)

$$
R_{\text {total }}=\frac{32 \times 22}{32+22}=13 \text { kilohm }
$$

Next Month: Building a simple voltmeter on the Demo Deck, and a discussion on power in electronic circuits.

A simple m.w. reflex circuit receiver. Easy to build, with a modern design case.

THis receiver contains no coils or chokes except the aerial winding which has been designed to be made as easily as possible. The resulting receiver is simple to construct and must be considered one of the best designs published for the inexperienced home constructor.

Providing the Veroboard layout drawing is followed carefully and the aerial wound as described the Astron should work "first time" without any instability or tuning problems.
The Astron employs four transistors, the first transistor being used in the reflex mode. This enables one transistor to do the work of two and hence much more gain can be obtained than
is normally possible. The performance is not to the same standard as that of a superhetrodyne but is adequate for the reception of local stations. Operating the receiver in the London area the three medium wave B.B.C. stations could be received together with Radio Luxem bourg and some continental stations during the hours of darkness.

In the past many reflex designs have been published but the majority require complicated, and other hard to get components.

Approximate cost of components $\left\{\begin{array}{l}\text { ® } 3: 00 \text { excluding case }\end{array}\right.$

Fig. 1. Circuit diagram of the Astron m.w. receiver.

NEW LOOK SIMPLE M.W. RECEIVER

Components

Resistors	
R1	270k』
R2	$47 \mathrm{k} \Omega$
R3	$1 \mathrm{k} \Omega$
R4	$10 \mathrm{k} \Omega$
R5	$47 \mathrm{k} \Omega$
R6	$120 \mathrm{k} \Omega$
R7	120Ω
R8	$1 \mathrm{k} \Omega$
All $\frac{1}{4}$ W	$\pm 10 \%$ carbon
Capacitors	
C1	$125 \mu \mathrm{~F}$ elect. 16 V
C2	208pF variable
C3	1000pF
C4	470pF
C5	$20 \mu \mathrm{~F}$ elect 16 V
C6	$0.1 \mu \mathrm{~F}$
C7	220pF
C8	$125 \mu \mathrm{~F}$ elect 16 V

Semiconductors
TR1 ZTX 108 silicon npn
TR2 ZTX 108 silicon npn
TR3 ZTX 501 silicon pnp
TR4 ZTX 300 silicon npn
D1 ZS 140
D2 ZS 170
Miscellaneous
VR1 $5 \mathrm{k} \Omega \log$ carbon potentiometer with d.p.s.t. switch (S1)

LS1 $3^{\frac{3}{8}}$ inch 35Ω loudspeaker
B1 $\quad 9 \mathrm{~V}$ battery (PP3 type) and connector
L1 formed from 90 turns of 28 s.w.g. enamelled copper wire
L2 formed from 8 turns of p.v.c. covered 7/0076in connecting wire
6 inch ferrite rod, $\frac{3}{8}$ inch diameter
Connecting wire, Veroboard 2 in $\times 3$ in $\times 0.1$ in matrix, materials for case (see Fig. 5 and text) 4BA fixings
A kit of Perspex parts for a similar case to that described, including turned knobs, is available from KASPEX (mail order only).

Fig. 2. Detail of aerial coil on ferrite rod.

CIRCUIT DESCRIPTION - First Stage

The signal is picked up by the ferrite rod aerial and tuned by the tuned circuit C2, L1 Fig. 1. it is then coupled from the tuned circuit to the first transistor TR1 by L2. This allows the high impedance of the tuned circuit $\mathrm{C} 2, \mathrm{~L} 1$ to be matched to the low impedance of the transistor input without damping the tuned circuit and

Fig. 3. Veroboard layout and wiring, showing both sides of the board.

The top side of the Veroboard showing all the components mounted in position ready for connection to the other components shown in Fig. 4.
losing selectivity and gain. Transistor TR1 then amplifies the signal and feeds it to the detector circuit containing D1.
The 470 pF capacitor C 4 is a much lower impedance to the r.f. (radio frequency) than the 10 kilohm resistance R 4 hence the signal tends to go through the capacitor. The a.f. (audio frequency) component now left after detection by D1 is passed through R2 and L2 to the base of the first transistor; C3 helps to filter out any residual r.f. The signal is now amplified for the second time by TR1. This time the a.f. signal sees C4 as a high impedance compared with R4 and so the signal current flows to TR2 base.

AUDIO STAGE

Transistors TR2, TR3 and TR4 make up a pushpull amplifier, TR3 and TR4 are a complimentary output pair and TR2 is the driver. The signal is amplified by TR2 and the positive cycles of the audio signal are fed through TR4 via D2 and the negative cycles are fed through TR3. The two signals recombine at C7 after amplification, giving the output signal. This is then fed to the loudspeaker LS1.

THE DIODE

Diode D2, R7 and R8 set the standing or bias current in the output stage and R5 and R6 set the working point and gain of the stage. Capacitor C6 removes the residual r.f.component from TR1 output waveform. Resistor R9 and Cl smooth out variations in supply voltage caused by large a.f. currents in the output stage so preventing low frequency feedback and possible oscillation.

The volume control VRl works by adjusting the load on TR1; if there is no load resistance then the collector is connected to the supply voltage and cannot swing up or down in voltage with varying collector current. The larger the
load the more collector voltage swing is possible in theory, but in practise the load is limited because distortion occurs due to non-linear characteristics of the device.

WINDING THE AERIAL

Most people do not like winding coils and many are put off building a radio simply because of this. The drawings and photograph show clearly how the aerial coils in the Astron are wound and the winding should not present any problems.

Take the ferrite rod and mark where the coil has to go (Fig. 2.). Wind on one turn of plastic adhesive tape just outside the winding area and then reverse the tape so that the adhesive side is on the outside. Continue to wind on enough tape, inside out to cover the winding area, finish by reversing the tape for one turn to secure it to the rod. The primary (L1) is now wound on, the reversed adhesive tape holding it in position.

Simply hold one end of the 28s.w.g. enamelled copper wire and wind 90 turns around the rod trying to keep a small space between each turn. Do not worry if some turns touch each other but try not to get any turn on top of previous turns. When all 90 turns are in place wind one turn of adhesive tape around each end to hold the coil. The wires at each end should be left about 6 inches long so that they can be connected to the board.

Next wind on the secondary (L2) on top of L1. L2 is wound in the same direction as L1, using p.v.c. covered seven strand wire (the type normally used for connecting up wire); this wire is called $7 / 0076$ inch p.v.c. covered. Starting at the earth end of the previous winding put on 8 turns of this wire keeping each turn tight and close together. Leave about 4 inches of wire at each end to connect to the Veroboard and tie a knot or twist these wire ends together to hold the coil.

CIRCUIT BOARD

With the aerial wound the components can be mounted on the Veroboard. The board shown in Fig. 3. is cut to size and drilled for mounting holes before the copper strips are cut away as shown. Mount all components and flying leads except the transistors and leads to L2. Next check for correct polarities and positions and then mount the transistors, if in doubt about your ability to solder transistor leads quickly and cleanly use a heat shunt on the leads.

The next stage is to wire the board to the remaining components as shown in Fig.4, but do not place them in a cabinet yet. Finally check the circuit and connect the battery observing correct polarity, switch on the receiver, turn the volume fully up and listen for a hissing sound that will show that the output stages are functioning. Slowly tune Cl using a plastic knob

Fig. 4. Wiring diagram of the components of the Astron. The parts are shown in their relative positions as they are mounted in the case.

ANTRUN

VOLUME CONTROL (VR1) SIDE (4" SQUARE)
COMPONENT BOARD SIDE (4"SQUARE) holes to suit COMPONENT BOARD (0) hole for removeable SIDE FIXING

until a station is heard and revolve the aerial for maximum output. If all is well the receiver can be set aside and the cabinet constructed. If the receiver fails to operate this is probably due to a wiring fault or a damaged transistor.

CABINET

The cabinet shown in the photograph is a cube of 4 inch side made entirely from Perspex. Fig. 5. shows the basis of construction of the case which consists of four squares of 1_{8} inch thick perspex each having 4 inch sides and two squares of 1_{8} inch Perspex having $3^{7}{ }_{8}$ inch sides.

In the prototype a section of one side was made removable for battery replacement, drawings of the construction of this section are shown in Fig.5. The side housing the loudspeaker was also made completely removable for insertion of the receiver parts and servicing; this side is held by four countersunk 4BA screws.

All sides should be cut and filed to shape with all mounting holes cut and cleaned up before assembly. The case is glued together using chloroform or polystyrene cement as used for

Fig. 5. (opposite), The case in part form. The base and plain side are not shown. The plain side is 4 in square and has one hole for the removeable side fixing.

MATERIALS: $\frac{1}{8}$ inch thick clear Perspex for all sides, sections (a) and (b), fixing lugs and lower part of base. $\frac{3}{8}$ inch thick fluorescent Perspex for knobs (4 off), upper part of base and mounting pillars (3 off).

Fig. 6. The complete case.
model making. When the five fixed sides have been glued up the sixth side should be fixed with screws-the nuts can be held on the flanges using Evostick-and all corners rounded, using a file and polished with emery paper and metal polish; Solvol Autosol polish is very useful for this purpose (obtainable from motor accessory shops).

The prototype "knobs" are made of 3 inch squares of 3_{8} inch thick fluorescent Perspex. these were turned to form a disc on a metal turning lathe, ${ }^{1} 4$ inch holes through the centre of each disc can be used with suitable bolts to hold the material. An ${ }_{8}$ inch by ${ }^{5} 8$ inch diameter recess should be made in the centre of one side of one knob for the volume control nut. Four "knobs" are used, one for volume on/off, one for tuning, one stuck over the speaker with holes drilled through it and the fourth for the battery section.

The tuning knob is made a tight lit on the tuning capacitor Cl by indenting the spindle with a large pair of pliers (the cutting part is useful for this) and twisting the knob on. A similar fixing can be used for the volume control unless the spindle is made of plastic. In this case file a flat on the spindle-if it does not already have one-and glue a small "flat" (made of Perspex) in the hole, carefully file the flat on the spindle until the knob will just press tightly on to the spindle.

STAND

The stand is made from a 4 inch square of 1_{8} inch Perspex, a 3 inch square of fluorescent ${ }^{3} 8$ inch Perspex and three 2 inch long fluorescent Perspex pillars, ${ }^{3} 8$ inches square. The three pillars are filed at an angle at one end so that each fits against one side of the cube which is "standing" on one corner Fig. 6. Filing this angle is rather difficult but with care and patience the resulting stand will be sturdy.

When glueing the sections it is best not to polish the edges to be glued. It was also found that the edges of the fluorescent Perspex give an orange hue if not polished, but this will disappear if they are polished. The three stand pillars were polished so that their four sides look the same, but the edges of the knobs and stand were not; the front cover illustration shows the effect of this.

Once the cabinet is finished all the parts can be mounted as shown in Fig. 4. and the connecting wires cut to the correct length and soldered up. Make sure that the loudspeaker will clear the aerial, if it will not, carefully file the ends of the aerial so that it fits deeper into the case. Foam rubber pads at the ends of the aerial will prevent it moving around in the case. Small coloured discs of sticky backed fabric placed over the spindle ends will finish the knobs neatly.

Although originally designed as a laughter simulator, this device can also be used as an electronic bell or in any other alarm system requiring an audible output.

$\mathrm{A}^{\mathrm{s}}$$s$ the title implies, this device produces a kind of electronic laughter. At the early paper stages of the design, the device represented only quite a small challenge but as the idea progressed it was not long before it became evident that even such an ostensible simple sound such as a laugh is fairly difficult to achieve.

BASIC DESIGN

Before the device can operate at all, it must obviously have some kind of a "voice." This is provided by a simple audio oscillator of fre-
quency about 1 kHz ; but this must be modified in some way to make it resemble laughter. See Fig. 1.

Unfortunately, there isn't a "standard laugh" that we can model our electronic replica on, so the choice must be an average of many types.

On analysis, most laughter seems to begin at a given point in the audio spectrum, and fairly rapidly drop to a frequency about an octave or so below, rather like a football cheer in reverse. This kind of sound (musically known as a glissando) can easily be produced using the output voltage from a simple integrator driven from a low frequency square wave oscillator to vary the frequency of the voice generator. In our device this is referred to as the "reversedcheer" generator.

Also, most laughter in addition to displaying the reversed-cheer, interrupts this characteristic in short bursts, each burst causing a sort of warbling effect on the already frequency diminishing signal. To achieve this an additional oscillator, the "giggle-generator" is employed. The "giggle-generator" constantly switches the frequency of the "voice-generator" from one-fixed point in the voice spectrum to another.

Under operating conditions, the voltage from the integrator section of the "reversed-cheer" generator will be rising and falling, resulting in a corresponding rise and fall in the pitch of the voice, but if preferred, the rising portion

Approximate cost of components $\left\{\begin{array}{l}\text { g } \\ \square\end{array} 2.00\right.$

Fig. 1. Schematic diagram of the Electro Laugh. The "banking gate", shown dotted, may be connected to produce a different kind of laughter.

Components....

Resistors	
R1	$2 \cdot 2 \mathrm{k} \Omega$
R2	$22 \mathrm{k} \Omega$
R3	$22 \mathrm{k} \Omega$
R4	$2 \cdot 2 \mathrm{k} \Omega$
R5	$2 \cdot 2 \mathrm{k} \Omega$
R6	$10 \mathrm{k} \Omega$
R7	$10 \mathrm{k} \Omega$
R8	$2 \cdot 2 \mathrm{k} \Omega$
R9	$2 \cdot 2 \mathrm{k} \Omega$
R10	$4 \cdot 7 \mathrm{k} \Omega$
R11	$1 \mathrm{k} \Omega$
R12	$1 \mathrm{k} \Omega$
R13	$4 \cdot 7 \mathrm{k} \Omega$
All $\frac{1}{4} W$	$\pm 10 \%$ carbon
Capacitors	
C1	$100 \mu \mathrm{~F}$ elect. 12 V
C2	$100 \mu \mathrm{~F}$ elect. 12 V
C3	$10 \mu \mathrm{~F}$ elect. 12 V
C4	$39 \mu \mathrm{~F}$ elect. 12 V
C5	$250 \mu \mathrm{~F}$ elect. 12 V
C6	$0 \cdot 33 \mu \mathrm{~F}$
C7	$0 \cdot 15 \mu \mathrm{~F}$
Cansistors	

Transistors
TR1~TR6 2N2926 (orange) Silicon npn (6 off)

Miscellaneous

TL1 Earphone 100-250s impedance S1 Single-pole push-to-make switch B1 12 V battery, $2 \times$ PP1 (6 V) or equivalent, plus suitable battery clip
Miniature plastic preserves container Veroboard: $2 \frac{3}{8} \times 2 \frac{3}{4}$ inch $0 \cdot 1$ matrix (23×37 holes)
of the tone can be inhibited by employing a blanking gate to control the voice-generator. The blanking gate is shown dotted in the schematic diagram, Fig. 1.

CIRCUIT OPERATION

The Electro Laugh utilises three square wave oscillators, each employing an astable flip-flop. Apart from the circuit values which set the individual operating frequencies, circuit functions are virtually identical and only one flip-flop (multivibrator) need be described.

Consider the oscillator in the "reversed-cheer" generator circuit, Fig. 2. Upon initially switching on, we can assume that TR1 is conducting, and in this condition the collector side of Cl will be at almost ground potential. As a result Cl, which will have already charged to nearly rail potential, will begin to discharge. At this time C2 will rapidly charge close to rail potential. When Cl has dicharged to approximately 0.6 V (i.e., the $\mathrm{V}_{\text {be }}$ of TR2) TR2 will start to turn on; and due to the feedback between the two halves of the circuit, a rapid transition will occur resulting in TR2 turning hard on and TR1 turning off. The process then repeats as before with C2 discharging and Cl charging, until TR1 turns on again and TR2 turns off. This will continue indefinitely, or until the circuit is switched off.

The discharge rates of Cl and C 2 are essentially set by the value of R2 and R3, while the overall time constant ($1 \cdot 4 \mathrm{CR}$) determines the operating frequency. The charging times for C1 and C2 are reliant on the values of R1 and R4, which in general are small enough to be ignored.

During the time that TR1 is turned off, the positive potential at its collector is free to charge capacitor C 5 . The potential across C 5

Fig. 2. The complete circuit diagram.

Fig. 3. The wiring of the components on the top side of the Veroboard.

Fig. 4. The areas of copper strip to be removed.

Fig. 5. The blanking gate.
thus rises towards rail potential while TR1 is in the non-conducting state. However, when it is the turn of TR1 to conduct, D1 is reversebiased and C5 slowly discharges through R10, R11, R12, and the bases of TR5 and TR6. This process of charging and discharging C , constantly alters the voltage points at which C6 and C7 (in the "voice-generator") begin their discharge. As a result the overall time-constant of this circuit is affected and, hence, the frequency of the output signal. Therefore, the rising (charging) potential across C5 does not result in a rising pitch.

The effect of the "giggle-generator"" output is to momentarily swing the frequency of the "voice-generator" during the reversed-cheer characteristic. This is accomplished by coupling the collector of TR4, via R13, to the base of TR6.

CONSTRUCTION

The device is built on 0.1 inch matrix Veroboard which is shown in Fig. 3. During construction, all relevant breaks in the copper strips should be made prior to fitting components. It should be noted, too, that transistors
and diodes are best mounted last in order to minimise damage from overheating while other components are in the course of being soldered into position.

The switch and earphone can be fixed in position by using an impact-adhesive such as Evo-Stik. The earphone used in the prototype sports a horn which makes it into a mini-loudspeaker. This is obtained as a ready-made item from a plastic preserves container. A hole should be drilled in the base of the container to accommodate the output nozzle of the earphone. The container should then be fixed in place with an impact-adhesive.

When the device has been constructed, all wiring etc., should be checked thoroughly before finally connecting it to the battery.

BLANKING GATE

If desired, a different laughter sound may be obtained by connecting in a blanking gate as shown in Fig. 5. With this in the circuit, the voice generator is prevented from functioning, by grounding the base of TR6, whenever TR7 is turned on. In other words, only the falling (discharging) action of the integrator on the "reversed-cheer" generator will be presented to the output.

CONCLUSION

At first sight this may seem a frivolous project, but it will give many hours of fun and enjoyment to all members of the family and can later, if desired, be used as an electronic "laughing" bell.

