ISSN 0142-6192 **April '79 40**p obby tron ROL

TRAIN SPEED CONTROLLER

REVERSE

The Telephone System

An exchange of ideas

Capacitors The inside story

Electronics In Warfare

Transistor Tester Project

555 Circuits This IC timer explored

Catalogue Survey

Hobby Electronics

What you think of us

Capacitors

6 Short Circuits 26, 18, 33, 45, 50 HE Book Service 46, 54, 73

29

Practical circuits for the experimenter Look out a good read

.

Vol. 1. No. 6

April 1979

Monitor News from the world of electronics

An exchange of ideas

Get on the right track

How they work **Kit Review**

.

Denshi modular plug-in construction kit

The inside story **HE Reader Questionnaire** 35 What do you think of it so far? **Preview of May's HE** 37 Sneak look at next month's issue Electronics in Warfare 38 19 24

Marketplace 46 Good deals for HE readers

We're not around the bend, just flushed with success

Transistor Gain Tester	69
Hobbyprints	67
Mail Order Catalogue Survey Where to get a good deal	64
Into Electronics Part 6	55
Next Installment	51

An invaluable piece of test equipment

Good Evans						,	đ		74
Computer games	et	а							

Hobby Electronics 25-27 Oxford Street, London W1R 1RF 01-434 1781

Published by Modmags Ltd, Distributed by Argus Distribution Ltd, Printed by Q.B. Ltd. Colchester Hobby Electronics is normally published on the second Friday of the month prior to the cover date

Editor: Halvor Moorshead Editorial Staff: Richard Maybury, Ian Graham, Henry Budgett. Project Team: Ray Marston, Steve Ram-sahadeo, John Fitzgerald Production: Diego Rincon, Pete Howells Technical Artists: Paul Edwards, Tony Strakas Advertising: Chris Surgenor, David Sinfield, Joy Cheshire Admin Staff: Margaret Hewitt, Alan

Carlton, Bren Goodwin, Kim Hamlin, Tim Salmon

Copyright. All material in this publication is subject to world-wide copyright protection. Permission to reproduce printed circuit board patterns commercially or marketing kits of the projects must be sought from the Editor. All reasonable care is taken in the preparation of the magazine to ensure accuracy but Modmags cannot be held responsible for it legally

ACCESS BARCLAYCARD CASH	FREEPOST ON ORDERS	GMT ELECTRONICS Freepost Birmingham B19 1BB
• CHEQUE	24 UD TEL EDUONE ANS	
	24 NH TELEFIIONE AND	WENNESSENVICE TEL ORDERS WELCOME
DIGITAL INTEGRATED CIRCUITS 4000 Buffered C MOS - High Speed		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	250 N7400N 9 N7444N 03 N74123N 90 N7407N 11 N7446AN 65 N74123N 90 N7402N 11 N7446AN 65 N74123N 90 N7402N 11 N7446AN 62 N74123N 99 N7403N 11 N7446AN 64 N74126N 99 N7404N 12 N7448AN 44 N74132N 95 N7405N 12 N7451N 13 N74132N 95 N7405N 25 N7451N 13 N74137N 96 N7406N 13 N74147N 19 N74148N 120 N7408N 13 N74147N 19 174147N 120 N7408N 13 N7416N 13 N7416N 120 N7408N 13 N7416N 13 N7416N 120 N7408N 14 N7415N 13 N7416N 1210 13 <	30 N74162 60 N741528 32 N741518 85 N7415257 105 37 N741951 50 N741528 32 N7415138 85 N7415257 105 32 N741981 79 N7415374 24 N7415137 76 N7415257 107 32 N741981 79 N7415374 24 N74151534 76 N74152560 76 74 N741991 139 N7415374 24 N74151554 80 N74152607 76 46 N74271N 160 N7415382 24 N74151554 80 N74152667 30 60 N74271N 116 N7415281 22 N74151574 54 N74152667 30 725 N74298N 200 N7415281 23 N74152833 116 N74152834 116 N74152834 116 N74152834 116 N74152834 116 N74152834 110 124 145151456 126
HF F4024 45 HEF 40031 16 HEF 4003 HF F4025 14 HEF 4003 16 HEF 40156 HEF 40273 22 HEF 4085 64 HEF 40156 HEF 40278 22 HEF 4085 64 HEF 40161 HEF 40279 50 HEF 4093 50 HEF 40163 HEF 40209 60 HEF 4093 50 HEF 40163 HEF 4030 46 HEF 40175 HEF 40163 HEF 40163 HEF 4030 46 HEF 40173 175 HEF 40163 HEF 4030 46 HEF 40174 166 HEF 40174 HEF 4030 46 HEF 40174 175 HEF 40173 HEF 4040 68 HEF 4053 91 HEF 40173 HEF 4044 54 HEF 40150 70 HEF 40193 HEF 4043 79 HEF 40193 70 HEF 40193 HEF 4044 84 HEF 43512 98 18	73 N 7425N 27 N 7446N 23 N 74162N 62 N 7426N 22 N 7496N 30 N 74163N 119 N 7427N 22 N 7491AN 60 N 74163N 119 N 7427N 22 N 7491AN 60 N 74163N 119 N 7427N 21 N 7493N 31 N 74165N 119 N 7432N 11 N 7493N 31 N 74165N 119 N 7432N 11 N 7493N 31 N 74170N 119 N 7433N 30 N 7495AN 48 N 74174N 140 N 7438N 21 N 7495AN 48 N 74174N 140 N 7438N 21 N 74160N 25 N 74180N 140 N 7438N 21 N 74190N 25 N 74180N 117 N 7442N 40 N 7419N 42 N 74180N 117 N 7442N 79 N 74191N 18 N 74182N	74 N74LS04N 216 N74LS92N 70 N74LS191N 95 N74LS378N 160 74 N74LS05N 23 N74LS92N 70 N74LS191N 95 N74LS378N 160 74 N74LS05N 23 N74LS92N 70 N74LS191N 120 N74LS386N 160 765 N74LS08N 16 N74LS92N 170 N74LS380N 170 93 N74LS09N 22 N74LS07N 16 N74LS19N 160 N74LS39N 170 134 N74LS11N 22 N74LS19N 160 N74LS39N 180 111 N74LS11N 24 N74LS19N 160 N74LS39N 170 134 N74LS11N 28 N74LS19N 10 N74LS39N 170 1314 N74LS11N 28 N74LS1N 10 N74LS39N 170 141 N74LS11N 28 N74LS1N 10 N74LS2NN 170 141 174LS11N
LINEAR INTEGRATED CIRCUITS CA3011 92 NE592K 162 CA3018 75 RC4136 130 CA3020 191 1841205 79 CA3028A 86 TCA580 346 CA3046 76 TCA730 450 CA3046 70 TCA740 450 CA3048 245 TCA740 450 CA3048 253 TCA122 648 CA3130E 90 TCA1022 648 CA3130E 90 TCA1022 648	OPTO ELECTRONICS Order Code Ligut Emliting Diodes, Individual 125° (3mm) Red 14 C0Y54 Teren 17 C0Y95 Vallow 19 C0Y95 Parel Mounting Clip to suit 3 LEB3 Clip 2° (5mm) Red 15 C0Y24A Cireen 17 C0Y94 15 C0Y24A C0Y94 Green 17 C0Y94 19 C0Y94 20096 20096	SWITCHES Order Code SPDT 2A/250Y A.C., 5A/28V D.C. 58 SW 9A1021 SPDT C/Off 67 SW 9A1021 SPDT Double Blas To Centre 75 SW 9A1021 SPDT Double Blas To Centre 75 SW 9A1031 SPDT Shige Blas To Centre 75 SW 9A1031 SPDT Biles 70 SW 9A1031 SPDT Displas To Centre 70 SW 9A1031 SPDT Displas To Centre 72 SW 9A2031 SPDT Dubble Blas To Centre 72 SW 9A2041
CA3189E 266 TDA1029 338 CA3189E 266 TDA10348 217 LV301AN 30 TDA2581 266 LV308N 95 7 100 DA2581 292	Panel Mounting Clip to sult. 6 LEDS Clip Light Emitting Diodes - 7 Segment Display	DPDT Single Diss to Centre 102 SW 8A2061 DPDT Biss 96 SW 8A2061 Miniature Push - C & K
LM318N 200 TL081CP 75 LM319N 216 TL084CN 140 LM324N 70 UA709CT 46 LM330N 21 UA709CT 40	Ref 160 XAN3061 C. Anode R.H. Decimai Pt. Green 199 XAN3051	SP Push To Maka, Momentary 0.5A/250V A.C., 1A/28V D.C. 54 SW/8531 SP Push To Break, Momentary 54 SW/8533
LM381N 110 UA710CN 41 LM381AN 180 UA711CN 65 LM382 120 UA741CT 42	C. Cathode R.H. Decimal Pt. Rett, Low current drain 160 XAN3074 6'''(15.2mm) C. Anode L.H. Decimal	Silde - Switchcraft DPDT Standard Actuator 36 SW 46206 DPDT Slot Actuator, Voltage Change, Marked 110/240 43 SW 46206F
UA741CN 18 UA747CN 50 UA747CN 35 UA748CN 35	Pt. Red C. Anode L.H. Decimal Pt. Green C. Gethode L.H.	SEMICONDUCTORS
VIC1496N 97 Voltage Regulators NE531 19 LM3090A (K) 104 NE540 275 LM3290A (K) 108 NE555N 25 LM3290A (K) 38 NE555N 25 LM3290C (55) 347812C (75) NE556N 60 LM37812C (75) 55 NE560N 351 LM37812C (75) 76) NE561N 427 LM37935C (78) 85	Decimal Pt. Red 230 XAN6640 Photorelistors ORP12 S0 ORP12 ORP61 S0 ORP61 Phototrenistors	Diodes 0 <th0< th=""> <th0< th=""> <th0< th=""> <th0< th=""></th0<></th0<></th0<></th0<>
NE562N 461 UA 7912CU 86 NE565N 120 UA 7915CU 86 NE566N 155 UA 78L05CS 32 NE567N 170 UA 78L06CS 32	OCP71 180 OCP71 BPX25 175 BPX25 BPX29 175 BPX29	INCOS 7 28106/41 122 0A700 9 CATTLE 1280 Zenar Diodes
NE570N 405 UA78L12CS 32 NE571N 459 UA78L15CS 32	Photocodpler FC0820 150 FCD820	BZY88/BZX79 + Voltage 8 BZX61 + Voltage 16 Transistors
SEMICONDUCTORS Order Code 1A 400V 5.1.L 93 BY179 1A 600V 5.1.L 93 BY179 1A 600V 5.1.L 93 BY179 15A 600V 5.1.L 93 BY179 15A 600V 5.1.L 33 W118 15A 100V 45 W01 15A 100V 15 W48 15A 100V 15 W48 15A 100V 15 W148 15A 100V 15 W148 15A 100V 123 V148 15A 400V V13 V148 15A 400V 201 V.448 30A 400V 226 V1448 30A 400V 260 V1448 30A 400V 260 V1448 30A 400V 108 TIC126D Triaci BT BT 30A 500V 124 BT 15A 500V 174 BT 15A 500V 174 BT 15A 500V 174 BT	STRANSFORMERS Order Code ails may be connected in terres or to give wide voltage range ev 220, 240V Connected in terres or to give wide voltage range Clamp Type Construction - LBS Regulation F.C. 54, H36, W35 - 0.4.5V Secondaries 220 Trans 6VA 0.12V 120 0.15V 130 0.20V 200 - Clamp Type Construction - 1.5% Regulation F.C. 70, H48, W46 - 0.4.5V Secondaries 335 Trans 20VA 0.4.5V Secondaries 345 720 0.12V 120 120 0.12V 120 120 0.12V 120 120 0.12V 120 120 0.20V 120 120 0.20V 120 120 0.20V 150 200 0.20V 120	20029 37 214427 9 206 BC478 24 BSX88 18 211193 30 214425 158 BC478 12 ME330 48 211293 30 2144858 134 BC548 10 MF102 32 21222 21 2144858 134 BC548 10 MF102 32 212222 21 214546 43 BC548 12 OC35 B2 2122656 20 218457 35 BC537 14 OC35 B2 2124664 42 214457 35 BC537 14 OT73 14 1773 14 1773 14 1773 14 1773 44 43 24/2006 24 40673 B0 BC770 14 T1730 57 1773 16 37/2006 24 AO167 38 BC131 35 T1447 43 2042007 22 BC107 10 B

Hobby Electronics, April 1979

166 SL 1623C 166 SL 1625C 166 SL 1625C 193 SL 1630C 225 SL 1640C 225 SL 1641C

 23A 500V
 492
 BT W4T-500

 COMMUNICATIONS INTEGRATED CIRCUITS - PLESSEY
 5

 SL360C
 242
 SL641C
 384

 SL360C
 242
 SL641C
 384

 SL610C
 305
 SL651C
 786

 SL611C
 2305
 SL650C
 230

 SL612C
 324
 SL650C
 230

 SL613C
 394
 SL701C
 220

 SL621C
 347
 SL621C
 166

 SL622C
 624
 SL1611C
 166

 SL623C
 627
 SL1610C
 165

 SL623C
 327
 SL1611C
 166

 SL623C
 327
 SL1613C
 325

 SL630C
 321
 SL1613C
 255

 SL640C
 384
 SL1620C
 225

 SL640C
 384
 SL1620C
 225

Monitor

MADAME ZELDA BEWARE

This has go to be the most 'spirited' use for an MPU yet. The Zodiac Astrology Computer is the latest in a line of MPU-based games. The device will generate a detailed horoscope chart, just by entering the subjects date and time of birth. On pressing the appropriate buttons it will present you with a planetary chart and even suggest do/don't actions for any day, past-present or future. A third advice mode will indicate whether a particular course of action is advisable or not. Presumably it will also predict if you'll have the £26 needed to buy the device when it goes on sale in June.

TRANSISTOR TESTER

This handy little box will test transistors and diodes in circuit. Up to now in-circuit testers have always given ambigious results, mainly due to low value resistors in the circuit. Ampmace claim to have overcome these drawbacks by injecting the junction under test with a comparatively large controlled current. Another innovation is the use of an audio indicator rather than the more usual moving-coil meter. A steady tone indicates the junction under test is OK, a warble or silence means short circuit and open circuit respectively. Ampmace can be found at: Unit 96, Somers Road, Rugby, Warwicks.

WATCH OUT

Three new LCD watches from Unik just announced. They all sport the now mandatory six digits (how did we ever live with only four), Unik have the usual alarm/ chrono/solar permutations in the range. One interesting feature however is the inclusion of an easily accessible battery hatch, no more expensive trips to the jeweller. Prices from £20 to £30, available now.

ALPHANUMERIC DISPLAY

The type of display that can show digits as well as letters seem to have been largely ignored by the amateur electronics market up to now. Perhaps with the introduction of a new stand-alone module from Hewlett Packard this will change. The price at the moment is still a little prohibitive to the amateur but as we all know these have a habit of falling dramatically as production and sales increase. Hewlett Packard claim the device needs the minimum of interfacing to make it operational, further details can be obtained from HP at King Street Lane, Wokingham, Berks.

ULTRASONIC CLEANER

We thought this was someone's Action Man in a fridge, but it turned out to be a full-sized man in a Ultrasonic cleaning tank. He's holding a smaller version of the cleaner in his hands, what you would use the big one for, heaven knows, but the small one finds plenty of uses cleaning jewellery and other delicate articles. Both of the cleaners are manufactured by Kerry Ultrasonics Ltd and can be found in Hitchin Herts.

SPEAKEASY

Thought we'd heard the last of chess-playing MPUs for a while, but this was not to be. News has just arrived of the latest generation of Chess Challenger, called the 'Voice Chess Challenger', you've guessed it, it talks. We just hope it tells potential purchasers it's price, around £250. As the importers point out, it would be a good idea for the blind. Apparently the program used is the strongest so far, and works at nearly twice the speed of it's nearest rival. It should be on sale over here in July but if you can't wait Spectrum Games should be able to give you some information, find them at 113-115 Gloucester Road, London, SW7 4TE.

News from the Electronics World

DAEDALUS BLUEPRINTS

Following the Daedalus feature in January HE the British Interplanetary Society have been flooded with requests for more information on the project. The BIS have now made available the three most detailed blueprints about the project. Price for all three is £2.00, from the Executive Secretary, British Interplanetary Society, 12 Bessborough Gardens, London, SW1V 2JJ. (After 1st May address will be 27/29 South Lambeth Road, London, SW8 1SZ.)

BOOK REVIEW

It's very difficult these days to recommend a book on electronics to the newcomer but such a book recently came into our offices. Called 'Digital Integrated Circuits and Computers' by Barry Woolard it deals specifically with digital electronics. Books of this type, in the past, were usually either too specific or covered the subject too broadly. This book takes the novice right from the most basic principles, to Boolean Algebra, right up to concepts of programming computers. It even taught us here at HE a thing or two. The book costs £3.25 and is published by McGraw-Hill, number 07082337.

WRAP UP WELL

Thought to be the only purpose-designed wire wrapping tool for the hobby market, the OK wire wrapping gun comes with an impressive range of features. The gun is battery-powered (rechargeable) and based on the design of the company's industrial version of the tool. It comes complete with a charger and a handy dispenser containing 15 metres of .25 mm wrapping wire. It looks a little pricey at £46 but anyone who has tried wire-wrapping by hand will vouch for it's value. Contact OK Machine Tool Ltd, 48a The Avenue, Southampton, for more details.

Hobby Electronics, April 1979

RADIO PAGERS

No the picture does not show Batmans utility belt, its a handy sized radio pager made by Motorola now being used by the Post Office for their paging network. The box will emit a loud beep if someone is trying to get in contact with you, all you have to do is pick up a phone, dial a pre-arranged number and have your message relayed to you.

PAGERS TWO

Multitone, the people who first developed the radio-pager back in the fifties recently announced the aquisition of a contract worth £600 000 to supply the Russians with a paging system for the 1980 Olympic games in Moscow. The contract calls for two main installations the first, in Moscow itself has a capacity for 3000 separate channels. The other site in Tallinn will have only 200 users, (this area will be used for most of the watersport activities). Both systems will feature a novel addition to the conventional audible bleep, in the shape of a seven segment display. A number (or series of numbers) flashed on the display will indicate which prearranged response has to be taken in the event of a call. The receiver also has a memory so any call, if ignored can be recalled at a more convenient time.

CASIO CORNER

During an average month we get to see a fair number of new calculators, this month is no exception. One company in particular, Casio, seem to bring out something like one new calculator a month. This time they have excelled themselves with three new releases. The first is a fairly conventional alarm/ clock/calculator, with a usefully-angled display. Called the CQ81, it will sell at around the £20 mark. The other two are both scientific, FX2500 and FX3100 respectively. Both nave the usual bewildering array of buttons and functions, the FX3100 even does something called 'rectangular polar co-ordinate conversion permutations: 'Sounds quite painful. Find out for yourself for around £25 (FX25100) and £30 (FX3100).

CALENDAR WATCH

Latest watch offering from Casio features a full monthly calendar on the LCD display. The watch has all the normal functions you would expect, (Casio claim superior accuracy on the watch side, around 10 seconds a month.) Price for knowing the date is around £85 (or less). Called the 47CS23B, it should be in the shops now.

Telephones

In Britain, we all take telephones for granted, but nevertheless many aspects of our society would be rendered helpless without this form of communication. Angus Robertson examines how our telephone system has developed, and what the Post Office has up its sleeve for the future.

THE TELEPHONE SYSTEM that we know today had its origins in 1753 when a letter was written to the *Scotch Times* describing an electric telegraph based on static electricity and was slowly developed until a 13 mile telegraph line was installed by Charles Wheatstone between Paddington and West Drayton in 1838, followed in 1850 by the first undersea cable between England and France and the first successful transatlantic cable in 1866. But passing telegrams was only the beginning, and in 1876 a Scotsman working in America, Alexander Graham Bell filed his first patent for the telephone (some three hours before Elisha Gray applied for a similar patent).

In 1878, Bell demonstrated his telephone to Queen Victoria on the Isle of Wight with calls to Southampton and London and the Bell Telephone Company (founded the year before in America) had some 778 customers. The first exchange opened in 1878 in New Haven, Connecticut, followed the year after by the first manual exchange in London.

The automatic exchange

Manual telephone exchanges have many disadvantages, particularly where a 24 hour telephone service is to be provided to a small community since the exchanges are not of sufficient size to justify full time operators who not only tended to provide unreliable service, especially during the night, and were open to corruption.

This latter aspect (and the increasingly poor service being provided by over-worked operators) caused a Kansas City undertaker by the name of Almon B Strowger to investigate automatic switching to prevent the wife of a rival undertaker who worked as an operator in the manual exchange from illegally transferring calls destined for Strowger to her husband. Although Strowger developed the automatic step-by-step switching system that still bears his name today, his system was further developed by other companies and the first automatic telephone exchange was introduced in Milwaukee in 1896. Similar exchanges were installed all over the world during the following 80 years with the first British automatic exchange in Epsom in 1912.

Although a continuous programme of development through the twenties and thirties enabled the Strowger system to dominate the automatic switching market, so much so that even in 1976, the British Post Office (the General Post Office (GPO) ceased to exist in 1969) was still installing new Strowger exchanges in the main cities, and even today existing Strowger exchanges are still being extended. But the step-by-step operating principle of Strowger exchanges requires a vast number of mechanical moving parts which are expensive to manufacture and require regular routine maintenance. There are also a substantial number of relays only required for initially setting up the call, and which lay idle during the conversation.

The crossbar system

The Crossbar switching system was developed by the Ericsson company in Sweden and rather than providing step-by-step switching, is effectively a matrix of contacts controlled by vertical and horizontal bars, and unlike a Strowger selector, can carry several conversations simultaneously. Reliability is rather better than Strowger and crossbar switches, are controlled from common groups of relays which are only engaged during the actual setting up of the call - thus termed common control. This has another advantage since in America the relay common control units are replaced by a computer which enables many new customer and exchange facilities to be offered such as computerised billing. Crossbar was developed during the twenties and thirties and gained total acceptance in the United States and many other countries, but unfortunately in Britain after the Second World War there was an enormous demand for new and replacement telephone equipment. The PO British manufacturers had little experience with crossbar manufacture, and being unwilling to import the technology, nor delay until development was complete, Strowger switching systems were again manufactured in large quantities, most of which are still in use today.

The late fifties and sixties saw the development of

The future of telephone circuits rests not with copper cables, but with fibre optics, the fibre optic cable shown here handling the same number of conversations as the conventional multicore cable.

In the United States, CB radio and telephones technology combine to offer fully portable telephones without any wires, but with full outgoing dialling and incoming ringing.

semi-electronic exchanges which operated using the same common control ideas as crossbar, but instead used highly reliable sealed reed relays as the switching element with totally electronic control. The British Post Office hoped to 'skip' large crossbar exchanges and move directly to the even more reliable electronic exchanges, but unfortunately the first such exchange installed in Highgate Wood in 1962 was rather ahead of its time and failed to carry its full traffic load; this set-back forced the Post Office to reconsider its earlier decision and install crossbar exchanges, which began making an appearance in the early seventies. By 1976, there were 5,206 Strowger local exchanges compared to only 359 crossbar, while 669 small TXE2 semielectronic exchanges had been installed in rural areas. But the TXE2 semi-electronic exchange which is designed for up to 2000 lines, is of little use in cities where 10 000 line exchange units are typically used. The larger TXE4 has taken many years in development and the first field trial being in 1969 at Tudor in North London, but the first opened only in late 1977. These TXE4 exchanges are the first in Britain to offer stored programme control which potentially offers a variety of new facilities to subscribers. It is perhaps interesting to note that the standard TXE4 uses discrete transistor bistable based logic circuits and threaded wire memories, in other words technology 10 years old, so STC has developed the updated TXE4A which now uses TTL and MOS shift register technology to provide a considerable cost saving over the TXE4 exchanges only just being installed by the PO.

The American Way

Meanwhile in the States, the No 1 ESS (electronic switching system) introduced in the late sixties, uses similar switching technology to the British TXE4 with sealed reed relays, but rather than using dedicated electronics, the No 1 ESS uses full computer control and can handle from 10 000 to 70 000 lines, while a

smaller version, the No 2 ESS operates with between 1000 and 10 000 lines. As with all most common control United States exchanges, touch tone push button dialing is available together with a variety of other services such as call waiting, providing a bleep (indication that somebody is calling) and enabling the first call to be held while answering the second (\$3.66/month), call forwarding providing automatic transfer (\$2.25/ month), three way calling allowing three people to converse simultaneously (\$3.35/month) and speed calling providing exchange storage of either eight or 30 different numbers (\$2.25/month for eight, \$3.96/ month for 30 members). All these various functions can be easily accomplished by the computer controlling the exchange which is also able to provide bills detailing the actual called number and length of each long distance call. While it might be suggested that the United States is currently perhaps 15 years ahead of Britain in exchange technology and range of services available, in 1976 less than 25% of Bell System subscribers in the United States had international dialing available, while some 80% of British subscribers now have the facility to dial direct to about 360 million telephones in 76 countries, and new countries are being added each month. Indeed, the British Post Office is currently investing about £120 million in a new international telephone switching centre in Mondial House, London this compares with £2m to £10m for an average telephone exchange.

Some telephones in the United States not only allow calls be made, but also include clocks and calculators.

Digital dialling

But all the previous exchanges will be obsolete by the turn of the century, to be replaced by totally electronic exchanges based on digital solid state switching — since a name has not yet been established for the British entry in this field, the name *System X* has been temporarily attached. Although the British Post Office intends to install the first *System X* exchanges in 1981 at Woodbridge in Suffolk (930 lines) and a junction tandem exchange (inter exchange circuits) at Baynards House in the City of London. System X has no mechanical parts and is basically a specialised computer, and as such requires a fraction of the space of Strowger and *TXE4* — and for each person required to build *TXE4*, and

E. 9

25 for Strowger, and this has of course caused certain alarm among the trade unions.

System X

System X development has been based on the hardware subsystems such as switching, message transmission, signalling, and processing, while software subsystems include call processing and accounting, maintenance and control, and operating systems. Although many of the software features have been in use in American computer controlled crossbar exchanges for many years, the switching is solid state and based on purely digital means. Basically, the analogue voltages from the telephone instrument pass to an analogue to digital converter (ADC) and then into the digital random access memory (RAM) into which the digital signals are continually passed, one bit from each of the thousands of conversations to be switched being stored, and then read out in a different time slot (time division multiplex). This system is not unlike a large relay matrix, except that RAM is considerably more economical than mechanical contacts, that is once the signals are in the digital domain.

Pulse Code Modulation (PCM)

Although there is no digital switching yet in the British telephone network, there are a substantial number of digital (PCM) circuits between exchanges — PCM allows 30 digital circuits to be provided along two ordinary copper wire cable pairs (one go, and one return), thus enabling 15 times more circuits to be provided between exchanges without laying extra cables under the roads. When *System X* is introduced, the intermediate A-to-D, and D-to-A stages can be bypassed providing considerable simplification in exchange equipment. This can be taken a stage further by eliminating many of the cables between exchange and telephone instruments.

In urban areas the local cable distribution system is layed under pavements with houses being connected by buried cables to manholes where the main cable is

A typical Strowger exchange using contacts which rotate past banks of contacts.

Plessey PDX 800 line electronic digital exchange (PABX) an electromechanical equivalent would have totally filled the room.

joined. These local cables are fed back to green street cabinets where interconnections may be made, before being fed into large multicore cables back to the local exchange. When digital technology is introduced, it will be possible to introduce switching into these cabinets, controlled by the exchange computers, with resultant decrease in cabling costs. *System X* digital exchanges enable switching to be performed virtually instantaneously, provided suitable signalling is used.

