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Ultra -Linear Amplifiers 

IN recent years, and particularly in the U.S.A., 
the so-called ultra -linear amplifier has become 
popular among quality enthusiasts. A 

great deal has been written about it and a good 
many performance figures have been p iblished 
which do seem to show some reduction of non - 
linearity distortion as compared with similar 
triode, tetrode or pentode amplifiers'. No 
serious attempt at explaining why this result 
should occur seems to have been made, however. 

The arrangement is shown in Fig. I applied 
to a single output valve (a pair in push-pull is 
usually adopted) and it can be seen that it differs 
from a normal output stage only in that the 
screen grid is connected to a tapping on the 
output transformer primary. If this tapping 
were at the h.t. end of the winding, the screen - 
grid would he joined to h.t. and the stage would 

Fig. I 

\\''"Amplifiers 
and Superlatives" bv I). T. N. Williamson and 1'. I. 

,Iker, lire/cm It.or!d, Septenibrr 1952, p. 357. 

Fig. 2 
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be an ordinary tetrode or pentode one. If it were 
at the anode end of the winding, the screen -grid 
would he joined to the anlxle, and the stage would 
be a normal triode one. 

What happens is that a portion of the alternating 
oltage developed on the anode is fed back to the 

screen grid and the amount of feedback depends 
on the position of the tapping on the winding. 
By varying the amount of feedback, a gradual 
transition between the limiting triode and tetrode 
conditions is obtainable. Now a triode is generally 
thought to be inure linear than a pentode and it is 

sometimes said that this can he accounted for 
by the linearizing action of feedback. A triode 
can be regarded as merely a tetrode with Ill('°;, 
feedback to the screen -grid. 

If this were all, the ultra -linear stage would 
represent an intermediate condition between the 
triode and the tetrode and one would expect it 
to be less linear than the triode and more linear 
than the tetrode. On this basis, there is nothing 
to account for its being more linear than either. 

The flaw in this argument is the supposition 
that the ordinary ideas about negative feedback 
hold good when they are applied to this special 
case of feedback to an electrode other than the 
input electrode. The normal ideas have been 
developed on the basis of the feedback and the 
input being applied to a common electrode so 
that the feedback voltage and the input voltage 
are additive. It is well known that feedback 
then alwa s tends to impro\ e the linearity. 
When separate electrodes are used, however, it 
can be shown that feedback will introduce 
curvature into an otherwise straight charac- 
teristic. 

I99 



A modified form of the ultra -linear amplifier 
is shown in Fig. 2; in this, a fraction p of the 
anode voltage is applied through the CM coupling 
to the suppressor grid. It is well known that in a 
pentode the cathode current is 

=a1+h11 i 

within the limits of a linear approximation. It is 
also well known that it is independent of 1'.1 

which serves only to control the division of current 

= [al + (hl - aiB)V1 (1 - 
+ {132b,3(I - a1B) - 

between screen -grid and anode, so that 
=1k(03+h31'3) 

Therefore, we can write 
sa = (al + h1V 1)(a3 + b31 3) . . . . (I) 

In Fig. 2, the anode voltage is -iR, where 
R is the anode load, and so l'.; = - pi/2, and 
(I) becomes 

a3(ai + h11 1) = 
1 + ,h3Rii (ai rt hiVI) 
J [at + bi (I - a1B) V1 -- ó12B (1 - a,B 

where 1 = a3/(l + a1h3 /31?) 

and B = h3 fRI (I -I- a ib:i IRlii) 
Feedback to the suppressor grid thus introduces 

curvature into an otherwise linear characteristic. 
If the input V1 is a sine wave, the anode current 
will contain all harmonics of it. 

Feedback to the screen -grid of a valve is, of 
course, not quite the same thing as feedback to 
the suppressor grid. However, as is well known, 
the mutual conductance does depend upon the 
screen voltage and so the equation for this 
condition must be rather like (1); there must be a 
term involving the product of the control- and 
screen -grid voltages. If this product term is 
present, then the equation for screen -grid feedback 
will be of the same general form as (2). 

It would thus appear that feedback to an 
electrode other than the input electrode is a bad 
thing. However, we have only so far shown that 
it makes an otherwise linear stage non-linear. 
There is the possibility that the kind of non - 
linearity which it introduces is inverse to that 
which occurs naturally in valves. If this 
possibility is a reality, then a critical degree of 
feedback to screen or suppressor grid would 
improve the linearity of a stage. 

Let us suppose that the input grid has a non - 
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linear action, but the feedback grid is still linear, 
so that the equation for anode current is 

= (ai + b16 i +cí1'12+d1I 11)(a3+631'3) 
and, as before, V.1 = - Then 

a3(at + b1L 1 + c1 I/13 + di 13) 

I + ph,/?1 (a, + h1I + c1 
2 + diL 1'1) 

, 
al + h11 1 + e111.2 + d11'13 
1 + B(h11'1 + c11'í2 + d11 13) 

where ri and B have the same values as before. 
This equation can he expanded to the form 

all Oi2B c1) V12 

Bbtc1(1 -2a1B)-B(aidl+blc1)+d1}I'13. .j 
retaining terms only up to the cube. 

It is at once evident that it may be possible to 
choose /3 so that the coefficient of V13 is zero. 
It is not worth while to attempt to work out the 
condition for this. The equation would he com- 
plex and of little practical utility because we 
have assumed a linear control of anode current 
by the feedback grid and this is unlikely to he 
present in practice. 

Vit-rb13B2(1 - a1B) V13 
1 .. (2) 

\Vith feedback to a grid other than the signal 
grid, however, the possibility exists of being able 
so to adjust the amount of feedback that a 
particular harmonic can be eliminated from the 
output. In the ultra -linear amplifier, two valves 
are used in push-pull so that all even harmonics 
are, ideally, eliminated. 

The third harmonic, which is normally the 
most important remaining one, can, again ideally, 
be eliminated by a critical adjustment of feedback 
to the screen -grids. The distortion present 
should thus be confined to odd -order harmonics 
higher than the third. Superficially, therefore, 
the ultra -linear amplifier would appear to be an 
improvement on ordinary types. \Ve say super- 
ficially because we have not examined the 
amplitudes of the residual hai monies and the 
ability to eliminate a third iarmonic would confer 
no benefit if it meant that the higher harmonics 
became of comparable amplitude. 

There is no reason to suppose that this is the 
case, however, for the evidence of measurement 
does support the claims made for the ultra -linear 
amplifier. Our aim here has been merely to show 
the mechanism by which this improvement is 
achieved, for \ve have felt that it has remained 
too long unexplained. 

\V. T. C. 
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TUNABLE TEMPERATURE - 
COMPENSATED REFERENCE CAVITY 

With Separate Tuning- and Compensating Mechanisms 

By M. S. Wheeler 
SUMMARY. .\ geometry is proposed for a tunable temperature -compensated microwave 

cavity haying mechanically -separate actions in tuning and in compensation. The compensation is 
considered first at one frequency where it is shown that, in using practical materials, the compensated 
frequency change with temperature is non-linear. By the proper choice of such materials, however, 
the characteristics may he made linear, allowing for greater perfection in frequency compensation. 
Based on this linear characteristic, the requirements for compensation over a frequency range are derived. 
An equivalent circuit, which is justified by experimental results, is described giving information about 
this type of mechanism. 

Introduction 
FI XED-TU NED !re(Juencv reference cavities, 

having good frequency stability, have been 
made in production numbers since World 

War II. The principal example of this type of 
device is the IQ* series of 3 -cm valves, having a 
vacuum seal to make atmospheric effects upon 
frequency negligible and a bimetal temperature 
compensator to minimize thermal effects. As more 
and more fixed frequencies are required, it is 
reasonable to ask if similar precision could be 
attained in a tunable cavit\ . 

Of the many ways in which it would be possible 
to achieve this end, engineering compromise may 
lead one to separate the functions of tuning and 
temperature compensation, producing the tuning 
action in a low-sensitiv ity region of the cavity 
where relatively large motion is required per 
11Ic,s of temperature compensation. This con- 
dition gives the maximum precision of control in 
tuning but allows for a physically -small com- 
pensating mechanism from which only small 
motions are possible. One might also choose a 
nosed -in resonator giving small physical size, and 
freedom from unwanted modes as compared with 
straight cylindrical geometry. A vacuum envelope 
is, of course, required because of the importance of 
atmospheric changes upon frequency. 

The major design problem is temperature com- 
pensation across the tuning range. But in order to 
describe the theory of operation, let us first 
consider a fixed -tuned device, and later find the 
effects of changing the design frequency. 

1. Fixed -Tuned Cavity 
It has been shown' that if a cavity of resonant 

frequency f is made of arbitrary geometry of a 
material having a linear coefficient of expansion, 
a change in temperature dt produces a frequency 
change given by: 

' The I Q23 for example is a 9280- \lc,s transmission cavity with a 
loaded Q of 211110 and 5db of insertion loss. Frequency change is 
Eluded to x 0.3 \Ic,s for l3-2 temperature change. 

\IS accepted by the Editor, September 1954 
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df = -xf dt .. (I) 

In addition, the cavity may be temperature - 
compensated by having a frequency -sensitive 
surface that can be distorted, producing an 
opposing linear frequency change of R Mcis per 
milt of motion. This action may be produced by 
a bimetal of temperature coefficients 7.1 and x2 and 
of effective length 1, resulting in a total frequency 
change given by: 

df= -xfdt+Rl(y_-x1)dt .. (2) 

Equation (2) predicts a linear relation between 
temperature change and the resulting frequency 
change. By design, then, it would be possible to 
choose the bimetal length 1, for metals of given 
expansion coefficients, xl and x,, such that df 
would vanish in equation (2). For a fixed 
frequency device, the compensation would be 
perfectly accomplished and no frequency change 
would be observed. It is known, howet er, that 
metal expansion is not precisely linear. For the 
precision required in this case, it becomes neces- 
sary to describe more accurately the bimetal 
behaviour. This is understandable when it is 
noted that the separate terms in equation (2) 
amount to about 12 Mc s for copper devices used 
at 9,000 \Icls over 75°C temperature range, and 
yet we are to ask that the difference remain within 
a few tenths of a Mc/s of zero. 

With this is mind, the temperature coefficients 
may be expanded in a Taylor series about room 
temperature: 

x =xt,+P + 
(xi = xol + Pi di - 
72 = 102+P2Lit ' J 

. (3) 

where the 7.0 terms are the normal linear tem- 
perature coefficients at room temperature, and 
the /3 are second -order$ coefficients, which are 

t Mil is used in this case as one thousandth of an inch. 

Note that $ as defined in Equation (3) is twice as great as the 2nd - 

order coefficient used in some handbooks, such as " Handbook of 
Chemistry and physics". 35th edition, Chemical Rubber Publication 
Conpaud, p. 2835. 
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usually much smaller titan the «o. If equation 
(2) is written in differential form with the 
substitution of two terms of the expansion of 
equation (3) and the result integrated, one finds 
upon rewriting in the form of equation (2) : 

df=-IC«0+P 2-yit 

d! 
>1/. lh «02+2 - 7.1H -2 (4) 

In this equation, df and At are again the frequency 
and temperature change respectively, with respect 
to room temperature. It may be seen that the 
frequency shift is no longer linear with the tem- 
perature change but it is a quadratic through the 
origin as illustrated by curve 1 in Fig. 1. 

dt 

ROOM -TEMPERATURE 
FREQUENCY 

ROOM -TEMPERATURE 

Fig. 1. Frequency change with temperature: I, Geller(!! 
cavity honing both Is!- and 2nd -order error to coulpensu- 

tinn; 2, Cavity honing curled Isl-order colu/lensolio,,. 

Following the same procedure as before, the 
bimetal length may be chosen such that the 
linear terms in equation (4) vanish leaving a 
quadratic residual: 

d¡= - ji2 
2y+IR f3_--/31 )d, , 

where 

l = ,f«° A(«0,-«ut) 
This is symmetrical about room temperature, as 
shown by curve 2 in Fig. 1. Equation (5) may be 
written in a more -useful form : 

df=«o(P2- Pi) =P(«02-«01) fay 
(7) X02-«01 

2 

It can be seen that by the proper selection of 
temperature coefficients, the quadratic residual 
could also be made to vanish. Thus, 

70 702 - 7-01 

P2 - N1 
A useful terminology might be introduced to 
speak of the linearly -per fect compensation, 
defined by equation (6), as first -order temperature 
compensation and the quadratic correction, 
defined by equation (8), as the second -order 
temperature compensation. From the above, it 
can be seen that first -order compensation depends 

(5) 

(6) 

.. (8) 

upon cavity dimensions and materials, but that 
second -order compensation depends only upon 
the materials used. In practice, one will first 
choose a combination of metals satisfying 
equation (8) because there will be no bimetal 
length which will eliminate the second -order 
effect. The bimetal length will then be set by 
equation (6). In a group of production cavities 
having the normal accumulation of mechanical 
tolerances, the first -order frequency shift will not 
be precisely zero, sometimes being slightly 
positive and sometimes slightly negative. The 
frequency -temperature relation will then be, as a 
result, a family of approximately straight lines 
through the origin. 

