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The Intrinsic Impedance of Space 
IN the Revue Générale de l'Électricité of March 

(p. 12o), there is a strange account of a note 
by E. Brylinski presented to the Academie des 

Sciences by Louis de Broglie. According to this 
note one obtains two different values for the 
intrinsic impedance of space or of any medium, 
depending on the system of units employed. If 
expressed in the unrationalized m.k.s. system the 
value is stated to be Z6 = 31312, but if expressed 
in the rationalized system the value becomes 
Z6 = 477e. The author of the note says that 
this duality is a source of confusion and cannot 
be accepted ; he then gives a very peculiar 
calculation in support of the 3o - S2 value. Although 
the value 47712 occurs several times throughout 
the note we feel sure that if MM. de Broglie and 
Brylinski were to get together and go into the 

matter more thoroughly 
they would agree that 
41r X 30 is 377 and not 477. 
As they rightly say, the 
value of the impedance 
cannot really depend on the 
system of units employed, 

d and whether one bases the 
I.-- b - I intrinsic impedance on the 

Fig. 1. ratio of voltage to current 
or on the ratio &/H one 

must obtain the same result if the units are 
properly employed. 

Probably the simplest way of approaching 
the problem is to consider a long line consisting 
of two parallel flat strips of considerable width b 
and separated by a small distance d* (Fig. 1). 

Neglecting fringing, the inductance per metre 
length is (4ir/Io7)d/b henry, and the capacitance 

* Electrical Review, September 26, 1913. 

per metre length (b/47rd)/(9 X ro9) farad. Then 
for a long line 

Z V IL d 
6 = Ì= Y C= I2o7r X ohms. 
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Fig. 2. 

Putting & = V/d volts per metre and H = I/b 
amperes per metre we have 6/H = 1207r ohms 
for the intrinsic impedance of the medium. In 
this example both & and H are uniform fields ; 

it is immaterial whether they are expressed per 
metre or per cm. The intrinsic impedance is the 
impedance of a column of cross-section i x I, 
whatever the units. It is important to note, 
however, that if & is in volts per cm and H in 
oersteds the latter must be converted into amperes 
per cm if the quotient is to be in ohms, and we 
then have 41r/ro X &/H = 12o7r ohms. 

An interesting application of this intrinsic 
impedance of space is the calculation of the radia- 
tion resistance of the inverted cone transmission 
line which simulates the radiation from an 
aerial.t. We showed that the angle cc in Fig. 2 
is about 35°, depending somewhat on the type of 
aerial which is to be simulated. In radians cc is 
about o.6. At a distance r from the transmitter 
V = & X ar and I = H x 2irr because the length 
d of the path of the electric field is ar and the 

t Loc cit and Wireless Engineer, July 1944, p. 305. 
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length b of the path of the magnetic field is 2vr. 
is in volts per unit length and H in amperes per 

unit length. We can neglect the small differences 
in the value of & and in the length of the magnetic 
path at different points between the earth and the 
cone ; for this small value of a these only amount 
to a few per cent. Hence 

Ì= H X 2 ÿ= I207r X 2 = 6oa = 3652 

In Wireless Engineer of April 1945 we showed 
that the radiation resistance of a quarter -wave 
earthed vertical aerial is 36.6 ohms. 

Having thus illustrated an application of the 
intrinsic impedance of the transmitting medium, 
we return to the French note in which the 
authors consider a bifilar line of which the con- 
ductors have a radius a and unit permeability. 
They then say ' In order not to be confused by 
the fact that the two currents flow in opposite 
directions, we consider a circuit composed of 
only one of them and a neutral fictitious wire 
half way between them, which can be very fine 
as it carries no current and produces no magnetic 
field. If b is the shortest distance between this 
neutral wire and the surface of the actual con- 
ductor, the expression for the inductance will be 
L = µo (0.5 + 2 loge (a + b)/a). Now we can 
reduce b to a very small value (0.00r cm for 
example) and let a increase indefinitely, so that 
loge(a + b)/a= loge(' + bla) = b,/a-.o and one 
will have Ze = µ0c/2. As the conductor only 
occupies half the space it will be necessary to 
double this value and this gives for Z,, the 
intrinsic impedance of space, the value µoc.' They 
say that this gives a result in favour of the value 
Zo = 3052. This is obviously obtained by 
putting c = 3o X 'o' m/sec and µo = 'o-' in 
accordance with the unrationalized m.k.s. system, 
but what all the above has to do with the intrinsic 
impedance of space is beyond our comprehension. 

Even if two parallel conductors are made so 
large that they almost touch, the combined 
inductance will be (1 + 4 loge(a/a) and that of 
each considered separately (0.5 + 2 loge2). A 
fictitious fine wire placed between them cannot 
be made an excuse for stopping the integration 
half way, and then merely doubling the result. 
It would also appear that they have filled the 
space, the intrinsic impedance of which is to be 
determined, with a conductor. But apart from 
this the authors appear to have a wrong idea of 
what is usually understood by the term ' the 
intrinsic impedance ' of space or of a medium, a 
term that we believe was first employed and 
clearly defined by Schelkunoff in 19384 This 
trouble goes back a long way, for in Heaviside's 

$ Bell Syst. tech. J., January 1938. 

" Electrical Papers," Vol. II, p. 377, we read 
Since the line integral of H is electric current 

and the line integral of & is electromotive force, 
the ratio of 8 to H is the resistance -operator of 
an infinitely long tube of unit area ; a constant 
measurable in ohms, being 6o ohms in vacuum, or 
3o ohms on each side. Why it is a constant is 
simply because the waves cannot return, as there 
is no reflecting barrier in the infinite dielectric.' 
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Fig. 3 

He was considering ' a plane of sheet impressed 
force in a non -conducting dielectric ;-the 
disturbance is then propagated both ways un- 
distorted at the speed of y = (µK)-.' If the 
transmission from the source is in both directions, 
they are in parallel, and if the resistance on each 
side is 3o ohms, the combined resistance will be 
15 and not 6o ohms. A few pages earlier (p. 369) 
Heaviside shows that for a distortionless tele- 
graph circuit 

Z = Lv where y = r/ -/LC 
He then says Lv = L X 3o ohms = the impedance 
of the circuit at A. With reference to this Dr. 
G. A. Campbell in a memorandum written in 
1932 says ' Apparently Heaviside's 3o ohms was 
in ordinary ohms and not in Heaviside's own 
units, as Nichols quite naturally assumed. The 
correct explanation of the 3o ohms seems to be 
that Heaviside's ' resistance -operator of an 
infinitely long tube of unit area' was not intended 
to be the characteristic impedance as I define it.' 
It certainly looks as if Heaviside's resistance - 
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operator is to blame for the 3o -ohms muddle in 
which Brylinski and de Broglie have become 
entangled. 

It is easily seen that 3o ohms is the characteris- 
tic impedance of a line having unit inductance 
per unit length (that is, i c.g.s. unit of inductance 
per cm of length) since if L = I, I/CL = v2 = 
9 x 1020 and C = 1/9 x 1o20 e.m. units. Hence 
for such a line Z0 = .,/L/C = 3 X 1010 c.g.s. 
units = 3o ohms, and for any line Z0 = 3oL 
ohms where L is the inductance per cm in c.g.s. 
units. The dielectric is, of course, assumed to 
be space. 

Having disposed of the 30 ohms, we shall now 
apply the 377 -ohms intrinsic impedance to an 
inverted cone in which the angle oc is so large 
that the approximation made in considering 
Fig. 2 is no longer permissible. In Fig. 3 the 
angle oc is 6o degrees. The electric -field lines are 
drawn at the radius r for each io° of the cir- 
cumference ; the magnetic -field lines are circles 
drawn at such distances apart that the spherical 
surface is divided up into squares ; that is, as 
the electric lines converge on approaching the 
cone, the magnetic lines are drawn closer to- 
gether, H and being equal at every point. 
Since the latitudinal distance between adjacent 
electric lines varies as cos o, the longitudinal 
distance between the magnetic lines must vary 
in the same way and the number of squares per 

unit angle must vary as 1/cos O. The total 
number of squares in angle a will be 

l 6 x I do/cos o = 18loge tan (7T 

7r 
Z + 4) 

° = (18/7x) x 1.315 

in which oc = 6o°. This gives 7.53 squares between 
the ground and the cone. As each square sub- 
tends 10 degrees horizontally, each horizontal 
layer contains 36 squares. Each square is a 
cross-section of a pyramid extending from the 
apex of the cone out into space with an intrinsic 
impedance of 377 ohms. As in Fig. 1, we deter- 
mine the characteristic impedance of the conical 
line by multiplying the intrinsic impedance by 
the number of squares in the direction d of the 
electric field, and dividing by the number of 
squares in the direction b of the magnetic field. 

Hence 

Z0 = 377 x 73 3 = 79 ohms 

which agrees with the value calculated by the 
accurate formula (see Wireless Engineer, July 
1944) viz. 

Z0 = 6o loge tan (Z + 7r) = 79 ohms. 

We trust that this has removed any uncertainty 
as to the exact meaning of intrinsic impedance 
and as to its value. G. W. O. H. 

CONSTANT PHASE -SHIFT NETWORKS 
13 R. O. Rowlands, B.Sc. 

(B.B.C. Engineering Training Department) 

SUMMARY.-It is shown that for every phase -shift network there can be found a corresponding 
attenuation network whose attenuation is directly related to the phase shift of the former network. 
The technique of designing attenuation networks is more straightforward than that of designing 
phase -shift networks, and so the requirements of the phase -shift network are first translated into those 
of an attenuation network. This network is then designed and from its parameters, the parameters of 

the phase -shift network are calculated. 

Introduction 
IN a passive linear network made up of positive 

inductors and capacitors the phase shift 
is an increasing function of frequency and 

so a network of this type cannot be used to 
produce a substantially constant shift over a 
given range of frequencies. A network made up 
wholly of negative inductors and capacitors 
will have a phase characteristic which is a 
decreasing function of frequency. By using both 
these types of sections in building up a composite 

MS accepted by the Editor, December 1948 
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network it is possible to obtain a phase shift 
which is oscillating about the required constant 
value over a given frequency range. The amount 
by which the phase deviates from the constant 
value depends upon the number of sections used. 

Theory 
The problem of designing 7r/2 phase -shift net- 

works will be considered first ; and afterwards, 
the modifications necessary to produce a phase 
shift other than 7r/2. 

Consider the network shown in Fig. 1. The 
impedance of the network is given by 
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Z = /(jwL)/(jwC) = i/(L/C) 
and is therefore constant at all frequencies. 
The propagation function of this network is 
imaginary at all frequencies and is given by 

Y = 9ß =loge I + 1/(9wL ' 9wC) - 1/(jwL . jwC) 
where ß is the phase shift in radians. 
If . /LC = K 

Then 'ß p lo 
I + wK 

= log, 
I - jwK 

It is possible to plot the graph of ß against w 
for varying values of K and to select those 
curves whose sum meets the requirements of a 
substantially -constant phase shift. This method 
is tedious and difficult compared with the problem 
of designing attenuation networks where usually 
it is only necessary to secure a certain minimum 
attenuation over a given frequency range; for 
whereas in the former problem we have to be 
within a maximum and a minimum limit, in the 
latter problem we are working to a minimum limit 
only. This suggests that if the phase -shift net- 
work can be linked to an allied attenuation 
network the problem will be greatly simplified. 

If a number of basic sections are connected 
in tandem the phase shift of the composite net- 
work will be the sum of the phase shifts of the 
individual sections ; 

=jß1// +.%N2gq + . . +jßn 
I + jwK1 I + jwK2 

loge 
I - jwK1 + loge I - jwK2 

+logeI+jwKn 
i -jwKn 

(r + jwK1) (r + jwK2) . . 
loge 

(I - jwK1) (I - jwK2) . . 

I +jeoS1 2w2S2 + . loge 
Z - jwS1 + j2w2S2 - .. . 

where S1=K1+K2+....+Kn 
S2=K1K2+K1K3+.... 
Sn =K1K2K3 .... Kn 

Now eßß = cos ß + j sin ß 
i.e., jß = loge (cos ß + j sin ß) 

+.... 

. . (I + jwKn) 

. . (I -jwKn) 

. + 7nwnSn 
. (-.7)nwnSn 

.. (I) 

+ Kn- 1 Kn 

.'. if ß = 
2 

j 2 = logej = loge/ (I - j) 
log,I + 9 lo 

a + j.a I-j gea - ja 
The condition that ß = 7r/2 then is that equation 
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(i) takes the above form. It may be seen by 
inspection that the real part of the numerator is 
equal to the real part of the denominator and the 
imaginary part of the numerator is the negative 
of the imaginary part of the denominator. The 
remaining condition is that the real and imag- 
inary parts of the numerator are numerically 
equal ; 

i.e., that -w2S2+w4S4-....=w S1- 
w3S3 + w5S5 .... .. .. (2) 

This a polynomial 
may 

of 

c c be solved for n frequen- 
t_ 

cies at which the phase 
shift is Tr/2. At inter- 
mediate frequencies the 
phase shift deviates from 
IT/2. In order to deter- 
mine the values to be 

assigned to the coefficients Sr-where r takes 
the values I to n-so that the deviation of the 
phase shift from 17/2 at these intermediate fre- 
quencies is a minimum, we shall endeavour to 
relate them to other coefficients whose values 
may be determined by using the theory of 
attenuation networks. 

Consider then an allied network the physical 
configuration of which is immaterial and whose 
propagation function is real and is given by 

y = loge 
I + hw 

Fig. i. Basic section. 

I - hw 

In this expression h is a factor determing the 
frequency at which the attenuation becomes 
infinite ; 

i.e., if w,0 corresponds to this frequency 
Z-hw,o =o 

or h = I/w,p 

The propagation function of n sections of this 
network is given by 

y=a=loge I + hiw I + h2w 
I -/ha,+loge - h2w + .. 

+ loge' + hnw I - hnw 
+R1w+R2w2+....+Rnwn 

loge I - R1w + R2w2 - .... (- I)nRnwn 
where R1=h1+h2+h3+....+hn 

R,-= h1h2 + h1h3 + .... + h(n -1) hn 
Rn = h1h2h3 .... hn 

a is infinite when the denominator is 

i.e., when I - Rico +R2w2+ . (- I)n Rnwn = o 
ori+w2R2+w4R4+ .... 

=wR1+w3R3+w5R5.... 

zero ; 

.. (3) 
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If we make R1=Si; R2=-S2; R3=-S3; 
R4=S4; R5=S5; R6=-S6; etc. .. (4) 

then equations (2) and (3) are identical and may 
be solved for n frequencies at which the phase 
shift of the first network becomes IT/2 and the 
attenuation of the second network becomes 

14 

12 

I 

8 

6 

> 

4 

2 

r+ hw 
a = loge 

Z - hw 
2 tanh- l hw 

i.e., tanh = hw 
2 

and loge tanh ª = loge hw 

By choosing a log scale for frequency 
and a log-tanh scale for attenuation 
the graph for this type of section will 
be a pair of straight lines as shown in 
Fig. 3.* The effect of varying h is to 
shift the graph laterally. It is a com- 
paratively simple matter, therefore, by 
plotting graphs and adding the attenu- 
ations of individual sections, to deter- 
mine the number of sections and their 
h values necessary to give the re- 
quired performance. The values of R1 
to Rn are then determined. The K 
values of the sections of the corres- 
ponding phase -shift network are the 
roots of the polynomial 

38 40 Kn S1Kn-1 + S2Kn-2 - S3Kn-3 
+S4Kn-4-.... =0 

or Kn - R1Kn-1 R2Kn-2 + R3Kn-3 
+R4Kn-4-.... =o 

Some of these roots are positive and 
some are negative. The positive roots correspond 
to sections with positive components and the 

o 

018 
20 22 24 26 28 30 32 

ATTENUATION (db) 

34 36 

Fig. 2. Relation between phase -shift of one network and 
ation of the derived network. 

infinite. Again if the left-hand sides of equations 
(2) and (3) are designated x and the right-hand 
sides y then the phase shift of the first network 
is given by 

jß = logez +jy = 2j tan -1Y- .. .. (5) x-jy 
and the attenuation of the second network by 

a =log, z+y=2 tanh -1y x-y .. (6) 

and so 

y = tan ß = tanh ª .. (7) 
2 2 

This means that there is an exact relationship 
between the phase shift of the first network and 
the attenuation of the second. This relation 
is shown in graphical form in Fig. 2. 

