

Basic Maths for RAE Students by Bill Sparks G8FBX

Part 3. Ohm's Law

Continuing from the August article, this technique is used in Ohm's Law calculations since $V = I \times R$ where V is any voltage we may find. I is the corresponding current and R is the value of resistor that makes the equation come out to the correct answer. Variations on the above give V/R = I and V/I = R so we can use the basic V = I × R formula to give values to I and R. We can therefore say if V = I × R then I = V/R and R = V/I.

This is the same as saying: if $\mathbf{a} = \mathbf{b} \times \mathbf{c} (\mathbf{a} = \mathbf{bc})$ then $\mathbf{b} = \mathbf{c}$ and $\mathbf{c} = \mathbf{b}$. You will note that this is different to the original explanation and the difference is that originally we said that $\mathbf{ab} = \mathbf{c}$, now we are saying $\mathbf{bc} = \mathbf{a}$, we could have said $\mathbf{ac} = \mathbf{b}$. The actual letters in use are not important. The relationship of one side of the equation to the other is the important fact.

As a proof of the above, substitute numbers for letters.

If a = 4 b = 8 and c = 2then $\frac{8}{4} = 2$ so $\frac{b}{a} = c$

According to the formula:

if
$$\frac{\mathbf{b}}{\mathbf{a}} = \mathbf{c}$$
 then $\mathbf{b} = \mathbf{a}\mathbf{c}$
or $\frac{\mathbf{8}}{\mathbf{a}} = 2$ then $\mathbf{8} = 4 \times 2$

This can be further amplified to another formula:

$$\frac{ab}{c} = d$$

In order to find **d** we carry out our calculation