One interesting result of equation (7), in which 
correct first -order compensation is assumed, is 
that the residual frequency change of a copper 
cavith compensated with, say copper and invar, 
is identical with the residual frequency change of 
an invar cavity, compensated with copper and 
invar. This shows that, except for the fact that 
first -order compensation is easier to control with 
a low -expansion cavity, there is no improvement 
in optimum performance over the higher -expansion 
cavity compensated with the same materials. 

Let us assume, now, that materials for a 
reference cavity have been properly chosen by 
equation (8) resulting in a negligible second -order 
frequency shift over the temperature range that 
is required of the design. \Ve may then return 
to the linear frequency -shift equation and inquire 
what errors are introduced when frequency is 
added as a variable. 

2. Tunable Cavity Requirements 
At any one frequency, the device might be 

compensated perfectly by equation (6) as in any 
fixed -tuned cavity. Considering this a design 
centre, then, one might inquire how compensation 
will change as the valve is tuned away from this 
point. As described in the introduction, the 
tuning and compensating mechanisms are being 
considered separately, so there will be no change 
in the effective length of the bimetal during 
tuning. The sensitivity of the cavity to the 
compensation action, 1?, however, is a com- 
plicated frequency function depending upon 
cavity dimensions. Using the subscript, 0, to 
indicate design centre, substitutions in equation 
(2) give 

4/ = -¡, At + ` f « dr . . (9) R 
where 

A0=I(7-Io««1) 

and I? is a frequency function. 

.. (10) 
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The ideal variation of R, then, to give good 
compensation at all frequencies would be 

R =f Ro .. (11) 

Considerable experimental work on a modified 
double -nosed cavity showed that it is possible to 
choose a cavity geometry that will approximate 
equation (11) over a 5% or 10% band. Such a 
design is shown in Figs. 2 and 3. The upper 
part of the reference cavity containing the 
compensating mechanism is similar to the 1Q 

series of fixed -frequency valves2; that is, the 
entire structure, except for the invar centre rod 
in the upper section, is made of copper and metals 
having expansion coefficients equal to copper. 
The invar rod is mounted rigidly at the top of the 
drawing and flexes the thin copper diaphragm 
forming the upper radio -frequency boundary of 
the resonator proper. Frequency compensation 
is thus achieved by relative motion of the cavity 
nose and side wall. The frequency sensitivity 
R of the cavity to this motion is relatively high, 
so that motion here is limited to the order of one 
thousandth of an inch for a 75°C temperature 
change. 

Fig. 2. Westinghouse experimental tunable refer- 
ence cavity WX-3339. 

To give mechanical tuning in a region of low - 
frequency sensitivity, the lower section is moved 
axially by a screw mechanism acting through a 
metal bellows. The frequency sensitivity to this 
motion is relatively low, so that motion here is 
of the order of a half an inch for a 10% tuning 
range. The rather specialized geometry of this 
tuner has been chosen, mostly by trial and error, 
in a manner to best approximate equation (11) 
over the design bandwidth. Considerable help 
may be had, however, in the choice of the tuner 
geometry by an equivalent circuit consideration 
which will be given briefly.. 

3. Tunable Cavity Equivalent Circuit 
The frequency variable I? is a microwave 

characteristic of the radio -frequency cavity. 

WIRELESS ENGINEER, AUGUST 1955 

It is the rate of change of resonant frequency with 
respect to small cavity distortion produced by the 
bimetal in compensation action. Because of the 
complex cavity geometry, it is impractical to 
find a field solution for R. An equivalent circuit 
can be deduced from the appearance of the 

COMPENSATING 
MOTION 

L' CY 1 1 C 
-- 
L 2 

/2 

TüNING^ 
MOTION 

Fig. 3. Cavity geo- 
metry with its equiv- 

alent circuit. 

geometry which gives numerical results close to 
those which are actually measured. As in any 
equivalent circuit, this is then the justification of 
its use. Fig. 3 shows that equivalence and 
defines the circuit constants including two 
shorted transmission lines of lengths II and l and 
characteristic impedances Z1 and Z2. 

An initial feeling for the equivalence of the 
above circuit and geometry may be had by noting 
that the upper cavity nose is a short piece of 
shorted coaxial line. With the lower tuner 
completely withdrawn, this has a resonant 
frequency of its own (A = -1lI). This is under- 
standable if it is explained that the circular 
waveguide section below the nose is cut off to 
all modes in the tuning range. The lower nose 
(call it a nose, if you please, from its electrical 
similarity with the upper nose) also has resonance 
of its own (A2 = 412) which is independent of the 
tuner position. This is similarly a shorted length 
of coaxial line having a lower characteristic 
impedance than the upper section and generally 
a slightly lower resonant wavelength. The large 
hole in the centre of the lower nose is below cut off 
for all modes and contributes only to C, the 
nose -to -nose capacitance. In compensation, the 
action of the bimetal alters the position of the 
upper nose by flexing a diaphram in the upper 
wall. Predominantly, this is equivalent to a 
change in the line length. In addition, but to a 
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lesser order, the motion of the upper nose changes 
the nose -to -nose capacitance. The frequency 
sensitivity, then, is given In the sum of these 
two effects. 

df 8f dl, 8f dC 
dm 81, dm 8C dm 

where ni is linear motion of the upper nose. 
To derive R, one first writes an expression for 

resonance of the entire system by equating the 
susceptance at the terminals (1, 2) Fig. 3 to zero. 

1 
B,,, = + Y 11 /wC 

0 
1 - 2 - 

Solving for the resonant angular frequency; 

{ w = 1 /[C 71 tan 
co/ 

+ 72 tan "'12 
v v 

Here oi is t ]e angular frequency and y is t to wave 
velocity in the shorted transmission lines. 
The two required partial derivatives of w arc 

.. (12) 

(13) 

(14) 

range. In the first term, 
dl, 

is constant and 
din 

would appear to be about 1/2 from inspection of 
the compensating mechanism. That is, motion of 
the bimetal mechanism effectively increases the 
outside diameter of the coaxial line but not that 
of the centre conductor. Measurements on a 
Westinghouse experimental valve, AVX-3339, show 
the constant to be close to 1/3. The variable 
factor in the first -order term, Sf/SI1, with two 
arbitrary parameters, A1/12 and 7 /I.,, may be 
plotted, giving families of curves as shown in 
Figs. 4 and 5. 

That the first -order term is the type of relation 
required to minimize equation (9) is demonstrated 
from equation (17). Consider the two lines to he 
of equal length and the tuning range limited to 
the asymptotic region where the tangent terms 
become negligible and the secant terms approach 
unity. This is typical of the characteristics 

sect 
CA) 

Sw_wZ, V 

Si I 7' 1,w l.,w 2 
11w 

- 
7 1w C (z, tan - + Z2 tan - + sec- + =- sec2 

7' 7' 71 v 7! 7' 

and 

-(z, tan'-+7ztanl/Sw_- 
/ v v 

SC 
C2 171 tan 11 + 7, tan 1 zw)Z + c 111 seC2 11 12/' sec' 

,w \ 7 v v v v v 

The equivalent circuit capacitance, C, is 
considered to be variable to give the mechanical 
tuning of the device just as tuner motion varies 
the nose -to -nose capacitance in the actual cavity 
without affecting the line lengths. It is con- 
venient, however, to use wavelength, Ao, as the 
independent variable in these equations and 
eliminate capacitance with the aid of equation 
(14). This gives 

Sw 47r2v 

Sl, = 2 

and 

(:\1)2 
\ (1} 47r2v'7, - tan ! A 5J + Ji tan 

SC 

(15) 

.. (16) 

shown in Fig. 5. Equation (17) reduces to 
Sw 47i- v 1,/10 
Slr a, 7ri2 (1 +z2,4 - 

This shows that compensation rate, R, is pro- 
portional to frequency, which is all that is required 
by, equation (11). 

The second -order term, then, should be looked 

(19) 

(-(-1) 2 sec (T-01\ )/ 
¡Á rr\ 7r a rr\ Z /A., 7r\ 

C2-7)}tan 1 1 ) + 1 sec' J + -2 tan ( f + 2 sec2 . 02a227_ IA, 2 A0 2 o ? 

12 7r A 7r / 7r L 2 G-0 
. 7r 1 2 7r ñ 7r {tan ( + xo sec" (,o+71{tan 5) r i) sec" ( 2)} 

two pants of equation (12) should be dis- / \ 
cussed cussed separately-. It was indicated that the 

Sf dl, 
first member 

811 -1 
was the first -order term and 

practice finds this so. In fact, the second -order 
term vanishes at one extreme of the tuning 
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(18) 

upon as a source of error and something to 
minimize. This is the reason for the large cup in 
the centre of the AVX-3339 tuner nose. It can be 
seen from physical reasoning that this would 
reduce, to a large extent, the rate of change of 

WIRELESS ENGINEER, AUGUST 1955 



Capacitance with respect to compensating motion. 
1 o get a quantitative measure of this error term is 
not so simple as in the case of the first -order 
term. The difficulty is that, unlike the first -order 
term, the total derivative is not constant. In 
fact, calculation shows it to be the principal 
variable in the second -order term and like the 
total derivative in the first -order term, this factor 
is not obtainable from the equivalent circuit. 
I f it becomes necessary to know the rate of 
change of capacitance with respect to com- 
pensating motion, quantitatively, it can be 
determined by measurement of resonant fre- 
quency with respect to tuner position. It is 
noticed that, with the geometrical arrangement 
shown in Fig. 3, an increment of compensating 
motion has an identical effect upon the capacitance 
as the same increment of tuner motion. The rate 
of change of capacitance with respect to tuner 
motion could then be calculated from the resonant 
frequency versus tuner position characteristic with 
the help of equation (14). 

32 

28 

24 

20 

16 

,'.... 72 A =3'125cm 0'125 Ronan Z , 

nil ',,\``,'... 1.10 - Á 
/'1.02 A2 

.-1'01 
..._\``\, ... .111111111174% ... ...0. ............. 

1.02 1.04 1'06 1'08 

Ao 

AI 

Fig. 4. Frequency sensitivity for constant line impedance. 

1'10 1'12 1.14 

4. Experimental Results 
It is found experimentally that the inclusion of 

time second -order term in the compensation 
formula equation (7) is well justified. The second - 
order residual may be predicted to within 10% 
or 20°1, from hand -book values of expansion 
coefficients. With the proper choice of materials 
to minimize to second -order error, the compensa- 
tion sensitivity (R Mc/s per mil) has been measured 
mechanically over a 10% tuning range in the 
3 -cm band. This predicted a cavity with no 
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frequency shift at the design centre and a maxi- 
mum of 0.5 Dlcjs for 75°C temperature rise at two 
frequency extremes. Actual temperature 
measurements justified this calculation to within 
15%. Of course, over a smaller tuning range a 
corresponding improvement can be made in the 
temperature compensation. It is likely that this 
does not represent optimum performance, although 
this result comes from a year's search for the 
preferred tuner nose geometry. 

32 

28 

24 

20 

16 

\_ Al - 1 A -3125 cm 

2 

_ .'',all 
.1111411111111 ... 

Zz 
0 s = - _`, __ _\ __ - 0.2 z' .: __:: p I 2 5 

.... ..... 
1'02 I-04 1'06 1'08 

A. 

A' 

Fig. 5. Frequency sensitivity for equal nose lengths. 

1' 10 

Finally, it is found that, if dim/dm and dC;dm are 
obtained by measurement (it has been explained 
that they are not derivable from the equivalent 
circuit) and used to calculate the frequency 
sensitivity by equation (12), this result agrees 
with measurements to within 5% over the higher - 
frequency half of a 10% tuning range. Best 
agreement over this half of the tuning range 
should he expected because in tins region the 
two noses are physically well separated, avoiding 
as much as possible higher -order waves on the 
short transmission lines. 
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STABILITY OF OSCILLATION IN 
VALVE GENERATORS 

By A. S. Gladwin, Ph.D., D.Sc. 
(University of Sheffield) 

SUMMARY.-A comprehensive theory of stability is developed which is applicable to a large 
class of harmonic oscillators. The paper is concerned mainly with the 4 -terminal regenerative type of 
oscillator with grid -leak bias but the analysis applies also to circuits with fixed grid -bias and to 2 -terminal 
oscillators. All known forms of instability appear as special cases of the general theory and some new 
forms are predicted. 

Stability is determined by the nature of the roots of a characteristic equation and stability criteria 
are obtained in the form of inequalities between the parameters of the amplifier and feedback network. 
A modified form of Nyquist locus -diagram can also be used. when the feedback network is symmetrical 
with respect to the oscillation frequency the characteristic equation can be factorized to give independent 
criteria for frequency and amplitude stability. 

Hysteresis effects and periodic instability are analysed in detail. In addition to the general 
treatment, specific forms of the various parameters which appear in the stability criteria are worked out 
for a three -halves -law amplifier with a semi -linear or exponential grid -current characteristic. Quantitative 
experimental confirmation is provided. 

1. Introduction 
THIS investigation concerns the dynamical 

stability of free oscillations in generators 
producing a nearly -sinusoidal voltage wave- 

form (harmonic oscillators) and is limited to those 
types known as 'separable' oscillators, which 
consist of a non-linear amplifier or resistance 
whose behaviour is independent of time, and a 
passive linear impedance network. Under certain 
conditions the frequency or amplitude of oscilla- 
tion may become unstable and change to a new 
value or vary over a range of values. The object 
of this inquiry is to elucidate these conditions in 
their most general form. 

