the WORLD of WIRELESS from ---

2 Gresham Road, Brentwood, Essex CM14 4HN (tel. 0277-216029)

Terms and conditions of sale: Prices, Advertisements, Liabilities, Guarantees, VAT etc

1 Prices and Advertisements

All prices published are offered as an invitation to purchase, and are thus not intended to form an irrevokable basis for a contract of sale (or purchase).

Every endeavour will be made to ensure that published prices will be maintained whenever possible, but please note that we reserve the right to alter published prices and specifications without notice. Advertisements in monthly publications are generally submitted 8 to 10 weeks in advance of publication, and are thus subject to occasional amendment by the time of publication.

2 Guarantee

All goods are supplied in a condition 'fit for the purpose intended'. If any component or article supplied is proven to be faulty at the time of supply, then it will be either replaced, or repaired as necessary. Such is the nature of modern non-mechanical electronic components, that failure once satisfactory functioning has been achieved is extremely unlikely, unless affected by an external factor outside the maximum tolerances of the device concerned. All semiconductors supplied by Ambit have been thoroughly tested during the manufacturing process, and it is nearly impossible that any failure will occur in a correctly assembled application. Experience of production and statistical analysis of failures consistantly reveals soldering, incorrect assembley and incorrect application of power, form over 95% of all equipment failure. (In non-mechanical systems).

A statistical analysis of IC failures reveals a failure rate, expressed as a percentage, of less than 0.05%, where no external cause of malfunction could be traced. Partial failures - ie excessive shot noise - are more common than a total failure to operate, and represent about 0.8% maximum.

Our warranty extends only to the cost of goods supplied, no consequential liability whatsoever can be accepted beyond this value, unless otherwise agreed and stated in writing by this company.

3 Accuracy of Information

Whilst every effort is made to ensure the complete accuracy of all material published by Ambit, we cannot accept any liability, consequential or otherwise, for any errors that escape our attention. Persons noticing any errors are invited to advise us, in order that they may be investigated, and corrected where required.

4 VAT

Value Added Tax is chargeable on all UK inland supplies. In most instances this is 121/2%, but where a rate 8% is indicated, the price is marked with an asterisk *.

5 Postage

As a general rule, UK inland orders should include a postage and packing fee of 25p per order. Where additional money is required to cover the cost of carriage of bulky items, this will be indicated in the price list. Overseas orders should include a minimum of 50p for postage, any extra than is required will be credited - or may be supplied in a number of components - such as BC108s - where we are advised to do so.

6 Supply times

The vast majority of items in our catalogue will be available on an 'Ex-Stock' basis. Where this is the case, we endeavour to despatch the goods on the day the order is received. However, where pressure of work builds up, we occasionally require 48 hours for components - kits and modules may take longer, since these are built and tested on a batch principle, where production takes place, on average, in monthly cycles.

7 Enquiries and Suggestions

We are always pleased to answer enquiries relating to products we supply. Please observe the following rules to ensure a satisfactory reply:

- a) Always include an SAE that will be large enough to take the information sought.
- b) Adress enquiries to the Enquiry Service, NOT to 'The Manager' or 'Sales Department'
- c) Please make certain your enquiry cannot be answered by simple reference to the catalogue data.

8 Repair and technical services

Never undertake a complex project unless you feel completely confident of your ability to sort out the minor problems concerning soldering, component location etc., that inevitably occur. (Unless you are very lucky.) Our repair service is a strictly non-profit making exercise in good customer relations, and we ask you to use it sparingly if it is to continue on the present basis. If possible, arrange to turn up in person with your problem(s) and we will try to fix it on the spot - and since well over 80% of all problems advised to us are simple soldering or assembley confusions, this is usually quite possible. Please do not return goods to us without previously contacting us with details of the problems, in case a written or telephonic diagnosis is possible.

The technical resources of the company are available for electronic design, prototype work, evaluation etc. The rates chargeable vary according to the nature of the project, but please anticipate a minimum of $\pounds 4$ - $\pounds 5$ per hour. This is still only one third of the rate paid by the Legal Aid scheme to solicitors, and represents excellent value in professional services ! Electronics engineers, and engineers in general are notoriously badly remunerated in this country - at present.

9 Callers

During usual shopping hours, and quite frequenty until 7,30pm (phone first, though!), we are open to callers. 2 Gresham Road is only 200 yards from Brentwood Station. (Eastern Region BR). Parking is available outside at ALL times for over 30 cars - on a restricted stay basis. Callers will also find our special offer boxes, and a number of items that have not found space in this catalogue.

10 Account Customers

In brief, monthly account facilities are available to companies, schools, colleges. research organizations etc. The account terms are published separately, and are available on request. The processing charge per order is 50p, and the minimum order level for a/c purposes is £7.50 ex. VAT and processing charge. Access orders are accepted from individuals, in either writing, or phone call form, or by personal call.

Notes and observations on the advent of the first issue of Tecknowledgey - the catalogue with free give away magazine supplement. Ignore this at your peril.....

We may have got it all wrong, but we get the distinct feeling that there isn't a magazine on the market at the present, that pays much attention to wireless.

The more the term 'Wireless' appears in the title, the less wireless construction/discussion seems to appear dotted amongst the adverts for everything from fur coats to carpet. Why? After all, electronics is almost exclusively derived from a history stuffed full of the stuff. Marconi marked the start of the era with his various experiments, and now the publications claiming to extol his brainchild cover just about everything *but* wireless !

And when wireless *does* make an appearance, it is as some historical feature, explaining the delights of bygone days, valves, and frequency allocations long since ceased.

This is probably beginning to sound a little bit cynical particularly to a couple of publications who must be finding a tingling sensation in there ears - but it is aimed at being a serious investigation into the demise of the general art of wireless. Granted there are many companies engaged professionally in the production of exotic types of communication systems - but good old down-to-earth wireless has very little to do with satellite reception stations, fixed channel communications in the GHz bands and low power communications equipment that seem to use the same basic circuits from one design to the next. Apart from the unimaginative approach of the broadcast and professional designers, the enthusiast has now fallen under the powerful spell of the "Black-box" syndrome. The Far East provides, and the enthusiast/amateur hangs up his imagination and skills to utter stereotype gibberish into square enclosures, bearing the mystic ledgends of the East, such as "Yaesu", "Trio", "Inoue" and others.

Asking a few enthusiasts why this should be so, a fairly predictable response emerges:

"I don't have the time to design my own circuits"

"It's too much bother to shop around for the bits"

And in fact, the same basic reaction emerges from those questioned in the professional business of consumer and communications electronics. Everyone is smothered in all manner of literature explaining and endorsing the delights of microprocessors, CMOS, MOS op-amps, digital this, and digital that - but nothing very substantial ever appears to fire the imagination with wireless.

In the past 5 years or so, the technology of wireless - in terms of labour saving integration - has not been very much in evidence. Many ICs, with the noteable exception of the famous CA3089E series, merely gathered up a few transistors in one package, and simply relied upon the mystique of the "IC" to mask the fact that the performance really wasn't cost effective with existing discrete approaches.

Early radio ICs were notoriously unstable in practise, and whilst the test circuit, surrounded with acres of earth plane was quite workable, the real applications with switches and other components - simply were not !

However, the past year has seen a few revelations, with a family of devices for consumer applications that employ the techniques normally associated with costly communications circuits. Four quadrant multiplier mixers are to be found in the VHF front end system, the TDA1062 - cheap AM/FM portable systems like the TDA1083, and the TDA 1220. Single IC noise blanking is now feasible with the KB4423, for mono and stereo. And, of course, TOKO have responded with an increased range of low cost ceramic IF filters, mechanical filters and molded VHF coils.

The net result of this is that the time to design a wireless has been dramatically reduced. It may not be a purist's idea of circuit design, but running up a design with a TDA1062 for the VHF/HF input and converter stages, followed by the TDA1083 for the second conversion, if and audio stages comprises a complete radio, with a real cost effectiveness in terms of performance gains versus the discrete alternatives. Fortunately, (for us), radio still requires coils and filters - and despite advances in SAW technology, these devices remain costly and burdened with insertion losses of 15dB+, making them an amusing little curiosity without any practical benefit - other than in some specific professional applications.

So although we haven't yet arrived at the instant radio -(just add water) - there has been a fairly major advance evident over the recent past. The second point raised, concerning the "shopping around" for parts, is one we are setting out to cover in this combination of catalogue and "magazine". Since we have always set out to be the wireless specialists in our product lines, we have tended to overlook the mundane things, like Rs and Cs.

With this issue, we aim to cover these areas too, again with values chosen for the types of circuits we promote, but ultimately we would like to be able to cover all eventualities. There is a danger, however, that out particular speciality may become lost and bogged down amidst all the triviality of 4k7 resistors - so we ask you to note the extra conditions concerning the purchase of passive components that appears on our price list.

To help make up your mind, we also offer an utterly unique service in reviewing radio products. We know it's unique, because we supply our reports back to the manufacturers for their analysis ! If we appear biased, it's due to the fact that some manufacturers simply do not bother to answer letters or supply information about their product lines. (Are you receiving us there in Swindon, Plessey?)

Which raises another point; since in order to remain well informed, we ask anyone with a new product in radio or simply anyone who has heard about something of interest - to let us have some details to include in our next review. We have no plans at present to launch into the style of a full blown, advertisement laden, glossy and technically insignificant publication - after the example of those run by a media more familiar with the promoting of cornflakes and soap powder. They make fine props for crooked chairs, and we suspect that engineers only look at them from a desire to make certain that they aren't missing anything startling and innovative.

So our aim is to produce some text of interest and benefit to that much neglected and under appreciated species known as the engineer. It may not necessarily be promotion as known and practised by those masters of the art of the greasy word and liquid lunch, but we have a feeling that sales must always start with the engineer and his basic approach to a design or specification. £400 worth of arty PR may send ripples of ecstacy down the copywriter's spine, but does it *really* get through to the engineer?

Things we are keen on in this issue include:

The amazing one chip communications receiver IC from Telefunken/Sprague and Hitachi - the TDA1083 series.

The superb RF/balanced mixer/osc for HF to VHF from Telefunken - the TDA1062.

The ULN2238, an 8DIL 800mW audio stage with no external components, and much wider voltage range than the LM380 - operation down to 3v with low 1q.

The TDA1220 from SGS, another one of the fine new breed of radio ICs with **balanced** AM stages.

TOKO's new LFY cascadable 4pole ceramic ladder filters, the KB4423 noise eliminator IC and much more.

TOKO's new 1-9v AM varicap triplet, the KV1210, which promises better matching than the MVAM series, together with reduced cost and better Q in many applications.

The reference series tuner modules - now further in excess of broadcast standards than ever !

In fact, there is so much that is good and interesting in the new catalogue, that we warn you to lock up your cheque book and credit cards, or you may be tempted to tryone of everything !

Where its at

INDEX

Items indicated 'PL' refer t	o price list for de	etails, Items marked 'CO	' are for a	callers only	
Α		F		Q-R	
AM radio ICs 16.19.2	23,50-51,53-57	Filters		Radio - check under spec	cific headings
Antenna		AM ceramic	10,11	Rectifiers	PL
Ferrite rod	30	AM mechanical	11,12	Regulator devices	2 6
sockets 75/300 ohm	PL	FM cer.	10	Resistors fixed and trim	32
transformers	6-8, 30	FM lin phase	15		
Audio	20.20	Noise Dilat tons	30	S	
	28-29	SSR mechanical	14	Signal generator IC	2 7
power amp	36	Formers -coil	31	Slow motion drive	PL
	00	Frontends 20	0, 37-40	Sockets	
В				IC	PL
Battery holders/connectors	PL	G-H		Antenna	PL
Beads - ferrite	30	Heatsinks		Stereo decoders	17,21,43,61
Boards - PCB	PL	TDA2020	PL	Switches	PL 62
Books - data	PL	TBA810	PL	Synthesised HF Taulo	02
Boxes - ABS equipment	63	Holders - battery	PL	т	
Boxes small storage	PL	Holders -IC	PL	· Tantalum canacitors	22
С		I		Timer IC	32 27
Cabla	<u> </u>			Transformers	21
Capacitors	CO	ICs		BE/IE	6-8,30
fixed	32	Audio 2	5,28,29,3	b Power supply	PL
trimmer	30	Noise blanking	30 6 10 22 5	O Trimmer tools	PL
AM/FM tuning	30		0,19,23,5	" Tuned circuit theory	58-62
feedthrough	PL	FM radio 10	6.19.20.2	1. Tuners	07 40 40 40
varicap diodes	35	22	2,24,44-4	7, FM band two	37-40,42,48
Car radio	63	54	4-58		40 50
Cases - equipment	63	Stereo decoders	17,21,4	3 AM -uniband	50
Ceramic plate/disc caps.	32	Voltage regs	26	AM/FM	19.33.53.57
Chokes	30	IF modules			
RF fixed	5	AM 50	0,51,53-5	/ 	
AF fixed	5	IE filtors - see filtors	4-47,42,	52	
RF tuneable	6-7	IF transformers 6	-7	U- V	
AF tuneable	6-7	Indicators - meters	67	Variable capacitors	
Clock modules	64,65			AM/FM tuning	30
Coax cable		J-K		trimmer	30
Coils	FL.	Kits			26
Chokes	567	Complete AF an	np 49	Volt meters	67
IF transformers	6-8	Complete FM tu	iner 48	, VU meters	67
RF/antenna	6-8, 30	(most modules availab	le in DIY		
Theory	58-61	see PL for details)			
VHF molded coils	9	L		W-A-1-2	<u></u>
Cores/formers	31		ΡI	Wire	27
Cructale		Level meters	67	waveform generators	27
Crystars	FL		•••	Lata additions	
D		M		Late additions	
Databooks	PL	Meters	67		6 0
Delay lines	_	Mixer ICs AF	28/29	Instrument boxes	63
lumped constant		RF	20,24	BIRDY FILTER BUUL	05
luminance etc	OA	Mylar capacitors	32		
Digital ICs	PL	N			
Diodes	25	Noise blocker sustem	26		
FIN	35	NOISE DIAIRET System	50		
Switching	35	O-P			
Varicap	35	Panel meters	67		
Displays - LED	PL	PCB	PL		
DIL sockets 8-28 pin	PL	Pilot tone filters	14		
E		PIN diodes	35		
		PLL ICs	41		
Electrolytics	32	Plastic boxes	63		
Etch resist Dalopen	PL	Polycarb/ester/styrene	30		
F		Potentiometers	52		
Forrito		trimmer	30		
beads	30	tuning	PL		
rods	30	Pulse transformers	OA		
transformers	30				

Signal chokes Fixed

The Ambit range of low cost, ex-stock inductors includes a comprehensive range covering from 1uH to 120mH. A complete range in E24 series is available to special order, where a minimum order of 500 per value is requested. Sample quantities will be made available for pre-production purposes.

Chokes listed here are held in quantity stocks, for immediate delivery. We anticipate that this selection should fill the majority of choke applications likely to arise.

ТОКО	Type								
7BA	8RB	10RB	Other	Inductance	Qu a	at Frea:	RΩ	IDC max.	Self resonant freq.
144LY	- 187LY-	181LY-				MHz	_	mA	MHz
1R0				1uH	30	7.96	1.0	30	360
1R5				1.5uH	30	7.96	1.0	30	230
2R2				2.2uH	30	7.96	1.0	30	150
3R3				3.3uH	30	7.96	1.0	30	100
4R7				4.7uH	30	7.96	1.5	30	80
6R8				6.8uH	30	7.96	1.5	30	60
8R2				8.2uH	30	7.96	1.5	30	50
100				10uH	30	7.96	2.0	30	37
150				15uH	30	2.52	2.0	30	29
180				18uH	30	2.52	2.0	30	25
220				22uH	30	2.52	2.0	30	21
330				33uH	30	2.52	2.5	30	17
470				47uH	30	2.52	3.0	30	11.5
680				68uH	30	2.52	3.0	30	10
101				100uH	30	2.52	4.0	30	8
	101			100uH	80	.796	2.0	200	
	151			150uH	80	.796	2.0	200	
221				220uH	30	.796	6.0	30	5.5
	221			220uH	80	.796	3.0	200	
331				330uH	30	.796	6.0	30	4.5
	331		1	330uH	80	.796	4.0	200	
471				470uH	30	.796	9.0	30	4.0
	471			470uH	80	.796	4.0	200	
	681			680uH	80	.796	4.0	200	
751				750uH	30	.796	12.0	30	3.5
102				1mH	30	.796	14.0	30	3.0
1	102			1mH	90	.252	6.0	150	
	152			1.5mH	90	.252	9.0	150	
	222			2.2mH	90	.252	13.0	100	
	472			4.7mH	90	.252	18.0	50	
		682		6.8mH	100	.1	7.5	35	
	103			10mH	100	.0796	40	40	
	153			15mH	100	.0796	60	40	
	22 3			22mH	100	.0796	80	30	
	333			33 mH	100	.0796	80	30	
		333		33mH	100	.050	20	17	1
Ì		433		43mH	50	.050	100	20	.195
		513		51mH	100	.050	49	12	
		104		100mH	100	.050	63	9	
		124		120mH	100	.050	75	8	

Notes: The rated DC current is not necessarily an indication of the fusing value of DC current, but it is the DC current that affects the stated inductance by more than 20%

The above Qs are minimum values, the resistances quoted are maximum values.

Numbering system:

The chokes are stamped with the value, and tolerance, in the following form:

(144 H Y) 120 (7BA indicated by prefix 144. Not stamped on choke) H indicates ferrite type First two figures give value Third figure gives multiplier ie 10° Y indicates 5mm pin spacing Final letter indicates tolerance J:5%, K:10%, M:20%. (All stock types 10% or better. Most are in fact 5% - 'J' types.) [Many types of capacitor also employ a similar code - thus a ceramic plate capacitor marked '102' = 1nF] Signal coils 7 and 10mm shielded types: 7P, 7E, 7K, 10P, 10E, 10EZ, 10K

We offer the world's largest range of signal inductors from TOKO. The types described here are selected from the vast range available, to represent the standard types commonly employed in the range 10kHz to 100MHz. Custom windings are available for orders of 1000 pieces or over, and if a suitable style is not shown here - please ask for further details.

10mm format counterparts.

Winding options as per 10E series.

10P & 10PA

10E & 10EZ

7P (7E)

7E not shown

7K (Sim. appearance to 7E)

7K is an increasingly popular style used in custom applications for communications, radio control, and TV IFs. The basic area of operation is in the region 10MHz to 100MHz, with a maximum inductance of 10uH.

The maximum inductance for the 7P style is 20mH, and 1mH for 7E.

The overall dimensions of the 7P and 7E are identical.

These are the most commonly used style of coil. The 10E has a single bobbin winding, with cup core adjustment held in the base; the 10EZ is essentially identical, except that the cup core is held in plastic molding in the can. The 10E, 10EZ and 10P can be supplied with a single internal capacitor for IF applications. Up to three independant windings are possible,

The 10P and 10PA are available up to 36mH maximum inductance; the 10E is available with a maximum inductance of 2mH. Ferrites for Ωs up to 180 are available, together with grades

with a maximum pinout of 6.

suitable for LF,MF,HF

The 7P, like the 10P in the larger format, is a single bobbin winding, with cup core adjustment held in the outer shielding can of the assembley. The 7E is essentially a scaled version of the 10E. Both the 7P and 7E are widely used in high density layouts for LF, MF, HF applications. A single internal capacitor may be included for IF applications, up to a maximum value of 180pF. Due to the miniaturized construction, the available Q of both types is generally some 10-20% lower than their

The construction differs from the 7P/7E, since the 7K uses a spiral former, with fixed cup core, and adjustable slug core, permitting fine adjustment, and excellent stability.

