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Radio -Astronomy 
a direct outcome of the spectacular ad - 5 
vancess made in radio technique during the 
1939-45 war, there has been created and 

developed in the past decade a new science which 
has now received the well -established name of 
radio -astronomy. In this science, radio -frequency 
reception technique is used to explore radiation 
emanating from various sources in the universe. 
While it was regarded initially, perhaps, as a 

supplementary aid to astronomy by normal optical 
means, the advances and discoveries which have 
already been made are so spectacular as to leave 
no doubt of the fact that radio astronomy is now 
firmly established as a science in its own right. 

It has long been an accepted fact that the 
electromagnetic radiation from a so-called 'black' 
body would extend over a very wide range of 
frequencies or wavelengths, the amount and 
distribution of radiation depending upon the 
temperature of the source and the absorbing 
characteristics of the medium through which it 
travels towards the ieceiver. More than fifty 
years ago, Professor S. P. Langley measured the 
energy of the sun's radiation through the visible 
spectrum and to a considerable distance on either 
side. After various unsuccessful attempts to ex- 
tend this measurement into the radio -frequency 
spectrum, the reception of 'cosmic noise' on a 
wavelength of 187 cm (frequency 160 Mcrs) was 
reported by G. Reber in 1940, and later established 
as emanating from the sun ; while some nine years 
earlier R. G. Janskv had discovered radiation 
coming from the direction of the 1\lilky Way on 
frequencies in the range 10-20 Al(,s. .\lso 
British radio amateurs, notably I). \V. Height man, 
had noticed the existence of a curious hiss in 
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their receivers on wavelengths of about 10 

metres; they found this to occur in the daytime 
only and to be associated with periods of solar 
activity. In 1945, G. C. Southworth described 
the measurement of radiation from the sun on 
wavelengths between I and 10 cm (frequencies 
between 3 and 30 Gels*); and he showed that 
the power flux received, which was of the order 
of 10-20 watts per square metre per ct de per 
second, was consistent with the Rayleigh -Jeans 
relationship for the distribution of radiation 
from a sun at a temperature of about 20,000° h, 
or about three times the optically -observed 
temperature. 

During the war years, radiation from the stns 
was observed as a source of interference in the 
operation of British Army radar sets on wave- 
lengths between 4 and 6 metres; and Sir Edward 
Appleton and J. S. Hey described, in 1946, the 
considerable increase in solar 'noise' on these 
wavelengths which accompanied the passage of 
sunspots over the sun's visible hemisphere. At 
about the same time, similar observations on the 
sun were being made by J. L. Pawsey and his 
colleagues at Sydney, Australia, using a wave- 
length of 1.5 metres (200 \lc, s). 

From this starting point centres of research in 
radio -astronomy have been established at Cam- 
bridge and Manchester Universities in this country, 
in Australia, and in the United States of America, 
Canada, France and Belgium. The results of the 
work already achieved have not only added 
considerably to our knowledge of the universe 
and the various sources of radiation in it, but 
they are also of considerable practical importance 
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in many instances. The radio astronomer has, 
for example, provided a means of exploring the 
characteristics of the ionosphere by using 
radiation coming to us from outside the earth's 
atmosphere, in contrast with the usual method 
of sounding the ionosphere by emitting and 
receiving pulses of radio waves at the earth's 
surface. A tremendous advance has also been 
made in the study of meteors which can now be 
detected by clay or night under all weather 
conditions, and on a scale which could never be 
approached in optical observations. Such dis- 
coveries, together with the adv anees in apparatus 
technique, which have made them possible, arc 
of considerable importance in the future of 
radio communications. 

The Radio Telescope 
The first major advance made in this new 

science was the development of the `radio tele- 
scope' as an instrument which could be used 
to determine the direction of arrival of these 
radio waves which originate outside the ter- 
restrial atmosphere. The simplest type of 
telescope consists of a concave mirror with a 
receiving aerial at its focus; but bearing in mind 
that the wavelength of light is of the order of 
5 x 10 5 cm, it will be appreciated that to have 
the same directional resolving power as an astro- 
nomical telescope, the corresponding radio instru- 
ment would need to be a million times the 
diameter, for a wavelength of 50 cm. In spite of 
this limitation, a great deal of useful work has 
been done already in various countries with the 
steerable paraboloid type of aerial with diameters 
up to 75 ft. The greatest advance in this direction 
has been achieved at the Jodrell Bank Experi- 
mental Station of the University of Manchester, 
by a team of scientists under the leadership of 
Professor A. C. B. Lovell. After gaining experi- 
ence with a semi -fixed telescope of 220 -ft aperture, 
which is normally directed vertically upwards, but 
can be displaced +14° from the central position, 
a completely steerable radio telescope, with a 
paraboloidal reflector 250 ft in diameter, is now 
in an advanced stage of construction. 

An alternative technique has been adopted, 
notably at Cambridge in this country and at 
Sydney in \ustralia, in which an array of aerials 
with appropriate reflectors is installed along a 
fixed base -line forming a linear type of inter- 
ferometer with a narrow scanning beam in either 
vertical or horizontal direction as may be required. 
The rotation of the earth is used to sweep this 
beam across the sky while the radiation from 
active sources is received and recorded. Such 
interferometers have been constructed and used 
by 1\l. Ryle at Cambridge for certain frequencies 
in the range 80 to 200 Mc/s, while \V. N. 
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Christiansen in :Australia has developed and con- 
structed an array of 32 parabolic reflectors along 
a base -line of nearly 720 feet, to provide a resolu- 
tion of about one minute of arc on a wavelength 
of 21 centimetres (1,42(1 \leis). More recently, 
B. Y. Mills and his associates have constructed a 
combination of two arrays, of an overall length of 
1,00 ft and which cross at right angles, giving a 
cone of reception of about 45 minutes of arc at a 
wavelength of 35 m (86 Mc s). 

Concurrently with this dev clopment of aerial 
systems, various novel receiving devices have been 
produced which enable the wanted radiation to be 
detected and recorded in the presence of a general 
background of noise radiation from extra -terres- 
trial sources. It has so far usually been possible 
by a judicious choice of frequencies and direction 
of observation to avoid serious interference from 
man-made radio sources, including those used for 
communication and navigation purposes: but a 
constant watch is necessary in order to secure the 
preservation of suitable spaces in the radio - 
frequency spectrum, for the radio astronomer to 
continue the good work that he has already 
accomplished. 

Radio Observations on the Sun 
The amount of radiation received from the sun 

at rac io frequencies has already been found to 
vary markedly with the actual frequency or wave- 
length used and also with the state of quietness or 
disturbed conditions on the sun itself. \t centi- 
metre wavelengths, the radio energy received from 
the sun in a quiet condition is found to correspond 
to an apparent temperature of two or three times 
that corresponding to the value for optical 
measurements. As the wavelength is increased, 
however, the radiation corresponds to a rapidly 
increasing apparent temperature of the sun's disk. 
For example, at wavelengths of one metre or 
above (300 \leis or below) the flux of energy 
received corresponds to an apparent solar tem- 
perature of about one million degrees absolute; 
furthermore, it is found that the 'radio' sun is 
somewhat larger than the 'optical' sun and that, 
unlike the optical radiation, the emission at radio 
frequencies falls off gradually near the edge. 
These observations are consistent with the assump- 
tion that the main source of radiation at the lower 
radio frequencies is the solar corona which, from 
other reasoning, is supposed to have a temperature 
of the order of one million degrees and to be 
completely ionized. Radio -astronomy has thus 
provided us with a new and powerful tool for 
studying solar corona; and it has already demon- 
strated that even under undisturbed conditions 
the temperature over the area of the sun's disk 
is by no means uniform. 

While we thus have a reasonably good theory 
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for the emission of radio waves from the quiet 
sun, it is to be noted that there is no correspond- 
ingly simple explanation of the greatly enhanced 
radiation that accompanies the presence of sun- 
spots travelling across the sun's disk. Increases 
in the 'noise' level of the sun's radiation by a 
factor of one thousand over that of the quiet sun 
have already been observed. More than one type 
of such increase in radiation has been recognized, 
and while these outbursts are generally associated 
with visible sunspots, the presence of the latter 
is not always accompanied by solar noise storms. 

This phase of radio -astronomy is of great im- 
portance to the radio scientist and engineer, in 
view of the established close connection between 
sunspots and the ionospheric conditions which 
determine the efficiency of radio communication 
over great distances. It is possible that future 
research may establish a radio -noise index of solar 
activity, which will be found more useful and 
reliable in the long-term forecasting of high - 
frequency radio transmission conditions involving 
the ionosphere. 

Radio Stars 
In a different application, the development of 

radio -astronomy has already indicated the exis- 
tence of a large number of discrete sources of 
radiation distributed throughout the sky, and the 
emission of which is superimposed on a relatively 
continuous background radiation. The distribu- 
tion of intensity in this background follows closely 
the contours of the galaxy or Milky Way. In this 
field, the interferometer has proved invaluable in 
locating the discrete sources or radio stars as they 
are termed ; and the most striking fact discovered 
so far is that very few of the conspicuous stars 
and nebulae of our Milky Way system are among 
the recognized objects in the radio sky. Con- 
versely many of the radio stars, of which nearly 
2,000 have now been identified and catalogued, 
have no obvious and easily -recognized counterpart 
in the optical astronomers' observations. The 
strongest observed radio star, in the constellation 
of Cassiopeia, has a position in the sky which is 
far from conspicuous on the best optical astro- 
nomical photographs; although the intensity at 
metre wavelengths corresponds to a flux of about 
10-22 watts/m2 per cycle per second, or about one 
per cent of that received from the quiet sun at 
centimetre wavelengths. 

This example serves to illustrate the difficulty 
in accounting for the existence and nature of these 
radio stars. It has been estimated, for example, 
that if all the visible stars emitted radio waves 
like the quiet sun, the total radiation would only 

be about 10-8 of that observed from the galaxy. 
If they all emitted like the sun when it is most 
disturbed, the total radiation would still be less 
than one per cent of that recorded by the radio 
astronomer. This experience of the intense 
emission received from the radio stars forms a 
surprising inversion of the familiar ratio of 
sunlight to starlight, and emphasizes our lack of 
understanding of the fundamental mechanism 
of the emission of radiation from the galaxy itself. 
While no firm theory has yet been advanced 
to explain the observations, this work is of direct 
practical application to radio communication. For 
example, the second most intense source in the 
sky is the radio star in Cygnus, which at times 
gives a very steady radiation and at other times 
displays fluctuations of intensity or 'twinkling'. 
This twinkling is due to irregular diffraction of 
the incoming radiation in passing through the 
upper regions of the ionosphere. By the simul- 
taneous observation of these irregularities at 
three receivers, the direction and speed of move- 
ments or 'winds' in the F region of the ionosphere 
have been determined. 

The 21 -cm Line of Neutral Hydrogen 
This review may be concluded by a brief account 

of what is probably the most spectacular achieve- 
ment of radio-astronomy-the discovery in the 
radio spectrum of the neutral hydrogen line at a 
wavelength of 21 cm (about 1,420 Mc;s). At a 
wartime astronomical colloquium held in Holland 
in 1944, H. C. van der Hulst predicted that it 
might be possible to detect the 21 -cm radiation 
originating in the clouds of neutral hydrogen in 
our galaxy. Seven years later-in March 1951- 
H. E. Ewen and E. M. Purcell of Harvard Uni- 
versity announced their discovery of this radiation, 
and this was quickly confirmed by radio groups 
in Holland and Australia. The radiation results 
from the transition of the ueutral hydrogen atom 
between two energy levels and provides an entirely 
new means of research on the nature and structure 
of the Milky Way and of other galaxies outside 
our own. One great and fortunate circumstance 
is that the dense interstellar dust clouds in our 
own galaxy which obscure our optical view of the 
more distant elements of its spiral structure, 
transmit unabsorbed the 21 -cm radiation reaching 
us from great distances. This is one example of 
the manner in which radio -astronomy has provided 
a means of observing farther into the universe 
than has hitherto been possible by the largest and 
most expensive of optical telescopes. The outlook 
for the future is vast indeed. 
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MEASUREMENTS IN 
TRAVELLING -WAVE STRUCTURES 

Use O,('Resonant-Cavity and Perturbation IVI('l-ho(/s 

By A. W. Aikin, M.A., Ph.D., A.M.I.E.E. 
(l2i sa,rth U. horNneul, .11drojalilon-Pick,-, Electrical Co. Ltd.) 

SUMMARY.-The measurements of resonant frequency and Q of a resonant cavity are yell -trial 
methods needing little introduction. Less well known, but extremely useful, is the method of measuring 
the field distribution within a resonant cavity by introducing a small perturbing object. .\ combination 
of these methods is of great value in determining the characteristics of a travelling -wave structure, 
and in particular has been used to obtain information and design data on the corrugated waveguide 
structures used in linear electron accelerators. 

1. Perturbation Methods 
THE principle of perturbation methods 

depends upon the fact that if a small 
perturbing object, e.g., a small metallic 

sphere, is introduced into a resonant cavity, a 
change in resonant frequency takes place which 
may be used to evaluate the field strength at the 
point of perturbation. Slater' has given a general 
theorem which states that if the walls of a cavity 
are pushed in at a point of high magnetic field, 
the resonant frequency is increased, while if 
pushed in at a point of high electric field the 
resonant frequency is decreased. He also derives 
the quantitative relationship given below. A 
rigorous proof of the general perturbation theory 
is both lengthy and tedious and has been attempted 
by several authors2-'. The most satisfactory 
proof known to the author is that of Casimir2. 
No attempt will be made to reproduce such a 
proof here but the following derivation due to 
J. Brown (unpublished) and based upon lumped 
circuit concepts is a novel and instructive 
illustration of the concepts involved. 

We can consider our cavity in terms of a 
series -tuned circuit with elements L, C such 
that I/1_C = w02, where wa is the angular resonant 
frequency of the cavity. One other condition 
must be satisfied, namely, that the average 
stored magnetic and electric energies in the 
inductance L and capacitance C shall be the saute 
as the corresponding magnetic and electric 
energies in the cavity. This condition is 

-,1)LI2=Z /,112ár=F,1/ . (1) 

and 

1 
(1- 

1 
F2 dr _ (2) 

where I, Q are the r.m.s. current and charge in 
the tuned circuit, E, II the rams. electric and 
magnetic field strengths in the cavity, e, µ the 
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dielectric constant and magnetic permeability, 
and Fi:, F,11 the average stored electric and 
magnetic energies, the integrals being evaluated 
over elements (IT of the volume V of the cavity. 
Also Q = I,wo and F/; = F,tl = F at resonance. 