Over the past 35 years the subject has attracted 
much attention. Early work on discontinuous 
amplitude changes was carried out by Appleton 
and van der Polt and by Greaves2. Van der Pol 
also studied a form of discontinuous frequency 
instability3. Accounts of later work are given in 
recent publications". 

All the early work, and most of the later, dealt 
with simple types of circuits, and it was usually 
assumed that the behaviour of the amplifier or 
non-linear resistance could be represented by a 
few terms of a power series. It was also supposed 
that the working point of the amplifier was 
independent of oscillation amplitude; i.e., the 
non -oscillatory part of the voltage wave was of 
fixed amplitude. 

In modern oscillators the amplifier characteristic 
can seldom be represented by a low -degree poly- 
nomial. Moreover, grid -leak bias or some other form 
of amplitude control is invariably used. This causes 
the amplifier working point to vary with oscillation 
amplitude and may also give rise to a periodic 
instability sometimes known a `squegging'. 
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Van Slooten9.10 examined this type of instability 
by setting up a second -order differential equation 
for the oscillation amplitude, stability being 
determined by the roots of the auxiliary equation. 

simple form of circuit and valve characteristic 
was assumed. 

A different approach was proposed by Edson" 
who suggested that the Nyquist criterion could be 
applied to determine the stability of oscillation 
amplitude by considering the changes in magni- 
tude and phase experienced by a small sinusoidal 
modulation of the amplitude when transmitted 
through the amplifier and feedback network. 

These two methods are limited to oscillators 
having feedback networks with a response 
characteristic symmetrical about the oscillation 
frequency; e.g., a high -Q antiresonant circuit. 
In asymmetrical networks, amplitude changes 
are accompanied by frequency changes which the 
methods are unable to take into account. Other 
suggestions, some of which are considered later, 
have been put forward. An account of these can 
be found in Edson's book1z 

In their different ways all the methods so far 
proposed are restricted in scope, and the diversity 
of treatment obscures the fundamental unity of 
all forms of instability. The piecemeal treatment 
also suggests that there may exist types of 
instability hitherto overlooked. A new and more 
general theory seems desirable which would 
include all possible types of instability as special 
cases and be applicable to any kind of network or 
amplifier. It should also be possible to obtain 
numerical results for practical oscillators without 
having to make violent assumptions and drastic 
approximations. This would allow a theoretical 
and experimental check to be made on the 
validity of any proposed stability criterion. 
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2. List of Symbols 
A(p) = Amplitude stability function. See (8.2) 

b, = Constants of the valve. See (4.19) and 
(4.21) 

D(p) = Stability function for the oscillator. See 
(6.4) 

F(p) = Frequency stability function. See (8.2) 
G = Fourier coefficients of the grid-anode 

transconductance. See (5.10) 
H = 1 -K+K/Y 
i, i, = Anode and grid currents 
i1, i,1 = Anode and grid currents of fundamental 

frequency 
ipe = Perturbations of anode and grid currents 

k = Fraction of tota current reaching the anode 
IC = - V,I Vol I 1 + Zt/fsZT I 

\' = Parameter of the steady state. See (4.13) 
and (4.14) 

p = a + jwe, complex frequency 
q = exp .10 
R, R, = Anode and grid circuit d.c. resistances 
r, = Grid input resistance at fundamental 

frequency 
S = Fourier coefficients of the grid input 

conductance. See (5.1) 
u = Complex amplitudes of transient grid 

voltage components. See (5.2) 
v, v1 = Anode voltage, anode voltage of frequency 

WI. 
V, = Amplitude of equivalent grid voltage of 

frequency wo. See (4.5) v V, = Grid voltage, mean grid voltage 
vo1, Vp1 = Grid voltage and amplitude of grid voltage 

at frequency wo 
ve, vd = Perturbations of anode and grid voltages 
V,, V = Grid voltages required to cut off anode and 

grid currents 
Y = V,/V, 
Z1, Zo, Z, = R; + jX;, etc. Open -circuit input, output 

and transfer impedances of the feedback 
network at frequency wo 

Z,,, Ze, Z = Modified values of Z;, etc. See (4.11) 
Z °, Z,- = Z, (p + jw), Z; (p), Z, (h - jw,), etc. 

ZE = RE + jXE = (LT + Zlµ)(1 - kZT/rc) 
8 = Phase angle between cathode current and 

grid voltage 
= Amplification factor of the valve 

wa = Oscillation frequency. (Fundamental) 
* = Complex conjugate value 

3. Method of Solution 
The method consists in examining the stability 

of the possible steady states of the oscillator. By 
a 'possible steady state' is meant a condition in 
which the system is in equilibrium with a periodic 
wave of constant amplitude and frequency. 
Stability is determined by the nature of the 
disturbance produced when a possible steady 
state is momentarily perturbed by a small 
external force, equilibrium being stable if the 
amplitude of the disturbance decreases with time. 
If equilibrium is stable, the possible steady state 
may be an actual steady state but, if equilibrium 
is unstable, the possible steady state cannot be 
realized physically. 

When the disturbance is small the oscillator 
behaves towards it like a linear network with 
time -varying parameters. Now the transients in 
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any linear system can be represented as the sum 
of a number of independent normal modes and to 
find the form of these modes in an oscillator it is 
sufficient to consider the simplest example. 

Suppose that the oscillator consists of a 2 - 
terminal linear passiv e network with an ad- 
mittance Y (D), (D = d,'dt), connected across 
a suitable non-linear negative -resistance element 
having a current-voltage relation given by 
i = f (v). Let wo be the frequency of oscillation 
and let the steady-state oscillation voltage 
across the network and non-linear resistance be 
vs. If a small disturbance va is added to vs the 
current in the non-linear resistance becomes 
f (vs + vd) = f (vs) + v,tf' (vs). The current due 
to vd is therefore id = vaf' (vs). Since vs is 
periodic f' (vs) is also periodic, and id can therefore 
be written as id = gvd, where 

OD 

g= gr cos (rwot + Or) . . (3.1) 
o 

Thus the non-linear resistance behaves towards 
va like a linear resistance with a conductance g 
varying periodically at the oscillation frequency. 

By Kirchhoff's law the current flowing into the 
linear network is equal and opposite to the 
current entering the non-linear resistance, since 
the total currents at the branch points must be 
zero. But the network current due to vd is 
Y(D)vd. Hence 

(D)vd = - gvd .. . . . . (3.2) 
In a linear network with constant parameters 

the general transient is the sum of a number of 
elementary waves each of the form exp.(at) cos 
(cud( + 8). Inspection of (3.1) and (3.2) shows 
that the elementary transient in an oscillator must 
be different from tins, for although the current in 
the linear network would be of the same form, 
modified only in amplitude and phase, the current 
gvd in the non-linear resistance would be the sum 
of an infinite number of waves of different 
frequencies. The inspection also suggests that a 
possible solution might be 

va = exp. (at) 11 cos {(nwo + w,f)!+en} 
.. (3.3) 

The currents in both linear and non-linear 
branches would then have components of all the 
frequencies nwo + wd, and by choosing suitable 
values for the coefficients in (3.3) these currents 
could be made equal and opposite to satisfy (3.2). 

From the analytical point of view, Y (D) is a 
rational function of D and so (3.2) is a linear 
differential equation with periodic coefficients. 
Floquet's theory of such equations shows that 
the solutions are of the form (3.3). Solutions in 
which nwo is replaced by nkwo/nr, k and in being 
integers, are also theoretically possible but it can 
be shown that these require exact relations between 
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the coefficients gr and must therefore be excluded 
on physical grounds. 

Equation (3.3) represents the terminal voltage 
of one transient normal mode but equation (3.2) 
can usually be satisfied for more than one value 
of a and wd. The general disturbance can 
therefore be represented as the sum of a set of 
normal -mode voltages each similar to (3.3). In the 
more convenient complex notation (3.3) becomes 

OD 

vd = Vd u exp. (p -}- jnwo) t (3.4) 
-co 

where p = a + jaw and the coefficients u are 
complex numbers. The actual voltage is the 
real part of this expression. With each normal 
mode is associated a characteristic complex 
frequency p, and the criterion for stability is 
therefore that all possible values of p should have 
negative real parts since this ensures that vd 
ultimately vanishes. 

By writing n + in for n in (3.4) it is seen that if 
p is a solution then so is p + jmwo, m being any 
integer. The imaginary part of p may therefore 
be restricted to the range - Zwo < wd < 2w0. 
Also, by writing - n for n it follows that if p 
is a solution then so is p* (complex conjugate). 

To calculate p, the sums of the currents of like 
frequencies in the network and non-linear 
resistance are equated to zero. At any particular 
(complex) frequency p + jgwo, the current in 
the linear network has the (complex) amplitude 
VdugY (p jgwo), but the current in the non- 
linear resistance depends on all the values of 
Van, and, in fact, may easily he shown to have 
the (complex) amplitude 

gr u, -Fr ex H,-rexp. 

So, corresponding to every value of q is an equation 
containing all the values of u,,. Thus an infinite 
set of linear simultaneous equations for the un- 
knowns u,, is obtained, the coefficients of n being 
functions of p and the quantities gr and Or. When 
these equations are written in canonical form the 
condition for compatibility's is that the infinite 
determinant formed by the coefficients should 
vanish. This gives a determinantal equation 
from which the values of p could in principle he 
calculated. The equation is a more general form 
of Hill's determinantal equation". However, to 
make the calculation practicable the equation 
must be simplified. 

In many oscillators the steady-state voltage is 
nearly sinusoidal because the network impedance 
at the harmonic frequencies is very small. In 
calculating the transient behaviour it is therefore 
permissible to neglect all terms associated with 
harmonic frequencies. This means that the 
expression for vd can be restricted to three terms 
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vd = Vd u exp. (p + plwo) t .. (3.5) 

Only the first three terms in the Fourier series 
(3.1) for g need then be taken into account and the 
infinite determinant is reduced to its three central 
rows and columns. (A similar approximation 
was used by Hill in the solution of an astronomical 
problem.) 

\\Tien (3.5) is adopted, the previously -noted 
restriction on the range of wd becomes obligatory 
in order to confine the transient frequencies to the 
appropriate range. 

For regenerative 
oscillators of the 
type shown in Fig. 1 

(which are the main 
subject of the paper) 
the procedure is 
similar but the alge- 

Fig. I . Oscillator cir- 
cuit. o 

bra is naturally more complicated. The amplifier 
has input, output, and transfer conductances each 
of the form (3.1) and three functions are needed to 
specify the performance of the feedback network, 
namely, the open -circuit input impedance Zi 
between terminals 1 and 3, the open -circuit output 
impedance Z0 between 2 and 3, and the open -circuit 
transfer impedance Zt between 1-3 and 2-3. 

Both anode and grid transient voltages are of 
the form (3.5), and since the input and output 
currents and voltages of the amplifier are related 
through the network impedances, all currents and 
voltages can be expressed in terms of a single 
variable-the amplifier input (grid) voltage. 

For simplicity, the power supplies and the grid - 
bias arrangement are not shown in Fig. 1, and a 
triode is depicted although the analysis applies 
equally to tetrodes and pentodes. The values of 
Zi and Za for d.c. are taken as Ra and Ilg, and 
these will usually be equal to the h.t. decoupling 
resistance and the grid -leak resistance. Zt is 
zero for d.c.; i.e., there is no path for d.c. between 
anode and grid except via the cathode terminal. 

Before stability can be investigated the possible 
steady states of the oscillator must be calculated. 

iQ 

4. Steady -State Amplitude and Frequency 
The method used here is an extension of a 

previous analysis 19 and the general procedure- 
sometimes known as the method of equivalent 
linearization-is to consider only the constant 
and fundamental -frequency components of the 
currents and voltages. \Vhen, as is usual, the 
amplifier input voltage is nearly sinusoidal the 
method yields a good approximation even when 
the currents are markedly non -sinusoidal. 
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The grid-cathode voltage is first considered. 
Let this he 

vg = 1'g, cos w01 + I g .. .. (4.1) 

I'g is the grid -bias voltage which may be derived 
either from a fixed source of e.m.f. or from the 
flow of grid current through the grid -leak 
resistance Rg. The second arrangement is 
examined first. If the anode voltage is not too 
small or does not vary too greatly, the grid 
current is well approximated by a single -valued 
function of vg only 

ig = e (vg) 
When vg is periodic ig is also periodic. Thus 

tg= lg+Ig, cos W/+etc. 
The constant component 11 flows through Rg to 
produce the bias voltage. If all the bias is pro- 
duced in this way Fourier analysis gives 

Vg = - IgRg = - (Rg/ir) e (V" g,cos x + Vg) dx 
J0 (4.2) 

For any given value of Vg, this is 
an equation for Vg. Since ig has 
harmonic components, the assump- 
tion that vg is sinusoidal implies 
that Rg is shunted by a capacitor of suitable 
size. 