10K

Double 10K (10WF)

also double 10E (10WA)

The 10K, and double 10K, are the standard choice for high stability FM and TV IFs. The construction is similar to the 7K: a spiral former, with fixed cup core, and adjustable slug. The maximum inductance for the single 10K is 50uH, with ferrites suitable for use from 2MHz to 100MHz. The double form is available with a maximum inductance of 25uH. In identical dimensions, a double 10E - the 10WA - is also available with a maximum inductance of 2mH per winding.

6

Signal coils

LF MPX/Dolby coils, LW, MW, SW RF, antenna & osc. FM/AM IFs

This compilation lists all the 'shelf standard types'. Other windings and configurations are available to special order, with a minimum order of 1000 pieces per item. A minimum order of 100 is occasionally possible at extra cost.

						,					
	Type no.	Use	Colour	۵	Int. CpF	1-2	Tur	ns 1.3	4-6	other F	Base No
10PA for mpx	CAN1898HM CAN1980BX CAN1979A CAN1896HM	mpx mpx mpx mpx mpx	orange yellow white black	50 50 50 85	7mH 7mH 11.75mH 22mH	40 257 695	2 57	396 396 514	257	1-4:198½	1 5 3 1
10ME Directly equiv. to above 10P	87BN134HM2 87BN135BX2 87BN133ATO2 87BN132HM2	mpx mpx mpx mpx	orange yellow white black	55 55 55 100	7mH 7mH 11.8mH 22mH	35 226	314 226	349 349 452 618	17 4 226		1 5 3 1
10PA misc	CAN1A350EK CLNS30568Z CLNS30569Z	mpx LWrf dolby dolby	red black black	100 100 70	3.5mH 23mH 36mH	75 27	234	261 640 780	27		6 1
10E/10EZ for 455-470 kHz and MW/LW	YRCS11098AC2 YRCS12374AC2 YRCS12374AC2 YRCS11100AC2 YHCS1A589R YHCS1A590R YMCS2A740AAE YHCS17103DG YMCS17104G0 YHCS17105R2 YXNS6A130 YMCS17105R2 YXNS6A140HM YXRS18576A0 YMRS18576A0 YMRS18576A0 YMRS10726ZMS YXRS17065 RWR31208N RW06A6408 YXNS30450NK	1st amif 2nd if 3rd if am if trap trap trap trap if osc 3rd if Iw pad Iw pad mw osc mw osc mw osc mw rf mw rf	orange yellow black blue white brown white yellow black green red green blue red red red red blue	90 90 140 150 150 90 140 140 140 140 140 140 140 80 80 70 80 80 80 80	180pF 180pF 180pF 180pF 180pF 180pF 180pF 180pF 150pF* ¹ 940uH 120uH 120uH 158uH 158uH 158uH 158uH 158uH 330uH 330uH 360uH 2mH	140 127 104 15 80 98 68 68 2 2 2 3 2 95	25 38 36 125 60 67 68 79 [3-4 77 92 3	165 165 140 140 140 158 165 136 64 59 81 :83] 80 94 98	4 6 20 6 15 68 36 9 12 8 12 270	2-6:149 1-4:185 [5-6:9]	6 6 6 6 7 8 2 6 9 1 4 6 10 6 6 6 11
* ¹ To obtain a c the 590, out	double tuned IF sta put across pins 4&6	ge, couple of the 59	pin2 of t 0. Remen	he 589 nber to	to pin 6 of ground pin	ithe 590 4 of th) via 1 e 590	20pF. and pi	Input n 1 of	across pins 1 the 589.	&3 on
10WA double tuned	WFDC11115P WFDC11115S	am if am if	pink blue	80 80	200pF 200pF	107 [8-7.	5, 8-6	:152, 5	9:3]	3-4:45	12
7P for 455-470 kHz IFTs	7MCS2197R 7MCS2198R 7MCS2199DC 7MCS2199AAE	am if am if am if trap	blue black white brown	1 10 110 110 110 110	180pF 180pF 180pF 180pF	15 104 80	125 36 60	140 140 140 140	6 20 15		6 6 6 7
7E 455-470kHz Radio control etc. IFTs.	LMC4100A LMC4101A LMC4200A LMC4200A LMC4201A LMC4202A LLC238 LLC4827 LLC4828	am if am if am if am if am if am if am if am if	yellow white black yellow white black white yellow black	105 105 60 60 60 70 70 70 70	150pF 150pF 150pF 150pF 150pF 150pF 150pF 150pF 150pF	164 143 134 143 126 153	41 62 74 62 79 52	205 205 208 205 205 205	4 4 42 8 10 26		6 6 6 6 6 6 6 6 6
10 K FM IFs, detectors 10.7MHz	KALS4520A KACS1506A KAC6184A TKAC34342 TKAC34343 KACSK586HM KAC8448PJQ KAC8448PJQ	fm if fm if fm if fm if trap fm det fm det fm det	red black black black black plack pink pink blue	100 100 65 70 70 100 65 65	50pF 51pF 82pF 51pF 51pF 82pF 68pF 68pF	8 3 10 7	7 12 3 14 7	15 15 13 15 12 12	1 2 3 1 11	3-4:15	6 6 4 13 1 14 6
10WF double tuned 7P & 7E	125LCS30035 125LCS30036 119LC30099N	fm if fm if fm if	pink blue orange	75 75 90	82pF 82pF 82pF	8	2	12 10 12	4	6-8.13	15 15 6
10K Coils for shortwave	65FC4402SEJ KANK3333R KANK3335R KANK3335R KANK3426R KANK3337R KANK3428R K2027 (unshided)	sw1 rf sw2 rf sw3 rf sw1 osc sw2 osc sw3 osc sw2 rf	violet yellow pink white green blue none	60 85 85 65 50 60 90	45uH 5.5uH 1.2uH 38uH 5uH 1.1uH 9uH	14 7 4 3 2 2 3	41 11 4 48 25 10 25	55 18 8 51 27 12 28	4 3 2 4 3 6		6 6 6 6 6 6 6 3
Base connectiv	94AES30465N	fm if	brown	/5	120pF	6	3	9			0
			<u>s</u>				5			sllf,	
	5 10 5]] 12		Ē	ī				

Signal coils Special functions: FM discriminators, TV IFs, and Misc.

Combinations of the IFs shown overleaf are used to perform functions of double tuned IFs, detectors etc. Listed here are the necessary interconnection details, together with the remaining 'standard' coils for TV.

Double tuned AM IF stage

Many combinations of standard AM IF can be coupled together to form a bandpass pair. Best symmetrical response will be acheived by coupling windings of equal impedances. Over coupling will lead to 'double hump' characteristics, and under coupling will simply loose signal unecessarily - unless an exceptionally narrow bandwidth is required, in which case a cermic or mechanical filter stage would probably be a better choice.

Pink

Q:80

The standard 10516/10517 (10E) (94ACS10516PJQ/94FCS10517STP2)

FM ratio detectors

The best all round detector for FM is still the basic ratio detector (in discrete systems, portables etc.) The incoming IF signal should be limited for best AM rejection.

The standard 8448/8449 (10K) 10.7MHz (TKAC8448PJQ/KAC8449SZ)

Q:65

will see, it is possible to extract demodulated AF in two ways - and in both instances, a centre zero tuning meter may be driven from the same point. (Remember to use a high impedance meter, or series resistor in the case of a microammeter). Where the AF level is too high, this indicates that the Q of the unit is probably excessive, and should be damped by a resistor - as this will also improve linearity. The AF DC shift also accurately reflects the conditions necessary for an AFC function, though remember to check the AFC reference voltage on the tunerhead used, since it may be necessary to raise the reference voltage on the ratio -det. from its nominal of Ov on tune.

The circuits shown here illustrate the various configurations of the ratio detector. As you

10.7MHz

Blue

For 455/470kHz applications, the WRHC1A516/7

A Q of 100 means that for deviations greater than 7kHz, it may be desireable to reduce the audio output, by damping the tuned circuit with a resistor, until the correct level is achieved.

TV coils: Video IF, colour sub carrier, and sound

Coil type number	Colour	Tuning Capacitor	Frequency	Qu	Siemns type	Turr	ns				
						1-3	2-3	1-3	1.6	4-6	3-4
TKXCA34732CQN	White	27pF internal	36MHz	85	D1N					9	
КХСАК3347АНС	White	27pFinternal	36MHz	85	D3N					9	
TKXCAK3346AEU	White	39pF internal	41 4MHz	80	D4N			6		9	
TKXCA34735EMD	White	82pF internal	31.9MHz	68	D5N					6	
KXCAK3345AEU	White	2 ⁷ pFinternal	31.9MHz	85	[D5N]	11					
KXCAK3344AM2	White	27pF internal	40.4MHz	80	D6N					7	
KXCAK2499ABZ	White	12pF internal	33.4MHz	75	D7N				16		
TXCA34909EMH	White	27pF internal	37MHz	65	D8/9		9		4	İ	
MKANSK1731HM	Biack	560pF external	6MHz	75	A1	8				_	
KANFK2495ET		1160pF external	4.43MHz	35	A2					10	5
BKANK3360AGM	Pink	1000pF external	5.5MHz	41	E2	7					

The above coil system is designed for applications in connection with most IC video amps., including TDA440, TDA4400, TDA4420 etc It is anticipated that further additions to the range will be made available in due course. Also included are coils for TV sound (intercarrier) detection in connection with the TBA120 series.

R	igid coils for	r VHF	токо) molded coi	l series		
Туре	Form	Dimensions (1%)	Tuning Method	Range MHz MHz MHz 1 10 100	L Range	Qu (typ.)	Tap & Sec. coil
S18			1 1 1		0.03µН ~ 0.4µН	100 ~ 200 at 58 MHz 160 ~ 220 at 100 MHz	Pri.; 1 tap; Sec.; None
MC 115	ŀ		Ĭ		0.03µН ~ 0.20µН	50~160 at 58MHz 110~180 at 100MHz	No tap & no Sec.
MC116			I		0.03µH ∼ 0.48µH	50~140 at 58MHz 110~140 at 100MHz	No tap & no Sec.
MC108			I		0.03µH ∼ 0.17µH	130 ~ 190 at 100MHz	Single Winding only; no tap
MC111	Ņ	06¢	I M I		0.03µН ~ 0.50µН	50~140 at 58MHz 110~140 at 100MHz	Single Winding, 2 taps possible; Sec. Available

.

A full range of the S18 series coils is held in stock, and these are listed below. Of the other types, sample and small quantities are available from stock in styles, MC115, MC116 and MC111. An additional publication, entitled 'Molded coils for VHF' is available at 15p, and lists all standard types of these and others, together with full electrical and mechanical detail. Trimmers for the hexagonal ferrite cores, and slot types are available in molded nylon from stock.

Core Material	Ordering Code No,	Colour Code	Centre Frequen cy MHz	Tuning Range Capa c itor pF	L (Ref) uH	Qu. Min.	Turns	TOKO PART NUMBER
A L U M N U M	301AN-0100 -0200 -0300 -0400 -0500 -0600 -0700 -0800	White Red Orange Yellow Green Blue Violet White	100 100 100 100 100 100 100	85 (3%) 51 (3%) 32.7 (3%) 31 (3%) 25 (3%) 21 (1.5%) 17.8 (1.5%) 15 (1.5%)	0.03 0.05 0.064 0.082 0.098 0.12 0.141 0.168	100 100 85 75 95 90 90	1½ 2½ 3½ 4½ 5½ 6½ 7½ 8½	M-20160 M-20002 M-20003 M-20006 M-20158 M-20004 M-20007 M-20156
F E R I T 30-60 MHz	301KN-0100 -0200 -0300 -0400 -0500 -0600 -0700 -0800	White Red Orange Yellow Green Blue Violet White	44 54 58 75 65 58 58 58 58	210 (6%) 107 (6%) 60 (6%) 27.7 (3%) 27 (3%) 26 (1.5%) 21.8 (3%) 19 (1.5%)	0.06 0.08 0.12 0.16 0.27 0.27 0.34 0.40	120 68 150 100 100 180 155	1½ 2½ 3½ 4½ 5½ 6½ 7½ 8½	M-20162 M-20161 M-25025 M-20066 M-20067 M-20068 M-20159 M-25232

TOKO and Murata types for FM, TV sif, 455/470kHz

The ceramic filters described here are designed for use in conjunction with one or more L/C tuned circuits at the preceding stage(s). Ceramic filters offer both high selectivity, combined with no adjustment requirements, and low cost. To obtain the best results, always terminate the filters as shown in the specification tables. Too high a termination resistance will result in narrowing, and peaking of the filter, and vice-versa.

Please note the now obsolete SFG10.7 is replaced by two cascaded CFSE/SFE type filters for FM applications.

opeentoutions					
Туре	Centre frequency	Response	Loss	Input/output impedance	Spurious responses
CFSE / SFE107	see chart	-3dB:280±50kHz -20dB:≤600kHz	≪6dB	330 ohms	>30dB [7-50MHz]
CFS107	see chart	-3dB:300±50kHz -20dB:≪650kHz	≪6dB	330 ohms	>30dB [7-50MHz]
SFE6.0	6.0MHz ±70kHz	-3dB:>150kHz	≪8dB	470 ohms	>25dB [5-8MHz]
LFY455B	455±1 kHz	-6dB:≫6kHz -40dB:≪9kHz	<6 d₿	2K ohms	
LFY455D	455±1.5kHz	-6dB:>12kHz -40dB:≪25kHz	≪6dB	2K ohms	
SFD455B SFD470B SFD460B	<u>455±2kHz</u> 470±2kHz 460±2kHz	-3dB:4.5±1kHz -26dB:<-10kHz -20dB:<+10kHz	<9 d B	3K ohms	

Applications

The CFSE filter is especially characterized for group delay consistant with good stereo reception. The CFS is more suitable in mono and 'roofing' applications.

The CFS/SFE series

When used in FM/TV applications, always remember that the ceramic filter is quite transparent to local oscillator signals, at about 100MHz. For this reason, it is essential that one or more tuned circuits be used to prevent LO leakage from affecting the operation of the IF stages following the filters. Most IC amplifiers have an input loading stage resistor (R*), and this should not necessarily be the value shown in the above table for the filter concerned, but it should take into account the input impedance of the IC itself. The uA753, for example, already uses a correctly terminated 330 ohm input, and requires no R.

The LFY

This recent development combines the highest density selectivity yet achieved. The input/output impedance is easily matched in semiconductor applications - but remember that some LC selectivity will also be required to tailor skirt responses.

Specially adapted types are available in quantity, for OEMs requiring variations of bandwidth, centre frequency etc.

The SFD is a long established ceramic block filter for AM IFs. A 56pF external capacitor is required for neutralization, and coupling the two internal ceramic resonators.

Remember that simply adding stage after stage of selectivity, will not necessarily result in the desired bandpass response, due to the variations in centre frequency, accentuation of passband ripples, and general shrinkage effects. It is generally better to employ a single high selectivity filter block, such as the MFL, MFH etc.

General

The HT series of mechanical filters are well established as the leading cost-effective solution to small size highly selective filters. They are suitable for use in all types of radio, from quality portable radio to CB and communication transceivers.

The filter is made from a high quality alloy "H" shaped resonator, encapsulated within a shield case that also includes the input matching transformer. The HT series are also supplied with an output matching transformer.

Features

Flexible termination impedances, combined with trimmable input/output circuits enable optimum performance to be achieved at all times.

Specifications of HT and HK series:

Туре	Centre frequency	Bandwidth (-6dB)	Selectivity	Ripple in passband
MEH41T	455±1kHz	4 (+1 -0.5) kHz		<1dB
MFH51T		5 (+1 -0.5) kHz	>40dB	<1dB
MFH71T		7 (±1) kHz	$(\pm 8 \text{ kHz})$	<1dB
MFH40K	1	4 (+1 -0.5) kHz	$>22dB(\pm 6kH_7)$	<1dB
MFH50K		5 (+1 -0.5) kHz	$>20dB(\pm 6kHz)$	<1dB
MFH70K		7 (±1) kHz	$>25 dB(\pm 10 kHz)$	<1dB
MFH90K		9 (±1) kHz	>22dB(±10kHz)	<1dB
	h			

Mechanical IF filter TOKO MFL : a 455kHz SSB filter

General

The MFL mechanical filter has been developed as a low cost SSB filter in both generator, and receiver applications. It is constructed from 6 mechanical elements, and housed in a PC mounting plastic case.

Features

The MFL combines high performance, an extremely smooth passband and small size at a highly economical price. Input and output matching transformers ensure easy matching, with impedances that are commonly associated with silicon transistor or IC circuitry.

It thus provides an unprecedented combination of price and performance for the communications, CB and amateur markets.

Dimensions in mm:

Passband ripple

Insertion loss

Linear phase FM IF filters 6 Pole: BBR3132A, 4 pole: BBR3125N

The sudden upsurge in 'linear phase filters' may confuse some of you who had just been educated to imagine that ceramic IF filters were the word in FM IF selectivity. Especially since most linear phase filter characteristics appear somewhat wider than the ceramic filters they are replacing.

The reason is twofold, basically the linear phase filter with its flat group delay is less likely to distort the extremes of the complex multiplex transmission, which requires a passband of some 200 to 300kHz for best results. Otherwise, the trouble will manifest itself in variable group delays, which will upset the relative phases of the pilot tone, the 38kHz sub carrier and its associated sidebands, resulting in a general lowering of the maximum separation and an increase in THD at high frequencies. The wide bandwidth is thus desireable, but in some instances where channel separation is inadequate, it will lead to 'birdies' due to the mixing effects of adjacent carriers and pilot tones. The designer must therefore anticipate these problems, and include a 55kHz low pass filter between detector and decoder. Secondly, the linear phase filter has a reliable and accurate centre frequency, facilitating easy applications with all forms of frequency counter display, and synthesizer. Modern ceramic filters of the CFSE family are almost as good

The HA1137W

There has been a lot written about the new CA3189E recently, but here is largely the same device - available since 1975 from Ambit ! The major feature of the CA3189E is the new deviation muting system, and the very same system is employed in the HA1137W, in fact the HA1137W is a direct pin replacement for the CA3089E series, and may be used in many instances to uprate existing CA3089E circuits by simple substitution. This is not to say that the CA3189E does not have any advantages, because certain aspects of the new design are distinctly improved, permitting easier application due to the lower frequency response of the IF circuits of the CA3189E. However, we will continue to offer all three variations of the CA3089E, since each will continue to appear in published circuits for years to come - and due to the flexibility of application possibilities, each has relative merits in certain designs.

The overall muting performance of the HA1137W is still probably the best, and we are pleased to announce a second source of this particular design from Kyodo. The choice of the quadrature components is crucial, but more information relating to applications can be read in our section on the modules which employ this family of FM devices. It is interesting to note that the CA3089E family is the most widely used specific function linear IC ever designed, and we can state quite categorically that Ambit is more familiar with all the variations and their application, than other company in the world. We will be supplying further information in the data/magazine feature section of this, and subsequent catalogues. The CA3089E series is superior to virtually all other FM IF devices yet announced.

