

HE 'Junior' Slot - Car Controller

PLUS... RADIO RULES • MONITOR BREADBOARDS • MICROTRAINING

NICADS: UK's LOWEST PRICES

Ambrit's new style catalogue continues to lead the market with low prices, new items, info, 3 E1 discussion is lated in all categories! Image: categories is low of low outputs is lated in all categories! There's a few examples of some super low prices All the "usual" stuff a rock bottom prices Toks colk, Fairing recommask torolds, Fairing recommask torolds	AMBIT'S NEW CONCISE	E COMPONENT CATALOGU	JE IS OUT NOW -	vailat	le at yo ent or	pur 1
	Ambit's new style catalogue of low prices, new items, info, 3 supplier survey, we were one of categories! There's a few examples of som 78XX 1A 37p BC237/8/9 8p 3SK51 54p 10MHz XTALS £2 8 Pole 10.7MHz XTAL filters £14.50 2GHz coax relay 150W £10.95	ontinues to lead the market with £1 discount vouchers. In a recent of only two suppliers listed in all ne super low prices All the "usual" stuff at rock bottom prices + Toko coils, crystal and ceramic filters, micrometals toroids, Fairite ferrites, Alps switches, OKI LSI, Piezo sounders, RF, IF Modules + Kits etc.	bage Heethanseeder Heethanseed	CAPACITY 500 mAh 2200 mAh 1200 mAh 110 mAh	Or 70p RECH UP TIM CE TYPE AA C D D PP3	ARGEABLE TO 400 ES PER L/ 80 74 2.35 1.99 2.14 2.06 3.05 2.85 3.70 3.50
TELEPHONE (STD 0277) 230909 TELEX 995194 AMBIT G POSTCODE CM14 4SC	CMOS 4000 0.11 4514 1.25 7406N 0 4001 0.11 4515 1.25 7407N 0 4002 0.12 4516 0.60 7408N 0 4007 0.13 4518 0.35 7409N 0 4008 0.50 4522 0.89 7410N 0 4008 0.51 4522 0.89 7412N 0 4011 0.24 4528 0.85 7418N 0 4011 0.11 4531 0.65 7418N 0 4011 0.11 4531 0.65 7417N 0 4013 0.25 4534 4.00 7421N 0 4019 0.38 4538 0.80 7425N 0 4020 0.55 4543 9.80 7425N 0 4022 0.55 4549 3.50 7433N 0 4024 0.50 4556 <t< td=""><td>222 222 10 10 11 11 11 11 11 11 11 11 11 11 11 12 </td></t<> <td>1 1</td> <td>74L S74N 0.16 74L S75N 0.22 74L S75N 0.20 74L S76N 0.19 74L S83N 0.40 74L S86N 0.40 74L S86N 0.40 74L S86N 0.40 74L S95N 0.32 74L S95N 0.31 74L S95N 0.40 74L S95N 0.40 74L S95N 0.20 74L S95N 0.20 74L S107N 0.25 74L S12N 0.20 74L S12N 0.21 74L S12N 0.24 74L S12N 0.24 74L S13N 0.24 74L S13N 0.24 74L S13N 0.24 74L S13N 0.20 74L S13N 0.20 >74L S13N <t< td=""><td>74L S248N 1.35 74L S2249N 1.35 74L S253N 0.35 74L S253N 0.35 74L S253N 0.37 74L S259N 0.37 74L S259N 0.37 74L S259N 0.50 74L S259N 0.50 74L S259N 0.37 74L S259N 0.35 74L S275N 3.20 74L S275N 3.20 74L S228N 0.42 74L S293N 0.50 74L S293N 0.42 74L S293N 0.40 74L S293N 0.40 74L S365N 0.32 74L S365N 0.32 74L S367N 0.40 74L S373N 0.70 74L S373N 0.65 74L S373N 0.65 74L S395N 2.10 74L S395N 1.07</td><td>74C76 0.48 74C86 0.98 74C85 0.98 74C85 0.98 74C85 0.98 74C90 0.80 74C95 0.94 74C95 0.94 74C95 0.94 74C95 0.94 74C151 1.52 74C154 2.26 74C151 1.52 74C162 1.05 74C163 1.05 74C164 0.80 74C165 0.84 74C164 0.80 74C165 0.84 74C192 1.08 74C193 1.08 74C193 1.08 74C193 1.08 74C193 1.08 74C193 1.08 74C194 0.50 74C200 4.52 74C201 0.38 74C906 0.38 74C906 0.38 74C907 3.28 74C910</td></t<></td>	222 222 10 10 11 11 11 11 11 11 11 11 11 11 11 12	1 1	74L S74N 0.16 74L S75N 0.22 74L S75N 0.20 74L S76N 0.19 74L S83N 0.40 74L S86N 0.40 74L S86N 0.40 74L S86N 0.40 74L S95N 0.32 74L S95N 0.31 74L S95N 0.40 74L S95N 0.40 74L S95N 0.20 74L S95N 0.20 74L S107N 0.25 74L S12N 0.20 74L S12N 0.21 74L S12N 0.24 74L S12N 0.24 74L S13N 0.24 74L S13N 0.24 74L S13N 0.24 74L S13N 0.20 74L S13N 0.20 >74L S13N <t< td=""><td>74L S248N 1.35 74L S2249N 1.35 74L S253N 0.35 74L S253N 0.35 74L S253N 0.37 74L S259N 0.37 74L S259N 0.37 74L S259N 0.50 74L S259N 0.50 74L S259N 0.37 74L S259N 0.35 74L S275N 3.20 74L S275N 3.20 74L S228N 0.42 74L S293N 0.50 74L S293N 0.42 74L S293N 0.40 74L S293N 0.40 74L S365N 0.32 74L S365N 0.32 74L S367N 0.40 74L S373N 0.70 74L S373N 0.65 74L S373N 0.65 74L S395N 2.10 74L S395N 1.07</td><td>74C76 0.48 74C86 0.98 74C85 0.98 74C85 0.98 74C85 0.98 74C90 0.80 74C95 0.94 74C95 0.94 74C95 0.94 74C95 0.94 74C151 1.52 74C154 2.26 74C151 1.52 74C162 1.05 74C163 1.05 74C164 0.80 74C165 0.84 74C164 0.80 74C165 0.84 74C192 1.08 74C193 1.08 74C193 1.08 74C193 1.08 74C193 1.08 74C193 1.08 74C194 0.50 74C200 4.52 74C201 0.38 74C906 0.38 74C906 0.38 74C907 3.28 74C910</td></t<>	74L S248N 1.35 74L S2249N 1.35 74L S253N 0.35 74L S253N 0.35 74L S253N 0.37 74L S259N 0.37 74L S259N 0.37 74L S259N 0.50 74L S259N 0.50 74L S259N 0.37 74L S259N 0.35 74L S275N 3.20 74L S275N 3.20 74L S228N 0.42 74L S293N 0.50 74L S293N 0.42 74L S293N 0.40 74L S293N 0.40 74L S365N 0.32 74L S365N 0.32 74L S367N 0.40 74L S373N 0.70 74L S373N 0.65 74L S373N 0.65 74L S395N 2.10 74L S395N 1.07	74C76 0.48 74C86 0.98 74C85 0.98 74C85 0.98 74C85 0.98 74C90 0.80 74C95 0.94 74C95 0.94 74C95 0.94 74C95 0.94 74C151 1.52 74C154 2.26 74C151 1.52 74C162 1.05 74C163 1.05 74C164 0.80 74C165 0.84 74C164 0.80 74C165 0.84 74C192 1.08 74C193 1.08 74C193 1.08 74C193 1.08 74C193 1.08 74C193 1.08 74C194 0.50 74C200 4.52 74C201 0.38 74C906 0.38 74C906 0.38 74C907 3.28 74C910

PROJECTS

★ HE 'JUNIOR' A low-cost method to improve a slot-car's performance.	.9
POPULAR COMPUTING ZX INTERFACE BOARD Fight hits of input and output for ZX computers	14
MICROTRAINING.	25
First steps to using the HE MicroTrainer. BREADBOARDS Designing and building tone controls.	34
* MODEL RAIL SIGNAL LIGHTS.	39
Three-aspect signal project.	
PROJECT: MUSIC AUDIO ANALYSER Concluding our audio spectrum analyser project.	57

FEATURES

INTORADIO										
RADIO RULES										20
The classes of radio power.										1
* FAMOUS NAMES		• •	•	• •		• •	•	•	• •	37
Sir Edward Appleton.										
GADGETS, GAMES AND KITS										
TESTON AUTO-RANGE DVM	*	• •					•	•	× .	47
Hands-off meter reviewed,										40
* PLANNING UN SUCCESS		• •			*	• •				49
Get your projects working — tirst time/										

REGULARS

Monitor	•																•				4	ŝ		. 6
Whats On Next	۰.															÷								18
Points of View																								31
Buylines			•		*								+	à						÷			-9	33
Subscriptions																							J.	33
Clever Dick									•															54
Breadboard Ext	nib	oit	lo	n																				53
HE Bookshelf .															7							.0		45
Backnumbers						Ŀ.																		60
PCB Printout															÷		÷			ł.				62
PCB Service												+				r.		•	2		4			64
Classified Adve	rt	is	e	n	er	nts	5																	65

Editor: Ron Keeley Editorial Assistant: Paul Coster BSc Advertisement Manager: Gary Price Managing Editor: Ron Harris BSc Managing Director: T.J. Connell

SEPTEMBER 1982

Vol 4 No 9

Hobby Electronics is normally published on the second Friday of the month prior to the cover date. Hobby Electronics, 145 Charing Cross Road, London WC2H OEE, 01-437 1002. Telex No 8811896. Published by Argus Specialist Publications Ltd. Design and Organisation by MM Design and Print Ltd, 145 Charing Cross Road, London WC2H OEE, 01-437 1002. Distributed by S. M. Distribution Ltd, 16/18 Trinity Gardens, London SW9 8DX. Printed by QB Ltd, Colchester. Covers printed by Alabaster Passmore. Notice: The contents of this publication including all articles, designs, plans, drawings and programs and all copyright and other intellectual property rights therein belong to Argus Specialist Publications Limited. All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright conventions are specifically reserved to Argus Specialist Publications Limited and any reproduction requires the prior written consent of the Company. All resonable care is taken in the preparation of the magazine to ensure accuracy, but Argus Specialist Publications. Ltd. Member of Audit Bureau of Circulation. 1982 Argus Specialist Publications Ltd. Member of Audit Bureau of Circulation.

Send for your catalogue right now for a start.

Metal Locator

EXCHANGES

184

WARE HERTS.

Windspeed and Direction Indicator

To Heath Electronics (UK) Limited, Dept (HE9) Bristol Road, Gloucester GL2 6EE.

HE9 To start me off, please send me a copy of the Heathkit catalogue. I enclose 28p in stamps.

Name

Address

HEATH You build on our experience

Total. Postage add 75p per Total order

TS LC.S TRANSISTORS **IE PROJECT KI** CAPACITORS

July 81 £18.67

March 81 £7.67

£4 67

TOOLS RESISTORS HARDWARE CASES

KITS

MAGENTA

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for H.E. Projects. We supply carefully selected sets of parts to enable you to contruct H.E. projects. Kits include ALL the electronics and hardware needed. Printed circuit boards (fully ethed, dilled and roller thinned) or Veroboard are, of course, included as specified in the original article, we even include nuts, screws and I.C. sockets. PRICES INCLUDE CASES unless otherwise stated. BATTERIES ARE NOT INCLUDED. COMPONENT SHEET (NCLUDE). If you do not have the issue of H.E. which includes the project — you will need to order the instruction reprint at an extra 45p each.

Reprints available separately 45p each + p. & p. 40p. **REACTION TESTER GAME Sept 81**

T.V.I FILTER JIY 82 £4.98 SUNBURN TIMER - TANOVER JIY 82 £8.99

AUTO WAH June 82 £17.89 inc case or 48 less case. TO GREENHOUSE SPRINKLER AUTO

June 82 £14.38 less pump and power supply (12V 2A). TELEPHONE TIMER June 82 £31.24

power supply (suitable type less

POWER SUPPLY DESIGN 12V 500mA June 82 £9.79

ECHO REVERB UNIT May 82. Less case 531.82. Economy case WB3 53.76 extra DIGITAL THERMOMETER May 82 ex-

cluding case + bezel £15.80 LIGHT SEEKER May 82 £4.99 AUDIO SIGNAL GENERATOR May 82

\$19 60

CABLE TRACKER May 82 £9.37 DIGITAL CAPACITANCE METER Apr 82

SIGNAL TRACER Apr 82 £3.61 BIKE ALARM Apr 82 £10.98 DIGITAL DICE Mar 82 £6.82 BICYCLE SIREN Mar 82 £10.18 NOISELESS FUZZBOX Feb 82 £9.77 SOUND SWITCH Feb 82 E8.31 MASTHEAD AAMPLIFIER Feb 82 £13.74 DRUM SYNTHESIZER Dec 81. Full kit

HEADPHONE AMPLIFIER GUITAR

: 81 E3.48

Dec 81 E3.48 IN CAR CASSETTE POWER SUPPLY Dec 81 £4.46 SCRATCH FILTER Nov 81 Mono £5.44 Stereo £8.40

Stereo £8.40 LED VU METER Nov 81 less case £4.56 SIMPLE STYLUS ORGAN Nov 81 less case £4.74 METRONOME Nov 81 £11.88

TELEPHONE BELL REPEATER Oct 81

f12.78 Med Linking wire extra 14p metre COMBINATION LOCK Oct 81 less

solenoid £17.43

BABY ALARM Oct 81 £8.14, Fig 8 linking

Wire 7p metre 'DIANA' METAL LOCATOR Sept 81 £32.25

POWERPACK Sept 81 £9.58

PHOTOGRAPHIC TIMER March 81 £3.28 HEARTBEAT MONITOR Feb 81 £23.40 TWO-TONE TRAIN HORN Feb 81 £5.24 less case MEDIUM WAVE RADIO Feb 81 £7.67 BENCH AMP Jan 81 £10.10 NICARD CHARGER Jan 81 £7.67 CHUFFER Jan 81, less case £7.04 BATTERY CHARGE MONITOR Dec 80 £5.40 ES.40 MEMORY BANK - MINI SYNTH-ESISER Nov & Dec 80 £28.40 TRANSISTOR TESTER Nov 81 £6.12 inc test leads GUITAR PRE-AMP Nov 80 £5.65 case (diecast) extra £2.29 INTRUDER ALARM Oct 80 £19.61 TOUCH SWITCH Sept 80 £2.57 less case & contacts GUITAR PHASER Sept 80 £15.22 SOUND OPERATED FLASH TRIGGER July 80 no skt £4.99 FOG HORN June 80 £6.21 SPEED CONTROLLER FOR R/C April 80

E11.98 VARIABLE BENCH POWER SUPPLY

Aug 81 £25.35

ELECTRONIC DOOR BUZZER July 81

E5.65 ELECTRONIC METRONOME July 81

CONTINUITY CHECKER June 81 £5.34 ENVELOPE GENERATOR June 81

168.85 AUDIO MIXÉR June 81 £4.99 PUBLIC ADRESS AMPLIFIER March 81 £1821, Extras – horn speakers £6.83 each, PA MIC £4.40 FUZZBOX March 81 £10.35 WINDSCREEN WIPER CONTROLLER

STEAM LOCO WHISTLE March 81

£16.41 (less ca DIGITAL FREQUENCY METER april 80

£39.35 DIGI-DICE Jan 80 £10.97 GUITAR TUNER Nov 79 £11.99 CAR ALARM Feb 79 £12.07

More Project Kits – Similar Style to H.E.

INSTRUCTIONS INCLUDED (SEPARATELY 45p EACH) PLEASE QUOTE REF. NO. WHEN ORDERING

MAGENTA gives you FAST DELIVERY OF QUALITY COMPONENTS & KITS. All products are stock lines and are new & full specification. We give personal service & quality products to all our customers—HAVE YOU TRIED US?

MAGENTA ELECTRONICS LTD

HO28, 135 HUNTER ST., BURTON-ON-TRENT, STAFFS,

B1 PEST CONTROL 'Ultrasonic cat COMPONENT TESTER £8.38 £6.73 B3 ENLARGER TIMER - relay output **B4 GUITAR NOTE EXPANDER £16.87** B4 GUITAR NOTE EXPANDER £16.87 B5 CAMERA OR FLASH GUN TRIGGER Infra red system £11.98 B6 SIMPLE INFRA RED REMOTE CONTROL £16.39 B7 0-12V POWER SUPPLY £16.99 B8 SOIL MOISTURE MONITOR £4.23 B9 SOUND TO LIGHT — single channel £7.97 B10 THREE CHANNEL SOUND TO LIGHT £19.98 MORE KITS AND **1982 ELECTRONICS**

B11 IN SITU TRANSISTOR TESTER WEIRD SOUND EFFECTS B12 WEIRD SOUND EFFECTS GENERATOR £5.68 B13 AUDIBLE VISUAL METRO-NOME £5.98 B14 ELECTRONIC DICE £5.71 B15 2K RAM PACK Less case for ZX81 815 2K HAM PACK Less case for 2A81 13.34 816 MINI EGG TIMER £4.14 817 AUDIO EFFECTS UNIT FOR WEIRD SOUNDS £12.71 818 LED JEWELLERY — Cross brooch £2.77 Star brooch £3.71 Spiral brooch £7.50

ADVENTURES WITH DIGITAL ELECTRONICS

New book by Tom Duncan in the popular 'Adventures' series. This book of entertaining and instructive projects is designed for hobbyists, and students. It provides a stepping stone to the microprocessor. The first part deals with the properties of some basic ICs used in digital

lectronics The second part gives details of how to build eight devices - shooting gallery, 2

Way traffic lights, electronic adder, computer space invaders game tc. For each project there is an explanation of 'how it works' and also suggestions for things to try

all circuits built on 2 Bimboard 1 breadboards. No soldering

Adventures with Digital Electronics book £3.25. Component pack £42.50 ref ETDC. All the components needed including 2 breadboards and hexadecimal keyboard, Available less breadboards £29.98 ref ETDF. Both less battery.

ORDERS ACCEPTED BY PHONE OR POST. SAE ALL ENQUIRIES.

DE14 2ST. 0283 65435. MON-FRI 9-5. MAIL ORDER ONLY ADD 45p P&P TO ALL ORDERS PRICES INC VAT OFFICIAL ORDERS WELCOME OVERSEAS. Payment must be in sterling. IRISH REPUBLIC and BFPO: UK PRICES. EUROPE: UK PRICES plus 10%. ELSEWHERE: write for quote.

CATALOGUE

Illustrations, product descriptions, circuits all in-cluded. Up-to-date price list enclosed. All products are stock lines for fast delivery.

Sends 80p in stamps or add 80p to order. MORE H.E. PLUS E.E. and E.T.I. PROJECT. KITS IN THE PRICE LIST

ACCESS and BARCLAYCARD (VISA)

COMPONENTS

IN OUR LISTS FREE PRICE LIST Price list included with orders or send sae (9 × 4) CONTAINS LOTS MORE KITS, PCBs & COMPONENTS

MONITOR

Have A Good Time

The cost of Casio's latest quartz digital watch works out at less than ½ p per day, based on a retail price of £5.95 and a five year life from the lithium battery! The timing facilities of the F10 include continuous hour, minute, second and date display, together with indicators for am/pm and day of the week. The calendar is automatic, but needs adjustment for leap years. The standard F10 has a black resin case and strap though if you fancy something with a little more class, the B815, priced at £9.95, is identical except for the traditional stainless steel case and bracelet.

For something a little different, Casio have come up with the MM400 watch. It has a normal daily alarm, another which can be set up to a week ahead, and a third with a monthly cycle; each alarm has a different melodyl The LCD readout shows hour, minute, second, date and day, plus indicators showing which alarms are set. It also features a stopwatch function accurate to 1/1000th of a second. The MM400 has a stainless steel bracelet and case, and a recommended retail price of £34.95 at any High Street Casio stockist.

Would'n You Like One?

A new range of stabilised power supplies (right), specially designed for the UK market, are being released by Telecomms, the exclusive distributors of SHF Electronic products.

The range will be of particular interest to both CB and electronics enthusiast. There are five models, from a 2A unit for standard 40-channel CB rigs up to a 12A heavy duty supply. The prices are very attractive, ranging from £11.90 to £49.95, retail. The cases are made from a toughened nonconductive material and have been designed to be safer and more pleasing to the eye than conventional metal-cased units. Nice picture, too!

SHF Electronic supplies are distributed by Telecomms, 189 London Road, North End, Portsmouth; Tel. 0705 660036.

PCB Jig

No, it's not a new dance, simply two additions to the Carlton Nichol range of PCB holders/assembly-jigs.

The CNC 16 (above) will hold any board of up to 420 x 205 mm. The PCB is clamped between two easily adjustable rails and this also gives it the useful facility for holding a number of smaller boards, rather than one large one. A clip-on foam pad is also available, enabling components to be inserted in the board before soldering.

The CNC 10 holder is designed to take boards up to 203 x 203 mm, held between two rails and locked in position by means of a single, central clamp. When in position, the PCB may be rotated through 360° and locked at any angle. The holder can be folded flat, for storage, simply by loosening one bolt.

These products are available directly from the manufacturer, Carlton Nichol and Co. Ltd., Goldkey Industrial Estate, Kelveden, Essex. The CNC 16 is priced at £21.75 and the foam pad is £6.90; the CNC 10 costs £16.10 and an optional pad is £5.63. These prices included VAT, but £1.50 should be added to cover postage.

Displays On Show

A new range of high quality, reliable, low cost displays (below) from Liton have just been launched by Stotron Ltd. They feature high brightness, low power drain and wide angle visibility, and are compatible with ASCII and EBCDIC codes.

The ten-step bar graph is available in either red or green with a bar point size of 1.5 x 5 mm. The clock display has a red colour filter for better contrast.

Further details are available from

Stotron Ltd, 72 Blackheath Road, Greenwich, London SE10 8DA, or phone 01 691 2031.

Call For The Doctor

This one is for serious computer buffs. Normally, faults in memory chips are very difficult to locate as the usual methods, using a 'scope or logic probe, are not well suited to the job. The Microdoctor, an intelligent device from Dataman Designs, is designed specifically for the purpose.

It is an intelligent device for fault finding on computers or microprocessor based equipment generally, with the capability of performing a series of programmed tests on the memory chips of any computer to which it is attached and printing out the results. In addition, unknown systems can be memorymapped, with the contents printed out in HEX or in ASCII; any device in the memory or I/O space can be read from or witten to.

The Microdoctor is Z80 based and is supplied with a free Z80 disassembler, allowing it to produce a listing in HEX or ASCII of the contents of any ROM in a Z80 system. As it stands, the Microdoctor is applicable to microprocessor systems, and disassemblers for other popular MPUs will soon be available at low cost.

The Microdoctor costs £339,25, including VAT and carriage, from Dataman Designs, Lombard House, Cornwall Road, Dorchester, Dorset DT1 1RX. Tel. 0305 68066.

Logic Logged Here

Fault-finding on digital circuitry is not one of the easier tasks in electronics, and any assistance is generally very welcome. Enter Global Specialiaties, with a new 16-pin logic monitor.

The IM-2A (above) is specifically designed to monitor dual-in-line packaged integrated logic circuits. It has a builtin LED display which gives rapid, simultaneous readout of the static and dynamic states of eight, 14 and 16-pin ICs. Connection to the circuit under test is via a 610 mm long cable and a 16-pin 'Proto Clip' test probe. Using the LMA-9 optional cable, up to 16 independent points can also be monitored.

The front panel mode switch selects either TTL, CMOS or variable threshold logic levels; the thumb-wheel control selects threshold from +1V to +9V, allowing the LM-2A to monitor practically all non-standard logic levels, and the

external voltage sense line used in the CMOS mode ensures that the 70% threshold for CMOS is accurately met. All inputs are 1MO impedance and protected to $\pm 26V$.

The LM-2A measures 30 x 81 x 150 mm and weighs in at 0.3 kg. The case is high-impact plastic, and the unit is supplied complete with the 16-way cable terminated in the IC test clip.

The suppliers are Global Specialities Corporation. Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ; tel 0799 21682 for further information.

Catalogue News

Finding sources of electronic components and hardware is one of the electronics hobbyist's greatest problems. Of course, our super Electronic Supplies Directory which will appear in the October issue, will help, but beyond that, a good catalogue collection is essential.

A new 28 page release, from specialist suppliers Roadrunner Electronic Products, features a wide range of circuit board and enclosure accessories. The Roadrunner 'solder-wrap' wiring system is highlighted, together with their extensive range of prototyping boards, connectors and electronic production accessories.

For further information, contact Roadrunner Electronic Products Ltd., 116 Blackdown Rural Industries, Haste Hill, Haselmere, Surrey GU27 3AY. Tel. 0428 53850.

Another recent arrival was the latest catalogue from Rapid Electronics, who have considerably extended their product range. New additions include a wider range of linear devices, with data sheets, more capacitors, PCB transformers and tools. The total stock line now covers over 2000 items at prices that are "the most competitive in the industry", backed by a return post service.

Copies of the catalogue are available free with orders over £10 or by sending 45p to Rapid Electronics, Hill Farm Industrial Estate, Boxted, Colchester, Essex CO4 5RD. Tel. 0206 36412.

Calculator With A Difference

The Hioki 3208, from Dorman Smith Instrumentation, combines the functions of a powerful scientific calculator and a digital multimeter in one compact unit.

The m∈. [∨] ranges cover AC and DC voltage, ohms, low-power ohms for incircuit testing, and it has current measuring capability up to 200 mA in two ranges. A single key converts the meter reading into scientific notation, for instant calculations.

The unit is supplied complete with tester probes, and a battery, giving 100 hours of continuous operation. It is available by mail order for £72.50, direct from Dorman Smith Instrumentation, Blackpool Road, Preston PR2 2DQ. Tel. 0772 728271.

	the commentation												
Bradley Marchall Itd													
	EDGWARE RO												
SPECIALIST ELEC	Tel: 723-4242	T DISTRIBUTORS											
PROBABLY THE LARGEST STOCK	SPECIAL	BAHCO TOOLS SIDE CUTTERS											
OF ICs & TRANSISTORS	STEINAL	2132 £7-10 2112 £9-40											
TRY US FIRST	£7.50	END CUTTERS 2211 £10-43											
LARGE RANGE OF ACCESSORIES	Normal price £10.26	2411 £6.75											
Sockets Audio Connectors	BUY WITH ACCESS	2415 £6.78											
Veroboards IC Sockets	BARCLAYCARD A/EXPRESS	Microtest 80 £16.60 Supertest 680 R £32.00											
Soldering equipment Screw drivers (BAHCO)	DINERS	Supertest 680E £24-50											
Sifam Knobs etc.	rest	EXPERIMENTER BREADBOARD'S											
LARGE RANGE OF	ORDER	EXP 325 EXP 600 EXP 350 EXP 650 EXP 300 EXP 4B											
Transistors Capacitors	SERVICE	LOGIC PROBES											
Triacs Thyristors	723-4242	LP1 £31.00 LP2 £18.00											
Opto Resistors	16, 24, 40 WAY	EXPERIMENTER											
Potentiometers Fuses Bridges	£1.10; £1.40; £2.20 metre	PB6 £9·20 PB100 £11·80.											
Please send S.A.E. for list.	Header plugs 14 way, 16 way, 24 way, 40 way	PLEASE REMEMBER To ADD 15% VAT											
BRADLEY	ARSHALL	LTD FOR											
c ·	F1	1											
Crim	son Ele	ektrik											
PROFESSIO	NAL AMPLIFIE	RMODULES											
ELECTRONIC	PRICE LIST -	- APRIL 1981											
CODE DESCRIPTIO	IN	Less VAT INC WT											
CE 608 Power Amplif	ier Module	£ £ £ 18.26 2.74 21.00 0.16											
CE 1004 Power Amplif CE 1008 Power Amplif	ier Module	21.30 3.20 24.50 0.20 23.90 3.60 27.50 0.21											
CE 1704 Power Amplit CE 1708 Power Amplit CE 3004 Power Amplit	ier Module ier Module	30.43 4.57 35.00 0.22 30.43 4.57 35.00 0.22 42.60 6.40 49.00 0.40											
BD 1 Bridge Driver TR 80 Toroidal Tran	Module sformer 80VA	7.13 1.07 8.20 0.06 18.00 2.70 20.70 2.00											
TR 150 Toroidal Tran TR 250 Toroidal TRan TR 2500 Toroidal Tran	sformer 150VA hsformer 250VA	20.07 3.01 23.08 2.35 25.43 3.81 29.24 3.35 23.20 4.98 29.18 2.80											
B 6 Bridge Rectifi B12 Bridge Rectifi	er (6 amp) er (12 amp)	0.99 0.15 1.14 0.02 1.80 0.27 2.07 0.03											
C4700/40 Reservoir Cap C4700/63 REservoir Cap	pacitor and Clip pacitor and Clip	1.910.292.200.092.400.362.760.11											
C4300/63 Reservoir Cap CPS 80 Power Supply	pacitor and Clip	2.60 0.39 2.99 0.11 22.82 3.42 26.24 2.10											
CPS 80D Dual Power S CPS 150 Power Supply	upply	27.63 4.14 31.77 2.25 25.86 3.88 29.74 2.50											
CPS 150D Dual Power S													
CPS 250 ' Power Supply	upply /	31.65 4.75 36.40 2.60 32.03 4.80 36.83 3.50											
CPS 250 ' Power Supply CPS 250D Dual Power S TS 70 Thermal Swit	/ upply / upply ch 70°C	31.65 4.75 36.40 2.60 32.03 4.80 36.83 3.50 39.43 5.91 45.34 3.65 1.92 0.29 2.21 0.02											
CPS 250 Yower Supply CPS 250D Dual Power S TS 70 Thermal Swit HS 50 50mm Heatsi HS 100 100mm Heatsi	/ upply upply ch 70°C nk sink	31.65 4.75 36.40 2.60 32.03 4.80 36.83 3.50 39.43 5.91 45.34 3.65 1.92 0.29 2.21 0.02 1.60 0.24 1.84 0.15 2.60 0.39 2.99 0.30											
CPS 250 Power Supply CPS 250D Dual Power S TS 70 Thermal Swit HS 50 50mm Heats HS 100 100mm Heats HS 150 TS0mm Heats HS 150 Fan Mounted	/ upply /upply ch 70°C nk sink sink on 2 × HS 100	$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
CPS 250 Power Supply CPS 250D Dual Power S TS 70 Thermal Swit HS 50 50mm Heats HS 100 100mm Heats HS 150 150mm Heats FM 1 Fan Mounted FM 2 Fan Mounted FM 2 Fan Mounted	yupply upply ch 70°C nk sink on 2 × HS 100 on 2 × HS 150 Module	$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
CPS 250 Power Supply CPS 250D Dual Power S TS 70 Thermal Swit HS 50 50mm Heats HS 100 100mm Heats HS 150 150mm Heats FM 1 Fan Mounted CPR 1X Pre-Amplifier MC 2 Moving Coil P	yupply yupply yupply ch 70°C nk sink sink on 2 × HS 100 on 2 × HS 150 Module Yre-Pre-Amplifier Module over Supply	$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
CPS 250 Power Supply CPS 250D Dual Power S TS 70 Thermal Swit HS 50 50mm Heats HS 100 100mm Heats HS 150 150mm Heats FM 1 Fan Mounted CPR 1X Pre-Amplifier MC 2 Moving Coil / REG 1 Regulated P TR 6 6VA Mains T	/ upply /upply /upply ch 70°C nk sink on 2 × HS 100 on 2 × HS 150 Module Pre-Pre-Amplifier Module ower Supply ransformer	$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
CPS 250 Power Supply CPS 250D Dual Power S TS 70 Thermal Swit HS 50 50mm Heats HS 100 100mm Heats HS 150 150mm Heats HS 150 T50mm Heats HS 150 T50mm Heats HS 170 T50	y upply iupply iupply ch 70°C nk sink on 2 × HS 100 on 2 × HS 150 Module over Supply ransformer over Module over Module over Module	$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
CPS 250 Power Supply CPS 250 Dual Power S TS 70 Thermal Swit HS 50 50mm Heatsi HS 100 100mm Heatsi HS 150 150mm Heatsi HS 150 Therma Heatsi HS 150 Therma Heatsi HS 150 Therma Heatsi HS 150 Therma Heatsi FM 1 Fan Mounted CPR 1X Pre-Amplifier MC 2 Moving Coil I REG 1 Regulated P TR 6 6VA Mains T XO 2 2 Way Crosse MU 1 Muting Cirose MU 1 Complete Pre	f upply iupply ch 70°C nk sink on 2 × HS 100 on 2 × HS 150 Module re-Pre-Amplifier Module ower Supply ransformer sover Module over Module over Module t for XO 2 or XO 3 -Amplifier Kit	$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
CPS 250 Power Supply CPS 250D Dual Power S TS 70 Thermal Switt HS 50 50mm Heats HS 100 100mm Heats HS 150 150mm Heats FM 1 Fan Mounted CPR 1X Pre-Amplifier MC 2 Moving Coil I REG 1 Regulated P TR 6 6VA Mains T XO 2 2 Way Cross MU 1 Muting Circui CK 1010 Complete Pre CK 1040 Complete 100	y upply ch 70°C nk sink on 2 × HS 100 on 2 × HS 150 Module Pre-Pre-Amplifier Module Pre-Pre-Amplifier Module ower Supply ransformer over Module over Module sover Module t for X0 2 or X0 3 -Amplifier Kit Watt Power Amplifier Kit Watt Power Amplifier Kit	$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
CPS 250 Power Supply CPS 250 Dual Power S TS 70 Thermal Swit HS 50 50mm Heatsi HS 100 100mm Heatsi HS 150 150mm Heatsi HS 150 150mm Heatsi HS 150 Fan Mounted CPR 1X Pre-Amplifier MC 2 Moving Coil I REG 1 Regulated P TR 6 6VÅ Mains T XO 2 2 Way Crossi MU 1 Muting Circui CK 1010 Complete Pio CK 1040 Complete 40 CK 1100 Complete 100 MC 2K Add On Movi Pisk Pre-Amplifier	f upply iupply iupply ch 70°C nk sink on 2 × HS 100 on 2 × HS 150 Module over Supply ransformer over Module t for XO 2 or XO 3 -Amplifier Kit Watt Power Amplifier Kit I) Watt Power Amplifier Kit ng Coil Kit Power Supply Kit	$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
CPS 250 Power Supply CPS 250D Dual Power S TS 70 Thermal Swit HS 50 50mm Heats HS 100 100mm Heats HS 150 150mm Heats HS 150 150mm Heats HS 150 Therman Heats HS 150 Therman HS 150 Thermal Swit HS 150 Thermal	yupply yupply iupply ch 70°C nk sink sink on 2 × HS 100 on 2 × HS 150 Module ower Supply ransformer over Module t for XO 2 or XO 3 -Amplifier Kit Watt Power Amplifier Kit ng Coil Kit Power Supply Kit N BRADLEY MARSHALL LTT	31.65 4.75 36.40 2.60 32.03 4.80 36.83 3.50 39.43 5.91 45.34 3.65 1.92 0.29 2.21 0.02 1.60 0.24 1.84 0.15 2.60 0.39 2.99 0.30 3.65 0.55 4.20 0.45 32.13 4.82 36.95 1.20 36.10 5.42 41.52 1.50 31.30 4.70 36.00 0.15 20.00 3.00 23.00 0.07 8.09 1.21 9.30 0.07 2.87 0.43 3.30 0.21 73.09 1.21 9.30 0.07 8.35 1.25 9.60 0.04 78.09 1.21 9.30 0.07 8.35 1.25 9.60 0.04 78.26 1.74 90.00 2.50 103.48 15.52 119.00 7.30											

ECHNICAL TRAINING LECTRONICS, **EVISION AND AUDIO** IN YOUR OWN HOME – AT YOUR PACE

ICS can provide the technical knowledge that is so essential to your success, knowledge that will enable you to take advantage of the many opportunities open to the trained man. You study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching until you are successful.

City & Guilds Certificates

Radio Amateurs Basic Electronic Engineering (Joint C&G/ICS)

The cabinets can be painted or stained or finished with iron-on veneer or self adhesive woodgrain vynil.