Dialling delays

The British telephone system is currently based on impulse signalling as provided by rotary telephone dials. This operates at a maximum speed of 10 impulses per second, so STD numbers can take up to 15 seconds to actually dial. The Strowger exchanges again only operate on a step-by-step principle, and so take several seconds after dialling is finished to complete the call to the dialled exchange.

Although crossbar exchanges can provide virtually instantaneous switching thus enabling calls to be connected very rapidly, this only occurs in practice when all the exchanges in the network operate at similar speed, and currently the vast majority of the British network is old-fashioned Strowger. In America, the network is based on crossbar, and so call set-up time was primarily restricted by the time required to dial the number. With this in mind, the American Bell System introduced its Touch-Tone push button telephone using multifrequency (MF) dialling. This is based on two different audio tones being transmitted together upon depression of each push button, there being seven tones in all, which are detected in the exchange and converted into a form suitable for the exchange switching. For instance, crossbar exchanges operate using a common register which accepts and stores the dialled number, and when

Telephones

Modern crossbar exchange with subscribers meters in foreground — the actual crossbar switch can be seen at the top of the rack comprising horizontal and vertical rows of contacts which, when activated by electromagnets, join rows together.

sufficient digits are received, a path is selected through the exchange in one step.

Within the exchange, the registers communicate with each other by sending digits along six wires in parallel. So although all crossbar exchanges will convert dialled pulses into these six parallel signals, they can rather more rapidly convert MF pulses, and this is how the American Bell System managed to provide almost instanteous connections using *Touch-Tone* phones.

In Britain, the 'keyphones' presently being installed merely store key depressions, and then dial out pulses at identical speed to a dial telephone. So although they provide quicker and more accurate keying, the call takes just as long to connect. The electronics required to store these digits obviously requires power, and this is normally provided by a battery charged from the phone line; in later direct line powered models a capacitor provides power during the dialling pulses which short circuit the telephone wires, obviously preventing power driving the electronics. Since MF telephones send tones down the wires, they do not short the wires which are thus able to provide continuous power for the tone generator incidently, this also means less interference for telephone users because the 50 V spikes created by dialling impulses are eliminated

As mentioned earlier, the TXE4 semi-electronic and System X digital exchanges provide the capability of offering further facilities such as automatic alarm calls, automatic call transfer to another number, three party connection (conference), abbreviated dialling and call waiting when notification of a second incoming call is made during an existing conversation. These facilities will be introduced experimentally on certain TXE4 exchanges during 1979, but many such facilities require extra keys for commands, other than the usual 1 to 0 digits, and on MF keypads, these are provided as * and # keys, and as such will be necessary for many new telephone features to be provided. System X exchanges will use MF telephones, and so the PO was put in a situation where it could continue installing old-fashioned impulsing keyphones as at present (which are somewhat unreliable and cost about £50 each, five times that of a standard dial phone), and all of which will be rendered obsolete when TXE4 and System X exchanges are opened, or start installing multifrequency keyphones, and this is the decision now taken

British touch phone

To enable MF keyphones to be installed on present Strowger exchanges, electronic converters will be installed on the first selectors of principal exchanges to convert MF tones into pulses for the electromechanical mechanisms. With crossbar exchanges it is even easier since all registers are common already. The PO hope to have the principal exchanges operating with MF keyphones during the early eighties, although it will be

EF 11

Telephones

several years later that the advantages are felt as more electronic exchanges are introduced.

Meanwhile, one particularly interesting new telephone being introduced is the X-Press Callmaker. This looks like a normal keyphone, but has a few extra buttons and switches which enable 10 entire directory numbers to be stored for recall by pressing just two buttons, and the callmaker also stores the last number entered into the keyphone, so if the called number is engaged, or if the infuriating woman says ''all lines are engaged, please try later'', as is so common just as you complete dialling 14 digits for America, then it only requires a quick press on one button for the entire number to be redialled automatically. Rental is anticipated at £7 per quarter. Another interesting item is the ultra lightweight telephone headset (called Starset by Pye TMC). Although telephone headsets bring visions of speaking horns as used on current PO headsets, almost every other country in the world now has available ultra lightweight headsets which comprise a hearing aid type receiver mounted behind the ear, with a miniature transparent tube poking toward the mouth. The weight is so little, that the biggest problem is walking off with it still plugged in, which can be very painful on the ear but one learns fast. Although headsets are currently predominantly for operators and telephones sales people, this headset can be used by executives who prefer two hands free during phone conversations, and find loudspeaking telephones impractical due to background noise. Estimated rental is £6 per quarter.

The business world

Despite the Post Office promotion of business telephones, the business equipment presently available leaves much to be desired. The PO has a monopoly on private branch telephone exchanges with less than 100 extensions, but the automatic exchanges (PABXs) offered today (that is if you can actually get one) are Strowger based and have been virtually unchanged for almost 30 years. They require a separate room for the equipment, with bulky lead acid batteries to drive the selectors. Although more modern large PABXs are available from private suppliers, these may only be used where more than 100 extensions are required. Again, the present Keymaster intercom systems are expensive to install with only two exchange lines maximum. America has used the Key System since 1938, offering hold and five lines — and this is seen in most American offices, but we have nothing comparable except very expensive 10 line key and lamp units and manual exchanges which require a full time operator.

But during the seventies, this PO attitude has been changing, and several new business systems are in the pipeline. One of these is the new Small Business System developed by Pye TMC, and this uses special keyphone telephone instruments with 16 extra keys which can be used to access exchange lines, or other extensions. SBS will take up to 10 exchange lines, and 30 extensions, all connected using only 4 wires, unlike Key systems which use dozens of expensive wires. Many facilities are included such as call transfer, number stores and conference calls. For larger businesses, the *CDSS1 Call Connect System* is designed to replace all Strowger PABXs, offering up to 120 extensions with a maximum of 40 exchange lines and private circuits. Switching is totally digital using the same time division multiplex

Pye TMC X-Press Callmaker keyphone (£7 a quarter from PO) which stores 10 numbers and allows the last entered to be redialed by pressing a button.

technique as *System X*, and offering dial pulse or MF felephones, with many business facilities such as transfer, conference calls, call diversion, call back etc. The *CDSS1* comprises only a single filing cabinet sized rack designed to be located in the corner of the office taking 4 sq ft, rather than the 70 odd sq ft required for a present Strowger exchange room. Installation will also be very much quicker and cheaper — *CDSS1* can also potentially communicate digitally with *System X* exchanges, with perhaps three cable pairs replacing the 30 or 40 required when analogue telephone circuits are used, as at present.

Computer chat

One particular advantage offered by System X and such digital exchanges is that the computer processors at each exchange are able to communicate with each other passing such information as the originating number to the final exchange. This information is required, for instance, for call transfer where a new route from the originating exchange might have to be set up for the transfered call and it enables operators to receive visual indication of calling numbers. It should also deter obscene phone calls since tracing calls no longer involves time consuming tracing of selector contacts and wiring schedules showing which contacts are connected back to which previous selector, but merely a request into a computer terminal with an immediate answer. This does have serious implications regarding privacy of phone calls, particularly when the 'authorities' become interested in your callers, and this should be prevented before it becomes possible. It is significant that in the United States, telephone line 'tapping' is never permitted inside exchanges but only on external cables, while in Britain telephone exchange staff reportedly actively assist such tapping. It has even been rumoured that certain telephone exchanges in Ulster are almost totally under the control of computers wired to banks of tape recorders for phone tapping purposes.

Nevertheless, the introduction of digital telephone exchanges will enable many beneficial new services to be introduced, provide much faster call set-up times and most importantly, clear, clean, interference free digital lines where one can actually hear the calling party. **HE**

What to look for in the May issue: On sale April 6th

SAW POINT

Its goodbye to the faithful IF strip as we know it. SAW will soon be found in TV receivers, replacing the usual array of coils and capacitors. You can expect to see and hear a lot.more about them in the future, be one jump ahead and read the exposé in next month's ETI. P.S. SAW-=Surface Acoustic Wave!

HEADPHONE AMPLIFIER

A project to warm the ears and please the rest of the universe. Based on a high quality Class A design, this unit provides hi-fi drive for one or more pairs of dynamic headphones, allowing you to wallow within an undisturbed sound field, and leaves everyone around fre to do their own thing without having to listen to yours.

DOUBLE DICE

OK, so you've seen them before. Ours have a novel method of display decoding, switchable odds to allow adaptation for wargaming, etc. Single board construction makes life easier and overall we think its a nice one!

See what you think next month.

How It Works - AM/FM

The second in our occasional series by Gordon King. This time he turns his attention to radio, and goes in and out of the ins and outs in great, easily explained, detail. Masses of circuits to illustrate the points, and a must for anyone remotely interested in the field.

START YOUR OWN AMOURED

Hobby Electronics, April 1979

Ever fancied driving your own tank across the battlefields? Or taking a Porsche around a racetrack at 140mph? Well, much as we'd like to build a Chieftain as a project it would never go into one issue and so we offer you a fully proportional six channel radio control system for models instead.

The design offers joystick control (or switched position) and special attention has been paid to metalwork and setting up procedure. A kit of metalwork (and ready wound coils!) will be avilable, and alignment requires nought but a simple voltmeter.

We're confident this system will be the standard by which others are judged! Don't miss it!

PRINTED CIRCUITS HARDWARE

Comprehensive range Constructors' Hardware and accessories.

Selected range of popular components. Full range of HE printed circuit boards, normally ex-stock, same day despatch at competitive prices.

P.C. Boards to individual designs. Resist-coated epoxy glass laminate for the d.i.y. man with full processing instructions (no

d.i.y. man with full processing instructions (no unusual chemicals required).

Alfac range of etch resist transfers, and other drawing materials for p.c. boards.

Send 15p for catalogue.

Model Train Controller

This high-quality unit gives precision control of the speed of a model train. It can power two engines simultaneously and can be built as either an add-on unit for use with an existing controller, or can be built as a self-contained master controller with auxiliary outputs.

THE HE TRHO CONTROLLER enables the speed of a 12V model train to be varied smoothly from zero to maximum, with excellent power control under all conditions. The control over the near-zero to medium-speed range is particularly impressive, and it permits highly realistic shunting, etc. The speed control output can provide maximum mean currents up to above 1.5A, which is enough to power two trains simultaneously. The output is fully protected against short circuits. If a short occurs across the tracks the output power immediately shuts off, and is restored automatically when the short is removed.

The controller is provided with two fully protected outputs in addition to the speed control described. One of these is a fixed 12V DC output, which can be used to power the electronics section of one or two additional speed controllers if required. The third output is a fixed 15V AC, which can be used to power circuit accessories such as electric point motors, etc, and can deliver up to almost three amps. The controller has a total output. power rating of 50VA.

ON THE RIGHT TRACK

The controller can be built as a completely self-contained unit, with one controlled and two auxiliary outputs, or if preferred only the electronic control section need be built and can be used as an add-on unit that is powered from the 15V AC output of an existing power controller such as the Hornby 900.

As a point of general interest it should be noted that the electrical measurement conventions used in the model railway world are not always the same as those used in the electronics world. What Hornby call 15 volts AC, for example, is really 17 volts AC, and what they call 12 volts DC is really 15 volts DC. In our description of the HE controller above, we have used model railway conventions when describing available output voltages.

CONSTRUCTION

The controller can either be built up as a completely self-contained unit, as shown in the main circuit diagram, or can be built as an add-on unit that is powered from the 15 volt AC output of an existing controller such as the Hornby 900. In the latter case the unit should be

Our prototype train controller built in a Verobex. It cannot be seen from this photograph but holes should be drilled into the case to provide adequate ventilation otherwise the heat buildup can cause the safety cut-out thermistor to trip.

built exactly as shown in the main circuit diagram, except for the omission of transformer T1, thermal trip TH1, and mains switch SW3: the 15 volt AC input to the add-on unit should be connected to its 15V AC output terminals.

Note that no attempt should be made to power the add-on unit from the 12V DC output of an existing controller by also omitting bridge rectifier BR1 and connecting the 12 volt supply to the 12V output terminals of the add-on unit, since it is imperative for correct operation of the unit that only a clean full-wave rectified signal, with no standing DC components, should appear on its 12V DC terminals. Also note that, for the same reason, large capacitive loads must not be connected across the 12V DC terminals of either version of the speed controller circuit.

Whichever version of the unit is to be built, start by wiring up the components on the PCB, as shown in the overlay. Take particular note of the connections to unijunction transistor Q1 and silicon controlled rectifier SCR1. A pair of terminal pins should be fitted in the holes provided in the board at this stage, so that

15

capacitor Cx can be fitted, if necessary, at a later stage.

When the board is complete, wire it and all remaining components into a suitable case. If you are building the self-contained version of the unit, see the notes under Buylines. Note that thermal trip TH1 is connected in series with the primary of transformer T1, and should have its leads protected by sleeving. Take care to ground all metalwork, particularly the front panel.

LOAD SHUNTING?

Lamp LP1 acts as a permanent load across the output of the unit, and helps improve its regulation. It can either

How it Works

THE THERMAL TRIP.

THE MAINS INPUT to the unit is fed to stepdown transformer T1 via ON/OFF switch SW3 and the component marked as TH1. TH1 is a special 'thermal trip' thermistor, which has a unique set of characteristics which are used to protect the transformer and bridge rectifier BR1 in the event of a short circuit or overload being placed across either of their outputs. TH1 is designed to trip when the power loading of T1 rises to about 50 VA.

Under normal circumstances, when an overload is not placed across the transformer secondary, TH1 has a resistance of only about 30 ohms, and causes negligible power loss in the circuit. As the 50 VA overload condition is approached, the TH1 resistance rises to about 50 ohms, and its temperature rises to about 105°C, but it still causes only a negligible power loss in the circuit.

Beyond this point, any further increase into the 50 VA overload region causes the resistance and temperature of TH1 to increase rapidly, until almost the entire supply voltage is dropped across it and the current through the transformer primary is reduced to negligible levels: the resistance of TH1 in fact increases from about 50 ohms to 100k when its temperature rises from 100°C to 150°C. TH1 thus gives complete protection to T1 and BR1 against overloads or even short-circuits across their outputs. Once the overload is removed, the temperature of TH1 falls back below 105°C and it effectively resets itself.

THE SPEED CONTROL CIRCUITRY

The 17 volts AC output of the transformer is full-wave rectified by bridge rectifier BR1 and is fed to fixed-load LP1-R1 and to the external railway tracks via direction-control switch SW2 and via the electronic speed control circuitry, which acts essentially as a fast power switch that is connected in series with the BR1 output leads, and which can go through a complete OFF-ON-OFF switching sequence in a single half-cycle of the BR1 ouput voltage: when the electronic 'switch' is closed throughout full half be freely mounted within the case of the unit, as in our prototype, or mounted on the front panel, where it will give a visual indication of the power output level of the unit.

When construction is complete, connect the controlled output of the unit to a railway layout, place an engine on the track, and check that the unit functions correctly. Switch SW2 controls the direction of the locomotive, and RV1 with ganged switch SW1 controls the speed. Speed should be maximum when RV1 is rotated fully clockwise, and zero when RV1 is turned fully anticlockwise. The speed should be a very slow crawl when RV1 is rotated anti-clockwise against the pressure of its

cycles, full power is fed to the external track: when the 'switch' is closed for only half of each half-cycle, half power is fed to the track, and when the 'switch' is open throughout all halfcycles, zero power is fed to the track.

Silicon controlled rectifier SCR1 is the main element of the electronic switch described above, and is triggered in each half-cycle by a variable-delay generator designed around unijunction transistor Q1. The action of SCR1 is such that it is normally off, but turns on and self-latches for the remaining duration of a half-cycle when its gate is triggered by Q1: SCR1 turns off automatically at the end of each halfcycle as its anode current falls towards zero. The SCR1 triggering delay can be varied from nearzero (full power output) to almost the full duration of a half-cycle (minimal power output) in each half-cycle via RV1 and C1, and RV1 thus serves as the speed-control pot: the delay can be made total (zero power output) by opening ganged switch SW1.

Monitor resistors R2 and R3 are wired in parallel and connected in series with the cathode of SCR1, and thus have a voltage developed across them that is proportional to the output current to the track. This voltage is fed to the base of Q2 via D1-C2-R8 and R9, which together form an overload detecting network. Q2 disables the Q1 unijunction delay generator when it is activated, and thus removes the power drive from the track. The action of the network is such that the output is disabled immediately if the peak output current rises above roughly 2.4 A (about 1.5 A mean): this overload is temporarily 'remembered' by C2, and is rechecked automatically once or twice a second (by occasionally firing SCR1 for part of a half cycle) until the overload is removed, at which point Q2 turns off and enables Q1 to operate in its Normal manner.

Zener diode ZD1 limits the peak voltage across Q1 to a safe value of 10 volts. LED 1 (a light emitting diode) is connected across the output of bridge rectifier BR1 via R10, and is mounted on the front panel of the controller to indicate the ON state of the unit.

Model Train Controller

Hobby Electronics, April 1979

17

Model Train Controller

ganged switch: the speed of this crawl can be reduced by connecting capacitor Cx in place on the PCB. The value of Cx (if it is required) should be established by trial and error, starting at 10n and going up in small step: **HE** and should be made no larger than is absolutely necessary.

Inside view of the complete unit. Design by Ray Marston, unit built by Steve Ramsahadeo both of the HE Project Team.

Close-up of the SCR bolted to the heatsink which itself has lugs going through the PCB.

The PCB pattern of the model train controller shown full size.

All components except TH1 and T1 are readily available. TH1 is a thermal trip thermistor, and is available from sTevenson Electronic Components (see advertising pages) for 65p plus 30p minimum carriage charge.

Transformer T1 should ideally be a 17V type with a 50 VA (3 A) or greater rating. On our prototype we used a type ET 1015 transformer, which has two sets of 17V, 2 A windings, and wired the windings in parallel to give a total current rating of 4 A. If you do the same, make sure that the windings are correctly phased by first connecting one set of ends together and then checking with a voltmeter that negligible AC voltage appears between the two free ends; if all is well, complete the connections.

The ET 1015 transformer is manufactured by Essex Transformers Ltd. We obtained ours from Maplin Electronic Supplies under order number WB22Y (Tr 34V HP), price £5.62.

TV Aerials

You've all seen them, but do you know how they work? It's not so easy as it first seems. Find out now and never be lost for words at parties.

WHEN AN ELECTRIC CONDUCTOR is placed in a radio frequency field an emf (electromotive force) is induced into it in rather the same way as an emf is induced into the secondary winding of a transformer when the primary winding is connected to a source of alternating current (AC). My previous article dealing with TV signals has already explained how such signals are generated and propagated in space. This article gives a basic impression of how TV aerials work and what factors influence their choice for particular locations.

Since we live in a world which is permeated with electromagnetic radio signals from multiple transmitting stations it follows that in virtually any conductor will be induced emfs corresponding to these signal fields. You can easily prove this merely by connecting pretty well any electric conductor to the aerial terminal of a sensitive radio receiver and tuning in. Depending on frequency, signals from the world over will be received. I recall a long time ago using the springs of my bed to run my crystal set and later my short-wave set; but because the latter consumed external energy I was obliged by violent parental reaction to resort to the former after falling asleep with the headphones on. Not because of the high cost of electricity - I think we were still on gas! - but because during my slumbers I became restless (probably thinking about the reception of New York on a onevalver) and pulled the set complete with lead-acid accumulator on to the new carpet with dire results.

A crystal set is a good illustration of the realness of electromagnetic wave energy. The required signal is merely tuned by a coil and capacitor; then rectified by a

Fig. 2. Voltage and current distribution of a tuned half-wave dipole.

diode, and the resulting audio modulation fed direct to sensitive headphones. In other words, the headphones are worked directly by the energy of the signal.

WIRE-LESS

In the days of the crystal set it was found that the longer the aerial attached to it the louder the sound from the headphones. This was because the closer the length of the aerial came to the signal half-wavelength, the greater the signal pick up. In those days we were working on relatively long wavelengths. Such as aerial was called a long-wire aerial, but to be a half-wavelength on 200 kHz long-wave it would need to be 750 m long. Hence the full extraction of signal energy was never achieved, though it got better as the aerial was made longer. Also, of course, the amount of signal induced into an aerial depends on the strength of the signal field.

The earlier article showed that the strength diminishes as the inverse square of the distance from the transmitting aerial. The signal field is measured by a special meter calibrated in terms of microvolts per meter (μ V/m) in conjunction with an aerial of specific parameters which is supported at a certain height above Earth. For TV and FM radio the transmitting authorities issue signal strength contour maps where the contours are either in μ V/m or in dB with respect to 1 μ V/m. Thus a field of 60 dB is a thousand times above 1 μ V/m, or 1 mV/m. Such maps are useful for a rough guide of field strength; but topography can affect the local field strengths of the VHF and UHF bands in particular.

TUNED IN

Unlike a long-wire aerial, a TV aerial is specifically tuned to the band of frequencies over which it is to operate. The conductor length is cut so that it corresponds to the mean frequency of the channel or channels of the stations it is to receive. The simplest TV aerial, therefore, is merely a metal rod whose length corresponds to the half-wavelength of the signal frequency. The emf induced into the aerial by the signal, though, has to be conveyed with the least loss to the receiver, and a common way of achieving this is to cut the rod at its centre point, support the two halves by an insulator so that their ends are close together but not touching, and then to connect the signal feeding cable (called a feeder or downlead) across these two ends. The idea is shown in Fig. 1.

Now, when a half-wave aerial is responding to a signal of corresponding wavelength, the signal current through it rises to a maximum at the centre and falls to a minimum at each end, while the signal voltage across it rises to a maximum at each end and falls to a minimum at the centre, as shown in Fig. 2. Exactly the same current/voltage distribution obtained when the rod is cut at the centre provided the aerial remains tuned to the signal. Because at the centre point the voltage is at a minimum and the current at a maximum, it follows that this is the point of least impedance (a low impedance) of course, gives rise to a high current and a low voltage). In free-space, the impedance at the centre point is, in fact, close to 75 ohms.

The signal is then fed from the aerial to the receiver through a cable whose characteristic impedance is close to 75 ohms. When this is done and when the receiver end of the cable is also terminated to 75 ohms, which is provided by the aerial input circuit of the TV receiver, the signal from the aerial is conveyed to the receiver with the minimum loss, which corresponds to the intrinsic attenuation of the cable.

THE DIPOLE

When the rod is severed at its centre point **as** shown in Fig. 1, the aerial is commonly referred to as a centre-fed dipole (dipole, because it effectively posseses two poles). It is also possible to obtain signal from one of the two high impedance ends by a special coupling transformer often composed of coaxial cable, which reduces the end impedance to match that of the feeder. Such an aerial is called an end-fed dipole. Because the aerial is cut to correspond to half the wavelength of the signal the term half-wave dipole is in common use.

An aerial will still gather optimum signal when it is greater than half the wavelength of the signal provided its length corresponds to integral multiples of half the wavelength of the signal. For example, it could be full-wave, one-and-half-wave, etc.

It was shown in the previous article that the signal wavelength is equal to the radio wave (light) velocity (close to 300 m per μ s) divided by the frequency of the signal in Hz when the velocity is in m/s. The frequency of UHF Channel 52 vision signal is 719.25 MHz, which puts the full wavelength at 0.417 m and the half. wavelength at 0.208 m. A half-wave dipole would not be cut exactly to that length, however, because of a function known as the velocity factor of the aerial, which is determined by the length/diameter ratio of the rod, which also governs the bandwidth of the aerial. The aerial causes the signal velocity to decrease slightly from the true free-space value, which means that the physical half wavelength of the aerial itself is always slightly greater than the signal half wavelength - about 10% greater on average, depending on the nature and

Fig. 3. A single dipole mounted vertically has the omnidirectional polar response around it (a) and the figure-of-eight response when mounted horizontally (b).

bandwidth of the aerial. To resonate exactly at Channel 52 vision frequency, therefore, the aerial length would be close to 0.229 m.

BANDWIDTH

The precise length of a TV aerial is not really that critical because other factors come into play, including the bandwidth (which, as just noted, depends on the conductor length/diameter ratio) and the inclusion of other elements, such as a reflector and directors. Indeed, it is important for a TV aerial to have a respectable bandwidth in order to work properly from the three stations of a group (e.g., BBC-1 and 2 and ITV). UHF TV aerials are, in fact, designed for specific channel groups, which are Group A (red code) for Channels 21-34, Group B (yellow code) for Channels 39-53, and Group C/D (green code) for Channels 48-68.

From what we have seen so far it will be appreciated that apart from tuning the signal correctly, an aerial of improper length will also fail to match the feeder connected to it, so that additional losses will result.

The half-wave dipole forms the foundation of all TV aerials, though they differ in detail. As stated in the previous article the aerial needs to be disposed to correspond to the plane of polarization of the signal. Most UHF signals are horizontally polarized requiring the elements to be placed horizontally in space. Many of the VHF signals are vertically polarized. The elements of these aerials are longer than those of their UHF counterparts because of the lower frequency and hence

Fig. 5. When a dipole is folded like this the centre impedance is four times that of an unfolded dipole.

Fig. 6. Impression of the polar diagram of a multi-element Yagi array.

longer wavelength, and they are generally seen to be vertically disposed.

The vast majority of UK TV receivers are designed for 75-ohm coaxial cable aerial connection. Coaxial cable is an unbalanced cable made up of an outer flexible conductive screen and an inner conductor centred by an insulating dielectric. The characteristic impedance of the cable arises from the inductance of the conductors and the capacitance between them. The conductors also, of course, have pure DC resistance. When such a cable (feeder) is terminated correctly at both ends the signal lost is essentially a function of the DC resistance; but if the terminations are incoorect standing waves can be set up on the cable and severely reduce the signal coupled to the receiver. The attenuation of feeder increases with increase in frequency, so a cable of given unit-length attenuation at VHF will have significantly more attenuation at UHF — more at the higher UHF channel numbers than at the lower ones. For the least loss of signal at UHF, therefore, only good quality low-loss cable should be employed; this also applies to the VHF channels in fringe, difficult or weak signal areas when it is necessary to use a high-gain aerial in particular.

BALANCING ACT

Since coaxial cable is unbalanced and the centre point of a dipole balanced, the design of the aerial sometimes tends to apply a correction at the feeder terminating point so that the coaxial feeder appears as a balanced coupling to the dipole; but direct coupling from the centre point of the dipole to coaxial feeder does not detract too much from the overall performance, and many aerials are of this basic design.

When a half-wave dipole is vertically disposed it responds to signals equally (provided it is in clear space and not affected by the feeder, which is one reason why a balanced coupling is sometimes used) arriving from all directions horizontally, and is said to have an omnidirectional polar diagram, as shown at (a) in Fig 3. When the aerial is horizontally disposed then signals arriving horizontally are picked up broadside on (either side) and the response to signals arriving along the axis is very small. Such an aerial is said to have a figure-of-eight polar diagram, as shown at (b) in Fig 3.

It is possible to increase the response of signal capture capability of an aerial for signals arriving from a given direction by making the aerial directional. The aerial then favours signals arriving from that direction, while attenuating or discriminating against signals arriving from the other directions. Directionality is attained by the addition of so-called parasitic elements placed behind (reflector) or in front (director) the main dipole, as shown in Fig 4. The optical analogue of a reflector is the reflector placed behind the bulb of a car headlamp, and of a director the lens placed in front of the bulb of a torch, for example. Both beam the light forward. With a directional aerial, therefore, it is possible to turn it so that the "beam" lies in the direction of the wanted signal. Some long-distance (DX) enthusiasts use remotely-controlled rotators for turning their aerials

Directionally is very useful. For example, if an unwanted signal arriving from a different direction from the wanted signal is causing interference, then a directional aerial can be orientated to provide the maximum discrimination against the unwanted signal. Such directionality is essential in hilly and heavily built-up areas where ''ghosting'' (see the previous article) is troublesome owing to signal reflections. Moreover, because the response of a directional aerial is concentrated over a smaller angle than that of an omni-directional aerial, the effective pick up efficiency of the former when ''onbeam'' is considerably greater than that of the latter.