Typical dynamic characteristics

Current consumption	mute on	32mA
input limiting voltage	-3dB limiting	12uV
recovered audio voltage	30% mod only	100mVrms
THD	30% mod	0.1%
S/N ratio	30% mod	60dB
AM rejection	30% mod	45dB
Muting sensitivity	V12=1.4	18uV
Muting bandwidth	15k*	95kHz
Muting attenuation	V5=2	60d B

resistor between pins 7 and 10

Note these readings are related to a practical deviation of 22.5kHz, and should not be directly compared with figures obtained with 75kHz deviation.

For application at narrow deviation, the quadrature feed choke between pins 8 & 9 should be increased to 120uH and the damping resistor from pins 9 & 10 should be omitted.

Further notes on the CA3089E etc. are available when the device is purchased. Most application notes are applicable to all members of the family ie 3089/1137/3189. Please note that at lower frequencies of operation, the internal coupling capacitors for the AGC and mute functions may not be sufficiently large to permit correct operation of these aspects of the IC. The necessary additional circuitry is included in our application notes.

The HA1197

AM radio design has been more static than FM design over the past few years. Early attempts at combining all AM functions into one IC were distinctly unfavourable - the TAD100 and TAD110 were notoriously difficult to work with. Even the more popular decvice from SGS, the TBA651, is not recommended for the beginner, since layout and stability considerations require much patient experiment to optimize. But moreover, most AM ICs offer little advantge over a discrete circuit, using three or four transistors. The HA1197 is the first significant advance in AM radio design, since the exceptional AGC and low THD are not readily duplicated in discrete form. The IC also feeds a signal level meter, which provides a really useful reading when checking relative signal strengths. Despite the internal detector, it is possible to use the device with an IF output, by simply omitting the RF decoupling capacitor at the audio output stage. (C107 at pin 12). This point must be well located away from the IF inputs, since the high level of IF signal can readily cause feedback instability - always feed this IF into a low impedance to keep the RF voltage low. The IF signal is rectified at pin 12, but a single IFT will regenerate a full IF signal for NBFM/SSB demodulation in a subsequent stage.

antenna

Typical dynamic characteristics

Current consumption	Vcc12v	15mA
Signal to noise ratio	74dBu in	53dB
	34dBu	33.5dB
THD	74dBu 90%mod	0.8%
	100dBu 30%mod	0.4%
AGC range	10dB AF shift	75dB
Output voltage	74dBu in	250mV
Meter current	100dBu in	2 40 u A
All modulation levels taken as	30%, except where	stated

The HA1197 will work with its internal oscillator up to 60 or 70MHz but it is not recommended to employ the internal oscillator much above 14MHz, if best stability is to be obtained. With an external oscillator, applications at 50MHz have worked very well, offering an input sensitivity of 4-10uV to the IC pin 2. When injecting an external oscillator, a level of some 250mV p-p injected at pin 6 is recommended. Alternatively, a higher level oscillation injected into pin 7, with the RF stage coupled into pin 6, instead of pin 7.

The resistor in series with the IF admitter circuit (pins 9 & 13), may be reduced progressively - or replaced by a preset of 500 ohms, and this will bring up the level of IF gain - probably to the point of instability. This is not a suitable point for a panel control.

All types of TOKO filters are suitable for the IF stages, remember to precede ceramic filters with an LC stage. The IF stages will operate at up to 10.7MHz with no apparent loss of performance, but the layout requirements become far more stringent when working at these frequencies. We are always pleased to hear about customer's applications, and will be printing such circuits in subsequent issues so if you have an interesting application, please write and advise us.

(With a 156uH osc. coil, use 270pF padding)

Specifications:

Parameter	Conditions		min	typ	max
Supply voltage		V	8	12	15
Supply current	inc beacon lamp	mA			100
Operating temperature		°C	-20	+20	+70
Lamp current		mA			75
Input impedance		Ω		75k	
Channel separation	20mV pilot f=100Hz	dB		42	
	L+R = 180mV f=1kHz	dB	40	55	
	vco = 76kHz f=10kHz	dB		42	
Stereo THD	20mV pilot f=100Hz	%		0.1	
	L+R = 180mV f=1kHz	%		0.1	0.3
	L= 45%, R=45% f=10kHz	%		0.15	
Output voltage	V input = 200mV	V		1.2	1
Channel balance	V input = 200mV	dB	-1.5	0	+1.5
Mono THD	V input = 200mV	%		0.05	
Carrier leak	Before filter at 19 & 38kHz	dB		- 30	I
SCA rejection	F sca = 67kHz	dB		-75	
Pilot level to switch lamp		mV	4	7	13
Stereo lamp hysteresis		dB		6	
Capture range	pilot = 14mV	%		6	
Signal to noise ratio	V in = 200mV (at 4k7)	dB		80	
Max. input	MONO THD 1%	mV		400	
Threshold voltage at pin 12	to enforce mono	V		0.55	

The HA1196

Since the widespread availability of stereo FM broadcasting, stereo decoders have evolved rapidly from noisey, instable and generally unsatisfactory discrete configurations - into simple and effective ICs, requiring no complex alignment for easily repeatable results. The first coil-less phase locked decoder was devised by Sprague in the USA, and rapidly adopted as the basis of most modern decoder designs in the shape of the 758/1310 families. All this happened some four or five years ago, and since that time, there have been few serious contenders to compete with the 1310. The CA3090AQ offers an all round improvement, but the high carrier leakage, and the necessity to use a coil (albeit performing the same function as the preset trimmer in the MC1310 circuit), have restricted its widespread application. The CA3090AQ is also single sourced by RCA, another major consideration for major manufacturers seeking to ensure reliable continuity of supply The HA1196 is thus the first major advance in stereo decoder technology, since it offers a number of worthwhile features that are not available with the 1310 families:

The distortion and signal to noise figures are significantly improved over the 1310.

Automatic stereo muting is provided in conjunction with the IF IC to prevent unwanted chatter during tuning.

3 A very considerable amount of audio gain is available within the IC.

4.

It drives pilot tone filters directly. Separation control is available, to optimize the circuit for individual IF characteristics 5.

6. 'Click' free stereo switching

The HA1196 provides an audibly better decoder as a result of all these features, and we invite those of you with earlier types of discrete (or IC) decoder, to swop over and see for yourself. The Separation adjustment in particular, allows for a good deal of tolerance in the preceding IF to be 'tuned' out for optimum performance and maximum separation. The HA1196 is not a pin replacement for other types of decoder.

Further refinements with the HA1196

Experimental results have shown a marginal improvement in absolute performance, when a 19kHz tuned circuit is employed in te regenration circuit. These types of modification are not suggested unless you have the necessary equipment to perform the ensuing critical alignment procedures. Any successful improvements notified to Ambit will be reproduced in subsequent catalogues where justified

Ambit's laboratory can provide a decoder system using selected components, with 86dB S/N and 0.02% (1kHz stereo) THD, but these are only available to special order, at extra cost.

Most versatile low power audio/ 9v AM tuning diode ULN2283B & KV1210

The bias decoupling point at pin 1 requires a capacitor with a minimum voltage rating of 3 - and in many applications where power output is kept low, this capacitor may be reduced to as little as 10uF - but since the output stage is class AB, current peaks occur on volume peaks, and must not be allowed to re-enter the voltage amplification stages via the power supply line. The output coupling capacitor may similarly be reduced in size where full bass response is not considered essential - as in many battery applications, the speakers used would not respond in any case.

Voltage gain typ 43dB

Notes: This IC is basically the same audio amplifier as used in the TDA1083 radio IC system. In cases where a lost cost stereo portable radio is desired. the ULN2283B makes an ideally compatible 2nd channel amplifier.

The voltage range makes this device ideal in battery operated equipment of all types - but in a radio enviroment, the same output lead RF decoupling precautions should be taken as suggested for the AF output of the TDA1083.

Varicap tuning of AM: The latest installment

Ever since Motorola announced the first low cost AM tuning diodes, the MVAM1 and MVAM2, interest has been running high with set manufacturers - but this has not yet been converted into a vast number of models on the market featuring this uniquely flexible and "programmable" approach to tuning.

The mass-production problems surrounding the MVAM series centre largely on production spreads - which make reliable tracking and scale alignment a problem. The fact that until this new diode from TOKO, tuning voltages in excess of 12v were always considered necessary to be able to tune the MW and LW with a sufficient margin for the requirements of the market. So, now we have TOKO's KV1210 - the first to do the trick with only 9v ! This means operation in car radio is possible: and particularly important is the fact that most synthesiser

The 'spare' tuning ratio of the KV1210 permits tuning over the range 2-9v, thus assisting Q and overload characteristics at low frequencies. Theoretically, the necessary ratio to tune 525-1605kHz is approx 11 - but stray layout and trimmer capacitance increases this 'minimum' to a widely accepted datum of 15:1. To track an oscillator coil of 110uH nominal inductance, the oscillator section should be fed in series with 370-430pF - though the final value will depend on strays etc.

As an alternative to trimmer capacitors, and in order to keep all residual capacity as low as possible, the same arrangement as proposed in the TDA1062 BAnd 2 FM tunerhead is suggested.

Sprague/Telefunken TDA1083

This is undoubtedly an IC with a big future in 1978 - the first really useable combined RF/IF/AF device that keeps all external components to a minimum, and maintains excellent performance in a superhet configuration. However, the design is a tried and tested one, since an American manufacture has made over a million radios in the past couple of years, when the design was exclusively their own. We now offer this IC, together with a suitable selection of the World's finest coils and filters.

The device works down to an exceptionally low Vcc - typically only 2 volts - and it draws a very minimal current (under quiescent conditions). Overall current drain is obviously largely a function of volume level. We are interested to learn of any uses for the TDA1083/ULN2204 in the fields of hand-held communications equipment and radio control, and hope to be publishing further details of our own developments in future issues.

The stability of the circuit depends on layout - and in the case of the TDA1083, layout is not as critical as has been the case with all previous attempts at an "all-in-one" radio IC. The earth plane should run through the centre of the IC layout, and the speaker leads must be fed from a screened cable - but the intelligent layout of pin functions leads to a naturally satisfactory layout that is indicated by the circuit diagram itself. A choke of 22uH should be placed in series with the AF output on pin 12, since the negatives current peaks from the AF amplifer can create a small spurius oscillation between 18 and 22MHz, that must be surpressed to prevent harmonic interference on FM. This applies specifically where loudspeakers of 16 ohms and below are used.

Simple low current two stage Band II tunerhead

Tuning capacitor: 3.5 to 20pF per section (or varicap)

In general applications, the BF595/BF395 is better suited than BF274, which occasionally show instability, due to their much higher ft characteristics.

See pages 53 to 57 for further information on the TDA 1083

The TFK TDA1062

where the absence of trimmer capacitors permits the complete band of 88 to 108MHz to be tuned with just 2 - 7.5V bias. This compression of the tuning voltage range offers many advantages - immediately it will be seen that operation from a fluctuating 12v supply is quite feasible - but it also means that the stability and purity of the tuning voltage rail is emphasized, where a small error would create approx 3 times the hum/noise that would otherwise appear in a more conventional 20v bias system. Where 20v of tuning bias is available, however, the upper frequency range of the unit is greatly extended allowing reception into the aircraft band.

_	_		
Ch	aracte	risti	ics

Characteristics					
at 25 ⁰ C ambient, 10v supply, 95MHz		Min	Тур	Max	Comments
Supply current	mA		30		
Supply voltage range	V V	9		15	
Operating temp range	t ^o C	-25		+85	to +125 in storage
Tuning range from 2 - 7.5v bias	MHz	88		108	
Power amplification	dB		30		50 ohm source and load
Noise figure	dB		5.5		
IF bandwidth	MHz		0.5		
RF Bandwidth	MHz		1.7		
Image rejection	dB		80		Exceptional
IF rejection	dB		100		
Half IF rejection	dB		90		
Ultimate quieting	dB		70		
Oscillator pulling for OdBm input	kHz		10		
	kHz		2		With external PIN diode AGC
Antenna input at AGC threshold	dBm		-30		7mV at the antenna
Oscillator radiation at antenna input	dBm		-60		
Tracking 88-108MHz	dB		1.5		Circuit uses most linear region of BB104

Typical layout viewed from top, as seen in the AMBIT 91062 tunerhead board. By changing the coil, set, this board may be used to cover from 30 - 200MHz. See TDA1062 additional data for more design information covering all aspects of the unit 's performance.

The additional track on the input coil is for input windings where 300/75 ohm windings are required.

As HA1137W, except for the AF level, which is adjustable from 0.5 to 6v p-p , and the AGC, which covers the range 8 to 0v with the onset of operation determined by the setting on the pin 13 preset, Full data available on purchase of IC .

Ambit 's technical services are pleased to offer applications information and assistance to all our customers - but please note that extensive reports and evaluations may be subject to the terms of our engineering charges. Ask for further details.

AM/FM, FM IF amps- Balanced mixer

MC1350, uA753, MC1496

5 and 7 W RMS Audio

The TBA810AS and TCA940

When using these ICs, remember that they are layout critical, in much the same way as any HF device. The very heavy current drain means that low impedance, well designed earth paths are essential; pin 9 is the input earth, pin 10 the output earth, so ensure that pin 9 doesn't get to the circuit earth point through that of pin 10. In the same way, ensure that the output Zobell network earth is associated with the output earth at pin 10. The absence of this Zobell network will invariably lead to HF instability under heavy current drain conditions, and possibly ultrasonic instability causing the device to heat up rapidly, with no apparent audible effects.

Both the TBA810AS and the TCA940 are going to draw heavy current on signal peaks, and this means that the power supply voltage is likely to fluctuate considerably, unless care is taken to provide heavy current regulation. In battery equipment this is generally not possible, so make certain that any circuits associated with this are well decoupled in their own right's - or the effect is likely to be low frequency oscillation, peak distortion etc. Always remember to earth the tabs, and prevent HF signals from reaching the input - where they are likely to be unduly amplified, and create instability and inaudible overload problems.

Voltage / Power supply regulators

uA723/NE550 and 78XX series

The 723 is the classic IC voltage regulator IC. With few external parts, the device can be made into a complete PSU of extremely high perform-ance. Once again, remember that HF considerations apply, so good supply decoupling is necessary

Specifications uA723CN Continuous input voltage 40 660 Power dissipation max. mW 0 - +70° Operational temp range С % % Line regulation Vin 12-15v .01 0.1 12-40v % dB %/°C .03 86 Load regulation load current 1mA-50mA Ripple rejection 50Hz to 10kHz .003 65 Av. temp coeff. of output Short circuit current limit (Rsc 10Ω) mA 2.5 uV Output noise voltage C ref 10uF Standby current drain 1.3 mΑ 9.5 - 40 Input voltage range v 2.0 - 37 Output voltage range v Input/output voltage differential 3.0 - 38 Pin functions (DIL package) 1: nc 2: current limit 5: non-inv. input 6: Vre 4: Inv. input 3: current sense 6: Vref 9: V zener 7: V-8: nc Vc V out 11: 12: V+ 13: 10: Frequency comp 14: nc The 723 output voltage is determined by the following V ref $\frac{R1 + R2}{R2}$ = Vo in the basic regulator circuit: and the current limit I limit = Sense voltage/Rsc In the case of the pass transistor output version:

V ref R2 R3 + R4 R4 R1 + R2 Vo

Sense voltage = 0.66 v at 20° 0.57v at 75° (C)

(Full manufacturer's data (National) 5 pages) High current regulator with external NPN pass transistor

Three terminal voltage regulators are now well established as the leading means of achieving power regulation at fixed voltages. They are thermally protected and compensated - and apart from a tendency to produce RF noise, they are ideal for any application within their specification.

~		
5000		~ ~ ~ ~
2080		
0000	I I I GAL	
•		

PARAMETER	7	8XXC	78MXXC	78LXXC
Max load current	А	1	0.5	0.1
P dissipation free air	W	2*	1.0	0.7†
P inf heat sink	W	15	5	1.7
Max load regulation	%	2	2	2
Max line regulation	%	2	2	2
Max quiescent I	mΑ	8	8	6
Typical ripple rejectio	ndB	70	6 5	74
Typ. dropout voltage	V	1.5-2	1.5-2	1.5-2
Thermal resistance	°C/W	4*	5*	40†
Max input voltage **	V	35	35	35
* TO220 † TO92	** [`] 40v	/ for 20 8	k 24v devices	

The three basic types offered here are positive voltage regulators where the main selection factor is the power dissipation sought. This is determined by subtracting the output voltage from the input voltage, and multiplying by the max current required.

18volts in, 12v out at 200mA 6 x 0.2 = 1.2W eg

which is either covered by the 7812UC in free air conditions or the 78M12UC with a small heatsink. The heatsink is derived from the heatsink transfer characteristics, given in the form of the numbers of degrees C by which the heatsink ambient temperature rises per watt dissipated.

The maximum junction temperature is not the case temperature ! Where the max, junction temperature is given as $125^{\circ}C$ - this indicates the onset of the thermal shutdown, so always aim to achieve a case temperature of 100°C max to allow for rises in ambient temperature conditions.

Earthing, once again, deserves special attention. As a general rule it is best to earth the regulator circuit to the same point as the rectifier / transformer circuit. The 78XX series are just as prone to HF instability as any other linear gain system, and so please note the careful decoupling described above. The ' π ' section LC filter shown is advised for PSUs in radio reception equipment, in DC and AF applications, simply use 1uF - though better ripple rejection may be achieved with 100 -470uF. The rapid switching effects in silicon rectifier diodes may also lead to problems in PSU design, and when tracing noise in a PSU, do not overlook this possibility, and decouple each diode with Q.1uF ceramic discs .

7 to 30v adjustable regulator Output current depends on heatsink of 7805

Waveform generation / timers

ICL8038, NE555, NE566

The 8038 is an exceptionally versatile waveform source for various applications in test equipment, musical sources, tone generation. Sine, square and triangle outputs are simultaneously available, with excellent amplitude stability.