Design Procedure 
So far the S coefficients of the phase -shift 

network have been related to R coefficients of 
an attenuation network. Again the phase -shift 
requirements of the former network may now 
be translated into attenuation requirements 
of the latter network. To obtain the values of 
the R coefficients which satisfy these require- 
ments consider the attenuation function of a 
single section of this network given by 
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Network attenuation relation in terms of wA. 

negative roots to sections with negative com- 
ponents. 

The discontinuity in the lines is entirely due to the change in the 
attenuation scale. 
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Phase Shifts other than it/2 
In certain applications it may be necessary 

to produce a phase shift other than 1r/2. In such 
a case the requirements may be related to those 
of a network producing a phase shift of 1r/2 
and the design equations modified in the following 
manner. From equation (5) 

tan -=y 
2 x 

As ß oscillates about the value 7r/2 so y/x oscillates 
about the value r, and the angle ß' defined by 

tan ß = my 
oscillates about the value O 

2 x 

where tan 9 = ni . . 

2 

For any particular value 
7r/2 - E and ß' become O - 

tan O-8 my 

then 2 = x = y = 
O x tan - m 
2 

tan - tan 
2 2 

.. (8) 

of y/x let ß become 
s 

T tan 1 -- E- 

4 2 

I -tan - 
2 

tan -(I+ tan 2 tan -) Z+tan - 

Let t = tan 8 ; d = tan 2 ; and e = tan 2 ; then 

I - d/t -r- e 

r+dt r+e 
whence e {2 + d (t - 'It)} = d(t + I/t) 
If d and e are small we may replace them by 

- and 2 and also ignore the terms involving 

their product. 

We have then E = (tan- cot ) 2 (9) 

The procedure is then to evaluate the R terms 
in the manner described above for a network with 
an attenuation corresponding to a deviation E 

and then evaluate the K terms corresponding 
to the equation my/x = I ; 

viz., Kn - mS1Kn-1 + S2Kn-2 - mS3Kn-3 + 
= o (io) 

Example 
Suppose that it is desired to design a network 

giving a phase shift of 6o + Io° over the frequency 
range 3Oo c/s to I2OO c/s. If we call the geo- 
metrical mid -band frequency wo then the range 
will extend from ¡wo to 2coo. Putting O = 60° 
and 8 = Io°, in equation (9) we have that 
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E = (tan 30° + cot 30°) X 5 

= (0.5774 + I.732I) X 5 

=2.3x5 =11.5° 
Referring to Fig. 2 we see that a deviation of 
11.5° corresponds to a minimum attenuation of 
20 db. From Fig. 3 we see that a single section 
of the attenuation network will give an attenua- 
tion of just over 9 db at the extremities of the 
frequency range and so it looks as if two sections 
will be adequate. The requirements can easily 
be met but the optimum performance is obtained 
from the arrangement shown in Fig. 4, where 
the minimum attenuation at the midband is 
made equal to that at the extremities of the band 
and is of the order of 25 db. With this arrange- 
ment the values of woh come to 0.625 and 1.6. 
From equations (4) we have that 

woRi=0.625+Z.6=2.225=S1w0 
and w20R2 = 0.625 X I.6 = I = - S2w2o 
Again from (8) m = tan 30° = 0.5774 
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1l I1 zzI1 z4MIIMMIIII\//IMM\IIMMMIM 
,, \1 MCG1I/, 10m n i/\ 

0.3 04 05 o -b 0T oeoº I 

f UTLIP rS OF G 
Fig. 4. Two sections in tandem with peaks at 

0.625 w0 and 1.6 wo (solid lines) give the response 
shown dotted. 

So equation (io) becomes K2 -m S1K + S2 = o 

r_3 r 
i.e., K2 - K - 2 = 

w0 wo 

or K1 = 845= 
LiCi wo 

o.545 V and K2 = - L2C2 
u, 0 

Knowing the impedance of the circuit the values 
of L1, C1, L2 and C2 may be worked out. In 
consequence of K2 being negative, minus signs 
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have to be assigned to L2 and C2. The realization 
of these negative components is discussed in 
the next section. 

0--- 
I A 
o -- 

-o 
B- 0 -0 (a) 

Fig. 5. Sections having positive and negative elements 
are grouped as at (a). The addition of two B+ 
networks (b) leaves the phase difference between 
P and Q unaltered. The B+ and B- networks 

cancel to give (c). 

Alternative Circuit 
We have derived a method of designing a net- 

work which produces a constant phase shift 
between its input and output terminals. Such 
a network however will have negative components 
in those sections corresponding to negative 
values of K. In most practical applications, 
however, such as in a single-sideband modulator 
the requirements are two pairs of terminals with 
a constant phase difference between them. 
An arrangement satisfying this condition can 
be built up entirely of positive components, 
as will be shown. 

The network designed as above consists of 

the tandem connection of a number of sections 
corresponding to the various values of K. If 
the sections corresponding to positive values of 

K are segregated to one end of the network and 
the ones corresponding to negative values are 
segregated to the other end, then the network 
will be as shown in Fig. 5(a), where the former 
sections are represented by the block A + and 

the latter by the block B -. If now two similar 
networks B +, whose components are equal 
and opposite in sign to those in the B - sections 
are inserted, one in tandem with the output 
terminals and the other in parallel with the input 
terminals as shown in Fig. 5(b), the phase 
difference between the output terminals of the 
two B + networks still meets the required 
performance. 

The phase shift between terminals I and O 

will be substantially 1r/2. 

Let the phase shift in B + be 

Then the phase shift from I to P = rr/2 + 
And the phase shift from I to Q = 
So the phase difference between P and Q =-- 

-/r/2 - = 7r/2. 

The B - and B + sections in tandem, 
however, cancel each other out as is shown in 
the Appendix. The network may therefore 
be realized as the sections A + and B + in 

parallel as shown in Fig. 5(c). 
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APPENDIX 
Let two networks be connected in tandem, the net- 

works being identical except for the components in one 
being the negative of those in the other. Let them be 
expanded in the form of a ladder. This is always possible 
so long as we admit of negative components. The net- 
works will then be as shown in Fig. 6. First, the 
impedances Z1 and - Z1 in series at the junction of 

G -o 

Fig. 6. This diagram illustrates how positive and 
negative networks in tandem cancel out. 

the two networks cancel each other out. This leaves 
the admittances Y1 and - Y1 in parallel, but these 
now cancel each other. Proceeding along the networks 
in a similar manner we find eventually that there is 

complete cancellation of the two networks. 
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ELECTRICAL PROPERTIES OF WATER 
Reflection Characteristics of Water Surfaces at V.H.F. 

By J. A. Saxton, Ph.D., B.Sc., A.M.I.E.E. 
(Communication from the National Physical Laboratory) 

SUMMARY.-The variation of the dielectric properties of water as a consequence of anomalous dispersion is discussed. It is shown that this dispersion occurs mainly between the frequencies of 1o3 and 106 Mc/s, over which interval the permittivity of water falls from 8o to 5.5. The ionic conductivity of fresh water is of importance only for frequencies less than io3 Mc/s, and in sea water the ionic conductivity loses its significance when the frequency exceeds 2 X Io4 Mc/s. The results are given of some calculations which illustrate the effect of the anomalous dispersion on the reflection coefficient of fresh water surfaces for radio waves. 

1. Introduction 
N the consideration of the propagation of very 
short radio waves a knowledge of the reflection 
coefficient of the earth's surface is necessary. 

Further, at wavelengths less than to cm the 
scattering and absorption of radio waves by water 
drops in the atmosphere is of importance. Since 
water is an important constituent of the earth's 
surface, and in view of the increasing use of very 
short-wave radiation in radio communication and 
navigation, it has been suggested that a review 
is desirable of the existing data, both experi- 
mental and theoretical, relating to the dielectric 
properties of water at these very -short wave- 
lengths. This paper presents such a review. 

It has usually been the practice to regard water 
as a reasonably good conductor for electro- 
magnetic waves longer than a certain value of 
the order of io or 20 metres, say, for sea water, 
and about 3,000 metres for fresh water. It has 
further been common to consider fresh water as 
behaving mainly as a dielectric at wavelengths 
less than about i metre, but this is by no means 
true except in a very restricted range of wave- 
length. The latter qualification arises since the 
water molecule is electrically polar, as a result 
of which water exhibits anomalous dispersion, 
and the region of the radio -frequency spectrum 
in which this dispersion is manifest is principally 
between the wavelengths of io cm and i mm 
(frequencies 3,000 to 300,000 Mc/s). Sea water, 
in which the ionic conductivity is much greater 
than in fresh water, cannot be regarded as even 
a moderately good dielectric at any wavelength 
in the radio -frequency spectrum. 

Now although the major part of the anomalous 
dispersion occurs between the wavelengths of io cm and i mm, some small variation of the permittivity exists up to a wavelength of 3o cm, 
while a variation in the absorption coefficient 
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exists up to even slightly longer wavelengths. 
Above the wavelength of 3o cm the refractive 
index is given adequately by the square root of 
the low -frequency relative permittivity, which is 
8o at 20° C, but even at a wavelength of i metre 
the effective dipolar conductivity, with which 
the dispersion is associated, is rather greater than 
the ionic conductivity produced in ordinary 
fresh water by the normally occurring 
amounts of dissolved salts. A reasonable average 
value for the ionic conductivity of fresh water is 
about 108 e.s.u. or i.i x 10-2 mho/m. It will be 
seen later that there is no appreciable difference 
between the electrical characteristics of pure and 
fresh water for wavelengths less than about 
3o cm (frequencies greater than i,000 Mc/s). In 
sea water the ionic conductivity may be taken as 
about 4 X ío10 e.s.u., and it will be seen that the 
dielectric properties of sea water differ noticeably 
from those of pure water at wavelengths greater 
than 3 cm (frequencies less than io,000 Mc/s). 

2. Dielectric Properties of Pure Water 
Extensive measurements have recently been 

made by Saxton and Lane") of the dielectric 
properties of water at wavelengths of 1.24 and 
1.58 cm, and as a function of temperature in the 
range o° C to 40° C. The results of this work 
have since been substantially confirmed by Collie, 
Hasted and Ritson2. 

An examinationlo> of this experimental data 
in the light of the theory of anomalous dispersion 
in polar liquids has shown that from it the 
dielectric properties of water may be predicted 
satisfactorily over the wavelength range i to 
to cm. The present work gives an extension of 
the theoretical calculations to longer wavelengths, 
and shows that the predictions are in good 
agreement with the known data. 
2.1. Theoretical basis of calculations 

The original theory of dispersion in polar 
liquids is due to Debye3, and in its original form 
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it accounts satisfactorily for the observed 
behaviour of many simple solutions of polar 
substances in non -polar solvents. It has been 
necessary, however, to modify the theory some- 
what in the consideration of pure polar liquids 
such as, for example, water, because of the 
strong interaction fields between the molecular 
dipoles in such liquids which are neglected in the 
Debye theory. Nevertheless, for any theory in 
which the internal field in the dielectric is assumed 
to be a linear function of the polarization, the 
form of the dependence of the complex per- 
mittivity on frequency remains the same. The 
actual expression used for the internal field 
determines the value of the dipole relaxation 
time, an important parameter in the theory. 
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If Onsager's4 treatment of the internal field is 
accepted, a procedure supported by the work of 
Fröhlich and Sack5 in the case of low viscosity 
liquids like water, then we find that the complex 
permittivity, e may be expressed thus I- 

E = E' -jE" = Eo + (Es - EO)/(I + jwLT) (I) 
where Es = static permittivity 

E0 = permittivity at the high frequency end 
of the region of dipolar dispersion 

= relaxation time 
w = 27rf, f being the frequency in c/s. 

It has been usual to regard Eo as being equal 
to the square of the optical refractive index, 
which amounts to saying that it arises from that 
part of the total polarization due only to the 
electronic polarization. This approximation is 
not satisfactory if the atomic polarization, which 
arises from atomic vibrations in the infra -red 
region of the spectrum, is relatively large, as has 
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been shown to be the case in water1lb>' 2 since 
Co in fact should represent the effects of both 
electronic and atomic polarizations. Thus Eo for 
water has been found to be 5.5-as compared 
with 1.8 on the basis of the electronic polarization 
only. 

The assumptions underlying equation (r) are 
justified in the case of waterl(b), and the behaviour 
of water may be described in terms of a single 
relaxation time at any given temperature, the 
relaxation time being a function of temperature 
and decreasing as the temperature increases. Eo is 
assumed not to vary appreciably with tempera- 
ture, and the variation of Es with temperature is 
well known. 

There are several quantities in terms of which 
the electrical properties of a 
lossy dielectric may be described, 
and the expressions relating 
these quantities may be con - 

2 o veniently summarized thus :- 
E=E'-jE"=E' - 2ja/f = (n - jk)2 (2) 

15 where a is the conductivity in 

Fig. 1. Dielectric properties of 
water in the wavelength range 

I o 
1 cm to I m; key to experi- 
mental observations :- 1. 

Abadie 25° C ; 2. Esau & 
Bas 19° C ; 3. Conner & 
Smyth 25° C ; 4. Cooper 

0.5 22° C ; 5. Seeberger 16° C ; 
6. V. Ardenne 18° C ; 7. 
Eckert I5°-20° C ; 8. Knerr 
22° C ; 9. Weichmann 17° C ; 
Io. Frankenburger 17° C ; 
I I. Saxton 20°, z5° C ; 12. 

V. Hippel 20° C. 

e.s.u., n is the refractive index and K the 
absorption coefficient. 

From equations (r) and (2) we may then derive 
the following relations - 

Es + E0x2 

60 80 100 

E' 

E" 

- 
I +- x2 

= I+x2 
x(Es - E0) 

where x = w.r 

and also 2n2 = [E'2 E"9k + E' 

2K2 = [E'2 r E"2P - E' . . (6) 

nK = a/f - E"/2 . . 

It may be noted that equations (3) and (4) are 
identical in form with those derived originally by 
Debye except that according to his theory 

x - (Es +2) 

(4) 

GUT. 
Eo 2 

.. (5) 

.. (7) 
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2.2. Comparison between Theory and Experiment 
As a consequence of the mechanism involved in 

dipolar dispersion the dielectric properties of 
water vary with temperature as well as with 
wavelength. Early observers were more con- 
cerned with variations of the properties with 
wavelength, and the importance of the tempera- 
ture factor was perhaps not sufficiently 
appreciated. The majority of experimental 
results obtained before the last few years refer 
to water at about room temperatures, and the 
various observations of refractive index (n) and 
absorption coefficient (K)1, s-15 given in Fig. i are 

80 

60 

W 
. 40 

W 

20 

0 
10 

E' 

E" 

102 105 109 105 109 

FREQUENCY (Mc/s) 

Fig. 2. Components e and e" of the complex dielec- 
tric constant of pure water, É - je", at a 

temperature of 20°C. 

confined to the temperature range 15° C to 
25° C. Three theoretical curves for temperatures 
of 15, 20 and 25° C, calculated as indicated above, 
and based on relaxation times determined by the 
authorl'b> are shown for comparison with the 
experimental data. It is apparent that the 
theoretical curves agree well with the experi- 
mental observations from centimetre wavelengths 
up to i metre. When the effect of varying 
temperature is taken into account, the variations 
amongst the experimental results would certainly 
not justify any important shift in the theoretical 
curves. 