Easy foolproof assembly instructions supplied. Set of constructor leaflets sent free on receipt of large S.A.E

Prices: CS	(As 101)	£110 pr. inc. VAT, plus carr./ins. £ 5.50
CS1	A (simplified LS3/5A)	£103 pr. inc. VAT, plus carr./ins. £ 5.50
CSS	3 (as 103.2)	£129 pr. inc. VAT, plus carr./ins. £10.00
CS	5 (as Carlton II)	£192 pr. inc. VAT, plus carr./ins. £15.00
CST	7 (as Cantata)	£250 pr. inc. VAT, plus carr./ins. £18.00
	TILMSLOW	密 0625 52959 <mark>9</mark>

35/39 Church Street, Wilmslow, Cheshire SK9 1AS 1982 Catalogue — £1.50 post free Lightning service on telephoned credit card orders!

Hobby Electronics, September 1982

Put more zap in your slot-car's zip with our economy model controller

IN their May issue, this year, our cousins at Electronics Today International presented a super, souped-up Slot Car Controller project, providing (amongst other things) fuel tank simulation and controlled overshoot. In the course of developing that project, fierce argument raged around the authors' household, some arguing for the 'no-holds-barred' approach — the method ultimately adopted by ETI — while others argued for 'cost effectiveness'.

If you are a dedicated slot car fanatic, with hundreds of pounds invested in your layout, then you've probably already built the ETI Super Controller. On the other hand, if you're not sure that you are a fanatic, or you have just bought a layout, say, then this cost-effective approach, the HE 'Junior', is the one for you. It is relatively simple to construct, cheap, and easy to get going. It is basically a replacement for whatever you are using to power your set now. It offers operation from AC or DC, car battery, model train transformer, door-bell transformer or a range of typical project transformers or power supplies. It gives independent protected supplies for each lane,

adjustable for most car set types available.

In addition, we're giving tips for optimising your set and ideas for layouts. These should be sufficient to turn a simple rig into a first-class slot car racing set-up.

Theory And Practice

In practice, the basic rheostat in series with the track (car) system is not at all a bad compromise. For a given control setting, the car accelerates fairly rapidly towards a final speed. This is because torque is proportional to current (in the permanent magnet motors used) and current is at maximum when the car is standing still; as the engine RPM increase so does the back EMF, or rather the internal EMF of the engine, which represents the mechanical power output in the mathematical model of the engine. As this rises, the voltage drop across the control resistance decreases, and so does the current, the torque and the acceleration (Figure 1). This gives a very car-like performance for a minimum of parts. The final speed is fixed by the minimum DC path resistance, the available supply voltage and the

amount of friction and other losses in the car. Overall performance includes cornering ability, which is affected by the car weighting and wheel type and condition. Attention to these factors will effectively 'tune' the car.

If you think you have a two-car set with one car better than the other, the chances are that checking the above points will reveal a silly fault in one of them. You can end up, after some tinkering, with two improved cars. Let us go through a typical tuning-up of a small car, such as those in the cheaper sets. We will start at the car and end up at the controller.

Firstly, the wheels. It is important to check that these do not have some wobble or severe out-of-roundness. The tyres should be slightly rough, so that they grip, and fairly flat at the point of contact with the track, so that they do not bounce when the wheel rotates quickly. See that the tyre is fitted straight, if you have removable tyres, and that the wheels are squarely mounted on the axles.

Next, it is worth opening the car up. Check that the axles and cogs are free of dust and carpet fluff. A very small touch of light machine oil on bearings and cogs is a good idea, though not absolutely necessary. Do not oil the tyres or any exposed bit of the car. See that the cogs mesh neatly and fairly silently. On an expensive car, these things should be in order already.

Now let's look at the brushes. These are, in our experience, the most vulnerable point in the car. Brush friction usually accounts for 90% of car performance problems. The brushes should be clean and dust free. There will be some unravelling of the braid, this is good. The ends of the brushes seem to benefit from a bit of 'combing', done with a small jeweller's screwdriver, a scriber or scalpel. About three to five millimetres of combed braid is nice. Finally, the shape of the brushes is important. There are several ways to bend the brush, and you should experiment to see which is better. We used the down-and-then-straight pattern (See Figure 2).

Next, the minimum rheostat resistance is important. Some controllers have such high resistive leads that the series resistance never gets below an ohm or two. If you have a protected *voltage* source this is a disadvantage.

Finally, the supply potential is vital. If it is too high, the control becomes too critical and it is too hard to get just the right amount of power. It cannot be too low, of course, as you would not get anywhere near enough power to realise maximum speed without crashing — which takes out all the skill. As well, if the supply is not regulated, one car can interact with the other; an extreme case is when one car suddenly 'shutting down' causes such a surge that the other spins off the track (it can happen!).

One further factor is worth discussing, with respect to the car: weighting, and this is an area where you are going to have to experiment for yourselves. Most cars have spaces inside the plastic shells where nuts or other pieces of metal can be secured with a little Blutac, or similar adhesive, to add weight. Weight will reduce the acceleration for a given power, but it will increase wheel adhesion on the road. It will also change the handling, possibly making spinouts more likely, and reduce the period of time required between brush realignments. In our experience, a couple of 2BA or similar nuts in a small car, near the middle and low down, are quite beneficial if you have adequate power, as with our controller.

The Supply

As we have said, all that is necessary to achieve quite adequate performance is a voltage supply for each car. It needs to be the right voltage, and the cars should not interact with each other via the supply. The HE 'Junior' is a simple supply that meets these standards. It is versatile in that it will operate from whatever source of voltage you have available; it simply needs to deliver at least three volts more than the cars need (average) and to be able to supply the maximum current, typically 0A5 to 1 A per car.

If you think you have a two-car set with one car better than the other, the chances are that checking the above points will reveal a silly fault in one of them. You can end up, after some tinkering, with two improved cars. Let us go through a typical tuning-up of a small car, such as those in the cheaper sets. We will start at the car and end up at the controller.

Firstly, the wheels. It is important to check that these do not have some wobble or severe out-of-roundness. The tyres should be slightly rough, so that they grip, and fairly flat at the point of contact with the track, so that they do not bounce when the wheel rotates quickly. See that the tyre is fitted straight, if you have removable tyres, and that the wheels are squarely mounted on the axles.

Next, it is worth opening the car up. Check that the axles and cogs are free of dust and carpet fluff. A very small touch of light machine oil on bearings and cogs is a good idea, though not entirely necessary. Do not oil the tyres or any exposed bit of the car. See that the cogs mesh neatly and fairly silently. On an expensive car, these things should be in order already.

Now let's look at the brushes. These are, in our experience, the most vulnerable point in the car. Brush friction usually accounts for 90% of car performance problems. The brushes should be clean and dust free. There will be some unravelling of the braid, but this is good. The ends of the brushes seem to benefit from a bit of 'combing', done with a small jeweller's screwdriver, a scriber or scalpel. About three to five millimetres of combed braid is nice. Finally, the shape of the brushes is important. There are several ways to bend the brush, and you should experiment to see which is better. We used the down-and-then-straight pattern (see Figure 2).

Next, the minimum rheostat resistance is important. Some controllers have such high resistive leads that the series resistance never gets below an ohm or two. If you have a protected *voltage* source this is a disadvantage.

The Circuit

The complete circuit is shown in Figure 3. It is basically a crude series voltage regulator, based on the 723 variable regulator IC, that supplies power to the rheostat in the hand controller. The rheostat is in series with the motor in the car, via the track connections. The voltage supplied to the controller and car can be preset anywhere between about 3 V and 12 V.

The circuit is designed to be powered from a variety of sources bell transformer, car battery, plugpack, model train transformer or conventional 240 VAC to 15 V/1-2 A

Figure 3. Circuit diagram of one controller; note that the components in the Supply Section are required for one board, only.

Parts List

DESIGTORS

transformer - whatever is available. If the source is AC, such as that direct from a transformer secondary, the diode bridge rectifier formed by D1-D4 rectifies this, supplying unfiltered DC to the circuit. These four diodes may be deleted if the unit is run from a DC supply, or they may be left in, provided the DC exceeds the voltage required by the car by about four volts. Leaving D1-D4 in place has the advantage that the device can be run off AC at any time, and when running it off a DC supply it can be connected either way round as polarity doesn't matter and no possible damage can be caused by accidental reverse polarity connection.

To indicate that a supply of sufficient voltage is connected to the circuit, ZD1, R1 and LED1 make a simple indicator. When the supply voltage between the + V and O V rails is high enough to overcome the zener voltage plus the voltage drop across LED1 and R1 at a current of a few milliamps, LED1 will light. You need to produce a minimum of approximately 10 V between the + V and 0 V rails. Note that, while this is sufficient for the IC regulator circuit to operate, it may not be enough for some slot car sets. For those that require 12 VDC, at least 14 V between the + V and O V rails will be required. An AC input of up to 24 VAC (RMS) may be used.

Following the rectifier and indicator sections of the circuit is the regulator, which consists of IC1, Q1 and associated components. Each lane in the slot car set should be supplied with a separate regulator circuit to ensure that one lane does not interfere with the operation of the other, especially in the event of a short circuit due to a crash or a fault, etc. Two regulator sections may be run from a single rectifier section.

The 723, IC1, controls the base current of Q1 to deliver the required voltage to the hand controller, except when the external circuit (controller and car motor, via the track) attempts to draw current above about 1A2. In this case, the 723 reduces the voltage supplied to the external circuit to prevent possible damage.

The output voltage is set by RV1. By adjusting this preset control, the voltage delivered to the controller and external circuit may be varied anywhere between about 3 V and 12 V maximum. This should be adjusted to suit the particular slot car set you are using by setting its position so as to deliver a suitable amount of acceleration to the car when the hand controller is set full on.

LED2 indicates that a voltage is reaching the track. This is useful to check correct operation and for detecting shorts on the track.

Construction

Construction of the HE 'Junior' is relatively straightforward. You will require one PCB for each lane, though some components will not be required on any but the first board. Further lanes will simply demand a larger box

	(All ½ watt 5% carbon, unless
	R1,7
	R5
	POTENTIOMETERS
	RV1
	CAPACITORS
	C1
	disc ceramic
	SEMICONDUCTORS D1-D4
	ZD1BZX61C7V5
	LED1TIL211
	0.2" green LED LED2TIL209
	IC1 LM123
l	Buylines)
ĺ	Q1
	MISCELLANEOUS
	Case (see Buylines); PCB; terminal

Case (see Buylines); PCB; terminal block; nuts, bolts, wire, solder etc.

and a repeat of the wiring of the first board, less ZD1, R1 and LED1. The component layout for a single-lane board is shown in Figure 4.

The first step is to drill the box. We used a cheap metal box, but if you want it to look particularly good, or if it will have to withstand nasty knocks, a diecast aluminium or extruded box of sufficient size can be used, although it will add to the cost. The advantage of a metal box is that the front panel doubles as a heat sink.

Drill the MJ2955 mounting holes and the LED mounting holes first. The only other hardware preparation is for the PCB mounting screw holes and those for the wires and the terminal block.

After drilling, assemble the boards. The first should have *all* components fitted. It is best to include D1 to D4 even if you have a DC supply, as the unit cannot, then, be connected the wrong way round, and can still be used with AC if required. The diodes should only be omitted if the DC supply is too low to tolerate the voltage drop across them, ie below 12 V, on average (omitting the diodes will allow it to run on around 10 V). It

should also be noted that the supply will have to be a bit higher if the car set is a $12 \vee type - around 15 \vee at$ least.

Fit all the components as shown in the overlay, starting with the resistors and finishing with the IC. Take care with the IC orientation. Once the board is assembled, connect the offboard wiring as shown. The current limiting resistors, R1 and R7, are mounted behind the LEDs themselves. For the output leads to the tracks and the controllers, we used an ordinary plastic terminal block, as these are cheap. Once the assembly is complete, label the supply and track LEDs, on the panel.

Testing

The HE 'Junior' is so simple that it does not require much setting up. After completing the assembly and wiring it up to your controllers and to the tracks, you should be 'on the road' immediately. The only adjustment that needs to be made is the setting of RV1, which controls the output voltage as mentioned in the circuit description. For safety, make a trial run with RV1 set for minimum voltage, first!

The Track

When it comes to track, there are three factors worth mentioning which may influence your choice if you have yet to purchase it. These factors are: range of pieces available, flexibility and width. If you are going to buy a cheap set, and let's face it, that is the most economical approach, you will have to accept that the track comes in fixed quantities; probably multiples of what it takes to make up one loop or a small figure-8. However, you can get a good selection of 45° curves and straights, not to mention two cars and controllers, and fences, etc, for under £25 in some places. For this, plus one of our controllers, you can get a really good set-up, and for a bit more you get a really fantastic set.

Laying Out

In designing a layout, the main problem is not to find a shape which is particularly interesting, but one which is fair, or equal, for both lanes, as well as 'rational'.

A layout is said to be *rational* if it fits together *exactly*. For this to happen, there must be no uncancelled irrational constructs. Even if you are lucky enough to have a range of bits, it is quite a challenge to sort out a fair and rational track.

First, let us define some terms. A 'construct' is any group of track section. It does not necessarily meet up to form a closed loop, but is usually a familiar shape which can often be found in layouts. A rational construct is one which replaces a section of an oval track — either a right angle, a single straight section, or a combination of these.

To explain this, consider Figure 5. The right angle turn introduces a oneunit displacement along and one unit down. The U-bend introduces a twounit shift along and no shift down. The S-bend introduces three along, and two down. These are all rational constructs in the system of track used here — that is, one where straights are exactly one radius of curvature long, as is common. The constructs in Figure 6 are all equivalent to a right angle, and are thus rational.

The zig-zag in **Figure 7** is irrational, but the construct next to it is rational, as the zig-zags clearly cancel out.

Some constructs favour one lane. For instance, in a plain 180° bend, the outside lane is longer, and thus you might expect it to take longer to negotiate. If there are fences it may be faster, as the car can bounce off them and thus allow greater speed without accident.

Experiment will determine how each construct favours lanes. Once you have an idea of each construct and how it favours lanes, you can assemble them into a fair layout. Even though a completely flat layout will inevitably have one lane longer on the outside, it can be made fair by the addition of constructs to favour the worse lane — such as zig-zags at the ends of long straights.

If you are really getting involved, you can devise a catalogue of constructs. We developed a computer program for checking rationality and a layout plotting routine, and here is an optimal layout (Figure 8) which uses all the track from two cheap figure-eight sets.

Our thanks to Hornby Hobbies, who supplied the pictures featured in this article. "...the quality of the colour display is excellent". Popular Computing Weekly. "The graphics facilities are great fun". Personal Computer World. "...the Spectrum is way ahead of its competitors". Your Computer.

"The world's best personal computer for under £500."

Sinclair ZX Spectrum 16K RAM £125, 48K RAM £175.

This is the astonishing new ZX Spectrum – a powerful professional's computer in everything but price!

There are two versions – 16K or a really powerful 48K. Both have a full 8 colours, sound generation, a full-size moving-key keyboard and high-resolution graphics. Plus established Sinclair features such as 'one-touch' keyword entry, syntax check and report codes!

Key features of the Sinclair ZX Spectrum

Full colour – 8 colours plus flashing and brightness-intensity control.

Sound - BEEP command with variable pitch and duration.

Massive RAM - 16K or 48K.

Full-size moving-key keyboard – all keys at normal typewriter pitch, with repeat facility on each key.

High resolution – 256 dots horizontally x 192 vertically, each individually addressable for true high-resolution graphics.

ASCII character set - with upper- and lower-case characters.

High speed LOAD & SAVE – 16K in 100 seconds via cassette, with VERIFY and MERGE for programs and separate data files.

The ZX Printer - available now

The printer offers ZX Spectrum owners the full ASCII character set – including lower-case characters and high-resolution graphics.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

ZX Microdrive - coming soon

Each Microdrive will hold up to 100K bytes on a single interchangeable microfloppy – with a transfer rate of 16K bytes per second. And you'll be able to connect up to 8 ZX Microdrives to your ZX Spectrum – they're available later this year, for around £50.

To: Sinclair Research, FREEPOST, Camberley, Surrey, GU15

		£	£
Sinclair ZX Spectrum – 16K RAM version	100	125.00	
Sinclair ZX Spectrum – 48K RAM version	101	175.00	
Sinclair ZX Printer	27	59.95	~
Printer paper (pack of 5 rolls)	16	. 11.95	
Postage and packing: orders under £100 orders over £100	28 29	2.95 4.95	
		TOTAL £	

How to order your ZX Spectrum BY PHONE – Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day.

BY FREEPOST – use the coupon below. You can pay by cheque, postal order, Access, Barclaycard or Trustcard.

EITHER WAY – please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt – and we have no doubt that you will be.

Sinclair ZX Spectrum

Sinclair Research Ltd,

Stanhope Road, Camberley, Surrey, GU15 3PS. Tel: Camberley (0276) 685311.

3BR. Please tick if you require a VAT receipt []	Order											
*I enclose a cheque/postal order payable to Sinclair Research Ltd for £												
*Please charge to my Access/Barciaycard account no.	/Trustcard Please print.											
*Please delete/complete as applicable.												
Mr/Mrs/Miss												
Address												
	I FEI											
port prices on application.	HEL 809											

FREEPOST - no stamp needed. Prices apply to UK only. Export prices on applicat

ZX Interface

board are shown in

is high (logic '1'), and A14, A15 and MREQ are all low, then the output, pin 11, of IC3d will go low. This will

any memory address in the range 8192 to 16383. At the same time,

the ZX81 ROMCS line is pulled high

through D1, to disable the unwanted

For the Spectrum (I/O Mapped)

address line A5 and the Spectrum IORO

low enables IC3a and IC3b so that

during a ZX 'write' operation, when

IC3b goes low. Similarly, during a ZX 'read', the output of IC3a pin 3, will

Both versions of the board do

simplicity, since to reduce the number

respond to a wide range of ZX

addresses rather than to a single address. This has been done for

of addresses that the board would

WR goes low, the output, pin 6, of

version, IC4, D1 and R1 are not fitted,

In either case, pin 11 of IC3d going

'echo' of the ZX81 8K ROM which

and IC3d is connected so that its

output, pin 11, goes low when

lines are both low.

would otherwise appear at these

happen whenever the ZX81 accesses

Figure 1. In the

addreses

go low.

ZX81 (Memory

Mike Lord

AS discussed last month, I/O interfaces for the ZX81 are best designed to look like normal memory ('Memory Mapped I/O'). For the Spectrum, on the other hand, it makes more sense to use the Z80's I/O address space ('I/O Mapped'). We have therefore designed the PCB so that the circuit can be constructed as either a Memory Mapped or an I/O mapped interface.

Whichever version is built, it will give you eight separate TTL level outputs, which can be controlled by the ZX, to drive LEDs, relays or whatever you will. There are also eight TTL inputs to the board, and the ZX can examine the states of signals applied to these inputs.

The ZX81 version of the board is designed to work with the basic (1K RAM) ZX81, and also with the ZX printer and the Sinclair 16K RAM pack. It should also be compatible with most ZX81 add-ons offered by other firms except for those which use memory addresses in the range 8192 to 16383.

The Spectrum version will also work with the ZX printer and - as far as we can tell from the limited information available at this time will be compatible with future Sinclair add-ons such as the Microdrive and RS232 interface.

Circuit Description

The circuit for both versions of the

Last month's article gave a generalised description of techniques for interfacing external circuits to the Sinclair ZX81 and Spectrum. This month we present a practical circuit, an Input / Output interface board which can be built to work with either the ZX81 or the Spectrum.

respond to would mean adding more gates to monitor the states of more of the ZX's address lines. In both cases, the address decoding provided is adequate to allow the I/O board to work properly both with the computer and with Sinclair add-ons.

The eight board outputs are via PL1 and PL2 from the outputs of the 8-bit latch, IC1. The eight inputs to IC1 are connected to the ZX data bus lines DO-D7, so that when IC3b pin 6 pulses low the data present on DO-D7 is clocked into the latches. It will be held there until another ZX 'write' operation, to a suitable memory or I/O address, updates it.

IC2 contains 8 'tri-state' buffers, The inputs to these buffers are connected to the I/O board input points on PL3 and PL4. The output of each buffer is connected to one of the ZX data bus lines, but normally has no effect because the IC2 outputs are held open-circuit by a 'high' input to pins 1 and 19. When, however, the ZX does a 'read' operation from a suitable memory or I/O address, so that pin 3 of IC3a goes low, the output circuits of the buffers are enabled, transferring the information

14

present at IC2 inputs to the ZX data bus lines.

Construction

Refer to the component overlay, Figure 2. Begin by adding wire links in the positions shown. You should end up with 15 links (including the strap a-b) for the memory mapped version, or 16 (including straps a-c and d-e) for the I/O mapped board. Insulating sleeves should be fitted over the wire for the longer links, which might otherwise be liable to bend and touch each other.

Newcomers to the art of electronic circuit building may be interested to learn an old trick for making neat sleeved-wire links. It involves taking a piece of solid cored (not stranded) plastic insulated tinned copper wire about 18" (457.2 mm) long and carefully - without nicking the conductor - stripping a short length of insulation from each end. You then grip one bare end firmly in a vice or a pair of pliers. Then, holding the other bare end with the pliers, pull firmly until the wire suddenly stretches. Stretching the wire this way straightens it, and removes most of its 'spring'. It also breaks the wire free from the inside of the insulation and reduces its diameter slightly, so that what was insulation now becomes the correct sized sleeving.

Next, solder in D1 and R1 — but only if you are making the ZX81 (Memory Mapped) version of the board. Note that D1 must be fitted the right way round, with the broad coloured band away from the edge of the board. Now fit and solder the IC sockets and then C1. The pins of the IC sockets are fairly close together, so make sure that you don't leave any unwanted solder 'bridges' between adjacent pins.

Parts List
RESISTORS R1 470R
¼ watt, 5%
CAPACITORS
C1 100n polycarbonate
SEMICONDUCTORS
IC1
IC2
TTL octal tri-state buffer IC3 74LS32
TTL quad 2-input OR
IC4 74LS00
TTL quad 2-input NAND
MISCELLANEOUS
20-pin DIL socket (2); 14-pin DIL
connector socket, polarising key in

MISCELLANEOUS 20-pin DIL socket (2); 14-pin DIL socket (2); 23+23 way ZX edge connector socket, polarising key in position 3; 23+23 way ZX connector, matching socket; 10-pin 0.1" PCB plug (4); 10-way 0.1" socket housing (4); crimp terminal for socket housing (24); PCB, wire, solder, etc.

Figure 2. The component overlay diagram.

The four Input / Output connectors, PL1-4, can now be soldered in, but before doing so pull out the metal pins from the positions for which there is no corresponding hole in the PCB. The plastic moulding and the long ends of the plug pins should be on the component side of the board, the short ends of the pins should go through the board to be soldered on the track side.

The 23 + 23 way ZX socket can now be fitted so that the body of the connector is on the component side of the board, as close to the board as it will go. Tack-solder a couple of the corner pins first, then make sure that the socket is exactly perpendicular to the board before proceeding. For mechanical soundness, each pin of the socket should be soldered to its PCB pad, even though there may be no track going to that pad. Make sure that no solder bridges are formed between adjacent pads or tracks.

If you want to use other add-ons such as the ZX81 16K RAM pack, then a 23 + 23 way double-sided PCB plug must be fitted, projecting at rightangles from the track side of the I/O board, Each connection pad on this plug must be soldered to the corresponding 'tail' of the 23 + 23 way socket. Again, take care to avoid solder bridges, and make sure that the plug is positioned so that it is exactly perpendicular to the PCB and in line with the 23 + 23 socket.

Note that although the Spectrum actually has a 28 + 28 way plug, the wanted connections lie within the scope of a 23 + 23 way ZX81 connector and -- if the polarising key is fitted - in the correct positions to suit both machines.

Finally ICs 1, 2 and 3 (and IC4 for the ZX81 version) may be fitted into their sockets, making sure that they are oriented with the semi-circular depressions in the IC mouldings pointing towards the top edge of the board as shown in Figure 2, and that all pins are properly engaged in their sockets.

Testing It

The first, and most important, test is to plug the board onto your computer and check that the computer itself still operates properly! If all is OK, we can test the input side of the board by first keying one of the instructions:

PRINT PEEK 8192 (for the ZX81 version);

TABLE 1

	254	IF	I/P	0	(PL4	PIN	(3)	IS	CONNECTE	D TO	0V
•	253			1			4				
	251			2	,,	,,	6				
	247		,,	3	,,	**	8		r8,		
	239			4	(PL3	PIN	3)		**		.,
	223	,,	.,	5	,,	,,	4				
	191	,,		6	.,		6				
	127		**	7		1	8	,,		"	

Testing the inputs to the board; the result is '255' if all inputs are logic 1.

PRINT IN 65503 (for the Spectrum board),

The correct answer is 255 (not 42!), as all eight inputs to IC2 are, for the moment, open circuit and therefore look to the I/O board as logic '1's.

Repeating the instruction with a temporary connection between OV (PL3 pin 10 is a suitable point to make connection to the OV rail) and one of the inputs (PL3 or PL4 pin 3,4,6 or 8) should give the results shown in Table 1. Only one input should be connected to OV at any one time for this test.

Now for the output. Connect a DC voltmeter, switched to its 5 or 10 volt range, between OV and o/p O (PL2 pin 3). Now key in one of these instructions;

POKE 8192,0 (for the ZX81 version);

OUT 65503.0 (for the Spectrum version).

TAB	LE 2						
n =	1	FOR	O/P	0	(PL2	PIN3)	
	2		,,	1	"	,, 5	
	4			2		,, 7	
	8	**		3	,,	,, 9	
	16			4	(PL1	PIN3)	
	32			5		,, 5	
	64			6	+#	., 7	
	128			7	,,	,,. 9	

Testing the outputs; each will go high (between 2V5 and 5V) when the corresponding value of 'n' is POKEd or OUTput to the latch.

This should result in a voltage reading of between OV and OV4. Then input:

POKE 8192, 1 or

OUT 65503,1

which should make the voltage change to between 2V5 and 5V.

The other seven outputs can then be tested, in turn. For each one, POKE 8192,0 or OUT 65503,0 should give less than OV4, while POKE 8192,n or OUT 65503,n should give between 2V5 and 5V, where n is a number corresponding to a particular output, as shown in Table 2.

Programming

Considering the output half first, we have eight separate TTL level outputs which can each be set to give a logic '1' or '0' level by a program command which loads a suitable value into the 8-bit latch, IC1. The value will affect all eight lines simultaneously so, if we want to change just one output, we

TABL	.E 3		-
O/P S	ET TO '1'	DECIMAL	VALUE
	0	1	
	1	2	
	2	4	
	3	8	
	4	16	
	5	32	
	6	64	
	7	128	

Each output is set by loading a decimal value, as shown above.

Figure 3. The I/O connectors. PL1 and 2 carry the output lines; PL3 and 4 carry the inputs.

Figure 4. Inputs to the I/O board; points 'I' connect to the board inputs.

Figure 5. Outputs from the I/O board; points 'X' connect to the output pins.

must remember to load a value which – as well as affecting the output we want to change – will also preserve the previous states of the other seven outputs.

This value can be calculated by considering the eight output lines as individual bits on an 8-bit byte, o/p Obeing the least significant bit and o/p7 the most significant, and converting the result to decimal. To do this, add together the values from Table 3 corresponding to the wanted '1' level outputs. For example, if we wanted to set outputs 2 and 5 to '1', and the other 6 lines to '0', the value to be loaded into the latch would be 00100100 binary, or 4 + 32 = 36 decimal, and the correct BASIC instruction would be;

POKE 8192,36 (for the ZX81) or

OUT 65503,36 (for the Spectrum).

If we wanted to then change output 2 to a 'O' without affecting the other lines, then the appropriate instruction would be: POKE 8192,32 or OUT 65503,32.

Alternatively, we could let the computer do the hard work by inserting the following lines near the beginning of our program:

LET	OPO	=	1
LET	OP1	-	2
LET	OP2	=`	4-
LET	OP3	=	8
LET	OP4	=	16
LET	OP5	-	32
LET	OP6	=	64
LET	OP7	=	128

Then, to set, say, o/ps 1, 5 and 7 to '1', use the program line:

POKE 8192, (OP1 + OP5 + OP7)

or

OUT 65503, (OP1 + OP5 + OP7)

Spectrum programs could use the BIN function, which takes an 8-bit binary number expressed as a string of '1's and '0's and converts it to the decimal equivalent. For example:

OUT 65503, BIN 10100010

Now for Input. The combined states of the 8 inputs applied to the I/O board are read by the ZX as a single decimal number in the range O to 255. For example, if a '1' were applied to inputs O and 7, and 'O' to the other six inputs, then the variable X would be given the value 129 by a ZX BASIC instruction of the form:

LET X = PEEK 8192 (for the ZX81) or

LET X = IN 65503 (for the Spectrum).

The following routine can then be used to sort out the states of the eight individual inputs;

DIM I(8) FOR J = 1 TO 8 LET I(J) = X - 2 * INT (X/2) LET X = INT (X/2) NEXT J

This routine will give each of the eight array elements I(1) to I(8) the value '1' or '0', depending on the logic level applied to the individual I/O board inputs.

Using It

The whole point of an I/O board is that it will be connected to other equipment, and to this end the board described here has four 10-way plugs (PL1-4) fitted to it. As shown in Figure 3, PL1 and PL2 each carry four of the output lines, as well as OV and +5V rails. PL3 and PL4 each have four of the input lines, and also the OV and +5V connections. Leads can be soldered to the pins of the plugs or more professionally - the mating sockets shown in the components list can be used; note that these consist of a shell moulding with separately supplied contacts.

The I/O board inputs can, of course, be connected directly to TTL or 5V CMOS outputs, and switch or relay contacts can be easily interfaced as shown in **Figure 4**, which also shows how a LED-phototransistor opto-isolator could be used to sense signals that it may not be possible to connect to the computer's OV rail.

LEDs or low power relays can be driven from the board's output lines, as shown in Figure 5. In all cases, the total amount of current drawn from the +5V rail on pin 1 of PL1-4 should be not more than about 50 mA, as it is being provided by the regulator in the ZX, which runs hot enough anyway!

Note also that any large or inductive loads such as motors or relay coils should have interference suppressors fitted to cut down the risk of noise pulses upsetting the computer. For this reason it is advisable to isolate any large loads with a relay or optoisolator, so that high voltage or heavy current circuits are completely separate from the computer. This will also reduce the chance of high voltages getting accidentally connected to your valuable ZXI

COMING SOON TO . . .

DIRECTORY OF ELECTRONIC SUPPLIES

Hobby Electronic's October issue features the largest, most comprehensive survey of electronic components and hardware ever published.

The Directory consists of three large pull – out wall charts showing 40 categories of components, hardware and information for the electronics constructor. More than 60 company names and addresses are listed separately, with comments on product lines, specialities and services, and mentioning any items not covered in the charts.

With all this information presented so efficiently, the October issue of Hobby Electronics is a must for all electronic enthusiasts.

CB SQUELCH UNIT

Stamp out noise!

This device is the companion to our Stereo Noise Gate, also under preparation for October, but designed to eliminate CB receiver noise when the channel is open. If you find noise annoying, this easy-to-build and economical unit will sooth your nerves!

CIRCUIT MAKER

A complete kit for making PCBs at home, using the photographic process, has recently been released by Electrolube Limited. In October, Owen Bishop reports on his experiences with the photo-resists, the light frames and the bags of ferric chloride. His conclusions? See for yourself in the October issue of Hobby Electronics!

HEBOT II

Remember the HEBOT?

Way back in November 1979 we published one of the first ever mobile robot projects, which we christened HEBOT. It proved to be enormously popular and, judging by the mail we still receive, reader's enthusiasm for simple robotics has not decreased over the years!

HEBOT has long since 'passed on' but now, in conjunction with Powertran Ltd., we are proud to present its successor.

HEBOT II is a very similar animal — er, robot — but using today's more sophisticated circuitry and operating under the control of a microcomputer. Like the original, it is a 'turtle' robot, propelled by two large, independently controlled rubber wheels which enable it to perform a wide variety of movements. Obstacle-sensors allow it to explore its environment, discovering the limits of movement or the shape of a room, or it can draw patterns or graphs using a pen, which presses down on command. Its blinking eyes and on-board beeper can be programmed to communicate with the operator, eg to indicate that it has finished a task.

The projected cost of this educational and inspirational robot is under £100, and it is initially intended to be controlled via a Sinclair ZX81 microcomputer — though future developments will open still greater possibilities. Look out for HEBOT II in the November issue of Hobby Electronics.

Please reserve	Ecceronics
for Name	October issue on sale at your newsagent from 10th September.
Although these articles are being prepared for the pext issu	Place your order now!

l ne ogic Hrobes

Ŋ

LOL

SPEED

PROBE

5

PULSE

PULSE

DTL

CMOS

Spend Less

LP-1 Logic Probe

The LP-1 has a minimum detachable pulse width of 50 nanoseconds and maximum input frequency of 10MHz. This 100 K ohm probe is an inexpensive workhorse for any shop, lab or field service tool kit. It detects high-speed pulse trains or one-shot events and stores pulse or level transistions, replacing separate level detectors, pulse detectors, pulse stretchers and pulse memory devices.

All for less than the price of a DVM £31.00*

OModel LP 3 Mustrated

0

C

LP-2 Logic Probe

The LP-2 performs the same basic functions as the LP-1, but, for slower-speed circuits and without pulse memory capability, Handling a minimum pulse width of 300 nanoseconds, this 300 K ohm probe is the economical way to test circuits up to 1.5 MHz. It detects pulse trains or single-shot events in TTL, DTL,

HTL and CMOS circuits, replacing separate pulse detectors, pulse stretchers and mode state analysers.

(Available in kit form LPK-1 £12.50) £18.00*

o

*price excluding P.&P. and 15% VAT

G.S.C. (UK) Limited, Dept. 1411 Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ. Telephone: Saffron Walden (0799) 21682. Telex: 817477.

Test More

LP-3 Logic Probe

Our LP-3 has all the features of the LP-1 plus extra high speed. It captures pulses as narrow as 10 nanoseconds, and monitors pulse trains to over 50 MHz. Giving you the essential capabilities of a high-quality memory scope at 1/1000th the cost. LP-3 captures one shot or lowrep-events all-but-impossible to detect any other way. All without the weight, bulk,

inconvenience and power consumption of conventional methods.

£49.00* OModel LP 3 illustrated

The New Pulser DP-1

The Digital Pulser: another new idea from G.S.C. The DP-1 registers the polarity of swing the logic state the other way. Or if you hold the

reasonable price.

£51.00

OM

any pin, pad or component and then, when you touch the 'PULSE' button, delivers a single no-bounce pulse to

button down for more than a second, the DP-1 shoots out pulse after pulse at 1000 Hz. The single LED blinks for each single pulse, or glows during a pulse train. If your circuit is a very fast one, you can open the clock line and take it through its function step by step, at single pulse rate or at 100 per second. Clever! And at a very

The logic probes shown are all suitable for TTL DTL, HTL and CMOS circuits.

and seen G.S.C. (UK) Limited, Dept 1411, Unit 1, Shire Industrial Estate, Saffron Walden, Essex CB11 3AQ. Prices include P.&P. and 15% VAT Car as Onty Los cas to Onty Los cas of Onty Los acces Onty Los as a Onty

LP-1 £37.38 LP-2 £22.42 LP-3 £58.	DP-1 260.95 LPK-1 215.52
Name	Address
I enclose Cheque/P.O. for £	or debit my Barclaycard/Access/
American Express card no.	exp. date
FOR IMMEDIATE ACTION - The G.S.C. 24 P	our, 5 day a week service. For FREE
Telephone (0799) 21682 and give us your Barclayca	d. Access. American Express catalogue
number and your order will be in the post immedia	lely.

Into Radio

RADIO RULES

Radio Frequency Power Amplifiers.

THE SAMPLE examination papers for the Radio Amateur's exam don't mention valves - though they do mention a number of topics that aren't covered to any great extent in the manuall Yet the fact is that the output power permitted to be used on the most popular amateur bands cannot easily be achieved using transistors. The good ol' fashioned valve is still the only way of ensuring that you have a beefy signal, without spending your whole income on the output stage! Unless you have some understanding of valve operation, then, the higher power stages of transmitters are going to be a bit of a mystery to you, and that doesn't sound like a good idea to me.' So, for the benefit of those whose hair has not yet turned gray, let's look at the low-down on high-vacuum devices.

A valve relies for its action on electrons moving across a vacuum. Only electrons are involved, because holes can't exist outside a solid crystal, so the action of the valve resembles that of the N-channel MOSFET rather than that of a bipolar transistor, and there is no valve-type device which corresponds to the P-channel MOSFET. The electrons are emitted from a hot material, the cathode, which is cylindrical in shape and is heated by a wire filament, the heater (Figure 1). The cathodes of the smaller valves use a non-conducting (at room temperature) white material (the oxide cathode) which becomes an electron-emitting conductor when it is heated to a temperature of around 700°C, when it glows a dull red. Larger transmitting valves work with large currents and voltages, enough to damage a coating of this type, so that a filament of tungsten, either pure or coated with thorium, is used and carries out the tasks of both heater and cathode.