MEMORY STORE

Retrieval By

John Watt

"NO laddie, an ohm is not the place where a volt lives! ${ }^{\text {r }}$ my RAF sergeant instructor said to me-something I knew already, but he had to get his little jokes in.
In point of fact, he wasn't a bad bloke (for a sergeant) and did teach me quite a lot of radio-or wireless as it seemed to be called then-and of course basic electronics and basic radio deal in much the same sort of techniques, and are just the sort of grounding that is so useful, no matter whether you are amateur or professional. With the evening classes to HNC standard that followed, I felt I had all the theoretical knowledge I needed and concentrated on practical construction thereafter.

Simultaneously, a number of friends expressed interest in audio-hi-fi they called it, but does anybody ever admit to lo-fi? (In any case, I always thought it was fidelity and infidelity). Anyway, I found myself testing and sometimes modifying what they had built. If you have such acquaintances this is a good way to start, for very often one can hear what is being done, in the absence of test equipment.
However, I can honestly say that I have never regretted spending money on test instruments and a small multirange meter, at least, should be in every constructor's kit.
Whatever you make though, should you wish to alter something, either in an attempt to improve the performance or just to get it working properly in the first place, do remember the Golden Rule-alter only one thing at a
time, for t is then so much easier to determine what is happening and more important, why.

Do not imagine that everybody else has a large well equipped workshop for their constructional activities, like the professionals, while you, the poor struggling amateur, have to make do with one corner of the kitchen table. Put your foot down! Insist on all the kitchen table! Better still, even a small bench in a shed or garage (the car can stay outside if you get your priörities right), which can thus be left overnight with the latest "EE" project on it while building proceeds, will suffice; I use a corner of my house roof space, partitioned off with insulation board for winter warmth. If you can leave a particularly awkward piece of work for a few days undisturbed, it is surprising how easy it suddenly becomes on your return to it.

Beginners Bits

Congratulations on your first issue! At last an electronics publication whose avowed philosophy is to interest and involve the beginner in this very important field of technology.

I don't know if it is your intention to start a correspondence column in your magazine, but perhaps you could advise me of the relative merits of different material and different shape soldering iron bits suitable for a beginners use. I have a soldering iron, but too large a bit for electronic purposes.
M. S. Peters

Thorne, Yorks.
Standard copper soldering iron bits are quite suitable for electronic work and most people prefer 1_{8} inch or ${ }_{16}$ inch chisel face types for general work. Iron coated, or various types of plated bits are available and these will last longer than the standard copper bit

Rare Screwdriver

Not wishing to criticise your first issue, but I could not help noticing (on page 31) that a sorewdriver with ${ }_{316}$ inch shaft and a 4 or 6 inch blade would be rather difficult to find. This I think should be the other way round.
However, I congratulate you on this excellent magazine which I feel caters for beginners, like myself and also people more advanced in the hobby.

Wishing you the very best of luck.
C. M. Thompson

Cheltenham, Gloucs.

Contents

Your new magazine is welcome indeed to fill the need of amateur constructors. I think I express a common feeling of hope, that its contents will not be too professional, its constructional projects not too big or complex, and its news not concerned with sophisticated radar systems supplied to

Middle East Shieks. All this should be left to big brother, Practical Electronics.
Regular readers of any magazine like to hear of other readers experiences, and difficulties, so failing space for readers letters why not a chatty column commenting and answering extracts from readers letters?
Is it not possible to contrive some "big" breakthrough on the advert scene? Not only are they nearly the same every month, but the same as all the other monthlies as well! This greatly reduces any inclination to take both of your magazines. I feel sure there must be immense difficulties, how-ever-probably insurmountable.
I wish Everyday Electronics lots of success.

Vincent S. Evans Parbold, Lanc.

We hope that this page will fulfill your first requirement Advertisers please note the second!

Too Fast

I must start by apologising for criticising your first edition but as the magazine is supposed to cater for the beginner, perhaps you will bear with me, as I am just that, an absolute beginner in the field that your magazine is intended for.

I started, as suggested by the article Component Buying and Supplying, and ordered a catalogue for 70 p , and ran into diffculty as soon as the catalogue arrived. I was unable to positively identify the components required for the Demo Deck.

The first snag was the perforated board as there is none listed as quoted under components required, and my local dealer could only find packets of strip in his catalogue with the matrix size quoted.

Secondly, the M.E.S panel mounting lamp holders are quoted in various sizes and require the lens colours to be stated when ordering, and this is not given in your magazine.

Finally there are no $3^{3}{ }_{8}$ inch speakers listed in the catalogue, and again my local dealer said this was an awkward size, and asked for alternatives. As I was unable to quote alternatives I asked him to order it for me. And apart from a gloomy forecast of a fortnight's delivery, he said the firm concerned were rather expensive to deal with.

Hoping this will be considered constructive.

D. Pratley
Innsworth, Gloucs.

First the bouquet: congratulations on producing a magazine filling an obvious gap. As a complete beginner I just did not know where to start. This first issue seems to fill the bill. Please keep up this high standard.
Now the brickbats: as already stated, I am a complete beginner. In your Teach-in you quote components for the Demo Deck as follows:
1 Veroboard 0.25 inch matrix (from reading advertisements are we to assume this should have been $0 \cdot 15$ in matrix?) Also no indication of board size (1 sq . inch or $\mathbf{1 0}$ sq. feet?).
2 Milliamp meter (SEW MR38P or similar). But what range? The SEW adverts quote ranges from 1 mA to 10 amp .

Could you please put me right on these points and then I can order the components to construct the Demo Deck.
A. Bryan

Flintshire, N. Wales.
Firstly, the list published in our first issue was only a short advanced list-as you will now know, we published a comprehensive list in the Demo Deck article last month. One point that has come to light is that R. S. Components Ltd. now quote the matrix size for the board as 6.33 mm instead of 0.25 inches (the board is not Veroboard). Since this board is sold in standard size ($6{ }^{3}{ }_{4} \mathrm{in} \times{ }^{1}{ }_{4}{ }^{\mathrm{in}}$) we did not give dimensions. We equoted, 2 one milliamp meter-that is a one-millamp range. You could use any small 35 ohm loudspeaker for the Demo Deck.
A two week delivery date is by no means unusual for electronic components and this is one reason we published the advanced list, however two weeks is much longer than the normal delivery time from R. S. Components Ltd who operate a same day return

SONY • LEAK - SINCLAIR • TELETON - ARMSTRONG THORENS - PHILLIPS K.E.F. - TEAG - ROGERS PIONEER

Garrard SP25 Mk. III Goldring G800H Teak plinth and tinted cover. Ready wired for Immediate use. packing.
PTMNTABLES
Plalase add 75p for P. \& Garrard SP25 Mk. III A...
Garrard Zero 100 -Auto (New Product) ...
Garrard Zero 100-Single
Play (New Product)
Garrard 2025TC with
Sonotone 9TAHC
Garrard SL65B
Garrard AP76
BSR MP60.
Pioneer PLizAC
Proneer PLI2AC
Thorens TD125
Goldring GL69/2
Goldring GL69 P2
Goldring GL75
$\begin{array}{llll}\text { Goldring GL75P } & \ldots & \ldots & 627.95 \\ \text { Go. } & & 675.95\end{array}$
AMPLIFIERS
Please add 50p for P. $\frac{1}{}$
Alpha Highgate FA212
Alpha Highgate FA 300
Alpha Highgare FA400
Armstrong 521 (cased)
Amstrad 8000 Mk .
Amstrad 1C2000
Dulci 207
Leak 30 Delta Range
Leak 30 Delta Range
(New Product)...
Leak 70 Delta Range
(New Product)
Merrosound ST20E
Philips R580
Pioneer \$A500
Pioneer \$A700
Pioneer SA900
Rogers R/brook C̈hassi
Rogers R/brook Cased
Rogers R/bourne Chassis
Rogers R/bourne Cased.
Rogers R/bourn
Sansui AUIOI
Sansui 555A
Sansui AU666
Rotel RA301
Rotel

${ }^{\text {aid }} 50$

9 $\begin{array}{r}629.00 \\ 633.00 \\ \hline\end{array}$

Sinclair 2000 Mk. II

 Sinclair 3000 Sinclair PRO 60/2+z30 p̈z $5 \neq 15-00$ Sinclair PRO 60/2 + Z30 PZ6 $£ 17.75$ $\begin{array}{cccc}\text { Sinclair PRO } & 60 / 2+250 & \mathbf{6 2 2 . 9 5} \\ \text { PZ8/Trans. } & \ldots & \ldots & \mathbf{E 4 . 7 0}\end{array}$
 Sinclair 605 (New P̈roduct) $\quad \$ 20.50$ Goodmans Max. Amp. ... 637.95 Teleton SAQ206B (New Prod) $\mathbb{1 7} .95$ Wharfedale $\mathbf{4 9} 75$ Sinclair ICI2 integrated circuit amplifier Eagle TSAI 497 wRMS 61.85 Eagle TSA15 $15 \mathrm{RMS}{ }^{\ldots} \quad \mathbf{~} \mathbf{2 4 . 9 5}$

Plense add $10 p$ for P. A Goldring G850 Goldring G800E Goldring G800SE
Sonotone 9TAHC Diamond Shure M3DM Shure M445/7/C Shure M55E
Shure M75E
Shure V15 Type 2
Shure M44E
Shure M3IE
Shure M32E
Audio Technica AT35

PLINTHSE COVEAS

£3:20
(As illustroted)
Plus 35 p post and packing
Finished in real teak vencer with tinted dust cover. Ready to use (fully assembled). Suitable for Garrard SP25; 2025TC: 3000; AT60; 2000; 2500; 3500; 5100 ; 1025: SL65B. Also for BSR, McDonald MP60 and others. For AP76; AP75; SL72B; SL75; SL95B. \&4 plus 35p P. \& P. Also finished in walnut to match lapanese equipment-at no extra charge.

All prices correct at time of going to press.

DEEOULT WMETOUSES

Dept. E.E. 3174 Pentonville Road, London, N1. Telephone 01-278 1769 Dr: 4 High View Parade, Redbridge Lane East, Woodford Avenue. liford, Essex. Tel: 01-550 1086.
Open Monday to Saturday 9.30 a.m. $\mathbf{6}$ p.m. LATE NIGHT FRIDAY 7 p.m. MAIL ORDERS: Order with confidence. Send Postal Order. Cheque. Mail. CALLERS: Plaase note that cheques can only be accepted rogerner wirn cheque cards (not Garclay Card)

2 minutes from KING 'S CROSS. EUSTON \& ST. PANCRAS
on main road leading to the East and West Country

teghincal TBAINING in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examinatlon courses avallable, including expert coaching for:

C. \& G. Telecommunication Techns. Certs.
 Radio Amateurs' Examination
 Radio Operators' Certs.
 - General Certiffcate of Education, etc.
 Now available, Colour T.V. Servicing

Examination Students coached until successful

NEW

SELF-BUILD RADIO COURSES

Learn as you bulid. You can learn both the theory and practice of valve and translstor circuits, and servicing work while bullding your own 5 -valve receiver, transistor portable, and high-grade test instruments, all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics

INTERNATIONAL CORRESPONDENCE SCHOOLS

Dept. 147, Intertext House, Stewart: Road, London, SW8 4UJ
Please send me the ICS prospectus-free and without obligation.


```
NAME.
``` \(\qquad\)
(Block Capltals Please)
ADDRESS

INTEBNATIONAL CORRESPONDENCE SCHOOLS

\section*{RUSSIAN WORLD BEATER! \\ 10 thansisian PORTABLERADIO \\ MAINS/BATTERY ELIMINATOR El38: extra \\ Important! This very latest model incorpor-
ates all the lateat technologics improvements ates all the lateat technological improvements SIGRED FOR WORID WIDE RECEPTION \\ WE COULDN'T \\ EVEN MAKE THEM FOR OUR FANTASTIC PRICE. \\ -it'll probably make your present radio soem \\ lire "corstal tyy It eren incorporates a}
 els-97-a mere lraction of even today's Rusian mifrele price! Compare performance with 248 radios! "Refund if not astounded! Purer and sweeter tono than over! Wider band spread for "pin-point"" station relection. The Russians have really surpansed themsolven this time proving agaln their ability in the feld of space communications. Fes, 8 separate wisebanda including Standard Long, Medium and Short Favea to cover the milsions sud spatial "ghip-to-shore" MARINE BAED! Thorsands of diferent tranmessages from all over the world-traly nothing in secret! You must hear it to belleve it. 8uperb, iweet tone-controlled irom a whisper to a roar! Push-pull output! Separate ON/OFE volume \& Treble/Bass tone controls. Press-hation disl illaminstion! Take it snywhere-runs economically on standard batteries or through battery ellminator from \(220 / 240 \%\). AC mains. Internal ferrite rod plus telescopic aerial. It's also a fabulous CAR RADIO! Black \& Chrome case 11int y gins overall approx. Made to give years of perfect service. Complete with WRITTEBN GUARANTEEE, manual with simple operating
 POsT 50 p . Standard batteries 88 p extra. Can alno be used throngh extenaion amplifer,
tape recorder or public address syatem. Send today or call. (SORRY-we cannot change tape recorder or public sddress system. Send today or call. (SOM
these new radios for any ear!ler model already purchaned!)

MAKE NO MISTAEE-this is the EXPENSIVE model with "PLAMO EEYBOARD" CONTROL PANEL and SPECLAL RECORDIMG LEVELI SAVE 813.98: Due to price we cannot mention famous makers name-but rest assured you're getting one of the BEST Our latest cassette model-no fiddling with awkward tape and reels, just "Elap in" cassette and of you gol (takes 30, 60 and 90 -minute standard Philipa Cassette tapea obtainable everywhere). Amazing performance ensures perfect tapinge and superb reproduction Remote control microphone. Separate volume controll Rapld rewind Beartifal tone from a whisper to a roarl Completely self-contained-record anywhere. separate jacks for remote control microphone, etc. Size \(9^{\circ} \times 44^{\prime \prime} \times 21^{\prime \prime}\) overall approx Case design can vary slightls. With carry handle. With WRITTEN G"TEE and instractions. Only \(218 \cdot 99\). post 30p. ALSO AVAILABLE: SPECLAL BATFERY MALI8 AC/DC MODEL, resdy to plug in. 83.50 extra lf required. Refund g'tee. BORUS one per customer. Cassette tape, set of 8tendard batteries and microphone stand all for 51p axtra if required

\section*{SHOPERTUNITIES LTD. EIL}

Dopt. EE/F/2, 184 UXBRIDGE RD, (facing Shepherds Bush Green), LONDON W. 12 SAQ. (Thars. 1, Fri. 7). Also 37/38 Figh HOLBORH (opposite Chancery Lane), LONDON, W.C.1. (Tharsdey 7 p.n.). BOTH STORES OPEN MONDAY-SATURDAY FROM 9 a.m.-6 p.m.

FAITASTIC (even by our standards) Brand new-the latest sensation in the world of sound First class makers! Not only a fabulous VHF AY/FM Redio AHD Cassette Tape Recorder and Player combined, but it also rums of standard batteries or maine (stmply plug in the \(220 / 240 \mathrm{v}\). A.C. Hne cord). Xow, you can record and play back anything, anywhere! You can even tape direct from the Rsaio as you Listen! RECOMMENDED RETAIt, PRICE GEMOIIGLY 244 YET WE OFFGR AT ALMOST BALP PRICE! Just look at these wonderful features:-tPress-button Keyboard Kerboard Control panel! \(t\) New 'pop-np' Cassette ejection aystem! *"MAGIC EYE" Visual Battery check/tecordiag level tndicator! *Separate ON/OFF, volume and EI-LO volume tone controlsi *Heavy duty built-tn spaker! *Earphone (tor personal listening or "Monltoring") and extension spesker uocketal tRemote control microphone! \(t\) Built-ln swivel telescopic ortension aerial (24 inches approz)! Marnificentlo made cate, size 11 in \(\times 94 i n!\times 3\) ins overall approt, with carry handle. (DESIGNS VARY gLIGHTLY.) Takes atandard 30, 60, 90 or 120 minute Philips Cassette Tapes obtainable everywhere. But wait, the amadng built-in fuil circuit VHF AM/FI Radio gives gou superb clarity of tone and incredible galtion fail circurt Unique rotating Station Selector Dial-get all local city \& regional stations in every part of the country plus B.B.C. National VHF. Picke up dozens of foreign stations and ahort mobile transmissions. Also tabulous in your car. You could pay efes's mote lor a Car Radio or Car Cassette Player ALONE! OUR FANTASIIO PRICE. ONLY 293.75 CARE; ETC. 35 p . Complete with cimple instructions, personal listening earphone, remote control microphone with on/0fi switch and microphone atand with written guarantes BOND8 OFPDR

ITS PERFORMANCE with
£34 RADIOS!
THE HATEST MODEL, SUPERSEDING ALL PREVIOUS MODELB:-PATTASTIC BRATD TEW RUSSIAN "MERIDIAF" G-WAVEBAND PORTABLE RADIO DESIGFED FOR WORLD WIDE RECEPTION. Only put into production alter facorporation of every conceivable possible up-to-date technological improvement had been caretully conidered and thoroughly extmined. So advanced it will probably make jour present radio seem like a crystal set"! It"s far better than any 6 wave radio even they have produced Finest value we've ever offered! We're almost giving them away at eg.97-3 mere iraction of even todny's Rusian miracle price! We challenge you to compare performance and value with that of 534 dios I + Instant refund If you are not astounded I Purer and sweeter tone then ever! Much wider band spread than bitherto Ior "pin-point" station selection. Once again the Russians have proved their fantastic ability in electronics-brillantly reflecting their advanced micro-circuitry techniques in the fleld of spaceship and sateillte communications. Yea, 8 separste wavebands, including Standard Long, Medium and Short Waves to cover world! Unique aide conksol waveband selection anit gives tncredible esse of atation tuning! Thousand of difterent transmissions and stations at yoar fingertipe 24 houra a dsy, even ships at seas and messages from sill over world-nothing is zecret! The radio enthusist has the world in his handl superb, swet tone-controlled from a whisper to a mar. Pueh-pull outpril geparate ON/OFF volume a Treble/Bass tone controls! The it answhere-runs economically on standard batteries. Internal ferrite rod aerial plus bult-in telescopic aerial extending to fuil 33 zin. length. It's also a fabulous OAB RADIO-sny speed, requires no additionsl aerisl. URIQUE! Elegant Black, White and Chrome inish case. BIZE 10 \(3^{\prime \prime} \times 8^{\circ} \times 3 \frac{1}{*}^{\prime \prime}\) overall
approx. TEE, manual with almple operating instructions and clrcuit diagram. OnLY 29.97, POST ETC, 48 p . Standard hatteries 25 p extra Can also be usod through extongion amplifier tape recorder or pablic address.
service to the trade. Please note that R. S. Components Ltd will NOT supply direct to private individuals.