3. Complete Region of Dipolar Dispersion 
in Water 

The agreement between theory and experiment 
shown in Fig. i makes it reasonable to calculate 

TABLE I 

Temperature 
(°C) 

e, r X I012 
(sec) 

o 88 19.05 
5 86 14.6o 

Io 84 11.85 
15 82 9.60 
20 8o 8.Io 
25 78.2 6.8o 
30 76.4 5.95 
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the electrical characteristics of water over an 
even wider range of wavelengths. The values of 
E8 and z given in Table I, together with equations 
(3) to (7) enable one to calculate the dielectric 
properties of pure water at any frequency, and 
also at any temperature in the range o° C to 
3o° C, though for the remainder of this work we 
shall confine our attention to water at 2o° C. 

The values of E' and E" from 2o° C calculated 
in this manner as a function of frequency from 
Io to 106 Mc/s are shown in Fig. 2. This frequency 
range contains the entire region of dipolar 
dispersion in water, in fact almost the whole of 
the dispersion takes place in the range io3 to 
106 Mc/s. E' still has substantially its static 
value at 103 Mc/s, but E" continues to vary a 
little as the frequency is reduced from io3 to 
102 Mc/s. 

Although the mechanism of energy absorption 
in the liquid arising from dipole relaxation is 
somewhat different from that concerned in the 
case of ionic conductivity, we may consider the 
dipolar loss as being due to an effective con- 
ductivity which is calculable from equations (4) 
and (7). This effective conductivity is shown as 
av in Fig. 3 : it is of the order of 107 e.s.u. at a 
frequency of ioo Mc/s, it rises to nearly 1012 e.s.u. 
at io5 Mc/s and then changes little up to 106 Mc/s. 

1012 

to' 
lo 

i/ upFs 

QF ....../ 
crpF 

Qp 

io z 105 10, 105 106 

FREQUENCY (Mcjs) 

Fig. 3. Conductivities aa, alr and o, of pure, fresh 
and sea water ; temperature 20° C. 

4. Effect of Ionic Conductivity 
Dissolved salts in water lead to ionic con- 

ductivity, and it might at first be thought that 
this ionic conductivity should simply be added to 
the dipolar conductivity o, in order to obtain 
the total effective conductivity. To a first 
approximation this is in fact true9, and especially 
so if the salt concentration is very low as, for 
example, in fresh water. It is knownlccl.16 
however, that the presence of appreciable 
quantities of an electrolyte in water causes a 
change in the dipole relaxation time, and in 
strong solutions this is a factor which cannot be 
neglected. Although this factor is just beginning 
to be of importance for the concentration of 
ordinary salt (about 4%) occurring in sea water, 
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its significance is not such that any great error 
results if the total effective conductivity of sea 
water is also estimated simply by adding 
arithmetically the ionic and dipolar contribu- 
tions-at any rate for wavelengths greater than 
a few centimetres. We shall therefore neglect 
the influence of salt on the dipole relaxation 
time in the few calculations relating to sea water 
made in the present section. 

10 

08 

0.6 

0.4 

02 

i 
d 

- i 

a 

00 

/ á 

30 60 

9 (DEGREES) 

90 

Fig. 4. Modulus of reflection coefficient !RI of fresh 
water for various wavelengths as a function of 
angle of incidence (0) ; temperature = 20° C. 

Curves a, b and d are for wavelengths of i mm, 
I cm and 6 m respectiv?ly ; = polarization 
perpendicular to plane of incidence (RH), 

= polarization parallel to plane of incidence (Rv). 
Note. The values of IR) for a wavelength of io cm 

differ only slightly from those of a wavelength of 6 m 
and could not easily be distinguished from the latter 

on the scale of Fig. 4. 

If we take 108 e.s.u. as an average value for the 
ionic conductivity of fresh water and combine 
it with the dipolar conductivity we obtain a total 
conductivity for fresh water F, as indicated in 
Fig. 3. It will be seen that for frequencies less 

than ioo Mc/s the ionic conductivity is the only 
term which matters, while for frequencies 
exceeding 1,000 Mc/s only the dipolar con- 
ductivity term is significant. 

TABLE II 

Frequency 
(Mc/s) 

E = E' - 7e 

Fresh Water Sea Water 

IO 
102 
103 
I04 
I05 

8o - 2ooj 
8o-2oj 
8o - 2j 
79-4i 
65-301 
8-i5j 

80- 8o,000j 
8o -8,000j 
8o- 800j 
79-805 
65 - 4oj 
8-15j 

In sea water, on the other hand, where we may 
take the ionic conductivity to be about 4 x ios0 

e.s.u., it is apparent from curve o,, Fig. 3, that 
this is the significant term up to frequencies in 
the region of 2,000 Mc/s, and that it is not until 
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the frequency is as high as 20,000 Mc/s that the 
dipolar term is completely predominant. Table II 
gives a comparison of the complex dielectric 
constants of fresh water and sea water as a 

function of frequency. 
These values show quite clearly that only in 

the range of radio frequencies 5o to 1,000 Mc/s 

(wavelengths 6 metres to 3o cm) is it reasonable 
to regard fresh water as behaving mainly like a 

dielectric, while sea water never behaves so at 
any point in the radio spectrum. For frequencies 
less than o.r Mc/s (wavelengths greater than 
3,000 metres) fresh water has chiefly the char- 
acteristics of a conductor, though not a very 
good one, whereas sea water behaves mainly as a 

conductor at frequencies less than 3o Mc/s 

(wavelengths greater than io metres). The same 
value of e' has been assigned to sea water as to 
fresh (and pure) water in Table II but, although 
this is not strictly corrects(°). 16, it is a satisfactory 
approximation for the present comparison. 

5. Reflection Coefficients of Water Surfaces 
at V.H.F. 

The reflection coefficients calculated in this 
section are for plane waves incident at plane 
surfaces of fresh water. It is apparent from the 
foregoing discussion that the reflection coefficient 
of sea water will, not be greatly different from 
that of fresh water when the frequency exceeds 
ro4 Mc/s, so that the manner in which dipolar 
dispersion influences the reflection coefficient 
may be largely seen from a consideration of 

fresh -water surfaces only. 
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Fig. 5. Phase retardation, cle, on reflection at a 
fresh -water surface of waves polarized in the plane 
of incidence as a function of angle of incidence O ; 

temperature zo° C. Curves a, b, c and d are for 
wavelengths of r mm, r cm, io cm and 6 m respectively. 

The reflection coefficient is not only a function 
of the complex dielectric constant of the water, 
and of the angle of incidence, but is also 
dependent upon the polarization of the incident 
waves. We shall denote by g, and RR the 
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reflection coefficients for waves polarized with 
the electric vector in, and perpendicular to, the 
plane of incidence respectively. When the 
dielectric constant of the reflecting medium is 
complex the Fresnel reflection coefficients are also 
complex, and in general waves suffer a change 
in phase or reflection different from the normal 
values of either o or 77 which obtain when E" 
is zero. Thus in general Rv and RH are of the 
form IRvlei8v and IRRIeihn, where Y'v and 71:.R are 
the phase changes on reflection for the two types 
of polarization. 

200 

180 

W 135 
LLI 

o 
90 

45 

0 30 60 

O (DEGREES) 

90 

Fig. 6. Phase retarda- 
tion on reflection at a 
fresh -water surface ; 
temperature zo° C. 
Curves a and b are 
for wavelengths of 
I min and I cm 
respectively. 
polarization perpen- 
dicular to plane of in- 
cidence (4), 
polarization parallel 
to plane of incidence 

(9) 

The Fresnel formulae in the form given by 
McPetrie17 have been used to calculate IRVI, IRHI, 

and ¢H for wavelengths of 6 metres, io cm, 
1 cm and i mm, (frequencies 5o, 3,000, 3 X 104 
and 3 X io5 Mc/s) as a function of 0, the angle of 
incidence, and the results are shown graphically 
in Figs. 4, 5 and 6. The modulus of the reflection 
coefficient is given in Fig. 4, while Figs. 5 and 6 
illustrate the phase change on reflection. 

It is well known that for a pure dielectric the 
reflection coefficient Rv falls to zero at the 
Brewster angle of incidence given by 0=tan-1,/e, 
and further that the phase change on reflection, 
(v, is zero for B < tan -y and 7r for 0>tan-1 ,/e. 
It will be seen from Fig. 4 that as the wavelength 
is reduced (in the range under consideration) and 
the term E" increases in importance, so the 
Brewster angle becomes less well defined, and 
that in fact IRVI never falls to zero but only 
reaches a certain minimum value depending 
upon the relative values of E' and E". Also, as 
shown in Figs. 5 and 6, although the phase 
retardation on reflection does change rapidly 
through the region of this pseudo Brewster 
angle, it does so continuously, and in fact passes 
through the value 7r/2 close to the point where 
IRv1 has its minimum value. It may be noted 
that for 0<70° the values of v are less than 
I° and 3° for the wavelengths of 6 metres and 
io cm respectively. Further, for the wavelength 
of 6 metres (hH varies from 180.5° at B = o to 
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18o° at B = 90° ; and for the wavelength of io cm the corresponding range of 96 is 181° 
to 180°. 

6. Conclusion 
The anomalous dispersion of water, arising 

from the permanent electric polarity of the water 
molecule, is of major importance in the frequency 
range 103 to 106 Mc/s. The value of the complex 
dielectric constant has been calculated over the frequency range Io to 106 Mc/s, and the effects 
of the small ionic conductivity of fresh water and the much larger ionic conductivity of sea water 
are discussed. The behaviour of fresh water is 
similar to that of pure water for frequencies 
greater than 103 Mc/s, whereas this condition 
does not obtain for sea water until the frequency 
exceeds 2 X 1o4 Mc/s. The reflection coefficient 
of fresh water surfaces has been calculated as a function of angle of incidence for frequencies of 
50, 3 X I03, 3 X Io4 and 3 X io5 Mc/s, (wave- 
lengths of 6 metres, io cm, 1 cm and 1 mm) and it 
is shown how the Brewster Angle becomes ill- 
defined in the region of dipolar dispersion. 
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HIGH -POWER CATHODE-RAY TUBES 
For Fixed Station P.P.I. Display 

By Hilary Moss, Ph.D., B.Sc., A.M.I.E.E., M.Brit.I.R.E. 
(Electronic Tubes, Ltd.) 

SUMMARY.-This paper gives a preliminary survey of the design of large -screen cathode-ray 
tubes suitable for direct -viewing purposes. The tubes in question have screen diameters of the order 
of 3o inches. It is shown that the design is critically dependent on the form of the relation which is 
assumed to exist between the response of cascade screens and the beam voltage. Two distinct calcula- 
tions are made-one assuming a linear response to voltage and the second a square -law response. 
Solutions in these two cases differ widely and this fact indicates the necessity for careful investigation 
of phosphor response as a function of beam voltage before further progress can be made. In particular, 
information is required on afterglow behaviour for which no data appears to be available over the 
voltage ranges concerned. Nevertheless, the paper is a guide to the probable form and operating 
conditions of these large -screen tubes. The difficulties of mechanical design are largely ignored, but 
a few notes on this matter are included in an appendix. 

Introduction 
THE problem of producing a large -screen 

p.p.i. display has been of interest for 
many years, but so far no very satis- 

factory solution has been found. The work has 
been almost entirely conducted on projection 
systems, which have the familiar drawbacks of 
indifferent brightness and contrast so well known 
to television engineers. This paper investigates 
the alternative approach, namely that of con- 
structing large direct -viewing tubes. It is 
appreciated that these present considerable 
mechanical difficulties, but the investigation is 
felt to be worthwhile, since it is almost certain 
that their performance can be made much higher 
than that of any projection system. 

The methods employed for the deduction of the 
operating conditions and tube dimensions belong 
to the province of scaling theory which the 
author has treated in a previous papers. Familiar- 
ity on the part of the reader with that paper 
will be assumed, and the underlying theory will 
not be recapitulated here. 

Statement of the Problem 
The problem is to design a cathode-ray tube 

with a screen diameter of approximately 3o inches 
and intended for p.p.i. working. The natural 
approach is to consider some suitable prototype 
tube with which a considerable amount of 
experience has been gained and perform on it a 
simple scaling operation ; Fig. r indicates the 
essential beam dimensions of such a prototype. 
For the moment we are concerned with the 
general method and we do not therefore introduce 
at this stage any numerical values. The derived 
tube is to have a screen diameter k times that of 
the prototype. We shall also postulate that both 
the central and deflected spot sizes of the derived 
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LIST OF SYMBOLS 

I beam current 
E anode voltage 
h constant of scale 
V2 size of spot 
u crossover to focusing lens distance 
y screen to focusing lens distance 
B beam width in plane of focusing lens 
a scaling constant for triode only 
S = screen diameter 
Primed symbols refer to the derived tube, and 
unprimed symbols to the prototype. 

tube are the same as those of the prototype. In 
addition, since the spot writing speed in both 
radial and circumferential directions on the 
derived tube will be each k times as large as on 
the prototype, it can be shown that the screen 
excitation of the derived tube needs to be k2 
times that on the prototype. More precisely, this 
statement has the following meaning. Consider 
a portion of the screen of the prototype tube of 
area 8S. In time T the beam energy delivered 
over it will be EIT and the mean energy per unit 
area will be EIT/8S. Now on the derived tube 
the corresponding area scanned in time T will 
be k28S and the mean energy per unit area will 
be E'I'T/k28S. 

Hence for equality of excitation per unit area 
(that is equality of surface brightness) we have 

E'I' = k2EI .. .. .. .. (r) 
The considerations necessary to preserve 

equality of the spot sizes at the screen centre and 
at the screen edge are essentially distinct and 
must be treated separately. (Ref. r, Section 1.5). 

Conditions for Equal Deflection Defocusing 
Since the exact relationship between the degree 

of deflection defocusing and the scanning angle 
is complicated, it is generally advisable to keep 
this angle constant when using scaling theory. 
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The most direct method, therefore, of deriving 
from Fig. I a tube having a screen diameter of 
kS is merely to multiply every dimension on 
Fig. i by k. This obviously will result in a tube 
in which the degree of deflection defocusing (that 
is, difference in spot sizes at screen edge and 
centre) is also multiplied by k. Now it can also 
be shown that the deflection defocusing is 
proportional to the beam width in the deflectors.* 

SCREEN 
DIAMETER S 

CROSSOVER 

Fig. 1 (above). Essential beam 
dimensions of prototype tube. 

Fig. 2 (right). Beam dimensions 
of the derived tube. u 

LENS 
PLANE 

anode voltage.[ Since the magnification in the 
derived tube of Fig. 2 is k times as great as the 
prototype of Fig. I, it follows that 

.Y2' = ky2 1/E/E' .. .. .. (3) 
Substituting from (2) into (3) immediately gives 

Y2' Y2 
so that the condition for constant central -spot 
size is automatically satisfied in this case. 

kx f.--- kt 
DEFLECTOR 

COILS 

B' 

SCREEN 
DIAMETER kS 

Hence if, after the scaling operation on Fig. I 
already referred to, we subsequently reduce the 
beam width to i/k (i.e., beam width kept constant 
as in Fig. i) the deflection defocusing will be held 
constant. Furthermore, the deflection defocusing 
is quite independent of conditions on the left- 
hand side of the focusing lens, with the result that 
we may keep the distance u constant. Fig. 2 
now shows the essential beam dimensions of the 
derived tube, which will have an unchanged 
performance so far as deflection defocusing is 
concerned. It will be noted that the scale of the 
deflectors has been multiplied by k and that at 
all corresponding points in the deflector fields 
of the derived and prototype tubes, the beam 
widths are equal. 

Conditions for Constant Size of Central Spot 
For the moment, the possible perturbations 

due to space charge will be ignored. These are 
subject to later investigation. The central -spot 
size is a function of the operating voltage of the 
tube and since the latter quantity will be defined 
by considerations of screen brightness, we have 
to commence by making reasonable postulates 
as to the way in which screen brightness is related 
to the beam voltage and current. 