THE GAIN GAME

One way of expressing aerial gain resulting from directionality is to refer an ordinary single-element half-wave

Hobby Electronics, April 1979

E = 21 dipole to unity (0 dB) gain and the directional aerial to the 'gain in advance of unity. A 2:1 gain increase corresponds to 6 dB; a 4:1 increase to 12 dB, etc. Multirelement aerials have on-beam gains of 12 dB or more, depending on the number of parasitic elements used and the design of the aerial (eg, spacing between the elements, bandwidth, etc).

The reflector is slightly longer than the dipole and the directors slightly shorter. There is usually a single reflector (or reflector system) though there may be a number of directors, depending on the gain and directionality parameters of the design. The length of each director diminishes slightly with increasing number from the dipole. When parasitic elements are added the centre-point-impedance of the dipole falls, which makes it necessary for a matching arrangement to be employed to couple the 75-ohm coaxial feeder.

A very successful method of maintaining the correct impedance matching is to fold the dipole, as shown in Fig. 5. The length from the top of the bottom folds is still the physical half wavelength, but the fold causes the signal current to be shared equally by the two parallel conductors (joined at the top and bottom), which causes the impedance at the centre of the folded part to increase by a factor of four. This is just about right, for when parasitic elements (reflector and directors) are added the impedance drops by about the same factor, so the folding restores the fed impedance to 75 ohms again!

The polar diagram of a multi-element aerial is governed by the number of parasitic elements used in the design, the different lengths (nominally the reflector is about 10% longer than the dipole, the first reflector about 10% shorter and subsequent directors reducing at the rate of about 5% with increasing number, though in some designs the directors are all the same length), and make-up of the dipole and the spacings between the different elements. There are no hard and fast rules for the required results (gain, bandwidth, polar diagram, etc.) can be achieved in a number of ways. This is why one can observe aerials of different configurations in a given channel group reception area.

BANDWIDTH AND GAIN

An impression of the directionality of a multi-element aerial is given in Fig. 6. There is no doubt here that the maximum pick up occurs along the main beam, with minimal response points at the rear and sides. The designer needs to compromise to obtain all the requirements. Gain, for example, will suffer if the design is for a wide bandwidth, while the nature of the polar diagram and the number of subsidiary lobes at the rear and sides can be affected by the spacing of the reflector from the dipole and the distance between the reflectors, which can also affect the gain and bandwidth. One requirement is to ensure that the fed impedance of the aerial remains sensibly constant over the frequency range of interest, and the parameters just mentioned can also affect this.

Beyond a certain number of elements, the addition of more elements brings into play the law of diminishing returns, so to obtain further useful improvement it is usual to stack either broadside or one above the other two arrays and to connect them both to the common downlead ensuring correct phasing and matching. The spacing between them may also be critical. Sometimes two *pairs* are stacked in a box-of-four configuration. Each time there is a doubling up the gain rises by 3 dB. The directional characteristics can also be improved by this method, and by careful design and critical spacing of the arrays it is possible to place a null in the polar diagram at the angle round the aerial system corresponding to the direction of an unwanted interfering signal.

THE YAGI ARRAY

Multi-element aerials are described as Yagi arrays, after the name of the Japanese engineer who evolved the principle. The parasitic elements are not coupled to the feeder (it is only the dipole which is fed), but these elements nevertheless respond to the signal and reflect additional signal back to the dipole, thereby reinforcing its own pick up. For this to happen correctly the element spacing is critical, as already mentioned.

There is a kind of Yagi array on which all the elements are fed. This is called a log periodic aerial. Each element, therefore, can be regarded as a fed dipole, the length and spacing of which follow a law of geometric progression. All the dipoles are connected together in alternating polarity and the result is a 'tapering resonance'. For example, if a dipole at the middle of the array corresponds to the wavelength of a given signal, then those behind act as reflectors and those in front as directors. The technique provides wide bandwidth, constant terminating impedance and a stable polar diagram over the entire required frequency range. The gain of such an array, though, is below that of a proper Yagi.

The diagram in Fig. 7 shows how the directionality of a multi-element array can be exploited for minimising the pick up of a reflected signal. Here the direct signal is being picked up on the main beam while the reflected signal is arriving at an angle where the response of the aerial is small. In some bad cases of ghosting it is best to orientate the aerial for maximum *discrimination* against the reflected signal (or signals) rather than for maximum response of the direct signal.

In summary, then, for difficult reception areas a

Fig. 7. Showing how a directional aerial can be used to discriminate agaiinst a reflected signal.

directional aerial of high gain is essential, and directionality assumes even greater importance where reflected signals can cause ghosting on the picture, even though the direct signal may be relatively strong. To relieve traffic interference on a main road site the aerial should be orientated as far as possible so that the back of the aerial faces into the road. At sites distance from a transmitter a high-gain aerial is required to 'capture' as much of the signal as possible to prevent the noise produced by the first stages of the receiver from showing as 'grain' on the background of the picture. At such a location it is also very important to couple the aerial to the receiver through high-grade coaxial cable. Lowgrade cable can attentuate the signal at the top end of Band V by as much as 6 dB (if not more), which means that a 500 µV aerial signal would be reduced to 250 µV at the receiver!

In fringe areas aerial height is also very important (see the previous article) for the signal field in free-space conditions increases proportionally with height. For those with a mathematical turn of mind the signal field can be expressed as

$E = 2.28 \sqrt{P (ht hr / \lambda d^2)}$

where E is the signal field in mV/m, P the effective radiated power of the transmitter, ht and hr the respective heights of the transmitting and receiving aerials, λ the wavelength of the signal in metres and d the distance' from the transmitter in metres. This shows that by doubling the aerial height the signal field is also doubled, but by doubling the transmitter power the field is increased by only 1.414 times, or 3 dB.

CLOSE TO HOME

At sites faily close to a powerful station a less complex aerial would generally be suitable; but, again, this is not subjected to a general rule because much depends on topography. There are rare locations where a set-top aerial may provide good reception; but even fairly close

ETCH RESIST TRANSFER **KIT SIZE 1:1**

Complete kit 13 sheets 6in x 4½in £2.50 with all symbols for direct application to P.C. board. Individual sheets 25p each. (1) Mixed Symbols (2) Lines 0.05 (3) Pads (4) Fish Plates and Connectors (5) 4 Lead and 3 Lead and Pads (6) DILS (7) BENDS 90 and 130 (8) 8-10-12 T.O.5. Cans (9) Edge Connectors 0.15 (10) Edge Connectors 0.1 (11) Lines 0.02 (12) Bends 0.02 (13) Quad in Line

FRONT AND REAR PANEL TRANSFER SIGNS

All standard symbols and wording. Over 250 symbols, signs and words. Also available in reverse for perspex, etc. Choice of colours, red, blue, black, or white. Size of sheet $12in \times 9in$. Price £1.

GRAPHIC TRANSFERS WITH SPACER ACCESSORIES

Available also in reverse lettering, colours red, blue, black or white. Each sheet 12in. x 9in contains capitals, lower case and numerals Vain kit or Vain kit. £1 complete. State size.

All orders dispatched promptly. All post paid

Ex U.K. add 50p for air mail Shop and Trade enquiries welcome Special Transfers made to order

E. R. NICHOLLS P.C.B. TRANSFERS Dept. HE 4 46 LOWFIELD ROAD STOCKPORT, CHES.061-480 2179

Hobby Electronics, April 1979

to a transmitter a loft aerial is to be preferred, especially on the UHF channels since the signal reaching the aerial can be greatly affected by people moving about in the house

In an area of very weak signal field, provided the signal is not being blocked by hills or buildings, a low noise set-aside or mast-head preamplifier can be useful; but this should only be considered after all steps have been taken to improve the aerial system proper, including the use of low-loss feeder.

As a final thought, a very large percentage of poor TV reception complaints investigated by the Post Office are HE caused by inadequate aerial systems.

SINCLAIR PRODUCTS microvision tv world model E147,95, UK model E92.95, mains adaptor E6.73, PDM38 E2495, mains adaptor E3.19, case E3.18, DM350 E68,95, DM450 E97.95, DM235 E49.45, rechargeable batts E7.50, mains adaptor E3.70, case E3.45, Enterprise prog calculator with accessories E2.95, Cambridge prog calculator E12.13, proglibrary E4.45, mains adaptor E3.20, COMPORENTS send ase for full list 11b FeC1 E1.05, Dalo pen 799, 60 sq. in, pcb 55p, Lammate cutter 75p, Small drill 200, NM414 E1.05, Pcb and entra parts for radio E3.85, Case E1.1N4148 1.49, 1N4002 2.49, 723 289, 741 15p, NE555 23p, BC1826, BC1838, BC1848, BC2126, BC2138, BC214C 4.55, INV 564, I27 RESISTOR S1 DR to 100 fip. 0.8p, for 50-d one value, Electrolytics 164 5/1-2/5/10/22m15p, 100mf 16p, 1000mf 10p, 1350mf (PC) 3.46, IO, and 1.7p, 1000mf 51p, 200mf 6p, Polytesters 250V, 015, 068, 1mf 1 Vip. Ceramics 50V E6 22pt to 47n 2p, Polystytemes G3V E12 10pl to 10n 3p, Zeners 400mV E24 2V to 33V 7p, V GAMES, Send sa For data. AY 3-8500 + kit E8.85, RHe kit E4.95, AY 3-8600 + kit E12.50. Stunt cyclechip + kit E10.90, Raemg case schip + kit C17.90. TRANSFOR MERS 6-0.5V 100ma 74p, 1Va 22.35, 6.3V 112, B3.00, 90, 975ma 74p, 122, 24.32, 6.3V 124, 124, 90, Av3 30, 75ma 74p, 14.22, 24.32, 6.3V 124, 124, 90, 90, 90 y75ma 74p, 14.22, 24.32, 6.3V 124, 124, 90, A09, 90 y75ma 74p, 14.22, 24.32, 6.3V 124, 124, 90 y75ma 74p, 14.22, 24.34, 5.3V 124, 90 y75ma 74p, 14.22, 24.34, 5.3V 124, 90 y75ma 74p, 14.22, 24.34, 5.3V 124, 91 y100ma 30p, 14.22,48. IC AUDID AMPS with pcb, JC12 W E1.60, JC20 10W 22,35, Send sae for data.

BATTERY ELIMINATORS 3-way type 6/7½/9y 300ma £2.95. 100ma radio type with press-studs 9¢ £3.35, 94 9¢ £4.50, 5tabilized type 3/67/7/ 9v 400ma £5.30, 12v car convertors 3/4½/6/ 7½/9× 000ma £2.50. BATTERY ELIMINATOR KITS. Send sae for data

BATTERT ELIMINATION KITS. Send sae tot oats. 100ma radio types with press studs 4/3v £1/40, 6v £1.40, 9v £1.40, 49v.+43v £1.80, 6+6v £1.80, 949v £1.80, Stabilized Sway types 3/43v/6/ 71/9/9/12/15/18v 100ma £2.80, 14mp £6.40, Subdived power kits 2:14 b 100ma £2.80, 14mp £6.40, Subdived power kits 2:14 b 100ma £2.80, 14mp £6.40, Subdived power kits 2:14 b 100ma £2.80, 14m £6.95, 2:30v 2a £10,95, 12v car convertor

6/71/4/9V la £13.95. 12v car convertor 6/74/9V la £1.35. T-DEC AND CSC BREADBOARDS side: C3.17, 1-dec £4.02, u-deca £4.40, u-decb £6.73. EXP300 £6.21, EXP350 £3.40, EXP650 £3.89, EXP48 E2.48,

£2.48. BI-PAK AUDIO MODULES 5450 £23.51, AL60 £4.86, PA100 £16.95, SPM80 £4.47, BMTB0 £5.95, Stereo 30 £20.12.

SWANLEY ELECTRONICS (Dept HE)

32 Goldsel Road, Swanley, Kent Post 30p extra, Prices Include VAT

To: Subscriptions Hobby Electronics P.O. Box 35 **Bridge Street**, Hemel Hempstead, Herts Name

I would like a postal subscription to HE starting with the issue. I enclose payment (£6.50 for UK and Eire, £7.50 elsehwere, £11.50 air mail).

Kit Review

Electroni-Kit Construction Kit

Don't be deceived by the simplicity of the kit under review this month. It could be a valuable teaching aid, or introduction to electronics.

KIT REVIEW THIS MONTH is somewhat unusual. We've taken a look at a rather novel piece of electronic equipment, called the ELECTRONIKIT-EX SYSTEM. The 60 experiments (the system can be expanded up to 150) contained in the box range from the most basic electrical principles involving nothing more than a light bulb, to a one transistor frequency doubler.

A CASE IN POINT

The case itself deserves a mention. Made from a tough ABS plastic it has a carrying handle built-in, making the entire unit portable, quite a useful feature this for some of the more ambitious projects.

All the circuit components are neatly housed in small transparent boxes, and connections between the various modules are made by thin spring-metal strips down the side of the boxes. On the top of each box the relevant circuit symbol is stamped.

The unit under review was pleasantly free from intermittancy, although we suspect that with vigorous use and the passage of time the connections may become a little less sound. Built into the case is an IC amplifier module which drives a loudspeaker in the more advanced projects, so there's no mucking about with soldering irons and screwdrivers.

MANUAL OPERATION

The manual, which is an integral part of the whole system leaves a lot to be desired.

The circuit titles may have made sense in Japanese but the British reader may not find them sufficiently descriptive. "Fixed Bias 1-Transistor +IC amplifier (resistive load)" is actually a microphone amp driving a speaker. This point is amusing rather than inaccurate.

Each circuit is accompanied by a complete "plug-indrawing" — very clear and easy to duplicate. The theoretical circuit is also shown.

We had quite a lot of amusement at the expense of the accompanying text: "Let's make an experiment with an oscillatory circuit by using an antenna coil." Also it does virtually nothing to explain what you've done or how the circuit works. If you want to build the circuit 9/10 — if you want to understand it 2/10.

The Electronikit as it comes in it's box, the only extras needed are the batteries.

Top view of the circuit blocks, the symbol of the component is stamped on top of each module.

The distributors are very aware of the shortcomings of the manual and have told us that a new version is being prepared. The example supplied with the kit leads us to believe that Japanese technical translators ply their trade with nothing more than an English dictionary and a bent pin.

LIE DETECTOR

It's interesting to note that the sixty projects described in the manual require the services of only one transistor (apart from what might be lurking in the amplifier module). Such is Japanese ingenuity. Our favourite project was the 'lie detector', relying upon skin resistance to vary the frequency of a slow running oscillator, some rather interesting results were obtained from one nameless female member of the HE staff.

One or two small niggles: we found it fairly difficult to relate the circuit built on the peg-board to the rather unconventionally-drawn diagrams in the manual, perhaps this will be remedied with the new manual.

TUT TUT TUT

Reading through the selection of circuits that can be built with the kit we came across at least two that would infringe the Post Office-Wireless Telegraphy Act naughty naughty.

With the manual comes a rather out-dated book on electronics which provides a little background theory but tends to dwell rather too much on valves, but is interesting nonetheless.

BACK TO THE ELECTRONICS

Building a particular project is rather like doing a jigsaw. All the circuit modules are arranged on a type of peg-board, according to the diagrams in the manual (we were pleasantly surprised to find that all the experiments worked first time).

Batteries, aerial coils, tuning capacitor and the amplifier module are all contained within the casing, so virtually all the connections are made by the metal strips on the circuit modules or on the side of the project case.

A complete circuit built with the Electronikit, it's somewhat difficult to relate the circuit built to the diagram in the manual.

Halvor takes a lie detector test, will we be getting a wage rise? Not this year judging by the smile on his face.

Inside view of the circuit modules, the strips on the side of the boxes make the connections in the circuits.

Kit Review

Also the signal tracer and signal injector circuits both fail to carry any warnings about poking about in the backs of potentially lethal mains-drive equipment please note, honourable Japanese manual writer.

The instruction manual lets down an otherwise excellent kit. however there is an improved version on the way, according to the suppliers.

TEACHING AID OR TOY?

We ran into some problems in our attempts to categorize this device. Was it a toy or a teaching aid? It's really both, depending upon the extent of your interest in. electronics. It makes an ideal gift for any youngster wishing to learn about electronics, similarly we adults (supposedly) at HE had a great deal of fun playing with it.

It's value as a teaching aid is somewhat suspect, but this again could be easily remedied by the re-writing of the manual, so bearing that in mind it would be ideal for anyone of any age to learn some basic electronic principles.

At around £24 it may seem slightly expensive, but where else can you buy around half a dozen radios, an electronic bird, or a water-quality indicator for that kind of money?

Looking through the manual we discovered that it lists all of the other projects right up to number 150, and this happens to be something called a Sphygmometer, we don't know what it is either so as soon as the editorial budget allows we'll get the expansion kit and find out!

In summary, good fun, great value but let down by the manual

HE

Reader's Letters

Please send submissions for the letters page to: Hobby Electronics, 25-27 Oxford Street, London W1. Mark the envelope "Letters Page." Letters which are too long for publication will be suitably edited.

Dear Sir

As a reader of your parent journal ETI since issue number one, I would like to congratulate you on an excellent magazine.

I would like to comment on a point in the 'Letters Page' in the March issue. Whilst I fully support the use of SI units and prefixes, could you not help standardization further by adopting circuit symbols and conventions of BS 3939? All technical colleges are required to teach the preferred symbols by the City and Guilds, and many manufacturers are producing circuit diagrams for their equipment to this standard. P. D. Simmons,

Newhaven.

Using standard symbols is a problem. We're in favour of standardization but the things we are doing already, such as 4k7 instead of 4.7k and 2n instead of 2000pF are confusing many readers. We are taking the gentle approach and are moving over slowly.

Dear Sir

re PROPOGATE in this you have really come a cropper I would suggest in your next issue You should spell it PROPA J. H. R. Gardner (Headmaster) East Yorkshire.

Please sir don't give us the cane 'promise we won't do it again the error shows up to our cost that HEs only dictionary's been lost.

Dear Sir

I only discovered your magazine in January and I was extremely impressed. For me it fills a cavernous gap in the market. I have a fair but patchy knowledge of principles on which things work but little access to the practicalities of project building. The magazine takes you gently by the hand and leads you through the jargon. But it is also good on other levels, particularly the more theoretical series by Ian Sinclair.

Hobby Electronics, April 1979

I once worked on a magazine for junior doctors, converting the opaque utterances of great specialists into something that was straightforward, quick and dare I say even fun to read, so I know good stuff. Keep it up.

> Martin Rush, Northern Ireland.

Thank you for all of your comments, it's only from letters like these (both praising and criticising) that we know how we're doing. Elsewhere in this issue there is a questionnaire, from past surveys in ETI we have learned a lot and have been able to make several changes. So keep the letters coming and fill in the questionnaire and hopefully we'll have an even better HE.

Dear Sir

Regarding the item headed 'Luxembourg Effect', HE March 79, page 70. The effect' described is not the Luxembourg Effect but is multi-path fading. P. J. Wilson.

Surrey.

Dear Sir

The effect you describe in your article 'Interfering Waves', is not the Luxembourg Effect but fading the type often called selective fading, because the carrier is liable to fade at a different time from the sidebands, which causes severe distortion — and was known long before Radio Luxembourg was built.

E. F. Good (address supplied)

Sorry!

Mr Good is correct; the Luxembourg Effect is a term which should be reserved for the intermodulation effect in the Ionosphere (he's been reading Wireless World!); though to my generation of amateurs, the phrase was always used for severe fading.—K. T. Wilson.

Capacitors

Are you in a dilemma over dielectrics? or just confused by capacitors? then read on. Richard Maybury takes a look at the often ignored subject of the dielectric material in fixed capacitors.

FIRSTLY WE SHOULD EXPLAIN that this article is not intended to be an in-depth study of the workings of the capacitor, that has been done so many times before, usually punctuated by complicated formulae. This article is designed to give an insight into the construction of capacitors, with particular reference to their dielectric material (more of which later).

From our point of view (the capacitor users) the ideal capacitor will be physically small with as great a range of capacitance as possible. Any leakage (current paths across the plates) should be minimal. This capacitor should ideally be stable with regard to both capacitance and leakage, under as many adverse conditions as possible. It should be able to operate with a large variation of applied AC and DC potentials, current and frequency, enjoy a long and healthy life and cost next to nothing.

Faced with all these constraints the poor old capacitor manufacturer may well be seen burying his head in his hands in despair, but compromise to the rescue, the ideal capacitor does not exist as such — but you can bet your boots there's one available for the application you have in mind.

Let's take a look at the (almost limitless) choice on the amateur market, and to what use they can be best.put.

The first capacitors were possibly just two plates of metal placed close to each other, the insulating material being air. (On a historical note if you've read Erich Von Dannikens ''Chariots of the Gods'' you may be convinced otherwise. Apparently in the old testament there are instructions for building an Ark (a kind of altar) you were required to construct a wooden box, lined on the inside and outside with gold leaf, anyone touching this sacred shrine would be struck down by lightning; we'll leave you to draw you own conclusions about the suitability of wood as a dielectric!).

A couple of miniature ceramic capacitors the value is stamped on the side, often a major source of confusion.

Air spacing is the oldest and simplest type of capacitor, it can still of course be found today, namely the variable capacitors. We won't dwell too long on this just long enough in fact to point out that the measurement of dielectric quality uses air as the standard, air has a dielectric value of 1 (a polystyrene capacitor has a dielectric value of 2.5 at 50 Hz, so you can see that apart from its use as the standard it's not too clever as a dielectric material).

Far and away the most common type of capacitor in use today is the Ceramic capacitor

THE CERAMIC CAPACITOR

DISC CERAMICS

The ceramic capacitor is available in several physical shapes, and two distinct grades: *low Permittivity* (low-K) and *high Permittivity* (high-K). Both types are physically small (small compared to other types of capacitor), both are relatively fragile physically but there the similarity ends.

Fig. 1. Cut-away diagram showing construction of Ceramic Capacitors.

Hobby Electronics, April 1979

EF

High-K ceramics suffer large non-linear changes of value with temperature and strength of applied AC/DC fields (the capacitance will decrease as the voltage rises) the value will also change with frequency (up to 20% in the 1 kHz-10 MHz range).

As High-K types are none too stable they find applications only in non-critical positions ie. DC blocking, by-passing and de-coupling but these account for a very high proportion of all uses.

Four 'low k' ceramic capacitors.

LOW-K CERAMICS

These are the opposite of High-K types in many respects, low-loss, good temperature stability and wide frequency and voltage ranges. In some cases they are deliberately manufactured to be temperature conscious for thermal compensation in temperature sensitive equipment.

Ceramic capacitors are made in a variety of styles (see Fig 1), their shape often affects the frequency range, e.g. tubular ceramic operate up to about 50 MHz, disc or plate to 100 MHz, feed through to 500 MHz, and button ceramic to 1000 MHz.

Because of the simplicity of their construction the capacitance range of ceramics is usually towards the low end (one or two picofaradw (pF) upwards). The construction is often nothing more than a round disc of ceramic material, the two faces coated with a metallic film to which the connecting wires are attached. The capacitance will depend upon the thickness of the disc and cross-sectional area of the metal coating. The resulting device is then dipped into a variety of coating materials to offer a degree of protection.

PLASTIC FILM CAPACITORS

There are three main types of plastic-film capacitors: Polystyrene, Polyester and Polycarbonate.

Polystyrene is probably the most common at the moment.

Fig. 2. Method of forming Polystyrene capacitors, note that entire edge of rolled foil is connected to the lead-outs.

POLYSTRENE

This type of plastic-film capacitor is constructed using interleaved sheets of polystrene film and metal (usually aluminium) foil, the beginning of the roll is staggered to enable the leads to be attached (see Fig. 2). In certain applications, instead of a separate foil layer a thin coating of metal is deposited onto the plastic film directly (this technique applies equally to polyester and polycarbonate types). The resulting sandwich of plastic and metal foil is rolled tightly into a tubular shape (this tube may then be flattened to suit a rectangular encapsulation which gives greater edge-on component packing density).

Polystyrene capacitors, easily destroyed by excess heat.

Electrically the polystyrene capacitor has average-togood characteristics, the voltage range can extend to 650 V, they find many applications in tuned circuits, coupling frequencies of up to 100 MHz. The higher values (10nF and above) can be used for by-pass etc.

The polystyrene capacitor does have one or two drawbacks; it's extremely sensitive to heat, not in the sense of capacitance changes but physically, they melt very easily! They are also sensitive to attack from a wide variety of solvents and greases, so a great deal of care should be taken with polystyrene capacitors, firstly when soldering and secondly in their application to ensure they do not come in contact with harmful chemicals.

POLYESTER AND POLYCARBONATE

Polyester capacitors can be examined along with Mylar, Melinex and polypropelene materials, they all have basically the same dielectric properties, they all.

Resin dipped polyester capacitors.

Capacitors

however have superior electrical characteristics to polystyrene, particularly in the case of Polycarbonate capacitors. All of the plastic-film capacitors (apart from, polystyrene) have excellent resistance to attack from corrosive or solvent chemicals.

Polycarbonate in particular seems to have become a definite favourite among digital equipment manufacturers, possibly due to their very high tolerance rating. They are usually a lot smaller physically, for a given voltage rating, than other plastic-film capacitors.

One last property of plastic-film capacitors is the ability of some types to 'self-repair'; these are metallized-film capacitor. In the event of an arc jumping through the dielectric film (it will never be completely impervious) the area around the arc will vapourise thus clearing the fault, and reducing the possibility of another arc. This does not happen on any other type of capacitor, a dead short will usually result after such an arc.

MICA AND PAPER

Both these types of capacitor were once popular but now have largely disappeared from the amateur electronics scene; they do however have specialised properties that ensures their continued manufacture.

Fig. 3. Construction of Mica capacitors, the entire assembly is then dipped into a bath of fluid coating to ensure a hermetic seal, and prevent ingress of harmful chemicals.

MICA

Mica is a natural mineral which can be cut into very thin slices; a variety of methods are used in their manufacture (Fig. 3). Moulded Mica types are made from layers of Mica, interleaved with metal film, the range of capacitance of this type is about 10pF-100nF.

Silver Mica capacitors are noted for their very high stability and are often used in oscillators and filters. They are usually quoted as 5% tolerance or better and have a value range of 5-3300pF.

Metal-clad Mica types are used in high power RF circuits.

Button Mica capacitors exhibit low inductance and are mostly constructed in stand-off or feedthrough style, the main applications being in UHF circuits. Finally there are Dipped Mica types; these are dipped in a resin coating at below atmospheric pressure, and used where reliability is the prime concern; values range from 10pF to 100nF.

PAPER

Paper capacitors are rarely seen these days except where high voltage AC and DC currents are to be found; in these situations paper is just about the best dielectric.

The method of construction is similar to the plasticfilm type of capacitor, but instead of plastic the dielectric consists of a layer of impregnated paper, the substance used for the impregnation can be one of several natural oils, waxes or synthetic resins.

As in the plastic-film types, the construction can be by one of two methods: metal foil or metallized film. Unlike other types zinc is often used instead of aluminium. The use of zinc usually results in a device considerably smaller than an aluminium type. The voltage range of paper capacitors is considerably larger than that of most other types, often extending up to 4 kV.

Encapsulation of paper types usually consists of a thin coating of synthetic resin or metal cannister.

ELECTROLYTIC CAPACITORS

The difficulty of producing large value capacitors is highlighted by the electrolytic, it is at best a compromise, for example the tolerance is often quoted as -20+100% or -50+100%!

Electrolytics fall into three distinct groups, the conventional type, most often encased in a metal cannister, the non-polarised electrolytic, usually a little larger than a capacitor of the same value, and finally the Tantalum, a fairly recent newcomer to the capacitor field.

