Hobby **JUNE'82** ISSN 0142-6192 70p **Conc Project Electronics For Everyone**

0 D

DE

XP

Ĥ. DI

1

C 3

۵ D

F

5 F B

E 0 0 D

0 0 З 2

8

F C

E

B

1 - 2 0 - 2 0 - 8 - 0

601

-2 0

00 92

E 0 -- R

The HE MicroTrainer Introducing the **Nuts and Bolts** of Microcomputers

3

PROJECT 6 HE Telephone Timer 8

SPECIAL

JVC

000

0

PROJECT: MUSIC Auto-Wah 9 Π **DESIGN FEATURE** Power Supplies SUMMER SPECIAL Auto Greenhouse Sprinkler

HE MicroTrainer

NICADS: UK'S LOWEST PRICES Available at your newsagent or direct, for 70p inc.

ILBA JARAH JAR

3

RECHARGEABLE

UP TO 400 TIMES PER

1.9

80

2.35 2.14

3.05

3.70

10-49

1 99

2.06

2.85

3.50

74

CELL

TYPE

AA

С

D

D

PP3

CAPACITY

500 mAh

2200 m Ah

1200 mAh

4000 mAh

110 mAh

AMBIT'S NEW CONCISE COMPONENT CATALOGUE IS OUT NOW -

Ambit's new style catalogue continues to lead the market with low prices, new items, info, 3 £1 discount vouchers. In a recent supplier survey, we were one of only two suppliers listed in all categories!

There's a few examples of some super low prices

£10.95

78XX 1A	37 p
BC237/8/9	8p
3SK51	54p
10MHz X	TALS
	£2
8 Pole 10.7	MHz XTAL
filters	£14.50
20	GHz coax relav

150W

All the "usual" stuff at rock bottom prices + Toko coils, crystal and ceramic filters, micrometals toroids, Fairite ferrites, Alps switches, OKI LSI, Piezo sounders, RF, IF Modules + Kits etc.

Price on the page

atio 200 North Service Road, Brentwood, Essex

8
3
5
6

SPECIALS

* UNDERSTANDING COMPONENT VALUES .				۰.,	. (55
The first of a new series for constructors.						71
Digital modearemente explained.			 	_	 _	

REGULARS

Monitor														ţ,									. 6
* POINTS OF VIEW																11							16
What's On Next													. ,										18
* BUYLINES						•				4	•	+ `			•			۰.			•	•	23
PCB Service					-							•		•		•			*	•	•	•	33
* BUILDING BLOCKS	• •,												• •							•	•	•	35
Clever Dick		•	•	•	e'					•	•		• •			81				•		•	37
Bookshelf									•								•		٠			•	53
Backnumbers	• •			•	•	8					•	•			5			•		•		•	68
PCB Print Out		•				. 1														•		•	72
Index to Advertisers		•				•	• •	•										•	•	•			73
Classified Advertisements	5.																					•	73

Editor: Ron Keeley Editorial Assistants: Paul Coster BSc **Tina Boylan** Advertisement Manager: Gary Price Managing Editor: Ron Harris BSc Managing Director: T.J. Connell

Hobby Electronics is normally published on the second Friday of the month prior to the cover date. Hobby Electronics, 145 Charing Cross Road, London WC2H OEE, 01-437 1002. Telex No 8811896. Published by Argus Specialist Publications Ltd. Distributed by Argus Press Sales & Distribution Ltd, 12-18 Paul St, London EC2A 4JS. Printed by QB Ltd, Colchester. Covers printed by Alabaster Passmore. Notice: The contents of this publication including all articles, designs, plans, drawings and programs and all copyright and other intellectual property rights therein belong to Argus Specialist Publications Limited. All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright conventions are specifically reserved to Argus Specialist Publications Limited and any reproduction requires the prior written consent of the Company. © Copyright 1982 Argus Specialist Publications Ltd. Member of the Audit Bureau of Circulation.

MULTEORD ELECTRONICO	TTL 74	74154 55	LS132 42	4055 95		MC1496 70 MC1496 70
WAIFORD ELECTRONICS	7400 11	74157 30 74159 80	LS136 26 LS138 32	4056 95 4057 1915 4059 480	AY-3-8910 600 AY-5-1230 450	MC1596 225 MC1648 290
35 CARDIFF ROAD, WATFORD, HERTS., ENGLAND	7402 11 7403 12	74160 60 74161 50	LS139 32 LS145 70	4060 65 4061 1195	CA3011 130 CA3018 86 LCA3020 210	MC1709G 90 MC1710 79 MC3302 150
MAIL ORDER, CALLERS WELCOME. Tel. Watford 40588	7404 13 7405 15 7406 24	74162 50 74153 50 74163 50	LS148 85 LS151 40	4062 995 4063 85 4066 30	CA3023 210 CA3028A 95	MC3340P. 120 MC3360P 120
ALL DEVICES BRAND NEW, FULL SPEC. AND FULLY GUARANTEED.	7407 25 7408 14	74164 50 74165 50	LS153 40 LS155 35	4067 295 4068 16	CA3035 255 CAA3045 365 CA3046 70	MC3401 65 MC3403 65 MC3403 110
CASH/CHEQUE/P.Os OR BANKERS DRAFT WITH ORDER. GOVERNMENT	7409 14 7410 14 7411 16	74167 150 74170 125	LS158 30 LS160 37	4070 15 4071 15	CA3048 220 CA3059 285	MFC6040 75 MK50398 635
TRADE AND EXPORT INQUIRY WELCOME. P&P ADD 50p TO ALL	7412 18 7413 18	74172 275 74173 60	LS161 37 LS162 37 LS163 37	4072 15 4073 15	CA3075 213 CA3080E 70 CA3081 190	ML924 250 MM5303 635 MM5307 1275
ORDERS.	7414 28 7416 24 7417 25	74174 60 74175 55 74176 40	LS164 43 LS165 75	4076 50 4077 18	CAAA3085 95 CAA3089E 200	MM5387 47 NE529 225
All prices exclusive of VAT, Please add 15% VAT to the total cost Incl. P&P We stock thousands more iems. It pays to visit us. We are situated behind Watford Footbal Ground.	7420 15 7421 20	74177 45 74178 80 74190 40	LS166 75 LS173 65 LS174 50	4078 18 4081 16 4082 16	CA3090AQ 375 CA3123E 150 CA3130 90	NE531 14 NE543 225 NE544 210
Nearest underground/BR Station: Watford High Street, Open Monday to Saturday: 9am to 6pm POLYESTER CAPACITORS: Axial Lead Type	7422 20 7425 24 7426 28	74180 40 74181 115 74182 60	LS175 45 LS181 110	4085 50 4086 50	CA3140 48 CA3160 95	NE555 16 NE556 45
400V: 1nF, 1n5, 2n2, 3n3, 4n7, 6n8 11p; 10n, 15n, 18n, 22n 12p; 33n, 47n, 68n 16p; 100n, 150n 20p; 220n 30p; 330n 42p; 470n 52p; 680n 60p; 1µF 68p; 2µ2 82p; 4µ7 85p. 180V: 10nE 12n, 100n, 11n; 150n, 220n, 37n; 330n, 470n, 37n; 680n, 38n; 1µF 42n; 1µ5 45n; 2µ2 48n	7427 22 7428 25 7430 14	74184 90 74185 95 74186 470	LS190 45 LS191 45 LS192 45	4089 125 4093 30 4094 120	HA1336W 240	NE561 398 NE562 410
1000V: 1nF 17p; 10nF 30p; 15n 40p; 22n 38p; 33n 42p; 47n 48p; 100n 50p; 470n 99p.	7432 22 7433 25	74188 290 74190 50	LS193 45 LS195 36	4095 75 4096 75	ICL7107 975 ICL8038CC 300	NE564, 420 NE565 120
POLYEBTER RADIAL LEAD CAPACITORS: 260V: 10nF, 15n, 22n, 27n 6p; 33n, 47n, 68n, 100n 7p; 150n, 220n 10p, 130n, 47n, 13m, 580, 10m, 10p, 10p, 10p, 10p, 10p, 10p, 10p, 10p	7437 25 7438 25 7440 15	74192 50 74193 45	LS197 65 LS221 55	4095 250 4098 75 4099 75	ICM7205 1150 ICM7216A 1950	NE567 140 NE570 425
ELECTROLYTIC CAPACITORS: (Values are in µF) 500V: 10 52p; 47 78p; 250V: 100 65p; 63V: 0.47, 1.0,	7441 68 7442 32 7443 90	74194 50 74195 50 74196 50	LS240 75 LS242 75	4161 99 4162 99	ICM7224 785 ICM7555 80	NE5534 15 RC4136 69
20p; 220; 240; 420; 420; 420; 420; 450; 450; 450; 450; 450; 450; 450; 45	7444 90 7445 55 7446 65	74197 50 74198 90 74221 60	LS243 75 LS244 75 LS245 70	4163 99 4163 99 4175 105	LA3350 250	S566B 245 SAB3209 425 SAB3210 295
32 p; 16 V: 40, 47, 100 9p; 125 , 12 p; 220 13p; 470, 20p; 680 34p; 1000 27p; 1500 , 31p; 2200 36p; 3300 74 p; 4700 79p. 174 G-END TYPE: 70 V: 4700 , 245 p; 54V: 3300 198p; 2200 139p; 50V: 3300 154p; 2200 110p; 40V: 4700	7447 40 7448 45	74246 120 74247 120	1.S247 50 LS248 55	4194 105 4408 790	LA4032 295 LAAA4400 440	SAB3271 485 SAB4209 595
160p; 25 V: 10.000 320p; 15,000 345p TANTALUM BEAD CAPACITORS POTENTIOMETERS: Rotary, Carbon,	7450 16 7451 16 7453 16	74248 120 74LS	CMOS	4409 /90 4410 725 4411 675	LC7120 300 LC7130 340	SN76023 350 SN76023 350 SN76477 175
35V: 0.1µF, 0.22, 0.33 15p; 0.47, 0.68, Track. 0.25W Log & 0.5W Lin. 1.0µF, 1.5 16p; 2.2, 3.3 18p; 4.7, 6.8 5000, 1 KQ & 2KQ (Linear only) Single 2011 10.6 28p; 1401 2.2, 2.3 16p; Gardina 1.60, 200	7454 16 7460 18 7470 75	LS00 11	4000 10 4001 10 4002 12	4412 775 4415 480 4419 280	LF351 48 LF353 50	SN76488 480 SN76660 120 SL490 250
4.7µF, 5.8. 10 18p; 15, 36p; 22 30p; 33, 5KQ-2MQ Single Gang 30p 47 40p; 100 75p; 220 88p; 10V: 15, 22, 5KQ-2MQ Single Gang 0/P Switch 78p FLECTRONICS	7470 35 7472 26 7473 26	LS02 11 LS03 12	4006 50 4007 15	4422 770 4433 770	LF355 85 LF356 90 LF357 110	SP8629 299 TAAA621 295
26p; 33: 47 35o: 100 55o; 6V: 100 42p. 5K()-2M() Double Gang 88p LEDs with Clips MYLAR FILM CAPACITORS SLIDER POTENTIOMETERS TIL209 Red 13	7474 24 7475 40 7476 30	LS04 12 LS05 13 LS08 12	4008 48 4009 24 4010 24	4435 850 4440 999 4450 350	LF398 475 LM301A 26	TAA7120 150 TA7130 160 TA7204 226
1009: 1nF, 2, 4, 4n7, 10 6p; 15nF, 0-25W log and linear values 60mm TIL211 Grn. 18 22n, 30n, 40, 47 7p; 56 100n, 200 5p; 5K1/500K1 single gang 70p TIL212 Yel. 18 370; fC0 42 - 27 Bet 14	7480 48 7481 120	LS09 12 LS10 13	4011 11 4012 16 4013 20	4451 350 4490 350 4500	LM311 70 LM318 200	TA7205A 175 TA7222 175
MINIATURE TYPE TRIMMERS	7483 40 7484 70	LS12 13 LS13 21	4014 50 4015 50	4501 28 4502 60	LM319 215 LM324 30	TBA120 70 TBA641 275
2-6pF, 2-10pF, 2-25pF, 5-56pF 30p. PRESET POTENTIOMETERS ORP12 78 COMPRESSION TRIMMERS 0 Information Miniature 70 2N5777 45	7485 90 7486 24 7489 205	LS14 38 LS20 13 LS21 13	4016 20 4017 42 4018 45	4503 40 4504 75 4506 35	LM348 64 LM349 115	TBA800 80 TBA810 95 TBA820 80
3.40pF; 10.80pF 20p; 20-250pF 28p; 100-580pF 38p; 400-1250pF 48p 0.25W 200 M – 4.7 M M vert, 10p SFH205 91 0.25W 200 M – 4.7 M M vert, 10p SFH205 91	7490 21 7491 35 7492 26	LS22 13 LS26 14	4019 25 4020 50 4021 50	4507 35 4508 150 4510 50	LM358 65 LM377 175 LM379 480	TCA965 120 TDA1004 290
SILVER MICA (Values in PF) 2, 3,3, 4,7, 6,8, 8,2, 10, 15, 18, 22, 27, RESISTORS - Carbon Film High 33, 39, 47, 56, 56, 68, 57, 59, 56, 100 Stability, Low Noise, Ministure TIU38 65	7493 25 7493 35	LS28 14 LS30 13	4022 50 4023 16	4511 50 4512 50	LM380 75 LM381 145 LM382 125	TDA1028 525 TDA1024 105
120, 150, 180pF 15p each 200, 220, 250, 270, 300, 330, 360, 390, X W RANGE VAL 1-99 100+ TL321.5CA 115	7495 35 7496 40 7497 95	LS32 13 LS33 15 LS37 15	4024 33 4025 16 4026 80	2708 225 2716 21 0	LM384 140 LM386 90	TDA1490 290 TDA2004 495 TDA2020 220
470, 500, 500, 520, 520 21p each 500 2112-4M7 E12 2p 1p TL322.5 CC 115 1000, 1200, 1800, 2200 30p each 500 2112-4M7 E12 2p 1p DL704.3 CCth 99 3300, 4700pF 60p each 100 2112-5p 4p DL704.3 CCth 99	74100 80 74104 50 74105 55	LS38 15 LS40 13	4027 24 4028 50 4029 60	4116 80	LM387 120 LM389 95 LM393 100	TLO61 40 TLO63 80
2% Metal Film 10(1-1M 6p 4p 3 Green CA 120 2% Metal Film 51(1-1M 6p 4p 3 Green CA 120 1% Metal Film 51(1-1M 8p 6p 0L747.6 CA 180	74107 25 74109 25	LS47 38 LS48 45	4030 30 4031 125 4032 85	2114L-3 87 2708 225	LM394 290 LM733 100	TL071CP 30 TL074 100 TL081 25
to 10nF 4p; 22n to 47n 5p. 100n 7p. value not mixed. PND35/ 120 PND35/ 120 90 PND35/ 120 90 PND35/ 120 90 PND35/ 120 90 PND35/ 120 90	74110 35 74111 55 74112 170	LS55 14 LS63 120 LS73 18	4032 85 4033 125 4034 140	2716 210 4116 80 6502 399	LM2917 195 LM3900 50	TL082 45 TL083 75 TL084 95
GAS 6 5MOKE DETECTORS TGS812 or TGS813 . 575p S.P.C.O., 170 M coil, 7V5 to 12V DC. Isolators	74116 55 7411B 60 74119 80	LS74 18 LS75 20 LS76 18	4035 65 4036 275 4037 115	6522 350 6800 300 709C 9 pip 25	LM3900 50 LM3909 85	UAA170 170 UAA180 170
ACCESS ORDERS 380V/6A AC IL/74 45 Just phone your order through D.P.C.O., 43 M 4V7 to 7V DC, 250V ILD74 99	74120 60 74121 28	LS83 40 LS85 52	4038 110 4039 290 4040 50	710 48 733 100	LM3911 125 LM3914 210 LM3915 220	UA2240 245 XR2206 300 XR2211 575
SWITCHES	74122 40 74123 50 74123 35	LS90 28 LS92 32	4041 60 4042 45	741 8 pin 74 747C 65 748C 36	LM3916 220 LS7220 280	Z80CPU 350 Z80AACPU 385 Z80AACTC 325
VULTAGE REGULATORS IA TO3 + ve ve TOE 230 (2 DPDT Standard 33 %A SPST 13 DPDT Standard 44 %AA DPDT 13	74126 35 74128 36 74135 40	LS93 28 LS95 40 LS96 40	4043 50 4044 50 4045 105	753 185 810 159	M253AA 1150 MC1303 88	Z80CIC 300 Z80P10 290
50 7815 145p 7912 220p SUB-MIN TOGGLE 1A DPDT 14 12V 7812 145p 9712 220p SPST on/off 54 1A DP c/off 15 15V 7815 145p -	74136 30 74141 60 74142 175	LS107 40 LS109 28 LS112 28	4046 60 4047 60 4048 40	81LS96 90 81LS97 90	MC1304P 260 MC1310 150 MC1455 150	ZN414 80 ZN424E 130
18V 7818 145p DPDT 6 tags 75 PUSH BUTTON 1A TO220 Plastic Casing DPDT 6 tags 75 PUSH BUTTON 1A TO220 Plastic Casing DPDT 6 tags 75 PUSH BUTTON 15 DPDT 6 tags 75 PUSH BUTTON 15 DPDT 6 tags 75 PUSH BUTTON	74143 210 74145 50	LS113 22 LS114 22	4049 25 40 50 25	9400CJ 350 AY-1-1313A	MC1458 40 MC1488 55	ZN425E 345 ZN426E 300
5V 7815 50p 7912 55p FOR Disade 140 143 184 18 12V 7812 50p 7912 55p FOR Disade 160 104/250V 28 15V 7815 50p 7915 55p FOR Disade 170 70	74147 90 74150 55 74151 40	LS123 38 LS124 95 LS125 26	451 45 4052 60 4053 50	AY-1-1320 225 AY-1-5050 99	MC1469 300 MC1488 40	ZN428 478 ZN429 210
18V 7818 50p 7918 55p ROCKER: DPST ILLUMINATED 85 24V 7824 50p 7924 55p /// ROTARY: (Adjustable Stop) 1 pole/2 to 12 way; 200/2105 200/2105 200/2105 200/2105 200/2105	74153 40	LS126 35	4054 95	AY-1-5051 160	MC1489 55 MC1495 350	ZN1034E 200 ZN1040E 675
100mA 1092 Plastic Casing 5V 78L05 30p 79L05 60p 3way 45 6V 78L62 30p 2010 500 00 00 00 00 00 00 00 00 00 00 00 0	AC125 35	BC307B 14	BFY52 23 BRY39 40	TIP35A 160	2N1306/7 65 2N16718 120	2N5191 75 2N5305 24
8V 78L82 30p 12V 78L12 30p 15V 78L15 30p 79L12 60p 79L12 60p	AC126/7 35 AC128 30 AC141/2 30	BC328 95 BC338 15 BC441 34	BSX20 20 BSY65 35 BSY95A 25	TIP36A 170 TIP36C 199	2N2160 350 2N2219A 28 2N2230A 23	2N5457/8 30 2N5459 30
CA3085 95p LM317P 99p TBA6258 75p 16 pin 10p 42p Veroblock 375	AC176/87 30 AC188 30	BC461 34 BC477 40	BU105 170 BU205 190 BU209 200	TIP41A 55 TIP41B 60 TIP42A 60	2N2222 25 2N2369A 18	2N5485 30 2N5777 45 2N6027 32
LM 305H 140p LM 323 500p 78H05 550p 20 pin 22p 60p Adventures with LM 309K 135p LM 723 35p 78H65 550p 22 pin 25p 70p Electronics	ACY20/1 75 ACY22 60	BC547/8 12 BC549 14	E113 45 E176 50	TIP42B 75 TIP120 90 TIP121/2 99	2N2476 50 2N2483 27 2N2497 63	2SC495 70 2SC496 70
24 pln 27p 70p 28 pin 28p 60p 40 pin 30p 90p Complete Kit: £15	AD140 120 AD149 79 AD161/2 42	BC558/9 15 BCY70 16	MJ2955 90 MJE340 54	TIP142 120 TIP147 120 TIP2955 50	2N2646 45 2N2894 30' 2N2904 28	2SC1096 85 2SC1173 125 2SC1306 100
JACKSONS VARIABLE CAPACITORS DIODES ZENERS SCRs	AF115 60 AF139 40 AF178 75	BCY71 18 BCY72 20 BD131/2 48	MJE370 100 MJE371 100 MJE520/1 95	TIP3055 60 TIS43 32	2N2905A 26 2N2906/7 26 2N2926G 10	2SC1307 150 2SC1449 85 2SC1923 50
100/300pf 220p motion Drive 495p BY126 12 Range: 2V7 to Tage 500pF 250p 00 208/176 435p CR033 250 Be each 54/400V 40	AF180/6 70 AF239 78 BC107/9	8D133 60 8D135 45	MJE2955 99 MJE3055 70 MPE102	TIS88A 50 TIS90 30	2N3053 26 2N3054 58	2SC1945 225 2SC1953 90
Octobal Drive OU 209/176 OA9 40 Range: 3V3 to 5A/ 600V 48 4511/DAF 185p with slow OA47 12 33V. 1.3W 5A/ 800V 60 Dial Drive 4103 motion drive 495p OA70 12 12 5A/ 800V 60	BC108B 12 BC108C 12	BD138/9 40 BD140 40	MPF103 30 MPF104 30	TIS91 32 VK1010 80	2N3055 48 2N3121 30 2N3133 45	2SC1957 90 2SC1969 140 2SC2028 85
6:1/36:1 775p C804:5pF:10:15: 0A79 15 Drum 54mm 59p 25:50pF 278p 0A85 15 0:1365pF 350p 100 1500F 278p 0A85 15 12A/100V 78	BC109 10 BC109B 12 BC109C 12	BD695A 85 BD696A 85 BDY17 195	MPF105 30 MPF106 40 MPSA05/6 25	VN46AF 78 VN66AF 85	2N3135 30 2N3252 46 2N3442 440	2SC2029 210 2SC2078 170 2SC2091 PE
00-2.365pF 435p L'3x310pF 725p 0A91 8 Diode 195p 12A/800V 188 00-3x25pF 575p 0A91 8 Diode 195p 8116 150 8116 150	BC117 24 BC119 38 BC137 40	BDY60 160 BDY61 160 BE115	MPSA12 30 MPSA55 30 MPSA56 30	ZTX107/8 11 ZTX109 12	2N3568 25 2N3663 15	2SC2314 85 2SC2166 165
DENCO COILS RFC 5 chokes 04200 8 BRIDGE C106D 38 DP VALVE TYPE 140P 11914 8 DECEMPTOR 1402 8 DRIDGE 11644 24	BC140/3 30 BC147/8 9	BF167 29 BF173 27	MPSU06 55 MRSU56 60	ZTX300 13 ZTX301/2 16	2N3702/3 10 2N3704/5 10 2N3706/7 10	3N128 112 3N140 112
Nange 1 to 5 BL. RFC7 (19mH) IN916 5 NEC 1171ERS TIC-3 25 RD, TI Wht. 122p 160p IN4001/2 5 IA/50V 2N5062 32	BC153/4 27 BC157/8 10	BF177 25 BF178 30 BF179 35	OC36 120 OC41/2 75	ZTX304 17 ZTX314 25	2N3708/9 10 2N3710/11 10	40311 60 40313 130 40316 95
1.5 Green 150p 120p 140004/5 6 14/100V 22 2N4064 38 T type 1 to 5. Bl, 18/1.6 135p 1N4006/7 7 14/400V 29 2N4444 130	BC159 11 BC160 45 BC167A 10	BF180 38 BF194/5 12 BF196/7 43	0C44 75 0C45/70 40 0C71/2 40	ZTX326 30 ZTX341 30 ZTX500 14	2N3771 179 2N3772 195	40317 80 40324 100
B9A Valve Holder TOC1 124p IN5401/2 15 2A/50V 36 42p MW5FR 122p IN5401/2 15 2A/50V 36 TRIACS	BC168C 10 BC169C 10	BF198 16 BF200 30	OC76 50 OC81/2 50	ZTX501/2 15 ZTX503 18 ZTX504 25	2N3773 270 2N3819 22 2N3820 39	40327 70 40347 90
HUT2 145p MW/LW SFR154p IN5406 17 24/400V 46 34100V 48 VEROBOARD Looppen IN5408 19 24/600V 66/100V 54	BC170 15 BC171/2 11 BC177/8 16	BF244 25 BF244 28 BF256 35	OC83/4 40 OC170/1 50 TIP29 34	ZTX531 25 ZTX550 25	2N3822/3 50 2N3866 90	40348 120 40360 60 40361/2 70
0 1' Pitch clad plain CLAD BOARDS 15921 9 64/400V 95 8A100V 60 29,x 3'4 73p 52p Eboolst 64/100V 40 64/600V 125 8A400V 69	BC179 20 BC182/2L 10 BC183/L 10	BF257/8 32 BF259 35 BF594/5 40	TIP29C 60 TIP30 48	2N696 30 2N697 23	2N3905/6 15 2N4037 46	4047 60 4048 70
2/2 hb 83p - 6.460' 50 104/200V 215 0.4800V 15 3 ³ a x 3 ⁴ a 83p - 6.46'' 90p 64/800V 65 1024/600V 350 124/100V 78 3 ³ a x 3 ⁴ a 95p 78p 6.12'' 150p - 254/200V 240 124400V 82	BC184 10 BC184L 10	BFR39/40 23 BFR41/79 23	TIP30C 58 TIP31A 45	2N698 40 2N699 48 2N706 10	2N4058 10 2N4061/2 10 2N4069 45	40411 285 40412 90 40467 130
3 1 17 326p 211p SRBP We stork a BY164 55 16A100V 103	81.187	REB00/04	TIDATA	211700 13 1		10.00
Philof 100mms 50p 9 x8 95p wide selection VM18 50 16A500V 115	BC187 26 BC212 10 BC212L 10	8FR80/81 25 8FX29 28 8FX81 45	TIP31C 55 TIP32A 46 TIP32C 60	2N918 35 2N930 20 2N961 65	2N4859 78 2N4871 55 2N5135/6 20	40468 85 40594 105 40595 110

MONITOR

JUST in time for the summer is what may be the first of a new trend in holiday activities — a leisure-learning holiday. The organiser of Britain's first such holiday, a **Computer Holiday Camp** at the University of Southampton, is Dr. Lionel Wardle, of Management and Personal Services.

The Computer Camp will be not only for teenagers, but for anyone interested in computers; beginners, enthusiasts, professional people and even those suffering from "computer- phobia". Computer Campers will have access to a variety of popular microcomputers and can either learn by themselves, taking advantage of expert advice if they get stuck, or attend the tuition sessions, workshops and demonstrations which will be provided, before going on to get hands-on experience. Recognising the obsession that people sometimes develop with computers, machines will be available 20 hours a day, allowing the dedicated computer-phile maximum time at the keyboard.

On particular weeks, specially designed courses can be scheduled for common-interest groups, while an experienced management consultant will be on hand with advice for the small businessman and the self-employed.

The Computer Camps are being organised as family holidays; to help people who might otherwise be prevented from attending because of family arrangements, accommodation will be provided for family or kids at half price. Each participant will have his or her own study-bedroom in a flat or house on the University campus and all its sporting and recreational facilities will be available, free, plus the South Coast and the New Forest thrown in for good measure.

The cost of a week's Computer Camping at the University of Southampton is £115, self-catering; details and bookings from Dr. Lionel Wardle, Management and Personnel Services, 37 University Road, Highfield, Southampton SO2 1TL; Tel. 0703 558621.

Finally, just in case it seems like more work than play, a variety of computer games will also be available, but the organisers warn that these can be highly addictive — as if we didn't know!

News on the NiCad front, this month, from Verospeed. Their new 'Combisix' battery charger is a mains-powered unit which can handle up to six rechargeable Ni-Cad cells in AA, C or D sizes. The six in dividual charging points are located in two banks of three, on either side of the charger, and each bank can be adjusted to accept up to three cells.

Cells of different sizes can be mounted on either side and AA and C cells can be intermixed. A selector switch offers four charging rates; 50, 120, 180 or 400 mA. The Combisix is priced at around £22. Further information is available from Verospeed, Stanstead Road, Boyatt Wood, Eastleigh, Hants SO5 4ZY; Tel. 0703 618525. Further to our survey of The Affordable Computer, in the April '82 issue, we would like to report that Watford Electronics, suppliers of everything electronic for the hobbyist, are also distributors of the Superboard II computer. Contact them at 35 Cardiff Road, Watford, Herts or 'phone 92 40588.

A soldering iron is probably the single most important tool for an electronics en thusiast, hence a new range of irons (middle), manufactured by Adcola for OK Machine & Tool (UK) Ltd, look quite interesting for the hobbyist. At the moment the range consists of two thermostatically controlled, thermally balanced instruments plus one temperature controlled iron. They conform to a number of safety standards including BS3456.

Model OK-001 operates from 240 V and has a short element barrel for effective tip control and a handle which remains cool even after hours of continuous use; it weighs just 43 gr and the barrel is only 51 mm. Model OK-002 is similar, but the barrel is 88 mm long and it weighs 50 gr. Temperature ranges of these irons are 380°C and 400°C respectively.

The proportional control iron, Model OK-003, operates from 24 V 50 Hz and has a variable temperature range of 250°C-450°C. Control is by means of a special IC built in to the handle. It can be totally earthed and has a burn-proof siliconised rubber cable. For further information contact OK Machine & Tool (UK) Ltd, Dutton Lane, Eastleigh, Hants SO5 4AA or 'phone 0703 610944. New from Global Specialities Corporation, this month, is a new breadboarding system which is ideally suited to microprocessor based projects and applications involving large numbers of IC packages.

The 'Superboard' PB-105 measures 9.2 x 11.4 inches and can carry up to 48 14-pin DIL packages.

For futher information contact Global Specialities Corporation, Shire Hill Industrial Estate, Saffron Walden, Essex GB11 3AQ.

Let's face it, nothing works perfectly, even (or is it especially?) electronic equipment and occasionally it will be necessary to remove components from a PCB. A rather handy tool for the job is a de-soldering tool or solder-sucker, as the Americans call them; the latest additions to the Tele-Production Tools range for the electronic enthusiast are two new de-soldering guns (bottom).

The first, 200 mm long and 19 mm in diameter, is intended for most general work while the second, only 165 mm long and 14 mm dia., is a miniature desolder gun for fine work. Both have plunger guards, can be operated onehanded and they have powerful suction action and low recoil, to leave joints clean and tidy; solidified solder is ejected each time the gun is reset.

The guns cost £5.95 each, including VAT and carriage, or £10 the pair. For details contact Tele-Production Tools, Stiron House, Electric Avenue, Westcliff-on-Sea, Essex SSO 9NW; Tel. 0702 352719.

For the benefit of our readers who own or rent video cassette machines, we pass on the following warning from Panasonic.

Recently, quantities of counterfeit video cassette tapes bearing the brandname "PANASONIC" have been found circulating throughout the UK. These cassettes copy the Panasonic design and packaging and may not be immediately noticeable as counterfeits. However, the tape is reported to be "substantially inferior" to the genuine article and, besides producing poor picture quality, they could cause damage to the video machine.

Potential customers are urged to buy Panasonic video cassettes only from authorised Panasonic dealers throughout the UK. If in doubt — don't buy; the price may be attractive but the picture and sound quality probably won't be. Official Panasonic dealer lists are available from their Sales Promotion Departments at Slough, Berks (Tel. 75 34522) or Normanton, West Yorks; Tel 0924 890980.

Catalogue Collectors take note: Clairtronic Ltd, a specialist distributor of low voltage transformers, have produced an illustrated brochure detailing their stock of miniature mains transformers covering powers from 0.2 to 50 VA. The prices listed included p&p within the UK and range from around £1.30 up to £5.98; VAT is not included.

The range comprises four constructions; double bobbin transformers in both chassis and circuit mounting forms, an encapsulated series including the square box 'top hat' type plus a lowprofile range with heights as low as 17 mm. The brochures are available from Clairtronic Ltd, Churchfield Road, Chalfont St. Peter, Bucks; Tel. 49 87277. Still on the popular subject of Com puting, PET owners everywhere will be interested in the Third International Commodore Computer Show, to be held at the Cunard Hotel, Hammersmith, London, between 3rd and 5th June 1982. It will be, we are assured, the ''biggest and best'' Commodore Show ever, with over 100 exhibitors displaying their wares.

The Show will include many innovatory products from Commodore and a number of original software programs by "approved product suppliers". Hardware will include the Commodore Ultimax, the VIC-20, VIC-40, the Com-modore 64, the 4000 and 8000 series and the CBM 128 and 256 machines. Specialist applications demonstrations will cover the needs of specialist businesses, educational users and communications applications. The VIC Colour Computer and a range of VIC software will also be on display while special seminars, with guest speakers, will introduce businessmen and other professional users to the microcomputer. See you there?

Also received from OK Machine & Tool, recently, was their new Electroware catalogue. The Electroware division supplies tools and accessories for "everyone" (that certainly means us!) involved in building electronic equipment.

The catalogue lists products from OK's bench tool range, wire-wrapping kits, IC tools, PCBs, cases and enclosures, connectors and sockets, plus Ni-Cad battery chargers, soldering equipment and instruments such as multimeters, pH meters and capacitance meters. The Electroware range is available nationally from leading electronic and computer stores or directly from OK, at the address noted earlier. Write for a free catalogue, but send 30p for postage.

Hobby Electronics, June 1982

a trend	y .		Miniat	ure mains tra	nsformers
		Inc			
AND AND EADS I	an any point of a data	The part of the parts on the second s		CH CH	
and a second sec	ر ۲۵۵ مالی میلید میلید (۲۰۰۵) ۲۰۰۵ (۲۰۰۵)	An and the second of the secon		- ik	
to any grad to the state of the state of the state of the state of the state of the	e or occurrent e or or occurrent e or occurrent e occurent e occurrent e occurrent e occurrent e occurrent e occur	an in the second	Atte of Mol Apple For Mill C-2 atterfiles		
	Ches strater	INCAPELE ATTO			1
Andre St. Brinde BA	1 2 00 T30C-0.234	3473 464	97		
RARTU	1017A + 45 00				
E. 458		61/30/02 6		-	
TRI GRATS	enal l	400890	The second second	MPA - EHIO	ATTEN I
		A 184 A			

One of the greatest attractions of computing is that it can be fun. Of course, when the program has failed for the umpteenth time or the keyboard has locked out for some totally inexplicable reason, fun is replaced by frustration — but then life's like that (to parapharse Alexei Sayle).

Putting greater emphasis on the "fun" aspect, **B&B Ltd**, of Bolton, have launched a new game package for the VIC computer, called VIC 6. The six games on the cassette are designed to challenge the hobbyist – and the professional user. They cover old favourites such as the three-reel fruit machine, Hangman and Roulette and go on to missile game, a wall brick game and a "stay out of trouble under fire" game. The company intends to produce six more packs, enabling the VIC user to build up a library of cassettes; they have set up a mail order operation to handle all enquiries about the VIC 6 and future products. For further information "phone Beelines on 0204 382741.

A new point-to-point wiring system, just released by **BICC-Vero**, is mainly inteded for circuit prototypes and small-scale production runs. it would also prove useful for the hobbyist who is developing a project too large to be handled by the usual breadboarding methods.

The Speedwire system provides rapid wiring using novel insulationdisplacement joints and a special hand wiring tool. Continuous joints are easily made without the need to cut and strip the wire.

The heart of the system is a doublesided push-fit contact and the wiring pen, which pushes the wire between teh terminal's tines. Each double-forked terminal will accept one or two wires; the component side of the contact is goldplated beyllium copper, designed to give a very low contact resistance.

Full details are available from BICC-Vero Packaging Ltd., Industrial Estate, Chandlers Ford, Eastleigh, Hants. SO5 3ZR: Tel 0421566300.

Project

Teleph@ne Timer

Keep Buzby at bay with this money-saving project. Part 1: The circuit and How It Works. Part 2, next issue, will cover the construction and wiring details.