Assumption I. Screen brightness and afterglow 
proportional to beam current and proportional to 
beam voltage. In this case, postulating that the 
beam currents in the two tubes shall be the same, 
it immediately follows from equation (I) that 

E' = k2E .. .. .. .. (2) 
Again, spot size in a cathode-ray tube of constant 
geometry varies inversely as the root of the final 

* This is probably only an approximation valid over restricted ranges. 
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In order to preserve constancy of modulation 
characteristic on the derived tube, it can be 
shown that it is necessary and sufficient for its 
cathode -to -grid spacing to be adjusted to preserve 
constancy of cut-off voltage, although the anode 
voltage is multiplied by k2. (Ref. 2, Section 2.2.3). 
This may be achieved merely by multiplying the 
cathode -to -grid spacing on the derived tube 
by k2.t 

Table I summarizes the relative proportions 
and operating conditions of the derived tube 
for any scale factor change. The numerical 
values in brackets are the special case, based 
on the prototype VCR 516 and assuming a scale 
factor of k = 3. A peak beam current of 150µA 
has been assumed, which is the order of current 
employed in the VCR 516. 

Assumption 2. Screen brightness and after- 
glow proportional to beam current and proportional 
to beam voltage squared. Again we shall postulate 
constancy of beam current in the two tubes, 
whence it immediately follows that 

E 
2 = k2E2 (4) 

so that E' = kE. In contradistinction to 
Assumption i, this last equation obviously 
means that a further change has to be effected 
in order to preserve constancy of central -spot 
size in the derived system of Fig. 2. This is 
most easily brought about by multiplying all 
dimensions of thee 

/triode 
by a. Then 

y2' = k aye V E/E' 
and substituting from (4) for 1/E/E', then gives 

.Y2' = kayo/1k 
so that the condition y2 = y2 requires that 

t In a multi -anode tube, we are assuming that the anode voltage ratios are held constant; i.e., all anode voltages are multiplied by k. 
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a = i/./k. This defines the factor by which 
the triode of the derived tube must be scaled in 
order to produce constancy of central -spot size. 

Again, constancy of modulation characteristic 
requires constancy of cut-off voltage, so that the 
cathode -to -grid spacing of the derived tube 
after the triode has been scaled must be further 
multiplied by k to allow for the increased anode 
voltage. As compared with the prototype tube, 
therefore, the cathode -to -grid spacing of the 
derived tube is multiplied by \/k. Table II 
summarizes the parameters and operating con- 
ditions of the derived tube. The numerical 
values in brackets again give parameters in 
terms of the VCR 516 with a scaling factor k= 3. 

These solutions postulate constant beam cur- 
rent, the cathode loading being allowed to look 
after itself. In the solution of Table I the cathode 
loading remains unchanged. In the second 
solution it is multiplied by the reciprocal of the 
change in cathode area ; i.e., by k. 

For the treatment where the cathode loading 
is held constant and the beam current allowed to 
vary, the reader is referred to another paper.5 

TABLE I 

Characteristics of Derived Tube. Assuming phosphor 
response linearly proportional to beam voltage. 

Screen diameter .. x k 60o mm 

Lens -to -screen dis- 
tance .. .. x k 93o mm 

Scanning angle .. x 1 26° 

Crossover -to -lens dis- 
tance .. .. x I 15o mm approx. 

Beam width at cor- 
responding points x i 

Beam diameter in 
lens plane 4.5 mm 

Scale of deflector coils 
and neck diameter x k 

Neck diameter 105 
mm 

Spot size at all points 
x o 

i mm diameter ap- 
prox. 

Beam current .. x 1 150 pA 

Anode voltage .. x k2 45 kV 

Scanning power .. x k2 

Cathode -to -grid 
spacing .. .. x k2 

Depends on triode 
design 

Cut-off voltage and 
grid drive.. .. x 1 

Cut-off - 5o target. 
Grid drive approx. 
35 V max. 

Triode dimensions .. x i Grid hole diameter i 
mm 

Numerical values refer to derived tube based on 
VCR 516 with scale factor k = 3. 

WIRELESS ENGINEER, SEPTEMBER 1949 

Space -Charge Perturbation 
The foregoing reasoning has ignored possible 

deviations due to space -charge repulsions at the 
screen. Accordingly, Fig. 3 gives space -charge - 
limited trajectories, calculated by the method 
of Thompson and Headrick3'4. These curves 
are plotted for the worse case (i.e., that based on 
Assumption 2) where the beam voltage is lower 
and where space -charge effects are therefore 

E2fl 

e 

.. 
NSM11111111111111111 - vp v,/aoo 111.3.11111.3.1111. m\emzzaz A-r/5o zazzaz sonseeemon A - 4/3°° ZZZBBB 111\MIZIMIZ .r 

- ZBZWZMNIENZZZIIIR21131 
1111111111111MIMMZB\E1EMedellille 111.......Ni 
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DISTANCE ALONG BEAM AXIS FROM LENS (cm) 

Fig. 3. Calculated space -charge -limited trajectories 
forE = 15 kV, I = 150 µA and a beam diameter in 

the focusing lens of 4 mm. 

more severe. It will be seen from Fig. 3 that the 
limiting spot size due to space charge is very 
small in comparison with that to be expected 
from the usual considerations of thermal -emission 
spread and lens aberrations. Hence, we are 
entitled to assume that space charge at the 
screen will not vitiate the previous working. 

It is unnecessary to consider space -charge 
at the crossover, since the anode voltage has 
been raised three times and we can, therefore, 
be certain that the space -charge influence in that 
region in the derived tube will be smaller than 
that in the prototype. (It is proved in Ref. 1, 
Appendix 2, that scaling the triode by the factor 
a causes the crossover size also to scale by factor 
a even in the presence of space -charge.) 

Hence, we conclude that the results of Tables I 
and II are not upset by space -charge. 

TABLE II 
Characteristics of Derived Tube. Assuming phosphor 
response proportional to beam voltage squared. rip 

Anode voltage xk 15 kV 

Scanning power .. xk 

Cathode to grid 
spacing .. xk 

Depends on triode 
design* 

Triode dimensions .. 
x 

Grid hole diameter 
approx. o.6 mm 

Numerical values refer to derived tube based on 
VCR 516 with scale factor k = 3. Only characteristics 
which differ from those of Table 1 are included. 

Adjustment made additionally to change in whole -scale of triode. 
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APPENDIX 
Notes on Mechanical Design 

The major problem is to achieve a design which will 
withstand the very high atmospheric pressure on the 
screen face and the bulb generally. It is probably not 
impossible to attain this end by the use of a conventional 
glass envelope, but apart from the obvious difficulties 
of weight, this would inevitably involve a very thick 
screen which in turn would cause severe parallax errors. 

For these reasons, it is felt that a more promising 
approach would be to employ a glass -metal construction 
with continuous evacuation. Fig. 4 gives a diagrammatic 
sketch of a possible construction. The conical portion 
of the cathode-ray tube is shown at A and is made of 
brass, tin-plated to ensure vacuum tightness. (In order 
to avoid having to fabricate the large cone in brass, an 
alternative would be to make this portion of the bulb 
of a series of cylinders of decreasing diameter, these 
cylinders being linked together by soldering them into 
suitably machined diameter -reducing flanges.) The 
end of the bulb terminates with an accurately ground 
flat surface T, on to which the screen plate P of glass 
is waxed. Reduction of the stress in the glass plate P 
due to atmospheric pressure is brought about by the use 
of two internal metal spiders shown at B and C. These 
spiders are disposed at right -angles to each other and 
are both diameters of the screen end. They are ground 
on the outer surface so as to be exactly level with the 

DIAMETRAL SPIDERS 

B C P 

N 

DEFLECTOR 
COILS 

WAXED 
JOINT 

GLASS 
NECK 

T 
/ WAXED 

JOINT 

TO 
PUMPS 

Fig 4. Sketch showing possible construction of a 
metal -glass tube. 

ground flange T. Their inevitable defect of obstructing 
a portion of the screen area is reduced by making them 
thin, say 1 to 2 mm wide, in the direction of the screen 
surface, while the mechanical strength is ensured by 
making them deep in the direction of the beam. It is 
apparent that some experiments would be necessary to 

determine the degree of strengthening brought about by 
these spiders. For a 27 -in diameter screen it is probable 
that a glass thickness of about 1 in would be suitable. 

On account of obstruction of the screen area, the use 
òf such support spiders might not be admissible. In 
that event the screen thickness for an overall screen 
diameter of about 3o in, would need to be approximately 
2 in. This result follows from a simple formula illustrated 
by Fig. 5. Here the circular disc P, of thickness t and 
and diameter d, is freely supported round its periphery. 

17Inillil 
A 

d 

Fig. 5. Calculation of screen thickness. 

It is supposed to be subjected to a uniform pressure of 
p lb/in2 over its surface. Then the maximum stress 
induced in the disc can be shown to vary as d2/t2. This 
equation is homogeneous in d and t whence we deduce 
that the maximum stresses in all discs of the same form 
(i.e., same dit ratio) are the same. We infer that the 
fracture point is uniquely defined by the maximum 
stress. Experience has shown that a disc I -in thick and 
of 6 -in diameter will withstand atmospheric pressure. 
Thus for a 3o -in diameter the required thickness appears 
to be just under 2 in. This argument postulates that the 
elastic properties of the larger disc can be made the same 
as for the smaller one-in particular in respect of homo- 
geneity. Doubtless this is a postulate easier to state than 
to achieve, but the answer gives us a guide. 

Reverting to Fig. 4, the neck of the bulb is made of 
glass and is terminated in a flange joint at N and a 
cone joint at M. Any of the standard waxed or rubber 
gasket joints may be made at N. The joint at M would 
preferably be made non -permanent, using vacuum 
grease, to permit ready interchange of electron guns. 

It will be noted from Tables I and II that the neck 
diameter of the derived tubes is quite large, so that the 
use of an electrostatically -focused gun would seem 
attractive, employing that system of construction where 
the neck forms the final part of the two -cylinder lens. 
With such large neck diameters, voltage insulation is 
quite easy. and lenses of low aberration can be readily 
made. Ion burn, thus concentrated at the screen centre, 
is of no account on a centred p.p.i. system. 

Aluminization of the screen would be necessary to 
avoid ' piling.' Apart from the difficulties associated 
with the size of the area to be covered, this technique 
should be relatively easy, since the screen is merely a 
flat disc, immediately detachable. 

The general conclusion is that the constructional 
problems are almost wholly economic. Given proper 
facilities few scientific difficulties would seem likely. 
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FEEDBACK AMPLIFIER DESIGN 
Conditions for Flat Response 

By Hans Mayr 

SIIMMARY.-It is usual to treat the performance of feedback amplifiers inside the original pass - 
band in terms of linearization, outside of it in terms of stability ; in this paper, the performance of 
such amplifiers is treated in the whole frequency band from zero to infinity in terms of frequency 
response. 

After deriving a simple general equation, which gives the frequency response of the complete 
amplifier as a function of the response of the amplifier without feedback and of the frequency 
characteristics of the feedback network, a complete treatment is given for the special case of amplifiers 
with up to four stages of resistance -capacitance or tuned -circuit coupling, with constant feedback and 
equal centre frequencies for all stages. 

Design formulae are given which make it possible to determine the characteristics and the values 
of the component parts of such amplifiers with definite pre -selected frequency response. 

Introduction 
THE advantages of negative feedback are 

well known : decreased frequency distor- 
tion, decreased harmonic distortion, de- 

creased background noise and increased stability, 
inasmuch as the amplification is much less 
dependent on valve characteristics and supply 
voltages. Its drawbacks are the loss of amplifica- 
tion and a certain instability at very high or very 
low frequencies, which may lead even to self - 
oscillation. 

Now the loss of amplification, inherent in the 
system of negative feedback, is the price we 
must pay for its other advantages ; but since the 
available output power is not diminished, it is 
generally quite easy to provide for the necessary 
additional amplification. 

On the other hand, the instability at extreme 
frequencies is not at all an inevitable character- 
istic of negative feedback, but merely a conse- 
quence of the unsuitable design method ordinarily 
employed. In fact the usual procedure is, first, 
to design an amplifier with somewhat poor 
performance, but with a gain in excess of the 
desired one by the amount of the expected feed- 
back ; secondly, to apply to this amplifier 
negative feedback until the desired amplification 
is reached ; thirdly, if instability occurs, to apply 
some stabilizing means and to adjust it by cut 
and try methods until the whole device becomes 
sufficiently stable. What really happens is this : 

the application of negative feedback to the 
amplifier enlarges its original pass -band ; the 
central part of the response curve is straightened, 
but in the neighbourhood of its limits there may 
appear peaks ; if these peaks reach infinite gain, 
self -oscillation occurs. Stabilization requires the 
response curve of the original amplifier to be 
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modified so as to lower the resulting peaks. 
Using a correct design method it is not only 

possible to obtain perfectly stable amplifiers, but 
even to realize any pre -selected response curve 
and bandwidth compatible with the type of 
amplifier in question. Such a design method 
should start with the choice of the desired 
response curve, then determine the characteristics 
of the amplifier and feedback network necessary 
to obtain this response and at last give the values 
of the component parts needed for these 
characteristics. Obviously it is first necessary to 
know all the response curves that can be realized 
with the particular type of amplifier in question, 
as functions of some suitable parameters ; then, 
to know the relation existing between these 
parameters and the characteristics of the ampli- 
fier ; finally, to determine the values that the 
various parts of the amplifier must have in order 
to obtain the desired characteristics. 

In the following we shall at first derive a 
general equation which gives the response curve 
of a feedback amplifier if the response of the 
amplifier without feedback and the frequency 
attenuation of the feedback network are known. 
Then we shall treat in detail the special case of 
an amplifier with up to four stages of resistance - 
capacitance or tuned -circuit coupling, with 
constant feedback ; all stages are supposed to be 
tuned to the same frequency. The amplifier will 
be designed to give the most uniform amplifica- 
tion possible. Though apparently a very special 
case, it is probably applicable to the majority of 
practical problems, especially in the field of 
measurements. 

Response of Feedback Amplifiers 
Denoting by V1, V0, I., I, respectively the 

input voltage, the output voltage, the input 
current and the output current of an amplifier, 
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its amplification may be expressed in terms of 
any one of the following four ratios : 

Vo/Vi .. . voltage gain 
/o/Ii ... current gain 
Vo/ Ii .. . mutual impedance 
/o/Vi . . . mutual admittance. 

Of these four expressions the first two are 
generally complex numbers, while the others are, 
as indicated, a complex impedance and a complex 
admittance. 

In the following we shall use the term 
' amplification ' indifferently for any one of the 
four ratios ; by ' input ' and ' output ' we denote 
the corresponding quantities. For instance, 
whenever ' amplification ' is intended to mean 
the mutual impedance, ' input ' means input 
current and ' output ' means output voltage. 

Negative feedback consists in feeding a 
fraction of the output through a suitable network 
back to the input terminals, so as to oppose the 
action of the input. In order to maintain the 
original output level, the input must now be 
increased by an amount equal to the fraction of 
the output which has been fed back. Denoting 
by a the amplification without feedback, by A 
the amplification with feedback and by ß the 
fraction of the output fed back to the input 
terminals, we obtain the well known equation 

A=+aß .. .. (i) 

Since a as well as ß are functions of frequency, 
equation (i) gives not only the change in the 
value of the amplification, but in its frequency 
characteristic, too. By choosing a suitable set 
of reference values a°, ß0, A o corresponding to 
the same reference frequency w°/27r, the two 
effects may be separated ; we find 

a° 
A o 

I + aoßo 
.. 

A a r + aoßo 

.. (2) 

o ao 
.. (3) 

Now, the reference value of amplification with 
feedback A ° is reduced with respect to the value 
of amplification without feedback ao by the 
factor i + %ßo. We call this factor the degree 
of negative feedback and denote it by n ; it is 
generally a complex constant. 

