
	C48,64 — 67 C49 C51 C54 — 63 C68,74,76,79,84,86,87,99 C73,81,96 C89,90 C97 C100 VC1,3 VC2	27p ceramic plate 22p ceramic plate 56p ceramic plate 2p2 ceramic plate 1n ceramic plate 10uF radial electrolytic 220n monolithic ceramic 100p ceramic plate 390p ceramic plate 90p film dielectric trimmer 400 to 560pF max dual gang air spaced, 6:1 drive.
	D1D2 - 11D12 - 21D22	5v6 400mW zener diode BA 379 PIN diode 1N4148 BB204B varicap diode
	Q1,2,14 — 23,28,29 Q3 Q4 — 13,32 Q24 Q25 Q26 Q27 Q30,31,33	2SK55 VN2222L BC308,309 J310 3SK45 VN66AF 2N2369A, BSX20 BC238
	IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8	741 (8 pin DIL) 78L08 7808 78L05 74LS14 74LS74 74LS00 NE531 or RS 305-872
	DBM	SBL-1
-	L1 2-11 2 3 4 5 6 7 8,9 10,11	TOKO YRCS18576AQ Wound on Amidon T37-6 cores 23t 0.25mm en Cu wire (30cm) 20t 0.25mm en Cu wire (25cm) 14t 0.40mm en Cu wire (19cm) 13t 0.40mm en Cu wire (18cm) 11t 0.40mm en Cu wire (15cm) 9t 0.40mm en Cu wire (13cm) 7t 0.40mm en Cu wire (11cm) 6t 0.40mm en Cu wire (10cm)
	L 12, 13, 14 L 15, 16, 17 L 18, 19, 20, 21	TOKO KANK 3334R TOKO KANK 3335R TOKO S18 301SN-0800 Ferrite core
	T1 T2	6 turns tapped at 2 turns from earthy end. 0.25mm en Cu wire on Fair-rite balun core type 28-43002402 3 turns bifilar wound 0.25mm en
	T 3	Cu wire on core as T1 6 turns centre tapped 0.25mm en
	T4	Cu wire on ferrite bead 5 turns primary, 1 turn sec.
	T5	0.25mm en Cu wire on ferrite bead 8 turns tapped at 2 turns from earthy end. Core as T1

sources, the result is a synthesised LO signal which approaches that of a free running LC oscillator in spectral purity.

In the Omega design, the digital edge triggered phase comparator a (circuit arrangement) initially developed by NASA; remember the expression "We have lock" operates in the 1 to 2MHz region with an analogue 1 to 2MHz VFO as the primary frequency reference source. The VFO frequency is the effective channel spacing of the system. The result is an error signal with frequency content in the 100s of kHz region rather than the 100s of Hz of most direct digital designs.

The low noise DC switched inductor VCO system - which provides the output of the module also mixes with the output of a low noise DC switched crystal oscillator bank in a double balanced mixer unit. The result is a difference signal between the VCO and the crystal oscillator in use. This is continuously compared with the output of the analogue reference VFO in the phase comparator to produce the error voltage for the VCO. Note how the output from the crystal oscillator transistor in use is filtered through the crystal itself thus effecting a noise improvement on the standard crystal oscillator circuit. The net result is that the VFO frequency adds to the crystal frequency to produce the LO output with a noise spectrum only 4 to 5dB worse than either of these components. Furthermore, the effective system frequency stability is effectively that of the analogue reference VFO on any of its bands.