TELEPHONE RATES in Britain are based on the number of seconds allowed for a certain charge - which went up to 5p even as this project was being designed (thanks, Buzby). There are three rates, depending on the time of day and three distance rates. The charge system is outlined in your Telephone Directory and also in Table 1. This shows, for example, that for a Local call at the Cheap rate, 5p buys 480 seconds of telephone-time, whereas a longdistance call during Peak time costs 5p for only 12 seconds. Looking at it another way, 5p buys 95 five-second 'units' for a Cheap rate Local call, while the same 5p buys 2.4 'units' for longdistance at the Peak rate.

This method of using five-second intervals has been adopted because it allows a very straightforward circuit the Telephone Timer may look complicated but in fact it is quite simple, in principle. It just counts a certain number of five-second units – 96, say – and increments the display when this number is 'up', to give a direct read-out in pounds and pence. When the device is reset at the beginning of a call, the display shows '5p' because this is the cost of the first time period – 480 seconds or 96 units, in our example; each subsequent period costs another 5p.

On the front panel, a 10 position rotary switch selects any of the nine possible areas and charge-band times. The final switch position gives direct time readout, ie the display shows seconds rather than pounds and pence. This position is intended for international calls, because there is such a variety of costs and times that it would not be practical to include switch positions for international dialing.

Operation is quite simple. When you want to make a call, first switch the

Telephone Timer on and Reset the display. Dial the number and press down the Start Button when the line is ringing. When the call is answered, release the button and the Timer will start. When the call is finished, repeat the process and read off the cost of the call. Place hand into pocket, remove the appropriate amount and place it into telephone box! Should you be making more than one call, area just press the start button again; to zero the display, simply press the Reset button.

The Telephone Timer will never go out of date, either. This is because it can be programmed for any ratel The 'unit table', which is translated into a wired patch-board, is shown in Table 1. Thus, when the cost rises (it isn't getting cheaper) you simply adjust the patches on the board. All the values are rounded up, where necessary, so that your bill is covered.

Telephone Timer

Figure 1. The complete circuit diagram of the Telephone Timer. The Link Diagram, which shows how to program the Timer for the various charge-bands, will be published in the July issue.

TARGET TIME (SECONDS)	TIME RECORDED (SECONDS)	ACCURACY (PERCENT)
480	468.0	-2.5%
120	117.5	-2.1%
90	88	-2.2%
145	141.5	-2.4%
45 (90)	44 (88)	-2.2%
30 (90)	29.5 (88.5)	-1.7%
50 (100)	49 (98)	-2.0%

Figure 2. Tests on our prototype show that the Tmer is accurate to within +0/-2.5%.

The Circuit

The design is based on the fact, mentioned earlier, that the times allowed for a fixed charge (currently 5p) is approximately divisible by five. Therefore, a 555 timer, IC3, is used to supply a square wave with a Period of five seconds (a frequency of 0.2 Hz). This signal is fed to a pair of 4017 decade counters, ICs 7 and 8, which directly count the number of 0.2 Hz clock pulses.

The NAND gates, IC4a, b, c, d, IC5a, b, c and IC6a, b, d, are used to

decode the counter inputs. By connecting the relevent counter outputs to the gate inputs, each gate will produce an output pulse when the count corresponds to the preselected number of 5 S intervals. The appropriate output is selected by SW1, a 10-position switch. This pulse is used to reset the decade counters, via IC5d and D2, and also to drive a divide-bytwo flip-flop, IC2a. The flip-flop is triggered by a rising edge (ie a transition from 0 to 1).

The squarewave produced by IC2a is used as the clock input for the 7-segment display decoder/drivers, ICs 9 and 10, which are the 'pounds' and '10p' display drivers. The third ('pence') display is driven directly by the Q and Q outputs of the flip-flop; since this only ever shows either '0' or '5', no further decoding is necessary.

The system is started and stopped by operating a push-button switch, debounced a bistable flip-flop, IC1a, b. When the button is pressed the output is one state — either high or low — and when it is released, the output reverses. The start/stop pulse is fed to another flip-flop, IC2b; when a rising edge appears at its clock input, its output changes state. IC2b controls the 555 (IC3) so that when the start/ stop button is first pressed, the 555 starts running and when it is repressed, the timer stops, freezing the displays. The frequency of the timer is controlled by the voltage on its trigger pin (pin 2), supplied by a field effect transistor, Q1. The Zener diode is used to supply 8V2 to the trigger pin when the FET is conducting, since an error would arise in the initial time period if the trigger line was simply driven between +12 V and O V, due to the time it would take C1 to charge and discharge. The reset push-button simply resets all the devices in the circuit, via bistable IC1c, d and D1, returning the system to the 'start' condition

Next month, we will give detailed instructions for assembling the Telephone Timer and describe how the device may be programmed for the nine Buzby charge bands. In the meantime, see the **Buylines** page for helpful hints on where to get the components for this money-saving project. The Telephone Timer simply counts a preset number of five-second 'units' and increments the display at the end of each group of units. The display gives a direct read-out, in pounds and pence. The Timer is set up to produce 0.2 Hz clock pulses (ie a Period of 5 S) to drive the decade counter/dividers, which directly count the number of clock pulses. The counter outputs (tens and units) are decoded by a group

How It Works

of NAND gates to select the appropriate number of 5 S intervals corresponding to the telephone charges (see text and Table 1); each gate will produce an output pulse at the end of a certain number of 5 S intervals. The required charge-rate is selected by a 10-position switch which feeds the pulse to a divide-by-two flip-flop. This pulse also resets the decade counters to zero so that another timing period can commence. The complementary outputs of the flip-flop are used to directly drive the 'pence' display (which always alternates between '0' and ''5'') and the '10p' decade counter/7-segment decoder — this increments by one at half the rate of the 'pence' display; the 'pounds' decoder/ driver is driven by the Carry output from the '10p' counter. The 5 S interval timer is started and stopped by a debounced push-button switch. The Reset switch is also de-bounced and resets all counters to zero — the display shows ''5'' at this time.

	Tabl	e 1.	
Distance	Rate	Rate	s No. of
		for 5p	5 S units*
LOCAL	CHEAP	480	96
	STANDARD	120	24
	PEAK	90	18
< 56 km	CHEAP	144	29
	STANDARD	45	9
	PEAK	30	6
> 56 km	CHEAP	48	10
	STANDARD	16	*4
	PEAK	12	*3

* ROUNDED UP.

Table 1. The telephone charge bands and the times allowed for a 5p unit. The last column shows the number of five second units in each band; the bottom two figures are rounded-up so that the amount calculated by the Timer will be slightly higher than the actual charge.

_Pa	rts	Lis	st.
	10	2	

(All ¼ watt 5% carbon) R1,2,3,4 .1M R5 .330R R6 .1k R7 .100k R8-22 .1k2 R23 .560R R24 .330R
POTENTIOMETERS
RV1100k
sub-min. nonzonta preset
CAPACITORS
disc ceramic or polvester
C2
tantalum bead
SEMICONDUCTORS
D1,2
ZD1BZY88C8V2
zenerdiode
Q1
IC1
CMOS quad 2-input NOR

RESISTORS

IC2
CMOS dual J-K flip-flop
IC4,5,6
CMOS quad 2-input NAND
CMOS decade counter/divider
IC9,10
DISP1,2,3 DL704 or similar
common cathode 7-segment display

MISCELLANEOUS

SW1rotary switch,
1-pole 12-way
SW2,3 SPDT miniature
push-to-change switch
SW4 DPDT miniature
toggle switch
Bulgin 3-pin mains plug, socket;
20 mm panel mounting fuseholder;
750 mA fuse; knob; plastic for display
window (red); PCBs; mains cable;
mains plug; ribbon cable; case; screws,
nuts and bolts; 12 V power supply (see
PSU Design project); Veropins; IC
sockets (optional); solder; wire etc.

BUYLINES page 23

Project

Designing Power Supplies

Using this simple procedure, anyone can build a simple supply for almost any purpose.

THE POWER SUPPLY is one of the most fundamental circuits in all electronics. It is also one of the easiest circuits to design yourself, once you have the 'know how'. This article is intended to give you just that skill.

This month, we feature a project for a digital Telephone Timer which requires a 12 V, 400 mA regulated supply (Figure 1) and this will be used as an example, to demonstrate how the component values of a simple supply are calculated.

The Theory

Before you can begin to design a circuit, there is certain information that you must have at your fingertips. For power supplies, it is necessary to know the peak input voltage and the output voltage. The 'input' is the voltage delivered by the transformer to the rectifier. Unfortunately, this is not the voltage usually specified by transformer manufacturers, but it is easily obtained by multiplying the RMS voltage (which is specified) by 1.4 (see Figure 2). You might expect that this is the voltage delivered by the power supply - not so. Some voltage will be lost across the bridge rectifier. Most diodes produce a forward voltage drop (ie, when they are conducting) of about OV7 and, since there are always two diodes passing current in a bridge, the drop across the bridge will be roughly 1V4

The makers of voltage regulator ICs always specify some minimum voltage input to their device and it is generally about 2V5 higher than the required output voltage (eg, a 5 V regulator needs 7V5). To be on the safe side, assume that the minimum is 3 V higher. Now we know the maximum voltage which we can expect from the bridge rectifier, VBRIDGE, and the minimum voltage needed to drive the regulator IC. The next step is to calculate the value of the filter capacitor, C1, which is there to 'smooth' the rectified mains voltage for the regulator IC.

The effect of the smoothing capacitor is shown in Figure 3. It charges up with each voltage peak, then discharges slowly as the rectified voltage falls to zero. The discharge time is such that C1 will not discharge completely, however, so the voltage never falls below a certain level which (aha!) must be the regulator minimum input voltage. The difference between the voltage peaks and the regulator minimum is the ripple voltage, VR. Obviously, the value of the smoothing capacitor must be chosen so that the input voltage to the regulator never falls below the specified minimum.

The diagram of Figure 3 shows cycles of the rectified mains voltage, enlarged. The quantity 'T' is the time (Period) between voltage peaks and it is equal to twice the mains frequency of 50 Hz ie, 100 Hz. Since the period, T, is the inverse of the frequency, T is 0.01 seconds.

Now a capacitor in a circuit which has resistance (and every circuit will have at least some resistance) will take a definite time to discharge the voltage stored on its plates. This time is the familiar RC time contant:

t = RC,

where t is the time, in seconds; C is the capacitance in Farads and R is the resistance in Ohms. Now from Ohm's Law, we also know that:

$$R = \frac{V}{L}$$

therefore, substituting the second equation into the first, we get:

$$= \frac{CV}{I}$$

where I is the current required from the circuit; t is the time period over which the capacitor discharges and V is the voltage discharged in time t.

Now, since we don't want the capacitor voltage to drop below a certain minimum, V is the ripple voltage VR, the difference between the rectified voltage peaks and the regulator minimum, and t is the period of the full-wave rectified mains.

Figure 1. A simple regulated supply using one of the common three-terminal regulator ICs.

Designing Power Supplies

For Example

The remainder of the procedure is best illustrated by a practical example. The Telephone Timer requires a 12 V, 400 mA supply, as mentioned earlier. To choose a suitable transformer, select one which produces a slightly higher voltage than that required usually the next one up in the range will do the trick, ie one with a 15 V winding. The power handling of a transformer is sometimes specified as Watts, but more often in terms of VA (Volt Amps). To calculate how many Watts (or VA) are required, use the simple power formula:

 $W = VI = 12 \times 400 \times 10^{-3} = 4.8 VA$ (Watts).

In fact, the most suitable transformer available was one with twin 15 V windings, each supplying 3 VA; the windings were simply connected in parallel to give the required voltage and a power capability of 6 VA.

The next step is to calculate the voltage output from the bridge rectifier:

VBRIDGE = Vp - 1.4= (VRMS x 1.4) - 1.4 = (15 x 1.4) - 1.4 = 19.6 volts.

The regulator IC needs at least 15 V, so we are on the safe side with 19V6. The difference is the ripple, VR:

 $V_{R} = 19.6 - 15 = 4.6 V.$

Now, using the formula for calculating the value of the smoothing capacitor C1, we have:

$$C = \frac{tI}{VR} = \frac{0.01 \times 400 \times 10}{4.6}$$

3

This is not a preferred value, so use the next highest in the range, which is 1000 uF. It must cope with peak voltages of $15 \times 1.4 = 21$ V, so use a 25 V working electrolytic type.

Another point to consider is that the bridge diodes must be able to handle both the current and the peak voltage; the popular 1N4001 diodes, rated at 50 V and 1 A, are quite suitable here.

Finally, there is the regulator IC. The one used for this supply is the common 7812 variety, a 12 V 1 A threeterminal device. It would need a heatsink if used to pass current greater than 500 mA so in this case, a sink is not needed. Capacitors C2, 3 are essential to prevent high frequency oscillations; the values are generally specified in the maker's data so they are not a problem; the point to note, however, is that they should be mounted as close to the IC as possible. Resistor R1 is included to prevent the IC from running into an open circuit;

Figure 2. Power supply waveforms: (a) The output of the transformer; (b) Output of the bridge rectifier; (c) Input to the regulator IC.

Figure 3. An enlarged view of Figure 2(c), showing the effect of the smoothing capacitor.

this could result in damage to the device so R1 is used to draw some current (2.5 mA) even if the output is open circuited.

And that completes the circuit design — it's as easy as that! Although

we have illustrated this procedure with a specific supply (12 V at 400 mA), it can be used with any three-terminal regulator IC to design a supply for any voltage and current. The next step is one you must make yourself!

Shortwave Listener's Receiver

With Heathkit, you're all set for a great deal. And not just big savings. Whichever kit you choose, you'll find it easy to build.

Simple, but detailed instructions take you through every stage. Everything is included. Even the solder you need Digital Clock is there.

Ballenina and

Follow the steps and you'll end up with a handcrafted, well-designed piece of equipment. One you'll be proud

of. Because you built it yourself. There are 10 great kits to start you off. An interesting choice of a digital clock to a metal locator, including a short wave listener's receiver, windspeed and direction indicator, digital readout electronic scale and five more useful kits.

All at 30% off to first-timers. Send for your catalogue right now for a start.

Windspeed and Direction

Indicator

Metal

Concession of the local division of the loca

Locator

To Heath Electronics (UK) Limited, Dept (HE6), Bristol Road, Gloucester GL2 6EE.

> To start me off, please send me a copy of the Heathkit catalogue. I enclose 28p in stamps.

Name

HE6

Address -

You build on our experience HEATHKIT

HE PROJECT KITS

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for H.E. Projects. We supply carefully selected sets of parts to enable you to contruct H.E. projects. Kits include ALL the electronics and hardware needed. Printed circuit boards (full) ethed, dhiled and roller tinned) or Veroboard are, of course, included as specified in the original article, we even include nuts, screws and I.C. sockets. PRICES INCLUDE CASES unless otherwise stated. BATTERIES ARE NOT INCLUDED. ICOMPONENT SHEET INCLUDED. If you do not have the issue of H.E. which includes the project — you will need to order the instruction reprint at an extra 45p each.

Reprints available separately 45p each + p. & p. 40p.

ECHO REVERB UNIT May 82. Less case £31.82. Economy case WB3 £3.76 extra DIGITAL THERMOMETER May 82 ex-ELECTRONIC METRONOME July 81 64.67 CONTINUITY CHECKER June 81 £5.34 ENVELOPE GENERATOR June 81 Cluding case + bezel £15.80 LIGHT SEEKER May 82 £4.99 AUDIO SIGNAL GENERATOR May 82 ENVELOPE GENERATION June 81 116.85 AUDIO MIXER June 81 f4.99 PUBLIC ADRESS AMPLIFIER March 81 f1821, Extras – horn speakers f6.83 each, PA MIC f4.40 £19.69 CABLE TRACKER May 82 £9.37 DIGITAL CAPACITANCE METER Apr 82 £19.98 each, PA MIC £4.40 FUZZBOX March 81 £10.35 WINDSCREEN WIPER CONTROLLER March 81 £7.67 STEAM LOCO WHISTLE March 81 SIGNAL TRACER Apr 82 £3.61 BIKE ALARM Apr 82 £10.98 DUAL ENGINE DRIVER Apr 82 £48.78 DIGITAL DICE Mar 82 £6.82 BICYCLE SIREN Mar 82 £10.18 NOISELESS FUZZBOX Feb 82 £9.77 £12.26 PHOTOGRAPHIC TIMER March 81 £3 28 HEARTBEAT MONITOR Feb 81 £23.40 AUDIO SIGNAL GENERATOR Feb 81 SOUND SWITCH Feb 82 £8.31 MASTHEAD AAMPLIFIER Feb 82 £13.74 DRUM SYNTHESIZER Dec 81. Full kit TWO-TONE TRAIN HORN Feb 81 £5.24 £19.98 GUITAR HEADPHONE AMPLIFIER less case MEDIUM WAVE RADIO Feb B1 £7.67 BENCH AMP Jan 81 £10.10 NICARD CHARGER Jan 81 £7.67 CHUFFER Jan 81, less case £7.04 BATTERY CHARGE MONITOR Dec 80 £5.40 MEMORY BANK — MINI SYNTH-ESISER Nov & Dec 80 £28.40 TRANSISTOR TESTER Nov 81 £6.12 inc test leade Dec 81 £3.48 IN CAR CASSETTE POWER SUPPLY Dec 81 £4.46 SCRATCH FILTER Nov 81 Mono £5.44 Stereo £8.40 Stereo £8.40 LED VU METER Nov 81 less case £4.56 SIMPLE STYLUS ORGAN Nov 81 less case £4.74 METRONOME Nov 81 £11.88 TELEPHONE BELL REPEATER Oct 81 test leads GUITAR PRE-AMP Nov 80 £5.65 case (diecast) extra £2.29 INTRUDER ALARM Oct 80 £19.61 E12.78 Med Linking wire extra 14p metre COMBINATION LOCK Oct 81 less TOUCH SWITCH Sept 80 £2.57 less case & contacts solenoid £17.43 BABY ALARM Oct 81 £8.14, Fig 8 linking & contacts GUITAR PHASER Sept 80 £15.22 wire 7p metre 'DIANA' METAL LOCATOR Sept 81 SOUND OPERATED FLASH TRIGGER £32.25, POWERPACK Sept 81 £9.58 July 80 no skt £4.99 FOG HORN June 80 £6.21 REACTION TESTER GAME Sept 81 £11.98 VARIABLE BENCH POWER SUPPLY SPEED CONTROLLER FOR R/C April 80 £16.41 (less case) DIGITAL FREQUENCY METER april 80 Aug 81 £25.35 ULTRASOUND BURGLAR ALARM £39.35 DIGI-DICE Jan 80 £10.97 July 81 £18.67 ELECTRONIC DOOR BUZZER July 81 GUITAR TUNER Nov 79 £11.99 CAR ALARM Feb 79 £12.07 £5.65 TRACKER CABLE AS FEATURED IN MAY 82 H.E A SUPERB PROJECT FOR THE HOME HANDYMAN - P SCREWS, CABLES AND PIPES (and other buried metal objects) PICKS UP NAILS. QUICKLY SAVES ITS FULL KIT INCLUDES ALL HARDWARE, ELECTRONICS & PCB OWN COST £9.37 BE SURE - BE SAFE MORE PROJECT KITS – SIMILAR STYLE TO H.E. INSTRUCTIONS INCLUDED (SEPARATELY 45p EACH) PLEASE QUOTE REF. NO. WHEN ORDERING B1 PEST CONTROL 'Ultrasonic cat scarer' £6.98 **B2 COMPONENT TESTER £8.38** B3 ENLARGER TIMER - relay output £26.99 **B4 GUITAR NOTE EXPANDER £16.87 B5 CAMERA OR FLASH GUN TRIGGER Infra red** system £11.98 **B6 SIMPLE INFRA RED REMOTE CONTROL** £16.39 **B7 0-12V POWER SUPPLY £16.99 B8 SOIL MOISTURE MONITOR £4.23 B9 SOUND TO LIGHT** – single channel £7.97 **B10 THREE CHANNEL SOUND TO LIGHT £19.98 B11 IN SITU TRANSISTOR TESTER £6.73 B12 WEIRD SOUND EFFECTS GENERATOR** £5.68 **B13 AUDIBLE VISUAL METRONOME £5.98** B14 ELECTRONIC DICE £5.71 B152K RAM PACK Less case for ZX81 £13.34 **B16 MINI EGG TIMER £4.14 B17 AUDIO EFFECTS UNIT FOR WEIRD SOUNDS £12.71** B18 LED JEWELLERY — Cross brooch £2.77 Star brooch £9.71 Spiral brooch £7.50

I.C.S TOOLS TRANSISTORS RESISTORS CAPACITORS HARDWARE

MAGENTA ELECTRONICS LTD.

MEMORY BANK SYNTHESISER

Miniature synthesiser featuring vibrato, envelope, tempo, volume + pitch controls. Uses 24 push button switches in a keyboard style layout. Based on a custom designed L.c. The accessible memory stores a 32 beat length sequence of notes + spaces. Can be played 'live'. Fitted with an internal speaker. Jack socket allows the use of an external amplifier if wished.

Memory Bank Synthesizer £28.40 Complete kit Inc. case, pcb's etc. Reprint extra 45p. Available separately 45p + 45p p&p.

CASES

KITS

MULTIMETER TYPE 2 -£14.75

20,000 opv. Includes transistor tester. AC+ DC volts. DC current. 4 very useful resistance ranges. We've used it and we like it.

DIGITAL CAPACITANCE METER H.E. April 82 (H1) £19.98

Fast and accurate. Reads from p 100pF to 9,900uF with 2 digit ac-

curacy. Portable. Battery powered. Easy to use — Easy to build. Complete kit includes pcb, all components and case.

DIANA METAL LOCATOR H.E. Sept 81 (Ha) £32.25

A powerful pulse induction metal locator. Exciting design using modern technology. Simple to set up and use.

Complete kit includes all hardware for the handle and coil, cases, meter, pcb and all components. Available less handle and coil hardware and cases £19.29

ECHO REVERT UNIT H.E. May 82 (H3) £31.82 less case. Economy case WB3 £3.76 extra.

A modern all electronic CC0 design with independent echo and reverb controls. Delay fully variable up to 50 m sec.

METRONOME H.E. Nov 81 (H4) £11.88

A comprehensive battery powered instrument with audible and visual outputs. Switch selectable accented beat 2/4, 3/4, 4/4 and 5/4 times. Speed range 40-240 beats per minute. Variable volume and pitch.

BOOKS	
SEMICONDUCTOR DATA BOOK, Newnes	9.90
PRACTICAL ELECTRONIC PROJECT PULL DIALC Ainstin & Colucal	0.05
CONSTRUCTORS PROJECT BOOKS	
ELECTRONIC GAME PROJECTS Raver	35
ELECTRONIC PROJECTS FOR HOME SECURITY, Bishon	.35
ELECTRONIC PROJECTS IN AUDIO, Penfold	.35
FLECTRONIC PROJECTS IN MUSIC. Flind	.35
ELECTRONIC PROJECTS IN PHOTOGRAPHY, Penfold	.35
ELECTRONIC PROJECTS IN THE CAR. George	.35
PROJECTS IN AMATEUR RADIO & SHORT WAVE LISTENING, Rayer	.35
PROJECTS IN RADIO AND ELECTRONICS. Sinclair	.35
ELECTRONIC PROJECTS IN HOBBIES. Rayer	.35
ELECTRONIC PROJECTS IN THE HOME. Bishop.	.35
ELECTRONIC PROJECTS IN THE WORKSHOP, Pentold	.35
ELECTRONIC TEST EQUIPMENT PROJECTS. Analie	1.30
MORE ELECTRONIC PROJECTS IN THE HOME, FING	.35
Marston FR	35
MODEL BAILWAY PROJECTS Penfold	.95
SOLID STATE SHORT WAVE RECEIVERS FOR BEGINNERS. Penfold	.30
BEGINNERS GUIDE TO BUILDING ELECTRONIC PROJECTS. Penfold	.50
ELECTRONIC MUSIC AND CREATIVE TAPE RECORDING. Berry	.35
IC555 PROJECTS. parr£1	.90
BASIC ELECTRONICS. A super book covering theory and practice	.95
RADIO CONTROL FOR BEGINNERS. Rayer	./5
INTERNATIONAL TRANSISTOR EQUIVALENTS GUIDE, 320 pages, Michaels . 12	.05
ELECTRONIC PROJECTS FOR CARS AND BOATS, Pentold	.35
SECOND BOOK OF CHUSIC PROJECTS. Felliold	35
ELECTRONIC MUSIC PRO JECTS Perfoid	75
ELECTRONIC HOUSEHOLD PROJECTS, Penfold	.75
ELECTRONIC GAMES, Penfold	.75
PROJECTS IN OPTO ELECTRONICS, Penfold	.25
52 PROJECTS USING IC 741. Redmer	.25
ELECTRONIC TIMER PROJECTS. Rayer	.95
POWER SUPPLY PROJECTS. Penfold	.75
REMOTE CONTROL PROJECTS. Bishop£1	.95
POPULAR ELECTRONIC CIRCUITS: Book 2	.35

MORE KITS AND COMPONENTS IN OUR LISTS FREE PRICE LIST Price list included with orders or send sae (9 × 4) CONTAINS LOTS MORE

1982 ELECTRONICS CATALOGUE

Illustrations, product descriptions, circuits all included. Up-to-date price list enclosed. All products are stock lines for fast delivery. Sends 80p in stamps or add 80p to order.

MORE H.E. PLUS E.E. and E.T.I. PROJECT. KITS IN THE PRICE LIST

KITS, PCBs & COMPONENTS

Pointed Suggestions

Dear Sir,

May I take advantage of your invitation in Points of View and submit two circuit ideas I have not yet seen published anywhere, but which would be very useful to amateur photographers who are interested in colour printing.

The first one is a mains stabiliser suitable for the transformer system of the Durst and many other colour enlargers. The second is a good colour analyser for colour balancing negatives while printing. This would be a great saver of time, paper and temper. Thank you for a friendly and

Thank you for a friendly and informative magazine. I am off, now, to make the Digital Capacitance Meter (April '82 issue). I've needed one as good as that for a long time! G. Walton, Darlington, Co. Durham.

We receive many and varied requests for photographic equipment projects. Unfortunately, many of them have to be ruled out because of the complications involved (optics. mechanics, reliability and accuracy, to mention just a few of the difficulties) and the colour analyser certainly falls into this group. There are several commercial units, though, that should not ''break the bank''. The Melico range, for example, starts at about £80, while Durst's analysers are priced from around £90. They are available from Wallace Heaton's, New Bond Street, London. The mains stabiliser is a more practical project and, after lengthy discussions with our photographic staff, we have commenced work on a suitable design. Our Digital Capacitance Meter, incidentally, has proved to be one of our all-time most popular projects. Thanks are due to the designer, Owen Bishop.

CB Circuits

Dear Sir,

Please could you help me. I have a CB radio and sometimes, when talking to people, the conversation comes round to professions and I am asked if I could do something about an ailing rig — my profession is telecommunications.

Okay, when you look at a transmitter or receiver, you can pick out the various stages, ie RF stages, mixers, IF and so on, but when it comes to actually fault-finding and there is no circuit diagram to work from, the trouble really starts.

Could you tell me where I can get hold of CB radio circuit diagrams? I have thought of writing to the manufacturers, but I think they would turn me down. I hope you can help me. N.J. Treacher, RAF Henlow, Beds.

This is a problem often encountered by those who know something about electronics and, as a consequence, are often asked to do a repair job on friend's hi-fi or CB rig. Without a circuit diagram, what could be a simple job can turn into a nightmare. Unfortunately, there is no easy solution; we certainly don't keep circuits for commercial equipment of any kind, so we can't help you. In fact about the only thing you can do is try the manufacturers — you might be lucky!

Filter Scratched

Dear Sirs,

I have recently completed the Scratch and Rumble Filter project from your Projects Special Vol. 1.

Everything in the filter seems to be working but — the power output from the amplifier has dropped. I don't know by how many watts, but the loss is considerable. Wearing headphones, before fitting the filter, number '8' on the volume slider would have blasted my head off; now the volume almost disappears at about '3', going down the scale.

I would like to add that I have built the unit into my record player and not in a separate box. Is it possible that the pick-up lead is now too long, thereby increasing the resistance to the signal from the stylus? If not, maybe you could shed some light on what has gone wrong.

I have, by the way, made the unit in stereo. I would be very grateful for any help.

L.T. Daniels, Havant, Hants.

The clue to this problem is in the suggestion that the pick-up lead may be too long — though this is not actually the cause of the fault. The suggestion hints that the filter is connected between the pick-up and the pre-amplifier. If this is so, it's the cause of the problem. The filter does not include a pre-amplifier, so it simply cannot work well in this position. Place it between the pre-amplifier output and the main amp input, and full volume should be restored to you!

Circuit Diagrams and Backnumbers

Dear Sir, I am doing an electronics project on various types of remote control, ie infra-red, ultrasonic and radio control. I would be grateful if you could send me any circuit diagrams of transmitters or receivers for each particular type; also applications and the project layouts. P.A. Robinson, Birmingham.

Once more, we have to point out that we simply cannot accept blanket requests, such as Mr. Robinson's, for circuit diagrams of HE projects. Of course we have published many remote control projects, of all types, and they are always available from our Back Numbers department (see page XX), but they too can only deal with specific requests. The essential information they need is the name of the project and the issue in which it appeared. If you do not have this information, then why not send in for photocopies of the Indexes to Volumes 1, 2 and 3? We strongly recommend this to anyone who requires either a single circuit or a number of circuits, for a particular project.

0-60 In 3 Hours

Dear Sir,

I have recently made the Speed Controller for R/C models featured in the April 1980 issue of Hobby Electronics. I bought the Hobbyprint and constructed the circuit, making slight alterations to fit it in my Tamiya Rough Rider, namely; mounting the relay alongside, instead of on the board, changing the two parallel TIP3055s for a single 2N3055 and putting in an 18R, 1 W resistor on the base. After making the checks explained in the magazine, I tried out the Controller.

The motor reaches full speed in both directions and the proportional speed control also works — but the acceleration of the car is seriously impaired. It used to reach full speed in a couple of yards but now it takes ten times that distance and, at the start, it just crawls along. This is no use, for this type of car. Please can you help me?

A. Anderson, Glasgow.

There are a number of possible reasons why your super-car has turned into a plodder. For example, are you using heavy gauge wire for the motor cables, and the correct battery? The most likely cause, however, is the substitution of a single transistor where the design called for two. The current gain of any transistor falls off at high currents — such as those passed when the motor is building up speed — so it is unlikely that one 2N3055 will handle the peak current. Remember, the design is intended to supply up to 15 A, which is the absolute maximum current rating of a 2N3055! The solution must be to either revert to the original circuit or, if you are cramped for space (and also wish to indulge a taste for over-kill), substitute an MJ11016; this is a high power Darlington rated up to 30 A and with a minimum current gain of 1000 at 20 A. One of those, and you can really burn up the track!

CB Supplies

Dear Sir,

I am writing to ask if you can produce for me, and the many others who read Hobby Electronics, a circuit for a Citizens' Band radio power supply, ie a supply producing 12 V DC at between 3.5 and 5 amps, at a budget price. For a small unit such as this, one can easily spend £ 12 for something quite plasticky.

I would be extremely grateful if you could publish one as a project in HE. I'm sure that such a project would sell like 'hot cakes'. If it is not possible, please could you send me a copy of a suitable circuit? Many thanks, and thanks also for a great mag. A. Postle, Letchworth.

Herts.

PS. It would be nice if you had an article about how CB is getting on!

A CB power supply project has already been published - by our cousins, Citizens' Band magazine. It appeared in their January 1981 issue and a copy is available from their Backnumbers Department, at our usual address. Alternatively, you might like to try designing and building your own -- see our Power Supply Design feature on page XX. The only additional precautions you should take are to make sure that the smoothing is adequate (you don't want 50/100 Hz hum on the speaker) and to use a good heatsink.

Baby's Alarming

Dear Sir,

I have been trying to build the Baby Alarm project from the October 1981 issue of Hobby Electronics. Unfortunately, despite a lot of experimentation, I cannot get it to work. When I connect a microphone and speaker, all it produces is a constant high pitched note. As far as I can see, I've made no mistakes in the construction.

The microphone I have used is a 600R capacitance mic running from a 1 V5 battery. Is this inappropriate? The article mentions that several track breaks are required on the board, yet they are not shown on the diagram and I can see no need for them. Is this an error?

If you have any idea of what mistakes I have made, I would be grateful if you could tell me.

Secondly, I have been trying to obtain a dual-gang variable capacitor

(208pF plus 176pF, Jackson type '0'). If you have any idea where I might obtain one I would appreciate your advice.

Thank you very much. P. Lusley, Islington, London.

No track breaks are actually needed, as the circuit is laid out - however, if the board is mounted using metal machine screws, breaks will be required between the mounting holes and the components. The "high pitched note" described above sounds suspiciously like acoustic feedback; eliminate this possibility by separating the mic and speaker by at least six feet - more, if it can be arranged. If the howl persists, other causes must be sought. There is no reason why a capacitance mic should be unsuitable, provided it is AC coupled to the base of Q1, as shown in the circuit. The variable capacitor you're after is listed in the Maplin catalogue as a Type 00.

Reader's Mods

Dear Sir.

With reference to the Intruder Alarm (HE, October 1980), could you please tell me how to incorporate a delay in to the system so that one has, say, fifteen to thirty seconds in which to close the outside door when leaving the house, and a similar delay time in which to switch off the system when you return?

I cannot see any reference to this facility, although I would have thought it to be a logical requirement.

Also, could you recommend a suitable source of supply for the components, including the reed switches and magnets, alarm box for external fitting and the control box?

I thank you in anticipation of your kind attention. M. Toogood, Southerston

Southampton.

An excellent idea, which has been passed to our design team. A satisfactory modification should not be too difficult to devise. As to a source for the components, try Magenta Electronics, 135 Hunter Street, Burtonon-Trent, Staffs. DE14 2ST.; Tel. 0283 65435.

Alarm Wanted

Dear Sir,

I am a student attending The College, Swindon, where I am studying a course in Technology and Engineering.

As part of the course I am required to carry out a project to design and build a device to detect the presence of a human or animal intruder in a building. Some system of control monitoring is required and if an intruder is detected it should activate a control monitor.

I am writing to ask for a design for a simple circuit that I can use. It should work as a movement detector or light detector, sound detector or an all-in-one device. Yours, G.A. Kembo, Swindon, Wilts.

We have published a great many burglar or intruder alarms, over the years — the latest was the Ultrsound Alarm, mentioned above. A photocopy of the article can be obtained from our Backnumbers Department.

Errata

Clever Dick has passed on a letter from G. Beckingham of Gloucester, who has noted an error in the HE Echo-Reverb (May '82 issue). The mains transformer should be a 7V5-0-7V5 type, if it is to be connected as shown in the component overlay, ie the windings in series. An alternative, for anyone who already has the transformer, is to connect the windings in parallel by modifying the PCB as follows: cut the track joining the two windings and, using insulated wire links, join the two 15 V pins together, then join the O V pins.

The Parts List for the Digital Capacitance Meter (April '82) shows PR2 as 47k; it should be 4k7, as shown on the circuit diagram. In addition, R3 and R5 on the component wiring diagram (Figure 3, page 28) should be in reverse order ie, R3 should be at the top and R5 at the bottom.

W.D. Hughes of Bristol has a problem with the Infra-Red Remote unit, from the February 1980 issue; the fault probably lies with R24 which should be 1k0 as shown in the Parts List, not 1M0 as indicated on the circuit. Also, the last paragraph on page 32 should read: ''(1) The EARTHS of the mains input cables'', not the neutrals, as stated.

J. Reed of Edinburgh has noted (yet another) error in the Intruder Confuser (January '82). On the Veroboard layout, a track-break should be made between the ends of C1. This project is the only one this year which has contained major errors; they arose from our misguided attempts to 'tidy up' the circuit and layout — unfortunately, we "got our wires crossed" in the process, but at least we've learnt from the experience (leave well enough alone!).

A correction for the Kitchen Timer (October 1980), which we published in these pages in the March '82 issue, may interest Mr. P.S. Woodward, from Worthing in West Sussex; R17 should be 3k9, not 82k.