Introducing this constant in the equations (2) 
and (3) we obtain after a simple transformation 

A --:x° - 
o 

.. (4) 

A - I + n \ a - I) + n n I 
(ßo I) (5) 

Defining as frequency response the frequency 

298 

characteristic of amplification referred to some 
arbitrary reference value, and defining further as 
frequency attenuation the reciprocal of the 
frequency response, we see that equation (5) 
gives directly the frequency attenuation of the 
amplifier with feedback, if the frequency attenua- 
tion of the amplifier without feedback and the 
frequency attenuation of the feedback network 
are known. 

For the mathematical treatment, it is preferable 
to use the frequency attenuation instead of the 
frequency response, because it avoids the cumber- 
some fractions ; but, the response being a more 
immediate expression for the performance of an 
amplifier, as is readily recognized by observing 
the graphical representation, it is advisable to 
express the results in terms of response. 

An inspection of equation (5) reveals immedi- 
ately two well known relations : the influence of 

the term a0 - i, due to the amplifier proper, is 
a 

reduced n times, indicating the degree of stabiliza- 
tion obtained by the feedback ; furthermore, if n 
approaches infinity, equation (5) reduces to 

Ao ß 
A ßo 

indicating that in the limit the performance of 
the amplifier is determined by the feedback net- 
work only and completely independent of the 
characteristics of the amplifier itself. 

Fig. 1 Tuned amplifier stage. 

.. (5a) 

Amplifiers with Constant Feedback 
An amplifier is usually intended to give uniform 

response within its pass -band. As equation (5a) 
shows, this condition is approached, at least for 
the higher degrees of feedback, by making the 
feedback constant and independent of frequency. 
In this case (5) simplifies to 

Ao-I+n\a-Z) .. .. (6 

In order to determine the frequency attenua- 
tion of the amplifier with feedback it is now 
sufficient to know the frequency attenuation of 
the amplifier without feedback and the degree 
of feedback applied. 
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Frequency Attenuation of Amplifier Stage 
Fig. I gives the schematic diagram of a one - 

stage amplifier with tuned -circuit coupling. The 
resistance R is supposed to lump the load, the 
anode resistance of the valve and the losses of the 
tuned circuit. 

The frequency attenuation of this stage may 
be expressed by 

gÿotR = -jwC+jwL 
Introducing the abbreviations 

a=V- Q=R /L w- 1 (8) /LC 
we obtain the following simple expressions : 

(7) 

ao = gmR .. 
l 

.. .. (9a) 

a° - I + 9Q (w w ) .. .. (9b) 
0 

The two parameters of equation(9), wo and Q, are 
theoretically unlimited. 

Fig. 2. RC -coupled amplifier stage. 

Fig. 2 gives the schematic diagram of a one - 
stage amplifier with resistance -capacitance coup- 
ling. Here the anode resistance of the valve is 
lumped with Ra. 

The frequency attenuation is given by 
gnOi=R(1 +ec)+1(i+ Ca)+ 

jw (Cv + Ca + C°Ca) + (io) 
Cc jwCcR,Ra 

Introducing the following set of abbreviations 
R = 4RaR, ; 

C=VC,Cc+C ,Ca +CCa' 
w0 

= 
/ 

CR 

b=R9; d=C; k= Cc; 

P = C, Q = I 
b(d+k)+(p+k) 

we have 
ao = k Q . gm R .. .. (12a) 

3 

« CV CO 0 -I+9( 
CO CO) 

(I2b) 

Between the quantities d, k, p exists the relation 
dk dp kp = 1 .. .. (13) 

Of the two parameters of equation(12), co, is still 
theoretically unlimited ; but Q is confined to 
values lower than 1/2, as may easily be verified 
by differentiating the expression for Q with 
respect to its variables and equating to zero. 

The interesting result is that the frequency 
attenuation of the tuned -circuit amplifier and the 
resistance - capacitance coupled amplifier are 
identical and completely determined by only two 
parameters, wo and Q. 

Frequency Attenuation of Multi -stage 
Amplifiers with Feedback 
The frequency attenuation of a multi -stage 

amplifier is found by simply multiplying the 
attenuation characteristics of its single stages. 
The result is particularly simple if the various 

stages have the same resonant frequency `0 
27r 

Introducing the result in equation (6) we find the 
frequency attenuation of a multi -stage amplifier 
with constant feedback. We obtain for amplifiers 
with up to four stages 

Ao_ 
fl 
Ao_ 
A 

I + j n Q( - °) .. (14a) 
0 

I + (Q1+Q2)(w w0) 0 

I w wo 2 

-nQIQ2(- w) 

fl°= I +7n(Q1+Q2+Q3)(w 
0 w°) 

(14b) 

2 

(Q1Q2 + Q1Q3 + Q2Q3)(w 
CU°) 0 

3 

-7 Q1Q2Q3(w 
wco °) 0 

(14c) 

fl°=I+7(Q1+Q2+Q3+1'4)(w w°) 0 

(Q1Q2 + Q1Q3 + Q1Q4 + Q2Q3 

2 

+ Q2Q4 + Q3Q4)(W CJ°) 
0 

-, (Q1Q2Q3 + Q1Q2Q4 + Q1Q3Q4 

+ Q2Q3Q4) (W w°) 
0 

+ nQ1Q2Q3Q4(W 
41 )4 

(14d) 
0 
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a1 = 

For practical applications it is better to pass 
to polar co-ordinates and determine the modulus 
and phase angle of attenuation separately. Using 
an appropriate set of abbreviations it is possible 
to express these quantities in quite a simple 
manner. We find, in fact, the following equa- 
tions : 

for four stages : 

A° 
A 

= 1/I + a,x2 + a2x4 + a3x8 + x8 (18a) 

3 - tan-' 
/bl 

b2b+ . . (18b) 

/Q1l'¡2`G¡3Y4 ¡W WO) 
n u,° cu 

(18c) 

a 
1 

Q12 + Q22 + Q32 + Q42 - 2(n - I)(Q1Q2 + Q1Q3 + Q1Q4 + Q2Q3 + Q2Q4 + Q3Q4) (18d) n 3Q 1Q 2Q 3Q 4 

a - (2,2Q22+ 
Q12Q32 + Q142 + Q22Q32 + (222(242 + Q32Q42 + 2(n - I)Q1Q2Q3Q4 

. . (18e) 
2 n Q1Q2Q3Q4 

for one stage : 

A0VI+x2. 
A 

= -1 x .. . 

for two stages: 
A° VI + alx2 + x4 (16a) 

= - tan -1 b 
1 

. . (i6b) - x2 

x = /121'22( 
\uW,° 

coo) 
n 

Q12 + Q22 - 2(n I)Qi`C 2 

nQ1Q2 
b1 

V 
_Q/1+Q2 

nQ1Q2 

for three stages : 

AA° = VI + a1x2+ a2x4 

X = 

a1 
,:./n4Q12Q22Q23 

Q12Q22 + Q12Q32 + Q22Q32 a2 
n2Q14Q24Q34 

b1 

Qry n2L'1Q2Q33 
.. 

b2 Q1 Q2 + Q1Q3 + Q2Q3 
Z 

nQ12Q22Q32 
. . 

(17e) 

(17f) 

(17g) 

- tan -1 
b1x - x3 

i - b2x2 

Q1Q2Q3¡W Wol 
n 1\W° co1 

X6 

bl 

b2 

b3 

a = Q12Q22Q32 + (242Q22(242+ Q12Q32Q42 + Q22Q32Q42 
. . (IHf) 

3 

V nQ13Q23Q33Q43 

Q1 + Q2 + Q3 + Q4 

4/n3Q1Q2Q3Q4 

Q1Q2 + Q1Q3 + Q1Q4 + Q2Q3 + Q2Q4 + Q3Q4 

V nQ1Q2Q3Q4 

Q1Q2Q3 + Q1Q2Q4 + Q1Q3Q4 + Q2Q3Q4 

nQ 13Q 23Q 33Q 43 

Since for acoustical reproduction the phase 
characteristic is of less importance than the 
amplitude characteristic, we base our considera- 
tions on the latter. 

The amplitude characteristics of the multi- 
stage amplifiers may be expressed by one common 
general formula ; indeed, equations (15a), (16a), 
(17a) and (18a) may all be expressed by 

Á= 1/I+a1x2+a2x4+...+a,.-1x2(r-1>+x2r .. (19) 

where r is the number of stages. 
Since equation (ig) is an even function of x, 

all the characteristics are symmetrical with 
respect to x = o or W = a,°. In order to find 
further details of the shape of the attenuation 
characteristics, we determine the maximum 
and minimum values of (19). This is done by 
differentiating equation (19) with respect to x 

and equating to 
zero. We get 

x = o .. (2o) 
and 

a1+2a2x?+.... +(r - I) ar-lx2(r 2) 

+ Y x2(r-1> = o .. .. .. (2I) 
The roots of (2r) correspond to the maximum or 

minimum values of (19). Expressing (2r) as the 
product of its root factors, we may write the identity 

a, + 2a2x2 + .... + (r - I)ar-1 x2(r-2) + 

Q12 + Q22 + Q32 - 2 (n - I) (Q1(22+Q1Q3+Q2Q3) .. (17d) 

Yx2(r-b-Y (x2 - x12)(x2 -x22) . . . . 

(x2 - xr-12) . . . . (22) 
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from which we get immediately 

ar- 1 r - I (x12 
+ x22 + .... + xr2-1) 

.. (23) 
Equation (23) shows that there exists at least 

one pair of complex roots, if ar_ 1 is positive. 
But from equations (i6) to (i8) we learn that 
with the exception of al, which may be either 
positive, zero or negative, all other coefficients 
are always positive. Since in the case of four 
stages equation (21) is of the sixth degree, it 
has a total of six roots, of which at least two are 
complex and consequently not more than four 
real ; in addition we have the real root at x = o. 
Now, between two consecutive maximum values 
there must be a minimum value and therefore 
of the five possible real roots three at most may 
correspond to maximum values of the response 
curve ; in this case we have a peak at the centre 
frequency and two other peaks near the limits 
of the pass band, one at a very low and the other 
at a very high frequency. 

In the same way it may be shown that for 
three and two stages there cannot exist more than 
two peaks near the limits of the pass band, one 
at a very low and the other at a very high fre- 
quency ; for one stage, there exists only one peak 
at the centre frequency. We may therefore 
conclude that for amplifiers with up to four 
stages, the response curve cannot have more 
than two peaks near the limits of the pass band, 
one near the upper and the other near the lower 
limit. 

We have seen that, with the exception of al, 
all coefficients of equation (21) are positive. 
If al is also positive, or zero, equation (21) has 
no real roots at all and the response curve has 
no peaks except that at the centre frequency. 

The behaviour of the response curve near the 
centre of the pass -band may be shown by ex- 
panding equation (19) in a power series. Ex- 
panding first in binomial series and then in 
Maclaurin's series we find : 

IA, 
A 

=1/i+alx2+a2x4+.... 
= I + ¡alx2 - Ea12 - 

d2 Ao r d4 

= I+ dx2 Á' x2 + 24 dx4 

Consequently we obtain for 

a1 = o 
d2 

dx2 

d4 
a1 = a2 = o 

dx4 
and so on. 

Ao 
A 

Ao 

A 

= 

= o 

4a2)x4 + . 

Ao 
A 
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.x4+.... 
.. (24) 

.. (25a) 

(25b) 

The result is that the more coefficients of 
equation (19) vanish, the flatter becomes the 
response curve near the centre of the pass band. 
But as we have already seen, only a1 can be made 
to vanish, while all other coefficients are always 
positive. In order to obtain the flattest response 
curve possible, it is therefore necessary to make 
these other coefficients as small as possible. 

In conclusion we may say that by making a1 

zero and the other coefficients as small as possible 
we obtain perfectly smooth response curves 
without any spurious peaks ; since these curves 
are very flat in the neighbourhood of the centre 
frequency and rather steep near the limits of the 
band, they represent a very good approximation 
to the rectangular response curve usually con- 
sidered ideal. Furthermore, it is evident that 
amplifiers with such a response are perfectly 
stable in the whole frequency band from zero to 
infinity. 

Feedback Amplifiers with Flat Response 
Applying these principles to amplifiers with 

one stage, we see at once from equation (15a) 
that there are no arbitrary coefficients at all and 
that therefore the response curve when expressed 
as a function of the variable x is the same for 
any one -stage amplifier. 

In the case of two -stage amplifiers, we learn 
from equation (16a) that there is but one arbitrary 
constant, a1. According to (16d) this may be 
made to vanish, if the following relation is 
satisfied : 

Q1__ 
Q2 

Equation (26) is valid only if n is larger than 2, 
since it is of course physically impossible to 
realize complex values of Q. 

For three -stage amplifiers, we have according 
to equation (17a) two coefficients al and a2. 

With the aid of equation (17d), a1 may be made 
to vanish, yielding 

I 

n - 1/n(n - 2) .. .. (26) 

- 
Q2 2 

12+Q12- 
2(n - I) 

Q2+3+Q2Q31 o 
CQ1 Q1 Q1 / 

/ (27) 

For a2 we find from equation (17e) 

a2 = :/2222yiQ 

42(I+Q22+- 
.. (28) 

which is always positive. We see that a2 is a 
function of two variable parameters, Q2/Q1 and 
Q3/Q1. By means of equation (27) Q3/Q1 may 
be expressed as a function of Q2/Q1 and so there 
remains but one independent variable, Q2/Q1. 
In order to find the smallest value that a2 can 

301 

www.americanradiohistory.com



assume, the ordinary procedure would be to 
differentiate (28) with respect to the variable 
Q2/Q1 and then to equate to zero. This would 
give the value of Q2/Q, ; inserting this in (27) 
would then give Q3 1. 

However, in this special case there is a much 
simpler way of finding the answer. 

Putting Q2/Q1 = e and Q3/Q1 = .9 we may 
write for equation (27) 

o .. .. .. (27a) 
and for equation (28) 

a2 = F(e,q) .. .. .. (28a) 
where 1" and F are symmetrical in e and j. We 
introduce now a new co-ordinate system with 
the straight line C _ as u -axis and with the 
v -axis normal to it. We get 

(,1) = Vi(u,v) .. (29) 
F(C,,,) =f(u,v) .. (3o) 

The necessary, though not sufficient, conditions 
for a minimum value of a2 are now f f du 

+ u dv -° (31) 

The relation tk(u, y) = o represents, because of its 
symmetry in C and 17, a curve which is sym- 
metrical about the u -axis. At its intersection 
with this axis therefore the first -order derivative, 
taken in a direction normal to the axis vanishes. 
This yields 

Cdu¡ 

dv/v-o - o 
.. (32) 

The expression f = F(e, j) represents in the 
coordinate system F, C, 1] a surface which is 
symmetrical to the plane C = ; therefore the 
expression f(u, v) is symmetrical about the 
plane y = o. In this plane therefore the first 
order derivative taken in a direction normal to 
the plane vanishes and we get 

Cf =o 
v a=o (33) 

From (32) and (33) it follows that equation (31) 
is fulfilled for y = o, so that f(u, v) is a minimum. 
Therefore F(C, ) is a minimum for C _ 7, and, 
finally, a2 is a minimum for Q2 = Q3. 

The strict proof that the value found by this 
method is truly a minimum and not a maximum, 
or flexure point, would be rather laborious ; 
but since all sections of a2 parallel either to C or 
to ij possess a minimum value, but no maximum 
or flexure point, it is quite evident that our 
value is a minimum. 

Putting in equation (27) Q3 = Q2 we find the 
following relation : 

ei 
2- 2(n - 1/2n(2n - 3) (34) 

The procedure for four -stage amplifiers is 
analogous to that used for three -stage amplifiers. 
Of the three coefficients present in equation 
(18a) a1 can be made to vanish, while a2 and a3 
are always positive, as is evident from equations 
(18e) and (18f) ; the latter two coefficients 
assume simultaneous minimum values if Q2 = 
Q3 = Q4. This may be proved following the 
same lines as in the case of three stages, with the 
difference that recourse to four dimensional 
geometry is necessary. 