(At this point it must be said that there are several other types of capacitor we have not dealt with. It is very unlikely that they will be encountered by the average amateur, however it might be an idea to take a look at them in a future article.)

Getting back to the electrolytic capacitor, we'll deal with the most common type first, the metal foil type.

A selection of tubular metal-foil electrolytics, voltage is usually proportional to physical size.

METAL FOIL ELECTROLYTICS

Electrolytic capacitors consist basically of two aluminium foils interleaved with an absorbant paper, and wound tightly into a cylinder. Contacts are provided by tabs of aluminium attached to the foils. The winding is impregnated with an electrolyte and housed in a suitable container, usually an aluminium can, which is hermetically sealed (see Fig. 4).

Fig. 4. Electrolytic capacitors, use a similar method of construction to Polystyrene capacitors, note that the start if the roll is staggered to enable the lead-outs to be attached.

A dielectric layer is 'formed' electrolytically on the surface of one aluminium foil which acts as the positive plate or anode, of the capacitor. The electrolyte serves as the second plate of the capacitor and also to repair any flaws in the oxide film when the electrolyte is polarised. The second foil, usually called the cathode, provides contact with the electrolyte. Since this film will have a thin oxide layer, due to natural oxidation, it will also possess very high capacitance. The thinness of the oxide film, and their high breakdown potential, is responsible for the very high capacitance per unit volume and high working voltages of electrolytic capacitors.

Similar to the plain foil type of electrolytic is the Etched foil electrolytic, the aluminium foil on the anode and cathode are chemically etched to increase the surface area and hence the capacity, this results in a physically smaller device but has the disadvantage of not being able to withstand high AC currents, compared with plain foil types.

Some 'power' electrolytics in the background, tags are usually used instead of leads.

The capacitance value and leakage both increase with temperature on foil electrolytics, leakage also increases with applied DC voltage, this increase becomes more rapid at voltages above its rated working voltage. This can lead to excessive heat dissipation, and ultimately to its destruction. Most electrolytics are designed to withstand short surges of up to 20% over the rated working voltage.

Some new miniature PCB-mounting electrolytics, for greater component density.

NON-POLARISED ELECTROLYTICS

These capacitors are constructed using several foils in one winding and connected back-to-back. They are usually larger than polarised capacitors of equivalent value since double the foil area is normally required, the

Just some of the multitude of capacitors currently available to the amateur.

Capacitors

leakage current will often increase as a result. These capacitors are most often used in speaker crossover networks or speaker coupling circuits. Values are obtainable from 1 u to 100 u

Miniature tantalum capacitors, small size, large capacity, but usually low working voltage.

TANTALUM CAPACITORS

Tantalum oxide is used as the dielectric. This has a much greater permittivity than aluminium oxide resulting in high value capacitance in a relatively small space, they will normally be polarised

There are three different types of Tantalum capacitor. These are the tantalum foil, similar in construction to ordinary electrolytics. Solid tantalum, this uses manganese dioxide (a semiconductor) as the electrolyte, and a tantalum anode. These are often coated in epoxy resin or a polyester sleeve with epoxy seals. The third type is the wet sintered tantalum, this type is rarely seen other than in specialised applications and can be manufactured to a very high tolerance

Tantalum capacitors have a much lower voltage rating than electrolytic capacitors, typically 3-100 V for the solid type, up to 125 V for the wet sintered type and up to 450 V for foil tantalums. Tolerance is typically 20% to + 50%. Their small size makes them ideal for transistorised applications

TOUCH SWITCH

This touch switch is designed to provide on/off switching for 9 volt battery operated equipment having a current consumption of up to'100mA. It has a single touch contact which is briefly touched in order to change from on to off or vice versa. The circuit is operated by stray pick-up of mains hum which is coupled to the input of gate 1 (which like the other three gates employed in the unit is connected to act as an inverter) via R1 when the input contact is touched. As IC1 is a CMOS device it has a very high input impedance, and the input signal will be capable of switching gate 1 input from one

logic state to the other. The input impedance of the circuit is so high that the reverse resistance of D1 is used to tie the input to earth under. quiescent conditions, so as to prevent spurious operation. R1 acts as a low pass filter in conjunction with the input capacitance of the circuit, and this attenuates high frequency noise which may be present on the 50 Hz mains signal

The output from gate 1 still contains significant noise products, and also has a rise time which is inadequate to drive the final stage of the circuit. This is overcome by using the trigger circuit based on gates 2 and 3. R3 tends to hold gate 2 input in the same state as gate 3 output, resisting any change in logic state caused by gate 1 output due to the coupling through R2. This resistance to change is termed 'hysteresis'. R2 has a lower value than R3, and so gate 1 can operate the trigger circuit if its output signal is of adequate amplitude. The main 50 Hz signal will be strong enough, but the noise spikes will not, and are thus eliminated from the output of the trigger. Once the output of the trigger starts to change state, the coupling through R3 provides a triggering action which ensures a rapid change

IC2 is a 14 stage binary (divide by 2) counter, and Q1 is driven from the output of the seventh stage via current limit resistor R5

C2 and R4 provide a positive reset pulse to the counter at switch on so that the outputs are low, and Q1 is; switched off. The controlled equipment forms the load for Q1, and obviously receives no significant power. If the touch contact is operated, a 50 Hz signal is fed to IC2 and the 7th stage output changes state every 64 pulses. As this output goes high and low the load is switched on and off. In practice the contact is touched just until the unit switches to the desired state (which one tends to do automatically) Internet

The unit consumes only about 1uA. in the off" mode and approximately 3 mA in the 'on' state

HE

HEIp us to help You

HOBBY ELECTRONICS has been going for about five months now, so we feel it's about time to ask you, the readers, what you think of it so far. We realise this sort of thing is a bit of a chore so we're prepared to bribe you. The first 50 replies out of the HE hat will receive a brand new HE tee-shirt. As an added incentive the questionnaire form has our address printed on the back, so all you have to do is fold it up, stamp it and pop it in the nearest post box.

		Readership	v	Rating (if read)						
	Read Fully	Scanned Over	Not Read	Good	Average	Poor				
Monitor										
Short Circuits	5									
Into Electronics										
Kit Review										
Train Controller										
Cistern Alarm										
Transistor Tester										
ectronics in Warfare										
Capacitors										
Catalogue Survey										
Phone System										
Next Instalment										
TV Aerials										
Good Evans										

1. Please tick your interest in each of these features

2a. Please underline any feature you found particularly interesting

- b. Circle any feature you found poor or uninteresting
- c. Mark an asterisk (*) next to the single best feature

3. PROJECTS

Tick any of the following projects that you may have built

Stereo Amp	Vari Wiper
Waa-Waa Pedal	Flash Trigger
Bedside Radio	S/W Radio
Digital Dice	Sine/Square Gen
Photon Phone	Car Alarm
Metronome	Scratch Filter
Audio Mixer	Light Chaser
Graphic Equ	Photo Timer
Touch Switch	Casanova's Cndle
Tone Control	

- (a) Underline any that you found particularly interesting.
- (b) Put an asterisk (*) next to any project that gave you trouble in either building or getting to work properly
- Put a K next to any project that was built from a kit.
- Put a M next to any project that was built using mail-order components.

4. AREAS OF INTEREST

Tick any of the following fields that	t you find interesting
Simple Projects	Hi-Fi
Complex Projects	SW Listening
Home Computing	Amateur Radio
Video	Electronic Applications

- 5. How were you introduced to HE? (Delete as appropriate) Impulse buy/Friends copy/Newspaper ad./Commercial radio/ETI.
- 6. How many other people read your copy?
- 7. The competition

FT Εv Pr Pr M EI Ra

1		REAL)		RAT			
	Regularly	Offen	Never	Used to Read	Good	ΟK	Poor	
ETI								
Everyday Electronics		-						
Practical Electronics								
Practical Wireless								
Wireless World								
Elektor								
Radio Constructor								
Television								

On an arbitary 1-20 scale with HE rating 10, please rate your opinion of our competitors.

Please mark an asterisk (*) next to any magazines you subscribe to

- 8. Are you employed in the electronics industry? YES/NO-
- 9. Are you still studying? YES/NO
- 10. Highest academic achievement
- 11. Age
- Male / Female 12. Sex
 - Space for witty comments

13. Annual income (nearest £500) (Don't answer the above question if you find the question offensive.)

- 14. GENERAL COMMENTS
- a) What do you consider to be HE's best points
- What do you consider to be HE's weakest points b)
- c) What do you consider could be improved or omitted altogether, or would like to see included in HE in the future

Please use space on reverse side

First Fold 1

Space for Question 14.

(a)

(b)

(c)

t
Hobby Electronics

Power Supply Project

An essential piece of test gear. Our project will give 0-30 V (infinitely variable) at 1 amp and is short circuit protected to prevent nasty things happening when you do something silly — this will also protect your components to some extent.

Multimeters

Ray Marston introduced test gear in the March issue, next month he takes a look at multimeters, describes what is important in the spec, how they work and looks at the circuit of a current design.

Binary Numbers

We've been so indoctrinated with decimal counting that most of us think it's natural law to use 10 as our number base. Computers are much easier to design if they use numbers to the base 2. Confusing? You won't after it's made clear in next month's issue.

Electronic Doorbell

Not only is the sound generated electronically, we've done away with the bell-push and replaced this with a touch switch.

Electronic Music

With modern circuitry it is possible to produce practically any sound in the audio spectrum and musicians have been fast to take advantage of this. From the electronic organ things moved rapidly to the synthesiser but there's a whole lot more to the field. Next month Tim Orr, a professional designer of synthesisers, describes some of the techniques and discusses what's available.

White Noise Effects Unit

Sorry we couldn't find room for this one in this issue but all is OK for next month. The circuit generates its own 'issh' and then tailors this to simulate a variety of sounds.

Personal communications

Month

The messenger with the cleft stick, the post, the telegram, the phone: communications have become more and more personal — and faster. There are already a variety of systems for communicating with people wherever they are. Angus Robertson looks at the field of personal communication next month.

Parking Meter Timer

For less than the cost of a single fine, you can build our pocket timer that'll remind you that the 'penalty' flag is about to pop on your parking meter.

The May issue will be on sale on April 13th

The items mentioned here are those planned but circumstances may affect the actual contents

Electronics in Warfare

Ron Harris reveals his war-like nature and looks at how our old friend the electron is being sent to war.

ELECTRONIC WARFARE—

A selective est

LIKE IT OR NOT the largest single growth area for electronics is warfare. If and when there is another serious conflagration, the side that emerges victorious will be the one best able to wage electronic warfare (EW).

Research into better methods of confounding and confusing the opposition's intelligence and communication continues apace. Jamming is perhaps the best known. Basically this consists of broadcasting loads of rubbish, and anything else you can think of, all over the wavelength the baddies are trying to talk to each other on.

However just about every aspect of warfare is: being 'updated' these days by the insidious electron. Developments happen fast in this field, and some of them are very very interesting indeed.

Herein we present a selective digest of some of the more interesting electronic aspects of military affairs which have happened in the past year or so.

Of course the **really** interesting stuff is well and truly classified, but it is interesting to contemplate the level of technology inherent in these publicised items, and speculate just how much **further** on must be the forefront of which we'll hear nothing until it too is outdated enough to publish ...

LIGHT WEIGHT RADIO?

About to be issued to U.S. forces is a 'backpack' radio which has a range of 300 miles, weighs only 14 lbs and operates from rechargeable cells with a time of 16 hours between charges.

Naturally it can operate over a temperature range from below zero to beyond 100° F.

JAMMING THE TIDES!

Still the best way to detect a submarine charging around beneath the sea is to lower a detector of some sort beneath the surface and listen for the noise it makes — sonar.

However with the increasing noise generated by tankers and freights as their size and numbers increase, and the decreasing amount of din generated by modern subs, it's getting more difficult to be sure that what you're listening to is in fact an enemy sub about to blast you out of the water.

To make things more uncomfortable yet, the Russians are rumoured to be developing an acoustic 'jammer' to really confuse things.

These devices would work by generating greatly exaggerated ship type noises in an area where their forces are operating to shield them, or indeed in an area where they aren't — just to be confusing!

Indentification systems employ sophisticated processing circuits now, to sort out the sound of Reds from the sound of cod. It is possible though that a jammer could totally confuse even the best of these.

WHO'D BE A PILOT!

Due to ever increasing quality of ECM (electronic counter measures) and missile tactics, it is now estimated that in the event of another war in Europe, half the aircraft committed to combat would be lost within the first seven days.

Half the planes attacking ground targets will be on the ground themselves inside nine days.

ISRAELI TV SHOW

A new air-to-surface (ASM) missile is being deployed by the Israelis. It is called the LUZ-1 and uses TV guidance systems. Once the target has been lined up on the screen, the pilot can "fire-and-forget" the missile which will keep its own mind on the job.

Hobby Electronics, April 1979

WHOSE SIDE THEY ON?

Soviet electronic technology cannot compete qualitively with the West, due to lack of commercial competition and a too long held regard for valves, but their surface-to-air (SAM) missiles use the best ICs available — made by Texas Instruments.

So many are produced that apparently the Pact has no trouble laying hands on huge quantities.

HUNT THE RADAR

A detector that can be used to monitor antipersonnel, anti-aircraft, fire-control and mortar locating radar transmissions has been developed in America.

This can be carried by one man (it weighs 81b)

The MRCA (Multi-Role Combat Aircraft) Tornado, wings swept back and fully armed. In it's interceptor role the aircraft carries extensive ECM equipment to give it a 'stand off and deliver' ability when engaging enemy aircraft.

In the combat support role the Tornado is a superb ground attack and one of it's first priorities in the event of hostilities would be to strike at enemy radar and intelligence gathering establishments, leaving the F14's and F16's to win control of the air.

39

An RAF HARRIER operating from Gutersloh in West Germany. These VTOL (Vertical Take-Off and Landing) fighters can operate from any clearing large enough for them to sit in, and by virtue of their excellent low flying abilities form a powerful (dispersed) strike capability.

SOUND THINKING

In World War II most infantry casualties were caused by artillery fire. Modern fire is greatly increased in 'killing power' and accuracy, although methods of spotting where the fire is coming from have changed little. The best methods involve watching the shells in flight using radar and computer tracing them back to source.

A new machine called TACFIRE is a computer system coming into use with NATO. It is a method of collating all the data from spotting equipment, accurately placing the firing guns and issuing orders for returning the fire. Such diverse factors as wear and tear on the guns, weather influence, quality of shot and intelligence reports can all be automatically accounted for so that the return fire can be very accurate indeed.

Each battery commander will have a display unit which is linked to a central TACFIRE unit. The overall commander uses a central terminal to monitor and co-ordinate fire from each battery.

There will be observers placed in the front lines to provide updated information to TACFIRE, using digital encoding techniques. The infantry forces using artillery as support can also get continually updated intelligence on such factors as ammunition remaining to the artillery, positioning of enemy guns etc.

PROGRAMME TROUBLE

A recent NATO exercise that attempted to measure how effective ECM would be against attacking Warsaw Pact forces ran into trouble — it severely interfered with West German TV sets, and massive protests were lodged with the authorities. As a result a future exercise will have to give at least a week's notice before trying it again.

I hope the Pact give that much notice before the tanks roll over the border and if they attack during Crossroads we've had it!

AEROSOL ANTI-LASERS

Lasers are being used increasingly to keep attacking planes and missiles on target. A simple and cheap anti-laser scheme is being developed — an aerosol can triggered off by a photo-electric sensor.

Once a beam of light is detected, the can is fired off releasing a spray of boron mixed with potassium chlorate and titanium dioxide. This is a very efficient light scatterer and effectively renders the laser useless.

FRIEND OR FOE— WHO KNOWS?

Japanese technicians claim to have broken the Soviet Air Force IFF (Identification Friend or Foe) code after dismantling a piece of equipment from that Mig-25 which landed in Japan some time ago.

This code enables the pilot's radar to distinguish his own side's aircraft from the rest and hence refrain from lobbing missiles at them.

While the code has obviously been changed since then (!) this still gives a big hint as to how the other side use this radar and how to jam it.

HERCULES ATTACKS

One of the world's largest aircraft the American Hercules transports have been modified to attack ground targets!

Thanks to the huge space available within these craft they can be packed with jamming and ECM equipment — and two 'Vulcan' cannon firing up to 6000 rounds a minute, a 40mm gun and a 105mm gun — which is

Electronics in Warfare

about the size carried by the largest tanks of the day

All this massive firepower is mounted down the port side of the place, so that the pilot simply points' his wing at the target to be pretty sure of giving it a beating.

Very sophisticated low light TV and infra-red sensors are fitted so are several radar systems. This means that the planes can be used at night when their extreme vulnerability to anything larger than an armed budgie is not such a handicap.

SOVIET ELECTRONIC WARFARE IN JAM

US and USSR doctrines on the use of electronic warfare (EW) differ greatly. For instance in the invasion of Czechoslavakia in 1968, the USSR fooled NATO into thinking normal manoeuvres were occuring until they actually crossed the border into the country.

Each Soviet Front (Army) has a signal interception (EW) regiment attached to it for "enhancing surprise and impact' . No equivalent US or NATO formation exists

During the 1973 Arab-Israeli dust up, the Eqvptians employed Soviet doctrine, and caused havoc to Israeli communications from October 6th-8th. Once the Israeli gained the initiative though, all jamming abruptly ceased.

BETTER THAN WE THOUGHT

Soviet warships are using the new SS10/SSN14 dual-role missile in ever increasing numbers.

The SSN14 is a winged rocket powered torpedo for use against ships and submarines. Its range is 30 miles and is fired in the direction of radar or sonar contacts

The torpedo separates from its carrier at a distance predicted by the ship's computers, and homes into the target itself.

One nagging question raised by this weapon is the range of the sonar used to determine the SSN14s targets. Previously Soviet sonar was thought to be inferior to NATO systems. Now however

F15 and F16 vs **MIG 29**

Russia is testing its new MIG29 fighter for use in the early 1980s. NATO sources are concerned that this machine could challenge the F15 and F16 American fighters which up to now enjoy unrivalled supremacy in the air. These craft get their edge from manoeuvrability and a fantastic degree of ECM, meaning their missiles are liable to hit home, but they are damn difficult to hit themselves!

FROM MILAN **TO MOSCOW**

Interesting to note the similarity hetween Russia's new anti-tank quided missile (ATM) and NATO's best, the Milan.

Like the Milan it is wire guided and can be fired from a vehicle or by a man on the ground. Like the Milan the range is about 2 km with a speed of 150-200 metres per second.

Like the Milan it can go through some 600mm of armour at the end of its flight. Given the quantity and quality of security leaks from West Germany - and the Russians' willingness to copy a good thing, could be the new missile is not *identical* to the Milan, could it.

THE US NAVY DEFEATS ITSELF.

During recent fleet manouvres the US Navy gave its Electronic Warfare Group free reign to attempt to disrupt a fleet action by purely electronic methods.

The result was a complete disintegration of communications and command, with ships attacking their own forces and leaving alone enemy ships thinking them decoys thanks to fake transmissions and signals. EW 1, US Navy O.

The experience is said to have "severely shaken top brass". EF

RAPIER Ground-to-Air missile tracker system in operation.

TSC 500 portable satellite communications terminal,

SEASPRAY radar scanner mounted on

the nose of a Westland Lynx helicopter.

Navigation console on a RAF NIMROD submarine hunter-killer aircraft.

The ZB 298 mobile radar for short-range ground surveillance, it can also be used for artillery or mortar fire ranging or aiming.

Ferranti PADS (Position and Azimuth Determining System). A digital inertial navigation system for accurate artillery survey purposes.

A COAT WHICH TURNS

Soviet subs are coated with a rubber-like substance to lessen sound reflections used by sonar to detect them.

However the shape of subs is somewhat complex, and making the stuff 'stick' is very difficult.

After prolonged spells at sea areas of the coat come loose and produce a 'flapping' noise which is MORE audible to sonar, and easily recognised.

IT'S IN THE BOOK

The latest US Army Field Manual states that "electronic warfare training is the most vital a unit can receive".

However one specialist claims that present jamming gear works "once in six times" and is poorly understood. As an example witness what happened when one jammer was aimed at two battalions during exercises last year.

Command control — (officers keeping track of their men) was completely eradicated. The companies affected were "destroyed", the HQ wiped out and a hole in the defences created. All this from just one little unit.

With the Soviet poten-

tial for EW currently 20 times NATOs, although not as technically impressive, it could be that battlefield communications will be well nigh impossible

BIG EARS

Almost all aircraft detection devices are radar based. They emit a beam which bounces off the airplane and is detected upon return.

In modern battles though this method can amount to suicide. The beam can be (and is) detected, with the consequence that it is accompanied on its return journey by a few tons of high explosive.

NATO is well advanced with work on a passive aircraft detection system which simply listens for the noises made by the craft, and electronically sorts the signals to match up with stored 'signatures' of known airplane types.

A system of this kind would only be really useful if its range equalled that of existing radar systems.

NEUTRON BOMB

Consider this:

Warsaw Pact forces have been attacking through the Fulda Gap for five days. French divisions are racing across Germany to shore up the ever weakening lines of decimated American and British defenders. Most of the NATO armour has been crushed by continual waves of Russian T-62 and T-72 tanks wearing the new (British developed) Chobham armour. to achieve deflection of new offensive action".

At 0700 a huge artillery barrage blankets the NATO lines, right between the British and American armour positions. As it lifts finally, a solid line of T-72 tanks at least 200 strong emerges from the woods and smoke just 2000

ORLANDO laser-guided projectile being fired from an M109 self-propelled artillery vehicle.

Stocks of anti-tank missiles are low, and Russian electronic warfare is proving more effective than was thought possible. Both front line divisions have only one third their forces intact to repel any new offensive

At 0600 division HQ receives authorisation to deploy tactical nuclear weapons "in limited sense metres ahead of the line. Behind come wave after wave of mechanised infantry rolling forward armed with anti-tank and anti-personnel missiles. It looks like its all over.

NATO aircraft are nowhere to be seen. The line begins to break, then orders come down to hold-'tacnuke strike' Decontaminants are readied.

Electronics in Warfare

COMED cockpit display, a combined moving-map and electronic data display module.

SEARCHWATER, one of the most advanced airborne radar systems for submarine location.

RAPIER Ground-to-air missile system with practice missiles at the ready.

The Chieftains pull back from the fringes of the packed enemy tanks.

Divisional Artillery trains its 8in howitzers to target, Lance missiles are armed and fired

Bright flashes appear 80 metres above the ranks of T72 forces. Huge holes are blown in the formations ... but not enough. NATO troops are disappointed sorely, and the enemy keeps coming.

Suddenly tanks begin slewing around crazily, smashing into each other, the front tank scatters and the APCs roll to a stop.

CYMBALINE anti-mortar radar. By hitting the projectile with a radar beam at two points on it's flightpath the unit is able to 'project back' the firing position. This enables the operator to 'call down' fire upon the enemy's head with great accuracy. CYMBALINE is light enough to be removed from it's trolley and comfortably carried by four men.

Crews are running about, falling the advance is halted. Orders go out and the counter attack begins.

The first use of the neutron bomb in World War Three is over.

EFFECTS AND TRUTHS

The neutron bomb is no science fiction dream (or nightmare) anymore. The W70-3 warhead is being developed for use with the Lance missile which produces ''an enhanced radiation effect maximising target destruction and minimising damage to surrounding area and friendly populace". Much play was made in the press of this weapon, and the possible effects on cities of such a device.

In fact the main use would be against massed enemy armour. Enemy tanks within 200 metres are destroyed. Beyond that blast effects are sharply reduced, but lethal radiation effects extend about 1km. Within 900 metres of the explosion centre enemy troops are destroyed immediately, and at 1100 metres they would be stunned for about 45 mins, and probably die within a week. 10000 Between and 16000 metres effects will be minimal at first, but enemy troops caught here have only 2 weeks to live.

Friendly forces can enter the blast area after $\frac{1}{2}$ hour has passed with no ill effects.

Protection from neutron bombs is hard to come by. About five inches of armour plate will stop the radiation, but absorbing the neutrons causes the plate to emit lethal radiation itself! Tank crews are therefore no better off .

Some material does shield, thick concrete is better than armour, but you need about 10in to be effective. Damp earth is even better and 15in of this will effectively protect a person from the effects. Prepared positions will thus prove effective, although neutron weapons are not liable to be employed in this manner.

As the weapon is, in reality, an artillery shell for the 8in guns already in active deployment it could be made available and used very rapidly in a tactical situation such as that described above.

Undoubtedly the supreme tactical weapon — but would it lend to escalation? **HE**²

A follow-up article on Electronic Warfare will appear in our sister magazine ETI in the May issue.

Many thanks to the Ministry of Defence, Ferranti Ltd and EMI for the photographs.

ASTRA-PAK 92 GODSTONE ROAD, WHYTELEAFE, SURREY C	R3 OEB	GRAND SA	LE	All prices include VAT. Add 25p for P.&P (Extra for overseas). Send SAE for complete Special Offers list Where more than one price appears, overall quantity prices apply to groups of devices of the same type (74 and 74LS cannot be mixed).			
1400 SERIES 74L00 SERIES 7400 SERIES 1+ 25+ 100+ 1+ 25+ 100+ 7400 0.8 0.75 0.75 155 14 13 7490 30 28 26 7401 1.05 105 14 13 7490 30 28 25 27 7402 1.1 105.10 155 14 13 7492 33 30 28 22 37 30 28 24 37 30 28 24 37 30 28 22 28 22 21 20 15 14 13 7493 5.0 45 42 7406 .22 .21 .20 15 14 13 7410 80 72 88 7406 .22 .21 .15 15 15 7410 80 72 88 7410 80 72 80 7410 80 72	741500 SERIES 1+ 25+1004 42 .38 .36 .43 .40 .38 .64 .58 .55 .32 .28 .25 .32 .28 .25 .32 .28 .25 .32 .28 .25 .32 .28 .25 .32 .28 .25 .32 .28 .25 .32 .28 .25 .32 .28 .25 .32 .33 .29 .62 .56 .48 .38 .33 .29 .62 .56 .48 .38 .33 .29 .52 .45 .41 .52 .45 .41	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LINEARS CA304514 CA304514 CA304514 CA304514 CA304514 CA304514 S000000000000000000000000000000000000		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.50 .44 .40 .48 .42 .36 .00 .90 .82 .75 .67 .60 .44 .40 .50 .44 .40 .90 .84 .75 .60 .53 .48 .82 .75 .70	74289 3.75 3.45 3.28 74290 1.20 1.00 .80 83 .72 45 74293 1.20 1.00 .80 83 .72 45 74298 1.80 1.55 1.40 .90 .82 .75 74352 .84 .75 .64 .40 .38 73355 .44 .40 .38 .47 73365 .44 .40 .38 .47 73365 .44 .40 .38 .47386 73386 1.70 1.40 1.25 74393 1.75 1.45 1.25 74393 1.70 1.40 1.30 74390 1.70 1.40 1.25 74391 1.75 1.45 1.26 74670 1.60 1.30 .44 Mixed prices apply for quantity discount .44	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4520 662 56 37 90 97 97 4521 1.40 1.25 1.10 1.40 1.76 7 segnent 4522 3.80 7.0 6.3 1111 10pit sizialator 75 4526 80 7.0 6.3 1111 10pit sizialator 75 4527 3.95 .63 111 10pit sizialator 75 76 4527 3.98 .44 .75 110 55.58 .19 4530 .82 .74 110 55.58 .19 100 A0161/162 MP .06 4530 .82 .74 100 A0161/162 MP .06 100 A0161/162 MP .06 4531 .00 .32 .52 100 B0144 .066 .33 .33 .35 .35 .00 .27 Ret Lee .66 .34 .00 .35 .000 .27 Ret Lee .66 .34 .00	VOL TAGE REGULATORS Ind300h-T039 .70 UM309h-T039 .10 uA723-14 .32 7815 T0220 .52 7815 T0220 .52 7805 T0220 .52 7905 T0220 .52 7915 T0220 .72 915 T0220 .72 905 T0220 .72 </td		

NANOAMP METER

It is not possible to accurately measure currents of a few microamos or less using an ordinary panel meter or multimeter. In order to make such measurements it is necessary to use an active circuit such as the one shown here. It can be built as a self-contained unit or used as part of an instrument requiring a highly sensitive current meter. The sensitivity is from 100nA to 10mA. FSD in six ranges; the higher ranges being included to permit calibration, and because many multimeters have very few low current ranges.