If the cavity is assumed to be divided into two 
regions V', 1'", where the region V' is very much 
smaller than V", containing stored energies 
SFE, SF,tj, then we can define an inductance L' 
and capacitance C' such that 

, L'12 = 8/:3/.. .. (3) 

and 
I Q2 

9 ' C, . (4) 

"Ile amended circuit may be drawn as in Fig. 1, 
where the elements L', C' correspond to the 
volume I" of the cavity, and L", C" correspond 
to the volume I "'. 

Fig. 1. Fyv(iauleul t'irettil o% resonator. 

This circuit must be the same as the simple 
tuned circuit with L, C and hence 

L'+L"=1. . 

I I 1 C'+C=C .. 
(5) 

(f6) 

If now a perturbation is introduced into the 
cavity which removes the small volume V', then 
L', C' are small, and the fields in V remain 
substantially unchanged. The perturbed cavity 
resonates at a frequency w given by 0,2 = 1/L"C", 
which, from equations (1) to (6) gives 

w2 LC 1 - C/C' 1 - SF /:/FE 
woe L"C" I - L' IL 1 - SFl1//1'a/ 
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Since SFr;, SF,ti, and Sw = w - 
small, and since F = Fr. = F,r we 
this as 

28w SEtr - SFr.; 

w are all 
may write 

(7) 

This is the form of the general perturbation 
formula which isusually written as 

Gap - cE2) d 
_ ,r 

11.112 dT 
¡- 

The significance of this formula may be seen as 
follows: 

\Vhen a perturbation is introduced into a 
cavity, changes occur in the current and charge 
distributions in the walls, and currents and 
charges are also induced in the perturbing object. 
Changes thus occur in the stored magnetic and 
electric energies associated with these currents 
and charges, and it is these energy changes, 
expressed in 'terms (if the changes in held distri- 
bution, which are represented by the quantities 

9 S µHz dT and S j EE2 (LT. The difference 

betv,een these quantities represents an un- 
balance of the average stored magnetic and 
electric energies, and since at resonance these 
must be equal, a change of resonant frequency 
occurs which restores the equality, the amount 
of the change Sw being related to the energy 
unbalance introduced b\ the perturbation by 
formula (8). 

(8) 

2. Types of Perturbation 
If the perturbing element takes the form of a 

small metallic sphere, introduced in a region of 
dielectric constant E, the boundary conditions 
for the electric field in the electromagnetic case 
are the same as those in the electrostatic case 
provided the sphere is sufficiently small, and we 
may use the well-known solutions of the problem 
of a perfectly conducting sphere of radius r in a 
uniform field E. The charges induced on the 
sphere produce outáde it an additional field 
which is the same as that of a dipole of moment 
-17rEE0r3 at the centre of the sphere. The energy 
involved in separating these induced charges is 
loosely known as the 'energy of the sphere' in the 
field. Using the formulas for the energy of a dipole 
in a uniform held this energy is 4ircE2 r03 

= 3EE z V, where I is the volume of the sphere. 

This is identified as the quantity S) Ez dr of 

formula (8), where Eo now represents the peal: 
and not the r.m.s. value of field strength at 
the point where the sphere is introduced. 

A similar approach may be used to obtain the 
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magnetic energ\ , but in this case it is tiecessar 
to substitute the boundary conditions for the 
electromagnetic case since these differ from those 
in the magnetostatic case because of induced 
currents. Consider a potential 

> 90) 

where P,,, is the Legendre Polynomial of order m. 
Then 

(/) = - H r cos H + 

f v 
d, 

where H, E are the unperturbed peak fields at 
the point where the sphere was introduced. 

In the case of a dielectric sphere of dielectric 
constant Et, inserted in a region of dielectric 
constant E2, the electrostatic solution gives the 

energy in a uniform held h to he 
,l(- - 

E1 + 2E, 

Ezl while in this case the magnetic field is 
continuous across the boundary and so there is no 
first -order contribution to the magnetic energy. 
The perturbation formula in this case becomes 

E1 - E2 E02 

E1 + 2E, 

Ir HIP (IT 
1 I' 

Other types of perturbation have also been 
used, e.g., needle -shaped objects which are 
sensitive largely to that component of electric 
field which is oriented in the direction of the 
needle6, and button type perturbations' which 
are particularly suited to measurements at the 
walls on an axis of symmetry of the cavity. 

Hr= - =11cos0-'12,-` l,3os 
cr 

,, 

r 

Ho=rl 

r. 

1,1',,,( 
rnB), 

. 

z 

(rrr + 1) 

/ \ 
j J=-H0sin6-L.r13sinO+... 

The boundary equations in this case are obtained 
from Maxwell's equations, viz: 
H,. = 0 when r = r, whence A = 0, Al 

1 
= 

Hr03/ 2, A , = 0 (un 1). 
The form of the induced potential in this case 

is the same as that of a dipole of moment 47µ 
Hr312 at the centre of the sphere. 

Thus the currents induced in the sphere by the 
electromagnetic field have associated with them 
a stored energy 3/2i/1421. 

Substituting S I µHz (IT = 312 µHzh' and 

S EE -(IT = 3EE02V, equation (8) becomes 
. t 

Sw 3V ( µHz - EE'-') 
(9) w 

Sw 31' 
w 

.. (10) 
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3. Travelling -Wave Problem 
The above formulae relate the perturbation of 

the resonant frequency of the cavity to the peak 
field strengths at the point of perturbation and 
the total stored energy in the cavity. In a 
travelling -wave structure we wish to relate the 
peak field strength to the power flow down the 
structure. To do this we first take a section of 
the structure and convert it into a resonant cavity 
by the introduction of suitable reflecting termina- 
tions. \Ve may thus consider the oscillations in 
this cavity as composed of two waves, each of 
amplitude E, travelling in opposite directions. 

Let S be the energy stored per unit length for 
each of the two waves and W the associated 
power flow. The cavity will have a length 
vAgi2 at the resonant frequency, where Ag is the 
guide wavelength in the structure at that 
frequency and 91 is an integer. The total stored 
energy will then be 2S . nAg/2 = SnnAg. 

Now suppose that a small perturbing object, 
e.g., a small dielectric sphere, has been intro- 
duced at a point of maximum E field in the cavity 
and the change in resonance frequency measured. 
Then, using formula (10) a quantity can be 
calculated which we shall term K and which is 
defined by the equation 

K = e, 
(11) 

Jr 
µHz dr 

Then Eo = 2E and since j 
v 

µH2 (Jr = twice 
the stored energy in the cavity = 2SnAg we have 

SnAg = 2 EE2/K . . . . .. (12) 

Now by definition, the energy velocity ve in a 
structure is given by ve = W/S and it can be 
shown" that the energy velocity and group 
velocity vg are equal for a lossless structure. 

.EE2 
vg Knñg 

whence 
E2 Knñg 

W 2Ev,. 
Thus, provided the group velocity vg can be 
measured, the field strength E in the travelling - 
wave structure may be evaluated in terms of 
the power flow W by a perturbation method. 
The fields in the other parts of the structure may 
be evaluated by comparison methods; e.g., by a 
plot of variation of resonant frequency with 
position of the perturbing object. 

.. (13) 

4. Measurement of Group Velocity 
The length of the resonant cavity is always 

some integral multiple n of half the guide 
wavelength Ag. There will be a number of different 
resonant frequencies corresponding to different 
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values of a and Ag for any given length of cavity. 
By measuring a number of such resonances a plot 
of several points on the curve of Ag against A0 

(the free -space wavelength) can be made. Also 
by choosing several different cavity lengths the 
number of points on this curve may be increased 
so as to enable a complete dispersion curve to be 
plotted. 

The group velocity at any point may then be 
evaluated from the formula10 

vg Ág 2 d,10 

c Ao dAg 
(14) 

where dAoldAg is derived from the slope of the 
dispersion curve, and c is the velocity of light. 

The phase velocity y of the wave at any point 
is of course given by v/c = AgPto. 

5. Measurement of Attenuation 
It is also possible to obtain the attenuation 

constant a of the travelling -wave structure, by 
measuring the Q of such a cavity. The Jeri\ ation 
only applies when the attenuation is sufficiently 
small that the group and energy velocities may 
be regarded as equal, but this is substantially 
true in most practical cases. 

Neglecting for the moment any loss in the 
reflecting planes inserted to form the cavity, the 
loss in the structure per unit length for a power 
flow W is 2aW per unit time, and so for two equal 
and opposite travelling -waves the total loss will 
be 4aW per unit time. 

Now Q = 27r x energy stored in the cavity 
energy dissipated in the walls in one cycle 

27r . 2SL 7rf W 
L . 4aW av 

since S = v 
if g 

g 

where f is the resonant frequency and L the length 
of the cavity. Hence 

7rf w 
a = _ - 

Qvg 2Qvg 
(15) 

gives the attenuation constant in terms of 
quantities which can be obtained by cavity 
measurements. 

This formula only applies when the loss in the 
reflecting planes may be neglected and this is 
not always the case. If the loss is reasonably 
small, however, we can make two cavities of 
lengths L and 2L using the same shorting planes. 
If T is the loss in the reflecting planes in one 
cycle for a stored energy S per unit length and R 
the loss per unit length in the walls in one cycle, 
and if the cavity of length L has a Q -value Q1 
and that of length 2L a value Q2, then 

27r SL 2irS T 
RL+T R RL) QI = 
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if T is small compared with RL. 
Similarly 

27rS T 
92 R 2RI_ ' 

27rá 
and Q=-h,-=2Q2-QI ( 16) 

is the v aloe which would have been measured had 
the reflecting planes been entirely lossless. 

6. Application to Linear Accelerator 
Structures 

The corrugated waveguide structures used in 
linear accelerators have been described by several 
authorsu-13. The type of most interest is that in 
which a circular waveguide is loaded by equally 
spaced discs having a central hole. With such a 
waveguide it is possible to propagate a wave which 
is axially symmetrical and has a strong axial 
component of electric field, and which has a phase 
velocity lower than the velocity of light. Such 
a wave may be used for accelerating electrons by 
a technique somewhat analogous to 'surf -riding'. 

Fig. 2 shows the wav in which a section of such 
corrugated waveguide may be turned into a 
resonant cavity. In such a cavity the axial 
component of electric field is a maximum at the 
ends of the cavity and has n nodes, where 
u.1g/2 is the length of the cavity, and to a first 
approximation, the field may be considered to 
vary sinusoidally along the length of the cavity. 
In order that the reflecting end planes shall not 
disturb the field configuration in the cavity, they 
must be placed at a plane about which the wave - 
guide would be symmetrical. This means that 
we must place conducting planes either in the 
centre of an iris, or in the middle of a corrugation. 
The cavity length must therefor e be chosen as an 
integral multiple of half the corrugation pitch D. 

7. Cavity Construction 
The cavities were formed from a number of 

interlocking sections each corresponding to one 
corrugation together with an adjacent iris. 
Several different types of end sections were 
constructed so as to terminate the cavity either 
in the middle of a corrugation, or in the middle of 
an iris. Fig. 2 shows a typical cavity with a 
termination of each type at the ends. Any 
cavity whose length was an integral multiple of 
half the corrugation pitch could be constructed by 
clamping together an appropriate number of 
sections. 

8. Measurements 
A feed -through method of measuring cavity 

response was used. The cavity was fed by means 
of a small loop from a low -power oscillator and 
the response measured by a second loop and 
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crystal detector. The coupling of the loops was 
so small as not to perturb the cavity frequency 
nor appreciably affect the cavity Q. Dispersion 
measurements were made on a guide of 2 -cm 
pitch using a series of cavities varying in length 
from 5 cm to 13 cm in steps of 1 cm. Taking 
several values of the mode number n for each 
cavity a dispersion curve could he drawn. Fig. 3 
shows a typical curve and the group -velocity 
curve deduced from it. The results of these 
measurements agree with those made by standing- 
waA e methodsu on long sections of guide, to 
better than 1 part in 2,000 in the worst case 
compared. 

TERMINATION IN 

MIDDLE OF CORRUGATION 

OUTPUT LOOP 

&CRYSTAL 
DETECTOR 

PERTURBING BEAD 
& SUSPENSION 

TERMINATION IN 
MIDDLE OF AN IRIS 

INPUT 
COUPLING 

LOOP 

d 

Fig. 2. Typical cavity showing: 1. Two different types 
of end -plate terminations; 2. Method of suspension of 
perturbing bead; and 3. Methods of coupling and detection. 

For the perturbation measurements of field 
strength a small metallic sphere was used. This 
consisted of a small phosphor -bronze ball bearing, 
driLed and threaded on to a fine strand of silk 
which passed through small holes in the reflecting 
end planes (see Fig. 2). The bead could be 
adjusted externally to any position on the axis 
of the cavity. Here the magnetic field component 
is zero and so for a sufficiently small bead the 
term µH02 of formula (9) is negligible. By 
comparing the results obtained using both 
diameter and i -in. diameter spheres, it was shown 
that this term could in fact be neglected. The 
field strength was only evaluated at its maximum 
(or maxima) in the cavity so as to obtain the 
maximum E -field in the travelling -wave case. 
Elsewhere the field has approximately a sinusoidal 
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variation ' hich would complicate the measure- 
ment. Using a sphere, no measurements can be 
made near the reflecting walls since the energy 
of the sphere in the field is modified by its 
reflection in these walls, and the perturbation 
effect is approximately doubled. At these walls, 
howev er, a button -type piston method' was used 
which has not this defect, and the results obtained 
agreed to within 2% with those obtained by the 
bead method. 
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3. Typical dispersion and group-i'elocilv curves. 

One complication which arises in these measure- 
ments is that where the structure is periodic 
rather than uniform the axial field distribution 
is also non -uniform and varies across a corrugation. 
As a result, the field measured in a cavity in 
which the maximum occurs in the plane of an iris 
gives a value slightly different from that measured 
in a cavity in which the maximum occurs in the 
middle of a corrugation. This discrepancy 
becomes more marked as the hole diameter in 
the iris is decreased. By using both sorts of 
cavity and taking a mean value, however, the 
mean axial field in the tras elling-wave case could 
be found, and it is this value which is of interest 
for the design of linear accelerators. In all, it is 
estimated that an error not exceeding 3% is 
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obtained in most cases, rising possibly to J% in 
the case of small hole diameters. 

As a result of these measurements it was shown 
experimentally that the formula13 E = A/77 -a2 

y'( -180W) for the axial field strength in a guide 
of iris radius a with a power flow W is not 
sufficiently accurate for most purposes. The 
error involved may be as high as 30%, and for 
accurate calculation the more detailed theory14 
must be used, taking into account the power 
flow associated with the higher -order space 
harmonics. 

Measurements of attenuation have also been 
made by the Q-metliocl described and the results 
obtained agree quite well with measurements 
made on long sections of guide. The measured 
values of Q also agreed with theoretical values, 
provided that account was taken of the increase 
in surface resistivity due to surface finish. 