Inserting Q2 = Q3 = Q4 in equation (18d) 
and equating to zero yields 

-Q2= 3(n -I) + 1/3n(3n - 4) (35) 

We have thus found the conditions necessary 
to obtain the flattest possible response curves 
for amplifiers with one, two, three and four 
stages ; applying these results to equations (i5) 
to (i8) we obtain the following formulae ; 

for one stage : 

Á° = VI + x2 .. (36a) 

ç = - tan -1 x .. (36b) 

Q W wo x = - (36c) n coo W) 
for two stages : 

-1/1+x4 
fl 

for 

1/2x 
.rA = - tan -1 I-x2 

Q ( w Wo x= ` - Q2 
nQ1 2 Wo W 

Q1=(n-1)+1/n(n-2) 

3 ¡ 
/ 12j 

x=Q 

Q2 

three stages: 
Ao = VI + a2x4 + x6 Á 

= - tan b1x - x3 

i - b2x2 
3 / Q1 W W° 2./ 

nQ2 
W) 

/ - a2 
1 2 4 Q22 

3 
Q 24 

(212 
bl /n2 N Q22 Q1 

b 

Qi 
Q2 

2(n - I) + 1/2n (2n - 3) 

2 

N n + 2 N Q2/ 

Q2 = Q3 

(37a) 

(37b) 

(37c) 

(37d) 

(38a) 

(38b) 

(38c) 

(38d) 

(3He) 

(38f) 

(38g) 

(38h) 
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for four stages : 

-Ai=o VZ { a2x4 a3x8+x8 .. (39a) 

-tan 1 
blx-b3x3 

(39b) -b2x2+x4 
4 

x = Q2 
/ ¡1/ -w°) . (39c) n2 

(0) 
WO) 

. 

a2=ñL2(n-r)+3Q2+3Q1J.. (39d) 

3 

n [At/ + 3. / 21 .. (39e) 

bl 3'v Ql 
.. (39f) n3[1Q23+ 

b2 [3J9Q712+ 3N Q1 1 

. . (39g) n 
b3 

Q13+3./ Q2J 
.. (39h) ,U'V 

2= 3(n - i) -}- 3(3n - 4) . . (39i) 

Q2 = Q3 = Q4 (39i) 
From equations (36) and (37) we see that the 

frequency response of one -stage and two -stage 
amplifiers as a function of x is independent of 
the degree of negative feedback, n. It is therefore 
possible to represent the modulus as well as the 
phase angle of response, for these cases, each 
by a single curve. This has been done in Figs. 
3 and 4. For three and four stages, however, the 
response curves are different for different values 
of feedback. Since the influence of the degree 
of feedback on the shape of the response curve 
is not very great, it is sufficient to give these 
curves for the limit values of n ; these limits are, 
for three stages, n = 3/2 and n = co ; for four 
stages, n = 4/3 and n = co. These curves are 
given in Figs. 5 to 8. 

The expressions for the modulus of the fre- 
quency response are even functions of x and 
therefore symmetrical about the axis x = o. 
The figures reproduce only the right half of the 
curves, for positive values of x. The response 
values for the symmetrical left half of the curve, 
corresponding to negative values of x, are obtained 
by simply changing the sign of the abscissae. 

The expressions for the phase angle of the 
frequency response are odd functions of x and 
therefore symmetrical about the origin x = o, 
4, = o. The figures reproduce likewise only the 
right half of the curves, for positive values of x. 
The phase angle values for the left half of the 
curve, corresponding to negative values of x, 
are obtained by changing the sign of the abscissae 
as well as of the ordinate. The phase angles of 
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the frequency response for negative values of x 
are therefore always positive. 

Design of Feedback Amplifiers with given 
Response 
With the equations (36) to (39) and the curves 

of Figs. 3 to 8 we have attained our first object, 
namely to determine the flattest frequency res- 
ponse curves that can be realized with amplifiers 
with up to four stages of resistance -capacitance 
or tuned -circuit coupling, using constant feed- 
back and having all the stages tuned to the same 
frequency. The parameters used are : the 
degree of negative feedback, n; the Qs of the 
various stages ; and the common centre fre- 
quency, W o/27r 

The next step is to find the numerical values of 
these parameters corresponding to a definite 
amplifier with a frequency response selected 
among the possible curves given above. This 
may be done with the aid of equations (36) to 
(39), as follows : 

We choose the number of stages, r, the degree 
of negative feedback, n, and the response 
(modulus or phase angle) corresponding to two 
arbitrary frequencies, W1/2n and 0,2/27r, one near 
the lower and the other near the upper frequency 
limit. Then we read from the curves the values 
x1 and x2 corresponding to the two chosen 
response values; the value of xl corresponding 
to the lower frequency is, of course, negative. 

Now we compute the centre frequency from 

- W 2 = W W x2W1 x1W 2 .. .. (40) 0 WI W2 - x1W1 
and the ratio Q1/Q2 from equations (37d), (38g) 
or (39i) according to the number of stages. 

The Qs of the various stages are then given by: 
one stage : 

Q = n 
x1 

(4r) 
W1 Wo 

Wo W1 

two stages : 

Q2='V 
Q12Wlx1W,, 

o W1 

three stages: 

Q2 = Q3 = 

Q1=Q2'Q2 
' 

(42) 

; Q1- 
Q1 W1 Wo 

Wo W1 . 

four stages : 

Q2 r= Q3= Q4 = 
4 

/nQ2 xl . 

Q1 W1 

Wo W1 

el= Q2Q2 

Q2 
Q2 

(43) 

(44) 
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The above design formulae show that these 
amplifiers are made up of one rather selective 
stage, corresponding to Q1, and a number of 
equal broadly tuned stages, corresponding to 
Q2' Q3 With increasing feedback, the 
selectivity of the former must be increased, 
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while the selectivity of the latter stages 
approaches a limiting value. It may be shown 
that this limiting value is of the order of the 
Q of a single -stage amplifier without feedback, 
having the same bandwidth as the complete 
amplifier with feedback. 
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Determination of Component Values 
Given the values of Q and wo for every stage 

of the amplifier, its frequency characteristics are 
completely determined. The third and last 
step is now to find the values of the component 
parts of the amplifier which yield the desired 
values of Q and w0. 

Theoretically, any value of Q may be realized 
with a tuned -circuit -coupled amplifier stage. 
However, a practical upper limit is set by the 
highest Q that can be realized with available 
inductors. For low -frequency work, this limit 
is of the order of 5o. If the desired Q is lower 
than 1/2, it is usually convenient to use resistance - 
capacitance coupling. 

The amplifier is at first designed following 
standard methods, but neglecting all reactance 
elements ; i.e., for tuned -circuit stages we con- 
sider only the total resistance R of Fig. I and for 
resistance -capacitance stages the anode and 
grid resistances Ra and R, of Fig. 2. The ampli- 
fier is designed to have a gain approximately 
n times the desired final value, considering that 
according to equation (12a) the real gain of a 
resistance -capacitance coupled stage is somewhat 
less than the theoretical gain with a pure resis- 
tance load ; for wide -band stages, however, the 
difference is so slight that it may be neglected. 

The feedback circuit must be so designed as to 
decrease the gain n times. It must be independent 
of frequency, and the best plan is to use a resistive 

b 
(I) o<Q< 2./I+b2' 

(2) 21/b2<Q< '2bQ[I-1/(I+b2)(I. 
I [I -}- 1/I 
ZbQ 

The design of resistance -capacitance coupled 
stages is somewhat more complicated. Since only 
two conditions are to be met by three capaci- 
tances, an arbitrary value may be assigned to 
one of these capacitances. It is convenient to 
fix the value of the grid capacitance C, at its 
lowest possible value ; i.e., the input capacitance 
of the following stage with some allowance for 
stray capacitances. The other two capacitances, 
Ca and Cc are then found as follows : 

We first compute the auxiliary values of 
equation (II), 

R-1/RaRs C u, R' b=/%/Rd' d= C°l 

=2Q[I 
I+4Qb-4Q2(I+b2+d2)] 

.. (46) 
I -pd 
p d 

and find then for the anode and coupling capaci- 
tances 

Ca=p.0 cc= k.0 

k - 

(47) 

The amplification at the centre frequency is 

ao=kQgmR .. .. (48) 

A thorough investigation of the expressions 
for p and k shows that they yield physically 
realizable values for Ca and C,, only if for a given 
value of the resistance ratio b the grid capacitance 
remains within certain limits, which may be 
given as follows : 

o<d<-I [I -1/I -4Q2] 
(49a) 

4Q2] < d < [I +1/(I + b2) (I - 4Q2)] 

- 4Q2)] < d < 2bQ [I - 1/I - 4Q2] 

4Q2] < I < 
ZbQ 

[I +1(I + b2) (I - 4Q2)] 
(49b) 

network. For high -frequency or wide -band 
amplifiers it will be necessary to shunt the low 
resistances by suitable capacitances in order to 
compensate for the inevitable stray capacitances 
of the higher resistors. 

For tuned -circuit stages, the reactance ele- 
ments are then determined from the following 
formulae, which maybe derived from equation (8) : 

L= ; C=cR 
oQ o 

(45) 

Conclusion 
With the determination of the values of the 

component parts of the amplifier we have reached 
the object stated at the outset : to design a feed- 
back amplifier with a certain pre -selected response 
curve. Since the response curves chosen have no 
spurious peaks in the whole frequency band from 
zero to infinity, the amplifiers designed along the 
lines given in this paper are perfectly stable 
and permit the full use of all the well-known 
advantages of negative feedback. 
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GAIN OF AERIAL SYSTEMS 
By D. A. Bell, M.A., B.Sc., M.I.E.E. 

SUMMARY.-The maximum gain of an aerial of given aperture (measured in wavelengths) 
depends on the phase distribution of the illumination of the aperture. Three cases are considered, 
in order of increasing gain :-(i) Uniform -phase radiators (broadside arrays and ' optical ' radiators). 
(ii) Radiators with effective phase -shift of n (end -fire aerials of all kinds). (iii) Aerials with closely - 
spaced phase reversals (the high -gain short aerials of Bouwkamp and de Bruijn and of La Paz & Miller). 

An example of the relation between the reduction of the radiation resistance of a constituent 
element of an array and the increase of gain of the array is given in Appendix I and a comparison 
with optical laws in Appendix II. 

1. Introduction 
N a recent publications it has been suggested 
that ' It may, for instance, be found possible 
to develop a general and over-riding theorem 

connecting the directivity and selectivity of an 
aerial system with its physical size or other 
geometrical feature.' The purpose of this note 
is to compare a proposed theorem with the 
available information consisting of 

(a) The calculated and observed gain of 
broadside aerials. 

(b) The calculated and observed gain of end - 
fire aerials. 

(c) The theoretical prediction2.3 that there is 
no upper limit to the gain obtainable from 
a small aerial by choice of current 
distribution. 

A three -fold theorem is proposed for two- 
dimensional arrays, as follows :- 

(1) The maximum gain of a two-dimensional 
aerial system in which all radiating elements are 
excited in the same phase corresponds to the 
optical diffraction pattern for a uniformly 
illuminated aperture of the same area :- 

G = 41rA/A2 referred to an omni-directional 
radiator, 

whence G = 8.4A/A2 referred to a Xt/2 dipole. 
(2) The maximum gain of an aerial in which the 

effective phase varies gradually, by a total amount 
of approximately 7r, from one edge of the aperture 
to the opposite one, is twice the gain of a 
uniformly -illuminated aperture. 

(3) The gain of an aerial in which the phase 
is reversed at short intervals (radiation sources 
in opposite phase separated by considerably less 
than a/2) is theoretically unlimited, but this 
method of operation involves very large ampli- 
tudes for the individual radiation sources and is 
hardly practicable for aerials larger than one 
wavelength in the directional plane.* 

MS accepted by the Editor, September 1948 
* Since this paper was written, the problem of aerials of unlimited gain has been discussed by P.M. Woodward and J. D. Lawson. 
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An extension for three-dimensional arrays is :- 
(4) The directivity of a three-dimensional array 

can be deduced as the combination of the 
directivity of a two-dimensional constituent of 
it and the directivity of the pattern in which 
the two-dimensional elements are assembled in 
the three-dimensional array. 

Part (z) covers broadside arrays of dipoles and 
microwave aerials of the ' optical aperture ' type 
(e.g., horns and mirrors) and its interpretation by 
Fourier transforms is well-known. 

Part (2) is the ' end -fire theorem ' which has 
been found to apply to a number of specific types 
of aerial (end -fire array of dipoles, Yagi, polyrod, 
rhombic). Although this does not seem to be 
generally realized, the ' end -fire theorem ' can also 
be interpreted in terms of Fourier transforms. 

Part (3) is added to cover the exceptional aerial 
current distributions of a ' non -optical ' type 
[see Appendix II, paragraph (i)] for which high 
gains have been predicted mathematically but 
which have had limited practical application 
owing to the extreme difficulty of realizing the 
current distribution needed for the abnormally 
high values of gain. 

2. Use of Fourier Transforms 
The principle of conservation of energy is 

regarded as sufficient proof that the gain of an 
aerial in a preferred direction can be related to 
its directivity, provided the latter is known 
throughout the solid angle into which the aerial 
radiates. Following Ramsay', the radiation 
pattern in a given plane of an aerial of aperture 
width a in that plane is related to the function 
F(x') which defines the current t amplitude at a 
distance x' from the centre of the aperture by 
the formula 

a/2 
Ee = (i + cos 0) f [F(x') 

_a/2 

exp ( j x' sin 0)1 dx' .. (I) 

f With an array of wire radiators, the held depends literally on currents 
in the aerial ; but with a horn or mirror, an equivalent function of either 
magnetic or electric field must be taken. 
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The mean field -strength in the plane is then 
={2n 

1 EBdB 
2rr 

o 
and the directional gain is Eo/Em where Eo is 
the maximum value of EB corresponding to the 
preferred direction of radiation. If the beam is 
no wider than ± 36° for a broadside aerial or 
± 6° for an end -fire aerial, the factor (Z + cosB) 
will vary by no more than ro% over the beam - 
width and may be regarded as a constant entering 
equally into the maximum and the mean value, 
so that for sufficiently narrow beams the 
directivity is represented simply by the integral. 
Taking a new variable u' = sin B/À, the directivity 
of a narrow beam is presented by 

a/2 

EB = G(u') = F(x') exp (j27ru'x')dx' (3) 
-a/2 

(Ramsay4 takes u = - sin B/ñ, but by omitting 
the negative sign equation (3) is brought into line 
with Campbell & Foster's notations). By the 
reciprocal property of Fourier transforms, it 
can immediately be said that if the desired 
radiation pattern is given as G(u'), the necessary 
aerial amplitude distribution is 

(2) 

F(x') =J G(u') exp (- j2iru'x')du . . (4) 

where, as in (3), u' = sin B/A. The equations can 
be more closely related to the physics of the 
problem if the co-ordinate x' is transformed to a 
normalized co-ordinate x = x'/A so that 

fa/ 2T 

EB = 
J 

f(x) exp (j27rx sin B)dx 
a/21 

where f(x)dx = F(x')dx'. Now take sin O = u, 
giving 

a/2A 

EB = G(u) = f(x) exp (j2irux)dx .. (3a) 
a/2A 

The reciprocal equation (4) now becomes 

f(x) = J G(u) exp (- j27rux)du .. (4a) 

r 
=J G(sin B) exp (- j2ax sin B) cos BdO (4b) 

This makes it explicit that the transformation 
operates between the angular directivity pattern 
on the one hand and the current distribution in 
the apertúre measured in wavelengths on the other. 
(The same relation is, of course, implicit in 
Ramsay's notation where the angular unit for 
the directivity pattern is irae = - 7r(a/A) sin B, 
instead of the angle itself.) Since the directivity 
pattern G(sin B) must necessarily repeat when O 

is increased by 21r, the integral with respect to O 
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in (4b) can be confined to the limits - a to + Tr. 