\section*{Black Box}

I am writing to congratulate you on your initiative in starting the new magazine Everyday Electronics. I am particularly impressed by the way you give information which will be of interest and help to beginners in their future studies of electronics, as well as details regarding the construction of various projects.

If I may make a suggestion regarding the article on the record player by Mr. E. Pusey, I think that it would have been more helpful to beginners if the integrated circuit had not been treated as a mysterious black box.
Whilst it may not have been necessary to give the full circuit diagram, I think it would have been better if a block diagram of the amplifiers used in this integrated circuit had been given and shown connected to the pins. In this way, even if only input and output connections to individual amplifiers were shown, I am sure this would have been more helpful to the beginner, and by showing how basically simple they are, possibly encourage them to experiment further with integrated circuits.

However, I hope you will not take these suggestions amiss, as I think you have started a first class magazine which is ideal for beginners in electronics. I am sure that many people who thought this interesting hobby far beyond them will now realise that if approached systematically, it is just as simple as any other hobby -and more fun!

> Cyril Bogod B.A.E.C. Penarth, Glam.

\section*{Colour Sequence}

I am writing to you about an article in Everyday Electronics November, 1971.

The article is the Snap Sequence Indicator. It is shown that transistors 2N2926 are needed but when I looked up this component it was available in three different colours, green, yellow, and orange.

Could you possibly tell me which one I should use.
N. Sherwood Scunthorpe, Lincs.
See Shop Talk.

\section*{Partial Control}

I have just completed the construction of the Windscreen Wiper Control in accordance with the instructions contained in your first issue. Unfortunately the unit only works for half of the travel of the variable resistor.

The present variation in relay contact closing periods is from a minimum of seven seconds to a maximum of 20 seconds.

All the components used were as recommended with the exception of C 4 for which the preferred value of \(0.47 \mu \mathrm{~F}\) was substituted.
I should be obliged for your suggestions as to the possible cause of the units malfunction. R. Bacon

West Heath, Birmingham.
We have tried to simulate your fault on our prototype and we suspect that it is due to transistor leakage and RLA not being quite sensitive enough. Reduce R3 to 22 kilohms-this will slightly affect the timing range, mainly at the lower end, but should cure the fault.

\section*{Starting Again}

I have recently purchased the first edition of Everyday Electronics and on going through the pages I must admit the compilation is excellent - especially the enlarged diagrams.

It takes me back to the old catswhisker and crystal days but since the all-mains sets I have lost touch with components; electronics seems to have turned a complete cycle, back again to dry batteries.
Your Beginners Brief and Teach-In are very useful as it will keep me in touch with new parts and also help me pick up from where I left off.
Wishing you every success.
P. J. Brown London, N.W.6.

\section*{Scottish Credit}

Mr. A. Sproxton in his article on component buying mentions the bank credit gyroscheme. On inquiring at my own local bank I find that the issuing of forms and the writing of the order on the back of the said form is not known nor is countenanced. Perhaps the system as described by Mr. Sproxton applies only to England-or could Mr. Sproxton comment in his next article.
J. M. Neil

Lanarkshire.

I am sure you have been wrongly informed. We frequently receive orders written on the back of credit transfer forms issued by Scottish banks. In fact, Scottish banks are listed in a brochure "Bank Money Transfer Services" available from any bank.-Alan Sproxton.

\section*{Six Volt Cars}

Whilst I must congratulate you on your first issue of Everyday Electronics, I am disappointed that like many other practical journals, your projects for car owners are ignoring the many like myself who still have a 6 volt battery. May I beg therefore that you either give suitably modified circuits to operate from a 6 volt supply or alternatively a circuit for a 6 to 12 volt d.c. convertor.
This could perhaps have adequate output current to operate the Windscreen Wiper Control already featured plus a transistorised ignition system and tachometer which I hope you will also feature in due course.
One other item I personally would like to see covered, is a vacuum tube voltmeter, or its transistorised equivalent. This would be extremely useful for checking constructed items and general servicing.
R. T. Edwards Herts. Point taken; we will be looking at the needs of the 6 V system, and some future projects may be aimed at the motorist whose car has a 6 V supply.

\section*{Ruminations}
continued from page 138
master. My attitude is quite illogical, I know; I accept, with gratitude, the thermostats and time switches that control the heating of my house and of my. hot water, also the other automatic controls, of various kinds, in my home and car. Why should I resent the seat belt "watchdog"? Perhaps, because I believe that the human brain, combined with its encompassing body, forms the most wonderful, the most sophisticated, computer and control system that could ever be imagined. Electronic aids can be a great help to us, but must we surrender our responsibilities to them?

TRUST the editor will forgive me if I first go back in time, ... since no writing on constructional articles would be complete without a reference to the one and only F. J. Camm. He was editor of innumerable publications, ranging from Cycling to Movie Making and including, of course, Practical Wireless. (I wonder by the way if readers know that F.J.'s brother Sir Sydney Camm designed the famous Hawker Hurricane, which shared honours with the Spitfire in the Battle of Britain!)

. . . he would find some value or other at the bottom of his junk box

All the same, F.J's constructional articles used to drive us poor component suppliers crazy. He would find some valve or other at the bottom of his junk box and design a brilliant constructional article around it. The poor reader would build it care--fully and then come to us to purchase the vital valve. We would listen to the customer with incredulity and say "But Sir-that valve was obsolete ten years ago!"

Another thing, F.J. would never use preferred values (probably there were none in his junk box)
and it was quite useless for us to try and tell a customer that a 500 ohm resistor was unobtainable but that a 470 ohm resistor would do the job equally well.

\section*{Better Today}

The situation is infinitely better today and writers of constructional articles are only too willing to check with us, the suppliers, that the items they wish to specify are available; and we for our part are only too pleased to assist them.

Even so projects sometimes go astray through no one's fault, and I call to mind two recent ones. One called for a "Maka Switch", and the other some Electroniques coils, and in each case the appearance of the articles coincided with the decision of the makers to cease making the required items. We have, as I mentioned in my previous article managed to resurrect the Maka Switch Kits and I'm even hopeful that we may eventually be able to put back the Electronique coils. I think one can say, in these two instances, that no one was to blame and when you consider the large number of such articles published in a year the record is a good one.

\section*{Alternatives, Tolerances}

I think one way designers could help us and the customers is to indicate where alternatives can safely be used and to give a clear indication of maximum tolerances that can be allowed, because writers' statements are held in such reverance by the customers (and we don't quarrel with this, it is their right) that it is no use our suggesting that they could use a 5 per cent resistor instead of a 10 per cent-"Mr. X of Everyday Electronics says 10 per cent and therefore 10 per cent it must be!" I think, for example, electrolytic
... I trust the editor will forgive me if \(I\) just go back in time
capacitors represent a field where a wider choice could be offered, especially when you remember the tolerances are around minus 30 per cent to plus 70 per cent so instead of saying one must use 32 microfarad rated at 10 volts, say a capacitor of between 25 to 100 microfarads with a rating of 10-100 volts may be used provided the physical size will allow it to be fitted.

... provided the physical size will allow it to be fitted

Again, where speakers are specified (and here I exclude apparatus of either the high power or high fidelity class): is it really all that critical whether the unit employed is 3 ohm, \(7 \frac{1}{2}\) ohm or 15 ohm? I personally doubt it, again provided the physical size is right, but how much easier for the customer and in turn for us if the recommended speaker is specified as \(3 \frac{1}{2}\) inch diameter, impedance 3-15 ohm!

\section*{Advance Notice}

I did suggest several years ago that the magazines might tell us in advance what articles were going to be published and give us a list of the parts required, but they pointed out (quite rightly) that they could not possibly circularise

> The components you want for EE designs plus good service, prompt delivery \& attractive discounts

\title{
Electrovalue Electronic Component Specialists
}

\section*{THIS MONTH'S SELECTION OF POPULAR ITEMS FROM THE ELECTROVALUE CATALOGUE}

TRANSISTORS
\begin{tabular}{|c|c|c|}
\hline No. & Type & Purpone \\
\hline 2N897 & \$4. NPN & Ocners! \\
\hline 2N1304 & Ger. NPN & " \\
\hline 2N1305 & PNP & ", \\
\hline 2N2646 & 811. UJT & Oscillator, BCR \\
\hline 2R292a & NPN & Amall sig. amp \\
\hline 2N3035 & NPN & High power \\
\hline 2N3702 & PNP & Low power \\
\hline 2133704 & NPN & Low power \\
\hline AC128 & Ger. PNP & Simall sig./driver \\
\hline AC128 & PNP & Low power \\
\hline AD149 & PNP & High power \\
\hline \({ }_{4} \mathbf{C 1 7 6}\) & NPN & Low power \\
\hline AD181 & NPN & Med. power \\
\hline AD162 & PNP & Med, power \\
\hline BC108 & 8il. NPN & Small nigna \\
\hline BC109 & NPN & Low noise \\
\hline BC168 & NPN & Small signal \\
\hline BC169 & SPN & Low nolse \\
\hline BP194 & NPN & RF amp. \\
\hline BFY51 & NPN & Med. current \\
\hline OA90 & Ger. dionle & RF detector \\
\hline OA91 & " \({ }^{\text {n }}\) & Genersl \\
\hline 8D1 & & Rectifler 1 bupp \\
\hline W02 & & bridge 1 amp \\
\hline
\end{tabular}

\section*{VOLUME CONTROLS, ETC.}

Very wide ranges carried in cluding the following popular types :-
4.7Kohms, lOKohms, 22 Kohms, 47, 100, 220, 470 Kohms; J Megohm, 2.2 Megohms,
Log or linear tracking
MONO 12p each: STEREO
(matched tracks) 42p
Any rype with double pole
mains switch-12p extra

STEREO BALANCE
CONTROLS
Log/Antilog.
47K, IM
Dual antilog 10 K only.

\section*{CAPACITORS}

10K,

\section*{MAIN LINE AMPLIFIERS}

70 watt power amplifier in module form ready to build into any system. With full instructions.
\[
\begin{array}{lccccc}
\text { Amplifier module } & . . & \ldots & \ldots & \text { nett } £ 12.60 \\
\text { Power supply kit } & \ldots & \ldots & \ldots & \text { nett } & £ 6.00 \\
\text { Matching pre-amplifier } & \text { kit } & \text { (for } & & \\
\text { magnetic or ceramic pick-up) } & \ldots & \text { nett } & \$ 3.30
\end{array}
\]

Note-All the above prices are for mono.
FOR STEREO for building into your own cabines. Two amplifier modules and pre-amp kits are required with \(\underset{\substack{\text { matched } \\ £ 38 \cdot 40}}{ }\) controls plus one power supply kit, nett price

\section*{MISCELLANEOUS ITEMS}

\section*{INDICATOR LAMPS}

NEON chrome bezel, round red NR/R, 24p; chrome bezel, round amber NR/A, 24p; chrome bezel, round clear NR/C 24p. Neon, square red type LS5C/P, 18p; amber type LS5C/A, 18p; clear sype LSSC/C, 18p. Ali above are for 240 V mains operation. Filament types: 6V, 0.04 A square red sype LSSC/R-6V, 30p, 6 V 0.04A amber type LSSC/A-6V, 30p; 6V 0.04A clear type LS5C/C-6V. 30p; 6V 0.04A green type LS5C/G-6V, 30p; 12V 0.04A LSSC/R-12V, 34p; 34 V 0.04 A LS5C/R-28V, 45p.

\section*{overseas} CUSTOMERS WELCOME

\section*{RESISTORS}
\(\frac{1}{4}\) watt and \(\frac{1}{4}\) watt, all at Ip each in the following values (in ohms) :-
\(10,12,15,18,22,27,33,39,47,56,68,82\) and all values in this series up to 10 Megohms.

Power Resistors
3 watts-7p each: 7 wates- \(9 p\) each.
Values as for \(\frac{1}{t}\) wate series, but up to 10 Kohms only.
Many other types and values available. Full details in cotologue.

\section*{VEROBOARD}

The universal circuit building board Unclad, \(0.1^{\prime \prime}\) matrix
\(2^{\prime \prime} \times 3.75^{\prime \prime} \quad 10 p\)
\(2.5^{\prime \prime} \times 3.75^{\prime \prime} \quad 15 p\)
\(5^{\prime \prime} \times 3.75^{\prime \prime} \quad 25 p\)
Copperclad Veroboard also in stock in all standard sizes and matrices; also edge connectors, pins, etc.

\section*{PEAK SOUND ENGLEFIED 840}

Brilliantly designed hi-fi amplifier with facility to take add-in stereo FM tuner. Superb performance. \(20+20\) watts RMS into 8 ohm speakers. As advertised \(£ 49 \cdot 50\). Brand new, and guaranteed in maker's carton
\(633 \cdot 50\)
(+75 p carr in U.K.)
COLVERN \({ }^{3}\) watt Wire-wound Potentiometers. \(10 \Omega, 15 \Omega, 25 \Omega, 50 \Omega\), \(100 \Omega, 150 \Omega\), \(250 \Omega, 500 \Omega, 1 \mathrm{~K}, 1.5 \mathrm{~K}, 2.5 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 15 \mathrm{~K}\), ज्ञk, 50K, 32p each DIN CONNECTORS

W IOP CATALOGUEFREE WITH ORDERS FOR GI-00 OR MORE
The Electrovalue catelogue (84 pages and cover, \(8 t \times 5\) ina) is crammed with money saving items, and illustrated technical information. FREE with orders for \(\mathbf{t 1 . 0 0}\) or mors. Sent separately it costs you lop post free. Write your order on a sheet of paper with coupon attached

\section*{ELECTROVALUE}

28 ST. JUDES ROAD, ENGLEFIELD GREEN EGHAM, SURREY,

Hours 9-5.30: Sat. 1.0 p.m.
Telephone: Egham 5533 \& 4757 (STD 0784-3) Telex: 264475

\section*{COMPONENTS DISCOUNTS}
allowed on all items other than those at net prices.
\[
10 \% \text { oh ordersfor } 15 \% \text { on orders for }
\]

POSTAGE PACKING FREE on orders for \(\mathbf{1 2} \mathbf{2} 00\) or more. Please add \(10_{p}\) if under.
Overseas orders welcomed. Prices subject to alteration without prior notice

To ELECTROYALUE, ENGLEFIELD GREEN, EGHAM, SURREY Please send a Goods to value of L................... as detailed on sheet attached, plus FREE copy of catalogue.
b Copy of catalogue.
(strike out item which does not apply)
NAME
ADDRESS

Enclosed please find \(\boldsymbol{t}\).
.................. cash/cheque/money order.
R.C.S. PORTABLE PLAYER CABINET

Really amart appearance with space for R.C.S. Amplifier and mont modern autochangers. Size \(18 \times 15 \times 8\) in Chrome fittings. Cerrying handle. Two-tone and Grey or Wood Grain effect.

BSR C. 109 SUPERSLIM STEREO AND MONO Playi \(12^{\circ}, 10^{*}\) or \(7^{\prime \prime}\) records Quality unit backed by BSR relia bility with 12 months' guarantee. AC \(200 / 250 \mathrm{z}\) Size \(13 t \times 11\) in. Above motor board 33 in. with STEREO and MONO XTAL 17.75 Pont GARRARD SINGLE PLAY TA MK I Ideal \(\leq 10\) GARRARD PLAYER8 with Sonotone GTA Cartridgen, 8tereo Dismond and Mopo Sapphire. SP25 Mk III \&16. Model 8500 Stereo and Mono Autochanger \&14. Post 25p. RCS DE-LOXE 3 WATT AMPLIFIER. ReAdy made Fith 2 -stage triode pentode valve, 3 watta output. Tone londspeaker valves ECL82, E280. Response \(50-12,000 \mathrm{cps}\). Sensitivity 200 mV . Post 25 p . \(\leq 4\) R.C.S. TEAEWOOD BASE. Ready cut out _2.75 R.C.S. PLASTIC COVERS FOR ABOVE BASE. 12.75 DMT PTCE-TP ARM mith mono apearance. EMI PICE-UP ARM with mono xtal and stylua \(\varepsilon 1.25\)
HI-FI PICK-UP CARTRIDGES. Diamond Stereo/Mono HI-FI PICK-UP CARTRIDGES. Diamond Stereo/Mono
OTA \(£ 2.50\); GP94 82.50 ; GP93 \(£ 2.00\); Mono GP01 \(£ 1 \cdot 50 ;\) OTA \(82.50 ;\) GP94 82.50 ; GP93
GC8 \(21.25 ;\) ACO8 L.P. only 50 p
E.M.I. WOOFER AND
15.75 post 25p

Compricing a Ane example of a Wooter \(10 \% \times 8 \mathrm{jn}\). With a massive Ceramic Aganet. 440z, Gauss 13,000 lines. Aluminium Cone centry to improve
 Tweeter 8 fin. square has a special lightweight paper cone and magnet Anx 10,000 hines.
mpedance Standard
Maximum Power Useful Response Base Resomance 35 to \(18,000 \mathrm{cpa}\)

WEYRAD P50-TRANSISTOR COILS RA2W Ferrite Aerial. . 85p | Spare Corea I. \(\mathrm{E}^{2}\). P50/2CC \(470 \mathrm{lc} / \mathrm{s}\) 1.8. P50/2CC 470 k rd 1.F. Pb012 Spare Corea Driver Trans. LFDT4 \(3 p\)
\(80 p\) P50/3V J.B. Tuning Ganp Weytad Booklet
OPII 80p
50p

Mullard Ferrite Rod \(8 \times\) ann. \(20 \mathrm{p} .8 \times 1 \mathrm{in} .25 \mathrm{p}\).