Due to the flow of grid current the amplifier 
has an a.c. input resistance rg given by the ratio 
of the fundamental components of grid voltage 
and current. Thus 

Yegh (K,Y) 

Vg, = rglg, = (2rg/vr) e (V E1 cos x -i- I'g) cosxdx 
co 

(4.3) 

from which rg may be determined. If the function 
c (vg) is such that Vg is proportional to V$1 then 
rg is constant and conversely. \Vhen the bias 
voltage is obtained from a fixed 
source and is sufficient to pre- 
vent the flow of grid current, 
rg = oo. When the fixed bias 
voltage is insufficient to stop grid ..._ ............. 
current rg is still given by (4.3), hut (4.2) is not 
then valid. 

To calculate the anode current is it is assumed 
that the cathode current ik is a function of 
vg + valp., v being the anode-cathode voltage and 
IL a constant. For a triode in = ik - ig and for multigrid valves is is 
usually a fairly constant fraction of 
this. Thus in all cases 

is = f (vg + v/µ) - Rig 

where f (v) is a single -valued function of v. 
For triodes k = 1 and for mans pentodes k 0.3. 
It is more convenient to write 

= 
v1 = 

where Z,, = 

Vc depends on the mean anode voltage. If the 
anode circuit contains a decoupling resistance, 
Vra will vary with the oscillation amplitude. 
This is discussed in Appendix 3. Meanwhile Vca 

is assumed to be constant. 
The alternating anode voltage is assumed to be 

sinusoidal. 

Let 

vg 1 vn/µ = I'g + V. cos (w01 -r 0) (4.5) 

Then 

is = f {I'e cos (wot + 0) + Vg - Va,} - Rig (4.6) 

Let K = - Vg, Ve and Y = Vg/Vc,,. By 
Fourier analysis the component of is of funda- 
mental frequency is 

ia1 =gh. (K,Y) Ve cos (wo1 + 0) - kI'P1 cos wflt/rg 

(4.7) 
where 

= (2/7r) I 

n f (Ve cos x + Vg - Val) cos xdx (4.8) 
,o 

g is an arbitrary positive constant having the 
measure of conductance which can be chosen to 
give a suitable scale for the function Ir (K,Y). 

The actual currents and voltages are now 
replaced by their complex amplitudes, the 
reference quantity being the grid alternating 
voltage. Using the same symbols as for the real 
voltages (4.7) becomes 

= (vg, + vnilp) gh (K, Y) - kvgr,r'g (4.9) 

Now in the impedance network of Fig. 1 the 
currents and voltages are connected by the 
following relations: 

vg,/rg- 

vgi/Zor - igiZo/Zt = - vg1 ( + ZoI rg)lZt (1.10) 
vgiZi/Zt + ln7gi = vgr (ZitZt + Z,a/r'g) 
Z,Zo/Za - Zt 

1 

Suppose that the network is modified by connect- 
ing a resistance rg between 2 and 3. The new network 
could be replaced by a three -element network simi- 
lar to the original but with modified values for the 
elements. Denoting the new elements by Z1 Za Z1- 

ZI = zti - Zt2/(r'g -- Zo) = (Zi + Zn t/rg)l(1 + Zolr'g)1 
Za = Z01(1 + Zolrg) (4.11) Zr= Zt/(1 + Zo/r'g) 
Zv= ZjZ_a/Z_T - ZT = Z J 

It is noted that Ze/ZT = Zo/Z1, and if Z = 0 
then also Zi,7_T 

From (4.10) and (4.11), in, _ - vg,/ZT and 

ta = f (Vg + van/µ - Vca) - Rig . . (4.4) 

where van is the alternating component of vn, and 

= vg1Zj Zy. 
Substituting these into (4.9) gives 

I = -gh (K,Y) (Zr + Zr/p) + kLrlr'g 
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and finally putting 

LE = (ZT + ZIIµ)I(1 - kZTlrg) (4.12) 
gives 

1 = - gh (K,Y) 7_E 

This is the equation defining the steady state. 
Writing LE = RE + IXE, and similarly for Zi 
and Zr, and equating separately the real and 
imaginary parts of the equation gives 

1 = Nh (K,Y) . . (4.13) 
where 

N = - gRE = -g (RT + RIIµ)1(1 - kRT/rg) 
(4.14) 

and XE = 0 

or XT + XIIµ + k (RIXT - RTXI)/W'g = 0 
(4.15) 

If f (v) is an increasing function of y then from 
(4.8) gh (K,Y) is always positive. Hence RE and 
so also RT must be negative. 

Equation (4.14) gives the amplitude, and (4.15) 
the frequency of oscillation but the equations 
are not completely independent. rg will usually 
vary more or less with the oscillation amplitude 
and IL and k may also vary slightly. The fre- 
quency of oscillation will generally be affected by 
all these changes. For the frequency to be 
independent of amplitude and of changes in the 
amplifier it is necessary that Zi, Z0 and Zt should 
be entirely resistive at the frequency w0. If this 
condition is satisfied (4.11) shows that XT = 
X1 = 0 whatever the value of rg and the fre- 
quency equation (4.15) is then independent of 

k and rg. 

- Vg/Vg 1 

10 

0.9 

08 

07 

-Vy/Vg, 

1 

1 r9/Rg 

40 10 20 60 100 

b Rg 

Fig. 2. Grid bias and grid resistance of diode rectifier. 

r9/Rg 

0'8 

07 

06 

0'5 
200 400 600 1,000 

In simple oscillators only one frequency is 
possible but, with more complicated networks, 
two or more values of w0 may be found to 
satisfy (4.15). These values will be frequencies of 
possible steady states only if corresponding 
values of Y can be found to satisfy the amplitude 
equation (4.14). 
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The parameters K and O are found as follows. 
When expressed in complex form the voltage 
Ve cos (w01 + B) has an amplitude Ve exp. jB. 
On comparing (4.7) and (4.9) it is seen that 
Ve exp. 9B = vg1 + val/!.i = vg1 (1 + ZI' cZT). 
Hence, by taking the modulus of both sides, 

K = - Vg/Ve = - Vg/Vgi I 

1 + Zi/,,.LT I (4.16) 
Also 
exp. 90 = (I + Zi/ ZT)/ I 

1 + ZI/µLT 
Í 1 

and ' (4.17) 
exp. -j0 = (1 +ZI*/µZT*)II 1 + Zi4cZTI 

(complex conjugate value) 
When Z_ T is resistive Z1 must also be resistive 
[from (4.15)]. 
Then K = - Vg/Vg1 (1 + RI/µRT) and O = 0 

.. (4.18) 
To obtain working formulae, particular forms 

of the functions e (vg) and f (v) must be studied. 
The process of solution will therefore be illustrated 
with reference to those forms which occur most 
often in practice. Details of the calculations are 
given in Appendix 1. The results are as follows. 

It is first assumed that the grid -bias voltage is 
obtained by a grid -leak and capacitor arrangement. 
When the oscillation amplitude is fairly large 
grid current flows mainly when vg is positive, and 
if the minimum anode voltage is well above the 
maximum grid oltage a fair approximation to 
ig is 

ig = e (vg) = bg (vg -Vcg) when vg > Vcg} (419) = 0 when vg < Vcg 

bg and Vcg are measurable constants. Then 
Vg = Vg' (1 - VcglVgi) (4.20) 
rg = rg (1 + V cg/ Vgl) 

These formulae are valid for small values of 
Vcg/Vg1. Fig. 2 shows - Vg'/Vg1 and rg'/Rg as 
functions of bgRg. These arc the familiar curves 
for the diode rectifier. 

When the amplifier operates in the space - 
charge -limited condition the cathode current 
follows a three -halves power law 

f (v) = bav312 when y > 0 
=0 when <O 

with v = Ve cos (w0t + B) + Vg - Vca 
ba is a constant and Vca is the grid voltage required 
to reduce the anode current to zero when the 
anode voltage is constant. The quantity g in 
(4.7) is taken as 

g = 1 iba ( - Vca)! 
Then N = - l ba (- Vca)tRE .. (4.22) 

Fig. 3 shows N as a function of K and Y calculated 
from (4.8). 

To find the amplitude and frequency of oscil- 
lation approximate values of Vg/Fg1 and rg are 
found from Fig. 2 by neglecting Veg. Z1 and ZT 
are then calculated and w0 is found by solving 
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(4.15). K and N can next be evaluated from 
(4.16) and (4.22) and finally Y is read off from 
Fig. 3. A value for Vg, is thus obtained from which 
Vcg/Vg, can be found, and by repeating the 
procedure, taking Veg into consideration, better 
approximations for Vgj and w0 can be obtained. 

The results will be correct only if the expressions 
for ía and ig are valid. Slight departures from the 
three -halves law at low currents produce little 
error, but large deviations may occur if the 
minimum anode voltage approaches the 'knee' 
in a pentode or is comparable with the maximum 
grid voltage in a triode. 

Large amplitudes require a small value of K, 
but good regulation is obtained when K is large; 
i.e., the change of amplitude with load is small. 
Large values of Rg and small values of h, give 
large values of K. Since f (v) = 0 when y < 0 
it follows from (4.7) and (4.8) that Ve + Vg - 
Vca > 0 for otherwise the anode current would 
always be zero. Dividing through by Ve the 
inequality becomes l -K + Kl Y > O. Hence 
if K > 1 the upper limit of y is K, (K - I) when 
the grid current is negligibly small. However 
the three -halves law would almost certainly not 
be followed for these extreme values. Other 
features of the graphs are discussed in later 
Sections. 

When the grid -bias voltage is obtained from a 
fixed source and is large enough to stop the flow 
of grid current Fig. 3 can again be used to find 
Vg,. Y is now a constant, N can be evaluates as 
before and the corresponding value of K read off 
from the graphs. Vg, follows from K. 

K= 0.7 0.8 0.0 

r 

4 

3 

2 

0 
2 4 6 

N 
Fig. 3. Graphs for oscillation amplitude, 

If the grid -bias voltage is fixed but insufficient 
to stop grid current a direct solution (by successive 
approximations) is laborious, but indirect solu- 
tions are easily obtained by observing that in an 
oscillator with grid -leak bias the steady state is 
unchanged if the grid leak is replaced by a source 
of e.m.f. equal to - IgRg. 

In studying behaviour at the threshold of 
oscillation the values of Vg and dg for vanishingly 

A/' 

1.0 

I. 

I2 

1.4 

20 

10 
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small amplitudes are required. The grid current 
characteristic has the exponential form 

ig = to exp. (vg/V0) .. .. (4.23) 

where Io and V0 are positive constants. Then 

rg = - RgV,/Vg .. (4.24) 

Fig. 4 shows - Vg/Vo as a function of RgI0/Vo. 
It is seen that the value of rg may be many times 

less than for the semi -linear form of characteristic. 

- Vy/Vo 

100 200 400 600 1.000 2.000 4.000 6.000 10.000 

2 4 6 10 20 

R9 jo/vo 

40 60 100 

Fig. 4. Grid bias (exponential characteristic). 

5. Transient Grid and Anode Currents 
Let a small disturbance vgd be added to the 

steady-state grid voltage vg. The grid current is 

e (vg + vgd) = e (vg) + (vg) 

The change in grid current produced by vgd is 
igd = Vgde' (Vg). Since Vg = b cos w01 + Vg, 

e' (vg) can be expressed as a cosine Fourier series 
in w01. In complex notation this is 

e' (vg) = S exp. jnwol 

where S = (1/7r) f o 
e' (V gI cos x + Vg) cos nxdx 

(5.1) 

Following Section 3 the transient voltage is 
written as 

vgd = V Un exp. (P + incoo) (5.2) 

The transient current has an infinite number of 
terms but only those having the same frequencies 
as vgd need be considered. Thus 

i,qd = Vd w exp. (p + juw0) 1 (5.3) 

w being complex numbers. Equating (5.3) to 
the terms of like frequencies in the product 
vg,le' (vg) gives three equations connecting the 
values of w and a. These are conveniently 
expressed in matrix notation. 
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w1 S0 S1 S2 u1 Fig. 5 shows So'/?g and S_'rg' plotted against bgRg. 

wo1 
= 

[S2 Si So J 
f 
Lu1 1 

(5.4) S2 S1 is found by using Fig. 2. 

At the threshold of oscillation when Vg, is 

From (4.2) (4.1) and (5. ) the following relations vanishingly small, the differential coefficients of 

are obtained. 
(So - S2) rg = 1 

S1Rg = - (1 + SoRg) dVgldVgl 
(1 + SoRg) (So + S2) -2S12Rg = (1 +SoRg) (1 -(Vg1l1'g) drgidVg1)irg 

The first expression is found by integrating (4.3) 
by parts, and the second and third by differen- 
tiating (4.2) and (4.3) with respect to Vg,. These 
equations are independent of the form of e (vg), 
but it may be assumed that e' (vg) is always 
positive, for a negative slope would indicate an 
unstable form of characteristic. With this 
restriction it can be shown that 

So>0, So+S2>0, So-S2>0, 
So(S0+S2)-2512>0 

The first three inequalities follow at 
once from the definition of S and the 
fourth can be proved by applying 
Schwarz's inequalitv21. (5.5) and 
required for use in later Sections. 