9. Conclusion 
Cavity methods have been used extensively to 

obtain design data on a wide range of corrugated 
waveguides for use in linear accelerators and, in 
particular, perturbation methods have been used 
to measure field strengths. The detailed results 
of these measurements are to he published 
separately. 
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LOSS AND PHASE OF SIMPLE 
EQUALIZERS 

By H. J. Orchard, M.Sc., A.M.I.E.E. 

SUMMARY.-. -\n approximate method of computing the loss and phase of certain simple 
equalizers is obtained using the first one or two terms of a rapidly -convergent power -series expansion. 
The saving in computation which is achieved is greatest when the amount of equalization is small and 
when many points on the characteristic are required. 

1. Introduction 
TH 1S paper is concerned with the loss 

and phase characteristics which can be 
obtained from the constant -impedance 

networks shown in Fig. 1. The principal use of 
these networks is in simulating or equalizing 
smoothly -varying loss characteristics such as 
are given, for example, by unloadcc cables. In 
simple cases one network alone may su:fice, but 
where a more precise match is needed over a 
frequency band many octaves wide, it is usually 
necessary to employ a tandem connection of 
several networks, each with different charac- 
teristics. 

Although the constant -impedance form is most 
convenient when several networks have to be 
connected in tandem, the characteristics of a 
single network can he obtained from one or other 
of the circuits shown in Figs. 2 and .3, and when 
operation between valve 
stages is called for it is 
often possible to use these 
circuits by combining 
them with the coupling 
components. 

Fig. I. Constant-iv+pedauce 
'networks with image iiuped- 
ro+ce n and in wk (eh 

<0 id-= tlu _ (WoLo)-+ L- 

2Lp sinh e 

Rc sinh 2e 

Taking the loss x, in nepers, and 
in radians, as given by 

+.1/3 = loge( V,/V2) 

frequency at which the network loss is equal to O 

nepers; i.e., one half the limiting value. Plotted 
on a logarithmic scale of frequency the loss and 
phase have the general form shown in Fig. 4; 
around f = f the loss is an odd function and the 
phase an even function. 

The network of Fig. 1(b) has a loss and phase 
given b\ 

x+1/3=logefi+° . (3) 
h+wCr 

, 

with ws, and O having the same significance as 
before except that 20 is now the limiting value of 
the loss as w tends to zero. .\ tandem connection 
of this network and one of the previous type, both 
having t.lse same values for fo, e and R would give 
a constant loss of 20 nepers and no phase shift. 
This can be seen by adding equations (2) and (3) 
and cancelling identical factors. 

ROcoth e L 

tv, :; RQ 

T2cpsinhe 
o 

(a) 

the phase /3, 

.. (1) 

with V1 and V, defined as in the figures, 
for the network of Fig. 1(a), we have 

+ )/3 = ° he° 
wo+1b 

where p = lw = j27rf. 

2e is the image attenuation, in nepers, of the pad 
formed by the three resistances and is the 
limiting value of the loss of the network as w 

tends to infinity, while cat, (= 27rfo) is the angular 
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then, 

(2) 

co 

2sinhe 

(b) 

Hence, if we calculate the loss and phase for 
a network of Fig. 1(a) having specific values of fo 
and e, then we can obtain the loss and phase for 
the corresponding network of Fig. 1(b) simply by 
subtracting the loss from 20 and by reversing the 
sign of the phase. 

In the practical design of equalizers of this 
kind it is customary to prepare curves of the 
loss for a variety of values of O and then, by 
curve -snatching techniques, to determine approxi- 
mately the correct values of To and O to use. 
Following this the loss of the chosen equalizer is 
computed accurately and from a study of the 
residual error in the equalization (or simulation 
as the case may be) a decision is made as to 
whether or not a small change in the parameters 
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will improve the situation. Then follows a certain 
amount of 'cut and try' to make the equalizing 
as precise as possible. Finally, when the loss is 
correctly adjusted, the associated phase charac- 
teristic may be required. 

All this involves a fair quantity of computing, 
particularly if the complete equalizer comprises 
many sections. It is the purpose of the paper to 
show how this computing may sometimes be 
simplified and speeded up. The simplification is 
achieved by expanding the loss and phase into a 
rapidly -convergent power series of which the first 
one or two terms provide an adequate approxima- 
tion to the sum when the pad loss is not too large. 

2Lp Binh d 

(a) (hl 
Fig. 2. Networks having the same loss and phase charac- 

teristics as those of Fig. I. 

2. Power Series Expansion 
Consider first the right -hand -side of equation 

(2). It is an odd function of 0 which, for real 
values of w, is analytic in the complex 0 -plane 
inside a circle round the origin whose radius is at 
least 27r. Thus we may expand it into a power 
series as follows 

wo pe° 03 05 lOgewo+C19+C3.-;!+c; D!+.... 
.. .. (4) 

which will converge for 01 < nepers (i.e., 
13.6 dB). To find the co as functions of p and wo 
we differentiate equation (4) with respect to 0; 
a little rearrangement then gives 
2p2 + 2w0p cosh 0 = 

2 t 
(woe +p2 - 2wop cosh 0) (c, + c3 

91 
+ c5 - + ...) 

.. (5) 
By equating the coefficients of corresponding 
powers of 0 we derive the recurrence relation 

= 2wop (wo - h) (cup'- - 10 wop + p2) 

(coo +p)5 
The importance of this power -series expansion 

lies in the rapidity with which it converges. 
For values of 0 less than about 0.5 neper (i.e., 
4.3 dB) the contributions from the terms in the 
series clie away so quickly that the error due to 
truncating the series is given fairly accurately by 
the value of the first term which is neglected. 

When this condition holds, the first term of the 
series by itself provides quite a useful approxima- 
tion to the loss and phase. The maximum value 
of I c31 is unity so that the maximum error due 
to using only the first term will be of the order of 
93/3! nepers or radians; at most frequencies it 
will be considerably less than this. If greater 
accuracy is required then the first two terms can 
be used. As I c; I G 5 the error will then not 
exceed 595/5! = 95/4! nepers or radians. 

Slightly better estimates of the errors involved 
are given by using the maximum moduli of 
the real and imaginary parts of c3 and c5: the 
derivation is straightforward although laborious. 
The results have been summarized for refer- 
ence in the curves of Fig. 5 which show the 
maximum contributions made to the loss and 
phase by the second and third terms, expressed as 
a function of the pad loss 20. 

2Co sinh(j 

Zo o 

(a; 

co 

zsinh 0 

(b) 
Fig. 3. Alternative networks having the sauce loss and 

phase characteristics as those of Fig. 1. 

3. Computation 
Explicit formulae suitable for computing are 

found by splitting equations (7.1) and (7.2) into 
their real and imaginary parts and substituting 
into equation (4) 

c2nt1 = 
(wo + p)2 

Lw0 
+ P -(m) C3 - (2n) 

C5 
. . 

together with the value of cl. Explicitly, the 
first three terms are 

cl = 

C3 = 2wop (wo - p) 
(wo + p)3 

( 2n 
,qt (6) 

3 

(7.1) a = ai 20 + a3 + . . . nepers .. (8.1) 

.. (7.2) 
3 

p = bl 20 + b3 + ... radians .. (8.2) 
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where 
x2 

al = 
1 

+x2 
8x2 ( I - x"-) a3=-(1 + x2)2- 

bl = 

b3 = 

x 
1 x2 

2x (1 - 6x2 + x4) 

-71 

x- f 
Plotted on a logarithmic scale of x the co- 

efficients in (8.1) and (8.2) are odd and even 
functions respectively about the point x = 1. 

Practical computation could conveniently 
proceed as follows. One will be given B, fo and a 
series of values of f at which the loss and phase 
are required. The first step is to find the ' alues 
of x =No corresponding to the prescribed 
frequencies; these can be read from a slide rule. 
Next, one must decide whether one or two terms 
in the series are to be used, basing the decision 
upon estimates, found from Fig. 5 (a) and (b), for 
the maximum error committed in each case. 
If one term is adequate then it may be sufficient 
to read off the values of a1 and bl from accurately 
drawn curves and to multiply them on a slide 
rule by 20. Alternatively, if greater precision is 
required, a slide rule or desk calculating machine 
can be used to find the entire term. When two 
terms are to be used, the first term cannot be 
found accurately enough from a single curve and 

the use of slide rule or calculating machine is 
essential. The contribution of the second term, 
however, is so small in comparison that it need 
not be known to the same percentage accuracy and 
can be found quite easily via a curve of a3 or 63. 

Table 1 gives the values to four decimal places 
of al, b1, a3 and b3 for selected values of x; these 
are ade luate for the purpose of drawing the 
required curves. 

ol 1 

inl10 Iota 

Fig. 4. General form of the toss and phase characteristics 
of the networks of Firs. 1(a), 2(a) and 3(a). 

TABLE 1 

x aI b1 a3 b) x a> b> 03 b, 

x IC -4 x 10-4 10-4 x 10-+ x 10-4 x 10-4 < I0-4 / 10 4 

0.05 24 498 198 977 0 5000 5000 0 -10000 
0.07 48 696 384 1339 1 5475 4977 -1883 - 9774 
0.10 99 990 768 1824 2 5901 4918 - 3489 - 9196 
0.12 141 1182 1087 2101 3 6282 4832 --4792 --8393 
0-14 i92 1373 1450 2331 .4 6621 4729 -5804 - 7469 
0.16 249 1560 1849 2512 5 6923 4615 - 6554 - 6499 
0-18 313 1743 2279 2639 .6 7191 4494 -708 I - 5536 
0.20 384 1923 2730 2708 7 7429 4370 - 7423 -4613 
0.22 461 2098 3197 2718 -8 7641 4245 -7617 -3751 
0.24 544 2269 3670 2668 9 7830 4121 -7693 - 2958 

' 0.26 633 2435 4143 2559 2.0 8000 4000 --7680 - 2240 
0.28 727 2596 4609 2392 2.2 8287 3767 -7464 -1019 
0-30 825 2752 5059 2168 2.4 8520 3550 --7100 - 59 
0.35 1091 3118 6080 1385 2.6 8711 3350 - 6666 682 
0-40 1379 3448 6888 336 2.8 8868 3167 -6210 1250 
0-45 1683 3742 7430 - 900 3.0 9000 3000 - 5760 1680 
0.50 2000 4000 7680 - 2240 3.5 9245 2641 -4739 2334 
0.55 2322 4222 7638 -3601 4.0 9411 2352 - 3907 2621 
0.60 2647 4411 7327 -4915 4.5 9529 2117 -3249 2715 
0-65 2970 4569 6781 -6126 5-0 9615 1923 - 2730 2708 
0-70 3288 4697 6043 -7194 6.0 9729 1621 -1990 2560 
0-75 3600 4800 5160 - 8094 7.0 9800 1400 - 1505 2360 
0-80 3902 4878 4178 -8815 8.0 9846 1230 -1174 2163 
0.85 4194 4934 3138 -9357 9.0 9878 1097 - 940 1983 
0.90 4475 4972 2076 -9725 10.0 9900 990 - 768 1824 
0.95 4743 4993 1022 -9934 15-0 9955 663 - 349 1280 
1.00 5000 5000 0 -10000 20.0 9975 498 -.198 977 
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If 9 is specified in decibels rather than nepers, 
and if 7 and p are required in decibels and degrees, 
then equation (8) can be rearranged into 

= ai.P + 613.0.276(1'110)3 + ... decibels (9.1) 
/3 = b. 6596P + b3 1.82 (P/l0)3 + ... degrees 

(9.2) 

where P is the value of 20 expressed in decibels. 
0'I 
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Equations (8) and (9) are applicable as the.) 
stand to the network of I' ig. 1(a). The corre- 
sponding formulae for the other network are 
found simply by reversing the sign associated 
with a3, b1 and b3 and by replacing a with 
(1 - a1) = (I + x2)-1. 

4. Discussion on Application 
The advantage of using the formulae is naturally 

greatest when only the first term of the series is 
necessary to give the required accuracy. This 
will hold in practical cases for pad losses up to 
about 3 or 4 dB. In such cases the computation 
of loss and phase is particularly simple and quick; 
with an automatic desk calculating machine each 
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point can be evaluated in a few tens of seconds. 
\\'hen the contribution of the second term must 

he included, computing time increases, but as the 
correction involved is small it is sufficient to obtain 
it graphically and it can he added mentally to 
the value found for the first term. 

The error due to neglecting the third and higher 
terms increases, initiall\ , with the fifth power of 

the pad loss, and this sets 
a fairly sharp harrier, 
around 10 dB, to the range 
over which the first two 
terms are a useful approxi- 
mation. Any attempt to use 
more than two terms, so as 
to increase this range, would 
probably take longer than 
evaluating the original 

Fig. 5. Maximum contribu- 
tion of time second and third 
terms of the series in equation 
(4) to the loss (a), anti the 

phase (b). 

2 5 10 20 

PAD LOSS (dB) 

exact expression and hence would defeat the 
object. This sets a limit to the practical appli- 
cation of the expansion. 
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SOME ASPECTS OF STANDING -WAVE 
PATTERNS 

By C. P. Allen, B.Sc.(Eng.), A.C.G.II., A.M.I.E.E. and P. A. Lindsay, Ph.D., D.I.C., A.C.G.1. 

(('om numication from the Staff of the Research Laboratories of The General Electric Company Limited. Wembley, Englund) 

STAN 1)1 NG waves occur in many engineering 
problems and are met in most branches of 
physical sciences. Since oblique projection 

of a three-dimensional representation of mathe- 
matical functions is often helpful in providing a 

isual aid to the understanding of their behaviour', 
it is thought that some useful purpose might be 
served in presenting such a picture of standing 
waves, in spite of the fact that the basic equations 
are already established. 

As is well known, a standing wave is given by 
the sum of two progressive waves travelling in 
opposite directions; the one being a forward - 
travelling wave, and the other a backward - 
travelling one, for example, arising from the 
reflection of the forward -travelling wave at some 
discontinuity in the system. 

It is obvious that a function of a independent 
variables will require lr + 1 dimensions to 
represent it pictorially. Since, in general, a wave 
function depends upon three space co-ordinates 
and one time co-ordinate, it is only possible to 
represent in the form of a three-dimensional 
model a wave function which depends upon one 
space co-ordinate (distance), the other co- 
ordinate being time. An example of such a 
wave function is given by the displacement on a 
stretched string, or voltage or current variations 
along a transmission line. 

In a loss -free medium, a one-dimensional wave 
disturbance is fully described by the second -order 
partial differential equation, generally known as 
the wave equation, 

ó2w(1, z) 1 J"w(t, z) 

" k" Utz 
.. (1) 

in which wel(t, z) = a function of the independent 
variables, 1 and z, describing 
the disturbance in the loss -free 
~chum, 

k = constant coefficient having the 
dimensions of velocity. 

