NOVEMBER 2000

NO54

THIS MONTH'S
BOOK REVIEW:
Advanced
Speaker Designs
by Ray Alden

CLEAN AND FAST!

Build a compact and sensitive loudspeaker

Plus:
- news, letters and more...
DIY NEWS
Micronas introduce an MP3 chip and electro-harmonix introduce a 300B

CLEAN & FAST!
A compact loudspeaker that is fast but sensitive too, from Gary Hollands

PHASESplitters - PART II
Designer Gary Devon looks at advanced Phase Splitters

ADVANCED SPEAKER DESIGNS
Noel Keywood reviews a book on loudspeaker design

LETTERS
Phono stage queries and KiT 88 tweaks

ADVERTISERS’ INDEX

NEXT MONTH
Coming next month in DIY supplement No.55 is our new budget KEL84 Stereo Integrated Amplifier, featuring upfront the triode/pentode ECF80 followed by two EL84 power output valves per channel in push-pull (ultra linear) on the output, thumping out around 15 watts into an 8 ohm load. The KEL84 has a classic look and a small footprint. This simple kit is a must for all those readers itching to start DIY, on a budget.
Lockwood Audio

Speaker Manufacturers’ Surplus Drivers

Examples:

- 25mm Tweeters Soft or Anodised
- 110mm ICT;MF; Bass
- 120mm Bass/Mid Shielded
- 135mm Bass/Mid
- 165mm Mid;Bass/Mid
- 172mm Bass Long throw
- 200mm Bass;Mid/Bass*
- 386mm Bass
- Various Ellipticals

Crossovers: Termination Panels/Spikes & sockets etc.

*as used in Hi Fi WORLD Horn Enclosure!

AT A FRACTION OF ORIGINAL COST

Phone Fax email for details

Lockwood Audio

email: sales@lockwood-audio.co.uk

Unit 8, 724 Field End Road, Ruislip, Middlesex, HA4 0QP

Phone +44 (0)20 8864 8006 Fax: +44 (0)20 8864 3064

credit & debit cards welcome

Watford Valves

7 DAYS A WEEK 9AM - 9PM THE AUDIOPHILES CHOICE

All output valves multi-tested and digitally matched
Full no quibble guarantee. Expert advice on all valve amps

QUAD II KT66 SPECIAL OFFER

Many satisfied customers have found the Harma KT66 offers performance equal to the GEC KT66 at a fraction of the cost. Each valve undergoes a high plate volt test and comes digitally matched on plate current and transconductance.

At only £25 each these KT66’s really are an audio bargain and this month only, if you buy 4 pieces and mention HiFi World, we will also supply 2 Harma GZ32s absolutely FREE.

Leaving you to simply enjoy the music!

For our full Harma range and testing, see our website: www.watfordvalves.com

Watford Valves 3 Ryall Close, Bricket Wood, St Albans, Herts AL2 3TS

Fast mail order/next day delivery/World Wide shipping
1000's more valves stocked. Prices exclude VAT and carriage.

Fax: 01923 679207
www.watfordvalves.com

Lockwood Audio

Speaker Manufacturers’ Surplus Drivers

Examples:

- 25mm Tweeters Soft or Anodised
- 110mm ICT;MF; Bass
- 120mm Bass/Mid Shielded
- 135mm Bass/Mid
- 165mm Mid;Bass/Mid
- 172mm Bass Long throw
- 200mm Bass;Mid/Bass*
- 386mm Bass
- Various Ellipticals

Crossovers: Termination Panels/Spikes & sockets etc.

*as used in Hi Fi WORLD Horn Enclosure!

AT A FRACTION OF ORIGINAL COST

Phone Fax email for details

Lockwood Audio

email: sales@lockwood-audio.co.uk

Unit 8, 724 Field End Road, Ruislip, Middlesex, HA4 0QP

Phone +44 (0)20 8864 8006 Fax: +44 (0)20 8864 3064

credit & debit cards welcome
Micronas, who claim to be the world leader in MP3 decoder ICs, recently announced a new decoder chip, the MAS3509F. Although not strictly for the D.I.Y. market, keep your eyes open, because this chip may well start to appear through specialist suppliers and electronic stores, especially on the internet.

Their MAS3507D, an MP3 flash player chip released in 1997, contributed to a world-wide revolution in MP3 by allowing companies to build players cheaply and quickly. Micronas claim to have sold no fewer than 2 million 3507s. One found its way to Japanese constructor Takeshi Akamatsu (http://elm-chan.org/) who has posted up a DIY feature giving details on how to build a player (see - http://www2s.biglobe.ne.jp/~elm/reports/mpc/report_e.html).

The new 3509 chip adds AAC decoding to the MP3 capability of the earlier 3507. Micronas interestingly point out that, in conjunction with their application board, the 3509 can interface SanDisk’s Compactflash, MultimediaCard and SD Card memory. By incorporating the SanDisk SD Card, the Micronas chip can handle SDMI compliant music from the major music groups. Hubertus von Janecek, marketing manager Advanced Audio for Micronas, said: “Micronas is a range of SD Card AAC/MP3 players to the Far East market at the MAS2000 show. This technology has yet to reach Europe, even though Micronas is a Swiss/German company employing 1200 people and SanDisk are Californian. Fast acting DIYers could, with the new MAS3509 chip, beat the Japanese to it.

Gentlemen, man your soldering irons!

www.micronas.com

NEW TUBES FROM ELECTRO-HARMONIX

Electro-Harmonix have a new 300B EH that they claim perfectly matches the a.c. and d.c. characteristics of Western Electric’s original, so it can be substituted directly, without circuit modification. The 300B EH has a 40W plate dissipation and is directly heated (i.e. no cathode), like the original.

www.ehx.com
YES!
CLean & fast!

Gary Holland designs a compact, sensitive near-wall loudspeaker that suits both valve and transistor amplifiers.

With KLS-I4 we set out to design a compact loudspeaker that will work happily in most environments and with all types of amplifiers. In particular, it must be suited to valve amplifiers.

Designing a loudspeaker to work with both valve and semiconductor amplifiers raises several extra considerations. The output impedance of valve amplifiers is higher and the output power lower than their semiconductor counterparts. Consequently, a loudspeaker designed for valve amps must first of all be sensitive, and secondly present a friendly load impedance with as little reactance as possible to minimise risk of audible coloration. Happily, there are no trade-offs here. Solid-state amplifiers also prefer a friendly load and give a better performance too, so it's a worthwhile design aim.

Good sensitivity and even load impedance are just two of the requirements for our loudspeaker design. The others are as follows:

1) Compact but with good bass extension.
2) Room friendly; can be used close to walls.
3) Sounds good with semiconductor amps and valve amps.
4) Straightforward to build.

A Butterworth alignment is usually considered optimal for bass rolloff, but a higher target Q of around 1 was chosen to give a peak in the bass response. This will give the loudspeaker's bass a touch of slam and it will still sound good working away from walls.