M1 is connected in a 1 V FSD voltmeter circuit which also uses R10 and R11. The latter is adjusted to give the unit the correct sensitivity. IC1 is an Op Amp connected in the non-inverting mode and having a DC voltage gain of about 100 times (set by feedback network R8-R1). C2 reduces the AC gain to only about unity so as to improve stability and imunity to stray pick-up. The non-inverting input of IC1 is biased to the 0 V rail by whichever of the range resistors (R2-R7) is selected by SW1. In theory this gives zero output vol-

tage and no meter deflection, but in practice it is necessary to compensate for small offset voltages using offset null control, RV1

Short Circuit

If an input current is connected to the unit, a voltage will be developed across the selected range resistor, this voltage being amplified to produce a positive meter deflection. With R2 switched into circuit, 10mA is needed to give full scale deflection of M1, since 10mA will cause 10mV to be developed across R2

(E = 1 x r) = 0.01 A x 1 ohm = 0.01 A0.01 V or 10 mV), and this will be amplified one hundfed fold by IC1 to give one volt at the output. On successive ranges the range resistor is raised by a factor of ten, reducing by a factor of ten the current required at the input to develop 10 mV and give full scale deflection of M1

This arrangement relies on the amplifier having a very high input impedance so that it does not drop a significant amount of input cur-

When adjusting RV1 start with its slider at the pin 5 end of the track (there should be a strong deflection of M1), and then back it off just far enough to zero the meter, and no further. meter, and no further.

New Books from the HE Book Service

.

•

•

•

0

.

.

.

.

•

•

•

.

.

•

.

۲

•

•

.

ö

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

•

.

.

.

•

.

•

•

•

•

•

•

•

•

.

•

•

•

RADIO

OCK

. 3

28 Tested Transistor Pro-

ject£1.15 Richard Torrens. The projects can be split down into simple building blocks which can be recombined for ideas of your own.

Electronic Projects for Beginners £1.55 F. G. Rayer. Divided into 'No Soldering Projects,' Radio and Audio Frequency, Power Supplies and Miscellaneous.

Solid State Short Wave Receivers for Beginners

£1.15 R. A. Penfold. Several modern circuits which give a high level of performance even though only a few inexpensive components are used.

Linear IC Equivalents and Pin Connections ... £2.95 Adrian Michaels. Gives most essential data for popular devices.

Popular Electronic Projects £1.65

R. A. Penfold. A collection of the most popular types of circuits and projects using modern, inexpensive and freely available components.

Projects in Opto Electronics

£1.45 R. A. Penfold. Covers projects using LED's, Infra-red transmitters and detectors, modulated light transmission and also photographic projects.

52 Projects using IC 741

£1.15 Rudi and Uwe Redmet. Translated from an enormously successful German book with copious notes, data and circuitry.

50 FET (Field Effect Transistor) Project £1,45 F. G. Rayer. Contains something of interest for every class of enthusiast. Short Wave Listener, Radio Amateur, Experimenter or audio devotee.

How to Build Advanced Short Wave Receivers

£1.40 R. A. Penfold. Full constructional details are given for a number of receivers plus circuits for add-ons such as Q-Multiplier, S-meter etc.

Digital IC Equivalents and Pin Connections ... £2.70 Adrian Michaels. Covers most popular types and gives details of packaging, families, functions, country of origin and manufacturer.

How to Build your own Metal and Treasure Locators £1.20

F. G. Rayer. Gives complete circuit and practical details for a number of simple metal locators using the BFO principle.

Essential Theory for the Electronics Hobbyist £1.45 G. T. Rubaroe gives the hobbyist a background knowledge tailored to meet his specific needs.

Beginners Guide to Building Electronic Projects . £1.45 R. A. Penfold. Covers component identification, tools, soldering, constructional methods and examples of simple projects are given.

50 Projects using IC CA3130 £1.15 R. A. Penfold. Describes audio projects, RF project, Test Equipment, Household and miscellaneous circuits.

IC 555 Project $\dots \pounds 1.65$ E. A. Parr. Circuits are given for the car, model railways, alarms and noise makers. Also covers the related devices 556, 558 and 559.

50 Projects using Relays, SCR's and TRIAC's £1.30 F. G. Rayer. Gives tried and tested circuits for a whole variety of projects using these devices.

Note that all prices include postage and packing. Please make cheques etc. payable to Hobby Electronics Book Service (in Sterling only please) and send to:

> Hobby Electronics Book Service P.O Box 79 Maidenhead, Berks.

CLOCK RADIO

Size: 177mm x 90mm x 47mm

ė

ö

•

ø

•

•

•

•

•

•

•

....

•

•

•

•

•

đ

.

.

.

You probably won't believe us as we're selling the goods but we're going to tell you anyway! We have *rejected* eight clock radios for Marketplace, they were all cheap enough but the quality was so poor that we couldn't have lent our name to them. However, we are now able to offer a portable LCD Clock Radio to you which meets our standards.

The clock is a 12-hour one with AM/PM indicated and a back light. The radio is Medium Wave and FM with very nice quality for a small speaker — for FM there's a telescopic aerial. The alarm can be either a 'beep-beep' type or the radio, there's also a snooze facility.

The case is sensibly rugged and is printed on the back with a World Time Zones map, a bit of a cheek really, especially as the time is relative to Japan!

We won't even mention the RRP — but just check on comparable prices — you'll find ours a bargain.

An example of this Clock Radio can be seen and examined at our Oxford Street offices.

(Inclusive of VAT and Postage)

To: CLOCK RADIO Offer, Hobby Electronics, 25-27 Oxford Street, London W1R 1RF.

Please find enclosed my cheque/P.O. for £20.50 (payable to Hobby Electronics) for my Clock Radio.

Name

Address

Please allow 21 days for delivery UK only

Varketplace

.

.

.

.

.

.

•

.

.

.

.

•

.

•

0

.

.

.

10

•

•

é

•

• EH 1

ROND

69

• 1.

DIGITAL ALARM CLOCK

•

•

.

•

•

•

•

•

Ó

ē

Ö

ė

.

0

•

•

ø

đ

.

.

•

.

•

ø

•

ò

•

.

Ó

•

•

•

•

•

•

•

.

•

•

•

•

•

•

•

•

Ø

•

•

• •

.

GITAL ALAR

Size: 100mm x 130mm x 60mm.

Over 10% of Electronics Today International's readers have purchased a digital alarm clock from offers in that magazine - the offer is now extended to Hobby Electronics readers. This is a first rate branded

extended to Hooby Electronics readers. This is a first rate branded product at a price we don't think can be beaten. The Hanimex HC-1100 is designed for mains operation only (240V/50Hz) with a 12 hour display, AM / PM and Alarm Set indicators incorporated in the large display. A switch on the top controls a Dim/Bright display function.

Setting up both the time and alarm is simplicity itself as buttons are provided for both fast and slow setting and there's no problem about knocking these accidentally as a 'locking switch is provided under the clock. A 9-minute 'snooze' switch is located at the top.

An example of this digital alarm clock can be seen and examined at our Oxford Street offices.

(Inclusive of VAT and Postage)

To: **DIGITAL Alarm Offer, Hobby Electronics**, 25-27 Oxford Street, London W1R 1RF.

Please find enclosed my cheque/P.O. for £8.95 (payable to Hobby Electronics) for my Digital Alarm Clock

Name Address

Please allow 21 days for delivery. UK only

LCD CHRONOGRAPH

We feel we've got to tell you carefully about this offer which we're introducing for the first time. Why? Because our price is so enormously lower than anywhere else you may suspect the quality. The exact same watch is currently being offered by another magazine as a special at £24.95 — some of the discounters are selling it at \$229.95 the price to HE readers for exactly the same watch is £12.95. The display is LCD and shows the seconds as well as the hours — and

minutes - press a button and you'll get the date and the day of the week

Press another button for a couple of seconds and you have a highly accurate stopwatch with hundredths of a second displayed and giving the time up to an hour. There is a lap time facility as well — and of course a back light Our Chrono comes complete with a high grade adjustable metal strap

and is fully guaranteed

An example of this LCD Chronograph can be seen and examined at our Oxford Street offices.

(Inclusive of VAT and Postage)

To: LCD Chrono Offer, Hobby Electronics, 25-27 Oxford Street, London W1R 1RF.	
Please find enclosed my cheque/P.O for £12.95 (payable to Hobby Electronics) for my LCD Chronograph.	
Name	
Address	
Please allow 21 days for delivery. UK only.	

Hobby Electronics, April 1979

.

æ

.

.

.

.

•

•

•

•

•

ø

•

•

.

۰

.

•

۰

•

•

Ô

0

.

•

.

.

.

.

•

.

•

•

•

•

•

•

•

•

•

.

•

à

•

.

•

.

•

.

.

1

Cistern Alarm

There is nothing worse than waking up in the morning to find that your cistern has overflowed. Most of us have been in that unfortunate position at one time or another. This simple circuit will give an audible warning and hopefully prevent an expensive disaster.

A CISTERN ALARM is probably the most unglamorous name imaginable for a project but it's the sort of device you bitterly regret not having built when you're ankle deep in water. The circuit is very straightforward in operation, relying on the inherent resistance of tap water to allow a current to pass between two strategically placed sensors.

The unit can be fitted in a variety of ways By using a stiff pair of wires for the probes it could be hung over the edge of the cistern or if a more permanent installation is required a probe could be glued or screwed to the cistern body. The height (see Fig 1) of the probe tips, relative to the water will vary according to the particular cistern used but as a general rule the tips of the sensor should be level with the overflow pipe.

Fig. 1. How to mount the sensor probes in a typical cistern.

FLUSHED WITH SUC-CESS

Two suggestions for sensor probes (see Fig 2) are shown. Of course it very much depends on the individual installation on how you approach the problem but one of the types shown should cover most applications. The first is simply two lengths of stiff (non-corrosive) wire bent into a hook and hung over the rim of the cistern casing. The second consists of two plated dome-head screws fitted into a block of Perspex, the sensor can then

The Cistern Alarm connected to the bell and battery.

be glued (particularly on the older metal type of cistern) or screwed to the casing.

No matter what type of sensor you decide upon, a great deal of care must be taken to ensure that the leads to the alarm are well protected against splashes, particularly where the wires join the sensor probes.

CISTERN

Fig. 2. Two suggestions for construction of sensor probes, the lower one is best suited to the older metal cisterns

Circuit diagram for the Cistern Alarm.

PCB foil pattern for the HE Cistern Alarm.

How it Works

The two sensor probes are connected between the + ve line and the base of Q1 (via R1 current limiter). If a sufficiently small resistance (ie water 20-50 k) is connected between the probes Q1 will conduct. The emitter of Q1 will rise towards the supply rail potential, as the emitter is connected to the Gate of SCR 1 it will cause. the Thyristor to 'fire' and become an effective short circuit. At this point the bell will begin to sound. Normally under DC conditions a thyristor will 'latch', this means that even if the gate voltage is removed the thyristor will continue to conduct, until the supply is removed. However, because an electric bell (or buzzer) has an interrupter contact fitted to the striker arm the DC supply to the bell is constantly being switched on and off, preventing the thyristor from latching.

The diode D1 is connected across the bell to prevent any 'back EMF' from destroying the semi-conductors (it can rise to several hundred volts!)

ROUND THE BEND

Sorry about the side headings but we can't resist the occasional pun. All the electronics are mounted on a single PCB, the bell used in the prototype was a small self-contained type obtainable from most hardware or chain stores. The use of a bell might appear quite surprising to some but this was quite deliberate. Apart from the fact that an electro-mechanical bell takes a lot of beating when it comes to volume, the action of the bell involves a constant interruption to the supply current, an important property when using a Thyristor (see How It Works).

As the alarm is to be left on for most of the time it was decided to omit an on-off switch, the standby current will be in order of 2-5 uA so if a sufficiently large battery is used (Eveready 126) the alarm should remain active for many months (even years).

PCB overlay for the Cistern Alarm, ensure the thyristor is mounted the right way round, terminal blocks were used on the prototype to retain the leads to the bell and sensor probe.

Hobby Electronics, April 1979

Top view of the alarm, note the orientation of the thyristor.

-Par	ts List-
RESISTORS.	(all ¼w 5%)
R1	10k
R2	1kO
R3	1kO
SEMICONDU	CTORS
Q1	BC109
SCR1	C106D
D1	1U400I
MISCELLANE	OUS
PCB — As Pat	ottern
Bell — See for	potnote
Battery — Eve	eready 126 (4.5V)
There should	be no problems with
any of the co	omponents, the bell

any of the components, the bell should operate at 4.5 volts, it is obtainable from most large hardware or chain-stores.

Approximate cost - £3.00

nort Circuits

TREBLE BOOSTER

A treble booster circuit can be used with an electric guitar (and also electronic instruments) to boost the higher order harmonics and give a more 'brilliant' sound. A circuit of this type gives a fairly flat response at bass and most middle audio frequencies, with the upper-middle and lower treble frequencies being given a substantial amount of boost. It is normal to give only a modest amount of emphasis to the upper-treble in order to give good stability and a low noise level, and this also prevents the output from sounding too harsh. The frequency response of this treble booster is shown in the accompanying graph.

The circuit is basically just an op. amp. (IC1) used in the noninverting amplifier mode. The noninverting input is biased by R4 and R5 via a decoupling network which is comprised of R3 and C3. C4 and C5 give DC blocking at the input and output respectively. With SW1 open there is virtually 100% negative feedback through R1, R2 and C1, giving the circuit unit gain and a flat response. Closing SW1 brings C2 into circuit, and this decouples some of the feedback through R1 and R2 at frequencies

of more than a few hundred Hz, giving the required rising res-ponse. Feedback through C1 at high treble frequencies causes the response to fall away above about 5.5kHz, and prevents the very high frequency harmonics from being excessible emphasized excessively emphasised.

As the unit has unity gain at frequencies where boost is not applied it can simply be connected between the instrument and the amplifier

QUICK TRANSISTOR CHECKER

This very simple and inexpensive circuit is not designed to measure any transistor performance figures, but is intended for quick testing to show whether or not the test device is functional. The basic method of testing a transistor is to first connect a supply to its emitter and collector terminals and check that no significant current flows. If the base terminal is then given a small forward bias, this will be amplified in the form of a large collectoremitter current.

This circuit is based on a CMOS quad 2 input NAND or NOR gate IC. Either type is suitable as each gate has its two inputs connected together so that it acts as an inverter. The first two inverters are used in conjunction with R1 and C1 as a conventional CMOS oscillator operating at a frequency of a few hundred Hz. The other two inverters are connected in parallel, and fed from the output of the oscillator so that they provide a

complementary output. In other words, one output will be positive and the other will be negative except during the brief periods when the outputs change state.

The collector and emitter of the transistor are fed from the outputs via D1 and D2, and the base is fed from one output via R2 If we assume that an NPN device is being tested, when gate 2 output is positive and the other output is negative, the transistor will not be forward biased by R2 (it will be reverse biased in fact) and it should pass no significant collector current. If it is a short circuit device and does pass such a current, this will pass through D2 which will light up and indicate the fault. When the outputs are in the opposite states, the transistor will be forward biased by R2 and should conduct heavily, causing D1 to pass a current and light up. Failure of D1 to come on indicates an open circuit or very low gain device. PNP devices operate with the opposite polarity, and so when testing one of these it is D2 that should switch on, and D1 which should remain off

Summarv

One LED on = functional device, type (ie PNP/NPN) as indicated. Both LEDs on = short circuited device No LEDs on = open circuit or very low gain device Diode or rectifier testing (anode to collector, cathode to emitter) D1 on = functional device D2 on = connected with wrongpolarity Both LEDs on = short circuited device No LEDs on = open circuit device

Next Instalment

Multivibrators again, but these two are somewhat different as you will see

EVER FOLLOWED A SERIAL? Not, we must add, one of these telly-epics that goes on for fifty thousand instalments, all looking pretty much alike. No, our serial is the serial multivibrator (MV), a circuit which isn't as well known as it deserves to be.

Everybody knows the classic MV circuit, with its cross-coupled transistors. Cross-coupled means that each collector is connected to the base of the other transistor, and this shows up as a cross-over of connection on the circuit diagram (Fig. 1). In a conventional MV of this type (which we could call a parallel MV), one transistor is fully conducting (bottomed) and the other cut-off; the action of the circuit ensures that this state changes over at regular intervals.

A serial MV is quite a different beast. The crosscoupling still exists, but the transistors are connected so that they are in series (hence the name) and the same current flows through both of them In addition, both transistors must be bottomed or cut-off together.

Serial MV's make use of the principle called complementary symmetry. Boiled down a bit, that means that you use both types of transistors, PNP and NPN. The difference between the two is the voltages that are needed. A PNP transistor conducts when its base is negative to its emitter and its collector also negative. An NPN transistor conducts when its base is positive to its emitter and its collector is positive. The difference is indicated on the symbols by the direction of the arrow, head of the emitter — it's towards the base of the PNP and away from the base of the NPN. There's no indication on the actual transistor iteslf, apart from the type number.

POLARITY CHECK

If you buy transistors like the 2N2219 (NPN) and, 2N290S (PNP), then the cases are identical, and only

Fig. 1. Old faithful, the classic cross-coupled MV circuit.

Fig. 2. One type of serial MV, with typical values.

the type numbers can act as **a** check. If your transistor came un-numbered, mark them before you forget because it isn't easy to tell them apart without testing — and that takes time.

One very useful serial MV circuit is shown in Fig. 2. It uses a pair of transistors, one NPN, the other PNP connected as shown with the collector of each one connected directly to the base of the other. This is the cross-connection which is needed for any MV circuit, what makes it slightly unusual is that both of these couplings are direct — no capacitors are used. The timing is done by one capacitor only, C1 which is connected between the emitter of the PNP transistor and ground. Lets see what happens in the course of a cycle of the action.

When the circuit is switched on at first, the voltage at the base of Q1 (which is connected to the collector of Q2) comes up right away. With the component values shown in Fig. 2, this voltage will be 6 V because the resistors R3 and R4 have equal values. The emitter voltage of Q1 doesn't rise right away, though. C1 is connected between the emitter of Q1 and the ground line, and no capacitor will allow the voltage across its plates to change instantly.

DISCHARGE TIME

When a capacitor charges or discharges through a resistor R, the time it needs to reach half of the supply voltage is about 0.7 C x R. This amount of time will be in

units of milliseconds if C is in units of μ F and R in units of kilohms. For example, if C1 = 0.05μ F and R = 100k, then CR = 105 x 100 which is 5 milliseconds, so that the time needed to charge to half of the supply voltage is 0.7 x 5 ms = 3.5 milliseconds.

During the time that C1 takes to charge, no current, apart from an unmeasurably small amount of leakage, will flow through the transistors, because both Q1 and Q2 are biased off. This state of affairs will continue until the voltage at the emitter of Q1 reaches about 0.5 V above the voltage of the base of Q1.

Because Q1 is a PNP type, it will start to conduct when its emitter voltage is about 0.5 V more positive than its base voltage. This will happen at about the time of 0.7 CR we have calculated, so that current will start to flow through Q1. The first effect of this current is to provide base current for Q2, which is an NPN transistor. With just a trace of current into the base of Q2, this transistor will conduct, and the current flowing between the collector and the emitter of Q2 will cause the collector voltage to drop because of the voltage drop across R4 caused by the extra current. The base of Q1 is connected to the collector of Q2 however, so that when the voltage of the collector of Q2 drops, Q1 is switched fully on, passing as much current as is needed to keep its emitter voltage about 0.5 V above its base voltage. The full current passed through Q1, flows as base current into Q2 saturating this transistor, so that its collector voltage can drop very low, to only 0.2 V higher than its base voltage. There is now a low-resistance conducting path from the emitter of Q1 to the emitter of Q2, and C1 therefore discharges through the transistors and through R5. This discharge causes the voltage at the emitter of Q1 to drop suddenly, and the voltage at the emitter of Q2 to rise suddenly, for as long as it takes to discharge the capacitor.

Once the capacitor has discharged, however, the current which was keeping Q2 switched on dries up because R1 cannot supply so much current. A tiny rise of voltage at the base of Q1, caused by the current at the base of Q2 being reduced is enough to start the circuit switching back to its original state. When the rise of voltage at the base of Q1 cuts off Q1; Q2 is also cut off, allowing the voltage at the base of Q1 (which is also the voltage at the collector of Q1) to rise suddenly to the value set by R3 and R4. Now we're back where we started — with C1 discharged, the base of Q1 at half of the supply voltage, and the capacitor charging again through R1. R2 limits the emitter current of Q1, preventing damage to Q1.

SAWTOOTH

The serial MV gives quite different waveforms (Fig. 3) at different parts of the circuit. Across the capacitor C1, the waveform is approximately a sawtooth as the capacitor charges slowly and discharges rapidly. The waveform across R5 is a short positive-going pulse when the capacitor discharges. At the collector of Q2, the waveform is a negative-going pulse.

Like most MV circuits, this serial MV is tolerant of changes of components, but there are limits. In particular, R5 must have a low value, a maximum of 100 R is suggested. The reason is that with a higher value, the current through R5 can cause the emitter voltage of Q2

Fig. 3. Serial MV waveforms.

to rise high enough for the circuit to 'stick', with R1 providing enough current through Q1 and so into the base of Q2 to keep both transistors switched on. Sticking can similarly be caused if the value of R1 is too low. A minimum value of 47 k is often suggested for this resistor. Most circuits use R3 = R4, but this is not necessary as long as the voltage at the base of Q1 is not biased too much or too low — in this case with a 12 V supply not above 9 V nor below 3 V. When R3 is not equal to R4, the charging time of the capacitor will not be the 0.7 CR which we assumed.

Another type of serial MV is shown in Fig. 4 using this time a capacitor connected to the base of an NPN transistor. The second transistor in the circuit is, once again, a PNP type, and the action of the circuit can best be imagined by starting just when the supply voltage is switched on.

OPERATION

At switch-on, the voltages across R1, R3, R4 can rise rapidly so that the base of Q2 is biased positively to just under 6 V. With no voltage at the emitter of Q2, this is a reverse bias, since Q2 is a PNP type. The base voltage of Q1 is zero at the instant of switch-on because C1 has not charged. As a result, Q1 is also cut off. The collector voltage of Q1 is high, almost at supply voltage, because only the charging current of C1 and the steady current of R3, R4 flows through the load resistor R1.

Once again, C1 charges until the base voltage of Q1, rises to a level at which Q1 can conduct. This voltage will be about 1 V higher than the voltage of the base of Q2 because there are two base-emitter junctions in the path from the base of Q1 to the base of Q2. Whenever a trace of current starts to flow into the base of Q1, however, a much greater current will pass between the collector and the emitter of Q1, switching on Q2 so that both transistors conduct.

With both transistors conducting, there are some sudden voltage changes. The collector voltage of Q1, drops to about the same voltage as the emitter of Q2, because with Q1 conducting heavily, there is only about 0.2 V difference between emitter and collector voltages. C1 will discharge through the base of Q1, to about the same voltage. Because of the current through R1 however, the voltage at the collector of Q1 will drop,

Fig. 4. Another type of serial MV.

causing the base voltage of Q2 to drop so that a low voltage is reached all round

Once again, though, a drop in the current caused when the capacitor has completed its discharging action

Next Installment

can cause the action to reverse. As the current drops, the voltage at the collector of Q1 starts to rise, bringing the voltage at the base of Q2 up as well.

This will cause both transistors to cut-off, because C1 cannot charge quickly enough to let the base voltage of Q1 rise in this time. With both transistors cut-off, the collector voltage of Q1 is restored to its starting value of just below supply voltage, and the whole cycle starts again

In this circuit, a sawtooth waveform is again available across C1, and a short negative pulse can be obtained at the collector of Q1, at the same time as the capacitor discharges. R2 should have a value of not less than 47k, to avoid sticking

Those types of serial MV's are circuits which give sawtooth and narrow pulse waveforms. The normal parallel MV circuit can give a sawtooth waveform at each base but a short pulse is usually obtained by using a MV astable to trigger a monostable. The use of a serial astable can therefore be a valuable saving in components and circuitry if short pulses at a variable repetition rate are needed

No more instalments - our serial's ended!

C35 CORDLESS

Complete safety Up to 350 joints/charge Interchangeable tips Recharges in 8 hours.

The LITESOLD C35 cordless rechargeable iron is indispensable where an electrical supply is not available or a connecting

The iron recharges completely in 8 hours from its mains power unit, and cannot be overcharged. The built-in nickel cad-mium batteries give operating temperature within 7 seconds of Twin spot lights give clear, shadowless illumination of the work and an additional light in the body shows when the iron is operating and also when it is on charge.

Prices including Postage, Packing and V.A.T. C35 Cordless Iron complete with mains power unit, standard tip C35D for work up to 2.5 sq.mm. detachable light fittings, cleaning sponge and miniature screw driver for tip changing £21.61.

.20

are	tip	C35F	(Fine)	L	4
are	tip	C35G	(Broad)	£.	2

Light Soldering Developments Ltd.

.32

97-99 Gloucester Road, Croydon, Surrey CRO 2DN. England.

Hobby Electronics Book Service

POPULAR ELECTRONICS BOOKS

Sinclair, I. R., Introducing Electronic Systems	£1.80
Sinclair, I. R., Introducing Amateur Electronics	£1.55
Sinclair, I. R., Electronic Fault Diagnosis	£3.45
Sinclair, I. R., Repairing Pocket Transistor Radios	£2.50
Sinclair, I. R., Oscilloscope In Use	£3.00
Sinclair, I. R., Understanding Electronic Components	£4.00
Sinclair, I. R., Understanding Electronic Circuits	£4.00
Kitchen, H. T., Handtools For Electronic Workshop	£2.75
Kitchen, H. T., Electronic Test Equipment	£5.00
Capel, V., How To Build Electronic Kits	£2.20

AUDIO

Earl, J., Audio Technicians Bench Manual	£3.50
Earl, J., Pickups and Loud Speakers	£3.50
Earl, J Tuners and Amplifiers	£3.00
Earl, J., Cassette Tape Recorders	£5.25
Earl. J., ABC of Hi-Fi	£4.25
Capel. V., Microphones In Action	£3.00
Capel, V., Improving Your Hi-Fi	£3.50
Capel, V., Creative Tape Recording	£4.00
Hellyer, H. W., Tape Recorders	£4.25
Sinclair, I. R., Audio Amplifiers For Home Construction	£2.75

RADIO CONTROL

Aldridge, D., Transistorised Radio Control For	Models						£3.50
Drake, J., Radio Controlled Helicopter Models			,				£3.95
Jeffries, C. R., Radio Control For Model Yachts	s				5		£1.85
Safford, E. L., Radio Control Manual							£2.45
Safford. E. L., Advanced Radio Control				*			£3.95.

COOKBOOKS

Tracton, K., BASIC Cookbook	£4.10
Lancaster, D., TTL Cookbook	£7.00
Lancaster, O., RTL Cookbook	£4.65
Lancaster, D., CMOS Cookbook	£8.20
Jong, W., IC Op Amp Cookbook	10.00
Lancaster; D., T.V. Typewriter Cookbook	£7.75
Lancaster, D., Cheap Video Cookbook	£7.00
Jong, W., IC Timer Cookbook	£7.50
Lancaster, D., Incredible Secret Money Machine (a how to cook be	lok for
setting up your computer or technical business)	£4.95

QUESTIONS AND ANSWERS

SIMPLE AND CONCISE ANSWERS TO MANY QUESTIONS WHICH PUZZLE THE BEGINNER.

