RF power transformer design

This is a pretty complex business and I propose to deal with the 'how' rather than 'why'. You need, at minimum, to know the following things about the ferrite material. I have assumed the use of ferrite rings typical of the power designs usually published. I have also assumed that one winding of the transformer will operate to or from a 50 ohm load. The other winding is dictated purely by the transformation requirements. You must know:

The outer diameter of the ring: Do (mm) The inner diameter of the ring: d(mm)The height of the ring: h(mm)The relative permeability: μr The turns ratio of the transformers: n(this assumes that the secondary, the collector or base winding, will comprise a single turn made out of copper or brass tube, and that n will be the number of turns on the primary for connection to a 50 ohm load) The minimum operating frequency: Fmin (MHz)

The power to be transformed: Po (Watts) The power loss per cubic cm of ferrite material at a given frequency and specified magnetic induction: Ploss (mW)

The last two quantities need only be known if loss calculations are to be made. Other quantities: μo (permeability of free space) = 4 x Pi x 10⁻⁷ First calculate the cross sectional area of

an individual core: s (m²) s = h x (Do -d)/2 x 10⁻⁶ square metres

10 PPINT "Fotoc details of tos
oid cores"
15 PRINT "All dimensions to be
in mm"
20 INPUT "Specify outer diamet
er "; Do
AG INDUT "TODOC HEADARA NAM
60 INPUT "And the height "th
70 INPUT "Specify relative pe
rmeability ",ur
80 PRINT "Next, the turns rati
90 INPUT "HOW many turns on pr
100 015
110 LET U0=4+PI+10+-7
120 LET s=h+((Do-d)/2)+10+-6
130 LET 1=(Do-((Do-d)/2)) +PI
140 PRINT "Primary inductance"
145 PRINT "This assumes reactan
ce", "is equal to three times ","
"to 50 obes"
150 INPUT "Specify lowest freedy
ancy HHz ",Fain
155 CLS
160 LET LP=INT (150/(2+PI+Fmin)
<pre>// PRINT "Primary inductance = "</pre>
170 LET NETTNE (Declarate Distor
0 #U[#D12#5]+.5)
175 PRINT
180 PRINT "REAL ADDATES AND ADDATES
185 PRINT
TOD PRINT "DUTER Stameter "; DO;
187 PRINT
188 PRINT "Inside diameter ":d:
"BB"
189 PRINT
190 PRINT "Height "sh;"mm"
191 PRINT
AWE PRINT "Relative permeabilit
193 PRINT
194 PRINT "Minisus fragmancu "
Fain; "HHz"
195 PRINT
200 PRINT "Number of origans to
the state of strady co

Fig. 7. If a transistor PA is to develop its full power over the range 1.8 to 30MHz, the transformer leakage inductance must be carefully cancelled out over the same frequency span. The inductance is made to form part of a T' filter arrangement with a characteristic cut-off frequency just above 30MHz.

Next, calculate the magnetic path length: 1

1 = (Do -((Do -d)/2)) x Pi mm Now you need to know the minimum inductance which the circuit design can

tolerate. Generally, a minimum reactance of 150 ohms will be adequate for a 50 ohm system. Lp = 150/2 x Pi x Fmin µH

The number of ferrite cores, Nc, required to achieve the desired performance is: Nc = $(Lp x l x 10^{-9})/(\mu o x \mu r x n^2 x s)$ Round the value Nc up to the nearest whole even number.

To work out the system losses v, the maximum peak voltage across the primary (50 ohms) is calculated: v = square root of (Po x 100) Work out the maximum induction within the core: B (mT)

 $B = 10 x (v/(2 x Pi x Fmin x 10^3 x n x Nc x s)) mT \dots milliTesla$

Next work out the volume of the core in cm^3

 $Vol = Pi/4 \times (Do^2 - d^2) \times h \times Nc \times 10^{-3}$

The total power lost in the core = vol x Ploss mW

I have devised a computer program suitable for the Sinclair Spectrum which takes the chore out of transformer design. The listings and program output have been included. For guidance, the typical loss figure for ferrite materials with a μ r in the region of 100 to 200 is 200mW/cm³ at a maximum induction of 12mT at 1.8MHz.

205 PRINT "Number of cores = ".
225 PRINT 230 INPUT "Enter transferred p ver (W)","assuming a 50 ohm mat
1040 LET V=SOR (2+P0+50) 250 LET V=SOR (2+P0+50) 250 LET D=INT (10+(V/(2+PI+Fmi)) +10+3+n+Nc+S)))/10; PRINT "Hax
nduction = ";B;"mT" 260 INPUT "Power loss density (f ferrite","material at the max
he minimum", "frequency: mi/cmt3 ";Ploss 270 LET vol=PI/4+(Dot2-dt2)+h+
c+10t-3 280 PRINT 290 PRINT "Power Loss in core
o;"W transferred power level"
Fig. 8. Sinclair Spectrum transformer design program.
CORE LETALLEY REPERCUSHE <mark>:</mark>
Outer diameter 12.7mm
Inside diameter 6.35mm
Height 6.35mm
Height 6.35mm Relative permeability 220
Height 6.35mm Relative permeability 220 Minimum frequency 1.8MHz
Height 6.35mm Relative permeability 220 Minimum frequency 1.8MHz Number of primary torns = 3
Height 6.35mm Relative permeability 220 Minimum frequency 1.8MHz Number of primary torns = 3 Number of cores = 8
Height 6.35mm Relative permeability 220 Minimum frequency 1.8MHz Number of primary torns = 3 Number of cores = 8 Max induction = 12.9mT
Height 6.35mm Relative permeability 220 Minimum frequency 1.8MHz Number of primary turns = 3 Number of cores = 8 Max induction = 12.9mT Power loss in core is 965mu at 5000 transferred power level

. 280hass	SPF	
10dB/div		
12		
Dr. dpr	1	

Fig. 10. The two computer plots (above) show the effect of output resistance changes on frequency response for the circuit shown in Fig. 3.