\section*{VOLUME CONTROLS 80 ohm Coax 4p. yd}

Long spindles. Midget Size BRITISH AERIALITE 8 K. obms to 2 Meg. LOG or AERAXIAL-AIR SPACED LIN. L/S 15p. D.P. 25p. : 40 Fd. \(21.40 ; 60\) Fd. 28. \begin{tabular}{l|l}
STEREO L/S S5p. D.P. 75p. & FRINGE LOW LOSS \\
Edge 5K. S.P.Transistor 25p & Tdeal 625 and colour.
\end{tabular} WIRE-WOUND 3-WATT POTS. WIRE-WOUNDS-WATT Small tye with small knob. STANDARD SIZE POTS. \begin{tabular}{l|l}
Yalues \(10 \Omega\) to \(30 \mathrm{~K} . g\) \\
carbon 30 K to 2 meg. & 25 p \\
\hline
\end{tabular}
\(2\} \times 5 i n .26 p .21 \times 3\} i n .17 \mathrm{p} .81 \times 3 i \mathrm{in} .26 \mathrm{p} .31 \times 5 \mathrm{in} .30 \mathrm{p}\).
EDGE CONNECAORS 18 way 25p; 24 way 38p.
8.R.B.P. Board 0.15 MATRix 2tin. wide 8 p per 1 in . \$in. Wide \(4 p\) per 1 in . 5 in. side 5 p per 1 in , (up to 17 in .)
BLANX ALUMINIUN CHASSIS \(18 \mathrm{~s} . \mathrm{w} . \mathrm{g}\). \&in. sideI. \(7 \times 4 \mathrm{in}\). \(45 \mathrm{p} ; 9 \times 7 \mathrm{in} .60 \mathrm{p} ; 11 \times 7 \mathrm{in} .70 \mathrm{p} ; 13 \times 8 \mathrm{in} .80 \mathrm{p} ; 14 \times 11 \mathrm{in}\). \(95 \mathrm{p} ; 15 \times 14 \mathrm{in}\). \(99 \mathrm{p} ; 11 \times 3 \mathrm{in}\). 50 p .
14 MMNIUM PANELS 18 s.w. \(2.8 \times 4 \mathrm{hn}\). \(9 \mathrm{p} ; 8 \times 6 \mathrm{in} .15 \mathrm{p}\); \(14 \times 3 \mathrm{in} .18 \mathrm{p} ; 10 \times 7 \mathrm{in} .19 \mathrm{p} ; 12 \times 5 \mathrm{in}, 20 \mathrm{p} ; 12 \times 8 \mathrm{pm} .28 \mathrm{p} ;\)
\(16 \times 6 \mathrm{n} .28 \mathrm{p} ; 14 \times 9 \mathrm{n} .8 \mathrm{p} ; 12 \times 12 \mathrm{in} 40 \mathrm{p}\).
1! inch DIAMETER WAVE-CRANGE SWITCEES 25p. 2 p. 2-way, or 2 p. 6-way or 3 p. 4 -way 25 p each. 1 p. 12-way. or 4 p . 2-way, of 4 p. 3 -way 25p.
inch DIAMETER Wavechange "MAKTTS" 1 p. 12-way. p. 6-wsy, 3 p. 4 -way, 4 p. 3 -way, 8 p. 2 -way, 1 waler 60 p . 2 waler 90p. Extra waters up to six 30 p each.
TOGGLE SWITCHES. \(3 p .14 \mathrm{p}\); dp .18 p dd. dt. 23 p .
"THE INSTANT" BULK TAPE ERASER \& HEAD DEMAGNETISER 200/250\%. A.C. 12.35 Post
R.C.S. STABILISED POWER PACK KITS All parts and Instructions with Zener Diode, Printed Circuit. Bridge Rectiliers and Double Wound Mains Transformer 12 or 15 or 18 or 20 v . DC at 100 mA or lets. PLEASE STATE VOLTAGE REQUIRED. \(\leq 2\) \(12 \quad\) P08 GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER BRITISH MADE Ideal for Mike, Tape, P.U., Guitar. Can be used with Battery \(9-12 \mathrm{y}\) or H.T. 1inge \(200-300 \%\) D.C. operation. Size \(11^{-} \times 11^{\prime} \times\) 天 For use with valve or trangistor equipmen
Gull instructions supplied
\(90 \mathrm{P} \begin{gathered}\text { Post } \\ 10 \mathrm{p}\end{gathered}\)
NEW TOBULAR ELECMOROL YTI
EW TUBULAR ELECIROLYTICS CAN TYPES
\(2 / 350 \mathrm{~V} \ldots 14 \mathrm{p} \quad 250 / 25 \mathrm{~V} \ldots 14 \mathrm{p} \quad 16+18 / 500 \mathrm{~V}\)
\(1 / 350 \mathrm{~V}\) 14p \(500 / 25 \mathrm{~V} \quad 20 \mathrm{p} \quad 50+50 / 350 \mathrm{~V}\)
\(18 / 450 \mathrm{v} \quad 14 \mathrm{p} \quad 1000 / 25 \mathrm{~V} . \quad 35 \mathrm{p} \quad 60+100 / 850 \mathrm{~V}\) \(16 / 480 \mathrm{~V}\)
\(25 / 25 \mathrm{~V}\)
\begin{tabular}{ll|lllll}
& 10 p & \(8+16 / 450 \mathrm{~V}\) & 20 p & \(350+50 / 325 \mathrm{~V}\) & 30 p
\end{tabular} \(100 / 25 \mathrm{Y}^{\circ} \quad 10 \mathrm{p} \quad 18+16 / 450 \mathrm{v} 25 \mathrm{p} \quad 32+82+32 / 350 \mathrm{~V} 48 \mathrm{p}\) NP- \(100+50+50 / 350 \mathrm{~V} 48 \mathrm{p}\) SUB-MIM. ELECTROL YTICS. 1, \&, 4. 5, 8, 16, 25, 80, 50, 100. 200 mF 15 \(10 \mathrm{p} ; 500,1000 \mathrm{mF} 12 \mathrm{~V} 18 \mathrm{p} ; 2000 \mathrm{mF} 25 \mathrm{~F} 42 \mathrm{p}\). CERAMIC 350 FF 20. 0.01 mF , 4 p . Silver Mica 2 to 5000 pF , 4 p . PAPER 350V-0. 001 to \(0.054 \mathrm{p} ; 0.15 \mathrm{p} ; 1 \mathrm{0} 258 \mathrm{p} ; \mathbf{0 . 4 7} 25 \mathrm{p}\). pF 10p: 2,700-5,600pF 20p; \(8.800 \mathrm{pF}-0.01\), mld 80 p ; each. TWIN GANG. "0-0" \(208 \mathrm{pF}+178 \mathrm{pF}\), 85 p ; Slow motion drive \(385+365\) with \(25+25 \mathrm{pF}\). 50 p 500 pF slow motion, standard 5p; amall 3-gang \(500 \mathrm{pF} 21 \cdot 60\).
SEORT WAVE, SIFGLE. 10pF 30p; 25pF 55p: 51pF 55p. CHROME TELESCOPIC AERIAL, swivel base, 23in. 20 p . TUNING. Solid dielectric. 100 pF . 500 pF . 85 p osch. 1 MMERS. Comprestion \(10,80,70 \mathrm{pF}, 5 p\), \(100 \mathrm{pF}, 150 \mathrm{pF}\). \(8 \mathrm{p} ; 250 \mathrm{pF}, 10 \mathrm{p} ; 600 \mathrm{pF}, 10 \mathrm{p} ; 750 \mathrm{pF} 10 \mathrm{p} ; 1850 \mathrm{pF}\) 10p. RECTIFIERS CONTACT COOLED Bridge \(70 \mathrm{~T}^{2} 5 \mathrm{amp}\) and il 8.5 mA 48 p . 8ILICON BYZ 13 30p B BY 10080 p ; BY127 30 p . EX-GOVERNMENT RECTIFTERS 250 v 200mA 30 p . NEON PANEL IIDICATORS 250 V AC/DC Red or Amber 20 p RESISTORS, \(\frac{1}{2}\) W. \(\frac{1}{2}\) w., \(20 \% 1 \mathrm{p} ; 2 \mathrm{w} .5 \mathrm{p} 10\) ohms to 10 meg EIGH STABILITY. \(\frac{1}{2} .2 \% 10\) ohms to 1 meg., 10 p . Ditto \(5 \%\) Preferred values 10 ohms to 10 meg.. 4 p .
WIRE-WOUND RESISTORS 8 watt, 10 watt 15 10 ohms to \(100 \mathrm{~K}, 10 \mathrm{peach}\); \(2 \frac{1}{2} \mathrm{watt}, 1 \mathrm{ohm}\) to \(8 \cdot 2\) ohms 10 p

PHILIPS TRANSISTOR FM STEREO

HULTIPLEX DECODER As uited in LEAK Trougbline Tumer. Brand Jow. Pretors. 24 w , DC 9 semi-conductors. \(24 \overline{ }\). DC at 8 mA . Com-
plete with circuit and conmeetion detailn. \(\mathbf{~} 4 \stackrel{\text { POBT }}{\text { PREE }}\)

\section*{MAINS TRANSFORMERS}

ALL POST \(250-0-25080\) mA. \(6 \cdot 3\) ₹. 4 amp. \(81 \cdot 40\)
 \(350=0-35080 \mathrm{~mA}, 6 \cdot 8 \mathrm{\nabla} .3 \cdot 5 \mathrm{z}, 6 \cdot 3 \mathrm{v} .1\) a, or 5 F .2 a . \(£ 2 \cdot 00\) MINIATURE \(200 \mathrm{v}, 20 \mathrm{~mA} .6 .3\) v. \(1 \mathrm{a} .21 \times 21 \times 2 \mathrm{in}\). MIDGET 220 F. \(45 \mathrm{~mA}, 88,8,8 \mathrm{a} .21 \times 8!\times 2 i \mathrm{n}\). P.E. AURORA TRANS. \(12+12 \mathrm{v}, 500 \mathrm{~mA}\)
MINI-MAINS \(20 \mathrm{v}, 100 \mathrm{~mA} .15 \times 1 ; \times 1: / \mathrm{m}\). MIMI-MAINS \(20 \mathrm{v}, 100 \mathrm{~mA} .1 \$ \times 1: \times 1\) itn.
HEATER TRANS. \(6 \cdot 3 \mathrm{v}, 3\) a,
Ditto tapped sec. \(1.4 \nabla ., 8,3,4,5.6-3 \mathrm{v}, 11 \mathrm{amp}\) t \(2 \mathrm{amp} .3,4,5,6,8,9,10,12,15,18,24\) and 30 v . \(£ 2 \cdot 00\)

 Input/0ukpt. 150 w . \(82.00 ; 500 \mathrm{w}\). \(85: 1000 \mathrm{w}\) CEARGER TRANSFORMERS. Input 200/250v.
 CHARGER RECTIFIERS utputs. \(11 \mathrm{smp} .40 \mathrm{p} ; 2 \mathrm{amp}\). \(55 \mathrm{p} ; 4 \mathrm{amp} .85 \mathrm{p}\).
All transiormeri Postage 25 p extra.

\section*{E.M I. \(13 \frac{1}{2} \times 8 \mathrm{in}\). LOUDSPEAKERS \\ With twin tweaters}

8nd crossover, 10 watt.
(A) illutrated) 15 ohm

Ł4
As illuatrated
Post \(15 p\)
With flared tweeter cone and ceramio magnet. 10 watts.
Eases res. \(45-60\) eps. Flux 10,000 ganss.

Post 15 p
State 3 or 8 or 15 ohm. Recommended Teak Cabinet
Size \(16 \times 10 \times\) Qin. Post \(25 p\) 5

\section*{IOW MINI-MODULE \(£ 3 \cdot 25\) LOUDSPEAKER KIT \\ Port 25p}

Triple apeaker syatem combining on ready cut bafle. \& in. chipboard 18 in . \(\times 8 \frac{1}{2} \mathrm{in}\). Separate Bass, Middle
and Treble loudspealiers and crossover condenser. The and reble loudspeakers and crossover condenser. The cone. The mid-Range unit is specislly designed to add drive to the middle register and the tweetor recreates the top end of the musical spectrum. Total response \(20-15,000 \mathrm{cps}\). Fnll instractions for 3 or 15 obm. TEAK VENEERED BOOKSEELF ENCLOSURE \(16 \times 10 \times\) gin. Modern design with
guted wood front. Highly recommended. \(\$\) Post 25 p

ALL MODELS "BAKER SPEAKERS" IN STOCK
BAKER I2in. MAJOR 4

\(30-14.500\) c.p.s., 12 in
double cone, woofer and double cone, woofer and with a cone together with a BAZER ceramic magnet assembly havine fiax density of 14,000 kacss and a total flux of 145,000 Maxwells. Bas resonance 40 e.p.s. Rate 20 watts. Voice coils 3 or 8 or 15 ohms. Poat Free Module kit. \(30-17,000\) c.p.s ith iweeter, crossover \(\begin{aligned} & \text { batfle and } \\ & \text { instructions. }\end{aligned} \leq \| / .50\)
 TEAK HI-FI SPEAKER CABINETS. Fluted wood front Por 12in. dis. speaker \(20 \times 13 \times 8\) in. .. 89. Post \(25 p\) For \(13 \times 8\) in. speaker \(18 \times 10 \times 9\) in.
For \(10 \times 8\) in. speaker \(16 \times 8 \times 6\) in.
44. Post 25 Pos LOUDSPEAKER CABINET WADDINGI8in. Wide, 15p li

GOODMANS HI-FI WOOFER
8 ohm, 10 watt. Large ceramic magret. Special Cambric cone surround. Frequency ri-Ti ponse \(30,12,000\) cps. IdealP.A. Colnmns Ei-Fi Enclosures Systems, etc. \(\& 4\)

elac cone tweeter
The moving coll diaphragm gives a good radistion pattern to the higher frequencia and a smooth extension of cotal responge rom \(1,000 \mathrm{cps}\) to \(18,000 \mathrm{cps}\). Size \(3!\times\) or 15 ohm deep. Rang watls. 3 obm or 15 obm modela. \(\$ 1.90\) Horn Tweetars 2-16ke/a, 10 W ohm or 15 ohm \(\varepsilon 1-50\) De Luxe Horn Tweetert \(2-18 \mathrm{Kc} / \mathrm{s}, 15 \mathrm{~W} .8\) ohm \(£ 3\) TWO-WAY 3000eps CROSSOVERS 3 or 8 or 15 ohm 95 p.
SPECIAL OFFER! 80 ohm, 2iin. dia. 35 ohm, 2 in.; 3in SPECMAL OFFER! 80 ohm, 21 in . dia.; 35 ohm. 2 in ; 3in
\(25 \mathrm{ohm}, 2 \mathrm{in}\). dia.; 3 in . dia.; \(8 \times 4 \mathrm{in} . ; 8 \times 5 \mathrm{in}\).
EAOH
 \(8 \mathrm{ohm}, 8 \times 4 \mathrm{in} .3 \mathrm{ohm}, 2^{s} \mathrm{in} .3 \mathrm{in} .5 \mathrm{in}, 5 \times 3 \mathrm{in}, 7 \times 4 \mathrm{in}\) LOUDSPEAKERS P.M. 3 OHMS. 8 in . \(81.10 ; 8 \times 5 \mathrm{in} . ~ £ 1-25\); \(8 \times 21\) in. \(90 \mathrm{p} ; 8 \mathrm{in} .11 .75 ; 10 \times 6\) in. 21.90 .
5 in. WOOFER 8 watts mex. \(20-10,000 \mathrm{cps}\). 8 or 15 ohm. \(£ 180\) ELAC 10in. 10W. De Luxe Ceramic, 8 ohm. 84
RICEARD ALLAN TWIN CONE LOUDSPEAKERS. 8in. dia. 8 or 8 or 15 ohm models \(£ 1.95\) each. Post 15 p .
OUTPUT TRANS. EL34 etc. 25p; MIEE TRANS, \(50: 125 p\) 8PEAKER COVERING MATERIALS. Samplea Large S.A.E. GOODMAN'S OUXPUT TRANSFORMER 5 watt push-pull for valves EL84 etc.. 3,8 and 15 ohms 85 p . Post 20 p . PURPOSE POWER AMPLIFIER
4 inputs speech and music. Mixinglacilities. Response 10-30,000 eps. Matches \(200 / 250 \mathrm{v}\). Separate Treb and Bass controls Gutranteed Details S.A.E.

\section*{ALL EAGLE PRODUCTS} ILLUSTRATED EAGLE GATALOGUE 20 p . Post Free. BARGAIN AM TONER. Medium Wave.
Transistor Superhet. Ferrite aerial. 9 volt. BARGAIN 4 CEANNEL TRANSISTOR MONO MIXER Will mix Micrighlights and sound effects to recording with separate controls into single ontput. 9 volt. STEREO VERSION OF ABOVE \&4.25.
BARGAIH FM TUNER 88-108 Mc/s Six Tranaistor. 9 volt Printed Circuit. Calibrated alide dial tuning
BARGAIN FM TUNER as above less cabinet
BARGAII 3 WATT AMPLIPIER. 4 Transistor
Push-Pull Ready built, with volume control. 9v.
COAXIAL PLUG 6p. PANEL SOCEETS 6p. LINE 18p. OUTLET. BOXES, SURFACE OR FLUSH 25p.
BALANCED TWIN FEEDERS 5 p yd. 80 ohms or 300 ohma JACK SOCKET Std. open-circuit 14 p . closed circuit 23 p : Chrome Lead Socket 45 p . Phono Plugs 5p. Phono Socket 5p. SOCKETS Chassis 3 -pin 10 p ; 5 p pin 10 p . DIN SOCKETS Lead \(3-\mathrm{pin} 18 \mathrm{p}\); 5-pin 25p. DIN PLUGS 3-pin 18p; 5-pin 25p. VALVE EOLDERS, 5p; CERAMIC 8p; CANS 5p.

E.M.I. TAPE MOTORSPost 15 p . 120 v . or 240 v . AC. 1.200 r.p.m. \(\$\) pole 135mA. spindle \(0.187 \times 0.75 \mathrm{in}\). \& 1.25 BALFOUR GRAM MOTORS 120 v . or 240 v . A.C. 1,200 r.p.m. A pole 50 mA . Spindle \(\times 3 / 20\). Size
\(2 \ddagger \times 24 . \times 1!i n\).
Post 15 p

HI-FI STOCKISTS. RETURN OF POST DESPATCH.
RADIO
RADIO COMPONENT
every component supplier and it would be unfair to give such information to some advertisers and not to others.
On reflection, I confess we would still be caught out occasionally even if we had this advance list simply because it is always impossible to forecast how popular a given design will be.