Coker. A. J., Q & A On Electric Motors	£1.50
Hellyer, H., Q & A On Radios and T.V.	£1.50
Hibberd, R., Q & A On Integrated Circuits	£1.50
Jackson, K., Q & A On Electricity	£1.50
Brown, C., Q & A On Hi-Fi	£1.50
Brown, C., Q & A On Transistors	£1.50
Brown, C., Q & A On Electronics	£1.50
Reddihough, J., Q & A On Colour T.V.	£1.50
Miller, H., Q & A On Electric Wiring	£1.50

CONSTRUCTOR GUIDES

Graham, P., Simple Circuit Building	£2.45
Colwell. M., Electronic Diagrams	£2.45
Colwell, M., Electronic Components	£2.45
Colwell, M., Printed Circuit Assembly	£2.45
Ainslie, A., Practical Electronic Project Building	£2.45
Colwell, M., Project Planning and Building	£2.45

BEGINNER'S GUIDE

Sinclair, I. R., Beginner's Guide To Tape Recording	£3.30-
Sinclair, I. R. Beginner's Guide To Integrated Circuits	£3.10
Sinclair, I. R., Beginner's Guide To Audio	£3.10
King. G. J., Beginner's Guide To Radio	£3.10
King, G. J., Beginner's Guide To Television	£3.10
King, G. J., Beginner's Guide To Colour T.V.	£3.10
Guilou, F., Beginner's Guide To Electric Wiring	£3.10

PROJECT BOOKS

Marston, R. M., 110 Cosmos Digital IC Projects For The Home Constructor
£3,25
Marston, R. M., 110 Wave Form Projects For The Home Constructor £3.45
Marston. R. M., 110 Op Amp Projects For The Home Constructor £2.95
Marston, R. M., 110 Semiconductor Projects For The Home Constructor
£3.45
Marston, R. M., 110 Thyristor/SCR Projects For The Home Constructor
£2.95
Marston, R. M., 110 Electronic Alarm Projects For The Home Constructor
£3.45
Marston, R. M., 110 Integrated Circuits Projects For The Home Constructor
£3.45
Marston, R. M., 20 Solid State Projects For The Car and Garage £2.50
Marston, R. M., 20 Solid State Projects For The Home £2.50

Note that all prices include postage and packing. Please make cheques, etc. payable to Hobby Electronics Book Service (in sterling only please) and send to:

Hobby Electronics Book Service,

P.O. Box 79, Maidenhead, Berks,

Into Electronics

by Ian Sinclair

Part 6

This month we look at Logic Circuits and their uses — from Automatic Control Systems to Digital Watches.

LAST MONTH'S LOOK at the wave-generating effects of positive feedback left out one device, mainly because it doesn't generate any wave by itself. It's the bistable; and it's distinguished from all the others in its family (astables and monostables) by having no capacitors and no time constants. It doesn't sing, it doesn't dance on one leg, what does it do?

Take a look at the bistable circuit in Fig. 6.1. The circuit looks just like an astable multivibrator, except that there are no coupling capacitors, just the resistors R2 and R3. Suppose that Q1 is conducting, so that its collector voltage is bottomed. That means there is no current flowing through R2 into the base of Q2, which is cut off. With Q2 off, current flows from the supply through R4 and R3 to keep Q1 conducting. It'll stay that way as long as the circuit is switched on, or until it's switched over. How do we switch it over? Easy, just earth input A momentarily. That cuts off Q1, switches on Q2, and the positive feedback makes sure that the changeover will be really fast. Now Q2 is on, and Q1 is off, and it will stay that way until switched off or until input B is earthed.

Fig. 6.2 Bistable counter with steering diodes. Use values R1 - R4 as in 6.1, but with R5, R6 = 100 k, C1, C2 = 0.01 F, R7 = 10 k, D1, D2, silicon diode such as 1N4148. Supply 6-9V battery.

Fig 6.1 Bistable multivibrator. To try it out, use values: R1, R4 = 4k7, R2, R3 = 47k, R5, R6 = 47k. Q1, Q2 can be any NPN general-purpose transistors such as 2N1711, 2N2209, BFY50. Supply, 6-9 V battery.

STEERING BISTABLES

Very interesting, but is it useful? Well, we can certainly make some use of the circuit as it stands — it's useful for making square waves out of sinewaves, for example, but the addition of what is called a 'steering system' makes this into one of the most-used types of circuit in modern electronics. Fig. 6.2 shows the simple bistable with the addition of steering diodes which make it into a scaleof-two or flip-flop. We've added three resistors, two capacitors, and two diodes to the basic circuit; fasten your seatbelts so that we can run through what happens.

Suppose that, Q1 is conducting, with its collector voltage bottomed, and Q2 is off, so that its collector voltage is high. The base voltage of Q1 must be at about 0.6 V, and its collector voltage at about 0.2 V; these are the normal voltages for a bottomed silicon transistor. These voltages are also the bias voltages for the diode D1, so that D1 has about 0.6 V on its anode and 0.2 V on its cathode — almost, but not quite, conducting. How about D2? It's connected to Q2, whose base is cut off, at about 0.2 V (because it's connected to the collector of Q1) and with its collector at a voltage very close to the supply voltage, perhaps 5 V. D2 must, therefore, be reverse biased, then, with 0.2 V on its anode and about 5 V on its cathode.

That sets the scene, then, with D1 almost conducting and D2 thoroughly reverse biased. Now imagine what happens when a negative trigger pulse arrives at the input. The trigger pulse is a brief change of voltage, negative because the voltage drops suddenly from zero to a negative value and then returns to zero. The duration of this pulse can be short, a micro-second or so, but the effect on the circuit is not brief. If we make the size (amplitude) of the negative pulse somewhere between 1 V and 6 V, assuming a 6 V supply, then the pulse can pass current through only one of the diodes. D1. because only D1 is biased so that it can conduct on a pulse of that size. Current flowing through D1, caused by the negative pulse, will cut off Q1 and switch on Q2, so leaving the circuit with the conditions reversed. Q2 is now conducting and Q1 is now off.

FLIPPING BIAS

Of course, the bias on the diodes has also flipped over. D1 is now reverse biased, and D2 is almost conducting. On the next trigger pulse, then, Q2 will cut off and Q1 will switch on again. Two negative pulses at the input have put the conditions back where they were at the beginning. If we take the output of this bistable circuit as being the voltage at the collector of Q2, then this voltage has gone from high to low to high again for an input of two pulses. This output is itself a single negative pulse, so that the circuit has produced one negative pulse at the output from two negative pulses at the input.

Since the output of this circuit is a negative pulse, we can use it as a trigger pulse for another identical circuit. The same sort of action is going to take place in this second bistable circuit, so that two complete pulses from the first bistable will produce one complete pulse from the output of the second bistable. Of course, we need four trigger pulses into the input of the first bistable to give us two pulses from its output; the complete circuit therefore needs four trigger pulses in for one complete pulse out. Now take a deep breath and think of what will happen if we have three of these bistable circuits connected in a chain (Fig. 6.3.) How many trigger pulses into the first bistable will give one pulse at the output of the third bistable? Yes, eight is the answer, and so it goes on. If we have N bistables connected in a chain like this, we need 2^N pulses in to give one pulse out.

ORGANIC BISTABLES

This type of bistable circuit acts as a counter, then, counting not in the scale of ten but in the scale of two, and it's the basis for all the remarkable circuits that make calculators and computers possible. More about that later in Part 8. Before we leave the bistable counter, though, remember that it can have several uses that are not concerned with computing or calculating. The division-by-two is itself a very useful feature for several applications. Just to take one example, dividing the frequencyof a note of sound by two means obtaining a

Fig 6.3 A chain of bistable counters, with the Q2 collector of bistable 1 connected to the input of bistable 2 and the Q2 collector of bistable 2 connected to the input of bistable 3.

sound which is exactly one octave lower. This makes a bistable an essential part of the circuits of electronic organs and synthesisers, because if we use a set of oscillators to generate a scale of notes of very high sound, frequencies, dividers, which are just bistables, can be used to produce all the lower frequencies. That way we have 12 oscillators (because there are 12 notes in an octave) to keep in tune, and the other notes must be of the correct pitch, a lot easier than using a separate oscillator for each note.

This frequency division is also used for timekeeping. Electronic watches use crystal oscillators (remember?) to ensure a very stable frequency. These oscillators work at anything from about 38 kHz upwards, so that to operate a display that flips numbers every second, a large number of bistable stages will be needed. It simply wouldn't be possible if we had to build each bistable from separate transistors, but integrated circuits (ICs) make it possible to build the complete oscillator and divider circuit in one set of operations and on one tiny chip of silicon.

TWO'S COMPANY

All of this counting in twos affects the design of all the circuits that we use along with bistables. When we count in the scale of two, there are only two digits, 0 and 1. These are particularly easy to represent electrically, because we can so easily arrange that the voltage of the collector of a transistor is either high, with the transistor completely off, or low, with the transistor bottomed. Practically every system uses what's called positive logic, with high collector voltage representing the digit 1 and low meaning 0. The terms, 'logic 1 and logic 0' therefore mean collector voltage high and collector voltage low respectively.

CERTAIN FLIPPERS MAKE THINGS EASY

Now this sort of counting system has lots of advantages, and one of them is that it's pretty certain. If we use circuits like bistables, the outputs are either on or off, they never hang around at any voltage between these two states, so that there's no doubt about which digit is represented by the voltage at any collector. We can forget about linear amplification and bias, and simply design circuits with lots of positive feedback to make sure that they flip over fast and completely. Problems like noise and interference shouldn't cause so much trouble when all of the transistors are either cut-off or bottomed. One slight snag is that 2 is rather a small number to use as a counting base, so that lots of bistable circuits are needed to handle even moderately large numbers; once again the use of ICs helps us out. A more serious problem is that we need at some stage to enter numbers into, and read numbers out of, a set of counting bistables, so that conversion to and from decimal numbers is needed. Once again, the use of ICs has simplified things, so that we can make these encoder and decoder circuits on single silicon chips.

ARE YOU GATING ENOUGH?

All the circuits that we call digital circuits make use of bistable counters but some other types of circuits are needed as well. Counting, for example, has to be

Into Electronics

Fig 6.4 A gate circuit using diodes and transistors.

stopped and started, and the type of circuits we use for stopping and starting counters are next on our list. They're called gates. Digital gates are like any other sort of gates, to let anything through you have to open them.

Take a look at the circuit in Fig. 66.4. This is intended as a digital circuit, so that the inputs will either be zero volts (connected to earth) or supply voltage, and we expect the output to be one of these two voltage levels as well. Suppose both of the inputs, A and B are earthed, low, logic zero. Current will then flow through R1 and through D1 and D2 to earth, and the voltage across D1 or D2 will be around 0.55 V, the usual voltage across a conducting diode. That sort of voltage isn't enough to start current flowing through both D3 and the baseemitter junction of Q1, so that Q1 is off and its collector voltage is high. A high collector voltage means that there's only a small voltage between the base and the emitter of Q2, which is a PNP type. A PNP transistor needs to have its base voltage lower than is emitter voltage to turn it on, so Q2 is off. With Q2 off, the output voltage is LOW, logic 0.

Now if we take one of the inputs, A or B, and connect it to the ± 6 V supply, then it makes no difference to the circuit action, because all we've done is to reverse-bias one of the diodes, D1 or D2. Current will still flow through R1 and through the other diode, so that the voltage will stay low and Q1 stays off. If, however, we connect both inputs, A and B, to ± 6 V, then both of the diodes, D1 and D2, are reverse biased, and current now flows through D3 and into the base of Q1, turning on Q1. Some of the collector current of Q1 will flow through the base-emitter junction of Q2 (PNP, remember) so that this transistor is turned fully on. The output now is high, at logic 1.

This sort of gate has been described in detail because if you can understand the working of one sort of gate, you will soon find it easy to understand other types. It's called an AND gate. The name? Well, to make the output high, logic 1, we need to have input A and input B high, also at logic 1.

THE TRUTH, THE WHOLE TRUTH

Circuits like this are never built nowadays, because all of the gate circuits we need are obtainable as ICs. The circuits that are used inside the ICs are very complex; very often we don't know what the circuit is, so that we need some method of remembering what each gate does. One such easy way is the use of a truth table. A truth table shows what the output of a gate will be for each possible combination of inputs. Now for the AND gate we've just looked at, the output is 1 only when both inputs are 1, so that the truth table is as shown in Fig. 6.5. A shorthand way of writing the action is $1 \cdot 1 = 1$, where the dot means AND, and the equals means.

A	B	OUT
0	0	0
0	1	0
1	0	0
1	1	1

Fig 6.5 The truth table for the circuit of Fig. 6.4.

Fig. 6.6 A simpler gate circuit with a different truth table.

A	В	OUT
0	0	0
1	0	1
0	1	1
1	1	1

'gives'. The use of these 'equations' forms a branch of mathematics called **Boolean Algebra**.

How about some other gates? Fig. 6.6 shows another variation of the previous circuit, using fewer diodes this time. Once again there are two inputs, A and B. With both input voltages low, at logic 0, Q1 is unbiased and so Q2 is also unbiased, with no current flowing. The output voltage is low, logic 0. If we now connect A to +6 V, then current flows through D1 and R1 into the base of Q1. D2 is reverse-biased so that it plays no part in the action. With Q1 switched on, Q2 is also on, and the output voltage is high, logic 1. The same result is obtained if input B is high and input A low, except that diode D2 now conducts and D1 is reverse-biased. In fact, the output is at logic 1 when A or B is high (or both), and the circuit is an OR gate. The truth table for this gate is shown in Fig. 6.7.

Classed among the gates is the simple inverter circuit, sometimes called the NOT gate (Fig. 6.8), which is just an unbiased amplifier. When the input voltage is high, the output voltage is low, and vice versa. The truth table isn't too difficult!

0

9

9

2.

... NOR ANY DROP TO DRINK

Two other common types of gates are just combinations' of AND, OR and NOT gates, but are often easier to make. The NAND gate has the truth table shown in Fig. 6.9a. The output is high unless both inputs are 1, when the output becomes 0. The circuit of Fig. 6.9b is one form of a NAND gate, and you can see that it's just the circuit of Fig. 6.6 without the PNP stage. The name of the gate comes from NOT AND, because its truth table is that of an AND gate followed by a NOT. Inevitably, there's a NOR gate, which is the NOT-OR. Its output goes to zero one input or the other goes high, and the truth table is shown in Fig. 6.10.

To save having to draw circuits of the gates themselves, we use symbols. These aren't universally standardised, but practically everyone working in electronics uses the (American) symbols which are shown in Fig. 6.11. For teaching electronics, the British Standard symbols are dutifully noted, then forgotten.

GROUPIE GATING

Gates are designed to give a signal out for a definite combination of signals in. Railway signalling, for example, has for years depended on mechanical gating systems, so that signals cannot be set to accept a train until the points have been correctly set. Electronic gates are smaller and faster to operate, so that we can make gating actions which are much more complicated, all from the set of gates we know, the AND, OR, NAND, NOR and NOT

Just for starters, look at the set of gates in Fig. 6.12. This shows four inputs, all to NAND gates, with the outputs of the NAND gates feeding into a NOR gate. What is the truth table for this lot? A drop of Boolean Algebra can solve this fairly quickly, but it's the hard slog for us. Four inputs means sixteen possible combinations (24) of inputs, all different, so we start by writing them all down. It's easier if we're fairly methodical about it, so we write columns for the numbers in order, and in the

Fig. 6.12 A gate circuit made from standard components.

A	В	С	D	X	Y	Q
0	0	0	0	1	1	0
0	0	0	1	1	1	0
0	0	1	0	1	1	0
0	0	1	1	1	0	0
0	1	0	0	1	1	0
.0		0	1	1	1	0
0	1	1	0	1	1	0
0	1	1.	1	1	0	0
1	0	0	0	1	1	0
1	0	0	1	1	1	0
1	0	1	0	1	1	0
1	0	1	1	1	0	0
1	1	0	0	0	1	0
1	1	0	1	0	1	0
1	1	1	0	0	1	0
1	1	1	1	0	0	1

Fig. 6.13 Finding the truth table from the gate circuit.

column write the binary numbers in sequence up to 1111. A quick count should now show that we have 16 lines of figures, and provided that we have kept to the binary sequence, we should then have every possible combination of ones and zeros, Now draw two more columns for the outputs of the NAND gates, and label them (X and Y) and one final column for the output Q of the NOR gate. The table is now ready to complete, the worst part is over.

Starting with the NAND gate whose output is X, ignore inputs C and D and concentrate on inputs A and B. X will be at zero only when A = 1 and B = 1. For all other inputs, X = 1, so that we can complete the X column fairly quickly. Now ignore A and B and fill in the columns for C and D, with their output, Y. Once again, because the gate is a NAND type, Y is zero only when C and D are both 1; all other values of Y are 1, and can be marked in

Now for the last column. The action of the NOR gate is that the output is low if either input is high, and will be 1 only when both inputs are low. There's only one line in which X=Y=0, and that's the last line. For this logic circuit, then Q = 1 for A = B = C = D = 1, so that the circuit is a 4-input AND gate. Simple, really!

The point of all this is that with the basic dates we can make a circuit with any sort of truth table we want, so that the output will be 1 for whatever set of inputs we like to specify.

DE-LUXE, PIPING HOT LOGIC

Suppose, for example, we have a central heating system that is controlled by logic gates. The system has a boiler

Into Electronics

A	В	С	Q	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	0	ľ
1	0	1	1	1
1	1	0	1	
1	1	1	1	

Fig. 6.14 A 2-out-of-3 gate truth table, and one suitable circuit.

which can be switched on by a relay which clicks over when the gate that operates it goes to logic 1. The hot water from the boiler will heat the radiators in the house only when it is pumped through the pipes, and the pump is switched by another relay similarly arranged so that it can be operated by the output of a logic gate. How about inputs? Well, we could imagine that this is a de-luxe system and that we have detectors for outside air temperature, inside air temperature in all rooms, water temperature, and also, of course, a time switch. What sort of system could we design?

To start with, the time switch could operate a bistable that switched AND gates. That way we could have the heating pump operated by one set of gates during the day and another set during the night — a bit of an improvement on the usual single thermostat. Then we could make good use of the temperature detectors in the rooms — we could, for example arrange the gating so that we had a 1 output if two out of three selected rooms were at a lower temperature than the set amount. The truth table for such a 2 out of 3 arrangement is shown in Fig. 6.14. The gate arrangement shown alongside should produce this truth table — check it out for yourself.

Of course we could arrange that the rooms we chose for the night temperature measurements were not the same rooms as we used for the daytime measurement, and we would also want to ensure that the water was not pumped around when the air temperature inside was high enough. Another thermostat senses the temperature of the water in the hot-water cylinder, and the boiler fires if the pump is working OR if the cylinder temperature is low. Complicated? Not really, and to do the same actions by any other methods would be a nightmare which is why so many houses waste heat needlessly.

PRACTICE MAKES PERFECT

Logic circuits can be built with separate transistors. (these are called discrete circuits) but it's much simpler to make use of the ready-made ICs which are cheap and easily obtainable. The best types for experimental work are the ones referred to as TTL (Transistor-Transistor Logic). A typical circuit for a TTL gate (it's a 2-input NAND gate) is shown in Fig. 6.15. The gate consists of four transistors, a diode, and four resistors, and four

Fig. 6.15 A TTL NAND-gate circuit.

gates like this can be packed onto one tiny silicon chip with plenty of room left. The IC coded SN7400N contains just this package of four NAND gates.

The action is something like this. The transistor Q1 at the input is made with two separate emitters, taken to different connections, A and B. We can make more emitters, so a seven-input is obtainable. The base of Q1 is connected to the supply voltage through R_1 , so that if either emitter of Q1 is earthed, the transistor can conduct between collector and emitter. The collector, though, is connected directly to the base of Q2, so that when A or B is earthed and Q1 conducts, this has the effect of connecting the base of Q2 to earth, switching Q2 off. O.K. so far? If A or B is low, Q2 is off; if both A and B are high, Q2 is switched on.

When Q2 is off, its collector voltage is high, so that Q3 is switched on. The emitter voltage of Q2 is low, so that Q4 is off. The output is high, connected to ± 5 V through Q3. When Q2 is on, its collector voltage is low and its emitter voltage is high, so that Q3 is off and Q4 is on. Perhaps you'd like to make up a truth table for each part of the circuit just to convince yourself.

Now this type of circuit may look rather odd compared to most of the transitor circuits you've built or seen, but there are good reasons. One is that these circuits are easy to make in IC form, another is that they switch over very quickly — on an average it takes one of these gates only 13 ns to switch over — that's just the time it takes a beam of light to travel the length of a fairly large room. It's these types of fast-switching circuits that are used in most computers at the moment, although pocket calculators and micro-computers use a different (MOS) type of circuit which is not so fastswitching.

THE RIOT ACT

The way these circuits are designed, though, means that we have to use them correctly, so here are the rules.

Rule 1. The supply voltage has to be 5 V. You can get away with 4.5 V, but you can't get away with 6 V. The supply should preferably be a stabilised 5 V mains supply. Reason? The inputs are always to the emitters of transistors with the bases connected to supply voltage. If you use a 6 V supply, far too much base current will pass when an emitter is earthed. Remember that the base current is limited only by R1 in Fig. 6.15.

Rule 2. Inputs of gates have to be supplied either from the outputs of other gates or from some switching arrangement that will connect them either to earth through a large value resistor (anything over 1 k), then it behaves just as if it had been left unconnected or connected to + 5 V. The reason is that the input circuit is like that of an emitter follower output, and the emitter tries to follow the base. Inputs from switches, relay contacts, or transistor collectors are useable.

Rule 3. The output of a gate will switch anything from 5 to 10 inputs of other gates. This is called the fan-out of the gate, so that the gate with a fan-out of 10 will drive ten more gate inputs. If you want to use the output of a gate, so that a gate to drive a relay, a power transistor should be used so that the power treansistor operates the relay, and the gate operates the transistor. The reason this time is that the tiny transistors inside the IC cannot be expected to handle a large amount of power.

BEGINNERS JOIN HERE

How do you start on practical logic circuit construction? Well, there's a very easy method that won't take up much more room in this Part — follow the series that appeared in ETI! The name of the series was *Digital Electronics by Experiment*, and it started in October 1977. Good soldering.

The TTL circuits which are so useful for learning about digital logic are not ideal for all applications. For one thing, they need a well-stabilised 5 V supply, and 5 V is an awkward figure for the experimenter who has to rely on batteries. Another snag is that TTL circuits take quite a lot of current. The eight TTL ICs that are used in the board for the series, Digital Electronics by Experiment, take a total current of around 0.5 A when they are all working, and that's an amount of current that a dry battery will not happily supply, so that a mains power pack is needed. The big plus factor for the TTL circuits from our point of view is that they are easy to handle, readily available, and not easily damaged.

LOGICAL FET-TISH

There's another family of logic ICs, though, called variously CMOS, Cos-Mos, MaCMoS, and so on. Unlike TTL circuits which use ordinary (bipolar) transistors in integrated form, CMOS ICs use MOSFETS (Metal-Oxide-Silicon FETs) in integrated form. These FET circuits can be used to make up the usual range of gates and bistables that we expect to use, and in addition a few circuits (such as transmission gates) that are not possible with TTL circuits.

What makes these CMOS circuits attractive, though, is that they can be operated on voltages ranging from about 4 V up to 12 V, so that the popular 9 V battery (PP3) can be used as a power supply for most CMOS circuits. In addition, the use of FETs means that the input resistances are very high, and CMOS circuits can be operated with very low currents. A CMOS output can drive a large number of inputs, because practically no current is needed. This also is a bonus point for battery operation, because it means that CMOS circuits take very little battery current and batteries have a long life unless the circuit includes components (like LED displays) which have a greater appetite for current. Incidentally, the name CMOS comes from Complementary MOS, because the FETs that are used are of two types, P-channel and N-channel, corresponding to PNP and NPN bipolar transistors respectively

With so much going for them, why don't we use CMOS for all our digital work? Well, we do use them a lot, and you'll see them used in H.E. projects, they're also used in all pocket calculators and in digital watches, but they are not the ideal type of ICs for learning about digital circuits. The reason is the very high input resistance. As we mentioned earlier, any electronic component which has a high input resistance is easily damaged by the electrostatic voltages which exist on your hands, on insulating materials, and on any isolated prices of metal — any metal that is not connected to earth by a resistance of less than a few megohms. The result is that if we pick up a CMOS IC and touch the pins — it's dead. Not the best introduction to digital logic circuits, is it?

We get around the problem in two ways. One is that the circuits have built-in diodes which help to shortcircuit excessive voltages. The other is the fact that damage can occur only when one lead is at a very different voltage from another. Now when the IC is connected into its circuit, all of the pins will be connected through resistors either to earth or to supply voltage, and the voltage between two pins can't be more than the battery voltage, which is safe enough. Our main problem, then, is just to get the darn thing into circuit in one piece. CMOS ICs come packed with their pins embedded in plastic foam. It's not any old foam, but a conducting material that makes sure that all the pins are shorted together, keeping them all at the same voltage. Keep the ICs in this and they're safe, come sparks or lightning.

DO NOT TOUCH!

Now for the awkward bit - how do we put them into the circuit. Well, we build all the rest of the circuit first. checking to make sure that each pin of the IC will be connected to a part of the circuit which has components connected, or is earthed. The CMOS IC goes in last, and there two ways of dealing with this. One way is to solder IC holders into the circuit instead of soldering in the ICs directly. We then hold the ICs by the ends of the case, fingers away from the pins, whip off the plastic foam, and plug in the ICs, making sure that we've got them the right way round. Unless we are particularly unlucky we should be able to do this without touching any of the pins. The other method is direct soldering. The negative line on the board is connected to earth through a flexible wire fitted with croc. clips. The ICs are fitted, one at a time into their places, and the pins are soldered in one at a time using an earthed soldering iron. The earth pin of the IC is soldered in first, then the + supply pin, then all the others. This is no more trouble once you have had a bit of experience, but the less experienced constructor is advised to use holders at first - apart from anything else, it's a darn sight easier to remove ICs.

GLOW-WORM'S BENEFIT

One little item we haven't touched on yet, how do we know when a gate or bistable output is high? Voltmeters being the price they are, we need some sort of display. For transistor circuits, as good a method as any is a 6 V 60 mA cycle dynamo rear light bulb. If we use 6 V supplies fpr our transistor circuits, then a 6 V bulb in series with a transistor collector, will indicate when the collector voltage is low (bulb on), Fig. 6. 16a. The trouble with this is that 60 mA is rather a lot of current to have to pass just tp indicate whether a transistor is on or off, and it's certainly too much to load onto our TTL ICs.

Fig. 6.16 Displaying a binary digit. (a) transistor-and-lamp, (b) LED symbol, (c) LED typical characteristics. This LED has a forward voltage drop of 2.1 V at 12 mA. Note the low peak reverse voltage of only 3 V. LEDs must always be protected from reverse voltage.

For most display purposes, then, we make use of LEDs. The name is short for Light-Emitting Diode, and that's just what they are diodes that emit light when current passes through them. These aren't silicon or germanium diodes, but they are P-N junctions made using compound materials: such as Gallium Arsenide or Indium Phosphide. It just happens that crystals of these materials are transparent, so that any light generated happens to be visible to the eye.

UNTIL DEATH US DO PART

How does the junction come to be giving out light? It's caused by an effect called recombination, when an electron and a hole find each other and live happily ever after. In normal diodes or transistors we try to avoid recombination like the plague, because it removes electrons and holes from circulation. When recombination takes place, energy is released, the same amount of energy as was needed to separate the electron from the hole in the first place. As it happens, the amount of energy that is released is just the right amount to create a light ray; the colour of the light depends on the amount of energy.