The next step is to find a bass unit that will work in the chosen cabinet. It has to be sensitive (powerful magnet and efficient motor) and well controlled in its working range, and also have electrical and mechanical parameters suitable for closed box workingis different to reflex working. These include a long voice coil travel because, unlike reflex loading, coil excursion in a sealed box design increases at system resonance. A higher Q unit is also needed for closed box systems to prevent overdamping the bass.

The first decision to make is what type of cabinet system should be used, reflex or sealed box? While reflex designs offer deep bass, they can suffer with pipe resonances that extend right up into the midrange. This spurious noise can be as much as -10 dB below the main output, adding noticeable coloration. The problem of port resonances can be overcome, but at the expense of greater complexity; this design must be as straightforward as possible. I also want to exploit the lucid midrange that is one of the great strengths of valve amplifiers.

Bass extension for a closed box design is not a great problem as long as the right drive unit/box combination and alignment is chosen. For the optimum choice between compactness and bass extension I chose 20 litres for the cabinet volume.

After some searching an 8 inch unit from Seas emerged. It has a doped paper cone with a low loss rubber surround mounted on a low resonance magnesium chassis. A large diameter
LEAP design software predicted a well damped bass response rolling off smoothly below 55Hz (-3dB). Nearfield measurement (LMS) showed real life response correlated perfectly. In use wall placement will lift bass level a little.

Measured at one metre the individual drivers roll in and out smoothly. It is important that there are no "throw ups" in the roll off region, to avoid colouration.

Overall frequency response of KLS-14 at one metre runs evenly from 55Hz up to 18kHz. Because the cabinet is "infinite baffle" bass rolls off less quickly than reflex, so low bass output is substantial for a compact cabinet. The horn tweeter rolls down above 2kHz, when measured off-axis.

Impedance of KLS-14 is smooth, demonstrating low reactance (energy storage) and phase angles. The load is resistive where there is no rate of change of impedance (point of inflexion), as this twin trace shows.
PERFORMANCE FIGURES

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency response</td>
<td>50Hz - 18 kHz +- 3dB</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>89dB</td>
</tr>
<tr>
<td>Nominal impedance</td>
<td>8 ohms</td>
</tr>
<tr>
<td>Minimum impedance</td>
<td>5.75 ohms</td>
</tr>
<tr>
<td>Crossover frequency</td>
<td>2.1 kHz</td>
</tr>
<tr>
<td>Rec. amp power</td>
<td>10 - 100 watts</td>
</tr>
</tbody>
</table>

The crossover region has a slight but fairly minor dip, this is due to the bass unit response dropping a little and then continuing its natural roll off. The treble unit takes over in the upper mid/lower treble region and runs quite smoothly up to 8 kHz, then dips a little. The 3dB resonant peak that existed has now been pulled down to the same level as the rest of the treble with the use of a Zobel network across the treble unit - see Graph 3 on p10.

The crossover region has a slight but fairly minor dip, this is due to the bass unit response dropping a little and then continuing its natural roll off. The treble unit takes over in the upper mid/lower treble region and runs quite smoothly up to 8 kHz, then dips a little. The 3dB resonant peak that existed has now been pulled down to the same level as the rest of the treble with the use of a Zobel network across the treble unit - see Graph 3 on p10.

The off-axis response (45 degrees) shows the same on-axis trend until the tweeter cuts in. The increase in directivity caused by horn loading shows as falling response above 2 kHz. This means there will be less reflected energy from room walls, floor and ceiling, so conversely direct energy will be in greater proportion. Consequently the speaker will be more tolerant of nearby surfaces. The amount of treble energy in this case can be altered by merely adapting the angle of the speakers - see Graph 3 on p10.

Treble level will sound neutral with a valve amp. However, with brighter sounding semiconductor equipment there may be a need to lower the level, which may be adjusted by varying the value of the resistor R2 in the treble section. A value of 10 ohms sets the output at 88 dB. If the value is increased to 12 ohms the treble output is lowered by 1 dB to 87 dB. Dropping the value to 8.2 ohms increases output to 89 dB.

LOAD IMPEDANCE

As a load KLS-14 is reasonably friendly. The box/driver resonance shows up at 60 Hz with a Q of about 1.0. From here the impedance drops to just under 6 ohms in the mid range area. At around 500 Hz the impedance curve starts climbing and levels out to about 14 ohms in the treble region. Overall there are no dramatic changes for an amplifier to cope with, which means little reactance - see Graph 4 on p10.

CONCLUSION

Nearly all the design goals set out at the beginning have been achieved in this design. Although the KLS-14 loudspeaker has been conceived with valve amplifiers in mind, this design aims are equally suited to semiconductor amplifiers. The KLS-14 is easy to build and versatile, and will perform well with almost any amplifier in most normal environments with the minimum of fuss.

Gary Holland is a professional loudspeaker designer acting for companies worldwide. Using industry standard techniques his work gives readers access to a professional design, as well as showing how commercial designers develop a modern loudspeaker, through theory and all-important measurement.

KLS-14 crossover components.

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bass unit</td>
<td>Seas CA21RE x1</td>
</tr>
<tr>
<td>Treble unit</td>
<td>Vifa H26TG-35-06 x1</td>
</tr>
<tr>
<td>Wire</td>
<td>1mm stranded core x1</td>
</tr>
<tr>
<td>Terminals</td>
<td>Bi-wire cup x1</td>
</tr>
<tr>
<td>Wadding</td>
<td>Foam/long hair wool</td>
</tr>
</tbody>
</table>

All drive units/terminals to have gaskets

<table>
<thead>
<tr>
<th>Inductors</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1mH</td>
<td>0.3 ohms DCR, 1mm wire x1</td>
</tr>
<tr>
<td>0.3mH</td>
<td>1 ohm DCR air core x1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>33mF</td>
<td>50v +5% DF 4% x1</td>
</tr>
<tr>
<td>8.2mF</td>
<td>50v +5% DF 4% x1</td>
</tr>
<tr>
<td>3.3mF</td>
<td>50v +5% DF 4% x1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resistors</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 R</td>
<td>10 watt x1</td>
</tr>
<tr>
<td>6.8 R</td>
<td>7 watt x2</td>
</tr>
</tbody>
</table>

KLS14 Speaker Kit is available as a kit from World Audio Publishing Ltd

<table>
<thead>
<tr>
<th>Component</th>
<th>UK (inc. vat & p&p)</th>
<th>Overseas (exc. vat & p&p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KLS14D Drive unit pack</td>
<td>£125.00</td>
<td>£107.00</td>
</tr>
<tr>
<td>KLS14C</td>
<td>£165.00</td>
<td>£140.00</td>
</tr>
</tbody>
</table>

(drive unit pack with crossover etc., but not the wood)

Call or fax Nick Lucas on: 00 44 1908 218836 9am-5pm, Monday-Friday
e-mail to: orders@worldaudiodesign.co.uk

For overseas freight charges, please call, fax or e-mail.
NEW PRODUCTS FOR VALVE PRE AMPS

Full range of Memetal input and output transformers for balanced and unbalanced pre-amps, microphone amps, equalizers etc.