Electrons released into the vacuum of the valve from a hot cathode will, obeying the law that unlike-chargesattract, move to anything that is at a more positive voltage than the cathode. Surrounding the cathode, then, is a metal cylinder, called the anode, which is maintained at a positive voltage of anything from 100 V to 25kV, depending on valve size and power, so as to pull electrons away from the cathode at high speed. This electrode corresponds to the drain of the MOSFET.

A valve with only a cathode and an anode is a diode and can be used for rectification, though nowadays we use valves as rectifiers only for very high voltages, like the 100 kV supplies used in X-ray work. But if we add a third electrode, called a grid, between the cathode and the anode, it can control the flow of electrons and make the valve a useful amplifier or oscillator. The grid is usually a coil of wire held on metal posts between the cathode and the anode, but very much closer to the cathode (Figure 3). When the voltage on the grid is the same as the cathode voltage, electrons will pass through between the wires, practically unaffected by the grid, and will reach the anode. If the grid voltage is made negative, however, the electrons will be repelled from the grid wires and the space immediately around the wires, reducing the number of electrons that can reach the anode. At some particular negative voltage on the grid, this repulsion effect will be so strong that no more electrons will reach the anode and in this state, the valve is said to be 'cut off'. Therefore, a varying voltage on the grid, which must be biased so that its starting voltage (with no signal) is

suitable (usually negative), will cause a varying anode current, just as a varying gate voltage on a FET causes a varying drain current.

The important difference is that the valve can operate at much higher power levels. If we try to operate semiconductors at high power, we have a problem conducting away the heat which is generated inside the material, as electrons and holes flow through it. Heat is also generated in a valve, of course, but most of it is released at the anode and the anode is made of a metal which can withstand much higher temperatures than a semiconductor junction made of silicon. In addition, the valve can dissipate heat by radiation through its glass envelope (as used in the smaller valves) or even by making the anode part of the outside of the valve and 'finning' it, so that it can be aircooled, or by forming a water-jacket

Figure 1. The cathode and heater of a valve. The heater is insulated from this type of cathode.

Figure 2. A tungsten filament, acting as combined heater and cathode, for the larger types of transmitting valve.

Figure 3. Arrangement of cathode, grid and anode in a small transmitting valve.

Figure 4. Valve symbol (triode) with typical voltage ranges (heater not shown).

Figure 5. The principle of using a load to convert current signals to voltage signals.

around the anode so that it can be cooled like the cylinder-block of a car.

For powers of more than 100W, then valves are simpler and more reliable than transistors and in countries where high powers (several kilowatts) are permitted and used, valves are unchallenged.

Classes

No, it's not like the Post — first-class or pigeon. Class of operation means the way that we use a device, valve or transistor, to amplify signals; and it's important. There are three main classes of operation, termed (imaginatively) A,B and C, and you need to understand them thoroughly because all three are used in radio circuits.

Before we start, let's clear the way by making sure that we know what's involved in an amplifier. What it does is straightforward enough — create a high-power signal under the control of a low-power signal. An amplifier is an 'enlarger' of signals, using electrons instead of light.

The electronic devices, valves or semiconductors, that we used for constructing amplifiers do not, by themselves, amplify signal *voltage*. Rather, they create a *current* signal at the output, from a voltage signal (low current) at the input. What we usually need, however, is a voltage signal at the

Figure 6. Class A bias – the collector voltage, when there is no signal input is at around half of supply voltage.

Figure 8. Linear amplification — the graph of output plotted against input is a straight line.

output, and to convert current signals into voltage signals we need a load something that obeys Ohm's law so that the voltage across the load is proportional to the current through it. Audio amplifiers use a resistor or loud speaker as load, but radio frequency amplifiers use a tuned circuit which, at the frequency of resonance, behaves like a resistor for AC signals, but as a resistor of a very different and lower value for DC bias currents. We've looked at this point previously, when we dealt with tuned circuits and their dynamic resistance. Now: what distinguishes one class of operation from another is the way in which the load and the amplifying device work together.

Class A

Class A is the most familiar operating class because it's used so extensively for audio amplifier circuits — the ones that most of us cut our teeth on. In a Class A circuit, the transistor or valve never cuts off and is never saturated. In other words, the biasing and the signal amplitude will be arranged so that a change in the voltage of the input will *always* cause a change in the current at the output. For a silicon transistor, this means that the bias voltage between base and emitter must never fall much below OV6 and the collector voltage

Figure 7. Adapting Class A to radio frequencies. The load is tuned circuit, and the no-signal collector voltage is equal to supply voltage.

Figure 9. An old-fashioned audio pushpull stage, which can use Class B bias because the two output transistors each use half of the signal wave. must not fall much below the base voltage; a typical audio Class A amplifier is shown in Figure 6. With no signal input, the collector voltage is around half the supply voltage and the signal amplitude, when a signal is applied, must never cause the output voltage to reach either the supply voltage or earth level.

Radio frequency amplifiers working in Class A are similar - but different, To start with (Figure 7) the load will be a tuned circuit or a choke (inductor) rather than a resistor. Since the DC resistance of such a load is small, the normal no-signal voltage on the collector will be equal to the supply voltage and when a signal is applied, the voltage at the collector will be below supply voltage on one half of the cycle and above it on the other half. The restrictions are the same though - the current must never cut off and the collector voltage must never go as low as the base voltage, give or take a fraction. Using Class A for a radiofrequency amplifier produces what is called 'linear amplification', meaning that a graph of the amplifier signal current output plotted against the signal voltage at the input is a straight line. This is the type of amplifier that is needed for FM or single-sideband (SSB) signals, as we shall see later. One very important feature of a linear amplifier stage like this is that the DC current is constant - the amplifier takes the same amount of current from the supply when a signal is being amplified as it does when there is no signal and this makes decoupling and supply filtering a lot easier.

The trouble with the Class A amplifier is its low efficiency. Like the horse which is eating its head off even when it is not working, the Class A amplifier is taking current from the supply even when there is no signal, so that the ratio of power output from the amplifier to the DC power taken from the supply (confusingly called the power input) is low — always less than 50%. This ratio implies that a Class A stage will always run hot if it is handling more than a few milliwatts.

Class B

The Class B amplifier operates rather differently. To start with, the amplifying device is biased back, almost to cut off. This means that current flows mainly for the positive half-cycles of the signal (assuming a NPN transistor or valve) only. This type of stage can be usefully employed in audio amplifiers only in the form of balanced pairs (the push-pull circuit) so that one transistor handles the positive half-cycles and the other transistor handles the negative halfcycles. This is the basis of push-pull Class B circuits which, at one time, used transformers for splitting the signal into two opposite phases and recombined the phases later, but which now always deal with the two half-cycles directly by using a PNP and NPN transistor in series combination (Figure 10).

Radio frequency amplifiers can make more effective use of Class B amplifiers because they can use a load

I Into Radio

which is a tuned circuit. A tuned circuit reacts to short duration electrical pulses as a bell reacts when it's struck rings! A suddenly applied voltage across a parallel tuned circuit (Figure 11) will charge the capacitor, which will then discharge through the inductor, which re-charges the capacitors . . . and so on, with the cycle continuing until the energy of the original pulse has been dissipated in the resistance of the circuit. A tuned circuit will, in fact, produce a continuous signal at its resonant frequency with only a little help - it needs just enough signal at the right frequency to compensate for what is being lost in the resistance. It's like a swing – once you get it going, it needs only a very small amount of effort to keep it going.

A Class B tuned amplifier depends on this; the transistor or valve needs to conduct only for part of a cycle to keep a complete cycle going. Providing that the Q-factor of the tuned circuit is not too low, this works well and the Class B amplifier can be used for near-linear amplification. In many cases, however, the tuned circuit is loaded by other amplifier stages and has a low Q, so that the bias current has to be increased to obtain more linear operation. This need not necessarily be to the extent that is used in a Class A stage, and such arrangements are called Class A-B amplifiers.

The Class B amplifier has much higher efficiency than the Class A amplifier, meaning that a greater proportion of the power taken from the supply is converted into signal power (up to 80%), but it also means that the current is taken from the power supply in pulses, making smoothing difficult and requiring very good decoupling if these pulses are not to affect other stages in the circuit.

Class C

Class C amplification carries the "ringing" principle to its logical conclusion by biasing the transistor or valve so far into cut-off that the device conducts only on signal peaks (Figure 13). Unless the load has a high-Q, this will distort the signal considerably and so Class C amplification is used mainly for power stages of conventional AM transmitters. The fraction of the signal wave for which the transistor or valve conducts is called the 'conduction angle', and is given in degrees. If we imagine a complete cycle as being 360°, then the fraction of the wave for which the Class C stage conducts is given by the conduction angle divided by 360° so that a 30° conduction angle would mean that the transistor or valve was passing current for only one twelfth of the cycle, a lot less than the half cycle (180° conduction angle) of the Class B amplifier. The main advantage of Class C is its very high efficiency - the DC power that is taken from the supply is only slightly more than the AC signal power at the output, so that Class C is particularly useful for high-power stages which do not need linear amplification. Such power amplifiers need to be carefully designed,

Figure 10. The more modern type of series Class B audio circuit – each transistor conducts alternately.

Figure 11. A ringing circuit. The pulse causes the transistor to conduct briefly — but the tuned circuit continues to oscillate even after the transistor has cut off. By feeding a small portion of the output back to the base of the transistor, this circuit can be made to oscillate, as described in an earlier part of this series, or it can be used as the basis of a Class C radio frequency amplifier.

Figure 12. Using Class B for radio frequency – the tuned circuit contributes half of the output; this is possible only if the Q is fairly high.

Figure 13. Class C radio frequency amplification. The transistor conducts for only a small portion of the input cycle and the tuned circuit contributes the remainder. Class C amplifiers are the most efficient, but the distortion they introduce means they can only be used for radio frequency amplification.

however, because the large pulse currents which flow for very short times will cause feedback to other parts of the circuit, and radiate from the supply leads! It is good practice to feed a Class C stage from a separate supply and to have a large decoupling capacitor across the Class C stage, between the 'cold' end of the load and earth. Large capacitance, in this respect, means about 100nF or less, depending on the frequency at which the stage is being operated. Electrolytics, which usually have rather large RF resistance, are quite definitely unsuitable.

Frequency Multipliers.

Up till now, we've been considering the best ways of obtaining, from an amplifier, a reasonable copy of the input signal but with higher power. Another problem that is tackled by surprisingly similar methods is that of obtaining a signal which is not a good copy but is, in fact, a different frequency! A frequency multiplier is an amplifier which is deliberately made to distort the shape of the sinewave so that harmonics appear. These harmonics are at multiples of the input frequency (twice, three times, and so on) and any one of them can be selected by using a tuned circuit so that it is amplified to a much greater extent than the others. By using an amplifier with low bias, such as a Class C stage, and with a load which is tuned to a multiple of the input frequency, we can produce an output which is a signal at the frequency to which the load is tuned. (Figure 15).

This circuit is useful because we can use crystal oscillators operating at comparatively low frequencies to generate outputs at VHF. We can, for example, multiply the frequency of an

Whatever the cause, we have to choose amplifying devices that will cope with the frequencies that we want to use. This may, for example, mean using transistors in common-base circuits rather than in common-emitter circuits.

For audio amplifiers, there are no serious frequency limitations. Even power amplifier transistors now have good frequency responses, provided we use modern transistor designs. The limitations caused by the effects of stray capacitance, along with the use of resistor loads have very little effect at audio frequencies.

In tuned-load amplifiers, the stray capacitance can actually be made part of the tuned circuit and becomes a problem only when we use such high frequencies that the stray capacitance is larger than the total capacitance that we need! At such frequenices, we are also up against the frequency limitations of the device itself and the effects of stray inductance, so that specialised constructional techniques are needed when we work at 400 MHz or above. Ultimately, if we want to use frequencies above 1 GHz (1000 MHz), we have to use pulsed devices such as klystrons and magnetrons to generate signals, and linear amplification eventually becomes out of the question.

We've now dealt with a lot of pieces of circuitry — oscillators, amplifiers and basic component theory — so we're ready to start putting the bits together to see how they are used in radio receivers and transmitters. We'll kick off next month, then, with the AM superhet receiver. Out.

RFC = RADIO FREQUENCY CHOKE. AN INDUCTOR WITH A 'LOSSY' CORE SO THAT IT HAS A VERY LOW Q

Figure 14. Decoupling a Class C circuit.

Figure 15. Frequency multiplication – the transistor output would be a square wave but for the tuned circuit, which rings at a harmonic of the input frequency so that, each time the transistor conducts, the result is in the correct phase to maintain oscillation.

8 MHz crystal to 144 MHz, using several stages of multipliers. The amounts of multiplication that are used are mainly x2 and x3, though x4 is possible for low-power stages.

Frequency Limitations

An ideal amplifier stage design would be one that could be used at all frequencies — but there's no such animal. What we do in practice is to use different designs for different parts of the frequency range. Just to complicate matters, there are several effects which combine to restrict the highest frequency that an amplifier can operate at and we have to be aware of all of them, if we are to make wise choices for components and circuits.

One of the most important limiting effects is stray capacitance. Any two points in a circuit which are not directly connected will have some stray capacitance betwen them and this invisible capacitance is as real in its effect as a capacitor soldered in place. Stray capacitance can even exist between two bits of metal that are connected together because, when a radio frequency wave moves along a strip of metal, some points will be at high voltage and some at low voltage, so there can be capacitance between them.

Q +V

XX XX

С

C

С

Figure 16. Stray capacitance and

inductance, and there will be stray

Each length of wire has some

different voltage.

SOURCE -

inductance around an amplifying stage.

capacitance between any two points at

GATE

Figure 17. A FET, illustrating why

transit time of electrons is important.

DRAIN

< 3

c×

2

0 0V

L

(222

= C

= C

The second effect is stray inductance. Any length of wire has an inductance and, though the inductance of a few centimetres of wire is very small, even this will be significant if we are using UHF signals. Finally, the transistors and valves that we use as amplifying devices can't operate at frequencies above the limit set by the speed of their current carriers (eg electrons).

That last one needs some explanation; suppose you imagine a FET

23

	Rapid	Tel: 0206 36412 Hill Farm Industrial Estate Boxted, Colchester Essex CO4 5RD
	CONNECTORS TRANSFORMERS DIN Plug String TRANSFORMERS DIN Plug String TRANSFORMERS DIN Plug String TRANSFORMERS DIN Plug String String TRANSFORMERS DIN Plug TRANSFORMERS Spin 13p TRANSFORMERS TIME CS TIME CS TRIACS TIME CS SU23 Plug 40p Reducer 14p SU24 Plug 40p Reducer 14p	LINEAR CL7621 190 LM322 120 ML922 400 SL76018 150 ULN2003 85 *555CM05 80 ICL921 120 LM384 130 ML924 195 SN76477 250 ULN2003 85 *555CM05 80 ICL921 200 LM386 66 ML925 120 SN76477 250 VLN2205 300 709 25 ICM7225 780 LM386 160 ML925 120 SN76477 250 VKR2205 300 7474 14 ICM7255 80 LM709 26 ML927 140 TBA810 96 ZN414 130 748 25 IS51 45 ML711 60 ML923 140 TBA820 80 ZN424 135 743 356 1473 75 KE529 255 TA01008 Z02 ZN425E 360 Ar3-810 600 LM181 20 MN471 </td
And business of a sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-	 Belectrolytic. Radial or axial leads. 0.47/63V, 1/63V, 22/63V, 4.7/63V, 10/25V yr pri 22/25V yr 7/25V zp; 1000/25V 30p; 2200/25V yr pri 22/25V yr 7/25V zp; 1000/25V 30p; 2200/25V yr pri 25V zp; 1500/25V 220, 1000 yr 5% resistors absolutely prev oru 100 yr 5% resistors 1500 resistors absolutely prev oru 100 yr 5% resistor 1982 Please mention prives advisite resistors absolutely prev oru 100 yr 5% resistors 1500 resistors absolutely prev oru 100 yr 5% resistor 1982 Please mention prives advisite resistors absolutely prev oru 100 yr 5% resistor 1980 yr 500 resistor prives advisite resistor prives advisite resistor 1980 propriet absolutely prev advisite resistor 1980 propriet absolutely propriet absolute resistor 1980 propriet absolutely prev advisite resistor 1980 propriet absolutely prev advisite resistor prive advistable stor prive advisite resistor prive advisite resistor pr	TRANSISTORS BC548 10 BFR80 25 TiP2sC 60 ZTX301 18 ±X3702 6 AC125 35 BC517 100 BC548 100 BFX84 25 TiP30A 45 ZTX301 18 ±X3703 9 AC126 25 BC158 100 BC701 18 BFX84 25 TiP30C 60 ZTX304 17 2X3705 9 AC127 25 BC168 BC711 18 BFX84 25 TiP30C 60 ZTX304 17 2X3705 9 AC176 25 BC1680 10 BD115 80 BFX81 25 TiP32A 45 ZTX501 15 2X3707 10 AC176 25 BC1610 BD1131 36 BFY61 23 TiP32A 45 ZTX501 15 2X3773 210 AC142 20 BC137 8 BD133 30 BFY61 23 TiP32A </td
Bit Bit Audit PANEL NOTICE PANEL NOTICE <t< td=""><td>An ideal opportunity for the beginner or the experienced construc- to to batin a wide range of components at prestly reduced prices. W 5% Resistor kL Contains 5 of each value from 4.70 to 1 (\$50 resistor) Caramic Capacitor KL Contains 5 of each value from 22 to 0.011 (\$75 crass) Point AC Contains 5 of each value from 22 to 0.011 (\$75 crass) Point AC Contains 5 of each value from 100 ohms to 1M intel 65 Preset AC Contains 5 of each value from 100 ohms to 1M intel 65 Preset AC Contains 5 of each value from 100 ohms to 1M intel 65 Preset AC Contains 5 of each value from 100 ohms to 1M intel 65 Preset AC Contains 5 of each value from 100 ohms to 1M intel 65 Distribution 1800 55 68A 1st boits 50 66A nuts 50 66A</td><td>CMOS #4017 38 4036 275 4055 95 4082 16 16502 80 4529 150 4000 10 4018 45 4033 230 4065 460 4082 16 4502 80 4529 150 4000 10 4019 55 4068 66 4050 66 4503 4532 80 4001 10 4020 50 4041 60 4063 84 4093 30 4510 60 4538 110 4002 12 4021 60 4043 50 4067 226 4094 4538 110 4007 15 4023 16 4043 50 4067 226 4034 16 4543 300 4007 15 4024 33 #4046 60 4069 25 4514 120 #455 35 4008 4024 33</td></t<>	An ideal opportunity for the beginner or the experienced construc- to to batin a wide range of components at prestly reduced prices. W 5% Resistor kL Contains 5 of each value from 4.70 to 1 (\$50 resistor) Caramic Capacitor KL Contains 5 of each value from 22 to 0.011 (\$75 crass) Point AC Contains 5 of each value from 22 to 0.011 (\$75 crass) Point AC Contains 5 of each value from 100 ohms to 1M intel 65 Preset AC Contains 5 of each value from 100 ohms to 1M intel 65 Preset AC Contains 5 of each value from 100 ohms to 1M intel 65 Preset AC Contains 5 of each value from 100 ohms to 1M intel 65 Preset AC Contains 5 of each value from 100 ohms to 1M intel 65 Distribution 1800 55 68A 1 st boits 50 66A nuts 50 66A	CMOS #4017 38 4036 275 4055 95 4082 16 16502 80 4529 150 4000 10 4018 45 4033 230 4065 460 4082 16 4502 80 4529 150 4000 10 4019 55 4068 66 4050 66 4503 4532 80 4001 10 4020 50 4041 60 4063 84 4093 30 4510 60 4538 110 4002 12 4021 60 4043 50 4067 226 4094 4538 110 4007 15 4023 16 4043 50 4067 226 4034 16 4543 300 4007 15 4024 33 #4046 60 4069 25 4514 120 #455 35 4008 4024 33
P805 40 UM323 k 50 OAP The CS 17W Soldering iron 400 50 414000 r 23 and r.4 rmm bits to suit 6 pr 7815 40 CA30 8 1N4006 r 7 CS 17W selengin iron 400 7815 40 CA30 8 1N4006 r 7 CS 17W selengin iron 400 447 410 27 4185 40 74179 25 74150 40 74179 50 74160 50 74160 60 74179 50 74180 100 74125 35 74180 100 74180 100 74180 100 100	Bit Bit Australian PANEL METERS Potention PANEL METERS Roder Jack Cracobia data Panel Meters Potention Panel Meters Panel Panel Meters Bit data Carbon track Log or Lin 1K-2M2 Size 60 x46 x35mm Size 60 x46 x35mm O 500 All 0.500 All O 780 L0 seech O 100 All Reduction Carbon track Log or Lin 1K-2M2 Size 60 x46 x35mm O 500 All O 500 All 0.500 All O -10A 0.500 All O -10A 0.500 All O -10A 0.500 All O -10A 0.300 V DC All Sep each 700 REGULATORS DIODES 78L15 30 LM317K 78L15 30 LM317K 78L15 30 LM317K	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
A x 4 zin 100 120 4 x 3 x1 100 120 4 x 2 zin 1800 12	7805 40 LM323k 350 OA37 16 IN4002 5 7812 40 OA30 8 IN4006 7 2.3 and 4.7mm bits to suit 65p 7815 40 OA30 8 IN4006 7 C 2.3 and 4.7mm bits to suit 65p 791.12 65 LM723 40 OA202 8 IN5401 15 Antex XS 21W Soldering ion 430p 791.12 65 78H05 78H04 18/5401 16 AnmexXS 22W Soldering ion 430p 791.12 65 78H05 1N914 4 1N5404 15 Solder pump desoldering tool 430p 791.2 45 78H05 11 1414 4 1N5404 15 Solder pump desoldering tool 430p 7912 45 745 1N914 4 1N5406 17 Solder pump desoldering tool 430p 7315 45 100 BZX61 Series 240mW 2en 15 Solder pump desoldering t	TTL #7413 18 7442 32 7480 48 74107 25 74156 40 74177 45 #7400 11 7414 281 7442 90 7482 65 74109 25 74156 40 74177 45 #7400 11 7418 281 7442 90 7482 65 74109 25 74156 40 741717 45 7401 11 7417 24 7447 40 7485 60 74121 25 74160 60 74181 115 74182 60 74121 40 74161 50 74182 60 74121 40 74161 50 74182 60 74121 40 74161 50 74182 60 74121 40 74161 50 74161 50 74161 50 74161 50 74131 50 74131 50 74132 40 74163
The Ranid Guarantee * Same day despatch * Competitive prices	Constraining over 2000 stock Stad x2 in 120p Fibre glass board 3.75* x8* 80p Ared 12 Th/25 40 New Caraclogue has just been released containing over 2000 stock Ferric Chloride 250ml bortle 100p Fibre glass board 3.75* x8* 80p Ared 12 Th/25 40 Our latest catalogue has just been released containing over 2000 stock Camete pack single core consci- Stockat Include Denco coils, tools, Vin screened 10 metr pack single core consci Stockat Include Denco coils, tools, Vin screened 24/m 24/m KND500 0.5* Th/250 0.5* 115 Verocasse, data sheets ext. ext. Song with all orders over E10. The Band Galage Care mains 20 www rainbow ribbon 230/m Thill 313 0.3* 106 Thill 20.0* 100 100 Thill 32 0.5* 115 The Band Galage Care mains 20 www rainbow ribbon Sto Alge Care mains 20 www rainbow ribbon Sto Alge Care mains 20 www rainbow ribbon 230/m Thill 313 0.3* 106 Thill 20.0* 115 100 The Band Galage Care consection co	* Verobic 350p * Zow Wire- profile CRYSTALS 25x1 25x 25x 370 6.0M 200 25x5 75p *18 pin 7p 25x 370 6.144M 180 25x5 85p *16 pin 10p 42p 100KHz 2300 7.0M 250 25x5 85p *16 pin 15p 42p 100KHz 2300 7.0M 250 3.75x5 55p 55p 18 pin 15p 52p 2.0M 210 110.0M 180 3.75x6 95p 18 pin 15p 52p 2.0M 220 110.0M 180 20 David 18p 60p 20 pin 18p 60p 24576M 240 18.0M 240 Veropins per 100 22p pin 22p 70p 3.276M 240 18.0M 240 Sopi face cutter 105p 24p in 25p 80p 4.0M 160 38.667 220

In the first article of this series we described the general principles of microprocessor operation, using the 1802 as a particular example. In this issue, we continue with a detailed description of the 1802 instruction set, and a discussion of simple programming techniques using these instructions. Then we should have laid the foundations for aspiring designers of control systems, so that in future articles we may concentrate on the applications aspects of

microprocessing. We also said, at the outset of the Microtrainer series, that we were not aiming to produce experts in machine code programming, but rather to encourage the use of microprocessors in a wide range of hobbyist applications, and we believe the average hobbyist will be well able to produce his own useful designs with only a basic understanding of machine code software.

Instructions Executed

A microprocessor operates by sequentially fetching data bytes from an external random access memory (this includes ROM) and interpreting each one as an instruction to perform specific operations on data stored in either internal registers or in external memory. The task that a microrocessor system performs is determined almost entirely by the particular sequence of instructions held in the memory, know as software or, more simply, a program. A particular microprocessor, such as the 1802, is distinguished by the set of instructions available, and by the functions of a closely related set of internal registers, as well as its peculiar hardware features.

We have already given a table of 1802 instructions and a

representation of the register set (June '82 issue) and to supplement this, the internal architechture of the 1802 has been drawn in Figure 1 and the instruction set is reproduced here as Table 1. This information is also available in the RCA programming manual. The architechture of the 1802 reveals some of the 'hidden' registers (eg the instruction holding registers I and N) as well as the user accessible registers, but a description of the MPU's operation at this level is beyond the scope of this article.

The instruction set can be subdivided into broad categories, which we will look at in turn. The categories are: register operations, memory references, logical operations, arithmetic operations, branch and skip instructions, control instructions and input/output instructions.

Register Instructions

The 1802 register set includes a bank of 16, 16-bit registers, each of which can hold 2 bytes of data or one 16-bit address. The instructions that operate on these registers show that they are primarily intended for use as memory address pointers for subsequent instructions. Here are the register instructions:

INC DEC	R(N) R(N)	Increment register N. Decrement register N.
GLO	R(N)	get low byte of register X. N and place in accumulator
PLO	R(N)	put accumulator in low byte of register N.
GHI	R(N)	get high byte of register N, place in accumulator.
PHI	R(N)	put accumulator in high byte of register N.

These are the only instructions which specifically alter the contents of the 16-bit registers (some instructions have a 'register auto-increment/ decrement' addressing mode, however). In order to set-up a sixteen bit address in any of the registers, data must be fetched from memory via the accumulator, one byte at a time. An example will best illustrate this (the prefix '\$' and suffix 'H' both denote hexadecimal):

LDI \$40	;load accumulator with
	40H ·P5 1 - 40H
LDI \$EO	:load accumulator with
	EOH
PLO R5	;R5.0 = EOH

At the end of this sequence of instructions, register 5 will hold the address 40E0H. The LDI instruction has been described earlier in the series. Two other instructions, INC & DEC, provide a quick means of changing this address to adjacent or nearby memory locations, eg two INC instructions will advance R5 to address 40E2H.

Each of the register instructions is a single-byte op-code which can be found in the instruction table. Clearly, since these instructions can be applied to any of sixteen registers, there must be sixteen possible codes in each case. Happily, these codes can easily be worked out by, firstly, looking up the first digit of the hex op-code and then using the register number as the second hex digit. For example, the instruction 'DEC' has a quoted opcode of '2N' where 'N' is the register number, so that 'DEC R9' has the opcode '29H'. In fact, any of the 1802 instructions which make use of the 16-bit registers can be worked out in this way.

Memory Reference

These instructions allow transfers of data bytes between the accumulator and memory locations. You have already met the two-byte instruction LDI (Load Immediate), wherein the byte stored after the op-code is copied into the accumulator. There are four other instructions that will also load data from memory into accumulator, and which illustrate the different addressing modes of the MPU:

- Memory Immediate mode (LDI): has been described already.
- Register Indirect (LDN): the memory byte pointed to by register N is loaded into the accumulator.
- Indexed Addressing mode (LDX): the memory byte pointed to by the index register R(X) is loaded into the accumulator.
- Register Indirect with autoincrement (LDA): as Register Indirect but the register is automatically incremented by one after loading the data byte.
- Indexed Addressing with autoincrement (LDXA) — as with Indexed Addressing but the index register is automatically incremented after the load operation.

All but the LDI instruction are a single byte.

Figure 1. The 'internal architecture' of the 1802 microprocessor.

IDL	00	Wait for interrupt or	SHLC	7E	Shift left with carry
LDN	ON	Load accumulator, via	SMBI	7 F	Subtract with borro
INC	1 N	register N Increment register N			immediate data from
DEC	2N	Decrement register N	GLO	8N	Load accumulator
BQ	30	Branch if $Q = 1$			register N
BZ	32	Branch if accumulator	GHI	9N	Load accumulator with high order byte
BPZ	33	Branch if positive or	DI O	A NI	register N
B1	34	Branch if EF1 = 0	PLU	AN	low order byte of
B2 B3	35	Branch if EF2 = 0 Branch if EF3 = 0	PHI	RN	register N Store accumulator i
B4	37	Branch if $EF4 = 0$		DIN	high order byte of
BHN	38	Branch never Branch if $Q = 0$	LBR	со	Long branch always
BNZ	34	Branch if accumulator	LBQ	C1	Long branch if $Q = 1$
BM	38	Branch if minus	LDZ	62	accumulator is zero
BN1 BN2	30	Branch if EF1 = 1 Branch if EF2 = 1	LBPZ	C3	Long branch if posit
BN3	3E	Branch if EF3 = 1	NOP	C4	No operation (long
LDA	31-	Branch if EF4 = 1 Load accumulator, via	LSNQ	C5	Long skip if $Q = 0$
		register N, then	LSNZ	C6	Long skip if
STR	51	Store accumulator in	LSMI	C7	Long skip if minus
IBX	60	memory, via register N	LSKP	C8 C9	Long skip always
0.117	00	register	LBNZ	ČĂ	Long branch if
001	61	index register to	LBMI	СВ	Long branch if minu
		output device N, then	LSIE	CC	Long skip if $IE = 1$
	1	register	LSZ	CE	Long skip if
INP	68 6N	Illegal instruction (N = 9.F) Transfer to	LSPZ	CF	Long skip if positive
		accumulator from	CED	DN	zero
		then store via index	JEF	UN	to register N
		register	SEX	EN	Set index register to

7F	Subtract with borrow,
	immediate data from
~	accumulator
8N	Load accumulator
	with low order byte of
QN	Load accumulator
314	with high order byte of
	register N
AN	Store accumulator in
	low order byte of
-	register N
BN	Store accumulator in
	nign order byte of
CO	Long branch always
C1	Long branch if $Q = 1$
C2	Long branch if
	accumulator is zero
C3	Long branch if positive
~ .	or zero
C4	No operation (long
CE	skip neveri
60	Long skip if
00	accumulator not zero
C7	Long skip if minus
C8	Long skip always
C9	Long branch if $Q = 0$
CA	Long branch if
00	accumulator not zero
CC	Long pranch II minus
CD	Long skip if $\Omega = 1$
CE	Long skip if
01	accumulator zero
CF	Long skip if positive or
	zero
DN	
DIA	Set program counter
014	Set program counter to register N

RET	70	Return from interrupt	
DIG		or subroutine	. LD
UIS	/ 1	Heturn from interrupt	0
		with interrupts	UF
IDYA	72	land anourpulator win	
LUXA	12	Load accumulator, via	
		index register, and	Ar
		increment index	
STYD	73	Store accumulator in	XC
JINU	10	memory via index	~
		register and	
		decrement index	A
		register	
ADC	74	Add with carry, via	
		index register, to	SD
		accumulator	
SDB	75	Subtract with borrow.	
		accumulator from	SH
		memory, via index	
		register	SN
SHRC	76	Shift right with carry	
		(accumulator)	
SMB	77	Subtract with borrow,	LD
		memory from	
		accumulator, via index	OR
		register	
SAV	78	Save T register in	AN
		memory, via index	
		register	
MARK	79	Push X, P registers on	XR
		stack, via index	
		register	
REQ	7A	Reset Q flag to zero	AD
SEQ	7B	Set Q flag to one	
ADCI	7C	Add with carry,	SD
		immediate data to	
0001		accumulator	SH
SDBL.	10	Subtract with borrow,	SIV
		accumulator from	
		immediate data	

The immediate mode of addressing allows data to be placed in the program during writing, as an alternative to setting up an address pointer and then loading the data byte from elsewhere in memory. Register Indirect and the very similar Indexed Addressing modes are the most powerful and often used; they permit several data blocks within memory to be speedily accessed, using the large number of address registers available. The auto-increment addressing modes are useful when a program is operating on a large array of data stored successively in memory, where the improved execution time is a virtue.

There are two instructions which allow storage of the accumulator in memory; STR uses Register Indirect addressing and STXD is Index Addressed with auto-decrement.

The instructions described so far provide a flexible system for transferring data between memory locations and the main 1802 registers. A few of these instructions (eg STXD) may, for the moment, seem obscure, however they come into play in more advanced programming techniques.

Logic Operations

Most readers will be familiar with the logic functions 'OR', 'AND' and 'Exclusive OR' (EX-OR) which operate on two single-bit operands to produce a single bit result. The 1802 has logic instructions, of this form, which opeate on a memory byte and the

		register N
X	FO	Load accumulator via
		index register
	,F 1	Logic OR, memory
		with accumulator, via
		index register
D	F2	Logic AND, memory
		with accumulator, via
		index register
Ř	F3	Logic XOR, memory
		with accumulator, via
		index register
D	F4	Add memory to
		accumulator, via index
		register
	F5	Subtract accumulator
		from memory, via
		index register
R	F6	Shift right
		accumulator
	F7	Subtract memory from
		accumulator, via index
		register
	F8	Load accumulator
		with immediate data
	F9	Logic OR, accumulator
		with immediate data
I	FA	Logic AND.
		accumulator with
		immediate data
	FB	Logic XOR,
		accumulator with
		immediate data
1	FC	Add to accumulator.
		immediate data
	FD	Subtract accumulator
		from immediate data
	FF	Shift left accumulator
	FF	Subtract from
		accumulator.
		immediate data

Table 1. The instruction set of the 1802.

 Table 2. Above, the truth tables for AND, OR and Exclusive-OR functions. Below;

 AND, OR and Exclusive-OR operations performed on a data byte.

accumulator byte to produce a result in the accumulator, doing so on a bitby-bit basis. For each of these functions, there is an instruction (to fetch the memory byte) in Immediate Addressing mode and an instruction in Indexed Addressing mode. The need for these instructions in a control system is obvious, however they have an important but not so apparent second use, that of 'bit manipulation'. For example, suppose the accumulator had the initial value of B7H and then we executed the instruction ANI \$OF (AND Immediate) the result would be 07H, in the accumulator. The effect has been to mask the first four bits of the data byte. Looking at the 'AND' function analytically, we can say that the effect of a logic zero in a particular bit of one operand has the effect of resetting, to logic zero, the state of the corresponding bit in the other operand. This can be used for testing the state of an individual bit within a byte (you shall see what is meant by this later). For example, ANI \$04 will mask out all but bit 2 of the accumulator data (04H = 00000100 binary). Table 2 shows that the 'OR' function has a bit-setting capability, whilst the 'Exclusive Or' function may logically invert bits.

The remaining logical operations fall in to the category of Shifts and Rotates, and are single operand functions operating on the accumulator. 'SHL' (Shift Left), for example, causes all the bits of accumulator data to move one place left (bit O becomes bit 1 etc); for example, after SHL, 01011101 becomes 10111010. A few calculations should convince you that this operation is equivalent to a 'multiply by two' (but see Table 3, if in doubt), and the primary use of such an instruction is to permit arbitrary multiplications and divisions, in conjunction with the arithmetic functions (Subtract and Add). Similarly, the Shift Right instruction, 'SHR', is, in effect, a 'divide by two'. Note that the MSB, in the case of SHL, and LSB in the case of SHR, are shifted out of the accumulator into the one-bit carry-flag, CF. The setting of the carry-flag indicates that the division or multiplication by two is not quite right; it may be looked upon as a arithmetic carry (multiplication) or as a remainder (division). At the other end of the accumulator, a zero is copied in during shift operations.