Writing to Hobby Electronics

Would readers please note that we cannot reply personally to letters unless a stamped, self-addressed envelope is included. This applies particularly to ALL technical enquiries.

SOLAR CELLS

A practical guide to the essential technology of solar power, together with some simple Breadboard-style ideas for experimenters.

SOLAR POWERED RADIO

Ideal for sunny summer days at the beach. Costs little to build, nothing to run!

SUNBURN TIMER

The Sun's power is all too obvious if you stay out too long . . . this year, control your tan with our Sunburn Timer — just dial Rare, Medium or Well-Donel

POPULAR COMPUTING

The HE MicroTrainer

Next month we describe the circuit and commence the construction, beginning with the power supply unit.

INTO RADIO

Television Interference Filter

Tired of listening to — and looking at — CB-chat while trying to watch Dallas? Our simple TVI Filter will remove the symptoms, if not the cause of your annoyance.

PROJECT: MUSIC

Equalisation — It's Easy

Looking beyond bass and treble, this feature explains what equalisation is and how it is used to compensate for frequency distortion in both recorded and live music.

INTO ELECTRONIC COMPONENTS -

Concluding our long-running and popular beginner's series. If you've followed it so far, don't miss the final chapter!

PEDOMETER/ODOMETER

No, it's not an instrument for detecting smelly feet, but a digital device which can be individually programmed to read the distance travelled by a walker or jogger, or **a**s a bike mileage indicator. Get it?

Please reserve copies of the July issue of	Then get the July issue of
Electronices for	Habby
Address	On sale at your newsagent from 14th May.
L	Place your order now!
Although these articles are being prepared for the next i	issue, circumstances may alter the final content.

THE MOST important type of wave, for radio, is the sine wave. The name, incidentally comes from a Latin word meaning "snake" and the shape of the graph of voltage plotted against time for a sinewave shows why the name was chosen! The name 'sine' is also given to a mathematical function; it is the ratio of two of the sides of a triangle, as shown in Figure 2. The sine of an angle is a number whose value lies between 0 and 1 and which is negative if the angle is between 180° and 360°. If we plot the sine of an angle against the size of the angle, then we end up with a perfect sinewave.

Figure 1. A sine wave - voltage (or current) plotted against time.

SIN X = BC = OPPOSITE

Figure 2. In mathematics, the sine of an angle is the ratio of two sides of a triangle, ie the side opposite the angle, X, divided by the hypotenuse.

Figure 3. A sine wave is generated when a coil of wire rotates between the poles of a magnet.

RMS VALUE = 0.707 x PEAK VALUE EXAMPLE: IF PEAK VALUE = 330V, THEN RMS VALUE = 0.707 x 330 = 233.3V RMS

Figure 4. Peak and RMS values of a sinewave. Peak values are more useful in radio work because they are easily measured on an oscilloscpe. Meters give **RMS** values.

Like any other wave, a sinewave will have a frequency, ie the number of com plete cycles of the wave in one second. It will also have an amplitude, which we measure as a peak value (Figure 4) or as an RMS value, which is 0.707 x Peak value (or Peak divided by 1.4, which comes to the same thing). Two sinewaves with the same amplitude and the same frequency may not be identical, however, because there may be a phase angle difference. This means that the peaks of the waves do not coincide; it's the effect you would expect to see if one wave started before the other, or if one were delayed. The instantaneous voltage of a sinewave at any time is the voltage at that instant (logically enough) and it is given by the equation:

$$V_i = V_p (Sin 2\pi f_t + \phi)$$

We aren't forced to use this mathematical way of working with phase and instantaneous voltage, because there is a simpler way, using what are called phasors. A phasor (no, it itsn't Capt. Kirk's ray-gun) is a line whose length represents the peak value of a sinewave and whose angle to the horizontal represents the phase of the wave. Figure 6 shows a simple phasor diagram - this method of representing phase is very useful and we'll return to it when we start to look at the behaviour of inductors, capacitors and resistors in AC circuits. But now it's time to look at some even more basic ideas.

Magnetic Appeal

Magnetism is one topic we need to know something about. Ignoring permanent magnets for the moment, we can create magnetism by passing a current along a piece of wire. Doing that (Figure 7) causes the shape of space (yes, invisible space), around the wire to change, so that when you hold a compass needle at different points round the wire, at the same distances, the needle points in directions which indicate a circle. We call this particular distortion of space a magnetic field and it affects all materials; but a few materials, like iron and its alloys, are very strongly affected. We can, therefore, use these materials to trace the shape of the magnetic field.

The field around a straight wire does

WAVE A IS EARLIER THAN B, IT LEADS B (OR B LAGS A) THE DIFFERENCE IS GIVEN IN DEGREES, WITH ONE COMPLETE WAVE PERIOD REPRESENTED BY 360°

Figure 5. The phase relationship between two sine waves.

not extend for a great distance beyond the wire - it tails off to almost zero at a distance of a few centimetres. When wire is wound into a coil, however, and current is passed through it, the magnetic field becomes much stronger because the effect of each turn of the coil is added to the effect of the other turns. The shape of the new field is

Figure 6. A phasor diagram. Imagine that both lines are revolving anticlockwise around point 'O': the line OB is the zero-phase position. As both lines revolve, the line OA passes through zero before the line OB; OA is said to 'lead' OB, by 30 in this example.

Figure 7. The magnetic field around a wire carrying a Direct Current. The shape of the field is circular and it is very weak at distances of more than a few centimetres.

Into Radio

Figure 8. The shape of a field produced by a solenoid is almost identical to that of a bar magnet.

Figure 9. A mathematical definition of relative permeability.

Figure 10. Induction without movement — the transformer effect; changing current in the primary coil causes a voltage to be induced in the secondary coil.

shown in Figure 8 and it's pretty much the same as the shape of the field that you get from a bar-shaped permanent magnet. The strength of the magnetic field of any coil is greatly increased by placing magnetic materials inside the coil (a core) and the shape of the field also becomes more compact, particularly when the materials are of the type called "soft" magnetic materials. The word "soft" doesn't mean that you can squeeze them out of shape - some of these materials are, in fact, very hard and brittle — it simply means that they are magnetically "soft"; you can't magnetise them permanently. Unlike hard magnetic materials, which are used to make permanent magnets, soft magnetic materials lose their magnetism whenever they are removed from the coil, or when the current is switched off.

The ratio by which the strength of the magnetic field is increased by the presence of a core is called the *relative permeability* of the core; it is the quantity defined in Figure 9. The word "relative" is sometimes omitted though, strictly speaking, this changes the meaning. Soft magnetic materials can have very

Figure 11. (a) A Back-EMF is always produced when a voltage is switched across a coil; (b) Its direction is such that it always opposes the current, and hence the voltage, which is actually causing the Back-EMF; (c) The result is that when a voltage is applied, the current changes only gradually.

Electricity From Mag

Just as we can produce a magnetic field from the current flowing in a wire, so we can also produce electricity from a moving magnetic field — this was the great contribution that Michael Faraday made to electrical history. A permanent magnet, for example, moved into a coil of wire (a solenoid) will cause a voltage to be generated and we can obtain a similar effect, without any visible movement if we place two coils close together (Figure 10) and switch a current on and off in the circuit connected to one coil, the primary coil. This will cause a voltage to be generated in the second coil, the secondary, but only for as long as the current in the primary coil is changing. A steady (DC) current causes no voltage to be generated. The effect is called electromagnetic induction and the voltage produced in the second coil is an induced voltage. This principle is that of the transformer, which can be used with AC only, because only in AC circuits will the current in the primary coil be changing continually.

Induce Yourself

Changing the current through a coil of wire won't just induce a voltage in another nearby coil, though, it will also induce a voltage in itself! This effect is called self-inducation and the voltage which is induced will be in a direction which opposes the changing current that actually causes it (Figure 11). This is a back-EMF (the EMF means ElectroE = L x RATE OF CHANGE OF CURRENT WRITTEN AS

 $E = L \Delta \Gamma$

WHERE A MEANS 'CHANGE OF'

Figure 12. The equation for the self-inductance of a coil.

	A = AREA OF CROSS SECTION
$\alpha \Delta N^2$	N = NUMBER OF TURNS
1	L = MAGNETIC LENGTH
	a = 'PROPORTIONAL TO'

Figure 13. This formula cannot be used for calculating the inductance of a coil, but it does show how changing diemnsions changes the inductance.

$\dot{N}_2^2 = \frac{N_1^2 \chi L_2}{L_1}$	L1 = INDUCTANCE	FIRST EXAMPLE
	L2 = INDUCTANCE N2 = TURNS	SECOND EXAMPLE

Figure 14. The formula of Figure 13 can be rearranged to calculate the number of turns that must be removed (or added) to change the inductance of a given coil.

Motive Force, an old word for a gener-ated voltage) and we can use this voltage to measure a useful quantity, the self-inductance of the coil, usually indicated by the letter 'L' in radio formulae. The equation that links inductance with back-EMF is shown in Figure 12. The unit of self-inductance is the Henry, named after the American physicist, Joseph Henry; one Henry is the selfinductance when a current changing at the rate of one amp per second produces a back-EMF of one volt. One Henry is a very large amount of inductance quantity we aren't likely to use except in smoothing inductors for power packs or in loudspeaker cross-over networks so that smaller quantities such as the millihenry (mH), one thousandth of a henry (0.001 H) and the microhenry (uH), which is one millionth of a henry (0.000001 H), are more usually found.

The inductance of a coil can be measured, but it can't be calculated simply from its dimensions and the number of turns, so that we need to use charts, nomograms and other aids to calculation. One useful, approximate, relationship is shown in the formula of Figure 13, however - the inductance is proportional to the area of cross-section of the wire multiplied by the square of the number of turns and divided by the 'magnetic length'. This last quantity refers to the length of the magnetic field in the core and isn't necessarily equal to the physical length of the coil but, all other things being equal, it means that if you separate the turns of a coil you will increase its magnetic length and reduce Its inductance. Similarly, increasing the number of turns will considerably increase the inductance - doubling the number of turns without changing the length (by using thinner wire) will make the self-inductance four times as great $(because 2^2 = 4).$

Because this formula applies reasonably well to a coil which has already been designed, it is a useful way of adjusting the value of inductance

Figure 15. Mutual inductance is the basis of the transformer effect of Figure 10.

FOR COILS IN SERIES, OPPOSING

Figure 16. Mutual inductance cannot be easily calculated but it can be measured.

slightly. For example, suppose you have a coil of 80 turns which has an inductance, with the core in place, of 300 uH. How many turns do you have to take off to make the inductance 280 uH? The answer can be obtained by chopping the formula around to the form shown in Figure 14, retaining only the number of turns because the other quantities can be kept approximately constant. Yes, the length will change, but not by much and you could, if you wanted to be fussy, adjust the remaining turns to take up the same length on the core. Using

$$N_2^2 = \frac{N_1^2 \times L_2}{L_1}$$

we have

$$N_2^2 = \frac{80^2 \times 280}{300}$$

which is 5973.3. The square root of N₂² is 77.3, equal to N2. That's only about three turns off the coil (told you it wouldn't change much!) to make the adjustment. In practice, you don't have to worry about fractions of a turn, except for VHF coils, because you can make fine adjustments by pulling out the turns of the coil (increasing length) or compressing them closer (decreasing length).

It's Mutual

A pair of coils arranged as a transformer will have mutual inductance as well as two lots of self-inductance and this quantity is defined in the same way as self-inductance, except that the change of current is measured in one coil and the induced voltage in the other (Figure 15). The mutual inductance is also measured

in units of Henrys but is a lot more difficult to calculate, because it depends on how closely the coils are coupled meaning how much of the magnetic field of one coil affects the other. Mutual inductance can very seldom be satisfactorily calculated; it normally has to be measured by a bridge circuit or by making two separate measurements of the self inductance of the coils, connected in series with each other. Two measurements are made and the connections to one coil are reversed for one of the measurements. The readings are then used to find mutual inductance using the formula in Figure 16.

In practice, there's a huge variation in the shapes and sizes of inductors, according to the job that they are intended to do. Basically, the slower the rate of change of current (which means lower frequency), the bigger the inductor needs to be and the heavier the core. For smoothing 50 Hz ripple in a half-wave power supply, you might need a couple of thousand turns of fine wire wound on a paxolin bobbin with a set of soft-iron laminations inserted tightly into the centre of the bobbin to make a core inside and outside the coil, guiding the magnetic field around it. At the other end of the scale, if you were dealing with VHF, where the rate of change of current is extremely fast, a couple of turns of thick wire in air, with no core, might be all the inductance you needed. For UHF, you find that you don't need coils at all a straight strip of metal a few centimetres long is as much inductance as you need.

Between these extremes, a very useful form of construction that sees a lot of use is the iron-dust or ferrite cored inductor. This consists of a plastic tubular former with a core of a nonconducting magnetic material. The coil is wound on to the former and its inductance value is varied by screwing the core up or down inside the former. Transformers for frequencies ranging between 100 kHz and 50 MHz or so can be made in this way.

In general, if you are constructing equipment and you are instructed to wind a coil of 30 turns on a 10 mm diameter former which is fitted with a specified type of core, don't be tempted to deviate from this specification unless you know how much inductance is needed - and you have some method of measuring exactly how much you end up with.

Er = RELATIVE PERMITTIVITY A = AREA IN SQUARE cm (ONE PLATE)

Capacitance

The other electrical quantity which is important in AC circuits is capacitance. Capacitance is the ability to store electric charge, the stuff whose movement we call electric current, and there is always some capacitance between any two points which are at different voltages, even momentarily. Capacitance is defined as the ratio of charge stored to the voltage between the points. Some capacitances in our circuits are 'stray' meaning that they exist simply because there are pieces of metal close to each other in the circuit, but most of the capacitors we use have been deliberately designed and manufactured.

The simplest type of capacitor consists of two plates of metal which are separated by an insulator; this arrangement is called a parallel-plate capacitor. The amount of capacitance how much charge the arrangement can store, per volt placed across the plates depends on the area of the plates (assumed to be identical and aligned with each other), the distance between the plates and the type of insulating material placed between the plates. The formula is shown in Figure 17 - note, in particular, that the capacitance is increased by putting the plates closer together and is also increased by using materials like ceramics, which have a large 'relative permittivity' as insulators. Don't confuse relative permittivity with relative permeability (of a magnetic material); permittivity is quite a different quantity and its values are lower; a relative permittivity of 100 or more is very unusual.

The insulating material, or dielectric, between the plates also provides the insulation for the capacitor and the voltage applied between the plates must never be so great that it will break down this insulation. The type of dielectric also depends on the frequency of the signals that are to be handled. Mica, for example, can be used at the highest frequencies for which we make capacitors, whereas paper is useful only to about 20 MHz and is seldom used nowadays.

The value of a capacitance is measured in units called Farads - you have a capacitance of one farad when a charge of one coulomb causes the voltage across the plates to increase by one volt. Unfortunately, the Farad is a huge unit and we need to use smaller units, such as microfarads (uF, 0.00000

EXAMPLE: A CAPACITOR HAS A PLATE AREA OF 7cm² SPACED 0.03mm APART AND USING MICA WITH RELATIVE PERMITTIVITY = 5, WHAT IS ITS CAPACITANCE ?

SOLUTION: CAPACITANCE = 5x7 x 0.884p = 1031p OR 1n03

Figure 17. The capacitance of two parallel metal plates, slightly separated.

Into Radio I

 $\frac{1}{CT} = \frac{1}{100} + \frac{1}{150} + \frac{1}{200} = 0.0216 \qquad \therefore CT = \frac{1}{0.0216} \approx 46p2$

Figure 18. Calculating the overall value of capacitors connected in series or in parallel.

1 F), even smaller units such as nanofarads (nF, 0.001 uF) or picofarads (pF, 0.00000 1 uF). Watch carefully which values are used in equations, because some make use of the capacitance measured in Farads, some in microfarads and some in picofarads.

Fixed capacitors can be made from metallised mica or ceramics and the metallized plates can be stacked together to provide larger values, because connecting capacitors in parallel gives an increased value — see Figure 18 for capacitor connections in series and in parallel. Mica capacitors are used in 'important' parts of radio circuits, where any change in the value of a capacitor would cause de-tuning, for example. Ceramics, by contrast, are used mainly in less important places in which the precise value is less important.

Paper and (particularly nowadays) plastic dielectric capacitors are made by metallising both sides of a thin film of the dielectric material, which is in the shape of a long strip. The strip is then wound into a cylinder with another metallised strip to act as insulator (Figure 19). This type of construction is used for the larger values of capacitance, normally in audio stages or in some supply decoupling ap-

Figure 19. The rolled-strip construction commonly used for paper and plastic film capacitors.

plications. Electrolytic capacitors use 'plates' (usually thin foil, wound into a spiral) made from aluminium or tantalum and separated by sheets of paper or cloth which have been impregnated with chemicals (ammonium perborate, if you must know). The chemicals are conducting — the insulator is the very thin film of aluminium oxide (or tantalum oxide, if this is the metal that is used) that forms on the metal surface when a voltage is applied to the capacitor to 'form' it. Once an electrolytic capacitor has been formed, the voltage should never be reversed, hence the polarity markings on electrolytic capacitors. Very large values of capacitance can be obtained in very small sizes, using electrolytics because the insulating film is so thin, but there is always a 'leakage' of DC current through an electrolytic and the voltages at which they can be used are comparatively low. Their main application is for smoothing power supply voltages and signal coupling in transistor audio circuits.

Finally, variable capacitors allow us to alter capacitance and this is one of the main methods of tuning radio circuits, as we shall see later. Variables can be airspaced, as they usually are in transmitter circuits, or solid-dielectric spaced, as they usually are in pocket radios, but the principle is the same - one set of plates is fixed, and the other can be meshed with them, so that the area of overlap changes. It is the changing area of overlap that accounts for the change of capacitance. The radio receiver types usually have minimum and maximum values of 30 pF and 300 pF respectively, but miniature types with much smaller values and ranges are used in radio transmitters and in short-wave receivers.

Join us next month to find out about time constants, reactance and tuned circuits.

HE

From the past it came, growing daily, striking terror into the hearts of lesser publications, and spreading its influence across the country in its quest to infiltrate every town, every home, every mind.

Not a horror story, but a success story. And if electronics theory strikes terror into you, then you need the help of **Electronics** – It's **Easy**. Originally a long-running series in Electronics Today International, **Electronics** – It's **Easy** was printed as a set of three books. They sold out. It was reprinted as a single volume. It sold out. Now this phenominally successful publication is available again, in its third reprint. **Electronics** – It's **Easy** is a comprehensive and simply-written guide which explains the theory (and the practice) of electronics step by step. Every aspect of the subject is covered, starting with the basic principles and working through to the how and why of today's technology.

You can obtain your copy of **Electronics** – It's Easy by mail order using the coupon below. Make cheques or postal orders payable to ASP Ltd; alternatively you may pay by Access or Barclaycard.

Send to: Sales Office (Specials), 513 London Road, Thornton Heath Surrey CR4 6AR
Please send mecopies of Electronics – It's Easy. I have enclosed £ (£4.95 each including p&p).
NAME
Please debit my account
My Access/ Barclaycard No. is

ANOTHER month, another Buylines Page — making sure you know exactly where to buy ALL our project components. The listed suppliers are not the only sources for particular items, but are those companies we know who generally stock the components mentioned. Of course, if you intend buying a complete kit for a project, then you need not worry about getting separate parts. However, don't abandon this page, since we often include new suppliers and handy construction tips — both worth further investigation.

Power Supply

FOR such a straightforward project, the parts will be easy to obtain. However, the suppliers mentioned here are a good source for the necessary components.

The voltage regulator (7812), and other similar types are stocked by Rapid Electronics and Delta Tech; take your pick — you might also find a local stockist of these often-used ICs. Transformers can be bought from specialist suppliers — such as Barrie Electronics — or from other sources like Watford and Technomatic. If you fancy a toroidal type then you can order one direct from ILP Electronics using their freepost service.

The large value smoothing capacitor is available from Electrovalue, or you may be able to pick up a bargain from Crimson Components — remember, a higher voltage rating is fine, so long as the capacitor still fits on the board!

The cost for components will vary according to the voltage selected, but will be between £6-£10.

Auto-Wah

The Auto-Wah uses a few rare components but, in most cases, more standard types can be substituted for those used in the prototype. If you want to stick with the original design, the polycarbonate capacitors (6n8) are available from Electrovalue, though the commoner C280 variety will do; either way, you will find their range quite comprehensive. They have also assured us that they can obtain the unusual 'make' contact jack-sockets used to switch on the unit.

The semiconductors should not be hard to find, but you might like to try a

Hobby Electronics, June 1982

new company for the 2N5088 transistors. Benning Cross are getting together their stock lines at the moment, so if you want anything particular then drop them a line. The only other supplier of 2N5088s that we could find, is Cricklewood Electronics. However, a suitable equivalent is the BC109C — a lot easier to buy.

The RC4558 is a relatively new IC that combines two 741s in an 8-pin DIL package. It is equivalent to the 1458, which is stocked by most companies. If you have any problems, try **Bi-Pak** or **Summit Electronics** (another new name for your checklist).

The case for our Auto-Wah (and rather smart it is too) is from the RS Components catalogue (No. 508-201); it can be ordered from any component supplier who normally stocks parts from the RS range. If you'd like to try a different one, then take a look at the new West Hyde catalogue, where you'll also find the PCB supports (standoffs to you!).

The total cost - using our PCB - will be around £15.

Auto Greenhouse

SOMETHING to bear in mind, when you're testing the HE Sprinkler, is to make sure you have a plentiful supply of water and somewhere to spray it an early bath awaits those who don't heed this warning!

The components for this project are all fairly easy to obtain. The ZTX300 transistors are to be found in just about every supplier's list, so it's worth shopping around for the best buy. **Crimson Electronics** offer these, and other components, at very reasonable prices.

The CMOS ICs are all stocked by Technomatic who can also supply an alternative to the relay we used (RS catalogue No. 349-658). The siren is also from the RS catalogue (No. 249-794) and can be ordered from most suppliers. On the mechanical side, the water pump included in the design is, in fact, from a car-spares

shop — just ask for a 12 V windscreen washer pump! Again, it's worth shopping around since you don't need anything elaborate.

One final point concerning the power supply circuit. The bridge rectifier in our prototype had a much higher spec than necessary so, unless you intend to run other items from the supply, any bridge that can handle 6 A at 50 V will do — Delta Tech are worth a call for a good deal on these and other commonly used components.

Without the case or windscreenwasher pump, the cost of the sprinkler will be around £12 (including our PCB).

Telephone Timer

BEFORE starting this project, it's a good idea to sort out exactly where you want to put it. Ours is intended to be wall mounted, so the display was placed on a flat front panel. If you want yours to lay on the telephone table, you can try a case with a slanting top. Take a browse through one of **BICC-Vero's** catalogues for something suitable.

Now for the components themselves. The CMOS ICs are no. problem with a company like Technomatic — their range is quite staggering. Another company wellknown for its semiconductors is Cricklewood Electronics. For this project they can also supply the 22u tantalum capacitors, along with the small 7-segment displays. The ceramic disc capacitors are usually very easy to buy but, in this case, the required values are quite high (although you could try fitting a C280). The specified components are stocked by Electrovalue and, at the other end of the parts list they also keep the Bulgin mains connectors. Bi-Pak, who don't just sell bargain component packs, stock the rotary switches (Lorlin) and the push-to-break switches; alternatively, Benning Cross are stocking up on a wide range of switches and other associated hardware.

The only remaining parts you might have trouble with are the fuseholder (panel mounting) and the ribbon cable. Conveniently enough, both of these are available from Watford Electronics.

The components for the timer will be about £15, excluding the case, power supply and PCBs.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	LINEAR I.Cs MC1445 325p AV103 200 MC1455L 350p AV10313 660p MC1455L 350p AV10313 660p MC1455L 350p AV10313 660p MC1455L 350p AV1-1320 220 MC1435 70p AV1-50c0 1400 MC3430p 120p AV3-350 420p MC3430p 120p AV3-3810 550p MK50398 750p AV3-8910 550p MK50398 750p AV3-8910 550p MK50398 750p AV3-8910 550p MK50398 750p CA3028 120p MK50398 750p AV5-40070 520p MK50398 750p CA3048 225p ME563 150p CA3059 300p NE565 155p CA3059 300p NE565 155p CA3059 300p NE565 155p CA3059 200p NE565 155p CA3069 200p NE565 155p CA3069 200p NE5571 375p CA3089 200p NE5571 2500 375p CA3080 200 200 200 200 200 200 200 200 200	 * MICROTRAINER * (as described in the current issue) Hobbyists can now learn and explore the workings of microprocessors. This project opens the mystical field of computers to enthusiasts. A truly low cost teaching aid useful for training centres, schools and industries. In fact a short step towards developing new ideas and systems. Gives effective insight into micros to engineers, techni-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CA3160E 100p S5668 260p CA3161E 140p SAC1024A 1250p CA3161E 450p SFF93364 800p CA3189E 300p SL490 350p CA3280G 200p SN76477 500p CA3280G 200p SN76488 500p CA3280G 200p SN76477 500p CA3280G 200p SN76495 500p CA3188E 200p SN76495 500p CL7106 850p TA7120 200p CL7120 850p TA7204 250p CL7120E 818 TA7205 250p CL7130 400p TBA810 90p LC7120 400p TBA810 100p LC7130 40p TBA810 100p LF351 40p TBA810 100p LF351 40p TBA820 300p LF351 40p TBA850 300p LF351	 cians, etc. not directly involved in the computer field. Expansion facilities provided for serious constructors (watch for further articles). A professional grade high quality thru plated PCB is included. Please phone for kit price. Swinches Switches Digit Switches Switch for Start Big Star
7480 360 7415122 42p 4075 20p 1 7480 960 7415123 50p 415124 50p 400 745123 50p 400 745124 50p 400 7451244 50p 40	M318 200p TDA1022 520p M319 225p TDA1024 120p M324 30p TDA10348 250p M3342 100p TDA10348 250p M3342 100p TDA1024 30p M3352 100p TDA2002V 325p M3385 50p TDA2003 325p M348 75p TDA2006 350p M358p 60p TDA2020 320p	Cover Propriete bit. Succests by TEXAS. Wilke WMAP SOCKETS BY TEXAS. By in 255 18 pin 505 p2 4 pin 701, 14 pin 10p 20 pin 18 pin 126 pin 326 14 pin 35p 20 pin 60p 24 pin 300, 16 pin 13p 22 pin 22p 40 pin 30p 16 pin 35p 20 pin 60p 24 pin 300, 101452 1500/450 6597 16 pin 11p 22 pin 22p 30 pin 30p 16 pin 40p 22 pin 65p 40 pin 100, 101452 1500/450 6597 MINIMUM ORDER 15 TRANSISTORS BFX88 30p TIP33C 80p 21,3354 30p 21,3355 110 pin 20p 21,4355 110 pin 20p
7489 210p 7415138 34p 4095 95p L 7490A 45p 7415138 75p 4056 95p L 7490A 45p 7415138 75p 4056 95p L 7492A 30p 7415147 760p 4093 99p L 7492A 30p 7415147 760p 4093 90p L 7493A 30p 7415148 90p 4039 7093 120p L 7495A 50p 7415154 90p 40037 720p L 7420p 120p L 74100 120p 1413 180p 1413<	M388P 60p 10,22,020 320p M377 175p 11,024 160p M380 75p 1,007,781 25p M381AN 180p 1,0072,782 45p M381AN 180p 1,0072,782 45p M382 120p 1,0072,782 45p M382 120p 1,0072,782 45p M385 95p 1,004 90p M387 120p 1,004 90p M389 120p 1,004 90p M381 100p UAA170 70p LM333 100p UAA2240 150p LM734 300p UA2240 150p LM743 70p UE025F 400p LM744 35p XR2206 300p LM745 35p XR2216 675p LM390 5p ZN414 90p LM331 20p XR2216 675p LM390 5p ZN414<	Clicity/s Tip Satc
74177 70p 74L5323 250p 4585 100p 74L78 74178 100p 74L5324 150p 14495 400p LV 74180 50p 74L5324 150p 14495 400p LV 74180 50p 74L5324 150p 14495 400p LV 74181 160p 74L5352 100p 74S SERIES 78 74182 90p 74L5363 160p 74S00 60p 60p 741824 90p 74L5363 160p 74S00 60p 60p	M323K 3A 5V 500p 79GUIC 225p M223 150mA Adj 37p 79HGKC 700p L494 400p TL497 300p 3540 300p LM305AH 250p	A British designed personal computer - simple to
74183 120p 74153 74566 75p 70p 74186 500p 741532 500p 741536 55p 74522 70p 2N 74188 325p 741536 36p 74532 90p 00 74190 50p 741528 36p 74532 90p 00 74191 50p 741528 35p 74532 90p 01 74193 50p 741532 70p 745124 90p 01 74193 742 742 74574 90p 101 745124 90p 101 74193 742 742 74574 90p 14574 90p 1457 74193 742 74573 745133 140p 745133 140p 14539 200p 745133 250p 14194 14194 14194 14194 14194 14194 14194 14194 14194 14194 14194 14194 14194 1419	10777 45p ORP60 120p CP71 180p ORP61 220p CP71 180p ORP61 220p PTO-ISOLATORS D74 130p TIL111 90p CC726 100p TIL112 90p CC726 100p TIL113 30p, Q74 240p TIL16 90p L32 56p TIL220 Red 10p, L23 56p TIL222 Gr 12p L210 Gred 9p TIL222 Kr 14p L210 Kr 12p 16p 30p L216 Red 18p NS65881 570P	operate and simple to build if in the kit form. Its expandability makes it a much more versatile machine than those that cost a lot more. It contains a full sized QUERTY keyboard and a modulator to enable direct connection to domestic T.V. The standard computer has BASIC and ASSEMBLER (machine code) graphics and sound output.
74270 7500 4000 12p 74273 75p 4002 15p 30 74283 75p 4002 15p 30 74284 200p 4006 65p D0 74285 200p 4007 16p D0 74283 100p 4008 60p FN 74293 100p 4009 35p FN 74365 55p 4011 14p MM 74365 55p 4011 14p MM 74365 55p 4013 35p MM	SPLAYS TIL311 600p 175F 200p TIL312/3 110p 176F 200p TIL321/2 130p 1707 TIL321 140p TIL321/2 130p 1707 TR37 140p TIL321 140p 1707 TR06 200p 90p 9368 250p 105507 90p 9370 300p 14N3640 175p UDN6118 3.22p 1AN3640 175p UDN6184 320p UDN6184 320p	Basic 8K + 2K Kit
MAIL ORDERS TO: 17 BURNLEY ROAD SHOPS AT: 17 BURNLEY ROAD, LOND ((Tel: 01-452 1500, 01-450 653 305, EDGEWARE ROAD, LO	D, LONDON NW10 1ED DON NW10 97. Telex: 922800 ONDON W2 Tel: 01-723 0233	PLEASE ADD 40p P&P & 15% VAT (Export no VAT) Government, Colleges, etc. ORDERS WELCOME VISA & ACCESS CARDS ACCEPTED FULL PRICE LIST ON REQUEST

Project

E Auto-Wa

HE's auto-effect takes the work out of wah-wah.

Steve Giles

IT IS some sixteen years since the first guitar processing units became available. Those first effects units paved the way for controlled distortion and sophisticated filtering systems. Eventually, the development of phasers and flangers, in the seventies, gave the musician versatility and control from circuitry entirely within the unit's case. Other effects, like the wah-wah pedal, have external controls (a foot pedal attached to a pot which sweeps the filter up and down). Phasers and flangers are voltage controlled, by a slow oscillator, to provide their characteristic cyclic sweeping effect. So, no matter how hard the strings are plucked, the sound processing remains the same. This led to a desire for some additional responsiveness and, towards the end of the 1970s, guitar processing units appeared which were triggered by command signals from the guitar. This is similar to the way commands from a keyboard synthesiser can trigger envelope generators when a key is played. Of course, in the case of a guitar, this occurs when a string is plucked. The HE Auto-Wah is one such 'guitar triggered' effects unit. It can be built for a fraction of the cost of similar commercial units and will process signals in a number of interesting ways.

The usual circuit for a device of this type first feeds the guitar signals through an envelope follower. This produces a DC voltage that corresponds to the overall amplitude of the output from the instrument strumming harder produces a higher DC output voltage. This feeds a comparator which goes high when the envelope follower voltage exceeds a certain threshold. It then drops back to zero when the envelope drops below this threshold. However, there is a problem in the case of guitar notes. Although the initial peak of a note will be more than sufficient to trigger the comparator, as the amplitude falls, there may be one or two extra peaks among the generally decaying level. These cause the envelope voltage to momentarily rise and retrigger the comparator. This is illustrated in Figure 1 which shows two additional peaks after the envelope voltage has fallen below the comparator threshold. A considerable amount of circuitry is necessary to minimise such false triggering. Apart from being outside the scope of this article, it was not too much of a problem with our prototype unit, which simply used a high gain input amp to trigger a comparator. This allows the production of a new 'frequency-band' sweep each time a note is played (dependent on the

settings of the sweep controls), so long as you don't pick too quickly.

With such sudden changes of state a high output or zero - it's important to ensure that a complete filter cycle sweeps smoothly across the frequency range. To do this we used a field effect transistor, as a variable resistor, to control a bridge-T filtering network around an op-amp. By carefully adjusting the threshold control, it's possible to play chords with virtually no false triggering and produce quite a deep wah-wah effect.

Circuit Description

The circuit of Figure 2 has two basic sections, one consisting of 1C1, Q1 and Q2 to produce the control voltage,

and the other formed by IC2 and Q3 the inverting bandpass filter. The signal is fed to IC1a, a non-inverting amplifier, whose gain is set at a high level by a large feedback resistor (R3). This ensures the unit functions properly from even low output guitars. The output from IC1a is then fed to pin 5 of IC1b via R4, where threshold control RV1 sets the point at which it will be triggered by 1C1a. The output from the comparator is rectified by D1 and passed to emitter follower Q1 (via R6) after charging C4, which is in parallel with R15. When IC1b goes high, it is followed by Q1, providing a smooth charging action on C2 until the emitter voltage is attained. At this point, C2 discharges through R7, RV2 and RV3 to the 0 V rail. The voltage level for Q1 is set by RV2, since it controls the point at which C2 begins to discharge. The ramp voltage on C2 is fed to RV4 and also via R9 to an inverter, based around Q2. The inverted signal goes to the other end of RV4, which acts as a balance control to provide some control over the shape of the envelope. The voltage at RV4's wiper is then passed to the gate of Q3, a field effect transistor (FET), which operates as a part of the input, via C8 and R17. In this way the signal is band-pass filtered, with C5 and C6 chosen for optimum sound effect. These two capacitors determine which narrow band of the guitar signal is boosted. This band is moved up and down the audio spectrum by varying the drainsource resistance of Q3 - producing the familiar wah-wah effect. The voltage fed to Q3's gate is therefore affected by the setting of RV4, which sweeps the filter from the bass or treble end. Since this type of FET requires a control voltage negative to half the supply rail, the series combination of R14 and RV5 provide a bias to shift the gate voltage between 0 V and half the supply.

Filter decoupling is provided by C7

Auto-Wah

Figure 3. View from the component side of the PCB.

and attenuated by RV6, allowing the output to match the input level. As a single-ended supply is used, R12 and R13 set the mid-supply voltage, which is by-passed by C3. Current consumption is rather high at 12.5 mA, so we recommend you use a long-life (alkaline) PP3 type battery for extended use.