60 

40 

20 

I0 

6 

4 

2 

(5.6) 

1 

J 

(5.5) 

Vg and rg appearing in (5.5) are of major im- 
portance. It is shown in Appendix 2 that when 
the grid current has the exponential form (4.23) 
d Vg/d Vg1= nVg1/Vg, drg/d L g1= mrg Vg1/Vg2' 
n = (VgIV0)2/2(1 - Vg/Vo) t(5.8) 
ni = - (VglV0)2 (1 + Vg/Vo)/4 (1 - Vg/170)J 

Next the transient anode current is considered. 
Let small disturbances vgd and vad be added to the 
steady-state grid and anode voltages, and let the 
change in anode current so produced be id. 
Then from (4.4) and (4.5) 

iad = (Vgd + Z'ndlµ)f' lye cos (w01 + 0) + I'g - VcaJ - klgd 

(5.6) are f' can obviously be expressed as a cosine Fourier 
series in (001 + O. Hence 

Só Ry 

0' 

10 20 40 60 100 

by Ry 

200 400 600 1,000 

Fig 5. Grid conductance functions. 

When the grid -bias voltage is supplied 
from a fixed source and is large enough 
to stop grid current, So = S1 = S2 = O. 

If the grid -current characteristic 
has the semi -linear form of (4.19) it is 
in Appendix 2 that 

lad + kigd = (vgd + vad/µ) ¿ f; exp. ju (a,1 + 0) - 
(5.9) 

where 

C,, = (1 wr) I0 f' (Ve cos V + V - 1'c) cos IIXdX 

(5.10) 

As before, only terms of the three principal 
frequencies in lad and vad need he considered. Let 

iad = Vd xn exp. (p + JI1Co0) 1 

Vad = Vd Z ',, exp. (p + jnwo) I 

Using (5.2), (5.3), and (5.11), lad -r kigd is 
equated to the terms of like frequency on the 
r.h.s.of (5.9) to give 

x1 + kw1 Gig G2g2 
xo + kwo = Gig --I Go Gig 
x -I + kw -1 G2q 

2 
Gig -1 Co J 

shown in which q = exp. j0 . . 

Expressions for y and -I are given by (4.17). 

Many of the stability criteria can be 
simply expressed in terms of the co- 
efficients G. The following relations 
are required in later Sections. 

S2/(So - S2) = S2rg = (I + 0'72VcgIVgi) S2'rg' 
S2IS1 = - (1 - VcgIVgl) + I' cglVg1 }- (5.7) 
So/?g = So'Rg (1 - 036Vcg/Vgl) 

ito + yo,µ (5.12) 

.. (5.13) 
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Go- G,=g/N= --- 1/Rj 

= - (1 - kRT/rg)l(RT +lµ) (5.14) 

This is obtained by integrating (4.8) by parts and 
using (4.14) and (5.10). It is independent of the 
form off (y). If the restriction that f' (y) should 
not be negative is imposed, the following in- 
equalities can be proved in the same way as for 
S.. 
Go>0, ho -}-G,>0, Go-G2>0, 

Go (Go + C2) - 2G12 > 0 .. .. (5.15) 

In\ppendix 2 the values of G0, G1 and G2 for a 
three -halves -law amplifier are calculated. Fig. 6 

shows (4/(Go - G2) _ - G2R1 and - G1RE 
plotted as functions of the parameter II = 1 - 
K + K/Y. From these graphs the values of 
G2/G1 and GORE are easily obtained. When 
Vg1 is very small 

Go = g (1 - Y)' _ - 1/RE,-1 

- (1 -Y) 
G2= )2/32112Rr(I - 1)2 J 

When Vgi is large 

(1 - 15H/16 + 35H2/256 + .. ) 

G2/G1 = (1 - 3H/16 - 5H2,256 ..) 
It is also shown in the Appendix that 

G,>O and G,2-G0G2>O .. (5.18) 

In the foregoing analysis it has been tacitly 
assumed that when the amplifier is a tetrode or 
pentode the screen -grid voltage remains constant. 
If this condition is not satisfied the theory must 
be modified in the way discussed in Appendix 4. 

(5.16) 

(5.17) 

6. Determinantal Equation for p 
In the preceding Section the transient grid and 

anode currents were expressed in terms of the 
corresponding voltages and the amplifier para- 
meters, but these currents and voltages are also 
related through the impedances of the feedback 
network. Written in operational form, these 
relations are 

tad = - {I iZl (D)} yo - {Zo (D)lZt (D)} i.Pd 

1'ad = {Zi (D)l/t (D)} vgd + Z (D) igd 
(6.1) 

Now 7(D) exp. (p+ jnw0) t 

= exp- (p -Fin. -01 Z (P +jnwo) 
Substituting in these equations for vgd, igd, Vad, 

and iad according to (5.2), (5.3), and (5.11), gives 

rul + wi(Zo+ kZt+) GoZt F G1Zt+q 
210 + w0 (Z00 - kZt°jl + G tZtoq-1 GpZto 

42-1 + w-1 (Z0- - f,Zt- JJ 
L G2Zt-q-2 G,Zt-q-t 
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x = - t4// (p + jnw0) - 
wZo (p + )rtwo), Zt (p + juw0) 

y = uZi (p -,- jnwo)/Zt 
wnZ (% -r jltwo) 

In order to conserve space the following nota- 
tion is adopted 

. (P + /coo) = Zi+, 
Zi(p)=Zl0,Zi(p-jwo)=Zi- 

with similar expressions for Z0, 7,, etc. 

4 

0 6 

04 

0 2 

0 1 

005 

o 

-G, RE 

-G2 R£ 

02 04 06 08 
H 

I'ig. 6. Anode conductance %wn'tia,+s. 

10 I2 1.4 

It is convenient to refer to l_; Zi, etc., as the 
high -frequency impedances, and to Zi°, etc., as 
the low -frequency impedances. Impedances with- 
out superscripts are meant, as in previous 
Sections, to refer to the oscillation frequency; 
e.g., 7T= 7T (jwo). When p = 0, Zi° = Ra and 
Z. o = Rg (the anode-decoupling and grid -leak 
resistances). \Vhen p = + jw0 the 'low' fre- 
quencies merge with the 'high' frequencies, but in 
most practical oscillators all the impedances are 
then negligible. 

The above expressions for x and y are now 
substituted in (5.12) and both sides of the 
equation premultiplied by the diagonal matrix 

[Zt I- 0 05 

O Zo° 0 
0 0 Zt- 

The result is 

G2Zt-rq2 
G 1Zt°q 
C; 0Zt - 

rrui (1 + ZiTlµZt+) + w1Z,I+/µ 
I2te (1 + Zi°lµZt°) + woZ°'µ = 0 
l2t- 

i (1 + 
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Finally the w terms are substituted according to 
(5.4) to give a set of equations for u, 

rraI 
b1 

lao bo 

La -1 h-1 

CI 

Co uo = 
c_1 u_1 

(6.2) 

The condition for consistency is then 
D (p) = 0 (6.5) 

This is the characteristic equation of the oscillator 
the roots of which' are the characteristic frequencies 
of the transient normal modes. When the 

The coefficients are as follows: 

al = 1 + G0 (Zt+ + Zi+/µ.) + So (Z.o+ - kZr+) + (,oSoL,++Zr+/µ -}- G1S14Zn°Zt+Iµ + G2S2g2Zn-Z1+/1-1 

hi= GIgZt+ (1 + Zi°lµZt°) + Si (Zo+ - k"/_t+) + GoSIZ,++Zt+lt-t + G1So4Z,+°Zt+1µ + G2S142Zn-Zt+/12, 

cl = G2g2Zt+ (1 + Zi-/µZt ) + S.> (Zo+ - kZ.t+) + G0S2Zn+Zt+/tl + G1S14Zn°Zt+/14 + 
ao = G14-lZt° (1 + Zi+/µZt+) + S1 (Z0° - kZl°) + GoS1Z,t°Zr5 + GIS0g-1Z+Zr5, + G1S24Zn-Zt5 
bo = 1 + Go (Z1° + Zi°tFl) + So (Zó - kZt°) + G0S0Z°Z1°/µ + G1S1Zt° (4-lZn+ 
co = GigZt° (1 + Zi-/µZt-) + S1 (Zú - kZt°) + GoS1Z°Zt°Iµ G1SO4Z,1-Zt°/1£ + G1S2g-1Z,t+Zt°/1-¿ 

a-1 = G24-2Zt (1 + Zt+/µZt+) + S2 (Z0- - kZ.t-) + GoS2Zn-Zr-/µ G2Sog-2Z+Zt-/µ 
h-1 = G14-14- (1 + Zt°l!-IZr°) + SI (Zo- - kZ_t-) -- GoS1Zn-Zt-/µ + G1SO4-IZ°Zr-/p-1 + G2S14-2Z,t+Zt-112. 
C_1 = 1 + Go (Zr+ Zi-lµ) + So (Zo- - kZt-) + GoSoZn-Zt Iµ + G1S1g-1Z°Z0µ + G2S2g-2Z ++Zt-Iµ 

(6.3) 
Neglecting the trivial case of u1 = uo = u 1= 0, 

the condition for the consistency of equations 
(6.2) is that the determinant of the coefficient 
matrix should vanish18. The auxiliary condition 
that at least one of the minors should not vanish 
is always satisfied. Since all the coefficients are 
functions of p the determinant is also a function 
of p. Let 

D (p) = o bo co 

J 

.. (6.4) 
a-1 b-1 c-1 

determinant is multiplied out, the general ex- 
pression for D (p) is of extreme length even 
allowing for some cancellation of terms. In 
most practical examples, however, the expression 
can be greatly simplified, in one way or another, 
by making suitable approximations, but these 
depend on the particular form of oscillator and the 
type of instability being studied. 

(To be continued) 
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ACTIVE LADDER NETWORK ANALYSIS 
By Haim D. Polishuk, M.sc. 

SUMMARY.-An expression is developed, based on Thévenin's Theorem, for the voltage appearing 
across the final 'rung' of an active linear n -mesh ladder network, which yields a set of recurring admitt- 
ance coefficients. It is shown how the compact representation of these coefficients sets the pattern for a 
straightforward and economical computational procedure of analysis. Examples are given, which 
illustrate the general applicability of the method offered to the analysis of all networks of the conven- 
tional ladder geometry. 

Introduction 
AVARIETY of analytical methods as well 

as fundamental theorems have been 
proposed for the analysis of electrical 

networks. The classical among these methods 
appears to be by means of determinants, based 
on Kirchhoff's laws and derived in terms of either 
the network junctions or meshes. Determinants 
provide a very generalized and concise way of 
expressing the required operations and results in 
the solution of networks. However, the algebraic 
manipulations involved and expansions of high - 
order determinants of multi -mesh networks do 
not constitute any rapid or straightforward 
process, and a considerable amount of care must 
be exercised to avoid errors in the repeated 
operations of reduction or in proper sign. 

In dealing with active, asymmetrical, linear 
and time -invariant networks the primary problem 
that commonly presents itself is the determination 
of a definite circuit parameter or physical quantity, 
such as the current flowing through a branch, 
the voltage or impedance across a junction -pair, 
Fig. 1. An active, linear n -mesh ladder network. 

Eo Zoi E, Z0 Ea 

etc., by means of which the performance of 
the system may be studied or quantitatively 
evaluated. 

The following treatment concerns itself with an 
analysis of a particular type of network, deriva- 
tives of which, nevertheless, characterize a 
considerable array of equivalent practical circuits 
encountered in the fields of radio -communication 
and electronics, by a method aimed at effecting 
computational economy. The voltage appearing 
across the final, n-th, 'rung' of an active, linear, 
unbalanced ladder network is expressed as a 
function of all the individual, randomly -distributed 
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sources of e.m.f., in a process of network reduction 
by means of the successive application of 
Thévenin's Theorem to each of the n meshes in 
turn. This results in a set of admittance coeffi- 
cients, the evaluation of which completes the 
quantitative determination of the required 
voltage. These coefficients turn out to be simple 
recurrent algebraic expressions of impedance and 
admittance products that provide an immediately 
applicable, compact and easily remembered pro- 
cess of obtaining the desired solution directly 
from the network or its equivalent form. 
Knowledge of this end -potential enables one to 
arrive rapidly at each of the other n - 1 junction 
potentials directly from Kirchhoff's current 
equations without actually solving them. 

This fundamental mode of attack which 
purposely avoids the use of advanced matrix 
techniques should, it is believed, be more 
significant to the engineer who is interested in a 
practical method of solution. It should also be 
noted the proposed method is free from the 
inevitable redundancy inherent in the classical 

3 

analysis by determinants, is readily adapted to 
practical computations, and becomes particularly 
useful when dealing with multi -mesh networks 
of the given general configuration. 

General Theory 
An active ladder structure is shown in Fig. 1, 

composed of generators (all operating at any one 
given frequency) and linear bilateral impedances, 
appearing in both the series and shunt branches 
of an n -mesh network. 

Let Zk (k = 0, 1, 2, ..., n) denote shunt 
impedances, and ek the shunt generators, all 
terminating in the common reference -junction 
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g (which is of known potential). The series 
generators* and impedances, bridging every 
k-th and (h + 1)-th terminals, will he denoted 
respectively by ek,k + 1 and Zkk + 1 Further- 
more, let Vgk and Zgk signify, respectively, the 
equivalent Thévenin generator voltage and 
impedance; namely, the open -circuited voltage 
between g and any k-th terminal when the 
network to the right of these terminals is dis- 
connected, in series with the impedance which 
would be measured looking back to the left of 
terminals g - k with all generators inactive and 
replaced by their internal impedances. 