For particular cases, it is known that when 
the desired G (u) is a geometrically simple 
pattern (e.g., rectangle, triangle, half cosine, 
etc.), a restriction on the range of x results 
in the superposition of a ripple on the desired 
G (u). Since Fourier transforms admit of direct 
addition and substraction, this can also be 
shown by regarding the pattern from the 
restricted source as the difference between the 
desired pattern (from an infinite source) and 
the pattern produced by an infinite source 
with an amplitude distribution which is zero 
over the region corresponding to the actual finite 
source but elsewhere has the ideal pattern. 

3. End -Fire Theorem 
There is a very general theorem concerning 

the increase of gain which can be obtained in a 
long end -fire array by making the relative phases 
of the currents in the elements differ from the 
values which would give simple addition of 
fields in the end -on direction. This was pointed 
out by Hansen and Woodyard6 and a pictorial 
interpretation has been given by F. K. Goward.7 
The latter points out that with the modified 
phasing the direction in which the fields from 
all currents are additive is in an imaginary part 
of space, corresponding to sin O > I ; and a 
narrow main lobe is, therefore, obtained because 
the part of the main lobe radiated into real 
space corresponds to the steeply -falling side of 
the polar distribution and not to the comparative- 
ly flat top. (This has been slightly differently 
expressed by Ratcliffe12 who pointed out that 
the vectors representing the fields from the 
several elements are initially at cumulative 
angles to each other, not in a straight line, so 
that increase of all these angles as one moves. 
off the beam therefore causes a rapid decrease 
in the magnitude of the resultant.) An end -fire 
theorem has been stated by G. E. Mueller and 
W. A. Tyrrell8 in the form that the gain of a. 
uniformly excited end -fire aerial is 

g = 4 A p 

where g is power gain (times), p is the length in 
wavelengths of the end -fire system, and A is a 
factor which for optimum phasing varies between 
2 for p = 2 and 1.8 for p = co. The optimum 
phasing condition is that there should be a 
phase difference between the first and last 
elements which is rr plus 21r times the number of 
wavelengths between them. (This corresponds. 
to the velocity of propagation along the feed 
to the elements being effectively less than the 
free -space value.) The difference of phase of 
feed proportional to length in wavelengths would 
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be the necessary condition for all parts to radiate 
effectively in phase as seen from a distant point 
in the end -fire direction, so that the effective 
phase variation over the length of the radiator 
is simply the additional amount of Tr radians. 

The above theorem is for uniform current 
density along the array, but it has been pointed 
out both by Goward for arrays' and by Mueller 
and Tyrrell for polyrods8 that reduction of 
side -lobes results from a tapered distribution of 
current along the aerial system. 

The rhombic aerial is not obviously an end - 
fire array, because its breadth is comparable with 
its length. It is, however, a varying -phase 
system because the increased path length along 
the inclined sides of the rhombic gives a greater 
phase delay between the two ends of the rhombic 
than corresponds to propagation directly along 
the diagonal ; and taking the formulae given, 
for example, by Bruce, Beck and Lowry8 the 
relation between side length and side angle for 
maximum radiation in the forward direction is 

sin 4.= i - A/(2 l) 
where l is the length of each side of the rhombic 
and ç is the ' angle of tilt ' or half the obtuse 
angle included between adjacent sides. Now 
the length along the line of shoot which cor- 
responds to one side is l sin = l {i - A/ (2 l)}. 
The effective phase retardation for the one 
side is the difference between the actual side 
length l and the length along the line of shoot, 

1-1(1-A/2l)=1(A/2 1)=A/2. 
Corresponding to this path difference of A/2 
there will be a phase retardation of Tr so that 
each side of the rhombic conforms to the end - 
fire phasing condition. 

The additional gain of twice power, or alter- 
natively a halving of length for the same gain, 
by non -uniform phasing of the aperture can also 
be predicted from the Fourier transforms. In 
the figure (which is reproduced from Part V of 
Reference 4) the abscissae Trau in the 1st and 
3rd columns correspond to angle for a given 
aerial aperture in wavelengths, and the ordinates 
G(u)/a represent intensity of radiated energy. 
In the centre column the abscissae are distances 
along the aerial aperture, measured from the 
centre, and the ordinates indicate the magnitude 
of aerial current at a given point in the aperture 
(and the phase Fig. 1.4.). Thus columns i and 
3 are ideal and real -approximation radiation 
patterns, and column 2 shows the aerial current 
distributions which give rise to the patterns of 
column 3. In rows 2 and 3, we see that either 
the even pattern or the odd pattern from an 
aerial aperture of dimension + a/2 spreads 
over an angle from Trau = -67r to Irau = +67r. 

308 

But on combining the even and odd components, 
as indicated in the first row, an aerial aperture 
of the same dimension ± a/2 produces an asym- 
metrical pattern which occupies only half the 
angular spread, from Trau = o to ?Tau = 
Examination of Fig. i.4. shows that this is 
achieved by a current distribution of which the 
phase (referred to the current at the centre 
point of the aerial as datum) varies from -9o° 
at one end of the aperture to +90° at the other 
end. But this is an end -to -end variation of Tr, 

which is the condition found in the end -fire 
theorem for doubling the gain (or halving the 
beam width) for a given aperture. 

The use of the Fourier transform should 
facilitate the adjustment of phase and amplitude 
distribution in end -fire aerials so as to minimize 
side -lobes. A further point is that the condition 
for the doubling of gain is that the directivity 
pattern must be asymmetric (i.e., the aerial 
must not be a broadside radiator), but there 
seems no necessity for it to be end -fire. With 
dipole arrays there is, however, an advantage 
in the end -fire type, since a broadside or quasi - 
broadside wire aerial requires the addition of a 
reflector to suppress the backward radiation 
which would otherwise be equal to the forward 
radiation. 
4. Maximum Gain for Uniform -Phase Aerials 

If the mean -square aerial current is fixed 
(mean taken over the aperture) the maximum 
field in the broadside direction will be given by 
a distribution which is uniform in phase and 
amplitude. (Uniform phase is necessary in order 
that the contributions from all elements of the 
aperture may have additive effect in the broad- 
side direction. Uniform amplitude is postulated 
because departure from uniformity will decrease 
the mean relative to the mean -square, and the 
field -strength in the broadside direction is pro- 
portional to the mean current distribution 
while the mean -square was taken as constant). 
But it may be that some other current distribu- 
tion, which gives less maximum field, may give 
greater aerial gain because the total power for a 
given mean -square current amplitude in this 
distribution is decreased relative to that for uni- 
form distribution to a greater extent than is the 
maximum field. This condition is indicated in a 
wire -aerial system by a decrease in the radiation 
resistance. But in terms of directional pattern, 
this must mean that if the new amplitude distri- 
bution produces a main lobe which is approxi- 
mately as wide as that of a uniform distribution 
(as it will with uniform phase), the higher gain 
can only be obtained by transferring energy 
from the side -lobes to the main beam. 
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Since the uniform aperture distribution gives a 
directional pattern in which only a few per cent. 
of the total energy goes into the side lobes, no 
great improvement in gain is to be expected from 
special distributions of current amplitude. In- 
spection of the patterns produced by simple 
current distributions (as illustrated in Reference 4, 
for example) shows that there is little variation 
in the ratio of maximum field to r.m.s. current 
in the aerial aperture, but the possibility of a fairly 
considerable transfer of energy between the skirts 
of the main beam and the minor lobes. By virtue 
of the superposition of Fourier transforms, any 
arbitrary current distribution is capable of 
approximation by the sum of a number of simple 
components, and it is therefore improbable that a 
special distribution of amplitude could give a 
radical improvement. 

5. Additional Gain from Phase -Reversing 
Distribution 

An apparent contradiction of the general 
theory has been demonstrated by Bouwkamp and 
de Bruijn2 who state that for a given field -strength 
in the equatorial plane of a straight -wire radiator, 
the lower limit to the total power which need be 
radiated is zero. This implies that for a finite 
radiated power the upper limit to the directional 
gain of the aerial is infinity. As an example, 
they take the radiation pattern in the form 
sin c2n+2'B and find a method of approximate 
calculation of the aerial current distribution which 
corresponds to this pattern. The calculated 
gains for this particular type of pattern and 
various values of n are shown in their Fig. 3, 
and quantitatively the following points may be. 
noted :- 

(i) 

(ü) 

The paper is concerned with an aerial 
consisting of a single wire of variable length. 
The length considered is up to two wave- 
lengths (half-length equivalent to 271 

radians). 
(iii) The gain of the special distribution, referred 

to a Hertzian doublet, is independent of 
aerial length. 

(iv) This corresponds to the fact that the 
current distribution is in the nature of a 

damped oscillation ' having a large ampli- 
tude at the centre of the aerial but a damp- 
ing coefficient such that the amplitude is 
very small by the time the end of the aerial 
is reached. The periodicity along the aerial 
is such that the phase of the current re- 
verses in a distance much less than half a 
wavelength. 

(v) Even with n as high order as 25, the gain 
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(vi) 

over a Hertzian doublet is only about 2.3 
times power. 
The trend of the curves shows that for large 
values of aerial length a uniform current 
distribution will give higher gain than the 
oscillatory type of distribution ; at an aerial 
half-length of 271, constant -current distri- 
bution is already as good as about the eighth - 
order pattern. (i.e., the distribution giving a 
radiation pattern sing B). 

The principle involved is that the field -strength 
in the optimum direction is the relatively small 
difference between two large components in 
opposite phase, so that a small phase -shift due to a 
small departure from the optimum angle results 
in a change in the relative values of the two 
components which is sufficient to annul the re- 
sultant. This is comparable with Ratcliffe's12 
treatment of the Yagi aerial array. The current 
distribution as a whole is simultaneously made 
such as to avoid the production of side -lobes. 
It follows that the maximum currents in the aerial 
must be much larger than in a non -reversing 
current distribution, which is interpreted as 
implying a very low radiation resistance and 
consequent high copper loss. The principle 
requires a reversal of phase in a distance much 
less than half a wavelength, and therefore is in- 
applicable to ' optical ' radiators of the usual 
type. It is just conceivable that a similar result 
could be obtained from an array of open-ended 
waveguides with suitable phase differences be- 
tween them. In any case, however, the method 
does not appear worth while for apertures greater 
than a wavelength in extent, because the gain 
from a Bouwkamp-de Bruijn distribution is 
independent of aerial length while that from a 
non -reversing distribution increases with length. 

For a A/8 aerial, the distribution suggested by 
La Paz and Miller 10 also involves a phase reversal. 
Their distributions, both for a/8 and for longer 
aerials up to a wavelength, suffer the disadvantage 
of having large current amplitudes at the ends 
of the aerial, with a consequent emphasis of minor 
lobes. But the distributions are of simpler appear- 
ance, and therefore probably easier to realise, 
than those of Bouwkamp and de Bruijn. 

6. Radiation Resistance and Directivity in 
Arrays 

In Section 5 it was remarked that the additional 
gain from an oscillating -phase current distribu- 
tion in a short aerial would be reflected in a 
reduction of radiation resistance, and this principle 
can be deduced quite generally, as follows. 

An array of two non -interacting driven ele- 
ments gives a two -fold gain in power. If now the 
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two elements are steadily brought closer together, 
the limit will be reached when they coalesce, 
becoming one aerial and giving unity gain. At 
the same time, the radiation resistance of the 
single resulting aerial will be twice that of the 
original combination of two non -interacting aerials 
fed in parallel ; and so if the double current 
continues to flow in the one aerial, the field - 
strength in the favoured direction will be the 
same as when the aerials were separated ; but 
the power input will be doubled and so the gain 
is reduced to unity. The gain of two equal 
radiators over a single element is thus restored to 
unity when the two coalesce. 

If at some intermediate position, the resistance 
Ro of an aerial element in free space is reduced 
to Rolm for each of two interacting elements, the 
combined input power for the doubled field will 
be reduced from 2 i2 Ro to 2 i2 Rolm and the power 
gain in the direction of additive fields will be 
4 divided by 2/m, which is 2m. It is important 
to note, however, that this gain will only be 
obtained in a direction in which the fields are 
additive ; and with close spacing and differently 
phased currents in the two aerials, there may not 
be any such direction. An example of the way 
in which this works out for a 2 -element array is 
given in Appendix I. 

In general, if m is the ratio of the free -space 
value of radiation resistance (of each member of 
an n -fold array of similar elements) to the average 
radiation resistance of the elements when assem- 
bled in a uniformly -driven array, the maximum 
gain is m X n. In uniform -phase broadside arrays, 
m is usually fairly close to unity. It has been 
calculated" that an array of N parallel A/2 
dipoles spaced at .1/2 intervals has a gain of 
4N/3 times, and that an array of N collinear 
dipoles has a gain of 2N/3 times. Consequently 
' square ' broadside arrays of N dipoles total, 
such as those variously described as Koomans 
and Tannenbaum (fir -tree), have a power gain 
very close to N times. 

7. Limits on the Applicability of the 
Concept of Directional Gain 

It has been pointed out13 that the normal 
concept of ' aerial gain ' depends on the cross- 
section of the beam, at the measuring station, 
being considerably greater than the aperture of 
the transmitting aerial. The suggested criterion 
of sufficient distance r is 0.52 r A/d2>i where d is 
the aperture diameter. An alternative point 
of view14 is that at a distance comparable with 
the aperture dimension, the contributions from 
the different parts of the aperture will not be in 
phase ; and the minimum distance is suggested 

as rA<d2. For a phase difference of d/16 the 
condition15 is o.5rA/d2 = 1. (It has also been noted 
in the practice of aerial measurements".1s 
that the range at which directional patterns are 
observed should satisfy the condition r> d2/2À.) 
This may prove of practical importance in corn- 
munication with millimetre waves14 but is not 
usually a serious restriction in communication 
with centimetre waves13 
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APPENDIX I 
Gain and Radiation Resistance for 2 Parallel A/2 Dipoles. 

Mutual impedances between two parallel aerials have 
been computed by G. H. Brown (" Directional Antennas," 
Proc. Inst. Radio Engrs, Jan. 1937, Vol. 25, p. 78), and 
reference to his Figs. 11 and 12 shows that with two 
aerials spaced A/8 apart and fed in opposite phase, the 
input resistance of each is reduced to a small fraction 
of its free -space value. This does not mean that the 
gain is high in the same ratio, because the spacing is so 
small that there is no direction in which the fields from 
the two anti -phased currents are additive. Conversely, 
if the two aerials spaced A/8 are fed in the same phase, 
Brown's graphs show that the input resistance of each is 
nearly double the free -space value ; and this means that 
at A/8 apart the aerials are practically ' coalesced ' in the 
sense indicated in Section 6, as is confirmed by the 
directional gain of this system being practically unity 
(Brown's Fig. 15, pattern 4, d/A = 0.125 and a = o°). 
For the existence of a direction in which the fields are 
directly additive with a 2 -element array, the sum of the 
spacing (in wavelengths) and the phase -difference in 
fractions of a cycle must be either zero (for a broadside 
array) or a whole number. This means that the com- 
bined effect, expressed as a path difference, is either 
zero or a whole number of wavelengths. But the spacing 
required for additive fields is not the condition for 
maximum gain, since closer spacing gives more than 
sufficient reduction in input resistance to counter- 
balance the cosine factor in the resultant of two fields - 
having a phase -difference. Thus with a = 1800 (end - 
fire) examination of Brown's Fig. 15 shows that there is 
a power gain of about 2.3 times (field gain of 1.6 times), 
at d/A = 0.125, compared with about 1.7 times at- 

=- 0.5. At a = 1800 and d/A = 0.125, the factor m 
for reduction of input resistance is about 7.5 so that this, 
would show a gain of 15 times ; but the phase difference 
will reduce the power gain by a factor of cos2(7r/8)xo.146,. 
giving a resultant gain of 2.2. The difference between, 
this and the value of 2.3 read off from Brown's Fig. 15 
is within the limits of error in scaling Brown's graphs 
and figure. In his Fig. 16 Brown shows that the 
maximum possible gain from 2 driven A/2 aerials is 
about 1.85 times field -strength, which is a power gain 
of 3.4 times or just over 5 db. From the general theory 
set out in the present paper (and intended primarily 
for large arrays) one would predict a maximum possible 
gain of 4 times, or 6 db, for this case,, as follows.. The 
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broadside gain of two equal radiators in the same phase 
is twice ; and the end -fire theorem gives an additional 
gain of twice, making four times in all (6 db). As might 
be expected, the gain physically realizable from two 
elements, the smallest possible array, is slightly less (by 
about I db) than the maximum predicted by the applica- 
tion of the general theory of large -aperture arrays. 