SOWTER TRANSFORMERS

For the true "valve sound" and elimination of hum and interference in your own or vintage designs. A new range and custom service for low power transformers to complement our power amplifier products. Transformers built to order 2-4 weeks delivery. Full technical support. Free catalogue. Visa, MasterCard, JCB etc.

E A Sowter Ltd
PO Box 36
IPSWICH
IP1 2EL England
Tel: (+44) (0) 1473 252794
Fax: (+44) (0) 1473 236188
E-Mail: sales@sowter.co.uk
call or visit our website for catalogue and information http://www.sowter.co.uk

FORDUN

Ferrite: Stacked. High Power, Super Power, Super Super Polypropylene Capacitors. 0.1mFd. to 1000mFd. Poly and Polycarbonate Film Capacitors. 0.1mFd. to 10mFd. ALCA Instantaneous Electrolytic Capacitors (Non-Polar); 50v, 100v & Low Loss. 2mF to 600mF.

Ferrite Custom-wound Inductors.

FERRITE: Standard, High Power, Super Power. Super Super Power + AIRCORED 1.5 to 125mm wire

Tapped Inductors: 0-10mH in 1mH steps & 0-1mH in 0.1mH steps

Audio Amateur Publications

From a wide range of High Tech Loudspeaker units.
Unit Spec Booklet available 30p.
Please send A4 SAE with 40p stamp or US$2 bill overseas.

Send for our FREE price list PL29: Just send a large SAE. (44p stamp) or US$2 bill overseas, I)KIVE UNITS: by FOCAL & SeaS, and a pick of the best from other manufacturers.

Overall, some pretty comprehensive facilities... and it will take only a few minutes of your life plus a few pence from your pocket to call/fax and discuss your requirements: 0113 244 0378

We are:

AUDIOLABORATORIES (LEEDS)
3 Kildare terrace Industrial Estate, Leeds LS12 1DB, England
Website: www.audiolabs.co.uk

TECHNICAL & GENERAL

SOME NECESSITIES - FROM THE ORIGINAL CLASSIC TUNABLE SPECIALISTS

CONNOISSEUR

6D/12 Drive Belt
BD/2 Motor Suspension kit
SAU2 Headshell
SAU2 Connecting Lead
GARRABD Standard Models
Wired arm tubes
Cartridge cartriges (sliders)
300/401 Transcription models
Original Thrust pad assembly
Original Idler tension spring
Original Brake pad
Xerography Owners Manual 301 incl. full size mounting template
Replacement 301 control knobs On/Off/Speed select
Replacement 301 suspension unit
Replacement 301 motor pulley (-2%), (-1%), (Std), (+1%) each
Replacement 301 Chrome plated mounting bolts set
Recommended Lubrication set (early 301 or 301/401)
Repair, Restore, Re-calibrate, Re-align:

GOLDRING/LENCO

Idler wheel (lock-nut or clip fitting)
Tension spring
Arm pivot bearings - with fitting instructions
Sprocket/Main bearing assembly complete
Chassis suspension springs (set of 4)
Headshell
Instruction books

THORENS

TD-124 series
Idler wheel original
Idler wheel our redesigned replacement
Drive belt
Suspension rubbers

TD-150/160
Drive Belt
Suspension springs (-1%), (Std), (+1%) (set of 3) set
Ambidors TD-150 blimp

CECIL WATTS

Dustbags & spares - incl. Preener wicks

Cartridges and stylus for 78s and Mono LPs in addition to current Stereo LPs

TECHNICAL & GENERAL

PO BOX 53
CROWBOROUGH, EAST SUSSEX, TN6 2BY
TELEPHONE: 01892 654 534

A MESSAGE.......

from the U.K.'s Premier Valve-equipment Repair & Restoration Centre:

"IT DOESN'T MATTER" whether your equipment is Old, New, in Kit form, Valve, Solid-state, Audio or R.F.

We...

Repair, Restore, Re-calibrate, Re-align:

Tape recorders by Revex, Tascam (up to 1"), Teac, Akai,

Valve amps, pre-amps, tuners, cinema amps.,
theatre-organ amps, industrial p.a. amps. from Radford, Quad, Leek,
Kaiser, Clarke & Smith, Compton, Parmaka, RCA, Allofalse etc.

Valve Communications Receivers and Transmitters
(30 MHz/2kW/6'6 tall) by KW Marconi, Labgear, Eddystone,
Relexion Ajx, RCA Tiger and so on.

We will...

Build that Kit for you or

Re-build it if you’ve had a go but it’s gone pear-shaped.

We will...

Custom-build for you a published Classic design or

Design something special and build the prototype

(A 250-watt AB2 high level modulator, Sir? No problems!!)

Valve Communication Receivers and Transmitters
(30 MHz/2kW/6'6 tall) by KW Marconi, Labgear, Eddystone,
Relexion Ajx, RCA Tiger and so on.

We are:

AUDIOLABORATORIES (LEEDS)
3 Kildare Terrace Industrial Estate, Leeds LS12 1DB, England
Website: www.audiolabs.co.uk

"IT DOESN’T MATTER" whether your equipment is Old, New, in Kit form, Valve, Solid-state, Audio or R.F.

We...

Repair, Restore, Re-calibrate, Re-align:

Tape recorders by Revex, Tascam (up to 1"), Teac, Akai,

Valve amps, pre-amps, tuners, cinema amps.,
theatre-organ amps, industrial p.a. amps. from Radford, Quad, Leek,
Kaiser, Clarke & Smith, Compton, Parmaka, RCA, Allofalse etc.

Valve Communications Receivers and Transmitters
(30 MHz/2kW/6'6 tall) by KW Marconi, Labgear, Eddystone,
Relexion Ajx, RCA Tiger and so on.

We will...

Build that Kit for you or

Re-build it if you’ve had a go but it’s gone pear-shaped.

We will...

Custom-build for you a published Classic design or

Design something special and build the prototype

(A 250-watt AB2 high level modulator, Sir? No problems!!)

Valve Communication Receivers and Transmitters
(30 MHz/2kW/6'6 tall) by KW Marconi, Labgear, Eddystone,
Relexion Ajx, RCA Tiger and so on.

We are:

AUDIOLABORATORIES (LEEDS)
3 Kildare Terrace Industrial Estate, Leeds LS12 1DB, England
Website: www.audiolabs.co.uk

"IT DOESN’T MATTER": whether your equipment is Old, New, in Kit form, Valve, Solid-state, Audio or R.F.

We...

Repair, Restore, Re-calibrate, Re-align:

Tape recorders by Revex, Tascam (up to 1"), Teac, Akai,

Valve amps, pre-amps, tuners, cinema amps.,
theatre-organ amps, industrial p.a. amps. from Radford, Quad, Leek,
Kaiser, Clarke & Smith, Compton, Parmaka, RCA, Allofalse etc.