Specifications

unit	min	typ	max
V	10		30
mA		12	20
Hz	.001		1M
%		0.2	
XVcc		0.9	
nS		100	
nS		40	
8	2		98
xVcc		0.33	
%	[0.05	
xVcc	0.2	0.22	
%		0,8	3
	unit V mA Hz % xVcc % xVcc % xVcc %	unit min V 10 mA 10 Hz .001 % 2 % 2 % 2 % 2 % 2 % 2 % 2 % 2 % 2 % 0.2 % 0.2	unit min typ V 10 mA Hz .001 % Vcc 0.9 nS nS 40 % % 2 .033 % 0.05 xVcc % 0.2 .025 xVcc 0.29 .033

+36v MAX

The circuit shown here represents a complete AF signal source. The outputs should be buffered in voltage followers, and provided with attenuators to suit the desired application

The 8038 may also be used as a linear FM source - or phase locked to a reference in synthesis applications. The sweep input (pin8) permits operation in a variety of effects modes - and consequently, the 8038 has frequently featured in circuits published over the past couple of years. (Ambit were the first to bring you the 8038 - now almost a 'standard' 1)

sinewave linearity

20Hz to 20kHz audio oscillator

	1		1						
Parameters	unit	min	typ	max		min	typ	max	
Supply voltage	v	4.5		16 .	Supply voltage V	10	200	10	_
Temperature drift	ppm/°C		150		lemp drift ppm.		200		
Supply voltage drift	%/V		0.01		Supply current mA	1	7	12.5	
Threshold voltage	%Vcc		66	1	Max frequency MHz		1		
Trigger voltage at Vcc 15v	v		5		Supply v drift %/V		2		
5v	V		1.67		Control terminal				
Trigger current	uA		0.5		input impedance ohm		1M		
Reset voltage	l v	0.4	0.7	1.0	output impedance ohm	l I	50		
Current sink/source	mA			200	Triangle output V	1	2.4		pp Vcc 12
Power dissipation	mW		1	600	Square output V		5.4		pp Vcc 12
					Rise time nS		20		
					Fall time nS	1	50		

Basic configuration: (with Zobell network for high current loads)

The LM380

Of all the ICs introduced to the enthusiast/home constructor by Ambit, the LM380N is amongst the best known. It is one of the simplest and most amplifier and communications applications it is not necessary to exceed 100uF since the bass frequencies lost thereby would only be wasted in excess current drain. Being basically class B, power drain is directly proportional to the level of volume selected. The two inputs correspond to the + and - input of an op-amp - and in many respects the action of the LM380 may be likened to the behaviour of an op-amp, except that gain here is internally fixed at 50 V/V (Although this is the second 50 V/V. (Although this is shown as increased in the second application)

Pin 1 is a supply bypass point, and may be decoupled to provide additional hum rejection. It also permits the amplifier to be easily and effectively muted with the additional of a single external PNP transistor, by pulling pin 1 to the positive supply to mute.

Specific	ations
----------	--------

Parameter	unit	typ	_
Input resistance	k ohm	150	
Bias current	nA	100	
Gain	V/V	50	
Output voltage swing	Vp/p	Vcc -4	
Quiescent supply current	mA	7	
Quiesecent output voltage		½Vcc	
Bandwidth (2W into 80hms)	kHz	65	
Supply voltage	V	9 to 22	
Short circuit current	А	1.3	
THD	%	0.2	

The device has both thermal, and current output limiting, making destruction difficult - though not impossible ! Reverse insertion into a socket with a low impedance power supply is hazardous. Adequate heatsinking is necessary to achieve max output before thermal shutdown occurs.

Power	output	into 4	ohms:	14v/2.5W,	12v/2W
	·	8	:	20v/3.5W,	12v/1.25W

[SL60745 alternative part number]

The LM381

The LM381 is an extremely high gain preamp for dual channel operation the layout of pin functions is essentially symmetrical, allowing best channel isolation, and preventing feedback instability. Once again it may be likened to an op-amp, characterized for audio applications. It has very many HiFi applications in filter stages, preamps, tone controls etc., and also instrumen-tation applications, where the high gain is available over a wide bandwidth. An applications and design leaflet is available for 50p, with most formulae and worked examples applicable to various op-amp amplification stages.

Specifications at 14v Vc	c	
Parameter	unit	typ
Input resistance	ohm	100k (+ input) 200k (- input)
Open loop voltage gain (single	ended) V/V	320,000
Supply voltage range	v	9 - 40 v
Supply current	mA	10
Output resistance (open loop)	ohm	150
Output current source	mA	8
sink	mA	2
Output voltage swing	V	Vcc - 2
Small signal bandwidth	MHz	15
Power bandwidth 20v pp ou	itput kHz	75
Maximum input voltage for li	near op mV	300
Supply rejection ratio	dB	120
Channel separation	dB	60
THD with 75dB gain at 1kHz	%	0.1
Total equiv. input noise (Rs 6	600ohm) uV rms	0.55
Noise figure 50k 10 - 10	OkHz dB	1.0
10k 10 - 10	OkHz dB	1.3
5k 10 - 10	0kHz dB	1.6

Determining gain: in the 'Flat' (ie no frequency compensating feedback) configuration:

 $\frac{R4 + R6}{R6}$ and C2 sets lower -3dB point where C2 = $\frac{1}{2\pi F_0 R_0}$

C rolloff =

$$\frac{1}{2\pi f \cdot 2.600 \cdot 10}$$
 A/20

where f is the HF -3dB point, A is the mid-band gain in dB

RIAA amplifier

(Input should be loaded to suit cartridge impedance)

0.1

In view of the wide bandwidth of the LM381, a ferrite bead should be placed as near to the input pins as possible - and the power supply should be decoupled as close to pin 9 as possible via a 0.1uF An additional capacitor (between pins 5/6 and 10/11) provides an HF rolloff facility - details of which are included in the LM381 application note.

Multifunction quad amp

LM3900/MC3401/CA3401 etc

Pin

functions

+Vcc 4 to 36v

270k

100k

100k Bass

1k5

22n 1ñ

4k7

22n

22n

1uF

167

(both pots linear)

1uF

3u3

R2

The LM3900: general

In the majority of op-amp configurations, the LM3900 offers a low cost alternative, together with less exacting supply voltage requirements. The universality of the LM3900 is almost unequalled in linear IC technology, and with a little thought, the LM3900 can be persuaded to perform a really vast number applications. Basically, it is an excellent audio processing device in simple amplification configurations, through to variable Q active filters. The presentation of four amplifiers in one package permits easy reduction in space requirements in quite complex circuits - and despite the apparent low cost, specialized audio op -amps costing far more have only marginal benefits.

~							
×.	~~	~	 00	••	^	-	
- 1			1.20				
~	~~~	~~.	 ~~		~		
	•						

Parameters		Min	Түр	Max	Unit
Supply voltage		4	12	36	V
Supply current outputs	unloaded		6.2	10	mA
Open loop voltage gain at 1	00Hz	1.2	2.8		V/mV
Input R at inverting input			1		M ohm 🗸
Output resistance			8		k ohm 🛛
Input bias current			30	200	nA
Slew rate positive	output swing		0.5		V/uS
negative			20		V/uS
Output voltage swing		Vcc -1		Vp-p	
Output current capability (source)		6	10		mA
	(sink)	0.5	1.3		mA
PSU rejection ratio			70		dB

Application 1 V_{BF} Biasing

Vout (DC) = 0.5 $(1+\frac{R2}{R3})$ Amplification (V) = $\frac{R2}{R1}$

This is the basic AF amplifier - select value to set Vout (DC) between the supply voltage for best dynamic range. Frequency compensation in the feedback loop can be designed for RIAA etc equalizations.

1M V goes positive to reduce gain

Application 2 Voltage controlled gain

Although the configuration is essentially similar to that of the basic AC gain stage, the feedback (AC) includes a voltage controlled resistor, in the shape of the BF256FET. This type of amplifier is useful in a variety of situations: talk over in mixers - where the amplified mic signal is rectified to produce the necessary control voltage, linear squelch in radio receiver applications, where the input time constant on the FET gate may be adjusted for the rate of change of attenuation desired; the 1M pot may be used to adjust the degree of gain reduction desired, and the capacitor in series may be chosen to suit the frequency characteristic desired.

Application three active tone control

The values shown here (with a 12v supply) offer approx. ±17dB of tone control.

A complete mixer with prefade/talk over/tone control/VU

This complete circuit is scheduled to appear in one of our subsequent issues, and provides a complete stereo control preamp for disco applications, sound distribution, home movie sound mixing etc.

The block diagram omits many of the necessary components, and is only intended as a guide.

Every amplification function is performed inside an LM3900 section, and provides an overall THD better than 0.1% ! One of the great advantages of using the LM3900 is the presettability of the various gain stage amplifications, and the wide dynamic range available

due to the output swing capability of the basic LM3900 gain stage. The prefade monitor is switched between the various input amplifier outputs, and fed separately to a monitor PA of the desired level.

13K, 10K and 10E/10EZ

2 1 0.5

uН

10 20

5

100

50

200 turns

The 13k series

The 13K is a 13mm square based coil, with a 5mm diameter centre former with integral spiral molding in which the windings are held with exceptional rigidity. Two slugs provide adjustment for double coils, if required, with the access available from either end. The wire diamaters may vary from between 0.5 and 1mm - though the larger the wire diameter used, the larger the Qu available.

Characteristics:

 Torque of core
 10-150 gm.cm

 Dielectric strength
 500v between each coil and the coil and case

Initial symbol **Frequency** range Temp coef Qu Adjustment range V4FCN 2-20MHz nom 220±60ppm L± 10% 70 V4LCN 2-20MHz 150±60ppm 50 ... V4VMN 30-60MHz 0 100

The 13k parameters above are given for wire of 0.4mm diameter For HF oscillator applications, it is recommended that as little of the core as possible be employed in the tuning of the coil, since the drift of the coil assembley is largely a function of the ferrite employed. 13k formers supplied will have windings already - since these are sold primarily

13k formers supplied will have windings already - since these are sold primarily as "dead stock" items. Large quantities of formers are not available other than as ready wound items ie we cannot supply piece parts only.

The 10k series

The 10k is a 10mm square base coil, with 3mm diameter former, with integral spiral molding in which the windings are held rigidly. A single slug core is provided for adjustment, accessible from either end of the former body. Conventionally, the primary winding should be placed between pins 1 &3, with pin one being 'earthy' wrt RF. The tap on the primary at pin 2, with secondary

or coupling windings between pins 4 &6

Characteristics:

Torque of core Dielectric streng	10-150 th 100v b prima	10-150 gm.cm 100v between windings and case, and between primary and secondary					
Initial symbol	Frequency range	Temp coef	Qu	Adjustment rang			
KAN/KAC †	2-11MHz	220±100 ppm	100	F± 10%			
KXN/KXC †	11-45MHz		100	••			
KEN/KEC †	45-100MHz		80	F± 5%			
KACA	2-11MHz	1 50±100 ppm	80				
KXCA	11-45MHz	**	80	••			
KECA	45-100MHz		70				

†Include ferrite cup core

The 10E/10EZ series

The 10E and 10EZ may be considered as the same thing for the purposes of this description - in practise the 10E has the threaded adjustable cup core fixed in an extension of the base - whereas the 10EZ types have the threaded core held in a removable plastic holder, that snaps into place, after the winding has been fixed on the central ferrite bobbin core.

These coils are the basic types for use in the range 100kHz to 15MHz and offer exceptional Q combined with small size. The actual inductance is adjustable over as much as \pm 50% of its nominal value, though Q and TC may suffer if taken to such extremes. For the majority of amateur applications, the 10EZ style is probably one of the most effective coil systems to employ, combining high Q, small size, wide adjustment range and ease of winding.

The formers supplied are likely to have existing windings, and in some instances, internal capacitors, which may be disabled by simply breaking with a small screwdriver. As with the 13k, we are unable to supply entirely blank formers in quantity.

Characteristics:										
Forque of core Dielectric strength	40 - 50 Depen 100v b	40 - 500 gm.cm Depends on wire insulation quality. Max 100v between case and windings								
nitial symbol	Frequency range	Temp coef	Qu	Turns/uH						
RL /YL	0.2 to 1MHz	750±120	70	172/640						
RM/YM	••		110	165/ 64 0						
RZ/RH/YH			140	1 48/640						
154P	2 to 15MHz	220±100	60	14/4.3						
154A		••	110	14/4.3						
RW /YX	0.5 to 2MHz	1 50±100	110	85/290						

For details of dimensions, and further descriptions, please refer to the general standard coil information sections of this catalogue

The TDA1220

Many internal features of the TDA1220 resemble the TDA1083 - the balanced mixer, the oscillator - and so it is not surprizing that this IC exhibits the same type of versatility, with operation of all AM functions in excess of 40MHz. The oscillator coil requires a slightly higher impedance than with the TDA1083, which means more coupling turns - the oscillator Z is given as being 5k, and for the higher SW bands, the entire tank circuit may be used instead of the coupling winding. The additional capacity aquired in this fashion is only 5pF, and so can easily be accounted for in the trimmer ranges. However, once again the oscillator amplitude is controlled via the AGC line,, and so SSB performance at frequencies above 5MHz is not particularly good. SSB may be derived in the same way as with the TDA1083 (see the "one chip communications receiver"), or it may be achieved with a separate MOSFET product detector.

The IC exhibits a fairly startling AM sensitivity, with 0.5uV of AM being discernible when fed directly to the chip at 1MHz. At 30MHz, this rises to about 2uV, which is nevertheless quite a substantial amount of gain, considering most of it takes place at a single frequency. The next word is therefore a cautionary one concerning stability - the IF may become unstable, particularly in the MW at 2IF (2.470kHz for example - 940kHz.) In fact, the 455kHz is rather better, since the AGC reduction when tuned to Radio 4 tends to mask the low frequency burbles. The answer is easily enough found, damp the input coupling on the IF filter until it stops - usually about 1.5k does the trick - and in many applications, this spot interference is not really much of a problem, and can be ignored in favour of using as much gain as can be achieved.

What all this adds up to is a superb device for a variety of broadcast and communications applications. In fact, the DC coupling of all the internal stages implies that the IC is ideal for use as a synchronous SSB receiver, with AF being filtered from the mixer output, and then amplified in the IF amp, used at audio. The AGC thus derived would be audio referred - which is what you need for best SSB, and the access to the AGC time constant at pin 8 permits tailoring of this response to suit the desired attack and hang characteristics. Not much has yet been said about the FM section, and this is basically a cut down 3089, minus muting, and AFC outputs. The AFC may be derived (and in the usual sense) from the audio output - the detail given for the TDA1083 shows the method to use for the TDA1220. The absence of a muting facility shouldn't matter in the types of applications anticipated for this device, which are mainly in the areas of car radio, and the great reviving area of a simple mains power "table radio" (brought about by the massive increase in battery prices, as it costs almost 100 times less to power from the mains) and of course, the IC course the added sophistication of an easily made SW feature is a big plus in many areas of the world. In non-stereo applications, the IF should have sufficient gain when driven directly from the tuner

output (AT3302 for example - but since the FM section does possess potentially HiFi specifications, the use of an IF preamp will raise the general off-station noise to an uncomfortable level, and a noise mute is a necessary feature. An FET gate would permit a smoother mute transistion than the snappy type employed inside the 3089 family.

Specifications						
Parameters	Test conditons	Min	Тур	Max	Units	Comments
Supply voltage		4		18	v	No internal shunt regulator, so OK for direct mobile power
Supply current	AM at Vcc 9v FM at Vcc 9v		15 20		mA mA	Not quite the same league as the amazing TDA1083
Input impedance Input impedance Output impedance Oscillator Detector	pin 2 pin 5 pin 3 pin 1 pin 6-7		5k/10pF 2k/5pF 50k/3pF 5k/5pF 20k/5pF			Use MWC2 coil
AM input sensitivity Best S/N AGC range Recovered audio Distortion Overload Local oscillator dropout	pin 2 S/N 26dB at 1MHz 10mV RF input AF level shift 3dB 1mV in, 80% mod at 1kHz 1mV in, 30% mod at 1kHz THD 10% at 80% mod	2	10 56 75 200 0.5 150		uV dB dB mV 5 mV V	Comms. use down to 0.5uV good very good for AM as TDA1083
FM input limiting voltage AM rejection Ultimate S/N THD Recovered audio	10.7MHz Input 200uV+ Input 10mV Full 75kHz dev. at 1kHz Input 1mV, 75kHz dev. at 1kHz		25 45 65 1 <u>.</u> 0 220		uV dB dB % mV	

(Recovered audio is a function of detector coil damping)

Discrete semiconductors Transistors, FETs, MOSFETs, Unijunction **Bipolar** NPN types: Type Vceo h_{fe} @ lc (mA) ft @ Ic (mA) P tot @ 25⁰C Similar to Ic Max (mA) ZTX107 BC147, BC107 etc 125/500 50 150 10 300mW 100mA 22 ZTX108 BC148, BC108 etc 30 125/500 150 10 300mW 100mA ZTX109 BC149, BC109 etc 30 240/900 2 150 300mW 100mA 10 ZTX413 BC413 30 300/800 2 150 10 300mW 100mA low noise types 4dB NF @ 100MHz 4dB NF @ 100MHz **BF194 RF594** 20 20 260 200 65/220 1 250mW **BF195 BF595** 35/120 250mW 40 1.6dB NF at 100MHz 1.7dB NF at 1MHz **BF241** 36/125 400 300mW BF395 **BF195** 30 35/125 180 350mW 1 1 BF224 30 30/85 7 800 7 150mA RF amp/ IF amp 360mW 20 30 **BF274** 100mA use for osc/mixer 70/**250** 1 700 1 200mW 40238 40/70 7 400 7 360mW 100mA shielded RF amp/osc PNP types: **ZTX212** BC212 50 60/400 2 200 10 500mW 200mA **ZTX213** BC213 80/550 2 500mW 30 200 10 200mA ZTX214 BC214 30 140/550 2 100 10 500mW 200mA **Power types** NPN ZTX451 60 50/150 150 1**5**0 50 1000mW 1A 12.5°C/W BD515 45 60/350 150 160 200 10W 2A 6.25°C/W BD165 45 40/80 150 6 500 20W 1.5A BD377 5°C/W 60 60/150 150 25W 2A BD535 60 250 50W 2.5°C/W 25min 2A 3 4 A **BD609** Hi voltage 3055 1.39°C/W 80 1.5 30/50 2A 10A 1A 90W PNP ZTX551 60 50/150 150 150 50 1000mW 1**A** 2A 1.5A **BD516** comp to BD515 45 45 60/350 150 125 200 10W **BD166** comp to BD165 40/80 150 125 20W **20**0 BD378 comp to BD377 60 60/150 150 25W 2A BD536 comp to BD535 60 50W 25 min 3 250 4A 2A **BD610** comp to BD609 80 30/50 2A 1.5 90W 10A **1**A MOSFETs Vdss G1/2 to source V Power Gain at MHz Noise figure **IDss BF900** 20 ±6 20d B 200 2dB typ 10mA typ **RF/Mixer** 25 25 18 **MEM680 ±6** 21dB 200 3.0dB typ 12mA typ **RF/Mixer MEM616** RF/ FM RF 40673 ±6 ±3 18dB 200 3.5dB typ 15mA typ 40822 100 24dB 2.0dB typ 15mA typ ±3 40823 18 100/10.7 2.5dB typ 18dB conv 15mA typ FM mixer J FETs DC to 1000MHz general purpose FET 'N' General purpose P channel gate/switch **BF256** TIS88A, 2N5245 30 14dB gain at 800MHz, 1dB NF at 100MHz E176 2N3820 30 Vgs (off) 1-4 v, Rds 250 ohms MSC **TIS43** general unijunction 30 **Base connections** BF224 ZTX 40238 BD165/6 BD609/610 BD515/6 BD535/6 **BF274 BF241** BF194/5 C b ·e e C D О 0 b 0 C C 0 b e C ē ē **BF256** BF256L E176 **BF900** 40673 **TIS43** MEM types g ql d ۵ d S g q d b gŻ Q S S gl Us

Selecting semiconductors for RF

Of the discrete types, the best rule of thumb when selecting semiconductors for RF applications is to avoid devices with a high ft in common base applications, and get the best ft devices for oscillator applications. The BF194/5 are amongst the most widely used general purpose RF/IF amplifiers, the BF274 is an excellent mixer/oscillator. The BF224 is a useful amplifier and multiplier in transmit applications, and the 40238 should be used where a screened device is necessary. For a full appreciation of small signal RF design, reference must be made to the Y parameters, and their application - which are beyond the scope of this section of the catalogue. For the majority of RF amplification applications, the dual gate MOSFET is one of the most effective, and also one of the easiest devices to work with. The high input impedance allows simple matching to tuned circuits, and the AGC capability of G2 is well known.