APPENDIX II 
Some Relevant Analogies 

(i) Optical Resolution. 
The directivity of an aerial is comparable with the 

resolving power of an optical instrument, and the latter 
is known to be rigorously governed by the aperture 
measured in wavelengths. The uniform -phase aerials 
(cm -wave mirrors or horns and broadside arrays of wire 
aerials) correspond very closely to the optical case, but 
both end -fire arrays and the phase -reversing distribu- 
tions discussed in Section 5 appear to transgress this 
well -established optical law. The explanation is that 
in optics we have no reasonable means of introducing a 
change of phase of the wave -front between adjacent 
points of an aperture. The additional gain from both 
end -fire and phase -reversing aerials is due to this control 
of local phase, which is possible in some radio aerials 
but impossible in optics. 
(ii) Pulse Duration and Bandwidth. 

The mathematics of the Fourier transform is equally 
applicable (a) to the relation between aerial current 
distribution and angular field distribution and (b) to 
the relation between the frequency spectrum representing 
a pulse and the duration of the pulse. A ` better than 
normal ' directivity for an aerial might, therefore, be 
expected to have a mathematical function which could 
equally be applied to producing a pulse with duration 
substantially less than the reciprocal of the corresponding 
frequency bandwidth. 

One notable point is ?that the directivity function 
repeats itself when the angle increases by 2w. Conse- 
quently, the pulse analogue is a train of regularly repeated 
pulses, and not a single isolated pulse. It still appears 
theoretically possible for a limited spectral distribution 
of energy, having the same form as Bouwkamp and 
de Bruijn's spatial distribution of aerial current, to 
produce a train of repeated pulses in which each pulse 
has any desired degree of narrowness. 
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CORRESPONDENCE 
Letters to the Editor on technical subjects are always welcome. In publishing such communications 
the Editors do not necessarily endorse any technical or general statements which they may contain. 

Negative Feedback Amplifiers 

SIR, -Replying in your July issue to my letter pub- 
lished in May on his article in your February issue, 
C. F. Brockelsby agrees with my principal point that the 
amount of feedback obtainable over a given band by the 
maximally -flat method of design is lower than that 
obtainable by Bode's method, and goes on to compare 
the two methods. 

He then invites me to give a page reference to the 
analysis of the three -stage amplifier which I attribute to 
Bode. May I give a very brief account of this analysis, 
as it shows the advantages and drawbacks of any method 
of feedback -amplifier design, and the reasons why all 
amplifiers providing substantial feedback over wide 
bands must be designed and tested up to very -high 
frequencies. 

Bode develops a law connecting the phase and attenua- 
tion characteristics of any minimum phase -shift network 
[ch.XIV], and applies it to the general case of a feedback 
amplifier of any number of stages [ch.XVIII]. [The 
three -stage amplifier is just one example of the general 
case. I am sorry if my previous letter was not clear on 
this point]. At very -high frequencies the load on each 
stage of an amplifier consists of the parasitic capacitances 

into which it feeds, and there will be a phase shift of 
- radians between the input and output of each stage. 
2 

Consequently the phase of the returned signal will not 
differ from that of the input by w radians as it does in the 

centre of the pass band, but by (ir - ) radians for n 
`` 

stages. If n>2 this will have changed sign and at some 
frequency between the pass band and the final asymptote 
the feedback will be positive. If the amplifier is not to 
oscillate, the loop gain at this frequency must be less 
than unity. The problem is to obtain the greatest possible 
difference of gain between this point and the edge of the 
pass band. Bode shows that this is done when the slope 
of the gain characteristic joining the edge of the pass 
band to the final asymptote is a uniform 12 db/octave, 
with slight modifications at each end. If the slope is 
made steeper, the phase shift will exceed ir radians and 
the amplifier will oscillate. If it is made less steep, the 
amplifier will always be stable, but there will be less 
feedback available. 

The gain/frequency characteristic of a three - stage 
amplifier with two narrow and one wide stage approxi- 
mates to this theoretical optimum, and requires only 
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slight modifications to provide adequate phase margins 
against oscillation, and to provide the changes of cut- 
off slope just outside the pass band and just before the 
asymptote is reached which are required if the maxi- 
mum possible feedback is to be obtained. Of course 
there are other ways of getting the same gain/frequency 
characteristic, but this is usually the simplest, and a 
feedback amplifier with any other shape of loop charac- 
teristic must necessarily have less feedback over the 
same band. 

When the loop characteristic of the maximally -flat 
design is compared with this maximum -feedback charac- 
teristic, the merits and disadvantages of the design are 
clear. Its simplicity, and the large phase margin due to 
the low rate of cut off (6 db/octave) over the greater 
part of its range are in its favour. Against these it 
provides less feedback, and when maximum available 
feedback is not required, for a given amount of feed- 
back the design must be controlled up to a higher fre- 
quency. Mr. Brockelsby mentions this last point as a 
disadvantage of Bode's design, and assumes that the 
maximally -flat circuit will behave like three simple RC 
stages up to any frequency; but it is the failure of 
circuits to behave so predictably at the frequencies at 
which stray inductances and capacitances become im- 
portant that makes it necessary to test all feedback 
amplifiers up to these frequencies. The maximally -flat 
circuit is no exception. 

In conclusion may I say that in criticizing some of the 
detailed claims made for the design I am not questioning 
the value or the novelty of the combination of feedback 
with a flat external -gain characteristic. 

T. S. McLEOD. 
Standard Telecommunications Laboratories, Ltd., 

Enfield. 

Transit -Time Effects in U.H.F. Valves 
SIR,-I wish to comment on Professor John Thomson's 

paper in the June 1949 issue of Wireless Engineer. 
Bakker and de Vries' in 1935 correctly derived the 

r.f. conductance of a retarding -field diode for the case 
of a single velocity of emission. Furthermore they 
were able to deduce the whole admittance (i.e., including 
susceptance) by using the induced -current method of 
analysis instead of the kinetic -energy method which 
gives only the conductance. 

Since the transit angle of a returning electron is 
closely proportional to its emission velocity, the single - 
velocity theory is not accurate. The recent analyses 
by N. Begovich2 and J. J. Freeman3 which take account 
of the Maxwellian velocity distribution are therefore a 
marked improvement. Freeman's analysis also gives 
the fluctuation noise in a non -conducting diode and 
shows that the equivalent temperature of the diode is 
equal to its cathode temperature, in agreement with the 
experimental observations of van der Ziel and Versnel.4 

R. E. BURGESS. 
National Physical Laboratory, Teddington, Middx. 
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SIR,-Mr. Burgess's letter states that the conductance 
of a retarding - field diode has been correctly derived. 
I fear that no one of the writers on the subject would 
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claim that the conductance as derived is correct for 
anything save a simple idealization. It was, indeed, one 
of the objects of my recent article to suggest that much 
remained to be done, particularly with reference to the 
effect of space charge. 

To take a simple example, Mr. Burgess states that the 
transit angle of a returning electron is closely proportional 
to its emission velocity. That this is true where the field 
is constant is obvious ; that it is true for small negative 
potentials on the anode (such as are found in many 
practical cases) is equally obviously false. Curiously 
enough, taking account of the distribution of velocities, 
as Begovich has succeeded in doing, makes no difference 
to the fundamental properties of the conductance, as 
may be seen by a study of Fig. 4 of Begovich's most 
recent paper'. Moreover, since the distribution is 
random in time, one would not expect it to do so. 

I should like therefore, to re-emphasize that in the 
important region where the constant retarding or 
accelerating potential difference is small (but still large 
compared with the high -frequency potential difference) 
the present state of theory cannot be regarded as 
satisfactory. 

Greenwich. J. THOMSON. 
' J. appi. Phys, Vol. 20, p. 457, 1919. 

BOOK REVIEW 
Microwaves and Radar Electronics 

By ERNEST C. POLLARD and J ULIAN M. STURTEVANT. 
Pp. 426 + vii. Chapman & Hall, 37, Essex St., London, 
W.C.2. Price 3os. 

This book is of American origin and covers most of 
the important matters pertaining to radar in descriptive 
form. No attempt is made to go at all deeply into the 
theory and practice of radar and, indeed, this would be 
impossible in any single volume. The book is, however, 
more than an elementary survey of radar and is not for 
those without a considerable backing of ordinary radio 
knowledge. 

The first four chapters deal with electromagnetic 
fields, coaxial lines, waveguides, cavities, the production 
of microwaves and microwave technique. Pulse circuits, 
c.r. tube indicators, amplifiers and noise are covered 
and there are chapters on servomechanisms and com- 
putors, miscellaneous circuits and the accessories of 
radar. Under this last propagation is rather sur- 
prisingly included. The last chapter deals with micro- 
waves in physical research and there are three appendices 
dealing with the Fourier integral, curl and Stokes' theorem 
and units. 

The book is intended primarily for those who have a 
good knowledge of ordinary radio technique as used in 
communications but know little about radar and is 
meant to give them a background for further study. 

W. T. C. 

OVERSEAS STANDARDS 
It is not always realized that the British Standards 

Institution acts as the United Kingdom agent for over- 
seas national standards organizations. Enquiries about 
such standards should, therefore, be addressed to the 
British Standards Institution, 24-28, Victoria St., 
London, S.W.1. They should not be sent directly to 
overseas organizations, for these organizations will only 
refer them to B.S.I. 
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WIRELESS PATENTS 
A Summary of Recently Accepted Specifications 

The following abstracts are prepared, with the permission of the Controller of H.M. Stationery Office, from 
Specifications obtainable at the Patent Office, 25, Southampton Buildings, London, W.C.2, price 2/- each. 

ACOUSTICS AND AUDIO -FREQUENCY CIRCUITS 
AND APPARATUS 

613141. -Variable -gain amplifier, of the compressor 
type, giving a constant signal/noise ratio for speech 
transmitted, say from an aeroplane, against a fluctuating 
background of noise. 

Bendix Aviation Corporation. Convention date (U.S.A.) 
12th March, 1945. 

613 530. -Automatic gain -control system, particularly 
for audio -frequency amplifiers, in which a limiter valve 
co-operates with a resistance -capacitance network of pre- 
determined time constant. 

R. V. Howard. Convention date (U.S.A.) 19th July, 
'944. 

DIRECTIONAL AND NAVIGATIONAL SYSTEMS 

612 250. -Triggering and time -delay circuit for generating 
pulsed trains of predetermined duration, particularly 
for use in radiolocation. 

Hazeltine Corporation (assignees of J. J. Okrent). 
Convention date (U.S.A.) 6th June, 1945. 

612 627. -Quick -acting automatic gain -control system. 
particularly suitable for coded pulse -modulated signals, 
as used in radiolocation. 

Hazeltine Corporation (assignees of H. A. Wheeler). 
Convention date (U.S.A.) Ist June, 1945. 

613 oi7.-Radiolocation system in which the significant 
time interval is recorded on a cathode-ray tube at one 
station, where it is scanned and re -transmitted to a 
distant station. 

Marconi's W.T. Co. Ltd. (assignees of A. V. Bedford). 
Convention date (U.S.A.) 19th June, 1942. 

613143.-Radiolocation equipment, particularly for 
use as an altimeter, wherein a balanced pair of slot 
aerials are differentially coupled to two rectifiers to 
produce the significant beat -frequency. 

Standard Telephones and Cables Ltd. and E. O. 

Willoughby. Application date 15th March, 1946. 

613 454. -Automatic gain -control system, particularly 
adapted to off -set undesirable phase -shift effects pro- 
duced in radiolocation equipment using rotating aerials. 

Sperry Gyroscope Co. Inc. Convention date (U.S.A.) 
6th March, 1945. 

613 741. -High - speed aerial - switching system, par- 
ticularly for use in radiolocation, in which the impedance 
of a transmission -line element is varied from zero to 
infinity. 

Sadir-Carpentier (assignees of P. F. Ill. Gloess). 
Convention date (France) 31st October, 1941. 

613 862. -Scanning system, of the radiolocation type, 
for reproducing by means of a stylus, on a recording - 
paper, scenes obscured by fog or darkness. 

Marconi's W.T. Co. Ltd. (assignees of H. A. lams). 
Convention date (U.S.A.) 21st February, 1945. 

613 964.-Radiolocation system in which a land beacon, 
radiating a pulsed beam to associated repeating stations, 
furnishes an indication of obstacles to the pilot of an 
aircraft. 

Standard Telephones and Cables Ltd. (assignees of 
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H. G. Baisignies). Convention date (U.S.A.) 5th March, 
1945. 

RECEIVING CIRCUITS AND APPARATUS 
(See also under Television) 

612 o24. -Receiver which, in the absence of an incoming 
signal, is automatically muted, through a circuit having 
a time constant designed to cope with the effects of 
fading. 

The General Electric Co. Ltd. and L. C. Stenning. 
Application date 15th May, 1946. 

612 448. -Receiver for frequency -modulated signals, 
wherein the carrier is converted into a secondary wave 
possessing a degree of asymmetry that is proportional 
to the impressed signal. 

Marconi's W.T. Co. Ltd. (assigness of W. L. Carlson). 
Convention date (U.S.A.), 22nd May, 1945. 

612 472.-Interstage coupling for a short-wave amplifier, 
in which the two parts of a tapped inductance coil are 
correlated with the electrode capacitances of the coupled 
valves. 

The British Thomson Houston Co. Ltd. Convention 
date (U.S.A.) 26th May, 1945. 

612 536. -Gain -control voltage, derived from the fre- 
quency -discriminator of a receiver for frequency - 
modulated signals, and applied to facilitate tuning. 

Radio Corporation of America (assignees of W. La V. 
Carlson). Convention date (U.S.A.) 26th April, 1945- 

612 585. -Receiver for frequency -modulated signals, 
wherein a lock -in oscillator is associated with a tank 
circuit which is coupled to a resonant network in order to 
extend the normal range of lock -in frequencies. 

Marconi's W.T. Co. Ltd. (assignees of M. S. Corrington). 
Convention date (U.S.A.), 29th May, 1945. 

612 651. -Device for minimizing the self-inductance of 
the cathode -supply leads in a valve for amplifying 
ultra -short waves. 

Philips Lamps Ltd. Convention date (Netherlands) 14th 
September, 1939. 

612 842. -Transmission line of two parallel band - 
shaped conductors, for coupling a receiver to a remotely - 
situated single -turn frame aerial. 

Philips Lamps Ltd. Convention date (Netherlands) 
12th February, 1942. 

TELEVISION CIRCUITS AND APPARATUS 
FOR TRANSMISSION AND RECEPTION 

612 438. -Television cabinet in which the viewing -screen 
and associated reflector are automatically brought into 
co-operative position by the opening of a hinged door. 

Marconi's W.T. Co. Ltd. (assignees of H. McD. Rundle). 
Convention date (U.S.A.) 22nd March, 1945. 

612 533. -Television system in which audio -frequency 
signals are transmitted by frequency -modulating a sub - 
carrier wave that is generated only during the fly -back 
periods of the video signals. 

Marconi's W.T. Co. Ltd. (assignees of K. Schlesinger). 
Convention date (U.S.A.) loth April, 1945. 
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