Valve Communications Receivers and Transmitters
(30 MHz/2kW/6'6 tall) by KW Marconi, Labgear, Eddystone,
Relexion Ajx, RCA Tiger and so on.

We will...

Build that Kit for you or

Re-build it if you’ve had a go but it’s gone pear-shaped.

We will...

Custom-build for you a published Classic design or

Design something special and build the prototype

(A 250-watt AB2 high level modulator, Sir? No problems!!)

Valve Communication Receivers and Transmitters
(30 MHz/2kW/6'6 tall) by KW Marconi, Labgear, Eddystone,
Relexion Ajx, RCA Tiger and so on.

We are:

AUDIOLABORATORIES (LEEDS)
3 Kildare Terrace Industrial Estate, Leeds LS12 1DB, England
Website: www.audiolabs.co.uk

"IT DOESN’T MATTER": whether your equipment is Old, New, in Kit form, Valve, Solid-state, Audio or R.F.

We...

Repair, Restore, Re-calibrate, Re-align:

Tape recorders by Revex, Tascam (up to 1"), Teac, Akai,

Valve amps, pre-amps, tuners, cinema amps.,
theatre-organ amps, industrial p.a. amps. from Radford, Quad, Leek,
Kaiser, Clarke & Smith, Compton, Parmaka, RCA, Allofalse etc.

Valve Communications Receivers and Transmitters
(30 MHz/2kW/6'6 tall) by KW Marconi, Labgear, Eddystone,
Relexion Ajx, RCA Tiger and so on.

We will...

Build that Kit for you or

Re-build it if you’ve had a go but it’s gone pear-shaped.

We will...

Custom-build for you a published Classic design or

Design something special and build the prototype

(A 250-watt AB2 high level modulator, Sir? No problems!!)

Valve Communication Receivers and Transmitters
(30 MHz/2kW/6'6 tall) by KW Marconi, Labgear, Eddystone,
Relexion Ajx, RCA Tiger and so on.

We are:

AUDIOLABORATORIES (LEEDS)
3 Kildare Terrace Industrial Estate, Leeds LS12 1DB, England
Website: www.audiolabs.co.uk
Gary Devon says valve amplifiers can match the performance figures of solid-state. It just takes better design. Here he presents a new Super phase-splitter and discusses the paradox of feedback.

In my last article (DIY Supplement No53, October 2000 issue) I outlined the valve phase splitter (or inverter) circuits in common use. These have appeared in classic circuits such as the Mullard 5-20, Williamson and so on.

It's been said that these circuits are as good as it gets for valve amplifiers. However, I have found that they have limitations. Problems arise from the fact that none of them achieve accurate balance between the two antiphase output signals. This increases even-harmonic distortion, as well as intermodulation distortion.

If the output transformer is well designed and constructed the cancellation effect of even-harmonics in a push-pull output stage functions well for the output valves alone, but not for earlier stages unless driven by a well balanced signal. Balance must be maintained over the full audio frequency range, a difficult proposition.

Most amplifiers include some degree of negative feedback. The benefit of negative feedback is diminished by the less-than-ideal performance of classic phase splitters because they limit the ability of the amplifier circuit to reject the distortion signal. One of the seeming paradoxes of negative feedback is that the amplifier requires good (theoretically it should be perfect) open-loop linearity for it to function. Therefore, any improvement to the phase splitter / drive circuitry will give a double benefit to an amplifier using loop feedback.

Better open-loop linearity results in less distortion in the first place, but because the open-loop linearity is better the feedback will be more effective. The evolutionary sideline of feedback-free amplifiers avoids this paradoxical problem of course.

To achieve any particular distortion figure, less feedback will be required or, with a given amount of feedback, less distortion will be present.

Diagram I

Reducing the even-harmonics changes the timbre of an amplifier. The result is a drier and crisper sound, with a more finely etched background. As the amplifier's linearity before feedback has been increased, intermodulation is also reduced so there is less background hash. This type of sound is far less "valve like", so to some it is less desirable.

I want to briefly outline methods which can be introduced to valve amplifier design where the measured performance can be made to approach or equal that of a solid-state amplifier. As with the previous phase splitter article I have included no equations as the intention is to provide reading material rather than a lesson in electronics.

The circuit topologies I have developed are quite esoteric. I have held them close to my chest for some time. Perhaps someone else has done the same thing already, I do not know.

In the last article the long-tailed pair was introduced. Essentially there are two valves with a common cathode connection, as in Diagram I. If the tail load is a perfect current source then any signal which is present at one anode must also be present 180 degrees phase shifted at the other. This is because the total current is shared by the two valves. If the current in one valve increases then it must decrease by an equal amount in the other.

This is the beginning of a perfect phase splitter. It only functions perfectly with a...
Speaker Kits From IPL Acoustics

IPL Acoustics are pleased to announce their latest range of speaker kits which include no less than seven transmission lines, three conventional speakers, two AV centre speakers, and an active subwoofer kit.

IPL kits are designed to the very highest specification using sophisticated Audiosuite testing system to ensure smooth response, correct phase, and low distortion. Only the best drivers and crossover components are utilised.

Our two new flagship transmission line kits include the:

- **S5TL RIBBON** which incorporates a superb custom built aluminium coned 6.5" bass mid unit and the unique new IPL Ribbon tweeter.
- **S5TL GOLD** which incorporates the Audax 10" HDA bass unit, the 5" HDA mid unit, and the highly acclaimed Audax pizzio GOLD dome tweeter in a transmission line enclosure. The sound quality of all IPL speakers compare well with commercial speakers costing 3-4 times the cost of the kit and are tunable to suit your room and system.

If you would like further details of our range which includes drivers, quality components, and Silver PTFE cables, please send a 40p A4 S.A.E. to IPL Acoustics, Chelsea Villa Torrs Park, Ilfracombe, Devon, EX34 8AY. Tel: 01271 867 439

Website: www.marketsquare.co.uk/ilfracombe/iplacoustics.htm

WIRE & INSULATION

The DESKADEL range of Hi-Fi interconnect, speaker cables, hook-up wires and tone arm wires are precision manufactured featuring PURE SILVER conductors insulated with PTFE in a variety of designs to suit all applications. Using only the finest materials and the latest manufacturing techniques we aim to provide a selection of quality products for superb natural sound reproduction on a scale previously unheard.
constant current tail. This circuit also has the advantage of allowing good power supply rejection, as long as the following stages are also well balanced.

Such a stage loses a lot of gain (50% reduction) when driven by a single-ended input signal, which is the norm.

Diagram 2 - Two stages cascaded give good gain and balance, but introduce three LF time constants, limiting feedback.

What if we were to cascade two such stages to increase the gain to a point where feedback could be incorporated? See diagram 2. Now, dependant on the valves used, we will have as much gain as we would probably need. Also, any slight imbalance that appears from the first long tailed pair will be cancelled by the rejective capability of the second pair.

Diagram 3 - Direct coupling eliminates one time constant, allowing more feedback to be applied.