Equation (I) is one of the few partial differential 
equations for which a general solution is known, 
its form is / \ / \ 

)7'(t,z)=g1 f-hJ+lr.11 I-z (2) 

JaiuiI e and F. Hunk: "Ta bl^s of function:", Teubnor, 1938. 
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where g and Ir are arbitrary functions of the in- 
dependent variables t and z. 

Since the phase velocity of a wave is defined as 
the velocity of a constant phase, / - z k, relative to 
a stationary frame of reference, one gets from 
Equ. (2) 

(111(1 
-`¿J =O 

,t + vz bz% t k ( 
= ll 

Á' 

v =¡, (3) 
Similarly, for the point 1 + z,k = const. the 
elocity of a fixed point on the wave is given by 

vz = -- k .. .. .. (4) 

which is equal but opposite to the velocity for 
1 - z/k = const. To stress this fact it is now 
convenient to put k = v, where y is the magnitude 
of the please velocity of the waves g and !r for 
non -dispersive media. 

Further, since both g and I, will satisfy Equ. (2), 
it is clear that the function w(1, z) describes 
either a forward -travelling wave, or a backward - 
travelling wave or the sum of both, neither of 
which need, in general, be periodic in / or z. 
However, in practice any wave can be expressed 
as the sum of a series of trigonometrical functions 
by applying the methods of Fourier analysis to it 
and, furthermore, most physical and engineering 
problems concerning wave motion are usually 
formulated in terms of trigonometrical functions 
of space and time co-ordinates. It will he more 
convenient, therefore, without any loss of gener- 
ality (except for the boundary conditions) to 
express in the usual exponential form both 
arbitrary functions g and tr and in what follows to 
consider only the fundamental Fourier com- 
ponent of the wave. 

Equation (2) then takes the form 
W(t, z) = A exp. jw (1 - - z v) -I- B exp. fa; (t 

= W,(t, W,(t, z) . 

= II', exp. jX, (t, z) -i- IV., exp. jX_ (t, z) 

.. (5) 

which is itself a solution of Equ. (1) and where 
A and B are arbitrary complex constants to he 
determined by the boundary conditions, and w 
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is the fundamental angular frequency of oscilla- 
tion of the disturbance, w of Equ. (2) being either 
the real or the ii iaginarp part of W, whichever 
happens to be more convenient. 

t,(wt,/3z) Rz=C 
A 

constant but depends on the distance z. 
It is now necessary to determine the value of 

the complex constant of integration A. Suppose 
that the initial conditions define magnitude and 

Fig. 1. Tltree-rlinnernsioozat represenlalion o% the fi (ml, 

In Equ. (5) W, and W0 are the magnitudes of 
Wr and W2 and are constant, whereas X, and X2, 
the arguments of W, and W2, are functions of t 
and z. 

Since the second term W on the right-hand 
side of Equ. (5) is the backward -travelling wave 
arising, for example, from the reflection at some 
discontinuity met by the forward -travelling one 
in its progression along the system, it is con- 
venient to introduce a new complex quantity, 
p = p exp. (j0) = B/A, which is called the re- 
flection coefficient of magnitude p and phase 
angle 0, and is simply the ratio of the complex 
amplitude of the backward to that of the 
forward -travelling wave. Hence Equ. (5) can 
he written as 
W(t, z) = A {exp. jw (t-z/v)+p exp. jw (t+b/v)} 

= A {exp. j [w (t - z/v) + 4,] + 
p exp. 9[w (t + z/v) + +']} (6) 

where A is the modulus of A, and 0 its phase 
angle. In terms of magnitude and phase angle 
of W one can derive from Equ. (6) 

W(t, z) = A{1 + p2 + 2p cos (2a,z/v + 0)}l 

exp. j tan -' sin {w(t - z/v) + 41} 
-- 

cos {w(t - z/v) 

=W (z) exp. j X (t, z) . . 

It is to be noted here that 
Wr and W2 the magnitude of W 
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+ p sin {w(t + 
+ p cos {w(t + 

.. (7) 

contrary to 
is no longer 

fiz) _ si 1 ((ol - Sz) 

=S 

!Vt =r 

phase angle of the standing -wave function W 
of Equ. (7) at a point t = to, z = zo, thus 

W(10, .z0)= W (zo) exp. 1 X (to, z0) (8) 
Then for the particular case of a matched system, 
that is when p = 0, one can show from Equ. (7) 
that 

and 
A = W (now independent of zo) (9a) 

tan X cos w(to - zo/v) - sin w(10 - zo/v) 
cos w(10 - zo/v) 
.. (9h) 

Equ. (9b) simplifies to tan 0 = tan X for 10 = 0, 
zo = 0; that is, when the point of observation 
(the point at which the boundary conditions are 
noted) coincides with the origin t = 0, z = 0. 
It is possible to write Equ. (914 also in the form 

tan {w(to - zo/v) + 0} = tan X .. (10) 
1 his shows that for p = 0 the same value z/i 

(for a given X) will be obtained for any point of 
observation along the lines 

w(to - zo/v) = (X -114 ± )17r 

in the t,z plane. This is entirely the consequence 
of the functional properties 
(existence of periodicity and 
phase velocity) of a progress- 
ive undamped sinusoidal 

wave as shown in Fig. 1. 
For p 0, Equs. (9) are no longer true. In 

this case, the magnitude and phase angle of the 

tan = tan X sin w(to - zo/v) + 

z/v) + + 0} 

z/v) 
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constant of integration, A, can be derived from 
different expressions, again in terms of the 
magnitude and phase constant of the wave func- 
tion W(t,z) at the point of observation, that 
is, in terms of the boundary conditions, 

A = W(zo) {1 + p2 + 2 p cos (2wzo/v + 0)}-1 
(11a) 

tan 0= 

The main object of interest of this note is the 
standing -wave pattern given b\ taking the real or 
imaginary parts of Equs. (6) and (7). The imagin- 
ary part of Equ. (6) divided by A is 

A ' Im W(1, z) = sin {wt - wzjv + 0} + 
p sin {wt + wz/v + + 0} .. .. (13) 

One can see from Equ. (13) that the phase angle ' 
tan X {cos w(to - zo/v) + p cos [w(10 + zo/v) + f ]} - sin w(10 - zo/v) - p sin [w(to + zoiv) + 0, 
tan X {sin W(to - zo/v) + p sin [w(to + zo/v) s w(to - zo/v) + p cos [w(to + zo/v) + ] 

They are valid for the most general case of p 0 
and to 0, zo O. For the more common case of 
to = 0, zo = 0 Equs. (11) simplify to 

A = W (0) {I - p2 -I 2 p cos (12a) 

tan = tan X {I - p cos 0} - p sin 0 
(1 h) 

{l +p cos 0}+p tan X sin 0 

It is worth noting at this point that even in the 
most general case A does not depend on the 
phase angle X, which the standing -wave function 
W(t,z) will have at the point of observation 
to, zo. This is also clear from Equ. (7), where it 
can be seen that any change in X will merely 
require a new value of i, leaving :1 unaltered. 
Conversely, changes in W do not affect 0. 
Furthermore, once the integration constant 
A exp. ja' has been calculated from the boundary 
conditions W (z0) exp. jX (to, zo) at a point to # 0, 
zo 0, it is always possible to express these 
boundary conditions in terms of the boundary 
conditions W (0) exp. jX (0, 0) which hold at the 
origin and lead to the same value of the integration 
constant A. 

fz ((ot,(3z) (3z=1 
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.. (I lb) 

of the constant 01 integration merely displaces 
the whole function along the wt axis. It is 
therefore always possible to express the function 
of Equ. (13) in terms of suitably chosen co- 
ordinates which each time would make 0 = 0, 
without any loss of generality. 

Now for L1 = 0 and .1 0, p 0, and putting 
/3.= w/v, the following set of functions is obtained 
from Equs. (5) and (13), 

f,(wt, )3z) = A-' Im W,(t, z) 
= sin (wt-/3z) 

f2(wt, pz) = A ' Im W,(t, z) 

= sin (wt + Pz) . . .. (14b) 

f3(wt, /3z; p, 0) = A-' Im W(t, z) 
= sin (wt - /3z) + 

p sin (wt + /3z . . (14c) 

fl, 12 and fs being normalized with respect to 
amplitude. In what follows wt and /3z will quite 
often be put equal to T and r respectively, the 
functions being thus valid for any angular 
frequency w. 

.. (14a) 

Fig. 2. Three-dimensional representation of the (In etiot, 
f2'fat, $.) = sin ((at + as). 
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Expressing functions f,, f2 and f3 in terms of 
the two independent variables T - wt and 

= /32: one obtains in three dimensions a surface 
for each function f. Their perspective drawings 
are shown in the figures. 

t3(wt,13z1I,0) (3z = S' 

For this particular angle of rotation the function 
f, becomes independent of one of the independent 
variables; it also acquires this property for 
B=+t17rf4. 

Fig. 2 shows a one-dimensional backward - 

Three -dimensional representation of the unction 
f1(wl, 13:; I, 11) = 2 cos Ss cos wl. 

a 

ÁkaVÍkVIfrW: 
ir IT 

nithívillakith 
\\Yg '1111 

In Fig. 1 is shown the forward -travelling wave 
sin (wt - /3z). The figure represents a sample of 
an infinite wave train set up in the system at a 
point z -> - 7r, t - oo (to avoid reflections 
and transients). From the figure one can see that 
the curves of constant displacement (height) are 
straight lines parallel to the crests and troughs 
of the surface fi. By definition they are the lines 
of constant phase velocity y of the wave. Thus, 
for example, proceeding along a crest of the sur- 
face from the bottom left-hand corner to the top 
right-hand corner of the diagram is equivalent 
to riding with the wave at velocity y along the 
whole length of the system. 

It is perhaps of some interest at this juncture to 
point out that, if the co-ordinate axes T and / are 
rotated by an arbitrar) angle B, Equ. (14a) 
changes to 

yy = sin (7'01 - S'0,) . . .. (15) 

where 0, = cos B - sin 0, O, = cos B -{- sin B. 

Thus it can be deduced from the form of Equ. (15) 
that the cross-section by a vertical plane of the 
surface shown in Fig. 1 is always a sine wave (of 
zero amplitude in the limiting case) irrespective of 
the direction of the plane. (This is fairly obvious 
in the case of Figs. 1 and 2, but is of interest in 
connection with Figs. 3 and 4, to which it also 
applies on the strength of Equ. (14c). For 
O = 7r/4, Equ. (15) reduces to 

= - sin V2 /' .. .. (16) 
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travelling wave given by the function f2(wl, /3z). 
As before, the figure is a representation of a 
sample of an infinite wave train set up in the 
system at a point z -> oo and at a time 1 > - co. 
The lines of constant phase velocity are seen from 
the figure to lie again along the lines of crests and 
troughs. The slope of these lines is negative in 
the t,z plane, since the figure represents a 
backward -travelling wave. Thus, proceeding 
along a crest of the surface from the top left-hand 
corner clown towards the bottom right-hand 
corner is equivalent to riding on the wave along 
the system with a velocity equal to - v. 

The function f3(wt, 1Z; p, , Equ. (14c), pre- 
sents a standing wave for various values of p, 
and is more complicated than either f, or 12. 
First of all, it can be found from writing f3 in the 
form 

f3(7, /; p, (b) = sin (T - /) -}- p sin (r + + (h) 

.. .. .. (17) 

that the effect of the phase angle of the reflec- 
tion coefficient, 0, is merely to shift the whole 
pattern in the direction of v. Thus by putting 
T" = T -4- 0/2, /' = + 02, Egli. (17) now 
becomes 

J3(T /"; p,Y'y ) = sill (T, 
Sy) 

+ p sin (r" + c") 
.. (18) 

Hence, it is seen that, in general, by a suitable 
choice of the origin, it is always possible to 
eliminate the phase angle 0, in discussing the form 
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of the standing -wave pattern f3. Thus without 
any loss of generality rigs. 3- 8 have been drawn 
for the sake of simplicity for the case of = 0. 

Putting = 0, f3 reduces to fi for p = 0, which 
of course it must do, since this is the case of an 
infinite system or in practice a reflectionless load 
at the end of a transmission line. 

For p = 1, Equ. (17) gives 
f3(7, 1, 0) = 2 sin 7 cos / .. .. (19) 

which is shown in Fig. 3. It can be seen from the 
figure that in this case, the nodal lines given by 
f3 = 0 (lines of cross-section of the surface and 
the ,, plane) form a square grid. This means 
physically that zero displacement occurs either 
(1) for any value of r at points z = I1/3 (jai + 1)7r/2 
or (2) at all points (that is along the whole of 
the system) for given values of / = (1 u))lilr. 
Furthermore, it is seen from Fig. 3 that if one 
travels along the system with an arbitrary 

elocity 0 < dz-dl < oo, one can never 
experience a constant displacement as is the case 
for an observer travelling with the phase velocity 
y of a progressive wave shown in Figs. I and 2. 

In Fig. 4. is shown the case 0 < p < 1, which 
reduces to Figs. 1 and 3 respectively in the limiting 
cases of p=0 and p=1. The case 0<p<1 
is characterized by the nodal pattern of Fig. 
which is intermediate between the straight lines 
of Fig. 1 and the square grid of Fig. 3. The 
expression for nodal curs es can he obtained from 
Equ. (14c) by equating it to zero. This then 
gives 

f4(wt,/3Z, 0 6,0) (3z= S' 

or 

{ 1 p tall T = tail -i 

yY 
sin (/ - r) 

P (T, S)= sin (S + T) 
. . 

or in dashed co-ordinates of Equ. (16) 

/' = sin i p sin 1 T V'} 2'2 
or 

sin \/2 
P (T , 1') 

sin V2T' 

(20a) 

(20h) 

(2la) 

(21b) 

1s can be seen from Fig. 5 for 0 < p < 1 the 
curves of Equ. (20a) take the form of wavy lines 
sloping in general at 7T/I. In Fig. 6 is shown the 
whole family of the nodal curves as expressed by 
Equ. (20h) for different values of the parameter P. 

They form a surface with T and / placed horizon- 
tally and p vertically. As a visual help the 
p = p (T, surface has drawn upon it the 
horizontal contours for p = 0 0, 0' 1, 0 2, . . . 

1.0, and the lines of steepest descent for every 30°. 
It should be added that Fig. 6 represents only a 

slice 0 < p 1 of the surface given by Equ. (20b), 
which in spite of its simple algebraic form is fairly 
complicated. Fig. 8 gives the function already 
shown in Fig. 6 for the complete range of values - co < p < co. Since p is the magnitude of the 
coefficient of reflection, only positive values of the 
function have a physical significance. The 
function shown in Fig. 8 has saddle points, lines of 

Fig. 4. Three-dimension«l representation (1/ the function fa(,,t, $:; 0.6, Il) = 1.6 sin n,/ cos $' - 0.4 cos wt sin toa. 
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since by definition p can only be infinite for A = 0 
B O. 