Let us say we have a certain coil in stock, that ordinarily sells at two dozen a year. Unknown to us, one of the magazine contributors uses it in a constructional article and the sales rocket to 100 a week. The poor coil manufacturer who sold a few hundred a year finds the demand increased to hundreds of thousands and so

... it is always impossible to forecast how popular a given design may be
his delivery which was 14 days becomes six months.
Sometimes there is no interest at all and with another one, we are inundated with requests for parts. We, of course, cannot lay out large sums of money without knowing whether there will be any sale for what we are buying!

\section*{Outlook Very Bright}

I hope these three articles have been of some use to the general reader in enabling him to understand some of the problems involved. In conclusion I would like to hazard a guess at what the future holds in store for the electronics constructor. I think the outlook is very bright and the amateur constructor will be able to purchase more and more sophisticated parts to experiment with. We may go through a period where we seem in fact to be offering a decreased range. For example we stock 10 per cent and 5 per cent resistors at present, but if by buying large quantities we could offer you 5 per cent at nearly the same price as 10 per cent it would save us stocking a whole range, and you the consumer would be no worse off, in fact slightly better off.

This will happen because manufacturers are trying to sell larger and larger quantities! One can see their point of view, it costs them the same in administration costs to sell 10 as 10,000 !

Another field where this same effect may occur is in toggle switches. We list four varieties: s.p.s.t., s.p.d.t., d.p.s.t., and d.p.d.t
switches. It is not difficult to see that the function of all four types could be performed by just one of them, namely the d.p.d.t. The difference in cost between the various types is not very great, so that if we were able to persuade you to use the d.p.d.t. in every case, we could buy four times the quantity and so bring the price down!

You will see what I mean in an apparent restriction in range-the actual restriction is nil!

However, while we have magazines like Everyday Electronics and their contributors giving us such challenging and interesting designs, suppliers who are anxious to please, and above all customers like yourselves with such boundless enthusiasm, none of us need worry too much about the future!

\section*{Post Script}

Since these articles appeared I have been delighted to receive a number of interesting letters, some containing constructive ideas. I will mention one small happening that occurred about the time the first issue of EVERYDay Electronics appeared. A customer who had not dealt with us before required some components urgently. He telephoned us at 10 a.m. and gave us the order. He then sent the money by telegram or telegraph and we received it at \(11.30 \mathrm{a} . \mathrm{m}\). We were able to despatch his order the same day. I mention this as it is a method of ordering that I had overlooked and one that could be a life saver in an emergency.

SPECIAL 50p PACKS. ORDER 10 PACKS AND WE WILL INCLUDE AN EXTRA ONE FREE I
RESISTORS, \(\frac{1}{d} / \frac{1}{y}\) wate
assorted
Wire
assorted
Wire-wound 1 to 3 watt
5 to 7 watt
10 watts
00 50p PAPER CONDENSERS Miniature
ELECTROLYTIC CONDENSERS 100
Suitable for Mains
Radio/TV
Transistor rypes
Mixed (both types)
POLYSTYRENE
POLYSTYRENE
MULLARD POLYESTER CONP.
SILVER MICA
WIRE-WOUND 3-Watt
SLIDERS
D 3-Watt
VOLUME CONTROL5
NUTS AND BOLTS. Mixed
length/type
8 B.A
6 B.A.
4 B.A.
\(T^{2}\) B.A. SPEAKER GRILIES 100
7 tin. \(\times 3\) tin.
EARPIECES, MAGNETIC
No Plug
2.5 mm Plug
3.5 mm Plug

500 MICRO-AMP LEVEL
METERS
VEROBOARD, TRIAL PACK
5 BOARDS + CUTTER \(50 p\)

TAANSISTOAS
P.N.P. Untested but mainly 50 50p N.P.K. Untested but mainly 50 50p \(\bigcirc C P 71\) equivalent \(\quad 5\) 50p Light-sensitive Diodes 10 50p (These produce up to Ima from light) OC44 Mullard Ist grade OC45 Mullard Boxed
2G378 Outpur, Marked
2 G 371 Driver, Marked
ASY 22, Marked
BY 127 Rectifiers
IN4007 Rectifiers
STC \(3 / 4\) Rectifiers
DIODES (OA 81 \& OA 91) 40 WIRE
Solid Core. Insul. 100yds. Stranded ditto SOyds. SOLAR CELLS
Large Selenium Small
(6 cells w
(6 cells will po
matic radio)
CO-AXIAL CABLE
Semi Air-spaced \(15 y \mathrm{ds}\). 50p
CRYSTAL TAPE RECORDER
CYRSTAL EARPIECES
3.5mm Plug

TRANSISTORISED Signal
Injector Kit
TRANSISTORISED Signal
Tracer Kit
TRANSISTORISED CAR REV
TRANSISTORISED CAR REV
COUNTER KIT (Needs
1 ma. meter as indicator) I 50p

STOCKTAKING CLEARANCEI IMPOSSIBLE TO REPEATI
We have huge numbers of components in quantities too small to advertise individually. In order to "clear the decks" we have made up parcels containing a mixture of carbon and wire-wound resistors, electrolytic and paper con densers, controls, transistors, diodes etc., for a tiny fraction of normal price, It is emphasised that these are mixed parcels only-contents cannot be atipulated! Sold only by weight.
\(\begin{array}{lllllll}\text { Gross weight } 2 \mathrm{lb} & . . & . . & . . & . . & . . . & \text { \& } \text { (postage 20p) } \\ \text { Gross weight } 5 \text { lb. } & \ldots . & \ldots & . . & . . & . . & \text { \&2 (postage 30p) }\end{array}\)

Unrepeatable Offer ! ! ! !
Surplus VEROBOARDS, \(3 \frac{33^{\prime \prime}}{4} \times 2 \frac{1^{\prime \prime}}{2} \times \cdot 15^{\prime \prime}\)
Only 10p each or \(\mathbf{£ 1} \cdot \mathbf{0 0}\) per dozen

TANTALUM CAPACITORS. COMPARE THE PRICE-ONLY 10p EACH ! ! ! !

NEW! NEW! NEW! NEW!
An aerosol spray providing a convenient means of producing any number of copies of a printed circuit both simply and quickly.
Method: Spray copper laminate board with light-sensitive spray. Cover with transparent film upon which circuit has been drawn. Expose to light. (No need to use ultra-violet.) Spray with developer, rinse and erch in normal manner. Light sensitive aerosol spray
Developer spray
G. F. MILWARD, Drayton Bassett, Tamworth, Staffs. Postage (minimum) per order 15p.

\section*{STEREOnow roucen BUILD YOUROWN}

Mullard Unilex modules need no soldering, no knowledge of electronics. They make the stereo amplifier so simple that anyone can build it in an hour, for around \(£ 16\). Connect the record deck and speakers and you've built your stereo system. For the comprehensive instruction book 'Do-it-yourself Stereo' and stockist list post this coupon today with a 25 p P.O.

Room 512.
Mullard House,
Torrington Place,
London WC1E 7HD.
Name
Address \(\qquad\)

E/E.1. 72

\section*{6
6
6 \\ \\ TELEPHONE DIALS \\ Standard Post Office type.
Guaranzeed in working order. \\ only 50p}

\section*{8 RELAYS FOR fl}

\author{
Resistances. No indivldual \\ salection. Post \& Packing 25p
}

NEW TESTED AND GUARANTEED PAKS
 -70 \(4 \begin{gathered}\text { iN } 4007 \text { sil. Rec. diodes. } \\ \text { l,000 pIV lamp plastic. }\end{gathered} \quad 50 \mathrm{P}\) EI \(10 \begin{aligned} & \text { Reed Switches, mixed types } \\ & \text { large and small }\end{aligned} \quad 50 \mathrm{P}\) B9\% 200 Mixed Capacitors. Approx. SOP H4 \(250 \begin{aligned} & \text { Mixed Resistors. Approx. } \\ & \text { quantity counted by weitht }\end{aligned} \quad 50 \mathrm{p}\) M7 \(40 \begin{aligned} & \text { Wirewound Resistors. Mixed } \\ & \text { types and values. }\end{aligned}\) 50p ME \(4 \begin{aligned} & \text { BYI27 Sil. Rees. } \\ & 1000 \text { PIV, } 1 \text { amp. plastic }\end{aligned} \quad 50 \mathrm{p}\)
H\% 2 \begin{tabular}{l}
OCP7I Light Sensitive \\
Photo Transistor
\end{tabular}\(\quad 50 \mathrm{p}\)

H12 \(50 \begin{aligned} & \text { NKTI55/259 Germ. diodes. } \\ & \text { brand new stock clearance }\end{aligned} \quad 50 \mathrm{p}\)
HIS 10 \begin{tabular}{l}
OC7I/75 uncoded black slass 50 p \\
type PNP Germ.
\end{tabular}

H1\% \(10 \begin{aligned} & \text { OC1/810 uncoded white } \\ & \text { glass rype PNP Germ. }\end{aligned} \quad 50 \mathrm{p}\)
H2 \(20 \begin{aligned} & \text { OG200/IR13 PNP siticon } \\ & \text { uncoded TO-5 can }\end{aligned} \quad 50 \mathrm{p}\)

HEW UNMARKED UNTESTED PACKS
\begin{tabular}{|c|c|c|c|}
\hline sos & 150 & Ger & 50 p \\
\hline \(\underline{03}\) & 200 & Tranz. manufacturern' reject: Garm. , & 50p \\
\hline Em & 100 & & 50p \\
\hline Bx & 50 & Sil. Diodes sub. min. ingla and INgi6 trpes & Op \\
\hline T00 & 50 & \begin{tabular}{l}
sil. Tram. NPN. PNP \\

\end{tabular} & 50p \\
\hline 360 & 10 & 7 Watt Zener Diodes Mixed Voterges & \\
\hline Ho & 40 & 250 mW . Zener Diodes DO-7 Min. Glass Type & 50p \\
\hline HIO & 25 & Mixed volss, \(1 \frac{1}{2}\) watt Zene Top hat sype & 50p \\
\hline \(\square\) & 50 & Germanium Transi & 50 p \\
\hline HIS & 30 & Top hat Silicon Recc
750 mA . Mixed volts & 50 \\
\hline HIS & 8 & Experimentera' Pak of
Internated Circuits. Data supolied & 50p \\
\hline 20 & & & \\
\hline
\end{tabular}

\section*{MAKE A REY COUNTER}

\section*{FOR YOUR CAR}

The 'TACHO BLOCK'. This encapsulated block will surn any \(0-1 \mathrm{~mA}\) meter into a linear and accurate rev. counter for any car with normal coil isnition system.

\section*{£1 \({ }_{\text {each }}\)}
\(\square\) DEPT. E, 222-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX SSO 9DF TELEPHONE: SOUTHEND (0702) 46344
\begin{tabular}{|lcl}
\hline BRAND NEW & SEMICONDUCTORS \& COMPONENTS & RETURN OF POST \\
GUARANTEED SOLE AGENTS FOR SOLID STATES DEVICES INC., (USA). IN U.K. & SERVICE \\
\hline
\end{tabular}

\section*{GUARANTEED}
sole agents for solid states devices inc., (usa). in u.k.

TRANSISTORS

TTL. LOGIC I.C. NEW PRICES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{1-11 12-24} & \multicolumn{3}{|l|}{1-11 18-24} & 1-11 & 12-84 \\
\hline & 2p & 2p & & 29 & £p & & Ep & \& \\
\hline 8N7400 & 0-80 & 0.18 & SN7433 & 0.80 & 0.75 & 8N7472 & 0.32 & \(0 \cdot 30\) \\
\hline gN 7401 & 0.20 & 0.18 & SN7437 & 0.64 & 0.00 & 8N7473 & 0.43 & 0.11 \\
\hline SN7402 & 0.80 & 0-18 & SN7438 & 0.64 & 0.60 & 8N7474 & 0.48 & 0.41 \\
\hline 8N7408 & 0.80 & 0.18 & SN7440 & 0.23 & 0.21 & SN7475 & 0.45 & 0.44 \\
\hline 8N7405 & \(0 \cdot 20\) & 0.18 & SN7441AN & 0.87 & 0.88 & 8N7476 & 0.45 & 0.44 \\
\hline gN7406 & 0.80 & 0.75 & gN7442 & 0.85 & 0.81 & SN7480 & 0.70 & 0.65 \\
\hline SN7407 & 0.20 & 0.18 & SN7443 & 2.88 & 2.70 & SN7482 & 1.40 & 1.38 \\
\hline SN7408 & 0.20 & 0.18 & 8N7444 & 2.86 & 2.70 & 8N7482 & 0.87 & 0.82 \\
\hline SN7409 & 0-20 & 0.18 & SN7445 & 2.50 & 2.40 & 8N7483 & 0.87 & 0.82 \\
\hline gN7410 & 0.20 & 0.18 & gN7446 & 1.00 & 0.85 & 8N7484 & 8.00 & 1.85 \\
\hline 8N7411 & 0.28 & 0.21 & 8N7447 & 1.00 & 0.96 & SN7485 & 8.68 & 8.40 \\
\hline 8 877412 & 0.48 & 0.48 & 8N7448 & 1.00 & 0.95 & 8N7486 & 0.38 & 0-30 \\
\hline gN7413 & 0.40 & 0.88 & 8N7449 & 1.00 & 0.95 & SN7490 & 0.87 & 0.84 \\
\hline 8N7420 & 0.20 & 0.18 & 8N7450 & 0.20 & 0.18 & SN7491AN & 1.21 & 1.10 \\
\hline SN7423 & 0.61 & 0.47 & 8N7451 & \(0 \cdot 20\) & 0.18 & SN7492 & 0.87 & 0.84 \\
\hline 8N7427 & 0.48 & 0.45 & 8N7453 & \(0 \cdot 20\) & 0.18 & SN7493 & 0.87 & 0.84 \\
\hline 8N7428 & 0.80 & 0.75 & 8N7454 & 0.20 & \(0 \cdot 18\) & SN7494 & 0.87 & 0.84 \\
\hline 8N7430 & 0.23 & 0.15 & 8N7460 & 0.80 & 0.18 & SN7495 & 0.87 & 0.84 \\
\hline 8N7432 & 0.48 & 0.42 & 8N7470 & 0.40 & 0.38 & 8N7496 & 0.87 & 0.84 \\
\hline
\end{tabular}

MULLARD SUB-MIN ELECTROLYTIC
C4s6 range arial lead \(1 / 40 ; 1 \cdot 6 / 25 ; 2.8 / 26 ; 2.5 / 04 \cdot 4 / 10 ; 60\) ench Values: \((\mu \mathrm{F} / \mathrm{V}): 0 \cdot 64 / 64 ; 1 / 40 ; 1 \cdot 6 / 25 ; 2 \cdot 5 / 16 ; 2 \cdot 5 / 64 ; 4 / 10 ; 1 / 40 ; 5 / 84 ;\)
\(6 \cdot 4 / 6 \cdot 4 ; 6 \cdot 4 / 25 ; 8 / 40 ; 10 / 16 ; 10 / 64 ; 12 \cdot 5 / 25 ; 16 / 40 ; 20 / 16 ; 20 / 64 ; 25 / 6.4:\) \(6 \cdot 4 / 6 \cdot 4 ; 6 \cdot 4 / 25 ; 8 / 40 ; 10 / 16 ; 10 / 64 ; 12 \cdot 5 / 25 ; 16 / 40 ; 20 / 16 ; 20 / 64 ; 25 / 6 \cdot 4 ;\)
\(25 / 25 ; 32 / 10 ; 32 / 40 ; 32 / 64 ; 40 / 16 ; 50 / 6 \cdot 4 ; 50 / 25 ; 80 / 40 ; 64 / 10 ; 80 / 2 \cdot 5 ;\) \(80 / 16 ; 30 / 25 ; 100 / 6 \cdot 4 ; 126 / 10 ; 125 / 16 ; 200 / 6 \cdot 4 ; 200 / 10 ; 320 / 6-4\).