There are two other instructions (RSHL, RSHR), 'ring shifts' or 'rotates', in which the previous state of CF, rather than a zero, is shifted into the 'trailing' end of the accumulator. In conjunction with ordinary shifts, these instructions allow the shift operation to be extended to multiple byte words.

Arithmetic Operations

The 1802 has only two basic arithmetic operations, Add and Subtract, and they are as simple as you might guess. The only difficulty is when the result goes above FFH or below 00H. A useful model, here, is to consider the accumulator a 'binary' bicycle mileometer. For example, when adding 07 to FD the accumulator counts up to FF then cycles back through 00, finally arriving at the value of 04 after seven

counts. Similarly during subtraction, the accumulator counts down to 00 then switches back to FF and continues to decrement. In both cases, the carry flag indicates that the result has 'overflowed' or 'underflowed'. If you look at the other Add and Subtract instructions in Table 1 you will find that there are instructions for 'accumulator substracted from memory' as well as memory subtracted from accumulator' (the result always falls in accumulator) together with Add and Subtract with Carry/Borrow instructions (again, to cope with multiple-length arithmetic) all of these instructions use the two basic addressing modes of memory, Immediate and Indexed.

Branch instructions

Theoretically, any program could be written with a sequential string of arithmetic, logic and transfer instructions. However, if you consider programs that require operations to be performed many thousands of times over, this prospect becomes plainly ridiculous. Branch instructions allow program control to be transferred to a new address by directly altering the program counter, rather than the usual increment after each instruction. The simplest branch instruction is 'BR\$XX' where 'XX' is the byte following the op-code. In executing this instruction, the byte 'XX' is copied into the loworder byte of the program counter, so that execution continues with the instruction found at that address. The exampled below shows how a repetitive loop can be set-up using this branch instruction.

0000H	1F		INC	RF '
	;inc	reme	ent regis	ter 'F'
0001H	30	00	BR	\$00
	;bra	inch	back to	H0000

Normally, loops are constructed to terminate when certain conditions are set, and so a number of Conditional Branch instructions are provided. Conditions, such as the state of the carry flag or whether the accumulator is zero, are tested by the Branch instruction and a branch takes place only if the condition is met, otherwise execution continues with the next instruction. Suppose, for example, we wished to increment the 'F' register 100 times:

0000 F ;100 =	8 64 = 64H	LDI	\$64
0002 A ;initiali:	A1 se counte	PLO or with one	R1 hundred
0003 1 ;increm	F nent RF	INC	RF
0004 2 ;decrer;	21 ment cou	DEC	R1
0005 8 ;bring d testing	81 count into	GLO ac <mark>cu</mark> mula	R1 itor for

	_	_		-		the second		-					
0000	F8	20		LDI	\$20	load 20H in accumulator	002E	52			STR	R2	set last digit to zero
0002	B2			PH1	R2	put in high byte of R2	002F	22			DEC	R2	R2 = 207AH
0003	F8	77		LDI	\$77	;load 77H	0030	02			LDN	R2	;load third digit (tens of minutes)
0005	A2			PLO	R2	put in low byte of R2	0031	FC	01		ADI	\$01	;add 1
						;2077H is centre screen address	0033	52			STR	R2	put back in display
0006	F8	00		LDI	\$00	,''0''	0034	FF	06		SMI	\$06	subtract 6 to test if greater than 5
8000	52			STR	R2	store in memory pointed to by R2	0036	3A	19		BNZ	PO	go to delay loop if less than 60 minutes
0009	12			INC	R2	;R2 = 2078H	0038	52			STR	R2	set to zero if 6
A000	F8	00		LDI	\$00	:"0"	0039	22			DEC	R2	:R2 = 2079H; ":"
000C	52			STR	R2		003A	22			DEC	R2	R2 = 2078H
000D	12			INC	R2	;R2 = 2079H	003B	02			LDN	R2	fetch second digit (hours)
000E	F8	3A		LDI	\$3A		003C	FC	01		ADI	\$01	add 1
0010	52			STR	R2		003E	52			STR	B2	put in display
0011	12			INC	R2	;R2 = 207AH	003F	FF	0A		SMI	\$0A	subtract 10 to test for 9 hours
0012	F8	00		LDI	\$00	;"0"	0041	32	52		BZ	P1	goto to P1 if hours greater than 9
0014	52			STR	R2		0043	02			LDN	R2	; if not, load hours digit again
0015	12			INC	R2	;R2 = 207BH	0044	FF	03		SMI	\$03	subtract to test if 3 hours
0016	F8	00		LDI	\$00	;"0"	0046	3A	19		BNZ	PO	if not, go back to delay loop
0018	52			STR	R2	display now shows "00:00"	0048	22			DEC	R2	:R2 = 2077H
0019	F8	7B	PO	LDI	\$7B	start of delay loop	0049	02			LDN	R2	load first digit (tens of hours)
001B	A2			PLO	R2	sets R2 to point to last digit of display	004A	FF	02		SMI	\$02	subtract to test if 20 hours
001C	F8	00		LDI	\$00	;	004C	3A	19		BNZ	PO	if not go to delay loop
001E	A5			PLO	R5	;	004E	52			STR	R2	;if 23 hours, set tens to zero
001F	F8	0 F		LDI	\$0F		004F	12			INC	R2	;R2 = 2078H
0021	85			PHI	R5	OFOOH sets the delay period	0050	02			STR	R2	set hours to zero
0022	25		LO	DEC	R5	start of loop L0	0051	30			BR	PO	goto to delay loop
0023	95			GHI	R5	;load accumulator with high byte of R5	0052	52		P1	STR	R2	set hours to zero
0024	3A	25		BNZ	LO	;go back if not zero	0053	22			DEC	R2	;R2 = 207 7H
0026	02			LDN	R2	;fetch last digit	0054	02			LDN	R2	;fetch first digit (tens of hours)
0027	FC	01		ADI	\$01	;add 1	0055	FC	01		ADI	\$01	;add 1
0029	52			STR	R2	;put in display	0057	52			STR	R2	put in display
002A	FF	0A		SMI	\$0A	subtract 10 to test if greater then 9	0058	30			BR	PO	go to delay loop
002C	3A	19		BNZ	PO	go back if not zero							
100		A							La contra de	de la alta	4 h A	I a sol	- d'a l'a - 001011 - 000111

Table 4. A simple program to simulate a 24-hour clock. The timing is set by the data byte loaded in lines 001CH to 0021H; 0F00H gives a delay of approximately one minute, and may be adjusted for more accurate timing.

0006 3A 03 BNZ \$03 ;branch to 0003 if count not yet zero

0008.....next instruction

Notice that loop counters are usually decremented to zero rather than incremented from zero, because it is easier to test a zero condition than a content of 64H. Besides loops, conditional branches are used to transfer control to different sections of a program, according to certain conditions. If, for example, a control system required the illumination of an LED in the event of an 'underflow' following the subtraction of two variables, then a conditional branch 'BM' (Branch if Minus) immediately following the Subtract instruction could transfer control to a section of code designed to light the LED.

There are other Branch and Conditional Branch instructions that permit a program counter jump to anywhere within the memory system. These are 'long branches' and have a two-byte address, following the opcode, which is copied into the accumulator, eg LBR \$A007. Obviously these take longer to execute, and take up more memory space.

The Skip instructions of the I802 may be considered a luxury, in that they can always be replaced by one or more Branch instructions simply by writing the program in a slightly different way. An example of the skip instructions is:

0005	CE	LSZ		
;long	skip i	f zero	(skip 2 byte	es)
0006				
0007	FC	01	ADI	0.1
;add	1			
0009	C4		NOP	
;cont	inue			
000A				

The instruction to add one to the accumulator is executed only if the accumulator was non-zero.

Control Instructions

There are two instructions, in this group, that we are particularly concerned with, namely SEP and SEX (no comments, please!). As described in earlier issues, these two instructions define a particular 16-bit register as program counter and index register, respectively.

Often, large programs will contain sections of code which occurrs many times, and it is useful to be able to condense this code into one routine or subroutine' to which control can be transfered from various points in the program. The greatest difficulty with this scheme is finding a method of storing the address of the program counter before control is transfered to the subroutine so that, when the subroutine has completed, control can be returned to the correct point in the main program. How this is achieved with the 1802 is outlined below: 0000 **F8** 10 LDI \$10

- ;load immediate, 10H.
- 0001 B1 PHI R1 ;store in high byte of register 1.
- 0002 F8 00 LDI \$00 ;load immediate, 00H
- 0003 A1 PLO R1 ;store in low;byte of R1; R1 now points to subroutine.
- 0030 D 1 SEP R1 ;go to subroutine; program counter is now R1.

050	D 1	SEP R
;go t	o subroutine.	

1

0

JELE	DU	SEF NU
;return counter to 1000	to main progr is now RO; P DH.	am; program 1 increments
1000 ;start of	fsubroutine	
1005	0.0	

CED DO

;long branch to OFFF;

AFEE

Note that it is necessary to reset the subroutine pointer (register R1) to the subroutine address (1000H) before returning to the main program because, since it is the program counter, R1 is automatically incremented after each instruction. A return at, say, 100FH would leave R1 pointing to 1010H. Instead, a jump is made to the address just before the start of the subroutine; control is returned to RO and R1 automatically increments to 1000H. The other catch is that the subroutine must not use R0, else the return address will be lost!

It is possible to have many subroutines, each with a different pointer register, for as many registers as you can spare; it is also possible to nest subroutines (call a subroutine from a subroutine) provided that careful track is kept of the registers used. Often, each subroutine will have its own data space in memory, and this can be quickly accessed by a subroutine by reserving a register to point to this data area and defining it as the index register (SEX), on call.

Much of this may seem very academic, but it is a necessary requirement before useful programs can be written. We'll finish, however, by listing a quite complex practical program (Table 4). The comments should prove a sufficient explanation.

Next time we will look at the largely hardware-orientated instruction, so far ommitted, when we discuss I/O interfaces.

It's the chance every constructor wants

POWER AMPS

It's something you have always wanted....something to build your equipment into that's smart, modern, strong, adaptable to requirement and not expensive. The 'UniCase' is yet another triumph of I.L.P. design policy. It presents totally professional appearance and finish, ensuring easier and better assembly to make it equal to the most expensive cased equipment. The all-metal 'UniCase' is enhanced by precision aluminium extruded panels engineered for speedy and perfect aligned assembly within a mere five minutes. Designed In the first case to accommodate I.L.P. power amps with P.S.U's, the range will shortly be extended to house any other modular projects.

WHAT WE DO FOR CONSTRUCTORS

Our product range is now so vast we cannot possibly hope to show it all in our advertisments without overcrowding or abridging information to the point of uselessness. So we have devised a solution which we invite you to take advantage of without delay. ALL YOU NEED DO IS FILL IN AND FORWARD THE COUPON BELOW TO RECEIVE **OUR NEWEST COMPREHENSIVE I.L.P. CATALOGUE POST FREE BY** RETURN. It gives full details of all current I,L.P. products for the constructor together with prices, full technical and assembly details, wiring and circuit diagrams etc. and it's yours, FREE. You don't even have to stamp the envelope if you address it the way we tell you.

ELECTRONICS LTD. **FREEPOST 6**

GRAHAM BELL HOUSE, ROPER CLOSE, CANTERBURY CT2 7EP Telephone Sales (0227) 54778 Technical Only (0227) 64723 Telex 965780 FREEPOST

Mark your envelope clearly FREEPOST 6 and post it WITHOUT a stamp to I.L.P. at address above. We pay postage when your letter reaches us.

Name:

Address:

To: I.L.P. ELECTRONICS LTD. PLEASE SEND ME I.L.P. CATALOGUE, POST PAID BY RETURN

I HAVE/HAVE NOT PREVIOUSLY BUILT, WITH I.L.P. MODULES

I.L.P. products are available also from Henry's, Marshall's, Technomatic & Watford.

Did vou know

I.L.P. are the world's largest designers and manufacturers of hi-fi audio modules?

I.L.P. pioneered encapsulated power amps and pre-amps for enhanced thermal stability, mechanical protection and durability?

There are TWENTY power amplifiers from 15 to 240 watts **RMS including the very** latest super-quality Mosfets to choose from?

TWENTY pre-amp modules allow you to incorporate exciting.protessional applications to your equipment never before available to constructors and experimenters?

I.L.P. are suppliers to the B.B.C., I.B.A., N.A.S.A., British Aerospace, Marconi, Racal, Ferranti, G.E.C., Rolls **Royce etc?**

Goods are despatched within 7 days of your order reaching us and covered by our 5 year no-quibble quarantee?

7400 7401	74390 75p 11p 74393 100p 11p 74490 95p	4013 23p 4014 48p 4015 45p	LINEAR I.Cs AN 103 200p	MC1445 3 MC1458	325p1 36p1		* M	ICRO	TRAIN	IER *	
7402 7403 7404	12p 74LS SERIES 12p 74LS00 12p 12p 74LS01 11p 12p 74LS01 11p	4016 20p 4017 36p 4018 45p 4019 25p	AY1-1313 668p AY1-1320 320p AY1-5050 140p	MC1496 MC3340P MC3403	70p 120p	• Hobb	(as c	lescribed in	June/July/A	ug issue) ore the v	workings of
7405 7406 7407 7408	20p 74LS03 12p 20p 74LS04 12p 14p 74LS05 12p	4020 48p 4021 48p 4022 45p	AY3-1350 420p AY3-8910 550p AY3-8912 650p AY5-40070 520p	MK50398 ML920 MM57160	750p 800p 620p	micro	processors.	This p	roject opens	s the my	/stical field
7409 7410 7411	14p 74LS08 12p 14p 74LS09 12p 18p 74LS10 13p 74LS10 13p	4023 15p 4024 32p 4025 15p 4026 50p	CA3028A 120p CA3019 80p CA3046 70p	MN6221A NE531 1 NE555 NE556	150p 20p	• A tr	uly low c	ost teachin	g aid usefu	l for train	ing centres,
7412 7413 7414 7416	18p 74LS11 13p 18p 74LS12 12p 20p 74LS13 20p 20p 74LS14 34p	4027 22p 4028 45p 4029 50p	CA3048 225p CA3059 300p CA3059 300p	NE564 NE565 NE566	420p 130p 155p	schoo	ols and i oping nev	ndustries. v ideas	In fact a and syste	short sto ms. Give	ep towards effective
7417 7420 7421	20p 74LS15 15p 15p 74LS20 12p 20p 74LS21 12p	4030 20p 4031 125p 4033 120p 4034 140p	CA3080E 350p CA3080E 72p CA3086 48p CA3089 200n	NE567 NE570 NE571 NE5534A	140p 375p 375p	insigh	nt into m	nicros to	engineers,	technicians,	etc. not
7422 7423 7425 7426	20p 74LS22 12p 20p 74LS26 12p 25p 74LS27 12p 28p 74LS28 14p	4035 60p 4036 275p 4039 275p	ICA3090AQ 375p CA3130E 90p CA3140 50p	PLL024 RC4136 RC4151	500p 60p 200p	Comple	te Kit	in the comp		£	64 + £1 p&p
7427 7428 7430	22p 74LS30 12p 25p 74LS32 14p 14p 74LS37 15p	4040 48p 4041 50p 4042 44p 4043 48p	CA3160E 100p CA3161E 140p CA3162 450p CA3189F 300p	S566B SAD102A . 1 SFF96364 SL490	240p 250p 800p 350p	1802 Ref	PSU		••••••••	£7	+ 70p p&p
7432 7433 7437 7438	22p 74LS32 30p 22p 74LS42 30p 25p 74LS47 36p 25p 74LS51 14p	4044 48p 4076 48p 4047 45p	CA3240 120p CA3280G 200p DAC1408-8 200p	\$N76477 SN76488 SN76495	500p ⁴ 500p 500p	1		COR	N ATC	NA	
7440 7441 7442A 7443	16p 74 L S 55 15p 70p 74 L S 73 18p 32p 74 L S 74 16p 90p 74 L S 75 18p	4049 24p 4050 24p 4051 45p	HA 1388 300p HA 1388 270p ICL7106 850p ICM72168 £18	TA7120 TA7204 TA7205	200p 250p 250p	Basic B	uilt 8K + 2k				£135
7445 7446A 7447A	50p 74LS76 18p 60p 74LS83 38p 36p1 74LS85 50p.	4052 60p 4053 50p 4054 90p 4055 90p	ICM7217 1 700p1 ICL8038 300p ICM7555 80p	TA7222 TA7310 TA621	200p 200p 275p	Expande 8K + 5K	ed 12K + 12 + Colour (2 K Ca rd		••••••	£180 £175
7451 7453 7454	45p 74LS86 18p 15p 74LS90 24p 15p 74LS92 32p 15p 74LS93 24p	4056 90p 4059 450p 4060 55p	LC7120 400p LC7130 400p LF347 160p LF351 48p	TBA800 T8A810 TBA820	90p 100p 90p	3A5V PS		(pˈ&	p £3/unit)	£	26 + £2 p&p
7460 7470 7472	17p 74LS95 40p 36p 74LS96 50p 25p 74LS107 40p 25p 74LS107 27p	4063 B5p 4066 27p 4067 260 p 4068 14 p	LF353 100p LF356P 95p LF357 120p LM10C 350p	T8A950 TCA220 TCA940	300p 350p 175p		S	end for de	tailed Atom	liŝt	
7473 7474 7475 7476	20p 74LS109 27p 20p 74LS112 25p 30p 74LS113 25p 30p 74LS114 22p	4069 14p 4070 14p 4071 14p	LM301A 27p LM310 120p LM318 200p	TDA1008 TDA1010 TDA1022	320p 320p 225p 520p		Г	MICR		ER	
7480 7481 7482 7483A	50p 74LS122 20p 100p 74LS123 22p 70p 74LS124 90p 38p 74LS125 24p	4073 14p 4075 14p 4076 48p*	LM319 225p LM324 30p LM334Z 100p LM3357 140p	TDA1024 TDA10348 TDA1170 TDA2002V	120p 250p 300p	The pro	grammable	clock/time	is a 6502	based dedi	cated micro
7484 7485 7486	65p 74LS126 25p 90p 74LS132 40p 20p 74LS133 30p	4077 16p 4078 16p 4081 14p	LM339 50p LM348 75p LM358P 60p	TDA2003 TDA2006 TDA2020	325p 350p 320p	extremel	y versatile ti	ming device	with following	ng features:	to form an
7489 7490A 7491 7492A	20p 74LS136 25p 20p 74LS138 30p 35p 74LS139 30p 25p 74LS145 70p	4086 55p 4089 150p 4093 24p	LM377 175p LM380 75p LM381AN 180p LM382 120p	TL071/81 TL072/82 TL074	150p 25p 45p	 24 hd 4 con 	npletely inde	ner ependen <mark>t s</mark> v	vitch outputs		
7493A 7494 7495A 7495	24p 74LS147 160p 35p 74LS148 75p. 35p 74LS151 70p 40p 74LS153 40p	4094 90p 4095 75p 4096 75p 4097 340p	LM386 95p LM387 120p LM389 95p	TL084 TL094 TL170	90p 200p 50p	 4 digitation turn-o 	it 7 segments off times and	t display ou d reset time	tput t <mark>o indi</mark> cat s	te real time	
7497 74100 74107	90p 74LS154 90p 80p 74LS155 32p 22p 74LS156 36p	4098 90p 4099 100p 40085 90p	LM391 150p LM393 100p LM394 300p LM709 36p	UAA170 UA2240 UDN6118	70p 170p 150p 320p	Indivi I EDs	dual output	s to day of	week, switch	and status	
74109 74116 74118 74119	24p 74LS157 27p 50p 74LS158 30p 60p 74LS160 36p 80p 74LS161 36p	40097 50p 40098 50p 40102 180p 40103 180p	LM710 50p LM711 70p LM733 70p	UDN6184 * : ULN2003 UPC575	320p 100p 400p	Data	entry throug	gh a simple	matrix p a d		
74120 74121 74122	60p 74LS162 36p 25p 74LS163 36p 40p 74LS164 40p	40106 40p 40109 100p 40163 60p 40173 48p	LM741 18p LM747 70p LM748 35p LM2917 200p	UPC1156H XR2206 XR2207	200p 300p 300p 400p	Comple	te Kit	quest			i6 + £1 p& p
74123 74125 74126 74128	48p 74LS165 60p 34p 74LS166 65p 34p 74LS170 75o 35p 74LS173 60p	40174 60p 40175 75p 40193 75p	LM3302 90p LM3900 50p LM3909 95p LM3911 120p	XR2211 0 XR2216 0 ZN414 ZN419C	600p 675p 90p 225p	PSU	• • • • • • • • • • • • • • • • • • • •	Constructio	n details supp	£7 lied	+ 70p p&p
74132 74136 74141 74142	45p 74LS174 40p 28p 74LS175 40p 55p 74LS181 100p 200p 74LS180 40p	4502 60p 4503 40p 4507 35p	LM3914 200p 1 LM3915 200p LM3916 225p	ZN423E ZN424E ZN426E	150p 135p 350p	SWITCHES TOGGLE SWITC	HES DIGIT	AST SWITCHES)×F	VERO BOARD	90p 3.75"	× 5'' 105p
74145 74147 74178	50p 74LS191 40p 90p 74LS192 40p 70p 74LS193 40p 70p 74LS193 40p	4508 140p 4510 50p, 4511 48p 4512 48p	M51513L 300p M51516L 500p M83712 250p	ZN427E ZN428E ZN1034E ZN1040E	500p 200p 700p	Suminiature SPST 60p, SPOT 65p, Rotary Switches	DPDT 70p Push to Side Sw	nake (R, G, B) 15p preak (Black) 18p ritch DPOT 18p (PR Switch 66p	2.5" × 3.75" 2.5" × 17" 3.75" × 3.75".		× 17''
74151A 74153 74154	40p 74LS195 36p 40p 74LS195 36p 40p 74LS196 48p 50p 74LS197 60p	4514 120p 4515 120p 4516 60p	MB3730 400p MC1310P 150p	ZNA134 ZNA234 1	£22 800p	LOW PROFILE DI	SOCKETS BY TEXA	S WIRE WRAP SC 8 pin 25p 1	CKETS BY TEXAS	FOR FAS	T DELIVERY PHONE
74155 74156 74157 74159	40p 74LS221 50p 40p 74LS240 55p 30p 74LS241 55p 75p 74LS242 58p	4516 40p 4520 60p 4521 120p 4526 60p	VOLTAGE R FIXED P 1A + ve 5V 1A 7805	GULATORS LASTIC 45p 7905	5 0 p	14 pin 10p 20 16 pin 11p 22	bin 18p 28 pin 26 bin 22p 40 pin 30	p 14 pin 35p 2 p 16 pin 40p 2	0 pin 60p 28 pin 8 2 pin 65p 40 pin 10	01-452 15 MINIMUN	00/450 6597 4 ORDER £5
74160 74161 74162 74163	60p 1 74LS243 56p 48p 1 74LS244 60p 48p 1 74LS245 25p 48p 1 74LS251 35p	4528 50p 4532 70p 4534 450p	12V 1A 7812 15V 1A 7815 18V 1A 7818 24V 1A 7824	50p 7912 50p 7915 55p 7918 55p 7924	55p 50p 60p	TRANSISTORS AD161/2 45p BC107/8 13p BC109 14p	BFX88 30p BFX89 180p BFY50 24p BFY51/2 24p	TIP33C 80p TIP34A 90p TIP34C 120p TIP35A 120p	2N3054 bbp 2N3055 48p 2N3442 140p 2N3553 240p	3N140 120p 3N141 110p 3N201 110p 3N204 120p	2.7V-33V 400mW 9p 1W 15p
74164 74165 74166 74170	48p 74LS253 35p 48p 74LS257 36p 48p 74LS258 35p 120p 74LS258 35p	4536 300p 4538 90p 4539 90p 4543 75p	5V 100mA 78L05 12V 100mA 78L12 15V 100mA 78L15	30p 79L05 30p 79L12 30p 79L15	60p 60p 60p	BC117 20p BC169C 12p BC172 12p BC172 12p BC177/8 17p	BFY90 80p BFY90 80p BRY39 46p BSX19/20 24p	TIP35C 140p TIP36A 140p TIP36C 150p TIP41A 50c	2N3584 250p 2N3643/4 48p 2N3702/3 12p 2N3704/5 12p	40290 260p 40361/2 75p 40408 90p 40409 100p	TRIACS PLASTIC 3A 400V 60p
74172 74173 74174	275p 74LS260 82p 60p 74LS266 20p 55p 74LA273 60p	4553 290p 4555 36p 4556 35p 4560 160-	OTHER REGULATORS LM309K 1A 5V 135p LM317K 325p	78HGKC 78HO5KC	600p	BC179 18p BC182/3 10p BC184 11p BC187 30p	BU104 225p BU105 190p BU108 250p BU109 225p	TIP41C 55p TIP42A 60p TIP42C 35p	2N3706/7 14p 2N3708/9 12p 2N3773 225p 2N3819 25p	40410 100p 40411 300p 40594 120p 40596 120p	6A 400V 70p 6A 500V 88p 8A 400V 75p 8A 500V 95p
74175 74176 74177 74178	Sop 74LS279 36p 40p 74LS283 40p 45p 74LS298 90p 80p 74LS233 175p	4568 300p 4569 180p 4572 30p	LM337T 225p LM337T 225p LM323K 3A 5V 500p LM723 150mA Adj 37p	78MGT2C 78GUIC 79GUIC 79HGKC	140p 200p 225p 700p	BC212/3 11p BC214 12p BC237 15p BC327 16p	BU126 150p BU180A 120p BU205 200p BU208 200p	TIP54 160p TIP120 70p TIP121 75p TIP122 75p	2N3820 .40p .2N3823 50p 2N3866 90p 2N3902 700p	40871/2 100p	12A 400V 85p 12A 500V 105p 16A 400V 110p 16A 500V 130p
74180 74181 74182 74184	40p 74LS324 150p 115p 74LS348 120p 60p 74LS352 80p 90p 74LS353 80p	4583 90p 4584 40p 4585 100p 14495 400p	TL494 400p 78S40 300p	TL497 LM305AH	300p 250p	BC337 16p BC338 16p BC461 25p BC477/8 30p	BU406 1450 BUX80 £6 BUY69C 350p E310 50p	TIP 142 110p TIP 147 120p TIP 2955 78p	2N3903/4 18p 2N3905/6 20p 2N4037 65p 2N4123/4 27p	BY127 12p BYX36.300 20p OA47 8p OA90/91 9p	T2800D 130p THYRISTORS '3A 400V 45p
74185 74186 74188	90p 74LS363 140p 500p 74LS364 140p 250p 74LS365 30p		OPTO-ELECTRONICS 2N5777 45p OCP71 180p OBP12 120p	ORP60 ORP61 TIL 78	120p 120p 55p	BC516// 40p BC547B 16p BC548C 9p BC549C 18p	MJ2501 225p MJ2955 75p MJ3001 225p	TIS93 30p ZTX108 12p ZTX300 13p	2N4125/6 27p 2N4401 3 27p 2N4427 90p 2N4871 60p	0A95 9p 0A200 9p 0A202 10p 1N914 4p	8A 600V 140 p 12A 400V 160 p 16A 100V 180 p
74190 74191 74192 74193	48p 74LS367 30p 48p 74LS368 30p 48p 74LS373 60p 48p 74LS374 60p		OPTO ISOLATORS ILD74 130p MCT26 100p	TIL111 TIL112	90p	BC559C 18p BC559C 18p BCY70 18p BCY712 22p	MJE340 60p MJE2955 100p MJE3055 70p MJE3055 70p	ZTX500 15p ZTX502 16p ZTX504 30p	2N5087 27p 2N5089 27p 2N5172 27p 2N5191 90p	1N916 7p 1N4148 4p 1N4001/2 5p 1N4003/4 6p	BT106 110p C106D 45p MCR101 36p
74194 74195 74196	48p 74LS375 45p 48p 74LS377 60p 48p 74LS378 60p 74LS378 60p		MCS2400 190p ILQ74 240p LEDS	TIL113 TIL116 0.2"	90p 90p	BD135/6 40p BD139 40p BD140 40p	MPF103/4 30p MPF105 30p MPSAU6 30p	ZTX652 60p ZTX752 70p VN46 75p	2N5194 90p 2N5245 40p 2N5298 65p 2N5401 60p	1N4005 6p 1N4006/7 7p 1N5401/3 -14p 1N5404/7 19p	2N3525 130p 2N4444 140p 2N5060 34p
74197 74198 74199 74221	85p 74LS390 50p 85p 74LS393 45p 85p 74LS399 160p 55p 74LS540 75p		TIL32 55p TIL209 Red 9p TIL211 Gr 12p	TIL220 Red TIL222 Gr TIL228 Yel Rectangular	10p 12p 14p	BD189 60p BD232 95p BD233 75p BD235 85p	MPSA12 50p MPSA13 50p MPSA20 50p MPSA42 50p	VN10KM 60p VN66 80p 2N697 25p 2N698 45p	2N54578 30p 2N5459 40p 2N5460 60p 2N5485 40p	15920 9p	PCB MOUNTING BELAYS
74251 74273 74278	70p 74LS541 75p 140p 74LS670 140p 100p 4000 SERIES		TIL212 Ye 14p TIL216 Red 18p	LEDs (R, G, YI NS85881 TIL311 TIL312	30p 570p 600p 110p	8D241 60p 8D242 60p 8D677 40p 8E2448 35p	MPSA43 50p MPSA56 32p MPSA70 50p MPSA93 40p	2N706A 30p 2N708 30p 2N918 45p 2N930 18p	2N5875 250p 2N6027 48p 2N6052 300p 2N6052 300p	BRIDGE RECTIFIERS	6 or 12V DC coll SPDT 2A 24V DC 160p
74283 74284 74290	55p 4001 10p 125p 4002 12p 100p 4006 50p		3015F 200p DL704 140p DL707 Red 140p	TIL321/2 TIL330 7750/60	130p 140p 200p	BF2568 50po BF257/8 32n BF337 30p	MSPU06 63p MPSU07 60p MPSU45 90p MPSU65 78p	2N1131/2 36p 2N1613 25p 2N1711 25p 2N2102 70p	2N6107 65p 2N6247 190p 2N6254 130p 2N6254 65p	1A 400V 20p 1A 400V 25p 1A 600V 30p 2A 50V 30p	007 12V DC coil DPDT 5A 24V DC/240V AC 200p 6 or 12V DC Coil
74293 74298 74365 74366	100p 4007 15p 100p 4008 40p 50p 4009 24o 50p 4010 24p		FND357 120p FND500 90p FND507 90p MAN3640 175p	0RIVERS 9368 9370 UDN6118	250p 300p 3,20	8FR40/1 25p 8FR79 25p 8FR80/1 25p 8FR80/1 25p	TIP29A 35p TIP29C 40p TIP30A 35p TIP30C 40p	2N2160 350p 2N2219A 25p 2N2222A 25p 2N2222A 25p 2N2369A 25p	25C1172 150p 25C1306 150p 25C1306 150p 25C1307 150p 25C1967 150p	2A 400V 35p 3A 200V 60p 3A 600V 72p	DC/240V AC 225p
74367 74368	50p 4011 11p 50p 4012 16p		MAN4640 200p	UDN6184	320p	BFX29 40p BFX30 27p BFX84/5 40p	TIP31A 40p TIP31C 45p TIP32A 40p	2N2484 30p 2N2646 45p 2N2904/5 30p 2N2906A 30p	25C1969 195p 25C2028 120p 25C2029 250p 25C2028 200p	4A 400V 100p 6A 50V 80p 6A 100V 100p 6A 400V 100p	SPEAKERS Size 2 ¹ /2 ⁻ 64R 80p
	CHN(BFX86/7 27p BFX88 27p	TIP33A 70p	2N2907A 30p 2N2926 9p 2N3053 30p	25C2335 250p 25C2612 250p 3N128 120p	10A 400V 200p 25A 400V 400p	21/2" 8R 80p 2" 8R 90p 11/2" 8R 100p
SHOPS	AT: 17 BURNLEY	ROAD, LOI	NDON NW10 6597. <u>Telex: 92</u> 2	800			Governr	nent, College	es, etc. ORDER	S WELCOM	E
n de	305, EDGEW	ARE ROAD,	LONDON W21	fel: 01-723 02	233		VI	FULL PRICE	LIST ON REQU	JEST	

Feel like sounding off? Then write to the Editor stating your Point Of View!

The most interesting Point of View, this month is from Mr. A.G. Meakins, who comments on writing style of certain points mentioned in "Scaling the HiFi Heights" (HE January issue).

Unimpressed

Dear Sir,

Your cover puts H.E. as having 'a down to earth approach to electronics', but it's a pity you don't impress this on your writers, who use long words like ''parameters'' when ''limits'' would do. In Scaling the HiFi Heights, your

In Scaling the HiFi Heights, your writer should come down to earth. When he states that £400 is the lowest starting point, he is way off target. I would suggest that, for most HE readers, that would be the extreme top limit.

Another piece of pie in the sky that comes from his pen is the wattage of the amplifier. I have a room of 1200 cubic feet, my amplifier is 14 W per channel and with the volume control at 30%, I can comfortably fill my room with ample power left to take the peaks. Perhaps your writer destroyed his hearing in a disco, when young. A.G. Meakins Richmond, Surrey.

First, this letter was attached to a late return of our Reader Survey, also from the January issue. We have since changed our masthead slogan but not, we hope, our approach.

Every article which appears in HE is carefully edited to ensure that it can easily be understood. However, this must not be overdone; an article consisting entirely of words of one syllable would not only be an insult to our readers, it would also be boring and, most likely, inaccurate because it is not always possible to find a 'short word' to substitute for a long one. Remember that electronics is a technical subject, that certain words have very precise meanings and, therefore, cannot be changed.

In fact, the word 'parameter' is one for which there is no suitable substitute. It means ''...a constant In the case considered but varying in different cases.'' (C.O.D.). In general usage, a parameter is a factor by which a device or property is defined or measured, for example the small-signal parameters which define transistor operation under certain conditions. A limit is a border or boundary line or point, and not the same thing at all.

The suggestion that £400 is the top limit of spending for HE readers is an example of a limit that is somewhat arbitrary. True, it is a lot of money, but a system costing this much or more is not out of the question. It is possible to build up a very expensive hifi over a period of years buying units one at a time. Also, the figure was mentioned as the lowest total "... for serious sound pursuit." and considering that it is possible to spend over £1000 on audio gear, a. £400 system only just qualifies as hifil

For example, a 14 W per channel amplifier, while adequate for normal listening, would not satisfy a dedicated hifi fanatic. It has to be said that opinions on listening levels are extremely subjective (one man's pleasure is another's pain), nevertheless, all other factors (type of programme material, the size of the room and acoustic treatment, the efficiency of the speakers etc) being equal, a large amplifier will come closer to reproducing the original dynamic range of music, at comfortable levels, than a small amp. This, after all, is the goal of hifi - accurate reproduction of the original music.

Finally, it's worth pointing out that concert musicians, sitting in the middle of an orchestra which can produce sound peaks of up to 100 dB SPL, do not usually destroy their hearing. There is no reason why these levels, accurately reproduced, should destroy the hearing of a listener in the middle of his lounge room. What the neighbours think is another question!

No Kitting

Dear Sir,

I have been trying to get you by phone to ask about the LED VU Meter project from the November '81 issue. I was wondering if the kit you did for it included the integrated circuit U267B Bargraph Driver.

If so, could you please send a full kit for the VU Meter and when I receive it I will send on the money. S. Harvey, Cleethorpes, South Humberside.

Sorry, but we do not sell kits or component parts for HE projects except, of course, the printed circuit boards which are advertised in each issue. However, there are companies who supply kits for our projects and they usually advertise in the magazine. One of them should be able to help you.

This reply should also answer S.N. Heider of Dedridge, Livingstone, West Lothian, who wrote with a similar enquiry.

Trying to 'phone us is not a good idea – we cannot, unfortunately, accept telephone enquiries because of the time involved. There simply aren't enough hours in a day! One other thing; most companies would want to see the colour of your money before sending the goods.

'Diana' Hunted

Dear Sir,

Please will you let me have a copy of your article, from the September 1981 issue of Hobby Electronics, on the Diana Metal Detector. I work at Plessey Radio at Cowes, here on the Isle of Wight, as a test engineer. Our librarian has contacted on my behalf our local libraries, Portsmouth and Southampton libraries and, finally, the British Museum, for a copy of the issue but all without success. I hope you will be able to assist me.