Returning to Fig. 4 (0 < p < 1), one can see 
that the surface shown lies between the limiting 
cases of Fig. 1 (p = 0) and Fig. 3 (p = 1). Thus 
from the figures and Equs. (14a), (17) (for ¢ = 0) 
and (19), for a fixed position along the system, 
/ constant, T variable, one experiences: (a) for 
p = 0, sinusoidal displacement always between 
1 and -1 for any fixed /, (h) for p = 1, at the 
worst sinusoidal displacement between 2 and - 2, 
for / = air, at the best zero displacement at the 
nodes of the standing -wave pattern 

(2n + 1) 7r/2, (c) for 0 < p < I , at the worst 
displacement between 1 + p and - (1 + p) 
(maximum of the standing -wave envelope / = nor), 
at the best variations between 1 - p and 

n 
2 

5.rr 

2 

Fig. 6 (above). Nodal pattern for p (r, C) = sin C - T 

stn C + 

Fig. 7 (right). Saddle points, lines of discontinuity and lines 
cutting the T, 1 -plane corresponding to Fig. S. 

discontinuity and lines along which it cuts the 
T, c -plane. For convenience they are shown 
separately in Fig. 7. For the sake of clarity, the 
p = ± 1 contours are shown in Figs. 7 and 8. 
It is of some interest to note that the planes of 
discontinuity of p (see Fig. 8) cut the T, /- 
plane along the nodal lines f, = 0 of the backward - 
travelling wave of Fig. 2. This corresponds 
physically to a system feeding power in the 
reverse direction with no forward -travelling wave, 
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- (1 - p) (minimum of the standing -wave 
envelope) / = (2n -F 1) 7r/2. 

Alternatively, using the same equations and 
keeping time fixed, one has for the displacement 
at any point along the system, r constant, 

faz=C 

same point of the wave (that is, one experiences 
the same displacement) all the time, (b) for p = 1, 

one varies one's position following a sinusoidal 
path of amplitude 1, whatever the value of 
(c) for 0 < p <I , one varies one's position again, 

l'ig. 8. Nodal pattern for p = sin (f - r) 
sin (1 - r) 

/ variable: (a) for p = 0, always a sinusoidal 
wave of amplitude 1, (b) for p = 1, at the worst a 
sinusoidal wave of amplitude 2 for r = (2n + 1)7r/2, 
at the best no displacement anywhere along the 
system for r = n7r, (c) for 0 < p < 1, at the worst 
a sinusoidal wave of amplitude 1 + p for 
T = (2n + 1) 7r/2, at the best a sinusoidal wave of 
amplitude 1 - p for r = u7r. 

In order to comider what happens if one 
travels along the system with the phase yelocit\ y, 
it is most convenient to rotate the co-ordinates by 
77.'4 and express Equ. (17) in terms of the dashed 
co-ordinates r', ', hence obtainingYY 

f3(r', b', p, 0) = - sin v2 S' T p sin /2 T' (22) 

Thus if one travels in the new co-ordinate system 
with the phase velocity y (/' constant, r' 
variable), then (a) for p = 0, one stays at the 
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following a sine curve but of amplitude p, 
whate er the value of 

Thus there are two extreme cases of (I) constant 
displacement when travelling along the system 
and (2) no displacement, either at point / during 
the \\hole time interval considered, or along the 
whole system for a given value of T. They can 
only occur for the limiting values of p = 0 and 
p = 1 respectively. In the general case of 
0 < p < 1 the cross -sections of f3 with r = con- 
stant or / = constant planes always give according 
to Equ. (17) sine waves, which vary in amplitude 
and phase but whose mean value remains zero. 
On the other hand, it can be seen from Equ. (22), 
that the cross -sections of 13 with r' = constant, 
/' = constant planes give sine wa\ es of constant 
amplitude for a given p, but whose mean value 
varies. 
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STABILITY OF OSCILLATION IN 
VALVE GENERATORS 

By A. S. Gladwin, Ph.D., D.Sc. 
(University of Sheffield) 

(Continued from h. 111, A ugttsl issue) 

7. Criteria for Stability 
THE oscillation is stable if all the roots of 

the equation (6.5) have negative real parts, 
for this ensures that the amplitude of any 

transient decreases with time. In general, a 
direct solution of the equation is not feasible: 
only in certain special cases, some of which are 
considered later, can the expression for D(p) be 
sufficiently simplified to permit the direct 
calculation of p. However, a complete solution 
is unnecessary since all that need be known is 
whether or not the real parts of all the roots are 
negative, and this information can be obtained 
without actually solving the equation. Two 
methods will be discussed. The first is an 
application of the Routh -Hurwitz stability rules. 

It is known from electric circuit theorv222 that 
any impedance fünction Z (p) associated with a 
linear network having lumped parameters is a 
real rational function of p; i.e., the quotient of 
two polynomials with real coefficients. Functions 
like Z (p juwo) will also be rational functions 
of p but with complex coefficients. Since D (p) 
consists of sums, products, and quotients of such 
functions it is also a rational function. It 
remains to find the nature of the coefficients. 

Now for any real impedance24 Z (p* + juw°) 
=Z* (p - jaw°). Inspection of the expressions 
for a 1, etc., shows that if p* is substituted for p the 
following transformations take place. 

al -> c_1*, b, -> b_1*, c1 -> a_1* 
) 

ao -' c°*, b° --> bo*, c° - ao>: 

a_1 > cl*, b_1 -> b,* c_1 al* j 

"I hen from (6.4), I) (p*) = D* (p) and from this 
it follows that the coefficients of the polynomials 
are real. It can also be shown by using (4.11), 
(4.12), (4.15), and (4.17) that when p = 0 

al= C1, ao=co, (l_1=c_1 .. (7.2) 
Hence D (0) = 0, and D (p) can therefore he 
written as I) (p) = PP1(p)/J'2 (p), in which P, (p) 
and P2 (p) are real polynomials. Tlie root 
p = 0 corresponds to an oscillation of constant 
amplitude and frequency w°; i.e., the steady 
state. All other roots of D (p) = 0 arc the same 
as the roots of P1 (p) = O. Routh26, and later 
Hurwitz28, investigated the conditions for all the 
roots of such equations to have negative real 
parts. The Routh -Hurwitz stability criteria take 
the form of a number of inequalities between 
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the coefficients of the polynomial. The details 
are given in later Sections where the method is 
applied to particular problems. 

The second method originates also ill the work 
of Routh27, and is based on a theorem of Cauchy" 
(Routh also made use of the theorem in deriving 
the first method). One way of stating the theorem 
Is as follows: "If D (p) = /t -}- jv is analytic 
except for a finite number of poles inside and on a 
closed contour, then the number of times which 
the locus of D (p) encircles the origin when p 
moves once round the contour is N - P, where A 
is the number of zeros and P the number of poles 
of D (p) inside the contour." 

In Routh's application the contour of p was 
the imaginary axis from - jco to joo and a semi- 
circle of infinite radius, centred on the origin, 
lying in the right-hand half -plane. This contour 
encloses all values of p having positive real parts. 
As the functions considered by Routh had no 
poles (except at co) the stability criterion was 
that the locus of D (p) should not enclose the 
origin. What Routh in fact considered was the 
number of times which the ratio it, z) passed 
through 0 and changed in sign from positive to 
negative and vice versa, but this is simply 
another way of specifying the number of encircle- 
ments. Bode23 reached the same conclusion also 
by way of Cauchv's theorem, and Nyquist30 had 
previously obtained a similar result h\ another 
method. 

The Routh-Ayquist criterion, as it may 
properly be named, is more general than the 
Routh -Hurwitz in so far as it applies to any 
analytical function and not merely to poll nomials 
with real coefficients, but the criterion fails if 
the function has any poles within the contour. 
This difficulty can be overcome by using a 
slightly more sophisticated definition" of 'en- 
circlement', but for the present purpose this 
refinement is unnecessary. The impedances 
Zo, and Zi arc those of a passive network and so 
can have no poles in the right-hand half -plane, 
(for otherwise all exponentially -increasing voltage 
would appear spontaneously across the network 
terminals), but Z1, being a transfer function, may 
have zeros there. Since Z1 occurs in the de- 
nominators of some terms in the expressions for 
al, etc., these terms will have poles where Z1 has 
zeros. It can be shown, however, that all such 
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terms cancel in the final result. Hence 1) (p) 
has no poles in the right-hand half -plane. 

Two difficulties prevent the Routh-Nyquist 
criterion from being applied directly to oscillators. 
First D (0) = 0; i.e., the locus of D (p) passes 
through the origin. This can be avoided by 
indenting the p -plane contour with a small 
semi -circle about the origin in the right-hand 
half -plane. The second point, which was discussed 
in Section 3, is that the domain of p must be 
restricted so that its imaginary part lies between - w0 and lwo. Instead of the kouth-Nyquist 
contour, the contour shown in Fig. 7 must 
therefore he used. }or convenience the contour 
is described in the clockwise direction. The 
stability criterion can then be stated as: 

Hg. 7. p -plane contour. 

"The oscillation is stable if the locus of 1) (p) 
does not enclose the origin vv hen p describes the 
contour of Fig. 7." Any encirclement --indicating 
instability-will be in the clockwise direction. 

The Routh - A'yquist 
criterion is more Usually 
expressed in terms of 
encirclement of the point 
1,0. With this convention 
the oscillation is stable 
if the locus of 1 -D (p) 
does not encircle the 
point 1,0. In the language 
of feedback -amplifier 
theory D (p) corresponds 
to the 'return difference' and I - I) (p) to the 
'loop transmission', although there is no physical 
loop in the oscillator corresponding to this func- 
tion. In the present application it is more 
convenient to adhere to the expression of the 
criterion in terms of D (p). 

Although stability can be discussed completely 
in terms of either the Routh -Hurwitz or the 
Routh-\vcluist criteria it is advantageous to use 
both. The l:outh-hvquist locus diagram is 
valuable in illustrating points which are not 
immediately obv ions from the Routh -Hurwitz 
criteria, and in deriving numerical relations for 
the simpler types of instability. With the more 
complicated forms of instability the Routh - 
Hurwitz rules are the only practicable method 
of obtaining numerical results. 
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Sonic general features of the locus are now 
considered. Earlier it was shown that D (p*) 
= D*(p). This means that the locus has mirror 
symmetry with respect to the real axis. Also, 
for very large values of p all the network imped- 
ances vanish because of the shunting effect of 
stray capacitances. Then aa1 = b0 = c_i = I , 

and all the other coefficients are 0. Hence 
I) (p) -> I as p -> co + jw0. In most oscillators 
D (p) = 1 when p = + ; jwo, so only imaginary 
values of p (i.e., real frequencies) need be 
considered. 

Fig. S shows loci corresponding to (a) stability 
(b) instability-one zero, and (c) instability-two 
zeros. \Vhen p is small D (p) = D (0) + pD'(0) 
= pD'(0) and because of symmetry D'(0) is a 
real number. As p traverses the small semicircle 
near the origin D (p) also describes a semicircle, 
and this lies in the right-hand half -plane if 
D'(0) is positive, and in the left-hand half -plane 
if D'(0) is negative. These remarks, together 
with obvious topological considerations, lead to 
the following conclusions: 

(1) If D'(0) is positive the locus of 1) (p) 
encircles the origin an even number of 
times or not at all. 

(2) If D'(0) is negative I) (p) makes an odd 
number of encirclements. 
It follows that 

(3) The oscillation can be stable only if 
D'(0) > 0. 

(b) 

1,0 

(c) 
Fig. 8. Loci of D(p) or F(p). 

The possibility that D'(0) = 0 is excluded, for 
this would imply that D (p) had a double zero 
at the origin and this would correspond to a 
transient of frequency wo with linearly increasing 
amplitude. Condition i,3) therefore covers all 
possibilities. Double or multiple zeros can exist 
only in theory. They represent a critical adjust- 
ment of the network and amplifier parameters 
which cannot be achieved in practice. This 
remark applies also to any zero, simple or multiple, 
occurring at any other point on the contour. 

The stability criteria derived here indicate 
only whether a given possible steady state is 
stable or unstable with respect to small disturb- 
ances. They cannot be used to predict whether 
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the given state, if stable, will in fact be realized, 
nor can they be made to reveal what course the 
oscillation will take when it departs from an 
unstable steady state. 

Corresponding to a given set of parameters, 
an oscillator may have two or more stable steady 
states, and which of these is realized depends on 
the history of the oscillator. A disturbance of 
sufficient magnitude may change the oscillation 
from one stable mode to another. Each possible 
steady state has associated with it a different set 
of transient normal modes, and although the 
constants of the network and amplifier may 
remain unchanged, yet each steady state represents 
in effect a different system, and requires its own 
characteristic equation to describe stability. 

8. Symmetrical Networks 
S\ mmetrical networks are special cases of 

general (asymmetrical) networks and the reason 
for considering the particular before the general 
is one of convenience. Because of the great 
simplification resulting from symmetry, the 
analysis of symmetrical networks can be carried 
out more easily and ín greater detail than is 
feasible for the general type. Also the feedback 
networks of many practical oscillators are 
symmetrical. 

An impedance is symmetrical with respect to a 
frequency wo if the real part has even symmetry, 
and the imaginary part odd symmetry, about the 
line p = jwo in the p plane. Thus 

7 (%* + Iwo) = Z*(p + jwo) 
No real impedance can be symmetrical about a 
frequency other than 0, but sonic networks 
such as high -Q resonant circuits have approxi- 
mate symmetry over a limited range of p. For 
practical purposes a symmetrical impedance is 
therefore defined as one for which I Z (p* + jwo) 
-Z*(p + jwo) I is negligible compared with the 
maximum value of I Z (p + jwo) 

I over the 
appropriate range of p. Since for all real imped- 
ances, Z (p* + Iwo) = Z *(p - jwo), it follows 
that for symmetrical impedances I Z (p +;«,o) - /. (p - jwo) I is also negligible. 

If the impedances of an oscillator feedback 
network are symmetrical with respect to 0,0 then 

= Z¡:(p - jwo) = Zi(p + 'au , with 
similar expressions for Z0+, etc. It follows that 
the modified impedances Z1' , etc., arc also 
symmetrical. When p = 0, Zj, etc., are resist- 
ances, and so from (4.17) 0 = O and q = exp. jB 
= 1. 

Inspection of 
a,=c hi= 
determinant for 

D (p) _ 
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expressions (6.3) then shows that 
b_1, c, = a, = co. 1 he 
D (p) becomes, from (6.4) 

ao bo ao 
c1 b1 a, 

This can he factorized as follows: 
I) (p) = 1'(p).l (p) .. . . 

where F(p) = a, - c, 

-1(l') = 50(a 
I + c1) - 2a b, 

I) (p) is zero if either F(p) or . l (p) is zero and 
the number of encirclements of the origin made 
by the locus of 1) (p) is the sum of the encircle- 
ments by F(p) and A (p). Since neither of these 
factors has a pole within the contour of p any 
encirclement must he clockwise. Hence the 
Routh-Nvquist stability criterion is that the 
locus of neither F(p) nor :l (p) should enclose the 
origin. 