One formal approach to the numerical solution 
of the given network is to apply Kirchhoff's voltage 
law to each of the n meshes in turn, to write down 
the resulting it linear simultaneous equations and 
to solve for each of the n loop c irrents by means 
of Cramer's rule, or by the method of systematic 
elimination of the variables. By the nature of the 
given geometry, the resulting determinant formed 
by the contour and mutual impedances of the 
n meshes will be a symmetric continuant which 
will, therefore, considerably simplify the other- 
wise formidable manipulations required of a 
completely expanded solution. 

In terms of the unknown junction potentials 
Eh (measurable between terminals g and any k), 
and considering the k-th junction (1 < k < n - 1), 

the steady-state equilibrium equation can be 
expressed as 

L 
(yk-I ,k + yk + yk,k+ I) Ek - yk,k -I I Ek+ I 

= ek-t,kyk-I,k + ek Vk - ek,k+I yk,k+I . (1) 

where any yk = Zit and yk,k+l = Lk;k+I 
It is seen from (1) that if the end -potential E, 

were known, then the entire set of junction 
potentials could easily be extracted through 
successive substitutions of known Ek + 1 and Eh 
in the respective junction equations, to yield 
Ek_1, by going from terminal n progressively 
backwards to terminal O. 

Thévenin's Theorem suggests that the structure 

The reference polarities appended to generators assume ;u, arbitrary 
potential rise, in the direction of positive current flow (clockwise for 
loop currents); affixed double -subscripts, when employed, refer to the 
datum junction g. 
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LL2\1+ 
R2 

given in Fig. 1 may be condensed into the one 
illustrated in Fig. 2 where a Thévenin equivalent 
generator is replaced across terminals g and 
n - 1; and furthermore, that Vg,, identically 
equals E,,. Equating short-circuit currents, it 
follows that 

Vgn_ 
Zgn Zn-t,n + Zg.n-I +'n 

en Ln-1,1t en-I,n nn1 

Ln 
1 

+ -g.n-1 Lg+t-1 + Lg 
Vg,,¡-1 

, (2) 

Zg,; l-1 

but, 
1 1 1 

/16 Lrl-I,11+Lg,n-t 

1 r Zn_I.nn) 1 

Lit 
1 + Lg,-1 + LgJ,-t 

Z11 -I 11 

1 

+ 7g.n-I 

hence, substituting (3) into (2) gives, 

en (+Xn;t) +en-,+ 7,- 
g.n-1 IR.n I 

Vg,i - - - - -- 
1 

(1 
Z_ I > 1 

L \ +Lg.n_1/ + lg,n-I 

. (3) 

. (4) 

This last result is also obtainable by applying 
the dual of Thévenin's Theorem, or what is 
known as Norton's Theorem, to the situation 
depicted in Fig. 2. 

If just a 2 -mesh network (n = 2) is consicered, 

L,(1+Z12)+efa+ gt e2U 
lRl 

71-2 gl 
Vg2 = 

but, from (2), 

lgl 
Lgt 

/,C1 +Z12)+ 
1 I81 "gt 

j go 

_Z go 

(5) 

(6) 

Substituting (6) into (5) and rearranging, yields, 

Z1-1 e:21 Z0f1 et Zotl eot go 
JJ+ 1 + J+ 1 +-J+-+-- 

Lg1 Zg1 Lgo Z1 Lgo Zgo Lgo 

[21_2 

C1 
Z12/1Z011 
7R1 7R1 ZRoJ 

1( 1 eo + eol + e12 el + e12 

C1 Z01/ 
5_(1 

Z01/\1 + /1'/ Zo Z1 Zgo 72 LRo / \ / \ / \ 7g 

1 l ( ¡O1 1 

Z 
/ LO1 1 +- 1J+1\1J l+ --J 

0 1 go Lgo LR1 

(7) 
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noticing that Vg, = eo and Zgo = 711, while from 
(3), for n = 2, 

1 Zo1 1 

( 
Zo1) 1 

1 + 11 1 + /g1 Zgo + '-go Z0 
. 

If a similar process is pursued for a 3 -mesh net- 
work (n = 3), the following result is arrived at:- 

e0 

l.'g3 = 

expanded and regrouped while doing away v\ ith 
the general impedances Zgk. It should be noted 
in passing, that each of the admittancesYgk = Zgk 
is expressible in a continued fraction. With the 
shunt branches expressed as admittances and 
the series branches as impedances, this takes the 
form, 

eol 
%e12 + e23 e1 + z + e23 

(1 
+ iol \j + ez /'ezs ( 1 Z011 

0 1 \ o J ` lgoj 
1 

Z +Z C 

+Tº1 1/2\ l01)(1 +12) 
0 1 , go -go /gl 

e3 / 
1 

ZO1 Í/ 1 Z-2)(11- 
'3 g0 Zg1 /g2 

1 

Z 0l1 
1 + 

Z lz 
1 + 

Z 2a + +- /3 /g0 Zgl /g2 

1'2 

/P,1 

(8) 

By the method of mathematical induction one may readily deduce the general expression for the 
voltage Vg appearing across the end terminals g - n of the n -mesh network of Fig. 1. Thus, 

= = 1 g = (eo + e01 + e12 + . . . + e-1,11) Ao + (e1 + e12 + . . . + e_I,v1)A1 

+ (e2 + e23 + + e,+-101) A2 + . . . + (e,1 -I + e,1 -I,,1) a_1 
+e,l4_1/(4o+A1+A2+...+An) 

I t -,- _ 
ek + eiJ+1 Ak Ak , 

k=0 k_0 
where the coefficients Ak (le = 0, 1, 

as follows: - 9, 

1 

Ao = z 
0 

1 21_ 

(1 
To1 1 

1 go 
JJ 

\ 
1, 

= (1 + 
z01 

\ / 
1/ 1 zi2 1 

zgoJ` 
Lg1\J 

A 
_ 4-(1 /I11)(1 /12 \( 1 L23\ 1 

3 
z3 + g0 + /gl + g2 

( =j\1+Zgo>(1+ j121. 
gl 

k=1,-1 /k k +_+1 
L `=ó Zgk 

(I 

.. (9) 

n), which are dimensionally admittances, are defined 

n-1 7n-1 
/g,-2 /. g,n 

I 

Expression (9) which exhibits the principle of 
superposition as applied to linear network loops, 
states that the potential across the end terminals 
g - a constitutes the sum of the component 
contributions of all active individual loops that 
pass through these end -terminals, considered 
separately; in a manner independent of the effects 
of all other voltage sources not series -connected 
along each such loop. The various factors involved 
in the individual coefficients Ak may now be 
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} (10) 

En 

Fig. 2. Thévenin's equivalen! of the circuit of Fig. 1. 
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Ygk = Yk + Zk-t,k + 1 

Yk-1 + 1 

"Zk_2,k-i + 1 

Yk-2 + 

+1 
Z01 + 1 

Yo 

To transform the expression of Ak into a series of recurrence functions, 

1 

A0 = L , 

a 

-1 Z1 C1 + Zgo/ Z1 l + A0 
Z01) 

A2 
1 / 1 

Z2 Zgo \\ Zgl 

(( 
011 ( l 

72 [\1 + Z2-7°)+ \1 +Zg0o)\Zo1 +Zgo 11)Z12 

= )- [i + Ao (Z01 + Z12) + Al Z1,1 , and similarly, 

A3 = L3 [1 + A0 (Zol + Z12 + Z23) + Al (Z12 1 Z23) + A2 Z231 

use is made of relation (3) :- 
1 

n= [1 +0(Z01+Z12+...+Zn-1,n)+1(Z12+Z23+ +Z71 -1.n)+ 
Zn 

+ An -2 (Zn-2,8-1 + Zn-1,8) -}- An -1 Zn-1,8 

k=n-1 j=n-1 

Zn 
+ Ak 

C 
ZÍ,j+1)] 

k=0 j=k 

Examination of (12) reveals the important 
relationship :- 

k=11-1 

Zn An = Zn-1 An -1 + ( Ak) Zn-1,8 
k=0 

and while generally, 
Zn 111 

Zn An = Zn-1 An -1 1 + 
Zg.n-1 

it can easily be shown that 
k=n 

Zgn = Zn An Ak . 

k=0 

Thus, evaluation of the admittance coefficients, 
preferably by means of (13), completes the solution 
for En. 

One may now readily notice that, should all 
series branches be shorted (ek,k+1 = 0 and 
Zk,k+1 = O), then, while every Ak = Yk, (9) 
reduces to what is known as Millman's Theorem, 
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namely, 
k=1t 

ekyk 

En=k_° (16) 

Yk k=0 
Recurrence relation (13) may also be norm- 

alized and expressed in terms of the dimensionless 
ratio Ak/A0 =.k. Thus, 

Lk ckk + ck ]Zk-1,k (1 < k <n), 
j=0 

.. (17) 

with 960 = 1. The introduction of Ok will prove 
useful should Z0 = 0, although, so far as the 
evaluation of En is concerned the series impedances 
Z0 and Z01 may always be conveniently inter- 
changed. 
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Illustrations 
The following examples will serve to illustrate 

the application of the suggested method to two 
specific cases. 
1. A detailed numerical solution of the 7 -mesh 
network shown in Fig. 3 will start by the deter- 
mination of E,, the end -potential, for which 
A° to A,, must first be evaluated. Relation (13) 
states that :- 

ZkAk = Zk 1'\k-1 + (',o + Al + . . . + Ak_1) x 

with ZA,í = 1, and therefore provides a simple 
and systematic procedure for arriving at any A. 

5V 7.811. 6.5n 12V 211 

the total impedance presented at the end - 
terminals. 
2. Given an n -mesh ladder network made up of 
equal series resistors and equal shunt pure 
capacitors, excited by a single voltage source 
E ° = ep(t), as shown in Fig. 4, let it be required to 
determine the distribution of voltage through- 
out the various branches of this network in the 
sinusoidal steady-state. Without recourse to 

mesh or node equations and 
the use of elimination or sub- 

stitution procedures, comparing this network 
with the general one in Fig. 1, it is readily 

2V 1.211 
16V 6.411 5.511 E7 

k -,,k(1 ck cn) 

Fig. 3. A specific example of an active la filer network. 

R R R R R R 

Fig. 4. The n -section RC filter network. 

By inspection, and listing all arithmetical 
operations in tabulated order, the exact solution 
will take the following straightforward form :- 

seen from (9) that since only 
source is involved, 

I1t Ak = ZIt-1 Ak-1 + [A0 + . . . Ak-1] X .Gk -1,1t . Ak= 
50 A° = 1 A° = 02 

12.3 A1 = 1 -t-0.2 x 7.3= 256 .. A1=02 
9.9 A2 = 2.56-;-0.4 x 3.5= 3.96 .. .. A2=04 

139 A3 = 3-96 + 08 x 2.0 = 556 . . A = 04 
70 A4= 556 + 12X12= 70 . A4=1.0 
875A,= 70 +22X0 = 70 .. AS=0.3 

131 A°= 70 +3Ox64=262 .. A6=20 
17.9 A,=26.2 +50X55=53.7 .. A,=30 

k=7 

A1t = 8-0 
k=0 

Applyi ig now expression (9) directly, 

R R 

TC 
CI 

the first voltage 

E° A° E° 
= k=, = 

i Ak Ok 
k=U k=0 

hence, 
k = 

= ebk 

\Vith j5 = jw, it follows that 
every series resistance divided 
by any shunt reactance equals 
pT where T = RC. Thus, refer- 

E,=L(45- 5 -12 -12 -16)x02+( -12 -12 -16)x0.2+( -12-12-16)x04 

+ (68 - 12 - 16) x 04 -{- ( -16) x 1-0 + (0) x 08 (- 16) x 20 + (40) x 3.01 

= -I- 3.0 volts. 

Also, 7 L, A, 
-. 

53.7 - 6-71 Sl, R7 -k=7 li- 
Alt 

k=0 

ring to (17), and taking Z11 = 0, the following 
sequence of polynomials becomes immediately 
evident: 
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46=1 963=3(pT)+4(p7)2+(pT)3 
01 = PT (A.4 = 4 (pT) + 10 (pT)2 -6 (pá )3 + (pT)4 
02 = 2 (AT) -1- (Í'T)2 ; sb5 = 5 (AT) + ` 0 (pT)2 - 21 (p7')3 + S (pT)4 + (pT)5, etc. 

Examination of the numerical coefficients of these polynomials will suggest that they can also 
be expressed in terms of the factorial fractions; í.e., 

' 
3 

k 
1 

" 

96h_ 
())+(+3l)(pT) +( 2)(pT)+. 

. .+w_XpZ) 
? + l)= r)PT. 

From elementary algebra it is known that: 
a a-1 n-2 (' a+l b)+ b )+ b ) .. b +.+b)=6+I) 

hence, applying this relation when summing all corresponding coefficients of (pT)k, 

F 
0 -1 r 0k 

= 1 + 
(I1 

+ 1)(pT) + 
(/? 

+l 
2)(pT)2 

+ 
(ti 

6 
3)(i)3+ 

. . . 

+el 
k=0 

--(1t r)(pT)r 
r=0 

l t n 
)(pr)> 

t 

die familiar polynomial expressing the voltage transfer ratio in the analysis of the n -mesh RC filter 
network. Because of the linearity of the given network one may readily write clown all a junction 
potentials in terms of E and thus express all possible driving point and transfer functions. 