G.M. Store, Rvde.

Isle of Wight.

The quickest and easiest method for obtaining most back issues of HE is to write to our Backnumbers Department – see the advertisement in this or any recent issue. It certainly beats chasing around libraries and museums.

Meanwhile, interested readers might like to know that the add-on VCO for 'Diana' has been finalised and will appear in the near future.

Into Electronics Lost

Dear Sir,

Recently a friend loaned me one of your books, 'Into Electronics Plus', published in 1979. I found it of great interest and wondered if you could advise whether it is still possible to obtain a copy, and the price.

Three years since publication is a long time, I realise, but if a copy could be located I would very much appreciate it. D. C. Holmes,

Bury St. Edmunds,

Suffolk,

Regretably, this book is no longer available. It has been 'out of print' for some time. However, you might find 'Electronics — It's Easy' a suitable alternative; it provides a slightly less detailed, broader introduction to electronics. It is available from our Specials Department, 513, London Road, Thornton Heath, Surrey CR4 6AR, for £4.95 including p&p; don't forget to ask for it by namel

Kit includes tape transport mechanism, ready punched and back printed quality circuit board and all electronic parts. i.e. semiconductors, resistors, capacitors, hardware, top cover, printed scale and mains transformer. You only supply solder and

32.95

£2.75 p&p.

hook-up wire. Featured in April issue P.E. Reprint 50p. Free with kit.

Self assembly simulated wood cabinet Only £4.50 + £1.50 p&p.

ELECTRONICS ONLY!

Ideal for updating your existing cass-ette, Includes pcb diagram, all semi-conductors, IC's, Capacitors, resistors. +£1.40p&p £18.95

STEREO AMPLIFIER KIT

Featuring latest SGS/ATES TDA 2006 10 watt output IC's with in-built thermal and short circuit protection • Mullard Stereo Preamplifier Module.

Attractive black vinyl finish cabinet, 9"x 8%"x 3%" (approx).

10+10 Stereo converts to a 20 watt Disco amplifler. To complete you just supply connecting wire and solder. Features include din input sockets for ceramic cartridge, microphone, tape or tuner. Outputs - tape, speakers and headphones. By the press of a button it transforms into a 20 watt mono disco amplifier with twin deck mixing. The kit incorporates a Mullard LP1183 pre-amp module, plus power amp assembly kit and mains power supply. Also features 4 slider level controls, rotary bass and treble controls and 6 push button switches. Silver finish fascla with matching

knobs and contrasting cabinet. Instructions available, price 50p. Supplied FREE with kit. SPECIFICATIONS: Frequency response Input sensitivity

216-50 + £2.90 p&p. Suitable for 4 to 8 ohm speakers

Tone controls

Distortion Mains supply

40Hz - 20KHz P.U. 150m V. Aux. 200m V. Mic. 1.5mV. Bass ±12db @ 60Hz Treble ±12db @ 10KHz 0.1% typically @ 8 watts 220 - 250 volts 50Hz.

8" SPEAKER KIT Two 8" twin cone domestic speakers, £4.75 per stereo pair plus £1.70 p&p, when purchased with amplifier. Available separately £6.75 & £1.70 p+p.

• Easy to build. • 5 push button tuning. • Modern design. • 6 watt output. • Ready etched and punched PCB. • Incorporates suppression circuits. All the electronic components to build the radio, you supply only the wire and the solder, featured in Practical Electronics. Features: pre-set tuning with 5 push button options, black illuminated tuning scale. The P.E. Traveller has a 6 watt output neg, ground and in-corporates an integrated circuit output stage, a Mullard IF Module LP1181 ceramic filter type pre-aligned and assembled, and a Bird pre-aligned push button tuning unit.

£12.95

+ £2.00 p&p.

Suitable stainless steel fully retract-able aerial (locking) and speaker (6"x4"app.) available as a com-plete kit. £2.50/pack + £1.50 p&p.

BIRDAUDIO

TEREO CAR

RADIO BOOSTER

To boost your car radio or radio cassette to 15W r.m.s. per channel

95;+£1.50 p&p.

125W HIGH POWER AMP MODULE BUILT: £14-25

+£1,15 p&p.

£10-50 + £1.15 p&p The power amp kit is a module for high power applications — disco units, guitar amplifiers, public address systems and even high power domestic systems. The unit is protected against short circulting of the load and is

as protected against store incluting of the road and is safe in an open circuit condition. A large safety margin exists by use of generously rated components, result, a high powered rugged unit. The PC board is back printed, etched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to use. Supplied with all parts, circuit diagrams and instructions. ACCESSORIES: Suitable mains power supply kit with transformer: £7.50 plus £3.15 p&p. Suitable LS coupling electrolytic: £1.00 plus 25p p&p.

HI-FI SPEAKERS AT BARGAIN PRICES

GOODMANS TWEETERS 8 ohm soft dome radiator tweet-er (3%"sq.) for use in up to 40W systems; with 2 element crossove £3.50 each (p&p £1) or £5.95 pair (p&p £2).

P.E. STEREO TUNER KIT

This easy to build 3 band stereo AM/FM tuner kit is de-signed in conjunction with Practical Electronics (July 81 issue). For ease of construction and alignment it incorp-orates three Mullard modules and an I.C. IF. System. PEATURES: VHF, MW, LW Bands, Interstation muting and AFC on VHF. Tuning meter, Two back printed PCB's. Ready made chassis and scale. Aerial: AM - ferrite rod, FM - 76 or 300 ohms. Stabalised power supply with 'C' core mains transformer. All components supp-lied are to P.E. strict specification. Front scale size: 10%" x 2%" approx. Complete with diagram and instructions.

As featured in E.T.I. December '81 issue, Kit of parts including PCB, UHF tuner and selector switch with all

Transformer £1.50 + £1.50 p&p (p&p free on transformer if ordered with kit),

 Ready built LP1183 Mod

21E HIGH STREET, ACTON, W3 6NG.

Note: Goods despatched to U.K. postal

ability. Prices correct at 30/8/82 and

of order for despatch. RTVC Limited reserve the right to update their products

without notice. Send S.A.E. for full list.

subject to change without notice. Please allow 7 working days from receipt

addresses only. All items subject to avail-

ule for simulated stereo operation. £1.95 + 75p p&p

11-45

components excluding case

+ £1.50 p&p.

All mail to:

Self assembly simulated wood cabinet sleeve to suit tuner only. Finish size: 11%"x8%"x3%". £3.50 Plus £1.50 p&p.

. 50 WATT Six individually mixed inputs for two pick ups (Cer. or mag.), two moving coil microphones and two auxiliary for tape, tuner, organs, etc. Eight slider controls - six for level and two for master bass and treble, four extra treble controls for mic. and aux inputs. Size: 13%"x 6½"x3%"app. Power output 50 watts R.M.S. for use with 4 to 8 phm spkrs. £39-95 Attractive black vinyl case with matching fascia & knobs. Ready bullt. + £3.70 p&p

NOISE REDUCTION SYSTEM
 AUTO STOP
 TAPE COUNTER
 SWITCHABLE E.O.

SWITCHABLE E.O.
 INDEPENDENT LEVEL CONTROLS
 TWIN V.U. METER
 WOW & FLUTTER 0.1
 RECORD PLAYBACK I.C. WITH ELECTRONIC SWITCHING
 FULLY VARIABLE RECORDING BIAS FOR ACCURATE MATCHING OF ALL TAPES

SPECIFICATIONS:

driver HIEILISM Complete with 2

element crossover

Total impedance of system 4 ohms

£7.95

PER SET + £2,70 p&p.

Max. output power (RMS): 125W. Operating voltage (DC): 50 - 80 max. Loads: 4 - 16 ohms.

Unit comprises one 50w (4"app.) Audax soft dome tweeter HD100. And one 5" Audax bass/mldrange 35w

Prequency response measured @100 watts: 25Hz - 20KHz. Sensitivity for 100 watts: 400mV @ 47K. Typical T.H.D. @ 50 watts, 4 ohms: 0.1%. Dimensions: 205 x 90 and 190 x 36 mm.

35 WATT MICRO 2-WAY SPEAKER SYSTEM

111

Matching I.C. 10 watt per channel Power amp kit. • Mullard LP1183 built pre-amp, suitable for ceramic pick-up and aux. inputs. • Matching power supply kit with transformer. • Matching set of 4 slider £21,95 controls for bass, treble and volumes. + £3,80 P&P.

SPECIAL OFFER! TUNER KIT PLUS:

ALL CALLERS TO: 323 Edgeware Road, London W2. Tel: 01-723 8432. 9.30 - 5.30, closed all day Thurs. Prices include VAT. Telephone or mail orders by ACCESS are welcomed.

IN THE constant search for new ways to ensure Hobby readers get the best deal when buying components, we are in the process of re-thinking Buylines. Next month, we will be presenting a comprehensive survey of component suppliers and hope to provide a special ordering service to supplement this page. For this month, though, we are introducing an improved system for finding sources of hard-to-get items, as well as attempting to produce more accurate estimates of building costs. We would be interested to know what you think of the changes.

Signal Lights

Not much here to trouble the constructor. The TTL ICs can all be obtained from Watford or Technomatic. Remember, it's a good idea to use sockets just in case you have to replace any faulty chips; most companies sell the complete DIL socket range at a reasonable price, so why not buy a few as spares?

The three differently coloured LEDs red, amber (yellow) and green - can be bought from Rapid and TK, or for a wide range of shapes try Ace Mailtronix.

The only source we can find for oneoff $\frac{1}{2}$ watt resistors is Maplin, though most suppliers sell $\frac{1}{2}$ watt types that will do just as well.

Cost is £2.60 for the junction module and £3.50 for the main module (inclusive of PCBs).

'Junior' Slot Car

It was quite difficult finding a source for the low value (OR47) 1 watt resistor. This was due to the fact that most companies sell these values in 2½ watt packages only. However, Greenweld came to the rescue and they can also supply the unusual 10 pin metal can 723 regulator IC (LM123). An alternative source for this IC is ElectroValue.

The MJ2955 is stocked by most people, but the cheapest source we found was Ambit, whose quoted price is 25% lower than their nearest competitor!

The best case for your controller will depend on your particular slot-car set-up.

However, Newrad do a range of high quality low – cost cases, should you find no room on your present layout. Cost excluding the case, should be about £5 for each board with rectifiers and indicators.

ZX PCB

Quite a useful little board, this, though you may be unfamiliar with a couple of the components. The low-power Schottky ('LS') TTL integrated circuits are stocked by both Technomatic and Watford, though most other retailers sell them at widely differing prices. The appropriate DIL sockets can be bought from either Bi – Pak or Greenweld.

The only supplier of the exact SIL plug-pin strip was Ambit, though Maplin do a 6-way and 4-way version making up the required 10-way strip.

Finally, the edge plug and matching connector (double sided) are to be found in the RS range (codes 468-709 and 467-021 respectively) and must be ordered from your supplier. These are 43-way connectors with the polarising pin at position 7, and must be carefully sawn to convert them to 23-way, with the polarising pin at position 3. You may be able to find other sources for the edge connector, probably not with the matching plug, but it's worth looking around. Cost of the board, using the specified components, will be £8 — plus the edge connector/plug combination of your choice.

Subscriptions Subscriptions Do yourself a favour. Make 1982 the year you start to take Hobby Electronics, regularly. Delivered fresh every month.								
SUBSCRIPTI FOR Cut out and S Hobby Electronics 513, LONDO THORNTON SURRI	ON ORDER M END TO : Subscriptions N ROAD, HEATH, EY, ND	I am enclosing my (delete as necessary) Cheque/Postal Order/International Money Order for £						
Please commence my persona Electronics with the	I subscription to Hobby	Name (Mr/Mrs/Miss) delete accordingly Address						
SUBSCRIPTION RATES (tick as appropriate)	£10.75 for 12 issuesU.K£12.75 for 12 issuesoverseas surface£25.70 for 12 issuesAir Mail	Signature						

Breadboards

Design and build your own tone controls.

JUST one project for this month's Breadboard, but it's a winner — high performance tone controls in a simple arrangement that you can modify for any application. The controls are based on a standard op-amp circuit, using the TLO81. This has high impedance FET inputs and a high slew rate, enabling it to operate over a wide band of frequiencies. The circuit also allows you to experiment with different component values.

Talking of experimenting, we are offering £5 to any reader whose design is original and/or ingenious enough for publication. All you need to supply is a circuit diagram, a breadboard layout and a brief description of how the circuit works plus any ideas for modifications or experiment. Put them all in an envelope marked 'Breadboards' and addressed to us — remember to enclose an SAE if you'd like the contents returned.

Gain Controlled

It is just about thirty years since the publication of the first practical circuit for varying bass and treble independently within a single network, without using switches. It is known as a Baxandall circuit, after its inventor, and is still used, more or less modified, in most audio equipment.

The simplest way to understand how the circuit (Figure 1) operates is to look at what's happening to the gain of the op-amp at different frequencies. The gain is controlled by the feedback resistance from pin 6 to pin 2 of IC1, via the tone control network consisting of RV1, R2, R3, C3 and RV2, R5, C4, and R3 again.

At very low frequencies, capacitors C2, 3 and 4 may be compared to very large resistances. To all intents and purposes, they are open circuit and the gain is dependent on the values of the resistors only, and mainly on RV1. At low frequencies, the gain will be maximum (boost) when RV1 is maximum, and minimum (cut) when RV1 is minimum, as indicated in Figure 1. At higher frequencies, however, the impedence of C3 decreases, so that the effective value of RV1 is reduced and at mid-frequencies, the gain is about one (unity gain).

At stil higher frequencies, the impedance of the capacitors decreases further until, at some frequency, RV1 is effectively shorted out by C3. The gain, then, will depend on the setting of RV2, as indicated in the circuit diagram.

Table 1

1. Choose the upper and lower corner frequencies, fh and fl, and the maximum boost/cut (gain, Av) required.

2. Select values for RV1 and R3.

3. R1 = R2 =
$$\frac{RV1}{A_v}$$

4. C2 = C3 = $\frac{1}{(2\pi)(f_1)(R2)}$
5. R4 = R5 = $\frac{R2 + 2R3}{A_v}$
6. C4 = $\frac{1}{(2\pi)(10)(f_1)(R5)}$

7. $RV2 \ge 10(R2 + R5 + 2R3)$

Alternatively, to set the maximum boost/cut at frequencies fb and ft, use:

4. C2 = C3 =
$$\frac{1}{(2\pi)(10)(f_b)(R2)}$$

6. C4 = $\frac{1}{(2\pi)(f_t)(R5)}$

Example:

1. Design a bass and treble tone control with a gain of 10 (\pm 20 dB) and corner points at 500 Hz and 2 kHz.

2. Let
$$RV1 = 50k$$
, let $R3 = 10k$.
3. $R1 = R2 = \frac{RV1}{Av} = \frac{50k}{10} = 5k$

4.
$$C2 = C3 = \frac{1}{(2\pi)(fi)(R2)}$$

 $= \frac{1}{(2\pi)(500)(5k)} = 63n$
5. $R4 = R5 = \frac{R2 + 2R3}{Av}$
 $= \frac{5k + 20k}{10} = 2k5$
Preferred value = 2k7
6. $C4 = \frac{1}{(2\pi)(10)(fk)(R5)}$
 $= \frac{1}{(2\pi)(10)(2k)(2k7)} = 2n9$
Preferred value = 2n7

7. $R \vee 2 \ge 10(R2 + R5 + 2R3)$

 \geq 10(5k + 2k7 + 20k) \geq 277k

Therefore, choose RV2 = 500k.

Alternatively, to set the maximum boost/cut at fb = 60 Hz and ft = 12 kHz:

4. C2 = C3 =
$$\frac{1}{(2\pi)(10)(\text{fb})(\text{R2})}$$

= $\frac{1}{(2\pi)(10)(60)(5\text{k})}$ = 53n

Preferred value = 56n.

6. C4 =
$$\frac{1}{(2\pi)(ft)(R5)}$$

= $\frac{1}{(2\pi)(12k)(2k7)}$ = 4n9
Preferred value = 4n7

Shaping Up

The three factors which determine the response curve of a tone control (Figure 3) are the slope of the curve, the maximum boost/cut, and the frequencies at which the curve breaks away from the flat — the 3 dB or 'corner' points. These parameters are all set by selecting the appropriate values for the tone control network. The full design procedure is quite complicated but, as is usually the case, a simplified 'rule-of-thumb' method gives the right results! One of the most important simplications is that, in the circuit, R1 = R2, R4 = R5 and C2 = C3.

At low frequencies, with all capacitors effectively open circuit, the gain is more or less equal to RV1/R2; a value for RV1 is simply selected and R2 calculated to give the required boost/cut. The values used here give a maximum gain of approximately 8 (18 dB) at low frequencies.

At high frequencies, the capacitors are all effectively short circuits and the gain is set by RV2, provided it is higher than 10 times (R2 + R5 + 2R3), but the maximum gain is approximately equal to (R2 + 2R3)/R5. Here, the value of R2 has already been found, R3 is merely selected and R5 calculated for the required amount of gain. Again, the values have been chosen to give a maximum gain, at treble frequencies, of 18dB.

All that remains is to set the low and high frequency corner points, which we will refer to as fi and fh; these are determined by the values of C3 and C4, respectively.

The value of C3, for any desired fi, is equal to $1/(2 \pi)$ (fi)(R2). Another useful characteristic of this circuit is that the bass corner frequency is always about ten times the frequency, fb, at which the boost/cut is maximum; the value of C3 in our circuit puts the bass corner at 400 Hz, so the maximum effect is at 40 Hz. To select a value of C3 to give maximum boost/cut at a desired frequency, simply multiply the selected fb by ten to find the corner frequency which is used in the equation.

Similarly, the point at which the treble boost/cut is maximum, f_t , is ten times the treble corner frequency, and the value of C4 which will give a particular corner frequency is $1/(2\pi)$ (10fh)(R5). To find the value of C4 which gives a desired f_t , simply substitute for 10fh in the formula. The values in our circuit place the treble corner at 1 kHz and give maximum effect at around 10 kHz.

Finally, remember that RV2 must be chosen to be greater than 10(R2+R5+2R3). The values of RV1 and R3 are then chosen; any close to those used in our circuit will do. Remember also that R1 = R2, C2 = C3 and R4 = R5.

These rule-of-thumb formulas are summarised in Table 1; using them, the tone controls can be re-designed to give a selected amount of boost and cut at any desired frequency.

WATFORD FLFO	TRÓNICS	TTL74 7400 11	74147 9 74150 5	0 LS124 0 LS125	90 24	4053 4054	50 CA3020 85 CA3023	210 210	MC1648 MC1709G	290 90 79
35 CARDIFF ROAD, WATFORD,	HERTS., ENGLAND	7401 11 7402 11 7403 12 7404 13	74151 4 74153 4 74154 5 74156 4	0 LS126 0 LS132 5 LS133 0 LS136	35 40 30 26	4055 4056 4057 1: 4059	85 CA3035 85 CA3045 115 CA3045	255 365 70	MC3302 MC3340P MC3360P	150 120 120
ALL DIVICES BRAND NEW, FULL SPEC, AND F DESPATCHED BY RETURN OF POST. TERMS OF BU OR BANKERS DRAFT WITH ORDER, GOVERNM	ULLY GUARAL TEED. GADERS JSINESS: CASH/CHEQUE/P.Os	7405 15 7406 20 7407 20 7408 14	74157 3 74159 8 74160 6 74161 4	0 LS138 0 LS139 0 LS145 8 LS147	28 28 70 150	4060 4061 1 4062 4063	45 CA3048 195 CA3059 196 CA3075 85 CA3080E	220 285 213 70	MC3401 MC3403 MC3403 MFC6040	75 110 75
STITUTIONS' OFFICIAL ORDERS ACCEPTED. TR WELCOME. P&P ADD 50p TO ALL CASH ORDERS. AT COST AIR/SURFACE ACCESS ORDERS WELC	ADE AND EXPORT ENQUIRY OVERSEAS ORDERS POSTAGE	7409 14 7410 14 7411 16	74162 4 74163 4 74164 4 74165 4	8 LS148 8 LS151 8 LS153 8 LS153	85 40 40 30	4066 4067 4068 4069	24 CA3081 245 CA3085 14 CA3089E 13 CA3090A	190 95 200 2 375	MK50398 ML924 MM5303 MM5307	635 250 635 1275
VAT All prices exclusive of VAT. Please add 1 We stock thousands more iems. It pays to visit us. We are sit	5% VAT to the total cost incl. P&P uated behind Watford Footbal Ground.	7412 18 7413 18 7414 20 7416 20	74166 4 74167 15 74170 12	8 LS157 0 LS158 5 LS160	30 30 37	4070 4071 4072	13 CA3123E 13 CA3130 13 CA3140 13 CA3140	150 90 40 95	MM5387 NE529 NE531 NE543	47 225 14 225
Nearest underground/8R Station: Watford High Street. Open Mond POLYESTER CAPACITORS: Axial Lead Type 400V: InF. Inf. 202, 303 407, 568 110-100, 156, 186, 226 126: 3	day to Saturday: 9am to 6pm	7417 20 7420 15 7421 20 7422 20	74172 27 74173 6 174174 5 74175 5	4 LS162 4 LS163 0 LS164	37 37 37 43	4073 4075 4076 4077	13 CA3161 13 CA3161 50 CA3189 13 HA1336W	160 295 240	NE544 NE555 NE556	210 16 45
30p; 330n 42p; 470n 52p; 680n 60p; 1µF 68p; 2µ2 82p; 4µ7 85p. 160V: 10nF, 12n, 100n 11p; 150n, 220n 17p; 330n, 470n 30p; 680 1000V: 10nF, 12n, 100n 11p; 150n, 20n 156; 33n, 470n 30p; 680)n, 38p; 1µF 42p; 1µ5 45p; 2µ2 48p.	7422 20 7425 24 7426 28 7427 22	74176 4 74177 4 74178 8 74180 4	0 LS165 5 LS166 0 LS170 0 LS173	60 52 70 55	4078 4081 4082 4085	15 ICL7106E 13 ICL7107 13 ICL8038C 50 ICM7204	750 975 300 550	NE560 NE561 NE562 NE564	325 398 410 420
POLYESTER RADIAL LEAD CAPACITORS: 250V: 10nF, 15n, 22n, 27n 6p; 33n, 47n, 68n, 100n 7p; 150n, 220n 1 330n, 470n 13p; 680n 19p; 14f 23p; 14f 40p; 242 46p; 4x7 6	Op. ULTRASONIC TRANSDUCERS 40kHz 395p/pr	- 7430 14 7432 22 7433 22 7433 22	74181 11 74182 6 74184 9 74185 9	5 LS174 0 LS175 0 LS181 5 LS190	50 40 95 36	4086 4089 4093 4094	60 ICM7205 I25 ICM7216A 20 ICM7217A 70 ICM7224	1150 1950 790 785	NE565 NE566 NE567 NE570	120 155 140 410
ELECTROLYTIC CAPACITORS: (Values are in #F) 500V: 10 52p; 1.5, 2.2, 2.5, 3.3 8p; 4.7 9p; 6.8, 10 10; 15, 22, 12p; 33 15p; 47 12 12p; 20p; 220 24p; 470 32p; 2200 90p, 40V; 4.7, 15, 22 9p; 3300, 90p; 477	47 78p; 250V: 100 65p; 63V: 0.47, 1.0, p: 100, 19p; 100, 19p; 1000 7p. 60V: 47 68	7438 25 7438 25 7440 15 7441 68	74186 47 74188 25 74190 4 74191 4 74192 4	0 LS191 0 LS192 8 LS193 6 LS194 6 LS196	36 36 37 33	4095 4096 4095 4097	75 ICM7556 70 ICM7556 290 LA3350 190 LA4031 75 LA4032	150 250 340 295	NE5534 RC4136 S566B SAB3209	225 69 225 425
47 8p; 100 11p; 150 12p; 220, 15p; 330 22p; 470 25p; 680, 1000, 34 40, 47, 100 9p; 125, 12p; 220 13p; 470, 20p; 680 34p; 1000 27p; 1500 TAG-END CAPACITORS: 64V: 2200 139p; 3300 198p; 4700 245p;	p; 2200, 50p; 3300, 76p; 4700 92p; 18V: 0, 31p; 2200 36p; 3300 74p; 4700 79p. 50V: 2200 110p; 3300 154p; 40V; 4700	7442 32 7443 90 7444 90 7445 55	74193 4 74194 4 74195 4 74195 4	5 LS196 5 LS197 6 LS221 6 LS240	38 48 55 55	4099 4160 4161 4162	190 LA4400 75 LC7120 99 LC7130 99 LC7137	440 300 340 395	SA83210 SA83271 SA84209 SN76013	325 485 596 350
190p; 25V: 2200 90p; 3300, 4000, 4700 98p; 10,000 320p; 15,000 TANTALUM BEAD CAPACITORS 36V: 0.1μF, 0.22, 0.33 15p; 0.47, 0.68, OPTO	345p; 16V: 22,000 350p. SILVER MICA (Values in pF) 2, 3.3, 4.7, 6.8, 8.2, 10, 15, 18, 22,	7440 60 7447 35 7448 40 7450 16 7451 16	74197 4 74198 8 74199 8 74199 8 74221 5	6 LS241 4 LS242 4 LS243	55 55 55	4163 4175 4194 4408	99 LF347 105 LF351 105 LF353 790 LF355	150 48 50 85	SN76023 SN76477 SN76488 SN76660	350 450 480 120
1.0μF, 1.5 16p; 2.2, 3.3 18p; 4.7, 6.8 22p; 10μF 28p; 16V: 2.2, 3.3 16p; 4.7μF, 6.8, 10μF 28p; 16V: 2.2, 3.3 16p; 4.7μF, 6.8, 11 10 18p; 15, 36p; 22 30p; 33, 47 40p; 100 The 270 98+1 10V 15, 22, 56+124 47 The 210 98+1 10V 15, 22, 56+124 47 The 210 98+1 10V 15, 22, 56+124 47 The 210 98+110V 15, 22, 56+124 47 The 210 98+10V 15, 25+10V 15, 25+1	33, 39, 47, 50, 56, 68, 75, 82, 85, 100, 120, 150, 180pF 200, 220, 250, 270, 300, 330, 360	7453 16 7454 16 7460 16 7470 30	74LS LS00 1 LS01 1 LS02 1	4000 1 4001 1 4002 1 4006	10 10 12 50	4409 4410 4411 4412	790 LF356 725 LF357 690 LF398 790 LM301A	90 110 475 24	SL490 SP8629 TAA621 TA7120 TA7120	350 299 295 150
250; 220 sap; 100': 15, 22, 28p; 33, 47 TIL212 Yel, 14 35p; 100 56p; 6V: 100 42p. 2" Red 12 POTENTIOMETERS: Rotary, Carbon, 2" Yell or Grn Square LEDs Track, 0.25W Log & 0.5W Lin. 50 are clean 12 14	390, 470, 600, 800, 820 21p each 1000, 1200, 1800, 2200 30p each 3300, 4700pF 60p each	7472 24 7473 24 7474 20 7475 32	LS03 1 LS04 1 LS05 1 LS08 1	2 4007 2 4008 3 4009 2 4010	14 32 24 24	4415 4419 4422 4433	180 LM308 280 LM311 770 LM318 770 LM319	70 150 215 30	TA7204 TA7205A TA7222 TAD100	200 90 150
5000, TKD B 2KΩ (Linear only) Single Di-Colour A/G OG Gang 30p Bi-Colour A/G Y75-1 SKD-2MDSingle Gang 30p Tri-colour A/G Y85 Y75-1 FK0-2MD Single Gang D/P Switch 78p OCP71 120 FK0-2MD Outple Gang D/P Switch 78p OCP71 120	RESISTORS – Carbon Film High Stability. Low Noise. Miniature Tolerance 5%. RANGE VAL 1-99 100-	7476 30 7480 40 7481 120 7482 65	LS09 1 LS10 1 LS11 1 LS12 1	2 4011 3 4012 3 4013 2 4014	10 16 20 46	4435 4440 4450 4451	999. LM339 350 LM348 350 LM349 350 LM358	47 64 115 60	TBA120 TBA641 TBA800 TBA810	70 290 80 95
Skiperini Coulor Gang Cop 2N5777 45 SLIDER POTENTIOMETERS L0271 46 0-25W log and linear values 60mm SFH205 91 SKQ-500KQ sincle gang 700 T132 52	1W 2Ω2-4M7 E24 2p 1p 1W 2Ω2-4M7 E12 2p 1p 1W 2Ω2-4M7 E12 2p 1p 1W 2Ω2-10M E12 5p 4p	7483 38 7484 70 7485 60 7486 20	LS13 2 LS14 3 LS20 1 LS21 1	0 4015 0 4016 3 4017 2 4018	40 20 32 45	4500 4501 4502 4503	60 LM379 35 LM379 60 LM380 35 LM381	175 480 75 145	TBA820 TCA965 TDA1004 TAD1008	80 120 290 310
10KΩ-500KΩ dual gang 110p TIL78 54 Self Stick Graduated Bezel 40p TIL38 65 MYLAR FILM CAPACITORS TIL30 90	2% Metal Film $10\Omega \cdot 1M$ 6p 4p 1% Metal Film $51\Omega \cdot 1M$ 8p 6p 100 + price applies to Resistors of eachvalue pot mixed	7489 205 7490 20 7491 35 7492 25	LS22 1 LS26 1 LS27 1 LS28 1	3 4019 2 4020 2 4021 4 4022	25 42 40 40	4504 4506 4507	75 LM382 36 LM384 35 LM386	115 140 90 120	TDA1022 TDA1024 TDA1490 TDA2004	499 105 325 495
100V: 1nF, 2, 4, 4n7, 10 6p; 15nF, 22n, 30n, 40, 47 7p; 56, 100n, 200 9p; 470n/50V: 12p. 112321 5CA 115 TIL321 5CA 115 TIL322 5CC 115 0L704.3 CCth 99.	CERAMIC CAPACITORS 50V: 0-5pF to 10nF 4p; 22n to 47n 5p. 100n 7p.	- 7493 25 7493 35 7495 35 - 7496 40	LS30 1 LS32 1 LS33 1 LS37 1	2 4023 3 4024 4 4025 4 4026	13 32 13 80	1Cs 2114L-2 2708	70 LM389 LM393 LM394	95 100 290	TDA2020 TLO61 TLO63 TLO71CP	320 40 80
MINIATURE TYPE TRIMMERS 2-6pF, 2-10pF, 2-25pF, 5-56pF 30p. COMPRESSION TRIMMERS TRIMATINA TRIMERS TRIMERS TRIMMERS TRIMATINA TRIMMERS TRIMERS TRIM	GAS & SMOKE DETECTORS TGS812 or TGS813 575p	7497 90 74100 80 74104 50	LS38 1 LS40 1 LS42 2	5 4027 3 4028 3 4029	20 39 45	2716 4116 4816 (88C)	215 LM1458 70 LM2917 225 LM3900	40 195 50	TL072 TL074 TL081	45 100 24
3-40pF; 10-80pF 20p; 20-250pF 28p; 100-580pF 39p; 400-1250pF 48p, 100-580pF 39p; 400-1250pF 48p, 10 Seg Bargraph 225	Just phone your order through and we do the rest	74105 55 74107 20 74109 25 74110 35	LS47 3 LS48 4 LS55 1	5 4030 5 4031 4 4032	15 125 80	6116 6502 6522 6800	190 LM3302 125 LM3900 120 LM3909	90 50 85	TL082 TL083 TL084	45 75 90
PHESET POTENTIOMETERS LCD 31 Digits 525 Vertical # Horizontal Isolators Isolators 0.1W 50 M-5 MΩMiniature 7p IL74 45 0.25W 100 M-3.3 MΩ horiz. 10p ILD74 99 0.5W 00 M-4.2 MQ horiz. 10p ILD74 99	Upgrade kit now available 16-K RAM (8 × 4816 AP)	74111 55 74112 170 74116 50 74118 60	LS73 1 LS74 1 LS75 2 LS76 1	4034 4035 0 4036 4037	140 45 275 115	709C 8 pin 733 741 8 pin 747C	35 LM3914 100 LM3915 74 LM3916 65 LS7220	210 220 220 220	UAA180 UA2240 XR2206 XR2211	170 120 300
VOLTAGE REGULATORS	E18.00	74119 80 74120 60 74121 25 74122 40	LS83 3 LS85 4 LS86 1	4038 4039 5 4040	110 290 40	748C 753 1 810 1	36 M252 85 M253A 59 MC1303	625 1150 88	Z80CPU Z80A CPU Z80A CTC	299 350 290
SV 7805 145p 7905 220p 10GG SPST 12V 7812 145p 7912 220p SPST SPST 15V 7815 145p - SPST SUB-1 18V 7818 145p - SUB-1	LE: 247250V SLIDE: 240V Standard 33 (A SPST 13 Standard 44 AA DPDT 13 AIN TOGGLE 1A DPDT 14 AD PC of 14 DPDT 14	74123 40 74123 35 74126 35 74128 35	LS92 3 LS93 2 LS95 4	2 4042 3 4043 0 4044	40 40 40	81LS96 81LS96 81LS97 9400CJ	85 MC1304P 85 MC1310 85 MC1455 860 MC1458 875 MC1499	150 150 55	280 CTC 280 PIO 280 APIO 2N414	290 260 275 80
1A TO220 Plastic Casing SPDT 5V 7805 40p 7095 45p 12V 7812 40p 7912 45p	c/over) 60 6 tags 75 PUSH BUTTON. c/off 80 Push-Make 15	74132 28 74135 40 74136 28	LS107 4 LS109 2 LS112 2	4046 4047 4048	45 40 40	AY-1-5050 AY-1-5051 AY-3-8910	99 MC1488 60 MC1469 138 MC1488	40 300 40	ZN424E ZN425E ZN426E ZN427	130 345 300 590
15v 7815 40p 7915 45p /// DPDT 18v 7818 40p 7918 45p ROCKI 24v 7824 40p 7924 45p ROCKI ROCKI ROCKI ROCKI ROCKI ROCKI	Biased 145 Push-Break 18 ER: SPST on/off 10A/250V 28 28 28 ER: DPDT 10A/250V 70 70 28 ER: DPDT 1LLUMINATED 85 55 56	74141 55 74142 175 74143 210 74145 50	LS113 1 LS122 3 LS123 3	4049 4050 4051 4052	25 25 45 60	AY-5-1230 AY-5-1350 CA3011 CA3018	ISO MC1489 ISB MC1495 ISO MC1496 ISO MC1596	55 350 70 225	ZN428 ZN429 ZN1034E ZN1040E	410 210 200 675
100mA T092 Plastic Casing ROTA1 5V 78L05 30p 79L05 60p 2 pole/ 6V 78L62 30p - 3 way 8V 78L82 30p - -	RY: (Adjustable Stop) 1 pole/2 to 12 way; 2 to 6 way; 3 pole/2 to 4 way; 4 pole/2 to 45	TRANSIST AC125 35 AC126/7 35	ORS BC307B 1 BC328 9	4 BFY52 BRY39 8SX20	23 40 20	TIP35A TIP35C 1 TIP36A 1	10 2N1306/7 28 2N1671B 30 2N2160	65 120 350	2N5305 2N5457/8 2N5459 2N5485	24 30 30 30
12V 78L12 30p 79L12 60p 15V 78L15 30p 79L15 60p 15V 78L15 30p 79L15 60p 16K CA3085 95p LM317P 99p TBA6258 75p P LM300H 170p LM323K 500p TDA1112 150p	RAM Pack, Fully built & tested. lugs straight on to your ZX81.	AC128 30 AC141/2 30 AC176/87 30 AC188 30	BC338 1 BC441 3 BC461 3 BC477 4	5 BSY95A 4 BU105 4 BU205 0 BU205	25 170 190	TIP41A TIP41B TIP42A TIP42A	50 2N2219A 50 2N2220A 52 2N2222 55 2N2369A	28 23 25 18	2N5777 2N6027 2SA636 2SA671	45 32 250 250
LM305H 140p LM337 175p 78HO5 560p LM309K 135p LM723 35p 78H12 580p LM317K 360p TAA550 50p 78HG5 550p Cor	We stock a wide selection of	ACY17/18 70 ACY20/1 75 ACY22 60 AD140 120	8C516/7 4 8C547/8 1 8C549 1 8C556/7 1	0 E113 2 E176 4 E421 5 E421	45 50 250	TIP120 TIP121/2 TIP141 1	70 2N2476 70 2N2483 73 2N2497 05 2N2646	50 27 63 45	2SA715 2SC495 2SC496 2SC1061	60 70 70 250
DIL SOCKETS Low Wire Prof. wrap	Micro peripherals, Books	AD149 79 AD161/2 42 AF115 60 AF139 40	BC558/9 1 BCY70 1 BCY71 1	5 MJE340 6 MJE370 8 MJE371	70 54 100 100	TIP142 TIP147 1 TIP2955 TIP3055	20 2N2894 20 2N2904 60 2N2905A 60 2N2906/7	30 28 26 26	2SC1096 2SC1173 2SC1306	85 125 100
o way sp zsp European szo sc	ZENERS Range 2V7 to Thyristors	AF178 75 AF180/6 70 AF239 55	BD131/2 4 8D133 6 8D135 4	MJE520/1 MJE2955 MJE3055	95 70 70	TIS43 TIS44 TIS88A	32 2N2926G 45 2N3053 50 2N3054	10 26 58	2SC1307 2SC1449 2SC1923 2SC1945	150 85 50 225
20 pin 22p 60p Adventures with BY127 1 22 pin 25p 70p Adventures with CR033 255 24 pin 27p 70p Electronics OA9 447 28 pin 28 pin 26 pin 26 pin 26 pin 26 pin 26 pin	2 39V 400mW 5A/400V 40 0 8p each 5A/600V 48 0 Range 3V3 to 8A/300V 60 2 33V. 1.3W 8A/300V 60	BC107/8 10 BC108B 12 BC108C 12 BC109 10	BD136/7 4 BD138/9 4 BD140 4 BD695A 9	0 MPF102 0 MPF103 0 MPF104 9 MPF105	40 30 30 30	TIS91 VK1010 VN10K	2N3055 32 2N3121 80 2N3133 55 2N3135	48 30 45 30	2SC1953 2SC1957 2SC1969 2SC2028	90 90 140 85
40 pin 30p 99p Complete Nr. £15 OA70 1 DENCO COILS RFC 5 chokes DA85 1 'OP' VALVE TYPE OA90 1	2 15p each 55 8 NOISE 12A/100V 78 12A/400V 95 12A/800V 188	BC109B 12 BC109C 12 BC117/8 20 BC119 38	BD696A 9 BDY17 19 BDY60 / 16 BDY61 16	9 MPSA05/6 5 MPSA12 0 MPSA55	25 30 30	VN66AF VN88AF ZTX107/8	2N3252 80 2N3442 94 2N3568 11 2N3663	46 140 25 15	2SC2029 2SC2078 2SC2091 2SC2314	210 170 85 85
Range 1 to 5 BL., RFC7 (19mH) OA91 RD, TI Wht. 122p 160p 0A95 6-7 B-Y-R 110p 12,14,15,15,123 0A200	8 Diode 1950 8 1106 150 8 BRIDGE TIC44 24	8C137 40 8C140/3 30 8C147/8 9 8C149 9	8F115 3 8F167 2 8F173 2 8F173 2	5 MPSU06 9 MRSU56 7 OC35	55 60 125	ZTX300 ZTX301/2 ZTX303	12 2N3702/3 13 2N3704/5 16 2N3706/7 25 2N3708/9	10 10 10	2SC2166 2SC1679 3N128	165 190 112
1.5 Green 150p 13; 14; 15; 15; 17 0A202 1.7 type 1 to 5, Bl, 18/1.6 135p 1N916 Rd, Wht YI 150p 1N4001/2	RECTIFIERS TIC45 29 TIC47 35 1A/50V 18 2N5062 32	8C153/4 27 8C157/8 10 8C159 11	BF178 3 BF179 3 BF180 3	0 OC36 0 OC41/2 0 OC44	120 75 75	ZTX304 ZTX314 ZTX326 ZTX321	17 2N3710/1 25 2N3713 30 2N3771	1 10 140 179	40311 40313 40316	112 50 130 95
B9A Valve Holder 18/4bb 152p IN4003 42p MW5FR 122p IN4004/5 IN4006/7 BDT2 145p IN4006/7 IN4006/7	6 1A/400V 25 2N4444 130 6 1A/600V 34 7 2A/50V 35	BC160 45 BC167A 10 BC168C 10 BC169C 10	BF194/5 1 BF196/7 1 BF198 1	2 OC71/2 0C76 0C81/2	40 50 50	ZTX500 ZTX501/2 ZTX503	14 2N3772 15 2N3773 15 2N3819 18 2N3820	195 210 22 38	40317 40324 40326	80 100 60
WW/LW SFR 154p IN4 148 VEROBOARD COPPER IN5401 11 0.1" Pitch ciad cian CIAO R0ABOS IN5406 11	5 2A/200V 40 TRIACS 2A/400V 45 3A 100V 48 2A/600V 65 3A 200V 54	8C170 15 8C171/2 11 8C177/8 16	BF224A 2 BF224A 2 BF256 3	5 OC83/4 OC170/1 TIP29A	40 50 32	ZTX504 ZTX531 ZTX550 2N526	25 2N3822/3 25 2N3866 25 2N3903/4	45 90 15	40347 40348 40360	90 120 60
21 x 31" 73p 52p Fibre glass IN5408 21 x 5" 83p - 6 x 6" 90p IS921	9 6A/400V 95 8A 100V 60 9 6A/400V 95 8A 100V 60 9 6A/600V 125 8A 400V 69 9 10A/200V 215 8A 800V 115	BC179 20 BC182/2L 10 BC813/L 10 BC813/L 10	BF257/8 3 BF259 3 BF594/5 4	2 TIP30 5 TIP30 0 TIP30A	38 48 35 77	2N696 2N697 2N698	30 2N3905/6 30 2N4037 23 2N4058 40 2N4058	15 46 10	40361/2 40407 40408	70 60 70
31 x 32" B3p - 6 x 12" 150p 6A/100V 44 32 x 5" 95p 79p 6A/400V 6A/400V 6A/400V 6A/400V 6A/800V 6A/	0 10A/600V 298 12A 100V 78 25A/200V 240 12A 400V 82 25A/600V 395 12A 800V 135	BC184L 10 BC186/7 26 BC212 10	8FR39/40 2 BFR41/79 2 BFR80/81 2 BFR20	3 TIP31A 5 TIP31C 5 TIP32A	38 37 38	2N699 2N706 2N918	48 2N4069 19 2N4859 35 2N4871	45 78 55	40411 40412 40467	285 90 130
4] x 17" 426p - 9 x 8 95p Pkt of 100 pins 50p Spot face cutter 118p Ferric Chloride of Electronic	BY164 56 16A 100V 103 VM18 50 16A 500V 115 DIAC 25A 1000V 220	BC212L 10 BC213 10 BC213L 10	BFX81 4 BFX84 2 BFX85/6 2	5 TIP32C TIP33A TIP33C	42 65 78	2N930 2N961 2N1132/2 2N1304	20 2N5135/6 65 2N5138 24 2N5179 65 2N5179	20 18 45	40594 40595 40603	105 110 110
Pin insertion tool 162p Tib Anhydr. 195p Books and Magazines.	ST2 25 T28000 D 120	BC214L 10	BEY50/1 2	TIP34C	88	2N1305	60 2N5191	75	40636	175 oc