The JFET is a particularly good oscillator - so good that almost any JFET common source configuration will require neutralizing to prevent unwanted oscillation taking place. In common gate configuration, stability and bandwidth are improved, but maximum gain reduced. One of the most effect RF amplifier circuits is the cascode:

This configuartion has very low feedback capacitance, hence good stability, combined with the gain of a common source stage and an excellent noise figure. Either reverse or forward AGC may be applied, with a Max gain at V agc approx. Ov. This type of circuit is well suited to 'preamp' and preselector circuits where gain control may be a manual function, since the AGC range is not as good as that of the standard dual gate MOSFET stage.

The KB4423 is a new IC from TOKO/Kyodo, primarily for auto noise suppression in car radio - where impulse interference is the prime cause of reception degradation. The main problem is usually other vehicle ignition systems, and is thus is effectively beyond treatment in any other fashion. The blanker simply substitutes a period of "nothing" for the duration of the impulse. However, this approach is also suitable for applications in AM, record scratch conditioning and fixed HiFi (to eliminate thermostat, and general mains switching noises. All filter and time constants are externally accessible, and thus re-programable by the designer.

In the application board 11219B, two additional facilities are incorporated for defeating the gate operation, thus bypassing the blanking system, and for operating an LED lamp via the monostable pulse width control - thus providing a visual confirmation of the operation of the circuit. Bearing in mind the rapid operation of the pulse and timing circuits, it is essential to decouple all power lines carefully, otherwise impulse noise may be propagated down supply

A mechanical and a Varicap Band 2 tunerhead

TOKO NT/AT3302, Larsholt 8319

There are two basic types of TOKO mechanically tuned band 2 tunerhead. The AT gang and NT gang version. Both types are supplied with a 3:1 reduction drive - and they are electrically compatible - though with minor dimensional changes. The AT being some 10mm wider. Please note that both AM gangs are the same capacity swing, and both come complete with trimmers for the osc and antenna sections

Specifications

Tuning Range	87 - 109 M Hz
Supply Voltage	+ 9VDC
Current	18mA MAX
Input Impedance	30012
Output Impedance	300Ω
Power Gain	25dB MIN
Gain Difference with Band	4dB MAX
Image Rejection	45dB MIN
IF Rejection	50dB MIN
Spurious Rejection	50dB MIN
IF Bandwidth	200kHz MIN
Frequency VS. Lower Voltage	$\pm 150 k Hz MAX$
Thermal Drift.	± 150kHz MAX
Osc. Stop Voltage	6.3V MAX
Noise Figure	8dB MAX
Large Signal	120dB MAX
Calibration Shift at Band Edges	±200kHz MAX
Calibration Shift within Band	± 300kHz MAX
AFC Operation	+ 120kHz MIN
Spurious Radiation (FCC)	34dB MAX

The AT and NT tuners are ideal for mass production AM/FM tuners where performance and low cost are important. The current drain is in fact sufficiently low for the units to be considered for portable applications in conjunction with an IC such as the TDA1083, although the general standard of performance is generally far in excess of the requirement of portable radio.

The AM gang is particularly stable, and suitable for wide range broadcast receiver uses, including the shortwave.

Calibration Data

NT-3302UG	Tuning R. (%)	0	4.1	12.8	21.4	30.0	38.6	47.3	56.0	64.9	73.7	82.7	92.0	98.2
	Frequency (MHz)	87	88	90	92	94	96	98	100	102	104	106	108	109
	Allowance (kHz)	± 200						± 300						± 200
			_											

The Larsholt 8319 is a PC mounted varicap tuner that features low noise combined with high gain. This unit is employed in the famous 7252 tunerset, where all HiFi functions of tuning meter, signal level meter etc. are fully exploited.

The AFC provision must be made through the main tuning voltage, though a provision is made for ratio detector AFC on the oscillator tuned circuit.

This unit is recommended for use in OEM designs, and is readily available in quantity.

Specifications

Frequency range	2.3 to 18v bias 87.5-108MHz
IF output frequency	10.7MHz nom.
Supply voltage/current	12v/25mA max ripple 0.15mV pp
Max ripple on tuning voltage	3uV pp
AGC voltage for max gain	+4.5∨ dc
Input impedance	75 & 300 ohms
IF output impedance	150 ohms
Power gain / noise figure	32dB /5dB
Image rejection/IF rejection	56dB /80dB
Radiation from antenna	iess than 500u∨

Terminations A/B:75ohms input - A/C:300ohms input - B:Ground - D:AGC - E:V supply F:Ground - G:IF output - H:Ground - I:Ratio detector AFC otherwise ground - K:tuning bias

37

Varicap FM tunerheads

TOKO EF5600 and EC3302

EC-3302 VARACTOR-TUNED

Tuned Circuits RF:2 Osc:1

Transistors J FET : 1 ea Bipolar : 2 ea

SPECIFICATIONS

87-109 MHz **Tuning Range** Supply Voltage +9 VDC Current 17 mA MAX. Input Impedance 300 ohms Output Impedance 300 ohms 22 dB MIN. Power Gain, Gain Difference within 4 dB MAX. Band 45 dB MIN. Image rejection 50 dB MIN. IF Rejection 50 dB MIN. Spurious Rejection 200 kHz MIN. IF Bandwidth Frequency VS. Lowered ±150 kHz MAX Voltage ±150 kHz MAX. Thermal Drift, Osc. Stop Voltage 6.3V MAX. Noise Figure 8dB MAX. AFC operation ±120 kHz MIN.

CALIBRATION DATA

Thermtl Drift.

Noise Figure

Band

Osc. Siop Voltage

Galipration Shift at

Band Edges Calibration Shift within

TUNINGVOLTAGE,V	3.00	3.29	3.94	4.71	5.64	6.77	8.15	9.83	11.93	14.57	17.94	22.31	25.00
FREQUENCY, MHz)	87	88	90	92	94	96	98	100	102	104	106	108	109
ALLOWANCE.)	±200		± 3 0 0									150	± 200

±100 kHz MAX.

±200 kHz MAX.

±300 kHz MAX.

9V MAX.

7 dB MAX.

CALIBRATION DATA

TUNING VOLTAGE	2.43	2.64	3.13	3.72	4.41	5.23	6.17	7.29	8.63	10.32	12.74	17.00	20.78
FREQUENCY, MHz	87	-88	90	92	94	96	98	100	102	104	106	108	109
ALLO WANCE KHZ		700MAX											

EF series Band II FM tunerhead

The EF5801 - with LO output for counter applications

For optimum noise and gain performance, the source of the two input MOSFETs is taken to the nearest available earth point. Greater AGC range may be obtained by using a decoupled source resistor of approx. 100 ohms, but in most applications the

gain is the important factor. All coils are TOKO S18 3½ turn, and coupling turns are now 1 turn only. The bias choke in the mixer circuit is 12 turns of 28 SWG, 2mm internal diameter. All trimmers are Dau green 7 5mm types. As well as providing oscillator output facilities, the terminal provided may be used for oscillator input, with the internal

oscillator disabled, where externally synthesized VCOs are employed.

(•) 10n

Electrical diagram of EF5801 VHF tunerhead

The EF5801

The EF5801 employs 2 low noise MOSFET agc controlled RF stages, with 5RF tuned circuits to provide exceptional selectivity. The AGC voltages are compatible with 3089/3189 IF systems. The oscillator is buffered via a JFET, and the output taken to a pin at the rear of the unit.

Specification

•			
Frequency range	(standard)	88-108	MHz
Tuning bias		2.4 - 16	v
Supply voltage		+12v	
Supply current	(Vagc=5v)	25-35	mΑ
Input impedance	(Standard)	75	ohms
Output impedance	(Standard)	300	ohms
Power gain		40	dB
Noise figure		5.5	dB
Image rejection	(fo + 10.7)	>90	dB
IF rejection		>90	dB
Tracking	(88-104)	±2.2	dB
θ 25-55°C		6kHz/ºC	
AGC operation	(+5 to 0v)	45	dB
Oscillator	(390 ohm)	100	mν
Oscillator frequency	Y	Fsig + 10.7	MHz

Certain aspects of the performance of the EF5801 series may be customized at extra cost - eg frequency range, impedances and gain. These may involve performance tradeoffs, so please apply for further details, stating your requirements as exactly as possible.

A typical example of performance shows a 30dB S/N ratio with the 7030 IF system, and 0.85uV PD input to the 5801. Careful earthing is essential - use coax input sockets that are isolated from chassis earth, and only earth at the 5801 input.

When using the oscillator output in conjunction with frequency readout units requiring an input greater than 100mV for operation, the following circuit should be added: 390 ohm

The EF5803 represents the 'state of the art' in VHF band 2 (88-108MHz) FM tunerheads. The two RF stages employ selected low noise dual gate FETs, with very loose interstage coupling to optimize RF bandwidth and selectivity. The mixer a specialized MOSFET- drives into the double tuned 10.7MHz IF output stage, with a separately buffered low impedance oscillator output for counter/synthesiser applications.

The tracking of the 6 tuned circuits is assisted by the totally symmetrical physical layout, balancing the strays in each individually screened tuned circuit compartment.

A facility is provided at the tuning voltage input, whereby an external emitter follower stage may be used on the board in cases where noise on a high impedance tuning voltage line may degrade optimum performance, since the lower impedance output of the EF stage will permit the use of large (10 -47uF) decoupling capacitors, without unduly slugging the tuning rate. This facility is provided specifically for synthesizer applications, though may be useful in other circumstances.

THE EF5803

This unit is a derivation of the successful EF5800 series, and is offered in addition to, not in place of, the EF5801. It combines exceptional gain with low noise, and is primarily suited to applications in fringe reception areas, or where DX band 2 listening is required. Signals in excess of 100mV RMS are liable to overload at the mixer stage, and so in strong signal sites, a switchable input attenuator is desireable to enable tuning through local signals, without overloading and 'latching'. In conjunction with the CA3189E IF system (2.6 pole filters used), a useable FM sensitivity of 0.6uV may be achieved.

The correct choice of earthing points, with regard to general chassis or 'ground' points is essential in any system possessing such overall gain. The input socket should not be earthed to chassis, and some experimentation may be necessary to optimize the connection configuration.

The oscillator output is provided at the opposite end of the case to the edge connector, on the same side as the two IF output coils. Below this pad are the spare points for the fitting of the emitter follower components.

Values of input and output impedance, also frequency range are available to special order - at extra cost. The maximum frequency the unit will readily extend to is 180MHz, and the minimum, 50MHz. Please apply for further details if you require such modifications to be carried out. Delivery usually 3-6 weeks.

The unit comes fully prealigned and tested, it will not be necessary to adjust any of the cores - except the final IF transformer to match the subsequent stage. The adjustment of this core should not need to exceed 1 turn - and should not be carried out until a signal has been established as being present in the overall system. Never start adjusting with no apparent signal present, since the likelyhood is that an interconnection fault exists elsewhere in the circuit.

We are unable to supply large quantities from stock, and due to the critical alignment, quantity discounts are not available.

Min. frequency of operation

560-1-2

0.1

15

10

120

60

0-70

16-26

Hz

MHz

v

mA

uV

k ohm

mV

٥Č

* 560-1-2 measured at 10.7, 565 with 10% deviation VCO temperature coeff. %/^OC .06 .05

Tone decoders, FM detectors, data synchronizers,

detectors, FSK receivers, wide band FM detectors,

signal generators, modems, tracking filters, SCA

Ultrasonic decoders, (561 for synchronous AM),

565

0.001

10-24

1000

0.5

8

10

300

0-70

Characteristics

Supply voltage

Supply current

Input resistance

Min. input for lock

Output with 75kHz dev.*

VCO temperature coeff.

General applications include:

(562 for synthesiser applications.)

Operation temp range

Max.

General:

The NE 560 series of monolithic PLL ICs includes the high frequency 560, 561 and 562 types - and the low frequency telemetry decoder, the NE565. The NE566 is a simple square and triangle waveform VCO derived from the 565.

The NE560 is primarily intended for applications involving FM, NBFM and signal processing at frequencies up to 15MHz minimum. The VCO output is available in differential form. The NE561 is identical to the 560 in most respects, except the 561 possesses an analogue multiplier block, which permits the synchronous demodulation of AM signals. The VCO section resembles that of the 560, but for the exception of the differential output facility.

The NE562 is a signal processing device, with individual access to all the main function blocks, for use in synthesiser systems. The parameters are otherwise identical to the 560.

The NE 565 is an entirely different device, which is intended for operation at low frequencies. The working voltage range is greater than the 560/1/2, but the maximum frequency of operation is 500kHz. The major features are the wide bandpass adjustment, and high stability. The 565 is frequently to be

The NE566 is the VCO section of the 565, thus possessing similar electrical characteristics, and making it a suitable choice of device for use in conjunction with the 565 as a clock etc.

This new and technically advanced FM tunerset type 7253, contains an integrated varicap tunerhead, IC IF system, and phase locked loop stereo decoder IC. The tunerhead stage employs 4 dual varicap tuned circuits, N - channel silicon field effect RF transistor input stage with bipolar mixer and oscillator stages. (including thermal compensation). The IF and detector stages are comprised of a bipolar NPN silicon transistor gain stage that precedes a double ceramic IF filter followed by an IC IF system (CA 3089E) with amplification, limiting, detection, muting, AGC, meter drives for both centre zero and relative signal level devices. The AFC from the IC is amplified in a differential transistor pair, and then fed into the main tuning voltage ensuring optimum tracking at all times. The stereo decoder is a monolithic phase locked loop IC (MC 1310P) with manual defeat of the automatic stereo switching if required and a beacon output for either LED or filament lamps.

Further data and circuit diagrams avialable on request :- supplied with modules.

Component layout, viewed from underside

available without the LM380's at a lower price

The 91196B is the latest of the decoders from AMBIT. We redesigned the input to allow for a better dynamic range, and thus make user installation adjustments more tolerant of differing voltage levels. The "Birdy filter" stage is an ultra smooth 55kHz low pass filter, with barely 0.5dB ripple from DC to 55kHz. The phase response at this point is crucial if the best stereo separation is to be achieved, and most active filter stages we have examined do not offer the necessary combinations of low phase error and high attenuation of RF frequencies - particularly essential when the IF output from the preceding detector stage is frequently tens of millivolts in amplitude.

The input circuit has also be designed to permit DC coupling to the output of the CA3089/HA1137/CA3189 series of IF ICs, since one of the most annoying aspects of the tuning of an FM system is the loud plop noise that can occur as a signal is traversed. This is often due to the fact that the DC swing at the AF output of the detector is the same as the AFC voltage - in other words, the DC output describes the detector S curve - and whilst the AF decoupling capacitor may be correctly polarized with respect to the quiescent detector voltage, the extreme of the S curve may forward bias the capacitor, causing additional noise throughout the system. The finite charge/discharge times of the coupling capacitors will also create a nuisance when tuning - and so the DC system offered here will be of great assistance in the refinement of the system. The output of the CA3089 should be coupled via a 4k7 to the base of the input stage

The VCO is set as with the MC1310 series - a single preset adjustment until lock is indicated by the LED beacon, and then set to centre of the travel of the preset over which the LED remains lit.

Specifications

Input for 1v output Signal/noise ratio Separation at 1kHz	Composite Unweighted L/R R/L	200mV 78dB 50dB 48dB	(RMS values)	LPF distortion Turnover F Attenuation Linearity	THD 200kHz DC-55kH	< 0.04% 58kHz -22dB 1z ±0.25dB
Pilot tone leakage	19kHz 38kHz	<58dB <70dB		For additional inf HA1196 IC data	formation, sheet	please refer to the

Circuit and connection details for the AMBIT 7020 FM IF amplifier and decoder with mute, AFC etc.

Specifications	:						
Supply		 			••		12v at 25mA
Frequency		 	••				10.7MHz (as filter code)
Sensitivity		 					14uV for 30dB S/N
Selectivity		 ••		••			-3dB : 210kHz
-							-60dB : 650kHz
Mechanical:							
Dimensions		 			•••		70 x 73 x 12 mm
Terminations		 				•••	0.2 inch edge connector/or
							Varelco Varicon pins.

 Using the CA3189E:

alt If in

of 100uV input via the preset from pin 13.

Using the CA3189E:

The CA3189E IF : A complete application system

Prompted by the advent of RCA's new FM IF, based on the exceptionally popular CA3089E, here is a comprehensive unit that employs the new device in an optimized configuration.

The CA3189E is not all that much changed from the CA3089E in termas of the overall concept and function - it simply refines some areas of operation that have provided trouble for designers using the original CA3089. The most obvious alteration is the adoption of the Hitachi HA1137W system of deviation muting, which effectively surpresses the objectional 'side responses' that are associated with the detuning of an FM detector:

This deviation mute is set in conjunction with the AFC voltage to provide an additional muting voltage derived from the 'S' curve of the detector, so that the AF output on pin 6 cannot shift its DC level by more than the amount determined by the resistor between pins 7 and 10. Since pin 7 is the AFC current source, this is also derived from the 'S' curve detector, and also contains the AF information appearing at pin 6. Since the deviation of the audio signal may exceed the deviation mute bandwidth, it is thus necessary to decouple pin 7 for AF, and leave the steady state DC level, associated with the tuning of the set only. However, there will be some applications where this feature may usefully be employed in the form of an overdeviation monitor, and so the capacitor on pin 7 may be reduced to an RF value only, say 10nF, and the audio deviation level set to the usual maximum of ±75kHz. To ensure accurate tuning, and thus accurate deviation monitoring, such systems must employ either synthesized or crystal controlled tunerheads, although an excellent alternative is the type of AFC used in this design, where the AF decoupling for the AFC - though not for the signal at pin 7 - is provided by the capacitor to ground from the base of Tr3.

With the AF decoupling in place, the deviation of the signal is immaterial to the operation of the deviation muting - which then functions according to the DC voltage at pin 7, derived from the current source in conjunction with the resistor from pins 7 to 10. The operational point is approx. 1.25v offset from pin 10, and can be determined by a combination of Ohm's Law, and the graph of the AFC current versus the detuning of the carrier:

So, using a resistor of $15k\Omega$, the operating point is:

I = 1.25 = $80\mu A$ approx., which from the graph 15,000 indicates $\Delta F = 40 \text{ kHz}$.