\section*{SILICON RECTIFIERS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline PIV & 50 & 100 & 200 & 400 & 600 & 800 & 1000 & \(1200^{\circ}\) \\
\hline 14 & 10D & 1210 & 169 & 16p & 17\% & 10p & 20D & - \\
\hline 3 A & 15p & & & \(221 p\) & & 30 p & & \\
\hline 6 A & - & - & 250 & \(80 p\) & 3210 & 850 & - & - \\
\hline 10.4 & - & 821p & 571P & 65 & 770 & 861 p & 97\% & 21.25 \\
\hline 15 A & - & 6710 & \(62{ }^{\text {d }}\) & 77 b & 90 p & \(971 p\) & 81.20 & 81.87 ! \\
\hline 35 A & - & 80 p & 90p & 81.00 & 81.25 & 21.50 & 22.50 & \\
\hline 1 amp & 3 am & are pl & te en & paulat & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{OIODES \& RECTIFIERS} \\
\hline 1534A & 100 & AA119 & 100 & BAX16 & 121p & FST3/4 & 22 b \\
\hline IN914 & 7D & AA129 & 10p & BAY18 & 1710 & OAB & 17 t \\
\hline IX916 & 70 & AAZ13 & 100 & BAY32 & 0710 & OA10 & 2910 \\
\hline IN4007 & 20 p & AA715 & \(181 p\) & BAY38 & 25 & OA9 & 10p \\
\hline 1844 & 7 p & AAZ17 & 1815 & BY100 & 171p & 0447 & 0710 \\
\hline 18113 & 15p & BA100 & \(15 p\) & BY103 & 2910 & OA70 & 071p \\
\hline 15120 & 150 & BA102 & 29 & Br122 & 47t9 & OA73 & 10 p \\
\hline 18121 & 17ip & BA110 & \(32+\mathrm{p}\) & BY124 & 15p & OA79 & 00p \\
\hline 18130 & 12\% & BAl14 & 2210 & BY126 & 150 & OA81 & 07 tp \\
\hline 18131 & 12tp & BA115 & 0710 & BY127 & 1710 & OA85 & 0710 \\
\hline 18132 & 150 & BAl41 & 321 p & BY164 & 5710 & 0490 & 0710 \\
\hline 18920 & 7 D & BA142 & 82 \({ }^{\text {p }}\) & BYX10 & \(22+5\) & OA91 & 0740 \\
\hline 18922 & 8 p & BA144 & 1210 & BYZ10 & 350 & \(0 \mathrm{OA95}\) & 07t \\
\hline 18923 & 129 & BA145 & 20p & BYZ11 & & OA200 & 10 p \\
\hline 18940 & 6 & BA154 & 121 p & BYZ12 & 80 D & OA202 & 10p \\
\hline & & BAX13 & 12łp & BYZ18 & 25p & TIV307 & 500 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{TRIACS} & \multicolumn{5}{|c|}{BRIDGE RECTIFIERS} \\
\hline \({ }^{\text {sc3s }}\) d & 21-124 & scsid & 21.95 & A. PIV & & & PIV & \\
\hline 8 Cc 36 D & 81.00 & 40430 & 979 & 1100 & 47) \({ }^{\text {d }}\) & 4 & 50 & 60 \\
\hline SC40D & 81.50 & 40486 & & 1.4140 & & 4 & 100 & \\
\hline SC41D & \({ }_{\text {E1. }} 1.20\) & \({ }_{4}^{40528}\) & 72.5 & 1.4140
\(8 \quad 50\) & 52, 8 & 4 & 400 & \\
\hline SC45D & 81-62 & 40430 & 81.80 & (1800 & \({ }^{650}\) & 5 & 50 & 88 \\
\hline SC46D & 21.421 & 40482 & \({ }^{11} 1.874\) & 200 & 70p & - & 200 & 37 \\
\hline scsod & 28.05 & 40512 & 21.45 & 400 & 80 p & 4 & 400 & 41.18 \\
\hline
\end{tabular}

WLRE-WOUKD RESISTORS
2.5 watt \(5 \%\) (up to 270 ohme 2.5 watt \(5 \%\) (up to 270 ohnu
only). 7 p (up to \(8.2 \mathrm{k} \Omega\) only), 9 p
5 watts \(8 \%\) (up 5 watt \(5 \%\) (up to \(25 k \Omega\) only).
10 p
POTENTIOMETERS
Corbon: and Lin., less switch. 16 g. Log. and Lin., less switch, 16 p .
Log. and Lin., with awitch, 85 . Wire-wound Pots (3W), 88p. Twin Ganged Stereo Pots, Log. and Lin., 40 p .
PRESETS (CARBON)
0.1 Watt 6p VERTICA \begin{tabular}{ll}
0.2 Watt \\
0.3 Watt & OR \\
\hline
\end{tabular}

\section*{THERMISTORS}
\(\begin{array}{lll}\text { R53 (STC) } & \text { 21-271 } & \text { VA3705 8710 } \\ \mathrm{K} 151 \text { (1k) } & 181 \mathrm{D} & \text { VA1077 } 20 \mathrm{p}\end{array}\) K101 (1k)
Mullard
Thermistors also in Mullard Thermistor
stock. Pleake onquire.

Tel. 01-452 0161/2/3 A. MARSHALL \& SON
Telex 21492
28 CRICKLEWOOD BROADWAY, LONDON, N.W. 2

PREMIER BTERBO SYBTEM "ONE" Conslsta of the new Premier 800 all transistor stereo amplifier, Garrard \(2025 \mathrm{~T} / \mathrm{C}\) auto manual record player unit atted stereo mono ceramic cartridge with diamond stylus and mounted in teak apstems. Absolutely persper cover and two matching teak finish loudplay. 800 amplifier has an output of 5 watts per channel with inputs tor ceramic and magnetic pick-op. tape and tuner also tape output socket and headphone socket. Controle: Base. Treble, Volume, Balance, Selector, Power on/ofi. Mono/Stereo switch. Stereo Headphone nocket. Black leatherette cabinet with aluminium front panel. Size: \(121^{\circ} \times 61^{\circ} \times 2:^{\prime \prime}\). (Amplifer available separately if required \(\$ 16 \cdot 25\). Carr. 40p).

\section*{FREE}

STEREO HEADPEONES
and all leads and plugs supplled with all systems.

\section*{PREMIER HI-FI OFFERS}

Philips 580
Stereo Amplifier
(List \(\mathrm{E29} \cdot \mathbf{0 0}\))
Rogers Ravensbrook II
Stereo Amplifier in teak
case (List \(£ 52 \cdot 50\))
Rogers Ravensbourne
Stereo Amplifier in teak Case (List E64)
Metrosound ST20E
Metrosound ST20E
Stereo Amplifier in teak case (List \(£ 39 \cdot 50\))
Goldring GL75
less cartridge (List \(£ 41.61\)) Garrard SP25 III
less cartridge
Garrard SP25 III with Goldring G800 cartridge (List E28.35)
Garrard AP76
less cartridge
Garrard 3500 with
Sonotone 9TAHC stereo \&9-97
cartridge (List \(£ 15 \cdot 50\))
Garrard 2025 T/C with
Sonotone 9TAHC
Diamond Cartridge
Garrard 2025 T/C with Sonotone 9TAHC
Diamond Cartridge
ready wired in teak plinth
with cover
Carriage and Insurance 50p extra any item.

TAPE CASSETTES

 C120 (\(\left.\begin{array}{c}120 \\ \text { min. }\end{array}\right) \quad 87 p_{\text {se.5 }}^{\mathbf{s} \text { for }}\) P. \& P. 5p.

FREE CASSETTE HEAD CLEANER with every 10 cassettes purchased.
All cassettes can be supplied with library cases ot 3p, extra each

SP25 MKIII SPECIAL!

GARRARD SP25 MK PLAYER FITTED GOLDRING 800 MAG NETIC STEREO CARTRIDGE as avalisble COMPLETE IN TEAK PLINTH WITH RIGID PERSPEX COVER.

PREMIRR PRICR
£18.90
P. \& P. 50p.

HI-FI STEREO
HEADPHONES Deaigned to the higheat \({ }_{21}^{\text {possible standard. Fitted }}\) 21 红 speaker mits with
eoft padded ear muife. soft padded ear muife.
Adjustable headband. 8 ohms impedance. Com. plete with 6ft lead and stereo Jack plug. \(£ 2.47{ }_{26 p}^{\text {P. }}\) \& . STEREO STETHOSCOPE SET LOW Imp. 21.25 MONO STETHOSCOPE SET LOW Imp. 58g. P. \& P. 10p.

E.M.I. \(13 \times 8 \mathrm{in}\).

HI-FI SPEAKERS
Fitted two 24 in tweeters and crossover network. Impedance 8 or 15 ohm, Handling capa-
city 10 W . Brand new.
\(£ 3.47^{\text {P. \& P. 40p }}\)

NEW LOW COST PREMIER 800 STEREO AMPLIFIER

A truly high quality stereo ampltater-compare the spectication, compare the price. Ontput: 5 watta per channe. Frequency reaponse, 30 , 8 ohm nom. Inputs equalised to R.I.A.A. Magnetic 4 mV . Ceramic 100 mV . equalised to R.i.A.A. Magnetic 100 mV . Tape 100 mV . Tape out 150 mV . Din sockets for inputs and outputs. Stereo headphone socket. Attractive slim line design black leatherette cabinet with aluminiom tront panel. Size \(121^{\prime \prime} \times 6 \sum^{\prime \prime} x\) \(21^{\circ}\). ONLY \(217 \cdot 25\). Carriage 40 p . oxix £16.25 carr. 40 .

Markaman" Soldering Iron. Lightweight A" pencll blt. deal for regular bench use and around the bome. 25 watts. 240 volt A.C. \(81 \cdot 50 \mathrm{P}\) \& P 15p
"VERITONE" RECORDING TAPE
EPEGLALLY MAKUFACTURED IS U.SA, FROM EXTRA STRONG PRE-STRENGHED YATERIAL, THE QUALITY IS UFEQUALLED. TENSILISED to enaure the most permanent base. Highly reaistant to break: one, mot thronghout the entire andio range. Double wrapped-attractively bored

 DT3 3í \(600^{\circ}\) POLYESTER 57 p TT8 5\% 2400 POLYESTER 81.87
 TM7 7. 3600 POLYESTHR

\section*{Everyday Electronics Classified Advertisements}

RATES: 7p per word (minimum 12 words). Box No. 7p. extra. Semi-display- \(£ 4 \cdot 50\) per slngle column inch. Advertisements must be prepaid and addressed to Classified Advertisement Department, "EVERYDAY ELECTRONICS," I.P.C. Magazines Ltd., Fleetway House, Farringdon Street, London EC4A 4AD.

\section*{RECEIVERS and COMPONENTS}

\section*{NEW GUARANTEED DEVICES ORDER WITH CONFIDENCE} MICROCIRCUITS:
SN76013 (like 1C12) \(£ 1 \cdot 50\); 709 36p; 741 36p; PA230 90p; PA234 86p; PA237 £1-55; SL402A \(£ 1 \cdot 75\); SL702C 40 p .
TTL GATES 15 p ; FLIPFLOPS 37 p TRANSISTORS:
2N3055 54p; BC107B 9p; BC108C 9p; BC109C 9p; BCY 70 16p; BFX \(8615 p\) ME0402 21p; ME0411 20p; ME0412 20p; ME0413 15p; ME1002 11p; ME4101 11p; ME4102 12p; ME6101 15p; ME6102 19p; ME8001 17p; MP8111 35p; MP8112 45p. 1 AMP RECTITIEIERS
\(50 \mathrm{~V} 3 \mathrm{p} ; 100 \mathrm{~V} 4 \mathrm{p} 200 \mathrm{~V} 5 \mathrm{p}\); 400V 6p. BRIDGES: 50 V 30 p ; \(100 \mathrm{~V} 31 \mathrm{p} ; 400 \mathrm{~V} 33 \mathrm{p}\) 3 AMP RECTIFIERS: 400 V ' 12 p .200 V
PRINTED CIRCUIT RESIST PEN: 80 p . Discounts bein at 10 off.
JEF ELECTRONICS (E.E.1) York House, 12 York Drive, Grappenhall, Warrington, WA4 2EJ. Mail Order Only. C.W.O. \(P^{\prime}\) \& \(\mathbf{P} 7 \mathrm{p}\) per order Ony.
Overseas 65 p.

Money back if not satisfied. List free on application.

\begin{abstract}
DO-IT-YOURSELF ... we stock a large range of audio and elecsronic components at very competitive prices, e.g.: Chassiss peakers, crossover networks, hi-fi speaker kits (Wharfedale a Peerless), BAF sound absorbent, speakeì srille fabrics, inductors, resistors, electrolyties (roversible and polarised), transistors, etc. Sond for FREE list. (\(2 \times 3\) p stamps for fabric samples.) Mail-order ONLY. No callers please.:
\end{abstract}

\section*{A UoIgscan}

Dept EE17:

POLYSTYRENE CAPACITORS 125v Values from 160pl to 0.015 (NO 4700 pf) 15 p dozen, post 50 IC's ON PANELS 7400 Series at least \(10-75 p\) post 10 p with detalls. COMPUTER PANELS, \(6 \cdot\) BC108. DIODES 15p. post \(5 p, 4-\) 50p, poat 10p. AMERICAN PANELS total at least 30 transistors, first grade components, detalls orofided \(3-\)
55 p, pust 10 p . PANELS with Sin, pust 10p. PANELS with 10 I BSX26, 500 Mes pont 15 p , no midget panels, plenty of components, at leant
 27 p for 5 . IAA POT CORES ex equipuent, 20 p poat pald. ORP12 on panel ex equipt. 35 p post pain. COPPER CLAD PAXOLIN single slded \(18 \times 112.30 \mathrm{p}\), post 8 p each OOMPUTER RELAYS DPDT 700 ohm coil, weigh \(\frac{1}{5}\) oz. also weigh oz, carry 2 amp and 6000 ohm coll weigh 1 toz carry 2 atrp .55 p post pairl. Larger relay 700 ohn welkhs \(1 \frac{14}{} 02.35 \mathrm{p}\) post paid. SMALL SYNCEBONOUS MOTOR with gear train \(200-250 \mathrm{v} 80 \mathrm{p}\) post paid. ELEC.
TROLYTICS \(5,000 \mathrm{nfl} 25 \mathrm{v} 40 \mathrm{p}\) post paid. TROLYTICS \(5,000 \mathrm{mfl}\) 25v 40 p post paid.
ASSORTED PANELS WITE RES. CAPS. DIODES, INDUCTORS.
3 lb .75 p post paid.
J.W.B. RADIO

75 hayfield road, salpord g, lancs. MALL ORDER ONLY
COMPLETE PRINTED CIRCUIT AUDIO KITS
5 watt Power Amplifier 83.44 . Postage and
3.5 watt. Power Amplifier \(22 \cdot 88\). Packing 10 p .
3 watt Steren System \(\mathbf{8 7} 90\)
Full Instructionk snd diagrams sent with all kltr.
Aleo avallable Printed Circuit kits, Component
boarle and a range of linear integrated clrcultn.
LECTRON (Dept, EE), King Alfred Way, Chelten-
ham, Glos.
Mall orders only.

\section*{RECEIVERS and COMPONENTS}

\section*{APPROXIMATELY 10 silicon NPN} general purpose transistors, also diodes, components, on \(5 \times 5\) in. panel, 17 p 5 panels 70 p . 25 for \(£ 2 \cdot 50\). 100 for \(£ 8 \cdot \mathrm{io}\). SAE lists, data, free samples. Pawson, 114 South Street, Armadale, W. Lothian.

\section*{SERVICE SHEETS}

SERVICE SHEETS (1925-1971) for Televisions, Radios, Transistors, Tape Recorders, Record Players, etc., by return post, with free Fault-Finding Guide. Prices from 5 p. Over 8,000 Models Prices from \({ }^{\text {Gvailable. }}\) Catalogue 13 p. Please send S.A.E. with all orders; enquiries. HAMILTON RADIO, 54 London Road, Bexhill, Sussex. Telephone: Bexhill 7097.

\section*{EDUCATIONAL}

TECHNICAL TRAINING in Radio, TV \& Electronics through world-famous ICS. For details of proven home-study courses write: ICS (Dept. 566), Intertext House, London, SWB 4UJ. Accredited by the CACC.

\section*{HOLIDAYS}

HOLIDAY FOR BOYS. 14/16 years, Summer 1972. Tuition and practical work in electronics (and tape record ing), engineering (Karting), photography. 11 days in Norfolk-E16. Write for free brochure: Inter-School Christian Fellowship, c/o 1 Hubbard Road, London SE27 9PJ.

\section*{MISCELLANEOUS}

RECORD TV SOUND using our loudspeaker isolating transformer. Provides safe connection to recorder. CROWBORS included. 70p +10 p P\&P. (E.E.), Eridge Road, Crowborough, Sussex.

\section*{PROFESSIONAL CONTROL PANELS with EASCIA KIT}

MAKE YOUR OWN PANELS IN PERMANENT, ANODISED, SELF-ADHESIVE ALUMINIUM, NO SPECIAL EQUIPMENT NEEDED. EASY TO FOLLOW INSTRUCTIONS. CHOICE OF SILVER ON BLACK, RED, BLUE, GREEN. TRIAL KIT (36 sq. in.) \(\quad \cdots \quad\) £I. 28 carr. pd.
No. I. KIT (54 sq. in.) No. 1. KIT (54 sq . in.)
No. 2. KIT (\(72 \mathrm{sq} . \mathrm{in}\).
N. MPE Ltd., Dpt D.E. Bridge St. Clay Cross, Derbys

\section*{12 VOLT \\ FLUORESCENT LIGHTS \\ }

Beat Power Cuts, 12 ins 8 watt Tube, ideal for Caravan, Tent, Emergency Lighting, etc. Fully Transistorised, Low Battery Drain. With ON/OFF Switch and 12 V Socket to run other Lighes or 12 V Equipment. Unbeatable at
£3.30
post paid
or in kit form 22.90
Easy to construct
SALOP ELECTRONICS Callers welcome 23 Wyle Cop
Shrewsbury, Shropshire Large S.A.E. for lists

MISCELLANEOUS-continued
 Add \(4 \mathrm{p}, \mathrm{p} \& \mathrm{p}\).
Ask Wiper Control - -
-
ype
18 fibreglass 18 p . Ask for details of multiple pattern NIPPIBOARD. Also suitable for other E.E, P.E. P.W. projects. NIP ELECTAONICS DeptNB/EE
2O. Box 11 St Albans
Herts

\section*{JOHN SAYS...}

RING MODULATOR by Dewtron is professional, sransformerless, S-eransistor. has adjustable FI/F2 rejection. Module 27. Unit 58.90 . WAA-WAA Pedal kit of all parts, incl. ali mechanics \(\&\) inser. Only 22.95. A STO RHYTHM from Dewtron modules. Simple unit for waltz, foxtrot etc. costs E18.00 in modules. SYNTHESISER MODULES and other miracles.
Send ISp for illust. list. Send Sp for illust. list.
D.E.W. Ltd, 254 Ringwood Road,
Ferndown, Dorset.

\section*{NO NEED TO WORRY ABOUT A TRANSMITTING LICENCE}
because this GPO approved transmitter/ receiver kit does not use R.F. and you can get one easily. Your transmissions wlll be virtually SECRET since they won't be heard by conventional means. Actually it's TWO KITS IN ONE because you get all the printed-circuit boards and components for both the transmitter AND receiver. You're going to find this project REALLY FUN-TO-BUILD with the EASY-TO-FOLLOW instructions. An extremely flexible design with quite an AMAZING RANGE-has obvious applications for SCHOOL PROJECTS, LANGUAGE, LABORATORIES, SCOUT CAMPS, etc.

GET YOURSI SEND \(£ 5 \cdot 20\) NOW
TO: BOFFIN PROJECTS'
DEPT. KEE.
4 CUNLIFFE ROAD,
STONELEIGH, EWELL, SURREY

FASCIA PANELS, DIALS, NAME. PLATES etc. (single or multiples) in etched aluminium co individual specification. Hardware supplies for constructors, s.a.e. details and list.

\section*{R. A. Marsh,}

29 Shelbourne Road, Stratford on Avon, Warwks.

\section*{LOOK AT THESE PRICES}

CARTRIDGES
Acos GP67-2, GP91-3NC E1.25; Acon GP93-1 22.48 Al Acos GP94-1 E1-62 prons. BsR 21.50 .