Famous Names

Sir Edward Appleton

A pioneer of radio and radar who won a Nobel prize for his work on the ionosphere.

You don't have to be a student of radio history to have heard of the Appleton layer - but the fact remains that a lot of people who ought to know the name, just don't. Edward Appleton was born in Bradford in 1892, and started his academic career, after conventional schooling, at St. John's College, Cambridge. In 1920 he became assistant demonstrator in Experimental Physics in that most famous of all laboratories, the Cavendish, where his own particular interest was in the propagation of radio waves, following the work of Heaviside and Kennelly in 1901. The situation at that time was that everyone knew that radio waves could be used to send messages over very large distances, but no-one could show, with any real proof, why this should be so.

By the end of the 18th Century, Oliver Heaviside had put forward the theory that the intense radiation from the Sun, which is a nuclear furnace that no-one protests about, was splitting atoms in the low-pressure air at the outer fringes of our atmosphere. These split atoms are electrically charged and can move fairly freely (they get the name 'ions' from an ancient Greek word meaning ''wanderer'' but even at the low pressures a hundred miles or so above the Earth, these ions are still sufficiently close to each other to affect a radio wave.

Ionic Effects

The effect depends on the radio wavelength. A radio wave will pass fairly easily between metal objects which are spaced by a distance equal to several wavelengths, but when the objects are closer than a wavelength apart, they act to reflect the wave. Heaviside's theory was that the spacing between the charged particles would be close enough to act as reflectors of radio waves, certainly for wavelengths down to 10 metres.

The idea had been strongly supported by the American physicist, Kennelly, but few other people took very much notice until Marconi succeeded in doing what so many had said was impossible – transmitting a radio signal across the Atlantic. This made many engineers and phyicists, who had scoffed at Heaviside, pay rather more attention to his ideas, and it started a rush to find and measure these reflecting layers.

Appleton had the idea of using a method which was direct, elegant, and which used what nowadays would be called "state-ofthe-art" technology. In doing so, he devised the essential principle of radar and the principle was simple! A burst of radio waves could be beamed directly upwards, and the time for it to be reflected back could be measured. Since radio waves travel in space at the same speed as light (around 300 million metres per second) the distance that the waves had travelled to the reflecting layer and back could be precisely measured.

Trouble With Time

The trouble with direct, simple and elegant methods is that they are usually extremely difficult to carry out! The snag, in this particular example, was how to measure the time which, from rough calculations, looked as if it would be about 300 microseconds. Measuring a time period as short as that wasn't

Figure 1. The Appleton experiment. This was an early use of the principle of radar to measure the distance of the Appleton and other layers from the surface of the earth.

Figure 2. An oscilloscope display used to measure the distance. With a constant speed timebase, distance along the screen represents time, which in turn represents distance travelled by the wave. exactly a routine matter in 1923, and Appleton solved it by turning to new technology — the cathode-ray tube.

He saw that the electron beam could be moved rapidly across the screen by using changing voltages on the deflection plates, and if the deflecting voltage is a sawtooth shape, then the speed of the spot across the screen is practically constant. Even better, its value can be calculated from the size of the deflection plates and their distance from the screen, thus the position of a spot can be used to represent time from some starting position.

Appleton's Layers

Appleton's classic 1923 measurements showed that there were several layers of reflecting particles, labelled D,E, and F, above the atmosphere, at heights ranging from 50 to 400 km. The shorter wavelengths that penetrated the lower layers of this "ionosphere", as it was called, were reflected higher up in the F-layer, which from then onwards was called the Appleton layer. The F-layer is about 100 miles above the surface of the Earth and, during the day, actually consists of two layers; a thin F1 layer, and a higher, more strongly ionised F2 layer. At night, the F1 layer rises to the F2 level and reflects wavelengths down to 10 m (around 30 MHz), so providing the excellent short-wave conditions that we experience at night. These days, the heights of the layers are monitored continually - using methods very similar to Appletons - by weather research stations all over the world, and ionospheric predictions are available for anyone who is occupied with shortwave transmission. The main UK ionospheric station is at Slough.

Appleton's brilliant research work eventually led him to London, where he became Wheatstone Professor of Physics, and subsequently back to Cambridge as Jacksonian Professor of Natural Philosophy (Physics). At the outbreak of war in 1939, he was attached to the Department of Science and Industry (they associated the two, in those days!) to work on radar research, along with the pioneers of television, from EMI, and of shortwave transmission, from Marconi. He was awarded the Nobel prize in 1947, for his work on the ionosphere, and became Vice-chancellor of Edinburgh University in 1949, a post which he held for several years. He died in 1965 after a brilliant career which covered some of the most exciting developments in electronics, and with his name immortalised in the Appleton layer.

THE IC-MAN BEAT THESE PRICES

TOP QUALITY	F			GUARA	NTEED
	QUI		DELIVENT		
TTL N Series 7406	18p		LS 74LS14	25p	
7414	25 p		74LS136	15p	
7425	20p		74LS153	25p	
7427	10p		74L5154	33p	
7432	18p		74LS164	35p	
7437	18p		74LS175	35p	×
7442	25p		74LS245	71p	
74/0	30p				MAIL
7493	30p				ORDER
74107	18p				ONLY
74136	25p		OTHER	45 m	
74151	35p		75452B	45p 40p	
74153	35p		75453	50p	
74161	33n				
74164	40p		NEW BY TOM	DUNCAN	
74174	40p	B	ADVENTURES	WITH DIGIT	
74175	40p	0	ELECTRONICS	£2.80 post f	ree
74180	30p		EVER DODUL	D	
74193	42p	C	ADVENTURES	NITH	£2.80
74194	45p		MICRO-ELECTR	IONICS	post free
THE 10 MIN					PRICES
THE IC-MAN, DE	HTY	E,	60 HILLCRES	T	p & p
BALDUCK, HERI	IS SC	j7(5NF		40p

RECHARGEABLE BATTERIES AND CHARGERS

PRIVATE OR TRADE ENQUIRIES WELCOME

FULL RANGE AVAILABLE SEND SAE FOR LISTS. **£1.45** for Booklet "Nickel Cadmium Power" plus Catalogue. Write or call:

> * NEW SEALED LEAD RANGE AVAILABLE *

SANDWELL PLANT LTD. 2 Union Drive, Boldmere Sutton Coldfield, West Midlands 021-354 9764 After hours 0977 84093

Three-Aspect Signal Lights

Just the right lights for a realistic model rail set-up.

RAILWAY signal lights are intended to indicate whether or not the way ahead is clear. In the simplest case a colour signal, either a red or a green light, shows if it is safe for a train to proceed into the next section of track. As soon as the train passes a green signal, the light changes to red.

This was the first type of signal system to replace the older semaphore signals; today, they are used only in a few isolated cases. With three-aspect signalling, an additional amber light indicates that the line ahead is clear but that the next signal is set to red - danger ahead! More common still, these days, is the four-aspect system, where a second amber light is used. A display of two amber lights indicates two clear sections before the next red signal, allowing the driver to adjust his speed accordingly (regular commuters can observe the system from almost any British Rail platform - if the trains are running!).

Signalling a simple junction, where a

branch line leaves the main line, requires an extra arm to the signal; this is positioned on the signal stand, on the same side as the branch and shows a row of four or five white lights, together with a green or an amber light, when the points are set for the branch line. A green or amber signal alone indicates that the points are set for a straight -through run.

In the real world, these signals are controlled by track circuits which detect the position of a train on the line. The axles span electrically isolated sections of rail, thereby completing a circuit to indicate its location. Of course, the settings of points and level crossings also control the signals.

Prototypes and Models

In the prototype, failsafe requirements lead to considerable circuit redundancy — backup units in case one should fail — but for model railways, the basic functions of a three-aspect signalling system can be provided quite simply. The electronics of the system consist of two circuit modules. The basic Track Module controls one set of signal lights for one section of track; it responds to the location of the train and the settings of any points, level crossings etc in that section of track. The second module is a Junction Module, required to drive the white lights of a branch line indicator and to control the Track Modules either side of the junction.

For the signal lights, it is easy to use Light Emitting Diodes (LEDs) which, conveniently, are available in red, yellow (amber) and green. There are several methods that can be used to detect the position of a train; one of the simplest and most reliable is to use small bar magnets attached under the locomotives at axle height, and magnetically operated reed switches positioned on the track between the rails. Model points do not usually provide a signal suitable for driving the circuits but, with a little ingenuity,

Table 1. Truth tables for NAND and NOR gates.

microswitches can be attached to the points to give suitable inputs to the modules.

The Track Module

The circuit diagram of Figure 1 is for a single Track Module; a model layout will need one of these for each set of lights. The circuit itself is quite simple (though as we shall see, the interaction of two or more modules becomes slightly more complicated!). The 'brain' of the circuit is the bistable flip-flop consisting of NAND gates IC1c and IC1d (truth tables for both NAND and NOR gates are shown in Table 1). Switches SW2 and SW3 are the magnetic reed switches which close momentarily when the locomotive passes over them.

When SW2 closes, pin 5 of IC1c is taken to OV (logic O or 'low') for just a moment, so that the output at pin 6 goes high (logic 1, +5V). This high is coupled to pin 2 of IC1d and, since its pin 1 input is already held high through R6 and R7, pin 3 goes low. This is coupled back to the other input of IC1c at pin 4, ensuring that output stays high. Thus the momentary low on pin 5 is 'latched' by the flip-flop and It-will maintain this state, which indicates that there is a train in the section controlled by the module.

When the train leaves the section of track, SW3 closes and pin 1 of IC1d goes low for a moment; this is coupled to pin 4 of IC1c and, since pin 5 in being held high through R4, R5, the output at pin 6 goes low. This is fed back to the pin 2 input, maintaining the high output on pin 3. So, the new state is latched in and this indicates to the following circuitry that the train has cleared the section.

Resistors R4 and R6 provide the + 5V to ensure that the inputs are normally high. The other components, R5, C1 and R7, C2, provide interference suppression which works satisfactorily even in the presence of high frequency track cleaning systems. The value of R6 has been chosen to provide a 'power-on-reset'.

When the power is first switched on, both C1 and C2 conduct heavily so that both plates of the capacitors are momentarily at OV. They soon begin to charge up but, because R6 is more than twice the resistance of R4, C2 will take more than twice as long to reach full charge. In fact, the voltage on C2 will still be at logic O level when C1 is fully charged. Thus at power-on, a low pulse is effectively applied to pin 1 of IC1d and a high pulse to pin 5 of IC1c. As previously described, these are the conditions for the flip-flop to be reset to 'track clear', thus making sure that all

Figure 1. Circuit diagram of the Track Module.

Figure 3. Timing diagram for "Keeping Track".

40

Figure 2. Combines Module circuit and track layout diagram; note that the flip-flop has been drawn here in standard 'block' form.

signal lights are green when the system is first turned on. It will probably be necessary to adjust the value of R6 to suit a particular layout and power supply; a little experimenting should soon determine the correct value.

If the flip-flop is the brain of the circuit, the quad-input NOR gate IC2 is its 'heart'. Its output at pin 8 directly drives the red signal light, LED3, and indirectly controls the other two lights. As shown in Figure 1, two of the inputs are wired directly to OV, one to OV via the normally closed points switch SW1, and the fourth is connected to the pin 6 output of the flip-flop. When all four inputs are low, the output will be high and the LED is biased off, with +5V on both the anode and cathode. However, when the flip-flop is triggered by a train entering the section, pin 9 of IC2 goes high, pin 8 goes low and LED3 turns on. The result is the same if SW1 is opened (indicating that the points are set against an oncoming train), since the internal circuit of the TTL gate puts a high on any open circuit input.

If the section of track monitored by a module does not contain a set of points, then terminal 2 should also be wired to OV. The other two inputs, at module terminals 3 and 4, are available for other switch functions within a section of track, eg for level crossing indication, etc.

Keeping Track

To understand how the remainder of the circuit works, it is easier to look at the interaction between several modules, controlling two or more sections of line, and to trace the logic sequence as a train passes through. The composite circuit diagram of **Figure 2** shows the internal circuit of the module controlling Section 2 of a length of line, together with the outlines and ter-

Hobby Electronics, September 1982

minals of the adjacent modules. The internal circuit has been simplified by drawing the flip-flop as a block with SET and RESET inputs, and Q and $\overline{0}$ outputs, in standard notation; however, its operation is exactly as described earlier. The timing diagram, Figure 3, will be helpful in tracing the action of the sequential logic.

First, though, we should establish the starting conditions. After a poweron reset, all inputs to IC2 are low and the red LED is turned off. The output from Module 2 terminal 9 is a high, indicating that the section is clear. Similarly, the terminal 9 output from Module 3 is high. Therefore, the inputs to NAND gate IC1a are both high; its output will be a low and the green light, LED1, turned on. The gate IC1b has a high input from IC2 and a low from IC1a so its output will be high and the amber light, LED2, is turned off. The logic conditions are the same for Modules 1 and 3.

What happens, then, when a train leaves Section 1 and enters Section 2? First, Track Switch one (TS1) closes for a moment and the Q output of the flipflop goes high. This forces the output of IC2 to a low and the red LED of L1 comes on. This low is also applied to the terminal 1 input of Module 1, indicating that there is a train in Section At the same time, the \overline{a} output of 2 the flip-flop goes low, and this point (terminal 10) can be wired back to a current limiting resistor and LED on a track layout panel near the controller, to indicate train movements.

At this point the inputs to IC1a are: a high from IC2 and a low from the terminal 1 input (because Section 3 is still clear). Therefore, the output of IC1a goes high, turning off the green LED. The inputs to IC1b are: a high from IC1a and the low from IC2. The output stays high and the amber stays off.

The lights change again as the train leaves Section 2; now L3 will show red and the terminal 9 output of Module 3 will go low, However, TS3 is also con-nected to the terminal 12 input of Module 2 so when it closes, as the locomotive passes, it resets the flipflop with the Q output low and the Q output high. With all inputs low, IC2 goes high, turning off the red LED. The inputs to IC1a, now, are a high from IC2 and the low from terminal 1, so its output will stay high and the green LED, off. However, the inputs to IC1b are both high, its output is low and the amber LED is turned on indicating that Section 2 is clear but that L3 is showing red.

When the train clears Section 3, eventually, the same sequence takes place within Module 3; its terminal 9 output goes low so that IC1a now goes low, turning on the green light.

The low input from IC1a forces IC1b output to a high, turning off the amber light; LED3 simply remains, off.

The only other operation is when the points are set for the branch to join the main line. Points switch PS2 is normally closed, maintaining the low on that input to IC2. When it is opened, the internal TTL circuitry take the input high, forcing the output to a low and turning on the red LED. The low to the inputs of ICs 1a and 1b forces their outputs high, so that both the green and amber lights are held off until the points are reset.

Junction Module

The function of the second circuit module is to control the signal lights indicating a branch leaving the main line, and to connect the Track Modules on either side of the junction, according to the setting of the points. The composite diagram, **Figure 4**, shows the internal circuit of a junction module and

Figure 4. Combined Junction Module circuit and track layout diagram.

its connections to the Track Modules. It is most easily understood with the aid of the timing diagram Figure 5, which traces the logic sequence of trains passing through the junction, and with the truth tables of the NAND and NOR gates.

We can assume, at the start, that all signals are showing green, ie, all Track Modules are in their reset condition, and that the points are set for a straight-through run. The inputs and outputs of the Junction Module are as follows: the inputs to IC2d are a high (since TS1 is open) and a low (from PS1, which is closed); therefore its output is high and the branch lights are turned off.

Both terminal 9 outputs from Modules 2 and 3 are high (tracks clear) and these force the outputs of ICs 1a and 1c to low: IC1b output, therefore, will be high, sending a 'track clear' signal to Module 1. Similarly tracing the logic levels through ICs 1d, 2a, b and 2c will show that the input to the reset terminal of Module 1 is high, as it should be.

Now, a train moving along the track will momentarily close TS1, triggering the Module 1 flip-flop and switching L1 to red. The input to IC2d from TS1 also goes low, but this has no effect.

Normally, in a straight section of track, Module 1 is reset by the train passing over TS2; in this case, however, it is reset via the Junction Module. When TS2 closes, it takes one input of IC2a low for a moment, forcing

the output to go high. With both its inputs high, IC2c will go low, providing the reset pulse to terminal 12 of Module 1 and turning off the red LED of L1.

At the same time, terminal 9 on Module 2 has gone low, taking one input of IC1a with it; the other input is a low from PS1, so the output will go high, forcing IC1b output low; this turns on the amber LED of signal L1. Finally, when the train clears Section 2, terminal 9 goes high, IC1a goes high and IC1b goes high, turning off the amber light in L1 and turning on the green.

Now let's see what happens when a train takes the branch line. First, the points must be set, opening PS1; both inputs to IC2d go high, so its output goes low, turning on the branch line indicator. At the same time, all inputs connected to PS1 will change state (including those to ICs 1c and 2a, which are via inverter IC2d). These changes switch the logic to accept inputs from Module 3, rather than from Module 2.

As a train passes over TS1, signal L1 will turn to red, as before. A sideeffect of TS1 closing is that the branch line indicator lights turn off for an instant.

The train now moves through Section 1 and takes the branch line, which we have called Section 3. As it does, TS3 closes, turning L3 to red and putting a low on one input of IC2b, so that its output is forced high. The other input of IC2c is being held high by PS1, via ICs 1d and 2a, therefore IC2c will go low, putting a reset pulse on terminal 12 of Module 1 and turning off its red LED. Simultaneously, terminal 9 of Module 3 has gone low; IC1c now has two low inputs (the other is held low by PS1 via IC1d), so its output goes high, forcing IC1b high and thus turning on the amber LED in L1 via

Figure 5. Timing diagram for tracing the Junction Module operation.

Module 1.

A similar sequence of logic will set L1 to green when the train finally clears Section 3. The timing diagram, Figure 5, shows this sequence as well as that which results when the points are reset.

These circuits, although very simple by themselves, can be quite complicated in their interactions, as we have just seen! Everthing depends on the timing of the various switch closures, together with the conditions which resulted from the last operation. Timing diagrams are essential for understanding circuits of this kind.

Hobby Electronics, September 1982

In fact, if the timing of the switch closures (which trigger the logic changes resulting in the appropriate signal lights) are not correct, the system will not produce the right results. The track switches must be positioned very carefully, at the start of each section of line, to produce the desired signals. Another small trap, which should not normally be of any bother, is that a set of points cannot be changed until the train has cleared the section controlled by the branch indicator. In other words, the points cannot be set for the branch line, in our example, until the train has cleared Section 2. Otherwise the amber light on L1 will not clear.

Construction and Layout

The component overlay diagrams for a Track Module and for a Junction Module are shown in Figures 6 and 7, respectively. Full sized PCB patterns are reproduced on the PCB Printout page.

The construction is quite straightforward and should not give any difficulty. The ICs are all TTL, so no special handling procedures are needed except for normal care not to overheat them or bend the pins. The composite circuit diagrams, Figures 2 and 4,

Figure 8. Mechanical details of a simple signal stand.

Parte list

Track Module
RESISTORS
(All ¼ watt 5% carbon)
R1,2
R3
R4
R62k2
R5,7330R
CARACITORS
C1 2 100n
C280 polyester
C200 polyester
SEMICONDUCTORS
IC17400
TTL quad 2-input NAND
IC2
TTL dual 4-input NOR
LED1 TIL232
green 0.2" LED
LED2 TIL212
orange 0,2" LED
LED3 T1L209
red 0.2" LED
MISCELLANEOUS
SW1 SPST switch
track switch - see text
SW2 SPST switch
points switch - see text
PCB: signal stands (see text):
wire solder etc.
Junction Wodule
RESISTORS
(All ¼ watt 5% carbon)
R11k
SEMICONDUCTORS
1C1 7402
TTL guad 2 input NOR
TTL guad 2-input NAND
MISCELLANEOUS
SW1 SPST switch
mater to be a set of
points switch - see text
points switch - see text

Figure 7. Component overlay for the Junction Module.

should be used as a guide to positioning the track switches and signal stands. The modules are most conveniently mounted under the track layout and connected togather, as shown in Figures 2 and 4, by lengths of four-way ribbon or multicore cable. The connections to the signal lights can also be made with four-way cable.

In a track layout as shown in Figure 2, there would normally be another signal stand on the branch line, near its junction with the main line. To connect another control module into the system at this point, simply wire it in parallel with the four-way module bus. However, point switch PS2 must now be a two-way type, with the change-over terminal connected so that terminal 2 of the new module is connected to OV when the points are set for the branch line to join.

Power Supply

All the circuit modules are powered from + 5V, which can easily be derived using a three-terminal 5V regulator; a suitable circuit to operate from a smoothed DC supply of 12-15V appeared in the June issue of Hobby Electronics, this year. Each module will draw approximately 50 mA, so the source must have the capability to supply this current, times as many modules are there are in the layout.

Signal Stands Alone

Many model signals currently available use miniature coloured incandescent bulbs, but these are rather expensive and draw considerable current. Dedicted modellers might, therefore, be interested in Figure 8, which shows the details of a signal stand especially designed for 3mm LEDs.

The bracket holding the LEDs is cut from 18SWG copper, bent at right angles and soldered to the post. The light shields are formed from brass tubing with an inside diameter of 3mm to take the LEDs, and the post is cut from 2mm tubing. These parts are all available from model shops and you can, if you wish, add to the construction with a ladder and safety rails made from tinned copper wire.

The connections to the LEDs should be made with appropriately colour coded wire-wrap wire (!), which is thin enough so that four or more leads can be fed up the post and through a small hole in the bracket. The connections can be covered by a cowling made from thin card, lightly glued in place.

The only other question which remains to be answered is: what to use for the branch line indicator lights? Unfortunately, white LEDs are not available! Well, one suggestion is to use low current miniature light bulb and fibre optic filaments to simulate the line of lights. However, the solution to this problem, as with many other practical problem, as with many other practical problems in modelling, depend on particular set-ups and individual ingenuity. That, after all, is half the fun!

Photo Credits. Our thanks to: Hornby Hobbies for the photo on page 39 and C.J. Freezer (Editor, Model Railways) for the picture on page 42.

Hobby Electronics, September 1982

	shelf
<complex-block><complex-block><complex-block></complex-block></complex-block></complex-block>	St way to build up your library of have these to build up your library of the second the second the protection of build up your the protection of build up your the protection of the second the second the second of the
SEND TO: HE BOOKSHELF, 513 London R I am enclosing my Cheque/Postal Order/ for: (delete as necessary) f (Made payable to A.S.P. Ltd) OR Debit my Access/Barclaycard (delete as necessary) Free BLOCK CAPITALS and include post codes. Name (Mr/Mrs/Miss) Idelete accordingly) Address	Books Required Price
Signature Date	Total Payment £

In less than a year we have become well-known for our varied and interesting range of electronic kits and our efficient service.

Graded by difficulty, the kits are of high quality, well packaged and have applications covering a wide field.

The range includes kits using microprocessors, infra-red systems, power supplies, dimmers, motor control units, amplifiers, sound and light units, digital counters, timers, VU's and many, many more.

New kits are:

K2580 -	electronic powerswitch dimmer	£9	.34
K2581 -	stereo volume and tone control	£11	.27
K2582 -	stereo audio input selector	£11	.27

ENQUIRIES FROM RETAILERS INVITED

The Velleman 'top ten' are:K1682 - Microprocessor timer£48.37K1771 - FM Oscillator£5.45K1798 - Stereo VU using LED's£16.91K1823 - 1 amp Power supply£6.99K2544 - Complex sound generator£8.28K2569 - Three tone chime£6.56K2575 - Microprocessor doorbell£15.53K2577 - Motor speed control£7.57K2578 - Eprom programmer£207.00K2579 - Start stop timer£6.21(prices include VAT)

SEND FOR FREE ILLUSTRATED CATALOGUE OF COMPLETE RANGE

VELLEMAN (U.K.) LIMITED P.O. Box 30, St. Leonards-on-Sea, East Sussex,

LOGIC COURSE

TN37 7NL, England. Telephone: 0424 753246.

MASTER ELECTRONICS NOW! The PRACTICAL way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

- You will do the following:
- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., Hi-Fi and microprocessor/computer equipment.

New Job? New Career? New Hobby? Get into Electronics Now Please send your brochure without any obligation to NAME ADDRESS

BLOCK CAPS PLEASE

British National Radio & Electronics School Reading, Berks. RG17BR

Hands Off!

Paul Coster

Hobby's hardworking editorial assistant was happy to come to grips with this handy autoranging multimeter. Read on for his hard-hitting comments...

ABOUT the most surprising feature of the Teston 'LCD multimeter is its size. For a meter that auto-ranges, measures AC and DC and has a continuity checker (with tone generator), to fit into your hand, is pretty impressive. The complete package, available from Stotron, is supplied with test leads, carrying strap, test clip, current shunt and soft case. There is also a small folded sheet — entitled (optimistically) 'Instruction Manual' — which describes each range and how to use it. However, despite this lack of a decent manual, the meter was easy to use and very good value for the facilities offered.

Its full title is the ISI-Teston DM 2350 and it is an auto-ranging digital multimeter with only three scale-select buttons; current, voltage and resistance. A small switch, - push-tochangeover, selects AC/DC or ohms/lo ohms (more about this later). The meter is powered from two AAA batteries and protected against overload by a 200 mA fuse. It is cased in grey plastic with a clear 10mm display. Input impedance was a creditable 10 megohms on both AC and DC voltage ranges; rising to 100 M on the 200 mV DC range. Accuracy on all ranges was also good, at better than 1% (the highest resistance range is quoted at 2%, but our unit was well within this). Overload protection is provided by an external fuse and special FET circutry — the meter also 'bleeps' to warn of a dangerously high input:

Wide Ranging

The DM2350 has five DC and four AC voltage ranges. The DC scale extends down to 200 mV FSD, which makes possible measurements as low as 100uV. Maximum DC input is 1000 volts, accurate to better than 1 % of the reading. The AC scale is not quite as sensitive but is adequate for most purposes. The range is 2-600 volts, with a resolution on the lower range down to 1mV. This would have been excellent for audio measurements, except for the narrow frequency response — 40 to 500 Hz (though, in fairness, this is common to just about all comparable

meters) — and the inductive pick-up which results from using non-screened test leads; its easy enough to make your own screened lead's, however.

Both the AC and DC ranges worked well — it was possible to switch between AC and DC without plugging the test leads into different sockets — and the AC frequency limitations were not a major drawback (just use 440 Hz instead of 1 kHz as a test frequency).

There are two resistance scales, one for normal measurements and one for taking readings with components 'in cir-This latter facility is extremely cuit'. useful for measurements around silicon junction components - silicon diodes and transistors etc - since the low output (OV4) is not sufficient to activate them. Both scales read up to 2 M, with the out-of-circuit range going down to 1 ohm resolution. Accuracy was found to be better than 1% on all ranges. An additional feature on both these ranges is that the tone generator can be used to indicate continuity. By connecting the leads between any two points in a circuit (power off!), and switching to resistance, the meter will bleep if a direct path is 'made' (a DC resistance of less than 1 ohm).

The two current scales are the only ones that do not auto-range, simply because both have a single limit of 200mA. This meant the sensitivity suffered (only 100 uA resolution) and very low current readings — quiescent supply in CMOS circuits etc — were not possible. However, this did not seem too important in the tests carried out and with the 10 A shunt fitted, the extended range made up for the deficit. The current scales were slightly less accurate at just over. 1%, but, since most current readings will vary from device to device, higher accuracies are not so important. More significantly, the DM2350 compares favourably with its competitors in this particular respect.

Getting To Grips

Using this multimeter was a sheer delight, with the push-button controls and auto-ranging capability enabling one-handed operation — you can twiddle knobs and take readings simultaneously! In fact, the only aspect I found slightly annoying (as did the editor!) was the bleep every time a range was automatically switched. It's a good idea for continuity testing — indeed, vital — and as an overload warning signal, but does get a bit irritating after a while. Perhaps something less piercing is called for?

So, bearing in mind the comments on frequency response and current sensitivity, I found this meter had a lot to recommend it. The simple operation and auto-ranging facility made it a real pleasure to use and, for anyone thinking about buying professional test gear — hobbyists and engineers alike — it's worth including on your shortlist.

The price for the complete package of meter, test leads and case etc is £56.93 (all inclusive). Further details can be obtained from Stotron Limited, Haywood Way, Ivyhouse Lane, Hastings, East Sussex.

HE

INTRODUCING TWO NEW HANDHELD DIGITAL MULTIMETERS $200\mu A - 10 AMP AC-DC$

SPECIFICATION 6010 & 7030

BATTERY: Single av dry cell **BATTERY LIFE: 200 hours** DIMENSIONS: 170 × 89 × 38mm WEIGHT: 400g inc battery **MODE SELECT:** Push button AC DC CURRENT: 200µA to 10A AC VOLTAGE: 200mV to 750V - 6 Ranges DC VOLTAGE: 200mV to 1000V - 5 Ranges **RESISTANCE**: 200Ω to $20M\Omega$ – 5 Ranges ΙΝΡυτ ΙΜΡΕDΑΝCE: 10ΜΩ - 6 Ranges DISPLAY: 3¹/₂ Digit 13mm LCD **O/LOAD PROTECTION:** All ranges **OTHER FEATURES:**

Auto polarity. Auto zero. Battery-low indicator. Strong ABS plastic case with tilt stand, Battery and test leads included. Optional carrying case.

Please add 15% to your order for VAT. Postage & Packing is free of charge. Trade enquiries invited.