To achieve $\Delta F = 75$ kHz, first check the AFC current (150 μ A) and so R = $\frac{1.25}{150^{-6}}$ = 8k2 (nearest pref. value to 8k3)

Of course, the de-tune function offers much more than simple muting improvement, since it means that with a bandwidth of some 40kHz, the set has to be tuned quite accurately for the mute to lift, and signal to appear - thus reducing the distortion resulting from incorrectly tuned receivers and also perhaps making the centre zero tuning meter a lot less essential in Hi Fi applications. The de-tune muting voltage is also a great deal more pronounced than the simple noise mute, which is progressive in action. So the control voltage may now be used for a variety of 'step' functions, like stopping a scanning system at a station, lighting an LED as an 'on tune' indicator (though this ought to be audibly obvious!) Do not forget that the noise mute is only effective when there is no signal - or at least, a very weak one - whereas the deviation mute is only effective on the fringe of a signal; so the two muting functions are mutually complementary in their effects. The analysis of the noise mute function is given in the general data for the CA3189E, and will not be repeated here. But remember that their results are 'Ored' so one may appear to work, whilst the other does not. The usual fault conditions are caused in three ways:

Faults in the muting]

- 1) The resistance between pins 7 & 10 is either too large, or the path is simply o/c. This doesn't make any difference in ordinary CA3089 applications, but will stop the HA1137 and 3189 from functioning altogether.
- 2) Too much front end gain, causing the noise voltage to be so heavily limited that the noise mute fails to recognize the absense of carrier. The deviation mute will continue to function however. The cure is to reduce the front-end gain, with a capacitive divider or similar technique; but if that fails, then suspect the layout of some basic instability - a missing decoupling capacitor perhaps. Instability is a layout problem, and may be avoided by following the recommended layouts - and ensuring that signal leads are no longer than necessary at all times.
- 3) The values of the quadrature components, particularly the choke from pins 8 to 9. Too low a value of choke will cause too much IF voltage to appear at pin 9 and too high a value of the overall Q will create similar difficulties a fuller discussion of this point is given in the general data section of the catalogue.

In the application described here, pre-3189 gain is provided in two MOSFET stages, with AGC controlled characteristics. The gain is countered to a degree, by the loss of the linear phase filters in the circuit - leaving an overall sensitivity that is compatible with good muting operation, and capable of producing 30dB S+N/N with 0.7uV input to the EF5803 front end. Alternatively, the AGC termination may be taken via 100k to the wiper of a 100k potentiometer across the general supply rail, to provide a manual gain adjustment if required. The threshold of the operation of the AGC output can be set at any meter output voltage from 1.25 to the maximum by the preset provided pin 16. This feature has been included to overcome problems sometimes encountered in very high gain systems, where the noise level was sufficient to cause the AGC to react, well before the optimum S+N/N ratio of the detector had been reached. The preset at pin 15 is used to set the maximum AGC voltage available, but does not control the threshold point of operation.

Time constants on the muting circuit (pins 12 and 5) are chosen to provide a combination of smooth and silent operation. Too slow a reaction would cause fast tuning to catch the noise sidebands of the 'S' curve, before the voltage on pin 5 had time to build - and too fast a reaction would cause 'clicking' and possibly 'chatter' due the snap-action of the circuit. Muting may be defeated in one of two ways:

1) Grounding pin 5 of the IC manually

2) Breaking the continuity between pins 5 and 12.

In this circuit, method 1 is favoured, since the simple grounding operation is more adaptable to touch tune, and other systems where part of the muting function may be controlled automatically within the operation of auto tuning etc.

The AFC in this application is used to drive the main tuning voltage of the FM tunerhead preceding, since this provides a far more satisfactory method than simply controlling the oscillator tuned circuit. Furthermore, by adjustment of the 4k7 resistor from the top of the tuning potentiometer (or bank of pots), the AFC range can be programmed from narrow - to wide tracking, where AFC over several MHz is possible. (Assuming no stronger signal crosses the detector).

The AF output is provided with an IF trap to remove unwanted IF signal from possibly re-entering the input and thus leading to instability. The output may be DC coupled to following stages, especially in view of the deviation mute system, where the maximum DC voltage swing is restricted in range. No de-emphasis is provided at this point.

Finally, the third IF filter is provided for use in particularly crowded conditions, and should only be used when necessary, since the IF bandwidth shrinkage begins to encroach on that required for optimum multiplex transmission. With the HA1196, it is possible to adjust the separation to compensate for quite sizeable phase errors, and thus retain good separation, but tuning becomes more critical at low signal levels. When feeding this filter into the first MOSFET gain stage, the gate resistor to ground should be reduced to approx. $1k\Omega$, for the purposes of impedance matching.

-Ambit and the CA3189E: -

In common with all other products we offer from our general and consumer ranges, AMBIT has a broad experience of the CA3189E in a variety of application enviroments. We are thus able to offer a comprehensive design and evaluation facility that is unique amongst distributors of any similar products in the UK.

Bearing in mind our long association with the HA1137W, and before that the CA3089E, we have more practical experience of this type of IC than just about anyone. For detailed applications work, we refer customers to the notes concerning the basis on which such work is undertaken. (Note 8 on the general terms and conditions page) We offer the device for OEM purchase, and carry substantial stocks at all times, thus where an order is destined to follow our design services, we will normally absorb the costs of such development we regret we cannot undertake any practical development work on behalf of private customers, except of course, to provide data and theoretical comment in connection with our usual enquiry facilities.

Technical Specification

Frequency range	87,5
Sensitivity {mono stereo	
Signal plus noise to noise ratio (1 mV, 75 KHz, 400 Hz) Stereo channel separation (1 mV, 400 Hz) Alternate channel selectivity (± 400 KHz) AM suppression (FM - 75 KHz, AM - 30%, 1 mV) Total harmonic distortion (1 mV, 75 KHz, 400 Hz) AFC pulling range (> 10 μV, 75 Ohm)	
Antenna input impedance Audio output loading impedance (allowed both channels)	>
Audio output impedance without 19/38 KHz filter	
Audio output impedance with 19/38.KHz filter (somewhat frequency dependent)	appr.
Audio output level (> 2 μ V, 75 KHz) unloaded	
SCA rejection IF rejection IF bandwidth (3 dB) IF frequency Radiation (antenna terminal voltage, 75 Ohm) Power requirements (220 V or 240 V ± 10% 48 = 62 Hz)	

87,5-104,5 MHz 1 μV 15 μV 67 dB 40 dB typ. 55 dB 0,1% typ. ± 400 KHz 75/300 Ohm > 15 k Ohm 3 k Ohm	
appr. 3 k Ohm	
1600 m∨ 55 dB	

80 dB

210 KHz

10,7 MHz

۷ 500 € 6 Watt

BUILD YOURSELF A STEREO TUNER

- that is completely up to date with all features which the electronics of 1978 makes possible.

The Larsholt module system designed for the "do it yourself enthusiast", with only a screwdriver and a soldering iron.

The complete Signalmaster Mark-8 consists of 5 modules, of which the tunermodule and stereodecoder are assembled and adjusted at the factory. The remainder are kits. Assembling the kits requires only mechanical mounting and soldering work on the pretinned print-boards, which are clearly marked with each component position. The comprehensive assembly instructions will assist you with every detail.

The eight generation of the Signalmaster series is a tuner which has grown out of many years of experience, in fact since the 1920's. The Signalmaster Mark 8 is built up around the Larsholt Euro-tunermodule 7252 which is delivered assembled and adjusted. This module, which Larsholt supply to well known professional producers of Hi-Fi receivers, has obtianed an Inter-european appreciation not alone for the high sensitivity, but because it is especially effective for reception in the North West European areas, where the radio channels are congested with powerfull transmitters.

- * The Signalmaster Mark 8 can be programmed for 5 stations besides manuel tuning.
- * Analogue computer controlled (automatically searching across the FM band, with a short stay on all but the very weak stations). You can stop the scanning on any selected program.
- * Muting is incorporated to mask noise between the stations. * Mono switch to suppress noisy stereo transmissions. * Frequency meter and signal strength meter, also balanced LED's for correct tuning indication.
- * Automatic gain control and I/C controlled AFC, which can be disabled. * Pilot tone filter removes 19 & 38Khz.

AUDIOMASTER~II

The Audiomaster Mk II from Larsholt Once again, Larsholt have produced a really exceptional audio kit for the home constructor. The pictures display the superb care in design and construction, making the audiomaster a product for beginner and 'old hand' alike. The Audiomaster is compact stylish and powerful - but most of all the wide dynamic range makes this kit a delight to hear under all types of music.

Construction is simplified and assisted by 'on-board' sockets, potentiometers, and switch. The hum from the torroid is so low, that with volume and bass fully advanced, hum is almost imperceptible. (Input loaded/no signal)

Output per channel Signal to noise ratio	25 W/4 Ω 80 dB (inputs loaded)
At 1 KHz – 25 W output At 1 KHz – 4 W output	< 0,5 % 0/0 $<$ 0,1 % 0/0
Input sensitivity	
Tuner, AUX. for 25 W output	100 mV
Tape input	200 mV
Magnetic P.U.	5 mV
Tone control	
Bass at 100 Hz	± 12 dB
Treble at 5 KHz	± 15 dB
Loudness	+ 4 dB at 400 Hz
	+ 6 dB at 20 KHz
	Flat at 1 KHz
Intermodulation products	
8 KHz/6 KHz	– 70 dB
8 KHz/250 Hz	- 60 dB
Dewor hondwidth	- 00 48
Power bandwidth	± 1 - D
40 Hz to 20 KHz	± 1 0B

± 3 dB

6

40 Hz to 20 KHz 40 Hz to 100 KHz

10007 100

0;

N OO

470 K

(70K

1000

0

71197

The only MW/LW varicap tuner available

features:

- * Wide AGC range
- * Low THD
- * Ceramic IF filter
- * Channel heterodyne notch
- * Signal level meter output

The series 3 Ambit varicap AM tuner is available either ready built, or as a DIY module. Physically, it is similar in size to the Larsholt 7252 tunerset module, and is primarily intended to provide a high quality complement to existing varicap FM tuners.

Specification: (All mod. levels 30%) Coverage:

MW	530 - 1600kHz
LW	175 - 250kHz
AGC figure of merit	80dB
Audio output	1v RMS
S/N ratio at 74dBu input	53dB
THD at 100dBu input	0.4%
Tuning meter current	240uA

An improved varicap MW/LW tunerset

The 71197 incorporates varicap tuning with the excellent Hitachi AM radio IC. The standard product is intended to be used in conjunction with the illustrated ferrite rod antenna, though a MW only version may be made using an input RF transformer, type RWO6A6408, and a short length of wire for an antenna.

An FET source follower input stage is used to allow the minimum of wiring and switching complexity at the ferrite rod - and the actual input RF level is presettable by means of the preset pot in the source.

The IF is filtered through a ceramic IF filter stage following the mixer, and after further amplification at IF, the signal is fed to an extremely linear detector stage. At this point, the references for the AGC and meter driver circuits are also obtained for further processing within the IC. The AGC is programmed externally through the network between pins 14 and 12. In the 71197, a series tuned notch for 9kHz audio whistling is included, using a 36mH in series with a .01 capacitor. The notch may be lowered to approx 4.5kHz by simply increasing the value of the capacitor to .02uF.

71197

The audio stage itself is designed with a great deal of negative feedback, to work into a low impedance load. (Line level) Tuning is accomplished by using a 27v positive supply, fed to point 'A' on the board. The coverage is given in the specification summary, but individual samples may vary slightly at scale extremeties. Switching between MW and LW is easily accomplished by applying the positive 'SW' voltage to point 'B' for MW, and to point 'C' for LW.

7122

SPECIFICATION(also please refer to HA1197 data sheet for further details)Input sensitivity (50 ohm) for 26dB S/N (weighted)4-6uV 1.6MHz, 8-10uV 21MHz. (PD)

Coils specified above are for M.W. information on coil packs for L.W. S.W.1 S.W.2 and S.W.3 available on request.

51

One of the benefits of of integration is that large scale complex functions cost little more than simple transistor arrays on the micro scale of IC wafer production. The silicon slice has to be big enough to enable the bond wires to be fixed, so as the manufacturers have become more adept at the relatively new art of IC design, there has been a tendency to to produce an extremely refined system - since it costs little more than the simple reproduction of the basic discrete arrays/circuits.

The TDA1083 exemplifies this trend throughout its conception. A simple transistor AM mixer would probably have been acceptable to the consumer manufacturers bred on what are really extremely basic radio designs - but the TDA1083 goes off into the realms of communications technology, and ends up with a superb four quadrant multiplier stage - offering exceptional dynamic range, low oscillator leakage and low noise. After all, it's only a couple of microns on the chip.

Likewise, the oscillator stage could be a one transistor effort, with the need for two feedback point on the coil, and all the additional aggrevation that leaves the designer when band switching has to be considered. But since the lead of the CA3123E, the AM oscillator has been based around a differential transistor pair, forming something akin to an RF flip-flop but requiring only a single oscillator coupling winding - and in fact, the coupling winding itself is not really essential, but in the interests of purity, it is customary to use it to provide a lower loading on the tank circuit.

Figure one: CA3123E/uA720 oscillator In the TDA1083, the oscillator looks like:

The bias on Tr2 is derived from the divider r1/r2, and since r4/r3 on Tr1 form the same divider ratio, pin 2 should be taken to the same positive reference for correct operation. Thus pin 2 goes to Vcc via the tuned circuit(or coupling winding thereof). The oscillation frequency is thus determined from a simple parallel tuned tank circuit. To sustain oscillation, the AC impedance of the tuned circuit must exceed the attenuation of the R3/R4 network and the input impedance of Tr1. The parallel resistance of the tank circuit should lie well within the V/I curve at pin 2.

Which is easily recognizable as a derivation of the CA3123E type of oscillator. In this case, the design has been optimized for operation at low voltages.

The fading out of a portable radio is nearly always due to the oscillator stopping at low voltages - the characteristic "brown outs" when the radio volume rises to a peak, and then as the increased AF output causes the aging battery voltage to drop, the oscillator stops, the battery voltage rises and the whole process repeats itself creating a situation of slow oscillation.

The TDA1083 is almost unique in its operational voltage range, and thus battery life is extended to its very maximum. The FM oscillator, will however probably stop long before the AM section - you cannot have everything !

Figure two: TDA1083 oscillator

The IF system is tried and tested in many other ICs - and requires little explanation, except perhaps to point out the use of pin 16 as a gain control for the IF - the AGC voltage may be also be monitored at this point to provide a function for a meter suitable as an indication of signal level. The Detector stage is cleverly arranged so the FM IF transformers from pins 15 and 16 present low impedance to AM IF signals at 455-470kHz, whilst the AM IF transformer effectively decouples the top ends of the FM IFs at 10.7MHz.

In the AM mode, low level detection is provided by differential peak detection - a method that avoids the problems brought about in earlier ICs requiring external peak detection, where the final IF carrier voltage was big enough to find its way back along the board to foul up the IF input stages, and cause the whole IF system to behave in a manner not conducive to high sensitivity and stable operation. (The TBA651 is perhaps the classic example of this syndrome.) In the FM mode, pin 15 represents a simple IF output point, and the coil on that pin is not directly concerned with the FM demodulation. In fact, the FM demodulator may be likened to that in the CA3089E - although it is a much simpler internal arrangement. The detector quadrature coil is at pin 8 - and instead of a choke feed (as per CA3089 family) a simple capacitor is used to provide phase shift of 90° between the limiter output at pin 15, and quadrature coil at pin 14. In fact, a 22uH choke could be used here - but this would then effectively short circuit the AM detector coil at 455kHz. The detector coil has an "S" shaped frequency/phase characteristic (as does any tuned circuit of this type) and so the phase shift is only 90°at the carrier centre point. (10.7MHz) During the excursion of FM, the phase relation ship of this coil will then vary - producing a continuous variation between the zero phase and quadrature signals. The limiter output then is a train of pulses of varying widths, which are subsequently integrated to provide the audio output.

It is worth mentioning here that the capacitor produces a DC drift at the audio output pin that although frequency related, is in the reverse sense to the AFC voltages usually associated with IC detector systems. The problem is not easily solved in a low cost fashion - and will be the subject of further discussion later in this feature.

The quadrature coil is provided with a damping resistor, mainly to provide a linear characteristic over the range of frequency associated with FM transmissions. In mono configurations, the bandwidth can be a great deal narrower than in stereo - and so the recovered audio can be improved by not over damping the coil.

The one-chip communications receiver

TDA1083 MW/LW/FM PCB layout

The TDA1083 is not a particularly layout-sensitive IC, but the main point to bear in mind is the power drawn on audio peaks, and hence the substantial current requirement of the main power earthing pin. The track to this point must be low impedance, or audible LF instability in the form of motorboating will occur.

The battery supply should also have a low impedance, and if driving low speaker impedances, an extra 1mF of main Vcc decoupling will be necessary at the positive supply pin.

In the layout shown here, please note the 1k resistor adjacent to the 94AES30456 at the top left, since in some instances, this has been shown as 100E.

The double line on the coil cans indicates the face upon which the identification is printed.

In battery powered applications, it is adviseable to clamp the base volts of the FM LO to prevent wide voltage fluctuations from causing VHF/UHF instability at this point . A Zener diode of 4.3v is shown on the reverse side diagram, and its use eliminates the need for other methods - such as ferrite beads on the base - to be used. Below a battery voltage of 4.3v, the zener will obviously not stabilize, but this is not likely to be noticed in operation.

At all times, remember the main supply must not exceed 12v - orthe internal shunt regulator may overload, and burn out the IC. In 91083A serial PCBs, the reference end of the AFC varicap is shown as being taken to ground - this must either be taken to +Vcc, or the bias point, pin 10, of the IC. It must be decoupled to RF. It is possible to operate with the LO on the low side of the received carrier with the AFC diode taken to ground as its reference, but this may lead to additional unwanted image reception problems.

Attention is drawn to the fact that certain coils are fitted with pins that are not required, clipped off. Do not attempt to remove coil pins by pulling, or part of the main winding may be destroyed.

L3 deserves special mention, since in conjunction with 470pF, this forms a low impedance IF trap circuit at the input to the self oscillating mixer. It is 3mm diameter, and consists of approx. 15t with no core. 30-36SWG self fluxing. A large error at this point will be likely to cause FM IF blocking due to excessive 10.7MHz IF breakthroughespecially at night. Apparent FM instability problems are frequently rectified by paying attention to this part of the circuit.

Resistors with no value assigned are not used in the basic AM/FM radio design Additional holes are provided in the region of the AM IF filter to permit the use of the CFM2 series with appropriate matching transformers.

T1: T1, the FM antenna input transformer, is mounted with the three turn winding coupled between earth and the 68pF capacitor on the emitter of the input transistor (a BF241 of BF195). In areas where there is exceptional overloading from local transmissions by public services using midband frequencies in the 100MHz region, a 22pF placed in parallel with this secondary coupling will reduce overload interference. Strong signal handling is further assisted by use of a 1N4148 or similar diode connected as shown on the output end of the tunerhead. The one chip communication receiver (3)

The Audio output stage is again cleverly designed to optimize operation at low supply voltages. Where high audio level is not essential, the use of a 6v battery will provide useful economy, without affecting the RF/IF performance. In order to balance the volume when switching between AM and FM, it is necessary to adjust the relative levels by means of the detector coil damping resistors.

The final section of the IC contains a 12v zener diode, which is primarily for use in shunt regulation systems, such as the mains powered radio - where no transformer is used. This approach is frowned upon by most of the world safety standard authorities, and should not be undertaken by anyone not really fully aware of the techniques involved in isolation and insulation, since all parts of the radio chassis may be mains "Live" (as in the old AC/DC set), including the speaker, the antenna, the earphone etc.