Construction

Referring to the component overlay diagram of Figure 3. Begin by soldering the two wire links and resistors. Next, the capacitors, making sure that correct polarities are observed for the tantalum types. Now, assemble the three transistors and the diode (D1). You must ensure these are placed with their leads in the proper positions. The diode must have its banded end (cathode) nearest R15. Transistor Q2 needs its base lead bent to fit the right

Parts List

RESISTORS (All ¼ W, 5%, Carbon)

R1,5,8,9	. 100k
R2	. 270k
R3	.5M6
R4,14,15	10k
R6	3k3
R7	4k7
R10	22k
R11	1k2
R12,13	47k
R16	1M
R17	470k

POTENTIOMETERS

RV1,5	
RV2,4	100k linear carbon
RV3	10k linear carbon
RV6	10k sub-miniature preset

CAPACITORS

C1,8 100n C280 polyester C2,3 .. 10u 10 V radial electrolytic C4,7 .. 2u2 10 V radial electrolytic C5,6 6n8 polycarbonate (metallised)

SEMICONDUCTORS

IC1	. RC4558 dual op-amp
1C2	
Q1,2	2N5088 silicon NPN
	transistor
Q3	2N3819 N-channel FET
D1	1N914 silicon diode

MISCELLANEOUS

SK1 (SW1)..... ¼'' jack socket with make contacts SK2 ¼'' jack socket SW2 push-to-make switch B1 ... PP3 9 V alkaline 'Long Life' Battery

Case (RS 508-201), PP3 battery clips, 8-pin DIL socket, collet knobs (3 off), shallow knobs (2 off), short standoffs (4 off), PCB, solder, wire, etc.

positions; the other two transistors fit without changing the position of any leads. The IC's are not fitted yet, but if you are using sockets these can be soldered into place, ready to take the IC's.

Lastly, wire up the five pots, two sockets and footswitch — don't forget the battery connector. The (red) positive wire from the connector, is soldered direct to the PCB. The negative (black) wire is taken to one earth tag on the input jack. The other earth tag is connected to the board so that the battery is only switched on when a jack-plug is inserted.

To make sure you have the leads connected to the right tags, put a standard jack-plug into the input socket. This should push the earth connector to link the two earth tags together. If your jack socket has 'break' rather than 'make' contacts, you will have to bend the short tag connector backwards and over the top of the other one. Of course, this is avoided if you buy a socket with 'make' contacts, in the first place.

When you have completed all the off-board wiring, it only remains to plug in the ICs and switch the unit on by inserting a jack-plug into the input socket. However, before starting to play with the effect, its a good idea to check on some voltage readings. These are shown on the circuit diagram (Figure 2), and apply when no input signal is present. The control settings are as follows: RV1, RV4 and RV5 full rotation; RV2 and RV3 midway along the track. It is essential you set the pots in this way, since some of them have a large effect on quiescent voltages. One final point to note is that readings must be taken using a highimpedance DC meter.

If everything seems OK, you can hook the output up to an amplifier and set RV4 for maximum downwards sweep. Pluck a string on your guita. gently, so as not to trigger the comparator, and set RV5 at the base end of the filter's passband. Now pluck the string hard and the filter should sweep from treble to bass.

Now try setting RV4 at the other end — this point may lie halfway along its track. You will then hear the pass-

Figure 4. The Internal wiring will be neater if sections of 2 and 3-core strip cable are used.

band sweep from bass to treble. Somewhere close to the mid-setting of RV4, the filter acts in a confused manner, giving some very interesting effects, especially to chords. Altering RV3's setting changes the width of the sweep and produces a gentler effect.

However, the most effective way of setting up the unit is to adjust RV2 and RV3 to their minimum rotations. Then, with RV4 set about two-thirds along it's travel and RV1 full-on, adjust RV5 until the unit produces a wah-wah sound. Finally, turn back RV5 so that triggering only occurs as you pluck the string. Once this is done, RV1, and RV5 can be left alone while you 'play' with the others.

After getting used to the various control settings, drill holes for the pots,

sockets and footswitch in the case. Our prototype used short 'stand-offs' to secure the PCB. With the unit fully assembled, you can mark the positions of the threshold and bias controls, as necessary. However, the bias control can still be adjusted to produce some weird variations to the basic sound. It's really up to you to discover just how versatile this unit is. It is also possible to alter the basic effect by changing certain component values. For instance, for a less pronounced bass response, change C8 to a smaller value (say 10n). The mid position of RV4 will give different effects if R10 is changed. Lastly, a different filter response will be achieved if the values of C5 and C6 are changed - try 10n for starters.

the Auto-Wah.

It's the chance every constructor wants

E CASE

POWER AMPS

SEND COUPON (NO STAMP NECESSARY) FOR YOUR FREE I.L.P. CATALOGUE AND OPEN UP TO A NEW WORLD OF QUALITY & VALUE It's something you have always wanted....something to build your equipment into that's smart, modern, strong, adaptable to requirement and not expensive. The 'UniCase' is yet another triumph of I.L.P. design policy. It presents totally professional appearance and finish, ensuring easier and better assembly to make it equal to the most cxpensive cased equipment. The all-metal 'UniCase' is enhanced by precision aluminium extruded panels engineered for speedy and perfect aligned assembly within a mere five minutes. Designed in the first case to accommodate I.L.P. power amps with P.S.U's, the range will shortly be extended to house any other modular projects.

WHAT WE DO FOR CONSTRUCTORS

Our product range is now so vast we cannot possibly hope to show it all in our advertisments without overcrowding or abridging information to the point of uselessness. So we have devised a solution which we invite you to take advantage of without delay. ALL YOU NEED DO IS FILL IN AND FORWARD THE COUPON BELOW TO RECEIVE OUR NEWEST COMPREHENSIVE I.L.P. CATALOGUE POST FREE BY RETURN. It gives full details of all current I.L.P. products for the constructor together with prices, full technical and assembly details, wiring and circuit diagrams etc. and it's yours, FREE. You don't even have to stamp the envelope if you address it the way we tell you.

FREEPOST 6

GRAHAM BELL HOUSE, ROPER CLOSE, CANTERBURY CT2 7EP Telephone Sales (0227) 54778 Technical Oniy (0227) 64723 Telex 965780 FREEPOST

Mark your envelope clearly FREEPOST 6 and post it WITHOUT a stamp to I.L.P. at address above. We pay postage when your letter reaches us.

Name:

Address:

To: I.L.P. ELECTRONICS LTD. PLEASE SEND ME I.L.P. CATALOGUE, POST PAID BY RETURN

I HAVE/HAVE NOT PREVIOUSLY BUILT.WITH I.L.P. MODULES

I.L.P. products are available also from Henry's, Marshall's, Technomatic & Watford.

Did you know

I.L.P. are the world's largest designers and manufacturers of hi-fi audio modules?

I.L.P. pioneered encapsulated power amps and pre-amps for enhanced thermal stability, mechanical protection and durability?

There are TWENTY power amplifiers from 15 to 240 watts RMS including the very latest super-quality Mosfets to choose from?

TWENTY pre-amp modules allow you to incorporate exciting professional applications to your equipment never before available to constructors and experimenters?

I.L.P. are suppliers to the B.B.C., I.B.A., N.A.S.A., British Aerospace, Marconi, Racal, Ferranti, G.E.C., Rolis Royce etc?

Goods are despatched within 7 days of your order reaching us and covered by our 5 year no-quibble guarantee?

Famous Names

Sebastian De Ferranti

The founder of one of Britain's leading technological organisations.

BORN IN LIVERPOOL in 1864, Sebastian Ziani de Ferranti was a direct descendant of a Doge of Venice, Sebastian Ziani, one of the more respected and influential Doges during the twelfth century. The family later added 'Ferranti' to the name during the eighteenth century. His father owned a photographic studio in Liverpool, while his mother was a talented concert pianist who gave recitals all over Europe.

Sebastian showed scientific tendencies at a very early age and, while still at school, he devised an electric arc lamp and generator, the forerunner of a machine he was to develop later.

He left University at 17 and went to London where he was given employment by the Siemens Company, at Woolwich, for £1 a week. Here, he was asked to assist Sir William Siemens himself in research work and superintended the installation of electric lighting plants. He did not stay with Siemens for long, however. His potential was quickly recognised by a Mr Alfred Thomson, a photographer, and Mr Francis Ince, a lawyer with interests in electrical work. They persuaded Ferranti to leave Siemens and form a company, 'Ferranti Thomson and Ince Ltd', to manufacture an alternator with an ingenious zig-zag armature which Ferranti had designed himself. This was a most efficient machine, with a much greater power output than others of the same size and weight, at the time. It was found, however, that the generator which Ferranti had patented, with Alfred Thomson, had very similar features to a machine designed by Sir William Thomson (later Lord Kelvin). The machine became known as the Ferranti-Thomson dynamo and firmly established a reputation for the young engineer.

The company broke up in 1883, so Ferranti formed his own company, based in a small workshop in Hatton Garden, London, where he continued his work on electricity meters. The new company expanded quickly with products such as dynamos, meters, transformers, power switches and fuses. Ferranti's design and development of accurate meters for the measurement of electricity was a great asset to the new, fast growing technology. At the time, much of London was still lit by gas, oil and candles.

Battle of the Systems

Electric lighting was a rare sight and there was great controversy between DC and AC systems. Ferranti, who was fast becoming an expert on AC, was approached by the proprietor of the Grosvenor Gallery, in London, to review a small installation which had been in-

stalled to enhance the display of the exhibits. The small plant had become so successful that a profitable business had been formed to supply neighbouring customers. The demand for electric lighting was so great, though, that the system was soon overloaded and in need of urgent redesign. As a result of his advice, Ferranti, at the age of 22, was offered the position of engineer to the Grosvenor Gallery Company, Using transformers and switchgear of his own design, he quickly reformed the entire system, changing from serial to parallel operation, doubling the working voltage from 120 volts to 240 volts and extending the network to cover over 100 miles of streets in just three years.

By now, the controversy over the different supply methods had become known as the 'Battle of the Systems', although the Electric Lighting Act of 1882 had encouraged low voltage DC systems. Ferranti, however, had his mind on bigger and better things. He proposed a large central generating station for transmission of AC at high voltages. These plans were taken up by the Grosvenor Gallery Company and, in 1887, the London Electric Supply Company Ltd. was formed to set up a large generating plant at Deptford — with Ferranti as chief engineer.

Ferranti was responsible for the whole venture, from the design of the building, its architecture and materials, the generating plant itself, transformers, switchgear, meters and supply cables.

The Deptford Experiment

The Deptford site was ideal, as there was easy access by road, rail and water for the supply of materials, equipment and coal. His decision to transmit at 10,000 volts was received by many as highly dangerous and foolhardy, but Ferranti's solution was to use a specially designed underground cable with concentric conductors and an outer sheath connected to earth. Unfortunately, this was contrary to the Board of Trade Regulations but, so convinced was Ferranti of the correctness of his idea, that he disregarded the Regulations and pressed on. Fortunately, his courage and determination won the day and he laid down the first, safe system for high voltage distribution.

He made the cables, in 20 foot lengths and they consisted of hollow copper tubes insulated with wax impregnated paper; the outer cable was wrapped around the paper and the two were contained in a protective iron tube, filled with molten wax forced in under pressure. To prove the safety of his system Ferranti organised a demonstra-, tion where his foreman held a metal chisel, in his bare hands, over a live cable while an assistant hammered the chisel through the cable using a sledgehammer. He was protected by fuses and switchgear designed by Ferranti and so, as the chisel pierced the cable, no harm was brought to man or machine. According to the story, somebody asked the foreman if he had been afraid of the possible consequences; his reply was, "Yes, my assistant had never used a

sledgehammer before!".

In 1889, the Deptford generating station was visited by Thomas Edison and, although he was the leading exponent of the DC system, he was very impressed with Ferranti's work and surprised at the advances made with AC transmission.

Generation of electricity from Deptford began in 1891 and the two cables laid between Belvedera Road and the Grosvenor Gallery, over Charing Cross Bridge, remained in use until 1933 when the whole network was finally closed down to make way for more modern systems.

After the opening of the Deptford station, Ferranti went back to manufacturing again and set up a business in London to continue production and development of generators, transformers, switchgear and meters. By 1896, the company acquired new premises at Hollingwood, in Lancashire. Soon he employed over 700 workers and enjoyed a profitable business from his new designs and developments. His engineering interests were many, outside the field of electrical work, and some of his major ventures included turbines, cotton spinning gyroscopes and radio transformers.

Ferranti had been elected a member of the I.E.E. (Institute of Electrical Engineers) in 1891 and he became President of the Institute during the year 1910/11. He received the degree of Doctor of Science of the University of Manchester in the following year. Ferranti died in 1930, at a hospital in Switzerland. His restless mind, however, was active to the last and he was described by many of his contemporaries as both a visionary and a practical engineer.

BIBLIOGRAPHY

The Life and Letters of Sebastian Ziani de Ferranti by G.Z. de Ferranti and R. Ince.

Pioneer of Electric Power Transmission — An Account of Some of the Early Work of S. de Ferranti 1864–1930 by S.Z. de Ferranti.

S.Z. de Ferranti – His Influence Upon Electrical Development by W.L. Randell.

Ferrantl Company Brochure Sept. 1979.

29

18 - 1341

Breadboards

THIS MONTH in order to revive the popular 'Short Circuits', we are beginning a new series of circuits for the experimenter's among you. The idea is that we will present a circuit design that works and is easy to put together, but which can be modified as required. In order that you can play around with the designs, we've provided a breadboard (hence the name) layout. These layouts are by no means critical and you may make up your own, if you wish. One last point: the circuits presented here are for experimentation and development only. We cannot offer any technical back-up or further advice about any of them. However, each has been tested in its original form, and will function as stated in the accompanying text. Also, we will accept designs from readers for possible publication, so if you've got a particular circuit that you'd like to see in Hobby Electronics, send it right away mark the envelope 'Breadboards' and enclose an SAE if you want your design returned.

To start the series, we're providing two circuits based on that most widely used of all ICs, the 741. The first design is for an ultra-simple square wave generator. It produces quite a well defined square wave at the lower end of the audio spectrum. Possible uses include; calibration of test gear, tone generators for models and toys, and as a pulse generator.

The second circuit uses two 741s in a 14-pin DIL package designated a 747 (not a Boeing). One op-amp provides the rectification and the other is a simple mixer to allow both halves of the wave to be added together. One novel application for this arrangement is as an audio frequency doubler. With the addition of decoupling and stabilising components, some quite unusual 'musical' effects can be produced.

Square Wave Oscillator

IF you thought that the only way of producing a square wave was to use a 555 timer IC, then here's a circuit to change your mind. It's a square wave generator requiring only five components, including the IC – a 741 op-amp. The circuit consists of a Schmitt Trigger with positive feedback provided by the 10k resistors. The timing components, C1 and R3, control the frequency of oscillation and this can be varied over quite a large range (50 Hz to about 7 kHz) before the shape of the wave is no longer square.

If you monitor the voltage at pin 2, it can be seen to follow an exponential charge/discharge pattern, determined by the RC constant of R3 and C1. The mark-to-space ratio can be altered by placing a 10k resistor and a series signal diode in parallel with R3. This makes C1 discharge 11 times faster than it charges up. Current consumption is about 1.5 mA per rail.

Circuit (top) and Veroboard layout (bottom) of the square wave oscillator.

Full Wave Rectifier/ Frequency Doubler

THE EASIEST way of converting AC into something resembling DC is to use a bridge rectifier followed by a large smoothing capacitor. Without the capacitor, the resulting waveform consists of positive half waves, at twice the original AC frequency. This is fine for typical power supply voltages; but at lower levels a problem arises. The voltage drop across the diodes

Rectifier/doubler layout.

(about 600 mV for silicon) becomes significant and the usual bridge circuit is unsuitable. A simple way to overcome this problem is to use an opamp, like IC1a, in the circuit shown. This consists of an inverting amplifier with negative feedback (pin 12 to pin 1), so there is a 'virtual earth' at pin 1. When the input is positive, D1 maintains the virtual earth (D2 is reverse biased) by conducting and leaving the output 'looking at' 100k to the O V rail. When the input goes negative, D2 is turned on and D1 turned off. The output is then the exact inverse of the input - positive going half sinewaves. We now have half wave rectification from a low-level AC input. By adding the original waveform to the output in the right amount, the result is full wave rectification (with some distortion). This mixing is carried out by the summing amplifier IC1b.

If R3 and R4 are replaced by a 100k pot, the output is fully adjustable from half wave rectified, through full wave to a sloping edge square wave dependent on the input level. Current consumption is around 2 mA per rail.

Circuit of the full wave rectifier/doubler

MASTER ELECTRONICS NOW! The PRACTICAL way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course. You will do the following:

- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., Hi-Fi and microprocessor/computer equipment.

New Job? New Career? New Hobby? Get into Electronics Now!

Please send your brochure without any obligation to NAME ADDRESS POST NOW TO. POST NOW TO. POST NOW TO. ADDRESS POST NOW TO. POST NOW

Send for my CATALOGUE ONLY 75p (plus 25p post/packing)

DAY STHEFTIME

DOUNC

My VAT and post/packing inclusive prices are the lowest. All below normal trade price – some at only one tenth of manufacturers quantity trade. See my prices on the following:

CAPACITORS . . . ELECTROLYTIC; CAN, WIRE END, TANTALUM, MULTIPLE, COMPUTER GRADE, NON POLAR, PAPER BLOCK, CAN, POLY, MICA, CERAMIC. LOW AND HIGH VOLTAGE, RESISTORS, 1/8th WATT TO 100 WATT: 0.1% TO 10% CARBON, METAL AND WIRE WOUND + NETWORKS. FANS, BATTERIES, SOLENOIDS, TAPE SPOOLS, VARIABLE CAPACITORS AND RESISTORS, TRIMMERS, PRESETS, POTS . . . SINGLE, DUAL, SWITCHED, CARBON, CERMET AND WIREWOUND, SINGLE OR MULTITURN, ROTORY AND SLIDE. DIODES, RECTIFIERS, BRIDGES, CHARGERS, STYLII, SOCKETS, PLUGS, RELAYS, TRANSISTORS, IC'S, CLIPS, CRYSTALS, ZENERS, TRIACS, THYRISTORS, BOXES, PANELS, DISPLAYS, LED'S, COUPLERS, ISOLATORS, NEONS, OPTO'S, LEADS, CONNECTORS, VALVES, BOOKS, MAGAZINES, TERMINALS, CHOKES, TRANSFORMERS, TIMERS, SWITCHES, COUNTERS, LAMPS, INDICATORS, BELLS, SIRENS, HOLDERS, POWER SUPPLIES, HARD WARE, MODULES, FUSES, CARRIERS, CIRCUIT BREAKERS, KNOBS, THERMISTORS, VDR'S, INSULATORS, CASSETTES, METERS, SOLDER, HANDLES, LOCKS, INDUCTORS, WIRE, UNITS, MOTORS, COILS, CORES, CARTRIDGES, SPEAKERS, EARPHONES, SUPPRESORS, MIKES, HEATSINKS, TAPE, BOARDS and others.

Prices you would not believe before inflation! BRIAN J. REED TRADE COMPONENTS ESTABLISHED 25 YEARS 161 St. Johns Hill, Battersea, London SW11 1TO Open 11 am till 7 pm Tues. to Sat. Telephone: 01-223 5016

PRINTED CIRCUIT BOARDS (PCBs) for HE projects have often represented an obstacle for our readers. Some of you, no doubt, make your own but our PCB Service saves you the trouble.

NOW you can buy your PCBs direct from HE. All (non-copyright) PCBs will be available automatically from the HE PCB Service. Each board is produced from the same master as that used for the published design and so each will be a true copy, finished to a high standard.

Apart from the PCBs for this month's projects, we are making available some of the popular designs from earlier issues. See below for details. Please note that only boards for projects listed below are available: if it isn't listed we can't supply it.

April 80 Speed Controller For R/C Digital Frequency Meter Hobbycom: Two-wire Intercom (Set of Two) Electronic Ignition (CD)	£1.60 £2.95 £3.98 £2.98	December 80 Stereo Power Meter Digital Speedo (set of two) January 81 Car Rev Counter	£2.83 £4.67 £2.99	October 81 Combination Lock November 81 Sound Torch (Set of Two)	£2.65 £5.31
May 80 5080 Preamplifier June 80 Fog Horn Egg Timer July 80 18 W + 18 W Car Stereo Booster (two required for stereo) each	£4.67 £1.87 £2.11 £1.60	February 81 Heartbeat Monitor Audio Signal Generator March 81 Steam Loco Whistle April 81 Super Siren Russian Roulette Game	£2.53 £2.47 £2.65 £1.97 £1.60	December 81 Pedalboard Organ January 82 Intelligent NiCad Charger February 82 Relay Driver Mast-Head Amp	£5.97 £3.04 £2.20 £1.31
August 80 Equitone Car Equaliser Pass The Loop Game September 80 Auto Probe Guitar Phaser Development Timer Bench PSU October 80 Nobell Doorbell Intruder Alarm Tug O' War	£2.39 £2.64 £1.67 £1.97 £1.80 £2.93 £2.64 £2.51 £2.65	May 81 Voice Operated Switch Organ 1 June 81 Envelope Generator Organ 2 July 81 Organ 3 Organ 4 Ultrasound Burglar Alarm August 81 RPM Meter	£1.67 £4.64 £1.87 £2.53 £6.00 £6.00 £2.53 £1.77	Digital Dice April 82 Digital Capacitance Meter Dual Engine Driver Bike Alarm May 82 Digital Thermometer (Set of Two) Echo-Reverb Cable Tracker June 82	£1.95 £4.73 £3.37 £2.64 £4.73 £3.37 £2.64
November 80 Memory Bank Synth Mainboard PCB Keyboard PCB Party Grenade (set of three) Double Dice	£3.31 £3.60 £3.47 £2.95	Thermometer September 81 Power Pack Reaction Tester Game 'Diana' Metal Detector	£1.67 £1.69 £1.71 £3.31	Power Supply Design Auto-Wah Auto Greenhouse Sprinkler	£2.64 £3.58 £3.88

PLACE an order for your PCBs using the form below (or a piece of plain paper if you prefer not to cut the magazine), then simply wait for your PCBs to drop through your letterbox, protected by a Jiffy bag.

HE PCB Service, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE			
I enclose a cheque/Postal Order made payable to ASP Ltd, for the amount shown below Price.	Boards Required	Price	
OR			
I wish to pay by Barclaycard. Please charge my account number			
OR VISA			
I wish to pay by Access. Please charge to my account number			
······			
SIGNATURE			
NAME			
(BLOCK CAPITALS)			
	Add 45pp & p	0.45	
Please allow 21 days for delivery	Total Enclosed £		

Ready made PCB s

For Readers!

£2.65

All prices include VAT at 15% - just add 50p post

1982/3 CATALOGUE

Bigger! Better!! Buy one!!! Only 75p inc. post

Look what you get!!

LOOK What you getti Vouchers worth 60p Ist class reply paid envelope Wholesale list for bulk buyers Bargain List with hundreds of surplus lines Huge range of components Low, low prices ent free to schools, colleges etc.

A recent purchase of Raytheon IC's included a large quantity of 14 DIL 741 op-amps, so take advantage while stocks last! 12 741's £1.00

SOLENOIDS AND RELAYS

 Solenoid rated 48V at 25% duty cycle, but work well on 24V (700gm pull, 10mm travel) push or pull 27 x 18 x 15mm 55p
 Takes about 20 mins. £2.95

 W921 Solenoid rated 48V at 25% duty cycle, but work well on 24V (700gm pull, 10mm travel) push or pull 27 x 18 x 15mm 55p
 The sabout 20 mins. £2.95

 W922 Mains 240V ac solenoid, 10% duty cycle, push or pull, 16mm travel. 50 x 20 x I6mm. Only £1.50
 K517 Transistor Pack. 50 assorted full spect marked plastic devices PNP NPN RF AF. Type numbers include BC114, 117, 172, 182, 183, 198, 239, 251, 214, 255, 320, BF198, 355, 350, BF198, 355, 350

Imm. Unity £1.50
 Wa95 9V DC relay 500R SPC0 28 × 24 × 19
 Sop
 W733 11 pin plug in relay, 240V ac, 3PC0 54
 X 30 × 18mm, only 84p, 10/£7.00
 W838 700R 24V 4PC0 "continental" relay 3x
 X 30 × 18mm, only 84p, 10/£7.00
 W843 73R 5-10V relay, SP 3A contact, PCB
 W930 Omron LY4 mains relay, 4PC0 54
 Mayar 37R 5-10V relay, SP 3A contact, PCB
 W930 Omron LY4 mains relay, 4PC0 54
 Marked plastic devices PNP NPN RF AF. Type and leads for PCB mounting. Enormous several megohms. Only 250p. 5000 £10, 20,000
 W930 Omron LY4 mains relay, 4PC0 54
 Marked plastic devices PNP NPN RF AF. Type and the several megohms. Only 250p. 5000 £10, 20,000
 W930 Omron LY4 mains relay, 4PC0 54
 Marked plastic devices PNP NPN RF AF. Type and the several megohms. Only 250p. 5000 £10, 20,000
 W930 Omron LY4 mains relay, 4PC0 54
 Marked plastic devices PNP NPN RF AF. Type and the several megohms. Only 250p. 5000 £10, 20,000
 W930 Omron LY4 mains relay, 4PC0 54
 Marked plastic devices PNP NPN RF AF. Type and the several megohms. Only 250p. 5000 £10, 20,000
 K524 Resistor Pack. 1000 - yes, 1000 ¼ and yes wath copped leads. All new full spec. A motor of the several megohms. Only 250p. 5000 £10, 20,000
 K524 Resistor Pack. 20 different assorted switches - rocker, 31de, push, rotary, toggle, K521 Heatshrink pack, 5 different diameters each Stabilid enable us to offer these at a colorent dimeters and stabilid parts and bat claim pointed up, decelerating engine noise when moduli is pointed up, decelerating noise when prointed lastic devices this packer and bat claip index parts and bat c

'SIMON'

SIMON' The object of this game is to repeat correctly a longer and longer sequence of signals in 3 different games. (Instructions included). PCB contains chips, switches, lampholders and lamps, and is tested working, complete with speaker. Needs PP3 and 2 × HP11. PCB size 130 × 130mm, Only £3.95

'COMPUTER BATTLESHIPS'

Probably one of the most popular electronic james on the market. Unfortunately the design nakes it impractical to test the PCB as a working nodel, although it may well function perfectly.

These are a small PCB with a micro-processor chip, designed to plug in to the microvision console. Only snag is we don't have any consoles! However, they can be used as an oscillator with 4 different freq. outputs simply by connecting a battery and speaker. Tested and working is an osc) with pin out data. PCB size 72 × 60mm.

1W AMP PANELS

A011 Compact audio amp intended for record player on panel 95 × 65mm including vol control and switch, complete with knobs. Apart from amp circuitry built around LM380N or TBA820M, there is a ed control circuit using 5 transistors. operation, connexion data supplied. **ONLY £1.50**.

ELECTRO-DIAL

5V 3A REGULATED PSU KIT A197 All components + heat sink to build this simple yet useful power supply. A regulated output of 5V atu pt o 3A for just 52.50. Suitable transformer (9V 3A) £4.85 741 OP-AMP - 12 for £1 will the electricate of tacks close. These can be used to operate a relay or solenoid etc. Overall dia 65mm × 60mm deep. Finished in bright chrome. With a combination the price is **13**.95 Also available without combination, but instructions are provided on how to find it. Takes about 20 mins. **£2**.95

LIE DETECTOR

 model, although it may well function perfectly.
 LIE DETECTOR

 Instead we have tested the sound chip, and sell the board for its component value only (PCB may be chipped or cracked): SN76477 sound IC; TMS1000 u-processor; batt clips, R's, C's cmal changes in skin resistance. Full details of how to use it are provided, together with a criccuit diagram. Supplied complete with probes, leads and conductive jelly. Needs 2 x 4% V batteries. Overall size 155 x 100 x console. Only snag is we don't have any console. However, they can be used as an socillator with 4 different freq, outputs simply by

10W AMP PANEL

 Neat board 115 x 62mm with Class B output, Uses 2 x 2N5293, 2 x BFY50, BFX29, Supph Cost Logic 5 now sold out - but we have some PCB's with 10 LED's and chip on, but no keyboard. Not tested, 50p
 Neat board 115 x 62mm with Class B output, Uses 2 x 2N5293, 2 x BFY50, BFX29, Supph can be either 36V or 18-0-18V Input sensitivity IV for 10W output. Small H/S on board: 12:95. Suitable transformer, bridge rect, smoothing and 0/p capacitor: £5:50. Supplied with circuit/connexion data.

£1 BARGAIN PACKS

K201 25 1000µF 6.3V PC mntg electrolytics K202 25 330µF 10V PC mntg electrolytics K203 20 22µF 50V radial lead electrolytic caps K204 16 47µF 50V radial lead electrolytic caps K205 40 0.33µF 50V radial lead elec, caps K206 40 0.47µF 50V radial lead elec, caps K207 15 in line fuseholders, 1 ¼ in for cars etc K208 15 push-on push-off 'table' lamp switch

(0925) 64764

Building Blocks

WITH SUMMER fast approaching (hopefully), we thought you might like something to help while away those long evenings. What better way than to get acquainted with the more technical details of some ICs used in our projects? In this and subsequent issues, we are including a page or two on the workings of various ICs and other interesting semiconductors.

Out For The Count

The 4017 is a fairly cheap, but very useful little chip. As a decade counter or dividing network, it has obvious applications in counting circuits; several ICs can be wired in cascade (one following the other) to produce the count required. However, a more exciting feature of this chip is its ability to drive LEDs to give novel opto-effects, or to drive astables to produce musical tone generators rather like those musical watches you can buy.

Figure 1. The pin-outs for the 4017 decade counter/divider IC

The basic pin layout for the IC is shown in Figure 1. As you can see, the arrangement of the outputs is not in the same order as the pins (if anyone knows why, please let us in on the secret). This means you need to be careful about 'what goes to where'. The way this IC works is quite simple

and can best be understood by referring to the timing diagram of Figure 2. A clock signal is fed into pin 14 (the clock input)

outputs from the 40.17.

Hobby Electronics, June 1982

Figure 3. Circuit to provide a 'one-tofive' count. The reset pulse comes from pin 1, so the display keeps repeating.

which is then divided to produce ten separate outputs. These run sequentially from 'O' to '9', each at one-tenth of the clock frequency (assuming the reset is enabled at the end of every tenth pulse). If the clock frequency is set low enough (around one pulse per second) then it's possible to create some interesting displays with LEDs on the outputs. These are wired in series with a resistor and then to ground. This circuit produces the familiar light chaser. Another application is shown in Figure 3, where five LEDs are used to provide a one-to-five second count.

The counter can be prevented from repeating a cycle by simply providing a high input to the clock inhibit pin. This is done by taking the output from the final pin in the sequence back to the inhibit pin. The sequence can still be re-started, though, by momentarily connecting pin 15 (reset) to the positive supply. A more tuneful application is to connect up a 555 astable to the decoded outputs, via a resistor chain from pin 7 on the 555. If you set it up properly, you can obtain a sequence of pulsed tones - you can even add a bit of rhythm (man) by missing out one or two of the outputs!

Flippin' Ripple Counters

The versatile count/divide function of the 4017 can be compared to our other device for this month; the 4027 dual J-K flip-flop. The 4027 is a more basic chip than the 4017 and, rather than divideby-ten, it offers a divide-by-two (per flipflop) facility. Figure 4 shows the pin configuration for this IC, which is divided into two identical sections with a shared power supply. The divide-by-two function is achieved by connecting together the 'set', 'reset' pins and taking them to O V, then taking the 'J-K' inputs up to the positive supply. Incidentally, the clock signal must have a fast rise and fall time (<5 uS) for reliable operation. When the J and K inputs are held high (the input frequency being divided by two), the output states of Q and Q will be changed or 'flipped' over. The other input states are shown in Figure 5, but it should be noted that the flipping action only occurs when J and K are both high.

The set and reste inputs operate asynchronously (independently of the clock). This means the outputs are forced into high and low states (set and reset repectively) whenever each set or reset input is taken high (unlike TTL). The 4027 will operate in this mode at frequencies up to 8 MHz.

However, the reason for using this type of circuit in the first place is that some applications (shift registers, for example, which are discussed later) must have no change in the output state whilst the clock pulse is high. In other words, whatever is occurring at the inputs must not affect the output. The system used is rather like a master control, followed by a slave back-up which is only engaged when the clock goes back to zero. This is achieved, within the chip, by using an inverter in series with the slave section; when the clock input is low, the slave is receiving a high level. However, the master section is locked and stores what was left from the last high on the clock pulse. When the clock goes high again, the master circuit is reacting to the 'set/ reset' inputs and when the pulse reaches zero, the Q output is held in the new state. Now the slave can be enabled and it seems, from the output's position, we are changing states on the falling edge of the clock signal. This means the Q output can be in one of four conditions; high, low, unchanged or 'toggled', and it is this which makes the chip so versatile.

dual J-K flip-flop.

One obvious application for a chip which halves a given input frequency is to wire several in series to give division by powers of two -2, 4, 8, 16 etc. The clock signal appears to 'ripple' down the dividing chain, which is why ICs with many such stages are called 'ripple counters' - an example is the 4040, with twelve stages. Another type of counter is known as the 'Johnson' or 'Walking Ring', where the stages are clocked in parallel.

The main reason for using this arrangement rather than the ripple counter, is that parallel clocking of the walking ring' type only produces a single stage of delay, since each stage is clocked simultaneously. This produces clean decoding of signals. A useful consequence of this is in shift register circuits, where signals are transferred down the line — one stage for every rising edge on the clock pulse. HE

-PAK BARGAIN

Pak No. Q13.* 400

400

200

200

150

100

cover your projects

SX10

SXII

SX13

SX14

SX15

0

è

-

1.1.1.1.

2205

"IRRESISTABLE

RESISTOR BARGAINS"

Descripti

Resistors % watt Carbon Resistors

Description Price Mixed "All Type" Resistors E1

EI

£1 £1

13

£1

500

30p

30p

200

20p 20p

each

£12.43 £10

-3.45.6

MWAA

Pre-formed %-% watt Carbon

W watt Carbon Resistors

14 watt Resistors 22 ohm

2m2 Mixed 1 and 2 watt Resistors 22 ohm-2m2 Mixed

Paks SX12-15 contain a range of Carbon Film Resistors of assorted values from 22 ohms to 2 2 meg. Save pounds on these resistor paks and have a full range to

AUDIO PLUGS, SOCKETS

AND ACCESSORIES

25 pieces of Audio Plugs, Sockets and Connectors to include DIN 180°-240°, Inline 3-6 Pin, Speakers, Phono, Jack, Stereo and Mono, etc. etc. Valued at well over EJ normal. Order No. SX25. Our Price £1.50 per pak. Guaranteed to save you money

SX26 3 Prs of 6 pin 240° DIN Plugs and Chassis

SX27 1 x Right Angle Stereo Jack Plug 6.3mm plus

matching metal chassis mounting socket \$128 4 Phono plugs and 2 dual phono connectors \$129 1 x 2 Smm Plug to 3 Smm Socket adaptor. \$131 1 x 3 Smm Plug to 2 Smm Socket adaptor.

MONO PRE-AMPLIFIERS

ouitar pre-amp mixer

500m

Charges

PP319V1

U12(1.5V penlite) U11(1.5V "C") U2(1.5V D')

MM100 suitable for disco mixer. MM100G suitable for

compatible with the AL60, AL80, AL120 and AL250 powe

MM100 Supply voltage 40 65v inputs. Tape Mag P.U. Microphone Max output 500mv _CI243. MM100G Supply

voltage 40.65v inputs: 2 Guitars, Microphones Max output

MW398 NI-CAD CHARGER

Universal Ni-Cad battery charger All plastic case with lift up lid. Charge/Test switch LED

indicators at each of the five charging points

Power

£6.95

POWER SUPPLY OUR PRICE £ 3.25

Fused for safety. Polarity reversing socket

240V AC 50HZ Output

Voltage switch Lead with multiplug

7 5 9 8 12V DC Rating - 300 ma

supply fits directly into 13 amp socket

220-240V AC

Dims -210 x 100 x 50mm

The MM100 and MM100G mono pre-amplifiers are

amplifiers and their associated power supplies.