ARMON ELECTRONICS LTD.

VISA

Cottrell House, 53-63 Wembley Hill Road, Wembley, Middlesex HA9 8BH, England Telephone: 01-9024321 (3 lines) TELEX No.923985

SAFGAN OSCILLOSCOPES – 5 mV/dlv sensitivity. Choice of Bandwidth 10, MHz, 15 MHz, 20 MHz. IS/div-100n S/div. Calibrated timebase. Solid trigger with bright line auto, normal and TV. XY facility. Z modulation. Calibration output. Bright and clear display. Portability.
Model DT410-10 MHz £205.85.
Model DT415-15 MHz £217.35.
Model DT420 20 MHz £228.85, Send S.A.E. FOR FULL spec.

æ •

> THANDAR PDM35 31/2 DIGIT L.E.D. DIGITAL POCKET MULTI-METER. • DC volts (4 ranges) tmV to 1000V. • AC volts 1V to 500V • DC current (6 ranges) tnA to 200MA - Resistance (5 ranges) 1Ω to 20 meg. (2, 539.5). • AC adaptor £5.95. • carrying case £3.65 • MM160A Astron. £15.95. • MN1604 Battery £1.57.

> THANDAR TM354 3½ DIGIT LCD DIGITAL POCKET MULTIMETER • DC volts 1 mV to 1000V • AC volts 1V to 500 V AC rms • DC current Lua to 2A • Resistance 1 Ω to 2 M Ω • Diode check • Basic accuracy ± (0.75% of reading + 1 digit) • Battery life typically 2000 hrs • leads inc. • £45.94 • 40KV Probe £34.95 • Universal test lead set £12.95.

> THANDAR TM352 31/2 DIGIT LCD DIGITAL POCKET MULTIMETER •DC volts: 100,0V to 1000V •AC volts: 1V to 1000V •DC current: 100 nA to 10A •Resistance 1Ω to 2 M Ω •Diode check •hFE measurement • Audible continuity check •Basic accuracy, ± (0.5% of reading + 1 digit • Battery life 150 hrs + •£57.44 inc. leads • Battery •Universal test lead set £12.95 • 40 KV probe £34.95

THANDAR SC110 SINGLE TRACE LOW POWDER 2" OSCILLOSCOPE • Bandwidth OC to 10 Mhz • Sensitivity: 10mV/ div to 50 V/div. • Sweep speeds: 0.1/u secs / div to 0.5 secs/div. • Power requirements 4-10 V DC 4 'C' cells : Size & weight 255×150×40mm : 800gms \$159.85 a truly.portable and superb instrument • Carrying case £8.86 • AC Adaptor 55.69 • Nicad Batt. pack £8.63 • ×1 probe £9.78 • ×10 probe £11.50 Complete range of Thandar instruments available from stock S.A.E. for CAT. & prices.

ELECTRONIC COMPONENTS AND test equipment 35, HIGH BRIDGE, NEWCASTLE UPDN TYNE NE1 1EW TEL: 0632 326729

6.S.C. SDLOERLESS BREADBOARDS • Accepts all components with leads up to 033" • Replaceable nickel-silver spring clip contacts. • Combines bus strip with board • Unlimited expansion • -3" and -6" centre chanels . Three free experimental circuits with every purchase

		Centre	Strip	Strip	Tie	Term	i.C.	
		Channel	Length	Width	Points	Clips	Cpty.	Price
	EXP-600	15m m	152mm	61mm	550	110	³ 28pin	£7.25
	EXP-300	8mm	152mm	53mm	550	110	⁶ 14pin	£8.62
	EXP-4B	n/a	152 mm	25m m	160	32	n/a	£2.65
	EXP-650	15mm	91mm	61 mm	270	54	¹ 40pin	£4.14
	EXP-350	8mm	91m m	53m m	270	54	³ 14pin	£3.63
	EXP-325	8mm	48mm	53m m	130	26	¹ 22pIn	£1.84
	Please ser	d S.A.E. for	catalogue	listing comp	plete rang	e of G.S	.C.	

Instruments and Boards.

SABTRONICS LCD MULTIMETER MODEL 2033. • DC volts 100 uV-0000V Accuracy + 5% • AC volts 100,1V-1000 V Accuracy ± 1% • OC current 10,4A-2A Accuracy ± 1% • AC current 10,4A-2A Accuracy ± 1% • Resistance 1Ω-20 M £2 Accuracy ± 1% • £42.27. • Please send 30p for full Sabtronic catalogue and price list

TMK 500 MULTIMETER • 30 kopv. • AC volts 2.5 10 25 100 250 500 1000V • DC volts 0.25 1 2.5 10 25 10 25 100 250 1000 • DC current 50,ua 5MA 50MA 12 amp . Resistance 0-6K 60K, 60 meg. Decibels -20 to + 56 d/b
 Buzzer continuity test
 Size 160×110
 ×65
 Batteries and leads inc.
 £26.95

DESOLDERING TOOL £6.45

SCHOOLS, COLLEGES, UNIVERSITIES SUPPLIED. PHONE OR SEND YOUR ACCESS OR BARCLAYCARD NUMBER. PRICES INCLUDE VAT. PLEASE ADD 75p POSTAGE TO DRDERS UNDER £10.00

Planning on Success

First-time success with a project depends on careful planning and execution. Here's how to go about it ...

WE'VE ALL done it; spent long hours with a hot soldering iron and bags of components, seeing a once bare PCB gradually filling up, mounting switches and controls, lettering the control panel, wiring up, and finally coming to the moment of truth, the switch-on.

Perhaps for the first time, a moment's anxiety — will it work? What will happen if it doesn't? With an accelerating pulse rate, we turn the switch. Our worst fears are realised, nothing happens, or perhaps there is some sign of activity but nothing like what it should be. Worst still, maybe a tiny curl of smoke drifts upward from some undetermined component on the board!

From satisfaction at having completed the project, we are plunged into gloom and despondency. With growing despair we make haphazard checks on this and that, but can find no cause. Sooner or later we switch off, wishing we had taken up pigeon fancying instead of electronics. Of course, with or without help, we may get the thing going eventually but, even if not, it isn't long before some new circuit fires our imagination and we are making out our shopping list of components. This one will be different — it's bound to work first time. Hope springs eternal..!

If you have ever built a project and that, or something like it, has never happened to you, you are either fortunate or careful — or both. Sometimes, getting a project working satisfactorily can take as long if not longer than building it in the first place. So what can be done about it?

Prevention vs Cure

As the old saying has it, "prevention is better than cure" and that is certainly true with project-building. The foundations for a "work-first-time" are laid from the start. First of all, we must have a sound design and layout, and if the project is one that is published by a reputable electronics magazine there should be no worries on that score. If it is one of your own designs then obviously you are well qualified to handle any problems that may turn up. However, most projects are built from published circuits by constructors who differ in technical competance. Some may have only a hazy idea of how the circuit works, in which case faultfinding, should it be necessary, could pose problems. Careful building of a good design is the only sure guarantee of success.

Sometimes a constructor will modify some part of the published design in order to improve its performance or to add or change some feature or facility; this is where caution *must* be exercised. In most cases, performance will have been optimised by the original designer and further improvements are unlikely, other than by going beyond the original framework of design. Almost any circuit *can* be improved, but only if one is prepared to make it a lot more complex and expensive!

Modifications to change some facility to one more in keeping with one's own requirements are legitimate, but you need to be sure of what you are doing. It is often better to construct it as designed, get it working, then modify it afterward. At least you know then, where you are and where the trouble lies if problems should arise. The section it is planned to modify can be built on a temporary basis, with components not permanently fixed and soldered into place.

Construction

In the majority of cases, the design is constructed as published, without alteration, and success then depends on the quality of construction, and the components.

There are a number of common construction errors which are frequently responsible for many faults and which we will now discuss. Most published designs include a PCB pattern that can be copied and etched, but some use a Veroboard layout. With the custom-designed PCB, care must obviously be taken in copying, masking and etching and, especially where fine circuit tracks and/or spacings are involved, a careful examination with a magnifying glass should be made to see that all the copper has been etched away between tracks and that no etching solution has encroached on to a track due to faulty masking. The larger areas of spacing or conductor are usually fault-free, unless something has gone radically wrong with the etching.

Veroboard has its drawbacks, but can be very useful for many small applications where high currents are not involved. However, although the constructor is spared the task of copying and etching, rather more care is needed in the actual construction. For example, cuts are required in certain places along the tracks and all these should be inspected through a magnifying glass, however clean they appear to the naked eye. Another pitfall in making track cuts is their position. Errors can easily occur and the wrong track or position cut. To avoid this, count the number of holes along the track from the nearest end and place the cutting tool on the hole while you count back again to the edge. Then, select the right track by counting in from the edge, moving the tool to the track so counted and, as before, count back to the edge to double check. The tool should thus finish up on the correct hole. Now make the cut without removing the tool or, if for some reason it must be taken off, at least make a

definite mark with it so that the position can be identified.

Components

A problem that frequently arises is that components of the specified type or value are not available. The choice is, therefore, between waiting an idefinite period in the hope that the required part will be obtained, or substituting something else. Substitutions can be made providing they are of a type which is equal or superior to that specified.

In the case of resistors, carbon composition types are the cheapest and used for general applications where nothing else is required. Other types have particular characteristics which may be important in the particular circuit. High stability carbon film resistors generally have improved characteristics, with about double the value-stability when not in use and some four times the stability of composition resistors when operated at full power rating; generated noise is about a third, the maximum operating voltage is higher and the temperature coefficient is less, but amount depends on the value.

Metal oxide resistors have even better characteristics than the carbon high-stab types, with particularly low self-noise generation — about a tenth of the high-stab value — and a lower temperature coefficient; value-stability is some four times better at full rating, but the voltage rating is lower than either composition or film resistors.

Metal-film resistors generate about three times as much noise as the oxide types, but are still better than the carbons. They excel in temperature stability, being some two-and-a-half times lower than the oxides, but they have the lowest maximum voltage rating. Another type is the thick-film metal glaze resistor. This combines the low noise properties of metal-oxide with the stability of metal-film and is also the smallest, for a given wattage; it is also the most expensive!

Thus, the choice depends on the use, and the designer has taken this into consideration when specifying a certain component. However, if a substitute must be made, then another type with similar characteristics can be chosen.

The wattage rating of resistors should not be lower than that specified but can, with advantage, be higher. This will improve reliability but will take up more room, so where close packed components are involved, larger sizes could be difficult to accomodate.

Resistance values are always given in the preferred E12 range, which advances in 20% increments. There is also an E24 range which increases in 10% steps; these are less common but may occasionally be specified (see Understanding Component Values, in HE June '82 issue). Usually, if a particular *type* of resistor is stocked by a supplier, all the values in the range will be held. Sometimes particular values may go out of stock, but the value can usually be made up by connecting two others in series or parallel, using Ohm's Law to calculate the values.

The same is true of capacitors, the type of dielectric is where determined by the application. Polyester is a good general purpose material; polycarbonate has a low temperature coefficient and so is desirable when stability at temperature extremes is required; polystyrene has a very high insulation resistance, of the order of a hundred times greater than most others, while polypropylene is best for pulsed voltages and AC operation. Large values require electrolytics, but these have a high leakage factor, so where this is important, tantalum capacitors, with about a third of the leakage, should be used. They are smaller, and also nearly three times the price of electrolytics.

The voltage rating of all capacitors should exceed the voltage across them, under all operating conditions, by a comfortable margin. Reliability is improved if higher voltage ratings than specified are used, but this usually means larger components.

At the low capacitance end of the scale there are polystyrene, silver-mica and ceramic capacitors. Ceramics are commonly used, but silver-mica types have better temperature stability in circuits where the value must be constant. As they have a positive temperature coefficient (whereas ceramics are negative), the required value is sometimes made up by paralleling one of each type in critical circuits, to improve the temperature stability.

With diodes and transistors, there are often equivalents of another make which can be satisfactorily used, but not if the circuit is designed to take advantage of some particular property possessed by a certain device. There will be some cases where a listed equivalent may not work as well! If a transistor is specified with a suffix letter, A, B, or C, this should not be ignored. The suffix refers to the gain grouping — lowest for the A types and highest for the Cs. Many circuits are designed for a specific gain, and will not function correctly with any other.

Although seemingly simple, diodes cannot be substituted without consideration of the characteristics. If a germanium type is called for, do not think that a silicon diode will do. Germanium has a lower forward voltage drop, and this may be needed in a circuit involving low voltages. Also, a pointcontact diode has a low capacitance which makes it suitable for highfrequency circuits, and so could not be successfully changed for a junction diode.

Integrated circuits are more specialized and substitutions cannot usually be made without circuit modification, unless the replacement is a direct equivalent of another make. The only room for manoeuvre, here, is that some ICs come in differently packaged versions, and one may be available while another is not. Of course this could upset the PCB connections!

Mounting Components

Assuming all the components, or suitable alternatives, are to hand, and the PCB is prepared, the next stage is to mount them. Some constructors like to mount the parts one at a time and solder

Figure 1. When cutting Veroboard tracks, ensure that no fine copper bridges are left at the edge of the cut.

Figure 2. Check that component wires are all going to the right holes. It is easy to make mistakes, as can be seen by comparing (a) and (b).

Figure 3. When a component straddles several holes on a matrix board count the number as it is fitted. It is not so easy to check when the part is in place.

Figure 4. The easy way to remember the connections to a diode; the band marks the straight line of the symbol (the cathode) and with power diodes, the taper points in the same direction as the arrow.

Figure 5. Transistors can be fitted more easily, and errors reduced, by cutting the wires to unequal lengths. The emitter wire is left full length, the base is cut shorter and the collector the shortest. They are inserted in the same order. each one, while others prefer to mount them all, retain them by bending the wires, then solder all at once. The latter method has some advantages in that any mistake can be rectified without unsoldering, and it is usually quicker to do all the soldering operations together.

Whichever method is followed, it is a good practice to leave all the semiconductors to last, mounting and soldering the passive components first. Thus, the transistors or ICs will not be repeatedly subjected to conducted heat from the iron as associated components are soldered in. In the case of ICs, it is wise to use sockets rather than solder the device directly in to the circuit. Not only does this remove any possibility of damage by heat but it facilitates changing the device, should it prove faulty. Furthermore, suppliers are more inclined to change a faulty IC if the pins are unsoldered.

There is always the likelihood of component wires being inserted in the wrong holes – even in a PCB, but especially with Veroboard, where all holes are in rows. Take special care with this, and where the component straddles several holes, count them! After getting the first hole right, it is easy to put the other wire in, say, the second instead of the third hole along.

Watch that you have the correct resistor values, because some colours are difficult to distinguish on small components; red and orange, for example, can easily be mistaken. In particular, make sure that you are reading the colour code from the right end! There are four values, especially, that can be easily mistaken. A 270k, (red-violet-yellow) can be mistaken for a 4k7, (yellow-violet-red), while a 1k2, (brown-red-red) could be thought to be a 220 ohm (red-red-brown) and, of course, vice-versa in both cases.

When mounting capacitors, it is a good practice to fit them with their values uppermost, or where they can be read. While not affecting the working of the circuit, it will help with component identification should the circuit need servicing later. Ensure that all electrolytics and tantalum capacitors are wired in with the correct polarity; this is another very easy error to make, so check when fitting and also afterward.

The same is true of diodes; some constructors find difficulty in remembering which way diodes are marked. An easy method is to regard the band, at one end, as the straight line used to depict the cathode in the diagram. In the case of power diodes, the tapered end is also the cathode and can be remembered as the end to which the 'arrow' in the diagram is pointing.

Care is likewise necessary in fitting transistors, and double-checking is necessary to make sure they are wired correctly. Difficulty is sometimes experienced in getting all three of the wires in their holes at the same time without any slipping out, so here is a tip which aids this operation and also reduces the possibility of incorrect fitting. Cut the wires to unequal lengths by leaving the emitter as it is, cutting the base somewhat shorter and the collector the shorter still. Now fit the longest wire in its hole first, followed by the next and finally the shortest; Each

Ω

ō

(b)

Figure 6 (a). Untidy fitting with wires left too long, leading to possible shorts; (b) the same layout wired neatly, as it should be.

Figure 7. Testing diodes; with the meter positive to the anode, the ohms reading should be very high. When the cathode is connected to the meter positive, the reading should be around 1,000 ohms.

ā

Figure 9 (a). A good soldered joint is smooth and rises gradually from the track; (b) a bad joint is lumpy, curls under at the base and dips inward toward the wire, but not all bad joints have all these features.

Figure 8. Checking a NPN transistor

Connecting a 10k resistor between

reading much less than 10k. Reverse

be very high or infinite reading.

base and collector should give a

the polarity for PNP device.

with a meter; with positive to emitter

and negative to collector, there should

one being longer than the next, it stays put in its hole, without coming out. When all are in place, bend, solder and crop off the excess. If the habit is established of fitting the emitter first and collector last, correct insertion is almost guaranteed!

In the case of ICs we have the problem of being able to insert them, in the PCB or in their holders, the wrong way round. Not only are there two ways of plugging in an IC, but the identification is not at all clear. A dot at one end marks 'pin one', but it is often no more than a shallow depression, so watch out for this; it is all too easy, when turning the board over and working on both sides, to get it wrong. It is a good idea, when preparing the board initially, to put a mark either with paint or a marking pen, at the site of all ICs on the 'pin one' end. Then, when assembling or changing them later, the chance of a mistake is reduced.

As to the actual mounting, fit components fairly close to the board so that surplus wire is minimised. Shorts can occur between wires of adjacent vertically mounted components, so make sure that these are well spaced. Also ensure that vertical components are seated firmly on the board, otherwise they man lean over and touch. Transistors should have short leads — but not too short, they man be damaged by heat, when soldering, and future servicing may be hampered.

Checking Components

Is it necessary to test components before they are fitted? With many, this should not be necessary; resistors, for example, are very rarely faulty from new, other than obvious physical defects such as loose end-caps or wires. Also, it is most unusual for a value to be outside the rated tolerance. Wire-wound resistors could be checked, as occasionally one is found to be open circuit.

Electrolytic capacitors should be tested for leakage, as any held in stock by the suppliers for any length of time can develop high leakage currents. Resistance, when measured with an ohmeter, should be well above a megohm, although it will be lower if measured reverse-connected (note that the positive lead of the meter is actually of negative polarity when switched to ohms).

Diodes should be tested before fitting. Cases of new diodes being open circuit are certainly not unknown, and in at least one case a power diode was found with reversed polarity! This could have been disastrous had it not been checked before fitting. To test, connect the ohmeter across the diode with the positive lead to a cathode (band or rounded end) whereupon a reading of from a few hundred to a thousand ohms should be obtained. Then reverse the meter leads to obtain a very high or infinite reading.

It is prudent to check transistors, and this can also be done with an ohmeter and a resistor. For NPN devices, connect the positive-marked meter lead (which is actually negative) to the emitter and the negative-marked lead to the collector; there should be no reading. Now connect a resistor of about 10k from the base to collector. A reading of around 10k should be obtained; the actual reading depends on the gain of the transistor and the value of the resistor, which can be any value from 10k to 33k. If the reading is a little higher than the value of the resistor, you are looking at the base/emitter junction, through the resistor, which means that the collector is open circuit. If you get no reading at all, the emitter is open circuit; a low reading before connecting the resistor means either the device is short circuit or is reversed polarity. Try reversing the meter leads; if the reading is still low, it is definitely shorted, but if it now gives normal results, the polarity is wrong and you actually have a PNP transistor! For testing PNP transistors, connect the positive meter lead to the emitter. As new transistors have been found to be shorted, open, and with wrong polarity, it is by no means a waste of time to do this!

If constructing is your hobby, and you regularly build circuits, it is recommended that you equip yourself with a transistor tester such as the Eagle TT 145 or similar instrument, as well as the obligatory multimeter. You will then be able to measure gain, leakage, polarity, and be able to match up transistors for complementary circuits.

Soldering

Quite a number of faults are due to soldering defects so take care; the symptoms they produce can be quite baffling. Firstly, always ensure the work is clean; handling the board can leave greasy deposits that resist the solder but a clean-off with a spot of meths will get rid of most of the grease. Apply the iron to the work with a little solder on the bit to facilitate the flow of heat and, after a second or two, introduce the solder, which should melt on the joint itself. Wait another couple of seconds until the solder can be seen to be flowing freely, then remove the iron. Do not carry the solder to the work on the iron, and do not try to 'paste' it on like applying putty.

After the board (or the section you are working on, if it is a large one) is completed, examine every joint with a magnifying glass, scanning across the board in strips to ensure none are missed. With Veroboard this is easy, as you only have to run along each track in turn. Every joint should be smooth with a gradual rise from the copper and a smooth taper to the component wire. Any sudden rises, hollows around the wire, or blobby looking lumps of solder spell bad joints. Re-heating with the iron for a few seconds will, in most cases, put things right.

Another possibility is the presence of tiny whiskers of solder between tracks. So, when scanning the board for doubtful joints, examine the spaces between close running tracks; with the Vero, examine every space! A further potential cause of trouble is the wire cropped off from components; pieces can lodge in all sorts of places and escape detection so, when cutting the surplus wire, hold the board so that it falls away onto the bench, then gather them up and dispose of them before they find their way into trouble. Likewise screws, washers or other items of hardware that may be dropped into the works when assembling. If it seems to have disappeard, don't take the easy way out and fit another; search for the truant, even if it means upending the project and shaking it. Wandering screws can be responsible for all kinds of future problems.

Fault-finding

If all the above suggestions are carried out during the building, the chances of non-operation at first switch-on are greatly reduced. However, it can still happen, so what do we do then? The most likely causes in order of probability are: soldering faults, including damage to components by soldering; PCB faults; incorrect assembly or use of wrong components; defective transistors or ICs; defective passive components.

As can be seen from this list, construction faults are still the most likely in spite of your precautions, so a careful visual check over the whole thing is the best first step. It is surprising how obvious errors can be sitting there, looking right at you, yet pass unobserved. So do not take anything for granted; check everything again.

If this fails to reveal the cause of the trouble, use the multimeter to check voltages. The absence of a voltage will, in many cases, indicate where the fault lies. Sometimes a voltage will be present but incorrect, such as a full supply voltage on a transistor collector. This suggests zero current due to no forward bias on the base, an open circuit emitter junction or transistor.

Actual voltage readings depend entirely on the type of circuit, but a few basic rules are: the collector of a NPN device must be positive when measured from the emitter, usually by several volts; if the emitter does not go directly to chassis or earth, it will be slightly positive, usually by less than one volt; the base should be OV6 more positive than the emitter, in the case of silicon transistors. If the device is used as a gate or switch it may be biased off, normally, in which case the voltage would be high on the collector and low or zero elsewhere.

Check all the supply points to the ICs, measuring on the actual pins, but be carefull Use fine pointed meter prods to avoid bridging two adjacent pins, as this might put supply voltage where it shouldn't be, with disastrous effects. Measure the voltages on the circuit side of stabilizers and across zener diodes, to ensure that they are working properly.

With PNP devices, the collector voltage will be negative and the base OV6 negative with respect to emitter. For germanium transistors, the voltage difference will be OV15.

If voltage readings fail to show up the cause of the trouble, we will have to delve deeper. Try to establish what parts of the circuits are working. How this can be done depends on the function of the circuit and what it is supposed to do. Usually, the circuit is intended to operate on some sort of signal, whether audio, RF, DC control or digital pulses, and respond in some way by amplifying, triggering, controlling another circuit or an electro-mechanical device.

It may be possible to determine whether the input signals are present or, if this is uncertain, suitable signals may be produced by other means. Disturbance testing has long been used by professional engineers as a quick check; this can be as simple as scratching a test prod on the input pin, thereby producing pulses that extend into the RF spectrum. If this produces some response at the output, even if not the required result, it shows that the circuit is working to some extent.

The main thing is to work systematically, not hopping from one point to another, hoping to alight on the trouble by chance. Establish the area of the fault by eliminating those parts of the circuit that appear to be working, and concentrate on the doubtful ones. It is not unlikely that more than one fault exists and that possibility must always be considered.

Resistance readings with, of course, the equipment switched off, can often be illuminating. Measurements to earth from points that normally carry no voltage sometimes show up shortcircuits that would not otherwise be revealed.

The IC will probably come under suspicion, at some point. Unlike transistors, it cannot be tested out of the circuit before fitting, so when the other components in the affected part of the circuit have been absolved, attention naturally turns to the IC. Many circuits use several of the same type in which case, if they have been fitted by means of sockets, a swop can easily be made to see if that makes any difference. If faulty, it means that, now, some other part of the circuit will not work.

It is a good idea to keep a few spares of the cheap, commonly used ICs, as it is with general-purpose transistors and a selection of resistors and capacitors. All told, the cost of a small stock is very little but can be well worth while when chasing faults or experimenting.

Although publishers of the original circuit will, in most cases, offer what suggestions they can in response to a letter for help(and provided an SAE is enclosed! – Ed.), servicing at a distance, without being able to make tests and observe results is rarely satisfactory; they will often suggest things you will have already tried.

However, if care is taken in the initial construction, and systematic tests made in the event of trouble arising, the fault should eventually be localised. Although it may be irritating at the time, it will add to your experience — and make the next project that much easier!

Nostalgia is a wonderful thing ... why, it seems like only yesterday when I first had the chance to parade my journalistic talents before an unsuspecting public. Since that epic day, way back in August 79, I've stood firm against overwhelming odds (and editors!) to continue to answer your questions. I hope you appreciate it! But now for this month's offerings, the first of which had me working overtime!

Dear CD,

How good is your memory? Can you remember if any faults appeared in the Envelope Generator project published in the June '81 issue of Hobby? I'm at the point of filing the project

I'm at the point of filing the project for future reference (ie finishing it!) so I'd be grateful for any advice.

Also, am I right in assuming that if I use a BC183L in place of a BC183, then the leadout wire configuration is changed?

Your replies will a) cure my insomnia and b) prevent hair loss (due to me tearing it out!) Kevin McKeourn, Cirencester, Gloucs.

PS Have you ever thought of publishing an auto – wah project?

PPS The sounds I can get with your effects hooked up to my penny whistle and chime bar set-up are amazing!

I hope you realise that my memory is very good ... in fact, it's excellent! So, I can tell you, categorically, that the Envelope Generator was without errors — check your unit again. As you say, changing the BC183 for a BC183L will mean wiring the leads differently. However, this is not the only component that must be correctly oriented, so make sure all the others are right.

Can't say I've ever thought of publishing anything (not even my memoirs), but the editor tells me that HE did an Auto-Wah in June 82, though it was designed with guitarists in mind. Maybe it's time for you to move onto something a little more musically adventurous — dustbin lids perhaps?

Dear CD,

I like playing with TV games and hand held electronic games but I haven't got one of my own. I'm sure that your team could come up with an idea. I mostly like playing with TV games, please please I am only 10 and am not trying to scrounge a binder. David Ovington, Camberley, Surrey.

PS Is the Digi-Die in the January 80 issue a Digital Dice?

Surprising how many young HE-men seem to spend most of their time playing games. In my day ... ah, but that's another story. Anyway, "our team", as you call them, is working on such a project at this very moment — after their tea-break of course — so you should see it within this noble tome in the near future.

As for the Digi-Die, it displays the numbers on seven LEDs arranged like the spots on a standard die and it is digital since it deals with logic signals or binary digits.

Dear CD,

Re: HE OCTOBER 1981 – BABY ALARM

Unfortunately you have neglected to print the track breaks in the Veroboard layout for this project. Please can you either send me a diagram of the breaks or print them in the next issue. Paul Brade, Herne Bay, Kent.

Unfortunately you have neglected to enclose a SAE, which must accompany letters enquiring about Hobby projects. Of course, if you were a regular reader you'd know that already. You'd also know that we published the answer to your question in 'Your Letters' March 82. So now you know ... eh? I still haven't told you where the breaks are supposed to be — well, since you did say 'please': the breaks were merely to prevent the mounting bolts shorting any of the tracks. Omit the bolts (use double sided adhesive pads) and you've solved the problem. Happy now? Good.

Stop me if you've heard this one - letters to Hobby Electronics must include a SAE if they require a personal reply. You're right, it's not a joke and you've probably heard it before, but if it means one less letter using up the precious time of our back-room boys (as some of you like to call them), then it's worth repeating. So, I will: letters needing written replies must include a SAE. However, just to be awkward, letters to my own honourable personage don't need a SAE because questions will usually be answered through the magazine. Indeed, in an effort to allow others to share the limelight, letters I receive WITH a SAE are usually passed to the Technical Queries department, leaving me to concentrate on giving my all for readers of this page. Aren't good to you?

Dear CD,

I am writing in the hope that you may be able to answer the following question:

Is it possible to receive an electric

shock from a 12V car battery?

I have asked several people the same question and they all said yes. This leaves me puzzled however, as I wouldn't have thought it possible, since 12V doesn't seem to be a harmful voltage level.

I would be most grateful for any information on this matter as I would prefer to use a battery for low voltage equipment thus eliminating the need for mains connections to power supplies etc.

Wm. Lumsden, Glasgow.

Interesting one, this, because it really boils down to 'What is an electric shock?' The truth of the matter is that reactions to a shock vary greatly between individuals. Some are almost unshockable, while others jump at the smallest things (small rodents included!). However, I diverge, the answer to your question is no – unless the voltage has been stepped up. In fact as the potential gets higher, assuming the current is not limited, the more dangerous the possible shock.

More to the point, though, if you build a proper PSU then the whole issue becomes irrelevant. They're a lot easier to carry around and a lot cheaper!

Dear CD,

Please, Please, Please, Please, Please, Please, Please can I have a binder. The pages of my March '82 issue have already fallen out. You'd better, or you'll have my mum to deal with (my, you should see her). Secondly, how about a digital, I repeat digital voltmeter (DC). I've looked in many magazines and haven't seen one. I think that ones with meters in are useless! As your loyal and faithful servant would indeed love a binder. Yours sincerely, loyaly (or loyally?), F. Woodroffe.

PPS Where can I get a book about building experimental circuits on Verobloc?

PPPS Sorry about the punktchewayshun but I came 28th out of 31 in Inglish.

Faced with all that, what can a peaceloving man (or woman) do but send a binder — so, that's where this month's blue and gold delight is going. Regarding the question about a DC digital voltmeter, you'll be happy to hear that one was printed last month. Also, you need look no further than our 'Breadboards' page, for a source of circuits to experiment with. Oh, and, incidently, you're punctuation wasn't that bad, just your spelig!

Send for my CATALOGUE ONLY 75p (plus 25p post/packing)

My VAT and post/packing inclusive prices are the lowest. All below normal trade price — some at only one tenth of manufacturers quantity trade.

See my prices on the following:

CAPACITORS ... ELECTROLYTIC; CAN, WIRE END, TANTALUM, MULTIPLE, COMPUTER GRADE, NON POLAR, PAPER BLOCK, CAN, POLY, MICA, CERAMIC. LOW AND HIGH VOLTAGE, RESISTORS. 1/8th WATT TO 100 WATT; 0.1% TO 10% CARBON, METAL AND WIRE WOUND + NETWORKS. FANS, BATTERIES, SOLENOIDS, TAPE SPOOLS, VARIABLE CAPACITORS AND RESISTORS. TRIMMERS, PRESETS, POTS . . . SINGLE, OUAL, SWITCHED, CARBON, CERMET AND WIREWOUND, SINGLE OR MULTITURN, ROTORY AND SLIDE. DIODES, RECTIFIERS, BRIDGES, CHARGERS, STYLII, SOCKETS, PLUGS, RELAYS, TRANSISTORS, IC'S, CLIPS, CRYSTALS, ZENERS, TRIACS, THYRISTORS, BOXES, PANELS, DISPLAYS, LED'S, CDUPLERS, ISDLATORS, NEONS, OPTO'S, LEADS, CONNECTORS, VALVES, BOOKS, MAGAZINES, TERMINALS, CHOKES, TRANSFORMERS, TIMERS, SWITCHES, COUNTERS, LAMPS, INDICATORS, BELLS, SIRENS, HOLDERS, POWER SUPPLIES, HARD WARE, MODULES, FUSES, CARRIERS, CIRCUIT BREAKERS, KNOBS, THERMISTORS, VDR'S, INSULATORS, CASSETTES, METERS, SOLDER, HANDLES, LOCKS, INDUCTORS, WIRE, UNITS, MOTORS, COILS, CORES, CARTRIDGES, SPEAKERS, EARPHONES, SUPPRESORS, MIKES, HEATSINKS, TAPE, BOARDS and others.

Prices you would not believe before inflation!

BRIAN J. REED TRADE COMPONENTS ESTABLISHED 25 YEARS 161 St. Johns Hill, Battersea, London SW11 1TQ Open 11 am till 7 pm Tues. to Set. Telephone: 01-223 5016

The Expo Pin Chuck and Wishbone Drill Sharpener are a must for all small engineering. The Pin Chuck comes complete with three Steel Collets and Tommy Bar, and the Wishbone with Eye Glass Gauge, Stone, and four Collets in attractive presentation box, competitively priced at £4.60. Incl. VAT, for the Pin Chuck, and £7.00. Incl. VAT, for the Wishbone, available from ourselves or any good Model Shop.

Why not send 35p for our illustrated Leaflet of Small Precision Drills, Burrs, Reamers, Grinder & Polisher, from 0.6mm to 3.0mm.

EXPO (DRILLS) LTD Unit 10, Sustanum Works Titchfield, Hants Tel Titchfield (03294) 41752

⇒ { : ∠•

Now our name means more,t ever bet

If the name BICC-Vero sounds only half familiar, that's not the only difference you're going to notice.

Because not only have we added to our name we've also added to our technology. Building upon our well established industrial product range and incorporating the very latest ideas and techniques to ensure that you too are working at a state-of-the-art standard.

But you will of course still recognise the old favourites. Products like Veroboard, which pioneered in so many ways, today's thriving pastime of electronics.

BICC-VERO ELECTRONICS LTD.

Industrial Estate, Chandlers Ford, Eastleigh, Hampshire SO5 3ZR. Tel: Chandlers Ford (04215) 62829.

Bigger means better in other respects. Being part of the giant **BICC-Vero Electronics Group** ensures that we're a major force. in electronics technology. Our R and D scope is enlarged, and our supply and distribution facilities improved.

And because we're professionals we appreciate the very real professionalism of the hobbyist market - and service it accordingly.

Yes, we're sure you'll notice the difference. As well as that pleasantly familiar personal touch.

The mechanics of electronics

SUMMERTIME SALE! ALL ORDERS OVER £10 FROM THIS ADVERT

All prices include VAT - Just add 50p post

- 1982/3 CATALOGUE Bigger! Better!! Buy one!!! Only 75p Inc. post-Look what you get!!

- Vouchers worth 60p
 1st class reply paid envelope
 Wholesale list for bulk buyers
 Bargain List with hundreds of surplus
- lines
- Huge range of components
 Low, low prices Sent free to schools, colleges etc.

COMPUTER BATTLESHIPS'

BATTLESHIPS' Probably one of the most popular electronic games on the market. Unfortunately the design makes it impractical to test the PCB as a working model, although it may well function perfectly. Instead we have tested the sound chip, and sell the board for its component value: SN76477 sound IC; TMS1000 u-processor; batt clips, R's C's etc. Site 160 x 140mm. Only £1.50. Instruction book and circuit 30p extra.

'STARBIRD'

Civer relatistic engine sounds and flashing laser blasts – accelerating engine noise when module is pointed up, decelerating noise when pointed down. Press contact to see flash and hear blast of lasers shooting. PCB tested and working complete with speaker and batt clip (needs PP3). PCB size 130 x 60mm. Only £2.95.

COMPONENT PACKS

K503 150 wirewound resistors from 1W to 12W, with a good range of values, £1.75, K514 100 silver mica caps from 50F to a fev thousand pF. Tolerances from 19% to 10% £2.00. K520 Swirch pack – 20 different, rocker, slide, rotary, toggle, push, micro, etc. Only £2.00.

MIXED LED PACK All new full spec by Micro, Fairchild, etc. Red, Yellow, Green, Amber, Clear, 3mm & 5mm. Pack of 50 asstd £3.95; 250 £15.

DEDUCT 20% OFF

1000 RESISTORS £2.50

We've' just purchased another 5 million preformed resistors, end can make a similar offer to that made two years ago, at the same pricell 1K523-1000 mixed ½ and 1W 5% carbon milm resistors, preformed for PCB mntg. Enormous range of preferred values. 1000 for 2.50; 5000 Cr0; 20k 153

COPPER CLAD BOARD K522 All pieces too small for our etching kits. Mostly double sided fibreglass. 250gm (approx, 110 sq ins) for just £1.00.