The trouble with this arrangement is that when we apply feedback around the whole loop of a practical amplifier the low frequency stability isn't very good because we have three low frequency time constants within the loop. Firstly, the coupling capacitors from V1/V2 to V3/V4; then from V3/V4 to the output valves and finally the output transformer's finite primary inductance.

How about direct coupling the first stage to the second to eliminate one of the time constants, as in Diagram 3? It looks good on paper and now we only require a resistor as a tail load for the second pair. But we find that we have a problem when we use real world valves. Any slight difference between the anode voltages of V1/V2 is amplified by V3/V4 and the whole system has a serious DC offset. Also, we may need a seriously high anode voltage because the cathodes of the second long tailed pair are already at the potential of the first's anodes.

Somewhere between DC and AC coupling would seem to be the order of the day, as in Diagram 4. Now we are getting somewhere. We can apply a sensible DC voltage to the grids of the second long tailed pair, say 50V. Also, the coupling network allows decent low frequency stability, unlike pure AC coupling. What we have is effectively a low frequency step network. If we used two ECC83 valves in cascade the gain would be over 2000. That's quite a lot, unless triode output valves are used or we are looking at a ridiculously sensitive power amplifier. We could use lower gain valves maybe, or how about placing a local loop around our phase splitter/driver stage, as in diagram 5?

Diagram 5 - Adding local D.C. and A.C. feedback from anode of V3 and V4 back to the grids via resistors Rf gives 'Super Balance'.

Diagram 5: This circuit now has Super Balance right across the audio range and way beyond. The local feedback also reduces the effect of the low frequency step into the bargain, so bass quality is supreme. The extra resistors in the cathodes of V1/V2 help mop up any D.C. imbalance. The resistors marked Rf apply the local shunt feedback.

Overall feedback in a complete amplifier would be applied to the grid of V2 via a suitable attenuation network. An example amplifier is illustrated by diagram 6.
From the USA, author Ray Alden presents the calculations needed to design a loudspeaker. Noel Keywood gets his calculator out.

The Three Basic Components of Loudspeaker Design and by page 24 we've learnt how to obtain Thiele-Small parameters and measure the frequency response of a loudspeaker under Drivers Parameters. In truth these subjects demand books in themselves but the text here is concise enough and good as a guide.

A wry smile came to my face where Alden says "Your scientific calculator will handle exponents and logarithms very quickly. Don't be intimidated by this equation or any of the others that follow; it's just a matter of pressing the correct buttons! You need to know how to handle the maths before pressing the buttons. The book is best for science students fluent with the not-too-complex maths involved, but keen to learn more about loudspeaker design. Which is what you would expect considering Alden's background. Its explanations of loudspeaker behaviour I would not dispute; the research appears careful. There are enough usefully concise explanations to make the book a valuable quick reference for equations and outline theory. On page 72, for example, I found a clear diagram of crossover orders and radiation phase angles.

Chapter 3 deals with "Sealed Enclosures" (infinite baffle) and Chapter 4 the much beloved Vented Enclosure, or reflex port loudspeaker. After these basic types comes a Chapter on Computer Aided Design, which concentrates solely on a programme called TOP BOX.

After a chapter on Subwoofers comes an all-important chapter on Crossovers. Again, it is concise and useful, but at 16 pages relatively short and by no means a complete guide. Crossover design is, ultimately, a juggling act, using the sort of theory provided within this book, but also measurement. KEF once adopted a rigorously mathematical approach to produce highly complex solutions, so it can be done this way, but then they started out with enormously sophisticated device models in the first place, before number crunching. I wasn't surprised to see Richard Small's name appear (p37) in this book; he worked at KEF in the 1970s, contributing substantially to this theoretical approach.

At the rear of the book there's a Chapter with seven loudspeaker build projects. It is very condensed and relies upon American Radio Shack drive units, since Advanced Speaker Designs was "Printed in the United States of America" and hails originally from Texas. As a note at the front of the book clearly states, the use of other drivers will produce different results, so the designs will be difficult to recreate by U.K. constructors.

Advanced Loudspeaker Designs fulfils a specific need, being best suited to engineering and science students, or those with a bent for maths. Nowadays computers usually take the work out of button pressing, but all the same it is useful to have a short, concise guide to the basic maths, like this one. Its concise technical explanations of how speakers work many will find valuable too I believe.
D.I.Y. LETTERS

Chris Logan from Sydney, Australia, asks about improving our Series II PHONO stage. and Gary Devon replies. Peter Moore builds and then modifies our Kit88 valve power amp. Check out his DIY web addresses.

PREAMP QUERIES

It's a good idea to offer a modular pre-amp - Supplement 51, June 2000 - though I have a few queries about its design, and hopefully these are of interest to the readers.

Why the substantially larger load resistor - R29/R30 - for the second valve stage than that of the first stage, though still only a relatively small cathode resistor - R27/R28? Won't the combination result in the second stage being biassed in the non-linear portion of the valve's operation?

R6 in the power supply unit is shown as 0.1R. Would it not require a value of at least 1R there to be of any practical effect? Apparently, a better defined bass sound can be achieved by placing the A.C. coupling capacitor differently in an RIAA circuit so there will be less interaction between it and the 3180uS time constant most useful for builders to check to see if they have correctly assembled the kit and to ascertain if each valve is OK. Most builders will know such voltages may vary a little from the published values.

Whilst on the topic of valve circuits, are any of your contributors or readers able to sketch the basic circuit of the Loyez phase splitter? I cannot find it in the Radio Designers Handbook or elsewhere. I suspect it is a colloquial name for a well known circuit. Thank you for your very interesting DIY Supplements.

Chris Logan, Sydney, Australia.

Thanks for the letter Chris, you have brought up some interesting points. As with anything there are many and varied ways of approaching an audio design. When it comes to the bottom line there are two major practical factors which must be considered.

1) The design must function as intended, and
2) all of the components used in the design must be operated within their physical limits.

There are improvements which could be made in terms of component quality and circuit sophistication, but if all of these were implemented we end up with a £10,000 super preamp which is no longer a practical proposition. A line must be drawn somewhere and in general we offer readers a useful hint in the construction.

At right: the original circuit of our Series II Phono stage, but with additional 'test point' voltages to help constructors.

World Radio History
OVERSEAS SUBS RATES

Surface Mail £40
Airmail Europe £50
Airmail Middle East & South-East Asia £60
Airmail USA, Canada, Australia, Japan, Korea & China £70

UK SUBSCRIPTION £27

VISIT OUR WEBSITE: www.hi-fiworld.co.uk

Get your issue of **Hi-Fi World** straight to your door!

Get to our amazing classified ads first and grab a bargain!!

Run by dedicated hi-fi engineers and enthusiasts, Hi-Fi World has become famous for its informative reviews and radical kit designs.