LOW -FREQUENCY CROSSTALK IN 
PULSE -PHASE MODULATION 

By J. G. Little, B.Sc. (Eng.), A.M.I.E.E. 
(Communication from the Staff of the Research Laboratories of the General Electric Company, Limited, Wembley, England.) 

1. Introduction 
JN recent Years several papers have dealt with 

the subject of crosstalk in pulse -amplitude 
(p.a.m.), pulse -width (p.w.m.) and pulse - 

phase (p.ph.m.) modulation systems. Howe\ er, 
no satisfactory treatment of low -frequency cross- 
talk in pulse -phase modulation systems has yet 
appeared. 

This was first discussed by Moskowitz, liven, 
and Feit1, who give a formula for the crosstalk 
when the time constant of the distorting network 
is short compared with the time interval between 
pulses. This was extended by Flood', who con- 
siders the case in which both disturbed and 
disturbing pulses are modulated. He also 
obtains an expression for crosstalk when the 
distorting time constant is long, by considering 
the effect upon the spectrum of the modulated 
pulses. It will be shown that this method is 
unsatisfactory in the case of pulse -phase modula - 

1\1S accepted by the Editor, November 1954 
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tion. Finally, Fagot3 obtains an expression for 
crosstalk due to low -frequency distortion, but he 
makes conflicting approximations which invalidate 
his results. 

A 
C 
dv/dt 
1,,, 

fr J (x) 
k 
fi 

1,1 

SI 

R 

t, 

t 

1, 

.,,, 

LIST OF SYMBOLS 
= pulse amplitude 
= capacitance 
= pulse slope at slicing level 
= modulation frequency 
= pulse repetition frequency 
= Bessel function of first kind of order ,1 

= an integer 
= RC = time constant of coupling 
= pulse length 
= peak time modulation 
= an integer 
= resistance 
= time 
= time deviation of a pulse 
= separation of disturbed pulse from nearest 

disturbing pulse 
= 1/f, = repetition interval 
= phase angle of modulation 
= 27rf,,, = angular modulation frequency 
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2. The Spectrum Approach 
A circuit introducing low -frequency distortion 

will modify each component of the spectrum 
of a modulated pulse train. The effect of this 
will be the same as the addition to the pulse - 
train of a signal, each component of which is equal 
to the modification of the corresponding com- 
ponent in the spectrum of the pulse train. Cross- 
talk can be evaluated by considering the modifica- 
tion of those frequency components which involve 
the modulation frequency. 

It can be shown that in 
pulse -amplitude and pulse - 
length modulation the only 
component whose modifica- 
tion is important from the 
point of view of crosstalk 
is tl e modulation -frequency 
component itself. It has 
been assumed by Flood2 
that this can be extended to pulse -phase modula- 
tion as well. This assumption will now be 
examined. 

Consider the simple coupling circuit of Fig. 1. 

For a component of amplitude V1 and frequency w 

ti -1R V2= R-j/wC 
V1 (0,2E2 + jwN) =--l+w2K2 
V1( - I +ja, ) _ 7-4_702k 2- 

if wK I . .. (1) 
wli 

Thus the distortion is inversely proportional to 
frequency. 

1' 1 (t) = Alf, {- 

If we assume that 
x = 27rkl,tfr < 1 

xn 
Then J(x) _ 
Also if 7rl (kfr + uf,,,) < 1 

Then 
sin 771 (kfr - Iaf,) 

kfr+nf, 
and equation (2) becomes: 

la 
. sin (2irf,,,t + - irlfin) 

k-1 
[;Khi?y 

r 
. sin 27rkfrl J, . sin [-7r (kfr fnr) 1 + ± 

Id 7rkl,tfr sin [27r (kfr + 2f,,,) 1 + 2cb ± 27r1f,] + .... 1} 
(3) 

Since 27rleldfr < 1, the terms where n > can be 
ignored relative to the remainder. The remaining 
terms which can cause crosstalk arc those whose 
frequencies are f,,, and (kfr + f,,,). With the 
approximations which have been used, these all 
have the same amplitude Alfrld/K. Thus it is 
incorrect to assume that crosstalk can be calcu- 
lated by ignoring all components other than that 
of frequency f,,,. A similar analysis for p.w.m. 
and p.a.m. shows that for these types of modulation 
the assumption is justified so long as f,,, < fr. 

V2 - 

where K = RC 

Fig. 1. The simple 
RC -coupling circuit 

considered. V, R V2 

Now the of a train of phase -modulated pulses is given by Fitch' as: 

17 (t) = AIJr j 1 + `?7rldf,,, . 

sin 77/1-, 
. cos (2rrfn,l + - 7rlfn,) 

111 

7rlf nI 

+2 J,(27rkldfr) sin 7r1 (kfr+nfn,) cos [27r (kfr nf) 1 u- TrilJn l 
k =1 7rklJ, 
II -00 

From equation (1) the effect of the coupling circuit will be equivalent to adding to the pulse 
signal F1(t) where 

1' 1(1) = Alfr 5 1 - l°l 
sin 7rl nI 

' 

sin (27rf,nt + - 77lfn,) 
l 1 7rlf 

- 7 J,a (27r kld fr) 

Now J,, (x) 

sin 771 (kfr + of,) 
k I 

27r_ K (hfr + uf ,) - - - 
irkifr 

train a 

sin [27r (kfr + ,lfnr) t + lick - 7rulfI] 
} 

x x2 x4 - 1 - -r - - - 2,Irz( 2 (2n + 2) 2.4 (2n + 2) (2n + 4) 
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3. The Waveform Approach Thus the crosstalk voltage vt2 is sinusoidal, 
having an angular frequency w,n and amplitude A better method of approach is to consider the 

distortion of the waveform of a single 
pulse, and then to sum the effects of 
all preceding disturbing pulses upon 
a given disturbed pulse. 

In Fig. 2(a) a rectangular pulse is shown. 
Fig. 2(b) shows the same pulse after transmission 
through the network of Fig. 1. The amplitude of 
the 'tail' of the distorted pulse is 

Alld [(1 - e -41K cos w,nt3) ++ 
(e-',ltc sin w,nt3)2] Y/ 

'z I{z e 
1 

+ e_ir,tt: - 2e-r.1h. cos w,nt3 
r 1K 

uo (1) 
= - Ae-r u: (e-'" - 1) 

_ --41 h. e-1, 1' if I <K .. .. (4) 

If the pulse of Fig. 2 (b) is displaced so that 
its trailing edge occurs at time 1i, equation (4) 
becomes 

where K = RC 

v, (t) = - 
1.Al 

lr ,,)Itc 

and the amplitude change in the `tail' due to this 
displacement is 

v (I) = y1 (1) - v,, (t) 
IC11 

[e ¡r rJlt -e-119 

Al e_rtrc VP` 
li 

--.-1111 
.etrK if1i<K A 

2 
(5) 

Now let us consider a train of modulated pulses, 
and the sum of their effects upon a single un - 
modulated pulse. 
Let t l = 1,1 exp. j ( - 1113 wm + ) 

1=t2 }-)113 
where t, = separation of disturbed pulse from 

nearest disturbing pulse 
l.i = 1/f, = repetition interval 
Id = peak time modulation 

w,,, = angular modulation frequency 
= modulation phase angle 

71 = an integer 
The sum of the disturbing voltages at time t2 due 
to all preceding modulated pulses is given by: 

71> 
A11rt 

L - ¡2 . Cxp.7 (- 78t3wnt -- 0). exp 

= Alld e-',11: erm 
K2 

CO 

.-llld 
rK 2r,ltt lx _ . e (1 + e 2e cos wn,t3)- Kz 

(6) 

This voltage will be superimposed on the pulse, 
causing amplitude modulation, and this will be 
converted into time modulation of the pulse 
flank by any slicing or squaring process. If the 
slope of the pulse at slicing level is dv/dl, then: 

signal amplitude td ld 

crosstalk amplitude = gl = Vt2 . dt/dv 
dv K2er_tx _ _ (1 + e -2,,/K -2 e-'"' . cos win/3) " (7) dt ' Al 

If w,, ' 1//3 

Id dv liZer.lK 

8l_ dt Al 
If K <13 
ld dv K2e1d h. 

St dl Al 

(1 - e -WK) (8) 

This last result can be obtained from equation 
(23) of Reference 2, by letting l <K. 

(a) (b) 

Fig. 2. false waveform (a) and its shape after an RC - 
coupling circuit (b). 

If we take the particular case in which the pulse 
shape is a `raised cosine', 
i.e., v = 0 for - oo < t < - l and l < t < o0 

v= 2(1 + cos !) for -1<t<1 
Then the maximum slope is at half 

-1i (12 + rrt3) 

exp. - r:t3 jwn, + K 

This is the sum to infinity of a geometric 
progression. 
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height, where 

Substituting in equation (7) 

Id irK2e',11( 

' ' St 212 

All 
71 = ,t 

e r-lK eid 
a 7 1 

2IiL 1-ex 1).-t + K ('w,n l ) 

.-111,1 1- e',f' (cos wnit3 + j sin win/3) 
ÍC2 1 -j- e'' 1K - cos w,,,13 

dv 

= 
77-Ad1 

21 

(1 + e-21,11; - 2e-1,11( cos w113) l (9) 

These results are only correct 
for a single distorting network 
of the nature of a coupling 
or decoupling circuit. Unfortu- 
nately, they cannot easily be 
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extended to several such networks in successive 
stages of an amplifier, owing to the fact that 
the pulse `tail' is no longer exponential, for the 
addition of the contributions of the various 
disturbing pulses becomes more difficult. How- 
ever, they (lo give a guide to the order of low - 
frequency response necessary in such cases for 
the attainment of a given quality of transmission. 
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RADIATION FROM AERIALS 
By Giorgio Barzilai * 

(Polrleelm Institute of Brooklyn, New York.) 

SUMMARY.-A formal expression for the complex power radiated by a thin, centre -driven 
aerial is derived in terms of the vector potential on the surface of the conductor, making no assumption 
on the distribution of current. .A similar expression is then obtained for the complex power radiated 
by the same aerial, on the assumption of sinusoidal -current distribution. By letting the radius of the 
conductor approach zero, the asymptotic forms of the two aforesaid expressions are compared. 

1. Introduction 
T has been known for more than half a 
century/1.2'3 that, on thin conducting wires, 
energized at one point by a sinusoidal 

e.m.f., the current distribution is approximately 
sinusoidal. The sinusoidal approximation has 
been used by se\ eral authors'. 5 s to compute the 
real and reactive power radiated by a thin 
centre -driven aerial. The method calls for the 
calculation of the tangential component of the 
electric field on the surface of the aerial. Schel- 
kunoff has called this approach a radiation 
paradox, since the tangential electric field on 
the surface of the conductor, computed on the 
assumption of sinusoidal current, is inconsistent 
with the values imposed by the metallic 
boundaries. 

The legitimacy of the said method of calculation 
has been discussed in the literature8-13. For 
the real power radiated by the aerial the method 
can be easily justified, at least asymptotically 
for infinitely thin wires. Less simple, and not 
usually discussed, is the question relative to the 
reactive power. 

It is the purpose of this papel to derive a 
formal expression for the complex power radiated 
by a thin, centre -driven, perfectly conducting 
aerial, making no assumption on the distribution 
of current. A similar expression is then obtained 
for the complex power- radiated by the same aerial, 
on the assumption of sinusoidal current distribu- 
tion. By letting the radius of the conductor 
approach zero, the asymptotic forms of the two 
aforesaid expressions will be compared. 

At present at 1st it tito Snperiore P.T., Foudazione U. liordoni, (toma. 

MS accepted by the Editor, September 1954 
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2. Statement of the Problem 
The aerial in Fig. I is assumed to be perfectly 

conducting, and of circular cross-section. The 
applied voltage V11 is assumed to act 
through the gap d of infinitesimal 
length. \\'e have 

Ez = - V 08 (z) .. (1) 

where Ez = Ez(z) is the tangential 
electric field on the surface of the 
aerial, and 8(z) is the Dirac function. 

In the following we shall indicate 
with / = 1(z) the current in the 
aerial, and we shall assume 

I(Th)- = h .. .. (2) 

zh 

.s- 
T 

i 

Z 

Fig. I. Geometry of ci centre -driven cylindri- 
cal aerial. 

The complex power I' radiated can be expressed 
as follows 

j = - Ez1 * dz = I "1 * (0) (3) 
k 

where the asterisk indicates the complex con- 
jugate, and use has been made of the r.m.s. 
values. 

If now we assume sinusoidal current distribu- 
tion, the complex radiated power will be expressed 
by the integral 

+h 

I's = - J Ez, s1 ,n Silt B dz.. (4) 
h 

where Ir is the maximum amplitude of the sine 
wave, O = lz(It - I z 1 ), k = 277/a, A is the \Va\ e- 

223 



length, and the index s has been added to indicate 
that the relative quantities refer to sinusoidal 
current distribution. 

Formulae to compute Es,s 
literature". 

Our aim is to find analytical expressions foi- 
l' and Ps which are suitable for comparison. 

are given in the 

3. Formal Solution for the Current 
With reference to Fig. 1 we have 

d 
jwµA - dz 

- V°S(z) = 
dA 

dz 
- jwEV . . . 