PANELS

PANELS 2521 Panel with 16236 (2N3442) on small heat sink, 2N2223 dual transistor, 2 BC108, diodes, caps, resistors, etc. 68p. 2527 Reed relay panel – contains 2 x 6V reeds, 6 x 25030 or 25230, 6 x 400V rects + Rs. 50p. 2529 Pack of ex-computer panels containing /4 series ICs. Lots of different gates and complex logic. All ICs are marked with type no. or code for which an identification sheet is supplied. 20 ICs 61:00; 100 ICs 64:00. for which an identification ICs £1.00: 100 ICs £4.00.

ELECTRO-DIAL

ELECTRO-DIAL Electrical combination lock for maximum security, absolutely pick-prooffl One million combinations! Dial is turned to the right to one number, left to a second number, then right again to a third number. Only when this has been completed in the correct sequence will the electrical contacts close. These can be used to operate a relay or solenoid etc. Overall dia 65mm × 60mm deep. Finished in bright chrome. With combination the price is 99.95. Also available without combination, but instructions are provided on how to find it. Takes about 20 mins, £2.95.

Project |

Audio Analyser

CONSTRUCTION of this project is not for the faint-hearted! To make this project handheld has meant using two fairly dense PCBs. so you can put away your gas-fired soldering irons and pliers; delicacy, finesse and a steady hand are required. Use an iron with a small bit and make sure you don't leave huge blobs of solder that bridge the PCB tracks. IC sockets are not just recommended; we insist upon them. Fit the components to the boards in the usual way, filter board first, taking great care to observe component polarity where this is important. Don't miss out any of the wire links; and don't try to finish it all in one evening or two. Time 'saved' during contruction will be wasted on faultfinding, later!

The nice men who designed the 4017 didn't put its sequential outputs 'sequentially' on the IC pins and this often leads to tricky PCB layouts when using the IC. Fortunately we can cheat, because all we need in this project is to look at each of the 10 channels separately — so long as they appear on the right display columns it doesn't matter what the actual order is. This is why the filters don't run in sequence down the PCB — it's purely for convenience.

To avoid the use of a double-sided PCB for the display matrix, a rather cunning technique has been adopted. Solder in one row of LEDs only and cut off one pin only - the ones whose solder pads are linked by copper tracks, Now solder a length of tinned copper wire to the pad indicated, bend it over so it touches the other LED pins about 1/4" away from the board, then solder all the pins to it and trim them off. Then do the next row, and so on. Mistakes made here will be almost impossible to correct later, so check that every LED in every row is the right way round before you solder it. The most certain method is to use Figure 2; flats, dots and 'one leg is shorter than the other' can all lead you astray.

Hobby Electronics, September 1982

The case used was a Vero type 1 (reference number 202-21034), external size 205 x 140 x 40 mm; a fair bit of work with a sharp chisel is required to make everything fit, though. The vertical slot guides at both ends of both case halves should be removed, plus all the PCB mounting pillars in the grey (bottom) half and the outer set of four pillars in the white (top) half. Everything mounts on the top half except the on/off switch, which is fitted in the side aluminium panel.

The two PCBs are bolted together with stand-off pillars and have a number of wire links between them. The easiest way to do this is to solder lengths of tinned copper wire to the relevent pads of the display board and cut them down slightly to different lengths, gradually increasing as you move down the board (Figure 3). Then you can insert the longest link onto the Concluding the Audio Spectrum Analyser project with the method of construction and setting up.

filter board, move the two closer together, insert the second and so on, until they're all through.

Assembly starts by test-fitting the display board and making a hole for the display. It's a good idea to glue a piece of red plastic or polarising filter behind it to improve the contrast of the LEDs. Fix the pillars to the display board and screw into the case — the transistors and tantalum capacitors will probably have to be bent over to give clearance. Now slide the main board over the wires, as described above, solder all the links and trim them. Now the wiring for the off-board components can be completed.

We found the cheapest way of getting an electret mic element was to buy a cheap electret cassette recorder mic (about £3) and cut the end off it. Do this very carefully as you musn't damage the insulation on the internal wiring; you'll need it to link the mic to

Figure 1. Wiring the LED matrix; it is best to check all the LEDs before soldering them in, because replacing one will be very difficult once the boards are assembled.

Figure 3. Fitting the links between the two boards.

Figure 4. Connections to an electret microphone.

Figure 7. The filter board component overlay.

the PCB. Glue the mic into a suitablesized hole cut in the end of your case and connect it to the PCB as shown on the overlay; the existing battery terminals of the mic will tell you which are the positive and negative supplies, while the third wire is the signal connection (probably screened by the earth wire). If you don't feel your constructional abilities are up to this, just plug a mic into the external jack socket; not as compact but much easier.

If choosing an alternative case, bear in mind that you'll want easy access to the batteries; the current consumption of the unit is quite high and you'll either have to replace your alkalines regularly or, if you've been sensible, recharge the Nicads.

Anyone who attempts to improve on our PCB design is on his own. Anyone who attempts to build the circuit on Veroboard will be recommended for committal to a mental institution.

Figure 5. View of the LED display from the foil side.

Figure 6. The completed display board.

Setting up and Use

The unit can be set up using either the built-in pink noise generator or, better still, with a sine wave oscillator. Adjust PR10 to about 75% of its travel (wiper towards the clockwise direction). With the unit switched on and the sine wave oscillator connected to the external input, by sweeping the oscillator frequency, each column should come up in sequence. Adjust the sine wave frequency and the analyser level control until the 16 kHz column is peaking at a column height of about eight LEDs.

Now, using the same amplitude and without touching the level control, adjust the signal generator frequency until the 8 kHz column peaks and adjust PR9 to give the same height. Repeat this adjustment for each of the filters. Due to component tolerances the actual peak of a filter may not

NO	TE: T	he p	arts	list p	oublish	ed
last	mont	h co	ntair	ned s	several	errors
and	these	are	corre	ected	d here.	

RESISTORS (All ¼ watt 5% carbon) R1,2 .220k R3 .2k2 R4,5,69 .15k R6-10,31-35,72 .10k R11-15,21-25, .36-40,46-50,78 .1M R16-20,41-45 .220R R26-30,51-55,,6876 .100k R56 .680k R57 .6k8 R58-67 .47k R68 .100k R69 .15k R70 .430R R71 .27k R73 .4k7 R74 .180k R75 .18k
R77
POTENTIOMETERS RV1
CAPACITORS (All metallised Polycarbonate unless noted)

correspond exactly to its nominal centre frequency. The 16 kHz filter has the greatest loss which is the reason for starting with it near its maximum gain.

If a sine wave oscillator isn't available, connect the pink noise output to the external input and adjust the presets to give an even response across the 10 channels. Each column should be approximately the same height; due to the nature of noise, the top of the columns may jump up and down slightly and this should be averaged out by eye. If one of the columns appears dimmer than the rest, replace the transistor that drives that column; if only a single LED appears dim then it must be replaced but as we've pointed out, the method of contruction make this a bit tricky. It's a good idea to either buy good quality LEDs or test them individually for duds before commencing construction.

To measure a room set-up, feed the pink noise into the hi-fi or PA system via a cable from the listening position and adjust the graphic equaliser controls until a flat response is indicated.

A final point; the microphone used must be fairly flat or its frequency response will affect the measurements you're making. If you use one with a limited bandwidth it's possible to use the presets to compensate; however, to do this properly you'll need to play the pink noise into the mike via a sound system/location you already know to be flat.

Figure 8. Display board component overlay.

Parts	List_
-------	-------

C1,13,43,49,50.	
C2,3,41	10u 16V
	tantalum bead
C4,5,7	1u0
C6	56n
C8,10	
C9.11	
C16-20.35-39	
	tantalum bead
C12	6n8
C14	18n
C15	3n9
021 22	390
021,22	1
023	220
025 22 22	
020,44	
626,44	820p
007	ceramic disc
C27	12n
C28	
C29	
	ceramic disc
C30	10n
C31	180p
	ceramic disc
C34	
	ceramic disc
C40	
C42	
C45	
C46	
C47 48	220u 16V
a	xial electrolytic
u.	that brook off the

SE	MICONDUCTORS
IC	LF353
IC	dual BIFET op-amp
	quad lo-power op-amp
IC7	/
ICE	CMOS quad 2-input NAND 3,9,10
	CMOS quad analogue switch
IC1	1 LM3915
in	bargraph driver
ICI	2
101	CIVIUS decade counter/divider
	CMOS guad EX-OB
IC1	4 4006
	CMOS 18-stage shift register
01	-11BC184L
	silicon NPN transistor
D1	-22
	signal diode
LEL	11-100 . high efficiency red LED
	(see Buyines)
MIS	CELLANEOUS
SK	1 %" jack socket
OIL	with break contacts
MIC	1 electret microphone
	(see Buylines)
PP3	battery clips (2 off); IC sockets
(13	off); case; wire; solder; PCBs.

etc.

NOTE: CIRCLED PADS INDICATE LINK-WIRES BETWEEN THE PCBs (SEE TEXT)

59

100

BACKNUMBERS

February 1980

Passion Meter, Win Indicator, Short Circuit Special, Kit Review Special, Into Electronics Construction Part 1.

May 1980

MiniClocks, 5080 Preamp, Model Railway Track Cleaner, 5080 Loudspeakers, Loudspeaker Crossover Design, Radio Controlled Model Survey.

June 1980

Microbe Radio Control System, Egg Timer, Two Watt Amplifier, Fog Horn, Short Circuits, LEDs and LED Displays.

July 1980

Sound-Operated Flash Trigger; 18 + 18 Car Stereo Booster, Hazard Flasher, Electronics in Photography, Electronic Espionage, Piezo Electricity.

August 1980

EquiTone Car Equaliser, Pass-The-Loop Game, Gaztec Gas Detector, OP-Amp Checker, In-Car Entertainment Survey, Introducing Microprocessors.

September 1980

MicroMixer, Reaction Tester, Guitar Phaser, Development Timer, Teletext Explained, Into Digital Electronics Part 1.

October 1980 Kitchen Timer, Tug 'o' War Game, Light Dimmer, Freezer Alarm, Intruder Alarm, Temperature-Controlled Soldering Iron.

January 1981

Car Rev-Counter, Bench Amplifier, Sound-Into-Light Converter, Chuffer, Electronic Games reviewed.

February 1981 Heartbeat Monitor, High-Impedance Voltmeter, Medium Wave Radio, Two-Tone Train Horn, Audio Signal Generator.

March 1981 Public Address Amplifier, Windscreen Wiper Controller, Bicycle Speedometer, Photographic Timer, Microcassettes.

April 1981

Pre-Amplifier Part 1, Super Siren, Guitar Tremolo, Russian Roulette Game, Doorbell Monitor, Anatomy of a Space Shuttle.

May 1981

Electronic Organ, Voice-Operated Switch, Infra-Red Controller, Pre-Amplifier Part 2, Audio Millivoltmeter.

June 1981

Power Amplifier Part 1, Continuity Checker, Envelope Generator, Early Radio, Gadgets, Games and Kits Supplement.

July 1981 Burglar Alarm, Doorbuzzer, Treble Booster, Electronic Aids for the Disabled, Power Amplifier Part 2.

August 1981

Electronic Ignition, Thermometer, Electronic Organ (final part), RPM Meter, Bench Power Supply, Radio Control Survey, Into Electronic Components Part 1.

All of the 1980 issues, except January and April, are still available together with the remaining issues from 1981.

All backnumbers cost £1.25 each. For those of you who only want copies of articles, we do offer a photocopying service. Each copy costs £1.25 and information as to its title and publication date should be given. Ordering backnumbers and photocopies could hardly be easier, just fill in the coupon, cut it out and send it to:

Hobby Electronics, 145 Charing Cross Road, London WC2H 0EE

Please remember to mark your envelope with the service you require, **BACKNUMBERS** or **PHOTOCOPIES**, otherwise our mailroom won't like you.

HOBBY ELECTRONICS BACKNUMBER ORDER FORM Please send me the following items:	HOBBY ELECTRONICS PHOTOCOPY ORDER FORM Please send me the following items:
NAME	NAME
ADDRESS	ADDRESS
	Photocopies ofin the
Back issuesat £1.25 each	issue at £1.25 each
I enclose £ Cheques and Postal Orders should be made payable to ASP Ltd.	I enclose f Cheques and Postal Orders should be made payable to ASP Ltd.

72.17

9.84.4 C.C.

習

-

200

-C.S

1 4 64

HE PCBs

Above: The PCB pattern for the 'Junior' Slot Car and (below) the foilside pattern for the ZX PCB.

Computer PSU

We apologise to all those readers who attempted to build the Computer PSU featured in the July issue. As you probably realised, the PCB pattern was shown half size but we omitted to say this in the caption – sorry! The full size foil pattern is shown on the left.

The two PCB foil patterns for the Audio Analyser. The display board (left) is fixed on top of the filter board (above).

Above: The two foil patterns for the Signal Lights; uppermost is the signal module and below that the junction module board.

Ready made PCB s PRINTED CIRCUIT BOARDS (PCBs) for HE projects have often represented an obstacle for our readers. Some of you, no doubt, make your own but our PCB Service saves you the trouble.

NOW you can buy your PCBs direct from HE. All (non-copyright) PCBs will be available automatically from the HE PCB Service. Each board is produced from the same master as that used for the published design and so each will be a true copy, finished to a high standard.

Apart from the PCBs for this month's projects, we are making available some of the popular designs from earlier issues. See below for details. Please note that only boards for projects listed below are available: if it isn't listed we can't supply it.

June 80 Fog Horn Egg Timer	£1.87 £2.11	May 81 Voice Operated Switch Organ 1	£1.67 £4.64	April 82 Digital Capacitance Meter Dual Engine Driver Bike Alarm	£4.73 £3.37
August 80 Equitone Car Equaliser Pass The Loop Game	£2.39 £2.64	June 81 Envelope Generator Organ 2	£1.87 £2.53	May 82 Digital Thermometer (Set of Two)	£5.31
September 80 Guitar Phaser Development Timer	£1.97 f1.80	July 81 Organ 3	£6.00	Echo-Reverb Cable Tracker June 82	£5.81 £2.21
Bench PSU October 80	£2.93	Organ 4 Ultrasound Burglar Alarm	£6.00 £2.53	Power Supply Design Auto-Wah	£2.64 £3.58
Nobell Doorbell Intruder Alarm Tug O' War	£2.64 £2.51 £2.65	August 81 RPM Meter Thermometer	£1.77 £1.67	Telephone Timer (Set of Two)	£7.39
November 80 Memory Bank Synth: Mainboard PCB Keyboard PCB Party Grenade (set of three) Double Dice	£3.31 £3.60 £3.47 £2.95	September 81 Power Pack Reaction Tester Game 'Diana' Metal Detector October 81 Combination Lock	£1.69 £1.71 £3.31 £2.65	July 82 Tanover TVI Filter Computer P\$U Solar Radio August 82	£2.31 £2.17 £8.72 £2.15
December 80 Stereo Power Meter January 81	£2.83	November 81 Sound Torch (Set of Two)	£5.31	Digital Millivoltmeter (Set of Two)	£4.82
Car Rev Counter February 81	£2.99	December 81 Pedalboard Organ	£5.97	Audio Analyser (Set of Two)	£12.30
Heartbeat Monitor Audio Signal Generator	£2.53 £2.47	January 82 Intelligent NiCad Charger	£3.04	September 82 Flash Point Alarm	£2.31
March 81 Steam Loco Whistle	£2.65	February 82 Relay Driver	£2.20	Signal lights Main Module	£2.34
April 81 Super Siren Russian Roulette Game	£1.97 £1.60	March 82 Digital Dice	£1.95	ZX PCB Slot Car Controller	£2.27 £3.75 £1.99

PLACE an order for your PCBs using the form below (or a piece of plain paper if you prefer not to cut the magazine), then simply wait for your PCBs to drop through your letterbox, protected by a Jiffy bag.

HE PCB Service, Argus Specialist Publications Ltd, 145	Charing Cross Road, London WC2H 0	EE
I enclose a cheque/Postal Order made payable to ASP Ltd, for the amount shown below Price.	Boards Required	Price
OR		
I wish to pay by Barclaycard. Please charge my account number		
OR VISA		
I wish to pay by Access. Please charge to my account number		
SIGNATURE		
ADDRESS		
	Add 45pp&p	0.45
Please allow 21 days for delivery	Total Enclosed £	

PCBs For Readers!

64

ADVERTISEMENT ATES Semi-Display (min 2 cms)

1-3 insertions £6.00 per cm 4-11 insertions £5.50 per cm

12+ insertions £5.00 per cm

Lineage 21p per word (min 15 words) Box Nos. £2.00

Closing date 2nd Friday of the month preceding publication date.

All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

Send your requirements and cheque, P.O. to:

HOBBY ELECTRONICS CLASSIFIED ADVERTISING, 145, CHARING CROSS RD, LONDON WC2H DEE

					~		
TH	E SC	IEN	TIF	C			
WIF	RE CO	OM	PAN	IY			
PO Bo	ox 30, Lond	on, E.4.	01-531 15	68			
ENA	MELLED	COPPI	ER WIR	E			
SWG	1 lb	8 oz	4 oz	2 oz			
8 to 34	3.30	1.90	1.00	0.80			
35 to 39	3.52	2.10	1.15	0.85			
40 to 43	4.87	2.65	2.05	1,46			
44 to 47	8.37	5.32	3.19	2.50			
48 to 49	15.96	9.58	6.38	3.69			
SILVE	R PLATE	DCOP	PER WI	RE			
14 to 30	6.63	3.85	2 28	1 50			
TI	NNED CO	OPPER	WIRE	1.00			
14 to 30	3.97	2.41	1.39	0.94			
10 x 10 mtr ree Prices includ SAE for list of co welcome.	10 x 10 mit reels 3 amp PVC cable mixed colours 5.00 Prices include P & P vat, Orders under £2 add 20p. SAE for list of copper and resistance wire. Dealer enquiries welcome.						

H.E. ORGAN KITS £99.50 inc. p&p. 61 note keyboards £32.00. 13 note paddle boards £25.00 inc. p&p. A.T. Hawkins, 23, Blenheim Road, St. Albans, Herts. AL1 4NS

TECHNICS organ; double manual, bass pedals, 12 rhythms, voices upper and lower. Cost £976. 5 months old £650; includes headphones Bench music and cover. Tel. 0978-822141

KIA RETURN AN AD No 1: FREE – Quality – Capacitor Pakl! Post this ad + S.A.E. (12}p) NOW to 8 Cunliffe Rd, Ilkley, LS29. KIA \rightarrow REPAIR \rightarrow AMPS \rightarrow FAST!

ZX81 with 16K RAM pack and number of. cassettes, £80 ono. Almost complete Hebot, £40 ono. Video space invaders £40 ono. Peter Aziz, 38A Portland Road, Bishops Stortford, Herts. Tel. 0279 55683.

COPPER CLAD PCB 3p per square inch. Single sided 2p. Brand new 7 segment displays bargain 45p. PCB containing eight 7 segment display bulb after 2nd display to form DP £3.50. All displays tested. IC's on PCB 7p each. 100 resistors free on orders above £10.00 Worth £1.00. p&p 30p. Free above £2.75. G. Dickinson, 4, Station Cottages, Kippax, Leeds.

PCB DESIGN SERVICE - for cost of artwork mail circuit diagram to 39A New Road, Clanfield, PO8 0NR.

(Oracle/Ceefax) TELETEXT add-on adaptors for your existing television. Only £149.95 inclusive. Also Prestel. Fantastic colour graphics for microcomputers. Avon Office Services (HE), FREEPOST, Bristol, BS10 6BR. (0272) 502008 anytime.

SOLAR CELLS 3" dia. 900mA at 0.45V £7.59. Price lists 75p. Edencombe Ltd., Nathans Road, Wembley, Middx. HA0 3RX

SCOOP PURCHASE - TELEPHONES As new only £4.75 each, Black G.P.O. type for extension use. As Carriage £1.75. 2 for £12.00 Carriage paid.

HAVE YOU SEEN THE GREEN CAT? 1000s of new components, radio, electronic, audio at unbelievably low prices. Send 40p and receive list and FREE Record Speed Indicator. Try a JUMBO pack, transistors, caps, resistors, ports, switches, radio and electronic devices. Over E50 worth for £11 plus carriage £2,50. TAYERS ELECTRONICS, Dept HE1, 12/14 Harper Street, Leeds

I S2 7FA. Tel: 452045, Callers Welco

WORKBENCHES, secondhand.a Ex-ITT TV factory. Open or cubicle style. Need space. Details: 042 486 3464.

SECURITY SYSTEM KITS . . . All com-ponents and full instructions. Send large S.A.E. for latest catalogue of advanced projects for car, caravan and home. COMPU-TECH SYSTEMS, Worstead Worstead Lab's, N. Walsham NR28 9SA. Tel. (0692). 405600.

BURGLAR ALARM EQUIPMENT. Please visit our 2,000 sq. ft. showrooms or write or phone for your free catalogue. C.W.A.S. Ltd. 100 Rooley Avenue, Bradford BD6 1DB. Telephone 0274-308920.

ELECTRONICS KWIKMAIL Bargain Components. Send S.A.E. for list or £1 for sample. Super bag. I.C.'s, Capacitors, Resistors, and more. 135 Tany's Dell, Harlow, Essex.

ELECTRONICS PLANS. AMAZING Lasers, Super-powered Cutting Rifle, Pistol, Light Show, Ultrasonic Force Fields, Pocket Defence Weaponry, Giant Tesla, Satellite TV Pyrotechnics, 150 more projects. Catalogue £1 - From Plancentre, 46, Bye Street, Ledbury, HR8 2AA.

ELECTRONIC GAMES. Build your own microchip games from our detailed circuits. S.A.E. for details. GHT Ltd. PO Box DR95, Dover, Kent CT16 1UL.

LONDON SCHOOL OF ELECTRONICS Full time/part time courses in analogue and digital electronics and electronic designing. City and Guild courses also available. Fees: Full-time £1300 pa. Part time £350 for 6 months. £500 for 9 months. Please apply to London School of Electronics, 67-83 Seven Sisters Road, London N7. Tel. 263-5937.

ELECTROLYTIC capacitor tester/ reforming units, instructions, mains/test leads, £12, Phone (0743) 59492 after 6.30pm

PSU's 5V5A £25.99, $1-2V \rightarrow 27V$ 1-2A with voltmeter £24.99. (with toroidal voltmeter £24.99. (with toroidal transformers). Fully fused and protected. Top brand VHS video cassettes. E120 £7.65, E180 £8.10. Prices include p&p. Mail order only. Edwards Electrics, 30 St. James Square, London SW1:

MANUFACTURERS surplus new components, I.C.s, transistors, diodes, capacitors, resistors, etc. 100 assorted £1.25 post free. U.H.A. Ltd., 62 Wellington Road South, Stockport, SK1 3SU.

STEREOPOWER 200 watt poweramps (100 + 100W protected) 4 × TO3 outputs - MJ3001 fibreglass, case + controls + D.I.N. sockets. Boxed £11.95. A. Law, 8 8 Cunliffe Rd (Over Incatile) Ilkley LS29 9D2

POCKET COMPUTERS FROM THE SPECIALISTS SHARP PC-1500 PC-1211 CASIO FX-702P Hardware Sottware Books Consumables IN STOCK NOW CE-155 (BK RAM) E73.95 Trade in your PC1211 for a PC1500 Send for a free copy of 'THE ELKAN FILE'. Full of 'Top Secret' Information. See us on Prestel - page 258 2022	PARAPHYSICS JOURNAL (Russian trans- lations); Psychotronic Generators, Kirliano- graphy, gravity lasers, telekinesis. Details: S.A.E. 4 × 9" Paralab, Downton, Wilts.	AD INDEX
ELKAN ELECTRONICS FREEPOST (no stamp required) 28 Bury New Road, Prestwich, Manchester M26 BLZ. Tel: 061 773 8714 SPECIAL OPENING OFFER, 1000 ITEM COMPONENT PACKI Sockets, Presets, Diodes, Pots, Knobs, Resistors, Capacitors-: Discs, Polyesters, Plates, Electrolytics, HV-Caps, Insulators, Hardware, Etc. JUST £10+ £3.83 P&P/VAT. TOTAL £14.03. Also 60 (approx) Electrolytics pack (apod values) £1.20 +	PRINTED CIRCUITS. Make your own sim- ply, cheaply and quickly! Golden Fotolace light-sensitive lacquer – now greatly im- proved and very much faster. Aerosol cans with full instructions, £2.25. De- veloper 35p. Ferric Chloride 55b. Clear acetate sheet for master 14p. Copper-clad fibreglass board, approx. 1mm thick £1.75 sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.	AmbitIFCArmon Electronics.48Bic Vero.56Bi-pak.4B K Electronics.BCBNRS.46Bradley Marshall.8Brian J Reed.38Cambridge Learning.61Cricklewood.61
Electrolytics pack (good values) E1.20 + £1.04 P&P/VAT. TOTAL £2.24. 100 Mini Discs £1.50 + 80p P&P/VAT. TOTAL £2.30 Ideal gifts for experimenters & hobbyists, Callers welcome, Lists 50p, free with orders. Letchworth Electronic Components, Spirella Building, Bridge Road, Letchworth, Herts., SG6 4ET. Tel. (04626) 70354.	FIND-A-FRIEND through FIND-A-FRIEND'S new confidential, inexpensive service. Your ideal friendship/relationship – all ages – countrywide. SAE/Telephone: FIND-A- FRIEND (HE), Temple House, 43-48 New Street, Birmingham B2 4LH. 021-429 6346. BUILT TRANSMITTERS £2.90 88-110 MHz EM range 150 vds Befund guarantee	E.D.A. SparkriteOBC Electronize Design
CENTURION ALARMS	(unlicensable). P. Faherty, 37, College Dr., Ruislip.	J. Baker
We manufacture, you save £££'s Send s.a.e. or phone for our Free list of professional D.I.Y. Burglar Alarm Equip- ment and accessories.	STONE, KENTI Thyronics Control Systems, 8 Sandling Road, Maidstone, Kent. Maidstone 675354.	Musicraft
Discount up to 20% off list prices, e.g. Control Equipment from £15.98, Decoy Bell Boxes from £5.95 inc. TRADE ENQUIRIES WELCOME Or 0484 35527 (24 hr. ans.) OF 0484 35527 (24 hr. ans.)	DIGITAL WATCH REPLACEMENT parts. Batteries, displays, backlights etc. Also reports, publications, charts. S.A.E. for full list. Profords, Copnersdrive, Holmergreen, Bucks HP156SGE.	Sandwell Plant
1265 Wakefield Road, Hudderstleid HD5 9BE, W. Yorkshire Access & Visa Orders Welcomed	AERIAL AMPLIFIERS Improve weak television reception. Price £6.70. S.A.E. for leaflets. Electronic Mailorder, Ramsbottom, Lancashire BL0 9AGH.	Watford Electronics

USE HOBBY ELECTRONICS CLASSIFIED

(21p per word, minimum 15 words. Box Nos. £2.00 extra or £6.00 per single column centimetre – all prepaid).

Just write the details on the form below and send it with your cheque, made payable to A.S.P. Ltd, to Hobby Electronics Classified,

145 Charing Cross Road, London WC2 0EE

1		2		
1.	2.	3.	4.	
0.	7.	8.	9.	10.
11.	12.	13.	14.	15.
Plana plana m			a filla blan Ela a f	
riease place m	iy ad in the ne.	xt available issue	of Hobby Electro	onics:
Name				
Address				
Aug 03311111			• • • • • • • • • • • • • • • • • • • •	•••••
Tel. No				
l enclose my cl	heque/P.O. for t	he value of £		

MULLARIU SPEAKER SYSTEM RECENTLY BOHM SPEAKER SYSTEM RECENTLY DEVELOPED BY MULLARD'S SPECIALIST TEAM IN BELGIUM. Kit comprises a Mullard&³ Wooler with foam surround and aluminium volee coil. Mullard 3' high power dome wweter B.K.E. built and tested crossover, based on Mullard dir combining low loss components, glass fibre board and recessed loudspeaker terminals. Recommended cabinet size 240 xz 16 x 445 mm. A superb sound at a relatively low cost. Complete with instructions. Price £14.80 + £1.50 pBp per kit.

New 5" 30 watt mini version of above now available. Recommended cabinet size 180 x 155 x 295 mm. Price £13.90 + £1.00 p&p per kit.

STEREO CASSETTE TAPE DECK MODULE. Comprising of a top panel and tape mechan-ism coupled to a record/play back printed board assembly. Supplied as one complete unit for horizontal installation into cabinet or console of own choice. These units are brand new, ready built and tested. Features: Three digit tape counter. Auto-stop. Six piano type keys, record, rewind, fast forward, play, stop and eject. Automatic record level control. Main inputs plus secondary inputs for stereo microphones. Input Sensitivity: 100mV to 2V Input Im-pedance: 68K. Output level: 400mV to both left and right hand channels. Output Im-pedance: 10K. Signal to noise ratio: 45dB. Wow and flutter: 0.1%. Power Supply re-quirements: 18V DC at 300mA. Connections: The left and right hand stereo inputs and utputs are via individual screened leads, all terminated with phono plugs (phono sockets provided). Dimensions: Top panel 5½ in x 11¼ in. Clearance required under top panel 2¼ in. Supplied complete with circuit dia-gram and connecting diagtam. Attractive black and silver finish. Price £26.70 + £2:50 postage and packing. Supplementary parts for 18V D.C. power supply (transformer, bridge rectifier and smoothing

Supplementary parts for 18V D.C. power supply (transformer, bridge rectifier and smoothing capacitor) £3.50.

NEW RANGE QUALITY POWER LOUD-NEW RANGE QUALITY POWER LOUD-SPEAKERS (15", 12" and 8"). These loudspeakers are ideal for both hi-fi and disco applications. Both the 12" and 15" units have heavy duty die-cast chassis and aluminium centre domes. All three units have white speaker cones and are fitted with attractive cast aluminium Iground finish) fixing escutcheons. Specification and Price: -

0 0

6 plane type keys

000 5

15" 100 watt R.M.S. Impedance 80hm 59 oz. magnet, 2" aluminium voice coil. Response to 2.5KHz. Sensitivity 97dB. Price £32 each. £2.50 Packing and Car-

12^{°°} 100 watt R.M.S. Impedance 8 ohm, 50 oz. magnet. 2^{°°} aluminium voice coil. Resonant Frequency 25Hz. Frequency Response to 4KHz. Sensitivity 95dB. Price £23.70 each. £2.50 Packing and Carriage each.

8" 50 watt R.M.S. Impedance 8 ohms, 20 oz. 1 %" aluminium voice coil, Resonant Frequency 40Hz, Frequency Response to 6KHz, Sensitivity 92dB. Also available with black cone fitted with black metal protective grill. Price: White cone £8.90 each. Black cone/grill £9.50 each. P & P £1.25 each.

PIEZO ELECTRIC TWEETERS ~ MOTOROLA

Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

TYPE 'A' (KSN2036AI 3' round with protective wire mesh, ideal for bookshelf and medium sized Hi-fi speakers. Price £3.45 each.

TYPE 'B' (KSN1005A) 3 %" super horn. For general purpose speakers, disco and P.A. systems etc. Price £4.35 each.

TYPE 'C' (KSN6016A) $2^{\prime\prime}$ \times 5'' wide dispersion horn. For quality Hi-ff systems and quality discos etc. Price £5.45 each.

TYPE 'D' (KSN1025A)2'' + 6'' wide dispersion horn. Upper frequency response retained extending down to mid range (2KHz). Suitable for high quality Hirf systems and quality discos. Price £6.90 each.

TYPE 'E' (KSN1038A) 3%" horn tweeter with attractive silver finish trim. Suitable for monitor systems etc. Price £4.35 each. Suitable for Hi-fi

TYPE 'F' (KSN1057A) Cased version of type 'E'. Free standing satellite tweeter, Perfect add on tweeter for conventional loudspeaker systems. Price £10.75 each. U.K. post free (or SAE for Piezo leaflets).

M

1000 MONO DISCO MIXER

A superb fully built and tested mixer/pre-amp with integral power supply. 4 nputs 2 turnitables (ceramic cartridge). Aux. for tape deck etc., plus Mic. with verride switch, all with individual level controls. Two sets of active tone controls bass and trable) for Mic, and main inputs. Master volume control. Monitor output with select switch and volume control.

 Outputs
 Main 750 mV
 Monitor 500 mW into 8 ohms.
 Supply 220/240V
 AC50/60Hz

 Size 22j*
 x 4j*
 x 2j*
 price E39.99 + £2.50 P&P
 1K.WATT SLIDE DIMMER

Suitable for both resistance and inductive loads Innumerable applications in industry, the home, and discos/ theatres etc.

Price: £11.70 each + 50p P&P (Any quantity)

BSR P256 TURNTABLE

P256 turntable chassis • S shaped tone arm • Belt driven • Aluminium platter • Precision calibrated counter balance • Anti-Precision calibrated counter balance ● Anli-skate (bias device) ● Damped cueing lever ● 240 volt AC operation (Hz) ● Cut-out template supplied ● Completely manual arm. This deck has a completely manual arm and is designed primarily for disco and studio use where all the advantages of a manual arm are cequired.

Matching 3-way loudspeakers and crossover

Build a quality 60watt RMS system 8ohms Build a quality 60 watt R.M.S. system.

- # 10" Woofer 35Hz-4.5KHz
- # 3" Tweeter 2.5KHz-19KHz
- # 5" Mid Range 600Hz-8KHz

★ 3-way crossover 6dB/oct 1.3 and 6KHz

★ 3-way crossover 6dB/oct 1.3 and 6KHz Recommended Cab-size 26" × 13" × 13" Fitted with attractive cast aluminium fixing es-cutcheons and mesh protective grills which are removable enabling a unique choice of cabinet styling. Can be mounted directly on to baffle with or without conventional speaker fabrics. All three units have aluminium centre domes and rolled foam surround. Crossover com-bines spring-loaded loudspeaker terminals and recessed mounting panel Price £22.00 per kit + £2.50 postage and pack-ing Available separately, prices on reitest.

12" 80 watt R.M.S. loudspeaker. A superb general purpose twin cone loud-speaker. 50 oz. magnet. 2" aluminium voice coil. Rolled surround. Resonant fre-quency 25Hz. Frequency response to 13KHz. Sensitivity 954B. Impedance 80hm. Attractive blue cone with aluminium centre dome.

GENERAL PURPOSE 41/2" MINI SPEAKER

General purpose full range loudspeaker, ideal for mini systems etc. •Rolled fabric surround •Twin cone •Bohm impedance •I5 watr RMS •1" voice coil •13oz magnet •Frequency range 50/15000Hz Price: £6.90 each + 75p P&P

100 WATT R.M.S. AND 300 WATT R.M.S. MODULES

Power Amplifier Modules with integral toroidal transformer power supply, and heat sink. Supplied as one complete built and tested unit. Can be fitted in minutes. An LED Vu meter is available as an optional extra.

optional extra. SPECIFICATION: Max Output Power: 110 watts R.M.S. (OMP 100) 310 watts R.M.S. (OMP 300) Loads: Open and short circuit proof. 4 16 ohms. Frequency Response: 20Hž – 25KHz ± 3dB. Sensitivity for Max. Output: 500mV at 10k (OMP 100) 1.H.D.: Less than 0.1% Supply: 240V 50Hz Sizes: OMP 100 350 x 115 x 72mm OMP 300 460 x 153 x 66mm Prices: OMP 100 259.99 sech + 12,00 P&P OMP 300 268.00 sech + 12,00 P&P Vu Meter (5,50 each + 50) P&P

BK ELECTRONICS

Prompt Deliveries VAT inclusive prices Audio Equipment Test Equipment Thandar and

Price: £28.50 + £2.50 P&P

centre dome. Price £17.99 each + £2.50 P&P

B.K. ELECTRONI 37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5TY

★ SAE for current lists. ★ Official orders welcome. ★ All prices include VAT. 🛧 Mail order only. ★ All items packed (where applicable) in special energy absorbing PU foam. Callers welcome by prior appointment, please phone 0702-527572

CHEQUE	NO			
24 hr. Ansv	verphone			
PHONEYOU	JRÓRDERW	ITHACCES	S/BARCLAY	CARD
SEND ONL	Y SAE IF BRO	OCHURE IS	REQUIRED	74

PRICES INC. VAT. POSTAGE & PACKING Allow 28 days for delivery

£19.90

MAGIDICE

£9.95

CUT OUT THE COUPON NOW!