LEDs behave otherwise like any other semiconductor diodes, but they need a higher voltage between anode and cathode to conduct, about 2 \vee for some types. The symbol is shown in Fig. 6.16b along with typical data.

The LED principle is also used in making sevensegment displays (Fig. 6.17) which, as the name suggests, have seven bar-shaped strips of LED. These can be used to display all the numbers 0 to 9, and also a few letters, and are used to show the outputs of bistable counters. Wait, though, bistables count in scale of two,

Hobby Electronics, April 1979

Into Electronics

and these displays are decimal — something wrong here? There would be, but as it happens there's an IC which acts as a binary to seven-segment converter — put in a binary number and out come the voltages which light up the correct strips of the display to show the decimal number. The truth table, shown in Fig. 6.18, looks a bit fearsome, but it's all done with the usual set of NAND, NOR and NOT gates.

Right now, another type of display is becoming available, though still a bit pricey. This is the LCD display. LCD means Liquid Crystal Display, and the liquid crystals are curious substances (related to amino-

A	В	С	D	a	b	С	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	0	0	1	. 1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1

Fig. 6.18 Binary-to-seven segment decoder truth table. The number 1 under a segment letter (a to g) indicates that segment is lit. Note that a four-input binary number can have values up to 15 (1111) but only a count of 9 is diplayed by this decoder. Hexadecimal decoders display letters to indicate the numbers 10, 11, 12, 13, 14 and 15.

acids, if chemistry grabs you) which can be turned from opaque to transparent by applying a small electric field. These displays can be made into the seven-segment pattern, and have the great advantage that they need very little current. Unfortunately, they need a highfrequency AC supply, and the life is limited because the liquid crystal material is broken down by sunlight. Watch displays have a ultra-violet filter to extend the life of the liquid crystals, but two to five years is reckoned a good life time.

Next month we stop looking at components and circuits for a bit, and start looking at how we make use of them all. Systems is the name of the game, and next month's systems are domestic ones — radio, recording and TV.

Hobby Electronics, April 1979

3:3

. 510

10

A breadboard as big as your local as big as your local as big as your back as the feat of the second as the second as the feat of the second as the feat of the second as the feat of the second as the second as the second as the feat of the second as the seco

EXPERIMENTOR 325 £2.54 The ideal Breadboard for 1 chip circuits. Accepts 8, 14, 16 and up to 22 pin IC's. Has 130 contact points including two 10-point bus-bars.

EXPERIMENTOR 600 £7.88

The Breadboard for quick construction of Microprocessors and other circuits. EXP 600 has 550 contacts including two 40-point bus-bars with 0.6" centres. **EXPERIMENTOR 650 £4.70** Perfect for checking out Microprocessors. EXP 650 has 270 contacts including two 20-point bus-bars with 0.6" centres.

EXPERIMENTOR QUAD BUS STRIP £3.29 Need more bus-bars, clip on an EXP 4B and you have four 40-point bus-strips with 8-, 12- and 16-line address, create data-buses by combining EXP 4B, Bus Strips.

No soldering simply plug all standard components in and out, nickelsilver contacts allow Breadboard and components to be used over and over again without damage.

Adaptable accepts any component without adaptors or jumper leads, use 22-30 gauge solid wire for jumper leads.

Mix and Match large and small chips in the same circuit. Use 300 series for smaller and 0.3" pitch DIP's. 600 series for Microprocessors with 0.6" centre channel for full fan-out with larger chips.

Smallest to Biggest, remember CSC's Breadboards "snap-lock" together so you can start with a small idea and expand your ideas to as Big a Breadboarding area as you like.

Easy Permanent Mounting,

using four screws from front or six selftappers from rear. Vinyl-insulated backing lets you fasten to any surface.

Pick any project that you want to build, or any part of a project that you want to test or modify. Count up the number of IC's you need for the project.

Then simply look up in the box opposite the Breadboard you require.

If you need more than two bus-bars simply add the correct number of Quad-Bus Strips. GET STARTED NOW FOR AS LITTLE AS £2.54.

How to order. Telephone 0799 21682 and give your Access. American Express or Barclaycard number, and your order will be in the post that night. Or send your order, enclosing cheque, postai order, or stating credit card number and expiry date. For full catalogue showing all CSC products for the engineer and hobbyist send large S.A.E.

EXPERIMENTOR 350 £4.21

EXP 350, specifically designed for the hobbyist working with up to 3 x 14 DIP IC's. With 270 contact points including two 20-point bus-bars the EXP 350 accepts any size DIP with 0.3" spacing.

Marked Contact Points transfer component by component from letter/number position on Breadboard to finished P.C. Board or Wiring Table.

Ruggedly built of abrasionresistant materials that withstand 100°C

MODEL NO.	NUMBER OF CONTACT HOLES	IC CAPACITY (14-pin DIP's)	UNIT PRICE (includes Post & VAT)
EXP 300	550	6	. £7.29
EXP 600	550	use with 0.6" PITCH DIP's	£7.88
EXP 350	270	3	£4.21
EXP 650	270	use with 0.6" PITCH DIP's	£4.70
EXP 325	130	1	£2.54
EXP 4B	FOUR 40-point Bus-Bars		£2.30

£10 58

CONTINENTAL SPECIALTIES CORPORATION

Europe, Africa, Mid-East: CSC UK LTD. Shire Hill Industrial Estate, Units 1 and 2 Saffron Walden, Essex CB 11 3AQ Dept MI14-Telephone Number: SAFFRON WALDEN 21682 TLX 817477

EXPERIMENTOR 300 £7.29

Tailor-Made Breadboards e.g.

The hobbyists ideal Breadboard, accepts

6 x 14 DIP or 5 x 16 DIP, has 550 contact

points including two 40-point bus-bars,

accepts any size DIP with 0.3" spacing.

a project requires up to 5 x 14 DIP chips and needs up to six bus-bars. Which to

buy? Easy from the table below select an EXP 300 plus an EXP 4B, total cost

TO ALL TRADERS, MAIL ORDER HOUSES CONTACT MRS TINA KNIGHT FOR "PROFIT-PACKAGE" DETAILS

Mail Order Catalogues

Supplier	Format CCatalogue
ACE AMBIT AUDIO ELECTRONICS	C/ CC
B. BAMBER BI-PAK	LC
CATRONICS CHROMASONICS ELECTROVALUE	C/I C C
GREENBANK GREENWELD	LC
HEATHKIT MAPLIN MARSHALLS RCS	CCCL
SINTEL STEVENSON TARGET	ccc
WATFORD	С

Just a small selection of the many catalogues available to the electronic hobbyist.

Two of the more ambitious catalogues, both have an impressive range of goods for sale. UNLESS YOU HAPPEN TO LIVE somewhere near the southern end of the Edgware Road in London it's a fair bet you've bought components by mail-order at one time or another.

Luckily for us in this country we are well served by mail-order companies, and a healthy competition exists between them. It's quite possible to save several pounds even on a small project, just by shopping around between the companies.

The adverts we see in the magazines (we hope you only read HE), cannot hope to show even a fraction of the goods they stock, so the only recourse is to get hold of some of the catalogues that most mail-order companies produce. The quality of these works vary from a couple of duplicated sheets (the more elaborate ones are stapled together), to what can only be described as books often in full colour, several hundred pages long.

SURVEY

Some time ago we asked several mail-order companies to send us an example of their current catalogue and got a fairly mixed response; some declined to send us one altogether! Others said they would send us one, but they mysteriously never arrived. From the ones that arrived we obtained some very interesting results, as you will see later.

In order to be as objective as possible we put the results in table-form. We'll briefly outline all the criteria used in assessing the catalogues.

No. of pages	Cost of catalogue	VAT inc. price	Post and packing	Guarantee exchange	Additional data	Transistor pin-outs	IC pin-outs	Notes	COMMENTS
36 67 31 22 128	30p 45p Free (sae) Free (sae)	×× × ××	Free over £2 25p Variable Free	× × × ×	× × × ×	× × × × × ×	× Some × × √	1	Fair prices, good selection. Specifically for the radio amateur. Mainly audio equipment and accessories. Mostly tools and hardware.
60 24 120	40p 40p Free (sae)	√√× ×	30p min 25p 25p		√ Some √	Some √	√ Some √	2	Another one for the radio amateur. Good selection, fair prices. Slightly expensive, but very comprehensive. Computer specialist.
40 280 47 16	50p Free (sae) 75p 40p Free (sae)		Free 40p Variable	$\mathbf{v} = \mathbf{v}$	Some √ √ ×	Some √ √ ×	× >> ×		Kits only — superb selection. About the best there is. Massive selection, reasonable prices.
23 45 48 92	Free (sae) Free (sae) 15p 50p+25p pp	× ✓ ✓	35p min 30p 50p min 30p min	✓ ✓ ✓	× >> >	× √ √	Some √ √ Some		IC and MPU specialist. Surperb selection — very cheap. Fairly run-of-the-mill. Excellent catalogue, a little expensive at 50p.

TABLE 1 — Breakdown of what the catalogues have to offer

Notes. 1: Ambit Part 2 available soon. 2: 45 pence voucher with catalogue.

FORMAT

The format of a catalogue often reflects its price, obviously a couple of duplicated sheets costs a lot less to produce than a magazine style catalogue.

NUMBER OF PAGES

Again directly proportional to cost, in most cases the more pages there are the greater the range of components on sale. Also worth looking for are illustrations, a good clear picture is better than a whole page of meaningless waffle.

COST OF CATALOGUE

The price of a catalogue can range from literally the cost of an SAE to 75p. It's surprising, though, what you can get for nothing. In fact, one of the best ones we came across was free!

VAT

Nasty one this, it can make an otherwise very good catalogue into a nightmare, just try adding the cost of two rates of VAT to a component list of around twenty items. If possible stick to the catalogues that include VAT in the price.

POST AND PACKING

Again a great deal of variation, some are free, others are free on orders over a certain amount, some even quote a P+P charge on each item. Beware using too many companies for one project as it's easy to forget how much the P+P is adding up to!

GUARANTEE / EXCHANGE

No problem here, all the catalogues we read operated an adequate exchange service. Since the introduction of mail-order protection schemes, that most reputable magazines operate, the chances of losing your money are small; remember though it only applies if the goods were ordered from an ad. in the magazine, not from a catalogue.

ADDITIONAL DATA

It's very important in our view that anyone who sell components (especially the more unusual or complicated devices) should provide some pin-out diagrams at least, transistors and ICs in particular. Some of the more elaborate efforts have become invaluable sources of reference to us at HE.

COSTA PLENTY

The final part of the survey was intended to give a rough idea of how pricey each company is. This proved to be more difficult than we anticipated.

Catalogues

 TABLE 2. Comparison of prices for two recent projects from HE.

Project 1	Project 2	Comments	
254	316		
268	240	All the prices	
327	352	are in pence	
244	269	and include	
243	277	VAT and the	
338	367	cost of post	
212	203	and packing	
322	323		
240	299		
	Project 1 254 268 327 244 243 338 212 322 240	Project 1Project 2254 268 327 244 243 243 243 212 328 322 240316 240 352 277 338 367 212 203 322 299	

NOTE. Project 1 — Rumble scratch filter excludes case, knobs, PCB, etc. Project 2 — Push-button dice excludes case, PCB, etc.

Maplin and Ambit, Maplin will supply almost anything, Ambit are very much geared towards the radio enthusiast.

<section-header>

The method we finally settled on was to cost two projects from recent issues of HE. In all fairness we must point out that the figures obtained may not be strictly accurate, some companies did not stock all the parts. (In these cases we added to the list the cost of the component from the cheapest supplier.) VAT figures were rounded down to the nearest penny. The figures we obtained, however, are we believe within a few pence of the correct price. The final results are thus representative of the companies' overall price structure.

SUMMARY

The results are pretty clear. A few companies stand out head and shoulders above all the others; this is not however a reflection of their services, that is for you to tell us about. We could hardly order anything under our own name for fear of preferential treatment. So if you've had any interesting experiences with the mail-order services please write in and tell us and maybe we can do a follow up on the ones we missed.

Although some catalogues are clearly better than others, all are worthwhile having; we didn't think one of them was overpriced or not worth having.

Cast your eyes over our tables and see how the mail-order companies compare. There are some very surprising results.

Hobbyprints

An easy, patented method of making PCBs for HE projects.

For some time it has been possible to buy acid resist rub-down pads and track — in fact we use them in the HE workshops and they work very well. HOBBYPRINTS take this idea a stage further — the complete PCB pattern is already on the sheet and can be rubbed down in seconds — and the patterns are nice and crisp, made from the original artwork, used for the prototype.

If you have the facilities for ultraviolet exposure, HOBBYPRINTS make excellent masters — being solid black on a translucent film. With this method you can use the HOBBYPRINTS time and time again!

HOBBYPRINTS are produced exclusively for HE, and the whole system is protected by patents 1445171 and 1445172. Each month we will be bringing out a new HOBBYPRINT, containing the patterns for each issue's projects.

We're sorry for the delays in sending off the Hobbyprints, we'll be sending them out as soon as possible.

ORDER TODAY

Send cheque or postal order (payable to Hobby Electronics) to:

HOBBYPRINTS, HOBBY ELECTRONICS, 25-27, OXFORD STREET, LONDON W1R 1RF.

75p INCLUSIVE OF VAT AND POSTAGE.

Please mark the letter(s) of the HOBBYPRINTS on the outside of the envelope.

HOBBYPRINT A (November HE) 5 Watt stereo amplifer, Waa-Waa pedal, Bedside radio. **HOBBYPRINT B (December HE)** Digital dice, Photon (2 copies), Metronome, Audio mixer. **HOBBYPRINTS C (January HE)** Graphic Equiliser, Touch switch, Vari-Wiper, Flash Trigger. **HOBBYPRINT D (February HE)** Short Wave Radio, Sine/Square generator, Scratch/Rumble filter. Car Alarm. **HOBBYPRINT E (March HE)** Light Chaser, Photo Timer, Casanova's Candle, (2 copies), Tone Control (2 copies). **HOBBYPRINT F** (April HE) Train controller, Cistern Alarm, Transistor Tester

How to use HOBBYPRINTS.

1. Clean the PCB as you would for any work giving it a rub down with fine sandpaper (we even supply this in the kit). A quick wipe over with lighter fuel will help to remove any grease marks.

2. Lay down the HOBBYPRINT and rub over with a soft pencil until the pattern is transferred to the board. Peel off the backing sheet carefully making sure that the resist has transferred. If you've been a bit careless there's even a 'repair kit' on the sheet to correct any breaks!

3. Cut the board to size and put it in the Ferric Chloride.

4. When etching is completed, wash the board and use the sandpaper or a scouring powder to remove the resist. The resist-pattern is pretty hardy but is easily removed at the final stage.

5. All you've got to do now is drill the board. Time? Only about ten minutes from beginning to end plus etching time (15 minutes usually with a good acid).

PRE-AMPLIFI CP-P1

Shown here mounted with its associated components (and the CP-TM1 Peak Programme Monitor) on the CP-MPC1 interconnection board; the CP-P1 is a complete stereo pre-amplifier and tone control module. Performance features > 70 db S/N ratio and > 30 db overload margin (both ref. 3mV) and distortion of 0.02%. The internal R.I:A.A. feedback compensation around the low-level pre-amp may be replaced with external networks and the tone control circuits can be programmed to give different turnover frequencies if required (including separate bass and treble 'defeat' facilities).

CP-P1 £14.95 incl. (U.K.) £16.95 incl. (Export)

Also Available: Power Amplifiers, Filters, Stereo Image Width Control, Compressor/Expander, Active Crossovers, Power Supplies plus all pots, switches, etc.

៣ឧចពមព AUDIC LID. HE4, 13 HAZELBURY CRESCENT LUTON, BEDS, LU1 1DF TEL: 0582 28887

SEND LARGE S.A.E. FOR DETAILS

Retail Sales: London: 40-42 Cr Glasgow: 85 West Regent Stre	icklewood Broadway, NW2 3ET. Tel: aet, G2 2QD Tel: 041-332 4133 And I	01-452 0161/2. Also 325 Edgware Ro Bristol: 1 Straits Parade, Fishponds Roa	ad, W2. Tel: 01-723 4242 d, B516 2LX. Tel: 0272 654201
RESISTORS	BOXES AND CASES See catalogue for full range	TTL see catalogue for full range 74LS166H £1.65 74LS00H £0.26 74LS83AH £0.90 74LS168H £1.45 74LS01H £0.26 74LS85H £0.95 74LS168H £1.45	SOLDERING EQUIPMENT ANTEX IRONS MODEL CIS – 15 wait E3.90
0.25 watt ± 5% Tot. Averlable in E12 range 10Ω to 1 meg 2p each	ALUMINIUM BA2 4x4x1 ¹ y" £0.85 BA8 7x5x2 y" £1.50 BA3 4x2 ³ x1 ¹ y" £0.80 BA9 8x6x3" £1.90	74LS02W E0.26 74LS86W E0.44 74LS170W E1.90 74LS03W E0.26 74LS90W E0.64 74LS173W E1.10 74LS04W E0.29 74LS91W E1.20 74LS174W E0.75 74LS04W E0.29 74LS91W E1.20 74LS174W E0.75	Minialure soldering Iron, 87s slide on and ott. 17 WATT MODEL CX Double shaft principle and superb insulation E3.90 MODEL V25 - CS wordt
0.5 watt ± 5% Tol. Available in £12 range 101? to 10 meg 3p each 1.0 watt ± 10% Tol Available m £12 range 101? to 10 meg 5n each	BA4 4x5'xX's1'r" £1.00 BA10 10x7x3" £2.40 BA5 4x2'x2" £0.95 BA11 10x4's13" £2.25 BA5 3x1x2" £0.60 BA12 12x5x3" £2.35 BA2 54-20" £1.00 BA12 12x5x3" £2.35	74LS00H £0.26 74LS33H £0.64 74LS181H £2.75 74LS09H £0.26 74LS95AH £0.90 74LS183H £2.70 74LS10H £0.26 74LS95AH £0.90 74LS183H £2.70 74LS10H £0.26 74LS96AH £1.35 74LS189H £3.74	Stainless steel shaft and phenolic handla £3.90 ST 3 STAND h is splitble for all models and replaces all previoes
2.0 watt ± 10% Tel Available in £12 ränge 10% is 10 meg 9p each	REXINE COVERED R81 514 ¹ /x1 ¹ / ⁴ £1.75	74LS11H E0.26 74LS107H E0.42 74LS19UH E1.00 74LS12H E0.26 74LS109H E0.42 74LS19UH E1.00 74LS12H E0.26 74LS109H E0.42 74LS19UH E1.00 74LS13H E0.58 74LS112H E0.42 74LS192H E0.95 74LS14H F0.75 74LS12H E0.42 74LS193H E0.95	stands. The two sponges serve to teep the bits clean £1.64 DESOLDERING TOOL Price £6.50 Accurately removes solder from pobs and components particularly
WIRE WUUNU 2.5 watt ±5% Tei, feñtewing values only 10p sach 0hms; 22. 33, 5. 1, 1.2, 1,5, 1.8, 2.2, 2,7, 3.3, 3.9, 4.7, 5.6, 6.6, 8.2, 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82, 100, 120, 150, 100, 290, 270, 320, 320, 339, 47, 56, 56, 82, 100, 120, 150, 100, 290, 270, 320, 320, 339, 47, 56, 56, 82, 100, 120, 150, 100, 290, 270, 320, 320, 320, 320, 320, 320, 320, 32	R83 91512 ¹ 1" £2.40 R85 1117 ¹ 1:0 ⁻¹ : £3.55 R87 15184 ¹ £5.00 Compile with screws and teet.	74LS15H 60.26 74LS114H 60.42 74LS194H 60.70 74LS20H 60.266 74LS12K 60.62 74LS195H 60.70 74LS21H 60.26 74LS123H 60.82 74LS195H 60.87 74LS21H 60.26 74LS123H 60.86 74LS196H 60.80 74LS21H 60.26 74LS124H 61.70 74S00H 60.80	when components are grouped lightly logether. SOLDER Size 10 33.6 metres approx. E2.32 Size 12 13.7 metres approx. E2.28
Swatt Synth Tol. Following values only 12p each 5.1, 2.2, 3.3, 3.9, 4.7, 6.6, 8.2, 10, 12, 15, 18, 22, 25, 33, 39, 47, 66, 75, 82, 100, 120, 130, 150, 150, 250, 270, 300, 330, 470, 500, 560, 560, 560, 560, 560, 560, 56	ABS PLASTIC 3"x2'ı''x1'a" £0.55 4'x''x3'ı''x1'ı'' £0.85 3'ı''x2'a''x1'a" £0.55 8'ı''x4''x1'' £0.85	74LS26H E0.32 74LS125H E0.50 74C02H E0.24 74LS27H E0.26 74LS125H E0.50 74C02H E0.24 74LS26H E0.27 74LS125H E0.55 74C02H E0.22 74LS20H E0.27 74LS132H E0.55 74C02H E0.24 74LS30H E0.25 74LS135H E0.42 74C10H E0.24	Size 5 2.3 metres approz £0.58 CAPACITORS Polyester 250VDC - Radial Leads
blo, blo, blo, blo, rich, rich, rich, rich, the tart the tart, blo, rich, rich, blo, Blo, 745, Blo, 2101, 121, 10 watt ± 5% Tel Fellowing values sanly 14, 22, 25, 33, 39, 47, 70, 19, 100, 100, 150, 200, 550, 310, 475, 56, 560, 750, 15, 15¢	RAACO STORAGE BOXES 2 sizes - 4 configurations	74L532M £0.27 74L513M £0.65 74C13M £0.97 74L533M £0.65 74C20M £0.24 74L533M £0.29 74L5139M £0.65 74C20M £0.24 74L533M £0.22 74L5145M £1.30 74C30H £0.24 74L538M £0.32 74L5145M £1.30 74C30H £0.24 74L538M £0.32 74L5147M £1.65 74£32M £0.24	UF Price IIC Price UF Price 0.01 £0.06 0.068 £0.07 0.47 £0.14 0.015 £0.06 0.1 £0.08 0.58 £0.20 0.022 £0.06 0.15 £0.08 1 £0.24
16. 196, 126, 130, 200, 230, 330, 410, 366, 000, 730, 18, 18, 18, 18, 28, 28, 28, 28, 28, 38, 58, 48, 7, 58, 586, 688, 108, 158, 108, 208, 258,	B6 £0.76 87 £0.76 89 £1.82 516 £1.76	74L540H £0.26 74L5148H £1.35 74C42H £0.92 74L542H £0.80 74L515H £0.58 74C48H £1.38 74L547H £1.09 74L5153H £0.58 74C73H £0.54 74L548H £1.00 74L5154H £1.45 74C74H £0.56	0.033 E0.06 0.22 E0.09 1.5 E0.36 pmpre bf0.06 0.33 E0.13 2.2 E0.37 -ELECTROLYTICS - MULLARD
MULLARD MR25/MR30 SERIES METAL DUIDE 05 watt ±2% Tot Available in E24 range 1013 to 1 mag		74LS49N E1.09 74LS155N E0.80 74C76M E0.54 74LS51N E0.26 74LS156N E0.80 74C83N E1.30 74LS54N E0.26 74LS156N E0.60 74C85N E1.30	15 Volt UF 25 Volt 63 Volt VI 250 E0.18 UF 15 E0.10 680 E0.73 I.5 E0.10 33 F0.10
Also stocked Non Linear & Light Dependent ranges — see catalogue.		TALSSSM ED.20 TALSISM ED.80 TALSEB ED.80 TALSEB ED.80 FALSEB ED.80	68 £0.10 0 40 for 3.3 £0.10 68 £0.13 6.8 £0.10 5.8 £0.10 150 £0.16 15 £0.10 15 £0.13 330 £0.42 33 £0.13 68 £0.42
TOOLS Boa jount construction for strength. Small,	VERO CASES — see catalogue for full range 7 different styles — 18 sizes	74LS75M ED.58 74LS163N ED.85 74C95M E1.04 74LS76M ED.42 74LS164N E1.10 74C107N E1.22 74LS78M ED.42 74LS164N E1.15 74C107N E1.22 74LS78M ED.42 74LS165N E1.15 74C150N 94.14	b80 E0.50 I50 E0.42 I50 E0.47 1500 E0.83 680 E0.83 330 E0.78 TANT BEADS ENERTING AVIA BADIAL METALLISED
compact and reliable. Insulated handles and smart individual wallet. GENERAL PURPOSE	Anodised Alluminium front panel, two-tone halves, clip together,	NEW 1979 CATALOGUE 48 pages – largest range ol quality components in the	POLYESTER/EXTENDED FOIL PLASTIC FOIL MICA ETC ETC. See catalogue.
100mm (41 ;**) Diagonal Cutters £3.40 Round Kose Piters £3.25 (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	VCC1-85x40x154mm E2.50 VCC2-85x60x154mm E3.15 VCC3-85x80x154mm E3.65	50p post paid, 40p to callers.	Full range in catalogue M1Black plastic with mach metal insert 25mm dia £0.25
Salpe Nose Priers E3.20 V V Salpe Nose Priers E3.20 End/Top Cutters E3.60	Also — instrument cases — 5 sizes from £2.10 Card frames, Hip top boxes, etc., etc.	Add 4Dp p/p to all orders. Tel. credil card orders £10 mms. ACCESS - BARCLAYCARD.	M2as M1 but with pointer €0.31 M5Black plastic with mach insert and calibrated skirt €0.33 Car Radio knob with chrome top €0.39

Transistor Gain Tester

The HE Transistor Tester is somewhat unusual in that it does not use a moving-coil meter but an LED to give a visual indication of the transistors gain.

A TRANSISTOR TESTER is probably one of the most useful pieces of test equipment (apart from a multimeter) that the aspiring electronics enthusiast could hope to own. Most commercial testers check a variety of parameters. However, if a tester could just measure the vital gain factor as well as giving a go-nogo indication this should prove to be quite adequate for most purposes.

The HE tester does just that, one unusual feature is the use of an LED (Light-emitting Diode) to indicate the transistors condition, rather than the usual moving-coil meter.

Our prototype transistor tester built by John Fitzgerald, a new addition to the HE Project Team. Two transistor sockets are fitted near the control (which has not been calibrated here) while sockets are fitted on the side of the case to take flying leads which can be fitted with croc clips.

TRANSISTOR GAIN MEASUREMENT

In the common-emitter configuration the current gain Ic/IB is known variously as Beta or h_{FE} and many vary considerably according to the particular value of collector current, collector-emitter voltage and temperature at which one decides to make the measurement. Thus for repeatability these current and voltage values at least should be known to be constant and this is achieved in this unit.

CONSTRUCTION

A PCB layout for the majority of components is given; due to the rather uncertain volt-drop across the particular LEDs used the current-sampling resistor R2 is made larger than needed and shunted during calibration by R7. If no calibrating milliammeter is available, fit R2 = 1 kilohm and omit R7, R3 and R4 limit currents to safe values regardless of possible short-circuits during transistor testing; R1 limits base current to the TUT to a maximum of 0.5 mA even when RV1 is at zero resistance. SW1 sets the transistor under test (TUT) collector to positive if NPN and to negative if a PNP type; SW2 is a push-to-test spring return type.

In the prototype the TUT may be connected with test clips on flying leads or plugged in to a transistor holder.

$\begin{array}{c} \textbf{GAIN} \\ \textbf{h}_{FE} = \textbf{I}_{C} / \textbf{I}_{B} \end{array}$	l _c =2.5mA l _β (μA)	R _β 1.84 × h _{FE} (kΩ)
5	500	9.2
10	250	18.4
15	166	27.5
20	125	37
30	83	55
40	62	73
50	50	92
75	33	140
100	25	184
150	17	275
200	2	370
300	8	550
400	6	730
500	5	920

FIG 3

Relating h_{FE} and required value of R_B assuming 5 V supply in Fig. 2.