Quantities approximate, count by weight

BRAND NEW LCD

and instructions included

Polarity indication Negative only

Max indication

Input impedance

Temperature range

AC Voltage 0-200-1000V

0-2 Megohms Acc. 1%

NO. 1402 £5.50

Complete PCB Kill comprise:

ollets & t x tmm Twist bil

Etch Resist Pen

ORDER NO SX81

BI-PAK PCB ETCHANT AND DRILL KIT

Expo Mini Drill 10.000RPM 12v DC incl 3

Sheet PCB Transfers 210mm x 150mm

hib pack FERRIC CHLORIDE crystals

Full instructions for making your own PCE

Retail Value over £15.00 OUR BI-PAK SPECIAL KIT PRICE £9.75

3 sheets copper clad board 2 sheets Fibreglass copper clad board

Acc 1 2% DC Current 0 200uA 0-2-20-200mA 0-10 A Acc 1.2%

BI-PAK VERY LOWEST POSS PRICE

Resistance 0-2-20-200K ohms

Zero adjust

Sampling time

Power Supply

Consumption

Size

RANGES DC Voltage 0-200mV 0-2-20-200-1000V. Acc 0.8%

1

BE 188

DISPLAY MULTITESTER.

3 1/2 digit * 16 ranges plus hFE test facility for

LCD 10 MEGDHM INPUT IMPEDANCE

PNP and NPN transistors *Auto zero, auto polarity *Single-handed, pushbutton

operation "Over range indication *12.5mm

Fust circuit protection * Test leads, battery

1999 or - 1999

10 Megohms

250 milliseconds

- 5°C to 50°C

155 x 88 x 31mm

£35.00 each

The Third and

Fourth Hand...

.... you always need but have never got "until now

This helpful unit with Rod mounted

horizontalty on Heavy Base. Crocodile clips

give infinite variation and positions through

attached to rod ends. Six ball & socket joints

360° also available attached to Rod a 2 % diam

magnifier giving 2.5 x magnification. Helping hand unit available with or without magnifier

Our Price with magnifier as illustrated ORDER

Without magnifier ORDER NO T400 £4.75

Automatic

battery

20mW

Positive readings agnear without + sign

1 x PP3 or equivalent 9V

(%-inch) large LCD readout * Dioue check

5121 SCREWDRIVER SET 6 precision screwdrivers in hinged plastic case Sizes - 0 8. 1 4. 2. 2 4. 2 9 and 3 8mm £1.75

ST31 NUT DRIVER SET 5 precision nut drivers in hinged plastic case With turning rod Sizes - 3.35 4.4 5 and 5mm \$1.75

5141 TOOL SET 5 precision instruments in hinged plastic case Crosspoint (Phillips) screwdrivers H 0 and H 1 Hex key wrenches 1 5 2 and 2 5mm £1.75

5151 WRENCH SET 5 precision wrenches in hinged plastic case. Sizes: -4, 4, 5, 5, 5, 5 and 6mm £1.75 BUY ALL FOUR SETS 5121-5151 and get HEX KEY SET FREE

HEX KEY SET ON RING. Sizes 1 5 2. 2 5. 3. 4. 5. 5 5 and 6mm Made of hardened steel HX/1 €1.25

MINI VICE

his small cast iron quality made vice will clamp on to any bench or table having a max hickness of 1% The 2% jaws open to max Approx size 80 x 120 x 66mm BI-Pak's Min: Vice at Mini Price only

£2.50 BOFR NO SX82

BI-PAK SOLDER DESOLDER KIT ORDER NO SX80 comprises

1 High Quality 40 watt General Purpose Lightweight Soldering Iron 240v mains inc 3/16" (4 7mm) bit t Quality Desoldering pump. High Suction with automatic ejection. Knurled, anti-corrosive casing and tetion nozzle 1.5 metres of De-soldering braid on plastic dispenser

2 yds (1 83m) Resin Cored Solder on Card 1 Heat Shunt tool tweezer Type Total Retail Value over £12.00 OUR SPECIAL KIT PRICE £8.95

TECASBOTY

The Electronic Components and Semiconductor Bargain of the Year. A host of Electronic components including potentiometers — rotary and slider, presets — horizontal and vertical, Resistors of mixed values 220hms to 2M2 — 1/8 to 2 Watt. A comprehensive range of capacitors including electrolytic and polyester types plus disc ceramics etcetera Audio plugs and sockets of various types plus switches, fuses, heatsinks, wire, nuls/bolts, gromets, cable clips and tyes, knobs and P.C. Board. Then add to that 100 Semiconductors to include transistors, diodes, SCR's opto's, all of which are current everyday usable devices. In all a Fantastic Parcel. No rubbish all identifiable and valued in current catalogues at well ver £25.00. Our Fight Against Inflation Price Beat the Budget JUST £6.50. Down with Depression

SHOP AT BALDOCK ST. WARE, HERTS TERMS CASH WITH DRDER, SAME DAY DESPATCH, ACCESS BAHCLAYCARD ALSO ACCEPTED. TEL (0920) 3182, GIRO 388 7006 ADO 15% VAT AND 75e PER ORDER POSTAGE AND PACKING

get your order even faster. Goods normally sent 2nd

Remember you must add VAT at 15's to your order Total Postage add 75p per Total orde

"CAPABLE

	CAP	ACITOR PAKS"	
ak No.	Qts*	Description	Price
X16	250	Capacitors Mixed Types	El
X17	200	Ceramic Capacitors Miniature	
		Mixed	13
X18	100	Mixed Ceramics 1pf-56pf	EI
119	100	Mixed Ceramics 6801-0.5mf	61
120	100	Assorted Polyester/Polystyrer	ie T
		Capacitors	£1
X21	60	Mixed C280 type capacitors	
		metal toil	13
X22	100	Electrolytics, all sorts	Ē1
X23	50	Quality Electrolytics	
		50-1000mf	13
124	20	Tantalum Beads, mixed	61
Quante	ties approx	umate, count by weight.	
A			

BARGAINS

SX91	20 x Large .2" RED LED	E1
SX42	20 small 125 Red LED's	£1
SX43	10 Rectangular Green LED's .2	£1
SX46	30 Assorted Zener Diodes	
	250mw-2 watt mixed voltages.	
	all coded. New.	13
SX47	4 Black Instrument	
	Knobs-winged with pointer %"	
	Standard screw. Fit size 29 x	
	20mm.	SOp
SX49	20 Assorted Slider Knobs	
	Black/Chrome, etc.	£1
SKBO	12 Neons and Filament Lamps. Lo	W
	voltage and mains - various types and colours - some panel mount	s ing £1
100		

100s of uses — no duds Order No. SX90

5 watt (RMS) Audio Amp

High Quality audio amplifier Module. Ideal for use in record players, tape recorders, stereo amps and cassette players, etc. Full data and back-up clagrams with each module

Specification Power Output 5 watts RMS® Load Impedance 8 16 ohms® Frequency response 50Hz to 25 NHz=3db Sensitivity 70 um for full output © Input Impedance 50k ohms® Size 85 x 64 x 30mm® Total Harmonic distortion less than-5%

BI-PAK'S give away price £2.25

> You could not Build one for this price.

BI-PAK's COMPLETELY NEW CATALOGUE

Completely re-designed. Full of the type of components you require, plus some very interesting ones you will soon be using and of course, the largest range of semiconductors for the Amateix and Professional you could hope to find.

There are no wasted pages of useless information so often included in Catalogues published nowadays Just solid facts i.e. price, description and individual features of what we have available. But remember, Bi-Pak's policy has always been to sell quality components at competitive prices and THAT WE STILL DO.

BI-PAK'S COMPLETELY NEW CATALOGUE is now available to you. You will be amazed how much you can save when you shop for Electronic Components with a Bi-Pak Catalogue. Have one by you all the time—it pays to buy BI-PAK

To receive your copy send 75p plus 25p p&p.

The results of Hobby Electronics' latest survey (the one that carried a grossly distorted caricature of myself on the back - I do not look like that, nor am I in the habit of grovelling, like one of you!) are currently cluttering the already papered floor of the HE office. The results, when they are finally tabulated, should be interesting. One not entirely unexpected result of the previous survey was that most Hobby readers are male (surprise, surprise). That is apparently changing; I've already had one letter, this year, from a charming lady from Portsmouth, so imagine my surprise when I received the following letter shortly afterwards.

Dear Clever Dick,

Your ending to your column in February, ''Grovelling isn't everything'', intrigued me. As a female reader and practitioner of your magazine and an anti-female-libber, I now propose to take extremely unfair advantage of my sex and offer you unlimited kisses (on paper) if you can donate one HE binder to the above address. I possess a total of five HEs but I definitely don't like untidiness about the place, so a binder would be much appreciated. Of course, if you can't send one I will cry. Yours hopefully, Maggie, Biggleswade, Beds.

PS My organ didn't work, either. PPS I enclose a couple of stamps - I believe in going 'Dutch' PPPS I didn't think much of Wilding's cartoons. PPPPS [Here follows an embarrassingly large number of 'Xs']

Don't worry, Maggie. Ladies have been taking unfair advantage of me for years!

Some of the reasons invented to try and coax a binder from my special store are more imaginative than others. Here's a good one!

Dear CD, ''Hello''. Due to unavoidable circumstances, ie my dog ate it, my August '81 edition of HE has gone, never to return. So could you please send me a copy of the wiring for the HE Organ. I enclose a large stamped addressed envelope. J. Pullen, N. Yorks.

PS I've been reading HE since I was eleven so please send me a binder because I started so young and to stop my dog eating my HEs. Great mag, keep it up. PPS Clever Dick for King.

Thank you, thank you, but my natural modesty forbids, you see. I've already decided to send a binder, this month, to Maggie - her stamps are now speeding back to Biggleswade (always assuming the trains are still running) wrapped around one of my precious binders. As a consolation prize, though, I'll send the circuit you need, even though you are supposed to get it from the Backnumbers Department.

When I was an electronics constructor myself (many years ago, of course) I remember that the mechanical details metalwork, lettering and getting a 'professional finish' - were usually the most difficult bits. Now, I have minions who take care of all these details and it's all plastic nów, which is much easier to work than sheet aluminium. However, this letter reminds me of the mechanical problems that still make life difficult for the electronics hobbyist.

Dear CD,

Can you suggest ways for me to cut holes in the boxes that are used for your projects? I have great difficulty with this and regularly make a mess of it. I would be grateful if you could give me some ideas.

Keep up the good work. I'm pleased to see quite a few cheap projects and l will be making the Digital Dice, soon. R. Mitron. Nottingham.

PS Please can I have a binder as I have spent all my money on your Universal Relay Driver (grovel, grovel).

I have suggested to the Ed that this is a good subject for Hobby and he is looking in to it. I'll keep reminding him.

I do enjoy the occasional odd-ball letter; it makes a change from the usual desperate pleas for help and the pathetic grovelling.

Dear Clever Dick,

The circumjacence to which this field of enquiry is intrinsic is sacrosanct to the amplitude that is relevant to this leit-motiv. Professionals have hortated over the denouement of this milieu, but ineffectively. Strategists pontificate the derivative of this, but advocates are unauthorised to evaluate the efficacy of such measures.

The encompassment to which supposition is symbiotic to the relative quantity is apposite to this field of enquiry. Savants have sat in conclave over the contingencies of this situation, negatively. Virtuosos dialogise the consequence of this, but coadjutors are unqualified to assess the advantages of this action.

Yours sincerely, I. McAlpine, Co. Armash, N. Ireland.

PS How about a medium HE T-shirt? They are much cheaper than a binder. It almost makes sense, doesn't it? Doesn't it? Well, all except the PS, then; can't understand that at all.

Finally, this month, I am happy to say that Mr. Lawrence has not suffered greatly from the mistaken advice I passed on to him.

Dear Sir.

I wish to thank you very much for your reply to my letter in the February issue and also for your letter of 15th January. I would also like to thank Mr. Thomas for the enclosed sheet, which has been a great help to me.

The response and the consideration displayed by your magazine has been very much appreciated. A.M. Lawrence, Chessington, Surrey.

I would also like to thank, personally, those many readers who wrote in with advice for Mr. Lawrence. There are far too many to acknowledge individually so thank you, all. 'Bye now.

Project:Music

Paul Coster

STAND inside any large, bare room and you'll notice how sounds tend to linger on after you first hear them. A similar, though less marked, effect occurs in smaller rooms, especially if they contain plenty of hard, bare surfaces (such as a bathroom). This effect is reverberation.

A single pulse of sound, eg a handclap, will send a set of waves out across a room and, if they strike objects in the room, the direction and intensity of the wave will be changed (the intensity of a sound wave is just the amount of energy 'flux' it contains, measured in Watts per square metre). Changes in direction are caused by sound waves being reflected, as light is reflected from a mirror, and it is these reflections which are the main cause of reverberation — if there are no objects to cause reflections, there can be no reverberation!

In most rooms, the 'objects' which are the main reflecting surfaces are, of course, the walls but anything large, in relation to the wavelength of a sound, can cause reflection.

The other important factors in determining the amount of reverberation are the intensity of the reflections themselves (if most of the sound is absorbed by the walls, the reflected sound wave will be too weak to carry back to a listener), the intensity of the sound (a weak sound won't carry to the walls whereas a very loud sound might bounce around for some time) together with the size of the room and the frequency of the sound.

All the factors play a part in how long it takes a sound to fade away. This period is called the Reverberation Time (RT); it is the time it takes for the intensity of a sound to fall to one millionth of its initial value. This is rather a clumsy figure, so it is more usual to express this ratio in decibels.

For Whom the Bel Tolls

Decibels are a relative measurement, like percentages, often used to express a relationship between the very large numbers which are so often encountered in acoustics (and in electronics). A ratio is expressed in decibels (abbreviated as 'dB') by taking its logarithm and multiplying by a constant - 20 for pressure (or voltage) ratios and 10 for intensity (or power) ratios. So, an intensity level difference of one millionth is equal to

$$\frac{10 \times \log \frac{1}{1000\ 000}}{10 \times -6} = -60 \text{ dB}$$

The minus sign is a natural result of the calculation and indicates that the level we are measuring is 60 dB lower (60 dB 'down', in the jargon) than the original

Figure 1. Sound travels through the air as alternate bands of compression (high pressure) and rarefaction (low pressure), created by the rapid motion of a vibrating source. The progression of the sound waves is a physical transference of energy.

sound — a sound one million times louder would be +60 dB because log $10^6 =$ +6.

This raises an important point; since a sound intensity expressed in decibels is a ratio, it is meaningless in itself. It's no help being told that a sound is, say, 10 dB down, unless we know what its 10 dB down from. It's rather like asking "How far is it from London to Liverpool" and being told, "Oh, about twice as far as from London to Birmingham' then we have a base by working out the distance from London to Liverpool. The London-Birmingham distance is a *reference*.

In acoustics, it is usual to describe sound levels in terms of the ratio, in decibels, between two Sound Pressure Levels (dB SPL). The reference level for all acoustic mesurements, in dB SPL, is the Threshold of Hearing, ie the lowest sound pressure level that can, on average, be heard; that is a sound pressure of 0.00002 Pascals (Pa). This is made clear in Figure 2, which shows some examples of typical sound pressure levels, in Pa and dB SPL.

Mirror, Mirror

A single pulse of sound has a definite start and finish but, as this pulse, or 'wave set', travels around a room, it is influenced by the structure and contents so that, by the time it reaches a listener, it is no longer so sharply defined. Instead, it looks more like the shape of Figure 4.

The first thing heard is the original sound that has not encountered any objects en route; this is the 'direct sound' and is usually closely followed by a few distinct reflections from nearby surfaces. After these, the remaining sound is composed of reflections and re-reflections of ever decreasing intensity. Eventually, (a matter of seconds), the sound dies away, having been absorbed completely by the air and by absorbant surfaces.

In a room with mainly smooth, hard surfaces there will be numerous reflections followed by reflections of reflections and re-reflected reflections, and so on. This process is the building block on which reverberation depends. Absorption determines how long the reflections continue; that is, the Reverberation Time.

If a single reflected sound seems distinct from the other reflected sounds, it is called an echo. Echoes are a repeat of the original sound, as a separate entity. The more distinct they sound, the more marked the effect.

Project: Music

The EMT 240 Reverb Foll (left) is probably the finest plate reverb unit made. Two tiny piezoelectric drivers induce bending waves throughout the 24 karat, 18 micron thick, gold foil plate. Reproduction of the signal is achieved by miniature pickups, also bonded directly to the foil surface. Our own Echo-Reverb unit (above) uses more modest techniques!

Another distinct effect is the emphasis of particular frequencies. These are 'resonances' and they occur when a dimension of the room equals, or is a mulitiple of, the wavelength of one of the frequencies of the sound. When this happens, the wavelength tends to remain long after the others have decayed. Such 'standing waves' can be extremely objectionable and unpleasant.

Walls Have Ears

Whenever a sound wave 'bumps into' an object, some of the energy in the wave is absorbed and dissipated as heat. Although the amount of heat produced is very small, the reduction in the sound intensity is significant. The amount by which a material will absorb sound, in this way, is called its Coefficient of Absorption. For example, cork tiles have a coefficient of absorption of 0.2 (at a frequency of 500 Hz and with an angle of incidence of 90°) whereas the value is ten times smaller (0.02) for concrete. In other words the tiles will absorb 20%, but concrete only 2%.

In the case of concrete, this means that nearly all (98%) the sound is either reflected or transmitted. The main factor of how well a material transmits sound is its mass, it's weight. Concrete is quite heavy and, therefore, a good sound insulator (doesn't transmit very much). So, for frequencies around 500 Hz, at least, concrete must be a good reflector because it's a bad absorber/transmitter of sound!

The reason for specifying a particular frequency (and angle of incidence) is that absorption coefficients are frequency dependent. The change is often quite large; cork tiles, for instance, have a coef-

Figure 2. The Sound Pressure Levels, in Pascals and dB SPL, of fairly typical sounds.

ficient ranging from less than 0.1 up to 0.6, across the audio frequency spectrum (20 Hz - 20 kHz). If you are still unsule of the difference between an insulator and an absorber of sound, just think of an open window; its a good absorber of sound (it does not reflect), but is useless at preventing sound from reaching the outside!

Figure 3. Sound reflections from a flat surface are analogous to the reflection of light from a mirror.

Figure 4. The profile of reflections of a single pulse of sound.

Growing Strong

Since reverberation is the result of the combined effects of reflection and absorption, we would expect that sound emitted at a constant intensity would not get louder and louder but, rather, tail off due to the amount being absorbed. This is indeed what happens, in a very short time, as shown in Figure 5. The growth in sound intensity is quite rapid at first, but as more and more is absorbed, the rate of growth decreases until a steady state is reached. At this point the amount of sound energy being absorbed is equal to the amount being produced - the sound has reached saturation level. If the source is switched off, the sound intensity falls off steeply, then more gradually, until it eventually fades away. The final diagram in Figure 5 is a graphical representation of this process and fairly typical of the growth/decay characteristics encountered in most rooms or halls.

Although the basic shape of the 'sound energy' curve is fairly constant, the time taken to reach steady state and then decay depends on the particular room. In free space, (open air), a series of sharp sounds (pulses) will have almost vertical rise-and-fall slopes (Figure 6a) corresponding to when the source is turned on and off. In a room with a short RT, though, the familiar curve returns (Figure 6b), showing a small overlap at each end. A longer RT produces more of an overlap and this can be disasterous in some cases, as the sounds of speech, for example, will tend to merge before they have decayed (Figure 6c). Consequently, it's not difficult to see that reverberation time is an important consideration when using

Reverb Revealed

a hall for a particular purpose. A lecture theatre, for instance, requires a short RT (less than a second) for speech to be heard clearly, but that same value would produce a very 'dead' sound in a large concert hall — it would also be difficult to achieve without using an enormous amount of absorbent material all around the 'sound stage'. Organ music presents quite a different problem, requiring a reverb time between three and five seconds. So, to fully realise a rich organ sound, the hall must be large and contain plenty of reflecting surfaces — something like a church or cathedral would do nicely!

As a mark of importance of reverberation, some concert halls have the seats upholstered with material that has a similar absorption coefficient to clothing, in an attempt to ensure that the quality of the sound is not dependent on the number of people in the audiencel Of course, most rock music venues pay little attention to such details, so the acoustics during a 'sound check' are not reproduced when the cro wds arrive (in some cases, this lack of sonic continuity makes little difference!).

Reverb On Demand

Room acoustics are extremely hard to alter. Equalisation techniques can be used to flatten-out the peaks (due to resonances) and dips (due to 'dead spots' at particular frequencies), within limits, but there's nothing that can be done electronically to reduce reverberation. On the other hand, if you're stuck with a 'dead' room - or just like 'playing in the bathroom' - then it is possible to add artifical reverberation. There are commercial units that can produce quite realistic effects, but it should be realised that electronic reverb is, at best, only a subsitute for the real thing. In practice, its impossible to duplicate the hundreds and thousands of reflections and absorptions that are produced in a particular room or hall. For this reason, it's better to view 'add-on' reverberation as an effect in its own right — it is, after all, the final sound that counts.

All electronic systems used for adding reverberation depend on the same basic principle; the signal is delayed for a short time and part of it is fed back to the input. By carefully controlling the delay and amount of feedback, quite effective reverb can be produced. The best units, using multiple delay paths and complex mixing circuitry create something approaching genuine reverb. In reality, all that's being done is to recirculate a series of short echoes' - a process labelled 'regeneration' or, sometimes, 'recirculation'. If this is taken to extreme levels, oscillation results; this is hardly surprising when you consider that signals are being added, one on top of the other. However, when proper attention is paid to setting the levels, the sound can be quite impressive.

The most effective device for creating reverb is the reverberation plate. It is an electro-mechanical device which consists of a large steel plate mounted in a suspending framework, with transmit and pick-up transducers at either end. Sound waves travel through the plate, more slowly than they do through the air,

Figure 5. The energy density growth/decay characteristic of a sound pulse (after Olson, H.F., "Music, Physics and Engineering").

Figure 6. Growth/decay characteristics of a series of sound pulses produced by different reverb times; (a) free field (short); (b) medium; (c) long (after Olson).

and are reflected by the *edges* of the plate, before being picked-up. This results in a distinctive and high quality effect; the major drawbacks are a lack of mobility (the plates are heavy) and prohibitive costs (mortgages are available!).

A cheaper, more popular, but less effective alternative is the springline. This takes the form of one or more springs, suspended at each end and fitted with transmit and pick-up tranducers. A small power amplifier is used to send signals down the springline which then appear at the other end with the characteristic 'twangy' sound. Indeed, the springline is often used specifically because of its unique 'sound'. The disadvantage of this arrangement is that the slightest knock causes a loud 'boing' sound.

Electronic reverb units are basically variable delay lines. There are two types; analogue (like the HE Echo-Reverb) and digital. Analogue delay lines are based on specialised ICs known as Charge Coupled Devices (CCDs), which 'sample' the input signal and 'clock' each sample through to

MXR's Digital Delay unit provides a variety of effects, ranging from discrete echoes, doubling and hard reverb through to flanging, frequency modulation (vibrato etc) and infinite repeats. The Flanger/Doubler (top) uses analogue methods to produce a more limited range of effects.

Reverb Revealed

be written to generate almost any kind of delay effect.

output. (The operation of CCDs is decribed more fully in the 'How it Works' section of our reverb project, in last month's issue).

Digital reverberation units are much more sophisticated and versatile (Figure 7). If the software is clever enough, these units can create just about any type of sound! They do this by converting samples of analogue signal into a digital word using an ADC (Analogue to Digital Convertor) which can then be stored in a Random Access Memory and manipulated in various ways, limited only by the type of program used. After processing, the signals are converted back into their original analogue waveforms by an ADC (Analogue to Digital Convertor). Digital reverb provides opportunities for creating reverbertion effects that exist only in the mind of the programmer! Obviously, such capabilities don't come cheaply.

One of the original techiniques for adding reverberation (and still used today, for quick, easy echo) was to use a tape

Figure 8. Block diagram of a tape-loop reverb system, using multiple playback heads to produce closely spaced discrete echoes.

The Ibanez Analog Delay/Multi-Flanger is a budget priced unit suitable for producing a number of interesting delay effects, including echo, reverb and flanging.

loop strung out between two tape recorders. Special tape machines, with multiple playback heads (Figure 8) were also produced and these were capable of some quite good sounds. The heads were arranged with different spaces between them, so that a set of delays got progressively longer; each head had its own playback level circuitry, feeding a mixer, allowing the response to be accurately controlled.

Listen to the Music

With all the electronic equipment available and working knowledge of reverberation effects, the creative musician should be able to use both the gear and his knowledge to create some really outstanding sounds. Unfortunately, it is virtually impossible to do much about strong resonances in a room, although equalisation can help (this will be the subject of the next Project: Music feature). The most important thing to remember is that, if the room is at all 'live' (you can get a good idea of the sound of the room by clapping hands once, sharply, and listening to the reflections, if any), playing loud will only make the sound worse!

CABINE IS Made for an expensive Hi-Fi outflt -will suit any decor, Resonance free. Out-outs for 6%" woofer and 2%" tweeter. The front material is Dearon, The completed unit Is most pleasing. Supplied in pairs price £6.90 per pair (this is probably less than the original cost of one cabinet) carriage £3.00 the pair.

GOODMANS SPEAKERS 6½" 8 ohm 25 watt £4.50. 2½" 8 ohm tweeter, £2.50. No extra for postage if ordered with cabinets. Xover £1.50.

UNIVAC KEYBOARD BARGAIN

50 keys, together with 5 miniature toggle switches all mounted on a p.c.b. together with 12 i.c.'s, many

transistors and other parts. $\pounds1350 + \pounds2.00$ post. This is far less than the value of the switches alone. Diagram of this key board is available separately for £1.

SOLENOID WITH PLUNGER Mains operated £1,99 10 - 12 volts DC operated £1,50,

POPULAR KITS

3 - 30v VARIABLE VOLTAGE POWER SUPPLY UNIT With 1 amp DC output, for use on the bench, students, inventors, service engineers, etc. Automatic short circuit and overload protection. In case with a volt meter on the front panel. Complete kit £13.80

IONISER KIT

Refresh your home, office, shop, work room, etc. with a negative ION generator. Makes you feel better and work harder — complete mains operated kit, case included £11.95 plus £2.00 post.

MORSE TRAINER lete kit £2.99.

DRILL SPEED CONTROLLER Complete kit £3.95.

MAINS POWER SUPPLY

Gives any voltage from 3v to 16v at up to 300mA. Complete kit less case £1.95. Case 90p.

OUR CAR STARTER AND CHARGER KIT has no doubt saved OUR CAR STARTER AND CHARGER KIT has no doubt saved many motorists from embarrassment in an emergency you can start car off mains or bring your battery up to full charge in a couple of hours. The kit comprises: 250w mains transformer, two 10 amp bridge rectifiers, start/charge switch and full instructions. You can assemble this in the evening, box it up or leave it on the shelf in the garage whichever suits you best. Price £12,50 + £3.00 post.

CHANCE OF A LIFETIME

We have to clear a big store. 100 tons of stock must go. 10 kilo parcel of unused parts. Minimum 1,000 items includes panel meters, timers, thermal trips, relays, switches, motors, drills, taps and dies, tools, thermostats, colis, variable condensers, variable resistors, atc. etc. Individually these must cost in excess of £100. YOURS FOR ONLY £11.50 plus £3.00 post.

MILLIONS OF HOMES WILL BE BURGLED

THIS SUMMER – SAY THE EXPERTS Don't let yours be one of them. Install our burgar alarm. Install our burglar alarm. Complete kit includes 6" external alarm bell, mains power unit control box with key switch 10 window/door switches 100 yards of wire, With instructions £29.50.

TINIEST MICROPHONE

Not much bigger than a pea, 600 ohm condenser type. Ideal for bugging and similar applications. 60p each or 10 for £4.50.

LEVEL METER

Size approximately %" square, scaled signal and power but cover easily removable for rescaling. Sensitivity 200 uA. 75p.

THERMOSTAT ASSORTMENT

10 different thermostats. 7 bi-metal types and 3 liquid types. There are the current stats which will open the switch to protect devices against overload, short circuits, etc., or when fitted say in from of the element of a blow heater, the heat would trip the stat if the blower fuses; appliance stats, one for high temp-eratures, others adjustable over a range of temperatures which could include 0 – 100°C. There is also a thermostatic pod which can be immersed, an oven stat, a calibrated boiler stat, finally an loe stat which, fitted to our waterproof heater element, up in the loft could protect your ples from freezing. Separately, these thermostate could cost around £15.00 – however, you can have the parcel for £2.50.

BULL (Electrical) Ltd

(Dept. HE), 34 - 36 AMERICA LANE, Established **30 YEARS** HAYWARDS HEATH, SUSSEX RH16 3QU.

3 CHANNEL SOUND TO LIGHT KIT

Complete kit of complete kit i parts for a three-channel sound to light unit controll-ing over 2000 watts of light-ing this

000 ing. Use the

at home if you wish but it is plenty rugged enough for disco work. The unit is housed in an attractive two-tone metal case and has controls for each channel, and a master on/off. The audio input and output are by %" sockets and three panel mounting fuse holders provide thyristor protection, A four-pin plug and socket facilitate ease of connect-ing lamps. Special snip price is £14.95 in kit form of £25,00 assembled and tested.

STANDARD RELAYS

3 changeover 10 amp contacts, single screw fixing, mains operat-dc £1.25, 12 volt operated £1.50, 6 volt model 99p. Other coil voltages – please enquire.

ULTRA SMALL 12v RELAYS Single pole gold plated contacts. Tubular construction, 17mm long 10mm dia. Ideal for models. PCB or freemounting. £2.30 ea.

MINAITURE PLUG IN RELAYS 12v operated, 3 changeover, £2.45, base 45p. 12v operated, 2 changeover, £1.87, base 35p.

Japanese made, flush mounting, size approximately 45mm x 50mm 30m<mark>m</mark> deep. PRICE £2.95.

5 amp silver plated contacts. '4" shaft, 1 Single wafer types, 29p each, as follows: 1 pole 12 way 2 pole 6 way 4 pole 3 way 6 pole 2 way dia, Wafer. 3 pole 4 way 4 pole 3 way Two wafer type, 59p each, as follows 2 pole 12 way 4 pole 5 wa 6 pole 2 way 8 pole 3 wa 4 pole 6 way 12 pole 2 way 2 pole 1 z way 6 pole 2 way 3 wafer types 99p each, 3 wafer types 99p each, 12p 3 way 12p 3 way 6 pole 6 way 18p 2 way

EXTRACTOR FAN

Mains operated — ex-computer 5"Woods extractor £5.75, Post £1.25.

Plannair extractor £6.50, Post £1.25 x 4" Muffin 115v. £4.50, Post 75p.

Muffin 230v.

TAPE PUNCH &

READER For controlling machine tools, etc, motorised 8 bit punch with matching tape reader. Ex-computers, be-lieved in good working order, any not so would be exchanged. £17.50 pair. Post £4.00.

8 POWERFUL BATTERY MOTORS

For models, maccanos, drills, remote control planes, boats, etc. £2.95.

MINI-MULTI TESTER Deluxe pockët size precision mov-ing coil instrument, Jewelled bearings - 2000 o.p.v. mirrored scale. 11 Instant range measures: DC volts 10, 50, 250, 1000. AC volts 10, 50, 250, 1000. DC amps 0 - 100 mA.

Continuity and resistance 0 - 1 meg ohms in two ranges. Complete with test prods and in-struction book showing how to measure cap-acity and inductance as well. Unbelievable value at only £6.75 + 60p post and insurance

FREE Amps range kit to enble you to read DC current from 0 - 10 amps, directly on the 0 - 10 scale. It's free if you purchase quickly, but of you already own a Mini-Tester and would like one, send £2,50.

-

For camping – car repairing – emergeny light from a 12v battery you can't beat fluorescent lighting, it will offer plenty of well distributed light and is economical. We offer an inverter for 21" 13 wett miniature fluores-

miniature fluores-cent tube, £3.45. (tube not supplied).

ZX81 OWNERS Make yourself a full size keyboard!

Key switches con caps, 6 for £1.15. mplete with plain

RESISTORS

Carbon film, 1/4 or 1/3 watt, standard leads, not pre-formed, all 5% values: 1p each 100's, 2p each 10, 5p each less than 10 per value, OR – INVENTOR'S PACK, containing 10 of each of 60 different values from 1 ohm to 10 megohm, packed separate-ly, £5.75. DELAY SWITCH

DELAT SWITCH Mains operated – delay can be accurately set with pointers knob for periods of up to 2/khrs, 2 contacts suitable to switch 10 amps – second contect opens a few min-utes after 1st contact, £1.95,

MOTORS FOR ROBOTICS

If is a toy robot you are making then one of our eight battery motors (see centre column) may do. If its a bigger one, however, then see below If still not big enough then enquire — we have larger motors but these are usually mains driven.

12v MOTOR BY SMITHS

Made for use in cars, these are series wound and they become more power-ful as load increases. Size 3% ''long by 3'' dia, These have a good length of 3'' splndle – price 62.45. Ditto, but double ended £4.25.

EXTRA POWERFUL 12v MOTOR Made to work battery lawinnower, this probably develops up to λ h.p., so it could be used to power a go-kart or to drive a compressor, etc. etc. £6.90 + £1.50 post. (This is easily reversible with our reversible switch - Price £1.15).

These are powerful mains operated induction motors with gear box attached. The final shaft is a %" rod with square hole, so you have alterm-ative couplingmethods – final speed is approx. 5 revs/min, price £5.50, – Similar motors with final speeds of 80, 100, 160 & 200r.p.m, same price.

REVERSIBLE MOTOR WITH CONTROL GEAR

Made by the famous Franco Company this is a very robust motor, size approximately 7%" long, 3%" dia. 3/8" shaft, Tremendously powerful motor, almost impossible to stop. Ideal for operating stage curtains, silding doors, ventilators etc., even garage doors if adequately counter-balanced, We offer the motor complete with control gear as follows:

 1 Franco motor with gear box
 1 x 100w auto transformer

 1 menual reversing and on/off switch
 2 limit stop switches

 1 push to start switch
 1 circuit diag, of connections.

 £19.50 plus postage £2.50.
 2 limit stop switches

MAIL ORDER TERMS: Cash, P.O. or cheque with order. Orders under £10, add 60p service charge. Monthly account orders accepted from schools and public companies. Access & Barclaycard orders phone Haywards Heath (0444) 454563. Bulk Orders: Write for quote. Delivery by return.

TRANSMITTER SURVEILLANCE

Tiny, easily hidden but which will enable conversation to be picked up with FM radio. Can be made in a matchbox – all electronic parts and circuit. £2.30. (not licenceable in the U,K.) **BADIO MIKE**

Ideal for discos and garden parties, allows complete freedom of movement. Play through FM radio or tuner amp, $\pounds 6.90$ comp, kit, (not licenceable in the U,K,).

FM RECEIVER

the up and working, complete with scale and pointer needs headphones, ideal for use with our surveillance transmitter adio mike. £5.85. or kit of parts £3.95.

VENNER TIME SWITCH Mains operated with 20 amp switch, one on and one off per 24 hrs. repeats daily automatically correcting for the lengthen-ing or shortening day. An expensive time switch but you can have it for only £2.95. These are without case, but we can supply a plastic base £1.75 or metal case with window £2.95. Also available is adaptor kit to convert this into a normal 24 hr. time switch but with the added advantage of up to 12 0 n/olfs per 24 hrs. This makes an ideal controllerfor the immersion heater. Price of adaptor kit is £2.30.

VENNER TIME SWITCH

STEREO HEADPHONES

TIME SWITCH BARGAIN Large clear mains frequency controlled clock, which will always show you the correct time + start and stop switchwith dials. Complete with knobs es with £2.50.

42

12V FLUOBESCENT LIGHTING

INTO ELECTRONIC COMPONENTS Nearing the end of the Series, we consider Transducers – electrical Input/Output devices.

A TRANSDUCER is simply a converter and, though neither of the signals (input or output) need be electrical, the transducers that are of most interest to us are the ones which have, as either input or output, an electrical signal. These signals can be AC or DC or a mixture of both, according to the type and design of transducer.

Though transducers can be as different as a light-bulb and a microphone, they have one factor in common — none are ever 100% efficient. The efficiency of a transducer can be measured in terms of the energy of the signals into it and out of it. A 100% efficient transducer would produce an output whose energy was exactly the same as that of the input signal, over the same time. Efficiencies ranging from 0.1% to 80% are more usual, with the lower values, alas, predominating. The efficiency is officially defined as:

Energy out Energy in

In the same time. There are so many transducers used with electronic equipment that we cannot hope to cover more than a few, here, but we can at least look at those which are of greatest interest.