To see the physical significance of these two 
conditions, the transient grid voltage, which is 
the real part of (5.2), is added to the steady state 
voltage (4.1). The high -frequency part of the 
total voltage is 

I R,{1 + nr, exp. at cos (cudt + ,)} 

X cos {cool + ur, exp. al cos (wdt + 0 )) .. (8.3) 
where nrl exp. j1, = (rr, + u_) I'r/1 

7//2 exP/02 _ -j (u1 - u-1) l ,/l rl 
(8.1) 

(8.3) is the expression for a wave modulated 
in both amplitude and phase (or frequency). 
The two modulations have the same complex 
frequency p = a + jaw, and the coefficients of 
modulation may be taken as the complex 
amplitudes (8.4). 

Using expression (8.2), the equations (6.2) for 
u,, can be transformed to the equivalent set 

u-,)F(p) = O 

(u1 + /r -IM (p) = 11 

(u, + If -Jan = - bouo J 
Suppose that for some particular value, 
1(p1) = 0 but A (p1) * O. Then u, + 14_1= 0 
and from (8.4) In = O. \lso'u = 0, so there are 
no voltages or currents of frequency p. (8.3) 
shows that the transient disturbance takes the 
form of a frequency modulation of the steady- 
state oscillation. Hence if 1(p) encircles the 
origin, p, has a positi\ e real part and the oscilla- 
tion frequency is unstable. 

Similarly if 1(p2) = 0 but 1(p2) * 0 then 
zr, - u_, = 0 and nr, = O. This corresponds to 
amplitude modulation of the steady-state oscilla- 
tion, and if .-1(p) encircles the origin the amplitude 
is unstable. The third equation in (8.5) shows 
that there is now a low -frequency component in 
the total voltage; i.e., the grid -bias voltage is 
also modulated. 

Thus in a symmetrical -network oscillator the 
transient takes the general form of independent 
modulations of frequency and amplitude, the 
characteristic modulation frequencies being the 
roots of F(p) = 0 and A(p) = 0 respectively. 
This independence holds only for small disturb- 
ances. If the frequency is unstable the disturbance 

(8.1) 

(8.2) 

(8.5) 
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will eventually become large enough to produce 
a sensible change of amplitude. On the other 
hand large changes of amplitude can take place 
without affecting the frequency. 

In the previous Section it was pointed out that 
a, - cr when p = O. Hence and from (8.2), 
F(0) = O. It can also be shown that F(p) - I 

(a ) 

Pig. 9. loci of .-1(p). 

(b) 

and A (p) 1 when p -> m ± ; jru(,. The loci 
of E(p) have the same general form as those of 
Fig. 8 and, using the same argument as for 
I) (p), the frequency can be stable only if F'(0) 
> O. Typical loci for A(p) are shown in Fig. 9. 
A (0) is either positive or negative, for the condi- 
tion A (0) = 0 would require a critical adjustment 
of parameters. Inspection of Fig. 9 shows that 
the amplitude can be stable only if A (0) > O. 

The locus then encircles the origin an even 
number of times or not at all. Similarly if 
.1 (0) < 0 . I (p) makes an odd number of encircle- 
ments. 

In terms of D (p), D'(0) = F'(0) .1(0). D'(0) is 
positive if F'(()) and A (0) have the same sign and it 
is clear that this Hurst be positive, for otherwise 
both amplitude and frequency would be unstable 
and D (p) would make at least two encirclements. 

The various forms of instability may con- 
veniently be classified according to the signs of 
Iá'(0) and .-1(0). Starting with A (0), the simplest 
type of instability occurs when A (0) < 0 and the 
locus makes a single encirclement. This means 
that the equation A(p) = 0 has one real positive 
root and the disturbance therefore takes the 
form of a unidirectional movement of the 
amplitude away from the steady-state value. 
Instability of this type will be described as 

'aperiodic'. 
The next simplest kind of instability occurs 

when A (0) > 0 and the locus makes two 
encirclements. The equation A (p) = 0 has now 
two real positive roots or two complex conjugate 
roots with positive real parts. In the latter case 
the amplitude is modulated by an exponentially - 
expanding sine wave, and in the former the 
amplitude changes have the highly non -sinusoidal 
form typical of relaxation oscillations. In both 
cases the instability is `periodic'. A triple 
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encirclement would indicate a combination of 
periodic and aperiodic instabilities, and so on for 
more complicated loci. 

Similarly the frequency has aperiodic instability 
if F'(0) < 0, and periodic instability if F(p) 
makes two encirclements. 

Aperiodic instability results in the various 
hysteresis effects some 
of which were studied 
by van der Pol and 
others. The various 
forms of frequency 

° and amplitude in- 
stability which may 
occur in symmetrical - 
network oscillators are 
now studied in some 
detail. (c ) 

9. Frequency Stability 
The frequency stability function F(p) = a, - 

c, may he written in terms of the network and 
amplifier parameters by substituting in expressions 
(6.3) for So, - S, according to (5.5), for Z, *, etc., 
after the manner of (4.11), and for Go - 
according to (5.14). This gives 

F(p) = {l + (Zo+ - kZ,+)lrg}(1 -7. /; F/R1:) 
.. .. .. (9.1) 

where ZE+ = (ZT+ + Zi+.'r)/(1 - kZi.+1''g) 
The low -frequency impedances Zi°, etc., do not 

appear. This is to be expected since if only the 
frequency is modulated there are no voltages or 
currents of fret send' p. Also the only parameters 
of the amplifier which appear are k, p. and the 
constants which help to determine rg. It would 
seem that frequency stability is independent of 
the non-linear amplifier characteristic. How- 
ever, in deriving these results it was assumed that 
the amplifier currents were single -valued functions 
of the voltages, and the conclusions will therefore 
be valid only for such types of amplifier. 

From (9.1), F'(0) = - {1 + (R° - kR,)/r,} 
ZE' IRE. 
and since Rt and kl. are negative the criterion 
for aperiodic stability is ZE' > O. This can be 
expressed in terms of real frequencies as follows: 
ZE+ = RE+ + jX E+, but the components are 
not themselves functions of p. However, as ZE+ 
is analytic it follows from the Cauchy-Riemann 
definition that at any point on the real frequency 
axis, 

(d,'dp) ZE (P + )coo) = (d/djwd) RE (jo,o + jco,¡) 
+ (dldjwj)1AE (Jato 
Since ZE+ is symmetrical, R, is an even function 
of roc¡ and its derivative at o. = 0 is therefore O. 

Hence ZE' = XE' and 
F'(0) _ - {1 + (R° - kRt)Irg} XE'/R,.: (9.2) 

where XE' denotes the derivative of XE with 

249 



respect to cod at wj = 0. The criterion for 
aperiodic stability is then 

- Xr'/Rr > 0 or Yp' > 0 .. .. (9.3) 

Another useful form is F'(0) = Lim F(p)/p (9.4) 
P 0 

Inspection of Fig. 8(b) shows that the simplest 
type of network showing aperiodic instability has 
a transmission characteristic with two peaks of 
maximum response and a minimum at the 
oscillation frequency. It can be shown that there 
are three possible steady states, the frequencies 
of the other two corresponding to the point 'f' 
and that these are stable. (See Section 14.) When 
the oscillation frequency departs from the unstable 
value wo it finally settles clown at one of these 
points. 

The double encirclement of Fig. 8(c) represents 
a new type of instability. Assuming the corre- 
sponding roots of F(p) -0 to be complex 
conjugate, the oscillation frequency is modulated 
by an exponentially -expanding sine wave. The 
transmission characteristic has three maxima 
the smallest being at w0. There are five possible 
steady-state frequencies but only the stability 
of the central frequency can be discussed here, 
since it is only with respect to this frequency that 
the network is symmetrical. Of the other 
frequencies it can be shown that the two corre- 
sponding to the point 'h' are unstable, and the 
two corresponding to `g' are stable. 

Under suitable conditions a sustained periodic 
frequency modulation of small magnitude can be 
produced. \Vhen the parameters are adjusted to 
well beyond the critical values the inevitable 
slight asymmetry favours one or other of the 
component frequencies wo ± wit, and the oscilla- 
tion eventually settles down at one of the stable 
points `g'. 

The network of Fig. 10, though not representing 
any practical oscillator, is the simplest in which 
the two forms of instability can be demonstrated. 
The central circuit resonates. at wo and has a 
shunt resistance nR; the other two resonate at 
wo + w1 and have a resistance R. For simplicity 
it is assumed that the coils have the same Q - 
factor, that the coefficient of coupling between 
the two coils in each of the three pairs is 1, and 
that the voltage transformation ratio r is the same 
for each pair. No grid bias arrangement is shown 
as the result is independent of the particular way 
in which the bias voltage is obtained. Then 

71+ /o+ = Zi+/r,a Zn+ = O 

Let T = 2Q la, o and c = Tw,,,. .. (9.5) 
Then 
Li+ (2 + n)(1 + pT)2 + nc2 

R +C2} . 

This is an approximation valid for large values of 

250 

(9.6) 

Q. Substituting for Z1 `, etc., according to (9.5) 
and (9.6) 
I (p) = 1 - 

pT{p2T2 + 2pT(1 - bc2) + 1+0 - 4b)c2} 

(1 pT)2 + c2}- 
. (9.7) 

where lib = 2 + u + nc2. 
The simplest oscillator in which aperiodic 

instability can exist has a two -circuit feedback 
network obtained by eliminating the central 
coil in Fig. 10. This is equivalent to putting 
rr = O. Then from (9.4), 

1''(0) = 7 (1 - c2),(1 + c2). 

For aperiodic stability 
c2 < 1; i.e., 2QwnI/wo < I .. .. (9.8) 

Similarly for the triple -circuit network the 
criterion for aperiodic stability is 1 F (1 - 4b)c2 
> 0. This is more conveniently expressed as a 
criterion for instability by substituting for h, 
thus 
2(c2 - 1)l(c2 + 1)2 > n > - r 1) (9.9) 

A negative value of a could be realized by 
reversing the leads to the central coil but, 
when this is done, the equations remain valid 
only if p. and rg are very large. 

W0 -Wm 

Fig. 10. Circuit for frequeincy iuslabilit. 

Since the numerator of (9.7) is a quadratic it 
is not difficult to find the conditions for the roots 
of F(p) = 0 to have negative real parts. More 
directly, the Routh -Hurwitz stability criteria 
are: 1 rt (1 - -1b)c2 > 0 and 1 - hc2 > O. The 
first is simply' the condition for aperiodic stability, 
the second is the condition for periodic stability. 
Substituting for b and using (9.9) this can be 
more easily written as a criterion for periodic 
instability: 

(c2 - 2), (c2 -1- 1) > o > 2(c2 - I)/(c2 +. 1)2 

.. (9.10) 
Periodic instability can exist only if the left-hand 
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side of this inequalitN is greater than the right- 
hand side, and this requires that c > V3. 

Further examination of (9.7) reveals the nature 
of. these unstable states. If n > (c2 + 1)=1 - 
(c2 + 1)-' the roots of IV) = 0 are complex 
conjugates, and for smaller \aloes of a both roots 
are real. 

\Vhen n < - 2/(c2 + 1) it can he shown that 
RI is positive and no oscillation is then possible. 
From (9.9) and (9.10) the stability criterion is 
therefore 

a > (c - 2)/(c" + 1) if c > 1/3 .. (9.11) 
and n > 2(c2 - 1) (r2 + 1)2 c < 3 
All other possible values of n correspond to either 
periodic or aperiodic instability. 

10. Amplitude Stability-Hysteresis 
In Section 8 it was shown that the condition 

for the amplitude to have aperiodic stability is 
.1(0) > O. The behaviour of the oscillator is. 
investigated by writing .1(0) in terms of the 
network and amplifier parameters. It is first 
supposed that the grid -bias voltage is derived 
entirely from the flow of grid current, so that 
51, etc., may be substituted according to (5.5). 
Using also (4.11), (5.14), (6.3) and (8.2), .1(0) 
becomes 
.11 (0) = 2(1 + SRg)(1 + Ro r.g)[(RT + RIlit) 

{h, + (f'OG, - G,2)Ra1µ} 

+ ,R1(1 -kRhi g)(dVg/dVg,)] 

- (1 {- SoRg)(I + R/rg)(V5i/rg)(drgtdl'gi) 
x[(1 + GoRalµ)(R8 - kRT)Ir.g + 

{(G + G.)(I + GORa'p.) -. 2G,ºRa,/L}R,vR v.rg] 
.. .. .. .. (10.1) 

The network elements appearing in this ex- 
pression are all resistances. Time constants have 
no influence on aperiodic stability: their sole 
effect is to limit the speed with which the amplitude 
moves away from an unstable value. 

.4(0) has been written in this form in order to 
show that an important factor in stability is the 
manner in which the grid -bias voltage and grid 
input resistance vary with oscillation amplitude. 
The derivatives dVg1dVg1 and drg'dl'g1 are 
strictly defined only when Vg1 changes infinitely 
slowly, but this does not mean that the criterion 
is valid only for slow changes. The derivatives 
appear because they are related to S0, S1, and 
S, through the equations defining the steady-state 
values of Vg and rg, and it is these relations 
which have been used in (10.1). 

In many oscillators the grid -current charact- 
eristic is such that when Vg1 is moderately large, 
Vg is almost proportional to VR1, and rg is 
almost constant. Then dVg(dVgi = Vg/Vg1 and 
drgdV51 = 0. 
Substituting for K according to (4.18), and for 
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RE and then Rr from (4.14) and (4.11) gives 

.4 (0) = - 2(1 + SoR5){ 1 +- (R - kRt)!rg}RE 
x {KG, - G, + (G12 - GoG, - kKG11Rg)Ra/µ} 

.. .. .. .. (10.2) 

Since RE; is negative the criterion for stability is 

KG, - G, + (G1a - G,G, - kKG1/Rg)Ra p. > 0 
.. (10.3) 

If R is small or FL large this reduces to 
1íh1 -G,>0 .. .. .. (10.-4) 

This criterion can be interpreted in terms of 
the slope of the graph of Y plotted against N of 
which the curves of Fig. 3 are particular examples. 
By differentiating equations (4.8) and (4.13) with 
respect to Y, keeping lí and Vca constant, and 
using also (5.10) and (5.14), it can be shown that 

ZN/Z Y = 2N2(KG1 - Gz);gY 
Since g is positive, ZN/ZY has the same sign as 
KG1 - Gz, and so for stability, bN1bY > 0. 
In deriving this result it was assumed that Vca is 
independent if Y51, but this is true only if 
Ra = 0 or FL = oo, for otherwise a change in Vg1 
would change the mean anode current which 
would change the mean anode voltage which in 
turn would change Vca. A straightforward, but 
tedious calculation shows that when Vca, varies, 
ZN/i) Y has the same sign as the 1.h.s. of the more 
general criterion (10.3). 