THIS MOLTE'S SPECLAL OFFER
Garrard SP25 Mk. III with KS40A cartridge, In good quality teak plinth with perspex dust SP25 Mk. JII deck only less cartridge £12.87.
PLUGS \& SOCKETS
Phono plugs, assorted colours 41p, 45p per doz.: Coaxial plugs, aluminium 7!p; Coaxial couplers 7ip: \({ }_{2}^{2}\) piu DIN plugs 15p; 3 pin DIN plugs \(15 p ; 5\) pin Wander plugs 2 2 p ; sockets \(3 \neq \mathrm{p}\); Banans plugs 5 p : Sockets \(5 \mathrm{p} ; 3-5 \mathrm{~mm} \mathrm{~J} / \mathrm{Plugs} \mathrm{h} \% \mathrm{p}\) and 12 p ; Standard J/Plugs with solder terninais 10p: Chrome 15p: Side Entry J/Plugs black and chrome 24p; Insulated 1/8ockets-o/ect 20p, c/ect 17p. ELECTROLTTIC CAPACITORS
4 uF 150 v 4 p ; 8uF \(500 \mathrm{v} 15 \mathrm{p} ; 10 \mathrm{uF} 150 \mathrm{v}\) 4p:
 \(100 \mathrm{uF} 9 \mathrm{v} 4 \mathrm{p} ; 100 \mathrm{uF}\) 12v 4p: \(4 \mathrm{p}, 1500 \mathrm{uF}\) 20v 70 p 10 uF 16 v 7 t ; \(5000 \mathrm{uF} 25 \mathrm{v} 60 \mathrm{p} ; 10,000 \mathrm{pF} 25 \mathrm{v}\) 75 p : \(30,000 \mathrm{uF} 30 \mathrm{v}\) £1.05.

\section*{GEOREE FRANCIS (DEPT EE)}

12-14, MIDDLE GATE, NEWARK, NOTTS. Tolephome: Newark 4733.

FRicinisonic electrenies
supply only brand new guaranfed goods LOW NOLSE BII-STABS
1 watt \(5 \%\) all E24 values 3 for \(2 p\) plus p. \& p. \(8 p\) for up to 50 resistors +1 p for each audlitional 50 .
\begin{tabular}{|c|c|c|c|c|}
\hline PAP34 & 85p & MC1304P 22.50 & TAA700 & 62.00 \\
\hline PA2S 7 & 21.55 & MC1305P \(£ 2.50\) & TAD100 E & ¢1.85 \\
\hline PA246 & 21.60 & MFC4000P 52p & \(\mu \mathrm{A709C}\) & 45p \\
\hline 8L403D & 22.12 & MFC4010P \(75 p\) & Ha710 & 45p \\
\hline MC1303L & \&1.55 & TAA661B \(11 \cdot 00\) & \(\mu \mathrm{AT41C}\) & 70p \\
\hline & \multicolumn{4}{|l|}{TRANSISTORS \& DIODES -} \\
\hline AC127/8 & 17p & BF115 25p & 2N3055 & 5p \\
\hline AC187/8 & 30p & BF173 25p & 0.A81/90/91 & 17 p \\
\hline AD161 & pair & MJE340 67p & OA200 & 10p \\
\hline AD162 & 83p & OC71 15p & 1N4001 & 8 p \\
\hline AF114/5/6/ & 718p & OCT2 17p & IN4004 & 10 p \\
\hline BC107/9 & 12p & 2N3702/3 12p & IN 4003 & 12p \\
\hline BC108 & 11p & 2N3704 17p & IN4007 & 19p \\
\hline BC147/9 & 15p & 2N3705/6/7 15p & W005 & 40 p \\
\hline BC148 & 22p & 2*3708/0/10/11 & WO1 & 45p \\
\hline BC158/68 & 15p & 12p & wov & 48p \\
\hline BC157/59 & 20p & \(2 \times 1711\) 25p & BZY88 & 15p \\
\hline
\end{tabular}
- MULLARD CQ80 POLYESTER CAPACITORS \(-01 \mu \mathrm{~F},-015,-022,-033,-047,3 \mathrm{p} .-068 \mu \mathrm{~F} 31 \mathrm{p} . \cdot 1 \mu \mathrm{~F}\), \(-15,4 \mathrm{p},-22,5 \mathrm{p}, \cdot 33,61 \mathrm{p} \cdot-47,8 \mathrm{p} .6811 \mathrm{p} .1 \mu \mathrm{~F}, 13 \mathrm{p}\). \(1.5 \mu \mathrm{~F} 20 \mathrm{p} .2 \cdot \mu \mathrm{~F} 24 \mathrm{p}\).
MULLARD ELECTROLYTICS, C428, C431, C43\%, otc,\(2 \cdot 5 \mu \mathrm{~F} 64 \mathrm{v} 6 \mathrm{p} 250 \mu \mathrm{~F} 25 \mathrm{v}\) 10p \(1250 \mu \mathrm{~F} 40 \mathrm{v} 42 \mathrm{p}\) \(10 \mu \mathrm{~F} 16 \mathrm{v} \quad 6 \mathrm{p} \quad 250 \mu \mathrm{~F} 40 \mathrm{v} \quad 13 \mathrm{p} \quad 200 \mu \mathrm{~F} 25 \mathrm{v} 42 \mathrm{p}\) \(\begin{array}{lcllll}25 \mu \mathrm{~F} 25 \mathrm{v} & 0 \mathrm{p} & 500 \mu \mathrm{~F} 40 \mathrm{v} & 28 \mathrm{p} & 2500 \mu \mathrm{~F} 40 \mathrm{v} \\ 50 \mu \mathrm{~F} & 25 \mathrm{v} & 10 \mathrm{p} & 500 \mu \mathrm{~F} 64 \mathrm{v} & 36 \mathrm{p} & 2500 \mu \mathrm{~F} 64 \mathrm{v} \\ 77 \mathrm{p}\end{array}\) \begin{tabular}{ccccc}
\(50 \mu \mathrm{~F}\) & 25 v & 10 p & \(500 \mu \mathrm{~F}\) & 64 v \\
\(100 \mu \mathrm{~F}\) & 16 v & 4 p & \(1000 \mu \mathrm{~F} 16 \mathrm{v}\) & 16 p \\
\hline \(1000 \mu \mathrm{~F}\) & 25 v & 63 p
\end{tabular}
 - MODULES FULLY ALIGNED \& TESTED F.M. STEREO I.F. STRIP \(53.50+\) p. d.p. 25 p F.M. STEEEO DECODER \(55.25+\) p. \& p. 25 p F.M. STEREO DECODER \(25 \cdot 25+2 . \pi p .25 p\) GARRARD SP25 MK.III with 9TAHC 212.72 + p. \& p. 50p.

CARBON TRACK POT8, single gang log or lin 12p, Dual gang log or lin 40p. Mains Switch +12 p . SKELETON PRESETS Vert. or Horiz., 0 . \(1 w\) sp, \(0 \cdot 25 \mathrm{w} 7 \mathrm{p}\).
MAINS TRANSFORMER. Sec. 20-12-0-12-20V @ 0.74 \&1.75 + p. \& p. 30p.
SWITCHES: Toggle SPST 18p. P/Button SPST 37 p . BULB \& HOLDER 6V, 0.06 A 15p. CERAMIC CAP \(\cdot 01 \mu F 30 \mathrm{~V} 10 \mathrm{p}\), Silvered Mica 25p1 7p, 680pi 8p. 1972 CATALOG UE 10p. post iree
6 unless indicated, \(p\) \& \(p\), on all orders is \(6 p\)

EX COMPUTER PRINTED CIRCUIT PANELS Qin \(\times 4\) in packed with semi-conductors and top quality resistors, capacitors, diodes, etc. Our
price 10 boards \(50 \mathrm{p}, \mathrm{P} . \&\) P. 7 p . With a guaranpred oininum oi 35 . trapeistors included transistors include
SPECLAL BARGAIN PACK. 25 boarde for 21 , 1. \& P. 18p. With a guaranteed minimum of 85 transistora. Data on transistors included.

PANELS with 2 power transistors similar to OC28 on each board-components 2 boards (\(4 \times\) OC28) 50p, P. \& P. 6p

9 OAb, 3 OA10, 3 Pot Corea, 26 Realstors, 13 Capactors, 3 GET 872, 3 GET 872B, 1 GET 875. All long leaseit on panelin \(13 i n \times\) in. 4 for 21 , P. \& P. \(2 \boldsymbol{p p}\).

709C OPERATIONAL AMPLIFIER TOS 50 off \(35 p\).
100 off 20 p .

250 MIXED RESISTORS 62p t 4 \& watt.
I50 MIXED HI STABS 62p
t, \& \& 1 watt \(5 \%\) \& better
QUARTZ HALOGEN BULBS
With long leads. 12V 55W for car spot lighte, projectors, etc. 50 p each. P. A P. 5 p .
GPO EXTENSION TELEPHONES
with dilal but without bell. 85p each. P. \& P. 30p, \(21 \cdot 75\) for 2. P. \& P. 20 p.

\section*{BARGAIN RELAY OFFER}

Single pole change over stlver contact. 25 V to

KEYTRONICS mail order only 44 EARLS COURT ROAD
LONDON, W. 8
01-4788499

\section*{} The'New Picture-Book'way of learning BASC ELECTRICITY(5vols) A C Lectronics (6vols)
You'll find it easy to learn with this out- the latest research into simplified learning standingly successful NEW PICTORIAL METHOD-the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoontype drawing. The books are based on techniques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects.
TO TRY IT, IS TO PROVE IT

This carefully p:anned series of manuals has proved a valuable course in training technicians in Electricity, Electronics, Radio and Telecommunications. WHAT READERS SAY
"HOW UNDERSTANI) \BLE"
Pleased to say how understandable your books are, I now have a sound knowledge of the subject. A.K.. Hull.

\section*{"INVALUABLE"}

Invaluable for my training as a Technician. W.J., Stockport.
"A MATHEMATICAL IDIOT"
They have an easy approach to learning that a mathematical idiot like myself can easily understand. K.L.Y., Ashron-u-Lyme.

To The SELRAY BOOK CO., ¢0 HAYES HILL, HAYES, BROMLEY, KENT BR2 7HP Please send me WITHOUT UBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid in good condition within 7 days or send the following amounts. BASIC fortnightly £5.40 Cash Price, or Down Payment of \(£ 1.00\) followed by 5 fortnightly payments \(£ 1.00\) each. Total \(£ 6.00\). This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.
Tick Set required (Only one set allowed on free trial)
BASIC ELECTRICITY
BASIC ELECTRONICS
Prices include Postage and Packing.
Signature
(If under 21 signature required of parent or guardian)
NAME
BLOCK LETTERS
FULL POSTAL

\section*{DISTRIBUTION}

PANELS
Just what you
need
for \(\therefore 1 \therefore T \therefore 1 \therefore\) need tor work
bench or
\(4 \times 18 \mathrm{amp}\) sockets in metal box to take standard 1s amp fused plugs and on/otit switch with neon maming light. Supplied complete with 7 feet of hesyy cable. Wired up ready to work, 22 leas plug:

MULTI-SPEED MOTOR Bir apeeds are available soo, 850 and 1,200 r.p.m. and 8,000; 12,000 a 15,500 r.p.m. shaft in \(t\) in. diameter \(230 / 240 \mathrm{v}\) Its speed may be further controlled with the uee of our Thyrister controller. Very powerthl and useful motor slase Price 88 pion 29p postage inmarance.

\section*{20 AMP}

ELECTRICAL
PROGRAMMER
Luarn in your sleep: Have Radio playing and kettle boiling as jou awake-witch-on lights to ward of Intruders-have warm
 house to come home to. All these and many other thinge you can do if you invest in an Electrical Programmer. Made by the emons 8mithis Instrument Company. This is and a 20 amp Switch, the awitch-off time of which can be dolayed up to 12 hour (continuously variable not stepped). Similarly the switchon time can be delayed. This is a beautiful unit, slze \(5 \frac{2}{2} \times\) \(34 \times 21 \mathrm{in}\). deep. Metal encased, glass tronted with chrome surround. Offered at \(12 \cdot 40\) plus 23 p postage and ingurance.

\section*{RESETTABLE FUSE}

How long does it take you to renew a fusel Time yourself when next one biowh. Then reckoning your time at
el per hour see how quickly our resettable tuse (auto circuit breaker) will pay for itself. Price only 21 each or \&11 per dozen, ipecily 5,10 or 15 amp -simply nt in place of eroilch.

A real bargain completo
With leather case, carrying sling, earplug and case 48.76 plus 25 p popt and ins.

EXTRACTOR FAN Cleans the air at the rate of 10,000 cuble 1 t . per hour. Suitable for klttchens, bath. rooms, factories, changing rooms, etc., it's so quilet it can hardly be heard. Compact, \(5 \ddagger^{\prime \prime}\) Casing with \(5 t^{\prime \prime}\) tan blades blades, sheet steel casing, pall blades, sheet steel casing, pall Aring brackets, 88 plus 36 p post and ins.

\section*{MAINS MOTOR}

Preclition made-ss used in record decks and tape recor-ders-idesl also for extractor fan, blower, beaters, etc. New and perfect. Suip at 500. Postage 15p for frrst one then 5p for each one ordered.

CAPACITOR DISCHARGE CAR IGNITION
This aystem which has proved to be smazingly efticlent and reliable was first deacribed in the Wireless Word about a year ago. We can supply kit of parta for improved and even more efficient version (P.W. June), price \(44 \cdot 95\). When ordering please atate whether for poaitive or negative syatems.
Plus 30 post. Plus 30p post.

RADIO STETHOSCOPE
Lasiest way to fsult find-tracee cignal from aerial to speaker-when aignal stops you've fond the samplifier, anything - complete kit comprises two special transistors and all parts incinding probe tube and cryatal earplece. se-twin stethoset lnstead of earplece 75 p extra poot and ins. 20 p .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{No. of Poles} & \multicolumn{9}{|r|}{gtandard size 11 wafer-silver-plated \(5 \cdot \mathrm{amp}\) contact, standard \(1^{\prime \prime}\) spindle \(2^{\prime \prime}\) long-with locking washer and nut.} \\
\hline & \(2 \mathrm{x} \times \mathrm{y}\) & 3 way & 4 way & 5 way & 6 way & 8 way & 9 way & 10way & 12way \\
\hline 1 pole & 40D & 40p & 40D & 40p & 40p & 40p & 40D & 40p & 40D \\
\hline 2 poles & 400 & 40p & 40 p & 40 p & 40p & 40 p & 40 D & 70 p & 70p \\
\hline 3 poles & 400 & 40 D & 400 & 400 & 700 & 70D & 700 & 95p & 95\% \\
\hline 4 poles & 40 D & 400 & 40p & 70 D & 70 p & 70 p & 700 & 81.20 & 81.20 \\
\hline 5 poles & 40p & 40p & 70 p & 700 & 95p & 950 & 95p & 21.45 & 21.45 \\
\hline 6 poles & 100 & \(70 p\) & 70p & 700 & 95p & 95p & 95p & 81.70 & 81.70 \\
\hline 7 polea & 700 & 700 & 70 p & 950 & 81.20 & \$1-20 & \(81-20\) & 21.95 & 81.95 \\
\hline 8 poles & 70p & 700 & 30p & 95p & \$1.20 & \(21-20\) & 21.90 & & 28.20 \\
\hline 9 poles & 70 p & 700 & 05p & 95 p & 81.45 & 21.45 & 81.45 & 22.45 & 28.45 \\
\hline 10 poles & 700 & 700 & 85p & 21.20 & 妦. 45 & 31-45 & 81.45 & 22.70 & 82.70 \\
\hline 11 polea & 700 & 95 p & 95p & 51.80 & 21.70 & 81.70 & 81 -70 & 22.95 & 38.95 \\
\hline 12 poles & 70p & 95p & 95\% & 81.20 & 21.70 & \(81 \cdot 70\) & 21-70 & 88.80 & 88.20 \\
\hline
\end{tabular}

TANGENTIAL HEATER UNITS
 This heater unit is the very latest type, most efficlent, and quiet running. Is as atted in Hoover and blower hesters costing 816 and more. We have s few only. Comprises motor, impeller, 2 k w element and 1 kW element allowing switching 1 be fitted into any metal line case or cabinet. Only need control switch. \(\$ 8.50\). 2 kW Model as above orcept 2 Hilowatts 52.50 . Don't mish thin. Control gwitch 85 p . P. \& P. 40 p .

HONEYWELL PROGRAMMER This is a drum type timing device, the frum being callibrated in equal division which are intinltely adjustable for position. They are also arranged to allow 2 operatlons per switch per rotation. There are 15
changeover micro witches each of 10 amp type operated by the trips thus 15 clrcuits may be changed per revolution. Drivo motor is
msins operated \(\overline{0}\) revs per min. Bome of the many
uses of this timer are Machlnery control, Boiler firing, Dispensing and Vending machines, Diapley lighting animated and signs, Bignalling, etc. Price from Inaurance. Don't misa this terrific bargsin.

> A parcel of integrated circuits made by the tamous Flessey Company. A once-in-E-Ilitime offer of Micro-electronic devices well below cost of manu\(\begin{aligned} & \text { facture. The parcel contains } 5 \text { ICs all new and perfect, frat-grade device, } \\ & \text { definitely not sub-standard or seconds. } 4 \text { of the ICo are slngle silicon chip }\end{aligned}\) defnitely not aub-standard or seconds. 4 of the ICa are single ailicon chtp of parcel well over 95 . F'ull circuit detaila of the IC are fincluded and th addition you will receive a list of many different ICa available at bargaln prices 85 p upwards whth circuits and technical dats of each. Complete parcel only 11 post paid. DON'T. MISS THIS TERRIFIO BABGAYN.

\section*{BATTERY CONDITION TESTER}

Made by Mallory but suitable for ail batteries made by Ever Ready and others, most of which are zinc carbon types but also mercury manganese-nicad-sillver oxide and alkaline batteries may be tested. The tester puta a dumany load on the battery and the meter scale indicates the condition depending upon which section the pointer reats. The section reads "replace" "weak" or "good". The tenter is complete in Its cese, size \(3 \frac{1}{\prime \prime}^{\prime} \times 6^{\prime \prime} \times 2^{\circ}\) with leads
and prode. Price 81.75 plus 20 p postage. sad prode. Price 81.76 plue 20 p postage.
- 100 THINGS YOU CAN MAKE-

Send S.A.E. today for list of 100 constructor projects - Instruments - alarms - countert ocks - radios, etc., etc.