One important point to note is that an electrical input or output will have a measurable resistance. The input resistance will be stated as a parallel resistance, the output resistance as a series resistance (Figure 11.1) and these resistances will form potential-divider circuits with any other resistances in the external circuits, cutting down the amount of electrical signal which enters or leaves the transducers. The principle

Figure 11.1. Input and output resistances of transducers.

should already be familiar to you after the discussion of transistors, a few months ago. The values of input and output resistances vary very greatly from one transducer to another, so that circuits which are used with transducers have to be tailored to the characteristics of the particular device — you cannot necessarily use an amplifier which has been developed for a microphone on a strain-gauge, for example.

Over to You, Mike

A microphone is a sound-wave to electrical signal transducer which converts a reasonable percentage (around 10%, for some examples) of the sound energy reaching it into electrical energy. Since what we call sound is composed of waves of pressure in the air, the electrical output of a microphone is also in the form of a wave and, if the microphone is to be of any use, the waveshape should not be changed. That means a graph of air-pressure plotted against time (the waveshape of the sound) should look the same as a graph of electrical voltage, from the microphone, plotted against time (the electrical waveshape).

There are a lot of different microphone types and we don't have space to go into details of them all, but one important point is that they all belong to one of two groups - velocity operated or pressure operated. A velocity-operated microphone uses the movement of the air to obtain its signals, whereas the pressureoperated type uses (you guessed!) the pressure. The most important difference between them is that the pressureoperated microphones are omnidirectional - they will pick up sounds from any direction, no matter which way the microphone is facing. By contrast, velocity-operated microphones are unidirectional - they have to be pointed at the source of sound and they pick up much less sound from other directions. The way in which a microphone responds to sounds from different directions is shown in a polar diagram for that microphone (Figure 11.2) An omnidirectional microphone should give a round polar diagram, a directional micro-

phone a sharply pointed one. In the early days of tape-recording, crystal microphones were used but nowadays most microphones are of a type which make use of electromagnetic induction. The principle is that the soundwaves move a stretched diaphragm, and the movement of the diaphragm causes a magnet to move in

and out of a coil (dynamic microphone) or a coil to move in and out of a magnet (moving-coil microphone). A variation on this theme is the ribbon microphone. in which a thin metal strip is vibrated by the air and, because the metal ribbon is located between the poles of a magnet, it generates a signal. Of these types, the dynamic type produces the greatest amount of signal for a given amount of sound, and also has the highest resistance. The ribbon types produce least signal and also have very low resistance; the particular virtue of the ribbon type is that it is particularly easy to make in velocity-operated form.

Figure 11.2. Polar diagrams for microphones; (a) omnidirectional; (b) unidirectional.

The Other 'Arf

The other end of the amplification system needs a transducer for electrical signals to sound — the loudspeaker. One type of loudspeaker has dominated for many years and that one is the movingcoil type. In a moving-coil speaker (Figure 11.3), a cone, which is usually made from stiff paper with a corrugated support to act as a suspension, is held in a frame and a coil of wire is wound on to a cylindrical former at the narrow end of the cone. This former fits in the poles of a cylindrical magnet, magnetised so that one pole is at the centre and the other pole is all round the outside. This

Figure 11.3. The moving-coil loudspeaker.

Feature

arrangement produces a strong magnetic field, cutting directly across the turns of wire on the former so that, when a current is passed through the coil, a force is generated which will move the coil, taking the core along with it. The direction of the force, and so the movement, is reversed when the direction of the current is reversed, so that an alternating current will produce alternating movement, to and fro, which is what we need to create a sound wave.

Moving-coil loudspeakers (and the principle is used for many types of earphones as well) have low resistance values, mostly in the range of 3R to 16R, which is why we have so many problems with power amplifiers. Another problem is that loudspeakers are very inefficient only a tiny fraction of the electrical energy put into them results in useful sound energy output. The snag is that the size of the loudspeaker is tiny compared with the size of the sound source it is trying to re-create. We try to get over this by mounting the loudspeakers in cabinets but, unless we use truly gigantic cabinets, the efficiency is only slightly improved. The most efficient type of cabinet (or enclosure, to use a more technical word) for loudspeakers is the exponential horn (Figure 11.4) which, if you're prepared to tolerate a length of nine feet or more and a mouth which can be the size of a doorway, can give efficiency figures of 10% or more. At the other end of the scale, small 'bookshelf' speakers of good quality may have efficiency figures of less than 0.5%.

Figure 11.4. Cross-section of a small exponential horn; folded horns are more usual because of the enormous length of a straight horn.

Figure 11.5. The principle of the electrostatic loudspeaker — as the voltage on the diaphragm changes, the electrostatic forces move the diaphragm in and out.

Though the moving-coil principle dominates loudspeaker design, it is by no means ideal. Very fine results can be achieved with electrostatic speakers, in which a large sheet of metal-coated plastic is moved between wire meshes (Figure 11.5) by electrostatic forces. A high "polarising voltage" is needed, as a bias for the diaphragm, and the resistance of the speaker is very high almost infinite. The speaker manufacturers Quad are the only company who have used the electrostatic principle seriously and their speakers are very highly regarded by those who can afford them. The use of electrostatics has been more widespread in headphone design, where size is less of a problem and some excellent results have been achieved by Sennheiser, the pioneer of electrostatic headphones.

A few types of loudspeakers are produced using other effects. For hi-fi, it is impossible to produce a moving-coil loudspeaker which deals adequately with both very high notes and very low notes, so that moving-coil speakers are used for the low and mid-range notes and small units, called 'tweeters', are used, sometimes in large numbers, for the highest notes. Both ribbon and ceramic crystal tweeters are found, the ribbon type being of almost the same construction as a ribbon microphone. Ceramic tweeters work on the principle that a thin plate of certain materials, called piezoelectric crystals, will vibrate when an alternating voltage is applied to metal contacts on each side of the sheet. These ceramic tweeters have a very high resistance, but the ribbon types have a very low resistance.

Strike a Light

Our first lot of transducers dealt with conversions between sound waves and electrical waves. The next lot is different because, although light is also a wave, it is an electromagnetic wave like radio waves, whose frequency is very much higher than any we can deal with by electronic methods. Transducers for light to electrical signals, therefore, do not give out an electrical wave when light strikes them unless the light itself is modulated, with its amplitude varying at a rate that we can cope with. Transducers of this type are called photocells and several varieties, classed as photoconductive, photovoltaic, photoemissive, photodiode or phototransistor exist. Let's take them one by one.

A photoconductive cell is made from a material whose resistance changes as the amount of light falling on it changes. Obviously, a cell of this type does not have a steady value of output resistance and we must use it in a circuit similar to that which we use for a transistor, with a constant value load resistor connected in series across a steady supply voltage (Figure 11.6) The photoconductive cell does not generate any signal; it simply controls the current from an external power supply, so that whenever a photoconductive cell is used there must also be a battery, or other power source. The most commonly used photoconductive material is cadmium sulphide and Figure 11.7 shows the arrangement of a typical cell, along with its measurable characteristics. These cells are reasonably sensitive, but they suffer from a time-lag - once they are conducting, they will stay conducting for a fraction of a second after the light is cut off. Such cells are, therefore, useless if the light is modulated with a signal whose frequency is more than a few Hertz.

photoconductive cell to a circuit.

Photovoltaic cells have a very long history. The first photovoltaic material to be discovered was the element selenium, a close relative, chemically, of sulphur; its photovoltaic effects were noted more than a century ago. As the name suggests, you don't get a change of resistance across a selenium element when you shine light on to it, you get a voltage. This happens only when the selenium is in contact with another material and it is, in fact, a primitive type of semiconductor junction. Like cadmium sulphide cells, selenium photovoltaic cells have a time lag which makes them unsuitable for anything but low-frequency operation. This was the problem which hindered the advance of television in the 1870s, when Nipkow demonstrated the system which was later to be improved by Baird.

Nowadays, we have found ways of making photovoltaic cells using silicon, and these are a great improvement, both in sensitivity and in response time, over the old selenium cells. They can, for example, be combined in one package with LEDs as an opto-coupler, so that signals can be transferred between points which

Feature

TYPICAL CHARACTERISTICS FOR THE ORP12	
MAX. DISSIPATION	200 m∨
MAX. VOLTAGE	100 V
DAYLIGHT RESISTANCE (APPROX)	2k
RESISTANCE RANGE	75R TO 10M
RESISTANCE RISE TIME (APPROX)	75 mS
RESISTANCE FALL TIME (APPROX)	350 mS

Figure 11.7a. Characteristics of an ORP12 photoconductive cell.

Figure 11.7b. The physical arrangement of a typical photoconductive cell.

are at very different voltages. The advantage of the photocoupler, as compared to capacitors or transformers, is that it can transfer DC signals, not just a limited range of AC frequencies.

Photoemitting cells also have a surprisingly long history, dating back to research in the latter part of the 19th century. A photoemissive cell uses one of the chemically-active metals, such as sodium, potassium, rubidium or, most commonly, caesium. All of these are extraordinarily soft and light metals (sodium will float on water, for instance) which are violently chemically active (but it dissolves, almost explosively).

Lenard discovered that when a block of sodium was contained in a vacuum and the surface scraped clean (using a knife operated by a magnet), the clean sodium surface would emit electrons when it was struck by light. These electrons can then be attracted to an 'anode', a metal surface a few hundred volts positive, relative to the sodium surface, and this flow of electrons constitutes a current. Like the photoconductive cell, the photoemissive cell is used with a power supply and a load resistor; a cross-section of a cell, and a circuit, is shown in Figure 11.8. The response time of a photoemissive cell is very much faster than that of a photoconductive type, however, so that the photoemissive cell was, at one time, the only type of cell that could be used for the conversion of flickering light, from the soundtrack of movie films, into electrical signals. The television camera tubes which were in use until comparatively recently were all photoemissive, although modern cameras make use of new, fast-response photoconductors, such as lead oxide.

Photodiodes and phototransistors are the most recent types of photocell to be

discovered. When a diode junction is created, the current which can flow when the diode is biased in the reverse direction is controlled by the depletion region, because this region is the main obstacle to the movement of carriers. Anything which alters the number of carriers in the depletion region will greatly affect the conductivity of the diode and light, in fact, does just this. The energy of a light wave is enough to separate an electron from a hole and, if this happens in the depletion region, each new electron/hole pair will contribute to the conductivity of the diode and so will allow the current to increase for as long as the light is affecting the depletion region.

This effect is not normally noticeable with diodes, because the reverse currents are very small and we seldom use them in circuits which are sensitive to changes in reverse current. For diodes which must have very low values of reverse current, however, it is essential to exclude light from the junction.

The phototransistor is a logical development of the photodiode. If light is allowed to strike the base layer of a transistor which is biased off, the extra electrons and holes which are generated by the light will cause a base current (assuming there is a voltage applied to the collector). This makes the phototransistor a much more sensitive device than the photodiode, though at the ex-

Figure 11.8. The photoemitting cell and how it is used in a circuit.

Figure 11.9. How light can cause the reverse current of a diode to increase (a), and the circuit (b) which makes use of this.

Figure 11.10. Testing a phototransistor with the HE meter.

pense of a slower response.

Early types of germanium transistor, such as the classic OC72s, used glass cases which had to be coated with black paint to prevent light from affecting the bias currents. If the paint is scraped away, an OC72 can be used as a phototransistor, equivalent to the OCP70. The difference is that the OC72s can usually be picked up as scrap, but people still want money for OCP70s.

If you can get hold of one of these oldtimers, scrape off the black paint, and set up the circuit of Figure 11.10. Remember that the OC72 was a PNP transistor, which is why the collector is connected to the negative terminal. The HE meter will show a considerable increase in current when a light is shone on to the transistor, demonstrating the photoelectric effect.

All of these transducers can change light signals in to electrical signals and so there just have to be transducers which operate the other way round. An ordinary light bulb is, of course, an electrical-signal-to-light transducer, but it suffers from an unacceptably long time-lag, so that it is useful only for steady light signals. The LED (described in Part 6) is much more useful in this respect.

Heated Topic

Temperature is another quantity for which we have transducers. All conductors operate as electrical-to-heat transducers; because of their resistance, electrical energy is converted to heat energy,

Feature

causing the temperature of the material to rise. Normally, this is a conversion we do our best to avoid.

The opposite conversion uses temperature levels, rather than heat. A thermocouple consists of a pair of different metals, arranged in two junctions as indicated in Figure 11.11. These are not junctions in the transistor or diode sense, but simply wires of different types soldered together. When the junctions are at different temperatures, a small voltage will be measurable at the ends of the wire. This is only a few millivolts, at most, so that it is not easily measurable but it is enough to pass current through a sensitive meter and we can use the HE meter, along with lengths of iron and copper wire, to demonstrate the action of a thermocouple. With one junction in ice and the other in air, the thermocouple will pass a noticeable current when the HE meter is switched to a low-current range (Figure 11.12).

Figure 11.11. A thermocouple arrangement, using copper and iron wires.

Figure 11.12. Demonstrating thermocouple action, using the HE meter on its most sensitive current range.

The trouble with thermocouples is that they can be operated reliably only over a limited range of temperatures. At some high temperature (the inversion temperature), the voltage output of any thermocouple reaches a maximum and the voltage then reduces as the temperature is taken over this value (Figure 11.13). Despite this drawback, thermocouples are widely used for temperature measurements in industry. Their advantages are small size, quick response to changes of temperature, and the ability to measure high temperatures such as are found for furnaces, for example.

A device that is more familiar to users of electronic circuits is the thermistor. It is a form of resistor, which is made from metal oxides rather than from carbon. Depending on the types of materials that are used, thermistors can be PTC or NTC. The TC part of the name (no, it's not Top Cat) means Temperature Coefficient and the P and the N mean positive and negative, respectively (Figure 11.14). A positive temperature coefficient thermistor has a resistance value which increases as the tempera-

Figure 11.13. The graph of thermocouple output plotted against temperature has a maximum value, so that very high temperatures will give the same readings as low temperatures.

Figure 11.14. Graphs of resistance plotted against temperature for two typical thermistors.

ture increases; a negative temperature coefficient thermistor has a resistance value which decreases as the temperature increases. The NTC types are more common, for most electronics applications.

Since it's the resistance of the thermistor which changes, they must be used with a voltage supply and a load resistor. Though thermistors are excellent for detecting temperature levels in thermostat applications, controlling the central heating for example, they do not make ideal thermometers, because the change in resistance per unit change of temperature is not a constant. (Our Digital Thermometer, last month, used, instead, a current-source whose output current varied with temperature).

Thermistors are made in various shapes and sizes, with resistance values ranging from a few ohms to several megohms (at the conventional room temperature of 20°C), and ranging in size from pinhead dimensions to large

blocks. The pinhead types are used for temperature measurements on small objects and also for stabilising the amplitude of oscillations in R-C oscillator circuits (for example, the Audio Signs Generator project in the May issue). This depends on 'self-heating'; the temperature of the thermistor depends on the amount of current which is flowing through it, rather than the temperature of the air around it.

Figure 11.15. The semiconductor strain gauge. The resistance of the material increases as it is stretched.

Some of the Others.

We have only scratched the surface of transducers, looking at a few types which are common and familiar. In fact, there is a transducer for almost every physical quantity and two which are less familiar, but very useful, are the strain gauge and the tachogenerator. A strain gauge, nowadays, consists of a thin strip of semiconductor deposited on a flexible material. The resistance of the strip can be measured and the flexible carrier can be glued to almost any structure a beam of a bridge, the wall of a house, the side of a container. Even very small changes in the length of the strip will cause noticeable changes of resistance so that strain, which means small changes of length, can be measured. Strain gauges are an essential part of modern civil engineering - they show how much your bridge is affected by loads and winds, how secure the foundations of your building are, how well your tank stands up to high pressure.

Tachogenerators are little dynamos; spin the shaft of a tachogenerator from another revolving shaft and the output voltage of the tacho generator will be proportional to the speed of the shaft. They're used increasingly in disc turntables as part of a negative feedback system for keeping the motor speed constant.

That's only a flavour of transducers, but it should be enough to show what a varied bunch they are, and how they can be used to couple electronics circuits to almost anything else we like. Electronics wouldn't amount to much without them!

Figure 11.16. Using a tachometer in a motor speed control circuit.

Hobby Electronics, June 1982

RELLES FROM SSE

PB100

NEW AND FREE FROM GSC.

NEW an exciting range of projects to build on the EXP300 breadboards.

NOW anybody can build electronic projects using "Electronics-by-numbers", its as "Easy as A, B, C with G.S.C!"

FREE project

MUSICAL DOORBELL OF THE 3RD KIND You've seen the film, now haunt your visitors with the tune!

Each time the doorbell is pushed the eerie tune plays out, then switches off to conserve battery power.

HOW DO YOU MAKE IT.

Our FREE project gives you clear "step-bystep" instructions. For example "take Resistor No.1 and plug it into hole numbers B45 and B47".

"Take IC No.1 and plug it into hole numbers E35 to E42 and F35 to F42, (pin 1 on the IC goes into F35)"

"Take..." Well! why not "clip-the-coupon" and get your FREE step-by-step instruction sheet and your FREE 12 projects with each EXP300 bought and your FREE catalogue and......

EXPERIMENTOR BREADBOARDS

The largest range of breadboards from GSC. Each hole is identified by a letter/number system EACH NICKELSILVER CONTACT CARRIES A LIFE TIME GUARANTEE

All modular construction means that any Experimentor breadboard can be 'snap-locked' together to build breadboards of any size.

EXP325 The 'one-chip' breadboard Takes 8, 14, 16 and up to 22 pin IC's Has 130 contact points including 2 bus

EXP350 The beginners breadboard' For limited period you can have FREE 12 'Electronics by Numbers' PROJECTS

20

The most 'widely-bought' breadboard Don't miss out on our 'NEW AND FREE' projects They can be built on the EXP300

EXP600 The Hobbyist microprocessor' board EXP650 The 'one chip microprocessor' board EXP48 'Snaps-on' four extra bus bars PB6 The ultimate breadboard kit PB100

NEW AND FREE FROM G.S.C. 24 HOUR SERVICE.

Tel. (0799) 21682 with your Access, American Express, Barclaycard number and your order will be put in the post immediately.

TO ORD	ER JUST	CLIP THE	COUPO

Experimentor Breadboards	Unit Price Inc. P & P + 15% VAT	Quantity Required		
Exp 325	£ 2.70			
Exp 350	€ 4.48			
Exp 300	€ 7.76			
Ехр 600	€ 8.39			
Exp 650	€ 5.00			
Exp 4B	£ 3.50			
PB 6	£11.73			
PB 100	£14.72			
NAME				
enclose cheque/PO	for £			
Debit my credit card	No			
Expiry date				
Please send free catal	ogue Tick Dept.	9P		
Please send free catal	PORATION GSC Unit 1, Shi Saffron Walden, Telephone (1029	9P re Hill Ind. Estate Essex. CB11 3AQ. 91 21682 Telex 817		

Project

Automatic Greenhouse Sprinkler Owen Bishop

A summer plantsaver that works automatically, triggered by the falling moisture level in a plant pot.

THE HOT sunny days that we hope to be having from now until September can play havoc with plants in a greenhouse. You need only to forget to water them once, or forget to open the windows on a warm day, and the plants are soon in a sorry state. Last minute watering might revive them but, on the other hand, it might not! This device not only warns you when the plants are beginning to need some water, but actually does the watering for you. You might need to supplement its action each evening by using the old-fashioned watering-can, but it will take care of those times during the day when a light sprinkling makes all the difference to the health of the plants.

The circuit consists of two sections. One part is concerned with sensing the water state of the plants and sounding an alarm when it gets too low. The other part turns on the pump to sprinkle the water. If you simply need a warning and are prepared to do the sprinkling yourself, there is no need to build the pumping section. If you are going to include the pump, you will certainly want the warning device, too. This sounds for about 30 seconds before the pump is turned on. Should you or the family happen to be admiring the tomatoes as the soil goes dry, the warning gives you plenty of time to retreat - out of range of the sprinkler. The warning period can be extended if 30 seconds is not long enough.

Anyone who has ever watered a potted plant knows that it is more effective to water for a short period, and then stop and allow the water to soak in before repeating the watering. The sprinkler works in this fashion too. The pump is turned on for 30 seconds, off for 30 seconds, repeating until the soil has been moistened to the right degree.

The Circuit

The amount of water in the soil is sensed by a circuit which measures the resistance of the soil between two metal rods buried in the soil (the probe). If we pass a direct current through the soil, the water and dissolved salts in the soil act as an electrolyte. In a few

minutes, polarisation occurs and the resistance changes. Instead, we use an alternating current, to avoid polarisation. This is generated by a 1 kHz oscillator (IC1) in the sensor circuit. The alternating potential is rectified by a diode (D1) and smoothed by a capacitor (C7) to give a steady potential. As the soil becomes drier, its resistance increases. This gives the alternating voltage greater amplitude and so the steady DC potential rises. This rising potential eventually triggers a Schmit trigger (IC3) causing its output to change abruptly from low to high (0 V to 12 V). The level at which this change occurs can be controlled by adjusting the 'Set Level' control, RV1.

The output of the sensor is combined with the output from the Hz timer (IC2) by a NAND gate. When the output of the sensor is low (moist soil), the output of the gate is steady at 12 V. When the soil dries,

the output begins to alternate between 0 V and 12 V at a rate of 1 Hz. These pulses switch an audible warning device on and off, providing a bleeping tone. The pulses are counted and, after a fixed number (say 32), the selected output of the counter goes to 12 V. This switches on the pump. The output alternates from 0 V to 12 V regularly at (say) 1/32 the rate of the timer, giving periods of sprinkling followed by equal periods during which the water soaks in to the soil.

When the soil is sufficiently wet, the reverse actions occur. As the soil resistance drops, the DC potential falls and the Schmitt trigger output (IC3, pin 10) goes low, stopping the alarm. The low-going edge triggers a pulse generator (two gates of IC4) which sends a single high pulse to the reset input of the counter. This makes all its outputs go low, so turning off the pump.

+12V

Figure 1. Block diagram of the Auto Sprinkler.

Figure 2. The timing digram shows: (a) Output from IC1; (b) Waveform at the 'live' pin of the probe; (c) Junctions of D1 and C7; (d) As (b) but with wetter soil; (e) As (d) with wet soil — the average level is lower so the alarm is not triggered.

Power Supplies

Before going on to constructional details, we must consider the matter of power supplies. The circuit uses an unregulated 12 V DC supply. This is best taken from a power-pack located indoors, with a light-duty lead to carry the current to the device in the greenhouse. The pump is a windscreen-washer pump, which needs at least 2 A. A circuit for a suitable power-pack is given later. If you have decided to use this only as a warning device, the power requirements are much less. Without the pump and its relay, the circuit uses only about 45 mA and almost any small power-pack can be used to provide this. Then it would be more suitable to locate the circuit indoors, with a lead running to the probe in the greenhouse. A low-current power supply could easily be fitted into the case.

Construction

The circuit is best built and tested stage by stage, beginning with the sensor circuit. The 1 kHz oscillator based on IC1 is the first part to assemble, including C6. If an earphone is connected between the free terminal of C6 and the O V line, a high-pitched tone should be heard, indicating that the oscillator is working. If all is in order, wire up RV1, D1, C7 and the probe. In the prototype, the probe is a 2-pin 5-amp mains plug of the old type, which was found in the scrap box. The essentials are two stout metal rods, preferably of brass or some other corrosion-resistant metal or alloy. They should be about 1.5 cm long and mounted on an insulating base about 1.5 cm apart. Connect these to the circuit board with ordinary lighting flex. While testing, you need a potted plant, or at least a pot of moist potting compost or good loamy soil. The probe can be simply pushed into the soil when testing. Later when the system is in use, it is better to bury the probe one to 2 cm deep in a pot of soil or the

Figure 3. Complete circuit of the Auto Greenhouse Sprinkler. The power supply unit is shown over the page.

Hobby Electronics, June 1982

Auto Sprinkler

greenhouse bed. Place it on its side, so that the base does not prevent water from reaching the soil surface directly above the rods.

If you have an oscilloscope or FET voltmeter, the rectifying stage can be tested by connecting the probe of the scope to the junction of D1 and C7. As RV1 is turned, the voltage should range from about 1 V to about 10 V. Pulling the probe slightly out of the soil (simulating drying out) results in a fall in output voltage. Incidentally, the circuit does not work unless there is at least some conduction across the probe, so remember to water the plant occasionally, or your tests (and the plant) will probably fail.

Next build the Schmitt trigger circuit (IC3). Its output should flip neatly from 0 V to 12 V as RV1 is turned from one extreme to the other (with the probe in the plant-pot).

The next stage is to build the 1 Hz timer, based on IC2. Unless there is effective decoupling of the supply line between IC1 and IC2, the timer is triggered by noise from IC1. Decoupling capacitor (C5) was therefore placed as close as possible to the terminals of IC2. Too large a capacitor affects the operation of the sensor circuit, so keep to the value specified. The remaining gate of IC3 may now be wired in. With RV1 at one extremity (minimum resistance), the output of pin 4, IC3b, should be 12 V. At the other extremity it should alternate from 0 V to 12 V at approximately 1 Hz (the exact frequency does not matter).

One gate of IC4 simply inverts the output from IC3, so there should be no problems here. The other two gates form the reset pulse generator. This is not needed if you want only a warning, and no water pump. The pulse

Figure 4. A simple turbine sprinkler: (a) cutting the wheel from a disc of sheet aluminium; (b) the turbine in operation. Note that the jet should be quite narrow or the plants will be flooded.

generator should normally have a low output which goes high very briefly when the output from IC3 goes low (ie when the soil has been watered enough). This pulse can be detected as an upward kick of the needle of a voltmeter connected to pin 3, IC4a.

The pump is controlled by the counter (IC5). First check the connections from IC3 and IC4. The output from IC5, pin 4, has 1/64 the

frequency of the input and with a 1 Hz input, the output is low for 32 S and high for 32 S. This gives 32 S warning to evacuate the greenhouse. If you think this is more than enough, take the output from pin 5 (as in Figure 3), which gives a 16-second warning Since your timer may not be running at 1 Hz, anyway, the best thing is to test the output from the various pins dotted lines on the component overlay and find the one which gives the timing you prefer. Mount the relay with its protective diode, D2, and the switching transistor Q2. Join the base of Q2 to the selected output pin of IC5 by way of R10. The tracks to which the relay switch terminals are soldered were made as short as possible but, since they are to carry heavy current, it is advisable to run a thick coating of solder along them to aid conduction. Finally, mount the circuit board, RV1. and the pump in the case.

Installing The Sprinkler

The case housing the circuit should be sited well away from any area of the greenhouse which is to be sprayed or dripped on. A few trials may be needed to establish optimum operating conditions and methods, so perhaps it is best to mount the case temporarily, to begin with. The probe should be buried in a pot of soil. Preferably, this should have a plant in it too, to ensure that the soil loses water at the same rate as the soil in other pots. The probe can be buried in a bed if preferred, but it should be placed where it will receive an average amount of water and where it is likely to lose water at an average rate (ie not in the sunniest or shadiest part of the greenhouse).

The pump needs a supply of water. This is best held in a tank inside the

Hobby Electronics, June 1982

Auto Sprinkler

Parts List

RESISTORS
(all ¼ W, 5% carbon)
R1,2,310k
R5
R 6,710M
R8,9,10
POTENTIOMETERS
RV1 100k carbon track, linear
CAPACITORS
(all polyester except where in-
dicated)
C1
C2
C3 47u 16 V electrolytic
C4
C5
C6,7
C8 4u7 16 Velectrolytic
C9 10u 16 V electrolytic
SEMICONDUCTORS
D1
D2
Q1.2
Q1,2

Knob for RV1; 12 V audible warning device, PCB mounting; 12 V automobile screen-washer pump unit; ABS case, approx. 180 mm x 110 mm x 50 mm; materials for making the probe (see text); bolts and nuts for mounting board and pump; plastic tubing and t-joints (standard 5 mm aquarium aerator tubing is suitable); water tank; materials for making the irrigating devices; connecting wire, solder.

BUYLINES page 23

Figure 6. A power supply suitable for driving the complete unit, including the pump. Note that the output is a *nominal* 12 V.

greenhouse, so that the water is at the correct temperature. The tank should be covered, if possible, to exclude light, which encourages the growth of algae, and to exclude soil and dead leaves, which might clog the pump. Alternatively, the pump may be fed from a covered rainwater butt or other tank outside the greenhouse. There could be an application here for those 'water level detector' devices which are so often featured in books of simple electronic projects. Mount one in the tank to warn you when the tank needs topping up!

WARNING: do not run the pump unless it has a supply of water. Without water, it draws excessive current, which could burn out the power supply.

There are several ways in which the water can be distributed to the plants. You may prefer to irrigate from below, in which case the tube from the pump branches to the trays or troughs in which the plants are standing. The trays are flooded repeatedly until the soil becomes saturated to the right amount. If you are using this system, it is advisable to bury the probe nearer to the bottom of its pot. Another method of distribution is to run lengths of tubing above the bench, suspended from the frame of the roof. The tube is perforated at intervals, so that water rains down on the plants beneath. A turbine sprinkler like that illustrated in the drawing scatters the water over a wider area. With all methods, you will probably need to use fine jets on the end of the tube, or screw clips on the tube to restrict the flow. Another point to be considered is what becomes of the water after it has drained away from the pots. If you have troughs on your bench, you could arrange for the water to drain back into the tank. This is more economical of the water and useful, should you want to leave the greenhouse unattended for several days

Whatever methods you adopt, you will need to experiment with the distributing system to get it just right. You will need to find out which is the best position for the sensor and which is the best setting of the level control (RV1) of the sensor. Eventually you should be able to arrive at just the right system for your greenhouse and the particular plants you are growing.

find it just as enjoyable ing onth

9Th

Now! No matter where you live in Britain you can enjoy the pleasure of cruising. Any boat in the Shetland range of family cruisers can be towed behind the average family car.

FAMILY CRUISERS

2 34

Think of the advantages to be enjoyed-the rivers, the lakes, the Broads, estuary and coastal waters whenever the fancy takes you. This year take the cruise you always promised yourself...buy Shetland. Clip the coupon for free brochure and name of your nearest dealer.

To: Shetla Stanton,	and Boats Ltd., Nr. Bury St. Edmunds, Suffolk, Tel: (0359) 50355.	HE6/82
Name _		. 1
Address		
	Tel	
For towing:	Make of car	formally
	Model c.c.	
Please tick	for further information: Family Cruisers	

and the second

Dories Stratos Sportsboat Fisherboats BRITAIN'S NO.1 SETS THE STANDARD and the set of the set of the

Bookshelf

Here is a small selection of the books available from HE's book service. New titles will appear each month

ELEMENTS OF ELECTRONICS by FA Wilson

This series of books covers the basics of electronics, in an easy to understand manner. The topics are written so that important concepts can be grasped by the beginner and yet they can also provide an in-depth reference source for the practising engineer.

Book 1: THE SIMPLE ELECTRONIC CIR-CUIT AND COMPONENTS £2.25 This book contains all the fundamental theory necessary to lead to a full understanding of the simple electronic circuit and its main components.

Book 4: MICROPROCESSING SYSTEMS AND CIRCUITS ... £2.95 Starting with simple computer models, this book takes the reader up to complete microprocessing systems and theoretical circuits.

Book 5: COMMUNICATIONS ... £2.95 All aspects of communication systems such as channel bandwidth, transmission systems and signal processing, are discussed in this final book of the series.

A MICROPROCESSOR PRIMER by EA Parr£1.75 Newcomers to electronics and com-

Newcomers to electronics and computing tend to be overwhelmed when first confronted with literature about microprocessors. This 'book helps to alleviate the problem by recounting the design of a simple computer in an easy to understand manner.

PRACTICAL COMPUTER EX-PERIMENTS

by E A Parr£1.75 Readers of this book will find themselves involved in experiments which help to explain the inner workings of computers and microprocessors. All circuits and experiments use discrete logic circuits to demonstrate such things as 'adders', 'stores', 'arithmetic and logic units' etc.

HOW TO MAKE WALKIE-TALKIES

 listeners with the described receiving equipment.

ELECTRONIC PROJECTS FOR BEGINNERS

POPULAR ELECTRONIC PROJECTS by R A Penfold f1.45 A collection of circuits and projects to interest most electronics constructors, covering four popular main areas: radio; audio; household pro-

INTERNATIONAL TRANSISTOR EQUIVALENTS GUIDE

jects and test equipment.

by A Michaels£2.95 Transistors from over 100 international manufacturers are tabulated in this book in an easy to understand, cross-referenced format, to enable the reader to quickly locate equivalent devices from an alternative source. This book is an extremely useful addition to the electronics enthusiast's library.

To receive your books fill in the form below (or write the details on a sheet of paper) and send it, with your payment, to the address given.

Please wait 28 days for delivery. The offer applies to the UK only. Prices may be subject to change without notice.

513, LONDON ROAD, THORNTON HEATH, SURREY, ENGLAND.	Books Required Price
I enclose a cheque/postal order made payable to ASP Ltd, for the amount shown below OR I wish to pay by Barclaycard/Access. Please charge to my account number	
Signature	
Name	
Address	
······································	Add 75p p&p 0.75
	Total enclosed £

Hobby Electronics, June 1982

Special Feature

UNDERSTANDING COMPONENT VALUES Roger Harrison

120,150,180

33, 47, 56, 68, 82, 100

To the beginner in electronics, and to quite a few not-so-beginners, the values and units given to electronic components such as resistors, capacitors and RF chokes seem confusing. This article should clarify things for you.

THE DECIMAL point has been almost abolished in electronics: The little dot was so small it often disappeared when things were printed, and in any case not everybody recognises its meaning. The French, who invented the decimal system, use a comma instead and so do most Europeans. Other countries use commas for different purposes, like separating hundreds from thousands in large numbers. So when you see a number written 1,500 you don't immediately know whether it's meant to be fifteen hundred or one-and-a-half to three decimal places! When engineers from all over the world sat down to decide on a standard international numbering system, they decided that the best thing to do with the decimal point/comma was to get rid of it altogether.

0.001

It has been replaced by a letter. To show where the decimal point was, any letter would do. For example, you might write one-and-a-half as 1a5 or 1b5 or 1c5, or you could use a capital letter, say 1P5 or 1Q5.

Normally in electronics you're not dealing with pure numbers. You're dealing with numbers of *somethings* — so many volts, so many watts, amps, ohms and so forth. Most of these quantities have letters that are used as abbreviations for them. 5 V means 5 volts, for example, 5 A means 5 amps, 5 W means 5 watts. When you want to express fractional amounts of these quantities you use the abbreviation letter in place of the decimal point, like this: 5V6, 1A5, 3W7. You don't have much trouble seeing that these last three mean 5-point-6 volts, 1-point-5 amps and

3-point-7 watts. Unfortunately, there isn't a letter of our alphabet that stands for ohms, but we're all quite used to seeing a capital R for resistance, so we use that to indicate ohms, like this: 4R7, 2R2, 100R. These mean of course 4-point-7 ohms, 2-point-2 ohms and 100 ohms.

Willam Fisher

Mini And Maxi Units

Lots of things aren't commonly or conveniently measured in the standard size units. Capacitors, for example, are never measured in Farads, because a whole Farad is an enormous capacitance. Practical capacitors have values measured in thousandths, millionths and even smaller fractions of a Farad. At the other extreme, resistors often have values of thousands and millions of ohms. Now it's obviously inconvient and confusing to write OF000001 for one microfarad or 100 000R for one hundred kilohms, so what you do is alter the decimal-point-indicating letter to show the size of the units you are using. For example, 1k5. Clearly this means oneand-a-half somethings and from kilograms and kilometres everyone knows that the little letter 'k' indicates a thousand. So 1k5 must mean one-and-a-half thousand that is 1500. Similarly, 4k7 means 4700, 2k2 means 2200 and so forth. It's usually clear enough from the context whether you're talking about resistance or capacitance or frequency or whatever, so you don't need to write ohms or anything afterwards.