These results are independent of the form of 
the amplifier characteristic provided only Vg' 4'g1 
is constant. For a three -halves -law amplifier G1 
and G, can be expressed in terms of a parameter 
H = 1 -. K + A/ Y. As G1 is now positive 
(10.4) can be written Gz1G1 < K, and the 
corresponding value of H obtained from Fig. 6. 
A more direct method to substitute for G,/G1 
according to (5.17) and to reverse the series thus 
obtained. (10.4) then becomes 
1/Y > {1 + (1 - K)!9 + ..}(1 - K)/3K (10.5) 
Since Y cannot be negative the amplitude is 
stable for all values of Y when K > 1. When 
K < 1 the stable values of Y are less than the 
critical value given by turning the inequality 
(10.5) into an equation. 

In terms of the graphs of Y against N, the 
greatest stable amplitude occurs when ZN = 0; 
i.e., where N is also a maximum. It can be shown 
that this value is 

Noma = (27/32)t (I - /i)-312{1 + (1 - K)/6 + ..} 
. .. (10.6) 

These tendencies are suggested in the graphs of 
Fig. 3 and shown clearly in Fig. 11(a). The full 
line is the theoretical value of Y for K = 0.6. 
Once Y has passed the critical point 'b' there is 
nothing in the theory, to prevent its increasing 
indefinitely. Actually the amplitude is then 
limited by the diversion of anode current to the 
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grid or screen. The broken line shows a possible 
form of Y due to this effect. In most oscillators 
this limitation occurs before the critical value of 
Y is reached. 

A hysteresis effect exists in the region 'abed'. 
As N is varied Y moves round the boundary in 
the direction shown, the portions 'be' and 'da' 
being irreversible. The second critical point 'd' 
does not lie on the theoretical curve and the 
calculation of the second critical amplitude is 
beyond the scope of the present analysis. 
Although points on both branches 'ab' and 'crl' 
represent stable states it is obvious that an 
impressed force of sufficient magnitude could 
shift the operating point from one branch to 
another. 

A second kind of hysteresis 
effect can exist when rg and 
T"g/Vgr vary considerably with 
change of V. This variation is 
most marked for small values of 
I"gr; i.e., near to the threshold 
of oscillation. Fig. 11(b) shows 
the effect of varying a parameter 
of the feedback network; e.g., 
the mutual inductance ,1I between 
anode and grid circuits. Oscillation 
begins when Ill is increased to 
the critical point 'b', but small 
amplitudes are unstable and V,,1 immediately 
moves to the point 'c'. When .11 is reduced a 
second critical point 'd' is reached at which rg, 
suddenly falls to zero. The effect is rhie mainly 
to the variation of rg. If this increases with I'gi 
the loop gain of the amplifier and feedback 
network, measured at the oscillation frequency, 
may also increase and become sufficient to 
maintain an oscillation of large amplitude for a 
value of M less than that needed to initiate 
oscillation. 

The condition for avoiding this kind of hysteresis 
effect is that vanishingly small amplitudes 
should be stable. It is sufficient to consider the 
particular case of a three -halves -law amplifier 
(4.21) with an exponential grid -current character- 
istic (4.23). The values of G,,. for small values of 
Vgl are given by (5.16), and the derivatives of 
Vg and rg by (5.8). Substituting these into 
(10.1), using also (4.18) and (5.14), and neglecting 
powers of Vg, higher than the square gives 

A(0) = (b+c+d).( .. .. .. (10.7) 

where b - (1 - 3Ra11iR1.) (1 + /?///2./?T)2 
32 (1/Y - 1)2 

c = át(1 - kRa/µ1¿g)14(1, Y - 1) 

d = Zm(1 - Rf/µRG){I E(k - Ro1RT) 
+R.vlµ}/(l + RIIµRi-)i'g 

.I = 2(Vgi; Vg)2(1 +SOR.g){1 + (R-kRi)lrg} 
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Since f > 0 the stability criterion is b + e -{- d 
> O. Substituting for m and a from (5.8) this 
becomes 

1 -- kR,,,µllg I- (1 - 3R µ7G)(1 + R1114R./.)2 
(1 - Vg/1 0)(1 0IVg)2/4(l/Y - 1) - (1 + Vgll 0)(l! - 1)(1 - Rm'pR1:){Rl. 
(k - Ro/RT) + R.vtµ}/(l + RuIaRT)rg > 0 (10.8) 

The values of the parameters are those at the 
threshold of oscillation. In many oscillators 
RN is negligible. If alsoµ is large, then on sub- 
stituting for RE according to (5.16) the criterion 
simplifies to 

I + (I - Vg I'0)(V0/Ug)2.'4(If'i - 1) 

+ (k - Re;Rr)(l + l g 
1 0)(1 - Y)121g).':e > Il 

(10.9) 

N 

V9 

(b) 
Fig. 11. I,uhlirude hysteresis. 

M 

In this expression HT is negative, Y is small and 
positive, and g and 1 - Vg/I' are also positive. 
It follows that instability can exist only if l 1 - 
Vg I' < 0. Referring to (5.8) it is seen that this 
is also the condition that rg should increase with 
Vg1. 

In (10.9), k, I, and g are constants of the valve, 
and I'g, Y and rg, which are given by (4.23) and 
Fig. 4, depend only on Rg and the valve constants. 
Hence the only two independently adjustable 
parameters are Rg and the ratio Re/RT. In most 
practical situations 1 + Vg; V < O. Stability 
is then assisted by making Ro/RT small. This 
can be achieved by placing the oscillatory circuit 
in the anode lead and using a small grid -coupling 
coil. The effect of varying Rg is less easy to follow 
but it can he seen that stability is obtained with 
all sufficiently large values of Rg, for V'g changes 
much less rapidly than rg and so the l_hs. of 
(10.9) can he made to approach 1. The damping 
due to grid current is then a negligible fraction 
of the total. Stability is also assured for values 
of Rg small enough to make 1 m I -g/1", > 0 
(Fig. 4). This form of instability has been studied 
experimentally by Zepler32. 

In the next type of oscillator to be considered 
the grid -bias voltage is fixed and large enough to 
stop grid current. The stability criterion follows 

\yIxELIiBF 1:\GIKHI?iz, tiHpTF.>Il+ex 1955 



at once from (10.1) by putting dVg/dVgt 
= drgid I'gt = 0, and is (since RE is negative) 

-G.,+(G1'-GG_)Ralµ>0 .. (10.10) 
If Ra is small or IL large this reduces to 

G,<0 .. .. .. (10.11) 
Now for a three -halves -law amplifier Gt - 
GG2 > 0 (from (5.18)). Hence whatever the 
value of Ra, stability is assured if (10.11) is 
satisfied, and whatever the Value of G: (10.10) 
can be satisfied by choosing a sufficiently large 
value of Ra. 

Criterion (10.11) can be interpreted in terms of 
the graphs of N plotted as a function of Y and K. 
Since R/i= 0, i 'ca is constant, and as Vg has 
been assumed constant Y is also constant. 
13y differentiating (4.8) and using (5.10) and 
(5.14) it can be shown that ZN'ZK = 2N G_/gK. 
Since g and K are positive ZN,ZE has the same 
sign as G.,. If Rai,/ $ 0, I -ca varies with Vg, 
(i.e., with K) and a more lengthy calculation then 
shows that - has the same sign as the 
1.11.s. of (10.10). 

From Fig. 3 it \vould seem that for the three - 
halves -law amplifier N, bK is always positive 
and all amplitudes therefore unstable. However, 
for small values of Y and N the graphs cross one 
another and ZN/ZK becomes negative. This 
cannot be shown in Fig. 3 because the graphs 
would be too close to be distinguished. 

Returning to (10.11), Fig. 6 shows that G., < 0 
when II = 1 -K -h K/ 1' > 1.42. Since K is 
positive this inequality can he satisfied only if 
i' < I ; i.e., the grid -bias voltage must not 

exceed the cut-ofi value ['ca. Hence for stability 
K > 0421', (1 - 1'), and the corresponding stable 
amplitudes are 

Sgt < (Vg - "ta)/0'42 (1 + 1.1/µI?T) (10.12) 
All oscillations of stable amplitude will also be 
self-starting, for if this inequality is satisfied for 
the steady-state value it is satisfied for all smaller 
values of l gt. A second restriction is imposed by 
the requirement that no grid current should flow. 
With the semi -linear form of grid characteristic 
(4.19) this means that 

i7gr < l'cg - I'g - . .. (10.13) 

Finally, the amplifier may operate with a 
fixed grid -bias voltage insufficient to prevent 
the flow of grid current. This mode of operation, 
like the previous one, is little used in practice but 
it is of theoretical importance in connection with 
periodic instability. If the bias voltage is to he 
independent of Vgt then Rg = 0. A (0) can be 
obtained from (10.1) by substituting for di-g'd l'gi 
and drg/dVg, according to (5.5) and then letting 
kg -> 0. For the present purpose it is sufficient to 
consider t he simplified case where R = R.\, - 0. 
Then 

`l (0) = (iii -r Ri u) + C (R -- klt?i)} 
.. .. .. .. (10.14) 

Using (5.14) the stability criterion can be expressed 
as 
G.,RF + (S 5t'g ± (; 2R1.,)(/t'0 - kilt) rg> 0 (10.15) 

(To be couPiiiieed) 

CORRESPONDENCE 
Letters to the Editor on technical subjects are always welcome. In publishing such communications 
the Editors do not necessarily endorse any technical or general statements which they may contain. 

Multiloop Feedback Amplifiers 
5tx,-I was very interested to see the correspondence 

following lily papers "IsZ vquist's Criterion and "Multi - 
loop Feedback Amplifiers in Wireless Lngineer for 
October and November, respectively, of last year. 
Perhaps I should explain that my object in writing these 
papers was:- 

(if 'lo develop a proof of the Nyquist stability 
criterion for single -loop amplifiers from first princi- 
ples and without using contour integraUnn in the 
complex plane. 

(ii) To point out that an alternative formulation of 
Nyquist's criterion exists; viz., the 'minimum - 
phase criterion'. 

(iii) 1-o show that the same reasoning can be applied to 
derive an unambiguous stability criterion for 
multiloop amplifiers. (This criterion can, of 
course, also he formulated as a 'minimum -phase 
criterion'.) 

\\ ith regard to (i), I still feel that the simplest deriva- 
tion is provided by working front the gain -with -feedback 
expressions, .Hl/(l - .413I, etc., rather than by introducing 
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the characteristic equation and then having to link up 
the zeros of the denominators of these expressions with 
the roots of the characterist e equation. Of course, any - 
criterion for the stability of a linear system can be linked 
tip with the zeros ofd or A. (the mesh or nodal deter- 
minants of the system) since the absence of these zeros 
from the right -half p -plane is the necessary and sufficient 
condition for stability. I agree with most of 13. 1). 

kakovich's remarks regarding the Routh-Ilurwitz 
determinant method, but it was not the purpose of my 
papers to compare the yquist and Itoutlt-Hurwitz 
criteria. However, it should be pointed out that criteria 
based directly on the characteristic equation, such as the 
Routh -i l urwitz, cannot be used with experimentally - 
determined loop -gain characteristics. 

I cannot agree with H. D. ltakovich that his function 
(I) appropriate to my Fig. 1(e) (November 1954, Wireless 
Engineer, viz., 1 -.4 ,t?, . f 4 2 3 - .i _$2 e 1 , 3A,, 
is exactly the saute as the characteristic function of the 
system, i, since function (1) is in general a ratio of two 
polynom:als in p whereas, excluding a possible pole at 
the origin, d is a polynomial in p. For a full evaluation 
of the significance of a \ygnist plot of function (I) the 
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possible pos tions of its poles must first be determined, 
as was clone in my paper. 

The connection between the functions obtained by the 
analysis of feedback amplifiers on a mesh or nodal basis 
on the one hand and by the block diagram method with 
A and p terms on the other may be found by comparing 
expressions for the same network function in the two 
systems. Thus, for example, the return difference* for 
a valve in the A,, section of the amplifier} of my Fig. 1(c) is 

1 .J lrl _ i--1 2/3, - 2 O + _II_72N lNY (a) 
- 1 -1Y1 .. 

in terms of the .1 and )3 terms and ,d/d° in terms of the 
determinant of the mesh equations d. Both d and ¿10 are 
polynomials in p (ignoring for brevity a possible pole 
at the origin) and both the numerator and denominator 
in expression (a) are each ratios of two polynomials in p. 
However, as the poles of I - 1 are also poles of 
1 - É3 - 11, 12P3 -A 2$2 + I IA 2 P1$,, the zeros of 
1 - 'I lsl - -1 1-' 2$ - .42P, + A 1/1 s$,p,, and the zeros 

of coincide. 
O. P. D. CITTERIOOE 

Department of Electrical Engineering, 
Faculty of Technology, 

Iniversity of Manchester, 
Manchester. 

4th July 1955. 
\Y. Bode, " Network Analysis and Feedback Amplilier Design", 

pp. 46-49 (I>. \'an Rostrand, 1945). 

High -Stability Oscillators 
SIR,-In a letter to Wireless Engineer (May 1955), 

\V. B. Bernard criticizes the statement in Gouriet's and 
in Clapp's papers concerning the influence of the L/C 
ratio upon the frequency instability caused by nonlinear 
effects in oscillators; the oscillator under consideration 
has large grid and anode capacitances C and C and 
a series -resonance circuit LCR between grid and 
anode. 

As I am very interested in high -stability oscillators 
and as my last paper (now in printing) deals with the 
above -mentioned series -resonance oscillator in a non- 
linear state of operation, I would like to make one or 
two remarks on this subject. 

With respect to the incorrectness of the division of the 
circuit elements between the mainta'ning circuit and the 
frequency -determining circuit, I am not far from sharing 
Mr. Bernard's doubts. 

However, I cannot agree with his further reasoning 
as to the equivalence of the series -resonance oscillator 
and the ordinary Colpitts' oscillator with regard to the 
nonlinearity effects caused by the driving valve. I have 
no doubt that the former oscillator has distinct advantages 
over the latter, not only because of the more suitable 
values of components used, but owing to its essential 
superiority in respect of frequency stability: the 
attenuation effect for the higher harmonic currents, 
occurring in the LCC limb of the series -resonance 
oscillator, is considerably stronger than that in the 
LC limb of the Colpitts' oscillator. The ratio of the 
grid voltage of harmonic Vk. to the anode voltage of 
harmonic Vk. (k being the order of harmonics for both 
circuits) can be expressed as follows:- 
Por LC series -resonance circuit, Fig, I, 
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if Co << C,, w"-LCo c I, and for sufficiently high k 
we obtain 
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For Colpitts' circuit, Fig. 2, 
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Since w'/.C 1, again for sufficiently high Ir we have 
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\\'lien comparing both results, it is seen that the reduction 
factor of grid voltage harmonics for the series -resonance 
circuit is C/C. 