The circuit of the Transistor Gain Tester.

The component overlay on the PCB with the wiring connections.

How it Works

A meter movement is both fragile and expensive (and surprisingly bulky, too) so an LED is used to indicate that the current through a resistor is of a known value, 2.5 mA being chosen as reasonable for many common transistor's collector current. Assuming that the potential difference (PD) across the LED in Fig. 1. is 2 V and across the base-emitter junction is

OV6, when the voltage across R reaches 2V6 the transistor amplifies the small base current that flows and passes a considerably larger current through the LED. The maximum current that the transistor and LED can pass is then limited by another resistor in the collector circuit.

The battery voltage is monitored by a second LED, a series 5V6 zener diode ensuring that when the battery voltage drops below about 7V5 the LED extinguishes. The zener diode provides a useful reference voltage to feed the base of a series NPN regulator transistor that will supply the transistor under test (TUT) with a fairly stable voltage of (5V6 - 0V6), i.e. 5V.

Base current to the (TUT) in Fig. 2, is taken very simply via a variable resistor fed from the stable collector voltage and thus calibration accuracy is maintained over the range of battery voltage 7V5to9V.

Calibration is derived from the $I_C I_B$ relationship and Ohms Law as follows: the base-emitter volt-drop of a silicon transistor is typically OV6 while for a germanium transistor it is typically 0V2. Hence if the voltage at the 'top' of R_B is assumed to be 5V and the voltage at the 'bottom' as taken as an average value 0V4 (half-way between silicon and germanium values) then the current delivered by R_B to a transistor base obeys Ohms Law and is given by $I_B = 4V6/R_B$. Now since $h_{FE} = I_C/I_B$, a rearrangement of these formulae results in

LED1

- anode cathode

anode

cathode

LED2

R7

R2

R3

E e

01

SW1a ·

02

R1

RV1

SW1a

$$n_{FE} = \frac{I_C \times R_B}{4V6} = \frac{2.5mA \times R_B}{4V6}$$
 or it may be

given as $R_B = \frac{4V6 \times h_{FE}}{2.5 \text{ mA}} = 1.84 \times h_{FE} \text{ kilohms}$

A table of results, Fig. 3 is given relating h_{FE} , R_B and I_B for the particular voltages and currents used in this unit but the explanation given will allow other voltages for battery or zener diode to be used and a different collector current to be chosen if desired, the reader inserting these values in the formula and then reaching for his faithful calculator!

It should be noted that no correction has been made for the inclusion of the base current needed for transistors of gains less than twenty or so, the 2.5 mA 'collector' current indicated in these instances being the addition of $(I_B + I_C)$. At gains greater than twenty the small lack of accuracy is masked by other tolerances.

Parts List—

RESISTORS. (All ¼ W 5%) R1, 8k2 R2, 1k2 R3, 4, 1k0 R5, 820R R6, 180R R6, 180R R7 See text. SEMICONDUCTORS Q1, BC108 Q2, BC214L ZDI, 5V6 400 mW Zener diode LED 1, 2. TIL 209

MISCELLANEOUS SW1 a / b DPDT switch (slide, or toggle) SW2:SPST push to make PCB to pattern Transistor socket — see text. Case to suit PP3 battery and connector.

Approximate cost £3-£4

The PCB pattern shown full size.

Inside view of the completed unit.

Close-up of the works behind the front panel.

Transistor Gain Tester

For neatness and versatility the e-b-c connections are made to a 3-pin DIN socket and two plugs used, one with flying leads and the other with a TO18 socket fixed in place with epoxy adhesive. There is of course no reason why you should not fit sockets and/or leads direct to the test unit.

CALIBRATION

When assembled, connect a variable resistor of around 2k in series with a milliammeter across the collectoremitter connections of the TUT. Close SW2 — the 'battery check' LED will light — and adjust the variable resistor until the milliameter indicates 2.5 mA (or as you may choose otherwise). Now with a known 2.5 mA current flowing in the 'collector' circuit, offer different values of resistance across R2 (around 4k7 probably) until LED1 is well lit, the same brilliance as LED2 and yet such that a drop from 2.5 mA to, say 2.2 mA results in LED1 being extinguished. Having selected your value for R7 solder it in place on the circuit board and LED1 is now calibrated to light at 2.5 mA.

With SW2 closed, measure the collector-emitter voltage of the TUT. There *should* be some 5 V present but it is wise to actually measure and use the indicated voltage to aid your dial calibration if a particular zener diode of differing characteristics to that in the prototype is used.

Dial calibration is done last, quite simply, with an ohmmeter connected across the collector and base leads of the TUT, a transistor *not* in a circuit as well of course, and SW2 being open. Mark a card with h_{FE} values at appropriate points as RV1 pointer is adjusted in conjunction with Fig. 3, later trimming the card to shape, glueing down and then varnishing it beneath the pointer knob. In the prototype a dial was attached to a small knob and this dial calibrated and varnished.

In use, a transistor is connected to the flying leads or socket, PNP or NPN selected, SW2 pressed and RV1 adjusted until LED1 changes from 'off' to 'on', when the gain is indicated by the dial or scale. Simple, fast and short circuit proof!

It is worth remembering that the bigger germanium transistors have appreciable leakage as a matter of course and this leakage is frequently larger than 2.5 mA, the leaky transistor thus appearing to be short-circuit. As a general rule, if a silicon transistor leaks it is fit for the dustbin only; an ohmmeter is still a very useful first test of a transistor's polarity and leakage.

TOP PROJECTS

Book 1 + 2: £2.50 + 25p P&P.

BOOK I + 2; L2:30 + 25p ror, Master mixer, 100W guitar amp., low power laser, printmeter, transistor tester, mixer preamp., logic probe, NI-Cad charger, loudhailer, 'scope calibrator, electronic ignition, car theft alarm, turn indicator canveller, brake light warning, LM3800 circuits, temperature alarm, aerial matcher, UHF-TV preamp, metal locator, four input mixer, IC power supply, rumble fliter, IC tester, ignition timing light, 50W stereo amp, and many more.

Book 3: SOLD OUT!

Book 4: £1.00 + 25p P&P.

BOOK 5. LLOO T 250 F CF. Sweet sixteen stereo amp, waa-waa, audio level meter, expander/compressor, car theft alarm, headlamp reminder, dual-tracking power supply, audio millivoltmeter, temperature meter, intruder alarm, touch switch, push-button dimmer, exposure meter, photo timer, electronic dice, high-power beacon, electronic one-armed bandit...

Book 5: £1.00 + 25p P&P.

Sources and the second second

Book 6: £1.00 + 25p P&P.

Graphic equaliser, 50/100W amp. modules, active crossover, flash trigger, "Star and Dot" game, burglar alarm, pink noise generator, sweep oscillator, marker generator, audio-visual metronome, LED dice, skeet game, lie detector, disco light show...

Graphic Equaliser.....Marker Generator CCTV Camera...... Headphone Adaptor LED Dice.....Sound-Light Flash Trigger Expander - Compressor, Skeel Co PROJECTS

Stars & Dots Logic Game Lightshow Active Crossover.... Hear and Tell Unit Pink Noise Generator......GSR Monitor Sweep Oscillator.... Stereo Simulator

ELECTRONICS TOMORROW Comprised entirely of new material, the edition covers such diverse topics as Star Wars and Hi-Fi! The magazine contains projects for everyone — none of which have appeared in ETI — and a look at the future of MPUs, audio, calculators and video. How can you not read it?

75p + 25p P&P.

ELECTRONICS - IT'S EASY Books 1. 2 & 3.

Our successful beginners series came to an end some time ago now, and the whole series is available from us in reprint form. The three books between them contain all the information presented in the series (sometimes in more detail!) and together form an excellent starting point for any-one interested in learning the art of electronics. one inter electronic

£1.20 + 25p P&P each.

FROM THE PUBLISHERS OF

CIRCUITS No2

£1.50

ETI CIRCUITS Books 1 & 2.

Each volume contains over 150 circuits, mainly drawn from the best of our Tech-Tips. The circuits are indexed for rapid selection and an additional section is selection and an additional section is included which gives transistor specs, and plenty of other useful data. Sales of this publication have been phenomenal — hardly surprising when the circuits cost under lp each!

£1.50 + 25p P&P each.

ORDER FROM

Specials Modmags Ltd 25-27 Oxford Street London WIR IRF

Postage and packing also refers to overseas. Send remittance in Sterling only. Please mark the back of your cheque or PO with your name and address.

AD INDEX	
Ace	28
Ambit	2
Astra-Pak	45
Continental Specialities	63
EDA	28
Electroni-Kit	62
GMT Electronics 4 8	5
Henry's	68
Kramer	14
Light Soldering Dev	53
Magnum Audio	68
Mapfin	76
Marshalls	68
Metac	44
Minikits	14
Nicholls	23
Ramar	14
RTVC	34
Stevenson	75
Swanley	23
Tamtronik	73
V&P Smallcraft	14
William Stuart Systems	14

300 mixed carbon film resistors (¼, ⅓W 5%) plus 200 silicon diodes equivalent to 1N414B for only £2 post paid. All full specification new components. D. Johnston, 12 Balgillo Road, Dundee DD5 3LU.

ELECTRONIC MUSIC MADE EASY1 Build your own sound-effects units, even a complete Synthesiser, from ready-built circuit modules. Simple, versatile, low-cost system, ideal for both experimenting and serious building. Send 2 x 9p stamps for details (includes ten graded Synth projects): B. J. Tyler, 21 Beauford Orchard, Norton, Taunton.

MICROPROCESSORS AND COM-PUTING. A book to give you a start. Contents: Binary Arithmetic, Principle of Operation, Programming, Glossary of Terms, 50 pages of explanation and diagrams. Price £2.30 plus 45p p&p (cheques, crossed P.O. only). Educational Data and Technical Services, 59 Station Road, Cogenhoe, Northampton NN7 1LU.

COMPUTING BOOKS for beginners: A Fast Introduction To Computing £3.95; Home Computers 2¹⁰ Questions and Answers Volume 1 Hardware £6.50; Volume 2 Software £5.95; A Beginners Glossary And Guide £5.45. All post free. Industrial Training Press, Dept. HE1, 3 Ringwood Way, Winchmore Hill, London N21 2RA.

HOBBY ELECTRONICS BOOK SERVICE

30% Discount on Selected Titles We have been able to acquire a large selection of books — originally published in the US and are able, to offer these at 30% off the regular price. Note that all prices include postage. HE offer Price

		(inc. Post) (in	ic. Post)
Gilbert, J.	Advanced Applications of the Pocket Calculator	£4.20	£2.94
Crowhurst, N.	Basic Audio Systems	£1.90	£1.33
Smith, D.	Basic Electronic Problems Solved	£1.90	£1.33
Ash, J.	Handbook of IC Circuit Projects	£2.30	£1.61
Mandz, M.	Electronic Puzzles and Games	£2.20	£1.54
Hallmark, C.	Electronic Measurement Simplified	£2.00	£1.54
Stapleton, G. F.	Beginners Guide to Computer Logic	£1.90	£1.33
Heiseman, D.	Build Your Own Working Robot	£3.70	£2.69
Wells, B.	Fire and Theft Security Systems	£1.90	£1.33
Kyle, J.	Electronics Unravelled	£2.20	£1.54
Ashe, J.	Electronics Self Taught With Experiments	£4.40	£3.08
Weis	How to Repair Musical Instrument Amplifiers	£2.50	£1.75
Turner, R.	125 One Transistor Projects	£2.10	£1.45
Brown, R. M.	104 Easy Projects For The Electronics Gadgeteer	£1.40	£0.98
Darr, J.	New Ways To Diagnose Electronic Troubles	£1.70	£1.19
Brown, R.	Sixty Four Hobby Projects For Home and Car	£2.10	£1.45
Green, W.	Solid State Projects For The Experimenter	£2.10	£1.45
Seissons, K.	Stereo-Quad Hi-Fi Principles and Projects	£1.60	£1.12
Salm, W.	Tape Recording For Fun and Profit	£2.00	£1.40
Margolis, A.	Toot Instruments For Floatsoning	£1.90	1.1.33
Clifford, IVI.	Transister Circuit Guidebook	£2.10	£1.45
Vvens, D.	Transistor Circuit Guidebook	24.00	22.80
Gaddis, B.	I roubleshooting Solid State Amplitiers	£1.90	£1.33
Shunaman, F.	How To Test Instruments in Electronic Servicing	£2.10	£1.45
Horowitz, IVI.	How To Troubleshoot And Repair Electronic Test Equipment.	£2.70	£1.89
Goodman, H. L.	Indexed Guide To Wodern Electronic Circuits	12.20	£1.54
Swearer, n.	Installing and Servicing Electronic Protective Systems	£1.90 62.00	£1.33
Sanda L C	Mabile Redia Mandhaak	£2.00	£1.40
Sands, L. G.	Simple Transister Projects For Hebbuists	£1.70	21.19
Groop W	PTTV Handback	62.60	£1.13
Green, W.	Protected Test Equipment You Can Build	62.00	£1.02
Swearer H	Pulse Switching Circuits	62.20	£1.45
For R M	Protected TRIAC / SCR Projects For The Experimenter	62.10	£1.54
Tuite D	Practical Circuit Design For The Experimenter	£2.60	£1.43
TAB Staff	Popular Tube / Transistor Substitution Guide	62 10	\$1.45
Goddis B	Troubleshooting Solid State Wave Generating and Shaping	,	41.45
0000.0, 5.	Circuits	£1.80	£1.26
Cunningham J	Understanding and Using The VOM ad VTM	£1.80	£1.26
Wanninger, A.	Using Electronic Testers For Car Tune Up	£1.80	£1.26
Saunders, A. C.	Working With The Oscilloscope	£1.70	£1.19
Saunders, A. C.	Working With Semiconductors	£1.70	£1.19
Everest, F.	Acoustic Techniques For The Home and Studio	£1.70	£1.19
Seissons, K.	Amateur FM Conversion Construction Projects	£2.30	£1.61
Carr, J.	FM / Stereo / Quad Receiver Servicing Manual	£1.80	£1.26
Carr, J.	Op Amp Circuit Design and Application	£3.80	£2.26
Carson, K.	Simplified Computer Programming	£2.20	£1.54
Clifford, M.	Modern Electronic Maths	£6.50	£4.55
Clifford, M.	Modern Guide To Digital Logic	£3.90	£2.73
All prices inclu	de nostane. Please make cheques etc., payable to HE	Book Serv	ice (in

All prices include postage. Please make cheques etc., payable to HE Book Service (in sterling only please) and send to: Hobby Electronics Book Service, P.O. Box 79, Maidenhead, Berks,

TAMTRONIK LTD. (DEPT. HE) 217 TOLL END ROAD, TIPTON WEST MIDLANDS DY4 OHW TEL. 021-557 9144						KITS FOR HE PROJECTS	
Mag Issue	Project	Kit Ref	PCB	Kit	Kit Contents (See key)	KEY TO KIT CONTENTS Special OFFERS A. Vero board(s). Suitable for calculators, TV Games, etc. £2.99 100 × ½W lk resistors 30p	
Nov 78 Dec 78	Bedside Radio Stereo Amplifier Waa Waa Pedal Oigital Clock Push Button Dice H.E. Metronome Photon Phone H.E. Miver	H001 H002 H003 H004 H005 H006 H007 H008	95 3.45 80 79 61 1.40 2.95	13.53 38.26 5.70 18.80 4.75 5.26 7.58 20.69	BEHL BEHL BEH EH BEHL BEHL BEGH BEGH	 B. Printed Circuit Board(s). C. With Screen printed component layout. D. Tag strip. All Resistors, potentiometers, capacitors, semi-conductors. F. As E but with exclusions. Please ask for details. G. Dil and /or transistor sockets and /or soldercon pins. M. Hardware includes switches, knobs. lamps and holders, fuses and holders, fuses and holders, speakers, meters, 	
Jan 79. Feb 79	Graphic Equaliser Flash Trigger Variwiper – Relay Variwiper – SCR Touch Switch Short Wave Radio Sine/Square Wave Generator Scratch & Rumble Fitter (Mono) Scratch & Rumble Fitter (Steren)	H009 H010 H011R H0115 H012 H013 H014 H015 H015S	2.95 95 80 75 95 1.25 1.60 1.25 2.50	21.31 11.19 6.15 3.34 4.03 10.15 22.41 12.31 15.82	BEGHL BEHL BEH BEH BEH BFH BEHL BEHL BEHL	relays, terminal blocks, battery connectors, etc. BUT excludes units, bolts, waters, connectors, etc. Wire, batteries and special miscellaneous items. J. As H but with exclusions, Please ask for details. K As H but including connecting wire. L Stubble casel), screen printed facia. N. Full kit to magazine specified standards. P. Kit with professional firms — incorporating all prime features including screen printed pcb and case where appropriate.	
Mar 79	HE Car Alarm Light Chaser Casanova's Candle Tone Control Photographic Timer	H016 H017 HD18 H019 H020	1.10 1.70 1.00 80 1.00	7.12 12.12 4.99 7.35 8.42	BEHL BEH BEH BEGHL BEGJL	SOLDERING IRONS & ACCESSORIES SRB 18 watt iron, incl. No. 20 bit £3.78 Spare bits 44p Stand £3.25 No 15 SIZES 50der - Saubit 20ft. 52p Solder - Saubit 20ft. 52p No 19 (1.5mm), No. 20 (3 mm), No. 21 Lc. Desoldering bit £1.00	
Photocopy of any of above Projects 30p.					"IDEAL FOR THE HOME CONSTRUCTOR"		
Kits c detail Trade	Kits can be supplied excluding pcb and/or case. Send sae for details naming kit and kit reference and free catalogue. Visit our shop at 32 Market Place 32 Market Place Great Bridge, Tipton West Midlands Telephone or Letter 32 Market Place 32 Market 32 Market Place 32 Market Place 32 Market						

Good Evans

Gary Evans is game for anything and will do anything for a game .

I DON'T KNOW about you, but I like playing games. It's a sad fact though that most of my friends enjoy pub encounters of the alcoholic kind far more than the cut and thrust of a game of monopoly. To find a single person for a game of Mastermind is quite a struggle let alone the three necessary for a game of bridge. Once again it is electronics in the form of the MPU that has come to my rescue.

You've probably heard of MPUs, a lot of hysterical things have been said about them, to some writers in the popular press they seem to be a form of Anti-Christ. In fact the MPU is just the central part of a computer encapsulated in a single multi-legged IC. They are also very cheap.

It's not taken game manufacturers very long to realise that these cheap devices which, with a bit of skilful programming, can be endowed with something resembling intelligence, there could be a boon to the games market. A rash of MPU based games was brought onto the market for Christmas and the signs are that at the end of this year the *only* game to buy will be an electronic one.

My favourite game at the moment has to be the Invicta Mastermind machine. This game makes you think, that is, you try to guess the hidden code in the least number of tries rather than the undignified exercise of solving the code in the least amount of time. The arcade type "reaction" games — road race et al — are all well and good, but the novelty soon wares off and then they are only used as a weapon to bore unwelcome callers.

NOT SO SIMPLE SIMON

The latest game in the States, and hence the next craze we are likely to see is a game called Simon. I've had many attempts at putting down on paper what this game does, but on reading them back they all seem confusing. If you don't like being confused, skip the next paragraph.

Simon presents the player with four coloured buttons, the object of the game being to press these in a sequence given by the machine. At first you have to press only one button, most people get this far. The machine soon expects you to remember a whole string of

buttons which must be pushed in the correct order to continue and when, or if, you manage this it will tell you which colour button to add to the end of this ever lengthening chain. Quite a memory test and I'm told great fun. Confused, you won't be after the next issue of Hobby Electronics.

HISTORY TODAY

I keep on reading, in Hobby Electronics and other such high quality publications, that the world of electronics is a fast changing, exciting new field. So it is. It's also true that the world of education is anything but dynamic and fast moving — no disrespect to any teachers that have read this far. When these two worlds come into contact a certain amount of problems arise.

When I was at school, and that's only seven years ago, the only contact I had with electronics was a brief encounter with the operation of the valve during a Physics lesson. Hardly preparing me for the big world outside, unless of course I decided on a career in the repair of vintage radios.

Today there are signs that the situation is improving but a friend of mine at college seems to have spent most of his time building a single transistor radio, a worthwhile task, but again not much use in the modern world. Many of his friends learn more about electronics from magazines like HE than they do in the class room. I realise that not every member of a class will be interested in electronics, but for those who are why not make the course up to date, in doing so you will make it more interesting and much more valuable to all concerned.

State and socketsAvailable in red or black, blugs and sockets suitable for low voltage circuits. Available in red or black, blugs 6p each. Sockets 7p each.Winn plugs and sockets. Available in black, blugs 1p each. Sockets 12p each.Jack plugs and sockets. Available in black, blugs 11p each. Sockets 12p each.Jack plugs and sockets.Minscreened plugScreened plugScreened plugSimmSp14pStandard16p30p18p	TRANSISTORS ZT X 109 14p AC127 17p BCY71 14p 2TX 300 16p AC127 17p BCY71 14p 2N2905 22p AC128 16p BCY72 14p 2N2905 22p AC176 18p BD131 35p 2N3055 50p AD161 38p BD132 35p 2N3055 50p AD162 38p BD135 38p 2N3421 135p BC107 8p BD139 35p 2N3055 50p BC108 8p BD140 35p 2N3042 135p BC108 8p BD140 35p 2N3704 8p BC178 9p BY51 15p 2N3706 9p BC148 7p BFY51 15p 2N3707 9p BC178 14p MPSA66 20p 2N3904 8p BC179 14p TP32C 60p 2N458 <td< th=""><th>74LS LS123 56p LS125 40p LS125 40p LS00 16p LS126 40p LS01 16p LS132 60p LS02 16p LS138 54p LS03 16p LS138 54p LS03 16p LS153 50p LS10 16p LS153 50p LS13 30p LS155 80p LS13 30p LS156 80p LS30 16p LS157 45p LS20 16p LS157 60p LS31 30p LS164 90p LS32 24p LS176 60p LS32 24p LS178 60p LS32 24p LS178 60p LS32 24p LS176 80p LS47 70p LS48 80p LS257 LS42 53p LS73 60p LS44</th></td<>	74LS LS123 56p LS125 40p LS125 40p LS00 16p LS126 40p LS01 16p LS132 60p LS02 16p LS138 54p LS03 16p LS138 54p LS03 16p LS153 50p LS10 16p LS153 50p LS13 30p LS155 80p LS13 30p LS156 80p LS30 16p LS157 45p LS20 16p LS157 60p LS31 30p LS164 90p LS32 24p LS176 60p LS32 24p LS178 60p LS32 24p LS178 60p LS32 24p LS176 80p LS47 70p LS48 80p LS257 LS42 53p LS73 60p LS44
Din plugs and socketsplug socket2 pin speaker2 pin speaker3 pin speaker2 pin spe	A SELECTION ONLY! DETAILS IN CATALOGUE. 709 25p LM324 50p NE556 60p 741 22p LM324 50p NE556 60p 741 20p LM324 50p NE556 60p 747 50p LM380 75p NE567 170p 748 30p LM382 120p SN76013 140p CA3046 55p LM3900 50p SN76032 140p CA3046 50p MC1496 60p SN76033 200p CA3130 90p LM3909 60p SN76033 200p CA3140 70p MC1458 35p TDA1022 650p LM318N 125p NE555 25p ZN414 75p LM318N 125p NE555 25p ZN414 75p LDS 0.125in 0.2in. A A A Green TIL209 TIL220 9p A A	7493 34p 7494 52p 7495 52p 7496 50p 7400 12p 74121 7401 12p 74121 35p 7402 12p 74123 30p 7402 12p 74123 30p 7402 12p 74123 30p 7403 12p 74125 35p 7404 12p 74126 35p 7410 12p 74132 50p 7411 55p 74141 56p 7413 25p 74143 50p 7420 12p 74150 70p 7430 12p 74156 52p 7442 43p 74157 52p 7443 58p 74167 70p 7443 58p 74165 70p 7443 52p 74170 125p 7474 25p 74170 125p
VEROBOARD Size in. 0.1in. 0.15in. Veropins – 2.5×1 14p 13p single sided 2.5×3.75 42p 40p per 100 2.5×5 52p 50p 0.1in 35p 3.75×5 60p 60p 0.15in 40p 3.75×17 195p 180p 0.15in 40p Model Length width height Price AL1 3 2 1 48p AL2 4 3 1½ 58p AL3 4 3 2 65p AL4 6 4 2 70p AL5 6 4 3 85p AL6 8 6 2 116p	Clips 3p 3p DISPLAYS DL704 0.3 in CC 130p DL707 0.3 in CA 130p FND500 0.5 in CC 100p Carbon film resistors. High stability, low noise 5%. E12 series. 4. 7ohms to 10M. Any mix: each 100+ 1000+ 0.25W 1p 0.9p 0.8p 0.5W 1.5p 1.2p 1p Special development packs consisting of 10 of each value from 4.7 ohms to 1 Megohm (650 res.) 0.5W £7.50. 0.25W £5.70 HERE ARE JUST A FEW OF THE CAPACITORS	7492 35p 74197 55p CMOS FULL DETAILS IN CATALOGUE 4029 60p 4001 15p 4042 54p 4002 15p 4046 100p 4007 15p 4046 100p 4011 15p 4050 28p 4013 35p 4066 40p 4016 35p 4066 40p 4018 65p 4071 16p 4018 65p 4075 16p 4023 15p 4093 48p 4024 45p 4510 70p 4026 95p 4511 70p 4027 35p 4518 70p 4028 52p 4520 65p
We now have an express telephone order service. We guarantee that all orders received before 5pm. are shipped first class on that day. Contact our Sales Office now! Telephone: 01-464 2951/5770. ORDERS BETURN BY BOST Ouantity discounts on any mix TTL, CMOS, 74LS and Linear circuits: 25+10%. 100+15%. Prices VAT inc. Pease add 30p for carriage. All prices valid to 30th April 1979. Official orders welcome. BARCLAYCARD AND ACCESS WELCOME. Image: Content or content o	$\begin{array}{c} \textbf{TANTALUM BEAD} & each \\ 0.1, 0.15, 0.22, 0.33, 0.47, 0.68, 1 & 2.2uF @ 35V & 9p \\ 22 @ 16V, 47 @ 6V, 100 @ 3V & 16p \\ \textbf{MYLAR FILM} \\ 0.001, 0.01, 0.022, 0.033, 0.047 & 3p \\ 0.068, 0.1 & 4p \\ \hline \textbf{RADIAL LEAD ELECTROLYTIC} \\ \hline \textbf{63V} & 0.47 & 1.0 & 2.2 & 4.7 & 10 & 5p \\ \hline 100 & 13p \\ 220 & 200 \\ \hline 25V & 10 & 22 & 33 & 47 & 7p \\ \hline 100 & 13p \\ \hline 220 & 10p \\ \hline 1000 & 23p \\ \hline 1000 & 23p \\ \hline 1000 & 13p \\ \hline 220 & 20p \\ \hline 25V & 200 & 5p \\ \hline 1000 & 13p \\ \hline 220 & 200 \\ \hline 25V & 200 & 23p \\ \hline 1000 & 13p \\ \hline 2200 & 23p \\ \hline \end{array}$	Low profile by Texas 8 pin 10p 24 pin 24p 14 pin 12p 28 pin 28p 16 pin 13p 40 pin 40p Soldercon pins: 100: 50p 1000: 370p AT LAST! OUR NEW 40 PAGE CATALOGUE OF COMPON- ENTS IS AVAILABLE. SEND S.A.E.

236 High St, Bromley, Kent, BR1 1PQ, England