As well ask for one thousand, there are a number of other letters that stand for multiples of the basic unit. Here they are: **G** (Giga) = 1 000 000 000 (one thousand million, 10^9)

 $M (Mega) = 1\,000\,000 (one million, 10^6)$ k (kilo) = 1000 (one thousand, 10³)

m (milli) = 1/1000 (one thousandth, 10^{-6})

 $u (micro) = 1/1 000 000 (one millionth, 10^{-6})$

n (nano) = $1/1\ 000\ 000\ 000$ (one thousand millionth, 10^{-9})

 $p (pico) = 1/1 000 000 000 000 (one billionth, <math>10^{-12}$)

Occasionally you'll come across *tera* (T) which is one million million (10^{12}) and *fento* which is one thousand billionth (10^{-15}) .

Armed with this information, you should be able to read almost any printed value of an electronic quality. For practice, here are a few examples of values you might not be too familiar with. A capacitor marked as 47p has a value of 47 picofarads, which is 47 billionths of a Farad. One marked 4p7 has only a tenth the value, 4-point-7 billionths of a Farad. A 100n capacitor is 100 nanofarads or 100 \div 1000 000 000 Farads = 1/10 000 000 farad. At the other end of the scale, a resistor marked as 15M has a value of 15 Megohms, ie: 15 million ohms; one marked 1M5 has a value ten times less at 1-point-5 million ohms.

Translation Problems

The standard international numbering system makes everything simple as long as everybody sticks to it, but unfortunately there are still some occasions when you come across values written in an older style and you have to translate them into a new style. This mainly happens with capacitors.

The first problem is that the old symbol for 'micro' was different. It was a Greek letter called mu, which is pronounced like the noise a pussycat makes, and looks like this: This symbol caused some confusion in the past, because it sometimes got mistaken for 'm', which has always meant 'milli', a thousand times larger. So was officially replaced by 'u'. If you see a capacitor marked, for example 10 , you can translate that directly into 10u and know that it means 10 microfarads. Nevertheless, is still widely used.

Another confusing thing is the still common practice of marking or specifying capacitor values in *fractions* of a microfarad like 0.001 u (1000p, or better, 1n). To convert fractions of a microfarad into modern values, you have to multiply by 1000 to get the answer in nanofarads, or multiply by 1 000 000 and get the answer in picofarads. Don't panic! To save you trouble, here is a list of typical old-style values and how they translate into new style. From this list you should be able to work out very quickly the new-stlye version of any old-style capacitor value.

0.1u = 100n 0.01u = 10n	0.47u = 470n 0.047u = 47n
$(10\ 000pl)$ 0.001u = 1n	0.0047u = 4n7
(1000p!) 0.001u = 100p	0.00047u = 470p

Small Resistances

Resistors with small values sometimes cause difficulties. Because small resistances are not very commonly used, most people are not accustomed to thinking in terms of milliohms (thousandths of an ohm), so the little letter 'm' isn't used for resistors. A resistance of one-tenth of an ohm is not written 100m (for one hundred milliohms), but OR1 (for one-tenth of an ohm). As usual, the letter R indicates the position of the decimal point and shows that the unit of measurement is whole ohms. In the same way, 2R2 means 2-point-2 ohms, 5R6 means 5-point-6 ohms and so forth. Even smaller values are still written as fractions of an ohm, but the O before the decimal-point-indicating letter is usually omitted. For instance, RO1 means point-Ó1 ohms (one hundreth of an ohm), ROO1 means point-001 ohms (one thousandth of an ohm), R33 means 33/100ths of an ohm and R068 means 68/1000thsofanohm.

Zeroes

Some component values are written with a zero before or after the multiplier character to indicate the value quite unambiguously. For example, a 1000 pF capacitor, rather than being written '1n' may be written 1n0. Or a point-1 (0.1) ohm resistor, rather than being written R1, may be written OR1.

Preferred Values

Why is it that resistors and capacitors only seem to come in certain values? You almost never see a 25R resistor, only 22R or 27R ones. 600k resistors are likewise as rare as hens' teeth, but there are any number of 560k and 680k ones. For one thing, manufacturers can't make every

bol between 1R and 10M, they'd be making ten million different products and selling only a few of each. Very capital inefficient, like as they say. Resistors would be ridiculousnfuly expensive and manufacturers would go bankrupt. Obviously, only a restricted number of values can be produced. But why these particular values that actually are produced? What's so special about 4k7 or 56R or 820R? Why not stick and to simple numbers? The reason is that

about 4k7 or 56R or 820R? Why not stick to simple numbers? The reason is that these particular values allow the least number of different values to be made. How come? Well, resistors are not made with absolute accuracy - that costs too much and isn't usually necessary. Most circuits will accept a variation of 10% in resistor values without problems. So resistors are made with values that are anything up to 10% higher or lower than their marked value. This is called a tolerance of 10% and such a resistor is usually called a 10% resistor. For example, a 100R, 10% resistor might have a value anv-where between 90R and 110R. Given this amount of variation, there would obviously be no point in also making 10% resistors with nominal values like 94R or 107R, because these values are already covered by the ±10% spread of the 100R resistor.

possible value of resistor. If they made

resistors in every whole number of ohms

So in a series of 10% resistors, what should be the next highest value above 100R? A value of, say, 11R would be too low, because the 111R resistor would also have a tolerance of 10%, so its possible values would spread down to below 100R, completely overlapping the upper range of variation of the 100R resistor. To avoid this kind of overlap, the next highest value 10% resistor needs to be about 120R. A 120R 10% resistor has its possible values spread between 108R and 132R. There's still a small overlap, but to get rid of the overlap completely without leaving a gap you'd need a value of one hundred and twenty two and two ninths ohms (work it out for yourself if you like algebra), which is rather an awkward number. 120R is a nice round number, so that's the 'preferred value' next in the series. By similar reasoning, the next value in the series of 10% resistors is 150R, then 220R, 270R, 330R, 390R, 470R, 560R, 680R, 820R and then 1k. It doesn't take much to see that the obvious next preferred value after 1k must be 1k2, then 1k5, 1k8 and so on. In other words, the same sequence of values keeps repeating, multiplied by ten at each repetition. This series of preferred values is known as the *E12 series*, because there are 12 values in the series. For reference, here are two 'decades' of the E12 series:

10	100
12	120
15	150
22	220
27	270
33	330
39	390
47	470
56	560
68	680
82	820

Even though resistors are nowadays more commonly made with a tolerance of 5%, the old E12 series of preferred values is still the most widely used. There is a similar series, called E24, which is worked out in just the same way as the E12 series, except that a tolerance of only 5% is assumed.

For closer tolerances, there's the E48 series (2%) and E96 series (1%) with, respectively, 48 and 96 values per decade.

Capacitors are made to wider tolerances than resistors – 20% is not at all uncommon, so they are usually supplied in a restricted range of preferred values. The significant figures in this series are 10, 15, 22, 33, 47 and 68. As there are only six values per decade, it is called the E6 series.

Close tolerance values are written in the same way as we've described previously, so if you come across a 1k02 resistor or a 34p8 capacitor you'll know you're dealing with close tolerance components. In the first case, you have a 1020 ohm resistor, in the second case you have a 34.8 pF capacitor.

This shows the tolerance extremes of all the values in E12 series, represented by a horizontal bar. The left-hand end and right-hand ends of each bar represent, respectively, the lower limit and the upper limit of the value. Most overlap, you will note.

Understanding Components I

Tolerance extremities for the E6, E12 and E24 preferred

Prefe ser	Preferred numbers in decade for the E6, E12, E24 & E96 serles							
E6 20%	E12 10%	E24 5%	19	6 and	2%)		
10 15 22 33	10 12 15 18 22 27 33	10 11 12 13 15 16 18 20 22 24 27 30 33 36	10.0 11.0 12.1 13.0 15.0 16.2 18.2 20.0 22.1 24.3 27.4 30.1 33 .2 36.5	10.2 11.3 12.4 13.3 15.4 16.5 18.7 20.5 22.6 24.9 28.0 30.9 34.0 37.4	10.5 11.5 12.7 13.7 15.8 16.9 19.1 21.0 23.2 25.5 28.7 31.6 34.8 38.3	10.7 11.8 14.0 17.4 19.6 21.5 23.7 26.1 29.4 32.4 35.7	14.3 17.8 26.7	14.7
47 68	39 47 56 68 82	39 43 47 51 56 62 68 75 82 91	39.2 43.2 47.5 51.1 56.2 61.9 68.1 75.0 82.5 90.9	40.2 44.2 48.7 52.3 57.6 63.4 69.8 76.8 84.5 93.1	41.2 45.3 49.9 53.6 59.0 64.9 71.5 78.7 86.6 95.3	42.2 46.4 54.9 60.4 66.5 73.2 80.6 88.7 97.6		

Top: The 'preferred values' of E6, E12, E24 and E96 series components.

Right: The tolerance spread (possible values, above and below the nominal value) of components in the E6, E12, and E24 preferred value series.

sèries	value	16.24				
- 20%	- 10%	- 5%	nominal value	+ 5%	+10%	+ 20%
8	9 10.8	9.5 10.5 11.4	10 11 12	10.5 11.6 12.6	11	12
12	13.5	12.4 14.3 15.2	13 15 16	13.7 15.8 16.8	16.5	18
17.6	16.2 19.8	17.1 19.0 20.9	18 20 22	18.9 21.0 23.1	19.8 24.2	26.4
	24.3	25.7 28.5	27 30	25.2 28.4 31.5	29.7	
26.4	29.7 35.1	31.4 34.2 37.1	33 36 39	34.7 37.8 41.0	42.9	39.6
37.6	42.3	40.9 44.7 48.5	43 47 51	45.2 49.4 53.6	51.7	56.4
54.4	50.4 61.2	53.2 58.9 64.6	56 62 68	58.8 65.1 71.4	61.6 74.8	81.6
	73.8	71.3 77.9 86.5	75 82 91	78.8 86.1 95.6	90.2	
E6	E12	E24	1.22	E24	E12	E6
	lower extremities extremities					nities
						H

THANDAR SC110 SINGLE TRACE LOW POWOER 2" OSCILLOSCOPE • Bandwidth DC to 10 Mhz • Sensitivity: 10mV/ div to 50 V/div. • Sweep speeds: 0.1,u secs / div to 0.5 secs/div. • Power requirements 4-10 V DC 4 'C' cells : Size & weight 255×150×40mm : 800gms £159.85 a truly portable and superb instrument • Carrying case £8.86 • AC Adaptor £5.69 • Nicad Batt. pack £8.63 • ×1 probe £9.78 • ×10 probe £11.50 Complete range of Thandar instruments available from stock S.A.E. for CAT. & prices.

ELECTRONIC COMPONENTS AND TEST EQUIPMENT 35, HIGH BRIDGE. NEWCASTLE UPON TYNE NE1 1EW TEL: 0632 326729

6.S.C. SOLDERLESS BREADBOARDS • Accepts all components with leads up to ·033" • Replaceable nickel-silver spring clip contacts. • Combines bus strip with board • Unlimited expansion • 3" and ·6" centre chanels • Three free experimental circuits with every purchase Contract Strip Strip Tie Tier Term is

		Centre	Strip	Strip	Tie	Term	1.6.	
		Channel	Length	Width	Points	Clips	Cpty.	Price
	EXP-600	15mm	152mm	61mm	550	011	³ 28pin	\$7.25
	EXP-300	8m m	152mm	53mm	550	110	⁶ 14pia	£6.62
E	EXP-4B	nla	152 mm	25mm	160	32	n/a	\$2.65
ł	EXP-650	15mm	91mm	61mm	270	54	¹ 40pin	£4.14
	EXP-350	8mm	91៣៣	53mm	270	54	³ 14pia	£3.62
	EXP-325	8mm	48m m	53m m	130	26	¹ 22pin	£1.84
	Please sei	nd S.A.E. for	catalogue l	isting comp	lete rang	e of G.S	.C.	
	lastrumen	its and Board	ds.					

 $\begin{array}{l} \textbf{TMK 500 MULTIMETER $ 30 kpv. $ AC volts 2.5 10 25 100 250 \\ 500 1000V $ DC volts 0.25 1 2.5 10 25 10 25 10 250 1000 $ DC \\ current 50,ua 5MA 50MA 12 amp $ Resistance 0.5K 60K, 60 meg. \\ Decible $ -20 ta $ + 56 d/b $ Buzzer continuity test $ Size 160 $ 110 $ $ 65 $ Batteries and leads inc. $ $ 26.95 $ \end{array}$

DESOLDERING TOOL £6.45

ASURE SEND YOUR ACCESS OR BARCLAYCARD NUMBER. PRICES INCLUDE VAT. PLEASE ADD 75p POSTAGE TO ORDERS UNDER SUBJO

4Ĩ

VISA

Hobby Electronics, June 1982

Britain's Biggest Magazine For The Sinclair User

Over 100 pages of information and programs for the ZX81 and ZX80 user including a 1K Chess routine!

ZX Computing is a quarterly magazine with over 100 pages of programs, articles, hints and tips for the ZX81 and ZX80. We've put the magazine together with just one aim in mind — to make sure you get the most use and enjoyment out of your Sinclair computer.

In the first issue, as well as a host of 1K and 16K programs (the majority dumped directly onto the printer), we've got two articles to help dispel the mysteries of machine code, a chess routine which takes up just 1K, an explanation of PEEK and POKE, an entire section on business uses of the ZX81 (complete with a program to handle the accounts of up to 100 customers) and a construction article which will show you — even if you've never used a soldering iron before — how to cheaply double the memory on your ZX81.

If you're serious about exploring the full potential of your Sinclair computer, and you want an easy-to-understand series of articles to improve and develop your programming skills, then ZX Computing is for you. Issue one is on sale now.

- Software Reviews which programs are the best buy?
- Business Routines put your ZX to work!
- Expansion Systems how good and how much?
- Machine Code for ZX81— secrets revealed at last!
- DIY Memory Upgrade cheap way of adding bytes

SUBSCRIPTION ORDER FORM				
Cut out and SEND TO : GOMPUTING	513 LONDON ROAD, THORNTON HEATH, SURREY, CR4 6AR. SUBSCRIPTION			
Please use BLOCK CAPITALS and include post codes.	Please commence my subscription to ZX Computing with theissue. (tick] as appropriate) f7.00 for 4 issues f1.75 for a single U.K. find for theissue [] I am enclosing my (delete as necessary) Cheque/Postal Order/International Money Order for f. (made payable to ASP Ltd) OR Debit my Access(Bardaynerd)			
HE 4/6	('delete as necessary)			

In this issue we present the first instalment of our microcomputer project, especially developed with Hobby Electronics readers in mind. It is more than just a teaching aid — it is also a powerful machine for control applications. In future issues, we'll be presenting a number of projects designed to be controlled by a computer, but first you'll need

THE HE MICROTRAINER .

If any single microcomputer can be said to have started an industry, that computer is Sinclair's ZX81. Add-on extras now available for the, ZX81 include ASCII keyboards, controllers and memory packs. In the months to come we'll be reviewing many of these products. We start with

MEMOTECH'S 64K RAM PACK

Of course, a computer is only as good as the software — the programs — written for it. A vast number of programs have already been developed for the ZX81 and more are appearing every month. What better place to start than Sinclair Research's own ZX Software, which we've called

66

THE SINCLAIR TAPES . . .

Popular Computing

Colour television monitor courtesy of JVC and Which Video?

HE MicroTrainer

A powerful and flexible Hex Trainer/Controller based on the popular 1802 microprocessor also used as the main MPU on board UOSAT, the University of Surrey Satellite). This month we introduce the 1802 and in July, we get down to nuts and bolts with the constructional details.

HOBBY ELECTRONICS, as well as offering projects and features for the more advanced electronics enthusiast, has always been very much a magazine for beginners, too. Whatever direction is taken by the technology of electronics, in industry and commerce, this magazine will always aim at offering the hobbyist a foothold in basic, applied electronics. In this series of articles, covering a major computer project, we present an alternative to the view that microprocessors are of a complexity beyond the abilities of the average hobbyist.

The microprocessor has been around for close to a decade, now, and its success is clearly evident in the vast range of microprocessor-based consumer products that have flooded the market; computers, toys, timers, heating controllers, and cash registers, to name but a few. The very factors that make the device attractive to these applications, namely low cost and high flexibility, equally justify it use by the amateur constructor.

In this article, we present a discussion of the basic principles of microprocessor operation. This will be expanded and illustrated, through applied examples, in later issues and next month we will start the full constructional details of our microprocessor training machine. Later, we will be specifically concerned with interfacing this machine (and machines in general) to the real world in controllertype applications.

A Bit Of This And That

A microprocessor is an electronic device that processes digital information (data). The term 'digital' means that the signal voltages that are being dealt with are in discrete levels, commonly just two levels, a low voltage (OV) and a high voltage (+5V); these are usually referred to as logic O and logic 1 respectively. Most of you will already be familiar with simple digital circuitry.

If you pause to think of applications for

Popular Computing I

solid-state electronics, you will see that a large number of them are immediately suited to digital electronic design. In an industrial control system, for example, we may have a number of devices (motor, valves etc) which switch either on or off, open or closed, as a logical function of the state of other devices (switches, sensors etc). Other systems, which use transducers, pick-ups and variable-speed motors, on the other hand, are not immediately adaptable to digital techniques. Nevertheless, even in this latter case digital designs are widely applied, by the method of converting from analogue signals to digital, and from digital to analogue, before and after the signal processing stages, respective-The reward is improved system reliability and, often, greatly simplified circuitry, which equates with low cost.

Ultimately, we reduce each problem to a set of logic signals, each one of which we term a bit (of information or data). These bits may individually represent the state of an external device (switch, motor etc on or off) or collectively represent a number or variable, such as would be derived from an analogue to digital conversion process. In this latter case, and particularly when using microprocessors, it is usual to collect and process data bits in groups of a fixed number; most of the common microprocessors handle data in groups of eight bits and each group is called a 'byte'. We can use a byte to represent a maximum of 256 numbers, using binary representation. For example, 10010110 is the binary representation of the number 150; it is worked out by assuming that the left most bit (the Most Significant Bit or MSB) has a value of 128 (when set at logic 1) and that bits to the right are half the value of their left-hand neighbours, down to a value of one for the right or Least Significant Bit (LSB) Thus:

```
10010110 = (1 \times 128) + (0 \times 64) 
+ (0 \times 32) + (1 \times 16) 
+ (0 \times 8) + (1 \times 4) 
+ (1 \times 2) + (0 \times 1)
```

There is one other number system that some microprocessors use, in addition to binary, which is called Binary Coded Decimal (BCD). In this system, a byte is notionally separated into two four-bit fragments each of which represents a decimal number, eg 0011, 1001 = 2 +1, 8 + 1 = 3, 9 = 39. Binary codes higher than 1001 are invalid in BCD and should never occur.

Rarely will you see lists of binary encoded data appearing in print; a much more compact system of notation, called Hexadecimal, is usually applied. In Hexadecimal notation, each of the four bit fragments of the byte are replaced by one of sixteen characters as listed below:

0000	=	0	1000	=	8
0001		1	1001	=	9
0010	=	2	1010	=	A
0011	=	3	1011	=	В
0100	=	4	1100	=	С
0101	=	5	1101	=	D
0100	=	6	1110	=	E
0111	=	7	1111	=	F

Figure 1. A simple microprocessor system for controller applications.

Hexadecimal and binary are very easily interconverted, eg:

01011101 = 0101 1101 = 5D 10101011 = 1010 1011 = AB.

The Microprocessor

The block diagram, Figure 1, shows a minimum-hardware microprocessor system that would be used for industrial controller applications. The main components of the system are a Microprocessor Unit (MPU), a Read Only Memory (ROM), a Random Access Memory (RAM) and an Input/Output device (I/O port).

The RAM is used, essentially, to store the data which is being processed by the MPU. It is internally organised as a number of locations (typically 1024), each of which may store a single byte of data. Any of these locations may be selected at random, ie addressed, so that data may be 'read' from the location without altering it or written into the location, thus changing it. A RAM chip which has 1024 byte capacity (eg, Mostek MK4118) will have ten input terwhich minals called 'address lines' select between the locations (a ten bit binary number has 210 possible values, ie 1024)

The ROM has a similar organisation to the RAM, except that the stored data has been fixed at the time of manufacture and cannot be altered or written into during normal operation. There is, however, a very popular variation of this device called an EPROM (Electrically Programmable Read Only Memory) which is programmed using a high voltage (+25V) and erased with a source of UV light; there are several machines on the market designed to program these devices. Data which is stored in the ROM, in this application, is called 'Firmware' or, more generally, 'Software'. It is interpreted by the MPU as instructions or commands and therefore controls the operation of the entire system.

Finally, the system has an I/O port – or several I/O ports – which interface the MPU to the outside world. Each of

the I/O lines, which are normally programmed as either an input or an output, will connect to any of the external devices (switches, motors, valves etc) devices discussed earlier, via suitable buffering such as a transistor or relay, of course.

All of these components are interconnected by two main busses (a set of lines carrying parallel data), namely the address bus and data bus. Data can be transferred between the MPU and any other device, in both directions (bidirectional), along the data bus. Ad-dresses are placed on to the address bus by the MPU in order to select a particular memory device and location within that device. The address decoding logic uses high-order address bits to determine which of the devices is to be accessed and selects the appropriate device by pulling its Chip Enable (CE) pin to logic zero. This will be explained in detail next month, so for the moment lets just say that each device is selected by a unique range of address numbers. An active low Read Line (RD) or active low Write Line (WR) indicates to the selected device the direction of data transfer on the bidirectional data bus. These two signals, together with the chip enable lines, are often referred to as the control bus.

The 1802

The remainder of our discussion on the operation of microprocessors will be with specific reference to the RCA 1802. This device, which is used in our Micro Trainer project, has been chosen as a good MPU for controller applications and, more importantly, for its relatively simple instruction set. Also, it illustrates most of the techniques that apply to the more common eight bit MPUS such as the Z80 and 6502 and, therefore, is an excellent starting point for learning about microprocessors.

Looking firstly at the 1802 pin assignment diagram of Figure 2, you should be able to identify the data bus (D0-D7) the address bus (A0-A7), the control signals RD and WR, the clock input and the power supply connections VDD, VCC

HE MicroTrainer

and VSS. The address outputs, in fact, provide 16 address lines, giving a total addressing capacity of 65536 (64K) bytes, however, they are timemultiplexed onto just 8 lines. As will be seen later, the most significant byte of the address lines must be first loaded into an 8 bit latch, timed by signal TPA (pin 34), allowing the least significant byte to then appear on pins 25-32. Apart from the CLEAR signal, used to reset the MPU after power-up, the remaining signal lines are not required in the simple design of Figure 1, therefore do not worry about them too much, at this stage.

Before describing the sequence of operations that cause the data transfers to and from the MPU (which are called bus cycles, incidentally) we need to take a look inside the 1802 itself.

The model of the 1802 MPU shown in Figure 3, reveals everything that the user or programmer needs to know about the internal architecture of the device, ie the registers that store data within the MPU. There are 16 registers of 16 bits, each able to store 2 bytes of data (the high byte is designated R.1 and the low byte R.O). More important than data storage, these registers will also hold 16 bit addresses, pointing to instructions and data stored in the external memory system. There are, additionally, two 4-bit registers X and P, which may contain any value from Hex 00 to Hex OF, and they assign a special meaning to the register to which they point. The Program Counter, R(P) points to the address from which the MPU fetches data or instructions. After resetting the machine (by a low pulse applied to the CLEAR input) the program counter is always R.O. and has an initial value of 0000H. The index register, R(X), points to data in memory during some arithmetic, logic or transfer operations. All arithmetic and logic operations produce an eight bit result which is placed in the Accumulator (AC). This has an associated Carry Flag (CF), which is a one bit register indicating, for example, an overflow condition arising from certain arithmetic operations. The temporary register (T), the Interrupt Enable flag (IE) and the Q flag will be explained in later issues.

The 1802 MPU carries out instructions in a sequence of two bus cycles, the 'fetch cycle' followed by the 'ex-ecute cycle'. A high frequency (2 MHz) clock applied to pin 1 of the MPU provides the timing necessary for these cycles; in fact there are eight clock periods to one bus cycle and all other timed signals, such as WR or RD, are also referenced to the clock. If we assume that the MPU has just been released from a reset condition (CLEAR taken high), the MPU will read its first instruction, from the initial program counter address of 0000H, in the first fetch cycle. This instruction, having been interpreted by the MPU will initiate an execute cycle which will do exactly that which RCA promise it will do, by means of the MPU's internal operation, which is of no real concern to us, the users. In this execute cycle, the MPU may output the address of any of the 16 bit registers to fetch a further data byte from memory, although many of the instructions act on

	CLOCK-	1.	40 -	VDD (+5V)	
	WAIT -	2	39 -	XTAL	
	CLEAR-	3	38 -	DMA IN	
	Q -	4	37 -	DMA OUT	
	SCI -	5	36 -	INTERRUPT	
	sco -	6	35 -	WR	
	RD -	7 .	34 -	ТРА	
ſ	D7 -	8	33 -	ТРВ	
	D6 -	9	32 -	A7 (A15)	
	D5 -	10	31 -	A6 (A14)	
DATABUS	D4 -	11	30 -	A5 (A13)	(MULTIPLEXED)
	D3 -	12	29 -	A4 (A12)	
	D2 -	13	28	A3 (A11)	
	D1 -	14	27 -	A2 (A10)	
	Ď0 -	15	26 -	A1 (A9)	
(+5V)	VCC -	16	25 -	A0 (A8)	
	N2 -	17	24 -	EF1	
	N1 -	18	23-	EF2	
	N0 -	19	22 -	EF3	
(0V)	VSS -	20	21	EF4	

Figure 2. The pin designations of the 1802 microprocessor.

15		8	7			0
	R0.1			R0.0		
	R1.1			R1.0		
	R2.1			R2.0		
	R3.1			R3.0		
	R4.1			R4.0		
	R5.1			R5.0		
	R6.1			R6.0		
	R7.1			R7.0		
	R8.1			R8.0		
	R9.1			R9.0	-	
	RA.1			RA.0		
	RB.1			RB.0		
	RC.1			RC.0		
	RD.1			RD.0		
	RE.1			RE.0		
	RF.1			RF.0		

Figure 3. A programming model of the 1802. This is not the 'architecture' of the MPU but a model of how the processor 'appears' to the programmer.

the MPU's internal registers alone and therefore have a so-called non-memory execute cycle.

A comprehensive list of the 1802's instruction set appear in Table 1, in which we give the Hexadecimal machine code instruction, functional description of the instruction and the associated mnemonic that one would use in writing machine code programs. The precise meaning of all these will be made clearer in later examples, although we also strongly recommend the purchase of RCA's ''User Manual for the CDP1802 COSMAC Microprocessor''.

The set includes instructions for tranfers between registers and accumulator and between accumulator and memory, arithmetic and logic operations on data in the accumulator and instructions which alter program flow control (branches) and numerous special instructions. We will discuss all these categories at a later date, however here

HE MicroTrainer

are a few examples to whet your appetite:

IDI

00 Mait for interrupt

16 (mnemonic, INC R6) when fetched, will cause '1' to be added to the 16 bit value of register 6.

F4 (mnemonic, ADD) will cause the byte of data pointed to in memory, by the index register, to be added to the value stored in the accumulator and the result placed in the accumulator.

32 (mnemonic BZ) followed immediately by a single data byte, will cause that byte to be copied into the loworder half of the program counter if the accumulator has a zero value, otherwise execution will continue with the next instruction.

This latter instruction is used to generate a loop in the program and is termed a 'branch'; in this case a conditional branch. After each instruction execution, the program counter normally advances automatically to the next instruction: The specimen (useless) program below should illustrate these points:

Address	Code	Mnemonics
00000	16	INC R6
0001	30	'BR 00
0002	00	

This will cause register six to count from 0000 to FFFF, ad infinitum!

If you have followed all this so far, and are beginning to wonder where the edges of the page merge with reality, do not despair; our applied examples, in later issues, will make things clearer, particularly if you build our Micro Trainer, which will enable you to try things out for yourself.

The HE MicroTrainer has been designed for Hobby Electronics readers by Paul Kelly and will only be available as a complete kit from Technomatic Ltd. The MicroTrainer has been developed as a powerful teaching tool — but it also has many other uses and offers many advantages over existing developement kits:

LOW COST SIMPLE CONSTRUCTION HIGH QUALITY DOUBLE-SIDED, **THORUGH-HOLE PLATED PCB** MODULATED VIDEO OUTPUT RATHER THAN LED DISPLAY DISPLAY SHOWS EITHER 32 BYTES OF PROGRAM MEMORY OF THE COMPLETE SET OF 1802 REGISTERS UNIQUE SINGLE-STEP FEATURE SINGLE LINE MNEMONIC **DECODES CURRENT** INSTRUCTION 20-KEY PAD FOR DATA ENTRY AND COMMANDS 1.5 KBYTES ON-BOARD MEMORY FOR USER PROGRAMS CASSETTE 'SAVE' AND 'LOAD' INSTRUCTIONS LEARN BY BUILDING OPTIONAL 24-LINE I/O PORT VERSATILE CONTROLLER FOR **EXTERNAL SYSTEMS** HE

100	00	DMA request	3
LDN	ON	Load accumulator, via	S
		register N	
INC	1N	Increment register N	
DEC	2N	Decrement register N	G
BR	30	Branch always	
BZ	32	Branch if accumulator	G
52	02	is zero	0
BPZ	33	Branch if positive or	
		zero	P
B1	34	Branch if EF1 = 0	
B2	35	Branch if $EF2 = 0$	DI
B3 D4	30	Branch if $EF3 = 0$	PI
BRN	38	Branch never	
BNO	39	Branch if $\Omega = 0$	LE
BNZ	3A	Branch if accumulator	LE
		not zero	LE
BM	3B	Branch if minus	
BN1	30	Branch if EF1 = 1	LE
BN2	30	Branch if $EF2 = 1$	N.L.
BN3	3E	Branch if $EF3 = 1$	N
	41	Load accumulator via	1.9
LDA	-714	register N, then	LS
		increment register N	-
STR	5N	Store accumulator in	LS
		memory, via register N	LS
IRX	60	Increment index	LE
0.117	~ ~ ~	register	LE
OUT	6N	(N = 1, 7) Transfer via	
		Index register to	
		increment index	
		register	1.5
* * *	68	Illegal instruction	
INP	6N	(N = 9,F) Transfer to	LS
		accumulator from	
		input device (N-8),	SE
		then store via index	~
DET	70	register	51
REI	/0	Active and the second s	10
DIS	71	Return from interrupt	- L
DIO		with interrupts	0
		disabled	
LDXA	72	Load accumulator, via	
		index register, and	A
		increment index	
STYD	72	register.	Y
3170	,13	memory via index	~
		register, and	
		decrement index	A
		register	
ADC	74	Add with carry, via	
		index register, to	SL
CDR	75	accumulator	
306	/5	accumulator from	SH
		memory, via index	
		register	SA
SHRC	76	Shift right with carry	
		(accumulator)	
SMB	//	Subtract with borrow,	LL
		accumulator via index	OF
		register	0.
SAV	78	Save T register in	A
		memory, via index	
		register	+
MARK	79	Push X, P registers on	XF
		stack, via index	
DEO	7.4	register	٨٢
REQ	70	Set O flag to one	AL
ADCI	70	Add with carry.	SD
1001		immediate data to	
		accumulator	SH
SDBI	7D	Subtract with borrow,	SN
		accumulator from	
		immediate data	

Table 1. 1802 Instruction Set (Mnemonins, Hexadecimal code and operations)

HLC	7E	Shift left with carry
MBI	7F	(accumulator) Subtract with borrow.
		immediate data from
LO	8N	accumulator Load accumulator
		with low order byte of
н	9N	register N Load accumulator
		with high order byte of
LO	AN	Store accumulator in
		low order byte of
HI	BN	Store accumulator in
		high order byte of
BR	со	Long branch always
30	C1	Long branch if $Q = 1$
	02	accumulator is zero
BPZ	C3	Long branch if positive
OP	C4	No operation (long
SNO	C5	skip never) Long skip if $\Omega = 0$
SNZ	C6	Long skip if
SMI	C7	Long skip if minus
SKP	C8	Long skip always
SNQ SNZ	C9 CA	Long branch if $Q = 0$
		accumulator not zero
BMI	CB	Long branch if minus
SQ	CD	Long skip if $Q = 1$
SZ	CE	Long skip if
SPZ	CF	Long skip if positive or
P	DN	Set program counter
EX	EN	to register N Set index register to
X	FO	register N Load accumulator via
2	E1	index register
1		with accumulator, via
ND	F2	index register
		with accumulator, via
OR	F3	Logic XOR, memory
		with accumulator, via
DD .	F4	Add memory to
		accumulator, via index
)	F5	Subtract accumulator
		from memory, via
IR	F6	Shift right
л	F7	accumulator Subtract memory from
		accumulator, via index
	F8	register Load accumulator
	50	with immediate data
41	F9	with immediate data
11	FA	Logic AND, accumulator with
	50	immediate data
11	FB	accumulator with
	FC	immediate data
Л	FC	immediate data
	FD	Subtract accumulator
IL	FE	Shift left accumulator
/11	FF	Subtract from
		accumulator, immediate data

Memotech's New Memory System for the **ZX81** Itgrows as youprogress

Memopak 16K Memory Extension - £39.95 incl.VAT

It is a fact that the ZX81 has revolutionised home computing, and coupled with the new Memopak 16K it gives you a massive 16K of Directly Addressable RAM, which is neither switched nor paged. With the addition of the Memopak 16K your ZX81's enlarged memory capacity will enable it to execute longer and more sophisticated programs, and to hold an extended database.

The 16K and 64K Memopaks come in attractive, customdesigned and engineered cases which fit snugly on to the back of the ZX81, giving firm, wobble-free connections. See below for ordering information.

Coming Soon...

A complete range of 2X81 plug-in perpherals Memotech Hi-Res Graphics Centronics Interface and Software Drivers Memotech Digitising Tablet RS232 Interface

All these products are designed to fit 'piggy-back' fashion on to each other, and use the Sinclair power supply. WATCH THIS SPACE for further details. We regret we are as yet unable to accept orders or enquiries concerning these products – but we'll let you know as soon as they become available.

How to order your Memopak. By Post: Fill in the coupon below and enclose your cheque/P.O./Access or Barclaycard number. By Phone: Access/Barclaycard holders please ring Oxford (0865) 722102 (24-hour answering service).	When your programming needs have outgrown the capacity provided by 16K RAM, and you find it necessary to further extend your ZX81's capacity, we will take back your 16K Memopak and allow a discount of £15.00 against your purchase of our 64K model.* "We reserve the right to reject, for discounting purposes, units which have been either opened or damaged in any way.				
Please make cheques payable to Memotech Limited	Please send me:				
Please debit my Access/Barclaycard* account number		Quantity	Price	Total	
	16K RAM, Assembled		£39.95		
Please delete whichever does not apply	64K RAM, Assembled		£79:00		
			Postage	£2.00	
	DRESS	Тс	otal Enclosed		
				HE6	
We want to be sure you are satisfied with your Memopak - s	to we offer a 14-day money	/ back Guaran	tee on all our j	produc	

меторак 64к

Memopak 64K Memory Extension -£79.00 incl.VAT

The 64K Memopak is a pack which extends the memory of the ZX81 by a further 56K, and together with the ZX81 gives a full 64K, which is neither switched nor paged, and is directly addressable. The unit is user transparent and accepts basic commands such as 10 DIM A(9000).

BREAKDOWN OF MEMORY AREAS

0-8K Sinclair ROM

8–16K ... This section of memory switches in or out in 4K blocks to leave space for memory mapping, holds its contents during cassette loads, allows communication between programmes, and can be used to run assembly language routines.

16–32K This area can be used for basic programmes and assembly language routines.

32–64K.... 32K of RAM memory for basic variables and large arrays.

With the Memopak 64K extension the ZX81 is transformed into a powerful computer, suitable for business, leisure and educational use, at a fraction of the cost of comparable systems.

Unique 3 month trade-in offer!