Figure three: The mains dropper system

The AF power is restricted to a maximum 150mW, since the class B nature of the AF output would mean that the voltage stability could not be maintained at greater current levels. Thus this configuration may be of use in mains powered intercom systems - but not really as a radio, where most people want more volume on tap.

Practical considerations

The complete Broadcast receiver

The FM tunerhead comprises a classical two transistor configuration, that whilst not the last word in selectivity, manages to combine a useful sensitivity (4-8uV) with sufficient selectivity for rod antenna applications. The FM tuning capacitor is contained within the TOKO polyvaricon AM/FM tuning capacitor, along with 4 trimmers - and the RF and oscillator tuned circuits are heavily padded down to provide the desired tuning range. (Otherwise, the available 20pF of swing could cover a vast range at VHF, without much hope of accurate frequency tracking.) The RF stage uses a low FT transistor, (high FT devices tend to oscillate), in a common base configuration, that

feeds directly into the ubiquitous mixer/oscillator stage, that provides oscillation and conversion to 10.7MHz where a loosely coupled bandpass pair provide a surprisingly good selectivity characteristic, when combined with the selectivity at the IF output.

From the detector stage, deemphasis (and RF decoupling) feed the audio via a 'stenode' correction circuit, where some of the missing treble is reinstated. In fact, this over pre-emphasises the detector characteristic once again, but since most loudspeakers used in such radios tend to have their own brand of deemphasis (no tweeter), the correction makes for a pleasing overall effect. The basic deemphasis capacitor must not be reduced, or IF instability may result. Stability components in the AF output are essential, and the values shown completely remove all trace of the oscillation that integrated class B amplifiers tend to display around 15-22MHz. The 33uH choke acts as a self resonant trap, and the R/C in series provide the usual ultrasonic Zobell network.

In AM operation, the antenna used is the Ambit 476 MW/LW assembley, with impedances slightly higher than found in

55

usual bipolar transistor input stages.

Testing and alignment with the TDA1083

Testing and alignment is delightfully simple, when compared to the usual AM/FM set. On switch on some noises must be heard on AM if the unit has been correctly assembled - and the best start point to check the circuit out is on MW. The local oscillator is set to 2075kHz (470kHz IF) at the HF end, and with antenna coil flush on the rod, the MW is just about optimized already ! The LF end should be set for 995kHz, and the antenna coil peaked on the rod, with the capacitive trimmer adjusted at the HF end of the band. A meter may be used connected to pin 16 to read the reverse AGC voltages, but the ear should be just as suitable an indicator.

The Long Wave (150 to 275kHz) is tuned in a similar fashion, except that there is no antenna trimmer provided since the basic inductance adjustment is quite sufficient to track the rod over this relatively narrow band. The LW coil is about 7.5 - 10mm from the rod end in most cases. The IF filter requires virtually no adjustment - only occasionally will peaking the Blue core have an effect.

The detector coil should be set for best AF, and with most devices, the coil does not require a damping resistor, though certain manufacturers data advocates the use of something in the region 10-22k. If too heavily damped, the audio on strong signals becomes distorted.

FM is slightly more troublesome. A 10.7MHz signal source is a useful aid to set the IF, but once again, it is possible (with patience) to adjust by ear. The oscillator coil will be approx. 3-4mm above the top of the 2½ turn S18, and the RF coil flush with the top of the S18. Such is the reliability of the S18 style, presetting the coils in this fashion has always provided sufficient initial assistance to enable further alignment to continue. It is very difficult to get completely lost in the wastes of MHz using this approach.

The FM detector coil T2 should be set for best AF, on a relatively weak signal - and then the other FM IFs can be adjusted for best quieting. With the IF aligned, the tracking procedure for the RF and oscillator coils is now a made a great deal easier, and can be carried out with the knowledge of the local transmitter frequencies as your basic datum points. Those of you with signal generators, spectrum analyzers etc. to hand, should not require further instruction on their application to this particular task. Impressive performance should result, with 5uV or better FM sensitivity, and AM sensitivity to match any other portable radio you can lay your hand on. (In the under £50 region) Familiarity with radio design only comes with long experience. More so than other area of electronics, since there is no real "go/no go" state, as "go" is very much a matter of degree. "No go" can be obvious enough, but there will always be conditions of instability where the unit will operate delightfully well at one point, and not at all further along the band. The TDA1083 brings radio a little closer to the "Go/no go" you continue to try to squeeze a little extra out of the circuit at your peril. The last dB is always the hardest to achieve.

The MW/LW/FM reciever is a useful start point to become familiar with this device - so now let's consider the further extension of the device, and ultimately, the "one chip communications receiver."

Extending the frequency coverage of the TDA1083 in the AM/SSB mode

The oscillator section has already been discussed at length. When correctly used, the local oscillator is good to 40MHz, and surprizingly stable in a general coverage application. The purity of the oscillator also makes a great difference to SW performance, where a low IF can cause image problems in its own right, but these images are frequently greatly confused when the primary and secondary mixing products of the oscillator harmonics are all whistling through the wireless:

Figure four: A spectral consideration of SW mixing and spuril problems

Inc II	JATOOS Operates with	the following scandard	rono con me up:	
ANten	na/RF coils	Oscillator coils	Sensitivity into the IC	Frequency range
SW1	KAN333R	KAN3426R	2uV	1.6 - 4.5MHz
SW2	MTKANF2027	MTKANF2027	2uV	4 - 14MHz
SW 3	KANK3335R	KXNAK3428R	4-6uV	14 - 30MHz

(No RF stage employed)

The basic application consists of simply a tuned antenna transformer, and tuned oscillator. And since the oscillator 2nd harmonic is some 50-60dB down, the harmonic image problems mentioned above are very much reduced. As a portable type of SW broadcast receiver, the performance is quite excellent for the complexity involved. The two port oscillator allows for simple SW switching, and the only point to watch is the tendency for the local oscillator to fire on the tuned circuit represented by the coupling winding and the stray capacity. On SW1 this is a nuisance, since when the tuning capacitor is meshed, and the oscillator voltage drops, the frequency may suddenly hop to 35MHz. The cure is simple (and requires similar thinking to the same problem with the TDA1062) and that is to flatten the Q of the coupling winding, by a series resistor. 22 ohms to 100 ohm will do, and the oscillator stays correctly tuned all the time.

On higher SW bands, the coupling winding has a resonance beyond the capacity of the TDA1083 oscillator - but just in case some examples exhibit an exceptional HF performance, it is a wise precaution to include the feature on all bands.

Of course, it is quite permissable to use a ferrite rod antenna (using the correct ferrite grade F16) for up to 14MHz, and a coupling coil on the rod may be provided for external wire antennas. Some geographical areas will doubtless

The one chip communications receiver (5)

find that LW is superfluous, and that the SW2 band is a more useful proposition. In this case, the antenna switching system will have to be re-arranged, since the effect of shorting out the SW antenna rod coil on the MW coil would be to spoil the characteristics of the MW beyond compensation. Separate switching for the tap and tuned winding is advised.

SSB is the popular means of communication at HF, and so deserves a place in any new receiver design that covers the shipping band(s). The TDA1083 is not ideally characterized for SSB, though a little thought reveals that a minor rethink of the detector circuit presents an excellent means of demodulation.

Figure five: An AM/SSB application

The amount of BFO coupled into the detector is critical - too much will flatten the AGC line and thereby destroy the sensitivity. A few pF of coupling is generally all that is required.

The stability of the TDA1083 local oscillator is affected by fluctuating signal levels, via the AGC line, and it is a shame that there is no apparent means of killing the AGC and putting the IF into a limiting mode for SSB - since that also turns off the oscillator. However, an externally injected LO at pin 5 would be quite acceptable, and should prove immune to the effects of the AGC line, which may then be tailored to suit the mode of reception, remembering that it is accessed via pin 16 of the IC. Heavily limited SSB may not sound Hi-Fi, but it has a useful communications quality, which is the prime concern of the mode.

An RF stage with AGC - a dual gate MOSFET is ideal - will give the overall performance a boost of some 20dB- which produces a 1 uV/26 dB performance in the HF. At this sort of level of gain, a series tuned IF trap (YMCS2a740) at the input pin 6 is a useful precaution, since the small amount of IF currents circulating in the earth paths may be big enough to cause feedback instability at IF frequencies.

The thought will by now have occured to many that the device lends itself to use VHF receivers, where dual coversion is practised from 10.7MHz to 455kHz. Simply use the above circuit with the appropriate filter bandwidths for the modes desired. The internal oscillator may be used to interpolate around the second conversion frequency of 10.245MHz, or an external crystal controlled oscillator injected at pin 6 may be suitable.

The NBFM mode is simply achieved by using 455kHz tuned circuits at pins 15 and 14. The impedance should be matched using secondary winding coupling for the final IF, and the AM peak detector coil must be omitted, leaving the operating mode fixed, unless PIN diode switching considered worth the effort to achieve "all mode" facilities.

Figure 6: Detector arrangement for NBFM operation

Further hints etc

The device is still a relative newcomer, and so applications will continue to appear as engineers start to get to grips with the many aspects of this versatile ICs capabilities. The following are offered as ideas, and have yet to be fully investigated and documented:

Metal locator systems: DC coupling means operation from VLF to HF, use for either IB/BFO or phase angle systems (with the correct detector) plus on-chip audio

TV sound IFs, mains carrier intercomms, optical communications, - please submit any ideas you may have to add to the list.

No originality is claimed for these amazing revelations, but it is surprising how infrequently they are published:

Impedance, Z, is related to L, C and Q in the following expressions:

$$Z=Qu.Xl=Qu.2.\pi.f.l$$
 ...1
where f is the tuned frequency in Hz
and l is the inductance in Henrys

and
$$Z = Qu.XC = \frac{Qu}{2\pi.f.C}$$
 ...2

C is expressed in Farads.

Q is largely dependent on the core and bobbin materials - together with the DC winding resistance:

Q = <u>'R'</u>

 ωL in fact, the analysis is a great deal more detailed, but the formulae given here will be quite sufficient for most of the practical situations that confront the circuit user.

...3

Working an example from the TOKO IF range, take the LMC4202A 7mm 4551F:

Q= 105 total turns 208
C=
$$150.10^{-12}$$
 so, from (2) above 2110

 $Z = \frac{105}{2.\pi.455.150.10^{-9}} = 244 k\Omega$

(all calculations used here will be rounded off for ease)

Fine, but most transistor and ICs need to work into much lower impedances than that, so a little transformer theory is necessary to lower Z to the more usual collector load, of say 37k.

Autotransformer tapping

The total tap point impedances are related by

$$\frac{Ztap}{Ztot} = \frac{[N1]}{[N1+N2]}^2$$

So, using our 37k value for Ztap:

$$\frac{37}{244} = \left[\frac{N1}{208}\right]^2$$

$$N1^2 = \frac{208^2 \cdot 37}{244}$$

so N1 = 80

in fact, TOKO use 74 turns, but that isn't going to make a great deal of difference in practise. The base coupling also requires

a lowered impedance, and since it is

autotransformer type of tapping, a coupling secondary is used, where the

primary and secondary are so tightly couled, that the basic analysis may be

considered identical to that used in

In the case of the coil used here, the coupling is used for the detector - so

 $\frac{12}{244} = \left[\frac{N1}{208}\right]^2$

a reasonably high value of 12k is used;

the autotransformer case.

N1² = $\frac{208^2 \cdot 12}{244}$

thus N1 = 46 turns - and in this

instance, the actual value used is 42 t.

The slight differences that occur are due to certain intentional mismatch conditions, designed to reduce the

loaded Q. These considerations will

be dealt with in greater detail in the

In a perfectly matched system, the

gain of an amplifier stage can be

calculated from the following:

Av = Vout = K.gm.Rload.N.K

where N is the turns ratio $\sqrt{\frac{Zsec}{Zpri}}$

K represents the 6dB match loss

gm is the transconductance in

at both input and output

mho (reciprocal ohm)

detector would be:

Q of 40.

then Z

034

R damp

Rload is the load impedance

In the example used so far, the

gain of the final IF before the

The impedance may also be altered by a damping resistor; a popular means of

lowering the Q and thereby stabilizing

 $\frac{40}{\omega.\ 150.\ 10^{-12}}$

 $\frac{1}{244k}$ + $\frac{1}{R \text{ damp.}}$

93kΩ

so to reduce our example, a parallel

 $= 150 k\Omega$

The loading of a tuned circuit of the

type described here is first calculated

by changing the tap impedance to

a function known as the equivalent

loading resistance, derived from the

resistor is used, where

Loading considerations

equivalent circuit:

IFs that "take off" due to too much

gain. Say to reduce a Q of 105 to

= $\frac{1}{2}$.gm. 37k. $\sqrt{\frac{12}{244}}$. $\frac{1}{2}$

with a gm of 90mmho: = 184 or 45.3dB

Vin

next issue of Tecknowledgey.

not really desireable to employ another

The equivalent circuit:

Now Ql = Rp II Rl . Xc or = $\frac{\text{Rp II Rl}}{\text{Xl}}$

as you might expect, Rl is taken from a similar transformation formula to the ones used so far:

$$R_{i}^{I} = \left[\frac{N_{i}^{I} + N_{i}^{2}}{N_{i}^{I}}\right]^{2}$$
. Input impedance

with the example before

 $= \left[\frac{208}{74}\right]^2 \cdot 37k$ Rl= 294k so Ql= 244 II 294 .Xc 244II294 = 133.3k Ω Ql= $\frac{133,300}{2332}$ = 60 but dont forget the loading by the secondary winding ! Rl = $\left[\frac{208}{42}\right]^2 \cdot 12k = 294k$ now this is the same as Rl for the autotransformer tap, indicating that the optimum Rp would be 294k also.

Now Ql = 244II294II294.Xc

$$Ql = \frac{91,734}{2332} = 39.3$$
 - which

isn't far from the stated figure of 40.

So, to summarize the results:

Z = Rp = Qu.XI = Qu.Xc $\frac{Ztap}{Ztot} = \left[\frac{Tap \ turns}{Total \ turns}\right]^2$

Gain = ½.gm.Rload. Tap turns .½ Primary turns

The two " $\frac{1}{2}$ " multipliers refer to the 6dB loss associated with input/out termination. It will be seen from the loaded Q formulae, that under best matching conditions, when all equiv. load impedances are the same, the Q is reduced to a Ql of ($\frac{1}{2}$. $\frac{1}{2}$) Qu. Since Q is directly related to V in a tuned circuit, this also implies the voltage is reduced by the ($\frac{1}{2}$. $\frac{1}{2}$) factor.

```
QI = Rp II RI . Xc = Rp II RI . XI
and RI = \frac{[Total turns]^2}{[Tap turns]^2}. Input imp
```

Z = R in this feature - not to be confused with basic DC resistances. Bandspread calculations for RF tuned circuits may look fearsome - but as long as a reasonable scientific calculator is used, the answers involve little difficulty.

The basic reason for bandspread in HF and communications recievers is simple: consider a general coverage application on SW3 (14MHz to 30MHz), and now think about the degree of electromechanical stability that is demanded of such a system when trying to resolve an SSB signal, where the carrier needs to be reinserted to within 50Hz. 50Hz on the basis of a coverage of 16MHz represents about one part in three million. This is not an easy task to acheive in terms of mechanical stability and tuning resolution on a dial where they may be only five to ten turns coverage. So the answer is to use a fine tuning capacitor connected in parallel across the main tuning capacitor, but having a greatly reduced capacitancesay one twentieth of the value of the main tuning gang. This approach is fine in many applications, but does not really solve the problem where long term electro-mechanical stability is essential. It merely facilitates the vernier tuning by the operator.

So the next technique is the expansion of the band to absorb the whole range of the main tuning gang - say 360pF - over a relatively small RF space, as in the type of reciever that covers 'amateur' bands, or broadcast bands only. In this way 21 to 21.5MHz is made to take up all 366pF of the tuning gang swing instead of just a pF or two. This means that small changes in the tuning capacitor due to mechanical shock, heat etc., are greatly buffered in terms of the final frequency shift.

Examples:

The tuned frequency of L/C parallel circuit is given by

 $=\sqrt{\frac{25330.3}{L.C}}$

Where f is in MHz L is in microhenrys and C is in pF

(Derived from
$$f = \frac{1}{2\pi\sqrt{LC}}$$

So, in the gnereal coverage application, to reach 30MHz with a minimum tuning capacity of 30pF - to allow for strays, trimmers etc - the inductance required is only 0.9uH (approximations will be used to avoid unecessary decimal complications.)

so at 21.5MHz, a capacitor of 61pF is required, and at 21MHz, a value of 64pF in other words, a change of only 3pF covers 500kHz at 21MHz. It isn't difficult to see that the mechanical susceptibility of such a system is very poor.

So in the process of spreading the band, the endeavour is to make all 366pF do the work of 3pF, and thus make all minor changes in C insignificantly small.

The basic considerations in bandspread calculations

In a tuned circuit arrangement that employs a variable capacitor for tuning (as nearly all outside car radios do), the frequency range covered is determined by the ratio of the maximum and minimum (including strays) capacity that appears across the inductance of the tuned circuit.

The required capacitance ratio, R,

 $(d^2) = \left[\frac{Max frequency}{Min frequency} \right]^2$ (A)

let V = capacitance ratio of the tuning capacitor
 Cv= maximum value of tuning capacitance
 Cp= total parallel capacitance across tuning cap.
 Cs= capacitance used in series with tuning cap.
 BW= tuning range

and BW =
$$\left[d-1\right]\sqrt{\frac{fmax.fmin}{d}}$$
 (B)

Parallel capacitors

There are two basic approaches to the techniques of electrical bandspread - for a variety of reasons, the usual result is a combination of the two, since the impedance of the tuned circuit is very low with a high value of parallel capacity - and thus not suited to many oscillator applications - or very high with a large value of inductor, where the stray capacities inherent in PCBs and wiring limit the overall tuning range through a tight restriction on the factor 'V' (Capacitor ratio)

$$Cp = \frac{Cv (V-R)}{V(R-1)}$$
(C)

$$D = \frac{V(Cv+Cp)}{VCp+Cv}$$
(D)

Now at the lowest frequency, the total tuning capacity is Ct = Cv+Cp

As an example, take an interpolation oscillator for tuneable IF of 10.6MHz to 10.8MHz

R =
$$(1.02)^2 = 1.04$$

Using a BB104 varicap over a range of 2 to 10v bias
C min is 12.5pF, and Cmax is 22.5pF so
V = $22.5 = 100$

$$=$$
 $\frac{22.5}{12.5}$ = 1.8
= 22.5pF

Cv =

substituting in (C)

$$Cp = \frac{22.5(1.8-1.04)}{1.8(1.04-1)}$$

= 237.5pF

So, in order to leave room for strays, use 220pF fixed 5% with a 2-22pF trimmer.

The value of the inductor is then derived from the basic formula for the resonant frequency, where f= 10.8 and C= 237.5+12.5 = 250 pF

so L = 0.868uH,

but this leaves an impedance of Q.Xcassume a Q of 100 and then Z = 100 x 5.89 which is only 589 ohms, and not generally much use in this context.