(5) 

(6) 

where A = A (z) and V = V(z) are vector and 
scalar potentials on the surface of the aerialt, 

is the angular frequency, and E and IL are the 
dielectric constant and the magnetic permeability 
of the medium surrounding the aerial. 

From (5) and (6) we obtain 
A =B cos 0+C sin B 

V = j- [B sin B -C cos 0] E (z) . . 

where n = VI,¿/E" 1207r, for free space. 

E(z)=+1 z>0 
-1 z<0' 

and B and C are constants of integration. 
On the other hand the integral expression of 

in terms of I is well known. Equating this 
expression to the right-hand side of (7) we 
obtain the following integral equation for the 
current 

r +f, 

J G(z, z') I(z') dz' = B cos 6 + C sin B 
475 

1 'n 

J 

e -i , 

(; (z, z') = 2r r d7 .. 
n 

r = [(z - z')2 + 2a2 (1 - cos a)]Ire 

(7) 

(8) 

(9) 

(10) 

Equation (9), with a simplified kernel, has been 
solved by Hallen'5,16, in terms of the applied 
voltage V. In our case it is more convenient to 
prescribe the current I(z0) in an arbitrary point 
z = z°. V° will therefore become an unknown 
quantity. 

It can be shown that the integral on the left 
of (9) can be written as follows 

A (z) = [.(21(z) + f(z)] .. (11) 

S2 = 2 loge 
24 
a 

In (11), f(z) is a function dependent upon the 
current distribution, and therefore generally 
unknown, but it is continuous at a = 0. 

We shall now express the constants B and C 

t Because of the one dimensional character of the problem the 
vector potential can be treated as a scalar quantity. 
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in (7) and (8), in terms of the vector potentials 
at z = h and z = z0. Taking into account (11) 
we obtain 

B=A(h) 
where we put 

1(zo) 

' 

f(zo) - f(h) cos 00 

1 sin 00 
(z°) sin B 

C = 
-177.[I,,,S2 

+ 95(zo)] . 

o 

(12) 

(13) 

and 00 = k(h - !zo ) ¢ (n + 1) ar, u = 0, 1, 2, .. 
Upon taking into account (11) and (12), (9) 

can be formally solved as follows 

1(z) = I,,, sin B+-1[f(h) cos B -f(z)+ yb(z0) sin 0] 

= Is(z) -- 1c(z) .. .. .. (14) 
The current 1(z) can be thought of as the sum 

of two components: a sinusoidal principal 
current 

Is(z) = It sin 0, (15) 
and a complementary current Ic(z), whose 
definition follows from (14) and (15). 

In virtue of the continuity of f(z) at a = 0, 
from (14) it follows that 

lim 1(z) = I»t sin 0 (16) 
a ->o 

It is emphasized that, as Aharoni points out", 
it would be incorrect to conclude from (16) that 
(15) is the asymptotic solution of (9) for a - 0. 
The complementary current, in fact, brings a sig- 
nificant contribution to the integral in (9), even in 
the limit for a -> 0. This can be easily proved 
by inserting (14) into (9) and then taking the 
limit for a -> 0. The details of the proof are 
evident if one notices that 

+hf 
G(z, z') f ) dz' 

+f, a-ikro 
_ f(z') dz' = fs(z) lim 

a -+°J -N 

where we put 
h0 = [(z - z')2 + a2]11.2 

lim f(z) = fs(z) .. .. (17) 
a -3.Ií 

In virtue of the continuity of f(z) at a = 0, an 
explicit expression1s for fs(z) can be found from 
the definition (11), assuming the current distribu- 
tion (15). The approximation made on the 
kernel (10) causes, as Schelkunoff points out's, an 
error in the evaluation of the integral of the order 
of a2. 

4. Analytical Expressions for P and Ps 
To compute the power P we recall that 

Vo = 2V(0+) .. (18) 

where I'(0+) is the value approached by V(z), 
when z -0 from the positive side. (18) follows 
from (5) if this equation is integrated with 
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respect to z from -h to +b, and then the limit 
is taken for b -> O. Using (3), (8). (18), (13) and 
(14), we obtain 

P = 2V (0+) 1* (0) = 211 ,,,n j .9 (h) - [ (0) + 

where /c(0) is the value of the complementary 
current at z = 0, and H is a function continuous 
at a = O. 

It is easy to cast the power Ps in a form 
suitable for our purposes. From (4) we obtain 

for n = 0, and u = 1 using Hallén's expansiott20. 
The result (23), which is the typical relation- 
ship between input and output power in a uniform 

Ic^` (0) 
-1 Si 

cos kh + . (19) 

transmission line of length 8/4, can be Jeri ed 
from Schelkunoff's theory'. 

The result (24) states that when kh n7r/2 
the difference between the reactive powers 
approaches zero when a -+0, only if the current 

( + /t dl' 
I)s = Int [jap...1 s + -dz sin O dz = 2jIlnn 

L.-Is(h) 
- .-fs(0) cos kh 

h 

where the index s refers to quantities computed 
using (15), and the. last step in (20) is easily 
justified by integrating by parts the second 
integral on the right, twice, first with respect to 
(dVs/dz)dz, and then with respect to Vsdz. In 
performing this integration we have to recall 
(6), and to notice that (d I z' /dz) = E(z), (de {z)/ dz) 
= 28 (z), and that As and Vs are respectively 
even and odd functions of z. The result (20) 
can also be obtained by simple inspection of 
the integral expression (4), if in place of E2r s 

we substitute the expression for this quantity 
obtained from the well-known formulae 14 for the 
field of a sinusoidal filament of current. 

By comparing (19) and (20) and keeping in 
mind (14) and (15), we can write 

P = Ps - jQ - Re I (0) cos kh { .. (21) 

where H' is a function of a, continuous at a = 0. 
From (21) \ve can conclude that asymptotically 
when a=0 

P = Ps 

I) = Ps 

if kh = (2n + 1) 72 

if kh = (n -}- 1)7r 

Re P = Re Ps if kh 11 

(22) 

(23) 

(24) 

Img 1 1mg Ps 0 
Where Re and Img indicate the real and imaginary 
parts respectively and n = 0, 1, 2, . . . 

The result (22) has been obtained numerically 

. (20) 

on the aerial is prescri led at the input terminals; 
i.e., Ic (0) = 0. In this case, however, both 
reactive powers approach infinity. 
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CORRECTION 
In the June Editorial it was stated that a breakdown 

in any one of the in(lixiclual transmitters at the B.I3.C. 
f.m. stations would cause a reduction of signal strength 
of only 3 db. This figure should be 6 db, since one-half 
of the power is then radiated by only one-half of the 
aerial and the resulting reduction of aerial gain produces 
an extra 3-db loss. Similarly, a fault in one-half of the 
aerial will cause a 6-dh drop in the signals for all three 
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programmes, since it not only halves the aerial gain but 
makes three transmitters ineffective. 

POST OFFICE APPOINTMENTS 
Sir Gordon Radlev has been appointed Director -General 

of the Post Office in succession to Sir Alexander Little. 
He is the first engineer to become Director -General. 

R. J. I'. Harvey and S. D. Sargent have been appointed 
Deputy Directors -General in succession to Sir Gordon 
Radlev and Sir Dudley Lumley. 
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NEW BOOKS 
Transistor Audio Amplifiers 

By RICHARD F. SHEA. Pp. 219 + xiii. Chapman 
& Hall Ltd., 37 Essex Street, London, W.C.2. Price 52s. 

The outstanding feature of this book is that it is so 
much more practical in its outlook than most books 
dealing with transistors. It is confined to the junction 
transistor at audio frequencies. There is a short intro- 
ductory chapter on theoretical matters and then a 
lengthy one on transistor parameters. These are 
derived from the conventional black box and with them 
some equivalent circuits. 

The parameters and equivalent circuit which are 
chiefly used in the book are not the usual ones. The 
so-called h parameters are used with an equivalent 
circuit comprising a pair of resistances, a collector 
circuit constant -current generator and an input -circuit 
constant -voltage generator. It is claimed that these h 
parameters are not only easier to measure but are less 
affected by changes of operating conditions than others. 
The nomenclature, however, is obviously inconvenient, 
when the same letter with only different subscripts 
stands for resistance and also for dimensionless quantities, 
such as current and voltage amplification factors. 
Some 48 pages in Chapter 2 are devoted to tabulated 
data on American junction transistors. 

Chapter 3 deals with basic amplifier design and Chapter 
4 with multi -stage amplifiers. Chapter 5 is entitled 
"Preamplifiers" and deals with a diversity of subjects, 
such as noise, impedance considerations, the effect of 
frequency and gain control. This last well illustrates 
the practical outlook of the book, for quite a bit of space is 
devoted to matters which are important in practice, but 
which are often overlooked in purely theoretical discus- 
sions. Chapters 6 and 7 are devoted to power amplifica- 
tion, both class A and class B, and the final chapter is 
descriptive and, to some extent analytic, of some com- 
plete amplifier designs. 

Throughout the hook the importance of stabilizing the 
operating point and of temperature are kept well to the 
fore. It is a book which will undoubtedly be of con- 
siderable use to amplifier designers. \V. T. C. 

Servomechanism Practice 
By WILLIAM R. AHRENDT. Pp. 349 + vii. McGraw- 

Hill -Publishing Co. Ltd., 95 Farringdon Street, London, 
E.C.4. Price 50s. 

This book is of an elementary character and is almost 
entirely devoid of mathematics. The outlook is practical 
rather than theoretical. After an introductory chapter, 
descriptive of a simple servomechanism, there are two 
chapters describing the physical form and characteristics 
of potentiometers and synchros. Chapters on double - 
speed synchronization; demodulators and modulators; 
network and various amplifiers (electronic, magnetic, 
rotating) follow. Other chapters cover rate generators, 
servomotors and hydraulic systems. There is a chapter 
on design and one on manufacture. 

The general form of treatment is descriptive and the 
book forms a useful introduction to the subject. 

\V. T. C. 

Remote Control by Radio (2nd Edition) 
lay A. H. BRUINsMA. Philips' Technical Library, 

Popular Series. Pp. 97 + viii. Cleaver -Hume Press 
Ltd., 31 \\right's Lane, Kensington, London, \V.8. 
Price 8s. 6(1. 

Precision Electrical Measurements 
Proceedings of a Symposium held at the National 

Physical Laboratory, 17th -20th November 1954. 
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Pp. 329 + xxii. H.M. Stationery Office, York House, 
Kingsway, London, W.C.2. Price 27s. 6d. 

CABMA Register of British Products and Canadian 
Distributors, 1955-56. 
Pp. 760. Published jointly by Kelly's Directories l.td. 

and Iliffe & Sons Ltd. for the Canadian Association of 
British Manufacturers and Agencies. Obtainable in the 
U.K. from Iliffe & Sons, Dorset House, Stamford Street, 
London, S.E.1, price 44s.; in Canada, from Managers of 
British Trade Centres: Royal Bank Building, Toronto; 
Arrowhead Building, Montreal; and Hall Building, 
Vancouver. 

In its Buyers' Guide, this book provides an alphabetical 
list of some 4,000 British products available to the 
Canadian market, together with their suppliers. French 
equivalents of the headings are listed in a separate 
Glossary. There is also a directory of 4,500 British firms 
with details of their Canadian distribution arrangements. 
A further section enables products to be identified from 
proprietary names and trade marks. 

STANDARD -FREQUENCY TRANSMISSIONS 
(Communication from the National Physical Laboratory) 

Values for June 1955 

Date 
1955 

June 

Frequency deviation from 
nominal: parts in 108 

MSF 60 kcis 
1429-1530 
G.M.T. 

Droitwich 
200 kcis 

1030 G.M.T. 

I +0-4 +1 
2 +0-5 +I 
3 +0.5 +1 
4 +05 +2 
5 +0.5 0 
6 +04 +2 
7 +04 +2 
8 +0-4 - +I 
9 +0-5 +1 
0 +05 +1 

I +0-5 +1 
2 +0.5 +1 
3 +0.5 +1 
4 +05 +I 
5 +0-5 +1 
6 +0-5 0 
7 +05 +I 
8 NM +1 
9 NM +1 

20 -0.2 +2 
21 -0-3 + 
22 -03 + 
23 -0.3 + 
24 -0-3 + 
25 NM + 
26 NM + 
27 -02 + 
28 -02 +2 
29 -02 +2 
30 -03 +1 

Lead of MSF 
impulses on 
GBR 1000 

G.M.T. time 
signal in 

milliseconds 

-8-8 
-7-2 
-7-8 
NM 
NM 
NM 
NM 
NM -42 
-29 
NM 
NM - 0-7 
-0.3 
-0.2 
NM 
NM 
NM 
NM 
-I 5-7 
+4-1 
+4.4 
+2.6 
+5.7 
NM 
NM 
+7.3 
+7-7 
+82 
+62 

The values are based on astronomical data available on 1st July 1955. 
NM-Not Measured. 

Change in MSF pulse modulation: From the 1st luly 1955 the 60th 
pulse in each minute of pulse modulation is lengthened from 5 msec to 
100 msec and the 59th pulse, previously suppressed, is restored. 
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