Popular Computing

IF there is one indisputable drawback to the 7X, 81 it is inter lack of memory. The CECOPAK 64K

IF there is one indisputable drawback to the ZX-81 it is its lack of memory. The basic machine has a mere 1K of user RAM (Random Access Memory) and this is quickly eaten up by program lines. Ironically, it is the less experienced computer enthusiast who requires the larger amounts of memory. Once you have become a little practised in the art, it is relatively easy to produce more efficient programs, ie those which take up less memory.

The Sinclair add-on pack offers 16K of RAM at a price comparable with that of the computer. For a large number of home users, this amount of memory will suffice for quite a time. Fairly ambitious creations can be undertaken within the confines of 16K! However, anyone who wishes to use his Sinclair for any form of data handling – address lists, stock control, etc, would very quickly run out of space and could end up sending 100 letters to himself – because that's the only address the computer had room to store.

Memories Are Made Of This

The Memotech 64K RAM is designed to overcome this problem. First let me say that there is only 56K of actual memory present in the box itself. Presumably the 64K legend is derived from the fact that the pack expands the ZX81 to 64K and not by 64K. Furthermore, the 56K is divided up, to make it more usable for programs requiring large amounts of data. Sinclair complicate things, however, by designing their hardware so that the section of memory that holds all the screen characters has to be positioned somewhere within the first 32K of memory that the ZX-81 finds itself hooked up to. The diagram of Figure 1 gives an idea of what the various parts of the total 64K can be employed for.

When referring to large amounts of memory it is usual to refer to the position of something within it by the number of locations the computer has to count through to reach it (a 'location' is simply a place to store a byte – eight bits – of information). For example, if the Sinclair stores a particular screen character in the 32,000th location it could have used, then that character ''resides'' at 32K.

Somewhere A Place For Us?

Using this terminology then, your BASIC programs reside between 16K and 32K, with arrays and variables from 32K upwards. The locations between 8K and 16K can be switched in and out of the overall plan, using little DIL switches on the back of the expansion pack. In addition the top 4K of this, between 12K and 16K, is protected against being cleaned out when you load another program from tape.

Routines can thus be appended

Figure 1. The layout of the 64K of memory available to the ZX-81 when used with the Memotech 64K RAM pack. Note that only about 15K is actually usable for BASIC program text. Note also, however, that 32K more is reserved for storing all the variables used in your programs and for large arrays of information. That 15K is thus actually far more powerful than it might seem!

together, further extending the possibilities of the computer. As with Sinclair's own expansion, the Memotech plugs directly onto the back of the ZX-81 and requires no leads. It is beautifully made and looks very much at home with the computer. The printer can be connected to the reverse of the pack plug too, making it ''stackable''.

Included with the box are a couple of the ubiquitous "sticky pads", apparently recommended to attach the machines together. Pretty strong things these, so beware — what Memotech hath joined together, no man shall put asunder. Not easily anyway.

The DIL switches which control the 4K 'blocks' of switchable RAM are accessable through a hole in the back panel of the case. Most users will probably set them to obtain maximum RAM – and leave them there. Business users might be tempted to have a dabble, in which case they're going to need a pretty small screwdriver to keep toggling them back and forth.

Down Memory Lane

In use, the 64K is simple to operate. Upon switch-on, the usual little 'K' appears in the bottom left of the screen. The ZX-81 thinks it has 16K connected to it. This is where it gets a surprise. Type:

POKE	16388,	255
POKE	16389,	255
NEW		

It will now have to believe that 56K has, in fact, been added to its capabilities, since you have just modified the locations in the memory where it stores the value of RAM in use.

If for some reason you do not wish to use all the memory space available to you, the Sinclair manual notes (Chapter 26) still apply and will work in this case. The available BASIC space is, as previously explained, around 15K-16K but in practise, that 32K of extra storage is brought rapidly into play. It is especially useful for programs such as mailing lists where the information to be handled by the program takes up more space than the actual program listing itself. If you reset the ZX-81, then the machine will lose all knowledge of any memory space beyond 32K. You have to POKE back in again to locations 16388 and 16389 as outlined previously, to remind it that other locations are available.

Conclusions

Whether or not you will find the Memotech 64K RAM value for memory, at £79, will depend largely upon your application for a ZX-81. At £30 more expensive than the Sinclair expansion, it is better engineered, more versatile, and capable of much greater storage. It does not actually contain 64K RAM and I think that title is a little misleading. This is an expansion to 64K and is more properly referred to as a 56K RAM pack.

Users wishing to try their hands at some more workman-like applications for the Sinclair will find the Memotech very useful, if not indispensible. The outand-out home user will have to weigh the added cost very carefully.

Popular Computing

ZX8I SOFTWARE

THE ZX-81 and the ZX-80 before it have, without question, revolutionised the awareness of the computer in the home: not only as an introduction to computing, but as a teaching tool and also as a fun thing to play with.

Hopefully, we will be looking at software that will enable the ZX-81 to control its external environment — but that still lies a little way in the future. For the present let us look at some of the software available *now*.

ZX Software

Where better to start than with some of the tapes promoted by Sinclair themselves. There are six of these available at the present and we will look at three of them, first of the series is 'Games of Skill', Sinclair Cassette No. 1. This has six programs, three on each side of the tape, and will run in 1K of memory so no extra RAM pack is required.

ORBIT uses fairly simple graphics to represent a spaceship orbiting a star (planet?) and a valuable piece of cargo which the spaceship has to 'capture'. You may manoeuvre your spaceship by altering the distance of the orbit around the star and when you get the ship in the right position over the cargo, the cargo will enter the ship and you will be informed how many days (!) it has taken you to dock. The game can be somewhat frustrating and, because of this, one tends to persevere a number of times, trying to better the previous score. On the whole, the game leaves one with the feeling that control of the situation is not perhaps as easy or definitive as one would like but, although I suspect that I will go back to this game occasionally, I am unlikely to become addicted.

SNIPER displays forty men, one at a time, at different positions across the screen. Your task is to quickly determine at which of the ten possible positions the man is displayed and, within the brief interval that he is visible, 'shoot' him with the appropriate position key (1, 2, 3, 4, 5, 6, 7, 8, 9 and 0). Your score appears continuously throughout the game but not at the end (pity that). The graphics are simple but quite effective; a good game for young kids as speed and coordination are called for. The average adult should be able to master this one very quickly.

METEORS places you in control of a spacecraft that appears at the top of the screen; a storm of meteors approaches you from the bottom of the screen. Your task is to steer your craft through them without collision. Each collision reduces your 'life' and you have five 'lives'. On the fifth collision, the game ends and the distance you have travelled (in light years) is displayed on the screen. A thoroughly enjoyable game to play with simple but effective graphics . . . could be addictive.

xer Port

ALSINESS &

Side B of the cassette has LIFE, WOLFPACK and GOLF. LIFE is based on the 'Game of Life' devised by J.H. Conway, in 1970, and represents the growth and decay of cells. Their 'life' is determined by the following rules: 1). If a space is empty and there are three and only three adjacent live cells, a new cell is born in that space. 2). If a cell has two or three neighbours, it survives. 3). any cell with only one neighbour or more than three neighbours dies. The implementation of LIFE on the 1K Sinclair is a credit to the programmer. You may place cells anywhere on a 16 x 16 grid and watch the outcome as generation follows generation. Altogether a fascinating display. Some patterns remain constant but move across the screen; some will develop into stable oscillating patterns while some will die out after only a few generations. A good example, considering the size of memory and the size of the screen.

In WOLFPACK you have control of a destroyer and you may move left or right and drop depth charges. The aim being to hit the enemy submarine travelling below you. Reasonable skill is required to judge when and where to drop the depth charge.

GOLF was a disappointing game that would be much improved if the ball progressed down the fairway, instead of always returning to the tee.

Sinclair cassette No. 5 is entitled 'Junior Education' and has six programs running in 1K.

Kid Stuff?

MATHS gives you the option of problems involving addition, subtraction, multiplication and division. You are then given 10 problems to answer and, after this, your score out of ten is displayed. This is a straightforward program, certainly improving your mental arithmetic (I needed a pencil and paper!).

BALANCE deals with your appreciation of couples and levers. You are offered difficulty levels of 1-3; a graphic representation of a see-saw is displayed with a weight at a distance from the pivot on one side — you have to decide what weight, at a specified distance on the other side, is needed to balance the first weight. Again, a pencil and paper is handy for level three ... my mental arithmetic isn't what it was!

VOLUMES provides a graphic representation of a cube displayed on the screen, with its dimensions; you have to enter the correct volume. There are two levels of difficulty and, on this one, you have to make a note of your score as this is not displayed.

AVERAGES is a program intended to help you understand the concepts of MEAN and MEDIAN and it will draw a bar graph to help you understand! The program will accept up to 50 entries, with the maximum value of any entry being 1,000. The bar graph is crude but the more entries there are, the cleaner the intention of the display becomes. Sadly, this program is not protected against a value outside the previously specified limits and will CRASH so be warned think before you type. A useful teaching exercise, this one, but one where the data should have been collected before RUNning the program, for it to have maximum impact.

BASES will test your ability to convert from decimal (base 10) to other bases in the range two to nine. My mind is still reeling. I'm glad I tried this one after my son had gone to bed. Base two is reasonable — even I could interpret decimal 17 as 10001 — but when it comes to 72 in base seven (1381) or 69 in base three (2112) I am beginning to flounder without my trusty pencil and paper. But, having put pencil to paper, I found that this program occasionally gave the wrong answers! The two examples above being a case in point: 72 in base seven should be 132 and 69 in base two should be 2120!

The TEMP program displays two barrels full of water. Each barrel has its volume displayed in litres and its temperature in degrees centigrade and you have to calculate the temperature that would result if the two barrels had their contents thoroughly mixed together. Answers have to be correct to 0.001 degrees C for you to be 'correct' ... well, obviously you need pencil and paper for that ... don't you?

The Sinclair cassette tapes tried so far all load easily and have given us a great deal of fun, even if I feel I should go back to 'skool' for a refresher course!

Personal Software is a new quarterly publication from the people who bring you Computing Today. To celebrate the launch of the BBC Microcomputer our first issue will consist of more than 20 programs covering Domestic, Financial, Educational, Games and Scientific areas.

All the programs are fully tested and documented and the listings have been produced directly from the BBC Micro to eliminate errors. As an additional service we are offering copies of the programs on tape through our CT Software organisation.

As well as featuring the best software from previous issues of Computing Today converted for the BBC Micro in order to show off its advanced features, the publication also includes a number of specially commissioned programs which reveal even more special functions.

If you own or have ordered a BBC Micro, or are just looking for a collection of Extended BASIC programs to convert to your system, then you need Personal Software: BBC Programs.

Personal Software will be on sale at your local newsagent from Friday 14th May at £1.95 or you can order directly from us at £7.80 per annum or £1.95 per copy. To ensure a single copy or a complete year's supply fill in the form below — you can even spread the load with your credit card.

SUBSCRIPTION C	RDER FORM
Cut out and SEND TO: SOFTWARE	513 LONDON ROAD, THORNTON HEATH SURREY, ENGLAND SUBSCRIPTION
Please use BLOCK CAPITALS and include post codes. Name (Mr/Mrs/Miss) delete accordingly Address Signature Date	Please commence my subscription to Personal Software with the issue. (tick as appropriate) £1.96 for a single f7.80 for 4 issues 'copy of the issue I am enclosing my (delete as necessary) Cheque/Postal Order/International Money Order for f (made payable to ASP Ltd) OR Debit my Access/Barclaycard ('delete as necessary) Insert card no.

Hobby Electronics, June 1982

Vo o c

February 1980

Passion Meter, Win Indicator, Short Circuit Special, Kit Review Special, Into Electronics **Construction Part 1**,

May 1980

MiniClocks, 5080 Preamp, Model Railway Track Cleaner, 5080 Loudspeakers, Loudspeaker Crossover Design, Radio Controlled Model Survey.

June 1980

Microbe Radio Control System, Egg Timer, Two Watt Amplifier, Fog Horn, Short Circuits, LEDs and LED Displays.

July 1980

Sound-Operated Flash Trigger, 18 + 18 Car Stereo Booster, Hazard Flasher, Electronics in Photography, Electronic Espionage, Piezo Electricity.

August 1980 EquiTone Car Equaliser, Pass-The-Loop Game, Gaztec Gas Detector, OP-Amp Checker, In-Car Entertainment Survey, Introducing Microprocessors.

September 1980

MicroMixer, Reaction Tester, Guitar Phaser, Development Timer, Teletext Explained, Into **Digital Electronics Part 1.**

October 1980 Kitchen Timer, Tug 'o' War Game, Light Dimmer, Freezer Alarm, Intruder Alarm, **Temperature-Controlled** Soldering Iron.

January 1981 Car Rev-Counter, Bench Amplifier, Sound-Into-Light Converter, Chuffer, Electronic

Games reviewed.

February 1981 Heartbeat Monitor, High-Impedance Voltmeter, Medium Wave Radio, Two-Tone Train Horn, Audio Signal Generator.

March 1981 **Public Address Amplifier,** Windscreen Wiper Controller, **Bicycle Speedometer**, Photographic Timer, Microcassettes.

April 1981

Pre-Amplifier Part 1, Super Siren, Guitar Tremolo, Russian Roulette Game, Doorbell Monitor, Anatomy of a Space Shuttle.

May 1981

Electronic Organ, Voice-Operated Switch, Infra-Red Controller, Pre-Amplifier Part 2, Audio Millivoltmeter.

June 1981

Power Amplifier Part 1, Continuity Checker, Envelope Generator, Early Radio, Gadgets, Games and Kits Supplement.

July 1981

Burglar Alarm, Doorbuzzer, Treble Booster, Electronic Aids for the Disabled, Power **Amplifier Part 2.**

August 1981

Electronic Ignition, Thermometer, Electronic Organ (final part), RPM Meter, Bench Power Supply, Radio Control Survey, Into Electronic **Components Part 1**

All of the 1980 issues, except January and April, are still available together with the remaining issues from 1981

All backnumbers cost £1.25 each. For those of you who only want copies of articles, we do offer a photocopying service. Each copy costs £1.25 and information as to its title and publication date should be given. Ordering backnumbers and photocopies could hardly be easier, just fill in the coupon, cut it out and send it to:

OR

HE BACKNUMBERS 513 London Road, Thornton Heath, Surrey CR4 6AR.

HE PHOTOCOPIES Hobby Electronics, 145 Charing Cross Road, London WC2H 0EE.

HOBBY ELECTRONICS BACKNUMBER ORDER FORM Please send me the following items:	HOBBY ELECTRONICS PHOTOCOPY ORDER FORM Please send me the following items:
NAME	NAME
ADDRESS	ADDRESS
	Photocopies ofin the
Back issuesat £1.25 each	issue at £1.2 <mark>5</mark> each
l enclose £	l enclose £
Cheques and Postal Orders should be made payable to ASP Ltd.	Cheques and Postal Orders should be made payable to ASP Ltd.

68

DIGITAL COUNTERS and TIMERS

Several HE projects, recently, have used digital measurement techniques. This article explains the basic principles of digital timers and frequency meters.

MEASURING frequency and time intervals to a known accuracy is often important in many areas of electronics: in communications, broadcasting and audio applications, in digital work and particularly in computer applications - from micros to mainframes. Digital frequency meters (DFMs), or counter/timers as they are also called, have become such an essential item of test equipment that many manufacturers are offering a range of instruments ranging inp rice from a £100 instrument covering the range 20 Hz to 200 MHz to many thousands of pounds for a microprocessor-controlled instrument capable of measuring frequencies well into the gigahertz region and time intervals in the picosecond range.

Frequency and time interval measurement is an area where digital techniques come into their own. The object is to accurately quantify a measurement. Prior to the development of digital instrumentation to do this job, analogue techniques were used - often ingenious and highly refined, but laborious. Heterodyne frequency meters were used widely. These consisted of a stable, accurately calibrated, variable oscillator (VFO) driving one input of a wideband mixer, the unknown frequency being applied to the other input. The output of the mixer was monitored on headphones or an audio amplifer while tuning the VFO. As the unknown frequency was approached an audible 'beat note' would be heard, decreasing in pitch as the VFO was tuned closer to the frequency being measured. At 'zero beat' you could then read off the unknown frequency from the instrument's calibrated dial. The

method will no doubt be familiar to many of our older readers. It was laborious, especially when you didn't even know the 'ballpark' of the unknown frequency, and to get a measurement accuracy better than several hundred Hertz (... maybe that's cycles/second!) was tantamount to magic: Top frequency was about 20 MHz.

These days *pocket* DFMs can measure frequency to within \pm 50 Hz or better, up to 200 MHz! That's at least a factor often better all round than the old BC221. And readout is obtained in a few seconds or less.

Time interval measurement was, and still is, very much left to that old workhouse — the CRO. But, a CRO has its limitations and quantifying a time measurement to the accuracies required these days is best done with a digital counter.

Frequency Measurement

The block diagram of a basic digital frequency meter is shown in the accompanying illustration. The input signal first encounters a 'trigger' or 'squaring stage' which ensures that the measurement always commences on the same part of the input waveform. The output of the trigger then enters a gate. The gate is 'opened' for a period and allows a number of input cycles through to the counter. The period for which the gate remains open is determined by the output from a divider/scaler driven by a very stable, accurate clock oscillator. A number of outputs from the divider/scaler may be selected to vary the period the gate is open. Usually, a number of decade steps are provided.

The output of the gate drives a counter which provides a binary coded decimal (BCD) output for the display. A 'hold' or 'latch' stage is generally added so that a steady group of numerals is displayed.

The timing diagram below the block diagram illustrates the sequence of events. The input signal, often sinusoidal, is shaped by the trigger stage into a train of rectangular pulses. The gate allows a number of pulses through to the counter, in this case three, during the period it is 'open'. The circuit selects only the positive-going pulses in this example, though negative-going pulses from the trigger stage could equally well be used.

If, say, a gate period of one millisecond (1 mS) were selected the counter would display '3000'. In other words, the input frequency would be 3 kHz.

Practical instruments will have selectable gate periods ranging from one microsecond (1uS) to as much as 10 seconds. The display may have five digits, though eight digit displays are more common.

Many modern digital frequency meters incorporate a high speed divider immediately following the gate, the output of this divider being used to derive the first and second digits of the display. To extend the range of the instrument, a 'prescaler' may be included. This is a high speed divider providing a fixed division ration of ten. Its output may drive either the trigger stage or the gate directly.

Digital Counters and Timers

Period Measurement

Measuring the period between 'events' is done by re-arranging things a little. The gate, counter and display are used as before but the gate is turned 'on' and 'off' by the input events and the clock signal is passed through to the counter. As the clock is a highly stable, accurate oscillator, the period between input events can be measured with great precision. The accompanying block diagram shows the general arrangement of the instrument for period measurement.

Separate input signals in the arrangement shown are used to trigger the gate on and off. However, a single repetitive input signal may be used to trigger the gate with a slightly different circuit arrangement, The timing diagram with the period counter block diagram shows the sequence of events. If the clock was running at 1 kHz, for example, the time interval between pulses would be one millisecond. As 17 pulses passed through the gate in the example, the period between the A input event and the B input event was 17 mS and the display would read, say, 17 000 (resolution of one microsecond).

Pulse widths can be measured with a period counter, too. In this instance, the gate is triggered on the positive-going and negative-going edges of the input pulse. However, some difficulties arise. If the input pulse had a perfectly 'square' shape, the on and off gating points would always give an accurate result because the triggering transitions would occur precisely on the rise and fall of the pulse. Trigger level would not affect the interval measured. Real-life pulses however, are seldom perfect, the edges having definite rise and fall times. In this case, the trigger level becomes critical in determining the width of a pulse. The diagram here shows why and how it is overcome. Counters are usually provided with a 'slope selection' control which determines whether the trigger operates on the positive or negative slope -- (a), or (b) respectively in the diagram.

Noise Error Reduction

The above descriptions give the basic operating modes of the various counter/ timer/frequency-meter combinations. In practice, a number of refinements may be incorporated to obtain better practical performance.

Noise can be reduced by incorporating a fixed amount of backlash in the trigger circuit; this produces what is called the 'trigger window'. On the way up the trigger level is at a higher level than on the way down, as shown in the Trigger Window Diagram here. Provided the noise added to the signal has an amplitude smaller than the window width, the counter will only trigger once on the way up and once on the way down. This method works well for high-frequency measurements where the noise is usually a small percent of the signal-plus-noise amplitued.

Low frequency measurements can often involve interference sources that

When measuring pulse widths, the accuracy will depend on whether positive or negative slope triggering is selected, and on the trigger level setting.

PRODUCES FALSE OR ZERO TRIGGERING

PRODUCES FALSE OR ZERO TRIGGERING

BETTER CHOICE OF TRIGGER TO OBTAIN DATA REQUIRED

BETTER CHOICE OF TRIGGER TO OBTAIN DATA REQUIRED

The Trigger Window level can be set to reject false triggering caused by spurious signals (noise, harmonic distortion, ringing etc.) on the main signal.

Digital Counters and Timers

produce rapid spike transients. One simple method of reducing this is to use filters. Advanced designs contain filter systems that reject all frequencies higher than that being tested, the appropriate filter being automatically selected by the counter itself after it has made a determination of the frequency of the signal.

A recent approach to the noise problem is to set up a time-window (as opposed to the trigger height window) that, once the counter gate is on, inhibits the off-state chance until after a time just shorter than the expected interval. This is known as trigger masking. It is very useful in eliminating contact-bounce retriggers.

Before using a counter/timer on an unknown waveform, it is good practice where ever feasible to look at the waveshape on an oscilloscope in order to decide the best strategy for trigger-level and height-window width settings.

As the readout is in digital form it is necessary to hold the display at the determined value for a period long enough to allow the value to be read. Some units incorporate a control that gives the operator a choice of hold time.

How To Choose

First, look in your piggybank! Prices for a straight digital frequency meter start at around £70. Next step in the price/features bracket for a DFM is around £125. Instruments range right up to several thousand pounds, which is beyond most hobbyists!

Next step is to look at your applications. But, keep in mind future applications and get something a little better if your budget will stretch that far. The number of digits in the display will certainly be a deciding factor, depending on your applications. The majority of instruments available have either six- or eight-digit displays. Next consideration is the number of ranges offered (gate time selection). Resolution is important and is related to the display, an eightdigit instrument has a better resolution than a six-digit instrument, naturally enough.

The clock oscillator stability determines the inherent accurancy of the instrument and it is instructive to compare the specifications of different makes and mdoels when considering this parameter. Generally, a temperature range over which the accuracy is maintained will be quoted along with this specification. Accuracy will be quoted in partsper-million (ppm) or parts in 10°. A reasonable figure for accuracy, for most hobbyist applications, would be one ppm (one in 10⁶) over a temperature range of 15°C to 50°C.

Whether you get a battery operated or a mains/battery operated instrument will depend largely on your applications.

Refinements like filters, trigger window control, gate time delays, frequency ratio, totalizing etc depend entirely on your application — and your budget!

HE

The Power Supply Design PCB pattern (right). This board should present no problems, as the layout is not critical.

The HE Auto Greenhouse Sprinkler PCB pattern (left). The large areas of copper are present to improve stability — they can be omitted if you include C9 on the board.

Hobby Electronics, June 1982

All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

Send your requirements and cheque/P.O. to:

HOBBY ELECTRONICS CLASSIFIED ADVERTISING, 145, CHARING CROSS RD, LONDON WC2H OEE.

AMPLIFIERS AERIAL Improve weak television reception. Price £6.70. S.A.E. for leaflets. Electronic Mailorder, Ramsbottom, Lancashire BL0 9AGH.

Ext 213

CENTURION BURGLAR ALARM EQUIP-MENT Send S.A.E. for Free list or a Cheque/PO for £5.95 for our Special Offer of a Full Sized Decoy Bell Cover, to: Centurion, Dept HE, 265 Wakefield Rd., Huddersfield, W. Yorkshire. Access & Barclaycard. Telephone orders on 0484-35527

Hobby Electronics, June 1982

PRINTED CIRCUITS. Make your own sim-ply, cheaply and quickly! Golden Fotolac light-sensitive lacquer – now greatly im-proved and very much faster. Aerosol cans with full instructions, £2.25. De-veloper 35p. Ferric Chloride 55p. Clear eacter about far matter 14p. Conner-clad acetate sheet for master 14p. Copper-clad fibreglass board, approx. 1mm thick £1.75 sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

AMAZING ELECTRONICS PLANS. Lasers; Super-powered Cutting Rifle, Pistol, Light Show. Ultrasonic Force Fields, Pocket De-fence Weaponry, Giant Tesla, Satellite TV Pyrotechnics, 150 more projects. Cata-logue 95p. — From The Plan **Centre**, 46 Bye St, Ledbury HR82AA.

INEXPENSIVE disco console with cross fade £2.40. For plans, A Burnett, Dept H.E., 12 Cameron Avenue, Kinross KY137BG.

PROGRAMMABLE GRAPHICS £19.95 (first ever for ZX80/1). Works with printer no hidden bugs — edge connector not used. Repeating keymodule £3.45. Keyboard £17.50 (P&P £1.00). Edge connector £2.20. Inverse Video/I.O. Port/Memory/Colour (extended sheet available) POA.

ZX81 reverse graphics, white on black background, made from easily obtainable components. PCB and instructions £3 or SAE for details. R. Mitchell, 20 Gorse Close, Portslade, Sussex. HAVEN HARDWARE (winner of the Daily Express/Philishave Business Award). ZX Kits (SAE for built prices/details), 4 Asby Road, Asby, Workington, Cumbria.

GUITAR/PA MUSIC AMPLIFIERS

100 watt superb treble/bass overdrive, 12 months guarantee. Unbeatable at 150, 60 watt 124; 200 watt 158; 100 watt twin channel sep. treble/ bass per channel 655, 60 watt 622, 200 watt 178; 100 watt four-channel sep. treble/bass per channel 175; 200 watt 698; slaves 100 watt 621; 200 watt 160, 250 watt 710; 500 watt 6140; fuzz boxes, great sound, 612, bass fuzz 612, 90, overdriver fuzz with treble and bass boosters, 128; 100 watt combo, superb sound, overdrive, slurdy construction, castors, wheetable, f100; fum down of 118; speakers 15m 100 watt f36; 12m 100 watt f24; 60 watt f18; microphone shure undyrn B £28.

Send cheque/P.O. to: WILLIAMSON AMPLIFICATION 62 Thorncliffe Avenue, Dukinfield, Cheshire, Tel. 061 308 2064

ANY SINGLE service sheet £1/L.S.A.E. Largest stockists service/repair manuals. Named T.V. repair data £6.50 (with circuits £8.50). S.A.E. pricelists. Free publications, quotations. Aushe, 76 Churches, Larkhall, Lanarkshire.

BUILT TRANSMITTERS £2.90. Receive on FM. Range 150yds. Refund Guarantee. (Unlicensable). P. Faherty, 37 College Dr., Ruislip.

PRINTED CIRCUIT BOARDS $4\frac{1}{2}$ x 6" copper clad resin paper, 10 for £4.00 including U.K. post. Hill, 22-26 Bath Road, Worcester WR5 3EL.

SPARE PARTS For all digital watches. Batteries, crystals, displays etc. Send SAE for full list. Profords, Copnersdrive, Holmergreen, Bucks HP15 6SGE.

CLOSE ENCOUNTERS GROUP Personal introductions and social events. Meet interesting, attractive people. Local, 051-931 2844 (24 hours).

LOTS OF USEFUL ITEMS for constructors. Cases, transformers, P.C.B.'s etc. S.A.E. for list. Mr. Hyde, 3 Rosebery Road, Smethwick Warley, West Midlands B66 3R7.

BURGLAR ALARM equipment. Ring Bradford (0274) 308920 for our catalogue, or call at our large showrooms opposite Odsal Stadium. C.W.A.S. Ltd.

PARAPHYSICS JOURNAL (Russian translations); Psychotronic Generators; Kirlianography, gravity lasers, telekinesis. Details: S.A.E. 4 × 9" Paralab, Downton, Wilts.

ELECTRONICS component shop in MAID-STONE, KENTI Thyronics Control Systems, 8 Sandling Road, Maidstone, Kent. Maidstone 675354.

OSCILLOSCOPE £12. Easy built unit plugs into T.V. aerial socket and converts it to large screen oscilloscope. Costs approx. £12 to make. Circuit and plans £3. J. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

IONISER KIT (MAINS OPERATED)
This Negative Ion Generator gives you the power to saturate your home or office with millions of refreshing ions. Without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain, filling your
room. The result? Your air feels fresh, pure, crisp and wonderfully refreshing. All parts, PCB and full instructions
A suitable case including front panel, neon switch, etc
T. POWELL
ADVANCE WORKS
44 WALLACE ROAD, LONDON N.1.
TEL: 01-226 1489
Hours: Mon-Fri 9-5 p.m. Sat 9-4.30 p.m.

ADVERTISEMENT INDEX

Aitken Bros	57
Albrecht Elec GmbH	32
Ambit Int	2
Benning Cross Elec	
Bi-Pak	34
BK Electronics	75
BNRS	, 54
J. Bull (Electrical)	42
Cambridge Learning	.54
Cricklewood Elec	30
Darom Supplies	34
Eda Sparkrite	76
Electronize Design	30
Greenweld Elec	34
Global Spec Corp	47
Heath Electronics	14

ICS	.73
ILP	.28
Lightning Elec	.73
Litesold	.73
Magenta Elec14,	15
Memotech	.64
Musicraft	.54
Parndon Elec	.54
P.A.T.H.	.30
Rapid Elec	8
Brian J Reed	.32
Sandwell Plant	.30
Shetland Boats	.52
Silica Shop	5
Technomatic	.24
Watford Flec	52

Hobby Electronics, June 1982

MULLARD SPEAKER KIT

40 watt R.M.S. 8ohm DESIGNED MULLARD SPECIALIST TEAM BY MULLARD SPECIALIST TEAM IN BELGIUM comprising a Mullard 8" woofer with foam rolled surround, Mullard 3" high power dome tweeter and a cleverly designed B.K. Electronics crossover combining spring loaded loud-speaker terminals and recessed mounting panel. Supplied complete with assembly and cabinet details. Recommended cabinet size 240 × 216 × 445mm.

STEREO CASSETTE TAPE DECK MODULE.

6 mano type keys

NEW RANGE QUALITY POWER LOUD-SPEAKERS (15", 12" and 8"). These loudspeakers are ideal for both hi-fi and ducs opplications. Both the 12" and 15" units have heavy duty die-cast chassis and aluminium centre domes. All three units have white speaker cones and are fitted with attractive cast aluminium (ground finish) fixing escutcheons. Specification and Price:--

15" 100 watt R.M.S. Impedance 80hm 59 oz. magnet, 2" aluminium voice coil. Response to 2.5KHz. Sensitivity 97dB. Price £32 each. £2.50 Packing and Car-

12° 100 watt R.M.S. Impedance 8 ohm, 50 oz. magnet, 2. alumlnium voice coll. Resonant Frequency 25Hz. Frequency Response to 4KHz. Sensitivity 95dB. Price £23.70 each. £2.50 Packing and Carriage each.

8" 50 watt R.M.S. Impedance 8 ohms, 20 oz. 1%" aluminium voice coil, Resonant Frequency 40Hz, Frequency Response to 6KHz, Sensitivity 92dB, Also available with black cone fitted with black metal protective grill. Price: White cone £8,90 each. Black cone/grill £9,50 each. P & P £1,25 each.

PIEZO ELECTRIC TWEETERS - MOTOROLA

Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

TYPE 'A' (KSN2036A) 3" round with protective wire mesh, ideal for bookshelf and medium sized Hi-fi speakers. Price £3,45 each.

TYPE 'B' (KSN1005A) 3 %'' super horn. For general purpose speakers, disco and P.A systems etc. Price £4.35 each.

TYPE 'C' (KSN6016A) $2^{\prime\prime}$ > 5^{\prime\prime} wide dispersion horn. For quality Hi-fi systems and quality discos etc. Price £5.45 each.

TYPE '0' (KSN1025A) 2" · 6" wide dispersion horn. Upper frequency response retained extending down to mid range (2KHz). Suitable for high quality Hi-fi systems and quality discos. Price £6.90 each.

TYPE 'E' (KSN1038A) 3'4" horn tweeter with attractive silver finish trim. Suitable for Hi-fi monitor systems etc. Price £4.35 each.

TYPE 'F' (KSN1057A) Cased version of type "E". Free standing satellite tweeter. Perfect add on tweeter for conventional loudspeaker systems. Price £10.75 each. U.K. post free (or SAE for Piezo leaflets).

Ê + -....

PRICE £63.25 UK Post FREE

1K.WATT SLIDE DIMMER

Controls loads up to 1KW Compact size 4¾''× 13''×2½'

Full wave control using 8amp triac Conforms to BS800

 Suitable for both resistance and inductive loads
 Innumerable applications in industry, the home, and discos/ theatres etc

Price: £11.70 each + 50p P&P (Any quantity)

BSR P256 TURNTABLE

BSR P200 IURNIABLE P256 turntable chassis • S shaped tone arm • Belt driven • Aluminium platter • Precision calibrated counter balance • Anti-skate (bias device) • Damped cueing lever • 240 volt AC operation (Hz) • Cui out template supplied • Completely manual arm. This deck has a completely manual arm and is designed primarily for disco and studio use where all the advantages of a manual arm are required.

required. Price: £28,50 + £2.50 P&P

Matching 3-way loudspeakers and crossover

Build a quality 60watt RMS system 80hms Build a quality 60 watt R.M.S. system.

+ 10" Woofer

🛨 3" Tweeter

- 🛨 5'' Mid Range
- ★ 3-way crossover

Fitted with attractive cast aluminium fixing es Fitted with attractive cast aluminium/fixing es-cutcheons and mesh protective gills which are removable enabling a unique choice of cabinet styling. Can be mounted directly on to baffle with or without conventional speaker fabrics. All three units have aluminium centre domes and rolled foam surround. Crossover com-bines spring loaded loudspeaker terminals and recessed mounting panel Price £22.00 per kit + £2.50 postag: and pack-ing. Available separately, prices on riguest.

12" 80 watt R.M.S. loudspeaker

A superbigeneral purpose twin cone loud-speaker. 50 oz. magnet. 2' aluminium voice coil. Rolled surround. Resonant fre-quency, 25Hz. Frequency response to 13KHz. Sensitivity 95dB. Impedance 80hm. Attractive blue cone with aluminium centre dome. Price f17.99 each + f2 50 P&P

★ SAE for current lists. ★ Official orders welcome. ★ All prices include VAT. ★ Mail order only. ★ All items packed (where applicable) in special energy absorbing PU foam. Callers welcome by prior appointment, please phone 0702-527572.

GENERAL PURPOSE 41/2" MINI SPEAKER

General purpose full range loudspeaker, ideal for mini systems etc. Rolled fabric surround @Twin cone @80hm impedance @15 watt RMS @1" voice coil ●13oz magnet ●Frequency range 50/15000Hz

Price: £6.90 each + 75p P&P

100 WATT R.M.S.

LEADER LSG WIDE BAND

GENERATOR • 100KHz to 100MHz in

five ranges Allo to 300MHz (Harmonics)

Internal modulation 1KHz

External mod. input facility

Power supply 240v AC

•Price - £63.25 - UK.

Post Free

•Size - 150×250×130mm

Slow motion tuning

SIGNAL

Power Amplifier Modules with integral toroidal transformer power supply and heat sink. Supplied as one complete built and tested unit. Can be fitted in minutes. Auxilliary stabilised supply and drive circuit incorporated to power an L.E.D. V.u. meter, available as an private stabilised supply and drive circuit incorporated to power an L.E.D. V.u. meter, available as an circuit of the stability of the st optional extra

SPECIFICATION Max. output power 100 watts R.M.S. (OMP100) Loads: (Open and short circuit proof) 4-16 ohms Frequency Response20Hz-25KHz ± 3dB Sensitivity for 100 watts 500mV at 10K

00.1%

T.H.D. Size: 360 × 115 × 80mm Prices: OMP 100W V.u. Meter £6 £29.99 £6.50 £2.00 P&P

BK ELECTRONICS

Prompt Deliveries VAT inclusive prices Audio Equipment **Test Equipment** by Thandar and Leader