Fig. I Fig. 2 

J 

The analysis based on the principle of the reactive 
power balance of harmonics enables one to establish in 
a series -resonance circuit oscillator an accurate formula 
for the frequency instability due to various factors. 
The partial instability caused by the nonlinearity of the 
anode -current characteristic is given by the expression 

(dw w 

1 r c, 

C, 
1'l k. 1 (Jllk1 

The nonlinearity effect is expressed here by the content 
of anode -current harmonics nk. = Ike/ (µ = amplifica- 
tion factor of the valve, R = resistance of series 
LCR circuit, w/tar = fundamental frequency). 

On the assumption that C c C = C, µ > I , 

C << C, 4 < Ir2 < µ C/C the formula can be simplified: 
k' 

R2w2C2 C 
w /nk C k Ilk 

k_ 

1 Co R /+k.- i'Ank. 
Q C /2 9/k ) 

k. , 

Q being the quality factor of the LCR circuit. 
The analogical expression for an ordinary Colpitts' 

oscillator is 
dw _ 1 ' n' (dnk. 

Ir' \ Irk ) 
O being the quality factor of the LCC circuit. 

It is seen from these formulae that the instability of 
the series -resonance circuit can be made smaller 
because Q > O and C << C; it diminishes with the 
third power of Co (for R, (.0 and C constant). 
Radio Institute, JANUSZ UROSZKONSKI 

Warsaw Technical University, Poland. 
22nd Inlay 1955. 
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SIR,-Mr. \V. 13. Bernard's letter in your May 1955 
issue is unconvincing. i submit that the true reason for 
the dependence of frequency stability on 1./C ratio is as 
follows:- 

When in a condition 4>f stable oscillation, the sum of 
the reactances and resistances shown in Fig. 1(b) of 
)I r. Bernard's letter must he zero. Both Co and Hp are 
dependent on the frequency as ttell as on the amplitude 
of oscillation, the amplitude dependence arising from 
valve nonlinearity. L,,, no. and C are completely 
independent of amplitude and to a first order of approxi- 
mation, of frequency also. 

.\t any given amplitude and frequency (w/27), C and 
12 are specified by the values of C C_ [Fig. 1 (a)land the 
valve parameters. For operation at the frequency 
w/27t, the series combination of L and C must present 
a total reactance wL - 1/wCo = I,toC,,. 

1f, due to a change in operating conditions, a change 
occurs in the effective value of Co, the reactance balance 
around the circuit must be restored by a change in 
frequency. A change in w of dw produces a change in 
reactance of the L C combination of [L ± i/wo'Co] 
X dw so that the larger the value of Lo, and hence of the 
1-/C ratio, the smaller is the frequency change necessary 
to restore the reactance balance. Hence the greater 
frequency stability. 
Farnborough, I). G. Ii.Da I) 

Hants. 
12th July 1955. 

Compression and Expansion of Programme Time 
SIR,-The Editorial in the July issue of Wireless 

Engineer reminded me that some years ago I suggested* 
an electronic analogue of Gabor's film -and -slit method 
of frequency compression or expansion. Briefly, the idea 
was that the signal should be sent down a delay line, the 
velocity in which corresponds to the velocity of the tape 
or film in the mechanical methods. Attached to this line 
there would be a nu nber of sampling devices, e.g., 
valves, at regular intervals and these would be activated 
by a scanning signal which progressed at a rate differing 
from that of the signal. While each sampling device was 
actuated it would reproduce unchanged the section of 
signal passing it, but transfer of the action to the next 
sampling unit would either repeat or omit part of the 
signal, according to the sense of the relative velocity of 
signal and sampling control. Since the device is 
electronic and contains no mechanical parts, the durations 
of successive samples could be made as short a; desired. 
The sampling devices could also be made to fade in and 
out gradually if desired Icf. the use of graded slits in the 
optical method), so as to minimize discontinuities in the 
output. 
The university, I). A. Bt:L1. 

Birmingham. 
13th July 1955. 

' liri l i>h Patent No. 1:.11101.5 

V.H.F.-F.M. Broadcasting 
Snt, -Vour Editorial in the June issue says that "good 

f.m. reception is possible with lower field strengths than 
are necessary for good television pictures and so the 
need for an efficient aerial system is less". 

This statement needs some qualification. it is probably 
true that a lower signal input to the receiver is necessary 
for the satisfactory reception of sound broadcasting in 
Band II using frequency modulation than for television 
broadcasting in Band I; many listeners will, therefore, 
be content with a simpler aerial for Band 11 than they 
would use for television in Band 1. On the other hand, 
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experience has shown that a field strength of 100 µV/m 
corresponding with peak white is generally acceptable for 
vision in Band I, uhereas the B.B.C. regards 2511 µVin 
as the limit of the normal service area for Band II. This 
sloes not seem to be in accord with your statement as 
quoted above and some explanation may therefore be 
necessary. 

Various factors enter into the situation, some technical, 
some psychological. The television service offers to the 
public a means of entertainment additional to the well - 
established sound broadcasting service and this no doubt 
accounts for the willingness of large numbers of viewers 
to purchase and install television receivers in areas in 
which the field strength is comparatively low and where 
appreciable interference and, possibly, fading are ex- 
perienced. In fact, about three per cent of television 
licence holders in this country are receiving a field 
strength of less than 100 µV/m. 

V.H.F. sound in Band II is, however, intended 1>y the 
B.B.C. to provide a higher standard of reception, with 
almost complete freedom from interference, than that 
now provided by the existing long- and medium -wave 
sound -broadcasting services. A high standard is neces- 
sary since experience shows that ignition interference, 
for example, is much more disturbing in sound alone 
than when the viewing of a picture serves to distract the 
listener's attention front the sound. It is also intended 
that listeners, whenever practicable, shall he able to 
obtain good reception using simple indoor aerials. 

Hence it is considered that, notwithstanding the 
considerable advantage of frequency modulation over 
amplitude modulation, 250 µV/m is necessary for a fully 
satisfactory sound service in Band II. 

I'er paps a further qualification is necessary. .\Ithouglt 
good v.h. I. sound reception is possible with indoor aerials 
(or even with aerials built into the receiver) in areas 
where the field strength is reasonably high, efficient 
outdoor aerials are strong y to be recommended near the 
fringes of the service area and in built-up areas where 
ignition :nterference and multi -path effects can he 
troublesome. 

E. I,. E. PA\LEV 
British Broadcasting Corporation, 

Broadcasting I louse, 
London, V.I. 

14th July 1955. 

[\Vhile it is true that the picture does distract the 
listener's attention from defects in television sound, 
ignition interference usually has a much greater nuisance 
value on vision than on sound. \Ve still feel, therefore, 
that television calls for a good deal higher field strength 
than f.m. sound for an equally good performance in the 
two cases. 

It may well be that a field strength of 250 µV/m is 
necessary for f.m. sound in order that a worth -while 
improvement over the medium- and long -wave trans- 
missions may he obtained. Undoubtedly, the results are 
then good, but we should not class television reception 
.with a field strength of only 100 p,\//m as the saute order 
of goodness, even if it is "generally acceptable".-\\'.T.C. 

Linear Phase Modulator 
Sfa,-.\ simple method of phase modulation has been 

devised by using the variation of phase of the output 
voltage of a feedback amplifier which occurs when the 
mutual conductance g,,, of the valve is varied. It is 
found that when a large capacitance is connected 
between the grid and anode of an amplifier valve, the 
output phase varies linearly with g,,, over a considerable 
range, thus giving a suitable means of phase modulating 
a signal. 
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If Z1 be the anode-grid impedance and Z2 be the 
anode load, then the output voltage is given by (Fig. 1) 

(1 - g,ZI)Z2 
11:° Z + Z2 Z, 

provided Z1 Z2 << (/1 Z2)r which is always the case 
in a multigrid valve. 

We shall consider the simp est case, when Z, = I/joiC1 
and Z2 = R2. The phase of the output voltage is given 
by 

g + 1/RZ tall O = 
wC, -g/wC1R2 

Fig. 1 

Fig. 2 n: 04 Cl, O8 i0 .7 

9. (,,Aiv) 

Fig. 2 shows the variation of O with g,,, for the three 
cases, viz. (i) wC, I/R2, (ii) wC1 = 1/1?,, (iii) wC1 << 1/R2 
at a carrier frequency of 160 kc/s. It is seen that in 
case (i), O varies linearly with g, for about 30` (about 
0'5 radian). As it is possible to vary theg, of a pentagrid 
converter valve (e.g., 6SA7) linearly with the oscillator 
grid bias, a linear phase modulation of 0.25 radian on 
either side may be easily produced by this method. 
Incidentally, it is half the amount of modulation produced 
in a conventional Armstrong modulator. 

The method is much simpler than that of Armstrong 
and, employing two stages in cascade, it will give the 
same amount of modulation with crystal frequency 
stability. 

The magnitude of the gain A ' of the amplifier is 
given by 

(1) 

I .9 I 
g,2 + w2C12 
1/R22- + w2C,2 

and is plotted ill Fig. 3. 
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(2) 

It is seen that for case (i) the change in I A with g,,, 

is negligibly small and the consequent amplitude modula- 
tion may be eliminated easily. 

The reflected input impedance due to the grid- 

anode coupling is given by L.,, _ --g,,, 
+ 1/R,,' the 

magnitude of which is plotted in Fig. 4 for all the three 
cases. In order to prevent the variation of input loading 
with g, and the consequent production of amplitude 
modulation, the source impedance should be made low, 
for example, by using a cathode follower. The phase of 

16r 
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7. 
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Fig. 4 
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the input remains practically constant with g,. For 
R2 = 25 kit, WC, = 2 x 10-0TS and the source impedance 

1 lad, the input phase varies from zero to - 34' 
only, for a variation in g,,, from 0 to 1 m \/V. 

It has been found that the addition of a few tens of 
pF of capacitance in parallel with the anode load has 
practically no effect on O or IA I. The change in input 
phase is reduced still further. Thus the use of a capaci- 
tive resistance in the plate load (which happens always 
in practice) will not alter the situation as shown above. 

G. S. SANVAL 
R. CHATTERJEE 

Indian Institute of Technology, 
Kharagpur, India. 

26th May 1955. 
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Rectifier -Filter Characteristics 
5112,--I should like to add a few remarks to the excellent 

article on rectifiers by Mr. Heymann in your June issue. 
Mr. Heymann states correctly that a constant direct 
voltage across the filter capacitor is a reasonable assump- 
tion for 2n/CR > 25 (haJf-wave rectifier) or 2111CR > 10 

(full -wave rectifier). It seems, however, that the use of 
this qualification in his approximate solution is over - 
restrictive in many cases and theoretically is not the 
most convenient one to use. 

From Fig. 3 in Schade* the approximate solution is 
good in the following examples: 

27JCr: 
1 

1/2 4 

I/5 10 

r'/t is the ratio of effective 
rectifier resistance 
to load resistance 

From theoretical considerations the condition for the 
source voltage I" to be in phase with the diode current i, 
as shown in Mr. Heymann's Fig. 2, is that the reactance 
of the capacitor he negligible in comparison to the diode 
resistance in series with it. Titus, a restriction on the 
approximate solution is:. 

27rfCr>> 1 (half -wave) 
47/Cr > 1 (full -wave). 

where the lowest frequency is 2J in the full -wave case. 
Since normally I? > r, the condition .WrR I will then 
also he satisfied (constant direct voltage). 

From Schade, Figs. 3 and 4, a very mild inequality is 
required for accuracy consistent with the aims of this 
article: 

2nJCr > 2 

2vrJCr > 1 

(half -wave) 
(full -wave). 

This requires that 27rfCr vary from > 2 for r;R = I to 
20 for r/R = 1/10 in the half -wave case. 

1 should also like to point out that \Ir. Heymann's 
methods of approximation may lie applied to the case of 
valve -voltmeter rectifier efficiency considered by \Ir. 
Scroggic in your February 1955 issue. An approximate 
solution to \Ir. Scroggie's equation (I) is 

and 

B = C/ 

\t 
3,r 

Ii 
) 

l3 

r !I'3 
r ,,,), r\1 

71 = /¿ J 
for the series -diode circuit. With R, replacing 1?, the 
above is a solution to his equation (4) for the shunt diode 
circuit, where B is the conduction angle in radians, I?, 
the diode plus source resistance, R. the source resistance, 

the direct output voltage, anti E,,,,s the peak source 
voltage, all in Mr. Scroggie's notation. 

This approximate equation for rectification efficiency, 
7, agrees with Mr. Scroggie's Fig. 7 to as closely as can be 
read on his graph. It agrees with his Fig. 6 to within 1? 
of r) for /r' ; /r' < 1h01 anti deteriorates in accuracy as O 

and RJR increase. 

\1ACaICE W. JOYCE 
Polytechnic Institute of Brooklyn, 

Brooklyn, Xciv fork, U.S.A. 
12th. July 1955. 

"U. II. Srhadr. /'rue. Inst. Radio Engrs, 1943, Vol. 31, pi'. 34I-351. 

Differential -Amplifier Design 
S1a,-I should like to reply to the letter by \Ir. J. 

Ross Macdonald which appeared in your issue for July 
1955, commenting on my article in the March 1955 issue. 

It can be shown that the type of circuit described in 
reference 1 of Mr. Macdonald's letter (E.:\ 1.1. Laboratories, 
1946) cannot be relied upon to have a transmission 

factor (as defined by Parnuni, and in my article) greater 
than µ2;dµ, where dµ is the difference between the 
antplifleatinn factors of the upper two valves in the 
circuit. Also, Mr. Macdonald is incorrect in supposing 
that the rejection ratio of two amplifier stages in cascade 
is the product of their separate rejection ratios. The 
calculation of the rejection ratio of a multi -stage ampli- 
fier, front the properties of the separate stages, has been 
treated by Parnum'. 

Mr. Macdonald and I have now exchanged sonic 
correspondence on this subject, and have agreed that his 
continents would be approprette if rejection ratio were 
taken, as he took it, to mean the ratio of in -phase input 
signal to in -phase output signal. This ratio is important 
when a balanced output is required, and an accurately 
balanced output was the chief aim in the work described 
in Mr. Macdonald's references 2 and 3. The purpose of 
the circuits of my article was different, however. 

\ \I ANDREW 
Massachusetts Institute of Technology, 

Cambridge, 
Mass., 

8th August 1955. 
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