OVERSEAS SUBS RATES

<table>
<thead>
<tr>
<th>Service</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Mail</td>
<td>£40</td>
</tr>
<tr>
<td>Airmail Europe</td>
<td>£50</td>
</tr>
<tr>
<td>Airmail Middle East & South-East Asia</td>
<td>£60</td>
</tr>
<tr>
<td>Airmail USA, Canada, Australia, Japan, Korea & China</td>
<td>£70</td>
</tr>
</tbody>
</table>

MISSED AN ISSUE?

Back issues also available at a cost of £3.50 only (includes P&P). Payment by cheque only - overseas please contact us for details. Send cheque to: Hi-Fi World, Freepost LON3478, London, W9 1BR.

Credit Card Hotline Monday - Friday 9.30am - 12.00 noon: Tel: +44 01923 270 833 Fax +44 01923 260 588
By post: Make cheque or postal order payable to: Audio Publishing Ltd, sent in an envelope marked: Hi-Fi World, Freepost LON3478, London, W9 1BR

HI-FI WORLD SUBSCRIPTION FORM

I would like to pay by cheque made payable to Audio Publishing Ltd. □ Credit Card □ Airmail □ Surface Mail □

Please debit my VISA/MASTER/SWITCH Card No. (Switch card issue No.______)

Expiry Date: __________________________ Cardholder Signature: __________________________

Name __________________________
Address __________________________
Post Code __________________________
Daytime Tel: __________________________
Start Issue __________________________

Delivery Address (if Different) __________________________
good basic design upon which they can experiment if they so wish.

Another hidden danger of implementing 'improvements' is that unless those improvements are synergistic the final design ends up an expensive mess.

If I answer your questions one by one.

1) In the phono section the second stage operating conditions were chosen to give an anode voltage of approximately 100V. This voltage was chosen to DC bias the cathode follower, but without placing too much stress on the cathode follower heater-cathode insulation. The high load value gives a load line with a shallower slope, giving a greater, more linear swing at the lower anode voltage. Check out the operating condition on the ECC83 characteristic curves.

2) R6 is there to reduce the peak charging current into the reservoir capacitor. Only a small resistor is required as the peak currents are so high.

3) Rearranging the L.F. time constant network so that it appears before the DC blocking capacitor is a good idea in theory. The problem is that now we have the full anode voltage of the previous valve across the time constant capacitor when the unit is running, with the possibility of the full HT voltage across it when warming up. This presents problems when it comes to selecting components. A high accuracy polystyrene capacitor of 350V rating of the value required is not so readily available as the low voltage one chosen. The HF time constant before the cathode follower requires a far smaller value component which can easily be found at the required voltage. Hence the circuit being as it is.

4) We do publish voltages and there were some on the original diagram, although they were difficult to see because the diagram ended up smaller than ideal in terms of legibility. The same diagram, with larger type and additional test point info is published here.

I am not familiar with the 'Loyez' phase splitter. As you say, it could be a common type masquerading under a different guise.

Gary Devon

TWEAKING KIT88

Any DIY or kit hi-fi is a haven for the tweaker. We all strive to obtain maximum performance. Let me recount my journey. I was fortunate to listen to your Kit88 prior to owning my own, something rare in DIY. I wouldn’t say I was an expert in valve technology but I felt competent to build it with the safety precautions put in place by World Audio Design. I built three kits before this one.

It took me around seven hours to complete. Finally, switch or arrived and, like my previous kit amps, it worked first time. Around ten hours later it suffered an output tube failure, something that bemused me a little, since amps built three years ago are still going strong. The WAD schematics give a 10% tolerance on voltage readings and I found I was close to these limits but not over.

A quick search on the internet proved one thing: how various valve manufacturers vary in claimed power ratings. The supplied JJ Teslas have one of the highest claimed limits. The JJs were replaced by WAD without quibble.

I also ran to my local Maplin and purchased four Chinese KT88s. When the anodes glowed cherry red these were swiftly returned too! Now I was understanding how component quality was critical for sound and reliability.

On the subject of valve configuration, many ways are available for a push-pull amplifi-
er like the KiT88. I believe the KiT88 uses a compound type bias - "a mixture of fixed and cathode bias". I have listened to both and feel that cathode bias alone offers a better overall balance and is less critical as regards valve tolerance. I removed components BR3, C4 and R5 and replaced R3 with a wire link; the four cathode resistors R13,14,15 & 16 were replaced with 470Ω 1W - something near to GECs spec for their KT88. Something I found useful was running the amp off a Variac; this helped me to measure voltages and evaluate the sound quality with less power. With the cathode resistors I noticed an increase in voltage across them as I approached full mains level so C9,10,11 & 12 were replaced with 100V Black Gates - my first exotic capacitors. Now my amp was a little less powerful but, to my ears, smoother in presentation and still able to drive my Tannoy R2s to annoying levels if the urge arose.

Within the signal path I replaced the stock carbon pot with a Danish Audio stepped attenuator. I played around with the article in the December 1998 Hi-Fi World supplement on how to design a DIY step-per and had excellent results. Unfortunately, fitting this within the KT88s, a simple process of removing grid resistors R6,12, 32 & 33 and fitting 100Ω 1W resistors between G2 & Anodes of each KT88. Keeping within GEC's recommendations the cathode resistors were replaced with 560Ω 1W.

Using Sovtek's KT88 I found a little redness in the anode although this was only on a single tube. To reduce B+ two 100Ω 17W resistors in parallel were put in line on both legs of the HT supply. I prefer the sound of valves with slightly less volts applied to them, IMO sounding warmer and less harsh.

In the pictures you will notice additional circuit boards; these offer a soft start and delay to the HT supply using two 50W 4K7 resistors bated to the base. This drops HT until a relay triggers around thirty seconds after applying HT. Obviously, this doesn't offer extra performance to the sound but does protect the valves. Many commercial high-end amps do not have this feature.

That about wraps things up for now but I should mention some people who have given me assistance in understanding valve amps.

Thanks to following -

Nick Lucas
www.worldaudiodesign.co.uk
<http://www.worldaudiodesign.co.uk>
Suppliers of KiT88

Thorsten Loesch
www.audioasylum/audio/tubes
<http://www.audioasylum/audio/tubes>
Component suppliers

Mark Bartlett
www.audiocom-uk.com
<http://www.audiocom-uk.com>

Derek Rocco
www.watfordvalves.com
<http://www.watfordvalves.com>
Valve Suppliers

The Guys at Langrex Supplies for Mullard CV4003/Westinghouse 6AK5 supply

Peter Moore
pete.m@solarm.com2home.co.uk

Audio Link IFC
Audiolab Leeds 12
Billington Export IBC
BK Electronics 4
Chelmer Valve IFC
Cricklewood Electronics 6
Falcon Acoustics 12
Glass Audio 6
IPL Acoustics 14
Langrex Supplies IFC
Lockwood Audio 4
PM Components BC
Riverside Audio 14
Sowter Transformers 12
Sugden IBC
Technical & General 12
Watford Valves 4
Wire & Insulation 14
COMPETITIVE WHOLESALE PRICES