\section*{THERMOSTATS}

Tspe "A" 15 amp. for controlling room heaters, greenhouses, alring cupboard. Has spindle for pointer knobs. Qutckly adjustable from \(30-80^{\circ} \mathrm{F}\). 40p. Callibrated dial 20p extra. Suitable box for Type "B" 15 mong.
Type "B" 15 amp. This is a 17 in . long rod type made by the famous Annvic Co. Spindle adjusts this from \(50-550^{\circ} \mathrm{F}\). Internal screw
alters the setting to this could be alters the setting to this could be
adjuatable over \(30^{\circ}\) to \(1000^{\circ} \mathrm{F}\). Suitable for controlling iurnace, oven. heater or to make flame-atat or flre Type "D" We call this the Ice-stat as it cuts in and out at around freezing polnt. \(2 / 3\) amps. Has many uses one of whlch would be to keep the loft plpes from ireezing. If a length of our blanket wire (16 yd 50p) is wound round the pipes. 40 p .
refrigerator thermo stat. Spindle adjustments cover normal refrigerator temperature. 50 p
年". Glass encased for controlling the temp. or sinuid-partlcularly those in glass tanks, vats rubber sucker or wire clip-ides) submerged) by developers and chemical bath for fash tanksdevelopers and. chemical baths of all typen.
Adjustable over range \(50^{\circ}\) to \(150^{\circ} \mathrm{F}\). Price 80 p

TREASURE TRACER Complete Kit (except wooden battena) to make the metal detector as the circuit in Practical Wireless Auguat issue. enc.05 plat 20p post and insurance

DRILL CONTROLLER NEW IKW MODEL

clectronically change mately 10 revs. to maximum. Full power to ail speeds by finger-tip
control. Kit inclides control. Kit includes at parts, case, everything and
tall instructions. \(11-50\) plins 180 toll instructions. 11 - 50 plas \(18 p\) model and ino svailable. 2 - 85 13p poat and \(p\).

HIGH ACCURACY THERMOSTAT Uses ditterential comparator 1.C. with thermister \(s\) probe. Designer clamms temperature corkol pack \& 8 - 80 .

\section*{AUTO-ELECTRIC}

\section*{CAR AERIAL}
with dashboard control switch-fully extendable to 40 in . or fully retractable. Suitable for 12 v . positive or negative earth. Supplied complete with fitting instructions and ready wired deshbaard switch. \(25 \cdot 75 \mathrm{p}\) plus 25p post and ins.

\section*{AUTO-LITE}
as clrcuit in this month's issue Practical Wireless. Kit of parts \(81-20\) post paid.

\section*{TOGGLE SWITCH}

3 map. 250v, with fixing ring 7ip each, 75p doz. CAR ELECTRIC PLUG Fits in place of cigaretts lighter. Ureful metbod for making an quick connection into the car
eiectrical system. 88p each or 10 for \(\$ 3\)-48.
ROCKER SWITCH
13 amp self-fixing into an oblong hole. ize approxinately \(1^{\prime \prime} \times 4^{\circ} 6 \mathrm{p}\) each 10 for 54 p .

\section*{MAINS RELAY BARGAIN}

Special thif month are some single, double and treble pole changeover relays. Contacts rated at 15 amps Operating coll wound for 240 V A.C. Good British Make. Ex-unused equipment. Size approx, \(1^{\prime \prime} \times 1^{\circ}\). Open construction Single pole 25 p each 10 tor \(28-25\) Treble pole 85 p each 10 for 88.18

\section*{BALANCED ARMATURE}

\section*{UNIT}

500 ohm, operates speaker or microphone, so useful in intercom or similar ctrcuits, 33 p each, \(83 \cdot 50\) doz.

\footnotetext{
Where postage is not atated then orders over es are poat free. Below 45 add 20 p . Semlconductors add 5D post. Over \&1 post free. B.A.E. with enquiries please.
}

\section*{J. BULL (ELECTRICAL) LTD.}
(Dept. E.E.) 7 Park Street, Croydon CRO IYD Callers to: 102/3 Tamworth Road, CROYDON

\section*{Build yourselfa TRANSISTOR RADIO}

\section*{NEW! ROAMER 10 WITH VHF INCLUDING AIRCRAFT}

10 TRANSISTORS. 9 TUNABLE WAVEBANDS, MW1, MW2, LW, SW1, SW2, SW3, TRAWLER BAND. VHF AND LOCAL STATIONS AND AIRCRAFT BAND
Bullt in Ferrite Rod Aerial for MW/LW. Retractable, chrome piated 7 section Telescopic Aerial, can be angled and rotated for peak short wave and VHF listening. Push Pull output using 600mw Transistors. Car Aerial and Tape Record Sockets. Switched EarA ir spaced ganged Tunlag Condenser with VHF section. Volume on/oft, Wave Change and Tone Control. Attractive Case in black with sllver blocking. Bize \(9^{\prime \prime} \times 7^{\prime \prime} \times 4^{\prime \prime}\). Easy to follow instructions and diagrams. Parts price list and easy build plans 30p (FREE with parts).

Total building cost \(£ 8.50\)
P. P. \& Ins. 50 p
 VARIABLE TONE CONTROL

7 Tunable Wavebands: MW1, MW2, LW, SW1, sW2, sw'3 and Trawler Band. Built in Ferrite Rod Aerial for MW and LW. Retractable chrome plated Telescopic aerial for Short Wavee. Push pull output using \({ }^{600 \mathrm{~mW}}\) transistors. Car aerial and Tape record sockets. Selectivity switch. Switched earpiece socket complete
with earpiece. 8 transistors plos 3 diodes. 7 in . \(\times 4 \mathrm{in}\). Fith earplece. 8 transistors plus 3 diodes. \(7 \ln\). X 4 in. oneaker. Air spaced ganged tuning condenser. Volume Atractive case in rich chestnut ahade controls blocking size \(9 \times 7 \times 4\) in aprox Easy to follow instructions and diagrams. Parts Price List and Easy Build Plans 25p (FREE with parts).

POCKET FIVE

3 Tunable Wavebandg: MW, LW, Trawler Band With extended M.W. band for easier tuning
7 stages- -5 transistors and 2 diodes,
supersensitive ferrite rod aerial, fine
supersensitive ferrite rod aerial, fine
tone moving coil speaker. Attractive black and gold cese. size \(5 \frac{1}{} \times 1 \frac{1}{1} \times x \frac{1}{1}\) in. Easy bulld plans and partis price list 10 D
plug and switched socket with parts). Earpiece with plug and switched socket for private listening 30 p

\section*{Exclusive to readers of "EVERYDAY ELECTRONICS"} "EVERYDAY SEVEN"

\section*{ROAMER}

\section*{SIX}

6 Tunable Wayebands: MW, LW, SW1, SW2, Trawler band plus an xtra M.W. band for easier tuning tc. Sensitive fer. rite rod aerial and elescoplc aerial
 for 'Short Waves. 3in. Speaker. 8
stages- 6 transistors and 2 diodes including MicroAlloy R.F. Transistors, etc. Attractive black case with ed grille, dial and black knobs with polished meta nserts. size \(9 \times 5 \frac{1}{2} \times 2 i n\). approx. Easy build plans and parts price list 15p (FREE with parts). Earpiece with plug and spitched socket for private listening

Total building costs \(\frac{1}{2} \boldsymbol{1}\) P. P. \&

TRANS EIGHT

8 TRANSISTORS and 3 DIODES

Tuabble WaveSW1, SW2, SW3
and Trawler Band.
Sensitive ferrite rod aerial for M.W. and L.W. Telescopic aerial for Short Waves. 3 in . Speaker. 8 improved ype transistors plus 3 diodes. Attractive case in black with red grille, dial and black knobs with polished metal inserts. 8 ize \(9 \times 8 \pm \times 2 \frac{1}{} \times\). approx. Push pull output. Battery economiser switch for extended battery price list and easy build plans 25 p (FR EE Fith. Parts) Earpiece with plug and switched socket for private listening 30 p extra.

NEW! "EDU-KIT"
BUILD RADIOS, AMPLIFIERS, ETC. FROM EASY STAGE DIAGRAMS. FIVE UNITS INCLUDING MASTER UNIT TO COMPONENT'S INCLUDE:
Tunting Condenser: 2 Yolume Controls: 2 Slider Switches: \(4^{\text {rxdenser: }} 2{ }^{-1}\) Speaker: Terminal Strip: Ferrite Rod Aerial: 3 Plags and Sockets: Battery Clips: 4 Tag Boards: Balanced Armature Unit: 10 Transistors: s: Resistors: Capacitors: Three in \(^{*}\) Knobs. Units once constructed are detachable
from Master Unit enabling them to be from Master Unit, enabling them to be Bchools, Educatlonal Authorities and all those interested in radio construction All parts including Case and Plans 50 P. P. \& Case and Plans chu Ins. 31p (Overseas P. \& P. \&1)

 from Master Unit, enabling them to be
stored for future use. Ideal ior (1)

\section*{FULL AFTER \\ FULLA} SERVICE
\begin{tabular}{|c|}
\hline \\
\hline
\end{tabular}

HI-FI TO SUIT

SAVE \(40 \%\) ON LIST LUSFREE 'BIB' Groov Record Cleaner Value \(£ 1.99\) ROTA 1500. 5 + 5 watts. Garrard 2025 TC with 9 TAHC Cover. SDLI Conipact Speakers. Size \(15 \times 10 \frac{1}{2} \times 7^{*}\) Carr
 TELETON '206', Garrard SP25 Mk. III, Goldring G800 New 15 watt Quality SDLI Bookshelf Speaker Systems, all leads etc
SAVE \(\$ \$ 4.95\) E30.00 TELETON F2000 FM, Med Amplifier Garrard 2025 TC 9TAHC Diam. Plinth/Cover New 15 watt Speaker Systems as above, all leads,
SAVE
\(\mathbf{5 P} .95\) \(£ 36\) E2 or with \(2 \times \$ A 12\)
\(£ 48.95\) Carr. \(£ 2\)
ROTA \(220010+10\) Watt Garrard SP25 111/G800H Plinth/Cover. New 15 watt SDL2 Twin SFeaker Systems SAVE Él fol. 00 \(\mathrm{£32}\) \&61.00 Car
LOW PRICES PLUS 12 \& DEMONSTRATIONS
FREE STOCK LIST \& STEREO SYSTEMS Ref. 16/17

FREE BROCHURES
- P.A. DISCO and LIGHT-- ING No. 18

36
20 WATT I.C AMPLIFIER Toshiba 20 watt Power Ampli fier, \&4.57.
Toshiba Pre-Amplifier I.C \&1-50.
Data and suggested eircuirs SL403D 3 watt I.C. with 8 page data and circuits \(£ 1 \cdot 50\)
IC 126 watt I.C. \(£ 2 \cdot 50\).

NIXIE TUBES (post 15p per order)
XN3 or XNI 30.9 side view with data sheet, 85p each.
GN4 end view 0.9 with socket and data, \(\mathbb{\text { end }}\).75. All I.C.'s for Digital Clocks in stock. HENRY'S CLOCK
CIRCUIT No. 29/2 i5p.

BUILD THIS VHF FM TUNER 5 MULLARD TRANSISTORS \(300 \mathrm{kc} / \mathrm{s}\) BAND-WIDTH, PRINTED CIRCUIT, HIGH. FIDELITY REPRODUCTION A popular VHF FM T A popular There is no doubt about it-VHF FM gives the REAL sound. All parts sold separately. Free Leaflet No. 3 \& 7

TOTAL \(£ 6 \cdot 97\), P.p. 20p. Cabinet loop. Decoder Kit \(£ 5.97\). Tuning meter eli.75
Mains unit optional) Model PS900 E2.4 unic for Tuner and Decoder PSI 200 £2.62.
HIGH QUALITY SILICON AMPLIFIERS AND PRE-AMPLIEIERS
 Self powered Silicon-FET Pre Amplifiers. Push button
electors, djustable levels, drive up to \(4 \times\) adjustable levels, drive up to \(4 x\) on Mixing. Price \(\mathrm{El2} .50\).
MIxing. Price \(\mathrm{El2} \cdot 50\) Ster all facilities, magnetic cart. input etc
SILICON POWER AMPLIFIERS RMS OUTPUT
PA 2525 watts into 8 ohms \(£ 7 \cdot 50\).
MU442 Power Supply for I or 2 PA25's or 1 anly PA50, \(£ 0 \cdot 00\). Post 20 p . ALL UNITS INTERCONNECTING. ON DEMONSTRATION AT " \(356^{\prime \prime}\)
TERRIFIC SAVINGSI

\section*{GARRARD - BSR - THORENS}

CONNOISSEUR

CHASSIS (P) (less cartridge) SP25 Mk \(11 \mathrm{E} 1 \mathrm{I} \cdot 30\) (less careridge, with co AP76 \(\quad\) K19.30 MP60(TDIP) \(£ 17.75\) \(\begin{array}{lll}\text { AP76 } & £ 19.97 & \text { HT70 PC } \\ \text { BMP60 } & £ 11.30 & \text { PLI2AC } \\ \text { MP610 } & £ 15.15 & \text { G } 172 \text { PC }\end{array}\) \(\begin{array}{llll}\text { QMP610 } & £ 15.15 & \text { GL72PC } \\ \text { GT70 } & £ 16.60 & \text { GL75PC } & \\ \text { GL72 } & £ 22.95 & \text { TDI50AB } & \\ \text { GL75 } & £ 28.97 & T X 11 & \end{array}\) \(\begin{array}{llll}\text { GL75 } & £ 28.97 & \text { TXII } & \mathbf{4 5} .50 \\ \text { Dual } 1215 & £ 39.00 & \text { BD2 } & \$ 32.25\end{array}\)

CHASSIS WITH CARTRIDGE 2025 TC/9TAHCD \(£ 9.50\) 3000/9TAHCD 69.98 TEAK *PIJTISt. 13.00 PLINTH BNI Deluxe \(£ 8.00\) WITH \#PAIT4 Std. \(£ 4.25\)
COVER
tBN4 Deluxe
E8.00 COVER \(\ddagger\) BN4 Deluxe \(£ 8 \cdot 00\) State P6/T6Std. \(£ 3.00\) \(\mathrm{G800}\) or G 800 H \&6.55;
M 44.7 or \(\mathrm{C} £ 7 \cdot 45 ; 909 \mathrm{X}\) (50 p , with plinth/cover 70p, Plinth/Cover 30p Caris. 15p.

300 mW TRANSISTOR AMPLIFIER MODEL 4=300 Fully assembled 4 TR Amplifier. Size \(5 \frac{1}{2} x\)
\(1 \frac{1}{2} \times \frac{4}{4} \mathrm{in} .1-10 \mathrm{mV}\) adjustable sensitivity. Output 3.8 ohms. Fitted Vol. control. 9 volt operated. Thousands of uses plus low cost.
Price \(£ \mid\).
Price EI. \(^{\text {P.p. 15p). }}\)
(P) SPECIAL PRICE WITH CARTRIDGE - ADD All magnetic - Recommended Y940 (\(=\) AD. 76 K) \(£ 3.25\); AT66 \(\mathbf{4 4 . 9 5 \text { ; }}\) G850 £4.25; AT2 \(£ 9.60\); 67. 32

75, p.p. 15 p (or 2 for \(£ 3 \cdot 25\)

SINCLAIR PROJECT 60 PACKAGE DEALS -SAVE POUNDS! \(2 \times\) Z 30 amplifier,
stereo 60 pre-amp,
PZ5
Carr. 40p. Or with PZ6 powe
supply £18-25. Carr. 40 p. \(2 \times Z 50\) ampli-
fier, stereo 60 pre-amp P78 pawer supply 40 25, C 40 Transformer for PZ8 62.45 exte NEWM E20-25, Carr. 40p. system 20.97 . Any of the above with Active Filter unit add s4stem 22.97 . Any of the abors add 616 . Also new FM Tuner £20.25. 2000 Amplifier \(\mathbf{£ 2 4 \cdot 5 0 , ~ p . p . ~ 5 0 p . ~} 3000\) Amplifier \(£ 31 \cdot 50\). Also IC12 £2.50.

ABLE TO BUILD
Printed circuit all transistor design using Mullard RF/IF Module. Medium and tong Wave bands plus Medium A. 5 Bandspread for extra slectivity. AW-push motion geared tuning, covers cabinet, car aerial. Aetraceive appea vice and performance.
TOTAL COST TO BUILD \(\mathbf{~ 7 . 9 8}\), p.p. 32p (Battery 22p). All parts sold separately-Leaflet No. 2. 7T' PORTABLE (as previously advertised) \(66 \cdot 98\), p.p. 35p from stock-Leaflet No. 1.

\section*{}
\begin{tabular}{|c|c|c|c|}
\hline Electronic Components, & High Fidelity Sales \& & P.A., Disco & Mail Orders, Special Bargain \\
\hline Audio and Test Gear Centre & Demonstrations Centre & \& Lighting Contre & Shop, Industrial Sales \\
\hline 3F6 EDGWARE ROAD. & 354 EDGWARE ROAD, & 309 EDCWARE ROAD, & 303 EDGWARE ROAD, \\
\hline LONDON, W.2. & LONDON, W.2. & LONDON, W.2. & LONDON, W.2. \\
\hline Tel: \(01-4024736\) & Tel: 01-402 5854 & Tel: 01-723 6963 & Tel: 01-723 1008/9 \\
\hline "354" 8 & OPEN SIX FULL DAYS A & EK 9 am to 6 pm MONDA & SATURDAY \\
\hline
\end{tabular}```

[^0]: The price of 70 p applies only to catalogues purchased by customers in the U.K. and to BFPO addresses.

[^1]: © IPC Magazines Limited 1972. Copyright in all drawings, photographs, and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden.

 All reasonable precautions are taken by EVERYDAY ELECTRONICS to ensure that the advice and data given to readers are reliable.
 We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, $£ 2 \cdot 35$.
 Everyday Electronics, Fleetway House, Farringdon Street, London, E.C.4. Phone: Editorial 01-634-4152; Advertisements 01-634-4202.