Before moving on, the tuning bandwidth may be confirmed from equation (B)

BW = 0.211MHz (since approx. are used)

So, the series capacitor method comes next:

This approach relies on the principal that a small capacitor placed in series with the Cv factor will reduce the effective parallel capacity across the tuned circuit to value that is

$$\frac{1}{\frac{1}{Cs} + \frac{1}{Cv}}$$

Using the various factors already discussed

$$Cs = \frac{Cv(R-1)}{V-R}$$
 (E

}

(series C bandspread....)

the capacitance ratio, R

$$\frac{VCs + Cv}{Cs + Cv}$$
(F)

The total effective C accross the tuned circuit is also derived from

$$\frac{Cv(D-1)}{V-1}$$

(G)

the

The example used will be based on the same problem so $C \ensuremath{\boldsymbol{s}}$

leading to L

Cc =

= 201uH , and with a q of 100 Z = 1.34 Mohm

which is just about as unlikely as the result for basic parallel capacitor. The stability demands on the series capacitor are quite impossible to achieve - and no account of stray capacitance has been been made. So, to strike a useful medium, it is not surprizing to find that a combination of the two methods is used.

The Series/parallel technique

The circuit may be analyzed from a combination of the preceding formulae ((A) to (G)), using a mid-band value for the circuit impedance that is going to result in practical values and tolerances, or the following additional equations, which reduces the task to one of programming your calculator, and thinking of a few numbers:

Cta = Total maximum capacitance

Cps = Parallel capacitance

Ccs = Series capacitor

A = Intermediate capacitance ratio of the series arm of the network

and A is between the values of V and R

$$A = \frac{VCs + Cv}{Cs + Cv}$$
(H)

Cpa =
$$\frac{Cv(A-1)(A-R)}{A(R-1)(V-1)}$$
 (J)

$$Cta = \frac{RCv(A-1)^2}{A(R-1)(V-1)}$$
or Cta = Cpa RCv(A-1)^2

$$\frac{RCV(A-1)^2}{Cv(A-1)(A-R)}$$
 (L)

The value of A is found by introducing a few more variables:

$$\begin{array}{rcl} Cj &=& 2RCv & \text{then} \\ Ck &=& Cj+Cta(R-1)(V-1) \\ \text{and} & A &=& \frac{Ck+\sqrt{Ck^2-Cj^2}}{Cj} \end{array}$$

which leads to Cs =

$$\frac{Cv(A-1)}{V-A}$$
 (N)

Bandspread in LC resonant circuits (2)

Now this technique is by far the most widely used in design and tracking of resonant circuits - and in the example used so far, where

		_
R	=	$(1.02)^2 = 1.04$
V	=	1.8
Cv	=	22.5pF
Cta	=	chose a value that makes some
		practical sense here, say for
		Z of 10k ohms at 10.6MHz
	=	150pF, which is quite manageable
		sort of choice, as the L is from
L	=	<u>25530.3 = 1 5uH</u>
		150(10.6) ²
approx	. value for /	A from (H)
0:	_	0 1 0 4 0 0 5

$$Cj = 2 \cdot 1.04 \cdot 22.5 = 46.8$$

$$Ck = 46.8 + (150[1.04-1][1.8-1]) = 51.6$$

$$A = 1.5669$$

so Cs =
$$\frac{22.5(1.5669-1)}{1.8 - 1.5669}$$
 = 54.72pF

The series capacitor is selected to be $56 \, pF$ in this instance bearing in mind it is going to be a great deal more satisfactory to place any trimming C in parallel, where one side will be RF earth to permit adjustments without stray errors.

Plugging this back into (H)

$$A = \frac{(1.8.56) + 22.5}{56+22.5} = 1.57$$

$$Cpa = \frac{22.5(1.57-1)(1.57-1.04)}{1.57(1.04-1)(1.8-1)} = 135.3pF$$

$$(A-1)^2 = 0.325$$

so Cta =
$$\frac{1.04(22.5)(0.325)}{1.57(1.04-1)(1.8-1)}$$

= 151.37pF

which confirms the original conditions

To allow for a trimmer, the final choice should be:

Ctrim= 0-60pF (in parallel with Cp)

remember that the distributed capacitance of the inductor will account for a few pF in Cp section of the equationsbut this is not appreciable until layer wound LF coils are employed.

Alternative Parallel/series method

- Csb = series capacitance
- Ctb = total maximum capacitance
- Cpv = max C in parallel arm
- B = intermediate cap. ratio in parallel arm only (again, between V and R)

$$B = \frac{V(Cv + Cp)}{Cv + VCp}$$
(O)

$$C_{sb} = \frac{BCv(V-1)(R-1)}{V(B-1)(B-R)}$$
 (P)

$$tb = \frac{BCv(V-1)(R-1)}{V(B-1)^2}$$
 (Q)

C

Working with wireless

As Csb will be fixed, Cp is solved using intermediate variables:

$$Cq_{\mu} = 4V. Cv \cdot \begin{bmatrix} Csb(V-R) \\ Csb(V-R) \end{bmatrix}$$

$$\begin{bmatrix} \hline R & -1 & \hline V \\ \hline R & -1 & \hline R & -1 & \hline V \\ \hline R & -1 & \hline R & -1 & \hline R \\ \hline R & -1 & \hline$$

$$Cp = \sqrt{Cq + Cr^2 - Cr}$$

(It should be noted that all these various formulæare basically algebraic manipulations of the basic LC resonance equation and so derivations are not given here for reasons of space)

For a change, the example used here will relate to something different - coverage of the MW with the KV1210 varactor triplet. Reference to the data sheet of the KV1210 shows that from 2 to 9v bias, the capacity swing is from 400pF to 30pF typically (per diode)

v 400/30 13.33 = = Cv 400pF BW 1605/525 kHz = R BW2 9.35 10000pF and insert in the formulae: So take Csb = Cq 4.13.400 10000 (3.65) 9.35 –1 =8.26 x 10⁷ Cr 400(13+1) + 13(10000) = 135600

so Cq+Cr² =
$$1.847 \times 10^{10}$$

and Cp = $\frac{1.36 \times 10^5 - 135600}{2 \times 13}$ = 17pF

as far as the RF sections of the MW are concerned, then Cp is simply a 7/35pF trimmer, set halfway and trimmed to take up strays.

The inductance at a Ct of 417pF and a frequency of 525kHz is then

 $= \frac{25330.3}{417.(0.525)^2} = 220 \text{uH}$

which should also occur at 1605kHz and 47pF

$$\frac{25330.3}{47}$$
 = 217uH

(The slight error is due to use of 400pF without taking into account the effect of the 10000pF in series)

The final part of this series of bandspread and tracking details will appear in the next issue - it concerns the tracking of the local oscillator at (signal frequency + IF) and covers both parallel gangs (where both the antenna(e) and oscillator sections of the tuning capacitors are the same) and non- parallel gangs eg 160+80 pF, as often found in imported MW only radio applications

In the next issue of Tecknowledgey:

At the time of writing this, all consideration of the next issue seems the height of folly - after all, this issue has been delayed for a string or reasons, but primarily because we have been busier for the time of the year than we anticipated, and we want the whole production to be carried by Ambit staff who are aquianted with the products - and generally in the "thick of things". We have not managed to get in all we wanted to - so additional supplements are going to be produced on things such as

- * The Radiometer Ferret
- The PCB/dalo pens
- * Databooks
- * Hardware including tuning pots etc
 - Spaghetti farming in Tuscany

But in the next issue proper......

All that's new and wonderful in radio ICs, we hope to include details of the first Europeanized frequency synthesiser for FM and AM, some improved DFM chips (and ways to remove their RFI problems). A full report on the new family of noise blankers, introduced for the first time in this issue with the KB4423.

Words and details of UHF tunerhead techniques, with a TV preamp (tuneable) with printed inductors. But since we aim to keep as up-to-the minute as possible, it is difficult to predict much more than that.

We would appreciate any contributions from our readers/customers. These will be assessed quickly, and payment will be made on acceptance. The features must naturally relate to modern techniques, and modern components with a main theme of radio - or based on products appearing in our catalogue/price list. We particularly invite articles on the following:

Switching radios with the MA1012/MA1023 Use of the TDA1083 in communication type circuits.

The KB4423 as a record scratch blanker/ IF noise blanker at IF frequencies.

A perpetual motion device that works.

PS:

(T)

- 400

We know about the wonder decoder announced in April WW - the TCA4500A - and have given it a check At present, we think its fine for car radio, but overall, the HA1196 is superior in all normal tuner applications. In fact, the HA1196 can be fitted with variable blend with a simple FET voltage dependant resistor in the separation circuit. A new IC from Hitachi with .02% stereo THD and 86dB S/N is likely to be our next decoder feature, when available. But all this is bit acedemic when you consider broadcast standards at the transmitter don't promise better than some 65dB S/N and we have heard of one BBC station broadcasting 3% THD, which was later reduced when they found out !

Trends seem to be towards Dolby broadcasting, and it can already be usefully employed in conjunction with certain IBA stations who we think are already testing. The BBC variable pre-emphasis technique also benefits from a Dolby approach to de-emphasis.

This issue is something of new concept of combining sales promotion with feature articles (original ones, that is) and so we would like to know what you think of it. The editorial on page 3 sets out our basic approach, namely this is a magazine for engineers, by engineers who can still remember which end of the soldering iron gets hot. Do you want more basic radio reference theory, cut out from transmission line principles that most humble wireless followers don't ever really use? Is it too boring? Has it been of any use? Would you buy another? By using the term "engineers" we try to encompass both the professional, and of course the enthusiast, and since these are frequently the same creature - we don't really think a distinction in terms is necessary. There is certainly a distinction in terms of basic knowledge and experience, but since we know many hobby enthusiasts who know a whole lot more than many professionals, the choice of terms is difficult if one or other of our two main readerships is not to feel insulted. You're all really very wonderful.

A wideband RF amplifier having a voltage gain of 24dB and a spot noise figure of 3.5dB at 100MHz. The upper -3dB point is 160MHz for 2N3570 transistors, largely dependant on component lead lengths. Use of new devices, such as the BF479 should result in superior results, with greatly reduced noise and improved gain. (Remember to invert the supply for PNP devices). In fact, the basic BF274 will be quite good enough for HF use.

of £10 scientific calculator - probably a great deal more complex than this is, All of which serves to illustrate our point, and that is that now that ICs and MPU based processing are beginning to get to grips with low cost radio synthesisers, the technology is ready for exploitation in other ways. The dotted lines outline the three major signal processing ICs, two TDA1062, and one TDA1083. All possess fully balanced mixers, wide dynamic ranges and low cost. In fact, they probably outperform many devices in current use in some exotically priced communication receivers.

Description of operation

From the antenna stage, a TDA1061 constant impedance PIN attenuator precedes that main bandpass filter that restricts the input range to the wideband RF stage to 100kHz to 30MHz This passes onto the first mixer - a TDA1062 is shown here, though an MC1496 may be preferred in the final design - which is fed oscillator from a 90MHz crystal oscillator. So that 90MHz + 100kHz = 90.1MHz

and
$$90MHz + 30MHz = 120MHz$$

which are covered in the next stage, a modified band two front end, based on the TDA1062, and using all its functions, including the pin attenuator drive. The agc line should have manual interception available - and maybe better derived further down the selectivity line to prevent blocking due to AGC action on strong adjacent carriers.

On SSB, an audio derived signal processed via one LM3900 may be used in addition.

Moving on, the IF output may be 10.7MHz exactly - provided the synthesiser is capable of sufficient resolution - say 1kHz. However, the problems of settle-down time and jitter would mean a fairly costly approach, so the low cost answer is to accept the commercial FM synthesiser, with its 200kHz channel spacing, and 'Interpolate' by making the final IF tuneable from 10.6 to 10.8MHz. The TDA1083 can then provide virtually all the last IF/audio functions, feeding via the appropriate low cost 455kHz mechanical filter to a variety of detectors.

Now, that wasn't so difficult, was it? And the result is an approach to a communications receiver that should cost less than a bandswitched version in production. Alignment is cut right down, ready built "plug in" modules may be used.

Diode switching IF filters (MFL/MFHT and those with input/output IFs)

Specification 8001

Input range 100 - 600mV RMS (optimum 180mV) output adjustable with overall x 4 gain (voltage) supply +12v

Response : within 1dB to 55kHz, -30dB at 200kHz.

Circuit diagram of 8001 "birdy filter"

The 8001 MPX Birdy filter

General

The FM broadcast band is divided up into a series of channels 200kHz apart. (With a few minor exceptions in remote low powered relay station transmitters.) Whilst the mono broadcast spectrum occupies some 15kHz of AF bandwidth,the stereo Zenith-GE multiplex system requires 55kHz to contain the following : Pilot tone at 19kHz (generally 10% of system deviation, about 8kHz) DSB sub carrier at 38kHz DSB modulation bandwidth, making a total AF bandwidth requirement of some 55kHz.

This places a requirement on the FM detector for a linear bandwidth very much greater than has been the case for mono - and it also means that the preceding IF selectivity stages must not restrict the passage of the extremes of the IF signal. Nor should any phase distortion occur, which would have the effect of altering the group delay of the IF signal, so that the Left minus Right channel information contained in the 38 kHz sub carrier becomes out of phase with the 19kHz pilot signal, which is used in the decoder to accurately reconstruct the missing 38kHz carrier. (Thereby reducing the channel separation attainable in the system.)

One of the problems brought about by the increase in FM bandwidths is that interchannel interference cannot now be prevented by simply narrowing down the IF bandwidth. So in certain areas where adjacent channel interaction occurs, the only satisfactory answer is to employ the extra selectivity after the detector stage, in the form of a 55kHz low pass filter.

MA1012 LED display digital electronic clock module

connection diagram

absolute maximum ratings

20 Vrms
7.0 Vrms
+0.3 to -26VDC
30 V _{DC}
-25° C to $+70^{\circ}$ C
$-65^{\circ}C$ to $+B5^{\circ}C$
300°C

electrical characteristics

 $T_A = 25^{\circ}$ C; Pins 15 to 13 = 16 Vrms; Pins 1, 2 to 13 = 5.0 Vrms, unless otherwise specified. Normal operating conditions allow Pins 15 to 13 to vary between 14 and 18 Vrms; Pins 1, 2 to 13 to vary between 4.2 and 6.5 Vrms.

	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
VDD	MOS Supply Voltage	V _{SS} = 0V	-18	-22	-25	V _{DC}
¹ 15	MOS Power Supply Current	100% Display Brightness		14	18	mA _{DC}
I ₁₅	MOS Power Supply Current	Display Off	1	3	5	mA _{DC}
	LED Power Supply Current	100% Display Brightness (20:08)		250	280	mA
V _{DD}	Power Failure Indication Voltage	V _{SS} = 0∨	İ	~5	8	VDC
	LED Segment Display Current	Short Pin 7 to Pin 14 ($R = 0\Omega$)		11		mA
		R = 12K		1.2		mA
		R = ∞		0.0		mA
VCESAT	Radio Output	I _C ≂ 150 mA		0.1	0.3	V
VCESAT	Alarm Output	I _C = 15 mA		0.1	0.3	v
	Power Dissipation	100% Display Brightness (20:08) Max Input Voltage			2.3	w

optical characteristics

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Luminous Intensity Per Segment	I = 11 mA _{DC}	100	300		μcd
Peak Wavelength Spectral Width Viewing Angle	Half-Intensity 1/2 Brightness Point	+60	660 40		nM nM degrees
Variation – Any Two Segments	R = 0, Pins 7 to 14 R = 4.3K, Pins 7 to 14	-00		2:1 2:1	l

physical dimensions

general description

The MA1012 Series Electronic Clock Modules combine: a monolithic MOS-LSI integrated clock circuit, 4-digit 0.5" LED display, power supply and other associated discrete components on a single printed circuit board to form a complete electronic clock movement. The user need add only a transformer and switches to construct a pretested digital clock for application in clockradios, alarm or instrument panel clocks. Timekeeping may be from 50 or 60 Hz inputs and 12 or 24 hour display formats may be chosen. Direct (nonmultiplexed) LED drive eliminates RF interference. Time setting is made easy through use of "Fast" and "Slow" scanning controls.

Features include 150 mA radio supply switch, alarm output switch, alarm "on" and "PM" indicators, blinking colon, "sleep" and "snooze" timers and variable brightness control capability. Power failure is indicated by flashing the display at a 1 Hz rate.

features

- Bright 4-digit 0.5" LED display
- Complete add only transformer and switc
- 150 mA radio B+ switch
- Alarm output switch
- 12 or 24 hour display format
- 50 or 60 Hz operation
- Power failure indication
- Brightness control capability
- "Sleep" and "snooze" timers
- Alarm "on" and PM indicators
- Direct drive no RFI
- Fast and slow set controls
- Low cost, extremely compact design

applications

- Clock-radio timers
- Alarm clocks
- Desk clocks
- TV-stereo timers
- Instrument panel clocks/timers

component side view

Only 12 hour module available

Time peace

0

MA 1023 pin layout (smaller than actual size)

0

0

L. 84mm

W. 34mm

D. 16.25

This new National Clock module needs only the addition of a mains transformer, speaker and switches to produce a multi - feature alarm clock which may also be used as a time switch with a countdown timer of up to 59 min. Other display information gives power failure (display flashes when power is restored), alarm ON and PM indicators. The device also includes a back - up oscillator for use in the event of a power failure, driven from an external 9v battery. Display setting is achieved by fast and slow setting inputs, and an additional input 'time set lock out' prevents accidental time setting without inhibiting alarm and timer setting.

Maximum flexibility is provided by user programmable 12/24 - hour display, 50 or 60 Hz input and fixed or steady state activity indicator (central colon). In addition display brightness level can be varied with a 10K ohm pot or a S.P.S,T. switch for bright/dim modes. Outputs from the module are Alarm and Timer, the alarm is an 800 Hz signal modulated at 2 Hz, and can drive directly an 8 ohm speaker. The timer output is an uncommitted P.N.P transistor which may be used to switch external circuits.

Car Radio

This superb U.K. built Crusador car radio is supplied with a full instalation kit, speaker and a 2 year guarantee. It uses a TBA 810 I.C. in the audio stage and a CA 3123 A.M. Radio I.C. .

Features

- * 12 volt dual polarity ×
- Short circuit proof output
- 5 push-button tuning (4 Medium, 1 Long-wave) *
- Over-ride manual control
- * Illuminated tuning scale
- * 5 Watt output

International Mk 11

Our own Stereo F.M. Tuner kit (International Mk 11). Uses a Larsholt 7253 tuner module. Contains all the parts to build the high quality tuner pictured above.

Features

- * Brushed aluminium front panel, smoked grey visor, walnut vinyl veneer cabinet
- 6 preset ststions plus manual tune.
- Balanced LED tuning indicator
- * Frequency and signal strengh illuminated meters
- * Mute, Mono, Blend and AFC controls
- Pilot tone filter
- Adjustable audio output

The kit may also be supplied without the 7253 module but including the PSU, preset board, switches, meters Knobs ect, for the more experienced constructor who may wish to install a different set of modules, such as the 5800 tuner, 7030 I.F. and 91196 decoder.

n.b. The latest kits have an improved front panel, not as shown in the photgraph

7030 I.F. Module (see page 52)

Larsholt Signalmaster Tuner (page 48) Very high quality tuner kit, yet can be built in one evening.

Larsholt Audiomaster Amplifier (page 49) Amplifier to match the Signalmaster 30 Watts R.M.S. per channel.