BILLINGTON EXPORT LTD

New old stock - Government or Original boxes unless marked * which are White box

<table>
<thead>
<tr>
<th>Part Number</th>
<th>descriptions</th>
<th>1-19</th>
<th>20-49</th>
<th>50-99</th>
<th>100-199</th>
<th>200+</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D21 STC Data available</td>
<td></td>
<td>£12.00</td>
<td>£9.50</td>
<td>£9.50</td>
<td>£7.50</td>
<td>£7.00</td>
</tr>
<tr>
<td>6AK5 Mullard</td>
<td></td>
<td>£1.95</td>
<td>£1.95</td>
<td>£1.95</td>
<td>£1.95</td>
<td>£1.95</td>
</tr>
<tr>
<td>6AMS Mullard UK</td>
<td></td>
<td>£3.00</td>
<td>£2.00</td>
<td>£1.60</td>
<td>£1.35</td>
<td>£1.25</td>
</tr>
<tr>
<td>6AK6 Brimar UK</td>
<td></td>
<td>£1.00</td>
<td>£0.65</td>
<td>£0.45</td>
<td>£0.38</td>
<td>£0.38</td>
</tr>
<tr>
<td>6AU6WC * USA</td>
<td></td>
<td>£1.43</td>
<td>£1.43</td>
<td>£0.95</td>
<td>£0.85</td>
<td>£0.86</td>
</tr>
<tr>
<td>6AUSA GE/ RCA USA</td>
<td></td>
<td>£0.75</td>
<td>£0.75</td>
<td>£0.75</td>
<td>£0.75</td>
<td>£0.75</td>
</tr>
<tr>
<td>85A2* East European 90 day guarantee</td>
<td></td>
<td>£1.80</td>
<td>£1.20</td>
<td>£1.20</td>
<td>£1.20</td>
<td>£1.10</td>
</tr>
<tr>
<td>807 Russian</td>
<td></td>
<td>£6.60</td>
<td>£4.40</td>
<td>£0.00</td>
<td>£2.90</td>
<td>£2.70</td>
</tr>
<tr>
<td>5644 Raytheon</td>
<td></td>
<td>£3.90</td>
<td>£2.60</td>
<td>£2.50</td>
<td>£2.40</td>
<td>£2.30</td>
</tr>
<tr>
<td>5755 Raytheon</td>
<td></td>
<td>£2.63</td>
<td>£2.63</td>
<td>£2.63</td>
<td>£2.63</td>
<td>£1.75</td>
</tr>
<tr>
<td>7327 Sylvania, may be similar to ECC82</td>
<td></td>
<td>£3.35</td>
<td>£3.35</td>
<td>£0.90</td>
<td>£0.90</td>
<td>£0.90</td>
</tr>
<tr>
<td>ECL86/6GW8. Try PCL86 which is a similar valve at an amazing low price! Data available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP86. Use EP95 which is a similar valve. EP95 is P7G base. EP95 is recommended in Glass Audio. Data available.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP95 Mullard UK</td>
<td></td>
<td>£1.95</td>
<td>£1.95</td>
<td>£1.95</td>
<td>£1.95</td>
<td>£1.95</td>
</tr>
<tr>
<td>EL34 see 3D21 possible alternative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL84 near equivalent try 6CH6</td>
<td></td>
<td>£1.95</td>
<td>£1.95</td>
<td>£1.40</td>
<td>£1.30</td>
<td>£0.80</td>
</tr>
<tr>
<td>6CH6 Brimar UK, similar to EL84 Mullard but different pin out. No discounts possible. Data available.</td>
<td></td>
<td>£1.95</td>
<td>£1.95</td>
<td>£1.40</td>
<td>£1.30</td>
<td>£0.80</td>
</tr>
<tr>
<td>PC86 Zaerix East Europe</td>
<td></td>
<td>£3.68</td>
<td>£3.68</td>
<td>£2.24</td>
<td>£2.24</td>
<td>£2.24</td>
</tr>
<tr>
<td>PC900/4H4 East European</td>
<td></td>
<td>£2.72</td>
<td>£2.72</td>
<td>£1.15</td>
<td>£1.15</td>
<td>£0.90</td>
</tr>
<tr>
<td>PCC84/7AN7 Mullard UK</td>
<td></td>
<td>£1.50</td>
<td>£1.00</td>
<td>£0.90</td>
<td>£0.90</td>
<td>£0.80</td>
</tr>
<tr>
<td>PCC89 Russian</td>
<td></td>
<td>£1.50</td>
<td>£1.00</td>
<td>£0.90</td>
<td>£0.90</td>
<td>£0.80</td>
</tr>
<tr>
<td>PCL86/14GW8 Polish or Russian made using Philips technical expertise</td>
<td></td>
<td>£0.53</td>
<td>£0.53</td>
<td>£0.53</td>
<td>£0.53</td>
<td>£0.37</td>
</tr>
<tr>
<td>SV811-3 Svetlana</td>
<td></td>
<td>£19.50</td>
<td>£16.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TT21 Billingot Gold Chines</td>
<td></td>
<td>£27.00</td>
<td>£18.00</td>
<td>£18.00</td>
<td>£16.00</td>
<td>£16.00</td>
</tr>
<tr>
<td>UCL82 * Russian</td>
<td></td>
<td>£1.80</td>
<td>£1.80</td>
<td>£1.20</td>
<td>£1.20</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

1,000,000 valves in stock, including E88CC, ECC81, ECC82, ECC83, EF86 EL34, EL84, KT66, KT88, 6SL7, 6SN7, 300B, 807, 845, 6080 and sockets. Please enquire for RETAIL or WHOLESALE prices. We also stock the excellent BILLINGTON GOLD brand and limited quantities of Mullard, GEC, etc.

BILLINGTON EXPORT LIMITED

Visitors by Appointment only

Tel: (0) 1403 784961 • Fax: (0) 1403 783519 • Email: sales@bel-tubes.co.uk

SUGDEN audio products

MASTERCLASS

Masterclass from the original CLASS A company

New products from Sugden

Wide-bandwidth d.c coupled high current class A power amplifier and matching pre-amplifier. Available as a stereo power amplifier you can upgrade or balanced monoblocks.

Handcrafted from the finest materials and components, Sugden guarantee to add an extra dimension to your listening pleasure. Our superior wide-bandwidth designs will increase the dynamic range and sonic accuracy of your audio system - without fatigue.

With over thirty years experience in design and manufacturing Sugden has become a reference for reviewers, musicians and audiophiles around the world. Prices start at £5-49.00 for the Audition series so why settle for anything less?

J. E. Sugden & Co Limited

Valley Works, Station Lane, Heckmondwike, W. Yorks. WF16 0NF

Tel. 01924 404088 Fax 01924 410069

Email jesugden@compuserve.com
Golden Dragon
Precision Audio Tubes

Please enquire for any tube not listed. We have an inventory of over 2,500 different types in stock.

<table>
<thead>
<tr>
<th>Golden Dragon High Quality Pre-amplifier Tubes</th>
<th>Golden Dragon Special Quality Pre-amplifier Tubes</th>
</tr>
</thead>
<tbody>
<tr>
<td>12A7A/E81CC/ECC81</td>
<td>E81CC-01 Gold Pins Low Microphony Low Noise</td>
</tr>
<tr>
<td>$6.95</td>
<td>£10.50</td>
</tr>
<tr>
<td>12AU7A/E88CC/ECC82</td>
<td>E82CC-01 Gold Pins Low Microphony Low Noise</td>
</tr>
<tr>
<td>$6.95</td>
<td>£10.50</td>
</tr>
<tr>
<td>12AX7A/E89CC/ECC83</td>
<td>E83CC-01 Gold Pins Low Microphony Low Noise</td>
</tr>
<tr>
<td>$6.95</td>
<td>£9.50</td>
</tr>
<tr>
<td>12BH7A</td>
<td>E88CC-01 Gold Pins Low Microphony Low Noise</td>
</tr>
<tr>
<td>$9.95</td>
<td>£14.50</td>
</tr>
<tr>
<td>6DJ8/E88CC/ECC88</td>
<td></td>
</tr>
<tr>
<td>$10.95</td>
<td></td>
</tr>
<tr>
<td>6SN7GT/ECC33</td>
<td></td>
</tr>
<tr>
<td>$8.95</td>
<td></td>
</tr>
</tbody>
</table>

Golden Dragon Trilodes

<table>
<thead>
<tr>
<th></th>
<th>Singles</th>
<th>Per matched</th>
<th>Per matched</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>pair</td>
<td>quad</td>
</tr>
<tr>
<td>2A3 4 pin</td>
<td>£22.50</td>
<td>£50.00</td>
<td>£100.00</td>
</tr>
<tr>
<td>2A3 Octal</td>
<td>£22.50</td>
<td>£50.00</td>
<td>£100.00</td>
</tr>
<tr>
<td>211</td>
<td>£28.50</td>
<td>£60.00</td>
<td>£120.00</td>
</tr>
<tr>
<td>811A</td>
<td>£11.50</td>
<td>£25.00</td>
<td>£50.00</td>
</tr>
<tr>
<td>845</td>
<td>£36.50</td>
<td>£75.00</td>
<td>£150.00</td>
</tr>
<tr>
<td>805</td>
<td>£36.50</td>
<td>£75.00</td>
<td>£150.00</td>
</tr>
</tbody>
</table>

Golden Dragon T300B Range

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>300B Super</td>
<td>£79.00</td>
<td>£160.00</td>
</tr>
<tr>
<td>4.300B</td>
<td>£84.00</td>
<td>£170.00</td>
</tr>
<tr>
<td>4.300B LX Super</td>
<td>£124.00</td>
<td>£250.00</td>
</tr>
</tbody>
</table>

Golden Dragon Special Quality Pre-amplifier Tubes

<table>
<thead>
<tr>
<th></th>
<th>Matched</th>
<th>Matched</th>
<th>Matched</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pair</td>
<td>Quad</td>
<td>Octet</td>
</tr>
<tr>
<td>EL34 Super</td>
<td>£25.00</td>
<td>£50.00</td>
<td>£100.00</td>
</tr>
<tr>
<td>EL34M</td>
<td>£25.00</td>
<td>£50.00</td>
<td>£100.00</td>
</tr>
<tr>
<td>EB4L (special quality EL84)</td>
<td>£12.50</td>
<td>£25.00</td>
<td>£50.00</td>
</tr>
<tr>
<td>EL156 Octal</td>
<td>£75.00</td>
<td>£150.00</td>
<td>£300.00</td>
</tr>
<tr>
<td>6L6WGB</td>
<td>£22.50</td>
<td>£50.00</td>
<td>£100.00</td>
</tr>
<tr>
<td>KT66</td>
<td>£25.95</td>
<td>£52.95</td>
<td>£104.95</td>
</tr>
<tr>
<td>KT66 Super</td>
<td>£65.00</td>
<td>£130.00</td>
<td>£260.00</td>
</tr>
<tr>
<td>KT88</td>
<td>£57.95</td>
<td>£116.00</td>
<td>£232.00</td>
</tr>
<tr>
<td>KT88 Special (Gold plated)</td>
<td>£67.95</td>
<td>£136.00</td>
<td>£272.00</td>
</tr>
<tr>
<td>KT90</td>
<td>£65.00</td>
<td>£130.00</td>
<td>£260.00</td>
</tr>
<tr>
<td>KT90LX</td>
<td>£75.00</td>
<td>£150.00</td>
<td>£300.00</td>
</tr>
<tr>
<td>350B</td>
<td>£29.95</td>
<td>£50.00</td>
<td>£120.00</td>
</tr>
<tr>
<td>6L6GC</td>
<td>£19.95</td>
<td>£40.00</td>
<td>£80.00</td>
</tr>
<tr>
<td>6550A</td>
<td>£42.95</td>
<td>£86.00</td>
<td>£172.00</td>
</tr>
<tr>
<td>6550A Special (Gold plated)</td>
<td>£64.95</td>
<td>£129.00</td>
<td>£258.00</td>
</tr>
</tbody>
</table>

Golden Dragon Power Tubes

<table>
<thead>
<tr>
<th></th>
<th>Matched</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pair</td>
</tr>
<tr>
<td>KT66</td>
<td>£50.00</td>
</tr>
<tr>
<td>KT90LX</td>
<td>£50.00</td>
</tr>
<tr>
<td>KT88</td>
<td>£50.00</td>
</tr>
<tr>
<td>KT88 Special (Gold plated)</td>
<td>£50.00</td>
</tr>
<tr>
<td>KT90</td>
<td>£50.00</td>
</tr>
<tr>
<td>KT90LX</td>
<td>£50.00</td>
</tr>
<tr>
<td>350B</td>
<td>£50.00</td>
</tr>
<tr>
<td>6L6GC</td>
<td>£50.00</td>
</tr>
<tr>
<td>6550A</td>
<td>£50.00</td>
</tr>
<tr>
<td>6550A Special (Gold plated)</td>
<td>£50.00</td>
</tr>
</tbody>
</table>

We have a vast range of tubes available from manufactures all over the world including rare and vintage types. A 60 page booklet of valves available is updated monthly and can be provided at a cost of £2.50 per copy. Prices exclude VAT and carriage. Please add carriage charge of £2.50 for UK orders and VAT at 17.5%.

P.M. COMPONENTS LTD, Selectron House, Jenkins Dale Industrial Estate, Chatham, Kent. ME4 5RD
Tel 01634 848500, Fax 01634 848676, e-mail: 101650,2424@Compuserve.com

The Valve.
Golden Dragon

Simply, The Best.

For more information contact:
PM Components Ltd, Selectron House, Jenkins Dale Industrial Estate,
Chatham, Kent. ME4 5RD
Tel 01634 848500, Fax 01634 848676, e-mail: 101650,2424@Compuserve.com